Datasets:
AI4M
/

text
stringlengths
0
3.34M
/** \ * External definitions to parametrize spectrum traces * in aXe grism exposures */ #ifndef _SPC_TRACE_FUNCTIONS_H #define _SPC_TRACE_FUNCTIONS_H #include <stdlib.h> #include <math.h> #include <gsl/gsl_vector.h> #include <gsl/gsl_integration.h> #include "aXe_errors.h" /* public */ /** A function for parametrizing spectrum traces; deriv and/or path_len (i.e. its derivative or the path length from parameter 0) may be NULL if they are not known analytically. func should return the the y offset for a given pixel column x of the spectrum trace */ typedef struct { int type; /* A unique type ID for the trace function */ double (*func) (const double, const void *const pars); double (*deriv) (const double, const void *const pars); double (*path_len) (const double, const void *const pars); void *data; /* private data for trace function, should be passed as a second parameter */ } trace_func; /* The create_xxx functions return a pointer to an allocated trace_func or NULL if the allocation failed. */ extern trace_func * create_poly2 (const double a0, const double a1, const double a2); extern trace_func * create_polyN (gsl_vector *v); extern trace_func * vector_to_trace_poly2 (gsl_vector *v); extern trace_func * vector_to_trace_polyN(gsl_vector *v); extern double polyN_ds(double x, void *pars); extern void free_poly2(trace_func * func); extern void free_polyN(trace_func * func); #endif /* ! _SPC_TRACE_FUNCTIONS_H */
% Wrapper for vl_nnselection block % inputs{1} : X : 1 x 2 x N x b % obj : idx : 1 x n % outputs{1}: y : 1 x 2 x n x b classdef selection < dagnn.Layer properties idx = []; end methods function outputs = forward(obj, inputs, ~) useGPU = isa(inputs{1}, 'gpuArray'); if useGPU outputs{1} = gpuArray( vl_nnselection(gather(inputs{1}), obj.idx) ); else outputs{1} = vl_nnselection(inputs{1}, obj.idx); end end function [derInputs, derParams] = backward(obj, inputs, ~, derOutputs) useGPU = isa(inputs{1}, 'gpuArray'); if useGPU derInputs{1} = gpuArray( vl_nnselection(gather(inputs{1}), obj.idx, gather(derOutputs{1})) ); else derInputs{1} = vl_nnselection(inputs{1}, obj.idx, derOutputs{1}); end derParams = {}; end function outputSizes = getOutputSizes(obj, inputSizes) outputSizes = {1 inputSizes{1}(2) length(obj.idx) inputSizes{1}(4)} ; end function obj = selection(varargin) obj.load(varargin); end end end
Require Import Bool.Sumbool. Require Import List. Import ListNotations. Require Import ZArith. Require Import CakeSem.Utils. Require Import CakeSem.CakeAST. Require Import CakeSem.Namespace. Require Import CakeSem.ffi.FFI. Open Scope string_scope. Open Scope list_scope. Set Implicit Arguments. (* ********************************************************************** *) (** * Auxiliary semantics constructs *) (* ---------------------------------------------------------------------- *) (** ** Stamps and predefined constructors *) (* constructor name and unique type number *) Inductive stamp : Type := | TypeStamp : conN -> nat -> stamp | ExnStamp : nat -> stamp. Scheme Equality for stamp. #[export] Hint Resolve stamp_eq_dec : DecidableEquality. (* ---------------------------------------------------------------------- *) (** ** Environments *) (* QUESTION: what is the interest of being generic in the type of values? *) (* ANSWER: I DON'T EVEN KNOW, but also we havent defined our values yet *) Record sem_env (V : Type) := { sev : namespace modN varN V; (* nat is the arity of the constructor name conN *) sec : namespace modN conN (nat * stamp) }. Arguments sev {V} _. Arguments sec {V} _. (* TODO: Move to theorems file? *) Theorem sem_env_id : forall (V : Type) (env : sem_env V), env = {| sev := sev env; sec := sec env|}. Proof. destruct env; reflexivity. Qed. (** Auxiliary definition to mimic [{ env with sev = .. }] *) Definition update_sev V (e:sem_env V) (x:namespace modN varN V) := {| sev := x; sec := sec e |}. (** Auxiliary definition to mimic [{ env with sec = .. }] *) Definition update_sec V (e:sem_env V) x := {| sev := sev e; sec := x |}. (* BACKPORT: use this definition in semantics *) Definition empty_sem_env {V : Type} : sem_env V := {| sev := nsEmpty; sec := nsEmpty |}. (* BACKPORT: extend_dec_env should be used in definition of combine_dec_result *) Definition extend_dec_env (V : Type) (new_env env : sem_env V) : sem_env V := {| sev := nsAppend (sev new_env) (sev env); sec := nsAppend (sec new_env) (sec env)|}. (* ---------------------------------------------------------------------- *) (** ** Values *) Unset Elimination Schemes. (* TODO: HOL4 version now supports floating point and a repl *) Inductive val : Type := | Litv : lit -> val | Conv : option stamp -> list val -> val | Closure : sem_env val -> varN -> exp -> val | Recclosure : sem_env val -> list (varN * varN * exp) -> varN -> val | Loc : nat -> val | Vectorv : list val -> val. Set Elimination Schemes. Definition env_val := namespace modN varN val. Definition env_ctor := namespace modN conN (nat * stamp). (** [is_closure v] captures whether [v] is a closure or a recursive closure. *) Definition is_closureb (v : val) : bool := match v with | Closure _ _ _ => true | Recclosure _ _ _ => true | _ => false end. Definition is_closure (v : val) : Prop := match v with | Closure _ _ _ => True | Recclosure _ _ _ => True | _ => False end. (* ---------------------------------------------------------------------- *) (** ** Predefined exceptions and constructors *) (* BACKPORT: bind_stamp is used to mean "match failure", but that's not an intuitive name for it *) Definition bind_stamp := ExnStamp 0. Definition chr_stamp := ExnStamp 1. Definition div_stamp := ExnStamp 2. Definition subscript_stamp := ExnStamp 3. Definition bind_exn_v := Conv (Some bind_stamp) []. Definition chr_exn_v := Conv (Some chr_stamp) []. Definition div_exn_v := Conv (Some div_stamp) []. Definition sub_exn_v := Conv (Some subscript_stamp) []. Definition bool_type_num := 0. Definition list_type_num := 1. Definition option_type_num := 2. (* BACKPORT: define these 3 shorthands *) Definition ConvTrue := Conv (Some (TypeStamp "True" bool_type_num)) []. Definition ConvFalse := Conv (Some (TypeStamp "False" bool_type_num)) []. Definition ConvUnit := Conv None []. Definition Boolv (b : bool) : val := if b then ConvTrue else ConvFalse. (* ---------------------------------------------------------------------- *) (** ** Result of an evaluation *) (* Result of evaluation *) Inductive abort : Type := | Rtype_error : abort | Rtimeout_error : abort | Rffi_error : final_event -> abort. Inductive error_result (A : Type) : Type := | Rraise : A -> error_result A | Rabort : abort -> error_result A. Arguments Rraise {A}. Arguments Rabort {A}. Inductive result (A : Type) (B : Type) : Type := | Rval : A -> result A B | Rerr : error_result B -> result A B. Arguments Rval {A} {B}. Arguments Rerr {A} {B}. Definition combine_dec_result {A : Type} (env : sem_env val) (r : result (sem_env val) A) : result (sem_env val) A := match r with | Rerr err => r | Rval env' => Rval (extend_dec_env env' env) end. (* ---------------------------------------------------------------------- *) (** ** Store *) Inductive store_v (A : Type) : Type := (* Reference *) | Refv : A -> store_v A (* Byte array *) | W8array : list word8 -> store_v A (* Value array *) | Varray : list A -> store_v A. Arguments Refv {A}. Arguments W8array {A}. Arguments Varray {A}. (* The nth item in the list is the value at location n *) Definition store (A : Type) := list (store_v A). (* ---------------------------------------------------------------------- *) (** ** State *) Record state (A : Type) := { clock : nat; refs : store val; ffi : ffi_state A; next_type_stamp : nat; next_exn_stamp : nat }. Arguments clock {A} _. Arguments refs {A} _. Arguments ffi {A} _. Arguments next_type_stamp {A} _. Arguments next_exn_stamp {A} _. Arguments refs {A} _. Definition state_update_refs_and_ffi A (st:state A) refs' (ffi':ffi_state A) := {| clock := clock st; refs := refs'; ffi := ffi'; next_type_stamp := next_type_stamp st ; next_exn_stamp := next_exn_stamp st |}. (** Auxiliary definition to mimic [{ st with next_type_stamp = .. }] *) Definition state_update_next_type_stamp A (st:state A) x := {| clock := clock st; refs := refs st; ffi := ffi st; next_type_stamp := x ; next_exn_stamp := next_exn_stamp st |}. (** Auxiliary definition to mimic [{ st with next_exn_stamp = .. }] *) Definition state_update_next_exn_stamp A (st:state A) x := {| clock := clock st; refs := refs st; ffi := ffi st; next_type_stamp := next_type_stamp st ; next_exn_stamp := x |}. (* ---------------------------------------------------------------------- *) (** ** Pattern-maching result *) Inductive match_result (A : Type) : Type := | No_match : match_result A | Match_type_error : match_result A | Match : A -> match_result A. Arguments No_match {A}. Arguments Match_type_error {A}. Arguments Match {A}. (* ********************************************************************** *) (** * Auxiliary operations *) (* BACKPORT: it would scale up better to use modules to organize the names, e.g. Store.empty, Store.lookup, etc.. (The C-style naming convention with everything flat eventually shows its limits... *) (* ---------------------------------------------------------------------- *) (** ** Typechecking *) Definition store_v_same_type (A : Type) (v1 v2 : store_v A) : bool := match v1, v2 with | Refv _, Refv _ => true | W8array _, W8array _ => true | Varray _, Varray _ => true | _, _ => false end. Definition lit_same_type (l1 l2 : lit) : bool := match l1, l2 with | IntLit _, IntLit _ => true | CharLit _, CharLit _ => true | StrLit _, StrLit _ => true | Word8Lit _, Word8Lit _ => true | Word64Lit _, Word64Lit _ => true | _, _ => false end. Definition stamp_same_type (s1 s2 : stamp) : bool := match s1, s2 with | TypeStamp _ n1, TypeStamp _ n2 => Nat.eqb n1 n2 | ExnStamp _, ExnStamp _ => true | _, _ => false end. Definition ctor_same_type (os1 os2 : option stamp) : bool := match os1, os2 with | None, None => true | Some s1, Some s2 => stamp_same_type s1 s2 | _, _ => false end. (** [con_check cenv o l] asserts that the constructor (or None for a tuple) admits arity [l]. (Note that tuples admit any arity.) This is an inductive version of [do_con_check] *) Definition do_con_check (cenv : env_ctor) (cid : constr_id) (l : nat) : bool := match cid with | None => true | Some id => match nsLookup (ident_beq _ _ String.eqb String.eqb) id cenv with | None => false | Some (l',s) => Nat.eqb l' l end end. (* ---------------------------------------------------------------------- *) (** ** Operations on the store *) Definition empty_store (A : Type) : store A := []. Arguments empty_store {A}. Definition store_lookup {A : Type} (n : nat) (st : store A) := List.nth_error st n. Definition store_alloc {A : Type} (v : store_v A) (st : store A) : (store A * nat) := (st ++ [v], List.length st). Definition store_assign_nocheck {A : Type} (n : nat) (v : store_v A) (st : store A) : store A := Utils.update n v st. (* ---------------------------------------------------------------------- *) (** ** Operations on constructors *) Definition build_conv (cenv : env_ctor) (cid : constr_id) (vs: list val) : option val := match cid with | None => Some (Conv None vs) | Some id => match nsLookup (ident_beq _ _ String.eqb String.eqb) id cenv with | None => None | Some (len,stmp) => Some (Conv (Some stmp) vs) end end. (* ---------------------------------------------------------------------- *) (** ** Operations for functions *) Definition build_rec_env (funs : list (varN * varN * exp)) (cl_env : sem_env val) (add_to_env : env_val) : env_val := fold_right (fun '(f,x,e) env' => nsBind f (Recclosure cl_env funs f) env') add_to_env funs. Fixpoint find_recfun {A B : Type} (n : varN) (funs : list (varN * A * B)) : option (A * B) := match funs with | [] => None | (f,x,e)::funs' => if string_dec f n then Some (x,e) else find_recfun n funs' end. (* ---------------------------------------------------------------------- *) (** ** Lookup for binary operations *) Definition opn_lookup (op : opn) : Z -> Z -> Z := match op with | Plus => Z.add | Minus => Z.sub | Times => Z.mul | Divide => Z.div | Modulo => Z.modulo end. Definition opb_lookup (op : opb) : Z -> Z -> bool := match op with | Lt => Z.ltb | Gt => Z.gtb | Leq => Z.leb | Geq => Z.geb end. Definition opb_lookup_Prop (op : opb) : Z -> Z -> Prop := match op with | Lt => Z.lt | Gt => Z.gt | Leq => Z.le | Geq => Z.ge end. Parameter opw8_lookup : forall (op : opw), word8 -> word8 -> word8. (* TODO: implement match op with | Andw => word_and | Orw => word_or | Xorw => word_xor | Addw => word_add end 8.*) Parameter opw64_lookup : forall (op : opw), word64 -> word64 -> word64. (* TODO: implement match op with | Andw => word_and | Orw => word_or | Xorw => word_xor | Addw => word_add end 64. *) Parameter shift8_lookup : forall (op : CakeAST.shift), word8 -> nat -> word8. (* TODO: implement fun w n => match op with | Lsl => id w | Lsr => id w | Asr => id w | Ror => id w end. *) Parameter shift64_lookup : forall (op : CakeAST.shift), word64 -> nat -> word64. (* TODO: implement fun w n => match op with | Lsl => id w | Lsr => id w | Asr => id w | Ror => id w end. *) (* ---------------------------------------------------------------------- *) (** ** Type definitions *) Open Scope bool_scope. Open Scope nat_scope. Definition UniqueCtorsInDef (td : list tvarN * typeN * list (conN * list ast_t)) : Prop := let '(tvs,tn,condefs) := td in NoDup (List.map (fun '(n,_) => n) condefs). Definition UniqueCtorsInDefs (tds : typeDef) : Prop := List.Forall UniqueCtorsInDef tds. Definition build_constrs (s : nat) (condefs : list (conN * (list ast_t)) ) := List.map (fun '(conN,ts) => (conN,(List.length ts, TypeStamp conN s))) condefs. Fixpoint build_tdefs (next_stamp : nat) (tds : list (list tvarN * typeN * list (conN * list ast_t))) : env_ctor := match tds with | [] => alist_to_ns [] | (tvars,tn,condefs)::tds' => nsAppend (build_tdefs (next_stamp + 1) tds') (alist_to_ns (List.rev (build_constrs next_stamp condefs))) end. (* ********************************************************************** *) (** * Other auxiliary operations, currently not needed by RelationBigStep, but might be in the future *) Fixpoint val_to_list (v : val) : option (list val) := match v with | Conv (Some stamp) [] => if stamp_eq_dec stamp (TypeStamp "[]" list_type_num) then Some [] else None | Conv (Some stamp) [v1;v2] => if stamp_eq_dec stamp (TypeStamp "::" list_type_num) then match val_to_list v2 with | Some vs => Some (v1::vs) | None => None end else None | _ => None end. Fixpoint list_to_val (vs : list val) : val := match vs with | [] => Conv (Some (TypeStamp "[]" list_type_num)) [] | v'::vs' => Conv (Some (TypeStamp "::" list_type_num)) [v'; list_to_val vs'] end. Fixpoint val_to_char_list (v : val) : option (list char) := match v with | Conv (Some stamp) [] => if stamp_eq_dec stamp (TypeStamp "[]" list_type_num) then Some [] else None | Conv (Some stamp) [Litv (CharLit c); v'] => if stamp_eq_dec stamp (TypeStamp "::" list_type_num) then match val_to_char_list v' with | Some cs => Some (c::cs) | None => None end else None | _ => None end. Fixpoint vals_to_string (vs : list val) : option String.string := match vs with | [] => Some "" | (Litv (StrLit s1))::vs' => match vals_to_string vs' with | Some s2 => Some (String.append s1 s2) | None => None end | _ => None end. Open Scope bool_scope. Open Scope Z_scope. Definition copy_array {A : Type} (p : list A * Z) (len : Z) (op : option (list A * Z)) : option (list A) := let (src,srcoff) := p in if (srcoff =? 0) || (len <? 0) || (Zlength src <? srcoff + len) then None else let copied := List.firstn (Z.to_nat len) (List.skipn (Z.to_nat srcoff) src) in match op with | Some (dst,dstoff) => if (dstoff <? 0) || (Zlength dst <? dstoff + len) then None else Some (List.firstn (Z.to_nat dstoff) dst ++ copied ++ List.skipn (Z.to_nat (dstoff + len)) dst) | None => Some copied end. Close Scope bool_scope. Close Scope Z_scope. (* ********************************************************************** *) (** * Induction principles *) (* ---------------------------------------------------------------------- *) (** ** Induction for values *) Fixpoint val_rect (P : val -> Type) (H1 : forall (l : lit), P (Litv l)) (H2 : forall (o : option stamp) (l : list val), Forall'' P l -> P (Conv o l)) (H3 : forall (s : sem_env val) (n : varN) (e : exp), Forall'' (fun p => P (snd p)) (sev s) -> P (Closure s n e)) (H4 : forall (s : sem_env val) (l : list (varN * varN * exp)) (n : varN), Forall'' (fun p => P (snd p)) (sev s) -> P (Recclosure s l n)) (H5 : forall (n : nat), P (Loc n)) (H6 : forall (l : list val), Forall'' P l -> P (Vectorv l)) (v : val) : P v := let val_rect' := @val_rect P H1 H2 H3 H4 H5 H6 in match v with | Litv l => H1 l | Conv o l => let fix loop (l : list val) := match l with | [] => Forall_nil'' val P | h::t => Forall_cons'' val P h t (val_rect' h) (loop t) end in H2 o l (loop l) | Closure s n e => let fix loop__ns (ls : namespace modN varN val) := match ls with | [] => Forall_nil'' (ident modN varN * val) (fun p => P (snd p)) | ((i,v'))::ls' => Forall_cons'' (ident modN varN * val) (fun p => P (snd p)) (i,v') ls' (val_rect' v') (loop__ns ls') end in H3 s n e (loop__ns (sev s)) | Recclosure s l n => let fix loop__ns (ls : namespace modN varN val) := match ls with | [] => Forall_nil'' (ident modN varN * val) (fun p => P (snd p)) | ((i,v'))::ls' => Forall_cons'' (ident modN varN * val) (fun p => P (snd p)) (i,v') ls' (val_rect' v') (loop__ns ls') end in H4 s l n (loop__ns (sev s)) | Loc n => H5 n | Vectorv l => let fix loop (l : list val) := match l with | [] => Forall_nil'' val P | h::t => Forall_cons'' val P h t (val_rect' h) (loop t) end in H6 l (loop l) end. Definition val_ind (P : val -> Prop) := @val_rect P. Definition val_rec (P : val -> Set) := @val_rect P. Fixpoint val_beq (v1 v2 : val) : bool := match v1, v2 with | Litv l1, Litv l2 => lit_beq l1 l2 | Conv o1 l1, Conv o2 l2 => andb (option_beq _ stamp_beq o1 o2) (list_beq val_beq l1 l2) (* not real equality, but considered equivalent by CakeML*) | Closure env1 v1 e1, Closure env2 v2 e2 => true | Recclosure env1 l1 v1, Recclosure env2 l2 v2 => true | Loc n1, Loc n2 => n1 =? n2 | Vectorv l1, Vectorv l2 => list_beq val_beq l1 l2 | _, _ => false end. (** Decidability theorems *) (* Theorem val_eq_dec : forall (v0 v1 : val), {v0 = v1} + {v0 <> v1}. *) (* Proof. *) (* decide equality; auto with DecidableEquality. *) (* - generalize dependent l0. induction l; destruct l0; try (left; reflexivity); try (right; discriminate). *) (* inversion X; subst; clear X. destruct (X0 v); destruct (IHl X1 l0); subst; try (right; discriminate); try (left; reflexivity). *) (* right; injection; assumption. *) (* right; injection; assumption. *) (* right; injection. intro. assumption. *) (* - generalize dependent s0. induction s; destruct s0. *) (* assert (pair_nat_stamp_dec : forall (p p0: (nat * stamp)), {p = p0} + {p <> p0}) *) (* by (decide equality; auto with DecidableEquality). *) (* destruct (namespace_eq_dec modN conN (nat * stamp) String.string_dec String.string_dec *) (* pair_nat_stamp_dec sec0 sec1); subst. *) (* generalize dependent sev1. *) (* simpl in X. *) (* induction X; destruct sev1; try (left; reflexivity); try (right; discriminate). *) (* destruct x; destruct p0. *) (* destruct (ident_eq_dec modN varN string_dec string_dec i i0); subst. *) (* destruct (p v3); subst. *) (* simpl in *. *) (* destruct (IHX sev1). *) (* inversion e1. *) (* left; reflexivity. *) (* right; intro con; inversion con. apply n0. rewrite H0. reflexivity. *) (* right; intro con; inversion con; auto. *) (* right; intro con; inversion con; auto. *) (* right; intro con; inversion con; auto. *) (* - generalize dependent s0. induction s; destruct s0. *) (* assert (pair_nat_stamp_dec : forall (p p0: (nat * stamp)), {p = p0} + {p <> p0}) *) (* by (decide equality; auto with DecidableEquality). *) (* destruct (namespace_eq_dec modN conN (nat * stamp) String.string_dec String.string_dec *) (* pair_nat_stamp_dec sec0 sec1); subst. *) (* simpl in X. *) (* generalize dependent sev1. *) (* induction X; destruct sev1; try (left; reflexivity); try (right; discriminate). *) (* destruct x; destruct p0. *) (* destruct (ident_eq_dec modN varN string_dec string_dec i i0); subst. *) (* destruct (p v3); subst. *) (* simpl in *. *) (* destruct (IHX sev1). *) (* inversion e. *) (* left; reflexivity. *) (* right; intro con; inversion con. apply n0. rewrite H0. reflexivity. *) (* right; intro con; inversion con; auto. *) (* right; intro con; inversion con; auto. *) (* right; intro con; inversion con; auto. *) (* - generalize dependent l0. induction l; destruct l0; try (left; reflexivity); try (right; discriminate). *) (* inversion X; subst; clear X. destruct (X0 v); destruct (IHl X1 l0); subst; try (right; discriminate); try (left; reflexivity). *) (* right; injection; assumption. *) (* right; injection; assumption. *) (* right; injection. intro. assumption. *) (* Defined. *) Lemma UniqueCtorsInDef_dec : forall (td : (list tvarN * typeN * list (conN * list ast_t))), {UniqueCtorsInDef td} + {~ UniqueCtorsInDef td}. Proof. unfold UniqueCtorsInDef. intro td. destruct td. destruct p. apply NoDuplicates_dec. auto with DecidableEquality. Defined. Theorem UniqueCtorsInDefs_dec : forall (tds : typeDef), {UniqueCtorsInDefs tds} + {~ UniqueCtorsInDefs tds}. Proof. apply Forall_dec. apply UniqueCtorsInDef_dec. Defined.
module Category.Profunctor where open import Agda.Primitive using (Level; _βŠ”_; lsuc) open import Data.Product using (_,_; _Γ—_) open import Function using (id) open import Relation.Binary.PropositionalEquality using (_≑_) Dimap : βˆ€ {a b} (p : Set a β†’ Set a β†’ Set b) β†’ Set (lsuc a βŠ” b) Lmap : βˆ€ {a b} (p : Set a β†’ Set a β†’ Set b) β†’ Set (lsuc a βŠ” b) Rmap : βˆ€ {a b} (p : Set a β†’ Set a β†’ Set b) β†’ Set (lsuc a βŠ” b) Dimap p = βˆ€ {x y z w} β†’ (f : x -> y) -> (h : z -> w) -> (g : p y z) β†’ p x w Lmap p = βˆ€ {x y w} β†’ (f : x -> y) -> (g : p y w) β†’ p x w Rmap p = βˆ€ {x z w} β†’ (h : z -> w) -> (g : p x z) β†’ p x w record ProfunctorImp {a b : Level} (p : Set a β†’ Set a β†’ Set b) : Set (lsuc (a βŠ” b)) where field dimap : Dimap p lmap : Lmap p rmap : Rmap p dimapFromLmapRmap : βˆ€ {a b} {p : Set a β†’ Set a β†’ Set b} (lmap : Lmap p) (rmap : Rmap p) β†’ Dimap p dimapFromLmapRmap lmap rmap f h g = rmap h (lmap f g) lmapRmapFromDimap : βˆ€ {a b} {p : Set a β†’ Set a β†’ Set b} (dimap : Dimap p) β†’ (Lmap p Γ— Rmap p) lmapRmapFromDimap dimap = (Ξ» f β†’ dimap f id) , dimap id module Profunctor {a b : Level} {p : Set a β†’ Set a β†’ Set b} (isProfunctor : ProfunctorImp p) where open ProfunctorImp isProfunctor public record LawfulProfunctorImp {a b} {p : Set a β†’ Set a β†’ Set b} (isProfunctor : ProfunctorImp p) : Set (lsuc (a βŠ” b)) where open Profunctor isProfunctor field lmapId : βˆ€ {a b} {g : p a b} β†’ lmap id g ≑ g rmapId : βˆ€ {a b} {g : p a b} β†’ rmap id g ≑ g dimapLmapRmap : βˆ€ {a b c d} {f : a β†’ b} {g : p b c} {h : c β†’ d} β†’ dimap f h g ≑ lmap f (rmap h g) module LawfulProfunctor {a b} {p : Set a β†’ Set a β†’ Set b} {isProfunctor : ProfunctorImp p} (isLawful : LawfulProfunctorImp isProfunctor) where open Profunctor isProfunctor public open LawfulProfunctorImp isLawful public
Anagrams := function(name) local f, p, L, line, word, words, swords, res, cur, r; words := [ ]; swords := [ ]; f := InputTextFile(name); while true do line := ReadLine(f); if line = fail then break; else word := Chomp(line); Add(words, word); Add(swords, SortedList(word)); fi; od; CloseStream(f); p := SortingPerm(swords); L := Permuted(words, p); r := ""; cur := [ ]; res := [ ]; for word in L do if SortedList(word) = r then Add(cur, word); else if Length(cur) > 0 then Add(res, cur); fi; r := SortedList(word); cur := [ word ]; fi; od; if Length(cur) > 0 then Add(res, cur); fi; return Filtered(res, v -> Length(v) > 1); end; ana := Anagrams("my/gap/unixdict.txt");; # What is the longest anagram sequence ? Maximum(List(ana, Length)); # 5 # Which are they ? Filtered(ana, v -> Length(v) = 5); # [ [ "abel", "able", "bale", "bela", "elba" ], # [ "caret", "carte", "cater", "crate", "trace" ], # [ "angel", "angle", "galen", "glean", "lange" ], # [ "alger", "glare", "lager", "large", "regal" ], # [ "elan", "lane", "lean", "lena", "neal" ], # [ "evil", "levi", "live", "veil", "vile" ] ]
(* Title: HOL/Auth/n_flash_lemma_on_inv__128.thy Author: Yongjian Li and Kaiqiang Duan, State Key Lab of Computer Science, Institute of Software, Chinese Academy of Sciences Copyright 2016 State Key Lab of Computer Science, Institute of Software, Chinese Academy of Sciences *) header{*The n_flash Protocol Case Study*} theory n_flash_lemma_on_inv__128 imports n_flash_base begin section{*All lemmas on causal relation between inv__128 and some rule r*} lemma n_PI_Remote_PutXVsinv__128: assumes a1: "(\<exists> dst. dst\<le>N\<and>r=n_PI_Remote_PutX dst)" and a2: "(\<exists> p__Inv4. p__Inv4\<le>N\<and>f=inv__128 p__Inv4)" shows "invHoldForRule s f r (invariants N)" (is "?P1 s \<or> ?P2 s \<or> ?P3 s") proof - from a1 obtain dst where a1:"dst\<le>N\<and>r=n_PI_Remote_PutX dst" apply fastforce done from a2 obtain p__Inv4 where a2:"p__Inv4\<le>N\<and>f=inv__128 p__Inv4" apply fastforce done have "(dst=p__Inv4)\<or>(dst~=p__Inv4)" apply (cut_tac a1 a2, auto) done moreover { assume b1: "(dst=p__Inv4)" have "?P1 s" proof(cut_tac a1 a2 b1, auto) qed then have "invHoldForRule s f r (invariants N)" by auto } moreover { assume b1: "(dst~=p__Inv4)" have "?P2 s" proof(cut_tac a1 a2 b1, auto) qed then have "invHoldForRule s f r (invariants N)" by auto } ultimately show "invHoldForRule s f r (invariants N)" by satx qed lemma n_PI_Remote_ReplaceVsinv__128: assumes a1: "(\<exists> src. src\<le>N\<and>r=n_PI_Remote_Replace src)" and a2: "(\<exists> p__Inv4. p__Inv4\<le>N\<and>f=inv__128 p__Inv4)" shows "invHoldForRule s f r (invariants N)" (is "?P1 s \<or> ?P2 s \<or> ?P3 s") proof - from a1 obtain src where a1:"src\<le>N\<and>r=n_PI_Remote_Replace src" apply fastforce done from a2 obtain p__Inv4 where a2:"p__Inv4\<le>N\<and>f=inv__128 p__Inv4" apply fastforce done have "(src=p__Inv4)\<or>(src~=p__Inv4)" apply (cut_tac a1 a2, auto) done moreover { assume b1: "(src=p__Inv4)" have "?P1 s" proof(cut_tac a1 a2 b1, auto) qed then have "invHoldForRule s f r (invariants N)" by auto } moreover { assume b1: "(src~=p__Inv4)" have "?P2 s" proof(cut_tac a1 a2 b1, auto) qed then have "invHoldForRule s f r (invariants N)" by auto } ultimately show "invHoldForRule s f r (invariants N)" by satx qed lemma n_NI_Local_Get_Put_HeadVsinv__128: assumes a1: "(\<exists> src. src\<le>N\<and>r=n_NI_Local_Get_Put_Head N src)" and a2: "(\<exists> p__Inv4. p__Inv4\<le>N\<and>f=inv__128 p__Inv4)" shows "invHoldForRule s f r (invariants N)" (is "?P1 s \<or> ?P2 s \<or> ?P3 s") proof - from a1 obtain src where a1:"src\<le>N\<and>r=n_NI_Local_Get_Put_Head N src" apply fastforce done from a2 obtain p__Inv4 where a2:"p__Inv4\<le>N\<and>f=inv__128 p__Inv4" apply fastforce done have "(src=p__Inv4)\<or>(src~=p__Inv4)" apply (cut_tac a1 a2, auto) done moreover { assume b1: "(src=p__Inv4)" have "?P3 s" apply (cut_tac a1 a2 b1, simp, rule_tac x="(neg (andForm (eqn (IVar (Field (Para (Field (Ident ''Sta'') ''Proc'') p__Inv4) ''CacheState'')) (Const CACHE_E)) (eqn (IVar (Field (Field (Ident ''Sta'') ''Dir'') ''Dirty'')) (Const false))))" in exI, auto) done then have "invHoldForRule s f r (invariants N)" by auto } moreover { assume b1: "(src~=p__Inv4)" have "?P2 s" proof(cut_tac a1 a2 b1, auto) qed then have "invHoldForRule s f r (invariants N)" by auto } ultimately show "invHoldForRule s f r (invariants N)" by satx qed lemma n_NI_Remote_Get_PutVsinv__128: assumes a1: "(\<exists> src dst. src\<le>N\<and>dst\<le>N\<and>src~=dst\<and>r=n_NI_Remote_Get_Put src dst)" and a2: "(\<exists> p__Inv4. p__Inv4\<le>N\<and>f=inv__128 p__Inv4)" shows "invHoldForRule s f r (invariants N)" (is "?P1 s \<or> ?P2 s \<or> ?P3 s") proof - from a1 obtain src dst where a1:"src\<le>N\<and>dst\<le>N\<and>src~=dst\<and>r=n_NI_Remote_Get_Put src dst" apply fastforce done from a2 obtain p__Inv4 where a2:"p__Inv4\<le>N\<and>f=inv__128 p__Inv4" apply fastforce done have "(src=p__Inv4\<and>dst~=p__Inv4)\<or>(src~=p__Inv4\<and>dst=p__Inv4)\<or>(src~=p__Inv4\<and>dst~=p__Inv4)" apply (cut_tac a1 a2, auto) done moreover { assume b1: "(src=p__Inv4\<and>dst~=p__Inv4)" have "?P2 s" proof(cut_tac a1 a2 b1, auto) qed then have "invHoldForRule s f r (invariants N)" by auto } moreover { assume b1: "(src~=p__Inv4\<and>dst=p__Inv4)" have "?P1 s" proof(cut_tac a1 a2 b1, auto) qed then have "invHoldForRule s f r (invariants N)" by auto } moreover { assume b1: "(src~=p__Inv4\<and>dst~=p__Inv4)" have "?P2 s" proof(cut_tac a1 a2 b1, auto) qed then have "invHoldForRule s f r (invariants N)" by auto } ultimately show "invHoldForRule s f r (invariants N)" by satx qed lemma n_NI_Remote_Get_Put_HomeVsinv__128: assumes a1: "(\<exists> dst. dst\<le>N\<and>r=n_NI_Remote_Get_Put_Home dst)" and a2: "(\<exists> p__Inv4. p__Inv4\<le>N\<and>f=inv__128 p__Inv4)" shows "invHoldForRule s f r (invariants N)" (is "?P1 s \<or> ?P2 s \<or> ?P3 s") proof - from a1 obtain dst where a1:"dst\<le>N\<and>r=n_NI_Remote_Get_Put_Home dst" apply fastforce done from a2 obtain p__Inv4 where a2:"p__Inv4\<le>N\<and>f=inv__128 p__Inv4" apply fastforce done have "(dst=p__Inv4)\<or>(dst~=p__Inv4)" apply (cut_tac a1 a2, auto) done moreover { assume b1: "(dst=p__Inv4)" have "?P1 s" proof(cut_tac a1 a2 b1, auto) qed then have "invHoldForRule s f r (invariants N)" by auto } moreover { assume b1: "(dst~=p__Inv4)" have "?P2 s" proof(cut_tac a1 a2 b1, auto) qed then have "invHoldForRule s f r (invariants N)" by auto } ultimately show "invHoldForRule s f r (invariants N)" by satx qed lemma n_NI_Local_GetX_PutX_1Vsinv__128: assumes a1: "(\<exists> src. src\<le>N\<and>r=n_NI_Local_GetX_PutX_1 N src)" and a2: "(\<exists> p__Inv4. p__Inv4\<le>N\<and>f=inv__128 p__Inv4)" shows "invHoldForRule s f r (invariants N)" (is "?P1 s \<or> ?P2 s \<or> ?P3 s") proof - from a1 obtain src where a1:"src\<le>N\<and>r=n_NI_Local_GetX_PutX_1 N src" apply fastforce done from a2 obtain p__Inv4 where a2:"p__Inv4\<le>N\<and>f=inv__128 p__Inv4" apply fastforce done have "(src=p__Inv4)\<or>(src~=p__Inv4)" apply (cut_tac a1 a2, auto) done moreover { assume b1: "(src=p__Inv4)" have "?P1 s" proof(cut_tac a1 a2 b1, auto) qed then have "invHoldForRule s f r (invariants N)" by auto } moreover { assume b1: "(src~=p__Inv4)" have "?P1 s" proof(cut_tac a1 a2 b1, auto) qed then have "invHoldForRule s f r (invariants N)" by auto } ultimately show "invHoldForRule s f r (invariants N)" by satx qed lemma n_NI_Local_GetX_PutX_2Vsinv__128: assumes a1: "(\<exists> src. src\<le>N\<and>r=n_NI_Local_GetX_PutX_2 N src)" and a2: "(\<exists> p__Inv4. p__Inv4\<le>N\<and>f=inv__128 p__Inv4)" shows "invHoldForRule s f r (invariants N)" (is "?P1 s \<or> ?P2 s \<or> ?P3 s") proof - from a1 obtain src where a1:"src\<le>N\<and>r=n_NI_Local_GetX_PutX_2 N src" apply fastforce done from a2 obtain p__Inv4 where a2:"p__Inv4\<le>N\<and>f=inv__128 p__Inv4" apply fastforce done have "(src=p__Inv4)\<or>(src~=p__Inv4)" apply (cut_tac a1 a2, auto) done moreover { assume b1: "(src=p__Inv4)" have "?P1 s" proof(cut_tac a1 a2 b1, auto) qed then have "invHoldForRule s f r (invariants N)" by auto } moreover { assume b1: "(src~=p__Inv4)" have "?P1 s" proof(cut_tac a1 a2 b1, auto) qed then have "invHoldForRule s f r (invariants N)" by auto } ultimately show "invHoldForRule s f r (invariants N)" by satx qed lemma n_NI_Local_GetX_PutX_3Vsinv__128: assumes a1: "(\<exists> src. src\<le>N\<and>r=n_NI_Local_GetX_PutX_3 N src)" and a2: "(\<exists> p__Inv4. p__Inv4\<le>N\<and>f=inv__128 p__Inv4)" shows "invHoldForRule s f r (invariants N)" (is "?P1 s \<or> ?P2 s \<or> ?P3 s") proof - from a1 obtain src where a1:"src\<le>N\<and>r=n_NI_Local_GetX_PutX_3 N src" apply fastforce done from a2 obtain p__Inv4 where a2:"p__Inv4\<le>N\<and>f=inv__128 p__Inv4" apply fastforce done have "(src=p__Inv4)\<or>(src~=p__Inv4)" apply (cut_tac a1 a2, auto) done moreover { assume b1: "(src=p__Inv4)" have "?P1 s" proof(cut_tac a1 a2 b1, auto) qed then have "invHoldForRule s f r (invariants N)" by auto } moreover { assume b1: "(src~=p__Inv4)" have "?P1 s" proof(cut_tac a1 a2 b1, auto) qed then have "invHoldForRule s f r (invariants N)" by auto } ultimately show "invHoldForRule s f r (invariants N)" by satx qed lemma n_NI_Local_GetX_PutX_4Vsinv__128: assumes a1: "(\<exists> src. src\<le>N\<and>r=n_NI_Local_GetX_PutX_4 N src)" and a2: "(\<exists> p__Inv4. p__Inv4\<le>N\<and>f=inv__128 p__Inv4)" shows "invHoldForRule s f r (invariants N)" (is "?P1 s \<or> ?P2 s \<or> ?P3 s") proof - from a1 obtain src where a1:"src\<le>N\<and>r=n_NI_Local_GetX_PutX_4 N src" apply fastforce done from a2 obtain p__Inv4 where a2:"p__Inv4\<le>N\<and>f=inv__128 p__Inv4" apply fastforce done have "(src=p__Inv4)\<or>(src~=p__Inv4)" apply (cut_tac a1 a2, auto) done moreover { assume b1: "(src=p__Inv4)" have "?P1 s" proof(cut_tac a1 a2 b1, auto) qed then have "invHoldForRule s f r (invariants N)" by auto } moreover { assume b1: "(src~=p__Inv4)" have "?P1 s" proof(cut_tac a1 a2 b1, auto) qed then have "invHoldForRule s f r (invariants N)" by auto } ultimately show "invHoldForRule s f r (invariants N)" by satx qed lemma n_NI_Local_GetX_PutX_5Vsinv__128: assumes a1: "(\<exists> src. src\<le>N\<and>r=n_NI_Local_GetX_PutX_5 N src)" and a2: "(\<exists> p__Inv4. p__Inv4\<le>N\<and>f=inv__128 p__Inv4)" shows "invHoldForRule s f r (invariants N)" (is "?P1 s \<or> ?P2 s \<or> ?P3 s") proof - from a1 obtain src where a1:"src\<le>N\<and>r=n_NI_Local_GetX_PutX_5 N src" apply fastforce done from a2 obtain p__Inv4 where a2:"p__Inv4\<le>N\<and>f=inv__128 p__Inv4" apply fastforce done have "(src=p__Inv4)\<or>(src~=p__Inv4)" apply (cut_tac a1 a2, auto) done moreover { assume b1: "(src=p__Inv4)" have "?P1 s" proof(cut_tac a1 a2 b1, auto) qed then have "invHoldForRule s f r (invariants N)" by auto } moreover { assume b1: "(src~=p__Inv4)" have "?P1 s" proof(cut_tac a1 a2 b1, auto) qed then have "invHoldForRule s f r (invariants N)" by auto } ultimately show "invHoldForRule s f r (invariants N)" by satx qed lemma n_NI_Local_GetX_PutX_6Vsinv__128: assumes a1: "(\<exists> src. src\<le>N\<and>r=n_NI_Local_GetX_PutX_6 N src)" and a2: "(\<exists> p__Inv4. p__Inv4\<le>N\<and>f=inv__128 p__Inv4)" shows "invHoldForRule s f r (invariants N)" (is "?P1 s \<or> ?P2 s \<or> ?P3 s") proof - from a1 obtain src where a1:"src\<le>N\<and>r=n_NI_Local_GetX_PutX_6 N src" apply fastforce done from a2 obtain p__Inv4 where a2:"p__Inv4\<le>N\<and>f=inv__128 p__Inv4" apply fastforce done have "(src=p__Inv4)\<or>(src~=p__Inv4)" apply (cut_tac a1 a2, auto) done moreover { assume b1: "(src=p__Inv4)" have "?P1 s" proof(cut_tac a1 a2 b1, auto) qed then have "invHoldForRule s f r (invariants N)" by auto } moreover { assume b1: "(src~=p__Inv4)" have "?P1 s" proof(cut_tac a1 a2 b1, auto) qed then have "invHoldForRule s f r (invariants N)" by auto } ultimately show "invHoldForRule s f r (invariants N)" by satx qed lemma n_NI_Local_GetX_PutX_7__part__0Vsinv__128: assumes a1: "(\<exists> src. src\<le>N\<and>r=n_NI_Local_GetX_PutX_7__part__0 N src)" and a2: "(\<exists> p__Inv4. p__Inv4\<le>N\<and>f=inv__128 p__Inv4)" shows "invHoldForRule s f r (invariants N)" (is "?P1 s \<or> ?P2 s \<or> ?P3 s") proof - from a1 obtain src where a1:"src\<le>N\<and>r=n_NI_Local_GetX_PutX_7__part__0 N src" apply fastforce done from a2 obtain p__Inv4 where a2:"p__Inv4\<le>N\<and>f=inv__128 p__Inv4" apply fastforce done have "(src=p__Inv4)\<or>(src~=p__Inv4)" apply (cut_tac a1 a2, auto) done moreover { assume b1: "(src=p__Inv4)" have "?P1 s" proof(cut_tac a1 a2 b1, auto) qed then have "invHoldForRule s f r (invariants N)" by auto } moreover { assume b1: "(src~=p__Inv4)" have "?P1 s" proof(cut_tac a1 a2 b1, auto) qed then have "invHoldForRule s f r (invariants N)" by auto } ultimately show "invHoldForRule s f r (invariants N)" by satx qed lemma n_NI_Local_GetX_PutX_7__part__1Vsinv__128: assumes a1: "(\<exists> src. src\<le>N\<and>r=n_NI_Local_GetX_PutX_7__part__1 N src)" and a2: "(\<exists> p__Inv4. p__Inv4\<le>N\<and>f=inv__128 p__Inv4)" shows "invHoldForRule s f r (invariants N)" (is "?P1 s \<or> ?P2 s \<or> ?P3 s") proof - from a1 obtain src where a1:"src\<le>N\<and>r=n_NI_Local_GetX_PutX_7__part__1 N src" apply fastforce done from a2 obtain p__Inv4 where a2:"p__Inv4\<le>N\<and>f=inv__128 p__Inv4" apply fastforce done have "(src=p__Inv4)\<or>(src~=p__Inv4)" apply (cut_tac a1 a2, auto) done moreover { assume b1: "(src=p__Inv4)" have "?P1 s" proof(cut_tac a1 a2 b1, auto) qed then have "invHoldForRule s f r (invariants N)" by auto } moreover { assume b1: "(src~=p__Inv4)" have "?P1 s" proof(cut_tac a1 a2 b1, auto) qed then have "invHoldForRule s f r (invariants N)" by auto } ultimately show "invHoldForRule s f r (invariants N)" by satx qed lemma n_NI_Local_GetX_PutX_7_NODE_Get__part__0Vsinv__128: assumes a1: "(\<exists> src. src\<le>N\<and>r=n_NI_Local_GetX_PutX_7_NODE_Get__part__0 N src)" and a2: "(\<exists> p__Inv4. p__Inv4\<le>N\<and>f=inv__128 p__Inv4)" shows "invHoldForRule s f r (invariants N)" (is "?P1 s \<or> ?P2 s \<or> ?P3 s") proof - from a1 obtain src where a1:"src\<le>N\<and>r=n_NI_Local_GetX_PutX_7_NODE_Get__part__0 N src" apply fastforce done from a2 obtain p__Inv4 where a2:"p__Inv4\<le>N\<and>f=inv__128 p__Inv4" apply fastforce done have "(src=p__Inv4)\<or>(src~=p__Inv4)" apply (cut_tac a1 a2, auto) done moreover { assume b1: "(src=p__Inv4)" have "?P1 s" proof(cut_tac a1 a2 b1, auto) qed then have "invHoldForRule s f r (invariants N)" by auto } moreover { assume b1: "(src~=p__Inv4)" have "?P1 s" proof(cut_tac a1 a2 b1, auto) qed then have "invHoldForRule s f r (invariants N)" by auto } ultimately show "invHoldForRule s f r (invariants N)" by satx qed lemma n_NI_Local_GetX_PutX_7_NODE_Get__part__1Vsinv__128: assumes a1: "(\<exists> src. src\<le>N\<and>r=n_NI_Local_GetX_PutX_7_NODE_Get__part__1 N src)" and a2: "(\<exists> p__Inv4. p__Inv4\<le>N\<and>f=inv__128 p__Inv4)" shows "invHoldForRule s f r (invariants N)" (is "?P1 s \<or> ?P2 s \<or> ?P3 s") proof - from a1 obtain src where a1:"src\<le>N\<and>r=n_NI_Local_GetX_PutX_7_NODE_Get__part__1 N src" apply fastforce done from a2 obtain p__Inv4 where a2:"p__Inv4\<le>N\<and>f=inv__128 p__Inv4" apply fastforce done have "(src=p__Inv4)\<or>(src~=p__Inv4)" apply (cut_tac a1 a2, auto) done moreover { assume b1: "(src=p__Inv4)" have "?P1 s" proof(cut_tac a1 a2 b1, auto) qed then have "invHoldForRule s f r (invariants N)" by auto } moreover { assume b1: "(src~=p__Inv4)" have "?P1 s" proof(cut_tac a1 a2 b1, auto) qed then have "invHoldForRule s f r (invariants N)" by auto } ultimately show "invHoldForRule s f r (invariants N)" by satx qed lemma n_NI_Local_GetX_PutX_8_HomeVsinv__128: assumes a1: "(\<exists> src. src\<le>N\<and>r=n_NI_Local_GetX_PutX_8_Home N src)" and a2: "(\<exists> p__Inv4. p__Inv4\<le>N\<and>f=inv__128 p__Inv4)" shows "invHoldForRule s f r (invariants N)" (is "?P1 s \<or> ?P2 s \<or> ?P3 s") proof - from a1 obtain src where a1:"src\<le>N\<and>r=n_NI_Local_GetX_PutX_8_Home N src" apply fastforce done from a2 obtain p__Inv4 where a2:"p__Inv4\<le>N\<and>f=inv__128 p__Inv4" apply fastforce done have "(src=p__Inv4)\<or>(src~=p__Inv4)" apply (cut_tac a1 a2, auto) done moreover { assume b1: "(src=p__Inv4)" have "?P1 s" proof(cut_tac a1 a2 b1, auto) qed then have "invHoldForRule s f r (invariants N)" by auto } moreover { assume b1: "(src~=p__Inv4)" have "?P1 s" proof(cut_tac a1 a2 b1, auto) qed then have "invHoldForRule s f r (invariants N)" by auto } ultimately show "invHoldForRule s f r (invariants N)" by satx qed lemma n_NI_Local_GetX_PutX_8_Home_NODE_GetVsinv__128: assumes a1: "(\<exists> src. src\<le>N\<and>r=n_NI_Local_GetX_PutX_8_Home_NODE_Get N src)" and a2: "(\<exists> p__Inv4. p__Inv4\<le>N\<and>f=inv__128 p__Inv4)" shows "invHoldForRule s f r (invariants N)" (is "?P1 s \<or> ?P2 s \<or> ?P3 s") proof - from a1 obtain src where a1:"src\<le>N\<and>r=n_NI_Local_GetX_PutX_8_Home_NODE_Get N src" apply fastforce done from a2 obtain p__Inv4 where a2:"p__Inv4\<le>N\<and>f=inv__128 p__Inv4" apply fastforce done have "(src=p__Inv4)\<or>(src~=p__Inv4)" apply (cut_tac a1 a2, auto) done moreover { assume b1: "(src=p__Inv4)" have "?P1 s" proof(cut_tac a1 a2 b1, auto) qed then have "invHoldForRule s f r (invariants N)" by auto } moreover { assume b1: "(src~=p__Inv4)" have "?P1 s" proof(cut_tac a1 a2 b1, auto) qed then have "invHoldForRule s f r (invariants N)" by auto } ultimately show "invHoldForRule s f r (invariants N)" by satx qed lemma n_NI_Local_GetX_PutX_8Vsinv__128: assumes a1: "(\<exists> src pp. src\<le>N\<and>pp\<le>N\<and>src~=pp\<and>r=n_NI_Local_GetX_PutX_8 N src pp)" and a2: "(\<exists> p__Inv4. p__Inv4\<le>N\<and>f=inv__128 p__Inv4)" shows "invHoldForRule s f r (invariants N)" (is "?P1 s \<or> ?P2 s \<or> ?P3 s") proof - from a1 obtain src pp where a1:"src\<le>N\<and>pp\<le>N\<and>src~=pp\<and>r=n_NI_Local_GetX_PutX_8 N src pp" apply fastforce done from a2 obtain p__Inv4 where a2:"p__Inv4\<le>N\<and>f=inv__128 p__Inv4" apply fastforce done have "(src=p__Inv4\<and>pp~=p__Inv4)\<or>(src~=p__Inv4\<and>pp=p__Inv4)\<or>(src~=p__Inv4\<and>pp~=p__Inv4)" apply (cut_tac a1 a2, auto) done moreover { assume b1: "(src=p__Inv4\<and>pp~=p__Inv4)" have "?P1 s" proof(cut_tac a1 a2 b1, auto) qed then have "invHoldForRule s f r (invariants N)" by auto } moreover { assume b1: "(src~=p__Inv4\<and>pp=p__Inv4)" have "?P1 s" proof(cut_tac a1 a2 b1, auto) qed then have "invHoldForRule s f r (invariants N)" by auto } moreover { assume b1: "(src~=p__Inv4\<and>pp~=p__Inv4)" have "?P1 s" proof(cut_tac a1 a2 b1, auto) qed then have "invHoldForRule s f r (invariants N)" by auto } ultimately show "invHoldForRule s f r (invariants N)" by satx qed lemma n_NI_Local_GetX_PutX_8_NODE_GetVsinv__128: assumes a1: "(\<exists> src pp. src\<le>N\<and>pp\<le>N\<and>src~=pp\<and>r=n_NI_Local_GetX_PutX_8_NODE_Get N src pp)" and a2: "(\<exists> p__Inv4. p__Inv4\<le>N\<and>f=inv__128 p__Inv4)" shows "invHoldForRule s f r (invariants N)" (is "?P1 s \<or> ?P2 s \<or> ?P3 s") proof - from a1 obtain src pp where a1:"src\<le>N\<and>pp\<le>N\<and>src~=pp\<and>r=n_NI_Local_GetX_PutX_8_NODE_Get N src pp" apply fastforce done from a2 obtain p__Inv4 where a2:"p__Inv4\<le>N\<and>f=inv__128 p__Inv4" apply fastforce done have "(src=p__Inv4\<and>pp~=p__Inv4)\<or>(src~=p__Inv4\<and>pp=p__Inv4)\<or>(src~=p__Inv4\<and>pp~=p__Inv4)" apply (cut_tac a1 a2, auto) done moreover { assume b1: "(src=p__Inv4\<and>pp~=p__Inv4)" have "?P1 s" proof(cut_tac a1 a2 b1, auto) qed then have "invHoldForRule s f r (invariants N)" by auto } moreover { assume b1: "(src~=p__Inv4\<and>pp=p__Inv4)" have "?P1 s" proof(cut_tac a1 a2 b1, auto) qed then have "invHoldForRule s f r (invariants N)" by auto } moreover { assume b1: "(src~=p__Inv4\<and>pp~=p__Inv4)" have "?P1 s" proof(cut_tac a1 a2 b1, auto) qed then have "invHoldForRule s f r (invariants N)" by auto } ultimately show "invHoldForRule s f r (invariants N)" by satx qed lemma n_NI_Local_GetX_PutX_9__part__0Vsinv__128: assumes a1: "(\<exists> src. src\<le>N\<and>r=n_NI_Local_GetX_PutX_9__part__0 N src)" and a2: "(\<exists> p__Inv4. p__Inv4\<le>N\<and>f=inv__128 p__Inv4)" shows "invHoldForRule s f r (invariants N)" (is "?P1 s \<or> ?P2 s \<or> ?P3 s") proof - from a1 obtain src where a1:"src\<le>N\<and>r=n_NI_Local_GetX_PutX_9__part__0 N src" apply fastforce done from a2 obtain p__Inv4 where a2:"p__Inv4\<le>N\<and>f=inv__128 p__Inv4" apply fastforce done have "(src=p__Inv4)\<or>(src~=p__Inv4)" apply (cut_tac a1 a2, auto) done moreover { assume b1: "(src=p__Inv4)" have "?P1 s" proof(cut_tac a1 a2 b1, auto) qed then have "invHoldForRule s f r (invariants N)" by auto } moreover { assume b1: "(src~=p__Inv4)" have "?P1 s" proof(cut_tac a1 a2 b1, auto) qed then have "invHoldForRule s f r (invariants N)" by auto } ultimately show "invHoldForRule s f r (invariants N)" by satx qed lemma n_NI_Local_GetX_PutX_9__part__1Vsinv__128: assumes a1: "(\<exists> src. src\<le>N\<and>r=n_NI_Local_GetX_PutX_9__part__1 N src)" and a2: "(\<exists> p__Inv4. p__Inv4\<le>N\<and>f=inv__128 p__Inv4)" shows "invHoldForRule s f r (invariants N)" (is "?P1 s \<or> ?P2 s \<or> ?P3 s") proof - from a1 obtain src where a1:"src\<le>N\<and>r=n_NI_Local_GetX_PutX_9__part__1 N src" apply fastforce done from a2 obtain p__Inv4 where a2:"p__Inv4\<le>N\<and>f=inv__128 p__Inv4" apply fastforce done have "(src=p__Inv4)\<or>(src~=p__Inv4)" apply (cut_tac a1 a2, auto) done moreover { assume b1: "(src=p__Inv4)" have "?P1 s" proof(cut_tac a1 a2 b1, auto) qed then have "invHoldForRule s f r (invariants N)" by auto } moreover { assume b1: "(src~=p__Inv4)" have "?P1 s" proof(cut_tac a1 a2 b1, auto) qed then have "invHoldForRule s f r (invariants N)" by auto } ultimately show "invHoldForRule s f r (invariants N)" by satx qed lemma n_NI_Local_GetX_PutX_10_HomeVsinv__128: assumes a1: "(\<exists> src. src\<le>N\<and>r=n_NI_Local_GetX_PutX_10_Home N src)" and a2: "(\<exists> p__Inv4. p__Inv4\<le>N\<and>f=inv__128 p__Inv4)" shows "invHoldForRule s f r (invariants N)" (is "?P1 s \<or> ?P2 s \<or> ?P3 s") proof - from a1 obtain src where a1:"src\<le>N\<and>r=n_NI_Local_GetX_PutX_10_Home N src" apply fastforce done from a2 obtain p__Inv4 where a2:"p__Inv4\<le>N\<and>f=inv__128 p__Inv4" apply fastforce done have "(src=p__Inv4)\<or>(src~=p__Inv4)" apply (cut_tac a1 a2, auto) done moreover { assume b1: "(src=p__Inv4)" have "?P1 s" proof(cut_tac a1 a2 b1, auto) qed then have "invHoldForRule s f r (invariants N)" by auto } moreover { assume b1: "(src~=p__Inv4)" have "?P1 s" proof(cut_tac a1 a2 b1, auto) qed then have "invHoldForRule s f r (invariants N)" by auto } ultimately show "invHoldForRule s f r (invariants N)" by satx qed lemma n_NI_Local_GetX_PutX_10Vsinv__128: assumes a1: "(\<exists> src pp. src\<le>N\<and>pp\<le>N\<and>src~=pp\<and>r=n_NI_Local_GetX_PutX_10 N src pp)" and a2: "(\<exists> p__Inv4. p__Inv4\<le>N\<and>f=inv__128 p__Inv4)" shows "invHoldForRule s f r (invariants N)" (is "?P1 s \<or> ?P2 s \<or> ?P3 s") proof - from a1 obtain src pp where a1:"src\<le>N\<and>pp\<le>N\<and>src~=pp\<and>r=n_NI_Local_GetX_PutX_10 N src pp" apply fastforce done from a2 obtain p__Inv4 where a2:"p__Inv4\<le>N\<and>f=inv__128 p__Inv4" apply fastforce done have "(src=p__Inv4\<and>pp~=p__Inv4)\<or>(src~=p__Inv4\<and>pp=p__Inv4)\<or>(src~=p__Inv4\<and>pp~=p__Inv4)" apply (cut_tac a1 a2, auto) done moreover { assume b1: "(src=p__Inv4\<and>pp~=p__Inv4)" have "?P1 s" proof(cut_tac a1 a2 b1, auto) qed then have "invHoldForRule s f r (invariants N)" by auto } moreover { assume b1: "(src~=p__Inv4\<and>pp=p__Inv4)" have "?P1 s" proof(cut_tac a1 a2 b1, auto) qed then have "invHoldForRule s f r (invariants N)" by auto } moreover { assume b1: "(src~=p__Inv4\<and>pp~=p__Inv4)" have "?P1 s" proof(cut_tac a1 a2 b1, auto) qed then have "invHoldForRule s f r (invariants N)" by auto } ultimately show "invHoldForRule s f r (invariants N)" by satx qed lemma n_NI_Local_GetX_PutX_11Vsinv__128: assumes a1: "(\<exists> src. src\<le>N\<and>r=n_NI_Local_GetX_PutX_11 N src)" and a2: "(\<exists> p__Inv4. p__Inv4\<le>N\<and>f=inv__128 p__Inv4)" shows "invHoldForRule s f r (invariants N)" (is "?P1 s \<or> ?P2 s \<or> ?P3 s") proof - from a1 obtain src where a1:"src\<le>N\<and>r=n_NI_Local_GetX_PutX_11 N src" apply fastforce done from a2 obtain p__Inv4 where a2:"p__Inv4\<le>N\<and>f=inv__128 p__Inv4" apply fastforce done have "(src=p__Inv4)\<or>(src~=p__Inv4)" apply (cut_tac a1 a2, auto) done moreover { assume b1: "(src=p__Inv4)" have "?P1 s" proof(cut_tac a1 a2 b1, auto) qed then have "invHoldForRule s f r (invariants N)" by auto } moreover { assume b1: "(src~=p__Inv4)" have "?P1 s" proof(cut_tac a1 a2 b1, auto) qed then have "invHoldForRule s f r (invariants N)" by auto } ultimately show "invHoldForRule s f r (invariants N)" by satx qed lemma n_NI_Remote_GetX_PutXVsinv__128: assumes a1: "(\<exists> src dst. src\<le>N\<and>dst\<le>N\<and>src~=dst\<and>r=n_NI_Remote_GetX_PutX src dst)" and a2: "(\<exists> p__Inv4. p__Inv4\<le>N\<and>f=inv__128 p__Inv4)" shows "invHoldForRule s f r (invariants N)" (is "?P1 s \<or> ?P2 s \<or> ?P3 s") proof - from a1 obtain src dst where a1:"src\<le>N\<and>dst\<le>N\<and>src~=dst\<and>r=n_NI_Remote_GetX_PutX src dst" apply fastforce done from a2 obtain p__Inv4 where a2:"p__Inv4\<le>N\<and>f=inv__128 p__Inv4" apply fastforce done have "(src=p__Inv4\<and>dst~=p__Inv4)\<or>(src~=p__Inv4\<and>dst=p__Inv4)\<or>(src~=p__Inv4\<and>dst~=p__Inv4)" apply (cut_tac a1 a2, auto) done moreover { assume b1: "(src=p__Inv4\<and>dst~=p__Inv4)" have "?P2 s" proof(cut_tac a1 a2 b1, auto) qed then have "invHoldForRule s f r (invariants N)" by auto } moreover { assume b1: "(src~=p__Inv4\<and>dst=p__Inv4)" have "?P1 s" proof(cut_tac a1 a2 b1, auto) qed then have "invHoldForRule s f r (invariants N)" by auto } moreover { assume b1: "(src~=p__Inv4\<and>dst~=p__Inv4)" have "?P2 s" proof(cut_tac a1 a2 b1, auto) qed then have "invHoldForRule s f r (invariants N)" by auto } ultimately show "invHoldForRule s f r (invariants N)" by satx qed lemma n_NI_Remote_GetX_PutX_HomeVsinv__128: assumes a1: "(\<exists> dst. dst\<le>N\<and>r=n_NI_Remote_GetX_PutX_Home dst)" and a2: "(\<exists> p__Inv4. p__Inv4\<le>N\<and>f=inv__128 p__Inv4)" shows "invHoldForRule s f r (invariants N)" (is "?P1 s \<or> ?P2 s \<or> ?P3 s") proof - from a1 obtain dst where a1:"dst\<le>N\<and>r=n_NI_Remote_GetX_PutX_Home dst" apply fastforce done from a2 obtain p__Inv4 where a2:"p__Inv4\<le>N\<and>f=inv__128 p__Inv4" apply fastforce done have "(dst=p__Inv4)\<or>(dst~=p__Inv4)" apply (cut_tac a1 a2, auto) done moreover { assume b1: "(dst=p__Inv4)" have "?P1 s" proof(cut_tac a1 a2 b1, auto) qed then have "invHoldForRule s f r (invariants N)" by auto } moreover { assume b1: "(dst~=p__Inv4)" have "?P2 s" proof(cut_tac a1 a2 b1, auto) qed then have "invHoldForRule s f r (invariants N)" by auto } ultimately show "invHoldForRule s f r (invariants N)" by satx qed lemma n_NI_Remote_PutVsinv__128: assumes a1: "(\<exists> dst. dst\<le>N\<and>r=n_NI_Remote_Put dst)" and a2: "(\<exists> p__Inv4. p__Inv4\<le>N\<and>f=inv__128 p__Inv4)" shows "invHoldForRule s f r (invariants N)" (is "?P1 s \<or> ?P2 s \<or> ?P3 s") proof - from a1 obtain dst where a1:"dst\<le>N\<and>r=n_NI_Remote_Put dst" apply fastforce done from a2 obtain p__Inv4 where a2:"p__Inv4\<le>N\<and>f=inv__128 p__Inv4" apply fastforce done have "(dst=p__Inv4)\<or>(dst~=p__Inv4)" apply (cut_tac a1 a2, auto) done moreover { assume b1: "(dst=p__Inv4)" have "((formEval (eqn (IVar (Field (Para (Field (Ident ''Sta'') ''Proc'') p__Inv4) ''InvMarked'')) (Const true)) s))\<or>((formEval (neg (eqn (IVar (Field (Para (Field (Ident ''Sta'') ''Proc'') p__Inv4) ''InvMarked'')) (Const true))) s))" by auto moreover { assume c1: "((formEval (eqn (IVar (Field (Para (Field (Ident ''Sta'') ''Proc'') p__Inv4) ''InvMarked'')) (Const true)) s))" have "?P1 s" proof(cut_tac a1 a2 b1 c1, auto) qed then have "invHoldForRule s f r (invariants N)" by auto } moreover { assume c1: "((formEval (neg (eqn (IVar (Field (Para (Field (Ident ''Sta'') ''Proc'') p__Inv4) ''InvMarked'')) (Const true))) s))" have "?P1 s" proof(cut_tac a1 a2 b1 c1, auto) qed then have "invHoldForRule s f r (invariants N)" by auto } ultimately have "invHoldForRule s f r (invariants N)" by satx } moreover { assume b1: "(dst~=p__Inv4)" have "?P2 s" proof(cut_tac a1 a2 b1, auto) qed then have "invHoldForRule s f r (invariants N)" by auto } ultimately show "invHoldForRule s f r (invariants N)" by satx qed lemma n_NI_Remote_PutXVsinv__128: assumes a1: "(\<exists> dst. dst\<le>N\<and>r=n_NI_Remote_PutX dst)" and a2: "(\<exists> p__Inv4. p__Inv4\<le>N\<and>f=inv__128 p__Inv4)" shows "invHoldForRule s f r (invariants N)" (is "?P1 s \<or> ?P2 s \<or> ?P3 s") proof - from a1 obtain dst where a1:"dst\<le>N\<and>r=n_NI_Remote_PutX dst" apply fastforce done from a2 obtain p__Inv4 where a2:"p__Inv4\<le>N\<and>f=inv__128 p__Inv4" apply fastforce done have "(dst=p__Inv4)\<or>(dst~=p__Inv4)" apply (cut_tac a1 a2, auto) done moreover { assume b1: "(dst=p__Inv4)" have "?P3 s" apply (cut_tac a1 a2 b1, simp, rule_tac x="(neg (andForm (eqn (IVar (Para (Field (Field (Ident ''Sta'') ''Dir'') ''ShrSet'') p__Inv4)) (Const true)) (eqn (IVar (Field (Para (Field (Ident ''Sta'') ''UniMsg'') p__Inv4) ''Cmd'')) (Const UNI_PutX))))" in exI, auto) done then have "invHoldForRule s f r (invariants N)" by auto } moreover { assume b1: "(dst~=p__Inv4)" have "?P2 s" proof(cut_tac a1 a2 b1, auto) qed then have "invHoldForRule s f r (invariants N)" by auto } ultimately show "invHoldForRule s f r (invariants N)" by satx qed lemma n_NI_InvVsinv__128: assumes a1: "(\<exists> dst. dst\<le>N\<and>r=n_NI_Inv dst)" and a2: "(\<exists> p__Inv4. p__Inv4\<le>N\<and>f=inv__128 p__Inv4)" shows "invHoldForRule s f r (invariants N)" (is "?P1 s \<or> ?P2 s \<or> ?P3 s") proof - from a1 obtain dst where a1:"dst\<le>N\<and>r=n_NI_Inv dst" apply fastforce done from a2 obtain p__Inv4 where a2:"p__Inv4\<le>N\<and>f=inv__128 p__Inv4" apply fastforce done have "(dst=p__Inv4)\<or>(dst~=p__Inv4)" apply (cut_tac a1 a2, auto) done moreover { assume b1: "(dst=p__Inv4)" have "?P1 s" proof(cut_tac a1 a2 b1, auto) qed then have "invHoldForRule s f r (invariants N)" by auto } moreover { assume b1: "(dst~=p__Inv4)" have "?P2 s" proof(cut_tac a1 a2 b1, auto) qed then have "invHoldForRule s f r (invariants N)" by auto } ultimately show "invHoldForRule s f r (invariants N)" by satx qed lemma n_NI_ReplaceVsinv__128: assumes a1: "(\<exists> src. src\<le>N\<and>r=n_NI_Replace src)" and a2: "(\<exists> p__Inv4. p__Inv4\<le>N\<and>f=inv__128 p__Inv4)" shows "invHoldForRule s f r (invariants N)" (is "?P1 s \<or> ?P2 s \<or> ?P3 s") proof - from a1 obtain src where a1:"src\<le>N\<and>r=n_NI_Replace src" apply fastforce done from a2 obtain p__Inv4 where a2:"p__Inv4\<le>N\<and>f=inv__128 p__Inv4" apply fastforce done have "(src=p__Inv4)\<or>(src~=p__Inv4)" apply (cut_tac a1 a2, auto) done moreover { assume b1: "(src=p__Inv4)" have "((formEval (eqn (IVar (Field (Field (Ident ''Sta'') ''Dir'') ''ShrVld'')) (Const true)) s))\<or>((formEval (neg (eqn (IVar (Field (Field (Ident ''Sta'') ''Dir'') ''ShrVld'')) (Const true))) s))" by auto moreover { assume c1: "((formEval (eqn (IVar (Field (Field (Ident ''Sta'') ''Dir'') ''ShrVld'')) (Const true)) s))" have "?P1 s" proof(cut_tac a1 a2 b1 c1, auto) qed then have "invHoldForRule s f r (invariants N)" by auto } moreover { assume c1: "((formEval (neg (eqn (IVar (Field (Field (Ident ''Sta'') ''Dir'') ''ShrVld'')) (Const true))) s))" have "?P2 s" proof(cut_tac a1 a2 b1 c1, auto) qed then have "invHoldForRule s f r (invariants N)" by auto } ultimately have "invHoldForRule s f r (invariants N)" by satx } moreover { assume b1: "(src~=p__Inv4)" have "?P2 s" proof(cut_tac a1 a2 b1, auto) qed then have "invHoldForRule s f r (invariants N)" by auto } ultimately show "invHoldForRule s f r (invariants N)" by satx qed lemma n_PI_Local_GetX_PutX_HeadVld__part__0Vsinv__128: assumes a1: "(r=n_PI_Local_GetX_PutX_HeadVld__part__0 N )" and a2: "(\<exists> p__Inv4. p__Inv4\<le>N\<and>f=inv__128 p__Inv4)" shows "invHoldForRule s f r (invariants N)" (is "?P1 s \<or> ?P2 s \<or> ?P3 s") proof - from a2 obtain p__Inv4 where a2:"p__Inv4\<le>N\<and>f=inv__128 p__Inv4" apply fastforce done have "?P1 s" proof(cut_tac a1 a2 , auto) qed then show "invHoldForRule s f r (invariants N)" by auto qed lemma n_PI_Local_GetX_PutX_HeadVld__part__1Vsinv__128: assumes a1: "(r=n_PI_Local_GetX_PutX_HeadVld__part__1 N )" and a2: "(\<exists> p__Inv4. p__Inv4\<le>N\<and>f=inv__128 p__Inv4)" shows "invHoldForRule s f r (invariants N)" (is "?P1 s \<or> ?P2 s \<or> ?P3 s") proof - from a2 obtain p__Inv4 where a2:"p__Inv4\<le>N\<and>f=inv__128 p__Inv4" apply fastforce done have "?P1 s" proof(cut_tac a1 a2 , auto) qed then show "invHoldForRule s f r (invariants N)" by auto qed lemma n_NI_ShWbVsinv__128: assumes a1: "(r=n_NI_ShWb N )" and a2: "(\<exists> p__Inv4. p__Inv4\<le>N\<and>f=inv__128 p__Inv4)" shows "invHoldForRule s f r (invariants N)" (is "?P1 s \<or> ?P2 s \<or> ?P3 s") proof - from a2 obtain p__Inv4 where a2:"p__Inv4\<le>N\<and>f=inv__128 p__Inv4" apply fastforce done have "((formEval (andForm (eqn (Const (index p__Inv4)) (IVar (Field (Field (Ident ''Sta'') ''ShWbMsg'') ''Proc''))) (eqn (IVar (Field (Field (Ident ''Sta'') ''ShWbMsg'') ''HomeProc'')) (Const false))) s))\<or>((formEval (eqn (IVar (Para (Field (Field (Ident ''Sta'') ''Dir'') ''ShrSet'') p__Inv4)) (Const true)) s))\<or>((formEval (andForm (neg (eqn (Const (index p__Inv4)) (IVar (Field (Field (Ident ''Sta'') ''ShWbMsg'') ''Proc'')))) (neg (eqn (IVar (Para (Field (Field (Ident ''Sta'') ''Dir'') ''ShrSet'') p__Inv4)) (Const true)))) s))\<or>((formEval (andForm (neg (eqn (IVar (Field (Field (Ident ''Sta'') ''ShWbMsg'') ''HomeProc'')) (Const false))) (neg (eqn (IVar (Para (Field (Field (Ident ''Sta'') ''Dir'') ''ShrSet'') p__Inv4)) (Const true)))) s))" by auto moreover { assume c1: "((formEval (andForm (eqn (Const (index p__Inv4)) (IVar (Field (Field (Ident ''Sta'') ''ShWbMsg'') ''Proc''))) (eqn (IVar (Field (Field (Ident ''Sta'') ''ShWbMsg'') ''HomeProc'')) (Const false))) s))" have "?P3 s" apply (cut_tac a1 a2 c1, simp, rule_tac x="(neg (andForm (eqn (IVar (Field (Para (Field (Ident ''Sta'') ''Proc'') p__Inv4) ''CacheState'')) (Const CACHE_E)) (eqn (IVar (Field (Field (Ident ''Sta'') ''ShWbMsg'') ''Cmd'')) (Const SHWB_ShWb))))" in exI, auto) done then have "invHoldForRule s f r (invariants N)" by auto } moreover { assume c1: "((formEval (eqn (IVar (Para (Field (Field (Ident ''Sta'') ''Dir'') ''ShrSet'') p__Inv4)) (Const true)) s))" have "?P3 s" apply (cut_tac a1 a2 c1, simp, rule_tac x="(neg (andForm (eqn (IVar (Para (Field (Field (Ident ''Sta'') ''Dir'') ''ShrSet'') p__Inv4)) (Const true)) (eqn (IVar (Field (Para (Field (Ident ''Sta'') ''Proc'') p__Inv4) ''CacheState'')) (Const CACHE_E))))" in exI, auto) done then have "invHoldForRule s f r (invariants N)" by auto } moreover { assume c1: "((formEval (andForm (neg (eqn (Const (index p__Inv4)) (IVar (Field (Field (Ident ''Sta'') ''ShWbMsg'') ''Proc'')))) (neg (eqn (IVar (Para (Field (Field (Ident ''Sta'') ''Dir'') ''ShrSet'') p__Inv4)) (Const true)))) s))" have "?P1 s" proof(cut_tac a1 a2 c1, auto) qed then have "invHoldForRule s f r (invariants N)" by auto } moreover { assume c1: "((formEval (andForm (neg (eqn (IVar (Field (Field (Ident ''Sta'') ''ShWbMsg'') ''HomeProc'')) (Const false))) (neg (eqn (IVar (Para (Field (Field (Ident ''Sta'') ''Dir'') ''ShrSet'') p__Inv4)) (Const true)))) s))" have "?P1 s" proof(cut_tac a1 a2 c1, auto) qed then have "invHoldForRule s f r (invariants N)" by auto } ultimately show "invHoldForRule s f r (invariants N)" by satx qed lemma n_NI_Local_Get_Get__part__1Vsinv__128: assumes a1: "\<exists> src. src\<le>N\<and>r=n_NI_Local_Get_Get__part__1 src" and a2: "(\<exists> p__Inv4. p__Inv4\<le>N\<and>f=inv__128 p__Inv4)" shows "invHoldForRule s f r (invariants N)" apply (rule noEffectOnRule, cut_tac a1 a2, auto) done lemma n_PI_Remote_GetVsinv__128: assumes a1: "\<exists> src. src\<le>N\<and>r=n_PI_Remote_Get src" and a2: "(\<exists> p__Inv4. p__Inv4\<le>N\<and>f=inv__128 p__Inv4)" shows "invHoldForRule s f r (invariants N)" apply (rule noEffectOnRule, cut_tac a1 a2, auto) done lemma n_PI_Local_GetX_PutX__part__0Vsinv__128: assumes a1: "r=n_PI_Local_GetX_PutX__part__0 " and a2: "(\<exists> p__Inv4. p__Inv4\<le>N\<and>f=inv__128 p__Inv4)" shows "invHoldForRule s f r (invariants N)" apply (rule noEffectOnRule, cut_tac a1 a2, auto) done lemma n_NI_WbVsinv__128: assumes a1: "r=n_NI_Wb " and a2: "(\<exists> p__Inv4. p__Inv4\<le>N\<and>f=inv__128 p__Inv4)" shows "invHoldForRule s f r (invariants N)" apply (rule noEffectOnRule, cut_tac a1 a2, auto) done lemma n_StoreVsinv__128: assumes a1: "\<exists> src data. src\<le>N\<and>data\<le>N\<and>r=n_Store src data" and a2: "(\<exists> p__Inv4. p__Inv4\<le>N\<and>f=inv__128 p__Inv4)" shows "invHoldForRule s f r (invariants N)" apply (rule noEffectOnRule, cut_tac a1 a2, auto) done lemma n_NI_Local_GetX_GetX__part__1Vsinv__128: assumes a1: "\<exists> src. src\<le>N\<and>r=n_NI_Local_GetX_GetX__part__1 src" and a2: "(\<exists> p__Inv4. p__Inv4\<le>N\<and>f=inv__128 p__Inv4)" shows "invHoldForRule s f r (invariants N)" apply (rule noEffectOnRule, cut_tac a1 a2, auto) done lemma n_NI_InvAck_3Vsinv__128: assumes a1: "\<exists> src. src\<le>N\<and>r=n_NI_InvAck_3 N src" and a2: "(\<exists> p__Inv4. p__Inv4\<le>N\<and>f=inv__128 p__Inv4)" shows "invHoldForRule s f r (invariants N)" apply (rule noEffectOnRule, cut_tac a1 a2, auto) done lemma n_NI_InvAck_1Vsinv__128: assumes a1: "\<exists> src. src\<le>N\<and>r=n_NI_InvAck_1 N src" and a2: "(\<exists> p__Inv4. p__Inv4\<le>N\<and>f=inv__128 p__Inv4)" shows "invHoldForRule s f r (invariants N)" apply (rule noEffectOnRule, cut_tac a1 a2, auto) done lemma n_PI_Local_GetX_GetX__part__1Vsinv__128: assumes a1: "r=n_PI_Local_GetX_GetX__part__1 " and a2: "(\<exists> p__Inv4. p__Inv4\<le>N\<and>f=inv__128 p__Inv4)" shows "invHoldForRule s f r (invariants N)" apply (rule noEffectOnRule, cut_tac a1 a2, auto) done lemma n_PI_Local_GetX_GetX__part__0Vsinv__128: assumes a1: "r=n_PI_Local_GetX_GetX__part__0 " and a2: "(\<exists> p__Inv4. p__Inv4\<le>N\<and>f=inv__128 p__Inv4)" shows "invHoldForRule s f r (invariants N)" apply (rule noEffectOnRule, cut_tac a1 a2, auto) done lemma n_Store_HomeVsinv__128: assumes a1: "\<exists> data. data\<le>N\<and>r=n_Store_Home data" and a2: "(\<exists> p__Inv4. p__Inv4\<le>N\<and>f=inv__128 p__Inv4)" shows "invHoldForRule s f r (invariants N)" apply (rule noEffectOnRule, cut_tac a1 a2, auto) done lemma n_PI_Local_ReplaceVsinv__128: assumes a1: "r=n_PI_Local_Replace " and a2: "(\<exists> p__Inv4. p__Inv4\<le>N\<and>f=inv__128 p__Inv4)" shows "invHoldForRule s f r (invariants N)" apply (rule noEffectOnRule, cut_tac a1 a2, auto) done lemma n_NI_Local_GetX_Nak__part__1Vsinv__128: assumes a1: "\<exists> src. src\<le>N\<and>r=n_NI_Local_GetX_Nak__part__1 src" and a2: "(\<exists> p__Inv4. p__Inv4\<le>N\<and>f=inv__128 p__Inv4)" shows "invHoldForRule s f r (invariants N)" apply (rule noEffectOnRule, cut_tac a1 a2, auto) done lemma n_NI_Local_Get_Nak__part__1Vsinv__128: assumes a1: "\<exists> src. src\<le>N\<and>r=n_NI_Local_Get_Nak__part__1 src" and a2: "(\<exists> p__Inv4. p__Inv4\<le>N\<and>f=inv__128 p__Inv4)" shows "invHoldForRule s f r (invariants N)" apply (rule noEffectOnRule, cut_tac a1 a2, auto) done lemma n_NI_Local_Get_Get__part__0Vsinv__128: assumes a1: "\<exists> src. src\<le>N\<and>r=n_NI_Local_Get_Get__part__0 src" and a2: "(\<exists> p__Inv4. p__Inv4\<le>N\<and>f=inv__128 p__Inv4)" shows "invHoldForRule s f r (invariants N)" apply (rule noEffectOnRule, cut_tac a1 a2, auto) done lemma n_NI_InvAck_existsVsinv__128: assumes a1: "\<exists> src pp. src\<le>N\<and>pp\<le>N\<and>src~=pp\<and>r=n_NI_InvAck_exists src pp" and a2: "(\<exists> p__Inv4. p__Inv4\<le>N\<and>f=inv__128 p__Inv4)" shows "invHoldForRule s f r (invariants N)" apply (rule noEffectOnRule, cut_tac a1 a2, auto) done lemma n_NI_Local_GetX_Nak__part__2Vsinv__128: assumes a1: "\<exists> src. src\<le>N\<and>r=n_NI_Local_GetX_Nak__part__2 src" and a2: "(\<exists> p__Inv4. p__Inv4\<le>N\<and>f=inv__128 p__Inv4)" shows "invHoldForRule s f r (invariants N)" apply (rule noEffectOnRule, cut_tac a1 a2, auto) done lemma n_PI_Local_PutXVsinv__128: assumes a1: "r=n_PI_Local_PutX " and a2: "(\<exists> p__Inv4. p__Inv4\<le>N\<and>f=inv__128 p__Inv4)" shows "invHoldForRule s f r (invariants N)" apply (rule noEffectOnRule, cut_tac a1 a2, auto) done lemma n_NI_Local_Get_Nak__part__2Vsinv__128: assumes a1: "\<exists> src. src\<le>N\<and>r=n_NI_Local_Get_Nak__part__2 src" and a2: "(\<exists> p__Inv4. p__Inv4\<le>N\<and>f=inv__128 p__Inv4)" shows "invHoldForRule s f r (invariants N)" apply (rule noEffectOnRule, cut_tac a1 a2, auto) done lemma n_NI_Local_GetX_GetX__part__0Vsinv__128: assumes a1: "\<exists> src. src\<le>N\<and>r=n_NI_Local_GetX_GetX__part__0 src" and a2: "(\<exists> p__Inv4. p__Inv4\<le>N\<and>f=inv__128 p__Inv4)" shows "invHoldForRule s f r (invariants N)" apply (rule noEffectOnRule, cut_tac a1 a2, auto) done lemma n_PI_Local_Get_PutVsinv__128: assumes a1: "r=n_PI_Local_Get_Put " and a2: "(\<exists> p__Inv4. p__Inv4\<le>N\<and>f=inv__128 p__Inv4)" shows "invHoldForRule s f r (invariants N)" apply (rule noEffectOnRule, cut_tac a1 a2, auto) done lemma n_NI_Remote_GetX_Nak_HomeVsinv__128: assumes a1: "\<exists> dst. dst\<le>N\<and>r=n_NI_Remote_GetX_Nak_Home dst" and a2: "(\<exists> p__Inv4. p__Inv4\<le>N\<and>f=inv__128 p__Inv4)" shows "invHoldForRule s f r (invariants N)" apply (rule noEffectOnRule, cut_tac a1 a2, auto) done lemma n_NI_Local_PutXAcksDoneVsinv__128: assumes a1: "r=n_NI_Local_PutXAcksDone " and a2: "(\<exists> p__Inv4. p__Inv4\<le>N\<and>f=inv__128 p__Inv4)" shows "invHoldForRule s f r (invariants N)" apply (rule noEffectOnRule, cut_tac a1 a2, auto) done lemma n_NI_Remote_GetX_NakVsinv__128: assumes a1: "\<exists> src dst. src\<le>N\<and>dst\<le>N\<and>src~=dst\<and>r=n_NI_Remote_GetX_Nak src dst" and a2: "(\<exists> p__Inv4. p__Inv4\<le>N\<and>f=inv__128 p__Inv4)" shows "invHoldForRule s f r (invariants N)" apply (rule noEffectOnRule, cut_tac a1 a2, auto) done lemma n_NI_NakVsinv__128: assumes a1: "\<exists> dst. dst\<le>N\<and>r=n_NI_Nak dst" and a2: "(\<exists> p__Inv4. p__Inv4\<le>N\<and>f=inv__128 p__Inv4)" shows "invHoldForRule s f r (invariants N)" apply (rule noEffectOnRule, cut_tac a1 a2, auto) done lemma n_PI_Remote_GetXVsinv__128: assumes a1: "\<exists> src. src\<le>N\<and>r=n_PI_Remote_GetX src" and a2: "(\<exists> p__Inv4. p__Inv4\<le>N\<and>f=inv__128 p__Inv4)" shows "invHoldForRule s f r (invariants N)" apply (rule noEffectOnRule, cut_tac a1 a2, auto) done lemma n_PI_Local_GetX_PutX__part__1Vsinv__128: assumes a1: "r=n_PI_Local_GetX_PutX__part__1 " and a2: "(\<exists> p__Inv4. p__Inv4\<le>N\<and>f=inv__128 p__Inv4)" shows "invHoldForRule s f r (invariants N)" apply (rule noEffectOnRule, cut_tac a1 a2, auto) done lemma n_NI_Remote_Get_Nak_HomeVsinv__128: assumes a1: "\<exists> dst. dst\<le>N\<and>r=n_NI_Remote_Get_Nak_Home dst" and a2: "(\<exists> p__Inv4. p__Inv4\<le>N\<and>f=inv__128 p__Inv4)" shows "invHoldForRule s f r (invariants N)" apply (rule noEffectOnRule, cut_tac a1 a2, auto) done lemma n_NI_Local_Get_PutVsinv__128: assumes a1: "\<exists> src. src\<le>N\<and>r=n_NI_Local_Get_Put src" and a2: "(\<exists> p__Inv4. p__Inv4\<le>N\<and>f=inv__128 p__Inv4)" shows "invHoldForRule s f r (invariants N)" apply (rule noEffectOnRule, cut_tac a1 a2, auto) done lemma n_NI_Local_GetX_Nak__part__0Vsinv__128: assumes a1: "\<exists> src. src\<le>N\<and>r=n_NI_Local_GetX_Nak__part__0 src" and a2: "(\<exists> p__Inv4. p__Inv4\<le>N\<and>f=inv__128 p__Inv4)" shows "invHoldForRule s f r (invariants N)" apply (rule noEffectOnRule, cut_tac a1 a2, auto) done lemma n_NI_InvAck_exists_HomeVsinv__128: assumes a1: "\<exists> src. src\<le>N\<and>r=n_NI_InvAck_exists_Home src" and a2: "(\<exists> p__Inv4. p__Inv4\<le>N\<and>f=inv__128 p__Inv4)" shows "invHoldForRule s f r (invariants N)" apply (rule noEffectOnRule, cut_tac a1 a2, auto) done lemma n_NI_Replace_HomeVsinv__128: assumes a1: "r=n_NI_Replace_Home " and a2: "(\<exists> p__Inv4. p__Inv4\<le>N\<and>f=inv__128 p__Inv4)" shows "invHoldForRule s f r (invariants N)" apply (rule noEffectOnRule, cut_tac a1 a2, auto) done lemma n_NI_Local_PutVsinv__128: assumes a1: "r=n_NI_Local_Put " and a2: "(\<exists> p__Inv4. p__Inv4\<le>N\<and>f=inv__128 p__Inv4)" shows "invHoldForRule s f r (invariants N)" apply (rule noEffectOnRule, cut_tac a1 a2, auto) done lemma n_NI_Remote_Get_NakVsinv__128: assumes a1: "\<exists> src dst. src\<le>N\<and>dst\<le>N\<and>src~=dst\<and>r=n_NI_Remote_Get_Nak src dst" and a2: "(\<exists> p__Inv4. p__Inv4\<le>N\<and>f=inv__128 p__Inv4)" shows "invHoldForRule s f r (invariants N)" apply (rule noEffectOnRule, cut_tac a1 a2, auto) done lemma n_NI_Nak_ClearVsinv__128: assumes a1: "r=n_NI_Nak_Clear " and a2: "(\<exists> p__Inv4. p__Inv4\<le>N\<and>f=inv__128 p__Inv4)" shows "invHoldForRule s f r (invariants N)" apply (rule noEffectOnRule, cut_tac a1 a2, auto) done lemma n_NI_Local_Get_Put_DirtyVsinv__128: assumes a1: "\<exists> src. src\<le>N\<and>r=n_NI_Local_Get_Put_Dirty src" and a2: "(\<exists> p__Inv4. p__Inv4\<le>N\<and>f=inv__128 p__Inv4)" shows "invHoldForRule s f r (invariants N)" apply (rule noEffectOnRule, cut_tac a1 a2, auto) done lemma n_NI_Local_Get_Nak__part__0Vsinv__128: assumes a1: "\<exists> src. src\<le>N\<and>r=n_NI_Local_Get_Nak__part__0 src" and a2: "(\<exists> p__Inv4. p__Inv4\<le>N\<and>f=inv__128 p__Inv4)" shows "invHoldForRule s f r (invariants N)" apply (rule noEffectOnRule, cut_tac a1 a2, auto) done lemma n_PI_Local_Get_GetVsinv__128: assumes a1: "r=n_PI_Local_Get_Get " and a2: "(\<exists> p__Inv4. p__Inv4\<le>N\<and>f=inv__128 p__Inv4)" shows "invHoldForRule s f r (invariants N)" apply (rule noEffectOnRule, cut_tac a1 a2, auto) done lemma n_NI_Nak_HomeVsinv__128: assumes a1: "r=n_NI_Nak_Home " and a2: "(\<exists> p__Inv4. p__Inv4\<le>N\<and>f=inv__128 p__Inv4)" shows "invHoldForRule s f r (invariants N)" apply (rule noEffectOnRule, cut_tac a1 a2, auto) done lemma n_NI_InvAck_2Vsinv__128: assumes a1: "\<exists> src. src\<le>N\<and>r=n_NI_InvAck_2 N src" and a2: "(\<exists> p__Inv4. p__Inv4\<le>N\<and>f=inv__128 p__Inv4)" shows "invHoldForRule s f r (invariants N)" apply (rule noEffectOnRule, cut_tac a1 a2, auto) done lemma n_NI_FAckVsinv__128: assumes a1: "r=n_NI_FAck " and a2: "(\<exists> p__Inv4. p__Inv4\<le>N\<and>f=inv__128 p__Inv4)" shows "invHoldForRule s f r (invariants N)" apply (rule noEffectOnRule, cut_tac a1 a2, auto) done end
(*-------------------------------------------* | CSP-Prover on Isabelle2004 | | November 2004 | | | | CSP-Prover on Isabelle2005 | | October 2005 (modified) | | March 2006 (modified) | | CSP-Prover on Isabelle2016 | | May 2016 (modified) | | | | Yoshinao Isobe (AIST JAPAN) | *-------------------------------------------*) theory Norm_seq imports CMS begin (***************************************************************** 1. Definition of Normarized sequences 2. Properties of Normarized sequences 3. How to transform each Cauchy sequence to NF 4. The same limit between xs and NF(xs) *****************************************************************) definition normal :: "'a::ms infinite_seq => bool" where normal_def : "normal xs == ALL (n::nat) (m::nat). distance(xs n, xs m) <= (1/2)^(min n m)" definition Nset :: "'a::ms infinite_seq => real => nat set" where Nset_def : "Nset xs delta == {N. ALL n m. (N <= m & N <= n) --> distance(xs n, xs m) <= delta}" definition Nmin :: "'a::ms infinite_seq => real => nat" where Nmin_def : "Nmin xs delta == MIN (Nset xs delta)" definition NF :: "'a::ms infinite_seq => 'a::ms infinite_seq" where NF_def : "NF xs == (%n. xs (Nmin xs ((1/2)^n)))" (******************************************************************** Normalization ********************************************************************) (*** normalized sequence --> Cauchy sequence ***) lemma normal_cauchy: "normal xs ==> cauchy xs" apply (simp add: cauchy_def) apply (intro allI impI) apply (subgoal_tac "EX n. (1/2) ^ n < delta") apply (erule exE) apply (rule_tac x="n" in exI) apply (intro allI impI) apply (simp add: normal_def) apply (drule_tac x="i" in spec) apply (drule_tac x="j" in spec) apply (subgoal_tac "((1::real) / 2) ^ min i j <= (1 / 2) ^ n") apply (simp) apply (case_tac "i <= j") apply (simp add: min_def power_decreasing) apply (simp add: min_def power_decreasing) apply (simp add: pow_convergence) done (* declare realpow_Suc [simp del] in isabelle2008 *) declare power_Suc [simp del] lemma normal_Limit: "[| normal xs ; xs convergeTo y |] ==> distance(xs (Suc n), y) < (1/2)^n" apply (simp add: convergeTo_def) apply (drule_tac x="(1/2)^(Suc n)" in spec) apply (simp) apply (erule exE) apply (rename_tac N) apply (case_tac "N <= Suc n") apply (drule_tac x="Suc n" in spec) apply (simp add: symmetry_ms) apply (subgoal_tac "((1::real) / 2) ^ Suc n <= (1 / 2) ^ n") apply (simp) apply (simp add: power_decreasing) (* else (i.e. Suc n < N *) apply (drule_tac x="N" in spec) apply (simp) apply (insert triangle_inequality_ms) apply (drule_tac x="xs (Suc n)" in spec) apply (drule_tac x="xs N" in spec) apply (drule_tac x="y" in spec) apply (simp add: normal_def) apply (drule_tac x="Suc n" in spec) apply (drule_tac x="N" in spec) apply (simp add: symmetry_ms) apply (simp add: min_def) apply (simp add: power_Suc) done (* declare realpow_Suc [simp] *) declare power_Suc [simp] (******************************************************************** Nmin ********************************************************************) (*** Nmin exists ***) lemma Nmin_exists: "[| 0 < delta ; cauchy xs |] ==> EX N. N isMIN (Nset xs delta)" apply (simp add: cauchy_def) apply (drule_tac x="delta" in spec) apply (simp) apply (erule exE) apply (rule EX_MIN_nat) apply (simp add: Nset_def) apply (rule_tac x="n" in exI) apply (intro allI impI) apply (drule_tac x="na" in spec) apply (drule_tac x="m" in spec) by (simp) lemma Nset_hasMIN: "[| 0 < delta ; cauchy xs |] ==> (Nset xs delta) hasMIN" apply (simp add: hasMIN_def) apply (rule Nmin_exists) by (simp) (*** Nmin unique ***) lemma Nmin_unique: "[| N isMIN (Nset xs delta) ; M isMIN (Nset xs delta) |] ==> N = M" by (simp add: MIN_unique) (*-----------------------* | the Nmin | *-----------------------*) lemma Nset_to_Nmin : "[| 0 < delta ; cauchy xs |] ==> (N isMIN (Nset xs delta)) = (Nmin xs delta = N)" apply (simp add: Nmin_def) apply (rule iffI) apply (simp add: MIN_def Nset_hasMIN) apply (rule the_equality) apply (simp) apply (simp add: Nmin_unique) by (simp add: MIN_iff Nset_hasMIN) lemmas Nmin_to_Nset = Nset_to_Nmin[THEN sym] lemma Nmin_to_Nset_sym : "[| 0 < delta ; cauchy xs |] ==> (N = Nmin xs delta) = (N isMIN (Nset xs delta))" by (auto simp add: Nset_to_Nmin) lemmas Nmin_iff = Nmin_to_Nset Nmin_to_Nset_sym (*-----------------------* | property | *-----------------------*) lemma Nmin_cauchy_lm: "[| 0 < delta ; cauchy xs ; Nmin xs delta = N |] ==> (ALL n m. (N <= m & N <= n) --> distance(xs n, xs m) <= delta)" by (simp add: Nmin_iff Nset_def isMIN_def) lemma Nmin_cauchy: "[| 0 < delta ; cauchy xs ; Nmin xs delta <= m ; Nmin xs delta <= n |] ==> distance(xs n, xs m) <= delta" by (simp add: Nmin_cauchy_lm) (*-----------------------* | min_number_cauchy | *-----------------------*) (*** Nmin order (check) ***) lemma min_number_cauchy_lm: "[| 0 < delta1 ; delta1 <= delta2 ; cauchy xs |] ==> Nset xs delta1 <= Nset xs delta2" apply (simp add: Nset_def) apply (rule subsetI) apply (simp) apply (intro allI impI) apply (drule_tac x="n" in spec) apply (drule_tac x="m" in spec) by (simp) (*** Nmin order ***) lemma min_number_cauchy: "[| 0 < delta1 ; delta1 <= delta2 ; cauchy xs ; Nmin xs delta1 = N1 ; Nmin xs delta2 = N2 |] ==> N2 <= N1" apply (simp add: Nmin_iff) by (simp add: isMIN_subset min_number_cauchy_lm) (*** Nmin order half ***) lemma min_number_cauchy_half: "[| n <= m ; cauchy xs ; Nmin xs ((1/2)^n) = N1 ; Nmin xs ((1/2)^m) = N2 |] ==> N1 <= N2" apply (rule min_number_cauchy) by (simp_all add: power_decreasing) (*------------------------* | normal_form_seq_normal | *------------------------*) lemma normal_form_seq_normal: "cauchy xs ==> normal (NF(xs))" apply (simp add: normal_def NF_def) apply (intro allI) apply (case_tac "n <= m") apply (simp add: min_def) apply (rule Nmin_cauchy, simp_all) apply (rule min_number_cauchy_half, simp_all) (* else *) apply (simp add: min_def) apply (rule Nmin_cauchy, simp_all) apply (rule min_number_cauchy_half, simp_all) done (*----------------------------* | normal_form_seq_same_Limit | *----------------------------*) (*** only if part ***) lemma normal_form_seq_same_Limit_only_if: "[| cauchy xs ; xs convergeTo y |] ==> NF(xs) convergeTo y" apply (simp add: convergeTo_def) apply (intro allI impI) apply (drule_tac x="eps/2" in spec) apply (simp) apply (erule exE) apply (subgoal_tac "EX n. (1 / 2) ^ n < eps/2") apply (erule exE) apply (rename_tac eps N M) apply (rule_tac x="M" in exI) apply (intro allI impI) apply (case_tac "N <= Nmin xs ((1/2)^m)") apply (drule_tac x="Nmin xs ((1/2)^m)" in spec) apply (simp add: NF_def) (* else *) apply (insert triangle_inequality_ms) apply (drule_tac x="y" in spec) apply (drule_tac x="xs N" in spec) apply (drule_tac x="(NF xs) m" in spec) apply (drule_tac x="N" in spec) apply (simp add: NF_def) apply (subgoal_tac "distance (xs N, xs (Nmin xs ((1 / 2) ^ m))) <= (1 / 2) ^ m") apply (subgoal_tac "((1::real) / 2) ^ m <= (1 / 2) ^ M") apply (simp) apply (simp add: power_decreasing) apply (rule Nmin_cauchy) apply (simp, simp, simp, simp) apply (rule pow_convergence) apply (simp_all) done (*** if part ***) lemma normal_form_seq_same_Limit_if: "[| cauchy xs ; NF (xs) convergeTo y |] ==> xs convergeTo y" apply (simp add: convergeTo_def) apply (intro allI impI) apply (drule_tac x="eps/2" in spec) apply (simp) apply (erule exE) apply (subgoal_tac "EX n. (1 / 2) ^ n < eps/2") apply (erule exE) apply (rename_tac eps N M) apply (rule_tac x="Nmin xs ((1/2)^(max N M))" in exI) apply (intro allI impI) apply (insert triangle_inequality_ms) apply (drule_tac x="y" in spec) apply (drule_tac x="xs (Nmin xs ((1/2)^(max N M)))" in spec) apply (drule_tac x="xs m" in spec) apply (drule_tac x="max N M" in spec) (* apply (simp add: le_maxI1) *) apply (simp add: NF_def) (* *) apply (subgoal_tac "distance(xs (Nmin xs ((1 / 2) ^ max N M)), xs m) <= (1 / 2) ^ max N M") apply (subgoal_tac "((1::real) / 2) ^ max N M <= (1 / 2) ^ M") apply (simp) apply (simp add: max_def power_decreasing) apply (rule Nmin_cauchy) apply (simp, simp, simp, simp) apply (rule pow_convergence) apply (simp_all) done (*** iff ***) lemma normal_form_seq_same_Limit: "cauchy xs ==> xs convergeTo y = NF(xs) convergeTo y" apply (rule iffI) apply (simp add: normal_form_seq_same_Limit_only_if) apply (simp add: normal_form_seq_same_Limit_if) done end
[STATEMENT] lemma mod_prop1:"((a::nat) mod (b*c)) mod c = (a mod c)" [PROOF STATE] proof (prove) goal (1 subgoal): 1. a mod (b * c) mod c = a mod c [PROOF STEP] proof(cases "c = 0") [PROOF STATE] proof (state) goal (2 subgoals): 1. c = 0 \<Longrightarrow> a mod (b * c) mod c = a mod c 2. c \<noteq> 0 \<Longrightarrow> a mod (b * c) mod c = a mod c [PROOF STEP] case True [PROOF STATE] proof (state) this: c = 0 goal (2 subgoals): 1. c = 0 \<Longrightarrow> a mod (b * c) mod c = a mod c 2. c \<noteq> 0 \<Longrightarrow> a mod (b * c) mod c = a mod c [PROOF STEP] have "b*c = 0" [PROOF STATE] proof (prove) goal (1 subgoal): 1. b * c = 0 [PROOF STEP] by (metis True mult_0_right) [PROOF STATE] proof (state) this: b * c = 0 goal (2 subgoals): 1. c = 0 \<Longrightarrow> a mod (b * c) mod c = a mod c 2. c \<noteq> 0 \<Longrightarrow> a mod (b * c) mod c = a mod c [PROOF STEP] then [PROOF STATE] proof (chain) picking this: b * c = 0 [PROOF STEP] have "(a::nat) mod (b*c) = a" [PROOF STATE] proof (prove) using this: b * c = 0 goal (1 subgoal): 1. a mod (b * c) = a [PROOF STEP] by auto [PROOF STATE] proof (state) this: a mod (b * c) = a goal (2 subgoals): 1. c = 0 \<Longrightarrow> a mod (b * c) mod c = a mod c 2. c \<noteq> 0 \<Longrightarrow> a mod (b * c) mod c = a mod c [PROOF STEP] then [PROOF STATE] proof (chain) picking this: a mod (b * c) = a [PROOF STEP] have "((a::nat) mod (b*c)) mod c = a mod c" [PROOF STATE] proof (prove) using this: a mod (b * c) = a goal (1 subgoal): 1. a mod (b * c) mod c = a mod c [PROOF STEP] by auto [PROOF STATE] proof (state) this: a mod (b * c) mod c = a mod c goal (2 subgoals): 1. c = 0 \<Longrightarrow> a mod (b * c) mod c = a mod c 2. c \<noteq> 0 \<Longrightarrow> a mod (b * c) mod c = a mod c [PROOF STEP] then [PROOF STATE] proof (chain) picking this: a mod (b * c) mod c = a mod c [PROOF STEP] show ?thesis [PROOF STATE] proof (prove) using this: a mod (b * c) mod c = a mod c goal (1 subgoal): 1. a mod (b * c) mod c = a mod c [PROOF STEP] by auto [PROOF STATE] proof (state) this: a mod (b * c) mod c = a mod c goal (1 subgoal): 1. c \<noteq> 0 \<Longrightarrow> a mod (b * c) mod c = a mod c [PROOF STEP] next [PROOF STATE] proof (state) goal (1 subgoal): 1. c \<noteq> 0 \<Longrightarrow> a mod (b * c) mod c = a mod c [PROOF STEP] case False [PROOF STATE] proof (state) this: c \<noteq> 0 goal (1 subgoal): 1. c \<noteq> 0 \<Longrightarrow> a mod (b * c) mod c = a mod c [PROOF STEP] let ?x = "(a::nat) mod (b*c)" [PROOF STATE] proof (state) goal (1 subgoal): 1. c \<noteq> 0 \<Longrightarrow> a mod (b * c) mod c = a mod c [PROOF STEP] let ?z = "?x mod c" [PROOF STATE] proof (state) goal (1 subgoal): 1. c \<noteq> 0 \<Longrightarrow> a mod (b * c) mod c = a mod c [PROOF STEP] have "\<exists>m. a = m*(b*c) + ?x" [PROOF STATE] proof (prove) goal (1 subgoal): 1. \<exists>m. a = m * (b * c) + a mod (b * c) [PROOF STEP] by (metis div_mult_mod_eq) [PROOF STATE] proof (state) this: \<exists>m. a = m * (b * c) + a mod (b * c) goal (1 subgoal): 1. c \<noteq> 0 \<Longrightarrow> a mod (b * c) mod c = a mod c [PROOF STEP] then [PROOF STATE] proof (chain) picking this: \<exists>m. a = m * (b * c) + a mod (b * c) [PROOF STEP] obtain m1 where "a = m1*(b*c) + ?x" [PROOF STATE] proof (prove) using this: \<exists>m. a = m * (b * c) + a mod (b * c) goal (1 subgoal): 1. (\<And>m1. a = m1 * (b * c) + a mod (b * c) \<Longrightarrow> thesis) \<Longrightarrow> thesis [PROOF STEP] by auto [PROOF STATE] proof (state) this: a = m1 * (b * c) + a mod (b * c) goal (1 subgoal): 1. c \<noteq> 0 \<Longrightarrow> a mod (b * c) mod c = a mod c [PROOF STEP] then [PROOF STATE] proof (chain) picking this: a = m1 * (b * c) + a mod (b * c) [PROOF STEP] have "?x = (a - m1*(b*c))" [PROOF STATE] proof (prove) using this: a = m1 * (b * c) + a mod (b * c) goal (1 subgoal): 1. a mod (b * c) = a - m1 * (b * c) [PROOF STEP] by auto [PROOF STATE] proof (state) this: a mod (b * c) = a - m1 * (b * c) goal (1 subgoal): 1. c \<noteq> 0 \<Longrightarrow> a mod (b * c) mod c = a mod c [PROOF STEP] then [PROOF STATE] proof (chain) picking this: a mod (b * c) = a - m1 * (b * c) [PROOF STEP] have "\<exists>m.( ?x = m*c + ?z)" [PROOF STATE] proof (prove) using this: a mod (b * c) = a - m1 * (b * c) goal (1 subgoal): 1. \<exists>m. a mod (b * c) = m * c + a mod (b * c) mod c [PROOF STEP] using mod_div_decomp [PROOF STATE] proof (prove) using this: a mod (b * c) = a - m1 * (b * c) (\<And>q r. \<lbrakk>q = ?a div ?b; r = ?a mod ?b; ?a = q * ?b + r\<rbrakk> \<Longrightarrow> ?thesis) \<Longrightarrow> ?thesis goal (1 subgoal): 1. \<exists>m. a mod (b * c) = m * c + a mod (b * c) mod c [PROOF STEP] by blast [PROOF STATE] proof (state) this: \<exists>m. a mod (b * c) = m * c + a mod (b * c) mod c goal (1 subgoal): 1. c \<noteq> 0 \<Longrightarrow> a mod (b * c) mod c = a mod c [PROOF STEP] then [PROOF STATE] proof (chain) picking this: \<exists>m. a mod (b * c) = m * c + a mod (b * c) mod c [PROOF STEP] obtain m where "( ?x = m*c + ?z)" [PROOF STATE] proof (prove) using this: \<exists>m. a mod (b * c) = m * c + a mod (b * c) mod c goal (1 subgoal): 1. (\<And>m. a mod (b * c) = m * c + a mod (b * c) mod c \<Longrightarrow> thesis) \<Longrightarrow> thesis [PROOF STEP] by auto [PROOF STATE] proof (state) this: a mod (b * c) = m * c + a mod (b * c) mod c goal (1 subgoal): 1. c \<noteq> 0 \<Longrightarrow> a mod (b * c) mod c = a mod c [PROOF STEP] then [PROOF STATE] proof (chain) picking this: a mod (b * c) = m * c + a mod (b * c) mod c [PROOF STEP] have "(a - m1*(b*c)) = m*c + ?z" [PROOF STATE] proof (prove) using this: a mod (b * c) = m * c + a mod (b * c) mod c goal (1 subgoal): 1. a - m1 * (b * c) = m * c + a mod (b * c) mod c [PROOF STEP] using \<open>a mod (b * c) = a - m1 * (b * c)\<close> [PROOF STATE] proof (prove) using this: a mod (b * c) = m * c + a mod (b * c) mod c a mod (b * c) = a - m1 * (b * c) goal (1 subgoal): 1. a - m1 * (b * c) = m * c + a mod (b * c) mod c [PROOF STEP] by (metis) [PROOF STATE] proof (state) this: a - m1 * (b * c) = m * c + a mod (b * c) mod c goal (1 subgoal): 1. c \<noteq> 0 \<Longrightarrow> a mod (b * c) mod c = a mod c [PROOF STEP] then [PROOF STATE] proof (chain) picking this: a - m1 * (b * c) = m * c + a mod (b * c) mod c [PROOF STEP] have "a = m1*b*c + m*c + ?z" [PROOF STATE] proof (prove) using this: a - m1 * (b * c) = m * c + a mod (b * c) mod c goal (1 subgoal): 1. a = m1 * b * c + m * c + a mod (b * c) mod c [PROOF STEP] using \<open>a = m1 * (b * c) + a mod (b * c)\<close> \<open>a mod (b * c) = m * c + a mod (b * c) mod c\<close> [PROOF STATE] proof (prove) using this: a - m1 * (b * c) = m * c + a mod (b * c) mod c a = m1 * (b * c) + a mod (b * c) a mod (b * c) = m * c + a mod (b * c) mod c goal (1 subgoal): 1. a = m1 * b * c + m * c + a mod (b * c) mod c [PROOF STEP] by (metis ab_semigroup_add_class.add_ac(1) ab_semigroup_mult_class.mult_ac(1)) [PROOF STATE] proof (state) this: a = m1 * b * c + m * c + a mod (b * c) mod c goal (1 subgoal): 1. c \<noteq> 0 \<Longrightarrow> a mod (b * c) mod c = a mod c [PROOF STEP] then [PROOF STATE] proof (chain) picking this: a = m1 * b * c + m * c + a mod (b * c) mod c [PROOF STEP] have 1:"a = (m1*b + m)*c + ?z" [PROOF STATE] proof (prove) using this: a = m1 * b * c + m * c + a mod (b * c) mod c goal (1 subgoal): 1. a = (m1 * b + m) * c + a mod (b * c) mod c [PROOF STEP] by (metis add_mult_distrib2 mult.commute) [PROOF STATE] proof (state) this: a = (m1 * b + m) * c + a mod (b * c) mod c goal (1 subgoal): 1. c \<noteq> 0 \<Longrightarrow> a mod (b * c) mod c = a mod c [PROOF STEP] let ?y = "(a mod c)" [PROOF STATE] proof (state) goal (1 subgoal): 1. c \<noteq> 0 \<Longrightarrow> a mod (b * c) mod c = a mod c [PROOF STEP] have "\<exists>n. a = n*(c) + ?y" [PROOF STATE] proof (prove) goal (1 subgoal): 1. \<exists>n. a = n * c + a mod c [PROOF STEP] by (metis "1" \<open>a mod (b * c) = m * c + a mod (b * c) mod c\<close> mod_mult_self3) [PROOF STATE] proof (state) this: \<exists>n. a = n * c + a mod c goal (1 subgoal): 1. c \<noteq> 0 \<Longrightarrow> a mod (b * c) mod c = a mod c [PROOF STEP] then [PROOF STATE] proof (chain) picking this: \<exists>n. a = n * c + a mod c [PROOF STEP] obtain n where "a = n*(c) + ?y" [PROOF STATE] proof (prove) using this: \<exists>n. a = n * c + a mod c goal (1 subgoal): 1. (\<And>n. a = n * c + a mod c \<Longrightarrow> thesis) \<Longrightarrow> thesis [PROOF STEP] by auto [PROOF STATE] proof (state) this: a = n * c + a mod c goal (1 subgoal): 1. c \<noteq> 0 \<Longrightarrow> a mod (b * c) mod c = a mod c [PROOF STEP] with 1 [PROOF STATE] proof (chain) picking this: a = (m1 * b + m) * c + a mod (b * c) mod c a = n * c + a mod c [PROOF STEP] have "(m1*b + m)*c + ?z = n*c + ?y" [PROOF STATE] proof (prove) using this: a = (m1 * b + m) * c + a mod (b * c) mod c a = n * c + a mod c goal (1 subgoal): 1. (m1 * b + m) * c + a mod (b * c) mod c = n * c + a mod c [PROOF STEP] by auto [PROOF STATE] proof (state) this: (m1 * b + m) * c + a mod (b * c) mod c = n * c + a mod c goal (1 subgoal): 1. c \<noteq> 0 \<Longrightarrow> a mod (b * c) mod c = a mod c [PROOF STEP] then [PROOF STATE] proof (chain) picking this: (m1 * b + m) * c + a mod (b * c) mod c = n * c + a mod c [PROOF STEP] have "(m1*b + m)*c - (n*c) = ?y - ?z" [PROOF STATE] proof (prove) using this: (m1 * b + m) * c + a mod (b * c) mod c = n * c + a mod c goal (1 subgoal): 1. (m1 * b + m) * c - n * c = a mod c - a mod (b * c) mod c [PROOF STEP] by auto [PROOF STATE] proof (state) this: (m1 * b + m) * c - n * c = a mod c - a mod (b * c) mod c goal (1 subgoal): 1. c \<noteq> 0 \<Longrightarrow> a mod (b * c) mod c = a mod c [PROOF STEP] then [PROOF STATE] proof (chain) picking this: (m1 * b + m) * c - n * c = a mod c - a mod (b * c) mod c [PROOF STEP] have "(m1*b + m - n)*c = (?y - ?z)" [PROOF STATE] proof (prove) using this: (m1 * b + m) * c - n * c = a mod c - a mod (b * c) mod c goal (1 subgoal): 1. (m1 * b + m - n) * c = a mod c - a mod (b * c) mod c [PROOF STEP] by (metis diff_mult_distrib2 mult.commute) [PROOF STATE] proof (state) this: (m1 * b + m - n) * c = a mod c - a mod (b * c) mod c goal (1 subgoal): 1. c \<noteq> 0 \<Longrightarrow> a mod (b * c) mod c = a mod c [PROOF STEP] then [PROOF STATE] proof (chain) picking this: (m1 * b + m - n) * c = a mod c - a mod (b * c) mod c [PROOF STEP] have "c dvd (?y - ?z)" [PROOF STATE] proof (prove) using this: (m1 * b + m - n) * c = a mod c - a mod (b * c) mod c goal (1 subgoal): 1. c dvd a mod c - a mod (b * c) mod c [PROOF STEP] by (metis dvd_triv_right) [PROOF STATE] proof (state) this: c dvd a mod c - a mod (b * c) mod c goal (1 subgoal): 1. c \<noteq> 0 \<Longrightarrow> a mod (b * c) mod c = a mod c [PROOF STEP] moreover [PROOF STATE] proof (state) this: c dvd a mod c - a mod (b * c) mod c goal (1 subgoal): 1. c \<noteq> 0 \<Longrightarrow> a mod (b * c) mod c = a mod c [PROOF STEP] have "?y < c" [PROOF STATE] proof (prove) goal (1 subgoal): 1. a mod c < c [PROOF STEP] using mod_less_divisor False [PROOF STATE] proof (prove) using this: 0 < ?n \<Longrightarrow> ?m mod ?n < ?n c \<noteq> 0 goal (1 subgoal): 1. a mod c < c [PROOF STEP] by auto [PROOF STATE] proof (state) this: a mod c < c goal (1 subgoal): 1. c \<noteq> 0 \<Longrightarrow> a mod (b * c) mod c = a mod c [PROOF STEP] moreover [PROOF STATE] proof (state) this: a mod c < c goal (1 subgoal): 1. c \<noteq> 0 \<Longrightarrow> a mod (b * c) mod c = a mod c [PROOF STEP] have "?z < c" [PROOF STATE] proof (prove) goal (1 subgoal): 1. a mod (b * c) mod c < c [PROOF STEP] using mod_less_divisor False [PROOF STATE] proof (prove) using this: 0 < ?n \<Longrightarrow> ?m mod ?n < ?n c \<noteq> 0 goal (1 subgoal): 1. a mod (b * c) mod c < c [PROOF STEP] by auto [PROOF STATE] proof (state) this: a mod (b * c) mod c < c goal (1 subgoal): 1. c \<noteq> 0 \<Longrightarrow> a mod (b * c) mod c = a mod c [PROOF STEP] moreover [PROOF STATE] proof (state) this: a mod (b * c) mod c < c goal (1 subgoal): 1. c \<noteq> 0 \<Longrightarrow> a mod (b * c) mod c = a mod c [PROOF STEP] have "?y - ?z < c" [PROOF STATE] proof (prove) goal (1 subgoal): 1. a mod c - a mod (b * c) mod c < c [PROOF STEP] using calculation(2) less_imp_diff_less [PROOF STATE] proof (prove) using this: a mod c < c ?j < ?k \<Longrightarrow> ?j - ?n < ?k goal (1 subgoal): 1. a mod c - a mod (b * c) mod c < c [PROOF STEP] by blast [PROOF STATE] proof (state) this: a mod c - a mod (b * c) mod c < c goal (1 subgoal): 1. c \<noteq> 0 \<Longrightarrow> a mod (b * c) mod c = a mod c [PROOF STEP] ultimately [PROOF STATE] proof (chain) picking this: c dvd a mod c - a mod (b * c) mod c a mod c < c a mod (b * c) mod c < c a mod c - a mod (b * c) mod c < c [PROOF STEP] have "?y - ?z = 0" [PROOF STATE] proof (prove) using this: c dvd a mod c - a mod (b * c) mod c a mod c < c a mod (b * c) mod c < c a mod c - a mod (b * c) mod c < c goal (1 subgoal): 1. a mod c - a mod (b * c) mod c = 0 [PROOF STEP] by (metis dvd_imp_mod_0 mod_less) [PROOF STATE] proof (state) this: a mod c - a mod (b * c) mod c = 0 goal (1 subgoal): 1. c \<noteq> 0 \<Longrightarrow> a mod (b * c) mod c = a mod c [PROOF STEP] then [PROOF STATE] proof (chain) picking this: a mod c - a mod (b * c) mod c = 0 [PROOF STEP] show ?thesis [PROOF STATE] proof (prove) using this: a mod c - a mod (b * c) mod c = 0 goal (1 subgoal): 1. a mod (b * c) mod c = a mod c [PROOF STEP] using False [PROOF STATE] proof (prove) using this: a mod c - a mod (b * c) mod c = 0 c \<noteq> 0 goal (1 subgoal): 1. a mod (b * c) mod c = a mod c [PROOF STEP] by (metis "1" mod_add_right_eq mod_mult_self2 add.commute mult.commute) [PROOF STATE] proof (state) this: a mod (b * c) mod c = a mod c goal: No subgoals! [PROOF STEP] qed
```python import holoviews as hv hv.extension('bokeh') hv.opts.defaults(hv.opts.Curve(width=500), hv.opts.Image(width=500, colorbar=True, cmap='Viridis')) ``` ```python import numpy as np import scipy.signal import scipy.fft from IPython.display import Audio ``` # Sistemas para el procesamiento de seΓ±ales ## IntroducciΓ³n ### DefiniciΓ³n de sistema Hasta ahora hemos realizado *anΓ‘lisis de seΓ±ales*, es decir el estudio de las seΓ±ales y sus propiedades en el dominio del tiempo y frecuencia En esta unidad nos enfocaremos en el *procesamiento de seΓ±ales*, es decir el diseΓ±o de **sistemas** que procesan una **seΓ±al de entrada** y producen una **seΓ±al de salida** Usaremos - $x[n]$ para denotar la seΓ±al (discreta) de entrada y $X[k]$ su espectro - $y[n]$ para denotar la seΓ±al (discreta) de salida e $Y[k]$ su espectro ### Ejemplos de sistemas Utilizando sistemas podemos modificar una seΓ±al para mejorar su calidad o remover efectos indeseados - Un sistema para reducir el ruido de una seΓ±al de electroencefalograma (EEG) - Un sistema para mejorar una imagen fuera de foco (sharpening) - Un sistema para eliminar el eco de un audio ## Propiedades y ejemplos de sistemas ### Sistemas sin memoria Diremos que un sistema $\Phi$ es un sistema **sin memoria** si $$ y[n] = \Phi(x[n]), $$ es decir que la salida del sistema en un instante $n$ dado depende solo de la entrada en ese mismo instante Veamos algunos ejemplos **Sistema atenuador/amplificador ideal** $$ y[n] = A x[n], $$ donde $A>0$ se llama *ganancia* Este sistema puede atenuar la entrada si $0<A<1$ y amplificar si $A>1$ **Sistema saturador (clamp)** $$ y[n] = \begin{cases} B &x[n] > B \\x[n] & x[n] \in [-B, B]\\ -B & x[n] < -B\end{cases} $$ Este sistema limita los valores de la seΓ±al de entrada en un rango fijo **Sistema rectificador** $$ y[n] = | x[n] | $$ Este sistema eliminar la parte negativa de la seΓ±al de entrada ### Sistema Lineal Diremos que un sistema $\Phi$ es lineal si cumple con las siguientes propiedades **Homogeneidad** Un cambio en la amplitud de la entrada produce un cambio equivalente en la salida $$ \Phi(cx[n]) = c \Phi(x[n]) = c y[n] $$ **Aditividad** SeΓ±ales que se suman en la entrada producen seΓ±ales que se suman en la salida $$ \Phi(x_1[n] + x_2[n]) = \Phi(x_1[n]) + \Phi(x_2[n]) = y_1[n] + y_2[n] $$ Es decir que las seΓ±ales pasan por el sistema sin interactuar entre ellas **Otras propiedades de los sistemas lineales** Producto de las propiedades anteriores se tiene que una cascada de sistemas lineales forma un sistema lineal equivalente y ademΓ‘s la cascada de sistemas es **conmutativa**, es decir que el orden de los sistemas en la cascada no altera el resultado final La siguiente figura ejemplifica esta propiedad Otra propiedad interesante de los sistemas lineales es que cumplen el **Principio de superposiciΓ³n:** 1. Si descomponemos una seΓ±al en $M$ componentes: $x[n] = x_1[n] + x_2[n] + \ldots + x_M[n]$ 1. Y aplicamos un **sistema lineal** a cada componente: $y_j[n] = \Phi(x_j[n])$ 1. Podemos recuperar la salida total usando **aditividad**: $y_1[n] + y_2[n] + \ldots + y_M[n] = y[n]$ La siguiente figura ejemplifica esta propiedad ### Sistemas con memoria Un sistema $\Phi$ es un sistema con memoria si su salida actual depende sΓ³lo de la entrada actual, las entradas anteriores o las salidas anteriores $$ \begin{align} y[n] = \Phi(x[n], & x[n-1], x[n-2], \ldots, x[0], \\ \nonumber & y[n-1], y[n-2], \ldots, y[0]) \nonumber \end{align} $$ esto tambiΓ©n se conoce como **sistema causal** Un **sistema con memoria no-causal** usa entradas futuras (es decir $x[n+1]$, $x[n+2]$, ...) y por ende solo se puede implementar de forma offline, es decir una vez que sea ha observado toda la seΓ±al A continuaciΓ³n veremos algunos ejemplos de sistemas con memoria causales **Sistema con un retardo (delay)** Definido como $$ y[n] = x[n-m], $$ donde - la salida depende solo de "una" entrada anterior - el valor de m define que tan "antigua" es la entrada pasada El *delay* o retarno no afecta la amplitud de los componentes frecuenciales de la seΓ±al pero si su fase, como muestra la siguiente figura ```python n = np.arange(0, 200, step=1) x = lambda m: np.sin(2.0*np.pi*0.05*(n-m)) f = scipy.fft.rfftfreq(d=1, n=len(n)) p = [] for m in [0, 4, 8]: x_delayed = x(m) p.append(hv.Curve((n, x_delayed), 'Tiempo [s]', 'SeΓ±al')) X = scipy.fft.rfft(x_delayed) Xm = np.absolute(X) p.append(hv.Curve((f, Xm), 'Frecuencia [Hz]', 'Espectro de amplitud')) Xp = np.angle(X) p.append(hv.Curve((f, Xm*Xp/np.amax(Xm)), 'Frecuencia [Hz]', 'Espectro de fase')) ``` ```python hv.Layout(p).cols(3).opts(hv.opts.Curve(width=250, height=200)) ``` **Sistema reverberador o eco** Definido como $$ y[n] = x[n] + A x[n-m], $$ donde - la salida depende de una entrada "pasada" y la entrada actual - la ganancia controla si el "eco" se atenua o amplifica Al contrario del sistema anterior, el eco si puede modificar el espectro de amplitud. Notemos el efecto de interferencia constructiva y destructiva al modificar el retardo, como muestra la siguiente animaciΓ³n ```python n = np.arange(0, 200, step=1) x = lambda m, A=1: A*np.sin(2.0*np.pi*0.05*(n-m)) f = scipy.fft.rfftfreq(d=1, n=len(n)) buffer = {} for m in range(0, 40, 2): xm = x(m) buffer[m] = (xm, np.abs(scipy.fft.rfft(x(0) + xm))) ``` ```python hMap1 = hv.HoloMap(kdims='m') hMap2 = hv.HoloMap(kdims='m') hMap3 = hv.HoloMap(kdims='m') for m, (xm, X) in buffer.items(): hMap1[m] = hv.Curve((n, xm), 'Tiempo', 'x', label='Ax[n-m]') hMap2[m] = hv.Curve((n, x(0) + xm), 'Tiempo', 'y') hMap3[m] = hv.Curve((f, X), 'Frecuencia', 'Espectro') p_clean = hv.Curve((n, x(0)), 'Tiempo', 'x', label='x[n]').opts(width=500, height=200) plot = (p_clean * hMap1 + hMap2 + hMap3).cols(1).opts(hv.opts.Curve(height=200), hv.opts.Overlay(legend_position='top_right')) hv.output(plot, holomap='gif', fps=5) ``` El siguiente video muestra un experimento que ejemplifica la interferencia destructiva en una onda mecΓ‘nica: https://www.youtube.com/watch?v=IU8xeJlJ0mk **Sistemas con mΓΊltiples ecos** Pueden combinarse mΓ‘s retardos para hacer un sistema reverberante mΓ‘s complejo Por ejemplo el siguiente sistema $$ y[n] = x[n] + A_1 x[n-m_1] + A_2 x[n-m_2] + A_3 x[n-m_3] + \ldots, $$ que lo implementamos como ```python Fs = 44100; n = np.arange(0, 4, step=1.0/Fs) x = lambda m: np.sin(2.0*np.pi*880*(n-m))*np.exp(-(n-m)**2/0.5**2)*np.heaviside(n-m, 0) y = x(0) + 0.5*x(1.) + 0.25*x(2.) + 0.125*x(3.) ``` Da como resultado grΓ‘fico lo siguiente: ```python hv.Curve((n, y), 'Tiempo [s]', 'SeΓ±al con eco') ``` y el resultado sonoro es: ```python Audio(y, rate=Fs, normalize=False) ``` ## Sistema de respuesta finita al impulso (FIR) Generalizando el ejemplo de sistema lineal reverberante a $L$ retardos llegamos a $$ \begin{align} y[n] &= h[0] x[n] + h[1] x[n-1] + h[2] x[n-2] + \ldots + h[L] x[n-L] \nonumber \\ &= \sum_{j=0}^{L} h[j] x[n-j] \nonumber \\ &= (h* x)[n] \nonumber \end{align} $$ que se puede modelar como una convoluciΓ³n discreta entre $h$ y $x$ Este sistema se conoce como - Sistema FIR (finite impulse response) - Sistema MA (moving average) - Sistema todo-zeros y es de orden L (posee L+1 coeficientes) **IntepretaciΓ³n como media movil (MA)** El sistema FIR es equivalente a una media movil ponderada que se aplica sobre la entrada, donde los coeficientes del sistema son los ponderadores Por ejemplo sea un sistema de 3 coeficientes $h[0]=a$, $h[1]=b$ y $h[2]=c$ $$ \begin{align} y[n] = (h*x)[n] &= \sum_{j=0}^{2} h[j] x[n-j] \nonumber \\ &= a x[n] + b x[n-1] + c x[n-2] \nonumber \end{align} $$ donde cada salida se calcula a partir de $$ \overbrace{x[0], x[1], x[2]}^{y[2]} , x[3], x[4], \ldots $$ $$ x[0], \overbrace{x[1], x[2] , x[3]}^{y[3]}, x[4], \ldots $$ $$ x[0], x[1], \overbrace{x[2] , x[3], x[4]}^{y[4]}, \ldots $$ Un detalle es que para obtener el valor de $y[0]$ e $y[1]$ se deben establecer "condiciones de borde", como por ejemplo $x[-2] = x[-1]= 0$ A continuaciΓ³n veremos algunos ejemplos de aplicaciones usando filtros FIR sencillos ### Eliminando ruido blanco aditivo En ciertos problemas la seΓ±al que observamos $x[n]$ no es exactamente la seΓ±al que deseamos $s[n]$, sino una versiΓ³n corrupta de la misma. Un ejemplo muy tΓ­pico es cuando la seΓ±al que deseamos estudiar debe ser transmitida desde su lugar de origen hasta nosotros. El canal suele agregar ruido a la seΓ±al y adicionalmente el ruido aumenta mientras mΓ‘s largo sea el recorrido de nuestra seΓ±al. Un tipo particular de corrupciΓ³n es el siguiente $$ x[n] = s[n] + \epsilon[n], \quad \epsilon[n] \sim \mathcal{N}(0,\sigma^2) $$ es decir una corrupciΓ³n con ruido blanco aditivo y gaussiano, muy comΓΊn en las transmisiones satelitales y espaciales Consideremos a modo de ejemplo la siguiente seΓ±al observada que fue contaminada por ruido blanco aditivo: ```python np.random.seed(0) n = np.arange(0, 200, step=1) C = 5*np.exp(-0.5*(n[:, np.newaxis] - n[:, np.newaxis].T)**2/10**2) # SeΓ±al limpia (lo que no conocemos) s = np.random.multivariate_normal(np.zeros_like(n), C)/8 # Datos: SeΓ±al + ruido (lo que medimos) x = s + np.random.randn(len(n))/4 p2 = hv.Curve((n, s), 'Tiempo', 'SeΓ±al', label='Deseada (s)').opts(color='k') p1 = hv.Scatter((n, x), 'Tiempo', 'SeΓ±al', label='Observada (x)').opts(width=500, height=250) hv.Overlay([p1, p2]).opts(legend_position='top') ``` Podemos usar un sistema FIR de tipo promediador para "suavizar la contaminaciΓ³n" e intentar recuperar la seΓ±al deseada Sea un sistema FIR con $L$ coeficientes idΓ©nticos e iguales a $1/L$ ```python L = 10 h = np.ones(shape=(L,))/L y = scipy.signal.convolve(x, h, mode='same', method='auto') ``` La siguiente grΓ‘fica interactiva muestra el resultado de convolucionar este sistema con los datos contaminados ```python hMap1 = hv.HoloMap(kdims='Instante') hMap2 = hv.HoloMap(kdims='Instante') for m in range(0, len(n)-L, 5): c = np.zeros_like(n, dtype=np.float64); c[m:m+L] = h hMap1[m] = hv.Curve((n, c), 'Tiempo', 'Entrada', label='h').opts(color='r') hMap2[m] = hv.Curve((n[:m], y[:m]), 'Tiempo', 'Salida', label='y') p_obs = hv.Scatter((n, x), 'Tiempo', 'Entrada', label='x') p_clean = hv.Curve((n, s), 'Tiempo', 'Salida', label='s').opts(color='k', height=200) (hMap1 * p_obs + hMap2 * p_clean).cols(1).opts(hv.opts.Curve(height=200), hv.opts.Overlay(legend_position='top_left')) ``` :::{note} Este filtro promedia los datos vecinos resultando una versiΓ³n suavizada de los mismos. Esta versiΓ³n suavizada se aproxima a la "seΓ±al limpia" que estΓ‘ escondida en el ruido. ::: En general, mientras mΓ‘s "largo" sea el filtro mayor serΓ‘ el efecto de suavizado ### Encontrando cambios en una seΓ±al Sea la siguiente seΓ±al escalonada ```python n = np.arange(0, 100, step=1) x = np.zeros_like(n, dtype=np.float64) x[20:] += 1. x[40:] += 1. x[80:] -= 1. hv.Curve((n, x), 'Tiempo', 'x').opts(width=500, height=200) ``` Si nos interesa encontrar cambios en la seΓ±al podemos usar un sistema de tipo diferenciador $$ y[n] = (h * x)[n] = \frac{1}{2}x[n] - \frac{1}{2} x[n-1] $$ ```python h = np.array([0.5, -0.5]) y = scipy.signal.convolve(x, h, mode='same', method='auto') ``` La siguiente grΓ‘fica interactiva muestra el resultado de convolucionar este sistema con la seΓ±al escalonada ```python hMap1 = hv.HoloMap(kdims='Instante') hMap2 = hv.HoloMap(kdims='Instante') for m in range(0, len(n)-len(h), 5): c = np.zeros_like(n, dtype=np.float64); c[m:m+len(h)] = h hMap1[m] = hv.Curve((n, c), 'Tiempo', label='h') hMap2[m] = hv.Curve((n[:m+1], y[:m+1]), 'Tiempo', 'Salida') p_obs = hv.Curve((n, x), 'Tiempo', 'Entrada', label='x') (p_obs * hMap1 + hMap2).cols(1).opts(hv.opts.Curve(height=200), hv.opts.Overlay(legend_position='top_left')) ``` :::{note} Los pulsos en la convoluciΓ³n (salida) estΓ‘n asociados a un cambio (ascenso o descenso) en la seΓ±al original ::: En un caso mΓ‘s general, este filtro nos da informaciΓ³n de la derivada de la seΓ±al, es decir de su velocidad o tasa de cambio ### Remover una tendencia En ciertas situaciones la seΓ±al que nos interesa (seΓ±al deseada) puede aparecer combinada con otras seΓ±ales (interferencia) Considere el siguiente ejemplo: ```python np.random.seed(0); n = np.arange(0, 150, step=1) C = np.exp(-0.5*(n[:, np.newaxis] - n[:, np.newaxis].T)**2/30**2) x_tendencia = 3*np.random.multivariate_normal(np.zeros_like(n), C)+2.5 x_deseada = np.sin(2.0*np.pi*0.1*n) x = x_deseada + x_tendencia p3=hv.Curve((n, x_deseada), 'Tiempo', 'SeΓ±al', label='Deseada (s)').opts(color='k', alpha=0.75) p2=hv.Curve((n, x_tendencia), 'Tiempo', 'SeΓ±al', label='Tendencia').opts(alpha=0.75) p1=hv.Curve((n, x), 'Tiempo', 'SeΓ±al', label='Observada (x)').opts(height=250) hv.Overlay([p1,p2,p3]).opts(legend_position='bottom_right') ``` Supongamos que nuestro sensor retorna la seΓ±al observada (azul) pero que lo que en realidad necesitamos es la seΓ±al deseada (negra) El filtro que se muestra a continuaciΓ³n es capaz de separar la seΓ±al deseada (negro) de la tendencia (rojo) a partir de la seΓ±al observada (azul). En prΓ³ximas lecciones veremos como diseΓ±ar este tipo de filtros ```python h = np.array([ 0.00099858, 0.00172998, 0.00288273, 0.00437671, 0.00567733, 0.00580422, 0.00350188, -0.00245489, -0.01289227, -0.02790429, -0.04665419, -0.06738128, -0.08763411, -0.10469179, -0.11608356, 0.88063544, -0.11608356, -0.10469179, -0.08763411, -0.06738128, -0.04665419, -0.02790429, -0.01289227, -0.00245489, 0.00350188, 0.00580422, 0.00567733, 0.00437671, 0.00288273, 0.00172998, 0.00099858]) hv.Curve((h), 'Tiempo', 'Filtro (h)').opts(height=200) ``` ```python y = scipy.signal.convolve(x, h, mode='same', method='auto') ``` ```python hMap1 = hv.HoloMap(kdims='Instante') hMap2 = hv.HoloMap(kdims='Instante') for m in range(0, len(n)-len(h), 5): c = np.zeros_like(n, dtype=np.float64); c[m:m+len(h)] = h hMap1[m] = hv.Curve((n, c), 'Tiempo', 'Entrada', label='h') hMap2[m] = hv.Curve((n[:m], y[:m]), 'Tiempo', 'Salida', label='y').opts(ylim=(-1.2, 1.2)) p_obs = hv.Curve((n, x), 'Tiempo', 'SeΓ±al', label='x') p_target = hv.Curve((n, x_deseada), 'Tiempo', 'SeΓ±al', label='s').opts(color='k', alpha=.75, width=4) (p_obs * hMap1 + hMap2 *p_target).cols(1).opts(hv.opts.Curve(height=200)) ``` ## ConvoluciΓ³n con scipy Podemos convolucionar una seΓ±al en Python usando ```python scipy.signal.convolve(in1, # SeΓ±al de entrada in2, # Coeficientes del sistema mode='full', method='auto' ) ``` donde el argumento `method` puede ser - `direct`: Realiza la convoluciΓ³n en el dominio del tiempo - `fft`: Realiza la convoluciΓ³n multiplicando los espectros - `auto`: Se decide automaticamente en base al largo de las seΓ±ales y el argumento `mode` indica donde se hace la convoluciΓ³n Para ejemplificar la influencia de este argumento consideremos una seΓ±al $x=[a,b,c]$ y un sistema $h=[d, e]$ - Si uso `mode=valid` el resultado serΓ‘ $y=[ad+be, bd+ce]$ - Si uso `mode=same` el resultado serΓ‘ $y=[ae, ad+be, bd+ce]$, es decir se agregan ceros al principio de $x$ tal que $y$ sea del mismo largo que $x$ - Si uso `mode=full` el resultado serΓ‘ $y=[ae, ad+be, bd+ce, cd]$, es decir se agregan ceros al principio y al final de $x$ ### Eliminando ruido versiΓ³n 2.0 Considerando la misma seΓ±al contaminada con ruido blanco que vimos anteriormente utilizaremos `scipy.signal.convolve` para convolucionar con un filtro que suavice el ruido. Probaremos dos sistemas FIR - coeficientes idΓ©nticos e iguales a $1/L$, es decir una ventana rectangular - coeficientes que decaen suavemente a cero, como por ejemplo una ventana de Hamming con distintos valores de $L$ (largo del filtro) En este caso los valores los obtenemos usando la funciΓ³n de scipy ```python scipy.signal.get_window(window, # String con el nombre de la ventana Nx, # Entero con el largo de la ventana ...) ``` La ventana rectangular se llama `boxcar` mientras que la de Hamming se llama `hamming`. En la documentaciΓ³n de la funciΓ³n se puede revisar otras ventanas disponibles ```python # La seΓ±al de ejemplo de la secciΓ³n 7.3.1 np.random.seed(0) n = np.arange(0, 200, step=1) C = 5*np.exp(-0.5*(n[:, np.newaxis] - n[:, np.newaxis].T)**2/10**2) s = np.random.multivariate_normal(np.zeros_like(n), C)/8 x = s + np.random.randn(len(n))/4 # La filtramos con distintas funciones y L para luego visualizar el resultado filters = {} results = {} for L in [5, 10, 20, 30, 40]: for filter_name in ['boxcar', 'hamming']: h = scipy.signal.get_window(filter_name, L) h = h/np.sum(h) if not L in filters: filters[L] = {} results[L] = {} filters[L][filter_name] = h results[L][filter_name] = scipy.signal.convolve(x, h, mode='same', method='auto') ``` ```python hMap1 = hv.HoloMap(kdims='L') hMap2 = hv.HoloMap(kdims='L') for L, curves in filters.items(): p = [] for filter_name, h in curves.items(): p.append(hv.Curve((range(L), h), 'Largo del filtro (L)', 'Filtro (h)', label=filter_name)) hMap1[L] = hv.Overlay(p) for L, curves in results.items(): p = [] for filter_name, y in curves.items(): p.append(hv.Curve((n, y), 'Tiempo', 'SeΓ±al', label=filter_name).opts(line_width=2, alpha=0.75)) hMap2[L] = hv.Overlay(p) p_clean = hv.Curve((n, s), 'Tiempo', 'SeΓ±al', label='Deseada (s)').opts(color='k') p_data = hv.Scatter((n, x), 'Tiempo', 'Datos (x)').opts(width=500, height=200) (p_data + hMap1 + hMap2 * p_clean).cols(1).opts(hv.opts.Curve(height=250), hv.opts.Overlay(legend_position='top')) ``` :::{note} Mientras mΓ‘s larga es la ventana (L) mayor es el suavizado. Adicionalmente la ventana de Hamming produce un filtrado mΓ‘s suave que la rectangular ::: En la lecciΓ³n siguiente veremos como diseΓ±ar un filtro, es decir como calcular los valores de `h` para resolver una tarea en particular ```python ```
= = = = 2005 = = = =
import tactic.linarith import category_theory.shift import algebra.homology.homological_complex import algebra.homology.homotopy_category import for_mathlib.category_theory.quotient_shift import for_mathlib.algebra.homology.hom_complex import for_mathlib.category_theory.shift_misc noncomputable theory open category_theory category_theory.category category_theory.limits variables (C : Type*) [category C] [preadditive C] namespace cochain_complex open homological_complex local attribute [simp] X_iso_of_eq_hom_naturality X_iso_of_eq_inv_naturality @[simps obj_d map_f] def shift_functor (n : β„€) : cochain_complex C β„€ β₯€ cochain_complex C β„€ := { obj := Ξ» K, { X := Ξ» i, K.X (i+n), d := Ξ» i j, cochain_complex.hom_complex.Ξ΅ n β€’ K.d _ _, shape' := Ξ» i j hij, begin rw [K.shape, smul_zero], intro hij', apply hij, dsimp [complex_shape.up] at hij' ⊒, linarith, end, }, map := Ξ» K₁ Kβ‚‚ Ο†, { f := Ξ» i, Ο†.f _, }, } variable {C} @[simp] lemma X_iso_of_eq_of_shift_functor (K : cochain_complex C β„€) (n : β„€) {i i' : β„€} (h : i = i') : ((shift_functor C n).obj K).X_iso_of_eq h = K.X_iso_of_eq (by subst h) := rfl @[simp] def shift_functor_obj_X_iso (K : cochain_complex C β„€) (n i m : β„€) (hm : m = i + n) : ((shift_functor C n).obj K).X i β‰… K.X m := X_iso_of_eq K hm.symm variable (C) @[simp] def shift_functor_congr {n n' : β„€} (h : n = n') : shift_functor C n β‰… shift_functor C n' := nat_iso.of_components (Ξ» K, hom.iso_of_components (Ξ» i, K.X_iso_of_eq (by subst h)) (Ξ» i j hij, by { dsimp, simp [h], })) (Ξ» K₁ Kβ‚‚ Ο†, by { ext, dsimp, simp, }) @[simps] def shift_functor_zero' (n : β„€) (h : n = 0) : shift_functor C n β‰… 𝟭 _ := nat_iso.of_components (Ξ» K, hom.iso_of_components (Ξ» i, K.shift_functor_obj_X_iso _ _ _ (by linarith)) (by { subst h, tidy, })) (by tidy) @[simps] def shift_functor_add' (n₁ nβ‚‚ n₁₂ : β„€) (h : n₁₂ = n₁ + nβ‚‚) : shift_functor C n₁ β‹™ shift_functor C nβ‚‚ β‰… shift_functor C n₁₂ := nat_iso.of_components (Ξ» K, hom.iso_of_components (Ξ» i, K.X_iso_of_eq (by linarith)) (Ξ» i j hij, begin subst h, dsimp, simp only [linear.comp_smul, X_iso_of_eq_hom_comp_d, linear.smul_comp, d_comp_X_iso_of_eq_hom, ← mul_smul, ← cochain_complex.hom_complex.Ξ΅_add, add_comm n₁], end)) (by tidy) instance : has_shift (cochain_complex C β„€) β„€ := has_shift_mk _ _ { F := shift_functor C, Ξ΅ := (shift_functor_zero' C _ rfl).symm, ΞΌ := Ξ» n₁ nβ‚‚, shift_functor_add' C n₁ nβ‚‚ _ rfl, associativity := Ξ» n₁ nβ‚‚ n₃ K, by { ext i, dsimp [X_iso_of_eq], simp, }, } variable {C} @[simp] lemma shift_functor_map_f' {K L : cochain_complex C β„€} (Ο† : K ⟢ L) (n p : β„€) : ((category_theory.shift_functor (cochain_complex C β„€) n).map Ο†).f p = Ο†.f (p+n) := rfl @[simp] lemma shift_functor_obj_d' (K : cochain_complex C β„€) (n i j : β„€) : ((category_theory.shift_functor (cochain_complex C β„€) n).obj K).d i j = cochain_complex.hom_complex.Ξ΅ n β€’ K.d _ _ := rfl lemma shift_functor_add_inv_app_f (K : cochain_complex C β„€) (a b n : β„€) : ((shift_functor_add (cochain_complex C β„€) a b).inv.app K : _ ⟢ _).f n = (K.X_iso_of_eq (by { dsimp, rw [add_comm a, add_assoc],})).hom := rfl lemma shift_functor_add_hom_app_f (K : cochain_complex C β„€) (a b n : β„€) : ((shift_functor_add (cochain_complex C β„€) a b).hom.app K : _ ⟢ _).f n = (K.X_iso_of_eq (by { dsimp, rw [add_comm a, add_assoc],})).inv := begin haveI : is_iso (((shift_functor_add (cochain_complex C β„€) a b).inv.app K : _ ⟢ _).f n), { rw shift_functor_add_inv_app_f, apply_instance, }, rw [← cancel_mono (((shift_functor_add (cochain_complex C β„€) a b).inv.app K : _ ⟢ _).f n), ← homological_complex.comp_f, iso.hom_inv_id_app, homological_complex.id_f, shift_functor_add_inv_app_f, iso.inv_hom_id], end lemma shift_functor_add_comm_hom_app_f (K : cochain_complex C β„€) (a b n : β„€) : ((shift_functor_add_comm (cochain_complex C β„€) a b).hom.app K : _ ⟢ _).f n = (K.X_iso_of_eq (by { dsimp, simp only [add_assoc, add_comm a], })).hom := begin dsimp only [shift_functor_add_comm, iso.trans, iso.symm], simpa only [nat_trans.comp_app, homological_complex.comp_f, shift_functor_add_hom_app_f, shift_functor_add_inv_app_f, homological_complex.X_iso_of_eq, eq_to_iso.inv, eq_to_iso.hom, eq_to_hom_app, homological_complex.eq_to_hom_f, eq_to_hom_trans], end variable (C) lemma shift_functor_add'_eq (a b c : β„€) (h : c = a + b) : category_theory.shift_functor_add' (cochain_complex C β„€) a b c h = (shift_functor_add' C a b c h).symm := begin subst h, dsimp only [category_theory.shift_functor_add'], ext K n, dsimp only [iso.trans, shift_functor_add', nat_iso.of_components, nat_trans.comp_app, homological_complex.comp_f, hom.iso_of_components], simp only [eq_to_hom_app, eq_to_hom_f, shift_functor_add_hom_app_f, X_iso_of_eq, eq_to_iso, eq_to_hom_trans, eq_to_hom_refl, nat_trans.id_app, homological_complex.id_f, id_comp], end lemma shift_functor_add_eq (a b : β„€) : category_theory.shift_functor_add (cochain_complex C β„€) a b = (shift_functor_add' C a b _ rfl).symm := begin ext1, rw ← shift_functor_add'_eq, dsimp [category_theory.shift_functor_add'], rw id_comp, end lemma shift_functor_zero_eq : (category_theory.shift_functor_zero (cochain_complex C β„€) β„€) = (shift_functor_zero' C 0 rfl) := begin change (category_theory.shift_functor_zero (cochain_complex C β„€) β„€).symm.symm = (shift_functor_zero' C 0 rfl).symm.symm, congr' 1, ext1, refl, end variables {C} {D : Type*} [category D] (F : C β₯€ D) [preadditive D] [functor.additive F] def map_cochain_complex_shift_iso (n : β„€) : shift_functor C n β‹™ F.map_homological_complex (complex_shape.up β„€) β‰… F.map_homological_complex (complex_shape.up β„€) β‹™ shift_functor D n := nat_iso.of_components (Ξ» K, hom.iso_of_components (Ξ» i, iso.refl _) (Ξ» i j hij, by { dsimp, rw [id_comp, comp_id, functor.map_zsmul], })) (by tidy) instance map_cochain_complex_has_comm_shift : (functor.map_homological_complex F (complex_shape.up β„€)).has_comm_shift β„€ := { iso := Ξ» n, map_cochain_complex_shift_iso F n, iso_zero := begin ext K i, rw [functor.comm_shift.unit_hom_app, comp_f, functor.map_homological_complex_map_f, shift_functor_zero_eq, shift_functor_zero_eq, shift_functor_zero'_hom_app_f, shift_functor_zero'_inv_app_f], dsimp [X_iso_of_eq], simpa only [eq_to_hom_map, eq_to_hom_trans], end, iso_add := Ξ» a b, begin ext K i, simp only [functor.comm_shift.add_hom_app, comp_f, iso.symm_inv, functor.map_homological_complex_map_f, shift_functor_add_eq, iso.symm_hom, shift_functor_add'_inv_app_f, shift_functor_add'_hom_app_f, shift_functor_map_f'], dsimp [map_cochain_complex_shift_iso, iso.refl, X_iso_of_eq], erw [eq_to_hom_map, id_comp, id_comp, eq_to_hom_trans, eq_to_hom_refl], end, } end cochain_complex
Formal statement is: lemma suminf_binaryset_eq: fixes f :: "'a set \<Rightarrow> 'b::{comm_monoid_add, t2_space}" shows "f {} = 0 \<Longrightarrow> (\<Sum>n. f (binaryset A B n)) = f A + f B" Informal statement is: If $f$ is a function from sets to a commutative monoid with identity $0$, then $\sum_{n=0}^\infty f(A \cup B^n) = f(A) + f(B)$.
