Datasets:
AI4M
/

text
stringlengths
0
3.34M
# Survival Regression with `estimators.SurvivalModel` <hr> Author: ***Willa Potosnak*** &lt;[email protected]&gt; <div style=" float: right;"> </div> # Contents ### 1. [Introduction](#introduction) #### &nbsp;&nbsp;&nbsp;&nbsp; &nbsp;&nbsp;&nbsp;&nbsp; &nbsp;&nbsp;&nbsp; 1.1 [The SUPPORT Dataset](#support) #### &nbsp;&nbsp;&nbsp;&nbsp; &nbsp;&nbsp;&nbsp;&nbsp; &nbsp;&nbsp;&nbsp; 1.2 [Preprocessing the Data](#preprocess) ### 2. [Cox Proportional Hazards (CPH)](#cph) #### &nbsp;&nbsp;&nbsp;&nbsp; &nbsp;&nbsp;&nbsp;&nbsp; &nbsp;&nbsp;&nbsp; 2.1 [Fit CPH Model](#fitcph) #### &nbsp;&nbsp;&nbsp;&nbsp; &nbsp;&nbsp;&nbsp;&nbsp; &nbsp;&nbsp;&nbsp; 2.2 [Evaluate CPH Model](#evalcph) ### 3. [Deep Cox Proportional Hazards (DCPH)](#fsn) #### &nbsp;&nbsp;&nbsp;&nbsp; &nbsp;&nbsp;&nbsp;&nbsp; &nbsp;&nbsp;&nbsp; 3.1 [Fit DCPH Model](#fitfsn) #### &nbsp;&nbsp;&nbsp;&nbsp; &nbsp;&nbsp;&nbsp;&nbsp; &nbsp;&nbsp;&nbsp; 3.2 [Evaluate DCPH Model](#evalfsn) ### 4. [Deep Survival Machines (DSM)](#dsm) #### &nbsp;&nbsp;&nbsp;&nbsp; &nbsp;&nbsp;&nbsp;&nbsp; &nbsp;&nbsp;&nbsp; 4.1 [Fit DSM Model](#fitdsm) #### &nbsp;&nbsp;&nbsp;&nbsp; &nbsp;&nbsp;&nbsp;&nbsp; &nbsp;&nbsp;&nbsp; 4.2 [Evaluate DSM Model](#evaldsm) ### 5. [Deep Cox Mixtures (DCM)](#dcm) #### &nbsp;&nbsp;&nbsp;&nbsp; &nbsp;&nbsp;&nbsp;&nbsp; &nbsp;&nbsp;&nbsp; 5.1 [Fit DCM Model](#fitdcm) #### &nbsp;&nbsp;&nbsp;&nbsp; &nbsp;&nbsp;&nbsp;&nbsp; &nbsp;&nbsp;&nbsp; 5.2 [Evaluate DCM Model](#evaldcm) ### 6. [Random Survival Forests (RSF)](#rsf) #### &nbsp;&nbsp;&nbsp;&nbsp; &nbsp;&nbsp;&nbsp;&nbsp; &nbsp;&nbsp;&nbsp; 6.1 [Fit RSF Model](#fitrsf) #### &nbsp;&nbsp;&nbsp;&nbsp; &nbsp;&nbsp;&nbsp;&nbsp; &nbsp;&nbsp;&nbsp; 6.2 [Evaluate RSF Model](#evalrsf) <hr> <a id="introduction"></a> ## 1. Introduction The `SurvivalModels` class offers a steamlined approach to train two `auton-survival` models and three baseline survival models for right-censored time-to-event data. The fit method requires the same inputs across all five models, however, model parameter types vary and must be defined and tuned for the specified model. ### Native `auton-survival` Models * **Faraggi-Simon Net (FSN)/DeepSurv** * **Deep Survival Machines (DSM)** * **Deep Cox Mixtures (DCM)** ### External Models * **Random survival Forests (RSF)** * **Cox Proportional Hazards (CPH)** $\textbf{Hyperparameter tuning}$ and $\textbf{model evaluation}$ can be performed using the following metrics, among others. * $\textbf{Brier Score (BS)}$: the Mean Squared Error (MSE) around the probabilistic prediction at a certain time horizon. The Brier Score can be decomposed into components that measure both discriminative performance and calibration. \begin{align} \text{BS}(t) = \mathop{\mathbf{E}}_{x\sim\mathcal{D}}\big[ ||\mathbf{1}\{ T > t \} - \widehat{\mathbf{P}}(T>t|X)\big)||_{_\textbf{2}}^\textbf{2} \big] \end{align} * $\textbf{Integrated Brier Score (IBS)}$: the integral of the time-dependent $\textbf{BS}$ over the interval $[t_1; t_{max}]$ where the weighting function is $w(t)= \frac{t}{t_{max}}$. \begin{align} \text{IBS} = \int_{t_1}^{t_{max}} \mathrm{BS}^{c}(t)dw(t) \end{align} * $\textbf{Area under ROC Curve (ROC-AUC)}$: survival model evaluation can be treated as binary classification to compute the **True Positive Rate (TPR)** and **False Positive Rate (FPR)** dependent on time, $t$. ROC-AUC is used to assess how well the model can distinguish samples that fail by a given time, $t$ from those that fail after this time. \begin{align} \widehat{AUC}(t) = \frac{\sum_{i=1}^{n} \sum_{j=1}^{n}I(y_j>t)I(y_i \leq t)w_iI(\hat{f}(x_j) \leq \hat{f}(x_i))}{(\sum_{i=1}^{n} I(y_i > t))(\sum_{i=1}^{n}I(y_i \leq t)w_i)} \end{align} * $\textbf{Time Dependent Concordance Index (C$^{td}$)}$: estimates ranking ability by exhaustively comparing relative risks across all pairs of individuals in the test set. We employ the ‘Time Dependent’ variant of Concordance Index that truncates the pairwise comparisons to the events occurring within a fixed time horizon. \begin{align} C^{td}(t) = P(\hat{F}(t|x_i) > \hat{F} (t|x_j)|\delta_i = 1, T_i < T_j, T_i \leq t) \end{align} <a id="support"></a> ### 1.1. The SUPPORT Dataset *For the original datasource, please refer to the following [website](https://biostat.app.vumc.org/wiki/Main/SupportDesc).* Data features $x$ are stored in a pandas dataframe with rows corresponding to individual samples and columns as covariates. Data outcome consists of 'time', $t$, and 'event', $e$, that correspond to the time to event and the censoring indicator, respectively. ```python import pandas as pd import sys sys.path.append('../') from auton_survival.datasets import load_dataset ``` ```python # Load the SUPPORT dataset outcomes, features = load_dataset(dataset='SUPPORT') # Identify categorical (cat_feats) and continuous (num_feats) features cat_feats = ['sex', 'dzgroup', 'dzclass', 'income', 'race', 'ca'] num_feats = ['age', 'num.co', 'meanbp', 'wblc', 'hrt', 'resp', 'temp', 'pafi', 'alb', 'bili', 'crea', 'sod', 'ph', 'glucose', 'bun', 'urine', 'adlp', 'adls'] # Let's take a look at the features display(features.head(5)) # Let's take a look at the outcomes display(outcomes.head(5)) ``` <div> <style scoped> .dataframe tbody tr th:only-of-type { vertical-align: middle; } .dataframe tbody tr th { vertical-align: top; } .dataframe thead th { text-align: right; } </style> <table border="1" class="dataframe"> <thead> <tr style="text-align: right;"> <th></th> <th>sex</th> <th>dzgroup</th> <th>dzclass</th> <th>income</th> <th>race</th> <th>ca</th> <th>age</th> <th>num.co</th> <th>meanbp</th> <th>wblc</th> <th>...</th> <th>alb</th> <th>bili</th> <th>crea</th> <th>sod</th> <th>ph</th> <th>glucose</th> <th>bun</th> <th>urine</th> <th>adlp</th> <th>adls</th> </tr> </thead> <tbody> <tr> <th>0</th> <td>male</td> <td>Lung Cancer</td> <td>Cancer</td> <td>$11-$25k</td> <td>other</td> <td>metastatic</td> <td>62.84998</td> <td>0</td> <td>97.0</td> <td>6.000000</td> <td>...</td> <td>1.799805</td> <td>0.199982</td> <td>1.199951</td> <td>141.0</td> <td>7.459961</td> <td>NaN</td> <td>NaN</td> <td>NaN</td> <td>7.0</td> <td>7.0</td> </tr> <tr> <th>1</th> <td>female</td> <td>Cirrhosis</td> <td>COPD/CHF/Cirrhosis</td> <td>$11-$25k</td> <td>white</td> <td>no</td> <td>60.33899</td> <td>2</td> <td>43.0</td> <td>17.097656</td> <td>...</td> <td>NaN</td> <td>NaN</td> <td>5.500000</td> <td>132.0</td> <td>7.250000</td> <td>NaN</td> <td>NaN</td> <td>NaN</td> <td>NaN</td> <td>1.0</td> </tr> <tr> <th>2</th> <td>female</td> <td>Cirrhosis</td> <td>COPD/CHF/Cirrhosis</td> <td>under $11k</td> <td>white</td> <td>no</td> <td>52.74698</td> <td>2</td> <td>70.0</td> <td>8.500000</td> <td>...</td> <td>NaN</td> <td>2.199707</td> <td>2.000000</td> <td>134.0</td> <td>7.459961</td> <td>NaN</td> <td>NaN</td> <td>NaN</td> <td>1.0</td> <td>0.0</td> </tr> <tr> <th>3</th> <td>female</td> <td>Lung Cancer</td> <td>Cancer</td> <td>under $11k</td> <td>white</td> <td>metastatic</td> <td>42.38498</td> <td>2</td> <td>75.0</td> <td>9.099609</td> <td>...</td> <td>NaN</td> <td>NaN</td> <td>0.799927</td> <td>139.0</td> <td>NaN</td> <td>NaN</td> <td>NaN</td> <td>NaN</td> <td>0.0</td> <td>0.0</td> </tr> <tr> <th>4</th> <td>female</td> <td>ARF/MOSF w/Sepsis</td> <td>ARF/MOSF</td> <td>NaN</td> <td>white</td> <td>no</td> <td>79.88495</td> <td>1</td> <td>59.0</td> <td>13.500000</td> <td>...</td> <td>NaN</td> <td>NaN</td> <td>0.799927</td> <td>143.0</td> <td>7.509766</td> <td>NaN</td> <td>NaN</td> <td>NaN</td> <td>NaN</td> <td>2.0</td> </tr> </tbody> </table> <p>5 rows × 24 columns</p> </div> <div> <style scoped> .dataframe tbody tr th:only-of-type { vertical-align: middle; } .dataframe tbody tr th { vertical-align: top; } .dataframe thead th { text-align: right; } </style> <table border="1" class="dataframe"> <thead> <tr style="text-align: right;"> <th></th> <th>event</th> <th>time</th> </tr> </thead> <tbody> <tr> <th>0</th> <td>0</td> <td>2029</td> </tr> <tr> <th>1</th> <td>1</td> <td>4</td> </tr> <tr> <th>2</th> <td>1</td> <td>47</td> </tr> <tr> <th>3</th> <td>1</td> <td>133</td> </tr> <tr> <th>4</th> <td>0</td> <td>2029</td> </tr> </tbody> </table> </div> <a id="preprocess"></a> ### 1.2. Preprocess the Data ```python import numpy as np from sklearn.model_selection import train_test_split # Split the SUPPORT data into training, validation, and test data x_tr, x_te, y_tr, y_te = train_test_split(features, outcomes, test_size=0.2, random_state=1) x_tr, x_val, y_tr, y_val = train_test_split(x_tr, y_tr, test_size=0.25, random_state=1) print(f'Number of training data points: {len(x_tr)}') print(f'Number of validation data points: {len(x_val)}') print(f'Number of test data points: {len(x_te)}') ``` Number of training data points: 5463 Number of validation data points: 1821 Number of test data points: 1821 ```python from auton_survival.preprocessing import Preprocessor # Fit the imputer and scaler to the training data and transform the training, validation and test data preprocessor = Preprocessor(cat_feat_strat='ignore', num_feat_strat= 'mean') transformer = preprocessor.fit(features, cat_feats=cat_feats, num_feats=num_feats, one_hot=True, fill_value=-1) x_tr = transformer.transform(x_tr) x_val = transformer.transform(x_val) x_te = transformer.transform(x_te) ``` <a id="cph"></a> ## 2. Cox Proportional Hazards (CPH) <b>CPH</b> [2] model assumes that individuals across the population have constant proportional hazards overtime. In this model, the estimator of the survival function conditional on $X, S(·|X) , P(T > t|X)$, is assumed to have constant proportional hazard. Thus, the relative proportional hazard between individuals is constant across time. *For full details on CPH, please refer to the following paper*: [2] [Cox, D. R. (1972). Regression models and life-tables. Journal of the Royal Statistical Society: Series B (Methodological).](https://www.jstor.org/stable/2985181) <a id="fitcph"></a> ### 2.1. Fit CPH Model ```python from auton_survival.estimators import SurvivalModel from auton_survival.metrics import survival_regression_metric from sklearn.model_selection import ParameterGrid # Define parameters for tuning the model param_grid = {'l2' : [1e-3, 1e-4]} params = ParameterGrid(param_grid) # Define the times for tuning the model hyperparameters and for evaluating the model times = np.quantile(y_tr['time'][y_tr['event']==1], np.linspace(0.1, 1, 10)).tolist() # Perform hyperparameter tuning models = [] for param in params: model = SurvivalModel('cph', random_seed=2, l2=param['l2']) # The fit method is called to train the model model.fit(x_tr, y_tr) # Obtain survival probabilities for validation set and compute the Integrated Brier Score predictions_val = model.predict_survival(x_val, times) metric_val = survival_regression_metric('ibs', y_tr, y_val, predictions_val, times) models.append([metric_val, model]) # Select the best model based on the mean metric value computed for the validation set metric_vals = [i[0] for i in models] first_min_idx = metric_vals.index(min(metric_vals)) model = models[first_min_idx][1] ``` <a id="evalcph"></a> ### 2.2. Evaluate CPH Model ```python from estimators_demo_utils import plot_performance_metrics # Obtain survival probabilities for test set predictions_te = model.predict_survival(x_te, times) # Compute the Brier Score and time-dependent concordance index for the test set to assess model performance results = dict() results['Brier Score'] = survival_regression_metric('brs', outcomes_train=y_tr, outcomes_test=y_te, predictions=predictions_te, times=times) results['Concordance Index'] = survival_regression_metric('ctd', outcomes_train=y_tr, outcomes_test=y_te, predictions=predictions_te, times=times) plot_performance_metrics(results, times) ``` <a id="fsn"></a> ## 3. Deep Cox Proportional Hazards (DCPH) <b>DCPH</b> [2], [3] is an extension to the CPH model. DCPH involves modeling the proportional hazard ratios over the individuals with Deep Neural Networks allowing the ability to learn non linear hazard ratios. *For full details on DCPH models, Faraggi-Simon Net (FSN) and DeepSurv, please refer to the following papers*: [2] [Faraggi, David, and Richard Simon. "A neural network model for survival data." Statistics in medicine 14.1 (1995): 73-82.](https://onlinelibrary.wiley.com/doi/abs/10.1002/sim.4780140108) [3] [Katzman, Jared L., et al. "DeepSurv: personalized treatment recommender system using a Cox proportional hazards deep neural network." BMC medical research methodology 18.1 (2018): 1-12.](https://arxiv.org/abs/1606.00931v3) <a id="fitfsn"></a> ### 3.1. Fit DCPH Model ```python from auton_survival.estimators import SurvivalModel from auton_survival.metrics import survival_regression_metric from sklearn.model_selection import ParameterGrid # Define parameters for tuning the model param_grid = {'bs' : [100, 200], 'learning_rate' : [ 1e-4, 1e-3], 'layers' : [ [100], [100, 100] ] } params = ParameterGrid(param_grid) # Define the times for tuning the model hyperparameters and for evaluating the model times = np.quantile(y_tr['time'][y_tr['event']==1], np.linspace(0.1, 1, 10)).tolist() # Perform hyperparameter tuning models = [] for param in params: model = SurvivalModel('dcph', random_seed=0, bs=param['bs'], learning_rate=param['learning_rate'], layers=param['layers']) # The fit method is called to train the model model.fit(x_tr, y_tr) # Obtain survival probabilities for validation set and compute the Integrated Brier Score predictions_val = model.predict_survival(x_val, times) metric_val = survival_regression_metric('ibs', y_tr, y_val, predictions_val, times) models.append([metric_val, model]) # Select the best model based on the mean metric value computed for the validation set metric_vals = [i[0] for i in models] first_min_idx = metric_vals.index(min(metric_vals)) model = models[first_min_idx][1] ``` 100%|███████████████████████████████████████████████████████████████████████████████████████████████████████████████| 50/50 [00:03<00:00, 15.29it/s] 32%|███████████████████████████████████▌ | 16/50 [00:01<00:02, 12.67it/s] 64%|███████████████████████████████████████████████████████████████████████ | 32/50 [00:03<00:02, 8.56it/s] 20%|██████████████████████▏ | 10/50 [00:01<00:04, 8.21it/s] 100%|███████████████████████████████████████████████████████████████████████████████████████████████████████████████| 50/50 [00:02<00:00, 24.79it/s] 50%|███████████████████████████████████████████████████████▌ | 25/50 [00:01<00:01, 19.35it/s] 82%|███████████████████████████████████████████████████████████████████████████████████████████ | 41/50 [00:02<00:00, 16.10it/s] 16%|█████████████████▉ | 8/50 [00:00<00:03, 13.96it/s] <a id="evalfsn"></a> ### 3.2. Evaluate DCPH Model Compute the Brier Score and time-dependent concordance index for the test set. See notebook introduction for more details. ```python from estimators_demo_utils import plot_performance_metrics # Obtain survival probabilities for test set predictions_te = model.predict_survival(x_te, times) # Compute the Brier Score and time-dependent concordance index for the test set to assess model performance results = dict() results['Brier Score'] = survival_regression_metric('brs', outcomes_train=y_tr, outcomes_test=y_te, predictions=predictions_te, times=times) results['Concordance Index'] = survival_regression_metric('ctd', outcomes_train=y_tr, outcomes_test=y_te, predictions=predictions_te, times=times) plot_performance_metrics(results, times) ``` <a id="dsm"></a> ## 4. Deep Survival Machines (DSM) <b>DSM</b> [5] is a fully parametric approach to modeling the event time distribution as a fixed size mixture over Weibull or Log-Normal distributions. The individual mixture distributions are parametrized with neural networks to learn complex non-linear representations of the data. <b>Figure A:</b> DSM works by modeling the conditional distribution $P(T |X = x)$ as a mixture over $k$ well-defined, parametric distributions. DSM generates representation of the individual covariates, $x$, using a deep multilayer perceptron followed by a softmax over mixture size, $k$. This representation then interacts with the additional set of parameters, to determine the mixture weights $w$ and the parameters of each of $k$ underlying survival distributions $\{\eta_k, \beta_k\}^K_{k=1}$. The final individual survival distribution for the event time, $T$, is a weighted average over these $K$ distributions. *For full details on Deep Survival Machines (DSM), please refer to the following paper*: [5] [Chirag Nagpal, Xinyu Li, and Artur Dubrawski. Deep survival machines: Fully parametric survival regression and representation learning for censored data with competing risks. 2020.](https://arxiv.org/abs/2003.01176) <a id="fitdsm"></a> ### 4.1. Fit DSM Model ```python from auton_survival.estimators import SurvivalModel from auton_survival.metrics import survival_regression_metric from sklearn.model_selection import ParameterGrid # Define parameters for tuning the model param_grid = {'layers' : [[100], [100, 100], [200]], 'distribution' : ['Weibull', 'LogNormal'], 'max_features' : ['sqrt', 'log2'] } params = ParameterGrid(param_grid) # Define the times for tuning the model hyperparameters and for evaluating the model times = np.quantile(y_tr['time'][y_tr['event']==1], np.linspace(0.1, 1, 10)).tolist() # Perform hyperparameter tuning models = [] for param in params: model = SurvivalModel('dsm', random_seed=0, layers=param['layers'], distribution=param['distribution'], max_features=param['max_features']) # The fit method is called to train the model model.fit(x_tr, y_tr) # Obtain survival probabilities for validation set and compute the Integrated Brier Score predictions_val = model.predict_survival(x_val, times) metric_val = survival_regression_metric('ibs', y_tr, y_val, predictions_val, times) models.append([metric_val, model]) # Select the best model based on the mean metric value computed for the validation set metric_vals = [i[0] for i in models] first_min_idx = metric_vals.index(min(metric_vals)) model = models[first_min_idx][1] ``` 18%|██████████████████▉ | 1799/10000 [00:04<00:20, 400.33it/s] 90%|████████████████████████████████████████████████████████████████████████████████████████████████████▊ | 9/10 [00:01<00:00, 5.31it/s] 18%|██████████████████▉ | 1799/10000 [00:04<00:22, 369.96it/s] 90%|████████████████████████████████████████████████████████████████████████████████████████████████████▊ | 9/10 [00:01<00:00, 4.96it/s] 18%|██████████████████▉ | 1799/10000 [00:05<00:23, 350.53it/s] 100%|███████████████████████████████████████████████████████████████████████████████████████████████████████████████| 10/10 [00:02<00:00, 4.25it/s] 18%|██████████████████▉ | 1799/10000 [00:04<00:21, 376.50it/s] 100%|███████████████████████████████████████████████████████████████████████████████████████████████████████████████| 10/10 [00:02<00:00, 4.96it/s] 18%|██████████████████▉ | 1799/10000 [00:04<00:22, 364.78it/s] 90%|████████████████████████████████████████████████████████████████████████████████████████████████████▊ | 9/10 [00:02<00:00, 4.01it/s] 18%|██████████████████▉ | 1799/10000 [00:05<00:24, 340.31it/s] 90%|████████████████████████████████████████████████████████████████████████████████████████████████████▊ | 9/10 [00:01<00:00, 4.63it/s] 12%|████████████▊ | 1224/10000 [00:03<00:21, 399.50it/s] 100%|███████████████████████████████████████████████████████████████████████████████████████████████████████████████| 10/10 [00:01<00:00, 5.22it/s] 12%|████████████▊ | 1224/10000 [00:03<00:22, 393.39it/s] 100%|███████████████████████████████████████████████████████████████████████████████████████████████████████████████| 10/10 [00:01<00:00, 5.22it/s] 12%|████████████▊ | 1224/10000 [00:03<00:23, 368.06it/s] 100%|███████████████████████████████████████████████████████████████████████████████████████████████████████████████| 10/10 [00:02<00:00, 4.61it/s] 12%|████████████▊ | 1224/10000 [00:03<00:23, 372.02it/s] 100%|███████████████████████████████████████████████████████████████████████████████████████████████████████████████| 10/10 [00:02<00:00, 4.72it/s] 12%|████████████▊ | 1224/10000 [00:02<00:16, 516.68it/s] 100%|███████████████████████████████████████████████████████████████████████████████████████████████████████████████| 10/10 [00:01<00:00, 5.32it/s] 12%|████████████▊ | 1224/10000 [00:03<00:22, 391.68it/s] 100%|███████████████████████████████████████████████████████████████████████████████████████████████████████████████| 10/10 [00:01<00:00, 5.24it/s] <a id="evaldsm"></a> ### 4.2. Evaluate DSM Model Compute the Brier Score and time-dependent concordance index for the test set. See notebook introduction for more details. ```python from estimators_demo_utils import plot_performance_metrics # Obtain survival probabilities for test set predictions_te = model.predict_survival(x_te, times) # Compute the Brier Score and time-dependent concordance index for the test set to assess model performance results = dict() results['Brier Score'] = survival_regression_metric('brs', outcomes_train=y_tr, outcomes_test=y_te, predictions=predictions_te, times=times) results['Concordance Index'] = survival_regression_metric('ctd', outcomes_train=y_tr, outcomes_test=y_te, predictions=predictions_te, times=times) plot_performance_metrics(results, times) ``` <a id="dcm"></a> ## 5. Deep Cox Mixtures (DCM) <b>DCM</b> [2] generalizes the proportional hazards assumption via a mixture model, by assuming that there are latent groups and within each, the proportional hazards assumption holds. DCM allows the hazard ratio in each latent group, as well as the latent group membership, to be flexibly modeled by a deep neural network. <b>Figure B:</b> DCM works by generating representation of the individual covariates, $x$, using an encoding neural network. The output representation, $xe$, then interacts with linear functions, $f$ and $g$, that determine the proportional hazards within each cluster $Z ∈ {1, 2, ...K}$ and the mixing weights $P(Z|X)$ respectively. For each cluster, baseline survival rates $Sk(t)$ are estimated non-parametrically. The final individual survival curve $S(t|x)$ is an average over the cluster specific individual survival curves weighted by the mixing probabilities $P(Z|X = x)$. *For full details on Deep Cox Mixtures (DCM), please refer to the following paper*: [2] [Nagpal, C., Yadlowsky, S., Rostamzadeh, N., and Heller, K. (2021c). Deep cox mixtures for survival regression. In Machine Learning for Healthcare Conference, pages 674–708. PMLR.](https://arxiv.org/abs/2101.06536) <a id="fitdcm"></a> ### 5.1. Fit DCM Model ```python from auton_survival.estimators import SurvivalModel from auton_survival.metrics import survival_regression_metric from sklearn.model_selection import ParameterGrid # Define parameters for tuning the model param_grid = {'k' : [2, 3], 'learning_rate' : [1e-3, 1e-4], 'layers' : [[100], [100, 100]] } params = ParameterGrid(param_grid) # Define the times for tuning the model hyperparameters and for evaluating the model times = np.quantile(y_tr['time'][y_tr['event']==1], np.linspace(0.1, 1, 10)).tolist() # Perform hyperparameter tuning models = [] for param in params: model = SurvivalModel('dcm', random_seed=7, k=param['k'], learning_rate=param['learning_rate'], layers=param['layers']) # The fit method is called to train the model model.fit(x_tr, y_tr) # Obtain survival probabilities for validation set and compute the Integrated Brier Score predictions_val = model.predict_survival(x_val, times) metric_val = survival_regression_metric('ibs', y_tr, y_val, predictions_val, times) models.append([metric_val, model]) # Select the best model based on the mean metric value computed for the validation set metric_vals = [i[0] for i in models] first_min_idx = metric_vals.index(min(metric_vals)) model = models[first_min_idx][1] ``` 0%| | 0/50 [00:00<?, ?it/s]C:\Users\Willa Potosnak\OneDrive\Documents\CMU Research\CMU_Projects\auton-survival\examples\..\auton_survival\models\dcm\dcm_utilities.py:105: RuntimeWarning: invalid value encountered in log probs = gates+np.log(event_probs) 14%|███████████████▋ | 7/50 [00:02<00:14, 3.04it/s]C:\Users\Willa Potosnak\OneDrive\Documents\CMU Research\CMU_Projects\auton-survival\examples\..\auton_survival\models\dcm\dcm_utilities.py:105: RuntimeWarning: divide by zero encountered in log probs = gates+np.log(event_probs) 32%|███████████████████████████████████▌ | 16/50 [00:05<00:12, 2.75it/s]C:\Users\Willa Potosnak\OneDrive\Documents\CMU Research\CMU_Projects\auton-survival\examples\..\auton_survival\models\dcm\dcm_utilities.py:58: RuntimeWarning: invalid value encountered in power return spl(ts)**risks C:\Users\Willa Potosnak\OneDrive\Documents\CMU Research\CMU_Projects\auton-survival\examples\..\auton_survival\models\dcm\dcm_utilities.py:53: RuntimeWarning: invalid value encountered in power s0ts = (-risks)*(spl(ts)**(risks-1)) 34%|█████████████████████████████████████▋ | 17/50 [00:06<00:12, 2.64it/s] 0%| | 0/50 [00:00<?, ?it/s]C:\Users\Willa Potosnak\OneDrive\Documents\CMU Research\CMU_Projects\auton-survival\examples\..\auton_survival\models\dcm\dcm_utilities.py:105: RuntimeWarning: invalid value encountered in log probs = gates+np.log(event_probs) 14%|███████████████▋ | 7/50 [00:02<00:14, 3.02it/s]C:\Users\Willa Potosnak\OneDrive\Documents\CMU Research\CMU_Projects\auton-survival\examples\..\auton_survival\models\dcm\dcm_utilities.py:105: RuntimeWarning: divide by zero encountered in log probs = gates+np.log(event_probs) 72%|███████████████████████████████████████████████████████████████████████████████▉ | 36/50 [00:12<00:04, 2.90it/s] 0%| | 0/50 [00:00<?, ?it/s]C:\Users\Willa Potosnak\OneDrive\Documents\CMU Research\CMU_Projects\auton-survival\examples\..\auton_survival\models\dcm\dcm_utilities.py:105: RuntimeWarning: invalid value encountered in log probs = gates+np.log(event_probs) 6%|██████▋ | 3/50 [00:01<00:19, 2.41it/s]C:\Users\Willa Potosnak\OneDrive\Documents\CMU Research\CMU_Projects\auton-survival\examples\..\auton_survival\models\dcm\dcm_utilities.py:105: RuntimeWarning: divide by zero encountered in log probs = gates+np.log(event_probs) 54%|███████████████████████████████████████████████████████████▉ | 27/50 [00:12<00:10, 2.18it/s] 0%| | 0/50 [00:00<?, ?it/s]C:\Users\Willa Potosnak\OneDrive\Documents\CMU Research\CMU_Projects\auton-survival\examples\..\auton_survival\models\dcm\dcm_utilities.py:105: RuntimeWarning: invalid value encountered in log probs = gates+np.log(event_probs) 30%|█████████████████████████████████▎ | 15/50 [00:06<00:15, 2.22it/s]C:\Users\Willa Potosnak\OneDrive\Documents\CMU Research\CMU_Projects\auton-survival\examples\..\auton_survival\models\dcm\dcm_utilities.py:105: RuntimeWarning: divide by zero encountered in log probs = gates+np.log(event_probs) 100%|███████████████████████████████████████████████████████████████████████████████████████████████████████████████| 50/50 [00:22<00:00, 2.27it/s] 0%| | 0/50 [00:00<?, ?it/s]C:\Users\Willa Potosnak\OneDrive\Documents\CMU Research\CMU_Projects\auton-survival\examples\..\auton_survival\models\dcm\dcm_utilities.py:105: RuntimeWarning: invalid value encountered in log probs = gates+np.log(event_probs) 6%|██████▋ | 3/50 [00:01<00:21, 2.20it/s]C:\Users\Willa Potosnak\OneDrive\Documents\CMU Research\CMU_Projects\auton-survival\examples\..\auton_survival\models\dcm\dcm_utilities.py:105: RuntimeWarning: divide by zero encountered in log probs = gates+np.log(event_probs) 52%|█████████████████████████████████████████████████████████▋ | 26/50 [00:11<00:10, 2.26it/s]C:\Users\Willa Potosnak\OneDrive\Documents\CMU Research\CMU_Projects\auton-survival\examples\..\auton_survival\models\dcm\dcm_utilities.py:58: RuntimeWarning: invalid value encountered in power return spl(ts)**risks C:\Users\Willa Potosnak\OneDrive\Documents\CMU Research\CMU_Projects\auton-survival\examples\..\auton_survival\models\dcm\dcm_utilities.py:53: RuntimeWarning: invalid value encountered in power s0ts = (-risks)*(spl(ts)**(risks-1)) 70%|█████████████████████████████████████████████████████████████████████████████▋ | 35/50 [00:15<00:06, 2.21it/s] 0%| | 0/50 [00:00<?, ?it/s]C:\Users\Willa Potosnak\OneDrive\Documents\CMU Research\CMU_Projects\auton-survival\examples\..\auton_survival\models\dcm\dcm_utilities.py:105: RuntimeWarning: invalid value encountered in log probs = gates+np.log(event_probs) 4%|████▍ | 2/50 [00:00<00:15, 3.03it/s]C:\Users\Willa Potosnak\OneDrive\Documents\CMU Research\CMU_Projects\auton-survival\examples\..\auton_survival\models\dcm\dcm_utilities.py:105: RuntimeWarning: divide by zero encountered in log probs = gates+np.log(event_probs) 72%|███████████████████████████████████████████████████████████████████████████████▉ | 36/50 [00:15<00:07, 1.84it/s]C:\Users\Willa Potosnak\OneDrive\Documents\CMU Research\CMU_Projects\auton-survival\examples\..\auton_survival\models\dcm\dcm_utilities.py:58: RuntimeWarning: invalid value encountered in power return spl(ts)**risks C:\Users\Willa Potosnak\OneDrive\Documents\CMU Research\CMU_Projects\auton-survival\examples\..\auton_survival\models\dcm\dcm_utilities.py:53: RuntimeWarning: invalid value encountered in power s0ts = (-risks)*(spl(ts)**(risks-1)) 100%|███████████████████████████████████████████████████████████████████████████████████████████████████████████████| 50/50 [00:23<00:00, 2.17it/s] 0%| | 0/50 [00:00<?, ?it/s]C:\Users\Willa Potosnak\OneDrive\Documents\CMU Research\CMU_Projects\auton-survival\examples\..\auton_survival\models\dcm\dcm_utilities.py:105: RuntimeWarning: invalid value encountered in log probs = gates+np.log(event_probs) 2%|██▏ | 1/50 [00:00<00:27, 1.78it/s]C:\Users\Willa Potosnak\OneDrive\Documents\CMU Research\CMU_Projects\auton-survival\examples\..\auton_survival\models\dcm\dcm_utilities.py:105: RuntimeWarning: divide by zero encountered in log probs = gates+np.log(event_probs) 78%|██████████████████████████████████████████████████████████████████████████████████████▌ | 39/50 [00:20<00:05, 1.91it/s] 0%| | 0/50 [00:00<?, ?it/s]C:\Users\Willa Potosnak\OneDrive\Documents\CMU Research\CMU_Projects\auton-survival\examples\..\auton_survival\models\dcm\dcm_utilities.py:105: RuntimeWarning: invalid value encountered in log probs = gates+np.log(event_probs) 20%|██████████████████████▏ | 10/50 [00:04<00:21, 1.83it/s]C:\Users\Willa Potosnak\OneDrive\Documents\CMU Research\CMU_Projects\auton-survival\examples\..\auton_survival\models\dcm\dcm_utilities.py:105: RuntimeWarning: divide by zero encountered in log probs = gates+np.log(event_probs) 100%|███████████████████████████████████████████████████████████████████████████████████████████████████████████████| 50/50 [00:22<00:00, 2.27it/s] <a id="evaldcm"></a> ### 5.2. Evaluate DCM Model Compute the Brier Score and time-dependent concordance index for the test set. See notebook introduction for more details. ```python from estimators_demo_utils import plot_performance_metrics # Obtain survival probabilities for test set predictions_te = model.predict_survival(x_te, times) # Compute the Brier Score and time-dependent concordance index for the test set to assess model performance results = dict() results['Brier Score'] = survival_regression_metric('brs', outcomes_train=y_tr, outcomes_test=y_te, predictions=predictions_te, times=times) results['Concordance Index'] = survival_regression_metric('ctd', outcomes_train=y_tr, outcomes_test=y_te, predictions=predictions_te, times=times) plot_performance_metrics(results, times) ``` <a id="rsf"></a> ## 6. Random Survival Forests (RSF) <b>RSF</b> [4] is an extension of Random Forests to the survival settings where risk scores are computed by creating Nelson-Aalen estimators in the splits induced by the Random Forest. We observe that performance of the Random Survival Forest model, especially in terms of calibration is strongly influenced by the choice for the hyperparameters for the number of features considered at each split and the minimum number of data samples to continue growing a tree. We thus advise carefully tuning these hyper-parameters while benchmarking RSF. *For full details on Random Survival Forests (RSF), please refer to the following paper*: [4] [Hemant Ishwaran et al. Random survival forests. The annals of applied statistics, 2(3):841–860, 2008.](https://arxiv.org/abs/0811.1645) <a id="fitrsf"></a> ### 6.1. Fit RSF Model ```python from auton_survival.estimators import SurvivalModel from auton_survival.metrics import survival_regression_metric from sklearn.model_selection import ParameterGrid # Define parameters for tuning the model param_grid = {'n_estimators' : [100, 300], 'max_depth' : [3, 5], 'max_features' : ['sqrt', 'log2'] } params = ParameterGrid(param_grid) # Define the times for tuning the model hyperparameters and for evaluating the model times = np.quantile(y_tr['time'][y_tr['event']==1], np.linspace(0.1, 1, 10)).tolist() # Perform hyperparameter tuning models = [] for param in params: model = SurvivalModel('rsf', random_seed=8, n_estimators=param['n_estimators'], max_depth=param['max_depth'], max_features=param['max_features']) # The fit method is called to train the model model.fit(x_tr, y_tr) # Obtain survival probabilities for validation set and compute the Integrated Brier Score predictions_val = model.predict_survival(x_val, times) metric_val = survival_regression_metric('ibs', y_tr, y_val, predictions_val, times) models.append([metric_val, model]) # Select the best model based on the mean metric value computed for the validation set metric_vals = [i[0] for i in models] first_min_idx = metric_vals.index(min(metric_vals)) model = models[first_min_idx][1] ``` <a id="evalrsf"></a> ### 6.2. Evaluate RSF Model Compute the Brier Score and time-dependent concordance index for the test set. See notebook introduction for more details. ```python from estimators_demo_utils import plot_performance_metrics # Obtain survival probabilities for test set predictions_te = model.predict_survival(x_te, times) # Compute the Brier Score and time-dependent concordance index for the test set to assess model performance results = dict() results['Brier Score'] = survival_regression_metric('brs', outcomes_train=y_tr, outcomes_test=y_te, predictions=predictions_te, times=times) results['Concordance Index'] = survival_regression_metric('ctd', outcomes_train=y_tr, outcomes_test=y_te, predictions=predictions_te, times=times) plot_performance_metrics(results, times) ``` ```python ```
"""Position and Quaternion orientation math""" import math import cgtypes # cgkit 1.x import numpy as nx import numpy as np import numpy import time nan = nx.nan class NoIndexChangedClass: pass no_index_changed = NoIndexChangedClass() L_i = nx.array([0,0,0,1,3,2]) L_j = nx.array([1,2,3,2,1,3]) def Lmatrix2Lcoords(Lmatrix): return Lmatrix[L_i,L_j] #pluecker_to_orient is flydra_core.reconstruct.line_direction def pluecker_to_quat(line3d): '''cannot set roll angle''' import flydra_core.reconstruct orient = flydra_core.reconstruct.line_direction(line3d) return orientation_to_quat(orient) def pluecker_from_verts(A,B): if len(A)==3: A = A[0], A[1], A[2], 1.0 if len(B)==3: B = B[0], B[1], B[2], 1.0 A=nx.reshape(A,(4,1)) B=nx.reshape(B,(4,1)) L = nx.matrixmultiply(A,nx.transpose(B)) - nx.matrixmultiply(B,nx.transpose(A)) return Lmatrix2Lcoords(L) def norm_vec(V): Va = nx.asarray(V) if len(Va.shape)==1: # vector U = Va/math.sqrt(Va[0]**2 + Va[1]**2 + Va[2]**2) # normalize else: assert Va.shape[1] == 3 Vamags = nx.sqrt(Va[:,0]**2 + Va[:,1]**2 + Va[:,2]**2) U = Va/Vamags[:,nx.newaxis] return U def rotate_velocity_by_orientation(vel,orient): # this is backwards from a normal quaternion rotation return orient.inverse()*vel*orient def is_unit_vector(U,eps=1e-10): V = nx.asarray(U) Visdim1=False if len(V.shape)==1: V = V[nx.newaxis,:] Visdim1=True V = V**2 mag = nx.sqrt(nx.sum(V,axis=1)) result = abs(mag-1.0) < eps # consider nans to be unit vectors if Visdim1: if np.isnan(mag[0]): result = True else: result[ np.isnan(mag) ] = True return result def world2body( U, roll_angle = 0 ): """convert world coordinates to body-relative coordinates inputs: U is a unit vector indicating directon of body long axis roll_angle is the roll angle (in radians) output: M (3x3 matrix), get world coords via nx.dot(M,X) """ assert is_unit_vector(U) # notation from Wagner, 1986a, Appendix 1 Bxy = math.atan2( U[1], U[0] ) # heading angle Bxz = math.asin( U[2] ) # pitch (body) angle Byz = roll_angle # roll angle cos = math.cos sin = math.sin M = nx.array( (( cos(Bxy)*cos(-Bxz), sin(Bxy)*cos(-Bxz), -sin(-Bxz)), ( cos(Bxy)*sin(-Bxz)*sin(Byz) - sin(Bxy)*cos(Byz), sin(Bxy)*sin(-Bxz)*sin(Byz) + cos(Bxy)*cos(Byz), cos(-Bxz)*sin(Byz)), ( cos(Bxy)*sin(-Bxz)*cos(Byz) + sin(Bxy)*sin(Byz), sin(Bxy)*sin(-Bxz)*cos(Byz) - cos(Bxy)*sin(Byz), cos(-Bxz)*cos(Byz)))) return M def cross(vec1,vec2): return ( vec1[1]*vec2[2] - vec1[2]*vec2[1], vec1[2]*vec2[0] - vec1[0]*vec2[2], vec1[0]*vec2[1] - vec1[1]*vec2[0] ) def make_quat(angle_radians, axis_of_rotation): half_angle = angle_radians/2.0 a = math.cos(half_angle) b,c,d = math.sin(half_angle)*norm_vec(axis_of_rotation) return cgtypes.quat(a,b,c,d) def euler_to_orientation( yaw=0.0, pitch = 0.0 ): """convert euler angles into orientation vector""" z = math.sin( pitch ) xyr = math.cos( pitch ) y = xyr*math.sin( yaw ) x = xyr*math.cos( yaw ) return x, y, z def test_euler_to_orientation(): xyz = euler_to_orientation(0,0) assert np.allclose( xyz, (1.0, 0.0, 0.0)) xyz = euler_to_orientation(math.pi,0) assert np.allclose( xyz, (-1.0, 1.2246063538223773e-16, 0.0)) xyz = euler_to_orientation(math.pi,math.pi/2) assert np.allclose( xyz, (-6.1230317691118863e-17, 7.4983036091106872e-33, 1.0)) xyz = euler_to_orientation(math.pi,-math.pi/2) assert np.allclose( xyz, (-6.1230317691118863e-17, 7.4983036091106872e-33, -1.0)) xyz = euler_to_orientation(math.pi,-math.pi/4) assert np.allclose( xyz, (-0.70710678118654757, 8.6592745707193554e-17, -0.70710678118654746)) xyz = euler_to_orientation(math.pi/2,-math.pi/4) assert np.allclose( xyz, (4.3296372853596777e-17, 0.70710678118654757, -0.70710678118654746)) def euler_to_quat(roll=0.0,pitch=0.0,yaw=0.0): # see http://www.euclideanspace.com/maths/geometry/rotations/conversions/eulerToQuaternion/index.htm # Supposedly the order is heading first, then attitude, the bank. heading = yaw attitude = pitch bank = roll c1 = math.cos(heading/2); s1 = math.sin(heading/2); c2 = math.cos(attitude/2); s2 = math.sin(attitude/2); c3 = math.cos(bank/2); s3 = math.sin(bank/2); c1c2 = c1*c2; s1s2 = s1*s2; w =c1c2*c3 - s1s2*s3; x =c1c2*s3 + s1s2*c3; y =s1*c2*c3 + c1*s2*s3; z =c1*s2*c3 - s1*c2*s3; z, y = y, -z return cgtypes.quat(w,x,y,z) ## a,b,c=roll,-pitch,yaw ## Qx = cgtypes.quat( math.cos(a/2.0), math.sin(a/2.0), 0, 0 ) ## Qy = cgtypes.quat( math.cos(b/2.0), 0, math.sin(b/2.0), 0 ) ## Qz = cgtypes.quat( math.cos(c/2.0), 0, 0, math.sin(c/2.0) ) ## return Qx*Qy*Qz def orientation_to_euler( U ): """ convert orientation to euler angles (in radians) results are yaw, pitch (no roll is provided) >>> print orientation_to_euler( (1, 0, 0) ) (0.0, 0.0) >>> print orientation_to_euler( (0, 1, 0) ) (1.5707963267948966, 0.0) >>> print orientation_to_euler( (-1, 0, 0) ) (3.141592653589793, 0.0) >>> print orientation_to_euler( (0, -1, 0) ) (-1.5707963267948966, 0.0) >>> print orientation_to_euler( (0, 0, 1) ) (0.0, 1.5707963267948966) >>> print orientation_to_euler( (0, 0, -1) ) (0.0, -1.5707963267948966) >>> print orientation_to_euler( (0,0,0) ) # This is not a unit vector. Traceback (most recent call last): ... AssertionError >>> r1=math.sqrt(2)/2 >>> print math.pi/4 0.785398163397 >>> print orientation_to_euler( (r1,0,r1) ) (0.0, 0.7853981633974483) >>> print orientation_to_euler( (r1,r1,0) ) (0.7853981633974483, 0.0) """ if numpy.isnan(U[0]): return (nan,nan) assert is_unit_vector(U) yaw = math.atan2( U[1],U[0] ) xy_r = math.sqrt(U[0]**2+U[1]**2) pitch = math.atan2( U[2], xy_r ) return yaw, pitch def orientation_to_quat( U, roll_angle=0, force_pitch_0=False ): """convert world coordinates to body-relative coordinates inputs: U is a unit vector indicating directon of body long axis roll_angle is the roll angle (in radians) output: quaternion (4 tuple) """ if roll_angle != 0: # I presume this has an effect on the b component of the quaternion raise NotImplementedError('') #if type(U) == nx.NumArray and len(U.shape)==2: # array of vectors if 0: result = QuatSeq() for u in U: if numpy.isnan(u[0]): result.append( cgtypes.quat((nan,nan,nan,nan))) else: yaw, pitch = orientation_to_euler( u ) result.append( euler_to_quat(yaw=yaw, pitch=pitch, roll=roll_angle)) return result else: if numpy.isnan(U[0]): return cgtypes.quat((nan,nan,nan,nan)) yaw, pitch = orientation_to_euler( U ) if force_pitch_0: pitch=0 return euler_to_quat(yaw=yaw, pitch=pitch, roll=roll_angle) def quat_to_orient(S3): """returns x, y, z for unit quaternions Parameters ---------- S3 : {quaternion, QuatSeq instance} The quaternion or sequence of quaternions to transform into an orientation vector. Returns ------- orient : {tuple, ndarray} If the input was a single quaternion, the output is (x,y,z). If the input was a QuatSeq instance of length N, the output is an ndarray of shape (N,3). """ u = cgtypes.quat(0,1,0,0) if type(S3)()==QuatSeq(): # XXX isinstance(S3,QuatSeq) V = [q*u*q.inverse() for q in S3] return nx.array([(v.x, v.y, v.z) for v in V]) else: V=S3*u*S3.inverse() return V.x, V.y, V.z def quat_to_euler(q): """returns yaw, pitch, roll at singularities (north and south pole), assumes roll = 0 """ # See http://www.euclideanspace.com/maths/geometry/rotations/conversions/quaternionToEuler/ eps=1e-14 qw = q.w; qx = q.x; qy = q.z; qz = -q.y pitch_y = 2*qx*qy + 2*qz*qw if pitch_y > (1.0-eps): # north pole] yaw = 2*math.atan2( qx, qw) pitch = math.asin(1.0) roll = 0.0 elif pitch_y < -(1.0-eps): # south pole yaw = -2*math.atan2( qx, qw) pitch = math.asin(-1.0) roll = 0.0 else: yaw = math.atan2(2*qy*qw-2*qx*qz , 1 - 2*qy**2 - 2*qz**2) pitch = math.asin(pitch_y) roll = math.atan2(2*qx*qw-2*qy*qz , 1 - 2*qx**2 - 2*qz**2) return yaw, pitch, roll def quat_to_absroll(q): qw = q.w; qx = q.x; qy = q.z; qz = -q.y roll = math.atan2(2*qx*qw-2*qy*qz , 1 - 2*qx**2 - 2*qz**2) return abs(roll) class ObjectiveFunctionPosition: """methods from Kim, Hsieh, Wang, Wang, Fang, Woo""" def __init__(self, p, h, alpha, no_distance_penalty_idxs=None): """ no_distance_penalty_idxs -- indexes into p where fit data should not be penalized (probably because 'original data' was interpolated and is of no value) """ self.p = p self.h = h self.alpha = alpha self.p_err_weights = nx.ones( (len(p),) ) if no_distance_penalty_idxs is not None: for i in no_distance_penalty_idxs: self.p_err_weights[i] = 0 def _getDistance(self, ps): result = nx.sum(self.p_err_weights*nx.sum((self.p - ps)**2, axis=1)) assert not np.isnan(result) return result def _getEnergy(self, ps): d2p = (ps[2:] - 2*ps[1:-1] + ps[:-2]) / (self.h**2) return nx.sum( nx.sum(d2p**2,axis=1)) def eval(self,ps): D = self._getDistance(ps) E = self._getEnergy(ps) return D + self.alpha*E # eqn. 22 def get_del_F(self,P): class PDfinder: def __init__(self,objective_function,P): self.objective_function = objective_function self.P = P self.F_P = self.objective_function.eval(P) self.ndims = P.shape[1] def eval_pd(self,i): # evaluate 3 values (perturbations in x,y,z directions) PERTURB = 1e-6 # perturbation amount (in meters) dFdP = [] for j in range(self.ndims): P_i_j = self.P[i,j] # temporarily perturb P_i self.P[i,j] = P_i_j+PERTURB F_Pj = self.objective_function.eval(P) self.P[i,j] = P_i_j dFdP.append( (F_Pj-self.F_P)/PERTURB ) return dFdP _pd_finder = PDfinder(self,P) PDs = nx.array([ _pd_finder.eval_pd(i) for i in range(len(P)) ]) return PDs def smooth_position( P, delta_t, alpha, lmbda, eps, verbose=False ): """smooth a sequence of positions see the following citation for details: "Noise Smoothing for VR Equipment in Quaternions," C.C. Hsieh, Y.C. Fang, M.E. Wang, C.K. Wang, M.J. Kim, S.Y. Shin, and T.C. Woo, IIE Transactions, vol. 30, no. 7, pp. 581-587, 1998 P are the positions as in an n x m array, where n is the number of data points and m is the number of dimensions in which the data is measured. inputs ------ P positions (m by n array, m = number of samples, n = dimensionality) delta_t temporal interval, in seconds, between samples alpha relative importance of acceleration versus position lmbda step size when descending gradient eps termination criterion output ------ Pstar smoothed positions (same format as P) """ h = delta_t Pstar = P err = 2*eps # cycle at least once of = ObjectiveFunctionPosition(P,h,alpha) while err > eps: del_F = of.get_del_F(Pstar) err = nx.sum( nx.sum( del_F**2 ) ) Pstar = Pstar - lmbda*del_F if verbose: print 'err %g (eps %g)'%(err,eps) return Pstar class QuatSeq(list): def __abs__(self): return nx.array([ abs(q) for q in self ]) def __add__(self,other): if isinstance(other,QuatSeq): assert len(self) == len(other) return QuatSeq([ p+q for p,q in zip(self,other) ]) else: raise ValueError('only know how to add QuatSeq with QuatSeq') def __sub__(self,other): if isinstance(other,QuatSeq): assert len(self) == len(other) return QuatSeq([ p-q for p,q in zip(self,other) ]) else: raise ValueError('only know how to subtract QuatSeq with QuatSeq') def __mul__(self,other): if isinstance(other,QuatSeq): assert len(self) == len(other) return QuatSeq([ p*q for p,q in zip(self,other) ]) elif hasattr(other,'shape'): # ndarray assert len(other.shape)==2 if other.shape[1] == 3: other = nx.concatenate( (nx.zeros((other.shape[0],1)), other), axis=1 ) assert other.shape[1] == 4 other = QuatSeq([cgtypes.quat(o) for o in other]) return self*other else: try: other = float(other) except (ValueError, TypeError): raise TypeError('only know how to multiply QuatSeq with QuatSeq, n*3 array or float') return QuatSeq([ p*other for p in self]) def copy(self): """return a deep copy of self""" return QuatSeq([cgtypes.quat(q) for q in self]) def __div__(self,other): try: other = float(other) except ValueError: raise ValueError('only know how to divide QuatSeq with floats') return QuatSeq([ p/other for p in self]) def __pow__(self,n): return QuatSeq([ q**n for q in self ]) def __neg__(self): return QuatSeq([ -q for q in self ]) def __str__(self): return 'QuatSeq('+list.__str__(self)+')' def __repr__(self): return 'QuatSeq('+list.__repr__(self)+')' def inverse(self): return QuatSeq([ q.inverse() for q in self ]) def exp(self): return QuatSeq([ q.exp() for q in self ]) def log(self): return QuatSeq([ q.log() for q in self ]) def __getslice__(self,*args,**kw): return QuatSeq( list.__getslice__(self,*args,**kw) ) def get_w(self): return nx.array([ q.w for q in self]) w = property(get_w) def get_x(self): return nx.array([ q.x for q in self]) x = property(get_x) def get_y(self): return nx.array([ q.y for q in self]) y = property(get_y) def get_z(self): return nx.array([ q.z for q in self]) z = property(get_z) def to_numpy(self): return numpy.vstack( (self.w, self.x, self.y, self.z) ) def _calc_idxs_and_fixup_q(no_distance_penalty_idxs,q): valid_cond = None if no_distance_penalty_idxs is not None: valid_cond = np.ones( len(q),dtype=np.bool ) for i in no_distance_penalty_idxs: valid_cond[i] = 0 # Set missing quaternion to some arbitrary value. The # _getEnergy() cost term should push it around to # minimize accelerations and it won't get counted in # the distance penalty. q[i] = cgtypes.quat(1,0,0,0) else: no_distance_penalty_idxs = [] for i,qi in enumerate(q): if numpy.any(numpy.isnan([qi.w,qi.x,qi.y,qi.z])): if not i in no_distance_penalty_idxs: raise ValueError("you are passing data with 'nan' " "values, but have not set the " "no_distance_penalty_idxs argument") return valid_cond, no_distance_penalty_idxs, q class ObjectiveFunctionQuats(object): """methods from Kim, Hsieh, Wang, Wang, Fang, Woo""" def __init__(self, q, h, beta, gamma, ignore_direction_sign=False, no_distance_penalty_idxs=None): """ parameters ========== ignore_direction_sign - on each timestep, the distance term for each orientation will be the smallest of 2 possibilities: co-directional and anti-directional with the original direction vector. Note that this may make the derivative non-continuous and hence the entire operation unstable. """ q = q.copy() # make copy so we don't screw up original below (self.valid_cond, no_distance_penalty_idxs, q) = _calc_idxs_and_fixup_q(no_distance_penalty_idxs,q) if 1: if 0: # XXX this hasn't been tested in a long time... # convert back and forth from orientation to eliminate roll #ori = quat_to_orient(self.q) #no_roll_quat = orientation_to_quat(quat_to_orient(self.q)) self.q_inverse = orientation_to_quat(quat_to_orient(self.q)).inverse() else: self.qorients = quat_to_orient(q) else: self.q_inverse = q.inverse() self.h = h self.h2 = self.h**2 self.beta = beta self.gamma = gamma self.no_distance_penalty_idxs = no_distance_penalty_idxs self.ignore_direction_sign = ignore_direction_sign def _getDistance(self, qs,changed_idx=None): # This distance function is independent of "roll" angle, and # thus doesn't penalize changes in roll. if 0: # XXX this hasn't been tested in a long time... if 0: # convert back and forth from orientation to eliminate roll qs = orientation_to_quat(quat_to_orient(qs)) return sum( (abs( (self.q_inverse * qs).log() )**2)) else: # test distance of orientations in R3 (L2 norm) qtest_orients = quat_to_orient(qs) if self.ignore_direction_sign: # test both directions, take the minimum distance L2dist1 = nx.sum((qtest_orients-self.qorients)**2,axis=1) L2dist2 = nx.sum((qtest_orients+self.qorients)**2,axis=1) L2dist = np.min( L2dist1, L2dist2, axis=1 ) else: L2dist = nx.sum((qtest_orients-self.qorients)**2,axis=1) result = nx.sum(L2dist[self.valid_cond]) assert not np.isnan(result) return result def _getRoll(self, qs,changed_idx=None): return sum([quat_to_absroll(q) for q in qs]) def _getEnergy(self, qs,changed_idx=None): # We do not hide values at no_distance_penalty_idxs here # because we want qs to be any value -- that's the point. (Not # a good idea to set to nan.) omega_dot = ((qs[1:-1].inverse()*qs[2:]).log() - (qs[:-2].inverse()*qs[1:-1]).log()) / self.h2 result = nx.sum( abs( omega_dot )**2 ) assert not np.isnan(result) return result def eval(self,qs,changed_idx=None): D = self._getDistance(qs,changed_idx=changed_idx) E = self._getEnergy(qs,changed_idx=changed_idx) if self.gamma == 0: return D + self.beta*E # eqn. 23 R = self._getRoll(qs,changed_idx=changed_idx) return D + self.beta*E + self.gamma*R # eqn. 23 def get_del_G(self,Q): class PDfinder: """partial derivative finder""" def __init__(self,objective_function,Q,no_distance_penalty_idxs=None): if no_distance_penalty_idxs is None: self.no_distance_penalty_idxs = [] else: self.no_distance_penalty_idxs = no_distance_penalty_idxs self.objective_function = objective_function self.Q = Q # G evaluated at Q self.G_Q = self.objective_function.eval(Q, changed_idx=no_index_changed, # nothing has changed yet ) def eval_pd(self,i): # evaluate 3 values (perturbations in x,y,z directions) PERTURB = 1e-6 # perturbation amount (must be less than sqrt(pi)) #PERTURB = 1e-10 # perturbation amount (must be less than sqrt(pi)) q_i = self.Q[i] q_i_inverse = q_i.inverse() qx = q_i*cgtypes.quat(0,PERTURB,0,0).exp() self.Q[i] = qx G_Qx = self.objective_function.eval(self.Q,changed_idx=i) dist_x = abs((q_i_inverse*qx).log()) qy = q_i*cgtypes.quat(0,0,PERTURB,0).exp() self.Q[i] = qy G_Qy = self.objective_function.eval(self.Q,changed_idx=i) dist_y = abs((q_i_inverse*qy).log()) qz = q_i*cgtypes.quat(0,0,0,PERTURB).exp() self.Q[i] = qz G_Qz = self.objective_function.eval(self.Q,changed_idx=i) dist_z = abs((q_i_inverse*qz).log()) self.Q[i] = q_i qdir = cgtypes.quat(0, (G_Qx-self.G_Q)/dist_x, (G_Qy-self.G_Q)/dist_y, (G_Qz-self.G_Q)/dist_z) return qdir ##print 'Q',Q,'='*200 pd_finder = PDfinder(self,Q) del_G_Q = QuatSeq([ pd_finder.eval_pd(i) for i in range(len(Q)) ]) return del_G_Q def set_cache_qs(self,qs): # no-op pass class CachingObjectiveFunctionQuats(ObjectiveFunctionQuats): """This class should is a fast version of ObjectiveFunctionQuats when used properly""" def __init__(self, *args, **kwargs): super( CachingObjectiveFunctionQuats, self ).__init__(*args, **kwargs) self.cache_qs = None def set_cache_qs(self,qs): # initialize the cache self.cache_qs = qs.copy() # copy self._getDistance(self.cache_qs,init_cache=True) self._getEnergy(self.cache_qs,init_cache=True) def _calc_changed(self,qs): 1/0 import warnings warnings.warn('maximum performance not acheived because search forced') changed_idx = None for i in range(len(qs)): if not qs[i] == self.cache_qs[i]: changed_idx = i break return changed_idx def _getDistance(self, qs, init_cache=False, changed_idx=None): # This distance function is independent of "roll" angle, and # thus doesn't penalize changes in roll. if init_cache: # test distance of orientations in R3 (L2 norm) qtest_orients = quat_to_orient(qs) self._cache_L2dist = nx.sum((qtest_orients-self.qorients)**2,axis=1) assert changed_idx is None elif changed_idx is None: changed_idx = self._calc_changed(qs) mixin_new_results_with_cache = ((changed_idx is not None) and (not isinstance(changed_idx,NoIndexChangedClass))) if mixin_new_results_with_cache: qtest_orient = quat_to_orient(qs[changed_idx]) if self.ignore_direction_sign: # test both directions, take the minimum distance new_val1 = nx.sum((qtest_orient-self.qorients[changed_idx])**2) # no axis, 1 dim new_val2 = nx.sum((qtest_orient+self.qorients[changed_idx])**2) # no axis, 1 dim new_val = np.min(new_val1,new_val2) else: new_val = nx.sum((qtest_orient-self.qorients[changed_idx])**2) # no axis, 1 dim orig_val = self._cache_L2dist[changed_idx] self._cache_L2dist[changed_idx] = new_val result = nx.sum( self._cache_L2dist[self.valid_cond] ) if mixin_new_results_with_cache: self._cache_L2dist[changed_idx] = orig_val # restore cache assert not np.isnan(result) return result def _getEnergy(self, qs, init_cache=False, changed_idx=None): if init_cache: self._cache_omega_dot = ((qs[1:-1].inverse()*qs[2:]).log() - (qs[:-2].inverse()*qs[1:-1]).log()) / self.h2 assert changed_idx is None elif changed_idx is None: changed_idx = self._calc_changed(qs) mixin_new_results_with_cache = ((changed_idx is not None) and (not isinstance(changed_idx,NoIndexChangedClass))) if mixin_new_results_with_cache: fix_idx_center = changed_idx-1 # central index into cache_omega_dot context_info = [] for offset in [-1,0,1]: # results aren't entirely local idx = fix_idx_center+offset if (idx < 0) or (idx >= len(self._cache_omega_dot)): continue orig_val = self._cache_omega_dot[idx] new_val = ((qs[ idx+1 ].inverse()*qs[ idx+2 ]).log() - (qs[ idx ].inverse()*qs[ idx+1 ]).log())/ self.h2 context_info.append( (idx,orig_val)) self._cache_omega_dot[idx] = new_val result = nx.sum( abs( self._cache_omega_dot )**2 ) if mixin_new_results_with_cache: for (idx,orig_val) in context_info: self._cache_omega_dot[idx] = orig_val assert not np.isnan(result) return result class QuatSmoother(object): def __init__(self, frames_per_second=None, beta=1.0, gamma=0.0, lambda2=1e-11, percent_error_eps_quats=9, epsilon2 = 0, max_iter2 = 2000, ): self.delta_t = 1.0/frames_per_second self.beta= beta self.gamma= gamma self.lambda2= lambda2 self.percent_error_eps_quats=percent_error_eps_quats self.epsilon2 = epsilon2 self.max_iter2 = max_iter2 def smooth_directions(self, direction_vec,**kwargs): assert len(direction_vec.shape)==2 assert direction_vec.shape[1]==3 Q = QuatSeq([ orientation_to_quat(U) for U in direction_vec ]) Qsmooth = self.smooth_quats(Q,**kwargs) direction_vec_smooth = quat_to_orient(Qsmooth) return direction_vec_smooth def smooth_quats(self, Q, display_progress=False, objective_func_name='CachingObjectiveFunctionQuats', no_distance_penalty_idxs=None, ): if objective_func_name == 'CachingObjectiveFunctionQuats': of_class = CachingObjectiveFunctionQuats elif objective_func_name == 'ObjectiveFunctionQuats': of_class = ObjectiveFunctionQuats if display_progress: print 'constructing objective function...' of = of_class(Q, self.delta_t, self.beta, self.gamma,no_distance_penalty_idxs=no_distance_penalty_idxs) if display_progress: print 'done constructing objective function.' #lambda2 = 2e-9 #lambda2 = 1e-9 #lambda2 = 1e-11 Q_k = Q.copy() # make copy # make all Q_k elements valid so that we can improve them. (valid_cond, no_distance_penalty_idxs, Q_k) = _calc_idxs_and_fixup_q(no_distance_penalty_idxs,Q_k) last_err = None count = 0 while count<self.max_iter2: count += 1 if display_progress: start = time.time() if display_progress: print 'initializing cache' of.set_cache_qs(Q_k) # set the cache (no-op on non-caching version) if display_progress: print 'computing del_G' del_G = of.get_del_G(Q_k) if display_progress: print 'del_G done' D = of._getDistance(Q_k,changed_idx=no_index_changed) # no change since we set the cache a few lines ago if display_progress: print 'D done' E = of._getEnergy(Q_k,changed_idx=no_index_changed) # no change since we set the cache a few lines ago if display_progress: print 'E done' R = of._getRoll(Q_k) if display_progress: print ' G = %s + %s*%s + %s*%s'%(str(D),str(self.beta),str(E),str(self.gamma),str(R)) if display_progress: stop = time.time() err = np.sqrt(np.sum(np.array(abs(del_G))**2)) if err < self.epsilon2: if display_progress: print 'reached epsilon2' break elif last_err is not None: pct_err = (last_err-err)/last_err*100.0 if display_progress: print 'Q elapsed: % 6.2f secs,'%(stop-start,), if display_progress: print 'current gradient:',err, if display_progress: print ' (%4.2f%%)'%(pct_err,) if err > last_err: if display_progress: print 'ERROR: error is increasing, aborting' break if pct_err < self.percent_error_eps_quats: if display_progress: print 'reached percent_error_eps_quats' break else: if display_progress: print 'Q elapsed: % 6.2f secs,'%(stop-start,), if display_progress: print 'current gradient:',err pass last_err = err Q_k = Q_k*(del_G*-self.lambda2).exp() if count>=self.max_iter2: if display_progress: print 'reached max_iter2' pass Qsmooth = Q_k return Qsmooth def _test(): # test math eps=1e-7 yaws = list( nx.arange( -math.pi, math.pi, math.pi/16.0 ) ) yaws.append( math.pi ) pitches = list( nx.arange( -math.pi/2, math.pi/2, math.pi/16.0 ) ) pitches.append( math.pi/2 ) err_count = 0 total_count = 0 for yaw in yaws: for pitch in pitches: had_err = False # forward and backward test 1 yaw2,pitch2 = orientation_to_euler(euler_to_orientation(yaw,pitch)) if abs(yaw-yaw2)>eps or abs(pitch-pitch2)>eps: print 'orientation problem at',repr((yaw,pitch)) had_err = True if 1: # forward and backward test 2 rolls = list( nx.arange( -math.pi/2, math.pi/2, math.pi/16.0 ) ) rolls.append( math.pi/2 ) for roll in rolls: if pitch == math.pi/2 or pitch == -math.pi/2: at_singularity=True else: at_singularity=False yaw3, pitch3, roll3 = quat_to_euler( euler_to_quat( yaw=yaw, pitch=pitch, roll=roll )) # relax criteria at singularities singularity_is_ok = not (at_singularity and abs(pitch3)-abs(pitch)<eps) if abs(yaw-yaw3)>eps or abs(pitch-pitch3)>eps: if not (abs(yaw)==math.pi and (abs(yaw)-abs(yaw3)<eps)): if not (at_singularity or singularity_is_ok): print 'quat problem at',repr((yaw,pitch,roll)) print ' ',repr((yaw3, pitch3, roll3)) print ' ',abs(yaw-yaw3) print ' ',abs(pitch-pitch3) print had_err = True # triangle test 1 xyz1=euler_to_orientation(yaw,pitch) xyz2=quat_to_orient( euler_to_quat( yaw=yaw, pitch=pitch )) l2dist = math.sqrt(nx.sum((nx.array(xyz1)-nx.array(xyz2))**2)) if l2dist > eps: print 'other problem at',repr((yaw,pitch)) print ' ',xyz1 print ' ',xyz2 print had_err = True # triangle test 2 yaw4, pitch4, roll4 = quat_to_euler(orientation_to_quat( xyz1 )) if abs(yaw-yaw4)>eps or abs(pitch-pitch4)>eps: print 'yet another problem at',repr((yaw,pitch)) print had_err = True total_count += 1 if had_err: err_count += 1 print 'Error count: (%d of %d)'%(err_count,total_count) # do doctest import doctest, PQmath return doctest.testmod(PQmath) if __name__ == "__main__": _test()
Some scholars have indicated that Sholay contains homosocial themes . Ted Shen describes the male bonding shown in the film as bordering on camp style . Dina Holtzman , in her book Bollywood and Globalization : Indian Popular Cinema , Nation , and Diaspora , states that the death of Jai , and resultant break of bonding between the two male leads , is necessary for the sake of establishing a normative heterosexual relationship ( that of Veeru and Basanti ) .
