Datasets:
AI4M
/

text
stringlengths
0
3.34M
\chapter{Introduction to php} PHP is a server-side scripting language designed for web development but also used as a general-purpose programming language. As of January 2013, PHP was installed on more than 240 million websites (39 percent of those sampled) and 2.1 million web servers. Originally created by Rasmus Lerdorf in 1994, the reference implementation of PHP (powered by the Zend Engine) is now produced by The PHP Group. While PHP originally stood for Personal Home Page, it now stands for PHP: Hypertext Preprocessor, which is a recursive backronym. PHP code can be simply mixed with HTML code, or it can be used in combination with various templating engines and web frameworks. PHP code is usually processed by a PHP interpreter, which is usually implemented as a web server's native module or a Common Gateway Interface (CGI) executable. After the PHP code is interpreted and executed, the web server sends the resulting output to its client, usually in the form of a part of the generated web page; for example, PHP code can generate a web page's HTML code, an image, or some other data. PHP has also evolved to include a command-line interface (CLI) capability and can be used in standalone graphical applications. The standard PHP interpreter, powered by the Zend Engine, is free software released under the PHP License. PHP has been widely ported and can be deployed on most web servers on almost every operating system and platform, free of charge. Despite its popularity, no written specification or standard existed for the PHP language until 2014, leaving the canonical PHP interpreter as a de facto standard. Since 2014, there is ongoing work on creating a formal PHP specification. \section{PHP introduction} Since we assume you are familiar with other programming languages, we will only go over the basics of PHP. For this we refer to the powerpoint presentation \url{Intro_php.pptx}.
import algebra.big_operators import data.finset.slice import data.rat import tactic open finset nat open_locale big_operators namespace finset namespace bbsetpair2 --Bollobas set pair theorem --A and B are the families of finite sets indexed by I --sp is the condition the family satisfies --spi is a shortcut for disjoint-ness of A i and B i --U is the universe of elements in any of the sets -- it has size u @[ext] structure setpair := (A : ℕ → finset ℕ) (B : ℕ → finset ℕ) (I : finset ℕ) (sp : ∀i∈ I,∀j∈ I, ((A i)∩(B j)).nonempty ↔ i ≠ j) (spi : ∀i∈ I, disjoint (A i) (B i)) (U : finset ℕ) (Ug : U = I.bUnion(λ i, (A i) ∪ (B i ))) (u : ℕ) (ug: u= card U) --- we take the trivial system with I=∅ instance : inhabited setpair :={ default:= {A:=λ _,∅, B:=λ _,∅,I:=∅, sp:=begin tauto, end, spi:=begin tauto, end, U:=∅, Ug:=begin tauto, end, u:=0, ug:=begin tauto,end,}} -- density of a setpair system @[simp]def den (S : setpair) :ℚ := ∑ i in S.I, ((1 : ℚ)/(card(S.A i)+card(S.B i)).choose (card (S.B i))) -- helper - if A i and B j are disjoint then i=j lemma sp' {S : setpair} {i j : ℕ}: i∈ S.I → j∈S.I → (disjoint (S.A i) (S.B j) → i = j):= begin intros hi hj hd, by_contra, have ne: ((S.A i)∩(S.B j)).nonempty, apply (S.sp i hi j hj).mpr h, rw disjoint_iff_inter_eq_empty at hd, simp only [ * , not_nonempty_empty] at *, end -- the erase constructor - gives a new setpair without element x -- we discard all i such that B i contains x and then erase x from any A i containing x @[simp]def er (S : setpair) (x : ℕ) : setpair :={ A:=λ n, erase (S.A n) x, B:=S.B, I:=S.I.filter(λi, x∉(S.B i)), sp:=begin intros i hi j hj, rw [mem_filter] at *, suffices same: ((S.A i).erase x ∩ S.B j) = (S.A i) ∩ (S.B j),{ rw same, exact S.sp i hi.1 j hj.1,}, cases hj, cases hi, dsimp at *, ext1, simp only [mem_inter, mem_erase, ne.def, and.congr_left_iff, and_iff_right_iff_imp] at *, intros m n p, cases p,solve_by_elim, end, U:= (S.I.filter(λi, x∉(S.B i))).bUnion(λ i, (((S.A i).erase x) ∪ (S.B i ))), Ug:=rfl, u:=card((S.I.filter(λi, x∉(S.B i))).bUnion(λ i, (((S.A i).erase x) ∪ (S.B i )))), ug:=rfl, spi:=begin intros i hi, rw [mem_filter] at *, apply disjoint_of_subset_left _ (S.spi i hi.1), apply erase_subset _,end, } --- the sets are in the universe... lemma univ_ss {S : setpair} {i : ℕ} : i ∈ S.I → (S.A i ∪ S.B i)⊆ S.U:= begin intro hi, intros x, rw [setpair.Ug,mem_bUnion],tauto, end -- applying er y gives a smaller universe if y was in the universe. lemma er_univ_lt (S : setpair) {y : ℕ} : y ∈ S.U → (er S y).u < S.u := begin intro hy, have ss: (er S y).U ⊆ S.U,{ simp [er,S.Ug], intros i hi hy, intros x hx, rw [mem_bUnion], use i , split, exact hi, rw [mem_union] at *, cases hx with ha hb, left, apply mem_of_mem_erase ha,right, exact hb,}, have ey: y∉ (er S y).U, {simp [er,S.Ug]}, simp [setpair.ug], apply card_lt_card, apply (ssubset_iff_of_subset ss).mpr _, use [y, hy, ey], end -- pairs are disjoint so sizes add. lemma card_pair {S : setpair} {i : ℕ} : i ∈ S.I → card((S.A i ∪ S.B i)) = card(S.A i) + card(S.B i):=λ hi, card_union_eq (S.spi i hi) -- U is partitioned into each pair and their complement lemma card_U {S :setpair} {i : ℕ} : i ∈ S.I → card(S.U\(S.A i ∪ S.B i)) + card(S.A i) + card(S.B i) = card(S.U):= begin intros hi, rw [add_assoc, ← card_pair hi], apply card_sdiff_add_card_eq_card (univ_ss hi), end lemma card_Udiv (S :setpair) :∀i∈ S.I, ((card(S.A i) + card(S.B i)).choose (card(S.B i)):ℚ)⁻¹*(card S.U)= ((card(S.A i) + card(S.B i)).choose (card (S.B i)):ℚ)⁻¹*((card(S.U\(S.A i ∪ S.B i)) + card(S.A i) + card(S.B i))) := begin intros i hi, rw ← card_U hi, norm_cast, end --- want to work mainly with non-trivial setpairs so assume ever A i is non-empty def triv_sp (S : setpair) : Prop := (∃i∈S.I, card(S.A i) =0) --- trivial sp has at most one pair. lemma triv_imp_I1 {S :setpair} (h: triv_sp S) : card S.I ≤ 1:= begin by_contra h', obtain ⟨a,ha,b,hb,ne⟩:=one_lt_card.mp (by linarith: 1< S.I.card), obtain ⟨x,hx⟩:=(S.sp a ha b hb).mpr ne, obtain ⟨i,h⟩:=h, rw card_eq_zero at h, cases h with hi hie, rw mem_inter at hx, have ia: i=a, { apply sp' hi ha _, rw hie, simp only [disjoint_empty_left], }, have ib: i=b, { apply sp' hi hb _, rw hie, simp only [disjoint_empty_left], }, rw [←ia,←ib] at ne, tauto, end -- non-trivial means each A i is non-empty so has at least one element lemma ntriv_sp {S : setpair} (ht: ¬triv_sp S): ∀i∈S.I, 1 ≤ card(S.A i):= begin rw triv_sp at ht,push_neg at ht, intros i hi, exact one_le_iff_ne_zero.mpr (ht i hi), end -- making the casting of the densities slightly less painful lemma binhelp {a b c d: ℕ } (h: (a+b)*c=d*a) (hc: 0 < c) (hd: 0 < d): (↑d:ℚ)⁻¹*(a+b)=(↑c:ℚ)⁻¹*a:= begin have qh:((a:ℚ)+(b:ℚ))*(c:ℚ)=(d:ℚ)*(a:ℚ), norm_cast, exact h, have dnz: (d:ℚ)≠ 0, { simp only [ne.def, cast_eq_zero], linarith, }, have cnz: (c:ℚ)≠ 0, { simp only [ne.def, cast_eq_zero], linarith, }, rw ← div_eq_inv_mul,rw ← div_eq_inv_mul, rw div_eq_iff dnz, rw mul_comm, rw mul_div, rw mul_comm, symmetry, rw div_eq_iff cnz, symmetry, rw mul_comm (↑a), exact qh, end -- the key fact we need for binomials -- really should have done this in the nats. lemma binom_frac (a b : ℕ) (h:0 < a) :((a+b).choose(b):ℚ)⁻¹*(a+b)=((a-1+b).choose(b):ℚ)⁻¹*a:= begin have a1: a= (a -1).succ,{ rw succ_eq_add_one, linarith,}, have ab: a+b= (a-1+b).succ,{ rw [succ_eq_add_one, add_assoc,add_comm b 1,← add_assoc,←succ_eq_add_one,← a1],}, have ch: (a-1+b).succ* (a-1+b).choose (a-1)= (a-1+b).succ.choose((a-1).succ)*((a-1).succ), apply succ_mul_choose_eq (a-1+b) (a-1), rw [←ab,← a1] at ch, have abn: (a-1+b)-(a-1)=b:=add_tsub_cancel_left (a-1) b, have abs : a+b-a=b:=add_tsub_cancel_left a b, have aln: a-1 ≤ a-1+b:=(by linarith), have aln2: a≤ a+b:=(by linarith), have f1: (a-1+b).choose((a-1+b)-(a-1))=(a-1+b).choose(a-1):=choose_symm aln, rw abn at f1, have f2: (a+b).choose(a+b-a)=(a+b).choose(a):=choose_symm aln2, rw abs at f2, rw [←f1, ← f2] at ch, -- clear_except ch, rw [mul_comm], norm_cast, rw [mul_comm], simp [ch], have ap :(a-1+b).choose b > 0,{ apply choose_pos (by linarith: b≤ a-1+b), }, have bp:(a+b).choose b >0,{ apply choose_pos (by linarith:b≤a+b),}, apply binhelp ch ap bp, end lemma den_rhs_1 {S : setpair} : ∑ i in S.I, ((card(S.A i) + card(S.B i)).choose (card (S.B i)):ℚ)⁻¹*card(S.U\(S.A i ∪ S.B i)) + ∑ i in S.I, ((card(S.A i) + card(S.B i)).choose (card (S.B i)):ℚ)⁻¹*(card(S.A i) + card(S.B i)) = den S * S.u := begin simp only [den, one_div], rw [setpair.ug],rw sum_mul, rw ← sum_add_distrib, apply sum_congr _ _, refl, intros i hi, rw ← mul_add, norm_cast, rw ← add_assoc, convert card_Udiv S i hi, exact card_U hi, norm_cast, exact (card_U hi).symm, end lemma den_rhs_2 {S : setpair} (ht: ¬triv_sp S) : ∑ i in S.I, ((card(S.A i) + card(S.B i)).choose (card (S.B i)):ℚ)⁻¹*(card(S.A i) + card(S.B i)) = ∑ i in S.I, ((card(S.A i)-1 + card(S.B i)).choose (card (S.B i)):ℚ)⁻¹*(card(S.A i)) := begin apply sum_congr _ _, refl, intros i hi, rw binom_frac _ _ ((ntriv_sp ht) i hi), end lemma den_help_1 {S : setpair} : ∀i, ∀y∈(S.U\((S.A i)∪(S.B i))), (S.A i).card +(S.B i).card = ((S.A i).erase y).card + (S.B i).card:= begin intros i y hy, simp only [add_left_inj], rw card_erase_eq_ite,split_ifs, simp only [*, mem_sdiff, mem_union, true_or, not_true, and_false] at *, end lemma den_help_2 {S : setpair} : ∀i, ∀y∈(S.A i), (S.A i).card - 1 +(S.B i).card = ((S.A i).erase y).card + (S.B i).card:= begin intros i y hy, simp only [add_left_inj], rw card_erase_of_mem hy, end lemma den_rhs_3 {S : setpair} : ∀ i∈S.I , ((card(S.A i) + card(S.B i)).choose (card (S.B i)):ℚ)⁻¹*(card(S.U\((S.A i)∪(S.B i)))) = ∑y in (S.U\((S.A i)∪(S.B i))), ((((S.A i).erase y).card + card(S.B i)).choose ((S.B i).card):ℚ)⁻¹:= begin intros i hi, rw card_eq_sum_ones (S.U\((S.A i)∪(S.B i))), push_cast, rw zero_add, rw mul_sum, rw mul_one, rw sum_congr _ _, refl, intros y hy,rw (den_help_1 i y hy), end lemma den_rhs_4 {S : setpair} : ∀ i∈S.I , ((card(S.A i) - 1 + card(S.B i)).choose (card (S.B i)):ℚ)⁻¹*(card(S.A i)) = ∑y in (S.A i), ((((S.A i).erase y).card + card(S.B i)).choose ((S.B i).card):ℚ)⁻¹:= begin intros i hi, nth_rewrite 1 card_eq_sum_ones (S.A i), push_cast, rw zero_add, rw mul_sum, rw mul_one, rw sum_congr _ _, refl, intros y hy,rw (den_help_2 i y hy), end lemma den_rhs_5 {S : setpair} : ∑ i in S.I , ((card(S.A i) + card(S.B i)).choose (card (S.B i)):ℚ)⁻¹*(card(S.U\((S.A i)∪(S.B i)))) = ∑ i in S.I, (∑y in (S.U\((S.A i)∪(S.B i))), ((((S.A i).erase y).card + card(S.B i)).choose ((S.B i).card):ℚ)⁻¹):= begin apply sum_congr (rfl) (den_rhs_3), end lemma den_rhs_6 {S : setpair} : ∑ i in S.I, ((card(S.A i) - 1 + card(S.B i)).choose (card (S.B i)):ℚ)⁻¹*(card(S.A i)) = ∑ i in S.I, (∑y in (S.A i), ((((S.A i).erase y).card + card(S.B i)).choose ((S.B i).card):ℚ)⁻¹):= begin apply sum_congr (rfl) (den_rhs_4), end lemma disj_den {S : setpair} : ∀i, disjoint (S.U\((S.A i)∪(S.B i))) (S.A i):= begin intros i, apply disjoint_of_subset_right (subset_union_left (S.A i) (S.B i)), exact sdiff_disjoint, end lemma sp_sdiff (S : setpair) : ∀i∈S.I, (S.U\((S.A i)∪(S.B i)))∪ (S.A i) = (S.U\(S.B i)) := begin intros i hi, have he: (S.A i)∪ (S.B i)⊆ S.U:=univ_ss hi, have heA: (S.A i)⊆ S.U:=subset_trans (subset_union_left (S.A i) (S.B i)) he, have ab: disjoint (S.A i) (S.B i):=S.spi i hi, rw sdiff_union_distrib, ext x,split, simp only [mem_union, mem_inter, mem_sdiff] at *, intro h, rcases h, exact h.2, split, exact heA h, intro hb, exact ab (mem_inter.mpr ⟨h,hb⟩), intros h, rw [mem_union,mem_inter,mem_sdiff], by_cases hA: x∈ (S.A i) , right, exact hA, left,split, simp only [*, mem_sdiff, not_false_iff, and_self] at *, exact h, end lemma den_rhs_7 {S : setpair} : ∀i∈ S.I, (∑y in (S.U\((S.A i)∪(S.B i))), ((((S.A i).erase y).card + card(S.B i)).choose ((S.B i).card):ℚ)⁻¹) +(∑y in (S.A i), ((((S.A i).erase y).card + card(S.B i)).choose ((S.B i).card):ℚ)⁻¹)=(∑y in (S.U\(S.B i)), ((((S.A i).erase y).card + card(S.B i)).choose ((S.B i).card):ℚ)⁻¹) := begin intros i hi, rw [← sp_sdiff S i hi, sum_union (disj_den i )], end lemma den_rhs_8 {S : setpair} : ∑ i in S.I, ((∑y in (S.U\((S.A i)∪(S.B i))), ((((S.A i).erase y).card + card(S.B i)).choose ((S.B i).card):ℚ)⁻¹) +(∑y in (S.A i), ((((S.A i).erase y).card + card(S.B i)).choose ((S.B i).card):ℚ)⁻¹))=∑ i in S.I,(∑y in (S.U\(S.B i)), ((((S.A i).erase y).card + card(S.B i)).choose ((S.B i).card):ℚ)⁻¹) := begin apply sum_congr (rfl) (den_rhs_7), end lemma doublecount {A B : finset ℕ} {f: ℕ → ℕ → ℚ} {p: ℕ → ℕ → Prop} [decidable_rel p] : ∑ a in A, ∑ b in filter (λ i , p a i) B, f a b = ∑ b in B, ∑ a in filter (λ i, p i b) A, f a b:= begin have inL: ∀a∈A,∑ b in filter (λ i, p a i) B, (f a b)= ∑ b in B, ite (p a b) (f a b) 0,{ intros a ha, rw sum_filter,}, have inL2: ∑a in A, ∑ b in filter (λ i, p a i) B, (f a b)= ∑ a in A, ∑ b in B, ite (p a b) (f a b) 0, { apply sum_congr, refl, exact inL,}, have inR: ∀b∈B,∑ a in filter (λ i, p i b) A, (f a b)= ∑ a in A, ite (p a b) (f a b) 0,{ intros b hb, rw sum_filter,}, have inR2: ∑b in B, ∑ a in filter (λ i, p i b) A, (f a b)= ∑ b in B, ∑ a in A, ite (p a b) (f a b) 0, { apply sum_congr, refl, exact inR,}, rw [inL2,inR2,sum_comm], end lemma doublecount' {A B : finset ℕ} {f g: ℕ → ℕ → ℚ} {a b : ℕ} {p: ℕ → ℕ → Prop} [decidable_rel p] : (∀a∈ A,∀b∈B , p a b → f a b = g a b) → ∑ a in A, ∑ b in filter (λ i , p a i) B, f a b = ∑ b in B, ∑ a in filter (λ i, p i b) A, g a b:= begin intros h, rw doublecount, apply sum_congr, refl, intros b hb, apply sum_congr, refl, intro x, rw mem_filter, intro ha, exact h x ha.1 b hb ha.2, end lemma dc_4 {S : setpair} {f: ℕ → ℕ → ℚ} : ∑ i in S.I, ∑ y in S.U\(S.B i), f y i = ∑ i in S.I, ∑ y in filter (λ x, x∉(S.B i)) S.U, f y i:= begin have H: ∀ i∈S.I, S.U\S.B i = filter (λ x, x∉ S.B i) S.U,{ intros i hi, ext x,rw [mem_sdiff,mem_filter],}, have H1: ∀ i∈S.I,∑ y in S.U\(S.B i), f y i = ∑ y in filter (λ x, x∉(S.B i)) S.U, f y i,{ intros i hi, apply sum_congr , exact H i hi, intros x hx,refl,}, apply sum_congr, refl,exact H1, end lemma den_double {S : setpair} (ht: ¬triv_sp S) : (∑ y in S.U, den (er S y))= den S * S.u := begin rw ← den_rhs_1, simp only [den, er, one_div], rw [den_rhs_2 ht, den_rhs_5 , den_rhs_6 , ← sum_add_distrib], rw [den_rhs_8,dc_4,doublecount], end lemma trival_mem {S : setpair} (h: ∃i∈S.I, (S.A i) = ∅) : card S.I ≤ 1 := begin by_contra h', obtain ⟨a,ha,b,hb,ne⟩:=one_lt_card.mp (by linarith: 1< S.I.card), obtain ⟨x,hx⟩:=(S.sp a ha b hb).mpr ne, obtain ⟨i, hi, inem⟩:=h, rw mem_inter at hx, have ha' : disjoint (S.A i) (S.B a), rw inem, simp only [disjoint_empty_left], have hb' : disjoint (S.A i) (S.B b), rw inem, simp only [disjoint_empty_left], have ia: i=a:=sp' hi ha ha', have ib: i=b:=sp' hi hb hb', rw ia at ib, tauto, end lemma trival_univ {S : setpair} (h: S.u = 0) : card S.I ≤ 1 := begin by_contra h', obtain ⟨a,ha,b,hb,ne⟩:=one_lt_card.mp (by linarith: 1< S.I.card), obtain ⟨x,hx⟩:=(S.sp a ha b hb).mpr ne, have xinU: x∈ S.U,{ simp only [mem_inter, setpair.Ug, mem_bUnion, mem_union, exists_prop, not_le, _root_.ne.def] at *, use [a,ha,hx.1], }, rw [setpair.ug,card_eq_zero] at h, have :S.U.nonempty:=⟨x,xinU⟩, rw h at this, apply not_nonempty_empty this, end lemma den_triv {S : setpair} (h: triv_sp S) :den S≤ 1:= begin have I1: card(S.I) ≤ 1:=triv_imp_I1 h, have Ic: card S.I ∈ Icc 0 1, { simp only [mem_Icc, zero_le, true_and,I1],}, fin_cases Ic, {-- empty sum is zero have : den S =0,{ rw card_eq_zero at Ic, rw [den, Ic], apply sum_empty, },linarith, }, {--- only have I={a} so sum over singleton rw card_eq_one at Ic, rw [den], cases Ic with a ha, rw ha, rw sum_singleton, set d:=((S.A a).card + (S.B a).card).choose ((S.B a).card), have nch: 0< d :=choose_pos (le_add_self), have d1: 1 ≤ d:= by linarith, clear_except d1, rw one_div, apply inv_le_one _, rwa one_le_cast, }, end lemma emp_U_den {S : setpair} (h: S.u = 0): den S ≤ 1 := begin have Ic: card S.I ∈ Icc 0 1, { simp only [mem_Icc, zero_le, true_and, trival_univ h],}, fin_cases Ic, {-- empty sum is zero have : den S =0,{ rw card_eq_zero at Ic, rw [den, Ic], apply sum_empty, },linarith, }, {--- only have I={a} so sum over singleton rw card_eq_one at Ic, rw [den], cases Ic with a ha, rw ha, rw sum_singleton, set d:=((S.A a).card + (S.B a).card).choose ((S.B a).card), have nch: 0< d :=choose_pos (le_add_self), have d1: 1 ≤ d:= by linarith, clear_except d1, rw one_div, apply inv_le_one _, rwa one_le_cast, }, end theorem bollobas_sp {S : setpair} {n : ℕ}: S.u=n → den S ≤ 1 := begin revert S, --- should really do induction on S.wA so n= 0 → I.nonempty → (∃i∈S.I, (S.A i) = ∅) induction n using nat.strong_induction_on with n hn, intros S hs, cases nat.eq_zero_or_pos n with Uem, {rw ← hs at Uem, exact emp_U_den Uem,}, by_cases ht: triv_sp S, {--- do case where there is an empty set in A or no sets at all! exact den_triv ht, }, { rw ← hs at h, apply (mul_le_iff_le_one_left (cast_pos.mpr h)).mp, have e: (∑ y in S.U, den (er S y)) = den S * S.u,{ exact den_double ht,}, rw ← e, have dc: ∀y∈ S.U, (er S y).u< S.u,{ intros y hy, exact er_univ_lt S hy,}, have dd: ∀y∈ S.U, den(er S y)≤ (1:ℚ),{ intros y hy, rw hs at dc, apply hn ((er S y).u) (dc y hy),refl,}, { rw setpair.ug, rw card_eq_sum_ones, convert sum_le_sum dd, norm_cast,}, exact rat.nontrivial, }, end theorem bollobas_sp' {S : setpair} : den S ≤ 1 := begin set n:ℕ:=S.u with h, exact bollobas_sp h, end end bbsetpair2 end finset
The following are scrapbook layouts that you can view online, and get ideas from to use in your own scrapbooking. Layouts, paper piecing, using wire, scrapbook album cover ideas, graphics ideas and more scrapbooking ideas. If you are looking just for free blank scrapbook layouts to print and use in your own scrapbooking, visit our Free Scrapbooking Layouts page. A list of links to creative page layouts, graphics and memory book ideas. This gallery now contains 24446 entries in 88 different categories. Browse through the categories, search by keyword or layout type, or just preview the latest entries. Have you been wanting to try your hand at paper tearing? This pattern gives you a chance to give it a tear - the torn edge gives terrific dimension to the flag! Lots more scrapbook layouts organized in categories. Again, many pages posted. These are organized into categories - birthday, Christmas, etc. Great for using with your scrapbook paper piecing. Tons of fun patterns and shapes!
-- Proof: insertion sort computes a permutation of the input list module sortnat where open import bool open import eq open import nat open import list open import nondet open import nondet-thms -- non-deterministic insert. --This takes a nondeterministic list because I need to be able to call it with the result of perm -- --implementation in curry: -- ndinsert x [] = [] -- ndinsert x (y:ys) = (x : y : xs) ? (y : insert x ys) ndinsert : {A : Set} → A → 𝕃 A → ND (𝕃 A) ndinsert x [] = Val ( x :: []) ndinsert x (y :: ys) = (Val ( x :: y :: ys )) ?? ((_::_ y) $* (ndinsert x ys)) --non-deterministic permutation --this is identical to the curry code (except for the Val constructor) perm : {A : Set} → (𝕃 A) → ND (𝕃 A) perm [] = Val [] perm (x :: xs) = (ndinsert x) *$* (perm xs) --insert a value into a sorted list. --this is identical to curry or haskell code. -- --note that the structure here is identical to ndinsert insert : ℕ → 𝕃 ℕ → 𝕃 ℕ insert x [] = x :: [] insert x (y :: ys) = if x < y then (x :: y :: ys) else (y :: insert x ys) --simple insertion sort --again this is identical to curry or haskell --also, note that the structure is identical to perm sort : 𝕃 ℕ → 𝕃 ℕ sort [] = [] sort (x :: xs) = insert x (sort xs) --If introduction rule for non-deterministic values. --if x and y are both possible values in z then --∀ c. if c then x else y will give us either x or y, so it must be a possible value of z. -- ifIntro : {A : Set} → (x : A) → (y : A) → (nx : ND A) → x ∈ nx → y ∈ nx → (c : 𝔹) → (if c then x else y) ∈ nx ifIntro x y nx p q tt = p ifIntro x y nx p q ff = q --------------------------------------------------------------------------- -- -- this should prove that if xs ∈ nxs then, insert x xs ∈ ndinsert x nxs -- parameters: -- x : the value we are inserting into the list -- xs : the list -- --returns: insert x xs ∈ ndinsert x xs -- a proof that inserting a value in a list is ok with non-deterministic lists insert=ndinsert : (y : ℕ) → (xs : 𝕃 ℕ) → (insert y xs) ∈ (ndinsert y xs) -- the first case is simple: inserting into an empty list is trivial insert=ndinsert y [] = ndrefl --The recursive case is the interesting one. --The list to insert an element has the form (x :: xs) --At this point we have two possible cases. --Either y is smaller then every element in (x :: xs), in which case it's inserted at the front, --or y is larger than x, in which case it's inserted somewhere in xs. --Since both of these cases are covered by ndinsert we can invoke the ifIntro lemma, to say that we don't care which case it is. -- --variables: -- step : one step of insert -- l : the left hand side of insert y xs (the then branch) -- r : the right hand side of insert y xs (the else branch) -- nr : a non-deterministic r -- (Val l) : a non-deterministic l (but since ndinsert only has a deterministic value on the left it's not very interesting) -- rec : The recursive call. If y isn't inserted into the front, then we need to find it. -- l∈step : a proof that l is a possible value for step -- r∈step : a proof that r is a possible value for step insert=ndinsert y (x :: xs) = ifIntro l r step l∈step r∈step (y < x) where step = ndinsert y (x :: xs) l = (y :: x :: xs) r = x :: insert y xs nl = Val l nr = (_::_ x) $* (ndinsert y xs) rec = ∈-$* (_::_ x) (insert y xs) (ndinsert y xs) (insert=ndinsert y xs) l∈step = left nl nr ndrefl r∈step = right nl nr rec --------------------------------------------------------------------------- -- Main theorem: Sorting a list preserves permutations -- all of the work is really done by insert=ndinsert sortPerm : (xs : 𝕃 ℕ) → sort xs ∈ perm xs sortPerm [] = ndrefl sortPerm (x :: xs) = ∈-*$* (sort xs) (perm xs) (insert x) (ndinsert x) (sortPerm xs) (insert=ndinsert x (sort xs))
Formal statement is: lemma has_derivative_inverse_strong: fixes f :: "'n::euclidean_space \<Rightarrow> 'n" assumes "open S" and "x \<in> S" and contf: "continuous_on S f" and gf: "\<And>x. x \<in> S \<Longrightarrow> g (f x) = x" and derf: "(f has_derivative f') (at x)" and id: "f' \<circ> g' = id" shows "(g has_derivative g') (at (f x))" Informal statement is: Suppose $f$ is a continuous function from an open set $S$ to itself, and $f$ has a continuous inverse $g$. If $f$ is differentiable at $x \in S$, then $g$ is differentiable at $f(x)$.
function kern = rbfwhiteKernExpandParam(kern, params) % RBFWHITEKERNEXPANDPARAM Create kernel structure from RBF-WHITE kernel's % parameters. % FORMAT % DESC returns a RBF-WHITE kernel structure filled with the parameters in % the given vector. This is used as a helper function to enable parameters % to be optimised in, for example, the NETLAB optimisation functions. % ARG kern : the kernel structure in which the parameters are to be % placed. % ARG param : vector of parameters which are to be placed in the % kernel structure. % RETURN kern : kernel structure with the given parameters in the % relevant locations. % % SEEALSO : rbfwhiteKernParamInit, rbfwhiteKernExtractParam, kernExpandParam % % COPYRIGHT : David Luengo, 2009 % KERN kern.inverseWidth = params(1); kern.variance = params(2);
If $f$ is convex on $S$ and $c \geq 0$, then $c f$ is convex on $S$.
(* Title: JinjaThreads/MM/JMM_J_Typesafe.thy Author: Andreas Lochbihler *) section \<open>JMM type safety for source code\<close> theory JMM_J_Typesafe imports JMM_Typesafe2 DRF_J begin locale J_allocated_heap_conf' = h: J_heap_conf addr2thread_id thread_id2addr spurious_wakeups empty_heap allocate "\<lambda>_. typeof_addr" heap_read heap_write hconf P + h: J_allocated_heap addr2thread_id thread_id2addr spurious_wakeups empty_heap allocate "\<lambda>_. typeof_addr" heap_read heap_write allocated P + heap'' addr2thread_id thread_id2addr spurious_wakeups empty_heap allocate typeof_addr heap_read heap_write P for addr2thread_id :: "('addr :: addr) \<Rightarrow> 'thread_id" and thread_id2addr :: "'thread_id \<Rightarrow> 'addr" and spurious_wakeups :: bool and empty_heap :: "'heap" and allocate :: "'heap \<Rightarrow> htype \<Rightarrow> ('heap \<times> 'addr) set" and typeof_addr :: "'addr \<rightharpoonup> htype" and heap_read :: "'heap \<Rightarrow> 'addr \<Rightarrow> addr_loc \<Rightarrow> 'addr val \<Rightarrow> bool" and heap_write :: "'heap \<Rightarrow> 'addr \<Rightarrow> addr_loc \<Rightarrow> 'addr val \<Rightarrow> 'heap \<Rightarrow> bool" and hconf :: "'heap \<Rightarrow> bool" and allocated :: "'heap \<Rightarrow> 'addr set" and P :: "'addr J_prog" sublocale J_allocated_heap_conf' < h: J_allocated_heap_conf addr2thread_id thread_id2addr spurious_wakeups empty_heap allocate "\<lambda>_. typeof_addr" heap_read heap_write hconf allocated P by(unfold_locales) context J_allocated_heap_conf' begin lemma red_New_type_match: "\<lbrakk> h.red' P t e s ta e' s'; NewHeapElem ad CTn \<in> set \<lbrace>ta\<rbrace>\<^bsub>o\<^esub>; typeof_addr ad \<noteq> None \<rbrakk> \<Longrightarrow> typeof_addr ad = \<lfloor>CTn\<rfloor>" and reds_New_type_match: "\<lbrakk> h.reds' P t es s ta es' s'; NewHeapElem ad CTn \<in> set \<lbrace>ta\<rbrace>\<^bsub>o\<^esub>; typeof_addr ad \<noteq> None \<rbrakk> \<Longrightarrow> typeof_addr ad = \<lfloor>CTn\<rfloor>" by(induct rule: h.red_reds.inducts)(auto dest: allocate_typeof_addr_SomeD red_external_New_type_match) lemma mred_known_addrs_typing': assumes wf: "wf_J_prog P" and ok: "h.start_heap_ok" shows "known_addrs_typing' addr2thread_id thread_id2addr empty_heap allocate typeof_addr heap_write allocated h.J_known_addrs final_expr (h.mred P) (\<lambda>t x h. \<exists>ET. h.sconf_type_ok ET t x h) P" proof - interpret known_addrs_typing addr2thread_id thread_id2addr spurious_wakeups empty_heap allocate "\<lambda>_. typeof_addr" heap_read heap_write allocated h.J_known_addrs final_expr "h.mred P" "\<lambda>t x h. \<exists>ET. h.sconf_type_ok ET t x h" P using assms by(rule h.mred_known_addrs_typing) show ?thesis by unfold_locales(auto dest: red_New_type_match) qed lemma J_legal_read_value_typeable: assumes wf: "wf_J_prog P" and wf_start: "h.wf_start_state P C M vs" and legal: "weakly_legal_execution P (h.J_\<E> P C M vs status) (E, ws)" and a: "enat a < llength E" and read: "action_obs E a = NormalAction (ReadMem ad al v)" shows "\<exists>T. P \<turnstile> ad@al : T \<and> P \<turnstile> v :\<le> T" proof - note wf moreover from wf_start have "h.start_heap_ok" by cases moreover from wf wf_start have "ts_ok (\<lambda>t x h. \<exists>ET. h.sconf_type_ok ET t x h) (thr (h.J_start_state P C M vs)) h.start_heap" by(rule h.J_start_state_sconf_type_ok) moreover from wf have "wf_syscls P" by(rule wf_prog_wf_syscls) ultimately show ?thesis using legal a read by(rule known_addrs_typing'.weakly_legal_read_value_typeable[OF mred_known_addrs_typing']) qed end subsection \<open>Specific part for JMM implementation 2\<close> abbreviation jmm_J_\<E> :: "addr J_prog \<Rightarrow> cname \<Rightarrow> mname \<Rightarrow> addr val list \<Rightarrow> status \<Rightarrow> (addr \<times> (addr, addr) obs_event action) llist set" where "jmm_J_\<E> P \<equiv> J_heap_base.J_\<E> addr2thread_id thread_id2addr jmm_spurious_wakeups jmm_empty jmm_allocate (jmm_typeof_addr P) jmm_heap_read jmm_heap_write P" abbreviation jmm'_J_\<E> :: "addr J_prog \<Rightarrow> cname \<Rightarrow> mname \<Rightarrow> addr val list \<Rightarrow> status \<Rightarrow> (addr \<times> (addr, addr) obs_event action) llist set" where "jmm'_J_\<E> P \<equiv> J_heap_base.J_\<E> addr2thread_id thread_id2addr jmm_spurious_wakeups jmm_empty jmm_allocate (jmm_typeof_addr P) (jmm_heap_read_typed P) jmm_heap_write P" lemma jmm_J_heap_conf: "J_heap_conf addr2thread_id thread_id2addr jmm_empty jmm_allocate (jmm_typeof_addr P) jmm_heap_write jmm_hconf P" by(unfold_locales) lemma jmm_J_allocated_heap_conf: "J_allocated_heap_conf addr2thread_id thread_id2addr jmm_empty jmm_allocate (jmm_typeof_addr P) jmm_heap_write jmm_hconf jmm_allocated P" by(unfold_locales) lemma jmm_J_allocated_heap_conf': "J_allocated_heap_conf' addr2thread_id thread_id2addr jmm_empty jmm_allocate (jmm_typeof_addr' P) jmm_heap_write jmm_hconf jmm_allocated P" apply(rule J_allocated_heap_conf'.intro) apply(unfold jmm_typeof_addr'_conv_jmm_typeof_addr) apply(unfold_locales) done lemma red_heap_read_typedD: "J_heap_base.red' addr2thread_id thread_id2addr spurious_wakeups empty_heap allocate (\<lambda>_ :: 'heap. typeof_addr) (heap_base.heap_read_typed (\<lambda>_ :: 'heap. typeof_addr) heap_read P) heap_write P t e s ta e' s' \<longleftrightarrow> J_heap_base.red' addr2thread_id thread_id2addr spurious_wakeups empty_heap allocate (\<lambda>_ :: 'heap. typeof_addr) heap_read heap_write P t e s ta e' s' \<and> (\<forall>ad al v T. ReadMem ad al v \<in> set \<lbrace>ta\<rbrace>\<^bsub>o\<^esub> \<longrightarrow> heap_base'.addr_loc_type TYPE('heap) typeof_addr P ad al T \<longrightarrow> heap_base'.conf TYPE('heap) typeof_addr P v T)" (is "?lhs1 \<longleftrightarrow> ?rhs1a \<and> ?rhs1b") and reds_heap_read_typedD: "J_heap_base.reds' addr2thread_id thread_id2addr spurious_wakeups empty_heap allocate (\<lambda>_ :: 'heap. typeof_addr) (heap_base.heap_read_typed (\<lambda>_ :: 'heap. typeof_addr) heap_read P) heap_write P t es s ta es' s' \<longleftrightarrow> J_heap_base.reds' addr2thread_id thread_id2addr spurious_wakeups empty_heap allocate (\<lambda>_ :: 'heap. typeof_addr) heap_read heap_write P t es s ta es' s' \<and> (\<forall>ad al v T. ReadMem ad al v \<in> set \<lbrace>ta\<rbrace>\<^bsub>o\<^esub> \<longrightarrow> heap_base'.addr_loc_type TYPE('heap) typeof_addr P ad al T \<longrightarrow> heap_base'.conf TYPE('heap) typeof_addr P v T)" (is "?lhs2 \<longleftrightarrow> ?rhs2a \<and> ?rhs2b") proof - have "(?lhs1 \<longrightarrow> ?rhs1a \<and> ?rhs1b) \<and> (?lhs2 \<longrightarrow> ?rhs2a \<and> ?rhs2b)" apply(induct rule: J_heap_base.red_reds.induct) prefer 50 (* RedCallExternal *) apply(subst (asm) red_external_heap_read_typed) apply(fastforce intro!: J_heap_base.red_reds.RedCallExternal simp add: convert_extTA_def) prefer 49 (* RedCall *) apply(fastforce dest: J_heap_base.red_reds.RedCall) apply(auto intro: J_heap_base.red_reds.intros dest: heap_base.heap_read_typed_into_heap_read heap_base.heap_read_typed_typed dest: heap_base'.addr_loc_type_conv_addr_loc_type[THEN fun_cong, THEN fun_cong, THEN fun_cong, THEN iffD2] heap_base'.conf_conv_conf[THEN fun_cong, THEN fun_cong, THEN iffD1]) done moreover have "(?rhs1a \<longrightarrow> ?rhs1b \<longrightarrow> ?lhs1) \<and> (?rhs2a \<longrightarrow> ?rhs2b \<longrightarrow> ?lhs2)" apply(induct rule: J_heap_base.red_reds.induct) prefer 50 (* RedCallExternal *) apply simp apply(intro strip) apply(erule (1) J_heap_base.red_reds.RedCallExternal) apply(subst red_external_heap_read_typed, erule conjI) apply(blast+)[4] prefer 49 (* RedCall *) apply(fastforce dest: J_heap_base.red_reds.RedCall) apply(auto intro: J_heap_base.red_reds.intros intro!: heap_base.heap_read_typedI dest: heap_base'.addr_loc_type_conv_addr_loc_type[THEN fun_cong, THEN fun_cong, THEN fun_cong, THEN iffD1] intro: heap_base'.conf_conv_conf[THEN fun_cong, THEN fun_cong, THEN iffD2]) done ultimately show "?lhs1 \<longleftrightarrow> ?rhs1a \<and> ?rhs1b" "?lhs2 \<longleftrightarrow> ?rhs2a \<and> ?rhs2b" by blast+ qed lemma if_mred_heap_read_typedD: "multithreaded_base.init_fin final_expr (J_heap_base.mred addr2thread_id thread_id2addr spurious_wakeups empty_heap allocate (\<lambda>_ :: 'heap. typeof_addr) (heap_base.heap_read_typed (\<lambda>_ :: 'heap. typeof_addr) heap_read P) heap_write P) t xh ta x'h' \<longleftrightarrow> if_heap_read_typed final_expr (J_heap_base.mred addr2thread_id thread_id2addr spurious_wakeups empty_heap allocate (\<lambda>_ :: 'heap. typeof_addr) heap_read heap_write P) typeof_addr P t xh ta x'h'" unfolding multithreaded_base.init_fin.simps by(subst red_heap_read_typedD) fastforce lemma J_\<E>_heap_read_typedI: "\<lbrakk> E \<in> J_heap_base.J_\<E> addr2thread_id thread_id2addr spurious_wakeups empty_heap allocate (\<lambda>_ :: 'heap. typeof_addr) heap_read heap_write P C M vs status; \<And>ad al v T. \<lbrakk> NormalAction (ReadMem ad al v) \<in> snd ` lset E; heap_base'.addr_loc_type TYPE('heap) typeof_addr P ad al T \<rbrakk> \<Longrightarrow> heap_base'.conf TYPE('heap) typeof_addr P v T \<rbrakk> \<Longrightarrow> E \<in> J_heap_base.J_\<E> addr2thread_id thread_id2addr spurious_wakeups empty_heap allocate (\<lambda>_ :: 'heap. typeof_addr) (heap_base.heap_read_typed (\<lambda>_ :: 'heap. typeof_addr) heap_read P) heap_write P C M vs status" apply(erule imageE, hypsubst) apply(rule imageI) apply(erule multithreaded_base.\<E>.cases, hypsubst) apply(rule multithreaded_base.\<E>.intros) apply(subst if_mred_heap_read_typedD[abs_def]) apply(erule if_mthr_Runs_heap_read_typedI) apply(auto simp add: image_Un lset_lmap[symmetric] lmap_lconcat llist.map_comp o_def split_def simp del: lset_lmap) done lemma jmm'_redI: "\<lbrakk> J_heap_base.red' addr2thread_id thread_id2addr spurious_wakeups empty_heap allocate typeof_addr jmm_heap_read jmm_heap_write P t e s ta e' s'; final_thread.actions_ok (final_thread.init_fin_final final_expr) S t ta \<rbrakk> \<Longrightarrow> \<exists>ta e' s'. J_heap_base.red' addr2thread_id thread_id2addr spurious_wakeups empty_heap allocate typeof_addr (heap_base.heap_read_typed typeof_addr jmm_heap_read P) jmm_heap_write P t e s ta e' s' \<and> final_thread.actions_ok (final_thread.init_fin_final final_expr) S t ta" (is "\<lbrakk> ?red'; ?aok \<rbrakk> \<Longrightarrow> ?concl") and jmm'_redsI: "\<lbrakk> J_heap_base.reds' addr2thread_id thread_id2addr spurious_wakeups empty_heap allocate typeof_addr jmm_heap_read jmm_heap_write P t es s ta es' s'; final_thread.actions_ok (final_thread.init_fin_final final_expr) S t ta \<rbrakk> \<Longrightarrow> \<exists>ta es' s'. J_heap_base.reds' addr2thread_id thread_id2addr spurious_wakeups empty_heap allocate typeof_addr (heap_base.heap_read_typed typeof_addr jmm_heap_read P) jmm_heap_write P t es s ta es' s' \<and> final_thread.actions_ok (final_thread.init_fin_final final_expr) S t ta" (is "\<lbrakk> ?reds'; ?aoks \<rbrakk> \<Longrightarrow> ?concls") proof - note [simp del] = split_paired_Ex and [simp add] = final_thread.actions_ok_iff heap_base.THE_addr_loc_type heap_base.defval_conf and [intro] = jmm_heap_read_typed_default_val let ?v = "\<lambda>h a al. default_val (THE T. heap_base.addr_loc_type typeof_addr P h a al T)" have "(?red' \<longrightarrow> ?aok \<longrightarrow> ?concl) \<and> (?reds' \<longrightarrow> ?aoks \<longrightarrow> ?concls)" proof(induct rule: J_heap_base.red_reds.induct) case (23 h a T n i v l) (* RedAAcc *) thus ?case by(auto 4 6 intro: J_heap_base.red_reds.RedAAcc[where v="?v h a (ACell (nat (sint i)))"]) next case (35 h a D F v l) (* RedFAcc *) thus ?case by(auto 4 5 intro: J_heap_base.red_reds.RedFAcc[where v="?v h a (CField D F)"]) next case RedCASSucceed: (45 h a D F v v' h') (* RedCASSucceed *) thus ?case proof(cases "v = ?v h a (CField D F)") case True with RedCASSucceed show ?thesis by(fastforce intro: J_heap_base.red_reds.RedCASSucceed[where v="?v h a (CField D F)"]) next case False with RedCASSucceed show ?thesis by(fastforce intro: J_heap_base.red_reds.RedCASFail[where v''="?v h a (CField D F)"]) qed next case RedCASFail: (46 h a D F v'' v v' l) thus ?case proof(cases "v = ?v h a (CField D F)") case True with RedCASFail show ?thesis by(fastforce intro: J_heap_base.red_reds.RedCASSucceed[where v="?v h a (CField D F)"] jmm_heap_write.intros) next case False with RedCASFail show ?thesis by(fastforce intro: J_heap_base.red_reds.RedCASFail[where v''="?v h a (CField D F)"]) qed next case (50 s a hU M Ts T D vs ta va h' ta' e' s') (* RedCallExternal *) thus ?case apply clarify apply(drule jmm'_red_externalI, simp) apply(auto 4 4 intro: J_heap_base.red_reds.RedCallExternal) done next case (52 e h l V vo ta e' h' l' T) (* BlockRed *) thus ?case by(clarify)(iprover intro: J_heap_base.red_reds.BlockRed) qed(blast intro: J_heap_base.red_reds.intros)+ thus "\<lbrakk> ?red'; ?aok \<rbrakk> \<Longrightarrow> ?concl" and "\<lbrakk> ?reds'; ?aoks \<rbrakk> \<Longrightarrow> ?concls" by blast+ qed lemma if_mred_heap_read_not_stuck: "\<lbrakk> multithreaded_base.init_fin final_expr (J_heap_base.mred addr2thread_id thread_id2addr spurious_wakeups empty_heap allocate typeof_addr jmm_heap_read jmm_heap_write P) t xh ta x'h'; final_thread.actions_ok (final_thread.init_fin_final final_expr) s t ta \<rbrakk> \<Longrightarrow> \<exists>ta x'h'. multithreaded_base.init_fin final_expr (J_heap_base.mred addr2thread_id thread_id2addr spurious_wakeups empty_heap allocate typeof_addr (heap_base.heap_read_typed typeof_addr jmm_heap_read P) jmm_heap_write P) t xh ta x'h' \<and> final_thread.actions_ok (final_thread.init_fin_final final_expr) s t ta" apply(erule multithreaded_base.init_fin.cases) apply hypsubst apply clarify apply(drule jmm'_redI) apply(simp add: final_thread.actions_ok_iff) apply clarify apply(subst (2) split_paired_Ex) apply(subst (2) split_paired_Ex) apply(subst (2) split_paired_Ex) apply(rule exI conjI)+ apply(rule multithreaded_base.init_fin.intros) apply(simp) apply(simp add: final_thread.actions_ok_iff) apply(blast intro: multithreaded_base.init_fin.intros) apply(blast intro: multithreaded_base.init_fin.intros) done lemma if_mredT_heap_read_not_stuck: "multithreaded_base.redT (final_thread.init_fin_final final_expr) (multithreaded_base.init_fin final_expr (J_heap_base.mred addr2thread_id thread_id2addr spurious_wakeups empty_heap allocate typeof_addr jmm_heap_read jmm_heap_write P)) convert_RA' s tta s' \<Longrightarrow> \<exists>tta s'. multithreaded_base.redT (final_thread.init_fin_final final_expr) (multithreaded_base.init_fin final_expr (J_heap_base.mred addr2thread_id thread_id2addr spurious_wakeups empty_heap allocate typeof_addr (heap_base.heap_read_typed typeof_addr jmm_heap_read P) jmm_heap_write P)) convert_RA' s tta s'" apply(erule multithreaded_base.redT.cases) apply hypsubst apply(drule (1) if_mred_heap_read_not_stuck) apply(erule exE)+ apply(rename_tac ta' x'h') apply(insert redT_updWs_total) apply(erule_tac x="t" in meta_allE) apply(erule_tac x="wset s" in meta_allE) apply(erule_tac x="\<lbrace>ta'\<rbrace>\<^bsub>w\<^esub>" in meta_allE) apply clarsimp apply(rule exI)+ apply(auto intro!: multithreaded_base.redT.intros)[1] apply hypsubst apply(rule exI conjI)+ apply(rule multithreaded_base.redT.redT_acquire) apply assumption+ done lemma J_\<E>_heap_read_typedD: "E \<in> J_heap_base.J_\<E> addr2thread_id thread_id2addr spurious_wakeups empty_heap allocate (\<lambda>_. typeof_addr) (heap_base.heap_read_typed (\<lambda>_. typeof_addr) jmm_heap_read P) jmm_heap_write P C M vs status \<Longrightarrow> E \<in> J_heap_base.J_\<E> addr2thread_id thread_id2addr spurious_wakeups empty_heap allocate (\<lambda>_. typeof_addr) jmm_heap_read jmm_heap_write P C M vs status" apply(erule imageE, hypsubst) apply(rule imageI) apply(erule multithreaded_base.\<E>.cases, hypsubst) apply(rule multithreaded_base.\<E>.intros) apply(subst (asm) if_mred_heap_read_typedD[abs_def]) apply(erule if_mthr_Runs_heap_read_typedD) apply(erule if_mredT_heap_read_not_stuck[where typeof_addr="\<lambda>_. typeof_addr", unfolded if_mred_heap_read_typedD[abs_def]]) done lemma J_\<E>_typesafe_subset: "jmm'_J_\<E> P C M vs status \<subseteq> jmm_J_\<E> P C M vs status" unfolding jmm_typeof_addr_def[abs_def] by(rule subsetI)(erule J_\<E>_heap_read_typedD) lemma J_legal_typesafe1: assumes wfP: "wf_J_prog P" and ok: "jmm_wf_start_state P C M vs" and legal: "legal_execution P (jmm_J_\<E> P C M vs status) (E, ws)" shows "legal_execution P (jmm'_J_\<E> P C M vs status) (E, ws)" proof - let ?\<E> = "jmm_J_\<E> P C M vs status" let ?\<E>' = "jmm'_J_\<E> P C M vs status" from legal obtain J where justified: "P \<turnstile> (E, ws) justified_by J" and range: "range (justifying_exec \<circ> J) \<subseteq> ?\<E>" and E: "E \<in> ?\<E>" and wf: "P \<turnstile> (E, ws) \<surd>" by(auto simp add: gen_legal_execution.simps) let ?J = "J(0 := \<lparr>committed = {}, justifying_exec = justifying_exec (J 1), justifying_ws = justifying_ws (J 1), action_translation = id\<rparr>)" from wfP have wf_sys: "wf_syscls P" by(rule wf_prog_wf_syscls) from justified have "P \<turnstile> (justifying_exec (J 1), justifying_ws (J 1)) \<surd>" by(simp add: justification_well_formed_def) with justified have "P \<turnstile> (E, ws) justified_by ?J" by(rule drop_0th_justifying_exec) moreover have "range (justifying_exec \<circ> ?J) \<subseteq> ?\<E>'" proof fix \<xi> assume "\<xi> \<in> range (justifying_exec \<circ> ?J)" then obtain n where "\<xi> = justifying_exec (?J n)" by auto then obtain n where \<xi>: "\<xi> = justifying_exec (J n)" and n: "n > 0" by(auto split: if_split_asm) from range \<xi> have "\<xi> \<in> ?\<E>" by auto thus "\<xi> \<in> ?\<E>'" unfolding jmm_typeof_addr'_conv_jmm_type_addr[symmetric, abs_def] proof(rule J_\<E>_heap_read_typedI) fix ad al v T assume read: "NormalAction (ReadMem ad al v) \<in> snd ` lset \<xi>" and adal: "P \<turnstile>jmm ad@al : T" from read obtain a where a: "enat a < llength \<xi>" "action_obs \<xi> a = NormalAction (ReadMem ad al v)" unfolding lset_conv_lnth by(auto simp add: action_obs_def) with J_allocated_heap_conf'.mred_known_addrs_typing'[OF jmm_J_allocated_heap_conf' wfP jmm_start_heap_ok] J_heap_conf.J_start_state_sconf_type_ok[OF jmm_J_heap_conf wfP ok] wf_sys is_justified_by_imp_is_weakly_justified_by[OF justified wf] range n have "\<exists>T. P \<turnstile>jmm ad@al : T \<and> P \<turnstile>jmm v :\<le> T" unfolding jmm_typeof_addr'_conv_jmm_type_addr[symmetric, abs_def] \<xi> by(rule known_addrs_typing'.read_value_typeable_justifying) thus "P \<turnstile>jmm v :\<le> T" using adal by(auto dest: jmm.addr_loc_type_fun[unfolded jmm_typeof_addr_conv_jmm_typeof_addr', unfolded heap_base'.addr_loc_type_conv_addr_loc_type]) qed qed moreover from E have "E \<in> ?\<E>'" unfolding jmm_typeof_addr'_conv_jmm_type_addr[symmetric, abs_def] proof(rule J_\<E>_heap_read_typedI) fix ad al v T assume read: "NormalAction (ReadMem ad al v) \<in> snd ` lset E" and adal: "P \<turnstile>jmm ad@al : T" from read obtain a where a: "enat a < llength E" "action_obs E a = NormalAction (ReadMem ad al v)" unfolding lset_conv_lnth by(auto simp add: action_obs_def) with jmm_J_allocated_heap_conf' wfP ok legal_imp_weakly_legal_execution[OF legal] have "\<exists>T. P \<turnstile>jmm ad@al : T \<and> P \<turnstile>jmm v :\<le> T" unfolding jmm_typeof_addr'_conv_jmm_type_addr[symmetric, abs_def] by(rule J_allocated_heap_conf'.J_legal_read_value_typeable) thus "P \<turnstile>jmm v :\<le> T" using adal by(auto dest: jmm.addr_loc_type_fun[unfolded jmm_typeof_addr_conv_jmm_typeof_addr', unfolded heap_base'.addr_loc_type_conv_addr_loc_type]) qed ultimately show ?thesis using wf unfolding gen_legal_execution.simps by blast qed lemma J_weakly_legal_typesafe1: assumes wfP: "wf_J_prog P" and ok: "jmm_wf_start_state P C M vs" and legal: "weakly_legal_execution P (jmm_J_\<E> P C M vs status) (E, ws)" shows "weakly_legal_execution P (jmm'_J_\<E> P C M vs status) (E, ws)" proof - let ?\<E> = "jmm_J_\<E> P C M vs status" let ?\<E>' = "jmm'_J_\<E> P C M vs status" from legal obtain J where justified: "P \<turnstile> (E, ws) weakly_justified_by J" and range: "range (justifying_exec \<circ> J) \<subseteq> ?\<E>" and E: "E \<in> ?\<E>" and wf: "P \<turnstile> (E, ws) \<surd>" by(auto simp add: gen_legal_execution.simps) let ?J = "J(0 := \<lparr>committed = {}, justifying_exec = justifying_exec (J 1), justifying_ws = justifying_ws (J 1), action_translation = id\<rparr>)" from wfP have wf_sys: "wf_syscls P" by(rule wf_prog_wf_syscls) from justified have "P \<turnstile> (justifying_exec (J 1), justifying_ws (J 1)) \<surd>" by(simp add: justification_well_formed_def) with justified have "P \<turnstile> (E, ws) weakly_justified_by ?J" by(rule drop_0th_weakly_justifying_exec) moreover have "range (justifying_exec \<circ> ?J) \<subseteq> ?\<E>'" proof fix \<xi> assume "\<xi> \<in> range (justifying_exec \<circ> ?J)" then obtain n where "\<xi> = justifying_exec (?J n)" by auto then obtain n where \<xi>: "\<xi> = justifying_exec (J n)" and n: "n > 0" by(auto split: if_split_asm) from range \<xi> have "\<xi> \<in> ?\<E>" by auto thus "\<xi> \<in> ?\<E>'" unfolding jmm_typeof_addr'_conv_jmm_type_addr[symmetric, abs_def] proof(rule J_\<E>_heap_read_typedI) fix ad al v T assume read: "NormalAction (ReadMem ad al v) \<in> snd ` lset \<xi>" and adal: "P \<turnstile>jmm ad@al : T" from read obtain a where a: "enat a < llength \<xi>" "action_obs \<xi> a = NormalAction (ReadMem ad al v)" unfolding lset_conv_lnth by(auto simp add: action_obs_def) with J_allocated_heap_conf'.mred_known_addrs_typing'[OF jmm_J_allocated_heap_conf' wfP jmm_start_heap_ok] J_heap_conf.J_start_state_sconf_type_ok[OF jmm_J_heap_conf wfP ok] wf_sys justified range n have "\<exists>T. P \<turnstile>jmm ad@al : T \<and> P \<turnstile>jmm v :\<le> T" unfolding jmm_typeof_addr'_conv_jmm_type_addr[symmetric, abs_def] \<xi> by(rule known_addrs_typing'.read_value_typeable_justifying) thus "P \<turnstile>jmm v :\<le> T" using adal by(auto dest: jmm.addr_loc_type_fun[unfolded jmm_typeof_addr_conv_jmm_typeof_addr', unfolded heap_base'.addr_loc_type_conv_addr_loc_type]) qed qed moreover from E have "E \<in> ?\<E>'" unfolding jmm_typeof_addr'_conv_jmm_type_addr[symmetric, abs_def] proof(rule J_\<E>_heap_read_typedI) fix ad al v T assume read: "NormalAction (ReadMem ad al v) \<in> snd ` lset E" and adal: "P \<turnstile>jmm ad@al : T" from read obtain a where a: "enat a < llength E" "action_obs E a = NormalAction (ReadMem ad al v)" unfolding lset_conv_lnth by(auto simp add: action_obs_def) with jmm_J_allocated_heap_conf' wfP ok legal have "\<exists>T. P \<turnstile>jmm ad@al : T \<and> P \<turnstile>jmm v :\<le> T" unfolding jmm_typeof_addr'_conv_jmm_type_addr[symmetric, abs_def] by(rule J_allocated_heap_conf'.J_legal_read_value_typeable) thus "P \<turnstile>jmm v :\<le> T" using adal by(auto dest: jmm.addr_loc_type_fun[unfolded jmm_typeof_addr_conv_jmm_typeof_addr', unfolded heap_base'.addr_loc_type_conv_addr_loc_type]) qed ultimately show ?thesis using wf unfolding gen_legal_execution.simps by blast qed lemma J_legal_typesafe2: assumes legal: "legal_execution P (jmm'_J_\<E> P C M vs status) (E, ws)" shows "legal_execution P (jmm_J_\<E> P C M vs status) (E, ws)" proof - let ?\<E> = "jmm_J_\<E> P C M vs status" let ?\<E>' = "jmm'_J_\<E> P C M vs status" from legal obtain J where justified: "P \<turnstile> (E, ws) justified_by J" and range: "range (justifying_exec \<circ> J) \<subseteq> ?\<E>'" and E: "E \<in> ?\<E>'" and wf: "P \<turnstile> (E, ws) \<surd>" by(auto simp add: gen_legal_execution.simps) from range E have "range (justifying_exec \<circ> J) \<subseteq> ?\<E>" "E \<in> ?\<E>" using J_\<E>_typesafe_subset[of P status C M vs] by blast+ with justified wf show ?thesis by(auto simp add: gen_legal_execution.simps) qed lemma J_weakly_legal_typesafe2: assumes legal: "weakly_legal_execution P (jmm'_J_\<E> P C M vs status) (E, ws)" shows "weakly_legal_execution P (jmm_J_\<E> P C M vs status) (E, ws)" proof - let ?\<E> = "jmm_J_\<E> P C M vs status" let ?\<E>' = "jmm'_J_\<E> P C M vs status" from legal obtain J where justified: "P \<turnstile> (E, ws) weakly_justified_by J" and range: "range (justifying_exec \<circ> J) \<subseteq> ?\<E>'" and E: "E \<in> ?\<E>'" and wf: "P \<turnstile> (E, ws) \<surd>" by(auto simp add: gen_legal_execution.simps) from range E have "range (justifying_exec \<circ> J) \<subseteq> ?\<E>" "E \<in> ?\<E>" using J_\<E>_typesafe_subset[of P status C M vs] by blast+ with justified wf show ?thesis by(auto simp add: gen_legal_execution.simps) qed theorem J_weakly_legal_typesafe: assumes "wf_J_prog P" and "jmm_wf_start_state P C M vs" shows "weakly_legal_execution P (jmm_J_\<E> P C M vs status) = weakly_legal_execution P (jmm'_J_\<E> P C M vs status)" apply(rule ext iffI)+ apply(clarify, erule J_weakly_legal_typesafe1[OF assms]) apply(clarify, erule J_weakly_legal_typesafe2) done theorem J_legal_typesafe: assumes "wf_J_prog P" and "jmm_wf_start_state P C M vs" shows "legal_execution P (jmm_J_\<E> P C M vs status) = legal_execution P (jmm'_J_\<E> P C M vs status)" apply(rule ext iffI)+ apply(clarify, erule J_legal_typesafe1[OF assms]) apply(clarify, erule J_legal_typesafe2) done end
module TestCandidate import Wordle import Test: @test, @test_throws c = Wordle.Candidate("alone") @test c.chars === ('a', 'l', 'o', 'n', 'e') @test String(c) === "alone" # Too short @test_throws Exception Candidate("true") # Not all lowercase @test_throws Exception Candidate("Alone") # Not all ASCII @test_throws Exception Candidate("señor") end # module
function acq = acqimiqr_vbmc(Xs,vp,gp,optimState,fmu,fs2,fbar,vtot) %VBMC_ACQIMIQR Integrated median interquantile range acquisition function. u = 0.6745; % norminv(0.75) if isempty(Xs) % Return acquisition function info struct acq.importance_sampling = true; acq.importance_sampling_vp = false; acq.log_flag = true; return; elseif ischar(Xs) switch lower(Xs) case 'islogf1' % Importance sampling log base proposal (shared part) acq = fmu; case 'islogf2' % Importance sampling log base proposal (added part) % (Full log base proposal is fixed + added) fs = sqrt(fs2); acq = u*fs + log1p(-exp(-2*u*fs)); case 'islogf' % Importance sampling log base proposal distribution fs = sqrt(fs2); acq = fmu + u*fs + log1p(-exp(-2*u*fs)); end return; end % Different importance sampling inputs for different GP hyperparameters? multipleinputs_flag = size(optimState.ActiveImportanceSampling.Xa,3) > 1; % Xs is in *transformed* coordinates [Nx,D] = size(Xs); Ns = size(fmu,2); Na = size(optimState.ActiveImportanceSampling.Xa,1); % Estimate observation noise at test points from nearest neighbor [~,pos] = min(sq_dist(bsxfun(@rdivide,Xs,optimState.gplengthscale),gp.X_rescaled),[],2); sn2 = gp.sn2new(pos); % sn2 = min(sn2,1e4); ys2 = fs2 + sn2; % Predictive variance at test points if multipleinputs_flag Xa = zeros(Na,D); else Xa = optimState.ActiveImportanceSampling.Xa; end acq = zeros(Nx,Ns); %% Compute integrated acquisition function via importance sampling for s = 1:Ns hyp = gp.post(s).hyp; L = gp.post(s).L; Lchol = gp.post(s).Lchol; sn2_eff = 1/gp.post(s).sW(1)^2; if multipleinputs_flag Xa(:,:) = optimState.ActiveImportanceSampling.Xa(:,:,s); end % Compute cross-kernel matrix Ks_mat if gp.covfun(1) == 1 % Hard-coded SE-ard for speed ell = exp(hyp(1:D))'; sf2 = exp(2*hyp(D+1)); Ks_mat = sq_dist(gp.X*diag(1./ell),Xs*diag(1./ell)); Ks_mat = sf2 * exp(-Ks_mat/2); Ka_mat = sq_dist(Xa*diag(1./ell),Xs*diag(1./ell)); Ka_mat = sf2 * exp(-Ka_mat/2); %Kax_mat = sq_dist(Xa*diag(1./ell),gp.X*diag(1./ell)); %Kax_mat = sf2 * exp(-Kax_mat/2); Kax_mat(:,:) = optimState.ActiveImportanceSampling.Kax_mat(:,:,s); else error('Other covariance functions not supported yet.'); end if Lchol C = Ka_mat' - Ks_mat'*(L\(L'\Kax_mat'))/sn2_eff; else C = Ka_mat' + Ks_mat'*(L*Kax_mat'); end tau2 = bsxfun(@rdivide,C.^2,ys2(:,s)); s_pred = sqrt(max(bsxfun(@minus,optimState.ActiveImportanceSampling.fs2a(:,s)',tau2),0)); lnw = optimState.ActiveImportanceSampling.lnw(s,:); zz = bsxfun(@plus,lnw,u*s_pred + log1p(-exp(-2*u*s_pred))); lnmax = max(zz,[],2); acq(:,s) = log(sum(exp(bsxfun(@minus,zz,lnmax)),2)) + lnmax; end if Ns > 1 M = max(acq,[],2); acq = M + log(sum(exp(bsxfun(@minus,acq,M)),2)/Ns); end end %SQ_DIST Compute matrix of all pairwise squared distances between two sets % of vectors, stored in the columns of the two matrices, a (of size n-by-D) % and b (of size m-by-D). function C = sq_dist(a,b) n = size(a,1); m = size(b,1); mu = (m/(n+m))*mean(b,1) + (n/(n+m))*mean(a,1); a = bsxfun(@minus,a,mu); b = bsxfun(@minus,b,mu); C = bsxfun(@plus,sum(a.*a,2),bsxfun(@minus,sum(b.*b,2)',2*a*b')); C = max(C,0); end
## ## Copyright (C) 2015 Dato, Inc. ## All rights reserved. ## ## This software may be modified and distributed under the terms ## of the BSD license. See the LICENSE file for details. ## ## runit.sf.r .runThisTest <- Sys.getenv("RunAllDatoCoreTests") == "yes" if (.runThisTest) { test.sf <- function() { df <- data.frame( a = c(1, 2, 3), b = c("x", "y", "z"), c = c(0.1, 0.2, 0.3), stringsAsFactors = FALSE ) sf <- as.sframe(df) df2 <- as.data.frame(sf) checkEquals(df, df2) vec <- c(1:15) sa <- as.sarray(vec) vec2 <- as.vector(sa) checkEquals(class(sa)[1], "sarray") checkEquals(vec, vec2) checkEquals(sa[10], 10) } }
#necessary library library(data.table) #fread library(lubridate) library(reshape2) library(dplyr) library(scales) library(stringr) library(tidyr) # spread function #memory.limit(size=900000) #Windows-specific #JO YEARLIST =("19") MONTHLIST = c("01", "02", "03", "04", "05", "06", "07", "08", "09", "10", "11", "12") DISTANCE_FILEPATH = "../../data/tidy/vehicle-trajectory-computation/" COMPUTATION_FILEPATH = "../../data/tidy/" NUM_SAMPLE_DAYS = 10 NUM_SPEED_BINS = 6 NUM_ACCEL_BINS = 6 # aggregrate_trajectory_table sample_day_trajectories = function(year, month, num_sample_days, seed_val){ assign("dg",fread(paste0(DISTANCE_FILEPATH, paste(paste("green", "trajectory", year, month, sep = "-", collapse = ""), ".csv", sep="")))) assign("dh",fread(paste0(DISTANCE_FILEPATH, paste(paste("heavy", "trajectory", year, month, sep = "-", collapse = ""), ".csv", sep="")))) dg$lineid = 4 dg = subset(dg, select = c(trxtime, year, month, day, lineid, lat, lon , speed_kph , accel_mps2 , interval_seconds , dist_meters , vehicleid)) dh = subset(dh, select = c(trxtime, year, month, day, lineid, lat, lon , speed_kph , accel_mps2 , interval_seconds , dist_meters , vehicleid)) # dg = dg[, c(trxtime, year, month, day, lineid, lat, lon , speed_kph , accel_mps2 , interval_seconds , dist_meters , vehicleid)] # dh = dh[, c(trxtime, year, month, day, lineid, lat, lon , speed_kph , accel_mps2 , interval_seconds , dist_meters , vehicleid)] DT = rbind(dg, dh) if (any(list("04", "06", "09", "11") %like% month)) { #for efficiency filter for months with 30 days num_days = 30 } else if (month == "02") { # february num_days = 28 } else { num_days = 31 } DT <- DT[, day:=as.integer(day)] set.seed(seed_val) day_subset = sample(seq(num_days), num_sample_days) setkey(DT, day) DT = DT[day %in% day_subset] print(paste("Year:", year, "; Month:", month, "; Days sampled:")) print(unique(DT$day)) remove(dg) remove(dh) return(DT) } # Unit conversion convert_units = function(df){ df$hour = hour(df$trxtime) df$speed_mph = df$speed_kph*0.621371 #kph to mph df$distance_mile = df$dist_meters*0.000621371 #convert from meters to mile df$time_hr = df$interval_seconds/3600.0 #convert from seconds to hour return(df) } # Calculate the speed bins get_speed_cutpoints <- function (DT, num_bins, test = FALSE) { print("Computing speed cutpoints") probabilities = seq(0, 1, 1/num_bins) cutpoints <- quantile(DT$speed_mph, probabilities, na.rm=TRUE) df <- data.frame(cutpoints) print("Done") return(df) } # Calculate the acceleration quantiles get_acceleration_cutpoints <- function (DT, num_bins, test = FALSE) { print("Computing acceleration cutpoints") probabilities = seq(0, 1, 1/num_bins) cutpoints <- quantile(DT$accel_mps2, probabilities, na.rm=TRUE) #read in the list from a saved file of cutpoints df <- data.frame(cutpoints) print("Done") return(df) } main <- function (num_speed_bins, num_accel_bins, num_days_to_sample, year_list, month_list, line_number) { DT = data.table() SEEDLIST = c(111, 222, 333, 444, 555, 666, 777, 888, 999, 101010, 111111, 121212) #different seed for each month seed_counter = 1 for (y in year_list) { for (m in month_list) { interval_DT = sample_day_trajectories(y, m, num_days_to_sample, SEEDLIST[seed_counter]) DT = rbindlist( list(DT, interval_DT) ) # obtain sampled df from all observations ##DT = DT(DT$lineid==line_number) - jimi/ Zhuo - complete seed_counter = seed_counter + 1 remove(interval_DT) } } DT = convert_units(DT) speed_cutpoints = get_speed_cutpoints(DT, num_speed_bins) acceleration_cutpoints = get_acceleration_cutpoints(DT, num_accel_bins) ## ZHUO - update file names write.csv(speed_cutpoints, file.path(paste0(COMPUTATION_FILEPATH, paste0(paste("speed", y, "cutpoints", "bins" , num_speed_bins, sep = "-", collapse = ""), ".csv")))) write.csv(acceleration_cutpoints, file.path(paste0(COMPUTATION_FILEPATH, paste0(paste("acceleration", y, "cutpoints", "bins" , num_accel_bins, sep = "-", collapse = ""), ".csv")))) remove(DT) } for (LINE_NUMBER in c(1,2,3,4)) { main(NUM_SPEED_BINS, NUM_ACCEL_BINS, NUM_SAMPLE_DAYS, YEARLIST, MONTHLIST, LINE_NUMBER) }
/* linalg/choleskyc.c * * Copyright (C) 2007 Patrick Alken * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ #include <config.h> #include <gsl/gsl_matrix.h> #include <gsl/gsl_vector.h> #include <gsl/gsl_linalg.h> #include <gsl/gsl_math.h> #include <gsl/gsl_complex.h> #include <gsl/gsl_complex_math.h> #include <gsl/gsl_blas.h> #include <gsl/gsl_errno.h> /* * This module contains routines related to the Cholesky decomposition * of a complex Hermitian positive definite matrix. */ static void cholesky_complex_conj_vector(gsl_vector_complex *v); /* gsl_linalg_complex_cholesky_decomp() Perform the Cholesky decomposition on a Hermitian positive definite matrix. See Golub & Van Loan, "Matrix Computations" (3rd ed), algorithm 4.2.2. Inputs: A - (input/output) complex postive definite matrix Return: success or error The lower triangle of A is overwritten with the Cholesky decomposition */ int gsl_linalg_complex_cholesky_decomp(gsl_matrix_complex *A) { const size_t N = A->size1; if (N != A->size2) { GSL_ERROR("cholesky decomposition requires square matrix", GSL_ENOTSQR); } else { size_t i, j; gsl_complex z; double ajj; for (j = 0; j < N; ++j) { z = gsl_matrix_complex_get(A, j, j); ajj = GSL_REAL(z); if (j > 0) { gsl_vector_complex_const_view aj = gsl_matrix_complex_const_subrow(A, j, 0, j); gsl_blas_zdotc(&aj.vector, &aj.vector, &z); ajj -= GSL_REAL(z); } if (ajj <= 0.0) { GSL_ERROR("matrix is not positive definite", GSL_EDOM); } ajj = sqrt(ajj); GSL_SET_COMPLEX(&z, ajj, 0.0); gsl_matrix_complex_set(A, j, j, z); if (j < N - 1) { gsl_vector_complex_view av = gsl_matrix_complex_subcolumn(A, j, j + 1, N - j - 1); if (j > 0) { gsl_vector_complex_view aj = gsl_matrix_complex_subrow(A, j, 0, j); gsl_matrix_complex_view am = gsl_matrix_complex_submatrix(A, j + 1, 0, N - j - 1, j); cholesky_complex_conj_vector(&aj.vector); gsl_blas_zgemv(CblasNoTrans, GSL_COMPLEX_NEGONE, &am.matrix, &aj.vector, GSL_COMPLEX_ONE, &av.vector); cholesky_complex_conj_vector(&aj.vector); } gsl_blas_zdscal(1.0 / ajj, &av.vector); } } /* Now store L^H in upper triangle */ for (i = 1; i < N; ++i) { for (j = 0; j < i; ++j) { z = gsl_matrix_complex_get(A, i, j); gsl_matrix_complex_set(A, j, i, gsl_complex_conjugate(z)); } } return GSL_SUCCESS; } } /* gsl_linalg_complex_cholesky_decomp() */ /* gsl_linalg_complex_cholesky_solve() Solve A x = b where A is in cholesky form */ int gsl_linalg_complex_cholesky_solve (const gsl_matrix_complex * cholesky, const gsl_vector_complex * b, gsl_vector_complex * x) { if (cholesky->size1 != cholesky->size2) { GSL_ERROR ("cholesky matrix must be square", GSL_ENOTSQR); } else if (cholesky->size1 != b->size) { GSL_ERROR ("matrix size must match b size", GSL_EBADLEN); } else if (cholesky->size2 != x->size) { GSL_ERROR ("matrix size must match solution size", GSL_EBADLEN); } else { gsl_vector_complex_memcpy (x, b); /* solve for y using forward-substitution, L y = b */ gsl_blas_ztrsv (CblasLower, CblasNoTrans, CblasNonUnit, cholesky, x); /* perform back-substitution, L^H x = y */ gsl_blas_ztrsv (CblasLower, CblasConjTrans, CblasNonUnit, cholesky, x); return GSL_SUCCESS; } } /* gsl_linalg_complex_cholesky_solve() */ /* gsl_linalg_complex_cholesky_svx() Solve A x = b in place where A is in cholesky form */ int gsl_linalg_complex_cholesky_svx (const gsl_matrix_complex * cholesky, gsl_vector_complex * x) { if (cholesky->size1 != cholesky->size2) { GSL_ERROR ("cholesky matrix must be square", GSL_ENOTSQR); } else if (cholesky->size2 != x->size) { GSL_ERROR ("matrix size must match solution size", GSL_EBADLEN); } else { /* solve for y using forward-substitution, L y = b */ gsl_blas_ztrsv (CblasLower, CblasNoTrans, CblasNonUnit, cholesky, x); /* perform back-substitution, L^H x = y */ gsl_blas_ztrsv (CblasLower, CblasConjTrans, CblasNonUnit, cholesky, x); return GSL_SUCCESS; } } /* gsl_linalg_complex_cholesky_svx() */ /******************************************** * INTERNAL ROUTINES * ********************************************/ static void cholesky_complex_conj_vector(gsl_vector_complex *v) { size_t i; for (i = 0; i < v->size; ++i) { gsl_complex z = gsl_vector_complex_get(v, i); gsl_vector_complex_set(v, i, gsl_complex_conjugate(z)); } } /* cholesky_complex_conj_vector() */
open import Prelude open import Reflection renaming (Term to AgTerm; Type to AgType) open import Data.String using (String) open import RW.Language.RTerm open import RW.Language.RTermUtils open import RW.Language.FinTerm open import RW.Language.GoalGuesser 1 open import RW.Strategy module RW.RW (db : TStratDB) where open import RW.Utils.Monads open import RW.Utils.Error open Monad {{...}} open IsError {{...}} ------------------ -- Housekeeping -- ------------------ -- We need to bring our instances into scope explicitely, -- to make Agda happy. private instance ErrErr = IsError-StratErr ErrMonad = MonadError unarg : {A : Set} → Arg A → A unarg (arg _ x) = x -- We need to translate types to FinTerms, so we know how many variables -- we're expecting to guess from instantiation. Ag2RTypeFin : AgType → ∃ FinTerm Ag2RTypeFin = R2FinType ∘ lift-ivar ∘ η ∘ Ag2RType -- TODO: fix the duality: "number of ivar's lifted to ovar's vs. parameters we need to guess" make-RWData : Name → AgTerm → List (Arg AgType) → Err StratErr RWData make-RWData act goal ctx with η (Ag2RTerm goal) | Ag2RTypeFin (type act) | map (Ag2RType ∘ unarg) ctx ...| g' | tyℕ , ty | ctx' with forceBinary g' | forceBinary (typeResult ty) ...| just g | just a = return (rw-data g tyℕ a ctx') ...| just _ | nothing = throwError (Custom "Something strange happened with the action") ...| nothing | just _ = throwError (Custom "Something strange happened with the goal") ...| nothing | nothing = throwError (Custom "My brain just exploded.") -- Given a goal and a list of actions to apply to such goal, return -- a list l₁ ⋯ lₙ such that ∀ 0 < i ≤ n . tyᵢ : p1 lᵢ → p1 lᵢ₊₁ Ag2RTypeFin* : RTerm ⊥ → List AgType → Maybe (List (RBinApp ⊥ × ∃ (RBinApp ∘ Fin))) Ag2RTypeFin* (rapp n (g₁ ∷ g₂ ∷ [])) tys = mapM (return ∘ Ag2RTypeFin) tys >>= mapM (λ v → forceBinary (typeResult (p2 v)) >>= (return ∘ (_,_ $ p1 v))) >>= λ tys' → (divideGoal (n , g₁ , g₂) tys' >>= assemble) >>= λ gs → return (zip gs tys') where assemble : {A : Set} → List (RTerm A) → Maybe (List (RBinApp A)) assemble (x1 ∷ x2 ∷ []) = just ((n , x1 , x2) ∷ []) assemble (x1 ∷ x2 ∷ l) = assemble (x2 ∷ l) >>= return ∘ (_∷_ (n , x1 , x2)) assemble _ = nothing Ag2RTypeFin* _ _ = nothing -- Produces a list of RWData, one for each 'guessed' step. make-RWData* : List Name → AgTerm → List (Arg AgType) → Err StratErr (List RWData) make-RWData* acts goal ctx with Ag2RTerm goal | map type acts | map (Ag2RType ∘ unarg) ctx ...| g' | tys | ctx' with Ag2RTypeFin* g' tys ...| nothing = throwError (Custom "Are you sure you can apply those steps?") ...| just r = i2 (map (λ x → rw-data (p1 x) (p1 (p2 x)) (p2 (p2 x)) ctx') r) postulate RW-error : ∀{a}{A : Set a} → String → A RWerr : Name → RWData → Err StratErr (RWData × UData × RTerm ⊥) RWerr act d = runUStrats d >>= λ u → runTStrats db d act u >>= λ v → return (d , u , v) -- A variant with less information, more suitable to be map'ed. RWerr-less : Name → RWData → Err StratErr (RTerm ⊥) RWerr-less act d = RWerr act d >>= return ∘ p2 ∘ p2 ---------------- -- By Tactics -- ---------------- -- Standard debugging version. by' : Name → List (Arg AgType) → AgTerm → (RWData × UData × RTerm ⊥) by' act ctx goal with runErr (make-RWData act goal ctx >>= RWerr act) ...| i1 err = RW-error err ...| i2 term = term -- This function is only beeing used to pass the context -- given by the 'tactic' keyword around. by : Name → List (Arg AgType) → AgTerm → AgTerm by act ctx goal = R2AgTerm ∘ p2 ∘ p2 $ (by' act ctx goal) -- Handling multiple actions, naive way. -- by+ is pretty much foldM (<|>) error (by ⋯), -- where (<|>) is the usual alternative from Error Monad. by+ : List Name → List (Arg AgType) → AgTerm → AgTerm by+ [] _ _ = RW-error "No suitable action" by+ (a ∷ as) ctx goal with runErr (make-RWData a goal ctx >>= RWerr a) ...| i1 _ = by+ as ctx goal ...| i2 t = R2AgTerm ∘ p2 ∘ p2 $ t join-tr : Name → List (RTerm ⊥) → RTerm ⊥ join-tr _ [] = ivar 0 join-tr tr (x ∷ l) = foldr (λ h r → rapp (rdef tr) (r ∷ h ∷ [])) x l -- Handling multiple goals. by*-err : Name → List Name → List (Arg AgType) → AgTerm → Err StratErr AgTerm by*-err tr acts ctx goal = make-RWData* acts goal ctx >>= λ l → mapM (uncurry RWerr-less) (zip acts l) >>= return ∘ R2AgTerm ∘ join-tr tr where unzip : {A B : Set} → List (A × B) → List A × List B unzip [] = [] , [] unzip ((a , b) ∷ l) with unzip l ...| la , lb = a ∷ la , b ∷ lb by*-tactic : Set by*-tactic = List Name → List (Arg AgType) → AgTerm → AgTerm by* : Name → by*-tactic by* tr acts ctx goal with runErr (by*-err tr acts ctx goal) ...| i1 err = RW-error err ...| i2 res = res ------------------------------ -- Adding Tries to the cake -- ------------------------------ -- The proper way to handle multiple actions. open import RW.Data.RTrie module Auto (bt : RTrie) -- which trie to use, (newHd : RTermName → RTermName) -- given the goal head, how to build the head for the action. where open import RW.Language.RTermTrie our-strategy : RTermName → Name → UData → Err StratErr (RTerm ⊥) our-strategy goal = maybe TStrat.how (const $ const $ i1 no-strat) $ filter-db db where no-strat : StratErr no-strat = NoTStrat goal (newHd goal) filter-db : TStratDB → Maybe TStrat filter-db [] = nothing filter-db (s ∷ ss) with TStrat.when s goal (newHd goal) ...| false = filter-db ss ...| true = just s auto-internal : List (Arg AgType) → AgTerm → Err StratErr AgTerm auto-internal _ goal with forceBinary $ Ag2RTerm goal ...| nothing = i1 $ Custom "non-binary goal" ...| just (hd , g₁ , g₂) = let options = search-action (newHd hd) (hd , g₁ , g₂) bt strat = uncurry $ our-strategy hd err = Custom "No option was succesful" in try-all strat err options >>= return ∘ R2AgTerm auto : List (Arg AgType) → AgTerm → AgTerm auto ctx goal with runErr (auto-internal ctx goal) ...| i1 err = RW-error err ...| i2 r = r
#' Get document revisions. #' #' @export #' @template all #' @template return #' @param dbname Database name #' @param docid Document ID #' @param simplify (logical) Simplify to character vector of revision ids. #' If `FALSE`, gives back availability info too. Default: `TRUE` #' @examples \dontrun{ #' user <- Sys.getenv("COUCHDB_TEST_USER") #' pwd <- Sys.getenv("COUCHDB_TEST_PWD") #' (x <- Cushion$new(user=user, pwd=pwd)) #' #' if ("sofadb" %in% db_list(x)) { #' db_delete(x, dbname = "sofadb") #' } #' db_create(x, dbname = "sofadb") #' #' doc1 <- '{"name": "drink", "beer": "IPA", "score": 5}' #' doc_create(x, dbname="sofadb", doc1, docid="abeer") #' doc_create(x, dbname="sofadb", doc1, docid="morebeer", as='json') #' #' db_revisions(x, dbname="sofadb", docid="abeer") #' db_revisions(x, dbname="sofadb", docid="abeer", simplify=FALSE) #' db_revisions(x, dbname="sofadb", docid="abeer", as='json') #' db_revisions(x, dbname="sofadb", docid="abeer", simplify=FALSE, as='json') #' } db_revisions <- function(cushion, dbname, docid, simplify=TRUE, as='list', ...) { check_cushion(cushion) call_ <- sprintf("%s/%s/%s", cushion$make_url(), dbname, docid) tmp <- sofa_GET(call_, as = "list", query = list(revs_info = 'true'), cushion$get_headers(), cushion$get_auth(), ...) revs <- if (simplify) { vapply(tmp$`_revs_info`, "[[", "", "rev") } else { tmp$`_revs_info` } if (as == 'json') jsonlite::toJSON(revs) else revs }
After performing in a number of heavy metal bands in high school , Townsend was discovered by a record label in 1993 and was asked to perform lead vocals on Steve Vai 's album Sex & Religion . After recording and touring with Vai , Townsend was discouraged by what he found in the music industry , and vented his anger on the solo album Heavy as a Really Heavy Thing released under the pseudonym Strapping Young Lad . He soon assembled a band under the name , and released the critically acclaimed City in 1997 . Since then , he has released three more studio albums with Strapping Young Lad , along with solo material released under his own independent record label , HevyDevy Records .