AdderType : (numargs : Nat) -> Type AdderType Z = Int AdderType (S k) = (next : Int) -> AdderType k adder : (numargs : Nat) -> (acc : Int) -> AdderType numargs adder Z acc = acc adder (S k) acc = \next => adder k (next + acc) TupleVect : (length : Nat) -> (ty : Type) -> Type TupleVect Z _ = () TupleVect (S k) x = (x, TupleVect k x) test : TupleVect 4 Nat test = (1,2,3,4,())
import numpy as np HPARAMS_REGISTRY = {} class Hyperparams(dict): def __getattr__(self, attr): try: return self[attr] except KeyError: return None def __setattr__(self, attr, value): self[attr] = value vmpo_none = Hyperparams() # model vmpo_none.model = 'vmpo' vmpo_none.state_rep = 'none' # env vmpo_none.env_name = 'rooms_watermaze' vmpo_none.action_dim = 9 vmpo_none.action_list = np.array([ [0, 0, 0, 1, 0, 0, 0], # Forward [0, 0, 0, -1, 0, 0, 0], # Backward [0, 0, -1, 0, 0, 0, 0], # Strafe Left [0, 0, 1, 0, 0, 0, 0], # Strafe Right [-20, 0, 0, 0, 0, 0, 0], # Look Left [20, 0, 0, 0, 0, 0, 0], # Look Right [-20, 0, 0, 1, 0, 0, 0], # Look Left + Forward [20, 0, 0, 1, 0, 0, 0], # Look Right + Forward [0, 0, 0, 0, 1, 0, 0], # Fire. ]) HPARAMS_REGISTRY['vmpo_none'] = vmpo_none ppo_none = Hyperparams() ppo_none.update(vmpo_none) # model ppo_none.model = 'ppo' HPARAMS_REGISTRY['ppo_none'] = ppo_none def parse_args_and_update_hparams(H, parser, s=None): args = parser.parse_args(s) valid_args = set(args.__dict__.keys()) hparam_sets = [x for x in args.hparam_sets.split(',') if x] for hp_set in hparam_sets: hps = HPARAMS_REGISTRY[hp_set] for k in hps: if k not in valid_args: raise ValueError(f"{k} not in default args") parser.set_defaults(**hps) H.update(parser.parse_args(s).__dict__) def add_arguments(parser): # utils parser.add_argument('--seed', type=int, default=0) parser.add_argument('--save_dir', type=str, default='./saved_models') parser.add_argument('--desc', type=str, default='test') parser.add_argument('--hparam_sets', '--hps', type=str) parser.add_argument('--gpu', type=str, default='0') # model parser.add_argument('--model', type=str, default='vmpo', help='{vmpo|ppo}') parser.add_argument('--state_rep', type=str, default='none', help='{none|lstm|trxl|gtrxl}') parser.add_argument('--n_latent_var', type=int, default=64) parser.add_argument('--n_layer', type=int, default=4) parser.add_argument('--n_head', type=int, default=8) parser.add_argument('--dropout', type=float, default=0.0) parser.add_argument('--mem_len', type=int, default=10) # env parser.add_argument('--env_name', type=str, default='rooms_watermaze') parser.add_argument('--action_dim', type=int, default=9) parser.add_argument('--log_interval', type=int, default=40) parser.add_argument('--max_episodes', type=int, default=50000) parser.add_argument('--max_timesteps', type=int, default=300) parser.add_argument('--update_timestep', type=int, default=1200) parser.add_argument('--action_list', type=list, default=[]) # training parser.add_argument('--lr', type=float, default=0.001) parser.add_argument('--betas', type=tuple, default=(0.9, 0.999)) parser.add_argument('--gamma', type=float, default=0.99) parser.add_argument('--K_epochs', type=int, default=4) parser.add_argument('--eps_clip', type=float, default=0.2) return parser
[GOAL] K : Type u_1 inst✝¹ : LinearOrderedField K v : K n : β„• inst✝ : FloorRing K a b c : K fract_a_ne_zero : Int.fract a β‰  0 ⊒ (β†‘βŒŠaβŒ‹ * b + c) / Int.fract a + b = (b * a + c) / Int.fract a [PROOFSTEP] field_simp [fract_a_ne_zero] [GOAL] K : Type u_1 inst✝¹ : LinearOrderedField K v : K n : β„• inst✝ : FloorRing K a b c : K fract_a_ne_zero : Int.fract a β‰  0 ⊒ β†‘βŒŠaβŒ‹ * b + c + b * Int.fract a = b * a + c [PROOFSTEP] rw [Int.fract] [GOAL] K : Type u_1 inst✝¹ : LinearOrderedField K v : K n : β„• inst✝ : FloorRing K a b c : K fract_a_ne_zero : Int.fract a β‰  0 ⊒ β†‘βŒŠaβŒ‹ * b + c + b * (a - β†‘βŒŠaβŒ‹) = b * a + c [PROOFSTEP] ring [GOAL] K : Type u_1 inst✝¹ : LinearOrderedField K v : K n : β„• inst✝ : FloorRing K ⊒ βˆ€ {ifp_n : IntFractPair K}, IntFractPair.stream v n = some ifp_n β†’ v = compExactValue (continuantsAux (of v) n) (continuantsAux (of v) (n + 1)) ifp_n.fr [PROOFSTEP] let g := of v [GOAL] K : Type u_1 inst✝¹ : LinearOrderedField K v : K n : β„• inst✝ : FloorRing K g : GeneralizedContinuedFraction K := of v ⊒ βˆ€ {ifp_n : IntFractPair K}, IntFractPair.stream v n = some ifp_n β†’ v = compExactValue (continuantsAux (of v) n) (continuantsAux (of v) (n + 1)) ifp_n.fr [PROOFSTEP] induction' n with n IH [GOAL] case zero K : Type u_1 inst✝¹ : LinearOrderedField K v : K n : β„• inst✝ : FloorRing K g : GeneralizedContinuedFraction K := of v ⊒ βˆ€ {ifp_n : IntFractPair K}, IntFractPair.stream v Nat.zero = some ifp_n β†’ v = compExactValue (continuantsAux (of v) Nat.zero) (continuantsAux (of v) (Nat.zero + 1)) ifp_n.fr [PROOFSTEP] intro ifp_zero stream_zero_eq [GOAL] case zero K : Type u_1 inst✝¹ : LinearOrderedField K v : K n : β„• inst✝ : FloorRing K g : GeneralizedContinuedFraction K := of v ifp_zero : IntFractPair K stream_zero_eq : IntFractPair.stream v Nat.zero = some ifp_zero ⊒ v = compExactValue (continuantsAux (of v) Nat.zero) (continuantsAux (of v) (Nat.zero + 1)) ifp_zero.fr [PROOFSTEP] have : IntFractPair.of v = ifp_zero := by have : IntFractPair.stream v 0 = some (IntFractPair.of v) := rfl simpa only [Nat.zero_eq, this, Option.some.injEq] using stream_zero_eq [GOAL] K : Type u_1 inst✝¹ : LinearOrderedField K v : K n : β„• inst✝ : FloorRing K g : GeneralizedContinuedFraction K := of v ifp_zero : IntFractPair K stream_zero_eq : IntFractPair.stream v Nat.zero = some ifp_zero ⊒ IntFractPair.of v = ifp_zero [PROOFSTEP] have : IntFractPair.stream v 0 = some (IntFractPair.of v) := rfl [GOAL] K : Type u_1 inst✝¹ : LinearOrderedField K v : K n : β„• inst✝ : FloorRing K g : GeneralizedContinuedFraction K := of v ifp_zero : IntFractPair K stream_zero_eq : IntFractPair.stream v Nat.zero = some ifp_zero this : IntFractPair.stream v 0 = some (IntFractPair.of v) ⊒ IntFractPair.of v = ifp_zero [PROOFSTEP] simpa only [Nat.zero_eq, this, Option.some.injEq] using stream_zero_eq [GOAL] case zero K : Type u_1 inst✝¹ : LinearOrderedField K v : K n : β„• inst✝ : FloorRing K g : GeneralizedContinuedFraction K := of v ifp_zero : IntFractPair K stream_zero_eq : IntFractPair.stream v Nat.zero = some ifp_zero this : IntFractPair.of v = ifp_zero ⊒ v = compExactValue (continuantsAux (of v) Nat.zero) (continuantsAux (of v) (Nat.zero + 1)) ifp_zero.fr [PROOFSTEP] cases this [GOAL] case zero.refl K : Type u_1 inst✝¹ : LinearOrderedField K v : K n : β„• inst✝ : FloorRing K g : GeneralizedContinuedFraction K := of v stream_zero_eq : IntFractPair.stream v Nat.zero = some (IntFractPair.of v) ⊒ v = compExactValue (continuantsAux (of v) Nat.zero) (continuantsAux (of v) (Nat.zero + 1)) (IntFractPair.of v).fr [PROOFSTEP] cases' Decidable.em (Int.fract v = 0) with fract_eq_zero fract_ne_zero [GOAL] case zero.refl.inl K : Type u_1 inst✝¹ : LinearOrderedField K v : K n : β„• inst✝ : FloorRing K g : GeneralizedContinuedFraction K := of v stream_zero_eq : IntFractPair.stream v Nat.zero = some (IntFractPair.of v) fract_eq_zero : Int.fract v = 0 ⊒ v = compExactValue (continuantsAux (of v) Nat.zero) (continuantsAux (of v) (Nat.zero + 1)) (IntFractPair.of v).fr [PROOFSTEP] suffices v = ⌊vβŒ‹ by -- Porting note: was `simpa [continuantsAux, fract_eq_zero, compExactValue]` field_simp [nextContinuants, nextNumerator, nextDenominator, compExactValue] have : (IntFractPair.of v).fr = Int.fract v := rfl rwa [this, if_pos fract_eq_zero] [GOAL] K : Type u_1 inst✝¹ : LinearOrderedField K v : K n : β„• inst✝ : FloorRing K g : GeneralizedContinuedFraction K := of v stream_zero_eq : IntFractPair.stream v Nat.zero = some (IntFractPair.of v) fract_eq_zero : Int.fract v = 0 this : v = β†‘βŒŠvβŒ‹ ⊒ v = compExactValue (continuantsAux (of v) Nat.zero) (continuantsAux (of v) (Nat.zero + 1)) (IntFractPair.of v).fr [PROOFSTEP] field_simp [nextContinuants, nextNumerator, nextDenominator, compExactValue] [GOAL] K : Type u_1 inst✝¹ : LinearOrderedField K v : K n : β„• inst✝ : FloorRing K g : GeneralizedContinuedFraction K := of v stream_zero_eq : IntFractPair.stream v Nat.zero = some (IntFractPair.of v) fract_eq_zero : Int.fract v = 0 this : v = β†‘βŒŠvβŒ‹ ⊒ v = if (IntFractPair.of v).fr = 0 then β†‘βŒŠvβŒ‹ else β†‘βŒŠvβŒ‹ + (IntFractPair.of v).fr [PROOFSTEP] have : (IntFractPair.of v).fr = Int.fract v := rfl [GOAL] K : Type u_1 inst✝¹ : LinearOrderedField K v : K n : β„• inst✝ : FloorRing K g : GeneralizedContinuedFraction K := of v stream_zero_eq : IntFractPair.stream v Nat.zero = some (IntFractPair.of v) fract_eq_zero : Int.fract v = 0 this✝ : v = β†‘βŒŠvβŒ‹ this : (IntFractPair.of v).fr = Int.fract v ⊒ v = if (IntFractPair.of v).fr = 0 then β†‘βŒŠvβŒ‹ else β†‘βŒŠvβŒ‹ + (IntFractPair.of v).fr [PROOFSTEP] rwa [this, if_pos fract_eq_zero] [GOAL] case zero.refl.inl K : Type u_1 inst✝¹ : LinearOrderedField K v : K n : β„• inst✝ : FloorRing K g : GeneralizedContinuedFraction K := of v stream_zero_eq : IntFractPair.stream v Nat.zero = some (IntFractPair.of v) fract_eq_zero : Int.fract v = 0 ⊒ v = β†‘βŒŠvβŒ‹ [PROOFSTEP] calc v = Int.fract v + ⌊vβŒ‹ := by rw [Int.fract_add_floor] _ = ⌊vβŒ‹ := by simp [fract_eq_zero] -- Int.fract v β‰  0; the claim then easily follows by unfolding a single computation step [GOAL] K : Type u_1 inst✝¹ : LinearOrderedField K v : K n : β„• inst✝ : FloorRing K g : GeneralizedContinuedFraction K := of v stream_zero_eq : IntFractPair.stream v Nat.zero = some (IntFractPair.of v) fract_eq_zero : Int.fract v = 0 ⊒ v = Int.fract v + β†‘βŒŠvβŒ‹ [PROOFSTEP] rw [Int.fract_add_floor] [GOAL] K : Type u_1 inst✝¹ : LinearOrderedField K v : K n : β„• inst✝ : FloorRing K g : GeneralizedContinuedFraction K := of v stream_zero_eq : IntFractPair.stream v Nat.zero = some (IntFractPair.of v) fract_eq_zero : Int.fract v = 0 ⊒ Int.fract v + β†‘βŒŠvβŒ‹ = β†‘βŒŠvβŒ‹ [PROOFSTEP] simp [fract_eq_zero] -- Int.fract v β‰  0; the claim then easily follows by unfolding a single computation step [GOAL] case zero.refl.inr K : Type u_1 inst✝¹ : LinearOrderedField K v : K n : β„• inst✝ : FloorRing K g : GeneralizedContinuedFraction K := of v stream_zero_eq : IntFractPair.stream v Nat.zero = some (IntFractPair.of v) fract_ne_zero : Β¬Int.fract v = 0 ⊒ v = compExactValue (continuantsAux (of v) Nat.zero) (continuantsAux (of v) (Nat.zero + 1)) (IntFractPair.of v).fr [PROOFSTEP] field_simp [continuantsAux, nextContinuants, nextNumerator, nextDenominator, of_h_eq_floor, compExactValue] -- Porting note: this and the if_neg rewrite are needed [GOAL] case zero.refl.inr K : Type u_1 inst✝¹ : LinearOrderedField K v : K n : β„• inst✝ : FloorRing K g : GeneralizedContinuedFraction K := of v stream_zero_eq : IntFractPair.stream v Nat.zero = some (IntFractPair.of v) fract_ne_zero : Β¬Int.fract v = 0 ⊒ v = if (IntFractPair.of v).fr = 0 then β†‘βŒŠvβŒ‹ else β†‘βŒŠvβŒ‹ + (IntFractPair.of v).fr [PROOFSTEP] have : (IntFractPair.of v).fr = Int.fract v := rfl [GOAL] case zero.refl.inr K : Type u_1 inst✝¹ : LinearOrderedField K v : K n : β„• inst✝ : FloorRing K g : GeneralizedContinuedFraction K := of v stream_zero_eq : IntFractPair.stream v Nat.zero = some (IntFractPair.of v) fract_ne_zero : Β¬Int.fract v = 0 this : (IntFractPair.of v).fr = Int.fract v ⊒ v = if (IntFractPair.of v).fr = 0 then β†‘βŒŠvβŒ‹ else β†‘βŒŠvβŒ‹ + (IntFractPair.of v).fr [PROOFSTEP] rw [this, if_neg fract_ne_zero, Int.floor_add_fract] [GOAL] case succ K : Type u_1 inst✝¹ : LinearOrderedField K v : K n✝ : β„• inst✝ : FloorRing K g : GeneralizedContinuedFraction K := of v n : β„• IH : βˆ€ {ifp_n : IntFractPair K}, IntFractPair.stream v n = some ifp_n β†’ v = compExactValue (continuantsAux (of v) n) (continuantsAux (of v) (n + 1)) ifp_n.fr ⊒ βˆ€ {ifp_n : IntFractPair K}, IntFractPair.stream v (Nat.succ n) = some ifp_n β†’ v = compExactValue (continuantsAux (of v) (Nat.succ n)) (continuantsAux (of v) (Nat.succ n + 1)) ifp_n.fr [PROOFSTEP] intro ifp_succ_n succ_nth_stream_eq [GOAL] case succ K : Type u_1 inst✝¹ : LinearOrderedField K v : K n✝ : β„• inst✝ : FloorRing K g : GeneralizedContinuedFraction K := of v n : β„• IH : βˆ€ {ifp_n : IntFractPair K}, IntFractPair.stream v n = some ifp_n β†’ v = compExactValue (continuantsAux (of v) n) (continuantsAux (of v) (n + 1)) ifp_n.fr ifp_succ_n : IntFractPair K succ_nth_stream_eq : IntFractPair.stream v (Nat.succ n) = some ifp_succ_n ⊒ v = compExactValue (continuantsAux (of v) (Nat.succ n)) (continuantsAux (of v) (Nat.succ n + 1)) ifp_succ_n.fr [PROOFSTEP] obtain ⟨ifp_n, nth_stream_eq, nth_fract_ne_zero, -⟩ : βˆƒ ifp_n, IntFractPair.stream v n = some ifp_n ∧ ifp_n.fr β‰  0 ∧ IntFractPair.of ifp_n.fr⁻¹ = ifp_succ_n [GOAL] K : Type u_1 inst✝¹ : LinearOrderedField K v : K n✝ : β„• inst✝ : FloorRing K g : GeneralizedContinuedFraction K := of v n : β„• IH : βˆ€ {ifp_n : IntFractPair K}, IntFractPair.stream v n = some ifp_n β†’ v = compExactValue (continuantsAux (of v) n) (continuantsAux (of v) (n + 1)) ifp_n.fr ifp_succ_n : IntFractPair K succ_nth_stream_eq : IntFractPair.stream v (Nat.succ n) = some ifp_succ_n ⊒ βˆƒ ifp_n, IntFractPair.stream v n = some ifp_n ∧ ifp_n.fr β‰  0 ∧ IntFractPair.of ifp_n.fr⁻¹ = ifp_succ_n case succ.intro.intro.intro K : Type u_1 inst✝¹ : LinearOrderedField K v : K n✝ : β„• inst✝ : FloorRing K g : GeneralizedContinuedFraction K := of v n : β„• IH : βˆ€ {ifp_n : IntFractPair K}, IntFractPair.stream v n = some ifp_n β†’ v = compExactValue (continuantsAux (of v) n) (continuantsAux (of v) (n + 1)) ifp_n.fr ifp_succ_n : IntFractPair K succ_nth_stream_eq : IntFractPair.stream v (Nat.succ n) = some ifp_succ_n ifp_n : IntFractPair K nth_stream_eq : IntFractPair.stream v n = some ifp_n nth_fract_ne_zero : ifp_n.fr β‰  0 ⊒ v = compExactValue (continuantsAux (of v) (Nat.succ n)) (continuantsAux (of v) (Nat.succ n + 1)) ifp_succ_n.fr [PROOFSTEP] exact IntFractPair.succ_nth_stream_eq_some_iff.1 succ_nth_stream_eq [GOAL] case succ.intro.intro.intro K : Type u_1 inst✝¹ : LinearOrderedField K v : K n✝ : β„• inst✝ : FloorRing K g : GeneralizedContinuedFraction K := of v n : β„• IH : βˆ€ {ifp_n : IntFractPair K}, IntFractPair.stream v n = some ifp_n β†’ v = compExactValue (continuantsAux (of v) n) (continuantsAux (of v) (n + 1)) ifp_n.fr ifp_succ_n : IntFractPair K succ_nth_stream_eq : IntFractPair.stream v (Nat.succ n) = some ifp_succ_n ifp_n : IntFractPair K nth_stream_eq : IntFractPair.stream v n = some ifp_n nth_fract_ne_zero : ifp_n.fr β‰  0 ⊒ v = compExactValue (continuantsAux (of v) (Nat.succ n)) (continuantsAux (of v) (Nat.succ n + 1)) ifp_succ_n.fr [PROOFSTEP] let conts := g.continuantsAux (n + 2) [GOAL] case succ.intro.intro.intro K : Type u_1 inst✝¹ : LinearOrderedField K v : K n✝ : β„• inst✝ : FloorRing K g : GeneralizedContinuedFraction K := of v n : β„• IH : βˆ€ {ifp_n : IntFractPair K}, IntFractPair.stream v n = some ifp_n β†’ v = compExactValue (continuantsAux (of v) n) (continuantsAux (of v) (n + 1)) ifp_n.fr ifp_succ_n : IntFractPair K succ_nth_stream_eq : IntFractPair.stream v (Nat.succ n) = some ifp_succ_n ifp_n : IntFractPair K nth_stream_eq : IntFractPair.stream v n = some ifp_n nth_fract_ne_zero : ifp_n.fr β‰  0 conts : Pair K := continuantsAux g (n + 2) ⊒ v = compExactValue (continuantsAux (of v) (Nat.succ n)) (continuantsAux (of v) (Nat.succ n + 1)) ifp_succ_n.fr [PROOFSTEP] set pconts := g.continuantsAux (n + 1) with pconts_eq [GOAL] case succ.intro.intro.intro K : Type u_1 inst✝¹ : LinearOrderedField K v : K n✝ : β„• inst✝ : FloorRing K g : GeneralizedContinuedFraction K := of v n : β„• ifp_succ_n : IntFractPair K succ_nth_stream_eq : IntFractPair.stream v (Nat.succ n) = some ifp_succ_n ifp_n : IntFractPair K nth_stream_eq : IntFractPair.stream v n = some ifp_n nth_fract_ne_zero : ifp_n.fr β‰  0 conts : Pair K := continuantsAux g (n + 2) pconts : Pair K := continuantsAux g (n + 1) IH : βˆ€ {ifp_n : IntFractPair K}, IntFractPair.stream v n = some ifp_n β†’ v = compExactValue (continuantsAux (of v) n) pconts ifp_n.fr pconts_eq : pconts = continuantsAux g (n + 1) ⊒ v = compExactValue pconts (continuantsAux (of v) (Nat.succ n + 1)) ifp_succ_n.fr [PROOFSTEP] set ppconts := g.continuantsAux n with ppconts_eq [GOAL] case succ.intro.intro.intro K : Type u_1 inst✝¹ : LinearOrderedField K v : K n✝ : β„• inst✝ : FloorRing K g : GeneralizedContinuedFraction K := of v n : β„• ifp_succ_n : IntFractPair K succ_nth_stream_eq : IntFractPair.stream v (Nat.succ n) = some ifp_succ_n ifp_n : IntFractPair K nth_stream_eq : IntFractPair.stream v n = some ifp_n nth_fract_ne_zero : ifp_n.fr β‰  0 conts : Pair K := continuantsAux g (n + 2) pconts : Pair K := continuantsAux g (n + 1) pconts_eq : pconts = continuantsAux g (n + 1) ppconts : Pair K := continuantsAux g n IH : βˆ€ {ifp_n : IntFractPair K}, IntFractPair.stream v n = some ifp_n β†’ v = compExactValue ppconts pconts ifp_n.fr ppconts_eq : ppconts = continuantsAux g n ⊒ v = compExactValue pconts (continuantsAux (of v) (Nat.succ n + 1)) ifp_succ_n.fr [PROOFSTEP] cases' Decidable.em (ifp_succ_n.fr = 0) with ifp_succ_n_fr_eq_zero ifp_succ_n_fr_ne_zero [GOAL] case succ.intro.intro.intro.inl K : Type u_1 inst✝¹ : LinearOrderedField K v : K n✝ : β„• inst✝ : FloorRing K g : GeneralizedContinuedFraction K := of v n : β„• ifp_succ_n : IntFractPair K succ_nth_stream_eq : IntFractPair.stream v (Nat.succ n) = some ifp_succ_n ifp_n : IntFractPair K nth_stream_eq : IntFractPair.stream v n = some ifp_n nth_fract_ne_zero : ifp_n.fr β‰  0 conts : Pair K := continuantsAux g (n + 2) pconts : Pair K := continuantsAux g (n + 1) pconts_eq : pconts = continuantsAux g (n + 1) ppconts : Pair K := continuantsAux g n IH : βˆ€ {ifp_n : IntFractPair K}, IntFractPair.stream v n = some ifp_n β†’ v = compExactValue ppconts pconts ifp_n.fr ppconts_eq : ppconts = continuantsAux g n ifp_succ_n_fr_eq_zero : ifp_succ_n.fr = 0 ⊒ v = compExactValue pconts (continuantsAux (of v) (Nat.succ n + 1)) ifp_succ_n.fr [PROOFSTEP] suffices v = conts.a / conts.b by simpa [compExactValue, ifp_succ_n_fr_eq_zero] -- use the IH and the fact that ifp_n.fr⁻¹ = ⌊ifp_n.frβ»ΒΉβŒ‹ to prove this case [GOAL] K : Type u_1 inst✝¹ : LinearOrderedField K v : K n✝ : β„• inst✝ : FloorRing K g : GeneralizedContinuedFraction K := of v n : β„• ifp_succ_n : IntFractPair K succ_nth_stream_eq : IntFractPair.stream v (Nat.succ n) = some ifp_succ_n ifp_n : IntFractPair K nth_stream_eq : IntFractPair.stream v n = some ifp_n nth_fract_ne_zero : ifp_n.fr β‰  0 conts : Pair K := continuantsAux g (n + 2) pconts : Pair K := continuantsAux g (n + 1) pconts_eq : pconts = continuantsAux g (n + 1) ppconts : Pair K := continuantsAux g n IH : βˆ€ {ifp_n : IntFractPair K}, IntFractPair.stream v n = some ifp_n β†’ v = compExactValue ppconts pconts ifp_n.fr ppconts_eq : ppconts = continuantsAux g n ifp_succ_n_fr_eq_zero : ifp_succ_n.fr = 0 this : v = conts.a / conts.b ⊒ v = compExactValue pconts (continuantsAux (of v) (Nat.succ n + 1)) ifp_succ_n.fr [PROOFSTEP] simpa [compExactValue, ifp_succ_n_fr_eq_zero] -- use the IH and the fact that ifp_n.fr⁻¹ = ⌊ifp_n.frβ»ΒΉβŒ‹ to prove this case [GOAL] case succ.intro.intro.intro.inl K : Type u_1 inst✝¹ : LinearOrderedField K v : K n✝ : β„• inst✝ : FloorRing K g : GeneralizedContinuedFraction K := of v n : β„• ifp_succ_n : IntFractPair K succ_nth_stream_eq : IntFractPair.stream v (Nat.succ n) = some ifp_succ_n ifp_n : IntFractPair K nth_stream_eq : IntFractPair.stream v n = some ifp_n nth_fract_ne_zero : ifp_n.fr β‰  0 conts : Pair K := continuantsAux g (n + 2) pconts : Pair K := continuantsAux g (n + 1) pconts_eq : pconts = continuantsAux g (n + 1) ppconts : Pair K := continuantsAux g n IH : βˆ€ {ifp_n : IntFractPair K}, IntFractPair.stream v n = some ifp_n β†’ v = compExactValue ppconts pconts ifp_n.fr ppconts_eq : ppconts = continuantsAux g n ifp_succ_n_fr_eq_zero : ifp_succ_n.fr = 0 ⊒ v = conts.a / conts.b [PROOFSTEP] obtain ⟨ifp_n', nth_stream_eq', ifp_n_fract_inv_eq_floor⟩ : βˆƒ ifp_n, IntFractPair.stream v n = some ifp_n ∧ ifp_n.fr⁻¹ = ⌊ifp_n.frβ»ΒΉβŒ‹ [GOAL] K : Type u_1 inst✝¹ : LinearOrderedField K v : K n✝ : β„• inst✝ : FloorRing K g : GeneralizedContinuedFraction K := of v n : β„• ifp_succ_n : IntFractPair K succ_nth_stream_eq : IntFractPair.stream v (Nat.succ n) = some ifp_succ_n ifp_n : IntFractPair K nth_stream_eq : IntFractPair.stream v n = some ifp_n nth_fract_ne_zero : ifp_n.fr β‰  0 conts : Pair K := continuantsAux g (n + 2) pconts : Pair K := continuantsAux g (n + 1) pconts_eq : pconts = continuantsAux g (n + 1) ppconts : Pair K := continuantsAux g n IH : βˆ€ {ifp_n : IntFractPair K}, IntFractPair.stream v n = some ifp_n β†’ v = compExactValue ppconts pconts ifp_n.fr ppconts_eq : ppconts = continuantsAux g n ifp_succ_n_fr_eq_zero : ifp_succ_n.fr = 0 ⊒ βˆƒ ifp_n, IntFractPair.stream v n = some ifp_n ∧ ifp_n.fr⁻¹ = β†‘βŒŠifp_n.frβ»ΒΉβŒ‹ case succ.intro.intro.intro.inl.intro.intro K : Type u_1 inst✝¹ : LinearOrderedField K v : K n✝ : β„• inst✝ : FloorRing K g : GeneralizedContinuedFraction K := of v n : β„• ifp_succ_n : IntFractPair K succ_nth_stream_eq : IntFractPair.stream v (Nat.succ n) = some ifp_succ_n ifp_n : IntFractPair K nth_stream_eq : IntFractPair.stream v n = some ifp_n nth_fract_ne_zero : ifp_n.fr β‰  0 conts : Pair K := continuantsAux g (n + 2) pconts : Pair K := continuantsAux g (n + 1) pconts_eq : pconts = continuantsAux g (n + 1) ppconts : Pair K := continuantsAux g n IH : βˆ€ {ifp_n : IntFractPair K}, IntFractPair.stream v n = some ifp_n β†’ v = compExactValue ppconts pconts ifp_n.fr ppconts_eq : ppconts = continuantsAux g n ifp_succ_n_fr_eq_zero : ifp_succ_n.fr = 0 ifp_n' : IntFractPair K nth_stream_eq' : IntFractPair.stream v n = some ifp_n' ifp_n_fract_inv_eq_floor : ifp_n'.fr⁻¹ = β†‘βŒŠifp_n'.frβ»ΒΉβŒ‹ ⊒ v = conts.a / conts.b [PROOFSTEP] exact IntFractPair.exists_succ_nth_stream_of_fr_zero succ_nth_stream_eq ifp_succ_n_fr_eq_zero [GOAL] case succ.intro.intro.intro.inl.intro.intro K : Type u_1 inst✝¹ : LinearOrderedField K v : K n✝ : β„• inst✝ : FloorRing K g : GeneralizedContinuedFraction K := of v n : β„• ifp_succ_n : IntFractPair K succ_nth_stream_eq : IntFractPair.stream v (Nat.succ n) = some ifp_succ_n ifp_n : IntFractPair K nth_stream_eq : IntFractPair.stream v n = some ifp_n nth_fract_ne_zero : ifp_n.fr β‰  0 conts : Pair K := continuantsAux g (n + 2) pconts : Pair K := continuantsAux g (n + 1) pconts_eq : pconts = continuantsAux g (n + 1) ppconts : Pair K := continuantsAux g n IH : βˆ€ {ifp_n : IntFractPair K}, IntFractPair.stream v n = some ifp_n β†’ v = compExactValue ppconts pconts ifp_n.fr ppconts_eq : ppconts = continuantsAux g n ifp_succ_n_fr_eq_zero : ifp_succ_n.fr = 0 ifp_n' : IntFractPair K nth_stream_eq' : IntFractPair.stream v n = some ifp_n' ifp_n_fract_inv_eq_floor : ifp_n'.fr⁻¹ = β†‘βŒŠifp_n'.frβ»ΒΉβŒ‹ ⊒ v = conts.a / conts.b [PROOFSTEP] have : ifp_n' = ifp_n := by injection Eq.trans nth_stream_eq'.symm nth_stream_eq [GOAL] K : Type u_1 inst✝¹ : LinearOrderedField K v : K n✝ : β„• inst✝ : FloorRing K g : GeneralizedContinuedFraction K := of v n : β„• ifp_succ_n : IntFractPair K succ_nth_stream_eq : IntFractPair.stream v (Nat.succ n) = some ifp_succ_n ifp_n : IntFractPair K nth_stream_eq : IntFractPair.stream v n = some ifp_n nth_fract_ne_zero : ifp_n.fr β‰  0 conts : Pair K := continuantsAux g (n + 2) pconts : Pair K := continuantsAux g (n + 1) pconts_eq : pconts = continuantsAux g (n + 1) ppconts : Pair K := continuantsAux g n IH : βˆ€ {ifp_n : IntFractPair K}, IntFractPair.stream v n = some ifp_n β†’ v = compExactValue ppconts pconts ifp_n.fr ppconts_eq : ppconts = continuantsAux g n ifp_succ_n_fr_eq_zero : ifp_succ_n.fr = 0 ifp_n' : IntFractPair K nth_stream_eq' : IntFractPair.stream v n = some ifp_n' ifp_n_fract_inv_eq_floor : ifp_n'.fr⁻¹ = β†‘βŒŠifp_n'.frβ»ΒΉβŒ‹ ⊒ ifp_n' = ifp_n [PROOFSTEP] injection Eq.trans nth_stream_eq'.symm nth_stream_eq [GOAL] case succ.intro.intro.intro.inl.intro.intro K : Type u_1 inst✝¹ : LinearOrderedField K v : K n✝ : β„• inst✝ : FloorRing K g : GeneralizedContinuedFraction K := of v n : β„• ifp_succ_n : IntFractPair K succ_nth_stream_eq : IntFractPair.stream v (Nat.succ n) = some ifp_succ_n ifp_n : IntFractPair K nth_stream_eq : IntFractPair.stream v n = some ifp_n nth_fract_ne_zero : ifp_n.fr β‰  0 conts : Pair K := continuantsAux g (n + 2) pconts : Pair K := continuantsAux g (n + 1) pconts_eq : pconts = continuantsAux g (n + 1) ppconts : Pair K := continuantsAux g n IH : βˆ€ {ifp_n : IntFractPair K}, IntFractPair.stream v n = some ifp_n β†’ v = compExactValue ppconts pconts ifp_n.fr ppconts_eq : ppconts = continuantsAux g n ifp_succ_n_fr_eq_zero : ifp_succ_n.fr = 0 ifp_n' : IntFractPair K nth_stream_eq' : IntFractPair.stream v n = some ifp_n' ifp_n_fract_inv_eq_floor : ifp_n'.fr⁻¹ = β†‘βŒŠifp_n'.frβ»ΒΉβŒ‹ this : ifp_n' = ifp_n ⊒ v = conts.a / conts.b [PROOFSTEP] cases this [GOAL] case succ.intro.intro.intro.inl.intro.intro.refl K : Type u_1 inst✝¹ : LinearOrderedField K v : K n✝ : β„• inst✝ : FloorRing K g : GeneralizedContinuedFraction K := of v n : β„• ifp_succ_n : IntFractPair K succ_nth_stream_eq : IntFractPair.stream v (Nat.succ n) = some ifp_succ_n ifp_n : IntFractPair K nth_stream_eq : IntFractPair.stream v n = some ifp_n nth_fract_ne_zero : ifp_n.fr β‰  0 conts : Pair K := continuantsAux g (n + 2) pconts : Pair K := continuantsAux g (n + 1) pconts_eq : pconts = continuantsAux g (n + 1) ppconts : Pair K := continuantsAux g n IH : βˆ€ {ifp_n : IntFractPair K}, IntFractPair.stream v n = some ifp_n β†’ v = compExactValue ppconts pconts ifp_n.fr ppconts_eq : ppconts = continuantsAux g n ifp_succ_n_fr_eq_zero : ifp_succ_n.fr = 0 nth_stream_eq' : IntFractPair.stream v n = some ifp_n ifp_n_fract_inv_eq_floor : ifp_n.fr⁻¹ = β†‘βŒŠifp_n.frβ»ΒΉβŒ‹ ⊒ v = conts.a / conts.b [PROOFSTEP] have s_nth_eq : g.s.get? n = some ⟨1, ⌊ifp_n.frβ»ΒΉβŒ‹βŸ© := get?_of_eq_some_of_get?_intFractPair_stream_fr_ne_zero nth_stream_eq nth_fract_ne_zero [GOAL] case succ.intro.intro.intro.inl.intro.intro.refl K : Type u_1 inst✝¹ : LinearOrderedField K v : K n✝ : β„• inst✝ : FloorRing K g : GeneralizedContinuedFraction K := of v n : β„• ifp_succ_n : IntFractPair K succ_nth_stream_eq : IntFractPair.stream v (Nat.succ n) = some ifp_succ_n ifp_n : IntFractPair K nth_stream_eq : IntFractPair.stream v n = some ifp_n nth_fract_ne_zero : ifp_n.fr β‰  0 conts : Pair K := continuantsAux g (n + 2) pconts : Pair K := continuantsAux g (n + 1) pconts_eq : pconts = continuantsAux g (n + 1) ppconts : Pair K := continuantsAux g n IH : βˆ€ {ifp_n : IntFractPair K}, IntFractPair.stream v n = some ifp_n β†’ v = compExactValue ppconts pconts ifp_n.fr ppconts_eq : ppconts = continuantsAux g n ifp_succ_n_fr_eq_zero : ifp_succ_n.fr = 0 nth_stream_eq' : IntFractPair.stream v n = some ifp_n ifp_n_fract_inv_eq_floor : ifp_n.fr⁻¹ = β†‘βŒŠifp_n.frβ»ΒΉβŒ‹ s_nth_eq : Stream'.Seq.get? g.s n = some { a := 1, b := β†‘βŒŠifp_n.frβ»ΒΉβŒ‹ } ⊒ v = conts.a / conts.b [PROOFSTEP] rw [← ifp_n_fract_inv_eq_floor] at s_nth_eq [GOAL] case succ.intro.intro.intro.inl.intro.intro.refl K : Type u_1 inst✝¹ : LinearOrderedField K v : K n✝ : β„• inst✝ : FloorRing K g : GeneralizedContinuedFraction K := of v n : β„• ifp_succ_n : IntFractPair K succ_nth_stream_eq : IntFractPair.stream v (Nat.succ n) = some ifp_succ_n ifp_n : IntFractPair K nth_stream_eq : IntFractPair.stream v n = some ifp_n nth_fract_ne_zero : ifp_n.fr β‰  0 conts : Pair K := continuantsAux g (n + 2) pconts : Pair K := continuantsAux g (n + 1) pconts_eq : pconts = continuantsAux g (n + 1) ppconts : Pair K := continuantsAux g n IH : βˆ€ {ifp_n : IntFractPair K}, IntFractPair.stream v n = some ifp_n β†’ v = compExactValue ppconts pconts ifp_n.fr ppconts_eq : ppconts = continuantsAux g n ifp_succ_n_fr_eq_zero : ifp_succ_n.fr = 0 nth_stream_eq' : IntFractPair.stream v n = some ifp_n ifp_n_fract_inv_eq_floor : ifp_n.fr⁻¹ = β†‘βŒŠifp_n.frβ»ΒΉβŒ‹ s_nth_eq : Stream'.Seq.get? g.s n = some { a := 1, b := ifp_n.fr⁻¹ } ⊒ v = conts.a / conts.b [PROOFSTEP] suffices v = compExactValue ppconts pconts ifp_n.fr by simpa [continuantsAux, s_nth_eq, compExactValue, nth_fract_ne_zero] using this [GOAL] K : Type u_1 inst✝¹ : LinearOrderedField K v : K n✝ : β„• inst✝ : FloorRing K g : GeneralizedContinuedFraction K := of v n : β„• ifp_succ_n : IntFractPair K succ_nth_stream_eq : IntFractPair.stream v (Nat.succ n) = some ifp_succ_n ifp_n : IntFractPair K nth_stream_eq : IntFractPair.stream v n = some ifp_n nth_fract_ne_zero : ifp_n.fr β‰  0 conts : Pair K := continuantsAux g (n + 2) pconts : Pair K := continuantsAux g (n + 1) pconts_eq : pconts = continuantsAux g (n + 1) ppconts : Pair K := continuantsAux g n IH : βˆ€ {ifp_n : IntFractPair K}, IntFractPair.stream v n = some ifp_n β†’ v = compExactValue ppconts pconts ifp_n.fr ppconts_eq : ppconts = continuantsAux g n ifp_succ_n_fr_eq_zero : ifp_succ_n.fr = 0 nth_stream_eq' : IntFractPair.stream v n = some ifp_n ifp_n_fract_inv_eq_floor : ifp_n.fr⁻¹ = β†‘βŒŠifp_n.frβ»ΒΉβŒ‹ s_nth_eq : Stream'.Seq.get? g.s n = some { a := 1, b := ifp_n.fr⁻¹ } this : v = compExactValue ppconts pconts ifp_n.fr ⊒ v = conts.a / conts.b [PROOFSTEP] simpa [continuantsAux, s_nth_eq, compExactValue, nth_fract_ne_zero] using this [GOAL] case succ.intro.intro.intro.inl.intro.intro.refl K : Type u_1 inst✝¹ : LinearOrderedField K v : K n✝ : β„• inst✝ : FloorRing K g : GeneralizedContinuedFraction K := of v n : β„• ifp_succ_n : IntFractPair K succ_nth_stream_eq : IntFractPair.stream v (Nat.succ n) = some ifp_succ_n ifp_n : IntFractPair K nth_stream_eq : IntFractPair.stream v n = some ifp_n nth_fract_ne_zero : ifp_n.fr β‰  0 conts : Pair K := continuantsAux g (n + 2) pconts : Pair K := continuantsAux g (n + 1) pconts_eq : pconts = continuantsAux g (n + 1) ppconts : Pair K := continuantsAux g n IH : βˆ€ {ifp_n : IntFractPair K}, IntFractPair.stream v n = some ifp_n β†’ v = compExactValue ppconts pconts ifp_n.fr ppconts_eq : ppconts = continuantsAux g n ifp_succ_n_fr_eq_zero : ifp_succ_n.fr = 0 nth_stream_eq' : IntFractPair.stream v n = some ifp_n ifp_n_fract_inv_eq_floor : ifp_n.fr⁻¹ = β†‘βŒŠifp_n.frβ»ΒΉβŒ‹ s_nth_eq : Stream'.Seq.get? g.s n = some { a := 1, b := ifp_n.fr⁻¹ } ⊒ v = compExactValue ppconts pconts ifp_n.fr [PROOFSTEP] exact IH nth_stream_eq [GOAL] case succ.intro.intro.intro.inr K : Type u_1 inst✝¹ : LinearOrderedField K v : K n✝ : β„• inst✝ : FloorRing K g : GeneralizedContinuedFraction K := of v n : β„• ifp_succ_n : IntFractPair K succ_nth_stream_eq : IntFractPair.stream v (Nat.succ n) = some ifp_succ_n ifp_n : IntFractPair K nth_stream_eq : IntFractPair.stream v n = some ifp_n nth_fract_ne_zero : ifp_n.fr β‰  0 conts : Pair K := continuantsAux g (n + 2) pconts : Pair K := continuantsAux g (n + 1) pconts_eq : pconts = continuantsAux g (n + 1) ppconts : Pair K := continuantsAux g n IH : βˆ€ {ifp_n : IntFractPair K}, IntFractPair.stream v n = some ifp_n β†’ v = compExactValue ppconts pconts ifp_n.fr ppconts_eq : ppconts = continuantsAux g n ifp_succ_n_fr_ne_zero : Β¬ifp_succ_n.fr = 0 ⊒ v = compExactValue pconts (continuantsAux (of v) (Nat.succ n + 1)) ifp_succ_n.fr [PROOFSTEP] suffices compExactValue ppconts pconts ifp_n.fr = compExactValue pconts conts ifp_succ_n.fr by have : v = compExactValue ppconts pconts ifp_n.fr := IH nth_stream_eq conv_lhs => rw [this] assumption -- get the correspondence between ifp_n and ifp_succ_n [GOAL] K : Type u_1 inst✝¹ : LinearOrderedField K v : K n✝ : β„• inst✝ : FloorRing K g : GeneralizedContinuedFraction K := of v n : β„• ifp_succ_n : IntFractPair K succ_nth_stream_eq : IntFractPair.stream v (Nat.succ n) = some ifp_succ_n ifp_n : IntFractPair K nth_stream_eq : IntFractPair.stream v n = some ifp_n nth_fract_ne_zero : ifp_n.fr β‰  0 conts : Pair K := continuantsAux g (n + 2) pconts : Pair K := continuantsAux g (n + 1) pconts_eq : pconts = continuantsAux g (n + 1) ppconts : Pair K := continuantsAux g n IH : βˆ€ {ifp_n : IntFractPair K}, IntFractPair.stream v n = some ifp_n β†’ v = compExactValue ppconts pconts ifp_n.fr ppconts_eq : ppconts = continuantsAux g n ifp_succ_n_fr_ne_zero : Β¬ifp_succ_n.fr = 0 this : compExactValue ppconts pconts ifp_n.fr = compExactValue pconts conts ifp_succ_n.fr ⊒ v = compExactValue pconts (continuantsAux (of v) (Nat.succ n + 1)) ifp_succ_n.fr [PROOFSTEP] have : v = compExactValue ppconts pconts ifp_n.fr := IH nth_stream_eq [GOAL] K : Type u_1 inst✝¹ : LinearOrderedField K v : K n✝ : β„• inst✝ : FloorRing K g : GeneralizedContinuedFraction K := of v n : β„• ifp_succ_n : IntFractPair K succ_nth_stream_eq : IntFractPair.stream v (Nat.succ n) = some ifp_succ_n ifp_n : IntFractPair K nth_stream_eq : IntFractPair.stream v n = some ifp_n nth_fract_ne_zero : ifp_n.fr β‰  0 conts : Pair K := continuantsAux g (n + 2) pconts : Pair K := continuantsAux g (n + 1) pconts_eq : pconts = continuantsAux g (n + 1) ppconts : Pair K := continuantsAux g n IH : βˆ€ {ifp_n : IntFractPair K}, IntFractPair.stream v n = some ifp_n β†’ v = compExactValue ppconts pconts ifp_n.fr ppconts_eq : ppconts = continuantsAux g n ifp_succ_n_fr_ne_zero : Β¬ifp_succ_n.fr = 0 this✝ : compExactValue ppconts pconts ifp_n.fr = compExactValue pconts conts ifp_succ_n.fr this : v = compExactValue ppconts pconts ifp_n.fr ⊒ v = compExactValue pconts (continuantsAux (of v) (Nat.succ n + 1)) ifp_succ_n.fr [PROOFSTEP] conv_lhs => rw [this] [GOAL] K : Type u_1 inst✝¹ : LinearOrderedField K v : K n✝ : β„• inst✝ : FloorRing K g : GeneralizedContinuedFraction K := of v n : β„• ifp_succ_n : IntFractPair K succ_nth_stream_eq : IntFractPair.stream v (Nat.succ n) = some ifp_succ_n ifp_n : IntFractPair K nth_stream_eq : IntFractPair.stream v n = some ifp_n nth_fract_ne_zero : ifp_n.fr β‰  0 conts : Pair K := continuantsAux g (n + 2) pconts : Pair K := continuantsAux g (n + 1) pconts_eq : pconts = continuantsAux g (n + 1) ppconts : Pair K := continuantsAux g n IH : βˆ€ {ifp_n : IntFractPair K}, IntFractPair.stream v n = some ifp_n β†’ v = compExactValue ppconts pconts ifp_n.fr ppconts_eq : ppconts = continuantsAux g n ifp_succ_n_fr_ne_zero : Β¬ifp_succ_n.fr = 0 this✝ : compExactValue ppconts pconts ifp_n.fr = compExactValue pconts conts ifp_succ_n.fr this : v = compExactValue ppconts pconts ifp_n.fr | v [PROOFSTEP] rw [this] [GOAL] K : Type u_1 inst✝¹ : LinearOrderedField K v : K n✝ : β„• inst✝ : FloorRing K g : GeneralizedContinuedFraction K := of v n : β„• ifp_succ_n : IntFractPair K succ_nth_stream_eq : IntFractPair.stream v (Nat.succ n) = some ifp_succ_n ifp_n : IntFractPair K nth_stream_eq : IntFractPair.stream v n = some ifp_n nth_fract_ne_zero : ifp_n.fr β‰  0 conts : Pair K := continuantsAux g (n + 2) pconts : Pair K := continuantsAux g (n + 1) pconts_eq : pconts = continuantsAux g (n + 1) ppconts : Pair K := continuantsAux g n IH : βˆ€ {ifp_n : IntFractPair K}, IntFractPair.stream v n = some ifp_n β†’ v = compExactValue ppconts pconts ifp_n.fr ppconts_eq : ppconts = continuantsAux g n ifp_succ_n_fr_ne_zero : Β¬ifp_succ_n.fr = 0 this✝ : compExactValue ppconts pconts ifp_n.fr = compExactValue pconts conts ifp_succ_n.fr this : v = compExactValue ppconts pconts ifp_n.fr | v [PROOFSTEP] rw [this] [GOAL] K : Type u_1 inst✝¹ : LinearOrderedField K v : K n✝ : β„• inst✝ : FloorRing K g : GeneralizedContinuedFraction K := of v n : β„• ifp_succ_n : IntFractPair K succ_nth_stream_eq : IntFractPair.stream v (Nat.succ n) = some ifp_succ_n ifp_n : IntFractPair K nth_stream_eq : IntFractPair.stream v n = some ifp_n nth_fract_ne_zero : ifp_n.fr β‰  0 conts : Pair K := continuantsAux g (n + 2) pconts : Pair K := continuantsAux g (n + 1) pconts_eq : pconts = continuantsAux g (n + 1) ppconts : Pair K := continuantsAux g n IH : βˆ€ {ifp_n : IntFractPair K}, IntFractPair.stream v n = some ifp_n β†’ v = compExactValue ppconts pconts ifp_n.fr ppconts_eq : ppconts = continuantsAux g n ifp_succ_n_fr_ne_zero : Β¬ifp_succ_n.fr = 0 this✝ : compExactValue ppconts pconts ifp_n.fr = compExactValue pconts conts ifp_succ_n.fr this : v = compExactValue ppconts pconts ifp_n.fr | v [PROOFSTEP] rw [this] [GOAL] K : Type u_1 inst✝¹ : LinearOrderedField K v : K n✝ : β„• inst✝ : FloorRing K g : GeneralizedContinuedFraction K := of v n : β„• ifp_succ_n : IntFractPair K succ_nth_stream_eq : IntFractPair.stream v (Nat.succ n) = some ifp_succ_n ifp_n : IntFractPair K nth_stream_eq : IntFractPair.stream v n = some ifp_n nth_fract_ne_zero : ifp_n.fr β‰  0 conts : Pair K := continuantsAux g (n + 2) pconts : Pair K := continuantsAux g (n + 1) pconts_eq : pconts = continuantsAux g (n + 1) ppconts : Pair K := continuantsAux g n IH : βˆ€ {ifp_n : IntFractPair K}, IntFractPair.stream v n = some ifp_n β†’ v = compExactValue ppconts pconts ifp_n.fr ppconts_eq : ppconts = continuantsAux g n ifp_succ_n_fr_ne_zero : Β¬ifp_succ_n.fr = 0 this✝ : compExactValue ppconts pconts ifp_n.fr = compExactValue pconts conts ifp_succ_n.fr this : v = compExactValue ppconts pconts ifp_n.fr ⊒ compExactValue ppconts pconts ifp_n.fr = compExactValue pconts (continuantsAux (of v) (Nat.succ n + 1)) ifp_succ_n.fr [PROOFSTEP] assumption -- get the correspondence between ifp_n and ifp_succ_n [GOAL] case succ.intro.intro.intro.inr K : Type u_1 inst✝¹ : LinearOrderedField K v : K n✝ : β„• inst✝ : FloorRing K g : GeneralizedContinuedFraction K := of v n : β„• ifp_succ_n : IntFractPair K succ_nth_stream_eq : IntFractPair.stream v (Nat.succ n) = some ifp_succ_n ifp_n : IntFractPair K nth_stream_eq : IntFractPair.stream v n = some ifp_n nth_fract_ne_zero : ifp_n.fr β‰  0 conts : Pair K := continuantsAux g (n + 2) pconts : Pair K := continuantsAux g (n + 1) pconts_eq : pconts = continuantsAux g (n + 1) ppconts : Pair K := continuantsAux g n IH : βˆ€ {ifp_n : IntFractPair K}, IntFractPair.stream v n = some ifp_n β†’ v = compExactValue ppconts pconts ifp_n.fr ppconts_eq : ppconts = continuantsAux g n ifp_succ_n_fr_ne_zero : Β¬ifp_succ_n.fr = 0 ⊒ compExactValue ppconts pconts ifp_n.fr = compExactValue pconts conts ifp_succ_n.fr [PROOFSTEP] obtain ⟨ifp_n', nth_stream_eq', ifp_n_fract_ne_zero, ⟨refl⟩⟩ : βˆƒ ifp_n, IntFractPair.stream v n = some ifp_n ∧ ifp_n.fr β‰  0 ∧ IntFractPair.of ifp_n.fr⁻¹ = ifp_succ_n [GOAL] K : Type u_1 inst✝¹ : LinearOrderedField K v : K n✝ : β„• inst✝ : FloorRing K g : GeneralizedContinuedFraction K := of v n : β„• ifp_succ_n : IntFractPair K succ_nth_stream_eq : IntFractPair.stream v (Nat.succ n) = some ifp_succ_n ifp_n : IntFractPair K nth_stream_eq : IntFractPair.stream v n = some ifp_n nth_fract_ne_zero : ifp_n.fr β‰  0 conts : Pair K := continuantsAux g (n + 2) pconts : Pair K := continuantsAux g (n + 1) pconts_eq : pconts = continuantsAux g (n + 1) ppconts : Pair K := continuantsAux g n IH : βˆ€ {ifp_n : IntFractPair K}, IntFractPair.stream v n = some ifp_n β†’ v = compExactValue ppconts pconts ifp_n.fr ppconts_eq : ppconts = continuantsAux g n ifp_succ_n_fr_ne_zero : Β¬ifp_succ_n.fr = 0 ⊒ βˆƒ ifp_n, IntFractPair.stream v n = some ifp_n ∧ ifp_n.fr β‰  0 ∧ IntFractPair.of ifp_n.fr⁻¹ = ifp_succ_n case succ.intro.intro.intro.inr.intro.intro.intro.refl K : Type u_1 inst✝¹ : LinearOrderedField K v : K n✝ : β„• inst✝ : FloorRing K g : GeneralizedContinuedFraction K := of v n : β„• ifp_n : IntFractPair K nth_stream_eq : IntFractPair.stream v n = some ifp_n nth_fract_ne_zero : ifp_n.fr β‰  0 conts : Pair K := continuantsAux g (n + 2) pconts : Pair K := continuantsAux g (n + 1) pconts_eq : pconts = continuantsAux g (n + 1) ppconts : Pair K := continuantsAux g n IH : βˆ€ {ifp_n : IntFractPair K}, IntFractPair.stream v n = some ifp_n β†’ v = compExactValue ppconts pconts ifp_n.fr ppconts_eq : ppconts = continuantsAux g n ifp_n' : IntFractPair K nth_stream_eq' : IntFractPair.stream v n = some ifp_n' ifp_n_fract_ne_zero : ifp_n'.fr β‰  0 succ_nth_stream_eq : IntFractPair.stream v (Nat.succ n) = some (IntFractPair.of ifp_n'.fr⁻¹) ifp_succ_n_fr_ne_zero : Β¬(IntFractPair.of ifp_n'.fr⁻¹).fr = 0 ⊒ compExactValue ppconts pconts ifp_n.fr = compExactValue pconts conts (IntFractPair.of ifp_n'.fr⁻¹).fr [PROOFSTEP] exact IntFractPair.succ_nth_stream_eq_some_iff.1 succ_nth_stream_eq [GOAL] case succ.intro.intro.intro.inr.intro.intro.intro.refl K : Type u_1 inst✝¹ : LinearOrderedField K v : K n✝ : β„• inst✝ : FloorRing K g : GeneralizedContinuedFraction K := of v n : β„• ifp_n : IntFractPair K nth_stream_eq : IntFractPair.stream v n = some ifp_n nth_fract_ne_zero : ifp_n.fr β‰  0 conts : Pair K := continuantsAux g (n + 2) pconts : Pair K := continuantsAux g (n + 1) pconts_eq : pconts = continuantsAux g (n + 1) ppconts : Pair K := continuantsAux g n IH : βˆ€ {ifp_n : IntFractPair K}, IntFractPair.stream v n = some ifp_n β†’ v = compExactValue ppconts pconts ifp_n.fr ppconts_eq : ppconts = continuantsAux g n ifp_n' : IntFractPair K nth_stream_eq' : IntFractPair.stream v n = some ifp_n' ifp_n_fract_ne_zero : ifp_n'.fr β‰  0 succ_nth_stream_eq : IntFractPair.stream v (Nat.succ n) = some (IntFractPair.of ifp_n'.fr⁻¹) ifp_succ_n_fr_ne_zero : Β¬(IntFractPair.of ifp_n'.fr⁻¹).fr = 0 ⊒ compExactValue ppconts pconts ifp_n.fr = compExactValue pconts conts (IntFractPair.of ifp_n'.fr⁻¹).fr [PROOFSTEP] have : ifp_n' = ifp_n := by injection Eq.trans nth_stream_eq'.symm nth_stream_eq [GOAL] K : Type u_1 inst✝¹ : LinearOrderedField K v : K n✝ : β„• inst✝ : FloorRing K g : GeneralizedContinuedFraction K := of v n : β„• ifp_n : IntFractPair K nth_stream_eq : IntFractPair.stream v n = some ifp_n nth_fract_ne_zero : ifp_n.fr β‰  0 conts : Pair K := continuantsAux g (n + 2) pconts : Pair K := continuantsAux g (n + 1) pconts_eq : pconts = continuantsAux g (n + 1) ppconts : Pair K := continuantsAux g n IH : βˆ€ {ifp_n : IntFractPair K}, IntFractPair.stream v n = some ifp_n β†’ v = compExactValue ppconts pconts ifp_n.fr ppconts_eq : ppconts = continuantsAux g n ifp_n' : IntFractPair K nth_stream_eq' : IntFractPair.stream v n = some ifp_n' ifp_n_fract_ne_zero : ifp_n'.fr β‰  0 succ_nth_stream_eq : IntFractPair.stream v (Nat.succ n) = some (IntFractPair.of ifp_n'.fr⁻¹) ifp_succ_n_fr_ne_zero : Β¬(IntFractPair.of ifp_n'.fr⁻¹).fr = 0 ⊒ ifp_n' = ifp_n [PROOFSTEP] injection Eq.trans nth_stream_eq'.symm nth_stream_eq [GOAL] case succ.intro.intro.intro.inr.intro.intro.intro.refl K : Type u_1 inst✝¹ : LinearOrderedField K v : K n✝ : β„• inst✝ : FloorRing K g : GeneralizedContinuedFraction K := of v n : β„• ifp_n : IntFractPair K nth_stream_eq : IntFractPair.stream v n = some ifp_n nth_fract_ne_zero : ifp_n.fr β‰  0 conts : Pair K := continuantsAux g (n + 2) pconts : Pair K := continuantsAux g (n + 1) pconts_eq : pconts = continuantsAux g (n + 1) ppconts : Pair K := continuantsAux g n IH : βˆ€ {ifp_n : IntFractPair K}, IntFractPair.stream v n = some ifp_n β†’ v = compExactValue ppconts pconts ifp_n.fr ppconts_eq : ppconts = continuantsAux g n ifp_n' : IntFractPair K nth_stream_eq' : IntFractPair.stream v n = some ifp_n' ifp_n_fract_ne_zero : ifp_n'.fr β‰  0 succ_nth_stream_eq : IntFractPair.stream v (Nat.succ n) = some (IntFractPair.of ifp_n'.fr⁻¹) ifp_succ_n_fr_ne_zero : Β¬(IntFractPair.of ifp_n'.fr⁻¹).fr = 0 this : ifp_n' = ifp_n ⊒ compExactValue ppconts pconts ifp_n.fr = compExactValue pconts conts (IntFractPair.of ifp_n'.fr⁻¹).fr [PROOFSTEP] cases this [GOAL] case succ.intro.intro.intro.inr.intro.intro.intro.refl.refl K : Type u_1 inst✝¹ : LinearOrderedField K v : K n✝ : β„• inst✝ : FloorRing K g : GeneralizedContinuedFraction K := of v n : β„• ifp_n : IntFractPair K nth_stream_eq : IntFractPair.stream v n = some ifp_n nth_fract_ne_zero : ifp_n.fr β‰  0 conts : Pair K := continuantsAux g (n + 2) pconts : Pair K := continuantsAux g (n + 1) pconts_eq : pconts = continuantsAux g (n + 1) ppconts : Pair K := continuantsAux g n IH : βˆ€ {ifp_n : IntFractPair K}, IntFractPair.stream v n = some ifp_n β†’ v = compExactValue ppconts pconts ifp_n.fr ppconts_eq : ppconts = continuantsAux g n nth_stream_eq' : IntFractPair.stream v n = some ifp_n ifp_n_fract_ne_zero : ifp_n.fr β‰  0 succ_nth_stream_eq : IntFractPair.stream v (Nat.succ n) = some (IntFractPair.of ifp_n.fr⁻¹) ifp_succ_n_fr_ne_zero : Β¬(IntFractPair.of ifp_n.fr⁻¹).fr = 0 ⊒ compExactValue ppconts pconts ifp_n.fr = compExactValue pconts conts (IntFractPair.of ifp_n.fr⁻¹).fr [PROOFSTEP] have s_nth_eq : g.s.get? n = some ⟨1, (⌊ifp_n.frβ»ΒΉβŒ‹ : K)⟩ := get?_of_eq_some_of_get?_intFractPair_stream_fr_ne_zero nth_stream_eq ifp_n_fract_ne_zero [GOAL] case succ.intro.intro.intro.inr.intro.intro.intro.refl.refl K : Type u_1 inst✝¹ : LinearOrderedField K v : K n✝ : β„• inst✝ : FloorRing K g : GeneralizedContinuedFraction K := of v n : β„• ifp_n : IntFractPair K nth_stream_eq : IntFractPair.stream v n = some ifp_n nth_fract_ne_zero : ifp_n.fr β‰  0 conts : Pair K := continuantsAux g (n + 2) pconts : Pair K := continuantsAux g (n + 1) pconts_eq : pconts = continuantsAux g (n + 1) ppconts : Pair K := continuantsAux g n IH : βˆ€ {ifp_n : IntFractPair K}, IntFractPair.stream v n = some ifp_n β†’ v = compExactValue ppconts pconts ifp_n.fr ppconts_eq : ppconts = continuantsAux g n nth_stream_eq' : IntFractPair.stream v n = some ifp_n ifp_n_fract_ne_zero : ifp_n.fr β‰  0 succ_nth_stream_eq : IntFractPair.stream v (Nat.succ n) = some (IntFractPair.of ifp_n.fr⁻¹) ifp_succ_n_fr_ne_zero : Β¬(IntFractPair.of ifp_n.fr⁻¹).fr = 0 s_nth_eq : Stream'.Seq.get? g.s n = some { a := 1, b := β†‘βŒŠifp_n.frβ»ΒΉβŒ‹ } ⊒ compExactValue ppconts pconts ifp_n.fr = compExactValue pconts conts (IntFractPair.of ifp_n.fr⁻¹).fr [PROOFSTEP] let ppA := ppconts.a [GOAL] case succ.intro.intro.intro.inr.intro.intro.intro.refl.refl K : Type u_1 inst✝¹ : LinearOrderedField K v : K n✝ : β„• inst✝ : FloorRing K g : GeneralizedContinuedFraction K := of v n : β„• ifp_n : IntFractPair K nth_stream_eq : IntFractPair.stream v n = some ifp_n nth_fract_ne_zero : ifp_n.fr β‰  0 conts : Pair K := continuantsAux g (n + 2) pconts : Pair K := continuantsAux g (n + 1) pconts_eq : pconts = continuantsAux g (n + 1) ppconts : Pair K := continuantsAux g n IH : βˆ€ {ifp_n : IntFractPair K}, IntFractPair.stream v n = some ifp_n β†’ v = compExactValue ppconts pconts ifp_n.fr ppconts_eq : ppconts = continuantsAux g n nth_stream_eq' : IntFractPair.stream v n = some ifp_n ifp_n_fract_ne_zero : ifp_n.fr β‰  0 succ_nth_stream_eq : IntFractPair.stream v (Nat.succ n) = some (IntFractPair.of ifp_n.fr⁻¹) ifp_succ_n_fr_ne_zero : Β¬(IntFractPair.of ifp_n.fr⁻¹).fr = 0 s_nth_eq : Stream'.Seq.get? g.s n = some { a := 1, b := β†‘βŒŠifp_n.frβ»ΒΉβŒ‹ } ppA : K := ppconts.a ⊒ compExactValue ppconts pconts ifp_n.fr = compExactValue pconts conts (IntFractPair.of ifp_n.fr⁻¹).fr [PROOFSTEP] let ppB := ppconts.b [GOAL] case succ.intro.intro.intro.inr.intro.intro.intro.refl.refl K : Type u_1 inst✝¹ : LinearOrderedField K v : K n✝ : β„• inst✝ : FloorRing K g : GeneralizedContinuedFraction K := of v n : β„• ifp_n : IntFractPair K nth_stream_eq : IntFractPair.stream v n = some ifp_n nth_fract_ne_zero : ifp_n.fr β‰  0 conts : Pair K := continuantsAux g (n + 2) pconts : Pair K := continuantsAux g (n + 1) pconts_eq : pconts = continuantsAux g (n + 1) ppconts : Pair K := continuantsAux g n IH : βˆ€ {ifp_n : IntFractPair K}, IntFractPair.stream v n = some ifp_n β†’ v = compExactValue ppconts pconts ifp_n.fr ppconts_eq : ppconts = continuantsAux g n nth_stream_eq' : IntFractPair.stream v n = some ifp_n ifp_n_fract_ne_zero : ifp_n.fr β‰  0 succ_nth_stream_eq : IntFractPair.stream v (Nat.succ n) = some (IntFractPair.of ifp_n.fr⁻¹) ifp_succ_n_fr_ne_zero : Β¬(IntFractPair.of ifp_n.fr⁻¹).fr = 0 s_nth_eq : Stream'.Seq.get? g.s n = some { a := 1, b := β†‘βŒŠifp_n.frβ»ΒΉβŒ‹ } ppA : K := ppconts.a ppB : K := ppconts.b ⊒ compExactValue ppconts pconts ifp_n.fr = compExactValue pconts conts (IntFractPair.of ifp_n.fr⁻¹).fr [PROOFSTEP] let pA := pconts.a [GOAL] case succ.intro.intro.intro.inr.intro.intro.intro.refl.refl K : Type u_1 inst✝¹ : LinearOrderedField K v : K n✝ : β„• inst✝ : FloorRing K g : GeneralizedContinuedFraction K := of v n : β„• ifp_n : IntFractPair K nth_stream_eq : IntFractPair.stream v n = some ifp_n nth_fract_ne_zero : ifp_n.fr β‰  0 conts : Pair K := continuantsAux g (n + 2) pconts : Pair K := continuantsAux g (n + 1) pconts_eq : pconts = continuantsAux g (n + 1) ppconts : Pair K := continuantsAux g n IH : βˆ€ {ifp_n : IntFractPair K}, IntFractPair.stream v n = some ifp_n β†’ v = compExactValue ppconts pconts ifp_n.fr ppconts_eq : ppconts = continuantsAux g n nth_stream_eq' : IntFractPair.stream v n = some ifp_n ifp_n_fract_ne_zero : ifp_n.fr β‰  0 succ_nth_stream_eq : IntFractPair.stream v (Nat.succ n) = some (IntFractPair.of ifp_n.fr⁻¹) ifp_succ_n_fr_ne_zero : Β¬(IntFractPair.of ifp_n.fr⁻¹).fr = 0 s_nth_eq : Stream'.Seq.get? g.s n = some { a := 1, b := β†‘βŒŠifp_n.frβ»ΒΉβŒ‹ } ppA : K := ppconts.a ppB : K := ppconts.b pA : K := pconts.a ⊒ compExactValue ppconts pconts ifp_n.fr = compExactValue pconts conts (IntFractPair.of ifp_n.fr⁻¹).fr [PROOFSTEP] let pB := pconts.b [GOAL] case succ.intro.intro.intro.inr.intro.intro.intro.refl.refl K : Type u_1 inst✝¹ : LinearOrderedField K v : K n✝ : β„• inst✝ : FloorRing K g : GeneralizedContinuedFraction K := of v n : β„• ifp_n : IntFractPair K nth_stream_eq : IntFractPair.stream v n = some ifp_n nth_fract_ne_zero : ifp_n.fr β‰  0 conts : Pair K := continuantsAux g (n + 2) pconts : Pair K := continuantsAux g (n + 1) pconts_eq : pconts = continuantsAux g (n + 1) ppconts : Pair K := continuantsAux g n IH : βˆ€ {ifp_n : IntFractPair K}, IntFractPair.stream v n = some ifp_n β†’ v = compExactValue ppconts pconts ifp_n.fr ppconts_eq : ppconts = continuantsAux g n nth_stream_eq' : IntFractPair.stream v n = some ifp_n ifp_n_fract_ne_zero : ifp_n.fr β‰  0 succ_nth_stream_eq : IntFractPair.stream v (Nat.succ n) = some (IntFractPair.of ifp_n.fr⁻¹) ifp_succ_n_fr_ne_zero : Β¬(IntFractPair.of ifp_n.fr⁻¹).fr = 0 s_nth_eq : Stream'.Seq.get? g.s n = some { a := 1, b := β†‘βŒŠifp_n.frβ»ΒΉβŒ‹ } ppA : K := ppconts.a ppB : K := ppconts.b pA : K := pconts.a pB : K := pconts.b ⊒ compExactValue ppconts pconts ifp_n.fr = compExactValue pconts conts (IntFractPair.of ifp_n.fr⁻¹).fr [PROOFSTEP] have : compExactValue ppconts pconts ifp_n.fr = (ppA + ifp_n.fr⁻¹ * pA) / (ppB + ifp_n.fr⁻¹ * pB) := by -- unfold compExactValue and the convergent computation once field_simp [ifp_n_fract_ne_zero, compExactValue, nextContinuants, nextNumerator, nextDenominator] ac_rfl [GOAL] K : Type u_1 inst✝¹ : LinearOrderedField K v : K n✝ : β„• inst✝ : FloorRing K g : GeneralizedContinuedFraction K := of v n : β„• ifp_n : IntFractPair K nth_stream_eq : IntFractPair.stream v n = some ifp_n nth_fract_ne_zero : ifp_n.fr β‰  0 conts : Pair K := continuantsAux g (n + 2) pconts : Pair K := continuantsAux g (n + 1) pconts_eq : pconts = continuantsAux g (n + 1) ppconts : Pair K := continuantsAux g n IH : βˆ€ {ifp_n : IntFractPair K}, IntFractPair.stream v n = some ifp_n β†’ v = compExactValue ppconts pconts ifp_n.fr ppconts_eq : ppconts = continuantsAux g n nth_stream_eq' : IntFractPair.stream v n = some ifp_n ifp_n_fract_ne_zero : ifp_n.fr β‰  0 succ_nth_stream_eq : IntFractPair.stream v (Nat.succ n) = some (IntFractPair.of ifp_n.fr⁻¹) ifp_succ_n_fr_ne_zero : Β¬(IntFractPair.of ifp_n.fr⁻¹).fr = 0 s_nth_eq : Stream'.Seq.get? g.s n = some { a := 1, b := β†‘βŒŠifp_n.frβ»ΒΉβŒ‹ } ppA : K := ppconts.a ppB : K := ppconts.b pA : K := pconts.a pB : K := pconts.b ⊒ compExactValue ppconts pconts ifp_n.fr = (ppA + ifp_n.fr⁻¹ * pA) / (ppB + ifp_n.fr⁻¹ * pB) [PROOFSTEP] field_simp [ifp_n_fract_ne_zero, compExactValue, nextContinuants, nextNumerator, nextDenominator] [GOAL] K : Type u_1 inst✝¹ : LinearOrderedField K v : K n✝ : β„• inst✝ : FloorRing K g : GeneralizedContinuedFraction K := of v n : β„• ifp_n : IntFractPair K nth_stream_eq : IntFractPair.stream v n = some ifp_n nth_fract_ne_zero : ifp_n.fr β‰  0 conts : Pair K := continuantsAux g (n + 2) pconts : Pair K := continuantsAux g (n + 1) pconts_eq : pconts = continuantsAux g (n + 1) ppconts : Pair K := continuantsAux g n IH : βˆ€ {ifp_n : IntFractPair K}, IntFractPair.stream v n = some ifp_n β†’ v = compExactValue ppconts pconts ifp_n.fr ppconts_eq : ppconts = continuantsAux g n nth_stream_eq' : IntFractPair.stream v n = some ifp_n ifp_n_fract_ne_zero : ifp_n.fr β‰  0 succ_nth_stream_eq : IntFractPair.stream v (Nat.succ n) = some (IntFractPair.of ifp_n.fr⁻¹) ifp_succ_n_fr_ne_zero : Β¬(IntFractPair.of ifp_n.fr⁻¹).fr = 0 s_nth_eq : Stream'.Seq.get? g.s n = some { a := 1, b := β†‘βŒŠifp_n.frβ»ΒΉβŒ‹ } ppA : K := ppconts.a ppB : K := ppconts.b pA : K := pconts.a pB : K := pconts.b ⊒ ((continuantsAux (of v) (n + 1)).a + (continuantsAux (of v) n).a * ifp_n.fr) / ((continuantsAux (of v) (n + 1)).b + (continuantsAux (of v) n).b * ifp_n.fr) = ((continuantsAux (of v) n).a * ifp_n.fr + (continuantsAux (of v) (n + 1)).a) / ((continuantsAux (of v) n).b * ifp_n.fr + (continuantsAux (of v) (n + 1)).b) [PROOFSTEP] ac_rfl [GOAL] case succ.intro.intro.intro.inr.intro.intro.intro.refl.refl K : Type u_1 inst✝¹ : LinearOrderedField K v : K n✝ : β„• inst✝ : FloorRing K g : GeneralizedContinuedFraction K := of v n : β„• ifp_n : IntFractPair K nth_stream_eq : IntFractPair.stream v n = some ifp_n nth_fract_ne_zero : ifp_n.fr β‰  0 conts : Pair K := continuantsAux g (n + 2) pconts : Pair K := continuantsAux g (n + 1) pconts_eq : pconts = continuantsAux g (n + 1) ppconts : Pair K := continuantsAux g n IH : βˆ€ {ifp_n : IntFractPair K}, IntFractPair.stream v n = some ifp_n β†’ v = compExactValue ppconts pconts ifp_n.fr ppconts_eq : ppconts = continuantsAux g n nth_stream_eq' : IntFractPair.stream v n = some ifp_n ifp_n_fract_ne_zero : ifp_n.fr β‰  0 succ_nth_stream_eq : IntFractPair.stream v (Nat.succ n) = some (IntFractPair.of ifp_n.fr⁻¹) ifp_succ_n_fr_ne_zero : Β¬(IntFractPair.of ifp_n.fr⁻¹).fr = 0 s_nth_eq : Stream'.Seq.get? g.s n = some { a := 1, b := β†‘βŒŠifp_n.frβ»ΒΉβŒ‹ } ppA : K := ppconts.a ppB : K := ppconts.b pA : K := pconts.a pB : K := pconts.b this : compExactValue ppconts pconts ifp_n.fr = (ppA + ifp_n.fr⁻¹ * pA) / (ppB + ifp_n.fr⁻¹ * pB) ⊒ compExactValue ppconts pconts ifp_n.fr = compExactValue pconts conts (IntFractPair.of ifp_n.fr⁻¹).fr [PROOFSTEP] rw [this] -- two calculations needed to show the claim [GOAL] case succ.intro.intro.intro.inr.intro.intro.intro.refl.refl K : Type u_1 inst✝¹ : LinearOrderedField K v : K n✝ : β„• inst✝ : FloorRing K g : GeneralizedContinuedFraction K := of v n : β„• ifp_n : IntFractPair K nth_stream_eq : IntFractPair.stream v n = some ifp_n nth_fract_ne_zero : ifp_n.fr β‰  0 conts : Pair K := continuantsAux g (n + 2) pconts : Pair K := continuantsAux g (n + 1) pconts_eq : pconts = continuantsAux g (n + 1) ppconts : Pair K := continuantsAux g n IH : βˆ€ {ifp_n : IntFractPair K}, IntFractPair.stream v n = some ifp_n β†’ v = compExactValue ppconts pconts ifp_n.fr ppconts_eq : ppconts = continuantsAux g n nth_stream_eq' : IntFractPair.stream v n = some ifp_n ifp_n_fract_ne_zero : ifp_n.fr β‰  0 succ_nth_stream_eq : IntFractPair.stream v (Nat.succ n) = some (IntFractPair.of ifp_n.fr⁻¹) ifp_succ_n_fr_ne_zero : Β¬(IntFractPair.of ifp_n.fr⁻¹).fr = 0 s_nth_eq : Stream'.Seq.get? g.s n = some { a := 1, b := β†‘βŒŠifp_n.frβ»ΒΉβŒ‹ } ppA : K := ppconts.a ppB : K := ppconts.b pA : K := pconts.a pB : K := pconts.b this : compExactValue ppconts pconts ifp_n.fr = (ppA + ifp_n.fr⁻¹ * pA) / (ppB + ifp_n.fr⁻¹ * pB) ⊒ (ppA + ifp_n.fr⁻¹ * pA) / (ppB + ifp_n.fr⁻¹ * pB) = compExactValue pconts conts (IntFractPair.of ifp_n.fr⁻¹).fr [PROOFSTEP] have tmp_calc := compExactValue_correctness_of_stream_eq_some_aux_comp pA ppA ifp_succ_n_fr_ne_zero [GOAL] case succ.intro.intro.intro.inr.intro.intro.intro.refl.refl K : Type u_1 inst✝¹ : LinearOrderedField K v : K n✝ : β„• inst✝ : FloorRing K g : GeneralizedContinuedFraction K := of v n : β„• ifp_n : IntFractPair K nth_stream_eq : IntFractPair.stream v n = some ifp_n nth_fract_ne_zero : ifp_n.fr β‰  0 conts : Pair K := continuantsAux g (n + 2) pconts : Pair K := continuantsAux g (n + 1) pconts_eq : pconts = continuantsAux g (n + 1) ppconts : Pair K := continuantsAux g n IH : βˆ€ {ifp_n : IntFractPair K}, IntFractPair.stream v n = some ifp_n β†’ v = compExactValue ppconts pconts ifp_n.fr ppconts_eq : ppconts = continuantsAux g n nth_stream_eq' : IntFractPair.stream v n = some ifp_n ifp_n_fract_ne_zero : ifp_n.fr β‰  0 succ_nth_stream_eq : IntFractPair.stream v (Nat.succ n) = some (IntFractPair.of ifp_n.fr⁻¹) ifp_succ_n_fr_ne_zero : Β¬(IntFractPair.of ifp_n.fr⁻¹).fr = 0 s_nth_eq : Stream'.Seq.get? g.s n = some { a := 1, b := β†‘βŒŠifp_n.frβ»ΒΉβŒ‹ } ppA : K := ppconts.a ppB : K := ppconts.b pA : K := pconts.a pB : K := pconts.b this : compExactValue ppconts pconts ifp_n.fr = (ppA + ifp_n.fr⁻¹ * pA) / (ppB + ifp_n.fr⁻¹ * pB) tmp_calc : (β†‘βŒŠifp_n.frβ»ΒΉβŒ‹ * pA + ppA) / Int.fract ifp_n.fr⁻¹ + pA = (pA * ifp_n.fr⁻¹ + ppA) / Int.fract ifp_n.fr⁻¹ ⊒ (ppA + ifp_n.fr⁻¹ * pA) / (ppB + ifp_n.fr⁻¹ * pB) = compExactValue pconts conts (IntFractPair.of ifp_n.fr⁻¹).fr [PROOFSTEP] have tmp_calc' := compExactValue_correctness_of_stream_eq_some_aux_comp pB ppB ifp_succ_n_fr_ne_zero [GOAL] case succ.intro.intro.intro.inr.intro.intro.intro.refl.refl K : Type u_1 inst✝¹ : LinearOrderedField K v : K n✝ : β„• inst✝ : FloorRing K g : GeneralizedContinuedFraction K := of v n : β„• ifp_n : IntFractPair K nth_stream_eq : IntFractPair.stream v n = some ifp_n nth_fract_ne_zero : ifp_n.fr β‰  0 conts : Pair K := continuantsAux g (n + 2) pconts : Pair K := continuantsAux g (n + 1) pconts_eq : pconts = continuantsAux g (n + 1) ppconts : Pair K := continuantsAux g n IH : βˆ€ {ifp_n : IntFractPair K}, IntFractPair.stream v n = some ifp_n β†’ v = compExactValue ppconts pconts ifp_n.fr ppconts_eq : ppconts = continuantsAux g n nth_stream_eq' : IntFractPair.stream v n = some ifp_n ifp_n_fract_ne_zero : ifp_n.fr β‰  0 succ_nth_stream_eq : IntFractPair.stream v (Nat.succ n) = some (IntFractPair.of ifp_n.fr⁻¹) ifp_succ_n_fr_ne_zero : Β¬(IntFractPair.of ifp_n.fr⁻¹).fr = 0 s_nth_eq : Stream'.Seq.get? g.s n = some { a := 1, b := β†‘βŒŠifp_n.frβ»ΒΉβŒ‹ } ppA : K := ppconts.a ppB : K := ppconts.b pA : K := pconts.a pB : K := pconts.b this : compExactValue ppconts pconts ifp_n.fr = (ppA + ifp_n.fr⁻¹ * pA) / (ppB + ifp_n.fr⁻¹ * pB) tmp_calc : (β†‘βŒŠifp_n.frβ»ΒΉβŒ‹ * pA + ppA) / Int.fract ifp_n.fr⁻¹ + pA = (pA * ifp_n.fr⁻¹ + ppA) / Int.fract ifp_n.fr⁻¹ tmp_calc' : (β†‘βŒŠifp_n.frβ»ΒΉβŒ‹ * pB + ppB) / Int.fract ifp_n.fr⁻¹ + pB = (pB * ifp_n.fr⁻¹ + ppB) / Int.fract ifp_n.fr⁻¹ ⊒ (ppA + ifp_n.fr⁻¹ * pA) / (ppB + ifp_n.fr⁻¹ * pB) = compExactValue pconts conts (IntFractPair.of ifp_n.fr⁻¹).fr [PROOFSTEP] let f := Int.fract (1 / ifp_n.fr) [GOAL] case succ.intro.intro.intro.inr.intro.intro.intro.refl.refl K : Type u_1 inst✝¹ : LinearOrderedField K v : K n✝ : β„• inst✝ : FloorRing K g : GeneralizedContinuedFraction K := of v n : β„• ifp_n : IntFractPair K nth_stream_eq : IntFractPair.stream v n = some ifp_n nth_fract_ne_zero : ifp_n.fr β‰  0 conts : Pair K := continuantsAux g (n + 2) pconts : Pair K := continuantsAux g (n + 1) pconts_eq : pconts = continuantsAux g (n + 1) ppconts : Pair K := continuantsAux g n IH : βˆ€ {ifp_n : IntFractPair K}, IntFractPair.stream v n = some ifp_n β†’ v = compExactValue ppconts pconts ifp_n.fr ppconts_eq : ppconts = continuantsAux g n nth_stream_eq' : IntFractPair.stream v n = some ifp_n ifp_n_fract_ne_zero : ifp_n.fr β‰  0 succ_nth_stream_eq : IntFractPair.stream v (Nat.succ n) = some (IntFractPair.of ifp_n.fr⁻¹) ifp_succ_n_fr_ne_zero : Β¬(IntFractPair.of ifp_n.fr⁻¹).fr = 0 s_nth_eq : Stream'.Seq.get? g.s n = some { a := 1, b := β†‘βŒŠifp_n.frβ»ΒΉβŒ‹ } ppA : K := ppconts.a ppB : K := ppconts.b pA : K := pconts.a pB : K := pconts.b this : compExactValue ppconts pconts ifp_n.fr = (ppA + ifp_n.fr⁻¹ * pA) / (ppB + ifp_n.fr⁻¹ * pB) tmp_calc : (β†‘βŒŠifp_n.frβ»ΒΉβŒ‹ * pA + ppA) / Int.fract ifp_n.fr⁻¹ + pA = (pA * ifp_n.fr⁻¹ + ppA) / Int.fract ifp_n.fr⁻¹ tmp_calc' : (β†‘βŒŠifp_n.frβ»ΒΉβŒ‹ * pB + ppB) / Int.fract ifp_n.fr⁻¹ + pB = (pB * ifp_n.fr⁻¹ + ppB) / Int.fract ifp_n.fr⁻¹ f : K := Int.fract (1 / ifp_n.fr) ⊒ (ppA + ifp_n.fr⁻¹ * pA) / (ppB + ifp_n.fr⁻¹ * pB) = compExactValue pconts conts (IntFractPair.of ifp_n.fr⁻¹).fr [PROOFSTEP] have f_ne_zero : f β‰  0 := by simpa using ifp_succ_n_fr_ne_zero [GOAL] K : Type u_1 inst✝¹ : LinearOrderedField K v : K n✝ : β„• inst✝ : FloorRing K g : GeneralizedContinuedFraction K := of v n : β„• ifp_n : IntFractPair K nth_stream_eq : IntFractPair.stream v n = some ifp_n nth_fract_ne_zero : ifp_n.fr β‰  0 conts : Pair K := continuantsAux g (n + 2) pconts : Pair K := continuantsAux g (n + 1) pconts_eq : pconts = continuantsAux g (n + 1) ppconts : Pair K := continuantsAux g n IH : βˆ€ {ifp_n : IntFractPair K}, IntFractPair.stream v n = some ifp_n β†’ v = compExactValue ppconts pconts ifp_n.fr ppconts_eq : ppconts = continuantsAux g n nth_stream_eq' : IntFractPair.stream v n = some ifp_n ifp_n_fract_ne_zero : ifp_n.fr β‰  0 succ_nth_stream_eq : IntFractPair.stream v (Nat.succ n) = some (IntFractPair.of ifp_n.fr⁻¹) ifp_succ_n_fr_ne_zero : Β¬(IntFractPair.of ifp_n.fr⁻¹).fr = 0 s_nth_eq : Stream'.Seq.get? g.s n = some { a := 1, b := β†‘βŒŠifp_n.frβ»ΒΉβŒ‹ } ppA : K := ppconts.a ppB : K := ppconts.b pA : K := pconts.a pB : K := pconts.b this : compExactValue ppconts pconts ifp_n.fr = (ppA + ifp_n.fr⁻¹ * pA) / (ppB + ifp_n.fr⁻¹ * pB) tmp_calc : (β†‘βŒŠifp_n.frβ»ΒΉβŒ‹ * pA + ppA) / Int.fract ifp_n.fr⁻¹ + pA = (pA * ifp_n.fr⁻¹ + ppA) / Int.fract ifp_n.fr⁻¹ tmp_calc' : (β†‘βŒŠifp_n.frβ»ΒΉβŒ‹ * pB + ppB) / Int.fract ifp_n.fr⁻¹ + pB = (pB * ifp_n.fr⁻¹ + ppB) / Int.fract ifp_n.fr⁻¹ f : K := Int.fract (1 / ifp_n.fr) ⊒ f β‰  0 [PROOFSTEP] simpa using ifp_succ_n_fr_ne_zero [GOAL] case succ.intro.intro.intro.inr.intro.intro.intro.refl.refl K : Type u_1 inst✝¹ : LinearOrderedField K v : K n✝ : β„• inst✝ : FloorRing K g : GeneralizedContinuedFraction K := of v n : β„• ifp_n : IntFractPair K nth_stream_eq : IntFractPair.stream v n = some ifp_n nth_fract_ne_zero : ifp_n.fr β‰  0 conts : Pair K := continuantsAux g (n + 2) pconts : Pair K := continuantsAux g (n + 1) pconts_eq : pconts = continuantsAux g (n + 1) ppconts : Pair K := continuantsAux g n IH : βˆ€ {ifp_n : IntFractPair K}, IntFractPair.stream v n = some ifp_n β†’ v = compExactValue ppconts pconts ifp_n.fr ppconts_eq : ppconts = continuantsAux g n nth_stream_eq' : IntFractPair.stream v n = some ifp_n ifp_n_fract_ne_zero : ifp_n.fr β‰  0 succ_nth_stream_eq : IntFractPair.stream v (Nat.succ n) = some (IntFractPair.of ifp_n.fr⁻¹) ifp_succ_n_fr_ne_zero : Β¬(IntFractPair.of ifp_n.fr⁻¹).fr = 0 s_nth_eq : Stream'.Seq.get? g.s n = some { a := 1, b := β†‘βŒŠifp_n.frβ»ΒΉβŒ‹ } ppA : K := ppconts.a ppB : K := ppconts.b pA : K := pconts.a pB : K := pconts.b this : compExactValue ppconts pconts ifp_n.fr = (ppA + ifp_n.fr⁻¹ * pA) / (ppB + ifp_n.fr⁻¹ * pB) tmp_calc : (β†‘βŒŠifp_n.frβ»ΒΉβŒ‹ * pA + ppA) / Int.fract ifp_n.fr⁻¹ + pA = (pA * ifp_n.fr⁻¹ + ppA) / Int.fract ifp_n.fr⁻¹ tmp_calc' : (β†‘βŒŠifp_n.frβ»ΒΉβŒ‹ * pB + ppB) / Int.fract ifp_n.fr⁻¹ + pB = (pB * ifp_n.fr⁻¹ + ppB) / Int.fract ifp_n.fr⁻¹ f : K := Int.fract (1 / ifp_n.fr) f_ne_zero : f β‰  0 ⊒ (ppA + ifp_n.fr⁻¹ * pA) / (ppB + ifp_n.fr⁻¹ * pB) = compExactValue pconts conts (IntFractPair.of ifp_n.fr⁻¹).fr [PROOFSTEP] rw [inv_eq_one_div] at tmp_calc tmp_calc' [GOAL] case succ.intro.intro.intro.inr.intro.intro.intro.refl.refl K : Type u_1 inst✝¹ : LinearOrderedField K v : K n✝ : β„• inst✝ : FloorRing K g : GeneralizedContinuedFraction K := of v n : β„• ifp_n : IntFractPair K nth_stream_eq : IntFractPair.stream v n = some ifp_n nth_fract_ne_zero : ifp_n.fr β‰  0 conts : Pair K := continuantsAux g (n + 2) pconts : Pair K := continuantsAux g (n + 1) pconts_eq : pconts = continuantsAux g (n + 1) ppconts : Pair K := continuantsAux g n IH : βˆ€ {ifp_n : IntFractPair K}, IntFractPair.stream v n = some ifp_n β†’ v = compExactValue ppconts pconts ifp_n.fr ppconts_eq : ppconts = continuantsAux g n nth_stream_eq' : IntFractPair.stream v n = some ifp_n ifp_n_fract_ne_zero : ifp_n.fr β‰  0 succ_nth_stream_eq : IntFractPair.stream v (Nat.succ n) = some (IntFractPair.of ifp_n.fr⁻¹) ifp_succ_n_fr_ne_zero : Β¬(IntFractPair.of ifp_n.fr⁻¹).fr = 0 s_nth_eq : Stream'.Seq.get? g.s n = some { a := 1, b := β†‘βŒŠifp_n.frβ»ΒΉβŒ‹ } ppA : K := ppconts.a ppB : K := ppconts.b pA : K := pconts.a pB : K := pconts.b this : compExactValue ppconts pconts ifp_n.fr = (ppA + ifp_n.fr⁻¹ * pA) / (ppB + ifp_n.fr⁻¹ * pB) tmp_calc : (β†‘βŒŠ1 / ifp_n.frβŒ‹ * pA + ppA) / Int.fract (1 / ifp_n.fr) + pA = (pA * (1 / ifp_n.fr) + ppA) / Int.fract (1 / ifp_n.fr) tmp_calc' : (β†‘βŒŠ1 / ifp_n.frβŒ‹ * pB + ppB) / Int.fract (1 / ifp_n.fr) + pB = (pB * (1 / ifp_n.fr) + ppB) / Int.fract (1 / ifp_n.fr) f : K := Int.fract (1 / ifp_n.fr) f_ne_zero : f β‰  0 ⊒ (ppA + ifp_n.fr⁻¹ * pA) / (ppB + ifp_n.fr⁻¹ * pB) = compExactValue pconts conts (IntFractPair.of ifp_n.fr⁻¹).fr [PROOFSTEP] have hA : (β†‘βŒŠ1 / ifp_n.frβŒ‹ * pA + ppA) + pA * f = pA * (1 / ifp_n.fr) + ppA := by have := congrFun (congrArg HMul.hMul tmp_calc) f rwa [right_distrib, div_mul_cancel (h := f_ne_zero), div_mul_cancel (h := f_ne_zero)] at this [GOAL] K : Type u_1 inst✝¹ : LinearOrderedField K v : K n✝ : β„• inst✝ : FloorRing K g : GeneralizedContinuedFraction K := of v n : β„• ifp_n : IntFractPair K nth_stream_eq : IntFractPair.stream v n = some ifp_n nth_fract_ne_zero : ifp_n.fr β‰  0 conts : Pair K := continuantsAux g (n + 2) pconts : Pair K := continuantsAux g (n + 1) pconts_eq : pconts = continuantsAux g (n + 1) ppconts : Pair K := continuantsAux g n IH : βˆ€ {ifp_n : IntFractPair K}, IntFractPair.stream v n = some ifp_n β†’ v = compExactValue ppconts pconts ifp_n.fr ppconts_eq : ppconts = continuantsAux g n nth_stream_eq' : IntFractPair.stream v n = some ifp_n ifp_n_fract_ne_zero : ifp_n.fr β‰  0 succ_nth_stream_eq : IntFractPair.stream v (Nat.succ n) = some (IntFractPair.of ifp_n.fr⁻¹) ifp_succ_n_fr_ne_zero : Β¬(IntFractPair.of ifp_n.fr⁻¹).fr = 0 s_nth_eq : Stream'.Seq.get? g.s n = some { a := 1, b := β†‘βŒŠifp_n.frβ»ΒΉβŒ‹ } ppA : K := ppconts.a ppB : K := ppconts.b pA : K := pconts.a pB : K := pconts.b this : compExactValue ppconts pconts ifp_n.fr = (ppA + ifp_n.fr⁻¹ * pA) / (ppB + ifp_n.fr⁻¹ * pB) tmp_calc : (β†‘βŒŠ1 / ifp_n.frβŒ‹ * pA + ppA) / Int.fract (1 / ifp_n.fr) + pA = (pA * (1 / ifp_n.fr) + ppA) / Int.fract (1 / ifp_n.fr) tmp_calc' : (β†‘βŒŠ1 / ifp_n.frβŒ‹ * pB + ppB) / Int.fract (1 / ifp_n.fr) + pB = (pB * (1 / ifp_n.fr) + ppB) / Int.fract (1 / ifp_n.fr) f : K := Int.fract (1 / ifp_n.fr) f_ne_zero : f β‰  0 ⊒ β†‘βŒŠ1 / ifp_n.frβŒ‹ * pA + ppA + pA * f = pA * (1 / ifp_n.fr) + ppA [PROOFSTEP] have := congrFun (congrArg HMul.hMul tmp_calc) f [GOAL] K : Type u_1 inst✝¹ : LinearOrderedField K v : K n✝ : β„• inst✝ : FloorRing K g : GeneralizedContinuedFraction K := of v n : β„• ifp_n : IntFractPair K nth_stream_eq : IntFractPair.stream v n = some ifp_n nth_fract_ne_zero : ifp_n.fr β‰  0 conts : Pair K := continuantsAux g (n + 2) pconts : Pair K := continuantsAux g (n + 1) pconts_eq : pconts = continuantsAux g (n + 1) ppconts : Pair K := continuantsAux g n IH : βˆ€ {ifp_n : IntFractPair K}, IntFractPair.stream v n = some ifp_n β†’ v = compExactValue ppconts pconts ifp_n.fr ppconts_eq : ppconts = continuantsAux g n nth_stream_eq' : IntFractPair.stream v n = some ifp_n ifp_n_fract_ne_zero : ifp_n.fr β‰  0 succ_nth_stream_eq : IntFractPair.stream v (Nat.succ n) = some (IntFractPair.of ifp_n.fr⁻¹) ifp_succ_n_fr_ne_zero : Β¬(IntFractPair.of ifp_n.fr⁻¹).fr = 0 s_nth_eq : Stream'.Seq.get? g.s n = some { a := 1, b := β†‘βŒŠifp_n.frβ»ΒΉβŒ‹ } ppA : K := ppconts.a ppB : K := ppconts.b pA : K := pconts.a pB : K := pconts.b this✝ : compExactValue ppconts pconts ifp_n.fr = (ppA + ifp_n.fr⁻¹ * pA) / (ppB + ifp_n.fr⁻¹ * pB) tmp_calc : (β†‘βŒŠ1 / ifp_n.frβŒ‹ * pA + ppA) / Int.fract (1 / ifp_n.fr) + pA = (pA * (1 / ifp_n.fr) + ppA) / Int.fract (1 / ifp_n.fr) tmp_calc' : (β†‘βŒŠ1 / ifp_n.frβŒ‹ * pB + ppB) / Int.fract (1 / ifp_n.fr) + pB = (pB * (1 / ifp_n.fr) + ppB) / Int.fract (1 / ifp_n.fr) f : K := Int.fract (1 / ifp_n.fr) f_ne_zero : f β‰  0 this : ((β†‘βŒŠ1 / ifp_n.frβŒ‹ * pA + ppA) / Int.fract (1 / ifp_n.fr) + pA) * f = (pA * (1 / ifp_n.fr) + ppA) / Int.fract (1 / ifp_n.fr) * f ⊒ β†‘βŒŠ1 / ifp_n.frβŒ‹ * pA + ppA + pA * f = pA * (1 / ifp_n.fr) + ppA [PROOFSTEP] rwa [right_distrib, div_mul_cancel (h := f_ne_zero), div_mul_cancel (h := f_ne_zero)] at this [GOAL] case succ.intro.intro.intro.inr.intro.intro.intro.refl.refl K : Type u_1 inst✝¹ : LinearOrderedField K v : K n✝ : β„• inst✝ : FloorRing K g : GeneralizedContinuedFraction K := of v n : β„• ifp_n : IntFractPair K nth_stream_eq : IntFractPair.stream v n = some ifp_n nth_fract_ne_zero : ifp_n.fr β‰  0 conts : Pair K := continuantsAux g (n + 2) pconts : Pair K := continuantsAux g (n + 1) pconts_eq : pconts = continuantsAux g (n + 1) ppconts : Pair K := continuantsAux g n IH : βˆ€ {ifp_n : IntFractPair K}, IntFractPair.stream v n = some ifp_n β†’ v = compExactValue ppconts pconts ifp_n.fr ppconts_eq : ppconts = continuantsAux g n nth_stream_eq' : IntFractPair.stream v n = some ifp_n ifp_n_fract_ne_zero : ifp_n.fr β‰  0 succ_nth_stream_eq : IntFractPair.stream v (Nat.succ n) = some (IntFractPair.of ifp_n.fr⁻¹) ifp_succ_n_fr_ne_zero : Β¬(IntFractPair.of ifp_n.fr⁻¹).fr = 0 s_nth_eq : Stream'.Seq.get? g.s n = some { a := 1, b := β†‘βŒŠifp_n.frβ»ΒΉβŒ‹ } ppA : K := ppconts.a ppB : K := ppconts.b pA : K := pconts.a pB : K := pconts.b this : compExactValue ppconts pconts ifp_n.fr = (ppA + ifp_n.fr⁻¹ * pA) / (ppB + ifp_n.fr⁻¹ * pB) tmp_calc : (β†‘βŒŠ1 / ifp_n.frβŒ‹ * pA + ppA) / Int.fract (1 / ifp_n.fr) + pA = (pA * (1 / ifp_n.fr) + ppA) / Int.fract (1 / ifp_n.fr) tmp_calc' : (β†‘βŒŠ1 / ifp_n.frβŒ‹ * pB + ppB) / Int.fract (1 / ifp_n.fr) + pB = (pB * (1 / ifp_n.fr) + ppB) / Int.fract (1 / ifp_n.fr) f : K := Int.fract (1 / ifp_n.fr) f_ne_zero : f β‰  0 hA : β†‘βŒŠ1 / ifp_n.frβŒ‹ * pA + ppA + pA * f = pA * (1 / ifp_n.fr) + ppA ⊒ (ppA + ifp_n.fr⁻¹ * pA) / (ppB + ifp_n.fr⁻¹ * pB) = compExactValue pconts conts (IntFractPair.of ifp_n.fr⁻¹).fr [PROOFSTEP] have hB : (β†‘βŒŠ1 / ifp_n.frβŒ‹ * pB + ppB) + pB * f = pB * (1 / ifp_n.fr) + ppB := by have := congrFun (congrArg HMul.hMul tmp_calc') f rwa [right_distrib, div_mul_cancel (h := f_ne_zero), div_mul_cancel (h := f_ne_zero)] at this [GOAL] K : Type u_1 inst✝¹ : LinearOrderedField K v : K n✝ : β„• inst✝ : FloorRing K g : GeneralizedContinuedFraction K := of v n : β„• ifp_n : IntFractPair K nth_stream_eq : IntFractPair.stream v n = some ifp_n nth_fract_ne_zero : ifp_n.fr β‰  0 conts : Pair K := continuantsAux g (n + 2) pconts : Pair K := continuantsAux g (n + 1) pconts_eq : pconts = continuantsAux g (n + 1) ppconts : Pair K := continuantsAux g n IH : βˆ€ {ifp_n : IntFractPair K}, IntFractPair.stream v n = some ifp_n β†’ v = compExactValue ppconts pconts ifp_n.fr ppconts_eq : ppconts = continuantsAux g n nth_stream_eq' : IntFractPair.stream v n = some ifp_n ifp_n_fract_ne_zero : ifp_n.fr β‰  0 succ_nth_stream_eq : IntFractPair.stream v (Nat.succ n) = some (IntFractPair.of ifp_n.fr⁻¹) ifp_succ_n_fr_ne_zero : Β¬(IntFractPair.of ifp_n.fr⁻¹).fr = 0 s_nth_eq : Stream'.Seq.get? g.s n = some { a := 1, b := β†‘βŒŠifp_n.frβ»ΒΉβŒ‹ } ppA : K := ppconts.a ppB : K := ppconts.b pA : K := pconts.a pB : K := pconts.b this : compExactValue ppconts pconts ifp_n.fr = (ppA + ifp_n.fr⁻¹ * pA) / (ppB + ifp_n.fr⁻¹ * pB) tmp_calc : (β†‘βŒŠ1 / ifp_n.frβŒ‹ * pA + ppA) / Int.fract (1 / ifp_n.fr) + pA = (pA * (1 / ifp_n.fr) + ppA) / Int.fract (1 / ifp_n.fr) tmp_calc' : (β†‘βŒŠ1 / ifp_n.frβŒ‹ * pB + ppB) / Int.fract (1 / ifp_n.fr) + pB = (pB * (1 / ifp_n.fr) + ppB) / Int.fract (1 / ifp_n.fr) f : K := Int.fract (1 / ifp_n.fr) f_ne_zero : f β‰  0 hA : β†‘βŒŠ1 / ifp_n.frβŒ‹ * pA + ppA + pA * f = pA * (1 / ifp_n.fr) + ppA ⊒ β†‘βŒŠ1 / ifp_n.frβŒ‹ * pB + ppB + pB * f = pB * (1 / ifp_n.fr) + ppB [PROOFSTEP] have := congrFun (congrArg HMul.hMul tmp_calc') f [GOAL] K : Type u_1 inst✝¹ : LinearOrderedField K v : K n✝ : β„• inst✝ : FloorRing K g : GeneralizedContinuedFraction K := of v n : β„• ifp_n : IntFractPair K nth_stream_eq : IntFractPair.stream v n = some ifp_n nth_fract_ne_zero : ifp_n.fr β‰  0 conts : Pair K := continuantsAux g (n + 2) pconts : Pair K := continuantsAux g (n + 1) pconts_eq : pconts = continuantsAux g (n + 1) ppconts : Pair K := continuantsAux g n IH : βˆ€ {ifp_n : IntFractPair K}, IntFractPair.stream v n = some ifp_n β†’ v = compExactValue ppconts pconts ifp_n.fr ppconts_eq : ppconts = continuantsAux g n nth_stream_eq' : IntFractPair.stream v n = some ifp_n ifp_n_fract_ne_zero : ifp_n.fr β‰  0 succ_nth_stream_eq : IntFractPair.stream v (Nat.succ n) = some (IntFractPair.of ifp_n.fr⁻¹) ifp_succ_n_fr_ne_zero : Β¬(IntFractPair.of ifp_n.fr⁻¹).fr = 0 s_nth_eq : Stream'.Seq.get? g.s n = some { a := 1, b := β†‘βŒŠifp_n.frβ»ΒΉβŒ‹ } ppA : K := ppconts.a ppB : K := ppconts.b pA : K := pconts.a pB : K := pconts.b this✝ : compExactValue ppconts pconts ifp_n.fr = (ppA + ifp_n.fr⁻¹ * pA) / (ppB + ifp_n.fr⁻¹ * pB) tmp_calc : (β†‘βŒŠ1 / ifp_n.frβŒ‹ * pA + ppA) / Int.fract (1 / ifp_n.fr) + pA = (pA * (1 / ifp_n.fr) + ppA) / Int.fract (1 / ifp_n.fr) tmp_calc' : (β†‘βŒŠ1 / ifp_n.frβŒ‹ * pB + ppB) / Int.fract (1 / ifp_n.fr) + pB = (pB * (1 / ifp_n.fr) + ppB) / Int.fract (1 / ifp_n.fr) f : K := Int.fract (1 / ifp_n.fr) f_ne_zero : f β‰  0 hA : β†‘βŒŠ1 / ifp_n.frβŒ‹ * pA + ppA + pA * f = pA * (1 / ifp_n.fr) + ppA this : ((β†‘βŒŠ1 / ifp_n.frβŒ‹ * pB + ppB) / Int.fract (1 / ifp_n.fr) + pB) * f = (pB * (1 / ifp_n.fr) + ppB) / Int.fract (1 / ifp_n.fr) * f ⊒ β†‘βŒŠ1 / ifp_n.frβŒ‹ * pB + ppB + pB * f = pB * (1 / ifp_n.fr) + ppB [PROOFSTEP] rwa [right_distrib, div_mul_cancel (h := f_ne_zero), div_mul_cancel (h := f_ne_zero)] at this [GOAL] case succ.intro.intro.intro.inr.intro.intro.intro.refl.refl K : Type u_1 inst✝¹ : LinearOrderedField K v : K n✝ : β„• inst✝ : FloorRing K g : GeneralizedContinuedFraction K := of v n : β„• ifp_n : IntFractPair K nth_stream_eq : IntFractPair.stream v n = some ifp_n nth_fract_ne_zero : ifp_n.fr β‰  0 conts : Pair K := continuantsAux g (n + 2) pconts : Pair K := continuantsAux g (n + 1) pconts_eq : pconts = continuantsAux g (n + 1) ppconts : Pair K := continuantsAux g n IH : βˆ€ {ifp_n : IntFractPair K}, IntFractPair.stream v n = some ifp_n β†’ v = compExactValue ppconts pconts ifp_n.fr ppconts_eq : ppconts = continuantsAux g n nth_stream_eq' : IntFractPair.stream v n = some ifp_n ifp_n_fract_ne_zero : ifp_n.fr β‰  0 succ_nth_stream_eq : IntFractPair.stream v (Nat.succ n) = some (IntFractPair.of ifp_n.fr⁻¹) ifp_succ_n_fr_ne_zero : Β¬(IntFractPair.of ifp_n.fr⁻¹).fr = 0 s_nth_eq : Stream'.Seq.get? g.s n = some { a := 1, b := β†‘βŒŠifp_n.frβ»ΒΉβŒ‹ } ppA : K := ppconts.a ppB : K := ppconts.b pA : K := pconts.a pB : K := pconts.b this : compExactValue ppconts pconts ifp_n.fr = (ppA + ifp_n.fr⁻¹ * pA) / (ppB + ifp_n.fr⁻¹ * pB) tmp_calc : (β†‘βŒŠ1 / ifp_n.frβŒ‹ * pA + ppA) / Int.fract (1 / ifp_n.fr) + pA = (pA * (1 / ifp_n.fr) + ppA) / Int.fract (1 / ifp_n.fr) tmp_calc' : (β†‘βŒŠ1 / ifp_n.frβŒ‹ * pB + ppB) / Int.fract (1 / ifp_n.fr) + pB = (pB * (1 / ifp_n.fr) + ppB) / Int.fract (1 / ifp_n.fr) f : K := Int.fract (1 / ifp_n.fr) f_ne_zero : f β‰  0 hA : β†‘βŒŠ1 / ifp_n.frβŒ‹ * pA + ppA + pA * f = pA * (1 / ifp_n.fr) + ppA hB : β†‘βŒŠ1 / ifp_n.frβŒ‹ * pB + ppB + pB * f = pB * (1 / ifp_n.fr) + ppB ⊒ (ppA + ifp_n.fr⁻¹ * pA) / (ppB + ifp_n.fr⁻¹ * pB) = compExactValue pconts conts (IntFractPair.of ifp_n.fr⁻¹).fr [PROOFSTEP] field_simp [compExactValue, continuantsAux_recurrence s_nth_eq ppconts_eq pconts_eq, nextContinuants, nextNumerator, nextDenominator] [GOAL] case succ.intro.intro.intro.inr.intro.intro.intro.refl.refl K : Type u_1 inst✝¹ : LinearOrderedField K v : K n✝ : β„• inst✝ : FloorRing K g : GeneralizedContinuedFraction K := of v n : β„• ifp_n : IntFractPair K nth_stream_eq : IntFractPair.stream v n = some ifp_n nth_fract_ne_zero : ifp_n.fr β‰  0 conts : Pair K := continuantsAux g (n + 2) pconts : Pair K := continuantsAux g (n + 1) pconts_eq : pconts = continuantsAux g (n + 1) ppconts : Pair K := continuantsAux g n IH : βˆ€ {ifp_n : IntFractPair K}, IntFractPair.stream v n = some ifp_n β†’ v = compExactValue ppconts pconts ifp_n.fr ppconts_eq : ppconts = continuantsAux g n nth_stream_eq' : IntFractPair.stream v n = some ifp_n ifp_n_fract_ne_zero : ifp_n.fr β‰  0 succ_nth_stream_eq : IntFractPair.stream v (Nat.succ n) = some (IntFractPair.of ifp_n.fr⁻¹) ifp_succ_n_fr_ne_zero : Β¬(IntFractPair.of ifp_n.fr⁻¹).fr = 0 s_nth_eq : Stream'.Seq.get? g.s n = some { a := 1, b := β†‘βŒŠifp_n.frβ»ΒΉβŒ‹ } ppA : K := ppconts.a ppB : K := ppconts.b pA : K := pconts.a pB : K := pconts.b this : compExactValue ppconts pconts ifp_n.fr = (ppA + ifp_n.fr⁻¹ * pA) / (ppB + ifp_n.fr⁻¹ * pB) tmp_calc : (β†‘βŒŠ1 / ifp_n.frβŒ‹ * pA + ppA) / Int.fract (1 / ifp_n.fr) + pA = (pA * (1 / ifp_n.fr) + ppA) / Int.fract (1 / ifp_n.fr) tmp_calc' : (β†‘βŒŠ1 / ifp_n.frβŒ‹ * pB + ppB) / Int.fract (1 / ifp_n.fr) + pB = (pB * (1 / ifp_n.fr) + ppB) / Int.fract (1 / ifp_n.fr) f : K := Int.fract (1 / ifp_n.fr) f_ne_zero : f β‰  0 hA : β†‘βŒŠ1 / ifp_n.frβŒ‹ * pA + ppA + pA * f = pA * (1 / ifp_n.fr) + ppA hB : β†‘βŒŠ1 / ifp_n.frβŒ‹ * pB + ppB + pB * f = pB * (1 / ifp_n.fr) + ppB ⊒ ((continuantsAux (of v) n).a * ifp_n.fr + (continuantsAux (of v) (n + 1)).a) / ((continuantsAux (of v) n).b * ifp_n.fr + (continuantsAux (of v) (n + 1)).b) = if (IntFractPair.of (1 / ifp_n.fr)).fr = 0 then (β†‘βŒŠ1 / ifp_n.frβŒ‹ * (continuantsAux (of v) (n + 1)).a + (continuantsAux (of v) n).a) / (β†‘βŒŠ1 / ifp_n.frβŒ‹ * (continuantsAux (of v) (n + 1)).b + (continuantsAux (of v) n).b) else (β†‘βŒŠ1 / ifp_n.frβŒ‹ * (continuantsAux (of v) (n + 1)).a + (continuantsAux (of v) n).a + (continuantsAux (of v) (n + 1)).a * (IntFractPair.of (1 / ifp_n.fr)).fr) / (β†‘βŒŠ1 / ifp_n.frβŒ‹ * (continuantsAux (of v) (n + 1)).b + (continuantsAux (of v) n).b + (continuantsAux (of v) (n + 1)).b * (IntFractPair.of (1 / ifp_n.fr)).fr) [PROOFSTEP] have hfr : (IntFractPair.of (1 / ifp_n.fr)).fr = f := rfl [GOAL] case succ.intro.intro.intro.inr.intro.intro.intro.refl.refl K : Type u_1 inst✝¹ : LinearOrderedField K v : K n✝ : β„• inst✝ : FloorRing K g : GeneralizedContinuedFraction K := of v n : β„• ifp_n : IntFractPair K nth_stream_eq : IntFractPair.stream v n = some ifp_n nth_fract_ne_zero : ifp_n.fr β‰  0 conts : Pair K := continuantsAux g (n + 2) pconts : Pair K := continuantsAux g (n + 1) pconts_eq : pconts = continuantsAux g (n + 1) ppconts : Pair K := continuantsAux g n IH : βˆ€ {ifp_n : IntFractPair K}, IntFractPair.stream v n = some ifp_n β†’ v = compExactValue ppconts pconts ifp_n.fr ppconts_eq : ppconts = continuantsAux g n nth_stream_eq' : IntFractPair.stream v n = some ifp_n ifp_n_fract_ne_zero : ifp_n.fr β‰  0 succ_nth_stream_eq : IntFractPair.stream v (Nat.succ n) = some (IntFractPair.of ifp_n.fr⁻¹) ifp_succ_n_fr_ne_zero : Β¬(IntFractPair.of ifp_n.fr⁻¹).fr = 0 s_nth_eq : Stream'.Seq.get? g.s n = some { a := 1, b := β†‘βŒŠifp_n.frβ»ΒΉβŒ‹ } ppA : K := ppconts.a ppB : K := ppconts.b pA : K := pconts.a pB : K := pconts.b this : compExactValue ppconts pconts ifp_n.fr = (ppA + ifp_n.fr⁻¹ * pA) / (ppB + ifp_n.fr⁻¹ * pB) tmp_calc : (β†‘βŒŠ1 / ifp_n.frβŒ‹ * pA + ppA) / Int.fract (1 / ifp_n.fr) + pA = (pA * (1 / ifp_n.fr) + ppA) / Int.fract (1 / ifp_n.fr) tmp_calc' : (β†‘βŒŠ1 / ifp_n.frβŒ‹ * pB + ppB) / Int.fract (1 / ifp_n.fr) + pB = (pB * (1 / ifp_n.fr) + ppB) / Int.fract (1 / ifp_n.fr) f : K := Int.fract (1 / ifp_n.fr) f_ne_zero : f β‰  0 hA : β†‘βŒŠ1 / ifp_n.frβŒ‹ * pA + ppA + pA * f = pA * (1 / ifp_n.fr) + ppA hB : β†‘βŒŠ1 / ifp_n.frβŒ‹ * pB + ppB + pB * f = pB * (1 / ifp_n.fr) + ppB hfr : (IntFractPair.of (1 / ifp_n.fr)).fr = f ⊒ ((continuantsAux (of v) n).a * ifp_n.fr + (continuantsAux (of v) (n + 1)).a) / ((continuantsAux (of v) n).b * ifp_n.fr + (continuantsAux (of v) (n + 1)).b) = if (IntFractPair.of (1 / ifp_n.fr)).fr = 0 then (β†‘βŒŠ1 / ifp_n.frβŒ‹ * (continuantsAux (of v) (n + 1)).a + (continuantsAux (of v) n).a) / (β†‘βŒŠ1 / ifp_n.frβŒ‹ * (continuantsAux (of v) (n + 1)).b + (continuantsAux (of v) n).b) else (β†‘βŒŠ1 / ifp_n.frβŒ‹ * (continuantsAux (of v) (n + 1)).a + (continuantsAux (of v) n).a + (continuantsAux (of v) (n + 1)).a * (IntFractPair.of (1 / ifp_n.fr)).fr) / (β†‘βŒŠ1 / ifp_n.frβŒ‹ * (continuantsAux (of v) (n + 1)).b + (continuantsAux (of v) n).b + (continuantsAux (of v) (n + 1)).b * (IntFractPair.of (1 / ifp_n.fr)).fr) [PROOFSTEP] rw [one_div, if_neg _, ← one_div, hfr] [GOAL] case succ.intro.intro.intro.inr.intro.intro.intro.refl.refl K : Type u_1 inst✝¹ : LinearOrderedField K v : K n✝ : β„• inst✝ : FloorRing K g : GeneralizedContinuedFraction K := of v n : β„• ifp_n : IntFractPair K nth_stream_eq : IntFractPair.stream v n = some ifp_n nth_fract_ne_zero : ifp_n.fr β‰  0 conts : Pair K := continuantsAux g (n + 2) pconts : Pair K := continuantsAux g (n + 1) pconts_eq : pconts = continuantsAux g (n + 1) ppconts : Pair K := continuantsAux g n IH : βˆ€ {ifp_n : IntFractPair K}, IntFractPair.stream v n = some ifp_n β†’ v = compExactValue ppconts pconts ifp_n.fr ppconts_eq : ppconts = continuantsAux g n nth_stream_eq' : IntFractPair.stream v n = some ifp_n ifp_n_fract_ne_zero : ifp_n.fr β‰  0 succ_nth_stream_eq : IntFractPair.stream v (Nat.succ n) = some (IntFractPair.of ifp_n.fr⁻¹) ifp_succ_n_fr_ne_zero : Β¬(IntFractPair.of ifp_n.fr⁻¹).fr = 0 s_nth_eq : Stream'.Seq.get? g.s n = some { a := 1, b := β†‘βŒŠifp_n.frβ»ΒΉβŒ‹ } ppA : K := ppconts.a ppB : K := ppconts.b pA : K := pconts.a pB : K := pconts.b this : compExactValue ppconts pconts ifp_n.fr = (ppA + ifp_n.fr⁻¹ * pA) / (ppB + ifp_n.fr⁻¹ * pB) tmp_calc : (β†‘βŒŠ1 / ifp_n.frβŒ‹ * pA + ppA) / Int.fract (1 / ifp_n.fr) + pA = (pA * (1 / ifp_n.fr) + ppA) / Int.fract (1 / ifp_n.fr) tmp_calc' : (β†‘βŒŠ1 / ifp_n.frβŒ‹ * pB + ppB) / Int.fract (1 / ifp_n.fr) + pB = (pB * (1 / ifp_n.fr) + ppB) / Int.fract (1 / ifp_n.fr) f : K := Int.fract (1 / ifp_n.fr) f_ne_zero : f β‰  0 hA : β†‘βŒŠ1 / ifp_n.frβŒ‹ * pA + ppA + pA * f = pA * (1 / ifp_n.fr) + ppA hB : β†‘βŒŠ1 / ifp_n.frβŒ‹ * pB + ppB + pB * f = pB * (1 / ifp_n.fr) + ppB hfr : (IntFractPair.of (1 / ifp_n.fr)).fr = f ⊒ ((continuantsAux (of v) n).a * ifp_n.fr + (continuantsAux (of v) (n + 1)).a) / ((continuantsAux (of v) n).b * ifp_n.fr + (continuantsAux (of v) (n + 1)).b) = (β†‘βŒŠ1 / ifp_n.frβŒ‹ * (continuantsAux (of v) (n + 1)).a + (continuantsAux (of v) n).a + (continuantsAux (of v) (n + 1)).a * f) / (β†‘βŒŠ1 / ifp_n.frβŒ‹ * (continuantsAux (of v) (n + 1)).b + (continuantsAux (of v) n).b + (continuantsAux (of v) (n + 1)).b * f) K : Type u_1 inst✝¹ : LinearOrderedField K v : K n✝ : β„• inst✝ : FloorRing K g : GeneralizedContinuedFraction K := of v n : β„• ifp_n : IntFractPair K nth_stream_eq : IntFractPair.stream v n = some ifp_n nth_fract_ne_zero : ifp_n.fr β‰  0 conts : Pair K := continuantsAux g (n + 2) pconts : Pair K := continuantsAux g (n + 1) pconts_eq : pconts = continuantsAux g (n + 1) ppconts : Pair K := continuantsAux g n IH : βˆ€ {ifp_n : IntFractPair K}, IntFractPair.stream v n = some ifp_n β†’ v = compExactValue ppconts pconts ifp_n.fr ppconts_eq : ppconts = continuantsAux g n nth_stream_eq' : IntFractPair.stream v n = some ifp_n ifp_n_fract_ne_zero : ifp_n.fr β‰  0 succ_nth_stream_eq : IntFractPair.stream v (Nat.succ n) = some (IntFractPair.of ifp_n.fr⁻¹) ifp_succ_n_fr_ne_zero : Β¬(IntFractPair.of ifp_n.fr⁻¹).fr = 0 s_nth_eq : Stream'.Seq.get? g.s n = some { a := 1, b := β†‘βŒŠifp_n.frβ»ΒΉβŒ‹ } ppA : K := ppconts.a ppB : K := ppconts.b pA : K := pconts.a pB : K := pconts.b this : compExactValue ppconts pconts ifp_n.fr = (ppA + ifp_n.fr⁻¹ * pA) / (ppB + ifp_n.fr⁻¹ * pB) tmp_calc : (β†‘βŒŠ1 / ifp_n.frβŒ‹ * pA + ppA) / Int.fract (1 / ifp_n.fr) + pA = (pA * (1 / ifp_n.fr) + ppA) / Int.fract (1 / ifp_n.fr) tmp_calc' : (β†‘βŒŠ1 / ifp_n.frβŒ‹ * pB + ppB) / Int.fract (1 / ifp_n.fr) + pB = (pB * (1 / ifp_n.fr) + ppB) / Int.fract (1 / ifp_n.fr) f : K := Int.fract (1 / ifp_n.fr) f_ne_zero : f β‰  0 hA : β†‘βŒŠ1 / ifp_n.frβŒ‹ * pA + ppA + pA * f = pA * (1 / ifp_n.fr) + ppA hB : β†‘βŒŠ1 / ifp_n.frβŒ‹ * pB + ppB + pB * f = pB * (1 / ifp_n.fr) + ppB hfr : (IntFractPair.of (1 / ifp_n.fr)).fr = f ⊒ Β¬(IntFractPair.of ifp_n.fr⁻¹).fr = 0 [PROOFSTEP] field_simp [hA, hB] [GOAL] case succ.intro.intro.intro.inr.intro.intro.intro.refl.refl K : Type u_1 inst✝¹ : LinearOrderedField K v : K n✝ : β„• inst✝ : FloorRing K g : GeneralizedContinuedFraction K := of v n : β„• ifp_n : IntFractPair K nth_stream_eq : IntFractPair.stream v n = some ifp_n nth_fract_ne_zero : ifp_n.fr β‰  0 conts : Pair K := continuantsAux g (n + 2) pconts : Pair K := continuantsAux g (n + 1) pconts_eq : pconts = continuantsAux g (n + 1) ppconts : Pair K := continuantsAux g n IH : βˆ€ {ifp_n : IntFractPair K}, IntFractPair.stream v n = some ifp_n β†’ v = compExactValue ppconts pconts ifp_n.fr ppconts_eq : ppconts = continuantsAux g n nth_stream_eq' : IntFractPair.stream v n = some ifp_n ifp_n_fract_ne_zero : ifp_n.fr β‰  0 succ_nth_stream_eq : IntFractPair.stream v (Nat.succ n) = some (IntFractPair.of ifp_n.fr⁻¹) ifp_succ_n_fr_ne_zero : Β¬(IntFractPair.of ifp_n.fr⁻¹).fr = 0 s_nth_eq : Stream'.Seq.get? g.s n = some { a := 1, b := β†‘βŒŠifp_n.frβ»ΒΉβŒ‹ } ppA : K := ppconts.a ppB : K := ppconts.b pA : K := pconts.a pB : K := pconts.b this : compExactValue ppconts pconts ifp_n.fr = (ppA + ifp_n.fr⁻¹ * pA) / (ppB + ifp_n.fr⁻¹ * pB) tmp_calc : (β†‘βŒŠ1 / ifp_n.frβŒ‹ * pA + ppA) / Int.fract (1 / ifp_n.fr) + pA = (pA * (1 / ifp_n.fr) + ppA) / Int.fract (1 / ifp_n.fr) tmp_calc' : (β†‘βŒŠ1 / ifp_n.frβŒ‹ * pB + ppB) / Int.fract (1 / ifp_n.fr) + pB = (pB * (1 / ifp_n.fr) + ppB) / Int.fract (1 / ifp_n.fr) f : K := Int.fract (1 / ifp_n.fr) f_ne_zero : f β‰  0 hA : β†‘βŒŠ1 / ifp_n.frβŒ‹ * pA + ppA + pA * f = pA * (1 / ifp_n.fr) + ppA hB : β†‘βŒŠ1 / ifp_n.frβŒ‹ * pB + ppB + pB * f = pB * (1 / ifp_n.fr) + ppB hfr : (IntFractPair.of (1 / ifp_n.fr)).fr = f ⊒ ((continuantsAux (of v) n).a * ifp_n.fr + (continuantsAux (of v) (n + 1)).a) / ((continuantsAux (of v) n).b * ifp_n.fr + (continuantsAux (of v) (n + 1)).b) = ((continuantsAux (of v) (n + 1)).a + (continuantsAux (of v) n).a * ifp_n.fr) / ((continuantsAux (of v) (n + 1)).b + (continuantsAux (of v) n).b * ifp_n.fr) K : Type u_1 inst✝¹ : LinearOrderedField K v : K n✝ : β„• inst✝ : FloorRing K g : GeneralizedContinuedFraction K := of v n : β„• ifp_n : IntFractPair K nth_stream_eq : IntFractPair.stream v n = some ifp_n nth_fract_ne_zero : ifp_n.fr β‰  0 conts : Pair K := continuantsAux g (n + 2) pconts : Pair K := continuantsAux g (n + 1) pconts_eq : pconts = continuantsAux g (n + 1) ppconts : Pair K := continuantsAux g n IH : βˆ€ {ifp_n : IntFractPair K}, IntFractPair.stream v n = some ifp_n β†’ v = compExactValue ppconts pconts ifp_n.fr ppconts_eq : ppconts = continuantsAux g n nth_stream_eq' : IntFractPair.stream v n = some ifp_n ifp_n_fract_ne_zero : ifp_n.fr β‰  0 succ_nth_stream_eq : IntFractPair.stream v (Nat.succ n) = some (IntFractPair.of ifp_n.fr⁻¹) ifp_succ_n_fr_ne_zero : Β¬(IntFractPair.of ifp_n.fr⁻¹).fr = 0 s_nth_eq : Stream'.Seq.get? g.s n = some { a := 1, b := β†‘βŒŠifp_n.frβ»ΒΉβŒ‹ } ppA : K := ppconts.a ppB : K := ppconts.b pA : K := pconts.a pB : K := pconts.b this : compExactValue ppconts pconts ifp_n.fr = (ppA + ifp_n.fr⁻¹ * pA) / (ppB + ifp_n.fr⁻¹ * pB) tmp_calc : (β†‘βŒŠ1 / ifp_n.frβŒ‹ * pA + ppA) / Int.fract (1 / ifp_n.fr) + pA = (pA * (1 / ifp_n.fr) + ppA) / Int.fract (1 / ifp_n.fr) tmp_calc' : (β†‘βŒŠ1 / ifp_n.frβŒ‹ * pB + ppB) / Int.fract (1 / ifp_n.fr) + pB = (pB * (1 / ifp_n.fr) + ppB) / Int.fract (1 / ifp_n.fr) f : K := Int.fract (1 / ifp_n.fr) f_ne_zero : f β‰  0 hA : β†‘βŒŠ1 / ifp_n.frβŒ‹ * pA + ppA + pA * f = pA * (1 / ifp_n.fr) + ppA hB : β†‘βŒŠ1 / ifp_n.frβŒ‹ * pB + ppB + pB * f = pB * (1 / ifp_n.fr) + ppB hfr : (IntFractPair.of (1 / ifp_n.fr)).fr = f ⊒ Β¬(IntFractPair.of ifp_n.fr⁻¹).fr = 0 [PROOFSTEP] ac_rfl [GOAL] K : Type u_1 inst✝¹ : LinearOrderedField K v : K n✝ : β„• inst✝ : FloorRing K g : GeneralizedContinuedFraction K := of v n : β„• ifp_n : IntFractPair K nth_stream_eq : IntFractPair.stream v n = some ifp_n nth_fract_ne_zero : ifp_n.fr β‰  0 conts : Pair K := continuantsAux g (n + 2) pconts : Pair K := continuantsAux g (n + 1) pconts_eq : pconts = continuantsAux g (n + 1) ppconts : Pair K := continuantsAux g n IH : βˆ€ {ifp_n : IntFractPair K}, IntFractPair.stream v n = some ifp_n β†’ v = compExactValue ppconts pconts ifp_n.fr ppconts_eq : ppconts = continuantsAux g n nth_stream_eq' : IntFractPair.stream v n = some ifp_n ifp_n_fract_ne_zero : ifp_n.fr β‰  0 succ_nth_stream_eq : IntFractPair.stream v (Nat.succ n) = some (IntFractPair.of ifp_n.fr⁻¹) ifp_succ_n_fr_ne_zero : Β¬(IntFractPair.of ifp_n.fr⁻¹).fr = 0 s_nth_eq : Stream'.Seq.get? g.s n = some { a := 1, b := β†‘βŒŠifp_n.frβ»ΒΉβŒ‹ } ppA : K := ppconts.a ppB : K := ppconts.b pA : K := pconts.a pB : K := pconts.b this : compExactValue ppconts pconts ifp_n.fr = (ppA + ifp_n.fr⁻¹ * pA) / (ppB + ifp_n.fr⁻¹ * pB) tmp_calc : (β†‘βŒŠ1 / ifp_n.frβŒ‹ * pA + ppA) / Int.fract (1 / ifp_n.fr) + pA = (pA * (1 / ifp_n.fr) + ppA) / Int.fract (1 / ifp_n.fr) tmp_calc' : (β†‘βŒŠ1 / ifp_n.frβŒ‹ * pB + ppB) / Int.fract (1 / ifp_n.fr) + pB = (pB * (1 / ifp_n.fr) + ppB) / Int.fract (1 / ifp_n.fr) f : K := Int.fract (1 / ifp_n.fr) f_ne_zero : f β‰  0 hA : β†‘βŒŠ1 / ifp_n.frβŒ‹ * pA + ppA + pA * f = pA * (1 / ifp_n.fr) + ppA hB : β†‘βŒŠ1 / ifp_n.frβŒ‹ * pB + ppB + pB * f = pB * (1 / ifp_n.fr) + ppB hfr : (IntFractPair.of (1 / ifp_n.fr)).fr = f ⊒ Β¬(IntFractPair.of ifp_n.fr⁻¹).fr = 0 [PROOFSTEP] rwa [inv_eq_one_div, hfr] [GOAL] K : Type u_1 inst✝¹ : LinearOrderedField K v : K n : β„• inst✝ : FloorRing K nth_stream_eq_none : IntFractPair.stream v n = none ⊒ v = convergents (of v) (n - 1) [PROOFSTEP] induction n with | zero => contradiction -- IntFractPair.stream v 0 β‰  none | succ n IH => let g := of v change v = g.convergents n have : IntFractPair.stream v n = none ∨ βˆƒ ifp, IntFractPair.stream v n = some ifp ∧ ifp.fr = 0 := IntFractPair.succ_nth_stream_eq_none_iff.1 nth_stream_eq_none rcases this with (⟨nth_stream_eq_none⟩ | ⟨ifp_n, nth_stream_eq, nth_stream_fr_eq_zero⟩) Β· cases' n with n' Β· contradiction -- IntFractPair.stream v 0 β‰  none Β· have : g.TerminatedAt n' := of_terminatedAt_n_iff_succ_nth_intFractPair_stream_eq_none.2 nth_stream_eq_none have : g.convergents (n' + 1) = g.convergents n' := convergents_stable_of_terminated n'.le_succ this rw [this] exact IH nth_stream_eq_none Β· simpa [nth_stream_fr_eq_zero, compExactValue] using compExactValue_correctness_of_stream_eq_some nth_stream_eq [GOAL] K : Type u_1 inst✝¹ : LinearOrderedField K v : K n : β„• inst✝ : FloorRing K nth_stream_eq_none : IntFractPair.stream v n = none ⊒ v = convergents (of v) (n - 1) [PROOFSTEP] induction n with | zero => contradiction -- IntFractPair.stream v 0 β‰  none | succ n IH => let g := of v change v = g.convergents n have : IntFractPair.stream v n = none ∨ βˆƒ ifp, IntFractPair.stream v n = some ifp ∧ ifp.fr = 0 := IntFractPair.succ_nth_stream_eq_none_iff.1 nth_stream_eq_none rcases this with (⟨nth_stream_eq_none⟩ | ⟨ifp_n, nth_stream_eq, nth_stream_fr_eq_zero⟩) Β· cases' n with n' Β· contradiction -- IntFractPair.stream v 0 β‰  none Β· have : g.TerminatedAt n' := of_terminatedAt_n_iff_succ_nth_intFractPair_stream_eq_none.2 nth_stream_eq_none have : g.convergents (n' + 1) = g.convergents n' := convergents_stable_of_terminated n'.le_succ this rw [this] exact IH nth_stream_eq_none Β· simpa [nth_stream_fr_eq_zero, compExactValue] using compExactValue_correctness_of_stream_eq_some nth_stream_eq [GOAL] case zero K : Type u_1 inst✝¹ : LinearOrderedField K v : K n : β„• inst✝ : FloorRing K nth_stream_eq_none : IntFractPair.stream v Nat.zero = none ⊒ v = convergents (of v) (Nat.zero - 1) [PROOFSTEP] | zero => contradiction -- IntFractPair.stream v 0 β‰  none [GOAL] case zero K : Type u_1 inst✝¹ : LinearOrderedField K v : K n : β„• inst✝ : FloorRing K nth_stream_eq_none : IntFractPair.stream v Nat.zero = none ⊒ v = convergents (of v) (Nat.zero - 1) [PROOFSTEP] contradiction -- IntFractPair.stream v 0 β‰  none [GOAL] case succ K : Type u_1 inst✝¹ : LinearOrderedField K v : K n✝ : β„• inst✝ : FloorRing K n : β„• IH : IntFractPair.stream v n = none β†’ v = convergents (of v) (n - 1) nth_stream_eq_none : IntFractPair.stream v (Nat.succ n) = none ⊒ v = convergents (of v) (Nat.succ n - 1) [PROOFSTEP] | succ n IH => let g := of v change v = g.convergents n have : IntFractPair.stream v n = none ∨ βˆƒ ifp, IntFractPair.stream v n = some ifp ∧ ifp.fr = 0 := IntFractPair.succ_nth_stream_eq_none_iff.1 nth_stream_eq_none rcases this with (⟨nth_stream_eq_none⟩ | ⟨ifp_n, nth_stream_eq, nth_stream_fr_eq_zero⟩) Β· cases' n with n' Β· contradiction -- IntFractPair.stream v 0 β‰  none Β· have : g.TerminatedAt n' := of_terminatedAt_n_iff_succ_nth_intFractPair_stream_eq_none.2 nth_stream_eq_none have : g.convergents (n' + 1) = g.convergents n' := convergents_stable_of_terminated n'.le_succ this rw [this] exact IH nth_stream_eq_none Β· simpa [nth_stream_fr_eq_zero, compExactValue] using compExactValue_correctness_of_stream_eq_some nth_stream_eq [GOAL] case succ K : Type u_1 inst✝¹ : LinearOrderedField K v : K n✝ : β„• inst✝ : FloorRing K n : β„• IH : IntFractPair.stream v n = none β†’ v = convergents (of v) (n - 1) nth_stream_eq_none : IntFractPair.stream v (Nat.succ n) = none ⊒ v = convergents (of v) (Nat.succ n - 1) [PROOFSTEP] let g := of v [GOAL] case succ K : Type u_1 inst✝¹ : LinearOrderedField K v : K n✝ : β„• inst✝ : FloorRing K n : β„• IH : IntFractPair.stream v n = none β†’ v = convergents (of v) (n - 1) nth_stream_eq_none : IntFractPair.stream v (Nat.succ n) = none g : GeneralizedContinuedFraction K := of v ⊒ v = convergents (of v) (Nat.succ n - 1) [PROOFSTEP] change v = g.convergents n [GOAL] case succ K : Type u_1 inst✝¹ : LinearOrderedField K v : K n✝ : β„• inst✝ : FloorRing K n : β„• IH : IntFractPair.stream v n = none β†’ v = convergents (of v) (n - 1) nth_stream_eq_none : IntFractPair.stream v (Nat.succ n) = none g : GeneralizedContinuedFraction K := of v ⊒ v = convergents g n [PROOFSTEP] have : IntFractPair.stream v n = none ∨ βˆƒ ifp, IntFractPair.stream v n = some ifp ∧ ifp.fr = 0 := IntFractPair.succ_nth_stream_eq_none_iff.1 nth_stream_eq_none [GOAL] case succ K : Type u_1 inst✝¹ : LinearOrderedField K v : K n✝ : β„• inst✝ : FloorRing K n : β„• IH : IntFractPair.stream v n = none β†’ v = convergents (of v) (n - 1) nth_stream_eq_none : IntFractPair.stream v (Nat.succ n) = none g : GeneralizedContinuedFraction K := of v this : IntFractPair.stream v n = none ∨ βˆƒ ifp, IntFractPair.stream v n = some ifp ∧ ifp.fr = 0 ⊒ v = convergents g n [PROOFSTEP] rcases this with (⟨nth_stream_eq_none⟩ | ⟨ifp_n, nth_stream_eq, nth_stream_fr_eq_zero⟩) [GOAL] case succ.inl K : Type u_1 inst✝¹ : LinearOrderedField K v : K n✝ : β„• inst✝ : FloorRing K n : β„• IH : IntFractPair.stream v n = none β†’ v = convergents (of v) (n - 1) nth_stream_eq_none✝ : IntFractPair.stream v (Nat.succ n) = none g : GeneralizedContinuedFraction K := of v nth_stream_eq_none : IntFractPair.stream v n = none ⊒ v = convergents g n [PROOFSTEP] cases' n with n' [GOAL] case succ.inl.zero K : Type u_1 inst✝¹ : LinearOrderedField K v : K n : β„• inst✝ : FloorRing K g : GeneralizedContinuedFraction K := of v IH : IntFractPair.stream v Nat.zero = none β†’ v = convergents (of v) (Nat.zero - 1) nth_stream_eq_none✝ : IntFractPair.stream v (Nat.succ Nat.zero) = none nth_stream_eq_none : IntFractPair.stream v Nat.zero = none ⊒ v = convergents g Nat.zero [PROOFSTEP] contradiction -- IntFractPair.stream v 0 β‰  none [GOAL] case succ.inl.succ K : Type u_1 inst✝¹ : LinearOrderedField K v : K n : β„• inst✝ : FloorRing K g : GeneralizedContinuedFraction K := of v n' : β„• IH : IntFractPair.stream v (Nat.succ n') = none β†’ v = convergents (of v) (Nat.succ n' - 1) nth_stream_eq_none✝ : IntFractPair.stream v (Nat.succ (Nat.succ n')) = none nth_stream_eq_none : IntFractPair.stream v (Nat.succ n') = none ⊒ v = convergents g (Nat.succ n') [PROOFSTEP] have : g.TerminatedAt n' := of_terminatedAt_n_iff_succ_nth_intFractPair_stream_eq_none.2 nth_stream_eq_none [GOAL] case succ.inl.succ K : Type u_1 inst✝¹ : LinearOrderedField K v : K n : β„• inst✝ : FloorRing K g : GeneralizedContinuedFraction K := of v n' : β„• IH : IntFractPair.stream v (Nat.succ n') = none β†’ v = convergents (of v) (Nat.succ n' - 1) nth_stream_eq_none✝ : IntFractPair.stream v (Nat.succ (Nat.succ n')) = none nth_stream_eq_none : IntFractPair.stream v (Nat.succ n') = none this : TerminatedAt g n' ⊒ v = convergents g (Nat.succ n') [PROOFSTEP] have : g.convergents (n' + 1) = g.convergents n' := convergents_stable_of_terminated n'.le_succ this [GOAL] case succ.inl.succ K : Type u_1 inst✝¹ : LinearOrderedField K v : K n : β„• inst✝ : FloorRing K g : GeneralizedContinuedFraction K := of v n' : β„• IH : IntFractPair.stream v (Nat.succ n') = none β†’ v = convergents (of v) (Nat.succ n' - 1) nth_stream_eq_none✝ : IntFractPair.stream v (Nat.succ (Nat.succ n')) = none nth_stream_eq_none : IntFractPair.stream v (Nat.succ n') = none this✝ : TerminatedAt g n' this : convergents g (n' + 1) = convergents g n' ⊒ v = convergents g (Nat.succ n') [PROOFSTEP] rw [this] [GOAL] case succ.inl.succ K : Type u_1 inst✝¹ : LinearOrderedField K v : K n : β„• inst✝ : FloorRing K g : GeneralizedContinuedFraction K := of v n' : β„• IH : IntFractPair.stream v (Nat.succ n') = none β†’ v = convergents (of v) (Nat.succ n' - 1) nth_stream_eq_none✝ : IntFractPair.stream v (Nat.succ (Nat.succ n')) = none nth_stream_eq_none : IntFractPair.stream v (Nat.succ n') = none this✝ : TerminatedAt g n' this : convergents g (n' + 1) = convergents g n' ⊒ v = convergents g n' [PROOFSTEP] exact IH nth_stream_eq_none [GOAL] case succ.inr.intro.intro K : Type u_1 inst✝¹ : LinearOrderedField K v : K n✝ : β„• inst✝ : FloorRing K n : β„• IH : IntFractPair.stream v n = none β†’ v = convergents (of v) (n - 1) nth_stream_eq_none : IntFractPair.stream v (Nat.succ n) = none g : GeneralizedContinuedFraction K := of v ifp_n : IntFractPair K nth_stream_eq : IntFractPair.stream v n = some ifp_n nth_stream_fr_eq_zero : ifp_n.fr = 0 ⊒ v = convergents g n [PROOFSTEP] simpa [nth_stream_fr_eq_zero, compExactValue] using compExactValue_correctness_of_stream_eq_some nth_stream_eq [GOAL] K : Type u_1 inst✝¹ : LinearOrderedField K v : K n : β„• inst✝ : FloorRing K terminates : Terminates (of v) ⊒ βˆ€αΆ  (n : β„•) in atTop, v = convergents (of v) n [PROOFSTEP] rw [eventually_atTop] [GOAL] K : Type u_1 inst✝¹ : LinearOrderedField K v : K n : β„• inst✝ : FloorRing K terminates : Terminates (of v) ⊒ βˆƒ a, βˆ€ (b : β„•), b β‰₯ a β†’ v = convergents (of v) b [PROOFSTEP] obtain ⟨n, terminated_at_n⟩ : βˆƒ n, (of v).TerminatedAt n [GOAL] K : Type u_1 inst✝¹ : LinearOrderedField K v : K n : β„• inst✝ : FloorRing K terminates : Terminates (of v) ⊒ βˆƒ n, TerminatedAt (of v) n case intro K : Type u_1 inst✝¹ : LinearOrderedField K v : K n✝ : β„• inst✝ : FloorRing K terminates : Terminates (of v) n : β„• terminated_at_n : TerminatedAt (of v) n ⊒ βˆƒ a, βˆ€ (b : β„•), b β‰₯ a β†’ v = convergents (of v) b [PROOFSTEP] exact terminates [GOAL] case intro K : Type u_1 inst✝¹ : LinearOrderedField K v : K n✝ : β„• inst✝ : FloorRing K terminates : Terminates (of v) n : β„• terminated_at_n : TerminatedAt (of v) n ⊒ βˆƒ a, βˆ€ (b : β„•), b β‰₯ a β†’ v = convergents (of v) b [PROOFSTEP] use n [GOAL] case h K : Type u_1 inst✝¹ : LinearOrderedField K v : K n✝ : β„• inst✝ : FloorRing K terminates : Terminates (of v) n : β„• terminated_at_n : TerminatedAt (of v) n ⊒ βˆ€ (b : β„•), b β‰₯ n β†’ v = convergents (of v) b [PROOFSTEP] intro m m_geq_n [GOAL] case h K : Type u_1 inst✝¹ : LinearOrderedField K v : K n✝ : β„• inst✝ : FloorRing K terminates : Terminates (of v) n : β„• terminated_at_n : TerminatedAt (of v) n m : β„• m_geq_n : m β‰₯ n ⊒ v = convergents (of v) m [PROOFSTEP] rw [convergents_stable_of_terminated m_geq_n terminated_at_n] [GOAL] case h K : Type u_1 inst✝¹ : LinearOrderedField K v : K n✝ : β„• inst✝ : FloorRing K terminates : Terminates (of v) n : β„• terminated_at_n : TerminatedAt (of v) n m : β„• m_geq_n : m β‰₯ n ⊒ v = convergents (of v) n [PROOFSTEP] exact of_correctness_of_terminatedAt terminated_at_n
Require Import GenGraph. Require Import fintype. Require Import SetoidList List. Require Import FunctionalExtensionality. Ltac in_inv := simpl in *; match goal with | H : InA ?eq ?elt nil |- _ => inversion H | H : InA ?eq ?x (?h::?t) |- _ => inversion H; subst end. Ltac solve_InA_In := match goal with | H : InA eq ?x ?l |- In ?x ?l => apply In_InAeq_iff; auto | H : In ?x ?l |- InA eq ?x ?l => apply In_InAeq_iff; auto end. Lemma equivlistAeq_refl : forall A eqA (a : list A) , Equivalence eqA -> equivlistA eqA a a. Proof. split; intros; auto. Qed. Ltac rewrite_equiv := match goal with | H : equivlistA eq ?s ?s' |- _ => rewrite H in * | H : equivlistA eq (_::?s) nil |- _ => apply equivlistA_cons_nil in H; [exfalso; exact H |typeclasses eauto] | |- equivlistA eq ?a ?a => apply equivlistAeq_refl; try typeclasses eauto end. Hint Extern 1 => in_inv : equiv. Hint Extern 1 => rewrite_equiv; auto : equiv. Hint Extern 1 => solve_InA_In : equiv. Hint Constructors InA. Section AllMIS. Variable T : Type. Variable Tdec : forall t1 t2 : T, {t1 = t2} + {t1 <> t2}. Lemma map_InA_cons : forall s' a s, InA (equivlistA eq) s' (map (fun l1 : list T => a :: l1) s) -> InA eq a s'. Proof. intros. { induction s; simpl in H; auto with equiv. } Qed. Lemma inA_map_iff: forall (A B : Type) (f : A -> B) (l : list A) (y : B) (eqB : relation B) (eqA : relation A), (* (forall a, Proper (eqA ==> flip impl) (eq (f a))) -> *) Proper (eqA ==> eqB) f -> Equivalence eqA -> Equivalence eqB -> InA eqB y (map f l) <-> (exists x : A, eqB (f x) y /\ InA eqA x l). Proof. intros A B f l y eqB eqA Hprop Aeq Beq. split; intros H0. { induction l; eauto with equiv. + simpl in H0. inversion H0. { subst. exists a. split; auto. { apply eqasym; auto with equiv. } { left; auto. apply Aeq. (* apply IHl in H1; eauto. *) (* destruct H2; eauto. *) (* exists x; eauto. *) (* intuition. *) } } { subst. apply IHl in H1; eauto. destruct H1; eauto. exists x; eauto. intuition. } } { induction l; eauto with equiv. { simpl in *. destruct H0; intuition. } { simpl. destruct H0. destruct H; auto. inversion H0; subst; eauto. left. rewrite <- H2. apply Beq; auto. } } Qed. Lemma remove_NotIn_Id : forall a x, ~InA eq a x -> remove Tdec a (a :: x) = x. intros a0 x Hnot. simpl. destruct Tdec; subst; auto. { { induction x; auto with equiv. simpl. destruct Tdec; subst; auto with equiv. exfalso; auto. rewrite IHx; auto. } } { contradiction. } Qed. Lemma equivlistA_remove : forall a x s' s, equivlistA eq (a :: x) s' -> InA eq x s -> ~ InA eq a x -> equivlistA eq x (remove Tdec a s'). Proof. intros. replace (remove Tdec a s') with (removeA Tdec a s') by (unfold removeA; auto). apply removeA_equivlistA; auto; typeclasses eauto. Qed. Lemma InAeq_InAequivlistA : forall A (x : list A) (s : list (list A)), InA eq x s -> InA (equivlistA eq) x s. Proof. induction s; intros; auto with equiv. Qed. Lemma map_cons : forall (s' : list T) (a : T) (s : list (list T)), InA (equivlistA eq) s' (map (fun l1 : list T => a :: l1) s) <-> InA eq a s' /\ (InA (equivlistA eq) s' s \/ InA (equivlistA eq) (remove Tdec a s') s). Proof. intros. split; intros; auto. { split. { eapply map_InA_cons; eauto. } { rewrite inA_map_iff in H; try typeclasses eauto; auto. destruct H. destruct H; subst. destruct (InA_dec Tdec a x). { left. rewrite <- H. induction s; [inversion H0| ]. inversion H0; subst. auto with equiv. left; auto. rewrite H. { split; intros; auto with equiv. { rewrite <- H in H1. inversion H1; subst; auto. } { rewrite <- H; auto. } } auto with equiv. } { assert (equivlistA eq x (remove Tdec a s')) by (eapply equivlistA_remove; eauto). right. rewrite <- H1. clear -H0. apply InAeq_InAequivlistA; auto. } } } { destruct H. destruct H0. { apply inA_map_iff with (eqA := (equivlistA eq)) ; try typeclasses eauto. { do 2 red; intros. rewrite H1; auto with equiv. } exists s'. split; auto. { split; intros; auto with equiv. } } apply inA_map_iff with (eqA := (equivlistA eq)); try typeclasses eauto. { do 2 red; intros; rewrite H1; auto with equiv. } { exists (remove Tdec a s'). split; auto with equiv. clear - H. { replace (remove Tdec a s') with (removeA Tdec a s') by (unfold removeA; auto). destruct (InA_dec Tdec a s'). { split; intros; auto with equiv. { inversion H0; subst; auto with equiv. + apply removeA_InA in H2; try typeclasses eauto. destruct H2. auto. } { destruct (Tdec x a); subst; auto. right. apply removeA_InA; try typeclasses eauto. split; auto with equiv. } } { split; intros; auto with equiv. { inversion H0; subst; auto with equiv. + apply removeA_InA in H2; try typeclasses eauto. destruct H2. contradiction. } { right. apply removeA_InA; try typeclasses eauto. split; auto. } } } } } Qed. Lemma all_subsets_list_subset : forall (l l0 : list T), InA (equivlistA eq) l0 (fintype.all_subsets l) <-> (forall x, InA eq x l0 -> InA eq x l). Proof. intros. generalize dependent l0. induction l. { split; intros. { simpl in H. inversion H; subst; try rewrite H2 in H0. inversion H0. inversion H2. } destruct l0. simpl; left; auto. { constructor; intros; auto. } assert (InA eq t nil). apply H; left; auto. inversion H0. } intros. simpl. rewrite InA_app_iff. rewrite map_cons. do 2 rewrite IHl. split; intros. { intuition. destruct (Tdec x a). subst; auto with equiv. right. apply H1. rewrite In_InAeq_iff. apply remove_mem; intuition. } { destruct (InA_dec Tdec a l0); auto with equiv. { right. intuition. { right. intros. auto with equiv. apply In_InAeq_iff in H0. apply remove_mem in H0. destruct H0; auto with equiv. simpl in *. apply In_InAeq_iff in H0. apply H in H0. inversion H0; intuition. } } { clear - H n. left. intros. destruct (Tdec x a). subst. contradiction. apply H in H0. inversion H0. subst. contradiction. auto. } } Qed. Hint Constructors NoDup. Hint Constructors NoDupA. Lemma NoDupA_map : forall a l, (forall sub : list T, InA (equivlistA eq) sub l -> ~ InA eq a sub) -> NoDupA (equivlistA eq) l -> NoDupA (equivlistA eq) (map (fun l0 : list T => a :: l0) l). Proof. intros. induction H0. simpl in *. auto. { simpl. constructor; auto. intros Hnot. rewrite inA_map_iff in Hnot; try typeclasses eauto; eauto. destruct Hnot. destruct H2. clear IHNoDupA. assert (~ InA eq a x). { apply H; left; auto. apply equivlistAeq_refl; try typeclasses eauto. } assert (~ InA eq a x0). { apply H. right; auto. apply InAeq_InAequivlistA; auto. } assert (equivlistA eq x0 x). { red in H2. split; intros; eauto. + assert (InA eq x1 (a :: x)). apply H2; auto. inversion H7; subst; eauto. contradiction. + assert (InA eq x1 (a :: x0)). apply H2; auto. inversion H7; subst; eauto. contradiction. } apply H0. rewrite<- H6. apply InAeq_InAequivlistA; auto. } Qed. Lemma no_dups_powerset : forall (A : Type) (l: list T), NoDup l -> NoDupA (equivlistA eq) (fintype.all_subsets l). Proof. intros. pose proof (map_cons). assert (forall l (a : T) (s : list (list T)), InA (equivlistA eq) l (map (fun l1 : list T => a :: l1) s) -> InA eq a l /\ (InA (equivlistA eq) l s \/ InA (equivlistA eq) (remove Tdec a l) s)). intros. apply H0; auto. clear H0. induction l. simpl. apply NoDupA_singleton. simpl. apply SetoidList.NoDupA_app; try typeclasses eauto; eauto. { apply IHl; auto. inversion H; subst; auto. } { inversion H; subst. apply IHl in H4. apply NoDupA_map; auto. intros. clear -H3 H0 Tdec. induction l. simpl in H0. inversion H0; subst; auto with equiv. { rewrite all_subsets_list_subset in H0. intros Hnot. apply H0 in Hnot. apply In_InAeq_iff in Hnot. contradiction. } } { inversion H; subst. intros. apply map_cons in H2. destruct H2; eauto. destruct H5; eauto. { rewrite all_subsets_list_subset in H0. assert (InA eq a l) by auto. apply In_InAeq_iff in H6. contradiction. } { rewrite all_subsets_list_subset in H0. assert (InA eq a l). auto. apply In_InAeq_iff in H6; eauto. } } Qed. Definition Teq (t1 t2 : T) := match Tdec t1 t2 with | left _ => true | right _ => false end. Require Import Bool. Definition list_mem (x : T) (l : list T) : bool := existsb (fun elt => if Tdec elt x then true else false) l. Definition IndependentProg (G : @GenGraph T) (x : list T) : bool := forallb (fun v1 => (forallb (fun v2 => negb (existsb (fun edge => Teq (fst edge) v1 && Teq (snd edge) v2) (gE _ G))) x)) x. Definition ValidSetProg (G : @GenGraph T) (x : list T) := forallb (fun elt => list_mem elt (gV _ G)) x. Definition MaximalIndSetProg (G : @GenGraph T) (x : list T) : bool := (ValidSetProg G x) && (IndependentProg G x) && (forallb (fun v1 => if negb (list_mem v1 x) then (existsb (fun edge => Teq (fst edge) v1 && Teq v1 (fst edge) && (list_mem (snd edge) x) && (list_mem (snd edge) (gV T G))) (gE _ G)) else true) (gV _ G)). (* forall x y : T, In x l -> In y l -> ~ In (x, y) (gE T G) *) (* IndSet_E G l -> *) (* (forall x : T, *) (* In x (gV T G) -> *) (* ~ In x l -> *) (* exists y : T, *) (* In y (gV T G) /\ In y l /\ In (x, y) (gE T G)) -> *) (* MaximalIndSet_E G l *) Lemma list_mem_In : forall x1 x, In x1 x <-> list_mem x1 x = true. Proof. split; intros. { unfold list_mem. apply existsb_exists. exists x1; intuition. destruct Tdec; subst; auto. } { unfold list_mem in H. apply existsb_exists in H. destruct H. destruct H; auto. destruct Tdec; subst; auto. discriminate. } Qed. Lemma forallb_false1 (f: T -> bool) (l: list T) : forallb f l = false -> (exists x: T, In x l /\ f x = false). Proof. induction l. { inversion 1. } simpl. rewrite andb_false_iff. intros H. destruct H. { exists a; split; auto. } destruct (IHl H) as [x [H3 H4]]. exists x; split; auto. Qed. Lemma forallb_false2 (f: T -> bool) (l: list T) : (exists x: T, In x l /\ f x = false) -> forallb f l = false. Proof. induction l. { intros [x [A B]]. inversion A. } intros [x [A B]]. simpl. inversion A. { subst. rewrite B; auto. } rewrite andb_false_iff; right. apply IHl. exists x. split; auto. Qed. Lemma forallb_false (f: T -> bool) (l: list T) : forallb f l = false <-> (exists x: T, In x l /\ f x = false). Proof. split. apply forallb_false1. apply forallb_false2. Qed. Lemma forallb_equivlistA (f: T -> bool) (l1 l2: list T) (H: equivlistA eq l1 l2) : forallb f l1 = forallb f l2. Proof. destruct (forallb f l2) eqn:H2. { rewrite forallb_forall; intros x Hin. { destruct (H x) as [A B]. rewrite forallb_forall in H2. apply H2; auto. rewrite <-In_InAeq_iff; apply A; rewrite In_InAeq_iff; auto. }} rewrite forallb_false in H2. destruct H2 as [x [Hin H3]]. rewrite forallb_false. exists x; split; auto. destruct (H x); rewrite <-In_InAeq_iff; apply H1; rewrite In_InAeq_iff; auto. Qed. Lemma existsb_demorgan (A: Type) (f: A -> bool) (l: list A) : existsb f l = negb (forallb (fun x => negb (f x)) l). Proof. induction l; auto. simpl. rewrite negb_andb, negb_involutive. f_equal. rewrite IHl; auto. Qed. Lemma existsb_equivlistA (f: T -> bool) (l1 l2: list T) (H: equivlistA eq l1 l2) : existsb f l1 = existsb f l2. Proof. do 2 rewrite existsb_demorgan. f_equal. apply forallb_equivlistA; auto. Qed. Lemma Teq_refl (x: T): Teq x x = true. Proof. unfold Teq. destruct (Tdec x x); auto. Qed. Lemma Teq_eq (x y: T): Teq x y = true -> x=y. Proof. unfold Teq. destruct (Tdec x y); auto. inversion 1. Qed. Lemma MaxProg_iff :forall G x, MaximalIndSetProg G x = true <-> MaximalIndSet_E G x. Proof. split; intros. unfold MaximalIndSetProg in H. unfold IndependentProg in H. destruct G. simpl in *. rewrite andb_true_iff in H. rewrite andb_true_iff in H. do 2 destruct H. unfold ValidSetProg in H. rewrite forallb_forall in H0,H,H1. induction gV; simpl in *; auto. { constructor; eauto. { constructor; auto. { red; intros. simpl in *. apply H in H2; discriminate. } { red; intros. simpl. intros Hnot. apply gE_subset_l in Hnot. exact Hnot. } } { intros. simpl in *. inversion H2. } } { constructor. { constructor. { red; intros. simpl. specialize (H _ H2). destruct (Tdec a x0). { subst; auto. } rewrite orb_false_l in H. unfold list_mem in H. rewrite existsb_exists in H. destruct H as [y [Hx Hy]]. right. destruct (Tdec y x0). { subst; auto. } inversion Hy. } red; intros. simpl. intros Hnot. specialize (gE_subset_l _ _ Hnot). generalize (H _ H2). generalize (H _ H3). destruct gE_subset_l. { subst. destruct (Tdec x0 x0); intros A B; try inversion B. clear B. destruct (Tdec x0 y). { clear A. subst. eapply gE_irref; eauto. } rewrite orb_false_l in A. unfold list_mem in A. rewrite existsb_exists in A. destruct A as [z [Hz1 Hz2]]. destruct (Tdec z y); try inversion Hz2. subst. clear Hz2. clear e. generalize (H1 _ H2). generalize (H1 _ H3). do 2 rewrite forallb_forall. intros A B. specialize (A _ H2). specialize (B _ H3). rewrite negb_true_iff in A, B. clear A. assert (B' : existsb (fun edge : T * T => Teq (fst edge) x0 && Teq (snd edge) y) gE = true). { rewrite existsb_exists. exists (x0,y). split; auto. simpl. rewrite andb_true_iff. split. unfold Teq; destruct (Tdec _ _); auto. unfold Teq; destruct (Tdec _ _); auto. } rewrite B' in B; congruence. apply n; auto. } generalize (H1 _ H2). intros A. generalize (H1 _ H3). intros B. rewrite forallb_forall in A, B. specialize (A _ H3). rewrite existsb_demorgan, negb_involutive, forallb_forall in A. specialize (A (x0,y) Hnot). simpl in A. rewrite negb_true_iff in A. rewrite andb_false_iff in A. exfalso. destruct A as [A|A]; rewrite Teq_refl in A; congruence. } simpl. intros x0 [A|A]; intros B. { subst. specialize (H0 x0 (or_introl _ eq_refl)). assert (C: negb (list_mem x0 x) = true). { unfold list_mem; rewrite existsb_demorgan, negb_involutive, forallb_forall. intros x1 Hin. destruct (Tdec x1 x0); auto. subst. exfalso; apply B; auto. } rewrite C in H0. rewrite existsb_exists in H0. destruct H0 as [[a b] [X Y]]. simpl in Y. do 3 rewrite andb_true_iff in Y. destruct Y as [[[Z1 Z2] Y1b] Y2]. apply Teq_eq in Z1. apply Teq_eq in Z2. subst. clear Z2. exists b. split. { right. destruct (gE_subset_l _ _ (gE_symm _ _ X)); auto. subst. exfalso; apply (gE_irref _ X). } split; auto. unfold list_mem in Y1b. rewrite existsb_exists in Y1b. destruct Y1b as [xx [Q R]]. destruct (Tdec xx b). subst. auto. congruence. } { specialize (H0 x0 (or_intror _ A)). assert (C: negb (list_mem x0 x) = true). { unfold list_mem; rewrite existsb_demorgan, negb_involutive, forallb_forall. intros x1 Hin. destruct (Tdec x1 x0); auto. subst. exfalso; apply B; auto. } rewrite C in H0. rewrite existsb_exists in H0. destruct H0 as [[aa b] [X Y]]. simpl in Y. do 3 rewrite andb_true_iff in Y. destruct Y as [[[Z1 Z2] Y1b] Y2]. apply Teq_eq in Z1. apply Teq_eq in Z2. subst. clear Z2. exists b. split. { apply (gE_subset_l _ _ (gE_symm _ _ X)). } split; auto. unfold list_mem in Y1b. rewrite existsb_exists in Y1b. destruct Y1b as [xx [Q R]]. destruct (Tdec xx b). subst. auto. congruence. } } inversion H. unfold MaximalIndSetProg. destruct G; simpl in *. do 2 rewrite andb_true_iff. split. { split. { unfold ValidSetProg. rewrite forallb_forall. intros. inversion H0. red in H3. apply H3 in H2. clear -H2. simpl in *. unfold list_mem. apply existsb_exists; auto. exists x0. split; auto. destruct Tdec; subst; auto. } { unfold IndependentProg. rewrite forallb_forall. intros. rewrite forallb_forall. intros. simpl. inversion H0. red in H5. clear -H5 H2 H3. simpl in H5. specialize (H5 x0 x1 H2 H3). destruct ((existsb (fun edge : T * T => Teq (fst edge) x0 && Teq (snd edge) x1) gE)) eqn:N. { rewrite existsb_exists in N. destruct N; auto. destruct H. rewrite andb_true_iff in H0. destruct H0. unfold Teq in *. destruct (Tdec (fst x2) x0); subst; auto. destruct (Tdec (snd x2) x1); subst; auto. exfalso. apply H5. destruct x2; auto. } { auto. } } } { rewrite forallb_forall. intros. destruct (negb (list_mem x0 x)) eqn:N; auto. unfold negb in N. unfold list_mem in N. destruct (existsb (fun elt : T => if Tdec elt x0 then true else false) x) eqn:Hn. { discriminate. } assert ( ~ In x0 x). { clear -Hn. intros Hnot. assert ((exists x' , In x' x /\ (if Tdec x' x0 then true else false) = true)). exists x0. split; auto. { destruct Tdec; subst; auto. } apply existsb_exists in H. rewrite Hn in H. discriminate. } { apply H1 in H3; auto. { clear -H3. apply existsb_exists. destruct H3. exists (x0,x1). simpl. intuition. unfold Teq. destruct (Tdec x0 x0); subst; simpl; auto. apply list_mem_In in H. apply list_mem_In in H0. rewrite H0,H. auto. } } } Qed. Definition AllMIS (G : @GenGraph T) := filter (fun x => MaximalIndSetProg G x) (fintype.all_subsets (gV _ G)). Lemma MaximalIndSetProg_equivlistA (G : GenGraph T) (x : list T) (H : MaximalIndSet_E G x) (x0 y : list T) (H0 : equivlistA eq x0 y) : MaximalIndSetProg G x0 = MaximalIndSetProg G y. Proof. unfold MaximalIndSetProg. f_equal. { f_equal. { unfold ValidSetProg. apply forallb_equivlistA; auto. } unfold IndependentProg. rewrite (forallb_equivlistA _ x0 y); auto. f_equal. apply functional_extensionality; intros x1. rewrite (forallb_equivlistA _ x0 y); auto. } f_equal. apply functional_extensionality; intros x1. unfold list_mem. rewrite (existsb_equivlistA _ x0 y); auto. destruct (negb _); auto. f_equal. apply functional_extensionality; intros x2. f_equal. f_equal. apply existsb_equivlistA; auto. Qed. Lemma AllMIS_spec : forall G, MIS_set_gGraph G (AllMIS G). Proof. unfold AllMIS. constructor. intros. apply filter_In in H. destruct H. apply MaxProg_iff. auto. apply filter_NoDupA. assert (NoDup (gV T G)). { destruct G; auto. } { apply no_dups_powerset in H; auto. } intros. apply filter_InA. { red. red. intros. eapply MaximalIndSetProg_equivlistA; eauto. } split. { destruct G. simpl in *. assert (forall x0 : T, In x0 x -> In x0 gV). { inversion H; intuition; simpl in *; subst. inversion H0; subst. simpl in *. unfold valid_E in H3. simpl in *. clear -H3 H2. apply H3. auto. } apply all_subsets_list_subset; auto. intros. rewrite In_InAeq_iff. apply H0; auto. apply In_InAeq_iff. auto. } { apply MaxProg_iff; auto. } Qed. Lemma MIS_exists : forall G, exists (l : list (list T)), MIS_set_gGraph G l. Proof. intros. exists (AllMIS G). apply AllMIS_spec. Qed. End AllMIS.
function [ beta ] =upadte_beta( H,W,K,grt) Hc=H*W; He=abs(Hc).^2; %% update beta beta=zeros(1,K); for k0=1:K tmp=Hc(k0,:); tmpe=He(k0,:); beta(k0)=sqrt(grt(k0))*tmp(k0)/(sum(tmpe)+1); end end
#--- #title: "Analyzing Age structures in IC" #author: "Youen Vermard" #date: '`r date()`' #output: pdf_document #--- #### ONLY PIECE TO BE CHANGED working directories wd <- "~/git/ices-dk/interCatchSummary/" output_wd <- "~/git/ices-dk/interCatchSummary/" #This documet uses Table 2 from CatchAndSampleDataTables.txt from the InterCatch outputs to describe the raising procedures that were made. ### libraries library(data.table) library(gplots) library(pander);library(captioner) library(lattice) #initialise les fonctions pour lΓ©gender tables et figures ### read the data test <- scan(paste(wd,"CatchAndSampleDataTables.txt",sep=""),what='character',sep='\t') table2 <- test[(which(test=="TABLE 2.")+3):length(test)] tmp<-table2[-c(1:56)] table2_bis<-data.frame(matrix(tmp,ncol=27,byrow=T), stringsAsFactors =F) colnames(table2_bis) <- table2[1:27] table2_bis <- data.table(table2_bis) table2_bis <- table2_bis[,CATON:=as.numeric(as.character(CATON))] table2_bis <- table2_bis[,CANUM:=as.numeric(as.character(CANUM))] table2_bis <- table2_bis[,WECA:=as.numeric(as.character(WECA))] table2_bis <- table2_bis[,AgeOrLength:=as.numeric(as.character(AgeOrLength))] table2_bis <- table2_bis[,Area:=as.factor(Area)] table2_bis <- table2_bis[,Fleet:=factor(Fleet)] table2_bis <- table2_bis[,Season:=factor(Season)] table2_bis <- table2_bis[,Country:=factor(Country)] table2_bis <- table2_bis[,id:=paste(Stock,Country,Area,Season,Fleet)] table2_bis[Area=="IIIaN ",'Area'] <- "IIIaN" colnames(table2_bis)[colnames(table2_bis)=='CATONRaisedOrImported'] <- 'RaisedOrImported' ## simple stats on imported data SummaryReport <- table2_bis[,list(CATON=sum(CANUM*WECA)/1000000), by=c('CatchCategory','RaisedOrImported')] SummaryReport <- SummaryReport[, perc:=round(CATON/sum(CATON)*100), by='CatchCategory'] SummaryReport <- SummaryReport[order(CatchCategory),] SOP <- table2_bis[,list(SOP=sum(CANUM*WECA)/1000, CATON=sum(unique(CATON))), by=c('CatchCategory')] SOP <-SOP[,list(SOP=SOP/CATON), by=c('CatchCategory')] SampledOrEstimated <- table2_bis[,list(CATON=sum(CANUM*WECA/1000000)), by=c('CatchCategory','RaisedOrImported','SampledOrEstimated')] SampledOrEstimated <- SampledOrEstimated[, perc:=round(CATON/sum(CATON)*100), by='CatchCategory'] SampledOrEstimated <- SampledOrEstimated[order(CatchCategory, perc, decreasing=T),] SampledOrEstimatedArea <- table2_bis[,list(CATON=sum(CANUM*WECA/1000000)), by=c('CatchCategory','RaisedOrImported','SampledOrEstimated','Area')] SampledOrEstimatedArea <- SampledOrEstimatedArea[, perc:=round(CATON/sum(CATON)*100), by=c('CatchCategory','Area')] SampledOrEstimatedArea <- SampledOrEstimatedArea[order(Area, CatchCategory,perc, decreasing=T),] ### landings with associated discards landingsWithAssociatedDiscards <- table2_bis[,list(CATON=sum(CANUM*WECA/1000000)), by=c('id','RaisedOrImported','CatchCategory')] tmp <- landingsWithAssociatedDiscards[(RaisedOrImported=="Imported_Data" & CatchCategory=="Discards") , id] landingsWithAssociatedDiscards <- landingsWithAssociatedDiscards[id%in%tmp & CatchCategory=="Landings", sum(CATON)]/table2_bis[CatchCategory=="Landings",sum(CANUM*WECA/1000000)] ## summary of the catch per gear table2_bis <- table2_bis[, Gear:=substr(table2_bis$Fleet,1,3)] summCatchPerGear <- table2_bis[, list(sumCatch=sum(CANUM*WECA/1000000)), by=c('Stock','Gear')] summCatchPerGear <- summCatchPerGear[, percCatch:=sumCatch/sum(sumCatch)*100, by=c('Stock')] summCatchPerGear <- summCatchPerGear[ order(percCatch,decreasing=T),] ### Age Structure listVAR <- c("CatchCategory",'RaisedOrImported',"SampledOrEstimated","Country","Area","Season","Fleet") ## By Sex listVAR <- c("CatchCategory",'RaisedOrImported',"SampledOrEstimated","Country","Area","Season","Fleet","Sex") #table2_bis <- table2_bis[CANUM>0,] AgeStrucSex <- table2_bis[,meanAge:=weighted.mean(AgeOrLength,CANUM, na.rm=T), by=c(listVAR)] plotFunction <- function(AgeStrucSexLan,Estim,Sampled){ if(unique(AgeStrucSexLan$AgeOrLengthType)=="Lngt") AgeTit <- "Length" else AgeTit <- "Age" plotTitle <- paste("Mean", AgeTit, "in the", catchCat, "by", Var, sep=" ") Formula <-paste('meanAge~',Var, sep="") boxplot(eval(parse(text=Formula)), data=AgeStrucSexLan, boxwex = 0.25, at = which(pos%in%unique(AgeStrucSexLan[,which(colnames(Sampled)==Var)])) + 0.3, col = "red", main = plotTitle, xlab = "", ylab = paste("Mean ",AgeTit, sep=""), xlim = c(0.5, length(unique(AgeStrucSexLan[,which(colnames(Sampled)==Var)]))+.5), ylim = c(min(AgeStrucSexLan$AgeOrLength), max(AgeStrucSexLan$AgeOrLength)), yaxs = "i", xaxt='n') boxplot(eval(parse(text=Formula)), data=Estim, add=TRUE, boxwex = 0.25, at = which(pos%in%unique(Estim[,which(colnames(Sampled)==Var)])), col = "orange") boxplot(eval(parse(text=Formula)), data=Sampled, add=TRUE, boxwex = 0.25, at = which(pos%in%unique(Sampled[,which(colnames(Sampled)==Var)])) - 0.3, col = "yellow", xaxt='n') legend(1, max(AgeStrucSexLan$AgeOrLength), c("Imported", "Raised", "All"), fill = c("yellow", "orange", "red")) } plotFunctionMeanWeight <- function(AgeStrucSexLan=AgeStrucSexLan,Estim=Estim,Sampled=Sampled){ if(unique(AgeStrucSexLan$AgeOrLengthType)=="Lngt") AgeTit <- "Length" else AgeTit <- "Age" plotTitle <- paste("Mean", AgeTit, "in the", catchCat, "by", Var, sep=" ") AgeStrucSexLan <- data.frame(AgeStrucSexLan) AgeStrucSexLan[,which(colnames(AgeStrucSexLan)==Var)] <- factor(AgeStrucSexLan[,which(colnames(AgeStrucSexLan)==Var)]) pos <- levels(AgeStrucSexLan[,which(colnames(AgeStrucSexLan)==Var)]) Estim <- AgeStrucSexLan[which(AgeStrucSexLan$SampledOrEstimated=='Estimated_Distribution'),] Estim[,which(colnames(Estim)==Var)] <- factor(Estim[,which(colnames(Estim)==Var)]) Sampled <- AgeStrucSexLan[which(AgeStrucSexLan$SampledOrEstimated=='Sampled_Distribution'),] Sampled[,which(colnames(Sampled)==Var)] <- factor(Sampled[,which(colnames(Sampled)==Var)]) Formula <-paste('WECA~',Var, sep="") boxplot(eval(parse(text=Formula)), data=AgeStrucSexLan, boxwex = 0.25, at = which(pos%in%unique(AgeStrucSexLan[,which(colnames(Sampled)==Var)])) + 0.3, col = "red", main = plotTitle, xlab = "", ylab = paste("Mean ",AgeTit, sep=""), xlim = c(0.5, length(unique(AgeStrucSexLan[,which(colnames(Sampled)==Var)]))+.5), ylim = c(min(AgeStrucSexLan$WECA), max(AgeStrucSexLan$WECA)), yaxs = "i", xaxt='n') boxplot(eval(parse(text=Formula)), data=Estim, add=TRUE, boxwex = 0.25, at = which(pos%in%unique(Estim[,which(colnames(Sampled)==Var)])), col = "orange") boxplot(eval(parse(text=Formula)), data=Sampled, add=TRUE, boxwex = 0.25, at = which(pos%in%unique(Sampled[,which(colnames(Sampled)==Var)])) - 0.3, col = "yellow", xaxt='n') legend(1, max(AgeStrucSexLan$WECA), c("Imported", "Raised", "All"), fill = c("yellow", "orange", "red")) } ## export SOP table #write.csv(SOP, file=paste0(output_wd,"SOP.csv"), row.names=F) #Raised and imported datas ##Raised discards #In InterCatch, the first step consists in raising the discards volumes for strats with landings and no discards associated. These discards are called in the following table 'Raised_Discards'. The data called 'Imported_Data' are landings or discards volumes imported into InterCatch with or without length/age structure. #The proportion of Landings with Discards associated (same strata) is **`r paste(round(landingsWithAssociatedDiscards*100), 'percent')`** write.csv(c("Landings with discards associated in percent",round(landingsWithAssociatedDiscards*100)), file=paste0(output_wd,"landingsWithAssociatedDiscards.csv"), row.names=F) #The volumes (and associated proportion) of landings and discards imported (Imported_Data) or raised (Raised_Discards) are described in the following table. write.csv(SummaryReport, file=paste0(output_wd,"Imported_Raised_discards.csv"), row.names=F) ##Total catch per gear #The following table gives a summary of the catch (Landings+discards(imported+raised)) per gear (3 first letters of the metier) write.csv(summCatchPerGear, file=paste0(output_wd,"Catch_Per_Gear.csv"), row.names=F) ##Length/Age distribution #For the imported landings/discards and the raised discards without age distribution, the length or age distribution is then computed using the defined allocation scheme. *Sampled_distribution* means that the data (ladings or discards) were input with age/length distribution. *Estimated_distribution* means that the inputed/raised valoumes were estimated using the allocation scheme. #In the following tables, CATON=WECA*CANUM/1000000 (in tonnes) write.csv(SampledOrEstimated, file=paste0(output_wd,"Sampled_Estimated_L_D.csv"), row.names=F) write.csv(SampledOrEstimatedArea, file=paste0(output_wd,"Sampled_Estimated_L_D_PerArea.csv"), row.names=F) ##Impact of the raising on the age/length structure #Once the samples imported or raised are identified, it is possible to check the impact of the allocation scheme on the mean age/length of the final age/length distribution of the stock. #The following figures compare the mean age (computed as the weighted mean of the age per strata("CatchCategory",'RaisedOrImported',"SampledOrEstimated","Country","Area","Season","Fleet","Sex")) of the estimated stratas compared to the imported ones and the final distribution. Each individual included in the boxplot corresponds to the weighted mean age of a strata. ###Global mean age AgeStrucSexLan <- AgeStrucSex png(filename=paste0(output_wd,"MeanAgeCatchCat.png")) par(las=2) boxplot(meanAge~CatchCategory, data=AgeStrucSexLan, boxwex = 0.25, at = 1:length(unique(AgeStrucSexLan$CatchCategory)) + 0.3, col = "red", main = "Mean Age per Catch Category", xlab = "", ylab = "Mean Age", xlim = c(0.5, length(unique(AgeStrucSexLan$CatchCategory))+.5), ylim = c(min(AgeStrucSexLan$AgeOrLength), max(AgeStrucSexLan$AgeOrLength)), yaxs = "i") boxplot(meanAge~CatchCategory, data=AgeStrucSexLan[SampledOrEstimated=='Estimated_Distribution',], add=TRUE, boxwex = 0.25, at = 1:length(unique(AgeStrucSexLan$CatchCategory)), col = "orange") boxplot(meanAge~CatchCategory, data=AgeStrucSexLan[SampledOrEstimated=='Sampled_Distribution',], add=TRUE, boxwex = 0.25, at = 1:length(unique(AgeStrucSexLan$CatchCategory)) - 0.3, col = "yellow") legend(1, max(AgeStrucSexLan$AgeOrLength), c("Imported", "Raised", "All"), fill = c("yellow", "orange", "red")) dev.off() ###Mean Age per sex var <- "Landings" AgeStrucSexLan <- AgeStrucSex[CatchCategory==var,] png(filename=paste0(output_wd,"MeanAge",var,"_Sex.png")) par(las=2) boxplot(meanAge~Sex, data=AgeStrucSexLan, boxwex = 0.25, at = 1:length(unique(AgeStrucSexLan$Sex)) + 0.3, col = "red", main = "Mean Age in the Landings", xlab = "", ylab = "Mean Age", xlim = c(0.5, length(unique(AgeStrucSexLan$Sex))+.5), ylim = c(min(AgeStrucSexLan$AgeOrLength), max(AgeStrucSexLan$AgeOrLength)), yaxs = "i") boxplot(meanAge~Sex, data=AgeStrucSexLan[SampledOrEstimated=='Estimated_Distribution',], add=TRUE, boxwex = 0.25, at = 1:length(unique(AgeStrucSexLan$Sex)), col = "orange") boxplot(meanAge~Sex, data=AgeStrucSexLan[SampledOrEstimated=='Sampled_Distribution',], add=TRUE, boxwex = 0.25, at = 1:length(unique(AgeStrucSexLan$Sex)) - 0.3, col = "yellow") legend(1, max(AgeStrucSexLan$AgeOrLength), c("Imported", "Raised", "All"), fill = c("yellow", "orange", "red")) dev.off() ###Mean Age per area catchCat <- "Landings" Var <- "Area" png(filename=paste0(output_wd,"MeanAge",catchCat,Var,".png")) AgeStrucSexLan <- AgeStrucSex[CatchCategory==catchCat,] AgeStrucSexLan <- data.frame(AgeStrucSexLan) AgeStrucSexLan[,which(colnames(AgeStrucSexLan)==Var)] <- factor(AgeStrucSexLan[,which(colnames(AgeStrucSexLan)==Var)]) pos <- levels(AgeStrucSexLan[,which(colnames(AgeStrucSexLan)==Var)]) Estim <- AgeStrucSexLan[which(AgeStrucSexLan$SampledOrEstimated=='Estimated_Distribution'),] Estim[,which(colnames(Estim)==Var)] <- factor(Estim[,which(colnames(Estim)==Var)]) Sampled <- AgeStrucSexLan[which(AgeStrucSexLan$SampledOrEstimated=='Sampled_Distribution'),] Sampled[,which(colnames(Sampled)==Var)] <- factor(Sampled[,which(colnames(Sampled)==Var)]) par(las=2) plotFunction(AgeStrucSexLan,Estim,Sampled) dev.off() ###Mean Age per fleet catchCat <- "Landings" Var <- "Fleet" png(filename=paste0(output_wd,"MeanAge",catchCat,Var,".png")) AgeStrucSexLan <- AgeStrucSex[CatchCategory==catchCat,] AgeStrucSexLan <- data.frame(AgeStrucSexLan) AgeStrucSexLan[,which(colnames(AgeStrucSexLan)==Var)] <- factor(AgeStrucSexLan[,which(colnames(AgeStrucSexLan)==Var)]) pos <- levels(AgeStrucSexLan[,which(colnames(AgeStrucSexLan)==Var)]) Estim <- AgeStrucSexLan[which(AgeStrucSexLan$SampledOrEstimated=='Estimated_Distribution'),] Estim[,which(colnames(Estim)==Var)] <- factor(Estim[,which(colnames(Estim)==Var)]) Sampled <- AgeStrucSexLan[which(AgeStrucSexLan$SampledOrEstimated=='Sampled_Distribution'),] Sampled[,which(colnames(Sampled)==Var)] <- factor(Sampled[,which(colnames(Sampled)==Var)]) par(las=2, mar=c(15,4,4,5)) plotFunction(AgeStrucSexLan,Estim,Sampled) dev.off() ###Resulting age structure #The following plot shows the percentage of each age/length for the sampled strata, estimated and the final age structure for the landing and discard fractions. listVAR <- c("CatchCategory","SampledOrEstimated") AgeStrucSexProp <- AgeStrucSex[,list(sumCANUM=sum(CANUM)), by=c(listVAR,'AgeOrLength')] AgeStrucSexProp <- AgeStrucSexProp[,propCanum:=sumCANUM/sum(sumCANUM), by=listVAR] listVAR <- c("CatchCategory") AgeStrucSexProp2 <- AgeStrucSex[,list(sumCANUM=sum(CANUM)), by=c(listVAR,'AgeOrLength')] AgeStrucSexProp2 <- AgeStrucSexProp2[,propCanum:=sumCANUM/sum(sumCANUM), by=listVAR] AgeStrucSexProp2$SampledOrEstimated <- "Final Distribution" AgeStrucSexProp<- rbind(AgeStrucSexProp,AgeStrucSexProp2) png(filename=paste0(output_wd,"AgeStruc.png")) xyplot(propCanum~AgeOrLength|CatchCategory,groups = SampledOrEstimated, data=AgeStrucSexProp,auto.key = list(space = "right", points = TRUE, lines = FALSE)) dev.off() ##Mean weight at age/length #the catchAndSampleData also provide the weight at age per strata for the Sampled/Estimated stratas. #One would also want to check the sampled/estimated and resulting weight at length/age. This is produced in the following graph, each boxplot representing the distribution of the weight at age/length for the different stratas. catchCat <- "Landings" Var <- "AgeOrLength" AgeStrucSexLan <- AgeStrucSex[CatchCategory==catchCat,] AgeStrucSexLan <- data.frame(AgeStrucSexLan) AgeStrucSexLan[,which(colnames(AgeStrucSexLan)==Var)] <- factor(AgeStrucSexLan[,which(colnames(AgeStrucSexLan)==Var)]) pos <- levels(AgeStrucSexLan[,which(colnames(AgeStrucSexLan)==Var)]) Estim <- AgeStrucSexLan[which(AgeStrucSexLan$SampledOrEstimated=='Estimated_Distribution'),] Estim[,which(colnames(Estim)==Var)] <- factor(Estim[,which(colnames(Estim)==Var)]) Sampled <- AgeStrucSexLan[which(AgeStrucSexLan$SampledOrEstimated=='Sampled_Distribution'),] Sampled[,which(colnames(Sampled)==Var)] <- factor(Sampled[,which(colnames(Sampled)==Var)]) Areas <- unique(AgeStrucSexLan$Area) png(filename=paste0(output_wd,"MeanWeight",catchCat,Var,".png")) par(las=2, mfrow=c(1, length(Areas))) for(i in Areas){ plotFunctionMeanWeight(AgeStrucSexLan=AgeStrucSexLan[AgeStrucSexLan$Area==i,],Estim=Estim[Estim$Area==i,],Sampled=Sampled[Sampled$Area==i,]) } dev.off() #The outliers (more than 3 times the standard deviation) are extracted and can be investigated from the following table. catchCat <- "Landings" AgeStrucSexLan <- data.table(AgeStrucSexLan[AgeStrucSexLan$RaisedOrImported=="Imported_Data" & AgeStrucSexLan$CatchCategory==catchCat,]) AgeStrucSexLan <- AgeStrucSexLan[,AverageWtSize:=mean(WECA), by=list(RaisedOrImported,AgeOrLength,Area)] AgeStrucSexLan <- AgeStrucSexLan[,stdWECA:=sd(WECA), by=list(RaisedOrImported,AgeOrLength,Area)] write.csv(AgeStrucSexLan[WECA>AverageWtSize+3*stdWECA | WECA<AverageWtSize-3*stdWECA ,c('Country','Fleet','CatchCategory','WECA','AverageWtSize','AgeOrLength','Area'), with=F], file=paste0(output_wd,"export_outliers.csv"), row.names=F)
A real-valued function $f$ is continuous from the right at $a$ if and only if for every $\epsilon > 0$, there exists $\delta > 0$ such that $f(a + \delta) - f(a) < \epsilon$.
section \<open> Countable Non-Determinism \<close> theory ITree_Countable_Nondeterminism imports ITree_UTP begin text \<open> A type class to characterise a countable nondeterminism event. \<close> class ndetev = fixes ndetev :: "nat \<Longrightarrow>\<^sub>\<triangle> 'a" assumes wb_ndetev [simp]: "wb_prism ndetev" definition CNChoice :: "nat set \<Rightarrow> (nat \<Rightarrow> ('e::ndetev, 's) htree) \<Rightarrow> ('e, 's) htree" where "CNChoice A P = input_in ndetev (\<lambda> _. A) P" lemma CNChoice_pred [itree_pred]: "\<lbrakk>CNChoice A P\<rbrakk>\<^sub>p (s, s') = (\<exists>v\<in>A. \<lbrakk>P v\<rbrakk>\<^sub>p (s, s'))" by (simp add: CNChoice_def itree_pred) chantype pndet = pndetev :: nat instantiation pndet :: ndetev begin definition ndetev_pndet :: "nat \<Longrightarrow>\<^sub>\<triangle> pndet" where "ndetev_pndet = pndetev" instance by (intro_classes, simp add: ndetev_pndet_def) end definition prog_ndet :: "(pndet, 's) htree \<Rightarrow> (pndet, 's) htree \<Rightarrow> (pndet, 's) htree" where "prog_ndet P Q = CNChoice {0, 1} ((\<lambda> x. Stop)(0 := P, 1 := Q))" bundle prog_ndet_syntax begin notation prog_ndet (infixl "\<sqinter>" 60) end bundle no_prog_ndet_syntax begin no_notation prog_ndet (infixl "\<sqinter>" 60) end unbundle prog_ndet_syntax lemma prog_ndet_pred [itree_pred]: "\<lbrakk>P \<sqinter> Q\<rbrakk>\<^sub>p (s, s') = ( \<lbrakk>P\<rbrakk>\<^sub>p (s, s') \<or> \<lbrakk>Q\<rbrakk>\<^sub>p (s, s'))" by (simp add: prog_ndet_def itree_pred) lemma prog_ndet_rel [itree_rel]: "itree_rel (C\<^sub>1 \<sqinter> C\<^sub>2) = itree_rel C\<^sub>1 \<union> itree_rel C\<^sub>2" by (simp add: itree_rel_def itree_pred set_eq_iff) lemma hl_prog_ndet [hoare_safe]: assumes "\<^bold>{P\<^bold>} C\<^sub>1 \<^bold>{Q\<^bold>}" "\<^bold>{P\<^bold>} C\<^sub>2 \<^bold>{Q\<^bold>}" shows "\<^bold>{P\<^bold>} C\<^sub>1 \<sqinter> C\<^sub>2 \<^bold>{Q\<^bold>}" using assms by (simp add: hoare_triple_def itree_rel) lemma wp_prog_ndet [wp]: "wp (C\<^sub>1 \<sqinter> C\<^sub>2) P = (wp C\<^sub>1 P \<or> wp C\<^sub>2 P)\<^sub>e" by (expr_simp add: wp_itree_def itree_rel; auto) lemma wlp_prog_ndet [wp]: "wlp (C\<^sub>1 \<sqinter> C\<^sub>2) P = (wlp C\<^sub>1 P \<and> wlp C\<^sub>2 P)\<^sub>e" by (expr_simp add: wlp_itree_def itree_rel; auto) unbundle no_prog_ndet_syntax end
-- Andreas, 2012-01-30, bug reported by Nisse -- {-# OPTIONS -v tc.term.absurd:50 -v tc.signature:30 -v tc.conv.atom:30 -v tc.conv.elim:50 #-} module Issue557 where data βŠ₯ : Set where postulate A : Set a : (βŠ₯ β†’ βŠ₯) β†’ A F : A β†’ Set f : (a : A) β†’ F a module M (I : Set β†’ Set) where x : A x = a (Ξ» ()) y : A y = M.x (Ξ» A β†’ A) z : F y z = f y -- cause was absurd lambda in a module, i.e., under a telescope (I : Set -> Set) -- (Ξ» ()) must be replaced by (absurd I) not just by (absurd)
The integral of $f(g(x)) \cdot g'(x)$ is the same as the integral of $f(g(x)) \cdot g'(x)$ over the interval $[a,b]$.