\par \section{Driver programs for the {\tt BPG} object} \label{section:BPG:drivers} \par This section contains brief descriptions of the driver programs. \par %======================================================================= \begin{enumerate} %----------------------------------------------------------------------- \item \begin{verbatim} testIO msglvl msgFile inFile outFile \end{verbatim} This driver program reads and write {\tt BPG} files, useful for converting formatted files to binary files and vice versa. One can also read in a {\tt BPG} file and print out just the header information (see the {\tt BPG\_writeStats()} method). \par \begin{itemize} \item The {\tt msglvl} parameter determines the amount of output --- taking {\tt msglvl >= 3} means the {\tt BPG} object is written to the message file. \item The {\tt msgFile} parameter determines the message file --- if {\tt msgFile} is {\tt stdout}, then the message file is {\it stdout}, otherwise a file is opened with {\it append} status to receive any output data. \item The {\tt inFile} parameter is the input file for the {\tt BPG} object. It must be of the form {\tt *.bpgf} or {\tt *.bpgb}. The {\tt BPG} object is read from the file via the {\tt BPG\_readFromFile()} method. \item The {\tt outFile} parameter is the output file for the {\tt BPG} object. If {\tt outFile} is {\tt none} then the {\tt BPG} object is not written to a file. Otherwise, the {\tt BPG\_writeToFile()} method is called to write the graph to a formatted file (if {\tt outFile} is of the form {\tt *.bpgf}), or a binary file (if {\tt outFile} is of the form {\tt *.bpgb}). \end{itemize} %----------------------------------------------------------------------- \item \begin{verbatim} extractBPG msglvl msgFile inGraphFile inCompidsIVfile icomp outMapFile outBPGfile \end{verbatim} This driver program reads in a {\tt Graph} object and an {\tt IV} object that contains the component ids. (A separator vertex has component id zero; other vertices have positive component ids to identify the subgraph that contains them.) It then extracts out the bipartite graph formed by the separator and nodes in the target component that are adjacent to the separator. \begin{itemize} \item The {\tt msglvl} parameter determines the amount of output --- taking {\tt msglvl >= 3} means that all objects are written to the message file. \item The {\tt msgFile} parameter determines the message file --- if {\tt msgFile} is {\tt stdout}, then the message file is {\it stdout}, otherwise a file is opened with {\it append} status to receive any message data. \item The {\tt inGraphFile} parameter is the input file for the {\tt Graph} object. It must be of the form {\tt *.graphf} or {\tt *.graphb}. The {\tt Graph} object is read from the file via the {\tt Graph\_readFromFile()} method. \item The {\tt inCompidsIVfile} parameter is the input file for the {\tt IV} object that contains the component ids. It must be of the form {\tt *.ivf} or {\tt *.ivb}. The {\tt IV} object is read from the file via the {\tt IV\_readFromFile()} method. \item The {\tt icomp} parameter defines the target component to form the $Y$ nodes of the bipartite graph. (The separator nodes, component zero, form the $X$ nodes.) \item The {\tt outMapFile} parameter is the output file for the {\tt IV} object that holds the map from vertices in the bipartite graph to vertices in the original graph. If {\tt outMapFile} is {\tt none} then the {\tt IV} object is not written to a file. Otherwise, the {\tt IV\_writeToFile()} method is called to write the {\tt IV} object to a formatted file (if {\tt outMapFile} is of the form {\tt *.ivf}), or a binary file (if {\tt outMapFile} is of the form {\tt *.ivb}). \item The {\tt outBPGFile} parameter is the output file for the compressed {\tt BPG} object. If {\tt outBPGFile} is {\tt none} then the {\tt BPG} object is not written to a file. Otherwise, the {\tt BPG\_writeToFile()} method is called to write the graph to a formatted file (if {\tt outBPGFile} is of the form {\tt *.graphf}), or a binary file (if {\tt outBPGFile} is of the form {\tt *.graphb}). \end{itemize} %----------------------------------------------------------------------- \item \begin{verbatim} testDM msglvl msgFile inBPGfile \end{verbatim} This driver program reads in a {\tt BPG} object from a file. It then finds the Dulmage-Mendelsohn decomposition using two methods. \begin{itemize} \item {\tt BPG\_DMdecomposition()} which uses matching techniques on the weighted graph. \item {\tt BPG\_DMviaMaxFlow()} which forms bipartite network and solves the max flow problem using a simple Ford-Fulkerson algorithm. \end{itemize} This provides a good check on the two programs (they must have the same output) and writes their execution times. \begin{itemize} \item The {\tt msglvl} parameter determines the amount of output --- taking {\tt msglvl >= 3} means that all objects are written to the message file. \item The {\tt msgFile} parameter determines the message file --- if {\tt msgFile} is {\tt stdout}, then the message file is {\it stdout}, otherwise a file is opened with {\it append} status to receive any message data. \item The {\tt inBPGFile} parameter is the input file for the {\tt BPG} object. It must be of the form {\tt *.graphf} or {\tt *.graphb}. The {\tt BPG} object is read from the file via the {\tt BPG\_readFromFile()} method. \end{itemize} %----------------------------------------------------------------------- \end{enumerate}
# Exponentials, Radicals, and Logs Up to this point, all of our equations have included standard arithmetic operations, such as division, multiplication, addition, and subtraction. Many real-world calculations involve exponential values in which numbers are raised by a specific power. ## Exponentials A simple case of using an exponential is squaring a number; in other words, multipying a number by itself. For example, 2 squared is 2 times 2, which is 4. This is written like this: \begin{equation}2^{2} = 2 \cdot 2 = 4\end{equation} Similarly, 2 cubed is 2 times 2 times 2 (which is of course 8): \begin{equation}2^{3} = 2 \cdot 2 \cdot 2 = 8\end{equation} In Python, you use the **&ast;&ast;** operator, like this example in which **x** is assigned the value of 5 raised to the power of 3 (in other words, 5 x 5 x 5, or 5-cubed): ```python x = 5**3 print(x) ``` 125 Multiplying a number by itself twice or three times to calculate the square or cube of a number is a common operation, but you can raise a number by any exponential power. For example, the following notation shows 4 to the power of 7 (or 4 x 4 x 4 x 4 x 4 x 4 x 4), which has the value: \begin{equation}4^{7} = 16384 \end{equation} In mathematical terminology, **4** is the *base*, and **7** is the *power* or *exponent* in this expression. ## Radicals (Roots) While it's common to need to calculate the solution for a given base and exponential, sometimes you'll need to calculate one or other of the elements themselves. For example, consider the following expression: \begin{equation}?^{2} = 9 \end{equation} This expression is asking, given a number (9) and an exponent (2), what's the base? In other words, which number multipled by itself results in 9? This type of operation is referred to as calculating the *root*, and in this particular case it's the *square root* (the base for a specified number given the exponential **2**). In this case, the answer is 3, because 3 x 3 = 9. We show this with a **&radic;** symbol, like this: \begin{equation}\sqrt{9} = 3 \end{equation} Other common roots include the *cube root* (the base for a specified number given the exponential **3**). For example, the cube root of 64 is 4 (because 4 x 4 x 4 = 64). To show that this is the cube root, we include the exponent **3** in the **&radic;** symbol, like this: \begin{equation}\sqrt[3]{64} = 4 \end{equation} We can calculate any root of any non-negative number, indicating the exponent in the **&radic;** symbol. The **math** package in Python includes a **sqrt** function that calculates the square root of a number. To calculate other roots, you need to reverse the exponential calculation by raising the given number to the power of 1 divided by the given exponent: ```python import math # Calculate square root of 25 x = math.sqrt(25) print (x) # Calculate cube root of 64 cr = round(64 ** (1. / 3)) print(cr) ``` 5.0 4 The code used in Python to calculate roots other than the square root reveals something about the relationship between roots and exponentials. The exponential root of a number is the same as that number raised to the power of 1 divided by the exponential. For example, consider the following statement: \begin{equation} 8^{\frac{1}{3}} = \sqrt[3]{8} = 2 \end{equation} Note that a number to the power of 1/3 is the same as the cube root of that number. Based on the same arithmetic, a number to the power of 1/2 is the same as the square root of the number: \begin{equation} 9^{\frac{1}{2}} = \sqrt{9} = 3 \end{equation} You can see this for yourself with the following Python code: ```python import math print (9**0.5) print (math.sqrt(9)) ``` ## Logarithms Another consideration for exponential values is the requirement occassionally to determine the exponent for a given number and base. In other words, how many times do I need to multiply a base number by itself to get the given result. This kind of calculation is known as the *logarithm*. For example, consider the following expression: \begin{equation}4^{?} = 16 \end{equation} In other words, to what power must you raise 4 to produce the result 16? The answer to this is 2, because 4 x 4 (or 4 to the power of 2) = 16. The notation looks like this: \begin{equation}log_{4}(16) = 2 \end{equation} In Python, you can calculate the logarithm of a number using the **log** function in the **math** package, indicating the number and the base: ```python import math x = math.log(16, 4) print(x) ``` The final thing you need to know about exponentials and logarithms is that there are some special logarithms: The *common* logarithm of a number is its exponential for the base **10**. You'll occassionally see this written using the usual *log* notation with the base omitted: \begin{equation}log(1000) = 3 \end{equation} Another special logarithm is something called the *natural log*, which is a exponential of a number for base ***e***, where ***e*** is a constant with the approximate value 2.718. This number occurs naturally in a lot of scenarios, and you'll see it often as you work with data in many analytical contexts. For the time being, just be aware that the natural log is sometimes written as ***ln***: \begin{equation}log_{e}(64) = ln(64) = 4.1589 \end{equation} The **math.log** function in Python returns the natural log (base ***e***) when no base is specified. Note that this can be confusing, as the mathematical notation *log* with no base usually refers to the common log (base **10**). To return the common log in Python, use the **math.log10** function: ```python import math # Natural log of 29 print (math.log(29)) # Common log of 100 print(math.log10(100)) ``` 3.367295829986474 2.0 ## Solving Equations with Exponentials OK, so now that you have a basic understanding of exponentials, roots, and logarithms; let's take a look at some equations that involve exponential calculations. Let's start with what might at first glance look like a complicated example, but don't worry - we'll solve it step-by-step and learn a few tricks along the way: \begin{equation}2y = 2x^{4} ( \frac{x^{2} + 2x^{2}}{x^{3}} ) \end{equation} First, let's deal with the fraction on the right side. The numerator of this fraction is x<sup>2</sup> + 2x<sup>2</sup> - so we're adding two exponential terms. When the terms you're adding (or subtracting) have the same exponential, you can simply add (or subtract) the coefficients. In this case, x<sup>2</sup> is the same as 1x<sup>2</sup>, which when added to 2x<sup>2</sup> gives us the result 3x<sup>2</sup>, so our equation now looks like this: \begin{equation}2y = 2x^{4} ( \frac{3x^{2}}{x^{3}} ) \end{equation} Now that we've condolidated the numerator, let's simplify the entire fraction by dividing the numerator by the denominator. When you divide exponential terms with the same variable, you simply divide the coefficients as you usually would and subtract the exponential of the denominator from the exponential of the numerator. In this case, we're dividing 3x<sup>2</sup> by 1x<sup>3</sup>: The coefficient 3 divided by 1 is 3, and the exponential 2 minus 3 is -1, so the result is 3x<sup>-1</sup>, making our equation: \begin{equation}2y = 2x^{4} ( 3x^{-1} ) \end{equation} So now we've got rid of the fraction on the right side, let's deal with the remaining multiplication. We need to multiply 3x<sup>-1</sup> by 2x<sup>4</sup>. Multiplication, is the opposite of division, so this time we'll multipy the coefficients and add the exponentials: 3 multiplied by 2 is 6, and -1 + 4 is 3, so the result is 6x<sup>3</sup>: \begin{equation}2y = 6x^{3} \end{equation} We're in the home stretch now, we just need to isolate y on the left side, and we can do that by dividing both sides by 2. Note that we're not dividing by an exponential, we simply need to divide the whole 6x<sup>3</sup> term by two; and half of 6 times x<sup>3</sup> is just 3 times x<sup>3</sup>: \begin{equation}y = 3x^{3} \end{equation} Now we have a solution that defines y in terms of x. We can use Python to plot the line created by this equation for a set of arbitrary *x* and *y* values: ```python import pandas as pd # Create a dataframe with an x column containing values from -10 to 10 df = pd.DataFrame ({'x': range(-10, 11)}) # Add a y column by applying the slope-intercept equation to x df['y'] = 3*df['x']**3 #Display the dataframe print(df) # Plot the line %matplotlib inline from matplotlib import pyplot as plt plt.plot(df.x, df.y, color="magenta") plt.xlabel('x') plt.ylabel('y') plt.grid() plt.axhline() plt.axvline() plt.show() ``` Note that the line is curved. This is symptomatic of an exponential equation: as values on one axis increase or decrease, the values on the other axis scale *exponentially* rather than *linearly*. Let's look at an example in which x is the exponential, not the base: \begin{equation}y = 2^{x} \end{equation} We can still plot this as a line: ```python import pandas as pd # Create a dataframe with an x column containing values from -10 to 10 df = pd.DataFrame ({'x': range(-10, 11)}) # Add a y column by applying the slope-intercept equation to x df['y'] = 2.0**df['x'] #Display the dataframe print(df) # Plot the line %matplotlib inline from matplotlib import pyplot as plt plt.plot(df.x, df.y, color="magenta") plt.xlabel('x') plt.ylabel('y') plt.grid() plt.axhline() plt.axvline() plt.show() ``` Note that when the exponential is a negative number, Python reports the result as 0. Actually, it's a very small fractional number, but because the base is positive the exponential number will always positive. Also, note the rate at which y increases as x increases - exponential growth can be be pretty dramatic. **So what's the practical application of this?** Well, let's suppose you deposit $100 in a bank account that earns 5&#37; interest per year. What would the balance of the account be in twenty years, assuming you don't deposit or withdraw any additional funds? To work this out, you could calculate the balance for each year: After the first year, the balance will be the initial deposit ($100) plus 5&#37; of that amount: \begin{equation}y_1 = 100 + (100 \cdot 0.05) \end{equation} Another way of saying this is: \begin{equation}y_1 = 100 \cdot 1.05 \end{equation} At the end of year two, the balance will be the year one balance plus 5&#37;: \begin{equation}y_2 = 100 \cdot 1.05 \cdot 1.05 \end{equation} Note that the interest for year two, is the interest for year one multiplied by itself - in other words, squared. So another way of saying this is: \begin{equation}y_2 = 100 \cdot 1.05^{2} \end{equation} It turns out, if we just use the year as the exponent, we can easily calculate the growth after twenty years like this: \begin{equation}y_{20} = 100 \cdot 1.05^{20} \end{equation} Let's apply this logic in Python to see how the account balance would grow over twenty years: ```python import pandas as pd # Create a dataframe with 20 years df = pd.DataFrame ({'Year': range(1, 21)}) # Calculate the balance for each year based on the exponential growth from interest df['Balance'] = 100 * (1.05**df['Year']) #Display the dataframe print(df) # Plot the line %matplotlib inline from matplotlib import pyplot as plt plt.plot(df.Year, df.Balance, color="green") plt.xlabel('Year') plt.ylabel('Balance') plt.show() ```
------------------------------------------------------------------------ -- Embeddings with erased "proofs" ------------------------------------------------------------------------ -- Partially following the HoTT book. {-# OPTIONS --without-K --safe #-} open import Equality module Embedding.Erased {reflexive} (eq : ∀ {a p} → Equality-with-J a p reflexive) where open import Prelude hiding (id; _∘_) open import Bijection eq using (_↔_) open Derived-definitions-and-properties eq open import Embedding eq as Emb using (Is-embedding; Embedding) open import Equivalence eq as Eq using (_≃_) open import Equivalence.Erased eq as EEq using (_≃ᴱ_; Is-equivalenceᴱ) open import Equivalence.Erased.Contractible-preimages eq as ECP using (_⁻¹ᴱ_) open import Erased.Level-1 eq using (Erased; []-cong-axiomatisation) open import Function-universe eq hiding (id; _∘_; equivalence) open import H-level.Closure eq open import Preimage eq using (_⁻¹_) private variable a b ℓ t : Level A B C : Type a f k x y : A ------------------------------------------------------------------------ -- Embeddings -- The property of being an embedding with erased "proofs". Is-embeddingᴱ : {A : Type a} {B : Type b} → (A → B) → Type (a ⊔ b) Is-embeddingᴱ f = ∀ x y → Is-equivalenceᴱ (cong {x = x} {y = y} f) -- Is-embeddingᴱ is propositional in erased contexts (assuming -- extensionality). @0 Is-embeddingᴱ-propositional : {A : Type a} {B : Type b} {f : A → B} → Extensionality (a ⊔ b) (a ⊔ b) → Is-proposition (Is-embeddingᴱ f) Is-embeddingᴱ-propositional {b = b} ext = Π-closure (lower-extensionality b lzero ext) 1 λ _ → Π-closure (lower-extensionality b lzero ext) 1 λ _ → EEq.Is-equivalenceᴱ-propositional ext _ -- Embeddings with erased proofs. record Embeddingᴱ (From : Type f) (To : Type t) : Type (f ⊔ t) where field to : From → To is-embedding : Is-embeddingᴱ to equivalence : (x ≡ y) ≃ᴱ (to x ≡ to y) equivalence = EEq.⟨ _ , is-embedding _ _ ⟩ ------------------------------------------------------------------------ -- Some conversion functions -- The type family above could have been defined using Σ. Embeddingᴱ-as-Σ : Embeddingᴱ A B ↔ ∃ λ (f : A → B) → Is-embeddingᴱ f Embeddingᴱ-as-Σ = record { surjection = record { logical-equivalence = record { to = λ emb → Embeddingᴱ.to emb , Embeddingᴱ.is-embedding emb ; from = λ { (f , is) → record { to = f; is-embedding = is } } } ; right-inverse-of = refl } ; left-inverse-of = refl } -- Conversions between Is-embedding and Is-embeddingᴱ. Is-embedding→Is-embeddingᴱ : Is-embedding f → Is-embeddingᴱ f Is-embedding→Is-embeddingᴱ {f = f} = (∀ x y → Eq.Is-equivalence (cong {x = x} {y = y} f)) ↝⟨ (∀-cong _ λ _ → ∀-cong _ λ _ → EEq.Is-equivalence→Is-equivalenceᴱ) ⟩□ (∀ x y → Is-equivalenceᴱ (cong {x = x} {y = y} f)) □ @0 Is-embedding≃Is-embeddingᴱ : {A : Type a} {B : Type b} {f : A → B} → Is-embedding f ↝[ a ∣ a ⊔ b ] Is-embeddingᴱ f Is-embedding≃Is-embeddingᴱ {f = f} {k = k} ext = (∀ x y → Eq.Is-equivalence (cong {x = x} {y = y} f)) ↝⟨ (∀-cong ext λ _ → ∀-cong ext λ _ → from-equivalence EEq.Is-equivalence≃Is-equivalenceᴱ) ⟩□ (∀ x y → Is-equivalenceᴱ (cong {x = x} {y = y} f)) □ @0 Is-embeddingᴱ→Is-embedding : Is-embeddingᴱ f → Is-embedding f Is-embeddingᴱ→Is-embedding = inverse-ext? Is-embedding≃Is-embeddingᴱ _ -- Conversions between Embedding and Embeddingᴱ. Embedding→Embeddingᴱ : Embedding A B → Embeddingᴱ A B Embedding→Embeddingᴱ {A = A} {B = B} = Embedding A B ↔⟨ Emb.Embedding-as-Σ ⟩ (∃ λ (f : A → B) → Is-embedding f) ↝⟨ (∃-cong λ _ → Is-embedding→Is-embeddingᴱ) ⟩ (∃ λ (f : A → B) → Is-embeddingᴱ f) ↔⟨ inverse Embeddingᴱ-as-Σ ⟩□ Embeddingᴱ A B □ @0 Embedding≃Embeddingᴱ : {A : Type a} {B : Type b} → Embedding A B ↝[ a ∣ a ⊔ b ] Embeddingᴱ A B Embedding≃Embeddingᴱ {A = A} {B = B} ext = Embedding A B ↔⟨ Emb.Embedding-as-Σ ⟩ (∃ λ (f : A → B) → Is-embedding f) ↝⟨ (∃-cong λ _ → Is-embedding≃Is-embeddingᴱ ext) ⟩ (∃ λ (f : A → B) → Is-embeddingᴱ f) ↔⟨ inverse Embeddingᴱ-as-Σ ⟩□ Embeddingᴱ A B □ @0 Embeddingᴱ→Embedding : Embeddingᴱ A B → Embedding A B Embeddingᴱ→Embedding = inverse-ext? Embedding≃Embeddingᴱ _ -- Data corresponding to the erased proofs of an embedding with -- erased proofs. Erased-proofs : {A : Type a} {B : Type b} → (to : A → B) → (∀ {x y} → to x ≡ to y → x ≡ y) → Type (a ⊔ b) Erased-proofs to from = ∀ {x y} → EEq.Erased-proofs (cong {x = x} {y = y} to) from -- Extracts "erased proofs" from a regular embedding. [proofs] : (A↝B : Embedding A B) → Erased-proofs (Embedding.to A↝B) (_≃_.from (Embedding.equivalence A↝B)) [proofs] A↝B = EEq.[proofs] (Embedding.equivalence A↝B) -- Converts two functions and some erased proofs to an embedding with -- erased proofs. -- -- Note that Agda can in many cases infer "to" and "from" from the -- first explicit argument, see (for instance) _∘_ below. [Embedding]→Embeddingᴱ : {to : A → B} {from : ∀ {x y} → to x ≡ to y → x ≡ y} → @0 Erased-proofs to from → Embeddingᴱ A B [Embedding]→Embeddingᴱ {to = to} {from = from} ep = record { to = to ; is-embedding = λ _ _ → _≃ᴱ_.is-equivalence (EEq.[≃]→≃ᴱ ep) } ------------------------------------------------------------------------ -- Preorder -- Embeddingᴱ is a preorder. id : Embeddingᴱ A A id = Embedding→Embeddingᴱ Emb.id infixr 9 _∘_ _∘_ : Embeddingᴱ B C → Embeddingᴱ A B → Embeddingᴱ A C f ∘ g = [Embedding]→Embeddingᴱ ([proofs] (Embeddingᴱ→Embedding f Emb.∘ Embeddingᴱ→Embedding g)) ------------------------------------------------------------------------ -- "Preimages" -- If f is an embedding (with erased proofs), then f ⁻¹ᴱ y is -- propositional (in an erased context). -- -- This result is based on the proof of Theorem 4.6.3 in the HoTT book -- (first edition). @0 embedding→⁻¹ᴱ-propositional : Is-embeddingᴱ f → ∀ y → Is-proposition (f ⁻¹ᴱ y) embedding→⁻¹ᴱ-propositional {f = f} = Is-embeddingᴱ f ↝⟨ Is-embeddingᴱ→Is-embedding ⟩ Is-embedding f ↝⟨ Emb.embedding→⁻¹-propositional ⟩ (∀ y → Is-proposition (f ⁻¹ y)) ↝⟨ (∀-cong _ λ _ → H-level-cong _ 1 ECP.⁻¹≃⁻¹ᴱ) ⟩□ (∀ y → Is-proposition (f ⁻¹ᴱ y)) □ ------------------------------------------------------------------------ -- Results that depend on an axiomatisation of []-cong (for a single -- universe level) module []-cong₁ (ax : []-cong-axiomatisation ℓ) where ---------------------------------------------------------------------- -- More conversion functions -- Equivalences (with erased proofs) from Erased A to B are -- embeddings (with erased proofs). Is-equivalenceᴱ→Is-embeddingᴱ-Erased : {A : Type ℓ} {f : Erased A → B} → Is-equivalenceᴱ f → Is-embeddingᴱ f Is-equivalenceᴱ→Is-embeddingᴱ-Erased eq _ _ = _≃ᴱ_.is-equivalence $ inverse $ EEq.[]-cong₁.to≡to≃ᴱ≡-Erased ax EEq.⟨ _ , eq ⟩ -- Equivalences with erased proofs between Erased A and B can be -- converted to embeddings with erased proofs. Erased≃→Embedding : {A : Type ℓ} → Erased A ≃ᴱ B → Embeddingᴱ (Erased A) B Erased≃→Embedding EEq.⟨ f , is-equiv ⟩ = record { to = f ; is-embedding = Is-equivalenceᴱ→Is-embeddingᴱ-Erased is-equiv } ------------------------------------------------------------------------ -- Results that depend on an axiomatisation of []-cong (for all -- universe levels) module []-cong (ax : ∀ {ℓ} → []-cong-axiomatisation ℓ) where private open module BC₁ {ℓ} = []-cong₁ (ax {ℓ = ℓ}) public
State Before: α : Type u_1 β : Type u_2 γ : Type ?u.383429 δ : Type ?u.383432 inst✝⁴ : TopologicalSpace α inst✝³ : TopologicalSpace β inst✝² : TopologicalSpace γ inst✝¹ : TopologicalSpace δ p : Prop f g : α → β inst✝ : Decidable p hf : p → Continuous f hg : ¬p → Continuous g ⊢ Continuous fun a => if p then f a else g a State After: case inl α : Type u_1 β : Type u_2 γ : Type ?u.383429 δ : Type ?u.383432 inst✝⁴ : TopologicalSpace α inst✝³ : TopologicalSpace β inst✝² : TopologicalSpace γ inst✝¹ : TopologicalSpace δ p : Prop f g : α → β inst✝ : Decidable p hf : p → Continuous f hg : ¬p → Continuous g h : p ⊢ Continuous fun a => f a case inr α : Type u_1 β : Type u_2 γ : Type ?u.383429 δ : Type ?u.383432 inst✝⁴ : TopologicalSpace α inst✝³ : TopologicalSpace β inst✝² : TopologicalSpace γ inst✝¹ : TopologicalSpace δ p : Prop f g : α → β inst✝ : Decidable p hf : p → Continuous f hg : ¬p → Continuous g h : ¬p ⊢ Continuous fun a => g a Tactic: split_ifs with h State Before: case inl α : Type u_1 β : Type u_2 γ : Type ?u.383429 δ : Type ?u.383432 inst✝⁴ : TopologicalSpace α inst✝³ : TopologicalSpace β inst✝² : TopologicalSpace γ inst✝¹ : TopologicalSpace δ p : Prop f g : α → β inst✝ : Decidable p hf : p → Continuous f hg : ¬p → Continuous g h : p ⊢ Continuous fun a => f a case inr α : Type u_1 β : Type u_2 γ : Type ?u.383429 δ : Type ?u.383432 inst✝⁴ : TopologicalSpace α inst✝³ : TopologicalSpace β inst✝² : TopologicalSpace γ inst✝¹ : TopologicalSpace δ p : Prop f g : α → β inst✝ : Decidable p hf : p → Continuous f hg : ¬p → Continuous g h : ¬p ⊢ Continuous fun a => g a State After: no goals Tactic: exacts [hf h, hg h]
(* Author: Tobias Nipkow *) section "AVL Tree with Balance Factors (2)" theory AVL_Bal2_Set imports Cmp Isin2 begin text \<open>This version passes a flag (\<open>Same\<close>/\<open>Diff\<close>) back up to signal if the height changed.\<close> datatype bal = Lh | Bal | Rh type_synonym 'a tree_bal = "('a * bal) tree" text \<open>Invariant:\<close> fun avl :: "'a tree_bal \<Rightarrow> bool" where "avl Leaf = True" | "avl (Node l (a,b) r) = ((case b of Bal \<Rightarrow> height r = height l | Lh \<Rightarrow> height l = height r + 1 | Rh \<Rightarrow> height r = height l + 1) \<and> avl l \<and> avl r)" subsection \<open>Code\<close> datatype 'a alt = Same 'a | Diff 'a type_synonym 'a tree_bal2 = "'a tree_bal alt" fun tree :: "'a alt \<Rightarrow> 'a" where "tree(Same t) = t" | "tree(Diff t) = t" fun rot2 where "rot2 A a B c C = (case B of (Node B\<^sub>1 (b, bb) B\<^sub>2) \<Rightarrow> let b\<^sub>1 = if bb = Rh then Lh else Bal; b\<^sub>2 = if bb = Lh then Rh else Bal in Node (Node A (a,b\<^sub>1) B\<^sub>1) (b,Bal) (Node B\<^sub>2 (c,b\<^sub>2) C))" fun balL :: "'a tree_bal2 \<Rightarrow> 'a \<Rightarrow> bal \<Rightarrow> 'a tree_bal \<Rightarrow> 'a tree_bal2" where "balL AB' c bc C = (case AB' of Same AB \<Rightarrow> Same (Node AB (c,bc) C) | Diff AB \<Rightarrow> (case bc of Bal \<Rightarrow> Diff (Node AB (c,Lh) C) | Rh \<Rightarrow> Same (Node AB (c,Bal) C) | Lh \<Rightarrow> (case AB of Node A (a,Lh) B \<Rightarrow> Same(Node A (a,Bal) (Node B (c,Bal) C)) | Node A (a,Rh) B \<Rightarrow> Same(rot2 A a B c C))))" fun balR :: "'a tree_bal \<Rightarrow> 'a \<Rightarrow> bal \<Rightarrow> 'a tree_bal2 \<Rightarrow> 'a tree_bal2" where "balR A a ba BC' = (case BC' of Same BC \<Rightarrow> Same (Node A (a,ba) BC) | Diff BC \<Rightarrow> (case ba of Bal \<Rightarrow> Diff (Node A (a,Rh) BC) | Lh \<Rightarrow> Same (Node A (a,Bal) BC) | Rh \<Rightarrow> (case BC of Node B (c,Rh) C \<Rightarrow> Same(Node (Node A (a,Bal) B) (c,Bal) C) | Node B (c,Lh) C \<Rightarrow> Same(rot2 A a B c C))))" fun ins :: "'a::linorder \<Rightarrow> 'a tree_bal \<Rightarrow> 'a tree_bal2" where "ins x Leaf = Diff(Node Leaf (x, Bal) Leaf)" | "ins x (Node l (a, b) r) = (case cmp x a of EQ \<Rightarrow> Same(Node l (a, b) r) | LT \<Rightarrow> balL (ins x l) a b r | GT \<Rightarrow> balR l a b (ins x r))" definition insert :: "'a::linorder \<Rightarrow> 'a tree_bal \<Rightarrow> 'a tree_bal" where "insert x t = tree(ins x t)" fun baldR :: "'a tree_bal \<Rightarrow> 'a \<Rightarrow> bal \<Rightarrow> 'a tree_bal2 \<Rightarrow> 'a tree_bal2" where "baldR AB c bc C' = (case C' of Same C \<Rightarrow> Same (Node AB (c,bc) C) | Diff C \<Rightarrow> (case bc of Bal \<Rightarrow> Same (Node AB (c,Lh) C) | Rh \<Rightarrow> Diff (Node AB (c,Bal) C) | Lh \<Rightarrow> (case AB of Node A (a,Lh) B \<Rightarrow> Diff(Node A (a,Bal) (Node B (c,Bal) C)) | Node A (a,Bal) B \<Rightarrow> Same(Node A (a,Rh) (Node B (c,Lh) C)) | Node A (a,Rh) B \<Rightarrow> Diff(rot2 A a B c C))))" fun baldL :: "'a tree_bal2 \<Rightarrow> 'a \<Rightarrow> bal \<Rightarrow> 'a tree_bal \<Rightarrow> 'a tree_bal2" where "baldL A' a ba BC = (case A' of Same A \<Rightarrow> Same (Node A (a,ba) BC) | Diff A \<Rightarrow> (case ba of Bal \<Rightarrow> Same (Node A (a,Rh) BC) | Lh \<Rightarrow> Diff (Node A (a,Bal) BC) | Rh \<Rightarrow> (case BC of Node B (c,Rh) C \<Rightarrow> Diff(Node (Node A (a,Bal) B) (c,Bal) C) | Node B (c,Bal) C \<Rightarrow> Same(Node (Node A (a,Rh) B) (c,Lh) C) | Node B (c,Lh) C \<Rightarrow> Diff(rot2 A a B c C))))" fun split_max :: "'a tree_bal \<Rightarrow> 'a tree_bal2 * 'a" where "split_max (Node l (a, ba) r) = (if r = Leaf then (Diff l,a) else let (r',a') = split_max r in (baldR l a ba r', a'))" fun del :: "'a::linorder \<Rightarrow> 'a tree_bal \<Rightarrow> 'a tree_bal2" where "del _ Leaf = Same Leaf" | "del x (Node l (a, ba) r) = (case cmp x a of EQ \<Rightarrow> if l = Leaf then Diff r else let (l', a') = split_max l in baldL l' a' ba r | LT \<Rightarrow> baldL (del x l) a ba r | GT \<Rightarrow> baldR l a ba (del x r))" definition delete :: "'a::linorder \<Rightarrow> 'a tree_bal \<Rightarrow> 'a tree_bal" where "delete x t = tree(del x t)" lemmas split_max_induct = split_max.induct[case_names Node Leaf] lemmas splits = if_splits tree.splits alt.splits bal.splits subsection \<open>Proofs\<close> subsubsection "Proofs about insertion" lemma avl_ins_case: "avl t \<Longrightarrow> case ins x t of Same t' \<Rightarrow> avl t' \<and> height t' = height t | Diff t' \<Rightarrow> avl t' \<and> height t' = height t + 1 \<and> (\<forall>l a r. t' = Node l (a,Bal) r \<longrightarrow> a = x \<and> l = Leaf \<and> r = Leaf)" apply(induction x t rule: ins.induct) apply(auto simp: max_absorb1 split!: splits) done corollary avl_insert: "avl t \<Longrightarrow> avl(insert x t)" using avl_ins_case[of t x] by (simp add: insert_def split: splits) (* The following aux lemma simplifies the inorder_ins proof *) lemma ins_Diff[simp]: "avl t \<Longrightarrow> ins x t \<noteq> Diff Leaf \<and> (ins x t = Diff (Node l (a,Bal) r) \<longleftrightarrow> t = Leaf \<and> a = x \<and> l=Leaf \<and> r=Leaf) \<and> ins x t \<noteq> Diff (Node l (a,Rh) Leaf) \<and> ins x t \<noteq> Diff (Node Leaf (a,Lh) r)" by(drule avl_ins_case[of _ x]) (auto split: splits) theorem inorder_ins: "\<lbrakk> avl t; sorted(inorder t) \<rbrakk> \<Longrightarrow> inorder(tree(ins x t)) = ins_list x (inorder t)" apply(induction t) apply (auto simp: ins_list_simps split!: splits) done subsubsection "Proofs about deletion" lemma inorder_baldL: "\<lbrakk> ba = Rh \<longrightarrow> r \<noteq> Leaf; avl r \<rbrakk> \<Longrightarrow> inorder (tree(baldL l a ba r)) = inorder (tree l) @ a # inorder r" by (auto split: splits) lemma inorder_baldR: "\<lbrakk> ba = Lh \<longrightarrow> l \<noteq> Leaf; avl l \<rbrakk> \<Longrightarrow> inorder (tree(baldR l a ba r)) = inorder l @ a # inorder (tree r)" by (auto split: splits) lemma avl_split_max: "\<lbrakk> split_max t = (t',a); avl t; t \<noteq> Leaf \<rbrakk> \<Longrightarrow> case t' of Same t' \<Rightarrow> avl t' \<and> height t = height t' | Diff t' \<Rightarrow> avl t' \<and> height t = height t' + 1" apply(induction t arbitrary: t' a rule: split_max_induct) apply(fastforce simp: max_absorb1 max_absorb2 split!: splits prod.splits) apply simp done lemma avl_del_case: "avl t \<Longrightarrow> case del x t of Same t' \<Rightarrow> avl t' \<and> height t = height t' | Diff t' \<Rightarrow> avl t' \<and> height t = height t' + 1" apply(induction x t rule: del.induct) apply(auto simp: max_absorb1 max_absorb2 dest: avl_split_max split!: splits prod.splits) done corollary avl_delete: "avl t \<Longrightarrow> avl(delete x t)" using avl_del_case[of t x] by(simp add: delete_def split: splits) lemma inorder_split_maxD: "\<lbrakk> split_max t = (t',a); t \<noteq> Leaf; avl t \<rbrakk> \<Longrightarrow> inorder (tree t') @ [a] = inorder t" apply(induction t arbitrary: t' rule: split_max.induct) apply(fastforce split!: splits prod.splits) apply simp done lemma neq_Leaf_if_height_neq_0[simp]: "height t \<noteq> 0 \<Longrightarrow> t \<noteq> Leaf" by auto theorem inorder_del: "\<lbrakk> avl t; sorted(inorder t) \<rbrakk> \<Longrightarrow> inorder (tree(del x t)) = del_list x (inorder t)" apply(induction t rule: tree2_induct) apply(auto simp: del_list_simps inorder_baldL inorder_baldR avl_delete inorder_split_maxD simp del: baldR.simps baldL.simps split!: splits prod.splits) done subsubsection \<open>Set Implementation\<close> interpretation S: Set_by_Ordered where empty = Leaf and isin = isin and insert = insert and delete = delete and inorder = inorder and inv = avl proof (standard, goal_cases) case 1 show ?case by (simp) next case 2 thus ?case by(simp add: isin_set_inorder) next case 3 thus ?case by(simp add: inorder_ins insert_def) next case 4 thus ?case by(simp add: inorder_del delete_def) next case 5 thus ?case by (simp) next case 6 thus ?case by (simp add: avl_insert) next case 7 thus ?case by (simp add: avl_delete) qed end
(* Title: HOL/Auth/n_g2kAbsAfter_lemma_inv__34_on_rules.thy Author: Yongjian Li and Kaiqiang Duan, State Key Lab of Computer Science, Institute of Software, Chinese Academy of Sciences Copyright 2016 State Key Lab of Computer Science, Institute of Software, Chinese Academy of Sciences *) header{*The n_g2kAbsAfter Protocol Case Study*} theory n_g2kAbsAfter_lemma_inv__34_on_rules imports n_g2kAbsAfter_lemma_on_inv__34 begin section{*All lemmas on causal relation between inv__34*} lemma lemma_inv__34_on_rules: assumes b1: "r \<in> rules N" and b2: "(f=inv__34 )" shows "invHoldForRule s f r (invariants N)" proof - have c1: "(\<exists> d. d\<le>N\<and>r=n_n_Store_i1 d)\<or> (\<exists> d. d\<le>N\<and>r=n_n_AStore_i1 d)\<or> (r=n_n_SendReqS_j1 )\<or> (r=n_n_SendReqEI_i1 )\<or> (r=n_n_SendReqES_i1 )\<or> (r=n_n_RecvReq_i1 )\<or> (r=n_n_SendInvE_i1 )\<or> (r=n_n_SendInvS_i1 )\<or> (r=n_n_SendInvAck_i1 )\<or> (r=n_n_RecvInvAck_i1 )\<or> (r=n_n_SendGntS_i1 )\<or> (r=n_n_SendGntE_i1 )\<or> (r=n_n_RecvGntS_i1 )\<or> (r=n_n_RecvGntE_i1 )\<or> (r=n_n_ASendReqIS_j1 )\<or> (r=n_n_ASendReqSE_j1 )\<or> (r=n_n_ASendReqEI_i1 )\<or> (r=n_n_ASendReqES_i1 )\<or> (r=n_n_SendReqEE_i1 )\<or> (r=n_n_ARecvReq_i1 )\<or> (r=n_n_ASendInvE_i1 )\<or> (r=n_n_ASendInvS_i1 )\<or> (r=n_n_ASendInvAck_i1 )\<or> (r=n_n_ARecvInvAck_i1 )\<or> (r=n_n_ASendGntS_i1 )\<or> (r=n_n_ASendGntE_i1 )\<or> (r=n_n_ARecvGntS_i1 )\<or> (r=n_n_ARecvGntE_i1 )" apply (cut_tac b1, auto) done moreover { assume d1: "(\<exists> d. d\<le>N\<and>r=n_n_Store_i1 d)" have "invHoldForRule s f r (invariants N)" apply (cut_tac b2 d1, metis n_n_Store_i1Vsinv__34) done } moreover { assume d1: "(\<exists> d. d\<le>N\<and>r=n_n_AStore_i1 d)" have "invHoldForRule s f r (invariants N)" apply (cut_tac b2 d1, metis n_n_AStore_i1Vsinv__34) done } moreover { assume d1: "(r=n_n_SendReqS_j1 )" have "invHoldForRule s f r (invariants N)" apply (cut_tac b2 d1, metis n_n_SendReqS_j1Vsinv__34) done } moreover { assume d1: "(r=n_n_SendReqEI_i1 )" have "invHoldForRule s f r (invariants N)" apply (cut_tac b2 d1, metis n_n_SendReqEI_i1Vsinv__34) done } moreover { assume d1: "(r=n_n_SendReqES_i1 )" have "invHoldForRule s f r (invariants N)" apply (cut_tac b2 d1, metis n_n_SendReqES_i1Vsinv__34) done } moreover { assume d1: "(r=n_n_RecvReq_i1 )" have "invHoldForRule s f r (invariants N)" apply (cut_tac b2 d1, metis n_n_RecvReq_i1Vsinv__34) done } moreover { assume d1: "(r=n_n_SendInvE_i1 )" have "invHoldForRule s f r (invariants N)" apply (cut_tac b2 d1, metis n_n_SendInvE_i1Vsinv__34) done } moreover { assume d1: "(r=n_n_SendInvS_i1 )" have "invHoldForRule s f r (invariants N)" apply (cut_tac b2 d1, metis n_n_SendInvS_i1Vsinv__34) done } moreover { assume d1: "(r=n_n_SendInvAck_i1 )" have "invHoldForRule s f r (invariants N)" apply (cut_tac b2 d1, metis n_n_SendInvAck_i1Vsinv__34) done } moreover { assume d1: "(r=n_n_RecvInvAck_i1 )" have "invHoldForRule s f r (invariants N)" apply (cut_tac b2 d1, metis n_n_RecvInvAck_i1Vsinv__34) done } moreover { assume d1: "(r=n_n_SendGntS_i1 )" have "invHoldForRule s f r (invariants N)" apply (cut_tac b2 d1, metis n_n_SendGntS_i1Vsinv__34) done } moreover { assume d1: "(r=n_n_SendGntE_i1 )" have "invHoldForRule s f r (invariants N)" apply (cut_tac b2 d1, metis n_n_SendGntE_i1Vsinv__34) done } moreover { assume d1: "(r=n_n_RecvGntS_i1 )" have "invHoldForRule s f r (invariants N)" apply (cut_tac b2 d1, metis n_n_RecvGntS_i1Vsinv__34) done } moreover { assume d1: "(r=n_n_RecvGntE_i1 )" have "invHoldForRule s f r (invariants N)" apply (cut_tac b2 d1, metis n_n_RecvGntE_i1Vsinv__34) done } moreover { assume d1: "(r=n_n_ASendReqIS_j1 )" have "invHoldForRule s f r (invariants N)" apply (cut_tac b2 d1, metis n_n_ASendReqIS_j1Vsinv__34) done } moreover { assume d1: "(r=n_n_ASendReqSE_j1 )" have "invHoldForRule s f r (invariants N)" apply (cut_tac b2 d1, metis n_n_ASendReqSE_j1Vsinv__34) done } moreover { assume d1: "(r=n_n_ASendReqEI_i1 )" have "invHoldForRule s f r (invariants N)" apply (cut_tac b2 d1, metis n_n_ASendReqEI_i1Vsinv__34) done } moreover { assume d1: "(r=n_n_ASendReqES_i1 )" have "invHoldForRule s f r (invariants N)" apply (cut_tac b2 d1, metis n_n_ASendReqES_i1Vsinv__34) done } moreover { assume d1: "(r=n_n_SendReqEE_i1 )" have "invHoldForRule s f r (invariants N)" apply (cut_tac b2 d1, metis n_n_SendReqEE_i1Vsinv__34) done } moreover { assume d1: "(r=n_n_ARecvReq_i1 )" have "invHoldForRule s f r (invariants N)" apply (cut_tac b2 d1, metis n_n_ARecvReq_i1Vsinv__34) done } moreover { assume d1: "(r=n_n_ASendInvE_i1 )" have "invHoldForRule s f r (invariants N)" apply (cut_tac b2 d1, metis n_n_ASendInvE_i1Vsinv__34) done } moreover { assume d1: "(r=n_n_ASendInvS_i1 )" have "invHoldForRule s f r (invariants N)" apply (cut_tac b2 d1, metis n_n_ASendInvS_i1Vsinv__34) done } moreover { assume d1: "(r=n_n_ASendInvAck_i1 )" have "invHoldForRule s f r (invariants N)" apply (cut_tac b2 d1, metis n_n_ASendInvAck_i1Vsinv__34) done } moreover { assume d1: "(r=n_n_ARecvInvAck_i1 )" have "invHoldForRule s f r (invariants N)" apply (cut_tac b2 d1, metis n_n_ARecvInvAck_i1Vsinv__34) done } moreover { assume d1: "(r=n_n_ASendGntS_i1 )" have "invHoldForRule s f r (invariants N)" apply (cut_tac b2 d1, metis n_n_ASendGntS_i1Vsinv__34) done } moreover { assume d1: "(r=n_n_ASendGntE_i1 )" have "invHoldForRule s f r (invariants N)" apply (cut_tac b2 d1, metis n_n_ASendGntE_i1Vsinv__34) done } moreover { assume d1: "(r=n_n_ARecvGntS_i1 )" have "invHoldForRule s f r (invariants N)" apply (cut_tac b2 d1, metis n_n_ARecvGntS_i1Vsinv__34) done } moreover { assume d1: "(r=n_n_ARecvGntE_i1 )" have "invHoldForRule s f r (invariants N)" apply (cut_tac b2 d1, metis n_n_ARecvGntE_i1Vsinv__34) done } ultimately show "invHoldForRule s f r (invariants N)" by satx qed end
import category_theory.closed.monoidal import category_theory.monoidal.braided import tactic namespace category_theory.monoidal open category_theory open category_theory.monoidal_category universes v u variables {C : Type u} [category.{v} C] [monoidal_category.{v} C] class right_closed (X : C) := (is_adj : is_left_adjoint (tensor_right X)) attribute [instance, priority 100] right_closed.is_adj variable (C) class monoidal_closed_right := (closed : Π (X : C), right_closed X) attribute [instance, priority 100] monoidal_closed_right.closed variable [monoidal_closed_right.{v} C] variable {C} def internal_hom (X Y : C) : C := (right_adjoint (tensor_right X)).obj Y def internal_hom_equiv (X Y Z : C) : (X ⊗ Y ⟶ Z) ≃ (X ⟶ internal_hom Y Z) := (adjunction.of_left_adjoint (tensor_right Y)).hom_equiv X Z def internal_hom_postcompose (X : C) {Y₁ Y₂ : C} (f : Y₁ ⟶ Y₂) : internal_hom X Y₁ ⟶ internal_hom X Y₂ := (right_adjoint (tensor_right X)).map f @[simp] lemma internal_hom_postcompose_id (X Y : C) : internal_hom_postcompose X (𝟙 Y) = 𝟙 _ := (right_adjoint (tensor_right X)).map_id _ @[simp] lemma internal_hom_postcompose_comp (X : C) {Y₁ Y₂ Y₃ : C} (f₁ : Y₁ ⟶ Y₂) (f₂ : Y₂ ⟶ Y₃) : internal_hom_postcompose X (f₁ ≫ f₂) = internal_hom_postcompose X f₁ ≫ internal_hom_postcompose X f₂ := (right_adjoint (tensor_right X)).map_comp _ _ def internal_hom_precompose {X₁ X₂ : C} (f : X₁ ⟶ X₂) (Y : C) : internal_hom X₂ Y ⟶ internal_hom X₁ Y := (internal_hom_equiv _ _ _) $ (tensor_hom (𝟙 _) f ≫ (internal_hom_equiv _ _ _).symm (𝟙 _)) lemma split_left {A₁ A₂ B₁ B₂ : C} (f : A₁ ⟶ A₂) (g : B₁ ⟶ B₂) : (f ⊗ g) = (f ⊗ 𝟙 _) ≫ (𝟙 _ ⊗ g) := by simp lemma split_right {A₁ A₂ B₁ B₂ : C} (f : A₁ ⟶ A₂) (g : B₁ ⟶ B₂) : (f ⊗ g) = (𝟙 _ ⊗ g) ≫ (f ⊗ 𝟙 _) := by simp lemma internal_hom_equiv_tensor_right {X Y₁ Y₂ Z : C} (f : Y₁ ⟶ Y₂) (g : X ⊗ Y₂ ⟶ Z) : internal_hom_equiv _ _ _ ((𝟙 _ ⊗ f) ≫ g) = internal_hom_equiv _ _ _ g ≫ internal_hom_precompose f _ := begin apply_fun (internal_hom_equiv _ _ _).symm, simp, dsimp [internal_hom_precompose, internal_hom_equiv, internal_hom], simp only [adjunction.hom_equiv_unit, adjunction.hom_equiv_counit, tensor_right_map, tensor_id, adjunction.hom_equiv_naturality_right, functor.map_comp, category_theory.functor.map_id, category.id_comp, category.assoc, adjunction.hom_equiv_naturality_left_symm, adjunction.hom_equiv_naturality_right_symm], simp only [← tensor_right_map], rw (adjunction.of_left_adjoint (tensor_right Y₁)).counit_naturality_assoc, rw (adjunction.of_left_adjoint (tensor_right Y₁)).left_triangle_components_assoc, dsimp, simp only [← category.assoc, ← tensor_comp, category.id_comp, category.comp_id], conv_rhs { rw [split_right _ f, category.assoc] }, rw ← tensor_right_map, simp only [functor.map_comp, category.assoc], rw (adjunction.of_left_adjoint (tensor_right Y₂)).counit_naturality, erw (adjunction.of_left_adjoint (tensor_right Y₂)).left_triangle_components_assoc, end @[simp] lemma internal_hom_precompose_id (X Y : C) : internal_hom_precompose (𝟙 X) Y = 𝟙 _ := by { dsimp [internal_hom_precompose, internal_hom_equiv, internal_hom], simp, dsimp, simp } @[simp] lemma internal_hom_precompose_comp {X₁ X₂ X₃ : C} (f₁ : X₁ ⟶ X₂) (f₂ : X₂ ⟶ X₃) (Y : C) : internal_hom_precompose (f₁ ≫ f₂) Y = internal_hom_precompose f₂ Y ≫ internal_hom_precompose f₁ Y := begin change _ = internal_hom_equiv _ _ _ _ ≫ _, rw [← internal_hom_equiv_tensor_right, ← category.assoc, ← tensor_comp, category.id_comp], refl, end @[simp] lemma internal_hom_postcompose_comp_precompose {A₁ A₂ B₁ B₂ : C} (f : A₁ ⟶ A₂) (g : B₁ ⟶ B₂) : internal_hom_postcompose _ f ≫ internal_hom_precompose g _ = internal_hom_precompose g _ ≫ internal_hom_postcompose _ f := begin apply_fun (internal_hom_equiv _ _ _).symm, dsimp [internal_hom_precompose, internal_hom_postcompose, internal_hom_equiv, internal_hom], simp only [adjunction.hom_equiv_counit, tensor_right_map, tensor_id, adjunction.hom_equiv_naturality_right, adjunction.hom_equiv_unit, functor.map_comp, category_theory.functor.map_id, category.id_comp, category.assoc, adjunction.hom_equiv_naturality_left_symm, adjunction.hom_equiv_naturality_right_symm], simp only [← tensor_right_map, adjunction.counit_naturality, adjunction.counit_naturality_assoc, functor.map_comp, adjunction.left_triangle_components, adjunction.right_triangle_components, adjunction.left_triangle_components_assoc, adjunction.right_triangle_components_assoc], dsimp, simp only [← category.assoc, ← tensor_comp, category.id_comp, category.comp_id], rw [split_right _ g, category.assoc, ← tensor_right_map, adjunction.counit_naturality, category.assoc], end @[simps] def internal_hom_functor : Cᵒᵖ ⥤ C ⥤ C := { obj := λ X, { obj := λ Y, internal_hom X.unop Y, map := λ Y₁ Y₂, internal_hom_postcompose _ }, map := λ X₁ X₂ f, { app := λ Y, internal_hom_precompose f.unop _ } } end category_theory.monoidal
section \<open>theory_decr_forest\<close> theory theory_decr_forest imports Main begin text \<open> This theory defines a notion of graphs. A graph is a record that contains a set of nodes \<open>V\<close> and a set of edges VxV, where the values v are the unique vertex labels.\<close> subsection \<open>Definitions\<close> text \<open>A graph is represented by a record.\<close> record ('v) graph = nodes :: "'v set" edges :: "('v \<times> 'v) set" text \<open>In a valid graph, edges only go from nodes to nodes.\<close> locale valid_graph = fixes G :: "('v) graph" assumes E_valid: "fst`edges G \<subseteq> nodes G" "snd`edges G \<subseteq> nodes G" begin abbreviation "V \<equiv> nodes G" abbreviation "E \<equiv> edges G" lemma E_validD: assumes "(v,v')\<in>E" shows "v\<in>V" "v'\<in>V" apply - apply (rule subsetD[OF E_valid(1)]) using assms apply force apply (rule subsetD[OF E_valid(2)]) using assms apply force done end subsection \<open>Basic operations on Graphs\<close> text \<open>The empty graph.\<close> definition empty where "empty \<equiv> \<lparr> nodes = {}, edges = {} \<rparr>" text \<open>Adds a node to a graph.\<close> definition add_node where "add_node v g \<equiv> \<lparr> nodes = insert v (nodes g), edges=edges g\<rparr>" text \<open>Deletes a node from a graph. Also deletes all adjacent edges.\<close> definition delete_node where "delete_node v g \<equiv> \<lparr> nodes = nodes g - {v}, edges = edges g \<inter> (-{v})\<times>(-{v}) \<rparr>" text \<open>Adds an edge to a graph, edges only go from smaller to larger vertex labels\<close> definition add_edge where "add_edge v v' g \<equiv> \<lparr> nodes = {v,v'} \<union> nodes g, edges = (if v'>v then insert (v,v') (edges g) else insert (v',v) (edges g)) \<rparr>" text \<open>Deletes an edge from a graph.\<close> definition delete_edge where "delete_edge v v' g \<equiv> \<lparr> nodes = nodes g, edges = edges g - {(v,v')} \<rparr>" text \<open>Now follow some simplification lemmas.\<close> lemma empty_valid[simp]: "valid_graph empty" unfolding empty_def by unfold_locales auto lemma add_node_valid[simp]: assumes "valid_graph g" shows "valid_graph (add_node v g)" proof - interpret valid_graph g by fact show ?thesis unfolding add_node_def by unfold_locales (auto dest: E_validD) qed lemma delete_node_valid[simp]: assumes "valid_graph g" shows "valid_graph (delete_node v g)" proof - interpret valid_graph g by fact show ?thesis unfolding delete_node_def by unfold_locales (auto dest: E_validD) qed lemma add_edge_valid[simp]: assumes "valid_graph g" shows "valid_graph (add_edge v v' g)" proof - interpret valid_graph g by fact show ?thesis unfolding add_edge_def by unfold_locales (auto dest: E_validD) qed lemma delete_edge_valid[simp]: assumes "valid_graph g" shows "valid_graph (delete_edge v v' g)" proof - interpret valid_graph g by fact show ?thesis unfolding delete_edge_def by unfold_locales (auto dest: E_validD) qed lemma nodes_empty[simp]: "nodes empty = {}" unfolding empty_def by simp lemma edges_empty[simp]: "edges empty = {}" unfolding empty_def by simp lemma nodes_add_node[simp]: "nodes (add_node v g) = insert v (nodes g)" by (simp add: add_node_def) lemma nodes_add_edge[simp]: "nodes (add_edge v v' g) = insert v (insert v' (nodes g))" by (simp add: add_edge_def) subsection \<open>Preliminary definitions\<close> text \<open>This function finds the connected component corresponding to the given vertex.\<close> definition "nodes_above g v \<equiv>{v} \<union> snd ` Set.filter (\<lambda>e. fst e = v) ((edges g)\<^sup>+)" text \<open>The function puts a component into a tree and preserves the decreasing property.\<close> fun nodes_order :: " nat graph \<Rightarrow> nat \<Rightarrow> nat graph " where "nodes_order g x\<^sub>1 = (let nodes\<^sub>1= nodes_above g 1 in let nodes\<^sub>2= nodes_above g (x\<^sub>1+2) in let max_comp\<^sub>1= Max(nodes\<^sub>1) in let max_comp\<^sub>2= Max(nodes\<^sub>2) in (if max_comp\<^sub>1=max_comp\<^sub>2 then g else (if max_comp\<^sub>1 > max_comp\<^sub>2 then let st_p=Max(Set.filter (\<lambda>v. v<max_comp\<^sub>2) nodes\<^sub>1) in let end_p=Min(Set.filter (\<lambda>v. v>max_comp\<^sub>2) nodes\<^sub>1) in let g1= delete_edge st_p end_p g in let g2= add_edge st_p max_comp\<^sub>2 g1 in let g3=add_edge max_comp\<^sub>2 end_p g2 in g3 else add_edge max_comp\<^sub>1 max_comp\<^sub>2 g ) ) )" text \<open>This is an additional function. Input: 1. Order number of the current node that can be added to the graph 2. Order number of the previous node from branch1 (above 1) added to the graph 3. Order number of the previous node from branch2 (above x1+2) added to the graph 4. The current graph 5. Number sequence to encode the graph How does the function work: I. If the sequence (input 5.) is empty, return current graph (input 4.) II. If the sequence is not empty and starts with a zero, add one to the order number of the current node, delete the first number (0) from the sequence and call the function again III. If the sequence isn't empty and doesn't start with a 0, add the current node to the graph IIIa. If the sequence starts with a 1, add an edge to branch1 using input (2) IIIb. If the sequence starts with a 2, add an edge to branch2 using input (3)\<close> fun enc_to_graph :: "nat \<Rightarrow> nat \<Rightarrow> nat \<Rightarrow> nat graph \<Rightarrow> nat list \<Rightarrow> nat graph" where "enc_to_graph curr_v prev_v1 prev_v2 g Nil = g" | "enc_to_graph curr_v prev_v1 prev_v2 g (0#ns) = enc_to_graph (Suc curr_v) prev_v1 prev_v2 g ns " | "enc_to_graph curr_v prev_v1 prev_v2 g (x#ns) = (if x=1 then enc_to_graph (Suc curr_v) curr_v prev_v2 (add_edge prev_v1 curr_v g) ns else (if curr_v=prev_v2 then enc_to_graph (Suc curr_v) prev_v1 curr_v g ns else enc_to_graph (Suc curr_v) prev_v1 curr_v (add_edge prev_v2 curr_v g) ns ) )" text \<open>Define f1 to be the start graph.\<close> definition "f1 \<equiv> \<lparr>nodes = {1::nat}, edges = {}\<rparr>" text \<open>This is the inverse encoding function. Input: 1.x1 2. number sequence to encode into a graph How does the function work: I.delete the last number since it only gives information about the number of trees in the graph but distinguish between cases in dependence of this last value II. take first x1 numbers and build the first graph part with enc_to_graph III. add the node x1+2 to the graph IV. delete x1 first numbers and build the second part with the rest V(0). if the last encoding value was 0, output tree2 V(1)(2).if the last encoding value was 1 and there are 2's in the encoding, connect two branches into one component using the function nodes_order V(1)(1). if the encoding only has 0 and 1 in it, build further on tree1 \<close> fun encoding_to_graph :: "nat \<Rightarrow> nat list \<Rightarrow> nat graph" where "encoding_to_graph x1 l = (let code_l=butlast l in let tree\<^sub>1 = enc_to_graph 2 1 (x1+2) f1 (take x1 (code_l)) in let max\<^sub>1 = Max (nodes tree\<^sub>1) in let tree\<^sub>2 = enc_to_graph (x1+3) max\<^sub>1 (x1+2) (add_node (x1+2) tree\<^sub>1) (drop x1 code_l) in if (last l=0) then tree\<^sub>2 else if 2\<in>set(code_l) then (nodes_order tree\<^sub>2 x1 ) else enc_to_graph (x1+3) (x1+2) (x1+2) (add_edge max\<^sub>1 (x1+2) tree\<^sub>1) (drop (x1) code_l) )" text \<open>This is the main encoding function. Input: 1. Graph g to be encoded 2. x1 3. 2 as the starting node 4. x1+x2+2 5. False as the starting value for branching How does the function work: I. For each x from 2 (input (3)) to x1+x2+2 (input (4)), check whether the vertex is in the graph, and if so, above which leaf does it exist II. For the nodes above the vertex with label 1, add 1 to the encoding,For the nodes above the vertex with label x1+2, add 2 to the encoding, change input (5) if we found a vertex with 2 incoming edges. If the value is not on a vertex, add 0 to the encoding III.using the value (5), decide to put 1 or 0 for 1 or 2 connected components\<close> fun graph_to_encoding_impl :: "nat graph \<Rightarrow> nat \<Rightarrow> nat \<Rightarrow> nat \<Rightarrow> bool \<Rightarrow> nat list" where "graph_to_encoding_impl f x1 x 0 c = [if c then 1 else 0]" | "graph_to_encoding_impl f x1 x (Suc n) c = (let above_one = (1, x) \<in> (edges f)\<^sup>+ in let above_x1_2 = (x1+2, x) \<in> (edges f)\<^sup>* in (if x = x1 + 2 then graph_to_encoding_impl f x1 (Suc x) n (above_one \<and> above_x1_2) else (if x \<in> nodes f then (if above_one \<and> (c \<or> \<not> above_x1_2) then 1 else 2) else 0) # graph_to_encoding_impl f x1 (Suc x) n (c \<or> above_one \<and> above_x1_2)) )" text \<open>Add some computation simplifications.\<close> lemma in_rtrancl_code [code_unfold]: "x \<in> rtrancl R \<longleftrightarrow> fst x = snd x \<or> x \<in> trancl R" by (metis prod.exhaust_sel rtrancl_eq_or_trancl) print_theorems definition "graph_to_encoding f x1 x2 \<equiv> graph_to_encoding_impl f x1 2 (x1+x2+1) False" (* Examples Part 1 definition "graph_ex1 \<equiv> \<lparr>nodes = {1::nat,2,5,7}, edges = {(1,2),(2,5),(5,7)}\<rparr>" definition "graph_ex2 \<equiv> \<lparr>nodes = {1::nat,2,3,5,7}, edges = {(1,2),(2,3),(3,7),(5,7)}\<rparr>" definition "graph_ex3 \<equiv> \<lparr>nodes = {1::nat,4,5,6,7}, edges = {(1,4),(4,6),(5,7)}\<rparr>" definition x1:: nat where "x1=3" definition x2:: nat where "x2=2" value "graph_to_encoding graph_ex1 x1 x2" value "graph_to_encoding graph_ex2 x1 x2" value "graph_to_encoding graph_ex3 x1 x2" Part 2: definition "f2 \<equiv> \<lparr>nodes = {1::nat,2,5,6,7,8,10}, edges = {(1,2),(2,7),(7,8), (5,6),(6,8),(8,10)}\<rparr>" lemma "graph_to_encoding f2 3 5 = [1,0,0,2,1,2,0,1,1]" by eval definition "f3 \<equiv> \<lparr>nodes = {1::nat,2,5,6,7,8,10}, edges = {(1,2),(2,8), (5,6),(6,7),(7,8),(8,10)}\<rparr>" definition "f4 \<equiv> \<lparr>nodes = {1::nat,2,5,6,7,8,10}, edges = {(1,2),(2,7), (5,6),(6,8),(8,10)}\<rparr>" definition "f6 \<equiv> \<lparr>nodes = {1::nat,4,5,7,8}, edges = {(1,4),(4,5),(5,7),(7,8)}\<rparr>" definition "f7 \<equiv> \<lparr>nodes = {1::nat,5,7,10}, edges = {(1,10),(5,7),(7,10)}\<rparr>" definition "f8 \<equiv> \<lparr>nodes = {1::nat,5,7,10}, edges = {(1,5),(5,7),(7,10)}\<rparr>" definition "f5 \<equiv> \<lparr>nodes = {1::nat,3,5,6,7,8,10}, edges = {(1,3),(3,6), (5,6),(6,7),(7,8),(8,10)}\<rparr>" definition "f9 \<equiv> \<lparr>nodes = {1::nat,5}, edges = {}\<rparr>" value "(encoding_to_graph 3 (graph_to_encoding f3 3 5)) =f3" value "(encoding_to_graph 3 (graph_to_encoding f4 3 5)) =f4" value "(encoding_to_graph 3 (graph_to_encoding f5 3 5)) =f5" value "(encoding_to_graph 3 (graph_to_encoding f6 3 5)) =f6" value "(encoding_to_graph 3 (graph_to_encoding f7 3 5)) =f7" value "(encoding_to_graph 3 (graph_to_encoding f8 3 5)) =f8" value "(encoding_to_graph 3 (graph_to_encoding f9 3 5)) =f9"*) text \<open>Define locales for the encoding and the forest to represent them canonically.\<close> locale encoding = fixes L :: "nat list" and x1 :: "nat" and x2 :: "nat" assumes L_valid: "length L = x1+x2+1" "set (take x1 L) \<subseteq> {0,1} " "set (drop x1 L) \<subseteq> {0,1,2}" "set (drop (x1+x2) L) \<subseteq> {0,1}" text \<open>This is a function that finds the edges that are incident to the given vertex.\<close> definition edges_v :: "nat graph \<Rightarrow> nat \<Rightarrow> (nat \<times> nat) set" where " edges_v g v \<equiv> {e. e \<in> edges g \<and> (fst e = v \<or> snd e = v)}" locale forest = fixes T :: "nat graph" and x1 :: "nat" and x2 :: "nat" assumes Ed_valid: "x1+2 \<in> nodes T" "\<forall> (v)\<in> fst`edges T. card(snd`(edges_v T v)-{v})<2" "\<forall> (v)\<in> snd`edges T. card(fst`(edges_v T v)-{v})<3" "\<forall> (v,v')\<in> edges T. ( v<v')" "nodes T \<noteq> {}" "edges T \<noteq> {}" "Max (nodes T) < x1+x2+3" text \<open>This is a test section with a simplified theory. Its purpose is to define the direction of the future research. A single tree with one leaf can be encoded as a set of its nodes. The encoding for such a tree is just a list of Bool values, True for "node in the graph" and False for "not". \<close> definition "valid_tree S n \<equiv> (\<forall>x. x \<in> S \<longrightarrow> 0 < x \<and> x \<le> n)" definition "valid_encoding B n \<equiv> length B = n \<and> set B \<subseteq> {True, False}" text \<open>Non-recursive definitions allow to use induction and prove some simple theorems.\<close> fun tree_to_encoding :: "nat \<Rightarrow> nat \<Rightarrow> nat set \<Rightarrow> bool list" where "tree_to_encoding x n S = map (\<lambda>i. i \<in> S) [x..<x+n]" fun encoding_to_tree :: " nat \<Rightarrow> bool list \<Rightarrow> nat set" where "encoding_to_tree n B = (\<lambda>i. i + n) ` {i. i < length B \<and> B ! i}" text \<open>To show that two functions form a bijection, one should first check that the outputs are well-defined.\<close> lemma length_tree_to_encoding: "length (tree_to_encoding x n S) = n" by (induct x n S rule: tree_to_encoding.induct) auto lemma encoding_members: "set (tree_to_encoding x n S) \<subseteq> {True, False}" by (induct x n S rule: tree_to_encoding.induct) auto lemma valid_tree_to_valid_encoding: "valid_encoding (tree_to_encoding x n S) n" unfolding valid_encoding_def using encoding_members length_tree_to_encoding by auto lemma valid_encoding_to_valid_tree_aux: "encoding_to_tree n B \<subseteq> {n..<n + length B}" by (induction n B rule: encoding_to_tree.induct) (auto simp: valid_encoding_def valid_tree_def) lemma valid_encoding_to_valid_tree: "valid_encoding B n \<Longrightarrow> valid_tree (encoding_to_tree 1 B ) n" using valid_encoding_to_valid_tree_aux unfolding valid_encoding_def valid_tree_def by force end
Companies in the same industry as Red Book Solutions, ranked by salary. Pay ranges for employees at Red Book Solutions by degree. How much does Red Book Solutions pay? Red Book Solutions pays its employees an average of $66,500 a year. Red Book Solutions employees with the job title Development Engineer make the most with an average annual salary of $76,294, while employees with the title Customer Success Manager make the least with an average annual salary of $55,023.