## ## Zero-inflated Poissons predicting number of gifts and amount of farm help received ## ## Supplementary Table 1 ## source("init.r") library(pscl) library(igraph) library(MuMIn) ########################################################################################## ## Calculate in-degrees on various networks ## prepend_ego = function(x) paste0("Ego.", x) # helper function to add "Ego." to start of column names nodes.hh = hh %>% rename_all(prepend_ego) # remove village 6 nodes.hh = subset(nodes.hh, Ego.VillageID != 6) ## ## Individual gifts ## dat = subset(hh.dyads, TotalGifts.ind > 0 & Ego.VillageID != 6, select=c(Ego.HH, Alter.HH, TotalGifts.ind)) g.gifts_ind = graph.data.frame(dat, vertices=nodes.hh, directed=T) # calculate in degree and put into houses dataframe deg.in = degree(g.gifts_ind, mode="in") nodes.hh$gift.deg.in = deg.in[ as.character(nodes.hh$Ego.HH) ] ## ## Farm help ## dat = subset(hh.dyads, HelpObserved > 0 & Ego.VillageID != 6, select=c(Ego.HH, Alter.HH)) g.farm = graph.data.frame(dat, vertices=nodes.hh, directed=T) # calculate in degree and put into houses dataframe deg.in = degree(g.farm, mode="in") nodes.hh$farm.deg.in = deg.in[ as.character(nodes.hh$Ego.HH) ] ########################################################################################## ## What predicts in-degree for farm work and gifts ## d.hh = nodes.hh %>% dplyr::select(Ego.HH, farm.deg.in, gift.deg.in, Ego.Size, Ego.WealthRank, Ego.VillageID, Ego.Sex, Ego.zhubo1) %>% distinct() %>% na.omit() # zero-inflated poissons # null m.null = zeroinfl(farm.deg.in ~ 1, data=d.hh) m.gift.null = zeroinfl(gift.deg.in ~ 1, data=d.hh) # control m.control = zeroinfl(farm.deg.in ~ Ego.Size + Ego.WealthRank + Ego.Sex + factor(Ego.VillageID), data=d.hh) m.gift.control = zeroinfl(gift.deg.in ~ Ego.Size + Ego.WealthRank + Ego.Sex + factor(Ego.VillageID), data=d.hh) # full m.zhubo = zeroinfl(farm.deg.in ~ factor(Ego.zhubo1) + Ego.Size + Ego.WealthRank + Ego.Sex + factor(Ego.VillageID), data=d.hh) m.gift.zhubo = zeroinfl(gift.deg.in ~ factor(Ego.zhubo1) + Ego.Size + Ego.WealthRank + Ego.Sex + factor(Ego.VillageID), data=d.hh) ################################################################################# ## model selection ## ## ## farm work ## best.models = model.sel(m.null, m.control, m.zhubo) top.models = mget(row.names(subset(best.models, delta<2))) best.avg = model.avg(top.models, revised.var=T, beta=F) # summary(best.avg) # incidence risk ratios with CIs zip = cbind( data.frame((coef(best.avg, full=T))), (confint(best.avg, full=T, digits=3)) ) names(zip) = c("Farm work B", "Farm work lwr", "Farm work upr") round(zip, 3) write.csv(best.models, file="in-degree - candidate models - farm.csv", row.names=T) ## ## gifts ## best.models = model.sel(m.gift.null, m.gift.control, m.gift.zhubo) top.models = mget(row.names(subset(best.models, delta<2))) best.avg = model.avg(top.models, revised.var=T, beta=F) # summary(best.avg) # incidence risk ratios with CIs zip = cbind(zip, data.frame((coef(best.avg, full=T))), (confint(best.avg, full=T, digits=3)) ) names(zip)[4:6] = c("Gifts B", "Gifts lwr", "Gifts upr") write.csv(best.models, file="in-degree - candidate models - gift.csv", row.names=T) write.csv(zip, file="zip - parameter estimates.csv", row.names=T)
/- Copyright (c) 2016 Microsoft Corporation. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Leonardo de Moura -/ import Mathlib.PrePort import Mathlib.Lean3Lib.init.meta.tactic import Mathlib.Lean3Lib.init.meta.attribute import Mathlib.Lean3Lib.init.meta.constructor_tactic import Mathlib.Lean3Lib.init.meta.relation_tactics import Mathlib.Lean3Lib.init.meta.occurrences import Mathlib.Lean3Lib.init.data.option.basic universes l namespace Mathlib def simp.default_max_steps : ℕ := bit0 (bit0 (bit0 (bit0 (bit0 (bit0 (bit0 (bit1 (bit0 (bit1 (bit1 (bit0 (bit1 (bit0 (bit0 (bit1 (bit0 (bit0 (bit0 (bit1 (bit1 (bit0 (bit0 1)))))))))))))))))))))) /-- Prefix the given `attr_name` with `"simp_attr"`. -/ /-- Simp lemmas are used by the "simplifier" family of tactics. `simp_lemmas` is essentially a pair of tables `rb_map (expr_type × name) (priority_list simp_lemma)`. One of the tables is for congruences and one is for everything else. An individual simp lemma is: - A kind which can be `Refl`, `Simp` or `Congr`. - A pair of `expr`s `l ~> r`. The rb map is indexed by the name of `get_app_fn(l)`. - A proof that `l = r` or `l ↔ r`. - A list of the metavariables that must be filled before the proof can be applied. - A priority number -/ /-- Make a new table of simp lemmas -/ /-- Merge the simp_lemma tables. -/ /-- Remove the given lemmas from the table. Use the names of the lemmas. -/ /-- Makes the default simp_lemmas table which is composed of all lemmas tagged with `simp`. -/ /-- Add a simplification lemma by an expression `p`. Some conditions on `p` must hold for it to be added, see list below. If your lemma is not being added, you can see the reasons by setting `set_option trace.simp_lemmas true`. - `p` must have the type `Π (h₁ : _) ... (hₙ : _), LHS ~ RHS` for some reflexive, transitive relation (usually `=`). - Any of the hypotheses `hᵢ` should either be present in `LHS` or otherwise a `Prop` or a typeclass instance. - `LHS` should not occur within `RHS`. - `LHS` should not occur within a hypothesis `hᵢ`. -/ /-- Add a simplification lemma by it's declaration name. See `simp_lemmas.add` for more information.-/ /-- Adds a congruence simp lemma to simp_lemmas. A congruence simp lemma is a lemma that breaks the simplification down into separate problems. For example, to simplify `a ∧ b` to `c ∧ d`, we should try to simp `a` to `c` and `b` to `d`. For examples of congruence simp lemmas look for lemmas with the `@[congr]` attribute. ```lean lemma if_simp_congr ... (h_c : b ↔ c) (h_t : x = u) (h_e : y = v) : ite b x y = ite c u v := ... lemma imp_congr_right (h : a → (b ↔ c)) : (a → b) ↔ (a → c) := ... lemma and_congr (h₁ : a ↔ c) (h₂ : b ↔ d) : (a ∧ b) ↔ (c ∧ d) := ... ``` -/ /-- Add expressions to a set of simp lemmas using `simp_lemmas.add`. This is the new version of `simp_lemmas.append`, which also allows you to set the `symm` flag. -/ /-- Add expressions to a set of simp lemmas using `simp_lemmas.add`. This is the backwards-compatibility version of `simp_lemmas.append_with_symm`, and sets all `symm` flags to `ff`. -/ /-- `simp_lemmas.rewrite s e prove R` apply a simplification lemma from 's' - 'e' is the expression to be "simplified" - 'prove' is used to discharge proof obligations. - 'r' is the equivalence relation being used (e.g., 'eq', 'iff') - 'md' is the transparency; how aggresively should the simplifier perform reductions. Result (new_e, pr) is the new expression 'new_e' and a proof (pr : e R new_e) -/ /-- `simp_lemmas.drewrite s e` tries to rewrite 'e' using only refl lemmas in 's' -/ namespace tactic /- Remark: `transform` should not change the target. -/ /-- Revert a local constant, change its type using `transform`. -/ /-- `get_eqn_lemmas_for deps d` returns the automatically generated equational lemmas for definition d. If deps is tt, then lemmas for automatically generated auxiliary declarations used to define d are also included. -/ structure dsimp_config where md : transparency max_steps : ℕ canonize_instances : Bool single_pass : Bool fail_if_unchanged : Bool eta : Bool zeta : Bool beta : Bool proj : Bool iota : Bool unfold_reducible : Bool memoize : Bool end tactic /-- (Definitional) Simplify the given expression using *only* reflexivity equality lemmas from the given set of lemmas. The resulting expression is definitionally equal to the input. The list `u` contains defintions to be delta-reduced, and projections to be reduced.-/ namespace tactic /- Remark: the configuration parameters `cfg.md` and `cfg.eta` are ignored by this tactic. -/ /- Remark: we use transparency.instances by default to make sure that we can unfold projections of type classes. Example: (@has_add.add nat nat.has_add a b) -/ /-- Tries to unfold `e` if it is a constant or a constant application. Remark: this is not a recursive procedure. -/ structure dunfold_config extends dsimp_config where /- Remark: in principle, dunfold can be implemented on top of dsimp. We don't do it for performance reasons. -/ structure delta_config where max_steps : ℕ visit_instances : Bool /-- Delta reduce the given constant names -/ structure unfold_proj_config extends dsimp_config where /-- If `e` is a projection application, try to unfold it, otherwise fail. -/ structure simp_config where max_steps : ℕ contextual : Bool lift_eq : Bool canonize_instances : Bool canonize_proofs : Bool use_axioms : Bool zeta : Bool beta : Bool eta : Bool proj : Bool iota : Bool iota_eqn : Bool constructor_eq : Bool single_pass : Bool fail_if_unchanged : Bool memoize : Bool trace_lemmas : Bool /-- `simplify s e cfg r prove` simplify `e` using `s` using bottom-up traversal. `discharger` is a tactic for dischaging new subgoals created by the simplifier. If it fails, the simplifier tries to discharge the subgoal by simplifying it to `true`. The parameter `to_unfold` specifies definitions that should be delta-reduced, and projection applications that should be unfolded. -/ /-- `ext_simplify_core a c s discharger pre post r e`: - `a : α` - initial user data - `c : simp_config` - simp configuration options - `s : simp_lemmas` - the set of simp_lemmas to use. Remark: the simplification lemmas are not applied automatically like in the simplify tactic. The caller must use them at pre/post. - `discharger : α → tactic α` - tactic for dischaging hypothesis in conditional rewriting rules. The argument 'α' is the current user data. - `pre a s r p e` is invoked before visiting the children of subterm 'e'. + arguments: - `a` is the current user data - `s` is the updated set of lemmas if 'contextual' is `tt`, - `r` is the simplification relation being used, - `p` is the "parent" expression (if there is one). - `e` is the current subexpression in question. + if it succeeds the result is `(new_a, new_e, new_pr, flag)` where - `new_a` is the new value for the user data - `new_e` is a new expression s.t. `r e new_e` - `new_pr` is a proof for `r e new_e`, If it is none, the proof is assumed to be by reflexivity - `flag` if tt `new_e` children should be visited, and `post` invoked. - `(post a s r p e)` is invoked after visiting the children of subterm `e`, The output is similar to `(pre a r s p e)`, but the 'flag' indicates whether the new expression should be revisited or not. - `r` is the simplification relation. Usually `=` or `↔`. - `e` is the input expression to be simplified. The method returns `(a,e,pr)` where - `a` is the final user data - `e` is the new expression - `pr` is the proof that the given expression equals the input expression. Note that `ext_simplify_core` will succeed even if `pre` and `post` fail, as failures are used to indicate that the method should move on to the next subterm. If it is desirable to propagate errors from `pre`, they can be propagated through the "user data". An easy way to do this is to call `tactic.capture (do ...)` in the parts of `pre`/`post` where errors matter, and then use `tactic.unwrap a` on the result. Additionally, `ext_simplify_core` does not propagate changes made to the tactic state by `pre` and `post. If it is desirable to propagate changes to the tactic state in addition to errors, use `tactic.resume` instead of `tactic.unwrap`. -/ structure simp_intros_config extends simp_config where use_hyps : Bool end Mathlib
-- Shadowing is allowed. module Shadow where module M (A : Set) where id : Set -> Set id A = A
section "Skew Binomial Heaps" theory SkewBinomialHeap imports Main "HOL-Library.Multiset" "Eval_Base.Eval_Base" begin text \<open>Skew Binomial Queues as specified by Brodal and Okasaki \cite{BrOk96} are a data structure for priority queues with worst case O(1) {\em findMin}, {\em insert}, and {\em meld} operations, and worst-case logarithmic {\em deleteMin} operation. They are derived from priority queues in three steps: \begin{enumerate} \item Skew binomial trees are used to eliminate the possibility of cascading links during insert operations. This reduces the complexity of an insert operation to $O(1)$. \item The current minimal element is cached. This approach, known as {\em global root}, reduces the cost of a {\em findMin}-operation to O(1). \item By allowing skew binomial queues to contain skew binomial queues, the cost for meld-operations is reduced to $O(1)$. This approach is known as {\em data-structural bootstrapping}. \end{enumerate} In this theory, we combine Steps~2 and 3, i.e. we first implement skew binomial queues, and then bootstrap them. The bootstrapping implicitly introduces a global root, such that we also get a constant time findMin operation. \<close> locale SkewBinomialHeapStruc_loc begin subsection "Datatype" datatype ('e, 'a) SkewBinomialTree = Node (val: 'e) (prio: "'a::linorder") (rank: nat) (children: "('e , 'a) SkewBinomialTree list") type_synonym ('e, 'a) SkewBinomialQueue = "('e, 'a::linorder) SkewBinomialTree list" subsubsection "Abstraction to Multisets" text \<open>Returns a multiset with all (element, priority) pairs from a queue\<close> fun tree_to_multiset :: "('e, 'a::linorder) SkewBinomialTree \<Rightarrow> ('e \<times> 'a) multiset" and queue_to_multiset :: "('e, 'a::linorder) SkewBinomialQueue \<Rightarrow> ('e \<times> 'a) multiset" where "tree_to_multiset (Node e a r ts) = {#(e,a)#} + queue_to_multiset ts" | "queue_to_multiset [] = {#}" | "queue_to_multiset (t#q) = tree_to_multiset t + queue_to_multiset q" lemma ttm_children: "tree_to_multiset t = {#(val t,prio t)#} + queue_to_multiset (children t)" by (cases t) auto (*lemma qtm_cons[simp]: "queue_to_multiset (t#q) = queue_to_multiset q + tree_to_multiset t" apply(induct q arbitrary: t) apply simp apply(auto simp add: union_ac) done*) lemma qtm_conc[simp]: "queue_to_multiset (q@q') = queue_to_multiset q + queue_to_multiset q'" apply2 (induct q) by(auto simp add: union_ac) subsubsection "Invariant" text \<open>Link two trees of rank $r$ to a new tree of rank $r+1$\<close> fun link :: "('e, 'a::linorder) SkewBinomialTree \<Rightarrow> ('e, 'a) SkewBinomialTree \<Rightarrow> ('e, 'a) SkewBinomialTree" where "link (Node e1 a1 r1 ts1) (Node e2 a2 r2 ts2) = (if a1\<le>a2 then (Node e1 a1 (Suc r1) ((Node e2 a2 r2 ts2)#ts1)) else (Node e2 a2 (Suc r2) ((Node e1 a1 r1 ts1)#ts2)))" text \<open>Link two trees of rank $r$ and a new element to a new tree of rank $r+1$\<close> fun skewlink :: "'e \<Rightarrow> 'a::linorder \<Rightarrow> ('e, 'a) SkewBinomialTree \<Rightarrow> ('e, 'a) SkewBinomialTree \<Rightarrow> ('e, 'a) SkewBinomialTree" where "skewlink e a t t' = (if a \<le> (prio t) \<and> a \<le> (prio t') then (Node e a (Suc (rank t)) [t,t']) else (if (prio t) \<le> (prio t') then Node (val t) (prio t) (Suc (rank t)) (Node e a 0 [] # t' # children t) else Node (val t') (prio t') (Suc (rank t')) (Node e a 0 [] # t # children t')))" text \<open> The invariant for trees claims that a tree labeled rank $0$ has no children, and a tree labeled rank $r + 1$ is the result of an ordinary link or a skew link of two trees with rank $r$.\<close> function tree_invar :: "('e, 'a::linorder) SkewBinomialTree \<Rightarrow> bool" where "tree_invar (Node e a 0 ts) = (ts = [])" | "tree_invar (Node e a (Suc r) ts) = (\<exists> e1 a1 ts1 e2 a2 ts2 e' a'. tree_invar (Node e1 a1 r ts1) \<and> tree_invar (Node e2 a2 r ts2) \<and> ((Node e a (Suc r) ts) = link (Node e1 a1 r ts1) (Node e2 a2 r ts2) \<or> (Node e a (Suc r) ts) = skewlink e' a' (Node e1 a1 r ts1) (Node e2 a2 r ts2)))" by pat_completeness auto termination apply(relation "measure rank") apply auto done text \<open>A heap satisfies the invariant, if all contained trees satisfy the invariant, the ranks of the trees in the heap are distinct, except that the first two trees may have same rank, and the ranks are ordered in ascending order.\<close> text \<open>First part: All trees inside the queue satisfy the invariant.\<close> definition queue_invar :: "('e, 'a::linorder) SkewBinomialQueue \<Rightarrow> bool" where "queue_invar q \<equiv> (\<forall>t \<in> set q. tree_invar t)" lemma queue_invar_simps[simp]: "queue_invar []" "queue_invar (t#q) \<longleftrightarrow> tree_invar t \<and> queue_invar q" "queue_invar (q@q') \<longleftrightarrow> queue_invar q \<and> queue_invar q'" "queue_invar q \<Longrightarrow> t\<in>set q \<Longrightarrow> tree_invar t" unfolding queue_invar_def by auto text \<open>Second part: The ranks of the trees in the heap are distinct, except that the first two trees may have same rank, and the ranks are ordered in ascending order.\<close> text \<open>For tail of queue\<close> fun rank_invar :: "('e, 'a::linorder) SkewBinomialQueue \<Rightarrow> bool" where "rank_invar [] = True" | "rank_invar [t] = True" | "rank_invar (t # t' # bq) = (rank t < rank t' \<and> rank_invar (t' # bq))" text \<open>For whole queue: First two elements may have same rank\<close> fun rank_skew_invar :: "('e, 'a::linorder) SkewBinomialQueue \<Rightarrow> bool" where "rank_skew_invar [] = True" | "rank_skew_invar [t] = True" | "rank_skew_invar (t # t' # bq) = ((rank t \<le> rank t') \<and> rank_invar (t' # bq))" definition tail_invar :: "('e, 'a::linorder) SkewBinomialQueue \<Rightarrow> bool" where "tail_invar bq = (queue_invar bq \<and> rank_invar bq)" definition invar :: "('e, 'a::linorder) SkewBinomialQueue \<Rightarrow> bool" where "invar bq = (queue_invar bq \<and> rank_skew_invar bq)" lemma invar_empty[simp]: "invar []" "tail_invar []" unfolding invar_def tail_invar_def by auto lemma invar_tail_invar: "invar (t # bq) \<Longrightarrow> tail_invar bq" unfolding invar_def tail_invar_def by (cases bq) simp_all lemma link_mset[simp]: "tree_to_multiset (link t1 t2) = tree_to_multiset t1 +tree_to_multiset t2" by (cases t1, cases t2, auto simp add:union_ac) lemma link_tree_invar: "\<lbrakk>tree_invar t1; tree_invar t2; rank t1 = rank t2\<rbrakk> \<Longrightarrow> tree_invar (link t1 t2)" by (cases t1, cases t2, simp, blast) lemma skewlink_mset[simp]: "tree_to_multiset (skewlink e a t1 t2) = {# (e,a) #} + tree_to_multiset t1 + tree_to_multiset t2" by (cases t1, cases t2, auto simp add:union_ac) lemma skewlink_tree_invar: "\<lbrakk>tree_invar t1; tree_invar t2; rank t1 = rank t2\<rbrakk> \<Longrightarrow> tree_invar (skewlink e a t1 t2)" by (cases t1, cases t2, simp, blast) lemma rank_link: "rank t = rank t' \<Longrightarrow> rank (link t t') = rank t + 1" apply (cases t) apply (cases t') apply(auto) done lemma rank_skew_rank_invar: "rank_skew_invar (t # bq) \<Longrightarrow> rank_invar bq" by (cases bq) simp_all lemma rank_invar_rank_skew: assumes "rank_invar q" shows "rank_skew_invar q" proof (cases q) case Nil then show ?thesis by simp next case (Cons _ list) with assms show ?thesis by (cases list) simp_all qed lemma rank_invar_cons_up: "\<lbrakk>rank_invar (t # bq); rank t' < rank t\<rbrakk> \<Longrightarrow> rank_invar (t' # t # bq)" by simp lemma rank_skew_cons_up: "\<lbrakk>rank_invar (t # bq); rank t' \<le> rank t\<rbrakk> \<Longrightarrow> rank_skew_invar (t' # t # bq)" by simp lemma rank_invar_cons_down: "rank_invar (t # bq) \<Longrightarrow> rank_invar bq" by (cases bq) simp_all lemma rank_invar_hd_cons: "\<lbrakk>rank_invar bq; rank t < rank (hd bq)\<rbrakk> \<Longrightarrow> rank_invar (t # bq)" apply(cases bq) apply(auto) done lemma tail_invar_cons_up: "\<lbrakk>tail_invar (t # bq); rank t' < rank t; tree_invar t'\<rbrakk> \<Longrightarrow> tail_invar (t' # t # bq)" unfolding tail_invar_def apply (cases bq) apply simp_all done lemma tail_invar_cons_up_invar: "\<lbrakk>tail_invar (t # bq); rank t' \<le> rank t; tree_invar t'\<rbrakk> \<Longrightarrow> invar (t' # t # bq)" by (cases bq) (simp_all add: invar_def tail_invar_def) lemma tail_invar_cons_down: "tail_invar (t # bq) \<Longrightarrow> tail_invar bq" unfolding tail_invar_def by (cases bq) simp_all lemma tail_invar_app_single: "\<lbrakk>tail_invar bq; \<forall>t \<in> set bq. rank t < rank t'; tree_invar t'\<rbrakk> \<Longrightarrow> tail_invar (bq @ [t'])" proof2 (induct bq) case Nil then show ?case by (simp add: tail_invar_def) next case (Cons a bq) from \<open>tail_invar (a # bq)\<close> have "tail_invar bq" by (rule tail_invar_cons_down) with Cons have "tail_invar (bq @ [t'])" by simp with Cons show ?case by (cases bq) (simp_all add: tail_invar_cons_up tail_invar_def) qed lemma invar_app_single: "\<lbrakk>invar bq; \<forall>t \<in> set bq. rank t < rank t'; tree_invar t'\<rbrakk> \<Longrightarrow> invar (bq @ [t'])" proof2 (induct bq) case Nil then show ?case by (simp add: invar_def) next case (Cons a bq) show ?case proof (cases bq) case Nil with Cons show ?thesis by (simp add: invar_def) next case Cons': (Cons ta qa) from Cons(2) have a1: "tail_invar bq" by (rule invar_tail_invar) from Cons(3) have a2: "\<forall>t\<in>set bq. rank t < rank t'" by simp from a1 a2 Cons(4) tail_invar_app_single[of "bq" "t'"] have "tail_invar (bq @ [t'])" by simp with Cons Cons' show ?thesis by (simp_all add: tail_invar_cons_up_invar invar_def tail_invar_def) qed qed lemma invar_children: assumes "tree_invar ((Node e a r ts)::(('e, 'a::linorder) SkewBinomialTree))" shows "queue_invar ts" using assms proof2 (induct r arbitrary: e a ts) case 0 then show ?case by simp next case (Suc r) from Suc(2) obtain e1 a1 ts1 e2 a2 ts2 e' a' where inv_t1: "tree_invar (Node e1 a1 r ts1)" and inv_t2: "tree_invar (Node e2 a2 r ts2)" and link_or_skew: "((Node e a (Suc r) ts) = link (Node e1 a1 r ts1) (Node e2 a2 r ts2) \<or> (Node e a (Suc r) ts) = skewlink e' a' (Node e1 a1 r ts1) (Node e2 a2 r ts2))" by (simp only: tree_invar.simps) blast from Suc(1)[OF inv_t1] inv_t2 have case1: "queue_invar ((Node e2 a2 r ts2) # ts1)" by simp from Suc(1)[OF inv_t2] inv_t1 have case2: "queue_invar ((Node e1 a1 r ts1) # ts2)" by simp show ?case proof (cases "(Node e a (Suc r) ts) = link (Node e1 a1 r ts1) (Node e2 a2 r ts2)") case True hence "ts = (if a1 \<le> a2 then (Node e2 a2 r ts2) # ts1 else (Node e1 a1 r ts1) # ts2)" by auto with case1 case2 show ?thesis by simp next case False with link_or_skew have "Node e a (Suc r) ts = skewlink e' a' (Node e1 a1 r ts1) (Node e2 a2 r ts2)" by simp hence "ts = (if a' \<le> a1 \<and> a' \<le> a2 then [(Node e1 a1 r ts1),(Node e2 a2 r ts2)] else (if a1 \<le> a2 then (Node e' a' 0 []) # (Node e2 a2 r ts2) # ts1 else (Node e' a' 0 []) # (Node e1 a1 r ts1) # ts2))" by auto with case1 case2 show ?thesis by simp qed qed subsubsection "Heap Order" fun heap_ordered :: "('e, 'a::linorder) SkewBinomialTree \<Rightarrow> bool" where "heap_ordered (Node e a r ts) = (\<forall>x \<in> set_mset (queue_to_multiset ts). a \<le> snd x)" text \<open>The invariant for trees implies heap order.\<close> lemma tree_invar_heap_ordered: fixes t :: "('e, 'a::linorder) SkewBinomialTree" assumes "tree_invar t" shows "heap_ordered t" proof (cases t) case (Node e a nat list) with assms show ?thesis proof2 (induct nat arbitrary: t e a list) case 0 then show ?case by simp next case (Suc nat) from Suc(2,3) obtain t1 e1 a1 ts1 t2 e2 a2 ts2 e' a' where inv_t1: "tree_invar t1" and inv_t2: "tree_invar t2" and link_or_skew: "t = link t1 t2 \<or> t = skewlink e' a' t1 t2" and eq_t1[simp]: "t1 = (Node e1 a1 nat ts1)" and eq_t2[simp]: "t2 = (Node e2 a2 nat ts2)" by (simp only: tree_invar.simps) blast note heap_t1 = Suc(1)[OF inv_t1 eq_t1] note heap_t2 = Suc(1)[OF inv_t2 eq_t2] from link_or_skew heap_t1 heap_t2 show ?case by (cases "t = link t1 t2") auto qed qed (***********************************************************) (***********************************************************) subsubsection "Height and Length" text \<open> Although complexity of HOL-functions cannot be expressed within HOL, we can express the height and length of a binomial heap. By showing that both, height and length, are logarithmic in the number of contained elements, we give strong evidence that our functions have logarithmic complexity in the number of elements. \<close> text \<open>Height of a tree and queue\<close> fun height_tree :: "('e, ('a::linorder)) SkewBinomialTree \<Rightarrow> nat" and height_queue :: "('e, ('a::linorder)) SkewBinomialQueue \<Rightarrow> nat" where "height_tree (Node e a r ts) = height_queue ts" | "height_queue [] = 0" | "height_queue (t # ts) = max (Suc (height_tree t)) (height_queue ts)" lemma link_length: "size (tree_to_multiset (link t1 t2)) = size (tree_to_multiset t1) + size (tree_to_multiset t2)" apply(cases t1) apply(cases t2) apply simp done lemma tree_rank_estimate_upper: "tree_invar (Node e a r ts) \<Longrightarrow> size (tree_to_multiset (Node e a r ts)) \<le> (2::nat)^(Suc r) - 1" proof2 (induct r arbitrary: e a ts) case 0 then show ?case by simp next case (Suc r) from Suc(2) obtain e1 a1 ts1 e2 a2 ts2 e' a' where link: "(Node e a (Suc r) ts) = link (Node e1 a1 r ts1) (Node e2 a2 r ts2) \<or> (Node e a (Suc r) ts) = skewlink e' a' (Node e1 a1 r ts1) (Node e2 a2 r ts2)" and inv1: "tree_invar (Node e1 a1 r ts1)" and inv2: "tree_invar (Node e2 a2 r ts2)" by simp blast note iv1 = Suc(1)[OF inv1] note iv2 = Suc(1)[OF inv2] have "(2::nat)^r - 1 + (2::nat)^r - 1 \<le> (2::nat)^(Suc r) - 1" by simp with link Suc show ?case apply (cases "Node e a (Suc r) ts = link (Node e1 a1 r ts1) (Node e2 a2 r ts2)") using iv1 iv2 apply (simp del: link.simps) using iv1 iv2 apply (simp del: skewlink.simps) done qed lemma tree_rank_estimate_lower: "tree_invar (Node e a r ts) \<Longrightarrow> size (tree_to_multiset (Node e a r ts)) \<ge> (2::nat)^r" proof2 (induct r arbitrary: e a ts) case 0 then show ?case by simp next case (Suc r) from Suc(2) obtain e1 a1 ts1 e2 a2 ts2 e' a' where link: "(Node e a (Suc r) ts) = link (Node e1 a1 r ts1) (Node e2 a2 r ts2) \<or> (Node e a (Suc r) ts) = skewlink e' a' (Node e1 a1 r ts1) (Node e2 a2 r ts2)" and inv1: "tree_invar (Node e1 a1 r ts1)" and inv2: "tree_invar (Node e2 a2 r ts2)" by simp blast note iv1 = Suc(1)[OF inv1] note iv2 = Suc(1)[OF inv2] have "(2::nat)^r - 1 + (2::nat)^r - 1 \<le> (2::nat)^(Suc r) - 1" by simp with link Suc show ?case apply (cases "Node e a (Suc r) ts = link (Node e1 a1 r ts1) (Node e2 a2 r ts2)") using iv1 iv2 apply (simp del: link.simps) using iv1 iv2 apply (simp del: skewlink.simps) done qed lemma tree_rank_height: "tree_invar (Node e a r ts) \<Longrightarrow> height_tree (Node e a r ts) = r" proof2 (induct r arbitrary: e a ts) case 0 then show ?case by simp next case (Suc r) from Suc(2) obtain e1 a1 ts1 e2 a2 ts2 e' a' where link: "(Node e a (Suc r) ts) = link (Node e1 a1 r ts1) (Node e2 a2 r ts2) \<or> (Node e a (Suc r) ts) = skewlink e' a' (Node e1 a1 r ts1) (Node e2 a2 r ts2)" and inv1: "tree_invar (Node e1 a1 r ts1)" and inv2: "tree_invar (Node e2 a2 r ts2)" by simp blast note iv1 = Suc(1)[OF inv1] note iv2 = Suc(1)[OF inv2] from Suc(2) link show ?case apply (cases "Node e a (Suc r) ts = link (Node e1 a1 r ts1) (Node e2 a2 r ts2)") apply (cases "a1 \<le> a2") using iv1 iv2 apply simp using iv1 iv2 apply simp apply (cases "a' \<le> a1 \<and> a' \<le> a2") apply (simp only: height_tree.simps) using iv1 iv2 apply simp apply (cases "a1 \<le> a2") using iv1 iv2 apply (simp del: tree_invar.simps link.simps) using iv1 iv2 apply (simp del: tree_invar.simps link.simps) done qed text \<open>A skew binomial tree of height $h$ contains at most $2^{h+1} - 1$ elements\<close> theorem tree_height_estimate_upper: "tree_invar t \<Longrightarrow> size (tree_to_multiset t) \<le> (2::nat)^(Suc (height_tree t)) - 1" apply (cases t, simp only:) apply (frule tree_rank_estimate_upper) apply (frule tree_rank_height) apply (simp only: ) done text \<open>A skew binomial tree of height $h$ contains at least $2^{h}$ elements\<close> theorem tree_height_estimate_lower: "tree_invar t \<Longrightarrow> size (tree_to_multiset t) \<ge> (2::nat)^(height_tree t)" apply (cases t, simp only:) apply (frule tree_rank_estimate_lower) apply (frule tree_rank_height) apply (simp only: ) done lemma size_mset_tree_upper: "tree_invar t \<Longrightarrow> size (tree_to_multiset t) \<le> (2::nat)^(Suc (rank t)) - (1::nat)" apply (cases t) by (simp only: tree_rank_estimate_upper SkewBinomialTree.sel(3)) lemma size_mset_tree_lower: "tree_invar t \<Longrightarrow> size (tree_to_multiset t) \<ge> (2::nat)^(rank t)" apply (cases t) by (simp only: tree_rank_estimate_lower SkewBinomialTree.sel(3)) lemma invar_butlast: "invar (bq @ [t]) \<Longrightarrow> invar bq" unfolding invar_def apply2 (induct bq) apply simp apply (case_tac bq) apply simp apply (case_tac list) by simp_all lemma invar_last_max: "invar ((b#b'#bq) @ [m]) \<Longrightarrow> \<forall> t \<in> set (b'#bq). rank t < rank m" unfolding invar_def apply2 (induct bq) apply simp apply (case_tac bq) apply simp by simp lemma invar_last_max': "invar ((b#b'#bq) @ [m]) \<Longrightarrow> rank b \<le> rank b'" unfolding invar_def by simp lemma invar_length: "invar bq \<Longrightarrow> length bq \<le> Suc (Suc (rank (last bq)))" proof2 (induct bq rule: rev_induct) case Nil thus ?case by simp next case (snoc x xs) show ?case proof (cases xs) case Nil thus ?thesis by simp next case [simp]: (Cons xxs xx) note Cons' = Cons thus ?thesis proof (cases xx) case Nil with snoc.prems Cons show ?thesis by simp next case (Cons xxxs xxx) from snoc.hyps[OF invar_butlast[OF snoc.prems]] have IH: "length xs \<le> Suc (Suc (rank (last xs)))" . also from invar_last_max[OF snoc.prems[unfolded Cons' Cons]] invar_last_max'[OF snoc.prems[unfolded Cons' Cons]] last_in_set[of xs] Cons have "Suc (rank (last xs)) \<le> rank (last (xs @ [x]))" by auto finally show ?thesis by simp qed qed qed lemma size_queue_sum_list: "size (queue_to_multiset bq) = sum_list (map (size \<circ> tree_to_multiset) bq)" apply2 (induct bq) by simp_all text \<open> A skew binomial heap of length $l$ contains at least $2^{l-1} - 1$ elements. \<close> theorem queue_length_estimate_lower: "invar bq \<Longrightarrow> (size (queue_to_multiset bq)) \<ge> 2^(length bq - 1) - 1" proof2 (induct bq rule: rev_induct) case Nil thus ?case by simp next case (snoc x xs) thus ?case proof (cases xs) case Nil thus ?thesis by simp next case [simp]: (Cons xx xxs) from snoc.hyps[OF invar_butlast[OF snoc.prems]] have IH: "2 ^ (length xs - 1) \<le> Suc (size (queue_to_multiset xs))" by simp have size_q: "size (queue_to_multiset (xs @ [x])) = size (queue_to_multiset xs) + size (tree_to_multiset x)" by (simp add: size_queue_sum_list) moreover from snoc.prems have inv_x: "tree_invar x" by (simp add: invar_def) from size_mset_tree_lower[OF this] have "2 ^ (rank x) \<le> size (tree_to_multiset x)" . ultimately have eq: "size (queue_to_multiset xs) + (2::nat)^(rank x) \<le> size (queue_to_multiset (xs @ [x]))" by simp from invar_length[OF snoc.prems] have "length xs \<le> (rank x + 1)" by simp hence snd: "(2::nat) ^ (length xs - 1) \<le> (2::nat) ^ ((rank x))" by (simp del: power.simps) have "(2::nat) ^ (length (xs @ [x]) - 1) = (2::nat) ^ (length xs - 1) + (2::nat) ^ (length xs - 1)" by auto with IH have "2 ^ (length (xs @ [x]) - 1) \<le> Suc (size (queue_to_multiset xs)) + 2 ^ (length xs - 1)" by simp with snd have "2 ^ (length (xs @ [x]) - 1) \<le> Suc (size (queue_to_multiset xs)) + 2 ^ rank x" by arith with eq show ?thesis by simp qed qed subsection "Operations" subsubsection "Empty Tree" lemma empty_correct: "q=Nil \<longleftrightarrow> queue_to_multiset q = {#}" apply (cases q) apply simp apply (case_tac a) apply auto done subsubsection "Insert" text \<open>Inserts a tree into the queue, such that two trees of same rank get linked and are recursively inserted. This is the same definition as for binomial queues and is used for melding.\<close> fun ins :: "('e, 'a::linorder) SkewBinomialTree \<Rightarrow> ('e, 'a) SkewBinomialQueue \<Rightarrow> ('e, 'a) SkewBinomialQueue" where "ins t [] = [t]" | "ins t' (t # bq) = (if (rank t') < (rank t) then t' # t # bq else (if (rank t) < (rank t') then t # (ins t' bq) else ins (link t' t) bq))" text \<open>Insert an element with priority into a queue using skewlinks.\<close> fun insert :: "'e \<Rightarrow> 'a::linorder \<Rightarrow> ('e, 'a) SkewBinomialQueue \<Rightarrow> ('e, 'a) SkewBinomialQueue" where "insert e a [] = [Node e a 0 []]" | "insert e a [t] = [Node e a 0 [],t]" | "insert e a (t # t' # bq) = (if rank t \<noteq> rank t' then (Node e a 0 []) # t # t' # bq else (skewlink e a t t') # bq)" lemma insert_mset: "queue_invar q \<Longrightarrow> queue_to_multiset (insert e a q) = queue_to_multiset q + {# (e,a) #}" apply2 (induct q rule: insert.induct) by (auto simp add: union_ac ttm_children) lemma ins_queue_invar: "\<lbrakk>tree_invar t; queue_invar q\<rbrakk> \<Longrightarrow> queue_invar (ins t q)" proof2 (induct q arbitrary: t) case Nil then show ?case by simp next case (Cons a q) note iv = Cons(1) from Cons(2,3) show ?case apply (cases "rank t < rank a") apply simp apply (cases "rank t = rank a") defer using iv[of "t"] apply simp proof goal_cases case prems: 1 from prems(2) have inv_a: "tree_invar a" by simp from prems(2) have inv_q: "queue_invar q" by simp note inv_link = link_tree_invar[OF prems(1) inv_a prems(4)] from iv[OF inv_link inv_q] prems(4) show ?case by simp qed qed lemma insert_queue_invar: "queue_invar q \<Longrightarrow> queue_invar (insert e a q)" proof2 (induct q rule: insert.induct) case 1 then show ?case by simp next case 2 then show ?case by simp next case (3 e a t t' bq) show ?case proof (cases "rank t = rank t'") case False with 3 show ?thesis by simp next case True from 3 have inv_t: "tree_invar t" by simp from 3 have inv_t': "tree_invar t'" by simp from 3 skewlink_tree_invar[OF inv_t inv_t' True, of e a] True show ?thesis by simp qed qed lemma rank_ins2: "rank_invar bq \<Longrightarrow> rank t \<le> rank (hd (ins t bq)) \<or> (rank (hd (ins t bq)) = rank (hd bq) \<and> bq \<noteq> [])" apply2 (induct bq arbitrary: t) apply auto proof goal_cases case prems: (1 a bq t) hence r: "rank (link t a) = rank a + 1" by (simp add: rank_link) with prems and prems(1)[of "(link t a)"] show ?case apply (cases bq) apply auto done qed lemma insert_rank_invar: "rank_skew_invar q \<Longrightarrow> rank_skew_invar (insert e a q)" proof (cases q, simp) fix t q' assume "rank_skew_invar q" "q = t # q'" thus "rank_skew_invar (insert e a q)" proof (cases "q'", (auto intro: gr0I)[1]) fix t' q'' assume "rank_skew_invar q" "q = t # q'" "q' = t' # q''" thus "rank_skew_invar (insert e a q)" apply(cases "rank t = rank t'") defer apply (auto intro: gr0I)[1] apply (simp del: skewlink.simps) proof goal_cases case prems: 1 with rank_invar_cons_down[of "t'" "q'"] have "rank_invar q'" by simp show ?case proof (cases q'') case Nil then show ?thesis by simp next case (Cons t'' q''') with prems have "rank t' < rank t''" by simp with prems have "rank (skewlink e a t t') \<le> rank t''" by simp with prems Cons rank_skew_cons_up[of "t''" "q'''" "skewlink e a t t'"] show ?thesis by simp qed qed qed qed lemma insert_invar: "invar q \<Longrightarrow> invar (insert e a q)" unfolding invar_def using insert_queue_invar[of q] insert_rank_invar[of q] by simp theorem insert_correct: assumes I: "invar q" shows "invar (insert e a q)" "queue_to_multiset (insert e a q) = queue_to_multiset q + {# (e,a) #}" using insert_mset[of q] insert_invar[of q] I unfolding invar_def by simp_all subsubsection "meld" text \<open>Remove duplicate tree ranks by inserting the first tree of the queue into the rest of the queue.\<close> fun uniqify :: "('e, 'a::linorder) SkewBinomialQueue \<Rightarrow> ('e, 'a) SkewBinomialQueue" where "uniqify [] = []" | "uniqify (t#bq) = ins t bq" text \<open>Meld two uniquified queues using the same definition as for binomial queues.\<close> fun meldUniq :: "('e, 'a::linorder) SkewBinomialQueue \<Rightarrow> ('e,'a) SkewBinomialQueue \<Rightarrow> ('e, 'a) SkewBinomialQueue" where "meldUniq [] bq = bq" | "meldUniq bq [] = bq" | "meldUniq (t1#bq1) (t2#bq2) = (if rank t1 < rank t2 then t1 # (meldUniq bq1 (t2#bq2)) else (if rank t2 < rank t1 then t2 # (meldUniq (t1#bq1) bq2) else ins (link t1 t2) (meldUniq bq1 bq2)))" text \<open>Meld two queues using above functions.\<close> definition meld :: "('e, 'a::linorder) SkewBinomialQueue \<Rightarrow> ('e, 'a) SkewBinomialQueue \<Rightarrow> ('e, 'a) SkewBinomialQueue" where "meld bq1 bq2 = meldUniq (uniqify bq1) (uniqify bq2)" lemma invar_uniqify: "queue_invar q \<Longrightarrow> queue_invar (uniqify q)" apply(cases q, simp) apply(auto simp add: ins_queue_invar) done lemma invar_meldUniq: "\<lbrakk>queue_invar q; queue_invar q'\<rbrakk> \<Longrightarrow> queue_invar (meldUniq q q')" proof2 (induct q q' rule: meldUniq.induct) case 1 then show ?case by simp next case 2 then show ?case by simp next case (3 t1 bq1 t2 bq2) consider (lt) "rank t1 < rank t2" | (gt) "rank t1 > rank t2" | (eq) "rank t1 = rank t2" by atomize_elim auto then show ?case proof cases case t1t2: lt from 3(4) have inv_bq1: "queue_invar bq1" by simp from 3(4) have inv_t1: "tree_invar t1" by simp from 3(1)[OF t1t2 inv_bq1 3(5)] inv_t1 t1t2 show ?thesis by simp next case t1t2: gt from 3(5) have inv_bq2: "queue_invar bq2" by simp from 3(5) have inv_t2: "tree_invar t2" by simp from t1t2 have "\<not> rank t1 < rank t2" by simp from 3(2) [OF this t1t2 3(4) inv_bq2] inv_t2 t1t2 show ?thesis by simp next case t1t2: eq from 3(4) have inv_bq1: "queue_invar bq1" by simp from 3(4) have inv_t1: "tree_invar t1" by simp from 3(5) have inv_bq2: "queue_invar bq2" by simp from 3(5) have inv_t2: "tree_invar t2" by simp note inv_link = link_tree_invar[OF inv_t1 inv_t2 t1t2] from t1t2 have "\<not> rank t1 < rank t2" "\<not> rank t2 < rank t1" by auto note inv_meld = 3(3)[OF this inv_bq1 inv_bq2] from ins_queue_invar[OF inv_link inv_meld] t1t2 show ?thesis by simp qed qed lemma meld_queue_invar: assumes "queue_invar q" and "queue_invar q'" shows "queue_invar (meld q q')" proof - note inv_uniq_q = invar_uniqify[OF assms(1)] note inv_uniq_q' = invar_uniqify[OF assms(2)] note inv_meldUniq = invar_meldUniq[OF inv_uniq_q inv_uniq_q'] thus ?thesis by (simp add: meld_def) qed lemma uniqify_mset: "queue_invar q \<Longrightarrow> queue_to_multiset q = queue_to_multiset (uniqify q)" apply (cases q) apply simp apply (simp add: ins_mset) done lemma meldUniq_mset: "\<lbrakk>queue_invar q; queue_invar q'\<rbrakk> \<Longrightarrow> queue_to_multiset (meldUniq q q') = queue_to_multiset q + queue_to_multiset q'" apply2(induct q q' rule: meldUniq.induct) by(auto simp: ins_mset link_tree_invar invar_meldUniq union_ac) lemma meld_mset: "\<lbrakk> queue_invar q; queue_invar q' \<rbrakk> \<Longrightarrow> queue_to_multiset (meld q q') = queue_to_multiset q + queue_to_multiset q'" by (simp add: meld_def meldUniq_mset invar_uniqify uniqify_mset[symmetric]) text \<open>Ins operation satisfies rank invariant, see binomial queues\<close> lemma rank_ins: "rank_invar bq \<Longrightarrow> rank_invar (ins t bq)" proof2 (induct bq arbitrary: t) case Nil then show ?case by simp next case (Cons a bq) then show ?case apply auto proof goal_cases case prems: 1 hence inv: "rank_invar (ins t bq)" by (cases bq) simp_all from prems have hd: "bq \<noteq> [] \<Longrightarrow> rank a < rank (hd bq)" by (cases bq) auto from prems have "rank t \<le> rank (hd (ins t bq)) \<or> (rank (hd (ins t bq)) = rank (hd bq) \<and> bq \<noteq> [])" by (metis rank_ins2 rank_invar_cons_down) with prems have "rank a < rank (hd (ins t bq)) \<or> (rank (hd (ins t bq)) = rank (hd bq) \<and> bq \<noteq> [])" by auto with prems and inv and hd show ?case by (auto simp add: rank_invar_hd_cons) next case prems: 2 hence inv: "rank_invar bq" by (cases bq) simp_all with prems and prems(1)[of "(link t a)"] show ?case by simp qed qed lemma rank_uniqify: assumes "rank_skew_invar q" shows "rank_invar (uniqify q)" proof (cases q) case Nil then show ?thesis by simp next case (Cons a list) with rank_skew_rank_invar[of "a" "list"] rank_ins[of "list" "a"] assms show ?thesis by simp qed lemma rank_ins_min: "rank_invar bq \<Longrightarrow> rank (hd (ins t bq)) \<ge> min (rank t) (rank (hd bq))" proof2 (induct bq arbitrary: t) case Nil then show ?case by simp next case (Cons a bq) then show ?case apply auto proof goal_cases case prems: 1 hence inv: "rank_invar bq" by (cases bq) simp_all from prems have r: "rank (link t a) = rank a + 1" by (simp add: rank_link) with prems and inv and prems(1)[of "(link t a)"] show ?case by (cases bq) auto qed qed lemma rank_invar_not_empty_hd: "\<lbrakk>rank_invar (t # bq); bq \<noteq> []\<rbrakk> \<Longrightarrow> rank t < rank (hd bq)" apply2 (induct bq arbitrary: t) by auto lemma rank_invar_meldUniq_strong: "\<lbrakk>rank_invar bq1; rank_invar bq2\<rbrakk> \<Longrightarrow> rank_invar (meldUniq bq1 bq2) \<and> rank (hd (meldUniq bq1 bq2)) \<ge> min (rank (hd bq1)) (rank (hd bq2))" proof2 (induct bq1 bq2 rule: meldUniq.induct) case 1 then show ?case by simp next case 2 then show ?case by simp next case (3 t1 bq1 t2 bq2) from 3 have inv1: "rank_invar bq1" by (cases bq1) simp_all from 3 have inv2: "rank_invar bq2" by (cases bq2) simp_all from inv1 and inv2 and 3 show ?case apply auto proof goal_cases let ?t = "t2" let ?bq = "bq2" let ?meldUniq = "rank t2 < rank (hd (meldUniq (t1 # bq1) bq2))" case prems: 1 hence "?bq \<noteq> [] \<Longrightarrow> rank ?t < rank (hd ?bq)" by (simp add: rank_invar_not_empty_hd) with prems have ne: "?bq \<noteq> [] \<Longrightarrow> ?meldUniq" by simp from prems have "?bq = [] \<Longrightarrow> ?meldUniq" by simp with ne have "?meldUniq" by (cases "?bq = []") with prems show ?case by (simp add: rank_invar_hd_cons) next \<comment> \<open>analog\<close> let ?t = "t1" let ?bq = "bq1" let ?meldUniq = "rank t1 < rank (hd (meldUniq bq1 (t2 # bq2)))" case prems: 2 hence "?bq \<noteq> [] \<Longrightarrow> rank ?t < rank (hd ?bq)" by (simp add: rank_invar_not_empty_hd) with prems have ne: "?bq \<noteq> [] \<Longrightarrow> ?meldUniq" by simp from prems have "?bq = [] \<Longrightarrow> ?meldUniq" by simp with ne have "?meldUniq" by (cases "?bq = []") with prems show ?case by (simp add: rank_invar_hd_cons) next case 3 thus ?case by (simp add: rank_ins) next case prems: 4 (* Ab hier wirds hässlich *) then have r: "rank (link t1 t2) = rank t2 + 1" by (simp add: rank_link) have m: "meldUniq bq1 [] = bq1" by (cases bq1) auto from inv1 and inv2 and prems have mm: "min (rank (hd bq1)) (rank (hd bq2)) \<le> rank (hd (meldUniq bq1 bq2))" by simp from \<open>rank_invar (t1 # bq1)\<close> have "bq1 \<noteq> [] \<Longrightarrow> rank t1 < rank (hd bq1)" by (simp add: rank_invar_not_empty_hd) with prems have r1: "bq1 \<noteq> [] \<Longrightarrow> rank t2 < rank (hd bq1)" by simp from \<open>rank_invar (t2 # bq2)\<close> have r2: "bq2 \<noteq> [] \<Longrightarrow> rank t2 < rank (hd bq2)" by (simp add: rank_invar_not_empty_hd) from inv1 r r1 rank_ins_min[of bq1 "(link t1 t2)"] have abc1: "bq1 \<noteq> [] \<Longrightarrow> rank t2 \<le> rank (hd (ins (link t1 t2) bq1))" by simp from inv2 r r2 rank_ins_min[of bq2 "(link t1 t2)"] have abc2: "bq2 \<noteq> [] \<Longrightarrow> rank t2 \<le> rank (hd (ins (link t1 t2) bq2))" by simp from r1 r2 mm have "\<lbrakk>bq1 \<noteq> []; bq2 \<noteq> []\<rbrakk> \<Longrightarrow> rank t2 < rank (hd (meldUniq bq1 bq2))" by (simp) with \<open>rank_invar (meldUniq bq1 bq2)\<close> r rank_ins_min[of "meldUniq bq1 bq2" "link t1 t2"] have "\<lbrakk>bq1 \<noteq> []; bq2 \<noteq> []\<rbrakk> \<Longrightarrow> rank t2 < rank (hd (ins (link t1 t2) (meldUniq bq1 bq2)))" by simp with inv1 and inv2 and r m r1 show ?case apply(cases "bq2 = []") apply(cases "bq1 = []") apply(simp) apply(auto simp add: abc1) apply(cases "bq1 = []") apply(simp) apply(auto simp add: abc2) done qed qed lemma rank_meldUniq: "\<lbrakk>rank_invar bq1; rank_invar bq2\<rbrakk> \<Longrightarrow> rank_invar (meldUniq bq1 bq2)" by (simp only: rank_invar_meldUniq_strong) lemma rank_meld: "\<lbrakk>rank_skew_invar q1; rank_skew_invar q2\<rbrakk> \<Longrightarrow> rank_skew_invar (meld q1 q2)" by (simp only: meld_def rank_meldUniq rank_uniqify rank_invar_rank_skew) theorem meld_invar: "\<lbrakk>invar bq1; invar bq2\<rbrakk> \<Longrightarrow> invar (meld bq1 bq2)" by (metis meld_queue_invar rank_meld invar_def) theorem meld_correct: assumes I: "invar q" "invar q'" shows "invar (meld q q')" "queue_to_multiset (meld q q') = queue_to_multiset q + queue_to_multiset q'" using meld_invar[of q q'] meld_mset[of q q'] I unfolding invar_def by simp_all subsubsection "Find Minimal Element" text \<open>Find the tree containing the minimal element.\<close> fun getMinTree :: "('e, 'a::linorder) SkewBinomialQueue \<Rightarrow> ('e, 'a) SkewBinomialTree" where "getMinTree [t] = t" | "getMinTree (t#bq) = (if prio t \<le> prio (getMinTree bq) then t else (getMinTree bq))" text \<open>Find the minimal Element in the queue.\<close> definition findMin :: "('e, 'a::linorder) SkewBinomialQueue \<Rightarrow> ('e \<times> 'a)" where "findMin bq = (let min = getMinTree bq in (val min, prio min))" lemma mintree_exists: "(bq \<noteq> []) = (getMinTree bq \<in> set bq)" proof2 (induct bq) case Nil then show ?case by simp next case (Cons _ bq) then show ?case by (cases bq) simp_all qed lemma treehead_in_multiset: "t \<in> set bq \<Longrightarrow> (val t, prio t) \<in># (queue_to_multiset bq)" apply2 (induct bq) by (simp, cases t, auto) lemma heap_ordered_single: "heap_ordered t = (\<forall>x \<in> set_mset (tree_to_multiset t). prio t \<le> snd x)" by (cases t) auto lemma getMinTree_cons: "prio (getMinTree (y # x # xs)) \<le> prio (getMinTree (x # xs))" apply2 (induct xs rule: getMinTree.induct) by simp_all lemma getMinTree_min_tree: "t \<in> set bq \<Longrightarrow> prio (getMinTree bq) \<le> prio t" apply2 (induct bq arbitrary: t rule: getMinTree.induct) by (simp, fastforce, simp) lemma getMinTree_min_prio: assumes "queue_invar bq" and "y \<in> set_mset (queue_to_multiset bq)" shows "prio (getMinTree bq) \<le> snd y" proof - from assms have "bq \<noteq> []" by (cases bq) simp_all with assms have "\<exists>t \<in> set bq. (y \<in> set_mset (tree_to_multiset t))" proof2 (induct bq) case Nil then show ?case by simp next case (Cons a bq) then show ?case apply (cases "y \<in> set_mset (tree_to_multiset a)") apply simp apply (cases bq) apply simp_all done qed from this obtain t where O: "t \<in> set bq" "y \<in> set_mset ((tree_to_multiset t))" by blast obtain e a r ts where [simp]: "t = (Node e a r ts)" by (cases t) blast from O assms(1) have inv: "tree_invar t" by simp from tree_invar_heap_ordered[OF inv] heap_ordered.simps[of e a r ts] O have "prio t \<le> snd y" by auto with getMinTree_min_tree[OF O(1)] show ?thesis by simp qed lemma findMin_mset: assumes I: "queue_invar q" assumes NE: "q\<noteq>Nil" shows "findMin q \<in># queue_to_multiset q" "\<forall>y\<in>set_mset (queue_to_multiset q). snd (findMin q) \<le> snd y" proof - from NE have "getMinTree q \<in> set q" by (simp only: mintree_exists) thus "findMin q \<in># queue_to_multiset q" by (simp add: treehead_in_multiset findMin_def Let_def) show "\<forall>y\<in>set_mset (queue_to_multiset q). snd (findMin q) \<le> snd y" by (simp add: getMinTree_min_prio findMin_def Let_def NE I) qed theorem findMin_correct: assumes I: "invar q" assumes NE: "q\<noteq>Nil" shows "findMin q \<in># queue_to_multiset q" "\<forall>y\<in>set_mset (queue_to_multiset q). snd (findMin q) \<le> snd y" using I NE findMin_mset unfolding invar_def by auto subsubsection "Delete Minimal Element" text \<open>Insert the roots of a given queue into an other queue.\<close> fun insertList :: "('e, 'a::linorder) SkewBinomialQueue \<Rightarrow> ('e, 'a) SkewBinomialQueue \<Rightarrow> ('e, 'a) SkewBinomialQueue" where "insertList [] tbq = tbq" | "insertList (t#bq) tbq = insertList bq (insert (val t) (prio t) tbq)" text \<open>Remove the first tree, which has the priority $a$ within his root.\<close> fun remove1Prio :: "'a \<Rightarrow> ('e, 'a::linorder) SkewBinomialQueue \<Rightarrow> ('e, 'a) SkewBinomialQueue" where "remove1Prio a [] = []" | "remove1Prio a (t#bq) = (if (prio t) = a then bq else t # (remove1Prio a bq))" lemma remove1Prio_remove1[simp]: "remove1Prio (prio (getMinTree bq)) bq = remove1 (getMinTree bq) bq" proof2 (induct bq) case Nil thus ?case by simp next case (Cons t bq) note iv = Cons thus ?case proof (cases "t = getMinTree (t # bq)") case True with iv show ?thesis by simp next case False hence ne: "bq \<noteq> []" by auto with False have down: "getMinTree (t # bq) = getMinTree bq" apply2 (induct bq rule: getMinTree.induct) by auto from ne False have "prio t \<noteq> prio (getMinTree bq)" apply2 (induct bq rule: getMinTree.induct) by auto with down iv False ne show ?thesis by simp qed qed text \<open>Return the queue without the minimal element found by findMin\<close> definition deleteMin :: "('e, 'a::linorder) SkewBinomialQueue \<Rightarrow> ('e, 'a) SkewBinomialQueue" where "deleteMin bq = (let min = getMinTree bq in insertList (filter (\<lambda> t. rank t = 0) (children min)) (meld (rev (filter (\<lambda> t. rank t > 0) (children min))) (remove1Prio (prio min) bq)))" lemma invar_remove1: "queue_invar q \<Longrightarrow> queue_invar (remove1 t q)" by (unfold queue_invar_def) (auto) lemma mset_rev: "queue_to_multiset (rev q) = queue_to_multiset q" apply2 (induct q) by(auto simp add: union_ac) lemma in_set_subset: "t \<in> set q \<Longrightarrow> tree_to_multiset t \<subseteq># queue_to_multiset q" proof2 (induct q) case Nil then show ?case by simp next case (Cons a q) show ?case proof (cases "t = a") case True then show ?thesis by simp next case False with Cons have t_in_q: "t \<in> set q" by simp have "queue_to_multiset q \<subseteq># queue_to_multiset (a # q)" by simp from subset_mset.order_trans[OF Cons(1)[OF t_in_q] this] show ?thesis . qed qed lemma mset_remove1: "t \<in> set q \<Longrightarrow> queue_to_multiset (remove1 t q) = queue_to_multiset q - tree_to_multiset t" apply2 (induct q) by (auto simp: in_set_subset) lemma invar_children': assumes "tree_invar t" shows "queue_invar (children t)" proof (cases t) case (Node e a nat list) with assms have inv: "tree_invar (Node e a nat list)" by simp from Node invar_children[OF inv] show ?thesis by simp qed lemma invar_filter: "queue_invar q \<Longrightarrow> queue_invar (filter f q)" by (unfold queue_invar_def) simp lemma deleteMin_queue_invar: "\<lbrakk>queue_invar q; queue_to_multiset q \<noteq> {#}\<rbrakk> \<Longrightarrow> queue_invar (deleteMin q)" unfolding deleteMin_def Let_def proof goal_cases case prems: 1 from prems(2) have q_ne: "q \<noteq> []" by auto with prems(1) mintree_exists[of q] have inv_min: "tree_invar (getMinTree q)" by simp note inv_rem = invar_remove1[OF prems(1), of "getMinTree q"] note inv_children = invar_children'[OF inv_min] note inv_filter = invar_filter[OF inv_children, of "\<lambda>t. 0 < rank t"] note inv_rev = iffD2[OF invar_rev inv_filter] note inv_meld = meld_queue_invar[OF inv_rev inv_rem] note inv_ins = insertList_queue_invar[OF inv_meld, of "[t\<leftarrow>children (getMinTree q). rank t = 0]"] then show ?case by simp qed lemma mset_children: "queue_to_multiset (children t) = tree_to_multiset t - {# (val t, prio t) #}" by(cases t, auto) lemma mset_insertList: "\<lbrakk>\<forall>t \<in> set ts. rank t = 0 \<and> children t = [] ; queue_invar q\<rbrakk> \<Longrightarrow> queue_to_multiset (insertList ts q) = queue_to_multiset ts + queue_to_multiset q" proof2 (induct ts arbitrary: q) case Nil then show ?case by simp next case (Cons a ts) from Cons(2) have ball_ts: "\<forall>t\<in>set ts. rank t = 0 \<and> children t = []" by simp note inv_insert = insert_queue_invar[OF Cons(3), of "val a" "prio a"] note iv = Cons(1)[OF ball_ts inv_insert] from Cons(2) have mset_a: "tree_to_multiset a = {# (val a, prio a)#}" by (cases a) simp note insert_mset[OF Cons(3), of "val a" "prio a"] with mset_a iv show ?case by (simp add: union_ac) qed lemma mset_filter: "(queue_to_multiset [t\<leftarrow>q . rank t = 0]) + queue_to_multiset [t\<leftarrow>q . 0 < rank t] = queue_to_multiset q" apply2 (induct q) by (auto simp add: union_ac) lemma deleteMin_mset: assumes "queue_invar q" and "queue_to_multiset q \<noteq> {#}" shows "queue_to_multiset (deleteMin q) = queue_to_multiset q - {# (findMin q) #}" proof - from assms(2) have q_ne: "q \<noteq> []" by auto with mintree_exists[of q] have min_in_q: "getMinTree q \<in> set q" by simp with assms(1) have inv_min: "tree_invar (getMinTree q)" by simp note inv_rem = invar_remove1[OF assms(1), of "getMinTree q"] note inv_children = invar_children'[OF inv_min] note inv_filter = invar_filter[OF inv_children, of "\<lambda>t. 0 < rank t"] note inv_rev = iffD2[OF invar_rev inv_filter] note inv_meld = meld_queue_invar[OF inv_rev inv_rem] note mset_rem = mset_remove1[OF min_in_q] note mset_rev = mset_rev[of "[t\<leftarrow>children (getMinTree q). 0 < rank t]"] note mset_meld = meld_mset[OF inv_rev inv_rem] note mset_children = mset_children[of "getMinTree q"] thm mset_insertList[of "[t\<leftarrow>children (getMinTree q) . rank t = 0]"] have "\<lbrakk>tree_invar t; rank t = 0\<rbrakk> \<Longrightarrow> children t = []" for t by (cases t) simp with inv_children have ball_min: "\<forall>t\<in>set [t\<leftarrow>children (getMinTree q). rank t = 0]. rank t = 0 \<and> children t = []" by (unfold queue_invar_def) auto note mset_insertList = mset_insertList[OF ball_min inv_meld] note mset_filter = mset_filter[of "children (getMinTree q)"] let ?Q = "queue_to_multiset q" let ?MT = "tree_to_multiset (getMinTree q)" from q_ne have head_subset_min: "{# (val (getMinTree q), prio (getMinTree q)) #} \<subseteq># ?MT" by(cases "getMinTree q") simp note min_subset_q = in_set_subset[OF min_in_q] from mset_insertList mset_meld mset_rev mset_rem mset_filter mset_children multiset_diff_union_assoc[OF head_subset_min, of "?Q - ?MT"] mset_subset_eq_multiset_union_diff_commute[OF min_subset_q, of "?MT"] show ?thesis by (auto simp add: deleteMin_def Let_def union_ac findMin_def) qed lemma rank_insertList: "rank_skew_invar q \<Longrightarrow> rank_skew_invar (insertList ts q)" apply2 (induct ts arbitrary: q) by (simp_all add: insert_rank_invar) lemma insertList_invar: "invar q \<Longrightarrow> invar (insertList ts q)" proof2 (induct ts arbitrary: q) case Nil then show ?case by simp next case (Cons a q) show ?case apply (unfold insertList.simps) proof goal_cases case 1 from Cons(2) insert_rank_invar[of "q" "val a" "prio a"] have a1: "rank_skew_invar (insert (val a) (prio a) q)" by (simp add: invar_def) from Cons(2) insert_queue_invar[of "q" "val a" "prio a"] have a2: "queue_invar (insert (val a) (prio a) q)" by (simp add: invar_def) from a1 a2 have "invar (insert (val a) (prio a) q)" by (simp add: invar_def) with Cons(1)[of "(insert (val a) (prio a) q)"] show ?case . qed qed lemma children_rank_less: assumes "tree_invar t" shows "\<forall>t' \<in> set (children t). rank t' < rank t" proof (cases t) case (Node e a nat list) with assms show ?thesis proof2 (induct nat arbitrary: t e a list) case 0 then show ?case by simp next case (Suc nat) then obtain e1 a1 ts1 e2 a2 ts2 e' a' where O: "tree_invar (Node e1 a1 nat ts1)" "tree_invar (Node e2 a2 nat ts2)" "t = link (Node e1 a1 nat ts1) (Node e2 a2 nat ts2) \<or> t = skewlink e' a' (Node e1 a1 nat ts1) (Node e2 a2 nat ts2)" by (simp only: tree_invar.simps) blast hence ch_id: "children t = (if a1 \<le> a2 then (Node e2 a2 nat ts2)#ts1 else (Node e1 a1 nat ts1)#ts2) \<or> children t = (if a' \<le> a1 \<and> a' \<le> a2 then [(Node e1 a1 nat ts1), (Node e2 a2 nat ts2)] else (if a1 \<le> a2 then (Node e' a' 0 []) # (Node e2 a2 nat ts2) # ts1 else (Node e' a' 0 []) # (Node e1 a1 nat ts1) # ts2))" by auto from O Suc(1)[of "Node e1 a1 nat ts1" "e1" "a1" "ts1"] have p1: "\<forall>t'\<in>set ((Node e2 a2 nat ts2) # ts1). rank t' < Suc nat" by auto from O Suc(1)[of "Node e2 a2 nat ts2" "e2" "a2" "ts2"] have p2: "\<forall>t'\<in>set ((Node e1 a1 nat ts1) # ts2). rank t' < Suc nat" by auto from O have p3: "\<forall>t' \<in> set [(Node e1 a1 nat ts1), (Node e2 a2 nat ts2)]. rank t' < Suc nat" by simp from O Suc(1)[of "Node e1 a1 nat ts1" "e1" "a1" "ts1"] have p4: "\<forall>t' \<in> set ((Node e' a' 0 []) # (Node e2 a2 nat ts2) # ts1). rank t' < Suc nat" by auto from O Suc(1)[of "Node e2 a2 nat ts2" "e2" "a2" "ts2"] have p5: "\<forall>t' \<in> set ((Node e' a' 0 []) # (Node e1 a1 nat ts1) # ts2). rank t' < Suc nat" by auto from Suc(3) p1 p2 p3 p4 p5 ch_id show ?case by(cases "children t = (if a1 \<le> a2 then Node e2 a2 nat ts2 # ts1 else Node e1 a1 nat ts1 # ts2)") simp_all qed qed lemma strong_rev_children: assumes "tree_invar t" shows "invar (rev [t \<leftarrow> children t. 0 < rank t])" proof (cases t) case (Node e a nat list) with assms show ?thesis proof2 (induct "nat" arbitrary: t e a list) case 0 then show ?case by (simp add: invar_def) next case (Suc nat) show ?case proof (cases "nat") case 0 with Suc obtain e1 a1 e2 a2 e' a' where O: "tree_invar (Node e1 a1 0 [])" "tree_invar (Node e2 a2 0 [])" "t = link (Node e1 a1 0 []) (Node e2 a2 0 []) \<or> t = skewlink e' a' (Node e1 a1 0 []) (Node e2 a2 0 [])" by (simp only: tree_invar.simps) blast hence "[t \<leftarrow> children t. 0 < rank t] = []" by auto then show ?thesis by (simp add: invar_def) next case Suc': (Suc n) from Suc obtain e1 a1 ts1 e2 a2 ts2 e' a' where O: "tree_invar (Node e1 a1 nat ts1)" "tree_invar (Node e2 a2 nat ts2)" "t = link (Node e1 a1 nat ts1) (Node e2 a2 nat ts2) \<or> t = skewlink e' a' (Node e1 a1 nat ts1) (Node e2 a2 nat ts2)" by (simp only: tree_invar.simps) blast hence ch_id: "children t = (if a1 \<le> a2 then (Node e2 a2 nat ts2)#ts1 else (Node e1 a1 nat ts1)#ts2) \<or> children t = (if a' \<le> a1 \<and> a' \<le> a2 then [(Node e1 a1 nat ts1), (Node e2 a2 nat ts2)] else (if a1 \<le> a2 then (Node e' a' 0 []) # (Node e2 a2 nat ts2) # ts1 else (Node e' a' 0 []) # (Node e1 a1 nat ts1) # ts2))" by auto from O Suc(1)[of "Node e1 a1 nat ts1" "e1" "a1" "ts1"] have rev_ts1: "invar (rev [t \<leftarrow> ts1. 0 < rank t])" by simp from O children_rank_less[of "Node e1 a1 nat ts1"] have "\<forall>t\<in>set (rev [t \<leftarrow> ts1. 