ID PROVIDER MODULE FUNCTION NAME 0 test/unittest/dtrace-util/tst.InvalidId2: dtrace failed -- @@stderr -- dtrace: failed to match :::-2: No probe matches description
impulse process ACV_confirmBlockOption { ACV_loadChunks() /clone ${origin + (1 1 -6)} ${origin + (7 2 -6)} 0 1 1 /fill 0 1 2 6 2 2 air /tellraw @a [{"text":"[","color":"gold"},{"text":"Info","color":"gold","italic":"true"},{"text":"] ","color":"gold"},{"text":"Block-Option confirmed","color":"yellow"}] }
``` from __future__ import division import numpy as np import matplotlib.pyplot as plt import pydy import sympy as sym import sympy.physics.mechanics as me from scipy.linalg import solve, lstsq from scipy.integrate import odeint import time import functools me.Vector.simp = False # to increase computation speed from sympy.physics.vector import init_vprinting init_vprinting() from matplotlib import animation from matplotlib.patches import Ellipse, Rectangle from IPython.html import widgets from IPython.html.widgets import interact, interactive %matplotlib inline ``` ``` from IPython.display import Image Image(filename='snake-schematic.png') # Note: q3 and q4 are zero for this model since the point J0 is # fixed at the inertial frame origin. ``` ``` # number of links (not currently used) n = 3 # dynamic variables q0, q1, q2 = me.dynamicsymbols('q0 q1 q2') u0, u1, u2 = me.dynamicsymbols('u0 u1 u2') # dynamic variable derivatives q0d, q1d, q2d = me.dynamicsymbols('q0 q1 q2', 1) u0d, u1d, u2d = me.dynamicsymbols('u0 u1 u2', 1) # variables for bodies g, t = sym.symbols('g t') m0, m1, m2 = sym.symbols('m_0 m_1 m_2') l0, l1, l2 = sym.symbols('l_0 l_1 l_2') Izz0, Izz1, Izz2 = sym.symbols('I_zz_0 I_zz_1 I_zz_2') # inertial reference frame frN = me.ReferenceFrame('fr_N') # body-fixed frames fr0 = frN.orientnew('fr_0', 'Axis', [q0, frN.z]) fr1 = fr0.orientnew('fr_1', 'Axis', [q1, fr0.z]) fr2 = fr1.orientnew('fr_2', 'Axis', [q2, fr1.z]) # angular velocities of frames # fr0.set_ang_vel(frN, u0 * frN.z) # fr1.set_ang_vel(fr0, u1 * fr0.z) # was frN.z # fr2.set_ang_vel(fr1, u2 * fr1.z) # was frN.z fr0.set_ang_vel(frN, u0 * frN.z) fr1.set_ang_vel(fr0, u1 * fr0.z) # was frN.z fr2.set_ang_vel(fr1, u2 * fr1.z) # was frN.z # origin of inertial frame Nor = me.Point('N_or') # joints jt0 = Nor.locatenew('jt_0', 0) # .1 * frN.x + .1 * frN.y) jt1 = jt0.locatenew('jt_1', l0 * fr0.x) jt2 = jt1.locatenew('jt_2', l1 * fr1.x) jt3 = jt2.locatenew('jt_3', l2 * fr2.x) # mass centers mc0 = jt0.locatenew('mc_0', l0 / 2 * fr0.x) mc1 = jt1.locatenew('mc_1', l1 / 2 * fr1.x) mc2 = jt2.locatenew('mc_2', l2 / 2 * fr2.x) # constrained point velocities Nor.set_vel(frN, 0) jt0.set_vel(frN, 0) # unconstrained point velocities jt1.v2pt_theory(jt0, frN, fr0) jt2.v2pt_theory(jt1, frN, fr1) jt3.v2pt_theory(jt2, frN, fr2) mc0.v2pt_theory(jt0, frN, fr0) mc1.v2pt_theory(jt1, frN, fr1) mc2.v2pt_theory(jt2, frN, fr2) # inertia dyads in0 = (me.inertia(fr0, 0, 0, Izz0), mc0) in1 = (me.inertia(fr1, 0, 0, Izz1), mc1) in2 = (me.inertia(fr2, 0, 0, Izz2), mc2) # bodies bd0 = me.RigidBody('bd_0', mc0, fr0, m0, in0) bd1 = me.RigidBody('bd_1', mc1, fr1, m1, in1) bd2 = me.RigidBody('bd_2', mc2, fr2, m2, in2) # kinematic differential equations kd = [q0.diff(t) - u0, q1.diff(t) - u1, q2.diff(t) - u2] # forces fl = [(mc0, -m0 * g * frN.z), (mc1, -m1 * g * frN.z), (mc2, -m2 * g * frN.z)] fl = [(mc0, -m0 * g * frN.y), (mc1, -m1 * g * frN.y), (mc2, -m2 * g * frN.y)] # bodies bl = [bd0, bd1, bd2] # q_ind and u_ind coords = [q0, q1, q2] speeds = [u0, u1, u2] # # try adding some configuration level and configuration velocity constraints # zero = jt0.pos_from(Nor) # conlist_coor = [zero & frN.x, zero & frN.y] # # Define the velocity level constraints # dzero = me.time_derivative(zero, frN) # conlist_speed = [dzero & frN.x, dzero & frN.y] # q3, q4 = me.dynamicsymbols('q3 q4') # u3, u4 = me.dynamicsymbols('u3 u4') # equations of motion using Kane's method kane = me.KanesMethod(frame=frN, q_ind=coords, u_ind=speeds, kd_eqs=kd, q_dependent=[], configuration_constraints=[], u_dependent=[], velocity_constraints=[]) (fr, frstar) = kane.kanes_equations(fl, bl) kanezero = fr + frstar # these take to long... # solve Kane's equations for the derivatives of the speeds #eom = sym.solvers.solve(kanezero, q0d, q1d, q2d) # add the kinematical differential equations to get the equations of motion #eom.update(kane.kindiffdict()) # print the results #me.mprint(eom) #rhs = kane.mass_matrix.inv() * kane.forcing #me.mprint(rhs) #j3pos = jt3.pos_from(jt0).express(frN).simplify() #sym.trigsimp(kanezero) ``` ``` # parameter values ls = .25 # segment lengths ms = .15 # segment masses ws_ratio = .1 # width is a function of length ws = ls * ws_ratio # segment widths Izzs = ms * (ls**2 + ws**2) / 12 # flat plate about com # parameter arrays for numerical simulation param_names = [g, m0, l0, Izz0, m1, l1, Izz1, m2, l2, Izz2] param_vals = [9.81, ms, ls, Izzs, ms, ls, Izzs, ms, ls, Izzs] # dummy symbols used for dynamamic variables dyn_symbols = coords + speeds dummy_symbols = [sym.Dummy() for i in dyn_symbols] dummy_dict = dict(zip(dyn_symbols, dummy_symbols)) # substitute dummy symbols into mass matrix and forcing vector kd_dict = kane.kindiffdict() # solved kinematical differential equations F = kane.forcing_full.subs(kd_dict).subs(dummy_dict) # substitute into the forcing vector M = kane.mass_matrix_full.subs(kd_dict).subs(dummy_dict) # substitute into the mass matrix # callable matrices F_func = sym.lambdify(param_names + dummy_symbols, F) M_func = sym.lambdify(param_names + dummy_symbols, M) # partially evaluate matrices to run faster (maybe 15% or so) ffunc = functools.partial(F_func, *param_vals) mfunc = functools.partial(M_func, *param_vals) def rhs(x, t, args): arguments = np.hstack((args, x)) dx = np.array(solve(M_func(*arguments), F_func(*arguments))).flatten() return dx def rhs_partial(x, t, args): #x[1] = np.interp(t, ts, theta1) #x[2] = np.interp(t, ts, theta2) dx = np.array(solve(mfunc(*x), ffunc(*x))).flatten() return dx # initial conditions qstart = (np.pi / 2, np.pi / 2, np.pi / 2) ustart = (0, 0, 0) # (0.5, 0.5, 0.5) #ustart = (0, -1.5, 1.5) # stable ICs # qstart = (-np.pi / 2, 0, 0) # ustart = (0, 0, 0) ts, dt = linspace(0, 10, 5001, retstep=True) # theta1 = np.cos(ts) # theta2 = np.cos(ts + np.pi/8) # qstart = (np.pi / 4, theta1[0], theta2[0]) x0 = np.hstack((qstart, ustart)) ``` ``` # numerically integrate now = time.time() y1 = odeint(rhs_partial, x0, ts, args=(None,), full_output=False) y1 = y1.T print('Elapsed time: {0:.2f} sec'.format(time.time() - now)) ``` Elapsed time: 2.00 sec ``` #specified = np.c_[theta1, theta2] ``` ``` got = y1[1:3].T ``` ``` #(got - specified) ``` ``` # # numerically integrate (slower way) # now = time.time() # y2 = odeint(rhs, x0, t, args=(param_vals,), full_output=False) # y2 = y2.T # print('Elapsed time: {0:.2f} sec'.format(time.time() - now)) ``` ``` fig, (ax1, ax2) = plt.subplots(2, 1, sharex=True, figsize=(6, 6)) ax1.plot(y1[0]) ax1.plot(y1[1]) ax1.plot(y1[2]) ax2.plot(y1[3]) ax2.plot(y1[4]) ax2.plot(y1[5]) # ax1.plot(y2[0]) # ax1.plot(y2[1]) # ax1.plot(y2[2]) # ax2.plot(y2[3]) # ax2.plot(y2[4]) # ax2.plot(y2[5]) # ax1.set_ylim(-15, 15) # ax2.set_ylim(-50, 50) ax2.set_xlabel('iteration') ax1.set_ylabel('q', rotation='horizontal') ax2.set_ylabel('u', rotation='horizontal') fig.tight_layout() #display(fig) ``` ``` def plot_chain(ii=0, hst=100): fig, ax = plt.subplots(1, 1, sharex=True, sharey=True, figsize=(9, 9)) ax.axis('image') ax.set_xlim(-.8, .8) ax.set_ylim(-.8, .8) fig.tight_layout() time_text = ax.text(0.05, 0.9, '{0:.3} sec'.format(ts[ii]), transform=ax.transAxes) ellipse_params = dict(alpha=.5, edgecolor='None', color='green') e0 = Ellipse(xy=c0[ii], width=ws, height=1.05 * ls, angle=dg0[ii] - 90, **ellipse_params) e1 = Ellipse(xy=c1[ii], width=ws, height=1.05 * ls, angle=dg1[ii] - 90, **ellipse_params) e2 = Ellipse(xy=c2[ii], width=ws, height=1.05 * ls, angle=dg2[ii] - 90, **ellipse_params) [ax.add_patch(e) for e in [e0, e1, e2]] st = ii - hst #st if st > 0 else 0 if st < 0: st = 0 # ax.plot(j1[st:ii, 0], j1[st:ii, 1], 'b--') # ax.plot(j2[st:ii, 0], j2[st:ii, 1], 'g--') # ax.plot(j3[st:ii, 0], j3[st:ii, 1], 'r--') ax.plot(c0[st:ii, 0], c0[st:ii, 1], 'b') ax.plot(c1[st:ii, 0], c1[st:ii, 1], 'g') ax.plot(c2[st:ii, 0], c2[st:ii, 1], 'r') ax.plot(com[st:ii, 0], com[st:ii, 1], 'k-', lw=2, alpha=.9) ``` ``` # organize the data th0, th1, th2 = y1[:3] th1 = th1 + th0 th2 = th2 + th1 dg0, dg1, dg2 = np.rad2deg(y1[:3]) dg1 = dg1 + dg0 dg2 = dg2 + dg1 j0 = np.c_[0, 0] j1 = j0 + np.c_[ls * np.cos(th0), ls * np.sin(th0)] j2 = j1 + np.c_[ls * np.cos(th1), ls * np.sin(th1)] j3 = j2 + np.c_[ls * np.cos(th2), ls * np.sin(th2)] c0 = j0 + np.c_[ls/2 * np.cos(th0), ls/2 * np.sin(th0)] c1 = j1 + np.c_[ls/2 * np.cos(th1), ls/2 * np.sin(th1)] c2 = j2 + np.c_[ls/2 * np.cos(th2), ls/2 * np.sin(th2)] # j0 = np.c_[0, 0] # j1 = j0 + np.c_[ls * np.cos(th0), ls * np.sin(th0)] # j2 = j1 + np.c_[ls * np.cos(th0 + th1), ls * np.sin(th0 + th1)] # j3 = j2 + np.c_[ls * np.cos(th0 + th1 + th2), ls * np.sin(th0 + th1 + th2)] # c0 = j0 + np.c_[ls/2 * np.cos(th0), ls/2 * np.sin(th0)] # c1 = j1 + np.c_[ls/2 * np.cos(th0 + th1), ls/2 * np.sin(th0 + th1)] # c2 = j2 + np.c_[ls/2 * np.cos(th0 + th1 + th2), ls/2 * np.sin(th0 + th1 + th2)] # center of mass mms = np.array([ms, ms, ms]) cx = np.c_[c0[:, 0], c1[:, 0], c2[:, 0]] cy = np.c_[c0[:, 1], c1[:, 1], c2[:, 1]] com = np.c_[(cx * mms).sum(axis=1), (cy * mms).sum(axis=1)] / mms.sum() # make it interactive! interactive(plot_chain, ii=(0, len(y1.T)-1), hst=(0, 200, 10)) ``` ``` plot_chain(100) ``` ``` mms = np.array([ms, ms, ms]) cx = np.c_[c0[:, 0], c1[:, 0], c2[:, 0]] cy = np.c_[c0[:, 1], c1[:, 1], c2[:, 1]] com = np.c_[(cx * mms).sum(axis=1), (cy * mms).sum(axis=1)] / mms.sum() ``` ``` cx * mms ``` array([[ 1.14810637e-18, 3.44431912e-18, 5.74053187e-18], [ -1.87697315e-05, -5.79451744e-05, -9.53940227e-05], [ -3.75869803e-05, -1.19288568e-04, -1.94067843e-04], ..., [ 1.85844031e-02, 2.42922480e-02, 3.01055501e-02], [ 1.86131344e-02, 2.43280868e-02, 3.01447566e-02], [ 1.86388850e-02, 2.43579289e-02, 3.01711461e-02]]) ``` M = 3 * ms 1 / M * np.sum() ``` ``` fig, ax = plt.subplots(1, 1, sharex=True, sharey=True, figsize=(6, 6)) fig.tight_layout() # display the current time time_text = ax.text(0.05, 0.9, 'time here', transform=ax.transAxes) # create a rectangular cart ell = [Ellipse(xy=(0, 0), width=.05*ls, height=1.05 * ls, angle=100 * np.random.random(), alpha=.5, edgecolor='None', color='green') for i in range(n)] [ax.add_patch(ellis) for ellis in ell] lim = 3 * ls ax.set_xlim(-lim, lim) ax.set_ylim(-lim, lim) th0, th1, th2 = y1[:3] dg0, dg1, dg2 = np.rad2deg(y1[:3]) j0 = np.c_[0, 0] c0 = j0 + np.c_[ls/2 * np.cos(th0), ls/2 * np.sin(th0)] j1 = j0 + np.c_[ls * np.cos(th0), ls * np.sin(th0)] c1 = j1 + np.c_[ls/2 * np.cos(th1), ls/2 * np.sin(th1)] j2 = j1 + np.c_[ls * np.cos(th1), ls * np.sin(th1)] c2 = j2 + np.c_[ls/2 * np.cos(th2), ls/2 * np.sin(th2)] j3 = j2 + np.c_[ls * np.cos(th2), ls * np.sin(th2)] ii = 100 ell[0].center = c0[ii] ell[1].center = c1[ii] ell[2].center = c2[ii] ell[0].angle = dg0[ii] - 90 ell[1].angle = dg1[ii] - 90 ell[2].angle = dg2[ii] - 90 ax.axis('image') ax.set_xlim(-.7, .7) ax.set_ylim(-.7, .7) ax.plot(j1[:ii, 0], j1[:ii, 1], 'b--') ax.plot(j2[:ii, 0], j2[:ii, 1], 'g--') ax.plot(j3[:ii, 0], j3[:ii, 1], 'r--') ax.plot(c0[:ii, 0], c0[:ii, 1], 'b') ax.plot(c1[:ii, 0], c1[:ii, 1], 'g') ax.plot(c2[:ii, 0], c2[:ii, 1], 'r') ``` [<matplotlib.lines.Line2D at 0xdfbaf10>] ``` -dg2[:20] + 90 ``` array([ 0. , -0.05208 , -0.09370436, -0.12483333, -0.14542379, -0.15542785, -0.15479371, -0.14346486, -0.12138054, -0.08847643, -0.0446831 , 0.01007321, 0.0758705 , 0.15279123, 0.24092226, 0.34035504, 0.45118562, 0.5735147 , 0.70744765, 0.85309458]) ``` fig, ax = plt.subplots(figsize=(7, 7)) ax.plot(j3[:, 0], j3[:, 1], alpha=.4) ax.plot(j2[:, 0], j2[:, 1], alpha=.7) ax.plot(j1[:, 0], j1[:, 1], alpha=.7) ax.plot(j0[:, 0], j0[:, 1], alpha=.7) ax.axis('equal') fig.tight_layout() ``` ``` # the number of pendulum bobs numpoints = states.shape[1] / 2 # first set up the figure, the axis, and the plot elements we want to animate fig = plt.figure() # some dimesions cart_width = 0.4 cart_height = 0.2 # set the limits based on the motion xmin = around(states[:, 0].min() - cart_width / 2.0, 1) xmax = around(states[:, 0].max() + cart_width / 2.0, 1) # create the axes ax = plt.axes(xlim=(xmin, xmax), ylim=(-1.1, 1.1), aspect='equal') # display the current time time_text = ax.text(0.04, 0.9, '', transform=ax.transAxes) # create a rectangular cart rect = Rectangle([states[0, 0] - cart_width / 2.0, -cart_height / 2], cart_width, cart_height, fill=True, color='red', ec='black') ax.add_patch(rect) # blank line for the pendulum line, = ax.plot([], [], lw=2, marker='o', markersize=6) # initialization function: plot the background of each frame def init(): time_text.set_text('') rect.set_xy((0.0, 0.0)) line.set_data([], []) return time_text, rect, line, # animation function: update the objects def animate(i): time_text.set_text('time = {:2.2f}'.format(t[i])) rect.set_xy((states[i, 0] - cart_width / 2.0, -cart_height / 2)) x = hstack((states[i, 0], zeros((numpoints - 1)))) y = zeros((numpoints)) for j in arange(1, numpoints): x[j] = x[j - 1] + length * cos(states[i, j]) y[j] = y[j - 1] + length * sin(states[i, j]) line.set_data(x, y) return time_text, rect, line, # call the animator function anim = animation.FuncAnimation(fig, animate, frames=len(t), init_func=init, interval=t[-1] / len(t) * 1000, blit=True, repeat=False) # save the animation if a filename is given if filename is not None: anim.save(filename, fps=30, codec='libx264') ############## from matplotlib import animation ani = animation.FuncAnimation(fig, updatefig, frames=1000, interval=75, repeat=True, blit=True) # video save information metadata = dict(author='Isaac J. Yeaton', description='Standard and Otsu threholded images.') Writer = animation.writers['avconv'] writer = Writer(fps=15) # , extra_args=['-vcodec', 'libx264'], metadata=metadata) if True: #ani.save('/home/isaac/Desktop/tmp1.mp4', writer=writer) ani.save('/home/isaac/Desktop/processed_shadowgraph_fields.mp4', writer=writer) ``` ``` ``` ``` # check that the partial evaulation works xx = x0 #xx = y.T[696] arguments = np.hstack((param_vals, xx)) mm = M_func(*arguments) ff = F_func(*arguments) # this does not work... # aargs = dict(zip(param_names, dummy_symbols, arguments)) # mm = M_func(*aargs) # ff = F_func(*aargs) print solve(mm, ff).flatten() print lstsq(mm, ff)[0].flatten() #part_args = dict(zip(param_names, param_vals)) print solve(mfunc(*xx), ffunc(*xx)).flatten() ``` [ 0. 0. 0. -58.78688199 88.03408696 -48.64785093] [ 0. 0. 0. -58.78688199 88.03408696 -48.64785093] [ 0. 0. 0. -58.78688199 88.03408696 -48.64785093] ``` frame0 = I.orientnew('frame0', 'Axis', [q[0], I.z]) mc0 = O.locatenew('mc0', q[1] * frame0.x) mc0.v2pt_theory(O, I, frame0) in0 = me.inertia(frame0, 0, 0, Izz[0]) body0 = me.RigidBody('body0', mc0, frame0, m[0], (in0, mc0)) frame1 = frame0.orientnew('frame1', 'Axis', [q[2], I.z]) frame2 = frame1.orientnew('frame2', 'Axis', [q[3], I.z]) frame1.set_ang_vel(I, u[2] * I.z) frame2.set_ang_vel(I, u[3] * I.z) in1 = me.inertia(frame1, 0, 0, Izz[1]) in2 = me.inertia(frame2, 0, 0, Izz[2]) # mc1 = mc0.locatenew('mc1', l[0] * frame0.x + # l[1] * sym.cos(q[2]) * frame1.x + # l[1] * sym.sin(q[2]) * frame1.y) # mc2 = mc1.locatenew('mc2', l[1] * frame1.x + # l[2] * sym.cos(q[3]) * frame2.x + # l[2] * sym.sin(q[3]) * frame2.y) # after looking at the n-pendulum example mc1 = mc0.locatenew('mc1', l[0] * frame0.x + l[1] * frame1.x) mc2 = mc1.locatenew('mc2', l[1] * frame1.x + l[2] * frame2.x) mc1.v2pt_theory(mc0, I, frame1) mc2.v2pt_theory(mc1, I, frame2) body1 = me.RigidBody('body1', mc1, frame1, m[1], (in1, mc1)) body2 = me.RigidBody('body2', mc2, frame2, m[2], (in2, mc2)) # each one might need four entries... frames = [I, frame0, frame1, frame2] points = [O, mc0, mc1, mc2] bodies = [body0, body1, body2] forces = [0, 0, 0] kindiffs = [qq.diff(t) - uu for qq, uu in zip(q, u)] # need to figure out forces and how to setup me.KanesMethod # frames = [I] # List to hold the n + 1 frames # points = [P0] # List to hold the n + 1 points # particles = [Pa0] # List to hold the n + 1 particles # forces = [(P0, f * I.x - m[0] * g * I.y)] # List to hold the n + 1 applied forces, including the input force, f # kindiffs = [q[0].diff(t) - u[0]] # List to hold kinematic ODE's # for i in range(n): # Bi = I.orientnew('B' + str(i), 'Axis', [q[i + 1], I.z]) # Create a new frame # Bi.set_ang_vel(I, u[i + 1] * I.z) # Set angular velocity # frames.append(Bi) # Add it to the frames list # Pi = points[-1].locatenew('P' + str(i + 1), l[i] * Bi.x) # Create a new point # Pi.v2pt_theory(points[-1], I, Bi) # Set the velocity # points.append(Pi) # Add it to the points list # Pai = Particle('Pa' + str(i + 1), Pi, m[i + 1]) # Create a new particle # particles.append(Pai) # Add it to the particles list # forces.append((Pi, -m[i + 1] * g * I.y)) # Set the force applied at the point # kindiffs.append(q[i + 1].diff(t) - u[i + 1]) # Define the kinematic ODE: dq_i / dt - u_i = 0 ```
r=359.30 https://sandbox.dams.library.ucdavis.edu/fcrepo/rest/collection/sherry-lehmann/catalogs/d7gp4v/media/images/d7gp4v-010/svc:tesseract/full/full/359.30/default.jpg Accept:application/hocr+xml
/- Copyright (c) 2017 Johannes HΓΆlzl. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Mario Carneiro, Floris van Doorn ! This file was ported from Lean 3 source module set_theory.ordinal.basic ! leanprover-community/mathlib commit 8da9e30545433fdd8fe55a0d3da208e5d9263f03 ! Please do not edit these lines, except to modify the commit id ! if you have ported upstream changes. -/ import Mathbin.Data.Sum.Order import Mathbin.Order.InitialSeg import Mathbin.SetTheory.Cardinal.Basic /-! # Ordinals > THIS FILE IS SYNCHRONIZED WITH MATHLIB4. > Any changes to this file require a corresponding PR to mathlib4. Ordinals are defined as equivalences of well-ordered sets under order isomorphism. They are endowed with a total order, where an ordinal is smaller than another one if it embeds into it as an initial segment (or, equivalently, in any way). This total order is well founded. ## Main definitions * `ordinal`: the type of ordinals (in a given universe) * `ordinal.type r`: given a well-founded order `r`, this is the corresponding ordinal * `ordinal.typein r a`: given a well-founded order `r` on a type `Ξ±`, and `a : Ξ±`, the ordinal corresponding to all elements smaller than `a`. * `enum r o h`: given a well-order `r` on a type `Ξ±`, and an ordinal `o` strictly smaller than the ordinal corresponding to `r` (this is the assumption `h`), returns the `o`-th element of `Ξ±`. In other words, the elements of `Ξ±` can be enumerated using ordinals up to `type r`. * `ordinal.card o`: the cardinality of an ordinal `o`. * `ordinal.lift` lifts an ordinal in universe `u` to an ordinal in universe `max u v`. For a version registering additionally that this is an initial segment embedding, see `ordinal.lift.initial_seg`. For a version regiserting that it is a principal segment embedding if `u < v`, see `ordinal.lift.principal_seg`. * `ordinal.omega` or `Ο‰` is the order type of `β„•`. This definition is universe polymorphic: `ordinal.omega.{u} : ordinal.{u}` (contrast with `β„• : Type`, which lives in a specific universe). In some cases the universe level has to be given explicitly. * `o₁ + oβ‚‚` is the order on the disjoint union of `o₁` and `oβ‚‚` obtained by declaring that every element of `o₁` is smaller than every element of `oβ‚‚`. The main properties of addition (and the other operations on ordinals) are stated and proved in `ordinal_arithmetic.lean`. Here, we only introduce it and prove its basic properties to deduce the fact that the order on ordinals is total (and well founded). * `succ o` is the successor of the ordinal `o`. * `cardinal.ord c`: when `c` is a cardinal, `ord c` is the smallest ordinal with this cardinality. It is the canonical way to represent a cardinal with an ordinal. A conditionally complete linear order with bot structure is registered on ordinals, where `βŠ₯` is `0`, the ordinal corresponding to the empty type, and `Inf` is the minimum for nonempty sets and `0` for the empty set by convention. ## Notations * `Ο‰` is a notation for the first infinite ordinal in the locale `ordinal`. -/ noncomputable section open Function Cardinal Set Equiv Order open Classical Cardinal InitialSeg universe u v w variable {Ξ± : Type _} {Ξ² : Type _} {Ξ³ : Type _} {r : Ξ± β†’ Ξ± β†’ Prop} {s : Ξ² β†’ Ξ² β†’ Prop} {t : Ξ³ β†’ Ξ³ β†’ Prop} /-! ### Well order on an arbitrary type -/ section WellOrderingThm parameter {Οƒ : Type u} open Function #print nonempty_embedding_to_cardinal /- theorem nonempty_embedding_to_cardinal : Nonempty (Οƒ β†ͺ Cardinal.{u}) := (Embedding.total _ _).resolve_left fun ⟨⟨f, hf⟩⟩ => let g : Οƒ β†’ Cardinal.{u} := invFun f let ⟨x, (hx : g x = 2 ^ Sum g)⟩ := invFun_surjective hf (2 ^ Sum g) have : g x ≀ Sum g := le_sum.{u, u} g x not_le_of_gt (by rw [hx] <;> exact cantor _) this #align nonempty_embedding_to_cardinal nonempty_embedding_to_cardinal -/ #print embeddingToCardinal /- /-- An embedding of any type to the set of cardinals. -/ def embeddingToCardinal : Οƒ β†ͺ Cardinal.{u} := Classical.choice nonempty_embedding_to_cardinal #align embedding_to_cardinal embeddingToCardinal -/ #print WellOrderingRel /- /-- Any type can be endowed with a well order, obtained by pulling back the well order over cardinals by some embedding. -/ def WellOrderingRel : Οƒ β†’ Οƒ β†’ Prop := embeddingToCardinal ⁻¹'o (Β· < Β·) #align well_ordering_rel WellOrderingRel -/ #print WellOrderingRel.isWellOrder /- instance WellOrderingRel.isWellOrder : IsWellOrder Οƒ WellOrderingRel := (RelEmbedding.preimage _ _).IsWellOrder #align well_ordering_rel.is_well_order WellOrderingRel.isWellOrder -/ #print IsWellOrder.subtype_nonempty /- instance IsWellOrder.subtype_nonempty : Nonempty { r // IsWellOrder Οƒ r } := ⟨⟨WellOrderingRel, inferInstance⟩⟩ #align is_well_order.subtype_nonempty IsWellOrder.subtype_nonempty -/ end WellOrderingThm /-! ### Definition of ordinals -/ #print WellOrder /- /-- Bundled structure registering a well order on a type. Ordinals will be defined as a quotient of this type. -/ structure WellOrder : Type (u + 1) where Ξ± : Type u R : Ξ± β†’ Ξ± β†’ Prop wo : IsWellOrder Ξ± r #align Well_order WellOrder -/ attribute [instance] WellOrder.wo namespace WellOrder instance : Inhabited WellOrder := ⟨⟨PEmpty, _, EmptyRelation.isWellOrder⟩⟩ #print WellOrder.eta /- @[simp] theorem eta (o : WellOrder) : mk o.Ξ± o.R o.wo = o := by cases o rfl #align Well_order.eta WellOrder.eta -/ end WellOrder #print Ordinal.isEquivalent /- /-- Equivalence relation on well orders on arbitrary types in universe `u`, given by order isomorphism. -/ instance Ordinal.isEquivalent : Setoid WellOrder where R := fun ⟨α, r, wo⟩ ⟨β, s, wo'⟩ => Nonempty (r ≃r s) iseqv := ⟨fun ⟨α, r, _⟩ => ⟨RelIso.refl _⟩, fun ⟨α, r, _⟩ ⟨β, s, _⟩ ⟨e⟩ => ⟨e.symm⟩, fun ⟨α, r, _⟩ ⟨β, s, _⟩ ⟨γ, t, _⟩ ⟨eβ‚βŸ© ⟨eβ‚‚βŸ© => ⟨e₁.trans eβ‚‚βŸ©βŸ© #align ordinal.is_equivalent Ordinal.isEquivalent -/ #print Ordinal /- /-- `ordinal.{u}` is the type of well orders in `Type u`, up to order isomorphism. -/ def Ordinal : Type (u + 1) := Quotient Ordinal.isEquivalent #align ordinal Ordinal -/ #print hasWellFoundedOut /- instance hasWellFoundedOut (o : Ordinal) : WellFoundedRelation o.out.Ξ± := ⟨o.out.R, o.out.wo.wf⟩ #align has_well_founded_out hasWellFoundedOut -/ #print linearOrderOut /- instance linearOrderOut (o : Ordinal) : LinearOrder o.out.Ξ± := IsWellOrder.linearOrder o.out.R #align linear_order_out linearOrderOut -/ #print isWellOrder_out_lt /- instance isWellOrder_out_lt (o : Ordinal) : IsWellOrder o.out.Ξ± (Β· < Β·) := o.out.wo #align is_well_order_out_lt isWellOrder_out_lt -/ namespace Ordinal #print Ordinal.type /- -- ### Basic properties of the order type /-- The order type of a well order is an ordinal. -/ def type (r : Ξ± β†’ Ξ± β†’ Prop) [wo : IsWellOrder Ξ± r] : Ordinal := ⟦⟨α, r, wo⟩⟧ #align ordinal.type Ordinal.type -/ instance : Zero Ordinal := ⟨type <| @EmptyRelation PEmpty⟩ instance : Inhabited Ordinal := ⟨0⟩ instance : One Ordinal := ⟨type <| @EmptyRelation PUnit⟩ #print Ordinal.typein /- /-- The order type of an element inside a well order. For the embedding as a principal segment, see `typein.principal_seg`. -/ def typein (r : Ξ± β†’ Ξ± β†’ Prop) [IsWellOrder Ξ± r] (a : Ξ±) : Ordinal := type (Subrel r { b | r b a }) #align ordinal.typein Ordinal.typein -/ #print Ordinal.type_def' /- @[simp] theorem type_def' (w : WellOrder) : ⟦w⟧ = type w.R := by cases w rfl #align ordinal.type_def' Ordinal.type_def' -/ #print Ordinal.type_def /- @[simp] theorem type_def (r) [wo : IsWellOrder Ξ± r] : (⟦⟨α, r, wo⟩⟧ : Ordinal) = type r := rfl #align ordinal.type_def Ordinal.type_def -/ #print Ordinal.type_out /- @[simp] theorem type_out (o : Ordinal) : Ordinal.type o.out.R = o := by rw [Ordinal.type, WellOrder.eta, Quotient.out_eq] #align ordinal.type_out Ordinal.type_out -/ #print Ordinal.type_eq /- theorem type_eq {Ξ± Ξ²} {r : Ξ± β†’ Ξ± β†’ Prop} {s : Ξ² β†’ Ξ² β†’ Prop} [IsWellOrder Ξ± r] [IsWellOrder Ξ² s] : type r = type s ↔ Nonempty (r ≃r s) := Quotient.eq' #align ordinal.type_eq Ordinal.type_eq -/ #print RelIso.ordinal_type_eq /- theorem RelIso.ordinal_type_eq {Ξ± Ξ²} {r : Ξ± β†’ Ξ± β†’ Prop} {s : Ξ² β†’ Ξ² β†’ Prop} [IsWellOrder Ξ± r] [IsWellOrder Ξ² s] (h : r ≃r s) : type r = type s := type_eq.2 ⟨h⟩ #align rel_iso.ordinal_type_eq RelIso.ordinal_type_eq -/ #print Ordinal.type_lt /- @[simp] theorem type_lt (o : Ordinal) : type ((Β· < Β·) : o.out.Ξ± β†’ o.out.Ξ± β†’ Prop) = o := (type_def' _).symm.trans <| Quotient.out_eq o #align ordinal.type_lt Ordinal.type_lt -/ #print Ordinal.type_eq_zero_of_empty /- theorem type_eq_zero_of_empty (r) [IsWellOrder Ξ± r] [IsEmpty Ξ±] : type r = 0 := (RelIso.relIsoOfIsEmpty r _).ordinal_type_eq #align ordinal.type_eq_zero_of_empty Ordinal.type_eq_zero_of_empty -/ #print Ordinal.type_eq_zero_iff_isEmpty /- @[simp] theorem type_eq_zero_iff_isEmpty [IsWellOrder Ξ± r] : type r = 0 ↔ IsEmpty Ξ± := ⟨fun h => let ⟨s⟩ := type_eq.1 h s.toEquiv.isEmpty, @type_eq_zero_of_empty Ξ± r _⟩ #align ordinal.type_eq_zero_iff_is_empty Ordinal.type_eq_zero_iff_isEmpty -/ #print Ordinal.type_ne_zero_iff_nonempty /- theorem type_ne_zero_iff_nonempty [IsWellOrder Ξ± r] : type r β‰  0 ↔ Nonempty Ξ± := by simp #align ordinal.type_ne_zero_iff_nonempty Ordinal.type_ne_zero_iff_nonempty -/ #print Ordinal.type_ne_zero_of_nonempty /- theorem type_ne_zero_of_nonempty (r) [IsWellOrder Ξ± r] [h : Nonempty Ξ±] : type r β‰  0 := type_ne_zero_iff_nonempty.2 h #align ordinal.type_ne_zero_of_nonempty Ordinal.type_ne_zero_of_nonempty -/ #print Ordinal.type_pEmpty /- theorem type_pEmpty : type (@EmptyRelation PEmpty) = 0 := rfl #align ordinal.type_pempty Ordinal.type_pEmpty -/ #print Ordinal.type_empty /- theorem type_empty : type (@EmptyRelation Empty) = 0 := type_eq_zero_of_empty _ #align ordinal.type_empty Ordinal.type_empty -/ /- warning: ordinal.type_eq_one_of_unique -> Ordinal.type_eq_one_of_unique is a dubious translation: lean 3 declaration is forall {Ξ± : Type.{u1}} (r : Ξ± -> Ξ± -> Prop) [_inst_1 : IsWellOrder.{u1} Ξ± r] [_inst_2 : Unique.{succ u1} Ξ±], Eq.{succ (succ u1)} Ordinal.{u1} (Ordinal.type.{u1} Ξ± r _inst_1) (OfNat.ofNat.{succ u1} Ordinal.{u1} 1 (OfNat.mk.{succ u1} Ordinal.{u1} 1 (One.one.{succ u1} Ordinal.{u1} Ordinal.hasOne.{u1}))) but is expected to have type forall {Ξ± : Type.{u1}} (r : Ξ± -> Ξ± -> Prop) [_inst_1 : IsWellOrder.{u1} Ξ± r] [_inst_2 : Unique.{succ u1} Ξ±], Eq.{succ (succ u1)} Ordinal.{u1} (Ordinal.type.{u1} Ξ± r _inst_1) (OfNat.ofNat.{succ u1} Ordinal.{u1} 1 (One.toOfNat1.{succ u1} Ordinal.{u1} Ordinal.one.{u1})) Case conversion may be inaccurate. Consider using '#align ordinal.type_eq_one_of_unique Ordinal.type_eq_one_of_uniqueβ‚“'. -/ theorem type_eq_one_of_unique (r) [IsWellOrder Ξ± r] [Unique Ξ±] : type r = 1 := (RelIso.relIsoOfUniqueOfIrrefl r _).ordinal_type_eq #align ordinal.type_eq_one_of_unique Ordinal.type_eq_one_of_unique /- warning: ordinal.type_eq_one_iff_unique -> Ordinal.type_eq_one_iff_unique is a dubious translation: lean 3 declaration is forall {Ξ± : Type.{u1}} {r : Ξ± -> Ξ± -> Prop} [_inst_1 : IsWellOrder.{u1} Ξ± r], Iff (Eq.{succ (succ u1)} Ordinal.{u1} (Ordinal.type.{u1} Ξ± r _inst_1) (OfNat.ofNat.{succ u1} Ordinal.{u1} 1 (OfNat.mk.{succ u1} Ordinal.{u1} 1 (One.one.{succ u1} Ordinal.{u1} Ordinal.hasOne.{u1})))) (Nonempty.{succ u1} (Unique.{succ u1} Ξ±)) but is expected to have type forall {Ξ± : Type.{u1}} {r : Ξ± -> Ξ± -> Prop} [_inst_1 : IsWellOrder.{u1} Ξ± r], Iff (Eq.{succ (succ u1)} Ordinal.{u1} (Ordinal.type.{u1} Ξ± r _inst_1) (OfNat.ofNat.{succ u1} Ordinal.{u1} 1 (One.toOfNat1.{succ u1} Ordinal.{u1} Ordinal.one.{u1}))) (Nonempty.{succ u1} (Unique.{succ u1} Ξ±)) Case conversion may be inaccurate. Consider using '#align ordinal.type_eq_one_iff_unique Ordinal.type_eq_one_iff_uniqueβ‚“'. -/ @[simp] theorem type_eq_one_iff_unique [IsWellOrder Ξ± r] : type r = 1 ↔ Nonempty (Unique Ξ±) := ⟨fun h => let ⟨s⟩ := type_eq.1 h ⟨s.toEquiv.unique⟩, fun ⟨h⟩ => @type_eq_one_of_unique Ξ± r _ h⟩ #align ordinal.type_eq_one_iff_unique Ordinal.type_eq_one_iff_unique /- warning: ordinal.type_punit -> Ordinal.type_pUnit is a dubious translation: lean 3 declaration is Eq.{succ (succ u1)} Ordinal.{u1} (Ordinal.type.{u1} PUnit.{succ u1} (EmptyRelation.{succ u1} PUnit.{succ u1}) (EmptyRelation.isWellOrder.{u1} PUnit.{succ u1} PUnit.subsingleton.{succ u1})) (OfNat.ofNat.{succ u1} Ordinal.{u1} 1 (OfNat.mk.{succ u1} Ordinal.{u1} 1 (One.one.{succ u1} Ordinal.{u1} Ordinal.hasOne.{u1}))) but is expected to have type Eq.{succ (succ u1)} Ordinal.{u1} (Ordinal.type.{u1} PUnit.{succ u1} (EmptyRelation.{succ u1} PUnit.{succ u1}) (instIsWellOrderEmptyRelation.{u1} PUnit.{succ u1} instSubsingletonPUnit.{succ u1})) (OfNat.ofNat.{succ u1} Ordinal.{u1} 1 (One.toOfNat1.{succ u1} Ordinal.{u1} Ordinal.one.{u1})) Case conversion may be inaccurate. Consider using '#align ordinal.type_punit Ordinal.type_pUnitβ‚“'. -/ theorem type_pUnit : type (@EmptyRelation PUnit) = 1 := rfl #align ordinal.type_punit Ordinal.type_pUnit /- warning: ordinal.type_unit -> Ordinal.type_unit is a dubious translation: lean 3 declaration is Eq.{2} Ordinal.{0} (Ordinal.type.{0} Unit (EmptyRelation.{1} Unit) (EmptyRelation.isWellOrder.{0} Unit PUnit.subsingleton.{1})) (OfNat.ofNat.{1} Ordinal.{0} 1 (OfNat.mk.{1} Ordinal.{0} 1 (One.one.{1} Ordinal.{0} Ordinal.hasOne.{0}))) but is expected to have type Eq.{2} Ordinal.{0} (Ordinal.type.{0} Unit (EmptyRelation.{1} Unit) (instIsWellOrderEmptyRelation.{0} Unit instSubsingletonPUnit.{1})) (OfNat.ofNat.{1} Ordinal.{0} 1 (One.toOfNat1.{1} Ordinal.{0} Ordinal.one.{0})) Case conversion may be inaccurate. Consider using '#align ordinal.type_unit Ordinal.type_unitβ‚“'. -/ theorem type_unit : type (@EmptyRelation Unit) = 1 := rfl #align ordinal.type_unit Ordinal.type_unit #print Ordinal.out_empty_iff_eq_zero /- @[simp] theorem out_empty_iff_eq_zero {o : Ordinal} : IsEmpty o.out.Ξ± ↔ o = 0 := by rw [← @type_eq_zero_iff_is_empty o.out.Ξ± (Β· < Β·), type_lt] #align ordinal.out_empty_iff_eq_zero Ordinal.out_empty_iff_eq_zero -/ #print Ordinal.eq_zero_of_out_empty /- theorem eq_zero_of_out_empty (o : Ordinal) [h : IsEmpty o.out.Ξ±] : o = 0 := out_empty_iff_eq_zero.1 h #align ordinal.eq_zero_of_out_empty Ordinal.eq_zero_of_out_empty -/ #print Ordinal.isEmpty_out_zero /- instance isEmpty_out_zero : IsEmpty (0 : Ordinal).out.Ξ± := out_empty_iff_eq_zero.2 rfl #align ordinal.is_empty_out_zero Ordinal.isEmpty_out_zero -/ #print Ordinal.out_nonempty_iff_ne_zero /- @[simp] theorem out_nonempty_iff_ne_zero {o : Ordinal} : Nonempty o.out.Ξ± ↔ o β‰  0 := by rw [← @type_ne_zero_iff_nonempty o.out.Ξ± (Β· < Β·), type_lt] #align ordinal.out_nonempty_iff_ne_zero Ordinal.out_nonempty_iff_ne_zero -/ #print Ordinal.ne_zero_of_out_nonempty /- theorem ne_zero_of_out_nonempty (o : Ordinal) [h : Nonempty o.out.Ξ±] : o β‰  0 := out_nonempty_iff_ne_zero.1 h #align ordinal.ne_zero_of_out_nonempty Ordinal.ne_zero_of_out_nonempty -/ /- warning: ordinal.one_ne_zero -> Ordinal.one_ne_zero is a dubious translation: lean 3 declaration is Ne.{succ (succ u1)} Ordinal.{u1} (OfNat.ofNat.{succ u1} Ordinal.{u1} 1 (OfNat.mk.{succ u1} Ordinal.{u1} 1 (One.one.{succ u1} Ordinal.{u1} Ordinal.hasOne.{u1}))) (OfNat.ofNat.{succ u1} Ordinal.{u1} 0 (OfNat.mk.{succ u1} Ordinal.{u1} 0 (Zero.zero.{succ u1} Ordinal.{u1} Ordinal.hasZero.{u1}))) but is expected to have type Ne.{succ (succ u1)} Ordinal.{u1} (OfNat.ofNat.{succ u1} Ordinal.{u1} 1 (One.toOfNat1.{succ u1} Ordinal.{u1} Ordinal.one.{u1})) (OfNat.ofNat.{succ u1} Ordinal.{u1} 0 (Zero.toOfNat0.{succ u1} Ordinal.{u1} Ordinal.zero.{u1})) Case conversion may be inaccurate. Consider using '#align ordinal.one_ne_zero Ordinal.one_ne_zeroβ‚“'. -/ protected theorem one_ne_zero : (1 : Ordinal) β‰  0 := type_ne_zero_of_nonempty _ #align ordinal.one_ne_zero Ordinal.one_ne_zero instance : Nontrivial Ordinal.{u} := ⟨⟨1, 0, Ordinal.one_ne_zero⟩⟩ #print Ordinal.type_preimage /- @[simp] theorem type_preimage {Ξ± Ξ² : Type u} (r : Ξ± β†’ Ξ± β†’ Prop) [IsWellOrder Ξ± r] (f : Ξ² ≃ Ξ±) : type (f ⁻¹'o r) = type r := (RelIso.preimage f r).ordinal_type_eq #align ordinal.type_preimage Ordinal.type_preimage -/ #print Ordinal.inductionOn /- @[elab_as_elim] theorem inductionOn {C : Ordinal β†’ Prop} (o : Ordinal) (H : βˆ€ (Ξ± r) [IsWellOrder Ξ± r], C (type r)) : C o := Quot.inductionOn o fun ⟨α, r, wo⟩ => @H Ξ± r wo #align ordinal.induction_on Ordinal.inductionOn -/ /-! ### The order on ordinals -/ instance : PartialOrder Ordinal where le a b := Quotient.liftOnβ‚‚ a b (fun ⟨α, r, wo⟩ ⟨β, s, wo'⟩ => Nonempty (r β‰Όi s)) fun βŸ¨Ξ±β‚, r₁, oβ‚βŸ© βŸ¨Ξ±β‚‚, rβ‚‚, oβ‚‚βŸ© βŸ¨Ξ²β‚, s₁, pβ‚βŸ© βŸ¨Ξ²β‚‚, sβ‚‚, pβ‚‚βŸ© ⟨f⟩ ⟨g⟩ => propext ⟨fun ⟨h⟩ => ⟨(InitialSeg.ofIso f.symm).trans <| h.trans (InitialSeg.ofIso g)⟩, fun ⟨h⟩ => ⟨(InitialSeg.ofIso f).trans <| h.trans (InitialSeg.ofIso g.symm)⟩⟩ lt a b := Quotient.liftOnβ‚‚ a b (fun ⟨α, r, wo⟩ ⟨β, s, wo'⟩ => Nonempty (r β‰Ίi s)) fun βŸ¨Ξ±β‚, r₁, oβ‚βŸ© βŸ¨Ξ±β‚‚, rβ‚‚, oβ‚‚βŸ© βŸ¨Ξ²β‚, s₁, pβ‚βŸ© βŸ¨Ξ²β‚‚, sβ‚‚, pβ‚‚βŸ© ⟨f⟩ ⟨g⟩ => propext ⟨fun ⟨h⟩ => ⟨PrincipalSeg.equivLT f.symm <| h.ltLe (InitialSeg.ofIso g)⟩, fun ⟨h⟩ => ⟨PrincipalSeg.equivLT f <| h.ltLe (InitialSeg.ofIso g.symm)⟩⟩ le_refl := Quot.ind fun ⟨α, r, wo⟩ => ⟨InitialSeg.refl _⟩ le_trans a b c := Quotient.induction_on₃ a b c fun ⟨α, r, _⟩ ⟨β, s, _⟩ ⟨γ, t, _⟩ ⟨f⟩ ⟨g⟩ => ⟨f.trans g⟩ lt_iff_le_not_le a b := Quotient.induction_onβ‚‚ a b fun ⟨α, r, _⟩ ⟨β, s, _⟩ => ⟨fun ⟨f⟩ => ⟨⟨f⟩, fun ⟨g⟩ => (f.ltLe g).irrefl⟩, fun ⟨⟨f⟩, h⟩ => Sum.recOn f.lt_or_eq (fun g => ⟨g⟩) fun g => (h ⟨InitialSeg.ofIso g.symm⟩).elim⟩ le_antisymm a b := Quotient.induction_onβ‚‚ a b fun ⟨α, r, _⟩ ⟨β, s, _⟩ ⟨hβ‚βŸ© ⟨hβ‚‚βŸ© => Quot.sound ⟨InitialSeg.antisymm h₁ hβ‚‚βŸ© /-- Ordinal less-equal is defined such that well orders `r` and `s` satisfy `type r ≀ type s` if there exists a function embedding `r` as an initial segment of `s`. -/ add_decl_doc ordinal.partial_order.le /-- Ordinal less-than is defined such that well orders `r` and `s` satisfy `type r < type s` if there exists a function embedding `r` as a principal segment of `s`. -/ add_decl_doc ordinal.partial_order.lt #print Ordinal.type_le_iff /- theorem type_le_iff {Ξ± Ξ²} {r : Ξ± β†’ Ξ± β†’ Prop} {s : Ξ² β†’ Ξ² β†’ Prop} [IsWellOrder Ξ± r] [IsWellOrder Ξ² s] : type r ≀ type s ↔ Nonempty (r β‰Όi s) := Iff.rfl #align ordinal.type_le_iff Ordinal.type_le_iff -/ #print Ordinal.type_le_iff' /- theorem type_le_iff' {Ξ± Ξ²} {r : Ξ± β†’ Ξ± β†’ Prop} {s : Ξ² β†’ Ξ² β†’ Prop} [IsWellOrder Ξ± r] [IsWellOrder Ξ² s] : type r ≀ type s ↔ Nonempty (r β†ͺr s) := ⟨fun ⟨f⟩ => ⟨f⟩, fun ⟨f⟩ => ⟨f.collapse⟩⟩ #align ordinal.type_le_iff' Ordinal.type_le_iff' -/ #print InitialSeg.ordinal_type_le /- theorem InitialSeg.ordinal_type_le {Ξ± Ξ²} {r : Ξ± β†’ Ξ± β†’ Prop} {s : Ξ² β†’ Ξ² β†’ Prop} [IsWellOrder Ξ± r] [IsWellOrder Ξ² s] (h : r β‰Όi s) : type r ≀ type s := ⟨h⟩ #align initial_seg.ordinal_type_le InitialSeg.ordinal_type_le -/ #print RelEmbedding.ordinal_type_le /- theorem RelEmbedding.ordinal_type_le {Ξ± Ξ²} {r : Ξ± β†’ Ξ± β†’ Prop} {s : Ξ² β†’ Ξ² β†’ Prop} [IsWellOrder Ξ± r] [IsWellOrder Ξ² s] (h : r β†ͺr s) : type r ≀ type s := ⟨h.collapse⟩ #align rel_embedding.ordinal_type_le RelEmbedding.ordinal_type_le -/ #print Ordinal.type_lt_iff /- @[simp] theorem type_lt_iff {Ξ± Ξ²} {r : Ξ± β†’ Ξ± β†’ Prop} {s : Ξ² β†’ Ξ² β†’ Prop} [IsWellOrder Ξ± r] [IsWellOrder Ξ² s] : type r < type s ↔ Nonempty (r β‰Ίi s) := Iff.rfl #align ordinal.type_lt_iff Ordinal.type_lt_iff -/ #print PrincipalSeg.ordinal_type_lt /- theorem PrincipalSeg.ordinal_type_lt {Ξ± Ξ²} {r : Ξ± β†’ Ξ± β†’ Prop} {s : Ξ² β†’ Ξ² β†’ Prop} [IsWellOrder Ξ± r] [IsWellOrder Ξ² s] (h : r β‰Ίi s) : type r < type s := ⟨h⟩ #align principal_seg.ordinal_type_lt PrincipalSeg.ordinal_type_lt -/ #print Ordinal.zero_le /- protected theorem zero_le (o : Ordinal) : 0 ≀ o := inductionOn o fun Ξ± r _ => (InitialSeg.ofIsEmpty _ r).ordinal_type_le #align ordinal.zero_le Ordinal.zero_le -/ instance : OrderBot Ordinal := ⟨0, Ordinal.zero_le⟩ /- warning: ordinal.bot_eq_zero -> Ordinal.bot_eq_zero is a dubious translation: lean 3 declaration is Eq.{succ (succ u1)} Ordinal.{u1} (Bot.bot.{succ u1} Ordinal.{u1} (OrderBot.toHasBot.{succ u1} Ordinal.{u1} (Preorder.toLE.{succ u1} Ordinal.{u1} (PartialOrder.toPreorder.{succ u1} Ordinal.{u1} Ordinal.partialOrder.{u1})) Ordinal.orderBot.{u1})) (OfNat.ofNat.{succ u1} Ordinal.{u1} 0 (OfNat.mk.{succ u1} Ordinal.{u1} 0 (Zero.zero.{succ u1} Ordinal.{u1} Ordinal.hasZero.{u1}))) but is expected to have type Eq.{succ (succ u1)} Ordinal.{u1} (Bot.bot.{succ u1} Ordinal.{u1} (OrderBot.toBot.{succ u1} Ordinal.{u1} (Preorder.toLE.{succ u1} Ordinal.{u1} (PartialOrder.toPreorder.{succ u1} Ordinal.{u1} Ordinal.partialOrder.{u1})) Ordinal.orderBot.{u1})) (OfNat.ofNat.{succ u1} Ordinal.{u1} 0 (Zero.toOfNat0.{succ u1} Ordinal.{u1} Ordinal.zero.{u1})) Case conversion may be inaccurate. Consider using '#align ordinal.bot_eq_zero Ordinal.bot_eq_zeroβ‚“'. -/ @[simp] theorem bot_eq_zero : (βŠ₯ : Ordinal) = 0 := rfl #align ordinal.bot_eq_zero Ordinal.bot_eq_zero #print Ordinal.le_zero /- @[simp] protected theorem le_zero {o : Ordinal} : o ≀ 0 ↔ o = 0 := le_bot_iff #align ordinal.le_zero Ordinal.le_zero -/ #print Ordinal.pos_iff_ne_zero /- protected theorem pos_iff_ne_zero {o : Ordinal} : 0 < o ↔ o β‰  0 := bot_lt_iff_ne_bot #align ordinal.pos_iff_ne_zero Ordinal.pos_iff_ne_zero -/ #print Ordinal.not_lt_zero /- protected theorem not_lt_zero (o : Ordinal) : Β¬o < 0 := not_lt_bot #align ordinal.not_lt_zero Ordinal.not_lt_zero -/ #print Ordinal.eq_zero_or_pos /- theorem eq_zero_or_pos : βˆ€ a : Ordinal, a = 0 ∨ 0 < a := eq_bot_or_bot_lt #align ordinal.eq_zero_or_pos Ordinal.eq_zero_or_pos -/ instance : ZeroLEOneClass Ordinal := ⟨Ordinal.zero_le _⟩ /- warning: ordinal.ne_zero.one -> Ordinal.NeZero.one is a dubious translation: lean 3 declaration is NeZero.{succ u1} Ordinal.{u1} Ordinal.hasZero.{u1} (OfNat.ofNat.{succ u1} Ordinal.{u1} 1 (OfNat.mk.{succ u1} Ordinal.{u1} 1 (One.one.{succ u1} Ordinal.{u1} Ordinal.hasOne.{u1}))) but is expected to have type NeZero.{succ u1} Ordinal.{u1} Ordinal.zero.{u1} (OfNat.ofNat.{succ u1} Ordinal.{u1} 1 (One.toOfNat1.{succ u1} Ordinal.{u1} Ordinal.one.{u1})) Case conversion may be inaccurate. Consider using '#align ordinal.ne_zero.one Ordinal.NeZero.oneβ‚“'. -/ instance NeZero.one : NeZero (1 : Ordinal) := ⟨Ordinal.one_ne_zero⟩ #align ordinal.ne_zero.one Ordinal.NeZero.one #print Ordinal.initialSegOut /- /-- Given two ordinals `Ξ± ≀ Ξ²`, then `initial_seg_out Ξ± Ξ²` is the initial segment embedding of `Ξ±` to `Ξ²`, as map from a model type for `Ξ±` to a model type for `Ξ²`. -/ def initialSegOut {Ξ± Ξ² : Ordinal} (h : Ξ± ≀ Ξ²) : InitialSeg ((Β· < Β·) : Ξ±.out.Ξ± β†’ Ξ±.out.Ξ± β†’ Prop) ((Β· < Β·) : Ξ².out.Ξ± β†’ Ξ².out.Ξ± β†’ Prop) := by change Ξ±.out.r β‰Όi Ξ².out.r rw [← Quotient.out_eq Ξ±, ← Quotient.out_eq Ξ²] at h; revert h cases Quotient.out Ξ±; cases Quotient.out Ξ²; exact Classical.choice #align ordinal.initial_seg_out Ordinal.initialSegOut -/ #print Ordinal.principalSegOut /- /-- Given two ordinals `Ξ± < Ξ²`, then `principal_seg_out Ξ± Ξ²` is the principal segment embedding of `Ξ±` to `Ξ²`, as map from a model type for `Ξ±` to a model type for `Ξ²`. -/ def principalSegOut {Ξ± Ξ² : Ordinal} (h : Ξ± < Ξ²) : PrincipalSeg ((Β· < Β·) : Ξ±.out.Ξ± β†’ Ξ±.out.Ξ± β†’ Prop) ((Β· < Β·) : Ξ².out.Ξ± β†’ Ξ².out.Ξ± β†’ Prop) := by change Ξ±.out.r β‰Ίi Ξ².out.r rw [← Quotient.out_eq Ξ±, ← Quotient.out_eq Ξ²] at h; revert h cases Quotient.out Ξ±; cases Quotient.out Ξ²; exact Classical.choice #align ordinal.principal_seg_out Ordinal.principalSegOut -/ #print Ordinal.typein_lt_type /- theorem typein_lt_type (r : Ξ± β†’ Ξ± β†’ Prop) [IsWellOrder Ξ± r] (a : Ξ±) : typein r a < type r := ⟨PrincipalSeg.ofElement _ _⟩ #align ordinal.typein_lt_type Ordinal.typein_lt_type -/ #print Ordinal.typein_lt_self /- theorem typein_lt_self {o : Ordinal} (i : o.out.Ξ±) : typein (Β· < Β·) i < o := by simp_rw [← type_lt o] apply typein_lt_type #align ordinal.typein_lt_self Ordinal.typein_lt_self -/ #print Ordinal.typein_top /- @[simp] theorem typein_top {Ξ± Ξ²} {r : Ξ± β†’ Ξ± β†’ Prop} {s : Ξ² β†’ Ξ² β†’ Prop} [IsWellOrder Ξ± r] [IsWellOrder Ξ² s] (f : r β‰Ίi s) : typein s f.top = type r := Eq.symm <| Quot.sound ⟨RelIso.ofSurjective (RelEmbedding.codRestrict _ f f.lt_top) fun ⟨a, h⟩ => by rcases f.down.1 h with ⟨b, rfl⟩ <;> exact ⟨b, rfl⟩⟩ #align ordinal.typein_top Ordinal.typein_top -/ /- warning: ordinal.typein_apply -> Ordinal.typein_apply is a dubious translation: lean 3 declaration is forall {Ξ± : Type.{u1}} {Ξ² : Type.{u1}} {r : Ξ± -> Ξ± -> Prop} {s : Ξ² -> Ξ² -> Prop} [_inst_1 : IsWellOrder.{u1} Ξ± r] [_inst_2 : IsWellOrder.{u1} Ξ² s] (f : InitialSeg.{u1, u1} Ξ± Ξ² r s) (a : Ξ±), Eq.{succ (succ u1)} Ordinal.{u1} (Ordinal.typein.{u1} Ξ² s _inst_2 (coeFn.{succ u1, succ u1} (InitialSeg.{u1, u1} Ξ± Ξ² r s) (fun (_x : InitialSeg.{u1, u1} Ξ± Ξ² r s) => Ξ± -> Ξ²) (FunLike.hasCoeToFun.{succ u1, succ u1, succ u1} (InitialSeg.{u1, u1} Ξ± Ξ² r s) Ξ± (fun (_x : Ξ±) => Ξ²) (EmbeddingLike.toFunLike.{succ u1, succ u1, succ u1} (InitialSeg.{u1, u1} Ξ± Ξ² r s) Ξ± Ξ² (InitialSeg.embeddingLike.{u1, u1} Ξ± Ξ² r s))) f a)) (Ordinal.typein.{u1} Ξ± r _inst_1 a) but is expected to have type forall {Ξ± : Type.{u1}} {Ξ² : Type.{u1}} {r : Ξ± -> Ξ± -> Prop} {s : Ξ² -> Ξ² -> Prop} [_inst_1 : IsWellOrder.{u1} Ξ± r] [_inst_2 : IsWellOrder.{u1} Ξ² s] (f : InitialSeg.{u1, u1} Ξ± Ξ² r s) (a : Ξ±), Eq.{succ (succ u1)} Ordinal.{u1} (Ordinal.typein.{u1} Ξ² s _inst_2 (FunLike.coe.{succ u1, succ u1, succ u1} (InitialSeg.{u1, u1} Ξ± Ξ² r s) Ξ± (fun (_x : Ξ±) => (fun ([email protected]._hyg.19 : Ξ±) => Ξ²) _x) (EmbeddingLike.toFunLike.{succ u1, succ u1, succ u1} (InitialSeg.{u1, u1} Ξ± Ξ² r s) Ξ± Ξ² (InitialSeg.instEmbeddingLikeInitialSeg.{u1, u1} Ξ± Ξ² r s)) f a)) (Ordinal.typein.{u1} Ξ± r _inst_1 a) Case conversion may be inaccurate. Consider using '#align ordinal.typein_apply Ordinal.typein_applyβ‚“'. -/ @[simp] theorem typein_apply {Ξ± Ξ²} {r : Ξ± β†’ Ξ± β†’ Prop} {s : Ξ² β†’ Ξ² β†’ Prop} [IsWellOrder Ξ± r] [IsWellOrder Ξ² s] (f : r β‰Όi s) (a : Ξ±) : Ordinal.typein s (f a) = Ordinal.typein r a := Eq.symm <| Quotient.sound ⟨RelIso.ofSurjective (RelEmbedding.codRestrict _ ((Subrel.relEmbedding _ _).trans f) fun ⟨x, h⟩ => by rw [RelEmbedding.trans_apply] <;> exact f.to_rel_embedding.map_rel_iff.2 h) fun ⟨y, h⟩ => by rcases f.init h with ⟨a, rfl⟩ <;> exact ⟨⟨a, f.to_rel_embedding.map_rel_iff.1 h⟩, Subtype.eq <| RelEmbedding.trans_apply _ _ _⟩⟩ #align ordinal.typein_apply Ordinal.typein_apply #print Ordinal.typein_lt_typein /- @[simp] theorem typein_lt_typein (r : Ξ± β†’ Ξ± β†’ Prop) [IsWellOrder Ξ± r] {a b : Ξ±} : typein r a < typein r b ↔ r a b := ⟨fun ⟨f⟩ => by have : f.top.1 = a := by let f' := PrincipalSeg.ofElement r a let g' := f.trans (PrincipalSeg.ofElement r b) have : g'.top = f'.top := by rw [Subsingleton.elim f' g'] exact this rw [← this] exact f.top.2, fun h => ⟨PrincipalSeg.codRestrict _ (PrincipalSeg.ofElement r a) (fun x => @trans _ r _ _ _ _ x.2 h) h⟩⟩ #align ordinal.typein_lt_typein Ordinal.typein_lt_typein -/ #print Ordinal.typein_surj /- theorem typein_surj (r : Ξ± β†’ Ξ± β†’ Prop) [IsWellOrder Ξ± r] {o} (h : o < type r) : βˆƒ a, typein r a = o := inductionOn o (fun Ξ² s _ ⟨f⟩ => ⟨f.top, typein_top _⟩) h #align ordinal.typein_surj Ordinal.typein_surj -/ #print Ordinal.typein_injective /- theorem typein_injective (r : Ξ± β†’ Ξ± β†’ Prop) [IsWellOrder Ξ± r] : Injective (typein r) := injective_of_increasing r (Β· < Β·) (typein r) fun x y => (typein_lt_typein r).2 #align ordinal.typein_injective Ordinal.typein_injective -/ #print Ordinal.typein_inj /- @[simp] theorem typein_inj (r : Ξ± β†’ Ξ± β†’ Prop) [IsWellOrder Ξ± r] {a b} : typein r a = typein r b ↔ a = b := (typein_injective r).eq_iff #align ordinal.typein_inj Ordinal.typein_inj -/ /-! ### Enumerating elements in a well-order with ordinals. -/ #print Ordinal.enum /- /-- `enum r o h` is the `o`-th element of `Ξ±` ordered by `r`. That is, `enum` maps an initial segment of the ordinals, those less than the order type of `r`, to the elements of `Ξ±`. -/ def enum (r : Ξ± β†’ Ξ± β†’ Prop) [IsWellOrder Ξ± r] (o) : o < type r β†’ Ξ± := Quot.recOn' o (fun ⟨β, s, _⟩ h => (Classical.choice h).top) fun ⟨β, s, _⟩ ⟨γ, t, _⟩ ⟨h⟩ => by skip refine' funext fun Hβ‚‚ : type t < type r => _ have H₁ : type s < type r := by rwa [type_eq.2 ⟨h⟩] have : βˆ€ {o e} (H : o < type r), @Eq.ndrec (fun o : Ordinal => o < type r β†’ Ξ±) (fun h : type s < type r => (Classical.choice h).top) e H = (Classical.choice H₁).top := by intros subst e exact (this Hβ‚‚).trans (PrincipalSeg.top_eq h (Classical.choice H₁) (Classical.choice Hβ‚‚)) #align ordinal.enum Ordinal.enum -/ #print Ordinal.enum_type /- theorem enum_type {Ξ± Ξ²} {r : Ξ± β†’ Ξ± β†’ Prop} {s : Ξ² β†’ Ξ² β†’ Prop} [IsWellOrder Ξ± r] [IsWellOrder Ξ² s] (f : s β‰Ίi r) {h : type s < type r} : enum r (type s) h = f.top := PrincipalSeg.top_eq (RelIso.refl _) _ _ #align ordinal.enum_type Ordinal.enum_type -/ #print Ordinal.enum_typein /- @[simp] theorem enum_typein (r : Ξ± β†’ Ξ± β†’ Prop) [IsWellOrder Ξ± r] (a : Ξ±) : enum r (typein r a) (typein_lt_type r a) = a := enum_type (PrincipalSeg.ofElement r a) #align ordinal.enum_typein Ordinal.enum_typein -/ #print Ordinal.typein_enum /- @[simp] theorem typein_enum (r : Ξ± β†’ Ξ± β†’ Prop) [IsWellOrder Ξ± r] {o} (h : o < type r) : typein r (enum r o h) = o := by let ⟨a, e⟩ := typein_surj r h clear _let_match <;> subst e <;> rw [enum_typein] #align ordinal.typein_enum Ordinal.typein_enum -/ #print Ordinal.enum_lt_enum /- theorem enum_lt_enum {r : Ξ± β†’ Ξ± β†’ Prop} [IsWellOrder Ξ± r] {o₁ oβ‚‚ : Ordinal} (h₁ : o₁ < type r) (hβ‚‚ : oβ‚‚ < type r) : r (enum r o₁ h₁) (enum r oβ‚‚ hβ‚‚) ↔ o₁ < oβ‚‚ := by rw [← typein_lt_typein r, typein_enum, typein_enum] #align ordinal.enum_lt_enum Ordinal.enum_lt_enum -/ /- warning: ordinal.rel_iso_enum' -> Ordinal.relIso_enum' is a dubious translation: lean 3 declaration is forall {Ξ± : Type.{u1}} {Ξ² : Type.{u1}} {r : Ξ± -> Ξ± -> Prop} {s : Ξ² -> Ξ² -> Prop} [_inst_1 : IsWellOrder.{u1} Ξ± r] [_inst_2 : IsWellOrder.{u1} Ξ² s] (f : RelIso.{u1, u1} Ξ± Ξ² r s) (o : Ordinal.{u1}) (hr : LT.lt.{succ u1} Ordinal.{u1} (Preorder.toLT.{succ u1} Ordinal.{u1} (PartialOrder.toPreorder.{succ u1} Ordinal.{u1} Ordinal.partialOrder.{u1})) o (Ordinal.type.{u1} Ξ± r _inst_1)) (hs : LT.lt.{succ u1} Ordinal.{u1} (Preorder.toLT.{succ u1} Ordinal.{u1} (PartialOrder.toPreorder.{succ u1} Ordinal.{u1} Ordinal.partialOrder.{u1})) o (Ordinal.type.{u1} Ξ² s _inst_2)), Eq.{succ u1} Ξ² (coeFn.{succ u1, succ u1} (RelIso.{u1, u1} Ξ± Ξ² r s) (fun (_x : RelIso.{u1, u1} Ξ± Ξ² r s) => Ξ± -> Ξ²) (RelIso.hasCoeToFun.{u1, u1} Ξ± Ξ² r s) f (Ordinal.enum.{u1} Ξ± r _inst_1 o hr)) (Ordinal.enum.{u1} Ξ² s _inst_2 o hs) but is expected to have type forall {Ξ± : Type.{u1}} {Ξ² : Type.{u1}} {r : Ξ± -> Ξ± -> Prop} {s : Ξ² -> Ξ² -> Prop} [_inst_1 : IsWellOrder.{u1} Ξ± r] [_inst_2 : IsWellOrder.{u1} Ξ² s] (f : RelIso.{u1, u1} Ξ± Ξ² r s) (o : Ordinal.{u1}) (hr : LT.lt.{succ u1} Ordinal.{u1} (Preorder.toLT.{succ u1} Ordinal.{u1} (PartialOrder.toPreorder.{succ u1} Ordinal.{u1} Ordinal.partialOrder.{u1})) o (Ordinal.type.{u1} Ξ± r _inst_1)) (hs : LT.lt.{succ u1} Ordinal.{u1} (Preorder.toLT.{succ u1} Ordinal.{u1} (PartialOrder.toPreorder.{succ u1} Ordinal.{u1} Ordinal.partialOrder.{u1})) o (Ordinal.type.{u1} Ξ² s _inst_2)), Eq.{succ u1} ((fun ([email protected]._hyg.19 : Ξ±) => Ξ²) (Ordinal.enum.{u1} Ξ± r _inst_1 o hr)) (FunLike.coe.{succ u1, succ u1, succ u1} (Function.Embedding.{succ u1, succ u1} Ξ± Ξ²) Ξ± (fun (_x : Ξ±) => (fun ([email protected]._hyg.19 : Ξ±) => Ξ²) _x) (EmbeddingLike.toFunLike.{succ u1, succ u1, succ u1} (Function.Embedding.{succ u1, succ u1} Ξ± Ξ²) Ξ± Ξ² (Function.instEmbeddingLikeEmbedding.{succ u1, succ u1} Ξ± Ξ²)) (RelEmbedding.toEmbedding.{u1, u1} Ξ± Ξ² r s (RelIso.toRelEmbedding.{u1, u1} Ξ± Ξ² r s f)) (Ordinal.enum.{u1} Ξ± r _inst_1 o hr)) (Ordinal.enum.{u1} Ξ² s _inst_2 o hs) Case conversion may be inaccurate. Consider using '#align ordinal.rel_iso_enum' Ordinal.relIso_enum'β‚“'. -/ theorem relIso_enum' {Ξ± Ξ² : Type u} {r : Ξ± β†’ Ξ± β†’ Prop} {s : Ξ² β†’ Ξ² β†’ Prop} [IsWellOrder Ξ± r] [IsWellOrder Ξ² s] (f : r ≃r s) (o : Ordinal) : βˆ€ (hr : o < type r) (hs : o < type s), f (enum r o hr) = enum s o hs := by refine' induction_on o _; rintro Ξ³ t wo ⟨g⟩ ⟨h⟩ skip; rw [enum_type g, enum_type (PrincipalSeg.ltEquiv g f)]; rfl #align ordinal.rel_iso_enum' Ordinal.relIso_enum' /- warning: ordinal.rel_iso_enum -> Ordinal.relIso_enum is a dubious translation: lean 3 declaration is forall {Ξ± : Type.{u1}} {Ξ² : Type.{u1}} {r : Ξ± -> Ξ± -> Prop} {s : Ξ² -> Ξ² -> Prop} [_inst_1 : IsWellOrder.{u1} Ξ± r] [_inst_2 : IsWellOrder.{u1} Ξ² s] (f : RelIso.{u1, u1} Ξ± Ξ² r s) (o : Ordinal.{u1}) (hr : LT.lt.{succ u1} Ordinal.{u1} (Preorder.toLT.{succ u1} Ordinal.{u1} (PartialOrder.toPreorder.{succ u1} Ordinal.{u1} Ordinal.partialOrder.{u1})) o (Ordinal.type.{u1} Ξ± r _inst_1)), Eq.{succ u1} Ξ² (coeFn.{succ u1, succ u1} (RelIso.{u1, u1} Ξ± Ξ² r s) (fun (_x : RelIso.{u1, u1} Ξ± Ξ² r s) => Ξ± -> Ξ²) (RelIso.hasCoeToFun.{u1, u1} Ξ± Ξ² r s) f (Ordinal.enum.{u1} Ξ± r _inst_1 o hr)) (Ordinal.enum.{u1} Ξ² s _inst_2 o (Eq.mpr.{0} (LT.lt.{succ u1} Ordinal.{u1} (Preorder.toLT.{succ u1} Ordinal.{u1} (PartialOrder.toPreorder.{succ u1} Ordinal.{u1} Ordinal.partialOrder.{u1})) o (Ordinal.type.{u1} Ξ² s _inst_2)) (LT.lt.{succ u1} Ordinal.{u1} (Preorder.toLT.{succ u1} Ordinal.{u1} (PartialOrder.toPreorder.{succ u1} Ordinal.{u1} Ordinal.partialOrder.{u1})) o (Ordinal.type.{u1} Ξ± r _inst_1)) ((fun [self : LT.{succ u1} Ordinal.{u1}] (αΎ° : Ordinal.{u1}) (αΎ°_1 : Ordinal.{u1}) (e_2 : Eq.{succ (succ u1)} Ordinal.{u1} αΎ° αΎ°_1) (αΎ°_2 : Ordinal.{u1}) (αΎ°_3 : Ordinal.{u1}) (e_3 : Eq.{succ (succ u1)} Ordinal.{u1} αΎ°_2 αΎ°_3) => congr.{succ (succ u1), 1} Ordinal.{u1} Prop (LT.lt.{succ u1} Ordinal.{u1} self αΎ°) (LT.lt.{succ u1} Ordinal.{u1} self αΎ°_1) αΎ°_2 αΎ°_3 (congr_arg.{succ (succ u1), succ (succ u1)} Ordinal.{u1} (Ordinal.{u1} -> Prop) αΎ° αΎ°_1 (LT.lt.{succ u1} Ordinal.{u1} self) e_2) e_3) (Preorder.toLT.{succ u1} Ordinal.{u1} (PartialOrder.toPreorder.{succ u1} Ordinal.{u1} Ordinal.partialOrder.{u1})) o o (rfl.{succ (succ u1)} Ordinal.{u1} o) (Ordinal.type.{u1} Ξ² s _inst_2) (Ordinal.type.{u1} Ξ± r _inst_1) (Quotient.sound.{succ (succ u1)} WellOrder.{u1} Ordinal.isEquivalent.{u1} (WellOrder.mk.{u1} Ξ² s _inst_2) (WellOrder.mk.{u1} Ξ± r _inst_1) (Nonempty.intro.{succ u1} (RelIso.{u1, u1} Ξ² Ξ± s r) (RelIso.symm.{u1, u1} Ξ± Ξ² r s f)))) hr)) but is expected to have type forall {Ξ± : Type.{u1}} {Ξ² : Type.{u1}} {r : Ξ± -> Ξ± -> Prop} {s : Ξ² -> Ξ² -> Prop} [_inst_1 : IsWellOrder.{u1} Ξ± r] [_inst_2 : IsWellOrder.{u1} Ξ² s] (f : RelIso.{u1, u1} Ξ± Ξ² r s) (o : Ordinal.{u1}) (hr : LT.lt.{succ u1} Ordinal.{u1} (Preorder.toLT.{succ u1} Ordinal.{u1} (PartialOrder.toPreorder.{succ u1} Ordinal.{u1} Ordinal.partialOrder.{u1})) o (Ordinal.type.{u1} Ξ± r _inst_1)), Eq.{succ u1} ((fun ([email protected]._hyg.19 : Ξ±) => Ξ²) (Ordinal.enum.{u1} Ξ± r _inst_1 o hr)) (FunLike.coe.{succ u1, succ u1, succ u1} (Function.Embedding.{succ u1, succ u1} Ξ± Ξ²) Ξ± (fun (_x : Ξ±) => (fun ([email protected]._hyg.19 : Ξ±) => Ξ²) _x) (EmbeddingLike.toFunLike.{succ u1, succ u1, succ u1} (Function.Embedding.{succ u1, succ u1} Ξ± Ξ²) Ξ± Ξ² (Function.instEmbeddingLikeEmbedding.{succ u1, succ u1} Ξ± Ξ²)) (RelEmbedding.toEmbedding.{u1, u1} Ξ± Ξ² r s (RelIso.toRelEmbedding.{u1, u1} Ξ± Ξ² r s f)) (Ordinal.enum.{u1} Ξ± r _inst_1 o hr)) (Ordinal.enum.{u1} Ξ² s _inst_2 o (Eq.mpr.{0} (LT.lt.{succ u1} Ordinal.{u1} (Preorder.toLT.{succ u1} Ordinal.{u1} (PartialOrder.toPreorder.{succ u1} Ordinal.{u1} Ordinal.partialOrder.{u1})) o (Ordinal.type.{u1} Ξ² s _inst_2)) (LT.lt.{succ u1} Ordinal.{u1} (Preorder.toLT.{succ u1} Ordinal.{u1} (PartialOrder.toPreorder.{succ u1} Ordinal.{u1} Ordinal.partialOrder.{u1})) o (Ordinal.type.{u1} Ξ± r _inst_1)) (eq_of_heq.{1} Prop (LT.lt.{succ u1} Ordinal.{u1} (Preorder.toLT.{succ u1} Ordinal.{u1} (PartialOrder.toPreorder.{succ u1} Ordinal.{u1} Ordinal.partialOrder.{u1})) o (Ordinal.type.{u1} Ξ² s _inst_2)) (LT.lt.{succ u1} Ordinal.{u1} (Preorder.toLT.{succ u1} Ordinal.{u1} (PartialOrder.toPreorder.{succ u1} Ordinal.{u1} Ordinal.partialOrder.{u1})) o (Ordinal.type.{u1} Ξ± r _inst_1)) ((fun (Ξ± : Type.{succ u1}) (self : LT.{succ u1} Ξ±) ([email protected]._hyg.2009 : Ξ±) ([email protected]._hyg.2011 : Ξ±) (a'[email protected]._hyg.2011 : Ξ±) (e'_4 : Eq.{succ (succ u1)} Ξ± [email protected]._hyg.2011 a'[email protected]._hyg.2011) => Eq.casesOn.{0, succ (succ u1)} Ξ± [email protected]._hyg.2011 (fun ([email protected]._hyg.170 : Ξ±) (x : Eq.{succ (succ u1)} Ξ± [email protected]._hyg.2011 [email protected]._hyg.170) => (Eq.{succ (succ u1)} Ξ± a'[email protected]._hyg.2011 [email protected]._hyg.170) -> (HEq.{0} (Eq.{succ (succ u1)} Ξ± [email protected]._hyg.2011 a'[email protected]._hyg.2011) e'_4 (Eq.{succ (succ u1)} Ξ± [email protected]._hyg.2011 [email protected]._hyg.170) x) -> (HEq.{1} Prop (LT.lt.{succ u1} Ξ± self [email protected]._hyg.2009 [email protected]._hyg.2011) Prop (LT.lt.{succ u1} Ξ± self [email protected]._hyg.2009 a'[email protected]._hyg.2011))) a'[email protected]._hyg.2011 e'_4 (fun ([email protected]._hyg.5692 : Eq.{succ (succ u1)} Ξ± a'[email protected]._hyg.2011 [email protected]._hyg.2011) => Eq.ndrec.{0, succ (succ u1)} Ξ± [email protected]._hyg.2011 (fun (a'[email protected]._hyg.5690 : Ξ±) => forall ([email protected]._hyg.5691 : Eq.{succ (succ u1)} Ξ± [email protected]._hyg.2011 a'[email protected]._hyg.5690), (HEq.{0} (Eq.{succ (succ u1)} Ξ± [email protected]._hyg.2011 a'[email protected]._hyg.5690) [email protected]._hyg.5691 (Eq.{succ (succ u1)} Ξ± [email protected]._hyg.2011 [email protected]._hyg.2011) (Eq.refl.{succ (succ u1)} Ξ± [email protected]._hyg.2011)) -> (HEq.{1} Prop (LT.lt.{succ u1} Ξ± self [email protected]._hyg.2009 [email protected]._hyg.2011) Prop (LT.lt.{succ u1} Ξ± self [email protected]._hyg.2009 a'[email protected]._hyg.5690))) (fun ([email protected]._hyg.5691 : Eq.{succ (succ u1)} Ξ± [email protected]._hyg.2011 [email protected]._hyg.2011) ([email protected]._hyg.5693 : HEq.{0} (Eq.{succ (succ u1)} Ξ± [email protected]._hyg.2011 [email protected]._hyg.2011) [email protected]._hyg.5691 (Eq.{succ (succ u1)} Ξ± [email protected]._hyg.2011 [email protected]._hyg.2011) (Eq.refl.{succ (succ u1)} Ξ± [email protected]._hyg.2011)) => Eq.ndrec.{0, 0} (Eq.{succ (succ u1)} Ξ± [email protected]._hyg.2011 [email protected]._hyg.2011) (Eq.refl.{succ (succ u1)} Ξ± [email protected]._hyg.2011) (fun ([email protected]._hyg.5691 : Eq.{succ (succ u1)} Ξ± [email protected]._hyg.2011 [email protected]._hyg.2011) => HEq.{1} Prop (LT.lt.{succ u1} Ξ± self [email protected]._hyg.2009 [email protected]._hyg.2011) Prop (LT.lt.{succ u1} Ξ± self [email protected]._hyg.2009 [email protected]._hyg.2011)) (HEq.refl.{1} Prop (LT.lt.{succ u1} Ξ± self [email protected]._hyg.2009 [email protected]._hyg.2011)) [email protected]._hyg.5691 (Eq.symm.{0} (Eq.{succ (succ u1)} Ξ± [email protected]._hyg.2011 [email protected]._hyg.2011) [email protected]._hyg.5691 (Eq.refl.{succ (succ u1)} Ξ± [email protected]._hyg.2011) (eq_of_heq.{0} (Eq.{succ (succ u1)} Ξ± [email protected]._hyg.2011 [email protected]._hyg.2011) [email protected]._hyg.5691 (Eq.refl.{succ (succ u1)} Ξ± [email protected]._hyg.2011) [email protected]._hyg.5693))) a'[email protected]._hyg.2011 (Eq.symm.{succ (succ u1)} Ξ± a'[email protected]._hyg.2011 [email protected]._hyg.2011 [email protected]._hyg.5692) e'_4) (Eq.refl.{succ (succ u1)} Ξ± a'[email protected]._hyg.2011) (HEq.refl.{0} (Eq.{succ (succ u1)} Ξ± [email protected]._hyg.2011 a'[email protected]._hyg.2011) e'_4)) Ordinal.{u1} (Preorder.toLT.{succ u1} Ordinal.{u1} (PartialOrder.toPreorder.{succ u1} Ordinal.{u1} Ordinal.partialOrder.{u1})) o (Ordinal.type.{u1} Ξ² s _inst_2) (Ordinal.type.{u1} Ξ± r _inst_1) (Quotient.sound.{succ (succ u1)} WellOrder.{u1} Ordinal.isEquivalent.{u1} (WellOrder.mk.{u1} Ξ² s _inst_2) (WellOrder.mk.{u1} Ξ± r _inst_1) (Nonempty.intro.{succ u1} (RelIso.{u1, u1} Ξ² Ξ± s r) (RelIso.symm.{u1, u1} Ξ± Ξ² r s f))))) hr)) Case conversion may be inaccurate. Consider using '#align ordinal.rel_iso_enum Ordinal.relIso_enumβ‚“'. -/ theorem relIso_enum {Ξ± Ξ² : Type u} {r : Ξ± β†’ Ξ± β†’ Prop} {s : Ξ² β†’ Ξ² β†’ Prop} [IsWellOrder Ξ± r] [IsWellOrder Ξ² s] (f : r ≃r s) (o : Ordinal) (hr : o < type r) : f (enum r o hr) = enum s o (by convert hr using 1 apply Quotient.sound exact ⟨f.symm⟩) := relIso_enum' _ _ _ _ #align ordinal.rel_iso_enum Ordinal.relIso_enum #print Ordinal.lt_wf /- theorem lt_wf : @WellFounded Ordinal (Β· < Β·) := ⟨fun a => inductionOn a fun Ξ± r wo => suffices βˆ€ a, Acc (Β· < Β·) (typein r a) from ⟨_, fun o h => let ⟨a, e⟩ := typein_surj r h e β–Έ this a⟩ fun a => Acc.recOn (wo.wf.apply a) fun x H IH => ⟨_, fun o h => by rcases typein_surj r (lt_trans h (typein_lt_type r _)) with ⟨b, rfl⟩ exact IH _ ((typein_lt_typein r).1 h)⟩⟩ #align ordinal.lt_wf Ordinal.lt_wf -/ instance : WellFoundedRelation Ordinal := ⟨(Β· < Β·), lt_wf⟩ #print Ordinal.induction /- /-- Reformulation of well founded induction on ordinals as a lemma that works with the `induction` tactic, as in `induction i using ordinal.induction with i IH`. -/ theorem induction {p : Ordinal.{u} β†’ Prop} (i : Ordinal.{u}) (h : βˆ€ j, (βˆ€ k, k < j β†’ p k) β†’ p j) : p i := lt_wf.induction i h #align ordinal.induction Ordinal.induction -/ #print Ordinal.typein.principalSeg /- /-- Principal segment version of the `typein` function, embedding a well order into ordinals as a principal segment. -/ def typein.principalSeg {Ξ± : Type u} (r : Ξ± β†’ Ξ± β†’ Prop) [IsWellOrder Ξ± r] : @PrincipalSeg Ξ± Ordinal.{u} r (Β· < Β·) := ⟨RelEmbedding.ofMonotone (typein r) fun a b => (typein_lt_typein r).2, type r, fun b => ⟨fun h => ⟨enum r _ h, typein_enum r h⟩, fun ⟨a, e⟩ => e β–Έ typein_lt_type _ _⟩⟩ #align ordinal.typein.principal_seg Ordinal.typein.principalSeg -/ /- warning: ordinal.typein.principal_seg_coe -> Ordinal.typein.principalSeg_coe is a dubious translation: lean 3 declaration is forall {Ξ± : Type.{u1}} (r : Ξ± -> Ξ± -> Prop) [_inst_1 : IsWellOrder.{u1} Ξ± r], Eq.{succ (succ u1)} ((fun (_x : PrincipalSeg.{u1, succ u1} Ξ± Ordinal.{u1} r (LT.lt.{succ u1} Ordinal.{u1} (Preorder.toLT.{succ u1} Ordinal.{u1} (PartialOrder.toPreorder.{succ u1} Ordinal.{u1} Ordinal.partialOrder.{u1})))) => Ξ± -> Ordinal.{u1}) (Ordinal.typein.principalSeg.{u1} Ξ± r _inst_1)) (coeFn.{succ (succ u1), succ (succ u1)} (PrincipalSeg.{u1, succ u1} Ξ± Ordinal.{u1} r (LT.lt.{succ u1} Ordinal.{u1} (Preorder.toLT.{succ u1} Ordinal.{u1} (PartialOrder.toPreorder.{succ u1} Ordinal.{u1} Ordinal.partialOrder.{u1})))) (fun (_x : PrincipalSeg.{u1, succ u1} Ξ± Ordinal.{u1} r (LT.lt.{succ u1} Ordinal.{u1} (Preorder.toLT.{succ u1} Ordinal.{u1} (PartialOrder.toPreorder.{succ u1} Ordinal.{u1} Ordinal.partialOrder.{u1})))) => Ξ± -> Ordinal.{u1}) (PrincipalSeg.hasCoeToFun.{u1, succ u1} Ξ± Ordinal.{u1} r (LT.lt.{succ u1} Ordinal.{u1} (Preorder.toLT.{succ u1} Ordinal.{u1} (PartialOrder.toPreorder.{succ u1} Ordinal.{u1} Ordinal.partialOrder.{u1})))) (Ordinal.typein.principalSeg.{u1} Ξ± r _inst_1)) (Ordinal.typein.{u1} Ξ± r _inst_1) but is expected to have type forall {Ξ± : Type.{u1}} (r : Ξ± -> Ξ± -> Prop) [_inst_1 : IsWellOrder.{u1} Ξ± r], Eq.{succ (succ u1)} (forall (a : Ξ±), (fun ([email protected]._hyg.19 : Ξ±) => Ordinal.{u1}) a) (FunLike.coe.{succ (succ u1), succ u1, succ (succ u1)} (Function.Embedding.{succ u1, succ (succ u1)} Ξ± Ordinal.{u1}) Ξ± (fun (_x : Ξ±) => (fun ([email protected]._hyg.19 : Ξ±) => Ordinal.{u1}) _x) (EmbeddingLike.toFunLike.{succ (succ u1), succ u1, succ (succ u1)} (Function.Embedding.{succ u1, succ (succ u1)} Ξ± Ordinal.{u1}) Ξ± Ordinal.{u1} (Function.instEmbeddingLikeEmbedding.{succ u1, succ (succ u1)} Ξ± Ordinal.{u1})) (RelEmbedding.toEmbedding.{u1, succ u1} Ξ± Ordinal.{u1} r (fun ([email protected]._hyg.6003 : Ordinal.{u1}) ([email protected]._hyg.6005 : Ordinal.{u1}) => LT.lt.{succ u1} Ordinal.{u1} (Preorder.toLT.{succ u1} Ordinal.{u1} (PartialOrder.toPreorder.{succ u1} Ordinal.{u1} Ordinal.partialOrder.{u1})) [email protected]._hyg.6003 [email protected]._hyg.6005) (PrincipalSeg.toRelEmbedding.{u1, succ u1} Ξ± Ordinal.{u1} r (fun ([email protected]._hyg.6003 : Ordinal.{u1}) ([email protected]._hyg.6005 : Ordinal.{u1}) => LT.lt.{succ u1} Ordinal.{u1} (Preorder.toLT.{succ u1} Ordinal.{u1} (PartialOrder.toPreorder.{succ u1} Ordinal.{u1} Ordinal.partialOrder.{u1})) [email protected]._hyg.6003 [email protected]._hyg.6005) (Ordinal.typein.principalSeg.{u1} Ξ± r _inst_1)))) (Ordinal.typein.{u1} Ξ± r _inst_1) Case conversion may be inaccurate. Consider using '#align ordinal.typein.principal_seg_coe Ordinal.typein.principalSeg_coeβ‚“'. -/ @[simp] theorem typein.principalSeg_coe (r : Ξ± β†’ Ξ± β†’ Prop) [IsWellOrder Ξ± r] : (typein.principalSeg r : Ξ± β†’ Ordinal) = typein r := rfl #align ordinal.typein.principal_seg_coe Ordinal.typein.principalSeg_coe /-! ### Cardinality of ordinals -/ #print Ordinal.card /- /-- The cardinal of an ordinal is the cardinality of any type on which a relation with that order type is defined. -/ def card : Ordinal β†’ Cardinal := Quotient.map WellOrder.Ξ± fun ⟨α, r, _⟩ ⟨β, s, _⟩ ⟨e⟩ => ⟨e.toEquiv⟩ #align ordinal.card Ordinal.card -/ #print Ordinal.card_type /- @[simp] theorem card_type (r : Ξ± β†’ Ξ± β†’ Prop) [IsWellOrder Ξ± r] : card (type r) = (#Ξ±) := rfl #align ordinal.card_type Ordinal.card_type -/ #print Ordinal.card_typein /- @[simp] theorem card_typein {r : Ξ± β†’ Ξ± β†’ Prop} [wo : IsWellOrder Ξ± r] (x : Ξ±) : (#{ y // r y x }) = (typein r x).card := rfl #align ordinal.card_typein Ordinal.card_typein -/ #print Ordinal.card_le_card /- theorem card_le_card {o₁ oβ‚‚ : Ordinal} : o₁ ≀ oβ‚‚ β†’ card o₁ ≀ card oβ‚‚ := inductionOn o₁ fun Ξ± r _ => inductionOn oβ‚‚ fun Ξ² s _ ⟨⟨⟨f, _⟩, _⟩⟩ => ⟨f⟩ #align ordinal.card_le_card Ordinal.card_le_card -/ #print Ordinal.card_zero /- @[simp] theorem card_zero : card 0 = 0 := rfl #align ordinal.card_zero Ordinal.card_zero -/ #print Ordinal.card_eq_zero /- @[simp] theorem card_eq_zero {o} : card o = 0 ↔ o = 0 := ⟨inductionOn o fun Ξ± r _ h => by haveI := Cardinal.mk_eq_zero_iff.1 h apply type_eq_zero_of_empty, fun e => by simp only [e, card_zero]⟩ #align ordinal.card_eq_zero Ordinal.card_eq_zero -/ /- warning: ordinal.card_one -> Ordinal.card_one is a dubious translation: lean 3 declaration is Eq.{succ (succ u1)} Cardinal.{u1} (Ordinal.card.{u1} (OfNat.ofNat.{succ u1} Ordinal.{u1} 1 (OfNat.mk.{succ u1} Ordinal.{u1} 1 (One.one.{succ u1} Ordinal.{u1} Ordinal.hasOne.{u1})))) (OfNat.ofNat.{succ u1} Cardinal.{u1} 1 (OfNat.mk.{succ u1} Cardinal.{u1} 1 (One.one.{succ u1} Cardinal.{u1} Cardinal.hasOne.{u1}))) but is expected to have type Eq.{succ (succ u1)} Cardinal.{u1} (Ordinal.card.{u1} (OfNat.ofNat.{succ u1} Ordinal.{u1} 1 (One.toOfNat1.{succ u1} Ordinal.{u1} Ordinal.one.{u1}))) (OfNat.ofNat.{succ u1} Cardinal.{u1} 1 (One.toOfNat1.{succ u1} Cardinal.{u1} Cardinal.instOneCardinal.{u1})) Case conversion may be inaccurate. Consider using '#align ordinal.card_one Ordinal.card_oneβ‚“'. -/ @[simp] theorem card_one : card 1 = 1 := rfl #align ordinal.card_one Ordinal.card_one /-! ### Lifting ordinals to a higher universe -/ #print Ordinal.lift /- /-- The universe lift operation for ordinals, which embeds `ordinal.{u}` as a proper initial segment of `ordinal.{v}` for `v > u`. For the initial segment version, see `lift.initial_seg`. -/ def lift (o : Ordinal.{v}) : Ordinal.{max v u} := Quotient.liftOn o (fun w => type <| ULift.down ⁻¹'o w.R) fun ⟨α, r, _⟩ ⟨β, s, _⟩ ⟨f⟩ => Quot.sound ⟨(RelIso.preimage Equiv.ulift r).trans <| f.trans (RelIso.preimage Equiv.ulift s).symm⟩ #align ordinal.lift Ordinal.lift -/ /- warning: ordinal.type_ulift -> Ordinal.type_uLift is a dubious translation: lean 3 declaration is forall {Ξ± : Type.{u2}} (r : Ξ± -> Ξ± -> Prop) [_inst_1 : IsWellOrder.{u2} Ξ± r], Eq.{succ (succ (max u2 u1))} Ordinal.{max u2 u1} (Ordinal.type.{max u2 u1} (ULift.{u1, u2} Ξ±) (Order.Preimage.{succ (max u2 u1), succ u2} (ULift.{u1, u2} Ξ±) Ξ± (ULift.down.{u1, u2} Ξ±) r) (RelIso.IsWellOrder.ulift.{u2, u1} Ξ± r _inst_1)) (Ordinal.lift.{u1, u2} (Ordinal.type.{u2} Ξ± r _inst_1)) but is expected to have type forall {Ξ± : Type.{u1}} (r : Ξ± -> Ξ± -> Prop) [_inst_1 : IsWellOrder.{u1} Ξ± r], Eq.{max (succ (succ u1)) (succ (succ u2))} Ordinal.{max u1 u2} (Ordinal.type.{max u1 u2} (ULift.{u2, u1} Ξ±) (Order.Preimage.{succ (max u1 u2), succ u1} (ULift.{u2, u1} Ξ±) Ξ± (ULift.down.{u2, u1} Ξ±) r) (RelIso.IsWellOrder.ulift.{u1, u2} Ξ± r _inst_1)) (Ordinal.lift.{u2, u1} (Ordinal.type.{u1} Ξ± r _inst_1)) Case conversion may be inaccurate. Consider using '#align ordinal.type_ulift Ordinal.type_uLiftβ‚“'. -/ @[simp] theorem type_uLift (r : Ξ± β†’ Ξ± β†’ Prop) [IsWellOrder Ξ± r] : type (ULift.down ⁻¹'o r) = lift.{v} (type r) := rfl #align ordinal.type_ulift Ordinal.type_uLift #print RelIso.ordinal_lift_type_eq /- theorem RelIso.ordinal_lift_type_eq {Ξ± : Type u} {Ξ² : Type v} {r : Ξ± β†’ Ξ± β†’ Prop} {s : Ξ² β†’ Ξ² β†’ Prop} [IsWellOrder Ξ± r] [IsWellOrder Ξ² s] (f : r ≃r s) : lift.{v} (type r) = lift.{u} (type s) := ((RelIso.preimage Equiv.ulift r).trans <| f.trans (RelIso.preimage Equiv.ulift s).symm).ordinal_type_eq #align rel_iso.ordinal_lift_type_eq RelIso.ordinal_lift_type_eq -/ #print Ordinal.type_lift_preimage /- @[simp] theorem type_lift_preimage {Ξ± : Type u} {Ξ² : Type v} (r : Ξ± β†’ Ξ± β†’ Prop) [IsWellOrder Ξ± r] (f : Ξ² ≃ Ξ±) : lift.{u} (type (f ⁻¹'o r)) = lift.{v} (type r) := (RelIso.preimage f r).ordinal_lift_type_eq #align ordinal.type_lift_preimage Ordinal.type_lift_preimage -/ #print Ordinal.lift_umax /- /-- `lift.{(max u v) u}` equals `lift.{v u}`. Using `set_option pp.universes true` will make it much easier to understand what's happening when using this lemma. -/ @[simp] theorem lift_umax : lift.{max u v, u} = lift.{v, u} := funext fun a => inductionOn a fun Ξ± r _ => Quotient.sound ⟨(RelIso.preimage Equiv.ulift r).trans (RelIso.preimage Equiv.ulift r).symm⟩ #align ordinal.lift_umax Ordinal.lift_umax -/ #print Ordinal.lift_umax' /- /-- `lift.{(max v u) u}` equals `lift.{v u}`. Using `set_option pp.universes true` will make it much easier to understand what's happening when using this lemma. -/ @[simp] theorem lift_umax' : lift.{max v u, u} = lift.{v, u} := lift_umax #align ordinal.lift_umax' Ordinal.lift_umax' -/ /- warning: ordinal.lift_id' -> Ordinal.lift_id' is a dubious translation: lean 3 declaration is forall (a : Ordinal.{max u1 u2}), Eq.{succ (succ (max u1 u2))} Ordinal.{max u1 u2} (Ordinal.lift.{u1, max u1 u2} a) a but is expected to have type forall (a : Ordinal.{max u2 u1}), Eq.{max (succ (succ u2)) (succ (succ u1))} Ordinal.{max u2 u1} (Ordinal.lift.{u2, max u2 u1} a) a Case conversion may be inaccurate. Consider using '#align ordinal.lift_id' Ordinal.lift_id'β‚“'. -/ /-- An ordinal lifted to a lower or equal universe equals itself. -/ @[simp] theorem lift_id' (a : Ordinal) : lift a = a := inductionOn a fun Ξ± r _ => Quotient.sound ⟨RelIso.preimage Equiv.ulift r⟩ #align ordinal.lift_id' Ordinal.lift_id' #print Ordinal.lift_id /- /-- An ordinal lifted to the same universe equals itself. -/ @[simp] theorem lift_id : βˆ€ a, lift.{u, u} a = a := lift_id'.{u, u} #align ordinal.lift_id Ordinal.lift_id -/ #print Ordinal.lift_uzero /- /-- An ordinal lifted to the zero universe equals itself. -/ @[simp] theorem lift_uzero (a : Ordinal.{u}) : lift.{0} a = a := lift_id'.{0, u} a #align ordinal.lift_uzero Ordinal.lift_uzero -/ /- warning: ordinal.lift_lift -> Ordinal.lift_lift is a dubious translation: lean 3 declaration is forall (a : Ordinal.{u3}), Eq.{succ (succ (max (max u3 u1) u2))} Ordinal.{max (max u3 u1) u2} (Ordinal.lift.{u2, max u3 u1} (Ordinal.lift.{u1, u3} a)) (Ordinal.lift.{max u1 u2, u3} a) but is expected to have type forall (a : Ordinal.{u1}), Eq.{max (max (succ (succ u2)) (succ (succ u3))) (succ (succ u1))} Ordinal.{max (max u2 u1) u3} (Ordinal.lift.{u3, max u2 u1} (Ordinal.lift.{u2, u1} a)) (Ordinal.lift.{max u2 u3, u1} a) Case conversion may be inaccurate. Consider using '#align ordinal.lift_lift Ordinal.lift_liftβ‚“'. -/ @[simp] theorem lift_lift (a : Ordinal) : lift.{w} (lift.{v} a) = lift.{max v w} a := inductionOn a fun Ξ± r _ => Quotient.sound ⟨(RelIso.preimage Equiv.ulift _).trans <| (RelIso.preimage Equiv.ulift _).trans (RelIso.preimage Equiv.ulift _).symm⟩ #align ordinal.lift_lift Ordinal.lift_lift #print Ordinal.lift_type_le /- theorem lift_type_le {Ξ± : Type u} {Ξ² : Type v} {r s} [IsWellOrder Ξ± r] [IsWellOrder Ξ² s] : lift.{max v w} (type r) ≀ lift.{max u w} (type s) ↔ Nonempty (r β‰Όi s) := ⟨fun ⟨f⟩ => ⟨(InitialSeg.ofIso (RelIso.preimage Equiv.ulift r).symm).trans <| f.trans (InitialSeg.ofIso (RelIso.preimage Equiv.ulift s))⟩, fun ⟨f⟩ => ⟨(InitialSeg.ofIso (RelIso.preimage Equiv.ulift r)).trans <| f.trans (InitialSeg.ofIso (RelIso.preimage Equiv.ulift s).symm)⟩⟩ #align ordinal.lift_type_le Ordinal.lift_type_le -/ #print Ordinal.lift_type_eq /- theorem lift_type_eq {Ξ± : Type u} {Ξ² : Type v} {r s} [IsWellOrder Ξ± r] [IsWellOrder Ξ² s] : lift.{max v w} (type r) = lift.{max u w} (type s) ↔ Nonempty (r ≃r s) := Quotient.eq'.trans ⟨fun ⟨f⟩ => ⟨(RelIso.preimage Equiv.ulift r).symm.trans <| f.trans (RelIso.preimage Equiv.ulift s)⟩, fun ⟨f⟩ => ⟨(RelIso.preimage Equiv.ulift r).trans <| f.trans (RelIso.preimage Equiv.ulift s).symm⟩⟩ #align ordinal.lift_type_eq Ordinal.lift_type_eq -/ #print Ordinal.lift_type_lt /- theorem lift_type_lt {Ξ± : Type u} {Ξ² : Type v} {r s} [IsWellOrder Ξ± r] [IsWellOrder Ξ² s] : lift.{max v w} (type r) < lift.{max u w} (type s) ↔ Nonempty (r β‰Ίi s) := by haveI := @RelEmbedding.isWellOrder _ _ (@Equiv.ulift.{max v w} Ξ± ⁻¹'o r) r (RelIso.preimage Equiv.ulift.{max v w} r) _ <;> haveI := @RelEmbedding.isWellOrder _ _ (@Equiv.ulift.{max u w} Ξ² ⁻¹'o s) s (RelIso.preimage Equiv.ulift.{max u w} s) _ <;> exact ⟨fun ⟨f⟩ => ⟨(f.equivLT (RelIso.preimage Equiv.ulift r).symm).ltLe (InitialSeg.ofIso (RelIso.preimage Equiv.ulift s))⟩, fun ⟨f⟩ => ⟨(f.equivLT (RelIso.preimage Equiv.ulift r)).ltLe (InitialSeg.ofIso (RelIso.preimage Equiv.ulift s).symm)⟩⟩ #align ordinal.lift_type_lt Ordinal.lift_type_lt -/ #print Ordinal.lift_le /- @[simp] theorem lift_le {a b : Ordinal} : lift.{u, v} a ≀ lift b ↔ a ≀ b := inductionOn a fun Ξ± r _ => inductionOn b fun Ξ² s _ => by rw [← lift_umax] exact lift_type_le #align ordinal.lift_le Ordinal.lift_le -/ /- warning: ordinal.lift_inj -> Ordinal.lift_inj is a dubious translation: lean 3 declaration is forall {a : Ordinal.{u1}} {b : Ordinal.{u1}}, Iff (Eq.{succ (succ (max u1 u2))} Ordinal.{max u1 u2} (Ordinal.lift.{u2, u1} a) (Ordinal.lift.{u2, u1} b)) (Eq.{succ (succ u1)} Ordinal.{u1} a b) but is expected to have type forall {a : Ordinal.{u2}} {b : Ordinal.{u2}}, Iff (Eq.{max (succ (succ u1)) (succ (succ u2))} Ordinal.{max u2 u1} (Ordinal.lift.{u1, u2} a) (Ordinal.lift.{u1, u2} b)) (Eq.{succ (succ u2)} Ordinal.{u2} a b) Case conversion may be inaccurate. Consider using '#align ordinal.lift_inj Ordinal.lift_injβ‚“'. -/ @[simp] theorem lift_inj {a b : Ordinal} : lift a = lift b ↔ a = b := by simp only [le_antisymm_iff, lift_le] #align ordinal.lift_inj Ordinal.lift_inj /- warning: ordinal.lift_lt -> Ordinal.lift_lt is a dubious translation: lean 3 declaration is forall {a : Ordinal.{u1}} {b : Ordinal.{u1}}, Iff (LT.lt.{succ (max u1 u2)} Ordinal.{max u1 u2} (Preorder.toLT.{succ (max u1 u2)} Ordinal.{max u1 u2} (PartialOrder.toPreorder.{succ (max u1 u2)} Ordinal.{max u1 u2} Ordinal.partialOrder.{max u1 u2})) (Ordinal.lift.{u2, u1} a) (Ordinal.lift.{u2, u1} b)) (LT.lt.{succ u1} Ordinal.{u1} (Preorder.toLT.{succ u1} Ordinal.{u1} (PartialOrder.toPreorder.{succ u1} Ordinal.{u1} Ordinal.partialOrder.{u1})) a b) but is expected to have type forall {a : Ordinal.{u2}} {b : Ordinal.{u2}}, Iff (LT.lt.{max (succ u1) (succ u2)} Ordinal.{max u2 u1} (Preorder.toLT.{max (succ u1) (succ u2)} Ordinal.{max u2 u1} (PartialOrder.toPreorder.{max (succ u1) (succ u2)} Ordinal.{max u2 u1} Ordinal.partialOrder.{max u1 u2})) (Ordinal.lift.{u1, u2} a) (Ordinal.lift.{u1, u2} b)) (LT.lt.{succ u2} Ordinal.{u2} (Preorder.toLT.{succ u2} Ordinal.{u2} (PartialOrder.toPreorder.{succ u2} Ordinal.{u2} Ordinal.partialOrder.{u2})) a b) Case conversion may be inaccurate. Consider using '#align ordinal.lift_lt Ordinal.lift_ltβ‚“'. -/ @[simp] theorem lift_lt {a b : Ordinal} : lift a < lift b ↔ a < b := by simp only [lt_iff_le_not_le, lift_le] #align ordinal.lift_lt Ordinal.lift_lt /- warning: ordinal.lift_zero -> Ordinal.lift_zero is a dubious translation: lean 3 declaration is Eq.{succ (succ (max u1 u2))} Ordinal.{max u1 u2} (Ordinal.lift.{u2, u1} (OfNat.ofNat.{succ u1} Ordinal.{u1} 0 (OfNat.mk.{succ u1} Ordinal.{u1} 0 (Zero.zero.{succ u1} Ordinal.{u1} Ordinal.hasZero.{u1})))) (OfNat.ofNat.{succ (max u1 u2)} Ordinal.{max u1 u2} 0 (OfNat.mk.{succ (max u1 u2)} Ordinal.{max u1 u2} 0 (Zero.zero.{succ (max u1 u2)} Ordinal.{max u1 u2} Ordinal.hasZero.{max u1 u2}))) but is expected to have type Eq.{max (succ (succ u2)) (succ (succ u1))} Ordinal.{max u2 u1} (Ordinal.lift.{u1, u2} (OfNat.ofNat.{succ u2} Ordinal.{u2} 0 (Zero.toOfNat0.{succ u2} Ordinal.{u2} Ordinal.zero.{u2}))) (OfNat.ofNat.{max (succ u2) (succ u1)} Ordinal.{max u2 u1} 0 (Zero.toOfNat0.{max (succ u2) (succ u1)} Ordinal.{max u2 u1} Ordinal.zero.{max u2 u1})) Case conversion may be inaccurate. Consider using '#align ordinal.lift_zero Ordinal.lift_zeroβ‚“'. -/ @[simp] theorem lift_zero : lift 0 = 0 := type_eq_zero_of_empty _ #align ordinal.lift_zero Ordinal.lift_zero /- warning: ordinal.lift_one -> Ordinal.lift_one is a dubious translation: lean 3 declaration is Eq.{succ (succ (max u1 u2))} Ordinal.{max u1 u2} (Ordinal.lift.{u2, u1} (OfNat.ofNat.{succ u1} Ordinal.{u1} 1 (OfNat.mk.{succ u1} Ordinal.{u1} 1 (One.one.{succ u1} Ordinal.{u1} Ordinal.hasOne.{u1})))) (OfNat.ofNat.{succ (max u1 u2)} Ordinal.{max u1 u2} 1 (OfNat.mk.{succ (max u1 u2)} Ordinal.{max u1 u2} 1 (One.one.{succ (max u1 u2)} Ordinal.{max u1 u2} Ordinal.hasOne.{max u1 u2}))) but is expected to have type Eq.{max (succ (succ u2)) (succ (succ u1))} Ordinal.{max u2 u1} (Ordinal.lift.{u1, u2} (OfNat.ofNat.{succ u2} Ordinal.{u2} 1 (One.toOfNat1.{succ u2} Ordinal.{u2} Ordinal.one.{u2}))) (OfNat.ofNat.{max (succ u2) (succ u1)} Ordinal.{max u2 u1} 1 (One.toOfNat1.{max (succ u2) (succ u1)} Ordinal.{max u2 u1} Ordinal.one.{max u2 u1})) Case conversion may be inaccurate. Consider using '#align ordinal.lift_one Ordinal.lift_oneβ‚“'. -/ @[simp] theorem lift_one : lift 1 = 1 := type_eq_one_of_unique _ #align ordinal.lift_one Ordinal.lift_one /- warning: ordinal.lift_card -> Ordinal.lift_card is a dubious translation: lean 3 declaration is forall (a : Ordinal.{u1}), Eq.{succ (succ (max u1 u2))} Cardinal.{max u1 u2} (Cardinal.lift.{u2, u1} (Ordinal.card.{u1} a)) (Ordinal.card.{max u1 u2} (Ordinal.lift.{u2, u1} a)) but is expected to have type forall (a : Ordinal.{u2}), Eq.{max (succ (succ u1)) (succ (succ u2))} Cardinal.{max u2 u1} (Cardinal.lift.{u1, u2} (Ordinal.card.{u2} a)) (Ordinal.card.{max u1 u2} (Ordinal.lift.{u1, u2} a)) Case conversion may be inaccurate. Consider using '#align ordinal.lift_card Ordinal.lift_cardβ‚“'. -/ @[simp] theorem lift_card (a) : (card a).lift = card (lift a) := inductionOn a fun Ξ± r _ => rfl #align ordinal.lift_card Ordinal.lift_card #print Ordinal.lift_down' /- theorem lift_down' {a : Cardinal.{u}} {b : Ordinal.{max u v}} (h : card b ≀ a.lift) : βˆƒ a', lift a' = b := let ⟨c, e⟩ := Cardinal.lift_down h Cardinal.inductionOn c (fun Ξ± => inductionOn b fun Ξ² s _ e' => by skip rw [card_type, ← Cardinal.lift_id'.{max u v, u} (#Ξ²), ← Cardinal.lift_umax.{u, v}, lift_mk_eq.{u, max u v, max u v}] at e' cases' e' with f have g := RelIso.preimage f s haveI := (g : ⇑f ⁻¹'o s β†ͺr s).IsWellOrder have := lift_type_eq.{u, max u v, max u v}.2 ⟨g⟩ rw [lift_id, lift_umax.{u, v}] at this exact ⟨_, this⟩) e #align ordinal.lift_down' Ordinal.lift_down' -/ #print Ordinal.lift_down /- theorem lift_down {a : Ordinal.{u}} {b : Ordinal.{max u v}} (h : b ≀ lift a) : βˆƒ a', lift a' = b := @lift_down' (card a) _ (by rw [lift_card] <;> exact card_le_card h) #align ordinal.lift_down Ordinal.lift_down -/ #print Ordinal.le_lift_iff /- theorem le_lift_iff {a : Ordinal.{u}} {b : Ordinal.{max u v}} : b ≀ lift a ↔ βˆƒ a', lift a' = b ∧ a' ≀ a := ⟨fun h => let ⟨a', e⟩ := lift_down h ⟨a', e, lift_le.1 <| e.symm β–Έ h⟩, fun ⟨a', e, h⟩ => e β–Έ lift_le.2 h⟩ #align ordinal.le_lift_iff Ordinal.le_lift_iff -/ #print Ordinal.lt_lift_iff /- theorem lt_lift_iff {a : Ordinal.{u}} {b : Ordinal.{max u v}} : b < lift a ↔ βˆƒ a', lift a' = b ∧ a' < a := ⟨fun h => let ⟨a', e⟩ := lift_down (le_of_lt h) ⟨a', e, lift_lt.1 <| e.symm β–Έ h⟩, fun ⟨a', e, h⟩ => e β–Έ lift_lt.2 h⟩ #align ordinal.lt_lift_iff Ordinal.lt_lift_iff -/ #print Ordinal.lift.initialSeg /- /-- Initial segment version of the lift operation on ordinals, embedding `ordinal.{u}` in `ordinal.{v}` as an initial segment when `u ≀ v`. -/ def lift.initialSeg : @InitialSeg Ordinal.{u} Ordinal.{max u v} (Β· < Β·) (Β· < Β·) := ⟨⟨⟨lift.{v}, fun a b => lift_inj.1⟩, fun a b => lift_lt⟩, fun a b h => lift_down (le_of_lt h)⟩ #align ordinal.lift.initial_seg Ordinal.lift.initialSeg -/ /- warning: ordinal.lift.initial_seg_coe -> Ordinal.lift.initialSeg_coe is a dubious translation: lean 3 declaration is Eq.{max (succ (succ u1)) (succ (succ (max u1 u2)))} ((fun (_x : InitialSeg.{succ u1, succ (max u1 u2)} Ordinal.{u1} Ordinal.{max u1 u2} (LT.lt.{succ u1} Ordinal.{u1} (Preorder.toLT.{succ u1} Ordinal.{u1} (PartialOrder.toPreorder.{succ u1} Ordinal.{u1} Ordinal.partialOrder.{u1}))) (LT.lt.{succ (max u1 u2)} Ordinal.{max u1 u2} (Preorder.toLT.{succ (max u1 u2)} Ordinal.{max u1 u2} (PartialOrder.toPreorder.{succ (max u1 u2)} Ordinal.{max u1 u2} Ordinal.partialOrder.{max u1 u2})))) => Ordinal.{u1} -> Ordinal.{max u1 u2}) Ordinal.lift.initialSeg.{u1, u2}) (coeFn.{max (succ (succ u1)) (succ (succ (max u1 u2))), max (succ (succ u1)) (succ (succ (max u1 u2)))} (InitialSeg.{succ u1, succ (max u1 u2)} Ordinal.{u1} Ordinal.{max u1 u2} (LT.lt.{succ u1} Ordinal.{u1} (Preorder.toLT.{succ u1} Ordinal.{u1} (PartialOrder.toPreorder.{succ u1} Ordinal.{u1} Ordinal.partialOrder.{u1}))) (LT.lt.{succ (max u1 u2)} Ordinal.{max u1 u2} (Preorder.toLT.{succ (max u1 u2)} Ordinal.{max u1 u2} (PartialOrder.toPreorder.{succ (max u1 u2)} Ordinal.{max u1 u2} Ordinal.partialOrder.{max u1 u2})))) (fun (_x : InitialSeg.{succ u1, succ (max u1 u2)} Ordinal.{u1} Ordinal.{max u1 u2} (LT.lt.{succ u1} Ordinal.{u1} (Preorder.toLT.{succ u1} Ordinal.{u1} (PartialOrder.toPreorder.{succ u1} Ordinal.{u1} Ordinal.partialOrder.{u1}))) (LT.lt.{succ (max u1 u2)} Ordinal.{max u1 u2} (Preorder.toLT.{succ (max u1 u2)} Ordinal.{max u1 u2} (PartialOrder.toPreorder.{succ (max u1 u2)} Ordinal.{max u1 u2} Ordinal.partialOrder.{max u1 u2})))) => Ordinal.{u1} -> Ordinal.{max u1 u2}) (FunLike.hasCoeToFun.{max (succ (succ u1)) (succ (succ (max u1 u2))), succ (succ u1), succ (succ (max u1 u2))} (InitialSeg.{succ u1, succ (max u1 u2)} Ordinal.{u1} Ordinal.{max u1 u2} (LT.lt.{succ u1} Ordinal.{u1} (Preorder.toLT.{succ u1} Ordinal.{u1} (PartialOrder.toPreorder.{succ u1} Ordinal.{u1} Ordinal.partialOrder.{u1}))) (LT.lt.{succ (max u1 u2)} Ordinal.{max u1 u2} (Preorder.toLT.{succ (max u1 u2)} Ordinal.{max u1 u2} (PartialOrder.toPreorder.{succ (max u1 u2)} Ordinal.{max u1 u2} Ordinal.partialOrder.{max u1 u2})))) Ordinal.{u1} (fun (_x : Ordinal.{u1}) => Ordinal.{max u1 u2}) (EmbeddingLike.toFunLike.{max (succ (succ u1)) (succ (succ (max u1 u2))), succ (succ u1), succ (succ (max u1 u2))} (InitialSeg.{succ u1, succ (max u1 u2)} Ordinal.{u1} Ordinal.{max u1 u2} (LT.lt.{succ u1} Ordinal.{u1} (Preorder.toLT.{succ u1} Ordinal.{u1} (PartialOrder.toPreorder.{succ u1} Ordinal.{u1} Ordinal.partialOrder.{u1}))) (LT.lt.{succ (max u1 u2)} Ordinal.{max u1 u2} (Preorder.toLT.{succ (max u1 u2)} Ordinal.{max u1 u2} (PartialOrder.toPreorder.{succ (max u1 u2)} Ordinal.{max u1 u2} Ordinal.partialOrder.{max u1 u2})))) Ordinal.{u1} Ordinal.{max u1 u2} (InitialSeg.embeddingLike.{succ u1, succ (max u1 u2)} Ordinal.{u1} Ordinal.{max u1 u2} (LT.lt.{succ u1} Ordinal.{u1} (Preorder.toLT.{succ u1} Ordinal.{u1} (PartialOrder.toPreorder.{succ u1} Ordinal.{u1} Ordinal.partialOrder.{u1}))) (LT.lt.{succ (max u1 u2)} Ordinal.{max u1 u2} (Preorder.toLT.{succ (max u1 u2)} Ordinal.{max u1 u2} (PartialOrder.toPreorder.{succ (max u1 u2)} Ordinal.{max u1 u2} Ordinal.partialOrder.{max u1 u2})))))) Ordinal.lift.initialSeg.{u1, u2}) Ordinal.lift.{u2, u1} but is expected to have type Eq.{max (succ (succ u1)) (succ (succ u2))} (forall (a : Ordinal.{u1}), (fun ([email protected]._hyg.19 : Ordinal.{u1}) => Ordinal.{max u1 u2}) a) (FunLike.coe.{max (succ (succ u1)) (succ (succ u2)), succ (succ u1), max (succ (succ u1)) (succ (succ u2))} (InitialSeg.{succ u1, max (succ u1) (succ u2)} Ordinal.{u1} Ordinal.{max u1 u2} (fun ([email protected]._hyg.8587 : Ordinal.{u1}) ([email protected]._hyg.8589 : Ordinal.{u1}) => LT.lt.{succ u1} Ordinal.{u1} (Preorder.toLT.{succ u1} Ordinal.{u1} (PartialOrder.toPreorder.{succ u1} Ordinal.{u1} Ordinal.partialOrder.{u1})) [email protected]._hyg.8587 [email protected]._hyg.8589) (fun ([email protected]._hyg.8602 : Ordinal.{max u1 u2}) ([email protected]._hyg.8604 : Ordinal.{max u1 u2}) => LT.lt.{max (succ u1) (succ u2)} Ordinal.{max u1 u2} (Preorder.toLT.{max (succ u1) (succ u2)} Ordinal.{max u1 u2} (PartialOrder.toPreorder.{max (succ u1) (succ u2)} Ordinal.{max u1 u2} Ordinal.partialOrder.{max u1 u2})) [email protected]._hyg.8602 [email protected]._hyg.8604)) Ordinal.{u1} (fun (_x : Ordinal.{u1}) => (fun ([email protected]._hyg.19 : Ordinal.{u1}) => Ordinal.{max u1 u2}) _x) (EmbeddingLike.toFunLike.{max (succ (succ u1)) (succ (succ u2)), succ (succ u1), max (succ (succ u1)) (succ (succ u2))} (InitialSeg.{succ u1, max (succ u1) (succ u2)} Ordinal.{u1} Ordinal.{max u1 u2} (fun ([email protected]._hyg.8587 : Ordinal.{u1}) ([email protected]._hyg.8589 : Ordinal.{u1}) => LT.lt.{succ u1} Ordinal.{u1} (Preorder.toLT.{succ u1} Ordinal.{u1} (PartialOrder.toPreorder.{succ u1} Ordinal.{u1} Ordinal.partialOrder.{u1})) [email protected]._hyg.8587 [email protected]._hyg.8589) (fun ([email protected]._hyg.8602 : Ordinal.{max u1 u2}) ([email protected]._hyg.8604 : Ordinal.{max u1 u2}) => LT.lt.{max (succ u1) (succ u2)} Ordinal.{max u1 u2} (Preorder.toLT.{max (succ u1) (succ u2)} Ordinal.{max u1 u2} (PartialOrder.toPreorder.{max (succ u1) (succ u2)} Ordinal.{max u1 u2} Ordinal.partialOrder.{max u1 u2})) [email protected]._hyg.8602 [email protected]._hyg.8604)) Ordinal.{u1} Ordinal.{max u1 u2} (InitialSeg.instEmbeddingLikeInitialSeg.{succ u1, max (succ u1) (succ u2)} Ordinal.{u1} Ordinal.{max u1 u2} (fun ([email protected]._hyg.8587 : Ordinal.{u1}) ([email protected]._hyg.8589 : Ordinal.{u1}) => LT.lt.{succ u1} Ordinal.{u1} (Preorder.toLT.{succ u1} Ordinal.{u1} (PartialOrder.toPreorder.{succ u1} Ordinal.{u1} Ordinal.partialOrder.{u1})) [email protected]._hyg.8587 [email protected]._hyg.8589) (fun ([email protected]._hyg.8602 : Ordinal.{max u1 u2}) ([email protected]._hyg.8604 : Ordinal.{max u1 u2}) => LT.lt.{max (succ u1) (succ u2)} Ordinal.{max u1 u2} (Preorder.toLT.{max (succ u1) (succ u2)} Ordinal.{max u1 u2} (PartialOrder.toPreorder.{max (succ u1) (succ u2)} Ordinal.{max u1 u2} Ordinal.partialOrder.{max u1 u2})) [email protected]._hyg.8602 [email protected]._hyg.8604))) Ordinal.lift.initialSeg.{u1, u2}) Ordinal.lift.{u2, u1} Case conversion may be inaccurate. Consider using '#align ordinal.lift.initial_seg_coe Ordinal.lift.initialSeg_coeβ‚“'. -/ @[simp] theorem lift.initialSeg_coe : (lift.initialSeg : Ordinal β†’ Ordinal) = lift := rfl #align ordinal.lift.initial_seg_coe Ordinal.lift.initialSeg_coe /-! ### The first infinite ordinal `omega` -/ #print Ordinal.omega /- /-- `Ο‰` is the first infinite ordinal, defined as the order type of `β„•`. -/ def omega : Ordinal.{u} := lift <| @type β„• (Β· < Β·) _ #align ordinal.omega Ordinal.omega -/ -- mathport name: ordinal.omega scoped notation "Ο‰" => Ordinal.omega #print Ordinal.type_nat_lt /- /-- Note that the presence of this lemma makes `simp [omega]` form a loop. -/ @[simp] theorem type_nat_lt : @type β„• (Β· < Β·) _ = Ο‰ := (lift_id _).symm #align ordinal.type_nat_lt Ordinal.type_nat_lt -/ #print Ordinal.card_omega /- @[simp] theorem card_omega : card Ο‰ = β„΅β‚€ := rfl #align ordinal.card_omega Ordinal.card_omega -/ #print Ordinal.lift_omega /- @[simp] theorem lift_omega : lift Ο‰ = Ο‰ := lift_lift _ #align ordinal.lift_omega Ordinal.lift_omega -/ /-! ### Definition and first properties of addition on ordinals In this paragraph, we introduce the addition on ordinals, and prove just enough properties to deduce that the order on ordinals is total (and therefore well-founded). Further properties of the addition, together with properties of the other operations, are proved in `ordinal_arithmetic.lean`. -/ /-- `o₁ + oβ‚‚` is the order on the disjoint union of `o₁` and `oβ‚‚` obtained by declaring that every element of `o₁` is smaller than every element of `oβ‚‚`. -/ instance : Add Ordinal.{u} := ⟨fun o₁ oβ‚‚ => Quotient.liftOnβ‚‚ o₁ oβ‚‚ (fun ⟨α, r, wo⟩ ⟨β, s, wo'⟩ => type (Sum.Lex r s)) fun βŸ¨Ξ±β‚, r₁, oβ‚βŸ© βŸ¨Ξ±β‚‚, rβ‚‚, oβ‚‚βŸ© βŸ¨Ξ²β‚, s₁, pβ‚βŸ© βŸ¨Ξ²β‚‚, sβ‚‚, pβ‚‚βŸ© ⟨f⟩ ⟨g⟩ => Quot.sound ⟨RelIso.sumLexCongr f g⟩⟩ instance : AddMonoidWithOne Ordinal.{u} where add := (Β· + Β·) zero := 0 one := 1 zero_add o := inductionOn o fun Ξ± r _ => Eq.symm <| Quotient.sound ⟨⟨(emptySum PEmpty Ξ±).symm, fun a b => Sum.lex_inr_inr⟩⟩ add_zero o := inductionOn o fun Ξ± r _ => Eq.symm <| Quotient.sound ⟨⟨(sumEmpty Ξ± PEmpty).symm, fun a b => Sum.lex_inl_inl⟩⟩ add_assoc o₁ oβ‚‚ o₃ := Quotient.induction_on₃ o₁ oβ‚‚ o₃ fun ⟨α, r, _⟩ ⟨β, s, _⟩ ⟨γ, t, _⟩ => Quot.sound ⟨⟨sumAssoc _ _ _, fun a b => by rcases a with (⟨a | a⟩ | a) <;> rcases b with (⟨b | b⟩ | b) <;> simp only [sum_assoc_apply_inl_inl, sum_assoc_apply_inl_inr, sum_assoc_apply_inr, Sum.lex_inl_inl, Sum.lex_inr_inr, Sum.Lex.sep, Sum.lex_inr_inl]⟩⟩ /- warning: ordinal.card_add -> Ordinal.card_add is a dubious translation: lean 3 declaration is forall (o₁ : Ordinal.{u1}) (oβ‚‚ : Ordinal.{u1}), Eq.{succ (succ u1)} Cardinal.{u1} (Ordinal.card.{u1} (HAdd.hAdd.{succ u1, succ u1, succ u1} Ordinal.{u1} Ordinal.{u1} Ordinal.{u1} (instHAdd.{succ u1} Ordinal.{u1} Ordinal.hasAdd.{u1}) o₁ oβ‚‚)) (HAdd.hAdd.{succ u1, succ u1, succ u1} Cardinal.{u1} Cardinal.{u1} Cardinal.{u1} (instHAdd.{succ u1} Cardinal.{u1} Cardinal.hasAdd.{u1}) (Ordinal.card.{u1} o₁) (Ordinal.card.{u1} oβ‚‚)) but is expected to have type forall (o₁ : Ordinal.{u1}) (oβ‚‚ : Ordinal.{u1}), Eq.{succ (succ u1)} Cardinal.{u1} (Ordinal.card.{u1} (HAdd.hAdd.{succ u1, succ u1, succ u1} Ordinal.{u1} Ordinal.{u1} Ordinal.{u1} (instHAdd.{succ u1} Ordinal.{u1} Ordinal.add.{u1}) o₁ oβ‚‚)) (HAdd.hAdd.{succ u1, succ u1, succ u1} Cardinal.{u1} Cardinal.{u1} Cardinal.{u1} (instHAdd.{succ u1} Cardinal.{u1} Cardinal.instAddCardinal.{u1}) (Ordinal.card.{u1} o₁) (Ordinal.card.{u1} oβ‚‚)) Case conversion may be inaccurate. Consider using '#align ordinal.card_add Ordinal.card_addβ‚“'. -/ @[simp] theorem card_add (o₁ oβ‚‚ : Ordinal) : card (o₁ + oβ‚‚) = card o₁ + card oβ‚‚ := inductionOn o₁ fun Ξ± r _ => inductionOn oβ‚‚ fun Ξ² s _ => rfl #align ordinal.card_add Ordinal.card_add #print Ordinal.type_sum_lex /- @[simp] theorem type_sum_lex {Ξ± Ξ² : Type u} (r : Ξ± β†’ Ξ± β†’ Prop) (s : Ξ² β†’ Ξ² β†’ Prop) [IsWellOrder Ξ± r] [IsWellOrder Ξ² s] : type (Sum.Lex r s) = type r + type s := rfl #align ordinal.type_sum_lex Ordinal.type_sum_lex -/ /- warning: ordinal.card_nat -> Ordinal.card_nat is a dubious translation: lean 3 declaration is forall (n : Nat), Eq.{succ (succ u1)} Cardinal.{u1} (Ordinal.card.{u1} ((fun (a : Type) (b : Type.{succ u1}) [self : HasLiftT.{1, succ (succ u1)} a b] => self.0) Nat Ordinal.{u1} (HasLiftT.mk.{1, succ (succ u1)} Nat Ordinal.{u1} (CoeTCβ‚“.coe.{1, succ (succ u1)} Nat Ordinal.{u1} (Nat.castCoe.{succ u1} Ordinal.{u1} (AddMonoidWithOne.toNatCast.{succ u1} Ordinal.{u1} Ordinal.addMonoidWithOne.{u1})))) n)) ((fun (a : Type) (b : Type.{succ u1}) [self : HasLiftT.{1, succ (succ u1)} a b] => self.0) Nat Cardinal.{u1} (HasLiftT.mk.{1, succ (succ u1)} Nat Cardinal.{u1} (CoeTCβ‚“.coe.{1, succ (succ u1)} Nat Cardinal.{u1} (Nat.castCoe.{succ u1} Cardinal.{u1} Cardinal.hasNatCast.{u1}))) n) but is expected to have type forall (n : Nat), Eq.{succ (succ u1)} Cardinal.{u1} (Ordinal.card.{u1} (Nat.cast.{succ u1} Ordinal.{u1} (AddMonoidWithOne.toNatCast.{succ u1} Ordinal.{u1} Ordinal.addMonoidWithOne.{u1}) n)) (Nat.cast.{succ u1} Cardinal.{u1} Cardinal.instNatCastCardinal.{u1} n) Case conversion may be inaccurate. Consider using '#align ordinal.card_nat Ordinal.card_natβ‚“'. -/ @[simp] theorem card_nat (n : β„•) : card.{u} n = n := by induction n <;> [rfl, simp only [card_add, card_one, Nat.cast_succ, *]] #align ordinal.card_nat Ordinal.card_nat #print Ordinal.add_covariantClass_le /- instance add_covariantClass_le : CovariantClass Ordinal.{u} Ordinal.{u} (Β· + Β·) (Β· ≀ Β·) := ⟨fun c a b h => by revert h c; exact induction_on a fun α₁ r₁ _ => induction_on b fun Ξ±β‚‚ rβ‚‚ _ ⟨⟨⟨f, fo⟩, fi⟩⟩ c => induction_on c fun Ξ² s _ => ⟨⟨⟨(embedding.refl _).sum_map f, fun a b => match a, b with | Sum.inl a, Sum.inl b => sum.lex_inl_inl.trans sum.lex_inl_inl.symm | Sum.inl a, Sum.inr b => by apply iff_of_true <;> apply Sum.Lex.sep | Sum.inr a, Sum.inl b => by apply iff_of_false <;> exact Sum.lex_inr_inl | Sum.inr a, Sum.inr b => sum.lex_inr_inr.trans <| fo.trans sum.lex_inr_inr.symm⟩, fun a b H => match a, b, H with | _, Sum.inl b, _ => ⟨Sum.inl b, rfl⟩ | Sum.inl a, Sum.inr b, H => (Sum.lex_inr_inl H).elim | Sum.inr a, Sum.inr b, H => let ⟨w, h⟩ := fi _ _ (Sum.lex_inr_inr.1 H) ⟨Sum.inr w, congr_arg Sum.inr h⟩⟩⟩⟩ #align ordinal.add_covariant_class_le Ordinal.add_covariantClass_le -/ #print Ordinal.add_swap_covariantClass_le /- instance add_swap_covariantClass_le : CovariantClass Ordinal.{u} Ordinal.{u} (swap (Β· + Β·)) (Β· ≀ Β·) := ⟨fun c a b h => by revert h c; exact induction_on a fun α₁ r₁ hr₁ => induction_on b fun Ξ±β‚‚ rβ‚‚ hrβ‚‚ ⟨⟨⟨f, fo⟩, fi⟩⟩ c => induction_on c fun Ξ² s hs => @RelEmbedding.ordinal_type_le _ _ (Sum.Lex r₁ s) (Sum.Lex rβ‚‚ s) _ _ ⟨f.sum_map (embedding.refl _), fun a b => by constructor <;> intro H Β· cases' a with a a <;> cases' b with b b <;> cases H <;> constructor <;> [rwa [← fo], assumption] Β· cases H <;> constructor <;> [rwa [fo], assumption]⟩⟩ #align ordinal.add_swap_covariant_class_le Ordinal.add_swap_covariantClass_le -/ #print Ordinal.le_add_right /- theorem le_add_right (a b : Ordinal) : a ≀ a + b := by simpa only [add_zero] using add_le_add_left (Ordinal.zero_le b) a #align ordinal.le_add_right Ordinal.le_add_right -/ #print Ordinal.le_add_left /- theorem le_add_left (a b : Ordinal) : a ≀ b + a := by simpa only [zero_add] using add_le_add_right (Ordinal.zero_le b) a #align ordinal.le_add_left Ordinal.le_add_left -/ instance : LinearOrder Ordinal := { Ordinal.partialOrder with le_total := fun a b => match lt_or_eq_of_le (le_add_left b a), lt_or_eq_of_le (le_add_right a b) with | Or.inr h, _ => by rw [h] <;> exact Or.inl (le_add_right _ _) | _, Or.inr h => by rw [h] <;> exact Or.inr (le_add_left _ _) | Or.inl h₁, Or.inl hβ‚‚ => inductionOn a (fun α₁ r₁ _ => inductionOn b fun Ξ±β‚‚ rβ‚‚ _ ⟨f⟩ ⟨g⟩ => by skip rw [← typein_top f, ← typein_top g, le_iff_lt_or_eq, le_iff_lt_or_eq, typein_lt_typein, typein_lt_typein] rcases trichotomous_of (Sum.Lex r₁ rβ‚‚) g.top f.top with (h | h | h) <;> [exact Or.inl (Or.inl h), Β· left right rw [h], exact Or.inr (Or.inl h)]) h₁ hβ‚‚ decidableLe := Classical.decRel _ } instance : WellFoundedLT Ordinal := ⟨lt_wf⟩ instance : IsWellOrder Ordinal (Β· < Β·) where instance : ConditionallyCompleteLinearOrderBot Ordinal := IsWellOrder.conditionallyCompleteLinearOrderBot _ /- warning: ordinal.max_zero_left -> Ordinal.max_zero_left is a dubious translation: lean 3 declaration is forall (a : Ordinal.{u1}), Eq.{succ (succ u1)} Ordinal.{u1} (LinearOrder.max.{succ u1} Ordinal.{u1} Ordinal.linearOrder.{u1} (OfNat.ofNat.{succ u1} Ordinal.{u1} 0 (OfNat.mk.{succ u1} Ordinal.{u1} 0 (Zero.zero.{succ u1} Ordinal.{u1} Ordinal.hasZero.{u1}))) a) a but is expected to have type forall (a : Ordinal.{u1}), Eq.{succ (succ u1)} Ordinal.{u1} (Max.max.{succ u1} Ordinal.{u1} (LinearOrder.toMax.{succ u1} Ordinal.{u1} Ordinal.linearOrder.{u1}) (OfNat.ofNat.{succ u1} Ordinal.{u1} 0 (Zero.toOfNat0.{succ u1} Ordinal.{u1} Ordinal.zero.{u1})) a) a Case conversion may be inaccurate. Consider using '#align ordinal.max_zero_left Ordinal.max_zero_leftβ‚“'. -/ @[simp] theorem max_zero_left : βˆ€ a : Ordinal, max 0 a = a := max_bot_left #align ordinal.max_zero_left Ordinal.max_zero_left /- warning: ordinal.max_zero_right -> Ordinal.max_zero_right is a dubious translation: lean 3 declaration is forall (a : Ordinal.{u1}), Eq.{succ (succ u1)} Ordinal.{u1} (LinearOrder.max.{succ u1} Ordinal.{u1} Ordinal.linearOrder.{u1} a (OfNat.ofNat.{succ u1} Ordinal.{u1} 0 (OfNat.mk.{succ u1} Ordinal.{u1} 0 (Zero.zero.{succ u1} Ordinal.{u1} Ordinal.hasZero.{u1})))) a but is expected to have type forall (a : Ordinal.{u1}), Eq.{succ (succ u1)} Ordinal.{u1} (Max.max.{succ u1} Ordinal.{u1} (LinearOrder.toMax.{succ u1} Ordinal.{u1} Ordinal.linearOrder.{u1}) a (OfNat.ofNat.{succ u1} Ordinal.{u1} 0 (Zero.toOfNat0.{succ u1} Ordinal.{u1} Ordinal.zero.{u1}))) a Case conversion may be inaccurate. Consider using '#align ordinal.max_zero_right Ordinal.max_zero_rightβ‚“'. -/ @[simp] theorem max_zero_right : βˆ€ a : Ordinal, max a 0 = a := max_bot_right #align ordinal.max_zero_right Ordinal.max_zero_right /- warning: ordinal.max_eq_zero -> Ordinal.max_eq_zero is a dubious translation: lean 3 declaration is forall {a : Ordinal.{u1}} {b : Ordinal.{u1}}, Iff (Eq.{succ (succ u1)} Ordinal.{u1} (LinearOrder.max.{succ u1} Ordinal.{u1} Ordinal.linearOrder.{u1} a b) (OfNat.ofNat.{succ u1} Ordinal.{u1} 0 (OfNat.mk.{succ u1} Ordinal.{u1} 0 (Zero.zero.{succ u1} Ordinal.{u1} Ordinal.hasZero.{u1})))) (And (Eq.{succ (succ u1)} Ordinal.{u1} a (OfNat.ofNat.{succ u1} Ordinal.{u1} 0 (OfNat.mk.{succ u1} Ordinal.{u1} 0 (Zero.zero.{succ u1} Ordinal.{u1} Ordinal.hasZero.{u1})))) (Eq.{succ (succ u1)} Ordinal.{u1} b (OfNat.ofNat.{succ u1} Ordinal.{u1} 0 (OfNat.mk.{succ u1} Ordinal.{u1} 0 (Zero.zero.{succ u1} Ordinal.{u1} Ordinal.hasZero.{u1}))))) but is expected to have type forall {a : Ordinal.{u1}} {b : Ordinal.{u1}}, Iff (Eq.{succ (succ u1)} Ordinal.{u1} (Max.max.{succ u1} Ordinal.{u1} (LinearOrder.toMax.{succ u1} Ordinal.{u1} Ordinal.linearOrder.{u1}) a b) (OfNat.ofNat.{succ u1} Ordinal.{u1} 0 (Zero.toOfNat0.{succ u1} Ordinal.{u1} Ordinal.zero.{u1}))) (And (Eq.{succ (succ u1)} Ordinal.{u1} a (OfNat.ofNat.{succ u1} Ordinal.{u1} 0 (Zero.toOfNat0.{succ u1} Ordinal.{u1} Ordinal.zero.{u1}))) (Eq.{succ (succ u1)} Ordinal.{u1} b (OfNat.ofNat.{succ u1} Ordinal.{u1} 0 (Zero.toOfNat0.{succ u1} Ordinal.{u1} Ordinal.zero.{u1})))) Case conversion may be inaccurate. Consider using '#align ordinal.max_eq_zero Ordinal.max_eq_zeroβ‚“'. -/ @[simp] theorem max_eq_zero {a b : Ordinal} : max a b = 0 ↔ a = 0 ∧ b = 0 := max_eq_bot #align ordinal.max_eq_zero Ordinal.max_eq_zero /- warning: ordinal.Inf_empty -> Ordinal.infβ‚›_empty is a dubious translation: lean 3 declaration is Eq.{succ (succ u1)} Ordinal.{u1} (InfSet.infβ‚›.{succ u1} Ordinal.{u1} (ConditionallyCompleteLattice.toHasInf.{succ u1} Ordinal.{u1} (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{succ u1} Ordinal.{u1} (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{succ u1} Ordinal.{u1} Ordinal.conditionallyCompleteLinearOrderBot.{u1}))) (EmptyCollection.emptyCollection.{succ u1} (Set.{succ u1} Ordinal.{u1}) (Set.hasEmptyc.{succ u1} Ordinal.{u1}))) (OfNat.ofNat.{succ u1} Ordinal.{u1} 0 (OfNat.mk.{succ u1} Ordinal.{u1} 0 (Zero.zero.{succ u1} Ordinal.{u1} Ordinal.hasZero.{u1}))) but is expected to have type Eq.{succ (succ u1)} Ordinal.{u1} (InfSet.infβ‚›.{succ u1} Ordinal.{u1} (ConditionallyCompleteLattice.toInfSet.{succ u1} Ordinal.{u1} (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{succ u1} Ordinal.{u1} (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{succ u1} Ordinal.{u1} Ordinal.instConditionallyCompleteLinearOrderBotOrdinal.{u1}))) (EmptyCollection.emptyCollection.{succ u1} (Set.{succ u1} Ordinal.{u1}) (Set.instEmptyCollectionSet.{succ u1} Ordinal.{u1}))) (OfNat.ofNat.{succ u1} Ordinal.{u1} 0 (Zero.toOfNat0.{succ u1} Ordinal.{u1} Ordinal.zero.{u1})) Case conversion may be inaccurate. Consider using '#align ordinal.Inf_empty Ordinal.infβ‚›_emptyβ‚“'. -/ @[simp] theorem infβ‚›_empty : infβ‚› (βˆ… : Set Ordinal) = 0 := dif_neg not_nonempty_empty #align ordinal.Inf_empty Ordinal.infβ‚›_empty -- ### Successor order properties private theorem succ_le_iff' {a b : Ordinal} : a + 1 ≀ b ↔ a < b := ⟨lt_of_lt_of_le (inductionOn a fun Ξ± r _ => ⟨⟨⟨⟨fun x => Sum.inl x, fun _ _ => Sum.inl.inj⟩, fun _ _ => Sum.lex_inl_inl⟩, Sum.inr PUnit.unit, fun b => Sum.recOn b (fun x => ⟨fun _ => ⟨x, rfl⟩, fun _ => Sum.Lex.sep _ _⟩) fun x => Sum.lex_inr_inr.trans ⟨False.elim, fun ⟨x, H⟩ => Sum.inl_ne_inr H⟩⟩⟩), inductionOn a fun Ξ± r hr => inductionOn b fun Ξ² s hs ⟨⟨f, t, hf⟩⟩ => by haveI := hs refine' ⟨⟨@RelEmbedding.ofMonotone (Sum Ξ± PUnit) Ξ² _ _ _ _ (Sum.rec _ _) fun a b => _, fun a b => _⟩⟩ Β· exact f; Β· exact fun _ => t Β· rcases a with (a | _) <;> rcases b with (b | _) Β· simpa only [Sum.lex_inl_inl] using f.map_rel_iff.2 Β· intro rw [hf] exact ⟨_, rfl⟩ Β· exact False.elim ∘ Sum.lex_inr_inl Β· exact False.elim ∘ Sum.lex_inr_inr.1 Β· rcases a with (a | _) Β· intro h have := @PrincipalSeg.init _ _ _ _ _ ⟨f, t, hf⟩ _ _ h cases' this with w h exact ⟨Sum.inl w, h⟩ Β· intro h cases' (hf b).1 h with w h exact ⟨Sum.inl w, h⟩⟩ #align ordinal.succ_le_iff' ordinal.succ_le_iff' instance : NoMaxOrder Ordinal := ⟨fun a => ⟨_, succ_le_iff'.1 le_rfl⟩⟩ instance : SuccOrder Ordinal.{u} := SuccOrder.ofSuccLeIff (fun o => o + 1) fun a b => succ_le_iff' /- warning: ordinal.add_one_eq_succ -> Ordinal.add_one_eq_succ is a dubious translation: lean 3 declaration is forall (o : Ordinal.{u1}), Eq.{succ (succ u1)} Ordinal.{u1} (HAdd.hAdd.{succ u1, succ u1, succ u1} Ordinal.{u1} Ordinal.{u1} Ordinal.{u1} (instHAdd.{succ u1} Ordinal.{u1} Ordinal.hasAdd.{u1}) o (OfNat.ofNat.{succ u1} Ordinal.{u1} 1 (OfNat.mk.{succ u1} Ordinal.{u1} 1 (One.one.{succ u1} Ordinal.{u1} Ordinal.hasOne.{u1})))) (Order.succ.{succ u1} Ordinal.{u1} (PartialOrder.toPreorder.{succ u1} Ordinal.{u1} Ordinal.partialOrder.{u1}) Ordinal.succOrder.{u1} o) but is expected to have type forall (o : Ordinal.{u1}), Eq.{succ (succ u1)} Ordinal.{u1} (HAdd.hAdd.{succ u1, succ u1, succ u1} Ordinal.{u1} Ordinal.{u1} Ordinal.{u1} (instHAdd.{succ u1} Ordinal.{u1} Ordinal.add.{u1}) o (OfNat.ofNat.{succ u1} Ordinal.{u1} 1 (One.toOfNat1.{succ u1} Ordinal.{u1} Ordinal.one.{u1}))) (Order.succ.{succ u1} Ordinal.{u1} (PartialOrder.toPreorder.{succ u1} Ordinal.{u1} Ordinal.partialOrder.{u1}) Ordinal.succOrder.{u1} o) Case conversion may be inaccurate. Consider using '#align ordinal.add_one_eq_succ Ordinal.add_one_eq_succβ‚“'. -/ @[simp] theorem add_one_eq_succ (o : Ordinal) : o + 1 = succ o := rfl #align ordinal.add_one_eq_succ Ordinal.add_one_eq_succ /- warning: ordinal.succ_zero -> Ordinal.succ_zero is a dubious translation: lean 3 declaration is Eq.{succ (succ u1)} Ordinal.{u1} (Order.succ.{succ u1} Ordinal.{u1} (PartialOrder.toPreorder.{succ u1} Ordinal.{u1} Ordinal.partialOrder.{u1}) Ordinal.succOrder.{u1} (OfNat.ofNat.{succ u1} Ordinal.{u1} 0 (OfNat.mk.{succ u1} Ordinal.{u1} 0 (Zero.zero.{succ u1} Ordinal.{u1} Ordinal.hasZero.{u1})))) (OfNat.ofNat.{succ u1} Ordinal.{u1} 1 (OfNat.mk.{succ u1} Ordinal.{u1} 1 (One.one.{succ u1} Ordinal.{u1} Ordinal.hasOne.{u1}))) but is expected to have type Eq.{succ (succ u1)} Ordinal.{u1} (Order.succ.{succ u1} Ordinal.{u1} (PartialOrder.toPreorder.{succ u1} Ordinal.{u1} Ordinal.partialOrder.{u1}) Ordinal.succOrder.{u1} (OfNat.ofNat.{succ u1} Ordinal.{u1} 0 (Zero.toOfNat0.{succ u1} Ordinal.{u1} Ordinal.zero.{u1}))) (OfNat.ofNat.{succ u1} Ordinal.{u1} 1 (One.toOfNat1.{succ u1} Ordinal.{u1} Ordinal.one.{u1})) Case conversion may be inaccurate. Consider using '#align ordinal.succ_zero Ordinal.succ_zeroβ‚“'. -/ @[simp] theorem succ_zero : succ (0 : Ordinal) = 1 := zero_add 1 #align ordinal.succ_zero Ordinal.succ_zero /- warning: ordinal.succ_one -> Ordinal.succ_one is a dubious translation: lean 3 declaration is Eq.{succ (succ u1)} Ordinal.{u1} (Order.succ.{succ u1} Ordinal.{u1} (PartialOrder.toPreorder.{succ u1} Ordinal.{u1} Ordinal.partialOrder.{u1}) Ordinal.succOrder.{u1} (OfNat.ofNat.{succ u1} Ordinal.{u1} 1 (OfNat.mk.{succ u1} Ordinal.{u1} 1 (One.one.{succ u1} Ordinal.{u1} Ordinal.hasOne.{u1})))) (OfNat.ofNat.{succ u1} Ordinal.{u1} 2 (OfNat.mk.{succ u1} Ordinal.{u1} 2 (bit0.{succ u1} Ordinal.{u1} Ordinal.hasAdd.{u1} (One.one.{succ u1} Ordinal.{u1} Ordinal.hasOne.{u1})))) but is expected to have type Eq.{succ (succ u1)} Ordinal.{u1} (Order.succ.{succ u1} Ordinal.{u1} (PartialOrder.toPreorder.{succ u1} Ordinal.{u1} Ordinal.partialOrder.{u1}) Ordinal.succOrder.{u1} (OfNat.ofNat.{succ u1} Ordinal.{u1} 1 (One.toOfNat1.{succ u1} Ordinal.{u1} Ordinal.one.{u1}))) (OfNat.ofNat.{succ u1} Ordinal.{u1} 2 (instOfNat.{succ u1} Ordinal.{u1} 2 (AddMonoidWithOne.toNatCast.{succ u1} Ordinal.{u1} Ordinal.addMonoidWithOne.{u1}) (instAtLeastTwoHAddNatInstHAddInstAddNatOfNat (OfNat.ofNat.{0} Nat 0 (instOfNatNat 0))))) Case conversion may be inaccurate. Consider using '#align ordinal.succ_one Ordinal.succ_oneβ‚“'. -/ @[simp] theorem succ_one : succ (1 : Ordinal) = 2 := rfl #align ordinal.succ_one Ordinal.succ_one #print Ordinal.add_succ /- theorem add_succ (o₁ oβ‚‚ : Ordinal) : o₁ + succ oβ‚‚ = succ (o₁ + oβ‚‚) := (add_assoc _ _ _).symm #align ordinal.add_succ Ordinal.add_succ -/ /- warning: ordinal.one_le_iff_pos -> Ordinal.one_le_iff_pos is a dubious translation: lean 3 declaration is forall {o : Ordinal.{u1}}, Iff (LE.le.{succ u1} Ordinal.{u1} (Preorder.toLE.{succ u1} Ordinal.