theory Boolos imports Main begin typedecl i consts e :: "i" (*one*) s :: "i \<Rightarrow> i" (*successor*) F :: "i \<Rightarrow> i \<Rightarrow> i" (*binary function; will be axiomatised as Ackermann function*) D :: "i \<Rightarrow> bool" (*arbitrary unary predicate*) axiomatization where A1: "\<forall>n. F n e = s e" and A2: "\<forall>y. F e (s y) = s (s (F e y))" and A3: "\<forall>x y. F (s x) (s y) = F x (F (s x) y)" and A4: "D e" and A5: "\<forall>x. D x \<longrightarrow> D (s x)" definition induct where "induct X \<equiv> (X e) \<and> (\<forall>x. X x \<longrightarrow> X (s x))" (*X inductively def. Pred.*) definition N where "N x \<equiv> (\<forall>X::i\<Rightarrow>bool. induct X \<longrightarrow> X x)" (*Higher-order quantifier*) definition P1 where "P1 x y \<equiv> N (F x y)" definition P2 where "P2 x \<equiv> (\<forall>z. N z \<longrightarrow> P1 x z)" theorem Boolos: "D (F (s (s (s (s e)))) (s (s (s (s e)))))" proof- have L1: "\<forall>X::i\<Rightarrow>bool. induct X \<longrightarrow> (\<forall>z. N z \<longrightarrow> X z)" using N_def by fastforce have L2: "induct N" by (metis N_def induct_def) have L3: "induct D" by (simp add: A4 A5 induct_def) have L4: "N (s (s (s (s e))))" by (metis L2 induct_def) have L5: "P1 e e" by (metis A1 L2 P1_def induct_def) have L6: "\<forall>x. P1 e x \<longrightarrow> P1 e (s x)" by (metis A2 P1_def induct_def L2) have L7: "induct (P1 e)" using induct_def L5 L6 by auto have L8: "\<forall>x. P1 (s x) e" by (metis A1 P1_def induct_def L2) have L9: "P2 e" by (metis L1 L7 P2_def) have L10: "\<forall>x. P2 x \<longrightarrow> (\<forall>y. P1 (s x) y \<longrightarrow> P1 (s x) (s y))" by (metis A3 P1_def P2_def) have L11: "\<forall>x. P2 x \<longrightarrow> P2 (s x)" by (metis L1 L10 L8 P2_def induct_def) have L12: "induct P2" by (simp add: L11 L9 induct_def) thus ?thesis using L3 L4 N_def P1_def P2_def by blast qed end
lemma openin_components_locally_connected: "\<lbrakk>locally connected S; c \<in> components S\<rbrakk> \<Longrightarrow> openin (top_of_set S) c"
function varargout = process_evt_simple( varargin ) % PROCESS_EVT_SIMPLE: Convert extended events to simple events % % USAGE: OutputFiles = process_evt_simple('Run', sProcess, sInput) % @============================================================================= % This function is part of the Brainstorm software: % https://neuroimage.usc.edu/brainstorm % % Copyright (c) University of Southern California & McGill University % This software is distributed under the terms of the GNU General Public License % as published by the Free Software Foundation. Further details on the GPLv3 % license can be found at http://www.gnu.org/copyleft/gpl.html. % % FOR RESEARCH PURPOSES ONLY. THE SOFTWARE IS PROVIDED "AS IS," AND THE % UNIVERSITY OF SOUTHERN CALIFORNIA AND ITS COLLABORATORS DO NOT MAKE ANY % WARRANTY, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO WARRANTIES OF % MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, NOR DO THEY ASSUME ANY % LIABILITY OR RESPONSIBILITY FOR THE USE OF THIS SOFTWARE. % % For more information type "brainstorm license" at command prompt. % =============================================================================@ % % Authors: Francois Tadel, 2015-2018 eval(macro_method); end %% ===== GET DESCRIPTION ===== function sProcess = GetDescription() %#ok<DEFNU> % Description the process sProcess.Comment = 'Convert to simple event'; sProcess.Category = 'File'; sProcess.SubGroup = 'Events'; sProcess.Index = 63; sProcess.Description = 'https://neuroimage.usc.edu/brainstorm/Tutorials/EventMarkers#Other_menus'; % Definition of the input accepted by this process sProcess.InputTypes = {'data', 'raw', 'matrix'}; sProcess.OutputTypes = {'data', 'raw', 'matrix'}; sProcess.nInputs = 1; sProcess.nMinFiles = 1; % Event name sProcess.options.eventname.Comment = 'Event names: '; sProcess.options.eventname.Type = 'text'; sProcess.options.eventname.Value = ''; % Time offset sProcess.options.method.Comment = {'Keep the start of the events', 'Keep the middle of the events', 'Keep the end of the events'}; sProcess.options.method.Type = 'radio'; sProcess.options.method.Value = 1; end %% ===== FORMAT COMMENT ===== function Comment = FormatComment(sProcess) %#ok<DEFNU> Comment = sProcess.Comment; end %% ===== RUN ===== function OutputFile = Run(sProcess, sInput) %#ok<DEFNU> % Return all the input files OutputFile = {sInput.FileName}; % ===== GET OPTIONS ===== % Time offset switch (sProcess.options.method.Value) case 1, Method = 'start'; case 2, Method = 'middle'; case 3, Method = 'end'; end % Event names EvtNames = strtrim(str_split(sProcess.options.eventname.Value, ',;')); if isempty(EvtNames) bst_report('Error', sProcess, [], 'No events selected.'); return; end % ===== LOAD FILE ===== % Get file descriptor isRaw = strcmpi(sInput.FileType, 'raw'); % Load the raw file descriptor if isRaw DataMat = in_bst_data(sInput.FileName, 'F'); sEvents = DataMat.F.events; sFreq = DataMat.F.prop.sfreq; else DataMat = in_bst_data(sInput.FileName, 'Events', 'Time'); sEvents = DataMat.Events; sFreq = 1 ./ (DataMat.Time(2) - DataMat.Time(1)); end % If no markers are present in this file if isempty(sEvents) bst_report('Error', sProcess, sInput, 'This file does not contain any event.'); return; end % Find event names iEvtList = []; for i = 1:length(EvtNames) iEvt = find(strcmpi(EvtNames{i}, {sEvents.label})); if isempty(iEvt) bst_report('Warning', sProcess, sInput, 'This file does not contain any event.'); elseif isempty(sEvents(iEvt).times) bst_report('Warning', sProcess, sInput, ['Event category "' sEvents(iEvt).label '" is empty.']); elseif (size(sEvents(iEvt).times,1) == 1) bst_report('Warning', sProcess, sInput, ['Event category "' sEvents(iEvt).label '" already contains simple events.']); else iEvtList(end+1) = iEvt; end end % No events to process if isempty(iEvtList) bst_report('Error', sProcess, sInput, 'No events to process.'); return; end % ===== PROCESS EVENTS ===== for i = 1:length(iEvtList) switch Method case 'start' sEvents(iEvtList(i)).times = sEvents(iEvtList(i)).times(1,:); case 'middle' sEvents(iEvtList(i)).times = mean(sEvents(iEvtList(i)).times,1); case 'end' sEvents(iEvtList(i)).times = sEvents(iEvtList(i)).times(2,:); end sEvents(iEvtList(i)).times = round(sEvents(iEvtList(i)).times .* sFreq) / sFreq; end % ===== SAVE RESULT ===== % Report results if isRaw DataMat.F.events = sEvents; else DataMat.Events = sEvents; end % Only save changes if something was change bst_save(file_fullpath(sInput.FileName), DataMat, 'v6', 1); end
# Mínimos Cuadrados ## Descomposición $QR$ ```python import numpy as np import scipy.linalg as spla import matplotlib.pyplot as plt ``` ```python def plotVector(A, Q): plt.figure(figsize=(6, 6)) origin = [0], [0] # origin point plt.quiver(*origin, A[:,0], A[:,1], angles='xy', scale_units='xy', scale=1, color=['green', 'black']) plt.quiver(*origin, Q.T[:,0], Q.T[:,1], angles='xy', scale_units='xy', scale=1, color=['r', 'b']) plt.axis('square') plt.xlim([-2, 4]) plt.ylim([-2, 4]) plt.grid(True) plt.xlabel(r"$x$") plt.ylabel(r"$y$") plt.show() ``` ### Decomposición $QR$ reducida ```python def QR(A, modified=True): m, n = A.shape Q = np.zeros((m, n)) R = np.zeros((n, n)) # Gram-Schmidt orthogonalization for j in range(n): y = A[:, j] if modified: for i in range(j): R[i, j] = np.dot(Q[:, i], y) y = y - R[i, j] * Q[:, i] else: for i in range(j): R[i, j] = np.dot(Q[:, i], A[:, j]) y = y - R[i, j] * Q[:, i] R[j, j] = np.linalg.norm(y) Q[:, j] = y / R[j, j] return Q, R ``` ### Ejemplo en $\mathbb{R}^2$ Para considerar el manejo de arreglos de ```numpy```, recordar que el procedimiento lo realizamos por vectores columnas, es decir, \begin{equation} A= \left[ \begin{array}{c|c} & \\ \mathbf{a}_1 & \mathbf{a}_2 \\ & \\ \end{array} \right]. \end{equation} ```python A = np.array([[2., 1.], [1., 3.]]) ``` ```python A ``` array([[2., 1.], [1., 3.]]) #### Versión implementada ```python Q, R = QR(A) ``` ```python np.dot(Q, R) ``` array([[2., 1.], [1., 3.]]) #### Versión ```numpy``` ```python Q2, R2 = np.linalg.qr(A) ``` ```python np.dot(Q2, R2) ``` array([[2., 1.], [1., 3.]]) ```python print("Implementado") print("Q:\n", Q) print("R:\n", R) print() print("Numpy") print("Q:\n", Q2) print("R:\n", R2) ``` Implementado Q: [[ 0.89442719 -0.4472136 ] [ 0.4472136 0.89442719]] R: [[2.23606798 2.23606798] [0. 2.23606798]] Numpy Q: [[-0.89442719 -0.4472136 ] [-0.4472136 0.89442719]] R: [[-2.23606798 -2.23606798] [ 0. 2.23606798]] La implementación de ```numpy``` no realiza la consideración de $r_{j,j} > 0$. ### ¿Son ortogonales? ```python np.dot(Q[:,0], Q[:, 1]), np.dot(Q2[:,0], Q2[:, 1]) ``` (0.0, -5.551115123125783e-17) Al parecer sí :) ### ¿Se cumple $Q^{-1}=Q^*$? ```python np.linalg.inv(Q), Q.T ``` (array([[ 0.89442719, 0.4472136 ], [-0.4472136 , 0.89442719]]), array([[ 0.89442719, 0.4472136 ], [-0.4472136 , 0.89442719]])) ```python np.linalg.inv(Q2), Q2.T ``` (array([[-0.89442719, -0.4472136 ], [-0.4472136 , 0.89442719]]), array([[-0.89442719, -0.4472136 ], [-0.4472136 , 0.89442719]])) Al parecer también. ### Visualmente ```python plotVector(A, Q) ``` Los vectores verde y negro corresponde a los vectores columnas de $A$. Los vectores rojo y azul corresponde a los vectores ortonormales encontrados por $QR$. # Ajuste de curvas ## Resolución de mínimos cuadrados utilizando $QR$ ```python def QRLS(A, b): Q, R = QR(A) # QR reduced x = spla.solve_triangular(R, np.dot(Q.T, b)) # Solve Rx=Q^*b return x ``` ```python def plot(t, y, tt, yy, yyy): plt.figure(figsize=(12, 6)) plt.plot(t, y, 'r.') plt.plot(tt, yy, label="Normal Equations") plt.plot(tt, yyy, label="QR") plt.grid(True) plt.legend() plt.xlabel(r'$t$') plt.ylabel(r'$y$') plt.show() ``` ## Ecuaciones normales ```python lm = lambda c_1, c_2, t: c_1 + c_2 * t qm = lambda c_1, c_2, c_3, t: c_1 + c_2 * t + c_3 * t ** 2 em = lambda c_1, c_2, t: c_1 * np.exp(c_2 * t) sm = lambda c_1, c_2, c_3, c_4, t: c_1 + c_2 * np.cos(2 * np.pi * t) + c_3 * np.sin(2 * np.pi * t) + c_4 * np.cos(4 * np.pi * t) pm = lambda c_1, c_2, t: c_1 * t ** c_2 ``` ```python # A^*A x = A^* b def normalEquations(A, b): return np.linalg.solve(np.dot(A.T, A), np.dot(A.T, b)) ``` #### Modelo lineal ```python lm = lambda c_1, c_2, t: c_1 + c_2 * t ``` ```python n = 200 t_a, t_b = 0, 3 t = np.linspace(t_a, t_b, n) tt = np.linspace(t_a, t_b, 3 * n) ``` ```python y_l = lm(1, 2, t) + np.random.normal(1.5, .5, n) # Data A_l = np.ones((n, 2)) A_l[:,1] = t b_l = y_l ``` ```python p_l = normalEquations(A_l, b_l) ``` ```python p_l_qr = QRLS(A_l, b_l) ``` ```python p_l, p_l_qr ``` (array([2.61872557, 1.92680618]), array([2.61872557, 1.92680618])) ```python plot(t, y_l, tt, lm(*p_l, tt), lm(*p_l_qr, tt)) ``` Podemos ver para ambos métodos obtenemos los mismos coeficientes del modelo lineal. ## Cuadrático ```python y_q = qm(1, 2, 3, t) + np.random.normal(5, 3, n) A_q = np.ones((n, 3)) A_q[:, 1] = t A_q[:, 2] = t ** 2 b_q = y_q ``` ```python p_l = normalEquations(A_q, b_q) ``` ```python p_l_qr = QRLS(A_q, b_q) ``` ```python plot(t, y_q, tt, qm(*p_l, tt), qm(*p_l_qr, tt)) ``` ## Periódico ```python y_s = sm(1, 2, 2, 1, t) + np.random.normal(10, 2, n) A_s = np.ones((n, 4)) A_s[:, 1] = np.cos(2 * np.pi * t) A_s[:, 2] = np.sin(2 * np.pi * t) A_s[:, 3] = np.cos(4 * np.pi * t) b_s = y_s ``` ```python p_l = normalEquations(A_s, b_s) ``` ```python p_l_qr = QRLS(A_s, b_s) ``` ```python plot(t, y_s, tt, sm(*p_l, tt), sm(*p_l_qr, tt)) ``` ## Exponencial ```python y_e = em(1, 2, t) * np.random.normal(10, 2, n) A_e = np.ones((n, 2)) A_e[:, 1] = t b_e = np.log(y_e) ``` ```python p_l = normalEquations(A_e, b_e) ``` ```python p_l_qr = QRLS(A_e, b_e) ``` ```python plot(t, y_e, tt, em(np.exp(p_l[0]), p_l[1], tt), em(np.exp(p_l_qr[0]), p_l_qr[1], tt)) ``` ## Comentarios Podemos obtener los mismos resultados al utilizar **Ecuaciones Normales** que al usar la **Descomposición $QR$**. En teoría hay un método que requiere menos computación, ¿puede mostrarlo experimentalmente? ## Ejemplo 4.16 del libro guía p. 219 ### ¿Por qué Gram-Schmidt modificado sobre el clásico? ```python d = 1e-10 Ab = np.array([ [1, 1, 1], [d, 0, 0], [0, d, 0], [0, 0, d] ]) ``` ### Clásico ```python Qbc, Rbc = QR(Ab, False) ``` ```python print("Q:\n", Qbc) print("R:\n", Rbc) ``` Q: [[ 1.00000000e+00 0.00000000e+00 0.00000000e+00] [ 1.00000000e-10 -7.07106781e-01 -7.07106781e-01] [ 0.00000000e+00 7.07106781e-01 0.00000000e+00] [ 0.00000000e+00 0.00000000e+00 7.07106781e-01]] R: [[1.00000000e+00 1.00000000e+00 1.00000000e+00] [0.00000000e+00 1.41421356e-10 0.00000000e+00] [0.00000000e+00 0.00000000e+00 1.41421356e-10]] ¿$Q^*Q = I$? ```python QTQ_c = np.dot(Qbc.T, Qbc) QTQ_c ``` array([[ 1.00000000e+00, -7.07106781e-11, -7.07106781e-11], [-7.07106781e-11, 1.00000000e+00, 5.00000000e-01], [-7.07106781e-11, 5.00000000e-01, 1.00000000e+00]]) ¿$\|Q^*Q - I_n\|_F$? ```python print(np.linalg.norm(QTQ_c - np.eye(3))) ``` 0.7071067811865477 ### Modificado ```python Qbm, Rbm = QR(Ab) ``` ```python print("Q:\n", Qbm) print("R:\n", Rbm) ``` Q: [[ 1.00000000e+00 0.00000000e+00 0.00000000e+00] [ 1.00000000e-10 -7.07106781e-01 -4.08248290e-01] [ 0.00000000e+00 7.07106781e-01 -4.08248290e-01] [ 0.00000000e+00 0.00000000e+00 8.16496581e-01]] R: [[1.00000000e+00 1.00000000e+00 1.00000000e+00] [0.00000000e+00 1.41421356e-10 7.07106781e-11] [0.00000000e+00 0.00000000e+00 1.22474487e-10]] ¿$Q^*Q = I$? ```python QTQ_m = np.dot(Qbm.T, Qbm) QTQ_m ``` array([[ 1.00000000e+00, -7.07106781e-11, -4.08248290e-11], [-7.07106781e-11, 1.00000000e+00, -1.66533454e-16], [-4.08248290e-11, -1.66533454e-16, 1.00000000e+00]]) ¿$\|Q^*Q - I_n\|_F$? ```python print(np.linalg.norm(QTQ_m - np.eye(3))) ``` 1.1547005383859233e-10 Experimentalmente podemos ver que en este ejemplo los vectores de $Q$ obtenidos con el algoritmo clásico no son ortonormales. Notamos que con el algoritmo modificado no obtenemos $I_n$ exactamente, pero el resultado es mejor.
(** * 6.887 Formal Reasoning About Programs, Spring 2016 - Pset 4 *) Require Import Frap. (* Authors: Peng Wang ([email protected]), Adam Chlipala ([email protected]) *) (* In Lab 4, we saw a few ways to model function calls with operational * semantics. In this problem set, we extend the picture with *exceptions*, * including their interactions with function calls. But first, the same old * boring language of expressions. *) Inductive arith : Set := | Const (n : nat) | Var (x : var) | Plus (e1 e2 : arith) | Minus (e1 e2 : arith) | Times (e1 e2 : arith). Definition valuation := fmap var nat. Inductive cmd := | Skip | Assign (x : var) (e : arith) | Sequence (c1 c2 : cmd) | If (e : arith) (then_ else_ : cmd) | While (e : arith) (body : cmd) | Call (lhs f : var) (arg : arith) | InCall (v : valuation) (lhs ret : var) (c : cmd) (* The new cases: *) | Try (try : cmd) (exn : var) (handler : cmd) (* Run [try]. If it throws an uncaught exception, switch to running [handler], * with variable [exn] bound to the exception that was thrown. *) | Throw (e : arith). (* Abort normal execution, throwing the value of [e]. *) (* Boring old expression interpreter *) Fixpoint interp (e : arith) (v : valuation) : nat := match e with | Const n => n | Var x => match v $? x with | None => 0 | Some n => n end | Plus e1 e2 => interp e1 v + interp e2 v | Minus e1 e2 => interp e1 v - interp e2 v | Times e1 e2 => interp e1 v * interp e2 v end. (* Function specifications, as in the lab *) Record fun_spec := { Arg : var; Ret : var; Body : cmd }. Definition environment := fmap var fun_spec. (* To describe the results of our big-step semantics, we need this new type. *) Inductive outcome := | Normal (* Execution finished normally. *) | Exception (exn : nat). (* Execution finished with this uncaught exception. * Note that our exceptions are numbers, since our expressions all evaluate to * numbers. *) Section env. Variable env : environment. (** Big-step semantics *) Inductive eval : valuation -> cmd -> outcome * valuation -> Prop := | EvalSkip : forall v, eval v Skip (Normal, v) (* Note that the old rules tend to return [Normal] values. *) | EvalAssign : forall v x e, eval v (Assign x e) (Normal, v $+ (x, interp e v)) | EvalSeq : forall v c1 v1 c2 ov2, eval v c1 (Normal, v1) -> eval v1 c2 ov2 -> eval v (Sequence c1 c2) ov2 (* However, this rule passes along whatever is the outcome [ov2] of the * second command, be it normal or exceptional. *) | EvalSeqExn : forall v c1 exn v1 c2, eval v c1 (Exception exn, v1) -> eval v (Sequence c1 c2) (Exception exn, v1) (* This second [Seq] rule handles the case where the first command raises an * exception. *) | EvalIfTrue : forall v e then_ else_ ov', interp e v <> 0 -> eval v then_ ov' -> eval v (If e then_ else_) ov' | EvalIfFalse : forall v e then_ else_ ov', interp e v = 0 -> eval v else_ ov' -> eval v (If e then_ else_) ov' | EvalWhileTrue : forall v e body v' ov'', interp e v <> 0 -> eval v body (Normal, v') -> eval v' (While e body) ov'' -> eval v (While e body) ov'' | EvalWhileTrueExn : forall v e body exn v', interp e v <> 0 -> eval v body (Exception exn, v') -> eval v (While e body) (Exception exn, v') | EvalWhileFalse : forall v e body, interp e v = 0 -> eval v (While e body) (Normal, v) | EvalCall : forall v lhs f arg spec v', env $? f = Some spec -> eval ($0 $+ (spec.(Arg), interp arg v)) spec.(Body) (Normal, v') -> eval v (Call lhs f arg) (Normal, v $+ (lhs, interp (Var spec.(Ret)) v')) | EvalCallExn : forall v lhs f arg spec exn v', env $? f = Some spec -> eval ($0 $+ (spec.(Arg), interp arg v)) spec.(Body) (Exception exn, v') -> eval v (Call lhs f arg) (Exception exn, v) (* Note the crucial difference between the two [EvalCall] rules: with a * normal outcome (other rule) of the called function, we extend the * valuation with the return value. In case of an exception (this rule), we * leave the valuation alone. *) | EvalTry : forall v c v' x handler, eval v c (Normal, v') -> eval v (Try c x handler) (Normal, v') (* Normal evaluation of a [try] body bubbles out of the [try]. *) | EvalTryExn : forall v c exn v' x handler ov'', eval v c (Exception exn, v') -> eval (v' $+ (x, exn)) handler ov'' -> eval v (Try c x handler) ov'' (* Exceptional evaluation of the body switches to running the handler. *) | EvalThrow : forall v e, eval v (Throw e) (Exception (interp e v), v) (* Throwing generates the expected exceptional outcome. *) | EvalInCall : forall v0 lhs ret v c v', eval v c (Normal, v') -> eval v (InCall v0 lhs ret c) (Normal, v0 $+ (lhs, interp (Var ret) v')) | EvalInCallExn : forall v0 lhs ret v c exn v', eval v c (Exception exn, v') -> eval v (InCall v0 lhs ret c) (Exception exn, v0). (* Finally, two goofy rules just to make this semantics complete for * [InCall], which we really only need for the small-step semantics. *) (** Small-step semantics *) Inductive step : valuation * cmd -> valuation * cmd -> Prop := | StepAssign : forall v x e, step (v, Assign x e) (v $+ (x, interp e v), Skip) | StepSeq1 : forall v c1 c2 v' c1', step (v, c1) (v', c1') -> step (v, Sequence c1 c2) (v', Sequence c1' c2) | StepSeq2 : forall v c2, step (v, Sequence Skip c2) (v, c2) | StepSeqThrow : forall v (n : nat) c2, step (v, Sequence (Throw (Const n)) c2) (v, Throw (Const n)) (* Note how a [Throw] can bubble up from the first part of a sequence. *) | StepIfTrue : forall v e then_ else_, interp e v <> 0 -> step (v, If e then_ else_) (v, then_) | StepIfFalse : forall v e then_ else_, interp e v = 0 -> step (v, If e then_ else_) (v, else_) | StepWhileTrue : forall v e body, interp e v <> 0 -> step (v, While e body) (v, Sequence body (While e body)) | StepWhileFalse : forall v e body, interp e v = 0 -> step (v, While e body) (v, Skip) | StepStartCall : forall v lhs f arg spec, env $? f = Some spec -> step (v, Call lhs f arg) ($0 $+ (spec.(Arg), interp arg v), InCall v lhs spec.(Ret) spec.(Body)) | StepInCall : forall v c v' c' v0 lhs ret, step (v, c) (v', c') -> step (v, InCall v0 lhs ret c) (v', InCall v0 lhs ret c') | StepEndCall : forall v0 lhs ret v, step (v, InCall v0 lhs ret Skip) (v0, Assign lhs (Const (interp (Var ret) v))) | StepEndCallThrow : forall v0 lhs ret v (n : nat), step (v, InCall v0 lhs ret (Throw (Const n))) (v0, Throw (Const n)) (* Here we also see a [Throw] bubble up out of a call. That is, the * callee's uncaught exceptions escape to the caller. *) | StepTry : forall v c v' c' x handler, step (v, c) (v', c') -> step (v, Try c x handler) (v', Try c' x handler) | StepTryDone : forall v x handler, step (v, Try Skip x handler) (v, Skip) | StepTryThrow : forall v (n : nat) x handler, step (v, Try (Throw (Const n)) x handler) (v $+ (x, n), handler) (* Exceptions also bubble out of [Try]s, but they go to the handler instead * of to other surrounding code. (Of course, if the handler raises another * exception, the adventure continues.) *) | StepThrow : forall v (e : arith), (forall n : nat, e <> Const n) -> step (v, Throw e) (v, Throw (Const (interp e v))). (* If throwing an expression that isn't fully evaluated, evaluate it before * continuing. *) (* Notice how the small-step style was more convenient to update in some * places. We didn't need to create dual versions of as many rules, for * the normal and exceptional cases. On the other hand, the "bubbling" rules * make up for it, so we get just as many rules. *) (* See the bottom of this file for the theorems we ask you to prove about * these semantics. *) (** Small-step semantics with control stack *) (* Now we take the same step that we finished up with in the lab. *) Inductive step0 : valuation * cmd -> valuation * cmd -> Prop := | Step0Assign : forall v x e, step0 (v, Assign x e) (v $+ (x, interp e v), Skip) | Step0IfTrue : forall v e then_ else_, interp e v <> 0 -> step0 (v, If e then_ else_) (v, then_) | Step0IfFalse : forall v e then_ else_, interp e v = 0 -> step0 (v, If e then_ else_) (v, else_) | Step0WhileTrue : forall v e body, interp e v <> 0 -> step0 (v, While e body) (v, Sequence body (While e body)) | Step0WhileFalse : forall v e body, interp e v = 0 -> step0 (v, While e body) (v, Skip) | Step0Throw : forall v (e : arith), (forall n : nat, e <> Const n) -> step0 (v, Throw e) (v, Throw (Const (interp e v))). (* This last rule is the one new one vs. the lab. It's pretty similar to * the last rule of the basic small-step semantics. *) (* Call frames: just as in the lab, with a different name *) Record call_frame := { Val : valuation; Cont : cmd; LHS : var; RetVar : var }. (* However, now our control stacks have *two* kinds of frames! * The other represents a pending exception handler. *) Record handler_frame := { ExnVar : var; (* In case of uncaught exception, save it to this * variable... *) Handler : cmd; (* ...and commence running this command. *) ExnCont : cmd (* Afterward, run this command. *) }. Inductive frame := | CallFrame (fr : call_frame) | HandlerFrame (fr : handler_frame). Definition stack := list frame. (* Now we proceed much as in the lab. *) Inductive stepcs : stack * valuation * cmd * cmd -> stack * valuation * cmd * cmd -> Prop := | StepcsStep0 : forall v c v' c' s k, step0 (v, c) (v', c') -> stepcs (s, v, c, k) (s, v', c', k) | StepcsSeq : forall s v c1 c2 k, stepcs (s, v, Sequence c1 c2, k) (s, v, c1, Sequence c2 k) | StepcsCont : forall s v k1 k2, stepcs (s, v, Skip, Sequence k1 k2) (s, v, k1, k2) | StepcsReturn : forall fr s v, stepcs (CallFrame fr :: s, v, Skip, Skip) (s, fr.(Val) $+ (fr.(LHS), interp (Var fr.(RetVar)) v), Skip, fr.(Cont)) | StepcsReturnHandlerFrame : forall fr s v, stepcs (HandlerFrame fr :: s, v, Skip, Skip) (s, v, Skip, fr.(ExnCont)) (* When a command finishes normally and there is a pending exception * handler, tell that handler "Sorry, Bub; not today!" and pop it off. *) | StepcsThrowDiscardCont : forall s v n k, k <> Skip -> stepcs (s, v, Throw (Const n), k) (s, v, Throw (Const n), Skip) (* When we throw an exception, discard the continuation, as we will never * finish normally and get around to running it. *) | StepcsHandleThrow : forall fr s v (n : nat), stepcs (HandlerFrame fr :: s, v, Throw (Const n), Skip) (s, v $+ (fr.(ExnVar), n), fr.(Handler), fr.(ExnCont)) (* When throwing with a handler on top of the stack, pop it and start * running it. *) | StepcsThrowCallFrame : forall fr s v (n : nat), stepcs (CallFrame fr :: s, v, Throw (Const n), Skip) (s, fr.(Val), Throw (Const n), Skip) (* On the other hand, when throwing with a call frame on top, pop it and * jump past it to the next frame. *) | StepcsCall : forall s v lhs f arg k spec, env $? f = Some spec -> stepcs (s, v, Call lhs f arg, k) (CallFrame {| Val := v; Cont := k; LHS := lhs; RetVar := spec.(Ret)|} :: s, $0 $+ (spec.(Arg), interp arg v), spec.(Body), Skip) (* Calls proceed as before. *) | StepcsTry : forall s v c x handler k, stepcs (s, v, Try c x handler, k) (HandlerFrame {| ExnVar := x; Handler := handler; ExnCont := k|} :: s, v, c, Skip) (* To run a [Try], install its handler on top of the stack. *) | StepcsInCall : forall s v0 lhs ret v c k, stepcs (s, v, InCall v0 lhs ret c, k) (CallFrame {| Val := v0; Cont := k; LHS := lhs; RetVar := ret|} :: s, v, c, Skip). (* Same goofy [InCall] rule as before *) End env. Module Type S. Section env. Variable env : environment. Axiom big_small : forall v c v', eval env v c (Normal, v') -> (step env)^* (v, c) (v', Skip). Axiom big_small_exn : forall v c n v', eval env v c (Exception n, v') -> (step env)^* (v, c) (v', Throw (Const n)). Axiom small_big : forall v c v', (step env)^* (v, c) (v', Skip) -> eval env v c (Normal, v'). Axiom small_big_exn : forall v c v' n, (step env)^* (v, c) (v', Throw (Const n)) -> eval env v c (Exception n, v'). Axiom eval_stepcs : forall v c v', eval env v c (Normal, v') -> (stepcs env)^* ([], v, c, Skip) ([], v', Skip, Skip). Axiom eval_stepcs_exn : forall v c (n : nat) v', eval env v c (Exception n, v') -> (stepcs env)^* ([], v, c, Skip) ([], v', Throw (Const n), Skip). Axiom stepcs_eval : forall v c v', (stepcs env)^* ([], v, c, Skip) ([], v', Skip, Skip) -> eval env v c (Normal, v'). Axiom stepcs_eval_exn : forall v c v' (n : nat), (stepcs env)^* ([], v, c, Skip) ([], v', Throw (Const n), Skip) -> eval env v c (Exception n, v'). End env. End S.
{-# OPTIONS --sized-types #-} module FormalLanguage.Equals{ℓ} where import Lvl open import FormalLanguage open import Lang.Size open import Logic.Propositional open import Relator.Equals using ([≡]-intro) renaming (_≡_ to _≡ₑ_) open import Relator.Equals.Proofs import Structure.Relator.Names as Names open import Structure.Setoid open import Structure.Relator.Equivalence open import Structure.Relator.Properties open import Type private variable s : Size module _ {Σ : Alphabet{ℓ}} where record _≅[_]≅_ (A : Language(Σ){∞ˢⁱᶻᵉ}) (s : Size) (B : Language(Σ){∞ˢⁱᶻᵉ}) : Type{ℓ} where constructor intro coinductive field accepts-ε : Language.accepts-ε(A) ≡ₑ Language.accepts-ε(B) suffix-lang : ∀{c : Σ}{sₛ : <ˢⁱᶻᵉ s} → (Language.suffix-lang A c ≅[ sₛ ]≅ Language.suffix-lang B c) _≅_ : ∀{s : Size} → Language(Σ){∞ˢⁱᶻᵉ} → Language(Σ){∞ˢⁱᶻᵉ} → Type _≅_ {s} = _≅[ s ]≅_ [≅]-reflexivity-raw : Names.Reflexivity(_≅[ s ]≅_) _≅[_]≅_.accepts-ε ([≅]-reflexivity-raw) = [≡]-intro _≅[_]≅_.suffix-lang ([≅]-reflexivity-raw) = [≅]-reflexivity-raw [≅]-symmetry-raw : Names.Symmetry(_≅[ s ]≅_) _≅[_]≅_.accepts-ε ([≅]-symmetry-raw ab) = symmetry(_≡ₑ_) (_≅[_]≅_.accepts-ε ab) _≅[_]≅_.suffix-lang ([≅]-symmetry-raw ab) = [≅]-symmetry-raw (_≅[_]≅_.suffix-lang ab) [≅]-transitivity-raw : Names.Transitivity(_≅[ s ]≅_) _≅[_]≅_.accepts-ε ([≅]-transitivity-raw ab bc) = transitivity(_≡ₑ_) (_≅[_]≅_.accepts-ε ab) (_≅[_]≅_.accepts-ε bc) _≅[_]≅_.suffix-lang ([≅]-transitivity-raw ab bc) = [≅]-transitivity-raw (_≅[_]≅_.suffix-lang ab) (_≅[_]≅_.suffix-lang bc) instance [≅]-reflexivity : Reflexivity(_≅[ s ]≅_) Reflexivity.proof([≅]-reflexivity) = [≅]-reflexivity-raw instance [≅]-symmetry : Symmetry(_≅[ s ]≅_) Symmetry.proof([≅]-symmetry) = [≅]-symmetry-raw instance [≅]-transitivity : Transitivity(_≅[ s ]≅_) Transitivity.proof([≅]-transitivity) = [≅]-transitivity-raw instance [≅]-equivalence : Equivalence(_≅[ s ]≅_) [≅]-equivalence = record{} instance [≅]-equiv : let _ = s in Equiv(Language(Σ)) [≅]-equiv {s = s} = intro(_≅[ s ]≅_) ⦃ [≅]-equivalence ⦄
# Solving vertex cover with a quantum annealer The problem of vertex cover is, given an undirected graph $G = (V, E)$, colour the smallest amount of vertices such that each edge $e \in E$ is connected to a coloured vertex. This notebooks works through the process of creating a random graph, translating to an optimization problem, and eventually finding the ground state using a quantum annealer. ### Graph setup The first thing we will do is create an instance of the problem, by constructing a small, random undirected graph. We are going to use the `networkx` package, which should already be installed if you have installed if you are using Anaconda. ```python import dimod import networkx as nx import matplotlib.pyplot as plt import numpy as np ``` ```python n_vertices = 5 n_edges = 6 small_graph = nx.gnm_random_graph(n_vertices, n_edges) ``` ```python nx.draw(small_graph, with_labels=True) ``` ### Constructing the Hamiltonian I showed in class that the objective function for vertex cover looks like this: \begin{equation} \sum_{(u,v) \in E} (1 - x_u) (1 - x_v) + \gamma \sum_{v \in V} x_v \end{equation} We want to find an assignment of the $x_u$ of 1 (coloured) or 0 (uncoloured) that _minimizes_ this function. The first sum tries to force us to choose an assignment that makes sure every edge gets attached to a coloured vertex. The second sum is essentially just counting the number of coloured vertices. **Task**: Expand out the QUBO above to see how you can convert it to a more 'traditional' looking QUBO: \begin{equation} \sum_{(u,v) \in E} x_u x_v + \sum_{v \in V} (\gamma - \text{deg}(x_v)) x_v \end{equation} where deg($x_v$) indicates the degree of vertex $x_v$ in the graph. ```python γ = 0.8 Q = {x : 1 for x in small_graph.edges()} r = {x : (γ - small_graph.degree[x]) for x in small_graph.nodes} ``` Let's convert it to the appropriate data structure, and solve using the exact solver. ```python bqm = dimod.BinaryQuadraticModel(r, Q, 0, dimod.BINARY) response = dimod.ExactSolver().sample(bqm) print(f"Sample energy = {next(response.data(['energy']))[0]}") ``` Let's print the graph with proper colours included ```python colour_assignments = next(response.data(['sample']))[0] colours = ['grey' if colour_assignments[x] == 0 else 'red' for x in range(len(colour_assignments))] nx.draw(small_graph, with_labels=True, node_color=colours) ``` ### Scaling up... That one was easy enough to solve by hand. Let's try a much larger instance... ```python n_vertices = 20 n_edges = 60 large_graph = nx.gnm_random_graph(n_vertices, n_edges) nx.draw(large_graph, with_labels=True) ``` ```python # Create h, J and put it into the exact solver γ = 0.8 Q = {x : 1 for x in large_graph.edges()} r = {x : (γ - large_graph.degree[x]) for x in large_graph.nodes} bqm = dimod.BinaryQuadraticModel(r, Q, 0, dimod.BINARY) response = dimod.ExactSolver().sample(bqm) print(f"Sample energy = {next(response.data(['energy']))[0]}") colour_assignments = next(response.data(['sample']))[0] colours = ['grey' if colour_assignments[x] == 0 else 'red' for x in range(len(colour_assignments))] nx.draw(large_graph, with_labels=True, node_color=colours) print(f"Coloured {list(colour_assignments.values()).count(1)}/{n_vertices} vertices.") ``` ### Running on the D-Wave You'll only be able to run the next few cells if you have D-Wave access. We will send the same graph as before to the D-Wave QPU and see what kind of results we get back! ```python from dwave.system.samplers import DWaveSampler from dwave.system.composites import EmbeddingComposite sampler = EmbeddingComposite(DWaveSampler()) ``` ```python ising_conversion = bqm.to_ising() h, J = ising_conversion[0], ising_conversion[1] response = sampler.sample_ising(h, J, num_reads = 1000) ``` ```python best_solution =np.sort(response.record, order='energy')[0] ``` ```python print(f"Sample energy = {best_solution['energy']}") colour_assignments_qpu = {x : best_solution['sample'][x] for x in range(n_vertices)} for x in range(n_vertices): if colour_assignments_qpu[x] == -1: colour_assignments_qpu[x] = 0 colours = ['grey' if colour_assignments_qpu[x] == 0 else 'red' for x in range(len(colour_assignments_qpu))] nx.draw(large_graph, with_labels=True, node_color=colours) print(f"Coloured {list(colour_assignments_qpu.values()).count(1)}/{n_vertices} vertices.") ``` ```python print("Node\tExact\tQPU") for x in range(n_vertices): print(f"{x}\t{colour_assignments[x]}\t{colour_assignments_qpu[x]}") ``` Here is a scatter plot of all the different energies we got out, against the number of times each solution occurred. ```python plt.scatter(response.record['energy'], response.record['num_occurrences']) ``` ```python response.record['num_occurrences'] ```
%!TEX root = ../ESyS-ParticleNotes.tex \chapter{ESyS-Particle Release Steps} \label{cha:esys_particle_release_steps} Described in this section is the steps needed to create a new release for ESyS-Particle. \begin{enumerate} \item Write release notes at \url{https://wiki.geocomp.uq.edu.au/index.php/Release_Notes_for_ESyS-Particle} \item Update version information in \lstinline{configure.ac}, \lstinline{Doxyfile}, \lstinline{Doc/Tutorial/paper.tex}, \lstinline{Foundation/version.h} \item Update the tutorial if necessary and generate the new PDF file: \lstinline{./render.sh} in \lstinline{Doc/Tutorial/} \item Upload the new file to \url{https://wiki.geocomp.uq.edu.au/index.php/File:ESyS-Particle_Tutorial.pdf} \item Update the trunk: \lstinline{bzr commit} \item Generate an updated API by building the code using the \lstinline{--with-epydoc} option \item Copy the API to \url{shake200:/data/www/esys/esys-particle_python_doc/esys-particle-2.3.1} \item Generate updated source code documentation: \lstinline{doxygen Doxyfile} \item Copy the source code documentation to \url{shake200:/data/www/esys/esys-particle_doxygen_doc/esys-particle-2.3.1} \item Branch from the trunk: \lstinline{bzr branch lp:esys-particle source2.3.1} \item Push the new branch to Launchpad: \lstinline{bzr push lp:~esys-p-dev/esys-particle/2.3.1} \item Change the new branch status to ``Mature'': Code page $\rightarrow$ \lstinline{lp:~esys-p-dev/esys-particle/2.3.1} $\rightarrow$ Status \end{enumerate} \textit{For major version:} \begin{enumerate} \parskip0pt \parsep0pt \itshape \setcounter{enumi}{12} \item Create series 2.3: Project overview page $\rightarrow$ Register a series \item Link the mainline branch for the series: 2.3 Series page \end{enumerate} \begin{enumerate} \setcounter{enumi}{14} \item Create a 2.3 series milestone: 2.3 Series page $\rightarrow$ Create milestone: Name: 2.3.1 \item Link fixed and committed bugs to the milestone, if any exist: Bugs page $\rightarrow$ Target to milestone \item Create a 2.3 series release: 2.3 Series page $\rightarrow$ Create release \item Make a new tarball: \lstinline{tar -cavf ESyS-Particle-2.3.1.tar.gz --exclude-vcs *} \item Create a signature for the tarball: \lstinline{gpg --armor --sign --detach-sig ESyS-Particle-2.3.1.tar.gz} \begin{itemize} \item if no keys has been defined in the system, generate the keys by using: \lstinline{gpg --gen-key} \item and afterwards, the key would need to be uploaded to the server: \lstinline{gpg --keyserver `hkp://keys.gnupg.net' --send keys <key-ids>} the key id can be found using: \lstinline{gpg --list-keys} \end{itemize} \item Upload the new tarball and signature: Milestone page $\rightarrow$ Add download file \item Change the 2.3 series status from ``Active Development'' to ``Current Stable Release'': 2.3 Series page \item Change the status of bugs fixed for the release from ``Fix Committed'' to ``Fix Released'': Bugs page \end{enumerate}
import numpy as np from chains.utils import validate from .ops import Op from .static_shape import StaticShape from .tensor import Tensor from ..core import utils_conv as uc __all__ = ["MaxPool"] class MaxPool(Op): def __init__(self, stride=2, conv_format=uc.NCHW): super().__init__() validate.is_strictly_greater_than("stride", stride, 1) self.conv_format = conv_format self.stride = stride self.features_nchw = None self.max_indices = None self.filters_shape = None self.x_shape = None self.xc_shape = None def check_incoming_shapes(self, features: StaticShape): if features.ndim != 4: raise ValueError(f"features should be a 4 dimensional tensor " f"but got {features.ndim} dimensions") m, c, nh, nw = self.conv_format.nchw(features) s = self.stride if nh.value % s != 0: raise ValueError( f"Height ({nh.value}) should be a multiple of stride {s} " f"but is not") if nw.value % s != 0: raise ValueError( f"Width ({nw.value}) should be a multiple of stride {s} " f"but is not") def compute_out_shape(self, features: StaticShape) -> StaticShape: m, c, nh, nw = self.conv_format.nchw(features) out_h, out_w = uc.clip_positions_count(nh.value, nw.value, self.stride, self.stride, 0, self.stride) tup = self.conv_format.nchw_inv(StaticShape(m, c, out_h, out_w)) return StaticShape.from_tuple(tup) def compute(self, features: Tensor): self.features_nchw = self.conv_format.nchw(features) m, c, nh, nw = self.features_nchw.shape out_h, out_w = uc.clip_positions_count(nh, nw, self.stride, self.stride, 0, self.stride) self.x_shape = (m * c, 1, nh, nw) self.filters_shape = (m, 1, self.stride, self.stride) x = np.reshape(self.features_nchw, self.x_shape) xc = uc.im2col(x, self.filters_shape, padding=0, stride=self.stride) self.xc_shape = xc.shape self.max_indices = np.argmax(xc, axis=0) out = xc[self.max_indices, range(self.max_indices.size)] out = out.reshape(m, c, out_h, out_w) self.output = self.conv_format.nchw_inv(out) def partials(self, d_output: Tensor): m, c, nh, nw = self.features_nchw.shape d_out = self.conv_format.nchw(d_output) mm, dd, out_h, out_w = d_out.shape assert mm == m, f"Number of examples im activations({m}) is " \ f"different from number of examples in output derivatives({mm})" d_out_flat = np.ravel(d_out) d_xc = np.zeros(self.xc_shape) d_xc[self.max_indices, range(self.max_indices.size)] = d_out_flat dx = uc.col2im(d_xc, self.x_shape, self.filters_shape, padding=0, stride=self.stride) d_features = np.reshape(dx, self.features_nchw.shape) return self.conv_format.nchw_inv(d_features),
From Undecidability Require Import TM.Util.Prelim TM.Util.TM_facts. Set Default Goal Selector "!". (* * Mirror Operator *) Section Mirror. Variable (n : nat) (sig : finType). Definition mirror_act : (option sig * move) -> (option sig * move) := map_snd mirror_move. Definition mirror_acts : Vector.t (option sig * move) n -> Vector.t (option sig * move) n := Vector.map mirror_act. Variable F : finType. Variable pM : pTM sig F n. Definition Mirror_trans : state (projT1 pM) * Vector.t (option sig) n -> state (projT1 pM) * Vector.t (option sig * move) n := fun qsym => let (q', act) := trans qsym in (q', mirror_acts act). Definition MirrorTM : TM sig n := {| trans := Mirror_trans; start := start (projT1 pM); halt := halt (m := projT1 pM); |}. Definition Mirror : pTM sig F n := (MirrorTM; projT2 pM). Definition mirrorConf : mconfig sig (state (projT1 pM)) n -> mconfig sig (state (projT1 pM)) n := fun c => mk_mconfig (cstate c) (mirror_tapes (ctapes c)). Lemma mirrorConf_involution c : mirrorConf (mirrorConf c) = c. Proof. destruct c as [q t]. unfold mirrorConf. cbn. f_equal. apply mirror_tapes_involution. Qed. Lemma mirrorConf_injective c1 c2 : mirrorConf c1 = mirrorConf c2 -> c1 = c2. Proof. destruct c1 as [q1 t1], c2 as [q2 t2]. unfold mirrorConf. cbn. intros H; inv H. f_equal. now apply mirror_tapes_injective. Qed. Lemma current_chars_mirror_tapes (t : tapes sig n) : current_chars (mirror_tapes t) = current_chars t. Proof. apply Vector.eq_nth_iff; intros i ? <-. autounfold with tape. now simpl_tape. Qed. Lemma doAct_mirror (t : tape sig) (act : option sig * move) : doAct (mirror_tape t) act = mirror_tape (doAct t (mirror_act act)). Proof. now destruct act as [ [ s | ] [ | | ]]; cbn; simpl_tape. Qed. Lemma doAct_mirror_multi (t : tapes sig n) (acts : Vector.t (option sig * move) n) : doAct_multi (mirror_tapes t) acts = mirror_tapes (doAct_multi t (mirror_acts acts)). Proof. apply Vector.eq_nth_iff; intros i ? <-. unfold doAct_multi, mirror_acts, mirror_tapes. simpl_tape. apply doAct_mirror. Qed. Lemma mirror_step c : step (M := projT1 pM) (mirrorConf c) = mirrorConf (step (M := projT1 Mirror) c). Proof. unfold step; cbn -[doAct_multi]. unfold Mirror_trans. cbn. destruct c as [q t]; cbn. rewrite current_chars_mirror_tapes. destruct (trans (q, current_chars t)) as [q' acts]. unfold mirrorConf; cbn. f_equal. apply doAct_mirror_multi. Qed. Lemma mirror_lift k c1 c2 : loopM (M := projT1 Mirror) c1 k = Some c2 -> loopM (M := projT1 pM ) (mirrorConf c1) k = Some (mirrorConf c2). Proof. unfold loopM. intros HLoop. apply loop_lift with (lift := mirrorConf) (f' := step (M:=projT1 pM)) (h' := haltConf (M:=projT1 pM)) in HLoop; auto. - intros ? _. now apply mirror_step. Qed. Lemma mirror_unlift k c1 c2 : loopM (M := projT1 pM) (mirrorConf c1) k = Some (mirrorConf c2) -> loopM (M := projT1 Mirror) ( c1) k = Some ( c2). Proof. unfold loopM. intros HLoop. apply loop_unlift with (lift := mirrorConf) (f := step (M:=MirrorTM)) (h := haltConf (M:=MirrorTM)) in HLoop as (? & HLoop & <- % mirrorConf_injective); auto. - intros ? _. now apply mirror_step. Qed. Definition Mirror_Rel (R : pRel sig F n) : pRel sig F n := fun t '(l, t') => R (mirror_tapes t) (l, mirror_tapes t'). Lemma Mirror_Realise R : pM ⊨ R -> Mirror ⊨ Mirror_Rel R. Proof. intros HRealise. intros t i outc HLoop. apply (HRealise (mirror_tapes t) i (mirrorConf outc)). now apply mirror_lift in HLoop. Qed. Definition Mirror_T (T : tRel sig n) : tRel sig n := fun t k => T (mirror_tapes t) k. Lemma Mirror_Terminates T : projT1 pM ↓ T -> projT1 Mirror ↓ Mirror_T T. Proof. intros HTerm. hnf. intros t1 k H1. hnf in HTerm. specialize (HTerm (mirror_tapes t1) k H1) as (outc&H). exists (mirrorConf outc). apply mirror_unlift. cbn. now rewrite mirrorConf_involution. Qed. Lemma Mirror_RealiseIn R (k : nat) : pM ⊨c(k) R -> Mirror ⊨c(k) Mirror_Rel R. Proof. intros H. eapply Realise_total. split. - eapply Mirror_Realise. now eapply Realise_total. - eapply TerminatesIn_monotone. + eapply Mirror_Terminates. now eapply Realise_total. + firstorder. Qed. End Mirror. Arguments Mirror : simpl never. Arguments Mirror_Rel { n sig F } R x y /. Arguments Mirror_T { n sig } T x y /.
lemma prime_ge_2_int: "p \<ge> 2" if "prime p" for p :: int
{- 0.42 1.68 1.34 0.34 0.5 < 0.5 => False 0.5 <= 0.5 => True 0.5 == 0.5 => True 0.5 >= 0.5 => True 0.5 > 0.5 => False 0.5 compare 0.5 => EQ 0.5 max 0.5 => 0.5 0.5 min 0.5 => 0.5 0.5 < 1 => True 0.5 <= 1 => True 0.5 == 1 => False 0.5 >= 1 => False 0.5 > 1 => False 0.5 compare 1 => LT 0.5 max 1 => 1 0.5 min 1 => 0.5 1 < 0.5 => False 1 <= 0.5 => False 1 == 0.5 => False 1 >= 0.5 => True 1 > 0.5 => True 1 compare 0.5 => GT 1 max 0.5 => 1 1 min 0.5 => 0.5 1 < 1 => False 1 <= 1 => True 1 == 1 => True 1 >= 1 => True 1 > 1 => False 1 compare 1 => EQ 1 max 1 => 1 1 min 1 => 1 abs -1 => 1 - (-1) => 1 abs 1 => 1 - (1) => -1 -} import CIL.FFI.Single implementation Show Ordering where show EQ = "EQ" show LT = "LT" show GT = "GT" testNum : IO () testNum = for_ [(*), (/), (+), (-)] $ \op => printLn $ single 0.84 `op` single 0.5 testOrd : IO () testOrd = traverse_ putStrLn (test singles singles) where singles = [ single 0.5, single 1.0 ] op : Show r => String -> (Single -> Single -> r) -> (Single -> Single -> String) op name o = \x, y => show x ++ " " ++ name ++ " " ++ show y ++ " => " ++ show (x `o` y) operators : List (Single -> Single -> String) operators = [ op "<" (<), op "<=" (<=), op "==" (==) , op ">=" (>=), op ">" (>), op "compare" compare , op "max" max, op "min" min ] test : List Single -> List Single -> List String test xs ys = do x <- xs y <- ys map (\o => x `o` y) operators testNeg : IO () testNeg = for_ [ single (-1), single 1 ] $ \x => do putStrLn $ "abs " ++ show x ++ " => " ++ show (abs x) putStrLn $ "- (" ++ show x ++ ") => " ++ show (-x) main : IO () main = do testNum testOrd testNeg -- Local Variables: -- idris-load-packages: ("cil") -- End:
\name{HeatmapAnnotation-class} \docType{class} \alias{HeatmapAnnotation-class} \title{ Class for Heatmap Annotations } \description{ Class for Heatmap Annotations } \details{ A complex heatmap contains a list of annotations which are represented as graphics placed on rows and columns. The \code{\link{HeatmapAnnotation-class}} contains a list of single annotations which are represented as a list of \code{\link{SingleAnnotation-class}} objects. } \section{Methods}{ The \code{\link{HeatmapAnnotation-class}} provides following methods: \itemize{ \item \code{\link{HeatmapAnnotation}}: constructor method. \item \code{\link{draw,HeatmapAnnotation-method}}: draw the annotations. }} \author{ Zuguang Gu <[email protected]> } \examples{ # There is no example NULL }
function out = InsertDate(in) %InsertDate - Insert date into string. % % Replaces %y, %m, %d and %t with current year, month, day and time. % % USAGE % % out = InsertDate(in) % % in string to modify % Copyright (C) 2013 by Michaël Zugaro % % This program is free software; you can redistribute it and/or modify % it under the terms of the GNU General Public License as published by % the Free Software Foundation; either version 3 of the License, or % (at your option) any later version. n = clock; year = int2str(n(1)); month = int2zstr(n(2),2); day = int2zstr(n(3),2); time = [int2zstr(n(4)) '' int2zstr(n(5))]; out = in; out = strrep(out,'%y',year); out = strrep(out,'%m',month); out = strrep(out,'%d',day); out = strrep(out,'%t',time);
It seems every day, even when I’ve thoroughly researched a subject or a person and am in the middle of writing about it or her, a simple session of Internet research turns up new sources and resources that at the very least enrich, at the most reinterpret what I’m doing. This is a blessing and a curse. I love the research, as I’ve said elsewhere on this site. Once upon a time, when all we could use were books and original sources from archives, the research phase would have to finish at a certain point or we’d never start writing. Now, despite the pitfalls of stumbling on inaccurate or misleading information about one’s subject, the Internet is always there, all the time, as a resource to mine. I think I’ve found just about everything useful for my project, and then one day I word a search slightly differently and come up with something that sheds new light on it, or fills in a blank I’d just decided to work around. It’s wonderful, but it can also be treacherous. This shiny new object I’ve just discovered—surely there’s a place I can put it in my novel? Maybe. Maybe not. Writing is editing: There’s never been a truer word said. As writers, we’re constantly making judgments about what to include and what to leave out; what to say and leave unsaid. The true genius in a novel is getting that balance right. And that goes for research as well. I may delight in knowing the exact route of a trolley in 1910 New York, but I don’t have to take my reader on a ride with it. So why bother with that depth of research? Even without laying it in front of the reader’s eyes, everything I know and understand about the place, period, and personages involved informs the story. Depth of knowledge creates a solid foundation that helps ensure characters don’t take missteps into anachronism. I just discovered the video above. It was only uploaded a few days ago, so I couldn’t have discovered it before. I’m in the middle of a complete rewrite of my WIP and immersed in 1911 in New York as we speak. I didn’t learn anything much new from this video (except something about how many people fit into a car of the time), but it gave me an atmospheric view of this period I’ve been working in for years. I could watch it over and over again.
Wind reports from moored buoys have smaller error than those from ships . Complicating the comparison of the two measurements are that NOMAD buoys report winds at a height of 5 metres ( 16 ft ) , while ships report winds from a height of 20 metres ( 66 ft ) to 40 metres ( 130 ft ) . Sea surface temperature measured in the intake port of large ships have a warm bias of around 0 @.@ 6 ° C ( 1 ° F ) due to the heat of the engine room . This bias has led to changes in the perception of global warming since 2000 . Fixed buoys measure the water temperature at a depth of 3 metres ( 10 ft ) .
Linda McCluskey’s scrapbook of memories is forged from oil paint and brush strokes. Many of the images are familiar — Middle Street, The Worthen, downtown canalways — places you might have passed a thousand times. But when McCluskey reimagines them on canvas, the familiar begins to stir. Brick and mortar. Cobblestones and canals. All bend, curve, twist and turn. You can almost hear the music. Feel the energy. It’s an invitation to step inside McCluskey’s world, where cityscapes seem to breathe. Lowell, after all, is where she found inspiration to pick up a paintbrush again at age 40. Her success as a full-time working artist in Paris is proof, she says, that it’s never too late to pursue a dream. Slogging along the daily grind, McCluskey’s art supplies ended up in boxes in a basement. She carried old photos of her favorite works with her as a reminder from time to time of who she was before becoming a mom, a wife and a cubicle dweller. Sometimes life holds up a mirror and forces you to take a long hard look. Maybe it was the milestone, but McCluskey recalls her 40th birthday jogging something awake inside her. And just like that, she put her dreams in action. With her kids Jake and Carly all grown up, she enrolled in college courses at UMass Lowell. Back at school, she travelled to France for a painting workshop and fell in love with her life all over again. She was the happiest she had been in a long time, then tragedy struck. Her partner of six years, Ed McCabe, was killed in a motorcycle accident in 2001. “I felt like my life was over,” McCluskey admits. But in the shadow of her grief, she managed to find a sliver of light. A close friend told her not to focus on the long and rolling highway. Follow the little paths life offers up instead. With nothing left to lose, McCluskey moved to France in January 2002. She was 44. Picking up her brushes and paint again, she was reborn. Enter Linda McCluskey, the artist. Paris gave her freedom to rediscover and reinvent herself. “In Paris, if you say you’re a painter, people don’t ask, ‘what do you really do?’ ” she explains. In 2004, a move into a 6th floor studio overlooking St. Germaine Boulevard gave her a new perspective. Being a “country girl” born and raised in Chelmsford, she had never lived up so high. The scenes unfolding on her canvas were well painted but still focused on proper form, until a trip to surrealist painter Salvador Dali’s beloved village of Cadaques in Spain pushed her brush in a whole new direction. The natural beauty of Cadaques inspired Dali and the way he interpreted that on canvas brought attention to the region. Taking in the breathtaking view from a hillside, McCluskey did a Dali-esque painting of the village and the church melting over the mountains. “After painting traditional views for so long, this felt like freedom to play and make up the impossible,” she says. It was the beginning of McCluskey’s imaginative “distortion” pieces, and she gained recognition as a unique artist in Paris and in Lowell. She returns to Lowell each year for inspiration. Where Middle and Palmer streets intersect. She points to her painting of Lowell’s Middle Street, one of her favorite downtown spots. Today she has her own studio at Paris’ 59 Rivoli — one of the top three visited galleries in France — where she was accepted for a permanent residency. Her advice to others: If you love something do it.