0 < rank t]). rank t < rank (Node e2 a2 nat ts2)" by simp with O rev_ts1 invar_app_single[of "rev [t \<leftarrow> ts1. 0 < rank t]" "Node e2 a2 nat ts2"] have "invar (rev ((Node e2 a2 nat ts2) # [t \<leftarrow> ts1. 0 < rank t]))" by simp with Suc' have p1: "invar (rev [t \<leftarrow> ((Node e2 a2 nat ts2) # ts1). 0 < rank t])" by simp from O Suc(1)[of "Node e2 a2 nat ts2" "e2" "a2" "ts2"] have rev_ts2: "invar (rev [t \<leftarrow> ts2. 0 < rank t])" by simp from O children_rank_less[of "Node e2 a2 nat ts2"] have "\<forall>t\<in>set (rev [t \<leftarrow> ts2. 0 < rank t]). rank t < rank (Node e1 a1 nat ts1)" by simp with O rev_ts2 invar_app_single[of "rev [t \<leftarrow> ts2. 0 < rank t]" "Node e1 a1 nat ts1"] have "invar (rev [t \<leftarrow> ts2. 0 < rank t] @ [Node e1 a1 nat ts1])" by simp with Suc' have p2: "invar (rev [t \<leftarrow> ((Node e1 a1 nat ts1) # ts2). 0 < rank t])" by simp from O(1-2) have p3: "invar (rev (filter (\<lambda> t. 0 < rank t) [(Node e1 a1 nat ts1), (Node e2 a2 nat ts2)]))" by (simp add: invar_def) from p1 have p4: "invar (rev [t \<leftarrow> ((Node e' a' 0 []) # (Node e2 a2 nat ts2) # ts1). 0 < rank t])" by simp from p2 have p5: "invar (rev [t \<leftarrow> ((Node e' a' 0 []) # (Node e1 a1 nat ts1) # ts2). 0 < rank t])" by simp from p1 p2 p3 p4 p5 ch_id show "invar (rev [t\<leftarrow>children t . 0 < rank t])" by (cases "children t = (if a1 \<le> a2 then (Node e2 a2 nat ts2)#ts1 else (Node e1 a1 nat ts1)#ts2)") metis+ qed qed qed lemma first_less: "rank_invar (t # bq) \<Longrightarrow> \<forall>t' \<in> set bq. rank t < rank t'" apply2(induct bq arbitrary: t) apply (simp) apply (metis List.set_simps(2) insert_iff not_le_imp_less not_less_iff_gr_or_eq order_less_le_trans rank_invar.simps(3) rank_invar_cons_down) done lemma first_less_eq: "rank_skew_invar (t # bq) \<Longrightarrow> \<forall>t' \<in> set bq. rank t \<le> rank t'" apply2(induct bq arbitrary: t) apply (simp) apply (metis List.set_simps(2) insert_iff le_trans rank_invar_rank_skew rank_skew_invar.simps(3) rank_skew_rank_invar) done lemma remove1_tail_invar: "tail_invar bq \<Longrightarrow> tail_invar (remove1 t bq)" proof2 (induct bq arbitrary: t) case Nil then show ?case by simp next case (Cons a bq) show ?case proof (cases "t = a") case True from Cons(2) have "tail_invar bq" by (rule tail_invar_cons_down) with True show ?thesis by simp next case False from Cons(2) have "tail_invar bq" by (rule tail_invar_cons_down) with Cons(1)[of "t"] have si1: "tail_invar (remove1 t bq)" . from False have "tail_invar (remove1 t (a # bq)) = tail_invar (a # (remove1 t bq))" by simp show ?thesis proof (cases "remove1 t bq") case Nil with si1 Cons(2) False show ?thesis by (simp add: tail_invar_def) next case Cons': (Cons aa list) from Cons(2) have "tree_invar a" by (simp add: tail_invar_def) from Cons(2) first_less[of "a" "bq"] have "\<forall>t \<in> set (remove1 t bq). rank a < rank t" by (metis notin_set_remove1 tail_invar_def) with Cons' have "rank a < rank aa" by simp with si1 Cons(2) False Cons' tail_invar_cons_up[of "aa" "list" "a"] show ?thesis by (simp add: tail_invar_def) qed qed qed lemma invar_cons_down: "invar (t # bq) \<Longrightarrow> invar bq" by (metis rank_invar_rank_skew tail_invar_def invar_def invar_tail_invar) lemma remove1_invar: "invar bq \<Longrightarrow> invar (remove1 t bq)" proof2 (induct bq arbitrary: t) case Nil then show ?case by simp next case (Cons a bq) show ?case proof (cases "t = a") case True from Cons(2) have "invar bq" by (rule invar_cons_down) with True show ?thesis by simp next case False from Cons(2) have "invar bq" by (rule invar_cons_down) with Cons(1)[of "t"] have si1: "invar (remove1 t bq)" . from False have "invar (remove1 t (a # bq)) = invar (a # (remove1 t bq))" by simp show ?thesis proof (cases "remove1 t bq") case Nil with si1 Cons(2) False show ?thesis by (simp add: invar_def) next case Cons': (Cons aa list) from Cons(2) have ti: "tree_invar a" by (simp add: invar_def) from Cons(2) have sbq: "tail_invar bq" by (metis invar_tail_invar) hence srm: "tail_invar (remove1 t bq)" by (metis remove1_tail_invar) from Cons(2) first_less_eq[of "a" "bq"] have "\<forall>t \<in> set (remove1 t bq). rank a \<le> rank t" by (metis notin_set_remove1 invar_def) with Cons' have "rank a \<le> rank aa" by simp with si1 Cons(2) False Cons' ti srm tail_invar_cons_up_invar[of "aa" "list" "a"] show ?thesis by simp qed qed qed lemma deleteMin_invar: assumes "invar bq" and "bq \<noteq> []" shows "invar (deleteMin bq)" proof - have eq: "invar (deleteMin bq) = invar (insertList (filter (\<lambda> t. rank t = 0) (children (getMinTree bq))) (meld (rev (filter (\<lambda> t. rank t > 0) (children (getMinTree bq)))) (remove1 (getMinTree bq) bq)))" by (simp add: deleteMin_def Let_def) from assms mintree_exists[of "bq"] have ti: "tree_invar (getMinTree bq)" by (simp add: invar_def queue_invar_def del: queue_invar_simps) with strong_rev_children[of "getMinTree bq"] have m1: "invar (rev [t \<leftarrow> children (getMinTree bq). 0 < rank t])" . from remove1_invar[of "bq" "getMinTree bq"] assms(1) have m2: "invar (remove1 (getMinTree bq) bq)" . from meld_invar[of "rev [t \<leftarrow> children (getMinTree bq). 0 < rank t]" "remove1 (getMinTree bq) bq"] m1 m2 have "invar (meld (rev [t \<leftarrow> children (getMinTree bq). 0 < rank t]) (remove1 (getMinTree bq) bq))" . with insertList_invar[of "(meld (rev [t\<leftarrow>children (getMinTree bq) . 0 < rank t]) (remove1 (getMinTree bq) bq))" "[t\<leftarrow>children (getMinTree bq) . rank t = 0]"] have "invar (insertList [t\<leftarrow>children (getMinTree bq) . rank t = 0] (meld (rev [t\<leftarrow>children (getMinTree bq) . 0 < rank t]) (remove1 (getMinTree bq) bq)))" . with eq show ?thesis .. qed theorem deleteMin_correct: assumes I: "invar q" and NE: "q \<noteq> Nil" shows "invar (deleteMin q)" and "queue_to_multiset (deleteMin q) = queue_to_multiset q - {#findMin q#}" apply (rule deleteMin_invar[OF I NE]) using deleteMin_mset[of q] I NE unfolding invar_def apply (auto simp add: empty_correct) done (* fun foldt and foldq where "foldt f z (Node e a _ q) = f (foldq f z q) e a" | "foldq f z [] = z" | "foldq f z (t#q) = foldq f (foldt f z t) q" lemma fold_plus: "foldt ((\<lambda>m e a. m+{#(e,a)#})) zz t + z = foldt ((\<lambda>m e a. m+{#(e,a)#})) (zz+z) t" "foldq ((\<lambda>m e a. m+{#(e,a)#})) zz q + z = foldq ((\<lambda>m e a. m+{#(e,a)#})) (zz+z) q" apply (induct t and q arbitrary: zz and zz rule: tree_to_multiset_queue_to_multiset.induct) apply (auto simp add: union_ac) apply (subst union_ac, simp) done lemma to_mset_fold: fixes t::"('e,'a::linorder) SkewBinomialTree" and q::"('e,'a) SkewBinomialQueue" shows "tree_to_multiset t = foldt (\<lambda>m e a. m+{#(e,a)#}) {#} t" "queue_to_multiset q = foldq (\<lambda>m e a. m+{#(e,a)#}) {#} q" apply (induct t and q rule: tree_to_multiset_queue_to_multiset.induct) apply (auto simp add: union_ac fold_plus) done *) lemmas [simp del] = insert.simps end interpretation SkewBinomialHeapStruc: SkewBinomialHeapStruc_loc . subsection "Bootstrapping" text \<open> In this section, we implement datastructural bootstrapping, to reduce the complexity of meld-operations to $O(1)$. The bootstrapping also contains a {\em global root}, caching the minimal element of the queue, and thus also reducing the complexity of findMin-operations to $O(1)$. Bootstrapping adds one more level of recursion: An {\em element} is an entry and a priority queues of elements. In the original paper on skew binomial queues \cite{BrOk96}, higher order functors and recursive structures are used to elegantly implement bootstrapped heaps on top of ordinary heaps. However, such concepts are not supported in Isabelle/HOL, nor in Standard ML. Hence we have to use the ,,much less clean'' \cite{BrOk96} alternative: We manually specialize the heap datastructure, and re-implement the functions on the specialized data structure. The correctness proofs are done by defining a mapping from teh specialized to the original data structure, and reusing the correctness statements of the original data structure. \<close> subsubsection "Auxiliary" text \<open> We first have to state some auxiliary lemmas and functions, mainly about multisets. \<close> (* TODO: Some of these should be moved into the multiset library, they are marked by *MOVE* *) text \<open>Finding the preimage of an element\<close> (*MOVE*) lemma in_image_msetE: assumes "x\<in>#image_mset f M" obtains y where "y\<in>#M" "x=f y" using assms apply2 (induct M) apply simp apply (force split: if_split_asm) done text \<open>Very special lemma for images multisets of pairs, where the second component is a function of the first component\<close> lemma mset_image_fst_dep_pair_diff_split: "(\<forall>e a. (e,a)\<in>#M \<longrightarrow> a=f e) \<Longrightarrow> image_mset fst (M - {#(e, f e)#}) = image_mset fst M - {#e#}" proof2 (induct M) case empty thus ?case by auto next case (add x M) then obtain e' where [simp]: "x=(e',f e')" apply (cases x) apply (force) done from add.prems have "\<forall>e a. (e, a) \<in># M \<longrightarrow> a = f e" by simp with add.hyps have IH: "image_mset fst (M - {#(e, f e)#}) = image_mset fst M - {#e#}" by auto show ?case proof (cases "e=e'") case True thus ?thesis by (simp) next case False thus ?thesis by (simp add: IH) qed qed locale Bootstrapped begin subsubsection "Datatype" text \<open>We manually specialize the binomial tree to contain elements, that, in, turn, may contain trees. Note that we specify nodes without explicit priority, as the priority is contained in the elements stored in the nodes. \<close> datatype ('e, 'a) BsSkewBinomialTree = BsNode (val: "('e, 'a::linorder) BsSkewElem") (rank: nat) (children: "('e , 'a) BsSkewBinomialTree list") and ('e,'a) BsSkewElem = Element 'e (eprio: 'a) "('e,'a) BsSkewBinomialTree list" type_synonym ('e,'a) BsSkewHeap = "unit + ('e,'a) BsSkewElem" type_synonym ('e,'a) BsSkewBinomialQueue = "('e,'a) BsSkewBinomialTree list" subsubsection "Specialization Boilerplate" text \<open> In this section, we re-define the functions on the specialized priority queues, and show there correctness. This is done by defining a mapping to original priority queues, and re-using the correctness lemmas proven there. \<close> text \<open>Mapping to original binomial trees and queues\<close> fun bsmapt where "bsmapt (BsNode e r q) = SkewBinomialHeapStruc.Node e (eprio e) r (map bsmapt q)" abbreviation bsmap where "bsmap q == map bsmapt q" text \<open>Invariant and mapping to multiset are defined via the mapping\<close> abbreviation "invar q == SkewBinomialHeapStruc.invar (bsmap q)" abbreviation "queue_to_multiset q == image_mset fst (SkewBinomialHeapStruc.queue_to_multiset (bsmap q))" abbreviation "tree_to_multiset t == image_mset fst (SkewBinomialHeapStruc.tree_to_multiset (bsmapt t))" abbreviation "queue_to_multiset_aux q == (SkewBinomialHeapStruc.queue_to_multiset (bsmap q))" text \<open>Now starts the re-implementation of the functions\<close> primrec prio :: "('e, 'a::linorder) BsSkewBinomialTree \<Rightarrow> 'a" where "prio (BsNode e r ts) = eprio e" lemma proj_xlate: "val t = SkewBinomialHeapStruc.val (bsmapt t)" "prio t = SkewBinomialHeapStruc.prio (bsmapt t)" "rank t = SkewBinomialHeapStruc.rank (bsmapt t)" "bsmap (children t) = SkewBinomialHeapStruc.children (bsmapt t)" "eprio (SkewBinomialHeapStruc.val (bsmapt t)) = SkewBinomialHeapStruc.prio (bsmapt t)" apply (case_tac [!] t) apply auto done fun link :: "('e, 'a::linorder) BsSkewBinomialTree \<Rightarrow> ('e, 'a) BsSkewBinomialTree \<Rightarrow> ('e, 'a) BsSkewBinomialTree" where "link (BsNode e1 r1 ts1) (BsNode e2 r2 ts2) = (if eprio e1\<le>eprio e2 then (BsNode e1 (Suc r1) ((BsNode e2 r2 ts2)#ts1)) else (BsNode e2 (Suc r2) ((BsNode e1 r1 ts1)#ts2)))" text \<open>Link two trees of rank $r$ and a new element to a new tree of rank $r+1$\<close> fun skewlink :: "('e,'a::linorder) BsSkewElem \<Rightarrow> ('e, 'a) BsSkewBinomialTree \<Rightarrow> ('e, 'a) BsSkewBinomialTree \<Rightarrow> ('e, 'a) BsSkewBinomialTree" where "skewlink e t t' = (if eprio e \<le> (prio t) \<and> eprio e \<le> (prio t') then (BsNode e (Suc (rank t)) [t,t']) else (if (prio t) \<le> (prio t') then BsNode (val t) (Suc (rank t)) (BsNode e 0 [] # t' # children t) else BsNode (val t') (Suc (rank t')) (BsNode e 0 [] # t # children t')))" lemma link_xlate: "bsmapt (link t t') = SkewBinomialHeapStruc.link (bsmapt t) (bsmapt t')" "bsmapt (skewlink e t t') = SkewBinomialHeapStruc.skewlink e (eprio e) (bsmapt t) (bsmapt t')" by (case_tac [!] t, case_tac [!] t') auto fun ins :: "('e, 'a::linorder) BsSkewBinomialTree \<Rightarrow> ('e, 'a) BsSkewBinomialQueue \<Rightarrow> ('e, 'a) BsSkewBinomialQueue" where "ins t [] = [t]" | "ins t' (t # bq) = (if (rank t') < (rank t) then t' # t # bq else (if (rank t) < (rank t') then t # (ins t' bq) else ins (link t' t) bq))" lemma ins_xlate: "bsmap (ins t q) = SkewBinomialHeapStruc.ins (bsmapt t) (bsmap q)" apply2(induct q arbitrary: t) by(auto simp add: proj_xlate link_xlate) text \<open>Insert an element with priority into a queue using skewlinks.\<close> fun insert :: "('e,'a::linorder) BsSkewElem \<Rightarrow> ('e, 'a) BsSkewBinomialQueue \<Rightarrow> ('e, 'a) BsSkewBinomialQueue" where "insert e [] = [BsNode e 0 []]" | "insert e [t] = [BsNode e 0 [],t]" | "insert e (t # t' # bq) = (if rank t \<noteq> rank t' then (BsNode e 0 []) # t # t' # bq else (skewlink e t t') # bq)" lemma insert_xlate: "bsmap (insert e q) = SkewBinomialHeapStruc.insert e (eprio e) (bsmap q)" apply (cases "(e,q)" rule: insert.cases) apply (auto simp add: proj_xlate link_xlate SkewBinomialHeapStruc.insert.simps) done lemma insert_correct: assumes I: "invar q" shows "invar (insert e q)" "queue_to_multiset (insert e q) = queue_to_multiset q + {#(e)#}" by (simp_all add: I SkewBinomialHeapStruc.insert_correct insert_xlate) fun uniqify :: "('e, 'a::linorder) BsSkewBinomialQueue \<Rightarrow> ('e, 'a) BsSkewBinomialQueue" where "uniqify [] = []" | "uniqify (t#bq) = ins t bq" fun meldUniq :: "('e, 'a::linorder) BsSkewBinomialQueue \<Rightarrow> ('e,'a) BsSkewBinomialQueue \<Rightarrow> ('e, 'a) BsSkewBinomialQueue" where "meldUniq [] bq = bq" | "meldUniq bq [] = bq" | "meldUniq (t1#bq1) (t2#bq2) = (if rank t1 < rank t2 then t1 # (meldUniq bq1 (t2#bq2)) else (if rank t2 < rank t1 then t2 # (meldUniq (t1#bq1) bq2) else ins (link t1 t2) (meldUniq bq1 bq2)))" definition meld :: "('e, 'a::linorder) BsSkewBinomialQueue \<Rightarrow> ('e, 'a) BsSkewBinomialQueue \<Rightarrow> ('e, 'a) BsSkewBinomialQueue" where "meld bq1 bq2 = meldUniq (uniqify bq1) (uniqify bq2)" lemma uniqify_xlate: "bsmap (uniqify q) = SkewBinomialHeapStruc.uniqify (bsmap q)" by (cases q) (simp_all add: ins_xlate) lemma meldUniq_xlate: "bsmap (meldUniq q q') = SkewBinomialHeapStruc.meldUniq (bsmap q) (bsmap q')" apply2 (induct q q' rule: meldUniq.induct) apply (auto simp add: link_xlate proj_xlate uniqify_xlate ins_xlate) done lemma meld_correct: assumes I: "invar q" "invar q'" shows "invar (meld q q')" "queue_to_multiset (meld q q') = queue_to_multiset q + queue_to_multiset q'" by (simp_all add: I SkewBinomialHeapStruc.meld_correct meld_xlate) fun insertList :: "('e, 'a::linorder) BsSkewBinomialQueue \<Rightarrow> ('e, 'a) BsSkewBinomialQueue \<Rightarrow> ('e, 'a) BsSkewBinomialQueue" where "insertList [] tbq = tbq" | "insertList (t#bq) tbq = insertList bq (insert (val t) tbq)" fun remove1Prio :: "'a \<Rightarrow> ('e, 'a::linorder) BsSkewBinomialQueue \<Rightarrow> ('e, 'a) BsSkewBinomialQueue" where "remove1Prio a [] = []" | "remove1Prio a (t#bq) = (if (prio t) = a then bq else t # (remove1Prio a bq))" fun getMinTree :: "('e, 'a::linorder) BsSkewBinomialQueue \<Rightarrow> ('e, 'a) BsSkewBinomialTree" where "getMinTree [t] = t" | "getMinTree (t#bq) = (if prio t \<le> prio (getMinTree bq) then t else (getMinTree bq))" definition findMin :: "('e, 'a::linorder) BsSkewBinomialQueue \<Rightarrow> ('e,'a) BsSkewElem" where "findMin bq = val (getMinTree bq)" definition deleteMin :: "('e, 'a::linorder) BsSkewBinomialQueue \<Rightarrow> ('e, 'a) BsSkewBinomialQueue" where "deleteMin bq = (let min = getMinTree bq in insertList (filter (\<lambda> t. rank t = 0) (children min)) (meld (rev (filter (\<lambda> t. rank t > 0) (children min))) (remove1Prio (prio min) bq)))" lemma insertList_xlate: "bsmap (insertList q q') = SkewBinomialHeapStruc.insertList (bsmap q) (bsmap q')" apply2 (induct q arbitrary: q') apply (auto simp add: insert_xlate proj_xlate) done lemma remove1Prio_xlate: "bsmap (remove1Prio a q) = SkewBinomialHeapStruc.remove1Prio a (bsmap q)" apply2(induct q) by(auto simp add: proj_xlate) lemma getMinTree_xlate: "q\<noteq>[] \<Longrightarrow> bsmapt (getMinTree q) = SkewBinomialHeapStruc.getMinTree (bsmap q)" apply2 (induct q) apply simp apply (case_tac q) apply (auto simp add: proj_xlate) done lemma findMin_xlate: "q\<noteq>[] \<Longrightarrow> findMin q = fst (SkewBinomialHeapStruc.findMin (bsmap q))" apply (unfold findMin_def SkewBinomialHeapStruc.findMin_def) apply (simp add: proj_xlate Let_def getMinTree_xlate) done lemma findMin_xlate_aux: "q\<noteq>[] \<Longrightarrow> (findMin q, eprio (findMin q)) = (SkewBinomialHeapStruc.findMin (bsmap q))" apply (unfold findMin_def SkewBinomialHeapStruc.findMin_def) apply (simp add: proj_xlate Let_def getMinTree_xlate) apply2 (induct q) apply simp apply (case_tac q) apply (auto simp add: proj_xlate) done (* TODO: Also possible in generic formulation. Then a candidate for Misc.thy *) lemma bsmap_filter_xlate: "bsmap [ x\<leftarrow>l . P (bsmapt x) ] = [ x \<leftarrow> bsmap l. P x ]" apply2(induct l) by auto lemma bsmap_rev_xlate: "bsmap (rev q) = rev (bsmap q)" apply2(induct q) by auto lemma deleteMin_xlate: "q\<noteq>[] \<Longrightarrow> bsmap (deleteMin q) = SkewBinomialHeapStruc.deleteMin (bsmap q)" apply (simp add: deleteMin_def SkewBinomialHeapStruc.deleteMin_def proj_xlate getMinTree_xlate insertList_xlate meld_xlate remove1Prio_xlate Let_def bsmap_rev_xlate, (subst bsmap_filter_xlate)?)+ done lemma deleteMin_correct_aux: assumes I: "invar q" assumes NE: "q\<noteq>[]" shows "invar (deleteMin q)" "queue_to_multiset_aux (deleteMin q) = queue_to_multiset_aux q - {# (findMin q, eprio (findMin q)) #}" apply (simp_all add: I NE deleteMin_xlate findMin_xlate_aux SkewBinomialHeapStruc.deleteMin_correct) done lemma bsmap_fs_dep: "(e,a)\<in>#SkewBinomialHeapStruc.tree_to_multiset (bsmapt t) \<Longrightarrow> a=eprio e" "(e,a)\<in>#SkewBinomialHeapStruc.queue_to_multiset (bsmap q) \<Longrightarrow> a=eprio e" thm SkewBinomialHeapStruc.tree_to_multiset_queue_to_multiset.induct apply2 (induct "bsmapt t" and "bsmap q" arbitrary: t and q rule: SkewBinomialHeapStruc.tree_to_multiset_queue_to_multiset.induct) apply auto apply (case_tac t) apply (auto split: if_split_asm) done lemma bsmap_fs_depD: "(e,a)\<in>#SkewBinomialHeapStruc.tree_to_multiset (bsmapt t) \<Longrightarrow> e \<in># tree_to_multiset t \<and> a=eprio e" "(e,a)\<in>#SkewBinomialHeapStruc.queue_to_multiset (bsmap q) \<Longrightarrow> e \<in># queue_to_multiset q \<and> a=eprio e" by (auto dest: bsmap_fs_dep intro!: image_eqI) lemma findMin_correct_aux: assumes I: "invar q" assumes NE: "q\<noteq>[]" shows "(findMin q, eprio (findMin q)) \<in># queue_to_multiset_aux q" "\<forall>y\<in>set_mset (queue_to_multiset_aux q). snd (findMin q,eprio (findMin q)) \<le> snd y" apply (simp_all add: I NE findMin_xlate_aux SkewBinomialHeapStruc.findMin_correct) done lemma findMin_correct: assumes I: "invar q" and NE: "q\<noteq>[]" shows "findMin q \<in># queue_to_multiset q" and "\<forall>y\<in>set_mset (queue_to_multiset q). eprio (findMin q) \<le> eprio y" using findMin_correct_aux[OF I NE] apply simp_all apply (force dest: bsmap_fs_depD) apply auto proof goal_cases case prems: (1 a b) from prems(3) have "(a, eprio a) \<in># queue_to_multiset_aux q" apply - apply (frule bsmap_fs_dep) apply simp done with prems(2)[rule_format, simplified] show ?case by auto qed lemma deleteMin_correct: assumes I: "invar q" assumes NE: "q\<noteq>[]" shows "invar (deleteMin q)" "queue_to_multiset (deleteMin q) = queue_to_multiset q - {# findMin q #}" using deleteMin_correct_aux[OF I NE] apply simp_all apply (rule mset_image_fst_dep_pair_diff_split) apply (auto dest: bsmap_fs_dep) done declare insert.simps[simp del] subsubsection "Bootstrapping: Phase 1" text \<open> In this section, we define the ticked versions of the functions, as defined in \cite{BrOk96}. These functions work on elements, i.e. only on heaps that contain at least one entry. Additionally, we define an invariant for elements, and a mapping to multisets of entries, and prove correct the ticked functions. \<close> primrec findMin' where "findMin' (Element e a q) = (e,a)" fun meld':: "('e,'a::linorder) BsSkewElem \<Rightarrow> ('e,'a) BsSkewElem \<Rightarrow> ('e,'a) BsSkewElem" where "meld' (Element e1 a1 q1) (Element e2 a2 q2) = (if a1\<le>a2 then Element e1 a1 (insert (Element e2 a2 q2) q1) else Element e2 a2 (insert (Element e1 a1 q1) q2) )" fun insert' where "insert' e a q = meld' (Element e a []) q" fun deleteMin' where "deleteMin' (Element e a q) = ( case (findMin q) of Element ey ay q1 \<Rightarrow> Element ey ay (meld q1 (deleteMin q)) )" text \<open> Size-function for termination proofs \<close> fun tree_level and queue_level where "tree_level (BsNode (Element _ _ qd) _ q) = max (Suc (queue_level qd)) (queue_level q)" | "queue_level [] = (0::nat)" | "queue_level (t#q) = max (tree_level t) (queue_level q)" fun level where "level (Element _ _ q) = Suc (queue_level q)" lemma level_m: "x\<in>#tree_to_multiset t \<Longrightarrow> level x < Suc (tree_level t)" "x\<in>#queue_to_multiset q \<Longrightarrow> level x < Suc (queue_level q)" apply2 (induct t and q rule: tree_level_queue_level.induct) apply (case_tac [!] x) apply (auto simp add: less_max_iff_disj) done lemma level_measure: "x \<in> set_mset (queue_to_multiset q) \<Longrightarrow> (x,(Element e a q))\<in>measure level" "x \<in># (queue_to_multiset q) \<Longrightarrow> (x,(Element e a q))\<in>measure level" apply (case_tac [!] x) apply (auto dest: level_m simp del: set_image_mset) done text \<open> Invariant for elements \<close> function elem_invar where "elem_invar (Element e a q) \<longleftrightarrow> (\<forall>x. x\<in># (queue_to_multiset q) \<longrightarrow> a \<le> eprio x \<and> elem_invar x) \<and> invar q" by pat_completeness auto termination proof show "wf (measure level)" by auto qed (rule level_measure) text \<open> Abstraction to multisets \<close> function elem_to_mset where "elem_to_mset (Element e a q) = {# (e,a) #} + Union_mset (image_mset elem_to_mset (queue_to_multiset q))" by pat_completeness auto termination proof show "wf (measure level)" by auto qed (rule level_measure) lemma insert_correct': assumes I: "elem_invar x" shows "elem_invar (insert' e a x)" "elem_to_mset (insert' e a x) = elem_to_mset x + {#(e,a)#}" using I apply (case_tac [!] x) apply (auto simp add: insert_correct union_ac) done lemma meld_correct': assumes I: "elem_invar x" "elem_invar x'" shows "elem_invar (meld' x x')" "elem_to_mset (meld' x x') = elem_to_mset x + elem_to_mset x'" using I apply (case_tac [!] x) apply (case_tac [!] x') apply (auto simp add: insert_correct union_ac) done lemma findMin'_min: "\<lbrakk>elem_invar x; y\<in>#elem_to_mset x\<rbrakk> \<Longrightarrow> snd (findMin' x) \<le> snd y" proof2 (induct n\<equiv>"level x" arbitrary: x rule: full_nat_induct) case 1 note IH="1.hyps"[rule_format, OF _ refl] note PREMS="1.prems" obtain e a q where [simp]: "x=Element e a q" by (cases x) auto from PREMS(2) have "y=(e,a) \<or> y\<in>#Union_mset (image_mset elem_to_mset (queue_to_multiset q))" (is "?C1 \<or> ?C2") by (auto split: if_split_asm) moreover { assume "y=(e,a)" with PREMS have ?case by simp } moreover { assume ?C2 then obtain yx where A: "yx \<in># queue_to_multiset q" and B: "y \<in># elem_to_mset yx" apply (auto elim!: in_image_msetE) done from A PREMS have IYX: "elem_invar yx" by auto from PREMS(1) A have "a \<le> eprio yx" by auto hence "snd (findMin' x) \<le> snd (findMin' yx)" by (cases yx) auto also from IH[OF _ IYX B] level_m(2)[OF A] have "snd (findMin' yx) \<le> snd y" by simp finally have ?case . } ultimately show ?case by blast qed lemma deleteMin_correct': assumes I: "elem_invar (Element e a q)" assumes NE[simp]: "q\<noteq>[]" shows "elem_invar (deleteMin' (Element e a q))" "elem_to_mset (deleteMin' (Element e a q)) = elem_to_mset (Element e a q) - {# findMin' (Element e a q) #}" proof - from I have IQ[simp]: "invar q" by simp from findMin_correct[OF IQ NE] have FMIQ: "findMin q \<in># queue_to_multiset q" and FMIN: "!!y. y\<in>#(queue_to_multiset q) \<Longrightarrow> eprio (findMin q) \<le> eprio y" by (auto simp del: set_image_mset) from FMIQ I have FMEI: "elem_invar (findMin q)" by auto from I have FEI: "!!y. y\<in>#(queue_to_multiset q) \<Longrightarrow> elem_invar y" by auto obtain ey ay qy where [simp]: "findMin q = Element ey ay qy" by (cases "findMin q") auto from FMEI have IQY[simp]: "invar qy" and AYMIN: "!!x. x \<in># queue_to_multiset qy \<Longrightarrow> ay \<le> eprio x" and QEI: "!!x. x \<in># queue_to_multiset qy \<Longrightarrow> elem_invar x" by auto show "elem_invar (deleteMin' (Element e a q))" using AYMIN QEI FMIN FEI by (auto simp add: deleteMin_correct meld_correct in_diff_count) from FMIQ have S: "(queue_to_multiset q - {#Element ey ay qy#}) + {#Element ey ay qy#} = queue_to_multiset q" by simp show "elem_to_mset (deleteMin' (Element e a q)) = elem_to_mset (Element e a q) - {# findMin' (Element e a q) #}" apply (simp add: deleteMin_correct meld_correct) by (subst S[symmetric], simp add: union_ac) qed subsubsection "Bootstrapping: Phase 2" text \<open> In this phase, we extend the ticked versions to also work with empty priority queues. \<close> definition bs_empty where "bs_empty \<equiv> Inl ()" primrec bs_findMin where "bs_findMin (Inr x) = findMin' x" fun bs_meld :: "('e,'a::linorder) BsSkewHeap \<Rightarrow> ('e,'a) BsSkewHeap \<Rightarrow> ('e,'a) BsSkewHeap" where "bs_meld (Inl _) x = x" | "bs_meld x (Inl _) = x" | "bs_meld (Inr x) (Inr x') = Inr (meld' x x')" primrec bs_insert :: "'e \<Rightarrow> ('a::linorder) \<Rightarrow> ('e,'a) BsSkewHeap \<Rightarrow> ('e,'a) BsSkewHeap" where "bs_insert e a (Inl _) = Inr (Element e a [])" | "bs_insert e a (Inr x) = Inr (insert' e a x)" fun bs_deleteMin :: "('e,'a::linorder) BsSkewHeap \<Rightarrow> ('e,'a) BsSkewHeap" where "bs_deleteMin (Inr (Element e a [])) = Inl ()" | "bs_deleteMin (Inr (Element e a q)) = Inr (deleteMin' (Element e a q))" primrec bs_invar :: "('e,'a::linorder) BsSkewHeap \<Rightarrow> bool" where "bs_invar (Inl _) \<longleftrightarrow> True" | "bs_invar (Inr x) \<longleftrightarrow> elem_invar x" lemma [simp]: "bs_invar bs_empty" by (simp add: bs_empty_def) primrec bs_to_mset :: "('e,'a::linorder) BsSkewHeap \<Rightarrow> ('e\<times>'a) multiset" where "bs_to_mset (Inl _) = {#}" | "bs_to_mset (Inr x) = elem_to_mset x" theorem bs_empty_correct: "h=bs_empty \<longleftrightarrow> bs_to_mset h = {#}" apply (unfold bs_empty_def) apply (cases h) apply simp apply (case_tac b) apply simp done lemma bs_mset_of_empty[simp]: "bs_to_mset bs_empty = {#}" by (simp add: bs_empty_def) theorem bs_findMin_correct: assumes I: "bs_invar h" assumes NE: "h\<noteq>bs_empty" shows "bs_findMin h \<in># bs_to_mset h" "\<forall>y\<in>set_mset (bs_to_mset h). snd (bs_findMin h) \<le> snd y" using I NE apply (case_tac [!] h) apply (auto simp add: bs_empty_def findMin_correct') done theorem bs_insert_correct: assumes I: "bs_invar h" shows "bs_invar (bs_insert e a h)" "bs_to_mset (bs_insert e a h) = {#(e,a)#} + bs_to_mset h" using I apply (case_tac [!] h) apply (simp_all) apply (auto simp add: meld_correct') done theorem bs_meld_correct: assumes I: "bs_invar h" "bs_invar h'" shows "bs_invar (bs_meld h h')" "bs_to_mset (bs_meld h h') = bs_to_mset h + bs_to_mset h'" using I apply (case_tac [!] h, case_tac [!] h') apply (auto simp add: meld_correct') done theorem bs_deleteMin_correct: assumes I: "bs_invar h" assumes NE: "h \<noteq> bs_empty" shows "bs_invar (bs_deleteMin h)" "bs_to_mset (bs_deleteMin h) = bs_to_mset h - {#bs_findMin h#}" using I NE apply (case_tac [!] h) apply (simp_all add: bs_empty_def) apply (case_tac [!] b) apply (rename_tac [!] list) apply (case_tac [!] list) apply (simp_all del: elem_invar.simps deleteMin'.simps add: deleteMin_correct') done end interpretation BsSkewBinomialHeapStruc: Bootstrapped . subsection "Hiding the Invariant" subsubsection "Datatype" typedef (overloaded) ('e, 'a) SkewBinomialHeap = "{q :: ('e,'a::linorder) BsSkewBinomialHeapStruc.BsSkewHeap. BsSkewBinomialHeapStruc.bs_invar q }" apply (rule_tac x="BsSkewBinomialHeapStruc.bs_empty" in exI) apply (auto) done lemma Rep_SkewBinomialHeap_invar[simp]: "BsSkewBinomialHeapStruc.bs_invar (Rep_SkewBinomialHeap x)" using Rep_SkewBinomialHeap by (auto) lemma [simp]: "BsSkewBinomialHeapStruc.bs_invar q \<Longrightarrow> Rep_SkewBinomialHeap (Abs_SkewBinomialHeap q) = q" using Abs_SkewBinomialHeap_inverse by auto lemma [simp, code abstype]: "Abs_SkewBinomialHeap (Rep_SkewBinomialHeap q) = q" by (rule Rep_SkewBinomialHeap_inverse) locale SkewBinomialHeap_loc begin subsubsection "Operations" definition [code]: "to_mset t == BsSkewBinomialHeapStruc.bs_to_mset (Rep_SkewBinomialHeap t)" definition empty where "empty == Abs_SkewBinomialHeap BsSkewBinomialHeapStruc.bs_empty" lemma [code abstract, simp]: "Rep_SkewBinomialHeap empty = BsSkewBinomialHeapStruc.bs_empty" by (unfold empty_def) simp definition [code]: "isEmpty q == Rep_SkewBinomialHeap q = BsSkewBinomialHeapStruc.bs_empty" lemma empty_rep: "q=empty \<longleftrightarrow> Rep_SkewBinomialHeap q = BsSkewBinomialHeapStruc.bs_empty" apply (auto simp add: empty_def) apply (metis Rep_SkewBinomialHeap_inverse) done lemma isEmpty_correct: "isEmpty q \<longleftrightarrow> q=empty" by (simp add: empty_rep isEmpty_def) definition insert :: "'e \<Rightarrow> ('a::linorder) \<Rightarrow> ('e,'a) SkewBinomialHeap \<Rightarrow> ('e,'a) SkewBinomialHeap" where "insert e a q == Abs_SkewBinomialHeap ( BsSkewBinomialHeapStruc.bs_insert e a (Rep_SkewBinomialHeap q))" lemma [code abstract]: "Rep_SkewBinomialHeap (insert e a q) = BsSkewBinomialHeapStruc.bs_insert e a (Rep_SkewBinomialHeap q)" by (simp add: insert_def BsSkewBinomialHeapStruc.bs_insert_correct) definition [code]: "findMin q == BsSkewBinomialHeapStruc.bs_findMin (Rep_SkewBinomialHeap q)" definition "deleteMin q == if q=empty then empty else Abs_SkewBinomialHeap ( BsSkewBinomialHeapStruc.bs_deleteMin (Rep_SkewBinomialHeap q))" text \<open> We don't use equality here, to prevent the code-generator from introducing equality-class parameter for type \<open>'a\<close>. Instead we use a case-distinction to check for emptiness. \<close> lemma [code abstract]: "Rep_SkewBinomialHeap (deleteMin q) = (case (Rep_SkewBinomialHeap q) of Inl _ \<Rightarrow> BsSkewBinomialHeapStruc.bs_empty | _ \<Rightarrow> BsSkewBinomialHeapStruc.bs_deleteMin (Rep_SkewBinomialHeap q))" proof (cases "(Rep_SkewBinomialHeap q)") case [simp]: (Inl a) hence "(Rep_SkewBinomialHeap q) = BsSkewBinomialHeapStruc.bs_empty" apply (cases q) apply (auto simp add: BsSkewBinomialHeapStruc.bs_empty_def) done thus ?thesis apply (auto simp add: deleteMin_def BsSkewBinomialHeapStruc.bs_deleteMin_correct BsSkewBinomialHeapStruc.bs_empty_correct empty_rep ) done next case (Inr x) hence "(Rep_SkewBinomialHeap q) \<noteq> BsSkewBinomialHeapStruc.bs_empty" apply (cases q) apply (auto simp add: BsSkewBinomialHeapStruc.bs_empty_def) done thus ?thesis apply (simp add: Inr) apply (fold Inr) apply (auto simp add: deleteMin_def BsSkewBinomialHeapStruc.bs_deleteMin_correct BsSkewBinomialHeapStruc.bs_empty_correct empty_rep ) done qed (* lemma [code abstract]: "Rep_SkewBinomialHeap (deleteMin q) = (if (Rep_SkewBinomialHeap q = BsSkewBinomialHeapStruc.bs_empty) then BsSkewBinomialHeapStruc.bs_empty else BsSkewBinomialHeapStruc.bs_deleteMin (Rep_SkewBinomialHeap q))" by (auto simp add: deleteMin_def BsSkewBinomialHeapStruc.bs_deleteMin_correct BsSkewBinomialHeapStruc.bs_empty_correct empty_rep) *) definition "meld q1 q2 == Abs_SkewBinomialHeap (BsSkewBinomialHeapStruc.bs_meld (Rep_SkewBinomialHeap q1) (Rep_SkewBinomialHeap q2))" lemma [code abstract]: "Rep_SkewBinomialHeap (meld q1 q2) = BsSkewBinomialHeapStruc.bs_meld (Rep_SkewBinomialHeap q1) (Rep_SkewBinomialHeap q2)" by (simp add: meld_def BsSkewBinomialHeapStruc.bs_meld_correct) subsubsection "Correctness" lemma empty_correct: "to_mset q = {#} \<longleftrightarrow> q=empty" by (simp add: to_mset_def BsSkewBinomialHeapStruc.bs_empty_correct empty_rep) lemma to_mset_of_empty[simp]: "to_mset empty = {#}" by (simp add: empty_correct) lemma insert_correct: "to_mset (insert e a q) = to_mset q + {#(e,a)#}" apply (unfold insert_def to_mset_def) apply (simp add: BsSkewBinomialHeapStruc.bs_insert_correct union_ac) done lemma findMin_correct: assumes "q\<noteq>empty" shows "findMin q \<in># to_mset q" "\<forall>y\<in>set_mset (to_mset q). snd (findMin q) \<le> snd y" using assms apply (unfold findMin_def to_mset_def) apply (simp_all add: empty_rep BsSkewBinomialHeapStruc.bs_findMin_correct) done lemma deleteMin_correct: assumes "q\<noteq>empty" shows "to_mset (deleteMin q) = to_mset q - {# findMin q #}" using assms apply (unfold findMin_def deleteMin_def to_mset_def) apply (simp_all add: empty_rep BsSkewBinomialHeapStruc.bs_deleteMin_correct) done lemma meld_correct: shows "to_mset (meld q q') = to_mset q + to_mset q'" apply (unfold to_mset_def meld_def) apply (simp_all add: BsSkewBinomialHeapStruc.bs_meld_correct) done text \<open>Correctness lemmas to be used with simplifier\<close> lemmas correct = empty_correct deleteMin_correct meld_correct end interpretation SkewBinomialHeap: SkewBinomialHeap_loc . subsection "Documentation" (*#DOC fun [no_spec] SkewBinomialHeap.to_mset Abstraction to multiset. fun SkewBinomialHeap.empty The empty heap. ($O(1)$) fun SkewBinomialHeap.isEmpty Checks whether heap is empty. Mainly used to work around code-generation issues. ($O(1)$) fun [long_type] SkewBinomialHeap.insert Inserts element ($O(1)$) fun SkewBinomialHeap.findMin Returns a minimal element ($O(1)$) fun [long_type] SkewBinomialHeap.deleteMin Deletes {\em the} element that is returned by {\em find\_min}. $O(\log(n))$ fun [long_type] SkewBinomialHeap.meld Melds two heaps ($O(1)$) *) text \<open> \underline{@{term_type "SkewBinomialHeap.to_mset"}}\\ Abstraction to multiset.\\ \underline{@{term_type "SkewBinomialHeap.empty"}}\\ The empty heap. ($O(1)$)\\ {\bf Spec} \<open>SkewBinomialHeap.empty_correct\<close>: @{thm [display] SkewBinomialHeap.empty_correct[no_vars]} \underline{@{term_type "SkewBinomialHeap.isEmpty"}}\\ Checks whether heap is empty. Mainly used to work around code-generation issues. ($O(1)$)\\ {\bf Spec} \<open>SkewBinomialHeap.isEmpty_correct\<close>: @{thm [display] SkewBinomialHeap.isEmpty_correct[no_vars]} \underline{@{term "SkewBinomialHeap.insert"}} @{term_type [display] "SkewBinomialHeap.insert"} Inserts element ($O(1)$)\\ {\bf Spec} \<open>SkewBinomialHeap.insert_correct\<close>: @{thm [display] SkewBinomialHeap.insert_correct[no_vars]} \underline{@{term_type "SkewBinomialHeap.findMin"}}\\ Returns a minimal element ($O(1)$)\\ {\bf Spec} \<open>SkewBinomialHeap.findMin_correct\<close>: @{thm [display] SkewBinomialHeap.findMin_correct[no_vars]} \underline{@{term "SkewBinomialHeap.deleteMin"}} @{term_type [display] "SkewBinomialHeap.deleteMin"} Deletes {\em the} element that is returned by {\em find\_min}. $O(\log(n))$\\ {\bf Spec} \<open>SkewBinomialHeap.deleteMin_correct\<close>: @{thm [display] SkewBinomialHeap.deleteMin_correct[no_vars]} \underline{@{term "SkewBinomialHeap.meld"}} @{term_type [display] "SkewBinomialHeap.meld"} Melds two heaps ($O(1)$)\\ {\bf Spec} \<open>SkewBinomialHeap.meld_correct\<close>: @{thm [display] SkewBinomialHeap.meld_correct[no_vars]} \<close> end
function OptimizationModel = buildMTAproblemFromModel(model,rxnFBS,Vref,varargin) % Returns the COBRA Optimization model needed to perform the MTA % % USAGE: % % OptimizationModel = buildMTAproblemFromModel(model,rxnFBS,Vref,alpha,epsilon) % % INPUT: % model: Metabolic model (COBRA format) % rxnFBS: Forward, Backward and Unchanged (+1;0;-1) values % corresponding to each reaction. % Vref: Reference flux of the source state. % alpha: parameter of the quadratic problem (default = 0.66) % epsilon minimun disturbance for each reaction, (default = 0) % % OUTPUTS: % OptimizationModel: COBRA model struct that includes the % stoichiometric contrains, the thermodinamic % constrains and the binary variables. % % .. Authors: % - Luis V. Valcarcel, 03/06/2015, University of Navarra, CIMA & TECNUN School of Engineering. % - Luis V. Valcarcel, 26/10/2018, University of Navarra, CIMA & TECNUN School of Engineering. p = inputParser; % check the inputs % check requiered arguments addRequired(p, 'model'); addRequired(p, 'rxnFBS', @isnumeric); addRequired(p, 'Vref', @isnumeric); % Check optional arguments addOptional(p, 'alpha', 0.66, @isnumeric); addOptional(p, 'epsilon', zeros(size(model.rxns)), @isnumeric); % extract variables from parser parse(p, model, rxnFBS, Vref, varargin{:}); alpha = p.Results.alpha; epsilon = p.Results.epsilon; % sometimes epsilon can be given as a single value if numel(epsilon)==1 epsilon = epsilon * ones(size(model.rxns)); end %% --- set the COBRA model --- % variables v = 1:length(model.rxns); y_plus_F = (1:sum(rxnFBS==+1)) + v(end); % 1 if change in rxnForward, 0 otherwise y_minus_F = (1:sum(rxnFBS==+1)) + y_plus_F(end); % 1 if no change in rxnForward, 0 otherwise y_plus_B = (1:sum(rxnFBS==-1)) + y_minus_F(end); % 1 if change in rxnBackward, 0 otherwise y_minus_B = (1:sum(rxnFBS==-1)) + y_plus_B(end); % 1 if no change in rxnBackward, 0 otherwise n_var = y_minus_B(end); % limits of the variables lb = zeros(n_var,1); ub = ones (n_var,1); lb(v) = model.lb; ub(v) = model.ub; %type of variables vartype(1:n_var) = 'B'; vartype(v) = 'C'; % constrains Eq1 = 1:length(model.mets); % Stoichiometric matrix Eq2 = (1:length(y_plus_F)) + Eq1(end); % Changes in Forward Eq3 = (1:length(y_plus_F)) + Eq2(end); % Change or not change in Forward Eq4 = (1:length(y_plus_B)) + Eq3(end); % Changes in Backward Eq5 = (1:length(y_plus_B)) + Eq4(end); % Change or not change in Backward nCon = Eq5(end); % generate constrain matrix A = spalloc(nCon, n_var, nnz(model.S) + 5*length(Eq2) + 5*length(Eq4)); b = zeros(nCon,1); csense = char(zeros(nCon,1)); posF = find(rxnFBS == +1); posB = find(rxnFBS == -1); posS = find(rxnFBS == 0); % First contraint, stoichiometric A(Eq1,v) = model.S; b(Eq1) = 0; csense(Eq1) = 'E'; % Second contraint, Change or not change in Forward A(Eq2,v(posF)) = eye(length(posF)); A(Eq2,y_plus_F) = - ( Vref(posF) + epsilon(posF) ) .* eye(length(posF)); A(Eq2,y_minus_F) = - model.lb(posF) .* eye(length(posF)); b(Eq2) = 0; csense(Eq2) = 'G'; % Third contraint, Change or not change in Forward A(Eq3,y_plus_F) = eye(length(Eq3)); A(Eq3,y_minus_F) = eye(length(Eq3)); b(Eq3) = 1; csense(Eq3) = 'E'; % Fourth contraint, Backward changes A(Eq4,posB) = eye(length(posB)); A(Eq4,y_plus_B) = - ( Vref(posB) - epsilon(posB) ) .* eye(length(posB)); A(Eq4,y_minus_B) = - model.ub(posB) .* eye(length(posB)); b(Eq4) = 0; csense(Eq4) = 'L'; % Fiveth contraint, Change or not change in Backward A(Eq5,y_plus_B) = eye(length(Eq5)); A(Eq5,y_minus_B) = eye(length(Eq5)); b(Eq5) = 1; csense(Eq5) = 'E'; % Objective fuction % linear part c = zeros(n_var,1); c(y_minus_F) = alpha/2; c(y_minus_B) = alpha/2; c(v(posS)) = -2 * Vref(posS) * (1-alpha); % quadratic part F = spalloc(n_var,n_var,length(posS)); F(v(posS),v(posS)) = 2 * (1-alpha) .* eye(length(posS)); % save the resultant model OptimizationModel = struct(); [OptimizationModel.A, OptimizationModel.lb, OptimizationModel.ub] = deal(A, lb, ub); [OptimizationModel.b, OptimizationModel.csense] = deal(b, csense); [OptimizationModel.c, OptimizationModel.F] = deal(c, F); [OptimizationModel.osense, OptimizationModel.vartype] = deal(+1, vartype); % +1 for minimization %save the index of the variables OptimizationModel.idx_variables.v = v; OptimizationModel.idx_variables.y_plus_F = y_plus_F; OptimizationModel.idx_variables.y_minus_F = y_minus_F; OptimizationModel.idx_variables.y_plus_B = y_plus_B; OptimizationModel.idx_variables.y_minus_B = y_minus_B; end
example (P : Prop) : P → P := begin intro p, exact p, end
lemma big_small_trans': "f \<in> L F (g) \<Longrightarrow> g \<in> l F (h) \<Longrightarrow> f \<in> L F (h)"
open import MLib.Algebra.PropertyCode open import MLib.Algebra.PropertyCode.Structures module MLib.Matrix.Tensor {c ℓ} (struct : Struct bimonoidCode c ℓ) where open import MLib.Prelude open import MLib.Matrix.Core open import MLib.Matrix.Equality struct open import MLib.Matrix.Mul struct open import MLib.Algebra.Operations struct open Table using (head; tail; rearrange; fromList; toList; _≗_; replicate) open Nat using () renaming (_+_ to _+ℕ_; _*_ to _*ℕ_) open FunctionProperties open import MLib.Fin.Parts.Simple -- Tensor product _⊠_ : ∀ {m n p q} → Matrix S m n → Matrix S p q → Matrix S (m *ℕ p) (n *ℕ q) (A ⊠ B) i j = let i₁ , i₂ = toParts i j₁ , j₂ = toParts j in A i₁ j₁ *′ B i₂ j₂ private ≡⇒≡×≡×≡ : ∀ {a b c} {A : Set a} {B : Set b} {C : Set c} {i i′ : A} {j j′ : B} {k k′ : C} → (i , j , k) ≡ (i′ , j′ , k′) → i ≡ i′ × j ≡ j′ × k ≡ k′ ≡⇒≡×≡×≡ = Σ.map id Σ.≡⇒≡×≡ ∘ Σ.≡⇒≡×≡ open _≃_ module _ ⦃ props : Has (associative on * ∷ []) ⦄ {m n p q r s} where ⊠-associative : (A : Matrix S m n) (B : Matrix S p q) (C : Matrix S r s) → (A ⊠ B) ⊠ C ≃ A ⊠ (B ⊠ C) ⊠-associative A B C .m≡p = Nat.*-assoc m p r ⊠-associative A B C .n≡q = Nat.*-assoc n q s ⊠-associative A B C .equal {i} {i′} {j} {j′} i≅i′ j≅j′ = let i₁ , i₂ , i₃ = toParts³ m p r i j₁ , j₂ , j₃ = toParts³ n q s j i′₁ , i′₂ , i′₃ = toParts³′ m p r i′ j′₁ , j′₂ , j′₃ = toParts³′ n q s j′ i₁-eq , i₂-eq , i₃-eq = ≡⇒≡×≡×≡ (toParts-assoc m p r i≅i′) j₁-eq , j₂-eq , j₃-eq = ≡⇒≡×≡×≡ (toParts-assoc n q s j≅j′) open EqReasoning S.setoid in begin ((A ⊠ B) ⊠ C) i j ≡⟨⟩ A i₁ j₁ *′ B i₂ j₂ *′ C i₃ j₃ ≈⟨ from props (associative on *) _ _ _ ⟩ A i₁ j₁ *′ (B i₂ j₂ *′ C i₃ j₃) ≡⟨ ≡.cong₂ _*′_ (≡.cong₂ A i₁-eq j₁-eq) (≡.cong₂ _*′_ (≡.cong₂ B i₂-eq j₂-eq) (≡.cong₂ C i₃-eq j₃-eq)) ⟩ A i′₁ j′₁ *′ (B i′₂ j′₂ *′ C i′₃ j′₃) ≡⟨⟩ (A ⊠ (B ⊠ C)) i′ j′ ∎ ⊠-cong : ∀ {m n m′ n′} {p q p′ q′} {A : Matrix S m n} {A′ : Matrix S m′ n′} {B : Matrix S p q} {B′ : Matrix S p′ q′} → A ≃ A′ → B ≃ B′ → (A ⊠ B) ≃ (A′ ⊠ B′) ⊠-cong A≃A′ B≃B′ with A≃A′ .m≡p | B≃B′ .m≡p | A≃A′ .n≡q | B≃B′ .n≡q ⊠-cong {A = A} {A′} {B} {B′} A≃A′ B≃B′ | ≡.refl | ≡.refl | ≡.refl | ≡.refl = lem where lem : (A ⊠ B) ≃ (A′ ⊠ B′) lem .m≡p = ≡.refl lem .n≡q = ≡.refl lem .equal ≅.refl ≅.refl = cong * (A≃A′ .equal ≅.refl ≅.refl) (B≃B′ .equal ≅.refl ≅.refl) ⊠-identityˡ : ⦃ props : Has (1# is leftIdentity for * ∷ []) ⦄ → ∀ {m n} (A : Matrix S m n) → 1● {1} ⊠ A ≃ A ⊠-identityˡ A .m≡p = Nat.*-identityˡ _ ⊠-identityˡ A .n≡q = Nat.*-identityˡ _ ⊠-identityˡ ⦃ props ⦄ A .equal {i} {i′} {j} {j′} i≅i′ j≅j′ = let i₁ , i₂ = toParts {1} i j₁ , j₂ = toParts {1} j -- x : i₁ ≡ zero -- x′ : i₂ ≡ i′ -- y : j₁ ≡ zero -- y′ : j₂ ≡ j′ x , x′ = Σ.≡⇒≡×≡ (toParts-1ˡ i i′ i≅i′) y , y′ = Σ.≡⇒≡×≡ (toParts-1ˡ j j′ j≅j′) open EqReasoning S.setoid in begin (1● {1} ⊠ A) i j ≡⟨⟩ 1● {1} i₁ j₁ *′ A i₂ j₂ ≡⟨ ≡.cong₂ _*′_ (≡.cong₂ (1● {1}) x y) (≡.cong₂ A x′ y′) ⟩ 1● {1} zero zero *′ A i′ j′ ≡⟨⟩ 1′ *′ A i′ j′ ≈⟨ from props (1# is leftIdentity for *) _ ⟩ A i′ j′ ∎ ⊠-identityʳ : ⦃ props : Has (1# is rightIdentity for * ∷ []) ⦄ → ∀ {m n} (A : Matrix S m n) → A ⊠ 1● {1} ≃ A ⊠-identityʳ A .m≡p = Nat.*-identityʳ _ ⊠-identityʳ A .n≡q = Nat.*-identityʳ _ ⊠-identityʳ A .equal {i} {i′} {j} {j′} i≅i′ j≅j′ with Σ.≡⇒≡×≡ (toParts-1ʳ i i′ i≅i′) | Σ.≡⇒≡×≡ (toParts-1ʳ j j′ j≅j′) ⊠-identityʳ ⦃ props ⦄ A .equal {i} {i′} {j} {j′} i≅i′ j≅j′ | x , x′ | y , y′ rewrite x | x′ | y | y′ = from props (1# is rightIdentity for *) _
import numpy as np import matplotlib.pyplot as plt import seaborn as sns from sklearn.datasets import load_digits from sklearn.decomposition import SparsePCA # For reproducibility np.random.seed(1000) if __name__ == '__main__': # Load the dataset digits = load_digits() X = digits['data'] / np.max(digits['data']) # Perform a sparse PCA spca = SparsePCA(n_components=30, alpha=2.0, normalize_components=True, random_state=1000) spca.fit(X) # Show the components sns.set() fig, ax = plt.subplots(3, 10, figsize=(22, 8)) for i in range(3): for j in range(10): ax[i, j].imshow(spca.components_[(3 * j) + i].reshape((8, 8)), cmap='gray') ax[i, j].set_xticks([]) ax[i, j].set_yticks([]) plt.show() # Transform X[0] y = spca.transform(X[0].reshape(1, -1)).squeeze() # Show the absolute magnitudes fig, ax = plt.subplots(figsize=(22, 10)) ax.bar(np.arange(1, 31, 1), np.abs(y)) ax.set_xticks(np.arange(1, 31, 1)) ax.set_xlabel('Component', fontsize=16) ax.set_ylabel('Coefficient (absolute values)', fontsize=16) plt.show()
# Copyright (c) 2018-2021, Carnegie Mellon University # See LICENSE for details #F IsNonTerminal ( <obj> ) #F returns true, if <obj> is a non-terminal #F IsNonTerminal := N -> IsRec(N) and IsBound(N.isNonTerminal) and N.isNonTerminal = true; Class(NonTerminalOps, SPLOps, rec( )); Declare(NonTerminal); # ========================================================================== # NonTerminal # ========================================================================== Class(NonTerminal, BaseMat, rec( #F create getter methods #F ex: NonTerminal.WithParams("param1_getter_name", "param2_getter_name") WithParams := arg >> CopyFields(arg[1], RecList( ConcatList( [2..Length(arg)], i -> [arg[i], DetachFunc(Subst(self >> self.params[$(i-1)]))] ))), isNonTerminal := true, # for nonterm.g and IsNonTerminal() function _short_print := false, #--------- Transformation rules support -------------------------------- from_rChildren := (self, rch) >> let( t := ApplyFunc(ObjId(self), DropLast(rch, 1)), When(Last(rch), t.transpose(), t) ), rChildren := self >> Concatenation(self.params, [self.transposed]), rSetChild := meth(self, n, newChild) if n <= 0 or n > Length(self.params) + 1 then Error("<n> must be in [1..", Length(self.params)+1, "]"); fi; if n <= Length(self.params) then self.params[n] := newChild; else self.transposed := newChild; fi; # self.canonizeParams(); ?? self.dimensions := self.dims(); end, #----------------------------------------------------------------------- canonizeParams := meth(self) local A, nump; nump := Length(self.params); if nump = 0 then return; fi; for A in self.abbrevs do if NumArgs(A) = -1 or NumArgs(A) = nump then self.params := ApplyFunc(A, self.params); return; fi; od; Error("Nonterminal ", self.name, " can take ", List(self.abbrevs, NumArgs), " arguments, but not ", nump); end, new := meth(arg) local result, self, params; self := arg[1]; params := arg{[2..Length(arg)]}; result := SPL(WithBases(self, rec(params := params, transposed := false ))); result.canonizeParams(); result.dimensions := result.dims(); return result; end, #----------------------------------------------------------------------- __call__ := ~.new, #----------------------------------------------------------------------- isTerminal := False, #----------------------------------------------------------------------- isPermutation := False, #----------------------------------------------------------------------- transpose := self >> Inherit(self, rec(transposed := not self.transposed, dimensions := Reversed(self.dimensions))), setTransposed := (self, v) >> When( self.transposed <> v, self.transpose(), self), #----------------------------------------------------------------------- # .conjTranspose() is needed for RC(T).transpose() == RC(T.conjTranspose()) # The inert form will only work is non-terminal is not used inside RC, # or used inside RC, but not transposed conjTranspose := self >> InertConjTranspose(self), isInertConjTranspose := self >> self.conjTranspose = NonTerminal.conjTranspose, #----------------------------------------------------------------------- print := (self, i, is) >> Cond( not IsBound(self.params), Print(self.name), Print(self._print(self.params, i, is), When(self.transposed, ".transpose()"))), #----------------------------------------------------------------------- toAMat := self >> self.terminate().toAMat(), #----------------------------------------------------------------------- export := arg >> Error("Can't export a non-terminal"), #----------------------------------------------------------------------- arithmeticCost := arg >> Error("Can't compute arithmetic cost of a non-terminal"), transposeSymmetric := True, isSymmetric := False, area := self >> Product(self.dims()) ));
[STATEMENT] lemma r_amalgamation: "eval r_amalgamation [i, j, x] = amalgamation i j x" [PROOF STATE] proof (prove) goal (1 subgoal): 1. eval r_amalgamation [i, j, x] = amalgamation i j x [PROOF STEP] proof (cases "parallel i j x \<up>") [PROOF STATE] proof (state) goal (2 subgoals): 1. parallel i j x \<up> \<Longrightarrow> eval r_amalgamation [i, j, x] = amalgamation i j x 2. parallel i j x \<down> \<Longrightarrow> eval r_amalgamation [i, j, x] = amalgamation i j x [PROOF STEP] case True [PROOF STATE] proof (state) this: parallel i j x \<up> goal (2 subgoals): 1. parallel i j x \<up> \<Longrightarrow> eval r_amalgamation [i, j, x] = amalgamation i j x 2. parallel i j x \<down> \<Longrightarrow> eval r_amalgamation [i, j, x] = amalgamation i j x [PROOF STEP] then [PROOF STATE] proof (chain) picking this: parallel i j x \<up> [PROOF STEP] have "eval r_parallel [i, j, x] \<up>" [PROOF STATE] proof (prove) using this: parallel i j x \<up> goal (1 subgoal): 1. eval r_parallel [i, j, x] \<up> [PROOF STEP] by (simp add: r_parallel') [PROOF STATE] proof (state) this: eval r_parallel [i, j, x] \<up> goal (2 subgoals): 1. parallel i j x \<up> \<Longrightarrow> eval r_amalgamation [i, j, x] = amalgamation i j x 2. parallel i j x \<down> \<Longrightarrow> eval r_amalgamation [i, j, x] = amalgamation i j x [PROOF STEP] then [PROOF STATE] proof (chain) picking this: eval r_parallel [i, j, x] \<up> [PROOF STEP] have "eval r_amalgamation [i, j, x] \<up>" [PROOF STATE] proof (prove) using this: eval r_parallel [i, j, x] \<up> goal (1 subgoal): 1. eval r_amalgamation [i, j, x] \<up> [PROOF STEP] unfolding r_amalgamation_def [PROOF STATE] proof (prove) using this: eval r_parallel [i, j, x] \<up> goal (1 subgoal): 1. eval (Cn 3 r_pdec2 [r_parallel]) [i, j, x] \<up> [PROOF STEP] by simp [PROOF STATE] proof (state) this: eval r_amalgamation [i, j, x] \<up> goal (2 subgoals): 1. parallel i j x \<up> \<Longrightarrow> eval r_amalgamation [i, j, x] = amalgamation i j x 2. parallel i j x \<down> \<Longrightarrow> eval r_amalgamation [i, j, x] = amalgamation i j x [PROOF STEP] moreover [PROOF STATE] proof (state) this: eval r_amalgamation [i, j, x] \<up> goal (2 subgoals): 1. parallel i j x \<up> \<Longrightarrow> eval r_amalgamation [i, j, x] = amalgamation i j x 2. parallel i j x \<down> \<Longrightarrow> eval r_amalgamation [i, j, x] = amalgamation i j x [PROOF STEP] from True [PROOF STATE] proof (chain) picking this: parallel i j x \<up> [PROOF STEP] have "amalgamation i j x \<up>" [PROOF STATE] proof (prove) using this: parallel i j x \<up> goal (1 subgoal): 1. amalgamation i j x \<up> [PROOF STEP] using amalgamation_def [PROOF STATE] proof (prove) using this: parallel i j x \<up> amalgamation ?i ?j ?x \<equiv> if parallel ?i ?j ?x \<up> then None else Some (pdec2 (the (parallel ?i ?j ?x))) goal (1 subgoal): 1. amalgamation i j x \<up> [PROOF STEP] by simp [PROOF STATE] proof (state) this: amalgamation i j x \<up> goal (2 subgoals): 1. parallel i j x \<up> \<Longrightarrow> eval r_amalgamation [i, j, x] = amalgamation i j x 2. parallel i j x \<down> \<Longrightarrow> eval r_amalgamation [i, j, x] = amalgamation i j x [PROOF STEP] ultimately [PROOF STATE] proof (chain) picking this: eval r_amalgamation [i, j, x] \<up> amalgamation i j x \<up> [PROOF STEP] show ?thesis [PROOF STATE] proof (prove) using this: eval r_amalgamation [i, j, x] \<up> amalgamation i j x \<up> goal (1 subgoal): 1. eval r_amalgamation [i, j, x] = amalgamation i j x [PROOF STEP] by simp [PROOF STATE] proof (state) this: eval r_amalgamation [i, j, x] = amalgamation i j x goal (1 subgoal): 1. parallel i j x \<down> \<Longrightarrow> eval r_amalgamation [i, j, x] = amalgamation i j x [PROOF STEP] next [PROOF STATE] proof (state) goal (1 subgoal): 1. parallel i j x \<down> \<Longrightarrow> eval r_amalgamation [i, j, x] = amalgamation i j x [PROOF STEP] case False [PROOF STATE] proof (state) this: parallel i j x \<down> goal (1 subgoal): 1. parallel i j x \<down> \<Longrightarrow> eval r_amalgamation [i, j, x] = amalgamation i j x [PROOF STEP] then [PROOF STATE] proof (chain) picking this: parallel i j x \<down> [PROOF STEP] have "eval r_parallel [i, j, x] \<down>" [PROOF STATE] proof (prove) using this: parallel i j x \<down> goal (1 subgoal): 1. eval r_parallel [i, j, x] \<down> [PROOF STEP] by (simp add: r_parallel') [PROOF STATE] proof (state) this: eval r_parallel [i, j, x] \<down> goal (1 subgoal): 1. parallel i j x \<down> \<Longrightarrow> eval r_amalgamation [i, j, x] = amalgamation i j x [PROOF STEP] then [PROOF STATE] proof (chain) picking this: eval r_parallel [i, j, x] \<down> [PROOF STEP] have "eval r_amalgamation [i, j, x] = eval r_pdec2 [the (eval r_parallel [i, j, x])]" [PROOF STATE] proof (prove) using this: eval r_parallel [i, j, x] \<down> goal (1 subgoal): 1. eval r_amalgamation [i, j, x] = eval r_pdec2 [the (eval r_parallel [i, j, x])] [PROOF STEP] unfolding r_amalgamation_def [PROOF STATE] proof (prove) using this: eval r_parallel [i, j, x] \<down> goal (1 subgoal): 1. eval (Cn 3 r_pdec2 [r_parallel]) [i, j, x] = eval r_pdec2 [the (eval r_parallel [i, j, x])] [PROOF STEP] by simp [PROOF STATE] proof (state) this: eval r_amalgamation [i, j, x] = eval r_pdec2 [the (eval r_parallel [i, j, x])] goal (1 subgoal): 1. parallel i j x \<down> \<Longrightarrow> eval r_amalgamation [i, j, x] = amalgamation i j x [PROOF STEP] also [PROOF STATE] proof (state) this: eval r_amalgamation [i, j, x] = eval r_pdec2 [the (eval r_parallel [i, j, x])] goal (1 subgoal): 1. parallel i j x \<down> \<Longrightarrow> eval r_amalgamation [i, j, x] = amalgamation i j x [PROOF STEP] have "... \<down>= pdec2 (the (eval r_parallel [i, j, x]))" [PROOF STATE] proof (prove) goal (1 subgoal): 1. eval r_pdec2 [the (eval r_parallel [i, j, x])] \<down>= pdec2 (the (eval r_parallel [i, j, x])) [PROOF STEP] by simp [PROOF STATE] proof (state) this: eval r_pdec2 [the (eval r_parallel [i, j, x])] \<down>= pdec2 (the (eval r_parallel [i, j, x])) goal (1 subgoal): 1. parallel i j x \<down> \<Longrightarrow> eval r_amalgamation [i, j, x] = amalgamation i j x [PROOF STEP] finally [PROOF STATE] proof (chain) picking this: eval r_amalgamation [i, j, x] \<down>= pdec2 (the (eval r_parallel [i, j, x])) [PROOF STEP] show ?thesis [PROOF STATE] proof (prove) using this: eval r_amalgamation [i, j, x] \<down>= pdec2 (the (eval r_parallel [i, j, x])) goal (1 subgoal): 1. eval r_amalgamation [i, j, x] = amalgamation i j x [PROOF STEP] by (simp add: False amalgamation_def r_parallel') [PROOF STATE] proof (state) this: eval r_amalgamation [i, j, x] = amalgamation i j x goal: No subgoals! [PROOF STEP] qed
[STATEMENT] lemma "test (do { tmp0 \<leftarrow> slots_document . getElementById(''test_basic''); n \<leftarrow> createTestTree(tmp0); tmp1 \<leftarrow> n . ''s1''; tmp2 \<leftarrow> tmp1 . assignedElements(); tmp3 \<leftarrow> n . ''c1''; assert_array_equals(tmp2, [tmp3]) }) slots_heap" [PROOF STATE] proof (prove) goal (1 subgoal): 1. test (Heap_Error_Monad.bind slots_document . getElementById(''test_basic'') (\<lambda>tmp0. Heap_Error_Monad.bind (createTestTree tmp0) (\<lambda>n. Heap_Error_Monad.bind (n . ''s1'') (\<lambda>tmp1. Heap_Error_Monad.bind tmp1 . assignedElements() (\<lambda>tmp2. Heap_Error_Monad.bind (n . ''c1'') (\<lambda>tmp3. assert_array_equals(tmp2, [tmp3]))))))) slots_heap [PROOF STEP] by eval
function [ o, x, w ] = en_r2_03_2 ( n ) %*****************************************************************************80 % %% EN_R2_03_2 implements the Stroud rule 3.2 for region EN_R2. % % Discussion: % % The rule has order O = 2^N. % % The rule has precision P = 3. % % EN_R2 is the entire N-dimensional space with weight function % % w(x) = exp ( - x1^2 - x2^2 ... - xn^2 ) % % Licensing: % % This code is distributed under the GNU LGPL license. % % Modified: % % 19 January 2010 % % Author: % % John Burkardt % % Reference: % % Arthur Stroud, % Approximate Calculation of Multiple Integrals, % Prentice Hall, 1971, % ISBN: 0130438936, % LC: QA311.S85. % % Parameters: % % Input, integer N, the spatial dimension. % % Output, integer O, the order. % % Output, real X(N,O), the abscissas. % % Output, real W(O), the weights. % o = 2^n; volume = sqrt ( pi^n ); a = volume / o; r = sqrt ( 1 / 2 ); x = zeros ( n, o ); w = zeros ( o, 1 ); k = 0; % % 2^N points. % k = k + 1; x(1:n,k) = - r; w(k) = a; more = 1; while ( more ) more = 0; for i = n : -1 : 1 if ( x(i,k) < 0.0 ) k = k + 1; x(1:n,k) = x(1:n,k-1); x(i,k) = + r; x(i+1:n,k) = - r; w(k) = a; more = 1; break; end end end return end
Labels- Machine Warning Labels With A Pressure-sensitive Self-adhesive Backing Can Withstand Temperatures Up To 176°F.Self-adhesive Vinyl Hazard Warning Labels Are Ideal For Marking Potential Life-threatening Conditions On Switch. Labels- Machine Warning Labels with a Pressure-sensitive self-adhesive backing can withstand temperatures. About The Labels- Machine Warning Labels with a Pressure-sensitive self-adhesive backing can withstand temperatures. More from Labels- Machine Warning Labels With A Pressure-sensitive Self-adhesive Backing Can Withstand Temperatures Up To 176°F.Self-adhesive Vinyl Hazard Warning Labels Are Ideal For Marking Potential Life-threatening Conditions On Switch.