{u1} (PartialOrder.toPreorder.{succ u1} Ordinal.{u1} Ordinal.partialOrder.{u1})) (OfNat.ofNat.{succ u1} Ordinal.{u1} 1 (OfNat.mk.{succ u1} Ordinal.{u1} 1 (One.one.{succ u1} Ordinal.{u1} Ordinal.hasOne.{u1}))) o) (LT.lt.{succ u1} Ordinal.{u1} (Preorder.toLT.{succ u1} Ordinal.{u1} (PartialOrder.toPreorder.{succ u1} Ordinal.{u1} Ordinal.partialOrder.{u1})) (OfNat.ofNat.{succ u1} Ordinal.{u1} 0 (OfNat.mk.{succ u1} Ordinal.{u1} 0 (Zero.zero.{succ u1} Ordinal.{u1} Ordinal.hasZero.{u1}))) o) but is expected to have type forall {o : Ordinal.{u1}}, Iff (LE.le.{succ u1} Ordinal.{u1} (Preorder.toLE.{succ u1} Ordinal.{u1} (PartialOrder.toPreorder.{succ u1} Ordinal.{u1} Ordinal.partialOrder.{u1})) (OfNat.ofNat.{succ u1} Ordinal.{u1} 1 (One.toOfNat1.{succ u1} Ordinal.{u1} Ordinal.one.{u1})) o) (LT.lt.{succ u1} Ordinal.{u1} (Preorder.toLT.{succ u1} Ordinal.{u1} (PartialOrder.toPreorder.{succ u1} Ordinal.{u1} Ordinal.partialOrder.{u1})) (OfNat.ofNat.{succ u1} Ordinal.{u1} 0 (Zero.toOfNat0.{succ u1} Ordinal.{u1} Ordinal.zero.{u1})) o) Case conversion may be inaccurate. Consider using '#align ordinal.one_le_iff_pos Ordinal.one_le_iff_posβ‚“'. -/ theorem one_le_iff_pos {o : Ordinal} : 1 ≀ o ↔ 0 < o := by rw [← succ_zero, succ_le_iff] #align ordinal.one_le_iff_pos Ordinal.one_le_iff_pos /- warning: ordinal.one_le_iff_ne_zero -> Ordinal.one_le_iff_ne_zero is a dubious translation: lean 3 declaration is forall {o : Ordinal.{u1}}, Iff (LE.le.{succ u1} Ordinal.{u1} (Preorder.toLE.{succ u1} Ordinal.{u1} (PartialOrder.toPreorder.{succ u1} Ordinal.{u1} Ordinal.partialOrder.{u1})) (OfNat.ofNat.{succ u1} Ordinal.{u1} 1 (OfNat.mk.{succ u1} Ordinal.{u1} 1 (One.one.{succ u1} Ordinal.{u1} Ordinal.hasOne.{u1}))) o) (Ne.{succ (succ u1)} Ordinal.{u1} o (OfNat.ofNat.{succ u1} Ordinal.{u1} 0 (OfNat.mk.{succ u1} Ordinal.{u1} 0 (Zero.zero.{succ u1} Ordinal.{u1} Ordinal.hasZero.{u1})))) but is expected to have type forall {o : Ordinal.{u1}}, Iff (LE.le.{succ u1} Ordinal.{u1} (Preorder.toLE.{succ u1} Ordinal.{u1} (PartialOrder.toPreorder.{succ u1} Ordinal.{u1} Ordinal.partialOrder.{u1})) (OfNat.ofNat.{succ u1} Ordinal.{u1} 1 (One.toOfNat1.{succ u1} Ordinal.{u1} Ordinal.one.{u1})) o) (Ne.{succ (succ u1)} Ordinal.{u1} o (OfNat.ofNat.{succ u1} Ordinal.{u1} 0 (Zero.toOfNat0.{succ u1} Ordinal.{u1} Ordinal.zero.{u1}))) Case conversion may be inaccurate. Consider using '#align ordinal.one_le_iff_ne_zero Ordinal.one_le_iff_ne_zeroβ‚“'. -/ theorem one_le_iff_ne_zero {o : Ordinal} : 1 ≀ o ↔ o β‰  0 := by rw [one_le_iff_pos, Ordinal.pos_iff_ne_zero] #align ordinal.one_le_iff_ne_zero Ordinal.one_le_iff_ne_zero #print Ordinal.succ_pos /- theorem succ_pos (o : Ordinal) : 0 < succ o := bot_lt_succ o #align ordinal.succ_pos Ordinal.succ_pos -/ #print Ordinal.succ_ne_zero /- theorem succ_ne_zero (o : Ordinal) : succ o β‰  0 := ne_of_gt <| succ_pos o #align ordinal.succ_ne_zero Ordinal.succ_ne_zero -/ /- warning: ordinal.lt_one_iff_zero -> Ordinal.lt_one_iff_zero is a dubious translation: lean 3 declaration is forall {a : Ordinal.{u1}}, Iff (LT.lt.{succ u1} Ordinal.{u1} (Preorder.toLT.{succ u1} Ordinal.{u1} (PartialOrder.toPreorder.{succ u1} Ordinal.{u1} Ordinal.partialOrder.{u1})) a (OfNat.ofNat.{succ u1} Ordinal.{u1} 1 (OfNat.mk.{succ u1} Ordinal.{u1} 1 (One.one.{succ u1} Ordinal.{u1} Ordinal.hasOne.{u1})))) (Eq.{succ (succ u1)} Ordinal.{u1} a (OfNat.ofNat.{succ u1} Ordinal.{u1} 0 (OfNat.mk.{succ u1} Ordinal.{u1} 0 (Zero.zero.{succ u1} Ordinal.{u1} Ordinal.hasZero.{u1})))) but is expected to have type forall {a : Ordinal.{u1}}, Iff (LT.lt.{succ u1} Ordinal.{u1} (Preorder.toLT.{succ u1} Ordinal.{u1} (PartialOrder.toPreorder.{succ u1} Ordinal.{u1} Ordinal.partialOrder.{u1})) a (OfNat.ofNat.{succ u1} Ordinal.{u1} 1 (One.toOfNat1.{succ u1} Ordinal.{u1} Ordinal.one.{u1}))) (Eq.{succ (succ u1)} Ordinal.{u1} a (OfNat.ofNat.{succ u1} Ordinal.{u1} 0 (Zero.toOfNat0.{succ u1} Ordinal.{u1} Ordinal.zero.{u1}))) Case conversion may be inaccurate. Consider using '#align ordinal.lt_one_iff_zero Ordinal.lt_one_iff_zeroβ‚“'. -/ theorem lt_one_iff_zero {a : Ordinal} : a < 1 ↔ a = 0 := by simpa using @lt_succ_bot_iff _ _ _ a _ _ #align ordinal.lt_one_iff_zero Ordinal.lt_one_iff_zero /- warning: ordinal.le_one_iff -> Ordinal.le_one_iff is a dubious translation: lean 3 declaration is forall {a : Ordinal.{u1}}, Iff (LE.le.{succ u1} Ordinal.{u1} (Preorder.toLE.{succ u1} Ordinal.{u1} (PartialOrder.toPreorder.{succ u1} Ordinal.{u1} Ordinal.partialOrder.{u1})) a (OfNat.ofNat.{succ u1} Ordinal.{u1} 1 (OfNat.mk.{succ u1} Ordinal.{u1} 1 (One.one.{succ u1} Ordinal.{u1} Ordinal.hasOne.{u1})))) (Or (Eq.{succ (succ u1)} Ordinal.{u1} a (OfNat.ofNat.{succ u1} Ordinal.{u1} 0 (OfNat.mk.{succ u1} Ordinal.{u1} 0 (Zero.zero.{succ u1} Ordinal.{u1} Ordinal.hasZero.{u1})))) (Eq.{succ (succ u1)} Ordinal.{u1} a (OfNat.ofNat.{succ u1} Ordinal.{u1} 1 (OfNat.mk.{succ u1} Ordinal.{u1} 1 (One.one.{succ u1} Ordinal.{u1} Ordinal.hasOne.{u1}))))) but is expected to have type forall {a : Ordinal.{u1}}, Iff (LE.le.{succ u1} Ordinal.{u1} (Preorder.toLE.{succ u1} Ordinal.{u1} (PartialOrder.toPreorder.{succ u1} Ordinal.{u1} Ordinal.partialOrder.{u1})) a (OfNat.ofNat.{succ u1} Ordinal.{u1} 1 (One.toOfNat1.{succ u1} Ordinal.{u1} Ordinal.one.{u1}))) (Or (Eq.{succ (succ u1)} Ordinal.{u1} a (OfNat.ofNat.{succ u1} Ordinal.{u1} 0 (Zero.toOfNat0.{succ u1} Ordinal.{u1} Ordinal.zero.{u1}))) (Eq.{succ (succ u1)} Ordinal.{u1} a (OfNat.ofNat.{succ u1} Ordinal.{u1} 1 (One.toOfNat1.{succ u1} Ordinal.{u1} Ordinal.one.{u1})))) Case conversion may be inaccurate. Consider using '#align ordinal.le_one_iff Ordinal.le_one_iffβ‚“'. -/ theorem le_one_iff {a : Ordinal} : a ≀ 1 ↔ a = 0 ∨ a = 1 := by simpa using @le_succ_bot_iff _ _ _ a _ #align ordinal.le_one_iff Ordinal.le_one_iff /- warning: ordinal.card_succ -> Ordinal.card_succ is a dubious translation: lean 3 declaration is forall (o : Ordinal.{u1}), Eq.{succ (succ u1)} Cardinal.{u1} (Ordinal.card.{u1} (Order.succ.{succ u1} Ordinal.{u1} (PartialOrder.toPreorder.{succ u1} Ordinal.{u1} Ordinal.partialOrder.{u1}) Ordinal.succOrder.{u1} o)) (HAdd.hAdd.{succ u1, succ u1, succ u1} Cardinal.{u1} Cardinal.{u1} Cardinal.{u1} (instHAdd.{succ u1} Cardinal.{u1} Cardinal.hasAdd.{u1}) (Ordinal.card.{u1} o) (OfNat.ofNat.{succ u1} Cardinal.{u1} 1 (OfNat.mk.{succ u1} Cardinal.{u1} 1 (One.one.{succ u1} Cardinal.{u1} Cardinal.hasOne.{u1})))) but is expected to have type forall (o : Ordinal.{u1}), Eq.{succ (succ u1)} Cardinal.{u1} (Ordinal.card.{u1} (Order.succ.{succ u1} Ordinal.{u1} (PartialOrder.toPreorder.{succ u1} Ordinal.{u1} Ordinal.partialOrder.{u1}) Ordinal.succOrder.{u1} o)) (HAdd.hAdd.{succ u1, succ u1, succ u1} Cardinal.{u1} Cardinal.{u1} Cardinal.{u1} (instHAdd.{succ u1} Cardinal.{u1} Cardinal.instAddCardinal.{u1}) (Ordinal.card.{u1} o) (OfNat.ofNat.{succ u1} Cardinal.{u1} 1 (One.toOfNat1.{succ u1} Cardinal.{u1} Cardinal.instOneCardinal.{u1}))) Case conversion may be inaccurate. Consider using '#align ordinal.card_succ Ordinal.card_succβ‚“'. -/ @[simp] theorem card_succ (o : Ordinal) : card (succ o) = card o + 1 := by simp only [← add_one_eq_succ, card_add, card_one] #align ordinal.card_succ Ordinal.card_succ #print Ordinal.nat_cast_succ /- theorem nat_cast_succ (n : β„•) : ↑n.succ = succ (n : Ordinal) := rfl #align ordinal.nat_cast_succ Ordinal.nat_cast_succ -/ /- warning: ordinal.unique_Iio_one -> Ordinal.uniqueIioOne is a dubious translation: lean 3 declaration is Unique.{succ (succ u1)} (coeSort.{succ (succ u1), succ (succ (succ u1))} (Set.{succ u1} Ordinal.{u1}) Type.{succ u1} (Set.hasCoeToSort.{succ u1} Ordinal.{u1}) (Set.Iio.{succ u1} Ordinal.{u1} (PartialOrder.toPreorder.{succ u1} Ordinal.{u1} Ordinal.partialOrder.{u1}) (OfNat.ofNat.{succ u1} Ordinal.{u1} 1 (OfNat.mk.{succ u1} Ordinal.{u1} 1 (One.one.{succ u1} Ordinal.{u1} Ordinal.hasOne.{u1}))))) but is expected to have type Unique.{succ (succ u1)} (Set.Elem.{succ u1} Ordinal.{u1} (Set.Iio.{succ u1} Ordinal.{u1} (PartialOrder.toPreorder.{succ u1} Ordinal.{u1} Ordinal.partialOrder.{u1}) (OfNat.ofNat.{succ u1} Ordinal.{u1} 1 (One.toOfNat1.{succ u1} Ordinal.{u1} Ordinal.one.{u1})))) Case conversion may be inaccurate. Consider using '#align ordinal.unique_Iio_one Ordinal.uniqueIioOneβ‚“'. -/ instance uniqueIioOne : Unique (Iio (1 : Ordinal)) where default := ⟨0, zero_lt_one⟩ uniq a := Subtype.ext <| lt_one_iff_zero.1 a.Prop #align ordinal.unique_Iio_one Ordinal.uniqueIioOne /- warning: ordinal.unique_out_one -> Ordinal.uniqueOutOne is a dubious translation: lean 3 declaration is Unique.{succ u1} (WellOrder.Ξ±.{u1} (Quotient.out.{succ (succ u1)} WellOrder.{u1} Ordinal.isEquivalent.{u1} (OfNat.ofNat.{succ u1} Ordinal.{u1} 1 (OfNat.mk.{succ u1} Ordinal.{u1} 1 (One.one.{succ u1} Ordinal.{u1} Ordinal.hasOne.{u1}))))) but is expected to have type Unique.{succ u1} (WellOrder.Ξ±.{u1} (Quotient.out.{succ (succ u1)} WellOrder.{u1} Ordinal.isEquivalent.{u1} (OfNat.ofNat.{succ u1} Ordinal.{u1} 1 (One.toOfNat1.{succ u1} Ordinal.{u1} Ordinal.one.{u1})))) Case conversion may be inaccurate. Consider using '#align ordinal.unique_out_one Ordinal.uniqueOutOneβ‚“'. -/ instance uniqueOutOne : Unique (1 : Ordinal).out.Ξ± where default := enum (Β· < Β·) 0 (by simp) uniq a := by rw [← enum_typein (Β· < Β·) a] unfold default congr rw [← lt_one_iff_zero] apply typein_lt_self #align ordinal.unique_out_one Ordinal.uniqueOutOne /- warning: ordinal.one_out_eq -> Ordinal.one_out_eq is a dubious translation: lean 3 declaration is forall (x : WellOrder.Ξ±.{u1} (Quotient.out.{succ (succ u1)} WellOrder.{u1} Ordinal.isEquivalent.{u1} (OfNat.ofNat.{succ u1} Ordinal.{u1} 1 (OfNat.mk.{succ u1} Ordinal.{u1} 1 (One.one.{succ u1} Ordinal.{u1} Ordinal.hasOne.{u1}))))), Eq.{succ u1} (WellOrder.Ξ±.{u1} (Quotient.out.{succ (succ u1)} WellOrder.{u1} Ordinal.isEquivalent.{u1} (OfNat.ofNat.{succ u1} Ordinal.{u1} 1 (OfNat.mk.{succ u1} Ordinal.{u1} 1 (One.one.{succ u1} Ordinal.{u1} Ordinal.hasOne.{u1}))))) x (Ordinal.enum.{u1} (WellOrder.Ξ±.{u1} (Quotient.out.{succ (succ u1)} WellOrder.{u1} Ordinal.isEquivalent.{u1} (OfNat.ofNat.{succ u1} Ordinal.{u1} 1 (OfNat.mk.{succ u1} Ordinal.{u1} 1 (One.one.{succ u1} Ordinal.{u1} Ordinal.hasOne.{u1}))))) (LT.lt.{u1} (WellOrder.Ξ±.{u1} (Quotient.out.{succ (succ u1)} WellOrder.{u1} Ordinal.isEquivalent.{u1} (OfNat.ofNat.{succ u1} Ordinal.{u1} 1 (OfNat.mk.{succ u1} Ordinal.{u1} 1 (One.one.{succ u1} Ordinal.{u1} Ordinal.hasOne.{u1}))))) (Preorder.toLT.{u1} (WellOrder.Ξ±.{u1} (Quotient.out.{succ (succ u1)} WellOrder.{u1} Ordinal.isEquivalent.{u1} (OfNat.ofNat.{succ u1} Ordinal.{u1} 1 (OfNat.mk.{succ u1} Ordinal.{u1} 1 (One.one.{succ u1} Ordinal.{u1} Ordinal.hasOne.{u1}))))) (PartialOrder.toPreorder.{u1} (WellOrder.Ξ±.{u1} (Quotient.out.{succ (succ u1)} WellOrder.{u1} Ordinal.isEquivalent.{u1} (OfNat.ofNat.{succ u1} Ordinal.{u1} 1 (OfNat.mk.{succ u1} Ordinal.{u1} 1 (One.one.{succ u1} Ordinal.{u1} Ordinal.hasOne.{u1}))))) (SemilatticeInf.toPartialOrder.{u1} (WellOrder.Ξ±.{u1} (Quotient.out.{succ (succ u1)} WellOrder.{u1} Ordinal.isEquivalent.{u1} (OfNat.ofNat.{succ u1} Ordinal.{u1} 1 (OfNat.mk.{succ u1} Ordinal.{u1} 1 (One.one.{succ u1} Ordinal.{u1} Ordinal.hasOne.{u1}))))) (Lattice.toSemilatticeInf.{u1} (WellOrder.Ξ±.{u1} (Quotient.out.{succ (succ u1)} WellOrder.{u1} Ordinal.isEquivalent.{u1} (OfNat.ofNat.{succ u1} Ordinal.{u1} 1 (OfNat.mk.{succ u1} Ordinal.{u1} 1 (One.one.{succ u1} Ordinal.{u1} Ordinal.hasOne.{u1}))))) (LinearOrder.toLattice.{u1} (WellOrder.Ξ±.{u1} (Quotient.out.{succ (succ u1)} WellOrder.{u1} Ordinal.isEquivalent.{u1} (OfNat.ofNat.{succ u1} Ordinal.{u1} 1 (OfNat.mk.{succ u1} Ordinal.{u1} 1 (One.one.{succ u1} Ordinal.{u1} Ordinal.hasOne.{u1}))))) (linearOrderOut.{u1} (OfNat.ofNat.{succ u1} Ordinal.{u1} 1 (OfNat.mk.{succ u1} Ordinal.{u1} 1 (One.one.{succ u1} Ordinal.{u1} Ordinal.hasOne.{u1})))))))))) (isWellOrder_out_lt.{u1} (OfNat.ofNat.{succ u1} Ordinal.{u1} 1 (OfNat.mk.{succ u1} Ordinal.{u1} 1 (One.one.{succ u1} Ordinal.{u1} Ordinal.hasOne.{u1})))) (OfNat.ofNat.{succ u1} Ordinal.{u1} 0 (OfNat.mk.{succ u1} Ordinal.{u1} 0 (Zero.zero.{succ u1} Ordinal.{u1} Ordinal.hasZero.{u1}))) (Eq.mpr.{0} (LT.lt.{succ u1} Ordinal.{u1} (Preorder.toLT.{succ u1} Ordinal.{u1} (PartialOrder.toPreorder.{succ u1} Ordinal.{u1} Ordinal.partialOrder.{u1})) (OfNat.ofNat.{succ u1} Ordinal.{u1} 0 (OfNat.mk.{succ u1} Ordinal.{u1} 0 (Zero.zero.{succ u1} Ordinal.{u1} Ordinal.hasZero.{u1}))) (Ordinal.type.{u1} (WellOrder.Ξ±.{u1} (Quotient.out.{succ (succ u1)} WellOrder.{u1} Ordinal.isEquivalent.{u1} (OfNat.ofNat.{succ u1} Ordinal.{u1} 1 (OfNat.mk.{succ u1} Ordinal.{u1} 1 (One.one.{succ u1} Ordinal.{u1} Ordinal.hasOne.{u1}))))) (LT.lt.{u1} (WellOrder.Ξ±.{u1} (Quotient.out.{succ (succ u1)} WellOrder.{u1} Ordinal.isEquivalent.{u1} (OfNat.ofNat.{succ u1} Ordinal.{u1} 1 (OfNat.mk.{succ u1} Ordinal.{u1} 1 (One.one.{succ u1} Ordinal.{u1} Ordinal.hasOne.{u1}))))) (Preorder.toLT.{u1} (WellOrder.Ξ±.{u1} (Quotient.out.{succ (succ u1)} WellOrder.{u1} Ordinal.isEquivalent.{u1} (OfNat.ofNat.{succ u1} Ordinal.{u1} 1 (OfNat.mk.{succ u1} Ordinal.{u1} 1 (One.one.{succ u1} Ordinal.{u1} Ordinal.hasOne.{u1}))))) (PartialOrder.toPreorder.{u1} (WellOrder.Ξ±.{u1} (Quotient.out.{succ (succ u1)} WellOrder.{u1} Ordinal.isEquivalent.{u1} (OfNat.ofNat.{succ u1} Ordinal.{u1} 1 (OfNat.mk.{succ u1} Ordinal.{u1} 1 (One.one.{succ u1} Ordinal.{u1} Ordinal.hasOne.{u1}))))) (SemilatticeInf.toPartialOrder.{u1} (WellOrder.Ξ±.{u1} (Quotient.out.{succ (succ u1)} WellOrder.{u1} Ordinal.isEquivalent.{u1} (OfNat.ofNat.{succ u1} Ordinal.{u1} 1 (OfNat.mk.{succ u1} Ordinal.{u1} 1 (One.one.{succ u1} Ordinal.{u1} Ordinal.hasOne.{u1}))))) (Lattice.toSemilatticeInf.{u1} (WellOrder.Ξ±.{u1} (Quotient.out.{succ (succ u1)} WellOrder.{u1} Ordinal.isEquivalent.{u1} (OfNat.ofNat.{succ u1} Ordinal.{u1} 1 (OfNat.mk.{succ u1} Ordinal.{u1} 1 (One.one.{succ u1} Ordinal.{u1} Ordinal.hasOne.{u1}))))) (LinearOrder.toLattice.{u1} (WellOrder.Ξ±.{u1} (Quotient.out.{succ (succ u1)} WellOrder.{u1} Ordinal.isEquivalent.{u1} (OfNat.ofNat.{succ u1} Ordinal.{u1} 1 (OfNat.mk.{succ u1} Ordinal.{u1} 1 (One.one.{succ u1} Ordinal.{u1} Ordinal.hasOne.{u1}))))) (linearOrderOut.{u1} (OfNat.ofNat.{succ u1} Ordinal.{u1} 1 (OfNat.mk.{succ u1} Ordinal.{u1} 1 (One.one.{succ u1} Ordinal.{u1} Ordinal.hasOne.{u1})))))))))) (isWellOrder_out_lt.{u1} (OfNat.ofNat.{succ u1} Ordinal.{u1} 1 (OfNat.mk.{succ u1} Ordinal.{u1} 1 (One.one.{succ u1} Ordinal.{u1} Ordinal.hasOne.{u1})))))) True (id_tag Tactic.IdTag.simp (Eq.{1} Prop (LT.lt.{succ u1} Ordinal.{u1} (Preorder.toLT.{succ u1} Ordinal.{u1} (PartialOrder.toPreorder.{succ u1} Ordinal.{u1} Ordinal.partialOrder.{u1})) (OfNat.ofNat.{succ u1} Ordinal.{u1} 0 (OfNat.mk.{succ u1} Ordinal.{u1} 0 (Zero.zero.{succ u1} Ordinal.{u1} Ordinal.hasZero.{u1}))) (Ordinal.type.{u1} (WellOrder.Ξ±.{u1} (Quotient.out.{succ (succ u1)} WellOrder.{u1} Ordinal.isEquivalent.{u1} (OfNat.ofNat.{succ u1} Ordinal.{u1} 1 (OfNat.mk.{succ u1} Ordinal.{u1} 1 (One.one.{succ u1} Ordinal.{u1} Ordinal.hasOne.{u1}))))) (LT.lt.{u1} (WellOrder.Ξ±.{u1} (Quotient.out.{succ (succ u1)} WellOrder.{u1} Ordinal.isEquivalent.{u1} (OfNat.ofNat.{succ u1} Ordinal.{u1} 1 (OfNat.mk.{succ u1} Ordinal.{u1} 1 (One.one.{succ u1} Ordinal.{u1} Ordinal.hasOne.{u1}))))) (Preorder.toLT.{u1} (WellOrder.Ξ±.{u1} (Quotient.out.{succ (succ u1)} WellOrder.{u1} Ordinal.isEquivalent.{u1} (OfNat.ofNat.{succ u1} Ordinal.{u1} 1 (OfNat.mk.{succ u1} Ordinal.{u1} 1 (One.one.{succ u1} Ordinal.{u1} Ordinal.hasOne.{u1}))))) (PartialOrder.toPreorder.{u1} (WellOrder.Ξ±.{u1} (Quotient.out.{succ (succ u1)} WellOrder.{u1} Ordinal.isEquivalent.{u1} (OfNat.ofNat.{succ u1} Ordinal.{u1} 1 (OfNat.mk.{succ u1} Ordinal.{u1} 1 (One.one.{succ u1} Ordinal.{u1} Ordinal.hasOne.{u1}))))) (SemilatticeInf.toPartialOrder.{u1} (WellOrder.Ξ±.{u1} (Quotient.out.{succ (succ u1)} WellOrder.{u1} Ordinal.isEquivalent.{u1} (OfNat.ofNat.{succ u1} Ordinal.{u1} 1 (OfNat.mk.{succ u1} Ordinal.{u1} 1 (One.one.{succ u1} Ordinal.{u1} Ordinal.hasOne.{u1}))))) (Lattice.toSemilatticeInf.{u1} (WellOrder.Ξ±.{u1} (Quotient.out.{succ (succ u1)} WellOrder.{u1} Ordinal.isEquivalent.{u1} (OfNat.ofNat.{succ u1} Ordinal.{u1} 1 (OfNat.mk.{succ u1} Ordinal.{u1} 1 (One.one.{succ u1} Ordinal.{u1} Ordinal.hasOne.{u1}))))) (LinearOrder.toLattice.{u1} (WellOrder.Ξ±.{u1} (Quotient.out.{succ (succ u1)} WellOrder.{u1} Ordinal.isEquivalent.{u1} (OfNat.ofNat.{succ u1} Ordinal.{u1} 1 (OfNat.mk.{succ u1} Ordinal.{u1} 1 (One.one.{succ u1} Ordinal.{u1} Ordinal.hasOne.{u1}))))) (linearOrderOut.{u1} (OfNat.ofNat.{succ u1} Ordinal.{u1} 1 (OfNat.mk.{succ u1} Ordinal.{u1} 1 (One.one.{succ u1} Ordinal.{u1} Ordinal.hasOne.{u1})))))))))) (isWellOrder_out_lt.{u1} (OfNat.ofNat.{succ u1} Ordinal.{u1} 1 (OfNat.mk.{succ u1} Ordinal.{u1} 1 (One.one.{succ u1} Ordinal.{u1} Ordinal.hasOne.{u1})))))) True) (Eq.trans.{1} Prop (LT.lt.{succ u1} Ordinal.{u1} (Preorder.toLT.{succ u1} Ordinal.{u1} (PartialOrder.toPreorder.{succ u1} Ordinal.{u1} Ordinal.partialOrder.{u1})) (OfNat.ofNat.{succ u1} Ordinal.{u1} 0 (OfNat.mk.{succ u1} Ordinal.{u1} 0 (Zero.zero.{succ u1} Ordinal.{u1} Ordinal.hasZero.{u1}))) (Ordinal.type.{u1} (WellOrder.Ξ±.{u1} (Quotient.out.{succ (succ u1)} WellOrder.{u1} Ordinal.isEquivalent.{u1} (OfNat.ofNat.{succ u1} Ordinal.{u1} 1 (OfNat.mk.{succ u1} Ordinal.{u1} 1 (One.one.{succ u1} Ordinal.{u1} Ordinal.hasOne.{u1}))))) (LT.lt.{u1} (WellOrder.Ξ±.{u1} (Quotient.out.{succ (succ u1)} WellOrder.{u1} Ordinal.isEquivalent.{u1} (OfNat.ofNat.{succ u1} Ordinal.{u1} 1 (OfNat.mk.{succ u1} Ordinal.{u1} 1 (One.one.{succ u1} Ordinal.{u1} Ordinal.hasOne.{u1}))))) (Preorder.toLT.{u1} (WellOrder.Ξ±.{u1} (Quotient.out.{succ (succ u1)} WellOrder.{u1} Ordinal.isEquivalent.{u1} (OfNat.ofNat.{succ u1} Ordinal.{u1} 1 (OfNat.mk.{succ u1} Ordinal.{u1} 1 (One.one.{succ u1} Ordinal.{u1} Ordinal.hasOne.{u1}))))) (PartialOrder.toPreorder.{u1} (WellOrder.Ξ±.{u1} (Quotient.out.{succ (succ u1)} WellOrder.{u1} Ordinal.isEquivalent.{u1} (OfNat.ofNat.{succ u1} Ordinal.{u1} 1 (OfNat.mk.{succ u1} Ordinal.{u1} 1 (One.one.{succ u1} Ordinal.{u1} Ordinal.hasOne.{u1}))))) (SemilatticeInf.toPartialOrder.{u1} (WellOrder.Ξ±.{u1} (Quotient.out.{succ (succ u1)} WellOrder.{u1} Ordinal.isEquivalent.{u1} (OfNat.ofNat.{succ u1} Ordinal.{u1} 1 (OfNat.mk.{succ u1} Ordinal.{u1} 1 (One.one.{succ u1} Ordinal.{u1} Ordinal.hasOne.{u1}))))) (Lattice.toSemilatticeInf.{u1} (WellOrder.Ξ±.{u1} (Quotient.out.{succ (succ u1)} WellOrder.{u1} Ordinal.isEquivalent.{u1} (OfNat.ofNat.{succ u1} Ordinal.{u1} 1 (OfNat.mk.{succ u1} Ordinal.{u1} 1 (One.one.{succ u1} Ordinal.{u1} Ordinal.hasOne.{u1}))))) (LinearOrder.toLattice.{u1} (WellOrder.Ξ±.{u1} (Quotient.out.{succ (succ u1)} WellOrder.{u1} Ordinal.isEquivalent.{u1} (OfNat.ofNat.{succ u1} Ordinal.{u1} 1 (OfNat.mk.{succ u1} Ordinal.{u1} 1 (One.one.{succ u1} Ordinal.{u1} Ordinal.hasOne.{u1}))))) (linearOrderOut.{u1} (OfNat.ofNat.{succ u1} Ordinal.{u1} 1 (OfNat.mk.{succ u1} Ordinal.{u1} 1 (One.one.{succ u1} Ordinal.{u1} Ordinal.hasOne.{u1})))))))))) (isWellOrder_out_lt.{u1} (OfNat.ofNat.{succ u1} Ordinal.{u1} 1 (OfNat.mk.{succ u1} Ordinal.{u1} 1 (One.one.{succ u1} Ordinal.{u1} Ordinal.hasOne.{u1})))))) (LT.lt.{succ u1} Ordinal.{u1} (Preorder.toLT.{succ u1} Ordinal.{u1} (PartialOrder.toPreorder.{succ u1} Ordinal.{u1} Ordinal.partialOrder.{u1})) (OfNat.ofNat.{succ u1} Ordinal.{u1} 0 (OfNat.mk.{succ u1} Ordinal.{u1} 0 (Zero.zero.{succ u1} Ordinal.{u1} Ordinal.hasZero.{u1}))) (OfNat.ofNat.{succ u1} Ordinal.{u1} 1 (OfNat.mk.{succ u1} Ordinal.{u1} 1 (One.one.{succ u1} Ordinal.{u1} Ordinal.hasOne.{u1})))) True ((fun [self : LT.{succ u1} Ordinal.{u1}] (αΎ° : Ordinal.{u1}) (αΎ°_1 : Ordinal.{u1}) (e_2 : Eq.{succ (succ u1)} Ordinal.{u1} αΎ° αΎ°_1) (αΎ°_2 : Ordinal.{u1}) (αΎ°_3 : Ordinal.{u1}) (e_3 : Eq.{succ (succ u1)} Ordinal.{u1} αΎ°_2 αΎ°_3) => congr.{succ (succ u1), 1} Ordinal.{u1} Prop (LT.lt.{succ u1} Ordinal.{u1} self αΎ°) (LT.lt.{succ u1} Ordinal.{u1} self αΎ°_1) αΎ°_2 αΎ°_3 (congr_arg.{succ (succ u1), succ (succ u1)} Ordinal.{u1} (Ordinal.{u1} -> Prop) αΎ° αΎ°_1 (LT.lt.{succ u1} Ordinal.{u1} self) e_2) e_3) (Preorder.toLT.{succ u1} Ordinal.{u1} (PartialOrder.toPreorder.{succ u1} Ordinal.{u1} Ordinal.partialOrder.{u1})) (OfNat.ofNat.{succ u1} Ordinal.{u1} 0 (OfNat.mk.{succ u1} Ordinal.{u1} 0 (Zero.zero.{succ u1} Ordinal.{u1} Ordinal.hasZero.{u1}))) (OfNat.ofNat.{succ u1} Ordinal.{u1} 0 (OfNat.mk.{succ u1} Ordinal.{u1} 0 (Zero.zero.{succ u1} Ordinal.{u1} Ordinal.hasZero.{u1}))) (rfl.{succ (succ u1)} Ordinal.{u1} (OfNat.ofNat.{succ u1} Ordinal.{u1} 0 (OfNat.mk.{succ u1} Ordinal.{u1} 0 (Zero.zero.{succ u1} Ordinal.{u1} Ordinal.hasZero.{u1})))) (Ordinal.type.{u1} (WellOrder.Ξ±.{u1} (Quotient.out.{succ (succ u1)} WellOrder.{u1} Ordinal.isEquivalent.{u1} (OfNat.ofNat.{succ u1} Ordinal.{u1} 1 (OfNat.mk.{succ u1} Ordinal.{u1} 1 (One.one.{succ u1} Ordinal.{u1} Ordinal.hasOne.{u1}))))) (LT.lt.{u1} (WellOrder.Ξ±.{u1} (Quotient.out.{succ (succ u1)} WellOrder.{u1} Ordinal.isEquivalent.{u1} (OfNat.ofNat.{succ u1} Ordinal.{u1} 1 (OfNat.mk.{succ u1} Ordinal.{u1} 1 (One.one.{succ u1} Ordinal.{u1} Ordinal.hasOne.{u1}))))) (Preorder.toLT.{u1} (WellOrder.Ξ±.{u1} (Quotient.out.{succ (succ u1)} WellOrder.{u1} Ordinal.isEquivalent.{u1} (OfNat.ofNat.{succ u1} Ordinal.{u1} 1 (OfNat.mk.{succ u1} Ordinal.{u1} 1 (One.one.{succ u1} Ordinal.{u1} Ordinal.hasOne.{u1}))))) (PartialOrder.toPreorder.{u1} (WellOrder.Ξ±.{u1} (Quotient.out.{succ (succ u1)} WellOrder.{u1} Ordinal.isEquivalent.{u1} (OfNat.ofNat.{succ u1} Ordinal.{u1} 1 (OfNat.mk.{succ u1} Ordinal.{u1} 1 (One.one.{succ u1} Ordinal.{u1} Ordinal.hasOne.{u1}))))) (SemilatticeInf.toPartialOrder.{u1} (WellOrder.Ξ±.{u1} (Quotient.out.{succ (succ u1)} WellOrder.{u1} Ordinal.isEquivalent.{u1} (OfNat.ofNat.{succ u1} Ordinal.{u1} 1 (OfNat.mk.{succ u1} Ordinal.{u1} 1 (One.one.{succ u1} Ordinal.{u1} Ordinal.hasOne.{u1}))))) (Lattice.toSemilatticeInf.{u1} (WellOrder.Ξ±.{u1} (Quotient.out.{succ (succ u1)} WellOrder.{u1} Ordinal.isEquivalent.{u1} (OfNat.ofNat.{succ u1} Ordinal.{u1} 1 (OfNat.mk.{succ u1} Ordinal.{u1} 1 (One.one.{succ u1} Ordinal.{u1} Ordinal.hasOne.{u1}))))) (LinearOrder.toLattice.{u1} (WellOrder.Ξ±.{u1} (Quotient.out.{succ (succ u1)} WellOrder.{u1} Ordinal.isEquivalent.{u1} (OfNat.ofNat.{succ u1} Ordinal.{u1} 1 (OfNat.mk.{succ u1} Ordinal.{u1} 1 (One.one.{succ u1} Ordinal.{u1} Ordinal.hasOne.{u1}))))) (linearOrderOut.{u1} (OfNat.ofNat.{succ u1} Ordinal.{u1} 1 (OfNat.mk.{succ u1} Ordinal.{u1} 1 (One.one.{succ u1} Ordinal.{u1} Ordinal.hasOne.{u1})))))))))) (isWellOrder_out_lt.{u1} (OfNat.ofNat.{succ u1} Ordinal.{u1} 1 (OfNat.mk.{succ u1} Ordinal.{u1} 1 (One.one.{succ u1} Ordinal.{u1} Ordinal.hasOne.{u1}))))) (OfNat.ofNat.{succ u1} Ordinal.{u1} 1 (OfNat.mk.{succ u1} Ordinal.{u1} 1 (One.one.{succ u1} Ordinal.{u1} Ordinal.hasOne.{u1}))) (Ordinal.type_lt.{u1} (OfNat.ofNat.{succ u1} Ordinal.{u1} 1 (OfNat.mk.{succ u1} Ordinal.{u1} 1 (One.one.{succ u1} Ordinal.{u1} Ordinal.hasOne.{u1}))))) (propext (LT.lt.{succ u1} Ordinal.{u1} (Preorder.toLT.{succ u1} Ordinal.{u1} (PartialOrder.toPreorder.{succ u1} Ordinal.{u1} Ordinal.partialOrder.{u1})) (OfNat.ofNat.{succ u1} Ordinal.{u1} 0 (OfNat.mk.{succ u1} Ordinal.{u1} 0 (Zero.zero.{succ u1} Ordinal.{u1} Ordinal.hasZero.{u1}))) (OfNat.ofNat.{succ u1} Ordinal.{u1} 1 (OfNat.mk.{succ u1} Ordinal.{u1} 1 (One.one.{succ u1} Ordinal.{u1} Ordinal.hasOne.{u1})))) True ((fun {Ξ± : Type.{succ u1}} [_inst_1 : Zero.{succ u1} Ξ±] [_inst_2 : One.{succ u1} Ξ±] [_inst_3 : PartialOrder.{succ u1} Ξ±] [_inst_4 : ZeroLEOneClass.{succ u1} Ξ± _inst_1 _inst_2 (Preorder.toLE.{succ u1} Ξ± (PartialOrder.toPreorder.{succ u1} Ξ± _inst_3))] [_inst_5 : NeZero.{succ u1} Ξ± _inst_1 (OfNat.ofNat.{succ u1} Ξ± 1 (OfNat.mk.{succ u1} Ξ± 1 (One.one.{succ u1} Ξ± _inst_2)))] => iff_true_intro (LT.lt.{succ u1} Ξ± (Preorder.toLT.{succ u1} Ξ± (PartialOrder.toPreorder.{succ u1} Ξ± _inst_3)) (OfNat.ofNat.{succ u1} Ξ± 0 (OfNat.mk.{succ u1} Ξ± 0 (Zero.zero.{succ u1} Ξ± _inst_1))) (OfNat.ofNat.{succ u1} Ξ± 1 (OfNat.mk.{succ u1} Ξ± 1 (One.one.{succ u1} Ξ± _inst_2)))) (zero_lt_one.{succ u1} Ξ± _inst_1 _inst_2 _inst_3 _inst_4 _inst_5)) Ordinal.{u1} Ordinal.hasZero.{u1} Ordinal.hasOne.{u1} Ordinal.partialOrder.{u1} Ordinal.zeroLeOneClass.{u1} Ordinal.NeZero.one.{u1})))) trivial)) but is expected to have type forall (x : WellOrder.Ξ±.{u1} (Quotient.out.{succ (succ u1)} WellOrder.{u1} Ordinal.isEquivalent.{u1} (OfNat.ofNat.{succ u1} Ordinal.{u1} 1 (One.toOfNat1.{succ u1} Ordinal.{u1} Ordinal.one.{u1})))), Eq.{succ u1} (WellOrder.Ξ±.{u1} (Quotient.out.{succ (succ u1)} WellOrder.{u1} Ordinal.isEquivalent.{u1} (OfNat.ofNat.{succ u1} Ordinal.{u1} 1 (One.toOfNat1.{succ u1} Ordinal.{u1} Ordinal.one.{u1})))) x (Ordinal.enum.{u1} (WellOrder.Ξ±.{u1} (Quotient.out.{succ (succ u1)} WellOrder.{u1} Ordinal.isEquivalent.{u1} (OfNat.ofNat.{succ u1} Ordinal.{u1} 1 (One.toOfNat1.{succ u1} Ordinal.{u1} Ordinal.one.{u1})))) (fun ([email protected]._hyg.12858 : WellOrder.Ξ±.{u1} (Quotient.out.{succ (succ u1)} WellOrder.{u1} Ordinal.isEquivalent.{u1} (OfNat.ofNat.{succ u1} Ordinal.{u1} 1 (One.toOfNat1.{succ u1} Ordinal.{u1} Ordinal.one.{u1})))) ([email protected]._hyg.12860 : WellOrder.Ξ±.{u1} (Quotient.out.{succ (succ u1)} WellOrder.{u1} Ordinal.isEquivalent.{u1} (OfNat.ofNat.{succ u1} Ordinal.{u1} 1 (One.toOfNat1.{succ u1} Ordinal.{u1} Ordinal.one.{u1})))) => LT.lt.{u1} (WellOrder.Ξ±.{u1} (Quotient.out.{succ (succ u1)} WellOrder.{u1} Ordinal.isEquivalent.{u1} (OfNat.ofNat.{succ u1} Ordinal.{u1} 1 (One.toOfNat1.{succ u1} Ordinal.{u1} Ordinal.one.{u1})))) (Preorder.toLT.{u1} (WellOrder.Ξ±.{u1} (Quotient.out.{succ (succ u1)} WellOrder.{u1} Ordinal.isEquivalent.{u1} (OfNat.ofNat.{succ u1} Ordinal.{u1} 1 (One.toOfNat1.{succ u1} Ordinal.{u1} Ordinal.one.{u1})))) (PartialOrder.toPreorder.{u1} (WellOrder.Ξ±.{u1} (Quotient.out.{succ (succ u1)} WellOrder.{u1} Ordinal.isEquivalent.{u1} (OfNat.ofNat.{succ u1} Ordinal.{u1} 1 (One.toOfNat1.{succ u1} Ordinal.{u1} Ordinal.one.{u1})))) (SemilatticeInf.toPartialOrder.{u1} (WellOrder.Ξ±.{u1} (Quotient.out.{succ (succ u1)} WellOrder.{u1} Ordinal.isEquivalent.{u1} (OfNat.ofNat.{succ u1} Ordinal.{u1} 1 (One.toOfNat1.{succ u1} Ordinal.{u1} Ordinal.one.{u1})))) (Lattice.toSemilatticeInf.{u1} (WellOrder.Ξ±.{u1} (Quotient.out.{succ (succ u1)} WellOrder.{u1} Ordinal.isEquivalent.{u1} (OfNat.ofNat.{succ u1} Ordinal.{u1} 1 (One.toOfNat1.{succ u1} Ordinal.{u1} Ordinal.one.{u1})))) (DistribLattice.toLattice.{u1} (WellOrder.Ξ±.{u1} (Quotient.out.{succ (succ u1)} WellOrder.{u1} Ordinal.isEquivalent.{u1} (OfNat.ofNat.{succ u1} Ordinal.{u1} 1 (One.toOfNat1.{succ u1} Ordinal.{u1} Ordinal.one.{u1})))) (instDistribLattice.{u1} (WellOrder.Ξ±.{u1} (Quotient.out.{succ (succ u1)} WellOrder.{u1} Ordinal.isEquivalent.{u1} (OfNat.ofNat.{succ u1} Ordinal.{u1} 1 (One.toOfNat1.{succ u1} Ordinal.{u1} Ordinal.one.{u1})))) (linearOrderOut.{u1} (OfNat.ofNat.{succ u1} Ordinal.{u1} 1 (One.toOfNat1.{succ u1} Ordinal.{u1} Ordinal.one.{u1}))))))))) [email protected]._hyg.12858 [email protected]._hyg.12860) (isWellOrder_out_lt.{u1} (OfNat.ofNat.{succ u1} Ordinal.{u1} 1 (One.toOfNat1.{succ u1} Ordinal.{u1} Ordinal.one.{u1}))) (OfNat.ofNat.{succ u1} Ordinal.{u1} 0 (Zero.toOfNat0.{succ u1} Ordinal.{u1} Ordinal.zero.{u1})) (of_eq_true (LT.lt.{succ u1} Ordinal.{u1} (Preorder.toLT.{succ u1} Ordinal.{u1} (PartialOrder.toPreorder.{succ u1} Ordinal.{u1} Ordinal.partialOrder.{u1})) (OfNat.ofNat.{succ u1} Ordinal.{u1} 0 (Zero.toOfNat0.{succ u1} Ordinal.{u1} Ordinal.zero.{u1})) (Ordinal.type.{u1} (WellOrder.Ξ±.{u1} (Quotient.out.{succ (succ u1)} WellOrder.{u1} Ordinal.isEquivalent.{u1} (OfNat.ofNat.{succ u1} Ordinal.{u1} 1 (One.toOfNat1.{succ u1} Ordinal.{u1} Ordinal.one.{u1})))) (fun ([email protected]._hyg.1293 : WellOrder.Ξ±.{u1} (Quotient.out.{succ (succ u1)} WellOrder.{u1} Ordinal.isEquivalent.{u1} (OfNat.ofNat.{succ u1} Ordinal.{u1} 1 (One.toOfNat1.{succ u1} Ordinal.{u1} Ordinal.one.{u1})))) ([email protected]._hyg.1295 : WellOrder.Ξ±.{u1} (Quotient.out.{succ (succ u1)} WellOrder.{u1} Ordinal.isEquivalent.{u1} (OfNat.ofNat.{succ u1} Ordinal.{u1} 1 (One.toOfNat1.{succ u1} Ordinal.{u1} Ordinal.one.{u1})))) => LT.lt.{u1} (WellOrder.Ξ±.{u1} (Quotient.out.{succ (succ u1)} WellOrder.{u1} Ordinal.isEquivalent.{u1} (OfNat.ofNat.{succ u1} Ordinal.{u1} 1 (One.toOfNat1.{succ u1} Ordinal.{u1} Ordinal.one.{u1})))) (Preorder.toLT.{u1} (WellOrder.Ξ±.{u1} (Quotient.out.{succ (succ u1)} WellOrder.{u1} Ordinal.isEquivalent.{u1} (OfNat.ofNat.{succ u1} Ordinal.{u1} 1 (One.toOfNat1.{succ u1} Ordinal.{u1} Ordinal.one.{u1})))) (PartialOrder.toPreorder.{u1} (WellOrder.Ξ±.{u1} (Quotient.out.{succ (succ u1)} WellOrder.{u1} Ordinal.isEquivalent.{u1} (OfNat.ofNat.{succ u1} Ordinal.{u1} 1 (One.toOfNat1.{succ u1} Ordinal.{u1} Ordinal.one.{u1})))) (SemilatticeInf.toPartialOrder.{u1} (WellOrder.Ξ±.{u1} (Quotient.out.{succ (succ u1)} WellOrder.{u1} Ordinal.isEquivalent.{u1} (OfNat.ofNat.{succ u1} Ordinal.{u1} 1 (One.toOfNat1.{succ u1} Ordinal.{u1} Ordinal.one.{u1})))) (Lattice.toSemilatticeInf.{u1} (WellOrder.Ξ±.{u1} (Quotient.out.{succ (succ u1)} WellOrder.{u1} Ordinal.isEquivalent.{u1} (OfNat.ofNat.{succ u1} Ordinal.{u1} 1 (One.toOfNat1.{succ u1} Ordinal.{u1} Ordinal.one.{u1})))) (DistribLattice.toLattice.{u1} (WellOrder.Ξ±.{u1} (Quotient.out.{succ (succ u1)} WellOrder.{u1} Ordinal.isEquivalent.{u1} (OfNat.ofNat.{succ u1} Ordinal.{u1} 1 (One.toOfNat1.{succ u1} Ordinal.{u1} Ordinal.one.{u1})))) (instDistribLattice.{u1} (WellOrder.Ξ±.{u1} (Quotient.out.{succ (succ u1)} WellOrder.{u1} Ordinal.isEquivalent.{u1} (OfNat.ofNat.{succ u1} Ordinal.{u1} 1 (One.toOfNat1.{succ u1} Ordinal.{u1} Ordinal.one.{u1})))) (linearOrderOut.{u1} (OfNat.ofNat.{succ u1} Ordinal.{u1} 1 (One.toOfNat1.{succ u1} Ordinal.{u1} Ordinal.one.{u1}))))))))) [email protected]._hyg.1293 [email protected]._hyg.1295) (isWellOrder_out_lt.{u1} (OfNat.ofNat.{succ u1} Ordinal.{u1} 1 (One.toOfNat1.{succ u1} Ordinal.{u1} Ordinal.one.{u1}))))) (Eq.trans.{1} Prop (LT.lt.{succ u1} Ordinal.{u1} (Preorder.toLT.{succ u1} Ordinal.{u1} (PartialOrder.toPreorder.{succ u1} Ordinal.{u1} Ordinal.partialOrder.{u1})) (OfNat.ofNat.{succ u1} Ordinal.{u1} 0 (Zero.toOfNat0.{succ u1} Ordinal.{u1} Ordinal.zero.{u1})) (Ordinal.type.{u1} (WellOrder.Ξ±.{u1} (Quotient.out.{succ (succ u1)} WellOrder.{u1} Ordinal.isEquivalent.{u1} (OfNat.ofNat.{succ u1} Ordinal.{u1} 1 (One.toOfNat1.{succ u1} Ordinal.{u1} Ordinal.one.{u1})))) (fun ([email protected]._hyg.1293 : WellOrder.Ξ±.{u1} (Quotient.out.{succ (succ u1)} WellOrder.{u1} Ordinal.isEquivalent.{u1} (OfNat.ofNat.{succ u1} Ordinal.{u1} 1 (One.toOfNat1.{succ u1} Ordinal.{u1} Ordinal.one.{u1})))) ([email protected]._hyg.1295 : WellOrder.Ξ±.{u1} (Quotient.out.{succ (succ u1)} WellOrder.{u1} Ordinal.isEquivalent.{u1} (OfNat.ofNat.{succ u1} Ordinal.{u1} 1 (One.toOfNat1.{succ u1} Ordinal.{u1} Ordinal.one.{u1})))) => LT.lt.{u1} (WellOrder.Ξ±.{u1} (Quotient.out.{succ (succ u1)} WellOrder.{u1} Ordinal.isEquivalent.{u1} (OfNat.ofNat.{succ u1} Ordinal.{u1} 1 (One.toOfNat1.{succ u1} Ordinal.{u1} Ordinal.one.{u1})))) (Preorder.toLT.{u1} (WellOrder.Ξ±.{u1} (Quotient.out.{succ (succ u1)} WellOrder.{u1} Ordinal.isEquivalent.{u1} (OfNat.ofNat.{succ u1} Ordinal.{u1} 1 (One.toOfNat1.{succ u1} Ordinal.{u1} Ordinal.one.{u1})))) (PartialOrder.toPreorder.{u1} (WellOrder.Ξ±.{u1} (Quotient.out.{succ (succ u1)} WellOrder.{u1} Ordinal.isEquivalent.{u1} (OfNat.ofNat.{succ u1} Ordinal.{u1} 1 (One.toOfNat1.{succ u1} Ordinal.{u1} Ordinal.one.{u1})))) (SemilatticeInf.toPartialOrder.{u1} (WellOrder.Ξ±.{u1} (Quotient.out.{succ (succ u1)} WellOrder.{u1} Ordinal.isEquivalent.{u1} (OfNat.ofNat.{succ u1} Ordinal.{u1} 1 (One.toOfNat1.{succ u1} Ordinal.{u1} Ordinal.one.{u1})))) (Lattice.toSemilatticeInf.{u1} (WellOrder.Ξ±.{u1} (Quotient.out.{succ (succ u1)} WellOrder.{u1} Ordinal.isEquivalent.{u1} (OfNat.ofNat.{succ u1} Ordinal.{u1} 1 (One.toOfNat1.{succ u1} Ordinal.{u1} Ordinal.one.{u1})))) (DistribLattice.toLattice.{u1} (WellOrder.Ξ±.{u1} (Quotient.out.{succ (succ u1)} WellOrder.{u1} Ordinal.isEquivalent.{u1} (OfNat.ofNat.{succ u1} Ordinal.{u1} 1 (One.toOfNat1.{succ u1} Ordinal.{u1} Ordinal.one.{u1})))) (instDistribLattice.{u1} (WellOrder.Ξ±.{u1} (Quotient.out.{succ (succ u1)} WellOrder.{u1} Ordinal.isEquivalent.{u1} (OfNat.ofNat.{succ u1} Ordinal.{u1} 1 (One.toOfNat1.{succ u1} Ordinal.{u1} Ordinal.one.{u1})))) (linearOrderOut.{u1} (OfNat.ofNat.{succ u1} Ordinal.{u1} 1 (One.toOfNat1.{succ u1} Ordinal.{u1} Ordinal.one.{u1}))))))))) [email protected]._hyg.1293 [email protected]._hyg.1295) (isWellOrder_out_lt.{u1} (OfNat.ofNat.{succ u1} Ordinal.{u1} 1 (One.toOfNat1.{succ u1} Ordinal.{u1} Ordinal.one.{u1}))))) (LT.lt.{succ u1} Ordinal.{u1} (Preorder.toLT.{succ u1} Ordinal.{u1} (PartialOrder.toPreorder.{succ u1} Ordinal.{u1} Ordinal.partialOrder.{u1})) (OfNat.ofNat.{succ u1} Ordinal.{u1} 0 (Zero.toOfNat0.{succ u1} Ordinal.{u1} Ordinal.zero.{u1})) (OfNat.ofNat.{succ u1} Ordinal.{u1} 1 (One.toOfNat1.{succ u1} Ordinal.{u1} Ordinal.one.{u1}))) True (congrArg.{succ (succ u1), 1} Ordinal.{u1} Prop (Ordinal.type.{u1} (WellOrder.Ξ±.{u1} (Quotient.out.{succ (succ u1)} WellOrder.{u1} Ordinal.isEquivalent.{u1} (OfNat.ofNat.{succ u1} Ordinal.{u1} 1 (One.toOfNat1.{succ u1} Ordinal.{u1} Ordinal.one.{u1})))) (fun ([email protected]._hyg.1293 : WellOrder.Ξ±.{u1} (Quotient.out.{succ (succ u1)} WellOrder.{u1} Ordinal.isEquivalent.{u1} (OfNat.ofNat.{succ u1} Ordinal.{u1} 1 (One.toOfNat1.{succ u1} Ordinal.{u1} Ordinal.one.{u1})))) ([email protected]._hyg.1295 : WellOrder.Ξ±.{u1} (Quotient.out.{succ (succ u1)} WellOrder.{u1} Ordinal.isEquivalent.{u1} (OfNat.ofNat.{succ u1} Ordinal.{u1} 1 (One.toOfNat1.{succ u1} Ordinal.{u1} Ordinal.one.{u1})))) => LT.lt.{u1} (WellOrder.Ξ±.{u1} (Quotient.out.{succ (succ u1)} WellOrder.{u1} Ordinal.isEquivalent.{u1} (OfNat.ofNat.{succ u1} Ordinal.{u1} 1 (One.toOfNat1.{succ u1} Ordinal.{u1} Ordinal.one.{u1})))) (Preorder.toLT.{u1} (WellOrder.Ξ±.{u1} (Quotient.out.{succ (succ u1)} WellOrder.{u1} Ordinal.isEquivalent.{u1} (OfNat.ofNat.{succ u1} Ordinal.{u1} 1 (One.toOfNat1.{succ u1} Ordinal.{u1} Ordinal.one.{u1})))) (PartialOrder.toPreorder.{u1} (WellOrder.Ξ±.{u1} (Quotient.out.{succ (succ u1)} WellOrder.{u1} Ordinal.isEquivalent.{u1} (OfNat.ofNat.{succ u1} Ordinal.{u1} 1 (One.toOfNat1.{succ u1} Ordinal.{u1} Ordinal.one.{u1})))) (SemilatticeInf.toPartialOrder.{u1} (WellOrder.Ξ±.{u1} (Quotient.out.{succ (succ u1)} WellOrder.{u1} Ordinal.isEquivalent.{u1} (OfNat.ofNat.{succ u1} Ordinal.{u1} 1 (One.toOfNat1.{succ u1} Ordinal.{u1} Ordinal.one.{u1})))) (Lattice.toSemilatticeInf.{u1} (WellOrder.Ξ±.{u1} (Quotient.out.{succ (succ u1)} WellOrder.{u1} Ordinal.isEquivalent.{u1} (OfNat.ofNat.{succ u1} Ordinal.{u1} 1 (One.toOfNat1.{succ u1} Ordinal.{u1} Ordinal.one.{u1})))) (DistribLattice.toLattice.{u1} (WellOrder.Ξ±.{u1} (Quotient.out.{succ (succ u1)} WellOrder.{u1} Ordinal.isEquivalent.{u1} (OfNat.ofNat.{succ u1} Ordinal.{u1} 1 (One.toOfNat1.{succ u1} Ordinal.{u1} Ordinal.one.{u1})))) (instDistribLattice.{u1} (WellOrder.Ξ±.{u1} (Quotient.out.{succ (succ u1)} WellOrder.{u1} Ordinal.isEquivalent.{u1} (OfNat.ofNat.{succ u1} Ordinal.{u1} 1 (One.toOfNat1.{succ u1} Ordinal.{u1} Ordinal.one.{u1})))) (linearOrderOut.{u1} (OfNat.ofNat.{succ u1} Ordinal.{u1} 1 (One.toOfNat1.{succ u1} Ordinal.{u1} Ordinal.one.{u1}))))))))) [email protected]._hyg.1293 [email protected]._hyg.1295) (isWellOrder_out_lt.{u1} (OfNat.ofNat.{succ u1} Ordinal.{u1} 1 (One.toOfNat1.{succ u1} Ordinal.{u1} Ordinal.one.{u1})))) (OfNat.ofNat.{succ u1} Ordinal.{u1} 1 (One.toOfNat1.{succ u1} Ordinal.{u1} Ordinal.one.{u1})) (LT.lt.{succ u1} Ordinal.{u1} (Preorder.toLT.{succ u1} Ordinal.{u1} (PartialOrder.toPreorder.{succ u1} Ordinal.{u1} Ordinal.partialOrder.{u1})) (OfNat.ofNat.{succ u1} Ordinal.{u1} 0 (Zero.toOfNat0.{succ u1} Ordinal.{u1} Ordinal.zero.{u1}))) (Ordinal.type_lt.{u1} (OfNat.ofNat.{succ u1} Ordinal.{u1} 1 (One.toOfNat1.{succ u1} Ordinal.{u1} Ordinal.one.{u1})))) (Mathlib.Algebra.Order.ZeroLEOne._auxLemma.2.{succ u1} Ordinal.{u1} Ordinal.zero.{u1} Ordinal.one.{u1} Ordinal.partialOrder.{u1} Ordinal.zeroLEOneClass.{u1} Ordinal.NeZero.one.{u1})))) Case conversion may be inaccurate. Consider using '#align ordinal.one_out_eq Ordinal.one_out_eqβ‚“'. -/ theorem one_out_eq (x : (1 : Ordinal).out.Ξ±) : x = enum (Β· < Β·) 0 (by simp) := Unique.eq_default x #align ordinal.one_out_eq Ordinal.one_out_eq /-! ### Extra properties of typein and enum -/ /- warning: ordinal.typein_one_out -> Ordinal.typein_one_out is a dubious translation: lean 3 declaration is forall (x : WellOrder.Ξ±.{u1} (Quotient.out.{succ (succ u1)} WellOrder.{u1} Ordinal.isEquivalent.{u1} (OfNat.ofNat.{succ u1} Ordinal.{u1} 1 (OfNat.mk.{succ u1} Ordinal.{u1} 1 (One.one.{succ u1} Ordinal.{u1} Ordinal.hasOne.{u1}))))), Eq.{succ (succ u1)} Ordinal.{u1} (Ordinal.typein.{u1} (WellOrder.Ξ±.{u1} (Quotient.out.{succ (succ u1)} WellOrder.{u1} Ordinal.isEquivalent.{u1} (OfNat.ofNat.{succ u1} Ordinal.{u1} 1 (OfNat.mk.{succ u1} Ordinal.{u1} 1 (One.one.{succ u1} Ordinal.{u1} Ordinal.hasOne.{u1}))))) (LT.lt.{u1} (WellOrder.Ξ±.{u1} (Quotient.out.{succ (succ u1)} WellOrder.{u1} Ordinal.isEquivalent.{u1} (OfNat.ofNat.{succ u1} Ordinal.{u1} 1 (OfNat.mk.{succ u1} Ordinal.{u1} 1 (One.one.{succ u1} Ordinal.{u1} Ordinal.hasOne.{u1}))))) (Preorder.toLT.{u1} (WellOrder.Ξ±.{u1} (Quotient.out.{succ (succ u1)} WellOrder.{u1} Ordinal.isEquivalent.{u1} (OfNat.ofNat.{succ u1} Ordinal.{u1} 1 (OfNat.mk.{succ u1} Ordinal.{u1} 1 (One.one.{succ u1} Ordinal.{u1} Ordinal.hasOne.{u1}))))) (PartialOrder.toPreorder.{u1} (WellOrder.Ξ±.{u1} (Quotient.out.{succ (succ u1)} WellOrder.{u1} Ordinal.isEquivalent.{u1} (OfNat.ofNat.{succ u1} Ordinal.{u1} 1 (OfNat.mk.{succ u1} Ordinal.{u1} 1 (One.one.{succ u1} Ordinal.{u1} Ordinal.hasOne.{u1}))))) (SemilatticeInf.toPartialOrder.{u1} (WellOrder.Ξ±.{u1} (Quotient.out.{succ (succ u1)} WellOrder.{u1} Ordinal.isEquivalent.{u1} (OfNat.ofNat.{succ u1} Ordinal.{u1} 1 (OfNat.mk.{succ u1} Ordinal.{u1} 1 (One.one.{succ u1} Ordinal.{u1} Ordinal.hasOne.{u1}))))) (Lattice.toSemilatticeInf.{u1} (WellOrder.Ξ±.{u1} (Quotient.out.{succ (succ u1)} WellOrder.{u1} Ordinal.isEquivalent.{u1} (OfNat.ofNat.{succ u1} Ordinal.{u1} 1 (OfNat.mk.{succ u1} Ordinal.{u1} 1 (One.one.{succ u1} Ordinal.{u1} Ordinal.hasOne.{u1}))))) (LinearOrder.toLattice.{u1} (WellOrder.Ξ±.{u1} (Quotient.out.{succ (succ u1)} WellOrder.{u1} Ordinal.isEquivalent.{u1} (OfNat.ofNat.{succ u1} Ordinal.{u1} 1 (OfNat.mk.{succ u1} Ordinal.{u1} 1 (One.one.{succ u1} Ordinal.{u1} Ordinal.hasOne.{u1}))))) (linearOrderOut.{u1} (OfNat.ofNat.{succ u1} Ordinal.{u1} 1 (OfNat.mk.{succ u1} Ordinal.{u1} 1 (One.one.{succ u1} Ordinal.{u1} Ordinal.hasOne.{u1})))))))))) (isWellOrder_out_lt.{u1} (OfNat.ofNat.{succ u1} Ordinal.{u1} 1 (OfNat.mk.{succ u1} Ordinal.{u1} 1 (One.one.{succ u1} Ordinal.{u1} Ordinal.hasOne.{u1})))) x) (OfNat.ofNat.{succ u1} Ordinal.{u1} 0 (OfNat.mk.{succ u1} Ordinal.{u1} 0 (Zero.zero.{succ u1} Ordinal.{u1} Ordinal.hasZero.{u1}))) but is expected to have type forall (x : WellOrder.Ξ±.{u1} (Quotient.out.{succ (succ u1)} WellOrder.{u1} Ordinal.isEquivalent.{u1} (OfNat.ofNat.{succ u1} Ordinal.{u1} 1 (One.toOfNat1.{succ u1} Ordinal.{u1} Ordinal.one.{u1})))), Eq.{succ (succ u1)} Ordinal.{u1} (Ordinal.typein.{u1} (WellOrder.Ξ±.{u1} (Quotient.out.{succ (succ u1)} WellOrder.{u1} Ordinal.isEquivalent.{u1} (OfNat.ofNat.{succ u1} Ordinal.{u1} 1 (One.toOfNat1.{succ u1} Ordinal.{u1} Ordinal.one.{u1})))) (fun ([email protected]._hyg.12913 : WellOrder.Ξ±.{u1} (Quotient.out.{succ (succ u1)} WellOrder.{u1} Ordinal.isEquivalent.{u1} (OfNat.ofNat.{succ u1} Ordinal.{u1} 1 (One.toOfNat1.{succ u1} Ordinal.{u1} Ordinal.one.{u1})))) ([email protected]._hyg.12915 : WellOrder.Ξ±.{u1} (Quotient.out.{succ (succ u1)} WellOrder.{u1} Ordinal.isEquivalent.{u1} (OfNat.ofNat.{succ u1} Ordinal.{u1} 1 (One.toOfNat1.{succ u1} Ordinal.{u1} Ordinal.one.{u1})))) => LT.lt.{u1} (WellOrder.Ξ±.{u1} (Quotient.out.{succ (succ u1)} WellOrder.{u1} Ordinal.isEquivalent.{u1} (OfNat.ofNat.{succ u1} Ordinal.{u1} 1 (One.toOfNat1.{succ u1} Ordinal.{u1} Ordinal.one.{u1})))) (Preorder.toLT.{u1} (WellOrder.Ξ±.{u1} (Quotient.out.{succ (succ u1)} WellOrder.{u1} Ordinal.isEquivalent.{u1} (OfNat.ofNat.{succ u1} Ordinal.{u1} 1 (One.toOfNat1.{succ u1} Ordinal.{u1} Ordinal.one.{u1})))) (PartialOrder.toPreorder.{u1} (WellOrder.Ξ±.{u1} (Quotient.out.{succ (succ u1)} WellOrder.{u1} Ordinal.isEquivalent.{u1} (OfNat.ofNat.{succ u1} Ordinal.{u1} 1 (One.toOfNat1.{succ u1} Ordinal.{u1} Ordinal.one.{u1})))) (SemilatticeInf.toPartialOrder.{u1} (WellOrder.Ξ±.{u1} (Quotient.out.{succ (succ u1)} WellOrder.{u1} Ordinal.isEquivalent.{u1} (OfNat.ofNat.{succ u1} Ordinal.{u1} 1 (One.toOfNat1.{succ u1} Ordinal.{u1} Ordinal.one.{u1})))) (Lattice.toSemilatticeInf.{u1} (WellOrder.Ξ±.{u1} (Quotient.out.{succ (succ u1)} WellOrder.{u1} Ordinal.isEquivalent.{u1} (OfNat.ofNat.{succ u1} Ordinal.{u1} 1 (One.toOfNat1.{succ u1} Ordinal.{u1} Ordinal.one.{u1})))) (DistribLattice.toLattice.{u1} (WellOrder.Ξ±.{u1} (Quotient.out.{succ (succ u1)} WellOrder.{u1} Ordinal.isEquivalent.{u1} (OfNat.ofNat.{succ u1} Ordinal.{u1} 1 (One.toOfNat1.{succ u1} Ordinal.{u1} Ordinal.one.{u1})))) (instDistribLattice.{u1} (WellOrder.Ξ±.{u1} (Quotient.out.{succ (succ u1)} WellOrder.{u1} Ordinal.isEquivalent.{u1} (OfNat.ofNat.{succ u1} Ordinal.{u1} 1 (One.toOfNat1.{succ u1} Ordinal.{u1} Ordinal.one.{u1})))) (linearOrderOut.{u1} (OfNat.ofNat.{succ u1} Ordinal.{u1} 1 (One.toOfNat1.{succ u1} Ordinal.{u1} Ordinal.one.{u1}))))))))) [email protected]._hyg.12913 [email protected]._hyg.12915) (isWellOrder_out_lt.{u1} (OfNat.ofNat.{succ u1} Ordinal.{u1} 1 (One.toOfNat1.{succ u1} Ordinal.{u1} Ordinal.one.{u1}))) x) (OfNat.ofNat.{succ u1} Ordinal.{u1} 0 (Zero.toOfNat0.{succ u1} Ordinal.{u1} Ordinal.zero.{u1})) Case conversion may be inaccurate. Consider using '#align ordinal.typein_one_out Ordinal.typein_one_outβ‚“'. -/ @[simp] theorem typein_one_out (x : (1 : Ordinal).out.Ξ±) : typein (Β· < Β·) x = 0 := by rw [one_out_eq x, typein_enum] #align ordinal.typein_one_out Ordinal.typein_one_out #print Ordinal.typein_le_typein /- @[simp] theorem typein_le_typein (r : Ξ± β†’ Ξ± β†’ Prop) [IsWellOrder Ξ± r] {x x' : Ξ±} : typein r x ≀ typein r x' ↔ Β¬r x' x := by rw [← not_lt, typein_lt_typein] #align ordinal.typein_le_typein Ordinal.typein_le_typein -/ #print Ordinal.typein_le_typein' /- @[simp] theorem typein_le_typein' (o : Ordinal) {x x' : o.out.Ξ±} : typein (Β· < Β·) x ≀ typein (Β· < Β·) x' ↔ x ≀ x' := by rw [typein_le_typein] exact not_lt #align ordinal.typein_le_typein' Ordinal.typein_le_typein' -/ #print Ordinal.enum_le_enum /- @[simp] theorem enum_le_enum (r : Ξ± β†’ Ξ± β†’ Prop) [IsWellOrder Ξ± r] {o o' : Ordinal} (ho : o < type r) (ho' : o' < type r) : Β¬r (enum r o' ho') (enum r o ho) ↔ o ≀ o' := by rw [← @not_lt _ _ o' o, enum_lt_enum ho'] #align ordinal.enum_le_enum Ordinal.enum_le_enum -/ #print Ordinal.enum_le_enum' /- @[simp] theorem enum_le_enum' (a : Ordinal) {o o' : Ordinal} (ho : o < type (Β· < Β·)) (ho' : o' < type (Β· < Β·)) : enum (Β· < Β·) o ho ≀ @enum a.out.Ξ± (Β· < Β·) _ o' ho' ↔ o ≀ o' := by rw [← enum_le_enum (Β· < Β·), ← not_lt] #align ordinal.enum_le_enum' Ordinal.enum_le_enum' -/ #print Ordinal.enum_zero_le /- theorem enum_zero_le {r : Ξ± β†’ Ξ± β†’ Prop} [IsWellOrder Ξ± r] (h0 : 0 < type r) (a : Ξ±) : Β¬r a (enum r 0 h0) := by rw [← enum_typein r a, enum_le_enum r] apply Ordinal.zero_le #align ordinal.enum_zero_le Ordinal.enum_zero_le -/ #print Ordinal.enum_zero_le' /- theorem enum_zero_le' {o : Ordinal} (h0 : 0 < o) (a : o.out.Ξ±) : @enum o.out.Ξ± (Β· < Β·) _ 0 (by rwa [type_lt]) ≀ a := by rw [← not_lt] apply enum_zero_le #align ordinal.enum_zero_le' Ordinal.enum_zero_le' -/ #print Ordinal.le_enum_succ /- theorem le_enum_succ {o : Ordinal} (a : (succ o).out.Ξ±) : a ≀ @enum (succ o).out.Ξ± (Β· < Β·) _ o (by rw [type_lt] exact lt_succ o) := by rw [← enum_typein (Β· < Β·) a, enum_le_enum', ← lt_succ_iff] apply typein_lt_self #align ordinal.le_enum_succ Ordinal.le_enum_succ -/ #print Ordinal.enum_inj /- @[simp] theorem enum_inj {r : Ξ± β†’ Ξ± β†’ Prop} [IsWellOrder Ξ± r] {o₁ oβ‚‚ : Ordinal} (h₁ : o₁ < type r) (hβ‚‚ : oβ‚‚ < type r) : enum r o₁ h₁ = enum r oβ‚‚ hβ‚‚ ↔ o₁ = oβ‚‚ := ⟨fun h => by by_contra hne cases' lt_or_gt_of_ne hne with hlt hlt <;> apply (IsWellOrder.isIrrefl r).1 Β· rwa [← @enum_lt_enum Ξ± r _ o₁ oβ‚‚ h₁ hβ‚‚, h] at hlt Β· change _ < _ at hlt rwa [← @enum_lt_enum Ξ± r _ oβ‚‚ o₁ hβ‚‚ h₁, h] at hlt, fun h => by simp_rw [h]⟩ #align ordinal.enum_inj Ordinal.enum_inj -/ #print Ordinal.enumIso /- /-- A well order `r` is order isomorphic to the set of ordinals smaller than `type r`. -/ @[simps] def enumIso (r : Ξ± β†’ Ξ± β†’ Prop) [IsWellOrder Ξ± r] : Subrel (Β· < Β·) (Β· < type r) ≃r r where toFun x := enum r x.1 x.2 invFun x := ⟨typein r x, typein_lt_type r x⟩ left_inv := fun ⟨o, h⟩ => Subtype.ext_val (typein_enum _ _) right_inv h := enum_typein _ _ map_rel_iff' := by rintro ⟨a, _⟩ ⟨b, _⟩ apply enum_lt_enum #align ordinal.enum_iso Ordinal.enumIso -/ #print Ordinal.enumIsoOut /- /-- The order isomorphism between ordinals less than `o` and `o.out.Ξ±`. -/ @[simps] noncomputable def enumIsoOut (o : Ordinal) : Set.Iio o ≃o o.out.Ξ± where toFun x := enum (Β· < Β·) x.1 <| by rw [type_lt] exact x.2 invFun x := ⟨typein (Β· < Β·) x, typein_lt_self x⟩ left_inv := fun ⟨o', h⟩ => Subtype.ext_val (typein_enum _ _) right_inv h := enum_typein _ _ map_rel_iff' := by rintro ⟨a, _⟩ ⟨b, _⟩ apply enum_le_enum' #align ordinal.enum_iso_out Ordinal.enumIsoOut -/ #print Ordinal.outOrderBotOfPos /- /-- `o.out.Ξ±` is an `order_bot` whenever `0 < o`. -/ def outOrderBotOfPos {o : Ordinal} (ho : 0 < o) : OrderBot o.out.Ξ± := ⟨_, enum_zero_le' ho⟩ #align ordinal.out_order_bot_of_pos Ordinal.outOrderBotOfPos -/ /- warning: ordinal.enum_zero_eq_bot -> Ordinal.enum_zero_eq_bot is a dubious translation: lean 3 declaration is forall {o : Ordinal.{u1}} (ho : LT.lt.{succ u1} Ordinal.{u1} (Preorder.toLT.{succ u1} Ordinal.{u1} (PartialOrder.toPreorder.{succ u1} Ordinal.{u1} Ordinal.partialOrder.{u1})) (OfNat.ofNat.{succ u1} Ordinal.{u1} 0 (OfNat.mk.{succ u1} Ordinal.{u1} 0 (Zero.zero.{succ u1} Ordinal.{u1} Ordinal.hasZero.{u1}))) o), Eq.{succ u1} (WellOrder.Ξ±.{u1} (Quotient.out.{succ (succ u1)} WellOrder.{u1} Ordinal.isEquivalent.{u1} o)) (Ordinal.enum.{u1} (WellOrder.Ξ±.{u1} (Quotient.out.{succ (succ u1)} WellOrder.{u1} Ordinal.isEquivalent.{u1} o)) (LT.lt.{u1} (WellOrder.Ξ±.{u1} (Quotient.out.{succ (succ u1)} WellOrder.{u1} Ordinal.isEquivalent.{u1} o)) (Preorder.toLT.{u1} (WellOrder.Ξ±.{u1} (Quotient.out.{succ (succ u1)} WellOrder.{u1} Ordinal.isEquivalent.{u1} o)) (PartialOrder.toPreorder.{u1} (WellOrder.Ξ±.{u1} (Quotient.out.{succ (succ u1)} WellOrder.{u1} Ordinal.isEquivalent.{u1} o)) (SemilatticeInf.toPartialOrder.{u1} (WellOrder.Ξ±.{u1} (Quotient.out.{succ (succ u1)} WellOrder.{u1} Ordinal.isEquivalent.{u1} o)) (Lattice.toSemilatticeInf.{u1} (WellOrder.Ξ±.{u1} (Quotient.out.{succ (succ u1)} WellOrder.{u1} Ordinal.isEquivalent.{u1} o)) (LinearOrder.toLattice.{u1} (WellOrder.Ξ±.{u1} (Quotient.out.{succ (succ u1)} WellOrder.{u1} Ordinal.isEquivalent.{u1} o)) (linearOrderOut.{u1} o))))))) (isWellOrder_out_lt.{u1} o) (OfNat.ofNat.{succ u1} Ordinal.{u1} 0 (OfNat.mk.{succ u1} Ordinal.{u1} 0 (Zero.zero.{succ u1} Ordinal.{u1} Ordinal.hasZero.{u1}))) (Eq.mpr.{0} (LT.lt.{succ u1} Ordinal.{u1} (Preorder.toLT.{succ u1} Ordinal.{u1} (PartialOrder.toPreorder.{succ u1} Ordinal.{u1} Ordinal.partialOrder.{u1})) (OfNat.ofNat.{succ u1} Ordinal.{u1} 0 (OfNat.mk.{succ u1} Ordinal.{u1} 0 (Zero.zero.{succ u1} Ordinal.{u1} Ordinal.hasZero.{u1}))) (Ordinal.type.{u1} (WellOrder.Ξ±.{u1} (Quotient.out.{succ (succ u1)} WellOrder.{u1} Ordinal.isEquivalent.{u1} o)) (LT.lt.{u1} (WellOrder.Ξ±.{u1} (Quotient.out.{succ (succ u1)} WellOrder.{u1} Ordinal.isEquivalent.{u1} o)) (Preorder.toLT.{u1} (WellOrder.Ξ±.{u1} (Quotient.out.{succ (succ u1)} WellOrder.{u1} Ordinal.isEquivalent.{u1} o)) (PartialOrder.toPreorder.{u1} (WellOrder.Ξ±.{u1} (Quotient.out.{succ (succ u1)} WellOrder.{u1} Ordinal.isEquivalent.{u1} o)) (SemilatticeInf.toPartialOrder.{u1} (WellOrder.Ξ±.{u1} (Quotient.out.{succ (succ u1)} WellOrder.{u1} Ordinal.isEquivalent.{u1} o)) (Lattice.toSemilatticeInf.{u1} (WellOrder.Ξ±.{u1} (Quotient.out.{succ (succ u1)} WellOrder.{u1} Ordinal.isEquivalent.{u1} o)) (LinearOrder.toLattice.{u1} (WellOrder.Ξ±.{u1} (Quotient.out.{succ (succ u1)} WellOrder.{u1} Ordinal.isEquivalent.{u1} o)) (linearOrderOut.{u1} o))))))) (isWellOrder_out_lt.{u1} o))) (LT.lt.{succ u1} Ordinal.{u1} (Preorder.toLT.{succ u1} Ordinal.{u1} (PartialOrder.toPreorder.{succ u1} Ordinal.{u1} Ordinal.partialOrder.{u1})) (OfNat.ofNat.{succ u1} Ordinal.{u1} 0 (OfNat.mk.{succ u1} Ordinal.{u1} 0 (Zero.zero.{succ u1} Ordinal.{u1} Ordinal.hasZero.{u1}))) o) (id_tag Tactic.IdTag.rw (Eq.{1} Prop (LT.lt.{succ u1} Ordinal.{u1} (Preorder.toLT.{succ u1} Ordinal.{u1} (PartialOrder.toPreorder.{succ u1} Ordinal.{u1} Ordinal.partialOrder.{u1})) (OfNat.ofNat.{succ u1} Ordinal.{u1} 0 (OfNat.mk.{succ u1} Ordinal.{u1} 0 (Zero.zero.{succ u1} Ordinal.{u1} Ordinal.hasZero.{u1}))) (Ordinal.type.{u1} (WellOrder.Ξ±.{u1} (Quotient.out.{succ (succ u1)} WellOrder.{u1} Ordinal.isEquivalent.{u1} o)) (LT.lt.{u1} (WellOrder.Ξ±.{u1} (Quotient.out.{succ (succ u1)} WellOrder.{u1} Ordinal.isEquivalent.{u1} o)) (Preorder.toLT.{u1} (WellOrder.Ξ±.{u1} (Quotient.out.{succ (succ u1)} WellOrder.{u1} Ordinal.isEquivalent.{u1} o)) (PartialOrder.toPreorder.{u1} (WellOrder.Ξ±.{u1} (Quotient.out.{succ (succ u1)} WellOrder.{u1} Ordinal.isEquivalent.{u1} o)) (SemilatticeInf.toPartialOrder.{u1} (WellOrder.Ξ±.{u1} (Quotient.out.{succ (succ u1)} WellOrder.{u1} Ordinal.isEquivalent.{u1} o)) (Lattice.toSemilatticeInf.{u1} (WellOrder.Ξ±.{u1} (Quotient.out.{succ (succ u1)} WellOrder.{u1} Ordinal.isEquivalent.{u1} o)) (LinearOrder.toLattice.{u1} (WellOrder.Ξ±.{u1} (Quotient.out.{succ (succ u1)} WellOrder.{u1} Ordinal.isEquivalent.{u1} o)) (linearOrderOut.{u1} o))))))) (isWellOrder_out_lt.{u1} o))) (LT.lt.{succ u1} Ordinal.{u1} (Preorder.toLT.{succ u1} Ordinal.{u1} (PartialOrder.toPreorder.{succ u1} Ordinal.{u1} Ordinal.partialOrder.{u1})) (OfNat.ofNat.{succ u1} Ordinal.{u1} 0 (OfNat.mk.{succ u1} Ordinal.{u1} 0 (Zero.zero.{succ u1} Ordinal.{u1} Ordinal.hasZero.{u1}))) o)) (Eq.ndrec.{0, succ (succ u1)} Ordinal.{u1} (Ordinal.type.{u1} (WellOrder.Ξ±.{u1} (Quotient.out.{succ (succ u1)} WellOrder.{u1} Ordinal.isEquivalent.{u1} o)) (LT.lt.{u1} (WellOrder.Ξ±.{u1} (Quotient.out.{succ (succ u1)} WellOrder.{u1} Ordinal.isEquivalent.{u1} o)) (Preorder.toLT.{u1} (WellOrder.Ξ±.{u1} (Quotient.out.{succ (succ u1)} WellOrder.{u1} Ordinal.isEquivalent.{u1} o)) (PartialOrder.toPreorder.{u1} (WellOrder.Ξ±.{u1} (Quotient.out.{succ (succ u1)} WellOrder.{u1} Ordinal.isEquivalent.{u1} o)) (SemilatticeInf.toPartialOrder.{u1} (WellOrder.Ξ±.{u1} (Quotient.out.{succ (succ u1)} WellOrder.{u1} Ordinal.isEquivalent.{u1} o)) (Lattice.toSemilatticeInf.{u1} (WellOrder.Ξ±.{u1} (Quotient.out.{succ (succ u1)} WellOrder.{u1} Ordinal.isEquivalent.{u1} o)) (LinearOrder.toLattice.{u1} (WellOrder.Ξ±.{u1} (Quotient.out.{succ (succ u1)} WellOrder.{u1} Ordinal.isEquivalent.{u1} o)) (linearOrderOut.{u1} o))))))) (isWellOrder_out_lt.{u1} o)) (fun (_a : Ordinal.{u1}) => Eq.{1} Prop (LT.lt.{succ u1} Ordinal.{u1} (Preorder.toLT.{succ u1} Ordinal.{u1} (PartialOrder.toPreorder.{succ u1} Ordinal.{u1} Ordinal.partialOrder.{u1})) (OfNat.ofNat.{succ u1} Ordinal.{u1} 0 (OfNat.mk.{succ u1} Ordinal.{u1} 0 (Zero.zero.{succ u1} Ordinal.{u1} Ordinal.hasZero.{u1}))) (Ordinal.type.{u1} (WellOrder.Ξ±.{u1} (Quotient.out.{succ (succ u1)} WellOrder.{u1} Ordinal.isEquivalent.{u1} o)) (LT.lt.{u1} (WellOrder.Ξ±.{u1} (Quotient.out.{succ (succ u1)} WellOrder.{u1} Ordinal.isEquivalent.{u1} o)) (Preorder.toLT.{u1} (WellOrder.Ξ±.{u1} (Quotient.out.{succ (succ u1)} WellOrder.{u1} Ordinal.isEquivalent.{u1} o)) (PartialOrder.toPreorder.{u1} (WellOrder.Ξ±.{u1} (Quotient.out.{succ (succ u1)} WellOrder.{u1} Ordinal.isEquivalent.{u1} o)) (SemilatticeInf.toPartialOrder.{u1} (WellOrder.Ξ±.{u1} (Quotient.out.{succ (succ u1)} WellOrder.{u1} Ordinal.isEquivalent.{u1} o)) (Lattice.toSemilatticeInf.{u1} (WellOrder.Ξ±.{u1} (Quotient.out.{succ (succ u1)} WellOrder.{u1} Ordinal.isEquivalent.{u1} o)) (LinearOrder.toLattice.{u1} (WellOrder.Ξ±.{u1} (Quotient.out.{succ (succ u1)} WellOrder.{u1} Ordinal.isEquivalent.{u1} o)) (linearOrderOut.{u1} o))))))) (isWellOrder_out_lt.{u1} o))) (LT.lt.{succ u1} Ordinal.{u1} (Preorder.toLT.{succ u1} Ordinal.{u1} (PartialOrder.toPreorder.{succ u1} Ordinal.{u1} Ordinal.partialOrder.{u1})) (OfNat.ofNat.{succ u1} Ordinal.{u1} 0 (OfNat.mk.{succ u1} Ordinal.{u1} 0 (Zero.zero.{succ u1} Ordinal.{u1} Ordinal.hasZero.{u1}))) _a)) (rfl.{1} Prop (LT.lt.{succ u1} Ordinal.{u1} (Preorder.toLT.{succ u1} Ordinal.{u1} (PartialOrder.toPreorder.{succ u1} Ordinal.{u1} Ordinal.partialOrder.{u1})) (OfNat.ofNat.{succ u1} Ordinal.{u1} 0 (OfNat.mk.{succ u1} Ordinal.{u1} 0 (Zero.zero.{succ u1} Ordinal.{u1} Ordinal.hasZero.{u1}))) (Ordinal.type.{u1} (WellOrder.Ξ±.{u1} (Quotient.out.{succ (succ u1)} WellOrder.{u1} Ordinal.isEquivalent.{u1} o)) (LT.lt.{u1} (WellOrder.Ξ±.{u1} (Quotient.out.{succ (succ u1)} WellOrder.{u1} Ordinal.isEquivalent.{u1} o)) (Preorder.toLT.{u1} (WellOrder.Ξ±.{u1} (Quotient.out.{succ (succ u1)} WellOrder.{u1} Ordinal.isEquivalent.{u1} o)) (PartialOrder.toPreorder.{u1} (WellOrder.Ξ±.{u1} (Quotient.out.{succ (succ u1)} WellOrder.{u1} Ordinal.isEquivalent.{u1} o)) (SemilatticeInf.toPartialOrder.{u1} (WellOrder.Ξ±.{u1} (Quotient.out.{succ (succ u1)} WellOrder.{u1} Ordinal.isEquivalent.{u1} o)) (Lattice.toSemilatticeInf.{u1} (WellOrder.Ξ±.{u1} (Quotient.out.{succ (succ u1)} WellOrder.{u1} Ordinal.isEquivalent.{u1} o)) (LinearOrder.toLattice.{u1} (WellOrder.Ξ±.{u1} (Quotient.out.{succ (succ u1)} WellOrder.{u1} Ordinal.isEquivalent.{u1} o)) (linearOrderOut.{u1} o))))))) (isWellOrder_out_lt.{u1} o)))) o (Ordinal.type_lt.{u1} o))) ho)) (Bot.bot.{u1} (WellOrder.Ξ±.{u1} (Quotient.out.{succ (succ u1)} WellOrder.{u1} Ordinal.isEquivalent.{u1} o)) (OrderBot.toHasBot.{u1} (WellOrder.Ξ±.{u1} (Quotient.out.{succ (succ u1)} WellOrder.{u1} Ordinal.isEquivalent.{u1} o)) (Preorder.toLE.{u1} (WellOrder.Ξ±.{u1} (Quotient.out.{succ (succ u1)} WellOrder.{u1} Ordinal.isEquivalent.{u1} o)) (PartialOrder.toPreorder.{u1} (WellOrder.Ξ±.{u1} (Quotient.out.{succ (succ u1)} WellOrder.{u1} Ordinal.isEquivalent.{u1} o)) (SemilatticeInf.toPartialOrder.{u1} (WellOrder.Ξ±.{u1} (Quotient.out.{succ (succ u1)} WellOrder.{u1} Ordinal.isEquivalent.{u1} o)) (Lattice.toSemilatticeInf.{u1} (WellOrder.Ξ±.{u1} (Quotient.out.{succ (succ u1)} WellOrder.{u1} Ordinal.isEquivalent.{u1} o)) (LinearOrder.toLattice.{u1} (WellOrder.Ξ±.{u1} (Quotient.out.{succ (succ u1)} WellOrder.{u1} Ordinal.isEquivalent.{u1} o)) (linearOrderOut.{u1} o)))))) (Ordinal.outOrderBotOfPos.{u1} o ho))) but is expected to have type forall {o : Ordinal.{u1}} (ho : LT.lt.{succ u1} Ordinal.{u1} (Preorder.toLT.{succ u1} Ordinal.{u1} (PartialOrder.toPreorder.{succ u1} Ordinal.{u1} Ordinal.partialOrder.{u1})) (OfNat.ofNat.{succ u1} Ordinal.{u1} 0 (Zero.toOfNat0.{succ u1} Ordinal.{u1} Ordinal.zero.{u1})) o), Eq.{succ u1} (WellOrder.Ξ±.{u1} (Quotient.out.{succ (succ u1)} WellOrder.{u1} Ordinal.isEquivalent.{u1} o)) (Ordinal.enum.{u1} (WellOrder.Ξ±.{u1} (Quotient.out.{succ (succ u1)} WellOrder.{u1} Ordinal.isEquivalent.{u1} o)) (fun ([email protected]._hyg.14389 : WellOrder.Ξ±.{u1} (Quotient.out.{succ (succ u1)} WellOrder.{u1} Ordinal.isEquivalent.{u1} o)) ([email protected]._hyg.14391 : WellOrder.Ξ±.{u1} (Quotient.out.{succ (succ u1)} WellOrder.{u1} Ordinal.isEquivalent.{u1} o)) => LT.lt.{u1} (WellOrder.Ξ±.{u1} (Quotient.out.{succ (succ u1)} WellOrder.{u1} Ordinal.isEquivalent.{u1} o)) (Preorder.toLT.{u1} (WellOrder.Ξ±.{u1} (Quotient.out.{succ (succ u1)} WellOrder.{u1} Ordinal.isEquivalent.{u1} o)) (PartialOrder.toPreorder.{u1} (WellOrder.Ξ±.{u1} (Quotient.out.{succ (succ u1)} WellOrder.{u1} Ordinal.isEquivalent.{u1} o)) (SemilatticeInf.toPartialOrder.{u1} (WellOrder.Ξ±.{u1} (Quotient.out.{succ (succ u1)} WellOrder.{u1} Ordinal.isEquivalent.{u1} o)) (Lattice.toSemilatticeInf.{u1} (WellOrder.Ξ±.{u1} (Quotient.out.{succ (succ u1)} WellOrder.{u1} Ordinal.isEquivalent.{u1} o)) (DistribLattice.toLattice.{u1} (WellOrder.Ξ±.{u1} (Quotient.out.{succ (succ u1)} WellOrder.{u1} Ordinal.isEquivalent.{u1} o)) (instDistribLattice.{u1} (WellOrder.Ξ±.{u1} (Quotient.out.{succ (succ u1)} WellOrder.{u1} Ordinal.isEquivalent.{u1} o)) (linearOrderOut.{u1} o))))))) [email protected]._hyg.14389 [email protected]._hyg.14391) (isWellOrder_out_lt.{u1} o) (OfNat.ofNat.{succ u1} Ordinal.{u1} 0 (Zero.toOfNat0.{succ u1} Ordinal.{u1} Ordinal.zero.{u1})) (Eq.mpr.{0} (LT.lt.{succ u1} Ordinal.{u1} (Preorder.toLT.{succ u1} Ordinal.{u1} (PartialOrder.toPreorder.{succ u1} Ordinal.{u1} Ordinal.partialOrder.{u1})) (OfNat.ofNat.{succ u1} Ordinal.{u1} 0 (Zero.toOfNat0.{succ u1} Ordinal.{u1} Ordinal.zero.{u1})) (Ordinal.type.{u1} (WellOrder.Ξ±.{u1} (Quotient.out.{succ (succ u1)} WellOrder.{u1} Ordinal.isEquivalent.{u1} o)) (fun ([email protected]._hyg.14389 : WellOrder.Ξ±.{u1} (Quotient.out.{succ (succ u1)} WellOrder.{u1} Ordinal.isEquivalent.{u1} o)) ([email protected]._hyg.14391 : WellOrder.Ξ±.{u1} (Quotient.out.{succ (succ u1)} WellOrder.{u1} Ordinal.isEquivalent.{u1} o)) => LT.lt.{u1} (WellOrder.Ξ±.{u1} (Quotient.out.{succ (succ u1)} WellOrder.{u1} Ordinal.isEquivalent.{u1} o)) (Preorder.toLT.{u1} (WellOrder.Ξ±.{u1} (Quotient.out.{succ (succ u1)} WellOrder.{u1} Ordinal.isEquivalent.{u1} o)) (PartialOrder.toPreorder.{u1} (WellOrder.Ξ±.{u1} (Quotient.out.{succ (succ u1)} WellOrder.{u1} Ordinal.isEquivalent.{u1} o)) (SemilatticeInf.toPartialOrder.{u1} (WellOrder.Ξ±.{u1} (Quotient.out.{succ (succ u1)} WellOrder.{u1} Ordinal.isEquivalent.{u1} o)) (Lattice.toSemilatticeInf.{u1} (WellOrder.Ξ±.{u1} (Quotient.out.{succ (succ u1)} WellOrder.{u1} Ordinal.isEquivalent.{u1} o)) (DistribLattice.toLattice.{u1} (WellOrder.Ξ±.{u1} (Quotient.out.{succ (succ u1)} WellOrder.{u1} Ordinal.isEquivalent.{u1} o)) (instDistribLattice.{u1} (WellOrder.Ξ±.{u1} (Quotient.out.{succ (succ u1)} WellOrder.{u1} Ordinal.isEquivalent.{u1} o)) (linearOrderOut.{u1} o))))))) [email protected]._hyg.14389 [email protected]._hyg.14391) (isWellOrder_out_lt.{u1} o))) (LT.lt.{succ u1} Ordinal.{u1} (Preorder.toLT.{succ u1} Ordinal.{u1} (PartialOrder.toPreorder.{succ u1} Ordinal.{u1} Ordinal.partialOrder.{u1})) (OfNat.ofNat.{succ u1} Ordinal.{u1} 0 (Zero.toOfNat0.{succ u1} Ordinal.{u1} Ordinal.zero.{u1})) o) (id.{0} (Eq.{1} Prop (LT.lt.{succ u1} Ordinal.{u1} (Preorder.toLT.{succ u1} Ordinal.{u1} (PartialOrder.toPreorder.{succ u1} Ordinal.{u1} Ordinal.partialOrder.{u1})) (OfNat.ofNat.{succ u1} Ordinal.{u1} 0 (Zero.toOfNat0.{succ u1} Ordinal.{u1} Ordinal.zero.{u1})) (Ordinal.type.{u1} (WellOrder.Ξ±.{u1} (Quotient.out.{succ (succ u1)} WellOrder.{u1} Ordinal.isEquivalent.{u1} o)) (fun ([email protected]._hyg.14389 : WellOrder.Ξ±.{u1} (Quotient.out.{succ (succ u1)} WellOrder.{u1} Ordinal.isEquivalent.{u1} o)) ([email protected]._hyg.14391 : WellOrder.Ξ±.{u1} (Quotient.out.{succ (succ u1)} WellOrder.{u1} Ordinal.isEquivalent.{u1} o)) => LT.lt.{u1} (WellOrder.Ξ±.{u1} (Quotient.out.{succ (succ u1)} WellOrder.{u1} Ordinal.isEquivalent.{u1} o)) (Preorder.toLT.{u1} (WellOrder.Ξ±.{u1} (Quotient.out.{succ (succ u1)} WellOrder.{u1} Ordinal.isEquivalent.{u1} o)) (PartialOrder.toPreorder.{u1} (WellOrder.Ξ±.{u1} (Quotient.out.{succ (succ u1)} WellOrder.{u1} Ordinal.isEquivalent.{u1} o)) (SemilatticeInf.toPartialOrder.{u1} (WellOrder.Ξ±.{u1} (Quotient.out.{succ (succ u1)} WellOrder.{u1} Ordinal.isEquivalent.{u1} o)) (Lattice.toSemilatticeInf.{u1} (WellOrder.Ξ±.{u1} (Quotient.out.{succ (succ u1)} WellOrder.{u1} Ordinal.isEquivalent.{u1} o)) (DistribLattice.toLattice.{u1} (WellOrder.Ξ±.{u1} (Quotient.out.{succ (succ u1)} WellOrder.{u1} Ordinal.isEquivalent.{u1} o)) (instDistribLattice.{u1} (WellOrder.Ξ±.{u1} (Quotient.out.{succ (succ u1)} WellOrder.{u1} Ordinal.isEquivalent.{u1} o)) (linearOrderOut.{u1} o))))))) [email protected]._hyg.14389 [email protected]._hyg.14391) (isWellOrder_out_lt.{u1} o))) (LT.lt.{succ u1} Ordinal.{u1} (Preorder.toLT.{succ u1} Ordinal.{u1} (PartialOrder.toPreorder.{succ u1} Ordinal.{u1} Ordinal.partialOrder.{u1})) (OfNat.ofNat.{succ u1} Ordinal.{u1} 0 (Zero.toOfNat0.{succ u1} Ordinal.{u1} Ordinal.zero.{u1})) o)) (Eq.ndrec.{0, succ (succ u1)} Ordinal.{u1} (Ordinal.type.{u1} (WellOrder.Ξ±.{u1} (Quotient.out.{succ (succ u1)} WellOrder.{u1} Ordinal.isEquivalent.{u1} o)) (fun ([email protected]._hyg.1293 : WellOrder.Ξ±.{u1} (Quotient.out.{succ (succ u1)} WellOrder.{u1} Ordinal.isEquivalent.{u1} o)) ([email protected]._hyg.1295 : WellOrder.Ξ±.{u1} (Quotient.out.{succ (succ u1)} WellOrder.{u1} Ordinal.isEquivalent.{u1} o)) => LT.lt.{u1} (WellOrder.Ξ±.{u1} (Quotient.out.{succ (succ u1)} WellOrder.{u1} Ordinal.isEquivalent.{u1} o)) (Preorder.toLT.{u1} (WellOrder.Ξ±.{u1} (Quotient.out.{succ (succ u1)} WellOrder.{u1} Ordinal.isEquivalent.{u1} o)) (PartialOrder.toPreorder.{u1} (WellOrder.Ξ±.{u1} (Quotient.out.{succ (succ u1)} WellOrder.{u1} Ordinal.isEquivalent.{u1} o)) (SemilatticeInf.toPartialOrder.{u1} (WellOrder.Ξ±.{u1} (Quotient.out.{succ (succ u1)} WellOrder.{u1} Ordinal.isEquivalent.{u1} o)) (Lattice.toSemilatticeInf.{u1} (WellOrder.Ξ±.{u1} (Quotient.out.{succ (succ u1)} WellOrder.{u1} Ordinal.isEquivalent.{u1} o)) (DistribLattice.toLattice.{u1} (WellOrder.Ξ±.{u1} (Quotient.out.{succ (succ u1)} WellOrder.{u1} Ordinal.isEquivalent.{u1} o)) (instDistribLattice.{u1} (WellOrder.Ξ±.{u1} (Quotient.out.{succ (succ u1)} WellOrder.{u1} Ordinal.isEquivalent.{u1} o)) (linearOrderOut.{u1} o))))))) [email protected]._hyg.1293 [email protected]._hyg.1295) (isWellOrder_out_lt.{u1} o)) (fun (_a : Ordinal.{u1}) => Eq.{1} Prop (LT.lt.{succ u1} Ordinal.{u1} (Preorder.toLT.{succ u1} Ordinal.{u1} (PartialOrder.toPreorder.{succ u1} Ordinal.{u1} Ordinal.partialOrder.{u1})) (OfNat.ofNat.{succ u1} Ordinal.{u1} 0 (Zero.toOfNat0.{succ u1} Ordinal.{u1} Ordinal.zero.{u1})) (Ordinal.type.{u1} (WellOrder.Ξ±.{u1} (Quotient.out.{succ (succ u1)} WellOrder.{u1} Ordinal.isEquivalent.{u1} o)) (fun ([email protected]._hyg.14389 : WellOrder.Ξ±.{u1} (Quotient.out.{succ (succ u1)} WellOrder.{u1} Ordinal.isEquivalent.{u1} o)) ([email protected]._hyg.14391 : WellOrder.Ξ±.{u1} (Quotient.out.{succ (succ u1)} WellOrder.{u1} Ordinal.isEquivalent.{u1} o)) => LT.lt.{u1} (WellOrder.Ξ±.{u1} (Quotient.out.{succ (succ u1)} WellOrder.{u1} Ordinal.isEquivalent.{u1} o)) (Preorder.toLT.{u1} (WellOrder.Ξ±.{u1} (Quotient.out.{succ (succ u1)} WellOrder.{u1} Ordinal.isEquivalent.{u1} o)) (PartialOrder.toPreorder.{u1} (WellOrder.Ξ±.{u1} (Quotient.out.{succ (succ u1)} WellOrder.{u1} Ordinal.isEquivalent.{u1} o)) (SemilatticeInf.toPartialOrder.{u1} (WellOrder.Ξ±.{u1} (Quotient.out.{succ (succ u1)} WellOrder.{u1} Ordinal.isEquivalent.{u1} o)) (Lattice.toSemilatticeInf.{u1} (WellOrder.Ξ±.{u1} (Quotient.out.{succ (succ u1)} WellOrder.{u1} Ordinal.isEquivalent.{u1} o)) (DistribLattice.toLattice.{u1} (WellOrder.Ξ±.{u1} (Quotient.out.{succ (succ u1)} WellOrder.{u1} Ordinal.isEquivalent.{u1} o)) (instDistribLattice.{u1} (WellOrder.Ξ±.{u1} (Quotient.out.{succ (succ u1)} WellOrder.{u1} Ordinal.isEquivalent.{u1} o)) (linearOrderOut.{u1} o))))))) [email protected]._hyg.14389 [email protected]._hyg.14391) (isWellOrder_out_lt.{u1} o))) (LT.lt.{succ u1} Ordinal.{u1} (Preorder.toLT.{succ u1} Ordinal.{u1} (PartialOrder.toPreorder.{succ u1} Ordinal.{u1} Ordinal.partialOrder.{u1})) (OfNat.ofNat.{succ u1} Ordinal.{u1} 0 (Zero.toOfNat0.{succ u1} Ordinal.{u1} Ordinal.zero.{u1})) _a)) (Eq.refl.{1} Prop (LT.lt.{succ u1} Ordinal.{u1} (Preorder.toLT.{succ u1} Ordinal.{u1} (PartialOrder.toPreorder.{succ u1} Ordinal.{u1} Ordinal.partialOrder.{u1})) (OfNat.ofNat.{succ u1} Ordinal.{u1} 0 (Zero.toOfNat0.{succ u1} Ordinal.{u1} Ordinal.zero.{u1})) (Ordinal.type.{u1} (WellOrder.Ξ±.{u1} (Quotient.out.{succ (succ u1)} WellOrder.{u1} Ordinal.isEquivalent.{u1} o)) (fun ([email protected]._hyg.14389 : WellOrder.Ξ±.{u1} (Quotient.out.{succ (succ u1)} WellOrder.{u1} Ordinal.isEquivalent.{u1} o)) ([email protected]._hyg.14391 : WellOrder.Ξ±.{u1} (Quotient.out.{succ (succ u1)} WellOrder.{u1} Ordinal.isEquivalent.{u1} o)) => LT.lt.{u1} (WellOrder.Ξ±.{u1} (Quotient.out.{succ (succ u1)} WellOrder.{u1} Ordinal.isEquivalent.{u1} o)) (Preorder.toLT.{u1} (WellOrder.Ξ±.{u1} (Quotient.out.{succ (succ u1)} WellOrder.{u1} Ordinal.isEquivalent.{u1} o)) (PartialOrder.toPreorder.{u1} (WellOrder.Ξ±.{u1} (Quotient.out.{succ (succ u1)} WellOrder.{u1} Ordinal.isEquivalent.{u1} o)) (SemilatticeInf.toPartialOrder.{u1} (WellOrder.Ξ±.{u1} (Quotient.out.{succ (succ u1)} WellOrder.{u1} Ordinal.isEquivalent.{u1} o)) (Lattice.toSemilatticeInf.{u1} (WellOrder.Ξ±.{u1} (Quotient.out.{succ (succ u1)} WellOrder.{u1} Ordinal.isEquivalent.{u1} o)) (DistribLattice.toLattice.{u1} (WellOrder.Ξ±.{u1} (Quotient.out.{succ (succ u1)} WellOrder.{u1} Ordinal.isEquivalent.{u1} o)) (instDistribLattice.{u1} (WellOrder.Ξ±.{u1} (Quotient.out.{succ (succ u1)} WellOrder.{u1} Ordinal.isEquivalent.{u1} o)) (linearOrderOut.{u1} o))))))) [email protected]._hyg.14389 [email protected]._hyg.14391) (isWellOrder_out_lt.{u1} o)))) o (Ordinal.type_lt.{u1} o))) ho)) (Bot.bot.{u1} (WellOrder.Ξ±.{u1} (Quotient.out.{succ (succ u1)} WellOrder.{u1} Ordinal.isEquivalent.{u1} o)) (OrderBot.toBot.{u1} (WellOrder.Ξ±.{u1} (Quotient.out.{succ (succ u1)} WellOrder.{u1} Ordinal.isEquivalent.{u1} o)) (Preorder.toLE.{u1} (WellOrder.Ξ±.{u1} (Quotient.out.{succ (succ u1)} WellOrder.{u1} Ordinal.isEquivalent.{u1} o)) (PartialOrder.toPreorder.{u1} (WellOrder.Ξ±.{u1} (Quotient.out.{succ (succ u1)} WellOrder.{u1} Ordinal.isEquivalent.{u1} o)) (SemilatticeInf.toPartialOrder.{u1} (WellOrder.Ξ±.{u1} (Quotient.out.{succ (succ u1)} WellOrder.{u1} Ordinal.isEquivalent.{u1} o)) (Lattice.toSemilatticeInf.{u1} (WellOrder.Ξ±.{u1} (Quotient.out.{succ (succ u1)} WellOrder.{u1} Ordinal.isEquivalent.{u1} o)) (DistribLattice.toLattice.{u1} (WellOrder.Ξ±.{u1} (Quotient.out.{succ (succ u1)} WellOrder.{u1} Ordinal.isEquivalent.{u1} o)) (instDistribLattice.{u1} (WellOrder.Ξ±.{u1} (Quotient.out.{succ (succ u1)} WellOrder.{u1} Ordinal.isEquivalent.{u1} o)) (linearOrderOut.{u1} o))))))) (Ordinal.outOrderBotOfPos.{u1} o ho))) Case conversion may be inaccurate. Consider using '#align ordinal.enum_zero_eq_bot Ordinal.enum_zero_eq_botβ‚“'. -/ theorem enum_zero_eq_bot {o : Ordinal} (ho : 0 < o) : enum (Β· < Β·) 0 (by rwa [type_lt]) = haveI H := out_order_bot_of_pos ho βŠ₯ := rfl #align ordinal.enum_zero_eq_bot Ordinal.enum_zero_eq_bot /-! ### Universal ordinal -/ #print Ordinal.univ /- -- intended to be used with explicit universe parameters /-- `univ.{u v}` is the order type of the ordinals of `Type u` as a member of `ordinal.{v}` (when `u < v`). It is an inaccessible cardinal. -/ @[nolint check_univs] def univ : Ordinal.{max (u + 1) v} := lift.{v, u + 1} (@type Ordinal (Β· < Β·) _) #align ordinal.univ Ordinal.univ -/ #print Ordinal.univ_id /- theorem univ_id : univ.{u, u + 1} = @type Ordinal (Β· < Β·) _ := lift_id _ #align ordinal.univ_id Ordinal.univ_id -/ #print Ordinal.lift_univ /- @[simp] theorem lift_univ : lift.{w} univ.{u, v} = univ.{u, max v w} := lift_lift _ #align ordinal.lift_univ Ordinal.lift_univ -/ #print Ordinal.univ_umax /- theorem univ_umax : univ.{u, max (u + 1) v} = univ.{u, v} := congr_fun lift_umax _ #align ordinal.univ_umax Ordinal.univ_umax -/ #print Ordinal.lift.principalSeg /- /-- Principal segment version of the lift operation on ordinals, embedding `ordinal.{u}` in `ordinal.{v}` as a principal segment when `u < v`. -/ def lift.principalSeg : @PrincipalSeg Ordinal.{u} Ordinal.{max (u + 1) v} (Β· < Β·) (Β· < Β·) := βŸ¨β†‘lift.initialSeg.{u, max (u + 1) v}, univ.{u, v}, by refine' fun b => induction_on b _; intro Ξ² s _ rw [univ, ← lift_umax]; constructor <;> intro h Β· rw [← lift_id (type s)] at h⊒ cases' lift_type_lt.1 h with f cases' f with f a hf exists a revert hf apply induction_on a intro Ξ± r _ hf refine' lift_type_eq.{u, max (u + 1) v, max (u + 1) v}.2 ⟨(RelIso.ofSurjective (RelEmbedding.ofMonotone _ _) _).symm⟩ Β· exact fun b => enum r (f b) ((hf _).2 ⟨_, rfl⟩) Β· refine' fun a b h => (typein_lt_typein r).1 _ rw [typein_enum, typein_enum] exact f.map_rel_iff.2 h Β· intro a' cases' (hf _).1 (typein_lt_type _ a') with b e exists b simp simp [e] Β· cases' h with a e rw [← e] apply induction_on a intro Ξ± r _ exact lift_type_lt.{u, u + 1, max (u + 1) v}.2 ⟨typein.principal_seg r⟩⟩ #align ordinal.lift.principal_seg Ordinal.lift.principalSeg -/ /- warning: ordinal.lift.principal_seg_coe -> Ordinal.lift.principalSeg_coe is a dubious translation: lean 3 declaration is Eq.{max (succ (succ u1)) (succ (succ (max (succ u1) u2)))} ((fun (_x : PrincipalSeg.{succ u1, succ (max (succ u1) u2)} Ordinal.{u1} Ordinal.{max (succ u1) u2} (LT.lt.{succ u1} Ordinal.{u1} (Preorder.toLT.{succ u1} Ordinal.{u1} (PartialOrder.toPreorder.{succ u1} Ordinal.{u1} Ordinal.partialOrder.{u1}))) (LT.lt.{succ (max (succ u1) u2)} Ordinal.{max (succ u1) u2} (Preorder.toLT.{succ (max (succ u1) u2)} Ordinal.{max (succ u1) u2} (PartialOrder.toPreorder.{succ (max (succ u1) u2)} Ordinal.{max (succ u1) u2} Ordinal.partialOrder.{max (succ u1) u2})))) => Ordinal.{u1} -> Ordinal.{max (succ u1) u2}) Ordinal.lift.principalSeg.{u1, u2}) (coeFn.{max (succ (succ u1)) (succ (succ (max (succ u1) u2))), max (succ (succ u1)) (succ (succ (max (succ u1) u2)))} (PrincipalSeg.{succ u1, succ (max (succ u1) u2)} Ordinal.{u1} Ordinal.{max (succ u1) u2} (LT.lt.{succ u1} Ordinal.{u1} (Preorder.toLT.{succ u1} Ordinal.{u1} (PartialOrder.toPreorder.{succ u1} Ordinal.{u1} Ordinal.partialOrder.{u1}))) (LT.lt.{succ (max (succ u1) u2)} Ordinal.{max (succ u1) u2} (Preorder.toLT.{succ (max (succ u1) u2)} Ordinal.{max (succ u1) u2} (PartialOrder.toPreorder.{succ (max (succ u1) u2)} Ordinal.{max (succ u1) u2} Ordinal.partialOrder.{max (succ u1) u2})))) (fun (_x : PrincipalSeg.{succ u1, succ (max (succ u1) u2)} Ordinal.{u1} Ordinal.{max (succ u1) u2} (LT.lt.{succ u1} Ordinal.{u1} (Preorder.toLT.{succ u1} Ordinal.{u1} (PartialOrder.toPreorder.{succ u1} Ordinal.{u1} Ordinal.partialOrder.{u1}))) (LT.lt.{succ (max (succ u1) u2)} Ordinal.{max (succ u1) u2} (Preorder.toLT.{succ (max (succ u1) u2)} Ordinal.{max (succ u1) u2} (PartialOrder.toPreorder.{succ (max (succ u1) u2)} Ordinal.{max (succ u1) u2} Ordinal.partialOrder.{max (succ u1) u2})))) => Ordinal.{u1} -> Ordinal.{max (succ u1) u2}) (PrincipalSeg.hasCoeToFun.{succ u1, succ (max (succ u1) u2)} Ordinal.{u1} Ordinal.{max (succ u1) u2} (LT.lt.{succ u1} Ordinal.{u1} (Preorder.toLT.{succ u1} Ordinal.{u1} (PartialOrder.toPreorder.{succ u1} Ordinal.{u1} Ordinal.partialOrder.{u1}))) (LT.lt.{succ (max (succ u1) u2)} Ordinal.{max (succ u1) u2} (Preorder.toLT.{succ (max (succ u1) u2)} Ordinal.{max (succ u1) u2} (PartialOrder.toPreorder.{succ (max (succ u1) u2)} Ordinal.{max (succ u1) u2} Ordinal.partialOrder.{max (succ u1) u2})))) Ordinal.lift.principalSeg.{u1, u2}) Ordinal.lift.{max (succ u1) u2, u1} but is expected to have type Eq.{max (succ (succ (succ u1))) (succ (succ u2))} (forall (a : Ordinal.{u1}), (fun ([email protected]._hyg.19 : Ordinal.{u1}) => Ordinal.{max (succ u1) u2}) a) (FunLike.coe.{max (succ (succ u1)) (succ (max (succ (succ u1)) (succ u2))), succ (succ u1), succ (max (succ (succ u1)) (succ u2))} (Function.Embedding.{succ (succ u1), succ (max (succ (succ u1)) (succ u2))} Ordinal.{u1} Ordinal.{max (succ u1) u2}) Ordinal.{u1} (fun (_x : Ordinal.{u1}) => (fun ([email protected]._hyg.19 : Ordinal.{u1}) => Ordinal.{max (succ u1) u2}) _x) (EmbeddingLike.toFunLike.{max (succ (succ u1)) (succ (max (succ (succ u1)) (succ u2))), succ (succ u1), succ (max (succ (succ u1)) (succ u2))} (Function.Embedding.{succ (succ u1), succ (max (succ (succ u1)) (succ u2))} Ordinal.{u1} Ordinal.{max (succ u1) u2}) Ordinal.{u1} Ordinal.{max (succ u1) u2} (Function.instEmbeddingLikeEmbedding.{succ (succ u1), succ (max (succ (succ u1)) (succ u2))} Ordinal.{u1} Ordinal.{max (succ u1) u2})) (RelEmbedding.toEmbedding.{succ u1, max (succ (succ u1)) (succ u2)} Ordinal.{u1} Ordinal.{max (succ u1) u2} (fun ([email protected]._hyg.14630 : Ordinal.{u1}) ([email protected]._hyg.14632 : Ordinal.{u1}) => LT.lt.{succ u1} Ordinal.{u1} (Preorder.toLT.{succ u1} Ordinal.{u1} (PartialOrder.toPreorder.{succ u1} Ordinal.{u1} Ordinal.partialOrder.{u1})) [email protected]._hyg.14630 [email protected]._hyg.14632) (fun ([email protected]._hyg.14645 : Ordinal.{max (succ u1) u2}) ([email protected]._hyg.14647 : Ordinal.{max (succ u1) u2}) => LT.lt.{max (succ (succ u1)) (succ u2)} Ordinal.{max (succ u1) u2} (Preorder.toLT.{max (succ (succ u1)) (succ u2)} Ordinal.{max (succ u1) u2} (PartialOrder.toPreorder.{max (succ (succ u1)) (succ u2)} Ordinal.{max (succ u1) u2} Ordinal.partialOrder.{max (succ u1) u2})) [email protected]._hyg.14645 [email protected]._hyg.14647) (PrincipalSeg.toRelEmbedding.{succ u1, max (succ (succ u1)) (succ u2)} Ordinal.{u1} Ordinal.{max (succ u1) u2} (fun ([email protected]._hyg.14630 : Ordinal.{u1}) ([email protected]._hyg.14632 : Ordinal.{u1}) => LT.lt.{succ u1} Ordinal.{u1} (Preorder.toLT.{succ u1} Ordinal.{u1} (PartialOrder.toPreorder.{succ u1} Ordinal.{u1} Ordinal.partialOrder.{u1})) [email protected]._hyg.14630 [email protected]._hyg.14632) (fun ([email protected]._hyg.14645 : Ordinal.{max (succ u1) u2}) ([email protected]._hyg.14647 : Ordinal.{max (succ u1) u2}) => LT.lt.{max (succ (succ u1)) (succ u2)} Ordinal.{max (succ u1) u2} (Preorder.toLT.{max (succ (succ u1)) (succ u2)} Ordinal.{max (succ u1) u2} (PartialOrder.toPreorder.{max (succ (succ u1)) (succ u2)} Ordinal.{max (succ u1) u2} Ordinal.partialOrder.{max (succ u1) u2})) [email protected]._hyg.14645 [email protected]._hyg.14647) Ordinal.lift.principalSeg.{u1, u2}))) Ordinal.lift.{max (succ u1) u2, u1} Case conversion may be inaccurate. Consider using '#align ordinal.lift.principal_seg_coe Ordinal.lift.principalSeg_coeβ‚“'. -/ @[simp] theorem lift.principalSeg_coe : (lift.principalSeg.{u, v} : Ordinal β†’ Ordinal) = lift.{max (u + 1) v} := rfl #align ordinal.lift.principal_seg_coe Ordinal.lift.principalSeg_coe #print Ordinal.lift.principalSeg_top /- @[simp] theorem lift.principalSeg_top : lift.principalSeg.top = univ := rfl #align ordinal.lift.principal_seg_top Ordinal.lift.principalSeg_top -/ #print Ordinal.lift.principalSeg_top' /- theorem lift.principalSeg_top' : lift.principalSeg.{u, u + 1}.top = @type Ordinal (Β· < Β·) _ := by simp only [lift.principal_seg_top, univ_id] #align ordinal.lift.principal_seg_top' Ordinal.lift.principalSeg_top' -/ end Ordinal /-! ### Representing a cardinal with an ordinal -/ namespace Cardinal open Ordinal #print Cardinal.mk_ordinal_out /- @[simp] theorem mk_ordinal_out (o : Ordinal) : (#o.out.Ξ±) = o.card := (Ordinal.card_type _).symm.trans <| by rw [Ordinal.type_lt] #align cardinal.mk_ordinal_out Cardinal.mk_ordinal_out -/ #print Cardinal.ord /- /-- The ordinal corresponding to a cardinal `c` is the least ordinal whose cardinal is `c`. For the order-embedding version, see `ord.order_embedding`. -/ def ord (c : Cardinal) : Ordinal := let F := fun Ξ± : Type u => β¨… r : { r // IsWellOrder Ξ± r }, @type Ξ± r.1 r.2 Quot.liftOn c F (by suffices : βˆ€ {Ξ± Ξ²}, Ξ± β‰ˆ Ξ² β†’ F Ξ± ≀ F Ξ² exact fun Ξ± Ξ² h => (this h).antisymm (this (Setoid.symm h)) rintro Ξ± Ξ² ⟨f⟩ refine' le_cinfα΅’_iff'.2 fun i => _ haveI := @RelEmbedding.isWellOrder _ _ (f ⁻¹'o i.1) _ (↑(RelIso.preimage f i.1)) i.2 exact (cinfα΅’_le' _ (Subtype.mk (⇑f ⁻¹'o i.val) (@RelEmbedding.isWellOrder _ _ _ _ (↑(RelIso.preimage f i.1)) i.2))).trans_eq (Quot.sound ⟨RelIso.preimage f i.1⟩)) #align cardinal.ord Cardinal.ord -/ /- warning: cardinal.ord_eq_Inf -> Cardinal.ord_eq_Inf is a dubious translation: lean 3 declaration is forall (Ξ± : Type.{u1}), Eq.{succ (succ u1)} Ordinal.{u1} (Cardinal.ord.{u1} (Cardinal.mk.{u1} Ξ±)) (infα΅’.{succ u1, succ u1} Ordinal.{u1} (ConditionallyCompleteLattice.toHasInf.{succ u1} Ordinal.{u1} (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{succ u1} Ordinal.{u1} (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{succ u1} Ordinal.{u1} Ordinal.conditionallyCompleteLinearOrderBot.{u1}))) (Subtype.{succ u1} (Ξ± -> Ξ± -> Prop) (fun (r : Ξ± -> Ξ± -> Prop) => IsWellOrder.{u1} Ξ± r)) (fun (r : Subtype.{succ u1} (Ξ± -> Ξ± -> Prop) (fun (r : Ξ± -> Ξ± -> Prop) => IsWellOrder.{u1} Ξ± r)) => Ordinal.type.{u1} Ξ± (Subtype.val.{succ u1} (Ξ± -> Ξ± -> Prop) (fun (r : Ξ± -> Ξ± -> Prop) => IsWellOrder.{u1} Ξ± r) r) (Subtype.property.{succ u1} (Ξ± -> Ξ± -> Prop) (fun (r : Ξ± -> Ξ± -> Prop) => IsWellOrder.{u1} Ξ± r) r))) but is expected to have type forall (Ξ± : Type.{u1}), Eq.{succ (succ u1)} Ordinal.{u1} (Cardinal.ord.{u1} (Cardinal.mk.{u1} Ξ±)) (infα΅’.{succ u1, succ u1} Ordinal.{u1} (ConditionallyCompleteLattice.toInfSet.{succ u1} Ordinal.{u1} (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{succ u1} Ordinal.{u1} (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{succ u1} Ordinal.{u1} Ordinal.instConditionallyCompleteLinearOrderBotOrdinal.{u1}))) (Subtype.{succ u1} (Ξ± -> Ξ± -> Prop) (fun (r : Ξ± -> Ξ± -> Prop) => IsWellOrder.{u1} Ξ± r)) (fun (r : Subtype.{succ u1} (Ξ± -> Ξ± -> Prop) (fun (r : Ξ± -> Ξ± -> Prop) => IsWellOrder.{u1} Ξ± r)) => Ordinal.type.{u1} Ξ± (Subtype.val.{succ u1} (Ξ± -> Ξ± -> Prop) (fun (r : Ξ± -> Ξ± -> Prop) => IsWellOrder.{u1} Ξ± r) r) (Subtype.property.{succ u1} (Ξ± -> Ξ± -> Prop) (fun (r : Ξ± -> Ξ± -> Prop) => IsWellOrder.{u1} Ξ± r) r))) Case conversion may be inaccurate. Consider using '#align cardinal.ord_eq_Inf Cardinal.ord_eq_Infβ‚“'. -/ theorem ord_eq_Inf (Ξ± : Type u) : ord (#Ξ±) = β¨… r : { r // IsWellOrder Ξ± r }, @type Ξ± r.1 r.2 := rfl #align cardinal.ord_eq_Inf Cardinal.ord_eq_Inf #print Cardinal.ord_eq /- theorem ord_eq (Ξ±) : βˆƒ (r : Ξ± β†’ Ξ± β†’ Prop)(wo : IsWellOrder Ξ± r), ord (#Ξ±) = @type Ξ± r wo := let ⟨r, wo⟩ := cinfα΅’_mem fun r : { r // IsWellOrder Ξ± r } => @type Ξ± r.1 r.2 ⟨r.1, r.2, wo.symm⟩ #align cardinal.ord_eq Cardinal.ord_eq -/ #print Cardinal.ord_le_type /- theorem ord_le_type (r : Ξ± β†’ Ξ± β†’ Prop) [h : IsWellOrder Ξ± r] : ord (#Ξ±) ≀ type r := cinfα΅’_le' _ (Subtype.mk r h) #align cardinal.ord_le_type Cardinal.ord_le_type -/ #print Cardinal.ord_le /- theorem ord_le {c o} : ord c ≀ o ↔ c ≀ o.card := inductionOn c fun Ξ± => Ordinal.inductionOn o fun Ξ² s _ => by let ⟨r, _, e⟩ := ord_eq Ξ± skip; simp only [card_type]; constructor <;> intro h Β· rw [e] at h exact let ⟨f⟩ := h ⟨f.toEmbedding⟩ Β· cases' h with f have g := RelEmbedding.preimage f s haveI := RelEmbedding.isWellOrder g exact le_trans (ord_le_type _) g.ordinal_type_le #align cardinal.ord_le Cardinal.ord_le -/ #print Cardinal.gc_ord_card /- theorem gc_ord_card : GaloisConnection ord card := fun _ _ => ord_le #align cardinal.gc_ord_card Cardinal.gc_ord_card -/ #print Cardinal.lt_ord /- theorem lt_ord {c o} : o < ord c ↔ o.card < c := gc_ord_card.lt_iff_lt #align cardinal.lt_ord Cardinal.lt_ord -/ #print Cardinal.card_ord /- @[simp] theorem card_ord (c) : (ord c).card = c := Quotient.inductionOn c fun Ξ± => by let ⟨r, _, e⟩ := ord_eq Ξ± simp only [mk_def, e, card_type] #align cardinal.card_ord Cardinal.card_ord -/ #print Cardinal.gciOrdCard /- /-- Galois coinsertion between `cardinal.ord` and `ordinal.card`. -/ def gciOrdCard : GaloisCoinsertion ord card := gc_ord_card.toGaloisCoinsertion fun c => c.card_ord.le #align cardinal.gci_ord_card Cardinal.gciOrdCard -/ #print Cardinal.ord_card_le /- theorem ord_card_le (o : Ordinal) : o.card.ord ≀ o := gc_ord_card.l_u_le _ #align cardinal.ord_card_le Cardinal.ord_card_le -/ /- warning: cardinal.lt_ord_succ_card -> Cardinal.lt_ord_succ_card is a dubious translation: lean 3 declaration is forall (o : Ordinal.{u1}), LT.lt.{succ u1} Ordinal.{u1} (Preorder.toLT.{succ u1} Ordinal.{u1} (PartialOrder.toPreorder.{succ u1} Ordinal.{u1} Ordinal.partialOrder.{u1})) o (Cardinal.ord.{u1} (Order.succ.{succ u1} Cardinal.{u1} (PartialOrder.toPreorder.{succ u1} Cardinal.{u1} Cardinal.partialOrder.{u1}) Cardinal.succOrder.{u1} (Ordinal.card.{u1} o))) but is expected to have type forall (o : Ordinal.{u1}), LT.lt.{succ u1} Ordinal.{u1} (Preorder.toLT.{succ u1} Ordinal.{u1} (PartialOrder.toPreorder.{succ u1} Ordinal.{u1} Ordinal.partialOrder.{u1})) o (Cardinal.ord.{u1} (Order.succ.{succ u1} Cardinal.{u1} (PartialOrder.toPreorder.{succ u1} Cardinal.{u1} Cardinal.partialOrder.{u1}) Cardinal.instSuccOrderCardinalToPreorderPartialOrder.{u1} (Ordinal.card.{u1} o))) Case conversion may be inaccurate. Consider using '#align cardinal.lt_ord_succ_card Cardinal.lt_ord_succ_cardβ‚“'. -/ theorem lt_ord_succ_card (o : Ordinal) : o < (succ o.card).ord := lt_ord.2 <| lt_succ _ #align cardinal.lt_ord_succ_card Cardinal.lt_ord_succ_card #print Cardinal.ord_strictMono /- @[mono] theorem ord_strictMono : StrictMono ord := gciOrdCard.strictMono_l #align cardinal.ord_strict_mono Cardinal.ord_strictMono -/ #print Cardinal.ord_mono /- @[mono] theorem ord_mono : Monotone ord := gc_ord_card.monotone_l #align cardinal.ord_mono Cardinal.ord_mono -/ #print Cardinal.ord_le_ord /- @[simp] theorem ord_le_ord {c₁ cβ‚‚} : ord c₁ ≀ ord cβ‚‚ ↔ c₁ ≀ cβ‚‚ := gciOrdCard.l_le_l_iff #align cardinal.ord_le_ord Cardinal.ord_le_ord -/ #print Cardinal.ord_lt_ord /- @[simp] theorem ord_lt_ord {c₁ cβ‚‚} : ord c₁ < ord cβ‚‚ ↔ c₁ < cβ‚‚ := ord_strictMono.lt_iff_lt #align cardinal.ord_lt_ord Cardinal.ord_lt_ord -/ #print Cardinal.ord_zero /- @[simp] theorem ord_zero : ord 0 = 0 := gc_ord_card.l_bot #align cardinal.ord_zero Cardinal.ord_zero -/ /- warning: cardinal.ord_nat -> Cardinal.ord_nat is a dubious translation: lean 3 declaration is forall (n : Nat), Eq.{succ (succ u1)} Ordinal.{u1} (Cardinal.ord.{u1} ((fun (a : Type) (b : Type.{succ u1}) [self : HasLiftT.{1, succ (succ u1)} a b] => self.0) Nat Cardinal.{u1} (HasLiftT.mk.{1, succ (succ u1)} Nat Cardinal.{u1} (CoeTCβ‚“.coe.{1, succ (succ u1)} Nat Cardinal.{u1} (Nat.castCoe.{succ u1} Cardinal.{u1} Cardinal.hasNatCast.{u1}))) n)) ((fun (a : Type) (b : Type.{succ u1}) [self : HasLiftT.{1, succ (succ u1)} a b] => self.0) Nat Ordinal.{u1} (HasLiftT.mk.{1, succ (succ u1)} Nat Ordinal.{u1} (CoeTCβ‚“.coe.{1, succ (succ u1)} Nat Ordinal.{u1} (Nat.castCoe.{succ u1} Ordinal.{u1} (AddMonoidWithOne.toNatCast.{succ u1} Ordinal.{u1} Ordinal.addMonoidWithOne.{u1})))) n) but is expected to have type forall (n : Nat), Eq.{succ (succ u1)} Ordinal.{u1} (Cardinal.ord.{u1} (Nat.cast.{succ u1} Cardinal.{u1} Cardinal.instNatCastCardinal.{u1} n)) (Nat.cast.{succ u1} Ordinal.{u1} (AddMonoidWithOne.toNatCast.{succ u1} Ordinal.{u1} Ordinal.addMonoidWithOne.{u1}) n) Case conversion may be inaccurate. Consider using '#align cardinal.ord_nat Cardinal.ord_natβ‚“'. -/ @[simp] theorem ord_nat (n : β„•) : ord n = n := (ord_le.2 (card_nat n).ge).antisymm (by induction' n with n IH Β· apply Ordinal.zero_le Β· exact succ_le_of_lt (IH.trans_lt <| ord_lt_ord.2 <| nat_cast_lt.2 (Nat.lt_succ_self n))) #align cardinal.ord_nat Cardinal.ord_nat /- warning: cardinal.ord_one -> Cardinal.ord_one is a dubious translation: lean 3 declaration is Eq.{succ (succ u1)} Ordinal.{u1} (Cardinal.ord.{u1} (OfNat.ofNat.{succ u1} Cardinal.{u1} 1 (OfNat.mk.{succ u1} Cardinal.{u1} 1 (One.one.{succ u1} Cardinal.{u1} Cardinal.hasOne.{u1})))) (OfNat.ofNat.{succ u1} Ordinal.{u1} 1 (OfNat.mk.{succ u1} Ordinal.{u1} 1 (One.one.{succ u1} Ordinal.{u1} Ordinal.hasOne.{u1}))) but is expected to have type Eq.{succ (succ u1)} Ordinal.{u1} (Cardinal.ord.{u1} (OfNat.ofNat.{succ u1} Cardinal.{u1} 1 (One.toOfNat1.{succ u1} Cardinal.{u1} Cardinal.instOneCardinal.{u1}))) (OfNat.ofNat.{succ u1} Ordinal.{u1} 1 (One.toOfNat1.{succ u1} Ordinal.{u1} Ordinal.one.{u1})) Case conversion may be inaccurate. Consider using '#align cardinal.ord_one Cardinal.ord_oneβ‚“'. -/ @[simp] theorem ord_one : ord 1 = 1 := by simpa using ord_nat 1 #align cardinal.ord_one Cardinal.ord_one /- warning: cardinal.lift_ord -> Cardinal.lift_ord is a dubious translation: lean 3 declaration is forall (c : Cardinal.{u1}), Eq.{succ (succ (max u1 u2))} Ordinal.{max u1 u2} (Ordinal.lift.{u2, u1} (Cardinal.ord.{u1} c)) (Cardinal.ord.{max u1 u2} (Cardinal.lift.{u2, u1} c)) but is expected to have type forall (c : Cardinal.{u2}), Eq.{max (succ (succ u1)) (succ (succ u2))} Ordinal.{max u2 u1} (Ordinal.lift.{u1, u2} (Cardinal.ord.{u2} c)) (Cardinal.ord.{max u1 u2} (Cardinal.lift.{u1, u2} c)) Case conversion may be inaccurate. Consider using '#align cardinal.lift_ord Cardinal.lift_ordβ‚“'. -/ @[simp] theorem lift_ord (c) : (ord c).lift = ord (lift c) := by refine' le_antisymm (le_of_forall_lt fun a ha => _) _ Β· rcases Ordinal.lt_lift_iff.1 ha with ⟨a, rfl, h⟩ rwa [lt_ord, ← lift_card, lift_lt, ← lt_ord, ← Ordinal.lift_lt] Β· rw [ord_le, ← lift_card, card_ord] #align cardinal.lift_ord Cardinal.lift_ord #print Cardinal.mk_ord_out /- theorem mk_ord_out (c : Cardinal) : (#c.ord.out.Ξ±) = c := by simp #align cardinal.mk_ord_out Cardinal.mk_ord_out -/ #print Cardinal.card_typein_lt /- theorem card_typein_lt (r : Ξ± β†’ Ξ± β†’ Prop) [IsWellOrder Ξ± r] (x : Ξ±) (h : ord (#Ξ±) = type r) : card (typein r x) < (#Ξ±) := by rw [← lt_ord, h] apply typein_lt_type #align cardinal.card_typein_lt Cardinal.card_typein_lt -/ #print Cardinal.card_typein_out_lt /- theorem card_typein_out_lt (c : Cardinal) (x : c.ord.out.Ξ±) : card (typein (Β· < Β·) x) < c := by rw [← lt_ord] apply typein_lt_self #align cardinal.card_typein_out_lt Cardinal.card_typein_out_lt -/ #print Cardinal.ord_injective /- theorem ord_injective : Injective ord := by intro c c' h rw [← card_ord c, ← card_ord c', h] #align cardinal.ord_injective Cardinal.ord_injective -/ #print Cardinal.ord.orderEmbedding /- /-- The ordinal corresponding to a cardinal `c` is the least ordinal whose cardinal is `c`. This is the order-embedding version. For the regular function, see `ord`. -/ def ord.orderEmbedding : Cardinal β†ͺo Ordinal := RelEmbedding.orderEmbeddingOfLTEmbedding (RelEmbedding.ofMonotone Cardinal.ord fun a b => Cardinal.ord_lt_ord.2) #align cardinal.ord.order_embedding Cardinal.ord.orderEmbedding -/ /- warning: cardinal.ord.order_embedding_coe -> Cardinal.ord.orderEmbedding_coe is a dubious translation: lean 3 declaration is Eq.{succ (succ u1)} ((fun (_x : RelEmbedding.{succ u1, succ u1} Cardinal.{u1} Ordinal.{u1} (LE.le.{succ u1} Cardinal.{u1} Cardinal.hasLe.{u1}) (LE.le.{succ u1} Ordinal.{u1} (Preorder.toLE.{succ u1} Ordinal.{u1} (PartialOrder.toPreorder.{succ u1} Ordinal.{u1} Ordinal.partialOrder.{u1})))) => Cardinal.{u1} -> Ordinal.{u1}) Cardinal.ord.orderEmbedding.{u1}) (coeFn.{succ (succ u1), succ (succ u1)} (OrderEmbedding.{succ u1, succ u1} Cardinal.{u1} Ordinal.{u1} Cardinal.hasLe.{u1} (Preorder.toLE.{succ u1} Ordinal.{u1} (PartialOrder.toPreorder.{succ u1} Ordinal.{u1} Ordinal.partialOrder.{u1}))) (fun (_x : RelEmbedding.{succ u1, succ u1} Cardinal.{u1} Ordinal.{u1} (LE.le.{succ u1} Cardinal.{u1} Cardinal.hasLe.{u1}) (LE.le.{succ u1} Ordinal.{u1} (Preorder.toLE.{succ u1} Ordinal.{u1} (PartialOrder.toPreorder.{succ u1} Ordinal.{u1} Ordinal.partialOrder.{u1})))) => Cardinal.{u1} -> Ordinal.{u1}) (RelEmbedding.hasCoeToFun.{succ u1, succ u1} Cardinal.{u1} Ordinal.{u1} (LE.le.{succ u1} Cardinal.{u1} Cardinal.hasLe.{u1}) (LE.le.{succ u1} Ordinal.{u1} (Preorder.toLE.{succ u1} Ordinal.{u1} (PartialOrder.toPreorder.{succ u1} Ordinal.{u1} Ordinal.partialOrder.{u1})))) Cardinal.ord.orderEmbedding.{u1}) Cardinal.ord.{u1} but is expected to have type Eq.{succ (succ u1)} (forall (a : Cardinal.{u1}), (fun ([email protected]._hyg.19 : Cardinal.{u1}) => Ordinal.{u1}) a) (FunLike.coe.{succ (succ u1), succ (succ u1), succ (succ u1)} (Function.Embedding.{succ (succ u1), succ (succ u1)} Cardinal.{u1} Ordinal.{u1}) Cardinal.{u1} (fun (_x : Cardinal.{u1}) => (fun ([email protected]._hyg.19 : Cardinal.{u1}) => Ordinal.{u1}) _x) (EmbeddingLike.toFunLike.{succ (succ u1), succ (succ u1), succ (succ u1)} (Function.Embedding.{succ (succ u1), succ (succ u1)} Cardinal.{u1} Ordinal.{u1}) Cardinal.{u1} Ordinal.{u1} (Function.instEmbeddingLikeEmbedding.{succ (succ u1), succ (succ u1)} Cardinal.{u1} Ordinal.{u1})) (RelEmbedding.toEmbedding.{succ u1, succ u1} Cardinal.{u1} Ordinal.{u1} (fun ([email protected]._hyg.680 : Cardinal.{u1}) ([email protected]._hyg.682 : Cardinal.{u1}) => LE.le.{succ u1} Cardinal.{u1} Cardinal.instLECardinal.{u1} [email protected]._hyg.680 [email protected]._hyg.682) (fun ([email protected]._hyg.695 : Ordinal.{u1}) ([email protected]._hyg.697 : Ordinal.{u1}) => LE.le.{succ u1} Ordinal.{u1} (Preorder.toLE.{succ u1} Ordinal.{u1} (PartialOrder.toPreorder.{succ u1} Ordinal.{u1} Ordinal.partialOrder.{u1})) [email protected]._hyg.695 [email protected]._hyg.697) Cardinal.ord.orderEmbedding.{u1})) Cardinal.ord.{u1} Case conversion may be inaccurate. Consider using '#align cardinal.ord.order_embedding_coe Cardinal.ord.orderEmbedding_coeβ‚“'. -/ @[simp] theorem ord.orderEmbedding_coe : (ord.orderEmbedding : Cardinal β†’ Ordinal) = ord := rfl #align cardinal.ord.order_embedding_coe Cardinal.ord.orderEmbedding_coe #print Cardinal.univ /- -- intended to be used with explicit universe parameters /-- The cardinal `univ` is the cardinality of ordinal `univ`, or equivalently the cardinal of `ordinal.{u}`, or `cardinal.{u}`, as an element of `cardinal.{v}` (when `u < v`). -/ @[nolint check_univs] def univ := lift.{v, u + 1} (#Ordinal) #align cardinal.univ Cardinal.univ -/ #print Cardinal.univ_id /- theorem univ_id : univ.{u, u + 1} = (#Ordinal) := lift_id _ #align cardinal.univ_id Cardinal.univ_id -/ #print Cardinal.lift_univ /- @[simp] theorem lift_univ : lift.{w} univ.{u, v} = univ.{u, max v w} := lift_lift _ #align cardinal.lift_univ Cardinal.lift_univ -/ #print Cardinal.univ_umax /- theorem univ_umax : univ.{u, max (u + 1) v} = univ.{u, v} := congr_fun lift_umax _ #align cardinal.univ_umax Cardinal.univ_umax -/ #print Cardinal.lift_lt_univ /- theorem lift_lt_univ (c : Cardinal) : lift.{u + 1, u} c < univ.{u, u + 1} := by simpa only [lift.principal_seg_coe, lift_ord, lift_succ, ord_le, succ_le_iff] using le_of_lt (lift.principalSeg.{u, u + 1}.lt_top (succ c).ord) #align cardinal.lift_lt_univ Cardinal.lift_lt_univ -/ #print Cardinal.lift_lt_univ' /- theorem lift_lt_univ' (c : Cardinal) : lift.{max (u + 1) v, u} c < univ.{u, v} := by simpa only [lift_lift, lift_univ, univ_umax] using lift_lt.{_, max (u + 1) v}.2 (lift_lt_univ c) #align cardinal.lift_lt_univ' Cardinal.lift_lt_univ' -/ #print Cardinal.ord_univ /- @[simp] theorem ord_univ : ord univ.{u, v} = Ordinal.univ.{u, v} := le_antisymm (ord_card_le _) <| le_of_forall_lt fun o h => lt_ord.2 (by rcases lift.principalSeg.{u, v}.down.1 (by simpa only [lift.principal_seg_coe] using h) with ⟨o', rfl⟩ simp only [lift.principal_seg_coe]; rw [← lift_card] apply lift_lt_univ') #align cardinal.ord_univ Cardinal.ord_univ -/ #print Cardinal.lt_univ /- theorem lt_univ {c} : c < univ.{u, u + 1} ↔ βˆƒ c', c = lift.{u + 1, u} c' := ⟨fun h => by have := ord_lt_ord.2 h rw [ord_univ] at this cases' lift.principalSeg.{u, u + 1}.down.1 (by simpa only [lift.principal_seg_top] ) with o e have := card_ord c rw [← e, lift.principal_seg_coe, ← lift_card] at this exact ⟨_, this.symm⟩, fun ⟨c', e⟩ => e.symm β–Έ lift_lt_univ _⟩ #align cardinal.lt_univ Cardinal.lt_univ -/ #print Cardinal.lt_univ' /- theorem lt_univ' {c} : c < univ.{u, v} ↔ βˆƒ c', c = lift.{max (u + 1) v, u} c' := ⟨fun h => by let ⟨a, e, h'⟩ := lt_lift_iff.1 h rw [← univ_id] at h' rcases lt_univ.{u}.1 h' with ⟨c', rfl⟩ exact ⟨c', by simp only [e.symm, lift_lift]⟩, fun ⟨c', e⟩ => e.symm β–Έ lift_lt_univ' _⟩ #align cardinal.lt_univ' Cardinal.lt_univ' -/ #print Cardinal.small_iff_lift_mk_lt_univ /- theorem small_iff_lift_mk_lt_univ {Ξ± : Type u} : Small.{v} Ξ± ↔ Cardinal.lift (#Ξ±) < univ.{v, max u (v + 1)} := by rw [lt_univ'] constructor Β· rintro ⟨β, e⟩ exact ⟨#Ξ², lift_mk_eq.{u, _, v + 1}.2 e⟩ Β· rintro ⟨c, hc⟩ exact ⟨⟨c.out, lift_mk_eq.{u, _, v + 1}.1 (hc.trans (congr rfl c.mk_out.symm))⟩⟩ #align cardinal.small_iff_lift_mk_lt_univ Cardinal.small_iff_lift_mk_lt_univ -/ end Cardinal namespace Ordinal #print Ordinal.card_univ /- @[simp] theorem card_univ : card univ = Cardinal.univ := rfl #align ordinal.card_univ Ordinal.card_univ -/ /- warning: ordinal.nat_le_card -> Ordinal.nat_le_card is a dubious translation: lean 3 declaration is forall {o : Ordinal.{u1}} {n : Nat}, Iff (LE.le.{succ u1} Cardinal.{u1} Cardinal.hasLe.{u1} ((fun (a : Type) (b : Type.{succ u1}) [self : HasLiftT.{1, succ (succ u1)} a b] => self.0) Nat Cardinal.{u1} (HasLiftT.mk.{1, succ (succ u1)} Nat Cardinal.{u1} (CoeTCβ‚“.coe.{1, succ (succ u1)} Nat Cardinal.{u1} (Nat.castCoe.{succ u1} Cardinal.{u1} Cardinal.hasNatCast.{u1}))) n) (Ordinal.card.{u1} o)) (LE.le.{succ u1} Ordinal.{u1} (Preorder.toLE.{succ u1} Ordinal.{u1} (PartialOrder.toPreorder.{succ u1} Ordinal.{u1} Ordinal.partialOrder.{u1})) ((fun (a : Type) (b : Type.{succ u1}) [self : HasLiftT.{1, succ (succ u1)} a b] => self.0) Nat Ordinal.{u1} (HasLiftT.mk.{1, succ (succ u1)} Nat Ordinal.{u1} (CoeTCβ‚“.coe.{1, succ (succ u1)} Nat Ordinal.{u1} (Nat.castCoe.{succ u1} Ordinal.{u1} (AddMonoidWithOne.toNatCast.{succ u1} Ordinal.{u1} Ordinal.addMonoidWithOne.{u1})))) n) o) but is expected to have type forall {o : Ordinal.{u1}} {n : Nat}, Iff (LE.le.{succ u1} Cardinal.{u1} Cardinal.instLECardinal.{u1} (Nat.cast.{succ u1} Cardinal.{u1} Cardinal.instNatCastCardinal.{u1} n) (Ordinal.card.{u1} o)) (LE.le.{succ u1} Ordinal.{u1} (Preorder.toLE.{succ u1} Ordinal.{u1} (PartialOrder.toPreorder.{succ u1} Ordinal.{u1} Ordinal.partialOrder.{u1})) (Nat.cast.{succ u1} Ordinal.{u1} (AddMonoidWithOne.toNatCast.{succ u1} Ordinal.{u1} Ordinal.addMonoidWithOne.{u1}) n) o) Case conversion may be inaccurate. Consider using '#align ordinal.nat_le_card Ordinal.nat_le_cardβ‚“'. -/ @[simp] theorem nat_le_card {o} {n : β„•} : (n : Cardinal) ≀ card o ↔ (n : Ordinal) ≀ o := by rw [← Cardinal.ord_le, Cardinal.ord_nat] #align ordinal.nat_le_card Ordinal.nat_le_card /- warning: ordinal.nat_lt_card -> Ordinal.nat_lt_card is a dubious translation: lean 3 declaration is forall {o : Ordinal.{u1}} {n : Nat}, Iff (LT.lt.{succ u1} Cardinal.{u1} (Preorder.toLT.{succ u1} Cardinal.{u1} (PartialOrder.toPreorder.{succ u1} Cardinal.{u1} Cardinal.partialOrder.{u1})) ((fun (a : Type) (b : Type.{succ u1}) [self : HasLiftT.{1, succ (succ u1)} a b] => self.0) Nat Cardinal.{u1} (HasLiftT.mk.{1, succ (succ u1)} Nat Cardinal.{u1} (CoeTCβ‚“.coe.{1, succ (succ u1)} Nat Cardinal.{u1} (Nat.castCoe.{succ u1} Cardinal.{u1} Cardinal.hasNatCast.{u1}))) n) (Ordinal.card.{u1} o)) (LT.lt.{succ u1} Ordinal.{u1} (Preorder.toLT.{succ u1} Ordinal.{u1} (PartialOrder.toPreorder.{succ u1} Ordinal.{u1} Ordinal.partialOrder.{u1})) ((fun (a : Type) (b : Type.{succ u1}) [self : HasLiftT.{1, succ (succ u1)} a b] => self.0) Nat Ordinal.{u1} (HasLiftT.mk.{1, succ (succ u1)} Nat Ordinal.{u1} (CoeTCβ‚“.coe.{1, succ (succ u1)} Nat Ordinal.{u1} (Nat.castCoe.{succ u1} Ordinal.{u1} (AddMonoidWithOne.toNatCast.{succ u1} Ordinal.{u1} Ordinal.addMonoidWithOne.{u1})))) n) o) but is expected to have type forall {o : Ordinal.{u1}} {n : Nat}, Iff (LT.lt.{succ u1} Cardinal.{u1} (Preorder.toLT.{succ u1} Cardinal.{u1} (PartialOrder.toPreorder.{succ u1} Cardinal.{u1} Cardinal.partialOrder.{u1})) (Nat.cast.{succ u1} Cardinal.{u1} Cardinal.instNatCastCardinal.{u1} n) (Ordinal.card.{u1} o)) (LT.lt.{succ u1} Ordinal.{u1} (Preorder.toLT.{succ u1} Ordinal.{u1} (PartialOrder.toPreorder.{succ u1} Ordinal.{u1} Ordinal.partialOrder.{u1})) (Nat.cast.{succ u1} Ordinal.{u1} (AddMonoidWithOne.toNatCast.{succ u1} Ordinal.{u1} Ordinal.addMonoidWithOne.{u1}) n) o) Case conversion may be inaccurate. Consider using '#align ordinal.nat_lt_card Ordinal.nat_lt_cardβ‚“'. -/ @[simp] theorem nat_lt_card {o} {n : β„•} : (n : Cardinal) < card o ↔ (n : Ordinal) < o := by rw [← succ_le_iff, ← succ_le_iff, ← nat_succ, nat_le_card] rfl #align ordinal.nat_lt_card Ordinal.nat_lt_card /- warning: ordinal.card_lt_nat -> Ordinal.card_lt_nat is a dubious translation: lean 3 declaration is forall {o : Ordinal.{u1}} {n : Nat}, Iff (LT.lt.{succ u1} Cardinal.{u1} (Preorder.toLT.{succ u1} Cardinal.{u1} (PartialOrder.toPreorder.{succ u1} Cardinal.{u1} Cardinal.partialOrder.{u1})) (Ordinal.card.{u1} o) ((fun (a : Type) (b : Type.{succ u1}) [self : HasLiftT.{1, succ (succ u1)} a b] => self.0) Nat Cardinal.{u1} (HasLiftT.mk.{1, succ (succ u1)} Nat Cardinal.{u1} (CoeTCβ‚“.coe.{1, succ (succ u1)} Nat Cardinal.{u1} (Nat.castCoe.{succ u1} Cardinal.{u1} Cardinal.hasNatCast.{u1}))) n)) (LT.lt.{succ u1} Ordinal.{u1} (Preorder.toLT.{succ u1} Ordinal.{u1} (PartialOrder.toPreorder.{succ u1} Ordinal.{u1} Ordinal.partialOrder.{u1})) o ((fun (a : Type) (b : Type.{succ u1}) [self : HasLiftT.{1, succ (succ u1)} a b] => self.0) Nat Ordinal.{u1} (HasLiftT.mk.{1, succ (succ u1)} Nat Ordinal.{u1} (CoeTCβ‚“.coe.{1, succ (succ u1)} Nat Ordinal.{u1} (Nat.castCoe.{succ u1} Ordinal.{u1} (AddMonoidWithOne.toNatCast.{succ u1} Ordinal.{u1} Ordinal.addMonoidWithOne.{u1})))) n)) but is expected to have type forall {o : Ordinal.{u1}} {n : Nat}, Iff (LT.lt.{succ u1} Cardinal.{u1} (Preorder.toLT.{succ u1} Cardinal.{u1} (PartialOrder.toPreorder.{succ u1} Cardinal.{u1} Cardinal.partialOrder.{u1})) (Ordinal.card.{u1} o) (Nat.cast.{succ u1} Cardinal.{u1} Cardinal.instNatCastCardinal.{u1} n)) (LT.lt.{succ u1} Ordinal.{u1} (Preorder.toLT.{succ u1} Ordinal.{u1} (PartialOrder.toPreorder.{succ u1} Ordinal.{u1} Ordinal.partialOrder.{u1})) o (Nat.cast.{succ u1} Ordinal.{u1} (AddMonoidWithOne.toNatCast.{succ u1} Ordinal.{u1} Ordinal.addMonoidWithOne.{u1}) n)) Case conversion may be inaccurate. Consider using '#align ordinal.card_lt_nat Ordinal.card_lt_natβ‚“'. -/ @[simp] theorem card_lt_nat {o} {n : β„•} : card o < n ↔ o < n := lt_iff_lt_of_le_iff_le nat_le_card #align ordinal.card_lt_nat Ordinal.card_lt_nat /- warning: ordinal.card_le_nat -> Ordinal.card_le_nat is a dubious translation: lean 3 declaration is forall {o : Ordinal.{u1}} {n : Nat}, Iff (LE.le.{succ u1} Cardinal.{u1} Cardinal.hasLe.{u1} (Ordinal.card.{u1} o) ((fun (a : Type) (b : Type.{succ u1}) [self : HasLiftT.{1, succ (succ u1)} a b] => self.0) Nat Cardinal.{u1} (HasLiftT.mk.{1, succ (succ u1)} Nat Cardinal.{u1} (CoeTCβ‚“.coe.{1, succ (succ u1)} Nat Cardinal.{u1} (Nat.castCoe.{succ u1} Cardinal.{u1} Cardinal.hasNatCast.{u1}))) n)) (LE.le.{succ u1} Ordinal.{u1} (Preorder.toLE.{succ u1} Ordinal.{u1} (PartialOrder.toPreorder.{succ u1} Ordinal.{u1} Ordinal.partialOrder.{u1})) o ((fun (a : Type) (b : Type.{succ u1}) [self : HasLiftT.{1, succ (succ u1)} a b] => self.0) Nat Ordinal.{u1} (HasLiftT.mk.{1, succ (succ u1)} Nat Ordinal.{u1} (CoeTCβ‚“.coe.{1, succ (succ u1)} Nat Ordinal.{u1} (Nat.castCoe.{succ u1} Ordinal.{u1} (AddMonoidWithOne.toNatCast.{succ u1} Ordinal.{u1} Ordinal.addMonoidWithOne.{u1})))) n)) but is expected to have type forall {o : Ordinal.{u1}} {n : Nat}, Iff (LE.le.{succ u1} Cardinal.{u1} Cardinal.instLECardinal.{u1} (Ordinal.card.{u1} o) (Nat.cast.{succ u1} Cardinal.{u1} Cardinal.instNatCastCardinal.{u1} n)) (LE.le.{succ u1} Ordinal.{u1} (Preorder.toLE.{succ u1} Ordinal.{u1} (PartialOrder.toPreorder.{succ u1} Ordinal.{u1} Ordinal.partialOrder.{u1})) o (Nat.cast.{succ u1} Ordinal.{u1} (AddMonoidWithOne.toNatCast.{succ u1} Ordinal.{u1} Ordinal.addMonoidWithOne.{u1}) n)) Case conversion may be inaccurate. Consider using '#align ordinal.card_le_nat Ordinal.card_le_natβ‚“'. -/ @[simp] theorem card_le_nat {o} {n : β„•} : card o ≀ n ↔ o ≀ n := le_iff_le_iff_lt_iff_lt.2 nat_lt_card #align ordinal.card_le_nat Ordinal.card_le_nat /- warning: ordinal.card_eq_nat -> Ordinal.card_eq_nat is a dubious translation: lean 3 declaration is forall {o : Ordinal.{u1}} {n : Nat}, Iff (Eq.{succ (succ u1)} Cardinal.{u1} (Ordinal.card.{u1} o) ((fun (a : Type) (b : Type.{succ u1}) [self : HasLiftT.{1, succ (succ u1)} a b] => self.0) Nat Cardinal.{u1} (HasLiftT.mk.{1, succ (succ u1)} Nat Cardinal.{u1} (CoeTCβ‚“.coe.{1, succ (succ u1)} Nat Cardinal.{u1} (Nat.castCoe.{succ u1} Cardinal.{u1} Cardinal.hasNatCast.{u1}))) n)) (Eq.{succ (succ u1)} Ordinal.{u1} o ((fun (a : Type) (b : Type.{succ u1}) [self : HasLiftT.{1, succ (succ u1)} a b] => self.0) Nat Ordinal.{u1} (HasLiftT.mk.{1, succ (succ u1)} Nat Ordinal.{u1} (CoeTCβ‚“.coe.{1, succ (succ u1)} Nat Ordinal.{u1} (Nat.castCoe.{succ u1} Ordinal.{u1} (AddMonoidWithOne.toNatCast.{succ u1} Ordinal.{u1} Ordinal.addMonoidWithOne.{u1})))) n)) but is expected to have type forall {o : Ordinal.{u1}} {n : Nat}, Iff (Eq.{succ (succ u1)} Cardinal.{u1} (Ordinal.card.{u1} o) (Nat.cast.{succ u1} Cardinal.{u1} Cardinal.instNatCastCardinal.{u1} n)) (Eq.{succ (succ u1)} Ordinal.{u1} o (Nat.cast.{succ u1} Ordinal.{u1} (AddMonoidWithOne.toNatCast.{succ u1} Ordinal.{u1} Ordinal.addMonoidWithOne.{u1}) n)) Case conversion may be inaccurate. Consider using '#align ordinal.card_eq_nat Ordinal.card_eq_natβ‚“'. -/ @[simp] theorem card_eq_nat {o} {n : β„•} : card o = n ↔ o = n := by simp only [le_antisymm_iff, card_le_nat, nat_le_card] #align ordinal.card_eq_nat Ordinal.card_eq_nat #print Ordinal.type_fintype /- @[simp] theorem type_fintype (r : Ξ± β†’ Ξ± β†’ Prop) [IsWellOrder Ξ± r] [Fintype Ξ±] : type r = Fintype.card Ξ± := by rw [← card_eq_nat, card_type, mk_fintype] #align ordinal.type_fintype Ordinal.type_fintype -/ #print Ordinal.type_fin /- theorem type_fin (n : β„•) : @type (Fin n) (Β· < Β·) _ = n := by simp #align ordinal.type_fin Ordinal.type_fin -/ end Ordinal
State Before: C : Type u inst✝⁡ : Category C inst✝⁴ : Preadditive C J : Type inst✝³ : Fintype J f✝ : J β†’ C inst✝² : HasBiproduct f✝ K : Type inst✝¹ : Fintype K inst✝ : HasFiniteBiproducts C f g : J β†’ C h : K β†’ C m : (k : J) β†’ f k ⟢ g k n : (j : J) β†’ (k : K) β†’ g j ⟢ h k ⊒ map m ≫ matrix n = matrix fun j k => m j ≫ n j k State After: case w.w C : Type u inst✝⁡ : Category C inst✝⁴ : Preadditive C J : Type inst✝³ : Fintype J f✝ : J β†’ C inst✝² : HasBiproduct f✝ K : Type inst✝¹ : Fintype K inst✝ : HasFiniteBiproducts C f g : J β†’ C h : K β†’ C m : (k : J) β†’ f k ⟢ g k n : (j : J) β†’ (k : K) β†’ g j ⟢ h k j✝¹ : J j✝ : K ⊒ (ΞΉ (fun b => f b) j✝¹ ≫ map m ≫ matrix n) ≫ Ο€ (fun k => h k) j✝ = (ΞΉ (fun b => f b) j✝¹ ≫ matrix fun j k => m j ≫ n j k) ≫ Ο€ (fun k => h k) j✝ Tactic: ext State Before: case w.w C : Type u inst✝⁡ : Category C inst✝⁴ : Preadditive C J : Type inst✝³ : Fintype J f✝ : J β†’ C inst✝² : HasBiproduct f✝ K : Type inst✝¹ : Fintype K inst✝ : HasFiniteBiproducts C f g : J β†’ C h : K β†’ C m : (k : J) β†’ f k ⟢ g k n : (j : J) β†’ (k : K) β†’ g j ⟢ h k j✝¹ : J j✝ : K ⊒ (ΞΉ (fun b => f b) j✝¹ ≫ map m ≫ matrix n) ≫ Ο€ (fun k => h k) j✝ = (ΞΉ (fun b => f b) j✝¹ ≫ matrix fun j k => m j ≫ n j k) ≫ Ο€ (fun k => h k) j✝ State After: no goals Tactic: simp
Formal statement is: proposition\<^marker>\<open>tag unimportant\<close> power_series_and_derivative: fixes a :: "nat \<Rightarrow> complex" and r::real assumes "summable (\<lambda>n. a n * r^n)" obtains g g' where "\<forall>z \<in> ball w r. ((\<lambda>n. a n * (z - w) ^ n) sums g z) \<and> ((\<lambda>n. of_nat n * a n * (z - w) ^ (n - 1)) sums g' z) \<and> (g has_field_derivative g' z) (at z)" Informal statement is: Suppose $a_n$ is a sequence of complex numbers such that $\sum_{n=0}^\infty a_n r^n$ converges for some $r > 0$. Then there exists a function $g$ and its derivative $g'$ such that for all $z$ in the ball of radius $r$ centered at $w$, the power series $\sum_{n=0}^\infty a_n (z - w)^n$ converges to $g(z)$ and the power series $\sum_{n=0}^\infty n a_n (z - w)^{n-1}$ converges to $g'(z)$, and $g'(z)$ is the derivative of $g$ at $z$.