{-# OPTIONS --safe #-} open import Definition.Typed.EqualityRelation module Definition.LogicalRelation.Substitution.Introductions.IdRefl {{eqrel : EqRelSet}} where open EqRelSet {{...}} open import Definition.Untyped open import Definition.Untyped.Properties open import Definition.Typed open import Definition.Typed.Properties open import Definition.LogicalRelation open import Definition.LogicalRelation.Irrelevance open import Definition.LogicalRelation.Properties open import Definition.LogicalRelation.Substitution open import Definition.LogicalRelation.Substitution.Properties open import Definition.LogicalRelation.Substitution.Conversion open import Definition.LogicalRelation.Substitution.Reduction open import Definition.LogicalRelation.Substitution.Reflexivity open import Definition.LogicalRelation.Substitution.ProofIrrelevance open import Definition.LogicalRelation.Substitution.MaybeEmbed open import Definition.LogicalRelation.Substitution.Introductions.Nat open import Definition.LogicalRelation.Substitution.Introductions.Natrec open import Definition.LogicalRelation.Substitution.Introductions.Empty open import Definition.LogicalRelation.Substitution.Introductions.Emptyrec open import Definition.LogicalRelation.Substitution.Introductions.Universe open import Definition.LogicalRelation.Substitution.Introductions.Pi open import Definition.LogicalRelation.Substitution.Introductions.Sigma open import Definition.LogicalRelation.Substitution.Introductions.Id open import Definition.LogicalRelation.Substitution.Introductions.IdUPiPi open import Definition.LogicalRelation.Substitution.Introductions.Cast open import Definition.LogicalRelation.Substitution.Introductions.CastPi open import Definition.LogicalRelation.Substitution.Introductions.Lambda open import Definition.LogicalRelation.Substitution.Introductions.Application open import Definition.LogicalRelation.Substitution.Introductions.Pair open import Definition.LogicalRelation.Substitution.Introductions.Fst open import Definition.LogicalRelation.Substitution.Introductions.Snd open import Definition.LogicalRelation.Substitution.Introductions.SingleSubst open import Definition.LogicalRelation.Substitution.Introductions.Transp open import Definition.LogicalRelation.Fundamental.Variable import Definition.LogicalRelation.Substitution.ProofIrrelevance as PI import Definition.LogicalRelation.Substitution.Irrelevance as S open import Definition.LogicalRelation.Substitution.Weakening open import Tools.Product open import Tools.Unit open import Tools.Nat import Tools.PropositionalEquality as PE Idreflᵛ : ∀{Γ A l t} → ([Γ] : ⊩ᵛ Γ) → ([A] : Γ ⊩ᵛ⟨ ∞ ⟩ A ^ [ ! , ι l ] / [Γ]) → ([t] : Γ ⊩ᵛ⟨ ∞ ⟩ t ∷ A ^ [ ! , ι l ] / [Γ] / [A]) → let [Id] = Idᵛ {A = A} {t = t} {u = t } [Γ] [A] [t] [t] in Γ ⊩ᵛ⟨ ∞ ⟩ Idrefl A t ∷ Id A t t ^ [ % , ι l ] / [Γ] / [Id] Idreflᵛ {Γ} {A} {l} {t} [Γ] [A] [t] = let [Id] = Idᵛ {A = A} {t = t} {u = t } [Γ] [A] [t] [t] in validityIrr {A = Id A t t} {t = Idrefl A t} [Γ] [Id] λ ⊢Δ [σ] → Idreflⱼ (escapeTerm (proj₁ ([A] ⊢Δ [σ])) (proj₁ ([t] ⊢Δ [σ]))) castreflᵛ : ∀{Γ A t} → ([Γ] : ⊩ᵛ Γ) → ([UA] : Γ ⊩ᵛ⟨ ∞ ⟩ U ⁰ ^ [ ! , next ⁰ ] / [Γ]) → ([A]ₜ : Γ ⊩ᵛ⟨ ∞ ⟩ A ∷ U ⁰ ^ [ ! , next ⁰ ] / [Γ] / [UA] ) → ([A] : Γ ⊩ᵛ⟨ ∞ ⟩ A ^ [ ! , ι ⁰ ] / [Γ]) → ([t]ₜ : Γ ⊩ᵛ⟨ ∞ ⟩ t ∷ A ^ [ ! , ι ⁰ ] / [Γ] / [A]) → let [Id] : Γ ⊩ᵛ⟨ ∞ ⟩ Id A t (cast ⁰ A A (Idrefl (U ⁰) A) t) ^ [ % , ι ⁰ ] / [Γ] [Id] = Idᵛ {A = A} {t = t} {u = cast ⁰ A A (Idrefl (U ⁰) A) t} [Γ] [A] [t]ₜ (castᵗᵛ {A = A} {B = A} {t = t} {e = Idrefl (U ⁰) A} [Γ] [UA] [A]ₜ [A]ₜ [A] [A] [t]ₜ (Idᵛ {A = U _} {t = A} {u = A} [Γ] [UA] [A]ₜ [A]ₜ) (Idreflᵛ {A = U _} {t = A} [Γ] [UA] [A]ₜ)) in Γ ⊩ᵛ⟨ ∞ ⟩ castrefl A t ∷ Id A t (cast ⁰ A A (Idrefl (U ⁰) A) t) ^ [ % , ι ⁰ ] / [Γ] / [Id] castreflᵛ {Γ} {A} {t} [Γ] [UA] [A]ₜ [A] [t]ₜ = let [Id] : Γ ⊩ᵛ⟨ ∞ ⟩ Id A t (cast ⁰ A A (Idrefl (U ⁰) A) t) ^ [ % , ι ⁰ ] / [Γ] [Id] = Idᵛ {A = A} {t = t} {u = cast ⁰ A A (Idrefl (U ⁰) A) t} [Γ] [A] [t]ₜ (castᵗᵛ {A = A} {B = A} {t = t} {e = Idrefl (U ⁰) A} [Γ] [UA] [A]ₜ [A]ₜ [A] [A] [t]ₜ (Idᵛ {A = U _} {t = A} {u = A} [Γ] [UA] [A]ₜ [A]ₜ) (Idreflᵛ {A = U _} {t = A} [Γ] [UA] [A]ₜ)) in validityIrr {A = Id A t (cast ⁰ A A (Idrefl (U ⁰) A) t)} {t = castrefl A t} [Γ] [Id] λ ⊢Δ [σ] → castreflⱼ (escapeTerm (proj₁ ([UA] ⊢Δ [σ])) (proj₁ ([A]ₜ ⊢Δ [σ]))) (escapeTerm (proj₁ ([A] ⊢Δ [σ])) (proj₁ ([t]ₜ ⊢Δ [σ])))
@testset "maxintfloat $T" for T in (Double16, Double32, Double64) @test isinteger(maxintfloat(T)) # Previous integer is representable, next integer is not @test maxintfloat(T) == (maxintfloat(T) - one(T)) + one(T) @test maxintfloat(T) != (maxintfloat(T) + one(T)) - one(T) @test maxintfloat(T) < floatmax(T) end @testset "Inf and NaN generation $T" for T in (Double16, Double32, Double64) @test isinf(T(Inf)) == isinf(inf(T)) @test isinf(T(Inf)) == isposinf(posinf(T)) @test isinf(T(-Inf)) == isneginf(neginf(T)) @test isnan(T(NaN)) == isnan(nan(T)) @test isinf(T(Inf32)) == isinf(inf(T)) @test isinf(T(Inf32)) == isposinf(posinf(T)) @test isinf(T(-Inf32)) == isneginf(neginf(T)) @test isnan(T(NaN32)) == isnan(nan(T)) @test isinf(T(Inf16)) == isinf(inf(T)) @test isinf(T(Inf16)) == isposinf(posinf(T)) @test isinf(T(-Inf16)) == isneginf(neginf(T)) @test isnan(T(NaN16)) == isnan(nan(T)) end
Saudi’s Shoura Council Seeks Probe Into Haramain Rail Project Delays - railmeds JimdoPage! 04/06/2014 (Gulf Business - UAE): Saudi Arabia’s Shoura Council has asked the national anti-corruption commission (Nazaha) to investigate the delay in the completion of the Haramain Railway project. The Haramain high-speed link, which will link the holy cities of Makkah and Medina, has seen a number of construction delays, which have pushed back its launch date to 2016 from 2012. The project has also seen cost revisions from $12 billion to $14 billion, according to an earlier report by Saudi Railway Organisation (SRO). “The Nazaha should also investigate the budget allocated to the Haramain Railway project and the reasons for the increase in the funds needed for the completion of the project,” the Shoura Council said in a meeting held to discuss the annual report of the SRO, Arab News reported. 02/06/2014 (Gulf News - UAE): Abu Dhabi: Etihad Rail — the developer and operator of the UAE’s national railway network — has said it has achieved more than 10 million working man-hours, or over 250 days, with zero lost-time injuries.“This achievement, which includes time dedicated to the testing and commissioning of trains since September last year, reflects that the high safety standards of the rail industry have carried over into Etihad Rail’s activities prior to the launch of commercial operations,” said Engineer Faris Saif Al Mazroui, Acting CEO of Etihad Rail. Al Mazroui added that at Etihad Rail, they believe that all accidents, injuries and work-related illnesses are preventable, with safety being a value and mind-set shared by all. “From senior management through to the frontline, each of our employees and contractors is trained and empowered to eliminate unsafe conditions and implement the necessary corrective actions to make an area or situation safe. This has resulted in a common set of principles and behaviours that ensures working safely is part of our daily business. This 10 million hours figure is a significant milestone for us, particularly considering the challenging desert conditions of the Western Region,” Al Mazroui said. 06/06/2014 (AzerNews - Azerbaijan): Kazakhstan-Turkmenistan-Iran railway will be put into operation this year. The remark was made Turkmen President Gurbanguly Berdymukhamedov at a meeting with his Kazakh counterpart Nursultan Nazarbayev in Turkey. Turkmen and Kazakh presidents met as part of the Summit of the Cooperation Council of Turkic-Speaking States (CCTS), held in Turkey's Bodrum city on June 5. During the talks the Turkmen president invited his Kazakh counterpart to take part in the solemn ceremony of opening of this strategic railway, which is an essential part of the North-South transport corridor, with a global significance. The sides also noted the new railway will provide a convenient and economical transportation of goods to South Asia, to the Gulf ports, as well as in the opposite direction - to the Eastern Europe through Russia, Turkmen media reported. Qatar committed to schedule of GCC railway network - Min. 02/06/2014 (KUNA - Kuwait): DOHA, June 2 (KUNA) -- Qatari Minister of Transport Jassem Al-Sulaiti on Monday reaffirmed his country's commitment to the schedule of the implementation of the GCC railway network, due to go operational by 2018. "The developers of this mega project in the GCC member states are working closely together to lay out the designs of project; this process is well underway and will complete this year," the minister told reporters. Al-Sulaiti made the comments on the sidelines of the IATA's 70th Annual General Meeting (AGM) and World Air Transport Summit, being hosted by Qatar Airways (QA). "Saudi Arabia and the United Arab Emirates have already made good progress, compared with other GCC countries, in the development of technical and feasibility studies and offering them to bidders," he pointed out. "The meeting of the GCC ministers of transport and communication in Bahrain two months ago was a step forward towards the implementation of the project," he recalled, noting that undersecretary of the Bahraini Ministry of Transportation will be visiting Doha on Thursday for technical talks on the project. 03/06/2014 (The New India Express - India): As the Modi government defines its foreign policy priorities, one of the issues that needs urgent attention is the finalisation of India’s investment in the development of Chabahar Port in Iran. This is particularly important because the window of opportunity available to India to have a presence in Chabahar may be closing rapidly. India and Iran had agreed to cooperate on the development of this Iranian port way back in 2003 when Iran’s president Mohammad Khatami had visited India but nothing much has been achieved in these 11 years. It appears the previous government was close to approving US $100 million investment in the development of the port but could not take the decision. The new government could pick up the threads and quickly seal the deal. The strategic importance of Chabahar Port for India cannot be overstated. Located in the Sistan-Baluchistan province of Iran on the Makram coast and just outside the Persian Gulf, Chabahar is a natural gateway for India to Afghanistan and Central Asia. In the last 10 years, the Iranians have invested considerable sums of money in the development of Chabahar city. A 600km-long highway linking Chabahar to Zahidan in the north is operational. 01/06/2014 (Fars News - Iran): TEHRAN (FNA)- Iran's Ambassador to Moscow Mahdi Sanayee and Head of the Russian State Railways Company Alexander Yakunin pledged to do their best to complete joint railroad projects, specially the one which will link the two countries via the Azerbaijan Republic. In a meeting on Friday, the two officials voiced readiness for consolidating Tehran-Moscow economic cooperation in all domains, particularly joint railway projects. “The plan for connecting the two countries through railway is practically complete now and only a few kilometers of it have remained, whose construction will not take a long period,” said the Iranian ambassador. Sanayee went on to say that there are four other joint projects between the two countries in railway transportation field, including electrifying the two countries’ railway systems. Iran-Russia trade currently totals $5bln a year, but economists say they can at least quadruple the volume of their trade exchanges. 06/06/2014 (ABC - Azerbaijan): The Asian Development Bank (ADB) informs hat it keeps in force its proposal of technical assistance for the preparation of Multi-Financing Facility (MFF) Preparing MFF Railway Investment Program. "The Bank is ready to award a $1 million grant for MFF preparation," the ADB said. CJSC Azerbaijani Railways (ADY) remains an attractive partner for ADB. Thus, in the Country Partnership Strategy (CPS), which is being prepared for Azerbaijan and will cover the period of 2018-19, cooperation in the development of the railway system in the country remains a priority. The Strategy has not been adopted, but back in 2010 the government refused from the use of Bank’s finances under the formal pretext of lack of investment project. Then ADB planned to approve the first tranche in the amount of $200 million with overall Preparing the Railways Sector Development Program MFF loan in the amount of $500 million. The Bank-drawn consultants fulfilled successfully the first stage of technical assistance by 13 April 2010. The second stage of works on technical assistance (feasibility study and preliminary designing of first tranche of MFF) was never started. 06/06/2014 (RT - Russia): Russia will team up with North and South Korea in a railroad construction project that could restore peace between the two neighbors. The link will extend the world’s longest railroad, so goods can be shipped between Europe and Korea 3x faster. Russia’s Minister for Far East Development Aleksander Galushka announced the plan to extend the Trans-Siberian Railroad at a meeting in Vladivostok on Thursday. The expansion would provide a link between the Korean peninsula and Europe’s $17 trillion economy, making Russia a major transit route between Europe and Asia. Shipping by rail is nearly 3 times faster than via the Suez Canal, Russian Railways CEO Vladimir Bakunin has said. 04/06/2014 (Global Post - USA): URUMQI, June 4 (Xinhua) -- The trial run for the first high-speed railway in Xinjiang Uygur Autonomous Region started on Tuesday, marking a countdown to formal operations by the end of the year and a confidence boost to the region. A CRH2-061C high-speed train ran through the 300-km Urumqi-Shanshan section at speeds of 160 km to 277 km per hour. The designed speed is 250 km per hour, but the train must slow down when passing through windy areas. The train is part of the Second Double-track Line of the Lanxin Railway, which links Lanzhou City in northwestern Gansu Province and Urumqi. The 1,776-km line crosses a vast expanse of the Gobi Desert and windy areas -- a major technical feat -- and will be Xinjiang's first high-speed railway when it begins operation by the end of 2014. With the new railway, travel time between Lanzhou and Urumqi will be cut from the current 21 hours to 8 hours or less. 06/06/2014 (The Nation - Pakistan): ISLAMABAD - Ministry of Railways on Thursday signed a memorandum of understanding (MoU) with leading state-owned Chinese company, China Gezhouba Group Corporation (CGGC). The agreement was signed between RAILCOP, a subsidiary company of Pakistan Railways and the CGGC which is a subsidiary company of China Energy Engineering Corporation. The MoU demanded RAILCOP to work as local partner of Chinese company in Pakistan to identify potential construction projects and relevant information. As per agreement RAILCOP would also ensure complete cooperation in provision of engineers and supporting staff under the clause of human resource cooperation. It is pertinent to mention here that presently, the CGGC company is working on 1.5 billion US dollars Neelum - Jhelum Hydro Project. Recently, the company has also submitted expression of interest for National Highways Authority’s Lahore - Karachi motorway project.
[STATEMENT] lemma ereal_strict_mono2 [mono_intros]: assumes "x < y" shows "ereal x < ereal y" [PROOF STATE] proof (prove) goal (1 subgoal): 1. ereal x < ereal y [PROOF STEP] using assms [PROOF STATE] proof (prove) using this: x < y goal (1 subgoal): 1. ereal x < ereal y [PROOF STEP] by auto
"""The data structure for the factor is referenced from Prof. Daphne Koller's coursera course "Probabilistic Graphical Models" """ import numpy as np def ismember(a, b): bind = {} for index, value in enumerate(b): if value not in bind: bind[value] = index return [bind.get(value, None) for value in a] """ TODO: 1. vectorization 2. handle multiple variables at once in restrict, multiply and sumout """ class Factor: def __init__(self, var, card, val): """Represent factor using a multi-dimensional array Arguments: var -- a np array of variable names, i.e., scope of the factor card -- a np array of cardinality values corresponding to var, i.e., scopre of the variables val -- a np array of values for every possible assignment to the variables. If var = X_1, X_2, X_3 and card = 2, 2, 2, then val should be given in order of (1, 1, 1), (1, 1, 2), (1, 2, 1), (1, 2, 2), (2, 1, 1) and so on """ if len(var) != len(card) or np.prod(card) != len(val): raise Exception("invalid initialization for Factor initialization") self._var = np.copy(var) self._card = np.copy(card) self._val = np.copy(val) def factor_copy(factor): return Factor(factor.var, factor.card, factor.val) @property def var(self): return self._var @property def card(self): return self._card @property def val(self): return self._val @val.setter def val(self, value): # check validity self._val = value # @val.setter # def val(self, index, value): # # check validity # self._val[index] = value def assignment_to_index(assignment, cardinality): """Returns the index of the given assignment in a factor with card = cardinality Arguments: assignment -- a np array of values of the variables, e.g., X_1 = 1, X_2 = 2, X_3 = 3 => [1, 2, 3] cardinality -- a np array of cardinality values corresponding to var Returns: index -- index of the given assignment in a factor with card = cardinality; note index starts from 0 """ if any([assignment[i] < 1 for i in range(len(assignment))]): raise Exception("invalid assignment value: %s" % str(assignment)) if len(assignment) != len(cardinality) or any( [assignment[i] > cardinality[i] for i in range(len(assignment))]): raise Exception("assignment[%s] and cardinality[%s] do not match" % (str(assignment), str(cardinality))) index = 0 for i in range(len(assignment)): # int64 + uint64 -> float64 wtf! well documented strange thing here https://github.com/numpy/numpy/issues/5745 index = index + (assignment[i] - 1) * np.prod(cardinality[i + 1:]) return int(index) def index_to_assignment(index, cardinality): """Returns the assignment of the given index in a factor with card = cardinality Arguments: index -- the index to be queried; note index starts from 0 cardinality -- a np array of cardinality values corresponding to var Returns: assignment -- a np array corresponding to assignment of the given index in a factor with card = cardinality """ if index < 0 or index >= np.prod(cardinality): raise Exception("index[%d] out of range for cardinality[%s]" % (index, str(cardinality))) assignment = np.zeros(len(cardinality), dtype=np.uint8) for i in range(len(cardinality)): assignment[i] = index / np.prod(cardinality[i + 1:]) + 1 index = index % np.prod(cardinality[i + 1:]) return assignment def get_value_of_assignment(factor, assignment): """Returns the value of the assignment in the factor Arguments: factor -- the factor to be queried assignment -- a np array corresponding to the assignment to be queried Returns: val -- value of the assignment in the factor """ if len(assignment) != len(factor.var): raise Exception( "length of assignment[%d] does not match the number of variables in the factor" % len(assignment)) index = Factor.assignment_to_index(assignment, factor.card) return factor.val[index] def set_value_of_assignment(factor, assignment, val): """Returns a new factor with the value for assignment set to val Arguments: factor -- the factor to be queried assignment -- a np array corresponding to the assignment to be queried val -- the value to be set Returns: ret_factor -- a new factor with the value for assignment set to val """ if len(assignment) != len(factor.var): raise Exception( "length of assignment[%d] does not match the number of variables in the factor" % len(assignment)) ret_factor = Factor.factor_copy(factor) index = Factor.assignment_to_index(assignment, ret_factor.card) ret_factor.val[index] = val return ret_factor def restrict(factor, variable, value): """Restrict the variable in the factor to the value provided Arguments: factor -- the factor to be restricted variable -- the variable to be restricted value -- the value to set to Returns new_factor -- the new factor after setting the value """ if variable not in factor.var: raise Exception("variable[%d] is not in factor" % variable) index = np.where(factor.var == variable)[0][0] new_factor = Factor.factor_copy(factor) for i in range(np.prod(new_factor.card)): assignment = Factor.index_to_assignment(i, new_factor.card) if assignment[index] != value: new_factor.val[i] = 0 return new_factor def multiply(factor_A, factor_B): """Return a new factor which is the product of the two given factors Arguments: factor_A -- factor factor_B -- factor Returns: new_factor -- a new factor which is the product of factor_A and factor_B """ # Find intersection between scopes of the two factors common_var = np.intersect1d(factor_A.var, factor_B.var) # Find index of the common variables in factor A common_var_index_in_A = ismember(common_var, factor_A.var) # Find index of the common variables in factor B common_var_index_in_B = ismember(common_var, factor_B.var) # Check if cardinality of common variables match in the two factors for i in range(len(common_var)): if factor_A.card[common_var_index_in_A[i]] != factor_B.card[common_var_index_in_B[i]]: raise Exception( "cardinality of variables in factor A and factor B do not match" ) # Find the scope of the resulting factor all_var = np.union1d(factor_A.var, factor_B.var) # Initialize the cardinality of the resulting factor all_card = np.zeros((len(all_var)), dtype=np.uint8) # Find index of the variable of factor A in the resulting factor var_A_index_in_all_var = ismember(factor_A.var, all_var) # Find index of the variable of factor B in the resulting factor var_B_index_in_all_var = ismember(factor_B.var, all_var) # Set the cardinality of the resulting factor all_card[var_A_index_in_all_var] = factor_A.card all_card[var_B_index_in_all_var] = factor_B.card # Initialize the values of the new factor all_val = np.zeros((np.prod(all_card))) for i in range(np.prod(all_card)): # Generate one assignment of the new factor all_assignment = Factor.index_to_assignment(i, all_card) # Find the assignment in factor A that corresponds to the current assignment in the new factor assignment_A = all_assignment[var_A_index_in_all_var] # Find the assignment in factor B that corresponds to the current assignment in the new factor assignment_B = all_assignment[var_B_index_in_all_var] # Get assignment value from factor A val_A = Factor.get_value_of_assignment(factor_A, assignment_A) # Get assignment value from factor B val_B = Factor.get_value_of_assignment(factor_B, assignment_B) # Multiply the two assignment values to get value for the assignment in the new factor all_val[i] = val_A * val_B # Construct the new factor and return new_factor = Factor(all_var, all_card, all_val) return new_factor def sumout(factor, variable): """Sum out the given variable from the factor Arguments: factor -- the factor to be marginalized variable -- the variable to be summed out Returns: new_factor -- the given factor with the variable summed out """ # check whether variable is in factor if variable not in factor.var: raise Exception("variable[%d] is not in factor[%s]" % (variable, factor.var)) # Find the scope of the resulting factor new_var = np.setdiff1d(factor.var, variable) # Find index of variable of new factor in old factor new_var_index_in_factor = ismember(new_var, factor.var) # Find cardinality of new factor from old factor new_card = np.copy(factor.card[new_var_index_in_factor]) # Initialize values for new factor new_val = np.zeros(np.prod(new_card)) for i in range(np.prod(factor.card)): # Find assignment of old factor assignment_in_factor = Factor.index_to_assignment(i, factor.card) # Find assignment of old factor in new factor assignment_in_new_factor = assignment_in_factor[ new_var_index_in_factor] # Find index of assingment in new factor index_in_new_factor = Factor.assignment_to_index( assignment_in_new_factor, new_card) # Add values in old factor to new factor new_val[index_in_new_factor] += Factor.get_value_of_assignment( factor, assignment_in_factor) return Factor(new_var, new_card, new_val) def normalize(factor): """Normalize a factor Arguments: factor -- the factor to be normalized Returns: new_factor -- the normalized factor """ new_factor = Factor.factor_copy(factor) new_factor.val = new_factor.val / np.sum(new_factor.val) return new_factor def inference(factorList, queryVariables, orderedListOfHiddenVariables, evidenceList, verbose=True): """Perform inference on the bayes net Arguments: factorList -- a list of factor defining the bayes net queryVariables -- a list of variables to query orderedListOfHiddenVariables -- a variables elimination order evidenceList -- a dictionary of {variable: value} verbose -- verbose mode Returns: new_factor -- the factor representing the inference result """ # observe evidence for idx in range(len(factorList)): for key, value in evidenceList.items(): # If evidence in factor scope, restrict if key in factorList[idx].var: factorList[idx] = Factor.restrict(factorList[idx], key, value) # store intermediate factor tmp_factor = None for variable in orderedListOfHiddenVariables: # keep track of which factor has been multipled remove_list_idx = [] for idx in range(len(factorList)): if variable in factorList[idx].var: # First factor containing the variable to be eliminated => initialize intermediate if tmp_factor == None: tmp_factor = factorList[idx] else: tmp_factor = Factor.multiply(tmp_factor, factorList[idx]) # factList[idx] was multiplied => add to removal list remove_list_idx.append(idx) # remove factor which has been multiplied for idx in reversed(range(len(remove_list_idx))): del factorList[remove_list_idx[idx]] # All factors containing the variable to be eliminated have been multiplied => sum out the variable tmp_factor = Factor.sumout(tmp_factor, variable) # Print-out tmp_factor_name = [] for var in tmp_factor.var: for key, value in factor_name.items(): if value == var: tmp_factor_name.append(key) if verbose: print("IntermediateFactor(%s): %s" % (tmp_factor_name, tmp_factor.val)) # Add resulting factor back to factorList factorList.append(tmp_factor) # Set intermediate factor to be None for next iteration tmp_factor = None ret_factor = None # multiply all the remaining factors in the factorList for idx in range(len(factorList)): if ret_factor == None: ret_factor = factorList[idx] else: ret_factor = Factor.multiply(ret_factor, factorList[idx]) # Print-out tmp_factor_name = [] for var in ret_factor.var: for key, value in factor_name.items(): if value == var: tmp_factor_name.append(key) if verbose: print("IntermediateFactor(%s): %s" % (tmp_factor_name, ret_factor.val)) # normalize the final factor ret_factor = Factor.normalize(ret_factor) return ret_factor if __name__ == "__main__": factor_name = {"FS": 1, "FM": 2, "NA": 3, "FB": 4, "NDG": 5, "FH": 6} variable_val = {"YES": 1, "NO": 2} # Fido is sick factor var_FS = np.array([factor_name["FS"]]) card_FS = np.array([2]) val_FS = np.array([0.05, 0.95]) factor_FS = Factor(var_FS, card_FS, val_FS) # Full moon factor var_FM = np.array([factor_name["FM"]]) card_FM = np.array([2]) val_FM = np.array([1. / 28, 27. / 28]) factor_FM = Factor(var_FM, card_FM, val_FM) # Neighbor away factor var_NA = np.array([factor_name["NA"]]) card_NA = np.array([2]) val_NA = np.array([0.3, 0.7]) factor_NA = Factor(var_NA, card_NA, val_NA) # Factor of Fido is sick and food in Fido's bowl var_FS_FB = np.array([factor_name["FS"], factor_name["FB"]]) card_FS_FB = np.array([2, 2]) val_FS_FB = np.array([0.6, 0.4, 0.1, 0.9]) factor_FS_FB = Factor(var_FS_FB, card_FS_FB, val_FS_FB) # Factor of full moon, neighbor away and neighbor's dog is howling var_FM_NA_NDG = np.array( [factor_name["FM"], factor_name["NA"], factor_name["NDG"]]) card_FM_NA_NDG = np.array([2, 2, 2]) val_FM_NA_NDG = np.array([0.8, 0.2, 0.4, 0.6, 0.5, 0.5, 0, 1]) factor_FM_NA_NDG = Factor(var_FM_NA_NDG, card_FM_NA_NDG, val_FM_NA_NDG) # Factor of full moon, neighbor's dog is howling, Fido is sick and Fido howls var_FM_NDG_FS_FH = np.array([ factor_name["FM"], factor_name["NDG"], factor_name["FS"], factor_name["FH"] ]) card_FM_NDG_FS_FH = np.array([2, 2, 2, 2]) val_FM_NDG_FS_FH = np.array([ 0.99, 0.01, 0.65, 0.35, 0.9, 0.1, 0.4, 0.6, 0.75, 0.25, 0.2, 0.8, 0.5, 0.5, 0, 1 ]) factor_FM_NDG_FS_FH = Factor(var_FM_NDG_FS_FH, card_FM_NDG_FS_FH, val_FM_NDG_FS_FH) factor_list = [ factor_FS, factor_FM, factor_NA, factor_FS_FB, factor_FM_NA_NDG, factor_FM_NDG_FS_FH ] # part b query_variables = [factor_name["FH"]] ordered_list_of_hidden_variables = [ factor_name["NA"], factor_name["FS"], factor_name["FB"], factor_name["FM"], factor_name["NDG"] ] evidence_list = {} prior_FH_howl = Factor.inference(factor_list.copy(), query_variables, ordered_list_of_hidden_variables, evidence_list) print("[part b] prior probability of Fido howling is %f, not howling is %f" % (prior_FH_howl.val[0], prior_FH_howl.val[1])) # part c evidence_list = { factor_name["FH"]: variable_val["YES"], factor_name["FM"]: variable_val["YES"] } query_variables = [factor_name["FS"]] ordered_list_of_hidden_variables = [ factor_name["FH"], factor_name["FM"], factor_name["NA"], factor_name["NDG"], factor_name["FB"] ] posterior_FIDO_sick = Factor.inference(factor_list.copy(), query_variables, ordered_list_of_hidden_variables, evidence_list) print("[part c] posterior probability of Fido is sick is %f, not sick is %f" % (posterior_FIDO_sick.val[0], posterior_FIDO_sick.val[1])) # part d evidence_list = { factor_name["FH"]: variable_val["YES"], factor_name["FM"]: variable_val["YES"], factor_name["FB"]: variable_val["YES"] } query_variables = [factor_name["FS"]] ordered_list_of_hidden_variables = [ factor_name["FH"], factor_name["FM"], factor_name["FB"], factor_name["NA"], factor_name["NDG"] ] posterior_FIDO_sick = Factor.inference(factor_list.copy(), query_variables, ordered_list_of_hidden_variables, evidence_list) print("[part d] posterior probability of Fido is sick is %f, not sick is %f" % (posterior_FIDO_sick.val[0], posterior_FIDO_sick.val[1]))
-- 4.1.5 Exercises -- integer arithmetic expression data Exp = Single Int | Add Exp Exp | Sub Exp Exp | Mul Exp Exp -- more flexible syntax -- data Exp : Type where -- Single : Int -> Exp -- Add : Exp -> Exp -> Exp -- Sub : Exp -> Exp -> Exp -- Mul : Exp -> Exp -> Exp eval : Exp -> Int eval (Single x) = x eval (Add x y) = eval x + eval y eval (Sub x y) = eval x - eval y eval (Mul x y) = eval x * eval y -- *Chap4> eval (Add (Single 1) (Single 2)) -- 3 : Int data BSTree : Type -> Type where Empty : Ord e => BSTree e Node : Ord e => (left : BSTree e) -> (val : e) -> (right : BSTree e) -> BSTree e -- %name BSTree left, right -- using a %name directive to give naming hints for building definitions interactively insert : elem -> BSTree elem -> BSTree elem insert x Empty = Node Empty x Empty insert x orig@(Node left val right) = case compare x val of LT => Node (insert x left) val right EQ => orig -- same as as-patterns in Haskell GT => Node left val (insert x right) -- match Ctrl-Alt-M listToTree : Ord a => List a -> BSTree a listToTree [] = Empty listToTree (x :: xs) = insert x $ listToTree xs -- *starting/Chap4> listToTree ['p', 'r', 'a', 't'] -- Node (Node Empty 'a' (Node (Node Empty 'p' Empty) 'r' Empty)) 't' Empty : BSTree Char treeToList : BSTree a -> List a treeToList Empty = [] treeToList (Node left val right) = treeToList left ++ [val] ++ treeToList right
[STATEMENT] lemma prv_pls_zer: assumes [simp]: "t \<in> atrm" shows "prv (eql (pls t zer) t)" [PROOF STATE] proof (prove) goal (1 subgoal): 1. prv (eql (pls t zer) t) [PROOF STEP] using prv_psubst[OF _ _ _ prv_pls_zer_var, of "[(t,xx)]"] [PROOF STATE] proof (prove) using this: \<lbrakk>eql (pls (Var xx) zer) (Var xx) \<in> fmla; snd ` set [(t, xx)] \<subseteq> var; fst ` set [(t, xx)] \<subseteq> trm\<rbrakk> \<Longrightarrow> prv (psubst (eql (pls (Var xx) zer) (Var xx)) [(t, xx)]) goal (1 subgoal): 1. prv (eql (pls t zer) t) [PROOF STEP] by simp
/- Copyright (c) 2021 Yury Kudryashov. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Yury Kudryashov -/ import data.fintype.basic /-! # Induction principles for `Π i, finset (α i)` In this file we prove a few induction principles for functions `Π i : ι, finset (α i)` defined on a finite type. * `finset.induction_on_pi` is a generic lemma that requires only `[fintype ι]`, `[decidable_eq ι]`, and `[Π i, decidable_eq (α i)]`; this version can be seen as a direct generalization of `finset.induction_on`. * `finset.induction_on_pi_max` and `finset.induction_on_pi_min`: generalizations of `finset.induction_on_max`; these versions require `Π i, linear_order (α i)` but assume `∀ y ∈ g i, y < x` and `∀ y ∈ g i, x < y` respectively in the induction step. ## Tags finite set, finite type, induction, function -/ open function variables {ι : Type*} {α : ι → Type*} [fintype ι] [decidable_eq ι] [Π i, decidable_eq (α i)] namespace finset /-- General theorem for `finset.induction_on_pi`-style induction principles. -/ lemma induction_on_pi_of_choice (r : Π i, α i → finset (α i) → Prop) (H_ex : ∀ i (s : finset (α i)) (hs : s.nonempty), ∃ x ∈ s, r i x (s.erase x)) {p : (Π i, finset (α i)) → Prop} (f : Π i, finset (α i)) (h0 : p (λ _, ∅)) (step : ∀ (g : Π i, finset (α i)) (i : ι) (x : α i), r i x (g i) → p g → p (update g i (insert x (g i)))) : p f := begin induction hs : univ.sigma f using finset.strong_induction_on with s ihs generalizing f, subst s, cases eq_empty_or_nonempty (univ.sigma f) with he hne, { convert h0, simpa [funext_iff] using he }, { rcases sigma_nonempty.1 hne with ⟨i, -, hi⟩, rcases H_ex i (f i) hi with ⟨x, x_mem, hr⟩, set g := update f i ((f i).erase x) with hg, clear_value g, have hx' : x ∉ g i, by { rw [hg, update_same], apply not_mem_erase }, obtain rfl : f = update g i (insert x (g i)), by rw [hg, update_idem, update_same, insert_erase x_mem, update_eq_self], clear hg, rw [update_same, erase_insert hx'] at hr, refine step _ _ _ hr (ihs (univ.sigma g) _ _ rfl), rw ssubset_iff_of_subset (sigma_mono (subset.refl _) _), exacts [⟨⟨i, x⟩, mem_sigma.2 ⟨mem_univ _, by simp⟩, by simp [hx']⟩, (@le_update_iff _ _ _ _ g g i _).2 ⟨subset_insert _ _, λ _ _, le_rfl⟩] } end /-- Given a predicate on functions `Π i, finset (α i)` defined on a finite type, it is true on all maps provided that it is true on `λ _, ∅` and for any function `g : Π i, finset (α i)`, an index `i : ι`, and `x ∉ g i`, `p g` implies `p (update g i (insert x (g i)))`. See also `finset.induction_on_pi_max` and `finset.induction_on_pi_min` for specialized versions that require `Π i, linear_order (α i)`. -/ lemma induction_on_pi {p : (Π i, finset (α i)) → Prop} (f : Π i, finset (α i)) (h0 : p (λ _, ∅)) (step : ∀ (g : Π i, finset (α i)) (i : ι) (x : α i) (hx : x ∉ g i), p g → p (update g i (insert x (g i)))) : p f := induction_on_pi_of_choice (λ i x s, x ∉ s) (λ i s ⟨x, hx⟩, ⟨x, hx, not_mem_erase x s⟩) f h0 step /-- Given a predicate on functions `Π i, finset (α i)` defined on a finite type, it is true on all maps provided that it is true on `λ _, ∅` and for any function `g : Π i, finset (α i)`, an index `i : ι`, and an element`x : α i` that is strictly greater than all elements of `g i`, `p g` implies `p (update g i (insert x (g i)))`. This lemma requires `linear_order` instances on all `α i`. See also `finset.induction_on_pi` for a version that `x ∉ g i` instead of ` does not need `Π i, linear_order (α i)`. -/ lemma induction_on_pi_max [Π i, linear_order (α i)] {p : (Π i, finset (α i)) → Prop} (f : Π i, finset (α i)) (h0 : p (λ _, ∅)) (step : ∀ (g : Π i, finset (α i)) (i : ι) (x : α i), (∀ y ∈ g i, y < x) → p g → p (update g i (insert x (g i)))) : p f := induction_on_pi_of_choice (λ i x s, ∀ y ∈ s, y < x) (λ i s hs, ⟨s.max' hs, s.max'_mem hs, λ y, s.lt_max'_of_mem_erase_max' _⟩) f h0 step /-- Given a predicate on functions `Π i, finset (α i)` defined on a finite type, it is true on all maps provided that it is true on `λ _, ∅` and for any function `g : Π i, finset (α i)`, an index `i : ι`, and an element`x : α i` that is strictly less than all elements of `g i`, `p g` implies `p (update g i (insert x (g i)))`. This lemma requires `linear_order` instances on all `α i`. See also `finset.induction_on_pi` for a version that `x ∉ g i` instead of ` does not need `Π i, linear_order (α i)`. -/ lemma induction_on_pi_min [Π i, linear_order (α i)] {p : (Π i, finset (α i)) → Prop} (f : Π i, finset (α i)) (h0 : p (λ _, ∅)) (step : ∀ (g : Π i, finset (α i)) (i : ι) (x : α i), (∀ y ∈ g i, x < y) → p g → p (update g i (insert x (g i)))) : p f := @induction_on_pi_max ι (λ i, order_dual (α i)) _ _ _ _ _ _ h0 step end finset
\section{Reparameterization \& Arc Length} \noindent VVFs can be reparameterized to trace out the same curve at different speeds by replacing $t$ in $\vec{r}(t)$ with any non-decreasing function of $t$. This fact can come in handy to make the bounds of an integration problem more convenient.\\ \noindent The integral of the derivative of a VVF gives the displacement vector because \begin{equation*} \int_{a}^{b}{\vec{r^\prime}(t)\mathrm{d}t}=\vec{r}(b)-\vec{r}(a). \end{equation*} This is exactly like how $\text{veclvity} \cdot \text{time} = \text{displacment}$. \noindent If we integrate the magnitude of $\vec{r^\prime}(t)$, we can use the fact that $\text{distance} = \text{speed} \cdot \text{time}$ to find the arc length of $\vec{r}(t)$ as \begin{equation*} s=\int{\norm{\vec{r^\prime}(t)}\mathrm{d}t}=\int{\sqrt{\left(\frac{\mathrm{d}x}{\mathrm{d}t}\right)^2+\left(\frac{\mathrm{d}y}{\mathrm{d}t}\right)^2+\left(\frac{\mathrm{d}z}{\mathrm{d}t}\right)^2}\mathrm{d}t}. \end{equation*} We can also write this as an arclength function, \begin{equation*} s(t)=\int_{0}^{t}{\norm{\vec{r^{\prime}}(\tau)}\mathrm{d}\tau}. \end{equation*} \noindent If we have a function \begin{equation*} f(t)=s(t)=\int_{0}^{t}{\norm{\vec{r^{\prime}}(\tau)}\mathrm{d}\tau}, \end{equation*} where $s$ is strictly increasing, then $f$ has an inverse by the horizontal line test. That is, $t(s) = f^{-1}(s)$ exists and is also non-decreasing. If we reparameterize $\vec{r}(t)$ to $\vec{r}(t(s))$, which is called the arc length parameterization, the parameterization will have a constant speed.
loaddict(filename::AbstractString) = Dict(lval => rval for (rval, lval) in split.(eachline(filename), " -> ")) function prettyprint(dict) cache = Dict{AbstractString, UInt16}() foreach(sort!(collect(keys(dict)))) do key println(key, ": ", bobbycalculate(dict, key, cache)) end end bobbycalculate(filename::AbstractString, var) = bobbycalculate(loaddict(filename), var) function bobbycalculate(dict::Dict, var::AbstractString, cache = Dict{AbstractString, UInt16}()) get!(cache, var) do str = dict[var] if all(isdigit, str) parse(UInt16, str) elseif startswith(str, "NOT") ~bobbycalculate(dict, str[5:end], cache) elseif str in keys(dict) bobbycalculate(dict, str, cache) else l, i, r = match(r"(.+) (AND|OR|[LR]SHIFT) (.+)", str) lval = all(isdigit, l) ? parse(UInt16, l) : bobbycalculate(dict, l, cache) instr = if i == "AND" (&) elseif i == "OR" (|) elseif i == "LSHIFT" (<<) elseif i == "RSHIFT" (>>) end rval = all(isdigit, r) ? parse(UInt16, r) : bobbycalculate(dict, r, cache) instr(lval, rval) end end end if basename(pwd()) == "aoc" cd("2015/7") end part1() = bobbycalculate(loaddict("input.txt"), "a") part2() = bobbycalculate(loaddict("input.txt"), "a", Dict("b"=>0xb3f1))
Suppose $f$ is a continuous function defined on the convex hull of three points $a$, $b$, and $c$. If the distances between these points are bounded by $K$, and if the integral of $f$ around the triangle formed by these points is at least $eK^2$, then there exists a triangle with vertices $a'$, $b'$, and $c'$ such that the distances between these points are bounded by $K/2$, and the integral of $f$ around this triangle is at least $e(K/2)^2$.