// Boost.Geometry Index // // R-tree nodes based on runtime-polymorphism, storing static-size containers // test version throwing exceptions on creation // // Copyright (c) 2011-2013 Adam Wulkiewicz, Lodz, Poland. // // Use, modification and distribution is subject to the Boost Software License, // Version 1.0. (See accompanying file LICENSE_1_0.txt or copy at // http://www.boost.org/LICENSE_1_0.txt) #ifndef BOOST_GEOMETRY_INDEX_TEST_RTREE_THROWING_NODE_HPP #define BOOST_GEOMETRY_INDEX_TEST_RTREE_THROWING_NODE_HPP #include <boost/geometry/index/detail/rtree/node/dynamic_visitor.hpp> #include <rtree/exceptions/test_throwing.hpp> struct throwing_nodes_stats { static void reset_counters() { get_internal_nodes_counter_ref() = 0; get_leafs_counter_ref() = 0; } static size_t internal_nodes_count() { return get_internal_nodes_counter_ref(); } static size_t leafs_count() { return get_leafs_counter_ref(); } static size_t & get_internal_nodes_counter_ref() { static size_t cc = 0; return cc; } static size_t & get_leafs_counter_ref() { static size_t cc = 0; return cc; } }; namespace boost { namespace geometry { namespace index { template <size_t MaxElements, size_t MinElements> struct linear_throwing : public linear<MaxElements, MinElements> {}; template <size_t MaxElements, size_t MinElements> struct quadratic_throwing : public quadratic<MaxElements, MinElements> {}; template <size_t MaxElements, size_t MinElements, size_t OverlapCostThreshold = 0, size_t ReinsertedElements = detail::default_rstar_reinserted_elements_s<MaxElements>::value> struct rstar_throwing : public rstar<MaxElements, MinElements, OverlapCostThreshold, ReinsertedElements> {}; namespace detail { namespace rtree { // options implementation (from options.hpp) struct node_throwing_d_mem_static_tag {}; template <size_t MaxElements, size_t MinElements> struct options_type< linear_throwing<MaxElements, MinElements> > { typedef options< linear_throwing<MaxElements, MinElements>, insert_default_tag, choose_by_content_diff_tag, split_default_tag, linear_tag, node_throwing_d_mem_static_tag > type; }; template <size_t MaxElements, size_t MinElements> struct options_type< quadratic_throwing<MaxElements, MinElements> > { typedef options< quadratic_throwing<MaxElements, MinElements>, insert_default_tag, choose_by_content_diff_tag, split_default_tag, quadratic_tag, node_throwing_d_mem_static_tag > type; }; template <size_t MaxElements, size_t MinElements, size_t OverlapCostThreshold, size_t ReinsertedElements> struct options_type< rstar_throwing<MaxElements, MinElements, OverlapCostThreshold, ReinsertedElements> > { typedef options< rstar_throwing<MaxElements, MinElements, OverlapCostThreshold, ReinsertedElements>, insert_reinsert_tag, choose_by_overlap_diff_tag, split_default_tag, rstar_tag, node_throwing_d_mem_static_tag > type; }; }} // namespace detail::rtree // node implementation namespace detail { namespace rtree { template <typename Value, typename Parameters, typename Box, typename Allocators> struct dynamic_internal_node<Value, Parameters, Box, Allocators, node_throwing_d_mem_static_tag> : public dynamic_node<Value, Parameters, Box, Allocators, node_throwing_d_mem_static_tag> { typedef throwing_varray< rtree::ptr_pair<Box, typename Allocators::node_pointer>, Parameters::max_elements + 1 > elements_type; template <typename Dummy> inline dynamic_internal_node(Dummy const&) { throwing_nodes_stats::get_internal_nodes_counter_ref()++; } inline ~dynamic_internal_node() { throwing_nodes_stats::get_internal_nodes_counter_ref()--; } void apply_visitor(dynamic_visitor<Value, Parameters, Box, Allocators, node_throwing_d_mem_static_tag, false> & v) { v(*this); } void apply_visitor(dynamic_visitor<Value, Parameters, Box, Allocators, node_throwing_d_mem_static_tag, true> & v) const { v(*this); } elements_type elements; private: dynamic_internal_node(dynamic_internal_node const&); dynamic_internal_node & operator=(dynamic_internal_node const&); }; template <typename Value, typename Parameters, typename Box, typename Allocators> struct dynamic_leaf<Value, Parameters, Box, Allocators, node_throwing_d_mem_static_tag> : public dynamic_node<Value, Parameters, Box, Allocators, node_throwing_d_mem_static_tag> { typedef throwing_varray<Value, Parameters::max_elements + 1> elements_type; template <typename Dummy> inline dynamic_leaf(Dummy const&) { throwing_nodes_stats::get_leafs_counter_ref()++; } inline ~dynamic_leaf() { throwing_nodes_stats::get_leafs_counter_ref()--; } void apply_visitor(dynamic_visitor<Value, Parameters, Box, Allocators, node_throwing_d_mem_static_tag, false> & v) { v(*this); } void apply_visitor(dynamic_visitor<Value, Parameters, Box, Allocators, node_throwing_d_mem_static_tag, true> & v) const { v(*this); } elements_type elements; private: dynamic_leaf(dynamic_leaf const&); dynamic_leaf & operator=(dynamic_leaf const&); }; // elements derived type template <typename OldValue, size_t N, typename NewValue> struct container_from_elements_type<throwing_varray<OldValue, N>, NewValue> { typedef throwing_varray<NewValue, N> type; }; // nodes traits template <typename Value, typename Parameters, typename Box, typename Allocators> struct node<Value, Parameters, Box, Allocators, node_throwing_d_mem_static_tag> { typedef dynamic_node<Value, Parameters, Box, Allocators, node_throwing_d_mem_static_tag> type; }; template <typename Value, typename Parameters, typename Box, typename Allocators> struct internal_node<Value, Parameters, Box, Allocators, node_throwing_d_mem_static_tag> { typedef dynamic_internal_node<Value, Parameters, Box, Allocators, node_throwing_d_mem_static_tag> type; }; template <typename Value, typename Parameters, typename Box, typename Allocators> struct leaf<Value, Parameters, Box, Allocators, node_throwing_d_mem_static_tag> { typedef dynamic_leaf<Value, Parameters, Box, Allocators, node_throwing_d_mem_static_tag> type; }; template <typename Value, typename Parameters, typename Box, typename Allocators, bool IsVisitableConst> struct visitor<Value, Parameters, Box, Allocators, node_throwing_d_mem_static_tag, IsVisitableConst> { typedef dynamic_visitor<Value, Parameters, Box, Allocators, node_throwing_d_mem_static_tag, IsVisitableConst> type; }; // allocators template <typename Allocator, typename Value, typename Parameters, typename Box> class allocators<Allocator, Value, Parameters, Box, node_throwing_d_mem_static_tag> : public Allocator::template rebind< typename internal_node< Value, Parameters, Box, allocators<Allocator, Value, Parameters, Box, node_throwing_d_mem_static_tag>, node_throwing_d_mem_static_tag >::type >::other , Allocator::template rebind< typename leaf< Value, Parameters, Box, allocators<Allocator, Value, Parameters, Box, node_throwing_d_mem_static_tag>, node_throwing_d_mem_static_tag >::type >::other { typedef typename Allocator::template rebind< Value >::other value_allocator_type; public: typedef Allocator allocator_type; typedef Value value_type; typedef value_type & reference; typedef const value_type & const_reference; typedef typename value_allocator_type::size_type size_type; typedef typename value_allocator_type::difference_type difference_type; typedef typename value_allocator_type::pointer pointer; typedef typename value_allocator_type::const_pointer const_pointer; typedef typename Allocator::template rebind< typename node<Value, Parameters, Box, allocators, node_throwing_d_mem_static_tag>::type >::other::pointer node_pointer; typedef typename Allocator::template rebind< typename internal_node<Value, Parameters, Box, allocators, node_throwing_d_mem_static_tag>::type >::other::pointer internal_node_pointer; typedef typename Allocator::template rebind< typename internal_node<Value, Parameters, Box, allocators, node_throwing_d_mem_static_tag>::type >::other internal_node_allocator_type; typedef typename Allocator::template rebind< typename leaf<Value, Parameters, Box, allocators, node_throwing_d_mem_static_tag>::type >::other leaf_allocator_type; inline allocators() : internal_node_allocator_type() , leaf_allocator_type() {} template <typename Alloc> inline explicit allocators(Alloc const& alloc) : internal_node_allocator_type(alloc) , leaf_allocator_type(alloc) {} inline allocators(BOOST_FWD_REF(allocators) a) : internal_node_allocator_type(boost::move(a.internal_node_allocator())) , leaf_allocator_type(boost::move(a.leaf_allocator())) {} inline allocators & operator=(BOOST_FWD_REF(allocators) a) { internal_node_allocator() = ::boost::move(a.internal_node_allocator()); leaf_allocator() = ::boost::move(a.leaf_allocator()); return *this; } #ifndef BOOST_NO_CXX11_RVALUE_REFERENCES inline allocators & operator=(allocators const& a) { internal_node_allocator() = a.internal_node_allocator(); leaf_allocator() = a.leaf_allocator(); return *this; } #endif void swap(allocators & a) { boost::swap(internal_node_allocator(), a.internal_node_allocator()); boost::swap(leaf_allocator(), a.leaf_allocator()); } bool operator==(allocators const& a) const { return leaf_allocator() == a.leaf_allocator(); } template <typename Alloc> bool operator==(Alloc const& a) const { return leaf_allocator() == leaf_allocator_type(a); } Allocator allocator() const { return Allocator(leaf_allocator()); } internal_node_allocator_type & internal_node_allocator() { return *this; } internal_node_allocator_type const& internal_node_allocator() const { return *this; } leaf_allocator_type & leaf_allocator() { return *this; } leaf_allocator_type const& leaf_allocator() const { return *this; } }; struct node_bad_alloc : public std::exception { const char * what() const throw() { return "internal node creation failed."; } }; struct throwing_node_settings { static void throw_if_required() { // throw if counter meets max count if ( get_max_calls_ref() <= get_calls_counter_ref() ) throw node_bad_alloc(); else ++get_calls_counter_ref(); } static void reset_calls_counter() { get_calls_counter_ref() = 0; } static void set_max_calls(size_t mc) { get_max_calls_ref() = mc; } static size_t & get_calls_counter_ref() { static size_t cc = 0; return cc; } static size_t & get_max_calls_ref() { static size_t mc = (std::numeric_limits<size_t>::max)(); return mc; } }; // create_node template <typename Allocators, typename Value, typename Parameters, typename Box> struct create_node< Allocators, dynamic_internal_node<Value, Parameters, Box, Allocators, node_throwing_d_mem_static_tag> > { static inline typename Allocators::node_pointer apply(Allocators & allocators) { // throw if counter meets max count throwing_node_settings::throw_if_required(); return create_dynamic_node< typename Allocators::node_pointer, dynamic_internal_node<Value, Parameters, Box, Allocators, node_throwing_d_mem_static_tag> >::apply(allocators.internal_node_allocator()); } }; template <typename Allocators, typename Value, typename Parameters, typename Box> struct create_node< Allocators, dynamic_leaf<Value, Parameters, Box, Allocators, node_throwing_d_mem_static_tag> > { static inline typename Allocators::node_pointer apply(Allocators & allocators) { // throw if counter meets max count throwing_node_settings::throw_if_required(); return create_dynamic_node< typename Allocators::node_pointer, dynamic_leaf<Value, Parameters, Box, Allocators, node_throwing_d_mem_static_tag> >::apply(allocators.leaf_allocator()); } }; }} // namespace detail::rtree }}} // namespace boost::geometry::index #endif // BOOST_GEOMETRY_INDEX_TEST_RTREE_THROWING_NODE_HPP
# n = 20; # alpha = 0.01; # x = rnorm(n, mean=10.5, sd=1.3); # # # 1.1 # hypothesisTest = t.test(x, mu=10, conf.level = 1-alpha); # print(hypothesisTest); # # #1.1.a # avg = mean(x); # stDev = sd(x); # # critVal = qt(1-alpha/2, n-1, lower.tail = TRUE); # lowBound = avg - (stDev * critVal)/sqrt(n); # upBound = avg + (stDev * critVal)/sqrt(n); # print((stDev * critVal)/sqrt(n)) # # #!.1.b # #TODO if # print(lowBound); # print(upBound); # # #1.1.c TODO if # tVal = sqrt(n)*(avg-10)/stDev; # critVal = qt(1-alpha/2, n-1, lower.tail = TRUE); # # lowBound = pt(tVal, n-1, lower.tail = FALSE); # upBound = pt(tVal, n-1, lower.tail = TRUE); # pVal = 2*min(lowBound, upBound); # print(2*lowBound); # print(2*upBound); # # #1.2 # #vybereme jednostranny t-test a cele to zopakujeme # #Expiricky vime, ze avg = 10.5 a u = 10, proto je vyhodnejsi alternativa greater, protoze s danou pravdepodobnosti jsme schopni rict, ze hodnota je vetsi nez deset. Diky vlastnostem generovanych dat takto casteji zavrhneme H0 a pouzijeme Halph # # n = 20; # alpha = 0.01 # x = rnorm(n, mean=10, sd=1) # error = rnorm(n, mean=0.5, sd=0.8306624) # y = x + error # # t.test(x, y=y, paired = TRUE, alternative = "less", conf.level = 1-alpha) # #2.1 # n = 20; # alpha = 0.01 # x = rnorm(n, mean=10, sd=1) # error = rnorm(n, mean=0.5, sd=0.8306624) # y = x + error # # t.test(x, y=y, paired = TRUE, alternative = "less", conf.level = 1-alpha) # n = 20; # alpha = 0.01 # x = rnorm(n, mean=10, sd=1) # error = rnorm(n, mean=0.5, sd=0.8306624) # y = x + error # # res = t.test(x, y=y, paired = TRUE, alternative = "less", conf.level = 1-alpha) # print(res) # if(abs(res$statistic) > qt(1-alpha, n-1, lower.tail = TRUE)) { # print('Reject null hypothesis!') # } # 2.1.b # res = t.test(x-y, alternative = "less", conf.level = 1-alpha) # print(res) #2.2 # n1 = 20; # n2 = 25; # alpha = 0.01 # x=rnorm(n1, mean=10, sd=1.3) # y=rnorm(n2, mean=11.25, sd=1.3) # res = t.test(x, y=y, paired = FALSE, var.equal = TRUE, alternative = "less", conf.level = 1-alpha) # print(res) # if(abs(res$statistic) > qt(1-alpha, n1+n2-2, lower.tail = TRUE)) { # print('Reject null hypothesis!') # } n1 = 20; n2 = 25; alpha = 0.01 x=rnorm(n1, mean=10, sd=1.3) y=rnorm(n2, mean=11.28, sd=1.2) res = t.test(x, y=y, paired = FALSE, var.equal = FALSE, alternative = "less", conf.level = 1-alpha) print(res) if(abs(res$statistic) > qt(1-alpha, n1+n2-2, lower.tail = TRUE)) { print('Reject null hypothesis!') } # # #2.2 # n1 = 20; # n2 = 25; # alpha = 0.01 # x=rnorm(n1, mean=10, sd=1.3) # y=rnorm(n2, mean=11.25, sd=1.3) # # res = t.test(x, y=y, paired = FALSE, var.equal = TRUE, alternative = "less", conf.level = 1-alpha) # print(res); df = n1 + n2 - 2; sdiff = sqrt(var(x)/n1+var(y)/n2); tVal = (mean(x)-mean(y))/(sdiff); print(tVal) if(abs(tVal) > qt(1-alpha, df, lower.tail = TRUE)) { print('Reject null hypothesis!') } # critVal = qt(1-alpha, df, lower.tail = TRUE); #print(pt(tVal, df, lower.tail = TRUE)) #print(qt(res$p.value, df)); #2.3 # n1 = 20; # n2 = 25; # alpha = 0.01 # x=rnorm(n1, mean=10, sd=1.3) # y=rnorm(n2, mean=11.28, sd=1.2) # t.test(x, y=y, paired = FALSE, var.equal = FALSE, conf.level = 1-alpha) #zodpadkovat vsechny kroky #bude nutne prepsat vypocet bodu 2.2 podle vzorce pro rozdilne rozptyly #... kdyz se muze clovek rozptylovat, muze se i ptylovat? #3.1.a,b,c # sequenceLength = 4000000; # x = runif(sequenceLength, 0, 100) # print(system.time(sort(x))) #pouzijeme hypotezu X1 < X2 ..tj, je algoritmus X1 v prumeru rychlejsi? #
/- Copyright (c) 2022 Yaël Dillies. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Yaël Dillies ! This file was ported from Lean 3 source module order.category.BoolAlg ! leanprover-community/mathlib commit e8ac6315bcfcbaf2d19a046719c3b553206dac75 ! Please do not edit these lines, except to modify the commit id ! if you have ported upstream changes. -/ import Mathbin.Order.Category.HeytAlg /-! # The category of boolean algebras This defines `BoolAlg`, the category of boolean algebras. -/ open OrderDual Opposite Set universe u open CategoryTheory /-- The category of boolean algebras. -/ def BoolAlg := Bundled BooleanAlgebra #align BoolAlg BoolAlg namespace BoolAlg instance : CoeSort BoolAlg (Type _) := Bundled.hasCoeToSort instance (X : BoolAlg) : BooleanAlgebra X := X.str /-- Construct a bundled `BoolAlg` from a `boolean_algebra`. -/ def of (α : Type _) [BooleanAlgebra α] : BoolAlg := Bundled.of α #align BoolAlg.of BoolAlg.of @[simp] theorem coe_of (α : Type _) [BooleanAlgebra α] : ↥(of α) = α := rfl #align BoolAlg.coe_of BoolAlg.coe_of instance : Inhabited BoolAlg := ⟨of PUnit⟩ /-- Turn a `BoolAlg` into a `BddDistLat` by forgetting its complement operation. -/ def toBddDistLat (X : BoolAlg) : BddDistLat := BddDistLat.of X #align BoolAlg.to_BddDistLat BoolAlg.toBddDistLat @[simp] theorem coe_toBddDistLat (X : BoolAlg) : ↥X.toBddDistLat = ↥X := rfl #align BoolAlg.coe_to_BddDistLat BoolAlg.coe_toBddDistLat instance : LargeCategory.{u} BoolAlg := InducedCategory.category toBddDistLat instance : ConcreteCategory BoolAlg := InducedCategory.concreteCategory toBddDistLat instance hasForgetToBddDistLat : HasForget₂ BoolAlg BddDistLat := InducedCategory.hasForget₂ toBddDistLat #align BoolAlg.has_forget_to_BddDistLat BoolAlg.hasForgetToBddDistLat section attribute [local instance] BoundedLatticeHomClass.toBiheytingHomClass @[simps] instance hasForgetToHeytAlg : HasForget₂ BoolAlg HeytAlg where forget₂ := { obj := fun X => ⟨X⟩ map := fun X Y f => show BoundedLatticeHom X Y from f } #align BoolAlg.has_forget_to_HeytAlg BoolAlg.hasForgetToHeytAlg end /-- Constructs an equivalence between Boolean algebras from an order isomorphism between them. -/ @[simps] def Iso.mk {α β : BoolAlg.{u}} (e : α ≃o β) : α ≅ β where Hom := (e : BoundedLatticeHom α β) inv := (e.symm : BoundedLatticeHom β α) hom_inv_id' := by ext exact e.symm_apply_apply _ inv_hom_id' := by ext exact e.apply_symm_apply _ #align BoolAlg.iso.mk BoolAlg.Iso.mk /-- `order_dual` as a functor. -/ @[simps] def dual : BoolAlg ⥤ BoolAlg where obj X := of Xᵒᵈ map X Y := BoundedLatticeHom.dual #align BoolAlg.dual BoolAlg.dual /-- The equivalence between `BoolAlg` and itself induced by `order_dual` both ways. -/ @[simps Functor inverse] def dualEquiv : BoolAlg ≌ BoolAlg := Equivalence.mk dual dual (NatIso.ofComponents (fun X => Iso.mk <| OrderIso.dualDual X) fun X Y f => rfl) (NatIso.ofComponents (fun X => Iso.mk <| OrderIso.dualDual X) fun X Y f => rfl) #align BoolAlg.dual_equiv BoolAlg.dualEquiv end BoolAlg theorem boolAlg_dual_comp_forget_to_bddDistLat : BoolAlg.dual ⋙ forget₂ BoolAlg BddDistLat = forget₂ BoolAlg BddDistLat ⋙ BddDistLat.dual := rfl #align BoolAlg_dual_comp_forget_to_BddDistLat boolAlg_dual_comp_forget_to_bddDistLat
```python import holoviews as hv hv.extension('bokeh') hv.opts.defaults(hv.opts.Curve(width=500), hv.opts.Points(width=500), hv.opts.Image(width=500, colorbar=True, cmap='Viridis')) ``` ```python import numpy as np import scipy.linalg ``` # Estimador lineal óptimo Un **estimador** es un sistema diseñado para **extraer información** a partir de una **señal** - La señal contiene **información y ruido** - La señal es representada como una secuencia de **datos** Tipos de estimador - **Filtro:** Estimo el valor actual de mi señal acentuando o eliminando una o más características - **Predictor:** Estimo el valor futuro de mi señal En esta lección estudiaremos estimadores lineales y óptimos - Lineal: La cantidad estimada es una función lineal de la entrada - Óptimo: El estimador es la mejor solución posible de acuerdo a un criterio Para entender los fundamentos de los estimadores óptimos es necesario introducir el concepto de proceso aleatorio. Luego estudiaremos uno de los estimadores óptimos más importantes: El filtro de Wiener ## Proceso aleatorio o proceso estocástico Un proceso estocástico es una **colección de variables aleatorias** indexadas tal que forman una secuencia. Se denotan matemáticamente como un conjunto $\{U_k\}$, con $k=0, 1, 2, \ldots, N$. El índice $k$ puede representar tiempo, espacio u otra variable independiente. La siguiente figura muestra tres realizaciones u observaciones de un proceso estocástico con cuatro elementos Existen muchos fenómenos cuya evolución se modela utilizando procesos aleatorios. Por ejemplo - Los índices bursatiles - El comportamineto de un gas dentro de un contenedor - Las vibraciones de un motor eléctrico - El área de una célula durante un proceso de organogénesis A continuación revisaremos algunas de las propiedades de los procesos aleatorios **Momentos de un proceso estocástico** Un proceso aleatorio $U_n = (u_n, u_{n-1}, u_{n-2}, \ldots, u_{n-L})$ se describe a través de sus momentos estadísticos. Si consideramos una caracterízación de segundo orden necesitamos definir - Momento central o media: Describe el valor central del proceso $$ \mu(n) = \mathbb{E}[U_n] $$ - Segundo momento o correlación: Describe la dispersión de un proceso $$ r_{uu}(n, n-k) = \mathbb{E}[U_n U_{n-k}] $$ - Segundo momento centrado o covarianza $$ \begin{align} c_{uu}(n, n-k) &= \mathbb{E}[(U_n-\mu_n) (U_{n-k}- \mu_{n-k})] \nonumber \\ &= r(n,n-k) - \mu_n \mu_{n-k} \nonumber \end{align} $$ - Correlación cruzada entre dos procesos $$ r_{ud}(n, n-k) = \mathbb{E}[U_n D_{n-k}] $$ **Proceso estacionario y ergódico** En esta lección nos vamos a centrar en el caso simplificado donde el **proceso es estacionario**, matemáticamente esta propiedad significa que $$ \mu(n) = \mu, \forall n $$ y $$ r_{uu}(n, n-k) = r_{uu}(k), \forall n $$ es decir que los momentos estadísticos se mantienen constantes en el tiempo (no depende de $n$). Otra simplificación que utilizaremos es que el proceso sea **ergódico**, $$ \mathbb{E}[U_n] = \frac{1}{N} \sum_{n=1}^N u_n $$ es decir que podemos reemplazar el valor esperado por la media muestral en el tiempo **Densidad espectral de potencia** La densidad espectral de potencia o *power spectral density* (PSD) mide la distribución en frecuencia de la potencia del proceso estocástico. Su definición matemática es $$ \begin{align} S_{uu}(f) &= \sum_{k=-\infty}^{\infty} r_{uu}(k) e^{-j 2\pi f k} \nonumber \\ &= \lim_{N\to\infty} \frac{1}{2N+1} \mathbb{E} \left [\left|\sum_{n=-N}^{N} u_n e^{-j 2\pi f n} \right|^2 \right] \end{align} $$ que corresponde a la transformada de Fourier de la correlación (caso estacionario) La PSD y la correlación forman un par de Fourier, es decir que uno es la transformada de Fourier del otro. ## Filtro de Wiener El filtro de Wiener fue publicado por Norbert Wiener en 1949 y es tal vez el ejemplo más famoso de un estimador lineal óptimo. :::{important} Para diseñar un estimador óptimo necesitamos un **criterio** y **condiciones** (supuestos). Luego el estimador será **óptimo según dicho criterio y bajo los supuestos considerados**. Por ejemplo podríamos suponer un escenario donde el ruido es blanco o donde el proceso es estacionario. ::: A continuación describiremos en detalle este filtro y explicaremos como se optimiza. Luego se veran ejemplos de aplicaciones. ### Notación y arquitectura del filtro de Wiener El filtro de Wiener es un sistema de tiempo discreto con estructura FIR y $L+1$ coeficientes. A continuación se muestra un esquema del filtro de Wiener Del esquema podemos reconocer los elementos más importantes de este filtro - Los coeficientes del filtro: $h_0, h_1, h_2, \ldots, h_{L}$ - La señal de entrada al filtro: $u_0, u_1, u_2, \ldots$ - La señal de salida del filtro: $y_0, y_1, y_2, \ldots$ - La señal de respuesta "deseada" u objetivo: $d_0, d_1, d_2, \ldots$ - La señal de error: $e_0, e_1, e_2, \ldots$ Al ser un filtro FIR la salida del filtro está definida como $$ y_n = \sum_{k=0}^{L} h_k u_{n-k}, $$ es decir la convolución entre la entrada y los coeficientes. Luego la señal de error es $$ e_n = d_n - y_n = d_n - \sum_{k=0}^{L} h_k u_{n-k} $$ que corresponde a la diferencia entre la señal objetivo y la señal de salida. A continuación veremos que se ajustan los coeficientes del filtro en base al criterio de optimalidad. ### Ajuste del filtro de Wiener El criterio más común para aprender o adaptar el filtro de Wiener es el **error medio cuadrático** o *mean square error* (MSE) entre la respuesta deseada y la salida del filtro. Asumiendo que $u$ y $d$ son secuencias de valores reales podemos escribir el MSE como $$ \begin{align} \text{MSE} &= \mathbb{E}\left [e_n^2 \right] \nonumber \\ &= \mathbb{E}\left [(d_n - y_n)^2 \right] \nonumber \\ &= \mathbb{E}\left [d_n^2 \right] - 2\mathbb{E}\left [ d_n y_n \right] + \mathbb{E}\left [ y_n^2 \right] \nonumber \end{align} $$ donde $\sigma_d^2 = \mathbb{E}\left [d_n^2 \right]$ es la varianza de la señal deseada y $\sigma_y^2 = \mathbb{E}\left [ y_n^2 \right]$ es la varianza de nuestro estimador :::{note} Minimizar el MSE implica acercar la salida del filtro a la respuesta deseada ::: En este caso, igualando la derivada del MSE a cero, tenemos $$ \begin{align} \frac{d}{d h_j} \text{MSE} &= -2\mathbb{E}\left[ d_n \frac{d y_n}{d h_j} \right] + 2 \mathbb{E}\left[ y_n \frac{d y_n}{d h_j} \right] \nonumber \\ &= -2\mathbb{E}\left[ d_n u_{n-j} \right] + 2 \mathbb{E}\left[ y_n u_{n-j} \right] \nonumber \\ &= -2\mathbb{E}\left[ d_n u_{n-j} \right] + 2 \mathbb{E}\left[ \sum_{k=0}^{L} h_k u_{n-k} u_{n-j} \right] \nonumber \\ &= -2\mathbb{E}\left[ d_n u_{n-j} \right] + 2 \sum_{k=0}^{L} h_k \mathbb{E}\left[ u_{n-k} u_{n-j} \right] = 0 \nonumber \end{align} $$ Si despejamos y repetimos para $j=0, \ldots, L$ obtenemos el siguiente sistema de ecuaciones $$ \begin{align} \begin{pmatrix} r_{uu}(0) & r_{uu}(1) & r_{uu}(2) & \ldots & r_{uu}(L) \\ r_{uu}(1) & r_{uu}(0) & r_{uu}(1) & \ldots & r_{uu}(L-1) \\ r_{uu}(2) & r_{uu}(1) & r_{uu}(0) & \ldots & r_{uu}(L-2) \\ \vdots & \vdots & \vdots & \ddots &\vdots \\ r_{uu}(L) & r_{uu}(L-1) & r_{uu}(L-2) & \ldots & r_{uu}(0) \\ \end{pmatrix} \begin{pmatrix} h_0 \\ h_1 \\ h_2 \\ \vdots \\ h_L \\ \end{pmatrix} &= \begin{pmatrix} r_{ud}(0) \\ r_{ud}(1) \\ r_{ud}(2) \\ \vdots \\ r_{ud}(L) \\ \end{pmatrix} \nonumber \\ R_{uu} \textbf{h} &= R_{ud}, \end{align} $$ que se conoce como las **ecuaciones de Wiener-Hopf**. Además $R_{uu}$ se conoce como matriz de auto-correlación. Asumiendo que $R_{uu}$ es no-singular, es decir que su inversa existe, la **solución óptima en el sentido de mínimo MSE** es $$ \textbf{h}^{*} = R_{uu} ^{-1} R_{ud} $$ Notar que por construcción la matriz $R_{uu}$ es simétrica y hermítica. Por lo que el sistema puede resolverse de forma eficiente con $\mathcal{O}(L^2)$ operaciones usando la [recursión de Levison-Durbin](https://en.wikipedia.org/wiki/Levinson_recursion) :::{warning} Para llegar a la solución impusimos dos condiciones sobre la salida deseada y la entrada: (1) tienen media cero y (2) son estacionarias en el sentido amplio (es decir la correlación solo depende del retardo $m$). ::: - Si la primera condición no se cumpliera, podría restarse la media previo al entrenamiento del filtro - Si la segunda condición no se cumple conviene usar otro método como los que veremos en las lecciones siguientes ## Aplicaciones del filtro de Wiener ### Regresión o identificación de sistema En regresión buscamos encontrar los coeficientes $h$ a partir de tuplas $(X, Y)$ tal que $$ Y = h^T X + \epsilon, $$ donde $X \in \mathbb{R}^{N\times D}$ son las variables dependientes (entrada), $Y \in \mathbb{R}^N$ es la variable dependiente (salida) y $\epsilon$ es ruido Para entrenar el filtro 1. Asumimos que hemos observado N muestras de $X$ e $Y$ 1. A partir de $u=X$ construimos $R_{uu}$ 1. A partir de $d=Y$ construimos $R_{ud}$ 1. Finalmente recuperamos $\textbf{h}$ usando $R_{uu} ^{-1} R_{ud}$ 1. Con esto podemos interpolar $Y$ **Ejemplo** Sea por ejemplo una regresión de tipo polinomial donde queremos encontrar $h_k$ tal que $$ \begin{align} d_i &= f_i + \epsilon \nonumber \\ &= \sum_{k=1}^L h_k u_i^k + \epsilon \nonumber \end{align} $$ ```python np.random.seed(12345) u = np.linspace(-2, 2, num=30) f = 0.25*u**5 - 2*u**3 + 5*u # Los coeficientes reales son [0, 5, 0, -2, 0, 1/4, 0, 0, 0, ...] d = f + np.random.randn(len(u)) ``` ```python hv.Points((u, d), kdims=['u', 'd']) ``` Implementemos el filtro como una clase con dos métodos públicos `fit` (ajustar) y `predict` (predecir). El filtro tiene un argumento, el número de coeficientes $L$ ```python class Wiener_polynomial_regression: def __init__(self, L: int): self.L = L self.h = np.zeros(shape=(L+1,)) def _polynomial_basis(self, u: np.ndarray) -> np.ndarray: U = np.ones(shape=(len(u), self.L)) for i in range(1, self.L): U[:, i] = u**i return U def fit(self, u: np.ndarray, d: np.ndarray): U = self._polynomial_basis(u) Ruu = np.dot(U.T, U) Rud = np.dot(U.T, d[:, np.newaxis]) self.h = scipy.linalg.solve(Ruu, Rud, assume_a='pos')[:, 0] def predict(self, u: np.ndarray): U = self._polynomial_basis(u) return np.dot(U, self.h) ``` :::{note} La función `scipy.linalg.solve(A, B)` retorna la solución del sistema de ecuaciones lineal `Ax = B`. El argumento `assume_a` puede usarse para indicar que `A` es simétrica, hermítica o definido positiva. ::: Los solución de un sistema con `10` coeficientes es: ```python regressor = Wiener_polynomial_regression(10) regressor.fit(u, d) print(regressor.h) ``` ¿Cómo cambia el resultado con L? ```python uhat = np.linspace(np.amin(u), np.amax(u), num=100) yhat = {} for L in [2, 5, 15]: regressor = Wiener_polynomial_regression(L) regressor.fit(u, d) yhat[L] = regressor.predict(uhat) ``` ```python p = [hv.Points((u, d), kdims=['u', 'd'], label='data').opts(size=4, color='k')] for L, prediction in yhat.items(): p.append(hv.Curve((uhat, prediction), label=f'L={L}')) hv.Overlay(p).opts(legend_position='top') ``` :::{note} Si $L$ es muy pequeño el filtro es demasiado simple. Si $L$ es muy grande el filtro se puede sobreajustar al ruido ::: ### Predicción a futuro En este caso asumimos que la señal deseada es la entrada en el futuro $$ d_n = \{u_{n+1}, u_{n+2}, \ldots, u_{n+m}\} $$ donde $m$ es el horizonte de predicción. Se llama *predicción a un paso* al caso particular $m=1$. El largo del filtro $L$ define la cantidad de muestras pasadas que usamos para predecir. Por ejemplo un sistema de predicción a un paso con $L+1 = 3$ coeficientes: $$ h_0 u_n + h_1 u_{n-1} + h_2 u_{n-2}= y_n = \hat u_{n+1} \approx u_{n+1} $$ Para entrenar el filtro 1. Asumimos que la señal ha sido observada y que se cuenta con $N$ muestras para entrenar 1. Podemos formar una matriz cuyas filas son $[u_n, u_{n-1}, \ldots, u_{n-L}]$ para $n=L,L+1,\ldots, N-1$ 1. Podemos formar un vector $[u_N, u_{N-1}, \ldots, u_{L+1}]^T$ (caso $m=1$) 1. Con esto podemos formar las matrices de correlación y obtener $\textbf{h}$ 1. Finalmente usamos $\textbf{h}$ para predecir el futuro no observado de $u$ Nuevamente implementamos el filtro como una clase. Esta vez se utiliza la función de numpy `as_strided` para formar los vectores de "instantes pasados" ```python from numpy.lib.stride_tricks import as_strided class Wiener_predictor: def __init__(self, L: int): self.L = L self.h = np.zeros(shape=(L+1,)) def fit(self, u: np.ndarray): U = as_strided(u, [len(u)-self.L+1 , self.L+1], strides=[u.strides[0], u.strides[0]]) Ruu = np.dot(U[:, :self.L].T, U[:, :self.L]) Rud = np.dot(U[:, :self.L].T, U[:, self.L][:, np.newaxis]) self.h = scipy.linalg.solve(Ruu, Rud, assume_a='pos')[:, 0] def predict(self, u: np.ndarray, m: int=1): u_pred = np.zeros(shape=(m+self.L, )) u_pred[:self.L] = u for k in range(self.L, m+L): u_pred[k] = np.sum(self.h*u_pred[k-self.L:k]) return u_pred[self.L:] ``` Para la siguiente señal sinusoidal ¿Cómo afecta $L$ a la calidad del predictor lineal? Utilizaremos los primeros 100 instantes para ajustar y los siguientes 100 para probar el predictor ```python np.random.seed(12345) t = np.linspace(0, 10, num=200) u = np.sin(2.0*np.pi*0.5*t) + 0.25*np.random.randn(len(t)) N_fit = 100 yhat = {} for L in [10, 20, 30]: predictor = Wiener_predictor(L) predictor.fit(u[:N_fit]) yhat[L] = predictor.predict(u[N_fit-L:N_fit], m=100) ``` ```python p = [hv.Points((t, u), ['instante', 'u'], label='Datos').opts(color='k')] for L, prediction in yhat.items(): p.append(hv.Curve((t[N_fit:], prediction), label=f'L={L}')) hv.Overlay(p).opts(legend_position='top') ``` :::{note} Si $L$ es muy pequeño el filtro es demasiado simple. Si $L$ es muy grande el filtro se puede sobreajustar al ruido ::: ### Eliminar ruido blanco aditivo En este caso asumimos que la señal de entrada corresponde a una señal deseada (información) que ha sido contaminada con ruido aditivo $$ u_n = d_n + \nu_n, $$ adicionalmente asumimos que - el ruido es estacionario en el sentido amplio y de media cero $\mathbb{E}[\nu_n] = 0$ - el ruido es blanco, es decir no tiene correlación consigo mismo o con la señal deseada $$ r_{\nu d}(k) = 0, \forall k $$ - el ruido tiene una cierta varianza $\mathbb{E}[\nu_n^2] = \sigma_\nu^2, \forall n$ Notemos que en este caso $R_{uu} = R_{dd} + R_{\nu\nu}$ y $R_{ud} = R_{dd}$, luego la señal recuperada es $\hat d_n = h^{*} u_n$ y el filtro es $$ \vec h^{*} = \frac{R_{dd}}{R_{dd} + R_{\nu\nu}} $$ y su respuesta en frecuencia $$ H(f) = \frac{S_{dd}(f)}{S_{dd}(f) + S_{\nu\nu}(f)} $$ es decir que - en frecuencias donde la $S_{dd}(f) > S_{\nu\nu}(f)$, entonces $H(f) = 1$ - en frecuencias donde la $S_{dd}(f) < S_{\nu\nu}(f)$, entonces $H(f) = 0$ ```python ```
{-# OPTIONS --without-K --rewriting #-} open import Basics open import lib.Basics open import Flat module Axiom.C1 {@♭ i j : ULevel} (@♭ I : Type i) (@♭ R : I → Type j) where open import Axiom.C0 I R postulate C1 : (index : I) → R index
module JS.Attribute import Control.Monad.Either import Data.SOP import JS.Callback import JS.Marshall import JS.Nullable import JS.Undefined import JS.Util ||| A read-write attribute of a JS object. ||| ||| @alwaysReturns : Bool index if the attribute's getter can ||| always return a value that is neither ||| `null` nor `undefined`. This means, that the ||| attribute is non-nullable and either mandatory ||| or optional with a proper default value. ||| ||| @f : Context of values represented by the attribute. ||| This is `Maybe` if the attribute is nullable, ||| `Optional` if it is an optional attribute on ||| a dictionary type, or `I` if it is mandatory ||| and non-nullable. ||| ||| @ : Type of values stored in the attribute public export data Attribute : (alwaysReturns : Bool) -> (f : Type -> Type) -> (a : Type) -> Type where ||| A non-optional attribute. ||| ||| This is for data types, which are guaranteed to always return ||| a value that is neither `null` nor `undefined`. Attr : (get : JSIO a) -> (set : a -> JSIO ()) -> Attribute True I a ||| A nullable, non-optional attribute. NullableAttr : (get : JSIO (Maybe a)) -> (set : Maybe a -> JSIO ()) -> Attribute False Maybe a ||| An optional attribute with a predefined default value. OptionalAttr : (get : JSIO (Optional a)) -> (set : Optional a -> JSIO ()) -> (def : a) -> Attribute True Optional a ||| An optional attribute without default value. OptionalAttrNoDefault : (get : JSIO (Optional a)) -> (set : Optional a -> JSIO ()) -> Attribute False Optional a ||| Returns the value of an attribute in its proper context. ||| Typically used in infix notation. ||| ||| ```idris example ||| textField `get` value ||| ``` export get : (o : obj) -> (attr : obj -> Attribute b f a) -> JSIO $ f a get o g = case g o of Attr gt _ => gt NullableAttr gt _ => gt OptionalAttr gt _ _ => gt OptionalAttrNoDefault gt _ => gt ||| Maps a function over the value retrieved from an `Attribute`. export over : (a -> b) -> (attr : Attribute x f a) -> JSIO $ f b over f (Attr gt _) = map f gt over f (NullableAttr gt _) = map f <$> gt over f (OptionalAttr gt _ _) = map f <$> gt over f (OptionalAttrNoDefault gt _) = map f <$> gt ||| Flipped version of `get`. This is useful when ||| combined with the bind operator: ||| ||| ```idris example ||| body >>= to className ||| ``` export to : (attr : obj -> Attribute b f a) -> (o : obj) -> JSIO $ f a to = flip get ||| Sets the value of an `Attribute`. export set' : (attr : Attribute b f a) -> f a -> JSIO () set' (Attr _ s) = s set' (NullableAttr _ s) = s set' (OptionalAttr _ s _) = s set' (OptionalAttrNoDefault _ s) = s ||| Gets the value of an `Attribute`. Since this operates ||| on an `Attribute True`, it is guaranteed to always yield ||| a non-nullable value. export getDef : (o : obj) -> (attr : obj -> Attribute True f a) -> JSIO a getDef o g = case g o of Attr gt _ => gt OptionalAttr gt _ def => map (fromOptional def) gt ||| Maps a function over the value retrieved from an `Attribute`. ||| Since this operates ||| on an `Attribute True`, it is guaranteed to always yield ||| a non-nullable value. export overDef : (a -> b) -> (attr : Attribute True f a) -> JSIO b overDef f a = f <$> getDef () (const a) ||| Flipped version of `getDef`. export toDef : (attr : obj -> Attribute True f a) -> (o : obj) -> JSIO a toDef = flip getDef ||| Sets the value of an `Attribute`. ||| ||| ```idris example ||| disabled btn `set` True ||| ``` export set : Attribute b f a -> a -> JSIO () set (Attr _ s) y = s y set (NullableAttr _ s) y = s (Just y) set (OptionalAttr _ s _) y = s (Def y) set (OptionalAttrNoDefault _ s) y = s (Def y) ||| Modifies the stored value of an `Attribute`. ||| ||| Please note, that this will NOT change the attribute's ||| values, if the attribute is unset or `null`. export mod : Attribute b f a -> (a -> a) -> JSIO () mod (Attr g s) f = g >>= s . f mod (NullableAttr g s) f = g >>= s . map f mod (OptionalAttr g s _) f = g >>= s . map f mod (OptionalAttrNoDefault g s) f = g >>= s . map f ||| Unsets the value of an optional or nullable attribute. export unset : Alternative f => (o : obj) -> (obj -> Attribute b f a) -> JSIO () unset o g = set' (g o) empty infix 1 .=, =., %=, =% ||| Operator version of `set`. ||| ||| ```idris example ||| disabled btn .= True ||| ``` export (.=) : Attribute b f a -> a -> JSIO () (.=) = set ||| Operator version of `mod`. ||| ||| As with `mod`, this will NOT change the attribute's ||| values, if the attribute is unset or `null`. ||| ||| ```idris example ||| toggleCheckBox : HTMLInputElement -> JSIO () ||| toggleCheckBox cbx = checked cbx %= not ||| ``` export (%=) : Attribute b f a -> (a -> a) -> JSIO () (%=) = mod ||| Like `set`, but useful when the object, on which ||| an attribute should operate, is supposed to ||| be the last argument (for instance, when ||| iterating over a foldable): ||| ||| ```idris example ||| disableAll : List HTMLButtonElement -> JSIO () ||| disableAll buttons = for_ buttons $ disabled =. True ||| ``` export (=.) : (obj -> Attribute b f a) -> a -> obj -> JSIO () (=.) f v o = set (f o) v ||| Like `mod`, but useful when the object, on which ||| an attribute should operate, is supposed to ||| be the last argument (for instance, when ||| iterating over a foldable): ||| ||| ```idris example ||| toggleAll : List HTMLInputElement -> JSIO () ||| toggleAll cbxs = for_ cbxs $ checked =% not ||| ``` export (=%) : (obj -> Attribute b f a) -> (a -> a) -> obj -> JSIO () (=%) f g o = mod (f o) g infixr 0 !>, ?> ||| Sets a callback function at an attribute. ||| ||| ```idris ||| onclick btn !> consoleLog . jsShow ||| ``` export (!>) : Callback a fun => Attribute b f a -> fun -> JSIO () a !> cb = callback cb >>= set a ||| Sets a callback action at an attribute. This is like `(!>)` ||| but ignores its input. ||| ||| ```idris ||| onclick btn ?> consoleLog "Boom!" ||| ``` export (?>) : Callback a (x -> y) => Attribute b f a -> y -> JSIO () a ?> v = a !> const v -------------------------------------------------------------------------------- -- Creating Attributes -------------------------------------------------------------------------------- export fromPrim : (ToFFI a b, FromFFI a b) => String -> (obj -> PrimIO b) -> (obj -> b -> PrimIO ()) -> obj -> Attribute True I a fromPrim msg g s o = Attr (tryJS msg $ g o) (\a => primJS $ s o (toFFI a)) export fromNullablePrim : (ToFFI a b, FromFFI a b) => String -> (obj -> PrimIO $ Nullable b) -> (obj -> Nullable b -> PrimIO ()) -> obj -> Attribute False Maybe a fromNullablePrim msg g s o = NullableAttr (tryJS msg $ g o) (\a => primJS $ s o (toFFI a)) export fromUndefOrPrim : (ToFFI a b, FromFFI a b) => String -> (obj -> PrimIO $ UndefOr b) -> (obj -> UndefOr b -> PrimIO ()) -> a -> obj -> Attribute True Optional a fromUndefOrPrim msg g s def o = OptionalAttr (tryJS msg $ g o) (\a => primJS $ s o (toFFI a)) def export fromUndefOrPrimNoDefault : (ToFFI a b, FromFFI a b) => String -> (obj -> PrimIO $ UndefOr b) -> (obj -> UndefOr b -> PrimIO ()) -> obj -> Attribute False Optional a fromUndefOrPrimNoDefault msg g s o = OptionalAttrNoDefault (tryJS msg $ g o) (\a => primJS $ s o (toFFI a))
# Markdown 與 LaTeX簡介 每個範例內容將範例語法與輸出分為不同的 Cell 放置,雙擊 Cell 也可以查看原始碼,進行進一步的研究與實驗。 ## 1. Markdown 主要語法 ### 1.1 段落和斷行 _範例語法:_ ``` 前軍至夏口,周瑜問:「荊州有人在前面接否?」人報:「劉皇叔使糜竺來見都督。」瑜喚至,問勞軍如何。糜竺曰:「主公皆準備安排下了。」瑜曰:「皇叔何在?」竺曰:「在荊州城門相等,與都督把盞。」瑜曰:「今為汝家之事,出兵遠征;勞軍之禮,休得輕易。」糜竺領了言語先回。<br />戰船密密排在江上,依次而進。 ``` _輸出:(可以看到在"戰船"前面有換行)_ 前軍至夏口,周瑜問:「荊州有人在前面接否?」人報:「劉皇叔使糜竺來見都督。」瑜喚至,問勞軍如何。糜竺曰:「主公皆準備安排下了。」瑜曰:「皇叔何在?」竺曰:「在荊州城門相等,與都督把盞。」瑜曰:「今為汝家之事,出兵遠征;勞軍之禮,休得輕易。」糜竺領了言語先回。<br />戰船密密排在江上,依次而進。 ### 1.2 標題 (Heading) _範例語法:_ ``` # 主標題 (等同於 HTML `<h1></h1>`) ## 次標題 (等同於 `<h2></h12`) ### 第三階 (等同於 `<h3></h3>`) #### 第四階 (等同於 `<h4></h4>`) ##### 第五階 (等同於 `<h5></h5>`) ###### 第六階 (等同於 `<h6></h6>`) ``` _輸出:_ # 主標題 (等同於 HTML `<h1></h1>`) ## 次標題 (等同於 `<h2></h12`) ### 第三階 (等同於 `<h3></h3>`) #### 第四階 (等同於 `<h4></h4>`) ##### 第五階 (等同於 `<h5></h5>`) ###### 第六階 (等同於 `<h6></h6>`) ### 1.3 無序號列表 (Bullet list) _範例語法:_ ``` 六都清單: - 台北市 - 大安區 - 大同區 - 新北市 * 桃園市 * 台中市 + 台南市 + 高雄市 ``` _輸出:_ 六都清單: - 台北市 - 大安區 - 大同區 - 新北市 * 桃園市 * 台中市 + 台南市 + 高雄市 ### 1.4 序號列表 (Numbered list) _範例語法:_ ``` 1. 第一項 2. 第二項 3. 第三項 ``` _輸出:_ 1. 第一項 2. 第二項 3. 第三項 ### 1.5 區塊引言 (blockquoting) _範例語法:_ ``` > 卻說魯肅回見周瑜,說玄德,孔明歡喜不疑,準備出城勞軍。周瑜大笑曰:「原來今番也中了吾計!」便教魯肅稟報吳侯,並遣程普引兵接應。周瑜此時箭瘡已漸平愈,身軀無事,使甘寧為先鋒,自與徐盛,丁奉為第二;淩統,呂蒙為後隊。水陸大兵五百萬,望荊州而來。 周瑜在船中,時復歡笑,以為孔明中計。 > 前軍至夏口,周瑜問:「荊州有人在前面接否?」人報:「劉皇叔使糜竺來見都督。」瑜喚至,問勞軍如何。 ``` _輸出:_ > 卻說魯肅回見周瑜,說玄德,孔明歡喜不疑,準備出城勞軍。周瑜大笑曰:「原來今番也中了吾計!」便教魯肅稟報吳侯,並遣程普引兵接應。周瑜此時箭瘡已漸平愈,身軀無事,使甘寧為先鋒,自與徐盛,丁奉為第二;淩統,呂蒙為後隊。水陸大兵五百萬,望荊州而來。 周瑜在船中,時復歡笑,以為孔明中計。 > 前軍至夏口,周瑜問:「荊州有人在前面接否?」人報:「劉皇叔使糜竺來見都督。」瑜喚至,問勞軍如何。 ### 1.6 程式碼區塊 _範例語法:_ \`\`\`julia println("Hello Julia") \`\`\` _輸出:_ ```julia println("Hello Julia") ``` ### 1.7 分隔線 _範例語法:_ ``` 卻說魯肅回見周瑜,說玄德,孔明歡喜不疑,準備出城勞軍。周瑜大笑曰:「原來今番也中了吾計!」便教魯肅稟報吳侯,並遣程普引兵接應。周瑜此時箭瘡已漸平愈,身軀無事,使甘寧為先鋒,自與徐盛,丁奉為第二;淩統,呂蒙為後隊。水陸大兵五百萬,望荊州而來。周瑜在船中,時復歡笑,以為孔明中計。 --- 前軍至夏口,周瑜問:「荊州有人在前面接否?」人報:「劉皇叔使糜竺來見都督。」瑜喚至,問勞軍如何。糜竺曰:「主公皆準備安排下了。」瑜曰:「皇叔何在?」竺曰:「在荊州城門相等,與都督把盞。」瑜曰:「今為汝家之事,出兵遠征;勞軍之禮,休得輕易。」糜竺領了言語先回。<br />戰船密密排在江上,依次而進。 ``` _輸出:_ 卻說魯肅回見周瑜,說玄德,孔明歡喜不疑,準備出城勞軍。周瑜大笑曰:「原來今番也中了吾計!」便教魯肅稟報吳侯,並遣程普引兵接應。周瑜此時箭瘡已漸平愈,身軀無事,使甘寧為先鋒,自與徐盛,丁奉為第二;淩統,呂蒙為後隊。水陸大兵五百萬,望荊州而來。周瑜在船中,時復歡笑,以為孔明中計。 --- 前軍至夏口,周瑜問:「荊州有人在前面接否?」人報:「劉皇叔使糜竺來見都督。」瑜喚至,問勞軍如何。糜竺曰:「主公皆準備安排下了。」瑜曰:「皇叔何在?」竺曰:「在荊州城門相等,與都督把盞。」瑜曰:「今為汝家之事,出兵遠征;勞軍之禮,休得輕易。」糜竺領了言語先回。<br />戰船密密排在江上,依次而進。 ### 1.8 超連結 _範例語法:_ ``` [Cupoy - 為你探索世界的新知](https://www.cupoy.com) ``` _輸出:_ [Cupoy - 為你探索世界的新知](https://www.cupoy.com) ### 1.9 嵌入圖片 _範例語法:_ ``` ``` _輸出:_ ### 1.10 表格 _範例語法:_ ``` |姓名|國家|地址|年齡| |---|---|---|---| |John Doe|中華民國台灣|台北市大安區敦化街1號|25| ``` _輸出:_ |姓名|國家|地址|年齡| |---|---|---|---| |John Doe|中華民國台灣|台北市大安區敦化街1號|25| ## 2. 用 LaTeX 寫數學公式 ### 2.1 Inline 模式 _範例語法:_ ``` $\LARGE f(\displaystyle\sum_i w_i x_i + b)$ ``` _輸出:_ $\LARGE f(\displaystyle\sum_i w_i x_i + b)$ ### 2.2 Block 模式 _範例語法:_ ``` $$\LARGE f(\displaystyle\sum_i w_i x_i + b)$$ ``` _輸出:_ $$\LARGE f(\displaystyle\sum_i w_i x_i + b)$$ _範例語法:_ ``` \begin{equation} \LARGE f(\displaystyle\sum_i w_i x_i + b) \end{equation} ``` _輸出:_ \begin{equation} \LARGE f(\displaystyle\sum_i w_i x_i + b) \end{equation} _範例語法:_ ``` \begin{align} \LARGE f(\displaystyle\sum_i w_i x_i + b) \end{align} ``` _輸出:_ \begin{align} \LARGE f(\displaystyle\sum_i w_i x_i + b) \end{align} ## 3. 結合 Markdown 和 LaTeX 數學公式 _範例語法:_ ``` 公式 $\LARGE f(\displaystyle\sum_i w_i x_i + b)$ 是 Deep Learning 課程中常會見到的基本公式 結合 Markdown 和 LaTeX 數學公式,我們可以撰寫出漂亮的文件筆記,讓學習更有效率。 ``` _輸出:_ 公式 $\LARGE f(\displaystyle\sum_i w_i x_i + b)$ 是 Deep Learning 課程中常會見到的基本公式 結合 Markdown 和 LaTeX 數學公式,我們可以撰寫出漂亮的文件筆記,讓學習更有效率。 ```julia ```
[GOAL] 𝕜 : Type u_1 inst✝¹¹ : NontriviallyNormedField 𝕜 E : Type u_2 inst✝¹⁰ : NormedAddCommGroup E inst✝⁹ : NormedSpace 𝕜 E F : Type u_3 inst✝⁸ : NormedAddCommGroup F inst✝⁷ : NormedSpace 𝕜 F G : Type u_4 inst✝⁶ : NormedAddCommGroup G inst✝⁵ : NormedSpace 𝕜 G G' : Type u_5 inst✝⁴ : NormedAddCommGroup G' inst✝³ : NormedSpace 𝕜 G' f f₀ f₁ g : E → F f' f₀' f₁' g' e : E →L[𝕜] F x : E s t : Set E L L₁ L₂ : Filter E ι : Type u_6 inst✝² : Fintype ι F' : ι → Type u_7 inst✝¹ : (i : ι) → NormedAddCommGroup (F' i) inst✝ : (i : ι) → NormedSpace 𝕜 (F' i) φ : (i : ι) → E → F' i φ' : (i : ι) → E →L[𝕜] F' i Φ : E → (i : ι) → F' i Φ' : E →L[𝕜] (i : ι) → F' i ⊢ HasStrictFDerivAt Φ Φ' x ↔ ∀ (i : ι), HasStrictFDerivAt (fun x => Φ x i) (comp (proj i) Φ') x [PROOFSTEP] simp only [HasStrictFDerivAt, ContinuousLinearMap.coe_pi] [GOAL] 𝕜 : Type u_1 inst✝¹¹ : NontriviallyNormedField 𝕜 E : Type u_2 inst✝¹⁰ : NormedAddCommGroup E inst✝⁹ : NormedSpace 𝕜 E F : Type u_3 inst✝⁸ : NormedAddCommGroup F inst✝⁷ : NormedSpace 𝕜 F G : Type u_4 inst✝⁶ : NormedAddCommGroup G inst✝⁵ : NormedSpace 𝕜 G G' : Type u_5 inst✝⁴ : NormedAddCommGroup G' inst✝³ : NormedSpace 𝕜 G' f f₀ f₁ g : E → F f' f₀' f₁' g' e : E →L[𝕜] F x : E s t : Set E L L₁ L₂ : Filter E ι : Type u_6 inst✝² : Fintype ι F' : ι → Type u_7 inst✝¹ : (i : ι) → NormedAddCommGroup (F' i) inst✝ : (i : ι) → NormedSpace 𝕜 (F' i) φ : (i : ι) → E → F' i φ' : (i : ι) → E →L[𝕜] F' i Φ : E → (i : ι) → F' i Φ' : E →L[𝕜] (i : ι) → F' i ⊢ ((fun p => Φ p.fst - Φ p.snd - ↑Φ' (p.fst - p.snd)) =o[𝓝 (x, x)] fun p => p.fst - p.snd) ↔ ∀ (i : ι), (fun p => Φ p.fst i - Φ p.snd i - ↑(comp (proj i) Φ') (p.fst - p.snd)) =o[𝓝 (x, x)] fun p => p.fst - p.snd [PROOFSTEP] exact isLittleO_pi [GOAL] 𝕜 : Type u_1 inst✝¹¹ : NontriviallyNormedField 𝕜 E : Type u_2 inst✝¹⁰ : NormedAddCommGroup E inst✝⁹ : NormedSpace 𝕜 E F : Type u_3 inst✝⁸ : NormedAddCommGroup F inst✝⁷ : NormedSpace 𝕜 F G : Type u_4 inst✝⁶ : NormedAddCommGroup G inst✝⁵ : NormedSpace 𝕜 G G' : Type u_5 inst✝⁴ : NormedAddCommGroup G' inst✝³ : NormedSpace 𝕜 G' f f₀ f₁ g : E → F f' f₀' f₁' g' e : E →L[𝕜] F x : E s t : Set E L L₁ L₂ : Filter E ι : Type u_6 inst✝² : Fintype ι F' : ι → Type u_7 inst✝¹ : (i : ι) → NormedAddCommGroup (F' i) inst✝ : (i : ι) → NormedSpace 𝕜 (F' i) φ : (i : ι) → E → F' i φ' : (i : ι) → E →L[𝕜] F' i Φ : E → (i : ι) → F' i Φ' : E →L[𝕜] (i : ι) → F' i ⊢ HasFDerivAtFilter Φ Φ' x L ↔ ∀ (i : ι), HasFDerivAtFilter (fun x => Φ x i) (comp (proj i) Φ') x L [PROOFSTEP] simp only [HasFDerivAtFilter, ContinuousLinearMap.coe_pi] [GOAL] 𝕜 : Type u_1 inst✝¹¹ : NontriviallyNormedField 𝕜 E : Type u_2 inst✝¹⁰ : NormedAddCommGroup E inst✝⁹ : NormedSpace 𝕜 E F : Type u_3 inst✝⁸ : NormedAddCommGroup F inst✝⁷ : NormedSpace 𝕜 F G : Type u_4 inst✝⁶ : NormedAddCommGroup G inst✝⁵ : NormedSpace 𝕜 G G' : Type u_5 inst✝⁴ : NormedAddCommGroup G' inst✝³ : NormedSpace 𝕜 G' f f₀ f₁ g : E → F f' f₀' f₁' g' e : E →L[𝕜] F x : E s t : Set E L L₁ L₂ : Filter E ι : Type u_6 inst✝² : Fintype ι F' : ι → Type u_7 inst✝¹ : (i : ι) → NormedAddCommGroup (F' i) inst✝ : (i : ι) → NormedSpace 𝕜 (F' i) φ : (i : ι) → E → F' i φ' : (i : ι) → E →L[𝕜] F' i Φ : E → (i : ι) → F' i Φ' : E →L[𝕜] (i : ι) → F' i ⊢ ((fun x' => Φ x' - Φ x - ↑Φ' (x' - x)) =o[L] fun x' => x' - x) ↔ ∀ (i : ι), (fun x' => Φ x' i - Φ x i - ↑(comp (proj i) Φ') (x' - x)) =o[L] fun x' => x' - x [PROOFSTEP] exact isLittleO_pi
function transpose(x) %TRANSPOSE is not defined on tensors. % % See also TENSOR, TENSOR/PERMUTE. % %MATLAB Tensor Toolbox. %Copyright 2015, Sandia Corporation. % This is the MATLAB Tensor Toolbox by T. Kolda, B. Bader, and others. % http://www.sandia.gov/~tgkolda/TensorToolbox. % Copyright (2015) Sandia Corporation. Under the terms of Contract % DE-AC04-94AL85000, there is a non-exclusive license for use of this % work by or on behalf of the U.S. Government. Export of this data may % require a license from the United States Government. % The full license terms can be found in the file LICENSE.txt error('Transpose on tensor is not defined');
module Control.Monad.Codensity import Control.Monad.Free %access public export %default total data Codensity : (m : Type -> Type) -> (a : Type) -> Type where Codense : ({b : Type} -> (a -> m b) -> m b) -> Codensity m a runCodensity : Codensity m a -> ({b : Type} -> (a -> m b) -> m b) runCodensity (Codense c) = c Functor (Codensity f) where map f (Codense c) = Codense (\k => c (k . f)) Applicative (Codensity f) where pure x = Codense (\k => k x) (Codense f) <*> (Codense x) = Codense (\k => x (\x' => f (\f' => k (f' x')))) Monad (Codensity f) where (Codense x) >>= f = Codense (\k => x (\x' => runCodensity (f x') k)) liftCodensity : Monad m => m a -> Codensity m a liftCodensity x = Codense (x >>=) lowerCodensity : Monad m => Codensity m a -> m a lowerCodensity (Codense c) = c pure Functor f => MonadFree (Codensity (Free f)) f where wrap x = Codense (\k => wrap (map (>>= k) (map lowerCodensity x)))
\section{Requirements} \label{sec:requirements} Next, we present the most critical requirements that motivated our architecture and design. We start with a set of general requirements. \begin{description} \item[Leveraging new Python features.] Python is a very popular choice with many data scientists. Our framework will leverage the newest Python 3 features such as {\em Typing Interface} \cite{www-python-typing} in order to increase robustness and future-proofing of our code base. \item[Ability to be used within Jupyter Notebooks.] ~\\ The framework must be able to integrate with Jupyter notebooks as they are very popular with today's data scientists. The functionality must be easily accessible not only as part of python programs but also within Jupyter notebooks. This is of special importance also for cloud services such as Google Colab \cite{google-colab} which for example, offers cloud-based Notebooks. \item[Easy of use] is a critical aspect of the framework that is to be addressed from the start by allowing for ease of creation, ease of deployment, and easy use of the generated services. This is accompanied by easy to use command-line tools. \end{description} Next, we list some more specific requirements that motivate our architectural design. \begin{description} \item[Multi-Cloud Service Integration.] The framework must allow us to integrate multiple cloud services, including IaaS, PaaS, and SaaS. This also includes the ability to access AI-based services offered by the various cloud providers. \item[Hybrid-Cloud Service Integration.] The framework must allow integrating on-premise, private, and public clouds. \item[Generalized Analytics Service Generator.] We need a generalized analytics service generator. The first step in the activity to generate an analytics service is to provide an OpenAPI Service generator. Our generator will allow us to define essential analytics functions such as (a) uploading and downloading files to an analytics service; (b) specifying the functionality through typing enhanced python functions; and (c) generating the code for the service. \item[Generalized Analytics Service Deployment.] After the service is generated, it needs to be deployed. For this step we will be reusing the Cloudmesh deployment mechanism to instantiate services on-demand on specified cloud providers such as AWS, Azure, and Google. \item[Generalized Analytics Service Invocation.] The next step includes the invocation of the deployed services. While analyzing some use cases, we identified that users often need to invoke the same service many times to tune service parameters in a quasi-realtime fashion while using parameters that can not be included in the URL. Hence we will need to upload input parameters through files if the simple typing data types provided by our proposed framework is not sufficient. \item[REST Services Architecture.] As REST has become the most prominent architectural design principle, our Generalized service architecture needs to be able to produce REST services. \item[Automated REST Service Generation for other Languages.] Our framework must have provisions included that allow the integration into other programming languages and, on the other hand, allows the integration of services and functions developed in other languages. \item[Generalized Analytics Service Registry.] As users and communities may develop many different services, we must provide the ability to (a) find specifications of generalized analytics services (b) find use-cases of generalized analytics services (c) find infrastructure on which such services can be deployed, and (d) find deployed analytics services. For this, we need a registry that can be queried by the community. \item[Generalized Composable Analytics Services.] Services must be allowed to reuse other services to allow for easy integration. Thus we need to make our services composable. This also includes the choreography of the execution of such composable services. \end{description}
How prepared are you for what’s ahead and the technologies that will be the drivers of change in 2016? Simply put, Session Initiation Protocol (SIP) and SIP Trunking can smartly transform your customers’ communications infrastructure for the better. It can be done rapidly and cost effectively while seamlessly providing access to highly scalable unified communications so employees and customers can benefit from responsive anytime anywhere on any device availability. Also by enabling ready access to feature-rich collaborative tools, your accounts could experience an increase in workforce productivity and cooperation. Begin telling your customers why SIP is a smart technology investment. Get started with a free E-book courtesy of NEC.