# Autogenerated wrapper script for SFML_jll for x86_64-w64-mingw32-cxx11 export libsfml_audio, libsfml_graphics, libsfml_network, libsfml_system, libsfml_window using Libglvnd_jll using Ogg_jll using FLAC_jll using FreeType2_jll using libvorbis_jll using Xorg_libXrandr_jll using Xorg_libX11_jll using OpenAL_jll using eudev_jll JLLWrappers.@generate_wrapper_header("SFML") JLLWrappers.@declare_library_product(libsfml_audio, "sfml-audio-2.dll") JLLWrappers.@declare_library_product(libsfml_graphics, "sfml-graphics-2.dll") JLLWrappers.@declare_library_product(libsfml_network, "sfml-network-2.dll") JLLWrappers.@declare_library_product(libsfml_system, "sfml-system-2.dll") JLLWrappers.@declare_library_product(libsfml_window, "sfml-window-2.dll") function __init__() JLLWrappers.@generate_init_header(Libglvnd_jll, Ogg_jll, FLAC_jll, FreeType2_jll, libvorbis_jll, Xorg_libXrandr_jll, Xorg_libX11_jll, OpenAL_jll, eudev_jll) JLLWrappers.@init_library_product( libsfml_audio, "bin\\sfml-audio-2.dll", RTLD_LAZY | RTLD_DEEPBIND, ) JLLWrappers.@init_library_product( libsfml_graphics, "bin\\sfml-graphics-2.dll", RTLD_LAZY | RTLD_DEEPBIND, ) JLLWrappers.@init_library_product( libsfml_network, "bin\\sfml-network-2.dll", RTLD_LAZY | RTLD_DEEPBIND, ) JLLWrappers.@init_library_product( libsfml_system, "bin\\sfml-system-2.dll", RTLD_LAZY | RTLD_DEEPBIND, ) JLLWrappers.@init_library_product( libsfml_window, "bin\\sfml-window-2.dll", RTLD_LAZY | RTLD_DEEPBIND, ) JLLWrappers.@generate_init_footer() end # __init__()
#redirect Solo Dining
[STATEMENT] lemma n_L_T_meet_mult_propagate: "C x * y \<le> x * C y" [PROOF STATE] proof (prove) goal (1 subgoal): 1. C x * y \<le> x * C y [PROOF STEP] proof - [PROOF STATE] proof (state) goal (1 subgoal): 1. C x * y \<le> x * C y [PROOF STEP] have "C x * y \<le> C x * 1 * C y" [PROOF STATE] proof (prove) goal (1 subgoal): 1. C x * y \<le> C x * (1::'a) * C y [PROOF STEP] by (metis mult_1_right mult_assoc n_L_T_meet_mult_combined mult_1_right) [PROOF STATE] proof (state) this: C x * y \<le> C x * (1::'a) * C y goal (1 subgoal): 1. C x * y \<le> x * C y [PROOF STEP] also [PROOF STATE] proof (state) this: C x * y \<le> C x * (1::'a) * C y goal (1 subgoal): 1. C x * y \<le> x * C y [PROOF STEP] have "... \<le> x * C y" [PROOF STATE] proof (prove) goal (1 subgoal): 1. C x * (1::'a) * C y \<le> x * C y [PROOF STEP] by (simp add: mult_right_sub_dist_inf_right) [PROOF STATE] proof (state) this: C x * (1::'a) * C y \<le> x * C y goal (1 subgoal): 1. C x * y \<le> x * C y [PROOF STEP] finally [PROOF STATE] proof (chain) picking this: C x * y \<le> x * C y [PROOF STEP] show ?thesis [PROOF STATE] proof (prove) using this: C x * y \<le> x * C y goal (1 subgoal): 1. C x * y \<le> x * C y [PROOF STEP] . [PROOF STATE] proof (state) this: C x * y \<le> x * C y goal: No subgoals! [PROOF STEP] qed
(* * Copyright 2020, Data61, CSIRO (ABN 41 687 119 230) * * SPDX-License-Identifier: BSD-2-Clause *) theory ListLibLemmas imports List_Lib LemmaBucket begin (* This theory contains various list results that are used in proofs related to the abstract cdt_list.*) (* Sorting a list given a partial ordering, where elements are only necessarily comparable if relation R holds between them. *) locale partial_sort = fixes less :: "'a \<Rightarrow> 'a \<Rightarrow> bool" fixes R :: "'a \<Rightarrow> 'a \<Rightarrow> bool" assumes all_comp: "\<And>x y. R x y \<Longrightarrow> (less x y \<or> less y x)" (*This is only necessary to guarantee the uniqueness of sorted lists. *) assumes antisym: "\<And>x y. R x y \<Longrightarrow> less x y \<and> less y x \<Longrightarrow> x = y" assumes trans: "\<And>x y z. less x y \<Longrightarrow> less y z \<Longrightarrow> less x z" begin primrec pinsort :: " 'a \<Rightarrow> 'a list \<Rightarrow> 'a list" where "pinsort x [] = [x]" | "pinsort x (y#ys) = (if (less x y) then (x#y#ys) else y#(pinsort x ys))" inductive psorted :: "'a list \<Rightarrow> bool" where Nil [iff]: "psorted []" | Cons: "\<forall>y\<in>set xs. less x y \<Longrightarrow> psorted xs \<Longrightarrow> psorted (x # xs)" definition R_set where "R_set S \<equiv> \<forall>x y. x \<in> S \<longrightarrow> y \<in> S \<longrightarrow> R x y" abbreviation R_list where "R_list xs \<equiv> R_set (set xs)" definition psort :: "'a list \<Rightarrow> 'a list" where "psort xs = foldr pinsort xs []" end context partial_sort begin lemma psorted_Cons: "psorted (x#xs) = (psorted xs & (\<forall> y \<in> set xs. less x y))" apply (rule iffI) apply (erule psorted.cases,simp) apply clarsimp apply (rule psorted.Cons,clarsimp+) done lemma psorted_distinct_set_unique: assumes "psorted xs" "distinct xs" "psorted ys" "distinct ys" "set xs = set ys" "R_list xs" shows "xs = ys" proof - from assms have 1: "length xs = length ys" by (auto dest!: distinct_card) from assms show ?thesis proof(induct rule:list_induct2[OF 1]) case 1 show ?case by simp next case 2 thus ?case by (simp add: psorted_Cons R_set_def) (metis Diff_insert_absorb antisym insertE insert_iff) qed qed lemma pinsort_set: "set (pinsort a xs) = insert a (set xs)" apply (induct xs) apply simp apply simp apply blast done lemma all_comp': "R x y \<Longrightarrow> \<not>less x y \<Longrightarrow> less y x" apply (cut_tac x=x and y=y in all_comp,simp+) done lemma pinsort_sorted: "R_set (insert a (set xs)) \<Longrightarrow> psorted xs \<Longrightarrow> psorted (pinsort a xs)" apply (induct xs arbitrary: a) apply (simp add: psorted_Cons) apply (simp add: psorted_Cons) apply clarsimp apply (simp add: pinsort_set) apply (intro impI conjI) apply (intro ballI) apply (drule_tac x=x in bspec) apply simp apply (frule(1) trans) apply simp apply (simp add: R_set_def) apply (rule all_comp') apply (simp add: R_set_def) apply simp done lemma psort_set: "set (psort xs) = set xs" apply (simp add: psort_def) apply (induct xs) apply simp apply (simp add: pinsort_set) done lemma psort_psorted: "R_list xs \<Longrightarrow> psorted (psort xs)" apply (simp add: psort_def) apply (induct xs) apply simp apply simp apply (cut_tac xs =xs in psort_set) apply (simp add: psort_def) apply (rule pinsort_sorted) apply simp apply (simp add: R_set_def) done lemma insort_length: "length (pinsort a xs) = Suc (length xs)" apply (induct xs) apply simp apply simp done lemma psort_length: "length (psort xs) = length xs" apply (simp add: psort_def) apply (induct xs) apply simp apply simp apply (simp add: insort_length) done lemma pinsort_distinct: "\<lbrakk>a \<notin> set xs; distinct xs\<rbrakk> \<Longrightarrow> distinct (pinsort a xs)" apply (induct xs) apply simp apply (clarsimp simp add: pinsort_set) done lemma psort_distinct: "distinct xs \<Longrightarrow> distinct (psort xs)" apply (simp add: psort_def) apply (induct xs) apply simp apply simp apply (rule pinsort_distinct) apply (fold psort_def) apply (simp add: psort_set)+ done lemma in_can_split: "y \<in> set list \<Longrightarrow> \<exists>ys xs. list = xs @ (y # ys)" apply (induct list) apply simp apply clarsimp apply (elim disjE) apply simp apply force apply simp apply (elim exE) apply simp apply (rule_tac x=ys in exI) apply force done lemma lsorted_sorted: assumes lsorted: "\<And>x y xs ys . list = xs @ (x # y # ys) \<Longrightarrow> less x y" shows "psorted list" apply (insert lsorted) apply atomize apply simp apply (induct list) apply simp apply (simp add: psorted_Cons) apply (rule context_conjI) apply (erule meta_mp) apply clarsimp apply (drule_tac x="a#xs" in spec) apply (drule_tac x=x in spec) apply (drule_tac x=y in spec) apply (erule mp) apply force apply (intro ballI) apply clarsimp apply (drule in_can_split) apply (elim exE) apply (drule_tac x="[]" in spec) apply simp apply (case_tac xs) apply simp apply (clarsimp simp add: psorted_Cons) apply (blast intro: trans) done lemma psorted_set: "finite A \<Longrightarrow> R_set A \<Longrightarrow> \<exists>!xs. set xs = A \<and> psorted xs \<and> distinct xs" apply (drule finite_distinct_list) apply clarify apply (rule_tac a="psort xs" in ex1I) apply (auto simp: psorted_distinct_set_unique psort_set psort_psorted psort_distinct) done end text \<open>These list operations roughly correspond to cdt operations.\<close> lemma after_can_split: "after_in_list list x = Some y \<Longrightarrow> \<exists>ys xs. list = xs @ (x # y # ys)" apply (induct list x rule: after_in_list.induct) apply simp+ apply (simp split: if_split_asm) apply force apply (elim exE) apply simp apply (rule_tac x="ys" in exI) apply simp done lemma distinct_inj_middle: "distinct list \<Longrightarrow> list = (xa @ x # xb) \<Longrightarrow> list = (ya @ x # yb) \<Longrightarrow> xa = ya \<and> xb = yb" apply (induct list arbitrary: xa ya) apply simp apply clarsimp apply (case_tac "xa") apply simp apply (case_tac "ya") apply simp apply clarsimp apply clarsimp apply (case_tac "ya") apply (simp (no_asm_simp)) apply simp apply clarsimp done lemma after_can_split_distinct: "distinct list \<Longrightarrow> after_in_list list x = Some y \<Longrightarrow> \<exists>!ys. \<exists>!xs. list = xs @ (x # y # ys)" apply (frule after_can_split) apply (elim exE) apply (rule ex1I) apply (rule ex1I) apply assumption apply simp apply (elim ex1E) apply (thin_tac "\<forall>x. P x" for P) apply (frule_tac yb="y#ysa" in distinct_inj_middle,assumption+) apply simp done lemma after_ignore_head: "x \<notin> set list \<Longrightarrow> after_in_list (list @ list') x = after_in_list list' x" apply (induct list x rule: after_in_list.induct) apply simp apply simp apply (case_tac list',simp+) done lemma after_distinct_one_sibling: "distinct list \<Longrightarrow> list = xs @ x # y # ys \<Longrightarrow> after_in_list list x = Some y" apply (induct xs) apply simp apply simp apply clarsimp apply (subgoal_tac "after_in_list ((a # xs) @ (x # y # ys)) x = after_in_list (x # y # ys) x") apply simp apply (rule after_ignore_head) apply simp done lemma (in partial_sort) after_order_sorted: assumes after_order: "\<And>x y. after_in_list list x = Some y \<Longrightarrow> less x y" assumes distinct: "distinct list" shows "psorted list" apply (rule lsorted_sorted) apply (rule after_order) apply (erule after_distinct_one_sibling[OF distinct]) done lemma hd_not_after_in_list: "\<lbrakk>distinct xs; x \<notin> set xs\<rbrakk> \<Longrightarrow> after_in_list (x # xs) a \<noteq> Some x" apply (induct xs a rule: after_in_list.induct) apply simp+ apply fastforce done lemma after_in_list_inj: "\<lbrakk>distinct list; after_in_list list a = Some x; after_in_list list b = Some x\<rbrakk> \<Longrightarrow> a = b" apply(induct list) apply(simp) apply(simp) apply(case_tac "a=aa") apply(case_tac list, simp) apply(simp add: hd_not_after_in_list split: if_split_asm) apply(case_tac list, simp) apply(simp add: hd_not_after_in_list split: if_split_asm) done lemma list_replace_ignore:"a \<notin> set list \<Longrightarrow> list_replace list a b = list" apply (simp add: list_replace_def) apply (induct list,clarsimp+) done lemma list_replace_empty[simp]: "list_replace [] a b = []" by (simp add: list_replace_def) lemma list_replace_empty2[simp]: "(list_replace list a b = []) = (list = [])" by (simp add: list_replace_def) lemma after_in_list_list_replace: "\<lbrakk>p \<noteq> dest; p \<noteq> src; after_in_list list p = Some src\<rbrakk> \<Longrightarrow> after_in_list (list_replace list src dest) p = Some dest" apply (simp add: list_replace_def) apply (induct list) apply simp+ apply (case_tac list) apply simp+ apply (intro conjI impI,simp+) done lemma replace_list_preserve_after: "dest \<notin> set list \<Longrightarrow> distinct list \<Longrightarrow> after_in_list (list_replace list src dest) dest = after_in_list list src" apply (simp add: list_replace_def) apply (induct list src rule: after_in_list.induct) apply (simp+) apply fastforce done lemma replace_list_preserve_after': "\<lbrakk>p \<noteq> dest; p \<noteq> src; after_in_list list p \<noteq> Some src\<rbrakk> \<Longrightarrow> after_in_list (list_replace list src dest) p = after_in_list list p" apply (simp add: list_replace_def) apply (induct list p rule: after_in_list.induct) apply (simp+) apply fastforce done lemma distinct_after_in_list_not_self: "distinct list \<Longrightarrow> after_in_list list src \<noteq> Some src" apply (induct list,simp+) apply (case_tac list,clarsimp+) done lemma set_list_insert_after: "set (list_insert_after list a b) = set list \<union> (if a \<in> set list then {b} else {})" apply(induct list) apply(simp) apply(simp) done lemma distinct_list_insert_after: "\<lbrakk>distinct list; b \<notin> set list \<or> a \<notin> set list\<rbrakk> \<Longrightarrow> distinct (list_insert_after list a b)" apply(induct list) apply(simp) apply(fastforce simp: set_list_insert_after) done lemma list_insert_after_after: "\<lbrakk>distinct list; b \<notin> set list; a \<in> set list\<rbrakk> \<Longrightarrow> after_in_list (list_insert_after list a b) p = (if p = a then Some b else if p = b then after_in_list list a else after_in_list list p)" apply(induct list p rule: after_in_list.induct) apply (simp split: if_split_asm)+ apply fastforce done lemma list_remove_removed: "set (list_remove list x) = (set list) - {x}" apply (induct list,simp+) apply blast done lemma remove_distinct_helper: "\<lbrakk>distinct (list_remove list x); a \<noteq> x; a \<notin> set list; distinct list\<rbrakk> \<Longrightarrow> a \<notin> set (list_remove list x)" apply (induct list) apply (simp split: if_split_asm)+ done lemma list_remove_distinct: "distinct list \<Longrightarrow> distinct (list_remove list x)" apply (induct list) apply (simp add: remove_distinct_helper split: if_split_asm)+ done lemma list_remove_none: "x \<notin> set list \<Longrightarrow> list_remove list x = list" apply (induct list) apply clarsimp+ done lemma replace_distinct: "x \<notin> set list \<Longrightarrow> distinct list \<Longrightarrow> distinct (list_replace list y x)" apply (induct list) apply (simp add: list_replace_def)+ apply blast done lemma set_list_replace_list: "\<lbrakk>distinct list; slot \<in> set list; slot \<notin> set list'\<rbrakk> \<Longrightarrow> set (list_replace_list list slot list') = set list \<union> set list' - {slot}" apply (induct list) apply auto done lemma after_in_list_in_list: "after_in_list list a = Some b \<Longrightarrow> b \<in> set list" apply(induct list a arbitrary: b rule: after_in_list.induct) apply (simp split: if_split_asm)+ done lemma list_replace_empty_after_empty: "\<lbrakk>after_in_list list p = Some slot; distinct list\<rbrakk> \<Longrightarrow> after_in_list (list_replace_list list slot []) p = after_in_list list slot" apply(induct list slot rule: after_in_list.induct) apply (simp split: if_split_asm)+ apply (case_tac xs,simp+) apply (case_tac xs,simp+) apply (auto dest!: after_in_list_in_list) done lemma list_replace_after_fst_list: "\<lbrakk>after_in_list list p = Some slot; distinct list\<rbrakk> \<Longrightarrow> after_in_list (list_replace_list list slot (x # xs)) p = Some x" apply(induct list p rule: after_in_list.induct) apply (simp split: if_split_asm)+ apply (drule after_in_list_in_list)+ apply force done lemma after_in_list_append_notin_hd: "p \<notin> set list' \<Longrightarrow> after_in_list (list' @ list) p = after_in_list list p" apply(induct list', simp, simp) apply(case_tac list', simp) apply(case_tac list, simp+) done lemma after_in_list_append_last_hd: "\<lbrakk>p \<in> set list'; after_in_list list' p = None\<rbrakk> \<Longrightarrow> after_in_list (list' @ x # xs) p = Some x" apply(induct list' p rule: after_in_list.induct) apply(simp) apply(simp) apply(simp split: if_split_asm) done lemma after_in_list_append_in_hd: "after_in_list list p = Some a \<Longrightarrow> after_in_list (list @ list') p = Some a" apply(induct list p rule: after_in_list.induct) apply(simp split: if_split_asm)+ done lemma after_in_list_in_list': "after_in_list list a = Some y \<Longrightarrow> a \<in> set list" apply (induct list a rule: after_in_list.induct) apply simp+ apply force done lemma list_replace_after_None_notin_new: "\<lbrakk>after_in_list list p = None; p \<notin> set list'\<rbrakk> \<Longrightarrow> after_in_list (list_replace_list list slot list') p = None" apply(induct list) apply(simp) apply(simp) apply(intro conjI impI) apply(simp) apply(case_tac list, simp) apply(induct list') apply(simp) apply(simp) apply(case_tac list', simp, simp) apply(simp split: if_split_asm) apply(simp add: after_in_list_append_notin_hd) apply(simp add: after_in_list_append_notin_hd) apply(case_tac "list_replace_list list slot list'") apply(simp) apply(simp) apply(case_tac list, simp, simp split: if_split_asm) done lemma list_replace_after_notin_new: "\<lbrakk>after_in_list list p = Some a; a \<noteq> slot; p \<notin> set list'; p \<noteq> slot\<rbrakk> \<Longrightarrow> after_in_list (list_replace_list list slot list') p = Some a" apply(induct list) apply(simp) apply(simp) apply(intro conjI impI) apply(simp add: after_in_list_append_notin_hd) apply(case_tac list, simp, simp) apply(case_tac list, simp, simp split: if_split_asm) apply(insert after_in_list_append_notin_hd) apply(atomize) apply(erule_tac x=p in allE, erule_tac x="[aa]" in allE, erule_tac x="list' @ lista" in allE) apply(simp) done lemma list_replace_after_None_notin_old: "\<lbrakk>after_in_list list' p = None; p \<in> set list'; p \<notin> set list\<rbrakk> \<Longrightarrow> after_in_list (list_replace_list list slot list') p = after_in_list list slot" apply(induct list) apply(simp) apply(simp) apply(intro conjI impI) apply(simp) apply(case_tac list) apply(simp) apply(simp add: after_in_list_append_last_hd) apply(case_tac "list_replace_list list slot list'") apply(simp) apply(case_tac list, simp, simp) apply(simp) apply(case_tac list, simp, simp) done lemma list_replace_after_notin_old: "\<lbrakk>after_in_list list' p = Some a; p \<notin> set list; slot \<in> set list\<rbrakk> \<Longrightarrow> after_in_list (list_replace_list list slot list') p = Some a" apply(induct list) apply(simp) apply(simp) apply(intro conjI impI) apply(simp add: after_in_list_append_in_hd) apply(simp) apply(case_tac "list_replace_list list slot list'") apply(simp) apply(simp) done lemma list_replace_set: "x \<in> set list \<Longrightarrow> set (list_replace list x y) = insert y (set (list) - {x})" apply (induct list) apply (simp add: list_replace_def)+ apply (intro impI conjI) apply blast+ done lemma list_swap_both: "x \<in> set list \<Longrightarrow> y \<in> set list \<Longrightarrow> set (list_swap list x y) = set (list)" apply (induct list) apply (simp add: list_swap_def)+ apply (intro impI conjI) apply blast+ done lemma list_swap_self[simp]: "list_swap list x x = list" apply (simp add: list_swap_def) done lemma map_ignore: "x \<notin> set list \<Longrightarrow> (map (\<lambda>xa. if xa = x then y else xa) list) = list" apply (induct list) apply simp+ apply blast done lemma map_ignore2: "y \<notin> set list \<Longrightarrow> (map (\<lambda>xa. if xa = x then y else if xa = y then x else xa) list) = (map (\<lambda>xa. if xa = x then y else xa) list)" apply (simp add: map_ignore) done lemma map_ignore2': "y \<notin> set list \<Longrightarrow> (map (\<lambda>xa. if xa = y then x else if xa = x then y else xa) list) = (map (\<lambda>xa. if xa = x then y else xa) list)" apply (simp add: map_ignore) apply force done lemma swap_distinct_helper: "\<lbrakk>x \<in> set list; y \<noteq> x; y \<notin> set list; distinct list\<rbrakk> \<Longrightarrow> distinct (map (\<lambda>xa. if xa = x then y else xa) list)" apply (induct list) apply (simp add: map_ignore | elim conjE | intro impI conjI | blast)+ done lemma swap_distinct: "x \<in> set list \<Longrightarrow> y \<in> set list \<Longrightarrow> distinct list \<Longrightarrow> distinct (list_swap list x y)" apply (induct list) apply (simp add: list_swap_def)+ apply (intro impI conjI,simp_all) apply (simp add: map_ignore2 map_ignore2' swap_distinct_helper | elim conjE | force)+ done lemma list_swap_none: "x \<notin> set list \<Longrightarrow> y \<notin> set list \<Longrightarrow> list_swap list x y = list" apply (induct list) apply (simp add: list_swap_def)+ apply blast done lemma list_swap_one: "x \<in> set list \<Longrightarrow> y \<notin> set list \<Longrightarrow> set (list_swap list x y) = insert y (set (list)) - {x}" apply (induct list) apply (simp add: list_swap_def)+ apply (intro impI conjI) apply blast+ done lemma list_swap_one': "x \<notin> set list \<Longrightarrow> y \<in> set list \<Longrightarrow> set (list_swap list x y) = insert x (set (list)) - {y}" apply (induct list) apply (simp add: list_swap_def)+ apply (intro impI conjI) apply blast+ done lemma in_swapped_list: "y \<in> set list \<Longrightarrow> x \<in> set (list_swap list x y)" apply (case_tac "x \<in> set list") apply (simp add: list_swap_both) apply (simp add: list_swap_one') apply (intro notI,simp) done lemma list_swap_empty : "(list_swap list x y = []) = (list = [])" by(simp add: list_swap_def) lemma distinct_after_in_list_antisym: "distinct list \<Longrightarrow> after_in_list list a = Some b \<Longrightarrow> after_in_list list b \<noteq> Some a" apply (induct list b arbitrary: a rule: after_in_list.induct) apply simp+ apply (case_tac xs) apply (clarsimp split: if_split_asm | intro impI conjI)+ done lemma after_in_listD: "after_in_list list x = Some y \<Longrightarrow> \<exists>xs ys. list = xs @ (x # y # ys) \<and> x \<notin> set xs" apply (induct list x arbitrary: a rule: after_in_list.induct) apply (simp split: if_split_asm | elim exE | force)+ apply (rule_tac x="x # xsa" in exI) apply simp done lemma list_swap_symmetric: "list_swap list a b = list_swap list b a" apply (simp add: list_swap_def) done lemma list_swap_preserve_after: "\<lbrakk>desta \<notin> set list; distinct list\<rbrakk> \<Longrightarrow> after_in_list (list_swap list srca desta) desta = after_in_list list srca" apply (induct list desta rule: after_in_list.induct) apply (simp add: list_swap_def)+ apply force done lemma list_swap_preserve_after': "\<lbrakk>p \<noteq> desta; p \<noteq> srca; after_in_list list p = Some srca\<rbrakk> \<Longrightarrow> after_in_list (list_swap list srca desta) p = Some desta" apply (induct list p rule: after_in_list.induct) apply (simp add: list_swap_def)+ apply force done lemma list_swap_does_swap: "\<lbrakk>distinct list; after_in_list list desta = Some srca\<rbrakk> \<Longrightarrow> after_in_list (list_swap list srca desta) srca = Some desta" apply (induct list srca rule: after_in_list.induct) apply (simp add: list_swap_def)+ apply (elim conjE) apply (intro impI conjI,simp_all) apply (frule after_in_list_in_list,simp)+ done lemma list_swap_does_swap': "distinct list \<Longrightarrow> after_in_list list srca = Some desta \<Longrightarrow> after_in_list (list_swap list srca desta) srca = after_in_list list desta" apply (induct list srca rule: after_in_list.induct) apply (simp add: list_swap_def)+ apply (elim conjE) apply (intro impI conjI,simp_all) apply (case_tac xs) apply (clarsimp+)[2] apply (case_tac xs) apply clarsimp+ done lemmas list_swap_preserve_after'' = list_swap_preserve_after'[simplified list_swap_symmetric] lemma list_swap_preserve_Some_other: "\<lbrakk>z \<noteq> desta; z \<noteq> srca; after_in_list list srca = Some z\<rbrakk> \<Longrightarrow> after_in_list (list_swap list srca desta) desta = Some z" apply (induct list srca rule: after_in_list.induct) apply (simp add: list_swap_def)+ apply force done lemmas list_swap_preserve_Some_other' = list_swap_preserve_Some_other[simplified list_swap_symmetric] lemma list_swap_preserve_None: "\<lbrakk>after_in_list list srca = None\<rbrakk> \<Longrightarrow> after_in_list (list_swap list desta srca) desta = None" apply (induct list srca rule: after_in_list.induct) apply (simp add: list_swap_def)+ apply force done lemma list_swap_preserve_None': "\<lbrakk>after_in_list list srca = None\<rbrakk> \<Longrightarrow> after_in_list (list_swap list srca desta) desta = None" apply (subst list_swap_symmetric) apply (erule list_swap_preserve_None) done lemma list_swap_preserve_after_None: "\<lbrakk>p \<noteq> desta; p \<noteq> srca; after_in_list list p = None\<rbrakk> \<Longrightarrow> after_in_list (list_swap list srca desta) p = None" apply (induct list p rule: after_in_list.induct) apply (simp add: list_swap_def)+ apply force done lemma list_swap_preserve_Some_other_distinct: "\<lbrakk>distinct list; z \<noteq> desta; after_in_list list srca = Some z\<rbrakk> \<Longrightarrow> after_in_list (list_swap list srca desta) desta = Some z" apply (rule list_swap_preserve_Some_other) apply simp+ apply (rule notI) apply simp apply (frule distinct_after_in_list_not_self[where src=srca]) apply simp+ done lemma list_swap_preserve_separate: "\<lbrakk>p \<noteq> desta; p \<noteq> srca; z \<noteq> desta; z \<noteq> srca; after_in_list list p = Some z\<rbrakk> \<Longrightarrow> after_in_list (list_swap list srca desta) p = Some z" apply (induct list p rule: after_in_list.induct) apply (simp add: list_swap_def split: if_split_asm)+ apply (intro impI conjI) apply simp+ done fun after_in_list_list where "after_in_list_list [] a = []" | "after_in_list_list (x # xs) a = (if a = x then xs else after_in_list_list xs a)" lemma after_in_list_list_in_list: notes split_paired_All[simp del] split_paired_Ex[simp del] shows "y \<in> set (after_in_list_list list x) \<Longrightarrow> y \<in> set list" apply(induct list arbitrary:x y) apply(simp) apply(case_tac "x=a", simp+) done lemma range_nat_relation_induct: "\<lbrakk> m = Suc (n + k) ; m < cap ; \<forall>n. Suc n < cap \<longrightarrow> P n (Suc n ); \<forall>i j k. i < cap \<and> j < cap \<and> k < cap \<longrightarrow> P i j \<longrightarrow> P j k \<longrightarrow> P i k \<rbrakk> \<Longrightarrow> P n m" apply (clarify) apply (thin_tac "m = t" for t) apply (induct k) apply (drule_tac x = "n" in spec) apply (erule impE, simp, simp) apply (frule_tac x = "Suc (n + k)" in spec) apply (erule impE) apply (simp only: add_Suc_right) apply (rotate_tac 3, frule_tac x = n in spec) apply (rotate_tac -1, drule_tac x = "Suc (n + k)" in spec) apply (rotate_tac -1, drule_tac x = "Suc (n + Suc k) " in spec) apply (erule impE) apply (intro conjI) apply (rule_tac y = "Suc (n + Suc k)" in less_trans) apply (rule less_SucI) apply (simp only: add_Suc_right)+ done lemma indexed_trancl_as_set_helper : "\<lbrakk>p < q; q < length list; list ! p = a; list ! q = b; q = Suc (p + k); Suc n < length list\<rbrakk> \<Longrightarrow> (a, b) \<in> {(i, j). \<exists>p. Suc p <length list \<and> list ! p = i \<and> list ! Suc p = j}\<^sup>+" apply (induct k arbitrary: p q a b) apply (rule r_into_trancl,simp, rule_tac x = p in exI, simp) apply (atomize) apply (erule_tac x = p in allE, erule_tac x = "Suc (p + k)" in allE, erule_tac x = "a" in allE, erule_tac x = "list ! Suc (p + k)" in allE) apply (elim impE) apply (simp)+ apply (rule_tac b = "list ! Suc (p + k)" in trancl_into_trancl) apply (simp)+ apply (rule_tac x = "Suc (p + k)" in exI, simp) done lemma indexed_trancl_as_set: "distinct list \<Longrightarrow> {(i, j). \<exists> p q. p < q \<and> q < length list \<and> list ! p = i \<and> list ! q = j } = {(i, j). \<exists> p. Suc p < length list \<and> list ! p = i \<and> list ! Suc p = j }\<^sup>+" apply (rule equalityI) apply (rule subsetI) apply (case_tac x, simp) apply (elim exE conjE) apply (frule less_imp_Suc_add) apply (erule exE) apply (rule_tac cap = "length list" and m = q and n = p and k = k in range_nat_relation_induct) apply (simp) apply (simp) apply (rule allI, rule impI) apply (rule_tac p = p and q = q and k = k and n = n in indexed_trancl_as_set_helper) apply (simp)+ apply (rule subsetI) apply (case_tac x, simp) apply (erule trancl_induct) apply (simp, elim exE conjE) apply (rule_tac x = p in exI, rule_tac x = "Suc p" in exI, simp) apply (simp) apply (rotate_tac 4, erule exE, rule_tac x = p in exI) apply (erule exE, rule_tac x = "Suc pa" in exI) apply (intro conjI) defer apply (simp) apply (erule exE, simp) apply (simp) apply (erule exE) apply (subgoal_tac "pa = q") apply (simp) apply (frule_tac xs = list and i = pa and j = q in nth_eq_iff_index_eq) apply (simp)+ done lemma indexed_trancl_irrefl: "distinct list \<Longrightarrow> (x,x) \<notin> {(i, j). \<exists> p. Suc p < length list \<and> list ! p = i \<and> list ! Suc p = j }\<^sup>+" apply (frule indexed_trancl_as_set [THEN sym]) apply (simp) apply (intro allI impI notI) apply (frule_tac xs = list and i = p and j = q in nth_eq_iff_index_eq) apply (simp+) done lemma after_in_list_trancl_indexed_trancl: "distinct list \<Longrightarrow> {(p, q). after_in_list list p = Some q}\<^sup>+ = {(i, j). \<exists> p. Suc p < length list \<and> list ! p = i \<and> list ! Suc p = j }\<^sup>+" apply (rule_tac f = "\<lambda> x. x\<^sup>+" in arg_cong) apply (intro equalityI subsetI) apply (case_tac x, simp) apply (induct list) apply (simp) apply (case_tac "a = aa") apply (rule_tac x = 0 in exI, case_tac list, simp, simp) apply (case_tac list, simp, simp) apply (atomize, drule_tac x = x in spec, drule_tac x = aa in spec, drule_tac x = b in spec, simp) apply (erule exE, rule_tac x = "Suc p" in exI, simp) apply (case_tac x, simp) apply (induct list) apply (simp) apply (case_tac "a = aa") apply (erule exE) apply (subgoal_tac "p = 0") apply (case_tac list, simp, simp) apply (subgoal_tac "distinct (aa # list)") apply (frule_tac i = 0 and j = p and xs = "aa # list" in nth_eq_iff_index_eq) apply (simp, simp, simp, simp) apply (atomize, drule_tac x = x in spec, drule_tac x = aa in spec, drule_tac x = b in spec, simp) apply (drule mp) apply (erule exE) apply (case_tac p, simp, simp) apply (rule_tac x = nat in exI, simp) apply (case_tac list, simp, simp) done lemma distinct_after_in_list_not_self_trancl: notes split_paired_All[simp del] split_paired_Ex[simp del] shows "distinct list \<Longrightarrow> (x, x) \<notin> {(p, q). after_in_list list p = Some q}\<^sup>+" by (simp add: after_in_list_trancl_indexed_trancl indexed_trancl_irrefl) lemma distinct_after_in_list_in_list_trancl: notes split_paired_All[simp del] split_paired_Ex[simp del] shows "\<lbrakk>distinct list; (x, y) \<in> {(p, q). after_in_list list q = Some p}\<^sup>+\<rbrakk> \<Longrightarrow> x \<in> set list" by(erule tranclE2, (drule CollectD, simp, drule after_in_list_in_list, simp)+) lemma after_in_list_trancl_prepend: notes split_paired_All[simp del] split_paired_Ex[simp del] shows "\<lbrakk>distinct (y # list); x \<in> set list\<rbrakk> \<Longrightarrow> (y, x) \<in> {(n, p). after_in_list (y # list) n = Some p}\<^sup>+" apply(induct list arbitrary:x y) apply(simp) apply(case_tac "x=a") apply(rule r_into_trancl) apply(simp) apply(drule set_ConsD) apply(elim disjE) apply(simp) apply(atomize) apply(drule_tac x=x in spec) apply(drule_tac x=y in spec) apply(drule_tac mp) apply(simp) apply(drule_tac mp) apply(simp) apply(erule trancl_induct) apply(drule CollectD, simp) apply(rule_tac b = a in trancl_into_trancl2) apply(simp) apply(rule r_into_trancl) apply(rule_tac a = "(a,ya)" in CollectI) apply(clarsimp) apply(case_tac list) apply(simp) apply(simp) apply(case_tac "ya=a") apply(drule CollectD) apply(simp del:after_in_list.simps) apply(drule after_in_list_in_list') apply(simp) apply(rule_tac b=ya in trancl_into_trancl) apply(simp) apply(drule CollectD) apply(rule CollectI) apply(case_tac "ya=y") apply(frule_tac x=y in distinct_after_in_list_not_self_trancl) apply(simp) apply(case_tac list) apply(simp) apply(simp) done lemma after_in_list_append_not_hd: notes split_paired_All[simp del] split_paired_Ex[simp del] shows "a \<noteq> x \<Longrightarrow> after_in_list (a # list) x = after_in_list list x" by (case_tac list, simp, simp) lemma trancl_Collect_rev: "(a, b) \<in> {(x, y). P x y}\<^sup>+ \<Longrightarrow> (b, a) \<in> {(x, y). P y x}\<^sup>+" apply(induct rule: trancl_induct) apply(fastforce intro: trancl_into_trancl2)+ done lemma prepend_after_in_list_distinct : "distinct (a # list) \<Longrightarrow> {(next, p). after_in_list (a # list) p = Some next}\<^sup>+ = {(next, p). after_in_list (list) p = Some next}\<^sup>+ \<union> set list \<times> {a} " apply (rule equalityI) (* \<subseteq> direction *) apply (rule subsetI, case_tac x) apply (simp) apply (erule trancl_induct) (* base case *) apply (drule CollectD, simp) apply (case_tac list, simp) apply (simp split:if_split_asm) apply (rule r_into_trancl) apply (rule CollectI, simp) (* Inductive case *) apply (drule CollectD, simp) apply (erule disjE) apply (case_tac "a \<noteq> z") apply (rule disjI1) apply (rule_tac b =y in trancl_into_trancl) apply (simp, case_tac list, simp, simp) apply (simp) apply (rule disjI2) apply (erule conjE) apply (frule_tac x = aa and y = y in distinct_after_in_list_in_list_trancl) apply (simp) apply (simp) apply (subgoal_tac "after_in_list (a # list) z \<noteq> Some a", simp) apply (rule_tac hd_not_after_in_list, simp, simp) (* \<supseteq> direction *) apply (rule subsetI) apply (case_tac x) apply (simp) apply (erule disjE) (* transitive case *) apply (erule tranclE2) apply (drule CollectD, simp) apply (subgoal_tac "b \<noteq> a") apply (rule r_into_trancl) apply (rule CollectI, simp) apply (case_tac list, simp, simp) apply (frule after_in_list_in_list') apply (erule conjE) apply (blast) apply (rule_tac y = c in trancl_trans) apply (subgoal_tac "c \<noteq> a") apply (case_tac list, simp, simp) apply (case_tac "aaa = aa") apply (rule r_into_trancl) apply (rule CollectI, simp) apply (rule r_into_trancl) apply (rule CollectI, simp) apply (erule CollectE, simp) apply (frule after_in_list_in_list') apply (erule conjE, blast) apply (erule trancl_induct) apply (simp) apply (rule r_into_trancl, simp) apply (subgoal_tac "y \<noteq> a") apply (case_tac list, simp, simp) apply (rotate_tac 3) apply (frule after_in_list_in_list') apply (erule conjE, blast) apply (rule_tac b = y in trancl_into_trancl, simp) apply (rule CollectI, simp) apply (subgoal_tac "a \<noteq> z") apply (case_tac list, simp, simp) apply (rotate_tac 3) apply (frule after_in_list_in_list') apply (blast) (* not so transitive case *) apply (subgoal_tac "distinct (a # list)") apply (frule_tac x = aa in after_in_list_trancl_prepend, simp, simp) apply (rule trancl_Collect_rev, simp) apply (simp) done lemma after_in_list_in_cons: notes split_paired_All[simp del] split_paired_Ex[simp del] shows "\<lbrakk>after_in_list (x # xs) y = Some z; distinct (x # xs); y \<in> set xs\<rbrakk> \<Longrightarrow> z \<in> set xs" apply(case_tac "y=x") apply(simp) apply(simp add:after_in_list_append_not_hd after_in_list_in_list) done lemma after_in_list_list_set: notes split_paired_All[simp del] split_paired_Ex[simp del] shows "distinct list \<Longrightarrow> set (after_in_list_list list x) = {a. (a, x) \<in> {(next, p). after_in_list list p = Some next}\<^sup>+}" apply(intro equalityI) (* \<subseteq> *) apply(induct list arbitrary:x) apply(simp) apply(atomize) apply(simp) apply(rule conjI, rule impI, rule subsetI) apply(rule_tac a = xa in CollectI) apply(rule trancl_Collect_rev) apply(rule after_in_list_trancl_prepend) apply(simp) apply(simp) apply(clarify) apply(drule_tac x=x in spec) apply(drule_tac B="{a. (a, x) \<in> {(next, p). after_in_list list p = Some next}\<^sup>+}" in set_rev_mp) apply(simp) apply(drule CollectD) apply(simp add:prepend_after_in_list_distinct) (* \<supseteq> *) apply(clarsimp) apply(drule trancl_Collect_rev) apply(erule trancl_induct) (* base *) apply(simp) apply(induct list arbitrary:x) apply(simp) apply(case_tac "a=x") apply(frule_tac src=x in distinct_after_in_list_not_self) apply(simp) apply(drule after_in_list_in_list) apply(simp)+ apply(drule_tac list=list in after_in_list_append_not_hd) apply(simp) (* inductive *) apply(simp) apply(drule trancl_Collect_rev) apply(induct list arbitrary: x) apply(simp) apply(case_tac "a\<noteq>x") (* a\<noteq>x *) apply(atomize, drule_tac x=y in spec, drule_tac x=z in spec, drule_tac x=x in spec) apply(simp add:prepend_after_in_list_distinct) apply(case_tac "a=y") apply(simp add:after_in_list_list_in_list) apply(simp add:after_in_list_append_not_hd) (* a=x *) apply(frule after_in_list_in_cons, simp+) done lemma list_eq_after_in_list': "\<lbrakk> distinct xs; p = xs ! i; i < length xs \<rbrakk> \<Longrightarrow> \<exists>list. xs = list @ p # after_in_list_list xs p" apply (induct xs arbitrary: i) apply (simp) apply (atomize) apply (case_tac i) apply (simp) apply (drule_tac x = nat in spec, simp) apply (erule exE, rule impI, rule_tac x = "a # list" in exI) apply (simp) done lemma after_in_list_last_None: "distinct list \<Longrightarrow> after_in_list list (last list) = None" apply(induct list) apply(simp) apply(case_tac list) apply(simp) apply(fastforce split: if_split_asm) done lemma after_in_list_None_last: "\<lbrakk>after_in_list list x = None; x \<in> set list\<rbrakk> \<Longrightarrow> x = last list" by (induct list x rule: after_in_list.induct,(simp split: if_split_asm)+) lemma map2_append1: "map2 f (as @ bs) cs = map2 f as (take (length as) cs) @ map2 f bs (drop (length as) cs)" by (simp add: map_def zip_append1) end
[STATEMENT] lemma INV_from_Refinement_using_invariants: assumes "refines R pi Sa Sc" "Range (R \<inter> I \<times> J) \<subseteq> K" "reach Sa \<subseteq> I" "reach Sc \<subseteq> J" shows "reach Sc \<subseteq> K" [PROOF STATE] proof (prove) goal (1 subgoal): 1. reach Sc \<subseteq> K [PROOF STEP] proof (rule INV_from_Refinement_basic) [PROOF STATE] proof (state) goal (2 subgoals): 1. refines ?R ?pi ?Sa Sc 2. Range ?R \<subseteq> K [PROOF STEP] show "refines (R \<inter> reach Sa \<times> reach Sc) pi Sa Sc" [PROOF STATE] proof (prove) goal (1 subgoal): 1. refines (R \<inter> reach Sa \<times> reach Sc) pi Sa Sc [PROOF STEP] using assms(1) [PROOF STATE] proof (prove) using this: refines R pi Sa Sc goal (1 subgoal): 1. refines (R \<inter> reach Sa \<times> reach Sc) pi Sa Sc [PROOF STEP] by (rule refines_reachable_strengthening) [PROOF STATE] proof (state) this: refines (R \<inter> reach Sa \<times> reach Sc) pi Sa Sc goal (1 subgoal): 1. Range (R \<inter> reach Sa \<times> reach Sc) \<subseteq> K [PROOF STEP] next [PROOF STATE] proof (state) goal (1 subgoal): 1. Range (R \<inter> reach Sa \<times> reach Sc) \<subseteq> K [PROOF STEP] show "Range (R \<inter> reach Sa \<times> reach Sc) \<subseteq> K" [PROOF STATE] proof (prove) goal (1 subgoal): 1. Range (R \<inter> reach Sa \<times> reach Sc) \<subseteq> K [PROOF STEP] using assms(2-4) [PROOF STATE] proof (prove) using this: Range (R \<inter> I \<times> J) \<subseteq> K reach Sa \<subseteq> I reach Sc \<subseteq> J goal (1 subgoal): 1. Range (R \<inter> reach Sa \<times> reach Sc) \<subseteq> K [PROOF STEP] by blast [PROOF STATE] proof (state) this: Range (R \<inter> reach Sa \<times> reach Sc) \<subseteq> K goal: No subgoals! [PROOF STEP] qed
[STATEMENT] lemma model_to_dimacs_model_sound_exists: "1 < n_vars \<Longrightarrow> (\<forall>v\<in>atoms f. 0 < v \<and> v < n_vars) \<Longrightarrow> is_cnf f \<Longrightarrow> M \<Turnstile> f \<Longrightarrow> \<exists>M_dimacs. dimacs_model M_dimacs (cnf_to_dimacs f)" [PROOF STATE] proof (prove) goal (1 subgoal): 1. \<lbrakk>1 < n_vars; \<forall>v\<in>atoms f. 0 < v \<and> v < n_vars; is_cnf f; M \<Turnstile> f\<rbrakk> \<Longrightarrow> \<exists>M_dimacs. dimacs_model M_dimacs (cnf_to_dimacs f) [PROOF STEP] using model_to_dimacs_model_sound [PROOF STATE] proof (prove) using this: \<lbrakk>1 < ?n_vars; \<forall>v\<in>atoms ?f. 0 < v \<and> v < ?n_vars; is_cnf ?f; ?M \<Turnstile> ?f\<rbrakk> \<Longrightarrow> dimacs_model (model_to_dimacs_model ?M [1..<?n_vars]) (cnf_to_dimacs ?f) goal (1 subgoal): 1. \<lbrakk>1 < n_vars; \<forall>v\<in>atoms f. 0 < v \<and> v < n_vars; is_cnf f; M \<Turnstile> f\<rbrakk> \<Longrightarrow> \<exists>M_dimacs. dimacs_model M_dimacs (cnf_to_dimacs f) [PROOF STEP] by metis
// BeOS Resource Specifications // --- Icons --- resource('ICON', 101, "BEOS:L:STD_ICON") { read("icon-32x32.raw") } resource('MICN', 101, "BEOS:M:STD_ICON") { read("icon-16x16.raw") }
\chapter{Classes and objects} \label{objects} \index{object} \index{class} At this point you know how to use functions to organize code and built-in types to organize data. The next step is to learn ``object-oriented programming'', which uses programmer-defined types to organize both code and data. \index{abstraction} \index{encapsulation} When software applications start to grow large, the number of details to be handled becomes overwhelming. The only way to manage this complexity is to use abstraction and encapsulation. Object orientation is a very popular and efficient way to implement abstraction and encapsulation. Perl~6 is an {\bf object-oriented programming language}, which means that it provides features that support object-oriented programming, which has these defining characteristics: \index{object-oriented programming} \begin{itemize} \item Programs include class and method definitions. \index{class} \index{method} \item Most of the computation is expressed in terms of operations on objects. \item Objects often represent things in the real world, and methods often correspond to the ways things in the real world interact. \end{itemize} Object-oriented programming in Perl~6 is a big topic that may be worth a book by itself (and there will probably be a book or two on the subject sometimes). This chapter will hopefully do more than just skim the surface and enable you to create and use objects, but will not cover some of the details and more advanced features. \index{OOP (object-oriented programming)} \index{object-oriented programming (OOP)} \section{Objects, methods and Object oriented programming} \index{object-oriented programming (OOP)} \index{programming!object-oriented} Let us start with a high-level non-technical overview of object-oriented programming in general and a brief introduction to the jargon associated with it. \index{object} In computer science, an object may loosely describe a memory location or an entity having a value, and often be referred to by an identifier. This can be a variable, a data structure, an array, or possibly even a function. This general meaning is not the sense that we will use in this chapter. In object-oriented programming (OOP), the word {\bf object} has a much more specific meaning: an object is an entity which often has: \begin{itemize} \item an identity (for example its name); \index{object! behavior} \item some properties defining its behavior (in the form of special functions that are usually called {\bf methods}); this behavior usually does not change over time and is generally common to all objects of the same type; \index{method} \item a {\bf state} defined by some special variables (called, depending on the language, attributes, instance data, fields or members); the state may change over time and is generally specific to each object. In Perl, we speak about {\bf attributes}. \index{object!state} \index{object!attribute} \index{attribute!object} \end{itemize} In brief, an object is a set of attributes and methods packed together. \index{class} Objects are usually defined in a kind of code package called a {\bf class}. A class defines the methods and the nature of the attributes associated with an object. In Perl~6, a class makes it possible to define new types similar to the built-in types that we have seen before. Very soon, we will start to define some classes and to use them to create objects. \index{type!building new type} \index{invocant} \index{method} \index{dot notation} You already know informally what a method is, as we have used built-in methods throughout the book. It is a sort of function with a special postfix syntax using the dot notation on the invocant. For example, you may invoke the {\tt say} method on a simple string: \begin{verbatim} "foo".say; # -> foo \end{verbatim} Note that ``foo'' isn't an object, but a simple string, but you can invoke the \verb'say' method on it, because Perl can treat it internally as an object when needed. In some OOP languages, this implicit conversion of a native type into an object is sometimes called autoboxing. \index{autoboxing} You probably also remember that methods can be chained in a process where the value returned by a method becomes the invocant for the next method: \begin{verbatim} "foo".uc.say; # -> FOO my @alphabet = <charlie foxtrot alpha golf echo bravo delta>; @alphabet.sort.uc.say; # prints: ALPHA BRAVO CHARLIE DELTA ECHO FOXTROT GOLF \end{verbatim} \index{role} In OOP, methods applicable to objects are usually defined within classes, often the class that also defined the object or some other class closely related to it. In Perl~6, methods can also be defined in a {\bf role}, which is another type of code package somewhat resembling to a class, as we will see later. \index{black box} \index{encapsulation} The basic idea of object-oriented programming is that an object is a kind of black box that hides its internals (data and code) from the user; the user can consult or change the state of an object through the methods. Hiding the internals of objects is called {\bf encapsulation}. This often enables a higher-level view and a better data abstraction than what we have seen so far; this in turns helps to make programs less buggy (especially large programs). In addition, OOP usually also offers the following concepts: \begin{itemize} \index{polymorphism} \item polymorphism, i.e. the possibility for a function or a method to do different things depending of the type of object which calls it; \index{inheritance} \item inheritance, i.e. the possibility to derive a class from another class, so that the child class inherits some of the properties of the parent class, which is a powerful tool for code reuse. \end{itemize} We will now study how all these concepts are implemented in Perl. \section{Programmer-defined types} \label{point} \index{programmer-defined type} \index{type!programmer-defined} We have used many of Perl's built-in types; now we are going to define a new type. As an example, we will create a type called {\tt Point2D} that represents a point in two-dimensional space. \index{point, mathematical} \index{two-dimensional space} In mathematical notation, points are often written in parentheses with a comma separating the coordinates. For example, in Cartesian or rectangular coordinates, $(0,0)$ represents the origin, and $(x,y)$ represents the point $x$ units to the right and $y$ units up from the origin. $x$ is called the abscissa of the point, and $y$ the ordinate. \index{Cartesian coordinates} \index{coordinates!Cartesian} \index{coordinates!rectangular} \index{rectangular coordinates} There are several ways we might represent points in Perl: \begin{itemize} \item We could store the coordinates separately in two variables, {\tt \$x} and {\tt \$y}. \item We could store the coordinates as elements in a list, an array or a pair. \item We could create a new type to represent points as objects. \end{itemize} \index{representation} Creating a new type is a bit more complicated than the other options, but it has advantages that will be apparent soon. A programmer-defined type is usually created by a {\bf class} (or a \emph{role}, but we will come back to that later). A bare-bone class definition for a point type looks like this: \index{class} \index{object!class} \index{class!definition} \index{definition!class} \index{role} \index{Point2D class} \begin{verbatim} class Point2D { has $.abscissa; # "x" value has $.ordinate; # "y" value } \end{verbatim} % The header indicates that the new class is called {\tt Point2D}. The body is defining two attributes, i.e. named properties associated with the class, here the abscissa and ordinate (or $x$ and $y$ coordinates) of the point. \index{Point2D class} \index{class!Point2D} \index{type object} Defining a class named {\tt Point2D} creates a {\bf type object}. The type object is like a factory for creating objects. To create a point, you call the {\tt new} method on the {\tt Point2D} class: \begin{verbatim} my $point = Point2D.new( abscissa => 3, ordinate => 4 ); say $point.WHAT; # -> (Point2D) say $point.isa(Point2D) # -> True say $point.abscissa; # -> 3 \end{verbatim} % \index{isa method} \index{WHAT} You can of course create as many points as you wish. \index{constructor} \index{new, object constructor} \index{dot notation} \index{object!constructor} The {\tt new} method is called a {\bf constructor} and has not been defined in this example; this is not needed because Perl~6 supplies a default {\tt new} constructor method for every class (we'll see later how). The method invocation syntax, with the dot-notation, is the same as what we have used throughout the book to invoke built-in methods. You are not forced to use this constructor, you can also create your own (and you may name it {\tt new} or something else), but we will stay with the built-in {\tt new} method for the time being. \index{invocation!method} \index{method invocation} Creating a new object with a class is called {\bf instantiation}, and the object is an {\bf instance} of the class. \index{instance} \index{object!instance} \index{instantiation} Every object is an instance of some class, so the terms ``object'' and ``instance'' are interchangeable. But we will often use ``instance'' to indicate that we are talking about an object belonging to a programmer-defined type. \index{type} \index{programmer-defined type} \section{Attributes} \label{attributes} \index{instance attribute} \index{attribute!instance} \index{dot notation} The attributes that we have defined are properties associated with the {\tt Point2D} class, but they are specific to the instance of the class that has been created. They are instance attributes. If we create another {\tt Point2D} object, it will also have these attributes, but the values of these attributes are likely to be different. Figure~\ref{fig.point2d} shows the result of these assignments. A state diagram that shows an object and its attributes is called an {\bf object diagram}. \index{state diagram} \index{diagram!state} \index{object diagram} \index{diagram!object} \begin{figure} \centerline {\includegraphics[scale=0.8]{figs/point2D.png}} \caption{Object diagram.} \label{fig.point2d} \end{figure} The variable {\tt \$point} refers to a {\tt Point2D} object, which contains two attributes. Each attribute of the {\tt Point2D} class should refer to a number, but this is not obvious in the current definition of the class. As it stands right now, we could create a {\tt Point2D} object with a string for the abscissa, which would not make much sense. We can improve the class definition by specifying a numeric type for the attributes: % \begin{verbatim} class Point2D { has Numeric $.abscissa; # "x" value has Numeric $.ordinate; # "y" value } \end{verbatim} % \index{private attribute} \index{attribute!private} The instance attributes are private to the class, which means that they normally cannot be accessed from outside the class: you would usually need to invoke a method of the class (i.e. a kind of subroutine defined within the class), to get their value. However, when an attribute is defined with a dot as in \verb'$.abscissa': \begin{verbatim} has $.abscissa; \end{verbatim} % \index{accessor} \index{method!accessor} Perl automatically creates an implicit \emph{accessor} method, i.e. a method having the same name as the attribute and returning the value of this attribute. Thus, when we wrote: \begin{verbatim} say $point.abscissa; # -> 3 \end{verbatim} % we were not accessing directly the {\tt abscissa} attribute of the \verb'$point' object, but we were really calling the {\tt abscissa} method on the object, which in turn returned the value of that attribute. \index{dot notation} \index{accessor} You can use such an accessor with dot notation as part of any expression. For example: \begin{verbatim} my $dist-to-center = sqrt($point.abscissa ** 2 + $point.ordinate ** 2); \end{verbatim} % There is another way to declare an attribute in a class, with an exclamation mark twigil instead of a dot: \index{twigil} \begin{verbatim} has $!abscissa; \end{verbatim} % \index{attribute!private} \index{private attribute} In that case, Perl does not create an implicit accessor method and the attribute can only be accessed from methods within the class. Such an attribute is now fully private. However, if you declare attributes this way, you will not be able to populate them at object creation with the default {\tt new} constructor and will need to create your own constructor (or indirectly modify {\tt new}). So don't try that for the time being, as you would not be able to do much with your objects at this point. We'll get back to that later. \index{attribute!mutable} \index{attribute!immutable} By default, object attributes are not mutable, they are read-only. This means you cannot modify them once the object has been created. This is fine for some attributes: if an object represents a person, that person's name and birth date are unlikely to change. Some other attributes may need to be updated, sometimes very frequently. In such cases, attributes can be declared to be mutable with the {\tt is rw} trait: \index{is rw trait} \index{trait!is rw} \begin{verbatim} class Point2D { has Numeric $.abscissa is rw; # "x" value has Numeric $.ordinate is rw; # "y" value } \end{verbatim} % It is now possible to modify these attributes. For example, we can change the newly-created point's abscissa: \begin{verbatim} # First creating a Point2D object: my $point = Point2D.new(abscissa => 3, ordinate => 4); say $point; # -> Point2D.new(abscissa => 3, ordinate => 4) # Now moving the $point object two units to the right: $point.abscissa = 5; say $point; # -> Point2D.new(abscissa => 5, ordinate => 4) \end{verbatim} \index{class!attribute} \index{attribute!class} Almost all of the information presented so far about attributes related to instance attributes, i.e. to properties related to individual objects. You can also have attributes pertaining to the whole class, which are named \emph{class attributes}. They are less common than instance attributes and are declared with the {\tt my} declarator (instead of {\tt has}). A typical example of a class attribute would be a counter at the class level to keep track of the number of objects that have been instantiated. \section{Creating methods} \index{method} The simple {\tt Point2D} class and its instance \verb'$point' are not very useful so far. Let's complete the class definition with some methods. \index{Point2D class} \begin{verbatim} class Point2D { has Numeric $.abscissa; has Numeric $.ordinate; method coordinates { # accessor to both x and y return (self.abscissa, self.ordinate) } method distanceToCenter { (self.abscissa ** 2 + self.ordinate ** 2) ** 0.5 } method polarCoordinates { my $radius = self.distanceToCenter; my $theta = atan2 self.ordinate, self.abscissa; return $radius, $theta; } } \end{verbatim} We declare three methods in the class: \begin{itemize} \item {\tt coordinates}, a simple accessor to the Cartesian coordinates; \index{coordinates!Cartesian} \index{Cartesian coordinates} \item{\tt distanceToCenter}, a method to compute and return the distance between the object and the origin; \index{polar coordinates} \index{coordinates!polar} \item{\tt polarCoordinates}, a method to compute the radius and azimuth (\verb'$theta') of the object in the polar coordinates system (notice that {\tt polarCoordinates} invokes the {\tt distanceToCenter} method to find the radius component of the polar coordinates). \end{itemize} \index{invocant} A method definition is not very different from a subroutine definition, except that it uses the {\tt method} keyword instead of the {\tt sub} keyword. This is not a surprise since a method is essentially a subroutine that is defined within a class (or a role) and knows about its \emph{invocant}, i.e. the object that called it and its class. And, of course, it has a different calling syntax. \index{method} \index{method!dispatch} \index{dispatching methods} \index{invocation!method} \index{method invocation} Another important difference between a subroutine and a method is that, since there may be several methods with the same name defined in different classes (or different roles), a method invocation involves a \emph{dispatch} phase, in which the object system selects which method to call, usually based on the class or type of the invocant. However, in Perl~6, that difference is blurred by the fact that you can have multi subroutines, i.e. subroutines with the same name and a different signature that are also resolved at run time, depending on the \emph{arity} (number of arguments) and type of the arguments. \index{arity} \index{type} Within a method definition, {\tt self} refers to the \emph{invocant}, the object that invoked the method. There is a short hand for it: \verb'$.' so that we could write the {\tt coordinates} method as follows: \index{self} \begin{verbatim} method coordinates { # accessor to both x and y return ($.abscissa, $.ordinate) } \end{verbatim} The two syntax formats, \verb'$.' and {\tt self.}, are essentially equivalent. There is a third syntactic way of doing it, using an exclamation mark instead of a dot: \begin{verbatim} method coordinates { # accessor to both x and y return ($!abscissa, $!ordinate) } \end{verbatim} Here, the result would be the same, but this new syntax is not equivalent: \verb'$.abscissa' is a method invocation, whereas \verb'$!abscissa' provides direct access to the attribute. The difference is that \verb'$!abscissa' is available only within the class (and might be slightly faster), while the method invocation syntax can be used somewhere else (for example in another class). We will see in the next section examples of this distinction and its consequences. \index{invocation!method} \index{method invocation} We can now create an object and call our methods on it: \begin{verbatim} my $point = Point2D.new( abscissa => 4, ordinate => 3 ); say $point.coordinates; # -> (4 3) say $point.distanceToCenter; # -> 5 say $point.polarCoordinates; # -> (5 0.643501108793284) \end{verbatim} \index{topical variable} \index{invocant} You might remember from previous chapters that if you use a method without naming an explicit invocant, then the method applies to the \verb'$_' topical variable: \begin{verbatim} .say for <one two three>; # -> one two three (each on one line) \end{verbatim} \index{for loop} \index{given statement} Now that we have created an object with some methods, we can also take advantage of the same syntax shortcut. For example if we use {\tt for} or {\tt given} to populate the \verb'$_' topical variable with the \verb'$point' object, we can write: \begin{verbatim} given $point { say .coordinates; # -> (4 3) say .distanceToCenter; # -> 5 .polarCoordinates.say; # -> (5 0.643501108793284) } \end{verbatim} As an exercise, you could write a method called \verb"distance_between_points" that takes two Points as arguments and returns the distance between them using the Pythagorean theorem. The methods of our class so far are all \emph{accessors}, which means they provide a snapshot of some of the invocant's attributes. If the attributes are mutable (declared with the \verb'is rw' trait), we can also create some \emph{mutators}, i.e. methods that can be invoked to change those mutable attributes: \index{accessor} \index{mutator} \begin{verbatim} class Point2D-mutable { has Numeric $.abscissa is rw; has Numeric $.ordinate is rw; # perhaps the same accessors as in the class definition above method new-ordinate (Numeric $ord) { self.ordinate = $ord; } } # Creating the Point2D-mutable object: my $point = Point2D-mutable.new(abscissa => 3, ordinate => 4); say $point; # -> Point2D-mutable.new(abscissa => 3, ordinate => 4) # Modifying the ordinate: $point.new-ordinate(6); say $point; # -> Point2D-mutable.new(abscissa => 3, ordinate => 6) \end{verbatim} \section{Rectangles and object composition} \label{rectangles} \index{rectangle} \index{composition!object} \index{object!composition} Sometimes it is obvious what the attributes of an object should be, but other times you have to make decisions. For example, imagine you are designing a class to represent rectangles. What attributes would you use to specify the location and size of a rectangle? You can ignore angle; to keep things simple, assume that the rectangle's edges are either vertical or horizontal. \index{representation} There are at least two possibilities: \begin{itemize} \item You could specify one corner of the rectangle (or the center), the width, and the height. \item You could specify two opposing corners. \end{itemize} At this point it is hard to say whether either is better than the other, so we'll implement the first one, just as an example. \index{Rectangle class} \index{class!Rectangle} Here is the class definition: \begin{verbatim} class Rectangle { has Numeric $.width; has Numeric $.height; has Point2D $.corner; # lower left vertex method area { return $.width * $.height } method topLeft { $.corner.abscissa, $.corner.ordinate + $.height; } # other methods, e.g. for other corners' coordinates, center, etc. } \end{verbatim} % The new feature compared to the previous {\tt Point2D} class definition is that the \verb'Rectangle' class can now use the {\tt Point2D} type created previously for defining the corner attribute. The {\tt topLeft} method returns the coordinates of the top left angle of the rectangle. This {\tt topLeft} method gives us an opportunity to explain a bit more the difference between the \verb'$.' and \verb'$!' twigils. We have used \verb'$.corner.abscissa' to obtain the abscissa of the corner, i.e. in effect an accessor invocation. We could have directly accessed the {\tt corner} and {\tt height} attributes of the {\tt Rectangle} class and used the following method definition: \index{twigil} \index{invocation!method} \index{method invocation} \begin{verbatim} method topLeft { $!corner.abscissa, $!corner.ordinate + $!height; } \end{verbatim} But it would not be possible to use \verb'$!corner!abscissa' or \verb'$.corner!abscissa', because {\tt abscissa} is not an attribute defined in the {\tt Rectangle} class, and thus cannot be accessed directly there. You can use direct access to the attribute (for example with the \verb'$!abscissa' syntax) only within the class where this attribute is defined, {\tt Point2D}. So, in {\tt Rectangle}, we need to invoke the accessor (i.e. the syntax with \verb'$.') for obtaining the value of the corner abscissa. We can now create a {\tt Rectangle} object: \index{rectangle} \begin{verbatim} my $start-pt = Point2D.new(abscissa => 4, ordinate => 3); my $rect = Rectangle.new(corner => $start-pt, height => 10, width => 5); say "Topleft coord.: ", $rect.topLeft; # -> Topleft coord.: (4 13) say "Rectangle area: ", $rect.area; # -> Rectangle area: 50 \end{verbatim} \index{named parameter} \index{parameter!named} You might have noticed that the arguments passed to the {\tt Rectangle.new} constructor are not in the same order as in the class definition. We did that on purpose to show that the order is unimportant because we are using named arguments. Figure~\ref{fig.rectangle} shows the state of this object. \begin{figure} \centerline {\includegraphics[scale=0.8]{figs/rectangle.png}} \caption{Object diagram.} \label{fig.rectangle} \end{figure} \index{state diagram} \index{diagram!state} \index{object diagram} \index{diagram!object} \index{embedded object} \index{object!embedded} \index{object!composition} \index{composition!object} Using an object as an attribute of another object, possibly of another class, is called {\bf object composition}. An object that is an attribute of another object is {\bf embedded}. Object composition makes it possible to easily define nested layers of abstraction and is a powerful feature of object oriented programming. In our ``geometry'' example, we started to define a low level object, a {\tt Point2D} instance, and then used that point to build a higher level type, {\tt Rectangle}. \section{Instances as return values} \index{instance!as return value} \index{return!value} Methods can return instances of another class. For example, the {\tt Rectangle} class can have methods returning instances of {\tt Point2D} for the other corners: \begin{verbatim} method topRightPoint { return Point2D.new( abscissa => $!corner.abscissa + $!width, ordinate => $!corner.ordinate + $!height ); } # other methods for other corners \end{verbatim} Notice that we don't even bother to give a name to upper right point (although we could, if we wanted); we create it with the constructor and return it on the fly. We can use the new method as follows: \begin{verbatim} my $topRightPt = $rect.topRightPoint; say "Top right corner: ", $topRightPt; # -> Top right corner: Point2D.new(abscissa => 9, ordinate => 13) \end{verbatim} \index{type} Although this is not very useful in such a simple case, we could play it safe and declare a {\tt Point2D} type for \verb'$topRightPt': \begin{verbatim} my Point2D $topRightPt = $rect.topRightPoint; \end{verbatim} This way, the code will raise an error if the {\tt topRightPoint} happens to return something else than a {\tt Point2D} instance. Similarly, the \verb"find-center" method invoked on a {\tt Rectangle} returns a {\tt Point2D} instance representing the center of the {\tt Rectangle}: \begin{verbatim} method find-center { Point2D.new( abscissa => $!corner.abscissa + $!width / 2, ordinate => $!corner.ordinate + $!height / 2 ); } \end{verbatim} % This new method can be used as follows: \begin{verbatim} say "Center = ", $rect.find-center; # -> Center = Point2D.new(abscissa => 6.5, ordinate => 8.0) \end{verbatim} % \section{Inheritance} \index{inheritance} \index{inheritance!class} \index{class!inheritance} Inheritance is probably the most emblematic feature of object-oriented programming. It is a mechanism through which it is possible to derive a class from another class. Inheritance is one of the standard ways to implement code reuse in object-oriented programming. It is also another useful way of defining successive layers of abstraction and a hierarchy of types. \subsection{The Pixel class} \index{class!Pixel} \index{Pixel class} The {\tt Point2D} class is very general and could be used for a variety of purposes: geometry, vector graphics, animated mangas and so on. We may want to use it to display graphic data on a screen. For this scenario, let's create a new derived class, {\tt Pixel}, adding new properties to the point, such as color, perhaps transparency, etc. Do we need to redefine all the attributes and methods for the new class? No, we don't. We can define a new class that \emph{inherits} the properties of the {\tt Point2D} base class and only modify what is no longer suitable or add whatever new features we need. Here, we want a new attribute to represent the pixel color and probably some new methods dealing with this new attribute. According to the most common standards, a color is defined by three integers (really three octets, i.e. integers between 0 and 255 in decimal notation), representing the red, green and blue (RGB) components of the pixel: \index{class!child} \index{Pixel class} \index{RGB} \index{octet} \begin{verbatim} class Pixel is Point2D { has %.color is rw; method change_color(%hue) { self!color = %hue } method change_color2(Int $red, Int $green, Int $blue) { # signature using positional parameters self!color = (red => $red, green => $green, blue => $blue) } } \end{verbatim} \index{parameter!positional} \index{parameter!named} \index{positional parameter} \index{octet} \index{is!subclassing trait} The new class \emph{inherits} the properties of {\tt Point2D} thanks to the {\tt is Point2D} trait, except possibly those which are explicitly modified (or overridden) or added in the new class. The new class is sometimes called child class or subclass, whereas {\tt Point2D} is the parent class. Creating this new class based on {\tt Point2D} is called subclassing the {\tt Point2D} parent class. \index{class!parent} \index{class!child} \index{class!subclass} \index{subclassing} \index{overriding a method} \index{method!overriding} The new child class inherits the {\tt abscissa} and {\tt ordinate} attributes of the {\tt Point2D} parent class (and their specific type and properties if any), as well as the methods such as {\tt coordinates} defined in the parent class. The child class has a new attribute (the color) and two new methods. In the preceding code example, we have written two different methods for changing the color only to illustrate two possible syntax formats, for pedagogical purpose. The first one receives a hash as a parameter, and the second one uses positional parameters, which forces the user to remember the order (RGB) in which the arguments must be passed; this can be a source of error and should be avoided when the number of the parameters exceeds a certain limit (which will be left to the decision of the reader). On the other hand, anyone working commonly with graphics knows by heart the standard conventional order of colors (i.e. RGB). Also, the second method has the advantage of enabling some type checks (the arguments must be integers). This is a simplified example; in real life, it may be desirable to check that the parameters are octets, i.e. integers between 0 and 255 (which could be done by adding a type constraint or defining a subset of the Integer type). \index{subset} \index{RGB} \index{octet} Using the new {\tt Pixel} class is straight forward: \begin{verbatim} say "Original colors: ", $pix.color; $pix.change_color({:red(195), :green(110), :blue(70),}); say "Modified colors: ", $pix.color; say "New pixel caracteristics:"; printf \tAbscissa: %.2f\n\tOrdinate: %.2f\n\tColors: R: %d, G: %d, B: %d\n", $pix.abscissa, $pix.ordinate, $pix.color<red>, $pix.color{"green"}, $pix.color{"blue"}; $pix.change_color2(90, 180, 30); # positional args say "New colors: R: {$pix.color<red>}, G: {$pix.color<green>}, B: {$pix.color<blue>} "; \end{verbatim} This displays the following output: \begin{verbatim} Original colors: {blue => 145, green => 233, red => 34} Modified colors: {blue => 70, green => 110, red => 195} New pixel caracteristics: Abscissa: 3.30 Ordinate: 4.20 Colors: R: 195, G: 110, B: 70 New colors: R: 90, G: 180, B: 30 \end{verbatim} To tell the truth, it was not necessary to use two different method names, \verb'change_color' and \verb'change_color2', as we did in the {\tt Pixel} class definition to simplify matters. It would just work the same way if we use these definitions: \index{Pixel class} \index{method dispatch} \begin{verbatim} multi method change_color(%hue) { self.color = %hue } multi method change_color(Int $red, Int $green, Int $blue) { # signature using positional parameters self.color = (red => $red, green => $green, blue => $blue) } \end{verbatim} Since the multi method is defined twice, with the same name but with a different signature, the object system is able to dispatch the invocation to the right method. \index{method!dispatch} \index{multi method} \subsection{The MovablePoint class} \index{class!MovablePoint} \index{MovablePoint class} The \verb'$.abscissa' and \verb'$.ordinate' attributes of class {\tt Point2D} are defaulted to read-only. After all, when you define a point in the plan, it usually has a fixed position and there is generally no reason to change its coordinates. Suppose, however, that our application is about kinematics (the branch of physics dealing with the motion of points or bodies) or is a video game. In such a case, we probably want our points (or sets of points) to move. We need a new class, {\tt MovablePoint}, enabling the modification of coordinates. We don't need to redefine all the attributes and methods for the new class. Again, we can define a new class that \emph{inherits} the properties of the {\tt Point2D} base class and only modify what is no longer suitable or add whatever new features we need, for example: \begin{verbatim} class MovablePoint is Point2D { has Numeric $.abscissa is rw; has Numeric $.ordinate is rw; method move (Numeric $x, Numeric $y) { $.abscissa += $x; $.ordinate += $y; } } \end{verbatim} \index{is!subclassing trait} Again, the new class inherits the properties of {\tt Point2D} thanks to the {\tt is Point2D} trait, except those which are explicitly modified (or overridden) or added in the new class. Methods that exist in the parent class and are redefined in a child class are said to be \emph{overridden} within that class. \index{class!parent} \index{class!child} \index{class!subclass} \index{subclassing} \index{overriding a method} \index{method!overriding} Here, the \verb'$.abscissa' and \verb'$.ordinate' attributes are redefined as read and write (through the {\tt is rw} trait) and a new method, {\tt move}, is defined to modify the position of a point by adding the received parameters to the coordinates of the point. \index{is rw trait} Note that we have used here positional parameters for the {\tt move} method. We said that it is often better for the sake of clarity to use named parameters, but we have here only two parameters; as it is fairly simple to remember that the \verb'$x' parameter should come before the \verb'$y' parameter, this was a good occasion to illustrate the possibility of using positional parameters. \index{positional parameter} \index{parameter!positional} \index{parameter!named} \index{named parameter} We can now test our new child class, create a {\tt MovablePoint} instance, display its characteristics, move it to a different location, and display the new position: \begin{verbatim} my $point = MovablePoint.new( abscissa => 6, ordinate => 7, ); say "Coordinates : ", $point.coordinates; say "Distance to origin: ", $point.distanceToCenter.round(0.01); printf "%s: radius = %.4f, theta (rad) = %.4f\n", "Polar coordinates", $point.polarCoordinates; say "--> Moving the point."; $point.move(4, 5); say "New coordinates: ", $point.coordinates; say "Distance to origin: ", $point.distanceToCenter.round(0.01); printf "%s: radius = %.4f, theta (rad) = %.4f\n", "Polar coordinates", $point.polarCoordinates; \end{verbatim} This produces the following output: \begin{verbatim} Coordinates : (6 7) Distance to origin: 9.22 Polar coordinates: radius = 9.2195, theta (rad) = 0.8622 --> Moving the point. New coordinates: (10 12) Distance to origin: 15.62 Polar coordinates: radius = 15.6205, theta (rad) = 0.8761 \end{verbatim} \index{polar coordinates} \index{coordinates!polar} Here, when the user code invokes the {\tt coordinates}, {\tt distanceToCenter} and {\tt polarCoordinates} methods, Perl find that they do not exist in {\tt MovablePoint}. But, as \verb'MovablePoint' subclasses {\tt Point2D}, the program looks for method having this name in the parent class and invokes them if it finds them. If it did not find them, it might look up into the parent's parent if there is any, and so on. \subsection{Multiple inheritance: attractive, but is it wise?} In object-oriented programming, the inheritance mechanism is a traditional way to reuse code, it is even probably the most common way to do it. A class may have several parent classes and, thus, subclass several other classes. This is what is called multiple inheritance. We might want to build a new {\tt MovablePixel} class inheriting from both {\tt MovablePoint} and {\tt Pixel} (and, indirectly, from {\tt Point2D}). Technically, you can easily do it in Perl: \begin{verbatim} class MovablePixel is MovablePoint is Pixel { # ... } \end{verbatim} Now, {\tt MovablePixel} is subclassing both {\tt MovablePoint} and {\tt Pixel} and inheriting from both parent classes. \index{subclass} \index{class!parent} This looks very promising, but it turns out to be more complicated than expected in real situations. If there is a conflict (for example a name collision between two methods), which one shall prevail? There exists some mechanism to handle such situations (for example in the C++ programming language), and Perl has some metaobject methods to find out about the method resolution order (MRO), but this might quickly leads to severe design problems and to really subtle or complicated bugs. In short, while multiple inheritance originally looked as a attractive idea, it turned out to be complicated to master, because it creates multiple and often implicit dependencies that are quite hard to sort out. This is the reason why, contrary to C++, relatively more recent OO programming languages such as Java (which came out not so recently, back in 1995) have decided not to implement multiple inheritance. Perl~6 does not want to forbid such things and allows you to do multiple inheritance if you wish, and it can be useful for simple cases; so don't necessarily rule it out, but remember that, contrary to early expectations, it often leads to a mess and turns out to be quite unmanageable. Perl offers better concepts for tackling such situations, as we will see shortly. \section{Roles and composition} \index{role} \index{inheritance} Inheritance is a very powerful concept to describe a hierarchical tree of concepts. For example, you can think of a hierarchy of geometrical figures having more and more specific properties: \begin{enumerate} \item Polygon. \index{quadrilateral} \item Quadrilateral (a polygon with four edges and four corners). \index{trapezoid} \item Trapezoid (a quadrilateral with one pair of parallel edges). \index{parallelogram} \item Parallelogram (a trapezoid with two pairs of parallel edges and opposite sides of equal length). \index{rectangle} \item Rectangle (a parallelogram with four right angles). \index{square} \item Square (a rectangle with all four edges of equal length). \end{enumerate} \index{rhombus} It is relatively easy to imagine a series of classes with a hierarchical inheritance tree reflecting those properties. It gets slightly more complicated, however, if we add the rhombus (a parallelogram with all sides equal), because the square is now \emph{also} a rhombus with four right angles, so that the square class would subclass both the rectangle and the rhombus, and we might have here a possible multiple inheritance issue. \index{integer} \index{rational} \index{real number} \index{complex number} \index{vertebrate} \index{mammal} \index{carnivoran} \index{canid} \index{dog} Similarly, we can think of a tree of classes with nested inheritance representing various types of numbers (e.g. integer, rational, real, complex) or animals species (e.g. vertebrate, mammal, carnivoran, canid, dog, Irish setter). \index{hierarchical model} These are great examples for inheritance, but the real world is rarely so hierarchical, and it is often difficult to force everything to fit into such a hierarchical model. \index{role} This is one of the reasons why Perl introduces the notion of roles. A role is a set of behaviors or actions that can be shared between various classes. Technically, a role is a collection of methods (with possibly some attributes); it is therefore quite similar to a class, but the first obvious difference is that a role is not designed to be instantiated as an object (although roles can be promoted into classes). The second difference, perhaps more important, is that roles don't inherit: they are used through application to a class and/or composition. \subsection{Classes and roles: an example} \index{vertebrate} \index{mammal} \index{dog} Let's come back to vertebrates, mammals and dogs. A dog is a mammal and inherits some characteristics from the mammals, such as having a neocortex (a region of the brain), hair, and mammary glands, as well as a vertebral column, which all mammals (along with fishes, birds, reptiles and others) inherit from vertebrates. So far, the class hierarchy seems simple and natural. \index{feral animal} \index{pet animal} But dogs can have very different characteristics and behaviors. To quote the Wikipedia article on dogs: ``Dogs perform many \emph{roles} for people, such as hunting, herding, pulling loads, protection, assisting police and military, companionship and, more recently, aiding handicapped individuals'' (italic emphasis added). Dogs can also be \emph{feral} animals (i.e. animals living in the wild but descended from domesticated individuals) or stray dogs. All these additional behaviors might be added to the dog class. Similarly, a cat, another mammal, may also be a pet or a feral animal. Mustangs, North-American free-roaming horses, are also feral animals, descended from once-domesticated horses; but a mustang may also be captured and brought back to domesticated state. This return to the wild of feral animals is not limited to mammals: pigeons living in our cities are often descended from once-domesticated homing pigeons used in the past. It can even happen with invertebrates, such as swarms of honey bees. It is apparent that a hierarchical modeling of inheritance trees is not adapted to describe such behaviors. \index{vertebrate} \index{mammal} \index{dog} We can define classes for dogs, cats, and horses as subclasses of mammals (which itself inherits from vertebrates). Besides that, we define roles for pet or feral animals. In addition, we can create new classes subclassing the dog, horse and cat classes and doing some specific roles; or we can assign roles to individual instances of a class. This could look like this (this is a dummy example which cannot be tested): \begin{verbatim} class Vertebrate { method speak {say "vertebrate"};} class Mammal is Vertebrate { method speak { say "mammal" } } class Bird is Vertebrate { method fly {} } class Dog is Mammal { method bark {} } class Horse is Mammal { method neigh {} } class Cat is Mammal { method meow {} } class Mouse is Mammal { method squeek {} } class Duck is Bird { method quack {} } # ... role Pet-animal { method is-companion() {...} # other methods } role Shepherd { ... } # sheep keeper role Feral { ... } # animal back to wild life role Guide { ... } # blind guide role Human-like { ... } # animal behaving like a human # ... class Guide-dog is Dog does Guide { ... } class Shepherd-dog is Dog does Shepherd { ... } class Stray-dog is Dog does Feral { ... } class Pet-cat is Cat does Pet-animal { ... } class Feral-cat is Cat does Feral { ... } class Mustang is Horse does Feral { ... } class Domestic-canary is Bird does Pet-animal { ... } # ... # Role can also be applied to instances: my $garfield = Pet-cat.new(...); my $mickey = Mouse.new(...); $mickey does Human-like; my $donald = Duck.new(...); $donald does Human-like; my $pluto = Dog.new(...); $pluto does Pet-animal; my $snoopy = Dog.new(...); $snoopy does Pet-animal does Human-like; \end{verbatim} \index{role!application} \index{does trait} \index{trait!does} \index{trait!is} A role is applied to a class or an object with the {\tt does} trait (as opposed to {\tt is} for inheritance). These different keywords reflect the semantic difference associated to them: composing a role into a class or an object provides this class or object with the \emph{supplementary behavior} associated with the role, but it does not follow that the object receiving the role is \emph{the same thing} as or of the same nature as the role. \index{feral animal} \index{pet animal} If the {\tt Pet-animal} and {\tt feral} roles had been defined as classes, then the {\tt Pet-cat} and {\tt Feral-cat} classes would have undergone double inheritance, with the potential problems associated with that. By applying a role to a class, you avoid constructing a multiple-inheritance tree that is probably not really justified and can be complicated to conceptualize and difficult to maintain. Judicious use of classes and roles can lead to a model that is simpler, more natural, and closer to the real relations between the entities and behaviors under scrutiny. \index{multiple inheritance} \index{method!dispatch} \index{role!composition} In addition, if you inadvertently compose several roles with two methods having the same name, this raises immediately an error (unless a method of the same name exists within the class, in which case it prevails), rather than dispatching silently to one of the two methods as in the case of multiple inheritance. In that case, naming conflicts are identified immediately (at compile time), which has the benefit of immediately finding a bug that might otherwise go unseen for a while. \subsection{Role composition and code reuse} Classes are meant for managing instances and roles are meant for managing behaviors and code reuse. The following example shows how classes and roles can play together. \index{class} \index{role} \index{code reuse} \begin{verbatim} role Drawable { has $.color is rw; method draw { ... } } class Figure { method area { ... } } class Rectangle is Figure does Drawable { has $.width; has $.height; method area { $!width * $!height; } method draw() { for 1..$.height { say 'x' x $.width; } } } Rectangle.new(width => 10, height => 4).draw; \end{verbatim} \index{ellipsis} Please note that the ellipsis \verb'...' used in the code above is meant here to represent some code that is left to your implementation. However, this is actually valid code and it will compile and even run without any problem. The ellipsis is used to figure a functionality that is not yet there but is supposed to be implemented at a later point. This will work so long as you don't invoke these methods (you would get a runtime error) or don't setup a situation where it would need to be defined (which would cause a compile time error). In the case of the {\tt draw} method in the {\tt Drawable} role, role composition into the {\tt Rectangle} class works only because {\tt draw} is redefined in the {\tt Rectangle} class; without this redefinition, it would have raised a compile-time error. Similarly, the \verb'method area { ... }' code of the {\tt Figure} class would raise a run-time error if it were called without having been redefined in the {\tt Rectangle} class. The ellipsis has been used here only as a convenient way to represent code whose implementation is not important for our example because it is being redefined anyway. In real coding, it is probably best advised not to use ellipsis, except as a temporary expedient for code that is not yet developed but will be implemented. The code example above draws an ASCII rectangle: \begin{verbatim} ~ perl6 test_drawable.pl6 xxxxxxxxxx xxxxxxxxxx xxxxxxxxxx xxxxxxxxxx \end{verbatim} \subsection{Roles, classes, objects, and types} \index{role} \index{class} \index{object} \index{type} A role can be applied to an entire class or only to some instances of the class: \begin{verbatim} role Guide { ...} class Guide-dog is Dog does Guide { ... } # Composing the Guide role into the Guide-dog class # inheriting from the Dog class my $doggy = new Dog; # creating a Dog object $doggy does Guide; # applying the role to the object \end{verbatim} \index{type} \index{role!type} \index{type!-defining role} \index{guide} Roles and classes are different, but both are or define types. This means that a role can be used as a type for a variable declaration where you might expect a class name. For example, the {\tt Guide} role sketched in the code snippet above does effectively create a {\tt Guide} type. So a {\tt Blind} role for a human might have an attribute of {\tt Guide} type, which might represent a guide-doq, a guide-horse, a human guide or even a guiding robot. \begin{verbatim} class Human { has Dog $dog; # May contain any dog, with or without # a guide role } role Blind { has Guide $guide; # May contain any Guide type, whether # a dog, a horse, a human or a robot } \end{verbatim} \index{type!built-in} A number of Perl~6 built-in types are defined by roles and not by classes, such as {\tt IO}, {\tt Iterable}, {\tt Iterator}, {\tt Numeric}, {\tt Rational}, {\tt Real}, etc. \section{Method delegation} \index{delegation} Delegation is another way to link an object to another piece of code. The delegation technique has been relatively well studied at the theoretical level and implemented in a few specialized research languages, but mainstream generalist languages implementing delegation are rather rare. Rather than defining methods in a class or in a role, the idea is to invoke methods belonging to another object, as if they were methods of the current class. In Perl~6, delegation may be performed at the level of a class or a role. A delegated object is simply an attribute defined in the class or in the role with the {\tt handles} keyword which makes it possible to specify which methods of the delegated object may be used in the current class. \index{Cervantes, Miguel de} \index{Shakespeare, William} \index{Chekhov, Anton} \index{Schiller, Friedrich} \index{Hamlet} \index{Don-Quijote} \index{Don-Carlos} \index{Three Sisters} \begin{verbatim} class BaseClass { method Don-Quijote() { "Cervantes" } method Hamlet() { "Shakespeare" } method Three-Sisters () { "Chekhov" } method Don-Carlos() { "Schiller" } } class Uses { has $.base is rw handles < Don-Quijote Hamlet Three-Sisters >; } my $user = Uses.new; $user.base = BaseClass.new(); # implementing an object-handler say $user.Don-Quijote; say $user.Hamlet; say $user.Three-Sisters; say $user.Don-Carlos; \end{verbatim} This displays the following output: \begin{verbatim} Cervantes Shakespeare Chekhov Method 'Don-Carlos' not found for invocant of class 'Uses' in block <unit> at delegate.pl6 line 16 \end{verbatim} \index{invocant} The program properly displays the names of writers returned by the first three methods, because they have been sort of ``imported'' into the {\tt Uses} class, but it fails on the last one, because ``Don-Carlos'' is not part of the handler's list. The error on the last method is a run-time exception and the program would stop running there even if there were some more correct code afterward. Note that the {\tt Uses} class does not know from where the methods will be imported; it only knows about the names of the methods that will be imported. It is only when the \verb'$user' object is created and the \verb'$user.base' attribute added to it that the object is dynamically associated with the methods defined in {\tt BaseClass}. By the way, this process could be done in just one step: \begin{verbatim} my $user = Uses.new( base => BaseClass.new() ); \end{verbatim} There is no need to enumerate the methods to be handled. The {\tt Uses} class can import all the methods of {\tt BaseClass}: \begin{verbatim} class Uses { has $.base is rw handles BaseClass; } \end{verbatim} This will work as before, except of course that it will not fail on the {\tt Don-Carlos} method this time, since this method is also imported now: \begin{verbatim} Cervantes Shakespeare Chekhov Schiller \end{verbatim} \section{Polymorphism} \index{polymorphism} \index{interface} Polymorphism is a way to supply a common or close interface to different types. In a certain way, the inheritance examples studied previously offer a form of polymorphism: the {\tt coordinates}, {\tt distanceToCenter} and {\tt PolarCoordinates} methods are polymorphic, since they can apply to {\tt Point2D}, {\tt movablePoint} and {\tt pixel} types. But these are trivial forms of polymorphism. We will speak of polymorphism when the relevant methods or functions are doing something different from each other, at least at the implementation level, even if they share the same name and interface. \index{multi!subroutine} \index{invocant} Outside of the object-oriented programming, Perl's \emph{multi} subroutines implement a form of polymorphism, since they can behave differently depending on the type and number of their arguments. Within the OOP context, it is often the type of the invocant (its class or possibly one of its roles) which will determine, usually at run-time, which of the possible methods will be invoked. For example, we might want to create a new class for points in a three-dimensional space. The methods will have to be different, but it seems interesting to offer the user an interface that is the same (or almost) as for two-dimensional points. \index{Point3D class} \begin{verbatim} class Point3D { has Numeric $.x; has Numeric $.y; has Numeric $.z; method coordinates () { # accessor to the 3 coordinates return $.x, $.y, $.z } method distanceToCenter () { return ($.x ** 2 + $.y ** 2 + $.z ** 2) ** 0.5 } method polarCoordinates () { return self.sphericalCordinates; } method sphericalCoordinates { my $rho = $.distanceToCenter; my $longitude = atan2 $.y, $.x; # theta my $latitude = acos $.z / $rho; # phi return $rho, $longitude, $latitude; } method cylindricalCoordinates { # ... } } \end{verbatim} The methods in this new class are not the same as those in {\tt Point2D}, but methods having a similar semantics have the same name; it is thus possible to use either class without being lost with different names. The {\tt distanceToCenter} method has exactly the same interface. The {\tt coordinates} method returns a list of three values instead of two, but the calling convention is the same. Note that it might also have been possible to design {\tt Point2D} so that this method would return also a third zero value, in order to have exactly the same interface (after all, a point in the plane might be considered as a point in the 3D space with a zero height); complying to exactly the same interface is not mandatory, but only a possible implementation decision that might make a more intuitive interface. \index{polar coordinates} \index{spherical coordinates} \index{coordinates!polar} \index{coordinates!spherical} The notion of polar coordinates does not have a well-defined meaning in a 3D-space, but we have chosen here to keep the name in our interface because it is intuitively quite similar to the idea of spherical coordinates; but it does nothing more than invoking the sphericalCoordinates method on its invocant and to return the return values. \index{invocant} Please note that mathematicians, physicists, astronomers, engineers, geographers, and navigators all use the same basic system for spherical coordinates, but their conventions are different concerning the origin, the angle range, angle measurement units and rotation direction, and the name of the various values or symbols associated with them. So you might find some different formulas in a textbook. The conventions and formulas we have used here are commonly used in geography and some branches of mathematics. A real general-purpose class might have to take these varying conventions into account and implement the necessary conversions. \section{Encapsulation} \index{encapsulation} Encapsulation is the idea of hiding the data and the code of a library or a module from the user. It is not specific to object-oriented programming, but it is a fundamental concept of OOP. \index{accessor} \index{mutator} \index{getter} \index{setter} In object-oriented programming, encapsulation consists in protecting the data in an object from being tampered directly (and possibly made inconsistent) by their user, who can access such data only through the means of methods. This is achieved by providing to the user methods that are commonly called \emph{accessors} (or \emph{getters}) and \emph{mutators} (or \emph{setters}). This makes is possible to ensure that the object properties will be validated by its methods. \index{black box} \index{object!interface} Encapsulation is a strong form of data abstraction and procedural abstraction. Seen from outside, an object is a black box having some specified properties and behaviors. This way, these properties and behaviors are \emph{hidden} from the user. They're not hidden in the sense that the user cannot know about them (at least in the open-source world, it is easy to know that), but hidden in the sense that it is usually not possible to use that knowledge to bypass the supplied interface. This means that the internal implementation of the object may change without having to modify the external behavior. If you are going to use insider knowledge, your code will probably break when the internal implementation is modified, so don't do that. Various programming languages don't have same rules for guaranteeing encapsulation. Some are stricter than others, some are less restrictive for read access than for write access, others don't make such a distinction but rather rely on the visibility level specified for an attribute, for example ``public'' or ``private'' (with sometimes an intermediate ``protected'' level). \index{attribute!private} Perl~6 lets you choose the encapsulation model you want to apply to your objects and attributes. All attributes are private. If you declare a class as follows: \begin{verbatim} class Point2D { has $!abscissa; has $!ordinate; # … method value_x { return $!abscissa } method value_y { return $!ordinate } } \end{verbatim} the \verb'$!x' and \verb'$!y' coordinates will be accessible only from within the class. This is why we have added accessor methods. In addition, the attributes are immutable by default. But as we have seen earlier, if you declare this class as follows: \begin{verbatim} class Point2D { has $.abscissa; has $.ordinate; # ... } \end{verbatim} the coordinates will still be private attributes, but Perl~6 will automatically generate accessor methods having the same names as the attributes, so that it will be possible to access them from outside the class almost as if they were public: \index{attribute!public} \begin{verbatim} class Point2D { # ... } my $point = Point2D.new(abscissa => 2, ordinate => 3); say $point.abscissa; # -> 2 \end{verbatim} \index{attribute!mutable} \index{attribute!immutable} Whether the attribute is mutable or not is managed separately by the {\tt is rw} trait. In brief, Perl~6 offers a default access mode, but you can finely tune what you need. \subsection{Private methods} \index{private method} \index{method!private} \index{interface} Methods are the normal way to use objects, whether with read only or read and write access. They usually form the \emph{interface} of a class, that is the part of the class that is made public and available to programmers wishing to use them. It is thus natural and legitimate for methods to be public, i.e. accessible from outside the class. \index{method!public} \index{public method} But a class may also contain numerous methods that are part of the internal cooking recipes of the class, i.e. the way it does things internally, and that are not meant to be used from outside the class. It is possible to prevent their use from outside the class by making these methods private. A Perl~6 private method is prefixed with an exclamation mark: \begin{verbatim} method !private-behavior($x, $y) { ... } \end{verbatim} You will also need to use an exclamation mark to call them: \begin{verbatim} $my-object!private-behavior($val1, $val2) \end{verbatim} \index{private method} \index{method!private} Private methods are really internal to a given class. In particular, they are not inherited by child classes. \subsection{Constructing objects with private attributes} Constructing objects with private attributes raises a little difficulty. Let's consider the following program: \index{private attribute} \begin{verbatim} class Point3D { has $.x; has $.y; has $!z; method get { return ($!x, $!y, $!z); } }; my $a = Point3D.new(x => 23, y => 42, z => 2); say $_ for $a.get; \end{verbatim} \index{attribute!private} \index{attribute!public} In this example, we have declared \verb'$.x' and \verb'$.y' as ``public'' (so to speak) attributes, and \verb'$.z' as a truly private attribute. Running this code displays this: \begin{verbatim} 23 42 (Any) \end{verbatim} Oops, what is going on? It seems that the {\tt get} method is not able to read \verb'$!z', since it returns an undefined value. This method is defined within the class; so it should be able to access this attribute. In fact, {\tt get} is not the problem, it is \verb'$!z' which is not defined within the object, because it hasn't been properly initialized during object construction. \index{new!constructor} \index{constructor!new} The guilt lies with the {\tt new} implicit constructor which, by default, initializes only ``public'' attributes. \index{submethod} Here, the simplest solution is probably to add a {\tt BUILD} submethod in the class definition. \index{BUILD submethod} \index{submethod} \index{subclass} \index{type} A \emph{submethod} is a public method of a class that is not inherited in its child classes. Semantically, it is really equivalent to a subroutine, but it is called with a method syntax (hence the name). Submethods are especially useful to perform object construction and destruction tasks which should not be inherited by subclasses, as well as for tasks that are so specific to a given type that classes derived from it will almost for sure have to redefine them. Initializing private attributes at object instantiation might look like this: \begin{verbatim} class Point3D { has $.x; has $.y; has $!z; submethod BUILD (:$!x, :$!y, :$!z) { say "Initialization"; $!x := $!x; $!y := $!y; $!z := $!z; } method get { return ($!x, $!y, $!z); } }; my $a = Point3D.new(x => 23, y => 42, z => 2); say $_ for $a.get; \end{verbatim} The program now works as desired and displays all three attributes: \begin{verbatim} Initialization! 23 42 2 \end{verbatim} This works because the default {\tt new} constructor, a method defined in the {\tt Mu} ultimate superclass and inherited by default by any Perl~6 class, calls the default {\tt BUILD} submethod. If we redefine {\tt BUILD} in our class, it will supersede the default one called by {\tt new}. By redefining {\tt BUILD}, we force the constructor to take into account the private attribute that was not used previously. Quite a bit of simplification is possible. Since passing arguments to a routine binds the arguments to the parameters, a separate binding step is unnecessary if the attributes are used as parameters. Hence, the {\tt BUILD} submethod in the example above could also have been written simply as: \index{BUILD submethod} \begin{verbatim} submethod BUILD(:$!x, :$!y, :$!z) { say "Initialization!"; } \end{verbatim} \index{overriding a method} \index{named parameter} \index{positional parameter} \index{parameter!named} \index{parameter!positional} \index{constructor!new} \index{new!constructor} While we are speaking about the intricacies of object construction, note that since {\tt new} is a method inherited from the {\tt Mu} superclass, you can override it if you wish. The default {\tt new} constructor can only be used with named arguments. Assuming you absolutely want to use positional parameters, you could override {\tt new} with your own method, like so: \index{new!constructor} \index{constructor!new} \begin{verbatim} class Point2D { has Numeric $.abscissa; has Numeric $.ordinate; method new ($x, $y) { self.bless(abscissa => $x, ordinate => $y); } method coordinates { # accessor to both coordinates return (self.abscissa, self.ordinate) } # other methods }; my $point = Point2D.new(3, 5); say $_ for $point.coordinates; \end{verbatim} This will duly display the two coordinates. {\tt bless} is a low-level method for object construction, inherited from {\tt Mu} and called automatically when you invoke {\tt new} to construct an object. You usually don't need to know about it, except when you want to write your own custom constructor. \index{constructor!custom} You can give the constructor another name than {\tt new}, for example: \begin{verbatim} class Point2D { has Numeric $.abscissa; has Numeric $.ordinate; method construct ($x, $y) { self.bless(abscissa => $x, ordinate => $y); } method coordinates { # accessor to both coordinates return (self.abscissa, self.ordinate) } # other methods }; my $point = Point2D.construct(3, 5); say $_ for $point.coordinates; \end{verbatim} Think twice, though, before you override {\tt new} or create your own custom constructor with a different name, as it may make it more complicated to subclass your {\tt Point2D} class. \section{Interface and implementation} One of the goals of object-oriented design is to make software more maintainable, which means that you can keep the program working when other parts of the system change, and modify the program to meet new requirements. \index{interface} \index{implementation} \index{maintainable} \index{object-oriented design} A design principle that helps achieve that goal is to keep interfaces separate from implementations. For objects, that means that the public interface of the methods provided by a class should not depend on how the attributes are represented. \index{attribute} \index{coordinates!Cartesian} \index{Cartesian coordinates} \index{polar coordinates} For example, we designed a {\tt Point2D} class in which the main attributes were the point's Cartesian coordinates. We may find out that, for the purpose of our application, it would be easier or faster to store the point's polar coordinates in the object attributes. It is entirely possible to change the internal implementation of the class, and yet keep the same interface. In order to do that, we would need the constructor to convert input parameters from Cartesian into polar coordinates, and store the latter in the object attribute. The {\tt polarCoordinates} method would return the stored attributes, whereas methods returning the Cartesian coordinates may have to do the backward conversion (or may perhaps be stored separately in private attributes). Overall, the change can be made with relatively heavy refactoring of the {\tt Point2D} class, but users of the class would still use the same interface and not see the difference. After you deploy a new class, you might discover a better implementation. If other parts of the program are using your class, it might be time-consuming and error-prone to change the interface. But if you designed the interface carefully, you can change the implementation without changing the interface, which means that other parts of the program don't have to change. \section{Object-oriented programming: a tale} \index{tale about OOP} \index{OOP (object-oriented programming)!a tale} \index{object-oriented programming (OOP))!a tale} Most tutorials and books teaching object-oriented programming tend to focus on the technical aspects of OOP (as we have done in this chapter so far), and that's a very important part of it, but they sometimes neglect to explain the reasons for it. They say ``how'', but not ``why''. We've tried, and hopefully succeeded, to explain the ``why'', but this section attempts to explain OOP from the standpoint of the reasons for it and its benefits, independently of any technical consideration, in the form of a parable (the code examples are only pseudo-code and are not supposed to compile, let alone to run). \subsection{The fable of the shepherd} \index{shepherd} Once upon a time, there was a sheep farmer who had a flock of sheep. His typical workday looked like this: \begin{verbatim} $shepherd.move_flock($pasture); $shepherd.monitor_flock(); $shepherd.move_flock($home); \end{verbatim} Eventually, due to successful wool sales, he expanded his farming activities and his day became like this: \begin{verbatim} $shepherd.move_flock($pasture); $shepherd.monitor_flock(); $shepherd.move_flock($home); $shepherd.other_important_work(); \end{verbatim} But now the shepherd wanted to devote more time to \verb'other_important_work()', so he decided to hire a minion to handle the sheep related work, so the work was now split like this: \index{shepherd-boy} \index{tale about OOP} \begin{verbatim} $shepherd-boy.move_flock($pasture); $shepherd-boy.monitor_flock(); $shepherd-boy.move_flock($home); $shepherd.other_important_work(); \end{verbatim} This did give the shepherd more time for \verb'other_important_work()', but unfortunately the \verb'$shepherd-boy' had a tendency to cry wolf, so the farmer had to replace him with a new assistant: \index{sheep dog} \index{dog!shepherd} \begin{verbatim} $sheep-dog.move_flock($pasture); $sheep-dog.monitor_flock(); $sheep-dog.move_flock($home); $shepherd.other_important_work(); \end{verbatim} \verb'$sheep-dog' was more reliable and demanded less pay than \verb'$shepherd-boy', so this was a win for the farmer. \subsection{The moral} We can learn a few things from this parable. \subsubsection{Delegation} \index{delegation} To handle complexity, delegate to a suitable entity e.g. the farmer delegates some of his work to \verb'$shepherd-boy'. \subsubsection{Encapsulation} \index{encapsulation} Tell objects what to do, rather than micro-manage e.g.: \begin{verbatim} $sheep-dog.monitor_flock(); \end{verbatim} rather than something like: \begin{verbatim} $sheep-dog.brain.task.monitor_flock; \end{verbatim} At a high level, we do not particularly care what the internals of the object are. We only care what the object can do. An object becomes harder to change the more its internals are exposed. \subsubsection{Polymorphism} \index{polymorphism} \verb'$sheep-dog' and \verb'$shepherd-boy' both understood the same commands, so replacing the latter with the former was easier than it would have been otherwise. \index{tale about OOP} \emph{The fable of this section is adapted from a post by ``Arunbear'' on the ``Perlmonks'' website: \url{http://www.perlmonks.org/?node_id=1146129}. Thanks to ``Arunbear'' for having authorized me to reuse it.} \section{Debugging} \label{perl-debugger} \index{debugger} \index{debugger!using a} This section is about using a debugger, a program that is designed to help you to debug your programs. ``What? There is a tool to debug my programs, and you're telling me only now?'' you might complain. Well, it's not quite that. A debugger is not going to do the debugging for you, you'll still have to do the hard investigation work, but a debugger can help you very much figuring out why your program isn't doing what you think it should be doing. Or, rather, why what your program is doing isn't quite what you want it to do. Debuggers are a bit like persons with a strong personality: some people love them and others hate them. Often, people who don't like debuggers simply never took the time to learn how to use them, but there are also many expert programmers who don't like them and whom we can't suspect of not having seriously tried. Whether you like debuggers or not is probably a matter of personal taste, but they can provide an invaluable help, if you know how to use them. \subsection{The Perl~6 debugger} \index{debugger!the Perl~6 debugger} \index{debugger!launching the} \index{debugging!using a debugger} \index{debugging!the Perl 6 debugger} Rakudo-Perl~6 ships with an interactive debugger which you call with the {\tt perl6-debug} command (or, on some installs at least, {\tt perl6-debug-m}). You can just fire this command, followed by the name of the program to be debugged, just as you would normally use {\tt perl6} with the name of a program to run the program. One word of warning: you can run the debugger on a program only if the program compiles with no error; a debugger is not aimed as finding compile-time error, but only execution or semantic errors. Once you've launched the debugger, you will see something like this: \begin{verbatim} >>> LOADING while_done.pl6 + while_done.pl6 (1 - 3) | while True { | my $line = prompt "Enter something ('done' for exiting)\n"; | last if $line eq "done"; > \end{verbatim} \index{prompt} This says that it is loading the \verb'while_done.pl6' program, and displays the first lines of the program; the last line at the bottom (``\verb">"'') is a prompt where you can enter some commands. The program is stopped at the first statement that actually does something and waits for your input. The code line that is waiting to be executed is highlighted in a different color. \subsection{Getting some help} \index{debugger!help} The first command you probably want to issue is ``h'', which will display the debugger help and return to the prompt. Below, we have omitted most of the output for brevity: \begin{verbatim} > h <enter> single step, stepping into any calls s step to next statement, stepping over any calls so step out of the current routine [...] q[uit] exit the debugger > \end{verbatim} Take the time to issue that command and to read the various possible instructions you can enter. We will describe the most common ones. As you can see above, just use ``q'' or ``quit'' to exit the debugger. \subsection{Stepping through the code} \index{debugger!running code step by step} \index{debugger!stepping over subroutines} \index{debugger!stepping out of subroutines} The main characteristic of a debugger is that it lets you run the program step by step. Each time you hit the {\tt enter} key, the program will move forward one step (e.g. one code line). It will enter into any subroutine if the code line is a subroutine call, but you can step over the subroutine call by issuing the ``s'' command at the debugger prompt: this will run the subroutine and bring you to the first code line after the subroutine call (and any nested call of other subroutines) is over. If you entered into a subroutine but are no longer interested in stepping through it, just issue the ``so'' command to step out of it. \index{debugger!accessing variables} At any point through that process, you can look at the content of variables or even call methods on them. To view a variable, just type its name and then press {\tt enter}: \begin{verbatim} > $line "foo" \end{verbatim} You can also view an array or a hash, or use the index or the key, for example \verb'@array[10]' or \verb'%hash{"bar"}'), to visualize one specific item of the array or the hash. You may also use ``s'' (or ``say'') or ``p'' (or ``print'') to evaluate and display an expression in the current scope. \subsection{Stopping at the right place with breakpoints} \index{breakpoint} \index{debugger!breakpoint} You might find it tedious to run through the program step by step until you get to the interesting part. As it happens, you can get there immediately using a \emph{breakpoint}. For adding a breakpoint, you type ``{\tt bp add line}'', where ``{\tt line}'' is the line number where you want the program to stop running and resume stepping line by line. Then you enter the ``r'' command and the program will run until it reaches one of the breakpoints that you have set. The execution will also stop if the program runs into an exception; in that case, you can still access variables to try to figure out what went wrong. If it does not hit a breakpoint or an exception, it will run to the end. You can view all breakpoints (``{\tt bp list}''), remove one breakpoint (``{\tt bp rm line}''), or remove all breakpoints (``{\tt bp rm all}''). You can also set a breakpoint in another file (for example if you are using a module) by using the following syntax: ``{\tt bp add file:line}'', where ``file'' is the file name. \subsubsection{You're all set to start using the debugger} You probably know enough by now to make good use of the Perl~6 debugger, step through your program and find out where it does something that isn't what you intended. It wasn't so much to learn, was it? Try it! We'll cover a couple of additional goodies, though. \subsection{Logging information with trace points} \index{debugger!trace point} It is possible to set trace points on specific lines of code and variables (or expressions), with the command {\tt tp add line \$var}. This will record the value of \verb'$var' each time the programs hits the chosen line. Then you simply run the program for a while and, at some point, you can visualize how the variable changed over time, using the command {\tt tp show}. For example, we used it to log variable \verb'$rotated-word' in the solution to the Caesar's cipher exercise (see Subsection~\ref{sol_rotate}) for the ``ABCDabcd'' input string with a rotation of 25 letters; the {\tt tp show} command displayed how the coded output string was progressively populated letter by letter: \index{Caesar cipher} \begin{verbatim} > tp show >>> rotate.pl6:23 * * Z * ZA * ZAC * ZACB * ZACBz * ZACBza * ZACBzab \end{verbatim} \subsection{Stepping through a regex match} \label{regex-debugging} \index{regex} \index{regex!debugging} \index{debugger!stepping through a regex} The debugger can also provide useful information when the code is trying to match a regex. For example, suppose we're running under the debugger a program in which we have the following code: \begin{verbatim} "foobar" ~~ /f.+b/; \end{verbatim} \index{backtracking} If you run the regex step by step, color highlighting will show atom by atom where it is in the regex and which part of the string has been matched. (We can't show the color highlighting here, but you should try it to see it.) With the above regex, you'll see that the regex engine tries to match the ``f'' of the pattern and that it finds an ``f'' at the beginning of the string; next, you'll see that the regex engines tries to match the ``.+'' subpattern and that it matches the whole string; then, when the regex engine tries to match the final ``b'' of the pattern, you'll see that the regex engine backtracks and gives away the ``r'' and then the ``a''; finally, the regex engine succeeds with ``foob'. \index{backtracking} If you have difficulties understanding how regexes work or are mystified by backtracking, just run the debugger on a few regexes and observe what's going on step by step. You don't even have to write a program, you can use it as a one-liner. For example, to test the above regex as a one-liner under Windows, just type the following command at the prompt: \index{one-liner mode} \begin{verbatim} C:\Users\Laurent>perl6-debug-m -e "'foobar' ~~ /f.+b/;" \end{verbatim} As usual, change double quotes to single quotes and the other way around if you are using a Unix-like platform. Our final word on the debugger: remember you can always hit ``h'' to get help on the command you need. \section{Glossary} \begin{description} \item[object:] An entity that encloses its state (attributes) and its behavior (methods). \index{object} \item[class:] A programmer-defined type. A class definition creates a new type object (a form of abstract definition) and makes it possible to instantiate concrete objects representing real data. \index{class} \index{programmer-defined type} \index{type!programmer-defined} \item[method:] A special kind of subroutine defined within a class or a role, that can be called using the dot notation syntax \index{method} \index{dot notation} \item[type object:] An object that contains information about a programmer-defined type. The type object can be used to create instances of the type. \index{type object} \index{object!type} \item[instance:] An object that belongs to a class and contains real data. \index{instance} \item[instantiate:] To create a new object. \index{instantiate} \item[attribute:] A state property akin to a variable within an OOP framework. An instance attribute is one of the named values associated with an object. Class attributes are variables associated with the whole class. \index{attribute!instance} \index{instance attribute} \index{attribute!class} \index{class!attribute} \item[embedded object:] An object that is stored as an attribute of another object. \index{embedded object} \index{object!embedded} \item[object composition:] Using an object as part of the definition of another object, especially using an object as an attribute of another object. \index{composition} \index{object!composition} \item[object diagram:] A diagram that shows objects, their attributes, and the values of the attributes. \index{object diagram} \index{diagram!object} \item[role:] A collection of methods quite similar to a class but that is not designed to build objects. A role contains methods that can be applied to a class or an object to add new behaviors to them. \index{role} \item[polymorphic:] Pertaining to a function that can work with more than one type. \index{polymorphism} \item[encapsulation:] The principle that the interface provided by an object should not depend on its implementation, in particular the representation of its attributes. This is also called \emph{information hiding}. \index{encapsulation} \index{information hiding} \item[inheritance:] The ability to define a new class that is a modified version of a previously defined class. \index{inheritance} \item[parent class:] The class from which a child class inherits. \index{parent class} \item[child class:] A new class created by inheriting from an existing class; also called a ``subclass''. \index{child class} \index{class!child} \item[subclassing:] Creating a child class derived from an existing parent class. \index{subclass} \item[override:] when the method of a parent class is redefined in a child class, it is said to be overridden within that child class. \item[multiple inheritance:] A situation in which a child class is derived and inherits from more than one parent class. \item[delegation:] Defining a class or a role in which it is possible to invoke methods belonging to another object. \index{delegation} \end{description}
theory padic_fields imports padic_integers begin lemma(in padic_integers) Qp_nonzero_def: assumes "a \<in> nonzero Q\<^sub>p" shows "a \<in> carrier Q\<^sub>p" "a \<noteq>\<zero>\<^bsub>Q\<^sub>p\<^esub>" using assms nonzero_def apply force using assms nonzero_def by fastforce lemma(in padic_integers) Qp_is_field[simp]: "field Q\<^sub>p" by (simp add: Q\<^sub>p_def domain.fraction_field_is_field) lemma(in padic_integers) Qp_is_domain[simp]: "domain Q\<^sub>p" using Qp_is_field by (simp add: field_def) (*choice function for numerator and denominator*) definition(in padic_integers) denom where "denom = domain.denom Z\<^sub>p" definition(in padic_integers) numer where "numer = domain.numer Z\<^sub>p" definition(in padic_integers) frac where "frac = domain.frac Z\<^sub>p" (*Qp one isn't zero*) lemma(in padic_integers) Qp_one_car: "\<one>\<^bsub>Q\<^sub>p\<^esub> \<in> carrier Q\<^sub>p" by (simp add: cring.cring_simprules(6) fieldE(1)) lemma(in padic_integers) Qp_one_notzero: "\<one>\<^bsub>Q\<^sub>p\<^esub> \<noteq>\<zero>\<^bsub>Q\<^sub>p\<^esub>" by (simp add: one_not_zero) lemma(in padic_integers) Qp_one_nonzero: "\<one>\<^bsub>Q\<^sub>p\<^esub> \<in> nonzero Q\<^sub>p" by (simp add: Qp_one_car Qp_one_notzero nonzero_def) (*name for the isomorphic copy of Zp living in Qp*) abbreviation(in padic_integers) \<O>\<^sub>p where "\<O>\<^sub>p \<equiv> \<iota> ` carrier Z\<^sub>p" (*alternate definition of the map \<iota>:*) lemma(in padic_integers) inc_def: assumes "a \<in> carrier Z\<^sub>p" shows "\<iota> a = frac a \<one>" using frac_def Z\<^sub>p_def Q\<^sub>p_def domain.inc_equation Zp_is_domain \<iota>_def assms by fastforce (*Properties of \<iota> :*) lemma( in padic_integers) inc_of_nonzero: assumes "a \<in> nonzero Z\<^sub>p" shows "\<iota> a \<in> nonzero Q\<^sub>p" using Q\<^sub>p_def Zp_is_domain \<iota>_def assms domain.Frac_def domain.eq_obj_rng_of_frac_nonzero domain.inc_def domain.units_of_fraction_field eq_obj_rng_of_frac.one_over nonzero_def by (smt Zp_one_nonzero domain.frac_im domain.inc_inj1 local.frac_def local.inc_def mem_Collect_eq) lemma(in padic_integers) inc_of_one: "\<iota> \<one> = \<one>\<^bsub>Q\<^sub>p\<^esub>" by (simp add: Q\<^sub>p_def Zp_one_car Zp_one_nonzero \<iota>_def domain.frac_one domain.inc_equation) lemma(in padic_integers) inc_of_sum: assumes "a \<in> carrier Z\<^sub>p" assumes "b \<in> carrier Z\<^sub>p" shows "\<iota> (a \<oplus> b) = (\<iota> a) \<oplus>\<^bsub>Q\<^sub>p\<^esub> (\<iota> b)" by (simp add: Q\<^sub>p_def Zp_one_nonzero \<iota>_def assms(1) assms(2) cring.cring_simprules(1) domain.axioms(1) domain.frac_add_common_denom domain.inc_equation) lemma(in padic_integers) inc_of_prod: assumes "a \<in> carrier Z\<^sub>p" assumes "b \<in> carrier Z\<^sub>p" shows "\<iota> (a \<otimes> b) = (\<iota> a) \<otimes>\<^bsub>Q\<^sub>p\<^esub> (\<iota> b)" using Localization.submonoid.one_closed Q\<^sub>p_def Zp_is_domain assms(1) assms(2) cring.cring_simprules(5) domain.axioms(1) domain.i_mult domain.inc_equation domain.nonzero_is_submonoid local.frac_def local.inc_def by metis lemma(in padic_integers) inc_pow: assumes "a \<in> nonzero Z\<^sub>p" shows "\<iota> (a[^](n::nat)) = (\<iota> a)[^]\<^bsub>Q\<^sub>p\<^esub> n" proof(induction n) case 0 have P0: "(a[^](0::nat)) = \<one>" by (simp add: assms domain.pow_0) have P1: "(\<iota> a) \<in> nonzero Q\<^sub>p" by (simp add: assms inc_of_nonzero) have QD: "domain Q\<^sub>p" by (simp add: field.axioms(1)) have P2: "(\<iota> a)[^]\<^bsub>Q\<^sub>p\<^esub> (0::nat) = \<one>\<^bsub>Q\<^sub>p\<^esub>" using QD P1 by (simp add: domain.pow_0) then show ?case by (simp add: P0 inc_of_one) next case (Suc n) fix n::nat have QD: "domain Q\<^sub>p" by (simp add: field.axioms(1)) have A: "a \<in> carrier Z\<^sub>p" using assms nonzero_def Zp_nonzero_def(1) by presburger have An: "(a[^]n) \<in> carrier Z\<^sub>p" using Zp_nat_pow_nonzero Zp_nonzero_def(1) assms by blast have iA: "\<iota> a \<in> carrier Q\<^sub>p" by (simp add: Qp_nonzero_def(1) assms inc_of_nonzero) have iAn: "\<iota> (a[^]n) \<in> carrier Q\<^sub>p" using Qp_nonzero_def(1) Zp_nat_pow_nonzero assms inc_of_nonzero by blast assume "\<iota> (a[^]n) = (\<iota> a)[^]\<^bsub>Q\<^sub>p\<^esub> n" have "(a[^](Suc n)) = (a\<otimes> (a[^]n))" by (meson A Zp_is_domain domain.pow_suc) then have "\<iota> (a[^](Suc n)) = (\<iota> (a\<otimes> (a[^]n)))" by simp then have "\<iota> (a[^](Suc n)) = (\<iota> a) \<otimes>\<^bsub>Q\<^sub>p\<^esub> (\<iota>(a[^]n))" using inc_of_prod A An by blast then have P: "\<iota> (a[^](Suc n)) = (\<iota> a) \<otimes>\<^bsub>Q\<^sub>p\<^esub> (\<iota> a)[^]\<^bsub>Q\<^sub>p\<^esub>n" by (simp add: \<open>\<iota> (a [^] n) = \<iota> a [^]\<^bsub>Q\<^sub>p\<^esub> n\<close>) have "\<iota> a [^]\<^bsub>Q\<^sub>p\<^esub> (Suc n) = (\<iota> a) \<otimes>\<^bsub>Q\<^sub>p\<^esub> (\<iota> a)[^]\<^bsub>Q\<^sub>p\<^esub>n" by (meson Qp_is_domain domain.pow_suc iA) then show "\<iota> (a[^](Suc n)) = \<iota> a [^]\<^bsub>Q\<^sub>p\<^esub> (Suc n)" using P by blast qed lemma(in padic_integers) inc_of_diff: assumes "a \<in> carrier Z\<^sub>p" assumes "b \<in> carrier Z\<^sub>p" shows "\<iota> (a \<ominus> b) = (\<iota> a) \<ominus>\<^bsub>Q\<^sub>p\<^esub> (\<iota> b)" using assms unfolding a_minus_def using inc_of_sum[of a "\<ominus> b"] by (simp add: \<open>b \<in> carrier Z\<^sub>p\<close> Q\<^sub>p_def Zp_one_nonzero cring.cring_simprules(3) domain.axioms(1) domain.frac_uminus local.frac_def local.inc_def) lemma(in padic_integers) Units_nonzero_Qp[simp]: assumes "u \<in> Units Q\<^sub>p" shows "u \<in> nonzero Q\<^sub>p" by (simp add: assms domain.Units_nonzero field.axioms(1)) lemma(in padic_integers) Units_inverse_Qp[simp]: assumes "u \<in> Units Q\<^sub>p" shows "inv\<^bsub>Q\<^sub>p\<^esub> u \<in> Units Q\<^sub>p" by (simp add: assms domain.Units_inverse) (*************************************************************************************************) (*************************************************************************************************) (************************************* FACTS FROM **************************************) (************************************* fractionfield.thy **************************************) (*************************************************************************************************) (*************************************************************************************************) lemma(in padic_integers) frac_add: assumes "a \<in> carrier Z\<^sub>p" assumes "b \<in> nonzero Z\<^sub>p" assumes "c \<in> carrier Z\<^sub>p" assumes "d \<in> nonzero Z\<^sub>p" shows "(frac a b) \<oplus>\<^bsub>Q\<^sub>p\<^esub> (frac c d) = (frac ((a \<otimes> d) \<oplus> (b \<otimes> c)) (b \<otimes> d))" by (simp add: Q\<^sub>p_def assms(1) assms(2) assms(3) assms(4) domain.frac_add local.frac_def) lemma(in padic_integers) frac_add_common_denom: assumes "a \<in> carrier Z\<^sub>p" assumes "b \<in> carrier Z\<^sub>p" assumes "c \<in> nonzero Z\<^sub>p" shows "(frac a c) \<oplus>\<^bsub>Q\<^sub>p\<^esub> (frac b c) = frac (a \<oplus> b) c" by (simp add: Q\<^sub>p_def assms(1) assms(2) assms(3) domain.frac_add_common_denom local.frac_def) lemma(in padic_integers) frac_mult: assumes "a \<in> carrier Z\<^sub>p" assumes "b \<in> nonzero Z\<^sub>p" assumes "c \<in> carrier Z\<^sub>p" assumes "d \<in> nonzero Z\<^sub>p" shows "(frac a b) \<otimes>\<^bsub>Q\<^sub>p\<^esub> (frac c d) = (frac (a \<otimes> c) (b \<otimes> d))" by (simp add: Q\<^sub>p_def assms(1) assms(2) assms(3) assms(4) domain.frac_mult local.frac_def) lemma(in padic_integers) frac_one: assumes "a \<in> nonzero Z\<^sub>p" shows "frac a a = \<one>\<^bsub>Q\<^sub>p\<^esub>" by (simp add: Q\<^sub>p_def assms domain.frac_one local.frac_def) lemma(in padic_integers) frac_closed: assumes "a \<in> carrier Z\<^sub>p" assumes "b \<in> nonzero Z\<^sub>p" shows "frac a b \<in> carrier Q\<^sub>p" by (simp add: Q\<^sub>p_def assms(1) assms(2) domain.frac_im local.frac_def) lemma(in padic_integers) inv_in_frac: assumes "a \<in> carrier Q\<^sub>p" assumes "a \<noteq>\<zero>\<^bsub>Q\<^sub>p\<^esub>" shows "inv\<^bsub>Q\<^sub>p\<^esub> a \<in> carrier Q\<^sub>p" "inv\<^bsub>Q\<^sub>p\<^esub> a \<noteq>\<zero>\<^bsub>Q\<^sub>p\<^esub>" "inv\<^bsub>Q\<^sub>p\<^esub> a \<in> nonzero Q\<^sub>p" proof- have "a \<in> Units Q\<^sub>p" using assms Units_def domain.units_of_fraction_field using Diff_iff Q\<^sub>p_def Zp_is_domain by fastforce then show 0:"inv\<^bsub>Q\<^sub>p\<^esub> a \<in> carrier Q\<^sub>p" by (meson Qp_is_field cring_def fieldE(1) monoid.Units_inv_closed ring_def) show 1: "inv\<^bsub>Q\<^sub>p\<^esub> a \<noteq>\<zero>\<^bsub>Q\<^sub>p\<^esub>" by (metis Q\<^sub>p_def Qp_is_field Zp_is_domain assms(1) assms(2) cring.cring_simprules(27) domain.one_not_zero domain.units_of_fraction_field0(2) field.axioms(1) fieldE(1)) show "inv\<^bsub>Q\<^sub>p\<^esub> a \<in> nonzero Q\<^sub>p" by (simp add: "0" "1" nonzero_def) qed lemma(in padic_integers) nonzero_numer_imp_nonzero_fraction: assumes "a \<in> nonzero Z\<^sub>p" assumes "b \<in> nonzero Z\<^sub>p" shows "frac a b \<noteq> \<zero>\<^bsub>Q\<^sub>p\<^esub>" by (simp add: Q\<^sub>p_def assms(1) assms(2) domain.nonzero_fraction local.frac_def) lemma(in padic_integers) nonzero_fraction_imp_numer_not_zero: assumes "a \<in> carrier Z\<^sub>p" assumes "b \<in> nonzero Z\<^sub>p" assumes "frac a b \<noteq> \<zero>\<^bsub>Q\<^sub>p\<^esub>" shows "a \<noteq> \<zero>" proof assume "a = \<zero>" then have "frac a b = frac \<zero> \<one>" by (metis Q\<^sub>p_def Qp_is_field Zp_is_domain \<iota>_def assms(1) assms(2) cring.cring_simprules(26) domain.axioms(1) domain.frac_im domain.i_mult domain.nat_0 domain.nat_inc_rep field.axioms(1) local.frac_def local.inc_def) then show False by (metis Q\<^sub>p_def Qp_is_field Zp_is_domain assms(3) domain.nat_0 domain.nat_inc_rep field.axioms(1) local.frac_def) qed lemma(in padic_integers) nonzero_fraction_imp_nonzero_numer: assumes "a \<in> carrier Z\<^sub>p" assumes "b \<in> nonzero Z\<^sub>p" assumes "frac a b \<noteq> \<zero>\<^bsub>Q\<^sub>p\<^esub>" shows "a \<in> nonzero Z\<^sub>p" proof- have "a \<noteq> \<zero>" using assms(1) assms(2) assms(3) nonzero_fraction_imp_numer_not_zero by blast then show ?thesis using assms(1) nonzero_def by (simp add: nonzero_def) qed lemma(in padic_integers) frac_inv: assumes "a \<in> nonzero Z\<^sub>p" assumes "b \<in> nonzero Z\<^sub>p" shows "inv\<^bsub>Q\<^sub>p\<^esub> (frac a b) = (frac b a)" by (simp add: Q\<^sub>p_def assms(1) assms(2) domain.frac_inv local.frac_def) lemma(in padic_integers) frac_inv_id: assumes "a \<in> nonzero Z\<^sub>p" assumes "b \<in> nonzero Z\<^sub>p" assumes "c \<in> nonzero Z\<^sub>p" assumes "d \<in> nonzero Z\<^sub>p" assumes "frac a b = frac c d" shows "frac b a = frac d c" using frac_inv assms by metis lemma(in padic_integers) frac_uminus: assumes "a \<in> carrier Z\<^sub>p" assumes "b \<in> nonzero Z\<^sub>p" shows "\<ominus>\<^bsub>Q\<^sub>p\<^esub> (frac a b) = frac (\<ominus> a) b" by (simp add: Q\<^sub>p_def assms(1) assms(2) domain.frac_uminus local.frac_def) lemma(in padic_integers) frac_cancel_l: assumes "a \<in>nonzero Z\<^sub>p" assumes "b \<in>nonzero Z\<^sub>p" assumes "c \<in>carrier Z\<^sub>p" shows "frac (a \<otimes>c) (a \<otimes>b) = frac c b" by (simp add: assms(1) assms(2) assms(3) domain.frac_cancel_l local.frac_def) lemma(in padic_integers) frac_cancel_r: assumes "a \<in>nonzero Z\<^sub>p" assumes "b \<in>nonzero Z\<^sub>p" assumes "c \<in>carrier Z\<^sub>p" shows "frac (c \<otimes>a) (b \<otimes>a) = frac c b" by (simp add: assms(1) assms(2) assms(3) domain.frac_cancel_r local.frac_def) lemma(in padic_integers) frac_cancel_lr: assumes "a \<in>nonzero Z\<^sub>p" assumes "b \<in>nonzero Z\<^sub>p" assumes "c \<in>carrier Z\<^sub>p" shows "frac (a \<otimes>c) (b \<otimes>a) = frac c b" by (simp add: assms(1) assms(2) assms(3) domain.frac_cancel_lr local.frac_def) lemma(in padic_integers) frac_cancel_rl: assumes "a \<in>nonzero Z\<^sub>p" assumes "b \<in>nonzero Z\<^sub>p" assumes "c \<in>carrier Z\<^sub>p" shows "frac (c \<otimes>a) (a \<otimes>b) = frac c b" by (simp add: assms(1) assms(2) assms(3) domain.frac_cancel_rl local.frac_def) lemma(in padic_integers) i_mult: assumes "a \<in> carrier Z\<^sub>p" assumes "c \<in> carrier Z\<^sub>p" assumes "d \<in> nonzero Z\<^sub>p" shows "(\<iota> a) \<otimes>\<^bsub>Q\<^sub>p\<^esub> (frac c d) = frac (a \<otimes> c) d" by (simp add: Q\<^sub>p_def \<iota>_def assms(1) assms(2) assms(3) domain.i_mult local.frac_def) lemma(in padic_integers) numer_denom_facts: assumes "a \<in> carrier Q\<^sub>p" shows "(numer a) \<in> carrier Z\<^sub>p" "(denom a) \<in> nonzero Z\<^sub>p" "a \<noteq> \<zero>\<^bsub>Q\<^sub>p\<^esub> \<Longrightarrow> numer a \<noteq> \<zero> " "a \<otimes>\<^bsub>Q\<^sub>p\<^esub> (\<iota> (denom a)) = \<iota> (numer a)" "a = frac (numer a) (denom a)" using Q\<^sub>p_def assms domain.numer_denom_facts(1) numer_def apply force using Q\<^sub>p_def assms denom_def domain.numer_denom_facts(2) apply (metis Zp_is_domain) using Q\<^sub>p_def assms domain.numer_denom_facts(3) numer_def apply force using Q\<^sub>p_def \<iota>_def assms denom_def domain.numer_denom_facts(4) numer_def apply force using Q\<^sub>p_def assms denom_def domain.numer_denom_facts(5) local.frac_def numer_def by force lemma(in padic_integers) get_common_denominator: assumes "x \<in> carrier Q\<^sub>p" assumes "y \<in> carrier Q\<^sub>p" obtains a b c where "a \<in> carrier Z\<^sub>p" "b \<in> carrier Z\<^sub>p" "c \<in> nonzero Z\<^sub>p" "x = frac a c" "y = frac b c" using Q\<^sub>p_def Zp_is_domain assms(1) assms(2) domain.common_denominator local.frac_def that by metis abbreviation(in padic_integers) fract :: "_ \<Rightarrow> _ \<Rightarrow> _" (infixl "\<div>" 50) where "(fract a b) \<equiv> (a \<otimes>\<^bsub>Q\<^sub>p\<^esub> (inv\<^bsub>Q\<^sub>p\<^esub> b))" (*fract generalizes frac*) lemma(in padic_integers) fract_frac: assumes "a \<in> carrier Z\<^sub>p" assumes "b \<in> nonzero Z\<^sub>p" shows "(frac a b) = (\<iota> a \<div> \<iota> b)" proof- have B: "b \<in> carrier Z\<^sub>p" using assms(2) nonzero_def Zp_nonzero_def(1) by presburger have P0:"(inv\<^bsub>Q\<^sub>p\<^esub> (\<iota> b)) = frac \<one> b" using B inc_def frac_inv Zp_one_nonzero assms(2) by presburger have P1: "(frac a b) = (\<iota> a) \<otimes>\<^bsub>Q\<^sub>p\<^esub> (frac \<one> b)" by (metis B Localization.submonoid.one_closed Zp_is_domain assms(1) assms(2) cring.cring_simprules(12) cring.cring_simprules(6) domain.axioms(1) domain.nonzero_is_submonoid frac_cancel_rl i_mult) show ?thesis by (simp add: P0 P1) qed lemma(in padic_integers) frac_eq: assumes "a \<in> nonzero Z\<^sub>p" assumes "b \<in> nonzero Z\<^sub>p" assumes "frac a b = \<one>\<^bsub>Q\<^sub>p\<^esub>" shows "a = b" proof- have "frac a b = frac b b" by (simp add: assms(2) assms(3) frac_one) then have "frac a \<one> = frac b \<one>" by (metis (no_types, lifting) Q\<^sub>p_def Qp_is_domain Z\<^sub>p_def Zp_nonzero_def(1) Zp_one_nonzero assms(1) assms(2) assms(3) cring.cring_simprules(11) cring.cring_simprules(12) cring.cring_simprules(14) domain.axioms(1) fract_frac local.inc_def padic_integers.frac_closed padic_integers.frac_inv padic_integers_axioms) then show ?thesis using Zp_is_domain Zp_nonzero_def(1) \<iota>_def assms(1) assms(2) domain.inc_inj2 local.inc_def by metis qed lemma(in padic_integers) Qp_nat_pow_nonzero: assumes "x \<in> nonzero Q\<^sub>p" shows "x[^]\<^bsub>Q\<^sub>p\<^esub>(n::nat) \<in> nonzero Q\<^sub>p" by (simp add: assms domain.nat_pow_nonzero) lemma(in padic_integers) pow_p_frac_0: assumes "(m::int) \<ge> n" assumes "n \<ge>0" shows "(frac (\<p>[^]m) (\<p>[^]n)) = \<iota> (\<p>[^](m-n))" proof- have 0: "\<p>\<in>carrier Z\<^sub>p" by (simp add: Zp_nat_inc_closed) have 1: "m - n \<ge>0" using assms(1) by auto have 2: "nat (m - n) + (nat n) = nat m" using "1" assms(2) by linarith have 3: "m \<ge>0" using assms by auto then have "(\<p>[^] (nat (m-n))) \<otimes> (\<p>[^](nat n)) = (\<p>[^] (nat m))" using Zp_is_domain 0 1 2 3 monoid.nat_pow_mult by (metis "0" Z\<^sub>p_def cring_def monoid.nat_pow_mult padic_int_is_cring prime ring_def) then have "(\<p>[^] (m-n)) \<otimes> (\<p>[^]n) = (\<p>[^]m)" using int_pow_int 1 3 assms(2) int_nat_eq by metis then have P0: "(frac (\<p>[^]m) (\<p>[^]n)) = frac ((\<p>[^](m-n))\<otimes> (\<p>[^]n)) (\<p>[^]n)" by simp have "\<p> \<in>carrier Z\<^sub>p" by (simp add: "0") have "(\<p>[^](nat n)) = [(p^(nat n))] \<cdot> \<one>" by (simp add: p_pow_rep0) then have "(\<p>[^](nat n)) \<in> carrier Z\<^sub>p" by (simp add: Zp_nat_inc_closed) then have "(\<p>[^]n) \<in> carrier Z\<^sub>p" using assms(2) by (metis int_nat_eq int_pow_int) then have P1: "(frac (\<p>[^]m) (\<p>[^]n)) = frac ((\<p>[^](m-n))\<otimes> (\<p>[^]n)) ((\<one> \<otimes> (\<p>[^]n)))" using Zp_is_domain P0 by (simp add: cring.cring_simprules(12) domain_def) have P2: "(\<p>[^](m-n)) \<in> carrier Z\<^sub>p" using "1" p_pow_car by blast have P3: "(\<p>[^]n) \<in> carrier Z\<^sub>p" using \<open>\<p> [^] n \<in> carrier Z\<^sub>p\<close> by blast have P4: "(\<p>[^]n) \<in> nonzero Z\<^sub>p" by (metis assms(2) int_eq_iff int_pow_int p_pow_nonzero) have P5: "\<one> \<in> nonzero Z\<^sub>p" using nonzero_def Zp_one_nonzero by blast have "(frac (\<p>[^](m-n)) \<one>) \<otimes>\<^bsub>Q\<^sub>p\<^esub> (frac (\<p>[^]n) (\<p>[^]n)) = frac ((\<p>[^](m-n))\<otimes> (\<p>[^]n)) ((\<one> \<otimes> (\<p>[^]n)))" using Zp_is_domain P2 P4 P3 P5 frac_def Q\<^sub>p_def frac_mult by blast then have "frac ((\<p>[^](m-n))\<otimes> (\<p>[^]n)) ((\<one> \<otimes> (\<p>[^]n))) = (frac (\<p>[^](m-n)) \<one>) " by (simp add: domain.frac_cancel_r P2 P4 P5 local.frac_def) then have P6: "(frac (\<p>[^]m) (\<p>[^]n)) = (frac (\<p>[^](m-n)) \<one>) " using P1 by blast have "(frac (\<p>[^](m-n)) \<one>) = \<iota> (\<p>[^](m-n))" using inc_def by (simp add: P2) then show ?thesis using P6 by blast qed lemma(in padic_integers) pow_p_frac: assumes "(m::int) \<le> n" assumes "m \<ge>0" shows "(frac (\<p>[^]m) (\<p>[^]n)) = frac \<one> (\<p>[^](n-m))" proof- have "(frac (\<p>[^]n) (\<p>[^]m)) = \<iota> (\<p>[^](n-m))" by (simp add: assms(1) assms(2) pow_p_frac_0) then have P0:"(frac (\<p>[^]n) (\<p>[^]m)) = frac (\<p>[^](n-m)) \<one>" by (simp add: assms(1) local.inc_def) have P1: "\<one>\<in>nonzero Z\<^sub>p" by (simp add: Zp_one_nonzero) have P2: "\<p>[^]n \<in> nonzero Z\<^sub>p" by (metis assms(1) assms(2) diff_ge_0_iff_ge diff_mono eq_iff_diff_eq_0 int_eq_iff int_nat_eq int_pow_int p_pow_nonzero) have P3: "\<p>[^]m \<in> nonzero Z\<^sub>p" by (metis assms(2) int_eq_iff int_pow_int p_pow_nonzero) have P4: "(\<p>[^](n-m)) \<in> nonzero Z\<^sub>p" by (metis assms(1) diff_ge_0_iff_ge int_eq_iff int_pow_int ord_Zp_def ord_Zp_p_pow ord_of_nonzero(2) p_pow_car) show " frac (\<p>[^]m) (\<p>[^]n) = frac \<one> (\<p>[^](n-m))" using P0 P1 P2 P3 P4 p_pow_nonzero domain.frac_inv_id frac_def Zp_is_domain by (metis (mono_tags, lifting)) qed (**********************************************************************************************************) (*The copy of the prime p living in Q\<^sub>p*) abbreviation(in padic_integers) \<pp> where "\<pp> \<equiv> [p] \<cdot>\<^bsub>Q\<^sub>p\<^esub> \<one>\<^bsub>Q\<^sub>p\<^esub>" abbreviation(in padic_integers) exp (infixl "e" 50) where "exp a n \<equiv> a [^]\<^bsub>Q\<^sub>p\<^esub> n" lemma(in padic_integers) p_inc: "\<pp> = \<iota> \<p>" proof- have "\<pp> = frac \<p> \<one>" by (simp add: domain.nat_inc_rep Q\<^sub>p_def local.frac_def) then show ?thesis by (simp add: local.inc_def Zp_nat_inc_closed) qed lemma(in padic_integers) p_nonzero[simp]: "\<pp>\<in>nonzero Q\<^sub>p" using Z\<^sub>p_def Zp_nat_inc_closed inc_of_nonzero ord_Zp_p p_inc padic_integers.ord_of_nonzero(2) padic_integers_axioms by auto lemma(in padic_integers) p_natpow_inc: fixes n::nat shows "\<pp> e n = \<iota> (\<p> [^] n)" by (metis Zp_nat_inc_closed inc_pow not_nonzero_Zp p_inc p_pow_nonzero_0(2) p_pow_rep0 power_Suc0_right) lemma(in padic_integers) p_intpow_inc: fixes n::int assumes "n \<ge>0" shows "\<pp> e n = \<iota> (\<p> [^] n)" using p_natpow_inc by (metis assms int_nat_eq int_pow_int) lemma(in padic_integers) p_intpow: fixes n::int assumes "n < 0" shows "\<pp> e n = (frac \<one> (\<p> [^] (-n)))" proof- have U0: "(\<pp> e (nat (-n))) \<in> Units Q\<^sub>p" using Qp_is_field by (metis Diff_iff Localization.submonoid.one_closed Q\<^sub>p_def Z\<^sub>p_def Zp_is_domain \<iota>_def domain.frac_im domain.inc_inj1 domain.nonzero_is_submonoid domain.units_of_fraction_field local.frac_def local.inc_def padic_integers.p_natpow_inc p_pow_nonzero_0(1) padic_integers.p_pow_nonzero_0(2) padic_integers_axioms singletonD) have E0: "(\<pp> e (nat (-n))) = (\<pp> e (-n))" using assms by (simp add: int_pow_def nat_pow_def) then have U1: "(\<pp> e (-n)) \<in> Units Q\<^sub>p" using U0 by simp have "(\<pp> e n) = inv \<^bsub>Q\<^sub>p\<^esub> (\<pp> e (nat (-n)))" using assms by (simp add: int_pow_def nat_pow_def) then have "(\<pp> e n) = inv \<^bsub>Q\<^sub>p\<^esub> (\<pp> e (-n))" using E0 by simp then have "(\<pp> e n) = inv \<^bsub>Q\<^sub>p\<^esub> \<iota> (\<p> [^](-n))" using assms p_intpow_inc by auto then have E1: "(\<pp> e n) = inv \<^bsub>Q\<^sub>p\<^esub> frac (\<p> [^](-n)) \<one>" using assms local.inc_def p_pow_car by auto have A: "(\<p> [^](-n)) \<in> nonzero Z\<^sub>p" using assms p_pow_nonzero by (metis (mono_tags) add.inverse_inverse diff_0 int.lless_eq int_nat_eq int_pow_int neg_0_le_iff_le ) then show ?thesis using A frac_inv inc_def using E1 Zp_one_nonzero by blast qed lemma(in padic_integers) p_natpow_closed[simp]: fixes n::nat shows "(\<pp> e n) \<in> (carrier Q\<^sub>p)" "(\<pp> e n) \<in> (nonzero Q\<^sub>p)" using Qp_nat_pow_nonzero Qp_nonzero_def(1) p_nonzero apply blast using Qp_nat_pow_nonzero p_nonzero by blast lemma(in padic_integers) Zp_is_subring: "subring \<O>\<^sub>p Q\<^sub>p" by (simp add: Q\<^sub>p_def \<iota>_def domain.inc_im_is_subring) lemma(in padic_integers) p_pow_diff: fixes n::int fixes m::int assumes "n \<ge>0" assumes "m \<ge>0" shows "\<pp> e (n - m) = frac (\<p>[^] n) (\<p>[^]m)" proof- have 0: "comm_monoid Q\<^sub>p" using Qp_is_domain cring_def domain_def by blast have 1: "\<pp> \<in> Units Q\<^sub>p" by (metis Qp_is_domain Qp_is_field Qp_nonzero_def(1) Qp_nonzero_def(2) field.field_inv(2) inv_in_frac(1) is_UnitI(1) p_nonzero) have 2: "\<pp> e (n - m) = (\<pp> e n) \<otimes>\<^bsub>Q\<^sub>p\<^esub> (\<pp> e -m)" using int_pow_add[of Q\<^sub>p \<pp> n "-m"] by (simp add: "0" "1") have 3: "\<pp> e (n - m) = (\<pp> e n) \<otimes>\<^bsub>Q\<^sub>p\<^esub> inv\<^bsub>Q\<^sub>p\<^esub>(\<pp> e m)" using 0 2 by (simp add: "1" int_pow_inv') then show ?thesis using assms using fract_frac p_int_pow_nonzero p_intpow_inc p_pow_car by presburger qed lemma(in padic_integers) Qp_is_comm_monoid[simp]: "comm_monoid Q\<^sub>p" using Qp_is_domain cring_def domain_def by blast lemma(in padic_integers) Qp_Units_nonzero: "(a \<in> (Units Q\<^sub>p)) \<longleftrightarrow> (a \<in> ( nonzero Q\<^sub>p))" unfolding nonzero_def using Qp_is_field by (simp add: Q\<^sub>p_def domain.units_of_fraction_field) lemma(in padic_integers) Qp_int_pow_add: fixes n::int fixes m::int assumes "a \<in> nonzero Q\<^sub>p" shows "a [^]\<^bsub>Q\<^sub>p\<^esub> (n + m) = (a [^]\<^bsub>Q\<^sub>p\<^esub> n) \<otimes>\<^bsub>Q\<^sub>p\<^esub> (a [^]\<^bsub>Q\<^sub>p\<^esub> m)" using int_pow_add[of Q\<^sub>p a n m] Qp_Units_nonzero Qp_is_comm_monoid assms by blast lemma(in padic_integers) p_intpow_closed[simp]: fixes n::int shows "(\<pp> e n) \<in> (carrier Q\<^sub>p)" "(\<pp> e n) \<in> (nonzero Q\<^sub>p)" apply (meson Qp_Units_nonzero Qp_is_comm_monoid Qp_nonzero_def(1) int_pow_unit_closed p_nonzero) by (meson Qp_Units_nonzero Qp_is_comm_monoid int_pow_unit_closed p_nonzero) lemma (in padic_integers) p_intpow_add: fixes n::int fixes m::int shows "\<pp> [^]\<^bsub>Q\<^sub>p\<^esub> (n + m) = (\<pp> [^]\<^bsub>Q\<^sub>p\<^esub> n) \<otimes>\<^bsub>Q\<^sub>p\<^esub> (\<pp> [^]\<^bsub>Q\<^sub>p\<^esub> m)" by (meson Qp_Units_nonzero Qp_is_comm_monoid int_pow_add p_nonzero) lemma (in padic_integers) p_intpow_inv: fixes n::int shows "(\<pp> [^]\<^bsub>Q\<^sub>p\<^esub> n) \<otimes>\<^bsub>Q\<^sub>p\<^esub> (\<pp> [^]\<^bsub>Q\<^sub>p\<^esub> -n) = \<one>\<^bsub>Q\<^sub>p\<^esub>" by (simp add: Qp_Units_nonzero int_pow_inv') lemma (in padic_integers) p_intpow_inv': fixes n::int shows "(\<pp> [^]\<^bsub>Q\<^sub>p\<^esub> -n) \<otimes>\<^bsub>Q\<^sub>p\<^esub> (\<pp> [^]\<^bsub>Q\<^sub>p\<^esub> n) = \<one>\<^bsub>Q\<^sub>p\<^esub>" by (simp add: Qp_Units_nonzero Qp_nonzero_def(2) field.field_inv(1) int_pow_inv') lemma (in padic_integers) p_intpow_inv'': fixes n::int shows "(\<pp> [^]\<^bsub>Q\<^sub>p\<^esub> -n) = inv\<^bsub>Q\<^sub>p\<^esub> (\<pp> [^]\<^bsub>Q\<^sub>p\<^esub> n)" by (metis Qp_is_comm_monoid comm_monoid.comm_inv_char p_intpow_closed(1) p_intpow_inv) (*************************************************************************************************) (*************************************************************************************************) (************************************* THE VALUATION ON Qp **************************************) (*************************************************************************************************) (*************************************************************************************************) definition(in padic_integers) ord where "ord x = (ord_Zp (numer x)) - (ord_Zp (denom x))" definition(in padic_integers) val where "val x = (if (x = \<zero>\<^bsub>Q\<^sub>p\<^esub>) then \<infinity>\<^bsub>G\<^esub> else (Some (ord x)))" lemma(in padic_integers) val_ord[simp]: assumes "a \<in> nonzero Q\<^sub>p" shows "val a = *ord a*" using assms nonzero_def val_def by force (**************************************************************************************************) (**************************************************************************************************) (********************************* ************************************) (********************************* PROPERTIES OF VAL AND ORD ************************************) (********************************* ************************************) (**************************************************************************************************) (**************************************************************************************************) lemma(in padic_integers) ord_of_frac: assumes "a \<in> nonzero Z\<^sub>p" assumes "b \<in> nonzero Z\<^sub>p" shows "ord (frac a b) = (ord_Zp a) - (ord_Zp b)" proof- have "frac a b = frac (numer (frac a b)) (denom (frac a b))" using Q\<^sub>p_def Zp_is_domain assms(1) assms(2) domain.frac_im local.frac_def Zp_nonzero_def(1) numer_denom_facts(5) by metis then have "a \<otimes> (denom (frac a b)) = b \<otimes> (numer (frac a b))" by (metis Zp_is_domain Zp_nonzero_def(1) assms(1) assms(2) domain.frac_eq frac_closed local.frac_def numer_denom_facts(1) numer_denom_facts(2)) then have "(ord_Zp a) - (ord_Zp b) = (ord_Zp (numer (frac a b))) - (ord_Zp (denom (frac a b)))" using ord_Zp_eq_frac by (metis Q\<^sub>p_def Z\<^sub>p_def Zp_is_domain assms(1) assms(2) domain.frac_im domain.nonzero_fraction local.frac_def Zp_nonzero_def(1) numer_denom_facts(1) numer_denom_facts(3) ord_of_nonzero(2) ord_pos padic_integers.numer_denom_facts(2) padic_integers_axioms) then show ?thesis using ord_def by presburger qed lemma(in padic_integers) val_zero: "val (\<zero>\<^bsub>Q\<^sub>p\<^esub>) = \<infinity>\<^bsub>G\<^esub>" by (simp add: val_def) lemma(in padic_integers) ord_one[simp]: "ord (\<one>\<^bsub>Q\<^sub>p\<^esub>) = 0" using ord_of_frac[of \<one> \<one>] frac_one[of \<one>] Zp_one_nonzero by (metis (mono_tags, hide_lams) diff_self local.frac_def) lemma(in padic_integers) val_one[simp]: "val (\<one>\<^bsub>Q\<^sub>p\<^esub>) = \<zero>\<^bsub>G\<^esub>" using ord_one by (simp add: gzero_id one_not_zero val_def) lemma(in padic_integers) val_of_frac: assumes "a \<in> carrier Z\<^sub>p" assumes "b \<in> nonzero Z\<^sub>p" shows "val (frac a b) = (val_Zp a) \<ominus>\<^bsub>G\<^esub> (val_Zp b)" proof(cases "a = \<zero>") case True then show ?thesis using G_mult(1) assms(1) assms(2) local.val_zero Zp_nonzero_def(2) val_Zp_def nonzero_fraction_imp_numer_not_zero by metis next case False then have "a \<in> nonzero Z\<^sub>p" by (simp add: assms(1) nonzero_def) then show ?thesis using ord_of_frac using assms(2) gminus_minus Zp_nonzero_def(1) Zp_nonzero_def(2) val_def val_ord_Zp by (metis nonzero_numer_imp_nonzero_fraction) qed lemma(in padic_integers) Zp_division_Qp_0[simp]: assumes "u \<in> Units Z\<^sub>p" assumes "v \<in> Units Z\<^sub>p" shows "frac (u \<otimes> (inv\<^bsub>Z\<^sub>p\<^esub> v)) \<one> = frac u v" proof- have 0: "frac v v = \<one>\<^bsub>Q\<^sub>p\<^esub>" using frac_one by (meson Units_nonzero_Zp assms(2)) have 1:"(inv\<^bsub>Z\<^sub>p\<^esub> v) \<in> carrier Z\<^sub>p" using assms Zp_is_domain by (metis cring_def domain_def monoid.Units_inv_closed ring_def) have 2:"frac (u \<otimes> (inv\<^bsub>Z\<^sub>p\<^esub> v)) \<one> \<in> carrier Q\<^sub>p" using 1 assms Units_nonzero_Zp Zp_is_domain cring.cring_simprules(5) domain.axioms(1) frac_closed Zp_nonzero_def(1) Zp_one_nonzero by (metis (mono_tags, hide_lams) local.frac_def ) have 3: "frac (u \<otimes> (inv\<^bsub>Z\<^sub>p\<^esub> v)) \<one> = (frac (u \<otimes> (inv\<^bsub>Z\<^sub>p\<^esub> v)) \<one>) \<otimes>\<^bsub>Q\<^sub>p\<^esub> frac v v" using Qp_is_field 0 2 by (metis "1" Units_nonzero_Zp Zp_is_domain assms(1) cring.cring_simprules(5) domain.axioms(1) frac_inv fract_frac inc_of_one local.inc_def Zp_nonzero_def(1) Zp_one_nonzero) then have 4: "frac (u \<otimes> (inv\<^bsub>Z\<^sub>p\<^esub> v)) \<one> = (frac ((u \<otimes> (inv\<^bsub>Z\<^sub>p\<^esub> v)) \<otimes> v) v)" by (metis "1" Units_nonzero_Zp Zp_is_domain assms(1) assms(2) cring.cring_simprules(5) domain.axioms(1) i_mult local.inc_def Zp_nonzero_def(1)) then have 4: "frac (u \<otimes> (inv\<^bsub>Z\<^sub>p\<^esub> v)) \<one> = (frac (u \<otimes> ((inv\<^bsub>Z\<^sub>p\<^esub> v) \<otimes> v)) v)" by (simp add: "1" assms(1) assms(2) cring.cring_simprules(11) domain.axioms(1) Zp_nonzero_def(1)) have 5:"(inv\<^bsub>Z\<^sub>p\<^esub> v) \<otimes> v = \<one>" by (meson Zp_is_domain assms(2) cring_def domain_def monoid.Units_l_inv ring_def) then show "frac (u \<otimes> (inv\<^bsub>Z\<^sub>p\<^esub> v)) \<one> = (frac u v)" using 4 by (metis "1" Units_nonzero_Zp Zp_is_domain Zp_nonzero_def(1) Zp_one_notzero assms(1) assms(2) domain.integral_iff frac_cancel_rl not_nonzero_Zp) qed lemma(in padic_integers) Zp_division_Qp_1: assumes "u \<in> Units Z\<^sub>p" assumes "v \<in> Units Z\<^sub>p" obtains w where "w \<in> Units Z\<^sub>p" "\<iota> w = frac u v" proof- have " (inv\<^bsub>Z\<^sub>p\<^esub> v) \<in> Units Z\<^sub>p" using Zp_is_domain domain_def cring_def ring_def assms(2) Units_inverse_Zp by blast then have "(u \<otimes> (inv\<^bsub>Z\<^sub>p\<^esub> v)) \<in> Units Z\<^sub>p" using assms Zp_is_domain by (metis Units_closed) then show ?thesis using Zp_division_Qp_0 by (metis (mono_tags, hide_lams) Zp_is_domain \<iota>_def assms(1) assms(2) cring_def domain.axioms(1) domain.inc_equation local.frac_def monoid.Units_closed ring_def that) qed (*Showing that the image of Zp in Qp is a valuation ring*) lemma(in padic_integers) Zp_ord_criterion[simp]: assumes "a \<in> carrier Q\<^sub>p" assumes "a \<noteq> \<zero>\<^bsub>Q\<^sub>p\<^esub>" assumes "ord a \<ge> 0" shows "a \<in> \<O>\<^sub>p" proof- obtain c d where P0: "a = frac c d" and P1: "c \<in> nonzero Z\<^sub>p" and P2: "d \<in> nonzero Z\<^sub>p" using Q\<^sub>p_def Zp_is_domain assms(1) domain.numer_denom_facts(1) domain.numer_denom_facts(2) domain.numer_denom_facts(5) local.frac_def by (metis assms(2) domain.numer_denom_facts(3) ord_of_nonzero(2) ord_pos) obtain m n where P3: "m = ord_Zp c" and P4:"n = ord_Zp d" by metis obtain u where "u = ac_Zp c" by simp have P5:"c = (\<p>[^]m) \<otimes> u" and P6:"u \<in> Units Z\<^sub>p" apply (metis P1 P3 \<open>u = ac_Zp c\<close> ac_Zp_factors_x int_pow_int Zp_nonzero_def(1) Zp_nonzero_def(2) ord_nat) using P1 Zp_nonzero_def(1) Zp_nonzero_def(2) \<open>u = ac_Zp c\<close> ac_Zp_is_Unit by blast obtain v where "v = ac_Zp d" by simp have P7:"d = (\<p>[^]n) \<otimes> v" and P8:"v \<in> Units Z\<^sub>p" apply (metis P2 P4 \<open>v = ac_Zp d\<close> ac_Zp_factors_x int_pow_int Zp_nonzero_def(1) Zp_nonzero_def(2) ord_nat) using P2 Zp_nonzero_def(1) Zp_nonzero_def(2) \<open>v = ac_Zp d\<close> ac_Zp_is_Unit by blast have P9: "a = frac ((\<p>[^]m) \<otimes> u) ((\<p>[^]n) \<otimes> v)" by (simp add: P0 P5 P7) have P10: "(\<p>[^]m) \<in> carrier Z\<^sub>p" using P1 P3 Z\<^sub>p_def ord_pos Zp_nonzero_def padic_integers.p_pow_car padic_integers_axioms by blast have P11: "(\<p>[^]n) \<in> nonzero Z\<^sub>p" by (metis P2 P4 int_nat_eq int_pow_int ord_Zp_def ord_pos Zp_nonzero_def p_pow_nonzero) have P12: "u \<in> carrier Z\<^sub>p" using P6 Units_def Units_nonzero_Zp Zp_nonzero_def(1) by presburger have P13: "v \<in> nonzero Z\<^sub>p" using P8 Units_def ord_of_nonzero(2) unit_imp_ord_Zp0 by (simp add: Units_def) have P14: "a = (frac (\<p>[^]m) (\<p>[^]n)) \<otimes>\<^bsub>Q\<^sub>p\<^esub> (frac u v)" using P12 P13 P10 P9 P11 Q\<^sub>p_def frac_def frac_mult by metis have P15: "m \<ge> n" proof- have "ord_Zp c \<ge> ord_Zp d" using P0 P1 P2 assms(3) ord_of_frac[of c d] by (metis P3 P4 antisym eq_iff eq_iff_diff_eq_0 le_cases le_iff_diff_le_0 ord_Zp_def) then show ?thesis using P3 P4 by blast qed have P16: "n \<ge> 0" using P2 P4 Z\<^sub>p_def padic_integers_axioms Zp_nonzero_def(1) Zp_nonzero_def(2) ord_pos by blast have P17: "a = (frac (\<p>[^](m-n)) \<one>) \<otimes>\<^bsub>Q\<^sub>p\<^esub> (frac u v)" by (simp add: P14 P15 P16 local.inc_def pow_p_frac_0) obtain w where P18: "w \<in> Units Z\<^sub>p" and P19: "\<iota> w = frac u v " using Zp_division_Qp_1 P6 P8 by blast have P20: "w \<in> carrier Z\<^sub>p" using P18 Units_def Units_nonzero_Zp Zp_nonzero_def(1) by presburger have P21: "a = \<iota> (\<p>[^](m-n)) \<otimes>\<^bsub>Q\<^sub>p\<^esub> \<iota> w" by (simp add: P15 P17 P19 local.inc_def) have P22: "a = (frac (\<p>[^](m-n)) \<one>) \<otimes>\<^bsub>Q\<^sub>p\<^esub> (frac w \<one>)" using P17 P19 P20 local.inc_def by auto have P23: "\<p>[^](m-n) \<in> carrier Z\<^sub>p" by (simp add: P15) have P24: "a = (frac ((\<p>[^](m-n)) \<otimes> w) \<one>)" using P20 P22 P23 frac_mult Zp_is_domain by (metis Zp_one_nonzero i_mult local.inc_def) have P24: "a = \<iota>((\<p>[^](m-n)) \<otimes> w)" by (simp add: P20 P23 P24 cring.cring_simprules(5) domain.axioms(1) local.inc_def) then show ?thesis by (meson P20 P23 Zp_is_domain cring.cring_simprules(5) domain.axioms(1) image_iff) qed lemma(in padic_integers) ord_of_inv: assumes "a \<in> carrier Q\<^sub>p" assumes "a \<noteq> \<zero>\<^bsub>Q\<^sub>p\<^esub>" shows "ord (inv\<^bsub>Q\<^sub>p\<^esub> a) = - (ord a)" proof- obtain b c where Frac: "a = frac b c" and Car: "b \<in> carrier Z\<^sub>p" and Nz_c: "c \<in> nonzero Z\<^sub>p" using Q\<^sub>p_def Zp_is_domain assms(1) domain.numer_denom_facts(1) domain.numer_denom_facts(2) domain.numer_denom_facts(5) local.frac_def by metis have Nz_b: "b \<in> nonzero Z\<^sub>p" using Frac Car Nz_c assms(2) nonzero_fraction_imp_nonzero_numer by metis then have "(inv\<^bsub>Q\<^sub>p\<^esub> a) = frac c b" using Frac Nz_c frac_inv by metis then show ?thesis using Frac Nz_b Nz_c ord_of_frac[of b c] ord_of_frac[of c b] by (simp add: nonzero_def ord_Zp_def) qed lemma(in padic_integers) val_of_inv: assumes "a \<in> carrier Q\<^sub>p" assumes "a \<noteq> \<zero>\<^bsub>Q\<^sub>p\<^esub>" shows "val (inv\<^bsub>Q\<^sub>p\<^esub> a) = neg (val a)" by (simp add: assms(1) assms(2) g_uminus_minus inv_in_frac(2) ord_of_inv val_def) (*Zp is a valuation ring in Qp*) lemma(in padic_integers) Zp_mem: assumes "a \<in> carrier Q\<^sub>p" shows "a \<in> \<O>\<^sub>p \<or> (inv\<^bsub>Q\<^sub>p\<^esub> a \<in> \<O>\<^sub>p)" proof(cases "inv\<^bsub>Q\<^sub>p\<^esub>a \<in> \<O>\<^sub>p \<or> a = \<zero>\<^bsub>Q\<^sub>p\<^esub>") case True then show ?thesis using Zp_is_subring subringE(2) by auto next case False then have Nz: "a \<noteq> \<zero>\<^bsub>Q\<^sub>p\<^esub>" by auto have "\<not> (ord a < 0)" proof assume "ord a < 0" then have "ord (inv\<^bsub>Q\<^sub>p\<^esub> a) >0" by (simp add: assms(1) Nz ord_of_inv) then have 0: "ord (inv\<^bsub>Q\<^sub>p\<^esub> a) \<ge>0" by auto have 1: "(inv\<^bsub>Q\<^sub>p\<^esub> a) \<in> carrier Q\<^sub>p" by (simp add: assms(1) Nz inv_in_frac) have 2: "(inv\<^bsub>Q\<^sub>p\<^esub> a) \<noteq>\<zero>\<^bsub>Q\<^sub>p\<^esub>" by (simp add: assms(1) Nz inv_in_frac(2)) then have "(inv\<^bsub>Q\<^sub>p\<^esub> a) \<in> \<O>\<^sub>p" using Zp_ord_criterion by (simp add: "0" "1") then show False using False by blast qed then show ?thesis using Zp_ord_criterion assms(1) Nz by auto qed lemma(in padic_integers) Zp_val_criterion[simp]: assumes "a \<in> carrier Q\<^sub>p" assumes "val a \<succeq>\<^bsub>G\<^esub> \<zero>\<^bsub>G\<^esub>" shows "a \<in> \<O>\<^sub>p" proof(cases "a = \<zero>\<^bsub>Q\<^sub>p\<^esub>") case True then show ?thesis by (simp add: Zp_is_subring subringE(2)) next case False have " 0 \<le> ord a" using False assms(1) G_ord(2)[of 0 "ord a"] assms(2) by (metis gzero_id val_def) then show ?thesis using False assms(1) Zp_ord_criterion[of a] by auto qed (*Criterion for determining when an element in Qp is zero*) lemma (in padic_integers) val_nonzero[simp]: assumes "a \<in> carrier Q\<^sub>p" assumes "s \<succ>\<^bsub>G\<^esub> val a" shows "a \<in> nonzero Q\<^sub>p" proof- have "val a \<noteq> \<infinity>\<^bsub>G\<^esub>" by (metis assms(2) infinity_not_less) then show ?thesis using assms by (metis (mono_tags, hide_lams) local.val_zero not_nonzero_Qp) qed (*function for division of a padic_integer by a power of n*) definition(in padic_integers) divide where "divide a b = (if a = \<zero> then \<zero> else (THE c. c \<in> carrier Z\<^sub>p \<and> \<iota> c = frac a b))" lemma(in padic_integers) divide_id[simp]: assumes "a \<in> nonzero Z\<^sub>p" assumes "b \<in> nonzero Z\<^sub>p" assumes "ord_Zp a \<ge> ord_Zp b" shows "divide a b \<in> carrier Z\<^sub>p" "(divide a b) \<otimes> b = a" "ord_Zp (divide a b) = ord_Zp a - ord_Zp b" proof- have "(frac a b) \<in> \<O>\<^sub>p" using frac_closed[of a b] assms ord_of_frac[of a b] Zp_ord_criterion[of "frac a b"] Zp_nonzero_def(1) nonzero_numer_imp_nonzero_fraction diff_ge_0_iff_ge local.frac_def by (metis (mono_tags, hide_lams)) then obtain c where c_def: "c \<in> carrier Z\<^sub>p \<and> \<iota> c = frac a b" by auto obtain P where P_def: "P = (\<lambda>x. x \<in> carrier Z\<^sub>p \<and> \<iota> x = frac a b)" by simp have 0: "(THE x. P x) = c" proof(rule the_equality) show "P c" using P_def c_def by auto show " \<And>x. P x \<Longrightarrow> x = c" using P_def domain.inc_inj2[of Z\<^sub>p _ c] Zp_is_domain \<iota>_def c_def by simp qed have 1: "c \<otimes> b = a" proof- have "frac (c \<otimes> b) a = (frac c \<one>) \<otimes>\<^bsub>Q\<^sub>p\<^esub> frac b a" using assms c_def Zp_nonzero_def(1) i_mult local.inc_def by metis then have "frac (c \<otimes> b) a = (frac a b) \<otimes>\<^bsub>Q\<^sub>p\<^esub> frac b a" using c_def \<iota>_def local.inc_def by auto then have "frac (c \<otimes> b) a = \<one>\<^bsub>Q\<^sub>p\<^esub>" using assms(1) assms(2) by (simp add: \<open>a \<in> nonzero Z\<^sub>p\<close> \<open>b \<in> nonzero Z\<^sub>p\<close> Zp_nonzero_def(1) frac_cancel_lr frac_mult frac_one) then show ?thesis using assms c_def by (metis Qp_one_notzero Zp_is_domain Zp_nonzero_def(1) cring.cring_simprules(5) domain.axioms(1) local.frac_eq nonzero_fraction_imp_nonzero_numer) qed have "a \<noteq>\<zero>" by (simp add: assms(1) Zp_nonzero_def(2)) then have 2: "c = divide a b" using 0 P_def divide_def[of a b] by auto show "divide a b \<in> carrier Z\<^sub>p" using c_def 2 by auto show "divide a b \<otimes> b = a" using 1 2 by auto show "ord_Zp (divide a b) = ord_Zp a - ord_Zp b" proof- have "divide a b \<in> nonzero Z\<^sub>p" using "1" "2" Zp_is_domain Zp_nonzero_def(1) \<open>a \<noteq> \<zero>\<close> assms(2) c_def domain.integral_iff not_nonzero_Zp by metis then have "ord_Zp (divide a b) + ord_Zp b = ord_Zp a" by (metis "1" "2" assms(2) ord_Zp_mult) then show ?thesis by linarith qed qed lemma(in padic_integers) divide_id'[simp]: assumes "a \<in> carrier Z\<^sub>p" assumes "b \<in> nonzero Z\<^sub>p" assumes "val_Zp b \<preceq>\<^bsub>G\<^esub> val_Zp a" shows "divide a b \<in> carrier Z\<^sub>p" "(divide a b) \<otimes> b = a" "val_Zp (divide a b) = val_Zp a \<ominus>\<^bsub>G\<^esub> val_Zp b" proof- show C0: "(divide a b) \<otimes> b = a" proof(cases "a = \<zero>") case True have "divide a b = \<zero>" by (simp add: True divide_def) then show ?thesis by (simp add: True Zp_nonzero_def(1) assms(2) cring.cring_simprules(26) domain.axioms(1)) next case False then have 0: "a \<in> nonzero Z\<^sub>p" by (simp add: False assms(1) nonzero_def) have 1: "ord_Zp b \<le> ord_Zp a" using 0 assms by (metis G_ord(2) Zp_nonzero_def(2) ord_Zp_def val_Zp_def) then show ?thesis using divide_id assms 0 1 by blast qed show C1: "divide a b \<in> carrier Z\<^sub>p" proof(cases "a = \<zero>") case True then have "divide a b = \<zero>" by (simp add: divide_def) then show ?thesis using True assms(1) by auto next case False then have 0: "a \<in> nonzero Z\<^sub>p" by (simp add: False assms(1) nonzero_def) have 1: "ord_Zp b \<le> ord_Zp a" using 0 assms by (metis G_ord(2) Zp_nonzero_def(2) ord_Zp_def val_Zp_def) then show ?thesis using divide_id assms 0 1 by blast qed show C2: "val_Zp (divide a b) = val_Zp a \<ominus>\<^bsub>G\<^esub> val_Zp b" proof- have "(divide a b) \<otimes> b = a \<otimes> \<one>" using Zp_is_domain Zp_one_car \<open>local.divide a b \<otimes> b = a\<close> assms(1) cring.cring_simprules(12) cring.cring_simprules(14) domain.axioms(1) by metis then have "(val_Zp (divide a b)) \<ominus>\<^bsub>G\<^esub> (val_Zp \<one>) = (val_Zp a) \<ominus>\<^bsub>G\<^esub>(val_Zp b)" using val_Zp_eq_frac_0 by (metis Zp_one_nonzero \<open>local.divide a b \<in> carrier Z\<^sub>p\<close> \<open>local.divide a b \<otimes> b = a\<close> assms(1) assms(2) frac_cancel_r frac_cancel_rl val_of_frac) then have 0: "(val_Zp (divide a b)) \<ominus>\<^bsub>G\<^esub> \<zero>\<^bsub>G\<^esub> = (val_Zp a) \<ominus>\<^bsub>G\<^esub>(val_Zp b)" using Z\<^sub>p_def Zp_one_car Zp_one_notzero gzero_id ord_Zp_one padic_integers.val_ord_Zp padic_integers_axioms by fastforce have "(val_Zp (divide a b)) \<ominus>\<^bsub>G\<^esub> \<zero>\<^bsub>G\<^esub> = (val_Zp (divide a b))" proof(cases "(divide a b) = \<zero>") case True then show ?thesis by (simp add: val_Zp_def) next case False then show ?thesis by (meson C1 gzero_simps(1) not_nonzero_Zp val_Zp_closed) qed then show ?thesis using 0 by metis qed qed (*ord and val of negatives*) lemma (in padic_integers) ord_minus: assumes "a \<in> nonzero Q\<^sub>p" shows "ord a = ord (\<ominus>\<^bsub>Q\<^sub>p\<^esub>a)" proof- have "\<ominus>\<^bsub>Q\<^sub>p\<^esub> a = \<ominus>\<^bsub>Q\<^sub>p\<^esub> (frac (numer a) (denom a))" using assms Qp_nonzero_def(1) numer_denom_facts(5) by presburger then have "\<ominus>\<^bsub>Q\<^sub>p\<^esub> a = (frac (\<ominus> (numer a)) (denom a))" using Qp_nonzero_def(1) assms frac_uminus numer_denom_facts(1) numer_denom_facts(2) by blast then show ?thesis by (metis (no_types, lifting) Qp_is_domain Qp_nonzero_def(1) Zp_is_domain assms cring.cring_simprules(21) cring.cring_simprules(22) cring.cring_simprules(3) domain.axioms(1) nonzero_fraction_imp_nonzero_numer numer_denom_facts(1) numer_denom_facts(2) ord_Zp_of_ominus ord_def ord_of_frac) qed lemma (in padic_integers) val_minus: assumes "a \<in> carrier Q\<^sub>p" shows "val a = val (\<ominus>\<^bsub>Q\<^sub>p\<^esub>a)" proof(cases "a = \<zero>\<^bsub>Q\<^sub>p\<^esub>") case True then show ?thesis by (metis Qp_is_domain cring.cring_simprules(22) domain.axioms(1)) next case False then show ?thesis by (metis Qp_is_domain assms cring.cring_simprules(21) cring.cring_simprules(22) domain.axioms(1) not_nonzero_Qp ord_minus val_def) qed (*Ultrametric inequality on Qp*) lemma(in padic_integers) ord_ultrametric[simp]: assumes "x \<in> nonzero Q\<^sub>p" assumes "y \<in> nonzero Q\<^sub>p" assumes "x \<oplus>\<^bsub>Q\<^sub>p\<^esub> y \<in> nonzero Q\<^sub>p" shows "ord (x \<oplus>\<^bsub>Q\<^sub>p\<^esub> y) \<ge> min (ord x) (ord y)" proof- have 0:"x \<in> carrier Q\<^sub>p" using assms by(simp add:nonzero_def) have 1:"y \<in>carrier Q\<^sub>p" using assms by(simp add:nonzero_def) obtain a b c where A: "a \<in> carrier Z\<^sub>p" and B: "b \<in> carrier Z\<^sub>p" and C: "c \<in> nonzero Z\<^sub>p" and Fx: "x = frac a c" and Fy: "y = frac b c" using 0 1 get_common_denominator by blast have An: "a \<in> nonzero Z\<^sub>p" using A C Fx assms(1) Qp_nonzero_def(2) nonzero_fraction_imp_nonzero_numer by metis have Bn: " b \<in> nonzero Z\<^sub>p" using B C Fy assms(2) Qp_nonzero_def(2) nonzero_fraction_imp_nonzero_numer by metis have Fxy: "x \<oplus>\<^bsub>Q\<^sub>p\<^esub> y = frac (a \<oplus> b) c" using 0 1 by (simp add: A B C Fx Fy frac_add_common_denom) have ABn: " a \<oplus> b \<in> nonzero Z\<^sub>p" proof- have "a \<oplus> b \<in> carrier Z\<^sub>p" using A B Z\<^sub>p_def padic_add_closed prime by blast then show ?thesis using Fxy C assms(3) Qp_nonzero_def(2) nonzero_fraction_imp_nonzero_numer by (metis (mono_tags, hide_lams) local.frac_def not_nonzero_Zp) qed have Ordx: "ord x = ord_Zp a - ord_Zp c" using Fx An C ord_of_frac by metis have Ordy: "ord y = ord_Zp b - ord_Zp c" using Fy Bn C ord_of_frac by metis have Ordxy: "ord (x \<oplus>\<^bsub>Q\<^sub>p\<^esub> y) = ord_Zp (a \<oplus> b) - ord_Zp c" using Fxy ABn C ord_of_frac by metis then show ?thesis using Ordx Ordy Ordxy ord_Zp_ultrametric[of a b] ABn An Bn by linarith qed lemma(in padic_integers) ord_ultrametric'[simp]: assumes "x \<in> nonzero Q\<^sub>p" assumes "y \<in> nonzero Q\<^sub>p" assumes "x \<ominus> \<^bsub>Q\<^sub>p\<^esub> y \<in> nonzero Q\<^sub>p" shows "ord (x \<ominus> \<^bsub>Q\<^sub>p\<^esub> y) \<ge> min (ord x) (ord y)" proof- have "ord y = ord (\<ominus>\<^bsub>Q\<^sub>p\<^esub>y)" using assms(2) ord_minus by blast then show ?thesis using assms ord_ultrametric[of x "\<ominus>\<^bsub>Q\<^sub>p\<^esub>y"] unfolding a_minus_def by (smt Qp_is_domain Qp_nonzero_def(1) cring.cring_simprules(16) cring.cring_simprules(3) domain.axioms(1) not_nonzero_Qp) qed lemma(in padic_integers) val_ultrametric0[simp]: assumes "x \<in> nonzero Q\<^sub>p" assumes "y \<in> nonzero Q\<^sub>p" assumes "x \<oplus>\<^bsub>Q\<^sub>p\<^esub> y \<in> nonzero Q\<^sub>p" shows " Min\<^bsub>G\<^esub> (val x) (val y) \<preceq>\<^bsub>G\<^esub> val (x \<oplus>\<^bsub>Q\<^sub>p\<^esub> y) " proof- have 0: "val (x \<oplus>\<^bsub>Q\<^sub>p\<^esub> y) = *ord (x \<oplus>\<^bsub>Q\<^sub>p\<^esub> y)*" using assms(3) nonzero_def val_def[of "(x \<oplus>\<^bsub>Q\<^sub>p\<^esub> y)"] by fastforce have 1: "val x = *ord x*" using assms(1) nonzero_def val_def by force have 2: "val y = *ord y*" using assms(2) nonzero_def val_def by force have 3: "ord (x \<oplus>\<^bsub>Q\<^sub>p\<^esub> y) \<ge> min (ord x) (ord y)" by (simp add: assms(1) assms(2) assms(3) ) then show ?thesis using Min_min[of "ord x" "ord y"] G_ord(2)[of "min (ord x) (ord y)" "ord (x \<oplus>\<^bsub>Q\<^sub>p\<^esub> y)"] 0 1 2 3 by presburger qed lemma(in padic_integers) val_ultrametric[simp]: assumes "x \<in> carrier Q\<^sub>p" assumes "y \<in> carrier Q\<^sub>p" shows " Min\<^bsub>G\<^esub> (val x) (val y) \<preceq>\<^bsub>G\<^esub> val (x \<oplus>\<^bsub>Q\<^sub>p\<^esub> y)" proof(cases "x = \<zero>\<^bsub>Q\<^sub>p\<^esub> \<or> y = \<zero>\<^bsub>Q\<^sub>p\<^esub>") case True then show ?thesis proof(cases "x = \<zero>\<^bsub>Q\<^sub>p\<^esub>") case True then have T0: "Min\<^bsub>G\<^esub> (val x) (val y) = (val y)" by (simp add: G_def val_def) have T1: "val (x \<oplus>\<^bsub>Q\<^sub>p\<^esub> y) = val y" using True Qp_is_field by (metis Qp_is_domain assms(2) cring.cring_simprules(8) domain.axioms(1)) then show ?thesis using T0 T1 G_def by (metis (full_types) G_eq) next case False then have F0:" Min\<^bsub>G\<^esub> (val x) (val y) = (val x)" using G_ord(1) True val_def by (simp add: G_ord(1) val_def) have F1: "val (x \<oplus>\<^bsub>Q\<^sub>p\<^esub> y) = val x" using False True Qp_is_field field_def assms(1) cring.cring_simprules(16) domain.axioms(1) by metis then show ?thesis using F0 F1 G_eq by presburger qed next case False have Px: "x \<in> nonzero Q\<^sub>p" using False assms(1) by (metis (mono_tags, hide_lams) not_nonzero_Qp) have Py: "y \<in> nonzero Q\<^sub>p" using False assms(2) by (metis (mono_tags, hide_lams) not_nonzero_Qp) show ?thesis proof(cases "x \<oplus>\<^bsub>Q\<^sub>p\<^esub> y = \<zero>\<^bsub>Q\<^sub>p\<^esub>") case True then show ?thesis using G_ord(1) local.val_zero by presburger next case False have Pxy: "x \<oplus>\<^bsub>Q\<^sub>p\<^esub> y \<in> nonzero Q\<^sub>p" by (simp add: False assms(1) assms(2) cring.cring_simprules(1) fieldE(1) nonzero_def) then show ?thesis using Px Py val_ultrametric0 by blast qed qed lemma(in padic_integers) val_ultrametric'[simp]: assumes "x \<in> carrier Q\<^sub>p" assumes "y \<in> carrier Q\<^sub>p" shows " Min\<^bsub>G\<^esub> (val x) (val y) \<preceq>\<^bsub>G\<^esub> val (x \<ominus>\<^bsub>Q\<^sub>p\<^esub> y)" using val_ultrametric[of x "\<ominus>\<^bsub>Q\<^sub>p\<^esub>y"] val_minus[of y] assms by (metis Qp_is_domain a_minus_def cring.cring_simprules(3) domain.axioms(1)) (*Alternate versions of the triangle inequality*) lemma(in padic_integers) ord_ultrametric_noteq[simp]: assumes "x \<in> nonzero Q\<^sub>p" assumes "y \<in> nonzero Q\<^sub>p" assumes "x \<oplus>\<^bsub>Q\<^sub>p\<^esub> y \<in> nonzero Q\<^sub>p" assumes "ord x > ord y" shows "ord (x \<oplus>\<^bsub>Q\<^sub>p\<^esub> y) = (ord y)" proof(rule ccontr) assume "ord (x \<oplus>\<^bsub>Q\<^sub>p\<^esub> y) \<noteq> ord y" then have 0: "ord (x \<oplus>\<^bsub>Q\<^sub>p\<^esub> y) > ord y" using assms(1) assms(2) assms(3) assms(4) ord_ultrametric[of x y] by linarith have 1: "((y \<oplus>\<^bsub>Q\<^sub>p\<^esub> x) \<ominus>\<^bsub>Q\<^sub>p\<^esub> x) = y" by (metis (no_types, lifting) Qp_is_domain Qp_nonzero_def(1) a_minus_def assms(1) assms(2) cring.cring_simprules(1) cring.cring_simprules(10) cring.cring_simprules(19) cring.cring_simprules(3) domain.axioms(1)) have 2: "ord ((y \<oplus>\<^bsub>Q\<^sub>p\<^esub> x) \<ominus>\<^bsub>Q\<^sub>p\<^esub> x) \<ge> min (ord (y \<oplus>\<^bsub>Q\<^sub>p\<^esub> x)) (ord x) " using 1 assms ord_ultrametric'[of "(y \<oplus>\<^bsub>Q\<^sub>p\<^esub> x)" x] by (metis Qp_is_domain Qp_nonzero_def(1) cring.cring_simprules(10) domain.axioms(1)) have 3: "ord y \<ge> min (ord x) (ord (x \<oplus>\<^bsub>Q\<^sub>p\<^esub> y))" using 2 1 Q\<^sub>p_def Qp_is_domain Z\<^sub>p_def assms(1) assms(2) cring.cring_simprules(10) domain.axioms(1) padic_integers.Qp_nonzero_def(1) padic_integers_axioms by fastforce show False using 3 0 assms by linarith qed lemma(in padic_integers) ord_ultrametric_noteq'[simp]: assumes "x \<in> nonzero Q\<^sub>p" assumes "y \<in> nonzero Q\<^sub>p" assumes "x \<ominus>\<^bsub>Q\<^sub>p\<^esub> y \<in> nonzero Q\<^sub>p" assumes "ord x > ord y" shows "ord (x \<ominus>\<^bsub>Q\<^sub>p\<^esub> y) = (ord y)" using assms ord_ultrametric_noteq[of x "\<ominus>\<^bsub>Q\<^sub>p\<^esub>y"] by (metis Qp_is_domain Qp_nonzero_def(1) a_minus_def cring.cring_simprules(21) cring.cring_simprules(22) cring.cring_simprules(3) domain.axioms(1) not_nonzero_Qp ord_minus) lemma(in padic_integers) val_ultrametric_noteq[simp]: assumes "x \<in> carrier Q\<^sub>p" assumes "y \<in> carrier Q\<^sub>p" assumes "val x \<succ>\<^bsub>G\<^esub> val y" shows "val (x \<oplus>\<^bsub>Q\<^sub>p\<^esub> y) = val y" proof(cases "x = \<zero>\<^bsub>Q\<^sub>p\<^esub>") case True then show ?thesis by (metis Qp_is_domain assms(2) cring.cring_simprules(8) domain.axioms(1)) next case False have F0: "y \<in> nonzero Q\<^sub>p" using False assms by (meson val_nonzero) have F1: "x \<in> nonzero Q\<^sub>p" by (simp add: False assms(1) nonzero_def) have F2: "(x \<oplus>\<^bsub>Q\<^sub>p\<^esub> y) \<in> nonzero Q\<^sub>p" by (metis (no_types, lifting) Qp_is_domain assms(1) assms(2) assms(3) cring.cring_simprules(1) cring.cring_simprules(17) cring.cring_simprules(19) cring.cring_simprules(3) domain.axioms(1) not_nonzero_Qp val_minus) then show ?thesis using ord_ultrametric_noteq[of x y] F0 F1 by (smt G_ord(2) assms(3) val_ord) qed lemma(in padic_integers) val_ultrametric_noteq'[simp]: assumes "x \<in> carrier Q\<^sub>p" assumes "y \<in> carrier Q\<^sub>p" assumes "val x \<succ>\<^bsub>G\<^esub> val y" shows "val (x \<ominus>\<^bsub>Q\<^sub>p\<^esub> y) = val y" using assms val_ultrametric_noteq[of x "\<ominus>\<^bsub>Q\<^sub>p\<^esub>y"] by (metis Qp_is_domain a_minus_def cring.cring_simprules(3) domain.axioms(1) val_minus) (*useful simprules for reasoning about distances*) lemma (in padic_integers) Qp_diff_diff: assumes "x \<in> carrier Q\<^sub>p" assumes "c \<in> carrier Q\<^sub>p" assumes "d \<in> carrier Q\<^sub>p" shows "(x \<ominus>\<^bsub>Q\<^sub>p\<^esub>c) \<ominus>\<^bsub>Q\<^sub>p\<^esub> (d \<ominus>\<^bsub>Q\<^sub>p\<^esub>c) = x \<ominus>\<^bsub>Q\<^sub>p\<^esub> d " by (smt Qp_is_domain a_minus_def assms(1) assms(2) assms(3) cring.cring_simprules(10) cring.cring_simprules(19) cring.cring_simprules(3) cring.cring_simprules(4) cring.cring_simprules(7) domain.axioms(1)) (*"All triangles in Qp are isosceles"*) lemma (in padic_integers) Qp_isosceles[simp]: assumes "x \<in> carrier Q\<^sub>p" assumes "c \<in> carrier Q\<^sub>p" assumes "d \<in> carrier Q\<^sub>p" assumes "val (x \<ominus>\<^bsub>Q\<^sub>p\<^esub>c) \<succeq>\<^bsub>G\<^esub> v" assumes "val (d \<ominus>\<^bsub>Q\<^sub>p\<^esub>c) \<succeq>\<^bsub>G\<^esub> v" shows "val (x \<ominus>\<^bsub>Q\<^sub>p\<^esub>d) \<succeq>\<^bsub>G\<^esub> v" proof- have "val (x \<ominus>\<^bsub>Q\<^sub>p\<^esub>d) \<succeq>\<^bsub>G\<^esub> Min\<^bsub>G\<^esub> (val (x \<ominus>\<^bsub>Q\<^sub>p\<^esub>c)) (val (d \<ominus>\<^bsub>Q\<^sub>p\<^esub>c))" using assms Qp_diff_diff[of x c d] by (metis Qp_is_domain cring.cring_simprules(4) domain.axioms(1) val_ultrametric') then show ?thesis using assms by (smt G_ord_trans) qed (*val and ord are multiplicative*) lemma(in padic_integers) ord_mult[simp]: assumes "x \<in> nonzero Q\<^sub>p" assumes "y \<in> nonzero Q\<^sub>p" shows "(ord (x \<otimes>\<^bsub>Q\<^sub>p\<^esub> y)) = (ord x) + (ord y)" proof- have 0:"x \<in> carrier Q\<^sub>p" using assms by(simp add:nonzero_def) have 1:"y \<in>carrier Q\<^sub>p" using assms by(simp add:nonzero_def) obtain a b c where A: "a \<in> carrier Z\<^sub>p" and B: "b \<in> carrier Z\<^sub>p" and C: "c \<in> nonzero Z\<^sub>p" and Fx: "x = frac a c" and Fy: "y = frac b c" using get_common_denominator 0 1 by blast have An: "a \<in> nonzero Z\<^sub>p" using A C Fx assms(1) Qp_nonzero_def(2) nonzero_fraction_imp_nonzero_numer by blast have Bn: " b \<in> nonzero Z\<^sub>p" using B C Fy assms(2) Qp_nonzero_def(2) nonzero_fraction_imp_nonzero_numer by blast have Fxy: "x \<otimes>\<^bsub>Q\<^sub>p\<^esub> y = frac (a \<otimes> b) (c \<otimes>c)" by (simp add: A B C Fx Fy frac_mult) have Cn: "c \<otimes>c \<in> nonzero Z\<^sub>p" using C Localization.submonoid.m_closed Zp_is_domain domain.nonzero_is_submonoid by metis have Ordxy0: "ord (x \<otimes>\<^bsub>Q\<^sub>p\<^esub> y) = ord_Zp (a \<otimes> b) - ord_Zp (c \<otimes>c)" by (metis An Bn Cn Fxy Localization.submonoid.m_closed Z\<^sub>p_def domain.nonzero_is_submonoid ord_of_frac padic_integers.Zp_is_domain padic_integers_axioms) have Ordxy1: "ord (x \<otimes>\<^bsub>Q\<^sub>p\<^esub> y) = (ord_Zp a) + (ord_Zp b) - ((ord_Zp c) + (ord_Zp c))" using An Bn C Ordxy0 ord_Zp_mult by presburger show ?thesis proof- have "ord x + ord y = (ord_Zp a) - (ord_Zp c) + ((ord_Zp b) - (ord_Zp c))" using An Bn C Fx Fy ord_of_frac[of a c] ord_of_frac[of b c] by presburger then show ?thesis using Ordxy1 by presburger qed qed lemma(in padic_integers) val_mult0[simp]: assumes "x \<in> nonzero Q\<^sub>p" assumes "y \<in> nonzero Q\<^sub>p" shows "(val (x \<otimes>\<^bsub>Q\<^sub>p\<^esub> y)) = (val x) \<oplus>\<^bsub>G\<^esub> (val y)" proof- have 0: "(val x) = *(ord x)*" using assms(1) val_ord by metis have 1: "(val y) = *(ord y)*" using assms(2) val_ord by metis have "(x \<otimes>\<^bsub>Q\<^sub>p\<^esub> y) \<noteq> \<zero>\<^bsub>Q\<^sub>p\<^esub>" using Qp_is_field assms(1) assms(2) integral nonzero_def by (smt mem_Collect_eq) then have 2: "val (x \<otimes>\<^bsub>Q\<^sub>p\<^esub> y) = *ord (x \<otimes>\<^bsub>Q\<^sub>p\<^esub> y)*" by (simp add: val_def) have 3: "(val x) \<otimes>\<^bsub>G\<^esub> (val y) = *(ord x) + (ord y)* " by (metis "0" "1" G_mult(3)) have 4: "val (x \<otimes>\<^bsub>Q\<^sub>p\<^esub> y) = *ord (x \<otimes>\<^bsub>Q\<^sub>p\<^esub> y)*" using "2" by auto then show ?thesis using 3 4 ord_mult assms nonzero_def by (simp add: nonzero_def) qed (*val is multiplicative everywhere*) lemma(in padic_integers) val_mult[simp]: assumes "x \<in> carrier Q\<^sub>p" assumes "y \<in> carrier Q\<^sub>p" shows "(val (x \<otimes>\<^bsub>Q\<^sub>p\<^esub> y)) = (val x) \<otimes>\<^bsub>G\<^esub> (val y)" proof(cases "x = \<zero>\<^bsub>Q\<^sub>p\<^esub> \<or> y = \<zero>\<^bsub>Q\<^sub>p\<^esub>") case True then show ?thesis using G_mult(1) G_mult(2) Qp_is_field assms(1) assms(2) domain.integral_iff field.axioms(1) val_def by (metis (no_types, lifting)) next case False have Px: "x \<in> nonzero Q\<^sub>p" using False assms(1) by (metis (mono_tags, hide_lams) not_nonzero_Qp) have Py: "y \<in> nonzero Q\<^sub>p" using False assms(2) by (metis (mono_tags, hide_lams) not_nonzero_Qp) then show ?thesis by (simp add: Px) qed (*val and ord are compatible with \<iota>*) lemma(in padic_integers) ord_of_inc: assumes "x \<in> nonzero Z\<^sub>p" shows "ord_Zp x = ord(\<iota> x)" proof- have "\<iota> x = frac x \<one>" using assms(1) Zp_nonzero_def(1) local.inc_def by blast then have "ord ( \<iota> x) = ord_Zp x - ord_Zp \<one>" using assms(1) ord_of_frac Zp_one_nonzero by presburger then show ?thesis using ord_Zp_one by (simp add: ord_Zp_def) qed lemma(in padic_integers) val_of_inc: assumes "x \<in> carrier Z\<^sub>p" shows "val_Zp x = val (\<iota> x)" proof(cases "x \<in> nonzero Z\<^sub>p") case True then show ?thesis using inc_of_nonzero nonzero_def ord_Zp_def ord_of_inc val_Zp_def val_ord by (simp add: nonzero_def) next case False then show ?thesis by (metis (mono_tags, hide_lams) Zp_nat_mult_zero Zp_one_nonzero assms local.frac_def local.inc_def nonzero_fraction_imp_numer_not_zero not_nonzero_Zp val_Zp_def val_def) qed lemma(in padic_integers) Qp_inc_id: assumes "a \<in> nonzero Q\<^sub>p" assumes "ord a \<ge>0" obtains b where "b \<in> nonzero Z\<^sub>p" and "a = \<iota> b" using assms by (smt Q\<^sub>p_def Qp_nonzero_def(2) Z\<^sub>p_def \<iota>_def imageE local.inc_def nonzero_fraction_imp_nonzero_numer padic_integers.Qp_nonzero_def(1) padic_integers.Zp_one_nonzero padic_integers.Zp_ord_criterion padic_integers_axioms) (*ord and val on powers of p*) lemma(in padic_integers) ord_p: "ord \<pp> = 1" using p_nonzero ord_Zp_p ord_of_inc p_inc by (metis (mono_tags, hide_lams) Zp_nat_inc_closed ord_of_nonzero(2) zero_le_one) lemma(in padic_integers) ord_p_pow_nat: "ord (\<pp> e (n::nat)) = n" using p_pow_nonzero ord_Zp_p ord_of_inc p_inc ord_Zp_p_pow p_natpow_inc by presburger lemma(in padic_integers) ord_p_pow_int: "ord (\<pp> e (n::int)) = n" proof(cases "n \<ge>0") case True then show ?thesis by (metis int_nat_eq int_pow_int ord_p_pow_nat) next case False then have Neg: "n <0" by auto then have 0: "\<pp> e n = frac \<one> (\<p>[^](-n))" using p_intpow by auto have "(\<p>[^](-n)) \<in> nonzero Z\<^sub>p" using False p_int_pow_nonzero by (simp add: nonzero_def) then have "ord (\<pp> e (n::int)) = ord_Zp \<one> - ord_Zp (\<p>[^](-n))" using "0" ord_of_frac Zp_one_nonzero by presburger then have "ord (\<pp> e (n::int)) = - ord_Zp (\<p>[^](-n))" using ord_Zp_one by linarith then have "ord (\<pp> e (n::int)) = -(-n)" using Neg ord_Zp_p_int_pow by (metis int.lless_eq neg_0_le_iff_le) then show ?thesis by auto qed lemma(in padic_integers) ord_nonneg: assumes "x \<in> \<O>\<^sub>p" assumes "x \<noteq> \<zero>\<^bsub>Q\<^sub>p\<^esub>" shows "ord x \<ge>0" proof- obtain a where A: "x = \<iota> a \<and> a \<in> carrier Z\<^sub>p" using assms(1) by blast then have "a \<in> nonzero Z\<^sub>p" using assms(2) Zp_one_nonzero local.inc_def nonzero_fraction_imp_numer_not_zero not_nonzero_Zp by blast then have "ord_Zp a \<ge>0" using A Zp_nonzero_def(2) ord_pos by metis then show ?thesis using A \<open>a \<in> nonzero Z\<^sub>p\<close> ord_of_inc by metis qed lemma(in padic_integers) val_p: "(val \<pp>) = (1\<^sub>v)" by (simp add: ord_p val_of_def) (*The angular component function on Qp*) definition(in padic_integers) angular_component where "angular_component a = (ac_Zp (numer a)) \<otimes> (inv\<^bsub>Z\<^sub>p\<^esub> ac_Zp (denom a))" lemma(in padic_integers) ac_fract: assumes "c \<in> carrier Q\<^sub>p" assumes "a \<in> nonzero Z\<^sub>p" assumes "b \<in> nonzero Z\<^sub>p" assumes "c = frac a b" shows "angular_component c = (ac_Zp a)\<otimes> inv(ac_Zp b)" proof- have "(numer c) \<otimes> b = (denom c) \<otimes> a" by (metis Q\<^sub>p_def Zp_is_domain Zp_nonzero_def(1) assms(1) assms(2) assms(3) assms(4) denom_def domain.frac_eq domain.numer_denom_facts(1) domain.numer_denom_facts(2) domain.numer_denom_facts(5) local.frac_def numer_def) then have "ac_Zp ((numer c) \<otimes> b) = ac_Zp ((denom c) \<otimes> a)" by simp then have "(ac_Zp (numer c)) \<otimes> (ac_Zp b) = (ac_Zp (denom c)) \<otimes> (ac_Zp a)" by (metis Q\<^sub>p_def Zp_is_domain ac_Zp_mult assms(1) assms(2) assms(3) assms(4) domain.numer_denom_facts(1) domain.numer_denom_facts(3) nonzero_numer_imp_nonzero_fraction not_nonzero_Zp numer_def numer_denom_facts(2)) then have "(inv (ac_Zp (denom c))) \<otimes> (ac_Zp (numer c)) \<otimes> (ac_Zp b) = (ac_Zp a)" using ac_Zp_is_Unit[of "ac_Zp (denom c)"] Zp_is_domain inv_cancelR(1) by (metis (no_types, lifting) Q\<^sub>p_def Units_nonzero_Zp Z\<^sub>p_def Zp_nonzero_def(1) Zp_nonzero_def(2) ac_Zp_is_Unit assms(1) assms(2) assms(3) assms(4) cring.cring_simprules(11) cring.cring_simprules(5) denom_def domain.Units_inverse domain.axioms(1) domain.numer_denom_facts(2) nonzero_numer_imp_nonzero_fraction padic_integers.numer_denom_facts(1) padic_integers.numer_denom_facts(3) padic_integers_axioms) then have "(inv (ac_Zp (denom c))) \<otimes> (ac_Zp (numer c)) = (ac_Zp a) \<otimes> inv (ac_Zp b)" using ac_Zp_is_Unit[of "ac_Zp b"] Zp_is_domain inv_cancelL(2) by (metis Q\<^sub>p_def Units_nonzero_Zp Z\<^sub>p_def Zp_nonzero_def(1) Zp_nonzero_def(2) assms(1) assms(2) assms(3) assms(4) cring.cring_simprules(5) domain.Units_inverse domain.axioms(1) nonzero_numer_imp_nonzero_fraction numer_denom_facts(2) numer_denom_facts(3) padic_integers.ac_Zp_is_Unit padic_integers.numer_denom_facts(1) padic_integers_axioms) then show ?thesis by (metis Units_nonzero_Zp Zp_is_domain Zp_nonzero_def(1) Zp_nonzero_def(2) ac_Zp_is_Unit angular_component_def assms(1) assms(2) assms(3) assms(4) cring.cring_simprules(14) domain.Units_inverse domain.axioms(1) nonzero_numer_imp_nonzero_fraction numer_denom_facts(1) numer_denom_facts(2) numer_denom_facts(3)) qed lemma(in padic_integers) angular_component_closed[simp]: assumes "a \<in> nonzero Q\<^sub>p" shows "angular_component a \<in> carrier Z\<^sub>p" by (metis Localization.submonoid.m_closed Q\<^sub>p_def Qp_nonzero_def(1) Qp_nonzero_def(2) Units_nonzero_Zp Z\<^sub>p_def Zp_is_domain Zp_nonzero_def(1) Zp_nonzero_def(2) ac_Zp_is_Unit angular_component_def assms denom_def domain.nonzero_is_submonoid domain.numer_denom_facts(2) domain.numer_denom_facts(3) numer_def numer_denom_facts(1) padic_integers.Units_inverse_Zp padic_integers_axioms) lemma(in padic_integers) angular_component_unit[simp]: assumes "a \<in> nonzero Q\<^sub>p" shows "angular_component a \<in> Units Z\<^sub>p" by (smt Q\<^sub>p_def Qp_nonzero_def(1) Qp_nonzero_def(2) Units_nonzero_Zp Z\<^sub>p_def Zp_is_domain Zp_nonzero_def(1) Zp_nonzero_def(2) angular_component_def assms cring.cring_simprules(5) domain.axioms(1) numer_denom_facts(2) ord_Zp_0_imp_unit ord_Zp_mult padic_integers.Units_inverse_Zp padic_integers.ac_Zp_is_Unit padic_integers.numer_denom_facts(1) padic_integers.numer_denom_facts(3) padic_integers_axioms unit_imp_ord_Zp0) lemma(in padic_integers) angular_component_factors_x: assumes "x \<in> nonzero Q\<^sub>p" shows "x = (\<pp>[^]\<^bsub>Q\<^sub>p\<^esub>(ord x)) \<otimes>\<^bsub>Q\<^sub>p\<^esub> \<iota> (angular_component x)" proof- have 0: "angular_component x = (ac_Zp (numer x)) \<otimes> (inv\<^bsub>Z\<^sub>p\<^esub> ac_Zp (denom x))" by (simp add: angular_component_def) have 1: "(numer x) = (\<p>[^](ord_Zp (numer x))) \<otimes> (ac_Zp (numer x))" proof- have "numer x \<in> nonzero Z\<^sub>p" by (metis Q\<^sub>p_def Qp_nonzero_def(2) Z\<^sub>p_def Zp_is_domain assms domain.numer_denom_facts(3) not_nonzero_Zp numer_def padic_integers.Qp_nonzero_def(1) padic_integers.numer_denom_facts(1) padic_integers_axioms) then show ?thesis using ac_Zp_factors_x[of "numer x"] by (metis Zp_nonzero_def(1) Zp_nonzero_def(2) int_pow_int ord_nat) qed have 2: "(denom x) = (\<p>[^](ord_Zp (denom x))) \<otimes> (ac_Zp (denom x))" proof- have "denom x \<in> nonzero Z\<^sub>p" using Qp_nonzero_def(1) assms numer_denom_facts(2) by blast then show ?thesis using ac_Zp_factors_x[of "denom x"] by (metis Zp_nonzero_def(1) Zp_nonzero_def(2) int_pow_int ord_nat) qed have 3: "\<iota> (angular_component x) = frac (ac_Zp (numer x)) (ac_Zp (denom x))" by (metis "0" Q\<^sub>p_def Qp_nonzero_def(1) Qp_nonzero_def(2) Z\<^sub>p_def Zp_division_Qp_0 Zp_nonzero_def(1) Zp_nonzero_def(2) angular_component_closed assms local.inc_def numer_denom_facts(1) numer_denom_facts(2) padic_integers.ac_Zp_is_Unit padic_integers.numer_denom_facts(3) padic_integers_axioms) have 4: "(\<pp>[^]\<^bsub>Q\<^sub>p\<^esub>((ord x))) \<otimes>\<^bsub>Q\<^sub>p\<^esub> \<iota> (angular_component x) = (\<pp>[^]\<^bsub>Q\<^sub>p\<^esub>((ord_Zp (numer x)) - (ord_Zp (denom x)))) \<otimes>\<^bsub>Q\<^sub>p\<^esub> frac (ac_Zp (numer x)) (ac_Zp (denom x))" using "3" ord_def by presburger have 5: "(\<pp>[^]\<^bsub>Q\<^sub>p\<^esub>((ord x))) \<otimes>\<^bsub>Q\<^sub>p\<^esub> \<iota> (angular_component x) = frac (\<p>[^]((ord_Zp (numer x)))) (\<p>[^] (ord_Zp (denom x))) \<otimes>\<^bsub>Q\<^sub>p\<^esub> frac (ac_Zp (numer x)) (ac_Zp (denom x))" proof- have "(\<pp>[^]\<^bsub>Q\<^sub>p\<^esub>((ord_Zp (numer x)) - (ord_Zp (denom x)))) = frac (\<p>[^]((ord_Zp (numer x)))) (\<p>[^] (ord_Zp (denom x)))" using p_pow_diff[of "(ord_Zp (numer x))" "(ord_Zp (denom x))"] Qp_nonzero_def(1) Qp_nonzero_def(2) Zp_nonzero_def(1) Zp_nonzero_def(2) assms numer_denom_facts(1) numer_denom_facts(2) numer_denom_facts(3) ord_pos by presburger then show ?thesis using 4 by metis qed have 6: "(\<pp>[^]\<^bsub>Q\<^sub>p\<^esub>((ord x))) \<otimes>\<^bsub>Q\<^sub>p\<^esub> \<iota> (angular_component x) = frac (\<p>[^]((ord_Zp (numer x))) \<otimes> (ac_Zp (numer x))) (\<p>[^] (ord_Zp (denom x)) \<otimes> (ac_Zp (denom x)))" using 5 by (metis "2" Q\<^sub>p_def Qp_nonzero_def(1) Qp_nonzero_def(2) Z\<^sub>p_def Zp_is_domain Zp_nonzero_def(1) Zp_nonzero_def(2) assms domain.integral_iff frac_mult not_nonzero_Zp numer_denom_facts(1) numer_denom_facts(2) ord_pos p_int_pow_nonzero padic_integers.ac_Zp_in_Zp padic_integers.numer_denom_facts(3) padic_integers_axioms) then show ?thesis using "1" "2" Qp_nonzero_def(1) assms numer_denom_facts(5) by presburger qed lemma(in padic_integers) angular_component_mult: assumes "x \<in> nonzero Q\<^sub>p" assumes "y \<in> nonzero Q\<^sub>p" shows "angular_component (x \<otimes>\<^bsub>Q\<^sub>p\<^esub> y) = (angular_component x) \<otimes> (angular_component y)" proof- obtain a b where "a = numer x" and "b = denom x" and a_nz: "a \<in> nonzero Z\<^sub>p" and b_nz: "b \<in> nonzero Z\<^sub>p" and x_frac: "x = frac a b" by (metis Q\<^sub>p_def Qp_nonzero_def(1) Qp_nonzero_def(2) Z\<^sub>p_def assms(1) not_nonzero_Zp numer_denom_facts(1) numer_denom_facts(3) numer_denom_facts(5) padic_integers.numer_denom_facts(2) padic_integers_axioms) obtain c d where "c = numer y" and "d = denom y" and c_nz: "c \<in> nonzero Z\<^sub>p" and d_nz: "d \<in> nonzero Z\<^sub>p" and y_frac: "y = frac c d" by (metis Q\<^sub>p_def Qp_nonzero_def(1) Qp_nonzero_def(2) Z\<^sub>p_def assms(2) not_nonzero_Zp numer_denom_facts(1) numer_denom_facts(3) numer_denom_facts(5) padic_integers.numer_denom_facts(2) padic_integers_axioms) have 0: "(x \<otimes>\<^bsub>Q\<^sub>p\<^esub> y) = frac (a \<otimes> c) (b \<otimes> d)" by (simp add: Zp_nonzero_def(1) a_nz b_nz c_nz d_nz frac_mult x_frac y_frac) have 1: "angular_component (x \<otimes>\<^bsub>Q\<^sub>p\<^esub> y) = (ac_Zp (a \<otimes> c)) \<otimes> inv (ac_Zp (b \<otimes> d))" by (metis (mono_tags, hide_lams) "0" Localization.submonoid.m_closed Qp_is_domain Qp_nonzero_def(1) Zp_is_domain a_nz ac_fract assms(1) assms(2) b_nz c_nz cring.cring_simprules(5) d_nz domain.nonzero_is_submonoid domain_def) have 2: "angular_component (x \<otimes>\<^bsub>Q\<^sub>p\<^esub> y) = (ac_Zp a) \<otimes> (ac_Zp c) \<otimes> inv ((ac_Zp b) \<otimes> (ac_Zp d))" by (simp add: "1" a_nz ac_Zp_mult b_nz c_nz d_nz) have 3: "angular_component (x \<otimes>\<^bsub>Q\<^sub>p\<^esub> y) = (ac_Zp a) \<otimes> (ac_Zp c) \<otimes> inv (ac_Zp b) \<otimes> inv (ac_Zp d)" by (metis (no_types, lifting) "1" Units_nonzero_Zp Z\<^sub>p_def Zp_is_comm_monoid Zp_is_domain Zp_nonzero_def(1) Zp_nonzero_def(2) a_nz ac_Zp_mult b_nz c_nz cring.cring_simprules(11) cring.cring_simprules(5) d_nz domain.axioms(1) inv_of_prod padic_integers.Units_inverse_Zp padic_integers.ac_Zp_is_Unit padic_integers_axioms) have 4: "angular_component (x \<otimes>\<^bsub>Q\<^sub>p\<^esub> y) = (ac_Zp a) \<otimes> inv (ac_Zp b) \<otimes> (ac_Zp c) \<otimes> inv (ac_Zp d)" by (smt "3" Units_inverse_Zp Units_nonzero_Zp Zp_is_comm_monoid Zp_nonzero_def(1) Zp_nonzero_def(2) a_nz ac_Zp_is_Unit b_nz c_nz comm_monoid.m_ac(1) comm_monoid.m_comm) have 5: "angular_component (x \<otimes>\<^bsub>Q\<^sub>p\<^esub> y) = ((ac_Zp a) \<otimes> inv (ac_Zp b)) \<otimes> ( (ac_Zp c) \<otimes> inv (ac_Zp d))" using 4 by (metis Units_nonzero_Zp Z\<^sub>p_def Zp_is_domain Zp_nonzero_def(1) Zp_nonzero_def(2) a_nz ac_fract angular_component_closed assms(1) b_nz c_nz cring.cring_simprules(11) d_nz domain.axioms(1) frac_closed padic_integers.Units_inverse_Zp padic_integers.ac_Zp_is_Unit padic_integers_axioms x_frac) then show ?thesis by (simp add: Z\<^sub>p_def \<open>a = numer x\<close> \<open>b = denom x\<close> \<open>c = numer y\<close> \<open>d = denom y\<close> padic_integers.angular_component_def padic_integers_axioms) qed lemma(in padic_integers) angular_component_inv: assumes "x \<in> nonzero Q\<^sub>p" shows "angular_component (inv\<^bsub>Q\<^sub>p\<^esub> x) = inv\<^bsub>Z\<^sub>p\<^esub> (angular_component x)" by (metis Qp_is_field Qp_nonzero_def(1) Qp_nonzero_def(2) Qp_one_car Zp_is_domain Zp_one_car Zp_one_nonzero ac_Zp_one ac_fract angular_component_closed angular_component_mult assms cring.cring_simprules(12) domain.axioms(1) field.field_inv(1) inc_of_one invI(2) inv_in_frac(3) local.inc_def) lemma(in padic_integers) angular_component_one: "angular_component \<one>\<^bsub>Q\<^sub>p\<^esub> = \<one>" by (metis Qp_one_car Zp_is_comm_monoid Zp_is_domain Zp_one_car Zp_one_nonzero ac_Zp_one ac_fract comm_monoid.comm_inv_char cring.cring_simprules(12) domain.axioms(1) inc_of_one local.inc_def) lemma(in padic_integers) angular_component_ord_zero: assumes "ord x = 0" assumes "x \<in> nonzero Q\<^sub>p" shows "\<iota> (angular_component x) = x" proof- have 0: "ord x \<ge>0" using assms by auto have 1: "x \<in> nonzero Q\<^sub>p" proof- have "x \<noteq> \<zero>\<^bsub>Q\<^sub>p\<^esub>" using Qp_nonzero_def(2) assms(2) by blast then show ?thesis by (simp add: assms(2)) qed obtain a where a_def: "a \<in> nonzero Z\<^sub>p \<and> \<iota> a = x" using 0 1 assms Qp_inc_id[of x] by metis then have "x = frac a \<one>" using local.inc_def Zp_nonzero_def(1) by blast then have "angular_component x = ac_Zp a \<otimes> inv (ac_Zp \<one>)" using ac_fract[of x a \<one>] "1" Qp_nonzero_def(1) Zp_one_nonzero a_def by blast then have "angular_component x = ac_Zp a \<otimes> inv \<one>" by (simp add: ac_Zp_one) then have "angular_component x = ac_Zp a \<otimes> \<one>" by (metis Units_nonzero_Zp Zp_is_domain Zp_nonzero_def(1) Zp_one_car cring.cring_simprules(12) domain.Units_inverse domain.axioms(1) inv_cancelL(1) ord_Zp_0_imp_unit ord_Zp_one) then show ?thesis by (metis (mono_tags, hide_lams) "1" Zp_division_Qp_0 Zp_nonzero_def(1) Zp_one_car \<open>angular_component x = ac_Zp a \<otimes> inv \<one>\<close> \<open>x = local.frac a \<one>\<close> a_def ac_Zp_of_Unit angular_component_closed assms(1) local.inc_def ord_Zp_0_imp_unit ord_Zp_one ord_of_inc) qed lemma(in padic_integers) res_uminus: assumes "k > 0" assumes "f \<in> carrier Z\<^sub>p" assumes "c \<in> carrier (R k)" assumes "c = \<ominus>\<^bsub>R k\<^esub> (f k)" shows "c = ((\<ominus> f) k)" using Z\<^sub>p_def assms(2) assms(4) padic_inv prime by auto (* lemma(in padic_integers) val_p_pow_nat: "val (\<pp> e (n::int)) = *n*" proof- have using ord_p_pow_int val_ord p_pow_nonzero sledgehammer *) end
open import Prelude hiding (βŠ₯) module Implicits.Resolution.Infinite.Algorithm where open import Data.Bool open import Data.Unit.Base open import Data.Maybe using (is-just; functor) open import Coinduction open import Data.Fin.Substitution open import Data.Vec hiding (_>>=_) open import Data.List hiding (monad) open import Data.List.Any hiding (tail) open import Data.Maybe hiding (monad; module Eq) open import Implicits.Syntax open import Implicits.Substitutions open import Implicits.Substitutions.Lemmas open import Implicits.Syntax.Type.Unification open import Implicits.Resolution.Termination open import Category.Monad open import Category.Functor open import Category.Monad.Partiality as P open import Category.Monad.Partiality.All private module M {f} = RawMonad (monad {f}) private module MaybeFunctor {f} = RawFunctor (functor {f}) open import Induction.WellFounded open import Induction.Nat module _ where open P.Workaround m<-Acc : βˆ€ {m Ξ½} β†’ MetaType m Ξ½ β†’ Set m<-Acc {m} {Ξ½} r = Acc _m<_ (m , Ξ½ , r) mutual map-bool' : βˆ€ {A : Set} β†’ A β†’ Bool β†’ Maybe A βŠ₯P map-bool' u true = now (just u) map-bool' u false = now nothing delayed-resolve' : βˆ€ {Ξ½} (Ξ” : ICtx Ξ½) a β†’ Bool βŠ₯P delayed-resolve' Ξ” a = (later (β™― (resolve' Ξ” a))) resolve-context' : βˆ€ {Ξ½ m} (Ξ” : ICtx Ξ½) a β†’ (Maybe (Sub (flip MetaType Ξ½) m zero)) β†’ (Maybe (Sub (flip MetaType Ξ½) m zero)) βŠ₯P resolve-context' Ξ” a (just u) = (delayed-resolve' Ξ” (from-meta (MetaTypeMetaSubst._/_ a u))) >>= (map-bool' u) resolve-context' Ξ” a nothing = now nothing -- match' uses MetaType m Ξ½ instead of Type Ξ½ to be able to distinguish unification variables -- from other, non-unifiable tvars. -- The difference is subtle but the gist is that we can only unify variables that we open -- during matching. Any variables that are already open in the context are fixed. match-u' : βˆ€ {Ξ½ m} (Ξ” : ICtx Ξ½) β†’ (Ο„ : SimpleType Ξ½) β†’ (r : MetaType m Ξ½) β†’ m<-Acc r β†’ (Maybe (Sub (flip MetaType Ξ½) m zero)) βŠ₯P -- For rule types we first check if b matches our query Ο„. -- If this is the case, we use the unifier to instantiate the unification vars in a and -- recursively try to resolve the result. match-u' {Ξ½} {m} Ξ” Ο„ (a β‡’ b) (acc f) = (match-u' Ξ” Ο„ b (f _ (b-m<-aβ‡’b a b))) >>= (resolve-context' Ξ” a) -- On type vars we simply open it up, adding the tvar to the set of unification variables. -- and recursively try to match. match-u' Ξ” Ο„ (βˆ€' a) (acc f) = (match-u' Ξ” Ο„ (open-meta a) (f _ (open-meta-a-m<-βˆ€'a a))) >>= (now ∘ (MaybeFunctor._<$>_ tail)) -- The only thing left to do is to try and unify Ο„ and x. match-u' Ξ” Ο„ (simpl x) _ = now (mgu (simpl x) Ο„) match' : βˆ€ {Ξ½} (Ξ” : ICtx Ξ½) β†’ (Ο„ : SimpleType Ξ½) β†’ Type Ξ½ β†’ Bool βŠ₯P match' {Ξ½} Ξ” Ο„ r = match-u' Ξ” Ο„ (to-meta {zero} r) (m<-well-founded _) >>= (now ∘ is-just) match1st-recover' : βˆ€ {Ξ½} (Ξ” ρs : ICtx Ξ½) β†’ (Ο„ : SimpleType Ξ½) β†’ Bool β†’ Bool βŠ₯P match1st-recover' _ _ _ true = now true match1st-recover' Ξ” ρs Ο„ false = match1st' Ξ” ρs Ο„ match1st' : βˆ€ {Ξ½} (Ξ” : ICtx Ξ½) β†’ (ρs : ICtx Ξ½) β†’ (Ο„ : SimpleType Ξ½) β†’ Bool βŠ₯P match1st' Ξ” List.[] _ = now false match1st' Ξ” (x List.∷ ρs) Ο„ = match' Ξ” Ο„ x >>= (match1st-recover' Ξ” ρs Ο„) -- resolution in ResP resolve' : βˆ€ {Ξ½} (Ξ” : ICtx Ξ½) (a : Type Ξ½) β†’ Bool βŠ₯P resolve' Ξ” (simpl x) = match1st' Ξ” Ξ” x resolve' Ξ” (a β‡’ b) = resolve' (a List.∷ Ξ”) b resolve' Ξ” (βˆ€' a) = resolve' (ictx-weaken Ξ”) a module _ where open P.Workaround using (⟦_⟧P) open P.Workaround.Correct open M module Eq {l} {A : Set l} where open import Relation.Binary.PropositionalEquality as PEq using (_≑_) public open module Eq = P.Equality {A = A} _≑_ public open module R = P.Reasoning (PEq.isEquivalence {A = A}) public map-bool : βˆ€ {A : Set} β†’ A β†’ Bool β†’ (Maybe A) βŠ₯ map-bool x b = ⟦ map-bool' x b ⟧P delayed-resolve : βˆ€ {Ξ½} (Ξ” : ICtx Ξ½) a β†’ Bool βŠ₯ delayed-resolve Ξ” a = ⟦ delayed-resolve' Ξ” a ⟧P resolve-context : βˆ€ {Ξ½ m} (Ξ” : ICtx Ξ½) a β†’ (Maybe (Sub (flip MetaType Ξ½) m zero)) β†’ (Maybe (Sub (flip MetaType Ξ½) m zero)) βŠ₯ resolve-context Ξ” a p = ⟦ resolve-context' Ξ” a p ⟧P match-u : βˆ€ {Ξ½ m} (Ξ” : ICtx Ξ½) β†’ SimpleType Ξ½ β†’ (r : MetaType m Ξ½) β†’ m<-Acc r β†’ (Maybe (Sub (flip MetaType Ξ½) m zero)) βŠ₯ match-u Ξ” Ο„ r f = ⟦ match-u' Ξ” Ο„ r f ⟧P match : βˆ€ {Ξ½} (Ξ” : ICtx Ξ½) β†’ (Ο„ : SimpleType Ξ½) β†’ (r : Type Ξ½) β†’ Bool βŠ₯ match Ξ” Ο„ r = ⟦ match' Ξ” Ο„ r ⟧P match1st-recover : βˆ€ {Ξ½} (Ξ” : ICtx Ξ½) β†’ (ρs : ICtx Ξ½) β†’ (Ο„ : SimpleType Ξ½) β†’ Bool β†’ Bool βŠ₯ match1st-recover Ξ” ρs Ο„ b = ⟦ match1st-recover' Ξ” ρs Ο„ b ⟧P match1st : βˆ€ {Ξ½} (Ξ” : ICtx Ξ½) β†’ (ρs : ICtx Ξ½) β†’ (Ο„ : SimpleType Ξ½) β†’ Bool βŠ₯ match1st Ξ” ρs Ο„ = ⟦ match1st' Ξ” ρs Ο„ ⟧P resolve : βˆ€ {Ξ½} (Ξ” : ICtx Ξ½) (r : Type Ξ½) β†’ Bool βŠ₯ resolve Ξ” r = ⟦ resolve' Ξ” r ⟧P -- -- compositionality of resolution functions -- resolve-context-comp : βˆ€ {m Ξ½} (Ξ” : ICtx Ξ½) a u β†’ (resolve-context {Ξ½} {m} Ξ” a (just u)) Eq.β‰… (delayed-resolve Ξ” (from-meta (MetaTypeMetaSubst._/_ a u)) >>= (map-bool u)) resolve-context-comp {m} {Ξ½} Ξ” a u = (resolve-context {Ξ½} {m} Ξ” a (just u)) Eq.β‰…βŸ¨ >>=-hom (delayed-resolve' Ξ” (from-meta (MetaTypeMetaSubst._/_ a u))) _ ⟩ (delayed-resolve Ξ” (from-meta (MetaTypeMetaSubst._/_ a u)) >>= (map-bool u)) Eq.∎ match-u-iabs-comp : βˆ€ {m Ξ½} (Ξ” : ICtx Ξ½) Ο„ (a b : MetaType m Ξ½) f β†’ (match-u Ξ” Ο„ (a β‡’ b) (acc f)) Eq.β‰… ((match-u Ξ” Ο„ b (f _ (b-m<-aβ‡’b a b))) >>= (resolve-context Ξ” a)) match-u-iabs-comp Ξ” Ο„ a b f = (match-u Ξ” Ο„ (a β‡’ b) (acc f)) Eq.β‰…βŸ¨ >>=-hom (match-u' Ξ” Ο„ b (f _ (b-m<-aβ‡’b a b))) _ ⟩ ((match-u Ξ” Ο„ b (f _ (b-m<-aβ‡’b a b))) >>= (resolve-context Ξ” a)) Eq.∎ match-u-tabs-comp : βˆ€ {m Ξ½} (Ξ” : ICtx Ξ½) Ο„ (r : MetaType m (suc Ξ½)) f β†’ (match-u Ξ” Ο„ (βˆ€' r) (acc f)) Eq.β‰… ((match-u Ξ” Ο„ (open-meta r) (f _ (open-meta-a-m<-βˆ€'a r))) >>= (now ∘ (MaybeFunctor._<$>_ tail))) match-u-tabs-comp Ξ” Ο„ r f = match-u Ξ” Ο„ (βˆ€' r) (acc f) Eq.β‰…βŸ¨ >>=-hom (match-u' Ξ” Ο„ (open-meta r) (f _ (open-meta-a-m<-βˆ€'a r))) _ ⟩ ((match-u Ξ” Ο„ (open-meta r) (f _ (open-meta-a-m<-βˆ€'a r))) >>= (now ∘ (MaybeFunctor._<$>_ tail))) Eq.∎ match-comp : βˆ€ {Ξ½} (Ξ” : ICtx Ξ½) Ο„ r β†’ match Ξ” Ο„ r Eq.β‰… ((match-u Ξ” Ο„ (to-meta {zero} r) (m<-well-founded _)) >>= (now ∘ is-just)) match-comp Ξ” Ο„ r = match Ξ” Ο„ r Eq.β‰…βŸ¨ >>=-hom (match-u' Ξ” Ο„ (to-meta {zero} r) (m<-well-founded _)) _ ⟩ _>>=_ (match-u Ξ” Ο„ (to-meta {zero} r) (m<-well-founded _)) (now ∘ is-just) Eq.∎ match1st-comp : βˆ€ {Ξ½} (Ξ” : ICtx Ξ½) x ρs Ο„ β†’ match1st Ξ” (x List.∷ ρs) Ο„ Eq.β‰… ((match Ξ” Ο„ x) >>= (match1st-recover Ξ” ρs Ο„)) match1st-comp Ξ” x ρs Ο„ = match1st Ξ” (x List.∷ ρs) Ο„ Eq.β‰…βŸ¨ >>=-hom (match' Ξ” Ο„ x) _ ⟩ ((match Ξ” Ο„ x) >>= (match1st-recover Ξ” ρs Ο„)) Eq.∎
If $c \neq 0$ and $n > 0$, then the number of $n$th roots of $c$ is $n$.