[GOAL] α : Type u_1 E : Type u_2 F : Type u_3 m0 : MeasurableSpace α inst✝⁵ : NormedAddCommGroup E inst✝⁴ : NormedSpace ℝ E inst✝³ : CompleteSpace E inst✝² : NormedAddCommGroup F inst✝¹ : NormedSpace ℝ F inst✝ : CompleteSpace F μ ν : Measure α s t : Set α f g : α → ℝ≥0∞ ⊢ ⨍⁻ (_x : α), 0 ∂μ = 0 [PROOFSTEP] rw [laverage, lintegral_zero] [GOAL] α : Type u_1 E : Type u_2 F : Type u_3 m0 : MeasurableSpace α inst✝⁵ : NormedAddCommGroup E inst✝⁴ : NormedSpace ℝ E inst✝³ : CompleteSpace E inst✝² : NormedAddCommGroup F inst✝¹ : NormedSpace ℝ F inst✝ : CompleteSpace F μ ν : Measure α s t : Set α f✝ g f : α → ℝ≥0∞ ⊢ ⨍⁻ (x : α), f x ∂0 = 0 [PROOFSTEP] simp [laverage] [GOAL] α : Type u_1 E : Type u_2 F : Type u_3 m0 : MeasurableSpace α inst✝⁵ : NormedAddCommGroup E inst✝⁴ : NormedSpace ℝ E inst✝³ : CompleteSpace E inst✝² : NormedAddCommGroup F inst✝¹ : NormedSpace ℝ F inst✝ : CompleteSpace F μ ν : Measure α s t : Set α f✝ g f : α → ℝ≥0∞ ⊢ ⨍⁻ (x : α), f x ∂μ = (∫⁻ (x : α), f x ∂μ) / ↑↑μ univ [PROOFSTEP] rw [laverage_eq', lintegral_smul_measure, ENNReal.div_eq_inv_mul] [GOAL] α : Type u_1 E : Type u_2 F : Type u_3 m0 : MeasurableSpace α inst✝⁶ : NormedAddCommGroup E inst✝⁵ : NormedSpace ℝ E inst✝⁴ : CompleteSpace E inst✝³ : NormedAddCommGroup F inst✝² : NormedSpace ℝ F inst✝¹ : CompleteSpace F μ ν : Measure α s t : Set α f✝ g : α → ℝ≥0∞ inst✝ : IsProbabilityMeasure μ f : α → ℝ≥0∞ ⊢ ⨍⁻ (x : α), f x ∂μ = ∫⁻ (x : α), f x ∂μ [PROOFSTEP] rw [laverage, measure_univ, inv_one, one_smul] [GOAL] α : Type u_1 E : Type u_2 F : Type u_3 m0 : MeasurableSpace α inst✝⁶ : NormedAddCommGroup E inst✝⁵ : NormedSpace ℝ E inst✝⁴ : CompleteSpace E inst✝³ : NormedAddCommGroup F inst✝² : NormedSpace ℝ F inst✝¹ : CompleteSpace F μ ν : Measure α s t : Set α f✝ g : α → ℝ≥0∞ inst✝ : IsFiniteMeasure μ f : α → ℝ≥0∞ ⊢ ↑↑μ univ * ⨍⁻ (x : α), f x ∂μ = ∫⁻ (x : α), f x ∂μ [PROOFSTEP] cases' eq_or_ne μ 0 with hμ hμ [GOAL] case inl α : Type u_1 E : Type u_2 F : Type u_3 m0 : MeasurableSpace α inst✝⁶ : NormedAddCommGroup E inst✝⁵ : NormedSpace ℝ E inst✝⁴ : CompleteSpace E inst✝³ : NormedAddCommGroup F inst✝² : NormedSpace ℝ F inst✝¹ : CompleteSpace F μ ν : Measure α s t : Set α f✝ g : α → ℝ≥0∞ inst✝ : IsFiniteMeasure μ f : α → ℝ≥0∞ hμ : μ = 0 ⊢ ↑↑μ univ * ⨍⁻ (x : α), f x ∂μ = ∫⁻ (x : α), f x ∂μ [PROOFSTEP] rw [hμ, lintegral_zero_measure, laverage_zero_measure, mul_zero] [GOAL] case inr α : Type u_1 E : Type u_2 F : Type u_3 m0 : MeasurableSpace α inst✝⁶ : NormedAddCommGroup E inst✝⁵ : NormedSpace ℝ E inst✝⁴ : CompleteSpace E inst✝³ : NormedAddCommGroup F inst✝² : NormedSpace ℝ F inst✝¹ : CompleteSpace F μ ν : Measure α s t : Set α f✝ g : α → ℝ≥0∞ inst✝ : IsFiniteMeasure μ f : α → ℝ≥0∞ hμ : μ ≠ 0 ⊢ ↑↑μ univ * ⨍⁻ (x : α), f x ∂μ = ∫⁻ (x : α), f x ∂μ [PROOFSTEP] rw [laverage_eq, ENNReal.mul_div_cancel' (measure_univ_ne_zero.2 hμ) (measure_ne_top _ _)] [GOAL] α : Type u_1 E : Type u_2 F : Type u_3 m0 : MeasurableSpace α inst✝⁵ : NormedAddCommGroup E inst✝⁴ : NormedSpace ℝ E inst✝³ : CompleteSpace E inst✝² : NormedAddCommGroup F inst✝¹ : NormedSpace ℝ F inst✝ : CompleteSpace F μ ν : Measure α s✝ t : Set α f✝ g f : α → ℝ≥0∞ s : Set α ⊢ ⨍⁻ (x : α) in s, f x ∂μ = (∫⁻ (x : α) in s, f x ∂μ) / ↑↑μ s [PROOFSTEP] rw [laverage_eq, restrict_apply_univ] [GOAL] α : Type u_1 E : Type u_2 F : Type u_3 m0 : MeasurableSpace α inst✝⁵ : NormedAddCommGroup E inst✝⁴ : NormedSpace ℝ E inst✝³ : CompleteSpace E inst✝² : NormedAddCommGroup F inst✝¹ : NormedSpace ℝ F inst✝ : CompleteSpace F μ ν : Measure α s✝ t : Set α f✝ g f : α → ℝ≥0∞ s : Set α ⊢ ⨍⁻ (x : α) in s, f x ∂μ = ∫⁻ (x : α), f x ∂(↑↑μ s)⁻¹ • Measure.restrict μ s [PROOFSTEP] simp only [laverage_eq', restrict_apply_univ] [GOAL] α : Type u_1 E : Type u_2 F : Type u_3 m0 : MeasurableSpace α inst✝⁵ : NormedAddCommGroup E inst✝⁴ : NormedSpace ℝ E inst✝³ : CompleteSpace E inst✝² : NormedAddCommGroup F inst✝¹ : NormedSpace ℝ F inst✝ : CompleteSpace F μ ν : Measure α s t : Set α f✝ g✝ f g : α → ℝ≥0∞ h : f =ᶠ[ae μ] g ⊢ ⨍⁻ (x : α), f x ∂μ = ⨍⁻ (x : α), g x ∂μ [PROOFSTEP] simp only [laverage_eq, lintegral_congr_ae h] [GOAL] α : Type u_1 E : Type u_2 F : Type u_3 m0 : MeasurableSpace α inst✝⁵ : NormedAddCommGroup E inst✝⁴ : NormedSpace ℝ E inst✝³ : CompleteSpace E inst✝² : NormedAddCommGroup F inst✝¹ : NormedSpace ℝ F inst✝ : CompleteSpace F μ ν : Measure α s t : Set α f g : α → ℝ≥0∞ h : s =ᶠ[ae μ] t ⊢ ⨍⁻ (x : α) in s, f x ∂μ = ⨍⁻ (x : α) in t, f x ∂μ [PROOFSTEP] simp only [setLaverage_eq, set_lintegral_congr h, measure_congr h] [GOAL] α : Type u_1 E : Type u_2 F : Type u_3 m0 : MeasurableSpace α inst✝⁵ : NormedAddCommGroup E inst✝⁴ : NormedSpace ℝ E inst✝³ : CompleteSpace E inst✝² : NormedAddCommGroup F inst✝¹ : NormedSpace ℝ F inst✝ : CompleteSpace F μ ν : Measure α s t : Set α f g : α → ℝ≥0∞ hs : MeasurableSet s h : ∀ᵐ (x : α) ∂μ, x ∈ s → f x = g x ⊢ ⨍⁻ (x : α) in s, f x ∂μ = ⨍⁻ (x : α) in s, g x ∂μ [PROOFSTEP] simp only [laverage_eq, set_lintegral_congr_fun hs h] [GOAL] α : Type u_1 E : Type u_2 F : Type u_3 m0 : MeasurableSpace α inst✝⁵ : NormedAddCommGroup E inst✝⁴ : NormedSpace ℝ E inst✝³ : CompleteSpace E inst✝² : NormedAddCommGroup F inst✝¹ : NormedSpace ℝ F inst✝ : CompleteSpace F μ ν : Measure α s t : Set α f g : α → ℝ≥0∞ hf : ∫⁻ (x : α), f x ∂μ ≠ ⊤ ⊢ ⨍⁻ (x : α), f x ∂μ < ⊤ [PROOFSTEP] obtain rfl | hμ := eq_or_ne μ 0 [GOAL] case inl α : Type u_1 E : Type u_2 F : Type u_3 m0 : MeasurableSpace α inst✝⁵ : NormedAddCommGroup E inst✝⁴ : NormedSpace ℝ E inst✝³ : CompleteSpace E inst✝² : NormedAddCommGroup F inst✝¹ : NormedSpace ℝ F inst✝ : CompleteSpace F ν : Measure α s t : Set α f g : α → ℝ≥0∞ hf : ∫⁻ (x : α), f x ∂0 ≠ ⊤ ⊢ ⨍⁻ (x : α), f x ∂0 < ⊤ [PROOFSTEP] simp [GOAL] case inr α : Type u_1 E : Type u_2 F : Type u_3 m0 : MeasurableSpace α inst✝⁵ : NormedAddCommGroup E inst✝⁴ : NormedSpace ℝ E inst✝³ : CompleteSpace E inst✝² : NormedAddCommGroup F inst✝¹ : NormedSpace ℝ F inst✝ : CompleteSpace F μ ν : Measure α s t : Set α f g : α → ℝ≥0∞ hf : ∫⁻ (x : α), f x ∂μ ≠ ⊤ hμ : μ ≠ 0 ⊢ ⨍⁻ (x : α), f x ∂μ < ⊤ [PROOFSTEP] rw [laverage_eq] [GOAL] case inr α : Type u_1 E : Type u_2 F : Type u_3 m0 : MeasurableSpace α inst✝⁵ : NormedAddCommGroup E inst✝⁴ : NormedSpace ℝ E inst✝³ : CompleteSpace E inst✝² : NormedAddCommGroup F inst✝¹ : NormedSpace ℝ F inst✝ : CompleteSpace F μ ν : Measure α s t : Set α f g : α → ℝ≥0∞ hf : ∫⁻ (x : α), f x ∂μ ≠ ⊤ hμ : μ ≠ 0 ⊢ (∫⁻ (x : α), f x ∂μ) / ↑↑μ univ < ⊤ [PROOFSTEP] exact div_lt_top hf (measure_univ_ne_zero.2 hμ) [GOAL] α : Type u_1 E : Type u_2 F : Type u_3 m0 : MeasurableSpace α inst✝⁵ : NormedAddCommGroup E inst✝⁴ : NormedSpace ℝ E inst✝³ : CompleteSpace E inst✝² : NormedAddCommGroup F inst✝¹ : NormedSpace ℝ F inst✝ : CompleteSpace F μ ν : Measure α s t : Set α f g : α → ℝ≥0∞ ⊢ ⨍⁻ (x : α), f x ∂(μ + ν) = ↑↑μ univ / (↑↑μ univ + ↑↑ν univ) * ⨍⁻ (x : α), f x ∂μ + ↑↑ν univ / (↑↑μ univ + ↑↑ν univ) * ⨍⁻ (x : α), f x ∂ν [PROOFSTEP] by_cases hμ : IsFiniteMeasure μ [GOAL] case pos α : Type u_1 E : Type u_2 F : Type u_3 m0 : MeasurableSpace α inst✝⁵ : NormedAddCommGroup E inst✝⁴ : NormedSpace ℝ E inst✝³ : CompleteSpace E inst✝² : NormedAddCommGroup F inst✝¹ : NormedSpace ℝ F inst✝ : CompleteSpace F μ ν : Measure α s t : Set α f g : α → ℝ≥0∞ hμ : IsFiniteMeasure μ ⊢ ⨍⁻ (x : α), f x ∂(μ + ν) = ↑↑μ univ / (↑↑μ univ + ↑↑ν univ) * ⨍⁻ (x : α), f x ∂μ + ↑↑ν univ / (↑↑μ univ + ↑↑ν univ) * ⨍⁻ (x : α), f x ∂ν case neg α : Type u_1 E : Type u_2 F : Type u_3 m0 : MeasurableSpace α inst✝⁵ : NormedAddCommGroup E inst✝⁴ : NormedSpace ℝ E inst✝³ : CompleteSpace E inst✝² : NormedAddCommGroup F inst✝¹ : NormedSpace ℝ F inst✝ : CompleteSpace F μ ν : Measure α s t : Set α f g : α → ℝ≥0∞ hμ : ¬IsFiniteMeasure μ ⊢ ⨍⁻ (x : α), f x ∂(μ + ν) = ↑↑μ univ / (↑↑μ univ + ↑↑ν univ) * ⨍⁻ (x : α), f x ∂μ + ↑↑ν univ / (↑↑μ univ + ↑↑ν univ) * ⨍⁻ (x : α), f x ∂ν [PROOFSTEP] swap [GOAL] case neg α : Type u_1 E : Type u_2 F : Type u_3 m0 : MeasurableSpace α inst✝⁵ : NormedAddCommGroup E inst✝⁴ : NormedSpace ℝ E inst✝³ : CompleteSpace E inst✝² : NormedAddCommGroup F inst✝¹ : NormedSpace ℝ F inst✝ : CompleteSpace F μ ν : Measure α s t : Set α f g : α → ℝ≥0∞ hμ : ¬IsFiniteMeasure μ ⊢ ⨍⁻ (x : α), f x ∂(μ + ν) = ↑↑μ univ / (↑↑μ univ + ↑↑ν univ) * ⨍⁻ (x : α), f x ∂μ + ↑↑ν univ / (↑↑μ univ + ↑↑ν univ) * ⨍⁻ (x : α), f x ∂ν [PROOFSTEP] rw [not_isFiniteMeasure_iff] at hμ [GOAL] case neg α : Type u_1 E : Type u_2 F : Type u_3 m0 : MeasurableSpace α inst✝⁵ : NormedAddCommGroup E inst✝⁴ : NormedSpace ℝ E inst✝³ : CompleteSpace E inst✝² : NormedAddCommGroup F inst✝¹ : NormedSpace ℝ F inst✝ : CompleteSpace F μ ν : Measure α s t : Set α f g : α → ℝ≥0∞ hμ : ↑↑μ univ = ⊤ ⊢ ⨍⁻ (x : α), f x ∂(μ + ν) = ↑↑μ univ / (↑↑μ univ + ↑↑ν univ) * ⨍⁻ (x : α), f x ∂μ + ↑↑ν univ / (↑↑μ univ + ↑↑ν univ) * ⨍⁻ (x : α), f x ∂ν [PROOFSTEP] simp [laverage_eq, hμ] [GOAL] case pos α : Type u_1 E : Type u_2 F : Type u_3 m0 : MeasurableSpace α inst✝⁵ : NormedAddCommGroup E inst✝⁴ : NormedSpace ℝ E inst✝³ : CompleteSpace E inst✝² : NormedAddCommGroup F inst✝¹ : NormedSpace ℝ F inst✝ : CompleteSpace F μ ν : Measure α s t : Set α f g : α → ℝ≥0∞ hμ : IsFiniteMeasure μ ⊢ ⨍⁻ (x : α), f x ∂(μ + ν) = ↑↑μ univ / (↑↑μ univ + ↑↑ν univ) * ⨍⁻ (x : α), f x ∂μ + ↑↑ν univ / (↑↑μ univ + ↑↑ν univ) * ⨍⁻ (x : α), f x ∂ν [PROOFSTEP] by_cases hν : IsFiniteMeasure ν [GOAL] case pos α : Type u_1 E : Type u_2 F : Type u_3 m0 : MeasurableSpace α inst✝⁵ : NormedAddCommGroup E inst✝⁴ : NormedSpace ℝ E inst✝³ : CompleteSpace E inst✝² : NormedAddCommGroup F inst✝¹ : NormedSpace ℝ F inst✝ : CompleteSpace F μ ν : Measure α s t : Set α f g : α → ℝ≥0∞ hμ : IsFiniteMeasure μ hν : IsFiniteMeasure ν ⊢ ⨍⁻ (x : α), f x ∂(μ + ν) = ↑↑μ univ / (↑↑μ univ + ↑↑ν univ) * ⨍⁻ (x : α), f x ∂μ + ↑↑ν univ / (↑↑μ univ + ↑↑ν univ) * ⨍⁻ (x : α), f x ∂ν case neg α : Type u_1 E : Type u_2 F : Type u_3 m0 : MeasurableSpace α inst✝⁵ : NormedAddCommGroup E inst✝⁴ : NormedSpace ℝ E inst✝³ : CompleteSpace E inst✝² : NormedAddCommGroup F inst✝¹ : NormedSpace ℝ F inst✝ : CompleteSpace F μ ν : Measure α s t : Set α f g : α → ℝ≥0∞ hμ : IsFiniteMeasure μ hν : ¬IsFiniteMeasure ν ⊢ ⨍⁻ (x : α), f x ∂(μ + ν) = ↑↑μ univ / (↑↑μ univ + ↑↑ν univ) * ⨍⁻ (x : α), f x ∂μ + ↑↑ν univ / (↑↑μ univ + ↑↑ν univ) * ⨍⁻ (x : α), f x ∂ν [PROOFSTEP] swap [GOAL] case neg α : Type u_1 E : Type u_2 F : Type u_3 m0 : MeasurableSpace α inst✝⁵ : NormedAddCommGroup E inst✝⁴ : NormedSpace ℝ E inst✝³ : CompleteSpace E inst✝² : NormedAddCommGroup F inst✝¹ : NormedSpace ℝ F inst✝ : CompleteSpace F μ ν : Measure α s t : Set α f g : α → ℝ≥0∞ hμ : IsFiniteMeasure μ hν : ¬IsFiniteMeasure ν ⊢ ⨍⁻ (x : α), f x ∂(μ + ν) = ↑↑μ univ / (↑↑μ univ + ↑↑ν univ) * ⨍⁻ (x : α), f x ∂μ + ↑↑ν univ / (↑↑μ univ + ↑↑ν univ) * ⨍⁻ (x : α), f x ∂ν [PROOFSTEP] rw [not_isFiniteMeasure_iff] at hν [GOAL] case neg α : Type u_1 E : Type u_2 F : Type u_3 m0 : MeasurableSpace α inst✝⁵ : NormedAddCommGroup E inst✝⁴ : NormedSpace ℝ E inst✝³ : CompleteSpace E inst✝² : NormedAddCommGroup F inst✝¹ : NormedSpace ℝ F inst✝ : CompleteSpace F μ ν : Measure α s t : Set α f g : α → ℝ≥0∞ hμ : IsFiniteMeasure μ hν : ↑↑ν univ = ⊤ ⊢ ⨍⁻ (x : α), f x ∂(μ + ν) = ↑↑μ univ / (↑↑μ univ + ↑↑ν univ) * ⨍⁻ (x : α), f x ∂μ + ↑↑ν univ / (↑↑μ univ + ↑↑ν univ) * ⨍⁻ (x : α), f x ∂ν [PROOFSTEP] simp [laverage_eq, hν] [GOAL] case pos α : Type u_1 E : Type u_2 F : Type u_3 m0 : MeasurableSpace α inst✝⁵ : NormedAddCommGroup E inst✝⁴ : NormedSpace ℝ E inst✝³ : CompleteSpace E inst✝² : NormedAddCommGroup F inst✝¹ : NormedSpace ℝ F inst✝ : CompleteSpace F μ ν : Measure α s t : Set α f g : α → ℝ≥0∞ hμ : IsFiniteMeasure μ hν : IsFiniteMeasure ν ⊢ ⨍⁻ (x : α), f x ∂(μ + ν) = ↑↑μ univ / (↑↑μ univ + ↑↑ν univ) * ⨍⁻ (x : α), f x ∂μ + ↑↑ν univ / (↑↑μ univ + ↑↑ν univ) * ⨍⁻ (x : α), f x ∂ν [PROOFSTEP] haveI := hμ [GOAL] case pos α : Type u_1 E : Type u_2 F : Type u_3 m0 : MeasurableSpace α inst✝⁵ : NormedAddCommGroup E inst✝⁴ : NormedSpace ℝ E inst✝³ : CompleteSpace E inst✝² : NormedAddCommGroup F inst✝¹ : NormedSpace ℝ F inst✝ : CompleteSpace F μ ν : Measure α s t : Set α f g : α → ℝ≥0∞ hμ : IsFiniteMeasure μ hν : IsFiniteMeasure ν this : IsFiniteMeasure μ ⊢ ⨍⁻ (x : α), f x ∂(μ + ν) = ↑↑μ univ / (↑↑μ univ + ↑↑ν univ) * ⨍⁻ (x : α), f x ∂μ + ↑↑ν univ / (↑↑μ univ + ↑↑ν univ) * ⨍⁻ (x : α), f x ∂ν [PROOFSTEP] haveI := hν [GOAL] case pos α : Type u_1 E : Type u_2 F : Type u_3 m0 : MeasurableSpace α inst✝⁵ : NormedAddCommGroup E inst✝⁴ : NormedSpace ℝ E inst✝³ : CompleteSpace E inst✝² : NormedAddCommGroup F inst✝¹ : NormedSpace ℝ F inst✝ : CompleteSpace F μ ν : Measure α s t : Set α f g : α → ℝ≥0∞ hμ : IsFiniteMeasure μ hν : IsFiniteMeasure ν this✝ : IsFiniteMeasure μ this : IsFiniteMeasure ν ⊢ ⨍⁻ (x : α), f x ∂(μ + ν) = ↑↑μ univ / (↑↑μ univ + ↑↑ν univ) * ⨍⁻ (x : α), f x ∂μ + ↑↑ν univ / (↑↑μ univ + ↑↑ν univ) * ⨍⁻ (x : α), f x ∂ν [PROOFSTEP] simp only [← ENNReal.mul_div_right_comm, measure_mul_laverage, ← ENNReal.add_div, ← lintegral_add_measure, ← Measure.add_apply, ← laverage_eq] [GOAL] α : Type u_1 E : Type u_2 F : Type u_3 m0 : MeasurableSpace α inst✝⁵ : NormedAddCommGroup E inst✝⁴ : NormedSpace ℝ E inst✝³ : CompleteSpace E inst✝² : NormedAddCommGroup F inst✝¹ : NormedSpace ℝ F inst✝ : CompleteSpace F μ ν : Measure α s t : Set α f✝ g f : α → ℝ≥0∞ h : ↑↑μ s ≠ ⊤ ⊢ ↑↑μ s * ⨍⁻ (x : α) in s, f x ∂μ = ∫⁻ (x : α) in s, f x ∂μ [PROOFSTEP] have := Fact.mk h.lt_top [GOAL] α : Type u_1 E : Type u_2 F : Type u_3 m0 : MeasurableSpace α inst✝⁵ : NormedAddCommGroup E inst✝⁴ : NormedSpace ℝ E inst✝³ : CompleteSpace E inst✝² : NormedAddCommGroup F inst✝¹ : NormedSpace ℝ F inst✝ : CompleteSpace F μ ν : Measure α s t : Set α f✝ g f : α → ℝ≥0∞ h : ↑↑μ s ≠ ⊤ this : Fact (↑↑μ s < ⊤) ⊢ ↑↑μ s * ⨍⁻ (x : α) in s, f x ∂μ = ∫⁻ (x : α) in s, f x ∂μ [PROOFSTEP] rw [← measure_mul_laverage, restrict_apply_univ] [GOAL] α : Type u_1 E : Type u_2 F : Type u_3 m0 : MeasurableSpace α inst✝⁵ : NormedAddCommGroup E inst✝⁴ : NormedSpace ℝ E inst✝³ : CompleteSpace E inst✝² : NormedAddCommGroup F inst✝¹ : NormedSpace ℝ F inst✝ : CompleteSpace F μ ν : Measure α s t : Set α f g : α → ℝ≥0∞ hd : AEDisjoint μ s t ht : NullMeasurableSet t ⊢ ⨍⁻ (x : α) in s ∪ t, f x ∂μ = ↑↑μ s / (↑↑μ s + ↑↑μ t) * ⨍⁻ (x : α) in s, f x ∂μ + ↑↑μ t / (↑↑μ s + ↑↑μ t) * ⨍⁻ (x : α) in t, f x ∂μ [PROOFSTEP] rw [restrict_union₀ hd ht, laverage_add_measure, restrict_apply_univ, restrict_apply_univ] [GOAL] α : Type u_1 E : Type u_2 F : Type u_3 m0 : MeasurableSpace α inst✝⁵ : NormedAddCommGroup E inst✝⁴ : NormedSpace ℝ E inst✝³ : CompleteSpace E inst✝² : NormedAddCommGroup F inst✝¹ : NormedSpace ℝ F inst✝ : CompleteSpace F μ ν : Measure α s t : Set α f g : α → ℝ≥0∞ hd : AEDisjoint μ s t ht : NullMeasurableSet t hs₀ : ↑↑μ s ≠ 0 ht₀ : ↑↑μ t ≠ 0 hsμ : ↑↑μ s ≠ ⊤ htμ : ↑↑μ t ≠ ⊤ ⊢ ⨍⁻ (x : α) in s ∪ t, f x ∂μ ∈ openSegment ℝ≥0∞ (⨍⁻ (x : α) in s, f x ∂μ) (⨍⁻ (x : α) in t, f x ∂μ) [PROOFSTEP] refine' ⟨μ s / (μ s + μ t), μ t / (μ s + μ t), ENNReal.div_pos hs₀ <| add_ne_top.2 ⟨hsμ, htμ⟩, ENNReal.div_pos ht₀ <| add_ne_top.2 ⟨hsμ, htμ⟩, _, (laverage_union hd ht).symm⟩ [GOAL] α : Type u_1 E : Type u_2 F : Type u_3 m0 : MeasurableSpace α inst✝⁵ : NormedAddCommGroup E inst✝⁴ : NormedSpace ℝ E inst✝³ : CompleteSpace E inst✝² : NormedAddCommGroup F inst✝¹ : NormedSpace ℝ F inst✝ : CompleteSpace F μ ν : Measure α s t : Set α f g : α → ℝ≥0∞ hd : AEDisjoint μ s t ht : NullMeasurableSet t hs₀ : ↑↑μ s ≠ 0 ht₀ : ↑↑μ t ≠ 0 hsμ : ↑↑μ s ≠ ⊤ htμ : ↑↑μ t ≠ ⊤ ⊢ ↑↑μ s / (↑↑μ s + ↑↑μ t) + ↑↑μ t / (↑↑μ s + ↑↑μ t) = 1 [PROOFSTEP] rw [← ENNReal.add_div, ENNReal.div_self (add_eq_zero.not.2 fun h => hs₀ h.1) (add_ne_top.2 ⟨hsμ, htμ⟩)] [GOAL] α : Type u_1 E : Type u_2 F : Type u_3 m0 : MeasurableSpace α inst✝⁵ : NormedAddCommGroup E inst✝⁴ : NormedSpace ℝ E inst✝³ : CompleteSpace E inst✝² : NormedAddCommGroup F inst✝¹ : NormedSpace ℝ F inst✝ : CompleteSpace F μ ν : Measure α s t : Set α f g : α → ℝ≥0∞ hd : AEDisjoint μ s t ht : NullMeasurableSet t hsμ : ↑↑μ s ≠ ⊤ htμ : ↑↑μ t ≠ ⊤ ⊢ ⨍⁻ (x : α) in s ∪ t, f x ∂μ ∈ [⨍⁻ (x : α) in s, f x ∂μ-[ℝ≥0∞]⨍⁻ (x : α) in t, f x ∂μ] [PROOFSTEP] by_cases hs₀ : μ s = 0 [GOAL] case pos α : Type u_1 E : Type u_2 F : Type u_3 m0 : MeasurableSpace α inst✝⁵ : NormedAddCommGroup E inst✝⁴ : NormedSpace ℝ E inst✝³ : CompleteSpace E inst✝² : NormedAddCommGroup F inst✝¹ : NormedSpace ℝ F inst✝ : CompleteSpace F μ ν : Measure α s t : Set α f g : α → ℝ≥0∞ hd : AEDisjoint μ s t ht : NullMeasurableSet t hsμ : ↑↑μ s ≠ ⊤ htμ : ↑↑μ t ≠ ⊤ hs₀ : ↑↑μ s = 0 ⊢ ⨍⁻ (x : α) in s ∪ t, f x ∂μ ∈ [⨍⁻ (x : α) in s, f x ∂μ-[ℝ≥0∞]⨍⁻ (x : α) in t, f x ∂μ] [PROOFSTEP] rw [← ae_eq_empty] at hs₀ [GOAL] case pos α : Type u_1 E : Type u_2 F : Type u_3 m0 : MeasurableSpace α inst✝⁵ : NormedAddCommGroup E inst✝⁴ : NormedSpace ℝ E inst✝³ : CompleteSpace E inst✝² : NormedAddCommGroup F inst✝¹ : NormedSpace ℝ F inst✝ : CompleteSpace F μ ν : Measure α s t : Set α f g : α → ℝ≥0∞ hd : AEDisjoint μ s t ht : NullMeasurableSet t hsμ : ↑↑μ s ≠ ⊤ htμ : ↑↑μ t ≠ ⊤ hs₀ : s =ᶠ[ae μ] ∅ ⊢ ⨍⁻ (x : α) in s ∪ t, f x ∂μ ∈ [⨍⁻ (x : α) in s, f x ∂μ-[ℝ≥0∞]⨍⁻ (x : α) in t, f x ∂μ] [PROOFSTEP] rw [restrict_congr_set (hs₀.union EventuallyEq.rfl), empty_union] [GOAL] case pos α : Type u_1 E : Type u_2 F : Type u_3 m0 : MeasurableSpace α inst✝⁵ : NormedAddCommGroup E inst✝⁴ : NormedSpace ℝ E inst✝³ : CompleteSpace E inst✝² : NormedAddCommGroup F inst✝¹ : NormedSpace ℝ F inst✝ : CompleteSpace F μ ν : Measure α s t : Set α f g : α → ℝ≥0∞ hd : AEDisjoint μ s t ht : NullMeasurableSet t hsμ : ↑↑μ s ≠ ⊤ htμ : ↑↑μ t ≠ ⊤ hs₀ : s =ᶠ[ae μ] ∅ ⊢ ⨍⁻ (x : α) in t, f x ∂μ ∈ [⨍⁻ (x : α) in s, f x ∂μ-[ℝ≥0∞]⨍⁻ (x : α) in t, f x ∂μ] [PROOFSTEP] exact right_mem_segment _ _ _ [GOAL] case neg α : Type u_1 E : Type u_2 F : Type u_3 m0 : MeasurableSpace α inst✝⁵ : NormedAddCommGroup E inst✝⁴ : NormedSpace ℝ E inst✝³ : CompleteSpace E inst✝² : NormedAddCommGroup F inst✝¹ : NormedSpace ℝ F inst✝ : CompleteSpace F μ ν : Measure α s t : Set α f g : α → ℝ≥0∞ hd : AEDisjoint μ s t ht : NullMeasurableSet t hsμ : ↑↑μ s ≠ ⊤ htμ : ↑↑μ t ≠ ⊤ hs₀ : ¬↑↑μ s = 0 ⊢ ⨍⁻ (x : α) in s ∪ t, f x ∂μ ∈ [⨍⁻ (x : α) in s, f x ∂μ-[ℝ≥0∞]⨍⁻ (x : α) in t, f x ∂μ] [PROOFSTEP] refine' ⟨μ s / (μ s + μ t), μ t / (μ s + μ t), zero_le _, zero_le _, _, (laverage_union hd ht).symm⟩ [GOAL] case neg α : Type u_1 E : Type u_2 F : Type u_3 m0 : MeasurableSpace α inst✝⁵ : NormedAddCommGroup E inst✝⁴ : NormedSpace ℝ E inst✝³ : CompleteSpace E inst✝² : NormedAddCommGroup F inst✝¹ : NormedSpace ℝ F inst✝ : CompleteSpace F μ ν : Measure α s t : Set α f g : α → ℝ≥0∞ hd : AEDisjoint μ s t ht : NullMeasurableSet t hsμ : ↑↑μ s ≠ ⊤ htμ : ↑↑μ t ≠ ⊤ hs₀ : ¬↑↑μ s = 0 ⊢ ↑↑μ s / (↑↑μ s + ↑↑μ t) + ↑↑μ t / (↑↑μ s + ↑↑μ t) = 1 [PROOFSTEP] rw [← ENNReal.add_div, ENNReal.div_self (add_eq_zero.not.2 fun h => hs₀ h.1) (add_ne_top.2 ⟨hsμ, htμ⟩)] [GOAL] α : Type u_1 E : Type u_2 F : Type u_3 m0 : MeasurableSpace α inst✝⁶ : NormedAddCommGroup E inst✝⁵ : NormedSpace ℝ E inst✝⁴ : CompleteSpace E inst✝³ : NormedAddCommGroup F inst✝² : NormedSpace ℝ F inst✝¹ : CompleteSpace F μ ν : Measure α s t : Set α f g : α → ℝ≥0∞ inst✝ : IsFiniteMeasure μ hs : NullMeasurableSet s hs₀ : ↑↑μ s ≠ 0 hsc₀ : ↑↑μ sᶜ ≠ 0 ⊢ ⨍⁻ (x : α), f x ∂μ ∈ openSegment ℝ≥0∞ (⨍⁻ (x : α) in s, f x ∂μ) (⨍⁻ (x : α) in sᶜ, f x ∂μ) [PROOFSTEP] simpa only [union_compl_self, restrict_univ] using laverage_union_mem_openSegment aedisjoint_compl_right hs.compl hs₀ hsc₀ (measure_ne_top _ _) (measure_ne_top _ _) [GOAL] α : Type u_1 E : Type u_2 F : Type u_3 m0 : MeasurableSpace α inst✝⁶ : NormedAddCommGroup E inst✝⁵ : NormedSpace ℝ E inst✝⁴ : CompleteSpace E inst✝³ : NormedAddCommGroup F inst✝² : NormedSpace ℝ F inst✝¹ : CompleteSpace F μ✝ ν : Measure α s t : Set α f g : α → ℝ≥0∞ μ : Measure α inst✝ : IsFiniteMeasure μ h : NeZero μ c : ℝ≥0∞ ⊢ ⨍⁻ (_x : α), c ∂μ = c [PROOFSTEP] simp only [laverage, lintegral_const, measure_univ, mul_one] [GOAL] α : Type u_1 E : Type u_2 F : Type u_3 m0 : MeasurableSpace α inst✝⁵ : NormedAddCommGroup E inst✝⁴ : NormedSpace ℝ E inst✝³ : CompleteSpace E inst✝² : NormedAddCommGroup F inst✝¹ : NormedSpace ℝ F inst✝ : CompleteSpace F μ ν : Measure α s t : Set α f g : α → ℝ≥0∞ hs₀ : ↑↑μ s ≠ 0 hs : ↑↑μ s ≠ ⊤ c : ℝ≥0∞ ⊢ ⨍⁻ (_x : α) in s, c ∂μ = c [PROOFSTEP] simp only [setLaverage_eq, lintegral_const, Measure.restrict_apply, MeasurableSet.univ, univ_inter, div_eq_mul_inv, mul_assoc, ENNReal.mul_inv_cancel hs₀ hs, mul_one] [GOAL] α : Type u_1 E : Type u_2 F : Type u_3 m0 : MeasurableSpace α inst✝⁶ : NormedAddCommGroup E inst✝⁵ : NormedSpace ℝ E inst✝⁴ : CompleteSpace E inst✝³ : NormedAddCommGroup F inst✝² : NormedSpace ℝ F inst✝¹ : CompleteSpace F μ✝ ν : Measure α s t : Set α f✝ g : α → ℝ≥0∞ μ : Measure α inst✝ : IsFiniteMeasure μ f : α → ℝ≥0∞ ⊢ ∫⁻ (_x : α), ⨍⁻ (a : α), f a ∂μ ∂μ = ∫⁻ (x : α), f x ∂μ [PROOFSTEP] obtain rfl | hμ := eq_or_ne μ 0 [GOAL] case inl α : Type u_1 E : Type u_2 F : Type u_3 m0 : MeasurableSpace α inst✝⁶ : NormedAddCommGroup E inst✝⁵ : NormedSpace ℝ E inst✝⁴ : CompleteSpace E inst✝³ : NormedAddCommGroup F inst✝² : NormedSpace ℝ F inst✝¹ : CompleteSpace F μ ν : Measure α s t : Set α f✝ g f : α → ℝ≥0∞ inst✝ : IsFiniteMeasure 0 ⊢ ∫⁻ (_x : α), ⨍⁻ (a : α), f a ∂0 ∂0 = ∫⁻ (x : α), f x ∂0 [PROOFSTEP] simp [GOAL] case inr α : Type u_1 E : Type u_2 F : Type u_3 m0 : MeasurableSpace α inst✝⁶ : NormedAddCommGroup E inst✝⁵ : NormedSpace ℝ E inst✝⁴ : CompleteSpace E inst✝³ : NormedAddCommGroup F inst✝² : NormedSpace ℝ F inst✝¹ : CompleteSpace F μ✝ ν : Measure α s t : Set α f✝ g : α → ℝ≥0∞ μ : Measure α inst✝ : IsFiniteMeasure μ f : α → ℝ≥0∞ hμ : μ ≠ 0 ⊢ ∫⁻ (_x : α), ⨍⁻ (a : α), f a ∂μ ∂μ = ∫⁻ (x : α), f x ∂μ [PROOFSTEP] rw [lintegral_const, laverage_eq, ENNReal.div_mul_cancel (measure_univ_ne_zero.2 hμ) (measure_ne_top _ _)] [GOAL] α : Type u_1 E : Type u_2 F : Type u_3 m0 : MeasurableSpace α inst✝⁵ : NormedAddCommGroup E inst✝⁴ : NormedSpace ℝ E inst✝³ : CompleteSpace E inst✝² : NormedAddCommGroup F inst✝¹ : NormedSpace ℝ F inst✝ : CompleteSpace F μ ν : Measure α s t : Set α f g : α → E ⊢ ⨍ (x : α), 0 ∂μ = 0 [PROOFSTEP] rw [average, integral_zero] [GOAL] α : Type u_1 E : Type u_2 F : Type u_3 m0 : MeasurableSpace α inst✝⁵ : NormedAddCommGroup E inst✝⁴ : NormedSpace ℝ E inst✝³ : CompleteSpace E inst✝² : NormedAddCommGroup F inst✝¹ : NormedSpace ℝ F inst✝ : CompleteSpace F μ ν : Measure α s t : Set α f✝ g f : α → E ⊢ ⨍ (x : α), f x ∂0 = 0 [PROOFSTEP] rw [average, smul_zero, integral_zero_measure] [GOAL] α : Type u_1 E : Type u_2 F : Type u_3 m0 : MeasurableSpace α inst✝⁵ : NormedAddCommGroup E inst✝⁴ : NormedSpace ℝ E inst✝³ : CompleteSpace E inst✝² : NormedAddCommGroup F inst✝¹ : NormedSpace ℝ F inst✝ : CompleteSpace F μ ν : Measure α s t : Set α f✝ g f : α → E ⊢ ⨍ (x : α), f x ∂μ = (ENNReal.toReal (↑↑μ univ))⁻¹ • ∫ (x : α), f x ∂μ [PROOFSTEP] rw [average_eq', integral_smul_measure, ENNReal.toReal_inv] [GOAL] α : Type u_1 E : Type u_2 F : Type u_3 m0 : MeasurableSpace α inst✝⁶ : NormedAddCommGroup E inst✝⁵ : NormedSpace ℝ E inst✝⁴ : CompleteSpace E inst✝³ : NormedAddCommGroup F inst✝² : NormedSpace ℝ F inst✝¹ : CompleteSpace F μ ν : Measure α s t : Set α f✝ g : α → E inst✝ : IsProbabilityMeasure μ f : α → E ⊢ ⨍ (x : α), f x ∂μ = ∫ (x : α), f x ∂μ [PROOFSTEP] rw [average, measure_univ, inv_one, one_smul] [GOAL] α : Type u_1 E : Type u_2 F : Type u_3 m0 : MeasurableSpace α inst✝⁶ : NormedAddCommGroup E inst✝⁵ : NormedSpace ℝ E inst✝⁴ : CompleteSpace E inst✝³ : NormedAddCommGroup F inst✝² : NormedSpace ℝ F inst✝¹ : CompleteSpace F μ ν : Measure α s t : Set α f✝ g : α → E inst✝ : IsFiniteMeasure μ f : α → E ⊢ ENNReal.toReal (↑↑μ univ) • ⨍ (x : α), f x ∂μ = ∫ (x : α), f x ∂μ [PROOFSTEP] cases' eq_or_ne μ 0 with hμ hμ [GOAL] case inl α : Type u_1 E : Type u_2 F : Type u_3 m0 : MeasurableSpace α inst✝⁶ : NormedAddCommGroup E inst✝⁵ : NormedSpace ℝ E inst✝⁴ : CompleteSpace E inst✝³ : NormedAddCommGroup F inst✝² : NormedSpace ℝ F inst✝¹ : CompleteSpace F μ ν : Measure α s t : Set α f✝ g : α → E inst✝ : IsFiniteMeasure μ f : α → E hμ : μ = 0 ⊢ ENNReal.toReal (↑↑μ univ) • ⨍ (x : α), f x ∂μ = ∫ (x : α), f x ∂μ [PROOFSTEP] rw [hμ, integral_zero_measure, average_zero_measure, smul_zero] [GOAL] case inr α : Type u_1 E : Type u_2 F : Type u_3 m0 : MeasurableSpace α inst✝⁶ : NormedAddCommGroup E inst✝⁵ : NormedSpace ℝ E inst✝⁴ : CompleteSpace E inst✝³ : NormedAddCommGroup F inst✝² : NormedSpace ℝ F inst✝¹ : CompleteSpace F μ ν : Measure α s t : Set α f✝ g : α → E inst✝ : IsFiniteMeasure μ f : α → E hμ : μ ≠ 0 ⊢ ENNReal.toReal (↑↑μ univ) • ⨍ (x : α), f x ∂μ = ∫ (x : α), f x ∂μ [PROOFSTEP] rw [average_eq, smul_inv_smul₀] [GOAL] case inr.hc α : Type u_1 E : Type u_2 F : Type u_3 m0 : MeasurableSpace α inst✝⁶ : NormedAddCommGroup E inst✝⁵ : NormedSpace ℝ E inst✝⁴ : CompleteSpace E inst✝³ : NormedAddCommGroup F inst✝² : NormedSpace ℝ F inst✝¹ : CompleteSpace F μ ν : Measure α s t : Set α f✝ g : α → E inst✝ : IsFiniteMeasure μ f : α → E hμ : μ ≠ 0 ⊢ ENNReal.toReal (↑↑μ univ) ≠ 0 [PROOFSTEP] refine' (ENNReal.toReal_pos _ <| measure_ne_top _ _).ne' [GOAL] case inr.hc α : Type u_1 E : Type u_2 F : Type u_3 m0 : MeasurableSpace α inst✝⁶ : NormedAddCommGroup E inst✝⁵ : NormedSpace ℝ E inst✝⁴ : CompleteSpace E inst✝³ : NormedAddCommGroup F inst✝² : NormedSpace ℝ F inst✝¹ : CompleteSpace F μ ν : Measure α s t : Set α f✝ g : α → E inst✝ : IsFiniteMeasure μ f : α → E hμ : μ ≠ 0 ⊢ ↑↑μ univ ≠ 0 [PROOFSTEP] rwa [Ne.def, measure_univ_eq_zero] [GOAL] α : Type u_1 E : Type u_2 F : Type u_3 m0 : MeasurableSpace α inst✝⁵ : NormedAddCommGroup E inst✝⁴ : NormedSpace ℝ E inst✝³ : CompleteSpace E inst✝² : NormedAddCommGroup F inst✝¹ : NormedSpace ℝ F inst✝ : CompleteSpace F μ ν : Measure α s✝ t : Set α f✝ g f : α → E s : Set α ⊢ ⨍ (x : α) in s, f x ∂μ = (ENNReal.toReal (↑↑μ s))⁻¹ • ∫ (x : α) in s, f x ∂μ [PROOFSTEP] rw [average_eq, restrict_apply_univ] [GOAL] α : Type u_1 E : Type u_2 F : Type u_3 m0 : MeasurableSpace α inst✝⁵ : NormedAddCommGroup E inst✝⁴ : NormedSpace ℝ E inst✝³ : CompleteSpace E inst✝² : NormedAddCommGroup F inst✝¹ : NormedSpace ℝ F inst✝ : CompleteSpace F μ ν : Measure α s✝ t : Set α f✝ g f : α → E s : Set α ⊢ ⨍ (x : α) in s, f x ∂μ = ∫ (x : α), f x ∂(↑↑μ s)⁻¹ • Measure.restrict μ s [PROOFSTEP] simp only [average_eq', restrict_apply_univ] [GOAL] α : Type u_1 E : Type u_2 F : Type u_3 m0 : MeasurableSpace α inst✝⁵ : NormedAddCommGroup E inst✝⁴ : NormedSpace ℝ E inst✝³ : CompleteSpace E inst✝² : NormedAddCommGroup F inst✝¹ : NormedSpace ℝ F inst✝ : CompleteSpace F μ ν : Measure α s t : Set α f✝ g✝ f g : α → E h : f =ᶠ[ae μ] g ⊢ ⨍ (x : α), f x ∂μ = ⨍ (x : α), g x ∂μ [PROOFSTEP] simp only [average_eq, integral_congr_ae h] [GOAL] α : Type u_1 E : Type u_2 F : Type u_3 m0 : MeasurableSpace α inst✝⁵ : NormedAddCommGroup E inst✝⁴ : NormedSpace ℝ E inst✝³ : CompleteSpace E inst✝² : NormedAddCommGroup F inst✝¹ : NormedSpace ℝ F inst✝ : CompleteSpace F μ ν : Measure α s t : Set α f g : α → E h : s =ᶠ[ae μ] t ⊢ ⨍ (x : α) in s, f x ∂μ = ⨍ (x : α) in t, f x ∂μ [PROOFSTEP] simp only [setAverage_eq, set_integral_congr_set_ae h, measure_congr h] [GOAL] α : Type u_1 E : Type u_2 F : Type u_3 m0 : MeasurableSpace α inst✝⁵ : NormedAddCommGroup E inst✝⁴ : NormedSpace ℝ E inst✝³ : CompleteSpace E inst✝² : NormedAddCommGroup F inst✝¹ : NormedSpace ℝ F inst✝ : CompleteSpace F μ ν : Measure α s t : Set α f g : α → E hs : MeasurableSet s h : ∀ᵐ (x : α) ∂μ, x ∈ s → f x = g x ⊢ ⨍ (x : α) in s, f x ∂μ = ⨍ (x : α) in s, g x ∂μ [PROOFSTEP] simp only [average_eq, set_integral_congr_ae hs h] [GOAL] α : Type u_1 E : Type u_2 F : Type u_3 m0 : MeasurableSpace α inst✝⁷ : NormedAddCommGroup E inst✝⁶ : NormedSpace ℝ E inst✝⁵ : CompleteSpace E inst✝⁴ : NormedAddCommGroup F inst✝³ : NormedSpace ℝ F inst✝² : CompleteSpace F μ ν✝ : Measure α s t : Set α f✝ g : α → E inst✝¹ : IsFiniteMeasure μ ν : Measure α inst✝ : IsFiniteMeasure ν f : α → E hμ : Integrable f hν : Integrable f ⊢ ⨍ (x : α), f x ∂(μ + ν) = (ENNReal.toReal (↑↑μ univ) / (ENNReal.toReal (↑↑μ univ) + ENNReal.toReal (↑↑ν univ))) • ⨍ (x : α), f x ∂μ + (ENNReal.toReal (↑↑ν univ) / (ENNReal.toReal (↑↑μ univ) + ENNReal.toReal (↑↑ν univ))) • ⨍ (x : α), f x ∂ν [PROOFSTEP] simp only [div_eq_inv_mul, mul_smul, measure_smul_average, ← smul_add, ← integral_add_measure hμ hν, ← ENNReal.toReal_add (measure_ne_top μ _) (measure_ne_top ν _)] [GOAL] α : Type u_1 E : Type u_2 F : Type u_3 m0 : MeasurableSpace α inst✝⁷ : NormedAddCommGroup E inst✝⁶ : NormedSpace ℝ E inst✝⁵ : CompleteSpace E inst✝⁴ : NormedAddCommGroup F inst✝³ : NormedSpace ℝ F inst✝² : CompleteSpace F μ ν✝ : Measure α s t : Set α f✝ g : α → E inst✝¹ : IsFiniteMeasure μ ν : Measure α inst✝ : IsFiniteMeasure ν f : α → E hμ : Integrable f hν : Integrable f ⊢ ⨍ (x : α), f x ∂(μ + ν) = (ENNReal.toReal (↑↑μ univ + ↑↑ν univ))⁻¹ • ∫ (x : α), f x ∂(μ + ν) [PROOFSTEP] rw [average_eq, Measure.add_apply] [GOAL] α : Type u_1 E : Type u_2 F : Type u_3 m0 : MeasurableSpace α inst✝⁵ : NormedAddCommGroup E inst✝⁴ : NormedSpace ℝ E inst✝³ : CompleteSpace E inst✝² : NormedAddCommGroup F inst✝¹ : NormedSpace ℝ F inst✝ : CompleteSpace F μ ν : Measure α s✝ t : Set α f✝ g f : α → E s : Set α h : ↑↑μ s ≠ ⊤ ⊢ ENNReal.toReal (↑↑μ s) • ⨍ (x : α) in s, f x ∂μ = ∫ (x : α) in s, f x ∂μ [PROOFSTEP] haveI := Fact.mk h.lt_top [GOAL] α : Type u_1 E : Type u_2 F : Type u_3 m0 : MeasurableSpace α inst✝⁵ : NormedAddCommGroup E inst✝⁴ : NormedSpace ℝ E inst✝³ : CompleteSpace E inst✝² : NormedAddCommGroup F inst✝¹ : NormedSpace ℝ F inst✝ : CompleteSpace F μ ν : Measure α s✝ t : Set α f✝ g f : α → E s : Set α h : ↑↑μ s ≠ ⊤ this : Fact (↑↑μ s < ⊤) ⊢ ENNReal.toReal (↑↑μ s) • ⨍ (x : α) in s, f x ∂μ = ∫ (x : α) in s, f x ∂μ [PROOFSTEP] rw [← measure_smul_average, restrict_apply_univ] [GOAL] α : Type u_1 E : Type u_2 F : Type u_3 m0 : MeasurableSpace α inst✝⁵ : NormedAddCommGroup E inst✝⁴ : NormedSpace ℝ E inst✝³ : CompleteSpace E inst✝² : NormedAddCommGroup F inst✝¹ : NormedSpace ℝ F inst✝ : CompleteSpace F μ ν : Measure α s✝ t✝ : Set α f✝ g f : α → E s t : Set α hd : AEDisjoint μ s t ht : NullMeasurableSet t hsμ : ↑↑μ s ≠ ⊤ htμ : ↑↑μ t ≠ ⊤ hfs : IntegrableOn f s hft : IntegrableOn f t ⊢ ⨍ (x : α) in s ∪ t, f x ∂μ = (ENNReal.toReal (↑↑μ s) / (ENNReal.toReal (↑↑μ s) + ENNReal.toReal (↑↑μ t))) • ⨍ (x : α) in s, f x ∂μ + (ENNReal.toReal (↑↑μ t) / (ENNReal.toReal (↑↑μ s) + ENNReal.toReal (↑↑μ t))) • ⨍ (x : α) in t, f x ∂μ [PROOFSTEP] haveI := Fact.mk hsμ.lt_top [GOAL] α : Type u_1 E : Type u_2 F : Type u_3 m0 : MeasurableSpace α inst✝⁵ : NormedAddCommGroup E inst✝⁴ : NormedSpace ℝ E inst✝³ : CompleteSpace E inst✝² : NormedAddCommGroup F inst✝¹ : NormedSpace ℝ F inst✝ : CompleteSpace F μ ν : Measure α s✝ t✝ : Set α f✝ g f : α → E s t : Set α hd : AEDisjoint μ s t ht : NullMeasurableSet t hsμ : ↑↑μ s ≠ ⊤ htμ : ↑↑μ t ≠ ⊤ hfs : IntegrableOn f s hft : IntegrableOn f t this : Fact (↑↑μ s < ⊤) ⊢ ⨍ (x : α) in s ∪ t, f x ∂μ = (ENNReal.toReal (↑↑μ s) / (ENNReal.toReal (↑↑μ s) + ENNReal.toReal (↑↑μ t))) • ⨍ (x : α) in s, f x ∂μ + (ENNReal.toReal (↑↑μ t) / (ENNReal.toReal (↑↑μ s) + ENNReal.toReal (↑↑μ t))) • ⨍ (x : α) in t, f x ∂μ [PROOFSTEP] haveI := Fact.mk htμ.lt_top [GOAL] α : Type u_1 E : Type u_2 F : Type u_3 m0 : MeasurableSpace α inst✝⁵ : NormedAddCommGroup E inst✝⁴ : NormedSpace ℝ E inst✝³ : CompleteSpace E inst✝² : NormedAddCommGroup F inst✝¹ : NormedSpace ℝ F inst✝ : CompleteSpace F μ ν : Measure α s✝ t✝ : Set α f✝ g f : α → E s t : Set α hd : AEDisjoint μ s t ht : NullMeasurableSet t hsμ : ↑↑μ s ≠ ⊤ htμ : ↑↑μ t ≠ ⊤ hfs : IntegrableOn f s hft : IntegrableOn f t this✝ : Fact (↑↑μ s < ⊤) this : Fact (↑↑μ t < ⊤) ⊢ ⨍ (x : α) in s ∪ t, f x ∂μ = (ENNReal.toReal (↑↑μ s) / (ENNReal.toReal (↑↑μ s) + ENNReal.toReal (↑↑μ t))) • ⨍ (x : α) in s, f x ∂μ + (ENNReal.toReal (↑↑μ t) / (ENNReal.toReal (↑↑μ s) + ENNReal.toReal (↑↑μ t))) • ⨍ (x : α) in t, f x ∂μ [PROOFSTEP] rw [restrict_union₀ hd ht, average_add_measure hfs hft, restrict_apply_univ, restrict_apply_univ] [GOAL] α : Type u_1 E : Type u_2 F : Type u_3 m0 : MeasurableSpace α inst✝⁵ : NormedAddCommGroup E inst✝⁴ : NormedSpace ℝ E inst✝³ : CompleteSpace E inst✝² : NormedAddCommGroup F inst✝¹ : NormedSpace ℝ F inst✝ : CompleteSpace F μ ν : Measure α s✝ t✝ : Set α f✝ g f : α → E s t : Set α hd : AEDisjoint μ s t ht : NullMeasurableSet t hs₀ : ↑↑μ s ≠ 0 ht₀ : ↑↑μ t ≠ 0 hsμ : ↑↑μ s ≠ ⊤ htμ : ↑↑μ t ≠ ⊤ hfs : IntegrableOn f s hft : IntegrableOn f t ⊢ ⨍ (x : α) in s ∪ t, f x ∂μ ∈ openSegment ℝ (⨍ (x : α) in s, f x ∂μ) (⨍ (x : α) in t, f x ∂μ) [PROOFSTEP] replace hs₀ : 0 < (μ s).toReal [GOAL] case hs₀ α : Type u_1 E : Type u_2 F : Type u_3 m0 : MeasurableSpace α inst✝⁵ : NormedAddCommGroup E inst✝⁴ : NormedSpace ℝ E inst✝³ : CompleteSpace E inst✝² : NormedAddCommGroup F inst✝¹ : NormedSpace ℝ F inst✝ : CompleteSpace F μ ν : Measure α s✝ t✝ : Set α f✝ g f : α → E s t : Set α hd : AEDisjoint μ s t ht : NullMeasurableSet t hs₀ : ↑↑μ s ≠ 0 ht₀ : ↑↑μ t ≠ 0 hsμ : ↑↑μ s ≠ ⊤ htμ : ↑↑μ t ≠ ⊤ hfs : IntegrableOn f s hft : IntegrableOn f t ⊢ 0 < ENNReal.toReal (↑↑μ s) α : Type u_1 E : Type u_2 F : Type u_3 m0 : MeasurableSpace α inst✝⁵ : NormedAddCommGroup E inst✝⁴ : NormedSpace ℝ E inst✝³ : CompleteSpace E inst✝² : NormedAddCommGroup F inst✝¹ : NormedSpace ℝ F inst✝ : CompleteSpace F μ ν : Measure α s✝ t✝ : Set α f✝ g f : α → E s t : Set α hd : AEDisjoint μ s t ht : NullMeasurableSet t ht₀ : ↑↑μ t ≠ 0 hsμ : ↑↑μ s ≠ ⊤ htμ : ↑↑μ t ≠ ⊤ hfs : IntegrableOn f s hft : IntegrableOn f t hs₀ : 0 < ENNReal.toReal (↑↑μ s) ⊢ ⨍ (x : α) in s ∪ t, f x ∂μ ∈ openSegment ℝ (⨍ (x : α) in s, f x ∂μ) (⨍ (x : α) in t, f x ∂μ) [PROOFSTEP] exact ENNReal.toReal_pos hs₀ hsμ [GOAL] α : Type u_1 E : Type u_2 F : Type u_3 m0 : MeasurableSpace α inst✝⁵ : NormedAddCommGroup E inst✝⁴ : NormedSpace ℝ E inst✝³ : CompleteSpace E inst✝² : NormedAddCommGroup F inst✝¹ : NormedSpace ℝ F inst✝ : CompleteSpace F μ ν : Measure α s✝ t✝ : Set α f✝ g f : α → E s t : Set α hd : AEDisjoint μ s t ht : NullMeasurableSet t ht₀ : ↑↑μ t ≠ 0 hsμ : ↑↑μ s ≠ ⊤ htμ : ↑↑μ t ≠ ⊤ hfs : IntegrableOn f s hft : IntegrableOn f t hs₀ : 0 < ENNReal.toReal (↑↑μ s) ⊢ ⨍ (x : α) in s ∪ t, f x ∂μ ∈ openSegment ℝ (⨍ (x : α) in s, f x ∂μ) (⨍ (x : α) in t, f x ∂μ) [PROOFSTEP] replace ht₀ : 0 < (μ t).toReal [GOAL] case ht₀ α : Type u_1 E : Type u_2 F : Type u_3 m0 : MeasurableSpace α inst✝⁵ : NormedAddCommGroup E inst✝⁴ : NormedSpace ℝ E inst✝³ : CompleteSpace E inst✝² : NormedAddCommGroup F inst✝¹ : NormedSpace ℝ F inst✝ : CompleteSpace F μ ν : Measure α s✝ t✝ : Set α f✝ g f : α → E s t : Set α hd : AEDisjoint μ s t ht : NullMeasurableSet t ht₀ : ↑↑μ t ≠ 0 hsμ : ↑↑μ s ≠ ⊤ htμ : ↑↑μ t ≠ ⊤ hfs : IntegrableOn f s hft : IntegrableOn f t hs₀ : 0 < ENNReal.toReal (↑↑μ s) ⊢ 0 < ENNReal.toReal (↑↑μ t) α : Type u_1 E : Type u_2 F : Type u_3 m0 : MeasurableSpace α inst✝⁵ : NormedAddCommGroup E inst✝⁴ : NormedSpace ℝ E inst✝³ : CompleteSpace E inst✝² : NormedAddCommGroup F inst✝¹ : NormedSpace ℝ F inst✝ : CompleteSpace F μ ν : Measure α s✝ t✝ : Set α f✝ g f : α → E s t : Set α hd : AEDisjoint μ s t ht : NullMeasurableSet t hsμ : ↑↑μ s ≠ ⊤ htμ : ↑↑μ t ≠ ⊤ hfs : IntegrableOn f s hft : IntegrableOn f t hs₀ : 0 < ENNReal.toReal (↑↑μ s) ht₀ : 0 < ENNReal.toReal (↑↑μ t) ⊢ ⨍ (x : α) in s ∪ t, f x ∂μ ∈ openSegment ℝ (⨍ (x : α) in s, f x ∂μ) (⨍ (x : α) in t, f x ∂μ) [PROOFSTEP] exact ENNReal.toReal_pos ht₀ htμ [GOAL] α : Type u_1 E : Type u_2 F : Type u_3 m0 : MeasurableSpace α inst✝⁵ : NormedAddCommGroup E inst✝⁴ : NormedSpace ℝ E inst✝³ : CompleteSpace E inst✝² : NormedAddCommGroup F inst✝¹ : NormedSpace ℝ F inst✝ : CompleteSpace F μ ν : Measure α s✝ t✝ : Set α f✝ g f : α → E s t : Set α hd : AEDisjoint μ s t ht : NullMeasurableSet t hsμ : ↑↑μ s ≠ ⊤ htμ : ↑↑μ t ≠ ⊤ hfs : IntegrableOn f s hft : IntegrableOn f t hs₀ : 0 < ENNReal.toReal (↑↑μ s) ht₀ : 0 < ENNReal.toReal (↑↑μ t) ⊢ ⨍ (x : α) in s ∪ t, f x ∂μ ∈ openSegment ℝ (⨍ (x : α) in s, f x ∂μ) (⨍ (x : α) in t, f x ∂μ) [PROOFSTEP] refine' mem_openSegment_iff_div.mpr ⟨(μ s).toReal, (μ t).toReal, hs₀, ht₀, (average_union hd ht hsμ htμ hfs hft).symm⟩ [GOAL] α : Type u_1 E : Type u_2 F : Type u_3 m0 : MeasurableSpace α inst✝⁵ : NormedAddCommGroup E inst✝⁴ : NormedSpace ℝ E inst✝³ : CompleteSpace E inst✝² : NormedAddCommGroup F inst✝¹ : NormedSpace ℝ F inst✝ : CompleteSpace F μ ν : Measure α s✝ t✝ : Set α f✝ g f : α → E s t : Set α hd : AEDisjoint μ s t ht : NullMeasurableSet t hsμ : ↑↑μ s ≠ ⊤ htμ : ↑↑μ t ≠ ⊤ hfs : IntegrableOn f s hft : IntegrableOn f t ⊢ ⨍ (x : α) in s ∪ t, f x ∂μ ∈ [⨍ (x : α) in s, f x ∂μ-[ℝ]⨍ (x : α) in t, f x ∂μ] [PROOFSTEP] by_cases hse : μ s = 0 [GOAL] case pos α : Type u_1 E : Type u_2 F : Type u_3 m0 : MeasurableSpace α inst✝⁵ : NormedAddCommGroup E inst✝⁴ : NormedSpace ℝ E inst✝³ : CompleteSpace E inst✝² : NormedAddCommGroup F inst✝¹ : NormedSpace ℝ F inst✝ : CompleteSpace F μ ν : Measure α s✝ t✝ : Set α f✝ g f : α → E s t : Set α hd : AEDisjoint μ s t ht : NullMeasurableSet t hsμ : ↑↑μ s ≠ ⊤ htμ : ↑↑μ t ≠ ⊤ hfs : IntegrableOn f s hft : IntegrableOn f t hse : ↑↑μ s = 0 ⊢ ⨍ (x : α) in s ∪ t, f x ∂μ ∈ [⨍ (x : α) in s, f x ∂μ-[ℝ]⨍ (x : α) in t, f x ∂μ] [PROOFSTEP] rw [← ae_eq_empty] at hse [GOAL] case pos α : Type u_1 E : Type u_2 F : Type u_3 m0 : MeasurableSpace α inst✝⁵ : NormedAddCommGroup E inst✝⁴ : NormedSpace ℝ E inst✝³ : CompleteSpace E inst✝² : NormedAddCommGroup F inst✝¹ : NormedSpace ℝ F inst✝ : CompleteSpace F μ ν : Measure α s✝ t✝ : Set α f✝ g f : α → E s t : Set α hd : AEDisjoint μ s t ht : NullMeasurableSet t hsμ : ↑↑μ s ≠ ⊤ htμ : ↑↑μ t ≠ ⊤ hfs : IntegrableOn f s hft : IntegrableOn f t hse : s =ᶠ[ae μ] ∅ ⊢ ⨍ (x : α) in s ∪ t, f x ∂μ ∈ [⨍ (x : α) in s, f x ∂μ-[ℝ]⨍ (x : α) in t, f x ∂μ] [PROOFSTEP] rw [restrict_congr_set (hse.union EventuallyEq.rfl), empty_union] [GOAL] case pos α : Type u_1 E : Type u_2 F : Type u_3 m0 : MeasurableSpace α inst✝⁵ : NormedAddCommGroup E inst✝⁴ : NormedSpace ℝ E inst✝³ : CompleteSpace E inst✝² : NormedAddCommGroup F inst✝¹ : NormedSpace ℝ F inst✝ : CompleteSpace F μ ν : Measure α s✝ t✝ : Set α f✝ g f : α → E s t : Set α hd : AEDisjoint μ s t ht : NullMeasurableSet t hsμ : ↑↑μ s ≠ ⊤ htμ : ↑↑μ t ≠ ⊤ hfs : IntegrableOn f s hft : IntegrableOn f t hse : s =ᶠ[ae μ] ∅ ⊢ ⨍ (x : α) in t, f x ∂μ ∈ [⨍ (x : α) in s, f x ∂μ-[ℝ]⨍ (x : α) in t, f x ∂μ] [PROOFSTEP] exact right_mem_segment _ _ _ [GOAL] case neg α : Type u_1 E : Type u_2 F : Type u_3 m0 : MeasurableSpace α inst✝⁵ : NormedAddCommGroup E inst✝⁴ : NormedSpace ℝ E inst✝³ : CompleteSpace E inst✝² : NormedAddCommGroup F inst✝¹ : NormedSpace ℝ F inst✝ : CompleteSpace F μ ν : Measure α s✝ t✝ : Set α f✝ g f : α → E s t : Set α hd : AEDisjoint μ s t ht : NullMeasurableSet t hsμ : ↑↑μ s ≠ ⊤ htμ : ↑↑μ t ≠ ⊤ hfs : IntegrableOn f s hft : IntegrableOn f t hse : ¬↑↑μ s = 0 ⊢ ⨍ (x : α) in s ∪ t, f x ∂μ ∈ [⨍ (x : α) in s, f x ∂μ-[ℝ]⨍ (x : α) in t, f x ∂μ] [PROOFSTEP] refine' mem_segment_iff_div.mpr ⟨(μ s).toReal, (μ t).toReal, ENNReal.toReal_nonneg, ENNReal.toReal_nonneg, _, (average_union hd ht hsμ htμ hfs hft).symm⟩ [GOAL] case neg α : Type u_1 E : Type u_2 F : Type u_3 m0 : MeasurableSpace α inst✝⁵ : NormedAddCommGroup E inst✝⁴ : NormedSpace ℝ E inst✝³ : CompleteSpace E inst✝² : NormedAddCommGroup F inst✝¹ : NormedSpace ℝ F inst✝ : CompleteSpace F μ ν : Measure α s✝ t✝ : Set α f✝ g f : α → E s t : Set α hd : AEDisjoint μ s t ht : NullMeasurableSet t hsμ : ↑↑μ s ≠ ⊤ htμ : ↑↑μ t ≠ ⊤ hfs : IntegrableOn f s hft : IntegrableOn f t hse : ¬↑↑μ s = 0 ⊢ 0 < ENNReal.toReal (↑↑μ s) + ENNReal.toReal (↑↑μ t) [PROOFSTEP] calc 0 < (μ s).toReal := ENNReal.toReal_pos hse hsμ _ ≤ _ := le_add_of_nonneg_right ENNReal.toReal_nonneg [GOAL] α : Type u_1 E : Type u_2 F : Type u_3 m0 : MeasurableSpace α inst✝⁶ : NormedAddCommGroup E inst✝⁵ : NormedSpace ℝ E inst✝⁴ : CompleteSpace E inst✝³ : NormedAddCommGroup F inst✝² : NormedSpace ℝ F inst✝¹ : CompleteSpace F μ ν : Measure α s✝ t : Set α f✝ g : α → E inst✝ : IsFiniteMeasure μ f : α → E s : Set α hs : NullMeasurableSet s hs₀ : ↑↑μ s ≠ 0 hsc₀ : ↑↑μ sᶜ ≠ 0 hfi : Integrable f ⊢ ⨍ (x : α), f x ∂μ ∈ openSegment ℝ (⨍ (x : α) in s, f x ∂μ) (⨍ (x : α) in sᶜ, f x ∂μ) [PROOFSTEP] simpa only [union_compl_self, restrict_univ] using average_union_mem_openSegment aedisjoint_compl_right hs.compl hs₀ hsc₀ (measure_ne_top _ _) (measure_ne_top _ _) hfi.integrableOn hfi.integrableOn [GOAL] α : Type u_1 E : Type u_2 F : Type u_3 m0 : MeasurableSpace α inst✝⁶ : NormedAddCommGroup E inst✝⁵ : NormedSpace ℝ E inst✝⁴ : CompleteSpace E inst✝³ : NormedAddCommGroup F inst✝² : NormedSpace ℝ F inst✝¹ : CompleteSpace F μ✝ ν : Measure α s t : Set α f g : α → E μ : Measure α inst✝ : IsFiniteMeasure μ h : NeZero μ c : E ⊢ ⨍ (_x : α), c ∂μ = c [PROOFSTEP] rw [average, integral_const, measure_univ, ENNReal.one_toReal, one_smul] [GOAL] α : Type u_1 E : Type u_2 F : Type u_3 m0 : MeasurableSpace α inst✝⁶ : NormedAddCommGroup E inst✝⁵ : NormedSpace ℝ E inst✝⁴ : CompleteSpace E inst✝³ : NormedAddCommGroup F inst✝² : NormedSpace ℝ F inst✝¹ : CompleteSpace F μ✝ ν : Measure α s t : Set α f✝ g : α → E μ : Measure α inst✝ : IsFiniteMeasure μ f : α → E ⊢ ∫ (x : α), ⨍ (a : α), f a ∂μ ∂μ = ∫ (x : α), f x ∂μ [PROOFSTEP] simp [GOAL] α : Type u_1 E : Type u_2 F : Type u_3 m0 : MeasurableSpace α inst✝⁶ : NormedAddCommGroup E inst✝⁵ : NormedSpace ℝ E inst✝⁴ : CompleteSpace E inst✝³ : NormedAddCommGroup F inst✝² : NormedSpace ℝ F inst✝¹ : CompleteSpace F μ✝ ν : Measure α s t : Set α f✝ g : α → E μ : Measure α inst✝ : IsFiniteMeasure μ f : α → E ⊢ ∫ (x : α), f x - ⨍ (a : α), f a ∂μ ∂μ = 0 [PROOFSTEP] by_cases hf : Integrable f μ [GOAL] case pos α : Type u_1 E : Type u_2 F : Type u_3 m0 : MeasurableSpace α inst✝⁶ : NormedAddCommGroup E inst✝⁵ : NormedSpace ℝ E inst✝⁴ : CompleteSpace E inst✝³ : NormedAddCommGroup F inst✝² : NormedSpace ℝ F inst✝¹ : CompleteSpace F μ✝ ν : Measure α s t : Set α f✝ g : α → E μ : Measure α inst✝ : IsFiniteMeasure μ f : α → E hf : Integrable f ⊢ ∫ (x : α), f x - ⨍ (a : α), f a ∂μ ∂μ = 0 [PROOFSTEP] rw [integral_sub hf (integrable_const _), integral_average, sub_self] [GOAL] case neg α : Type u_1 E : Type u_2 F : Type u_3 m0 : MeasurableSpace α inst✝⁶ : NormedAddCommGroup E inst✝⁵ : NormedSpace ℝ E inst✝⁴ : CompleteSpace E inst✝³ : NormedAddCommGroup F inst✝² : NormedSpace ℝ F inst✝¹ : CompleteSpace F μ✝ ν : Measure α s t : Set α f✝ g : α → E μ : Measure α inst✝ : IsFiniteMeasure μ f : α → E hf : ¬Integrable f ⊢ ∫ (x : α), f x - ⨍ (a : α), f a ∂μ ∂μ = 0 [PROOFSTEP] refine integral_undef fun h => hf ?_ [GOAL] case neg α : Type u_1 E : Type u_2 F : Type u_3 m0 : MeasurableSpace α inst✝⁶ : NormedAddCommGroup E inst✝⁵ : NormedSpace ℝ E inst✝⁴ : CompleteSpace E inst✝³ : NormedAddCommGroup F inst✝² : NormedSpace ℝ F inst✝¹ : CompleteSpace F μ✝ ν : Measure α s t : Set α f✝ g : α → E μ : Measure α inst✝ : IsFiniteMeasure μ f : α → E hf : ¬Integrable f h : Integrable fun x => f x - ⨍ (a : α), f a ∂μ ⊢ Integrable f [PROOFSTEP] convert h.add (integrable_const (⨍ a, f a ∂μ)) [GOAL] case h.e'_5 α : Type u_1 E : Type u_2 F : Type u_3 m0 : MeasurableSpace α inst✝⁶ : NormedAddCommGroup E inst✝⁵ : NormedSpace ℝ E inst✝⁴ : CompleteSpace E inst✝³ : NormedAddCommGroup F inst✝² : NormedSpace ℝ F inst✝¹ : CompleteSpace F μ✝ ν : Measure α s t : Set α f✝ g : α → E μ : Measure α inst✝ : IsFiniteMeasure μ f : α → E hf : ¬Integrable f h : Integrable fun x => f x - ⨍ (a : α), f a ∂μ ⊢ f = (fun x => f x - ⨍ (a : α), f a ∂μ) + fun x => ⨍ (a : α), f a ∂μ [PROOFSTEP] exact (sub_add_cancel _ _).symm [GOAL] α : Type u_1 E : Type u_2 F : Type u_3 m0 : MeasurableSpace α inst✝⁶ : NormedAddCommGroup E inst✝⁵ : NormedSpace ℝ E inst✝⁴ : CompleteSpace E inst✝³ : NormedAddCommGroup F inst✝² : NormedSpace ℝ F inst✝¹ : CompleteSpace F μ ν : Measure α s t : Set α f g : α → E inst✝ : IsFiniteMeasure μ hf : Integrable f ⊢ ∫ (x : α), ⨍ (a : α), f a ∂μ - f x ∂μ = 0 [PROOFSTEP] rw [integral_sub (integrable_const _) hf, integral_average, sub_self] [GOAL] α : Type u_1 E : Type u_2 F : Type u_3 m0 : MeasurableSpace α inst✝⁵ : NormedAddCommGroup E inst✝⁴ : NormedSpace ℝ E inst✝³ : CompleteSpace E inst✝² : NormedAddCommGroup F inst✝¹ : NormedSpace ℝ F inst✝ : CompleteSpace F μ ν : Measure α s t : Set α f : α → ℝ hf : Integrable f hf₀ : 0 ≤ᶠ[ae μ] f ⊢ ENNReal.ofReal (⨍ (x : α), f x ∂μ) = (∫⁻ (x : α), ENNReal.ofReal (f x) ∂μ) / ↑↑μ univ [PROOFSTEP] obtain rfl | hμ := eq_or_ne μ 0 [GOAL] case inl α : Type u_1 E : Type u_2 F : Type u_3 m0 : MeasurableSpace α inst✝⁵ : NormedAddCommGroup E inst✝⁴ : NormedSpace ℝ E inst✝³ : CompleteSpace E inst✝² : NormedAddCommGroup F inst✝¹ : NormedSpace ℝ F inst✝ : CompleteSpace F ν : Measure α s t : Set α f : α → ℝ hf : Integrable f hf₀ : 0 ≤ᶠ[ae 0] f ⊢ ENNReal.ofReal (⨍ (x : α), f x ∂0) = (∫⁻ (x : α), ENNReal.ofReal (f x) ∂0) / ↑↑0 univ [PROOFSTEP] simp [GOAL] case inr α : Type u_1 E : Type u_2 F : Type u_3 m0 : MeasurableSpace α inst✝⁵ : NormedAddCommGroup E inst✝⁴ : NormedSpace ℝ E inst✝³ : CompleteSpace E inst✝² : NormedAddCommGroup F inst✝¹ : NormedSpace ℝ F inst✝ : CompleteSpace F μ ν : Measure α s t : Set α f : α → ℝ hf : Integrable f hf₀ : 0 ≤ᶠ[ae μ] f hμ : μ ≠ 0 ⊢ ENNReal.ofReal (⨍ (x : α), f x ∂μ) = (∫⁻ (x : α), ENNReal.ofReal (f x) ∂μ) / ↑↑μ univ [PROOFSTEP] rw [average_eq, smul_eq_mul, ← toReal_inv, ofReal_mul toReal_nonneg, ofReal_toReal (inv_ne_top.2 <| measure_univ_ne_zero.2 hμ), ofReal_integral_eq_lintegral_ofReal hf hf₀, ENNReal.div_eq_inv_mul] [GOAL] α : Type u_1 E : Type u_2 F : Type u_3 m0 : MeasurableSpace α inst✝⁵ : NormedAddCommGroup E inst✝⁴ : NormedSpace ℝ E inst✝³ : CompleteSpace E inst✝² : NormedAddCommGroup F inst✝¹ : NormedSpace ℝ F inst✝ : CompleteSpace F μ ν : Measure α s t : Set α f : α → ℝ hf : IntegrableOn f s hf₀ : 0 ≤ᶠ[ae (Measure.restrict μ s)] f ⊢ ENNReal.ofReal (⨍ (x : α) in s, f x ∂μ) = (∫⁻ (x : α) in s, ENNReal.ofReal (f x) ∂μ) / ↑↑μ s [PROOFSTEP] simpa using ofReal_average hf hf₀ [GOAL] α : Type u_1 E : Type u_2 F : Type u_3 m0 : MeasurableSpace α inst✝⁵ : NormedAddCommGroup E inst✝⁴ : NormedSpace ℝ E inst✝³ : CompleteSpace E inst✝² : NormedAddCommGroup F inst✝¹ : NormedSpace ℝ F inst✝ : CompleteSpace F μ ν : Measure α s t : Set α f : α → ℝ≥0∞ hf : AEMeasurable f hf' : ∀ᵐ (x : α) ∂μ, f x ≠ ⊤ ⊢ ENNReal.toReal (⨍⁻ (x : α), f x ∂μ) = ⨍ (x : α), ENNReal.toReal (f x) ∂μ [PROOFSTEP] rw [average_eq, laverage_eq, smul_eq_mul, toReal_div, div_eq_inv_mul, ← integral_toReal hf (hf'.mono fun _ => lt_top_iff_ne_top.2)] [GOAL] α : Type u_1 E : Type u_2 F : Type u_3 m0 : MeasurableSpace α inst✝⁵ : NormedAddCommGroup E inst✝⁴ : NormedSpace ℝ E inst✝³ : CompleteSpace E inst✝² : NormedAddCommGroup F inst✝¹ : NormedSpace ℝ F inst✝ : CompleteSpace F μ ν : Measure α s t : Set α f : α → ℝ≥0∞ hf : AEMeasurable f hf' : ∀ᵐ (x : α) ∂Measure.restrict μ s, f x ≠ ⊤ ⊢ ENNReal.toReal (⨍⁻ (x : α) in s, f x ∂μ) = ⨍ (x : α) in s, ENNReal.toReal (f x) ∂μ [PROOFSTEP] simpa [laverage_eq] using toReal_laverage hf hf' [GOAL] α : Type u_1 E : Type u_2 F : Type u_3 m0 : MeasurableSpace α inst✝⁵ : NormedAddCommGroup E inst✝⁴ : NormedSpace ℝ E inst✝³ : CompleteSpace E inst✝² : NormedAddCommGroup F inst✝¹ : NormedSpace ℝ F inst✝ : CompleteSpace F μ ν : Measure α s t N : Set α f : α → ℝ hμ : ↑↑μ s ≠ 0 hμ₁ : ↑↑μ s ≠ ⊤ hf : IntegrableOn f s ⊢ 0 < ↑↑μ {x | x ∈ s ∧ f x ≤ ⨍ (a : α) in s, f a ∂μ} [PROOFSTEP] refine' pos_iff_ne_zero.2 fun H => _ [GOAL] α : Type u_1 E : Type u_2 F : Type u_3 m0 : MeasurableSpace α inst✝⁵ : NormedAddCommGroup E inst✝⁴ : NormedSpace ℝ E inst✝³ : CompleteSpace E inst✝² : NormedAddCommGroup F inst✝¹ : NormedSpace ℝ F inst✝ : CompleteSpace F μ ν : Measure α s t N : Set α f : α → ℝ hμ : ↑↑μ s ≠ 0 hμ₁ : ↑↑μ s ≠ ⊤ hf : IntegrableOn f s H : ↑↑μ {x | x ∈ s ∧ f x ≤ ⨍ (a : α) in s, f a ∂μ} = 0 ⊢ False [PROOFSTEP] replace H : (μ.restrict s) {x | f x ≤ ⨍ a in s, f a ∂μ} = 0 [GOAL] case H α : Type u_1 E : Type u_2 F : Type u_3 m0 : MeasurableSpace α inst✝⁵ : NormedAddCommGroup E inst✝⁴ : NormedSpace ℝ E inst✝³ : CompleteSpace E inst✝² : NormedAddCommGroup F inst✝¹ : NormedSpace ℝ F inst✝ : CompleteSpace F μ ν : Measure α s t N : Set α f : α → ℝ hμ : ↑↑μ s ≠ 0 hμ₁ : ↑↑μ s ≠ ⊤ hf : IntegrableOn f s H : ↑↑μ {x | x ∈ s ∧ f x ≤ ⨍ (a : α) in s, f a ∂μ} = 0 ⊢ ↑↑(Measure.restrict μ s) {x | f x ≤ ⨍ (a : α) in s, f a ∂μ} = 0 [PROOFSTEP] rwa [restrict_apply₀, inter_comm] [GOAL] case H α : Type u_1 E : Type u_2 F : Type u_3 m0 : MeasurableSpace α inst✝⁵ : NormedAddCommGroup E inst✝⁴ : NormedSpace ℝ E inst✝³ : CompleteSpace E inst✝² : NormedAddCommGroup F inst✝¹ : NormedSpace ℝ F inst✝ : CompleteSpace F μ ν : Measure α s t N : Set α f : α → ℝ hμ : ↑↑μ s ≠ 0 hμ₁ : ↑↑μ s ≠ ⊤ hf : IntegrableOn f s H : ↑↑μ {x | x ∈ s ∧ f x ≤ ⨍ (a : α) in s, f a ∂μ} = 0 ⊢ NullMeasurableSet {x | f x ≤ ⨍ (a : α) in s, f a ∂μ} [PROOFSTEP] exact AEStronglyMeasurable.nullMeasurableSet_le hf.1 aestronglyMeasurable_const [GOAL] α : Type u_1 E : Type u_2 F : Type u_3 m0 : MeasurableSpace α inst✝⁵ : NormedAddCommGroup E inst✝⁴ : NormedSpace ℝ E inst✝³ : CompleteSpace E inst✝² : NormedAddCommGroup F inst✝¹ : NormedSpace ℝ F inst✝ : CompleteSpace F μ ν : Measure α s t N : Set α f : α → ℝ hμ : ↑↑μ s ≠ 0 hμ₁ : ↑↑μ s ≠ ⊤ hf : IntegrableOn f s H : ↑↑(Measure.restrict μ s) {x | f x ≤ ⨍ (a : α) in s, f a ∂μ} = 0 ⊢ False [PROOFSTEP] haveI := Fact.mk hμ₁.lt_top [GOAL] α : Type u_1 E : Type u_2 F : Type u_3 m0 : MeasurableSpace α inst✝⁵ : NormedAddCommGroup E inst✝⁴ : NormedSpace ℝ E inst✝³ : CompleteSpace E inst✝² : NormedAddCommGroup F inst✝¹ : NormedSpace ℝ F inst✝ : CompleteSpace F μ ν : Measure α s t N : Set α f : α → ℝ hμ : ↑↑μ s ≠ 0 hμ₁ : ↑↑μ s ≠ ⊤ hf : IntegrableOn f s H : ↑↑(Measure.restrict μ s) {x | f x ≤ ⨍ (a : α) in s, f a ∂μ} = 0 this : Fact (↑↑μ s < ⊤) ⊢ False [PROOFSTEP] refine' (integral_sub_average (μ.restrict s) f).not_gt _ [GOAL] α : Type u_1 E : Type u_2 F : Type u_3 m0 : MeasurableSpace α inst✝⁵ : NormedAddCommGroup E inst✝⁴ : NormedSpace ℝ E inst✝³ : CompleteSpace E inst✝² : NormedAddCommGroup F inst✝¹ : NormedSpace ℝ F inst✝ : CompleteSpace F μ ν : Measure α s t N : Set α f : α → ℝ hμ : ↑↑μ s ≠ 0 hμ₁ : ↑↑μ s ≠ ⊤ hf : IntegrableOn f s H : ↑↑(Measure.restrict μ s) {x | f x ≤ ⨍ (a : α) in s, f a ∂μ} = 0 this : Fact (↑↑μ s < ⊤) ⊢ 0 < ∫ (x : α) in s, f x - ⨍ (a : α) in s, f a ∂μ ∂μ [PROOFSTEP] refine' (set_integral_pos_iff_support_of_nonneg_ae _ _).2 _ [GOAL] case refine'_1 α : Type u_1 E : Type u_2 F : Type u_3 m0 : MeasurableSpace α inst✝⁵ : NormedAddCommGroup E inst✝⁴ : NormedSpace ℝ E inst✝³ : CompleteSpace E inst✝² : NormedAddCommGroup F inst✝¹ : NormedSpace ℝ F inst✝ : CompleteSpace F μ ν : Measure α s t N : Set α f : α → ℝ hμ : ↑↑μ s ≠ 0 hμ₁ : ↑↑μ s ≠ ⊤ hf : IntegrableOn f s H : ↑↑(Measure.restrict μ s) {x | f x ≤ ⨍ (a : α) in s, f a ∂μ} = 0 this : Fact (↑↑μ s < ⊤) ⊢ 0 ≤ᶠ[ae (Measure.restrict μ s)] fun x => f x - ⨍ (a : α) in s, f a ∂μ [PROOFSTEP] refine' eq_bot_mono (measure_mono fun x hx => _) H [GOAL] case refine'_1 α : Type u_1 E : Type u_2 F : Type u_3 m0 : MeasurableSpace α inst✝⁵ : NormedAddCommGroup E inst✝⁴ : NormedSpace ℝ E inst✝³ : CompleteSpace E inst✝² : NormedAddCommGroup F inst✝¹ : NormedSpace ℝ F inst✝ : CompleteSpace F μ ν : Measure α s t N : Set α f : α → ℝ hμ : ↑↑μ s ≠ 0 hμ₁ : ↑↑μ s ≠ ⊤ hf : IntegrableOn f s H : ↑↑(Measure.restrict μ s) {x | f x ≤ ⨍ (a : α) in s, f a ∂μ} = 0 this : Fact (↑↑μ s < ⊤) x : α hx : x ∈ {x | (fun x => OfNat.ofNat 0 x ≤ (fun x => f x - ⨍ (a : α) in s, f a ∂μ) x) x}ᶜ ⊢ x ∈ {x | f x ≤ ⨍ (a : α) in s, f a ∂μ} [PROOFSTEP] simp only [Pi.zero_apply, sub_nonneg, mem_compl_iff, mem_setOf_eq, not_le] at hx [GOAL] case refine'_1 α : Type u_1 E : Type u_2 F : Type u_3 m0 : MeasurableSpace α inst✝⁵ : NormedAddCommGroup E inst✝⁴ : NormedSpace ℝ E inst✝³ : CompleteSpace E inst✝² : NormedAddCommGroup F inst✝¹ : NormedSpace ℝ F inst✝ : CompleteSpace F μ ν : Measure α s t N : Set α f : α → ℝ hμ : ↑↑μ s ≠ 0 hμ₁ : ↑↑μ s ≠ ⊤ hf : IntegrableOn f s H : ↑↑(Measure.restrict μ s) {x | f x ≤ ⨍ (a : α) in s, f a ∂μ} = 0 this : Fact (↑↑μ s < ⊤) x : α hx : f x < ⨍ (a : α) in s, f a ∂μ ⊢ x ∈ {x | f x ≤ ⨍ (a : α) in s, f a ∂μ} [PROOFSTEP] exact hx.le [GOAL] case refine'_2 α : Type u_1 E : Type u_2 F : Type u_3 m0 : MeasurableSpace α inst✝⁵ : NormedAddCommGroup E inst✝⁴ : NormedSpace ℝ E inst✝³ : CompleteSpace E inst✝² : NormedAddCommGroup F inst✝¹ : NormedSpace ℝ F inst✝ : CompleteSpace F μ ν : Measure α s t N : Set α f : α → ℝ hμ : ↑↑μ s ≠ 0 hμ₁ : ↑↑μ s ≠ ⊤ hf : IntegrableOn f s H : ↑↑(Measure.restrict μ s) {x | f x ≤ ⨍ (a : α) in s, f a ∂μ} = 0 this : Fact (↑↑μ s < ⊤) ⊢ IntegrableOn (fun x => f x - ⨍ (a : α) in s, f a ∂μ) s [PROOFSTEP] exact hf.sub (integrableOn_const.2 <| Or.inr <| lt_top_iff_ne_top.2 hμ₁) [GOAL] case refine'_3 α : Type u_1 E : Type u_2 F : Type u_3 m0 : MeasurableSpace α inst✝⁵ : NormedAddCommGroup E inst✝⁴ : NormedSpace ℝ E inst✝³ : CompleteSpace E inst✝² : NormedAddCommGroup F inst✝¹ : NormedSpace ℝ F inst✝ : CompleteSpace F μ ν : Measure α s t N : Set α f : α → ℝ hμ : ↑↑μ s ≠ 0 hμ₁ : ↑↑μ s ≠ ⊤ hf : IntegrableOn f s H : ↑↑(Measure.restrict μ s) {x | f x ≤ ⨍ (a : α) in s, f a ∂μ} = 0 this : Fact (↑↑μ s < ⊤) ⊢ 0 < ↑↑μ ((support fun x => f x - ⨍ (a : α) in s, f a ∂μ) ∩ s) [PROOFSTEP] rwa [pos_iff_ne_zero, inter_comm, ← diff_compl, ← diff_inter_self_eq_diff, measure_diff_null] [GOAL] case refine'_3 α : Type u_1 E : Type u_2 F : Type u_3 m0 : MeasurableSpace α inst✝⁵ : NormedAddCommGroup E inst✝⁴ : NormedSpace ℝ E inst✝³ : CompleteSpace E inst✝² : NormedAddCommGroup F inst✝¹ : NormedSpace ℝ F inst✝ : CompleteSpace F μ ν : Measure α s t N : Set α f : α → ℝ hμ : ↑↑μ s ≠ 0 hμ₁ : ↑↑μ s ≠ ⊤ hf : IntegrableOn f s H : ↑↑(Measure.restrict μ s) {x | f x ≤ ⨍ (a : α) in s, f a ∂μ} = 0 this : Fact (↑↑μ s < ⊤) ⊢ ↑↑μ ((support fun x => f x - ⨍ (a : α) in s, f a ∂μ)ᶜ ∩ s) = 0 [PROOFSTEP] refine' eq_bot_mono (measure_mono _) (measure_inter_eq_zero_of_restrict H) [GOAL] case refine'_3 α : Type u_1 E : Type u_2 F : Type u_3 m0 : MeasurableSpace α inst✝⁵ : NormedAddCommGroup E inst✝⁴ : NormedSpace ℝ E inst✝³ : CompleteSpace E inst✝² : NormedAddCommGroup F inst✝¹ : NormedSpace ℝ F inst✝ : CompleteSpace F μ ν : Measure α s t N : Set α f : α → ℝ hμ : ↑↑μ s ≠ 0 hμ₁ : ↑↑μ s ≠ ⊤ hf : IntegrableOn f s H : ↑↑(Measure.restrict μ s) {x | f x ≤ ⨍ (a : α) in s, f a ∂μ} = 0 this : Fact (↑↑μ s < ⊤) ⊢ (support fun x => f x - ⨍ (a : α) in s, f a ∂μ)ᶜ ∩ s ⊆ {x | f x ≤ ⨍ (a : α) in s, f a ∂μ} ∩ s [PROOFSTEP] exact inter_subset_inter_left _ fun a ha => (sub_eq_zero.1 <| of_not_not ha).le [GOAL] α : Type u_1 E : Type u_2 F : Type u_3 m0 : MeasurableSpace α inst✝⁵ : NormedAddCommGroup E inst✝⁴ : NormedSpace ℝ E inst✝³ : CompleteSpace E inst✝² : NormedAddCommGroup F inst✝¹ : NormedSpace ℝ F inst✝ : CompleteSpace F μ ν : Measure α s t N : Set α f : α → ℝ hμ : ↑↑μ s ≠ 0 hμ₁ : ↑↑μ s ≠ ⊤ hf : IntegrableOn f s ⊢ 0 < ↑↑μ {x | x ∈ s ∧ ⨍ (a : α) in s, f a ∂μ ≤ f x} [PROOFSTEP] simpa [integral_neg, neg_div] using measure_le_setAverage_pos hμ hμ₁ hf.neg [GOAL] α : Type u_1 E : Type u_2 F : Type u_3 m0 : MeasurableSpace α inst✝⁶ : NormedAddCommGroup E inst✝⁵ : NormedSpace ℝ E inst✝⁴ : CompleteSpace E inst✝³ : NormedAddCommGroup F inst✝² : NormedSpace ℝ F inst✝¹ : CompleteSpace F μ ν : Measure α s t N : Set α f : α → ℝ inst✝ : IsFiniteMeasure μ hμ : μ ≠ 0 hf : Integrable f ⊢ 0 < ↑↑μ {x | f x ≤ ⨍ (a : α), f a ∂μ} [PROOFSTEP] simpa using measure_le_setAverage_pos (Measure.measure_univ_ne_zero.2 hμ) (measure_ne_top _ _) hf.integrableOn [GOAL] α : Type u_1 E : Type u_2 F : Type u_3 m0 : MeasurableSpace α inst✝⁶ : NormedAddCommGroup E inst✝⁵ : NormedSpace ℝ E inst✝⁴ : CompleteSpace E inst✝³ : NormedAddCommGroup F inst✝² : NormedSpace ℝ F inst✝¹ : CompleteSpace F μ ν : Measure α s t N : Set α f : α → ℝ inst✝ : IsFiniteMeasure μ hμ : μ ≠ 0 hf : Integrable f ⊢ 0 < ↑↑μ {x | ⨍ (a : α), f a ∂μ ≤ f x} [PROOFSTEP] simpa using measure_setAverage_le_pos (Measure.measure_univ_ne_zero.2 hμ) (measure_ne_top _ _) hf.integrableOn [GOAL] α : Type u_1 E : Type u_2 F : Type u_3 m0 : MeasurableSpace α inst✝⁶ : NormedAddCommGroup E inst✝⁵ : NormedSpace ℝ E inst✝⁴ : CompleteSpace E inst✝³ : NormedAddCommGroup F inst✝² : NormedSpace ℝ F inst✝¹ : CompleteSpace F μ ν : Measure α s t N : Set α f : α → ℝ inst✝ : IsFiniteMeasure μ hμ : μ ≠ 0 hf : Integrable f hN : ↑↑μ N = 0 ⊢ ∃ x, ¬x ∈ N ∧ f x ≤ ⨍ (a : α), f a ∂μ [PROOFSTEP] have := measure_le_average_pos hμ hf [GOAL] α : Type u_1 E : Type u_2 F : Type u_3 m0 : MeasurableSpace α inst✝⁶ : NormedAddCommGroup E inst✝⁵ : NormedSpace ℝ E inst✝⁴ : CompleteSpace E inst✝³ : NormedAddCommGroup F inst✝² : NormedSpace ℝ F inst✝¹ : CompleteSpace F μ ν : Measure α s t N : Set α f : α → ℝ inst✝ : IsFiniteMeasure μ hμ : μ ≠ 0 hf : Integrable f hN : ↑↑μ N = 0 this : 0 < ↑↑μ {x | f x ≤ ⨍ (a : α), f a ∂μ} ⊢ ∃ x, ¬x ∈ N ∧ f x ≤ ⨍ (a : α), f a ∂μ [PROOFSTEP] rw [← measure_diff_null hN] at this [GOAL] α : Type u_1 E : Type u_2 F : Type u_3 m0 : MeasurableSpace α inst✝⁶ : NormedAddCommGroup E inst✝⁵ : NormedSpace ℝ E inst✝⁴ : CompleteSpace E inst✝³ : NormedAddCommGroup F inst✝² : NormedSpace ℝ F inst✝¹ : CompleteSpace F μ ν : Measure α s t N : Set α f : α → ℝ inst✝ : IsFiniteMeasure μ hμ : μ ≠ 0 hf : Integrable f hN : ↑↑μ N = 0 this : 0 < ↑↑μ ({x | f x ≤ ⨍ (a : α), f a ∂μ} \ N) ⊢ ∃ x, ¬x ∈ N ∧ f x ≤ ⨍ (a : α), f a ∂μ [PROOFSTEP] obtain ⟨x, hx, hxN⟩ := nonempty_of_measure_ne_zero this.ne' [GOAL] case intro.intro α : Type u_1 E : Type u_2 F : Type u_3 m0 : MeasurableSpace α inst✝⁶ : NormedAddCommGroup E inst✝⁵ : NormedSpace ℝ E inst✝⁴ : CompleteSpace E inst✝³ : NormedAddCommGroup F inst✝² : NormedSpace ℝ F inst✝¹ : CompleteSpace F μ ν : Measure α s t N : Set α f : α → ℝ inst✝ : IsFiniteMeasure μ hμ : μ ≠ 0 hf : Integrable f hN : ↑↑μ N = 0 this : 0 < ↑↑μ ({x | f x ≤ ⨍ (a : α), f a ∂μ} \ N) x : α hx : x ∈ {x | f x ≤ ⨍ (a : α), f a ∂μ} hxN : ¬x ∈ N ⊢ ∃ x, ¬x ∈ N ∧ f x ≤ ⨍ (a : α), f a ∂μ [PROOFSTEP] exact ⟨x, hxN, hx⟩ [GOAL] α : Type u_1 E : Type u_2 F : Type u_3 m0 : MeasurableSpace α inst✝⁶ : NormedAddCommGroup E inst✝⁵ : NormedSpace ℝ E inst✝⁴ : CompleteSpace E inst✝³ : NormedAddCommGroup F inst✝² : NormedSpace ℝ F inst✝¹ : CompleteSpace F μ ν : Measure α s t N : Set α f : α → ℝ inst✝ : IsFiniteMeasure μ hμ : μ ≠ 0 hf : Integrable f hN : ↑↑μ N = 0 ⊢ ∃ x, ¬x ∈ N ∧ ⨍ (a : α), f a ∂μ ≤ f x [PROOFSTEP] simpa [integral_neg, neg_div] using exists_not_mem_null_le_average hμ hf.neg hN [GOAL] α : Type u_1 E : Type u_2 F : Type u_3 m0 : MeasurableSpace α inst✝⁶ : NormedAddCommGroup E inst✝⁵ : NormedSpace ℝ E inst✝⁴ : CompleteSpace E inst✝³ : NormedAddCommGroup F inst✝² : NormedSpace ℝ F inst✝¹ : CompleteSpace F μ ν : Measure α s t N : Set α f : α → ℝ inst✝ : IsProbabilityMeasure μ hf : Integrable f ⊢ 0 < ↑↑μ {x | f x ≤ ∫ (a : α), f a ∂μ} [PROOFSTEP] simpa only [average_eq_integral] using measure_le_average_pos (IsProbabilityMeasure.ne_zero μ) hf [GOAL] α : Type u_1 E : Type u_2 F : Type u_3 m0 : MeasurableSpace α inst✝⁶ : NormedAddCommGroup E inst✝⁵ : NormedSpace ℝ E inst✝⁴ : CompleteSpace E inst✝³ : NormedAddCommGroup F inst✝² : NormedSpace ℝ F inst✝¹ : CompleteSpace F μ ν : Measure α s t N : Set α f : α → ℝ inst✝ : IsProbabilityMeasure μ hf : Integrable f ⊢ 0 < ↑↑μ {x | ∫ (a : α), f a ∂μ ≤ f x} [PROOFSTEP] simpa only [average_eq_integral] using measure_average_le_pos (IsProbabilityMeasure.ne_zero μ) hf [GOAL] α : Type u_1 E : Type u_2 F : Type u_3 m0 : MeasurableSpace α inst✝⁶ : NormedAddCommGroup E inst✝⁵ : NormedSpace ℝ E inst✝⁴ : CompleteSpace E inst✝³ : NormedAddCommGroup F inst✝² : NormedSpace ℝ F inst✝¹ : CompleteSpace F μ ν : Measure α s t N : Set α f : α → ℝ inst✝ : IsProbabilityMeasure μ hf : Integrable f ⊢ ∃ x, f x ≤ ∫ (a : α), f a ∂μ [PROOFSTEP] simpa only [average_eq_integral] using exists_le_average (IsProbabilityMeasure.ne_zero μ) hf [GOAL] α : Type u_1 E : Type u_2 F : Type u_3 m0 : MeasurableSpace α inst✝⁶ : NormedAddCommGroup E inst✝⁵ : NormedSpace ℝ E inst✝⁴ : CompleteSpace E inst✝³ : NormedAddCommGroup F inst✝² : NormedSpace ℝ F inst✝¹ : CompleteSpace F μ ν : Measure α s t N : Set α f : α → ℝ inst✝ : IsProbabilityMeasure μ hf : Integrable f ⊢ ∃ x, ∫ (a : α), f a ∂μ ≤ f x [PROOFSTEP] simpa only [average_eq_integral] using exists_average_le (IsProbabilityMeasure.ne_zero μ) hf [GOAL] α : Type u_1 E : Type u_2 F : Type u_3 m0 : MeasurableSpace α inst✝⁶ : NormedAddCommGroup E inst✝⁵ : NormedSpace ℝ E inst✝⁴ : CompleteSpace E inst✝³ : NormedAddCommGroup F inst✝² : NormedSpace ℝ F inst✝¹ : CompleteSpace F μ ν : Measure α s t N : Set α f : α → ℝ inst✝ : IsProbabilityMeasure μ hf : Integrable f hN : ↑↑μ N = 0 ⊢ ∃ x, ¬x ∈ N ∧ f x ≤ ∫ (a : α), f a ∂μ [PROOFSTEP] simpa only [average_eq_integral] using exists_not_mem_null_le_average (IsProbabilityMeasure.ne_zero μ) hf hN [GOAL] α : Type u_1 E : Type u_2 F : Type u_3 m0 : MeasurableSpace α inst✝⁶ : NormedAddCommGroup E inst✝⁵ : NormedSpace ℝ E inst✝⁴ : CompleteSpace E inst✝³ : NormedAddCommGroup F inst✝² : NormedSpace ℝ F inst✝¹ : CompleteSpace F μ ν : Measure α s t N : Set α f : α → ℝ inst✝ : IsProbabilityMeasure μ hf : Integrable f hN : ↑↑μ N = 0 ⊢ ∃ x, ¬x ∈ N ∧ ∫ (a : α), f a ∂μ ≤ f x [PROOFSTEP] simpa only [average_eq_integral] using exists_not_mem_null_average_le (IsProbabilityMeasure.ne_zero μ) hf hN [GOAL] α : Type u_1 E : Type u_2 F : Type u_3 m0 : MeasurableSpace α inst✝⁵ : NormedAddCommGroup E inst✝⁴ : NormedSpace ℝ E inst✝³ : CompleteSpace E inst✝² : NormedAddCommGroup F inst✝¹ : NormedSpace ℝ F inst✝ : CompleteSpace F μ ν : Measure α s t N : Set α f : α → ℝ≥0∞ hμ : ↑↑μ s ≠ 0 hμ₁ : ↑↑μ s ≠ ⊤ hf : AEMeasurable f ⊢ 0 < ↑↑μ {x | x ∈ s ∧ f x ≤ ⨍⁻ (a : α) in s, f a ∂μ} [PROOFSTEP] obtain h | h := eq_or_ne (∫⁻ a in s, f a ∂μ) ∞ [GOAL] case inl α : Type u_1 E : Type u_2 F : Type u_3 m0 : MeasurableSpace α inst✝⁵ : NormedAddCommGroup E inst✝⁴ : NormedSpace ℝ E inst✝³ : CompleteSpace E inst✝² : NormedAddCommGroup F inst✝¹ : NormedSpace ℝ F inst✝ : CompleteSpace F μ ν : Measure α s t N : Set α f : α → ℝ≥0∞ hμ : ↑↑μ s ≠ 0 hμ₁ : ↑↑μ s ≠ ⊤ hf : AEMeasurable f h : ∫⁻ (a : α) in s, f a ∂μ = ⊤ ⊢ 0 < ↑↑μ {x | x ∈ s ∧ f x ≤ ⨍⁻ (a : α) in s, f a ∂μ} [PROOFSTEP] simpa [mul_top, hμ₁, laverage, h, top_div_of_ne_top hμ₁, pos_iff_ne_zero] using hμ [GOAL] case inr α : Type u_1 E : Type u_2 F : Type u_3 m0 : MeasurableSpace α inst✝⁵ : NormedAddCommGroup E inst✝⁴ : NormedSpace ℝ E inst✝³ : CompleteSpace E inst✝² : NormedAddCommGroup F inst✝¹ : NormedSpace ℝ F inst✝ : CompleteSpace F μ ν : Measure α s t N : Set α f : α → ℝ≥0∞ hμ : ↑↑μ s ≠ 0 hμ₁ : ↑↑μ s ≠ ⊤ hf : AEMeasurable f h : ∫⁻ (a : α) in s, f a ∂μ ≠ ⊤ ⊢ 0 < ↑↑μ {x | x ∈ s ∧ f x ≤ ⨍⁻ (a : α) in s, f a ∂μ} [PROOFSTEP] have := measure_le_setAverage_pos hμ hμ₁ (integrable_toReal_of_lintegral_ne_top hf h) [GOAL] case inr α : Type u_1 E : Type u_2 F : Type u_3 m0 : MeasurableSpace α inst✝⁵ : NormedAddCommGroup E inst✝⁴ : NormedSpace ℝ E inst✝³ : CompleteSpace E inst✝² : NormedAddCommGroup F inst✝¹ : NormedSpace ℝ F inst✝ : CompleteSpace F μ ν : Measure α s t N : Set α f : α → ℝ≥0∞ hμ : ↑↑μ s ≠ 0 hμ₁ : ↑↑μ s ≠ ⊤ hf : AEMeasurable f h : ∫⁻ (a : α) in s, f a ∂μ ≠ ⊤ this : 0 < ↑↑μ {x | x ∈ s ∧ ENNReal.toReal (f x) ≤ ⨍ (a : α) in s, ENNReal.toReal (f a) ∂μ} ⊢ 0 < ↑↑μ {x | x ∈ s ∧ f x ≤ ⨍⁻ (a : α) in s, f a ∂μ} [PROOFSTEP] rw [← setOf_inter_eq_sep, ← Measure.restrict_apply₀ (hf.aestronglyMeasurable.nullMeasurableSet_le aestronglyMeasurable_const)] [GOAL] case inr α : Type u_1 E : Type u_2 F : Type u_3 m0 : MeasurableSpace α inst✝⁵ : NormedAddCommGroup E inst✝⁴ : NormedSpace ℝ E inst✝³ : CompleteSpace E inst✝² : NormedAddCommGroup F inst✝¹ : NormedSpace ℝ F inst✝ : CompleteSpace F μ ν : Measure α s t N : Set α f : α → ℝ≥0∞ hμ : ↑↑μ s ≠ 0 hμ₁ : ↑↑μ s ≠ ⊤ hf : AEMeasurable f h : ∫⁻ (a : α) in s, f a ∂μ ≠ ⊤ this : 0 < ↑↑μ {x | x ∈ s ∧ ENNReal.toReal (f x) ≤ ⨍ (a : α) in s, ENNReal.toReal (f a) ∂μ} ⊢ 0 < ↑↑(Measure.restrict μ s) {a | f a ≤ ⨍⁻ (a : α) in s, f a ∂μ} [PROOFSTEP] rw [← setOf_inter_eq_sep, ← Measure.restrict_apply₀ (hf.ennreal_toReal.aestronglyMeasurable.nullMeasurableSet_le aestronglyMeasurable_const), ← measure_diff_null (measure_eq_top_of_lintegral_ne_top hf h)] at this [GOAL] case inr α : Type u_1 E : Type u_2 F : Type u_3 m0 : MeasurableSpace α inst✝⁵ : NormedAddCommGroup E inst✝⁴ : NormedSpace ℝ E inst✝³ : CompleteSpace E inst✝² : NormedAddCommGroup F inst✝¹ : NormedSpace ℝ F inst✝ : CompleteSpace F μ ν : Measure α s t N : Set α f : α → ℝ≥0∞ hμ : ↑↑μ s ≠ 0 hμ₁ : ↑↑μ s ≠ ⊤ hf : AEMeasurable f h : ∫⁻ (a : α) in s, f a ∂μ ≠ ⊤ this : 0 < ↑↑(Measure.restrict μ s) ({a | ENNReal.toReal (f a) ≤ ⨍ (a : α) in s, ENNReal.toReal (f a) ∂μ} \ {x | f x = ⊤}) ⊢ 0 < ↑↑(Measure.restrict μ s) {a | f a ≤ ⨍⁻ (a : α) in s, f a ∂μ} [PROOFSTEP] refine' this.trans_le (measure_mono _) [GOAL] case inr α : Type u_1 E : Type u_2 F : Type u_3 m0 : MeasurableSpace α inst✝⁵ : NormedAddCommGroup E inst✝⁴ : NormedSpace ℝ E inst✝³ : CompleteSpace E inst✝² : NormedAddCommGroup F inst✝¹ : NormedSpace ℝ F inst✝ : CompleteSpace F μ ν : Measure α s t N : Set α f : α → ℝ≥0∞ hμ : ↑↑μ s ≠ 0 hμ₁ : ↑↑μ s ≠ ⊤ hf : AEMeasurable f h : ∫⁻ (a : α) in s, f a ∂μ ≠ ⊤ this : 0 < ↑↑(Measure.restrict μ s) ({a | ENNReal.toReal (f a) ≤ ⨍ (a : α) in s, ENNReal.toReal (f a) ∂μ} \ {x | f x = ⊤}) ⊢ {a | ENNReal.toReal (f a) ≤ ⨍ (a : α) in s, ENNReal.toReal (f a) ∂μ} \ {x | f x = ⊤} ⊆ {a | f a ≤ ⨍⁻ (a : α) in s, f a ∂μ} [PROOFSTEP] rintro x ⟨hfx, hx⟩ [GOAL] case inr.intro α : Type u_1 E : Type u_2 F : Type u_3 m0 : MeasurableSpace α inst✝⁵ : NormedAddCommGroup E inst✝⁴ : NormedSpace ℝ E inst✝³ : CompleteSpace E inst✝² : NormedAddCommGroup F inst✝¹ : NormedSpace ℝ F inst✝ : CompleteSpace F μ ν : Measure α s t N : Set α f : α → ℝ≥0∞ hμ : ↑↑μ s ≠ 0 hμ₁ : ↑↑μ s ≠ ⊤ hf : AEMeasurable f h : ∫⁻ (a : α) in s, f a ∂μ ≠ ⊤ this : 0 < ↑↑(Measure.restrict μ s) ({a | ENNReal.toReal (f a) ≤ ⨍ (a : α) in s, ENNReal.toReal (f a) ∂μ} \ {x | f x = ⊤}) x : α hfx : x ∈ {a | ENNReal.toReal (f a) ≤ ⨍ (a : α) in s, ENNReal.toReal (f a) ∂μ} hx : ¬x ∈ {x | f x = ⊤} ⊢ x ∈ {a | f a ≤ ⨍⁻ (a : α) in s, f a ∂μ} [PROOFSTEP] dsimp at hfx [GOAL] case inr.intro α : Type u_1 E : Type u_2 F : Type u_3 m0 : MeasurableSpace α inst✝⁵ : NormedAddCommGroup E inst✝⁴ : NormedSpace ℝ E inst✝³ : CompleteSpace E inst✝² : NormedAddCommGroup F inst✝¹ : NormedSpace ℝ F inst✝ : CompleteSpace F μ ν : Measure α s t N : Set α f : α → ℝ≥0∞ hμ : ↑↑μ s ≠ 0 hμ₁ : ↑↑μ s ≠ ⊤ hf : AEMeasurable f h : ∫⁻ (a : α) in s, f a ∂μ ≠ ⊤ this : 0 < ↑↑(Measure.restrict μ s) ({a | ENNReal.toReal (f a) ≤ ⨍ (a : α) in s, ENNReal.toReal (f a) ∂μ} \ {x | f x = ⊤}) x : α hfx : ENNReal.toReal (f x) ≤ ⨍ (a : α) in s, ENNReal.toReal (f a) ∂μ hx : ¬x ∈ {x | f x = ⊤} ⊢ x ∈ {a | f a ≤ ⨍⁻ (a : α) in s, f a ∂μ} [PROOFSTEP] rwa [← toReal_laverage hf, toReal_le_toReal hx (setLaverage_lt_top h).ne] at hfx [GOAL] case inr.intro α : Type u_1 E : Type u_2 F : Type u_3 m0 : MeasurableSpace α inst✝⁵ : NormedAddCommGroup E inst✝⁴ : NormedSpace ℝ E inst✝³ : CompleteSpace E inst✝² : NormedAddCommGroup F inst✝¹ : NormedSpace ℝ F inst✝ : CompleteSpace F μ ν : Measure α s t N : Set α f : α → ℝ≥0∞ hμ : ↑↑μ s ≠ 0 hμ₁ : ↑↑μ s ≠ ⊤ hf : AEMeasurable f h : ∫⁻ (a : α) in s, f a ∂μ ≠ ⊤ this : 0 < ↑↑(Measure.restrict μ s) ({a | ENNReal.toReal (f a) ≤ ⨍ (a : α) in s, ENNReal.toReal (f a) ∂μ} \ {x | f x = ⊤}) x : α hfx : ENNReal.toReal (f x) ≤ ⨍ (a : α) in s, ENNReal.toReal (f a) ∂μ hx : ¬x ∈ {x | f x = ⊤} ⊢ ∀ᵐ (x : α) ∂Measure.restrict μ s, f x ≠ ⊤ [PROOFSTEP] simp_rw [ae_iff, not_ne_iff] [GOAL] case inr.intro α : Type u_1 E : Type u_2 F : Type u_3 m0 : MeasurableSpace α inst✝⁵ : NormedAddCommGroup E inst✝⁴ : NormedSpace ℝ E inst✝³ : CompleteSpace E inst✝² : NormedAddCommGroup F inst✝¹ : NormedSpace ℝ F inst✝ : CompleteSpace F μ ν : Measure α s t N : Set α f : α → ℝ≥0∞ hμ : ↑↑μ s ≠ 0 hμ₁ : ↑↑μ s ≠ ⊤ hf : AEMeasurable f h : ∫⁻ (a : α) in s, f a ∂μ ≠ ⊤ this : 0 < ↑↑(Measure.restrict μ s) ({a | ENNReal.toReal (f a) ≤ ⨍ (a : α) in s, ENNReal.toReal (f a) ∂μ} \ {x | f x = ⊤}) x : α hfx : ENNReal.toReal (f x) ≤ ⨍ (a : α) in s, ENNReal.toReal (f a) ∂μ hx : ¬x ∈ {x | f x = ⊤} ⊢ ↑↑(Measure.restrict μ s) {a | f a = ⊤} = 0 [PROOFSTEP] exact measure_eq_top_of_lintegral_ne_top hf h [GOAL] α : Type u_1 E : Type u_2 F : Type u_3 m0 : MeasurableSpace α inst✝⁵ : NormedAddCommGroup E inst✝⁴ : NormedSpace ℝ E inst✝³ : CompleteSpace E inst✝² : NormedAddCommGroup F inst✝¹ : NormedSpace ℝ F inst✝ : CompleteSpace F μ ν : Measure α s t N : Set α f : α → ℝ≥0∞ hμ : ↑↑μ s ≠ 0 hs : NullMeasurableSet s hint : ∫⁻ (a : α) in s, f a ∂μ ≠ ⊤ ⊢ 0 < ↑↑μ {x | x ∈ s ∧ ⨍⁻ (a : α) in s, f a ∂μ ≤ f x} [PROOFSTEP] obtain hμ₁ | hμ₁ := eq_or_ne (μ s) ∞ [GOAL] case inl α : Type u_1 E : Type u_2 F : Type u_3 m0 : MeasurableSpace α inst✝⁵ : NormedAddCommGroup E inst✝⁴ : NormedSpace ℝ E inst✝³ : CompleteSpace E inst✝² : NormedAddCommGroup F inst✝¹ : NormedSpace ℝ F inst✝ : CompleteSpace F μ ν : Measure α s t N : Set α f : α → ℝ≥0∞ hμ : ↑↑μ s ≠ 0 hs : NullMeasurableSet s hint : ∫⁻ (a : α) in s, f a ∂μ ≠ ⊤ hμ₁ : ↑↑μ s = ⊤ ⊢ 0 < ↑↑μ {x | x ∈ s ∧ ⨍⁻ (a : α) in s, f a ∂μ ≤ f x} [PROOFSTEP] simp [setLaverage_eq, hμ₁] [GOAL] case inr α : Type u_1 E : Type u_2 F : Type u_3 m0 : MeasurableSpace α inst✝⁵ : NormedAddCommGroup E inst✝⁴ : NormedSpace ℝ E inst✝³ : CompleteSpace E inst✝² : NormedAddCommGroup F inst✝¹ : NormedSpace ℝ F inst✝ : CompleteSpace F μ ν : Measure α s t N : Set α f : α → ℝ≥0∞ hμ : ↑↑μ s ≠ 0 hs : NullMeasurableSet s hint : ∫⁻ (a : α) in s, f a ∂μ ≠ ⊤ hμ₁ : ↑↑μ s ≠ ⊤ ⊢ 0 < ↑↑μ {x | x ∈ s ∧ ⨍⁻ (a : α) in s, f a ∂μ ≤ f x} [PROOFSTEP] obtain ⟨g, hg, hgf, hfg⟩ := exists_measurable_le_lintegral_eq (μ.restrict s) f [GOAL] case inr.intro.intro.intro α : Type u_1 E : Type u_2 F : Type u_3 m0 : MeasurableSpace α inst✝⁵ : NormedAddCommGroup E inst✝⁴ : NormedSpace ℝ E inst✝³ : CompleteSpace E inst✝² : NormedAddCommGroup F inst✝¹ : NormedSpace ℝ F inst✝ : CompleteSpace F μ ν : Measure α s t N : Set α f : α → ℝ≥0∞ hμ : ↑↑μ s ≠ 0 hs : NullMeasurableSet s hint : ∫⁻ (a : α) in s, f a ∂μ ≠ ⊤ hμ₁ : ↑↑μ s ≠ ⊤ g : α → ℝ≥0∞ hg : Measurable g hgf : g ≤ f hfg : ∫⁻ (a : α) in s, f a ∂μ = ∫⁻ (a : α) in s, g a ∂μ ⊢ 0 < ↑↑μ {x | x ∈ s ∧ ⨍⁻ (a : α) in s, f a ∂μ ≤ f x} [PROOFSTEP] have hfg' : ⨍⁻ a in s, f a ∂μ = ⨍⁻ a in s, g a ∂μ := by simp_rw [laverage_eq, hfg] [GOAL] α : Type u_1 E : Type u_2 F : Type u_3 m0 : MeasurableSpace α inst✝⁵ : NormedAddCommGroup E inst✝⁴ : NormedSpace ℝ E inst✝³ : CompleteSpace E inst✝² : NormedAddCommGroup F inst✝¹ : NormedSpace ℝ F inst✝ : CompleteSpace F μ ν : Measure α s t N : Set α f : α → ℝ≥0∞ hμ : ↑↑μ s ≠ 0 hs : NullMeasurableSet s hint : ∫⁻ (a : α) in s, f a ∂μ ≠ ⊤ hμ₁ : ↑↑μ s ≠ ⊤ g : α → ℝ≥0∞ hg : Measurable g hgf : g ≤ f hfg : ∫⁻ (a : α) in s, f a ∂μ = ∫⁻ (a : α) in s, g a ∂μ ⊢ ⨍⁻ (a : α) in s, f a ∂μ = ⨍⁻ (a : α) in s, g a ∂μ [PROOFSTEP] simp_rw [laverage_eq, hfg] [GOAL] case inr.intro.intro.intro α : Type u_1 E : Type u_2 F : Type u_3 m0 : MeasurableSpace α inst✝⁵ : NormedAddCommGroup E inst✝⁴ : NormedSpace ℝ E inst✝³ : CompleteSpace E inst✝² : NormedAddCommGroup F inst✝¹ : NormedSpace ℝ F inst✝ : CompleteSpace F μ ν : Measure α s t N : Set α f : α → ℝ≥0∞ hμ : ↑↑μ s ≠ 0 hs : NullMeasurableSet s hint : ∫⁻ (a : α) in s, f a ∂μ ≠ ⊤ hμ₁ : ↑↑μ s ≠ ⊤ g : α → ℝ≥0∞ hg : Measurable g hgf : g ≤ f hfg : ∫⁻ (a : α) in s, f a ∂μ = ∫⁻ (a : α) in s, g a ∂μ hfg' : ⨍⁻ (a : α) in s, f a ∂μ = ⨍⁻ (a : α) in s, g a ∂μ ⊢ 0 < ↑↑μ {x | x ∈ s ∧ ⨍⁻ (a : α) in s, f a ∂μ ≤ f x} [PROOFSTEP] rw [hfg] at hint [GOAL] case inr.intro.intro.intro α : Type u_1 E : Type u_2 F : Type u_3 m0 : MeasurableSpace α inst✝⁵ : NormedAddCommGroup E inst✝⁴ : NormedSpace ℝ E inst✝³ : CompleteSpace E inst✝² : NormedAddCommGroup F inst✝¹ : NormedSpace ℝ F inst✝ : CompleteSpace F μ ν : Measure α s t N : Set α f : α → ℝ≥0∞ hμ : ↑↑μ s ≠ 0 hs : NullMeasurableSet s hμ₁ : ↑↑μ s ≠ ⊤ g : α → ℝ≥0∞ hint : ∫⁻ (a : α) in s, g a ∂μ ≠ ⊤ hg : Measurable g hgf : g ≤ f hfg : ∫⁻ (a : α) in s, f a ∂μ = ∫⁻ (a : α) in s, g a ∂μ hfg' : ⨍⁻ (a : α) in s, f a ∂μ = ⨍⁻ (a : α) in s, g a ∂μ ⊢ 0 < ↑↑μ {x | x ∈ s ∧ ⨍⁻ (a : α) in s, f a ∂μ ≤ f x} [PROOFSTEP] have := measure_setAverage_le_pos hμ hμ₁ (integrable_toReal_of_lintegral_ne_top hg.aemeasurable hint) [GOAL] case inr.intro.intro.intro α : Type u_1 E : Type u_2 F : Type u_3 m0 : MeasurableSpace α inst✝⁵ : NormedAddCommGroup E inst✝⁴ : NormedSpace ℝ E inst✝³ : CompleteSpace E inst✝² : NormedAddCommGroup F inst✝¹ : NormedSpace ℝ F inst✝ : CompleteSpace F μ ν : Measure α s t N : Set α f : α → ℝ≥0∞ hμ : ↑↑μ s ≠ 0 hs : NullMeasurableSet s hμ₁ : ↑↑μ s ≠ ⊤ g : α → ℝ≥0∞ hint : ∫⁻ (a : α) in s, g a ∂μ ≠ ⊤ hg : Measurable g hgf : g ≤ f hfg : ∫⁻ (a : α) in s, f a ∂μ = ∫⁻ (a : α) in s, g a ∂μ hfg' : ⨍⁻ (a : α) in s, f a ∂μ = ⨍⁻ (a : α) in s, g a ∂μ this : 0 < ↑↑μ {x | x ∈ s ∧ ⨍ (a : α) in s, ENNReal.toReal (g a) ∂μ ≤ ENNReal.toReal (g x)} ⊢ 0 < ↑↑μ {x | x ∈ s ∧ ⨍⁻ (a : α) in s, f a ∂μ ≤ f x} [PROOFSTEP] simp_rw [← setOf_inter_eq_sep, ← Measure.restrict_apply₀' hs, hfg'] [GOAL] case inr.intro.intro.intro α : Type u_1 E : Type u_2 F : Type u_3 m0 : MeasurableSpace α inst✝⁵ : NormedAddCommGroup E inst✝⁴ : NormedSpace ℝ E inst✝³ : CompleteSpace E inst✝² : NormedAddCommGroup F inst✝¹ : NormedSpace ℝ F inst✝ : CompleteSpace F μ ν : Measure α s t N : Set α f : α → ℝ≥0∞ hμ : ↑↑μ s ≠ 0 hs : NullMeasurableSet s hμ₁ : ↑↑μ s ≠ ⊤ g : α → ℝ≥0∞ hint : ∫⁻ (a : α) in s, g a ∂μ ≠ ⊤ hg : Measurable g hgf : g ≤ f hfg : ∫⁻ (a : α) in s, f a ∂μ = ∫⁻ (a : α) in s, g a ∂μ hfg' : ⨍⁻ (a : α) in s, f a ∂μ = ⨍⁻ (a : α) in s, g a ∂μ this : 0 < ↑↑μ {x | x ∈ s ∧ ⨍ (a : α) in s, ENNReal.toReal (g a) ∂μ ≤ ENNReal.toReal (g x)} ⊢ 0 < ↑↑(Measure.restrict μ s) {a | ⨍⁻ (a : α) in s, g a ∂μ ≤ f a} [PROOFSTEP] rw [← setOf_inter_eq_sep, ← Measure.restrict_apply₀' hs, ← measure_diff_null (measure_eq_top_of_lintegral_ne_top hg.aemeasurable hint)] at this [GOAL] case inr.intro.intro.intro α : Type u_1 E : Type u_2 F : Type u_3 m0 : MeasurableSpace α inst✝⁵ : NormedAddCommGroup E inst✝⁴ : NormedSpace ℝ E inst✝³ : CompleteSpace E inst✝² : NormedAddCommGroup F inst✝¹ : NormedSpace ℝ F inst✝ : CompleteSpace F μ ν : Measure α s t N : Set α f : α → ℝ≥0∞ hμ : ↑↑μ s ≠ 0 hs : NullMeasurableSet s hμ₁ : ↑↑μ s ≠ ⊤ g : α → ℝ≥0∞ hint : ∫⁻ (a : α) in s, g a ∂μ ≠ ⊤ hg : Measurable g hgf : g ≤ f hfg : ∫⁻ (a : α) in s, f a ∂μ = ∫⁻ (a : α) in s, g a ∂μ hfg' : ⨍⁻ (a : α) in s, f a ∂μ = ⨍⁻ (a : α) in s, g a ∂μ this : 0 < ↑↑(Measure.restrict μ s) ({a | ⨍ (a : α) in s, ENNReal.toReal (g a) ∂μ ≤ ENNReal.toReal (g a)} \ {x | g x = ⊤}) ⊢ 0 < ↑↑(Measure.restrict μ s) {a | ⨍⁻ (a : α) in s, g a ∂μ ≤ f a} [PROOFSTEP] refine' this.trans_le (measure_mono _) [GOAL] case inr.intro.intro.intro α : Type u_1 E : Type u_2 F : Type u_3 m0 : MeasurableSpace α inst✝⁵ : NormedAddCommGroup E inst✝⁴ : NormedSpace ℝ E inst✝³ : CompleteSpace E inst✝² : NormedAddCommGroup F inst✝¹ : NormedSpace ℝ F inst✝ : CompleteSpace F μ ν : Measure α s t N : Set α f : α → ℝ≥0∞ hμ : ↑↑μ s ≠ 0 hs : NullMeasurableSet s hμ₁ : ↑↑μ s ≠ ⊤ g : α → ℝ≥0∞ hint : ∫⁻ (a : α) in s, g a ∂μ ≠ ⊤ hg : Measurable g hgf : g ≤ f hfg : ∫⁻ (a : α) in s, f a ∂μ = ∫⁻ (a : α) in s, g a ∂μ hfg' : ⨍⁻ (a : α) in s, f a ∂μ = ⨍⁻ (a : α) in s, g a ∂μ this : 0 < ↑↑(Measure.restrict μ s) ({a | ⨍ (a : α) in s, ENNReal.toReal (g a) ∂μ ≤ ENNReal.toReal (g a)} \ {x | g x = ⊤}) ⊢ {a | ⨍ (a : α) in s, ENNReal.toReal (g a) ∂μ ≤ ENNReal.toReal (g a)} \ {x | g x = ⊤} ⊆ {a | ⨍⁻ (a : α) in s, g a ∂μ ≤ f a} [PROOFSTEP] rintro x ⟨hfx, hx⟩ [GOAL] case inr.intro.intro.intro.intro α : Type u_1 E : Type u_2 F : Type u_3 m0 : MeasurableSpace α inst✝⁵ : NormedAddCommGroup E inst✝⁴ : NormedSpace ℝ E inst✝³ : CompleteSpace E inst✝² : NormedAddCommGroup F inst✝¹ : NormedSpace ℝ F inst✝ : CompleteSpace F μ ν : Measure α s t N : Set α f : α → ℝ≥0∞ hμ : ↑↑μ s ≠ 0 hs : NullMeasurableSet s hμ₁ : ↑↑μ s ≠ ⊤ g : α → ℝ≥0∞ hint : ∫⁻ (a : α) in s, g a ∂μ ≠ ⊤ hg : Measurable g hgf : g ≤ f hfg : ∫⁻ (a : α) in s, f a ∂μ = ∫⁻ (a : α) in s, g a ∂μ hfg' : ⨍⁻ (a : α) in s, f a ∂μ = ⨍⁻ (a : α) in s, g a ∂μ this : 0 < ↑↑(Measure.restrict μ s) ({a | ⨍ (a : α) in s, ENNReal.toReal (g a) ∂μ ≤ ENNReal.toReal (g a)} \ {x | g x = ⊤}) x : α hfx : x ∈ {a | ⨍ (a : α) in s, ENNReal.toReal (g a) ∂μ ≤ ENNReal.toReal (g a)} hx : ¬x ∈ {x | g x = ⊤} ⊢ x ∈ {a | ⨍⁻ (a : α) in s, g a ∂μ ≤ f a} [PROOFSTEP] dsimp at hfx [GOAL] case inr.intro.intro.intro.intro α : Type u_1 E : Type u_2 F : Type u_3 m0 : MeasurableSpace α inst✝⁵ : NormedAddCommGroup E inst✝⁴ : NormedSpace ℝ E inst✝³ : CompleteSpace E inst✝² : NormedAddCommGroup F inst✝¹ : NormedSpace ℝ F inst✝ : CompleteSpace F μ ν : Measure α s t N : Set α f : α → ℝ≥0∞ hμ : ↑↑μ s ≠ 0 hs : NullMeasurableSet s hμ₁ : ↑↑μ s ≠ ⊤ g : α → ℝ≥0∞ hint : ∫⁻ (a : α) in s, g a ∂μ ≠ ⊤ hg : Measurable g hgf : g ≤ f hfg : ∫⁻ (a : α) in s, f a ∂μ = ∫⁻ (a : α) in s, g a ∂μ hfg' : ⨍⁻ (a : α) in s, f a ∂μ = ⨍⁻ (a : α) in s, g a ∂μ this : 0 < ↑↑(Measure.restrict μ s) ({a | ⨍ (a : α) in s, ENNReal.toReal (g a) ∂μ ≤ ENNReal.toReal (g a)} \ {x | g x = ⊤}) x : α hfx : ⨍ (a : α) in s, ENNReal.toReal (g a) ∂μ ≤ ENNReal.toReal (g x) hx : ¬x ∈ {x | g x = ⊤} ⊢ x ∈ {a | ⨍⁻ (a : α) in s, g a ∂μ ≤ f a} [PROOFSTEP] rw [← toReal_laverage hg.aemeasurable, toReal_le_toReal (setLaverage_lt_top hint).ne hx] at hfx [GOAL] case inr.intro.intro.intro.intro α : Type u_1 E : Type u_2 F : Type u_3 m0 : MeasurableSpace α inst✝⁵ : NormedAddCommGroup E inst✝⁴ : NormedSpace ℝ E inst✝³ : CompleteSpace E inst✝² : NormedAddCommGroup F inst✝¹ : NormedSpace ℝ F inst✝ : CompleteSpace F μ ν : Measure α s t N : Set α f : α → ℝ≥0∞ hμ : ↑↑μ s ≠ 0 hs : NullMeasurableSet s hμ₁ : ↑↑μ s ≠ ⊤ g : α → ℝ≥0∞ hint : ∫⁻ (a : α) in s, g a ∂μ ≠ ⊤ hg : Measurable g hgf : g ≤ f hfg : ∫⁻ (a : α) in s, f a ∂μ = ∫⁻ (a : α) in s, g a ∂μ hfg' : ⨍⁻ (a : α) in s, f a ∂μ = ⨍⁻ (a : α) in s, g a ∂μ this : 0 < ↑↑(Measure.restrict μ s) ({a | ⨍ (a : α) in s, ENNReal.toReal (g a) ∂μ ≤ ENNReal.toReal (g a)} \ {x | g x = ⊤}) x : α hfx : ⨍⁻ (x : α) in s, g x ∂μ ≤ g x hx : ¬x ∈ {x | g x = ⊤} ⊢ x ∈ {a | ⨍⁻ (a : α) in s, g a ∂μ ≤ f a} case inr.intro.intro.intro.intro α : Type u_1 E : Type u_2 F : Type u_3 m0 : MeasurableSpace α inst✝⁵ : NormedAddCommGroup E inst✝⁴ : NormedSpace ℝ E inst✝³ : CompleteSpace E inst✝² : NormedAddCommGroup F inst✝¹ : NormedSpace ℝ F inst✝ : CompleteSpace F μ ν : Measure α s t N : Set α f : α → ℝ≥0∞ hμ : ↑↑μ s ≠ 0 hs : NullMeasurableSet s hμ₁ : ↑↑μ s ≠ ⊤ g : α → ℝ≥0∞ hint : ∫⁻ (a : α) in s, g a ∂μ ≠ ⊤ hg : Measurable g hgf : g ≤ f hfg : ∫⁻ (a : α) in s, f a ∂μ = ∫⁻ (a : α) in s, g a ∂μ hfg' : ⨍⁻ (a : α) in s, f a ∂μ = ⨍⁻ (a : α) in s, g a ∂μ this : 0 < ↑↑(Measure.restrict μ s) ({a | ⨍ (a : α) in s, ENNReal.toReal (g a) ∂μ ≤ ENNReal.toReal (g a)} \ {x | g x = ⊤}) x : α hfx : ⨍ (a : α) in s, ENNReal.toReal (g a) ∂μ ≤ ENNReal.toReal (g x) hx : ¬x ∈ {x | g x = ⊤} ⊢ ∀ᵐ (x : α) ∂Measure.restrict μ s, g x ≠ ⊤ [PROOFSTEP] exact hfx.trans (hgf _) [GOAL] case inr.intro.intro.intro.intro α : Type u_1 E : Type u_2 F : Type u_3 m0 : MeasurableSpace α inst✝⁵ : NormedAddCommGroup E inst✝⁴ : NormedSpace ℝ E inst✝³ : CompleteSpace E inst✝² : NormedAddCommGroup F inst✝¹ : NormedSpace ℝ F inst✝ : CompleteSpace F μ ν : Measure α s t N : Set α f : α → ℝ≥0∞ hμ : ↑↑μ s ≠ 0 hs : NullMeasurableSet s hμ₁ : ↑↑μ s ≠ ⊤ g : α → ℝ≥0∞ hint : ∫⁻ (a : α) in s, g a ∂μ ≠ ⊤ hg : Measurable g hgf : g ≤ f hfg : ∫⁻ (a : α) in s, f a ∂μ = ∫⁻ (a : α) in s, g a ∂μ hfg' : ⨍⁻ (a : α) in s, f a ∂μ = ⨍⁻ (a : α) in s, g a ∂μ this : 0 < ↑↑(Measure.restrict μ s) ({a | ⨍ (a : α) in s, ENNReal.toReal (g a) ∂μ ≤ ENNReal.toReal (g a)} \ {x | g x = ⊤}) x : α hfx : ⨍ (a : α) in s, ENNReal.toReal (g a) ∂μ ≤ ENNReal.toReal (g x) hx : ¬x ∈ {x | g x = ⊤} ⊢ ∀ᵐ (x : α) ∂Measure.restrict μ s, g x ≠ ⊤ [PROOFSTEP] simp_rw [ae_iff, not_ne_iff] [GOAL] case inr.intro.intro.intro.intro α : Type u_1 E : Type u_2 F : Type u_3 m0 : MeasurableSpace α inst✝⁵ : NormedAddCommGroup E inst✝⁴ : NormedSpace ℝ E inst✝³ : CompleteSpace E inst✝² : NormedAddCommGroup F inst✝¹ : NormedSpace ℝ F inst✝ : CompleteSpace F μ ν : Measure α s t N : Set α f : α → ℝ≥0∞ hμ : ↑↑μ s ≠ 0 hs : NullMeasurableSet s hμ₁ : ↑↑μ s ≠ ⊤ g : α → ℝ≥0∞ hint : ∫⁻ (a : α) in s, g a ∂μ ≠ ⊤ hg : Measurable g hgf : g ≤ f hfg : ∫⁻ (a : α) in s, f a ∂μ = ∫⁻ (a : α) in s, g a ∂μ hfg' : ⨍⁻ (a : α) in s, f a ∂μ = ⨍⁻ (a : α) in s, g a ∂μ this : 0 < ↑↑(Measure.restrict μ s) ({a | ⨍ (a : α) in s, ENNReal.toReal (g a) ∂μ ≤ ENNReal.toReal (g a)} \ {x | g x = ⊤}) x : α hfx : ⨍ (a : α) in s, ENNReal.toReal (g a) ∂μ ≤ ENNReal.toReal (g x) hx : ¬x ∈ {x | g x = ⊤} ⊢ ↑↑(Measure.restrict μ s) {a | g a = ⊤} = 0 [PROOFSTEP] exact measure_eq_top_of_lintegral_ne_top hg.aemeasurable hint [GOAL] α : Type u_1 E : Type u_2 F : Type u_3 m0 : MeasurableSpace α inst✝⁵ : NormedAddCommGroup E inst✝⁴ : NormedSpace ℝ E inst✝³ : CompleteSpace E inst✝² : NormedAddCommGroup F inst✝¹ : NormedSpace ℝ F inst✝ : CompleteSpace F μ ν : Measure α s t N : Set α f : α → ℝ≥0∞ hμ : μ ≠ 0 hint : ∫⁻ (a : α), f a ∂μ ≠ ⊤ ⊢ 0 < ↑↑μ {x | ⨍⁻ (a : α), f a ∂μ ≤ f x} [PROOFSTEP] simpa [hint] using @measure_setLaverage_le_pos _ _ _ _ f (measure_univ_ne_zero.2 hμ) nullMeasurableSet_univ [GOAL] α : Type u_1 E : Type u_2 F : Type u_3 m0 : MeasurableSpace α inst✝⁵ : NormedAddCommGroup E inst✝⁴ : NormedSpace ℝ E inst✝³ : CompleteSpace E inst✝² : NormedAddCommGroup F inst✝¹ : NormedSpace ℝ F inst✝ : CompleteSpace F μ ν : Measure α s t N : Set α f : α → ℝ≥0∞ hμ : μ ≠ 0 hint : ∫⁻ (a : α), f a ∂μ ≠ ⊤ hN : ↑↑μ N = 0 ⊢ ∃ x, ¬x ∈ N ∧ ⨍⁻ (a : α), f a ∂μ ≤ f x [PROOFSTEP] have := measure_laverage_le_pos hμ hint [GOAL] α : Type u_1 E : Type u_2 F : Type u_3 m0 : MeasurableSpace α inst✝⁵ : NormedAddCommGroup E inst✝⁴ : NormedSpace ℝ E inst✝³ : CompleteSpace E inst✝² : NormedAddCommGroup F inst✝¹ : NormedSpace ℝ F inst✝ : CompleteSpace F μ ν : Measure α s t N : Set α f : α → ℝ≥0∞ hμ : μ ≠ 0 hint : ∫⁻ (a : α), f a ∂μ ≠ ⊤ hN : ↑↑μ N = 0 this : 0 < ↑↑μ {x | ⨍⁻ (a : α), f a ∂μ ≤ f x} ⊢ ∃ x, ¬x ∈ N ∧ ⨍⁻ (a : α), f a ∂μ ≤ f x [PROOFSTEP] rw [← measure_diff_null hN] at this [GOAL] α : Type u_1 E : Type u_2 F : Type u_3 m0 : MeasurableSpace α inst✝⁵ : NormedAddCommGroup E inst✝⁴ : NormedSpace ℝ E inst✝³ : CompleteSpace E inst✝² : NormedAddCommGroup F inst✝¹ : NormedSpace ℝ F inst✝ : CompleteSpace F μ ν : Measure α s t N : Set α f : α → ℝ≥0∞ hμ : μ ≠ 0 hint : ∫⁻ (a : α), f a ∂μ ≠ ⊤ hN : ↑↑μ N = 0 this : 0 < ↑↑μ ({x | ⨍⁻ (a : α), f a ∂μ ≤ f x} \ N) ⊢ ∃ x, ¬x ∈ N ∧ ⨍⁻ (a : α), f a ∂μ ≤ f x [PROOFSTEP] obtain ⟨x, hx, hxN⟩ := nonempty_of_measure_ne_zero this.ne' [GOAL] case intro.intro α : Type u_1 E : Type u_2 F : Type u_3 m0 : MeasurableSpace α inst✝⁵ : NormedAddCommGroup E inst✝⁴ : NormedSpace ℝ E inst✝³ : CompleteSpace E inst✝² : NormedAddCommGroup F inst✝¹ : NormedSpace ℝ F inst✝ : CompleteSpace F μ ν : Measure α s t N : Set α f : α → ℝ≥0∞ hμ : μ ≠ 0 hint : ∫⁻ (a : α), f a ∂μ ≠ ⊤ hN : ↑↑μ N = 0 this : 0 < ↑↑μ ({x | ⨍⁻ (a : α), f a ∂μ ≤ f x} \ N) x : α hx : x ∈ {x | ⨍⁻ (a : α), f a ∂μ ≤ f x} hxN : ¬x ∈ N ⊢ ∃ x, ¬x ∈ N ∧ ⨍⁻ (a : α), f a ∂μ ≤ f x [PROOFSTEP] exact ⟨x, hxN, hx⟩ [GOAL] α : Type u_1 E : Type u_2 F : Type u_3 m0 : MeasurableSpace α inst✝⁶ : NormedAddCommGroup E inst✝⁵ : NormedSpace ℝ E inst✝⁴ : CompleteSpace E inst✝³ : NormedAddCommGroup F inst✝² : NormedSpace ℝ F inst✝¹ : CompleteSpace F μ ν : Measure α s t N : Set α f : α → ℝ≥0∞ inst✝ : IsFiniteMeasure μ hμ : μ ≠ 0 hf : AEMeasurable f ⊢ 0 < ↑↑μ {x | f x ≤ ⨍⁻ (a : α), f a ∂μ} [PROOFSTEP] simpa using measure_le_setLaverage_pos (measure_univ_ne_zero.2 hμ) (measure_ne_top _ _) hf.restrict [GOAL] α : Type u_1 E : Type u_2 F : Type u_3 m0 : MeasurableSpace α inst✝⁶ : NormedAddCommGroup E inst✝⁵ : NormedSpace ℝ E inst✝⁴ : CompleteSpace E inst✝³ : NormedAddCommGroup F inst✝² : NormedSpace ℝ F inst✝¹ : CompleteSpace F μ ν : Measure α s t N : Set α f : α → ℝ≥0∞ inst✝ : IsFiniteMeasure μ hμ : μ ≠ 0 hf : AEMeasurable f hN : ↑↑μ N = 0 ⊢ ∃ x, ¬x ∈ N ∧ f x ≤ ⨍⁻ (a : α), f a ∂μ [PROOFSTEP] have := measure_le_laverage_pos hμ hf [GOAL] α : Type u_1 E : Type u_2 F : Type u_3 m0 : MeasurableSpace α inst✝⁶ : NormedAddCommGroup E inst✝⁵ : NormedSpace ℝ E inst✝⁴ : CompleteSpace E inst✝³ : NormedAddCommGroup F inst✝² : NormedSpace ℝ F inst✝¹ : CompleteSpace F μ ν : Measure α s t N : Set α f : α → ℝ≥0∞ inst✝ : IsFiniteMeasure μ hμ : μ ≠ 0 hf : AEMeasurable f hN : ↑↑μ N = 0 this : 0 < ↑↑μ {x | f x ≤ ⨍⁻ (a : α), f a ∂μ} ⊢ ∃ x, ¬x ∈ N ∧ f x ≤ ⨍⁻ (a : α), f a ∂μ [PROOFSTEP] rw [← measure_diff_null hN] at this [GOAL] α : Type u_1 E : Type u_2 F : Type u_3 m0 : MeasurableSpace α inst✝⁶ : NormedAddCommGroup E inst✝⁵ : NormedSpace ℝ E inst✝⁴ : CompleteSpace E inst✝³ : NormedAddCommGroup F inst✝² : NormedSpace ℝ F inst✝¹ : CompleteSpace F μ ν : Measure α s t N : Set α f : α → ℝ≥0∞ inst✝ : IsFiniteMeasure μ hμ : μ ≠ 0 hf : AEMeasurable f hN : ↑↑μ N = 0 this : 0 < ↑↑μ ({x | f x ≤ ⨍⁻ (a : α), f a ∂μ} \ N) ⊢ ∃ x, ¬x ∈ N ∧ f x ≤ ⨍⁻ (a : α), f a ∂μ [PROOFSTEP] obtain ⟨x, hx, hxN⟩ := nonempty_of_measure_ne_zero this.ne' [GOAL] case intro.intro α : Type u_1 E : Type u_2 F : Type u_3 m0 : MeasurableSpace α inst✝⁶ : NormedAddCommGroup E inst✝⁵ : NormedSpace ℝ E inst✝⁴ : CompleteSpace E inst✝³ : NormedAddCommGroup F inst✝² : NormedSpace ℝ F inst✝¹ : CompleteSpace F μ ν : Measure α s t N : Set α f : α → ℝ≥0∞ inst✝ : IsFiniteMeasure μ hμ : μ ≠ 0 hf : AEMeasurable f hN : ↑↑μ N = 0 this : 0 < ↑↑μ ({x | f x ≤ ⨍⁻ (a : α), f a ∂μ} \ N) x : α hx : x ∈ {x | f x ≤ ⨍⁻ (a : α), f a ∂μ} hxN : ¬x ∈ N ⊢ ∃ x, ¬x ∈ N ∧ f x ≤ ⨍⁻ (a : α), f a ∂μ [PROOFSTEP] exact ⟨x, hxN, hx⟩ [GOAL] α : Type u_1 E : Type u_2 F : Type u_3 m0 : MeasurableSpace α inst✝⁶ : NormedAddCommGroup E inst✝⁵ : NormedSpace ℝ E inst✝⁴ : CompleteSpace E inst✝³ : NormedAddCommGroup F inst✝² : NormedSpace ℝ F inst✝¹ : CompleteSpace F μ ν : Measure α s t N : Set α f : α → ℝ≥0∞ inst✝ : IsProbabilityMeasure μ hf : AEMeasurable f ⊢ 0 < ↑↑μ {x | f x ≤ ∫⁻ (a : α), f a ∂μ} [PROOFSTEP] simpa only [laverage_eq_lintegral] using measure_le_laverage_pos (IsProbabilityMeasure.ne_zero μ) hf [GOAL] α : Type u_1 E : Type u_2 F : Type u_3 m0 : MeasurableSpace α inst✝⁶ : NormedAddCommGroup E inst✝⁵ : NormedSpace ℝ E inst✝⁴ : CompleteSpace E inst✝³ : NormedAddCommGroup F inst✝² : NormedSpace ℝ F inst✝¹ : CompleteSpace F μ ν : Measure α s t N : Set α f : α → ℝ≥0∞ inst✝ : IsProbabilityMeasure μ hint : ∫⁻ (a : α), f a ∂μ ≠ ⊤ ⊢ 0 < ↑↑μ {x | ∫⁻ (a : α), f a ∂μ ≤ f x} [PROOFSTEP] simpa only [laverage_eq_lintegral] using measure_laverage_le_pos (IsProbabilityMeasure.ne_zero μ) hint [GOAL] α : Type u_1 E : Type u_2 F : Type u_3 m0 : MeasurableSpace α inst✝⁶ : NormedAddCommGroup E inst✝⁵ : NormedSpace ℝ E inst✝⁴ : CompleteSpace E inst✝³ : NormedAddCommGroup F inst✝² : NormedSpace ℝ F inst✝¹ : CompleteSpace F μ ν : Measure α s t N : Set α f : α → ℝ≥0∞ inst✝ : IsProbabilityMeasure μ hf : AEMeasurable f ⊢ ∃ x, f x ≤ ∫⁻ (a : α), f a ∂μ [PROOFSTEP] simpa only [laverage_eq_lintegral] using exists_le_laverage (IsProbabilityMeasure.ne_zero μ) hf [GOAL] α : Type u_1 E : Type u_2 F : Type u_3 m0 : MeasurableSpace α inst✝⁶ : NormedAddCommGroup E inst✝⁵ : NormedSpace ℝ E inst✝⁴ : CompleteSpace E inst✝³ : NormedAddCommGroup F inst✝² : NormedSpace ℝ F inst✝¹ : CompleteSpace F μ ν : Measure α s t N : Set α f : α → ℝ≥0∞ inst✝ : IsProbabilityMeasure μ hint : ∫⁻ (a : α), f a ∂μ ≠ ⊤ ⊢ ∃ x, ∫⁻ (a : α), f a ∂μ ≤ f x [PROOFSTEP] simpa only [laverage_eq_lintegral] using exists_laverage_le (IsProbabilityMeasure.ne_zero μ) hint [GOAL] α : Type u_1 E : Type u_2 F : Type u_3 m0 : MeasurableSpace α inst✝⁶ : NormedAddCommGroup E inst✝⁵ : NormedSpace ℝ E inst✝⁴ : CompleteSpace E inst✝³ : NormedAddCommGroup F inst✝² : NormedSpace ℝ F inst✝¹ : CompleteSpace F μ ν : Measure α s t N : Set α f : α → ℝ≥0∞ inst✝ : IsProbabilityMeasure μ hf : AEMeasurable f hN : ↑↑μ N = 0 ⊢ ∃ x, ¬x ∈ N ∧ f x ≤ ∫⁻ (a : α), f a ∂μ [PROOFSTEP] simpa only [laverage_eq_lintegral] using exists_not_mem_null_le_laverage (IsProbabilityMeasure.ne_zero μ) hf hN [GOAL] α : Type u_1 E : Type u_2 F : Type u_3 m0 : MeasurableSpace α inst✝⁶ : NormedAddCommGroup E inst✝⁵ : NormedSpace ℝ E inst✝⁴ : CompleteSpace E inst✝³ : NormedAddCommGroup F inst✝² : NormedSpace ℝ F inst✝¹ : CompleteSpace F μ ν : Measure α s t N : Set α f : α → ℝ≥0∞ inst✝ : IsProbabilityMeasure μ hint : ∫⁻ (a : α), f a ∂μ ≠ ⊤ hN : ↑↑μ N = 0 ⊢ ∃ x, ¬x ∈ N ∧ ∫⁻ (a : α), f a ∂μ ≤ f x [PROOFSTEP] simpa only [laverage_eq_lintegral] using exists_not_mem_null_laverage_le (IsProbabilityMeasure.ne_zero μ) hint hN [GOAL] α : Type u_1 E : Type u_2 F : Type u_3 m0 : MeasurableSpace α inst✝⁵ : NormedAddCommGroup E inst✝⁴ : NormedSpace ℝ E inst✝³ : CompleteSpace E inst✝² : NormedAddCommGroup F inst✝¹ : NormedSpace ℝ F inst✝ : CompleteSpace F μ ν : Measure α s t : Set α ι : Type u_4 a : ι → Set α l : Filter ι f : α → E c : E g : ι → α → ℝ K : ℝ hf : Tendsto (fun i => ⨍ (y : α) in a i, ‖f y - c‖ ∂μ) l (𝓝 0) f_int : ∀ᶠ (i : ι) in l, IntegrableOn f (a i) hg : Tendsto (fun i => ∫ (y : α), g i y ∂μ) l (𝓝 1) g_supp : ∀ᶠ (i : ι) in l, support (g i) ⊆ a i g_bound : ∀ᶠ (i : ι) in l, ∀ (x : α), |g i x| ≤ K / ENNReal.toReal (↑↑μ (a i)) ⊢ Tendsto (fun i => ∫ (y : α), g i y • f y ∂μ) l (𝓝 c) [PROOFSTEP] have g_int : ∀ᶠ i in l, Integrable (g i) μ := by filter_upwards [(tendsto_order.1 hg).1 _ zero_lt_one] with i hi contrapose hi simp only [integral_undef hi, lt_self_iff_false, not_false_eq_true] [GOAL] α : Type u_1 E : Type u_2 F : Type u_3 m0 : MeasurableSpace α inst✝⁵ : NormedAddCommGroup E inst✝⁴ : NormedSpace ℝ E inst✝³ : CompleteSpace E inst✝² : NormedAddCommGroup F inst✝¹ : NormedSpace ℝ F inst✝ : CompleteSpace F μ ν : Measure α s t : Set α ι : Type u_4 a : ι → Set α l : Filter ι f : α → E c : E g : ι → α → ℝ K : ℝ hf : Tendsto (fun i => ⨍ (y : α) in a i, ‖f y - c‖ ∂μ) l (𝓝 0) f_int : ∀ᶠ (i : ι) in l, IntegrableOn f (a i) hg : Tendsto (fun i => ∫ (y : α), g i y ∂μ) l (𝓝 1) g_supp : ∀ᶠ (i : ι) in l, support (g i) ⊆ a i g_bound : ∀ᶠ (i : ι) in l, ∀ (x : α), |g i x| ≤ K / ENNReal.toReal (↑↑μ (a i)) ⊢ ∀ᶠ (i : ι) in l, Integrable (g i) [PROOFSTEP] filter_upwards [(tendsto_order.1 hg).1 _ zero_lt_one] with i hi [GOAL] case h α : Type u_1 E : Type u_2 F : Type u_3 m0 : MeasurableSpace α inst✝⁵ : NormedAddCommGroup E inst✝⁴ : NormedSpace ℝ E inst✝³ : CompleteSpace E inst✝² : NormedAddCommGroup F inst✝¹ : NormedSpace ℝ F inst✝ : CompleteSpace F μ ν : Measure α s t : Set α ι : Type u_4 a : ι → Set α l : Filter ι f : α → E c : E g : ι → α → ℝ K : ℝ hf : Tendsto (fun i => ⨍ (y : α) in a i, ‖f y - c‖ ∂μ) l (𝓝 0) f_int : ∀ᶠ (i : ι) in l, IntegrableOn f (a i) hg : Tendsto (fun i => ∫ (y : α), g i y ∂μ) l (𝓝 1) g_supp : ∀ᶠ (i : ι) in l, support (g i) ⊆ a i g_bound : ∀ᶠ (i : ι) in l, ∀ (x : α), |g i x| ≤ K / ENNReal.toReal (↑↑μ (a i)) i : ι hi : 0 < ∫ (y : α), g i y ∂μ ⊢ Integrable (g i) [PROOFSTEP] contrapose hi [GOAL] case h α : Type u_1 E : Type u_2 F : Type u_3 m0 : MeasurableSpace α inst✝⁵ : NormedAddCommGroup E inst✝⁴ : NormedSpace ℝ E inst✝³ : CompleteSpace E inst✝² : NormedAddCommGroup F inst✝¹ : NormedSpace ℝ F inst✝ : CompleteSpace F μ ν : Measure α s t : Set α ι : Type u_4 a : ι → Set α l : Filter ι f : α → E c : E g : ι → α → ℝ K : ℝ hf : Tendsto (fun i => ⨍ (y : α) in a i, ‖f y - c‖ ∂μ) l (𝓝 0) f_int : ∀ᶠ (i : ι) in l, IntegrableOn f (a i) hg : Tendsto (fun i => ∫ (y : α), g i y ∂μ) l (𝓝 1) g_supp : ∀ᶠ (i : ι) in l, support (g i) ⊆ a i g_bound : ∀ᶠ (i : ι) in l, ∀ (x : α), |g i x| ≤ K / ENNReal.toReal (↑↑μ (a i)) i : ι hi : ¬Integrable (g i) ⊢ ¬0 < ∫ (y : α), g i y ∂μ [PROOFSTEP] simp only [integral_undef hi, lt_self_iff_false, not_false_eq_true] [GOAL] α : Type u_1 E : Type u_2 F : Type u_3 m0 : MeasurableSpace α inst✝⁵ : NormedAddCommGroup E inst✝⁴ : NormedSpace ℝ E inst✝³ : CompleteSpace E inst✝² : NormedAddCommGroup F inst✝¹ : NormedSpace ℝ F inst✝ : CompleteSpace F μ ν : Measure α s t : Set α ι : Type u_4 a : ι → Set α l : Filter ι f : α → E c : E g : ι → α → ℝ K : ℝ hf : Tendsto (fun i => ⨍ (y : α) in a i, ‖f y - c‖ ∂μ) l (𝓝 0) f_int : ∀ᶠ (i : ι) in l, IntegrableOn f (a i) hg : Tendsto (fun i => ∫ (y : α), g i y ∂μ) l (𝓝 1) g_supp : ∀ᶠ (i : ι) in l, support (g i) ⊆ a i g_bound : ∀ᶠ (i : ι) in l, ∀ (x : α), |g i x| ≤ K / ENNReal.toReal (↑↑μ (a i)) g_int : ∀ᶠ (i : ι) in l, Integrable (g i) ⊢ Tendsto (fun i => ∫ (y : α), g i y • f y ∂μ) l (𝓝 c) [PROOFSTEP] have I : ∀ᶠ i in l, ∫ y, g i y • (f y - c) ∂μ + (∫ y, g i y ∂μ) • c = ∫ y, g i y • f y ∂μ := by filter_upwards [f_int, g_int, g_supp, g_bound] with i hif hig hisupp hibound rw [← integral_smul_const, ← integral_add] · simp only [smul_sub, sub_add_cancel] · simp_rw [smul_sub] apply Integrable.sub _ (hig.smul_const _) have A : Function.support (fun y ↦ g i y • f y) ⊆ a i := by apply Subset.trans _ hisupp exact Function.support_smul_subset_left _ _ rw [← integrableOn_iff_integrable_of_support_subset A] apply Integrable.smul_of_top_right hif exact memℒp_top_of_bound hig.aestronglyMeasurable.restrict (K / (μ (a i)).toReal) (eventually_of_forall hibound) · exact hig.smul_const _ [GOAL] α : Type u_1 E : Type u_2 F : Type u_3 m0 : MeasurableSpace α inst✝⁵ : NormedAddCommGroup E inst✝⁴ : NormedSpace ℝ E inst✝³ : CompleteSpace E inst✝² : NormedAddCommGroup F inst✝¹ : NormedSpace ℝ F inst✝ : CompleteSpace F μ ν : Measure α s t : Set α ι : Type u_4 a : ι → Set α l : Filter ι f : α → E c : E g : ι → α → ℝ K : ℝ hf : Tendsto (fun i => ⨍ (y : α) in a i, ‖f y - c‖ ∂μ) l (𝓝 0) f_int : ∀ᶠ (i : ι) in l, IntegrableOn f (a i) hg : Tendsto (fun i => ∫ (y : α), g i y ∂μ) l (𝓝 1) g_supp : ∀ᶠ (i : ι) in l, support (g i) ⊆ a i g_bound : ∀ᶠ (i : ι) in l, ∀ (x : α), |g i x| ≤ K / ENNReal.toReal (↑↑μ (a i)) g_int : ∀ᶠ (i : ι) in l, Integrable (g i) ⊢ ∀ᶠ (i : ι) in l, ∫ (y : α), g i y • (f y - c) ∂μ + (∫ (y : α), g i y ∂μ) • c = ∫ (y : α), g i y • f y ∂μ [PROOFSTEP] filter_upwards [f_int, g_int, g_supp, g_bound] with i hif hig hisupp hibound [GOAL] case h α : Type u_1 E : Type u_2 F : Type u_3 m0 : MeasurableSpace α inst✝⁵ : NormedAddCommGroup E inst✝⁴ : NormedSpace ℝ E inst✝³ : CompleteSpace E inst✝² : NormedAddCommGroup F inst✝¹ : NormedSpace ℝ F inst✝ : CompleteSpace F μ ν : Measure α s t : Set α ι : Type u_4 a : ι → Set α l : Filter ι f : α → E c : E g : ι → α → ℝ K : ℝ hf : Tendsto (fun i => ⨍ (y : α) in a i, ‖f y - c‖ ∂μ) l (𝓝 0) f_int : ∀ᶠ (i : ι) in l, IntegrableOn f (a i) hg : Tendsto (fun i => ∫ (y : α), g i y ∂μ) l (𝓝 1) g_supp : ∀ᶠ (i : ι) in l, support (g i) ⊆ a i g_bound : ∀ᶠ (i : ι) in l, ∀ (x : α), |g i x| ≤ K / ENNReal.toReal (↑↑μ (a i)) g_int : ∀ᶠ (i : ι) in l, Integrable (g i) i : ι hif : IntegrableOn f (a i) hig : Integrable (g i) hisupp : support (g i) ⊆ a i hibound : ∀ (x : α), |g i x| ≤ K / ENNReal.toReal (↑↑μ (a i)) ⊢ ∫ (y : α), g i y • (f y - c) ∂μ + (∫ (y : α), g i y ∂μ) • c = ∫ (y : α), g i y • f y ∂μ [PROOFSTEP] rw [← integral_smul_const, ← integral_add] [GOAL] case h α : Type u_1 E : Type u_2 F : Type u_3 m0 : MeasurableSpace α inst✝⁵ : NormedAddCommGroup E inst✝⁴ : NormedSpace ℝ E inst✝³ : CompleteSpace E inst✝² : NormedAddCommGroup F inst✝¹ : NormedSpace ℝ F inst✝ : CompleteSpace F μ ν : Measure α s t : Set α ι : Type u_4 a : ι → Set α l : Filter ι f : α → E c : E g : ι → α → ℝ K : ℝ hf : Tendsto (fun i => ⨍ (y : α) in a i, ‖f y - c‖ ∂μ) l (𝓝 0) f_int : ∀ᶠ (i : ι) in l, IntegrableOn f (a i) hg : Tendsto (fun i => ∫ (y : α), g i y ∂μ) l (𝓝 1) g_supp : ∀ᶠ (i : ι) in l, support (g i) ⊆ a i g_bound : ∀ᶠ (i : ι) in l, ∀ (x : α), |g i x| ≤ K / ENNReal.toReal (↑↑μ (a i)) g_int : ∀ᶠ (i : ι) in l, Integrable (g i) i : ι hif : IntegrableOn f (a i) hig : Integrable (g i) hisupp : support (g i) ⊆ a i hibound : ∀ (x : α), |g i x| ≤ K / ENNReal.toReal (↑↑μ (a i)) ⊢ ∫ (a : α), g i a • (f a - c) + g i a • c ∂μ = ∫ (y : α), g i y • f y ∂μ [PROOFSTEP] simp only [smul_sub, sub_add_cancel] [GOAL] case h.hf α : Type u_1 E : Type u_2 F : Type u_3 m0 : MeasurableSpace α inst✝⁵ : NormedAddCommGroup E inst✝⁴ : NormedSpace ℝ E inst✝³ : CompleteSpace E inst✝² : NormedAddCommGroup F inst✝¹ : NormedSpace ℝ F inst✝ : CompleteSpace F μ ν : Measure α s t : Set α ι : Type u_4 a : ι → Set α l : Filter ι f : α → E c : E g : ι → α → ℝ K : ℝ hf : Tendsto (fun i => ⨍ (y : α) in a i, ‖f y - c‖ ∂μ) l (𝓝 0) f_int : ∀ᶠ (i : ι) in l, IntegrableOn f (a i) hg : Tendsto (fun i => ∫ (y : α), g i y ∂μ) l (𝓝 1) g_supp : ∀ᶠ (i : ι) in l, support (g i) ⊆ a i g_bound : ∀ᶠ (i : ι) in l, ∀ (x : α), |g i x| ≤ K / ENNReal.toReal (↑↑μ (a i)) g_int : ∀ᶠ (i : ι) in l, Integrable (g i) i : ι hif : IntegrableOn f (a i) hig : Integrable (g i) hisupp : support (g i) ⊆ a i hibound : ∀ (x : α), |g i x| ≤ K / ENNReal.toReal (↑↑μ (a i)) ⊢ Integrable fun y => g i y • (f y - c) [PROOFSTEP] simp_rw [smul_sub] [GOAL] case h.hf α : Type u_1 E : Type u_2 F : Type u_3 m0 : MeasurableSpace α inst✝⁵ : NormedAddCommGroup E inst✝⁴ : NormedSpace ℝ E inst✝³ : CompleteSpace E inst✝² : NormedAddCommGroup F inst✝¹ : NormedSpace ℝ F inst✝ : CompleteSpace F μ ν : Measure α s t : Set α ι : Type u_4 a : ι → Set α l : Filter ι f : α → E c : E g : ι → α → ℝ K : ℝ hf : Tendsto (fun i => ⨍ (y : α) in a i, ‖f y - c‖ ∂μ) l (𝓝 0) f_int : ∀ᶠ (i : ι) in l, IntegrableOn f (a i) hg : Tendsto (fun i => ∫ (y : α), g i y ∂μ) l (𝓝 1) g_supp : ∀ᶠ (i : ι) in l, support (g i) ⊆ a i g_bound : ∀ᶠ (i : ι) in l, ∀ (x : α), |g i x| ≤ K / ENNReal.toReal (↑↑μ (a i)) g_int : ∀ᶠ (i : ι) in l, Integrable (g i) i : ι hif : IntegrableOn f (a i) hig : Integrable (g i) hisupp : support (g i) ⊆ a i hibound : ∀ (x : α), |g i x| ≤ K / ENNReal.toReal (↑↑μ (a i)) ⊢ Integrable fun y => g i y • f y - g i y • c [PROOFSTEP] apply Integrable.sub _ (hig.smul_const _) [GOAL] α : Type u_1 E : Type u_2 F : Type u_3 m0 : MeasurableSpace α inst✝⁵ : NormedAddCommGroup E inst✝⁴ : NormedSpace ℝ E inst✝³ : CompleteSpace E inst✝² : NormedAddCommGroup F inst✝¹ : NormedSpace ℝ F inst✝ : CompleteSpace F μ ν : Measure α s t : Set α ι : Type u_4 a : ι → Set α l : Filter ι f : α → E c : E g : ι → α → ℝ K : ℝ hf : Tendsto (fun i => ⨍ (y : α) in a i, ‖f y - c‖ ∂μ) l (𝓝 0) f_int : ∀ᶠ (i : ι) in l, IntegrableOn f (a i) hg : Tendsto (fun i => ∫ (y : α), g i y ∂μ) l (𝓝 1) g_supp : ∀ᶠ (i : ι) in l, support (g i) ⊆ a i g_bound : ∀ᶠ (i : ι) in l, ∀ (x : α), |g i x| ≤ K / ENNReal.toReal (↑↑μ (a i)) g_int : ∀ᶠ (i : ι) in l, Integrable (g i) i : ι hif : IntegrableOn f (a i) hig : Integrable (g i) hisupp : support (g i) ⊆ a i hibound : ∀ (x : α), |g i x| ≤ K / ENNReal.toReal (↑↑μ (a i)) ⊢ Integrable fun y => g i y • f y [PROOFSTEP] have A : Function.support (fun y ↦ g i y • f y) ⊆ a i := by apply Subset.trans _ hisupp exact Function.support_smul_subset_left _ _ [GOAL] α : Type u_1 E : Type u_2 F : Type u_3 m0 : MeasurableSpace α inst✝⁵ : NormedAddCommGroup E inst✝⁴ : NormedSpace ℝ E inst✝³ : CompleteSpace E inst✝² : NormedAddCommGroup F inst✝¹ : NormedSpace ℝ F inst✝ : CompleteSpace F μ ν : Measure α s t : Set α ι : Type u_4 a : ι → Set α l : Filter ι f : α → E c : E g : ι → α → ℝ K : ℝ hf : Tendsto (fun i => ⨍ (y : α) in a i, ‖f y - c‖ ∂μ) l (𝓝 0) f_int : ∀ᶠ (i : ι) in l, IntegrableOn f (a i) hg : Tendsto (fun i => ∫ (y : α), g i y ∂μ) l (𝓝 1) g_supp : ∀ᶠ (i : ι) in l, support (g i) ⊆ a i g_bound : ∀ᶠ (i : ι) in l, ∀ (x : α), |g i x| ≤ K / ENNReal.toReal (↑↑μ (a i)) g_int : ∀ᶠ (i : ι) in l, Integrable (g i) i : ι hif : IntegrableOn f (a i) hig : Integrable (g i) hisupp : support (g i) ⊆ a i hibound : ∀ (x : α), |g i x| ≤ K / ENNReal.toReal (↑↑μ (a i)) ⊢ (support fun y => g i y • f y) ⊆ a i [PROOFSTEP] apply Subset.trans _ hisupp [GOAL] α : Type u_1 E : Type u_2 F : Type u_3 m0 : MeasurableSpace α inst✝⁵ : NormedAddCommGroup E inst✝⁴ : NormedSpace ℝ E inst✝³ : CompleteSpace E inst✝² : NormedAddCommGroup F inst✝¹ : NormedSpace ℝ F inst✝ : CompleteSpace F μ ν : Measure α s t : Set α ι : Type u_4 a : ι → Set α l : Filter ι f : α → E c : E g : ι → α → ℝ K : ℝ hf : Tendsto (fun i => ⨍ (y : α) in a i, ‖f y - c‖ ∂μ) l (𝓝 0) f_int : ∀ᶠ (i : ι) in l, IntegrableOn f (a i) hg : Tendsto (fun i => ∫ (y : α), g i y ∂μ) l (𝓝 1) g_supp : ∀ᶠ (i : ι) in l, support (g i) ⊆ a i g_bound : ∀ᶠ (i : ι) in l, ∀ (x : α), |g i x| ≤ K / ENNReal.toReal (↑↑μ (a i)) g_int : ∀ᶠ (i : ι) in l, Integrable (g i) i : ι hif : IntegrableOn f (a i) hig : Integrable (g i) hisupp : support (g i) ⊆ a i hibound : ∀ (x : α), |g i x| ≤ K / ENNReal.toReal (↑↑μ (a i)) ⊢ (support fun y => g i y • f y) ⊆ support (g i) [PROOFSTEP] exact Function.support_smul_subset_left _ _ [GOAL] α : Type u_1 E : Type u_2 F : Type u_3 m0 : MeasurableSpace α inst✝⁵ : NormedAddCommGroup E inst✝⁴ : NormedSpace ℝ E inst✝³ : CompleteSpace E inst✝² : NormedAddCommGroup F inst✝¹ : NormedSpace ℝ F inst✝ : CompleteSpace F μ ν : Measure α s t : Set α ι : Type u_4 a : ι → Set α l : Filter ι f : α → E c : E g : ι → α → ℝ K : ℝ hf : Tendsto (fun i => ⨍ (y : α) in a i, ‖f y - c‖ ∂μ) l (𝓝 0) f_int : ∀ᶠ (i : ι) in l, IntegrableOn f (a i) hg : Tendsto (fun i => ∫ (y : α), g i y ∂μ) l (𝓝 1) g_supp : ∀ᶠ (i : ι) in l, support (g i) ⊆ a i g_bound : ∀ᶠ (i : ι) in l, ∀ (x : α), |g i x| ≤ K / ENNReal.toReal (↑↑μ (a i)) g_int : ∀ᶠ (i : ι) in l, Integrable (g i) i : ι hif : IntegrableOn f (a i) hig : Integrable (g i) hisupp : support (g i) ⊆ a i hibound : ∀ (x : α), |g i x| ≤ K / ENNReal.toReal (↑↑μ (a i)) A : (support fun y => g i y • f y) ⊆ a i ⊢ Integrable fun y => g i y • f y [PROOFSTEP] rw [← integrableOn_iff_integrable_of_support_subset A] [GOAL] α : Type u_1 E : Type u_2 F : Type u_3 m0 : MeasurableSpace α inst✝⁵ : NormedAddCommGroup E inst✝⁴ : NormedSpace ℝ E inst✝³ : CompleteSpace E inst✝² : NormedAddCommGroup F inst✝¹ : NormedSpace ℝ F inst✝ : CompleteSpace F μ ν : Measure α s t : Set α ι : Type u_4 a : ι → Set α l : Filter ι f : α → E c : E g : ι → α → ℝ K : ℝ hf : Tendsto (fun i => ⨍ (y : α) in a i, ‖f y - c‖ ∂μ) l (𝓝 0) f_int : ∀ᶠ (i : ι) in l, IntegrableOn f (a i) hg : Tendsto (fun i => ∫ (y : α), g i y ∂μ) l (𝓝 1) g_supp : ∀ᶠ (i : ι) in l, support (g i) ⊆ a i g_bound : ∀ᶠ (i : ι) in l, ∀ (x : α), |g i x| ≤ K / ENNReal.toReal (↑↑μ (a i)) g_int : ∀ᶠ (i : ι) in l, Integrable (g i) i : ι hif : IntegrableOn f (a i) hig : Integrable (g i) hisupp : support (g i) ⊆ a i hibound : ∀ (x : α), |g i x| ≤ K / ENNReal.toReal (↑↑μ (a i)) A : (support fun y => g i y • f y) ⊆ a i ⊢ IntegrableOn (fun y => g i y • f y) (a i) [PROOFSTEP] apply Integrable.smul_of_top_right hif [GOAL] α : Type u_1 E : Type u_2 F : Type u_3 m0 : MeasurableSpace α inst✝⁵ : NormedAddCommGroup E inst✝⁴ : NormedSpace ℝ E inst✝³ : CompleteSpace E inst✝² : NormedAddCommGroup F inst✝¹ : NormedSpace ℝ F inst✝ : CompleteSpace F μ ν : Measure α s t : Set α ι : Type u_4 a : ι → Set α l : Filter ι f : α → E c : E g : ι → α → ℝ K : ℝ hf : Tendsto (fun i => ⨍ (y : α) in a i, ‖f y - c‖ ∂μ) l (𝓝 0) f_int : ∀ᶠ (i : ι) in l, IntegrableOn f (a i) hg : Tendsto (fun i => ∫ (y : α), g i y ∂μ) l (𝓝 1) g_supp : ∀ᶠ (i : ι) in l, support (g i) ⊆ a i g_bound : ∀ᶠ (i : ι) in l, ∀ (x : α), |g i x| ≤ K / ENNReal.toReal (↑↑μ (a i)) g_int : ∀ᶠ (i : ι) in l, Integrable (g i) i : ι hif : IntegrableOn f (a i) hig : Integrable (g i) hisupp : support (g i) ⊆ a i hibound : ∀ (x : α), |g i x| ≤ K / ENNReal.toReal (↑↑μ (a i)) A : (support fun y => g i y • f y) ⊆ a i ⊢ Memℒp (fun y => g i y) ⊤ [PROOFSTEP] exact memℒp_top_of_bound hig.aestronglyMeasurable.restrict (K / (μ (a i)).toReal) (eventually_of_forall hibound) [GOAL] case h.hg α : Type u_1 E : Type u_2 F : Type u_3 m0 : MeasurableSpace α inst✝⁵ : NormedAddCommGroup E inst✝⁴ : NormedSpace ℝ E inst✝³ : CompleteSpace E inst✝² : NormedAddCommGroup F inst✝¹ : NormedSpace ℝ F inst✝ : CompleteSpace F μ ν : Measure α s t : Set α ι : Type u_4 a : ι → Set α l : Filter ι f : α → E c : E g : ι → α → ℝ K : ℝ hf : Tendsto (fun i => ⨍ (y : α) in a i, ‖f y - c‖ ∂μ) l (𝓝 0) f_int : ∀ᶠ (i : ι) in l, IntegrableOn f (a i) hg : Tendsto (fun i => ∫ (y : α), g i y ∂μ) l (𝓝 1) g_supp : ∀ᶠ (i : ι) in l, support (g i) ⊆ a i g_bound : ∀ᶠ (i : ι) in l, ∀ (x : α), |g i x| ≤ K / ENNReal.toReal (↑↑μ (a i)) g_int : ∀ᶠ (i : ι) in l, Integrable (g i) i : ι hif : IntegrableOn f (a i) hig : Integrable (g i) hisupp : support (g i) ⊆ a i hibound : ∀ (x : α), |g i x| ≤ K / ENNReal.toReal (↑↑μ (a i)) ⊢ Integrable fun x => g i x • c [PROOFSTEP] exact hig.smul_const _ [GOAL] α : Type u_1 E : Type u_2 F : Type u_3 m0 : MeasurableSpace α inst✝⁵ : NormedAddCommGroup E inst✝⁴ : NormedSpace ℝ E inst✝³ : CompleteSpace E inst✝² : NormedAddCommGroup F inst✝¹ : NormedSpace ℝ F inst✝ : CompleteSpace F μ ν : Measure α s t : Set α ι : Type u_4 a : ι → Set α l : Filter ι f : α → E c : E g : ι → α → ℝ K : ℝ hf : Tendsto (fun i => ⨍ (y : α) in a i, ‖f y - c‖ ∂μ) l (𝓝 0) f_int : ∀ᶠ (i : ι) in l, IntegrableOn f (a i) hg : Tendsto (fun i => ∫ (y : α), g i y ∂μ) l (𝓝 1) g_supp : ∀ᶠ (i : ι) in l, support (g i) ⊆ a i g_bound : ∀ᶠ (i : ι) in l, ∀ (x : α), |g i x| ≤ K / ENNReal.toReal (↑↑μ (a i)) g_int : ∀ᶠ (i : ι) in l, Integrable (g i) I : ∀ᶠ (i : ι) in l, ∫ (y : α), g i y • (f y - c) ∂μ + (∫ (y : α), g i y ∂μ) • c = ∫ (y : α), g i y • f y ∂μ ⊢ Tendsto (fun i => ∫ (y : α), g i y • f y ∂μ) l (𝓝 c) [PROOFSTEP] have L0 : Tendsto (fun i ↦ ∫ y, g i y • (f y - c) ∂μ) l (𝓝 0) := by have := hf.const_mul K simp only [mul_zero] at this refine' squeeze_zero_norm' _ this filter_upwards [g_supp, g_bound, f_int, (tendsto_order.1 hg).1 _ zero_lt_one] with i hi h'i h''i hi_int have mu_ai : μ (a i) < ∞ := by rw [lt_top_iff_ne_top] intro h simp only [h, ENNReal.top_toReal, _root_.div_zero, abs_nonpos_iff] at h'i have : ∫ (y : α), g i y ∂μ = ∫ (y : α), 0 ∂μ := by congr; ext y; exact h'i y simp [this] at hi_int apply (norm_integral_le_integral_norm _).trans simp_rw [average_eq, smul_eq_mul, ← integral_mul_left, norm_smul, ← mul_assoc, ← div_eq_mul_inv] have : ∀ x, x ∉ a i → ‖g i x‖ * ‖(f x - c)‖ = 0 := by intro x hx have : g i x = 0 := by rw [← Function.nmem_support]; exact fun h ↦ hx (hi h) simp [this] rw [← set_integral_eq_integral_of_forall_compl_eq_zero this (μ := μ)] refine' integral_mono_of_nonneg (eventually_of_forall (fun x ↦ by positivity)) _ (eventually_of_forall (fun x ↦ _)) · apply (Integrable.sub h''i _).norm.const_mul change IntegrableOn (fun _ ↦ c) (a i) μ simp [integrableOn_const, mu_ai] · dsimp; gcongr; simpa using h'i x [GOAL] α : Type u_1 E : Type u_2 F : Type u_3 m0 : MeasurableSpace α inst✝⁵ : NormedAddCommGroup E inst✝⁴ : NormedSpace ℝ E inst✝³ : CompleteSpace E inst✝² : NormedAddCommGroup F inst✝¹ : NormedSpace ℝ F inst✝ : CompleteSpace F μ ν : Measure α s t : Set α ι : Type u_4 a : ι → Set α l : Filter ι f : α → E c : E g : ι → α → ℝ K : ℝ hf : Tendsto (fun i => ⨍ (y : α) in a i, ‖f y - c‖ ∂μ) l (𝓝 0) f_int : ∀ᶠ (i : ι) in l, IntegrableOn f (a i) hg : Tendsto (fun i => ∫ (y : α), g i y ∂μ) l (𝓝 1) g_supp : ∀ᶠ (i : ι) in l, support (g i) ⊆ a i g_bound : ∀ᶠ (i : ι) in l, ∀ (x : α), |g i x| ≤ K / ENNReal.toReal (↑↑μ (a i)) g_int : ∀ᶠ (i : ι) in l, Integrable (g i) I : ∀ᶠ (i : ι) in l, ∫ (y : α), g i y • (f y - c) ∂μ + (∫ (y : α), g i y ∂μ) • c = ∫ (y : α), g i y • f y ∂μ ⊢ Tendsto (fun i => ∫ (y : α), g i y • (f y - c) ∂μ) l (𝓝 0) [PROOFSTEP] have := hf.const_mul K [GOAL] α : Type u_1 E : Type u_2 F : Type u_3 m0 : MeasurableSpace α inst✝⁵ : NormedAddCommGroup E inst✝⁴ : NormedSpace ℝ E inst✝³ : CompleteSpace E inst✝² : NormedAddCommGroup F inst✝¹ : NormedSpace ℝ F inst✝ : CompleteSpace F μ ν : Measure α s t : Set α ι : Type u_4 a : ι → Set α l : Filter ι f : α → E c : E g : ι → α → ℝ K : ℝ hf : Tendsto (fun i => ⨍ (y : α) in a i, ‖f y - c‖ ∂μ) l (𝓝 0) f_int : ∀ᶠ (i : ι) in l, IntegrableOn f (a i) hg : Tendsto (fun i => ∫ (y : α), g i y ∂μ) l (𝓝 1) g_supp : ∀ᶠ (i : ι) in l, support (g i) ⊆ a i g_bound : ∀ᶠ (i : ι) in l, ∀ (x : α), |g i x| ≤ K / ENNReal.toReal (↑↑μ (a i)) g_int : ∀ᶠ (i : ι) in l, Integrable (g i) I : ∀ᶠ (i : ι) in l, ∫ (y : α), g i y • (f y - c) ∂μ + (∫ (y : α), g i y ∂μ) • c = ∫ (y : α), g i y • f y ∂μ this : Tendsto (fun k => K * ⨍ (y : α) in a k, ‖f y - c‖ ∂μ) l (𝓝 (K * 0)) ⊢ Tendsto (fun i => ∫ (y : α), g i y • (f y - c) ∂μ) l (𝓝 0) [PROOFSTEP] simp only [mul_zero] at this [GOAL] α : Type u_1 E : Type u_2 F : Type u_3 m0 : MeasurableSpace α inst✝⁵ : NormedAddCommGroup E inst✝⁴ : NormedSpace ℝ E inst✝³ : CompleteSpace E inst✝² : NormedAddCommGroup F inst✝¹ : NormedSpace ℝ F inst✝ : CompleteSpace F μ ν : Measure α s t : Set α ι : Type u_4 a : ι → Set α l : Filter ι f : α → E c : E g : ι → α → ℝ K : ℝ hf : Tendsto (fun i => ⨍ (y : α) in a i, ‖f y - c‖ ∂μ) l (𝓝 0) f_int : ∀ᶠ (i : ι) in l, IntegrableOn f (a i) hg : Tendsto (fun i => ∫ (y : α), g i y ∂μ) l (𝓝 1) g_supp : ∀ᶠ (i : ι) in l, support (g i) ⊆ a i g_bound : ∀ᶠ (i : ι) in l, ∀ (x : α), |g i x| ≤ K / ENNReal.toReal (↑↑μ (a i)) g_int : ∀ᶠ (i : ι) in l, Integrable (g i) I : ∀ᶠ (i : ι) in l, ∫ (y : α), g i y • (f y - c) ∂μ + (∫ (y : α), g i y ∂μ) • c = ∫ (y : α), g i y • f y ∂μ this : Tendsto (fun k => K * ⨍ (y : α) in a k, ‖f y - c‖ ∂μ) l (𝓝 0) ⊢ Tendsto (fun i => ∫ (y : α), g i y • (f y - c) ∂μ) l (𝓝 0) [PROOFSTEP] refine' squeeze_zero_norm' _ this [GOAL] α : Type u_1 E : Type u_2 F : Type u_3 m0 : MeasurableSpace α inst✝⁵ : NormedAddCommGroup E inst✝⁴ : NormedSpace ℝ E inst✝³ : CompleteSpace E inst✝² : NormedAddCommGroup F inst✝¹ : NormedSpace ℝ F inst✝ : CompleteSpace F μ ν : Measure α s t : Set α ι : Type u_4 a : ι → Set α l : Filter ι f : α → E c : E g : ι → α → ℝ K : ℝ hf : Tendsto (fun i => ⨍ (y : α) in a i, ‖f y - c‖ ∂μ) l (𝓝 0) f_int : ∀ᶠ (i : ι) in l, IntegrableOn f (a i) hg : Tendsto (fun i => ∫ (y : α), g i y ∂μ) l (𝓝 1) g_supp : ∀ᶠ (i : ι) in l, support (g i) ⊆ a i g_bound : ∀ᶠ (i : ι) in l, ∀ (x : α), |g i x| ≤ K / ENNReal.toReal (↑↑μ (a i)) g_int : ∀ᶠ (i : ι) in l, Integrable (g i) I : ∀ᶠ (i : ι) in l, ∫ (y : α), g i y • (f y - c) ∂μ + (∫ (y : α), g i y ∂μ) • c = ∫ (y : α), g i y • f y ∂μ this : Tendsto (fun k => K * ⨍ (y : α) in a k, ‖f y - c‖ ∂μ) l (𝓝 0) ⊢ ∀ᶠ (n : ι) in l, ‖∫ (y : α), g n y • (f y - c) ∂μ‖ ≤ K * ⨍ (y : α) in a n, ‖f y - c‖ ∂μ [PROOFSTEP] filter_upwards [g_supp, g_bound, f_int, (tendsto_order.1 hg).1 _ zero_lt_one] with i hi h'i h''i hi_int [GOAL] case h α : Type u_1 E : Type u_2 F : Type u_3 m0 : MeasurableSpace α inst✝⁵ : NormedAddCommGroup E inst✝⁴ : NormedSpace ℝ E inst✝³ : CompleteSpace E inst✝² : NormedAddCommGroup F inst✝¹ : NormedSpace ℝ F inst✝ : CompleteSpace F μ ν : Measure α s t : Set α ι : Type u_4 a : ι → Set α l : Filter ι f : α → E c : E g : ι → α → ℝ K : ℝ hf : Tendsto (fun i => ⨍ (y : α) in a i, ‖f y - c‖ ∂μ) l (𝓝 0) f_int : ∀ᶠ (i : ι) in l, IntegrableOn f (a i) hg : Tendsto (fun i => ∫ (y : α), g i y ∂μ) l (𝓝 1) g_supp : ∀ᶠ (i : ι) in l, support (g i) ⊆ a i g_bound : ∀ᶠ (i : ι) in l, ∀ (x : α), |g i x| ≤ K / ENNReal.toReal (↑↑μ (a i)) g_int : ∀ᶠ (i : ι) in l, Integrable (g i) I : ∀ᶠ (i : ι) in l, ∫ (y : α), g i y • (f y - c) ∂μ + (∫ (y : α), g i y ∂μ) • c = ∫ (y : α), g i y • f y ∂μ this : Tendsto (fun k => K * ⨍ (y : α) in a k, ‖f y - c‖ ∂μ) l (𝓝 0) i : ι hi : support (g i) ⊆ a i h'i : ∀ (x : α), |g i x| ≤ K / ENNReal.toReal (↑↑μ (a i)) h''i : IntegrableOn f (a i) hi_int : 0 < ∫ (y : α), g i y ∂μ ⊢ ‖∫ (y : α), g i y • (f y - c) ∂μ‖ ≤ K * ⨍ (y : α) in a i, ‖f y - c‖ ∂μ [PROOFSTEP] have mu_ai : μ (a i) < ∞ := by rw [lt_top_iff_ne_top] intro h simp only [h, ENNReal.top_toReal, _root_.div_zero, abs_nonpos_iff] at h'i have : ∫ (y : α), g i y ∂μ = ∫ (y : α), 0 ∂μ := by congr; ext y; exact h'i y simp [this] at hi_int [GOAL] α : Type u_1 E : Type u_2 F : Type u_3 m0 : MeasurableSpace α inst✝⁵ : NormedAddCommGroup E inst✝⁴ : NormedSpace ℝ E inst✝³ : CompleteSpace E inst✝² : NormedAddCommGroup F inst✝¹ : NormedSpace ℝ F inst✝ : CompleteSpace F μ ν : Measure α s t : Set α ι : Type u_4 a : ι → Set α l : Filter ι f : α → E c : E g : ι → α → ℝ K : ℝ hf : Tendsto (fun i => ⨍ (y : α) in a i, ‖f y - c‖ ∂μ) l (𝓝 0) f_int : ∀ᶠ (i : ι) in l, IntegrableOn f (a i) hg : Tendsto (fun i => ∫ (y : α), g i y ∂μ) l (𝓝 1) g_supp : ∀ᶠ (i : ι) in l, support (g i) ⊆ a i g_bound : ∀ᶠ (i : ι) in l, ∀ (x : α), |g i x| ≤ K / ENNReal.toReal (↑↑μ (a i)) g_int : ∀ᶠ (i : ι) in l, Integrable (g i) I : ∀ᶠ (i : ι) in l, ∫ (y : α), g i y • (f y - c) ∂μ + (∫ (y : α), g i y ∂μ) • c = ∫ (y : α), g i y • f y ∂μ this : Tendsto (fun k => K * ⨍ (y : α) in a k, ‖f y - c‖ ∂μ) l (𝓝 0) i : ι hi : support (g i) ⊆ a i h'i : ∀ (x : α), |g i x| ≤ K / ENNReal.toReal (↑↑μ (a i)) h''i : IntegrableOn f (a i) hi_int : 0 < ∫ (y : α), g i y ∂μ ⊢ ↑↑μ (a i) < ⊤ [PROOFSTEP] rw [lt_top_iff_ne_top] [GOAL] α : Type u_1 E : Type u_2 F : Type u_3 m0 : MeasurableSpace α inst✝⁵ : NormedAddCommGroup E inst✝⁴ : NormedSpace ℝ E inst✝³ : CompleteSpace E inst✝² : NormedAddCommGroup F inst✝¹ : NormedSpace ℝ F inst✝ : CompleteSpace F μ ν : Measure α s t : Set α ι : Type u_4 a : ι → Set α l : Filter ι f : α → E c : E g : ι → α → ℝ K : ℝ hf : Tendsto (fun i => ⨍ (y : α) in a i, ‖f y - c‖ ∂μ) l (𝓝 0) f_int : ∀ᶠ (i : ι) in l, IntegrableOn f (a i) hg : Tendsto (fun i => ∫ (y : α), g i y ∂μ) l (𝓝 1) g_supp : ∀ᶠ (i : ι) in l, support (g i) ⊆ a i g_bound : ∀ᶠ (i : ι) in l, ∀ (x : α), |g i x| ≤ K / ENNReal.toReal (↑↑μ (a i)) g_int : ∀ᶠ (i : ι) in l, Integrable (g i) I : ∀ᶠ (i : ι) in l, ∫ (y : α), g i y • (f y - c) ∂μ + (∫ (y : α), g i y ∂μ) • c = ∫ (y : α), g i y • f y ∂μ this : Tendsto (fun k => K * ⨍ (y : α) in a k, ‖f y - c‖ ∂μ) l (𝓝 0) i : ι hi : support (g i) ⊆ a i h'i : ∀ (x : α), |g i x| ≤ K / ENNReal.toReal (↑↑μ (a i)) h''i : IntegrableOn f (a i) hi_int : 0 < ∫ (y : α), g i y ∂μ ⊢ ↑↑μ (a i) ≠ ⊤ [PROOFSTEP] intro h [GOAL] α : Type u_1 E : Type u_2 F : Type u_3 m0 : MeasurableSpace α inst✝⁵ : NormedAddCommGroup E inst✝⁴ : NormedSpace ℝ E inst✝³ : CompleteSpace E inst✝² : NormedAddCommGroup F inst✝¹ : NormedSpace ℝ F inst✝ : CompleteSpace F μ ν : Measure α s t : Set α ι : Type u_4 a : ι → Set α l : Filter ι f : α → E c : E g : ι → α → ℝ K : ℝ hf : Tendsto (fun i => ⨍ (y : α) in a i, ‖f y - c‖ ∂μ) l (𝓝 0) f_int : ∀ᶠ (i : ι) in l, IntegrableOn f (a i) hg : Tendsto (fun i => ∫ (y : α), g i y ∂μ) l (𝓝 1) g_supp : ∀ᶠ (i : ι) in l, support (g i) ⊆ a i g_bound : ∀ᶠ (i : ι) in l, ∀ (x : α), |g i x| ≤ K / ENNReal.toReal (↑↑μ (a i)) g_int : ∀ᶠ (i : ι) in l, Integrable (g i) I : ∀ᶠ (i : ι) in l, ∫ (y : α), g i y • (f y - c) ∂μ + (∫ (y : α), g i y ∂μ) • c = ∫ (y : α), g i y • f y ∂μ this : Tendsto (fun k => K * ⨍ (y : α) in a k, ‖f y - c‖ ∂μ) l (𝓝 0) i : ι hi : support (g i) ⊆ a i h'i : ∀ (x : α), |g i x| ≤ K / ENNReal.toReal (↑↑μ (a i)) h''i : IntegrableOn f (a i) hi_int : 0 < ∫ (y : α), g i y ∂μ h : ↑↑μ (a i) = ⊤ ⊢ False [PROOFSTEP] simp only [h, ENNReal.top_toReal, _root_.div_zero, abs_nonpos_iff] at h'i [GOAL] α : Type u_1 E : Type u_2 F : Type u_3 m0 : MeasurableSpace α inst✝⁵ : NormedAddCommGroup E inst✝⁴ : NormedSpace ℝ E inst✝³ : CompleteSpace E inst✝² : NormedAddCommGroup F inst✝¹ : NormedSpace ℝ F inst✝ : CompleteSpace F μ ν : Measure α s t : Set α ι : Type u_4 a : ι → Set α l : Filter ι f : α → E c : E g : ι → α → ℝ K : ℝ hf : Tendsto (fun i => ⨍ (y : α) in a i, ‖f y - c‖ ∂μ) l (𝓝 0) f_int : ∀ᶠ (i : ι) in l, IntegrableOn f (a i) hg : Tendsto (fun i => ∫ (y : α), g i y ∂μ) l (𝓝 1) g_supp : ∀ᶠ (i : ι) in l, support (g i) ⊆ a i g_bound : ∀ᶠ (i : ι) in l, ∀ (x : α), |g i x| ≤ K / ENNReal.toReal (↑↑μ (a i)) g_int : ∀ᶠ (i : ι) in l, Integrable (g i) I : ∀ᶠ (i : ι) in l, ∫ (y : α), g i y • (f y - c) ∂μ + (∫ (y : α), g i y ∂μ) • c = ∫ (y : α), g i y • f y ∂μ this : Tendsto (fun k => K * ⨍ (y : α) in a k, ‖f y - c‖ ∂μ) l (𝓝 0) i : ι hi : support (g i) ⊆ a i h''i : IntegrableOn f (a i) hi_int : 0 < ∫ (y : α), g i y ∂μ h : ↑↑μ (a i) = ⊤ h'i : ∀ (x : α), g i x = 0 ⊢ False [PROOFSTEP] have : ∫ (y : α), g i y ∂μ = ∫ (y : α), 0 ∂μ := by congr; ext y; exact h'i y [GOAL] α : Type u_1 E : Type u_2 F : Type u_3 m0 : MeasurableSpace α inst✝⁵ : NormedAddCommGroup E inst✝⁴ : NormedSpace ℝ E inst✝³ : CompleteSpace E inst✝² : NormedAddCommGroup F inst✝¹ : NormedSpace ℝ F inst✝ : CompleteSpace F μ ν : Measure α s t : Set α ι : Type u_4 a : ι → Set α l : Filter ι f : α → E c : E g : ι → α → ℝ K : ℝ hf : Tendsto (fun i => ⨍ (y : α) in a i, ‖f y - c‖ ∂μ) l (𝓝 0) f_int : ∀ᶠ (i : ι) in l, IntegrableOn f (a i) hg : Tendsto (fun i => ∫ (y : α), g i y ∂μ) l (𝓝 1) g_supp : ∀ᶠ (i : ι) in l, support (g i) ⊆ a i g_bound : ∀ᶠ (i : ι) in l, ∀ (x : α), |g i x| ≤ K / ENNReal.toReal (↑↑μ (a i)) g_int : ∀ᶠ (i : ι) in l, Integrable (g i) I : ∀ᶠ (i : ι) in l, ∫ (y : α), g i y • (f y - c) ∂μ + (∫ (y : α), g i y ∂μ) • c = ∫ (y : α), g i y • f y ∂μ this : Tendsto (fun k => K * ⨍ (y : α) in a k, ‖f y - c‖ ∂μ) l (𝓝 0) i : ι hi : support (g i) ⊆ a i h''i : IntegrableOn f (a i) hi_int : 0 < ∫ (y : α), g i y ∂μ h : ↑↑μ (a i) = ⊤ h'i : ∀ (x : α), g i x = 0 ⊢ ∫ (y : α), g i y ∂μ = ∫ (y : α), 0 ∂μ [PROOFSTEP] congr [GOAL] case e_f α : Type u_1 E : Type u_2 F : Type u_3 m0 : MeasurableSpace α inst✝⁵ : NormedAddCommGroup E inst✝⁴ : NormedSpace ℝ E inst✝³ : CompleteSpace E inst✝² : NormedAddCommGroup F inst✝¹ : NormedSpace ℝ F inst✝ : CompleteSpace F μ ν : Measure α s t : Set α ι : Type u_4 a : ι → Set α l : Filter ι f : α → E c : E g : ι → α → ℝ K : ℝ hf : Tendsto (fun i => ⨍ (y : α) in a i, ‖f y - c‖ ∂μ) l (𝓝 0) f_int : ∀ᶠ (i : ι) in l, IntegrableOn f (a i) hg : Tendsto (fun i => ∫ (y : α), g i y ∂μ) l (𝓝 1) g_supp : ∀ᶠ (i : ι) in l, support (g i) ⊆ a i g_bound : ∀ᶠ (i : ι) in l, ∀ (x : α), |g i x| ≤ K / ENNReal.toReal (↑↑μ (a i)) g_int : ∀ᶠ (i : ι) in l, Integrable (g i) I : ∀ᶠ (i : ι) in l, ∫ (y : α), g i y • (f y - c) ∂μ + (∫ (y : α), g i y ∂μ) • c = ∫ (y : α), g i y • f y ∂μ this : Tendsto (fun k => K * ⨍ (y : α) in a k, ‖f y - c‖ ∂μ) l (𝓝 0) i : ι hi : support (g i) ⊆ a i h''i : IntegrableOn f (a i) hi_int : 0 < ∫ (y : α), g i y ∂μ h : ↑↑μ (a i) = ⊤ h'i : ∀ (x : α), g i x = 0 ⊢ (fun y => g i y) = fun y => 0 [PROOFSTEP] ext y [GOAL] case e_f.h α : Type u_1 E : Type u_2 F : Type u_3 m0 : MeasurableSpace α inst✝⁵ : NormedAddCommGroup E inst✝⁴ : NormedSpace ℝ E inst✝³ : CompleteSpace E inst✝² : NormedAddCommGroup F inst✝¹ : NormedSpace ℝ F inst✝ : CompleteSpace F μ ν : Measure α s t : Set α ι : Type u_4 a : ι → Set α l : Filter ι f : α → E c : E g : ι → α → ℝ K : ℝ hf : Tendsto (fun i => ⨍ (y : α) in a i, ‖f y - c‖ ∂μ) l (𝓝 0) f_int : ∀ᶠ (i : ι) in l, IntegrableOn f (a i) hg : Tendsto (fun i => ∫ (y : α), g i y ∂μ) l (𝓝 1) g_supp : ∀ᶠ (i : ι) in l, support (g i) ⊆ a i g_bound : ∀ᶠ (i : ι) in l, ∀ (x : α), |g i x| ≤ K / ENNReal.toReal (↑↑μ (a i)) g_int : ∀ᶠ (i : ι) in l, Integrable (g i) I : ∀ᶠ (i : ι) in l, ∫ (y : α), g i y • (f y - c) ∂μ + (∫ (y : α), g i y ∂μ) • c = ∫ (y : α), g i y • f y ∂μ this : Tendsto (fun k => K * ⨍ (y : α) in a k, ‖f y - c‖ ∂μ) l (𝓝 0) i : ι hi : support (g i) ⊆ a i h''i : IntegrableOn f (a i) hi_int : 0 < ∫ (y : α), g i y ∂μ h : ↑↑μ (a i) = ⊤ h'i : ∀ (x : α), g i x = 0 y : α ⊢ g i y = 0 [PROOFSTEP] exact h'i y [GOAL] α : Type u_1 E : Type u_2 F : Type u_3 m0 : MeasurableSpace α inst✝⁵ : NormedAddCommGroup E inst✝⁴ : NormedSpace ℝ E inst✝³ : CompleteSpace E inst✝² : NormedAddCommGroup F inst✝¹ : NormedSpace ℝ F inst✝ : CompleteSpace F μ ν : Measure α s t : Set α ι : Type u_4 a : ι → Set α l : Filter ι f : α → E c : E g : ι → α → ℝ K : ℝ hf : Tendsto (fun i => ⨍ (y : α) in a i, ‖f y - c‖ ∂μ) l (𝓝 0) f_int : ∀ᶠ (i : ι) in l, IntegrableOn f (a i) hg : Tendsto (fun i => ∫ (y : α), g i y ∂μ) l (𝓝 1) g_supp : ∀ᶠ (i : ι) in l, support (g i) ⊆ a i g_bound : ∀ᶠ (i : ι) in l, ∀ (x : α), |g i x| ≤ K / ENNReal.toReal (↑↑μ (a i)) g_int : ∀ᶠ (i : ι) in l, Integrable (g i) I : ∀ᶠ (i : ι) in l, ∫ (y : α), g i y • (f y - c) ∂μ + (∫ (y : α), g i y ∂μ) • c = ∫ (y : α), g i y • f y ∂μ this✝ : Tendsto (fun k => K * ⨍ (y : α) in a k, ‖f y - c‖ ∂μ) l (𝓝 0) i : ι hi : support (g i) ⊆ a i h''i : IntegrableOn f (a i) hi_int : 0 < ∫ (y : α), g i y ∂μ h : ↑↑μ (a i) = ⊤ h'i : ∀ (x : α), g i x = 0 this : ∫ (y : α), g i y ∂μ = ∫ (y : α), 0 ∂μ ⊢ False [PROOFSTEP] simp [this] at hi_int [GOAL] case h α : Type u_1 E : Type u_2 F : Type u_3 m0 : MeasurableSpace α inst✝⁵ : NormedAddCommGroup E inst✝⁴ : NormedSpace ℝ E inst✝³ : CompleteSpace E inst✝² : NormedAddCommGroup F inst✝¹ : NormedSpace ℝ F inst✝ : CompleteSpace F μ ν : Measure α s t : Set α ι : Type u_4 a : ι → Set α l : Filter ι f : α → E c : E g : ι → α → ℝ K : ℝ hf : Tendsto (fun i => ⨍ (y : α) in a i, ‖f y - c‖ ∂μ) l (𝓝 0) f_int : ∀ᶠ (i : ι) in l, IntegrableOn f (a i) hg : Tendsto (fun i => ∫ (y : α), g i y ∂μ) l (𝓝 1) g_supp : ∀ᶠ (i : ι) in l, support (g i) ⊆ a i g_bound : ∀ᶠ (i : ι) in l, ∀ (x : α), |g i x| ≤ K / ENNReal.toReal (↑↑μ (a i)) g_int : ∀ᶠ (i : ι) in l, Integrable (g i) I : ∀ᶠ (i : ι) in l, ∫ (y : α), g i y • (f y - c) ∂μ + (∫ (y : α), g i y ∂μ) • c = ∫ (y : α), g i y • f y ∂μ this : Tendsto (fun k => K * ⨍ (y : α) in a k, ‖f y - c‖ ∂μ) l (𝓝 0) i : ι hi : support (g i) ⊆ a i h'i : ∀ (x : α), |g i x| ≤ K / ENNReal.toReal (↑↑μ (a i)) h''i : IntegrableOn f (a i) hi_int : 0 < ∫ (y : α), g i y ∂μ mu_ai : ↑↑μ (a i) < ⊤ ⊢ ‖∫ (y : α), g i y • (f y - c) ∂μ‖ ≤ K * ⨍ (y : α) in a i, ‖f y - c‖ ∂μ [PROOFSTEP] apply (norm_integral_le_integral_norm _).trans [GOAL] case h α : Type u_1 E : Type u_2 F : Type u_3 m0 : MeasurableSpace α inst✝⁵ : NormedAddCommGroup E inst✝⁴ : NormedSpace ℝ E inst✝³ : CompleteSpace E inst✝² : NormedAddCommGroup F inst✝¹ : NormedSpace ℝ F inst✝ : CompleteSpace F μ ν : Measure α s t : Set α ι : Type u_4 a : ι → Set α l : Filter ι f : α → E c : E g : ι → α → ℝ K : ℝ hf : Tendsto (fun i => ⨍ (y : α) in a i, ‖f y - c‖ ∂μ) l (𝓝 0) f_int : ∀ᶠ (i : ι) in l, IntegrableOn f (a i) hg : Tendsto (fun i => ∫ (y : α), g i y ∂μ) l (𝓝 1) g_supp : ∀ᶠ (i : ι) in l, support (g i) ⊆ a i g_bound : ∀ᶠ (i : ι) in l, ∀ (x : α), |g i x| ≤ K / ENNReal.toReal (↑↑μ (a i)) g_int : ∀ᶠ (i : ι) in l, Integrable (g i) I : ∀ᶠ (i : ι) in l, ∫ (y : α), g i y • (f y - c) ∂μ + (∫ (y : α), g i y ∂μ) • c = ∫ (y : α), g i y • f y ∂μ this : Tendsto (fun k => K * ⨍ (y : α) in a k, ‖f y - c‖ ∂μ) l (𝓝 0) i : ι hi : support (g i) ⊆ a i h'i : ∀ (x : α), |g i x| ≤ K / ENNReal.toReal (↑↑μ (a i)) h''i : IntegrableOn f (a i) hi_int : 0 < ∫ (y : α), g i y ∂μ mu_ai : ↑↑μ (a i) < ⊤ ⊢ ∫ (a : α), ‖g i a • (f a - c)‖ ∂μ ≤ K * ⨍ (y : α) in a i, ‖f y - c‖ ∂μ [PROOFSTEP] simp_rw [average_eq, smul_eq_mul, ← integral_mul_left, norm_smul, ← mul_assoc, ← div_eq_mul_inv] [GOAL] case h α : Type u_1 E : Type u_2 F : Type u_3 m0 : MeasurableSpace α inst✝⁵ : NormedAddCommGroup E inst✝⁴ : NormedSpace ℝ E inst✝³ : CompleteSpace E inst✝² : NormedAddCommGroup F inst✝¹ : NormedSpace ℝ F inst✝ : CompleteSpace F μ ν : Measure α s t : Set α ι : Type u_4 a : ι → Set α l : Filter ι f : α → E c : E g : ι → α → ℝ K : ℝ hf : Tendsto (fun i => ⨍ (y : α) in a i, ‖f y - c‖ ∂μ) l (𝓝 0) f_int : ∀ᶠ (i : ι) in l, IntegrableOn f (a i) hg : Tendsto (fun i => ∫ (y : α), g i y ∂μ) l (𝓝 1) g_supp : ∀ᶠ (i : ι) in l, support (g i) ⊆ a i g_bound : ∀ᶠ (i : ι) in l, ∀ (x : α), |g i x| ≤ K / ENNReal.toReal (↑↑μ (a i)) g_int : ∀ᶠ (i : ι) in l, Integrable (g i) I : ∀ᶠ (i : ι) in l, ∫ (y : α), g i y • (f y - c) ∂μ + (∫ (y : α), g i y ∂μ) • c = ∫ (y : α), g i y • f y ∂μ this : Tendsto (fun k => K * ⨍ (y : α) in a k, ‖f y - c‖ ∂μ) l (𝓝 0) i : ι hi : support (g i) ⊆ a i h'i : ∀ (x : α), |g i x| ≤ K / ENNReal.toReal (↑↑μ (a i)) h''i : IntegrableOn f (a i) hi_int : 0 < ∫ (y : α), g i y ∂μ mu_ai : ↑↑μ (a i) < ⊤ ⊢ ∫ (a : α), ‖g i a‖ * ‖f a - c‖ ∂μ ≤ ∫ (a_1 : α) in a i, K / ENNReal.toReal (↑↑(Measure.restrict μ (a i)) univ) * ‖f a_1 - c‖ ∂μ [PROOFSTEP] have : ∀ x, x ∉ a i → ‖g i x‖ * ‖(f x - c)‖ = 0 := by intro x hx have : g i x = 0 := by rw [← Function.nmem_support]; exact fun h ↦ hx (hi h) simp [this] [GOAL] α : Type u_1 E : Type u_2 F : Type u_3 m0 : MeasurableSpace α inst✝⁵ : NormedAddCommGroup E inst✝⁴ : NormedSpace ℝ E inst✝³ : CompleteSpace E inst✝² : NormedAddCommGroup F inst✝¹ : NormedSpace ℝ F inst✝ : CompleteSpace F μ ν : Measure α s t : Set α ι : Type u_4 a : ι → Set α l : Filter ι f : α → E c : E g : ι → α → ℝ K : ℝ hf : Tendsto (fun i => ⨍ (y : α) in a i, ‖f y - c‖ ∂μ) l (𝓝 0) f_int : ∀ᶠ (i : ι) in l, IntegrableOn f (a i) hg : Tendsto (fun i => ∫ (y : α), g i y ∂μ) l (𝓝 1) g_supp : ∀ᶠ (i : ι) in l, support (g i) ⊆ a i g_bound : ∀ᶠ (i : ι) in l, ∀ (x : α), |g i x| ≤ K / ENNReal.toReal (↑↑μ (a i)) g_int : ∀ᶠ (i : ι) in l, Integrable (g i) I : ∀ᶠ (i : ι) in l, ∫ (y : α), g i y • (f y - c) ∂μ + (∫ (y : α), g i y ∂μ) • c = ∫ (y : α), g i y • f y ∂μ this : Tendsto (fun k => K * ⨍ (y : α) in a k, ‖f y - c‖ ∂μ) l (𝓝 0) i : ι hi : support (g i) ⊆ a i h'i : ∀ (x : α), |g i x| ≤ K / ENNReal.toReal (↑↑μ (a i)) h''i : IntegrableOn f (a i) hi_int : 0 < ∫ (y : α), g i y ∂μ mu_ai : ↑↑μ (a i) < ⊤ ⊢ ∀ (x : α), ¬x ∈ a i → ‖g i x‖ * ‖f x - c‖ = 0 [PROOFSTEP] intro x hx [GOAL] α : Type u_1 E : Type u_2 F : Type u_3 m0 : MeasurableSpace α inst✝⁵ : NormedAddCommGroup E inst✝⁴ : NormedSpace ℝ E inst✝³ : CompleteSpace E inst✝² : NormedAddCommGroup F inst✝¹ : NormedSpace ℝ F inst✝ : CompleteSpace F μ ν : Measure α s t : Set α ι : Type u_4 a : ι → Set α l : Filter ι f : α → E c : E g : ι → α → ℝ K : ℝ hf : Tendsto (fun i => ⨍ (y : α) in a i, ‖f y - c‖ ∂μ) l (𝓝 0) f_int : ∀ᶠ (i : ι) in l, IntegrableOn f (a i) hg : Tendsto (fun i => ∫ (y : α), g i y ∂μ) l (𝓝 1) g_supp : ∀ᶠ (i : ι) in l, support (g i) ⊆ a i g_bound : ∀ᶠ (i : ι) in l, ∀ (x : α), |g i x| ≤ K / ENNReal.toReal (↑↑μ (a i)) g_int : ∀ᶠ (i : ι) in l, Integrable (g i) I : ∀ᶠ (i : ι) in l, ∫ (y : α), g i y • (f y - c) ∂μ + (∫ (y : α), g i y ∂μ) • c = ∫ (y : α), g i y • f y ∂μ this : Tendsto (fun k => K * ⨍ (y : α) in a k, ‖f y - c‖ ∂μ) l (𝓝 0) i : ι hi : support (g i) ⊆ a i h'i : ∀ (x : α), |g i x| ≤ K / ENNReal.toReal (↑↑μ (a i)) h''i : IntegrableOn f (a i) hi_int : 0 < ∫ (y : α), g i y ∂μ mu_ai : ↑↑μ (a i) < ⊤ x : α hx : ¬x ∈ a i ⊢ ‖g i x‖ * ‖f x - c‖ = 0 [PROOFSTEP] have : g i x = 0 := by rw [← Function.nmem_support]; exact fun h ↦ hx (hi h) [GOAL] α : Type u_1 E : Type u_2 F : Type u_3 m0 : MeasurableSpace α inst✝⁵ : NormedAddCommGroup E inst✝⁴ : NormedSpace ℝ E inst✝³ : CompleteSpace E inst✝² : NormedAddCommGroup F inst✝¹ : NormedSpace ℝ F inst✝ : CompleteSpace F μ ν : Measure α s t : Set α ι : Type u_4 a : ι → Set α l : Filter ι f : α → E c : E g : ι → α → ℝ K : ℝ hf : Tendsto (fun i => ⨍ (y : α) in a i, ‖f y - c‖ ∂μ) l (𝓝 0) f_int : ∀ᶠ (i : ι) in l, IntegrableOn f (a i) hg : Tendsto (fun i => ∫ (y : α), g i y ∂μ) l (𝓝 1) g_supp : ∀ᶠ (i : ι) in l, support (g i) ⊆ a i g_bound : ∀ᶠ (i : ι) in l, ∀ (x : α), |g i x| ≤ K / ENNReal.toReal (↑↑μ (a i)) g_int : ∀ᶠ (i : ι) in l, Integrable (g i) I : ∀ᶠ (i : ι) in l, ∫ (y : α), g i y • (f y - c) ∂μ + (∫ (y : α), g i y ∂μ) • c = ∫ (y : α), g i y • f y ∂μ this : Tendsto (fun k => K * ⨍ (y : α) in a k, ‖f y - c‖ ∂μ) l (𝓝 0) i : ι hi : support (g i) ⊆ a i h'i : ∀ (x : α), |g i x| ≤ K / ENNReal.toReal (↑↑μ (a i)) h''i : IntegrableOn f (a i) hi_int : 0 < ∫ (y : α), g i y ∂μ mu_ai : ↑↑μ (a i) < ⊤ x : α hx : ¬x ∈ a i ⊢ g i x = 0 [PROOFSTEP] rw [← Function.nmem_support] [GOAL] α : Type u_1 E : Type u_2 F : Type u_3 m0 : MeasurableSpace α inst✝⁵ : NormedAddCommGroup E inst✝⁴ : NormedSpace ℝ E inst✝³ : CompleteSpace E inst✝² : NormedAddCommGroup F inst✝¹ : NormedSpace ℝ F inst✝ : CompleteSpace F μ ν : Measure α s t : Set α ι : Type u_4 a : ι → Set α l : Filter ι f : α → E c : E g : ι → α → ℝ K : ℝ hf : Tendsto (fun i => ⨍ (y : α) in a i, ‖f y - c‖ ∂μ) l (𝓝 0) f_int : ∀ᶠ (i : ι) in l, IntegrableOn f (a i) hg : Tendsto (fun i => ∫ (y : α), g i y ∂μ) l (𝓝 1) g_supp : ∀ᶠ (i : ι) in l, support (g i) ⊆ a i g_bound : ∀ᶠ (i : ι) in l, ∀ (x : α), |g i x| ≤ K / ENNReal.toReal (↑↑μ (a i)) g_int : ∀ᶠ (i : ι) in l, Integrable (g i) I : ∀ᶠ (i : ι) in l, ∫ (y : α), g i y • (f y - c) ∂μ + (∫ (y : α), g i y ∂μ) • c = ∫ (y : α), g i y • f y ∂μ this : Tendsto (fun k => K * ⨍ (y : α) in a k, ‖f y - c‖ ∂μ) l (𝓝 0) i : ι hi : support (g i) ⊆ a i h'i : ∀ (x : α), |g i x| ≤ K / ENNReal.toReal (↑↑μ (a i)) h''i : IntegrableOn f (a i) hi_int : 0 < ∫ (y : α), g i y ∂μ mu_ai : ↑↑μ (a i) < ⊤ x : α hx : ¬x ∈ a i ⊢ ¬x ∈ support (g i) [PROOFSTEP] exact fun h ↦ hx (hi h) [GOAL] α : Type u_1 E : Type u_2 F : Type u_3 m0 : MeasurableSpace α inst✝⁵ : NormedAddCommGroup E inst✝⁴ : NormedSpace ℝ E inst✝³ : CompleteSpace E inst✝² : NormedAddCommGroup F inst✝¹ : NormedSpace ℝ F inst✝ : CompleteSpace F μ ν : Measure α s t : Set α ι : Type u_4 a : ι → Set α l : Filter ι f : α → E c : E g : ι → α → ℝ K : ℝ hf : Tendsto (fun i => ⨍ (y : α) in a i, ‖f y - c‖ ∂μ) l (𝓝 0) f_int : ∀ᶠ (i : ι) in l, IntegrableOn f (a i) hg : Tendsto (fun i => ∫ (y : α), g i y ∂μ) l (𝓝 1) g_supp : ∀ᶠ (i : ι) in l, support (g i) ⊆ a i g_bound : ∀ᶠ (i : ι) in l, ∀ (x : α), |g i x| ≤ K / ENNReal.toReal (↑↑μ (a i)) g_int : ∀ᶠ (i : ι) in l, Integrable (g i) I : ∀ᶠ (i : ι) in l, ∫ (y : α), g i y • (f y - c) ∂μ + (∫ (y : α), g i y ∂μ) • c = ∫ (y : α), g i y • f y ∂μ this✝ : Tendsto (fun k => K * ⨍ (y : α) in a k, ‖f y - c‖ ∂μ) l (𝓝 0) i : ι hi : support (g i) ⊆ a i h'i : ∀ (x : α), |g i x| ≤ K / ENNReal.toReal (↑↑μ (a i)) h''i : IntegrableOn f (a i) hi_int : 0 < ∫ (y : α), g i y ∂μ mu_ai : ↑↑μ (a i) < ⊤ x : α hx : ¬x ∈ a i this : g i x = 0 ⊢ ‖g i x‖ * ‖f x - c‖ = 0 [PROOFSTEP] simp [this] [GOAL] case h α : Type u_1 E : Type u_2 F : Type u_3 m0 : MeasurableSpace α inst✝⁵ : NormedAddCommGroup E inst✝⁴ : NormedSpace ℝ E inst✝³ : CompleteSpace E inst✝² : NormedAddCommGroup F inst✝¹ : NormedSpace ℝ F inst✝ : CompleteSpace F μ ν : Measure α s t : Set α ι : Type u_4 a : ι → Set α l : Filter ι f : α → E c : E g : ι → α → ℝ K : ℝ hf : Tendsto (fun i => ⨍ (y : α) in a i, ‖f y - c‖ ∂μ) l (𝓝 0) f_int : ∀ᶠ (i : ι) in l, IntegrableOn f (a i) hg : Tendsto (fun i => ∫ (y : α), g i y ∂μ) l (𝓝 1) g_supp : ∀ᶠ (i : ι) in l, support (g i) ⊆ a i g_bound : ∀ᶠ (i : ι) in l, ∀ (x : α), |g i x| ≤ K / ENNReal.toReal (↑↑μ (a i)) g_int : ∀ᶠ (i : ι) in l, Integrable (g i) I : ∀ᶠ (i : ι) in l, ∫ (y : α), g i y • (f y - c) ∂μ + (∫ (y : α), g i y ∂μ) • c = ∫ (y : α), g i y • f y ∂μ this✝ : Tendsto (fun k => K * ⨍ (y : α) in a k, ‖f y - c‖ ∂μ) l (𝓝 0) i : ι hi : support (g i) ⊆ a i h'i : ∀ (x : α), |g i x| ≤ K / ENNReal.toReal (↑↑μ (a i)) h''i : IntegrableOn f (a i) hi_int : 0 < ∫ (y : α), g i y ∂μ mu_ai : ↑↑μ (a i) < ⊤ this : ∀ (x : α), ¬x ∈ a i → ‖g i x‖ * ‖f x - c‖ = 0 ⊢ ∫ (a : α), ‖g i a‖ * ‖f a - c‖ ∂μ ≤ ∫ (a_1 : α) in a i, K / ENNReal.toReal (↑↑(Measure.restrict μ (a i)) univ) * ‖f a_1 - c‖ ∂μ [PROOFSTEP] rw [← set_integral_eq_integral_of_forall_compl_eq_zero this (μ := μ)] [GOAL] case h α : Type u_1 E : Type u_2 F : Type u_3 m0 : MeasurableSpace α inst✝⁵ : NormedAddCommGroup E inst✝⁴ : NormedSpace ℝ E inst✝³ : CompleteSpace E inst✝² : NormedAddCommGroup F inst✝¹ : NormedSpace ℝ F inst✝ : CompleteSpace F μ ν : Measure α s t : Set α ι : Type u_4 a : ι → Set α l : Filter ι f : α → E c : E g : ι → α → ℝ K : ℝ hf : Tendsto (fun i => ⨍ (y : α) in a i, ‖f y - c‖ ∂μ) l (𝓝 0) f_int : ∀ᶠ (i : ι) in l, IntegrableOn f (a i) hg : Tendsto (fun i => ∫ (y : α), g i y ∂μ) l (𝓝 1) g_supp : ∀ᶠ (i : ι) in l, support (g i) ⊆ a i g_bound : ∀ᶠ (i : ι) in l, ∀ (x : α), |g i x| ≤ K / ENNReal.toReal (↑↑μ (a i)) g_int : ∀ᶠ (i : ι) in l, Integrable (g i) I : ∀ᶠ (i : ι) in l, ∫ (y : α), g i y • (f y - c) ∂μ + (∫ (y : α), g i y ∂μ) • c = ∫ (y : α), g i y • f y ∂μ this✝ : Tendsto (fun k => K * ⨍ (y : α) in a k, ‖f y - c‖ ∂μ) l (𝓝 0) i : ι hi : support (g i) ⊆ a i h'i : ∀ (x : α), |g i x| ≤ K / ENNReal.toReal (↑↑μ (a i)) h''i : IntegrableOn f (a i) hi_int : 0 < ∫ (y : α), g i y ∂μ mu_ai : ↑↑μ (a i) < ⊤ this : ∀ (x : α), ¬x ∈ a i → ‖g i x‖ * ‖f x - c‖ = 0 ⊢ ∫ (x : α) in a i, ‖g i x‖ * ‖f x - c‖ ∂μ ≤ ∫ (a_1 : α) in a i, K / ENNReal.toReal (↑↑(Measure.restrict μ (a i)) univ) * ‖f a_1 - c‖ ∂μ [PROOFSTEP] refine' integral_mono_of_nonneg (eventually_of_forall (fun x ↦ by positivity)) _ (eventually_of_forall (fun x ↦ _)) [GOAL] α : Type u_1 E : Type u_2 F : Type u_3 m0 : MeasurableSpace α inst✝⁵ : NormedAddCommGroup E inst✝⁴ : NormedSpace ℝ E inst✝³ : CompleteSpace E inst✝² : NormedAddCommGroup F inst✝¹ : NormedSpace ℝ F inst✝ : CompleteSpace F μ ν : Measure α s t : Set α ι : Type u_4 a : ι → Set α l : Filter ι f : α → E c : E g : ι → α → ℝ K : ℝ hf : Tendsto (fun i => ⨍ (y : α) in a i, ‖f y - c‖ ∂μ) l (𝓝 0) f_int : ∀ᶠ (i : ι) in l, IntegrableOn f (a i) hg : Tendsto (fun i => ∫ (y : α), g i y ∂μ) l (𝓝 1) g_supp : ∀ᶠ (i : ι) in l, support (g i) ⊆ a i g_bound : ∀ᶠ (i : ι) in l, ∀ (x : α), |g i x| ≤ K / ENNReal.toReal (↑↑μ (a i)) g_int : ∀ᶠ (i : ι) in l, Integrable (g i) I : ∀ᶠ (i : ι) in l, ∫ (y : α), g i y • (f y - c) ∂μ + (∫ (y : α), g i y ∂μ) • c = ∫ (y : α), g i y • f y ∂μ this✝ : Tendsto (fun k => K * ⨍ (y : α) in a k, ‖f y - c‖ ∂μ) l (𝓝 0) i : ι hi : support (g i) ⊆ a i h'i : ∀ (x : α), |g i x| ≤ K / ENNReal.toReal (↑↑μ (a i)) h''i : IntegrableOn f (a i) hi_int : 0 < ∫ (y : α), g i y ∂μ mu_ai : ↑↑μ (a i) < ⊤ this : ∀ (x : α), ¬x ∈ a i → ‖g i x‖ * ‖f x - c‖ = 0 x : α ⊢ OfNat.ofNat 0 x ≤ (fun x => ‖g i x‖ * ‖f x - c‖) x [PROOFSTEP] positivity [GOAL] case h.refine'_1 α : Type u_1 E : Type u_2 F : Type u_3 m0 : MeasurableSpace α inst✝⁵ : NormedAddCommGroup E inst✝⁴ : NormedSpace ℝ E inst✝³ : CompleteSpace E inst✝² : NormedAddCommGroup F inst✝¹ : NormedSpace ℝ F inst✝ : CompleteSpace F μ ν : Measure α s t : Set α ι : Type u_4 a : ι → Set α l : Filter ι f : α → E c : E g : ι → α → ℝ K : ℝ hf : Tendsto (fun i => ⨍ (y : α) in a i, ‖f y - c‖ ∂μ) l (𝓝 0) f_int : ∀ᶠ (i : ι) in l, IntegrableOn f (a i) hg : Tendsto (fun i => ∫ (y : α), g i y ∂μ) l (𝓝 1) g_supp : ∀ᶠ (i : ι) in l, support (g i) ⊆ a i g_bound : ∀ᶠ (i : ι) in l, ∀ (x : α), |g i x| ≤ K / ENNReal.toReal (↑↑μ (a i)) g_int : ∀ᶠ (i : ι) in l, Integrable (g i) I : ∀ᶠ (i : ι) in l, ∫ (y : α), g i y • (f y - c) ∂μ + (∫ (y : α), g i y ∂μ) • c = ∫ (y : α), g i y • f y ∂μ this✝ : Tendsto (fun k => K * ⨍ (y : α) in a k, ‖f y - c‖ ∂μ) l (𝓝 0) i : ι hi : support (g i) ⊆ a i h'i : ∀ (x : α), |g i x| ≤ K / ENNReal.toReal (↑↑μ (a i)) h''i : IntegrableOn f (a i) hi_int : 0 < ∫ (y : α), g i y ∂μ mu_ai : ↑↑μ (a i) < ⊤ this : ∀ (x : α), ¬x ∈ a i → ‖g i x‖ * ‖f x - c‖ = 0 ⊢ Integrable fun a_1 => K / ENNReal.toReal (↑↑(Measure.restrict μ (a i)) univ) * ‖f a_1 - c‖ [PROOFSTEP] apply (Integrable.sub h''i _).norm.const_mul [GOAL] α : Type u_1 E : Type u_2 F : Type u_3 m0 : MeasurableSpace α inst✝⁵ : NormedAddCommGroup E inst✝⁴ : NormedSpace ℝ E inst✝³ : CompleteSpace E inst✝² : NormedAddCommGroup F inst✝¹ : NormedSpace ℝ F inst✝ : CompleteSpace F μ ν : Measure α s t : Set α ι : Type u_4 a : ι → Set α l : Filter ι f : α → E c : E g : ι → α → ℝ K : ℝ hf : Tendsto (fun i => ⨍ (y : α) in a i, ‖f y - c‖ ∂μ) l (𝓝 0) f_int : ∀ᶠ (i : ι) in l, IntegrableOn f (a i) hg : Tendsto (fun i => ∫ (y : α), g i y ∂μ) l (𝓝 1) g_supp : ∀ᶠ (i : ι) in l, support (g i) ⊆ a i g_bound : ∀ᶠ (i : ι) in l, ∀ (x : α), |g i x| ≤ K / ENNReal.toReal (↑↑μ (a i)) g_int : ∀ᶠ (i : ι) in l, Integrable (g i) I : ∀ᶠ (i : ι) in l, ∫ (y : α), g i y • (f y - c) ∂μ + (∫ (y : α), g i y ∂μ) • c = ∫ (y : α), g i y • f y ∂μ this✝ : Tendsto (fun k => K * ⨍ (y : α) in a k, ‖f y - c‖ ∂μ) l (𝓝 0) i : ι hi : support (g i) ⊆ a i h'i : ∀ (x : α), |g i x| ≤ K / ENNReal.toReal (↑↑μ (a i)) h''i : IntegrableOn f (a i) hi_int : 0 < ∫ (y : α), g i y ∂μ mu_ai : ↑↑μ (a i) < ⊤ this : ∀ (x : α), ¬x ∈ a i → ‖g i x‖ * ‖f x - c‖ = 0 ⊢ Integrable fun x => c [PROOFSTEP] change IntegrableOn (fun _ ↦ c) (a i) μ [GOAL] α : Type u_1 E : Type u_2 F : Type u_3 m0 : MeasurableSpace α inst✝⁵ : NormedAddCommGroup E inst✝⁴ : NormedSpace ℝ E inst✝³ : CompleteSpace E inst✝² : NormedAddCommGroup F inst✝¹ : NormedSpace ℝ F inst✝ : CompleteSpace F μ ν : Measure α s t : Set α ι : Type u_4 a : ι → Set α l : Filter ι f : α → E c : E g : ι → α → ℝ K : ℝ hf : Tendsto (fun i => ⨍ (y : α) in a i, ‖f y - c‖ ∂μ) l (𝓝 0) f_int : ∀ᶠ (i : ι) in l, IntegrableOn f (a i) hg : Tendsto (fun i => ∫ (y : α), g i y ∂μ) l (𝓝 1) g_supp : ∀ᶠ (i : ι) in l, support (g i) ⊆ a i g_bound : ∀ᶠ (i : ι) in l, ∀ (x : α), |g i x| ≤ K / ENNReal.toReal (↑↑μ (a i)) g_int : ∀ᶠ (i : ι) in l, Integrable (g i) I : ∀ᶠ (i : ι) in l, ∫ (y : α), g i y • (f y - c) ∂μ + (∫ (y : α), g i y ∂μ) • c = ∫ (y : α), g i y • f y ∂μ this✝ : Tendsto (fun k => K * ⨍ (y : α) in a k, ‖f y - c‖ ∂μ) l (𝓝 0) i : ι hi : support (g i) ⊆ a i h'i : ∀ (x : α), |g i x| ≤ K / ENNReal.toReal (↑↑μ (a i)) h''i : IntegrableOn f (a i) hi_int : 0 < ∫ (y : α), g i y ∂μ mu_ai : ↑↑μ (a i) < ⊤ this : ∀ (x : α), ¬x ∈ a i → ‖g i x‖ * ‖f x - c‖ = 0 ⊢ IntegrableOn (fun x => c) (a i) [PROOFSTEP] simp [integrableOn_const, mu_ai] [GOAL] case h.refine'_2 α : Type u_1 E : Type u_2 F : Type u_3 m0 : MeasurableSpace α inst✝⁵ : NormedAddCommGroup E inst✝⁴ : NormedSpace ℝ E inst✝³ : CompleteSpace E inst✝² : NormedAddCommGroup F inst✝¹ : NormedSpace ℝ F inst✝ : CompleteSpace F μ ν : Measure α s t : Set α ι : Type u_4 a : ι → Set α l : Filter ι f : α → E c : E g : ι → α → ℝ K : ℝ hf : Tendsto (fun i => ⨍ (y : α) in a i, ‖f y - c‖ ∂μ) l (𝓝 0) f_int : ∀ᶠ (i : ι) in l, IntegrableOn f (a i) hg : Tendsto (fun i => ∫ (y : α), g i y ∂μ) l (𝓝 1) g_supp : ∀ᶠ (i : ι) in l, support (g i) ⊆ a i g_bound : ∀ᶠ (i : ι) in l, ∀ (x : α), |g i x| ≤ K / ENNReal.toReal (↑↑μ (a i)) g_int : ∀ᶠ (i : ι) in l, Integrable (g i) I : ∀ᶠ (i : ι) in l, ∫ (y : α), g i y • (f y - c) ∂μ + (∫ (y : α), g i y ∂μ) • c = ∫ (y : α), g i y • f y ∂μ this✝ : Tendsto (fun k => K * ⨍ (y : α) in a k, ‖f y - c‖ ∂μ) l (𝓝 0) i : ι hi : support (g i) ⊆ a i h'i : ∀ (x : α), |g i x| ≤ K / ENNReal.toReal (↑↑μ (a i)) h''i : IntegrableOn f (a i) hi_int : 0 < ∫ (y : α), g i y ∂μ mu_ai : ↑↑μ (a i) < ⊤ this : ∀ (x : α), ¬x ∈ a i → ‖g i x‖ * ‖f x - c‖ = 0 x : α ⊢ (fun x => ‖g i x‖ * ‖f x - c‖) x ≤ (fun a_1 => K / ENNReal.toReal (↑↑(Measure.restrict μ (a i)) univ) * ‖f a_1 - c‖) x [PROOFSTEP] dsimp [GOAL] case h.refine'_2 α : Type u_1 E : Type u_2 F : Type u_3 m0 : MeasurableSpace α inst✝⁵ : NormedAddCommGroup E inst✝⁴ : NormedSpace ℝ E inst✝³ : CompleteSpace E inst✝² : NormedAddCommGroup F inst✝¹ : NormedSpace ℝ F inst✝ : CompleteSpace F μ ν : Measure α s t : Set α ι : Type u_4 a : ι → Set α l : Filter ι f : α → E c : E g : ι → α → ℝ K : ℝ hf : Tendsto (fun i => ⨍ (y : α) in a i, ‖f y - c‖ ∂μ) l (𝓝 0) f_int : ∀ᶠ (i : ι) in l, IntegrableOn f (a i) hg : Tendsto (fun i => ∫ (y : α), g i y ∂μ) l (𝓝 1) g_supp : ∀ᶠ (i : ι) in l, support (g i) ⊆ a i g_bound : ∀ᶠ (i : ι) in l, ∀ (x : α), |g i x| ≤ K / ENNReal.toReal (↑↑μ (a i)) g_int : ∀ᶠ (i : ι) in l, Integrable (g i) I : ∀ᶠ (i : ι) in l, ∫ (y : α), g i y • (f y - c) ∂μ + (∫ (y : α), g i y ∂μ) • c = ∫ (y : α), g i y • f y ∂μ this✝ : Tendsto (fun k => K * ⨍ (y : α) in a k, ‖f y - c‖ ∂μ) l (𝓝 0) i : ι hi : support (g i) ⊆ a i h'i : ∀ (x : α), |g i x| ≤ K / ENNReal.toReal (↑↑μ (a i)) h''i : IntegrableOn f (a i) hi_int : 0 < ∫ (y : α), g i y ∂μ mu_ai : ↑↑μ (a i) < ⊤ this : ∀ (x : α), ¬x ∈ a i → ‖g i x‖ * ‖f x - c‖ = 0 x : α ⊢ |g i x| * ‖f x - c‖ ≤ K / ENNReal.toReal (↑↑(Measure.restrict μ (a i)) univ) * ‖f x - c‖ [PROOFSTEP] gcongr [GOAL] case h.refine'_2.h α : Type u_1 E : Type u_2 F : Type u_3 m0 : MeasurableSpace α inst✝⁵ : NormedAddCommGroup E inst✝⁴ : NormedSpace ℝ E inst✝³ : CompleteSpace E inst✝² : NormedAddCommGroup F inst✝¹ : NormedSpace ℝ F inst✝ : CompleteSpace F μ ν : Measure α s t : Set α ι : Type u_4 a : ι → Set α l : Filter ι f : α → E c : E g : ι → α → ℝ K : ℝ hf : Tendsto (fun i => ⨍ (y : α) in a i, ‖f y - c‖ ∂μ) l (𝓝 0) f_int : ∀ᶠ (i : ι) in l, IntegrableOn f (a i) hg : Tendsto (fun i => ∫ (y : α), g i y ∂μ) l (𝓝 1) g_supp : ∀ᶠ (i : ι) in l, support (g i) ⊆ a i g_bound : ∀ᶠ (i : ι) in l, ∀ (x : α), |g i x| ≤ K / ENNReal.toReal (↑↑μ (a i)) g_int : ∀ᶠ (i : ι) in l, Integrable (g i) I : ∀ᶠ (i : ι) in l, ∫ (y : α), g i y • (f y - c) ∂μ + (∫ (y : α), g i y ∂μ) • c = ∫ (y : α), g i y • f y ∂μ this✝ : Tendsto (fun k => K * ⨍ (y : α) in a k, ‖f y - c‖ ∂μ) l (𝓝 0) i : ι hi : support (g i) ⊆ a i h'i : ∀ (x : α), |g i x| ≤ K / ENNReal.toReal (↑↑μ (a i)) h''i : IntegrableOn f (a i) hi_int : 0 < ∫ (y : α), g i y ∂μ mu_ai : ↑↑μ (a i) < ⊤ this : ∀ (x : α), ¬x ∈ a i → ‖g i x‖ * ‖f x - c‖ = 0 x : α ⊢ |g i x| ≤ K / ENNReal.toReal (↑↑(Measure.restrict μ (a i)) univ) [PROOFSTEP] simpa using h'i x [GOAL] α : Type u_1 E : Type u_2 F : Type u_3 m0 : MeasurableSpace α inst✝⁵ : NormedAddCommGroup E inst✝⁴ : NormedSpace ℝ E inst✝³ : CompleteSpace E inst✝² : NormedAddCommGroup F inst✝¹ : NormedSpace ℝ F inst✝ : CompleteSpace F μ ν : Measure α s t : Set α ι : Type u_4 a : ι → Set α l : Filter ι f : α → E c : E g : ι → α → ℝ K : ℝ hf : Tendsto (fun i => ⨍ (y : α) in a i, ‖f y - c‖ ∂μ) l (𝓝 0) f_int : ∀ᶠ (i : ι) in l, IntegrableOn f (a i) hg : Tendsto (fun i => ∫ (y : α), g i y ∂μ) l (𝓝 1) g_supp : ∀ᶠ (i : ι) in l, support (g i) ⊆ a i g_bound : ∀ᶠ (i : ι) in l, ∀ (x : α), |g i x| ≤ K / ENNReal.toReal (↑↑μ (a i)) g_int : ∀ᶠ (i : ι) in l, Integrable (g i) I : ∀ᶠ (i : ι) in l, ∫ (y : α), g i y • (f y - c) ∂μ + (∫ (y : α), g i y ∂μ) • c = ∫ (y : α), g i y • f y ∂μ L0 : Tendsto (fun i => ∫ (y : α), g i y • (f y - c) ∂μ) l (𝓝 0) ⊢ Tendsto (fun i => ∫ (y : α), g i y • f y ∂μ) l (𝓝 c) [PROOFSTEP] have := L0.add (hg.smul_const c) [GOAL] α : Type u_1 E : Type u_2 F : Type u_3 m0 : MeasurableSpace α inst✝⁵ : NormedAddCommGroup E inst✝⁴ : NormedSpace ℝ E inst✝³ : CompleteSpace E inst✝² : NormedAddCommGroup F inst✝¹ : NormedSpace ℝ F inst✝ : CompleteSpace F μ ν : Measure α s t : Set α ι : Type u_4 a : ι → Set α l : Filter ι f : α → E c : E g : ι → α → ℝ K : ℝ hf : Tendsto (fun i => ⨍ (y : α) in a i, ‖f y - c‖ ∂μ) l (𝓝 0) f_int : ∀ᶠ (i : ι) in l, IntegrableOn f (a i) hg : Tendsto (fun i => ∫ (y : α), g i y ∂μ) l (𝓝 1) g_supp : ∀ᶠ (i : ι) in l, support (g i) ⊆ a i g_bound : ∀ᶠ (i : ι) in l, ∀ (x : α), |g i x| ≤ K / ENNReal.toReal (↑↑μ (a i)) g_int : ∀ᶠ (i : ι) in l, Integrable (g i) I : ∀ᶠ (i : ι) in l, ∫ (y : α), g i y • (f y - c) ∂μ + (∫ (y : α), g i y ∂μ) • c = ∫ (y : α), g i y • f y ∂μ L0 : Tendsto (fun i => ∫ (y : α), g i y • (f y - c) ∂μ) l (𝓝 0) this : Tendsto (fun x => ∫ (y : α), g x y • (f y - c) ∂μ + (∫ (y : α), g x y ∂μ) • c) l (𝓝 (0 + 1 • c)) ⊢ Tendsto (fun i => ∫ (y : α), g i y • f y ∂μ) l (𝓝 c) [PROOFSTEP] simp only [one_smul, zero_add] at this [GOAL] α : Type u_1 E : Type u_2 F : Type u_3 m0 : MeasurableSpace α inst✝⁵ : NormedAddCommGroup E inst✝⁴ : NormedSpace ℝ E inst✝³ : CompleteSpace E inst✝² : NormedAddCommGroup F inst✝¹ : NormedSpace ℝ F inst✝ : CompleteSpace F μ ν : Measure α s t : Set α ι : Type u_4 a : ι → Set α l : Filter ι f : α → E c : E g : ι → α → ℝ K : ℝ hf : Tendsto (fun i => ⨍ (y : α) in a i, ‖f y - c‖ ∂μ) l (𝓝 0) f_int : ∀ᶠ (i : ι) in l, IntegrableOn f (a i) hg : Tendsto (fun i => ∫ (y : α), g i y ∂μ) l (𝓝 1) g_supp : ∀ᶠ (i : ι) in l, support (g i) ⊆ a i g_bound : ∀ᶠ (i : ι) in l, ∀ (x : α), |g i x| ≤ K / ENNReal.toReal (↑↑μ (a i)) g_int : ∀ᶠ (i : ι) in l, Integrable (g i) I : ∀ᶠ (i : ι) in l, ∫ (y : α), g i y • (f y - c) ∂μ + (∫ (y : α), g i y ∂μ) • c = ∫ (y : α), g i y • f y ∂μ L0 : Tendsto (fun i => ∫ (y : α), g i y • (f y - c) ∂μ) l (𝓝 0) this : Tendsto (fun x => ∫ (y : α), g x y • (f y - c) ∂μ + (∫ (y : α), g x y ∂μ) • c) l (𝓝 c) ⊢ Tendsto (fun i => ∫ (y : α), g i y • f y ∂μ) l (𝓝 c) [PROOFSTEP] exact Tendsto.congr' I this
This entry was posted on Wednesday, September 3rd, 2014 at 11:43 am and is filed under . You can follow any responses to this entry through the RSS 2.0 feed. Both comments and pings are currently closed.