/- Copyright (c) 2022 Yaël Dillies. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Yaël Dillies ! This file was ported from Lean 3 source module topology.hom.open ! leanprover-community/mathlib commit 98e83c3d541c77cdb7da20d79611a780ff8e7d90 ! Please do not edit these lines, except to modify the commit id ! if you have ported upstream changes. -/ import Mathlib.Topology.ContinuousFunction.Basic /-! # Continuous open maps This file defines bundled continuous open maps. We use the `FunLike` design, so each type of morphisms has a companion typeclass which is meant to be satisfied by itself and all stricter types. ## Types of morphisms * `ContinuousOpenMap`: Continuous open maps. ## Typeclasses * `ContinuousOpenMapClass` -/ open Function variable {F α β γ δ : Type _} /-- The type of continuous open maps from `α` to `β`, aka Priestley homomorphisms. -/ structure ContinuousOpenMap (α β : Type _) [TopologicalSpace α] [TopologicalSpace β] extends ContinuousMap α β where map_open' : IsOpenMap toFun #align continuous_open_map ContinuousOpenMap infixr:25 " →CO " => ContinuousOpenMap section /-- `ContinuousOpenMapClass F α β` states that `F` is a type of continuous open maps. You should extend this class when you extend `ContinuousOpenMap`. -/ class ContinuousOpenMapClass (F : Type _) (α β : outParam <| Type _) [TopologicalSpace α] [TopologicalSpace β] extends ContinuousMapClass F α β where map_open (f : F) : IsOpenMap f #align continuous_open_map_class ContinuousOpenMapClass end export ContinuousOpenMapClass (map_open) instance [TopologicalSpace α] [TopologicalSpace β] [ContinuousOpenMapClass F α β] : CoeTC F (α →CO β) := ⟨fun f => ⟨f, map_open f⟩⟩ /-! ### Continuous open maps -/ namespace ContinuousOpenMap variable [TopologicalSpace α] [TopologicalSpace β] [TopologicalSpace γ] [TopologicalSpace δ] instance : ContinuousOpenMapClass (α →CO β) α β where coe f := f.toFun coe_injective' f g h := by obtain ⟨⟨_, _⟩, _⟩ := f obtain ⟨⟨_, _⟩, _⟩ := g congr map_continuous f := f.continuous_toFun map_open f := f.map_open' theorem toFun_eq_coe {f : α →CO β} : f.toFun = (f : α → β) := rfl #align continuous_open_map.to_fun_eq_coe ContinuousOpenMap.toFun_eq_coe @[simp] -- porting note: new, simpNF of `toFun_eq_coe` @[ext] theorem ext {f g : α →CO β} (h : ∀ a, f a = g a) : f = g := FunLike.ext f g h #align continuous_open_map.ext ContinuousOpenMap.ext /-- Copy of a `ContinuousOpenMap` with a new `ContinuousMap` equal to the old one. Useful to fix definitional equalities. -/ protected def copy (f : α →CO β) (f' : α → β) (h : f' = f) : α →CO β := ⟨f.toContinuousMap.copy f' <| h, h.symm.subst f.map_open'⟩ #align continuous_open_map.copy ContinuousOpenMap.copy @[simp] theorem coe_copy (f : α →CO β) (f' : α → β) (h : f' = f) : ⇑(f.copy f' h) = f' := rfl #align continuous_open_map.coe_copy ContinuousOpenMap.coe_copy theorem copy_eq (f : α →CO β) (f' : α → β) (h : f' = f) : f.copy f' h = f := FunLike.ext' h #align continuous_open_map.copy_eq ContinuousOpenMap.copy_eq variable (α) /-- `id` as a `ContinuousOpenMap`. -/ protected def id : α →CO α := ⟨ContinuousMap.id _, IsOpenMap.id⟩ #align continuous_open_map.id ContinuousOpenMap.id instance : Inhabited (α →CO α) := ⟨ContinuousOpenMap.id _⟩ @[simp] theorem coe_id : ⇑(ContinuousOpenMap.id α) = id := rfl #align continuous_open_map.coe_id ContinuousOpenMap.coe_id variable {α} @[simp] theorem id_apply (a : α) : ContinuousOpenMap.id α a = a := rfl #align continuous_open_map.id_apply ContinuousOpenMap.id_apply /-- Composition of `ContinuousOpenMap`s as a `ContinuousOpenMap`. -/ def comp (f : β →CO γ) (g : α →CO β) : ContinuousOpenMap α γ := ⟨f.toContinuousMap.comp g.toContinuousMap, f.map_open'.comp g.map_open'⟩ #align continuous_open_map.comp ContinuousOpenMap.comp @[simp] theorem coe_comp (f : β →CO γ) (g : α →CO β) : (f.comp g : α → γ) = f ∘ g := rfl #align continuous_open_map.coe_comp ContinuousOpenMap.coe_comp @[simp] theorem comp_apply (f : β →CO γ) (g : α →CO β) (a : α) : (f.comp g) a = f (g a) := rfl #align continuous_open_map.comp_apply ContinuousOpenMap.comp_apply @[simp] theorem comp_assoc (f : γ →CO δ) (g : β →CO γ) (h : α →CO β) : (f.comp g).comp h = f.comp (g.comp h) := rfl #align continuous_open_map.comp_assoc ContinuousOpenMap.comp_assoc @[simp] theorem comp_id (f : α →CO β) : f.comp (ContinuousOpenMap.id α) = f := ext fun _ => rfl #align continuous_open_map.comp_id ContinuousOpenMap.comp_id @[simp] theorem id_comp (f : α →CO β) : (ContinuousOpenMap.id β).comp f = f := ext fun _ => rfl #align continuous_open_map.id_comp ContinuousOpenMap.id_comp theorem cancel_right {g₁ g₂ : β →CO γ} {f : α →CO β} (hf : Surjective f) : g₁.comp f = g₂.comp f ↔ g₁ = g₂ := ⟨fun h => ext <| hf.forall.2 <| FunLike.ext_iff.1 h, fun h => congr_arg₂ _ h rfl⟩ #align continuous_open_map.cancel_right ContinuousOpenMap.cancel_right theorem cancel_left {g : β →CO γ} {f₁ f₂ : α →CO β} (hg : Injective g) : g.comp f₁ = g.comp f₂ ↔ f₁ = f₂ := ⟨fun h => ext fun a => hg <| by rw [← comp_apply, h, comp_apply], congr_arg _⟩ #align continuous_open_map.cancel_left ContinuousOpenMap.cancel_left end ContinuousOpenMap
(*************************************************************) (* Copyright Dominique Larchey-Wendling [*] *) (* *) (* [*] Affiliation LORIA -- CNRS *) (*************************************************************) (* This file is distributed under the terms of the *) (* CeCILL v2 FREE SOFTWARE LICENSE AGREEMENT *) (*************************************************************) Require Import List. Ltac lrev l := let rec loop aa ll := match ll with | ?x::?ll => loop (x::aa) ll | nil => constr:(aa) end in match type of l with | list ?t => loop (@nil t) l end. Ltac lflat l := let rec loop aa ll := match ll with | ?ss++?rr => let bb := loop aa ss in let cc := loop bb rr in constr:(cc) | ?x::?rr => let bb := loop ((x::nil)::aa) rr in constr:(bb) | nil => constr:(aa) | ?ss => constr:(ss::aa) end in match type of l with | list ?t => let r1 := loop (@nil (list t)) l in lrev r1 end. Ltac llin l := let rec loop aa ll := match ll with | (?x::nil)::?ll => let bb := loop (x::aa) ll in constr:(bb) | ?lx::?ll => let bb := loop (lx++aa) ll in constr:(bb) | nil => constr:(aa) end in match type of l with | list (list ?t) => match lrev l with | ?lx::?rr => let bb := loop lx rr in constr:(bb) | nil => constr:(@nil t) end end. Ltac lcut x l := let rec loop aa x ll := match ll with | x::_ => let bb := lrev aa in constr:(bb++ll) | ?lz::?rr => let bb := loop (lz::aa) x rr in constr:(bb) end in match type of l with | list (list ?t) => loop (@nil (list t)) x l end. Ltac lmerge l := match l with | ?aa++?ll => let bb := llin aa in let cc := llin ll in constr:(bb++cc) end. Ltac focus_lst z r0 := let r1 := lflat r0 in let r2 := lcut z r1 in let r3 := lmerge r2 in constr:(r3). Ltac focus_lst_2 z r0 := let r1 := focus_lst z r0 in let r2 := match r1 with | ?l++?x::?r => let r3 := focus_lst z r in match r3 with | ?m++?y::?n => constr:((l++x::m)++y::n) end end in constr:(r2). Ltac focus_lst_3 z r0 := let r1 := focus_lst_2 z r0 in let r2 := match r1 with | ?l++?x::?r => let r3 := focus_lst z r in match r3 with | ?m++?y::?n => constr:((l++x::m)++y::n) end end in constr:(r2). Ltac focus_elt z l := focus_lst (z::nil) l. Section test. Variable X : Type. Variable x y z : list X. Variable a b c : X. (* Goal True. let rr := lrev (1::2::3::4::nil) in idtac rr. let rr := lflat ((x++a::nil++nil)++b::z++y++a::nil) in idtac rr. let rr := llin (x::y::(a::nil)::z::(b::nil)::nil) in idtac rr. let rr := llin (@nil (list X)) in idtac rr. let rr := llin (@nil (list X)) in idtac rr. let rr := lcut z ( (x::y::(a::nil)::y::(b::nil)::z::nil) ) in idtac rr. let rr := lmerge ( (x::y::(a::nil)::nil)++(y::(b::nil)::z::nil) ) in idtac rr. let rr := focus_lst_2 (c::nil) ((x++c::nil++nil)++b::z++y++c::nil) in idtac rr. let rr := focus_lst_2 (c::nil) ((x++c::nil++nil)++b::z++y++c::z++c::x++c::z) in idtac rr. let rr := focus_lst z ((x++a::nil++nil)++b::z++y++c::nil) in idtac rr. let rr := focus_elt a (c::(x++a::nil++nil)++b::z++y++c::nil) in idtac rr. auto. Qed. *) End test.
open import Agda.Builtin.Nat open import Agda.Builtin.Equality data Ix : Set where ix : .(i : Nat) (n : Nat) → Ix data D : Ix → Set where mkD : ∀ n → D (ix n n) data ΣD : Set where _,_ : ∀ i → D i → ΣD foo : ΣD → Nat foo (i , mkD n) = n d : ΣD d = ix 0 6 , mkD 6 -- Check that we pick the right (the non-irrelevant) `n` when binding -- the forced argument. check : foo d ≡ 6 check = refl
```python import numpy as np import dapy.filters as filters from dapy.models import NettoGimenoMendesModel import matplotlib.pyplot as plt %matplotlib inline plt.style.use('seaborn-white') plt.rcParams['figure.dpi'] = 100 ``` ## Model One-dimensional stochastic dynamical system due to Netto et al. [1] with state dynamics defined by discrete time map \begin{equation} x_{t+1} = \alpha x_t + \beta \frac{x_t}{1 + z_t^2} + \gamma \cos(\delta t) + \sigma_x u_t \end{equation} with $u_t \sim \mathcal{N}(0, 1) ~\forall t$ and $x_0 \sim \mathcal{N}(m, s^2)$. Observed process defined by \begin{equation} y_{t} = \epsilon x_t^2 + \sigma_y v_t \end{equation} with $v_t \sim \mathcal{N}(0, 1)$. Standard parameter values assumed here are $\alpha = 0.5$, $\beta = 25$, $\gamma = 8$, $\delta = 1.2$, $\epsilon = 0.05$, $m=10$, $s=5$, $\sigma_x^2 = 1$, $\sigma_y^2 = 1$ and $T = 200$ simulated time steps. ### References 1. M. L. A. Netto, L. Gimeno, and M. J. Mendes. A new spline algorithm for non-linear filtering of discrete time systems. *Proceedings of the 7th Triennial World Congress*, 1979. ```python model_params = { 'initial_state_mean': 10., 'initial_state_std': 5., 'state_noise_std': 1., 'observation_noise_std': 1., 'alpha': 0.5, 'beta': 25., 'gamma': 8, 'delta': 1.2, 'epsilon': 0.05, } model = NettoGimenoMendesModel(**model_params) ``` ## Generate data from model ```python num_observation_time = 100 observation_time_indices = np.arange(num_observation_time) seed = 20171027 rng = np.random.default_rng(seed) state_sequence, observation_sequence = model.sample_state_and_observation_sequences( rng, observation_time_indices) ``` <div style="line-height: 28px; width: 100%; display: flex; flex-flow: row wrap; align-items: center; position: relative; margin: 2px;"> <label style="margin-right: 8px; flex-shrink: 0; font-size: var(--jp-code-font-size, 13px); font-family: var(--jp-code-font-family, monospace);"> Sampling:&nbsp;100% </label> <div role="progressbar" aria-valuenow="1.0" aria-valuemin="0" aria-valuemax="1" style="position: relative; flex-grow: 1; align-self: stretch; margin-top: 4px; margin-bottom: 4px; height: initial; background-color: #eee;"> <div style="background-color: var(--jp-success-color1, #4caf50); position: absolute; bottom: 0; left: 0; width: 100%; height: 100%;"></div> </div> <div style="margin-left: 8px; flex-shrink: 0; font-family: var(--jp-code-font-family, monospace); font-size: var(--jp-code-font-size, 13px);"> 100/100 [00:00&lt;00:00, 21597.18time-steps/s] </div> </div> ```python fig, ax = plt.subplots(figsize=(12, 4)) ax.plot(observation_time_indices, state_sequence) ax.plot(observation_time_indices, observation_sequence, '.') ax.set_xlabel('Time index $t$') ax.set_ylabel('State') _ = ax.set_xlim(0, num_observation_time - 1) ax.legend(['$x_t$', '$y_t$'], ncol=4) fig.tight_layout() ``` ## Infer state from observations ```python def plot_results(results, z_reference=None, plot_traces=True, plot_region=False, trace_skip=1, trace_alpha=0.25): fig, ax = plt.subplots(nrows=1, ncols=1, figsize=(12, 4)) ax.plot(results['z_mean_seq'][:, 0], 'g-', lw=1) if plot_region: ax.fill_between( np.arange(n_steps), results['z_mean_seq'][:, 0] - 3 * results['z_std_seq'][:, 0], results['z_mean_seq'][:, 0] + 3 * results['z_std_seq'][:, 0], alpha=0.25, color='g' ) if plot_traces: ax.plot(results['z_particles_seq'][:, ::trace_skip, 0], 'r-', lw=0.25, alpha=trace_alpha) if z_reference is not None: ax.plot(z_reference[:, 0], 'k--') ax.set_ylabel('State $z$') ax.set_xlabel('Time index $t$') fig.tight_layout() return fig, ax def plot_results(results, observation_time_indices, state_sequence=None, plot_particles=True, plot_region=False, particle_skip=5, trace_alpha=0.25): fig, ax = plt.subplots(sharex=True, figsize=(12, 4)) ax.plot(results['state_mean_sequence'][:, 0], 'g-', lw=1, label='Est. mean') if plot_region: ax.fill_between( observation_time_indices, results['state_mean_sequence'][:, 0] - 3 * results['state_std_sequence'][:, 0], results['state_mean_sequence'][:, 0] + 3 * results['state_std_sequence'][:, 0], alpha=0.25, color='g', label='Est. mean ± 3 standard deviation' ) if plot_particles: lines = ax.plot( observation_time_indices, results['state_particles_sequence'][:, ::particle_skip, 0], 'r-', lw=0.25, alpha=trace_alpha) lines[0].set_label('Particles') if state_sequence is not None: ax.plot(observation_time_indices, state_sequence[:, 0], 'k--', label='Truth') ax.set_ylabel('$x_t$') ax.legend(loc='upper center', ncol=4) ax.set_xlabel('Time index $t$') fig.tight_layout() return fig, ax ``` ### Ensemble Kalman filter (perturbed observations) ```python enkf = filters.EnsembleKalmanFilter() ``` ```python results_enkf = enkf.filter( model, observation_sequence, observation_time_indices, num_particle=500, rng=rng, return_particles=True) ``` <div style="line-height: 28px; width: 100%; display: flex; flex-flow: row wrap; align-items: center; position: relative; margin: 2px;"> <label style="margin-right: 8px; flex-shrink: 0; font-size: var(--jp-code-font-size, 13px); font-family: var(--jp-code-font-family, monospace);"> Filtering:&nbsp;100% </label> <div role="progressbar" aria-valuenow="1.0" aria-valuemin="0" aria-valuemax="1" style="position: relative; flex-grow: 1; align-self: stretch; margin-top: 4px; margin-bottom: 4px; height: initial; background-color: #eee;"> <div style="background-color: var(--jp-success-color1, #4caf50); position: absolute; bottom: 0; left: 0; width: 100%; height: 100%;"></div> </div> <div style="margin-left: 8px; flex-shrink: 0; font-family: var(--jp-code-font-family, monospace); font-size: var(--jp-code-font-size, 13px);"> 100/100 [00:00&lt;00:00, 427.09time-steps/s] </div> </div> ```python fig, axes = plot_results(results_enkf, observation_time_indices, state_sequence) ``` ### Ensemble Trasform Kalman filter (deterministic square root) ```python etkf = filters.EnsembleTransformKalmanFilter() ``` ```python results_etkf = etkf.filter( model, observation_sequence, observation_time_indices, num_particle=500, rng=rng, return_particles=True) ``` <div style="line-height: 28px; width: 100%; display: flex; flex-flow: row wrap; align-items: center; position: relative; margin: 2px;"> <label style="margin-right: 8px; flex-shrink: 0; font-size: var(--jp-code-font-size, 13px); font-family: var(--jp-code-font-family, monospace);"> Filtering:&nbsp;100% </label> <div role="progressbar" aria-valuenow="1.0" aria-valuemin="0" aria-valuemax="1" style="position: relative; flex-grow: 1; align-self: stretch; margin-top: 4px; margin-bottom: 4px; height: initial; background-color: #eee;"> <div style="background-color: var(--jp-success-color1, #4caf50); position: absolute; bottom: 0; left: 0; width: 100%; height: 100%;"></div> </div> <div style="margin-left: 8px; flex-shrink: 0; font-family: var(--jp-code-font-family, monospace); font-size: var(--jp-code-font-size, 13px);"> 100/100 [00:00&lt;00:00, 143.24time-steps/s] </div> </div> ```python fig, axes = plot_results(results_etkf, observation_time_indices, state_sequence) ``` ### Bootstrap particle filter ```python bspf = filters.BootstrapParticleFilter() ``` ```python results_bspf = bspf.filter( model, observation_sequence, observation_time_indices, num_particle=500, rng=rng, return_particles=True) ``` <div style="line-height: 28px; width: 100%; display: flex; flex-flow: row wrap; align-items: center; position: relative; margin: 2px;"> <label style="margin-right: 8px; flex-shrink: 0; font-size: var(--jp-code-font-size, 13px); font-family: var(--jp-code-font-family, monospace);"> Filtering:&nbsp;100% </label> <div role="progressbar" aria-valuenow="1.0" aria-valuemin="0" aria-valuemax="1" style="position: relative; flex-grow: 1; align-self: stretch; margin-top: 4px; margin-bottom: 4px; height: initial; background-color: #eee;"> <div style="background-color: var(--jp-success-color1, #4caf50); position: absolute; bottom: 0; left: 0; width: 100%; height: 100%;"></div> </div> <div style="margin-left: 8px; flex-shrink: 0; font-family: var(--jp-code-font-family, monospace); font-size: var(--jp-code-font-size, 13px);"> 100/100 [00:00&lt;00:00, 3062.47time-steps/s] </div> </div> ```python fig, axes = plot_results(results_bspf, observation_time_indices, state_sequence) ``` ### Ensemble transform particle filter ```python etpf = filters.EnsembleTransformParticleFilter() ``` ```python results_etpf = etpf.filter( model, observation_sequence, observation_time_indices, num_particle=500, rng=rng, return_particles=True) ``` <div style="line-height: 28px; width: 100%; display: flex; flex-flow: row wrap; align-items: center; position: relative; margin: 2px;"> <label style="margin-right: 8px; flex-shrink: 0; font-size: var(--jp-code-font-size, 13px); font-family: var(--jp-code-font-family, monospace);"> Filtering:&nbsp;100% </label> <div role="progressbar" aria-valuenow="1.0" aria-valuemin="0" aria-valuemax="1" style="position: relative; flex-grow: 1; align-self: stretch; margin-top: 4px; margin-bottom: 4px; height: initial; background-color: #eee;"> <div style="background-color: var(--jp-success-color1, #4caf50); position: absolute; bottom: 0; left: 0; width: 100%; height: 100%;"></div> </div> <div style="margin-left: 8px; flex-shrink: 0; font-family: var(--jp-code-font-family, monospace); font-size: var(--jp-code-font-size, 13px);"> 100/100 [00:02&lt;00:00, 41.33time-steps/s] </div> </div> ```python fig, axes = plot_results(results_etpf, observation_time_indices, state_sequence) ```
If the female is flagging, she is ready to breed. The drive to breed in a male is the strongest that he has, even stronger than food. He should be all over her. Still, if he is young and inexperienced, you may have to get him up to the female and, ah, use your hand to stimualte him a bit to build the drive. Once he gets going a little, push him away and let him come back for more. Stimulate... if the dog is a female she will hold her tale to her side exposing her gentiles. and she will pump her back lags up & down. if the dog is male he will get on the females back. Is it possible to mate my mixed-breed female dog, short of letting her run with any dog in the local park? Owners of pedigree studs will sometimes allow mating with a non-purebred dog. This is particularly useful if you want to concentrate on a particular characteristic or conformation.... if the dog is a female she will hold her tale to her side exposing her gentiles. and she will pump her back lags up & down. if the dog is male he will get on the females back. how can i make my male dog breed with my female dog Well, she's a smart dog not wanting to breed with a mix and have mixed breed puppies. But if she is biting at him, the real reason is probably because she is not ready yet. A ***** goes into her heat cycle and begins to show color (bleed). She should only bleed for about 9 to 10 days. The day the bleeding stops she will be ready to breed... Dog can still want to mate even if they are fixed because my sisters dog had mated with a dog and he is fixed for over2 years but he could not get her pregnant. And now he wants to mate with my 6 month old lab that I will not allow so a dog can still want to mate and he is 6 now. However, this is a long term, 100% effective preventative measure to take if you don’t want your dog to get pregnant after mating, or ever again. Injections Most dogs, given the opportunity, will end up mating when the female is in heat.... 9/09/2016 · Parte 2 of female dog hates mating LOVELY SMART GIRL PLAYING BABY CUTE DOGS ON RICE FIELDS HOW TO PLAY WITH DOG & FEED BABY DOGS #22 - Duration: 12:11. If your female dog approaches your male dog with her derriere prominently raised, she's communicating that she wants him to mate with her. She also might show other body clues that point to mating -- such as tightening up her back limbs and moving her tail away from the center of her body.
{-# LANGUAGE DataKinds #-} {-# LANGUAGE TypeOperators #-} module DFT ( testSuite ) where import Data.Complex import Data.Mod.Word import Data.Poly.Semiring (UPoly, unPoly, toPoly, dft, inverseDft, dftMult) import qualified Data.Vector.Unboxed as U import GHC.TypeNats (KnownNat, natVal, type (+), type (^)) import Test.Tasty import Test.Tasty.QuickCheck hiding (scale, numTests) import Dense () testSuite :: TestTree testSuite = testGroup "DFT" [ testGroup "dft matches reference" [ dftMatchesRef (0 :: Mod (2 ^ 0 + 1)) , dftMatchesRef (2 :: Mod (2 ^ 1 + 1)) , dftMatchesRef (2 :: Mod (2 ^ 2 + 1)) , dftMatchesRef (3 :: Mod (2 ^ 4 + 1)) , dftMatchesRef (3 :: Mod (2 ^ 8 + 1)) ] , testGroup "dft is invertible" [ dftIsInvertible (0 :: Mod (2 ^ 0 + 1)) , dftIsInvertible (2 :: Mod (2 ^ 1 + 1)) , dftIsInvertible (2 :: Mod (2 ^ 2 + 1)) , dftIsInvertible (3 :: Mod (2 ^ 4 + 1)) , dftIsInvertible (3 :: Mod (2 ^ 8 + 1)) ] , testProperty "dftMult matches reference" dftMultMatchesRef ] dftMatchesRef :: KnownNat n1 => Mod n1 -> TestTree dftMatchesRef primRoot = testProperty (show n) $ do xs <- U.replicateM n arbitrary pure $ dft primRoot xs === dftRef primRoot xs where n = fromIntegral (natVal primRoot - 1) dftRef :: (Num a, U.Unbox a) => a -> U.Vector a -> U.Vector a dftRef primRoot xs = U.generate (U.length xs) $ \k -> sum (map (\j -> xs U.! j * primRoot ^ (j * k)) [0..n-1]) where n = U.length xs dftIsInvertible :: KnownNat n1 => Mod n1 -> TestTree dftIsInvertible primRoot = testProperty (show n) $ do xs <- U.replicateM n arbitrary let ys = dft primRoot xs zs = inverseDft primRoot ys pure $ xs === zs where n = fromIntegral (natVal primRoot - 1) dftMultMatchesRef :: UPoly Int -> UPoly Int -> Property dftMultMatchesRef xs ys = zs === dftZs where xs', ys', dftZs' :: UPoly (Complex Double) xs' = toPoly $ U.map fromIntegral $ unPoly xs ys' = toPoly $ U.map fromIntegral $ unPoly ys dftZs' = dftMult (\k -> cis (2 * pi / fromIntegral k)) xs' ys' zs, dftZs :: UPoly (Complex Int) zs = toPoly $ U.map (:+ 0) $ unPoly $ xs * ys dftZs = toPoly $ U.map (\(x :+ y) -> round x :+ round y) $ unPoly dftZs'
State Before: α : Type u β : Type v f : ℕ → α → β → β b : β as : List α start : ℕ ⊢ foldrIdx f b as start = foldrIdxSpec f b as start State After: case nil α : Type u β : Type v f : ℕ → α → β → β b : β start : ℕ ⊢ foldrIdx f b [] start = foldrIdxSpec f b [] start case cons α : Type u β : Type v f : ℕ → α → β → β b : β head✝ : α tail✝ : List α tail_ih✝ : ∀ (start : ℕ), foldrIdx f b tail✝ start = foldrIdxSpec f b tail✝ start start : ℕ ⊢ foldrIdx f b (head✝ :: tail✝) start = foldrIdxSpec f b (head✝ :: tail✝) start Tactic: induction as generalizing start State Before: case nil α : Type u β : Type v f : ℕ → α → β → β b : β start : ℕ ⊢ foldrIdx f b [] start = foldrIdxSpec f b [] start State After: no goals Tactic: rfl State Before: case cons α : Type u β : Type v f : ℕ → α → β → β b : β head✝ : α tail✝ : List α tail_ih✝ : ∀ (start : ℕ), foldrIdx f b tail✝ start = foldrIdxSpec f b tail✝ start start : ℕ ⊢ foldrIdx f b (head✝ :: tail✝) start = foldrIdxSpec f b (head✝ :: tail✝) start State After: no goals Tactic: simp only [foldrIdx, foldrIdxSpec_cons, *]
module Quantities.Core import public Quantities.FreeAbelianGroup import public Quantities.Power %default total %access public export ||| Elementary quantities record Dimension where constructor MkDimension name : String implementation Eq Dimension where (MkDimension a) == (MkDimension b) = a == b implementation Ord Dimension where compare (MkDimension a) (MkDimension b) = compare a b -- Compound quantities ||| A quantity is a property that can be measured. Quantity : Type Quantity = FreeAbGrp Dimension ||| The trivial quantity Scalar : Quantity Scalar = unit ||| Create a new quantity. mkQuantity : List (Dimension, Integer) -> Quantity mkQuantity = mkFreeAbGrp infixl 6 </> -- Synonyms (quantites are multiplied, not added!) ||| Product quantity (<*>) : Ord a => FreeAbGrp a -> FreeAbGrp a -> FreeAbGrp a (<*>) = (<<+>>) ||| Quotient quantity (</>) : Ord a => FreeAbGrp a -> FreeAbGrp a -> FreeAbGrp a a </> b = a <*> freeAbGrpInverse b ||| Convert dimensions to quantities implicit dimensionToQuantity : Dimension -> Quantity dimensionToQuantity = inject ||| Elementary Unit record ElemUnit (q : Quantity) where constructor MkElemUnit name : String conversionRate : Double -- ElemUnit with its quantity hidden data SomeElemUnit : Type where MkSomeElemUnit : (q : Quantity) -> ElemUnit q -> SomeElemUnit quantity : SomeElemUnit -> Quantity quantity (MkSomeElemUnit q _) = q elemUnit : (seu : SomeElemUnit) -> ElemUnit (quantity seu) elemUnit (MkSomeElemUnit _ u) = u name : SomeElemUnit -> String name x = name (elemUnit x) implementation Eq SomeElemUnit where a == b = quantity a == quantity b && name a == name b implementation Ord SomeElemUnit where compare a b with (compare (quantity a) (quantity b)) | LT = LT | GT = GT | EQ = compare (name a) (name b) implicit elemUnitToSomeElemUnitFreeAbGrp : ElemUnit q -> FreeAbGrp SomeElemUnit elemUnitToSomeElemUnitFreeAbGrp {q} u = inject (MkSomeElemUnit q u) conversionRate : SomeElemUnit -> Double conversionRate u = conversionRate (elemUnit u) joinedQuantity : FreeAbGrp SomeElemUnit -> Quantity joinedQuantity = lift quantity data Unit : Quantity -> Type where MkUnit : (exponent : Integer) -> (elemUnits : FreeAbGrp SomeElemUnit) -> Unit (joinedQuantity elemUnits) rewriteUnit : r = q -> Unit q -> Unit r rewriteUnit eq unit = rewrite eq in unit base10Exponent : Unit q -> Integer base10Exponent (MkUnit e _) = e someElemUnitFreeAbGrp : Unit q -> FreeAbGrp SomeElemUnit someElemUnitFreeAbGrp (MkUnit _ us) = us implementation Eq (Unit q) where x == y = base10Exponent x == base10Exponent y && someElemUnitFreeAbGrp x == someElemUnitFreeAbGrp y ||| The trivial unit One : Unit Scalar One = MkUnit 0 neutral ||| Multiples of ten Ten : Unit Scalar Ten = MkUnit 1 neutral ||| One hundredth Percent : Unit Scalar Percent = MkUnit (-2) neutral ||| One thousandth Promille : Unit Scalar Promille = MkUnit (-3) neutral ||| The trivial unit (synonymous with `one`) UnitLess : Unit Scalar UnitLess = One implicit elemUnitToUnit : {q : Quantity} -> ElemUnit q -> Unit q elemUnitToUnit {q} u = rewriteUnit eq (MkUnit 0 (inject (MkSomeElemUnit q u))) where eq = sym (inject_lift_lem quantity (MkSomeElemUnit q u)) ||| Compute conversion factor from the given unit to the base unit of the ||| corresponding quantity. joinedConversionRate : Unit q -> Double joinedConversionRate (MkUnit e (MkFreeAbGrp us)) = fromUnits * fromExponent where fromUnits = product $ map (\(u, i) => ((^) @{floatmultpower}) (conversionRate u) i) us fromExponent = ((^) @{floatmultpower}) 10 e ||| Constructs a new unit given a name and conversion factor from an existing unit. defineAsMultipleOf : String -> Double -> Unit q -> ElemUnit q defineAsMultipleOf name factor unit = MkElemUnit name (factor * joinedConversionRate unit) -- Syntax sugar for defining new units syntax "< one" [name] equals [factor] [unit] ">" = defineAsMultipleOf name factor unit implementation Show (Unit q) where show (MkUnit 0 (MkFreeAbGrp [])) = "unitLess" show (MkUnit e (MkFreeAbGrp [])) = "ten ^^ " ++ show e show (MkUnit e (MkFreeAbGrp (u :: us))) = if e == 0 then fromUnits else "ten ^^ " ++ show e ++ " <**> " ++ fromUnits where monom : (SomeElemUnit, Integer) -> String monom (unit, 1) = name unit monom (unit, i) = name unit ++ " ^^ " ++ show i fromUnits = monom u ++ concatMap ((" <**> " ++) . monom) us ||| Pretty-print a unit (using only ASCII characters) showUnit : Unit q -> String showUnit (MkUnit 0 (MkFreeAbGrp [])) = "" showUnit (MkUnit e (MkFreeAbGrp [])) = "10^" ++ show e showUnit (MkUnit e (MkFreeAbGrp (u :: us))) = if e == 0 then fromUnits else "10^" ++ show e ++ " " ++ fromUnits where monom : (SomeElemUnit, Integer) -> String monom (unit, 1) = name unit monom (unit, i) = name unit ++ "^" ++ show i fromUnits = monom u ++ concatMap ((" " ++) . monom) us toSuperScript : Char -> Char toSuperScript '1' = '¹' toSuperScript '2' = '²' toSuperScript '3' = '³' toSuperScript '4' = '⁴' toSuperScript '5' = '⁵' toSuperScript '6' = '⁶' toSuperScript '7' = '⁷' toSuperScript '8' = '⁸' toSuperScript '9' = '⁹' toSuperScript '0' = '⁰' toSuperScript '-' = '⁻' toSuperScript x = x toSuper : String -> String toSuper = pack . map toSuperScript . unpack ||| Pretty-print a unit showUnitUnicode : Unit q -> String showUnitUnicode (MkUnit 0 (MkFreeAbGrp [])) = "" showUnitUnicode (MkUnit e (MkFreeAbGrp [])) = "10" ++ toSuper (show e) showUnitUnicode (MkUnit e (MkFreeAbGrp (u :: us))) = if e == 0 then fromUnits else "10" ++ toSuper (show e) ++ " " ++ fromUnits where monom : (SomeElemUnit, Integer) -> String monom (unit, 1) = name unit monom (unit, i) = name unit ++ toSuper (show i) fromUnits = monom u ++ concatMap ((" " ++) . monom) us infixr 10 ^^ ||| Power unit (^^) : Unit q -> (i : Integer) -> Unit (q ^ i) (^^) (MkUnit e us) i = rewriteUnit eq (MkUnit (i*e) (us ^ i)) where eq = sym (lift_power_lem quantity us i) ||| Inverse unit (e.g. the inverse of `second` is `one <//> second` a.k.a. `hertz`) unitInverse : {q : Quantity} -> Unit q -> Unit (freeAbGrpInverse q) unitInverse {q} u = rewrite (freeabgrppower_correct q (-1)) in u ^^ (-1) infixl 6 <**>,<//> ||| Product unit (<**>) : Unit r -> Unit s -> Unit (r <*> s) (<**>) (MkUnit e rs) (MkUnit f ss) = rewriteUnit eq (MkUnit (e+f) (rs <*> ss)) where eq = sym (lift_mult_lem quantity rs ss) ||| Quotient unit (<//>) : Unit r -> Unit s -> Unit (r </> s) (<//>) a b = a <**> unitInverse b infixl 5 =| -- sensible? ||| Numbers tagged with a unit data Measurement : {q : Quantity} -> Unit q -> Type -> Type where (=|) : a -> (u : Unit q) -> Measurement u a ||| Extract the number getValue : {q : Quantity} -> {u : Unit q} -> Measurement {q} u a -> a getValue (x =| _) = x implementation Functor (Measurement {q} u) where map f (x =| _) = f x =| u implementation Eq a => Eq (Measurement {q} u a) where (x =| _) == (y =| _) = x == y implementation Ord a => Ord (Measurement {q} u a) where compare (x =| _) (y =| _) = compare x y implementation Show a => Show (Measurement {q} u a) where show (x =| _) = show x ++ " =| " ++ show u implementation Num a => Semigroup (Measurement {q} u a) where (x =| _) <+> (y =| _) = (x + y) =| u implementation Num a => Monoid (Measurement {q} u a) where neutral = fromInteger 0 =| u implementation (Neg a, Num a) => Group (Measurement {q} u a) where inverse (x =| _) = (-x) =| u implementation (Neg a, Num a) => AbelianGroup (Measurement {q} u a) where ||| Pretty-print a measurement (using only ASCII characters) showMeasurement : Show a => {q : Quantity} -> {u : Unit q} -> (Measurement u a) -> String showMeasurement (x =| u) = show x ++ (if base10Exponent u == 0 then " " else "*") ++ showUnit u ||| Pretty-print a measurement (using only ASCII characters) showMeasurementUnicode : Show a => {q : Quantity} -> {u : Unit q} -> (Measurement u a) -> String showMeasurementUnicode (x =| u) = show x ++ (if base10Exponent u == 0 then " " else "·") ++ showUnit u infixl 5 :| ||| Type synonym for `Measurement` (:|) : Unit q -> Type -> Type (:|) = Measurement ||| Flatten nested measurements joinUnits : {q : Quantity} -> {r : Quantity} -> {u : Unit q} -> {v : Unit r} -> (u :| (v :| a)) -> (u <**> v) :| a joinUnits ((x =| v) =| u) = x =| (u <**> v) ||| Double with a unit F : Unit q -> Type F u = Measurement u Double infixl 9 |*|,|/| ||| Product measurement (|*|) : Num a => {q : Quantity} -> {r : Quantity} -> {u : Unit q} -> {v : Unit r} -> u :| a -> v :| a -> (u <**> v) :| a (|*|) (x =| u) (y =| v) = (x*y) =| (u <**> v) ||| Quotient measurement (the second measurement mustn't be zero!) (|/|) : {q : Quantity} -> {r : Quantity} -> {u : Unit q} -> {v : Unit r} -> F u -> F v -> F (u <//> v) (|/|) (x =| u) (y =| v) = (x/y) =| (u <//> v) infixl 10 |^| ||| Power measurement (|^|) : {q : Quantity} -> {u : Unit q} -> F u -> (i : Integer) -> F (u ^^ i) (|^|) (x =| u) i = (((^) @{floatmultpower}) x i) =| u ^^ i ||| Square root measurement sqrt : {q : Quantity} -> {u : Unit q} -> F (u ^^ 2) -> F u sqrt {q} {u} (x =| _) = (sqrt x) =| u ||| Round measurement to the next integer below floor : {q : Quantity} -> {u : Unit q} -> F u -> F u floor = map floor ||| Round measurement to the next integer above ceiling : {q : Quantity} -> {u : Unit q} -> F u -> F u ceiling = map ceiling ||| Convert measurements to a given unit convertTo : {from : Unit q} -> (to : Unit q) -> F from -> F to convertTo to (x =| from) = (x * (rateFrom / rateTo)) =| to where rateFrom = joinedConversionRate from rateTo = joinedConversionRate to ||| Flipped version of `convertTo` as : {from : Unit q} -> F from -> (to : Unit q) -> F to as x u = convertTo u x ||| Convert with implicit target unit convert : {from : Unit q} -> {to : Unit q} -> F from -> F to convert {to=to} x = convertTo to x ||| Promote values to measurements of the trivial quantity implicit toUnitLess : a -> Measurement unitLess a toUnitLess x = x =| unitLess implementation Num a => Num (Measurement unitLess a) where x + y = (getValue x + getValue y) =| unitLess x * y = (getValue x * getValue y) =| unitLess fromInteger i = fromInteger i =| unitLess implementation Neg a => Neg (Measurement unitLess a) where negate x = negate (getValue x) =| unitLess x - y = (getValue x - getValue y) =| unitLess implementation Abs a => Abs (Measurement unitLess a) where abs x = abs (getValue x) =| unitLess
A while back I asked you to send me in any questions that you are looking for an answer to and I received well over 100 responses. So, I’ve hand-picked just four to answer today and I'll come back to the others in the future. On with the questions! Mar 17 Time in the market is your money’s best friend. I interviewed a bloke for an upcoming episode of my podcast and he had a lot to say about investing in individual shares and why he used to buy them, but now no longer does. He took the advice of a good friend when she told him, back in the 1980s, just buy into today’s equivalent of an index fund and let time in the market be your money’s best friend. Low and behold, she was correct. When I realised that in order to become an investor I didn’t have to learn how to pick stocks it was like the clouds had parted and the sun had finally come out. And I have American John C. Bogle to thank for that. Last week he passed away at the age of 89 but he leaves a huge legacy behind and I know that in years to come many will still be learning from him, just like I did. The Barefoot Investor by Australian Scott Pape is an excellent book and it has been instrumental in changing the financial direction of not just Australians but also of Kiwis. Many people have asked me to work out what the Kiwi equivalents are of the providers he recommends. I’m not saying this is a conclusive list, but I’ve given it my best shot. This question was sent in by Declan a while back, but it is one that crops up in my inbox relatively consistently as well, so I thought back to what I did and what I would do if faced with the situation he is proposing again. Recently I had an excellent question from a fellow Happy Saver who had been comparing SmartShares, SuperLife and Sharesies, not so much to find the lowest fees, but to work out which has the smoothest and easiest system and which one allowed him to purchase shares in the fastest time. The very first thing I would do is set up an automatic transfer to syphon off a set amount of money each week into a sub account with your bank and give it a flash name like “IKMSMOI” (investments keep my sticky mitts off it). Two weeks ago I was giving away a book The Simple Path To Wealth by JL Collins and in order to win it I asked you to send me an email telling me the most simple strategy you have devised so far to get yourself ahead financially. I was flooded with suggestions and I thought that they were just too good not to share.
{-# OPTIONS --without-K --exact-split --safe #-} module Fragment.Equational.Structures where import Fragment.Equational.Theory.Laws as L open import Fragment.Equational.Theory open import Fragment.Equational.Theory.Bundles open import Fragment.Equational.Model open import Fragment.Algebra.Algebra open import Level using (Level) open import Data.Fin using (Fin; #_; suc; zero) open import Data.Vec using ([]; _∷_) open import Data.Vec.Relation.Binary.Pointwise.Inductive using ([]; _∷_) open import Relation.Binary using (Setoid; Rel) open import Algebra.Core private variable a ℓ : Level module _ {A : Set a} {_≈_ : Rel A ℓ} where open import Algebra.Definitions _≈_ open import Algebra.Structures _≈_ module _ {_•_ : Op₂ A} where module _ (isMagma : IsMagma _•_) where open IsMagma isMagma magma→setoid : Setoid a ℓ magma→setoid = record { Carrier = A ; _≈_ = _≈_ ; isEquivalence = isEquivalence } private magma→⟦⟧ : Interpretation Σ-magma magma→setoid magma→⟦⟧ MagmaOp.• (x ∷ y ∷ []) = _•_ x y magma→⟦⟧-cong : Congruent₂ _•_ → Congruence Σ-magma magma→setoid magma→⟦⟧ magma→⟦⟧-cong c MagmaOp.• (x₁≈x₂ ∷ y₁≈y₂ ∷ []) = c x₁≈x₂ y₁≈y₂ magma→isAlgebra : IsAlgebra Σ-magma magma→setoid magma→isAlgebra = record { ⟦_⟧ = magma→⟦⟧ ; ⟦⟧-cong = magma→⟦⟧-cong ∙-cong } magma→algebra : Algebra Σ-magma magma→algebra = record { ∥_∥/≈ = magma→setoid ; ∥_∥/≈-isAlgebra = magma→isAlgebra } private magma→models : Models Θ-magma magma→algebra magma→models () magma→isModel : IsModel Θ-magma magma→setoid magma→isModel = record { isAlgebra = magma→isAlgebra ; models = magma→models } magma→model : Model Θ-magma magma→model = record { ∥_∥/≈ = magma→setoid ; isModel = magma→isModel } module _ (isSemigroup : IsSemigroup _•_) where private open IsSemigroup isSemigroup renaming (assoc to •-assoc) semigroup→models : Models Θ-semigroup (magma→algebra isMagma) semigroup→models assoc θ = •-assoc (θ (# 0)) (θ (# 1)) (θ (# 2)) semigroup→isModel : IsModel Θ-semigroup (magma→setoid isMagma) semigroup→isModel = record { isAlgebra = magma→isAlgebra isMagma ; models = semigroup→models } semigroup→model : Model Θ-semigroup semigroup→model = record { ∥_∥/≈ = magma→setoid isMagma ; isModel = semigroup→isModel } module _ (isCSemigroup : IsCommutativeSemigroup _•_) where private open IsCommutativeSemigroup isCSemigroup renaming (comm to •-comm; assoc to •-assoc) csemigroup→models : Models Θ-csemigroup (magma→algebra isMagma) csemigroup→models comm θ = •-comm (θ (# 0)) (θ (# 1)) csemigroup→models assoc θ = •-assoc (θ (# 0)) (θ (# 1)) (θ (# 2)) csemigroup→isModel : IsModel Θ-csemigroup (magma→setoid isMagma) csemigroup→isModel = record { isAlgebra = magma→isAlgebra isMagma ; models = csemigroup→models } csemigroup→model : Model Θ-csemigroup csemigroup→model = record { ∥_∥/≈ = magma→setoid isMagma ; isModel = csemigroup→isModel }
If $S$ is locally path-connected, then the path-component and connected-component of a point $x$ in $S$ are the same.
State Before: F : Type ?u.130016 α : Type u_1 β : Type ?u.130022 γ : Type ?u.130025 inst✝ : Group α s t : Set α a b : α ⊢ (fun x x_1 => x * x_1) a ⁻¹' 1 = {a⁻¹} State After: no goals Tactic: rw [← image_mul_left', image_one, mul_one]
# AUTOGENERATED! DO NOT EDIT! File to edit: nbs/00a_core.causalinference.ipynb (unless otherwise specified). __all__ = ['CausalInferenceModel', 'metalearner_cls_dict', 'metalearner_reg_dict'] # Cell import pandas as pd pd.set_option('display.max_columns', 500) import time from ..meta.tlearner import BaseTClassifier, BaseTRegressor from ..meta.slearner import BaseSClassifier, BaseSRegressor, LRSRegressor from ..meta.xlearner import BaseXClassifier, BaseXRegressor from ..meta.rlearner import BaseRClassifier, BaseRRegressor from ..meta.propensity import ElasticNetPropensityModel from ..meta.utils import NearestNeighborMatch, create_table_one from scipy import stats from lightgbm import LGBMClassifier, LGBMRegressor import numpy as np import warnings from copy import deepcopy from matplotlib import pyplot as plt from ..preprocessing import DataframePreprocessor from sklearn.linear_model import LogisticRegression, LinearRegression # from xgboost import XGBRegressor # from causalml.inference.meta import XGBTRegressor, MLPTRegressor metalearner_cls_dict = {'t-learner' : BaseTClassifier, 'x-learner' : BaseXClassifier, 'r-learner' : BaseRClassifier, 's-learner': BaseSClassifier} metalearner_reg_dict = {'t-learner' : BaseTRegressor, 'x-learner' : BaseXRegressor, 'r-learner' : BaseRRegressor, 's-learner' : BaseSRegressor} class CausalInferenceModel: """Infers causality from the data contained in `df` using a metalearner. Usage: ```python >>> cm = CausalInferenceModel(df, treatment_col='Is_Male?', outcome_col='Post_Shared?', text_col='Post_Text', ignore_cols=['id', 'email']) cm.fit() ``` **Parameters:** * **df** : pandas.DataFrame containing dataset * **method** : metalearner model to use. One of {'t-learner', 's-learner', 'x-learner', 'r-learner'} (Default: 't-learner') * **metalearner_type** : Alias of `method` for backwards compatibility. Overrides `method` if not None. * **treatment_col** : treatment variable; column should contain binary values: 1 for treated, 0 for untreated. * **outcome_col** : outcome variable; column should contain the categorical or numeric outcome values * **text_col** : (optional) text column containing the strings (e.g., articles, reviews, emails). * **ignore_cols** : columns to ignore in the analysis * **include_cols** : columns to include as covariates (e.g., possible confounders) * **treatment_effect_col** : name of column to hold causal effect estimations. Does not need to exist. Created by CausalNLP. * **learner** : an instance of a custom learner. If None, Log/Lin Regression is used for S-Learner and a default LightGBM model will be used for all other metalearner types. # Example learner = LGBMClassifier(num_leaves=1000) * **effect_learner**: used for x-learner/r-learner and must be regression model * **min_df** : min_df parameter used for text processing using sklearn * **max_df** : max_df parameter used for text procesing using sklearn * **ngram_range**: ngrams used for text vectorization. default: (1,1) * **stop_words** : stop words used for text processing (from sklearn) * **verbose** : If 1, print informational messages. If 0, suppress. """ def __init__(self, df, method='t-learner', metalearner_type=None, # alias for method treatment_col='treatment', outcome_col='outcome', text_col=None, ignore_cols=[], include_cols=[], treatment_effect_col = 'treatment_effect', learner = None, effect_learner=None, min_df=0.05, max_df=0.5, ngram_range=(1,1), stop_words='english', verbose=1): """ constructor """ # for backwards compatibility if metalearner_type is not None: if method != 't-learner': warnings.warn(f'metalearner_type and method are mutually exclusive. '+\ f'Used {metalearner_type} as method.') method = metalearner_type metalearner_list = list(metalearner_cls_dict.keys()) if method not in metalearner_list: raise ValueError('method is required and must be one of: %s' % (metalearner_list)) self.te = treatment_effect_col # created self.method = method self.v = verbose self.df = df.copy() self.ps = None # computed by _create_metalearner, if necessary # these are auto-populated by preprocess method self.x = None self.y = None self.treatment = None # preprocess self.pp = DataframePreprocessor(treatment_col = treatment_col, outcome_col = outcome_col, text_col=text_col, include_cols=include_cols, ignore_cols=ignore_cols, verbose=self.v) self.df, self.x, self.y, self.treatment = self.pp.preprocess(self.df, training=True, min_df=min_df, max_df=max_df, ngram_range=ngram_range, stop_words=stop_words) # setup model self.model = self._create_metalearner(method=self.method, supplied_learner=learner, supplied_effect_learner=effect_learner) def _create_metalearner(self, method='t-learner', supplied_learner=None, supplied_effect_learner=None): ## use LRSRegressor for s-learner regression as default instead of tree-based model #if method =='s-learner' and supplied_learner is None: return LRSRegressor() # set learner default_learner = None if self.pp.is_classification: default_learner = LogisticRegression(max_iter=10000) if method=='s-learner' else LGBMClassifier() else: default_learner = LinearRegression() if method=='s-learner' else LGBMRegressor() default_effect_learner = LGBMRegressor() learner = default_learner if supplied_learner is None else supplied_learner effect_learner = default_effect_learner if supplied_effect_learner is None else\ supplied_effect_learner # set metalearner metalearner_class = metalearner_cls_dict[method] if self.pp.is_classification \ else metalearner_reg_dict[method] if method in ['t-learner', 's-learner']: model = metalearner_class(learner=learner,control_name=0) elif method in ['x-learner']: model = metalearner_class( control_outcome_learner=deepcopy(learner), treatment_outcome_learner=deepcopy(learner), control_effect_learner=deepcopy(effect_learner), treatment_effect_learner=deepcopy(effect_learner), control_name=0) else: model = metalearner_class(outcome_learner=deepcopy(learner), effect_learner=deepcopy(effect_learner), control_name=0) return model def fit(self, p=None): """ Fits a causal inference model and estimates outcome with and without treatment for each observation. For X-Learner and R-Learner, propensity scores will be computed using default propensity model unless `p` is not None. Parameter `p` is not used for other methods. """ print("start fitting causal inference model") start_time = time.time() self.model.fit(self.x.values, self.treatment.values, self.y.values, p=p) preds = self._predict(self.x) self.df[self.te] = preds print("time to fit causal inference model: ",-start_time + time.time()," sec") return self def predict(self, df, p=None): """ Estimates the treatment effect for each observation in `df`. The DataFrame represented by `df` should be the same format as the one supplied to `CausalInferenceModel.__init__`. For X-Learner and R-Learner, propensity scores will be computed using default propensity model unless `p` is not None. Parameter `p` is not used for other methods. """ _, x, _, _ = self.pp.preprocess(df, training=False) return self._predict(x, p=p) def _predict(self, x, p=None): """ Estimates the treatment effect for each observation in `x`, where `x` is an **un-preprocessed** DataFrame of Numpy array. """ if isinstance(x, pd.DataFrame): return self.model.predict(x.values, p=p) else: return self.model.predict(x, p=p) def estimate_ate(self, bool_mask=None): """ Estimates the treatment effect for each observation in `self.df`. """ df = self.df if bool_mask is None else self.df[bool_mask] a = df[self.te].values mean = np.mean(a) return {'ate' : mean} def interpret(self, plot=False, method='feature_importance'): """ Returns feature importances of treatment effect model. The method parameter must be one of {'feature_importance', 'shap_values'} """ tau = self.df[self.te] feature_names = self.x.columns.values if plot: if method=='feature_importance': fn = self.model.plot_importance elif method == 'shap_values': fn = self.model.plot_shap_values else: raise ValueError('Unknown method: %s' % method) else: if method=='feature_importance': fn = self.model.get_importance elif method == 'shap_values': fn = self.model.get_shap_values else: raise ValueError('Unknown method: %s' % method) return fn(X=self.x, tau=tau, features = feature_names) def compute_propensity_scores(self, x_pred=None): """ Computes and returns propensity scores for `CausalInferenceModel.treatment` in addition to the Propensity model. """ from ..meta import propensity return propensity.compute_propensity_score(self.x, self.treatment, X_pred=x_pred) def _balance(self, caliper = None, n_fold=3, overwrite=False): """ Balances dataset to minimize bias. Currently uses propensity score matching. Experimental and untested. """ if caliper is None: warnings.warn('Since caliper is None, caliper is being set to 0.001.') caliper = 0.001 print('-------Start balancing procedure----------') start_time = time.time() #Join x, y and treatment vectors df_match = self.x.merge(self.treatment,left_index=True, right_index=True) df_match = df_match.merge(self.y, left_index=True, right_index=True) #ps - propensity score df_match['ps'] = self.compute_propensity_scores(n_fold=n_fold) #Matching model object psm = NearestNeighborMatch(replace=False, ratio=1, random_state=423, caliper=caliper) ps_cols = list(self.pp.feature_names_one_hot) ps_cols.append('ps') #Apply matching model #If error, then sample is unbiased and we don't do anything self.flg_bias = True self.df_matched = psm.match(data=df_match, treatment_col=self.pp.treatment_col,score_cols=['ps']) self.x_matched = self.df_matched[self.x.columns] self.y_matched = self.df_matched[self.pp.outcome_col] self.treatment_matched = self.df_matched[self.pp.treatment_col] print('-------------------MATCHING RESULTS----------------') print('-----BEFORE MATCHING-------') print(create_table_one(data=df_match, treatment_col=self.pp.treatment_col, features=list(self.pp.feature_names_one_hot))) print('-----AFTER MATCHING-------') print(create_table_one(data=self.df_matched, treatment_col=self.pp.treatment_col, features=list(self.pp.feature_names_one_hot))) if overwrite: self.x = self.x_matched self.y = self.y_matched self.treatment = self.treatment_matched self.df = self.df_matched print('\nBalancing prunes the dataset. ' +\ 'To revert, re-invoke CausalInferencModel ' +\ 'with original dataset.') else: print('\nBalanced data is available as variables: x_matched, y_matched, treatment_matched, df_matched') return def _predict_shap(self, x): return self._predict(x) def explain(self, df, row_index=None, row_num=0, background_size=50, nsamples=500): """ Explain the treatment effect estimate of a single observation using SHAP. **Parameters:** - **df** (pd.DataFrame): a pd.DataFrame of test data is same format as original training data DataFrame - **row_num** (int): raw row number in DataFrame to explain (default:0, the first row) - **background_size** (int): size of background data (SHAP parameter) - **nsamples** (int): number of samples (SHAP parameter) """ try: import shap except ImportError: msg = 'The explain method requires shap library. Please install with: pip install shap. '+\ 'Conda users should use this command instead: conda install -c conda-forge shap' raise ImportError(msg) f = self._predict_shap # preprocess dataframe _, df_display, _, _ = self.pp.preprocess(df.copy(), training=False) # select row df_display_row = df_display.iloc[[row_num]] r_key = 'row_num' r_val = row_num # shap explainer = shap.KernelExplainer(f, self.x.iloc[:background_size,:]) shap_values = explainer.shap_values(df_display_row, nsamples=nsamples, l1_reg='aic') expected_value = explainer.expected_value if not np.issubdtype(type(explainer.expected_value), np.floating): expected_value = explainer.expected_value[0] if type(shap_values) == list: shap_values = shap_values[0] plt.show(shap.force_plot(expected_value, shap_values, df_display_row, matplotlib=True)) def get_required_columns(self): """ Returns required columns that must exist in any DataFrame supplied to `CausalInferenceModel.predict`. """ treatment_col = self.pp.treatment_col other_cols = self.pp.feature_names result = [treatment_col] + other_cols if self.pp.text_col: result.append(self.pp.text_col) return result def tune_and_use_default_learner(self, split_pct=0.2, random_state=314, scoring=None): """ Tunes the hyperparameters of a default LightGBM model, replaces `CausalInferenceModel.learner`, and returns best parameters. Should be invoked **prior** to running `CausalInferencemodel.fit`. If `scoring` is None, then 'roc_auc' is used for classification and 'negative_mean_squared_error' is used for regresssion. """ from sklearn.model_selection import train_test_split X_train, X_test, y_train, y_test = train_test_split(self.x.values, self.y.values, test_size=split_pct, random_state=random_state) fit_params={"early_stopping_rounds":30, "eval_metric" : 'auc' if self.pp.is_classification else 'rmse', "eval_set" : [(X_test,y_test)], 'eval_names': ['valid'], 'verbose': 100, 'categorical_feature': 'auto'} from scipy.stats import randint as sp_randint from scipy.stats import uniform as sp_uniform param_test ={'num_leaves': sp_randint(6, 750), 'min_child_samples': sp_randint(20, 500), 'min_child_weight': [1e-5, 1e-3, 1e-2, 1e-1, 1, 1e1, 1e2, 1e3, 1e4], 'subsample': sp_uniform(loc=0.2, scale=0.8), 'colsample_bytree': sp_uniform(loc=0.4, scale=0.6), 'reg_alpha': [0, 1e-1, 1, 2, 5, 7, 10, 50, 100], 'reg_lambda': [0, 1e-1, 1, 5, 10, 20, 50, 100]} n_HP_points_to_test = 100 if self.pp.is_classification: learner_type = LGBMClassifier scoring = 'roc_auc' if scoring is None else scoring else: learner_type = LGBMRegressor scoring = 'neg_mean_squared_error' if scoring is None else scoring clf = learner_type(max_depth=-1, random_state=random_state, silent=True, metric='None', n_jobs=4, n_estimators=5000) from sklearn.model_selection import RandomizedSearchCV, GridSearchCV gs = RandomizedSearchCV( estimator=clf, param_distributions=param_test, n_iter=n_HP_points_to_test, scoring=scoring, cv=3, refit=True, random_state=random_state, verbose=True) gs.fit(X_train, y_train, **fit_params) print('Best score reached: {} with params: {} '.format(gs.best_score_, gs.best_params_)) best_params = gs.best_params_ self.learner = learner_type(**best_params) return best_params def evaluate_robustness(self, sample_size=0.8): """ Evaluates robustness on four sensitivity measures (see CausalML package for details on these methods): - **Placebo Treatment**: ATE should become zero. - **Random Cause**: ATE should not change. - **Random Replacement**: ATE should not change. - **Subset Data**: ATE should not change. """ from ..meta.sensitivity import Sensitivity data_df = self.x.copy() t_col = 'CausalNLP_t' y_col = 'CausalNLP_y' data_df[t_col] = self.treatment data_df[y_col] = self.y sens_x = Sensitivity(df=data_df, inference_features=self.x.columns.values, p_col=None, treatment_col=t_col, outcome_col=y_col, learner=self.model) df = sens_x.sensitivity_analysis(methods=['Placebo Treatment', 'Random Cause', 'Subset Data', 'Random Replace', ],sample_size=sample_size) df['Distance from Desired (should be near 0)'] = np.where(df['Method']=='Placebo Treatment', df['New ATE']-0.0, df['New ATE']-df['ATE']) #df['Method'] = np.where(df['Method']=='Random Cause', 'Random Add', df['Method']) return df
module LispVal import Prelude.Bool as B import Prelude.List as L import Effects import Effect.Exception import Effect.State mutual public export data LispError = NumArgs Integer (L.List LispVal) | TypeMismatch String LispVal | BadSpecialForm String LispVal | NotFunction String String | UnboundVar String LispVal | Default String | LispErr String public export EnvCtx : Type EnvCtx = L.List (String, LispVal) public export Eval : Type -> Type Eval a = Eff a [STATE EnvCtx, EXCEPTION LispError] public export record IFunc where constructor MkFun fn : L.List LispVal -> Eval LispVal public export data LispVal = Atom String | List (L.List LispVal) | DottedList (L.List LispVal) LispVal | Number Integer | Str String | Fun IFunc | Lambda IFunc EnvCtx | Nil | Bool B.Bool mutual unwordsList : List LispVal -> String unwordsList = unwords . map showVal p : Maybe String -> String p varargs = case varargs of Nothing => "" Just arg => " . " ++ arg export showVal : LispVal -> String showVal (Atom x) = x showVal (List xs) = "(" ++ unwordsList xs ++ ")" showVal (DottedList xs x) = "(" ++ unwordsList xs ++ " . " ++ showVal x ++ ")" showVal (Number x) = show x showVal (Str x) = "\"" ++ x ++ "\"" showVal (Bool True) = "#t" showVal (Bool False) = "#f" showVal (Fun _) = "internal function" showVal (Lambda _ _) = "lambda function" export Show LispVal where show = showVal export Show LispError where show (UnboundVar m v) = m ++ ": " ++ show v show (BadSpecialForm s v) = s ++ " : " ++ show v show (NotFunction s f) = s ++ " : " ++ show f show (NumArgs e f) = "Expected " ++ show e ++ " args; found " ++ (show $ length f) show (TypeMismatch e f) = "Invalid type: expected " ++ e ++ ", found " ++ show f show (Default s) = s show (LispErr s) = s show _ = "Error!!!"
/* * OrientationBox.hpp * * Created on: 01.11.2018 * Author: tomlucas */ #ifndef ESTIMATORS_STATEBOXES_ORIENTATIONSPEEDBOX_HPP_ #define ESTIMATORS_STATEBOXES_ORIENTATIONSPEEDBOX_HPP_ #include "StateBox.hpp" #include <eigen3/Eigen/Core> #include <Eigen_Utils.hpp> #include "OrientationBox.hpp" namespace zavi ::estimator::state_boxes { /** * Box to contain orientation and angular velocity */ class OrientationSpeedBox : public StateBox<12,6,3> { template<typename T> using ROT_MATRIX= Eigen::Matrix<T,3,3>; public: INNER_T<double> std; OrientationSpeedBox(std::shared_ptr<plugin::SensorPlugin> sensor):StateBox<12,6,3>(sensor) { } virtual ~OrientationSpeedBox() {}; template<typename T> inline static OUTER_T<T> boxPlus(const OUTER_T<T> &state,const INNER_T<T> &delta) { assert_inputs(state,delta); OUTER_T<T> result; result <<OrientationBox::boxPlus<T>(state.template block<9,1>(0,0),delta.template block<3,1>(0,0)),(state.template block<3,1>(9,0)+delta.template block<3,1>(3,0)); return result; } template<typename T> inline static INNER_T<T> boxPlusInnerSpace(const INNER_T<T> &delta1,const INNER_T<T> &delta2) { assert_inputs(delta1,delta2); INNER_T<T> result=INNER_T<T>::Zero(); result.template block<3,1>(0,0)=OrientationBox::boxPlusInnerSpace<T>(delta1.template block<3,1>(0,0),delta2.template block<3,1>(0,0)); result.template block<3,1>(3,0)=delta1.template block<3,1>(3,0)+delta2.template block<3,1>(3,0); return result; } template<typename T> inline static INNER_T<T> boxMinus(const OUTER_T<T> &a,const OUTER_T<T> &b) { assert_inputs(a,b); INNER_T<T>result; result <<OrientationBox::boxMinus<T>(a.template block<9,1>(0,0),b.template block<9,1>(0,0)),b.template block<3,1>(9,0)-a.template block<3,1>(9,0); return result; } template<typename T> inline static OUTER_T<T> stateTransition(const OUTER_T<T> & state,double time_diff ) { assert_inputs(state,time_diff); OUTER_T<T> result; result << OrientationBox::boxPlus<T>(state.template block<9,1>(0,0),state.template block<3,1>(9,0)*time_diff),state.template block<3,1>(9,0); return result; } inline INNER_T<double> getSTD(double time_diff) { return std*time_diff; } virtual OUTER_T<double> normalise(const OUTER_T<double> &state) const { assert_inputs(state); OUTER_T<double> result; result <<OrientationBox::static_normalise(state.block<9,1>(0,0)),state.block<3,1>(9,0); return result; } }; } #endif /* ESTIMATORS_STATEBOXES_ORIENTATIONSPEEDBOX_HPP_ */
Formal statement is: lemma limitin_canonical_iff_gen [simp]: assumes "open S" shows "limitin (top_of_set S) f l F \<longleftrightarrow> (f \<longlongrightarrow> l) F \<and> l \<in> S" Informal statement is: If $S$ is an open set, then the limit of $f$ in $S$ is the same as the limit of $f$ in the topology of $S$ and $l \in S$.