/* Copyright (C) 2018 Quaternion Risk Management Ltd All rights reserved. This file is part of ORE, a free-software/open-source library for transparent pricing and risk analysis - http://opensourcerisk.org ORE is free software: you can redistribute it and/or modify it under the terms of the Modified BSD License. You should have received a copy of the license along with this program. The license is also available online at <http://opensourcerisk.org> This program is distributed on the basis that it will form a useful contribution to risk analytics and model standardisation, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the license for more details. */ /*! \file ored/configuration/commoditycurveconfig.hpp \brief Commodity curve configuration class \ingroup configuration */ #pragma once #include <ored/configuration/bootstrapconfig.hpp> #include <ored/configuration/curveconfig.hpp> #include <boost/optional/optional.hpp> namespace ore { namespace data { /*! Class for holding information on a set of instruments used in bootstrapping a piecewise price curve. \ingroup configuration */ class PriceSegment : public XMLSerializable { public: //! Type of price segment being represented, i.e. type of instrument in the price segment. enum class Type { Future, AveragingFuture, AveragingSpot, AveragingOffPeakPower, OffPeakPowerDaily }; //! Class to store quotes used in building daily off-peak power quotes. class OffPeakDaily : public XMLSerializable { public: //! Constructor. OffPeakDaily(); //! Detailed constructor. OffPeakDaily( const std::vector<std::string>& offPeakQuotes, const std::vector<std::string>& peakQuotes); const std::vector<std::string>& offPeakQuotes() const { return offPeakQuotes_; } const std::vector<std::string>& peakQuotes() const { return peakQuotes_; } void fromXML(XMLNode* node) override; XMLNode* toXML(XMLDocument& doc) override; private: std::vector<std::string> offPeakQuotes_; std::vector<std::string> peakQuotes_; }; //! \name Constructors //@{ //! Default constructor PriceSegment(); //! Detailed constructor PriceSegment(const std::string& type, const std::string& conventionsId, const std::vector<std::string>& quotes, const boost::optional<unsigned short>& priority = boost::none, const boost::optional<OffPeakDaily>& offPeakDaily = boost::none, const std::string& peakPriceCurveId = "", const std::string& peakPriceCalendar = ""); //@} //! \name Inspectors //@{ Type type() const; const std::string& conventionsId() const; const std::vector<std::string>& quotes() const; const boost::optional<unsigned short>& priority() const; const boost::optional<OffPeakDaily>& offPeakDaily() const; const std::string& peakPriceCurveId() const; const std::string& peakPriceCalendar() const; bool empty() const; //@} //! \name Serialisation //@{ void fromXML(XMLNode* node) override; XMLNode* toXML(XMLDocument& doc) override; //@} private: //! Populate quotes void populateQuotes(); std::string strType_; std::string conventionsId_; std::vector<std::string> quotes_; boost::optional<unsigned short> priority_; boost::optional<OffPeakDaily> offPeakDaily_; std::string peakPriceCurveId_; std::string peakPriceCalendar_; bool empty_; Type type_; }; //! Commodity curve configuration /*! \ingroup configuration */ class CommodityCurveConfig : public CurveConfig { public: /*! The type of commodity curve that has been configured: - Direct: if the commodity price curve is built from commodity forward quotes - CrossCurrency: if the commodity price curve is implied from a price curve in a different currency - Basis: if the commodity price curve is built from basis quotes - Piecewise: if the commodity price curve is bootstrapped from sets of instruments */ enum class Type { Direct, CrossCurrency, Basis, Piecewise }; //! \name Constructors //@{ //! Default constructor CommodityCurveConfig() : type_(Type::Direct), extrapolation_(true), addBasis_(true), monthOffset_(0), averageBase_(true) {} //! Detailed constructor for Direct commodity curve configuration CommodityCurveConfig(const std::string& curveId, const std::string& curveDescription, const std::string& currency, const std::vector<std::string>& quotes, const std::string& commoditySpotQuote = "", const std::string& dayCountId = "A365", const std::string& interpolationMethod = "Linear", bool extrapolation = true, const std::string& conventionsId = ""); //! Detailed constructor for CrossCurrency commodity curve configuration CommodityCurveConfig(const std::string& curveId, const std::string& curveDescription, const std::string& currency, const std::string& basePriceCurveId, const std::string& baseYieldCurveId, const std::string& yieldCurveId, bool extrapolation = true); //! Detailed constructor for Basis commodity curve configuration CommodityCurveConfig(const std::string& curveId, const std::string& curveDescription, const std::string& currency, const std::string& basePriceCurveId, const std::string& baseConventionsId, const std::vector<std::string>& basisQuotes, const std::string& basisConventionsId, const std::string& dayCountId = "A365", const std::string& interpolationMethod = "Linear", bool extrapolation = true, bool addBasis = true, QuantLib::Natural monthOffset = 0, bool averageBase = true); //! Detailed constructor for Piecewise commodity curve configuration CommodityCurveConfig(const std::string& curveId, const std::string& curveDescription, const std::string& currency, const std::vector<PriceSegment>& priceSegments, const std::string& dayCountId = "A365", const std::string& interpolationMethod = "Linear", bool extrapolation = true, const boost::optional<BootstrapConfig>& bootstrapConfig = boost::none); //@} //! \name Serialisation //@{ void fromXML(XMLNode* node) override; XMLNode* toXML(XMLDocument& doc) override; //@} //! \name Inspectors //@{ const Type& type() const { return type_; } const std::string& currency() const { return currency_; } const std::string& commoditySpotQuoteId() const { return commoditySpotQuoteId_; } const std::string& dayCountId() const { return dayCountId_; } const std::string& interpolationMethod() const { return interpolationMethod_; } const std::string& basePriceCurveId() const { return basePriceCurveId_; } const std::string& baseYieldCurveId() const { return baseYieldCurveId_; } const std::string& yieldCurveId() const { return yieldCurveId_; } bool extrapolation() const { return extrapolation_; } const vector<string>& fwdQuotes() const { return fwdQuotes_; } const std::string& conventionsId() const { return conventionsId_; } const std::string& baseConventionsId() const { return baseConventionsId_; } bool addBasis() const { return addBasis_; } QuantLib::Natural monthOffset() const { return monthOffset_; } bool averageBase() const { return averageBase_; } const std::map<unsigned short, PriceSegment>& priceSegments() const { return priceSegments_; } const boost::optional<BootstrapConfig>& bootstrapConfig() const { return bootstrapConfig_; } //@} //! \name Setters //@{ Type& type() { return type_; } std::string& currency() { return currency_; } std::string& commoditySpotQuoteId() { return commoditySpotQuoteId_; } std::string& dayCountId() { return dayCountId_; } std::string& interpolationMethod() { return interpolationMethod_; } std::string& basePriceCurveId() { return basePriceCurveId_; } std::string& baseYieldCurveId() { return baseYieldCurveId_; } std::string& yieldCurveId() { return yieldCurveId_; } bool& extrapolation() { return extrapolation_; } std::string& conventionsId() { return conventionsId_; } std::string& baseConventionsId() { return baseConventionsId_; } bool& addBasis() { return addBasis_; } QuantLib::Natural& monthOffset() { return monthOffset_; } bool& averageBase() { return averageBase_; } void setPriceSegments(const std::map<unsigned short, PriceSegment>& priceSegments) { priceSegments_ = priceSegments; } void setBootstrapConfig(const BootstrapConfig& bootstrapConfig) { bootstrapConfig_ = bootstrapConfig; } //@} private: //! Populate any dependent curve IDs. void populateRequiredCurveIds(); //! Process price segments when configuring a Piecewise curve. void processSegments(std::vector<PriceSegment> priceSegments); Type type_; vector<string> fwdQuotes_; std::string currency_; std::string commoditySpotQuoteId_; std::string dayCountId_; std::string interpolationMethod_; std::string basePriceCurveId_; std::string baseYieldCurveId_; std::string yieldCurveId_; bool extrapolation_; std::string conventionsId_; std::string baseConventionsId_; bool addBasis_; QuantLib::Natural monthOffset_; bool averageBase_; /*! The map key is the internal priority of the price segment and does not necessarily map the PriceSegment's priority member value. We are allowing here for the priority to be unspecified in the PriceSegment during configuration. */ std::map<unsigned short, PriceSegment> priceSegments_; boost::optional<BootstrapConfig> bootstrapConfig_; }; } // namespace data } // namespace ore
[STATEMENT] lemma pders_coeffs_sgn_eq:"map (\<lambda>p. sgn(poly p 0)) (pders p) = map sgn (coeffs p)" [PROOF STATE] proof (prove) goal (1 subgoal): 1. map (\<lambda>p. sgn (poly p 0)) (pders p) = map sgn (coeffs p) [PROOF STEP] proof (induct "degree p" arbitrary:p) [PROOF STATE] proof (state) goal (2 subgoals): 1. \<And>p. 0 = degree p \<Longrightarrow> map (\<lambda>p. sgn (poly p 0)) (pders p) = map sgn (coeffs p) 2. \<And>x p. \<lbrakk>\<And>p. x = degree p \<Longrightarrow> map (\<lambda>p. sgn (poly p 0)) (pders p) = map sgn (coeffs p); Suc x = degree p\<rbrakk> \<Longrightarrow> map (\<lambda>p. sgn (poly p 0)) (pders p) = map sgn (coeffs p) [PROOF STEP] case 0 [PROOF STATE] proof (state) this: 0 = degree p goal (2 subgoals): 1. \<And>p. 0 = degree p \<Longrightarrow> map (\<lambda>p. sgn (poly p 0)) (pders p) = map sgn (coeffs p) 2. \<And>x p. \<lbrakk>\<And>p. x = degree p \<Longrightarrow> map (\<lambda>p. sgn (poly p 0)) (pders p) = map sgn (coeffs p); Suc x = degree p\<rbrakk> \<Longrightarrow> map (\<lambda>p. sgn (poly p 0)) (pders p) = map sgn (coeffs p) [PROOF STEP] then [PROOF STATE] proof (chain) picking this: 0 = degree p [PROOF STEP] obtain a where "p=[:a:]" [PROOF STATE] proof (prove) using this: 0 = degree p goal (1 subgoal): 1. (\<And>a. p = [:a:] \<Longrightarrow> thesis) \<Longrightarrow> thesis [PROOF STEP] using degree_eq_zeroE [PROOF STATE] proof (prove) using this: 0 = degree p \<lbrakk>degree ?p = 0; \<And>a. ?p = [:a:] \<Longrightarrow> ?thesis\<rbrakk> \<Longrightarrow> ?thesis goal (1 subgoal): 1. (\<And>a. p = [:a:] \<Longrightarrow> thesis) \<Longrightarrow> thesis [PROOF STEP] by auto [PROOF STATE] proof (state) this: p = [:a:] goal (2 subgoals): 1. \<And>p. 0 = degree p \<Longrightarrow> map (\<lambda>p. sgn (poly p 0)) (pders p) = map sgn (coeffs p) 2. \<And>x p. \<lbrakk>\<And>p. x = degree p \<Longrightarrow> map (\<lambda>p. sgn (poly p 0)) (pders p) = map sgn (coeffs p); Suc x = degree p\<rbrakk> \<Longrightarrow> map (\<lambda>p. sgn (poly p 0)) (pders p) = map sgn (coeffs p) [PROOF STEP] then [PROOF STATE] proof (chain) picking this: p = [:a:] [PROOF STEP] show ?case [PROOF STATE] proof (prove) using this: p = [:a:] goal (1 subgoal): 1. map (\<lambda>p. sgn (poly p 0)) (pders p) = map sgn (coeffs p) [PROOF STEP] by (auto simp: pders.simps) [PROOF STATE] proof (state) this: map (\<lambda>p. sgn (poly p 0)) (pders p) = map sgn (coeffs p) goal (1 subgoal): 1. \<And>x p. \<lbrakk>\<And>p. x = degree p \<Longrightarrow> map (\<lambda>p. sgn (poly p 0)) (pders p) = map sgn (coeffs p); Suc x = degree p\<rbrakk> \<Longrightarrow> map (\<lambda>p. sgn (poly p 0)) (pders p) = map sgn (coeffs p) [PROOF STEP] next [PROOF STATE] proof (state) goal (1 subgoal): 1. \<And>x p. \<lbrakk>\<And>p. x = degree p \<Longrightarrow> map (\<lambda>p. sgn (poly p 0)) (pders p) = map sgn (coeffs p); Suc x = degree p\<rbrakk> \<Longrightarrow> map (\<lambda>p. sgn (poly p 0)) (pders p) = map sgn (coeffs p) [PROOF STEP] case (Suc x) [PROOF STATE] proof (state) this: x = degree ?p \<Longrightarrow> map (\<lambda>p. sgn (poly p 0)) (pders ?p) = map sgn (coeffs ?p) Suc x = degree p goal (1 subgoal): 1. \<And>x p. \<lbrakk>\<And>p. x = degree p \<Longrightarrow> map (\<lambda>p. sgn (poly p 0)) (pders p) = map sgn (coeffs p); Suc x = degree p\<rbrakk> \<Longrightarrow> map (\<lambda>p. sgn (poly p 0)) (pders p) = map sgn (coeffs p) [PROOF STEP] then [PROOF STATE] proof (chain) picking this: x = degree ?p \<Longrightarrow> map (\<lambda>p. sgn (poly p 0)) (pders ?p) = map sgn (coeffs ?p) Suc x = degree p [PROOF STEP] have "pderiv p\<noteq>0" "p\<noteq>0" [PROOF STATE] proof (prove) using this: x = degree ?p \<Longrightarrow> map (\<lambda>p. sgn (poly p 0)) (pders ?p) = map sgn (coeffs ?p) Suc x = degree p goal (1 subgoal): 1. pderiv p \<noteq> 0 &&& p \<noteq> 0 [PROOF STEP] using pderiv_eq_0_iff [PROOF STATE] proof (prove) using this: x = degree ?p \<Longrightarrow> map (\<lambda>p. sgn (poly p 0)) (pders ?p) = map sgn (coeffs ?p) Suc x = degree p (pderiv ?p = 0) = (degree ?p = 0) goal (1 subgoal): 1. pderiv p \<noteq> 0 &&& p \<noteq> 0 [PROOF STEP] by force+ [PROOF STATE] proof (state) this: pderiv p \<noteq> 0 p \<noteq> 0 goal (1 subgoal): 1. \<And>x p. \<lbrakk>\<And>p. x = degree p \<Longrightarrow> map (\<lambda>p. sgn (poly p 0)) (pders p) = map sgn (coeffs p); Suc x = degree p\<rbrakk> \<Longrightarrow> map (\<lambda>p. sgn (poly p 0)) (pders p) = map sgn (coeffs p) [PROOF STEP] have "map (\<lambda>p. sgn (poly p 0)) (pders p) = sgn (poly p 0)# map (\<lambda>p. sgn (poly p 0)) (pders (pderiv p))" [PROOF STATE] proof (prove) goal (1 subgoal): 1. map (\<lambda>p. sgn (poly p 0)) (pders p) = sgn (poly p 0) # map (\<lambda>p. sgn (poly p 0)) (pders (pderiv p)) [PROOF STEP] apply (subst pders.simps) [PROOF STATE] proof (prove) goal (1 subgoal): 1. map (\<lambda>p. sgn (poly p 0)) (if p = 0 then [] else p # pders (pderiv p)) = sgn (poly p 0) # map (\<lambda>p. sgn (poly p 0)) (pders (pderiv p)) [PROOF STEP] using \<open>p\<noteq>0\<close> [PROOF STATE] proof (prove) using this: p \<noteq> 0 goal (1 subgoal): 1. map (\<lambda>p. sgn (poly p 0)) (if p = 0 then [] else p # pders (pderiv p)) = sgn (poly p 0) # map (\<lambda>p. sgn (poly p 0)) (pders (pderiv p)) [PROOF STEP] by simp [PROOF STATE] proof (state) this: map (\<lambda>p. sgn (poly p 0)) (pders p) = sgn (poly p 0) # map (\<lambda>p. sgn (poly p 0)) (pders (pderiv p)) goal (1 subgoal): 1. \<And>x p. \<lbrakk>\<And>p. x = degree p \<Longrightarrow> map (\<lambda>p. sgn (poly p 0)) (pders p) = map sgn (coeffs p); Suc x = degree p\<rbrakk> \<Longrightarrow> map (\<lambda>p. sgn (poly p 0)) (pders p) = map sgn (coeffs p) [PROOF STEP] also [PROOF STATE] proof (state) this: map (\<lambda>p. sgn (poly p 0)) (pders p) = sgn (poly p 0) # map (\<lambda>p. sgn (poly p 0)) (pders (pderiv p)) goal (1 subgoal): 1. \<And>x p. \<lbrakk>\<And>p. x = degree p \<Longrightarrow> map (\<lambda>p. sgn (poly p 0)) (pders p) = map sgn (coeffs p); Suc x = degree p\<rbrakk> \<Longrightarrow> map (\<lambda>p. sgn (poly p 0)) (pders p) = map sgn (coeffs p) [PROOF STEP] have "... = sgn (coeff p 0) # map sgn (coeffs (pderiv p))" [PROOF STATE] proof (prove) goal (1 subgoal): 1. sgn (poly p 0) # map (\<lambda>p. sgn (poly p 0)) (pders (pderiv p)) = sgn (coeff p 0) # map sgn (coeffs (pderiv p)) [PROOF STEP] proof - [PROOF STATE] proof (state) goal (1 subgoal): 1. sgn (poly p 0) # map (\<lambda>p. sgn (poly p 0)) (pders (pderiv p)) = sgn (coeff p 0) # map sgn (coeffs (pderiv p)) [PROOF STEP] have "sgn (poly p 0) = sgn (coeff p 0)" [PROOF STATE] proof (prove) goal (1 subgoal): 1. sgn (poly p 0) = sgn (coeff p 0) [PROOF STEP] by (simp add: poly_0_coeff_0) [PROOF STATE] proof (state) this: sgn (poly p 0) = sgn (coeff p 0) goal (1 subgoal): 1. sgn (poly p 0) # map (\<lambda>p. sgn (poly p 0)) (pders (pderiv p)) = sgn (coeff p 0) # map sgn (coeffs (pderiv p)) [PROOF STEP] then [PROOF STATE] proof (chain) picking this: sgn (poly p 0) = sgn (coeff p 0) [PROOF STEP] show ?thesis [PROOF STATE] proof (prove) using this: sgn (poly p 0) = sgn (coeff p 0) goal (1 subgoal): 1. sgn (poly p 0) # map (\<lambda>p. sgn (poly p 0)) (pders (pderiv p)) = sgn (coeff p 0) # map sgn (coeffs (pderiv p)) [PROOF STEP] apply (subst Suc(1)) [PROOF STATE] proof (prove) goal (2 subgoals): 1. sgn (poly p 0) = sgn (coeff p 0) \<Longrightarrow> x = degree (pderiv p) 2. sgn (poly p 0) = sgn (coeff p 0) \<Longrightarrow> sgn (poly p 0) # map sgn (coeffs (pderiv p)) = sgn (coeff p 0) # map sgn (coeffs (pderiv p)) [PROOF STEP] subgoal [PROOF STATE] proof (prove) goal (1 subgoal): 1. sgn (poly p 0) = sgn (coeff p 0) \<Longrightarrow> x = degree (pderiv p) [PROOF STEP] by (metis Suc.hyps(2) degree_pderiv diff_Suc_1) [PROOF STATE] proof (prove) goal (1 subgoal): 1. sgn (poly p 0) = sgn (coeff p 0) \<Longrightarrow> sgn (poly p 0) # map sgn (coeffs (pderiv p)) = sgn (coeff p 0) # map sgn (coeffs (pderiv p)) [PROOF STEP] subgoal [PROOF STATE] proof (prove) goal (1 subgoal): 1. sgn (poly p 0) = sgn (coeff p 0) \<Longrightarrow> sgn (poly p 0) # map sgn (coeffs (pderiv p)) = sgn (coeff p 0) # map sgn (coeffs (pderiv p)) [PROOF STEP] by auto [PROOF STATE] proof (prove) goal: No subgoals! [PROOF STEP] done [PROOF STATE] proof (state) this: sgn (poly p 0) # map (\<lambda>p. sgn (poly p 0)) (pders (pderiv p)) = sgn (coeff p 0) # map sgn (coeffs (pderiv p)) goal: No subgoals! [PROOF STEP] qed [PROOF STATE] proof (state) this: sgn (poly p 0) # map (\<lambda>p. sgn (poly p 0)) (pders (pderiv p)) = sgn (coeff p 0) # map sgn (coeffs (pderiv p)) goal (1 subgoal): 1. \<And>x p. \<lbrakk>\<And>p. x = degree p \<Longrightarrow> map (\<lambda>p. sgn (poly p 0)) (pders p) = map sgn (coeffs p); Suc x = degree p\<rbrakk> \<Longrightarrow> map (\<lambda>p. sgn (poly p 0)) (pders p) = map sgn (coeffs p) [PROOF STEP] also [PROOF STATE] proof (state) this: sgn (poly p 0) # map (\<lambda>p. sgn (poly p 0)) (pders (pderiv p)) = sgn (coeff p 0) # map sgn (coeffs (pderiv p)) goal (1 subgoal): 1. \<And>x p. \<lbrakk>\<And>p. x = degree p \<Longrightarrow> map (\<lambda>p. sgn (poly p 0)) (pders p) = map sgn (coeffs p); Suc x = degree p\<rbrakk> \<Longrightarrow> map (\<lambda>p. sgn (poly p 0)) (pders p) = map sgn (coeffs p) [PROOF STEP] have "... = map sgn (coeffs p)" [PROOF STATE] proof (prove) goal (1 subgoal): 1. sgn (coeff p 0) # map sgn (coeffs (pderiv p)) = map sgn (coeffs p) [PROOF STEP] proof (rule nth_equalityI) [PROOF STATE] proof (state) goal (2 subgoals): 1. length (sgn (coeff p 0) # map sgn (coeffs (pderiv p))) = length (map sgn (coeffs p)) 2. \<And>i. i < length (sgn (coeff p 0) # map sgn (coeffs (pderiv p))) \<Longrightarrow> (sgn (coeff p 0) # map sgn (coeffs (pderiv p))) ! i = map sgn (coeffs p) ! i [PROOF STEP] show p_length:"length (sgn (coeff p 0) # map sgn (coeffs (pderiv p))) = length (map sgn (coeffs p))" [PROOF STATE] proof (prove) goal (1 subgoal): 1. length (sgn (coeff p 0) # map sgn (coeffs (pderiv p))) = length (map sgn (coeffs p)) [PROOF STEP] by (metis Suc.hyps(2) \<open>p \<noteq> 0\<close> \<open>pderiv p \<noteq> 0\<close> degree_pderiv diff_Suc_1 length_Cons length_coeffs_degree length_map) [PROOF STATE] proof (state) this: length (sgn (coeff p 0) # map sgn (coeffs (pderiv p))) = length (map sgn (coeffs p)) goal (1 subgoal): 1. \<And>i. i < length (sgn (coeff p 0) # map sgn (coeffs (pderiv p))) \<Longrightarrow> (sgn (coeff p 0) # map sgn (coeffs (pderiv p))) ! i = map sgn (coeffs p) ! i [PROOF STEP] show "(sgn (coeff p 0) # map sgn (coeffs (pderiv p))) ! i = map sgn (coeffs p) ! i" if "i < length (sgn (coeff p 0) # map sgn (coeffs (pderiv p)))" for i [PROOF STATE] proof (prove) goal (1 subgoal): 1. (sgn (coeff p 0) # map sgn (coeffs (pderiv p))) ! i = map sgn (coeffs p) ! i [PROOF STEP] proof - [PROOF STATE] proof (state) goal (1 subgoal): 1. (sgn (coeff p 0) # map sgn (coeffs (pderiv p))) ! i = map sgn (coeffs p) ! i [PROOF STEP] show "(sgn (coeff p 0) # map sgn (coeffs (pderiv p))) ! i = map sgn (coeffs p) ! i" [PROOF STATE] proof (prove) goal (1 subgoal): 1. (sgn (coeff p 0) # map sgn (coeffs (pderiv p))) ! i = map sgn (coeffs p) ! i [PROOF STEP] proof (cases i) [PROOF STATE] proof (state) goal (2 subgoals): 1. i = 0 \<Longrightarrow> (sgn (coeff p 0) # map sgn (coeffs (pderiv p))) ! i = map sgn (coeffs p) ! i 2. \<And>nat. i = Suc nat \<Longrightarrow> (sgn (coeff p 0) # map sgn (coeffs (pderiv p))) ! i = map sgn (coeffs p) ! i [PROOF STEP] case 0 [PROOF STATE] proof (state) this: i = 0 goal (2 subgoals): 1. i = 0 \<Longrightarrow> (sgn (coeff p 0) # map sgn (coeffs (pderiv p))) ! i = map sgn (coeffs p) ! i 2. \<And>nat. i = Suc nat \<Longrightarrow> (sgn (coeff p 0) # map sgn (coeffs (pderiv p))) ! i = map sgn (coeffs p) ! i [PROOF STEP] then [PROOF STATE] proof (chain) picking this: i = 0 [PROOF STEP] show ?thesis [PROOF STATE] proof (prove) using this: i = 0 goal (1 subgoal): 1. (sgn (coeff p 0) # map sgn (coeffs (pderiv p))) ! i = map sgn (coeffs p) ! i [PROOF STEP] by (simp add: \<open>p \<noteq> 0\<close> coeffs_nth) [PROOF STATE] proof (state) this: (sgn (coeff p 0) # map sgn (coeffs (pderiv p))) ! i = map sgn (coeffs p) ! i goal (1 subgoal): 1. \<And>nat. i = Suc nat \<Longrightarrow> (sgn (coeff p 0) # map sgn (coeffs (pderiv p))) ! i = map sgn (coeffs p) ! i [PROOF STEP] next [PROOF STATE] proof (state) goal (1 subgoal): 1. \<And>nat. i = Suc nat \<Longrightarrow> (sgn (coeff p 0) # map sgn (coeffs (pderiv p))) ! i = map sgn (coeffs p) ! i [PROOF STEP] case (Suc i') [PROOF STATE] proof (state) this: i = Suc i' goal (1 subgoal): 1. \<And>nat. i = Suc nat \<Longrightarrow> (sgn (coeff p 0) # map sgn (coeffs (pderiv p))) ! i = map sgn (coeffs p) ! i [PROOF STEP] then [PROOF STATE] proof (chain) picking this: i = Suc i' [PROOF STEP] show ?thesis [PROOF STATE] proof (prove) using this: i = Suc i' goal (1 subgoal): 1. (sgn (coeff p 0) # map sgn (coeffs (pderiv p))) ! i = map sgn (coeffs p) ! i [PROOF STEP] using that p_length [PROOF STATE] proof (prove) using this: i = Suc i' i < length (sgn (coeff p 0) # map sgn (coeffs (pderiv p))) length (sgn (coeff p 0) # map sgn (coeffs (pderiv p))) = length (map sgn (coeffs p)) goal (1 subgoal): 1. (sgn (coeff p 0) # map sgn (coeffs (pderiv p))) ! i = map sgn (coeffs p) ! i [PROOF STEP] apply simp [PROOF STATE] proof (prove) goal (1 subgoal): 1. \<lbrakk>i = Suc i'; i' < length (coeffs (pderiv p)); Suc (length (coeffs (pderiv p))) = length (coeffs p)\<rbrakk> \<Longrightarrow> sgn (coeffs (pderiv p) ! i') = sgn (coeffs p ! Suc i') [PROOF STEP] apply (subst (1 2) coeffs_nth) [PROOF STATE] proof (prove) goal (5 subgoals): 1. \<lbrakk>i = Suc i'; i' < length (coeffs (pderiv p)); Suc (length (coeffs (pderiv p))) = length (coeffs p)\<rbrakk> \<Longrightarrow> p \<noteq> 0 2. \<lbrakk>i = Suc i'; i' < length (coeffs (pderiv p)); Suc (length (coeffs (pderiv p))) = length (coeffs p)\<rbrakk> \<Longrightarrow> Suc i' \<le> degree p 3. \<lbrakk>i = Suc i'; i' < length (coeffs (pderiv p)); Suc (length (coeffs (pderiv p))) = length (coeffs p)\<rbrakk> \<Longrightarrow> pderiv p \<noteq> 0 4. \<lbrakk>i = Suc i'; i' < length (coeffs (pderiv p)); Suc (length (coeffs (pderiv p))) = length (coeffs p)\<rbrakk> \<Longrightarrow> i' \<le> degree (pderiv p) 5. \<lbrakk>i = Suc i'; i' < length (coeffs (pderiv p)); Suc (length (coeffs (pderiv p))) = length (coeffs p)\<rbrakk> \<Longrightarrow> sgn (coeff (pderiv p) i') = sgn (coeff p (Suc i')) [PROOF STEP] by (auto simp add: \<open>p \<noteq> 0\<close> \<open>pderiv p \<noteq> 0\<close> length_coeffs_degree coeff_pderiv sgn_mult) [PROOF STATE] proof (state) this: (sgn (coeff p 0) # map sgn (coeffs (pderiv p))) ! i = map sgn (coeffs p) ! i goal: No subgoals! [PROOF STEP] qed [PROOF STATE] proof (state) this: (sgn (coeff p 0) # map sgn (coeffs (pderiv p))) ! i = map sgn (coeffs p) ! i goal: No subgoals! [PROOF STEP] qed [PROOF STATE] proof (state) this: ?i < length (sgn (coeff p 0) # map sgn (coeffs (pderiv p))) \<Longrightarrow> (sgn (coeff p 0) # map sgn (coeffs (pderiv p))) ! ?i = map sgn (coeffs p) ! ?i goal: No subgoals! [PROOF STEP] qed [PROOF STATE] proof (state) this: sgn (coeff p 0) # map sgn (coeffs (pderiv p)) = map sgn (coeffs p) goal (1 subgoal): 1. \<And>x p. \<lbrakk>\<And>p. x = degree p \<Longrightarrow> map (\<lambda>p. sgn (poly p 0)) (pders p) = map sgn (coeffs p); Suc x = degree p\<rbrakk> \<Longrightarrow> map (\<lambda>p. sgn (poly p 0)) (pders p) = map sgn (coeffs p) [PROOF STEP] finally [PROOF STATE] proof (chain) picking this: map (\<lambda>p. sgn (poly p 0)) (pders p) = map sgn (coeffs p) [PROOF STEP] show ?case [PROOF STATE] proof (prove) using this: map (\<lambda>p. sgn (poly p 0)) (pders p) = map sgn (coeffs p) goal (1 subgoal): 1. map (\<lambda>p. sgn (poly p 0)) (pders p) = map sgn (coeffs p) [PROOF STEP] . [PROOF STATE] proof (state) this: map (\<lambda>p. sgn (poly p 0)) (pders p) = map sgn (coeffs p) goal: No subgoals! [PROOF STEP] qed
If the degree of a polynomial $p$ is less than $n$, and the degree of a polynomial $q$ is less than $n$, then the degree of $p + q$ is less than $n$.
##### Copyright 2020 The TensorFlow Authors. ```python #@title Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. ``` # MNIST classification <table class="tfo-notebook-buttons" align="left"> <td> <a target="_blank" href="https://www.tensorflow.org/quantum/tutorials/mnist">View on TensorFlow.org</a> </td> <td> <a target="_blank" href="https://colab.research.google.com/github/tensorflow/quantum/blob/master/docs/tutorials/mnist.ipynb">Run in Google Colab</a> </td> <td> <a target="_blank" href="https://github.com/tensorflow/quantum/blob/master/docs/tutorials/mnist.ipynb">View source on GitHub</a> </td> <td> <a href="https://storage.googleapis.com/tensorflow_docs/quantum/docs/tutorials/mnist.ipynb">Download notebook</a> </td> </table> This tutorial builds a quantum neural network (QNN) to classify a simplified version of MNIST, similar to the approach used in <a href="https://arxiv.org/pdf/1802.06002.pdf" class="external">Farhi et al</a>. The performance of the quantum neural network on this classical data problem is compared with a classical neural network. ## Setup ```python try: # %tensorflow_version only works in Colab. %tensorflow_version 2.x except Exception: pass ``` Install TensorFlow Quantum: ```python !pip install tensorflow-quantum ``` Now import TensorFlow and the module dependencies: ```python import tensorflow as tf import tensorflow_quantum as tfq import cirq import sympy import numpy as np import seaborn as sns import collections # visualization tools %matplotlib inline import matplotlib.pyplot as plt from cirq.contrib.svg import SVGCircuit ``` ## 1. Load the data In this tutorial you will build a binary classifier to distinguish between the digits 3 and 6, following <a href="https://arxiv.org/pdf/1802.06002.pdf" class="external">Farhi et al.</a> This section covers the data handling that: - Loads the raw data from Keras. - Filters the dataset to only 3s and 6s. - Downscales the images so they fit can fit in a quantum computer. - Removes any contradictory examples. - Converts the binary images to Cirq circuits. - Converts the Circ circuits to TensorFlow Quantum circuits. ### 1.1 Load the raw data Load the MNIST dataset distributed with Keras. ```python (x_train, y_train), (x_test, y_test) = tf.keras.datasets.mnist.load_data() # Rescale the images from [0,255] to the [0.0,1.0] range. x_train, x_test = x_train[..., np.newaxis]/255.0, x_test[..., np.newaxis]/255.0 print("Number of original training examples:", len(x_train)) print("Number of original test examples:", len(x_train)) ``` Filter the dataset to keep just the 3s and 6s, remove the other classes. At the same time convert the label, `y`, to boolean: `True` for `3` and `False` for 6. ```python def filter_36(x, y): keep = (y == 3) | (y == 6) x, y = x[keep], y[keep] y = y == 3 return x,y ``` ```python x_train, y_train = filter_36(x_train, y_train) x_test, y_test = filter_36(x_test, y_test) print("Number of filtered training examples:", len(x_train)) print("Number of filtered test examples:", len(x_test)) ``` Show the first example: ```python print(y_train[0]) plt.imshow(x_train[0, :, :, 0]) plt.colorbar() ``` ### 1.2 Downscale the images An image size of 28x28 is much too large for current quantum computers. Resize the image down to 4x4: ```python x_train_small = tf.image.resize(x_train, (4,4)).numpy() x_test_small = tf.image.resize(x_test, (4,4)).numpy() ``` Again, display the first training exampleβ€”after resize: ```python print(y_train[0]) plt.imshow(x_train_small[0,:,:,0], vmin=0, vmax=1) plt.colorbar() ``` ### 1.3 Remove contradictory examples From section *3.3 Learning to Distinguish Digits* of <a href="https://arxiv.org/pdf/1802.06002.pdf" class="external">Farhi et al.</a>, filter the dataset to remove images that are labeled as belonging to both classes. This is not a standard machine-learning procedure, but is included in the interest of following the paper. ```python def remove_contradicting(xs, ys): mapping = collections.defaultdict(set) # Determine the set of labels for each unique image: for x,y in zip(xs,ys): mapping[tuple(x.flatten())].add(y) new_x = [] new_y = [] for x,y in zip(xs, ys): labels = mapping[tuple(x.flatten())] if len(labels) == 1: new_x.append(x) new_y.append(list(labels)[0]) else: # Throw out images that match more than one label. pass num_3 = sum(1 for value in mapping.values() if True in value) num_6 = sum(1 for value in mapping.values() if False in value) num_both = sum(1 for value in mapping.values() if len(value) == 2) print("Number of unique images:", len(mapping.values())) print("Number of 3s: ", num_3) print("Number of 6s: ", num_6) print("Number of contradictory images: ", num_both) print() print("Initial number of examples: ", len(xs)) print("Remaining non-contradictory examples: ", len(new_x)) return np.array(new_x), np.array(new_y) ``` The resulting counts do not closely match the reported values, but the exact procedure is not specified. It is also worth noting here that applying filtering contradictory examples at this point does not totally prevent the model from receiving contradictory training examples: the next step binarizes the data which will cause more collisions. ```python x_train_nocon, y_train_nocon = remove_contradicting(x_train_small, y_train) ``` ### 1.3 Encode the data as quantum circuits To process images using a quantum computer, <a href="https://arxiv.org/pdf/1802.06002.pdf" class="external">Farhi et al.</a> proposed representing each pixel with a qubit, with the state depending on the value of the pixel. The first step is to convert to a binary encoding. ```python THRESHOLD = 0.5 x_train_bin = np.array(x_train_nocon > THRESHOLD, dtype=np.float32) x_test_bin = np.array(x_test_small > THRESHOLD, dtype=np.float32) ``` The qubits at pixel indices with values that exceed a threshold, are rotated through an $X$ gate. ```python def convert_to_circuit(image): """Encode truncated classical image into quantum datapoint.""" values = np.ndarray.flatten(image) qubits = cirq.GridQubit.rect(4, 4) circuit = cirq.Circuit() for i, value in enumerate(values): if value: circuit.append(cirq.X(qubits[i])) return circuit x_train_circ = [convert_to_circuit(x) for x in x_train_bin] x_test_circ = [convert_to_circuit(x) for x in x_test_bin] ``` Here is the circuit created for the first example (circuit diagrams do not show qubits with zero gates): ```python SVGCircuit(x_train_circ[0]) ``` Compare this circuit to the indices where the image value exceeds the threshold: ```python bin_img = x_train_bin[0,:,:,0] indices = np.array(np.where(bin_img)).T indices ``` Convert these `Cirq` circuits to tensors for `tfq`: ```python x_train_tfcirc = tfq.convert_to_tensor(x_train_circ) x_test_tfcirc = tfq.convert_to_tensor(x_test_circ) ``` ## 2. Quantum neural network There is little guidance for a quantum circuit structure that classifies images. Since the classification is based on the expectation of the readout qubit, <a href="https://arxiv.org/pdf/1802.06002.pdf" class="external">Farhi et al.</a> propose using two qubit gates, with the readout qubit always acted upon. This is similar in some ways to running small a <a href="https://arxiv.org/abs/1511.06464" class="external">Unitary RNN</a> across the pixels. ### 2.1 Build the model circuit This following example shows this layered approach. Each layer uses *n* instances of the same gate, with each of the data qubits acting on the readout qubit. Start with a simple class that will add a layer of these gates to a circuit: ```python class CircuitLayerBuilder(): def __init__(self, data_qubits, readout): self.data_qubits = data_qubits self.readout = readout def add_layer(self, circuit, gate, prefix): for i, qubit in enumerate(self.data_qubits): symbol = sympy.Symbol(prefix + '-' + str(i)) circuit.append(gate(qubit, self.readout)**symbol) ``` Build an example circuit layer to see how it looks: ```python demo_builder = CircuitLayerBuilder(data_qubits = cirq.GridQubit.rect(4,1), readout=cirq.GridQubit(-1,-1)) circuit = cirq.Circuit() demo_builder.add_layer(circuit, gate = cirq.XX, prefix='xx') SVGCircuit(circuit) ``` Now build a two-layered model, matching the data-circuit size, and include the preparation and readout operations. ```python def create_quantum_model(): """Create a QNN model circuit and readout operation to go along with it.""" data_qubits = cirq.GridQubit.rect(4, 4) # a 4x4 grid. readout = cirq.GridQubit(-1, -1) # a single qubit at [-1,-1] circuit = cirq.Circuit() # Prepare the readout qubit. circuit.append(cirq.X(readout)) circuit.append(cirq.H(readout)) builder = CircuitLayerBuilder( data_qubits = data_qubits, readout=readout) # Then add layers (experiment by adding more). builder.add_layer(circuit, cirq.XX, "xx1") builder.add_layer(circuit, cirq.ZZ, "zz1") # Finally, prepare the readout qubit. circuit.append(cirq.H(readout)) return circuit, cirq.Z(readout) ``` ```python model_circuit, model_readout = create_quantum_model() ``` ### 2.2 Wrap the model-circuit in a tfq-keras model Build the Keras model with the quantum components. This model is fed the "quantum data", from `x_train_circ`, that encodes the classical data. It uses a *Parametrized Quantum Circuit* layer, `tfq.layers.PQC`, to train the model circuit, on the quantum data. To classify these images, <a href="https://arxiv.org/pdf/1802.06002.pdf" class="external">Farhi et al.</a> proposed taking the expectation of a readout qubit in a parameterized circuit. The expectation returns a value between 1 and -1. ```python # Build the Keras model. model = tf.keras.Sequential([ # The input is the data-circuit, encoded as a tf.string tf.keras.layers.Input(shape=(), dtype=tf.string), # The PQC layer returns the expected value of the readout gate, range [-1,1]. tfq.layers.PQC(model_circuit, model_readout), ]) ``` Next, describe the training procedure to the model, using the `compile` method. Since the the expected readout is in the range `[-1,1]`, optimizing the hinge loss is a somewhat natural fit. Note: Another valid approach would be to shift the output range to `[0,1]`, and treat it as the probability the model assigns to class `3`. This could be used with a standard a `tf.losses.BinaryCrossentropy` loss. To use the hinge loss here you need to make two small adjustments. First convert the labels, `y_train`, from boolean to `[-1,1]`, as expected by the hinge loss. ```python y_train_hinge = 2.0*y_train-1.0 y_test_hinge = 2.0*y_test-1.0 ``` Second, use a custiom `hinge_accuracy` metric that correctly handles `[-1, 1]` as the `y_true` labels argument. `tf.losses.BinaryAccuracy(threshold=0.0)` expects `y_true` to be a boolean, and so can't be used with hinge loss). ```python def hinge_accuracy(y_true, y_pred): y_true = tf.squeeze(y_true) > 0.0 y_pred = tf.squeeze(y_pred) > 0.0 result = tf.cast(y_true == y_pred, tf.float32) return tf.reduce_mean(result) ``` ```python model.compile( loss=tf.keras.losses.Hinge(), optimizer=tf.keras.optimizers.Adam(), metrics=[hinge_accuracy]) ``` ```python print(model.summary()) ``` ### Train the quantum model Now train the modelβ€”this takes about 45 min. If you don't want to wait that long, use a small subset of the data (set `NUM_EXAMPLES=500`, below). This doesn't really affect the model's progress during training (it only has 32 parameters, and doesn't need much data to constrain these). Using fewer examples just ends training earlier (5min), but runs long enough to show that it is making progress in the validation logs. ```python EPOCHS = 3 BATCH_SIZE = 32 NUM_EXAMPLES = len(x_train_tfcirc) ``` ```python x_train_tfcirc_sub = x_train_tfcirc[:NUM_EXAMPLES] y_train_hinge_sub = y_train_hinge[:NUM_EXAMPLES] ``` Training this model to convergence should achieve >85% accuracy on the test set. ```python qnn_history = model.fit( x_train_tfcirc_sub, y_train_hinge_sub, batch_size=32, epochs=EPOCHS, verbose=1, validation_data=(x_test_tfcirc, y_test_hinge)) qnn_results = model.evaluate(x_test_tfcirc, y_test) ``` Note: The training accuracy reports the average over the epoch. The validation accuracy is evaluated at the end of each epoch. ## 3. Classical neural network While the quantum neural network works for this simplified MNIST problem, a basic classical neural network can easily outperform a QNN on this task. After a single epoch, a classical neural network can achieve >98% accuracy on the holdout set. In the following example, a classical neural network is used for for the 3-6 classification problem using the entire 28x28 image instead of subsampling the image. This easily converges to nearly 100% accuracy of the test set. ```python def create_classical_model(): # A simple model based off LeNet from https://keras.io/examples/mnist_cnn/ model = tf.keras.Sequential() model.add(tf.keras.layers.Conv2D(32, [3, 3], activation='relu', input_shape=(28,28,1))) model.add(tf.keras.layers.Conv2D(64, [3, 3], activation='relu')) model.add(tf.keras.layers.MaxPooling2D(pool_size=(2, 2))) model.add(tf.keras.layers.Dropout(0.25)) model.add(tf.keras.layers.Flatten()) model.add(tf.keras.layers.Dense(128, activation='relu')) model.add(tf.keras.layers.Dropout(0.5)) model.add(tf.keras.layers.Dense(1)) return model model = create_classical_model() model.compile(loss=tf.keras.losses.BinaryCrossentropy(from_logits=True), optimizer=tf.keras.optimizers.Adam(), metrics=['accuracy']) model.summary() ``` ```python model.fit(x_train, y_train, batch_size=128, epochs=1, verbose=1, validation_data=(x_test, y_test)) cnn_results = model.evaluate(x_test, y_test) ``` The above model has nearly 1.2M parameters. For a more fair comparison, try a 37-parameter model, on the subsampled images: ```python def create_fair_classical_model(): # A simple model based off LeNet from https://keras.io/examples/mnist_cnn/ model = tf.keras.Sequential() model.add(tf.keras.layers.Flatten(input_shape=(4,4,1))) model.add(tf.keras.layers.Dense(2, activation='relu')) model.add(tf.keras.layers.Dense(1)) return model model = create_fair_classical_model() model.compile(loss=tf.keras.losses.BinaryCrossentropy(from_logits=True), optimizer=tf.keras.optimizers.Adam(), metrics=['accuracy']) model.summary() ``` ```python model.fit(x_train_bin, y_train_nocon, batch_size=128, epochs=20, verbose=2, validation_data=(x_test_bin, y_test)) fair_nn_results = model.evaluate(x_test_bin, y_test) ``` ## 4. Comparison Higher resolution input and a more powerful model make this problem easy for the CNN. While a classical model of similar power (~32 parameters) trains to a similar accuracy in a fraction of the time. One way or the other, the classical neural network easily outperforms the quantum neural network. For classical data, it is difficult to beat a classical neural network. ```python qnn_accuracy = qnn_results[1] cnn_accuracy = cnn_results[1] fair_nn_accuracy = fair_nn_results[1] sns.barplot(["Quantum", "Classical, full", "Classical, fair"], [qnn_accuracy, cnn_accuracy, fair_nn_accuracy]) ```
module Parser.Source import public Parser.Lexer.Source import public Parser.Rule.Source import public Parser.Unlit import System.File import Utils.Either %default total export runParserTo : {e : _} -> Maybe LiterateStyle -> (WithBounds Token -> Bool) -> String -> Grammar Token e ty -> Either (ParseError Token) ty runParserTo lit pred str p = do str <- mapError LitFail $ unlit lit str toks <- mapError LexFail $ lexTo pred str parsed <- mapError toGenericParsingError $ parse p toks Right (fst parsed) export runParser : {e : _} -> Maybe LiterateStyle -> String -> Grammar Token e ty -> Either (ParseError Token) ty runParser lit = runParserTo lit (const False) export covering parseFile : (fn : String) -> Rule ty -> IO (Either (ParseError Token) ty) parseFile fn p = do Right str <- readFile fn | Left err => pure (Left (FileFail err)) pure (runParser (isLitFile fn) str p)
/* * * Licensed to the Apache Software Foundation (ASF) under one * or more contributor license agreements. See the NOTICE file * distributed with this work for additional information * regarding copyright ownership. The ASF licenses this file * to you under the Apache License, Version 2.0 (the * "License"); you may not use this file except in compliance * with the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, * software distributed under the License is distributed on an * "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY * KIND, either express or implied. See the License for the * specific language governing permissions and limitations * under the License. * */ #include "MessagingFixture.h" #include "qpid/sys/Runnable.h" #include "qpid/sys/Thread.h" #include <boost/lexical_cast.hpp> namespace qpid { namespace tests { QPID_AUTO_TEST_SUITE(MessagingThreadTests) using namespace messaging; using namespace boost::assign; using namespace std; struct ReceiveThread : public sys::Runnable { Receiver receiver; vector<string> received; string error; ReceiveThread(Receiver s) : receiver(s) {} void run() { try { while(true) { Message m = receiver.fetch(Duration::SECOND*5); if (m.getContent() == "END") break; received.push_back(m.getContent()); } } catch (const NoMessageAvailable& e) { // Indicates that fetch timed out OR receiver was closed by other thread. if (!receiver.isClosed()) // timeout error = e.what(); } catch (const std::exception& e) { error = e.what(); } } }; struct NextReceiverThread : public sys::Runnable { Session session; vector<string> received; string error; NextReceiverThread(Session s) : session(s) {} void run() { try { while(true) { Message m = session.nextReceiver(Duration::SECOND*5).fetch(); if (m.getContent() == "END") break; received.push_back(m.getContent()); } } catch (const std::exception& e) { error = e.what(); } } }; QPID_AUTO_TEST_CASE(testConcurrentSendReceive) { MessagingFixture fix; Sender s = fix.session.createSender("concurrent;{create:always}"); Receiver r = fix.session.createReceiver("concurrent;{create:always,link:{reliability:unreliable}}"); ReceiveThread rt(r); sys::Thread thread(rt); const size_t COUNT=100; for (size_t i = 0; i < COUNT; ++i) { s.send(Message()); } s.send(Message("END")); thread.join(); BOOST_CHECK_EQUAL(rt.error, string()); BOOST_CHECK_EQUAL(COUNT, rt.received.size()); } QPID_AUTO_TEST_CASE(testCloseBusyReceiver) { MessagingFixture fix; Receiver r = fix.session.createReceiver("closeReceiver;{create:always}"); ReceiveThread rt(r); sys::Thread thread(rt); sys::usleep(1000); // Give the receive thread time to block. r.close(); thread.join(); BOOST_CHECK_EQUAL(rt.error, string()); // Fetching on closed receiver should fail. Message m; BOOST_CHECK(!r.fetch(m, Duration(0))); BOOST_CHECK_THROW(r.fetch(Duration(0)), NoMessageAvailable); } QPID_AUTO_TEST_CASE(testCloseSessionBusyReceiver) { MessagingFixture fix; Receiver r = fix.session.createReceiver("closeSession;{create:always}"); ReceiveThread rt(r); sys::Thread thread(rt); sys::usleep(1000); // Give the receive thread time to block. fix.session.close(); thread.join(); BOOST_CHECK_EQUAL(rt.error, string()); // Fetching on closed receiver should fail. Message m; BOOST_CHECK(!r.fetch(m, Duration(0))); BOOST_CHECK_THROW(r.fetch(Duration(0)), NoMessageAvailable); } QPID_AUTO_TEST_CASE(testConcurrentSendNextReceiver) { MessagingFixture fix; Receiver r = fix.session.createReceiver("concurrent;{create:always,link:{reliability:unreliable}}"); const size_t COUNT=100; r.setCapacity(COUNT); NextReceiverThread rt(fix.session); sys::Thread thread(rt); sys::usleep(1000); // Give the receive thread time to block. Sender s = fix.session.createSender("concurrent;{create:always}"); for (size_t i = 0; i < COUNT; ++i) { s.send(Message()); } s.send(Message("END")); thread.join(); BOOST_CHECK_EQUAL(rt.error, string()); BOOST_CHECK_EQUAL(COUNT, rt.received.size()); } QPID_AUTO_TEST_SUITE_END() }} // namespace qpid::tests
import to_mathlib import data.fin.basic import Rings.ToMathlib.fin namespace dvector variables {Ξ± : Type*} {n : β„•} lemma nil_append (as : dvector Ξ± n) : dvector.append dvector.nil as = as := by simp /-- Converts a dvector into an n-ary tuple -/ @[simp] def fin_val (as : dvector Ξ± n) : fin n β†’ Ξ± := Ξ» k, dvector.nth' as k @[simp] lemma cons_nth'_succ_eq_nth' {n} {x : Ξ±} {as : dvector Ξ± n} {k : fin n} : (dvector.cons x as).nth' (k.succ) = as.nth' k := begin unfold dvector.nth', simp, end /-- x_val is the same data as concatenation of dvectors -/ lemma fin_val_eq_x_val {x : Ξ±} {as : dvector Ξ± n} : fin_val (dvector.cons x as) = fin.x_val x (fin_val as) := funext ( @fin.cases n (Ξ» k, fin_val (dvector.cons x as) k = fin.x_val x (fin_val as) k) rfl (Ξ» k, begin unfold fin_val, simp, end) ) lemma nth_eq_succ_nth : Ξ  {k n : β„•} {as : dvector Ξ± (n + 1)} {h : k < n}, as.nth k (lt_trans h (by simp)) = (dvector.remove_mth (n + 2) as).nth k h | k nat.zero (dvector.cons a _) h := by {exfalso, simpa using h} | nat.zero (nat.succ n) (dvector.cons a as) h := by simp | (nat.succ k) (nat.succ n) (dvector.cons a as) h := by {simpa using nth_eq_succ_nth} def of_list : Ξ  (as : list Ξ±), dvector Ξ± (list.length as) | list.nil := dvector.nil | (list.cons a as) := dvector.cons a (of_list as) def reverse : Ξ  {n : β„•} (v : dvector Ξ± n), dvector Ξ± n | nat.zero _ := dvector.nil | (nat.succ n) (dvector.cons a v) := dvector.concat (reverse v) a /-- if you append and take nth its the same as just taking nth for small n-/ lemma nth_append_small : Ξ  {xl yl : β„•} {xs : dvector Ξ± xl} {ys : dvector Ξ± yl} {n : β„•} (h : n < xl), (dvector.append xs ys).nth n (nat.lt_of_lt_of_le h (nat.le_add_left _ _)) = xs.nth n h | 0 yl xs ys n h := by simpa using h | (nat.succ xl) yl (dvector.cons x xs) ys 0 h := by simp | (nat.succ xl) yl (dvector.cons x xs) ys (nat.succ n) h := begin simp only [dvector.nth, dvector.append], rw ← (@nth_append_small xl yl xs ys n (nat.succ_lt_succ_iff.1 h)), refl, end /-- if you append and take nth its the same as just taking n - kth for big n-/ lemma nth_append_big : Ξ  {xl yl : β„•} {xs : dvector Ξ± xl} {ys : dvector Ξ± yl} {n : β„•} (hbig : xl ≀ n) (h : n < yl + xl), (dvector.append xs ys).nth n h = ys.nth (n - xl) ((tsub_lt_iff_right hbig).2 h) | 0 yl nil ys n hbig h := by simpa | (nat.succ xl) yl (dvector.cons x xs) ys 0 hbig h := begin exfalso, exact nat.not_succ_le_zero _ hbig, end | (nat.succ xl) yl (dvector.cons x xs) ys (nat.succ n) hbig h := begin simp only [nat.succ_sub_succ_eq_sub, dvector.append, dvector.nth], apply nth_append_big (nat.le_of_succ_le_succ hbig), end lemma nth_cast : Ξ  {xl yl k : β„•} {xs : dvector Ξ± xl} (heq : xl = yl) (hk : k < yl), (dvector.cast heq xs).nth k hk = xs.nth k (by simp [heq, hk]) | 0 yl k nil heq hk := (k.not_lt_zero (by simp [heq, hk])).elim | (nat.succ xl) 0 k (cons x xs) heq hk := (nat.succ_ne_zero _ heq).elim | (nat.succ xl) (nat.succ yl) k (cons x xs) heq hk := begin rw dvector.cast_cons heq x xs, induction k with k hk, {simp}, rw dvector.nth_cons _ _ _ (nat.lt_of_succ_lt_succ hk), exact nth_cast (nat.succ_injective heq) (nat.lt_of_succ_lt_succ hk), end lemma nth_of_list : Ξ  (l : list Ξ±) (k : β„•) (h : k < l.length), (dvector.of_list l).nth k h = list.nth_le l k h | list.nil k h := begin exfalso, rw list.length at h, exact nat.not_lt_zero _ h, end | (a :: l) k h := begin rw of_list, induction k with k hk, {rw [dvector.nth, list.nth_le]}, {simpa [dvector.nth, list.nth_le, nth_of_list l]}, end def of_fn : (fin n β†’ Ξ±) β†’ dvector Ξ± n := Ξ» f, dvector.cast (list.length_of_fn _) (dvector.of_list (list.of_fn f)) lemma nth_of_fn (as : fin n β†’ Ξ±) (k : β„•) (hk : k < n) : (dvector.of_fn as).nth k hk = as ⟨ k , hk ⟩ := by rw [of_fn, nth_cast, nth_of_list, list.nth_le_of_fn'] lemma nth'_of_fn (as : fin n β†’ Ξ±) (k : fin n) : (dvector.of_fn as).nth' k = as k := by simp only [dvector.nth', nth_of_fn, fin.val_eq_coe, fin.eta] lemma nth'_of_fn1 (as : fin n β†’ Ξ±) : (dvector.of_fn as).nth' = as := funext $ nth'_of_fn as --by rw [of_fn, nth_cast, nth_of_list, list.nth_le_of_fn'] def to_list : Ξ  {n : β„•}, dvector Ξ± n β†’ list Ξ± | 0 as := [] | (nat.succ n) (dvector.cons a as) := list.cons a (to_list as) lemma to_list_length : Ξ  {n : β„•} {as : dvector Ξ± n}, list.length (to_list as) = n | 0 as := rfl | (nat.succ n) (dvector.cons a as) := by simp only [to_list, list.length_cons, @to_list_length n as] lemma ith_chunk_aux {n m : β„•} (i : fin n) (k : fin m) : i.val * m + ↑k < n * m := begin induction n with n hn, { apply fin_zero_elim i }, { rw nat.succ_mul, cases fin.lt_or_eq_nat i with hi hi, { apply add_lt_add _ k.2, apply lt_of_le_of_lt _ (hn ⟨ i.1 , hi ⟩), apply le_add_right, apply le_of_eq, refl, }, { rw [fin.val_eq_coe, hi, add_lt_add_iff_left], exact k.2, } } end def ith_chunk {n m : β„•} (i : fin n) (xs : dvector Ξ± (n * m)) : dvector Ξ± m := of_fn (Ξ» k, dvector.nth xs (i.1 * m + k) (dvector.ith_chunk_aux i k)) lemma nth'_eq {Ξ±} {n} (ys : dvector Ξ± n) : (Ξ» (i : fin n), ys.nth i i.2) = ys.nth' := begin funext, rw dvector.nth', refl, end lemma ith_chunk_nth {n m : β„•} (i : fin n) (xs : dvector Ξ± (n * m)) (l : β„•) (hl : l < m) : dvector.nth (dvector.ith_chunk i xs) l hl = xs.nth (i.1 * m + l) (dvector.ith_chunk_aux i ⟨ l , hl ⟩) := by simpa only [dvector.ith_chunk, dvector.nth_of_fn] lemma nth_remove_mth_big_m : Ξ  {n m} (xs : dvector Ξ± (n+1)) {k : β„•} (hk : k < n) (hm : k < m), (dvector.remove_mth m xs).nth k hk = xs.nth k (lt_trans hk (nat.lt_succ_self _)) | 0 _ _ k hk hm := false.elim (nat.not_lt_zero _ hk) | n 0 (dvector.cons y ys) k hk hm := false.elim (nat.not_lt_zero _ hm) | (n+1) (m+1) (dvector.cons y ys) 0 hk hm := begin simp only [dvector.remove_mth, dvector.nth], end | (n+1) (m+1) (dvector.cons y ys) (k+1) hk hm := begin rw [dvector.remove_mth, dvector.nth_cons y (dvector.remove_mth m ys) _ (nat.succ_lt_succ_iff.mp hk), dvector.nth_cons y ys _ (lt_trans (nat.lt_succ_self _) hk)], apply nth_remove_mth_big_m, rw ← nat.succ_lt_succ_iff, exact hm, end lemma ext : Ξ  {as bs : dvector Ξ± n}, as = bs ↔ βˆ€ (i : fin n), as.nth' i = bs.nth' i := begin intros as bs, induction as with n a as hind, cases bs, { simp only [implies_true_iff, eq_self_iff_true] }, { cases bs with _ b bs, split, { intros heq i, rw heq, }, { intros heq, simp only, split, { specialize heq 0, simp [dvector.nth', fin.val_zero', dvector.nth] at heq, exact heq, }, { rw hind, intro i, specialize heq ⟨ i + 1 , nat.succ_lt_succ i.2 ⟩, simp [dvector.nth', dvector.nth] at heq, simp only [dvector.nth'], convert heq, }, }, }, end lemma of_fn_eq_cons_of_fn_succ {f : β„• β†’ Ξ±} : of_fn (Ξ» i : fin (n+1), f i) = cons (f 0) (of_fn (Ξ» (i : fin n), f (i + 1))) := begin rw ext, intro i, cases i with i hi, cases i with i hind, { simp only [nth'_of_fn, fin.mk_zero, fin.coe_eq_cast_succ, fin.coe_succ_eq_succ], simpa only [dvector.nth', fin.val_zero', dvector.nth], }, { simp only [nth'_of_fn, dvector.nth', dvector.nth, nth_of_fn], congr1, }, end lemma remove_mth_of_fn_last_aux (i : fin n) : ((i : fin n.succ) : fin n.succ.succ) = (i : fin n.succ.succ) := begin cases i with i hi, simp only [fin.coe_eq_cast_succ, fin.cast_succ_mk, fin.coe_mk, coe_coe], ext1, simp only [fin.coe_of_nat_eq_mod], rw nat.mod_eq_of_lt (lt_trans hi (nat.lt_succ_self _)), end lemma remove_mth_of_fn_last {n : β„•} : Ξ  {f : β„• β†’ Ξ±}, dvector.remove_mth n (of_fn (Ξ» (i : fin (n+1)), f i)) = dvector.of_fn (Ξ» i : fin n, f i) := begin induction n with n hn, {intro f, refl}, { intro f, have hrw : (of_fn (Ξ» (i : fin (n+2)), f i)) = cons (f 0) (of_fn (Ξ» i : fin n.succ, f (i + 1))) := of_fn_eq_cons_of_fn_succ, have hrw1 : of_fn (Ξ» (i : fin n.succ), f i) = cons (f 0) (of_fn (Ξ» i : fin n, f (i + 1))) := of_fn_eq_cons_of_fn_succ, rw hrw, rw [dvector.remove_mth], rw hrw1, congr1, rw @hn (Ξ» n, f (n + 1)), }, end section ulift def ulift_up {Ξ±} {n} : dvector Ξ± n β†’ dvector (ulift Ξ±) n := dvector.map ulift.up def ulift_down {Ξ±} {n} : dvector (ulift Ξ±) n β†’ dvector Ξ± n := dvector.map ulift.down end ulift @[simp] protected lemma map_id' : βˆ€{n : β„•} (xs : dvector Ξ± n), xs.map id = xs | _ dvector.nil := rfl | _ (dvector.cons x xs) := by { dsimp, simp* } @[simp] protected lemma map_comp {Ξ² Ξ³ : Type*} : βˆ€{n : β„•} (xs : dvector Ξ± n) (g : Ξ± β†’ Ξ²) (f : Ξ² β†’ Ξ³), xs.map (f ∘ g) = (xs.map g).map f | _ dvector.nil g f := rfl | _ (dvector.cons x xs) g f := by simp lemma pmem_nth {xs : dvector Ξ± n} {k : β„•} (hk : k < n) : dvector.pmem (xs.nth k hk) xs := begin induction xs with m a xs hind generalizing k, { exfalso, apply nat.not_lt_zero _ hk, }, { cases k with k, { exact psum.inl rfl }, { dsimp only [dvector.nth, dvector.pmem], apply psum.inr, apply hind }}, end lemma pmem_nth' {xs : dvector Ξ± n} {k : fin n} : dvector.pmem (xs.nth' k) xs := pmem_nth _ lemma cast_nil {Ξ±} (h : 0 = 0) : (dvector.cast h dvector.nil : dvector Ξ± 0) = dvector.nil := by refl lemma of_fn_zero {Ξ± : Type*} (f : fin 0 β†’ Ξ±) : dvector.of_fn f = dvector.nil := rfl lemma of_fn_eq_cons_of_fn_succ' {Ξ± : Type*} {n : β„•} {f : fin n.succ β†’ Ξ±} : dvector.of_fn f = dvector.cons (f 0) (dvector.of_fn (Ξ» (i : fin n), f (i + 1))) := begin set g : β„• β†’ Ξ± := Ξ» k, ite (k < n.succ) (f k) (f 0) with hg, have hrw1 : dvector.of_fn f = dvector.of_fn (Ξ» k, g k), { congr, ext x, rw hg, simp only [fin.coe_coe_eq_self], by_cases hx : (x : β„•) < n.succ, { simp [if_pos hx] }, { exfalso, apply hx x.2 }}, rw hrw1, rw dvector.of_fn_eq_cons_of_fn_succ, congr, ext, rw hg, simp only [fin.coe_coe_eq_self], by_cases hx : (x : β„•) + 1 < n.succ, { simp only [if_pos hx], congr }, { exfalso, apply hx, apply nat.succ_lt_succ x.2 } end end dvector
[STATEMENT] lemma substitute_only_empty: assumes "const_on f (carrier t) empty" shows "substitute f T t = t" [PROOF STATE] proof (prove) goal (1 subgoal): 1. substitute f T t = t [PROOF STEP] proof (intro paths_inj set_eqI) [PROOF STATE] proof (state) goal (1 subgoal): 1. \<And>x. (x \<in> paths (substitute f T t)) = (x \<in> paths t) [PROOF STEP] fix xs [PROOF STATE] proof (state) goal (1 subgoal): 1. \<And>x. (x \<in> paths (substitute f T t)) = (x \<in> paths t) [PROOF STEP] from assms [PROOF STATE] proof (chain) picking this: const_on f (carrier t) TTree.empty [PROOF STEP] show "xs \<in> paths (substitute f T t) \<longleftrightarrow> xs \<in> paths t" [PROOF STATE] proof (prove) using this: const_on f (carrier t) TTree.empty goal (1 subgoal): 1. (xs \<in> paths (substitute f T t)) = (xs \<in> paths t) [PROOF STEP] proof (induction xs arbitrary: f t) [PROOF STATE] proof (state) goal (2 subgoals): 1. \<And>f t. const_on f (carrier t) TTree.empty \<Longrightarrow> ([] \<in> paths (substitute f T t)) = ([] \<in> paths t) 2. \<And>a xs f t. \<lbrakk>\<And>f t. const_on f (carrier t) TTree.empty \<Longrightarrow> (xs \<in> paths (substitute f T t)) = (xs \<in> paths t); const_on f (carrier t) TTree.empty\<rbrakk> \<Longrightarrow> (a # xs \<in> paths (substitute f T t)) = (a # xs \<in> paths t) [PROOF STEP] case Nil [PROOF STATE] proof (state) this: const_on f (carrier t) TTree.empty goal (2 subgoals): 1. \<And>f t. const_on f (carrier t) TTree.empty \<Longrightarrow> ([] \<in> paths (substitute f T t)) = ([] \<in> paths t) 2. \<And>a xs f t. \<lbrakk>\<And>f t. const_on f (carrier t) TTree.empty \<Longrightarrow> (xs \<in> paths (substitute f T t)) = (xs \<in> paths t); const_on f (carrier t) TTree.empty\<rbrakk> \<Longrightarrow> (a # xs \<in> paths (substitute f T t)) = (a # xs \<in> paths t) [PROOF STEP] thus ?case [PROOF STATE] proof (prove) using this: const_on f (carrier t) TTree.empty goal (1 subgoal): 1. ([] \<in> paths (substitute f T t)) = ([] \<in> paths t) [PROOF STEP] by simp [PROOF STATE] proof (state) this: ([] \<in> paths (substitute f T t)) = ([] \<in> paths t) goal (1 subgoal): 1. \<And>a xs f t. \<lbrakk>\<And>f t. const_on f (carrier t) TTree.empty \<Longrightarrow> (xs \<in> paths (substitute f T t)) = (xs \<in> paths t); const_on f (carrier t) TTree.empty\<rbrakk> \<Longrightarrow> (a # xs \<in> paths (substitute f T t)) = (a # xs \<in> paths t) [PROOF STEP] case (Cons x xs f t) [PROOF STATE] proof (state) this: const_on ?f (carrier ?t) TTree.empty \<Longrightarrow> (xs \<in> paths (substitute ?f T ?t)) = (xs \<in> paths ?t) const_on f (carrier t) TTree.empty goal (1 subgoal): 1. \<And>a xs f t. \<lbrakk>\<And>f t. const_on f (carrier t) TTree.empty \<Longrightarrow> (xs \<in> paths (substitute f T t)) = (xs \<in> paths t); const_on f (carrier t) TTree.empty\<rbrakk> \<Longrightarrow> (a # xs \<in> paths (substitute f T t)) = (a # xs \<in> paths t) [PROOF STEP] note const_onD[OF Cons.prems carrier_possible, where y = x, simp] [PROOF STATE] proof (state) this: possible t x \<Longrightarrow> f x = TTree.empty goal (1 subgoal): 1. \<And>a xs f t. \<lbrakk>\<And>f t. const_on f (carrier t) TTree.empty \<Longrightarrow> (xs \<in> paths (substitute f T t)) = (xs \<in> paths t); const_on f (carrier t) TTree.empty\<rbrakk> \<Longrightarrow> (a # xs \<in> paths (substitute f T t)) = (a # xs \<in> paths t) [PROOF STEP] have [simp]: "possible t x \<Longrightarrow> f_nxt f T x = f" [PROOF STATE] proof (prove) goal (1 subgoal): 1. possible t x \<Longrightarrow> f_nxt f T x = f [PROOF STEP] by (rule f_nxt_empty', rule const_onD[OF Cons.prems carrier_possible, where y = x]) [PROOF STATE] proof (state) this: possible t x \<Longrightarrow> f_nxt f T x = f goal (1 subgoal): 1. \<And>a xs f t. \<lbrakk>\<And>f t. const_on f (carrier t) TTree.empty \<Longrightarrow> (xs \<in> paths (substitute f T t)) = (xs \<in> paths t); const_on f (carrier t) TTree.empty\<rbrakk> \<Longrightarrow> (a # xs \<in> paths (substitute f T t)) = (a # xs \<in> paths t) [PROOF STEP] from Cons.prems carrier_nxt_subset [PROOF STATE] proof (chain) picking this: const_on f (carrier t) TTree.empty carrier (nxt ?t ?x) \<subseteq> carrier ?t [PROOF STEP] have "const_on f (carrier (nxt t x)) empty" [PROOF STATE] proof (prove) using this: const_on f (carrier t) TTree.empty carrier (nxt ?t ?x) \<subseteq> carrier ?t goal (1 subgoal): 1. const_on f (carrier (nxt t x)) TTree.empty [PROOF STEP] by (rule const_on_subset) [PROOF STATE] proof (state) this: const_on f (carrier (nxt t x)) TTree.empty goal (1 subgoal): 1. \<And>a xs f t. \<lbrakk>\<And>f t. const_on f (carrier t) TTree.empty \<Longrightarrow> (xs \<in> paths (substitute f T t)) = (xs \<in> paths t); const_on f (carrier t) TTree.empty\<rbrakk> \<Longrightarrow> (a # xs \<in> paths (substitute f T t)) = (a # xs \<in> paths t) [PROOF STEP] hence "const_on (f_nxt f T x) (carrier (nxt t x)) empty" [PROOF STATE] proof (prove) using this: const_on f (carrier (nxt t x)) TTree.empty goal (1 subgoal): 1. const_on (f_nxt f T x) (carrier (nxt t x)) TTree.empty [PROOF STEP] by (auto simp add: const_on_def f_nxt_def) [PROOF STATE] proof (state) this: const_on (f_nxt f T x) (carrier (nxt t x)) TTree.empty goal (1 subgoal): 1. \<And>a xs f t. \<lbrakk>\<And>f t. const_on f (carrier t) TTree.empty \<Longrightarrow> (xs \<in> paths (substitute f T t)) = (xs \<in> paths t); const_on f (carrier t) TTree.empty\<rbrakk> \<Longrightarrow> (a # xs \<in> paths (substitute f T t)) = (a # xs \<in> paths t) [PROOF STEP] note Cons.IH[OF this] [PROOF STATE] proof (state) this: (xs \<in> paths (substitute (f_nxt f T x) T (nxt t x))) = (xs \<in> paths (nxt t x)) goal (1 subgoal): 1. \<And>a xs f t. \<lbrakk>\<And>f t. const_on f (carrier t) TTree.empty \<Longrightarrow> (xs \<in> paths (substitute f T t)) = (xs \<in> paths t); const_on f (carrier t) TTree.empty\<rbrakk> \<Longrightarrow> (a # xs \<in> paths (substitute f T t)) = (a # xs \<in> paths t) [PROOF STEP] hence [simp]: "possible t x \<Longrightarrow> (xs \<in> paths (substitute f T (nxt t x))) = (xs \<in> paths (nxt t x))" [PROOF STATE] proof (prove) using this: (xs \<in> paths (substitute (f_nxt f T x) T (nxt t x))) = (xs \<in> paths (nxt t x)) goal (1 subgoal): 1. possible t x \<Longrightarrow> (xs \<in> paths (substitute f T (nxt t x))) = (xs \<in> paths (nxt t x)) [PROOF STEP] by simp [PROOF STATE] proof (state) this: possible t x \<Longrightarrow> (xs \<in> paths (substitute f T (nxt t x))) = (xs \<in> paths (nxt t x)) goal (1 subgoal): 1. \<And>a xs f t. \<lbrakk>\<And>f t. const_on f (carrier t) TTree.empty \<Longrightarrow> (xs \<in> paths (substitute f T t)) = (xs \<in> paths t); const_on f (carrier t) TTree.empty\<rbrakk> \<Longrightarrow> (a # xs \<in> paths (substitute f T t)) = (a # xs \<in> paths t) [PROOF STEP] show ?case [PROOF STATE] proof (prove) goal (1 subgoal): 1. (x # xs \<in> paths (substitute f T t)) = (x # xs \<in> paths t) [PROOF STEP] by (auto simp add: Cons_path) [PROOF STATE] proof (state) this: (x # xs \<in> paths (substitute f T t)) = (x # xs \<in> paths t) goal: No subgoals! [PROOF STEP] qed [PROOF STATE] proof (state) this: (xs \<in> paths (substitute f T t)) = (xs \<in> paths t) goal: No subgoals! [PROOF STEP] qed
[STATEMENT] lemma weakBisimParSym: fixes \<Psi> :: 'b and P :: "('a, 'b, 'c) psi" and Q :: "('a, 'b, 'c) psi" and R :: "('a, 'b, 'c) psi" assumes "\<Psi> \<rhd> P \<approx> Q" shows "\<Psi> \<rhd> R \<parallel> P \<approx> R \<parallel> Q" [PROOF STATE] proof (prove) goal (1 subgoal): 1. \<Psi> \<rhd> R \<parallel> P \<approx> R \<parallel> Q [PROOF STEP] using assms [PROOF STATE] proof (prove) using this: \<Psi> \<rhd> P \<approx> Q goal (1 subgoal): 1. \<Psi> \<rhd> R \<parallel> P \<approx> R \<parallel> Q [PROOF STEP] by(metis weakBisimParComm weakBisimParPres weakBisimTransitive)
(* * Copyright 2023, Proofcraft Pty Ltd * Copyright 2014, General Dynamics C4 Systems * * SPDX-License-Identifier: GPL-2.0-only *) (* Top level architecture related proofs. *) theory Arch_R imports Untyped_R Finalise_R begin unbundle l4v_word_context context begin interpretation Arch . (*FIXME: arch_split*) declare is_aligned_shiftl [intro!] declare is_aligned_shiftr [intro!] definition "asid_ci_map i \<equiv> case i of ARM_A.MakePool frame slot parent base \<Rightarrow> ARM_H.MakePool frame (cte_map slot) (cte_map parent) base" definition "valid_aci' aci \<equiv> case aci of MakePool frame slot parent base \<Rightarrow> \<lambda>s. cte_wp_at' (\<lambda>c. cteCap c = NullCap) slot s \<and> cte_wp_at' (\<lambda>cte. \<exists>idx. cteCap cte = UntypedCap False frame pageBits idx) parent s \<and> descendants_of' parent (ctes_of s) = {} \<and> slot \<noteq> parent \<and> ex_cte_cap_to' slot s \<and> sch_act_simple s \<and> is_aligned base asid_low_bits \<and> base \<le> 2^asid_bits - 1" lemma vp_strgs': "valid_pspace' s \<longrightarrow> pspace_distinct' s" "valid_pspace' s \<longrightarrow> pspace_aligned' s" "valid_pspace' s \<longrightarrow> valid_mdb' s" by auto lemma safe_parent_strg': "cte_wp_at' (\<lambda>cte. cteCap cte = UntypedCap False frame pageBits idx) p s \<and> descendants_of' p (ctes_of s) = {} \<and> valid_pspace' s \<longrightarrow> safe_parent_for' (ctes_of s) p (ArchObjectCap (ASIDPoolCap frame base))" apply (clarsimp simp: safe_parent_for'_def cte_wp_at_ctes_of) apply (case_tac cte) apply (simp add: isCap_simps) apply (subst conj_comms) apply (rule context_conjI) apply (drule ctes_of_valid_cap', fastforce) apply (clarsimp simp: valid_cap'_def capAligned_def) apply (drule is_aligned_no_overflow) apply (clarsimp simp: capRange_def asid_low_bits_def pageBits_def) apply (clarsimp simp: sameRegionAs_def2 isCap_simps capRange_def asid_low_bits_def pageBits_def) done lemma descendants_of'_helper: "\<lbrace>P\<rbrace> f \<lbrace>\<lambda>r s. Q (descendants_of' t (null_filter' (ctes_of s)))\<rbrace> \<Longrightarrow> \<lbrace>P\<rbrace> f \<lbrace>\<lambda>r s. Q (descendants_of' t (ctes_of s))\<rbrace>" apply (clarsimp simp:valid_def) apply (subst null_filter_descendants_of') prefer 2 apply fastforce apply simp done lemma createObject_typ_at': "\<lbrace>\<lambda>s. koTypeOf ty = otype \<and> is_aligned ptr (objBitsKO ty) \<and> pspace_aligned' s \<and> pspace_no_overlap' ptr (objBitsKO ty) s\<rbrace> createObjects' ptr (Suc 0) ty 0 \<lbrace>\<lambda>rv s. typ_at' otype ptr s\<rbrace>" apply (clarsimp simp:createObjects'_def alignError_def split_def | wp unless_wp | wpc )+ apply (clarsimp simp:obj_at'_def ko_wp_at'_def typ_at'_def pspace_distinct'_def)+ apply (subgoal_tac "ps_clear ptr (objBitsKO ty) (s\<lparr>ksPSpace := \<lambda>a. if a = ptr then Some ty else ksPSpace s a\<rparr>)") apply (simp add:ps_clear_def)+ apply (rule ccontr) apply (drule int_not_emptyD) apply clarsimp apply (unfold pspace_no_overlap'_def) apply (erule allE)+ apply (erule(1) impE) apply (subgoal_tac "x \<in> {x..x + 2 ^ objBitsKO y - 1}") apply (fastforce simp: p_assoc_help) apply (rule first_in_uptoD) apply (drule(1) pspace_alignedD') apply (clarsimp simp: is_aligned_no_wrap' p_assoc_help) done lemma retype_region2_ext_retype_region_ArchObject: "retype_region ptr n us (ArchObject x)= retype_region2 ptr n us (ArchObject x)" apply (rule ext) apply (simp add:retype_region_def retype_region2_def bind_assoc retype_region2_ext_def retype_region_ext_def default_ext_def) apply (rule ext) apply (intro monad_eq_split_tail ext)+ apply simp apply simp apply (simp add:gets_def get_def bind_def return_def simpler_modify_def ) apply (rule_tac x = xc in fun_cong) apply (rule_tac f = do_extended_op in arg_cong) apply (rule ext) apply simp apply simp done lemma set_cap_device_and_range_aligned: "is_aligned ptr sz \<Longrightarrow> \<lbrace>\<lambda>_. True\<rbrace> set_cap (cap.UntypedCap dev ptr sz idx) aref \<lbrace>\<lambda>rv s. \<exists>slot. cte_wp_at (\<lambda>c. cap_is_device c = dev \<and> up_aligned_area ptr sz \<subseteq> cap_range c) slot s\<rbrace>" apply (subst is_aligned_neg_mask_eq[symmetric]) apply simp apply (wp set_cap_device_and_range) done lemma performASIDControlInvocation_corres: "asid_ci_map i = i' \<Longrightarrow> corres dc (einvs and ct_active and valid_aci i) (invs' and ct_active' and valid_aci' i') (perform_asid_control_invocation i) (performASIDControlInvocation i')" supply is_aligned_neg_mask_eq[simp del] is_aligned_neg_mask_weaken[simp del] apply (cases i) apply (rename_tac word1 prod1 prod2 word2) apply (clarsimp simp: asid_ci_map_def) apply (simp add: perform_asid_control_invocation_def placeNewObject_def2 performASIDControlInvocation_def) apply (rule corres_name_pre) apply (clarsimp simp:valid_aci_def valid_aci'_def cte_wp_at_ctes_of cte_wp_at_caps_of_state) apply (subgoal_tac "valid_cap' (capability.UntypedCap False word1 pageBits idx) s'") prefer 2 apply (case_tac ctea) apply clarsimp apply (erule ctes_of_valid_cap') apply fastforce apply (frule valid_capAligned) apply (clarsimp simp: capAligned_def page_bits_def) apply (rule corres_guard_imp) apply (rule corres_split) apply (erule deleteObjects_corres) apply (simp add:pageBits_def) apply (rule corres_split[OF getSlotCap_corres]) apply simp apply (rule_tac F = " pcap = (cap.UntypedCap False word1 pageBits idxa)" in corres_gen_asm) apply (rule corres_split[OF updateFreeIndex_corres]) apply (clarsimp simp:is_cap_simps) apply (simp add: free_index_of_def) apply (rule corres_split) apply (simp add: retype_region2_ext_retype_region_ArchObject ) apply (rule corres_retype [where ty="Inl (KOArch (KOASIDPool F))", unfolded APIType_map2_def makeObjectKO_def, THEN createObjects_corres',simplified, where val = "makeObject::asidpool"]) apply simp apply (simp add: objBits_simps obj_bits_api_def arch_kobj_size_def default_arch_object_def archObjSize_def)+ apply (simp add: obj_relation_retype_def default_object_def default_arch_object_def objBits_simps archObjSize_def) apply (simp add: other_obj_relation_def asid_pool_relation_def) apply (simp add: makeObject_asidpool const_def inv_def) apply (rule range_cover_full) apply (simp add:obj_bits_api_def arch_kobj_size_def default_arch_object_def)+ apply (rule corres_split) apply (rule cteInsert_simple_corres, simp, rule refl, rule refl) apply (rule_tac F="is_aligned word2 asid_low_bits" in corres_gen_asm) apply (simp add: is_aligned_mask dc_def[symmetric]) apply (rule corres_split[where P=\<top> and P'=\<top> and r'="\<lambda>t t'. t = t' o ucast"]) apply (clarsimp simp: state_relation_def arch_state_relation_def) apply (rule corres_trivial) apply (rule corres_modify) apply (thin_tac "x \<in> state_relation" for x) apply (clarsimp simp: state_relation_def arch_state_relation_def o_def) apply (rule ext) apply clarsimp apply (erule_tac P = "x = asid_high_bits_of word2" in notE) apply (rule word_eqI[rule_format]) apply (drule_tac x1="ucast x" in bang_eq [THEN iffD1]) apply (erule_tac x=n in allE) apply (simp add: word_size nth_ucast) apply wp+ apply (strengthen safe_parent_strg[where idx = "2^pageBits"]) apply (strengthen invs_valid_objs invs_distinct invs_psp_aligned invs_mdb | simp cong:conj_cong)+ apply (wp retype_region_plain_invs[where sz = pageBits] retype_cte_wp_at[where sz = pageBits])+ apply (strengthen vp_strgs' safe_parent_strg'[where idx = "2^pageBits"]) apply (simp cong: conj_cong) apply (wp createObjects_valid_pspace' [where sz = pageBits and ty="Inl (KOArch (KOASIDPool undefined))"]) apply (simp add: makeObjectKO_def)+ apply (simp add:objBits_simps archObjSize_def range_cover_full)+ apply (clarsimp simp:valid_cap'_def) apply (wp createObject_typ_at' createObjects_orig_cte_wp_at'[where sz = pageBits]) apply (rule descendants_of'_helper) apply (wp createObjects_null_filter' [where sz = pageBits and ty="Inl (KOArch (KOASIDPool undefined))"]) apply (clarsimp simp: conj_comms obj_bits_api_def arch_kobj_size_def objBits_simps archObjSize_def default_arch_object_def pred_conj_def) apply (clarsimp simp: conj_comms | strengthen invs_mdb invs_valid_pspace)+ apply (simp add:region_in_kernel_window_def) apply (wp set_untyped_cap_invs_simple[where sz = pageBits] set_cap_cte_wp_at set_cap_caps_no_overlap[where sz = pageBits] set_cap_no_overlap set_cap_device_and_range_aligned[where dev = False,simplified] set_untyped_cap_caps_overlap_reserved[where sz = pageBits])+ apply (clarsimp simp: conj_comms obj_bits_api_def arch_kobj_size_def objBits_simps archObjSize_def default_arch_object_def makeObjectKO_def range_cover_full simp del: capFreeIndex_update.simps | strengthen invs_valid_pspace' invs_pspace_aligned' invs_pspace_distinct' exI[where x="makeObject :: asidpool"])+ apply (wp updateFreeIndex_forward_invs' updateFreeIndex_pspace_no_overlap' updateFreeIndex_caps_no_overlap'' updateFreeIndex_descendants_of2 updateFreeIndex_cte_wp_at updateFreeIndex_caps_overlap_reserved | simp add: descendants_of_null_filter' split del: if_split)+ apply (wp get_cap_wp)+ apply (subgoal_tac "word1 && ~~ mask pageBits = word1 \<and> pageBits \<le> word_bits \<and> word_size_bits \<le> pageBits") prefer 2 apply (clarsimp simp:pageBits_def word_bits_def is_aligned_neg_mask_eq word_size_bits_def) apply (simp only:delete_objects_rewrite) apply wp+ apply (clarsimp simp: conj_comms) apply (clarsimp simp: conj_comms ex_disj_distrib | strengthen invs_valid_pspace' invs_pspace_aligned' invs_pspace_distinct')+ apply (wp deleteObjects_invs'[where p="makePoolParent i'"] deleteObjects_cte_wp_at' deleteObjects_descendants[where p="makePoolParent i'"]) apply (clarsimp split del: if_split simp:valid_cap'_def) apply (wp hoare_vcg_ex_lift deleteObjects_caps_no_overlap''[where slot="makePoolParent i'"] deleteObject_no_overlap deleteObjects_ct_active'[where cref="makePoolParent i'"]) apply (clarsimp simp: is_simple_cap_def valid_cap'_def max_free_index_def is_cap_simps cong: conj_cong) apply (strengthen empty_descendants_range_in') apply (wp deleteObjects_descendants[where p="makePoolParent i'"] deleteObjects_cte_wp_at' deleteObjects_null_filter[where p="makePoolParent i'"]) apply (clarsimp simp:invs_mdb max_free_index_def invs_untyped_children) apply (subgoal_tac "detype_locale x y sa" for x y) prefer 2 apply (simp add:detype_locale_def) apply (fastforce simp:cte_wp_at_caps_of_state descendants_range_def2 empty_descendants_range_in invs_untyped_children) apply (intro conjI) apply (clarsimp) apply (erule(1) caps_of_state_valid) subgoal by (fastforce simp:cte_wp_at_caps_of_state descendants_range_def2 empty_descendants_range_in) apply (fold_subgoals (prefix))[2] subgoal premises prems using prems by (clarsimp simp:invs_def valid_state_def)+ apply (clarsimp simp:cte_wp_at_caps_of_state) apply (drule detype_locale.non_null_present) apply (fastforce simp:cte_wp_at_caps_of_state) apply simp apply (frule_tac ptr = "(aa,ba)" in detype_invariants [rotated 3]) apply fastforce apply simp apply (simp add: cte_wp_at_caps_of_state) apply (simp add: is_cap_simps) apply (simp add:empty_descendants_range_in descendants_range_def2) apply (frule intvl_range_conv[where bits = pageBits]) apply (clarsimp simp:pageBits_def word_bits_def) apply (clarsimp simp: invs_valid_objs cte_wp_at_caps_of_state range_cover_full invs_psp_aligned invs_distinct cap_master_cap_simps is_cap_simps is_simple_cap_def) apply (clarsimp simp: conj_comms) apply (rule conjI,clarsimp) apply (frule ex_cte_cap_protects) apply (simp add:cte_wp_at_caps_of_state) apply (simp add:empty_descendants_range_in) apply fastforce apply (rule subset_refl) apply fastforce apply clarsimp apply (rule conjI,clarsimp simp:clear_um_def) apply (simp add:detype_clear_um_independent) apply (rule conjI,erule caps_no_overlap_detype[OF descendants_range_caps_no_overlapI]) apply (clarsimp simp:is_aligned_neg_mask_eq cte_wp_at_caps_of_state) apply (simp add:empty_descendants_range_in)+ apply (rule conjI) apply clarsimp apply (drule_tac p = "(aa,ba)" in cap_refs_in_kernel_windowD2[OF caps_of_state_cteD]) apply fastforce apply (clarsimp simp: region_in_kernel_window_def valid_cap_def cap_aligned_def is_aligned_neg_mask_eq detype_def clear_um_def) apply (rule conjI, rule pspace_no_overlap_subset, rule pspace_no_overlap_detype[OF caps_of_state_valid]) apply (simp add:invs_psp_aligned invs_valid_objs is_aligned_neg_mask_eq)+ apply (clarsimp simp: detype_def clear_um_def detype_ext_def valid_sched_def valid_etcbs_def st_tcb_at_kh_def obj_at_kh_def st_tcb_at_def obj_at_def is_etcb_at_def) apply (simp add: detype_def clear_um_def) apply (drule_tac x = "cte_map (aa,ba)" in pspace_relation_cte_wp_atI[OF state_relation_pspace_relation]) apply (simp add:invs_valid_objs)+ apply clarsimp apply (drule cte_map_inj_eq) apply ((fastforce simp:cte_wp_at_caps_of_state)+)[5] apply (clarsimp simp:cte_wp_at_caps_of_state invs_valid_pspace' conj_comms cte_wp_at_ctes_of valid_cap_simps') apply (strengthen refl) apply clarsimp apply (frule empty_descendants_range_in') apply (intro conjI, simp_all add: is_simple_cap'_def isCap_simps descendants_range'_def2 null_filter_descendants_of'[OF null_filter_simp'] capAligned_def asid_low_bits_def) apply (erule descendants_range_caps_no_overlapI') apply (fastforce simp:cte_wp_at_ctes_of is_aligned_neg_mask_eq) apply (simp add:empty_descendants_range_in') apply (simp add:word_bits_def pageBits_def) apply (rule is_aligned_weaken) apply (rule is_aligned_shiftl_self[unfolded shiftl_t2n,where p = 1,simplified]) apply (simp add:pageBits_def) apply clarsimp apply (drule(1) cte_cap_in_untyped_range) apply (fastforce simp:cte_wp_at_ctes_of) apply assumption+ apply fastforce apply simp apply clarsimp apply (drule (1) cte_cap_in_untyped_range) apply (fastforce simp add: cte_wp_at_ctes_of) apply assumption+ apply (clarsimp simp: invs'_def valid_state'_def if_unsafe_then_cap'_def cte_wp_at_ctes_of) apply fastforce apply simp done definition archinv_relation :: "arch_invocation \<Rightarrow> Arch.invocation \<Rightarrow> bool" where "archinv_relation ai ai' \<equiv> case ai of arch_invocation.InvokePageTable pti \<Rightarrow> \<exists>pti'. ai' = InvokePageTable pti' \<and> page_table_invocation_map pti pti' | arch_invocation.InvokePageDirectory pdi \<Rightarrow> \<exists>pdi'. ai' = InvokePageDirectory pdi' \<and> page_directory_invocation_map pdi pdi' | arch_invocation.InvokePage pgi \<Rightarrow> \<exists>pgi'. ai' = InvokePage pgi' \<and> page_invocation_map pgi pgi' | arch_invocation.InvokeASIDControl aci \<Rightarrow> \<exists>aci'. ai' = InvokeASIDControl aci' \<and> aci' = asid_ci_map aci | arch_invocation.InvokeASIDPool ap \<Rightarrow> \<exists>ap'. ai' = InvokeASIDPool ap' \<and> ap' = asid_pool_invocation_map ap" definition valid_arch_inv' :: "Arch.invocation \<Rightarrow> kernel_state \<Rightarrow> bool" where "valid_arch_inv' ai \<equiv> case ai of InvokePageTable pti \<Rightarrow> valid_pti' pti | InvokePageDirectory pdi \<Rightarrow> \<top> | InvokePage pgi \<Rightarrow> valid_page_inv' pgi | InvokeASIDControl aci \<Rightarrow> valid_aci' aci | InvokeASIDPool ap \<Rightarrow> valid_apinv' ap" lemma mask_vmrights_corres: "maskVMRights (vmrights_map R) (rightsFromWord d) = vmrights_map (mask_vm_rights R (data_to_rights d))" by (clarsimp simp: rightsFromWord_def data_to_rights_def vmrights_map_def Let_def maskVMRights_def mask_vm_rights_def nth_ucast validate_vm_rights_def vm_read_write_def vm_kernel_only_def vm_read_only_def split: bool.splits) lemma vm_attributes_corres: "vmattributes_map (attribs_from_word w) = attribsFromWord w" by (clarsimp simp: attribsFromWord_def attribs_from_word_def Let_def vmattributes_map_def) lemma checkVPAlignment_corres: "corres (ser \<oplus> dc) \<top> \<top> (check_vp_alignment sz w) (checkVPAlignment sz w)" apply (simp add: check_vp_alignment_def checkVPAlignment_def) apply (cases sz, simp_all add: corres_returnOk unlessE_whenE is_aligned_mask) apply ((rule corres_guard_imp, rule corres_whenE, rule refl, auto)[1])+ done lemma checkVP_wpR [wp]: "\<lbrace>\<lambda>s. vmsz_aligned' w sz \<longrightarrow> P () s\<rbrace> checkVPAlignment sz w \<lbrace>P\<rbrace>, -" apply (simp add: checkVPAlignment_def unlessE_whenE cong: vmpage_size.case_cong) apply (rule hoare_pre) apply (wp whenE_wp|wpc)+ apply (simp add: is_aligned_mask vmsz_aligned'_def) done lemma asidHighBits [simp]: "asidHighBits = asid_high_bits" by (simp add: asidHighBits_def asid_high_bits_def) declare word_unat_power [symmetric, simp del] lemma ARMMMU_improve_cases: "(if isPageDirectoryCap cap then P else if isPageTableCap cap then Q else if isPageCap cap then R else if isASIDControlCap cap then S else if isASIDPoolCap cap then T else undefined) = (if isPageDirectoryCap cap then P else if isPageTableCap cap then Q else if isPageCap cap then R else if isASIDControlCap cap then S else T)" by (cases cap, simp_all add: isCap_simps) crunch inv [wp]: "ARM_H.decodeInvocation" "P" (wp: crunch_wps mapME_x_inv_wp getASID_wp simp: crunch_simps ARMMMU_improve_cases) lemma case_option_corresE: assumes nonec: "corres r Pn Qn (nc >>=E f) (nc' >>=E g)" and somec: "\<And>v'. corres r (Ps v') (Qs v') (sc v' >>=E f) (sc' v' >>=E g)" shows "corres r (case_option Pn Ps v) (case_option Qn Qs v) (case_option nc sc v >>=E f) (case_option nc' sc' v >>=E g)" apply (cases v) apply simp apply (rule nonec) apply simp apply (rule somec) done lemma cap_relation_Untyped_eq: "cap_relation c (UntypedCap d p sz f) = (c = cap.UntypedCap d p sz f)" by (cases c) auto lemma vmsz_aligned_less_kernel_base_eq: "\<lbrakk>ptr + 2 ^ pageBitsForSize vmpage_size - 1 < kernel_base;vmsz_aligned ptr vmpage_size\<rbrakk> \<Longrightarrow> ptr < kernel_base" apply (simp add:vmsz_aligned_def) apply (rule ccontr) apply (simp add:not_less) apply (drule(1) less_le_trans) apply (drule is_aligned_no_overflow) apply (simp add:not_less[symmetric]) done declare check_vp_alignment_inv[wp del] lemma select_ext_fa: "free_asid_select asid_tbl \<in> S \<Longrightarrow> ((select_ext (\<lambda>_. free_asid_select asid_tbl) S) :: (7 word) det_ext_monad) = return (free_asid_select asid_tbl)" by (simp add: select_ext_def get_def gets_def bind_def assert_def return_def fail_def) lemma select_ext_fap: "free_asid_pool_select p b \<in> S \<Longrightarrow> ((select_ext (\<lambda>_. free_asid_pool_select p b) S) :: (10 word) det_ext_monad) = return (free_asid_pool_select p b)" by (simp add: select_ext_def get_def gets_def bind_def assert_def return_def) lemma lookup_pt_slot_no_fail_corres[simp]: "lookupPTSlotFromPT pt vptr = (do stateAssert (page_table_at' pt) []; return (lookup_pt_slot_no_fail pt vptr) od)" by (simp add: lookup_pt_slot_no_fail_def lookupPTSlotFromPT_def mask_def checkPTAt_def ptBits_def pteBits_def pageBits_def) lemma page_base_corres[simp]: "pageBase vaddr vmsize = page_base vaddr vmsize" by (clarsimp simp: pageBase_def page_base_def) lemma flush_type_map: "ARM_H.isPageFlushLabel (invocation_type (mi_label mi)) \<or> ARM_H.isPDFlushLabel (invocation_type (mi_label mi)) \<Longrightarrow> labelToFlushType (mi_label mi) = flush_type_map (label_to_flush_type (invocation_type (mi_label mi)))" by (clarsimp simp: label_to_flush_type_def labelToFlushType_def flush_type_map_def ARM_H.isPageFlushLabel_def ARM_H.isPDFlushLabel_def split: ARM_A.flush_type.splits invocation_label.splits arch_invocation_label.splits) lemma resolveVAddr_corres: "\<lbrakk> is_aligned pd pd_bits; vaddr < kernel_base \<rbrakk> \<Longrightarrow> corres (=) (pspace_aligned and valid_vspace_objs and page_directory_at pd and (\<exists>\<rhd> (lookup_pd_slot pd vaddr && ~~ mask pd_bits))) (\<lambda>s. pspace_aligned' s \<and> pspace_distinct' s \<and> vs_valid_duplicates' (ksPSpace s)) (resolve_vaddr pd vaddr) (resolveVAddr pd vaddr)" apply (clarsimp simp: resolve_vaddr_def resolveVAddr_def) apply (rule stronger_corres_guard_imp) apply (rule_tac R="\<lambda>rv s. valid_pde rv s \<and> pspace_aligned s" and R'="\<lambda>_ s. pspace_distinct' s \<and> pspace_aligned' s \<and> vs_valid_duplicates' (ksPSpace s)" in corres_split[OF get_master_pde_corres]) apply simp apply (case_tac rv, simp_all add: pde_relation'_def)[1] apply (rule corres_stateAssert_assume_stronger) apply (rule stronger_corres_guard_imp) apply (rule corres_split[OF get_master_pte_corres[OF refl]]) apply (rule corres_trivial) apply (case_tac rva, simp_all add: pte_relation'_def)[1] apply (wp get_master_pte_inv)+ apply (clarsimp simp: page_table_pte_at_lookupI) apply (clarsimp simp: page_table_pte_at_lookupI' page_table_at_state_relation) apply clarsimp apply (erule(3) page_table_at_state_relation) apply wpsimp+ apply (clarsimp simp: page_directory_pde_at_lookupI less_kernel_base_mapping_slots) apply (clarsimp simp: page_directory_pde_at_lookupI' page_directory_at_state_relation) done lemma decodeARMPageFlush_corres: "ARM_H.isPageFlushLabel (invocation_type (mi_label mi)) \<Longrightarrow> corres (ser \<oplus> archinv_relation) (invs and valid_cap (cap.ArchObjectCap (arch_cap.PageCap d word seta vmpage_size option)) and cte_wp_at ((=) (cap.ArchObjectCap (arch_cap.PageCap d word seta vmpage_size option))) slot and (\<lambda>s. \<forall>x\<in>set excaps. s \<turnstile> fst x \<and> cte_wp_at (\<lambda>_. True) (snd x) s)) (invs' and valid_cap' (capability.ArchObjectCap (arch_capability.PageCap d word (vmrights_map seta) vmpage_size option)) and (\<lambda>s. \<forall>x\<in>set excaps'. valid_cap' (fst x) s \<and> cte_wp_at' (\<lambda>_. True) (snd x) s) and (\<lambda>s. vs_valid_duplicates' (ksPSpace s))) (if Suc 0 < length args then let start = args ! 0; end = args ! 1 in doE (asid, vaddr) \<leftarrow> case option of None \<Rightarrow> throwError ExceptionTypes_A.syscall_error.IllegalOperation | Some x \<Rightarrow> returnOk x; pd \<leftarrow> lookup_error_on_failure False $ find_pd_for_asid asid; whenE (end \<le> start) $ throwError $ ExceptionTypes_A.syscall_error.InvalidArgument 1; page_size \<leftarrow> returnOk $ 1 << pageBitsForSize vmpage_size; whenE (page_size \<le> start \<or> page_size < end) $ throwError $ ExceptionTypes_A.syscall_error.InvalidArgument 0; returnOk $ arch_invocation.InvokePage $ ARM_A.page_invocation.PageFlush (label_to_flush_type (invocation_type (mi_label mi))) (start + vaddr) (end + vaddr - 1) (addrFromPPtr word + start) pd asid odE else throwError ExceptionTypes_A.syscall_error.TruncatedMessage) (decodeARMPageFlush (mi_label mi) args (arch_capability.PageCap d word (vmrights_map seta) vmpage_size option))" apply (simp add: decodeARMPageFlush_def split del: if_split) apply (cases args, simp) apply (rename_tac a0 as) apply (case_tac as, simp) apply (rename_tac a1 as') apply (cases option, simp) apply (case_tac a) apply (rename_tac asid vref) apply clarsimp apply (rule corres_guard_imp) apply (rule corres_splitEE) apply (rule corres_lookup_error) apply (rule find_pd_for_asid_corres[OF refl]) apply (rule whenE_throwError_corres, simp) apply simp apply (rule whenE_throwError_corres, simp) apply simp apply (rule corres_trivial) apply (rule corres_returnOk) apply (clarsimp simp: archinv_relation_def page_invocation_map_def label_to_flush_type_def labelToFlushType_def flush_type_map_def ARM_H.isPageFlushLabel_def split: flush_type.splits invocation_label.splits arch_invocation_label.splits) apply wp+ apply (fastforce simp: valid_cap_def mask_def invs_vspace_objs[simplified]) apply (auto) done lemma vs_lookup_pages1I: "\<lbrakk> ko_at ko p s; (r, p') \<in> vs_refs_pages ko; rs' = r # rs \<rbrakk> \<Longrightarrow> ((rs,p) \<unrhd>1 (rs',p')) s" by (fastforce simp add: vs_lookup_pages1_def) lemma vs_refs_pages_ptI: "pt x = pte \<Longrightarrow> pte_ref_pages pte = Some r' \<Longrightarrow> (VSRef (ucast x) (Some APageTable), r') \<in> vs_refs_pages (ArchObj (PageTable pt))" apply (simp add: vs_refs_pages_def) apply (rule image_eqI[rotated], rule graph_ofI[where x=x], simp) apply simp done lemmas vs_refs_pages_pt_largeI = vs_refs_pages_ptI[where pte="ARM_A.pte.LargePagePTE x y z" for x y z, unfolded pte_ref_pages_def, simplified, OF _ refl] lemmas vs_refs_pages_pt_smallI = vs_refs_pages_ptI[where pte="ARM_A.pte.SmallPagePTE x y z" for x y z, unfolded pte_ref_pages_def, simplified, OF _ refl] lemma vs_refs_pages_pdI: "pd x = pde \<Longrightarrow> pde_ref_pages pde = Some r' \<Longrightarrow> x \<notin> kernel_mapping_slots \<Longrightarrow> (VSRef (ucast x) (Some APageDirectory), r') \<in> vs_refs_pages (ArchObj (PageDirectory pd))" apply (simp add: vs_refs_pages_def) apply (rule image_eqI[rotated], rule graph_ofI[where x=x], simp) apply simp done lemmas vs_refs_pages_pd_sectionI = vs_refs_pages_pdI[where pde="ARM_A.pde.SectionPDE x y z w" for x y z w, unfolded pde_ref_pages_def, simplified, OF _ refl] lemmas vs_refs_pages_pd_supersectionI = vs_refs_pages_pdI[where pde="ARM_A.pde.SuperSectionPDE x y z" for x y z, unfolded pde_ref_pages_def, simplified, OF _ refl] lemma get_master_pde_sp: "\<lbrace> P \<rbrace> get_master_pde pd_slot \<lbrace> \<lambda>pde s. P s \<and> (\<exists>pd pd_slot'. ko_at (ArchObj (PageDirectory pd)) (pd_slot && ~~ mask pd_bits) s \<and> pd_slot' && ~~ mask pd_bits = pd_slot && ~~ mask pd_bits \<and> ((ucast (pd_slot' && mask pd_bits >> 2) \<in> kernel_mapping_slots) \<longrightarrow> (ucast (pd_slot && mask pd_bits >> 2) \<in> kernel_mapping_slots)) \<and> pd (ucast (pd_slot' && mask pd_bits >> 2)) = pde) \<rbrace>" apply (simp add: get_master_pde_def) apply (wp get_pde_wp | wpc)+ apply (clarsimp simp: obj_at_def) apply (safe, simp_all add: exI[where x=pd_slot]) apply (cut_tac max.absorb2[where a=6 and b=pd_bits]) apply (clarsimp simp: word_bw_assocs neg_mask_combine) apply (rule_tac x="pd_slot && ~~ mask 6" in exI) apply (simp add: word_bw_assocs neg_mask_combine) apply (clarsimp simp: kernel_mapping_slots_def) apply (erule order_trans) apply (rule ucast_mono_le) apply (rule le_shiftr) apply (metis word_and_le1 word_bw_assocs(1) word_bw_comms(1)) apply (rule shiftr_less_t2n) apply (rule order_less_le_trans, rule and_mask_less_size) apply (simp add: pd_bits_def pageBits_def word_size) apply (simp add: pd_bits_def pageBits_def) apply (simp add: pd_bits_def pageBits_def) done lemma get_master_pte_wp: "\<lbrace> \<lambda>s. (\<forall>pt pt_slot'. ko_at (ArchObj (PageTable pt)) (pt_slot && ~~ mask pt_bits) s \<and> pt_slot' && ~~ mask pt_bits = pt_slot && ~~ mask pt_bits \<longrightarrow> Q (pt (ucast (pt_slot' && mask pt_bits >> 2))) s) \<rbrace> get_master_pte pt_slot \<lbrace> Q \<rbrace>" apply (simp add: get_master_pte_def) apply (wp get_pte_wp | wpc)+ apply clarsimp apply (drule spec, drule_tac x="pt_slot && ~~ mask 6" in spec) apply (cut_tac max.absorb2[where a=6 and b=pt_bits]) apply (simp add: word_bw_assocs neg_mask_combine obj_at_def) apply fastforce apply (simp add: pt_bits_def pageBits_def) done lemma resolve_vaddr_valid_mapping_size: "\<lbrace> valid_vs_lookup and pspace_aligned and valid_vspace_objs and page_directory_at pd and (\<exists>\<rhd> (lookup_pd_slot pd vaddr && ~~ mask pd_bits)) and valid_objs and K (vaddr < kernel_base) \<rbrace> resolve_vaddr pd vaddr \<lbrace> \<lambda>rv s. case rv of None \<Rightarrow> True | Some (a, b) \<Rightarrow> \<exists>p cap. caps_of_state s p = Some cap \<and> (case cap of cap.ArchObjectCap c \<Rightarrow> is_page_cap c | _ \<Rightarrow> False) \<and> cap_bits cap = pageBitsForSize a \<rbrace> " apply (simp add: resolve_vaddr_def) apply (rule hoare_seq_ext[OF _ get_master_pde_sp]) apply (rule hoare_pre) apply (wp get_master_pte_wp | wpc | simp add: lookup_pt_slot_no_fail_def)+ apply (clarsimp simp: obj_at_def) apply (frule(1) pspace_alignedD, simp) apply (drule_tac y=pd_bits in is_aligned_weaken, simp add: pd_bits_def pageBits_def) apply (frule valid_vspace_objsD, simp add: obj_at_def lookup_pd_slot_eq, simp) apply (simp add: lookup_pd_slot_eq less_kernel_base_mapping_slots) apply (drule bspec, simp) apply (rule conjI) apply clarsimp apply (drule vs_lookup_step) apply (rule vs_lookup1I, simp add: obj_at_def) apply (erule(1) vs_refs_pdI2) apply simp apply (drule sym[where s=pd]) apply (simp add: lookup_pd_slot_eq) apply (frule(1) is_aligned_pt) apply (frule is_aligned_weaken[where x=pt_bits and y=10]) apply (simp add: pt_bits_def pageBits_def) apply (simp add: vaddr_segment_nonsense3) apply (frule valid_vspace_objsD, simp add: obj_at_def, simp) apply (drule vs_lookup_pages_vs_lookupI) apply (rule conjI) apply (clarsimp simp:) apply (drule_tac x="ucast (pt_slot' && mask pt_bits >> 2)" in spec) apply (drule vs_lookup_pages_step) apply (rule vs_lookup_pages1I, simp add: obj_at_def) apply (erule vs_refs_pages_pt_largeI) apply simp apply (drule(1) valid_vs_lookupD) apply simp apply (erule exEI)+ apply (clarsimp simp: vs_cap_ref_def split: cap.split_asm arch_cap.split_asm option.split_asm vmpage_size.split_asm) apply (frule(1) caps_of_state_valid_cap) apply (clarsimp simp: valid_cap_def obj_at_def data_at_def a_type_simps split: if_split_asm) apply (clarsimp simp: vaddr_segment_nonsense4) apply (drule_tac x="ucast (pt_slot' && mask pt_bits >> 2)" in spec) apply (drule vs_lookup_pages_step) apply (rule vs_lookup_pages1I, simp add: obj_at_def) apply (erule vs_refs_pages_pt_smallI) apply simp apply (drule(1) valid_vs_lookupD) apply simp apply (erule exEI)+ apply (clarsimp simp: vs_cap_ref_def split: cap.split_asm arch_cap.split_asm option.split_asm vmpage_size.split_asm) apply (frule(1) caps_of_state_valid_cap) apply (clarsimp simp: valid_cap_def obj_at_def data_at_def a_type_simps split: if_split_asm) apply (drule vs_lookup_pages_vs_lookupI) apply (rule conjI) apply clarsimp apply (drule vs_lookup_pages_step) apply (rule vs_lookup_pages1I, simp add: obj_at_def) apply (erule(1) vs_refs_pages_pd_sectionI) apply simp apply (drule(1) valid_vs_lookupD) apply simp apply (erule exEI)+ apply (clarsimp simp: vs_cap_ref_def split: cap.split_asm arch_cap.split_asm option.split_asm vmpage_size.split_asm) apply (frule(1) caps_of_state_valid_cap) apply (clarsimp simp: valid_cap_def obj_at_def data_at_def a_type_simps split: if_split_asm) apply (frule(1) caps_of_state_valid_cap) apply (clarsimp simp: valid_cap_def obj_at_def data_at_def a_type_simps split: if_split_asm) apply clarsimp apply (drule vs_lookup_pages_step) apply (rule vs_lookup_pages1I, simp add: obj_at_def) apply (erule(1) vs_refs_pages_pd_supersectionI) apply simp apply (drule(1) valid_vs_lookupD) apply simp apply (erule exEI)+ apply (clarsimp simp: vs_cap_ref_def split: cap.split_asm arch_cap.split_asm option.split_asm vmpage_size.split_asm) apply (frule(1) caps_of_state_valid_cap) apply (clarsimp simp: valid_cap_def obj_at_def data_at_def a_type_simps split: if_split_asm) apply (frule(1) caps_of_state_valid_cap) apply (clarsimp simp: valid_cap_def obj_at_def data_at_def a_type_simps split: if_split_asm) done lemmas whenE_throwError_corres_terminal = whenE_throwError_corres[where m="returnOk ()" and m'="returnOk ()", OF _ _ corres_returnOkTT, simplified] lemma arch_decodeInvocation_corres: notes check_vp_inv[wp del] check_vp_wpR[wp] (* FIXME: check_vp_inv shadowed check_vp_wpR. Instead, check_vp_wpR should probably be generalised to replace check_vp_inv. *) shows "\<lbrakk> acap_relation arch_cap arch_cap'; list_all2 cap_relation (map fst excaps) (map fst excaps'); list_all2 (\<lambda>s s'. s' = cte_map s) (map snd excaps) (map snd excaps') \<rbrakk> \<Longrightarrow> corres (ser \<oplus> archinv_relation) (invs and valid_cap (cap.ArchObjectCap arch_cap) and cte_wp_at ((=) (cap.ArchObjectCap arch_cap)) slot and (\<lambda>s. \<forall>x\<in>set excaps. s \<turnstile> fst x \<and> cte_at (snd x) s)) (invs' and valid_cap' (capability.ArchObjectCap arch_cap') and (\<lambda>s. \<forall>x\<in>set excaps'. s \<turnstile>' fst x \<and> cte_at' (snd x) s) and (\<lambda>s. vs_valid_duplicates' (ksPSpace s))) (arch_decode_invocation (mi_label mi) args (to_bl cptr') slot arch_cap excaps) (Arch.decodeInvocation (mi_label mi) args cptr' (cte_map slot) arch_cap' excaps')" apply (simp add: arch_decode_invocation_def ARM_H.decodeInvocation_def decodeARMMMUInvocation_def split del: if_split) apply (cases arch_cap) apply (simp add: isCap_simps split del: if_split) apply (cases "invocation_type (mi_label mi) \<noteq> ArchInvocationLabel ARMASIDPoolAssign") apply (simp split: invocation_label.split arch_invocation_label.split) apply (rename_tac word1 word2) apply (cases "excaps", simp) apply (cases "excaps'", simp) apply clarsimp apply (case_tac a, simp_all)[1] apply (rename_tac arch_capa) apply (case_tac arch_capa, simp_all)[1] apply (rename_tac word3 option) apply (case_tac option, simp_all)[1] apply (rule corres_guard_imp) apply (rule corres_splitEE) apply (rule corres_trivial [where r="ser \<oplus> (\<lambda>p p'. p = p' o ucast)"]) apply (clarsimp simp: state_relation_def arch_state_relation_def) apply (rule whenE_throwError_corres, simp) apply (simp add: lookup_failure_map_def) apply simp apply (rule_tac P="\<lambda>s. asid_table (asid_high_bits_of word2) = Some word1 \<longrightarrow> asid_pool_at word1 s" and P'="pspace_aligned' and pspace_distinct'" in corres_inst) apply (simp add: liftME_return) apply (rule whenE_throwError_corres_initial, simp) apply auto[1] apply (rule corres_guard_imp) apply (rule corres_splitEE) apply simp apply (rule get_asid_pool_corres_inv') apply (simp add: bindE_assoc) apply (rule corres_splitEE) apply (rule corres_whenE) apply (subst conj_assoc [symmetric]) apply (subst assocs_empty_dom_comp [symmetric]) apply (rule dom_ucast_eq) apply (rule corres_trivial) apply simp apply simp apply (rule_tac F="- dom pool \<inter> {x. ucast x + word2 \<noteq> 0} \<noteq> {}" in corres_gen_asm) apply (frule dom_hd_assocsD) apply (simp add: select_ext_fap[simplified free_asid_pool_select_def] free_asid_pool_select_def) apply (simp add: returnOk_liftE[symmetric]) apply (rule corres_returnOk) apply (simp add: archinv_relation_def asid_pool_invocation_map_def) apply (rule hoare_pre, wp whenE_wp) apply (clarsimp simp: ucast_fst_hd_assocs) apply (wp hoareE_TrueI whenE_wp getASID_wp | simp)+ apply ((clarsimp simp: p2_low_bits_max | rule TrueI impI)+)[2] apply (wp whenE_wp getASID_wp)+ apply (clarsimp simp: valid_cap_def) apply auto[1] apply (simp add: isCap_simps split del: if_split) apply (cases "invocation_type (mi_label mi) \<noteq> ArchInvocationLabel ARMASIDControlMakePool") apply (simp split: invocation_label.split arch_invocation_label.split) apply (subgoal_tac "length excaps' = length excaps") prefer 2 apply (simp add: list_all2_iff) apply (cases args, simp) apply (rename_tac a0 as) apply (case_tac as, simp) apply (rename_tac a1 as') apply (cases excaps, simp) apply (rename_tac excap0 exs) apply (case_tac exs) apply (auto split: list.split)[1] apply (rename_tac excap1 exss) apply (case_tac excap0) apply (rename_tac c0 slot0) apply (case_tac excap1) apply (rename_tac c1 slot1) apply (clarsimp simp: Let_def split del: if_split) apply (cases excaps', simp) apply (case_tac list, simp) apply (rename_tac c0' exs' c1' exss') apply (clarsimp split del: if_split) apply (rule corres_guard_imp) apply (rule corres_splitEE[where r'="\<lambda>p p'. p = p' o ucast"]) apply (rule corres_trivial) apply (clarsimp simp: state_relation_def arch_state_relation_def) apply (simp only: bindE_assoc) apply (rule corres_splitEE) apply (rule corres_whenE) apply (subst assocs_empty_dom_comp [symmetric]) apply (simp add: o_def) apply (rule dom_ucast_eq_7) apply (rule corres_trivial, simp, simp) apply (simp split del: if_split) apply (rule_tac F="- dom (asidTable \<circ> ucast) \<inter> {x. x \<le> 2 ^ asid_high_bits - 1} \<noteq> {}" in corres_gen_asm) apply (drule dom_hd_assocsD) apply (simp add: select_ext_fa[simplified free_asid_select_def] free_asid_select_def o_def returnOk_liftE[symmetric] split del: if_split) apply (thin_tac "fst a \<notin> b \<and> P" for a b P) apply (case_tac "isUntypedCap a \<and> capBlockSize a = objBits (makeObject::asidpool) \<and> \<not> capIsDevice a") prefer 2 apply (rule corres_guard_imp) apply (rule corres_trivial) apply (case_tac ad, simp_all add: isCap_simps split del: if_split)[1] apply (case_tac x21, simp_all split del: if_split)[1] apply (clarsimp simp: objBits_simps archObjSize_def split del: if_split) apply clarsimp apply (rule TrueI)+ apply (clarsimp simp: isCap_simps cap_relation_Untyped_eq lookupTargetSlot_def objBits_simps archObjSize_def bindE_assoc split_def) apply (rule corres_splitEE) apply (fold ser_def) apply (rule ensureNoChildren_corres, rule refl) apply (rule corres_splitEE) apply (erule lookupSlotForCNodeOp_corres, rule refl) apply (rule corres_splitEE) apply (rule ensureEmptySlot_corres) apply clarsimp apply (rule corres_returnOk[where P="\<top>"]) apply (clarsimp simp add: archinv_relation_def asid_ci_map_def split_def) apply (clarsimp simp add: ucast_assocs[unfolded o_def] split_def filter_map asid_high_bits_def) apply (simp add: ord_le_eq_trans [OF word_n1_ge]) apply (wp hoare_drop_imps)+ apply (simp add: o_def validE_R_def) apply (wp whenE_wp)+ apply fastforce apply clarsimp apply (simp add: null_def split_def asid_high_bits_def word_le_make_less) apply (subst hd_map, assumption) \<comment> \<open>need abstract guard to show list nonempty\<close> apply (simp add: word_le_make_less) apply (subst ucast_ucast_len) apply (drule hd_in_set) apply simp apply fastforce apply (simp add: isCap_simps split del: if_split) apply (cases "invocation_type (mi_label mi) = ArchInvocationLabel ARMPageMap") apply (rename_tac dev frame_ptr cap_rights vmpage_size map_data) apply (case_tac "\<not>(2 < length args \<and> excaps \<noteq> [])", clarsimp split: list.splits) apply (simp add: Let_def neq_Nil_conv) apply (elim exE conjE) apply (rename_tac pd_cap pd_cap_cnode pd_cap_slot excaps_rest) apply (clarsimp split: list.split, intro conjI impI allI; clarsimp) apply (rename_tac vaddr rights_mask attr pd_cap' excaps'_rest args_rest) apply (rule corres_guard_imp) apply (rule_tac P="\<nexists>pd asid. pd_cap = cap.ArchObjectCap (arch_cap.PageDirectoryCap pd (Some asid))" in corres_symmetric_bool_cases[where Q=\<top> and Q'=\<top>, OF refl]) apply (case_tac pd_cap; clarsimp; rename_tac pd_acap pd_acap'; case_tac pd_acap; clarsimp) apply (rule corres_splitEE[where r'="(=)" and P=\<top> and P'=\<top>]) apply (clarsimp simp: corres_returnOkTT) apply (rule_tac F="pd_cap = cap.ArchObjectCap (arch_cap.PageDirectoryCap (fst rv) (Some (snd rv)))" in corres_gen_asm) apply (clarsimp cong: option.case_cong) apply (rename_tac vspace asid) apply wpfix \<comment> \<open>get asid and vspace parameters in schematic preconditions\<close> apply (rule_tac P="map_data = None \<and> kernel_base \<le> vaddr + 2 ^ pageBitsForSize vmpage_size - 1 \<or> (\<exists>asid' vaddr'. map_data = Some (asid', vaddr') \<and> (asid',vaddr') \<noteq> (asid,vaddr))" in corres_symmetric_bool_cases[where Q=\<top> and Q'=\<top>, OF refl]) apply (erule disjE; clarsimp simp: whenE_def kernel_base_def pptrBase_def split: option.splits) apply clarsimp apply (rule corres_splitEE[where r'=dc and P=\<top> and P'=\<top>]) apply (case_tac map_data ; clarsimp simp: whenE_def kernel_base_def pptrBase_def corres_returnOkTT) \<comment> \<open>pd=undefined as vspace_at_asid not used in find_pd_for_asid_corres and avoid unresolved schematics\<close> apply (rule corres_splitEE[ OF corres_lookup_error[OF find_pd_for_asid_corres[where pd=undefined, OF refl]]]) apply (rule whenE_throwError_corres; simp) apply (rule corres_splitEE[where r'=dc, OF checkVPAlignment_corres]) apply (rule corres_splitEE[OF createMappingEntries_corres] ; simp add: mask_vmrights_corres vm_attributes_corres) apply (rule corres_splitEE[OF ensureSafeMapping_corres], assumption) apply (rule corres_returnOkTT) \<comment> \<open>program split done, now prove resulting preconditions and Hoare triples\<close> apply (simp add: archinv_relation_def page_invocation_map_def) apply wpsimp+ apply (wp find_pd_for_asid_pd_at_asid_again) apply (wp findPDForASID_pd_at_wp) apply wpsimp apply wpsimp apply wpsimp apply wpsimp apply (clarsimp simp: cte_wp_at_caps_of_state cong: conj_cong) apply (rename_tac pd_ptr asid') apply (prop_tac "is_aligned pd_ptr pd_bits") apply (clarsimp simp: valid_cap_simps cap_aligned_def pd_bits) apply (prop_tac "\<forall>vaddr. lookup_pd_slot pd_ptr vaddr && ~~ mask pd_bits = pd_ptr") apply (clarsimp simp: lookup_pd_slot_eq) apply (fastforce simp: valid_cap_simps mask_def aligned_sum_less_kernel_base word_not_le vmsz_aligned_def vspace_at_asid_def intro!: page_directory_pde_at_lookupI page_directory_at_aligned_pd_bits) apply fastforce apply (simp split del: if_split) apply (cases "invocation_type (mi_label mi) = ArchInvocationLabel ARMPageUnmap") apply simp apply (rule corres_returnOk) apply (clarsimp simp: archinv_relation_def page_invocation_map_def) apply (cases "ARM_H.isPageFlushLabel (invocation_type (mi_label mi))") apply (clarsimp simp: ARM_H.isPageFlushLabel_def split del: if_split) apply (clarsimp split: invocation_label.splits arch_invocation_label.splits split del: if_split) apply (rule decodeARMPageFlush_corres, clarsimp simp: ARM_H.isPageFlushLabel_def)+ apply (clarsimp simp: ARM_H.isPageFlushLabel_def split del: if_split) apply (cases "invocation_type (mi_label mi) = ArchInvocationLabel ARMPageGetAddress") apply simp apply (rule corres_returnOk) apply (clarsimp simp: archinv_relation_def page_invocation_map_def) subgoal by (clarsimp split: invocation_label.splits arch_invocation_label.splits split del: if_split) apply (simp add: isCap_simps split del: if_split) apply (simp split: invocation_label.split arch_invocation_label.splits split del: if_split) apply (intro conjI impI allI) apply (simp split: list.split, intro conjI impI allI, simp_all)[1] apply (clarsimp simp: neq_Nil_conv) apply (rule whenE_throwError_corres_initial, simp+) apply (simp split: cap.split arch_cap.split option.split, intro conjI allI impI, simp_all)[1] apply (rule whenE_throwError_corres_initial, simp) apply (simp add: kernel_base_def pptrBase_def) apply (rule corres_guard_imp) apply (rule corres_splitEE) apply (rule corres_lookup_error) apply (rule find_pd_for_asid_corres[OF refl]) apply (rule whenE_throwError_corres, simp, simp) apply (rule corres_splitEE) apply (simp add: pageBits_def ptBits_def pdeBits_def) apply (rule get_master_pde_corres') apply (simp add: unlessE_whenE) apply (rule corres_splitEE) apply (rule corres_whenE) apply clarsimp apply (case_tac oldpde, simp_all)[1] apply (rule corres_trivial) apply simp apply simp apply (rule corres_trivial) apply (rule corres_returnOk) apply (clarsimp simp: archinv_relation_def page_table_invocation_map_def) apply (clarsimp simp: attribs_from_word_def attribsFromWord_def Let_def) apply (simp add: shiftr_shiftl1 pageBits_def ptBits_def pdeBits_def pteBits_def) apply (wp whenE_wp get_master_pde_wp getPDE_wp find_pd_for_asid_inv | wp (once) hoare_drop_imps)+ apply (fastforce simp: valid_cap_def mask_def invs_vspace_objs[simplified]) apply (clarsimp simp: valid_cap'_def) apply fastforce apply (clarsimp simp: unlessE_whenE liftE_bindE) apply (rule stronger_corres_guard_imp) apply (rule corres_symb_exec_r_conj) apply (rule_tac F="isArchCap isPageTableCap (cteCap cteVal)" in corres_gen_asm2) apply (rule corres_split[OF isFinalCapability_corres[where ptr=slot]]) apply (drule mp) apply (clarsimp simp: isCap_simps final_matters'_def) apply (rule whenE_throwError_corres) apply simp apply simp apply (rule corres_trivial, simp add: returnOk_def archinv_relation_def page_table_invocation_map_def) apply (wp getCTE_wp' | wp (once) hoare_drop_imps)+ apply (clarsimp) apply (rule no_fail_pre, rule no_fail_getCTE) apply (erule conjunct2) apply (clarsimp simp: cte_wp_at_caps_of_state cap_rights_update_def acap_rights_update_def) apply (clarsimp simp add: cap_rights_update_def acap_rights_update_def) apply (clarsimp simp: cte_wp_at_ctes_of cap_rights_update_def acap_rights_update_def cte_wp_at_caps_of_state) apply (drule pspace_relation_ctes_ofI[OF _ caps_of_state_cteD, rotated], erule invs_pspace_aligned', clarsimp+) apply (simp add: isCap_simps) apply (simp add: isCap_simps split del: if_split) apply (cases "ARM_H.isPDFlushLabel (invocation_type (mi_label mi))") apply (clarsimp split del: if_split) apply (cases args, simp) apply (rename_tac a0 as) apply (case_tac as, simp) apply (rename_tac a1 as') apply clarsimp apply (rule corres_guard_imp) apply (rule whenE_throwError_corres, simp) apply clarsimp apply (rule whenE_throwError_corres, simp) apply (clarsimp simp: kernel_base_def pptrBase_def) apply (rule case_option_corresE) apply (rule corres_trivial) apply clarsimp apply clarsimp apply (rule corres_splitEE) apply (rule corres_lookup_error) apply (rule find_pd_for_asid_corres[OF refl]) apply (rule whenE_throwError_corres, simp) apply clarsimp apply (simp add: liftE_bindE) apply (rule corres_split[OF _ _ resolve_vaddr_valid_mapping_size]) apply clarsimp apply (rule resolveVAddr_corres[THEN corres_gen_asm]) apply simp apply (clarsimp simp: not_le) apply (case_tac rva) apply clarsimp apply (rule_tac P'="pspace_aligned' and pspace_distinct' and valid_global_refs'" in corres_inst[where P="\<top>"]) apply (rule corres_returnOk) apply (clarsimp simp: archinv_relation_def page_directory_invocation_map_def) apply (clarsimp simp: Let_def liftE_bindE checkValidMappingSize_def) apply (rule corres_stateAssert_implied[where P'="\<top>", simplified]) apply (rule corres_guard_imp) apply (rule whenE_throwError_corres, simp) apply clarsimp apply (rule corres_trivial) apply (rule corres_returnOk) apply (clarsimp simp: archinv_relation_def page_directory_invocation_map_def flush_type_map)+ apply (clarsimp simp: state_relation_def) apply (frule pspace_relation_cte_wp_at, simp add: cte_wp_at_caps_of_state, simp+) apply (clarsimp simp: cte_wp_at_ctes_of) apply (drule(1) valid_global_refsD_with_objSize) subgoal by (clarsimp simp: is_page_cap_def split: cap.split_asm) apply (wp hoare_drop_imps)+ apply (clarsimp simp: valid_cap_simps mask_2pm1 linorder_not_le split: option.split) apply (intro conjI; (clarsimp)?) apply (clarsimp simp: invs'_def valid_state'_def valid_pspace'_def split: option.splits) apply clarsimp done lemma arch_performInvocation_corres: "archinv_relation ai ai' \<Longrightarrow> corres (dc \<oplus> (=)) (einvs and ct_active and valid_arch_inv ai) (invs' and ct_active' and valid_arch_inv' ai' and (\<lambda>s. vs_valid_duplicates' (ksPSpace s))) (arch_perform_invocation ai) (Arch.performInvocation ai')" apply (clarsimp simp: arch_perform_invocation_def ARM_H.performInvocation_def performARMMMUInvocation_def) apply (cases ai) apply (clarsimp simp: archinv_relation_def) apply (rule corres_underlying_split[OF _ corres_return_eq_same[OF refl]]) apply (erule corres_guard_imp [OF performPageTableInvocation_corres]) apply (fastforce simp: valid_arch_inv_def) apply (fastforce simp: valid_arch_inv'_def) apply wp apply wp apply (clarsimp simp: archinv_relation_def) apply (rule corres_underlying_split[OF _ corres_return_eq_same[OF refl]]) apply (erule corres_guard_imp [OF performPageDirectoryInvocation_corres]) apply (fastforce simp: valid_arch_inv_def) apply (fastforce simp: valid_arch_inv'_def) apply wp apply wp apply (clarsimp simp: archinv_relation_def) apply (erule corres_guard_imp [OF performPageInvocation_corres]) apply (fastforce simp: valid_arch_inv_def) apply (fastforce simp: valid_arch_inv'_def) apply (clarsimp simp: archinv_relation_def) apply (rule corres_underlying_split[OF _ corres_return_eq_same[OF refl]]) apply (rule corres_guard_imp [OF performASIDControlInvocation_corres], rule refl) apply (fastforce simp: valid_arch_inv_def) apply (fastforce simp: valid_arch_inv'_def) apply wp apply wp apply (clarsimp simp: archinv_relation_def) apply (rule corres_underlying_split[OF _ corres_return_eq_same[OF refl]]) apply (rule corres_guard_imp [OF performASIDPoolInvocation_corres], rule refl) apply (fastforce simp: valid_arch_inv_def) apply (fastforce simp: valid_arch_inv'_def) apply wp+ done lemma asid_pool_typ_at_ext': "asid_pool_at' = obj_at' (\<top>::asidpool \<Rightarrow> bool)" apply (rule ext)+ apply (simp add: typ_at_to_obj_at_arches) done lemma st_tcb_strg': "st_tcb_at' P p s \<longrightarrow> tcb_at' p s" by (auto simp: pred_tcb_at') lemma performASIDControlInvocation_tcb_at': "\<lbrace>st_tcb_at' active' p and invs' and ct_active' and valid_aci' aci\<rbrace> performASIDControlInvocation aci \<lbrace>\<lambda>y. tcb_at' p\<rbrace>" apply (rule hoare_name_pre_state) apply (clarsimp simp: performASIDControlInvocation_def split: asidcontrol_invocation.splits) apply (clarsimp simp: valid_aci'_def cte_wp_at_ctes_of cong: conj_cong) apply (wp static_imp_wp |simp add:placeNewObject_def2)+ apply (wp createObjects_orig_obj_at2' updateFreeIndex_pspace_no_overlap' getSlotCap_wp static_imp_wp)+ apply (clarsimp simp: projectKO_opts_defs) apply (strengthen st_tcb_strg' [where P=\<top>]) apply (wp deleteObjects_invs_derivatives[where p="makePoolParent aci"] hoare_vcg_ex_lift deleteObjects_cte_wp_at'[where d=False] deleteObjects_st_tcb_at'[where p="makePoolParent aci"] static_imp_wp updateFreeIndex_pspace_no_overlap' deleteObject_no_overlap[where d=False])+ apply (case_tac ctea) apply (clarsimp) apply (frule ctes_of_valid_cap') apply (simp add:invs_valid_objs')+ apply (clarsimp simp:valid_cap'_def capAligned_def cte_wp_at_ctes_of) apply (strengthen refl order_refl pred_tcb'_weakenE[mk_strg I E]) apply (clarsimp simp: conj_comms invs_valid_pspace' isCap_simps descendants_range'_def2 empty_descendants_range_in') apply (frule ctes_of_valid', clarsimp, simp, drule capFreeIndex_update_valid_cap'[where fb="2 ^ pageBits", rotated -1], simp_all) apply (simp add: pageBits_def is_aligned_def minUntypedSizeBits_def) apply (simp add: valid_cap_simps' range_cover_def objBits_simps archObjSize_def capAligned_def unat_eq_0 and_mask_eq_iff_shiftr_0[symmetric] word_bw_assocs untypedBits_defs) apply clarsimp apply (drule(1) cte_cap_in_untyped_range, fastforce simp add: cte_wp_at_ctes_of, assumption, simp_all) apply (clarsimp simp: invs'_def valid_state'_def if_unsafe_then_cap'_def cte_wp_at_ctes_of) apply clarsimp done lemma invokeArch_tcb_at': "\<lbrace>invs' and valid_arch_inv' ai and ct_active' and st_tcb_at' active' p\<rbrace> Arch.performInvocation ai \<lbrace>\<lambda>rv. tcb_at' p\<rbrace>" apply (simp add: ARM_H.performInvocation_def performARMMMUInvocation_def) apply (cases ai, simp_all) apply (wp, clarsimp simp: pred_tcb_at') apply (wp, clarsimp simp: pred_tcb_at') apply (wp, clarsimp simp: st_tcb_strg'[rule_format]) apply (wp performASIDControlInvocation_tcb_at', clarsimp simp: valid_arch_inv'_def) apply (wp, clarsimp simp: pred_tcb_at') done crunch pspace_no_overlap'[wp]: setThreadState "pspace_no_overlap' w s" (simp: unless_def) lemma sts_cte_cap_to'[wp]: "\<lbrace>ex_cte_cap_to' p\<rbrace> setThreadState st t \<lbrace>\<lambda>rv. ex_cte_cap_to' p\<rbrace>" by (wp ex_cte_cap_to'_pres) lemma valid_slots_duplicated_lift': assumes ko_wp_at': "\<And>P p. \<lbrace>ko_wp_at' (\<lambda>ko. P (vs_entry_align ko)) p \<rbrace> f \<lbrace>\<lambda>rv. ko_wp_at' (\<lambda>ko. P (vs_entry_align ko)) p\<rbrace>" and pt_at: "\<And>p. \<lbrace>page_table_at' p \<rbrace> f \<lbrace>\<lambda>rv. page_table_at' p\<rbrace>" and pd_at: "\<And>p. \<lbrace>page_directory_at' p\<rbrace> f \<lbrace>\<lambda>rv. page_directory_at' p\<rbrace>" shows "\<lbrace>valid_slots_duplicated' x\<rbrace> f \<lbrace>\<lambda>r. valid_slots_duplicated' x\<rbrace>" apply (simp add:valid_slots_duplicated'_def) apply (case_tac x) apply (case_tac a) apply (case_tac aa) apply simp_all apply (rule hoare_pre) apply simp apply (wp hoare_vcg_ex_lift ko_wp_at' pt_at pd_at | simp)+ apply (case_tac b) apply (case_tac a) apply (wp hoare_vcg_ex_lift ko_wp_at' pt_at pd_at | simp)+ done lemma setTCB_pdpt_bits'[wp]: "\<lbrace>\<lambda>s. ko_wp_at' (\<lambda>ko. P (vs_entry_align ko)) p s\<rbrace> setObject a (tcb::tcb) \<lbrace>\<lambda>rv. ko_wp_at' (\<lambda>ko. P (vs_entry_align ko)) p\<rbrace>" apply (clarsimp simp: setObject_def split_def valid_def in_monad projectKOs pspace_aligned'_def ps_clear_upd objBits_def[symmetric] lookupAround2_char1 split: if_split_asm) apply (frule pspace_storable_class.updateObject_type[where v = tcb,simplified]) apply (clarsimp simp:ko_wp_at'_def) apply (intro conjI) subgoal by (clarsimp simp:updateObject_default_def assert_def bind_def alignCheck_def in_monad when_def alignError_def magnitudeCheck_def assert_opt_def return_def fail_def typeError_def objBits_simps vs_entry_align_def split:if_splits option.splits Structures_H.kernel_object.splits, ((erule(1) ps_clear_updE)+)) apply (clarsimp) apply (erule(1) ps_clear_updE) done crunch vs_entry_align'[wp]: threadSet "ko_wp_at' (\<lambda>ko. P (vs_entry_align ko)) p" (wp: crunch_wps) crunch vs_entry_align'[wp]: addToBitmap "ko_wp_at' (\<lambda>ko. P (vs_entry_align ko)) p" (wp: crunch_wps) lemma tcbSchedEnqueue_vs_entry_align[wp]: "\<lbrace>\<lambda>s. ko_wp_at' (\<lambda>ko. P (vs_entry_align ko)) p s\<rbrace> tcbSchedEnqueue pa \<lbrace>\<lambda>rv. ko_wp_at' (\<lambda>ko. P (vs_entry_align ko)) p\<rbrace>" apply (clarsimp simp: tcbSchedEnqueue_def setQueue_def) by (wp unless_wp | simp)+ crunch vs_entry_align[wp]: setThreadState "ko_wp_at' (\<lambda>ko. P (vs_entry_align ko)) p" (wp: crunch_wps) lemma sts_valid_arch_inv': "\<lbrace>valid_arch_inv' ai\<rbrace> setThreadState st t \<lbrace>\<lambda>rv. valid_arch_inv' ai\<rbrace>" apply (cases ai, simp_all add: valid_arch_inv'_def) apply (clarsimp simp: valid_pti'_def split: page_table_invocation.splits) apply (intro allI conjI impI) apply (wp | simp)+ apply (rename_tac page_invocation) apply (case_tac page_invocation, simp_all add: valid_page_inv'_def)[1] apply (wp valid_slots_lift' valid_slots_duplicated_lift'|simp)+ apply (clarsimp simp: valid_aci'_def split: asidcontrol_invocation.splits) apply (clarsimp simp: cte_wp_at_ctes_of) apply (rule hoare_pre, wp) apply clarsimp apply (clarsimp simp: valid_apinv'_def split: asidpool_invocation.splits) apply (rule hoare_pre, wp) apply simp done lemma less_pptrBase_valid_pde_offset': "\<lbrakk> vptr < pptrBase; x = 0 \<or> is_aligned vptr 24; x \<le> 0xF \<rbrakk> \<Longrightarrow> valid_pde_mapping_offset' (((x * 4) + (vptr >> 20 << 2)) && mask pdBits)" apply (clarsimp simp: pptrBase_def pdBits_def pageBits_def valid_pde_mapping_offset'_def pd_asid_slot_def) apply (drule word_le_minus_one_leq, simp add: pdeBits_def) apply (drule le_shiftr[where u=vptr and n=20]) apply (subst(asm) iffD2[OF mask_eq_iff_w2p]) apply (simp add: word_size) apply (simp add: shiftl_t2n unat_arith_simps iffD1[OF unat_mult_lem]) apply (erule disjE) apply (simp add: shiftl_t2n unat_arith_simps iffD1[OF unat_mult_lem]) apply (frule arg_cong[where f="\<lambda>v. v && mask 6"]) apply (subst(asm) field_simps, subst(asm) is_aligned_add_helper[where n=6], rule is_aligned_shiftl) apply (rule is_aligned_shiftr, simp) apply (simp add: unat_arith_simps iffD1[OF unat_mult_lem]) apply (simp add: mask_def[where n=6]) apply (simp add: shiftl_t2n unat_arith_simps iffD1[OF unat_mult_lem]) done lemmas less_pptrBase_valid_pde_offset'' = less_pptrBase_valid_pde_offset'[where x=0, simplified] lemma createMappingEntries_valid_pde_slots': "\<lbrace>K (vmsz_aligned' vptr sz \<and> is_aligned pd pdBits \<and> vptr < pptrBase)\<rbrace> createMappingEntries base vptr sz vm_rights attrib pd \<lbrace>\<lambda>rv s. valid_pde_slots' rv\<rbrace>,-" apply (simp add: createMappingEntries_def valid_pde_slots'_def) apply (cases sz, simp_all) apply (wp | simp)+ apply (clarsimp simp: lookup_pd_slot_def Let_def mask_add_aligned) apply (erule less_pptrBase_valid_pde_offset'') apply (rule hoare_pre, wp) apply (clarsimp simp: vmsz_aligned'_def superSectionPDEOffsets_def pdeBits_def del: ballI) apply (subst p_0x3C_shift[symmetric]) apply (simp add: lookup_pd_slot_def Let_def) apply (erule aligned_add_aligned) apply (rule is_aligned_shiftl, rule is_aligned_shiftr) apply simp apply (simp add: pdBits_def pageBits_def word_bits_def) apply (simp add: pdBits_def pageBits_def) apply (clarsimp simp: upto_enum_step_def linorder_not_less pd_bits_def lookup_pd_slot_def Let_def field_simps mask_add_aligned pdeBits_def take_bit_Suc) apply (erule less_pptrBase_valid_pde_offset' [unfolded pdBits_def pageBits_def pdeBits_def, simplified], simp+) done lemma inv_ASIDPool: "inv ASIDPool = (\<lambda>v. case v of ASIDPool a \<Rightarrow> a)" apply (rule ext) apply (case_tac v) apply simp apply (rule inv_f_f, rule inj_onI) apply simp done lemma findPDForASID_aligned[wp]: "\<lbrace>valid_objs'\<rbrace> findPDForASID p \<lbrace>\<lambda>rv s. is_aligned rv pdBits\<rbrace>,-" apply (simp add: findPDForASID_def assertE_def cong: option.case_cong split del: if_split) apply (rule hoare_pre) apply (wp getASID_wp | wpc)+ apply clarsimp apply (drule(1) obj_at_valid_objs') apply (clarsimp simp: projectKOs valid_obj'_def inv_ASIDPool ranI split: asidpool.split_asm) done lemma findPDForASID_valid_offset'[wp]: "\<lbrace>valid_objs' and K (vptr < pptrBase)\<rbrace> findPDForASID p \<lbrace>\<lambda>rv s. valid_pde_mapping_offset' (rv + (vptr >> 20 << 2) && mask pdBits)\<rbrace>,-" apply (rule hoare_gen_asmE) apply (rule hoare_post_imp_R, rule findPDForASID_aligned) apply (simp add: mask_add_aligned) apply (erule less_pptrBase_valid_pde_offset'') done lemma eq_arch_update': "ArchObjectCap cp = cteCap cte \<Longrightarrow> is_arch_update' (ArchObjectCap cp) cte" by (clarsimp simp: is_arch_update'_def isCap_simps) lemma lookupPTSlot_page_table_at': "\<lbrace>valid_objs'\<rbrace> lookupPTSlot pd vptr \<lbrace>\<lambda>rv s. page_table_at' (rv && ~~ mask ptBits) s\<rbrace>,-" apply (simp add:lookupPTSlot_def) apply (wp getPDE_wp|wpc|simp add:checkPTAt_def)+ apply (clarsimp simp:ptBits_def lookup_pt_slot_no_fail_def pteBits_def) apply (subst vaddr_segment_nonsense3[unfolded pt_bits_def pageBits_def,simplified]) apply (simp add:page_table_at'_def ptBits_def pageBits_def pteBits_def) apply simp done lemma findPDForASID_page_directory_at': notes checkPDAt_inv[wp del] shows "\<lbrace>\<top>\<rbrace> findPDForASID asiv \<lbrace>\<lambda>rv s. page_directory_at' (lookup_pd_slot rv vptr && ~~ mask pdBits) s\<rbrace>,-" apply (simp add:findPDForASID_def) apply (wp getASID_wp|simp add:checkPDAt_def | wpc)+ apply (clarsimp simp:lookup_pd_slot_def pdBits_def pdeBits_def) apply (subst vaddr_segment_nonsense[unfolded pd_bits_def pdeBits_def pageBits_def,simplified]) apply (simp add:page_directory_at'_def pdBits_def pageBits_def pdeBits_def) apply simp done definition "slots_duplicated_ensured \<equiv> \<lambda>m s. case m of Inl (pte, xs) \<Rightarrow> (case pte of pte.LargePagePTE _ _ _ _ _ \<Rightarrow> \<exists>p. xs = [p, p+4 .e. p + mask 6] \<and> is_aligned p 6 \<and> page_table_at' (p && ~~ mask ptBits) s | pte.InvalidPTE \<Rightarrow> False | _ \<Rightarrow> \<exists>p. xs = [p] \<and> page_table_at' (p && ~~ mask ptBits) s) | Inr (pde, xs) \<Rightarrow> (case pde of pde.SuperSectionPDE _ _ _ _ _ _ \<Rightarrow> \<exists>p. xs = [p, p+4 .e. p + mask 6] \<and> is_aligned p 6 \<and> page_directory_at' (p && ~~ mask pdBits) s \<and> is_aligned p 6 | pde.InvalidPDE \<Rightarrow> False | _ \<Rightarrow> \<exists>p. xs = [p] \<and> page_directory_at' (p && ~~ mask pdBits) s)" lemma ensureSafeMapping_valid_slots_duplicated': "\<lbrace>\<lambda>s. slots_duplicated_ensured entries s\<rbrace> ensureSafeMapping entries \<lbrace>\<lambda>rv s. valid_slots_duplicated' entries s\<rbrace>,-" apply (simp add:ensureSafeMapping_def) apply (case_tac entries) apply (case_tac a) apply (case_tac aa) apply (rule hoare_pre) apply (simp add:slots_duplicated_ensured_def | wp)+ apply (rule hoare_pre) apply (wp mapME_x_inv_wp getPTE_wp| wpc)+ apply clarsimp apply (clarsimp simp:valid_slots_duplicated'_def) apply (simp add:slots_duplicated_ensured_def) apply (rule hoare_pre) apply (rule_tac P = "\<exists>p. b = [p]" and P' = "\<lambda>s. \<exists>p. b = [p] \<and> page_table_at' (p && ~~ mask ptBits) s" in hoare_gen_asmE) apply (clarsimp simp:mapME_singleton) apply (wp getPTE_wp|wpc)+ apply (clarsimp simp:valid_slots_duplicated'_def obj_at'_real_def split:option.splits) apply (intro impI conjI) apply (erule ko_wp_at'_weakenE) apply (simp add:projectKO_opt_pte vs_entry_align_def split:Structures_H.kernel_object.splits arch_kernel_object.splits) apply (erule ko_wp_at'_weakenE) apply (simp add:projectKO_opt_pte vs_entry_align_def split:Structures_H.kernel_object.splits arch_kernel_object.splits) apply clarsimp apply (case_tac b) apply (case_tac a) apply (rule hoare_pre) apply (simp add:slots_duplicated_ensured_def | wp)+ apply (rule hoare_pre) apply (rule_tac P = "\<exists>p. ba = [p]" and P' = "\<lambda>s. \<exists>p. ba = [p] \<and> page_directory_at' (p && ~~ mask pdBits) s" in hoare_gen_asmE) apply (clarsimp simp:mapME_singleton) apply (wp getPDE_wp|wpc)+ apply (clarsimp simp:valid_slots_duplicated'_def obj_at'_real_def split:option.splits) apply (intro impI conjI) apply (erule ko_wp_at'_weakenE) apply (simp add:projectKO_opt_pde vs_entry_align_def split:Structures_H.kernel_object.splits arch_kernel_object.splits) apply (erule ko_wp_at'_weakenE) apply (simp add:projectKO_opt_pde vs_entry_align_def split:Structures_H.kernel_object.splits arch_kernel_object.splits) apply clarsimp apply (simp add:slots_duplicated_ensured_def) apply (rule hoare_pre) apply (wp mapME_x_inv_wp getPDE_wp| wpc)+ apply clarsimp apply (fastforce simp:valid_slots_duplicated'_def) done (* FIXME: this lemma is too specific *) lemma lookupPTSlot_aligned: "\<lbrace>\<lambda>s. is_aligned vptr 16 \<and> valid_objs' s\<rbrace> lookupPTSlot pd vptr \<lbrace>\<lambda>p s. is_aligned p 6\<rbrace>,-" apply (simp add:lookupPTSlot_def) apply (wp getPDE_wp |wpc|simp)+ apply (clarsimp simp:obj_at'_real_def ko_wp_at'_def) apply (erule(1) valid_objsE') apply (clarsimp simp:projectKO_opt_pde split:Structures_H.kernel_object.splits arch_kernel_object.splits) apply (simp add:valid_obj'_def lookup_pt_slot_no_fail_def) apply (rule aligned_add_aligned) apply (erule is_aligned_ptrFromPAddr_n) apply (simp add: ptBits_def pteBits_def) apply (rule is_aligned_shiftl,simp) apply (rule is_aligned_andI1) apply (rule is_aligned_shiftr) apply simp apply (simp add: ptBits_def) done lemma createMappingEntires_valid_slots_duplicated'[wp]: "\<lbrace>\<lambda>s. vs_valid_duplicates' (ksPSpace s) \<and> vmsz_aligned vptr vmsz \<and> valid_objs' s \<and> page_directory_at' (lookup_pd_slot pd vptr && ~~ mask pdBits) s \<and> is_aligned pd pdBits\<rbrace> createMappingEntries base vptr vmsz vmrights attrib pd \<lbrace>\<lambda>rv s. slots_duplicated_ensured rv s\<rbrace>, -" apply (clarsimp simp:createMappingEntries_def) apply (rule hoare_pre) apply (wpc | wp lookupPTSlot_page_table_at' | simp add: slots_duplicated_ensured_def)+ apply (rule_tac Q' = "\<lambda>p s. is_aligned p 6 \<and> page_table_at' (p && ~~ mask ptBits) s" in hoare_post_imp_R) apply (wp lookupPTSlot_aligned lookupPTSlot_page_table_at') apply (rename_tac rv s) apply (rule_tac x = rv in exI) apply (clarsimp simp: largePagePTEOffsets_def pteBits_def) apply (frule is_aligned_no_wrap'[where off = "0x3c"]) apply simp apply (drule upto_enum_step_shift[where n = 6 and m = 2,simplified]) apply (clarsimp simp: mask_def add.commute upto_enum_step_def take_bit_Suc) apply simp apply wp+ apply (intro conjI impI) apply ((clarsimp simp: vmsz_aligned_def pageBitsForSize_def slots_duplicated_ensured_def split:vmpage_size.splits)+)[8] apply clarsimp apply (drule lookup_pd_slot_aligned_6) apply (simp add:pdBits_def pageBits_def pdeBits_def) apply (clarsimp simp:slots_duplicated_ensured_def) apply (rule_tac x = "(lookup_pd_slot pd vptr)" in exI) apply clarsimp apply (frule is_aligned_no_wrap'[where off = "0x3c" and sz = 6]) apply simp apply (drule upto_enum_step_shift[where n = 6 and m = 2,simplified]) apply (clarsimp simp: mask_def add.commute upto_enum_step_def take_bit_Suc superSectionPDEOffsets_def pdeBits_def) done lemma arch_decodeARMPageFlush_wf: "ARM_H.isPageFlushLabel (invocation_type label) \<Longrightarrow> \<lbrace>invs' and valid_cap' (capability.ArchObjectCap (arch_capability.PageCap d word vmrights vmpage_size option)) and cte_wp_at' ((=) (capability.ArchObjectCap (arch_capability.PageCap d word vmrights vmpage_size option)) \<circ> cteCap) slot and (\<lambda>s. \<forall>x\<in>set excaps. cte_wp_at' ((=) (fst x) \<circ> cteCap) (snd x) s) and sch_act_simple and (\<lambda>s. vs_valid_duplicates' (ksPSpace s))\<rbrace> decodeARMPageFlush label args (arch_capability.PageCap d word vmrights vmpage_size option) \<lbrace>valid_arch_inv'\<rbrace>, -" apply (simp add: decodeARMPageFlush_def) apply (rule hoare_pre) apply (wp throwE_R whenE_throwError_wp | wpc | clarsimp simp: if_apply_def2)+ apply (simp add: valid_arch_inv'_def valid_page_inv'_def) apply fastforce done lemma arch_decodeInvocation_wf[wp]: notes ensureSafeMapping_inv[wp del] shows "\<lbrace>invs' and valid_cap' (ArchObjectCap arch_cap) and cte_wp_at' ((=) (ArchObjectCap arch_cap) o cteCap) slot and (\<lambda>s. \<forall>x \<in> set excaps. cte_wp_at' ((=) (fst x) o cteCap) (snd x) s) and sch_act_simple and (\<lambda>s. vs_valid_duplicates' (ksPSpace s))\<rbrace> Arch.decodeInvocation label args cap_index slot arch_cap excaps \<lbrace>valid_arch_inv'\<rbrace>,-" apply (cases arch_cap) apply (simp add: decodeARMMMUInvocation_def ARM_H.decodeInvocation_def Let_def split_def isCap_simps cong: if_cong split del: if_split) apply (rule hoare_pre) apply ((wp whenE_throwError_wp getASID_wp | wpc | simp add: valid_arch_inv'_def valid_apinv'_def)+)[1] apply (clarsimp simp: word_neq_0_conv valid_cap'_def valid_arch_inv'_def valid_apinv'_def) apply (rule conjI) apply (erule cte_wp_at_weakenE') apply (simp, drule_tac t="cteCap c" in sym, simp) apply (subst (asm) conj_assoc [symmetric]) apply (subst (asm) assocs_empty_dom_comp [symmetric]) apply (drule dom_hd_assocsD) apply (simp add: capAligned_def) apply (elim conjE) apply (subst field_simps, erule is_aligned_add_less_t2n) apply assumption apply (simp add: asid_low_bits_def asid_bits_def) apply assumption \<comment> \<open>ASIDControlCap\<close> apply (simp add: decodeARMMMUInvocation_def ARM_H.decodeInvocation_def Let_def split_def isCap_simps cong: if_cong invocation_label.case_cong arch_invocation_label.case_cong list.case_cong prod.case_cong split del: if_split) apply (rule hoare_pre) apply ((wp whenE_throwError_wp ensureEmptySlot_stronger | wpc | simp add: valid_arch_inv'_def valid_aci'_def is_aligned_shiftl_self split del: if_split)+)[1] apply (rule_tac Q'= "\<lambda>rv. K (fst (hd [p\<leftarrow>assocs asidTable . fst p \<le> 2 ^ asid_high_bits - 1 \<and> snd p = None]) << asid_low_bits \<le> 2 ^ asid_bits - 1) and real_cte_at' rv and ex_cte_cap_to' rv and cte_wp_at' (\<lambda>cte. \<exists>idx. cteCap cte = (UntypedCap False frame pageBits idx)) (snd (excaps!0)) and sch_act_simple and (\<lambda>s. descendants_of' (snd (excaps!0)) (ctes_of s) = {}) " in hoare_post_imp_R) apply (simp add: lookupTargetSlot_def) apply wp apply (clarsimp simp: cte_wp_at_ctes_of) apply (simp split del: if_split) apply (wp ensureNoChildren_sp whenE_throwError_wp|wpc)+ apply clarsimp apply (rule conjI) apply (clarsimp simp: null_def neq_Nil_conv) apply (drule filter_eq_ConsD) apply clarsimp apply (rule shiftl_less_t2n) apply (simp add: asid_bits_def asid_low_bits_def asid_high_bits_def) apply unat_arith apply (simp add: asid_bits_def) apply clarsimp apply (rule conjI, fastforce) apply (clarsimp simp: cte_wp_at_ctes_of objBits_simps archObjSize_def) apply (rule conjI) apply (case_tac cteb; clarsimp) apply (drule ctes_of_valid_cap', fastforce) apply assumption apply (simp add: ex_cte_cap_to'_def cte_wp_at_ctes_of) apply (drule_tac t="cteCap ctea" in sym, simp) apply (drule_tac t="cteCap cte" in sym, clarsimp) apply (rule_tac x=ba in exI) apply simp \<comment> \<open>PageCap\<close> apply (simp add: decodeARMMMUInvocation_def ARM_H.decodeInvocation_def Let_def split_def isCap_simps cong: if_cong split del: if_split) apply (cases "invocation_type label = ArchInvocationLabel ARMPageMap") apply (rename_tac word vmrights vmpage_size option) apply (simp add: split_def split del: if_split cong: list.case_cong prod.case_cong) apply (rule hoare_pre) apply (wpsimp simp: valid_arch_inv'_def valid_page_inv'_def) apply (rule hoare_vcg_conj_lift_R,(wp ensureSafeMapping_inv)[1])+ apply (wpsimp wp: whenE_throwError_wp checkVP_wpR hoare_vcg_const_imp_lift_R hoare_drop_impE_R ensureSafeMapping_valid_slots_duplicated' createMappingEntries_valid_pde_slots' findPDForASID_page_directory_at' simp: valid_arch_inv'_def valid_page_inv'_def)+ apply (clarsimp simp: neq_Nil_conv invs_valid_objs' linorder_not_le cte_wp_at_ctes_of) apply (drule ctes_of_valid', fastforce)+ apply (case_tac option; clarsimp, drule_tac t="cteCap cte" in sym, simp) apply (clarsimp simp: valid_cap'_def ptBits_def pageBits_def is_arch_update'_def isCap_simps capAligned_def vmsz_aligned'_def cong: conj_cong) apply (rule conjI) apply (erule is_aligned_addrFromPPtr_n, case_tac vmpage_size, simp_all)[1] apply (simp add: vmsz_aligned_def) apply (rule conjI) apply (erule order_le_less_trans[rotated]) apply (erule is_aligned_no_overflow'[simplified field_simps]) apply (clarsimp simp: page_directory_at'_def pdBits_eq lookup_pd_slot_eq)+ apply (clarsimp simp: valid_cap'_def ptBits_def pageBits_def is_arch_update'_def isCap_simps capAligned_def vmsz_aligned'_def cong: conj_cong) apply (rule conjI) apply (erule is_aligned_addrFromPPtr_n, case_tac vmpage_size, simp_all)[1] apply (simp add: vmsz_aligned_def pd_bits) apply (clarsimp simp: page_directory_at'_def lookup_pd_slot_eq[simplified pd_bits]) apply (cases "invocation_type label = ArchInvocationLabel ARMPageUnmap") apply (simp split del: if_split) apply (rule hoare_pre, wp) apply (clarsimp simp: valid_arch_inv'_def valid_page_inv'_def) apply (thin_tac "Ball S P" for S P) apply (erule cte_wp_at_weakenE') apply (clarsimp simp: is_arch_update'_def isCap_simps) apply (cases "ARM_H.isPageFlushLabel (invocation_type label)") apply (clarsimp simp: ARM_H.isPageFlushLabel_def split: invocation_label.splits arch_invocation_label.splits) apply (rule arch_decodeARMPageFlush_wf, clarsimp simp: ARM_H.isPageFlushLabel_def)+ apply (cases "invocation_type label = ArchInvocationLabel ARMPageGetAddress") apply (simp split del: if_split) apply (rule hoare_pre, wp) apply (clarsimp simp: valid_arch_inv'_def valid_page_inv'_def) apply (simp add: ARM_H.isPageFlushLabel_def throwError_R' split: invocation_label.split_asm arch_invocation_label.split_asm) \<comment> \<open>PageTableCap\<close> apply (simp add: decodeARMMMUInvocation_def ARM_H.decodeInvocation_def Let_def split_def isCap_simps vs_entry_align_def cong: if_cong list.case_cong invocation_label.case_cong arch_invocation_label.case_cong prod.case_cong split del: if_split) apply (rename_tac word option) apply (rule hoare_pre) apply ((wp whenE_throwError_wp isFinalCapability_inv getPDE_wp | wpc | simp add: valid_arch_inv'_def valid_pti'_def unlessE_whenE | rule_tac x="fst p" in hoare_imp_eq_substR)+) apply (rule_tac Q'= "\<lambda>b c. ko_at' ARM_H.pde.InvalidPDE (b + (hd args >> 20 << 2)) c \<longrightarrow> cte_wp_at' (is_arch_update' (capability.ArchObjectCap (arch_capability.PageTableCap word (Some (snd p, hd args >> 20 << 20))))) slot c \<and> c \<turnstile>' capability.ArchObjectCap (arch_capability.PageTableCap word (Some (snd p, hd args >> 20 << 20))) \<and> is_aligned (addrFromPPtr word) ptBits \<and> valid_pde_mapping_offset' (b + (hd args >> 20 << 2) && mask pdBits) " in hoare_post_imp_R) apply ((wp whenE_throwError_wp isFinalCapability_inv getPDE_wp | wpc | simp add: valid_arch_inv'_def valid_pti'_def unlessE_whenE | rule_tac x="fst p" in hoare_imp_eq_substR | rule hoare_drop_impE_R)+) apply (clarsimp simp: ko_wp_at'_def obj_at'_real_def) apply (clarsimp simp: projectKO_opt_pde vs_entry_align_def pageBits_def ptBits_def pdeBits_def pteBits_def split: Structures_H.kernel_object.splits arch_kernel_object.splits) apply ((wp whenE_throwError_wp isFinalCapability_inv | wpc | simp add: valid_arch_inv'_def valid_pti'_def if_apply_def2 | rule hoare_drop_imp)+)[15] apply (clarsimp simp: linorder_not_le isCap_simps cte_wp_at_ctes_of) apply (frule eq_arch_update') apply (case_tac option; clarsimp) apply (drule_tac t="cteCap ctea" in sym, simp) apply (clarsimp simp: is_arch_update'_def isCap_simps valid_cap'_def capAligned_def) apply (thin_tac "Ball S P" for S P)+ apply (drule ctes_of_valid', fastforce)+ apply (clarsimp simp: valid_cap'_def ptBits_def is_aligned_addrFromPPtr_n invs_valid_objs' and_not_mask[symmetric] pteBits_def) apply (erule order_le_less_trans[rotated]) apply (rule word_and_le2) apply (simp add: valid_cap'_def capAligned_def) apply (simp add: decodeARMMMUInvocation_def ARM_H.decodeInvocation_def isCap_simps Let_def) apply (cases "ARM_H.isPDFlushLabel (invocation_type label)"; simp) apply (cases args; wpsimp simp: valid_arch_inv'_def) apply wp done crunch nosch[wp]: setMRs "\<lambda>s. P (ksSchedulerAction s)" (ignore: getRestartPC setRegister transferCapsToSlots wp: hoare_drop_imps hoare_vcg_split_case_option mapM_wp' simp: split_def zipWithM_x_mapM) crunch nosch [wp]: performARMMMUInvocation "\<lambda>s. P (ksSchedulerAction s)" (wp: crunch_wps getObject_cte_inv getASID_wp) lemmas setObject_cte_st_tcb_at' [wp] = setCTE_pred_tcb_at' [unfolded setCTE_def] crunch st_tcb_at': performPageDirectoryInvocation, performPageTableInvocation, performPageInvocation, performASIDPoolInvocation "st_tcb_at' P t" (wp: crunch_wps getASID_wp getObject_cte_inv simp: crunch_simps) lemmas arch_finalise_cap_aligned' = finaliseCap_aligned' lemmas arch_finalise_cap_distinct' = finaliseCap_distinct' crunch st_tcb_at' [wp]: "Arch.finaliseCap" "st_tcb_at' P t" (wp: crunch_wps getASID_wp simp: crunch_simps) lemma invs_asid_table_strengthen': "invs' s \<and> asid_pool_at' ap s \<and> asid \<le> 2 ^ asid_high_bits - 1 \<longrightarrow> invs' (s\<lparr>ksArchState := armKSASIDTable_update (\<lambda>_. (armKSASIDTable \<circ> ksArchState) s(asid \<mapsto> ap)) (ksArchState s)\<rparr>)" apply (clarsimp simp: invs'_def valid_state'_def) apply (rule conjI) apply (clarsimp simp: valid_global_refs'_def global_refs'_def) apply (clarsimp simp: valid_arch_state'_def) apply (clarsimp simp: valid_asid_table'_def ran_def) apply (rule conjI) apply (clarsimp split: if_split_asm) apply fastforce apply (rule conjI) apply (clarsimp simp: valid_pspace'_def) apply (simp add: valid_machine_state'_def) done lemma ex_cte_not_in_untyped_range: "\<lbrakk>(ctes_of s) cref = Some (CTE (capability.UntypedCap d ptr bits idx) mnode); descendants_of' cref (ctes_of s) = {}; invs' s; ex_cte_cap_wp_to' (\<lambda>_. True) x s; valid_global_refs' s\<rbrakk> \<Longrightarrow> x \<notin> {ptr .. ptr + 2 ^ bits - 1}" apply clarsimp apply (drule(1) cte_cap_in_untyped_range) apply (fastforce simp:cte_wp_at_ctes_of)+ done lemma performASIDControlInvocation_invs' [wp]: "\<lbrace>invs' and ct_active' and valid_aci' aci\<rbrace> performASIDControlInvocation aci \<lbrace>\<lambda>y. invs'\<rbrace>" apply (rule hoare_name_pre_state) apply (clarsimp simp: performASIDControlInvocation_def valid_aci'_def placeNewObject_def2 cte_wp_at_ctes_of split: asidcontrol_invocation.splits) apply (rename_tac w1 w2 w3 w4 cte ctea idx) apply (case_tac ctea) apply (clarsimp) apply (frule ctes_of_valid_cap') apply fastforce apply (rule hoare_pre) apply (wp hoare_vcg_const_imp_lift) apply (strengthen invs_asid_table_strengthen') apply (wp cteInsert_simple_invs) apply (wp createObjects'_wp_subst[OF createObjects_no_cte_invs [where sz = pageBits and ty="Inl (KOArch (KOASIDPool pool))" for pool]] createObjects_orig_cte_wp_at'[where sz = pageBits] hoare_vcg_const_imp_lift |simp add: makeObjectKO_def projectKOs asid_pool_typ_at_ext' valid_cap'_def cong: rev_conj_cong |strengthen safe_parent_strg'[where idx= "2^ pageBits"])+ apply (rule hoare_vcg_conj_lift) apply (rule descendants_of'_helper) apply (wp createObjects_null_filter' [where sz = pageBits and ty="Inl (KOArch (KOASIDPool ap))" for ap] createObjects_valid_pspace' [where sz = pageBits and ty="Inl (KOArch (KOASIDPool ap))" for ap] | simp add: makeObjectKO_def projectKOs asid_pool_typ_at_ext' valid_cap'_def cong: rev_conj_cong)+ apply (simp add: objBits_simps archObjSize_def valid_cap'_def capAligned_def range_cover_full) apply (wp createObjects'_wp_subst[OF createObjects_ex_cte_cap_to[where sz = pageBits]] createObjects_orig_cte_wp_at'[where sz = pageBits] hoare_vcg_const_imp_lift |simp add: makeObjectKO_def projectKOs asid_pool_typ_at_ext' valid_cap'_def cong: rev_conj_cong |strengthen safe_parent_strg'[where idx = "2^ pageBits"])+ apply (simp add:asid_pool_typ_at_ext'[symmetric]) apply (wp createObject_typ_at') apply (simp add: objBits_simps archObjSize_def valid_cap'_def capAligned_def range_cover_full makeObjectKO_def projectKOs asid_pool_typ_at_ext' cong: rev_conj_cong) apply (clarsimp simp:conj_comms descendants_of_null_filter' | strengthen invs_pspace_aligned' invs_pspace_distinct' invs_pspace_aligned' invs_valid_pspace')+ apply (wp updateFreeIndex_forward_invs' updateFreeIndex_cte_wp_at updateFreeIndex_pspace_no_overlap' updateFreeIndex_caps_no_overlap'' updateFreeIndex_descendants_of2 updateFreeIndex_caps_overlap_reserved updateCap_cte_wp_at_cases static_imp_wp getSlotCap_wp)+ apply (clarsimp simp:conj_comms ex_disj_distrib is_aligned_mask | strengthen invs_valid_pspace' invs_pspace_aligned' invs_pspace_distinct' empty_descendants_range_in')+ apply (wp deleteObjects_invs'[where p="makePoolParent aci"] hoare_vcg_ex_lift deleteObjects_caps_no_overlap''[where slot="makePoolParent aci"] deleteObject_no_overlap deleteObjects_cap_to'[where p="makePoolParent aci"] deleteObjects_ct_active'[where cref="makePoolParent aci"] deleteObjects_descendants[where p="makePoolParent aci"] deleteObjects_cte_wp_at' deleteObjects_null_filter[where p="makePoolParent aci"]) apply (frule valid_capAligned) apply (clarsimp simp: invs_mdb' invs_valid_pspace' capAligned_def cte_wp_at_ctes_of is_simple_cap'_def isCap_simps) apply (strengthen refl ctes_of_valid_cap'[mk_strg I E]) apply (clarsimp simp: conj_comms invs_valid_objs') apply (frule_tac ptr="w1" in descendants_range_caps_no_overlapI'[where sz = pageBits]) apply (fastforce simp: cte_wp_at_ctes_of) apply (simp add:empty_descendants_range_in') apply (frule(1) if_unsafe_then_capD'[OF _ invs_unsafe_then_cap',rotated]) apply (fastforce simp:cte_wp_at_ctes_of) apply (drule ex_cte_not_in_untyped_range[rotated -2]) apply (simp add:invs_valid_global')+ apply (drule ex_cte_not_in_untyped_range[rotated -2]) apply (simp add:invs_valid_global')+ apply (subgoal_tac "is_aligned (2 ^ pageBits) minUntypedSizeBits") prefer 2 apply (rule is_aligned_weaken) apply (rule is_aligned_shiftl_self[unfolded shiftl_t2n,where p = 1,simplified]) apply (simp add: pageBits_def minUntypedSizeBits_def) apply (frule_tac cte="CTE (capability.UntypedCap False a b c) m" for a b c m in valid_global_refsD', clarsimp) apply (simp add: Int_commute) by (auto simp:empty_descendants_range_in' objBits_simps max_free_index_def archObjSize_def asid_low_bits_def word_bits_def pageBits_def range_cover_full descendants_range'_def2 is_aligned_mask null_filter_descendants_of'[OF null_filter_simp'] valid_cap_simps' mask_def)+ lemma doFlush_underlying_memory[wp]: "\<lbrace> \<lambda>m'. underlying_memory m' p = um \<rbrace> doFlush flush_type vstart vend pstart \<lbrace> \<lambda>_ m'. underlying_memory m' p = um \<rbrace>" unfolding doFlush_def by(cases flush_type; wpsimp) (* FIXME: move *) lemma dmo_invs'_simple: "no_irq f \<Longrightarrow> (\<And>p um. \<lbrace>\<lambda>m'. underlying_memory m' p = um\<rbrace> f \<lbrace>\<lambda>_ m'. underlying_memory m' p = um\<rbrace>) \<Longrightarrow> \<lbrace> invs' \<rbrace> doMachineOp f \<lbrace> \<lambda>y. invs' \<rbrace>" by (rule hoare_pre, rule dmo_invs', wp no_irq, simp_all add:valid_def split_def) (* FIXME: move *) lemma doFlush_invs[wp]: "\<lbrace> invs' \<rbrace> doMachineOp (doFlush flush_type vstart vend pstart) \<lbrace> \<lambda>y. invs' \<rbrace>" by(wp dmo_invs'_simple) lemma performPageDirectoryInvocation_invs'[wp]: "\<lbrace> invs' \<rbrace> performPageDirectoryInvocation pdi \<lbrace> \<lambda>rv. invs' \<rbrace>" by(cases pdi, simp_all add:performPageDirectoryInvocation_def, (wp|simp)+) lemma arch_performInvocation_invs': "\<lbrace>invs' and ct_active' and valid_arch_inv' invocation\<rbrace> Arch.performInvocation invocation \<lbrace>\<lambda>rv. invs'\<rbrace>" unfolding ARM_H.performInvocation_def by (cases invocation, simp_all add: performARMMMUInvocation_def valid_arch_inv'_def, (wp|simp)+) end end
# Covid-19: From model prediction to model predictive control ## A demo of the deterministic and stochastic, national-level, age-stratified modeling framework *Original code by Ryan S. McGee. Modified by T.W. Alleman in consultation with the BIOMATH research unit headed by prof. Ingmar Nopens.* Copyright (c) 2020 by T.W. Alleman, BIOMATH, Ghent University. All Rights Reserved. In `src/covid19model/models.py`, two national-level extended SEIRD compartmental models are coded, 1. COVID19_SEIRD: a deterministic model, using ordinary differential equations (ODEs). The equations are integrated using Scipy's `odeint` with a variable timestep, it is a 'continuous-time' model. 2. COVID19_SEIRD_sto: a stochastic model, using stochastic difference equations (SDEs). The equations are iterated using a fixed timestep of one day and is said to be a 'discrete-time' model. The deterministic model was used for all results detailed in our first COVID-19 related preprint: *A deterministic, age-stratified, extended SEIRD model for assessing the effect of non-pharmaceutical interventions on SARS-CoV-2 spread in Belgium*, which can be found here: https://www.medrxiv.org/content/10.1101/2020.07.17.20156034v2 The documentation given in this tutorial has been redrafted from the above preprint. References have been omitted for the sake of simplicity. ```python import numpy as np import matplotlib import matplotlib.pyplot as plt import matplotlib.dates as mdates import pandas as pd import datetime import scipy import json import random ``` Load the covid 19 custom development code ```python from covid19model.optimization import objective_fcns from covid19model.models import models from covid19model.data import google, sciensano, polymod, model_parameters from covid19model.visualization.output import population_status, infected from covid19model.visualization.optimization import plot_fit, traceplot ``` ```python # OPTIONAL: Load the "autoreload" extension so that package code can change %load_ext autoreload # OPTIONAL: always reload modules so that as you change code in src, it gets loaded %autoreload 2 ``` ## Introduction ### Model dynamics The SEIR(D) model was first proposed in 1929 by two Scottish scientists. It is a compartmental model that subdivides the human population into four groups: 1) susceptible individuals, 2) exposed individuals in the latent phase 1, 3) infectious individuals capable of transmitting the disease and 4) individuals removed from the population either through immunization or death. Despite being a simple and idealized reality, the SEIR(D) dynamics are used extensively to predict the outbreak of infectious diseases and this was no different during the SARS-CoV-2 outbreak earlier this year. In this work, we extend the SEIRD model to incorporate more expert knowledge on SARS-CoV-2. For that purpose, the infectious compartment is split into four parts. The first is a period of presymptomatic infectiousness because several studies have shown that pre-symptomatic transmission is a dominant transmission mechanism of SARS-CoV-2. After the period of pre-symptomatic transmission, three possible infectious outcomes are modeled: (1) Asymptomatic outcome, for individuals who show no symptoms at all, (2) Mild outcome, for individuals with mild symptoms who recover at home, and (3) Hospitalization, when mild symptoms worsen. Children and young adults have a high propensity to experience an asymptomatic or mild outcome, while older individual have a high propensity to be hospitalized. In general, Belgian hospitals have two wards for COVID-19 patients: 1) Cohort, where patients are not monitored permanently and 2) Intensive care, for patients with the most severe symptoms. Intensive care includes permanent monitoring, the use of ventilators or the use of extracorporeal membrane oxygenation (ECMO). Patients generally spend limited time in the emergency room and/or in a buffer ward before going to Cohort. After spending limited time in Cohort, some patients are transferred to ICU. Patients can perish in both wards, but mortalities are generally lower in Cohort. After a stay in an ICU, patients return to Cohort for recovery in the hospital. During the recovery stay, mortality is limited. The above is a short summary of hospital dynamics based on interviewing Ghent University hospital staff and examining the hospital data. ### Model framework and equations #### Age-stratification We introduced heterogeneity in the deterministic implementation by means of age-stratification. Every population compartment is split into a number of age classes, the age-groups have different contact rates with other age-groups and the disease progresses differently for each age-group, making the model behaviour more realistic. Our age-stratified model consists of 9 age classes, i.e., [0-10[, [10-20[, [20-30[, [30-40[, [40-50[, [50-60[, [60-70[, [70-80[, [80- $\infty$[. The age-stratified implementation provides a good balance between added complexity and computational resources. #### Deterministic framework Our extended SEIRD model is implemented using two frameworks: a deterministic and a stochastic framework. The deterministic equations are obtained by writing down the following equation, `rate of change = in - out`, for every of the 11 population compartments. This results in the following system of coupled ordinary differential equations, \begin{eqnarray} \dot{S_i} &=& - \beta s_i \sum_{j=1}^{N} N_{c,ij} S_j \Big( \frac{I_j+A_j}{T_j} \Big) + \zeta R_i, \label{eq:system1} \\ \dot{E_i} &=& \beta s_i \sum_{j=1}^{N} N_{c,ij} S_j \Big( \frac{I_j+A_j}{T_j} \Big) - (1/\sigma) \cdot E_i, \label{eq:system2} \\ \dot{I_i} &=& (1/\sigma) E_i - (1/\omega) I_i, \label{eq:system3}\\ \dot{A_i} &=& (\text{a}_i/\omega) I_i - (1/d_{\text{a}}) A_i, \label{eq:system4}\\ \dot{M_i} &=& ((1-\text{a}_i) / \omega ) I_i - ( (1-h_i)/d_m + h_i/d_{\text{hospital}} ) M_i,\label{eq:system5} \\ \dot{ER_i} &=& (h_i/d_{\text{hospital}}) M_i - (1/d_{\text{ER}}) ER_i, \label{eq:system6} \\ \dot{C_i} &=& c_i (1/d_{\text{ER}}) ER_i - (m_{C, i}/d_{c,D}) C_i - ((1 - m_{C, i})/d_{c,R}) C_i, \label{eq:system7} \\ \dot{ICU_i} &=& (1-c_i) (1/d_{\text{ER}}) ER_i - (m_{ICU,i}/d_{\text{ICU},D}) ICU_i \label{eq:system8} \\ && - ((1-m_{ICU,i})/d_{\text{ICU},R}) ICU_i, \label{eq:system9}\\ \dot{C}_{\text{ICU,rec,i}} &=& ((1-m_{ICU,i})/d_{\text{ICU},R}) ICU_i - (1/d_{\text{ICU,rec}}) C_{\text{ICU,rec,i}}, \label{eq:system10}\\ \dot{D_i} &=& (m_{ICU,i}/d_{\text{ICU},D}) ICU_i + (m_{C,i}/d_{\text{c},D}) C_i , \label{eq:system11}\\ \dot{R_i} &=& (1/d_a) A_i + ((1-h_i)/d_m) M_i + ((1-m_{C,i})/d_{c,R}) C_i \\ && + (1/d_{\text{ICU,rec}}) C_{\text{ICU,rec,i}} - \zeta R_i \label{eq:system13}, \end{eqnarray} for $i = 1,2,...,9$. Here, $T_i$ stands for total population, $S_i$ stands for susceptible, $E_i$ for exposed, $I_i$ for pre-symptomatic and infectious, $A_i$ for asymptomatic and infectious, $M_i$ for mildly symptomatic and infectious, $ER_i$ for emergency room and/or buffer ward, $C_i$ for cohort, $C_{\text{ICU,rec,i}}$ for a recovery stay in Cohort coming from Intensive Care, $ICU_i$ for Intensive Care Unit, $D_i$ for dead and $R_i$ for recovered. Using the above notation, all model states are 9x1 vectors, $$ \mathbf{S} = [S_1(t)\ S_2(t)\ ...\ S_i(t)]^T, $$ where $S_i(t)$ denotes the number of susceptibles in age-class i at time t after the introduction of the virus in the population. These equations are implemented in the function `COVID19_SEIRD` located in `src/covid19model/models.py`. The integration is performed in `_sim_single` located in `src/covid19model/base.py` by using Scipy's `solve_ivp`. The integrator timestep depends on the rate of change of the system and the solver method is thus referred to as a 'continuous-time' solver. The implementation uses non-integer individuals. #### Stochastic framework By defining the probabilities of transitioning (propensities) from one state to another, a system of coupled stochastic difference equations (SDEs) can be obtained. The probability to transition from one state to another is assumed to be exponentially distributed. As an example, consider the average time a patient spends in an ICU when recovering, which is $d_{\text{ICU,R}} = 9.9$ days. The chances of survival in ICU are $(1-m_{\text{ICU,i}})$, where $m_{\text{ICU,i}}$ is the mortality in ICU for an individual in age group $i$. The probability of transitioning from state ICU to state $C_{\text{ICU,rec}}$ on any given day and for an individual in age group $i$ is, \begin{equation} P(ICU_i \rightarrow C_{\text{ICU,rec,i}}) = 1 - \text{exp} \Bigg[ - \frac{1-m_{\text{ICU},i}}{d_{\text{ICU,R}}}\Bigg]. \end{equation} If a transitioning between states is defined as "succes", we can regard the number of individuals transitioning from ICU to a Cohort recovery ward as a binomial experiment. On a given day, the number of individuals transitioning is, \begin{equation} (\text{ICU}_i \rightarrow C_{\text{ICU,rec,i}})(k) \sim \text{Binomial}\Bigg(\text{ICU}_i(k),\ 1 - \text{exp}\Bigg[- \frac{1-m_{\text{ICU,i}}}{d_{\text{ICU,R}}}\Bigg]\Bigg). \end{equation} For a discrete stepsize $l$, there are 15 possible transitions, \begin{eqnarray} (S_i \rightarrow E_i) (k) &\sim& \text{Binomial}\Bigg(S_i(k), 1 - \text{exp}\Bigg[- l \beta s_i \sum_{j=1}^{N} N_{c,ij} S_j \Big( \frac{I_j+A_j}{T_j} \Big) \Bigg]\Bigg)\\ (E_i \rightarrow I_i) (k) &\sim& \text{Binomial}\Bigg(E_i(k), 1 - \text{exp}\Bigg[- l\ \frac{1}{\sigma}\Bigg]\Bigg)\\ (I_i \rightarrow A_i) (k) &\sim& \text{Binomial}\Bigg(I_i(k), 1 - \text{exp}\Bigg[- l\ \frac{a_i}{\omega}\Bigg]\Bigg)\\ (I_i \rightarrow M_i) (k) &\sim& \text{Binomial}\Bigg(I_i(k), 1 - \text{exp}\Bigg[- l\ \frac{1-a_i}{\omega}\Bigg]\Bigg)\\ (A_i \rightarrow R_i) (k) &\sim& \text{Binomial}\Bigg(A_i(k), 1 - \text{exp}\Bigg[- l\ \frac{1}{d_a}\Bigg]\Bigg)\\ (M_i \rightarrow R_i) (k) &\sim& \text{Binomial}\Bigg(M_i(k), 1 - \text{exp}\Bigg[- l\ \frac{1-h_i}{d_m}\Bigg]\Bigg)\\ (M_i \rightarrow ER_i) (k) &\sim& \text{Binomial}\Bigg(M_i(k), 1 - \text{exp}\Bigg[- l\ \frac{h_i}{d_{\text{hospital}}}\Bigg]\Bigg)\\ (ER_i \rightarrow C_i) (k) &\sim& \text{Binomial}\Bigg(ER_i(k), 1 - \text{exp}\Bigg[- l\ \frac{c_i}{d_{\text{ER}}}\Bigg]\Bigg)\\ (ER_i \rightarrow ICU_i) (k) &\sim& \text{Binomial}\Bigg(ER_i(k), 1 - \text{exp}\Bigg[- l\ \frac{1-c_i}{d_{\text{ER}}}\Bigg]\Bigg)\\ (C_i \rightarrow R_i) (k) &\sim& \text{Binomial}\Bigg(C_i(k), 1 - \text{exp}\Bigg[- l\ \frac{1-m_{C,i}}{d_{C,R}}\Bigg]\Bigg)\\ (ICU_i \rightarrow C_{\text{ICU,rec,i}}) (k) &\sim& \text{Binomial}\Bigg(ICU_i(k), 1 - \text{exp}\Bigg[- l\ \frac{1-m_{\text{ICU,i}}}{d_{ICU,R}}\Bigg]\Bigg)\\ (C_{\text{ICU,rec,i}} \rightarrow R_i) (k) &\sim& \text{Binomial}\Bigg(C_{\text{ICU,rec,i}}(k), 1 - \text{exp}\Bigg[- l\ \frac{1}{d_{\text{ICU,rec}}}\Bigg]\Bigg)\\ (C_i \rightarrow D_i) (k) &\sim& \text{Binomial}\Bigg(C_i(k), 1 - \text{exp}\Bigg[- l\ \frac{m_{C,i}}{d_{C,D}}\Bigg]\Bigg)\\ (ICU_i \rightarrow D_i) (k) &\sim& \text{Binomial}\Bigg(ICU_i(k), 1 - \text{exp}\Bigg[- l\ \frac{m_{\text{ICU,i}}}{d_{\text{ICU,D}}}\Bigg]\Bigg)\\ (R_i \rightarrow S_i) (k) &\sim& \text{Binomial}\Bigg(R_i(k), 1 - \text{exp}\Bigg[- l\ \zeta \Bigg]\Bigg)\\ \end{eqnarray} And the system of equations becomes, \begin{eqnarray} S_i(k+1) &=& S_i(k) + (R_i \rightarrow S_i) (k) - (S_i \rightarrow E_i) (k) \\ E_i(k+1) &=& E_i(k) + (S_i \rightarrow E_i) (k) - (E_i \rightarrow I_i) (k) \\ I_i(k+1) &=& I_i(k) + (E_i \rightarrow I_i) (k) - (I_i \rightarrow A_i) - (I_i \rightarrow M_i) (k) \\ A_i(k+1) &=& A_i(k) + (I_i \rightarrow A_i) (k) - (A_i \rightarrow R_i) (k) \\ M_i(k+1) &=& M_i(k) + (I_i \rightarrow M_i) (k) - (M_i \rightarrow R_i) (k) - (M_i \rightarrow ER_i) (k) \\ ER_i(k+1) &=& ER_i(k) + (M_i \rightarrow ER_i) (k) - (ER_i \rightarrow C_i) (k) - (ER_i \rightarrow ICU_i) (k) \\ C_i(k+1) &=& C_i(k) + (ER_i \rightarrow C_i) (k) - (C_i \rightarrow R_i) (k) - (C_i \rightarrow D_i) (k) \\ C_{\text{ICU,rec,i}}(k+1) &=& C_{\text{ICU,rec,i}}(k) + (ICU_i \rightarrow C_{\text{ICU,rec,i}}) (k) - (C_{\text{ICU,rec,i}} \rightarrow R_i) (k) \\ R_i(k+1) &=& R_i(k) + (A_i \rightarrow R_i) (k) + (M_i \rightarrow R_i) (k) + (C_i \rightarrow R_i) (k) + (C_{\text{ICU,rec,i}} \rightarrow R_i) (k) - (R_i \rightarrow S_i) (k) \\ D_i(k+1) &=& D_i(k) + (ICU_i \rightarrow D_i) (k) + (C_i \rightarrow D_i) (k) \\ \end{eqnarray} These equations are implemented in the function `COVID19_SEIRD_sto` located in `src/covid19model/models.py`. The computation itself is performed in the function `solve_discrete` located in `src/covid19model/base.py`. Please note that the deterministic model uses **differentials** in the model defenition and must be integrated, while the stochastic model uses **differences** and must be iterated. The discrete timestep is fixed at one day. The stochastic implementation only uses integer individuals, which is considered an advantage over the deterministic implementation. ### Transmission rate and social contact data In our model, the transmission rate of the disease depends on the product of four contributions. The first contribution, $(I+A)/T$, is the fraction of contagious individuals in the population. The second contribution, $\mathbf{N}_c$, is the average number of human-to-human interactions per day. The third contribution, $s_i$, is the relative susceptiblity to SARS-CoV-2 infection in age group $i$, and the fourth contribution, $\beta$, is the probability of contracting COVID-19 when encountering a contagious individual under the assumption of 100 \% susceptibility to SARS-CoV-2 infection. We assume that the per contact transmission probability $\beta$ is independent of age and we will infer its distribution by calibrating the model to national Belgian hospitalization data. The number of human-human interactions, $\mathbf{N}_c$, are both place and age-dependent. These matrices assume the form of a 9x9 *interaction matrix* where an entry X, Y denotes the number of social contacts age group X has with age group Y per day. These matrices are available for homes, schools, workplaces, in public transport, and leisure activities, from a survey study by Lander Willem (2012). The total number of social interactions is given by the sum of the contributions in different places, \begin{equation}\label{eq:interaction_matrices} \mathbf{N_{\text{c}}} = \mathbf{N_{\text{c, home}}} + \mathbf{N_{\text{c, schools}}} + \mathbf{N_{\text{c, work}}} + \mathbf{N_{\text{c, transport}}} + \mathbf{N_{\text{c, leisure}}} + \mathbf{N_{\text{c, others}}} \end{equation} https://lwillem.shinyapps.io/socrates_rshiny/ ```python # Load the interaction matrices (size: 9x9) initN, Nc_home, Nc_work, Nc_schools, Nc_transport, Nc_leisure, Nc_others, Nc_total = polymod.get_interaction_matrices() # Define the number of age categories levels = initN.size ``` The coefficients of the contact matrices in different places can be altered to model a goverment policy. For instance, to model the Belgian lockdown, the mobility reductions deduced from the Google community mobility reports were used as coefficients for the different interaction matrices. We assumed workplace interactions were down to only 40 % of their prepandemic values before the lockdown. https://www.google.com/covid19/mobility/ Our code has built-in functionality to download an visualize these mobility reports. To do so, simply run the following code: ```python df_google = google.get_google_mobility_data(update=False, plot=True) ``` ### Social interatia The model takes into account the effect of *social inertia* when measures are taken. In reality, social restrictions or relaxations represent a change in behaviour which is gradual and cannot be modeled using a step-wise change of the social interaction matrix $\mathbf{N_c}$. This can be seen when closely inspecting the *Google community mobility report* above. Multiple functions can be used to model the effects of social compliance, e.g. a delayed or non-delayed ramp, or a logistic function. In our model, we use a delayed ramp to model compliance, \begin{equation} \mathbf{N_{c}}^{k} = \mathbf{N_{\text{c, old}}} + f^{k} (\mathbf{N_{\text{c, new}}} - \mathbf{N_{\text{c, old}}}) \end{equation} where, \begin{equation} f^k= \begin{cases} 0.0,& \text{if } k\leq \tau\\ \frac{k}{l} - \frac{\tau}{l},& \text{if } \tau < k\leq \tau + l\\ 1.0, & \text{otherwise} \end{cases} \end{equation} where $\tau$ is the number of days before measures start having an effect and $l$ is the number of additional days after the time delay until full compliance is reached. Both parameters were calibrated to the daily number of hospitalizations in Belgium (notebooks `notebooks/0.1-twallema-calibration-deterministic.ipynb` and `notebooks/0.1-twallema-calibration-stochastic.ipynb`). $k$ denotes the number of days since a change in social policy. ```python # Load the compliance model from covid19model.models.compliance import ramp_2 ``` ### Basic reproduction number The basic reproduction number $R_0$, defined as the expected number of secondary cases directly generated by one case in a population where all individuals are susceptible to infection, is computed using the next generation matrix (NGM) approach introducted by Diekmann. For our model, the basic reproduction number of age group $i$ is, \begin{equation}\label{eq:reproduction_number} R_{0,i} = (a_i d_a + \omega) \beta s_i \sum_{j=1}^{N} N_{c,ij} \end{equation} and the population basic reproduction number is calculated as the weighted average over all age groups using the demographics of Belgium. The detailed algebra underlying the computation equation of the basic reproduction number is presented in the supplementary materials of our manuscript (https://www.medrxiv.org/content/10.1101/2020.07.17.20156034v2). ### Model parameters ## Simulations with the deterministic model ### Model initialization ```python # Load the model parameters using `get_COVID19_SEIRD_parameters()`. params = model_parameters.get_COVID19_SEIRD_parameters() # Add the delayed ramp parameters to the parameter dictionary to use compliance. params.update({'l': 1, 'tau': 5}) # Define the initial condition: one exposed inidividual in every age category initial_states = {'S': initN, 'E': np.ones(levels)} # Initialize the model model = models.COVID19_SEIRD(initial_states, params, compliance=ramp_2) ``` ### Load posterior parameter distributions of calibrated parameters Both the deterministic and stochastic model were calibrated to the national hospitalization data provided by the Scientific Institute of Public Health (Sciensano). The parameters $\beta$, $l$, $\tau$ and $\Omega$ were calibrated. The aim of such a calibration is to obtain a parameter set which leads to a good agreement between the model predictions and the experimental data. Five timeseries starting on Sunday, March 15th, 2020 have been made publically available by the Belgian Scientific Institute of Public Health (Sciensano), - the total number of patients in the hospitals ($H_{\text{tot}}$) - the total number of patients in ICU ($ICU_{\text{tot}}$) - the daily hospitalizations ($H_{\text{in}}$) - the daily hospital discharges ($H_{\text{out}}$) - the daily number of deaths ($D_{\text{new}}$) We assume the timeseries are independent and identically distributed (i.d.d.) sequences of normal random variables having a mean $\hat{y}(k)$ and an unknown variance $\hat{\sigma}^2$. The resulting log-likelihood function is, \begin{equation} \ln \big( P( y \mid \mathbf{\hat{\theta}}) \big) = - \frac{1}{2} \sum_{k=1}^{N} \Bigg[ \frac{\big(y(k) - \hat{y}(k, \mathbf{\hat{\theta}})\big)^2}{\hat{\sigma}^2} + \ln\big(2 \pi \hat{\sigma}^2\big) \Bigg]\ , \end{equation} where $\mathbf{\hat{\theta}}$ and $\hat{\sigma}^2$ are computed to maximize the log-likelihood function. The fitting procedure is performed in two steps. First, the transmission parameter $\beta$ is calibrated using the daily hospitalizations from March 15th, 2020 until March 22nd, 2020. These data are used because they do not depend on the durations of the hospitalizations, $d_c$ and $d_{\text{ICU}}$, which are computed from the limited and imperfect hospital dataset. In addition to the calibration of the transmission parameter $\beta$, the number of days between the first infectious individuals entering the country and the onset of data collection (March 15th, 2020) must be estimated. The latter is denoted as excess time, $t_e$. Second, the daily hospitalizations ($H_{\text{in}}$) from March 15th, 2020 until April 20th, 2020 were used to infer the slope of the compliance ramp ($l$), as well as the effect of prevention measures and *network* effects in the workplace and on public transport ($\Omega$). We performed the above optimizations in two steps. First, we used a particle swarm optimization (PSO) algorithm to scan the parameter space and find the global maximum likelihood. We then used the obtained maximum-likelihood estimates as initial values for the ensemble sampler for Markov Chain Monte Carlo (MCMC) proposed by Goodman 2010. For all parameters, uniform prior distributions were used. The sampler was always run on $2n$ parallel chains, were $n$ was the number of parameters to be sampled from the posterior distributions. For each chain, we drew at least 50-fold more samples than the autocorrelation time. Next, we visualised the samples using the scatterplot matrix proposed by Foreman (2016), further referred to as *cornerplot*. In these visualizations, each one- and two-dimensional projection of the sample is plotted to reveal correlations. During each step of the optimization procedure, previously sampled parameters were propagated. The calibration can be found in the notebook `notebooks/0.1-twallema-calibration-deterministic.ipynb`. The posterior samples of the calibrated parameters can be found in `data/interim/model_parameters/deterministic_22072020.json`. ```python # Scrape the publically available data from the Scientific institute of Public Health (Sciensano) df_sciensano = sciensano.get_sciensano_COVID19_data(update=False) df_sciensano.tail() ``` <div> <style scoped> .dataframe tbody tr th:only-of-type { vertical-align: middle; } .dataframe tbody tr th { vertical-align: top; } .dataframe thead th { text-align: right; } </style> <table border="1" class="dataframe"> <thead> <tr style="text-align: right;"> <th></th> <th>H_tot</th> <th>ICU_tot</th> <th>H_in</th> <th>H_out</th> <th>H_tot_cumsum</th> <th>D_tot</th> <th>D_25_44</th> <th>D_45_64</th> <th>D_65_74</th> <th>D_75_84</th> <th>D_85+</th> </tr> <tr> <th>DATE</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> </tr> </thead> <tbody> <tr> <th>2020-08-06</th> <td>278</td> <td>65</td> <td>28</td> <td>39</td> <td>687</td> <td>2</td> <td>0.0</td> <td>0.0</td> <td>0</td> <td>1.0</td> <td>1</td> </tr> <tr> <th>2020-08-07</th> <td>285</td> <td>69</td> <td>27</td> <td>28</td> <td>686</td> <td>4</td> <td>0.0</td> <td>0.0</td> <td>0</td> <td>1.0</td> <td>3</td> </tr> <tr> <th>2020-08-08</th> <td>281</td> <td>67</td> <td>31</td> <td>39</td> <td>678</td> <td>2</td> <td>0.0</td> <td>0.0</td> <td>0</td> <td>2.0</td> <td>0</td> </tr> <tr> <th>2020-08-09</th> <td>285</td> <td>69</td> <td>20</td> <td>14</td> <td>684</td> <td>4</td> <td>1.0</td> <td>0.0</td> <td>0</td> <td>1.0</td> <td>2</td> </tr> <tr> <th>2020-08-10</th> <td>312</td> <td>73</td> <td>33</td> <td>12</td> <td>705</td> <td>3</td> <td>0.0</td> <td>1.0</td> <td>1</td> <td>0.0</td> <td>1</td> </tr> </tbody> </table> </div> ```python # Load the dictionary containing the posterior parameter distributions obtained from calibrating the model to Belgian hospitalization data with open('../../data/interim/model_parameters/deterministic_22072020.json', 'r') as fp: samples_dict = json.load(fp) lag_time = samples_dict['lag_time'] model.extraTime = samples_dict['lag_time'] model.parameters['beta'] = np.mean(samples_dict['beta']) model.parameters['l'] = np.mean(samples_dict['l']) model.parameters['tau'] = np.mean(samples_dict['tau']) prevention = np.mean(samples_dict['prevention']) ``` ### Simulating A simulation is run by using the attribute function *sim*, which uses one argument, the simulation time, as its input. ```python out=model.sim(100) ``` ['Nc', 'time'] #### Extracting model output The output format of the deterministic and stochastic model are an `xarray` dataset. This flexible python package introduces labels in the form of dimensions, coordinates and attributes on top of raw NumPy-like arrays. Relevant to our work are the coordinates, 1. 'stratification': the nine different age groups used in the model. 2. 'time': simulation time and the data variables, which are the 11 model states (S,E,I,...,R,D). Future work will include a spatial extension, which will simply use a new coordinate 'NIS'. ```python out ``` As an example of output handling, consider the following simple code snippet. Here, the total number of patients in Belgian ICUs over time is given. Summing over all age groups is simple. ```python plt.plot(out['time'],out['ICU'].sum(dim='stratification')) ``` #### Visualizing the results using builtin methods Two custom visualization routines are included in `src/covid19model/visualization/output.py` for rapid prototyping, `infected` and `population_status`. For more details, we refer to the docstring in the aforementioned python script. ```python infected(out) population_status(out) ``` #### The use of checkpoints to change parameters on the fly A cool feature of the original SEIRSplus package by Ryan McGee was the use of so-called *checkpoints* dictionary to change simulation parameters on the fly. In our modification, this feature is preserved. Below you can find an example of a *checkpoints* dictionary. The simulation will be started with the previously initialised parameters. After 55 days, social interaction will be limited by changing the interaction matrx $\mathbf{N_c}$ to home contacts only. On day 100, social restrictions are lifted and beta once more assumes its *business-as-usual* value. ```python # Create checkpoints dictionary chk = {'time': [55,100], 'Nc': [Nc_home,Nc_total] } # Run simulation out=model.sim(130,checkpoints=chk) # Visualise the results population_status(out) infected(out) ``` #### Using posterior samples from previously calibrated parameters to quantify uncertainty ```python fig,ax=plt.subplots() for i in range(200): # Draw a paramter value from the dictionary of posterior samples for beta, l and tau (fitted parameters). model.parameters['beta'] = np.random.choice(samples_dict['beta'],1,replace=False) # Correlation exists between l, tau and prevention. Thus we must use the same index to ensure we are drawing trios from the posterior distribution! idx,model.parameters['l'] = random.choice(list(enumerate(samples_dict['l']))) model.parameters['tau'] = samples_dict['tau'][idx] prevention = samples_dict['prevention'][idx] # Perform simulation out=model.sim(130,checkpoints=chk) # Visualise the results infected(out,ax=ax,alpha=0.02) ``` ## Simulations with the stochastic model ### Model initialization When initializing the stochastic model, a flag `discrete` must be used to switch from the integrator to the iterator. ```python # Load the parameters using `get_COVID19_SEIRD_parameters()`. params = parameters.get_COVID19_SEIRD_parameters() # Add the delayed ramp parameters to the parameter dictionary. params.update({'l': 1, 'tau': 5, 'd': 100}) # overdispersion coefficient (adds variability --> larger value means less influential) # Delete the following parameters, they are not included in the stochastic implementation del params['totalTests'] del params['dq'] del params['psi_FP'] del params['psi_PP'] # Define the initial condition: ten exposed inidividual in every age category # Why 10? When only using one exposed, there is a big chance the chain will go extinct! initial_states = {'S': initN, 'E': 10*np.ones(levels)} # Initialize the model, the only difference with the stochastic model is the `discrete` flag model = models.COVID19_SEIRD_sto(initial_states, params, compliance=ramp_2, discrete=True) ``` ### Load posterior parameter distributions of calibrated parameters The calibration procedure was exactly the same as for the deterministic model. For more details we refer to the calibration notebook, located in `notebooks/0.1-twallema-calibration-stochastic` . The posterior distributions are located in `data/interim/model_parameters/stochastic_15-08-2020.json`. ```python with open('../../data/interim/model_parameters/stochastic_15-08-2020.json', 'r') as fp: samples_dict = json.load(fp) lag_time = samples_dict['lag_time'] model.extraTime = samples_dict['lag_time'] model.parameters['beta'] = np.mean(samples_dict['beta']) model.parameters['l'] = np.mean(samples_dict['l']) model.parameters['tau'] = np.mean(samples_dict['tau']) prevention = np.mean(samples_dict['prevention']) ``` ### Simulating After the model initialization, the code works in the exact same way as the deterministic model. ```python fig,ax=plt.subplots() for i in range(200): # Use posterior samples of fitted parameters model.parameters['beta'] = np.random.choice(samples_dict['beta'],1,replace=False) idx,model.parameters['l'] = random.choice(list(enumerate(samples_dict['l']))) model.parameters['tau'] = samples_dict['tau'][idx] prevention = samples_dict['prevention'][idx] # Perform simulation out=model.sim(130,checkpoints=chk) # Visualise the results infected(out,ax=ax,alpha=0.02) ```
Require Import Crypto.Specific.Framework.RawCurveParameters. Require Import Crypto.Util.LetIn. (*** Modulus : 2^190 - 11 Base: 64 ***) Definition curve : CurveParameters := {| sz := 3%nat; base := 64; bitwidth := 64; s := 2^190; c := [(1, 11)]; carry_chains := None; a24 := None; coef_div_modulus := None; goldilocks := None; karatsuba := None; montgomery := true; freeze := Some false; ladderstep := false; mul_code := None; square_code := None; upper_bound_of_exponent_loose := None; upper_bound_of_exponent_tight := None; allowable_bit_widths := None; freeze_extra_allowable_bit_widths := None; modinv_fuel := None |}. Ltac extra_prove_mul_eq _ := idtac. Ltac extra_prove_square_eq _ := idtac.
## Π—Π°Π΄Π°Π½ΠΈΠ΅ 1 Π Π΅ΡˆΠΈΡ‚Π΅ ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠ΅ sin(x)/x=0. ```python from scipy.optimize import fsolve import numpy as np from matplotlib import pyplot as plt %matplotlib inline ``` ```python def func(x): return (np.sin(x)/x) ``` ```python x = np.linspace(0.01, 50, 1000) plt.grid() plt.plot(x, func(x)) plt.scatter(fsolve(func, 0.01), [0]) plt.show() ``` ΠžΡ‚Π²Π΅Ρ‚: функция Π·Π°Ρ‚ΡƒΡ…Π°ΡŽΡ‰Π°Ρ, ΠΏΡ€Π΅Π΄Π΅Π» стрСмится ΠΊ Π½ΡƒΠ»ΡŽ, ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠ΅ ΠΈΠΌΠ΅Π΅Ρ‚ бСсконСчноС число Ρ€Π΅ΡˆΠ΅Π½ΠΈΠΉ (ΠΏΠΎ 3 корня Π½Π° ΠΊΠ°ΠΆΠ΄Ρ‹Π΅ 10Ρ…), частноС Ρ€Π΅ΡˆΠ΅Π½ΠΈΠ΅ - 3.14 ## Π—Π°Π΄Π°Π½ΠΈΠ΅ 2 Π”Π°Π½Ρ‹ Ρ‚Ρ€ΠΈ прямыС y=k1*x+b1, y=k2*x+b2, y=k3*x+b3. Как ΡƒΠ·Π½Π°Ρ‚ΡŒ, ΠΏΠ΅Ρ€Π΅ΡΠ΅ΠΊΠ°ΡŽΡ‚ΡΡ ΠΎΠ½ΠΈ Π² ΠΎΠ΄Π½ΠΎΠΉ Ρ‚ΠΎΡ‡ΠΊΠ΅ ΠΈΠ»ΠΈ Π½Π΅Ρ‚? ΠžΡ‚Π²Π΅Ρ‚: Ρ‡Ρ‚ΠΎΠ±Ρ‹ прямыС ΠΏΠ΅Ρ€Π΅ΡΠ΅ΠΊΠ°Π»ΠΈΡΡŒ Π½Π΅ΠΎΠ±Ρ…ΠΎΠ΄ΠΈΠΌΠΎ Ρ‡Ρ‚ΠΎΠ±Ρ‹ ΡΠ»Π΅Π΄ΡƒΡŽΡ‰Π°Ρ систСма ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠΉ ΠΈΠΌΠ΅Π»Π° Ρ€Π΅ΡˆΠ΅Π½ΠΈΠ΅: \begin{equation} \left\{ \begin{array}{ll} y = k_1x+b_1 \\ y = k_2x+b_2 \\ y = k_3x+b_3 \end{array} \right. \end{equation} ## Π—Π°Π΄Π°Π½ΠΈΠ΅ 3 На листС Ρ‚Π΅Ρ‚Ρ€Π°Π΄ΠΈ Β«Π² Π»ΠΈΠ½Π΅ΠΉΠΊΡƒΒ» (расстояниС ΠΌΠ΅ΠΆΠ΄Ρƒ линиями Ρ€Π°Π²Π½ΠΎ Π°) Π»Π΅ΠΆΠΈΡ‚ ΠΈΠ³Π»Π° (Π΄Π»ΠΈΠ½ΠΎΠΉ b). ΠšΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Ρ‹ Π½ΠΈΠΆΠ½Π΅ΠΉ Ρ‚ΠΎΡ‡ΠΊΠΈ ΠΈΠ³Π»Ρ‹ (Ρ…,Ρƒ), ΠΈΠ³Π»Π° Π»Π΅ΠΆΠΈΡ‚ ΠΏΠΎΠ΄ ΡƒΠ³Π»ΠΎΠΌ alfa. ΠŸΠ΅Ρ€Π΅ΡΠ΅ΠΊΠ°Π΅Ρ‚ Π»ΠΈ ΠΈΠ³Π»Π° линию ΠΈΠ»ΠΈ Π½Π΅Ρ‚? ΠžΡ‚Π²Π΅Ρ‚: НСобходимо Ρ‡Ρ‚ΠΎΠ±Ρ‹ проСкция Π½Π° ось Y Π±Ρ‹Π»Π° большС a, Ρ‚.Π΅. $|b\sin(\alpha)| > a$ ## Π—Π°Π΄Π°Π½ΠΈΠ΅ 4 Π Π΅ΡˆΠΈΡ‚Π΅ аналитичСски ΠΈ ΠΏΠΎΡ‚ΠΎΠΌ числСнно (Π² ΠΏΡ€ΠΎΠ³Ρ€Π°ΠΌΠΌΠ΅) ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠ΅, зависящСС ΠΎΡ‚ ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Π° Π°: sin(Π°*x)=0 ΠΏΡ€ΠΈ условии: 0.01<a<0.02, 100<Ρ…<500. Π’.Π΅. Π½Π°Π΄ΠΎ Π½Π°ΠΉΡ‚ΠΈ Ρ€Π΅ΡˆΠ΅Π½ΠΈΠ΅ Ρ… ΠΊΠ°ΠΊ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΡŽ ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Π° Π° - ΠΏΠΎΡΡ‚Ρ€ΠΎΠΈΡ‚ΡŒ Π³Ρ€Π°Ρ„ΠΈΠΊ x=x(Π°). Если числСнным ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠΌ Π½Π΅ получаСтся Π½Π°ΠΉΡ‚ΠΈ всС Π²Π΅Ρ‚Π²ΠΈ Ρ€Π΅ΡˆΠ΅Π½ΠΈΡ x(Π°), Ρ‚ΠΎ ΠΎΡ‚Ρ‹Ρ‰ΠΈΡ‚Π΅ хотя Π±Ρ‹ ΠΎΠ΄Π½Ρƒ. `Β―\_(ツ)_/Β―` ## Π—Π°Π΄Π°Π½ΠΈΠ΅ 4 #### Найти ΡƒΠ³ΠΎΠ» ΠΌΠ΅ΠΆΠ΄Ρƒ прямыми 4y - 3x + 12 = 0 ΠΈ 7y + x - 14 = 0 $y = \frac{3}{4}x - 3$ ΠΈ $y = -\frac{1}{7}x + 2$ ```python np.tan(3/4) ``` 0.9315964599440725 ```python np.tan(-1/7) ``` -0.14383695943619093 ΡƒΠ³ΠΎΠ» ΠΏΠ΅Ρ€Π²ΠΎΠΉ прямой ΠΏΡ€ΠΈΠΌΠ΅Ρ€Π½ΠΎ 43 градуса, Π²Ρ‚ΠΎΡ€ΠΎΠΉ - ΠΏΡ€ΠΈΠΌΠ΅Ρ€Π½ΠΎ 94 градуса ΠžΡ‚Π²Π΅Ρ‚: ΡƒΠ³ΠΎΠ» ΠΌΠ΅ΠΆΠ΄Ρƒ прямыми получаСтся 94 - 43 = 51 градус #### Найти ΡƒΠ³ΠΎΠ» ΠΌΠ΅ΠΆΠ΄Ρƒ прямыми $x = \sqrt{2}$ ΠΈ $x = -\sqrt{3}$ ΠžΡ‚Π²Π΅Ρ‚: ΠΎΠ±Π΅ прямыС Π²Π΅Ρ€Ρ‚ΠΈΠΊΠ°Π»ΡŒΠ½Ρ‹ ΠΈ ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½Ρ‹ ΠΌΠ΅ΠΆΠ΄Ρƒ собой. Π£Π³ΠΎΠ» ΠΌΠ΅ΠΆΠ΄Ρƒ ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½Ρ‹ΠΌΠΈ прямыми Ρ€Π°Π²Π΅Π½ 0 ## Π—Π°Π΄Π°Π½ΠΈΠ΅ 5. Π’Ρ‹ΡΡΠ½ΠΈΡ‚ΡŒ Ρ‚ΠΈΠΏ ΠΊΡ€ΠΈΠ²Ρ‹Ρ… Π²Ρ‚ΠΎΡ€ΠΎΠ³ΠΎ порядка, ΠΏΠΎΡ€ΠΎΠΆΠ΄Π΅Π½Π½Ρ‹Ρ… ΡΠ»Π΅Π΄ΡƒΡŽΡ‰ΠΈΠΌΠΈ уравнСниями 1. $y^2 - 2x - 2y - 5 =0$ $y^2 - 2y + 1 - 1 - 2x - 5 =0$ $$(y-1)^2 = 2x + 6$$ ΠžΡ‚Π²Π΅Ρ‚: ΠΏΠ°Ρ€Π°Π±ΠΎΠ»Π° 2. $3x^2 + 5y^2 + 12x - 30y + 42 = 0$ $3(x^2 + 4x + 4 - 4) + 5(y^2 -6y + 9 - 9) + 42 = 0$ $3(x+2)^2 + 5(y-3)^2 = 15$ $$\frac{(x+2)^2}{5} + \frac{(y-3)^2}{3} = 1$$ ΠžΡ‚Π²Π΅Ρ‚: эллипс 3. $2x^2 - y^2 + 6y - 7 = 0$ $-(y^2 -6y + 9 - 9) + 2x^2 - 7 = 0$ $-(y-3)^2 + 9 + 2x^2 -7=0$ $-(y-3)^2 + 2x^2 = -2$ $$\frac{(y-3)^2}{2} - x^2 = 1$$ ΠžΡ‚Π²Π΅Ρ‚: Π³ΠΈΠΏΠ΅Ρ€Π±ΠΎΠ»Π° 4. $2x^2 - 3y^2 - 28x - 42y - 55 = 0$ $2(x^2 - 14x + 49 - 49) - 3(y^2 + 14y + 49 - 49) - 55 = 0$ $2((x-7)^2 - 49) - 3((y+7)^2 - 49) - 55 = 0$ $2(x-7)^2 - 3(y+7)^2 = 6$ $$\frac{(x-7)^2}{3} - \frac{(y + 7)^2}{2} = 1$$ ΠžΡ‚Π²Π΅Ρ‚: Π³ΠΈΠΏΠ΅Ρ€Π±ΠΎΠ»Π°
import algebra.ring namespace my_ring variables {R : Type*} [ring R] #check add_zero #check zero_add #check add_mul #check add_right_cancel -- BEGIN theorem zero_mul (a : R) : 0 * a = 0 := begin have h : 0 * a + 0 * a = 0 + 0 * a, { rw [← add_mul, add_zero,zero_add] }, rw add_right_cancel h, end -- END #check zero_mul end my_ring
The product of the Lebesgue measure on $\mathbb{R}^n$ with itself is the Lebesgue measure on $\mathbb{R}^{2n}$.
(** * Typechecking: A Typechecker for STLC *) (** The [has_type] relation of the STLC defines what it means for a term to belong to a type (in some context). But it doesn't, by itself, give us an algorithm for _checking_ whether or not a term is well typed. Fortunately, the rules defining [has_type] are _syntax directed_ -- that is, for every syntactic form of the language, there is just one rule that can be used to give a type to terms of that form. This makes it straightforward to translate the typing rules into clauses of a typechecking _function_ that takes a term and a context and either returns the term's type or else signals that the term is not typable. *) (** This short chapter constructs such a function and proves it correct. *) Set Warnings "-notation-overridden,-parsing". Require Import Coq.Bool.Bool. Require Import Maps. Require Import Smallstep. Require Import Stlc. Require MoreStlc. Module STLCTypes. Export STLC. (* ################################################################# *) (** * Comparing Types *) (** First, we need a function to compare two types for equality... *) Fixpoint beq_ty (T1 T2:ty) : bool := match T1,T2 with | TBool, TBool => true | TArrow T11 T12, TArrow T21 T22 => andb (beq_ty T11 T21) (beq_ty T12 T22) | _,_ => false end. (** ... and we need to establish the usual two-way connection between the boolean result returned by [beq_ty] and the logical proposition that its inputs are equal. *) Lemma beq_ty_refl : forall T1, beq_ty T1 T1 = true. Proof. intros T1. induction T1; simpl. reflexivity. rewrite IHT1_1. rewrite IHT1_2. reflexivity. Qed. Lemma beq_ty__eq : forall T1 T2, beq_ty T1 T2 = true -> T1 = T2. Proof with auto. intros T1. induction T1; intros T2 Hbeq; destruct T2; inversion Hbeq. - (* T1=TBool *) reflexivity. - (* T1=TArrow T1_1 T1_2 *) rewrite andb_true_iff in H0. inversion H0 as [Hbeq1 Hbeq2]. apply IHT1_1 in Hbeq1. apply IHT1_2 in Hbeq2. subst... Qed. End STLCTypes. (* ################################################################# *) (** * The Typechecker *) (** The typechecker works by walking over the structure of the given term, returning either [Some T] or [None]. Each time we make a recursive call to find out the types of the subterms, we need to pattern-match on the results to make sure that they are not [None]. Also, in the [tapp] case, we use pattern matching to extract the left- and right-hand sides of the function's arrow type (and fail if the type of the function is not [TArrow T11 T12] for some [T11] and [T12]). *) Module FirstTry. Import STLCTypes. Fixpoint type_check (Gamma:context) (t:tm) : option ty := match t with | tvar x => Gamma x | tabs x T11 t12 => match type_check (update Gamma x T11) t12 with | Some T12 => Some (TArrow T11 T12) | _ => None end | tapp t1 t2 => match type_check Gamma t1, type_check Gamma t2 with | Some (TArrow T11 T12),Some T2 => if beq_ty T11 T2 then Some T12 else None | _,_ => None end | ttrue => Some TBool | tfalse => Some TBool | tif guard t f => match type_check Gamma guard with | Some TBool => match type_check Gamma t, type_check Gamma f with | Some T1, Some T2 => if beq_ty T1 T2 then Some T1 else None | _,_ => None end | _ => None end end. End FirstTry. (* ################################################################# *) (** * Digression: Improving the Notation *) (** Before we consider the properties of this algorithm, let's write it out again in a cleaner way, using "monadic" notations in the style of Haskell to streamline the plumbing of options. First, we define a notation for composing two potentially failing (i.e., option-returning) computations: *) Notation " x <- e1 ;; e2" := (match e1 with | Some x => e2 | None => None end) (right associativity, at level 60). (** Second, we define [return] and [fail] as synonyms for [Some] and [None]: *) Notation " 'return' e " := (Some e) (at level 60). Notation " 'fail' " := None. Module STLCChecker. Import STLCTypes. (** Now we can write the same type-checking function in a more "imperative" style using these notations. *) Fixpoint type_check (Gamma:context) (t:tm) : option ty := match t with | tvar x => match Gamma x with | Some T => return T | None => fail end | tabs x T11 t12 => T12 <- type_check (update Gamma x T11) t12 ;; return (TArrow T11 T12) | tapp t1 t2 => T1 <- type_check Gamma t1 ;; T2 <- type_check Gamma t2 ;; match T1 with | TArrow T11 T12 => if beq_ty T11 T2 then return T12 else fail | _ => fail end | ttrue => return TBool | tfalse => return TBool | tif guard t1 t2 => Tguard <- type_check Gamma guard ;; T1 <- type_check Gamma t1 ;; T2 <- type_check Gamma t2 ;; match Tguard with | TBool => if beq_ty T1 T2 then return T1 else fail | _ => fail end end. (* ################################################################# *) (** * Properties *) (** To verify that th typechecking algorithm is correct, we show that it is _sound_ and _complete_ for the original [has_type] relation -- that is, [type_check] and [has_type] define the same partial function. *) Theorem type_checking_sound : forall Gamma t T, type_check Gamma t = Some T -> has_type Gamma t T. Proof with eauto. intros Gamma t. generalize dependent Gamma. induction t; intros Gamma T Htc; inversion Htc. - (* tvar *) rename s into x. destruct (Gamma x) eqn:H. rename t into T'. inversion H0. subst. eauto. solve_by_invert. - (* tapp *) remember (type_check Gamma t1) as TO1. destruct TO1 as [T1|]; try solve_by_invert; destruct T1 as [|T11 T12]; try solve_by_invert; remember (type_check Gamma t2) as TO2; destruct TO2 as [T2|]; try solve_by_invert. destruct (beq_ty T11 T2) eqn: Heqb. apply beq_ty__eq in Heqb. inversion H0; subst... inversion H0. - (* tabs *) rename s into x. rename t into T1. remember (update Gamma x T1) as G'. remember (type_check G' t0) as TO2. destruct TO2; try solve_by_invert. inversion H0; subst... - (* ttrue *) eauto. - (* tfalse *) eauto. - (* tif *) remember (type_check Gamma t1) as TOc. remember (type_check Gamma t2) as TO1. remember (type_check Gamma t3) as TO2. destruct TOc as [Tc|]; try solve_by_invert. destruct Tc; try solve_by_invert; destruct TO1 as [T1|]; try solve_by_invert; destruct TO2 as [T2|]; try solve_by_invert. destruct (beq_ty T1 T2) eqn:Heqb; try solve_by_invert. apply beq_ty__eq in Heqb. inversion H0. subst. subst... Qed. Theorem type_checking_complete : forall Gamma t T, has_type Gamma t T -> type_check Gamma t = Some T. Proof with auto. intros Gamma t T Hty. induction Hty; simpl. - (* T_Var *) destruct (Gamma x0) eqn:H0; assumption. - (* T_Abs *) rewrite IHHty... - (* T_App *) rewrite IHHty1. rewrite IHHty2. rewrite (beq_ty_refl T11)... - (* T_True *) eauto. - (* T_False *) eauto. - (* T_If *) rewrite IHHty1. rewrite IHHty2. rewrite IHHty3. rewrite (beq_ty_refl T)... Qed. End STLCChecker. (* ################################################################# *) (** * Exercises *) (** **** Exercise: 5 stars (typechecker_extensions) *) (** In this exercise we'll extend the typechecker to deal with the extended features discussed in chapter [MoreStlc]. Your job is to fill in the omitted cases in the following. *) Module TypecheckerExtensions. Import MoreStlc. Import STLCExtended. Fixpoint beq_ty (T1 T2: ty) : bool := match T1,T2 with | TNat, TNat => true | TUnit, TUnit => true | TArrow T11 T12, TArrow T21 T22 => andb (beq_ty T11 T21) (beq_ty T12 T22) | TProd T11 T12, TProd T21 T22 => andb (beq_ty T11 T21) (beq_ty T12 T22) | TSum T11 T12, TSum T21 T22 => andb (beq_ty T11 T21) (beq_ty T12 T22) | TList T11, TList T21 => beq_ty T11 T21 | _,_ => false end. Lemma beq_ty_refl : forall T1, beq_ty T1 T1 = true. Proof. intros T1. induction T1; simpl; try reflexivity; try (rewrite IHT1_1; rewrite IHT1_2; reflexivity); try (rewrite IHT1; reflexivity). Qed. Lemma beq_ty__eq : forall T1 T2, beq_ty T1 T2 = true -> T1 = T2. Proof. intros T1. induction T1; intros T2 Hbeq; destruct T2; inversion Hbeq; try reflexivity; try (rewrite andb_true_iff in H0; inversion H0 as [Hbeq1 Hbeq2]; apply IHT1_1 in Hbeq1; apply IHT1_2 in Hbeq2; subst; auto); try (apply IHT1 in Hbeq; subst; auto). Qed. Fixpoint type_check (Gamma:context) (t:tm) : option ty := match t with | tvar x => match Gamma x with | Some T => return T | None => fail end | tabs x T11 t12 => T12 <- type_check (update Gamma x T11) t12 ;; return (TArrow T11 T12) | tapp t1 t2 => T1 <- type_check Gamma t1 ;; T2 <- type_check Gamma t2 ;; match T1 with | TArrow T11 T12 => if beq_ty T11 T2 then return T12 else fail | _ => fail end | tnat _ => return TNat | tsucc t1 => T1 <- type_check Gamma t1 ;; match T1 with | TNat => return TNat | _ => fail end | tpred t1 => T1 <- type_check Gamma t1 ;; match T1 with | TNat => return TNat | _ => fail end | tmult t1 t2 => T1 <- type_check Gamma t1 ;; T2 <- type_check Gamma t2 ;; match T1, T2 with | TNat, TNat => return TNat | _,_ => fail end | tif0 guard t f => Tguard <- type_check Gamma guard ;; T1 <- type_check Gamma t ;; T2 <- type_check Gamma f ;; match Tguard with | TNat => if beq_ty T1 T2 then return T1 else fail | _ => fail end (* FILL IN HERE *) | tlcase t0 t1 x21 x22 t2 => match type_check Gamma t0 with | Some (TList T) => match type_check Gamma t1, type_check (update (update Gamma x22 (TList T)) x21 T) t2 with | Some T1', Some T2' => if beq_ty T1' T2' then Some T1' else None | _,_ => None end | _ => None end (* FILL IN HERE *) | _ => None (* ... and delete this line *) end. (** Just for fun, we'll do the soundness proof with just a bit more automation than above, using these "mega-tactics": *) Ltac invert_typecheck Gamma t T := remember (type_check Gamma t) as TO; destruct TO as [T|]; try solve_by_invert; try (inversion H0; eauto); try (subst; eauto). Ltac analyze T T1 T2 := destruct T as [T1 T2| | | T1 T2| T1 T2| T1]; try solve_by_invert. Ltac fully_invert_typecheck Gamma t T T1 T2 := let TX := fresh T in remember (type_check Gamma t) as TO; destruct TO as [TX|]; try solve_by_invert; destruct TX as [T1 T2| | | T1 T2| T1 T2| T1]; try solve_by_invert; try (inversion H0; eauto); try (subst; eauto). Ltac case_equality S T := destruct (beq_ty S T) eqn: Heqb; inversion H0; apply beq_ty__eq in Heqb; subst; subst; eauto. Theorem type_checking_sound : forall Gamma t T, type_check Gamma t = Some T -> has_type Gamma t T. Proof with eauto. intros Gamma t. generalize dependent Gamma. induction t; intros Gamma T Htc; inversion Htc. - (* tvar *) rename s into x. destruct (Gamma x) eqn:H. rename t into T'. inversion H0. subst. eauto. solve_by_invert. - (* tapp *) invert_typecheck Gamma t1 T1. invert_typecheck Gamma t2 T2. analyze T1 T11 T12. case_equality T11 T2. - (* tabs *) rename s into x. rename t into T1. remember (update Gamma x T1) as Gamma'. invert_typecheck Gamma' t0 T0. - (* tnat *) eauto. - (* tsucc *) rename t into t1. fully_invert_typecheck Gamma t1 T1 T11 T12. - (* tpred *) rename t into t1. fully_invert_typecheck Gamma t1 T1 T11 T12. - (* tmult *) invert_typecheck Gamma t1 T1. invert_typecheck Gamma t2 T2. analyze T1 T11 T12; analyze T2 T21 T22. inversion H0. subst. eauto. - (* tif0 *) invert_typecheck Gamma t1 T1. invert_typecheck Gamma t2 T2. invert_typecheck Gamma t3 T3. destruct T1; try solve_by_invert. case_equality T2 T3. (* FILL IN HERE *) - (* tlcase *) rename s into x31. rename s0 into x32. fully_invert_typecheck Gamma t1 T1 T11 T12. invert_typecheck Gamma t2 T2. remember (update (update Gamma x32 (TList T11)) x31 T11) as Gamma'2. invert_typecheck Gamma'2 t3 T3. case_equality T2 T3. (* FILL IN HERE *) Qed. Theorem type_checking_complete : forall Gamma t T, has_type Gamma t T -> type_check Gamma t = Some T. Proof. intros Gamma t T Hty. induction Hty; simpl; try (rewrite IHHty); try (rewrite IHHty1); try (rewrite IHHty2); try (rewrite IHHty3); try (rewrite (beq_ty_refl T)); try (rewrite (beq_ty_refl T1)); try (rewrite (beq_ty_refl T2)); eauto. - destruct (Gamma x); try solve_by_invert. eauto. Admitted. (* ... and delete this line *) (* Qed. (* ... and uncomment this one *) *) End TypecheckerExtensions. (** [] *) (** **** Exercise: 5 stars, optional (stlc_step_function) *) (** Above, we showed how to write a typechecking function and prove it sound and complete for the typing relation. Do the same for the operational semantics -- i.e., write a function [stepf] of type [tm -> option tm] and prove that it is sound and complete with respect to [step] from chapter [MoreStlc]. *) Module StepFunction. Import TypecheckerExtensions. (* FILL IN HERE *) End StepFunction. (** [] *) (** **** Exercise: 5 stars, optional (stlc_impl) *) (** Using the Imp parser described in the [ImpParser] chapter of _Logical Foundations_ as a guide, build a parser for extended Stlc programs. Combine it with the typechecking and stepping functions from the above exercises to yield a complete typechecker and interpreter for this language. *) Module StlcImpl. Import StepFunction. (* FILL IN HERE *) End StlcImpl. (** [] *) (** $Date: 2017-12-04 12:28:02 -0600 (Mon, 04 Dec 2017) $ *)
import data.set classical algebra.order data.nat open set eq.ops namespace relations variable {T : Type} /- [KS] Given a set S, a partition of S is a set X βŠ† β„˜(S) (that is, a set of subsets of S) with the following properties: 1. The union of all sets in X is equal to S. 2. For any S1, S2 ∈ X with S1 β‰  S2, we have that S1 ∩ S2 = Ø (S1 and S2 are disjoint) 3. Ø βˆ‰ X. -/ definition pairwise_disjoint (Xs : set (set T)) := βˆ€ ⦃ X1 X2 : set T ⦄, X1 ∈ Xs β†’ X2 ∈ Xs β†’ X1 β‰  X2 β†’ X1 ∩ X2 = βˆ… definition big_union (Xs : set (set T)) : set T := Ξ» x, βˆƒ xs, xs ∈ Xs ∧ x ∈ xs definition powerset (xs : set T) : set (set T) := Ξ» ys, ys βŠ† xs structure partition (xs : set T) (Xs : set (set T)) := mk :: (in_powerset : Xs βŠ† powerset xs) (spans : big_union Xs = xs) (pdisjoint : pairwise_disjoint Xs) (ncempty : Β¬ βˆ… ∈ Xs) open partition -- Choice functions (not the end of the world) -- (if we go down this road, we would hide the definitions from students, and just give them (1), (3) and (4)) definition cover {xs : set T} {Xs : set (set T)} (p : partition xs Xs) (x : T) : set T := epsilon (Ξ» ys, ys ∈ Xs ∧ x ∈ ys) definition cover_exists {xs : set T} {Xs : set (set T)} (p : partition xs Xs) (x : T) (x_in_xs : x ∈ xs) : βˆƒ ys, ys ∈ Xs ∧ x ∈ ys := (spans p)⁻¹ β–Έ x_in_xs lemma x_in_cover_x {xs : set T} {Xs : set (set T)} (p : partition xs Xs) (x : T) (x_in_xs : x ∈ xs) : x ∈ cover p x := and.right (epsilon_spec (cover_exists p x x_in_xs)) lemma cover_x_in_Xs {xs : set T} {Xs : set (set T)} (p : partition xs Xs) (x : T) (x_in_xs : x ∈ xs) : cover p x ∈ Xs := and.left (epsilon_spec (cover_exists p x x_in_xs)) /- [KS] Lemma: Let S be a set and X a partition of S. Then every element u ∈ S belongs to exactly one set Y ∈ X Proof: Let S be a set and X a partition of S. We will show that every element u ∈ S belongs to at least one set Y ∈ X and to at most one set Y ∈ X. To see that every element u ∈ S belongs to at least one set Y ∈ X, note that since X is a partition of S, the union of all the sets in S must be equal to S. Consequently, there must be at least one set Y ∈ X such that u ∈ Y, since otherwise the union of all sets contained in X would not be equal to S. To see that every element u ∈ S belongs to at most one set Y ∈ X, suppose for the sake of contradiction that u belongs to two sets Y1, Y2 ∈ X with Y1 β‰  Y2. But then x ∈ Y1 ∩ Y2, meaning that Y1 ∩ Y2 β‰  Ø, a contradiction. We have reached a contradiction, so our assumption must have been wrong. Thus every element u ∈ S belongs to at most one set Y ∈ X. β–  -/ definition exactly_one [reducible] {T : Type} (P : T β†’ Prop) := (βˆƒ (u : T), P u) ∧ (βˆ€ u v : T, P u β†’ P v β†’ u = v) -- Lemma: Let S be a set and X a partition of S. Then every element u ∈ S belongs to exactly one set Y ∈ X. definition unique_set : βˆ€ {S : set T} {X : set (set T)}, partition S X β†’ βˆ€ (u : T), u ∈ S β†’ exactly_one (Ξ» (Y : set T), Y ∈ X ∧ u ∈ Y) := -- Proof: Let S be a set and X a partition of S. assume (S : set T) (X : set (set T)) (p : partition S X) (u : T) (u_in_S : u ∈ S), -- We will show that every element u ∈ S belongs to at least one set Y ∈ X and to at most one set Y ∈ X. show (βˆƒ (Y : set T), Y ∈ X ∧ u ∈ Y) ∧ (βˆ€ (Y1 Y2 : set T), (Y1 ∈ X ∧ u ∈ Y1) β†’ (Y2 ∈ X ∧ u ∈ Y2) β†’ Y1 = Y2), from -- To see that every element u ∈ S belongs to at least one set Y ∈ X, have exists_Y : βˆƒ (Y : set T), Y ∈ X ∧ u ∈ Y, from -- note that since X is a partition of S, the union of all the sets in S must be equal to S. -- Consequently, there must be at least one set Y ∈ X such that u ∈ Y, -- since otherwise the union of all sets contained in X would not be equal to S. have u_in_bigX : u ∈ big_union X, from (spans p)⁻¹ β–Έ u_in_S, u_in_bigX, -- To see that every element u ∈ S belongs to at most one set Y ∈ X, have unique : (βˆ€ (Y1 Y2 : set T), (Y1 ∈ X ∧ u ∈ Y1) β†’ (Y2 ∈ X ∧ u ∈ Y2) β†’ Y1 = Y2), from -- suppose for the sake of contradiction that u belongs to two sets Y1, Y2 ∈ X with Y1 β‰  Y2. assume (Y1 Y2 : set T) (HY1 : Y1 ∈ X ∧ u ∈ Y1) (HY2 : Y2 ∈ X ∧ u ∈ Y2), by_contradiction (assume Y1_neq_Y2 : Y1 β‰  Y2, show false, from -- But then u ∈ Y1 ∩ Y2, have u_in_Y1capY2 : u ∈ Y1 ∩ Y2, from and.intro (and.right HY1) (and.right HY2), -- meaning that Y1 ∩ Y2 β‰  Ø, a contradiction. have Y1capY2_nempty : Y1 ∩ Y2 β‰  βˆ…, from assume Y1capY2_empty : Y1 ∩ Y2 = βˆ…, have u_in_emptyset : u ∈ βˆ…, from Y1capY2_empty β–Έ u_in_Y1capY2, show false, from u_in_emptyset, -- We have reached a contradiction, so our assumption must have been wrong. absurd (pdisjoint p (and.left HY1) (and.left HY2) Y1_neq_Y2) Y1capY2_nempty), -- Thus every element u ∈ S belongs to at most one set Y ∈ X. show exactly_one (Ξ» (Y : set T), Y ∈ X ∧ u ∈ Y), from and.intro exists_Y unique -- β–  definition set_of_sets (f : T β†’ set T) : set (set T) := Ξ» (s : set T), βˆƒ (u : T), s = f u definition bigcup (Xs : set (set T)) : set T := Ξ» (v: T), βˆƒ (X : set T), X ∈ Xs ∧ v ∈ X lemma equiv_spans : βˆ€ {R : T β†’ T β†’ Prop}, equivalence R β†’ βˆ€ v, v ∈ bigcup (set_of_sets R) := assume (R : T β†’ T β†’ Prop) (R_equiv : equivalence R) (v : T), show βˆƒ (X : set T), X ∈ (set_of_sets R) ∧ v ∈ X, from let X := R v in have X_in_ssR : X ∈ set_of_sets R, from exists.intro v rfl, have v_in_X : v ∈ X, from and.left R_equiv v, exists.intro X (and.intro X_in_ssR v_in_X) end relations
C Copyright(C) 1999-2020 National Technology & Engineering Solutions C of Sandia, LLC (NTESS). Under the terms of Contract DE-NA0003525 with C NTESS, the U.S. Government retains certain rights in this software. C C See packages/seacas/LICENSE for details SUBROUTINE GETFRM (MXND, LINES, NL, NXL, NODE, N0, N2, NFROM) C*********************************************************************** C SUBROUTINE GETFRM = GETS THE NODES THAT THE CURRENT NODE CAME FROM C*********************************************************************** DIMENSION NXL(2, 3*MXND), LINES(NL) NFROM = 0 IF (NL .EQ. 3) THEN DO 100 IL = 1, NL ILL = LINES (IL) IF (NXL (1, ILL) .EQ. NODE) THEN NTEST = NXL (2, ILL) ELSEIF (NXL (2, ILL) .EQ. NODE) THEN NTEST = NXL (1, ILL) ELSE CALL MESSAGE('** PROBLEMS IN GETFRM **') GOTO 110 ENDIF IF ((NTEST .NE. N0) .AND. (NTEST .NE. N2)) THEN NFROM = NTEST GOTO 110 ENDIF 100 CONTINUE ENDIF 110 CONTINUE RETURN END
import LinearAlgebra: Transpose, opnorm import LinearAlgebra import Random: seed! using SparseArrays export fill_diag!, diag! # temporary function. will actually add CUDA barrier function. function sync() nothing end """ Allgather_opt(B) Returns a tuple of proper function and argument for Allgather. """ function Allgather_opt(B::MPIVecOrMat{T,AT}) where {T,AT} if allsame(B.local_lengths) (Allgather!, B.localarray, B.local_lengths[1]) else (Allgatherv!, B.localarray, B.local_lengths) end end function Allgather_opt(B::Transpose{T,ATT} where ATT <: MPIVecOrMat{T,AT}) where {T,AT} B_buf = transpose(B).localarray tB_local_lengths = transpose(B).local_lengths if allsame(tB_local_lengths) (Allgather!, B_buf, tB_local_lengths[1]) else (Allgatherv!, B_buf, tB_local_lengths) end end @inline get_local(A::MPIVecOrMat{T,AT}) where {T,AT} = A.localarray @inline get_local(A::Transpose{T,ATT} where ATT <: MPIVecOrMat{T,AT}) where {T,AT} = transpose(transpose(A).localarray) """ Scenario a: short and fat matrix multiplied by a fat matrix. Temporary space required A: r x [p], B: p x [q], C: r x [q] tmp: r x p: A is Allgather!-ed. """ function LinearAlgebra.mul!(C::MPIMatrix{T,AT}, A::MPIMatrix{T,AT}, B::MPIMatrix{T,AT}; tmp::AbstractArray{T,2}=AT{T}(undef, size(A,1), size(A,2))) where {T,AT} @assert size(C,1) == size(A,1) && size(C,2) == size(B,2) @assert size(A,1) == size(tmp,1) && size(A, 2) == size(tmp, 2) localA = get_local(A) localB = get_local(B) localC = get_local(C) #Allgather sync() (Allgather_ftn!, sendbuf, count_arg) = Allgather_opt(A) Allgather_ftn!(sendbuf, tmp, count_arg) LinearAlgebra.mul!(localC, tmp, localB) C end """ Scenario h: Scenario 1 transposed. """ function LinearAlgebra.mul!(C::Transpose{T,MPIMatrix{T,AT}}, A::Transpose{T,MPIMatrix{T,AT}}, B::Transpose{T,MPIMatrix{T,AT}}; tmp::AbstractArray{T,2}=AT{T}(undef, size(B,2), size(B,1))) where {T,AT} LinearAlgebra.mul!(transpose(C), transpose(B), transpose(A); tmp=tmp) C end """ Scenario b: inner product, result distributed, temporary space required A: r x [p], B: [p] x q, C: r x [q] tmp: r x q, for local computation """ function LinearAlgebra.mul!(C::MPIMatrix{T,AT}, A::MPIMatrix{T,AT}, B::Transpose{T, MPIMatrix{T,AT}}; tmp::AbstractArray{T,2}=AT{T}(undef, size(A,1), size(B,2))) where {T,AT} @assert size(C,1) == size(A,1) && size(C,2) == size(B,2) @assert size(A,1) == size(tmp,1) && size(B,2) == size(tmp,2) localA = get_local(A) localB = get_local(B) LinearAlgebra.mul!(tmp, localA, localB) # Ireduce would fit well here... but is not supported on both PyTorch and MPI.jl. sync() for i = 0:Size()-1 # NOTE: an array is set to be contiguous only if the first indices are colon. Reduce!(@view(tmp[:, C.partitioning[i+1][2]]), C.localarray; root=i) end C end """ Scenario c: Scenario 2 transposed. """ function LinearAlgebra.mul!(C::Transpose{T,MPIMatrix{T,AT}}, A::MPIMatrix{T,AT},B::Transpose{T,MPIMatrix{T,AT}}; tmp::AbstractArray{T,2}=AT{T}(undef, size(B,2), size(A,1))) where {T,AT} LinearAlgebra.mul!(transpose(C), transpose(B), transpose(A);tmp=tmp) end """ Scenario d: inner product, result broadcasted """ function LinearAlgebra.mul!(C::AbstractMatrix{T}, A::MPIMatrix{T,AT}, B::Transpose{T,MPIMatrix{T,AT}}) where {T,AT} @assert size(C, 1) == size(A, 1) && size(C, 2) == size(B, 2) localA = get_local(A) localB = get_local(B) LinearAlgebra.mul!(C, localA, localB) sync() Allreduce!(C) C end """ Scenario e: A::MPIMatrix, B, C: broadcast matrix. """ function LinearAlgebra.mul!(C::AbstractMatrix{T}, A::MPIMatrix{T,AT}, B::AbstractMatrix{T}) where {T, AT} localA = get_local(A) LinearAlgebra.mul!(C, localA, B[A.partitioning[Rank() + 1][2], :]) sync() Allreduce!(C) C end """ Scenario f: outer product, temporary space required transpose(A) is Allgather!-ed. """ function LinearAlgebra.mul!(C::MPIMatrix{T,AT}, A::Transpose{T,MPIMatrix{T,AT}}, B::MPIMatrix{T,AT}; tmp::AbstractArray{T,2}=AT{T}(undef,size(A,2),size(A,1))) where {T,AT} @assert size(C,1) == size(A,1) && size(C,2) == size(B,2) @assert size(A,2) == size(tmp,1) && size(A,1) == size(tmp,2) localA = get_local(A) localB = get_local(B) localC = get_local(C) # Allgather sync() (Allgather_ftn!, sendbuf, count_arg) = Allgather_opt(A) Allgather_ftn!(sendbuf, tmp, count_arg) LinearAlgebra.mul!(localC, transpose(tmp), localB) C end """ Scenario g: Scenario 3 transposed. """ function LinearAlgebra.mul!(C::Transpose{T,MPIMatrix{T,AT}}, A::Transpose{T,MPIMatrix{T,AT}}, B::MPIMatrix{T,AT}; tmp::AbstractArray{T,2}=AT{T}(undef,size(B,1), size(B,2))) where {T,AT} LinearAlgebra.mul!(transpose(C), transpose(B), transpose(A);tmp=tmp) C end """ Scenario j: Small, broadcasted matrix multiplied by a distributed matrix. A: s x r, B: r x [q], C: s x [q]. """ function LinearAlgebra.mul!(C::MPIMatrix{T,AT}, A::AbstractMatrix{T}, B::MPIMatrix{T,AT}) where {T,AT} localB = get_local(B) localC = get_local(C) LinearAlgebra.mul!(localC, A, localB) C end """ Scenario i: Scenario 4 transposed. """ function LinearAlgebra.mul!(C::Transpose{T,MPIMatrix{T,AT}}, A::Transpose{T,MPIMatrix{T,AT}}, B::AbstractMatrix{T}) where {T,AT} LinearAlgebra.mul!(transpose(C), transpose(B), transpose(A)) C end """ Scenario k: B transposed MPIMatrix, A, C: broadcast matrix. """ function LinearAlgebra.mul!(C::AbstractMatrix{T}, A::AbstractMatrix{T}, B::Transpose{T, MPIMatrix{T,AT}}) where {T, AT} LinearAlgebra.mul!(transpose(C), transpose(B), transpose(A)) C end """ Distributed matrix x broadcasted vector multiplications """ const MPIColVector{T,AT} = Union{MPIVector{T,AT},Transpose{T,MPIMatrix{T,AT}}} get_MPIArray(m::MPIArray) = m get_MPIArray(m::Transpose{T,MPIMatrix{T,A}}) where {T,A} = transpose(m) """ Scenario l: Col-dist matrix x distributed vector = distributed vector """ function LinearAlgebra.mul!(C::MPIColVector{T,AT}, A::MPIMatrix{T,AT}, B::MPIColVector{T,AT}; tmp::AbstractArray{T}=AT{T}(undef, size(C, 1))) where {T,AT} LinearAlgebra.mul!(tmp, A, B) localC = get_local(C) C_mpi = get_MPIArray(C) localC .= tmp[C_mpi.partitioning[Rank()+1][1]] end """ Scenario m: Inner product """ function LinearAlgebra.mul!(C::AbstractVector{T}, A::MPIMatrix{T,AT}, B::MPIColVector{T,AT}) where {T,AT} localA = get_local(A) localB = get_local(B) LinearAlgebra.mul!(C, localA, localB) sync() Allreduce!(C) C end """ Scenario n: no vector distributed, A MPIMatrix """ function LinearAlgebra.mul!(C::AbstractVector{T}, A::MPIMatrix{T,AT}, B::AbstractVector{T}) where {T,AT} localA = get_local(A) LinearAlgebra.mul!(C, localA, B[A.partitioning[Rank()+1][2]]) sync() Allreduce!(C) C end """ Scenario o: Row-dist matrix x distributed vector = distributed vector """ function LinearAlgebra.mul!(C::MPIColVector{T,AT}, A::Transpose{T,MPIMatrix{T,AT}},B::MPIColVector{T,AT}; tmp::AbstractArray{T}=AT{T}(undef, size(B,1))) where {T,AT} localA = get_local(A) localC = get_local(C) # Allgather sync() (Allgather_ftn!, sendbuf, count_arg) = Allgather_opt(B) Allgather_ftn!(sendbuf, tmp, count_arg) LinearAlgebra.mul!(localC, localA, tmp) C end """ Scenario p: Row-dist matrix x broadcast vector = dist vector """ function LinearAlgebra.mul!(C::MPIColVector{T,AT}, A::Transpose{T,MPIMatrix{T,AT}}, B::AbstractVector{T}) where {T,AT} localA = get_local(A) localC = get_local(C) LinearAlgebra.mul!(localC, localA, B) # undefined in CuArrays: mul!(::Transpose{Float64,CuArray{Float64,2}}, ::Transpose{Float64,CuArray{Float64,2}}, ::CuArray{Float64,1}) C end """ Scenario q: no vector distributed, A transposed MPIMatrix """ function LinearAlgebra.mul!(C::AbstractVector{T}, A::Transpose{T, MPIMatrix{T,AT}}, B::AbstractVector{T}) where {T,AT} localA = get_local(A) fill!(C, zero(T)) LinearAlgebra.mul!(@view(C[transpose(A).partitioning[Rank()+1][2]]), localA, B[transpose(A).partitioning[Rank()+1][1]]) sync() Allreduce!(C) C end const AbstractSparseOrTranspose{T} = Union{AbstractSparseMatrix{T, <:Integer},Transpose{T,<:AbstractSparseMatrix}} """ Sparse matrix-vector multiplications """ #= function LinearAlgebra.mul!(C::AbstractVector{T}, A::AbstractSparseOrTranspose{T}, B::MPIColVector{T,AT}; tmp::AbstractArray{T}=AT{T}(undef, size(B,1))) where {T,AT} @assert length(C) == size(A,1) && length(B) == size(A,2) @assert length(tmp) == length(B) # Allgather sync() (Allgather_ftn!, sendbuf, count_arg) = Allgather_opt(B) Allgather_ftn!(sendbuf, tmp, count_arg) LinearAlgebra.mul!(C, A, tmp) C end function LinearAlgebra.mul!(C::MPIColVector{T,AT}, A::AbstractSparseOrTranspose{T}, B::AbstractVector{T}; tmp::AbstractArray{T}=AT{T}(undef, size(A,1))) where {T,AT} @assert length(C) == size(A,1) && length(B) == size(A,2) @assert length(tmp) == length(C) localC = get_local(C) LinearAlgebra.mul!(tmp, A, B) C_mpi = get_MPIArray(C) localC .= tmp[C_mpi.partitioning[Rank()+1][1]] C end function LinearAlgebra.mul!(C::MPIColVector{T,AT}, A::AbstractSparseOrTranspose{T}, B::MPIColVector{T,AT}; tmp_m::AbstractArray{T}=AT{T}(undef, size(A,1)), tmp_n::AbstractArray{T}=AT{T}(undef, size(B,1))) where {T,AT} @assert length(C) == size(A,1) && length(B) == size(A,2) @assert length(tmp_m) == size(A,1) && length(tmp_n) == size(A,2) LinearAlgebra.mul!(tmp_m, A, B) localC = get_local(C) C_mpi = get_MPIArray(C) localC .= tmp_m[C_mpi.partitioning[Rank()+1][1]] C end =# """ LinearAlgebra.dot(A::MPIArray, B::MPIArray) dot product of two MPI vectors. """ @inline function LinearAlgebra.dot(A::MPIArray, B::MPIArray) c = LinearAlgebra.dot(A.localarray, B.localarray) MPI.Allreduce(c, MPI.SUM, MPI.COMM_WORLD) end """ LinearAlgebra.diagind(M::MPIMatrix, k) returns indices of the diagonal with respect to `M.localarray`. """ @inline function LinearAlgebra.diagind(M::MPIMatrix, k::Integer=0) offset = - (M.partitioning[Rank()+1][2][1]-1) + k return LinearAlgebra.diagind(size(M,1), size(M.localarray,2), offset) end """ LinearAlgebra.diag(M::MPIMatrix{T,A}, k; dist::Bool=false) where {T,A} returns the diagonal of M. If dist is false, the result is a broadcasted A{T,1}. otherwise, the result is distributed 1 x n "row vector". Distributed return is only valid for a square matrix (due to current way of distribution). """ function LinearAlgebra.diag(M::MPIMatrix{T,A}, k::Integer=0; dist::Bool=false) where {T,A} # TODO end """ diag!(d::MPIMatrix{T,A}, M::MPIMatrix{T,A}) returns a distributed 1-row matrix. """ function diag!(d::MPIMatrix{T,A}, M::MPIMatrix{T,A}) where {T,A} @assert size(d,1) == 1 @assert size(d,2) == size(M, 2) @assert size(M,1) == size(M,2) d.localarray .= reshape(M.localarray[LinearAlgebra.diagind(M)], 1, :) end """ diag!(d::AbstractVector, M::MPIMatrix{T,A}) returns a local col vector. """ function diag!(d::AbstractVector, M::MPIMatrix{T,A}) where {T,A} @assert size(d,1) == size(M, 1) @assert size(M,1) == size(M,2) d[M.partitioning[Rank()+1][2]] .= M.localarray[LinearAlgebra.diagind(M)] counts = reshape(map(x->convert(Cint, length(x[2])), M.partitioning), :) sync() MPI.Allgatherv!(MPI.IN_PLACE, d, counts, MPI.COMM_WORLD) end """ fill_diag!(M, x, k=0) fills the diagonal of M with x. """ @inline function fill_diag!(M::MPIMatrix, x, k::Integer=0) M.localarray[LinearAlgebra.diagind(M, k)] .= x end """ opnorm(A::MPIMatrix; method="power", tol=1e-8) Estimates operator l2 norm of MPIMatrix A. If `method=="power", it uses the power iteration. If `method=="quick"`, it computes the product of matrix l1 norm and the matrix l-infty norm. """ function opnorm(A::MPIMatrix; method::String="power", tol=1e-6, maxiter=1000, seed=777, verbose=false) if method == "power" _opnorm_power(A; tol=tol, maxiter=maxiter, seed=seed, verbose=verbose) elseif method == "quick" _opnorm_quick(A) else @error("Invalid method. Valid values are: \"power\" and \"quick\".") end end function opnorm(A::MPIMatrix, p::Real; method::String="power", tol=1e-6, maxiter=1000, seed=777, verbose=false) if p == 1 _opnorm_l1(A) elseif p == 2 opnorm(A; method=method, tol=tol, maxiter=maxiter, seed=seed, verbose=verbose) elseif p == Inf _opnorm_linfty(A) else @error("Invalid p for opnorm. Valid values are: 1, 2, and Inf.") end end function _opnorm_l1(A::MPIMatrix) maximum(sum(abs.(A); dims=1)) end function _opnorm_linfty(A::MPIMatrix) maximum(sum(abs.(A); dims=2)) end function _opnorm_power(A::MPIMatrix{T,AT}; tol=1e-6, maxiter=1000, seed=777, verbose=false) where {T, AT} verbose && Rank() == 0 && println("computing max singular value...") m, n = size(A) seed!(seed) v = MPIVector{T,AT}(undef, n) randn!(v) Av = MPIVector{T,AT}(undef, m) LinearAlgebra.mul!(Av, A, v) s, s_prev = -Inf, -Inf for i in 1:maxiter LinearAlgebra.mul!(v, transpose(A), Av) v ./= sqrt(sum(v.^2)) LinearAlgebra.mul!(Av, A, v) s = sqrt(sum(Av.^2)) if abs((s_prev - s)/s) < tol break end s_prev = s verbose && Rank() == 0 && i%100 == 0 && println("iteration $i: $s") end verbose && Rank() == 0 && println("done computing max singular value: $s") s end function _opnorm_quick(A::MPIMatrix) l1 = _opnorm_l1(A) linf = _opnorm_linfty(A) l1*linf end
State Before: ΞΉ : Type u₁ k : Type uβ‚‚ V : Type u₃ P : Type uβ‚„ inst✝⁡ : AddCommGroup V inst✝⁴ : AffineSpace V P inst✝³ : DivisionRing k inst✝² : Module k V inst✝¹ : Fintype ΞΉ inst✝ : FiniteDimensional k V h : Fintype.card ΞΉ = FiniteDimensional.finrank k V + 1 ⊒ Nonempty (AffineBasis ΞΉ k P) State After: case intro.intro ΞΉ : Type u₁ k : Type uβ‚‚ V : Type u₃ P : Type uβ‚„ inst✝⁡ : AddCommGroup V inst✝⁴ : AffineSpace V P inst✝³ : DivisionRing k inst✝² : Module k V inst✝¹ : Fintype ΞΉ inst✝ : FiniteDimensional k V h : Fintype.card ΞΉ = FiniteDimensional.finrank k V + 1 s : Set P b : AffineBasis (↑s) k P hb : ↑b = Subtype.val ⊒ Nonempty (AffineBasis ΞΉ k P) Tactic: obtain ⟨s, b, hb⟩ := AffineBasis.exists_affineBasis k V P State Before: case intro.intro ΞΉ : Type u₁ k : Type uβ‚‚ V : Type u₃ P : Type uβ‚„ inst✝⁡ : AddCommGroup V inst✝⁴ : AffineSpace V P inst✝³ : DivisionRing k inst✝² : Module k V inst✝¹ : Fintype ΞΉ inst✝ : FiniteDimensional k V h : Fintype.card ΞΉ = FiniteDimensional.finrank k V + 1 s : Set P b : AffineBasis (↑s) k P hb : ↑b = Subtype.val ⊒ Nonempty (AffineBasis ΞΉ k P) State After: case intro.intro.intro ΞΉ : Type u₁ k : Type uβ‚‚ V : Type u₃ P : Type uβ‚„ inst✝⁡ : AddCommGroup V inst✝⁴ : AffineSpace V P inst✝³ : DivisionRing k inst✝² : Module k V inst✝¹ : Fintype ΞΉ inst✝ : FiniteDimensional k V h : Fintype.card ΞΉ = FiniteDimensional.finrank k V + 1 s : Finset P b : AffineBasis (↑↑s) k P hb : ↑b = Subtype.val ⊒ Nonempty (AffineBasis ΞΉ k P) Tactic: lift s to Finset P using b.finite_set State Before: case intro.intro.intro ΞΉ : Type u₁ k : Type uβ‚‚ V : Type u₃ P : Type uβ‚„ inst✝⁡ : AddCommGroup V inst✝⁴ : AffineSpace V P inst✝³ : DivisionRing k inst✝² : Module k V inst✝¹ : Fintype ΞΉ inst✝ : FiniteDimensional k V h : Fintype.card ΞΉ = FiniteDimensional.finrank k V + 1 s : Finset P b : AffineBasis (↑↑s) k P hb : ↑b = Subtype.val ⊒ Nonempty (AffineBasis ΞΉ k P) State After: case intro.intro.intro ΞΉ : Type u₁ k : Type uβ‚‚ V : Type u₃ P : Type uβ‚„ inst✝⁡ : AddCommGroup V inst✝⁴ : AffineSpace V P inst✝³ : DivisionRing k inst✝² : Module k V inst✝¹ : Fintype ΞΉ inst✝ : FiniteDimensional k V h : Fintype.card ΞΉ = FiniteDimensional.finrank k V + 1 s : Finset P b : AffineBasis (↑↑s) k P hb : ↑b = Subtype.val ⊒ Fintype.card ↑↑s = Fintype.card ΞΉ Tactic: refine' ⟨b.reindex <| Fintype.equivOfCardEq _⟩ State Before: case intro.intro.intro ΞΉ : Type u₁ k : Type uβ‚‚ V : Type u₃ P : Type uβ‚„ inst✝⁡ : AddCommGroup V inst✝⁴ : AffineSpace V P inst✝³ : DivisionRing k inst✝² : Module k V inst✝¹ : Fintype ΞΉ inst✝ : FiniteDimensional k V h : Fintype.card ΞΉ = FiniteDimensional.finrank k V + 1 s : Finset P b : AffineBasis (↑↑s) k P hb : ↑b = Subtype.val ⊒ Fintype.card ↑↑s = Fintype.card ΞΉ State After: no goals Tactic: rw [h, ← b.card_eq_finrank_add_one]
<link rel="stylesheet" href="../../styles/theme_style.css"> <link rel="stylesheet" href="https://cdnjs.cloudflare.com/ajax/libs/font-awesome/4.7.0/css/font-awesome.min.css"> <table width="100%"> <tr> <td id="image_td" width="15%" class="header_image_color_4"><div id="image_img" class="header_image_4"></div></td> <td class="header_text"> Digital Filtering - A Fundamental Pre-Processing Step </td> </tr> </table> <div id="flex-container"> <div id="diff_level" class="flex-item"> <strong>Difficulty Level:</strong> <span class="fa fa-star checked"></span> <span class="fa fa-star checked"></span> <span class="fa fa-star"></span> <span class="fa fa-star"></span> <span class="fa fa-star"></span> </div> <div id="tag" class="flex-item-tag"> <span id="tag_list"> <table id="tag_list_table"> <tr> <td class="shield_left">Tags</td> <td class="shield_right" id="tags">pre-process&#9729;filter</td> </tr> </table> </span> <!-- [OR] Visit https://img.shields.io in order to create a tag badge--> </div> </div> The acquired electrophysiological signals have always two intrinsic components. The signal we really want to acquire/study and noise, i.e. the acquisition component that is not relevant for the study purposes. Noise can have different origins, such as in random events or due to voluntary/involuntary movements of the subject under analysis that affect the <a href="https://en.wikipedia.org/wiki/Noise_(signal_processing)" target="_blank">signal acquisition </a>. So, <a href="https://en.wikipedia.org/wiki/Filter_(signal_processing)" target="_blank">filtering </a> is a fundamental step that needs to be applied to the signal, in order to ensure the maximisation of <a href="https://en.wikipedia.org/wiki/Signal-to-noise_ratio" target="_blank">signal to noise ratio </a>. Filtering can be achieved by hardware, having the analogical systems a great relevance, or by software using digital filters. In this <strong><span class="color5">Jupyter Notebook</span></strong> it will be demonstrated how to digital filter the signal. <hr> <p class="steps">1 - Importation of the needed packages</p> ```python # biosignalsnotebooks own package for loading and plotting the acquired data import biosignalsnotebooks as bsnb # Scientific package from numpy import array, mean, average, linspace, where from numpy.random import normal ``` ```python # Hide warnings. # https://groups.google.com/a/continuum.io/forum/#!topic/bokeh/h817iNS2twk from IPython.display import HTML HTML(''' To toggle on/off output_stderr, click <a href="javascript:code_toggle_err()">here</a>.''') ``` <p class="steps">2 - Load of acquired ECG data</p> ```python # Load of data data, header = bsnb.load_signal("ecg_4000_Hz", get_header=True) ``` In the following cell, some relevant information is stored inside variables. This relevant information includes the mac-address of the device, channel number and signal acquisition parameters such as resolution and sampling rate. For a detailed explanation of how to access this info, the <a href="../Load/signal_loading_preparatory_steps.ipynb" target="_blank">"Signal Loading - Working with File Header"</a> Notebook should be consulted. ```python ch = "CH1" # Channel sr = header["sampling rate"] # Sampling rate resolution = header["resolution"] # Resolution (number of available bits) ``` <p class="steps">3 - Generation of signal power spectrum by <i>Fast Fourier Transform</i> (FFT)</p> With this step is possible to observe the frequency composition of ECG signal. <p class="steps">3.1 - Store the desired physiological data (channel 1) int an individual variable</p> ```python # Acquired data signal = data[ch] ``` <p class="steps">3.2 - Removal of continuous component from our signal (baseline shift through the subtraction of the average value) </p> This task ensures more stability of our filtering system. ```python # Baseline shift. signal = array(signal) - mean(signal) ``` <p class="steps">3.3 - Generation of the power spectrum </p> ```python # Power spectrum freq_axis_1, power_spect_1 = bsnb.plotfft(signal, sr) ``` <p class="steps">4 - The informational content of ECG signal is typically contained below the 40 Hz frequency component</p> With the next representation we can conclude that exist some unwanted information out of this frequency band. ```python fig_1 = bsnb.plot_informational_band(freq_axis_1, power_spect_1, signal, sr, band_begin=0.5, band_end=40, legend="ECG Power Spectrum", x_lim=[0, 100], y_lim=[0, 5e6], show_plot=True) ``` <p class="steps">5 - Application of a low-pass filter in order to be excluded the unwanted information above the 40 Hz frequency component</p> Some low-frequency noise can be present at [0, 0.5] Hz frequency band. To exclude it we can follow an identical procedure, but, instead of applying a low-pass filter, it should be used a band-pass filter for the frequencies inside [0.5, 40] Hz. <br> For now, we focused on the more problematic type of noise, i.e., the high frequency noise ```python # Digital lowpass filtering with a cutoff frequency f of 40 Hz filter_signal_1 = bsnb.lowpass(signal, f=40, order=1, fs=sr) # Power spectrum freq_axis_2, power_spect_2 = bsnb.plotfft(filter_signal_1, sr) ``` <p class="steps">6 - Comparison of the power spectrum of original and filtered signal</p> ```python bsnb.plot_before_after_filter(signal, sr, band_begin=0.5, band_end=40, x_lim=[0, 100], y_lim=[0, 5e6], show_plot=True) ``` In this first filtering attempt we used a first order filter (input argument order=1). It can be seen, in the previous figure, that some unwanted information have been removed, unfortunately no filter has an ideal behavior, so despite we specify a high cutoff frequency of 40 Hz, some information above this threshold is maintained after filtering. The good news are that components greater than 80 Hz are almost completely removed. The filter performance can be improved by increasing the filter order, because the higher the filter order is, more quickly the transition between the pass and stop band will be. The transition band will be smaller because of a higher attenuation rate (-20 x <strong>order</strong> dB/decade). However, the filter order must be chosen with precaution in order to avoid system instability. <strong><span class="color4">Magnitude Bode plots</span></strong> are very useful to check the filter response, as can be seen in the figure below, taking into consideration the following Mathematical formulation. \begin{equation} G = -20\times\log_{10}\Bigg(\sqrt{1 + \bigg(\frac{f}{f_c}\bigg)^{2.n}}\Bigg) \end{equation} <table width="100%"> <tr> <td width="20%"></td> <td width="30%" style="text-align:left;vertical-align:top">$G$ - Gain factor (negative values reveal an attenuation)</td> <td width="30%" style="text-align:left;vertical-align:top">$n$ - Filter order (integer)</td> <td width="20%"></td> </tr> <tr> <td></td> <td style="text-align:left;vertical-align:top">$f_{c}$ - Cutoff frequency of the filter (40 Hz, for the current implementation)</td> <td style="text-align:left;vertical-align:top">$f$ - Independent variable (input frequency to be filtered)</td> <td></td> </tr> </table> ```python bsnb.plot_low_pass_filter_response() ``` <p class="steps">7 - Repetition of the filtering stage but using a higher filter order</p> ```python # Digital low-pass filtering with a cutoff frequency f of 40 Hz filter_signal_2 = bsnb.lowpass(signal, f=40, order=3, fs=sr) # Power spectrum freq_axis_3, power_spect_3 = bsnb.plotfft(filter_signal_2, sr) ``` ```python bsnb.plot_before_after_filter(signal, sr, band_begin=0.5, band_end=40, order=3, x_lim=[0, 100], y_lim=[0, 5e6], orientation="same", show_plot=True) ``` When the noise level is low, it may be difficult to observe its influence in time domain. In order to the digital filtering stage produce a visual effect in time domain, the noise level needs to be high. So we will add some artificial noise do the signal and see the great impact of digital filtering. <hr> <p class="steps">E1 - Addition of artificial noise</p> ```python # Noise samples and translation of the baseline baseline = average(signal) baseline_shift = 0.50 * baseline noisy_signal = signal + normal(0, 1000, len(signal)) + baseline_shift ``` <p class="steps">E2 - Noisy signal representation</p> ```python # Plotting of power spectrum bsnb.plot(linspace(0, len(noisy_signal) - 1, len(noisy_signal)), noisy_signal, x_axis_label='Sample Number', y_axis_label='Raw Data', title="Noisy Signal", y_range=(-1e4, 6e4)) ``` <p class="steps">E3 - Digital Filtering Stage</p> ```python # Digital low-pass filtering with a cutoff frequency f of 40 Hz noisy_signal_filter = bsnb.lowpass(noisy_signal, f=40, order=3, fs=sr) ``` <p class="steps">E4 - Comparison of noisy and filtered signal in time domain</p> ```python bsnb.plot([linspace(0, len(noisy_signal) - 1, len(noisy_signal))]*2, [noisy_signal, noisy_signal_filter], grid_plot=True, grid_lines=1, grid_columns=2, x_axis_label='Sample Number', y_axis_label='Raw Data', title=["Noisy Signal", "Filtered Signal"]) ``` As described previously, none filter has an ideal behavior, but, in spite of not ideal the behavior of real filters is predictable. For example, for the designed 3rd order Butterworth filter with cutoff frequency of 40 Hz, it is expected that after one decade (40 Hz x 10 = 400 Hz) the relative amplitude will be attenuated by -60 dB (assuming a value of 0.1% of the non-filtered signal). ```python # Power spectrum (Noisy signal) freq_axis_noisy, power_spect_noisy = bsnb.plotfft(noisy_signal, sr) # Power spectrum (Filtered signal) freq_axis_filter, power_spect_filter = bsnb.plotfft(noisy_signal_filter, sr) # Relative amplitude 1 decade after the 40 Hz cutoff frequency --> 400 Hz # Taking into consideration that the search is sequential, so, only the # first sample that meets the criterium is relevant. index_decade = where(freq_axis_noisy >= 400)[0][0] power_decade_noisy = power_spect_noisy[index_decade] power_decade_filter = power_spect_filter[index_decade] ``` ```python from sty import fg, rs print(fg(98,195,238) + "\033[1mRelative Amplitude/Power at 400 Hz frequency component [Noisy Signal]: \033[0m" + fg.rs + str(round(power_decade_noisy, 4))) print(fg(148,193,30) + "\033[1mRelative Amplitude/Power at 400 Hz frequency component [Filtered Signal]: \033[0m" + fg.rs + str(round(power_decade_filter, 4))) print(fg(232,77,14) + "\033[1m\nRatio between filtered and noisy 400 Hz component [Attenuation]: \033[0m" + fg.rs + str(round(power_decade_filter/power_decade_noisy, 4)) + " ~ " + str(round(power_decade_filter/power_decade_noisy, 3)) + " = 0.1 %") ``` Taking into consideration the previous demonstration, we can understand that the designed filter presents the desired behavior ! Unfortunately <a href="https://en.wikipedia.org/wiki/Noise_(signal_processing)">noise </a> is everywhere and even physiological data can be classified as noise if we are studying signals with another nature, as a practical example, electromyographic (EMG) data will be noise when doing an electrocardiographic (ECG) acquisition. But, as demonstrated before, we can face this obstacle with efficient solutions, using analogical (pre-acquisition) or digital (post-acquisition) filters. With this brief tutorial, it can be understood the basic functioning principle of digital filters and how the user should proceed to "design" a widely used <a href="https://en.wikipedia.org/wiki/Butterworth_filter">Butterworth </a> filtering system. <strong><span class="color7">We hope that you have enjoyed this guide. </span><span class="color2">biosignalsnotebooks</span><span class="color4"> is an environment in continuous expansion, so don't stop your journey and learn more with the remaining <a href="../MainFiles/biosignalsnotebooks.ipynb">Notebooks </a></span></strong> ! <span class="color6">**Auxiliary Code Segment (should not be replicated by the user)**</span> ```python from biosignalsnotebooks.__notebook_support__ import css_style_apply css_style_apply() ``` ```python %%html ```
#include "get_floor_fHf.h" #include "ransac_floor_fHf.h" #include "ransac_data.h" #include "randperm.h" #include <Eigen/Geometry> #include <vector> using namespace Eigen; RansacData ransac_floor_fHf(MatrixXd &p1, MatrixXd &p2, Matrix3d &R1, Matrix3d &R2, int nbr_iter, double thresh) { // Init RANSAC loop PoseData best_posedata; int best_nbr_inliers = 0; VectorXi best_inliers; best_inliers.setZero(); int nbr_pts = p1.cols(); MatrixXd reproj1(2, nbr_pts); MatrixXd reproj2(2, nbr_pts); MatrixXd reproj(4, nbr_pts); VectorXd reproj_mean(nbr_pts); MatrixXd H(3,3); VectorXi inliers(nbr_pts); int nbr_inliers; VectorXi history(nbr_iter); int nbr_pts_minimal = 3; for (int i = 0; i < nbr_iter; i++) { std::vector<int> rands = randperm(nbr_pts_minimal, nbr_pts); MatrixXd x1(3, nbr_pts_minimal); MatrixXd x2(3, nbr_pts_minimal); for (int j = 0; j < nbr_pts_minimal; j++) { x1.col(j) << p1.col(rands[j]); x2.col(j) << p2.col(rands[j]); } // Get pose MatrixXd x1h(2,3); MatrixXd x2h(2,3); x1h << x1.colwise().hnormalized(); x2h << x2.colwise().hnormalized(); PoseData posedata = get_floor_fHf(x1h, x2h, R1, R2); // Compute reprojection error, and compare to other solutions. H = posedata.homography; reproj1 = p2.colwise().hnormalized() - (H * p1).colwise().hnormalized(); reproj2 = p1.colwise().hnormalized() - (H.lu().solve(p2)).colwise().hnormalized(); reproj << reproj1.cwiseAbs(), reproj2.cwiseAbs(); reproj_mean = reproj.colwise().mean().array(); inliers = (reproj_mean.array() < thresh).cast<int>(); nbr_inliers = inliers.sum(); if (best_nbr_inliers < nbr_inliers) { best_posedata = posedata; best_nbr_inliers = nbr_inliers; best_inliers = inliers; } history(i) = best_nbr_inliers; } RansacData ransac_data; ransac_data.posedata = best_posedata; ransac_data.inliers = best_inliers; ransac_data.history = history; return ransac_data; } // ---------------- // // MATLAB interface // // ---------------- // #ifdef MATLAB_MEX_FILE void mexFunction(int nlhs, mxArray *plhs[], int nrhs, const mxArray *prhs[]) { if (nrhs != 6) { mexErrMsgIdAndTxt("ransac_floor_fHf:nrhs", "Six input arguments are required."); } if (nlhs != 4) { mexErrMsgIdAndTxt("ransac_floor_fHf:nlhs", "Four output arguments are required."); } if (!mxIsDouble(prhs[0]) || mxIsComplex(prhs[0])) { mexErrMsgIdAndTxt("ransac_floor_fHf:notDouble", "Input data must be type double."); } if(mxGetNumberOfElements(prhs[0]) % 3 != 0 && mxGetNumberOfElements(prhs[0]) != mxGetNumberOfElements(prhs[1]) && mxGetNumberOfElements(prhs[2]) != 9 && mxGetNumberOfElements(prhs[3]) != 9 && mxGetNumberOfElements(prhs[4]) != 1 && mxGetNumberOfElements(prhs[5]) != 1) { mexErrMsgIdAndTxt("ransac_floor_fHf:incorrectSize", "Input dimensions incorrect."); } // Convert to expected input int nbr_pts = mxGetNumberOfElements(prhs[0]) / 3; VectorXd x1_tmp = Map<VectorXd>(mxGetPr(prhs[0]), mxGetNumberOfElements(prhs[0])); VectorXd x2_tmp = Map<VectorXd>(mxGetPr(prhs[1]), mxGetNumberOfElements(prhs[1])); MatrixXd x1 = Map<MatrixXd>(x1_tmp.data(), 3, nbr_pts); MatrixXd x2 = Map<MatrixXd>(x2_tmp.data(), 3, nbr_pts); VectorXd R1_tmp = Map<VectorXd>(mxGetPr(prhs[2]), 9); VectorXd R2_tmp = Map<VectorXd>(mxGetPr(prhs[3]), 9); Matrix3d R1 = Map<Matrix3d>(R1_tmp.data(), 3, 3); Matrix3d R2 = Map<Matrix3d>(R2_tmp.data(), 3, 3); double *nbr_iter_p = mxGetPr(prhs[4]); double *thresh = mxGetPr(prhs[5]); int nbr_iter = (int) nbr_iter_p[0]; // Compute output RansacData ransac_data = ransac_floor_fHf(x1, x2, R1, R2, nbr_iter, thresh[0]); PoseData posedata = ransac_data.posedata; // Wrap it up to Matlab compatible output plhs[0] = mxCreateDoubleMatrix(3, 3, mxREAL); double* zr = mxGetPr(plhs[0]); for (Index i = 0; i < posedata.homography.size(); i++) { zr[i] = posedata.homography(i); } plhs[1] = mxCreateDoubleMatrix(1, 1, mxREAL); zr = mxGetPr(plhs[1]); zr[0] = posedata.focal_length; plhs[2] = mxCreateDoubleMatrix(nbr_pts, 1, mxREAL); zr = mxGetPr(plhs[2]); for (Index i = 0; i < nbr_pts; i++) { zr[i] = ransac_data.inliers(i); } plhs[3] = mxCreateDoubleMatrix(nbr_iter, 1, mxREAL); zr = mxGetPr(plhs[3]); for (Index i = 0; i < nbr_iter; i++) { zr[i] = ransac_data.history(i); } } #endif
/- Copyright (c) 2021 Aaron Anderson, Jesse Michael Han, Floris van Doorn. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Aaron Anderson, Jesse Michael Han, Floris van Doorn -/ import data.fin.vec_notation import set_theory.cardinal.basic /-! # Basics on First-Order Structures This file defines first-order languages and structures in the style of the [Flypitch project](https://flypitch.github.io/), as well as several important maps between structures. ## Main Definitions * A `first_order.language` defines a language as a pair of functions from the natural numbers to `Type l`. One sends `n` to the type of `n`-ary functions, and the other sends `n` to the type of `n`-ary relations. * A `first_order.language.Structure` interprets the symbols of a given `first_order.language` in the context of a given type. * A `first_order.language.hom`, denoted `M β†’[L] N`, is a map from the `L`-structure `M` to the `L`-structure `N` that commutes with the interpretations of functions, and which preserves the interpretations of relations (although only in the forward direction). * A `first_order.language.embedding`, denoted `M β†ͺ[L] N`, is an embedding from the `L`-structure `M` to the `L`-structure `N` that commutes with the interpretations of functions, and which preserves the interpretations of relations in both directions. * A `first_order.language.elementary_embedding`, denoted `M β†ͺβ‚‘[L] N`, is an embedding from the `L`-structure `M` to the `L`-structure `N` that commutes with the realizations of all formulas. * A `first_order.language.equiv`, denoted `M ≃[L] N`, is an equivalence from the `L`-structure `M` to the `L`-structure `N` that commutes with the interpretations of functions, and which preserves the interpretations of relations in both directions. ## TODO Use `[countable L.symbols]` instead of `[L.countable]`. ## References For the Flypitch project: - [J. Han, F. van Doorn, *A formal proof of the independence of the continuum hypothesis*] [flypitch_cpp] - [J. Han, F. van Doorn, *A formalization of forcing and the unprovability of the continuum hypothesis*][flypitch_itp] -/ universes u v u' v' w w' open_locale cardinal open cardinal namespace first_order /-! ### Languages and Structures -/ /-- A first-order language consists of a type of functions of every natural-number arity and a type of relations of every natural-number arity. -/ @[nolint check_univs] -- intended to be used with explicit universe parameters structure language := (functions : β„• β†’ Type u) (relations : β„• β†’ Type v) /-- Used to define `first_order.languageβ‚‚`. -/ @[simp] def sequenceβ‚‚ (aβ‚€ a₁ aβ‚‚ : Type u) : β„• β†’ Type u | 0 := aβ‚€ | 1 := a₁ | 2 := aβ‚‚ | _ := pempty namespace sequenceβ‚‚ variables (aβ‚€ a₁ aβ‚‚ : Type u) instance inhabitedβ‚€ [h : inhabited aβ‚€] : inhabited (sequenceβ‚‚ aβ‚€ a₁ aβ‚‚ 0) := h instance inhabited₁ [h : inhabited a₁] : inhabited (sequenceβ‚‚ aβ‚€ a₁ aβ‚‚ 1) := h instance inhabitedβ‚‚ [h : inhabited aβ‚‚] : inhabited (sequenceβ‚‚ aβ‚€ a₁ aβ‚‚ 2) := h instance {n : β„•} : is_empty (sequenceβ‚‚ aβ‚€ a₁ aβ‚‚ (n + 3)) := pempty.is_empty @[simp] lemma lift_mk {i : β„•} : cardinal.lift (# (sequenceβ‚‚ aβ‚€ a₁ aβ‚‚ i)) = # (sequenceβ‚‚ (ulift aβ‚€) (ulift a₁) (ulift aβ‚‚) i) := begin rcases i with (_ | _ | _ | i); simp only [sequenceβ‚‚, mk_ulift, mk_fintype, fintype.card_of_is_empty, nat.cast_zero, lift_zero], end @[simp] lemma sum_card : cardinal.sum (Ξ» i, # (sequenceβ‚‚ aβ‚€ a₁ aβ‚‚ i)) = # aβ‚€ + # a₁ + # aβ‚‚ := begin rw [sum_nat_eq_add_sum_succ, sum_nat_eq_add_sum_succ, sum_nat_eq_add_sum_succ], simp [add_assoc], end end sequenceβ‚‚ namespace language /-- A constructor for languages with only constants, unary and binary functions, and unary and binary relations. -/ @[simps] protected def mkβ‚‚ (c f₁ fβ‚‚ : Type u) (r₁ rβ‚‚ : Type v) : language := ⟨sequenceβ‚‚ c f₁ fβ‚‚, sequenceβ‚‚ pempty r₁ rβ‚‚βŸ© /-- The empty language has no symbols. -/ protected def empty : language := ⟨λ _, empty, Ξ» _, empty⟩ instance : inhabited language := ⟨language.empty⟩ /-- The sum of two languages consists of the disjoint union of their symbols. -/ protected def sum (L : language.{u v}) (L' : language.{u' v'}) : language := ⟨λn, L.functions n βŠ• L'.functions n, Ξ» n, L.relations n βŠ• L'.relations n⟩ variable (L : language.{u v}) /-- The type of constants in a given language. -/ @[nolint has_nonempty_instance] protected def Β«constantsΒ» := L.functions 0 @[simp] lemma constants_mkβ‚‚ (c f₁ fβ‚‚ : Type u) (r₁ rβ‚‚ : Type v) : (language.mkβ‚‚ c f₁ fβ‚‚ r₁ rβ‚‚).constants = c := rfl /-- The type of symbols in a given language. -/ @[nolint has_nonempty_instance] def symbols := (Ξ£l, L.functions l) βŠ• (Ξ£l, L.relations l) /-- The cardinality of a language is the cardinality of its type of symbols. -/ def card : cardinal := # L.symbols /-- A language is relational when it has no function symbols. -/ class is_relational : Prop := (empty_functions : βˆ€ n, is_empty (L.functions n)) /-- A language is algebraic when it has no relation symbols. -/ class is_algebraic : Prop := (empty_relations : βˆ€ n, is_empty (L.relations n)) variables {L} {L' : language.{u' v'}} lemma card_eq_card_functions_add_card_relations : L.card = cardinal.sum (Ξ» l, (cardinal.lift.{v} (#(L.functions l)))) + cardinal.sum (Ξ» l, cardinal.lift.{u} (#(L.relations l))) := by simp [card, symbols] instance [L.is_relational] {n : β„•} : is_empty (L.functions n) := is_relational.empty_functions n instance [L.is_algebraic] {n : β„•} : is_empty (L.relations n) := is_algebraic.empty_relations n instance is_relational_of_empty_functions {symb : β„• β†’ Type*} : is_relational ⟨λ _, empty, symb⟩ := ⟨λ _, empty.is_empty⟩ instance is_algebraic_of_empty_relations {symb : β„• β†’ Type*} : is_algebraic ⟨symb, Ξ» _, empty⟩ := ⟨λ _, empty.is_empty⟩ instance is_relational_empty : is_relational language.empty := language.is_relational_of_empty_functions instance is_algebraic_empty : is_algebraic language.empty := language.is_algebraic_of_empty_relations instance is_relational_sum [L.is_relational] [L'.is_relational] : is_relational (L.sum L') := ⟨λ n, sum.is_empty⟩ instance is_algebraic_sum [L.is_algebraic] [L'.is_algebraic] : is_algebraic (L.sum L') := ⟨λ n, sum.is_empty⟩ instance is_relational_mkβ‚‚ {c f₁ fβ‚‚ : Type u} {r₁ rβ‚‚ : Type v} [h0 : is_empty c] [h1 : is_empty f₁] [h2 : is_empty fβ‚‚] : is_relational (language.mkβ‚‚ c f₁ fβ‚‚ r₁ rβ‚‚) := ⟨λ n, nat.cases_on n h0 (Ξ» n, nat.cases_on n h1 (Ξ» n, nat.cases_on n h2 (Ξ» _, pempty.is_empty)))⟩ instance is_algebraic_mkβ‚‚ {c f₁ fβ‚‚ : Type u} {r₁ rβ‚‚ : Type v} [h1 : is_empty r₁] [h2 : is_empty rβ‚‚] : is_algebraic (language.mkβ‚‚ c f₁ fβ‚‚ r₁ rβ‚‚) := ⟨λ n, nat.cases_on n pempty.is_empty (Ξ» n, nat.cases_on n h1 (Ξ» n, nat.cases_on n h2 (Ξ» _, pempty.is_empty)))⟩ instance subsingleton_mkβ‚‚_functions {c f₁ fβ‚‚ : Type u} {r₁ rβ‚‚ : Type v} [h0 : subsingleton c] [h1 : subsingleton f₁] [h2 : subsingleton fβ‚‚] {n : β„•} : subsingleton ((language.mkβ‚‚ c f₁ fβ‚‚ r₁ rβ‚‚).functions n) := nat.cases_on n h0 (Ξ» n, nat.cases_on n h1 (Ξ» n, nat.cases_on n h2 (Ξ» n, ⟨λ x, pempty.elim x⟩))) instance subsingleton_mkβ‚‚_relations {c f₁ fβ‚‚ : Type u} {r₁ rβ‚‚ : Type v} [h1 : subsingleton r₁] [h2 : subsingleton rβ‚‚] {n : β„•} : subsingleton ((language.mkβ‚‚ c f₁ fβ‚‚ r₁ rβ‚‚).relations n) := nat.cases_on n ⟨λ x, pempty.elim x⟩ (Ξ» n, nat.cases_on n h1 (Ξ» n, nat.cases_on n h2 (Ξ» n, ⟨λ x, pempty.elim x⟩))) @[simp] lemma empty_card : language.empty.card = 0 := by simp [card_eq_card_functions_add_card_relations] instance is_empty_empty : is_empty language.empty.symbols := begin simp only [language.symbols, is_empty_sum, is_empty_sigma], exact ⟨λ _, infer_instance, Ξ» _, infer_instance⟩, end instance countable.countable_functions [h : countable L.symbols] : countable (Ξ£l, L.functions l) := @function.injective.countable _ _ h _ sum.inl_injective @[simp] lemma card_functions_sum (i : β„•) : #((L.sum L').functions i) = (#(L.functions i)).lift + cardinal.lift.{u} (#(L'.functions i)) := by simp [language.sum] @[simp] lemma card_relations_sum (i : β„•) : #((L.sum L').relations i) = (#(L.relations i)).lift + cardinal.lift.{v} (#(L'.relations i)) := by simp [language.sum] @[simp] lemma card_sum : (L.sum L').card = cardinal.lift.{max u' v'} L.card + cardinal.lift.{max u v} L'.card := begin simp only [card_eq_card_functions_add_card_relations, card_functions_sum, card_relations_sum, sum_add_distrib', lift_add, lift_sum, lift_lift], rw [add_assoc, ←add_assoc (cardinal.sum (Ξ» i, (# (L'.functions i)).lift)), add_comm (cardinal.sum (Ξ» i, (# (L'.functions i)).lift)), add_assoc, add_assoc] end @[simp] lemma card_mkβ‚‚ (c f₁ fβ‚‚ : Type u) (r₁ rβ‚‚ : Type v) : (language.mkβ‚‚ c f₁ fβ‚‚ r₁ rβ‚‚).card = cardinal.lift.{v} (# c) + cardinal.lift.{v} (# f₁) + cardinal.lift.{v} (# fβ‚‚) + cardinal.lift.{u} (# r₁) + cardinal.lift.{u} (# rβ‚‚) := by simp [card_eq_card_functions_add_card_relations, add_assoc] variables (L) (M : Type w) /-- A first-order structure on a type `M` consists of interpretations of all the symbols in a given language. Each function of arity `n` is interpreted as a function sending tuples of length `n` (modeled as `(fin n β†’ M)`) to `M`, and a relation of arity `n` is a function from tuples of length `n` to `Prop`. -/ @[ext] class Structure := (fun_map : βˆ€{n}, L.functions n β†’ (fin n β†’ M) β†’ M) (rel_map : βˆ€{n}, L.relations n β†’ (fin n β†’ M) β†’ Prop) variables (N : Type w') [L.Structure M] [L.Structure N] open Structure /-- Used for defining `first_order.language.Theory.Model.inhabited`. -/ def inhabited.trivial_structure {Ξ± : Type*} [inhabited Ξ±] : L.Structure Ξ± := ⟨default, default⟩ /-! ### Maps -/ /-- A homomorphism between first-order structures is a function that commutes with the interpretations of functions and maps tuples in one structure where a given relation is true to tuples in the second structure where that relation is still true. -/ structure hom := (to_fun : M β†’ N) (map_fun' : βˆ€{n} (f : L.functions n) x, to_fun (fun_map f x) = fun_map f (to_fun ∘ x) . obviously) (map_rel' : βˆ€{n} (r : L.relations n) x, rel_map r x β†’ rel_map r (to_fun ∘ x) . obviously) localized "notation (name := language.hom) A ` β†’[`:25 L `] ` B := first_order.language.hom L A B" in first_order /-- An embedding of first-order structures is an embedding that commutes with the interpretations of functions and relations. -/ @[ancestor function.embedding] structure embedding extends M β†ͺ N := (map_fun' : βˆ€{n} (f : L.functions n) x, to_fun (fun_map f x) = fun_map f (to_fun ∘ x) . obviously) (map_rel' : βˆ€{n} (r : L.relations n) x, rel_map r (to_fun ∘ x) ↔ rel_map r x . obviously) localized "notation (name := language.embedding) A ` β†ͺ[`:25 L `] ` B := first_order.language.embedding L A B" in first_order /-- An equivalence of first-order structures is an equivalence that commutes with the interpretations of functions and relations. -/ structure equiv extends M ≃ N := (map_fun' : βˆ€{n} (f : L.functions n) x, to_fun (fun_map f x) = fun_map f (to_fun ∘ x) . obviously) (map_rel' : βˆ€{n} (r : L.relations n) x, rel_map r (to_fun ∘ x) ↔ rel_map r x . obviously) localized "notation (name := language.equiv) A ` ≃[`:25 L `] ` B := first_order.language.equiv L A B" in first_order variables {L M N} {P : Type*} [L.Structure P] {Q : Type*} [L.Structure Q] instance : has_coe_t L.constants M := ⟨λ c, fun_map c default⟩ lemma fun_map_eq_coe_constants {c : L.constants} {x : fin 0 β†’ M} : fun_map c x = c := congr rfl (funext fin.elim0) /-- Given a language with a nonempty type of constants, any structure will be nonempty. This cannot be a global instance, because `L` becomes a metavariable. -/ lemma nonempty_of_nonempty_constants [h : nonempty L.constants] : nonempty M := h.map coe /-- The function map for `first_order.language.Structureβ‚‚`. -/ def fun_mapβ‚‚ {c f₁ fβ‚‚ : Type u} {r₁ rβ‚‚ : Type v} (c' : c β†’ M) (f₁' : f₁ β†’ M β†’ M) (fβ‚‚' : fβ‚‚ β†’ M β†’ M β†’ M) : βˆ€{n}, (language.mkβ‚‚ c f₁ fβ‚‚ r₁ rβ‚‚).functions n β†’ (fin n β†’ M) β†’ M | 0 f _ := c' f | 1 f x := f₁' f (x 0) | 2 f x := fβ‚‚' f (x 0) (x 1) | (n + 3) f _ := pempty.elim f /-- The relation map for `first_order.language.Structureβ‚‚`. -/ def rel_mapβ‚‚ {c f₁ fβ‚‚ : Type u} {r₁ rβ‚‚ : Type v} (r₁' : r₁ β†’ set M) (rβ‚‚' : rβ‚‚ β†’ M β†’ M β†’ Prop) : βˆ€{n}, (language.mkβ‚‚ c f₁ fβ‚‚ r₁ rβ‚‚).relations n β†’ (fin n β†’ M) β†’ Prop | 0 r _ := pempty.elim r | 1 r x := (x 0) ∈ r₁' r | 2 r x := rβ‚‚' r (x 0) (x 1) | (n + 3) r _ := pempty.elim r /-- A structure constructor to match `first_order.languageβ‚‚`. -/ protected def Structure.mkβ‚‚ {c f₁ fβ‚‚ : Type u} {r₁ rβ‚‚ : Type v} (c' : c β†’ M) (f₁' : f₁ β†’ M β†’ M) (fβ‚‚' : fβ‚‚ β†’ M β†’ M β†’ M) (r₁' : r₁ β†’ set M) (rβ‚‚' : rβ‚‚ β†’ M β†’ M β†’ Prop) : (language.mkβ‚‚ c f₁ fβ‚‚ r₁ rβ‚‚).Structure M := ⟨λ _, fun_mapβ‚‚ c' f₁' fβ‚‚', Ξ» _, rel_mapβ‚‚ r₁' rβ‚‚'⟩ namespace Structure variables {c f₁ fβ‚‚ : Type u} {r₁ rβ‚‚ : Type v} variables {c' : c β†’ M} {f₁' : f₁ β†’ M β†’ M} {fβ‚‚' : fβ‚‚ β†’ M β†’ M β†’ M} variables {r₁' : r₁ β†’ set M} {rβ‚‚' : rβ‚‚ β†’ M β†’ M β†’ Prop} @[simp] lemma fun_map_applyβ‚€ (cβ‚€ : c) {x : fin 0 β†’ M} : @Structure.fun_map _ M (Structure.mkβ‚‚ c' f₁' fβ‚‚' r₁' rβ‚‚') 0 cβ‚€ x = c' cβ‚€ := rfl @[simp] lemma fun_map_apply₁ (f : f₁) (x : M) : @Structure.fun_map _ M (Structure.mkβ‚‚ c' f₁' fβ‚‚' r₁' rβ‚‚') 1 f (![x]) = f₁' f x := rfl @[simp] lemma fun_map_applyβ‚‚ (f : fβ‚‚) (x y : M) : @Structure.fun_map _ M (Structure.mkβ‚‚ c' f₁' fβ‚‚' r₁' rβ‚‚') 2 f (![x,y]) = fβ‚‚' f x y := rfl @[simp] lemma rel_map_apply₁ (r : r₁) (x : M) : @Structure.rel_map _ M (Structure.mkβ‚‚ c' f₁' fβ‚‚' r₁' rβ‚‚') 1 r (![x]) = (x ∈ r₁' r) := rfl @[simp] end Structure /-- `hom_class L F M N` states that `F` is a type of `L`-homomorphisms. You should extend this typeclass when you extend `first_order.language.hom`. -/ class hom_class (L : out_param language) (F : Type*) (M N : out_param $ Type*) [fun_like F M (Ξ» _, N)] [L.Structure M] [L.Structure N] := (map_fun : βˆ€ (Ο† : F) {n} (f : L.functions n) x, Ο† (fun_map f x) = fun_map f (Ο† ∘ x)) (map_rel : βˆ€ (Ο† : F) {n} (r : L.relations n) x, rel_map r x β†’ rel_map r (Ο† ∘ x)) /-- `strong_hom_class L F M N` states that `F` is a type of `L`-homomorphisms which preserve relations in both directions. -/ class strong_hom_class (L : out_param language) (F : Type*) (M N : out_param $ Type*) [fun_like F M (Ξ» _, N)] [L.Structure M] [L.Structure N] := (map_fun : βˆ€ (Ο† : F) {n} (f : L.functions n) x, Ο† (fun_map f x) = fun_map f (Ο† ∘ x)) (map_rel : βˆ€ (Ο† : F) {n} (r : L.relations n) x, rel_map r (Ο† ∘ x) ↔ rel_map r x) @[priority 100] instance strong_hom_class.hom_class {F M N} [L.Structure M] [L.Structure N] [fun_like F M (Ξ» _, N)] [strong_hom_class L F M N] : hom_class L F M N := { map_fun := strong_hom_class.map_fun, map_rel := Ξ» Ο† n R x, (strong_hom_class.map_rel Ο† R x).2 } /-- Not an instance to avoid a loop. -/ def hom_class.strong_hom_class_of_is_algebraic [L.is_algebraic] {F M N} [L.Structure M] [L.Structure N] [fun_like F M (Ξ» _, N)] [hom_class L F M N] : strong_hom_class L F M N := { map_fun := hom_class.map_fun, map_rel := Ξ» Ο† n R x, (is_algebraic.empty_relations n).elim R } lemma hom_class.map_constants {F M N} [L.Structure M] [L.Structure N] [fun_like F M (Ξ» _, N)] [hom_class L F M N] (Ο† : F) (c : L.constants) : Ο† (c) = c := (hom_class.map_fun Ο† c default).trans (congr rfl (funext default)) namespace hom instance fun_like : fun_like (M β†’[L] N) M (Ξ» _, N) := { coe := hom.to_fun, coe_injective' := Ξ» f g h, by {cases f, cases g, cases h, refl} } instance hom_class : hom_class L (M β†’[L] N) M N := { map_fun := map_fun', map_rel := map_rel' } instance [L.is_algebraic] : strong_hom_class L (M β†’[L] N) M N := hom_class.strong_hom_class_of_is_algebraic instance has_coe_to_fun : has_coe_to_fun (M β†’[L] N) (Ξ» _, M β†’ N) := fun_like.has_coe_to_fun @[simp] lemma to_fun_eq_coe {f : M β†’[L] N} : f.to_fun = (f : M β†’ N) := rfl @[ext] lemma ext ⦃f g : M β†’[L] N⦄ (h : βˆ€ x, f x = g x) : f = g := fun_like.ext f g h lemma ext_iff {f g : M β†’[L] N} : f = g ↔ βˆ€ x, f x = g x := fun_like.ext_iff @[simp] lemma map_fun (Ο† : M β†’[L] N) {n : β„•} (f : L.functions n) (x : fin n β†’ M) : Ο† (fun_map f x) = fun_map f (Ο† ∘ x) := hom_class.map_fun Ο† f x @[simp] lemma map_constants (Ο† : M β†’[L] N) (c : L.constants) : Ο† c = c := hom_class.map_constants Ο† c @[simp] lemma map_rel (Ο† : M β†’[L] N) {n : β„•} (r : L.relations n) (x : fin n β†’ M) : rel_map r x β†’ rel_map r (Ο† ∘ x) := hom_class.map_rel Ο† r x variables (L) (M) /-- The identity map from a structure to itself -/ @[refl] def id : M β†’[L] M := { to_fun := id } variables {L} {M} instance : inhabited (M β†’[L] M) := ⟨id L M⟩ @[simp] lemma id_apply (x : M) : id L M x = x := rfl /-- Composition of first-order homomorphisms -/ @[trans] def comp (hnp : N β†’[L] P) (hmn : M β†’[L] N) : M β†’[L] P := { to_fun := hnp ∘ hmn, map_rel' := Ξ» _ _ _ h, by simp [h] } @[simp] lemma comp_apply (g : N β†’[L] P) (f : M β†’[L] N) (x : M) : g.comp f x = g (f x) := rfl /-- Composition of first-order homomorphisms is associative. -/ lemma comp_assoc (f : M β†’[L] N) (g : N β†’[L] P) (h : P β†’[L] Q) : (h.comp g).comp f = h.comp (g.comp f) := rfl end hom /-- Any element of a `hom_class` can be realized as a first_order homomorphism. -/ def hom_class.to_hom {F M N} [L.Structure M] [L.Structure N] [fun_like F M (Ξ» _, N)] [hom_class L F M N] : F β†’ (M β†’[L] N) := Ξ» Ο†, βŸ¨Ο†, Ξ» _, hom_class.map_fun Ο†, Ξ» _, hom_class.map_rel Ο†βŸ© namespace embedding instance embedding_like : embedding_like (M β†ͺ[L] N) M N := { coe := Ξ» f, f.to_fun, injective' := Ξ» f, f.to_embedding.injective, coe_injective' := Ξ» f g h, begin cases f, cases g, simp only, ext x, exact function.funext_iff.1 h x end } instance strong_hom_class : strong_hom_class L (M β†ͺ[L] N) M N := { map_fun := map_fun', map_rel := map_rel' } instance has_coe_to_fun : has_coe_to_fun (M β†ͺ[L] N) (Ξ» _, M β†’ N) := fun_like.has_coe_to_fun @[simp] lemma map_fun (Ο† : M β†ͺ[L] N) {n : β„•} (f : L.functions n) (x : fin n β†’ M) : Ο† (fun_map f x) = fun_map f (Ο† ∘ x) := hom_class.map_fun Ο† f x @[simp] lemma map_constants (Ο† : M β†ͺ[L] N) (c : L.constants) : Ο† c = c := hom_class.map_constants Ο† c @[simp] lemma map_rel (Ο† : M β†ͺ[L] N) {n : β„•} (r : L.relations n) (x : fin n β†’ M) : rel_map r (Ο† ∘ x) ↔ rel_map r x := strong_hom_class.map_rel Ο† r x /-- A first-order embedding is also a first-order homomorphism. -/ def to_hom : (M β†ͺ[L] N) β†’ M β†’[L] N := hom_class.to_hom @[simp] lemma coe_to_hom {f : M β†ͺ[L] N} : (f.to_hom : M β†’ N) = f := rfl lemma coe_injective : @function.injective (M β†ͺ[L] N) (M β†’ N) coe_fn | f g h := begin cases f, cases g, simp only, ext x, exact function.funext_iff.1 h x, end @[ext] lemma ext ⦃f g : M β†ͺ[L] N⦄ (h : βˆ€ x, f x = g x) : f = g := coe_injective (funext h) lemma ext_iff {f g : M β†ͺ[L] N} : f = g ↔ βˆ€ x, f x = g x := ⟨λ h x, h β–Έ rfl, Ξ» h, ext h⟩ lemma injective (f : M β†ͺ[L] N) : function.injective f := f.to_embedding.injective /-- In an algebraic language, any injective homomorphism is an embedding. -/ @[simps] def of_injective [L.is_algebraic] {f : M β†’[L] N} (hf : function.injective f) : M β†ͺ[L] N := { inj' := hf, map_rel' := Ξ» n r x, strong_hom_class.map_rel f r x, .. f } @[simp] lemma coe_fn_of_injective [L.is_algebraic] {f : M β†’[L] N} (hf : function.injective f) : (of_injective hf : M β†’ N) = f := rfl @[simp] lemma of_injective_to_hom [L.is_algebraic] {f : M β†’[L] N} (hf : function.injective f) : (of_injective hf).to_hom = f := by { ext, simp } variables (L) (M) /-- The identity embedding from a structure to itself -/ @[refl] def refl : M β†ͺ[L] M := { to_embedding := function.embedding.refl M } variables {L} {M} instance : inhabited (M β†ͺ[L] M) := ⟨refl L M⟩ @[simp] lemma refl_apply (x : M) : refl L M x = x := rfl /-- Composition of first-order embeddings -/ @[trans] def comp (hnp : N β†ͺ[L] P) (hmn : M β†ͺ[L] N) : M β†ͺ[L] P := { to_fun := hnp ∘ hmn, inj' := hnp.injective.comp hmn.injective } @[simp] lemma comp_apply (g : N β†ͺ[L] P) (f : M β†ͺ[L] N) (x : M) : g.comp f x = g (f x) := rfl /-- Composition of first-order embeddings is associative. -/ lemma comp_assoc (f : M β†ͺ[L] N) (g : N β†ͺ[L] P) (h : P β†ͺ[L] Q) : (h.comp g).comp f = h.comp (g.comp f) := rfl @[simp] lemma comp_to_hom (hnp : N β†ͺ[L] P) (hmn : M β†ͺ[L] N) : (hnp.comp hmn).to_hom = hnp.to_hom.comp hmn.to_hom := by { ext, simp only [coe_to_hom, comp_apply, hom.comp_apply] } end embedding /-- Any element of an injective `strong_hom_class` can be realized as a first_order embedding. -/ def strong_hom_class.to_embedding {F M N} [L.Structure M] [L.Structure N] [embedding_like F M N] [strong_hom_class L F M N] : F β†’ (M β†ͺ[L] N) := Ξ» Ο†, βŸ¨βŸ¨Ο†, embedding_like.injective Ο†βŸ©, Ξ» _, strong_hom_class.map_fun Ο†, Ξ» _, strong_hom_class.map_rel Ο†βŸ© namespace equiv instance : equiv_like (M ≃[L] N) M N := { coe := Ξ» f, f.to_fun, inv := Ξ» f, f.inv_fun, left_inv := Ξ» f, f.left_inv, right_inv := Ξ» f, f.right_inv, coe_injective' := Ξ» f g h₁ hβ‚‚, begin cases f, cases g, simp only, ext x, exact function.funext_iff.1 h₁ x, end, } instance : strong_hom_class L (M ≃[L] N) M N := { map_fun := map_fun', map_rel := map_rel', } /-- The inverse of a first-order equivalence is a first-order equivalence. -/ @[symm] def symm (f : M ≃[L] N) : N ≃[L] M := { map_fun' := Ξ» n f' x, begin simp only [equiv.to_fun_as_coe], rw [equiv.symm_apply_eq], refine eq.trans _ (f.map_fun' f' (f.to_equiv.symm ∘ x)).symm, rw [← function.comp.assoc, equiv.to_fun_as_coe, equiv.self_comp_symm, function.comp.left_id] end, map_rel' := Ξ» n r x, begin simp only [equiv.to_fun_as_coe], refine (f.map_rel' r (f.to_equiv.symm ∘ x)).symm.trans _, rw [← function.comp.assoc, equiv.to_fun_as_coe, equiv.self_comp_symm, function.comp.left_id] end, .. f.to_equiv.symm } instance has_coe_to_fun : has_coe_to_fun (M ≃[L] N) (Ξ» _, M β†’ N) := fun_like.has_coe_to_fun @[simp] lemma apply_symm_apply (f : M ≃[L] N) (a : N) : f (f.symm a) = a := f.to_equiv.apply_symm_apply a @[simp] lemma symm_apply_apply (f : M ≃[L] N) (a : M) : f.symm (f a) = a := f.to_equiv.symm_apply_apply a @[simp] lemma map_fun (Ο† : M ≃[L] N) {n : β„•} (f : L.functions n) (x : fin n β†’ M) : Ο† (fun_map f x) = fun_map f (Ο† ∘ x) := hom_class.map_fun Ο† f x @[simp] lemma map_constants (Ο† : M ≃[L] N) (c : L.constants) : Ο† c = c := hom_class.map_constants Ο† c @[simp] lemma map_rel (Ο† : M ≃[L] N) {n : β„•} (r : L.relations n) (x : fin n β†’ M) : rel_map r (Ο† ∘ x) ↔ rel_map r x := strong_hom_class.map_rel Ο† r x /-- A first-order equivalence is also a first-order embedding. -/ def to_embedding : (M ≃[L] N) β†’ M β†ͺ[L] N := strong_hom_class.to_embedding /-- A first-order equivalence is also a first-order homomorphism. -/ def to_hom : (M ≃[L] N) β†’ M β†’[L] N := hom_class.to_hom @[simp] lemma to_embedding_to_hom (f : M ≃[L] N) : f.to_embedding.to_hom = f.to_hom := rfl @[simp] lemma coe_to_hom {f : M ≃[L] N} : (f.to_hom : M β†’ N) = (f : M β†’ N) := rfl @[simp] lemma coe_to_embedding (f : M ≃[L] N) : (f.to_embedding : M β†’ N) = (f : M β†’ N) := rfl lemma coe_injective : @function.injective (M ≃[L] N) (M β†’ N) coe_fn := fun_like.coe_injective @[ext] lemma ext ⦃f g : M ≃[L] N⦄ (h : βˆ€ x, f x = g x) : f = g := coe_injective (funext h) lemma ext_iff {f g : M ≃[L] N} : f = g ↔ βˆ€ x, f x = g x := ⟨λ h x, h β–Έ rfl, Ξ» h, ext h⟩ lemma bijective (f : M ≃[L] N) : function.bijective f := equiv_like.bijective f lemma injective (f : M ≃[L] N) : function.injective f := equiv_like.injective f lemma surjective (f : M ≃[L] N) : function.surjective f := equiv_like.surjective f variables (L) (M) /-- The identity equivalence from a structure to itself -/ @[refl] def refl : M ≃[L] M := { to_equiv := equiv.refl M } variables {L} {M} instance : inhabited (M ≃[L] M) := ⟨refl L M⟩ @[simp] lemma refl_apply (x : M) : refl L M x = x := rfl /-- Composition of first-order equivalences -/ @[trans] def comp (hnp : N ≃[L] P) (hmn : M ≃[L] N) : M ≃[L] P := { to_fun := hnp ∘ hmn, .. (hmn.to_equiv.trans hnp.to_equiv) } @[simp] lemma comp_apply (g : N ≃[L] P) (f : M ≃[L] N) (x : M) : g.comp f x = g (f x) := rfl /-- Composition of first-order homomorphisms is associative. -/ lemma comp_assoc (f : M ≃[L] N) (g : N ≃[L] P) (h : P ≃[L] Q) : (h.comp g).comp f = h.comp (g.comp f) := rfl end equiv /-- Any element of a bijective `strong_hom_class` can be realized as a first_order isomorphism. -/ def strong_hom_class.to_equiv {F M N} [L.Structure M] [L.Structure N] [equiv_like F M N] [strong_hom_class L F M N] : F β†’ (M ≃[L] N) := Ξ» Ο†, βŸ¨βŸ¨Ο†, equiv_like.inv Ο†, equiv_like.left_inv Ο†, equiv_like.right_inv Ο†βŸ©, Ξ» _, hom_class.map_fun Ο†, Ξ» _, strong_hom_class.map_rel Ο†βŸ© section sum_Structure variables (L₁ Lβ‚‚ : language) (S : Type*) [L₁.Structure S] [Lβ‚‚.Structure S] instance sum_Structure : (L₁.sum Lβ‚‚).Structure S := { fun_map := Ξ» n, sum.elim fun_map fun_map, rel_map := Ξ» n, sum.elim rel_map rel_map, } variables {L₁ Lβ‚‚ S} @[simp] lemma fun_map_sum_inl {n : β„•} (f : L₁.functions n) : @fun_map (L₁.sum Lβ‚‚) S _ n (sum.inl f) = fun_map f := rfl @[simp] lemma fun_map_sum_inr {n : β„•} (f : Lβ‚‚.functions n) : @fun_map (L₁.sum Lβ‚‚) S _ n (sum.inr f) = fun_map f := rfl @[simp] lemma rel_map_sum_inl {n : β„•} (R : L₁.relations n) : @rel_map (L₁.sum Lβ‚‚) S _ n (sum.inl R) = rel_map R := rfl @[simp] lemma rel_map_sum_inr {n : β„•} (R : Lβ‚‚.relations n) : @rel_map (L₁.sum Lβ‚‚) S _ n (sum.inr R) = rel_map R := rfl end sum_Structure section empty section variables [language.empty.Structure M] [language.empty.Structure N] @[simp] lemma empty.nonempty_embedding_iff : nonempty (M β†ͺ[language.empty] N) ↔ cardinal.lift.{w'} (# M) ≀ cardinal.lift.{w} (# N) := trans ⟨nonempty.map (Ξ» f, f.to_embedding), nonempty.map (Ξ» f, {to_embedding := f})⟩ cardinal.lift_mk_le'.symm @[simp] lemma empty.nonempty_equiv_iff : nonempty (M ≃[language.empty] N) ↔ cardinal.lift.{w'} (# M) = cardinal.lift.{w} (# N) := trans ⟨nonempty.map (Ξ» f, f.to_equiv), nonempty.map (Ξ» f, {to_equiv := f})⟩ cardinal.lift_mk_eq'.symm end instance empty_Structure : language.empty.Structure M := ⟨λ _, empty.elim, Ξ» _, empty.elim⟩ instance : unique (language.empty.Structure M) := ⟨⟨language.empty_Structure⟩, Ξ» a, begin ext n f, { exact empty.elim f }, { exact subsingleton.elim _ _ }, end⟩ @[priority 100] instance strong_hom_class_empty {F M N} [fun_like F M (Ξ» _, N)] : strong_hom_class language.empty F M N := ⟨λ _ _ f, empty.elim f, Ξ» _ _ r, empty.elim r⟩ /-- Makes a `language.empty.hom` out of any function. -/ @[simps] def _root_.function.empty_hom (f : M β†’ N) : (M β†’[language.empty] N) := { to_fun := f } /-- Makes a `language.empty.embedding` out of any function. -/ @[simps] def _root_.embedding.empty (f : M β†ͺ N) : (M β†ͺ[language.empty] N) := { to_embedding := f } /-- Makes a `language.empty.equiv` out of any function. -/ @[simps] def _root_.equiv.empty (f : M ≃ N) : (M ≃[language.empty] N) := { to_equiv := f } end empty end language end first_order namespace equiv open first_order first_order.language first_order.language.Structure open_locale first_order variables {L : language} {M : Type*} {N : Type*} [L.Structure M] /-- A structure induced by a bijection. -/ @[simps] def induced_Structure (e : M ≃ N) : L.Structure N := ⟨λ n f x, e (fun_map f (e.symm ∘ x)), Ξ» n r x, rel_map r (e.symm ∘ x)⟩ /-- A bijection as a first-order isomorphism with the induced structure on the codomain. -/ @[simps] def induced_Structure_equiv (e : M ≃ N) : @language.equiv L M N _ (induced_Structure e) := { map_fun' := Ξ» n f x, by simp [← function.comp.assoc e.symm e x], map_rel' := Ξ» n r x, by simp [← function.comp.assoc e.symm e x], .. e } end equiv
r=359.92 https://sandbox.dams.library.ucdavis.edu/fcrepo/rest/collection/sherry-lehmann/catalogs/d7vp48/media/images/d7vp48-010/svc:tesseract/full/full/359.92/default.jpg Accept:application/hocr+xml
import data.set.function open set variables Ξ± Ξ² : Type variables A :set Ξ± variables B :set Ξ² variable f:Ξ± β†’ Ξ² variable g:Ξ² β†’ Ξ± theorem Schroder_Bernstein: inj_on f A ∧ inj_on g B ∧ maps_to f A B ∧ maps_to g B A β†’ βˆƒ h:Ξ± β†’ Ξ², bij_on h A B := sorry
PROGRAM F024 ! Copyright 2021 Melwyn Francis Carlo IMPLICIT NONE INTEGER, PARAMETER :: N_MAX = 10 INTEGER, PARAMETER :: I = 1000000 CHARACTER (LEN=1), DIMENSION(N_MAX) :: NUMBERS = & (/ "0", "1", "2", "3", "4", "5", "6", "7", "8", "9" /) INTEGER :: N = N_MAX INTEGER (KIND=8) :: N_PRODUCT = N_MAX INTEGER (KIND=8) :: MAX_PERMUTATION = 1 CHARACTER (LEN=N_MAX) :: DIGITS_VAL INTEGER :: J, INDEX_VAL DO J = 2, N_MAX MAX_PERMUTATION = MAX_PERMUTATION * J END DO INDEX_VAL = FLOOR(REAL((I - 1) * N_PRODUCT) / REAL(MAX_PERMUTATION)) + 1 DIGITS_VAL(1:1) = NUMBERS(INDEX_VAL) DO J = 2, N_MAX N = N - 1 N_PRODUCT = N_PRODUCT * N IF (INDEX_VAL < (N_MAX - 1)) NUMBERS(INDEX_VAL:N_MAX) = EOSHIFT( & NUMBERS(INDEX_VAL:N_MAX), 1, "0") INDEX_VAL = MOD(FLOOR(REAL((I - 1) * N_PRODUCT) & / REAL(MAX_PERMUTATION)), N) + 1 DIGITS_VAL(J:J) = NUMBERS(INDEX_VAL) END DO PRINT ('(A)'), DIGITS_VAL END PROGRAM F024
#ifndef TFDH_GSL_WRAPPERS_H #define TFDH_GSL_WRAPPERS_H #include <gsl/gsl_spline.h> #include <vector> namespace GSL { // simple functor class to help interfacing with gsl_function. // derived classes representing a function f(x) should hold any needed // parameters as member variables, and operator()(double x) should evaluate // the function f(x). // // NOTE: the GSL wrappers below could in principle take C++11 lambdas instead // of this custom function object, however i did not find an elegant // way to call these lambdas using GSL's C interfaces... class FunctionObject { public: virtual ~FunctionObject() = default; virtual double operator()(double x) const = 0; }; // simple wrapper class around GSL splines class Spline { private: gsl_interp_accel* acc; gsl_spline* spline; public: Spline(const std::vector<double>& x, const std::vector<double>& f); ~Spline(); double eval(double r) const; }; // find a root of func in the interval x1 to x2 // one of (x1,x2) or (x2,x1) MUST bracket a root // implemented using GSL's Brent rootfinder method double findRoot(const GSL::FunctionObject& func, double x1, double x2, double eps_abs, double eps_rel); // definite integral of func from x1 to x2 // implemented using GSL's adaptive Gauss quadrature double integrate(const GSL::FunctionObject& func, double x1, double x2, double eps_abs, double eps_rel); } #endif // TFDH_GSL_WRAPPERS_H
[STATEMENT] lemma vec_contains_count_gt1_iff: "a \<in>$ v \<longleftrightarrow> count_vec v a \<ge> 1" [PROOF STATE] proof (prove) goal (1 subgoal): 1. (a \<in>$ v) = (1 \<le> count_vec v a) [PROOF STEP] by (simp add: vec_set_mset_contains_iff)
//===------------------------------------------------------------*- C++ -*-===// // // This file is distributed under MIT License. See LICENSE.txt for details. // //===----------------------------------------------------------------------===// // // Copyright (c) 2017 University of Kaiserslautern. // #pragma once #include <nlopt.h> namespace gosat { class OptConfig { public: OptConfig(); OptConfig(nlopt_algorithm global_alg, nlopt_algorithm local_alg); virtual ~OptConfig() = default; int MaxEvalCount; int MaxLocalEvalCount; double RelTolerance; double Bound; double StepSize; unsigned InitialPopulation; }; class NLoptOptimizer { public: NLoptOptimizer(); NLoptOptimizer(nlopt_algorithm global_alg, nlopt_algorithm local_alg = NLOPT_LN_BOBYQA); virtual ~NLoptOptimizer() = default; int optimize (nlopt_func func, unsigned dim, double* x, double* min) const noexcept; double eval (nlopt_func func, unsigned dim, const double* x) const noexcept; bool existsRoundingError (nlopt_func func, unsigned int dim, const double* x, const double* min) const noexcept; void fixRoundingErrorNearZero (nlopt_func const func, unsigned dim, double* x, double* min) const noexcept; int refineResult(nlopt_func func, unsigned dim, double* x, double* min); static bool isSupportedGlobalOptAlg(nlopt_algorithm opt_alg) noexcept; static bool isSupportedLocalOptAlg(nlopt_algorithm local_opt_alg) noexcept; static bool isRequireLocalOptAlg(nlopt_algorithm opt_alg) noexcept; static bool isRequirePopulation(nlopt_algorithm opt_alg) noexcept; private: const nlopt_algorithm m_global_opt_alg; const nlopt_algorithm m_local_opt_alg; public: OptConfig Config; }; }
""" DG Balance Law Discretizations module. Attempts to provide a reasonable implementation of a discontinuous Galerkin method (in weak form) on tensor product quadrilateral (2D) and hexahedral (3D) elements for balance laws of the form ```math q_{,t} + Ξ£_{i=1,...d} F_{i,i} = s ``` where ``q`` is the state vector, ``F`` is the flux function, and ``s`` is the source function. ``F`` includes both the "inviscid" and "viscous" fluxes. Note that this is a space only discretization, time must be advanced using some ordinary differential equations methods; see [`ODESolvers`](@ref). The flux function `F_{i}` is taken to be of the form: ```math F_{i} := F_{i}(q, Οƒ; a) Οƒ = H(q, βˆ‡G(q; a); a) ``` where ``a`` is a set of parameters and viscous terms enter through ``Οƒ`` The source term is of the form: ```math s := s(q; a) ``` In the code and docs the following terminology is used: - ``q`` is referred to as the state - ``Οƒ`` is the viscous state - ``a`` is the auxiliary state - ``F`` is the physical flux - ``H`` is the viscous transform - ``G`` is the gradient transform Much of the notation used in this module follows Hesthaven and Warburton (2008). !!! note Currently all the functions take the same parameters and the gradient transform can take a user-specified subset of the state vector. !!! note We plan to switch to a skew-symmetric formulation (at which time this note will be removed) !!! references ``` @BOOK{HesthavenWarburton2008, title = {Nodal Discontinuous {G}alerkin Methods: {A}lgorithms, Analysis, and Applications}, publisher = {Springer-Verlag New York}, year = {2008}, author = {Hesthaven, Jan S. and Warburton, Tim}, volume = {54}, series = {Texts in Applied Mathematics}, doi = {10.1007/978-0-387-72067-8} } ``` """ module DGBalanceLawDiscretizations using MPI using ..Grids using ..MPIStateArrays using StaticArrays using ..SpaceMethods using DocStringExtensions using ..Topologies using GPUifyLoops export DGBalanceLaw include("DGBalanceLawDiscretizations_kernels.jl") include("NumericalFluxes.jl") """ DGBalanceLaw <: AbstractDGMethod This contains the necessary information for a discontinuous Galerkin method for balance laws. See also: Outer constructor [`DGBalanceLaw`](@ref) # Fields $(DocStringExtensions.FIELDS) """ struct DGBalanceLaw <: AbstractDGMethod "computational grid / mesh" grid::DiscontinuousSpectralElementGrid "number of state" nstate::Int "physical flux function" flux!::Function "numerical flux function" numerical_flux!::Function "numerical boundary flux function" numerical_boundary_flux!::Union{Nothing, Function} "storage for the viscous state" Qvisc::MPIStateArray "number of out states for gradient_transform!" number_gradient_states::Int "number of out states for the viscous_transform!" number_viscous_states::Int "tuple of states going into gradient_transform!" states_for_gradient_transform::Tuple "transform from state to variables to take gradient of" gradient_transform!::Union{Nothing, Function} "transform from Q and gradient state to viscous states" viscous_transform!::Union{Nothing, Function} "penalty for the viscous state computation" viscous_penalty!::Union{Nothing, Function} "boundary penalty for the viscous state computation (e.g., Dirichlet)" viscous_boundary_penalty!::Union{Nothing, Function} "auxiliary state array" auxstate::MPIStateArray "source function" source!::Union{Nothing, Function} end """ DGBalanceLaw(;grid::DiscontinuousSpectralElementGrid, length_state_vector, flux!, numerical_flux!, numerical_boundary_flux! = nothing, states_for_gradient_transform = (), number_gradient_states = 0, number_viscous_states = 0, gradient_transform! = nothing, viscous_transform! = nothing, viscous_penalty! = nothing, viscous_boundary_penalty! = nothing, auxiliary_state_length = 0, auxiliary_state_initialization! = nothing, source! = nothing) Constructs a `DGBalanceLaw` spatial discretization type for the physics defined by `flux!` and `source!`. The computational domain is defined by `grid`. The number of state variables is defined by `length_state_vector`. The user may also specify an auxiliary state which will be unpacked by the compute kernel passed on to the user-defined flux and numerical flux functions. The source function `source!` is optional. The flux function is called with data from a degree of freedom (DOF) as ``` flux!(F, Q, V, aux, t) ``` where - `F` is an `MArray` of size `(dim, length_state_vector)` to be filled (note that this is uninitialized so the user must set to zero if is this desired) - `Q` is the state to evaluate (`MArray`) - `V` is the viscous state to evaluate (`MArray`) - `aux` is the user-defined auxiliary state (`MArray`) - `t` is the current simulation time Warning: Modifications to `Q` or `aux` may cause side effects and should be avoided. The numerical flux function is called with data from two DOFs as ``` numerical_flux!(F, nM, QM, VM, auxM, QP, VP, auxP, t) ``` where - `F` is an `MVector` of length `length_state_vector` to be filled with the numerical flux across the face (note that this is uninitialized so user must set to zero if is this desired) - `nM` is the unit outward normal to the face with respect to the minus side (`MVector` of length `3`) - `QM` and `QP` are the minus and plus side states (`MArray`) - `VM` and `VP` are the minus and plus viscous side states (`MArray`) - `auxM` and `auxP` are the auxiliary states (`MArray`) - `t` is the current simulation time Warning: Modifications to `nM`, `QM`, `auxM`, `QP`, or `auxP` may cause side effects and should be avoided. If `grid.topology` has a boundary then the function `numerical_boundary_flux!` must be specified. This function is called with the data from the neighbouring DOF as ``` numerical_boundary_flux!(F, nM, QM, VM, auxM, QP, VP, auxP, bctype, t) ``` where - `F` is an `MArray` of size `(dim, length_state_vector)` to be filled with the numerical flux across the face (note that this is uninitialized so user must set to zero is this desired) - `nM` is the unit outward normal to the face with respect to the minus side (`MVector` of length `3`) - `QM` and `QP` are the minus and plus side states (`MArray`) - `VM` and `VP` are the minus and plus viscous side states (`MArray`) - `auxM` and `auxP` are the auxiliary states (`MArray`) - `bctype` is the boundary condition flag for the connected face and element of `grid.elemtobndy` - `t` is the current simulation time Note: `QP` and `auxP` are filled with values based on degrees of freedom referenced in `grid.vmapP`; `QP` and `auxP` may be modified by the calling function. Warning: Modifications to `nM`, `QM`, or `auxM` may cause side effects and should be avoided. If present the source function is called with data from a DOF as ``` source!(S, Q, aux, t) ``` where `S` is an `MVector` of length `length_state_vector` to be filled; other arguments are the same as `flux!` and the same warning concerning `Q` and `aux` applies. When `auxiliary_state_initialization! !== nothing` then this is called on the auxiliary state (assuming `auxiliary_state_length > 0`) as ``` auxiliary_state_initialization!(aux, x, y, z) ``` where `aux` is an `MArray` to fill with the auxiliary state for a DOF located at Cartesian coordinate locations `(x, y, z)`; see also [`grad_auxiliary_state!`](@ref) allows the user to take the gradient of a field stored in the auxiliary state. When viscous terms are needed, the user must specify values for the following keyword arguments: - `states_for_gradient_transform` (`Tuple`) - `number_gradient_states` (`Int`) - `number_viscous_states` (`Int`) - `gradient_transform!` (`Function`) - `viscous_transform!` (`Function`) - `viscous_penalty!` (`Function`) - `viscous_boundary_penalty!` (`Function`); only required if the topology has a boundary The function `gradient_transform!` is the implementation of the function `G` in the module docs; see [`DGBalanceLawDiscretizations`](@ref). It transforms the elements of the components of state vector specified by `states_for_gradient_transform` into the values that should have their gradient taken. It is called on each DOF as: ``` gradient_transform!(G, Q, aux, t) ``` where `G` is an `MVector` of length `number_gradient_states` to be filled, `Q` is an `MVector` containing only the states specified by `states_for_gradient_transform`, `aux` is the full auxiliary state at the DOF, and `t` is the simulation time.Q The function `viscous_transform!` is the implementation of the function `H` in the module docs; see [`DGBalanceLawDiscretizations`](@ref). It transforms the gradient ``βˆ‡G`` and ``q`` into the viscous state ``Οƒ``. It is called on each DOF as: ``` viscous_transform!(V, gradG, Q, aux, t) ``` where `V` is an `MVector` of length `number_viscous_states` to be filled, `gradG` is an `MMatrix` containing the DG-gradient of ``G``, `Q` is an `MVector` containing only the states specified by `states_for_gradient_transform`, `aux` is the full auxiliary state at the DOF, and `t` is the simulation time. Note that `V` is a vector not a matrix so that minimal storage can be used if symmetry can be exploited. The function `viscous_penalty!` is the penalty terms to be used for the DG-gradient calculation. It is called with data from two neighbouring degrees of freedom as ``` viscous_penalty!(V, nM, HM, QM, auxM, HP, QP, auxP, t) ``` where: - `V` is an `MVector` of length `number_viscous_states` to be filled with the numerical penalty across the face; see below. - `nM` is the unit outward normal to the face with respect to the minus side (`MVector` of length `3`) - `HM` and `HP` are the minus and plus evaluation of `gradient_transform!` on either side of the face - `QM` and `QP` are the minus and plus side states (`MArray`); filled only with `states_for_gradient_transform` states. - `auxM` and `auxP` are the auxiliary states (`MArray`) - `t` is the current simulation time The viscous penalty function is should compute on the faces ```math n^{-} \\cdot H^{*} - n^{-} \\cdot H^{-} ``` where ``n^{-} \\cdot H^{*}`` is the "numerical-flux" for the viscous state computation and ``H^{-}`` is the value of `viscous_transform!` evaluated on the minus side ``n^{-} \\cdot G^{-}`` as an argument. If `grid.topology` has a boundary then the function `viscous_boundary_penalty!` must be specified. This function is called with the data from the neighbouring DOF as ``` viscous_boundary_penalty!(V, nM, HM, QM, auxM, HP, QP, auxP, bctype, t) ``` where the required behaviour mimics that of `viscous_penalty!` and `numerical_boundary_flux!`. !!! note If `(x, y, z)`, or data derived from this such as spherical coordinates, is needed in the flux or source the user is responsible to storing this in the auxiliary state """ function DGBalanceLaw(;grid::DiscontinuousSpectralElementGrid, length_state_vector, flux!, numerical_flux!, numerical_boundary_flux! = nothing, states_for_gradient_transform=(), number_gradient_states=0, number_viscous_states=0, gradient_transform! = nothing, viscous_transform! = nothing, viscous_penalty! = nothing, viscous_boundary_penalty! = nothing, auxiliary_state_length=0, auxiliary_state_initialization! = nothing, source! = nothing) topology = grid.topology Np = dofs_per_element(grid) h_vgeo = Array(grid.vgeo) DFloat = eltype(h_vgeo) DA = arraytype(grid) (Topologies.hasboundary(topology) && numerical_boundary_flux! === nothing && error("no `numerical_boundary_flux!` given when topology "* "has boundary")) if number_viscous_states > 0 || number_gradient_states > 0 || length(states_for_gradient_transform) > 0 # These should all be true in this case @assert number_viscous_states > 0 @assert number_gradient_states > 0 @assert length(states_for_gradient_transform) > 0 @assert gradient_transform! !== nothing @assert viscous_transform! !== nothing @assert viscous_penalty! !== nothing (Topologies.hasboundary(topology)) && (@assert viscous_boundary_penalty! !== nothing) end # TODO: Clean up this MPIStateArray interface... Qvisc = MPIStateArray{Tuple{Np, number_viscous_states}, DFloat, DA }(topology.mpicomm, length(topology.elems), realelems=topology.realelems, ghostelems=topology.ghostelems, sendelems=topology.sendelems, nabrtorank=topology.nabrtorank, nabrtorecv=topology.nabrtorecv, nabrtosend=topology.nabrtosend, weights=view(h_vgeo, :, grid.Mid, :), commtag=111) auxstate = MPIStateArray{Tuple{Np, auxiliary_state_length}, DFloat, DA }(topology.mpicomm, length(topology.elems), realelems=topology.realelems, ghostelems=topology.ghostelems, sendelems=topology.sendelems, nabrtorank=topology.nabrtorank, nabrtorecv=topology.nabrtorecv, nabrtosend=topology.nabrtosend, weights=view(h_vgeo, :, grid.Mid, :), commtag=222) if auxiliary_state_initialization! !== nothing @assert auxiliary_state_length > 0 dim = dimensionality(grid) N = polynomialorder(grid) vgeo = grid.vgeo device = typeof(auxstate.Q) <: Array ? CPU() : CUDA() nrealelem = length(topology.realelems) @launch(device, threads=(Np,), blocks=nrealelem, initauxstate!(Val(dim), Val(N), Val(auxiliary_state_length), auxiliary_state_initialization!, auxstate.Q, vgeo, topology.realelems)) MPIStateArrays.start_ghost_exchange!(auxstate) MPIStateArrays.finish_ghost_exchange!(auxstate) end DGBalanceLaw(grid, length_state_vector, flux!, numerical_flux!, numerical_boundary_flux!, Qvisc, number_gradient_states, number_viscous_states, states_for_gradient_transform, gradient_transform!, viscous_transform!, viscous_penalty!, viscous_boundary_penalty!, auxstate, source!) end """ MPIStateArray(disc::DGBalanceLaw; nstate=disc.nstate, commtag=888) Given a discretization `disc` constructs an `MPIStateArrays` for holding a solution state. The optional 'nstate' arguments allows the user to specify a specific number of states. The optional `commtag` allows the user to set the tag to use for communication with this `MPIStateArray`. """ function MPIStateArrays.MPIStateArray(disc::DGBalanceLaw; nstate=disc.nstate, commtag=888) grid = disc.grid topology = disc.grid.topology # FIXME: Remove after updating CUDA h_vgeo = Array(disc.grid.vgeo) DFloat = eltype(h_vgeo) Np = dofs_per_element(grid) DA = arraytype(grid) MPIStateArray{Tuple{Np, nstate}, DFloat, DA}(topology.mpicomm, length(topology.elems), realelems=topology.realelems, ghostelems=topology.ghostelems, sendelems=topology.sendelems, nabrtorank=topology.nabrtorank, nabrtorecv=topology.nabrtorecv, nabrtosend=topology.nabrtosend, weights=view(h_vgeo, :, disc.grid.Mid, :), commtag=commtag) end """ MPIStateArray(disc::DGBalanceLaw, initialization!::Function; commtag=888) Given a discretization `disc` constructs an `MPIStateArrays` for holding a solution state. The optional `commtag` allows the user to set the tag to use for communication with this `MPIStateArray`. After allocation the `MPIStateArray` is initialized using the function `initialization!` which will be called as: ``` initialization!(Q, x, y, z, [aux]) ``` where `Q` is an `MArray` with the solution state at a single degree of freedom (DOF) to initialize and `(x,y,z)` is the coordinate point for the allocation. If `disc` contains an auxiliary data the values of this at the DOF are passed through as an `MArray` through the `aux` argument !!! note `Q` is `undef` at start the function (i.e., not initialized to zero) !!! note Modifications of the `aux` array will be discarded. !!! todo GPUify this function to remove `host` and `device` data transfers """ function MPIStateArrays.MPIStateArray(disc::DGBalanceLaw, ic!::Function; commtag=888) Q = MPIStateArray(disc; commtag=commtag) nvar = disc.nstate grid = disc.grid vgeo = grid.vgeo Np = dofs_per_element(grid) auxstate = disc.auxstate nauxstate = size(auxstate, 2) # FIXME: GPUify me host_array = Array ∈ typeof(Q).parameters (h_vgeo, h_Q, h_auxstate) = host_array ? (vgeo, Q, auxstate) : (Array(vgeo), Array(Q), Array(auxstate)) Qdof = MArray{Tuple{nvar}, eltype(h_Q)}(undef) auxdof = MArray{Tuple{nauxstate}, eltype(h_Q)}(undef) @inbounds for e = 1:size(Q, 3), i = 1:Np (x, y, z) = (h_vgeo[i, grid.xid, e], h_vgeo[i, grid.yid, e], h_vgeo[i, grid.zid, e]) if nauxstate > 0 for s = 1:nauxstate auxdof[s] = h_auxstate[i, s, e] end ic!(Qdof, x, y, z, auxdof) else ic!(Qdof, x, y, z) end for n = 1:nvar h_Q[i, n, e] = Qdof[n] end end if !host_array Q .= h_Q end Q end """ MPIStateArray(initialization!::Function, disc::DGBalanceLaw; commtag=888) Wrapper function to allow for calls of the form ``` MPIStateArray(disc) do Q, x, y, z # fill Q end ``` See also [`MPIStateArray`](@ref) """ MPIStateArrays.MPIStateArray(f::Function, d::DGBalanceLaw; commtag=888 ) = MPIStateArray(d, f; commtag=commtag) """ odefun!(disc::DGBalanceLaw, dQ::MPIStateArray, Q::MPIStateArray, t) Evaluates the right-hand side of the discontinuous Galerkin semi-discretization defined by `disc` at time `t` with state `Q`. The result is added into `dQ`. Namely, the semi-discretization is of the form ```math QΜ‡ = F(Q, t) ``` and after the call `dQ += F(Q, t)` """ function SpaceMethods.odefun!(disc::DGBalanceLaw, dQ::MPIStateArray, Q::MPIStateArray, t) device = typeof(Q.Q) <: Array ? CPU() : CUDA() grid = disc.grid topology = grid.topology dim = dimensionality(grid) N = polynomialorder(grid) Nq = N + 1 Nqk = dim == 2 ? 1 : Nq Nfp = Nq * Nqk nrealelem = length(topology.realelems) Qvisc = disc.Qvisc auxstate = disc.auxstate nstate = disc.nstate nviscstate = disc.number_viscous_states ngradstate = disc.number_gradient_states nauxstate = size(auxstate, 2) states_grad = disc.states_for_gradient_transform Dmat = grid.D vgeo = grid.vgeo sgeo = grid.sgeo vmapM = grid.vmapM vmapP = grid.vmapP elemtobndy = grid.elemtobndy ######################## # Gradient Computation # ######################## MPIStateArrays.start_ghost_exchange!(Q) if nviscstate > 0 @launch(device, threads=(Nq, Nq, Nqk), blocks=nrealelem, volumeviscterms!(Val(dim), Val(N), Val(nstate), Val(states_grad), Val(ngradstate), Val(nviscstate), Val(nauxstate), disc.viscous_transform!, disc.gradient_transform!, Q.Q, Qvisc.Q, auxstate.Q, vgeo, t, Dmat, topology.realelems)) MPIStateArrays.finish_ghost_recv!(Q) @launch(device, threads=Nfp, blocks=nrealelem, faceviscterms!(Val(dim), Val(N), Val(nstate), Val(states_grad), Val(ngradstate), Val(nviscstate), Val(nauxstate), disc.viscous_penalty!, disc.viscous_boundary_penalty!, disc.gradient_transform!, Q.Q, Qvisc.Q, auxstate.Q, vgeo, sgeo, t, vmapM, vmapP, elemtobndy, topology.realelems)) MPIStateArrays.start_ghost_exchange!(Qvisc) end ################### # RHS Computation # ################### @launch(device, threads=(Nq, Nq, Nqk), blocks=nrealelem, volumerhs!(Val(dim), Val(N), Val(nstate), Val(nviscstate), Val(nauxstate), disc.flux!, disc.source!, dQ.Q, Q.Q, Qvisc.Q, auxstate.Q, vgeo, t, Dmat, topology.realelems)) MPIStateArrays.finish_ghost_recv!(nviscstate > 0 ? Qvisc : Q) # The main reason for this protection is not for the MPI.Waitall!, but the # make sure that we do not recopy data to the GPU nviscstate > 0 && MPIStateArrays.finish_ghost_recv!(Qvisc) nviscstate == 0 && MPIStateArrays.finish_ghost_recv!(Q) @launch(device, threads=Nfp, blocks=nrealelem, facerhs!(Val(dim), Val(N), Val(nstate), Val(nviscstate), Val(nauxstate), disc.numerical_flux!, disc.numerical_boundary_flux!, dQ.Q, Q.Q, Qvisc.Q, auxstate.Q, vgeo, sgeo, t, vmapM, vmapP, elemtobndy, topology.realelems)) # Just to be safe, we wait on the sends we started. MPIStateArrays.finish_ghost_send!(Qvisc) MPIStateArrays.finish_ghost_send!(Q) end """ grad_auxiliary_state!(disc, i, (ix, iy, iz)) Computes the gradient of a the field `i` of the constant auxiliary state of `disc` and stores the `x, y, z` compoment in fields `ix, iy, iz` of constant auxiliary state. !!! note This only computes the element gradient not a DG gradient. If your constant auxiliary state is discontinuous this may or may not be what you want! """ function grad_auxiliary_state!(disc::DGBalanceLaw, id, (idx, idy, idz)) grid = disc.grid topology = grid.topology dim = dimensionality(grid) N = polynomialorder(grid) auxstate = disc.auxstate nauxstate = size(auxstate, 2) @assert nauxstate >= max(id, idx, idy, idz) @assert 0 < min(id, idx, idy, idz) @assert allunique((idx, idy, idz)) Dmat = grid.D vgeo = grid.vgeo device = typeof(auxstate.Q) <: Array ? CPU() : CUDA() nelem = length(topology.elems) Nq = N + 1 Nqk = dim == 2 ? 1 : Nq @launch(device, threads=(Nq, Nq, Nqk), blocks=nelem, elem_grad_field!(Val(dim), Val(N), Val(nauxstate), auxstate.Q, vgeo, Dmat, topology.elems, id, idx, idy, idz)) end """ dof_iteration!(dof_fun!::Function, R::MPIStateArray, disc::DGBalanceLaw, Q::MPIStateArray) Iterate over each dof to fill `R` using the `dof_fun!`. The syntax of the `dof_fun!` is ``` dof_fun!(l_R, l_Q, l_Qvisc, l_aux) ``` where `l_R`, `l_Q`, `l_Qvisc`, and `l_aux` are of type `MArray` filled initially with the values at a single degree of freedom. After the call the values in `l_R` will be written back to the degree of freedom of `R`. """ function dof_iteration!(dof_fun!::Function, R::MPIStateArray, disc::DGBalanceLaw, Q::MPIStateArray) grid = disc.grid topology = grid.topology @assert size(R)[end] == size(Q)[end] == size(disc.auxstate)[end] @assert size(R)[1] == size(Q)[1] == size(disc.auxstate)[1] dim = dimensionality(grid) N = polynomialorder(grid) Qvisc = disc.Qvisc auxstate = disc.auxstate nstate = size(Q, 2) nviscstate = size(Qvisc, 2) nauxstate = size(auxstate, 2) nRstate = size(R, 2) Dmat = grid.D vgeo = grid.vgeo device = typeof(auxstate.Q) <: Array ? CPU() : CUDA() nelem = length(topology.elems) Nq = N + 1 Nqk = dim == 2 ? 1 : Nq Np = Nq * Nq * Nqk nrealelem = length(topology.realelems) @launch(device, threads=(Np,), blocks=nrealelem, knl_dof_iteration!(Val(dim), Val(N), Val(nRstate), Val(nstate), Val(nviscstate), Val(nauxstate), dof_fun!, R.Q, Q.Q, Qvisc.Q, auxstate.Q, topology.realelems)) end end
The Bronze Age – defined by the use of metal – began around 2500 BC , with technology changing people 's everyday lives during this period through innovations such as the wheel , harnessing oxen , weaving textiles , brewing alcohol , and skilful metalworking , which produced new weapons and tools , along with fine gold decoration and jewellery , such as brooches and torcs . According to John T. Koch and others , Ireland in the Late Bronze Age was part of a maritime trading @-@ networked culture called the Atlantic Bronze Age that also included Britain , western France and Iberia , and that this is where Celtic languages developed . This contrasts with the traditional view that their origin lies in mainland Europe with the Hallstatt culture .