In Desire for Three, Jessica Tyler is looking for a fresh start and agrees to visit her sister in Desire, Oklahoma, where Dom/sub and ménage relationships are the norm. Clay and Rio Erickson, gorgeous overprotective brothers, claim her as her own. When Jesse is threatened by her ex, she must stay strong, even as her two formidable lovers are intent on possessing her. In Blade’s Desire, Kelly Jones arrives in Desire looking for peace after being abused. She soon falls under Blade Royal’s spell, and she makes a bargain that puts her trust and body in his hands for six weeks. She hides her love from him, but Blade knows her hidden passions are a perfect match for his own. In Creation of Desire, Boone and Chase Jackson want Rachel Robinson, but she’s a forever kind of woman and they’re wary of commitment. When other men start to move on her, they give her a night she’ll never forget. Things change when Rachel discovers she’s pregnant. The men want to make her their own, but she believes they’re only doing it for the baby’s sake. Can she and her lovers still have a future? When lives and love are on the line, will passion triumph in Desire?
\documentclass{article} \usepackage[utf8]{inputenc} %File encoding \usepackage{ifthen} %% needed for the redefinition of \@cite below. \newcommand{\citename}[1]{#1\protect\nocite{#1}} \renewenvironment{glossary} {\begin{list}{}{\setlength\labelsep{\linewidth}% \setlength\labelwidth{0pt}% \setlength\itemindent{-\leftmargin}% \let\makelabel\descriptionlabel}} {\end{list}} \makeatletter \renewcommand\@biblabel[1]{#1} \renewenvironment{thebibliography}[1] {\section*{\refname}% \list{}{\setlength\labelwidth{1.5cm}% \leftmargin\labelwidth \advance\leftmargin\labelsep \let\makelabel\descriptionlabel}}% {\endlist} \renewcommand{\@cite}[2]{{#1\ifthenelse{\boolean{@tempswa}}{,\nolinebreak[3] #2}{}}} \makeatother \begin{document} Our network uses \citename{AD}. By using \citename{AD} with \citename{JS} bases clients that have been installed using a \citename{RF} from \citename{CD}, we can expect a high level of standardization. If you calculate with \cite{sym:pi} you always get an irrational result, because \cite{sym:pi} itself is irrational. As a matter of fact, there are \cite{sym:phi} and \cite{sym:lambda}, too. \bibliographystyle{test8} \bibliography{test8} \end{document}
import numpy as np import json import copy import random """ This is Step 2 in the seq2seq pipeline. Input: dtype. Basically use the (context, scenario, utt) to create a series of templates (x) and utt(y). For test and valid data, we will only create the template from dgpt-m greedy approach. """ dtype = "train" #template_types = ["copy", "greedy", "sample", "noisy"] template_types = ["greedy", "sample", "noisy"] in_f = "/project/glucas_540/kchawla/csci699/storage/data/seq2seq/casino/s2s_cxt_scen_utt.json" in_f_greedy = "/project/glucas_540/kchawla/csci699/storage/data/seq2seq/casino/dgpt_greedy.json" with open(in_f_greedy, "r") as f: greedy_data = json.load(f) print("loaded greedy data: ", in_f_greedy, len(greedy_data)) in_f_samples = ["/project/glucas_540/kchawla/csci699/storage/data/seq2seq/casino/dgpt_sample1.json", "/project/glucas_540/kchawla/csci699/storage/data/seq2seq/casino/dgpt_sample2.json", "/project/glucas_540/kchawla/csci699/storage/data/seq2seq/casino/dgpt_sample3.json"] sample_datas = [] for in_f_sample in in_f_samples: with open(in_f_sample, "r") as f: sample_datas.append(json.load(f)) print("loaded sample data ", in_f_samples) out_src = "/project/glucas_540/kchawla/csci699/storage/data/seq2seq/casino/" + dtype + "_" + "_".join(sorted(template_types)) + ".src" out_tgt = "/project/glucas_540/kchawla/csci699/storage/data/seq2seq/casino/" + dtype + "_utterance_" + "_".join(sorted(template_types)) + ".tgt" def get_input(msg): msg = (" " + '<|endoftext|>' + " ").join(msg) msg = msg + " " + '<|endoftext|>' + " " return msg def get_copy_templates(item): """ autoencoding setup. """ temps = [] temps.append(item["utterance"]) return temps def get_greedy_templates(item): templates = [] context = get_input(item['context']) templates.append(greedy_data[context]) return templates def get_sample_templates(item): templates = [] context = get_input(item['context']) for ix in range(len(sample_datas)): templates.append(sample_datas[ix][context]) return templates def get_noisy_variants(temp): """ basically switch item types and item numbers.. only 1 noisy variant per template: sounds okay for now: we can increase the noise if there is good evidence that it helps. data is good enough to help, if it is indeed beneficial. """ itemtypes = ["food", "water", "firewood"] counts = ["1", "2", "3"] words_noisy = [] words = temp.split() for word in words: word_noisy = word if("food" in word): word_noisy = word.replace("food", random.choice(itemtypes)) elif("water" in word): word_noisy = word.replace("water", random.choice(itemtypes)) elif("firewood" in word): word_noisy = word.replace("firewood", random.choice(itemtypes)) if("1" in word): word_noisy = word.replace("1", random.choice(counts)) elif("2" in word): word_noisy = word.replace("2", random.choice(counts)) elif("3" in word): word_noisy = word.replace("3", random.choice(counts)) words_noisy.append(word_noisy) temp_noisy = " ".join(words_noisy) return [temp_noisy] def get_noisy_templates(templates): all_temps = [] for temp in templates: noisy_variants = get_noisy_variants(temp) all_temps += noisy_variants return all_temps def get_scenario_string(scenario): """ rank corresponding to Food, Water, Firewood. permutation of 1 2 3 """ scenario_str = "" scenario_str += "High " + scenario["value2issue"]["High"] + " " + scenario["value2reason"]["High"] + " <|endoftext|> " scenario_str += "Medium " + scenario["value2issue"]["Medium"] + " " + scenario["value2reason"]["Medium"] + " <|endoftext|> " scenario_str += "Low " + scenario["value2issue"]["Low"] + " " + scenario["value2reason"]["Low"] + " <|endoftext|>" return scenario_str def merge_scen_templates(scenario_str, templates): scen_temps = [] for temp in templates: merged = scenario_str + " " + temp scen_temps.append(merged) return scen_temps def get_pairs(item): """ context, scenario, utterance """ templates = [] if("copy" in template_types): templates += get_copy_templates(item) if("greedy" in template_types): templates += get_greedy_templates(item) if("sample" in template_types): templates += get_sample_templates(item) if("noisy" in template_types): templates += get_noisy_templates(templates) templates = sorted(list(set(templates))) scenario_str = get_scenario_string(item['scenario']) utterance = item['utterance'] scen_temps = merge_scen_templates(scenario_str, templates) pairs = [] for merged in scen_temps: pair = [merged, utterance] pairs.append(pair) return pairs with open(in_f) as f: all_data = json.load(f) all_data = all_data[dtype] print("input: ", dtype, len(all_data)) #list of lists, each containing [src, tgt] pairs out_data = [] for item in all_data: pairs = get_pairs(item) out_data += pairs print("out_data: ", len(out_data)) print("sample: ", out_data[0]) with open(out_src, "w") as fsrc: with open(out_tgt, "w") as ftgt: for pair in out_data: fsrc.write(pair[0] + "\n") ftgt.write(pair[1] + "\n") print("Output completed to: ", out_src, out_tgt)
@testsuite "constructors" (AT, eltypes)->begin @testset "direct" begin for T in eltypes B = AT{T}(undef, 10) @test B isa AT{T,1} @test size(B) == (10,) @test eltype(B) == T B = AT{T}(undef, 10, 10) @test B isa AT{T,2} @test size(B) == (10, 10) @test eltype(B) == T B = AT{T}(undef, (10, 10)) @test B isa AT{T,2} @test size(B) == (10, 10) @test eltype(B) == T end # compare against Array for typs in [(), (Int,), (Int,1), (Int,2), (Float32,), (Float32,1), (Float32,2)], args in [(), (1,), (1,2), ((1,),), ((1,2),), (undef,), (undef, 1,), (undef, 1,2), (undef, (1,),), (undef, (1,2),), (Int,), (Int, 1,), (Int, 1,2), (Int, (1,),), (Int, (1,2),), ([1,2],), ([1 2],)] cpu = try Array{typs...}(args...) catch ex isa(ex, MethodError) || rethrow() nothing end gpu = try AT{typs...}(args...) catch ex isa(ex, MethodError) || rethrow() cpu == nothing || rethrow() nothing end if cpu == nothing @test gpu == nothing else @test typeof(cpu) == typeof(convert(Array, gpu)) end end end @testset "similar" begin for T in eltypes B = AT{T}(undef, 10) B = similar(B, Int32, 11, 15) @test B isa AT{Int32,2} @test size(B) == (11, 15) @test eltype(B) == Int32 B = similar(B, T) @test B isa AT{T,2} @test size(B) == (11, 15) @test eltype(B) == T B = similar(B, (5,)) @test B isa AT{T,1} @test size(B) == (5,) @test eltype(B) == T B = similar(B, 7) @test B isa AT{T,1} @test size(B) == (7,) @test eltype(B) == T B = similar(AT{Int32}, (11, 15)) @test B isa AT{Int32,2} @test size(B) == (11, 15) @test eltype(B) == Int32 B = similar(AT{T}, (5,)) @test B isa AT{T,1} @test size(B) == (5,) @test eltype(B) == T B = similar(AT{T}, 7) @test B isa AT{T,1} @test size(B) == (7,) @test eltype(B) == T B = similar(Broadcast.Broadcasted(*, (B, B)), T) @test B isa AT{T,1} @test size(B) == (7,) @test eltype(B) == T B = similar(Broadcast.Broadcasted(*, (B, B)), Int32, (11, 15)) @test B isa AT{Int32,2} @test size(B) == (11, 15) @test eltype(B) == Int32 end end @testset "convenience" begin for T in eltypes A = AT(rand(T, 3)) b = rand(T) fill!(A, b) @test A isa AT{T,1} @test Array(A) == fill(b, 3) A = zero(AT(rand(T, 2))) @test A isa AT{T,1} @test Array(A) == zero(rand(T, 2)) A = zero(AT(rand(T, 2, 2))) @test A isa AT{T,2} @test Array(A) == zero(rand(T, 2, 2)) A = zero(AT(rand(T, 2, 2, 2))) @test A isa AT{T,3} @test Array(A) == zero(rand(T, 2, 2, 2)) A = one(AT(rand(T, 2, 2))) @test A isa AT{T,2} @test Array(A) == one(rand(T, 2, 2)) A = oneunit(AT(rand(T, 2, 2))) @test A isa AT{T,2} @test Array(A) == oneunit(rand(T, 2, 2)) end end @testset "conversions" begin for T in eltypes Bc = round.(rand(10, 10) .* 10.0) B = AT{T}(Bc) @test size(B) == (10, 10) @test eltype(B) == T @test Array(B) ≈ Bc Bc = rand(T, 10) B = AT(Bc) @test size(B) == (10,) @test eltype(B) == T @test Array(B) ≈ Bc Bc = rand(T, 10, 10) B = AT{T, 2}(Bc) @test size(B) == (10, 10) @test eltype(B) == T @test Array(B) ≈ Bc intervals = Dict( Float16 => -2^11:2^11, Float32 => -2^24:2^24, Float64 => -2^53:2^53, ) Bc = rand(Int8, 3, 3, 3) B = convert(AT{T, 3}, Bc) @test size(B) == (3, 3, 3) @test eltype(B) == T @test Array(B) ≈ Bc end end @testset "uniformscaling" begin for T in eltypes x = Matrix{T}(I, 4, 2) x1 = AT{T, 2}(I, 4, 2) x2 = AT{T}(I, (4, 2)) x3 = AT{T, 2}(I, (4, 2)) @test Array(x1) ≈ x @test Array(x2) ≈ x @test Array(x3) ≈ x x = Matrix(T(3) * I, 2, 4) x1 = AT(T(3) * I, 2, 4) @test eltype(x1) == T @test Array(x1) ≈ x end end end
import verification.semantics.stream_props noncomputable theory open_locale classical -- skip s i : if current index < i, must advance; may advance to first ready index ≥ i. -- succ s i : if current index ≤ i, must advance; may advance to first ready index > i. /- if current index < (i, b), must advance; may advance up to first ready index ≥ (i, b) -/ /-- Returns the set of `q` that `s` could skip to if the current state is `x` and it is supposed to skip past `(i, b)` -/ def skip_set {ι α : Type*} [linear_order ι] (s : Stream ι α) (x : s.σ) (i : ι) (b : bool) : set s.σ := {q | ∃ (n : ℕ), q = (s.next'^[n] x) ∧ (0 < n ↔ s.to_order x ≤ (i, b)) ∧ ∀ m, 0 < m → m < n → s.valid (s.next'^[m] x) → s.ready (s.next'^[m] x) → s.index' (s.next'^[m] x) < i} structure SkipStream (ι α : Type*) [linear_order ι] extends Stream ι α := (skip : Π x, valid x → ι → bool → σ) (hskip : ∀ x hx i b, skip x hx i b ∈ skip_set _ x i b) variables {ι : Type} {α : Type*} [linear_order ι] @[simp] noncomputable def SkipStream.eval_skip [add_zero_class α] (s : SkipStream ι α) : ℕ → s.σ → (ι →₀ α) | 0 q := 0 | (n + 1) q := if h₁ : s.valid q then (SkipStream.eval_skip n (s.skip q h₁ (s.index q h₁) (s.ready q))) + (s.eval₀ _ h₁) else 0 /-- The number of steps a stream would skip at index `(i, b)` -/ noncomputable def SkipStream.nskip (s : SkipStream ι α) (q : s.σ) (h : s.valid q) (i : ι) (b : bool) : ℕ := (s.hskip q h i b).some lemma SkipStream.skip_eq (s : SkipStream ι α) (q : s.σ) (h : s.valid q) (i : ι) (b : bool) : s.skip q h i b = (s.next'^[s.nskip q h i b] q) := (s.hskip q h i b).some_spec.1 lemma SkipStream.advance_iff (s : SkipStream ι α) (q : s.σ) (h : s.valid q) (i : ι) (b : bool) : 0 < s.nskip q h i b ↔ s.to_order q ≤ (i, b) := (s.hskip q h i b).some_spec.2.1 /-- All skipped values are less than `i` -/ lemma SkipStream.lt_of_skipped (s : SkipStream ι α) (q : s.σ) (h : s.valid q) (i : ι) (b : bool) (m : ℕ) (h₁m : 0 < m) (h₂m : m < s.nskip q h i b) (h₃ : s.valid (s.next'^[m] q)) (h₄ : s.ready (s.next'^[m] q)) : s.index' (s.next'^[m] q) < i := (s.hskip q h i b).some_spec.2.2 m h₁m h₂m h₃ h₄ lemma SkipStream.not_ready_of_skipped_of_monotonic (s : SkipStream ι α) (hs : s.monotonic) (q : s.σ) (h : s.valid q) (b : bool) (m : ℕ) (h₁m : 0 < m) (h₂m : m < s.nskip q h (s.index q h) b) (h₃ : s.valid (s.next'^[m] q)) : ¬s.ready (s.next'^[m] q) := λ h₄, begin refine (s.lt_of_skipped q h _ b m h₁m h₂m h₃ h₄).not_le _, simpa [Stream.index'_val h] using hs.le_index_iterate q m, end /-- If all skipped states are non-ready, then the eval's are equal -/ theorem Stream.eval₀_skip_eq [add_comm_monoid α] (s : Stream ι α) (q : s.σ) (n : ℕ) (hn : ∀ m < n, s.valid (s.next'^[m] q) → ¬s.ready (s.next'^[m] q)) : s.eval_steps n q = 0 := begin induction n with n ih generalizing q, { simp, }, simp only [Stream.eval_steps, dite_eq_right_iff, forall_true_left], intro h, simp only [Stream.eval₀, (show ¬s.ready q, from hn 0 (nat.zero_lt_succ _) h), dif_neg, not_false_iff, add_zero], apply ih, intros m hm, specialize hn (m + 1) (nat.succ_lt_succ hm), simpa [Stream.next'_val h] using hn, end theorem Stream.eval₀_skip_eq' [add_comm_monoid α] (s : Stream ι α) (q : s.σ) (h : s.valid q) (n : ℕ) (hn : n ≠ 0) (hn : ∀ m, 0 < m → m < n → s.valid (s.next'^[m] q) → ¬s.ready (s.next'^[m] q)) : s.eval_steps n q = s.eval₀ q h := begin cases n, { contradiction, }, have := s.eval₀_skip_eq (s.next q h) n _, { simp [Stream.eval_steps, h, this], }, intros m hm, simpa [Stream.next'_val h] using hn (m + 1) m.zero_lt_succ (nat.succ_lt_succ hm), end theorem SkipStream.eval_skip_eq [add_comm_monoid α] (s : SkipStream ι α) (hs : s.monotonic) (q : s.σ) (n : ℕ) : ∃ (m : ℕ), n ≤ m ∧ s.eval_skip n q = s.eval_steps m q := begin induction n with n ih generalizing q, { refine ⟨0, rfl.le, _⟩, simp, }, by_cases h : s.valid q, swap, { refine ⟨n + 1, rfl.le, _⟩, simp [h], }, rcases ih (s.skip q h (s.index q h) (s.ready q)) with ⟨m, hm₁, hm₂⟩, have : 0 < s.nskip q h (s.index q h) (s.ready q), { rw SkipStream.advance_iff, refine le_of_eq _, ext : 1; simp [Stream.index'_val h], }, refine ⟨s.nskip q h (s.index q h) (s.ready q) + m, _, _⟩, { rw nat.succ_le_iff, refine lt_of_le_of_lt hm₁ _, simpa, }, rw [s.eval_steps_add, s.eval₀_skip_eq' q h, ← SkipStream.skip_eq], { simp [h, add_comm, hm₂], }, { rwa ← zero_lt_iff, }, exact s.not_ready_of_skipped_of_monotonic hs q h _, end
lemma homotopy_eqv_sing: fixes S :: "'a::real_normed_vector set" and a :: "'b::real_normed_vector" shows "S homotopy_eqv {a} \<longleftrightarrow> S \<noteq> {} \<and> contractible S"
\section{AVNA1 Vector Voltmeter (VVM)} \label{sect:VVM} The AVNA allows measurement of the gain of a device, using an internal signal generator. This is presented in terms of dB change in amplitude and shift in phase angle between the input and output. This most useful for characterizing a device, such as a filter. To do this, we have indeed built a voltmeter to measure the device output. Sometimes we would just like to see the voltage displayed directly. This lets us probe circuits for troubleshooting and design work. That is what the VVM does for us. Phase information is important for some network diagnosis. The VVM is intended to be used with the internal signal generator when phase is to be read. \subsection{Description} \label{subsect:VVMDescr} The Vector Voltmeter measures the input rms voltage at any frequency up to about 40 kHz. The frequency of the VVM is determined by the frequency of Signal Generator 1 (SG\#1). Additionally, the phase difference between SG\#1 and the input signal is displayed. By using the SG\#1 output to drive the test circuit, this phase is constant and can be a useful diagnostic tool. If an external generator is used, the measured phase difference will change at a rate determined by the frequency difference between the SG\#1 set frequency and the external generator. This, too, can be a useful measurement. The bandwidth of the measurement is only a few Hz making the measurement very sensitive, \textit{i.e.}, low noise. The VVM operates down into the microVolt region. \subsection{Instructions} \label{subsect:VVMInstr} \textbf{Using the VVM - }Operation starts by setting the frequency of SG\#1 to that appropriate for the measurement. The generator does not need to be enabled ("On") if the signal source for the measurement is generated externally. If the internal SG\#1 is used as the signal source, it should be enabled and the amplitude set. Only the frequency setting will affect the VVM measurement. The steps for controlling the signal generator are listed in the Section 6, below. If it is possible to do so, the internal SG\#1 should be used as the signal source, and this is a requirement if phase needs to be constant and representative of the circuit. Again starting from the main home screen Figure \ref{AVNA_000-label}, we tap the "\textsf{Vector VMeter}" button on the bottom row. This brings up the single screen used by the VVM. It will be displaying amplitude in \textsf{Volts RMS} and phase in degrees, with both shown in bold numbers. With no input, these parameters should be low in value, with the exact voltage depending on frequency. The example of Figure \ref{AVNA_015-label} is running at 996 Hz,with the input shorted to ground, and shows 9 microVolts RMS. % \begin{figure}[H] \begin{center} \includegraphics[scale=0.75]{./images/AVNA_015.pdf} \caption{Vector Voltmeter, ready to measure but with no input.} \label{AVNA_015-label} \end{center} \end{figure} % On the second from top text row is a notation in red, "\textsf{SigGen \#1 996 Hz}" that shows us the SG\#1 frequency without going back to the Signal Generator screens. If SG\#1 is on (enabled), the frequency is shown in white; otherwise it is shown in pink/red. We can now measure a voltage at the chosen frequency by connecting an input to the T input terminals. The voltage amplitude shown is valid regardless of whether the 50-Ohm switch is on or off. The load of the 50-Ohms may cut the amplitude, but the voltage across the resistor is accurate. Figure \ref{AVNA_016-label} shows the resulting screen. % \begin{figure}[H] \begin{center} \includegraphics[scale=0.75]{./images/AVNA_016.pdf} \caption{Vector Voltmeter with Sig Gen \#1 on and connected across to the VVM input.} \label{AVNA_016-label} \end{center} \end{figure} % We can see that the input voltage is 0.100 Volts RMS.. From the second line, we see that the frequency of operation is 996 Hz, but it shows the level as 0.283 Vp-p. These, of course, represent the same level as the peak voltage is $\sqrt{2} = 1.414$ times the RMS voltage and peak-to-peak is twice the peak value. This mixed units for the voltage is a complicated issue, probably makes sense but unfortunately causes more mental exercise than one might want, at times. Getting back to the VVM, you can see how close you are to overload by the little "\textsf{ADC \%p-p=xx.x}" on the screen. This is the per cent of full ADC range for the input. If the level gets to 100\%, the voltage display turns red. At that point the measurements are invalid. Below the voltage and phase display is a "\textsf{Phase Offset}" input. This can be set to values from -180 to +180 degrees. This is a convenience that allows relative phase measurements to be made directly on the display. This does not restrict the range of phase measurements, and they will always display between -180 and +180 degrees. \textbf{Input Impedance - }One more convenience is the two buttons that select "\textsf{Volts High-Z}" or "\textsf{dBm-50 Ohms}". For the dBm readout to be correct, it is necessary to 50-Ohm terminate the input; this is easily done with the "50-Ohm" slide switch. The resulting display in Figure \ref{AVNA_018-label} is shown below. Note that along with switching the amplitude units, a phase offset that has been used to bring the phase display to 0.00 (almost). When the 50-Ohm switch is not closed, the input impedance is one Megohm in parallel with about 25 pF. This is the input impedance of many oscilloscopes, meaning that various x10 and x100 probes can be used with the VVM (as well as with the Spectrum Analyzer) to increase measurement voltage range and to add isolation from a circuit being measured. \textbf{A Warning - }An oscilloscope comes with input protection circuits that we do not have in the AVNA1. That means it is easy to damage the AVNA1. Keep the input at the box to a Volt or so and everything will be OK. Big voltages can cause damage. % \begin{figure}[H] \begin{center} \includegraphics[scale=0.75]{./images/AVNA_018.pdf} \caption{Vector Voltmeter with display set to power into 50-Ohms, expressed in dBm.} \label{AVNA_018-label} \end{center} \end{figure} % One last note, if you are using an external signal source for VVM, and the measurements fails showing only microvolts, it is most likely that SG \#1 is not within a few Hz of the frequency of the input signal. If the external source is not sufficiently stable, this may not be an appropriate method of measurement. A broadband RMS voltmeter could be implemented, but that is for the future. \subsection{Discussion} \label{subsect:VVMDiscus} The operation of the VVM is worthy of a few words. As a test instrument, it is closely related to the transmission measurements part of the Vector Network Analyzer AVNA). Much software is shared between the two instruments. The AVNA determines the relative gain or loss, amplitude and phase, through the transmission path. The VVM is calibrated so that the magnitude of the incoming signal is measured, along with the phase difference between Signal Generator \#1 and the incoming signal. \subsection{DSP Circuit} Two mixer (multiplier) outputs are the in-phase and quadrature signal levels. The square root of the sum of the squares of these two provides the magnitude of the incoming signal. The Signal Generator \#1 (SG \#1) sets the frequency of the measurement. Low pass filtering after the mixers sets the requirement that the incoming signal must be within a few Hz of the SG \#1 frequency. In many cases, it is easiest to just use the Signal Generator output on the \q{Z} terminals of the AVNA1 which is both on frequency and without time-varying phase. If the SG \#1 signal is used as a signal source, the phase will not be shifting with time with time. For this the phase offset can be useful. This has up/down buttons to allow setting to 0.1 degree. The offset can be positive or negative. This is a convenience for zeroing the displayed phase and does not change the basic measurement. \subsection{Input Range} The input signal needs to be within the range of the ADC. The maximum input is a little more than 0.2 Vrms or 0.6 V p-p. Higher voltages require an external voltage divider. The VVM can be used with a 50-Ohm input terminator; without the 50-Ohm terminator the input impedance is 1-megohm in parallel with around 25 pF. In all cases, the VVM shows the voltage at the \q{T} input terminals. The displayed voltage is the RMS value. This is the same as HP used on the (now old) 8405A VVM. If the waveform is not sinusoidal, and there are harmonics, the displayed value is for the fundamental at the frequency of SG \#1. The very narrow bandwidth of the VVM allows low level signals to be measured. With SG \#1 turned off, there is a residual noise of about 10 microVolts. To use an external source generator, the SG \# 1 must be tuned to the same frequency. Otherwise, leakage through the CAL switch U4B in the AVNA1 causes a signal of about 55 uV with the 50 Ohm terminator or around 1.5 mV without the 50-Ohm terminator \textbf{Single Channel Limitations - }The HP 8405 VVM has two inputs and phase-locked tuning to the reference input. The AVNA1 only has one input channel, so the two channel feature cannot be supported. But wait, there actually are two inputs. If the AVNA was rewired to remove R46 to R49 and bring those leads to a switch and to a second input connector, a full 8405A style phase-locked loop could be implemented. But, not now!
# required python version: 3.6+ import os import sys import src.load_data as load_data from src import layer import src.rbm as rbm import src.autoencoder as autoencoder import matplotlib.pyplot as plt import numpy import os import pickle # Phase 0: Read File full_path = os.path.realpath(__file__) path, filename = os.path.split(full_path) data_filepath = '../data' save_filepath = '../output/n-gram' dump_filepath = '../output/dump' gram_name = '4-gram.png' dictionary_name = 'dictionary.dump' inv_dictionary_name = 'inv-dictionary.dump' data_train_filename = 'train.txt' data_valid_filename = 'val.txt' data_train_dump_filename = 'train.dump' data_valid_dump_filename = 'valid.dump' data_train_filepath = os.path.join(path, data_filepath, data_train_filename) data_valid_filepath = os.path.join(path, data_filepath, data_valid_filename) gram_savepath = os.path.join(path, save_filepath, gram_name) dictionary_dumppath = os.path.join(path, dump_filepath, dictionary_name) inv_dictionary_dumppath = os.path.join(path, dump_filepath, inv_dictionary_name) data_train_dump_filepath = os.path.join(path, dump_filepath, data_train_dump_filename) data_valid_dump_filepath = os.path.join(path, dump_filepath, data_valid_dump_filename) # load text data from path def load_from_path(data_filepath): # data_train: numpy.ndarray data_input = numpy.loadtxt(data_filepath, dtype=str, delimiter='\n') # x_train: numpy.ndarray return data_input data_train = load_from_path(data_train_filepath) data_valid = load_from_path(data_valid_filepath) # Phase 1: split # Create a vocabulary dictionary you are required to create an entry for every word in the training set # also, make the data lower-cased def split_lins(data_input): all_lines: list = [] train_size = data_input.size # will serve as a lookup table for the words and their corresponding id. for i in range(train_size): tmp_list = data_input[i].lower().split() tmp_list.insert(0, 'START') tmp_list.append('END') all_lines.insert(i, tmp_list) return all_lines all_lines_train = split_lins(data_train) all_lines_valid = split_lins(data_valid) # build the dictionary def build_vocabulary(all_lines: list): vocabulary: dict = {} train_size = len(all_lines) for i in range(train_size): for word in all_lines[i]: try: vocabulary[word] += 1 except KeyError: vocabulary[word] = 1 return vocabulary vocabulary = build_vocabulary(all_lines_train) # truncate the dictionary def truncate_dictionary(dictionary: dict, size: int): sorted_list = sorted(vocabulary.items(), key=lambda x:x[1]) sorted_list.reverse() dictionary_size = size truncated_vocabulary: dict = {} for i in range(dictionary_size - 1): word, freq = sorted_list[i] truncated_vocabulary[word] = freq truncated_vocabulary['UNK'] = 0 for i in range(dictionary_size - 1, vocabulary.__len__()): _, freq = sorted_list[i] truncated_vocabulary['UNK'] += freq # re-sort the dictionary sorted_list = sorted(truncated_vocabulary.items(), key=lambda x:x[1]) sorted_list.reverse() dictionary_size = 8000 truncated_vocabulary: dict = {} for i in range(dictionary_size - 1): word, freq = sorted_list[i] truncated_vocabulary[word] = freq return truncated_vocabulary truncated_vocabulary = truncate_dictionary(vocabulary, 8000) # generate a dictionary map string to IDs def gen_word_to_id_dict(vocabulary): dictionary: dict = {} idn = 0 for word in truncated_vocabulary: dictionary[word] = idn idn += 1 return dictionary dict_word_to_id = gen_word_to_id_dict(truncated_vocabulary) # replace less frequent words in all_lines with 'UNK' def replace_with_unk(all_lines, dict_word_to_id): tokenized_lines = [] train_size = len(all_lines) for i in range(train_size): tokenized_lines.append([]) for j in range(len(all_lines[i])): if not all_lines[i][j] in truncated_vocabulary: tokenized_lines[i].append(dict_word_to_id['UNK']) else: tokenized_lines[i].append(dict_word_to_id[all_lines[i][j]]) return tokenized_lines tokenized_lines_train = replace_with_unk(all_lines_train, dict_word_to_id) tokenized_lines_valid = replace_with_unk(all_lines_valid, dict_word_to_id) # build a 4-gram def build_four_gram(tokenized_lines): four_gram: dict = {} for i in range(len(tokenized_lines)): cur_line = tokenized_lines[i] cur_len = len(cur_line) if (cur_len < 4): continue for j in range(cur_len-3): cur_tuple = (cur_line[j], cur_line[j+1], cur_line[j+2], cur_line[j+3]) try: four_gram[cur_tuple] += 1 except KeyError: four_gram[cur_tuple] = 1 # sort the 4-gram sorted_list = sorted(four_gram.items(), key=lambda x:x[1]) sorted_list.reverse() return sorted_list four_gram_train = build_four_gram(tokenized_lines_train) four_gram_valid = build_four_gram(tokenized_lines_valid) # plot the 4-gram def plot_four_gram(four_gram: list): x_axis = numpy.arange(four_gram.__len__()) y_axis = numpy.zeros(four_gram.__len__()) for i in range(four_gram.__len__()): y_axis[i] = four_gram[i][1] plt.figure(1) line_1, = plt.plot(y_axis, label='4-gram') plt.xlabel('the ids sorted by the frequency') plt.ylabel('frequency') plt.title('4-gram') plt.savefig(gram_savepath) plt.close(1) return flag_plot_four_gram = True if flag_plot_four_gram: plot_four_gram(four_gram_train) # invert the key-value pair of dictionary inv_dictionary = {v: k for k, v in dict_word_to_id.items()} def print_top_four_gram(four_gram: list, top_num: int): for i in range(top_num): gram_tuple = four_gram[i][0] print(inv_dictionary[gram_tuple[0]], inv_dictionary[gram_tuple[1]], inv_dictionary[gram_tuple[2]], inv_dictionary[gram_tuple[3]], sep=' ') return flag_print_most_frequent_grams: bool = True if flag_print_most_frequent_grams: print_top_four_gram(four_gram_train, 50) # dump the dictionary for later use with open(dictionary_dumppath, 'wb+') as f: pickle.dump(dict_word_to_id, f) with open(inv_dictionary_dumppath, 'wb+') as f: pickle.dump(inv_dictionary, f) # generate the one-hot representation of inputs # get the number of the inputs def process_four_gram(four_gram): num_input: int = len(four_gram) X: numpy.ndarray for i in range(num_input): tup = four_gram[i] w1 = tup[0][0] w2 = tup[0][1] w3 = tup[0][2] w4 = tup[0][3] for j in range(tup[1]): array = numpy.array([w1, w2, w3, w4]).reshape(1, 4) try: X = numpy.concatenate((X, array), axis=0) except NameError: X = array return X X_train = process_four_gram(four_gram_train) X_valid = process_four_gram(four_gram_valid) # dump the one-hot representation of input with open(data_train_dump_filepath, 'wb+') as f: pickle.dump(X_train, f) with open(data_valid_dump_filepath, 'wb+') as f: pickle.dump(X_valid, f) print(truncated_vocabulary['UNK']) # Phase 3: Compute the number of trainable parameters in the network flag_print_num_trainable: bool = True if flag_print_num_trainable: print(8000 * 16 + 128 * 16 * 3 + 128 + 8000 * 128 + 8000)
------------------------------------------------------------------------ -- The Agda standard library -- -- Primality ------------------------------------------------------------------------ {-# OPTIONS --without-K --safe #-} module Data.Nat.Primality where open import Data.Empty using (⊥) open import Data.Fin using (Fin; toℕ) open import Data.Fin.Properties using (all?) open import Data.Nat using (ℕ; suc; _+_) open import Data.Nat.Divisibility using (_∤_; _∣?_) open import Relation.Nullary using (yes; no) open import Relation.Nullary.Decidable using (from-yes) open import Relation.Nullary.Negation using (¬?) open import Relation.Unary using (Decidable) -- Definition of primality. Prime : ℕ → Set Prime 0 = ⊥ Prime 1 = ⊥ Prime (suc (suc n)) = (i : Fin n) → 2 + toℕ i ∤ 2 + n -- Decision procedure for primality. prime? : Decidable Prime prime? 0 = no λ() prime? 1 = no λ() prime? (suc (suc n)) = all? (λ _ → ¬? (_ ∣? _)) private -- Example: 2 is prime. 2-is-prime : Prime 2 2-is-prime = from-yes (prime? 2)
= Forward Intelligence Team =
!======================================================================= ! Generated by : PSCAD v4.6.3.0 ! ! Warning: The content of this file is automatically generated. ! Do not modify, as any changes made here will be lost! !----------------------------------------------------------------------- ! Component : Main ! Description : !----------------------------------------------------------------------- !======================================================================= SUBROUTINE MainDyn() !--------------------------------------- ! Standard includes !--------------------------------------- INCLUDE 'nd.h' INCLUDE 'emtconst.h' INCLUDE 'emtstor.h' INCLUDE 's0.h' INCLUDE 's1.h' INCLUDE 's2.h' INCLUDE 's4.h' INCLUDE 'branches.h' INCLUDE 'pscadv3.h' INCLUDE 'fnames.h' INCLUDE 'radiolinks.h' INCLUDE 'matlab.h' INCLUDE 'rtconfig.h' !--------------------------------------- ! Function/Subroutine Declarations !--------------------------------------- !--------------------------------------- ! Variable Declarations !--------------------------------------- ! Subroutine Arguments ! Electrical Node Indices INTEGER NT_1(3) ! Control Signals REAL Ia(3), Ea(3) ! Internal Variables REAL RVD1_1, RVD1_2, RVD1_3, RVD1_4 REAL RVD1_5, RVD1_6, RVD1_7 ! Indexing variables INTEGER ICALL_NO ! Module call num INTEGER ISTOF, IT_0 ! Storage Indices INTEGER SS, INODE, IBRCH ! SS/Node/Branch/Xfmr !--------------------------------------- ! Local Indices !--------------------------------------- ! Dsdyn <-> Dsout transfer index storage NTXFR = NTXFR + 1 TXFR(NTXFR,1) = NSTOL TXFR(NTXFR,2) = NSTOI TXFR(NTXFR,3) = NSTOF TXFR(NTXFR,4) = NSTOC ! Define electric network subsystem number SS = NODE(NNODE+1) ! Increment and assign runtime configuration call indices ICALL_NO = NCALL_NO NCALL_NO = NCALL_NO + 1 ! Increment global storage indices ISTOF = NSTOF NSTOF = NSTOF + 6 NPGB = NPGB + 9 INODE = NNODE + 2 NNODE = NNODE + 8 IBRCH = NBRCH(SS) NBRCH(SS) = NBRCH(SS) + 9 NCSCS = NCSCS + 0 NCSCR = NCSCR + 0 !--------------------------------------- ! Transfers from storage arrays !--------------------------------------- ! Array (1:3) quantities... DO IT_0 = 1,3 Ia(IT_0) = STOF(ISTOF + 0 + IT_0) Ea(IT_0) = STOF(ISTOF + 3 + IT_0) END DO !--------------------------------------- ! Electrical Node Lookup !--------------------------------------- ! Array (1:3) quantities... DO IT_0 = 1,3 NT_1(IT_0) = NODE(INODE + 0 + IT_0) END DO !--------------------------------------- ! Configuration of Models !--------------------------------------- IF ( TIMEZERO ) THEN FILENAME = 'Main.dta' CALL EMTDC_OPENFILE SECTION = 'DATADSD:' CALL EMTDC_GOTOSECTION ENDIF !--------------------------------------- ! Generated code from module definition !--------------------------------------- ! 1:[source3] Three Phase Voltage Source Model 1 'Source1' ! 3-Phase source: Source1 RVD1_1 = RTCF(NRTCF+12) RVD1_2 = RTCF(NRTCF+14) RVD1_3 = RTCF(NRTCF+13) CALL ESYS651_EXE(SS, (IBRCH+1), (IBRCH+2), (IBRCH+3),0,0,0, SS, NT& &_1(1),NT_1(2),NT_1(3), 0, RVD1_2, RVD1_1, 0.05, 1.0, 1.0, 1.0,RVD1& &_3, 1.0, 0.02, 0.05, 1.0, 0.02, 0.05, RVD1_4, RVD1_5, RVD1_6, RVD1& &_7) !--------------------------------------- ! Feedbacks and transfers to storage !--------------------------------------- ! Array (1:3) quantities... DO IT_0 = 1,3 STOF(ISTOF + 0 + IT_0) = Ia(IT_0) STOF(ISTOF + 3 + IT_0) = Ea(IT_0) END DO !--------------------------------------- ! Transfer to Exports !--------------------------------------- !--------------------------------------- ! Close Model Data read !--------------------------------------- IF ( TIMEZERO ) CALL EMTDC_CLOSEFILE RETURN END !======================================================================= SUBROUTINE MainOut() !--------------------------------------- ! Standard includes !--------------------------------------- INCLUDE 'nd.h' INCLUDE 'emtconst.h' INCLUDE 'emtstor.h' INCLUDE 's0.h' INCLUDE 's1.h' INCLUDE 's2.h' INCLUDE 's4.h' INCLUDE 'branches.h' INCLUDE 'pscadv3.h' INCLUDE 'fnames.h' INCLUDE 'radiolinks.h' INCLUDE 'matlab.h' INCLUDE 'rtconfig.h' !--------------------------------------- ! Function/Subroutine Declarations !--------------------------------------- REAL EMTDC_VVDC ! !--------------------------------------- ! Variable Declarations !--------------------------------------- ! Electrical Node Indices INTEGER NT_2(3) ! Control Signals REAL Ia(3), Ea(3) ! Internal Variables INTEGER IVD1_1 ! Indexing variables INTEGER ICALL_NO ! Module call num INTEGER ISTOL, ISTOI, ISTOF, ISTOC, IT_0 ! Storage Indices INTEGER IPGB ! Control/Monitoring INTEGER SS, INODE, IBRCH ! SS/Node/Branch/Xfmr !--------------------------------------- ! Local Indices !--------------------------------------- ! Dsdyn <-> Dsout transfer index storage NTXFR = NTXFR + 1 ISTOL = TXFR(NTXFR,1) ISTOI = TXFR(NTXFR,2) ISTOF = TXFR(NTXFR,3) ISTOC = TXFR(NTXFR,4) ! Define electric network subsystem number SS = NODE(NNODE+1) ! Increment and assign runtime configuration call indices ICALL_NO = NCALL_NO NCALL_NO = NCALL_NO + 1 ! Increment global storage indices IPGB = NPGB NPGB = NPGB + 9 INODE = NNODE + 2 NNODE = NNODE + 8 IBRCH = NBRCH(SS) NBRCH(SS) = NBRCH(SS) + 9 NCSCS = NCSCS + 0 NCSCR = NCSCR + 0 !--------------------------------------- ! Transfers from storage arrays !--------------------------------------- ! Array (1:3) quantities... DO IT_0 = 1,3 Ia(IT_0) = STOF(ISTOF + 0 + IT_0) Ea(IT_0) = STOF(ISTOF + 3 + IT_0) END DO !--------------------------------------- ! Electrical Node Lookup !--------------------------------------- ! Array (1:3) quantities... DO IT_0 = 1,3 NT_2(IT_0) = NODE(INODE + 3 + IT_0) END DO !--------------------------------------- ! Configuration of Models !--------------------------------------- IF ( TIMEZERO ) THEN FILENAME = 'Main.dta' CALL EMTDC_OPENFILE SECTION = 'DATADSO:' CALL EMTDC_GOTOSECTION ENDIF !--------------------------------------- ! Generated code from module definition !--------------------------------------- ! 10:[ammeter] Current Meter 'Ia' Ia(1) = ( CBR((IBRCH+4), SS)) Ia(2) = ( CBR((IBRCH+5), SS)) Ia(3) = ( CBR((IBRCH+6), SS)) ! 20:[voltmetergnd] Voltmeter (Line - Ground) 'Ea' Ea(1) = EMTDC_VVDC(SS, NT_2(1), 0) Ea(2) = EMTDC_VVDC(SS, NT_2(2), 0) Ea(3) = EMTDC_VVDC(SS, NT_2(3), 0) ! 30:[pgb] Output Channel 'Ia' DO IVD1_1 = 1, 3 PGB(IPGB+1+IVD1_1-1) = Ia(IVD1_1) ENDDO ! 40:[pgb] Output Channel 'Ea' DO IVD1_1 = 1, 3 PGB(IPGB+4+IVD1_1-1) = Ea(IVD1_1) ENDDO ! 50:[pgb] Output Channel 'Ea' DO IVD1_1 = 1, 3 PGB(IPGB+7+IVD1_1-1) = Ea(IVD1_1) ENDDO !--------------------------------------- ! Feedbacks and transfers to storage !--------------------------------------- ! Array (1:3) quantities... DO IT_0 = 1,3 STOF(ISTOF + 0 + IT_0) = Ia(IT_0) STOF(ISTOF + 3 + IT_0) = Ea(IT_0) END DO !--------------------------------------- ! Close Model Data read !--------------------------------------- IF ( TIMEZERO ) CALL EMTDC_CLOSEFILE RETURN END !======================================================================= SUBROUTINE MainDyn_Begin() !--------------------------------------- ! Standard includes !--------------------------------------- INCLUDE 'nd.h' INCLUDE 'emtconst.h' INCLUDE 's0.h' INCLUDE 's1.h' INCLUDE 's4.h' INCLUDE 'branches.h' INCLUDE 'pscadv3.h' INCLUDE 'radiolinks.h' INCLUDE 'rtconfig.h' !--------------------------------------- ! Function/Subroutine Declarations !--------------------------------------- !--------------------------------------- ! Variable Declarations !--------------------------------------- ! Subroutine Arguments ! Electrical Node Indices ! Control Signals ! Internal Variables REAL RVD1_1, RVD1_2 ! Indexing variables INTEGER ICALL_NO ! Module call num INTEGER IT_0 ! Storage Indices INTEGER SS, INODE, IBRCH ! SS/Node/Branch/Xfmr !--------------------------------------- ! Local Indices !--------------------------------------- ! Define electric network subsystem number SS = NODE(NNODE+1) ! Increment and assign runtime configuration call indices ICALL_NO = NCALL_NO NCALL_NO = NCALL_NO + 1 ! Increment global storage indices INODE = NNODE + 2 NNODE = NNODE + 8 IBRCH = NBRCH(SS) NBRCH(SS) = NBRCH(SS) + 9 NCSCS = NCSCS + 0 NCSCR = NCSCR + 0 !--------------------------------------- ! Electrical Node Lookup !--------------------------------------- !--------------------------------------- ! Generated code from module definition !--------------------------------------- ! 1:[source3] Three Phase Voltage Source Model 1 'Source1' CALL COMPONENT_ID(ICALL_NO,119983459) RVD1_1 = 1.0 RVD1_2 = 0.1 CALL ESYS651_CFG(3,2,0,0,0,SS, (IBRCH+1), (IBRCH+2), (IBRCH+3),0,0& &,0, 60.0,60.0,0.0,13.8,0.0,0.0,1.0,13.8,230.0, 1.0,80.0,2.0,1.0,1.& &0,0.026, 1.0,80.0,RVD1_1,RVD1_2) RETURN END !======================================================================= SUBROUTINE MainOut_Begin() !--------------------------------------- ! Standard includes !--------------------------------------- INCLUDE 'nd.h' INCLUDE 'emtconst.h' INCLUDE 's0.h' INCLUDE 's1.h' INCLUDE 's4.h' INCLUDE 'branches.h' INCLUDE 'pscadv3.h' INCLUDE 'radiolinks.h' INCLUDE 'rtconfig.h' !--------------------------------------- ! Function/Subroutine Declarations !--------------------------------------- !--------------------------------------- ! Variable Declarations !--------------------------------------- ! Subroutine Arguments ! Electrical Node Indices INTEGER NT_2(3) ! Control Signals ! Internal Variables ! Indexing variables INTEGER ICALL_NO ! Module call num INTEGER IT_0 ! Storage Indices INTEGER SS, INODE, IBRCH ! SS/Node/Branch/Xfmr !--------------------------------------- ! Local Indices !--------------------------------------- ! Define electric network subsystem number SS = NODE(NNODE+1) ! Increment and assign runtime configuration call indices ICALL_NO = NCALL_NO NCALL_NO = NCALL_NO + 1 ! Increment global storage indices INODE = NNODE + 2 NNODE = NNODE + 8 IBRCH = NBRCH(SS) NBRCH(SS) = NBRCH(SS) + 9 NCSCS = NCSCS + 0 NCSCR = NCSCR + 0 !--------------------------------------- ! Electrical Node Lookup !--------------------------------------- ! Array (1:3) quantities... DO IT_0 = 1,3 NT_2(IT_0) = NODE(INODE + 3 + IT_0) END DO !--------------------------------------- ! Generated code from module definition !--------------------------------------- ! 30:[pgb] Output Channel 'Ia' ! 40:[pgb] Output Channel 'Ea' ! 50:[pgb] Output Channel 'Ea' RETURN END
section \<open>Pratt's Primality Certificates\<close> text_raw \<open>\label{sec:pratt}\<close> theory Pratt_Certificate imports Complex_Main Lehmer.Lehmer begin text \<open> This work formalizes Pratt's proof system as described in his article ``Every Prime has a Succinct Certificate''\cite{pratt1975certificate}. The proof system makes use of two types of predicates: \begin{itemize} \item $\text{Prime}(p)$: $p$ is a prime number \item $(p, a, x)$: \<open>\<forall>q \<in> prime_factors(x). [a^((p - 1) div q) \<noteq> 1] (mod p)\<close> \end{itemize} We represent these predicates with the following datatype: \<close> datatype pratt = Prime nat | Triple nat nat nat text \<open> Pratt describes an inference system consisting of the axiom $(p, a, 1)$ and the following inference rules: \begin{itemize} \item R1: If we know that $(p, a, x)$ and \<open>[a^((p - 1) div q) \<noteq> 1] (mod p)\<close> hold for some prime number $q$ we can conclude $(p, a, qx)$ from that. \item R2: If we know that $(p, a, p - 1)$ and \<open>[a^(p - 1) = 1] (mod p)\<close> hold, we can infer $\text{Prime}(p)$. \end{itemize} Both rules follow from Lehmer's theorem as we will show later on. A list of predicates (i.e., values of type @{type pratt}) is a \emph{certificate}, if it is built according to the inference system described above. I.e., a list @{term "x # xs :: pratt list"} is a certificate if @{term "xs :: pratt list"} is a certificate and @{term "x :: pratt"} is either an axiom or all preconditions of @{term "x :: pratt"} occur in @{term "xs :: pratt list"}. We call a certificate @{term "xs :: pratt list"} a \emph{certificate for @{term p}}, if @{term "Prime p"} occurs in @{term "xs :: pratt list"}. The function \<open>valid_cert\<close> checks whether a list is a certificate. \<close> fun valid_cert :: "pratt list \<Rightarrow> bool" where "valid_cert [] = True" | R2: "valid_cert (Prime p#xs) \<longleftrightarrow> 1 < p \<and> valid_cert xs \<and> (\<exists> a . [a^(p - 1) = 1] (mod p) \<and> Triple p a (p - 1) \<in> set xs)" | R1: "valid_cert (Triple p a x # xs) \<longleftrightarrow> p > 1 \<and> 0 < x \<and> valid_cert xs \<and> (x=1 \<or> (\<exists>q y. x = q * y \<and> Prime q \<in> set xs \<and> Triple p a y \<in> set xs \<and> [a^((p - 1) div q) \<noteq> 1] (mod p)))" text \<open> We define a function @{term size_cert} to measure the size of a certificate, assuming a binary encoding of numbers. We will use this to show that there is a certificate for a prime number $p$ such that the size of the certificate is polynomially bounded in the size of the binary representation of $p$. \<close> fun size_pratt :: "pratt \<Rightarrow> real" where "size_pratt (Prime p) = log 2 p" | "size_pratt (Triple p a x) = log 2 p + log 2 a + log 2 x" fun size_cert :: "pratt list \<Rightarrow> real" where "size_cert [] = 0" | "size_cert (x # xs) = 1 + size_pratt x + size_cert xs" subsection \<open>Soundness\<close> text \<open> In Section \ref{sec:pratt} we introduced the predicates $\text{Prime}(p)$ and $(p, a, x)$. In this section we show that for a certificate every predicate occurring in this certificate holds. In particular, if $\text{Prime}(p)$ occurs in a certificate, $p$ is prime. \<close> lemma prime_factors_one [simp]: shows "prime_factors (Suc 0) = {}" using prime_factorization_1 [where ?'a = nat] by simp lemma prime_factors_of_prime: fixes p :: nat assumes "prime p" shows "prime_factors p = {p}" using assms by (fact prime_prime_factors) definition pratt_triple :: "nat \<Rightarrow> nat \<Rightarrow> nat \<Rightarrow> bool" where "pratt_triple p a x \<longleftrightarrow> x > 0 \<and> (\<forall>q\<in>prime_factors x. [a ^ ((p - 1) div q) \<noteq> 1] (mod p))" lemma pratt_triple_1: "p > 1 \<Longrightarrow> x = 1 \<Longrightarrow> pratt_triple p a x" by (auto simp: pratt_triple_def) lemma pratt_triple_extend: assumes "prime q" "pratt_triple p a y" "p > 1" "x > 0" "x = q * y" "[a ^ ((p - 1) div q) \<noteq> 1] (mod p)" shows "pratt_triple p a x" proof - have "prime_factors x = insert q (prime_factors y)" using assms by (simp add: prime_factors_product prime_prime_factors) also have "\<forall>r\<in>\<dots>. [a ^ ((p - 1) div r) \<noteq> 1] (mod p)" using assms by (auto simp: pratt_triple_def) finally show ?thesis using assms unfolding pratt_triple_def by blast qed lemma pratt_triple_imp_prime: assumes "pratt_triple p a x" "p > 1" "x = p - 1" "[a ^ (p - 1) = 1] (mod p)" shows "prime p" using lehmers_theorem[of p a] assms by (auto simp: pratt_triple_def) theorem pratt_sound: assumes 1: "valid_cert c" assumes 2: "t \<in> set c" shows "(t = Prime p \<longrightarrow> prime p) \<and> (t = Triple p a x \<longrightarrow> ((\<forall>q \<in> prime_factors x . [a^((p - 1) div q) \<noteq> 1] (mod p)) \<and> 0<x))" using assms proof (induction c arbitrary: p a x t) case Nil then show ?case by force next case (Cons y ys) { assume "y=Triple p a x" "x=1" then have "(\<forall> q \<in> prime_factors x . [a^((p - 1) div q) \<noteq> 1] (mod p)) \<and> 0<x" by simp } moreover { assume x_y: "y=Triple p a x" "x~=1" hence "x>0" using Cons.prems by auto obtain q z where "x=q*z" "Prime q \<in> set ys \<and> Triple p a z \<in> set ys" and cong:"[a^((p - 1) div q) \<noteq> 1] (mod p)" using Cons.prems x_y by auto then have factors_IH:"(\<forall> r \<in> prime_factors z . [a^((p - 1) div r) \<noteq> 1] (mod p))" "prime q" "z>0" using Cons.IH Cons.prems \<open>x>0\<close> \<open>y=Triple p a x\<close> by force+ then have "prime_factors x = prime_factors z \<union> {q}" using \<open>x =q*z\<close> \<open>x>0\<close> by (simp add: prime_factors_product prime_factors_of_prime) then have "(\<forall> q \<in> prime_factors x . [a^((p - 1) div q) \<noteq> 1] (mod p)) \<and> 0 < x" using factors_IH cong by (simp add: \<open>x>0\<close>) } ultimately have y_Triple:"y=Triple p a x \<Longrightarrow> (\<forall> q \<in> prime_factors x . [a^((p - 1) div q) \<noteq> 1] (mod p)) \<and> 0<x" by linarith { assume y: "y=Prime p" "p>2" then obtain a where a:"[a^(p - 1) = 1] (mod p)" "Triple p a (p - 1) \<in> set ys" using Cons.prems by auto then have Bier:"(\<forall>q\<in>prime_factors (p - 1). [a^((p - 1) div q) \<noteq> 1] (mod p))" using Cons.IH Cons.prems(1) by (simp add:y(1)) then have "prime p" using lehmers_theorem[OF _ _a(1)] \<open>p>2\<close> by fastforce } moreover { assume "y=Prime p" "p=2" hence "prime p" by simp } moreover { assume "y=Prime p" then have "p>1" using Cons.prems by simp } ultimately have y_Prime:"y = Prime p \<Longrightarrow> prime p" by linarith show ?case proof (cases "t \<in> set ys") case True show ?thesis using Cons.IH[OF _ True] Cons.prems(1) by (cases y) auto next case False thus ?thesis using Cons.prems(2) y_Prime y_Triple by force qed qed corollary pratt_primeI: assumes "valid_cert xs" "Prime p \<in> set xs" shows "prime p" using pratt_sound[OF assms] by simp subsection \<open>Completeness\<close> text \<open> In this section we show completeness of Pratt's proof system, i.e., we show that for every prime number $p$ there exists a certificate for $p$. We also give an upper bound for the size of a minimal certificate The prove we give is constructive. We assume that we have certificates for all prime factors of $p - 1$ and use these to build a certificate for $p$ from that. It is important to note that certificates can be concatenated. \<close> lemma valid_cert_appendI: assumes "valid_cert r" assumes "valid_cert s" shows "valid_cert (r @ s)" using assms proof (induction r) case (Cons y ys) then show ?case by (cases y) auto qed simp lemma valid_cert_concatI: "(\<forall>x \<in> set xs . valid_cert x) \<Longrightarrow> valid_cert (concat xs)" by (induction xs) (auto simp add: valid_cert_appendI) lemma size_pratt_le: fixes d::real assumes "\<forall> x \<in> set c. size_pratt x \<le> d" shows "size_cert c \<le> length c * (1 + d)" using assms by (induction c) (simp_all add: algebra_simps) fun build_fpc :: "nat \<Rightarrow> nat \<Rightarrow> nat \<Rightarrow> nat list \<Rightarrow> pratt list" where "build_fpc p a r [] = [Triple p a r]" | "build_fpc p a r (y # ys) = Triple p a r # build_fpc p a (r div y) ys" text \<open> The function @{term build_fpc} helps us to construct a certificate for $p$ from the certificates for the prime factors of $p - 1$. Called as @{term "build_fpc p a (p - 1) qs"} where $@{term "qs"} = q_1 \ldots q_n$ is prime decomposition of $p - 1$ such that $q_1 \cdot \dotsb \cdot q_n = @{term "p - 1 :: nat"}$, it returns the following list of predicates: \[ (p,a,p-1), (p,a,\frac{p - 1}{q_1}), (p,a,\frac{p - 1}{q_1 q_2}), \ldots, (p,a,\frac{p-1}{q_1 \ldots q_n}) = (p,a,1) \] I.e., if there is an appropriate $a$ and and a certificate @{term rs} for all prime factors of $p$, then we can construct a certificate for $p$ as @{term [display] "Prime p # build_fpc p a (p - 1) qs @ rs"} \<close> text \<open> The following lemma shows that \<open>build_fpc\<close> extends a certificate that satisfies the preconditions described before to a correct certificate. \<close> lemma correct_fpc: assumes "valid_cert xs" "p > 1" assumes "prod_list qs = r" "r \<noteq> 0" assumes "\<forall> q \<in> set qs . Prime q \<in> set xs" assumes "\<forall> q \<in> set qs . [a^((p - 1) div q) \<noteq> 1] (mod p)" shows "valid_cert (build_fpc p a r qs @ xs)" using assms proof (induction qs arbitrary: r) case Nil thus ?case by auto next case (Cons y ys) have "prod_list ys = r div y" using Cons.prems by auto then have T_in: "Triple p a (prod_list ys) \<in> set (build_fpc p a (r div y) ys @ xs)" by (cases ys) auto have "valid_cert (build_fpc p a (r div y) ys @ xs)" using Cons.prems by (intro Cons.IH) auto then have "valid_cert (Triple p a r # build_fpc p a (r div y) ys @ xs)" using \<open>r \<noteq> 0\<close> T_in Cons.prems by auto then show ?case by simp qed lemma length_fpc: "length (build_fpc p a r qs) = length qs + 1" by (induction qs arbitrary: r) auto lemma div_gt_0: fixes m n :: nat assumes "m \<le> n" "0 < m" shows "0 < n div m" proof - have "0 < m div m" using \<open>0 < m\<close> div_self by auto also have "m div m \<le> n div m" using \<open>m \<le> n\<close> by (rule div_le_mono) finally show ?thesis . qed lemma size_pratt_fpc: assumes "a \<le> p" "r \<le> p" "0 < a" "0 < r" "0 < p" "prod_list qs = r" shows "\<forall>x \<in> set (build_fpc p a r qs) . size_pratt x \<le> 3 * log 2 p" using assms proof (induction qs arbitrary: r) case Nil then have "log 2 a \<le> log 2 p" "log 2 r \<le> log 2 p" by auto then show ?case by simp next case (Cons q qs) then have "log 2 a \<le> log 2 p" "log 2 r \<le> log 2 p" by auto then have "log 2 a + log 2 r \<le> 2 * log 2 p" by arith moreover have "r div q > 0" using Cons.prems by (fastforce intro: div_gt_0) moreover hence "prod_list qs = r div q" using Cons.prems(6) by auto moreover have "r div q \<le> p" using \<open>r\<le>p\<close> div_le_dividend[of r q] by linarith ultimately show ?case using Cons by simp qed lemma concat_set: assumes "\<forall> q \<in> qs . \<exists> c \<in> set cs . Prime q \<in> set c" shows "\<forall> q \<in> qs . Prime q \<in> set (concat cs)" using assms by (induction cs) auto lemma p_in_prime_factorsE: fixes n :: nat assumes "p \<in> prime_factors n" "0 < n" obtains "2 \<le> p" "p \<le> n" "p dvd n" "prime p" proof from assms show "prime p" by auto then show "2 \<le> p" by (auto dest: prime_gt_1_nat) from assms show "p dvd n" by auto then show "p \<le> n" using \<open>0 < n\<close> by (rule dvd_imp_le) qed lemma prime_factors_list_prime: fixes n :: nat assumes "prime n" shows "\<exists> qs. prime_factors n = set qs \<and> prod_list qs = n \<and> length qs = 1" using assms by (auto simp add: prime_factorization_prime intro: exI [of _ "[n]"]) lemma prime_factors_list: fixes n :: nat assumes "3 < n" "\<not> prime n" shows "\<exists> qs. prime_factors n = set qs \<and> prod_list qs = n \<and> length qs \<ge> 2" using assms proof (induction n rule: less_induct) case (less n) obtain p where "p \<in> prime_factors n" using \<open>n > 3\<close> prime_factors_elem by force then have p':"2 \<le> p" "p \<le> n" "p dvd n" "prime p" using \<open>3 < n\<close> by (auto elim: p_in_prime_factorsE) { assume "n div p > 3" "\<not> prime (n div p)" then obtain qs where "prime_factors (n div p) = set qs" "prod_list qs = (n div p)" "length qs \<ge> 2" using p' by atomize_elim (auto intro: less simp: div_gt_0) moreover have "prime_factors (p * (n div p)) = insert p (prime_factors (n div p))" using \<open>3 < n\<close> \<open>2 \<le> p\<close> \<open>p \<le> n\<close> \<open>prime p\<close> by (auto simp: prime_factors_product div_gt_0 prime_factors_of_prime) ultimately have "prime_factors n = set (p # qs)" "prod_list (p # qs) = n" "length (p#qs) \<ge> 2" using \<open>p dvd n\<close> by simp_all hence ?case by blast } moreover { assume "prime (n div p)" then obtain qs where "prime_factors (n div p) = set qs" "prod_list qs = (n div p)" "length qs = 1" using prime_factors_list_prime by blast moreover have "prime_factors (p * (n div p)) = insert p (prime_factors (n div p))" using \<open>3 < n\<close> \<open>2 \<le> p\<close> \<open>p \<le> n\<close> \<open>prime p\<close> by (auto simp: prime_factors_product div_gt_0 prime_factors_of_prime) ultimately have "prime_factors n = set (p # qs)" "prod_list (p # qs) = n" "length (p#qs) \<ge> 2" using \<open>p dvd n\<close> by simp_all hence ?case by blast } note case_prime = this moreover { assume "n div p = 1" hence "n = p" using \<open>n>3\<close> using One_leq_div[OF \<open>p dvd n\<close>] p'(2) by force hence ?case using \<open>prime p\<close> \<open>\<not> prime n\<close> by auto } moreover { assume "n div p = 2" hence ?case using case_prime by force } moreover { assume "n div p = 3" hence ?case using p' case_prime by force } ultimately show ?case using p' div_gt_0[of p n] case_prime by fastforce qed lemma prod_list_ge: fixes xs::"nat list" assumes "\<forall> x \<in> set xs . x \<ge> 1" shows "prod_list xs \<ge> 1" using assms by (induction xs) auto lemma sum_list_log: fixes b::real fixes xs::"nat list" assumes b: "b > 0" "b \<noteq> 1" assumes xs:"\<forall> x \<in> set xs . x \<ge> b" shows "(\<Sum>x\<leftarrow>xs. log b x) = log b (prod_list xs)" using assms proof (induction xs) case Nil thus ?case by simp next case (Cons y ys) have "real (prod_list ys) > 0" using prod_list_ge Cons.prems by fastforce thus ?case using log_mult[OF Cons.prems(1-2)] Cons by force qed lemma concat_length_le: fixes g :: "nat \<Rightarrow> real" assumes "\<forall> x \<in> set xs . real (length (f x)) \<le> g x" shows "length (concat (map f xs)) \<le> (\<Sum>x\<leftarrow>xs. g x)" using assms by (induction xs) force+ lemma prime_gt_3_impl_p_minus_one_not_prime: fixes p::nat assumes "prime p" "p>3" shows "\<not> prime (p - 1)" proof assume "prime (p - 1)" have "\<not> even p" using assms by (simp add: prime_odd_nat) hence "2 dvd (p - 1)" by presburger then obtain q where "p - 1 = 2 * q" .. then have "2 \<in> prime_factors (p - 1)" using \<open>p>3\<close> by (auto simp: prime_factorization_times_prime) thus False using prime_factors_of_prime \<open>p>3\<close> \<open>prime (p - 1)\<close> by auto qed text \<open> We now prove that Pratt's proof system is complete and derive upper bounds for the length and the size of the entries of a minimal certificate. \<close> theorem pratt_complete': assumes "prime p" shows "\<exists>c. Prime p \<in> set c \<and> valid_cert c \<and> length c \<le> 6*log 2 p - 4 \<and> (\<forall> x \<in> set c. size_pratt x \<le> 3 * log 2 p)" using assms proof (induction p rule: less_induct) case (less p) from \<open>prime p\<close> have "p > 1" by (rule prime_gt_1_nat) then consider "p = 2" | " p = 3" | "p > 3" by force thus ?case proof cases assume [simp]: "p = 2" have "Prime p \<in> set [Prime 2, Triple 2 1 1]" by simp thus ?case by fastforce next assume [simp]: "p = 3" let ?cert = "[Prime 3, Triple 3 2 2, Triple 3 2 1, Prime 2, Triple 2 1 1]" have "length ?cert \<le> 6*log 2 p - 4 \<longleftrightarrow> 3 \<le> 2 * log 2 3" by simp also have "2 * log 2 3 = log 2 (3 ^ 2 :: real)" by (subst log_nat_power) simp_all also have "\<dots> = log 2 9" by simp also have "3 \<le> log 2 9 \<longleftrightarrow> True" by (subst le_log_iff) simp_all finally show ?case by (intro exI[where x = "?cert"]) (simp add: cong_def) next assume "p > 3" have qlp: "\<forall>q \<in> prime_factors (p - 1) . q < p" using \<open>prime p\<close> by (metis One_nat_def Suc_pred le_imp_less_Suc lessI less_trans p_in_prime_factorsE prime_gt_1_nat zero_less_diff) hence factor_certs:"\<forall>q \<in> prime_factors (p - 1) . (\<exists>c . ((Prime q \<in> set c) \<and> (valid_cert c) \<and> length c \<le> 6*log 2 q - 4) \<and> (\<forall> x \<in> set c. size_pratt x \<le> 3 * log 2 q))" by (auto intro: less.IH) obtain a where a:"[a^(p - 1) = 1] (mod p) \<and> (\<forall> q. q \<in> prime_factors (p - 1) \<longrightarrow> [a^((p - 1) div q) \<noteq> 1] (mod p))" and a_size: "a > 0" "a < p" using converse_lehmer[OF \<open>prime p\<close>] by blast have "\<not> prime (p - 1)" using \<open>p>3\<close> prime_gt_3_impl_p_minus_one_not_prime \<open>prime p\<close> by auto have "p \<noteq> 4" using \<open>prime p\<close> by auto hence "p - 1 > 3" using \<open>p > 3\<close> by auto then obtain qs where prod_qs_eq:"prod_list qs = p - 1" and qs_eq:"set qs = prime_factors (p - 1)" and qs_length_eq: "length qs \<ge> 2" using prime_factors_list[OF _ \<open>\<not> prime (p - 1)\<close>] by auto obtain f where f:"\<forall>q \<in> prime_factors (p - 1) . \<exists> c. f q = c \<and> ((Prime q \<in> set c) \<and> (valid_cert c) \<and> length c \<le> 6*log 2 q - 4) \<and> (\<forall> x \<in> set c. size_pratt x \<le> 3 * log 2 q)" using factor_certs by metis let ?cs = "map f qs" have cs: "\<forall>q \<in> prime_factors (p - 1) . (\<exists>c \<in> set ?cs . (Prime q \<in> set c) \<and> (valid_cert c) \<and> length c \<le> 6*log 2 q - 4 \<and> (\<forall> x \<in> set c. size_pratt x \<le> 3 * log 2 q))" using f qs_eq by auto have cs_cert_size: "\<forall>c \<in> set ?cs . \<forall> x \<in> set c. size_pratt x \<le> 3 * log 2 p" proof fix c assume "c \<in> set (map f qs)" then obtain q where "c = f q" and "q \<in> set qs" by auto hence *:"\<forall> x \<in> set c. size_pratt x \<le> 3 * log 2 q" using f qs_eq by blast have "q < p" "q > 0" using qlp \<open>q \<in> set qs\<close> qs_eq prime_factors_gt_0_nat by auto show "\<forall> x \<in> set c. size_pratt x \<le> 3 * log 2 p" proof fix x assume "x \<in> set c" hence "size_pratt x \<le> 3 * log 2 q" using * by fastforce also have "\<dots> \<le> 3 * log 2 p" using \<open>q < p\<close> \<open>q > 0\<close> \<open>p > 3\<close> by simp finally show "size_pratt x \<le> 3 * log 2 p" . qed qed have cs_valid_all: "\<forall>c \<in> set ?cs . valid_cert c" using f qs_eq by fastforce have "\<forall>x \<in> set (build_fpc p a (p - 1) qs). size_pratt x \<le> 3 * log 2 p" using cs_cert_size a_size \<open>p > 3\<close> prod_qs_eq by (intro size_pratt_fpc) auto hence "\<forall>x \<in> set (build_fpc p a (p - 1) qs @ concat ?cs) . size_pratt x \<le> 3 * log 2 p" using cs_cert_size by auto moreover have "Triple p a (p - 1) \<in> set (build_fpc p a (p - 1) qs @ concat ?cs)" by (cases qs) auto moreover have "valid_cert ((build_fpc p a (p - 1) qs)@ concat ?cs)" proof (rule correct_fpc) show "valid_cert (concat ?cs)" using cs_valid_all by (auto simp: valid_cert_concatI) show "prod_list qs = p - 1" by (rule prod_qs_eq) show "p - 1 \<noteq> 0" using prime_gt_1_nat[OF \<open>prime p\<close>] by arith show "\<forall> q \<in> set qs . Prime q \<in> set (concat ?cs)" using concat_set[of "prime_factors (p - 1)"] cs qs_eq by blast show "\<forall> q \<in> set qs . [a^((p - 1) div q) \<noteq> 1] (mod p)" using qs_eq a by auto qed (insert \<open>p > 3\<close>, simp_all) moreover { let ?k = "length qs" have qs_ge_2:"\<forall>q \<in> set qs . q \<ge> 2" using qs_eq by (auto intro: prime_ge_2_nat) have "\<forall>x\<in>set qs. real (length (f x)) \<le> 6 * log 2 (real x) - 4" using f qs_eq by blast hence "length (concat ?cs) \<le> (\<Sum>q\<leftarrow>qs. 6*log 2 q - 4)" using concat_length_le by fast hence "length (Prime p # ((build_fpc p a (p - 1) qs)@ concat ?cs)) \<le> ((\<Sum>q\<leftarrow>(map real qs). 6*log 2 q - 4) + ?k + 2)" by (simp add: o_def length_fpc) also have "\<dots> = (6*(\<Sum>q\<leftarrow>(map real qs). log 2 q) + (-4 * real ?k) + ?k + 2)" by (simp add: o_def sum_list_subtractf sum_list_triv sum_list_const_mult) also have "\<dots> \<le> 6*log 2 (p - 1) - 4" using \<open>?k\<ge>2\<close> prod_qs_eq sum_list_log[of 2 qs] qs_ge_2 by force also have "\<dots> \<le> 6*log 2 p - 4" using log_le_cancel_iff[of 2 "p - 1" p] \<open>p>3\<close> by force ultimately have "length (Prime p # ((build_fpc p a (p - 1) qs)@ concat ?cs)) \<le> 6*log 2 p - 4" by linarith } ultimately obtain c where c:"Triple p a (p - 1) \<in> set c" "valid_cert c" "length (Prime p #c) \<le> 6*log 2 p - 4" "(\<forall> x \<in> set c. size_pratt x \<le> 3 * log 2 p)" by blast hence "Prime p \<in> set (Prime p # c)" "valid_cert (Prime p # c)" "(\<forall> x \<in> set (Prime p # c). size_pratt x \<le> 3 * log 2 p)" using a \<open>prime p\<close> by (auto simp: Primes.prime_gt_Suc_0_nat) thus ?case using c by blast qed qed text \<open> We now recapitulate our results. A number $p$ is prime if and only if there is a certificate for $p$. Moreover, for a prime $p$ there always is a certificate whose size is polynomially bounded in the logarithm of $p$. \<close> corollary pratt: "prime p \<longleftrightarrow> (\<exists>c. Prime p \<in> set c \<and> valid_cert c)" using pratt_complete' pratt_sound(1) by blast corollary pratt_size: assumes "prime p" shows "\<exists>c. Prime p \<in> set c \<and> valid_cert c \<and> size_cert c \<le> (6 * log 2 p - 4) * (1 + 3 * log 2 p)" proof - obtain c where c: "Prime p \<in> set c" "valid_cert c" and len: "length c \<le> 6*log 2 p - 4" and "(\<forall> x \<in> set c. size_pratt x \<le> 3 * log 2 p)" using pratt_complete' assms by blast hence "size_cert c \<le> length c * (1 + 3 * log 2 p)" by (simp add: size_pratt_le) also have "\<dots> \<le> (6*log 2 p - 4) * (1 + 3 * log 2 p)" using len by simp finally show ?thesis using c by blast qed subsection \<open>Efficient modular exponentiation\<close> locale efficient_power = fixes f :: "'a \<Rightarrow> 'a \<Rightarrow> 'a" assumes f_assoc: "\<And>x z. f x (f x z) = f (f x x) z" begin function efficient_power :: "'a \<Rightarrow> 'a \<Rightarrow> nat \<Rightarrow> 'a" where "efficient_power y x 0 = y" | "efficient_power y x (Suc 0) = f x y" | "n \<noteq> 0 \<Longrightarrow> even n \<Longrightarrow> efficient_power y x n = efficient_power y (f x x) (n div 2)" | "n \<noteq> 1 \<Longrightarrow> odd n \<Longrightarrow> efficient_power y x n = efficient_power (f x y) (f x x) (n div 2)" by force+ termination by (relation "measure (snd \<circ> snd)") (auto elim: oddE) lemma efficient_power_code: "efficient_power y x n = (if n = 0 then y else if n = 1 then f x y else if even n then efficient_power y (f x x) (n div 2) else efficient_power (f x y) (f x x) (n div 2))" by (induction y x n rule: efficient_power.induct) auto lemma efficient_power_correct: "efficient_power y x n = (f x ^^ n) y" proof - have [simp]: "f ^^ 2 = (\<lambda>x. f (f x))" for f :: "'a \<Rightarrow> 'a" by (simp add: eval_nat_numeral o_def) show ?thesis by (induction y x n rule: efficient_power.induct) (auto elim!: evenE oddE simp: funpow_mult [symmetric] funpow_Suc_right f_assoc simp del: funpow.simps(2)) qed end interpretation mod_exp_nat: efficient_power "\<lambda>x y :: nat. (x * y) mod m" by standard (simp add: mod_mult_left_eq mod_mult_right_eq mult_ac) definition mod_exp_nat_aux where "mod_exp_nat_aux = mod_exp_nat.efficient_power" lemma mod_exp_nat_aux_code [code]: "mod_exp_nat_aux m y x n = (if n = 0 then y else if n = 1 then (x * y) mod m else if even n then mod_exp_nat_aux m y ((x * x) mod m) (n div 2) else mod_exp_nat_aux m ((x * y) mod m) ((x * x) mod m) (n div 2))" unfolding mod_exp_nat_aux_def by (rule mod_exp_nat.efficient_power_code) lemma mod_exp_nat_aux_correct: "mod_exp_nat_aux m y x n mod m = (x ^ n * y) mod m" proof - have "mod_exp_nat_aux m y x n = ((\<lambda>y. x * y mod m) ^^ n) y" by (simp add: mod_exp_nat_aux_def mod_exp_nat.efficient_power_correct) also have "((\<lambda>y. x * y mod m) ^^ n) y mod m = (x ^ n * y) mod m" proof (induction n) case (Suc n) hence "x * ((\<lambda>y. x * y mod m) ^^ n) y mod m = x * x ^ n * y mod m" by (metis mod_mult_right_eq mult.assoc) thus ?case by auto qed auto finally show ?thesis . qed definition mod_exp_nat :: "nat \<Rightarrow> nat \<Rightarrow> nat \<Rightarrow> nat" where [code_abbrev]: "mod_exp_nat b e m = (b ^ e) mod m" lemma mod_exp_nat_code [code]: "mod_exp_nat b e m = mod_exp_nat_aux m 1 b e mod m" by (simp add: mod_exp_nat_def mod_exp_nat_aux_correct) lemmas [code_unfold] = cong_def lemma eval_mod_exp_nat_aux [simp]: "mod_exp_nat_aux m y x 0 = y" "mod_exp_nat_aux m y x (Suc 0) = (x * y) mod m" "mod_exp_nat_aux m y x (numeral (num.Bit0 n)) = mod_exp_nat_aux m y (x\<^sup>2 mod m) (numeral n)" "mod_exp_nat_aux m y x (numeral (num.Bit1 n)) = mod_exp_nat_aux m ((x * y) mod m) (x\<^sup>2 mod m) (numeral n)" proof - define n' where "n' = (numeral n :: nat)" have [simp]: "n' \<noteq> 0" by (auto simp: n'_def) show "mod_exp_nat_aux m y x 0 = y" and "mod_exp_nat_aux m y x (Suc 0) = (x * y) mod m" by (simp_all add: mod_exp_nat_aux_def) have "numeral (num.Bit0 n) = (2 * n')" by (subst numeral.numeral_Bit0) (simp del: arith_simps add: n'_def) also have "mod_exp_nat_aux m y x \<dots> = mod_exp_nat_aux m y (x^2 mod m) n'" by (subst mod_exp_nat_aux_code) (simp_all add: power2_eq_square) finally show "mod_exp_nat_aux m y x (numeral (num.Bit0 n)) = mod_exp_nat_aux m y (x\<^sup>2 mod m) (numeral n)" by (simp add: n'_def) have "numeral (num.Bit1 n) = Suc (2 * n')" by (subst numeral.numeral_Bit1) (simp del: arith_simps add: n'_def) also have "mod_exp_nat_aux m y x \<dots> = mod_exp_nat_aux m ((x * y) mod m) (x^2 mod m) n'" by (subst mod_exp_nat_aux_code) (simp_all add: power2_eq_square) finally show "mod_exp_nat_aux m y x (numeral (num.Bit1 n)) = mod_exp_nat_aux m ((x * y) mod m) (x\<^sup>2 mod m) (numeral n)" by (simp add: n'_def) qed lemma eval_mod_exp [simp]: "mod_exp_nat b' 0 m' = 1 mod m'" "mod_exp_nat b' 1 m' = b' mod m'" "mod_exp_nat b' (Suc 0) m' = b' mod m'" "mod_exp_nat b' e' 0 = b' ^ e'" "mod_exp_nat b' e' 1 = 0" "mod_exp_nat b' e' (Suc 0) = 0" "mod_exp_nat 0 1 m' = 0" "mod_exp_nat 0 (Suc 0) m' = 0" "mod_exp_nat 0 (numeral e) m' = 0" "mod_exp_nat 1 e' m' = 1 mod m'" "mod_exp_nat (Suc 0) e' m' = 1 mod m'" "mod_exp_nat (numeral b) (numeral e) (numeral m) = mod_exp_nat_aux (numeral m) 1 (numeral b) (numeral e) mod numeral m" by (simp_all add: mod_exp_nat_def mod_exp_nat_aux_correct) subsection \<open>Executable certificate checker\<close> lemmas [code] = valid_cert.simps(1) context begin lemma valid_cert_Cons1 [code]: "valid_cert (Prime p # xs) \<longleftrightarrow> p > 1 \<and> (\<exists>t\<in>set xs. case t of Prime _ \<Rightarrow> False | Triple p' a x \<Rightarrow> p' = p \<and> x = p - 1 \<and> mod_exp_nat a (p-1) p = 1 ) \<and> valid_cert xs" (is "?lhs = ?rhs") proof assume ?lhs thus ?rhs by (auto simp: mod_exp_nat_def cong_def split: pratt.splits) next assume ?rhs hence "p > 1" "valid_cert xs" by blast+ moreover from \<open>?rhs\<close> obtain t where "t \<in> set xs" "case t of Prime _ \<Rightarrow> False | Triple p' a x \<Rightarrow> p' = p \<and> x = p - 1 \<and> [a^(p-1) = 1] (mod p)" by (auto simp: cong_def mod_exp_nat_def cong: pratt.case_cong) ultimately show ?lhs by (cases t) auto qed private lemma Suc_0_mod_eq_Suc_0_iff: "Suc 0 mod n = Suc 0 \<longleftrightarrow> n \<noteq> Suc 0" proof - consider "n = 0" | "n = Suc 0" | "n > 1" by (cases n) auto thus ?thesis by cases auto qed private lemma Suc_0_eq_Suc_0_mod_iff: "Suc 0 = Suc 0 mod n \<longleftrightarrow> n \<noteq> Suc 0" using Suc_0_mod_eq_Suc_0_iff by (simp add: eq_commute) lemma valid_cert_Cons2 [code]: "valid_cert (Triple p a x # xs) \<longleftrightarrow> x > 0 \<and> p > 1 \<and> (x = 1 \<or> ( (\<exists>t\<in>set xs. case t of Prime _ \<Rightarrow> False | Triple p' a' y \<Rightarrow> p' = p \<and> a' = a \<and> y dvd x \<and> (let q = x div y in Prime q \<in> set xs \<and> mod_exp_nat a ((p-1) div q) p \<noteq> 1)))) \<and> valid_cert xs" (is "?lhs = ?rhs") proof assume ?lhs from \<open>?lhs\<close> have pos: "x > 0" and gt_1: "p > 1" and valid: "valid_cert xs" by simp_all show ?rhs proof (cases "x = 1") case True with \<open>?lhs\<close> show ?thesis by auto next case False with \<open>?lhs\<close> have "(\<exists>q y. x = q * y \<and> Prime q \<in> set xs \<and> Triple p a y \<in> set xs \<and> [a^((p - 1) div q) \<noteq> 1] (mod p))" by auto then guess q y by (elim exE conjE) note qy = this hence "(\<exists>t\<in>set xs. case t of Prime _ \<Rightarrow> False | Triple p' a' y \<Rightarrow> p' = p \<and> a' = a \<and> y dvd x \<and> (let q = x div y in Prime q \<in> set xs \<and> mod_exp_nat a ((p-1) div q) p \<noteq> 1))" using pos gt_1 by (intro bexI [of _ "Triple p a y"]) (auto simp: Suc_0_mod_eq_Suc_0_iff Suc_0_eq_Suc_0_mod_iff cong_def mod_exp_nat_def) with pos gt_1 valid show ?thesis by blast qed next assume ?rhs hence pos: "x > 0" and gt_1: "p > 1" and valid: "valid_cert xs" by simp_all show ?lhs proof (cases "x = 1") case True with \<open>?rhs\<close> show ?thesis by auto next case False with \<open>?rhs\<close> obtain t where t: "t \<in> set xs" "case t of Prime x \<Rightarrow> False | Triple p' a' y \<Rightarrow> p' = p \<and> a' = a \<and> y dvd x \<and> (let q = x div y in Prime q \<in> set xs \<and> mod_exp_nat a ((p - 1) div q) p \<noteq> 1)" by auto then obtain y where y: "t = Triple p a y" "y dvd x" "let q = x div y in Prime q \<in> set xs \<and> mod_exp_nat a ((p - 1) div q) p \<noteq> 1" by (cases t rule: pratt.exhaust) auto with gt_1 have y': "let q = x div y in Prime q \<in> set xs \<and> [a^((p - 1) div q) \<noteq> 1] (mod p)" by (auto simp: cong_def Let_def mod_exp_nat_def Suc_0_mod_eq_Suc_0_iff Suc_0_eq_Suc_0_mod_iff) define q where "q = x div y" have "\<exists>q y. x = q * y \<and> Prime q \<in> set xs \<and> Triple p a y \<in> set xs \<and> [a^((p - 1) div q) \<noteq> 1] (mod p)" by (rule exI[of _ q], rule exI[of _ y]) (insert t y y', auto simp: Let_def q_def) with pos gt_1 valid show ?thesis by simp qed qed declare valid_cert.simps(2,3) [simp del] lemmas eval_valid_cert = valid_cert.simps(1) valid_cert_Cons1 valid_cert_Cons2 end text \<open> The following alternative tree representation of certificates is better suited for efficient checking. \<close> datatype pratt_tree = Pratt_Node "nat \<times> nat \<times> pratt_tree list" fun pratt_tree_number where "pratt_tree_number (Pratt_Node (n, _, _)) = n" text \<open> The following function checks that a given list contains all the prime factors of the given number. \<close> fun check_prime_factors_subset :: "nat \<Rightarrow> nat list \<Rightarrow> bool" where "check_prime_factors_subset n [] \<longleftrightarrow> n = 1" | "check_prime_factors_subset n (p # ps) \<longleftrightarrow> (if n = 0 then False else (if p > 1 \<and> p dvd n then check_prime_factors_subset (n div p) (p # ps) else check_prime_factors_subset n ps))" lemma check_prime_factors_subset_0 [simp]: "\<not>check_prime_factors_subset 0 ps" by (induction ps) auto lemmas [simp del] = check_prime_factors_subset.simps(2) lemma check_prime_factors_subset_Cons [simp]: "check_prime_factors_subset (Suc 0) (p # ps) \<longleftrightarrow> check_prime_factors_subset (Suc 0) ps" "check_prime_factors_subset 1 (p # ps) \<longleftrightarrow> check_prime_factors_subset 1 ps" "p > 1 \<Longrightarrow> p dvd numeral n \<Longrightarrow> check_prime_factors_subset (numeral n) (p # ps) \<longleftrightarrow> check_prime_factors_subset (numeral n div p) (p # ps)" "p \<le> 1 \<or> \<not>p dvd numeral n \<Longrightarrow> check_prime_factors_subset (numeral n) (p # ps) \<longleftrightarrow> check_prime_factors_subset (numeral n) ps" by (subst check_prime_factors_subset.simps; force)+ lemma check_prime_factors_subset_correct: assumes "check_prime_factors_subset n ps" "list_all prime ps" shows "prime_factors n \<subseteq> set ps" using assms proof (induction n ps rule: check_prime_factors_subset.induct) case (2 n p ps) note * = this from "2.prems" have "prime p" and "p > 1" by (auto simp: prime_gt_Suc_0_nat) consider "n = 0" | "n > 0" "p dvd n" | "n > 0" "\<not>(p dvd n)" by blast thus ?case proof cases case 2 hence "n div p > 0" by auto hence "prime_factors ((n div p) * p) = insert p (prime_factors (n div p))" using \<open>p > 1\<close> \<open>prime p\<close> by (auto simp: prime_factors_product prime_prime_factors) also have "(n div p) * p = n" using 2 by auto finally show ?thesis using 2 \<open>p > 1\<close> * by (auto simp: check_prime_factors_subset.simps(2)[of n]) next case 3 with * and \<open>p > 1\<close> show ?thesis by (auto simp: check_prime_factors_subset.simps(2)[of n]) qed auto qed auto fun valid_pratt_tree where "valid_pratt_tree (Pratt_Node (n, a, ts)) \<longleftrightarrow> n \<ge> 2 \<and> check_prime_factors_subset (n - 1) (map pratt_tree_number ts) \<and> [a ^ (n - 1) = 1] (mod n) \<and> (\<forall>t\<in>set ts. [a ^ ((n - 1) div pratt_tree_number t) \<noteq> 1] (mod n)) \<and> (\<forall>t\<in>set ts. valid_pratt_tree t)" lemma valid_pratt_tree_code [code]: "valid_pratt_tree (Pratt_Node (n, a, ts)) \<longleftrightarrow> n \<ge> 2 \<and> check_prime_factors_subset (n - 1) (map pratt_tree_number ts) \<and> mod_exp_nat a (n - 1) n = 1 \<and> (\<forall>t\<in>set ts. mod_exp_nat a ((n - 1) div pratt_tree_number t) n \<noteq> 1) \<and> (\<forall>t\<in>set ts. valid_pratt_tree t)" by (simp add: mod_exp_nat_def cong_def) lemma valid_pratt_tree_imp_prime: assumes "valid_pratt_tree t" shows "prime (pratt_tree_number t)" using assms proof (induction t rule: valid_pratt_tree.induct) case (1 n a ts) from 1 have "prime_factors (n - 1) \<subseteq> set (map pratt_tree_number ts)" by (intro check_prime_factors_subset_correct) (auto simp: list.pred_set) with 1 show ?case by (intro lehmers_theorem[where a = a]) auto qed lemma valid_pratt_tree_imp_prime': assumes "PROP (Trueprop (valid_pratt_tree (Pratt_Node (n, a, ts)))) \<equiv> PROP (Trueprop True)" shows "prime n" proof - have "valid_pratt_tree (Pratt_Node (n, a, ts))" by (subst assms) auto from valid_pratt_tree_imp_prime[OF this] show ?thesis by simp qed subsection \<open>Proof method setup\<close> theorem lehmers_theorem': fixes p :: nat assumes "list_all prime ps" "a \<equiv> a" "n \<equiv> n" assumes "list_all (\<lambda>p. mod_exp_nat a ((n - 1) div p) n \<noteq> 1) ps" "mod_exp_nat a (n - 1) n = 1" assumes "check_prime_factors_subset (n - 1) ps" "2 \<le> n" shows "prime n" using assms check_prime_factors_subset_correct[OF assms(6,1)] by (intro lehmers_theorem[where a = a]) (auto simp: cong_def mod_exp_nat_def list.pred_set) lemma list_all_ConsI: "P x \<Longrightarrow> list_all P xs \<Longrightarrow> list_all P (x # xs)" by simp ML_file \<open>pratt.ML\<close> method_setup pratt = \<open> Scan.lift (Pratt.tac_config_parser -- Scan.option Pratt.cert_cartouche) >> (fn (config, cert) => fn ctxt => SIMPLE_METHOD (HEADGOAL (Pratt.tac config cert ctxt))) \<close> "Prove primality of natural numbers using Pratt certificates." text \<open> The proof method replays a given Pratt certificate to prove the primality of a given number. If no certificate is given, the method attempts to compute one. The computed certificate is then also printed with a prompt to insert it into the proof document so that it does not have to be recomputed the next time. The format of the certificates is compatible with those generated by Mathematica. Therefore, for larger numbers, certificates generated by Mathematica can be used with this method directly. \<close> lemma "prime (47 :: nat)" by (pratt (silent)) lemma "prime (2503 :: nat)" by pratt lemma "prime (7919 :: nat)" by pratt lemma "prime (131059 :: nat)" by (pratt \<open>{131059, 2, {2, {3, 2, {2}}, {809, 3, {2, {101, 2, {2, {5, 2, {2}}}}}}}}\<close>) end
# Part D: Comparison of toroidal meniscus models with different profile shapes ## Introduction So far all the capillary entry pressures for the percoaltion examples were calculated using the ``Standard`` physics model which is the ``Washburn`` model for straight walled capillary tubes. This has been shown to be a bad model for fibrous media where the walls of throats are converging and diverging. In the study [Capillary Hysteresis in Neutrally Wettable Fibrous Media: A Pore Network Study of a Fuel Cell Electrode](http://link.springer.com/10.1007/s11242-017-0973-2) percolation in fibrous media was simulated using a meniscus model that assumed the contrictions between fibers are similar to a toroid: This model was first proposed by Purcell and treats the inner solid profile as a circle. As the fluid invades through the center of the torus the meniscus is pinned to the surface and the "effective" contact angle becomes influenced by the converging diverging geometry and is a function of the filling angle $\alpha$. The shape of the meniscus as the invading phase moves upwards through the torus with key model parameters is shown below. Different intrinsic contact angles through invading phase are shown above: (a) 60$^\circ$, (b) 90$^\circ$ and (c) 120$^\circ$. All scenarios clearly show an inflection of the meniscus curvature signifying a switch in the sign of the capillary pressure from negative to positive. This inflection is predicted to occur for all contact angles by the model with varying filling angle. The capillary pressure can be shown to be: $P_C = -2\sigma cos(\theta-\alpha))/(r+R(1-cos(\alpha))$ A consequence of the circular solid profile is that all fluid behaves as non-wetting fluid because $\alpha$ can range from -90$^\circ$ to 90$^\circ$ degrees and so even if $\theta$ is 0 then the meniscus is still pinned at zero capillary pressure at the very furthest part of the throat where the $\alpha$ is 90$^\circ$ Considering other shapes of solid profile this situation can be avoided. It will be shown by reformulating the Purcell model in a more general way that allows for a flexible defintion of the solid profile that filling angle can be limited to values below 90 and allow for spontaneous imbibition (percolation threshold below zero) of highly wetting fluids. ## Set up We will set up a trivially small network with one throat to demonstrate the use of the meniscus model. Here we do the imports and define a few functions for plotting. ```python #from sympy import init_session, init_printing #init_session(quiet=True) #init_printing() import matplotlib %matplotlib inline import matplotlib.pyplot as plt import numpy as np import sympy as syp from sympy import lambdify, symbols from sympy import atan as sym_atan from sympy import cos as sym_cos from sympy import sin as sym_sin from sympy import sqrt as sym_sqrt from sympy import pi as sym_pi from ipywidgets import interact, fixed from IPython.display import display matplotlib.rcParams['figure.figsize'] = (5, 5) ``` ```python theta = 60 fiberRad = 5e-6 throatRad = 1e-5 max_bulge = 1e-5 ``` Now we define our two pore network and add the meniscus model in several modes: 'max' returns the maximum pressure experienced by the meniscus as it transitions through the throat, i.e. the burst entry pressure. 'touch' is the pressure at which the meniscus has protruded past the throat center a distance defined by the 'touch_length' dictionary key. In network simulations this could be set to the pore_diameter. Finally the 'men' mode accepts a target_Pc parameter and returns all the mensicus information required for assessing cooperative filling or plotting. ```python import openpnm as op import openpnm.models.physics as pm net = op.network.Cubic(shape=[2, 1, 1], spacing=5e-5) geo = op.geometry.StickAndBall(network=net, pores=net.pores(), throats=net.throats()) phase = op.phases.Water(network=net) phase['pore.contact_angle'] = theta phys = op.physics.Standard(network=net, phase=phase, geometry=geo) geo['throat.diameter'] = throatRad*2 geo['throat.touch_length'] = max_bulge ``` We define a plotting function that uses the meniscus data: $\alpha$ is filling angle as defined above, $radius$ is the radius of curvature of the mensicus, $center$ is the position of the centre of curvature relative to the throat center along the axis of the throat, $\gamma$ is the angle between the throat axis and the line joining the meniscus center and meniscus contact point. ```python def plot_meniscus(target_Pc, meniscus_model=None, ax=None): throatRad = geo['throat.diameter'][0]/2 theta = np.deg2rad(phys['pore.contact_angle'][0]) throat_a = phys['throat.scale_a'] throat_b = phys['throat.scale_b'] x_points = np.arange(-0.99, 0.99, 0.01)*throat_a if ax is None: fig, ax = plt.subplots() if meniscus_model.__name__ == 'purcell': # Parameters for plotting fibers x, R, rt, s, t = syp.symbols('x, R, rt, s, t') y = R*syp.sqrt(1- (x/R)**2) r = rt + (R-y) rx = syp.lambdify((x, R, rt), r, 'numpy') ax.plot(x_points, rx(x_points, fiberRad, throatRad), 'k-') ax.plot(x_points, -rx(x_points, fiberRad, throatRad), 'k-') phys.add_model(propname='throat.meniscus', model=meniscus_model, mode='men', r_toroid=fiberRad, target_Pc=target_Pc) elif meniscus_model.__name__ == 'sinusoidal': x, a, b, rt, sigma, theta = syp.symbols('x, a, b, rt, sigma, theta') y = (sym_cos(sym_pi*x/(2*a)))*b r = rt + (b-y) rx = lambdify((x, a, b, rt), r, 'numpy') ax.plot(x_points, rx(x_points, throat_a, throat_b, throatRad), 'k-') ax.plot(x_points, -rx(x_points, throat_a, throat_b, throatRad), 'k-') phys.add_model(propname='throat.meniscus', model=meniscus_model, mode='men', r_toroid=fiberRad, target_Pc=target_Pc) else: # General Ellipse x, a, b, rt, sigma, theta = syp.symbols('x, a, b, rt, sigma, theta') profile_equation = phys.models['throat.entry_pressure']['profile_equation'] if profile_equation == 'elliptical': y = sym_sqrt(1 - (x/a)**2)*b elif profile_equation == 'sinusoidal': y = (sym_cos(sym_pi*x/(2*a)))*b r = rt + (b-y) rx = lambdify((x, a, b, rt), r, 'numpy') ax.plot(x_points, rx(x_points, throat_a, throat_b, throatRad), 'k-') ax.plot(x_points, -rx(x_points, throat_a, throat_b, throatRad), 'k-') phys.add_model(propname='throat.meniscus', model=meniscus_model, profile_equation=profile_equation, mode='men', target_Pc=target_Pc) men_data = {} men_data['alpha'] = phys['throat.meniscus.alpha'] men_data['gamma'] = phys['throat.meniscus.gamma'] men_data['radius'] = phys['throat.meniscus.radius'] men_data['center'] = phys['throat.meniscus.center'] arc_cen = men_data['center'] arc_rad = men_data['radius'] arc_angle = men_data['gamma'] angles = np.linspace(-arc_angle, arc_angle, 100) arcx = arc_cen + arc_rad*np.cos(angles) arcy = arc_rad*np.sin(angles) ax.plot(arcx, arcy, 'b-') ax.scatter(phys['throat.meniscus.pos'], phys['throat.meniscus.rx']) ax.axis('equal') ax.ticklabel_format(style='sci', axis='both', scilimits=(-6,-6)) return ax ``` # Circular (Purcell) ```python circular_model = pm.meniscus.purcell phys.add_model(propname='throat.max', model=circular_model, mode='max', r_toroid=fiberRad) phys.add_model(propname='throat.touch', model=circular_model, mode='touch', r_toroid=fiberRad) phys.add_model(propname='throat.meniscus', model=circular_model, mode='men', r_toroid=fiberRad, target_Pc=1000) touch_Pc = phys['throat.touch'][0] print('Pressure at maximum bulge', np.around(touch_Pc, 0)) max_Pc_circle = phys['throat.max'][0] print('Circular profile critical entry pressure', np.around(max_Pc_circle, 0)) ``` Pressure at maximum bulge 7213.0 Circular profile critical entry pressure 8165.0 We can see that the touch_Pc calculated earlier, corresponds with the tip of the meniscus exceeding the max_bulge parameter. Try changing this and re-running to see what happens. ```python ax = plot_meniscus(target_Pc=touch_Pc, meniscus_model=circular_model) ax.plot([max_bulge, max_bulge], [-throatRad, throatRad], 'r--') ``` ```python ax = plot_meniscus(target_Pc=max_Pc_circle, meniscus_model=circular_model) ``` We can interact with the mensicus model by changing the target_Pc parameter. ```python interact(plot_meniscus, target_Pc=(-2000, max_Pc_circle, 1), meniscus_model=fixed(circular_model), ax=fixed(None)) ``` interactive(children=(FloatSlider(value=3082.0, description='target_Pc', max=8165.324889242946, min=-2000.0, s… <function __main__.plot_meniscus(target_Pc, meniscus_model=None, ax=None)> Here we can see that the critical entry pressure for the circular profile is positive, even though the intrinsic contact angle is highly non-wetting # Sinusoidal Now we can start to compare the different meniscus models: ```python sinusoidal_model = pm.meniscus.sinusoidal ``` ```python display(sinusoidal_model) ``` <function openpnm.models.physics.meniscus.sinusoidal(target, mode='max', target_Pc=None, num_points=1000.0, r_toroid=5e-06, throat_diameter='throat.diameter', pore_diameter='pore.diameter', touch_length='throat.touch_length', surface_tension='pore.surface_tension', contact_angle='pore.contact_angle')> ```python phys.add_model(propname='throat.meniscus', model=sinusoidal_model, mode='men', r_toroid=fiberRad, target_Pc=1000) ``` The equation for the solid sinusoidal profile is: ```python x, a, b, rt, sigma, theta = syp.symbols('x, a, b, rt, sigma, theta') y = (sym_cos(sym_pi*x/(2*a)))*b r = rt + b-y r ``` $\displaystyle - b \cos{\left(\frac{\pi x}{2 a} \right)} + b + rt$ ```python # Derivative of profile rprime = r.diff(x) rprime ``` $\displaystyle \frac{\pi b \sin{\left(\frac{\pi x}{2 a} \right)}}{2 a}$ ```python # Filling angle alpha = sym_atan(rprime) alpha ``` $\displaystyle \operatorname{atan}{\left(\frac{\pi b \sin{\left(\frac{\pi x}{2 a} \right)}}{2 a} \right)}$ ```python # angle between y axis, meniscus center and meniscus contact point eta = sym_pi - (theta + alpha) eta ``` $\displaystyle - \theta - \operatorname{atan}{\left(\frac{\pi b \sin{\left(\frac{\pi x}{2 a} \right)}}{2 a} \right)} + \pi$ ```python # angle between x axis, meniscus center and meniscus contact point gamma = sym_pi/2 - eta gamma ``` $\displaystyle \theta + \operatorname{atan}{\left(\frac{\pi b \sin{\left(\frac{\pi x}{2 a} \right)}}{2 a} \right)} - \frac{\pi}{2}$ ```python # Radius of curvature of meniscus rm = r/sym_cos(eta) rm ``` $\displaystyle - \frac{- b \cos{\left(\frac{\pi x}{2 a} \right)} + b + rt}{\cos{\left(\theta + \operatorname{atan}{\left(\frac{\pi b \sin{\left(\frac{\pi x}{2 a} \right)}}{2 a} \right)} \right)}}$ ```python # distance along x-axis from center of curvature to meniscus contact point d = rm*sym_sin(eta) d ``` $\displaystyle - \frac{\left(- b \cos{\left(\frac{\pi x}{2 a} \right)} + b + rt\right) \sin{\left(\theta + \operatorname{atan}{\left(\frac{\pi b \sin{\left(\frac{\pi x}{2 a} \right)}}{2 a} \right)} \right)}}{\cos{\left(\theta + \operatorname{atan}{\left(\frac{\pi b \sin{\left(\frac{\pi x}{2 a} \right)}}{2 a} \right)} \right)}}$ ```python # Capillary Pressure p = 2*sigma/rm p ``` $\displaystyle - \frac{2 \sigma \cos{\left(\theta + \operatorname{atan}{\left(\frac{\pi b \sin{\left(\frac{\pi x}{2 a} \right)}}{2 a} \right)} \right)}}{- b \cos{\left(\frac{\pi x}{2 a} \right)} + b + rt}$ ```python phys.add_model(propname='throat.max', model=sinusoidal_model, mode='max', r_toroid=fiberRad) phys.add_model(propname='throat.touch', model=sinusoidal_model, mode='touch', r_toroid=fiberRad) max_Pc_sin = phys['throat.max'][0] print(max_Pc_sin) ``` 4729.770413396985 ```python plot_meniscus(target_Pc=max_Pc_sin, meniscus_model=sinusoidal_model) ``` ```python interact(plot_meniscus, target_Pc=(-2000, max_Pc_sin, 1), meniscus_model=fixed(sinusoidal_model), ax=fixed(None)) ``` interactive(children=(FloatSlider(value=1364.0, description='target_Pc', max=4729.770413396985, min=-2000.0, s… <function __main__.plot_meniscus(target_Pc, meniscus_model=None, ax=None)> Now the crtical entry pressure is negative signifying that spontaneous imbibition will occur # General Elliptical Similarly we can define an elliptical profile and use the same method to determine the capillary pressure: ```python y = sym_sqrt(1 - (x/a)**2)*b y ``` $\displaystyle b \sqrt{1 - \frac{x^{2}}{a^{2}}}$ In-fact this is the model that OpenPNM uses for Purcell as well with a = b = fiber radius ```python # Scale ellipse in x direction phys['throat.scale_a'] = fiberRad # Scale ellipse in y direction phys['throat.scale_b'] = fiberRad general_model = pm.meniscus.general_toroidal phys.add_model(propname='throat.entry_pressure', model=general_model, profile_equation='elliptical', mode='max') max_Pc_ellipse = phys['throat.entry_pressure'][0] print(max_Pc_ellipse) ``` 8165.324889242946 ```python plot_meniscus(target_Pc=max_Pc_ellipse, meniscus_model=general_model) ``` ```python max_Pc_ellipse ``` 8165.324889242946 ```python interact(plot_meniscus, target_Pc=(-2000, max_Pc_ellipse, 1), meniscus_model=fixed(general_model), ax=fixed(None)) ``` interactive(children=(FloatSlider(value=3082.0, description='target_Pc', max=8165.324889242946, min=-2000.0, s… <function __main__.plot_meniscus(target_Pc, meniscus_model=None, ax=None)> The two scale factors can now be used to determine a wide range of capillary behaviours with one general model. Below we run the model for a range of scaling factors showing the effect on the sign and magnitude of the entry pressure. ```python bs = np.linspace(0.2, 1.0, 4)*throatRad phys['throat.scale_a'] = throatRad elliptical_pressures = [] sinusoidal_pressures = [] fig, (ax1, ax2) = plt.subplots(2, len(bs), figsize=(10, 10)) for i in range(len(bs)): phys['throat.scale_b'] = bs[i] phys.add_model(propname='throat.entry_pressure', model=general_model, profile_equation='elliptical', mode='max', num_points=1000) Pc = phys['throat.entry_pressure'] elliptical_pressures.append(Pc) plot_meniscus(target_Pc=Pc, meniscus_model=general_model, ax=ax1[i]) for i in range(len(bs)): phys['throat.scale_b'] = bs[i] phys.add_model(propname='throat.entry_pressure', model=general_model, profile_equation='sinusoidal', mode='max', num_points=1000) Pc = phys['throat.entry_pressure'] sinusoidal_pressures.append(Pc) plot_meniscus(target_Pc=Pc, meniscus_model=general_model, ax=ax2[i]) ``` ```python plt.figure() plt.plot(bs/throatRad, elliptical_pressures, 'g-') plt.plot(bs/throatRad, sinusoidal_pressures, 'r-') ``` Here we can see that the two different shaped profiles lead to quite different capiallary behaviour. The elliptical profile always resuls in positive pressure and the meniscus is basically pinned to the end of the throat where highest pressure occurs as alpha always reaches 90. Whereas the sinusiodal model allows for spontaneous imbibition where a breakthrough may occur at negative capillary pressure for wetting fluids if the wall angle is shallow.
module Hello where open import IO using (run; putStrLn) import IO.Primitive as Prim using (IO) open import Data.Nat using (ℕ) import Data.Nat.Show as Nat using (show) open import Data.Unit using (⊤) -- This is no upper case 't' open import Data.String using (_++_) age : ℕ age = 28 main : Prim.IO ⊤ main = run (putStrLn ("Hello World! I'm " ++ Nat.show age))
[STATEMENT] lemma [simp]: "pc \<notin> pcs xt\<^sub>0 \<Longrightarrow> match_ex_table P C pc (xt\<^sub>0 @ xt\<^sub>1) = match_ex_table P C pc xt\<^sub>1" [PROOF STATE] proof (prove) goal (1 subgoal): 1. pc \<notin> pcs xt\<^sub>0 \<Longrightarrow> match_ex_table P C pc (xt\<^sub>0 @ xt\<^sub>1) = match_ex_table P C pc xt\<^sub>1 [PROOF STEP] by (induct xt\<^sub>0) (auto simp: matches_ex_entry_def)
[STATEMENT] lemma append_cols_mult_right_id2: assumes A: "(A::'a::semiring_1 mat) \<in> carrier_mat n a" and B: "B \<in> carrier_mat n b" and C: "C = four_block_mat D (0\<^sub>m a b) (0\<^sub>m b a) (1\<^sub>m b)" and D: "D \<in> carrier_mat a a" shows "(A @\<^sub>c B) * C = (A * D) @\<^sub>c B" [PROOF STATE] proof (prove) goal (1 subgoal): 1. (A @\<^sub>c B) * C = A * D @\<^sub>c B [PROOF STEP] proof - [PROOF STATE] proof (state) goal (1 subgoal): 1. (A @\<^sub>c B) * C = A * D @\<^sub>c B [PROOF STEP] let ?C = "four_block_mat D (0\<^sub>m a b) (0\<^sub>m b a) (1\<^sub>m b)" [PROOF STATE] proof (state) goal (1 subgoal): 1. (A @\<^sub>c B) * C = A * D @\<^sub>c B [PROOF STEP] have "(A @\<^sub>c B) * C = (A @\<^sub>c B) * ?C" [PROOF STATE] proof (prove) goal (1 subgoal): 1. (A @\<^sub>c B) * C = (A @\<^sub>c B) * four_block_mat D (0\<^sub>m a b) (0\<^sub>m b a) (1\<^sub>m b) [PROOF STEP] unfolding C [PROOF STATE] proof (prove) goal (1 subgoal): 1. (A @\<^sub>c B) * four_block_mat D (0\<^sub>m a b) (0\<^sub>m b a) (1\<^sub>m b) = (A @\<^sub>c B) * four_block_mat D (0\<^sub>m a b) (0\<^sub>m b a) (1\<^sub>m b) [PROOF STEP] by auto [PROOF STATE] proof (state) this: (A @\<^sub>c B) * C = (A @\<^sub>c B) * four_block_mat D (0\<^sub>m a b) (0\<^sub>m b a) (1\<^sub>m b) goal (1 subgoal): 1. (A @\<^sub>c B) * C = A * D @\<^sub>c B [PROOF STEP] also [PROOF STATE] proof (state) this: (A @\<^sub>c B) * C = (A @\<^sub>c B) * four_block_mat D (0\<^sub>m a b) (0\<^sub>m b a) (1\<^sub>m b) goal (1 subgoal): 1. (A @\<^sub>c B) * C = A * D @\<^sub>c B [PROOF STEP] have "... = four_block_mat A B (0\<^sub>m 0 a) (0\<^sub>m 0 b) * ?C" [PROOF STATE] proof (prove) goal (1 subgoal): 1. (A @\<^sub>c B) * four_block_mat D (0\<^sub>m a b) (0\<^sub>m b a) (1\<^sub>m b) = four_block_mat A B (0\<^sub>m 0 a) (0\<^sub>m 0 b) * four_block_mat D (0\<^sub>m a b) (0\<^sub>m b a) (1\<^sub>m b) [PROOF STEP] unfolding append_cols_def [PROOF STATE] proof (prove) goal (1 subgoal): 1. four_block_mat A B (0\<^sub>m 0 (dim_col A)) (0\<^sub>m 0 (dim_col B)) * four_block_mat D (0\<^sub>m a b) (0\<^sub>m b a) (1\<^sub>m b) = four_block_mat A B (0\<^sub>m 0 a) (0\<^sub>m 0 b) * four_block_mat D (0\<^sub>m a b) (0\<^sub>m b a) (1\<^sub>m b) [PROOF STEP] using A B [PROOF STATE] proof (prove) using this: A \<in> carrier_mat n a B \<in> carrier_mat n b goal (1 subgoal): 1. four_block_mat A B (0\<^sub>m 0 (dim_col A)) (0\<^sub>m 0 (dim_col B)) * four_block_mat D (0\<^sub>m a b) (0\<^sub>m b a) (1\<^sub>m b) = four_block_mat A B (0\<^sub>m 0 a) (0\<^sub>m 0 b) * four_block_mat D (0\<^sub>m a b) (0\<^sub>m b a) (1\<^sub>m b) [PROOF STEP] by auto [PROOF STATE] proof (state) this: (A @\<^sub>c B) * four_block_mat D (0\<^sub>m a b) (0\<^sub>m b a) (1\<^sub>m b) = four_block_mat A B (0\<^sub>m 0 a) (0\<^sub>m 0 b) * four_block_mat D (0\<^sub>m a b) (0\<^sub>m b a) (1\<^sub>m b) goal (1 subgoal): 1. (A @\<^sub>c B) * C = A * D @\<^sub>c B [PROOF STEP] also [PROOF STATE] proof (state) this: (A @\<^sub>c B) * four_block_mat D (0\<^sub>m a b) (0\<^sub>m b a) (1\<^sub>m b) = four_block_mat A B (0\<^sub>m 0 a) (0\<^sub>m 0 b) * four_block_mat D (0\<^sub>m a b) (0\<^sub>m b a) (1\<^sub>m b) goal (1 subgoal): 1. (A @\<^sub>c B) * C = A * D @\<^sub>c B [PROOF STEP] have "... = four_block_mat (A * D + B * 0\<^sub>m b a) (A * 0\<^sub>m a b + B * 1\<^sub>m b) (0\<^sub>m 0 a * D + 0\<^sub>m 0 b * 0\<^sub>m b a) (0\<^sub>m 0 a * 0\<^sub>m a b + 0\<^sub>m 0 b * 1\<^sub>m b)" [PROOF STATE] proof (prove) goal (1 subgoal): 1. four_block_mat A B (0\<^sub>m 0 a) (0\<^sub>m 0 b) * four_block_mat D (0\<^sub>m a b) (0\<^sub>m b a) (1\<^sub>m b) = four_block_mat (A * D + B * 0\<^sub>m b a) (A * 0\<^sub>m a b + B * 1\<^sub>m b) (0\<^sub>m 0 a * D + 0\<^sub>m 0 b * 0\<^sub>m b a) (0\<^sub>m 0 a * 0\<^sub>m a b + 0\<^sub>m 0 b * 1\<^sub>m b) [PROOF STEP] by (rule mult_four_block_mat, insert A B C D, auto) [PROOF STATE] proof (state) this: four_block_mat A B (0\<^sub>m 0 a) (0\<^sub>m 0 b) * four_block_mat D (0\<^sub>m a b) (0\<^sub>m b a) (1\<^sub>m b) = four_block_mat (A * D + B * 0\<^sub>m b a) (A * 0\<^sub>m a b + B * 1\<^sub>m b) (0\<^sub>m 0 a * D + 0\<^sub>m 0 b * 0\<^sub>m b a) (0\<^sub>m 0 a * 0\<^sub>m a b + 0\<^sub>m 0 b * 1\<^sub>m b) goal (1 subgoal): 1. (A @\<^sub>c B) * C = A * D @\<^sub>c B [PROOF STEP] also [PROOF STATE] proof (state) this: four_block_mat A B (0\<^sub>m 0 a) (0\<^sub>m 0 b) * four_block_mat D (0\<^sub>m a b) (0\<^sub>m b a) (1\<^sub>m b) = four_block_mat (A * D + B * 0\<^sub>m b a) (A * 0\<^sub>m a b + B * 1\<^sub>m b) (0\<^sub>m 0 a * D + 0\<^sub>m 0 b * 0\<^sub>m b a) (0\<^sub>m 0 a * 0\<^sub>m a b + 0\<^sub>m 0 b * 1\<^sub>m b) goal (1 subgoal): 1. (A @\<^sub>c B) * C = A * D @\<^sub>c B [PROOF STEP] have "... = four_block_mat (A * D) B (0\<^sub>m 0 (dim_col (A*D))) (0\<^sub>m 0 (dim_col B))" [PROOF STATE] proof (prove) goal (1 subgoal): 1. four_block_mat (A * D + B * 0\<^sub>m b a) (A * 0\<^sub>m a b + B * 1\<^sub>m b) (0\<^sub>m 0 a * D + 0\<^sub>m 0 b * 0\<^sub>m b a) (0\<^sub>m 0 a * 0\<^sub>m a b + 0\<^sub>m 0 b * 1\<^sub>m b) = four_block_mat (A * D) B (0\<^sub>m 0 (dim_col (A * D))) (0\<^sub>m 0 (dim_col B)) [PROOF STEP] by (rule cong_four_block_mat, insert assms, auto) [PROOF STATE] proof (state) this: four_block_mat (A * D + B * 0\<^sub>m b a) (A * 0\<^sub>m a b + B * 1\<^sub>m b) (0\<^sub>m 0 a * D + 0\<^sub>m 0 b * 0\<^sub>m b a) (0\<^sub>m 0 a * 0\<^sub>m a b + 0\<^sub>m 0 b * 1\<^sub>m b) = four_block_mat (A * D) B (0\<^sub>m 0 (dim_col (A * D))) (0\<^sub>m 0 (dim_col B)) goal (1 subgoal): 1. (A @\<^sub>c B) * C = A * D @\<^sub>c B [PROOF STEP] also [PROOF STATE] proof (state) this: four_block_mat (A * D + B * 0\<^sub>m b a) (A * 0\<^sub>m a b + B * 1\<^sub>m b) (0\<^sub>m 0 a * D + 0\<^sub>m 0 b * 0\<^sub>m b a) (0\<^sub>m 0 a * 0\<^sub>m a b + 0\<^sub>m 0 b * 1\<^sub>m b) = four_block_mat (A * D) B (0\<^sub>m 0 (dim_col (A * D))) (0\<^sub>m 0 (dim_col B)) goal (1 subgoal): 1. (A @\<^sub>c B) * C = A * D @\<^sub>c B [PROOF STEP] have "... = (A * D) @\<^sub>c B" [PROOF STATE] proof (prove) goal (1 subgoal): 1. four_block_mat (A * D) B (0\<^sub>m 0 (dim_col (A * D))) (0\<^sub>m 0 (dim_col B)) = A * D @\<^sub>c B [PROOF STEP] unfolding append_cols_def [PROOF STATE] proof (prove) goal (1 subgoal): 1. four_block_mat (A * D) B (0\<^sub>m 0 (dim_col (A * D))) (0\<^sub>m 0 (dim_col B)) = four_block_mat (A * D) B (0\<^sub>m 0 (dim_col (A * D))) (0\<^sub>m 0 (dim_col B)) [PROOF STEP] by auto [PROOF STATE] proof (state) this: four_block_mat (A * D) B (0\<^sub>m 0 (dim_col (A * D))) (0\<^sub>m 0 (dim_col B)) = A * D @\<^sub>c B goal (1 subgoal): 1. (A @\<^sub>c B) * C = A * D @\<^sub>c B [PROOF STEP] finally [PROOF STATE] proof (chain) picking this: (A @\<^sub>c B) * C = A * D @\<^sub>c B [PROOF STEP] show ?thesis [PROOF STATE] proof (prove) using this: (A @\<^sub>c B) * C = A * D @\<^sub>c B goal (1 subgoal): 1. (A @\<^sub>c B) * C = A * D @\<^sub>c B [PROOF STEP] . [PROOF STATE] proof (state) this: (A @\<^sub>c B) * C = A * D @\<^sub>c B goal: No subgoals! [PROOF STEP] qed
#pragma once #include <glm/glm.hpp> #include <gsl/span> #include <memory> #include <string> #include <string_view> #include <vector> namespace rev { class IndexedModel; class ObjFile { public: ObjFile(const std::string& path); struct WavefrontObject { std::string materialName; using IndexedTriangle = std::array<glm::uvec3, 3>; std::vector<IndexedTriangle> triangles; }; gsl::span<const WavefrontObject> getWavefrontObjects() const; const glm::vec3& positionAtIndex(size_t index) const; const glm::vec2& textureCoordinateAtIndex(size_t index) const; const glm::vec3& normalAtIndex(size_t index) const; private: void processLine(const std::string& line); std::vector<WavefrontObject> _wfObjects; std::vector<glm::vec3> _positions; std::vector<glm::vec2> _textureCoordinates; std::vector<glm::vec3> _normals; }; } // namespace rev
[STATEMENT] lemma sel_r_eq_ldeep_s_if_valid_fwd: "\<lbrakk>r \<in> verts G; valid_tree t; directed_tree.forward (dir_tree_r r) (inorder t)\<rbrakk> \<Longrightarrow> sel_r r = ldeep_s match_sel (revorder t)" [PROOF STATE] proof (prove) goal (1 subgoal): 1. \<lbrakk>r \<in> verts G; valid_tree t; directed_tree.forward (dir_tree_r r) (inorder t)\<rbrakk> \<Longrightarrow> sel_r r = ldeep_s match_sel (revorder t) [PROOF STEP] unfolding valid_tree_def distinct_relations_def inorder_eq_set[symmetric] revorder_eq_rev_inorder [PROOF STATE] proof (prove) goal (1 subgoal): 1. \<lbrakk>r \<in> verts G; set (inorder t) = verts G \<and> distinct (inorder t); directed_tree.forward (dir_tree_r r) (inorder t)\<rbrakk> \<Longrightarrow> sel_r r = ldeep_s match_sel (rev (inorder t)) [PROOF STEP] using sel_r_eq_ldeep_s_if_dst_fwd_verts [PROOF STATE] proof (prove) using this: \<lbrakk>?r \<in> verts G; distinct ?xs; directed_tree.forward (dir_tree_r ?r) ?xs; set ?xs = verts G\<rbrakk> \<Longrightarrow> sel_r ?r = ldeep_s match_sel (rev ?xs) goal (1 subgoal): 1. \<lbrakk>r \<in> verts G; set (inorder t) = verts G \<and> distinct (inorder t); directed_tree.forward (dir_tree_r r) (inorder t)\<rbrakk> \<Longrightarrow> sel_r r = ldeep_s match_sel (rev (inorder t)) [PROOF STEP] by blast
\documentclass[12pt,titlepage]{amsart} \title{An $\alpha$-$\beta$ Monte-Carlo Engine for the Game of Hex} \author{Eric Vaitl\\November 20, 2017\\CSCI 6550} \usepackage[margin=1in]{geometry} % margins \usepackage{placeins} % floatbarrier \usepackage{setspace} % double spacing \usepackage{listings} % code listings \usepackage{hyperref} % \url \usepackage{havannah} % hex boards \doublespacing \begin{document} \begin{abstract} This paper presents an $\alpha-\beta$ game engine with a simple Monte-Carlo heuristic for the game of Hex. A sample implementation was written and is attached in the appendix. The mathematical background, other approaches, and heuristics are discussed and compared. \end{abstract} \maketitle \section{Introduction} First, we'll introduce the rules of hex, some mathematical background, and the history of the game. Next, is a walk-though of the interesting portions of the code: The $\alpha-\beta$ routine, the child search, and the evaluation heuristic used. Other heuristic options will be briefly looked at, then a description of possible future work on this code base. \section{The Game} The game is played on a rhombus board made of hexagons: \begin{HexBoard}[board size=5] \end{HexBoard} The standard size for game play is 11x11. This is a turn based game. Each turn, the player gets to occupy one new currently unoccupied location. The object for each player is to connect the two sides of the player's color by occupying a connecting set of locations to form a chain \cite{Maarup05}. Because the first player has a distinct advantage, some versions of the game have a \emph{swap rule}. If the swap rule is in effect, the second player can swap places with the first player right after the first player makes his first move. This forces the first player to make a less than optimal first move or play at a disadvantage. In the task environment classification scheme used in \cite{RN:AIAMA:2003}, Hex is a fully observable, multi-agent, deterministic, sequential, static, discrete game. \section{History} Hex is a simple game and has been ``discovered'' at least twice. In 1942-1943 Piet Hein wrote a number of columns about Hex, which he called Polygon, in the Danish newspaper \emph{Politiken}. Hein had a printer print up small books of empty Hex sheets for sale. They were advertised for among other things, as a diversion while spending a night in the public bomb shelters. The newspaper columns petered out in mid 1943, either because of loss of interest or because of more pressing issues (Hein's wife was Jewish). In 1949 John Nash independently invented the game while he was a graduate student at Princeton \cite{Nash:1952:Games}. Apparently the game became quite popular among the other students after one of the graduate students created a Hex board that was available in the Fine Hall common room. At Princeton and later at Bell Labs, John Nash worked with Claude Shannon. Shannon created an electrical analog machine that played Hex pretty well. The board was set up as a resistance network with resistances changed based on the moves made. The next move was made to the position with the highest voltage drop. Shannon's Hex machine work was well before the 1956 Dartmouth conference, which is often regarded as the birth of AI. However, the cold war was in effect and people working with the new electronic computers were overly optimistic about what could be done with the simple schemes available. I thought the closing paragraph of \cite{Nash:1952:Games} was quite enlightening: \begin{quote} If a military engagement be regarded as a game, such an approach might be useful in suggesting an overall strategy. Of course, it is not probable that any analog method quite as simple as those described above would be very useful for most military applications. \end{quote} Before moving on, I'd like to point out how cool it is that the creators of Game Theory (Nash) and Information Theory (Shannon) collaborated to create a very passable AI program, several years before AI existed as a separate discipline, using little more than plug-board, a volt meter, and a box of resistors. From \cite{Nash:1952:Games}: \begin{quote} Shannon reports that in their experience the machine has never been beaten if given the first move. But its infallibility has not been proved. \end{quote} In 1953 Parker Brothers released Hex as a board game. Unfortunately it is currently out of print. Hugo Piet Hein, son of Piet Hein, has a little company that is selling Hex boards today \footnote{\url{http://www.hexboard.com/}}. Hex has appeared several times in the Computer Olympiads between 2000 and 2011. The last computer champion was MoHex in 2011 \cite{Henderson:2010}. \section{Math} Quite a bit of theory from different domains applies to Hex. Game theory, algebraic topology, AI, and computational complexity theory are some of the areas that have been used to analyze this simple game. Draw a square and color two opposite sides white and the two remaining sides black. Something that seems obvious is that if you connect two sides of the same color with an interior line, it is not possible to also connect the remaining two sides with an interior line unless the two lines cross. However, the definitive proof requires the Four Color Theorem from topology. A less obvious result is that if you fill the central square with the two colors at least one pair of sides must be connected by a continuous line of the same color. The easiest known proof of this seems to involve the Brouwer Fixed-Point Theorem of algebraic topology \cite{Gale:1980} and didn't happen until 1979. An earlier, longer proof the Jordan Curve Theorem seems to have been discovered in 1969. So, topology gives us two results for a completed Hex game: \begin{itemize} \item In a completed Hex board one pair of sides must be connected. \item In a completed Hex board, if one pair of sides are connected, the other pair is not. \end{itemize} With both results, we can say that there are no draws. One side will win and the other side will lose. John Nash assumed without a complete proof that there were no draws as a given in 1949 and used a strategy stealing argument from Game Theory (which is a field he largely invented) to prove that with perfect play the first player in a Hex game would always win. His proof was by contradiction: An extra piece on the board never makes your position worse. Assume with perfect play the second player could win. The first player could place one piece then play as the second player to win. This contradicts the second player winning, so with perfect play the first player must win. In terms of time, the best known algorithms for solving Hex are intractable (no polynomial time solution). However, in terms of space, if we had an oracle to tell us if a position was winnable by white, we could save the perfect play game tree in polynomial space. In computational complexity theory, PSPACE is the set of decision problems that can be solved in a polynomial amount of space. It turns out that Hex is not only a PSPACE problem, but was shown in 1981 to be PSPACE complete \cite{Reisch1981}. This means that any other PSPACE problem can be reduced in polynomial time to an equivalent Hex game of some size. As $\mathcal{NP}\subseteq $ PSPACE, a good Hex playing program at least theoretically has other significant uses. \section{The Program} \FloatBarrier The code is written in C++11, but I'm compiling with C++14 with GNU extensions. It has been tested with both g++ 7.2.0 and clang++ 5.0.0 on my Linux box (manjaro). On invocation, you can optionally specify the board size, search depth, and branching factor. \subsection{$\alpha-\beta$} The $\alpha-\beta$ algorithm is implemented in listing \ref{lst:ab}. It is a bit more complicated than the reference $\alpha-\beta$ algorithm in \cite{RN:AIAMA:2003} because there are a few more details that have to be taken care of in real code. We don't just need the value of the search tree, but we need the actual move to make. We could do that with a global that is set before a return and count on the top level call returning last, but I am allergic to globals and decided to return a C++ \texttt{pair$<$value,move$>$} instead. The pair is aliased with the C++11 \texttt{using} directive to both \texttt{opens\_elem} and \texttt{alpha\_beta\_value}. A good argument could be made that we should use the same typename for both cases, but I wasn't sure of that when I was writing the code. It isn't normally possible to evaluate the full tree, so we pass a \texttt{depth} parameter that is decremented on each recursive call. When the depth reaches 0, we just return the \texttt{leaf\_eval} of the node and set the move to an illegal value (-1). The same function is used for both minimum and maximum nodes. The boolean \texttt{maximize} parameter is used to differentiate between the two. \texttt{maximize} is passed to \texttt{find\_children} to sort and select children nodes and is used locally to determine if we are comparing with $\alpha$ or $\beta$. \singlespacing \begin{lstlisting}[language=C++,float,label={lst:ab},basicstyle=\small, caption=$\alpha-\beta$] alpha_beta_value alpha_beta(int depth, bool maximize, double alpha, double beta){ node_state next_turn = maximize ? node_state::HUMAN : node_state::COMPUTER; board &b = *pb; vector<opens_elem> opens = find_children(depth, maximize); // If there are no children or we are at our search depth, just return // current eval. if (depth <= 0 || opens.size() == 0) { return alpha_beta_value(leaf_eval(b, next_turn), -1); } // We now have up to branch-size children to check. double v = maximize ? -numeric_limits<double>::max() : numeric_limits<double>::max(); int move = 0; for (auto m: opens) { int idx = m.second; b(idx) = maximize ? node_state::COMPUTER : node_state::HUMAN; auto ab = alpha_beta(depth - 1, !maximize, alpha, beta); if (maximize) { if (ab.first > v) { move = idx; v = ab.first; } alpha = max(alpha, v); }else{ if (ab.first < v) { move = idx; v = ab.first; } beta = min(v, beta); } b(idx) = node_state::OPEN; if (beta <= alpha) { break; } } return alpha_beta_value(v, move); } \end{lstlisting} \doublespacing \subsection{find\_children} The \texttt{find\_children} implementation is in listing \ref{lst:fc}. Like the game Go, Hex can have a very large branching factor. On an n$\times$n board, the branching factor starts at $n^2$ and decreases by 1 for each move. The branching factor for searching is set by the global \texttt{branch\_factor}, which I justify because it is set just once at program startup. \texttt{find\_children} returns the best (or worst) \texttt{branch\_factor} candidates based on the boolean \texttt{maximize}. I left open the possibility of two different evaluation functions depending on whether we are evaluating a leaf (\texttt{leaf\_eval}) or choosing interior children for branching (\texttt{branch\_eval}). The current program actually uses the same evaluation function for both. After evaluating all children of the current node, the top \texttt{branch\_factor} children of an interior node are selected and returned. If we are in a leaf node (because \texttt{depth}$\leq 1$), then just one node is selected and returned. Sorting is inlined using C++11 lambda functions, which are passed to the standard template \texttt{sort} routine. The use of \texttt{vector} instead of traditional C arrays makes memory management much easier. C++11 r-value references makes passing vectors much more efficient than they were in pre-C++11 days. \singlespacing \begin{lstlisting}[language=C++,float,label={lst:fc}, basicstyle=\small,caption=find\_children] vector<opens_elem> find_children(int depth, bool maximize){ board &b = *pb; int size = b.size(); vector<opens_elem> opens; auto sortfn = maximize ? [](opens_elem p1, opens_elem p2) { return p1.first > p2.first; } : [](opens_elem p1, opens_elem p2) { return p1.first < p2.first; }; auto eval = depth <= 1 ? leaf_eval : branch_eval; for (int idx = 0; idx < size * size; ++idx) { if (b(idx) == node_state::OPEN) { b(idx) = maximize ? node_state::COMPUTER : node_state::HUMAN; double e = eval(b, (maximize ? node_state::HUMAN : node_state::COMPUTER)); b(idx) = node_state::OPEN; opens.push_back(opens_elem(e, idx)); } } sort(opens.begin(), opens.end(), sortfn); if (depth <= 1) { opens.resize(min(1, int(opens.size()))); } else{ opens.resize(min(branch_factor, int(opens.size()))); } return opens; } \end{lstlisting} \doublespacing \subsection{eval} The evaluation function for this program is the function \texttt{rwins} in Listing \ref{lst:eval}. It is almost stupidly simple. It fills out the board as if two idiots were playing \texttt{MC\_TIMES} and saves the percent of time the first player wins. The result is scaled from 1 to -1. If the computer wins every time, the result is 1, if the human wins every time, the result is -1. The \texttt{check\_winner} class is a little more complicated. It does a depth first search of the board from each of the first columns and sees if any location in the last column is reachable from a location in the first column. I had considered using a union-find, but the depth first searching seems as fast in practice. \singlespacing \begin{lstlisting}[language=C++,float, label={lst:eval},basicstyle=\small, caption=Evaluation Function] static double rwins(const board &b, node_state next_turn = node_state::COMPUTER){ int wins{ 0 }; for (int i = 0; i < MC_TRIALS; ++i) { board lb(b); fill_board(lb, next_turn); if (check_winner(lb).winner() == winner_state::COMPUTER) { ++wins; } } return (wins - MC_TRIALS / 2.0) / MC_TRIALS; } \end{lstlisting} \doublespacing \FloatBarrier \section{Sample Play} Here is a sample play with a board size of 4, search depth of 4, and branching factor of 5. For such a simple program, it is a surprisingly good player. A single mistake by the human player is usually enough to cause a loss.: \singlespacing \begin{verbatim} $ ./hex -s 4 -d 4 -f 5 C 1 2 3 4 1 . - . - . - . \ / \ / \ / \ 2 . - . - . - . \ / \ / \ / \ H 3 . - . - . - . H \ / \ / \ / \ 4 . - . - . - . 1 2 3 4 C Input space separated row and column: 2 2 C 1 2 3 4 1 . - . - . - . \ / \ / \ / \ 2 . - H - C - . \ / \ / \ / \ H 3 . - . - . - . H \ / \ / \ / \ 4 . - . - . - . 1 2 3 4 C Input space separated row and column: 3 3 C 1 2 3 4 1 . - . - . - . \ / \ / \ / \ 2 . - H - C - . \ / \ / \ / \ H 3 . - C - H - . H \ / \ / \ / \ 4 . - . - . - . 1 2 3 4 C Input space separated row and column: 1 4 C 1 2 3 4 1 . - . - C - H \ / \ / \ / \ 2 . - H - C - . \ / \ / \ / \ H 3 . - C - H - . H \ / \ / \ / \ 4 . - . - . - . 1 2 3 4 C Input space separated row and column: 4 2 C 1 2 3 4 1 . - . - C - H \ / \ / \ / \ 2 . - H - C - . \ / \ / \ / \ H 3 . - C - H - . H \ / \ / \ / \ 4 C - H - . - . 1 2 3 4 C winner: computer \end{verbatim} \doublespacing \section{Other Heuristics} The traditional heuristic is that resistance network used by Shannon. It may however be a bit harder to implement in software than in hardware. While writing the code for this project, I looked at the source code for Wolve, which was the 2008 Computer Olympiad winner for Hex. When more advanced searches and pattern matches fail, Wolve falls back to a resistance measure. Wolve uses a non-standard linear algebra library which makes a best guess when trying to solve for an under-specified set of linear equations. Unfortunately, Wolve doesn't seem to go through the work required to get the independent equations, so the results it gets from the resistance heuristic are suspect. The graphical equivalent of \begin{HexBoard}[board size=5] \end{HexBoard} is \begin{tikzpicture} \draw[step=1cm] (-2,-2) grid (2,2); \draw (-2,-2) -- (2,2); \draw (-2, -1) -- (1, 2); \draw (-2, 0) -- (0, 2); \draw (-2, 1) -- (-1, 2); \draw (-1, -2) -- (2, 1); \draw (0, -2) -- (2, 0); \draw (1, -2) -- (2, -1); \end{tikzpicture} We assume each edge has a resistance. In order to properly to properly calculate the resistances in a large mesh network like this, we need to use Kirchoff's voltage and current laws to generate enough linearly independent equations to span the space. With $|E|$ edges in a fully connected graph, we need $|E|+1$ linearly independent equations \cite{Moody2013}. Kirchoff's current law states that the sum of the currents for a vertex is 0. With a graph $G=(V,E)$, that gets us $|V|$ equations. Kirchoff's voltage law says the sum of the voltages around a loop is 0. To get the remaining equations, we start by creating a minimum spanning tree. The edges not in that tree will each be part of an independent cycle. For each edge not in the minimum spanning tree we walk up from the parents of the vertices in the spanning tree until we find a common parent. The set of vertices now form a loop. Because in a fully connected graph $G=(V,E)$ we have $|V|-1$ edges in the spanning tree, this spanning tree procedure will give us $|E|-(|V|-1)$ new equations. Added to the $|V|$ equations we generated from the current law, we have the required $|E|+1$ linearly independent equations to solve the resistance network. With an n$\times$n Hex board plus the required source and sink, there are a total of $3\times(n-1)^2+2n-1 + 2n$ edges. For the standard 11x11 board, that would require solving a system of 343 linearly independent equations. This is not a trivial amount of work for evaluating a single position. \cite{ANSHELEVICH2002101} describes a heuristic that finds cell-to-cell loose linkages that work better than straight-forward resistance heuristics. Here is the simplest example: \begin{HexBoard}[board size=5] \HStoneGroup[color=black]{b2,c3} \end{HexBoard} The stones at b2 and c3 are linked in that if white tries to block the connection by placing at either b3 or c2, black can play the other location to complete the link. The pattern matching for these linkages has become called H-search. H-search, with various amounts of pattern matching, is the primary heuristic used by Six, Wolve, and MoHex, which were the winners of the Computer Olympiad Hex competitions from 2006 through 2010. Monte-Carlo has been used in conjunction with $\alpha-\beta$ \cite{arneson_hayward_henderson_2010}, but it is normally used for either selection or for leaf evaluation, not for both. Most commonly, Monte-Carlo is used for branch selection, where it is called Monte Carlo Tree Search (MCTS). The Hex program presented here has hooks for multiple evaluations functions, but uses the same Monte-Carlo for both leaf and branching evaluation. A more expensive leaf evaluation, like H-search or resistance should bring the current program closer to the level of play of the previous Computer Olympiad players. The big difference will be the opening book and dead region elimination done by Wolve and in particular MoHex. \section{Other Approaches} The current gold standard for a Hex type game is probably AlphaGo Zero \cite{Silver2017}. Instead of a Monte-Carlo roll-out, AlphaGo Zero used a single neural network for both position evaluation and branch selection. The neural network is trained with an MCTS, but the MCTS branch probabilities are guided by the position valuation of the initial neural network. After 40 days of continuous self-play AlphaGo Zero was able to beat AlphaGo-Lee 100 games to 0. AlphaGo-Lee is the program that defeated the human world champion in 2016. An intermediate program called AlphaGo-Master beat a field of the strongest professional Go players 60 games to 0. Against AlphaGo-Zero, a 100 game match was 89/11 in favor of AlphaGo-Zero. The Machine Learning class was full this semester, but if I can get into it next year, I may try my hand at using a neural network for the heuristic function. \section{Future Work} From an engineering standpoint, the code wasn't written to scale. Everything is in a single module and the classes are statically defined. In order to scale and add improvements, the code will need to be modularized. The main class interfaces need to be re-thought out, and heuristics functions should be either virtual and polymorphized, or passed as function pointers or as function object references. The current code is appropriate for the single use case of supporting this paper. Obviously, the game needs a GUI. The code is C++ and I work on Linux, so I think a Qt GUI \cite {Blanchette:2006} would work well. Qt is a C++ GUI framework that is portable to Linux, Mac, Windows and Android. It is a bit embarrassing today that the engine is single threaded. I think a useful architecture for this project may be a single master thread that handles user input and game play and a number of worker threads (based on the number of cores available) that would do position evaluation. Other architectures, of course, are also possible. While basic thread support has been added to C++11 with \texttt{$<$thread$>$}, The asio \footnote{\url{https://think-async.com/Asio}} library provides a higher level framework and is quite likely to be part of the C++17 standard. If somebody wants to get serious about this, the asio framework would allow one to distribute worker threads across multiple cores or multiple machines for large scale scaling. Iterative deepening with a timer would be a large improvement over statically picking the search depth and branching factor. Other heuristic functions, such as network resistance, edge current, or neural network evaluation should be tried. To test one heuristic against another, a protocol should be added for two programs to play each other. A socket interface would allow a competition across machines. With a few of the above code changes, the Hex code would be a good base to add the modern neural network based heuristics used in the championship Go programs. \section{Conclusion} A basic game engine for Hex can be written in just a couple of hundred lines of code and can play a decent game. The structure and regularity makes Hex a good game for AI modeling. A simple heuristic that plays Hex well can be coded up in a dozen lines, however a full deep-learning self-training neural network is still a Ph.D. level project that could take months to explore. \bibliographystyle{apalike} \bibliography{ai} \appendix \section{Code Listing} The source code is online at \url{https://github.com/evaitl/hex}. It is included below for completeness. \singlespacing \lstinputlisting[language=C++,basicstyle=\small]{hex.cpp} \end{document}
-- import the definition of the non-euclidean maze import mazes.noneuclidean_maze.solutions.definition open maze direction /- # Non-euclidean maze. You are in a maze of twisty passages, all distinct. You can go north, south east or west. If you hit the wall there's an error. When you're at the exit (room `J`), type `out`. Solver remark : there are 10 rooms. -/ /- Lemma : no-side-bar Can you escape from this non-Euclidean maze? -/ lemma solve : can_escape A := begin s,s,e,e,w,w,out, end
\chapter{Introduction to Network security} %\section{Securing network} %\subsection{Terminologies} %An attack vector is a path or other means by which an attacker can gain access to a server, host, or network. Attack vectors can originate from outside (external threat) or inside (internal threat) the corporate network. Internal threats have the potential to cause greater damage than external threats because employees have direct access to infrastructure devices as well as the knowledge of the corporate network.\\ %\textbf{Security Artichoke} is the analogy used to describe what a hacker must do to launch an attack in a Borderless network. They remove certain \emph{artichoke leafs}, and each \emph{leaf} of the network may reveal some sensitive data. And leaf after leaf, it all leads the hacker to more data.\\ %\textbf{Cryptography} is the study and practice of hiding information. It ensures three components of information security: Confidentiality, Integrity, and Availability.\\ %A \textbf{Security Policy} is a formal statement of the rules by which people that are given access to the technology and information assets of an organization, must abide. %\subsection{Network topology} % %\textbf{White hat hackers} perform \emph{ethical} network penetration test to discover network vulnerabilities. \textbf{Grey hat hackers} do unethical things, but not for personal gain or to cause damage (e.g. disclose vulnerability publicly). \textbf{Black hat hackers} violate computer and network security for personal gain and malicious purposes.\\ % %\paragraph{SOHO network:} Attackers may want to use someone's Internet connection for free or illegal activity, or view financial transactions. Home networks and SOHOs are typically protected using a consumer \emph{grade router}, such as a \emph{Linksys home wireless router}. % %\paragraph{WAN network:} Main site and Regional site are protected by an ASA (stateful firewall and VPN). Branch site is secured using hardened ISR and VPN connection to the main site. The SOHO and Mobile users connect to the main site using Cisco Anyconnect VPN client. % %\paragraph{Data center network:} Data center networks are interconnected to corporate sites using VPN and ASA devices along with \emph{integrated data center switches}, such as a high-speed Nexus switches. Data center physical security can be divided into two areas: Outside perimeter security and Inside perimeter security. % %\paragraph{Cloud and virtual network:} This kind of network uses virtual machines (VM) to provide services to their clients. VMs are also prone to specific targeted attacks as shown in the following list. The \textbf{Cisco Secure Data Center} is a solution to secure Cloud and virtual network. The core components of this solution provide: Secure Segmentation, Threat Defense, and Visibility. % %\begin{itemize} %\item \textbf{Hyperjacking:} An attacker could hijack a VM hypervisor and use it as a starting point to attack other devices. %\item \textbf{Instant on activation:} A VM that has not been used for a long period of time can introduce security vulnerabilities when activated. %\item \textbf{Antivirus storm:} Multiple VMs attempt to download antivirus file at the same time %\end{itemize} % %\paragraph{Borderless Network:} To accommodate the BYOD trend, Cisco developed the Borderless Network. To support this network, Cisco devices support Mobile Device Management (MDM) features. MDM features secure, monitor, and manage mobile devices, including corporate-owned devices and employee-owned devices. \section{Network threats} \subsection{Malware} A \textbf{virus} is malicious code that is attached to executable files which are often legitimate programs. A virus is triggered by an event and cannot automatically propagate itself to other systems. Viruses are spread by USB memory drives, CDs, DVDs, network shares, and email.\\ A \textbf{Trojan horse} carries out malicious operations under the guise of a desired function. This malicious operation exploits the privileges of the user. Trojans are often found attached to online games. \\ \textbf{Worms} run by themselves, replicate and then spread very quickly (self-propagation) to slow down networks. They does not require user participation. After a host is infected, the worm is able to over the network. Most worm attacks consist of three components: \begin{itemize} \item \textbf{Enabling vulnerability:} A worm installs itself using an exploit mechanism, such as an email attachment, an executable file, or a Trojan horse. \item \textbf{Propagation mechanism:} After gaining access to a device, the worm replicates itself and locates new targets. \item \textbf{Payload:} Any malicious code that results in some action is a payload. Most often this is used to create a backdoor to the infected host or create a DoS attack. \end{itemize} \note Worms never really stop on the Internet. After they are released, they continue to propagate until all possible sources of infection are properly patched.\\ %Some other examples of modern malware: % %\begin{itemize} %\item Ransomware -- deny access to the infected computer system, then demand a paid ransom for the restriction to be removed. %\item Spyware -- gather information about a user and send the information to another entity %\item Adware -- display annoying pop-up advertising pertinent to websites visited %\item Scareware -- include scam software which uses social engineering to shock or induce anxiety by creating the perception of a threat %\item Phishing -- attempt to convince people to divulge sensitive information, e.g. receiving an email from their bank asking users to divulge their account and PIN numbers. %\item Rootkits -- installed on a compromised system, then hide its intrusion and maintain privileged access to the hacker. %\end{itemize} \subsection{Network attacks} %The method used in this course classifies attacks in three major categories: Reconnaissance, Access, and DoS Attacks.\\ \textbf{Reconnaissance attacks} gather information about a network and scan for access. Example: information query, ping sweep\footnote{a network scanning technique that indicates the live hosts in a range of IP addresses}, port scan, Vulnerability Scanners, Exploitation tools.\\ \textbf{Access attacks} gain access or control to sensitive information. Some examples of access attacks are listed as follow:\\ \begin{itemize} \item Password attack -- a dictionary is used for repeated login attempts \item Trust exploitation -- uses granted privileges to access unauthorized material \item Port redirection -- uses a compromised internal host to pass traffic through a firewall \item Man-in-the-middle -- an unauthorized device positioned between two legitimate devices in order to redirect or capture traffic \item Buffer overflow -- too much data sent to a buffer memory \end{itemize} \textbf{Denial-of-Service (DoS) attacks} prevent users from accessing a system. They are popular and simple to conduct. There are two major sources of DoS attacks: \begin{itemize} \item \emph{Maliciously Formatted Packets} is forwarded to a host and the receiver is unable to handle an unexpected condition, which leads to slow or crashed system. \item \emph{Overwhelming Quantity of Traffic} causes the system to crash or become extremely slow. \end{itemize} \textbf{A Distributed DoS Attack (DDoS)} is similar in intent to a DoS attack, except that a DDoS attack increases in magnitude because it originates from multiple, coordinated sources. As an example, a DDoS attack could proceed as follows: \begin{enumerate} \item A hacker builds a network of infected machines. A network of infected hosts is called a \emph{botnet}. The compromised computers are called \emph{zombie computers}, and they are controlled by \emph{handler systems}. \item The zombie computers continue to scan and infect more targets to create more zombies. \item When ready, the hacker instructs the handler systems to make the botnet of zombies carry out the DDoS attack. \end{enumerate} \section{Mitigating Threats} \subsection{Mitigating common network attacks} \paragraph{Virus and Trojan horse:} The primary means of mitigating virus and Trojan horse attacks is antivirus software. However, antivirus software cannot prevent viruses from entering the network. \paragraph{Worms:} The response to a worm attack can be broken down into four phases: \begin{enumerate} \item \textbf{\textbf{Containment}:} limit the spread of worm infection \item \textbf{Inoculation:} run parallel to or subsequent to the Containment phase; all uninfected systems are patched with the appropriate vendor patch. \item \textbf{Quarantine:} identify the infected machines \item \textbf{Treatment:} disinfect the infected systems \end{enumerate} \paragraph{Reconnaissance:} \emph{Encryption} is an effective solution for \textit{sniffer attacks}. Using \emph{IPS} and \emph{firewall} can limit the impact of \emph{port scanning}. \emph{Ping sweeps} can be stopped if \emph{ICMP} echo and echo-reply are turned off on edge routers. \paragraph{Access attacks:} strong password policy, principle of minimum trust\footnote{a system or device should not trust another unconditionally}, cryptography, OS and app patches. \paragraph{DoS attacks:} a network utilization software and anti-spoofing technologies (port security, DHCP snooping, IP source guard, ARP inspection, and ACL). %\subsection{Cisco SecureX architecture} % %The Cisco SecureX architecture is designed to provide effective security for any user, using any device, from any location, and at any time. This architecture includes the five major components: Scanning Engines, Delivery Mechanisms, Security Intelligence Operations (SIO), Policy Management Consoles, and Next-Generation Endpoints. The most important component of SecureX is SIO, which detects and blocks malicious traffic.\\ % %The SecureX is a huge and complex computing model. Therefore, a \textbf{context-aware scanning element} is used to scale SecureX. It is a device that examines packets as well as external information to understand the full context of the situation. To be accurate, this context-aware device defines security policies based on five parameters: person ID, application, device type, location, and access time.\\ % %\textbf{Security Intelligence Operations (SIO)} is a Cloud-based service that connects global threat information, reputation-based services, and sophisticated analysis, to SecureX network security devices. \subsection{Cisco Network Foundation Protection Framework} The Cisco Network Foundation Protection (NFP) framework provides comprehensive guidelines for protecting the network infrastructure. NFP logically divides routers and switches into three functional areas: \begin{itemize} \item\textbf{Control plane} is responsible for routing functions. We protect this plane using Routing protocol authentication, CoPP\footnote{prevents unnecessary traffic from overwhelming the route processor}, and AutoSecure. \item\textbf{Management plane} is responsible for network security and management. Its security is implemented by password policy, RBAC\footnote{Role-based access control, restricts user access based on the role of the user.}, authorization, access reporting. \item\textbf{Data plane} is responsible for forwarding data. Its security can be implemented using \emph{ACLs}, antispoofing mechanisms, and port security. \end{itemize}
!---------------------------------------------------------------------- !---------------------------------------------------------------------- ! Example 1: The AP BP normal form !---------------------------------------------------------------------- !---------------------------------------------------------------------- SUBROUTINE FUNC(NDIM,U,ICP,PAR,IJAC,F,DFDU,DFDP) IMPLICIT NONE INTEGER, INTENT(IN) :: NDIM, IJAC, ICP(*) DOUBLE PRECISION, INTENT(IN) :: U(NDIM), PAR(*) DOUBLE PRECISION, INTENT(OUT) :: F(NDIM), DFDU(NDIM,*), DFDP(NDIM,*) F(1) = (U(1)-PAR(1))*(U(1)-PAR(2))+PAR(3) IF(IJAC==0)RETURN DFDU(1,1) = U(1)-PAR(1)+U(1)-PAR(2) IF(IJAC==1)RETURN DFDP(1,1) = -(U(1)-PAR(2)) DFDP(1,2) = -(U(1)-PAR(1)) DFDP(1,3) = 1.0d0 END SUBROUTINE FUNC !----------------------------------------------------------------------- !----------------------------------------------------------------------- SUBROUTINE STPNT(NDIM,U,PAR) !--------- ----- IMPLICIT NONE INTEGER, INTENT(IN) :: NDIM DOUBLE PRECISION, INTENT(OUT) :: U(NDIM), PAR(*) PAR(1:3) = (/ 1.0d0, 2.0d0, 0.0d0 /) U(1) = 1.0 END SUBROUTINE STPNT !---------------------------------------------------------------------- !---------------------------------------------------------------------- SUBROUTINE BCND END SUBROUTINE BCND SUBROUTINE ICND END SUBROUTINE ICND SUBROUTINE FOPT END SUBROUTINE FOPT SUBROUTINE PVLS END SUBROUTINE PVLS !---------------------------------------------------------------------- !----------------------------------------------------------------------
[STATEMENT] lemma nu_below_mu_nu_2_nu_below_mu_nu: assumes "has_least_fixpoint f" and "has_greatest_fixpoint f" and "nu_below_mu_nu_2 f" shows "nu_below_mu_nu f" [PROOF STATE] proof (prove) goal (1 subgoal): 1. nu_below_mu_nu f [PROOF STEP] proof - [PROOF STATE] proof (state) goal (1 subgoal): 1. nu_below_mu_nu f [PROOF STEP] have "d(L) * \<nu> f \<le> \<mu> f \<squnion> (\<nu> f \<sqinter> L) \<squnion> d((\<mu> f \<squnion> (\<nu> f \<sqinter> L)) * bot) * top" [PROOF STATE] proof (prove) goal (1 subgoal): 1. d L * \<nu> f \<le> \<mu> f \<squnion> \<nu> f \<sqinter> L \<squnion> d ((\<mu> f \<squnion> \<nu> f \<sqinter> L) * bot) * top [PROOF STEP] using assms(3) nu_below_mu_nu_2_def [PROOF STATE] proof (prove) using this: nu_below_mu_nu_2 f nu_below_mu_nu_2 ?f \<equiv> d L * \<nu> ?f \<le> \<mu> ?f \<squnion> \<nu> ?f \<sqinter> L \<squnion> d ((\<mu> ?f \<squnion> \<nu> ?f \<sqinter> L) * bot) * top goal (1 subgoal): 1. d L * \<nu> f \<le> \<mu> f \<squnion> \<nu> f \<sqinter> L \<squnion> d ((\<mu> f \<squnion> \<nu> f \<sqinter> L) * bot) * top [PROOF STEP] by blast [PROOF STATE] proof (state) this: d L * \<nu> f \<le> \<mu> f \<squnion> \<nu> f \<sqinter> L \<squnion> d ((\<mu> f \<squnion> \<nu> f \<sqinter> L) * bot) * top goal (1 subgoal): 1. nu_below_mu_nu f [PROOF STEP] also [PROOF STATE] proof (state) this: d L * \<nu> f \<le> \<mu> f \<squnion> \<nu> f \<sqinter> L \<squnion> d ((\<mu> f \<squnion> \<nu> f \<sqinter> L) * bot) * top goal (1 subgoal): 1. nu_below_mu_nu f [PROOF STEP] have "... \<le> \<mu> f \<squnion> (\<nu> f \<sqinter> L) \<squnion> d(\<nu> f * bot) * top" [PROOF STATE] proof (prove) goal (1 subgoal): 1. \<mu> f \<squnion> \<nu> f \<sqinter> L \<squnion> d ((\<mu> f \<squnion> \<nu> f \<sqinter> L) * bot) * top \<le> \<mu> f \<squnion> \<nu> f \<sqinter> L \<squnion> d (\<nu> f * bot) * top [PROOF STEP] by (metis assms(1,2) d_isotone inf.sup_monoid.add_commute inf.sup_right_divisibility le_supI le_supI2 mu_below_nu mult_left_isotone sup_left_divisibility) [PROOF STATE] proof (state) this: \<mu> f \<squnion> \<nu> f \<sqinter> L \<squnion> d ((\<mu> f \<squnion> \<nu> f \<sqinter> L) * bot) * top \<le> \<mu> f \<squnion> \<nu> f \<sqinter> L \<squnion> d (\<nu> f * bot) * top goal (1 subgoal): 1. nu_below_mu_nu f [PROOF STEP] finally [PROOF STATE] proof (chain) picking this: d L * \<nu> f \<le> \<mu> f \<squnion> \<nu> f \<sqinter> L \<squnion> d (\<nu> f * bot) * top [PROOF STEP] show ?thesis [PROOF STATE] proof (prove) using this: d L * \<nu> f \<le> \<mu> f \<squnion> \<nu> f \<sqinter> L \<squnion> d (\<nu> f * bot) * top goal (1 subgoal): 1. nu_below_mu_nu f [PROOF STEP] by (simp add: nu_below_mu_nu_def) [PROOF STATE] proof (state) this: nu_below_mu_nu f goal: No subgoals! [PROOF STEP] qed
Formal statement is: lemma has_contour_integral_0: "((\<lambda>x. 0) has_contour_integral 0) g" Informal statement is: The contour integral of the zero function is zero.