module Rationals data NotZero : Integer -> Type where --Proof that a number is not zero, needed to construct Q OneNotZero : NotZero 1 NegativeNotZero : ( n: Integer ) -> NotZero n -> NotZero (-n) PositiveNotZero : ( m: Integer ) -> LTE 1 (fromIntegerNat m) -> NotZero m rational : (p: Nat) -> (q: Integer) -> NotZero q -> (Integer, Integer) rational Z q x = (toIntegerNat(0), q) rational (S k) q x = (toIntegerNat(S k), q) SecondPart : (Integer, Integer) -> Integer SecondPart x = (snd x) InclusionMap : (n : Nat) -> (Integer, Integer) --Includes the naturals in Q InclusionMap n = rational n 1 OneNotZero AddRationals : (Integer, Integer) -> (Integer, Integer) -> (Integer, Integer) --Need to implement proof checking for nonzero denominators AddRationals x y = ((fst x)*(snd y) + (snd x)*(fst y), (snd x)*(snd y)) MultiplyRationals : (Integer, Integer) -> (Integer, Integer) -> (Integer, Integer) --Need to implement proof checking for nonzero denominators MultiplyRationals x y = ((fst x)*(fst y), (snd x)*(snd y)) --Need to create multiplicative inverses of rationals as well --A GCD function with proof that it is the GCD would be useful to reduce rationals into simplified form test : Nat test = fct 3
Base.:*(times::Integer, w::Wire) = Wire(repeat(w.values, outer=times)) function Base.:+{R,S}(lhs::Wire{R}, rhs::Wire{S}) (length(R) == length(S)) || throw(SizeMismatchError()) #for now, disallow bitvectors of length more than 64 if (length(R) > 64) warn("currently > 64 bit wires not supported.") throw(SizeMismatchError()) end #create a new uninitialized wire of the same length result = Wire{range(length(R))}(BitVector(length(R)), trues(length(R))) result.values.chunks[1] = lhs.values.chunks[1] + rhs.values.chunks[1] result end function Base.:-{R,S}(lhs::Wire{R}, rhs::Wire{S}) (length(R) == length(S)) || throw(SizeMismatchError()) #for now, disallow bitvectors of length more than 64 if (length(R) > 64) warn("currently > 64 bit wires not supported.") throw(SizeMismatchError()) end #create a new uninitialized wire of the same length result = Wire{range(length(R))}(BitVector(length(R)), trues(length(R))) result.values.chunks[1] = lhs.values.chunks[1] - rhs.values.chunks[1] result end function Base.:*{R,S}(lhs::Wire{R}, rhs::Wire{S}) new_length = length(R) + length(S) if (length(R) + length(S) > 64) warn("current > 64 bit results not supported.") throw(SizeMismatchError()) end result = Wire{range(new_length)}(BitVector(new_length), trues(new_length)) result.values.chunks[1] = lhs.values.chunks[1] * rhs.values.chunks[1] result end function Base.:-{R}(tgt::Wire{R}) #for now, disallow bitvectors of length more than 64 if (length(R) > 64) warn("currently > 64 bit wires not supported.") throw(SizeMismatchError()) end #create a new uninitialized wire of the same length result = Wire{range(length(R))}(BitVector(length(R)), trues(length(R))) result.values.chunks[1] = -tgt.values.chunks[1] result end function trimInt64(n::Integer) ~(-(one(UInt64) << n)) end function Base.:<{R,S}(lhs::Wire{R}, rhs::Wire{S}) (length(R) == length(S)) || throw(SizeMismatchError()) if (length(R) > 64) warn("currently > 64 bit wires not supported.") throw(SizeMismatchError()) end assigned(lhs) && assigned(rhs) || throw(UnassignedError()) mask = trimInt64(length(R)) result = Wire((lhs.values.chunks[1] & mask) < (rhs.values.chunks[1] & mask)) end # >, <=, >= come for free. function Base.:(==){R,S}(lhs::Wire{R}, rhs::Wire{S}) (length(R) == length(S)) || throw(SizeMismatchError()) if (length(R) > 64) warn("currently > 64 bit wires not supported.") throw(SizeMismatchError()) end assigned(lhs) && assigned(rhs) || throw(UnassignedError()) mask = trimInt64(length(R)) result = Wire((lhs.values.chunks[1] & mask) == (rhs.values.chunks[1] & mask)) end ################################################################################ ## shifters function Base.:(<<){R,S}(lhs::Wire{R}, rhs::Wire{S}) if (length(R) > 64) warn("currently > 64 bit wires not supported.") throw(SizeMismatchError()) end if (length(S) > 64) warn("> 64 bit wires for shifter RHS not supported.") throw(SizeMismatchError()) end assigned(lhs) && assigned(rhs) || throw(UnassignedError()) result = Wire(lhs.values.chunks[1] << rhs.values.chunks[1], length(R)) end function Base.:(>>){R,S}(lhs::Wire{R}, rhs::Wire{S}) if (length(R) > 64) warn("currently > 64 bit wires not supported.") throw(SizeMismatchError()) end if (length(S) > 64) warn("> 64 bit wires for shifter RHS not supported.") throw(SizeMismatchError()) end assigned(lhs) && assigned(rhs) || throw(UnassignedError()) result = Wire(lhs.values.chunks[1] >> rhs.values.chunks[1], length(R)) end function Base.:(>>>){R,S}(lhs::Wire{R}, rhs::Wire{S}) if (length(R) > 64) warn("currently > 64 bit wires not supported.") throw(SizeMismatchError()) end if (length(S) > 64) warn("> 64 bit wires for shifter RHS not supported.") throw(SizeMismatchError()) end assigned(lhs) && assigned(rhs) || throw(UnassignedError()) #if the top value is true, then we'll have to spoof negativity. #the trimInt64() function can help, by masking those invisible values #as ones. if (lhs.values[end] == true) lhs.values.chunks[1] |= ~trimInt64(length(R)) end result = Wire(lhs.values.chunks[1] >> rhs.values.chunks[1], length(R)) end
// Copyright (c) 2016 // Author: Chrono Law #include <std.hpp> using namespace std; #include <boost/iostreams/stream.hpp> #include <boost/iostreams/device/array.hpp> namespace io = boost::iostreams; using namespace io; int main() { char str[] = "123"; array_source asrc(str, str + 3); stream<array_source> in(asrc); char c1, c2, c3; in >> c1 >> c2; assert(c1 == '1' && c2 == '2'); in.get(c3); assert(c3 == '3' && in.good()); assert(in.get(c3).eof()); char str2[10]; array_sink asnk(str2); stream<array_sink> out(asnk); out << 'a' << 'b' << 'c'; assert(str2[0] == 'a' && str2[2] == 'c'); }
module Test where open import Pitch open import Interval open import Counterpoint open import Data.Vec using (Vec; []; _∷_; zip) open import Data.Fin using (zero; suc) open import Relation.Binary.PropositionalEquality using (refl) -- Last five notes of Yamanote melody cantusFirmus : Vec Pitch 5 cantusFirmus = c 5 ∷ e 5 ∷ g 5 ∷ d 6 ∷ c 6 ∷ [] counterpoint : Vec Interval 5 counterpoint = maj10 ∷ min10 ∷ per8 ∷ maj6 ∷ per8 ∷ [] firstSpecies : Counterpoint 3 firstSpecies = zip cantusFirmus counterpoint testCorrect : FirstSpecies firstSpecies testCorrect = fs firstSpecies (Ξ» { zero β†’ refl ; (suc zero) β†’ refl ; (suc (suc zero)) β†’ refl ; (suc (suc (suc zero))) β†’ refl ; (suc (suc (suc (suc zero)))) β†’ refl }) (Ξ» { zero β†’ refl ; (suc zero) β†’ refl ; (suc (suc zero)) β†’ refl ; (suc (suc (suc zero))) β†’ refl}) refl
Hibachi Grill and Take Out was a Japanese and Korean Restaurants restaurant which featured teriyaki, spicy pork, and bulgogi. They also served Korean BBQ. Do not confuse them with HibachiSan. 20050706 07:05:40 This place offers simple, tasty rice bowls, Chinese chicken salad and even smoothies. They have sushi, but it can be a little funky. Id avoid it, and go for the good old chicken teriyaki bowl. Users/SiennaGrass 20060319 18:08:47 nbsp The owner is one of the nicest owners Ive ever met. He makes friends with all his clients. I highly reccommend the spicy pork. Spicy Pork bowls, while not on the menu, are also available if you ask for it. Their shakes are also superb. Users/KevinRollins 20060516 09:00:51 nbsp The only thing Ive ever tried on the menu is the Chicken Tariyaki rice bowl, but its always been great. I never liked teriyaki very much until I tried Hibachis. Lately, Ive been going here for lunch several times a month. Users/AdamSchneider 20060710 14:36:30 nbsp This place is a little gem. So far, the restaurant is immaculately clean and the food ingredients seem fresh, and the dishes are tasty. (Ive had the chicken teriyaki and the hibap). I concur with previous comments: the owner IS very nice. According to him, the place has been open since about January 2006. Check it out. Users/AnnieSirrah 20060712 23:29:54 nbsp The owner is very, very nice. The food is good. Perhaps the bowls are a bit small. I had the BBQ dinner tonight and it was quite good. Users/MisterProfessor 20061018 16:12:04 nbsp For the amount that you pay, you dont get a lot food. I paid $4.60 plus tax for a dinky chicken salad, and it was mostly lettuce and sauce; barely any chicken in it. Users/MattLow 20061206 09:19:53 nbsp Im coming here again... Users/CarlosOverstreet 20070210 17:31:00 nbsp This place has been closed for a week or more. Is it going to open again? I hope the owners are okay. Users/MisterProfessor 20070211 12:57:03 nbsp I tried the chicken teriyaki here for the first time about a month ago it was pretty good. Id return if I was in the area and was craving some teriyaki. Users/AlexPomeranz 20070228 13:06:52 nbsp I think that this place is closed. Everything was taken down when i tired to eat here on feb. 28th Users/DonGibson 20070818 08:09:14 nbsp do you know what is opening up in it now. there has been a lot of construction. Users/MattHh 20070909 13:26:32 nbsp It looks like its being replaced by Burgers and Brew owned and operated by Crepeville (or so the sign on the front says). Wonder how this will compete with the new 3rd & U Cafe seems like the same kinda food is going to be offered at both locations. Users/ArmyDecoy 20111017 14:02:42 nbsp Ate here so many times from 9498, great marinade on the chicken Users/Jeffrey9
eM_box = eMesh_box() @testset "extensions" begin @test_throws ErrorException volume(as_tri_eMesh(eM_box)) @test_throws ErrorException area(as_tet_eMesh(eM_box)) end
\graphicspath{{Chapter2/Figs/}} \chapter{Multi-Omics Factor Analysis (MOFA), a Bayesian model for integration of multi-omics data} The work described in this Chapter results from a collaboration with Wolfgang Huber's group at the EMBL (Heidelberg, Germany). It has been peer-reviewed and published in \cite{Argelaguet2018}. The method was conceived by Florian Buettner, Oliver Stegle and me. I performed most of the mathematical derivations and implementation, but with significant contributions from Damien Arnol and Britta Velten. The CLL data application was led by Britta Velten whereas the single-cell application was led by me, but with joint contributions in either cases. Florian Buettner, Wolfgang Huber and Oliver Stegle supervised the project.\\ The article was jointly written by Britta Velten and me, with contributions from all authors. \section{Theoretical foundations} \subsection*{Mathematical notation} \label{section:mathematical_notation} \begin{itemize}[noitemsep] \item[--] Matrices are denoted with bold capital letters: $\bfW$ \item[--] Vectors are denoted with bold non-capital letters: $\bfw$. If the vector comes from a matrix, we will use a single index to indicate the row that it comes from. If two indices are used, the first one corresponds to the row and the second one to the column. The symbol '$:$' denotes the entire row/column. For instance, $\bfw_{i}$ refers to the $i$th row from the $\bfW$ matrix, whereas $\bfw_{:,j}$ refers to the $j$th column. \item[--] Scalars are denoted with non-bold and non-capital letters: $w$. If the scalar comes from a 1-dimensional array (a vector), a single subscript will indicate its position in the vector. If the scalar comes from a 2-dimensional array, two indices will be shown at the bottom: the first one corresponding to the row and the second one to the column. For instance, $w_{i,j}$ refers to the value from the $i$th row and the $j$th column of the matrix $\bfW$, and $w_i$ to the $i$th value of the vector $\bfw$. \item[--] $\boldzero_k$ is a zero vector of length $k$. \item[--] $\I_k$ is the identity matrix with rank $k$. \item[--] $\E_q[x]$ denotes the expectation of $x$ under the distribution $q$. When the expectations are taken with respect to the same distribution many times, we will avoid cluttered notation and we will instead use $\la x \ra$. \item[--] $\Ndist{x}{\mu,\sigma^2}$: $x$ follows a univariate normal distribution with mean $\mu$ and variance $\sigma^2$. \item[--] $\Gdist{x}{a,b}$: $x$ follows a gamma distribution with shape and rate parameters $a$ and $b$. \item[--] $\Bdist{x}{a, b}$: $x$ follows a beta distribution with shape and rate parameters $a$ and $b$. \item[--] $\text{Ber}(x|\theta)$: $x$ follows a Bernoulli distribution with parameter $\theta$. \item[--] $\mathds{1}_0$: Dirac delta function centered at 0. \item[--] $Tr(\bfX)$: Trace of the matrix \bfX \end{itemize} \subsection*{Graphical notation for probabilistic models} Probabilistic models can be represented in a diagrammatic format (i.e. a graph or a network) that offers a compact visual representation of complicated systems of probability distributions \cite{Bishop2006}. In a graphical model the relationship between the nodes becomes more explicit, namely their conditional independence properties which allow the joint distribution over all variables to be factorised into a series of simpler products involving subsets of variables \cite{Bishop2006}. The basic unit of a network is the node, which represents the different types of variables, including observed variables, unobserved probabilistic variables and unobserved parameters. The nodes are connected by unidirectional edges (arrows) which capture the conditional independence relationship between the variables. For this thesis we adapted the graphical notations from~\cite{Dietz2010-technical-report-graphs}: \begin{center} \begin{tabular}{m{8cm} m{2cm}} Observed variables & \tikz{\node[obs](){$Y$}} \\ Unobserved probabilistic variables & \tikz{\node[latent](){$\theta$}} \\ Unobserved parameters & \tikz{\node[latent,double, double distance=1pt](){$\theta$}} \\ Repetition of node $\theta_n$ for $n\in\llbracket 1;N \rrbracket$ & \tikz{\node[latent](theta){$\theta_n$}; \plate[] {plateN} {(theta)} {$N$};} \\ Conditional dependency between nodes: $p(Y,\theta) = p(Y|\theta)p(\theta)$ & \tikz{% \node[latent] (theta) {$\theta$}; \node[obs, xshift=1.5cm] (Y) {$Y$}; \edge{theta}{Y}} \end{tabular} \end{center} % For simplicity, fixed hyperparameters are not represented on the graphical model. Unobserved parameters are only represented when optimised together with the unobserved probabilistic variables. \input{Chapter2/bayes} \input{Chapter2/factor_analysis}
State Before: F : Type ?u.107024 Ξ± : Type ?u.107027 Ξ² : Type ?u.107030 R : Type u_1 inst✝ : LinearOrderedRing R a : R n : β„• hn : Even n ha : a β‰  0 ⊒ 0 < a ^ n State After: case intro F : Type ?u.107024 Ξ± : Type ?u.107027 Ξ² : Type ?u.107030 R : Type u_1 inst✝ : LinearOrderedRing R a : R n : β„• ha : a β‰  0 k : β„• hk : n = k + k ⊒ 0 < a ^ n Tactic: cases' hn with k hk State Before: case intro F : Type ?u.107024 Ξ± : Type ?u.107027 Ξ² : Type ?u.107030 R : Type u_1 inst✝ : LinearOrderedRing R a : R n : β„• ha : a β‰  0 k : β„• hk : n = k + k ⊒ 0 < a ^ n State After: no goals Tactic: simpa only [hk, two_mul] using pow_bit0_pos ha k
Bowl Feeders. Bowl feeders are a type of vibratory feeder that consists of a feeder bowl (also known as a vibratory bowl) with a spiral track inside of the bowl and a drive unit. As the drive unit produces vibrations, the feeder bowl vibrates, and the motion of the bowl moves the parts up the spiral track. Vibratory Bowl Feeder We are one of the leading manufacturers and exporters of vibratory bowl (part) feeder. This equipment is ideal apparatus to get the required, oriented output of the components at specific feed rate. Vibratory Bowl Feeders, Bowl Feeders, Linear Feeders, Stock Feeders, Conveyors, Parts of SPM, Orientation Machine, Feeder Drive Unit, Stainless Steel Bowl, Cast Aluminium Bowl, Manufacturers, India Content on this page requires a newer version of Adobe Flash Player.
function [bias av_bias] = bias_f(x,y) % Bias calculator % Formula: 1 - mean(fused image)/mean(original image) % (Ideal value = 0) % 07/03/2010 Version 1.0 % 25/06/2010 Version 1.2 - Excel Output option % 04/08/2011 Version 1.2F - Function Version % Author: Aristidis D. Vaiopoulos % Find the number of bands bands = size(x); if length(bands) == 3 bands = bands(1,3); else bands = 1; end % Preallocation mx = zeros(1,bands); my = zeros(1,bands); % Mean value calculation for i = 1:bands xt = double(x(:,:,i)); yt = double(y(:,:,i)); mx(i) = mean(xt(:)); my(i) = mean(yt(:)); end % Bias calculation bias = 1 - (my./mx); bias = bias'; av_bias = mean(bias); end
chapter \<open>Future Work\<close> theory %invisible Future_Work imports Main begin text \<open>\label{chap:future}\<close> section \<open>Populating the Framework\<close> text \<open>\label{sec:populate}\<close> text \<open>Pop-refinement provides a framework, which must be populated with re-usable concepts, methodologies, and theorem prover libraries for full fruition. The simple examples in \chapref{chap:exampleI} and \chapref{chap:exampleII}, and the discussion in \chapref{chap:general}, suggests a few initial ideas. Working out examples of increasing complexity should suggest more ideas.\<close> section \<open>Automated Transformations\<close> text \<open>\label{sec:xform}\<close> text \<open>A pop-refinement step from @{term spec\<^sub>i} can be performed manually, by writing down \<open>spec\<^sub>i\<^sub>+\<^sub>1\<close> and proving \<open>spec\<^sub>i\<^sub>+\<^sub>1 p \<Longrightarrow> spec\<^sub>i p\<close>. It is sometimes possible to generate \<open>spec\<^sub>i\<^sub>+\<^sub>1\<close> from @{term spec\<^sub>i}, along with a proof of \<open>spec\<^sub>i\<^sub>+\<^sub>1 p \<Longrightarrow> spec\<^sub>i p\<close>, using automated transformation techniques like term rewriting, application of algorithmic templates, and term construction by witness finding, e.g.\ \cite{SmithMarktoberdorf,SpecwareWebSite}. Automated transformations may require parameters to be provided and applicability conditions to be proved, but should generally save effort and make derivations more robust against changes in requirement specifications. Extending existing theorem provers with automated transformation capabilities would be advantageous for pop-refinement.\<close> section \<open>Other Kinds of Design Objects\<close> text \<open>\label{sec:otherdesign}\<close> text \<open>It has been suggested~\cite{LambertPrivate} that pop-refinement could be used to develop other kinds of design objects than programs, e.g.\ protocols, digital circuits, and hybrid systems. Perhaps pop-refinement could be used to develop engines, cars, buildings, etc. So long as these design objects can be described by languages amenable to formalization, pop-refinement should be applicable.\<close> end %invisible
[STATEMENT] lemma spies_takeWhile: "spies (takeWhile P evs) \<subseteq> spies evs" [PROOF STATE] proof (prove) goal (1 subgoal): 1. knows Spy (takeWhile P evs) \<subseteq> knows Spy evs [PROOF STEP] apply (induct_tac "evs") [PROOF STATE] proof (prove) goal (2 subgoals): 1. knows Spy (takeWhile P []) \<subseteq> knows Spy [] 2. \<And>a list. knows Spy (takeWhile P list) \<subseteq> knows Spy list \<Longrightarrow> knows Spy (takeWhile P (a # list)) \<subseteq> knows Spy (a # list) [PROOF STEP] apply (rename_tac [2] a b) [PROOF STATE] proof (prove) goal (2 subgoals): 1. knows Spy (takeWhile P []) \<subseteq> knows Spy [] 2. \<And>a b. knows Spy (takeWhile P b) \<subseteq> knows Spy b \<Longrightarrow> knows Spy (takeWhile P (a # b)) \<subseteq> knows Spy (a # b) [PROOF STEP] apply (induct_tac [2] "a", auto) [PROOF STATE] proof (prove) goal: No subgoals! [PROOF STEP] txt\<open>Resembles \<open>used_subset_append\<close> in theory Event.\<close> [PROOF STATE] proof (prove) goal: No subgoals! [PROOF STEP] done
\chapter{Authentication, Authorization, and Accounting} % Explain AAA and why we need it \section{Dependencies} \subsection{OpenNTPD} % Talk about a basic OpenNTPD setup One of the key components to any \gls{aaa} system is time. Determining when a users' access is valid is integral to maintaining a secure system. This helps to prevent replay attacks and prevent access using past (or future) expired credentials. \gls{openbsd} prefers the \gls{openntpd} implementation of the \gls{ntp} service because it is a free (as in freedom) and simple implementation. Initially, \gls{openntpd} will be setup on the \gls{aaa} server in order to keep the \gls{aaa} services better in sync with the clock. In the future, more advanced time servers will be setup. At that point, the \gls{openntpd} server on the \gls{aaa} server will be setup to sync from those time servers. In order to activate a basic setup of \gls{openntpd} on \gls{openbsd}, the following line should be entered into the \verb=/etc/rc.conf.local= file: \begin{verbatim} ntpd_flags= \end{verbatim} Upon reboot, the \gls{openntpd} service will start automatically with the system and keep the clock in sync with the internet time servers. % Do I add a subsection here or later on for more advanced OpenNTPD topics? % Things like alternate time sources: GPS, Atomic Radio, Local Atomic (rubidium) \subsection{Domain Name Service} % We'll setup a DNS server on the kerberos domain controller. Another key component to any \gls{aaa} system is name resolution. Name resolution allows client machines to find the key server to request credentials for access. Without being able to find the key server, the key server is rather useless. A number of people will say that it's better to hard code the IP address of the key server into the clients, but DNS keeps us from having to manually update that configuration. Hard set IP addresses are not more secure than DNS, as both can be spoofed and modified on the network. % At some future point, move to another server with CARP and management scripts. \subsection{Dynamic Host Configuration Protocol} % Basic DHCP setup. Should also make it handle IPv6 and putting the names into % DNS. % At some future point, move to another server with CARP and management scripts % (probably the same servers as DNS) \section{Kerberos 5} % Mention that Kerberos serves the Authentication role % Discuss a basic kerberos setup % Do I add subsections here for things like redundancy (CARP) here? \section{Network Information Service} % Mention that NIS/YP server the Authorization role % Lets use NIS/YP over LDAP % Do I add subsections here for things like redundancy (CARP) here? \section{Accounting - ??} % Is syslog sufficient? % Do I add subsections here for things like redundancy (CARP) here? \section{Certificate Authority} % Does it make sense to put this here? Most of our connections will be secured % via SSL, so we should have a CA
[GOAL] Ξ± : Type uu r : Ξ± β†’ Ξ± β†’ Prop a : Ξ± l : List Ξ± inst✝ : IsAntisymm Ξ± r l₁ lβ‚‚ : List Ξ± p : l₁ ~ lβ‚‚ s₁ : Sorted r l₁ sβ‚‚ : Sorted r lβ‚‚ ⊒ l₁ = lβ‚‚ [PROOFSTEP] induction' s₁ with a l₁ h₁ s₁ IH generalizing lβ‚‚ [GOAL] case nil Ξ± : Type uu r : Ξ± β†’ Ξ± β†’ Prop a : Ξ± l : List Ξ± inst✝ : IsAntisymm Ξ± r l₁ lβ‚‚βœ : List Ξ± p✝ : l₁ ~ lβ‚‚βœ sβ‚‚βœ : Sorted r lβ‚‚βœ lβ‚‚ : List Ξ± p : [] ~ lβ‚‚ sβ‚‚ : Sorted r lβ‚‚ ⊒ [] = lβ‚‚ [PROOFSTEP] exact p.nil_eq [GOAL] case cons Ξ± : Type uu r : Ξ± β†’ Ξ± β†’ Prop a✝ : Ξ± l : List Ξ± inst✝ : IsAntisymm Ξ± r lβ‚βœ lβ‚‚βœ : List Ξ± p✝ : lβ‚βœ ~ lβ‚‚βœ sβ‚‚βœ : Sorted r lβ‚‚βœ a : Ξ± l₁ : List Ξ± h₁ : βˆ€ (a' : Ξ±), a' ∈ l₁ β†’ r a a' s₁ : Pairwise r l₁ IH : βˆ€ {lβ‚‚ : List Ξ±}, l₁ ~ lβ‚‚ β†’ Sorted r lβ‚‚ β†’ l₁ = lβ‚‚ lβ‚‚ : List Ξ± p : a :: l₁ ~ lβ‚‚ sβ‚‚ : Sorted r lβ‚‚ ⊒ a :: l₁ = lβ‚‚ [PROOFSTEP] have : a ∈ lβ‚‚ := p.subset (mem_cons_self _ _) [GOAL] case cons Ξ± : Type uu r : Ξ± β†’ Ξ± β†’ Prop a✝ : Ξ± l : List Ξ± inst✝ : IsAntisymm Ξ± r lβ‚βœ lβ‚‚βœ : List Ξ± p✝ : lβ‚βœ ~ lβ‚‚βœ sβ‚‚βœ : Sorted r lβ‚‚βœ a : Ξ± l₁ : List Ξ± h₁ : βˆ€ (a' : Ξ±), a' ∈ l₁ β†’ r a a' s₁ : Pairwise r l₁ IH : βˆ€ {lβ‚‚ : List Ξ±}, l₁ ~ lβ‚‚ β†’ Sorted r lβ‚‚ β†’ l₁ = lβ‚‚ lβ‚‚ : List Ξ± p : a :: l₁ ~ lβ‚‚ sβ‚‚ : Sorted r lβ‚‚ this : a ∈ lβ‚‚ ⊒ a :: l₁ = lβ‚‚ [PROOFSTEP] rcases mem_split this with ⟨uβ‚‚, vβ‚‚, rfl⟩ [GOAL] case cons.intro.intro Ξ± : Type uu r : Ξ± β†’ Ξ± β†’ Prop a✝ : Ξ± l : List Ξ± inst✝ : IsAntisymm Ξ± r lβ‚βœ lβ‚‚ : List Ξ± p✝ : lβ‚βœ ~ lβ‚‚ sβ‚‚βœ : Sorted r lβ‚‚ a : Ξ± l₁ : List Ξ± h₁ : βˆ€ (a' : Ξ±), a' ∈ l₁ β†’ r a a' s₁ : Pairwise r l₁ IH : βˆ€ {lβ‚‚ : List Ξ±}, l₁ ~ lβ‚‚ β†’ Sorted r lβ‚‚ β†’ l₁ = lβ‚‚ uβ‚‚ vβ‚‚ : List Ξ± p : a :: l₁ ~ uβ‚‚ ++ a :: vβ‚‚ sβ‚‚ : Sorted r (uβ‚‚ ++ a :: vβ‚‚) this : a ∈ uβ‚‚ ++ a :: vβ‚‚ ⊒ a :: l₁ = uβ‚‚ ++ a :: vβ‚‚ [PROOFSTEP] have p' := (perm_cons a).1 (p.trans perm_middle) [GOAL] case cons.intro.intro Ξ± : Type uu r : Ξ± β†’ Ξ± β†’ Prop a✝ : Ξ± l : List Ξ± inst✝ : IsAntisymm Ξ± r lβ‚βœ lβ‚‚ : List Ξ± p✝ : lβ‚βœ ~ lβ‚‚ sβ‚‚βœ : Sorted r lβ‚‚ a : Ξ± l₁ : List Ξ± h₁ : βˆ€ (a' : Ξ±), a' ∈ l₁ β†’ r a a' s₁ : Pairwise r l₁ IH : βˆ€ {lβ‚‚ : List Ξ±}, l₁ ~ lβ‚‚ β†’ Sorted r lβ‚‚ β†’ l₁ = lβ‚‚ uβ‚‚ vβ‚‚ : List Ξ± p : a :: l₁ ~ uβ‚‚ ++ a :: vβ‚‚ sβ‚‚ : Sorted r (uβ‚‚ ++ a :: vβ‚‚) this : a ∈ uβ‚‚ ++ a :: vβ‚‚ p' : l₁ ~ uβ‚‚ ++ vβ‚‚ ⊒ a :: l₁ = uβ‚‚ ++ a :: vβ‚‚ [PROOFSTEP] obtain rfl := IH p' (sβ‚‚.sublist <| by simp) [GOAL] Ξ± : Type uu r : Ξ± β†’ Ξ± β†’ Prop a✝ : Ξ± l : List Ξ± inst✝ : IsAntisymm Ξ± r lβ‚βœ lβ‚‚ : List Ξ± p✝ : lβ‚βœ ~ lβ‚‚ sβ‚‚βœ : Sorted r lβ‚‚ a : Ξ± l₁ : List Ξ± h₁ : βˆ€ (a' : Ξ±), a' ∈ l₁ β†’ r a a' s₁ : Pairwise r l₁ IH : βˆ€ {lβ‚‚ : List Ξ±}, l₁ ~ lβ‚‚ β†’ Sorted r lβ‚‚ β†’ l₁ = lβ‚‚ uβ‚‚ vβ‚‚ : List Ξ± p : a :: l₁ ~ uβ‚‚ ++ a :: vβ‚‚ sβ‚‚ : Sorted r (uβ‚‚ ++ a :: vβ‚‚) this : a ∈ uβ‚‚ ++ a :: vβ‚‚ p' : l₁ ~ uβ‚‚ ++ vβ‚‚ ⊒ uβ‚‚ ++ vβ‚‚ <+ uβ‚‚ ++ a :: vβ‚‚ [PROOFSTEP] simp [GOAL] case cons.intro.intro Ξ± : Type uu r : Ξ± β†’ Ξ± β†’ Prop a✝ : Ξ± l : List Ξ± inst✝ : IsAntisymm Ξ± r l₁ lβ‚‚ : List Ξ± p✝ : l₁ ~ lβ‚‚ sβ‚‚βœ : Sorted r lβ‚‚ a : Ξ± uβ‚‚ vβ‚‚ : List Ξ± sβ‚‚ : Sorted r (uβ‚‚ ++ a :: vβ‚‚) this : a ∈ uβ‚‚ ++ a :: vβ‚‚ h₁ : βˆ€ (a' : Ξ±), a' ∈ uβ‚‚ ++ vβ‚‚ β†’ r a a' s₁ : Pairwise r (uβ‚‚ ++ vβ‚‚) IH : βˆ€ {lβ‚‚ : List Ξ±}, uβ‚‚ ++ vβ‚‚ ~ lβ‚‚ β†’ Sorted r lβ‚‚ β†’ uβ‚‚ ++ vβ‚‚ = lβ‚‚ p : a :: (uβ‚‚ ++ vβ‚‚) ~ uβ‚‚ ++ a :: vβ‚‚ p' : uβ‚‚ ++ vβ‚‚ ~ uβ‚‚ ++ vβ‚‚ ⊒ a :: (uβ‚‚ ++ vβ‚‚) = uβ‚‚ ++ a :: vβ‚‚ [PROOFSTEP] change a :: uβ‚‚ ++ vβ‚‚ = uβ‚‚ ++ ([a] ++ vβ‚‚) [GOAL] case cons.intro.intro Ξ± : Type uu r : Ξ± β†’ Ξ± β†’ Prop a✝ : Ξ± l : List Ξ± inst✝ : IsAntisymm Ξ± r l₁ lβ‚‚ : List Ξ± p✝ : l₁ ~ lβ‚‚ sβ‚‚βœ : Sorted r lβ‚‚ a : Ξ± uβ‚‚ vβ‚‚ : List Ξ± sβ‚‚ : Sorted r (uβ‚‚ ++ a :: vβ‚‚) this : a ∈ uβ‚‚ ++ a :: vβ‚‚ h₁ : βˆ€ (a' : Ξ±), a' ∈ uβ‚‚ ++ vβ‚‚ β†’ r a a' s₁ : Pairwise r (uβ‚‚ ++ vβ‚‚) IH : βˆ€ {lβ‚‚ : List Ξ±}, uβ‚‚ ++ vβ‚‚ ~ lβ‚‚ β†’ Sorted r lβ‚‚ β†’ uβ‚‚ ++ vβ‚‚ = lβ‚‚ p : a :: (uβ‚‚ ++ vβ‚‚) ~ uβ‚‚ ++ a :: vβ‚‚ p' : uβ‚‚ ++ vβ‚‚ ~ uβ‚‚ ++ vβ‚‚ ⊒ a :: uβ‚‚ ++ vβ‚‚ = uβ‚‚ ++ ([a] ++ vβ‚‚) [PROOFSTEP] rw [← append_assoc] [GOAL] case cons.intro.intro Ξ± : Type uu r : Ξ± β†’ Ξ± β†’ Prop a✝ : Ξ± l : List Ξ± inst✝ : IsAntisymm Ξ± r l₁ lβ‚‚ : List Ξ± p✝ : l₁ ~ lβ‚‚ sβ‚‚βœ : Sorted r lβ‚‚ a : Ξ± uβ‚‚ vβ‚‚ : List Ξ± sβ‚‚ : Sorted r (uβ‚‚ ++ a :: vβ‚‚) this : a ∈ uβ‚‚ ++ a :: vβ‚‚ h₁ : βˆ€ (a' : Ξ±), a' ∈ uβ‚‚ ++ vβ‚‚ β†’ r a a' s₁ : Pairwise r (uβ‚‚ ++ vβ‚‚) IH : βˆ€ {lβ‚‚ : List Ξ±}, uβ‚‚ ++ vβ‚‚ ~ lβ‚‚ β†’ Sorted r lβ‚‚ β†’ uβ‚‚ ++ vβ‚‚ = lβ‚‚ p : a :: (uβ‚‚ ++ vβ‚‚) ~ uβ‚‚ ++ a :: vβ‚‚ p' : uβ‚‚ ++ vβ‚‚ ~ uβ‚‚ ++ vβ‚‚ ⊒ a :: uβ‚‚ ++ vβ‚‚ = uβ‚‚ ++ [a] ++ vβ‚‚ [PROOFSTEP] congr [GOAL] case cons.intro.intro.e_a Ξ± : Type uu r : Ξ± β†’ Ξ± β†’ Prop a✝ : Ξ± l : List Ξ± inst✝ : IsAntisymm Ξ± r l₁ lβ‚‚ : List Ξ± p✝ : l₁ ~ lβ‚‚ sβ‚‚βœ : Sorted r lβ‚‚ a : Ξ± uβ‚‚ vβ‚‚ : List Ξ± sβ‚‚ : Sorted r (uβ‚‚ ++ a :: vβ‚‚) this : a ∈ uβ‚‚ ++ a :: vβ‚‚ h₁ : βˆ€ (a' : Ξ±), a' ∈ uβ‚‚ ++ vβ‚‚ β†’ r a a' s₁ : Pairwise r (uβ‚‚ ++ vβ‚‚) IH : βˆ€ {lβ‚‚ : List Ξ±}, uβ‚‚ ++ vβ‚‚ ~ lβ‚‚ β†’ Sorted r lβ‚‚ β†’ uβ‚‚ ++ vβ‚‚ = lβ‚‚ p : a :: (uβ‚‚ ++ vβ‚‚) ~ uβ‚‚ ++ a :: vβ‚‚ p' : uβ‚‚ ++ vβ‚‚ ~ uβ‚‚ ++ vβ‚‚ ⊒ a :: uβ‚‚ = uβ‚‚ ++ [a] [PROOFSTEP] have : βˆ€ (x : Ξ±) (_ : x ∈ uβ‚‚), x = a := fun x m => antisymm ((pairwise_append.1 sβ‚‚).2.2 _ m a (mem_cons_self _ _)) (h₁ _ (by simp [m])) [GOAL] Ξ± : Type uu r : Ξ± β†’ Ξ± β†’ Prop a✝ : Ξ± l : List Ξ± inst✝ : IsAntisymm Ξ± r l₁ lβ‚‚ : List Ξ± p✝ : l₁ ~ lβ‚‚ sβ‚‚βœ : Sorted r lβ‚‚ a : Ξ± uβ‚‚ vβ‚‚ : List Ξ± sβ‚‚ : Sorted r (uβ‚‚ ++ a :: vβ‚‚) this : a ∈ uβ‚‚ ++ a :: vβ‚‚ h₁ : βˆ€ (a' : Ξ±), a' ∈ uβ‚‚ ++ vβ‚‚ β†’ r a a' s₁ : Pairwise r (uβ‚‚ ++ vβ‚‚) IH : βˆ€ {lβ‚‚ : List Ξ±}, uβ‚‚ ++ vβ‚‚ ~ lβ‚‚ β†’ Sorted r lβ‚‚ β†’ uβ‚‚ ++ vβ‚‚ = lβ‚‚ p : a :: (uβ‚‚ ++ vβ‚‚) ~ uβ‚‚ ++ a :: vβ‚‚ p' : uβ‚‚ ++ vβ‚‚ ~ uβ‚‚ ++ vβ‚‚ x : Ξ± m : x ∈ uβ‚‚ ⊒ x ∈ uβ‚‚ ++ vβ‚‚ [PROOFSTEP] simp [m] [GOAL] case cons.intro.intro.e_a Ξ± : Type uu r : Ξ± β†’ Ξ± β†’ Prop a✝ : Ξ± l : List Ξ± inst✝ : IsAntisymm Ξ± r l₁ lβ‚‚ : List Ξ± p✝ : l₁ ~ lβ‚‚ sβ‚‚βœ : Sorted r lβ‚‚ a : Ξ± uβ‚‚ vβ‚‚ : List Ξ± sβ‚‚ : Sorted r (uβ‚‚ ++ a :: vβ‚‚) this✝ : a ∈ uβ‚‚ ++ a :: vβ‚‚ h₁ : βˆ€ (a' : Ξ±), a' ∈ uβ‚‚ ++ vβ‚‚ β†’ r a a' s₁ : Pairwise r (uβ‚‚ ++ vβ‚‚) IH : βˆ€ {lβ‚‚ : List Ξ±}, uβ‚‚ ++ vβ‚‚ ~ lβ‚‚ β†’ Sorted r lβ‚‚ β†’ uβ‚‚ ++ vβ‚‚ = lβ‚‚ p : a :: (uβ‚‚ ++ vβ‚‚) ~ uβ‚‚ ++ a :: vβ‚‚ p' : uβ‚‚ ++ vβ‚‚ ~ uβ‚‚ ++ vβ‚‚ this : βˆ€ (x : Ξ±), x ∈ uβ‚‚ β†’ x = a ⊒ a :: uβ‚‚ = uβ‚‚ ++ [a] [PROOFSTEP] rw [(@eq_replicate _ a (length uβ‚‚ + 1) (a :: uβ‚‚)).2, (@eq_replicate _ a (length uβ‚‚ + 1) (uβ‚‚ ++ [a])).2] [GOAL] case cons.intro.intro.e_a Ξ± : Type uu r : Ξ± β†’ Ξ± β†’ Prop a✝ : Ξ± l : List Ξ± inst✝ : IsAntisymm Ξ± r l₁ lβ‚‚ : List Ξ± p✝ : l₁ ~ lβ‚‚ sβ‚‚βœ : Sorted r lβ‚‚ a : Ξ± uβ‚‚ vβ‚‚ : List Ξ± sβ‚‚ : Sorted r (uβ‚‚ ++ a :: vβ‚‚) this✝ : a ∈ uβ‚‚ ++ a :: vβ‚‚ h₁ : βˆ€ (a' : Ξ±), a' ∈ uβ‚‚ ++ vβ‚‚ β†’ r a a' s₁ : Pairwise r (uβ‚‚ ++ vβ‚‚) IH : βˆ€ {lβ‚‚ : List Ξ±}, uβ‚‚ ++ vβ‚‚ ~ lβ‚‚ β†’ Sorted r lβ‚‚ β†’ uβ‚‚ ++ vβ‚‚ = lβ‚‚ p : a :: (uβ‚‚ ++ vβ‚‚) ~ uβ‚‚ ++ a :: vβ‚‚ p' : uβ‚‚ ++ vβ‚‚ ~ uβ‚‚ ++ vβ‚‚ this : βˆ€ (x : Ξ±), x ∈ uβ‚‚ β†’ x = a ⊒ length (uβ‚‚ ++ [a]) = length uβ‚‚ + 1 ∧ βˆ€ (b : Ξ±), b ∈ uβ‚‚ ++ [a] β†’ b = a [PROOFSTEP] constructor [GOAL] case cons.intro.intro.e_a Ξ± : Type uu r : Ξ± β†’ Ξ± β†’ Prop a✝ : Ξ± l : List Ξ± inst✝ : IsAntisymm Ξ± r l₁ lβ‚‚ : List Ξ± p✝ : l₁ ~ lβ‚‚ sβ‚‚βœ : Sorted r lβ‚‚ a : Ξ± uβ‚‚ vβ‚‚ : List Ξ± sβ‚‚ : Sorted r (uβ‚‚ ++ a :: vβ‚‚) this✝ : a ∈ uβ‚‚ ++ a :: vβ‚‚ h₁ : βˆ€ (a' : Ξ±), a' ∈ uβ‚‚ ++ vβ‚‚ β†’ r a a' s₁ : Pairwise r (uβ‚‚ ++ vβ‚‚) IH : βˆ€ {lβ‚‚ : List Ξ±}, uβ‚‚ ++ vβ‚‚ ~ lβ‚‚ β†’ Sorted r lβ‚‚ β†’ uβ‚‚ ++ vβ‚‚ = lβ‚‚ p : a :: (uβ‚‚ ++ vβ‚‚) ~ uβ‚‚ ++ a :: vβ‚‚ p' : uβ‚‚ ++ vβ‚‚ ~ uβ‚‚ ++ vβ‚‚ this : βˆ€ (x : Ξ±), x ∈ uβ‚‚ β†’ x = a ⊒ length (a :: uβ‚‚) = length uβ‚‚ + 1 ∧ βˆ€ (b : Ξ±), b ∈ a :: uβ‚‚ β†’ b = a [PROOFSTEP] constructor [GOAL] case cons.intro.intro.e_a.left Ξ± : Type uu r : Ξ± β†’ Ξ± β†’ Prop a✝ : Ξ± l : List Ξ± inst✝ : IsAntisymm Ξ± r l₁ lβ‚‚ : List Ξ± p✝ : l₁ ~ lβ‚‚ sβ‚‚βœ : Sorted r lβ‚‚ a : Ξ± uβ‚‚ vβ‚‚ : List Ξ± sβ‚‚ : Sorted r (uβ‚‚ ++ a :: vβ‚‚) this✝ : a ∈ uβ‚‚ ++ a :: vβ‚‚ h₁ : βˆ€ (a' : Ξ±), a' ∈ uβ‚‚ ++ vβ‚‚ β†’ r a a' s₁ : Pairwise r (uβ‚‚ ++ vβ‚‚) IH : βˆ€ {lβ‚‚ : List Ξ±}, uβ‚‚ ++ vβ‚‚ ~ lβ‚‚ β†’ Sorted r lβ‚‚ β†’ uβ‚‚ ++ vβ‚‚ = lβ‚‚ p : a :: (uβ‚‚ ++ vβ‚‚) ~ uβ‚‚ ++ a :: vβ‚‚ p' : uβ‚‚ ++ vβ‚‚ ~ uβ‚‚ ++ vβ‚‚ this : βˆ€ (x : Ξ±), x ∈ uβ‚‚ β†’ x = a ⊒ length (uβ‚‚ ++ [a]) = length uβ‚‚ + 1 [PROOFSTEP] simp [iff_true_intro this, or_comm] [GOAL] case cons.intro.intro.e_a.right Ξ± : Type uu r : Ξ± β†’ Ξ± β†’ Prop a✝ : Ξ± l : List Ξ± inst✝ : IsAntisymm Ξ± r l₁ lβ‚‚ : List Ξ± p✝ : l₁ ~ lβ‚‚ sβ‚‚βœ : Sorted r lβ‚‚ a : Ξ± uβ‚‚ vβ‚‚ : List Ξ± sβ‚‚ : Sorted r (uβ‚‚ ++ a :: vβ‚‚) this✝ : a ∈ uβ‚‚ ++ a :: vβ‚‚ h₁ : βˆ€ (a' : Ξ±), a' ∈ uβ‚‚ ++ vβ‚‚ β†’ r a a' s₁ : Pairwise r (uβ‚‚ ++ vβ‚‚) IH : βˆ€ {lβ‚‚ : List Ξ±}, uβ‚‚ ++ vβ‚‚ ~ lβ‚‚ β†’ Sorted r lβ‚‚ β†’ uβ‚‚ ++ vβ‚‚ = lβ‚‚ p : a :: (uβ‚‚ ++ vβ‚‚) ~ uβ‚‚ ++ a :: vβ‚‚ p' : uβ‚‚ ++ vβ‚‚ ~ uβ‚‚ ++ vβ‚‚ this : βˆ€ (x : Ξ±), x ∈ uβ‚‚ β†’ x = a ⊒ βˆ€ (b : Ξ±), b ∈ uβ‚‚ ++ [a] β†’ b = a [PROOFSTEP] simp [iff_true_intro this, or_comm] [GOAL] case cons.intro.intro.e_a.left Ξ± : Type uu r : Ξ± β†’ Ξ± β†’ Prop a✝ : Ξ± l : List Ξ± inst✝ : IsAntisymm Ξ± r l₁ lβ‚‚ : List Ξ± p✝ : l₁ ~ lβ‚‚ sβ‚‚βœ : Sorted r lβ‚‚ a : Ξ± uβ‚‚ vβ‚‚ : List Ξ± sβ‚‚ : Sorted r (uβ‚‚ ++ a :: vβ‚‚) this✝ : a ∈ uβ‚‚ ++ a :: vβ‚‚ h₁ : βˆ€ (a' : Ξ±), a' ∈ uβ‚‚ ++ vβ‚‚ β†’ r a a' s₁ : Pairwise r (uβ‚‚ ++ vβ‚‚) IH : βˆ€ {lβ‚‚ : List Ξ±}, uβ‚‚ ++ vβ‚‚ ~ lβ‚‚ β†’ Sorted r lβ‚‚ β†’ uβ‚‚ ++ vβ‚‚ = lβ‚‚ p : a :: (uβ‚‚ ++ vβ‚‚) ~ uβ‚‚ ++ a :: vβ‚‚ p' : uβ‚‚ ++ vβ‚‚ ~ uβ‚‚ ++ vβ‚‚ this : βˆ€ (x : Ξ±), x ∈ uβ‚‚ β†’ x = a ⊒ length (a :: uβ‚‚) = length uβ‚‚ + 1 [PROOFSTEP] simp [iff_true_intro this, or_comm] [GOAL] case cons.intro.intro.e_a.right Ξ± : Type uu r : Ξ± β†’ Ξ± β†’ Prop a✝ : Ξ± l : List Ξ± inst✝ : IsAntisymm Ξ± r l₁ lβ‚‚ : List Ξ± p✝ : l₁ ~ lβ‚‚ sβ‚‚βœ : Sorted r lβ‚‚ a : Ξ± uβ‚‚ vβ‚‚ : List Ξ± sβ‚‚ : Sorted r (uβ‚‚ ++ a :: vβ‚‚) this✝ : a ∈ uβ‚‚ ++ a :: vβ‚‚ h₁ : βˆ€ (a' : Ξ±), a' ∈ uβ‚‚ ++ vβ‚‚ β†’ r a a' s₁ : Pairwise r (uβ‚‚ ++ vβ‚‚) IH : βˆ€ {lβ‚‚ : List Ξ±}, uβ‚‚ ++ vβ‚‚ ~ lβ‚‚ β†’ Sorted r lβ‚‚ β†’ uβ‚‚ ++ vβ‚‚ = lβ‚‚ p : a :: (uβ‚‚ ++ vβ‚‚) ~ uβ‚‚ ++ a :: vβ‚‚ p' : uβ‚‚ ++ vβ‚‚ ~ uβ‚‚ ++ vβ‚‚ this : βˆ€ (x : Ξ±), x ∈ uβ‚‚ β†’ x = a ⊒ βˆ€ (b : Ξ±), b ∈ a :: uβ‚‚ β†’ b = a [PROOFSTEP] simp [iff_true_intro this, or_comm] [GOAL] Ξ± : Type uu r : Ξ± β†’ Ξ± β†’ Prop a : Ξ± l : List Ξ± inst✝ : IsAntisymm Ξ± r l₁ lβ‚‚ : List Ξ± p : l₁ <+~ lβ‚‚ s₁ : Sorted r l₁ sβ‚‚ : Sorted r lβ‚‚ ⊒ l₁ <+ lβ‚‚ [PROOFSTEP] let ⟨_, h, h'⟩ := p [GOAL] Ξ± : Type uu r : Ξ± β†’ Ξ± β†’ Prop a : Ξ± l : List Ξ± inst✝ : IsAntisymm Ξ± r l₁ lβ‚‚ : List Ξ± p : l₁ <+~ lβ‚‚ s₁ : Sorted r l₁ sβ‚‚ : Sorted r lβ‚‚ w✝ : List Ξ± h : w✝ ~ l₁ h' : w✝ <+ lβ‚‚ ⊒ l₁ <+ lβ‚‚ [PROOFSTEP] rwa [← eq_of_perm_of_sorted h (sβ‚‚.sublist h') s₁] [GOAL] Ξ± : Type uu r : Ξ± β†’ Ξ± β†’ Prop a✝ : Ξ± l✝ : List Ξ± inst✝ : IsRefl Ξ± r l : List Ξ± h : Sorted r l a b : Fin (length l) hab : a ≀ b ⊒ r (get l a) (get l b) [PROOFSTEP] rcases hab.eq_or_lt with (rfl | hlt) [GOAL] case inl Ξ± : Type uu r : Ξ± β†’ Ξ± β†’ Prop a✝ : Ξ± l✝ : List Ξ± inst✝ : IsRefl Ξ± r l : List Ξ± h : Sorted r l a : Fin (length l) hab : a ≀ a ⊒ r (get l a) (get l a) case inr Ξ± : Type uu r : Ξ± β†’ Ξ± β†’ Prop a✝ : Ξ± l✝ : List Ξ± inst✝ : IsRefl Ξ± r l : List Ξ± h : Sorted r l a b : Fin (length l) hab : a ≀ b hlt : a < b ⊒ r (get l a) (get l b) [PROOFSTEP] exacts [refl _, h.rel_get_of_lt hlt] [GOAL] Ξ± : Type uu r : Ξ± β†’ Ξ± β†’ Prop a : Ξ± l✝ l : List Ξ± h : Sorted r l k : β„• x y : Ξ± hx : x ∈ take k l hy : y ∈ drop k l ⊒ r x y [PROOFSTEP] obtain ⟨⟨iy, hiy⟩, rfl⟩ := get_of_mem hy [GOAL] case intro.mk Ξ± : Type uu r : Ξ± β†’ Ξ± β†’ Prop a : Ξ± l✝ l : List Ξ± h : Sorted r l k : β„• x : Ξ± hx : x ∈ take k l iy : β„• hiy : iy < length (drop k l) hy : get (drop k l) { val := iy, isLt := hiy } ∈ drop k l ⊒ r x (get (drop k l) { val := iy, isLt := hiy }) [PROOFSTEP] obtain ⟨⟨ix, hix⟩, rfl⟩ := get_of_mem hx [GOAL] case intro.mk.intro.mk Ξ± : Type uu r : Ξ± β†’ Ξ± β†’ Prop a : Ξ± l✝ l : List Ξ± h : Sorted r l k iy : β„• hiy : iy < length (drop k l) hy : get (drop k l) { val := iy, isLt := hiy } ∈ drop k l ix : β„• hix : ix < length (take k l) hx : get (take k l) { val := ix, isLt := hix } ∈ take k l ⊒ r (get (take k l) { val := ix, isLt := hix }) (get (drop k l) { val := iy, isLt := hiy }) [PROOFSTEP] rw [get_take', get_drop'] [GOAL] case intro.mk.intro.mk Ξ± : Type uu r : Ξ± β†’ Ξ± β†’ Prop a : Ξ± l✝ l : List Ξ± h : Sorted r l k iy : β„• hiy : iy < length (drop k l) hy : get (drop k l) { val := iy, isLt := hiy } ∈ drop k l ix : β„• hix : ix < length (take k l) hx : get (take k l) { val := ix, isLt := hix } ∈ take k l ⊒ r (get l { val := ↑{ val := ix, isLt := hix }, isLt := (_ : ↑{ val := ix, isLt := hix } < length l) }) (get l { val := k + ↑{ val := iy, isLt := hiy }, isLt := (_ : k + ↑{ val := iy, isLt := hiy } < length l) }) [PROOFSTEP] rw [length_take] at hix [GOAL] case intro.mk.intro.mk Ξ± : Type uu r : Ξ± β†’ Ξ± β†’ Prop a : Ξ± l✝ l : List Ξ± h : Sorted r l k iy : β„• hiy : iy < length (drop k l) hy : get (drop k l) { val := iy, isLt := hiy } ∈ drop k l ix : β„• hix✝ : ix < length (take k l) hix : ix < min k (length l) hx : get (take k l) { val := ix, isLt := hix✝ } ∈ take k l ⊒ r (get l { val := ↑{ val := ix, isLt := hix✝ }, isLt := (_ : ↑{ val := ix, isLt := hix✝ } < length l) }) (get l { val := k + ↑{ val := iy, isLt := hiy }, isLt := (_ : k + ↑{ val := iy, isLt := hiy } < length l) }) [PROOFSTEP] exact h.rel_nthLe_of_lt _ _ (ix.lt_add_right _ _ (lt_min_iff.mp hix).left) [GOAL] n : β„• Ξ± : Type uu inst✝ : Preorder Ξ± f : Fin n β†’ Ξ± r : Ξ± β†’ Ξ± β†’ Prop ⊒ Sorted r (ofFn f) ↔ ((fun x x_1 => x < x_1) β‡’ r) f f [PROOFSTEP] simp_rw [Sorted, pairwise_iff_get, get_ofFn, Relator.LiftFun] [GOAL] n : β„• Ξ± : Type uu inst✝ : Preorder Ξ± f : Fin n β†’ Ξ± r : Ξ± β†’ Ξ± β†’ Prop ⊒ (βˆ€ (i j : Fin (length (ofFn f))), i < j β†’ r (f (↑(Fin.castIso (_ : length (ofFn f) = n)) i)) (f (↑(Fin.castIso (_ : length (ofFn f) = n)) j))) ↔ βˆ€ ⦃a b : Fin n⦄, a < b β†’ r (f a) (f b) [PROOFSTEP] exact Iff.symm (Fin.castIso _).surjective.forallβ‚‚ [GOAL] Ξ± : Type uu r : Ξ± β†’ Ξ± β†’ Prop inst✝ : DecidableRel r hd : Ξ± tl : List Ξ± a : Ξ± ⊒ length (orderedInsert r a (hd :: tl)) = length (hd :: tl) + 1 [PROOFSTEP] dsimp [orderedInsert] [GOAL] Ξ± : Type uu r : Ξ± β†’ Ξ± β†’ Prop inst✝ : DecidableRel r hd : Ξ± tl : List Ξ± a : Ξ± ⊒ length (if r a hd then a :: hd :: tl else hd :: orderedInsert r a tl) = Nat.succ (length tl) + 1 [PROOFSTEP] split_ifs [GOAL] case pos Ξ± : Type uu r : Ξ± β†’ Ξ± β†’ Prop inst✝ : DecidableRel r hd : Ξ± tl : List Ξ± a : Ξ± h✝ : r a hd ⊒ length (a :: hd :: tl) = Nat.succ (length tl) + 1 [PROOFSTEP] simp [orderedInsert_length tl] [GOAL] case neg Ξ± : Type uu r : Ξ± β†’ Ξ± β†’ Prop inst✝ : DecidableRel r hd : Ξ± tl : List Ξ± a : Ξ± h✝ : Β¬r a hd ⊒ length (hd :: orderedInsert r a tl) = Nat.succ (length tl) + 1 [PROOFSTEP] simp [orderedInsert_length tl] [GOAL] Ξ± : Type uu r : Ξ± β†’ Ξ± β†’ Prop inst✝ : DecidableRel r a b : Ξ± l : List Ξ± ⊒ orderedInsert r a (b :: l) = takeWhile (fun b => decide Β¬r a b) (b :: l) ++ a :: dropWhile (fun b => decide Β¬r a b) (b :: l) [PROOFSTEP] dsimp only [orderedInsert] [GOAL] Ξ± : Type uu r : Ξ± β†’ Ξ± β†’ Prop inst✝ : DecidableRel r a b : Ξ± l : List Ξ± ⊒ (if r a b then a :: b :: l else b :: orderedInsert r a l) = takeWhile (fun b => decide Β¬r a b) (b :: l) ++ a :: dropWhile (fun b => decide Β¬r a b) (b :: l) [PROOFSTEP] split_ifs with h [GOAL] case pos Ξ± : Type uu r : Ξ± β†’ Ξ± β†’ Prop inst✝ : DecidableRel r a b : Ξ± l : List Ξ± h : r a b ⊒ a :: b :: l = takeWhile (fun b => decide Β¬r a b) (b :: l) ++ a :: dropWhile (fun b => decide Β¬r a b) (b :: l) [PROOFSTEP] simp [takeWhile, dropWhile, *, orderedInsert_eq_take_drop a l] [GOAL] case neg Ξ± : Type uu r : Ξ± β†’ Ξ± β†’ Prop inst✝ : DecidableRel r a b : Ξ± l : List Ξ± h : Β¬r a b ⊒ b :: orderedInsert r a l = takeWhile (fun b => decide Β¬r a b) (b :: l) ++ a :: dropWhile (fun b => decide Β¬r a b) (b :: l) [PROOFSTEP] simp [takeWhile, dropWhile, *, orderedInsert_eq_take_drop a l] [GOAL] Ξ± : Type uu r : Ξ± β†’ Ξ± β†’ Prop inst✝ : DecidableRel r a b : Ξ± l : List Ξ± ⊒ orderedInsert r a (b :: l) ~ a :: b :: l [PROOFSTEP] by_cases h : a β‰Ό b [GOAL] case pos Ξ± : Type uu r : Ξ± β†’ Ξ± β†’ Prop inst✝ : DecidableRel r a b : Ξ± l : List Ξ± h : r a b ⊒ orderedInsert r a (b :: l) ~ a :: b :: l [PROOFSTEP] simp [orderedInsert, h] [GOAL] case neg Ξ± : Type uu r : Ξ± β†’ Ξ± β†’ Prop inst✝ : DecidableRel r a b : Ξ± l : List Ξ± h : Β¬r a b ⊒ orderedInsert r a (b :: l) ~ a :: b :: l [PROOFSTEP] simpa [orderedInsert, h] using ((perm_orderedInsert a l).cons _).trans (Perm.swap _ _ _) [GOAL] Ξ± : Type uu r : Ξ± β†’ Ξ± β†’ Prop inst✝¹ : DecidableRel r inst✝ : DecidableEq Ξ± L : List Ξ± a b : Ξ± ⊒ count a (orderedInsert r b L) = count a L + if a = b then 1 else 0 [PROOFSTEP] rw [(L.perm_orderedInsert r b).count_eq, count_cons] [GOAL] Ξ± : Type uu r : Ξ± β†’ Ξ± β†’ Prop inst✝¹ : DecidableRel r inst✝ : DecidableEq Ξ± L : List Ξ± a b : Ξ± ⊒ (if a = b then Nat.succ (count a L) else count a L) = count a L + if a = b then 1 else 0 [PROOFSTEP] split_ifs [GOAL] case pos Ξ± : Type uu r : Ξ± β†’ Ξ± β†’ Prop inst✝¹ : DecidableRel r inst✝ : DecidableEq Ξ± L : List Ξ± a b : Ξ± h✝ : a = b ⊒ Nat.succ (count a L) = count a L + 1 [PROOFSTEP] simp only [Nat.succ_eq_add_one, add_zero] [GOAL] case neg Ξ± : Type uu r : Ξ± β†’ Ξ± β†’ Prop inst✝¹ : DecidableRel r inst✝ : DecidableEq Ξ± L : List Ξ± a b : Ξ± h✝ : Β¬a = b ⊒ count a L = count a L + 0 [PROOFSTEP] simp only [Nat.succ_eq_add_one, add_zero] [GOAL] Ξ± : Type uu r : Ξ± β†’ Ξ± β†’ Prop inst✝ : DecidableRel r b : Ξ± l : List Ξ± ⊒ insertionSort r (b :: l) ~ b :: l [PROOFSTEP] simpa [insertionSort] using (perm_orderedInsert _ _ _).trans ((perm_insertionSort l).cons b) [GOAL] Ξ± : Type uu r : Ξ± β†’ Ξ± β†’ Prop inst✝ : DecidableRel r a b : Ξ± l : List Ξ± h : Sorted r (a :: b :: l) ⊒ insertionSort r (a :: b :: l) = a :: b :: l [PROOFSTEP] rw [insertionSort, Sorted.insertionSort_eq, orderedInsert, if_pos] [GOAL] case hc Ξ± : Type uu r : Ξ± β†’ Ξ± β†’ Prop inst✝ : DecidableRel r a b : Ξ± l : List Ξ± h : Sorted r (a :: b :: l) ⊒ r a b Ξ± : Type uu r : Ξ± β†’ Ξ± β†’ Prop inst✝ : DecidableRel r a b : Ξ± l : List Ξ± h : Sorted r (a :: b :: l) ⊒ Sorted r (b :: l) [PROOFSTEP] exacts [rel_of_sorted_cons h _ (mem_cons_self _ _), h.tail] [GOAL] Ξ± : Type uu r : Ξ± β†’ Ξ± β†’ Prop inst✝² : DecidableRel r inst✝¹ : IsTotal Ξ± r inst✝ : IsTrans Ξ± r a b : Ξ± l : List Ξ± h : Sorted r (b :: l) ⊒ Sorted r (List.orderedInsert r a (b :: l)) [PROOFSTEP] by_cases h' : a β‰Ό b [GOAL] case pos Ξ± : Type uu r : Ξ± β†’ Ξ± β†’ Prop inst✝² : DecidableRel r inst✝¹ : IsTotal Ξ± r inst✝ : IsTrans Ξ± r a b : Ξ± l : List Ξ± h : Sorted r (b :: l) h' : r a b ⊒ Sorted r (List.orderedInsert r a (b :: l)) [PROOFSTEP] rw [List.orderedInsert, if_pos h', sorted_cons] [GOAL] case pos Ξ± : Type uu r : Ξ± β†’ Ξ± β†’ Prop inst✝² : DecidableRel r inst✝¹ : IsTotal Ξ± r inst✝ : IsTrans Ξ± r a b : Ξ± l : List Ξ± h : Sorted r (b :: l) h' : r a b ⊒ (βˆ€ (b_1 : Ξ±), b_1 ∈ b :: l β†’ r a b_1) ∧ Sorted r (b :: l) [PROOFSTEP] exact ⟨forall_mem_cons.2 ⟨h', fun c hc => _root_.trans h' (rel_of_sorted_cons h _ hc)⟩, h⟩ [GOAL] case neg Ξ± : Type uu r : Ξ± β†’ Ξ± β†’ Prop inst✝² : DecidableRel r inst✝¹ : IsTotal Ξ± r inst✝ : IsTrans Ξ± r a b : Ξ± l : List Ξ± h : Sorted r (b :: l) h' : Β¬r a b ⊒ Sorted r (List.orderedInsert r a (b :: l)) [PROOFSTEP] suffices βˆ€ b' : Ξ±, b' ∈ List.orderedInsert r a l β†’ r b b' by simpa [orderedInsert, h', h.of_cons.orderedInsert a l] [GOAL] Ξ± : Type uu r : Ξ± β†’ Ξ± β†’ Prop inst✝² : DecidableRel r inst✝¹ : IsTotal Ξ± r inst✝ : IsTrans Ξ± r a b : Ξ± l : List Ξ± h : Sorted r (b :: l) h' : Β¬r a b this : βˆ€ (b' : Ξ±), b' ∈ List.orderedInsert r a l β†’ r b b' ⊒ Sorted r (List.orderedInsert r a (b :: l)) [PROOFSTEP] simpa [orderedInsert, h', h.of_cons.orderedInsert a l] [GOAL] case neg Ξ± : Type uu r : Ξ± β†’ Ξ± β†’ Prop inst✝² : DecidableRel r inst✝¹ : IsTotal Ξ± r inst✝ : IsTrans Ξ± r a b : Ξ± l : List Ξ± h : Sorted r (b :: l) h' : Β¬r a b ⊒ βˆ€ (b' : Ξ±), b' ∈ List.orderedInsert r a l β†’ r b b' [PROOFSTEP] intro b' bm [GOAL] case neg Ξ± : Type uu r : Ξ± β†’ Ξ± β†’ Prop inst✝² : DecidableRel r inst✝¹ : IsTotal Ξ± r inst✝ : IsTrans Ξ± r a b : Ξ± l : List Ξ± h : Sorted r (b :: l) h' : Β¬r a b b' : Ξ± bm : b' ∈ List.orderedInsert r a l ⊒ r b b' [PROOFSTEP] cases' show b' = a ∨ b' ∈ l by simpa using (perm_orderedInsert _ _ _).subset bm with be bm [GOAL] Ξ± : Type uu r : Ξ± β†’ Ξ± β†’ Prop inst✝² : DecidableRel r inst✝¹ : IsTotal Ξ± r inst✝ : IsTrans Ξ± r a b : Ξ± l : List Ξ± h : Sorted r (b :: l) h' : Β¬r a b b' : Ξ± bm : b' ∈ List.orderedInsert r a l ⊒ b' = a ∨ b' ∈ l [PROOFSTEP] simpa using (perm_orderedInsert _ _ _).subset bm [GOAL] case neg.inl Ξ± : Type uu r : Ξ± β†’ Ξ± β†’ Prop inst✝² : DecidableRel r inst✝¹ : IsTotal Ξ± r inst✝ : IsTrans Ξ± r a b : Ξ± l : List Ξ± h : Sorted r (b :: l) h' : Β¬r a b b' : Ξ± bm : b' ∈ List.orderedInsert r a l be : b' = a ⊒ r b b' [PROOFSTEP] subst b' [GOAL] case neg.inl Ξ± : Type uu r : Ξ± β†’ Ξ± β†’ Prop inst✝² : DecidableRel r inst✝¹ : IsTotal Ξ± r inst✝ : IsTrans Ξ± r a b : Ξ± l : List Ξ± h : Sorted r (b :: l) h' : Β¬r a b bm : a ∈ List.orderedInsert r a l ⊒ r b a [PROOFSTEP] exact (total_of r _ _).resolve_left h' [GOAL] case neg.inr Ξ± : Type uu r : Ξ± β†’ Ξ± β†’ Prop inst✝² : DecidableRel r inst✝¹ : IsTotal Ξ± r inst✝ : IsTrans Ξ± r a b : Ξ± l : List Ξ± h : Sorted r (b :: l) h' : Β¬r a b b' : Ξ± bm✝ : b' ∈ List.orderedInsert r a l bm : b' ∈ l ⊒ r b b' [PROOFSTEP] exact rel_of_sorted_cons h _ bm [GOAL] Ξ± : Type uu r : Ξ± β†’ Ξ± β†’ Prop inst✝ : DecidableRel r a : Ξ± l l₁ lβ‚‚ : List Ξ± h : split l = (l₁, lβ‚‚) ⊒ split (a :: l) = (a :: lβ‚‚, l₁) [PROOFSTEP] rw [split, h] [GOAL] Ξ± : Type uu r : Ξ± β†’ Ξ± β†’ Prop inst✝ : DecidableRel r a : Ξ± l l₁' lβ‚‚' : List Ξ± h : split (a :: l) = (l₁', lβ‚‚') ⊒ length l₁' ≀ length (a :: l) ∧ length lβ‚‚' ≀ length (a :: l) [PROOFSTEP] cases' e : split l with l₁ lβ‚‚ [GOAL] case mk Ξ± : Type uu r : Ξ± β†’ Ξ± β†’ Prop inst✝ : DecidableRel r a : Ξ± l l₁' lβ‚‚' : List Ξ± h : split (a :: l) = (l₁', lβ‚‚') l₁ lβ‚‚ : List Ξ± e : split l = (l₁, lβ‚‚) ⊒ length l₁' ≀ length (a :: l) ∧ length lβ‚‚' ≀ length (a :: l) [PROOFSTEP] injection (split_cons_of_eq _ e).symm.trans h [GOAL] case mk Ξ± : Type uu r : Ξ± β†’ Ξ± β†’ Prop inst✝ : DecidableRel r a : Ξ± l l₁' lβ‚‚' : List Ξ± h : split (a :: l) = (l₁', lβ‚‚') l₁ lβ‚‚ : List Ξ± e : split l = (l₁, lβ‚‚) fst_eq✝ : a :: lβ‚‚ = l₁' snd_eq✝ : l₁ = lβ‚‚' ⊒ length l₁' ≀ length (a :: l) ∧ length lβ‚‚' ≀ length (a :: l) [PROOFSTEP] substs l₁' lβ‚‚' [GOAL] case mk Ξ± : Type uu r : Ξ± β†’ Ξ± β†’ Prop inst✝ : DecidableRel r a : Ξ± l l₁ lβ‚‚ : List Ξ± e : split l = (l₁, lβ‚‚) h : split (a :: l) = (a :: lβ‚‚, l₁) ⊒ length (a :: lβ‚‚) ≀ length (a :: l) ∧ length l₁ ≀ length (a :: l) [PROOFSTEP] cases' length_split_le e with h₁ hβ‚‚ [GOAL] case mk.intro Ξ± : Type uu r : Ξ± β†’ Ξ± β†’ Prop inst✝ : DecidableRel r a : Ξ± l l₁ lβ‚‚ : List Ξ± e : split l = (l₁, lβ‚‚) h : split (a :: l) = (a :: lβ‚‚, l₁) h₁ : length l₁ ≀ length l hβ‚‚ : length lβ‚‚ ≀ length l ⊒ length (a :: lβ‚‚) ≀ length (a :: l) ∧ length l₁ ≀ length (a :: l) [PROOFSTEP] exact ⟨Nat.succ_le_succ hβ‚‚, Nat.le_succ_of_le hβ‚βŸ© [GOAL] Ξ± : Type uu r : Ξ± β†’ Ξ± β†’ Prop inst✝ : DecidableRel r a b : Ξ± l l₁ lβ‚‚ : List Ξ± h : split (a :: b :: l) = (l₁, lβ‚‚) ⊒ length l₁ < length (a :: b :: l) ∧ length lβ‚‚ < length (a :: b :: l) [PROOFSTEP] cases' e : split l with l₁' lβ‚‚' [GOAL] case mk Ξ± : Type uu r : Ξ± β†’ Ξ± β†’ Prop inst✝ : DecidableRel r a b : Ξ± l l₁ lβ‚‚ : List Ξ± h : split (a :: b :: l) = (l₁, lβ‚‚) l₁' lβ‚‚' : List Ξ± e : split l = (l₁', lβ‚‚') ⊒ length l₁ < length (a :: b :: l) ∧ length lβ‚‚ < length (a :: b :: l) [PROOFSTEP] injection (split_cons_of_eq _ (split_cons_of_eq _ e)).symm.trans h [GOAL] case mk Ξ± : Type uu r : Ξ± β†’ Ξ± β†’ Prop inst✝ : DecidableRel r a b : Ξ± l l₁ lβ‚‚ : List Ξ± h : split (a :: b :: l) = (l₁, lβ‚‚) l₁' lβ‚‚' : List Ξ± e : split l = (l₁', lβ‚‚') fst_eq✝ : a :: l₁' = l₁ snd_eq✝ : b :: lβ‚‚' = lβ‚‚ ⊒ length l₁ < length (a :: b :: l) ∧ length lβ‚‚ < length (a :: b :: l) [PROOFSTEP] substs l₁ lβ‚‚ [GOAL] case mk Ξ± : Type uu r : Ξ± β†’ Ξ± β†’ Prop inst✝ : DecidableRel r a b : Ξ± l l₁' lβ‚‚' : List Ξ± e : split l = (l₁', lβ‚‚') h : split (a :: b :: l) = (a :: l₁', b :: lβ‚‚') ⊒ length (a :: l₁') < length (a :: b :: l) ∧ length (b :: lβ‚‚') < length (a :: b :: l) [PROOFSTEP] cases' length_split_le e with h₁ hβ‚‚ [GOAL] case mk.intro Ξ± : Type uu r : Ξ± β†’ Ξ± β†’ Prop inst✝ : DecidableRel r a b : Ξ± l l₁' lβ‚‚' : List Ξ± e : split l = (l₁', lβ‚‚') h : split (a :: b :: l) = (a :: l₁', b :: lβ‚‚') h₁ : length l₁' ≀ length l hβ‚‚ : length lβ‚‚' ≀ length l ⊒ length (a :: l₁') < length (a :: b :: l) ∧ length (b :: lβ‚‚') < length (a :: b :: l) [PROOFSTEP] exact ⟨Nat.succ_le_succ (Nat.succ_le_succ h₁), Nat.succ_le_succ (Nat.succ_le_succ hβ‚‚)⟩ [GOAL] Ξ± : Type uu r : Ξ± β†’ Ξ± β†’ Prop inst✝ : DecidableRel r a : Ξ± l l₁' lβ‚‚' : List Ξ± h : split (a :: l) = (l₁', lβ‚‚') ⊒ a :: l ~ l₁' ++ lβ‚‚' [PROOFSTEP] cases' e : split l with l₁ lβ‚‚ [GOAL] case mk Ξ± : Type uu r : Ξ± β†’ Ξ± β†’ Prop inst✝ : DecidableRel r a : Ξ± l l₁' lβ‚‚' : List Ξ± h : split (a :: l) = (l₁', lβ‚‚') l₁ lβ‚‚ : List Ξ± e : split l = (l₁, lβ‚‚) ⊒ a :: l ~ l₁' ++ lβ‚‚' [PROOFSTEP] injection (split_cons_of_eq _ e).symm.trans h [GOAL] case mk Ξ± : Type uu r : Ξ± β†’ Ξ± β†’ Prop inst✝ : DecidableRel r a : Ξ± l l₁' lβ‚‚' : List Ξ± h : split (a :: l) = (l₁', lβ‚‚') l₁ lβ‚‚ : List Ξ± e : split l = (l₁, lβ‚‚) fst_eq✝ : a :: lβ‚‚ = l₁' snd_eq✝ : l₁ = lβ‚‚' ⊒ a :: l ~ l₁' ++ lβ‚‚' [PROOFSTEP] substs l₁' lβ‚‚' [GOAL] case mk Ξ± : Type uu r : Ξ± β†’ Ξ± β†’ Prop inst✝ : DecidableRel r a : Ξ± l l₁ lβ‚‚ : List Ξ± e : split l = (l₁, lβ‚‚) h : split (a :: l) = (a :: lβ‚‚, l₁) ⊒ a :: l ~ a :: lβ‚‚ ++ l₁ [PROOFSTEP] exact ((perm_split e).trans perm_append_comm).cons a [GOAL] Ξ± : Type uu r : Ξ± β†’ Ξ± β†’ Prop inst✝ : DecidableRel r a b : Ξ± l : List Ξ± ⊒ List Ξ± [PROOFSTEP] let ls := (split (a :: b :: l)) [GOAL] Ξ± : Type uu r : Ξ± β†’ Ξ± β†’ Prop inst✝ : DecidableRel r a b : Ξ± l : List Ξ± ls : List Ξ± Γ— List Ξ± := split (a :: b :: l) ⊒ List Ξ± [PROOFSTEP] have e : split (a :: b :: l) = ⟨ls.1, ls.2⟩ := rfl [GOAL] Ξ± : Type uu r : Ξ± β†’ Ξ± β†’ Prop inst✝ : DecidableRel r a b : Ξ± l : List Ξ± ls : List Ξ± Γ— List Ξ± := split (a :: b :: l) e : split (a :: b :: l) = (ls.fst, ls.snd) ⊒ List Ξ± [PROOFSTEP] have h := length_split_lt e [GOAL] Ξ± : Type uu r : Ξ± β†’ Ξ± β†’ Prop inst✝ : DecidableRel r a b : Ξ± l : List Ξ± ls : List Ξ± Γ— List Ξ± := split (a :: b :: l) e : split (a :: b :: l) = (ls.fst, ls.snd) h : length ls.fst < length (a :: b :: l) ∧ length ls.snd < length (a :: b :: l) ⊒ List Ξ± [PROOFSTEP] have := h.1 [GOAL] Ξ± : Type uu r : Ξ± β†’ Ξ± β†’ Prop inst✝ : DecidableRel r a b : Ξ± l : List Ξ± ls : List Ξ± Γ— List Ξ± := split (a :: b :: l) e : split (a :: b :: l) = (ls.fst, ls.snd) h : length ls.fst < length (a :: b :: l) ∧ length ls.snd < length (a :: b :: l) this : length ls.fst < length (a :: b :: l) ⊒ List Ξ± [PROOFSTEP] have := h.2 [GOAL] Ξ± : Type uu r : Ξ± β†’ Ξ± β†’ Prop inst✝ : DecidableRel r a b : Ξ± l : List Ξ± ls : List Ξ± Γ— List Ξ± := split (a :: b :: l) e : split (a :: b :: l) = (ls.fst, ls.snd) h : length ls.fst < length (a :: b :: l) ∧ length ls.snd < length (a :: b :: l) this✝ : length ls.fst < length (a :: b :: l) this : length ls.snd < length (a :: b :: l) ⊒ List Ξ± [PROOFSTEP] exact merge r (mergeSort ls.1) (mergeSort ls.2) [GOAL] Ξ± : Type uu r : Ξ± β†’ Ξ± β†’ Prop inst✝ : DecidableRel r a b : Ξ± l l₁ lβ‚‚ : List Ξ± h : split (a :: b :: l) = (l₁, lβ‚‚) ⊒ mergeSort r (a :: b :: l) = merge r (mergeSort r l₁) (mergeSort r lβ‚‚) [PROOFSTEP] simp only [mergeSort, h] [GOAL] Ξ± : Type uu r : Ξ± β†’ Ξ± β†’ Prop inst✝ : DecidableRel r ⊒ merge r [] [] ~ [] ++ [] [PROOFSTEP] simp [merge] [GOAL] Ξ± : Type uu r : Ξ± β†’ Ξ± β†’ Prop inst✝ : DecidableRel r b : Ξ± l' : List Ξ± ⊒ merge r [] (b :: l') ~ [] ++ b :: l' [PROOFSTEP] simp [merge] [GOAL] Ξ± : Type uu r : Ξ± β†’ Ξ± β†’ Prop inst✝ : DecidableRel r a : Ξ± l : List Ξ± ⊒ merge r (a :: l) [] ~ a :: l ++ [] [PROOFSTEP] simp [merge] [GOAL] Ξ± : Type uu r : Ξ± β†’ Ξ± β†’ Prop inst✝ : DecidableRel r a : Ξ± l : List Ξ± b : Ξ± l' : List Ξ± ⊒ merge r (a :: l) (b :: l') ~ a :: l ++ b :: l' [PROOFSTEP] by_cases h : a β‰Ό b [GOAL] case pos Ξ± : Type uu r : Ξ± β†’ Ξ± β†’ Prop inst✝ : DecidableRel r a : Ξ± l : List Ξ± b : Ξ± l' : List Ξ± h : r a b ⊒ merge r (a :: l) (b :: l') ~ a :: l ++ b :: l' [PROOFSTEP] simpa [merge, h] using perm_merge _ _ [GOAL] case neg Ξ± : Type uu r : Ξ± β†’ Ξ± β†’ Prop inst✝ : DecidableRel r a : Ξ± l : List Ξ± b : Ξ± l' : List Ξ± h : Β¬r a b ⊒ merge r (a :: l) (b :: l') ~ a :: l ++ b :: l' [PROOFSTEP] suffices b :: merge r (a :: l) l' ~ a :: (l ++ b :: l') by simpa [merge, h] [GOAL] Ξ± : Type uu r : Ξ± β†’ Ξ± β†’ Prop inst✝ : DecidableRel r a : Ξ± l : List Ξ± b : Ξ± l' : List Ξ± h : Β¬r a b this : b :: merge r (a :: l) l' ~ a :: (l ++ b :: l') ⊒ merge r (a :: l) (b :: l') ~ a :: l ++ b :: l' [PROOFSTEP] simpa [merge, h] [GOAL] case neg Ξ± : Type uu r : Ξ± β†’ Ξ± β†’ Prop inst✝ : DecidableRel r a : Ξ± l : List Ξ± b : Ξ± l' : List Ξ± h : Β¬r a b ⊒ b :: merge r (a :: l) l' ~ a :: (l ++ b :: l') [PROOFSTEP] exact ((perm_merge _ _).cons _).trans ((swap _ _ _).trans (perm_middle.symm.cons _)) [GOAL] Ξ± : Type uu r : Ξ± β†’ Ξ± β†’ Prop inst✝ : DecidableRel r ⊒ mergeSort r [] ~ [] [PROOFSTEP] simp [mergeSort] [GOAL] Ξ± : Type uu r : Ξ± β†’ Ξ± β†’ Prop inst✝ : DecidableRel r a : Ξ± ⊒ mergeSort r [a] ~ [a] [PROOFSTEP] simp [mergeSort] [GOAL] Ξ± : Type uu r : Ξ± β†’ Ξ± β†’ Prop inst✝ : DecidableRel r a b : Ξ± l : List Ξ± ⊒ mergeSort r (a :: b :: l) ~ a :: b :: l [PROOFSTEP] cases' e : split (a :: b :: l) with l₁ lβ‚‚ [GOAL] case mk Ξ± : Type uu r : Ξ± β†’ Ξ± β†’ Prop inst✝ : DecidableRel r a b : Ξ± l l₁ lβ‚‚ : List Ξ± e : split (a :: b :: l) = (l₁, lβ‚‚) ⊒ mergeSort r (a :: b :: l) ~ a :: b :: l [PROOFSTEP] cases' length_split_lt e with h₁ hβ‚‚ [GOAL] case mk.intro Ξ± : Type uu r : Ξ± β†’ Ξ± β†’ Prop inst✝ : DecidableRel r a b : Ξ± l l₁ lβ‚‚ : List Ξ± e : split (a :: b :: l) = (l₁, lβ‚‚) h₁ : length l₁ < length (a :: b :: l) hβ‚‚ : length lβ‚‚ < length (a :: b :: l) ⊒ mergeSort r (a :: b :: l) ~ a :: b :: l [PROOFSTEP] rw [mergeSort_cons_cons r e] [GOAL] case mk.intro Ξ± : Type uu r : Ξ± β†’ Ξ± β†’ Prop inst✝ : DecidableRel r a b : Ξ± l l₁ lβ‚‚ : List Ξ± e : split (a :: b :: l) = (l₁, lβ‚‚) h₁ : length l₁ < length (a :: b :: l) hβ‚‚ : length lβ‚‚ < length (a :: b :: l) ⊒ merge r (mergeSort r l₁) (mergeSort r lβ‚‚) ~ a :: b :: l [PROOFSTEP] apply (perm_merge r _ _).trans [GOAL] case mk.intro Ξ± : Type uu r : Ξ± β†’ Ξ± β†’ Prop inst✝ : DecidableRel r a b : Ξ± l l₁ lβ‚‚ : List Ξ± e : split (a :: b :: l) = (l₁, lβ‚‚) h₁ : length l₁ < length (a :: b :: l) hβ‚‚ : length lβ‚‚ < length (a :: b :: l) ⊒ mergeSort r l₁ ++ mergeSort r lβ‚‚ ~ a :: b :: l [PROOFSTEP] exact ((perm_mergeSort l₁).append (perm_mergeSort lβ‚‚)).trans (perm_split e).symm [GOAL] Ξ± : Type uu r : Ξ± β†’ Ξ± β†’ Prop inst✝² : DecidableRel r inst✝¹ : IsTotal Ξ± r inst✝ : IsTrans Ξ± r x✝¹ x✝ : Sorted r [] ⊒ Sorted r (List.merge r [] []) [PROOFSTEP] simp [List.merge] [GOAL] Ξ± : Type uu r : Ξ± β†’ Ξ± β†’ Prop inst✝² : DecidableRel r inst✝¹ : IsTotal Ξ± r inst✝ : IsTrans Ξ± r b : Ξ± l' : List Ξ± x✝ : Sorted r [] hβ‚‚ : Sorted r (b :: l') ⊒ Sorted r (List.merge r [] (b :: l')) [PROOFSTEP] simpa [List.merge] using hβ‚‚ [GOAL] Ξ± : Type uu r : Ξ± β†’ Ξ± β†’ Prop inst✝² : DecidableRel r inst✝¹ : IsTotal Ξ± r inst✝ : IsTrans Ξ± r a : Ξ± l : List Ξ± h₁ : Sorted r (a :: l) x✝ : Sorted r [] ⊒ Sorted r (List.merge r (a :: l) []) [PROOFSTEP] simpa [List.merge] using h₁ [GOAL] Ξ± : Type uu r : Ξ± β†’ Ξ± β†’ Prop inst✝² : DecidableRel r inst✝¹ : IsTotal Ξ± r inst✝ : IsTrans Ξ± r a : Ξ± l : List Ξ± b : Ξ± l' : List Ξ± h₁ : Sorted r (a :: l) hβ‚‚ : Sorted r (b :: l') ⊒ Sorted r (List.merge r (a :: l) (b :: l')) [PROOFSTEP] by_cases h : a β‰Ό b [GOAL] case pos Ξ± : Type uu r : Ξ± β†’ Ξ± β†’ Prop inst✝² : DecidableRel r inst✝¹ : IsTotal Ξ± r inst✝ : IsTrans Ξ± r a : Ξ± l : List Ξ± b : Ξ± l' : List Ξ± h₁ : Sorted r (a :: l) hβ‚‚ : Sorted r (b :: l') h : r a b ⊒ Sorted r (List.merge r (a :: l) (b :: l')) [PROOFSTEP] suffices βˆ€ (b' : Ξ±) (_ : b' ∈ List.merge r l (b :: l')), r a b' by simpa [List.merge, h, h₁.of_cons.merge hβ‚‚] [GOAL] Ξ± : Type uu r : Ξ± β†’ Ξ± β†’ Prop inst✝² : DecidableRel r inst✝¹ : IsTotal Ξ± r inst✝ : IsTrans Ξ± r a : Ξ± l : List Ξ± b : Ξ± l' : List Ξ± h₁ : Sorted r (a :: l) hβ‚‚ : Sorted r (b :: l') h : r a b this : βˆ€ (b' : Ξ±), b' ∈ List.merge r l (b :: l') β†’ r a b' ⊒ Sorted r (List.merge r (a :: l) (b :: l')) [PROOFSTEP] simpa [List.merge, h, h₁.of_cons.merge hβ‚‚] [GOAL] case pos Ξ± : Type uu r : Ξ± β†’ Ξ± β†’ Prop inst✝² : DecidableRel r inst✝¹ : IsTotal Ξ± r inst✝ : IsTrans Ξ± r a : Ξ± l : List Ξ± b : Ξ± l' : List Ξ± h₁ : Sorted r (a :: l) hβ‚‚ : Sorted r (b :: l') h : r a b ⊒ βˆ€ (b' : Ξ±), b' ∈ List.merge r l (b :: l') β†’ r a b' [PROOFSTEP] intro b' bm [GOAL] case pos Ξ± : Type uu r : Ξ± β†’ Ξ± β†’ Prop inst✝² : DecidableRel r inst✝¹ : IsTotal Ξ± r inst✝ : IsTrans Ξ± r a : Ξ± l : List Ξ± b : Ξ± l' : List Ξ± h₁ : Sorted r (a :: l) hβ‚‚ : Sorted r (b :: l') h : r a b b' : Ξ± bm : b' ∈ List.merge r l (b :: l') ⊒ r a b' [PROOFSTEP] rcases show b' = b ∨ b' ∈ l ∨ b' ∈ l' by simpa [or_left_comm] using (perm_merge _ _ _).subset bm with (be | bl | bl') [GOAL] Ξ± : Type uu r : Ξ± β†’ Ξ± β†’ Prop inst✝² : DecidableRel r inst✝¹ : IsTotal Ξ± r inst✝ : IsTrans Ξ± r a : Ξ± l : List Ξ± b : Ξ± l' : List Ξ± h₁ : Sorted r (a :: l) hβ‚‚ : Sorted r (b :: l') h : r a b b' : Ξ± bm : b' ∈ List.merge r l (b :: l') ⊒ b' = b ∨ b' ∈ l ∨ b' ∈ l' [PROOFSTEP] simpa [or_left_comm] using (perm_merge _ _ _).subset bm [GOAL] case pos.inl Ξ± : Type uu r : Ξ± β†’ Ξ± β†’ Prop inst✝² : DecidableRel r inst✝¹ : IsTotal Ξ± r inst✝ : IsTrans Ξ± r a : Ξ± l : List Ξ± b : Ξ± l' : List Ξ± h₁ : Sorted r (a :: l) hβ‚‚ : Sorted r (b :: l') h : r a b b' : Ξ± bm : b' ∈ List.merge r l (b :: l') be : b' = b ⊒ r a b' [PROOFSTEP] subst b' [GOAL] case pos.inl Ξ± : Type uu r : Ξ± β†’ Ξ± β†’ Prop inst✝² : DecidableRel r inst✝¹ : IsTotal Ξ± r inst✝ : IsTrans Ξ± r a : Ξ± l : List Ξ± b : Ξ± l' : List Ξ± h₁ : Sorted r (a :: l) hβ‚‚ : Sorted r (b :: l') h : r a b bm : b ∈ List.merge r l (b :: l') ⊒ r a b [PROOFSTEP] assumption [GOAL] case pos.inr.inl Ξ± : Type uu r : Ξ± β†’ Ξ± β†’ Prop inst✝² : DecidableRel r inst✝¹ : IsTotal Ξ± r inst✝ : IsTrans Ξ± r a : Ξ± l : List Ξ± b : Ξ± l' : List Ξ± h₁ : Sorted r (a :: l) hβ‚‚ : Sorted r (b :: l') h : r a b b' : Ξ± bm : b' ∈ List.merge r l (b :: l') bl : b' ∈ l ⊒ r a b' [PROOFSTEP] exact rel_of_sorted_cons h₁ _ bl [GOAL] case pos.inr.inr Ξ± : Type uu r : Ξ± β†’ Ξ± β†’ Prop inst✝² : DecidableRel r inst✝¹ : IsTotal Ξ± r inst✝ : IsTrans Ξ± r a : Ξ± l : List Ξ± b : Ξ± l' : List Ξ± h₁ : Sorted r (a :: l) hβ‚‚ : Sorted r (b :: l') h : r a b b' : Ξ± bm : b' ∈ List.merge r l (b :: l') bl' : b' ∈ l' ⊒ r a b' [PROOFSTEP] exact _root_.trans h (rel_of_sorted_cons hβ‚‚ _ bl') [GOAL] case neg Ξ± : Type uu r : Ξ± β†’ Ξ± β†’ Prop inst✝² : DecidableRel r inst✝¹ : IsTotal Ξ± r inst✝ : IsTrans Ξ± r a : Ξ± l : List Ξ± b : Ξ± l' : List Ξ± h₁ : Sorted r (a :: l) hβ‚‚ : Sorted r (b :: l') h : Β¬r a b ⊒ Sorted r (List.merge r (a :: l) (b :: l')) [PROOFSTEP] suffices βˆ€ (b' : Ξ±) (_ : b' ∈ List.merge r (a :: l) l'), r b b' by simpa [List.merge, h, h₁.merge hβ‚‚.of_cons] [GOAL] Ξ± : Type uu r : Ξ± β†’ Ξ± β†’ Prop inst✝² : DecidableRel r inst✝¹ : IsTotal Ξ± r inst✝ : IsTrans Ξ± r a : Ξ± l : List Ξ± b : Ξ± l' : List Ξ± h₁ : Sorted r (a :: l) hβ‚‚ : Sorted r (b :: l') h : Β¬r a b this : βˆ€ (b' : Ξ±), b' ∈ List.merge r (a :: l) l' β†’ r b b' ⊒ Sorted r (List.merge r (a :: l) (b :: l')) [PROOFSTEP] simpa [List.merge, h, h₁.merge hβ‚‚.of_cons] [GOAL] case neg Ξ± : Type uu r : Ξ± β†’ Ξ± β†’ Prop inst✝² : DecidableRel r inst✝¹ : IsTotal Ξ± r inst✝ : IsTrans Ξ± r a : Ξ± l : List Ξ± b : Ξ± l' : List Ξ± h₁ : Sorted r (a :: l) hβ‚‚ : Sorted r (b :: l') h : Β¬r a b ⊒ βˆ€ (b' : Ξ±), b' ∈ List.merge r (a :: l) l' β†’ r b b' [PROOFSTEP] intro b' bm [GOAL] case neg Ξ± : Type uu r : Ξ± β†’ Ξ± β†’ Prop inst✝² : DecidableRel r inst✝¹ : IsTotal Ξ± r inst✝ : IsTrans Ξ± r a : Ξ± l : List Ξ± b : Ξ± l' : List Ξ± h₁ : Sorted r (a :: l) hβ‚‚ : Sorted r (b :: l') h : Β¬r a b b' : Ξ± bm : b' ∈ List.merge r (a :: l) l' ⊒ r b b' [PROOFSTEP] have ba : b β‰Ό a := (total_of r _ _).resolve_left h [GOAL] case neg Ξ± : Type uu r : Ξ± β†’ Ξ± β†’ Prop inst✝² : DecidableRel r inst✝¹ : IsTotal Ξ± r inst✝ : IsTrans Ξ± r a : Ξ± l : List Ξ± b : Ξ± l' : List Ξ± h₁ : Sorted r (a :: l) hβ‚‚ : Sorted r (b :: l') h : Β¬r a b b' : Ξ± bm : b' ∈ List.merge r (a :: l) l' ba : r b a ⊒ r b b' [PROOFSTEP] have : b' = a ∨ b' ∈ l ∨ b' ∈ l' := by simpa using (perm_merge _ _ _).subset bm [GOAL] Ξ± : Type uu r : Ξ± β†’ Ξ± β†’ Prop inst✝² : DecidableRel r inst✝¹ : IsTotal Ξ± r inst✝ : IsTrans Ξ± r a : Ξ± l : List Ξ± b : Ξ± l' : List Ξ± h₁ : Sorted r (a :: l) hβ‚‚ : Sorted r (b :: l') h : Β¬r a b b' : Ξ± bm : b' ∈ List.merge r (a :: l) l' ba : r b a ⊒ b' = a ∨ b' ∈ l ∨ b' ∈ l' [PROOFSTEP] simpa using (perm_merge _ _ _).subset bm [GOAL] case neg Ξ± : Type uu r : Ξ± β†’ Ξ± β†’ Prop inst✝² : DecidableRel r inst✝¹ : IsTotal Ξ± r inst✝ : IsTrans Ξ± r a : Ξ± l : List Ξ± b : Ξ± l' : List Ξ± h₁ : Sorted r (a :: l) hβ‚‚ : Sorted r (b :: l') h : Β¬r a b b' : Ξ± bm : b' ∈ List.merge r (a :: l) l' ba : r b a this : b' = a ∨ b' ∈ l ∨ b' ∈ l' ⊒ r b b' [PROOFSTEP] rcases this with (be | bl | bl') [GOAL] case neg.inl Ξ± : Type uu r : Ξ± β†’ Ξ± β†’ Prop inst✝² : DecidableRel r inst✝¹ : IsTotal Ξ± r inst✝ : IsTrans Ξ± r a : Ξ± l : List Ξ± b : Ξ± l' : List Ξ± h₁ : Sorted r (a :: l) hβ‚‚ : Sorted r (b :: l') h : Β¬r a b b' : Ξ± bm : b' ∈ List.merge r (a :: l) l' ba : r b a be : b' = a ⊒ r b b' [PROOFSTEP] subst b' [GOAL] case neg.inl Ξ± : Type uu r : Ξ± β†’ Ξ± β†’ Prop inst✝² : DecidableRel r inst✝¹ : IsTotal Ξ± r inst✝ : IsTrans Ξ± r a : Ξ± l : List Ξ± b : Ξ± l' : List Ξ± h₁ : Sorted r (a :: l) hβ‚‚ : Sorted r (b :: l') h : Β¬r a b ba : r b a bm : a ∈ List.merge r (a :: l) l' ⊒ r b a [PROOFSTEP] assumption [GOAL] case neg.inr.inl Ξ± : Type uu r : Ξ± β†’ Ξ± β†’ Prop inst✝² : DecidableRel r inst✝¹ : IsTotal Ξ± r inst✝ : IsTrans Ξ± r a : Ξ± l : List Ξ± b : Ξ± l' : List Ξ± h₁ : Sorted r (a :: l) hβ‚‚ : Sorted r (b :: l') h : Β¬r a b b' : Ξ± bm : b' ∈ List.merge r (a :: l) l' ba : r b a bl : b' ∈ l ⊒ r b b' [PROOFSTEP] exact _root_.trans ba (rel_of_sorted_cons h₁ _ bl) [GOAL] case neg.inr.inr Ξ± : Type uu r : Ξ± β†’ Ξ± β†’ Prop inst✝² : DecidableRel r inst✝¹ : IsTotal Ξ± r inst✝ : IsTrans Ξ± r a : Ξ± l : List Ξ± b : Ξ± l' : List Ξ± h₁ : Sorted r (a :: l) hβ‚‚ : Sorted r (b :: l') h : Β¬r a b b' : Ξ± bm : b' ∈ List.merge r (a :: l) l' ba : r b a bl' : b' ∈ l' ⊒ r b b' [PROOFSTEP] exact rel_of_sorted_cons hβ‚‚ _ bl' [GOAL] Ξ± : Type uu r : Ξ± β†’ Ξ± β†’ Prop inst✝² : DecidableRel r inst✝¹ : IsTotal Ξ± r inst✝ : IsTrans Ξ± r ⊒ Sorted r (mergeSort r []) [PROOFSTEP] simp [mergeSort] [GOAL] Ξ± : Type uu r : Ξ± β†’ Ξ± β†’ Prop inst✝² : DecidableRel r inst✝¹ : IsTotal Ξ± r inst✝ : IsTrans Ξ± r a : Ξ± ⊒ Sorted r (mergeSort r [a]) [PROOFSTEP] simp [mergeSort] [GOAL] Ξ± : Type uu r : Ξ± β†’ Ξ± β†’ Prop inst✝² : DecidableRel r inst✝¹ : IsTotal Ξ± r inst✝ : IsTrans Ξ± r a b : Ξ± l : List Ξ± ⊒ Sorted r (mergeSort r (a :: b :: l)) [PROOFSTEP] cases' e : split (a :: b :: l) with l₁ lβ‚‚ [GOAL] case mk Ξ± : Type uu r : Ξ± β†’ Ξ± β†’ Prop inst✝² : DecidableRel r inst✝¹ : IsTotal Ξ± r inst✝ : IsTrans Ξ± r a b : Ξ± l l₁ lβ‚‚ : List Ξ± e : split (a :: b :: l) = (l₁, lβ‚‚) ⊒ Sorted r (mergeSort r (a :: b :: l)) [PROOFSTEP] cases' length_split_lt e with h₁ hβ‚‚ [GOAL] case mk.intro Ξ± : Type uu r : Ξ± β†’ Ξ± β†’ Prop inst✝² : DecidableRel r inst✝¹ : IsTotal Ξ± r inst✝ : IsTrans Ξ± r a b : Ξ± l l₁ lβ‚‚ : List Ξ± e : split (a :: b :: l) = (l₁, lβ‚‚) h₁ : length l₁ < length (a :: b :: l) hβ‚‚ : length lβ‚‚ < length (a :: b :: l) ⊒ Sorted r (mergeSort r (a :: b :: l)) [PROOFSTEP] rw [mergeSort_cons_cons r e] [GOAL] case mk.intro Ξ± : Type uu r : Ξ± β†’ Ξ± β†’ Prop inst✝² : DecidableRel r inst✝¹ : IsTotal Ξ± r inst✝ : IsTrans Ξ± r a b : Ξ± l l₁ lβ‚‚ : List Ξ± e : split (a :: b :: l) = (l₁, lβ‚‚) h₁ : length l₁ < length (a :: b :: l) hβ‚‚ : length lβ‚‚ < length (a :: b :: l) ⊒ Sorted r (merge r (mergeSort r l₁) (mergeSort r lβ‚‚)) [PROOFSTEP] exact (sorted_mergeSort l₁).merge (sorted_mergeSort lβ‚‚) [GOAL] Ξ± : Type uu r : Ξ± β†’ Ξ± β†’ Prop inst✝ : DecidableRel r ⊒ mergeSort r [] = [] [PROOFSTEP] rw [List.mergeSort] [GOAL] Ξ± : Type uu r : Ξ± β†’ Ξ± β†’ Prop inst✝ : DecidableRel r a : Ξ± ⊒ mergeSort r [a] = [a] [PROOFSTEP] rw [List.mergeSort]
β€” Alternative Back Care Clinic, PC. from infants to senior citizens. to improve the health of your body, mind, and soul . Alternative Back Care Clinic, PC (ABC Clinic, PC) is a chiropractic clinic, owned by Dr. Paul Bunkers, a graduate of Palmer College of Chiropractic in Davenport, Iowa. We specialize in conservative, alternative health care focusing on chiropractic, nutritional, and rehabilitative services. We work hard on dealing with simple and complex musculo-skeletal problems to help the patient get back to proper function and a pain-free lifestyle as soon as possible. We focus on "treating the cause, not just the pain". Your health care should be as easy as ABC β€” Alternative Back Care Clinic, PC. Because Dr. Bunkers LOVES his job! neck and back problems, headaches, joint problems of the arms and legs such as shoulders, knees, etc. Β© 2019 Alternative Back Care, PC.
{-# OPTIONS --cubical --no-import-sorts --safe #-} module Cubical.Algebra.RingSolver.AlmostRing where open import Cubical.Foundations.Prelude open import Cubical.Data.Sigma open import Cubical.Algebra.Semigroup open import Cubical.Algebra.Monoid open import Cubical.Algebra.AbGroup private variable β„“ : Level record IsAlmostRing {R : Type β„“} (0r 1r : R) (_+_ _Β·_ : R β†’ R β†’ R) (-_ : R β†’ R) : Type β„“ where constructor isalmostring field +IsMonoid : IsMonoid 0r _+_ Β·IsMonoid : IsMonoid 1r _Β·_ +Comm : (x y : R) β†’ x + y ≑ y + x Β·Comm : (x y : R) β†’ x Β· y ≑ y Β· x Β·DistR+ : (x y z : R) β†’ x Β· (y + z) ≑ (x Β· y) + (x Β· z) Β·DistL+ : (x y z : R) β†’ (x + y) Β· z ≑ (x Β· z) + (y Β· z) -CommΒ· : (x y : R) β†’ - (x Β· y) ≑ (- x) Β· y -Dist+ : (x y : R) β†’ - (x + y) ≑ (- x) + (- y) open IsMonoid +IsMonoid public renaming ( assoc to +Assoc ; identity to +Identity ; lid to +Lid ; rid to +Rid ; isSemigroup to +IsSemigroup) open IsMonoid Β·IsMonoid public renaming ( assoc to Β·Assoc ; identity to Β·Identity ; lid to Β·Lid ; rid to Β·Rid ; isSemigroup to Β·IsSemigroup ) hiding ( is-set ) -- We only want to export one proof of this record AlmostRing : Type (β„“-suc β„“) where constructor almostring field Carrier : Type β„“ 0r : Carrier 1r : Carrier _+_ : Carrier β†’ Carrier β†’ Carrier _Β·_ : Carrier β†’ Carrier β†’ Carrier -_ : Carrier β†’ Carrier isAlmostRing : IsAlmostRing 0r 1r _+_ _Β·_ -_ infixl 8 _Β·_ infixl 7 -_ infixl 6 _+_ open IsAlmostRing isAlmostRing public -- Extractor for the carrier type ⟨_⟩ : AlmostRing β†’ Type β„“ ⟨_⟩ = AlmostRing.Carrier isSetAlmostRing : (R : AlmostRing {β„“}) β†’ isSet ⟨ R ⟩ isSetAlmostRing R = R .AlmostRing.isAlmostRing .IsAlmostRing.Β·IsMonoid .IsMonoid.isSemigroup .IsSemigroup.is-set
module Control.Comonad.Trans import Control.Comonad %default total public export interface ComonadTrans (0 t : (Type -> Type) -> Type -> Type) where lower : Comonad w => t w a -> w a
using Rsvg using Cairo using Printf using Test include("test.jl") pkg_dir = dirname(dirname(@__FILE__)) @testset "dimensions of known images " begin d = test_get_dimension(joinpath(pkg_dir,"data","mulberry.svg")); @test d.height == 512 @test d.width == 513 d = test_get_dimension(joinpath(pkg_dir,"data","diag.svg")); @test d.height == 400 @test d.width == 400 d = test_get_dimension(joinpath(pkg_dir,"data","lotus.svg")); @test d.height == 720 @test d.width == 576 d = test_get_dimension(joinpath(pkg_dir,"data","star.svg")); @test d.height == 198 @test d.width == 224 end @testset "render to png " begin f = tempname() * ".png" test_render_to_png(joinpath(pkg_dir,"data","mulberry.svg"),f); @test stat(f).size > 0 f = tempname() * ".png" test_render_to_png(joinpath(pkg_dir,"data","diag.svg"),f); @test stat(f).size > 0 f = tempname() * ".png" test_render_to_png(joinpath(pkg_dir,"data","lotus.svg"),f); @test stat(f).size > 0 f = tempname() * ".png" test_render_to_png(joinpath(pkg_dir,"data","star.svg"),f); @test stat(f).size > 0 end @testset "render string to png " begin f = tempname() * ".png" test_render_string_to_png(f); @test stat(f).size > 0 f = tempname() * ".png" test_render_long_string_to_png(3000,f); @test stat(f).size > 0 f = tempname() * ".png" test_render_long_string_to_png(60000,f); @test stat(f).size > 0 end @testset "roundtrip, render svg to svg" begin f = tempname() * ".svg" test_roundtrip(joinpath(pkg_dir,"data","lotus.svg"),f); @test stat(f).size > 0 d = test_get_dimension(f); @test d.height == 720 @test d.width == 576 end @testset "error handling" begin @test_throws ErrorException Rsvg.handle_new_from_data("not a valid data input") try Rsvg.handle_new_from_data("not a valid data input") catch err @test startswith(err.msg, "ccall") == false end end
[STATEMENT] lemma weakenpre: "\<lbrakk> \<turnstile>\<^sub>3\<^sub>' {P}c{Q} ; \<And>s. P' s \<Longrightarrow> P s \<rbrakk> \<Longrightarrow> \<turnstile>\<^sub>3\<^sub>' {P'}c{ Q}" [PROOF STATE] proof (prove) goal (1 subgoal): 1. \<lbrakk>\<turnstile>\<^sub>3\<^sub>' {P} c { Q}; \<And>s. P' s \<Longrightarrow> P s\<rbrakk> \<Longrightarrow> \<turnstile>\<^sub>3\<^sub>' {P'} c { Q} [PROOF STEP] using conseq[where k=1] [PROOF STATE] proof (prove) using this: \<lbrakk>\<turnstile>\<^sub>3\<^sub>' {?P} ?c { ?Q}; \<And>s n. ?P' (s, n) \<Longrightarrow> ?P (s, 1 * n); \<And>s n. ?Q (s, n) \<Longrightarrow> ?Q' (s, n div 1); 0 < 1\<rbrakk> \<Longrightarrow> \<turnstile>\<^sub>3\<^sub>' {?P'} ?c { ?Q'} goal (1 subgoal): 1. \<lbrakk>\<turnstile>\<^sub>3\<^sub>' {P} c { Q}; \<And>s. P' s \<Longrightarrow> P s\<rbrakk> \<Longrightarrow> \<turnstile>\<^sub>3\<^sub>' {P'} c { Q} [PROOF STEP] by auto
module Generic.Test.Elim where open import Generic.Core open import Generic.Function.Elim open import Generic.Test.Data.Vec -- Is it possible to get rid of these `lift`s? elimVecβ€² : βˆ€ {n Ξ± Ο€} {A : Set Ξ±} -> (P : βˆ€ {n} -> Vec A n -> Set Ο€) -> (βˆ€ {n} {xs : Vec A n} x -> P xs -> P (x ∷α΅₯ xs)) -> P []α΅₯ -> (xs : Vec A n) -> P xs elimVecβ€² P f z = elim P (lift z , Ξ» x r -> lift (f x r))
/** Copyright 2017-2018, Kirit Sælensminde. <https://kirit.com/pgasio/> */ #pragma once #include <pgasio/network.hpp> #include <boost/asio/io_service.hpp> #include <boost/asio/local/stream_protocol.hpp> namespace pgasio { template<typename S> class connection; /// Perform a handshake that assumes to authentication or connection /// options are needed. template<typename S, typename Y> inline connection<S> handshake( S socket, const char *user, const char *database, Y yield ) { command cmd{0}; // The initial connect doesn't use a message type char cmd.int32(0x0003'0000); cmd.c_str("user"); cmd.c_str(user); if ( database != nullptr && database[0] != 0 ) { cmd.c_str("database"); cmd.c_str(database); } cmd.int8(0); cmd.send(socket, yield); std::unordered_map<std::string, std::string> settings; int32_t process_id{}, secret{}; while ( socket.is_open() ) { auto header = message_header(socket, yield); auto body = header.message_body(socket, yield); decoder decode = byte_view(body); switch ( header.type ) { case 'K': process_id = decode.read_int32(); secret = decode.read_int32(); break; case 'R': { auto subcode = decode.read_int32(); if ( subcode != 0 ) { throw std::runtime_error( "Don't know how to handle authentication sub-code " + std::to_string(subcode)); } } break; // Do nothing, the authentication was succesful case 'S': { auto name = decode.read_string(); auto value = decode.read_string(); settings.insert(std::make_pair(std::move(name), std::move(value))); } break; case 'Z': return connection<S>(std::move(socket), std::move(settings), process_id, secret); default: throw std::runtime_error( std::string("Unknown connection message type: ") + header.type); } } throw std::runtime_error("The Postgres connection closed during the initial handshake"); } /// The connection to the database template<typename S> class connection { template<typename Ss, typename Y> friend connection<Ss> handshake(Ss, const char *, const char *, Y); connection( S s, std::unordered_map<std::string, std::string> set, int32_t pid, int32_t sec ): socket(std::move(s)), settings(std::move(set)), process_id(pid), secret(sec) { } public: /// The connection socket S socket; /// The settings in effect when the connection was first opened const std::unordered_map<std::string, std::string> settings; /// The process ID we're connected to const int32_t process_id; /// The secret used for cancellations const int32_t secret; }; /// Return a unix domain socket for the given location template<typename L, typename Y> inline auto unix_domain_socket( boost::asio::io_service &ios, L loc, Y yield ) { boost::asio::local::stream_protocol::socket socket{ios}; boost::asio::local::stream_protocol::endpoint ep(loc); socket.async_connect(ep, yield); return socket; } }
/- Copyright (c) 2021 Oliver Nash. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Oliver Nash -/ import algebra.lie.subalgebra import ring_theory.noetherian /-! # Lie submodules of a Lie algebra In this file we define Lie submodules and Lie ideals, we construct the lattice structure on Lie submodules and we use it to define various important operations, notably the Lie span of a subset of a Lie module. ## Main definitions * `lie_submodule` * `lie_submodule.well_founded_of_noetherian` * `lie_submodule.lie_span` * `lie_submodule.map` * `lie_submodule.comap` * `lie_ideal` * `lie_ideal.map` * `lie_ideal.comap` ## Tags lie algebra, lie submodule, lie ideal, lattice structure -/ universes u v w w₁ wβ‚‚ section lie_submodule variables (R : Type u) (L : Type v) (M : Type w) variables [comm_ring R] [lie_ring L] [lie_algebra R L] [add_comm_group M] [module R M] variables [lie_ring_module L M] [lie_module R L M] set_option old_structure_cmd true /-- A Lie submodule of a Lie module is a submodule that is closed under the Lie bracket. This is a sufficient condition for the subset itself to form a Lie module. -/ structure lie_submodule extends submodule R M := (lie_mem : βˆ€ {x : L} {m : M}, m ∈ carrier β†’ ⁅x, m⁆ ∈ carrier) attribute [nolint doc_blame] lie_submodule.to_submodule namespace lie_submodule variables {R L M} (N N' : lie_submodule R L M) /-- The zero module is a Lie submodule of any Lie module. -/ instance : has_zero (lie_submodule R L M) := ⟨{ lie_mem := Ξ» x m h, by { rw ((submodule.mem_bot R).1 h), apply lie_zero, }, ..(0 : submodule R M)}⟩ instance : inhabited (lie_submodule R L M) := ⟨0⟩ instance coe_submodule : has_coe (lie_submodule R L M) (submodule R M) := ⟨to_submodule⟩ @[norm_cast] lemma coe_to_submodule : ((N : submodule R M) : set M) = N := rfl instance has_mem : has_mem M (lie_submodule R L M) := ⟨λ x N, x ∈ (N : set M)⟩ @[simp] lemma mem_carrier {x : M} : x ∈ N.carrier ↔ x ∈ (N : set M) := iff.rfl @[simp] lemma mem_coe_submodule {x : M} : x ∈ (N : submodule R M) ↔ x ∈ N := iff.rfl lemma mem_coe {x : M} : x ∈ (N : set M) ↔ x ∈ N := iff.rfl @[simp] lemma zero_mem : (0 : M) ∈ N := (N : submodule R M).zero_mem @[simp] lemma coe_to_set_mk (S : set M) (h₁ hβ‚‚ h₃ hβ‚„) : ((⟨S, h₁, hβ‚‚, h₃, hβ‚„βŸ© : lie_submodule R L M) : set M) = S := rfl @[simp] lemma coe_to_submodule_mk (p : submodule R M) (h) : (({lie_mem := h, ..p} : lie_submodule R L M) : submodule R M) = p := by { cases p, refl, } @[ext] lemma ext (h : βˆ€ m, m ∈ N ↔ m ∈ N') : N = N' := by { cases N, cases N', simp only [], ext m, exact h m, } @[simp] lemma coe_to_submodule_eq_iff : (N : submodule R M) = (N' : submodule R M) ↔ N = N' := begin split; intros h, { ext, rw [← mem_coe_submodule, h], simp, }, { rw h, }, end /-- Copy of a lie_submodule with a new `carrier` equal to the old one. Useful to fix definitional equalities. -/ protected def copy (s : set M) (hs : s = ↑N) : lie_submodule R L M := { carrier := s, zero_mem' := hs.symm β–Έ N.zero_mem', add_mem' := hs.symm β–Έ N.add_mem', smul_mem' := hs.symm β–Έ N.smul_mem', lie_mem := hs.symm β–Έ N.lie_mem, } instance : lie_ring_module L N := { bracket := Ξ» (x : L) (m : N), βŸ¨β…x, m.val⁆, N.lie_mem m.property⟩, add_lie := by { intros x y m, apply set_coe.ext, apply add_lie, }, lie_add := by { intros x m n, apply set_coe.ext, apply lie_add, }, leibniz_lie := by { intros x y m, apply set_coe.ext, apply leibniz_lie, }, } instance : lie_module R L N := { lie_smul := by { intros t x y, apply set_coe.ext, apply lie_smul, }, smul_lie := by { intros t x y, apply set_coe.ext, apply smul_lie, }, } end lie_submodule section lie_ideal variables (L) /-- An ideal of a Lie algebra is a Lie submodule of the Lie algebra as a Lie module over itself. -/ abbreviation lie_ideal := lie_submodule R L L lemma lie_mem_right (I : lie_ideal R L) (x y : L) (h : y ∈ I) : ⁅x, y⁆ ∈ I := I.lie_mem h lemma lie_mem_left (I : lie_ideal R L) (x y : L) (h : x ∈ I) : ⁅x, y⁆ ∈ I := by { rw [←lie_skew, ←neg_lie], apply lie_mem_right, assumption, } /-- An ideal of a Lie algebra is a Lie subalgebra. -/ def lie_ideal_subalgebra (I : lie_ideal R L) : lie_subalgebra R L := { lie_mem' := by { intros x y hx hy, apply lie_mem_right, exact hy, }, ..I.to_submodule, } instance : has_coe (lie_ideal R L) (lie_subalgebra R L) := ⟨λ I, lie_ideal_subalgebra R L I⟩ @[norm_cast] lemma lie_ideal.coe_to_subalgebra (I : lie_ideal R L) : ((I : lie_subalgebra R L) : set L) = I := rfl @[norm_cast] lemma lie_ideal.coe_to_lie_subalgebra_to_submodule (I : lie_ideal R L) : ((I : lie_subalgebra R L) : submodule R L) = I := rfl end lie_ideal variables {R M} lemma submodule.exists_lie_submodule_coe_eq_iff (p : submodule R M) : (βˆƒ (N : lie_submodule R L M), ↑N = p) ↔ βˆ€ (x : L) (m : M), m ∈ p β†’ ⁅x, m⁆ ∈ p := begin split, { rintros ⟨N, rfl⟩, exact N.lie_mem, }, { intros h, use { lie_mem := h, ..p }, exact lie_submodule.coe_to_submodule_mk p _, }, end namespace lie_subalgebra variables {L} lemma exists_lie_ideal_coe_eq_iff (K : lie_subalgebra R L): (βˆƒ (I : lie_ideal R L), ↑I = K) ↔ βˆ€ (x y : L), y ∈ K β†’ ⁅x, y⁆ ∈ K := begin simp only [← coe_to_submodule_eq_iff, lie_ideal.coe_to_lie_subalgebra_to_submodule, submodule.exists_lie_submodule_coe_eq_iff L], exact iff.rfl, end lemma exists_nested_lie_ideal_coe_eq_iff {K K' : lie_subalgebra R L} (h : K ≀ K') : (βˆƒ (I : lie_ideal R K'), ↑I = of_le h) ↔ βˆ€ (x y : L), x ∈ K' β†’ y ∈ K β†’ ⁅x, y⁆ ∈ K := begin simp only [exists_lie_ideal_coe_eq_iff, coe_bracket, mem_of_le], split, { intros h' x y hx hy, exact h' ⟨x, hx⟩ ⟨y, h hy⟩ hy, }, { rintros h' ⟨x, hx⟩ ⟨y, hy⟩ hy', exact h' x y hx hy', }, end end lie_subalgebra end lie_submodule namespace lie_submodule variables {R : Type u} {L : Type v} {M : Type w} variables [comm_ring R] [lie_ring L] [lie_algebra R L] [add_comm_group M] [module R M] variables [lie_ring_module L M] [lie_module R L M] variables (N N' : lie_submodule R L M) (I J : lie_ideal R L) section lattice_structure open set lemma coe_injective : function.injective (coe : lie_submodule R L M β†’ set M) := Ξ» N N' h, by { cases N, cases N', simp only, exact h, } lemma coe_submodule_injective : function.injective (coe : lie_submodule R L M β†’ submodule R M) := Ξ» N N' h, by { ext, rw [← mem_coe_submodule, h], refl, } instance : partial_order (lie_submodule R L M) := { le := Ξ» N N', βˆ€ ⦃x⦄, x ∈ N β†’ x ∈ N', -- Overriding `le` like this gives a better defeq. ..partial_order.lift (coe : lie_submodule R L M β†’ set M) coe_injective } lemma le_def : N ≀ N' ↔ (N : set M) βŠ† N' := iff.rfl @[simp, norm_cast] lemma coe_submodule_le_coe_submodule : (N : submodule R M) ≀ N' ↔ N ≀ N' := iff.rfl instance : has_bot (lie_submodule R L M) := ⟨0⟩ @[simp] lemma bot_coe : ((βŠ₯ : lie_submodule R L M) : set M) = {0} := rfl @[simp] lemma bot_coe_submodule : ((βŠ₯ : lie_submodule R L M) : submodule R M) = βŠ₯ := rfl @[simp] lemma mem_bot (x : M) : x ∈ (βŠ₯ : lie_submodule R L M) ↔ x = 0 := mem_singleton_iff instance : has_top (lie_submodule R L M) := ⟨{ lie_mem := Ξ» x m h, mem_univ ⁅x, m⁆, ..(⊀ : submodule R M) }⟩ @[simp] lemma top_coe : ((⊀ : lie_submodule R L M) : set M) = univ := rfl @[simp] lemma top_coe_submodule : ((⊀ : lie_submodule R L M) : submodule R M) = ⊀ := rfl @[simp] lemma mem_top (x : M) : x ∈ (⊀ : lie_submodule R L M) := mem_univ x instance : has_inf (lie_submodule R L M) := ⟨λ N N', { lie_mem := Ξ» x m h, mem_inter (N.lie_mem h.1) (N'.lie_mem h.2), ..(N βŠ“ N' : submodule R M) }⟩ instance : has_Inf (lie_submodule R L M) := ⟨λ S, { lie_mem := Ξ» x m h, by { simp only [submodule.mem_carrier, mem_Inter, submodule.Inf_coe, mem_set_of_eq, forall_apply_eq_imp_iffβ‚‚, exists_imp_distrib] at *, intros N hN, apply N.lie_mem (h N hN), }, ..Inf {(s : submodule R M) | s ∈ S} }⟩ @[simp] theorem inf_coe : (↑(N βŠ“ N') : set M) = N ∩ N' := rfl @[simp] lemma Inf_coe_to_submodule (S : set (lie_submodule R L M)) : (↑(Inf S) : submodule R M) = Inf {(s : submodule R M) | s ∈ S} := rfl @[simp] lemma Inf_coe (S : set (lie_submodule R L M)) : (↑(Inf S) : set M) = β‹‚ s ∈ S, (s : set M) := begin rw [← lie_submodule.coe_to_submodule, Inf_coe_to_submodule, submodule.Inf_coe], ext m, simpa only [mem_Inter, mem_set_of_eq, forall_apply_eq_imp_iffβ‚‚, exists_imp_distrib], end lemma Inf_glb (S : set (lie_submodule R L M)) : is_glb S (Inf S) := begin have h : βˆ€ (N N' : lie_submodule R L M), (N : set M) ≀ N' ↔ N ≀ N', { intros, apply iff.rfl, }, simp only [is_glb.of_image h, Inf_coe, is_glb_binfi], end /-- The set of Lie submodules of a Lie module form a complete lattice. We provide explicit values for the fields `bot`, `top`, `inf` to get more convenient definitions than we would otherwise obtain from `complete_lattice_of_Inf`. -/ instance : complete_lattice (lie_submodule R L M) := { bot := βŠ₯, bot_le := Ξ» N _ h, by { rw mem_bot at h, rw h, exact N.zero_mem', }, top := ⊀, le_top := Ξ» _ _ _, trivial, inf := (βŠ“), le_inf := Ξ» N₁ Nβ‚‚ N₃ h₁₂ h₁₃ m hm, ⟨h₁₂ hm, h₁₃ hm⟩, inf_le_left := Ξ» _ _ _, and.left, inf_le_right := Ξ» _ _ _, and.right, ..complete_lattice_of_Inf _ Inf_glb } instance : add_comm_monoid (lie_submodule R L M) := { add := (βŠ”), add_assoc := Ξ» _ _ _, sup_assoc, zero := βŠ₯, zero_add := Ξ» _, bot_sup_eq, add_zero := Ξ» _, sup_bot_eq, add_comm := Ξ» _ _, sup_comm, } @[simp] lemma add_eq_sup : N + N' = N βŠ” N' := rfl @[norm_cast, simp] lemma sup_coe_to_submodule : (↑(N βŠ” N') : submodule R M) = (N : submodule R M) βŠ” (N' : submodule R M) := begin have aux : βˆ€ (x : L) m, m ∈ (N βŠ” N' : submodule R M) β†’ ⁅x,m⁆ ∈ (N βŠ” N' : submodule R M), { simp only [submodule.mem_sup], rintro x m ⟨y, hy, z, hz, rfl⟩, refine βŸ¨β…x, y⁆, N.lie_mem hy, ⁅x, z⁆, N'.lie_mem hz, (lie_add _ _ _).symm⟩ }, refine le_antisymm (Inf_le ⟨{ lie_mem := aux, ..(N βŠ” N' : submodule R M) }, _⟩) _, { simp only [exists_prop, and_true, mem_set_of_eq, eq_self_iff_true, coe_to_submodule_mk, ← coe_submodule_le_coe_submodule, and_self, le_sup_left, le_sup_right] }, { simp, }, end @[norm_cast, simp] lemma inf_coe_to_submodule : (↑(N βŠ“ N') : submodule R M) = (N : submodule R M) βŠ“ (N' : submodule R M) := rfl @[simp] lemma mem_inf (x : M) : x ∈ N βŠ“ N' ↔ x ∈ N ∧ x ∈ N' := by rw [← mem_coe_submodule, ← mem_coe_submodule, ← mem_coe_submodule, inf_coe_to_submodule, submodule.mem_inf] lemma mem_sup (x : M) : x ∈ N βŠ” N' ↔ βˆƒ (y ∈ N) (z ∈ N'), y + z = x := by { rw [← mem_coe_submodule, sup_coe_to_submodule, submodule.mem_sup], exact iff.rfl, } lemma eq_bot_iff : N = βŠ₯ ↔ βˆ€ (m : M), m ∈ N β†’ m = 0 := by { rw eq_bot_iff, exact iff.rfl, } -- TODO[gh-6025]: make this an instance once safe to do so lemma subsingleton_of_bot : subsingleton (lie_submodule R L β†₯(βŠ₯ : lie_submodule R L M)) := begin apply subsingleton_of_bot_eq_top, ext ⟨x, hx⟩, change x ∈ βŠ₯ at hx, rw submodule.mem_bot at hx, subst hx, simp only [true_iff, eq_self_iff_true, submodule.mk_eq_zero, lie_submodule.mem_bot], end instance : is_modular_lattice (lie_submodule R L M) := { sup_inf_le_assoc_of_le := Ξ» N₁ Nβ‚‚ N₃, by { simp only [← coe_submodule_le_coe_submodule, sup_coe_to_submodule, inf_coe_to_submodule], exact is_modular_lattice.sup_inf_le_assoc_of_le ↑Nβ‚‚, }, } variables (R L M) lemma well_founded_of_noetherian [is_noetherian R M] : well_founded ((>) : lie_submodule R L M β†’ lie_submodule R L M β†’ Prop) := begin let f : ((>) : lie_submodule R L M β†’ lie_submodule R L M β†’ Prop) β†’r ((>) : submodule R M β†’ submodule R M β†’ Prop) := { to_fun := coe, map_rel' := Ξ» N N' h, h, }, apply f.well_founded, rw ← is_noetherian_iff_well_founded, apply_instance, end variables {R L M} section inclusion_maps /-- The inclusion of a Lie submodule into its ambient space is a morphism of Lie modules. -/ def incl : N →ₗ⁅R,L⁆ M := { map_lie' := Ξ» x m, rfl, ..submodule.subtype (N : submodule R M) } @[simp] lemma incl_apply (m : N) : N.incl m = m := rfl lemma incl_eq_val : (N.incl : N β†’ M) = subtype.val := rfl variables {N N'} (h : N ≀ N') /-- Given two nested Lie submodules `N βŠ† N'`, the inclusion `N β†ͺ N'` is a morphism of Lie modules.-/ def hom_of_le : N →ₗ⁅R,L⁆ N' := { map_lie' := Ξ» x m, rfl, ..submodule.of_le h } @[simp] lemma coe_hom_of_le (m : N) : (hom_of_le h m : M) = m := rfl lemma hom_of_le_apply (m : N) : hom_of_le h m = ⟨m.1, h m.2⟩ := rfl lemma hom_of_le_injective : function.injective (hom_of_le h) := Ξ» x y, by simp only [hom_of_le_apply, imp_self, subtype.mk_eq_mk, set_like.coe_eq_coe, subtype.val_eq_coe] end inclusion_maps section lie_span variables (R L) (s : set M) /-- The `lie_span` of a set `s βŠ† M` is the smallest Lie submodule of `M` that contains `s`. -/ def lie_span : lie_submodule R L M := Inf {N | s βŠ† N} variables {R L s} lemma mem_lie_span {x : M} : x ∈ lie_span R L s ↔ βˆ€ N : lie_submodule R L M, s βŠ† N β†’ x ∈ N := by { change x ∈ (lie_span R L s : set M) ↔ _, erw Inf_coe, exact mem_bInter_iff, } lemma subset_lie_span : s βŠ† lie_span R L s := by { intros m hm, erw mem_lie_span, intros N hN, exact hN hm, } lemma submodule_span_le_lie_span : submodule.span R s ≀ lie_span R L s := by { rw submodule.span_le, apply subset_lie_span, } lemma lie_span_le {N} : lie_span R L s ≀ N ↔ s βŠ† N := begin split, { exact subset.trans subset_lie_span, }, { intros hs m hm, rw mem_lie_span at hm, exact hm _ hs, }, end lemma lie_span_mono {t : set M} (h : s βŠ† t) : lie_span R L s ≀ lie_span R L t := by { rw lie_span_le, exact subset.trans h subset_lie_span, } lemma lie_span_eq : lie_span R L (N : set M) = N := le_antisymm (lie_span_le.mpr rfl.subset) subset_lie_span lemma coe_lie_span_submodule_eq_iff {p : submodule R M} : (lie_span R L (p : set M) : submodule R M) = p ↔ βˆƒ (N : lie_submodule R L M), ↑N = p := begin rw p.exists_lie_submodule_coe_eq_iff L, split; intros h, { intros x m hm, rw [← h, mem_coe_submodule], exact lie_mem _ (subset_lie_span hm), }, { rw [← coe_to_submodule_mk p h, coe_to_submodule, coe_to_submodule_eq_iff, lie_span_eq], }, end end lie_span end lattice_structure end lie_submodule section lie_submodule_map_and_comap variables {R : Type u} {L : Type v} {L' : Type wβ‚‚} {M : Type w} {M' : Type w₁} variables [comm_ring R] [lie_ring L] [lie_algebra R L] [lie_ring L'] [lie_algebra R L'] variables [add_comm_group M] [module R M] [lie_ring_module L M] [lie_module R L M] variables [add_comm_group M'] [module R M'] [lie_ring_module L M'] [lie_module R L M'] namespace lie_submodule variables (f : M →ₗ⁅R,L⁆ M') (N Nβ‚‚ : lie_submodule R L M) (N' : lie_submodule R L M') /-- A morphism of Lie modules `f : M β†’ M'` pushes forward Lie submodules of `M` to Lie submodules of `M'`. -/ def map : lie_submodule R L M' := { lie_mem := Ξ» x m' h, by { rcases h with ⟨m, hm, hfm⟩, use ⁅x, m⁆, split, { apply N.lie_mem hm, }, { norm_cast at hfm, simp [hfm], }, }, ..(N : submodule R M).map (f : M β†’β‚—[R] M') } /-- A morphism of Lie modules `f : M β†’ M'` pulls back Lie submodules of `M'` to Lie submodules of `M`. -/ def comap : lie_submodule R L M := { lie_mem := Ξ» x m h, by { suffices : ⁅x, f m⁆ ∈ N', { simp [this], }, apply N'.lie_mem h, }, ..(N' : submodule R M').comap (f : M β†’β‚—[R] M') } variables {f N Nβ‚‚ N'} lemma map_le_iff_le_comap : map f N ≀ N' ↔ N ≀ comap f N' := set.image_subset_iff variables (f) lemma gc_map_comap : galois_connection (map f) (comap f) := Ξ» N N', map_le_iff_le_comap variables {f} @[simp] lemma map_sup : (N βŠ” Nβ‚‚).map f = N.map f βŠ” Nβ‚‚.map f := (gc_map_comap f).l_sup lemma mem_map (m' : M') : m' ∈ N.map f ↔ βˆƒ m, m ∈ N ∧ f m = m' := submodule.mem_map end lie_submodule namespace lie_ideal variables (f : L →ₗ⁅R⁆ L') (I Iβ‚‚ : lie_ideal R L) (J : lie_ideal R L') @[simp] lemma top_coe_lie_subalgebra : ((⊀ : lie_ideal R L) : lie_subalgebra R L) = ⊀ := rfl /-- A morphism of Lie algebras `f : L β†’ L'` pushes forward Lie ideals of `L` to Lie ideals of `L'`. Note that unlike `lie_submodule.map`, we must take the `lie_span` of the image. Mathematically this is because although `f` makes `L'` into a Lie module over `L`, in general the `L` submodules of `L'` are not the same as the ideals of `L'`. -/ def map : lie_ideal R L' := lie_submodule.lie_span R L' $ (I : submodule R L).map (f : L β†’β‚—[R] L') /-- A morphism of Lie algebras `f : L β†’ L'` pulls back Lie ideals of `L'` to Lie ideals of `L`. Note that `f` makes `L'` into a Lie module over `L` (turning `f` into a morphism of Lie modules) and so this is a special case of `lie_submodule.comap` but we do not exploit this fact. -/ def comap : lie_ideal R L := { lie_mem := Ξ» x y h, by { suffices : ⁅f x, f y⁆ ∈ J, { simp [this], }, apply J.lie_mem h, }, ..(J : submodule R L').comap (f : L β†’β‚—[R] L') } @[simp] lemma map_coe_submodule (h : ↑(map f I) = f '' I) : (map f I : submodule R L') = (I : submodule R L).map f := by { rw [set_like.ext'_iff, lie_submodule.coe_to_submodule, h, submodule.map_coe], refl, } @[simp] lemma comap_coe_submodule : (comap f J : submodule R L) = (J : submodule R L').comap f := rfl lemma map_le : map f I ≀ J ↔ f '' I βŠ† J := lie_submodule.lie_span_le variables {f I Iβ‚‚ J} lemma mem_map {x : L} (hx : x ∈ I) : f x ∈ map f I := by { apply lie_submodule.subset_lie_span, use x, exact ⟨hx, rfl⟩, } @[simp] lemma mem_comap {x : L} : x ∈ comap f J ↔ f x ∈ J := iff.rfl lemma map_le_iff_le_comap : map f I ≀ J ↔ I ≀ comap f J := by { rw map_le, exact set.image_subset_iff, } variables (f) lemma gc_map_comap : galois_connection (map f) (comap f) := Ξ» I I', map_le_iff_le_comap variables {f} @[simp] lemma map_sup : (I βŠ” Iβ‚‚).map f = I.map f βŠ” Iβ‚‚.map f := (gc_map_comap f).l_sup lemma map_comap_le : map f (comap f J) ≀ J := by { rw map_le_iff_le_comap, apply le_refl _, } /-- See also `lie_ideal.map_comap_eq`. -/ lemma comap_map_le : I ≀ comap f (map f I) := by { rw ← map_le_iff_le_comap, apply le_refl _, } @[mono] lemma map_mono : monotone (map f) := Ξ» I₁ Iβ‚‚ h, by { rw lie_submodule.le_def at h, apply lie_submodule.lie_span_mono (set.image_subset ⇑f h), } @[mono] lemma comap_mono : monotone (comap f) := Ξ» J₁ Jβ‚‚ h, by { rw lie_submodule.le_def at h ⊒, exact set.preimage_mono h, } lemma map_of_image (h : f '' I = J) : I.map f = J := begin apply le_antisymm, { erw [lie_submodule.lie_span_le, submodule.map_coe, h], }, { rw [lie_submodule.le_def, ← h], exact lie_submodule.subset_lie_span, }, end /-- Note that this is not a special case of `lie_submodule.subsingleton_of_bot`. Indeed, given `I : lie_ideal R L`, in general the two lattices `lie_ideal R I` and `lie_submodule R L I` are different (though the latter does naturally inject into the former). In other words, in general, ideals of `I`, regarded as a Lie algebra in its own right, are not the same as ideals of `L` contained in `I`. -/ -- TODO[gh-6025]: make this an instance once safe to do so lemma subsingleton_of_bot : subsingleton (lie_ideal R β†₯(βŠ₯ : lie_ideal R L)) := begin apply subsingleton_of_bot_eq_top, ext ⟨x, hx⟩, change x ∈ βŠ₯ at hx, rw submodule.mem_bot at hx, subst hx, simp only [true_iff, eq_self_iff_true, submodule.mk_eq_zero, lie_submodule.mem_bot], end end lie_ideal namespace lie_hom variables (f : L →ₗ⁅R⁆ L') (I : lie_ideal R L) (J : lie_ideal R L') /-- The kernel of a morphism of Lie algebras, as an ideal in the domain. -/ def ker : lie_ideal R L := lie_ideal.comap f βŠ₯ /-- The range of a morphism of Lie algebras as an ideal in the codomain. -/ def ideal_range : lie_ideal R L' := lie_submodule.lie_span R L' f.range lemma ideal_range_eq_lie_span_range : f.ideal_range = lie_submodule.lie_span R L' f.range := rfl lemma ideal_range_eq_map : f.ideal_range = lie_ideal.map f ⊀ := by { ext, simp only [ideal_range, range_eq_map], refl } /-- The condition that the image of a morphism of Lie algebras is an ideal. -/ def is_ideal_morphism : Prop := (f.ideal_range : lie_subalgebra R L') = f.range @[simp] lemma is_ideal_morphism_def : f.is_ideal_morphism ↔ (f.ideal_range : lie_subalgebra R L') = f.range := iff.rfl lemma is_ideal_morphism_iff : f.is_ideal_morphism ↔ βˆ€ (x : L') (y : L), βˆƒ (z : L), ⁅x, f y⁆ = f z := begin simp only [is_ideal_morphism_def, ideal_range_eq_lie_span_range, ← lie_subalgebra.coe_to_submodule_eq_iff, ← f.range.coe_to_submodule, lie_ideal.coe_to_lie_subalgebra_to_submodule, lie_submodule.coe_lie_span_submodule_eq_iff, lie_subalgebra.mem_coe_submodule, mem_range, exists_imp_distrib, submodule.exists_lie_submodule_coe_eq_iff], split, { intros h x y, obtain ⟨z, hz⟩ := h x (f y) y rfl, use z, exact hz.symm, }, { intros h x y z hz, obtain ⟨w, hw⟩ := h x z, use w, rw [← hw, hz], }, end lemma range_subset_ideal_range : (f.range : set L') βŠ† f.ideal_range := lie_submodule.subset_lie_span lemma map_le_ideal_range : I.map f ≀ f.ideal_range := begin rw f.ideal_range_eq_map, exact lie_ideal.map_mono le_top, end lemma ker_le_comap : f.ker ≀ J.comap f := lie_ideal.comap_mono bot_le @[simp] lemma ker_coe_submodule : (ker f : submodule R L) = (f : L β†’β‚—[R] L').ker := rfl @[simp] lemma mem_ker {x : L} : x ∈ ker f ↔ f x = 0 := show x ∈ (f.ker : submodule R L) ↔ _, by simp only [ker_coe_submodule, linear_map.mem_ker, coe_to_linear_map] lemma mem_ideal_range {x : L} : f x ∈ ideal_range f := begin rw ideal_range_eq_map, exact lie_ideal.mem_map (lie_submodule.mem_top x) end @[simp] lemma le_ker_iff : I ≀ f.ker ↔ βˆ€ x, x ∈ I β†’ f x = 0 := begin split; intros h x hx, { specialize h hx, rw mem_ker at h, exact h, }, { rw mem_ker, apply h x hx, }, end lemma ker_eq_bot : f.ker = βŠ₯ ↔ function.injective f := by rw [← lie_submodule.coe_to_submodule_eq_iff, ker_coe_submodule, lie_submodule.bot_coe_submodule, linear_map.ker_eq_bot, coe_to_linear_map] @[simp] lemma range_coe_submodule : (f.range : submodule R L') = (f : L β†’β‚—[R] L').range := rfl lemma range_eq_top : f.range = ⊀ ↔ function.surjective f := begin rw [← lie_subalgebra.coe_to_submodule_eq_iff, range_coe_submodule, lie_subalgebra.top_coe_submodule], exact linear_map.range_eq_top, end @[simp] lemma ideal_range_eq_top_of_surjective (h : function.surjective f) : f.ideal_range = ⊀ := begin rw ← f.range_eq_top at h, rw [ideal_range_eq_lie_span_range, h, ← lie_subalgebra.coe_to_submodule, ← lie_submodule.coe_to_submodule_eq_iff, lie_submodule.top_coe_submodule, lie_subalgebra.top_coe_submodule, lie_submodule.coe_lie_span_submodule_eq_iff], use ⊀, exact lie_submodule.top_coe_submodule, end lemma is_ideal_morphism_of_surjective (h : function.surjective f) : f.is_ideal_morphism := by rw [is_ideal_morphism_def, f.ideal_range_eq_top_of_surjective h, f.range_eq_top.mpr h, lie_ideal.top_coe_lie_subalgebra] end lie_hom namespace lie_ideal variables {f : L →ₗ⁅R⁆ L'} {I : lie_ideal R L} {J : lie_ideal R L'} @[simp] lemma map_eq_bot_iff : I.map f = βŠ₯ ↔ I ≀ f.ker := by { rw ← le_bot_iff, exact lie_ideal.map_le_iff_le_comap } lemma coe_map_of_surjective (h : function.surjective f) : (I.map f : submodule R L') = (I : submodule R L).map f := begin let J : lie_ideal R L' := { lie_mem := Ξ» x y hy, begin have hy' : βˆƒ (x : L), x ∈ I ∧ f x = y, { simpa [hy], }, obtain ⟨zβ‚‚, hzβ‚‚, rfl⟩ := hy', obtain ⟨z₁, rfl⟩ := h x, simp only [lie_hom.coe_to_linear_map, set_like.mem_coe, set.mem_image, lie_submodule.mem_coe_submodule, submodule.mem_carrier, submodule.map_coe], use ⁅z₁, z₂⁆, exact ⟨I.lie_mem hzβ‚‚, f.map_lie z₁ zβ‚‚βŸ©, end, ..(I : submodule R L).map (f : L β†’β‚—[R] L'), }, erw lie_submodule.coe_lie_span_submodule_eq_iff, use J, apply lie_submodule.coe_to_submodule_mk, end lemma mem_map_of_surjective {y : L'} (h₁ : function.surjective f) (hβ‚‚ : y ∈ I.map f) : βˆƒ (x : I), f x = y := begin rw [← lie_submodule.mem_coe_submodule, coe_map_of_surjective h₁, submodule.mem_map] at hβ‚‚, obtain ⟨x, hx, rfl⟩ := hβ‚‚, use ⟨x, hx⟩, refl, end lemma bot_of_map_eq_bot {I : lie_ideal R L} (h₁ : function.injective f) (hβ‚‚ : I.map f = βŠ₯) : I = βŠ₯ := begin rw ← f.ker_eq_bot at h₁, change comap f βŠ₯ = βŠ₯ at h₁, rw [eq_bot_iff, map_le_iff_le_comap, h₁] at hβ‚‚, rw eq_bot_iff, exact hβ‚‚, end /-- Given two nested Lie ideals `I₁ βŠ† Iβ‚‚`, the inclusion `I₁ β†ͺ Iβ‚‚` is a morphism of Lie algebras. -/ def hom_of_le {I₁ Iβ‚‚ : lie_ideal R L} (h : I₁ ≀ Iβ‚‚) : I₁ →ₗ⁅R⁆ Iβ‚‚ := { map_lie' := Ξ» x y, rfl, ..submodule.of_le h, } @[simp] lemma coe_hom_of_le {I₁ Iβ‚‚ : lie_ideal R L} (h : I₁ ≀ Iβ‚‚) (x : I₁) : (hom_of_le h x : L) = x := rfl lemma hom_of_le_apply {I₁ Iβ‚‚ : lie_ideal R L} (h : I₁ ≀ Iβ‚‚) (x : I₁) : hom_of_le h x = ⟨x.1, h x.2⟩ := rfl lemma hom_of_le_injective {I₁ Iβ‚‚ : lie_ideal R L} (h : I₁ ≀ Iβ‚‚) : function.injective (hom_of_le h) := Ξ» x y, by simp only [hom_of_le_apply, imp_self, subtype.mk_eq_mk, set_like.coe_eq_coe, subtype.val_eq_coe] @[simp] lemma map_sup_ker_eq_map : lie_ideal.map f (I βŠ” f.ker) = lie_ideal.map f I := begin suffices : lie_ideal.map f (I βŠ” f.ker) ≀ lie_ideal.map f I, { exact le_antisymm this (lie_ideal.map_mono le_sup_left), }, apply lie_submodule.lie_span_mono, rintros x ⟨y, hy₁, hyβ‚‚βŸ©, rw ← hyβ‚‚, erw lie_submodule.mem_sup at hy₁, obtain ⟨z₁, hz₁, zβ‚‚, hzβ‚‚, hy⟩ := hy₁, rw ← hy, rw [f.coe_to_linear_map, f.map_add, f.mem_ker.mp hzβ‚‚, add_zero], exact ⟨z₁, hz₁, rfl⟩, end @[simp] lemma map_comap_eq (h : f.is_ideal_morphism) : map f (comap f J) = f.ideal_range βŠ“ J := begin apply le_antisymm, { rw le_inf_iff, exact ⟨f.map_le_ideal_range _, map_comap_le⟩, }, { rw f.is_ideal_morphism_def at h, rw [lie_submodule.le_def, lie_submodule.inf_coe, ← coe_to_subalgebra, h], rintros y ⟨⟨x, hβ‚βŸ©, hβ‚‚βŸ©, rw ← h₁ at hβ‚‚ ⊒, exact mem_map hβ‚‚, }, end @[simp] lemma comap_map_eq (h : ↑(map f I) = f '' I) : comap f (map f I) = I βŠ” f.ker := by rw [← lie_submodule.coe_to_submodule_eq_iff, comap_coe_submodule, I.map_coe_submodule f h, lie_submodule.sup_coe_to_submodule, f.ker_coe_submodule, linear_map.comap_map_eq] variables (f I J) /-- Regarding an ideal `I` as a subalgebra, the inclusion map into its ambient space is a morphism of Lie algebras. -/ def incl : I →ₗ⁅R⁆ L := (I : lie_subalgebra R L).incl @[simp] lemma incl_range : I.incl.range = I := (I : lie_subalgebra R L).incl_range @[simp] lemma incl_apply (x : I) : I.incl x = x := rfl @[simp] lemma incl_coe : (I.incl : I β†’β‚—[R] L) = (I : submodule R L).subtype := rfl @[simp] lemma comap_incl_self : comap I.incl I = ⊀ := by { rw ← lie_submodule.coe_to_submodule_eq_iff, exact submodule.comap_subtype_self _, } @[simp] lemma ker_incl : I.incl.ker = βŠ₯ := by rw [← lie_submodule.coe_to_submodule_eq_iff, I.incl.ker_coe_submodule, lie_submodule.bot_coe_submodule, incl_coe, submodule.ker_subtype] @[simp] lemma incl_ideal_range : I.incl.ideal_range = I := begin rw [lie_hom.ideal_range_eq_lie_span_range, ← lie_subalgebra.coe_to_submodule, ← lie_submodule.coe_to_submodule_eq_iff, incl_range, coe_to_lie_subalgebra_to_submodule, lie_submodule.coe_lie_span_submodule_eq_iff], use I, end lemma incl_is_ideal_morphism : I.incl.is_ideal_morphism := begin rw [I.incl.is_ideal_morphism_def, incl_ideal_range], exact (I : lie_subalgebra R L).incl_range.symm, end end lie_ideal end lie_submodule_map_and_comap namespace lie_module_hom variables {R : Type u} {L : Type v} {M : Type w} {N : Type w₁} variables [comm_ring R] [lie_ring L] [lie_algebra R L] variables [add_comm_group M] [module R M] [lie_ring_module L M] [lie_module R L M] variables [add_comm_group N] [module R N] [lie_ring_module L N] [lie_module R L N] variables (f : M →ₗ⁅R,L⁆ N) /-- The range of a morphism of Lie modules `f : M β†’ N` is a Lie submodule of `N`. See Note [range copy pattern]. -/ def range : lie_submodule R L N := (lie_submodule.map f ⊀).copy (set.range f) set.image_univ.symm @[simp] lemma coe_range : (f.range : set N) = set.range f := rfl @[simp] lemma coe_submodule_range : (f.range : submodule R N) = (f : M β†’β‚—[R] N).range := rfl @[simp] lemma mem_range (n : N) : n ∈ f.range ↔ βˆƒ m, f m = n := iff.rfl lemma map_top : lie_submodule.map f ⊀ = f.range := by { ext, simp [lie_submodule.mem_map], } end lie_module_hom section top_equiv_self variables {R : Type u} {L : Type v} variables [comm_ring R] [lie_ring L] [lie_algebra R L] /-- The natural equivalence between the 'top' Lie subalgebra and the enclosing Lie algebra. -/ def lie_subalgebra.top_equiv_self : (⊀ : lie_subalgebra R L) ≃ₗ⁅R⁆ L := { inv_fun := Ξ» x, ⟨x, set.mem_univ x⟩, left_inv := Ξ» x, by { ext, refl, }, right_inv := Ξ» x, rfl, ..(⊀ : lie_subalgebra R L).incl, } @[simp] lemma lie_subalgebra.top_equiv_self_apply (x : (⊀ : lie_subalgebra R L)) : lie_subalgebra.top_equiv_self x = x := rfl /-- The natural equivalence between the 'top' Lie ideal and the enclosing Lie algebra. -/ def lie_ideal.top_equiv_self : (⊀ : lie_ideal R L) ≃ₗ⁅R⁆ L := lie_subalgebra.top_equiv_self @[simp] lemma lie_ideal.top_equiv_self_apply (x : (⊀ : lie_ideal R L)) : lie_ideal.top_equiv_self x = x := rfl end top_equiv_self
Interactive Voice Response (IVR) transaction processing reduces your PCI scope over-the-phone payments. Fully customizable and available in different languages, Bankcard Associates IVR acts as a phone-based payment acceptance application that ensures the safety of sensitive customer payment information. Processing payments just got easier with Bankcard Associates IVR systems, which allow merchants to accept credit cards and manage the payment process through a touch tone phone. Merchants on the go can receive real-time credit card payments in a mobile environment, processing credit cards quickly and easily without the need for an Internet connection or credit card terminal. With Bankcard Associates IVR capabilities, customers can make payments, check balances and manage accounts from their touchstone phone. Paying bills becomes quick and easy, eliminating lengthy on-hold times for improved customer service. When customers can make credit card payments without the need for an Internet connection, they can pay wherever they go and minimize late payments. Multiple language capabilities simplify the process and ensure clear communication. At Bankcard Associates, we go to great lengths to protect your business, your customers and sensitive data. Our IVR systems work seamlessly with our PCI certified payment gateway, processing credit cards safely while reducing the risk of credit card fraud. Customer calls in to a number listed on merchants website/bill to make a payment or Customer Service Agent transfers call to IVR to make payment. That Phone number is hosted on our gateway server. IVR digitally connects to the Gateway to securely process the transaction and tokenize the sensitive payment data. The payment processes securely. Gateway digitally connects to the merchants accounting system or website to return the token and truncated payment data. The transaction can be confirmed in one of three ways. Real-Time Response: Instant notification to merchants system, confirming payment has been made. You can reach us at 1-800-921-9584 or you may use the contact form below. Since BA introduced us to debit technology and low rates, our processing expenses have decreased by 40% and revenues have increased by 20%. Our experience with BA has been extraordinary. We found the staff to be professional and attentive to our needs. BA has been a valuable member of the Landscape Warehouse team. Thank you BA! Bankcard Associates, LLC is a registered ISO of Wells Fargo Bank, N.A., Walnut Creek, CA. Copyright Β© 2004 - 2014 Bankcard Associates LLC, All Rights Reserved.
= = = = 2007 = = = =
import numpy as np def explicit_euler(ode_func, y0, x0, stepsize, x_end): """ Calculate numeric solution at each step to an ODE using Euler's Method https://en.wikipedia.org/wiki/Euler_method Arguments: ode_func -- The ode as a function of x and y y0 -- the initial value for y x0 -- the initial value for x stepsize -- the increment value for x x_end -- the end value for x >>> # the exact solution is math.exp(x) >>> def f(x, y): ... return y >>> y0 = 1 >>> y = explicit_euler(f, y0, 0.0, 0.01, 5) >>> y[-1] 144.77277243257308 """ N = int(np.ceil((x_end - x0) / stepsize)) y = np.zeros((N + 1,)) y[0] = y0 x = x0 for k in range(N): y[k + 1] = y[k] + stepsize * ode_func(x, y[k]) x += stepsize return y if __name__ == "__main__": import doctest doctest.testmod()
theory Analyze_Ringofsaturn_com imports "../../Primitive_Matchers/Parser" begin section\<open>Example: ringofsaturn.com\<close> (* Based on <http://networking.ringofsaturn.com/Unix/iptables.php> *) (* Archived at <https://archive.today/3c309> *) parse_iptables_save saturn_fw="iptables-save" thm saturn_fw_def text\<open>The Firewall\<close> text\<open>Infix pretty-printing for @{const MatchAnd} and @{const MatchNot}.\<close> abbreviation MatchAndInfix :: "'a match_expr \<Rightarrow> 'a match_expr \<Rightarrow> 'a match_expr" (infixr "MATCHAND" 65) where "MatchAndInfix m1 m2 \<equiv> MatchAnd m1 m2" abbreviation MatchNotPrefix :: "'a match_expr \<Rightarrow> 'a match_expr" ("\<not> \<langle>_\<rangle>" 66) where "MatchNotPrefix m \<equiv> MatchNot m" (*This syntax can be pretty confusing when mixing it with other theories. Do not use outside this example!*) value[code] "unfold_ruleset_INPUT saturn_fw_INPUT_default_policy (map_of_string_ipv4 saturn_fw)" lemma "unfold_ruleset_INPUT saturn_fw_INPUT_default_policy (map_of_string_ipv4 saturn_fw) = [Rule (Match (CT_State {CT_Related, CT_Established})) action.Accept, Rule (Match (CT_State {CT_New})) action.Accept, Rule (Match (Prot (Proto TCP))) action.Drop, Rule (Match (Prot (Proto UDP))) action.Drop, Rule MatchAny action.Drop, Rule (Match (IIface (Iface ''lo''))) action.Accept, Rule ((Match (Src (IpAddrNetmask (ipv4addr_of_dotdecimal (0, 0, 0, 0)) 8)) MATCHAND Match (IIface (Iface ''eth0''))) MATCHAND Match (Prot (Proto TCP))) action.Drop, Rule ((Match (Src (IpAddrNetmask (ipv4addr_of_dotdecimal (0, 0, 0, 0)) 8)) MATCHAND Match (IIface (Iface ''eth0''))) MATCHAND Match (Prot (Proto UDP))) action.Drop, Rule (Match (Src (IpAddrNetmask (ipv4addr_of_dotdecimal (0, 0, 0, 0)) 8)) MATCHAND Match (IIface (Iface ''eth0''))) action.Drop, Rule ((Match (Src (IpAddrNetmask (ipv4addr_of_dotdecimal (10, 0, 0, 0)) 8)) MATCHAND Match (IIface (Iface ''eth0''))) MATCHAND Match (Prot (Proto TCP))) action.Drop, Rule ((Match (Src (IpAddrNetmask (ipv4addr_of_dotdecimal (10, 0, 0, 0)) 8)) MATCHAND Match (IIface (Iface ''eth0''))) MATCHAND Match (Prot (Proto UDP))) action.Drop, Rule (Match (Src (IpAddrNetmask (ipv4addr_of_dotdecimal (10, 0, 0, 0)) 8)) MATCHAND Match (IIface (Iface ''eth0''))) action.Drop, Rule ((Match (Src (IpAddrNetmask (ipv4addr_of_dotdecimal (127, 0, 0, 0)) 8)) MATCHAND Match (IIface (Iface ''eth0''))) MATCHAND Match (Prot (Proto TCP))) action.Drop, Rule ((Match (Src (IpAddrNetmask (ipv4addr_of_dotdecimal (127, 0, 0, 0)) 8)) MATCHAND Match (IIface (Iface ''eth0''))) MATCHAND Match (Prot (Proto UDP))) action.Drop, Rule (Match (Src (IpAddrNetmask (ipv4addr_of_dotdecimal (127, 0, 0, 0)) 8)) MATCHAND Match (IIface (Iface ''eth0''))) action.Drop, Rule ((Match (Src (IpAddrNetmask (ipv4addr_of_dotdecimal (169, 254, 0, 0)) 16)) MATCHAND Match (IIface (Iface ''eth0''))) MATCHAND Match (Prot (Proto TCP))) action.Drop, Rule ((Match (Src (IpAddrNetmask (ipv4addr_of_dotdecimal (169, 254, 0, 0)) 16)) MATCHAND Match (IIface (Iface ''eth0''))) MATCHAND Match (Prot (Proto UDP))) action.Drop, Rule (Match (Src (IpAddrNetmask (ipv4addr_of_dotdecimal (169, 254, 0, 0)) 16)) MATCHAND Match (IIface (Iface ''eth0''))) action.Drop, Rule ((Match (Src (IpAddrNetmask (ipv4addr_of_dotdecimal (172, 16, 0, 0)) 12)) MATCHAND Match (IIface (Iface ''eth0''))) MATCHAND Match (Prot (Proto TCP))) action.Drop, Rule ((Match (Src (IpAddrNetmask (ipv4addr_of_dotdecimal (172, 16, 0, 0)) 12)) MATCHAND Match (IIface (Iface ''eth0''))) MATCHAND Match (Prot (Proto UDP))) action.Drop, Rule (Match (Src (IpAddrNetmask (ipv4addr_of_dotdecimal (172, 16, 0, 0)) 12)) MATCHAND Match (IIface (Iface ''eth0''))) action.Drop, Rule ((Match (Src (IpAddrNetmask (ipv4addr_of_dotdecimal (224, 0, 0, 0)) 3)) MATCHAND Match (IIface (Iface ''eth0''))) MATCHAND Match (Prot (Proto TCP))) action.Drop, Rule ((Match (Src (IpAddrNetmask (ipv4addr_of_dotdecimal (224, 0, 0, 0)) 3)) MATCHAND Match (IIface (Iface ''eth0''))) MATCHAND Match (Prot (Proto UDP))) action.Drop, Rule (Match (Src (IpAddrNetmask (ipv4addr_of_dotdecimal (224, 0, 0, 0)) 3)) MATCHAND Match (IIface (Iface ''eth0''))) action.Drop, Rule ((Match (Src (IpAddrNetmask (ipv4addr_of_dotdecimal (240, 0, 0, 0)) 8)) MATCHAND Match (IIface (Iface ''eth0''))) MATCHAND Match (Prot (Proto TCP))) action.Drop, Rule ((Match (Src (IpAddrNetmask (ipv4addr_of_dotdecimal (240, 0, 0, 0)) 8)) MATCHAND Match (IIface (Iface ''eth0''))) MATCHAND Match (Prot (Proto UDP))) action.Drop, Rule (Match (Src (IpAddrNetmask (ipv4addr_of_dotdecimal (240, 0, 0, 0)) 8)) MATCHAND Match (IIface (Iface ''eth0''))) action.Drop, Rule (Match (Src (IpAddrNetmask (ipv4addr_of_dotdecimal (160, 86, 0, 0)) 16)) MATCHAND Match (IIface (Iface ''eth1''))) action.Accept, Rule (Match (IIface (Iface ''eth1''))) action.Drop, Rule (Match (IIface (Iface ''eth0'')) MATCHAND Match (Prot (Proto ICMP)) MATCHAND Match (Extra ''-m icmp --icmp-type 3'')) action.Accept, Rule (Match (IIface (Iface ''eth0'')) MATCHAND Match (Prot (Proto ICMP)) MATCHAND Match (Extra ''-m icmp --icmp-type 11'')) action.Accept, Rule (Match (IIface (Iface ''eth0'')) MATCHAND Match (Prot (Proto ICMP)) MATCHAND Match (Extra ''-m icmp --icmp-type 0'')) action.Accept, Rule (Match (IIface (Iface ''eth0'')) MATCHAND Match (Prot (Proto ICMP)) MATCHAND Match (Extra ''-m icmp --icmp-type 8'')) action.Accept, Rule (Match (Prot (Proto TCP)) MATCHAND Match (Dst_Ports (L4Ports TCP [(0x6F, 0x6F)]))) action.Drop, Rule (Match (IIface (Iface ''eth0'')) MATCHAND Match (Prot (Proto TCP)) MATCHAND Match (Dst_Ports (L4Ports TCP [(0x71, 0x71)]))) action.Drop, Rule (Match (IIface (Iface ''eth0'')) MATCHAND Match (Prot (Proto TCP)) MATCHAND Match (Dst_Ports (L4Ports TCP [(4, 4)]))) action.Accept, Rule (Match (IIface (Iface ''eth0'')) MATCHAND Match (Prot (Proto TCP)) MATCHAND Match (Dst_Ports (L4Ports TCP [(0x14, 0x14)]))) action.Accept, Rule (Match (IIface (Iface ''eth0'')) MATCHAND Match (Prot (Proto TCP)) MATCHAND Match (Dst_Ports (L4Ports TCP [(0x15, 0x15)]))) action.Accept, Rule (Match (IIface (Iface ''eth0'')) MATCHAND Match (Prot (Proto UDP)) MATCHAND Match (Dst_Ports (L4Ports UDP [(0x14, 0x14)]))) action.Accept, Rule (Match (IIface (Iface ''eth0'')) MATCHAND Match (Prot (Proto UDP)) MATCHAND Match (Dst_Ports (L4Ports UDP [(0x15, 0x15)]))) action.Accept, Rule (Match (IIface (Iface ''eth0'')) MATCHAND Match (Prot (Proto TCP)) MATCHAND Match (Dst_Ports (L4Ports TCP [(0x16, 0x16)]))) action.Accept, Rule (Match (IIface (Iface ''eth0'')) MATCHAND Match (Prot (Proto UDP)) MATCHAND Match (Dst_Ports (L4Ports UDP [(0x16, 0x16)]))) action.Accept, Rule (Match (IIface (Iface ''eth0'')) MATCHAND Match (Prot (Proto TCP)) MATCHAND Match (Dst_Ports (L4Ports TCP [(0x50, 0x50)]))) action.Accept, Rule (Match (IIface (Iface ''eth0'')) MATCHAND Match (Prot (Proto UDP)) MATCHAND Match (Dst_Ports (L4Ports UDP [(0x50, 0x50)]))) action.Accept, Rule (Match (IIface (Iface ''eth0'')) MATCHAND Match (Prot (Proto TCP)) MATCHAND Match (Dst_Ports (L4Ports TCP [(0x1BB, 0x1BB)]))) action.Accept, Rule (Match (IIface (Iface ''eth0'')) MATCHAND Match (Prot (Proto UDP)) MATCHAND Match (Dst_Ports (L4Ports UDP [(0x1BB, 0x1BB)]))) action.Accept, Rule (Match (IIface (Iface ''eth0'')) MATCHAND Match (Prot (Proto UDP)) MATCHAND Match (Dst_Ports (L4Ports UDP [(0x208, 0x208)]))) action.Drop, Rule (Match (IIface (Iface ''eth0'')) MATCHAND Match (Prot (Proto TCP)) MATCHAND Match (Dst_Ports (L4Ports TCP [(0x89, 0x8B)]))) action.Drop, Rule (Match (IIface (Iface ''eth0'')) MATCHAND Match (Prot (Proto UDP)) MATCHAND Match (Dst_Ports (L4Ports UDP [(0x89, 0x8B)]))) action.Drop, Rule (Match (Prot (Proto TCP))) action.Drop, Rule (Match (Prot (Proto UDP))) action.Drop, Rule MatchAny action.Drop, Rule MatchAny action.Accept]" by eval lemma "good_ruleset (unfold_ruleset_INPUT saturn_fw_INPUT_default_policy (map_of_string_ipv4 saturn_fw))" by eval lemma "simple_ruleset (unfold_ruleset_INPUT saturn_fw_INPUT_default_policy (map_of_string_ipv4 saturn_fw))" by eval text\<open>Basically, it accepts everything\<close> lemma "take 2 (unfold_ruleset_INPUT saturn_fw_INPUT_default_policy (map_of_string_ipv4 saturn_fw)) = [Rule (Match (CT_State {CT_Related, CT_Established})) action.Accept, Rule (Match (CT_State {CT_New})) action.Accept]" by eval text\<open>The upper closure\<close> value[code] "upper_closure (unfold_ruleset_INPUT saturn_fw_INPUT_default_policy (map_of_string_ipv4 saturn_fw))" lemma upper: "upper_closure (unfold_ruleset_INPUT saturn_fw_INPUT_default_policy (map_of_string_ipv4 saturn_fw)) = [Rule (Match (CT_State {CT_Related, CT_Established})) action.Accept, Rule (Match (CT_State {CT_New})) action.Accept, Rule (Match (Prot (Proto TCP))) action.Drop, Rule (Match (Prot (Proto UDP))) action.Drop, Rule MatchAny action.Drop ]" by eval text\<open>The firewall accepts all NEW packets\<close> lemma "cut_off_after_match_any (rmMatchFalse (ctstate_assume_new (unfold_ruleset_INPUT saturn_fw_INPUT_default_policy (map_of_string_ipv4 saturn_fw)))) = [Rule MatchAny action.Accept]" by eval text\<open>The firewall also accepts all ESTABLISHED packets. Essentially, it accepts all packets!\<close> lemma "cut_off_after_match_any (rmMatchFalse (optimize_matches (ctstate_assume_state CT_Established) (unfold_ruleset_INPUT saturn_fw_INPUT_default_policy (map_of_string_ipv4 saturn_fw)))) = [Rule MatchAny action.Accept]" by eval lemma "approximating_bigstep_fun (common_matcher, in_doubt_allow) \<lparr>p_iiface = ''eth0'', p_oiface = ''eth1'', p_src = ipv4addr_of_dotdecimal (192,168,2,45), p_dst= ipv4addr_of_dotdecimal (173,194,112,111), p_proto=TCP, p_sport=2065, p_dport=80, p_tcp_flags = {TCP_SYN}, p_payload='''', p_tag_ctstate = CT_New\<rparr> (unfold_ruleset_INPUT saturn_fw_INPUT_default_policy (map_of_string_ipv4 saturn_fw)) Undecided = Decision FinalAllow" by eval text\<open>We are removing the first call to the @{term "''STATEFUL''"} chain.\<close> definition "saturn_fw_2 = map (\<lambda> (decl, rs). if decl = ''INPUT'' then (decl, remove1 (Rule MatchAny (Call ''STATEFUL'')) rs) else (decl, rs)) saturn_fw" lemma "tl (the ((map_of_string_ipv4 saturn_fw) ''INPUT'')) = the ((map_of_string_ipv4 saturn_fw_2) ''INPUT'')" by eval text\<open>in doubt allow closure\<close> definition "upper = upper_closure (unfold_ruleset_INPUT saturn_fw_INPUT_default_policy (map_of_string_ipv4 saturn_fw_2))" text\<open>Now the upper closure looks as expected\<close> lemma "upper = [Rule (Match (IIface (Iface ''lo''))) action.Accept, Rule (Match (IIface (Iface ''eth0'')) MATCHAND Match (Prot (Proto TCP)) MATCHAND Match (Src (IpAddrNetmask 0 8))) action.Drop, Rule (Match (IIface (Iface ''eth0'')) MATCHAND Match (Prot (Proto UDP)) MATCHAND Match (Src (IpAddrNetmask (ipv4addr_of_dotdecimal (0, 0, 0, 0)) 8))) action.Drop, Rule (Match (IIface (Iface ''eth0'')) MATCHAND Match (Src (IpAddrNetmask (ipv4addr_of_dotdecimal (0, 0, 0, 0)) 8))) action.Drop, Rule (Match (IIface (Iface ''eth0'')) MATCHAND Match (Prot (Proto TCP)) MATCHAND Match (Src (IpAddrNetmask (ipv4addr_of_dotdecimal (10, 0, 0, 0)) 8))) action.Drop, Rule (Match (IIface (Iface ''eth0'')) MATCHAND Match (Prot (Proto UDP)) MATCHAND Match (Src (IpAddrNetmask (ipv4addr_of_dotdecimal (10, 0, 0, 0)) 8))) action.Drop, Rule (Match (IIface (Iface ''eth0'')) MATCHAND Match (Src (IpAddrNetmask (ipv4addr_of_dotdecimal (10, 0, 0, 0)) 8))) action.Drop, Rule (Match (IIface (Iface ''eth0'')) MATCHAND Match (Prot (Proto TCP)) MATCHAND Match (Src (IpAddrNetmask (ipv4addr_of_dotdecimal (127, 0, 0, 0)) 8))) action.Drop, Rule (Match (IIface (Iface ''eth0'')) MATCHAND Match (Prot (Proto UDP)) MATCHAND Match (Src (IpAddrNetmask (ipv4addr_of_dotdecimal (127, 0, 0, 0)) 8))) action.Drop, Rule (Match (IIface (Iface ''eth0'')) MATCHAND Match (Src (IpAddrNetmask (ipv4addr_of_dotdecimal (127, 0, 0, 0)) 8))) action.Drop, Rule (Match (IIface (Iface ''eth0'')) MATCHAND Match (Prot (Proto TCP)) MATCHAND Match (Src (IpAddrNetmask (ipv4addr_of_dotdecimal (169, 254, 0, 0)) 16))) action.Drop, Rule (Match (IIface (Iface ''eth0'')) MATCHAND Match (Prot (Proto UDP)) MATCHAND Match (Src (IpAddrNetmask (ipv4addr_of_dotdecimal (169, 254, 0, 0)) 16))) action.Drop, Rule (Match (IIface (Iface ''eth0'')) MATCHAND Match (Src (IpAddrNetmask (ipv4addr_of_dotdecimal (169, 254, 0, 0)) 16))) action.Drop, Rule (Match (IIface (Iface ''eth0'')) MATCHAND Match (Prot (Proto TCP)) MATCHAND Match (Src (IpAddrNetmask (ipv4addr_of_dotdecimal (172, 16, 0, 0)) 12))) action.Drop, Rule (Match (IIface (Iface ''eth0'')) MATCHAND Match (Prot (Proto UDP)) MATCHAND Match (Src (IpAddrNetmask (ipv4addr_of_dotdecimal (172, 16, 0, 0)) 12))) action.Drop, Rule (Match (IIface (Iface ''eth0'')) MATCHAND Match (Src (IpAddrNetmask (ipv4addr_of_dotdecimal (172, 16, 0, 0)) 12))) action.Drop, Rule (Match (IIface (Iface ''eth0'')) MATCHAND Match (Prot (Proto TCP)) MATCHAND Match (Src (IpAddrNetmask (ipv4addr_of_dotdecimal (224, 0, 0, 0)) 3))) action.Drop, Rule (Match (IIface (Iface ''eth0'')) MATCHAND Match (Prot (Proto UDP)) MATCHAND Match (Src (IpAddrNetmask (ipv4addr_of_dotdecimal (224, 0, 0, 0)) 3))) action.Drop, Rule (Match (IIface (Iface ''eth0'')) MATCHAND Match (Src (IpAddrNetmask (ipv4addr_of_dotdecimal (224, 0, 0, 0)) 3))) action.Drop, Rule (Match (IIface (Iface ''eth0'')) MATCHAND Match (Prot (Proto TCP)) MATCHAND Match (Src (IpAddrNetmask (ipv4addr_of_dotdecimal (240, 0, 0, 0)) 8))) action.Drop, Rule (Match (IIface (Iface ''eth0'')) MATCHAND Match (Prot (Proto UDP)) MATCHAND Match (Src (IpAddrNetmask (ipv4addr_of_dotdecimal (240, 0, 0, 0)) 8))) action.Drop, Rule (Match (IIface (Iface ''eth0'')) MATCHAND Match (Src (IpAddrNetmask (ipv4addr_of_dotdecimal (240, 0, 0, 0)) 8))) action.Drop, Rule (Match (IIface (Iface ''eth1'')) MATCHAND Match (Src (IpAddrNetmask (ipv4addr_of_dotdecimal (160, 86, 0, 0)) 16))) action.Accept, Rule (Match (IIface (Iface ''eth1''))) action.Drop, Rule (Match (IIface (Iface ''eth0'')) MATCHAND Match (Prot (Proto ICMP))) action.Accept, Rule (Match (Prot (Proto TCP)) MATCHAND Match (Dst_Ports (L4Ports TCP [(0x6F, 0x6F)]))) action.Drop, Rule (Match (IIface (Iface ''eth0'')) MATCHAND Match (Prot (Proto TCP)) MATCHAND Match (Dst_Ports (L4Ports TCP [(0x71, 0x71)]))) action.Drop, Rule (Match (IIface (Iface ''eth0'')) MATCHAND Match (Prot (Proto TCP)) MATCHAND Match (Dst_Ports (L4Ports TCP [(4, 4)]))) action.Accept, Rule (Match (IIface (Iface ''eth0'')) MATCHAND Match (Prot (Proto TCP)) MATCHAND Match (Dst_Ports (L4Ports TCP [(0x14, 0x14)]))) action.Accept, Rule (Match (IIface (Iface ''eth0'')) MATCHAND Match (Prot (Proto TCP)) MATCHAND Match (Dst_Ports (L4Ports TCP [(0x15, 0x15)]))) action.Accept, Rule (Match (IIface (Iface ''eth0'')) MATCHAND Match (Prot (Proto UDP))MATCHAND Match (Dst_Ports (L4Ports UDP [(0x14, 0x14)]))) action.Accept, Rule (Match (IIface (Iface ''eth0'')) MATCHAND Match (Prot (Proto UDP)) MATCHAND Match (Dst_Ports (L4Ports UDP [(0x15, 0x15)]))) action.Accept, Rule (Match (IIface (Iface ''eth0'')) MATCHAND Match (Prot (Proto TCP)) MATCHAND Match (Dst_Ports (L4Ports TCP [(0x16, 0x16)]))) action.Accept, Rule (Match (IIface (Iface ''eth0'')) MATCHAND Match (Prot (Proto UDP)) MATCHAND Match (Dst_Ports (L4Ports UDP [(0x16, 0x16)]))) action.Accept, Rule (Match (IIface (Iface ''eth0'')) MATCHAND Match (Prot (Proto TCP)) MATCHAND Match (Dst_Ports (L4Ports TCP [(0x50, 0x50)]))) action.Accept, Rule (Match (IIface (Iface ''eth0'')) MATCHAND Match (Prot (Proto UDP)) MATCHAND Match (Dst_Ports (L4Ports UDP [(0x50, 0x50)]))) action.Accept, Rule (Match (IIface (Iface ''eth0'')) MATCHAND Match (Prot (Proto TCP)) MATCHAND Match (Dst_Ports (L4Ports TCP [(0x1BB, 0x1BB)]))) action.Accept, Rule (Match (IIface (Iface ''eth0'')) MATCHAND Match (Prot (Proto UDP)) MATCHAND Match (Dst_Ports (L4Ports UDP [(0x1BB, 0x1BB)]))) action.Accept, Rule (Match (IIface (Iface ''eth0'')) MATCHAND Match (Prot (Proto UDP)) MATCHAND Match (Dst_Ports (L4Ports UDP [(0x208, 0x208)]))) action.Drop, Rule (Match (IIface (Iface ''eth0'')) MATCHAND Match (Prot (Proto TCP)) MATCHAND Match (Dst_Ports (L4Ports TCP [(0x89, 0x8B)]))) action.Drop, Rule (Match (IIface (Iface ''eth0'')) MATCHAND Match (Prot (Proto UDP)) MATCHAND Match (Dst_Ports (L4Ports UDP [(0x89, 0x8B)]))) action.Drop, Rule (Match (Prot (Proto TCP))) action.Drop, Rule (Match (Prot (Proto UDP))) action.Drop, Rule MatchAny action.Drop ]" by eval value[code] "zip (upto 0 (int (length upper))) upper" lemma "good_ruleset upper" by eval lemma "simple_ruleset upper" by eval lemma "check_simple_fw_preconditions upper \<and> simple_fw_valid (to_simple_firewall upper)" by eval value "map simple_rule_ipv4_toString (to_simple_firewall upper)" text\<open>in doubt deny closure\<close> value[code] "lower_closure (unfold_ruleset_INPUT saturn_fw_INPUT_default_policy (map_of_string_ipv4 saturn_fw_2))" lemma "simple_fw_valid (to_simple_firewall upper)" by eval lemma "simple_fw_valid (to_simple_firewall (lower_closure (unfold_ruleset_INPUT saturn_fw_INPUT_default_policy (map_of_string_ipv4 saturn_fw_2))))" by eval end
proposition locally_connected_im_kleinen: "locally connected S \<longleftrightarrow> (\<forall>v x. openin (top_of_set S) v \<and> x \<in> v \<longrightarrow> (\<exists>u. openin (top_of_set S) u \<and> x \<in> u \<and> u \<subseteq> v \<and> (\<forall>y. y \<in> u \<longrightarrow> (\<exists>c. connected c \<and> c \<subseteq> v \<and> x \<in> c \<and> y \<in> c))))" (is "?lhs = ?rhs")
module Control.Comonad import Control.Monad.Identity import Data.List1 import Data.Morphisms import Data.Stream %default total -------------------------------------------------------------------------------- -- Comonad -------------------------------------------------------------------------------- public export interface Functor w => Comonad w where extract : w a -> a duplicate : w a -> w (w a) duplicate = extend id extend : (w a -> b) -> w a -> w b extend f = map f . duplicate -------------------------------------------------------------------------------- -- Comonad Implementations -------------------------------------------------------------------------------- public export Comonad (Pair e) where extract = snd duplicate (e,a) = (e, (e, a)) public export Comonad Identity where extract = runIdentity duplicate = Id public export Comonad Stream where extract = head duplicate xs@(_ :: t) = xs :: duplicate t public export Comonad List1 where extract = head duplicate (x ::: xs) = (x ::: xs) ::: tails xs where tails : List a -> List (List1 a) tails [] = [] tails (x :: xs) = (x ::: xs) :: tails xs public export Monoid e => Comonad (Morphism e) where extract (Mor f) = f neutral duplicate (Mor f) = Mor $ \e => Mor (\e' => f (e <+> e')) -------------------------------------------------------------------------------- -- ComonadApply -------------------------------------------------------------------------------- infixl 4 <@, @>, <@@>, <@> public export interface Comonad w => ComonadApply w where (<@>) : w (a -> b) -> w a -> w b (@>) : w a -> w b -> w b (@>) = flip (<@) (<@) : w a -> w b -> w a a <@ b = map const a <@> b -------------------------------------------------------------------------------- -- ComonadApply Implementations -------------------------------------------------------------------------------- public export Semigroup m => ComonadApply (Pair m) where (m, f) <@> (n, a) = (m <+> n, f a) (m, a) <@ (n, _) = (m <+> n, a) (m, _) @> (n, b) = (m <+> n, b) public export ComonadApply List1 where (<@>) = (<*>) public export ComonadApply Stream where (<@>) = (<*>) public export Monoid m => ComonadApply (Morphism m) where (<@>) = (<*>) public export ComonadApply Identity where (<@>) = (<*>) _ @> b = b b <@ _ = b -------------------------------------------------------------------------------- -- Utilities -------------------------------------------------------------------------------- infixl 1 =>> infixr 1 <<=, =<=, =>= ||| `extend` with the arguments swapped. Dual to `>>=` for a `Monad`. public export %inline (=>>) : Comonad w => w a -> (w a -> b) -> w b (=>>) = flip extend ||| `extend` in operator form public export %inline (<<=) : Comonad w => (w a -> b) -> w a -> w b (<<=) = extend ||| Right-to-left `Cokleisli` composition public export %inline (=<=) : Comonad w => (w b -> c) -> (w a -> b) -> w a -> c f =<= g = f . extend g ||| Left-to-right `Cokleisli` composition public export %inline (=>=) : Comonad w => (w a -> b) -> (w b -> c) -> w a -> c f =>= g = g . extend f ||| Flipped version of `<@>`. public export %inline (<@@>) : ComonadApply w => w a -> w (a -> b) -> w b (<@@>) = flip (<@>)
%%***************************************************************** %% sqlptermcode.m: explains the termination code in sqlp.m %%***************************************************************** %% SDPT3: version 4.0 %% Copyright (c) 1997 by %% Kim-Chuan Toh, Michael J. Todd, Reha H. Tutuncu %% Last Modified: 16 Sep 2004 %%***************************************************************** function termcode = sqlptermcode; fprintf('\n 3: norm(X) or norm(Z) diverging'); fprintf('\n 2: dual problem is suspected to be infeasible') fprintf('\n 1: primal problem is suspected to be infeasible') fprintf('\n 0: max(relative gap,infeasibility) < gaptol'); fprintf('\n -1: relative gap < infeasibility'); fprintf('\n -2: lack of progress in predictor or corrector'); fprintf('\n -3: X or Z not positive definite'); fprintf('\n -4: difficulty in computing predictor or corrector direction'); fprintf('\n -5: progress in relative gap or infeasibility is bad'); fprintf('\n -6: maximum number of iterations reached'); fprintf('\n -7: primal infeasibility has deteriorated too much'); fprintf('\n -8: progress in relative gap has deteriorated'); fprintf('\n -9: lack of progress in infeasibility'); fprintf('\n') %%*************************************************************************