{-# LANGUAGE FlexibleContexts #-} {-# LANGUAGE FlexibleInstances #-} {-# LANGUAGE MultiParamTypeClasses #-} {-# LANGUAGE OverloadedStrings #-} {-# LANGUAGE RecordWildCards #-} {-# LANGUAGE ScopedTypeVariables #-} {-# LANGUAGE TypeOperators #-} {-# LANGUAGE UndecidableInstances #-} {-# OPTIONS_GHC -Wno-orphans #-} {- Module : Text.Loquate.Instances Description : Default Loquate Instances -} module Text.Loquate.Instances ( ) where --import qualified Data.ByteString as BS --import qualified Data.ByteString.Lazy as LBS import qualified Control.Exception.Base as E import Data.Array.Unboxed (Array, IArray, Ix, UArray, elems) import Data.Complex (Complex(..)) import Data.Fixed import Data.Foldable import Data.Int (Int16, Int32, Int64, Int8) import Data.List.NonEmpty (NonEmpty) import Data.Ratio (Ratio, denominator, numerator) import qualified Data.Text as T import qualified Data.Text.Lazy as LT import Data.Text.Prettyprint.Doc (Pretty(..)) import Data.Typeable import Data.Version (Version, showVersion) import Data.Void (Void) import Data.Word (Word16, Word32, Word64, Word8) import GHC.Stack import Numeric.Natural import Text.Loquate.Class import Text.Loquate.Doc -- misc types instance Lang l => Loquate l () where loq _ = pretty instance Lang l => Loquate l Bool where loq _ = pretty instance Lang l => Loquate l Version where loq _ = pretty . showVersion instance Lang l => Loquate l Void where loq _ = pretty -- textual types instance Lang l => Loquate l Char where loq _ = pretty instance {-# OVERLAPS #-} Lang l => Loquate l String where loq _ = pretty -- instance Loquate l BS.ByteString where loq _ = pretty -- instance Loquate l LBS.ByteString where loq _ = pretty instance Lang l => Loquate l T.Text where loq _ = pretty instance Lang l => Loquate l LT.Text where loq _ = pretty -- numeric types instance Lang l => Loquate l Double where loq _ = pretty instance Lang l => Loquate l Float where loq _ = pretty instance (Lang l, Typeable t, HasResolution t) => Loquate l (Fixed t) where loq _ = viaShow -- | Integral types should loquate via Integer instance Lang l => Loquate l Integer where loq _ = pretty instance (Lang l, Loquate l Integer) => Loquate l Natural where loq l = loq l . toInteger instance (Lang l, Loquate l Integer) => Loquate l Int where loq l = loq l . toInteger instance (Lang l, Loquate l Integer) => Loquate l Int8 where loq l = loq l . toInteger instance (Lang l, Loquate l Integer) => Loquate l Int16 where loq l = loq l . toInteger instance (Lang l, Loquate l Integer) => Loquate l Int32 where loq l = loq l . toInteger instance (Lang l, Loquate l Integer) => Loquate l Int64 where loq l = loq l . toInteger instance (Lang l, Loquate l Integer) => Loquate l Word where loq l = loq l . toInteger instance (Lang l, Loquate l Integer) => Loquate l Word8 where loq l = loq l . toInteger instance (Lang l, Loquate l Integer) => Loquate l Word16 where loq l = loq l . toInteger instance (Lang l, Loquate l Integer) => Loquate l Word32 where loq l = loq l . toInteger instance (Lang l, Loquate l Integer) => Loquate l Word64 where loq l = loq l . toInteger -- polymorphic numeric types instance Loquate l t => Loquate l (Complex t) where loq l (a :+ b) = loq l a <+> "+" <+> loq l b <> "i" instance Loquate l t => Loquate l (Ratio t) where loq l x = loq l (numerator x) <> "/" <> loq l (denominator x) -- polymorphic containers in dependencies of loquacious instance Loquate l t => Loquate l (Maybe t) where loq _ Nothing = mempty loq l (Just x) = loq l x instance (Loquate l t, Loquate l s) => Loquate l (t, s) where loq l (a, b) = align $ tupled [loq l a, loq l b] instance (Loquate l t, Loquate l s, Loquate l r) => Loquate l (t, s, r) where loq l (a, b, c) = align $ tupled [loq l a, loq l b, loq l c] instance (Loquate l t) => Loquate l [t] where loq l xs = align . list $ loq l <$> xs instance (Loquate l t) => Loquate l (NonEmpty t) where loq l xs = align . list $ loq l <$> toList xs instance (Typeable i, Loquate l t) => Loquate l (Array i t) where loq l xs = align . list $ loq l <$> toList xs instance (Loquate l t, IArray UArray t, Ix i, Typeable i) => Loquate l (UArray i t) where loq l xs = align . list $ loq l <$> elems xs instance (Loquate l t, Loquate l s) => Loquate l (Either t s) where loq l (Left x) = loq l x loq l (Right x) = loq l x -- showing types rather than values instance Lang l => Loquate l TypeRep where loq _ = viaShow instance (Lang l, Typeable a) => Loquate l (Proxy a) where loq l _ = loq l $ typeRep (Proxy :: Proxy (Proxy a)) instance (Lang l, Typeable a, Typeable b) => Loquate l (a -> b) where loq l f = loq l $ typeOf f instance (Lang l, Typeable a, Typeable b) => Loquate l (a :~: b) where loq l _ = loq l (typeRep (Proxy :: Proxy a)) <+> ":~:" <+> loq l (typeRep (Proxy :: Proxy b)) instance (Lang l, Typeable a, Typeable b) => Loquate l (a :~~: b) where loq l _ = loq l (typeRep (Proxy :: Proxy a)) <+> ":~~:" <+> loq l (typeRep (Proxy :: Proxy b)) -- call stacks! instance Lang l => Loquate l CallStack where loq l = withFrozenCallStack ( align . vsep . fmap loqStack . getCallStack ) where loqStack (func, srcLoc) = fromString func <+> "←" <+> loq l srcLoc instance Lang l => Loquate l SrcLoc where loq l SrcLoc{..} = locFile <+> parens locPackage where locFile = fromString srcLocFile <> colon <> loq l srcLocStartLine <> colon <> loq l srcLocStartCol locPackage = fromString srcLocPackage <> colon <> fromString srcLocModule -- Exception types instance Lang l => Loquate l E.AllocationLimitExceeded where loq _ e = viaShow e instance Lang l => Loquate l E.ArithException where loq _ e = viaShow e instance Lang l => Loquate l E.ArrayException where loq _ e = viaShow e instance Lang l => Loquate l E.AssertionFailed where loq _ e = viaShow e instance Lang l => Loquate l E.AsyncException where loq _ e = viaShow e instance Lang l => Loquate l E.BlockedIndefinitelyOnMVar where loq _ e = viaShow e instance Lang l => Loquate l E.BlockedIndefinitelyOnSTM where loq _ e = viaShow e instance Lang l => Loquate l E.CompactionFailed where loq _ e = viaShow e instance Lang l => Loquate l E.Deadlock where loq _ e = viaShow e instance Lang l => Loquate l E.FixIOException where loq _ e = viaShow e instance Lang l => Loquate l E.IOException where loq _ e = viaShow e instance Lang l => Loquate l E.NestedAtomically where loq _ e = viaShow e instance Lang l => Loquate l E.NoMethodError where loq _ e = viaShow e instance Lang l => Loquate l E.NonTermination where loq _ e = viaShow e instance Lang l => Loquate l E.PatternMatchFail where loq _ e = viaShow e instance Lang l => Loquate l E.RecConError where loq _ e = viaShow e instance Lang l => Loquate l E.RecSelError where loq _ e = viaShow e instance Lang l => Loquate l E.RecUpdError where loq _ e = viaShow e instance Lang l => Loquate l E.SomeAsyncException where loq _ e = viaShow e instance Lang l => Loquate l E.SomeException where loq _ e = viaShow e instance Lang l => Loquate l E.TypeError where loq _ e = viaShow e
[STATEMENT] lemma confluent_quotient_ACIDZ: "confluent_quotient (~) (~~) (~~) (~~) (~~) (~~) (map_rexp fst) (map_rexp snd) (map_rexp fst) (map_rexp snd) rel_rexp rel_rexp rel_rexp set_rexp set_rexp" [PROOF STATE] proof (prove) goal (1 subgoal): 1. confluent_quotient (~) (~~) (~~) (~~) (~~) (~~) (map_rexp fst) (map_rexp snd) (map_rexp fst) (map_rexp snd) rel_rexp rel_rexp rel_rexp set_rexp set_rexp [PROOF STEP] by unfold_locales (auto 4 4 dest: ACIDZ_set_rexp' simp: rexp.in_rel rexp.rel_compp dest: map_rexp_ACIDZ_inv intro: rtranclp_into_equivclp intro: equivpI reflpI sympI transpI ACIDZcl_map_respects strong_confluentp_imp_confluentp[OF strong_confluentp_ACIDZ])
corollary\<^marker>\<open>tag unimportant\<close> maximum_real_frontier: assumes holf: "f holomorphic_on (interior S)" and contf: "continuous_on (closure S) f" and bos: "bounded S" and leB: "\<And>z. z \<in> frontier S \<Longrightarrow> Re(f z) \<le> B" and "\<xi> \<in> S" shows "Re(f \<xi>) \<le> B"
A Koi Pond provides a peaceful and quiet place to help you escape from the stress of everyday life. It is also the perfect way to add beauty to any outdoor space. But having a Koi pond does require maintenance to keep it healthy and attractive. There are so many products available to use in water gardens that are quite overwhelming. Special care is specific to each pond. With the proper care from the beginning, you can avoid costly complications later on. There are effective precautionary steps you can take to keep your Koi pond healthy year around. Springtime is an important time to get your pond going in the right direction. Anything you did in the winter can be un-done in the spring. Turn on the pump etc. When the water temperature reaches a contact 50 degrees, start feeding the fish again. A cold weather food is important until the temperature reaches 60 degrees then move to a regular feeding schedule. Remove any leaves or debris as well as vacuum the sludge from the bottom of the pond. Pump the water from the pond into a large container and then place the fish into the container filled with the pond water. Once the pond is clean, pump the water back in and then put the fish into the pond. Begin cleaning the filter as needed. Remove any dead foliage. Cut plants that have gone brown with age. This reduces buildup and allows the plants more room to grow. Feed the fish but don’t overfeed. It’s important to keep the falling leaves from ending up in the pool causing decay. This decay will throw off the ecological balance of the water garden. Installing leaf netting over the pond will make it easier to maintain. Water temperature is dropping so it is important to feed the fish less. Once the temperature drops below 50 degrees – stop feeding until spring. If you have a warm winter day, and the pond begins to warm up, do not be tempted to feed the fish. Prepare the pond. If you have a small or shallow pond, you may need a floating deicer to keep it above freezing. If the temperature drops below 40 degrees, reduce the circulation of water by turning off the pump and draining it. Caring for your Koi pond is both an art and science. Maintenance for your Koi pond changes with the seasons. The health and survival of your plants and fish depend on upon this proper maintenance and care. Art of the Yard can help you build and maintain a beautiful Koi pond protecting your investment.
module Esterel.Variable.Signal where open import Data.Nat using (ℕ) renaming (_≟_ to _≟ℕ_) open import Function using (_∘_) open import Relation.Nullary using (Dec ; yes ; no ; ¬_) open import Relation.Binary using (Decidable) open import Relation.Binary.PropositionalEquality using (_≡_ ; refl ; cong ; trans ; sym) data Signal : Set where _ₛ : (S : ℕ) → Signal unwrap : Signal → ℕ unwrap (n ₛ) = n unwrap-inverse : ∀ {s} → (unwrap s) ₛ ≡ s unwrap-inverse {_ ₛ} = refl unwrap-injective : ∀ {s t} → unwrap s ≡ unwrap t → s ≡ t unwrap-injective s'≡t' = trans (sym unwrap-inverse) (trans (cong _ₛ s'≡t') unwrap-inverse) wrap : ℕ → Signal wrap = _ₛ bijective : ∀{x} → unwrap (wrap x) ≡ x bijective = refl -- for backward compatibility unwrap-neq : ∀{k1 : Signal} → ∀{k2 : Signal} → ¬ k1 ≡ k2 → ¬ (unwrap k1) ≡ (unwrap k2) unwrap-neq = (_∘ unwrap-injective) _≟_ : Decidable {A = Signal} _≡_ (s ₛ) ≟ (t ₛ) with s ≟ℕ t ... | yes p = yes (cong _ₛ p) ... | no ¬p = no (¬p ∘ cong unwrap) data Status : Set where present : Status absent : Status unknown : Status _≟ₛₜ_ : Decidable {A = Status} _≡_ present ≟ₛₜ present = yes refl present ≟ₛₜ absent = no λ() present ≟ₛₜ unknown = no λ() absent ≟ₛₜ present = no λ() absent ≟ₛₜ absent = yes refl absent ≟ₛₜ unknown = no λ() unknown ≟ₛₜ present = no λ() unknown ≟ₛₜ absent = no λ() unknown ≟ₛₜ unknown = yes refl
import tactic import .tokens .commun namespace tactic setup_tactic_parser @[derive has_reflect] meta inductive Par_args -- Par fait (appliqué à args) on obtient news (tel que news') | obtenir (fait : pexpr) (args : list pexpr) (news : list maybe_typed_ident) : Par_args -- Par fait (appliqué à args) on obtient news (tel que news') | choisir (fait : pexpr) (args : list pexpr) (news : list maybe_typed_ident) : Par_args -- Par fait (appliqué à args) il suffit de montrer que buts | appliquer (fait : pexpr) (args : list pexpr) (buts : list pexpr) : Par_args open Par_args /-- Parse une liste de conséquences, peut-être vide. -/ meta def on_obtient_parser : lean.parser (list maybe_typed_ident) := do { news ← tk "obtient" *> maybe_typed_ident_parser*, news' ← (tk "tel" *> tk "que" *> maybe_typed_ident_parser*) <|> pure [], pure (news ++ news') } /-- Parse une liste de conséquences pour `choose`. -/ meta def on_choisit_parser : lean.parser (list maybe_typed_ident) := do { news ← tk "choisit" *> maybe_typed_ident_parser*, news' ← (tk "tel" *> tk "que" *> maybe_typed_ident_parser*) <|> pure [], pure (news ++ news') } /-- Parse un ou plusieurs nouveaux buts. -/ meta def buts_parser : lean.parser (list pexpr) := tk "il" *> tk "suffit" *> tk "de" *> tk "montrer" *> tk "que" *> pexpr_list_or_texpr /-- Parser principal pour la tactique Par. -/ meta def Par_parser : lean.parser Par_args := with_desc "... (appliqué à ...) on obtient ... (tel que ...) / Par ... (appliqué à ...) il suffit de montrer que ..." $ do e ← texpr, args ← applique_a_parser, do { _ ← tk "on", (Par_args.obtenir e args <$> on_obtient_parser) <|> (Par_args.choisir e args <$> on_choisit_parser) } <|> (Par_args.appliquer e args <$> buts_parser) meta def verifie_type : maybe_typed_ident → tactic unit | (n, some t) := do n_type ← get_local n >>= infer_type, to_expr t >>= unify n_type | (n, none) := skip /-- Récupère de l'information d'une hypothèse ou d'un lemme ou bien réduit le but à un ou plusieurs nouveaux buts en appliquant une hypothèse ou un lemme. -/ @[interactive] meta def Par : parse Par_parser → tactic unit | (Par_args.obtenir fait args news) := focus1 (do news.mmap' (λ p : maybe_typed_ident, verifie_nom p.1), efait ← to_expr fait, applied ← mk_mapp_pexpr efait args, if news.length = 1 then do { -- Cas où il n'y a rien à déstructurer nom ← match news with | ((nom, some new) :: t) := do enew ← to_expr new, infer_type applied >>= unify enew, pure nom | ((nom, none) :: t) := pure nom | _ := fail "Il faut indiquer un nom pour l'information obtenue." -- ne devrait pas arriver end, hyp ← note nom none applied, nettoyage, news.mmap' verifie_type } else do tactic.rcases none (to_pexpr $ applied) $ rcases_patt.tuple $ news.map rcases_patt_of_maybe_typed_ident, nettoyage ) | (Par_args.choisir fait args news) := focus1 (do efait ← to_expr fait, applied ← mk_mapp_pexpr efait args, choose tt applied (news.map prod.fst), nettoyage, news.mmap' verifie_type) | (Par_args.appliquer fait args buts) := focus1 (do efait ← to_expr fait, ebuts ← buts.mmap to_expr, mk_mapp_pexpr efait args >>= apply, vrai_buts ← get_goals, let paires := list.zip vrai_buts buts, focus' (paires.map (λ p : expr × pexpr, do `(force_type %%p _) ← i_to_expr_no_subgoals ``(force_type %%p.2 %%p.1), skip)) <|> fail "Ce n'est pas ce qu'il faut démontrer") end tactic example (P Q : (ℕ → ℕ) → Prop) (h : true ∧ ∃ u : ℕ → ℕ, P u ∧ Q u) : true := begin Par h on obtient (a : true) (u : ℕ → ℕ) (b : P u) (c : Q u), trivial end example (n : ℕ) (h : ∃ k, n = 2*k) : ∃ l, n+1 = 2*l + 1 := begin Par h on obtient k hk, use k, rw hk end example (n : ℕ) (h : ∃ k, n = 2*k) : ∃ l, n+1 = 2*l + 1 := begin Par h on obtient k tel que hk : n = 2*k, use k, rw hk end example (n : ℕ) (h : ∃ k, n = 2*k) : ∃ l, n+1 = 2*l + 1 := begin success_if_fail { Par h on obtient k tel que (hk : 0 = 1), }, Par h on obtient k tel que (hk : n = 2*k), use k, rw hk end example (f g : ℕ → ℕ) (hf : ∀ y, ∃ x, f x = y) (hg : ∀ y, ∃ x, g x = y) : ∀ y, ∃ x, (g ∘ f) x = y := begin intro y, success_if_fail { Par hg appliqué à y on obtient x tel que (hx : g x = x) }, Par hg appliqué à y on obtient x tel que (hx : g x = y), Par hf appliqué à x on obtient z hz, use z, change g (f z) = y, rw [hz, hx], end example (P Q : Prop) (h : P ∧ Q) : Q := begin Par h on obtient (hP : P) (hQ : Q), exact hQ, end noncomputable example (f : ℕ → ℕ) (h : ∀ y, ∃ x, f x = y) : ℕ → ℕ := begin Par h on choisit g tel que (H : ∀ (y : ℕ), f (g y) = y), exact g, end example (P Q : Prop) (h : P → Q) (h' : P) : Q := begin Par h il suffit de montrer que P, exact h', end example (P Q R : Prop) (h : P → R → Q) (hP : P) (hR : R) : Q := begin Par h il suffit de montrer que [P, R], exact hP, exact hR end example (P Q : Prop) (h : ∀ n : ℕ, P → Q) (h' : P) : Q := begin success_if_fail { Par h appliqué à [0, 1] il suffit de montrer que P }, Par h appliqué à 0 il suffit de montrer que P, exact h', end example (Q : Prop) (h : ∀ n : ℤ, n > 0 → Q) : Q := begin Par h il suffit de montrer que (1 > 0), norm_num, end
A real number is an integer if and only if its image under the map $x \mapsto \mathbb{C}$ is an integer.
#' Utah's beneficial use polygon shapes #' #' Polygons containing beneficial use designations and water body type information. Used to assign uses or standards to site locations. #' #' @format An sf type polygon shapefile "bu_poly"
lemma convex_hull_eq: "convex hull s = s \<longleftrightarrow> convex s"
r=358.46 https://sandbox.dams.library.ucdavis.edu/fcrepo/rest/collection/sherry-lehmann/catalogs/d7tg6n/media/images/d7tg6n-001/svc:tesseract/full/full/358.46/default.jpg Accept:application/hocr+xml
lemma offset_poly_eq_0_iff: "offset_poly p h = 0 \<longleftrightarrow> p = 0"
[STATEMENT] lemma Liminf_add_ereal_right: "F \<noteq> bot \<Longrightarrow> abs c \<noteq> \<infinity> \<Longrightarrow> Liminf F (\<lambda>n. g n + (c :: ereal)) = Liminf F g + c" [PROOF STATE] proof (prove) goal (1 subgoal): 1. \<lbrakk>F \<noteq> bot; \<bar>c\<bar> \<noteq> \<infinity>\<rbrakk> \<Longrightarrow> Liminf F (\<lambda>n. g n + c) = Liminf F g + c [PROOF STEP] by (rule Liminf_compose_continuous_mono) (auto simp: mono_def add_mono continuous_on_def)
If $f$ is holomorphic on an open set $S$, then its derivative $f'$ is holomorphic on $S$.
In mid @-@ 2009 , producers decided to take Nicole 's storyline into a " u @-@ turn " , when she reverted to her " wild ways " . At the time Nicole had endured repetitive personal trauma including failed relationships , Roman being sent to prison and her best friend Belle was dying of cancer . James explained : " It 's all too much for her and she can 't handle it , so she reverts to her wild ways . " Geoff notices Nicole 's erratic behaviour and attempts to help her . She tried to " lure him into bed " after he comforted her , however he turned her down . James said she no longer had romantic feelings for Geoff , but was actually in a " vulnerable state " . She then started relying on alcohol more , and partied with fellow " wild child " Indigo Walker ( Samara Weaving ) at a " rowdy " venue . James explained that Nicole saw alcohol as an answer to her problems . The fact that " she 's trying to deal with too many things " saw Nicole transform into a messed up and depressed person .
lemma (in t2_space) separation_t2: "x \<noteq> y \<longleftrightarrow> (\<exists>U V. open U \<and> open V \<and> x \<in> U \<and> y \<in> V \<and> U \<inter> V = {})"
------------------------------------------------------------------------ -- The Agda standard library -- -- Natural numbers represented in binary natively in Agda. ------------------------------------------------------------------------ {-# OPTIONS --without-K --safe #-} module Data.Nat.Binary where open import Data.Nat.Binary.Base public open import Data.Nat.Binary.Properties public using (_≟_)
library(caret) # include library dataset = "00_measurement/signalp-alone_y_pred.tsv" dt <- read.table(dataset, header = TRUE, sep="\t") # load table # extract file name, for naming output and rowname f_name <- paste0(tools::file_path_sans_ext(dataset)) # define variable for confusion matrix lvs = c("secreted","other") actual = factor(dt$y_true, levels = lvs) pred = factor(dt$y_pred, levels = lvs) # calculate confusion matrix eval_indices <- confusionMatrix(pred, actual) # convert to tables conf_matrix <- as.data.frame(eval_indices$table) eval_table <- t(as.data.frame(eval_indices$byClass, row.names = NULL)) rownames(eval_table) <- f_name # ---------- calculate FDR ------------------- False.Discovery.Rate <- 1 - eval_table[3] eval_table <- data.frame(eval_table,False.Discovery.Rate) # --------- calculate MCC ---------- library(mccr) mcc_sp_alone <- mccr(dt$mcc_y_true,dt$mcc_y_pred) mcc_to_table <- as.data.frame(mcc_sp_alone) colnames(mcc_to_table) <- "MCC" # merge eval table with MCC eval_table <- data.frame(eval_table,mcc_to_table) # export tables f1 <- write.table(eval_table,file = sprintf("%s_evaluation_table.tsv",f_name), sep="\t",eol = "\n") f2 <- write.table(conf_matrix,file = sprintf("%s_confusion_matrix.tsv",f_name), sep ="\t",eol = "\n")
/- Copyright (c) 2021 Yaël Dillies. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Yaël Dillies -/ import order.bounded_order import order.complete_lattice import order.cover import order.iterate import tactic.monotonicity /-! # Successor and predecessor This file defines successor and predecessor orders. `succ a`, the successor of an element `a : α` is the least element greater than `a`. `pred a` is the greatest element less than `a`. Typical examples include `ℕ`, `ℤ`, `ℕ+`, `fin n`, but also `enat`, the lexicographic order of a successor/predecessor order... ## Typeclasses * `succ_order`: Order equipped with a sensible successor function. * `pred_order`: Order equipped with a sensible predecessor function. * `is_succ_archimedean`: `succ_order` where `succ` iterated to an element gives all the greater ones. * `is_pred_archimedean`: `pred_order` where `pred` iterated to an element gives all the greater ones. ## Implementation notes Maximal elements don't have a sensible successor. Thus the naïve typeclass ```lean class naive_succ_order (α : Type*) [preorder α] := (succ : α → α) (succ_le_iff : ∀ {a b}, succ a ≤ b ↔ a < b) (lt_succ_iff : ∀ {a b}, a < succ b ↔ a ≤ b) ``` can't apply to an `order_top` because plugging in `a = b = ⊤` into either of `succ_le_iff` and `lt_succ_iff` yields `⊤ < ⊤` (or more generally `m < m` for a maximal element `m`). The solution taken here is to remove the implications `≤ → <` and instead require that `a < succ a` for all non maximal elements (enforced by the combination of `le_succ` and the contrapositive of `maximal_of_succ_le`). The stricter condition of every element having a sensible successor can be obtained through the combination of `succ_order α` and `no_max_order α`. ## TODO Is `galois_connection pred succ` always true? If not, we should introduce ```lean class succ_pred_order (α : Type*) [preorder α] extends succ_order α, pred_order α := (pred_succ_gc : galois_connection (pred : α → α) succ) ``` `covers` should help here. -/ open function /-! ### Successor order -/ variables {α : Type*} /-- Order equipped with a sensible successor function. -/ @[ext] class succ_order (α : Type*) [preorder α] := (succ : α → α) (le_succ : ∀ a, a ≤ succ a) (maximal_of_succ_le : ∀ ⦃a⦄, succ a ≤ a → ∀ ⦃b⦄, ¬a < b) (succ_le_of_lt : ∀ {a b}, a < b → succ a ≤ b) (le_of_lt_succ : ∀ {a b}, a < succ b → a ≤ b) namespace succ_order section preorder variables [preorder α] /-- A constructor for `succ_order α` usable when `α` has no maximal element. -/ def of_succ_le_iff_of_le_lt_succ (succ : α → α) (hsucc_le_iff : ∀ {a b}, succ a ≤ b ↔ a < b) (hle_of_lt_succ : ∀ {a b}, a < succ b → a ≤ b) : succ_order α := { succ := succ, le_succ := λ a, (hsucc_le_iff.1 le_rfl).le, maximal_of_succ_le := λ a ha, (lt_irrefl a (hsucc_le_iff.1 ha)).elim, succ_le_of_lt := λ a b, hsucc_le_iff.2, le_of_lt_succ := λ a b, hle_of_lt_succ } variables [succ_order α] @[simp, mono] lemma succ_le_succ {a b : α} (h : a ≤ b) : succ a ≤ succ b := begin by_cases ha : ∀ ⦃c⦄, ¬a < c, { have hba : succ b ≤ a, { by_contra H, exact ha ((h.trans (le_succ b)).lt_of_not_le H) }, by_contra H, exact ha ((h.trans (le_succ b)).trans_lt ((hba.trans (le_succ a)).lt_of_not_le H)) }, { push_neg at ha, obtain ⟨c, hc⟩ := ha, exact succ_le_of_lt ((h.trans (le_succ b)).lt_of_not_le $ λ hba, maximal_of_succ_le (hba.trans h) (((le_succ b).trans hba).trans_lt hc)) } end lemma succ_mono : monotone (succ : α → α) := λ a b, succ_le_succ lemma lt_succ_of_not_maximal {a b : α} (h : a < b) : a < succ a := (le_succ a).lt_of_not_le (λ ha, maximal_of_succ_le ha h) alias lt_succ_of_not_maximal ← has_lt.lt.lt_succ protected lemma _root_.has_lt.lt.covers_succ {a b : α} (h : a < b) : a ⋖ succ a := ⟨h.lt_succ, λ c hc, (succ_le_of_lt hc).not_lt⟩ @[simp] lemma covers_succ_of_nonempty_Ioi {a : α} (h : (set.Ioi a).nonempty) : a ⋖ succ a := has_lt.lt.covers_succ h.some_mem section no_max_order variables [no_max_order α] {a b : α} lemma lt_succ (a : α) : a < succ a := (le_succ a).lt_of_not_le $ λ h, not_exists.2 (maximal_of_succ_le h) (exists_gt a) lemma lt_succ_iff : a < succ b ↔ a ≤ b := ⟨le_of_lt_succ, λ h, h.trans_lt $ lt_succ b⟩ lemma succ_le_iff : succ a ≤ b ↔ a < b := ⟨(lt_succ a).trans_le, succ_le_of_lt⟩ @[simp] lemma succ_le_succ_iff : succ a ≤ succ b ↔ a ≤ b := ⟨λ h, le_of_lt_succ $ (lt_succ a).trans_le h, λ h, succ_le_of_lt $ h.trans_lt $ lt_succ b⟩ alias succ_le_succ_iff ↔ le_of_succ_le_succ _ lemma succ_lt_succ_iff : succ a < succ b ↔ a < b := by simp_rw [lt_iff_le_not_le, succ_le_succ_iff] alias succ_lt_succ_iff ↔ lt_of_succ_lt_succ succ_lt_succ lemma succ_strict_mono : strict_mono (succ : α → α) := λ a b, succ_lt_succ lemma covers_succ (a : α) : a ⋖ succ a := ⟨lt_succ a, λ c hc, (succ_le_of_lt hc).not_lt⟩ end no_max_order end preorder section partial_order variables [partial_order α] /-- There is at most one way to define the successors in a `partial_order`. -/ instance : subsingleton (succ_order α) := begin refine subsingleton.intro (λ h₀ h₁, _), ext a, by_cases ha : @succ _ _ h₀ a ≤ a, { refine (ha.trans (@le_succ _ _ h₁ a)).antisymm _, by_contra H, exact @maximal_of_succ_le _ _ h₀ _ ha _ ((@le_succ _ _ h₁ a).lt_of_not_le $ λ h, H $ h.trans $ @le_succ _ _ h₀ a) }, { exact (@succ_le_of_lt _ _ h₀ _ _ $ (@le_succ _ _ h₁ a).lt_of_not_le $ λ h, @maximal_of_succ_le _ _ h₁ _ h _ $ (@le_succ _ _ h₀ a).lt_of_not_le ha).antisymm (@succ_le_of_lt _ _ h₁ _ _ $ (@le_succ _ _ h₀ a).lt_of_not_le ha) } end variables [succ_order α] lemma le_le_succ_iff {a b : α} : a ≤ b ∧ b ≤ succ a ↔ b = a ∨ b = succ a := begin split, { rintro h, rw or_iff_not_imp_left, exact λ hba : b ≠ a, h.2.antisymm (succ_le_of_lt $ h.1.lt_of_ne $ hba.symm) }, rintro (rfl | rfl), { exact ⟨le_rfl, le_succ b⟩ }, { exact ⟨le_succ a, le_rfl⟩ } end lemma _root_.covers.succ_eq {a b : α} (h : a ⋖ b) : succ a = b := (succ_le_of_lt h.lt).eq_of_not_lt $ λ h', h.2 (lt_succ_of_not_maximal h.lt) h' section no_max_order variables [no_max_order α] {a b : α} lemma succ_injective : injective (succ : α → α) := begin rintro a b, simp_rw [eq_iff_le_not_lt, succ_le_succ_iff, succ_lt_succ_iff], exact id, end lemma succ_eq_succ_iff : succ a = succ b ↔ a = b := succ_injective.eq_iff lemma succ_ne_succ_iff : succ a ≠ succ b ↔ a ≠ b := succ_injective.ne_iff alias succ_ne_succ_iff ↔ ne_of_succ_ne_succ succ_ne_succ lemma lt_succ_iff_lt_or_eq : a < succ b ↔ (a < b ∨ a = b) := lt_succ_iff.trans le_iff_lt_or_eq lemma le_succ_iff_lt_or_eq : a ≤ succ b ↔ (a ≤ b ∨ a = succ b) := by rw [←lt_succ_iff, ←lt_succ_iff, lt_succ_iff_lt_or_eq] lemma _root_.covers_iff_succ_eq : a ⋖ b ↔ succ a = b := ⟨covers.succ_eq, by { rintro rfl, exact covers_succ _ }⟩ end no_max_order end partial_order section order_top variables [partial_order α] [order_top α] [succ_order α] @[simp] lemma succ_top : succ (⊤ : α) = ⊤ := le_top.antisymm (le_succ _) @[simp] lemma succ_le_iff_eq_top {a : α} : succ a ≤ a ↔ a = ⊤ := ⟨λ h, eq_top_of_maximal (maximal_of_succ_le h), λ h, by rw [h, succ_top]⟩ @[simp] lemma lt_succ_iff_ne_top {a : α} : a < succ a ↔ a ≠ ⊤ := begin simp only [lt_iff_le_not_le, true_and, le_succ a], exact not_iff_not.2 succ_le_iff_eq_top, end end order_top section order_bot variables [partial_order α] [order_bot α] [succ_order α] [nontrivial α] lemma bot_lt_succ (a : α) : ⊥ < succ a := begin obtain ⟨b, hb⟩ := exists_ne (⊥ : α), refine bot_lt_iff_ne_bot.2 (λ h, _), have := eq_bot_iff.2 ((le_succ a).trans h.le), rw this at h, exact maximal_of_succ_le h.le (bot_lt_iff_ne_bot.2 hb), end lemma succ_ne_bot (a : α) : succ a ≠ ⊥ := (bot_lt_succ a).ne' end order_bot section linear_order variables [linear_order α] /-- A constructor for `succ_order α` usable when `α` is a linear order with no maximal element. -/ def of_succ_le_iff (succ : α → α) (hsucc_le_iff : ∀ {a b}, succ a ≤ b ↔ a < b) : succ_order α := { succ := succ, le_succ := λ a, (hsucc_le_iff.1 le_rfl).le, maximal_of_succ_le := λ a ha, (lt_irrefl a (hsucc_le_iff.1 ha)).elim, succ_le_of_lt := λ a b, hsucc_le_iff.2, le_of_lt_succ := λ a b h, le_of_not_lt ((not_congr hsucc_le_iff).1 h.not_le) } end linear_order section complete_lattice variables [complete_lattice α] [succ_order α] lemma succ_eq_infi (a : α) : succ a = ⨅ (b : α) (h : a < b), b := begin refine le_antisymm (le_infi (λ b, le_infi succ_le_of_lt)) _, obtain rfl | ha := eq_or_ne a ⊤, { rw succ_top, exact le_top }, exact binfi_le _ (lt_succ_iff_ne_top.2 ha), end end complete_lattice end succ_order /-! ### Predecessor order -/ /-- Order equipped with a sensible predecessor function. -/ @[ext] class pred_order (α : Type*) [preorder α] := (pred : α → α) (pred_le : ∀ a, pred a ≤ a) (minimal_of_le_pred : ∀ ⦃a⦄, a ≤ pred a → ∀ ⦃b⦄, ¬b < a) (le_pred_of_lt : ∀ {a b}, a < b → a ≤ pred b) (le_of_pred_lt : ∀ {a b}, pred a < b → a ≤ b) namespace pred_order section preorder variables [preorder α] /-- A constructor for `pred_order α` usable when `α` has no minimal element. -/ def of_le_pred_iff_of_pred_le_pred (pred : α → α) (hle_pred_iff : ∀ {a b}, a ≤ pred b ↔ a < b) (hle_of_pred_lt : ∀ {a b}, pred a < b → a ≤ b) : pred_order α := { pred := pred, pred_le := λ a, (hle_pred_iff.1 le_rfl).le, minimal_of_le_pred := λ a ha, (lt_irrefl a (hle_pred_iff.1 ha)).elim, le_pred_of_lt := λ a b, hle_pred_iff.2, le_of_pred_lt := λ a b, hle_of_pred_lt } variables [pred_order α] @[simp, mono] lemma pred_le_pred {a b : α} (h : a ≤ b) : pred a ≤ pred b := begin by_cases hb : ∀ ⦃c⦄, ¬c < b, { have hba : b ≤ pred a, { by_contra H, exact hb (((pred_le a).trans h).lt_of_not_le H) }, by_contra H, exact hb ((((pred_le b).trans hba).lt_of_not_le H).trans_le ((pred_le a).trans h)) }, { push_neg at hb, obtain ⟨c, hc⟩ := hb, exact le_pred_of_lt (((pred_le a).trans h).lt_of_not_le $ λ hba, minimal_of_le_pred (h.trans hba) $ hc.trans_le $ hba.trans $ pred_le a) } end lemma pred_mono : monotone (pred : α → α) := λ a b, pred_le_pred lemma pred_lt_of_not_minimal {a b : α} (h : b < a) : pred a < a := (pred_le a).lt_of_not_le (λ ha, minimal_of_le_pred ha h) alias pred_lt_of_not_minimal ← has_lt.lt.pred_lt protected lemma _root_.has_lt.lt.pred_covers {a b : α} (h : b < a) : pred a ⋖ a := ⟨h.pred_lt, λ c hc, (le_of_pred_lt hc).not_lt⟩ @[simp] lemma pred_covers_of_nonempty_Iio {a : α} (h : (set.Iio a).nonempty) : pred a ⋖ a := has_lt.lt.pred_covers h.some_mem section no_min_order variables [no_min_order α] {a b : α} lemma pred_lt (a : α) : pred a < a := (pred_le a).lt_of_not_le $ λ h, not_exists.2 (minimal_of_le_pred h) (exists_lt a) lemma pred_lt_iff : pred a < b ↔ a ≤ b := ⟨le_of_pred_lt, (pred_lt a).trans_le⟩ lemma le_pred_iff : a ≤ pred b ↔ a < b := ⟨λ h, h.trans_lt (pred_lt b), le_pred_of_lt⟩ @[simp] lemma pred_le_pred_iff : pred a ≤ pred b ↔ a ≤ b := ⟨λ h, le_of_pred_lt $ h.trans_lt (pred_lt b), λ h, le_pred_of_lt $ (pred_lt a).trans_le h⟩ alias pred_le_pred_iff ↔ le_of_pred_le_pred _ @[simp] lemma pred_lt_pred_iff : pred a < pred b ↔ a < b := by simp_rw [lt_iff_le_not_le, pred_le_pred_iff] alias pred_lt_pred_iff ↔ lt_of_pred_lt_pred pred_lt_pred lemma pred_strict_mono : strict_mono (pred : α → α) := λ a b, pred_lt_pred lemma pred_covers (a : α) : pred a ⋖ a := ⟨pred_lt a, λ c hc, (le_of_pred_lt hc).not_lt⟩ end no_min_order end preorder section partial_order variables [partial_order α] /-- There is at most one way to define the predecessors in a `partial_order`. -/ instance : subsingleton (pred_order α) := begin refine subsingleton.intro (λ h₀ h₁, _), ext a, by_cases ha : a ≤ @pred _ _ h₀ a, { refine le_antisymm _ ((@pred_le _ _ h₁ a).trans ha), by_contra H, exact @minimal_of_le_pred _ _ h₀ _ ha _ ((@pred_le _ _ h₁ a).lt_of_not_le $ λ h, H $ (@pred_le _ _ h₀ a).trans h) }, { exact (@le_pred_of_lt _ _ h₁ _ _ $ (@pred_le _ _ h₀ a).lt_of_not_le ha).antisymm (@le_pred_of_lt _ _ h₀ _ _ $ (@pred_le _ _ h₁ a).lt_of_not_le $ λ h, @minimal_of_le_pred _ _ h₁ _ h _ $ (@pred_le _ _ h₀ a).lt_of_not_le ha) } end variables [pred_order α] lemma pred_le_le_iff {a b : α} : pred a ≤ b ∧ b ≤ a ↔ b = a ∨ b = pred a := begin split, { rintro h, rw or_iff_not_imp_left, exact λ hba, (le_pred_of_lt $ h.2.lt_of_ne hba).antisymm h.1 }, rintro (rfl | rfl), { exact ⟨pred_le b, le_rfl⟩ }, { exact ⟨le_rfl, pred_le a⟩ } end lemma _root_.covers.pred_eq {a b : α} (h : a ⋖ b) : pred b = a := (le_pred_of_lt h.lt).eq_of_not_gt $ λ h', h.2 h' $ pred_lt_of_not_minimal h.lt section no_min_order variables [no_min_order α] {a b : α} lemma pred_injective : injective (pred : α → α) := begin rintro a b, simp_rw [eq_iff_le_not_lt, pred_le_pred_iff, pred_lt_pred_iff], exact id, end lemma pred_eq_pred_iff : pred a = pred b ↔ a = b := pred_injective.eq_iff lemma pred_ne_pred_iff : pred a ≠ pred b ↔ a ≠ b := pred_injective.ne_iff lemma pred_lt_iff_lt_or_eq : pred a < b ↔ (a < b ∨ a = b) := pred_lt_iff.trans le_iff_lt_or_eq lemma le_pred_iff_lt_or_eq : pred a ≤ b ↔ (a ≤ b ∨ pred a = b) := by rw [←pred_lt_iff, ←pred_lt_iff, pred_lt_iff_lt_or_eq] lemma _root_.covers_iff_pred_eq : a ⋖ b ↔ pred b = a := ⟨covers.pred_eq, by { rintro rfl, exact pred_covers _ }⟩ end no_min_order end partial_order section order_bot variables [partial_order α] [order_bot α] [pred_order α] @[simp] lemma pred_bot : pred (⊥ : α) = ⊥ := (pred_le _).antisymm bot_le @[simp] lemma le_pred_iff_eq_bot {a : α} : a ≤ pred a ↔ a = ⊥ := ⟨λ h, eq_bot_of_minimal (minimal_of_le_pred h), λ h, by rw [h, pred_bot]⟩ @[simp] lemma pred_lt_iff_ne_bot {a : α} : pred a < a ↔ a ≠ ⊥ := begin simp only [lt_iff_le_not_le, true_and, pred_le a], exact not_iff_not.2 le_pred_iff_eq_bot, end end order_bot section order_top variables [partial_order α] [order_top α] [pred_order α] lemma pred_lt_top [nontrivial α] (a : α) : pred a < ⊤ := begin obtain ⟨b, hb⟩ := exists_ne (⊤ : α), refine lt_top_iff_ne_top.2 (λ h, _), have := eq_top_iff.2 (h.ge.trans (pred_le a)), rw this at h, exact minimal_of_le_pred h.ge (lt_top_iff_ne_top.2 hb), end lemma pred_ne_top [nontrivial α] (a : α) : pred a ≠ ⊤ := (pred_lt_top a).ne end order_top section linear_order variables [linear_order α] {a b : α} /-- A constructor for `pred_order α` usable when `α` is a linear order with no maximal element. -/ def of_le_pred_iff (pred : α → α) (hle_pred_iff : ∀ {a b}, a ≤ pred b ↔ a < b) : pred_order α := { pred := pred, pred_le := λ a, (hle_pred_iff.1 le_rfl).le, minimal_of_le_pred := λ a ha, (lt_irrefl a (hle_pred_iff.1 ha)).elim, le_pred_of_lt := λ a b, hle_pred_iff.2, le_of_pred_lt := λ a b h, le_of_not_lt ((not_congr hle_pred_iff).1 h.not_le) } end linear_order section complete_lattice variables [complete_lattice α] [pred_order α] lemma pred_eq_supr (a : α) : pred a = ⨆ (b : α) (h : b < a), b := begin refine le_antisymm _ (supr_le (λ b, supr_le le_pred_of_lt)), obtain rfl | ha := eq_or_ne a ⊥, { rw pred_bot, exact bot_le }, exact @le_bsupr _ _ _ (λ b, b < a) (λ a _, a) (pred a) (pred_lt_iff_ne_bot.2 ha), end end complete_lattice end pred_order open succ_order pred_order /-! ### Successor-predecessor orders -/ section succ_pred_order variables [partial_order α] [succ_order α] [pred_order α] {a b : α} protected lemma _root_.has_lt.lt.succ_pred (h : b < a) : succ (pred a) = a := h.pred_covers.succ_eq protected lemma _root_.has_lt.lt.pred_succ (h : a < b) : pred (succ a) = a := h.covers_succ.pred_eq @[simp] lemma succ_pred_of_nonempty_Iio {a : α} (h : (set.Iio a).nonempty) : succ (pred a) = a := has_lt.lt.succ_pred h.some_mem @[simp] lemma pred_succ_of_nonempty_Ioi {a : α} (h : (set.Ioi a).nonempty) : pred (succ a) = a := has_lt.lt.pred_succ h.some_mem @[simp] lemma succ_pred [no_min_order α] (a : α) : succ (pred a) = a := (pred_covers _).succ_eq @[simp] lemma pred_succ [no_max_order α] (a : α) : pred (succ a) = a := (covers_succ _).pred_eq end succ_pred_order /-! ### Dual order -/ section order_dual variables [preorder α] instance [pred_order α] : succ_order (order_dual α) := { succ := (pred : α → α), le_succ := pred_le, maximal_of_succ_le := minimal_of_le_pred, succ_le_of_lt := λ a b h, le_pred_of_lt h, le_of_lt_succ := λ a b, le_of_pred_lt } instance [succ_order α] : pred_order (order_dual α) := { pred := (succ : α → α), pred_le := le_succ, minimal_of_le_pred := maximal_of_succ_le, le_pred_of_lt := λ a b h, succ_le_of_lt h, le_of_pred_lt := λ a b, le_of_lt_succ } end order_dual /-! ### `with_bot`, `with_top` Adding a greatest/least element to a `succ_order` or to a `pred_order`. As far as successors and predecessors are concerned, there are four ways to add a bottom or top element to an order: * Adding a `⊤` to an `order_top`: Preserves `succ` and `pred`. * Adding a `⊤` to a `no_max_order`: Preserves `succ`. Never preserves `pred`. * Adding a `⊥` to an `order_bot`: Preserves `succ` and `pred`. * Adding a `⊥` to a `no_min_order`: Preserves `pred`. Never preserves `succ`. where "preserves `(succ/pred)`" means `(succ/pred)_order α → (succ/pred)_order ((with_top/with_bot) α)`. -/ section with_top open with_top /-! #### Adding a `⊤` to an `order_top` -/ instance [decidable_eq α] [partial_order α] [order_top α] [succ_order α] : succ_order (with_top α) := { succ := λ a, match a with | ⊤ := ⊤ | (some a) := ite (a = ⊤) ⊤ (some (succ a)) end, le_succ := λ a, begin cases a, { exact le_top }, change ((≤) : with_top α → with_top α → Prop) _ (ite _ _ _), split_ifs, { exact le_top }, { exact some_le_some.2 (le_succ a) } end, maximal_of_succ_le := λ a ha b h, begin cases a, { exact not_top_lt h }, change ((≤) : with_top α → with_top α → Prop) (ite _ _ _) _ at ha, split_ifs at ha with ha', { exact not_top_lt (ha.trans_lt h) }, { rw [some_le_some, succ_le_iff_eq_top] at ha, exact ha' ha } end, succ_le_of_lt := λ a b h, begin cases b, { exact le_top }, cases a, { exact (not_top_lt h).elim }, rw some_lt_some at h, change ((≤) : with_top α → with_top α → Prop) (ite _ _ _) _, split_ifs with ha, { rw ha at h, exact (not_top_lt h).elim }, { exact some_le_some.2 (succ_le_of_lt h) } end, le_of_lt_succ := λ a b h, begin cases a, { exact (not_top_lt h).elim }, cases b, { exact le_top }, change ((<) : with_top α → with_top α → Prop) _ (ite _ _ _) at h, rw some_le_some, split_ifs at h with hb, { rw hb, exact le_top }, { exact le_of_lt_succ (some_lt_some.1 h) } end } instance [partial_order α] [order_top α] [pred_order α] : pred_order (with_top α) := { pred := λ a, match a with | ⊤ := some ⊤ | (some a) := some (pred a) end, pred_le := λ a, match a with | ⊤ := le_top | (some a) := some_le_some.2 (pred_le a) end, minimal_of_le_pred := λ a ha b h, begin cases a, { exact (coe_lt_top (⊤ : α)).not_le ha }, cases b, { exact h.not_le le_top }, { exact minimal_of_le_pred (some_le_some.1 ha) (some_lt_some.1 h) } end, le_pred_of_lt := λ a b h, begin cases a, { exact ((le_top).not_lt h).elim }, cases b, { exact some_le_some.2 le_top }, exact some_le_some.2 (le_pred_of_lt $ some_lt_some.1 h), end, le_of_pred_lt := λ a b h, begin cases b, { exact le_top }, cases a, { exact (not_top_lt $ some_lt_some.1 h).elim }, { exact some_le_some.2 (le_of_pred_lt $ some_lt_some.1 h) } end } /-! #### Adding a `⊤` to a `no_max_order` -/ instance with_top.succ_order_of_no_max_order [partial_order α] [no_max_order α] [succ_order α] : succ_order (with_top α) := { succ := λ a, match a with | ⊤ := ⊤ | (some a) := some (succ a) end, le_succ := λ a, begin cases a, { exact le_top }, { exact some_le_some.2 (le_succ a) } end, maximal_of_succ_le := λ a ha b h, begin cases a, { exact not_top_lt h }, { exact not_exists.2 (maximal_of_succ_le (some_le_some.1 ha)) (exists_gt a) } end, succ_le_of_lt := λ a b h, begin cases a, { exact (not_top_lt h).elim }, cases b, { exact le_top} , { exact some_le_some.2 (succ_le_of_lt $ some_lt_some.1 h) } end, le_of_lt_succ := λ a b h, begin cases a, { exact (not_top_lt h).elim }, cases b, { exact le_top }, { exact some_le_some.2 (le_of_lt_succ $ some_lt_some.1 h) } end } instance [partial_order α] [no_max_order α] [hα : nonempty α] : is_empty (pred_order (with_top α)) := ⟨begin introI, set b := pred (⊤ : with_top α) with h, cases pred (⊤ : with_top α) with a ha; change b with pred ⊤ at h, { exact hα.elim (λ a, minimal_of_le_pred h.ge (coe_lt_top a)) }, { obtain ⟨c, hc⟩ := exists_gt a, rw [←some_lt_some, ←h] at hc, exact (le_of_pred_lt hc).not_lt (some_lt_none _) } end⟩ end with_top section with_bot open with_bot /-! #### Adding a `⊥` to a `bot_order` -/ instance [preorder α] [order_bot α] [succ_order α] : succ_order (with_bot α) := { succ := λ a, match a with | ⊥ := some ⊥ | (some a) := some (succ a) end, le_succ := λ a, match a with | ⊥ := bot_le | (some a) := some_le_some.2 (le_succ a) end, maximal_of_succ_le := λ a ha b h, begin cases a, { exact (none_lt_some (⊥ : α)).not_le ha }, cases b, { exact not_lt_bot h }, { exact maximal_of_succ_le (some_le_some.1 ha) (some_lt_some.1 h) } end, succ_le_of_lt := λ a b h, begin cases b, { exact (not_lt_bot h).elim }, cases a, { exact some_le_some.2 bot_le }, { exact some_le_some.2 (succ_le_of_lt $ some_lt_some.1 h) } end, le_of_lt_succ := λ a b h, begin cases a, { exact bot_le }, cases b, { exact (not_lt_bot $ some_lt_some.1 h).elim }, { exact some_le_some.2 (le_of_lt_succ $ some_lt_some.1 h) } end } instance [decidable_eq α] [partial_order α] [order_bot α] [pred_order α] : pred_order (with_bot α) := { pred := λ a, match a with | ⊥ := ⊥ | (some a) := ite (a = ⊥) ⊥ (some (pred a)) end, pred_le := λ a, begin cases a, { exact bot_le }, change (ite _ _ _ : with_bot α) ≤ some a, split_ifs, { exact bot_le }, { exact some_le_some.2 (pred_le a) } end, minimal_of_le_pred := λ a ha b h, begin cases a, { exact not_lt_bot h }, change ((≤) : with_bot α → with_bot α → Prop) _ (ite _ _ _) at ha, split_ifs at ha with ha', { exact not_lt_bot (h.trans_le ha) }, { rw [some_le_some, le_pred_iff_eq_bot] at ha, exact ha' ha } end, le_pred_of_lt := λ a b h, begin cases a, { exact bot_le }, cases b, { exact (not_lt_bot h).elim }, rw some_lt_some at h, change ((≤) : with_bot α → with_bot α → Prop) _ (ite _ _ _), split_ifs with hb, { rw hb at h, exact (not_lt_bot h).elim }, { exact some_le_some.2 (le_pred_of_lt h) } end, le_of_pred_lt := λ a b h, begin cases b, { exact (not_lt_bot h).elim }, cases a, { exact bot_le }, change ((<) : with_bot α → with_bot α → Prop) (ite _ _ _) _ at h, rw some_le_some, split_ifs at h with ha, { rw ha, exact bot_le }, { exact le_of_pred_lt (some_lt_some.1 h) } end } /-! #### Adding a `⊥` to a `no_min_order` -/ instance [partial_order α] [no_min_order α] [hα : nonempty α] : is_empty (succ_order (with_bot α)) := ⟨begin introI, set b : with_bot α := succ ⊥ with h, cases succ (⊥ : with_bot α) with a ha; change b with succ ⊥ at h, { exact hα.elim (λ a, maximal_of_succ_le h.le (bot_lt_coe a)) }, { obtain ⟨c, hc⟩ := exists_lt a, rw [←some_lt_some, ←h] at hc, exact (le_of_lt_succ hc).not_lt (none_lt_some _) } end⟩ instance with_bot.pred_order_of_no_min_order [partial_order α] [no_min_order α] [pred_order α] : pred_order (with_bot α) := { pred := λ a, match a with | ⊥ := ⊥ | (some a) := some (pred a) end, pred_le := λ a, begin cases a, { exact bot_le }, { exact some_le_some.2 (pred_le a) } end, minimal_of_le_pred := λ a ha b h, begin cases a, { exact not_lt_bot h }, { exact not_exists.2 (minimal_of_le_pred (some_le_some.1 ha)) (exists_lt a) } end, le_pred_of_lt := λ a b h, begin cases b, { exact (not_lt_bot h).elim }, cases a, { exact bot_le }, { exact some_le_some.2 (le_pred_of_lt $ some_lt_some.1 h) } end, le_of_pred_lt := λ a b h, begin cases b, { exact (not_lt_bot h).elim }, cases a, { exact bot_le }, { exact some_le_some.2 (le_of_pred_lt $ some_lt_some.1 h) } end } end with_bot /-! ### Archimedeanness -/ /-- A `succ_order` is succ-archimedean if one can go from any two comparable elements by iterating `succ` -/ class is_succ_archimedean (α : Type*) [preorder α] [succ_order α] : Prop := (exists_succ_iterate_of_le {a b : α} (h : a ≤ b) : ∃ n, succ^[n] a = b) /-- A `pred_order` is pred-archimedean if one can go from any two comparable elements by iterating `pred` -/ class is_pred_archimedean (α : Type*) [preorder α] [pred_order α] : Prop := (exists_pred_iterate_of_le {a b : α} (h : a ≤ b) : ∃ n, pred^[n] b = a) export is_succ_archimedean (exists_succ_iterate_of_le) export is_pred_archimedean (exists_pred_iterate_of_le) section preorder variables [preorder α] section succ_order variables [succ_order α] [is_succ_archimedean α] {a b : α} instance : is_pred_archimedean (order_dual α) := { exists_pred_iterate_of_le := λ a b h, by convert @exists_succ_iterate_of_le α _ _ _ _ _ h } lemma has_le.le.exists_succ_iterate (h : a ≤ b) : ∃ n, succ^[n] a = b := exists_succ_iterate_of_le h lemma exists_succ_iterate_iff_le : (∃ n, succ^[n] a = b) ↔ a ≤ b := begin refine ⟨_, exists_succ_iterate_of_le⟩, rintro ⟨n, rfl⟩, exact id_le_iterate_of_id_le le_succ n a, end /-- Induction principle on a type with a `succ_order` for all elements above a given element `m`. -/ @[elab_as_eliminator] lemma succ.rec {P : α → Prop} {m : α} (h0 : P m) (h1 : ∀ n, m ≤ n → P n → P (succ n)) ⦃n : α⦄ (hmn : m ≤ n) : P n := begin obtain ⟨n, rfl⟩ := hmn.exists_succ_iterate, clear hmn, induction n with n ih, { exact h0 }, { rw [function.iterate_succ_apply'], exact h1 _ (id_le_iterate_of_id_le le_succ n m) ih } end lemma succ.rec_iff {p : α → Prop} (hsucc : ∀ a, p a ↔ p (succ a)) {a b : α} (h : a ≤ b) : p a ↔ p b := begin obtain ⟨n, rfl⟩ := h.exists_succ_iterate, exact iterate.rec (λ b, p a ↔ p b) (λ c hc, hc.trans (hsucc _)) iff.rfl n, end end succ_order section pred_order variables [pred_order α] [is_pred_archimedean α] {a b : α} instance : is_succ_archimedean (order_dual α) := { exists_succ_iterate_of_le := λ a b h, by convert @exists_pred_iterate_of_le α _ _ _ _ _ h } lemma has_le.le.exists_pred_iterate (h : a ≤ b) : ∃ n, pred^[n] b = a := exists_pred_iterate_of_le h lemma exists_pred_iterate_iff_le : (∃ n, pred^[n] b = a) ↔ a ≤ b := @exists_succ_iterate_iff_le (order_dual α) _ _ _ _ _ /-- Induction principle on a type with a `pred_order` for all elements below a given element `m`. -/ @[elab_as_eliminator] lemma pred.rec {P : α → Prop} {m : α} (h0 : P m) (h1 : ∀ n, n ≤ m → P n → P (pred n)) ⦃n : α⦄ (hmn : n ≤ m) : P n := @succ.rec (order_dual α) _ _ _ _ _ h0 h1 _ hmn lemma pred.rec_iff {p : α → Prop} (hsucc : ∀ a, p a ↔ p (pred a)) {a b : α} (h : a ≤ b) : p a ↔ p b := (@succ.rec_iff (order_dual α) _ _ _ _ hsucc _ _ h).symm end pred_order end preorder section linear_order variables [linear_order α] section succ_order variables [succ_order α] [is_succ_archimedean α] {a b : α} lemma exists_succ_iterate_or : (∃ n, succ^[n] a = b) ∨ ∃ n, succ^[n] b = a := (le_total a b).imp exists_succ_iterate_of_le exists_succ_iterate_of_le lemma succ.rec_linear {p : α → Prop} (hsucc : ∀ a, p a ↔ p (succ a)) (a b : α) : p a ↔ p b := (le_total a b).elim (succ.rec_iff hsucc) (λ h, (succ.rec_iff hsucc h).symm) end succ_order section pred_order variables [pred_order α] [is_pred_archimedean α] {a b : α} lemma exists_pred_iterate_or : (∃ n, pred^[n] b = a) ∨ ∃ n, pred^[n] a = b := (le_total a b).imp exists_pred_iterate_of_le exists_pred_iterate_of_le lemma pred.rec_linear {p : α → Prop} (hsucc : ∀ a, p a ↔ p (pred a)) (a b : α) : p a ↔ p b := (le_total a b).elim (pred.rec_iff hsucc) (λ h, (pred.rec_iff hsucc h).symm) end pred_order end linear_order section order_bot variables [preorder α] [order_bot α] [succ_order α] [is_succ_archimedean α] lemma succ.rec_bot (p : α → Prop) (hbot : p ⊥) (hsucc : ∀ a, p a → p (succ a)) (a : α) : p a := succ.rec hbot (λ x _ h, hsucc x h) (bot_le : ⊥ ≤ a) end order_bot section order_top variables [preorder α] [order_top α] [pred_order α] [is_pred_archimedean α] lemma pred.rec_top (p : α → Prop) (htop : p ⊤) (hpred : ∀ a, p a → p (pred a)) (a : α) : p a := pred.rec htop (λ x _ h, hpred x h) (le_top : a ≤ ⊤) end order_top