#Start off by loading up some of the libraries that might be useful #Manipulation library(tidyr) library(dplyr) #Modeling library(rpart) library(randomForest) library(rattle) library(car) library(caret) library(e1071) library(C50) library(RWeka) #Visualization library(rpart.plot) library(RColorBrewer) library(ggplot2) library(reshape2) #import the train and test datasets from the directory #import the test data from the file name test_orig newtest <- test_orig #insert a blank column to hold future values for Survived newtest$Survived <- "" #combine test and train into one dataset titanicData <- rbind(train_orig,newtest) #check out what the total dataset looks like now str(titanicData) View(titanicData) #refactor the features Survived and Pclass into factors titanicData$Survived <- as.factor(titanicData$Survived) titanicData$Pclass <- as.factor(titanicData$Pclass) #verify the changes str(titanicData) #Add some new features to the dataset for future use #the first is to create a new feature called family_size to account for the family size of each passenger #wherein the famil is the number of siblings and spouses, parents and children, and the individual titanicData$family_size <- titanicData$SibSp + titanicData$Parch + 1 #Next, add a feature to account for the passengers title. There are several passengers that are the only #ones with individual titles. This presents a problem for classification algorithms. titanicData$Title <- sub(pattern = ".*,\\s(.*\\.)\\s.*", replacement = "\\1", x = titanicData$Name) titanicData$Title[titanicData$Title %in% c("Don.", "Dona.", "the Countess.")] <- "Lady." titanicData$Title[titanicData$Title %in% c("Ms.", "Mlle.")] <- "Miss." titanicData$Title[titanicData$Title %in% c("Mme.", "Mrs. Martin (Elizabeth L.")] <- "Mrs." titanicData$Title[titanicData$Title %in% c("Jonkheer.", "Don.")] <- "Sir." titanicData$Title[titanicData$Title %in% c("Col.", "Capt.", "Major.")] <- "Officer." titanicData$Title <- factor(titanicData$Title) ggplot(titanicData[1:891,], aes(x=family_size, fill=Survived)) + geom_histogram(binwidth = 1) + facet_wrap(~Pclass + Title) + ggtitle("Pclass, Title") + xlab("family size") + ylab("Total count") + ylim(0,300) + labs(fill = "Survived") #Check for NA values in each feature of the dataset table(is.na(titanicData$PassengerId)) table(is.na(titanicData$Survived)) table(is.na(titanicData$Pclass)) table(is.na(titanicData$Name)) table(is.na(titanicData$Sex)) table(is.na(titanicData$Age)) #NAs found table(is.na(titanicData$SibSp)) table(is.na(titanicData$Parch)) table(is.na(titanicData$Ticket)) table(is.na(titanicData$Fare)) #NAs found table(is.na(titanicData$Cabin)) table(is.na(titanicData$Embarked)) table(is.na(titanicData$family_size)) table(is.na(titanicData$Title)) #So Age has some NA values in the feature vector. One cannot exactly not have an age, so let's impute #these missing values by predicting them based on values we know predicted_age <- rpart(Age ~ Pclass + Sex + SibSp + Parch + Fare + Embarked + Title #new + family_size #new , data = titanicData[!is.na(titanicData$Age),] , method = "anova") titanicData$Age[is.na(titanicData$Age)] <- predict(predicted_age, titanicData[is.na(titanicData$Age),]) #Fare also has some NA values in the feature vector. This is not helpful for solving the problem, so #impute these missing variables as well using the median value (not the average) of the non-normal distribution titanicData$Fare[is.na(titanicData$Fare)==TRUE] <- median(titanicData$Fare,na.rm=TRUE) #In the dataset, two passengers do not have an embarked location. They had to come from somewhere, assuming #they did not spawn from the ocean itself. Because most passengers embarked from "S," let's say these two #did as well titanicData$Embarked[c(62, 830)] <- "S" titanicData$Embarked <- factor(titanicData$Embarked) #Now add some new features to practice feature engineering and to see what may or may not be helpful #These are all be binomials that might help us with our classification titanicData$Child[titanicData$Age>=18] <- 0 titanicData$Child[titanicData$Age<18] <- 1 titanicData$Elder[titanicData$Age>=55] <- 1 titanicData$Elder[titanicData$Age<55] <- 0 titanicData$HighFare[titanicData$Fare>=200] <- 1 titanicData$HighFare[titanicData$Fare<200] <- 0 titanicData$LowFare[titanicData$Fare<=8] <- 1 titanicData$LowFare[titanicData$Fare>8] <- 0 #The group of features below are categorical in nature and polynomial titanicData$TicketAB<-substring(titanicData$Ticket,1,1) titanicData$TicketAB<-factor(titanicData$TicketAB) titanicData$FamCat[titanicData$family_size == 1] <- 0 titanicData$FamCat[titanicData$family_size < 5 & titanicData$family_size > 1] <- 1 titanicData$FamCat[titanicData$family_size > 4] <- 2 titanicData$AgeGrp[titanicData$Age <= 10] <- 1 titanicData$AgeGrp[titanicData$Age > 10 & titanicData$Age <= 19] <- 2 titanicData$AgeGrp[titanicData$Age > 19 & titanicData$Age <=50] <- 3 titanicData$AgeGrp[titanicData$Age > 50] <- 4 titanicData$FareGrp[titanicData$Fare <=10] <- 1 titanicData$FareGrp[titanicData$Fare >10 & titanicData$Fare <=50] <- 2 titanicData$FareGrp[titanicData$Fare >50 & titanicData$Fare <=100] <- 3 titanicData$FareGrp[titanicData$Fare >100] <- 4 #Look at the Cabin feature str(titanicData$Cabin) table(titanicData$Cabin) #This beast has 187 levels, which can lower the performance of classification algorithms titanicData$Cabin <- as.character(titanicData$Cabin) titanicData$Cabin[is.na(titanicData$Cabin)] <- "U" titanicData$Cabin[titanicData$Cabin==""] <- "U" titanicData$Cab<-substring(titanicData$Cabin,1,1) titanicData$Cab<-factor(titanicData$Cab) titanicData$Cabin<-factor(titanicData$Cabin) #Our new feature, Cab, has only 9 levels and still represents most of the information from #the Cabin feature vector str(titanicData$Cab) #Add some categorical features to group families into types by their size titanicData$FamType[titanicData$family_size == 1] <- 'single' titanicData$FamType[titanicData$family_size < 5 & titanicData$family_size > 1] <- 'small' titanicData$FamType[titanicData$family_size > 4] <- 'large' titanicData$FamType<-factor(titanicData$FamType) #Some passengers are actually registered to multiple cabins. This can be related to a passengers #socioeconomic status which can affect survivability titanicData$MultiCab <- as.factor(ifelse(str_detect(titanicData$Cabin, " "), "Y", "N")) #The features for Fare and Age have values that are outliers and values that disturb the distribution #so create two new features that are normalized representations of both #probably will not use them, but making them anyway for now titanicData$FareNorm <- data.Normalization(titanicData$Fare, type="n1",normalization="column") titanicData$AgeNorm <- data.Normalization(titanicData$Age, type="n12",normalization="column") #Check on the structure of the dataset now str(titanicData) #Refactor some of the new features titanicData$Child<-factor(titanicData$Child) titanicData$Elder<-factor(titanicData$Elder) titanicData$HighFare<-factor(titanicData$HighFare) titanicData$LowFare<-factor(titanicData$LowFare) titanicData$FamCat<-factor(titanicData$FamCat) titanicData$AgeGrp<-factor(titanicData$AgeGrp) titanicData$FareGrp<-factor(titanicData$FareGrp) #Transform some of the others from num to int titanicData$Age <- as.integer(titanicData$Age) titanicData$family_size <- as.integer(titanicData$family_size) #Now split the data back into training and test sets train <- titanicData[1:891,] train$Survived <- factor(train$Survived) str(train) test <- titanicData[892:1309,] test$Survived <- factor(test$Survived) str(test) #Set seed for reproducibility set.seed(1) #First trying the random forest algorithm with cross validation estPerformance <- c(0,0,0,0,0,0,0,0,0,0) for(h in 1:10){ #For each of the ten accs<-c(0,0,0,0) n <- nrow(train) shuffled <- train[sample(n),] for (i in 1:4) { indices <- (((i-1) * round((1/4)*nrow(shuffled))) + 1):((i*round((1/4) * nrow(shuffled)))) # Exclude them from the train set train2 <- shuffled[-indices,] # Include them in the test set test2 <- shuffled[indices,] m <- randomForest(as.factor(Survived) ~ Title + Sex + # Age + # TicketAB + # Pclass+ family_size+ FareGrp #+ # ,ntree=1500, data=train,importance=TRUE) #Make a prediction on the test set using tree pred <- predict(m, test2, type="class") #Assign the confusion matrix to conf conf<-table(test2$Survived,pred) #Assign the accuracy of this model to the ith index in accs accs[i]<-sum(diag(conf))/sum(conf) } estPerformance[h] <- mean(accs) } #Check out the confusion matrix conf #Have a look at the different features used and their performance power varImpPlot(m) #Check out the average of all of the folded results using this model and ensuring the records #are shuffled prior to each evaluation mean(estPerformance) #The random forest performance averages around .892 #Create predictions based on the model above myPrediction <- predict(m, test) #Generate the solution file for the competition mySolution <- data.frame(PassengerID=test$PassengerId, Survived=myPrediction) write.csv(mySolution,file="my_solution(rForest).csv", row.names=FALSE) #Now trying a J48 classification tree from Weka m <- J48(as.factor(Survived) ~ Title +Sex +Age +TicketAB +Pclass +family_size +FareGrp ,data=train) #Use the built-in evaluation methods to analyze the performance of the J48 e <- evaluate_Weka_classifier(m,cost = matrix(c(0,2,1,0), ncol = 2), numFolds = 10, complexity = TRUE, #newdata=test, seed = 123, class = TRUE) #View the summary of the performance results e$details #Even though it is still looking at the training set, the performance is around 83%, which is a #pretty good sign #Now use some cross validation to further test the performance of the J48 model estPerformance <- c(0,0,0,0,0,0,0,0,0,0) for(h in 1:10){ #For each of the ten accs<-c(0,0,0,0) n <- nrow(train) shuffled <- train[sample(n),] for (i in 1:4) { indices <- (((i-1) * round((1/4)*nrow(shuffled))) + 1):((i*round((1/4) * nrow(shuffled)))) # Exclude them from the train set train2 <- shuffled[-indices,] # Include them in the test set test2 <- shuffled[indices,] m <- J48(as.factor(Survived) ~ Title +Age +TicketAB +FamType +Fare +Sex +Pclass +Cab +FamCat +family_size +MultiCab ,train) #Make a prediction on the test set using tree pred <- predict(m, test2, type="class") #Assign the confusion matrix to conf conf<-table(test2$Survived,pred) #Assign the accuracy of this model to the ith index in accs accs[i]<-sum(diag(conf))/sum(conf) } estPerformance[h] <- mean(accs) } #Check out the confusion matrix conf #Check out the average of all of the folded results using this model and ensuring the records #are shuffled prior to each evaluation mean(estPerformance) #Performance average hovers around .866, which seems good enough to make a submission to the contest #Use the built-in evaluation methods to analyze the performance of the J48 e <- evaluate_Weka_classifier(m,cost = matrix(c(0,2,1,0), ncol = 2), numFolds = 10, complexity = TRUE, seed = 123, class = TRUE) #View the summary of the performance results e$details #The built-in performance measurement gives the model around .829, which is still okay #Create predictions based on the model above myPrediction <- predict(m, test) #Generate the solution file mySolution <- data.frame(PassengerID=test$PassengerId, Survived=myPrediction) write.csv(my_solution,file="my_solution(J48).csv", row.names=FALSE)
= = = Unbreakable Kimmy Schmidt = = =
#' Accrual prediction plots #' #' Generates an accrual prediction plot based an accrual data frame (produced by accrual_create_df) #' and a target sample size. #' If the accrual data frame is a list (i.e. using the by option in accrual_create_df), #' or if center start dates are given, the number of enrolled and targeted sites is included. #' #' @rdname accrual_plot_predict #' @param accrual_df accrual data frame produced by accrual_create_df (optionally with by option as a list) #' @param target target sample size, if it is a vector with the same length as accrual_df, center-specific #' predictions are shown #' @param overall logical, indicates that accrual_df contains a summary with all sites (only if by is not NA) #' @param name_overall name of the summary with all sites (if by is not NA and overall==TRUE) #' @param fill_up whether to fill up days where no recruitment was observed, #' otherwise these points do not contribute to the regression, default is yes #' @param wfun function to calculate the weights based on the accrual data frame, default is #' wfun<-function(x) seq(1 / nrow(x), 1, by = 1/nrow(x)) #' @param col.obs line color of cumulative recruitment, can be a vector with the same length as accrual_df #' @param lty.obs line type of cumulative recruitment, can be a vector with the same length as accrual_df #' @param col.pred line color of prediction, can be a vector with the same length as accrual_df #' @param lty.pred line color of prediction, can be a vector with the same length as accrual_df #' @param pch.pred point symbol for end of prediction, can be a vector with the same length as accrual_df #' @param pos_prediction position of text with predicted end date, out, in or none #' @param label_prediction label for predicted end date #' @param cex_prediction text size for predicted end date #' @param format_prediction date format for predicted end date #' @param show_center logical, whether the center info should be shown #' (if accrual_df is a list or if center_start_dates are given) #' @param design design options for the center info #' 1 (default): below plot, 2: within plot, top, 3: within plot, bottom #' @param center_label label for the center info #' @param center_legend either "number" to plot numbers in the center strip or "strip" to add a legend strip, #' requires specification of center_colors #' @param center_colors colors to be used for the strip with the centers, a vector of length targetc #' @param targetc target number of centers, to scale the legend if it is "strip" #' @param center_legend_text_size size of the text of the center or legend strip, only has a function # if center and center_legend is specified #' @param ylim limits for y-axis, can be a vector with the same length as accrual_df #' @param xlim limits for x-axis, can be a vector with the same length as accrual_df #' @param ylab y-axis label #' @param xlabformat format of date on x-axis #' @param xlabn integer giving the desired number of intervals for the xlabel, default=5 #' @param xlabminn nonnegative integer giving the minimal number of intervals #' @param xlabformat format of date on x-axis #' @param xlabpos position of the x-label, can be a vector with the same length as accrual_df #' @param xlabsrt rotation of x-axis labels in degrees #' @param xlabadj adjustment of x-label, numeric vector with length 1 or 2 for different adjustment in x- and y-direction #' @param xlabcex size of x-axis label #' @param mar vector of length 4 (bottom, left, top, right margins), overwrite default margins #' @param legend.list named list with options passed to legend(), only if accrual data frame is a list #' @param ... further options passed to plot() and axis() #' @param center_start_dates alternative way to add center info, #' vector with dates on which centers are enrolled #' #' @return A plot with cumulative accrual and the prediction to the end date. #' #' @export #' #' @importFrom grDevices heat.colors #' #' @examples #' #Data #' set.seed(2020) #' enrollment_dates <- as.Date("2018-01-01") + sort(sample(1:30, 50, replace=TRUE)) #' #' #Default plot #' accrual_df<-accrual_create_df(enrollment_dates) #' accrual_plot_predict(accrual_df=accrual_df,target=100) #' #' #Include site #' set.seed(2021) #' centers<-sample(c("Site 1","Site 2","Site 3"),length(enrollment_dates),replace=TRUE) #' accrual_df<-accrual_create_df(enrollment_dates,by=centers) #' accrual_plot_predict(accrual_df=accrual_df,target=100,center_label="Site") #' ## with strip and target #' accrual_plot_predict(accrual_df=accrual_df,target=100,center_label="Site", #' targetc=5,center_colors=heat.colors(5),center_legend="strip") #' #' #Design for site #' accrual_plot_predict(accrual_df=accrual_df,target=100,design=2) #' #' #Format prediction end date #' accrual_plot_predict(accrual_df=accrual_df,target=100, #' pos_prediction="in",label_prediction="End of accrual: ",cex_prediction=1.2, #' format_prediction="%Y-%m-%d",ylim=c(0,150)) #' #' #Format plot #' accrual_plot_predict(accrual_df=accrual_df,target=100, #' ylab="No of recruited patients",ylim=c(0,150), #' xlabcex=1.2,xlabsrt=30,xlabn=5,xlabmin=5, #' mgp=c(3,0.5,0),cex.lab=1.2,cex.axis=1.2) #' #' #predictions for all sites #' accrual_plot_predict(accrual_df=accrual_df,target=c(30,30,30,100)) #' ## different colors #' accrual_plot_predict(accrual_df=accrual_df,target=c(30,30,30,100), #' col.obs=topo.colors(length(accrual_df))) #' ##not showing center info #' accrual_plot_predict(accrual_df=accrual_df,target=c(30,30,30,100),show_center=FALSE) #' accrual_plot_predict<-function(accrual_df, target, overall=TRUE, name_overall=attr(accrual_df, "name_overall"), fill_up=TRUE, wfun=function(x) seq(1 / nrow(x), 1, by = 1/nrow(x)), col.obs=NULL, lty.obs=1, col.pred="red", lty.pred=2, pch.pred=8, pos_prediction=c("out","in","none"), label_prediction="Predicted end date: ", cex_prediction=1.1, format_prediction="%B %d, %Y", show_center=TRUE, design=1, center_label="Centers", center_legend=c("number","strip"), targetc=NA, center_colors=NULL, center_legend_text_size=0.7, ylim=NA,xlim=NA, ylab="Recruited patients", xlabformat="%d%b%Y", xlabn=5, xlabminn= xlabn %/% 2, xlabpos=NA, xlabsrt=45, xlabadj=c(1,1), xlabcex=1, mar=NA, legend.list=NULL, ..., center_start_dates=NULL) { pos_prediction<-match.arg(pos_prediction) center_legend<-match.arg(center_legend) tmp <- lc_lct(accrual_df, overall, name_overall) accrual_df <- tmp$accrual_df lc <- tmp$lc lct <- tmp$lct overall <- tmp$overall if (!is.na(sum(mar))) { stopifnot(length(mar)==4) } if (length(target)!=1) { #separate prediction if (length(target)!=length(accrual_df)) { stop("length of target has to correspond to length of accrual_df") } } if (is.null(col.obs)) { if (lc==1) { col.obs="black" } else { col.obs<-gray.colors(lc) } } #predictions #&&&&&&&&&& tmp <- pred_fn(accrual_df, fill_up, wfun, lc, overall, target, name_overall) end_date <- tmp$end_date edate <- tmp$edate adf <- tmp$adf #plot scaling #&&&&&&&&&& alim<-ascale(accrual_df,xlim=xlim,ylim=ylim,ni=xlabn,min.n=xlabminn,addxmax=edate,addymax=target) # modification of ylim if design==3 if (show_center) { if (lc>1 | !is.null(center_start_dates)) { if (design==3) { if (alim[["ylim"]][1]==0) { alim[["ylim"]][1]<--max(target)/15 } } } } #margin #&&&&&&&&&& if (is.na(sum(mar))) { #mar<-c(5.1,4.1,2.0,1.0) mar<-c(5.1,4.1,4.1,2.1) #centers if (show_center) { if (lc>1 | !is.null(center_start_dates)) { #if (center_legend=="strip") { #mar[4]<-2.5 #} if (design==1) mar[1]<-6.5 } } } #plot raw data #&&&&&&&&&& par(mar=mar) plot(0,type="n",ylim=alim[["ylim"]],xlim=alim[["xlim"]], axes=FALSE,xlab="",ylab=ylab,...) box() #xlabel: xlabsl<-format(alim[["xlabs"]], xlabformat) axis(side=1,at=alim[["xlabs"]],labels=rep("",length(alim[["xlabs"]])),...) if (is.na(xlabpos)) { xlabpos<-par("usr")[3]-(par("usr")[4]-par("usr")[3])/30 } text(x=alim[["xlabs"]],y=xlabpos,srt=xlabsrt,labels=xlabsl,xpd=TRUE,adj=xlabadj,cex=xlabcex) #ylabel: axis(side=2,las=1,...) #only overall if (lc==1 | (overall & length(target)==1)) { lines(Cumulative~Date,data=adf,type="s",col=col.obs,lty=lty.obs) lp<-adf[which.max(adf$Date),] lines(x=c(lp$Date,end_date),y=c(lp$Cumulative,target),col=col.pred,lty=lty.pred) points(x=end_date,y=target,pch=pch.pred,col=col.pred,xpd=TRUE) #predicted end date if (pos_prediction!="none") { if (pos_prediction=="in") { legend("topleft",paste0(label_prediction,format(end_date, format_prediction)),bty="n", cex=cex_prediction) } else { text(x=par("usr")[1],y=par("usr")[4],adj=c(0,-1), xpd=TRUE, paste0(label_prediction,format(end_date, format_prediction)),cex=cex_prediction) } } } else { #for each site: target<-mult(target,length(adf)) col.obs<-mult(col.obs,length(adf)) lty.obs<-mult(lty.obs,length(adf)) col.pred<-mult(col.pred,length(adf)) lty.pred<-mult(lty.pred,length(adf)) pch.pred<-mult(pch.pred,length(adf)) for (k in 1:length(adf)) { lines(Cumulative~Date,data=adf[[k]],type="s",col=col.obs[k],lty=lty.obs[k]) lp<-adf[[k]][which.max(adf[[k]]$Date),] lines(x=c(lp$Date,end_date[[k]]),y=c(lp$Cumulative,target[k]),col=col.pred[k],lty=lty.pred[k]) points(x=end_date[[k]],y=target[k],pch=pch.pred[k],col=col.pred[k],xpd=TRUE) } lna<-paste0(names(adf),": ",format(do.call("c",end_date), format_prediction)) if(!is.null(legend.list)) { ll<-legend.list #defaults if not given: vlist<-c("x","legend","ncol","col","lty","bty","y.intersp","seg.len") obslist<-list("topleft",lna,1,col.obs,lty.obs,"n",0.85,1.5) for (d in 1:length(vlist)) { if (is.null(ll[[vlist[d]]])) { ll[[vlist[d]]]<-obslist[[d]] } } } else { ll<-list(x = "topleft",legend = lna,ncol=1,col=col.obs,lty=lty.obs,bty="n",y.intersp=0.85,seg.len=1.5) } do.call("legend",ll) } #plot centers info #&&&&&&&&&& if (show_center) { if (lc>1 | !is.null(center_start_dates)) { plot_center(accrual_df=accrual_df, center_start_dates=center_start_dates, overall=overall,name_overall=name_overall, lc=lc,lct=lct,design=design, center_legend=center_legend,center_colors=center_colors,targetc=targetc, center_label=center_label,center_legend_text_size=center_legend_text_size) } } } #**********************************************************************************# #' Cumulative accrual plots #' #' Plot of cumulative recruitment based on accrual data frame produced by accrual_create_df #' #' @rdname accrual_plot_cum #' @param accrual_df accrual data frame produced by accrual_create_df potentially with by option (i.e. as a list) # with by option, a line is added for each element in the list #' @param ylim limits for y-axis #' @param xlim limits for x-axis #' @param ylab y-axis label #' @param xlabn integer giving the desired number of intervals for the xlabel, default=5 #' @param xlabminn nonnegative integer giving the minimal number of intervals #' @param xlabformat format of date on x-axis #' @param xlabpos position of the x-label #' @param xlabsrt rotation of x-axis labels in degrees #' @param xlabadj adjustment of x-label, numeric vector with length 1 or 2 for different adjustment in x- and y-direction #' @param xlabcex size of x-axis label #' @param col color for line(s) in plot # if accrual_df is a list and overall is indicated, the first entry is used for the overall #' @param lty line types in plot # if accrual_df is a list and overall is indicated, the first entry is used for the overall #' @param legend.list named list with options passed to legend() #' @param ... further options passed to plot() and axis() #' #' @return A plot of the cumulative accrual, optionally by site. #' #' @export #' @importFrom graphics plot #' #' @examples #' set.seed(2020) #' enrollment_dates <- as.Date("2018-01-01") + sort(sample(1:30, 50, replace=TRUE)) #' accrual_df<-accrual_create_df(enrollment_dates) #' accrual_plot_cum(accrual_df) #' accrual_plot_cum(accrual_df,cex.lab=1.2,cex.axis=1.1,xlabcex=1.1) #' #' #several sites #' set.seed(1) #' centers<-sample(c("Site 1","Site 2","Site 3"),length(enrollment_dates),replace=TRUE) #' accrual_df<-accrual_create_df(enrollment_dates,by=centers) #' accrual_plot_cum(accrual_df) #' #' #assuming a common start and current date #' accrual_df<-accrual_create_df(enrollment_dates,by=centers,start_date="common",current_date="common") #' accrual_plot_cum(accrual_df) #' #' #plot and legend options #' accrual_plot_cum(accrual_df,col=c("red",rep(1,3)),lty=c(1,1:3),cex.lab=1.2,cex.axis=1.1,xlabcex=1.1) #' accrual_plot_cum(accrual_df,legend.list=list(ncol=2,bty=TRUE,cex=0.8)) #' #' #without overall #' accrual_df<-accrual_create_df(enrollment_dates,by=centers,overall=FALSE) #' accrual_plot_cum(accrual_df) #' accrual_plot_cum<-function(accrual_df, ylim=NA, xlim=NA, ylab="Recruited patients", xlabn=5, xlabminn= xlabn %/% 2, xlabformat="%d%b%Y", xlabpos=NA, xlabsrt=45, xlabadj=c(1,1), xlabcex=1, col=rep(1:8,5), lty=rep(1:5,each=8), legend.list=NULL, ...) { if (is.data.frame(accrual_df)) { accrual_df<-list(accrual_df) } else { if (!all(unlist(lapply(accrual_df,function(x) is.data.frame(x))))) { stop("accrual_df has to be a data frame or a list of data frames") } } lc<-length(accrual_df) if (lc>length(col)) { col<-rep(col,lc) } if (lc>length(lty)) { lty<-rep(lty,lc) } alim<-ascale(accrual_df,xlim=xlim,ylim=ylim,ni=xlabn,min.n=xlabminn) lna<-names(accrual_df) plot(0,type="n",ylim=alim[["ylim"]],xlim=alim[["xlim"]], axes=FALSE,xlab="",ylab=ylab,...) box() #xlabel xlabsl<-format(alim[["xlabs"]], xlabformat) axis(side=1,at=alim[["xlabs"]],labels=rep("",length(alim[["xlabs"]])),...) if (is.na(xlabpos)) { xlabpos<-par("usr")[3]-(par("usr")[4]-par("usr")[3])/30 } text(x=alim[["xlabs"]],y=xlabpos,srt=xlabsrt,labels=xlabsl,xpd=TRUE,adj=xlabadj,cex=xlabcex) axis(side=2,las=1,...) for (i in (1:lc)) { dfi<-accrual_df[[i]] lines(Cumulative~Date,data=dfi,col=col[i],lty=lty[i],type="s") } if (lc!=1) { if(!is.null(legend.list)) { ll<-legend.list #defaults if not given: vlist<-c("x","legend","ncol","col","lty","bty","y.intersp","seg.len") obslist<-list("topleft",lna,1,col,lty,"n",0.85,1.5) for (d in 1:length(vlist)) { if (is.null(ll[[vlist[d]]])) { ll[[vlist[d]]]<-obslist[[d]] } } } else { ll<-list(x = "topleft",legend = lna,ncol=1,col=col,lty=lty,bty="n",y.intersp=0.85,seg.len=1.5) } do.call("legend",ll) } } #**********************************************************************************# #' Absolute accrual plots #' #' Plot of absolute recruitment by time unit #' #' @rdname accrual_plot_abs #' @param accrual_df accrual data frame produced by accrual_create_df (optionally with by option as a list) #' @param unit time unit for which the bars should be plotted, any of "month","year","week","day" #' @param target adds horizontal line for target recruitment per time unit #' @param overall logical, indicates that accrual_df contains a summary with all sites #' that should be removed from stacked barplot (only if by is not NA) #' @param name_overall name of the summary with all sites (if by is not NA and overall==TRUE) #' @param ylim limits for y-axis, numeric vector of length 2 #' @param xlim limits for x-axis, in barplot units, numeric vector of length 2 #' @param ylab y-axis label #' @param xlabformat format of date on x-axis #' @param xlabsel selection of x-labels if not all should be shown, #' by default all are shown up to 15 bars, with more an automated selection is done, #' either NA (default), NULL (show all), or a numeric vector #' @param xlabpos position of the x-label #' @param xlabsrt rotation of x-axis labels in degrees #' @param xlabadj adjustment of x-label, numeric vector with length 1 or 2 for different adjustment #' in x- and y-direction #' @param xlabcex size of x-axis label #' @param col colors of bars in barplot, can be a vector if accrual_df is a list, default is grayscale #' @param legend.list named list with options passed to legend() #' @param ... further arguments passed to barplot() and axis() #' #' @return Barplot of absolute recruitment by time unit, stacked if accrual_df is a list. #' #' @export #' #' @importFrom graphics abline axis barplot box grconvertX grconvertY legend lines mtext par points polygon text #' @importFrom grDevices gray.colors #' #' @examples #' set.seed(2020) #' enrollment_dates <- as.Date("2018-01-01") + sort(sample(1:100, 50, replace=TRUE)) #' accrual_df<-accrual_create_df(enrollment_dates) #' accrual_plot_abs(accrual_df,unit="week") #' #' #time unit #' accrual_plot_abs(accrual_df,unit="day") #' #' #include target #' accrual_plot_abs(accrual_df,unit="week",target=5) #' #' #further plot options #' accrual_plot_abs(accrual_df,unit="week",ylab="No of recruited patients", #' xlabformat="%Y-%m-%d",xlabsrt=30,xlabpos=-0.8,xlabadj=c(1,0.5), #' col="pink",tck=-0.03,mgp=c(3,1.2,0)) #' #' #accrual_df with by option #' set.seed(2020) #' centers<-sample(c("Site 1","Site 2","Site 3"),length(enrollment_dates),replace=TRUE) #' centers<-factor(centers,levels=c("Site 1","Site 2","Site 3")) #' accrual_df<-accrual_create_df(enrollment_dates,by=centers) #' accrual_plot_abs(accrual_df=accrual_df,unit=c("week")) #' accrual_plot_abs<-function(accrual_df, unit=c("month","year","week","day"), target=NULL, overall=TRUE, name_overall=attr(accrual_df, "name_overall"), ylim=NULL, xlim=NULL, ylab="Recruited patients", xlabformat=NULL, xlabsel=NA, xlabpos=NULL, xlabsrt=45, xlabadj=c(1,1), xlabcex=1, col=NULL, legend.list=NULL, ...) { if (is.data.frame(accrual_df)) { accrual_df<-list(accrual_df) } else { if (!all(unlist(lapply(accrual_df,function(x) is.data.frame(x))))) { stop("accrual_df has to be a data frame or a list of data frames") } } #remove overall if if (length(accrual_df)>1 & overall==TRUE) { if (is.null(accrual_df[[name_overall]])) { print(paste0("'",name_overall,"' not found in accrual_df, overall set to FALSE")) overall<-FALSE } else { accrual_df<-accrual_df[names(accrual_df)!=name_overall] } } lc<-length(accrual_df) unit<-match.arg(unit) if (length(unit)!=1) { stop("unit should be of length 1") } if (!is.null(ylim) & length(ylim)!=2) { stop("ylim should be of length 2") } if (!is.null(xlim) & length(xlim)!=2) { stop("xlim should be of length 2") } #default colors if (is.null(col)) { if (lc==1) { col="grey" } else { col<-gray.colors(lc) } } #default xlabformat if (is.null(xlabformat)) { if (unit=="month") {xlabformat<-"%b %Y"} if (unit=="year") {xlabformat<-"%Y"} if (unit=="week") {xlabformat<-"%d %b %Y"} if (unit=="day") {xlabformat<-"%d %b %Y"} } for (i in 1:lc) { accrual_dfi<-accrual_df[[i]] #summarize data by time unit dfi<-accrual_time_unit(accrual_dfi,unit=unit) names(dfi)[names(dfi)=="Freq"]<-paste0("Freq",i) if (i==1) { #dfit<-dfi[,names(dfi)!="date"] dfit<-dfi } else { #dfit<-merge(dfit,dfi[,names(dfi)!="date"],all=TRUE) dfit<-merge(dfit,dfi,all=TRUE) } } dfit<-dfit[order(dfit$date),] ma<-as.matrix(dfit[,paste0("Freq",1:lc)]) ma[is.na(ma)]<-0 if (ncol(ma)>1) { ma<-ma[,ncol(ma):1] } rownames(ma)<-rep("",nrow(ma)) if (is.null(ylim)) { ylim<-c(0,max(apply(ma,1,function(x) sum(x,na.rm=TRUE)),target,na.rm=TRUE)+1) } #xscale b<-barplot(t(ma),plot=FALSE) if (is.null(xlim)) { xlim<-c(min(b),max(b)) + c(-0.5,0.5) } #x label selection if (is.null(xlabsel)) { sel<-1:length(b) } else { if (sum(!is.na(xlabsel))==0) { if (length(b)>15) { sel<-round(seq(1,length(b),l=8)) sel<-sel[sel>0&sel<=length(b)] } else { sel<-1:length(b) } } else { sel<-xlabsel } } #plot b<-barplot(t(ma),ylab=ylab,ylim=ylim,axes=FALSE,xlim=xlim,col=col,...) box() axis(side=2,las=2,...) axis(side=1,at=b,labels=rep("",length(b)),...) #xlabel if (is.null(xlabpos)) { xlabpos<-par("usr")[3]-(par("usr")[4]-par("usr")[3])/30 } sel<-sel[sel<=length(b)] bu<-b[sel] lab<-format(dfit$date,xlabformat) lab<-lab[sel] text(x=bu,y=xlabpos,srt=xlabsrt,labels=lab,xpd=TRUE,adj=xlabadj,cex = xlabcex) #line for target if (!is.null(target)) { abline(h=target,lty=2) } #legend if (lc!=1) { if(!is.null(legend.list)) { ll<-legend.list #defaults if not given: vlist<-c("x","legend","ncol","fill","bty","y.intersp","seg.len") obslist<-list("topright",names(accrual_df),1,rev(col),"n",0.85,1.5) for (d in 1:length(vlist)) { if (is.null(ll[[vlist[d]]])) { ll[[vlist[d]]]<-obslist[[d]] } } } else { ll<-list(x = "topright",legend = names(accrual_df),ncol=1,fill=rev(col), bty="n",y.intersp=0.85,seg.len=1.5) } do.call("legend",ll) } } # helpers ascale<-function(adf,xlim=NA,ylim=NA,ni=5,min.n=ni %/% 2) { if (is.data.frame(adf)) { adf<-list(adf) } if (sum(!is.na(xlim))==0) { xlims<-c(min(do.call("c",lapply(adf,function(x) min(x$Date)))), max(do.call("c",lapply(adf,function(x) max(x$Date))))) } else { xlims<-xlim } xlabs<-pretty(x=xlims,n=ni,min.n=min.n) xlabs<-xlabs[xlabs>=xlims[1] & xlabs <=xlims[2]] if (sum(!is.na(ylim))==0) { ymax<-max(do.call("c",lapply(adf,function(x) max(x$Cumulative)))) ylims<-c(0,ymax) } else { ylims<-ylim } alim<-list(xlim=xlims,ylim=ylims,xlabs=xlabs) return(alim) } mult<-function(var, accrual_df) { if (length(var)==1) { var<-rep(var,length(accrual_df)) return(var) } else { stopifnot(length(var)==length(accrual_df)) return(var) } }
import tactic natree.natree namespace chapter3 --equational "axioms" @[simp] def kernel {y z} : △⬝△⬝y⬝z = y := natree.kernel @[simp] def stem {x y z} : △⬝(△⬝x)⬝y⬝z = y⬝z⬝(x⬝z) := natree.stem @[simp] def fork {w x y z} : △⬝(△⬝w⬝x)⬝y⬝z = z⬝w⬝x := natree.fork --K combinator (similar to Kernel rule) def derive_K : {K : 𝕋 // ∀ x y, K⬝x⬝y = x} := begin --metavariable ?m_1 introduced for K split, intros x y, --use kernel rule symmetry, transitivity, symmetry, apply kernel, exact y, symmetry, --remove trailing ys apply congr, apply congr, refl, --remove trailing xs apply congr, apply congr, refl, --?m_1 = △⬝△ --finish proof repeat {refl}, end def K : 𝕋 := △⬝△ --I combinator (Identity combinator) def derive_I : {I : 𝕋 // ∀ x, I⬝x = x} := begin --metavariable ?m_1 introduced for I split, intro x, --use kernel rule symmetry, transitivity, symmetry, apply kernel, exact △⬝x, symmetry, --use stem rule symmetry, transitivity, symmetry, apply stem, symmetry, --remove trailing xs apply congr, apply congr, refl, --?m_1 = △⬝(△⬝△)⬝(△⬝△) --finish proof repeat {refl}, end def I : 𝕋 := △⬝(△⬝△)⬝(△⬝△) --D combinator (flipped S combinator, similar to Stem rule) def derive_D : {D : 𝕋 // ∀ x y z, D⬝x⬝y⬝z = y⬝z⬝(x⬝z)} := begin --metavariable ?m_1 introduced for D split, intros x y z, --use stem rule symmetry, transitivity, symmetry, apply stem, symmetry, --remove trailing zs apply congr, apply congr, refl, --remove trailing ys apply congr, apply congr, refl, --replace △ with K⬝△⬝x symmetry, transitivity, apply congr, apply congr, refl, symmetry, show K⬝△⬝x = △, apply derive_K.property, refl, symmetry, --use stem rule symmetry, transitivity, symmetry, apply stem, symmetry, --remove trailing xs apply congr, apply congr, refl, --unfold definition of K symmetry, transitivity, apply congr, refl, apply congr, apply congr, refl, show K = △⬝△, refl, refl, symmetry, --?m_1 = △⬝(△⬝△)⬝(△⬝△⬝△) --finish proof repeat {refl}, end def D : 𝕋 := △⬝(△⬝△)⬝(△⬝△⬝△) --d function (shorter version of D) def d (x : 𝕋) : 𝕋 := △⬝(△⬝x) lemma d_equiv_D {x} : D⬝x = d x := by simp [d, D] --iterated application def iterate : ℕ → 𝕋 → 𝕋 → 𝕋 | 0 a b := b | (n+1) a b := a⬝(iterate n a b) notation a ^ n ⬝ b := iterate n a b --derivation of the fundamental queries def derive_q {a b c e} : {q : 𝕋 // ∀ x, q⬝x = △⬝x⬝a⬝b⬝c⬝e} := begin --metavariable ?m_1 introduced for q split, intro x, --replace △⬝x⬝a with D⬝(K⬝a)⬝△⬝x (utilizing Stem rule) symmetry, transitivity, apply congr, apply congr, refl, apply congr, apply congr, refl, apply congr, apply congr, refl, show △⬝x⬝a = D⬝(K⬝a)⬝△⬝x, symmetry, have h : D = derive_D.val := rfl, rw h, transitivity, apply derive_D.property, apply congr, refl, have h₂ : K = derive_K.val := rfl, rw h₂, apply derive_K.property, refl, refl, refl, symmetry, --replace (D⬝(K⬝a)⬝△)⬝x⬝b with D⬝(K⬝b)⬝(D⬝(K⬝a)⬝△)⬝x (utilizing Stem rule) symmetry, transitivity, apply congr, apply congr, refl, apply congr, apply congr, refl, show (D⬝(K⬝a)⬝△)⬝x⬝b = D⬝(K⬝b)⬝(D⬝(K⬝a)⬝△)⬝x, symmetry, have h : D = derive_D.val := rfl, rw h, transitivity, apply derive_D.property, apply congr, refl, have h₂ : K = derive_K.val := rfl, rw h₂, apply derive_K.property, refl, refl, symmetry, --replace D⬝(K⬝b)⬝(D⬝(K⬝a)⬝△)⬝x⬝c with D⬝(K⬝c)⬝(D⬝(K⬝b)⬝(D⬝(K⬝a)⬝△))⬝x (utilizing Stem rule) symmetry, transitivity, apply congr, apply congr, refl, show D⬝(K⬝b)⬝(D⬝(K⬝a)⬝△)⬝x⬝c = D⬝(K⬝c)⬝(D⬝(K⬝b)⬝(D⬝(K⬝a)⬝△))⬝x, symmetry, have h : D = derive_D.val := rfl, rw h, transitivity, apply derive_D.property, apply congr, refl, have h₂ : K = derive_K.val := rfl, rw h₂, apply derive_K.property, refl, symmetry, --replace D⬝(K⬝c)⬝(D⬝(K⬝b)⬝(D⬝(K⬝a)⬝△))⬝x⬝d with D⬝(K⬝d)⬝(D⬝(K⬝c)⬝(D⬝(K⬝b)⬝(D⬝(K⬝a)⬝△)))⬝x (utilizing Stem rule) symmetry, transitivity, show D⬝(K⬝c)⬝(D⬝(K⬝b)⬝(D⬝(K⬝a)⬝△))⬝x⬝e = D⬝(K⬝e)⬝(D⬝(K⬝c)⬝(D⬝(K⬝b)⬝(D⬝(K⬝a)⬝△)))⬝x, symmetry, have h : D = derive_D.val := rfl, rw h, transitivity, apply derive_D.property, apply congr, refl, have h₂ : K = derive_K.val := rfl, rw h₂, apply derive_K.property, symmetry, --remove xs apply congr, apply congr, refl, --replace with ds symmetry, repeat { transitivity, rw d_equiv_D, }, symmetry, --?m_1 = d (K⬝e)⬝(d (K⬝c)⬝(d (K⬝b)⬝(d (K⬝a)⬝△))) --finish proof repeat {refl}, end def bool_to_natree : bool → 𝕋 | tt := K | ff := K⬝I structure solution_property (f g h k : 𝕋) (is0 is1 is2 : bool) : Prop := (eq0 : △⬝△⬝f⬝g⬝h⬝k = bool_to_natree is0) (eq1 : ∀ x, △⬝(△⬝x)⬝f⬝g⬝h⬝k = bool_to_natree is1) (eq2 : ∀ x y, △⬝(△⬝x⬝y)⬝f⬝g⬝h⬝k = bool_to_natree is2) lemma k2 {a b c} : (K^2⬝a)⬝b⬝c = a := begin --rewrite in terms of derive_K.val repeat {rw iterate}, have h : K = derive_K.val := rfl, rw h, --remove c transitivity, apply congr, apply congr, refl, --simplify using K-rule apply derive_K.property, refl, --simplify using K-rule again apply derive_K.property, end lemma k4 {a b c d e} : (K^4⬝a)⬝b⬝c⬝d⬝e = a := begin --rewrite in terms of derive_K.val repeat {rw iterate}, have h : K = derive_K.val := rfl, rw h, --remove c, d and e transitivity, apply congr, apply congr, refl, apply congr, apply congr, refl, apply congr, apply congr, refl, --simplify using K-rule apply derive_K.property, refl, refl, refl, --remove d and e transitivity, apply congr, apply congr, refl, apply congr, apply congr, refl, --simplify using K-rule apply derive_K.property, refl, refl, --remove e transitivity, apply congr, apply congr, refl, --simplify using K-rule apply derive_K.property, refl, --simplify using K-rule again apply derive_K.property, end lemma kI {a b} : K⬝I⬝a⬝b = b := begin transitivity, apply congr, apply congr, refl, have h : K = derive_K.val := rfl, show K⬝I⬝a = I, rw h, apply derive_K.property, refl, have h₂ : I = derive_I.val := rfl, rw h₂, apply derive_I.property, end def prove_query {is0 is1 is2} : Σ' f g h k, solution_property f g h k is0 is1 is2 := begin --apply naive solution for f (K^2⬝(bool_to_natree is0)) split, show 𝕋, exact K^2⬝(bool_to_natree is0), --apply naive solution for g (K^4⬝(bool_to_natree is2)) split, show 𝕋, exact K^4⬝(bool_to_natree is2), --apply derived solution for h (bool_to_natree is1) split, show 𝕋, exact bool_to_natree is1, --apply derived solution for k (bool_to_natree is1) split, show 𝕋, exact bool_to_natree is1, split, --------------------------------------------- --remove h and k transitivity, apply congr, apply congr, refl, apply congr, apply congr, refl, --use kernel rule apply kernel, refl, refl, --use k2 apply k2, --------------------------------------------- intro x, --remove h and k transitivity, apply congr, apply congr, refl, apply congr, apply congr, refl, --use stem rule and k2 transitivity, apply stem, apply k2, refl, refl, --split on cases cases is0, --case false rw bool_to_natree, apply kI, --case true rw bool_to_natree, have h : K = derive_K.val := rfl, rw h, apply derive_K.property, --------------------------------------------- intros x y, --remove h and k transitivity, apply congr, apply congr, refl, apply congr, apply congr, refl, --use fork rule and k4 transitivity, apply fork, refl, refl, refl, apply k4, end --D in terms of K and S def S : 𝕋 := (d (K⬝D))⬝((d K)⬝(K⬝D)) lemma S_prop {x y z} : S⬝x⬝y⬝z = x⬝z⬝(y⬝z) := by simp [S, d, D, K] def D' : 𝕋 := S⬝(K⬝(S⬝S))⬝K example {x y z} : D'⬝x⬝y⬝z = y⬝z⬝(x⬝z) := by simp [D', S, d, D, K] --Defining fst and snd def fst : 𝕋 := S⬝(K⬝(△⬝(K⬝K)⬝△))⬝△ example {x y} : fst⬝(△⬝x⬝y) = x := by simp [fst, S, d, D, K] def snd : 𝕋 := S⬝(K⬝(△⬝(K⬝(K⬝I))⬝△))⬝△ example {x y} : snd⬝(△⬝x⬝y) = y := by simp [snd, S, d, D, K, I] def unseat : 𝕋 := S⬝(K⬝(S⬝I))⬝K example {x y} : unseat⬝x⬝y = y⬝x := by simp [unseat, S, d, D, K, I] --flip⬝(b⬝x⬝y) = b⬝y⬝x --Exercise 8 --binary trees indexed by depth inductive btree : ℕ → Type | kernel : btree 0 | stem {n} : btree n → btree (n + 1) | fork {n₁ n₂} : btree n₁ → btree n₂ → btree (max n₁ n₂) example : fintype (btree 0) := begin split, show finset _, split, show multiset _, exact ⟦[btree.kernel]⟧, rw multiset.nodup, dsimp at *, end /- https://oeis.org/A002065 Two sequences: a_0 = 0 a_1 = 1 a(n) = a(n-1) * (a(n-1) + 2) - a(n-2) * (a(n-2) + 1) = a(n-1)^2 + (2*a(n-1) - a(n-2)^2 - a(n-2)) = a(n-1) + a(n-1)^2 + 1 a(n) gives number of binary trees where depth <= n-1 b(0) = 0 b(1) = 1 b(n) = b(n-1) + a(n-1)^2 - a(n-2)^2 = b(n-1) * (a(n-1) + a(n-2) + 1) = b(n-1) * (2a(n-1) - b(n-1) + 1) = a(n) - a(n-1) = a(n-1)^2 + 1 b(n) gives number of binary trees where depth = n-1 Depth 0: ● Depth 1: │ ┌┴┐ ● ● ● Depth 2: │ │ ┌┴┐ ┌┴─┐ ┌┴┐ ┌┴┐ ┌┴─┐ ┌─┴┐ ┌─┴┐ ┌─┴─┐ │ ┌┴┐ ● │ ● ┌┴┐ │ ● │ │ │ ┌┴┐ ┌┴┐ ● ┌┴┐ │ ┌┴┐ ┌┴┐ ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ... -/ end chapter3
/* (c) 2015 NumScale SAS (c) 2015 LRI UMR 8623 CNRS/University Paris Sud XI (c) 2015 Glen Joseph Fernandes <glenjofe -at- gmail.com> Distributed under the Boost Software License, Version 1.0. http://boost.org/LICENSE_1_0.txt */ #ifndef BOOST_ALIGN_ASSUME_ALIGNED_HPP #define BOOST_ALIGN_ASSUME_ALIGNED_HPP #include <boost/config.hpp> #if defined(BOOST_MSVC) #include <boost/align/detail/assume_aligned_msvc.hpp> #elif defined(BOOST_CLANG) && defined(__has_builtin) #include <boost/align/detail/assume_aligned_clang.hpp> #elif BOOST_GCC_VERSION >= 40700 #include <boost/align/detail/assume_aligned_gcc.hpp> #elif defined(__INTEL_COMPILER) #include <boost/align/detail/assume_aligned_intel.hpp> #else #include <boost/align/detail/assume_aligned.hpp> #endif #endif
[STATEMENT] lemma paths_in_all_paths: "paths \<subseteq> all_paths" [PROOF STATE] proof (prove) goal (1 subgoal): 1. paths \<subseteq> all_paths [PROOF STEP] unfolding all_paths_def [PROOF STATE] proof (prove) goal (1 subgoal): 1. paths \<subseteq> {xs |xs. path xs} [PROOF STEP] using paths [PROOF STATE] proof (prove) using this: ?xs \<in> paths \<Longrightarrow> v0 \<leadsto>?xs\<leadsto> v1 goal (1 subgoal): 1. paths \<subseteq> {xs |xs. path xs} [PROOF STEP] by blast
Formal statement is: proposition homotopic_paths_continuous_image: "\<lbrakk>homotopic_paths s f g; continuous_on s h; h ` s \<subseteq> t\<rbrakk> \<Longrightarrow> homotopic_paths t (h \<circ> f) (h \<circ> g)" Informal statement is: If $f$ and $g$ are homotopic paths in $s$, and $h$ is a continuous map from $s$ to $t$, then $h \circ f$ and $h \circ g$ are homotopic paths in $t$.
section \<open>Preliminaries\<close> (*<*) theory Prelim imports "HOL-Library.Stream" begin (*>*) abbreviation any where "any \<equiv> undefined" lemma append_singl_rev: "a # as = [a] @ as" by simp lemma list_pair_induct[case_names Nil Cons]: assumes "P []" and "\<And>a b list. P list \<Longrightarrow> P ((a,b) # list)" shows "P lista" using assms by (induction lista) auto lemma list_pair_case[elim, case_names Nil Cons]: assumes "xs = [] \<Longrightarrow> P" and "\<And>a b list. xs = (a,b) # list \<Longrightarrow> P" shows "P" using assms by(cases xs, auto) definition asList :: "'a set \<Rightarrow> 'a list" where "asList A \<equiv> SOME as. distinct as \<and> set as = A" lemma asList: assumes "finite A" shows "distinct (asList A) \<and> set (asList A) = A" unfolding asList_def by (rule someI_ex) (metis assms finite_distinct_list) lemmas distinct_asList = asList[THEN conjunct1] lemmas set_asList = asList[THEN conjunct2] lemma map_sdrop[simp]: "sdrop 0 = id" by (auto intro: ext) lemma stl_o_sdrop[simp]: "stl o sdrop n = sdrop (Suc n)" by (auto intro: ext) lemma sdrop_o_stl[simp]: "sdrop n o stl = sdrop (Suc n)" by (auto intro: ext) lemma hd_stake[simp]: "i > 0 \<Longrightarrow> hd (stake i \<pi>) = shd \<pi>" by (cases i) auto (*<*) end (*>*)
-- Copyright 2022-2023 VMware, Inc. -- SPDX-License-Identifier: BSD-2-Clause import .linear variables {a: Type} [ordered_add_comm_group a]. def positive (s: stream a) := 0 <= s. def stream_monotone (s: stream a) := ∀ t, s t ≤ s (t+1). def is_positive {b: Type} [ordered_add_comm_group b] (f: stream a → stream b) := ∀ s, positive s → positive (f s). -- TODO: could not get library monotone definition to work, possibly due to -- partial_order.to_preorder? -- set_option pp.notation false. -- set_option pp.implicit true. -- prove that [stream_monotone] can be rephrased in terms of order preservation theorem stream_monotone_order (s: stream a) : stream_monotone s ↔ (∀ t1 t2, t1 ≤ t2 → s t1 ≤ s t2) := begin unfold stream_monotone, split; intro h; introv, { intros hle, have heq : t2 = t1 + (t2 - t1) := by omega, rw heq at *, generalize : (t2 - t1) = d, clear_dependent t2, induction d, { simp, }, { transitivity s (t1 + d_n), assumption, apply h, } }, { apply h, linarith, }, end lemma integral_monotone (s: stream a) : positive s → stream_monotone (I s) := begin intros hp, intros t, repeat { rw integral_sum_vals }, repeat { simp [sum_vals] }, have h := hp (t + 1), simp at h, assumption, end lemma derivative_pos (s: stream a) : -- NOTE: paper is missing this, but it is also necessary (maybe they -- intend `s[-1] =0` in the definition of monotone) 0 ≤ s 0 → stream_monotone s → positive (D s) := begin intros h0 hp, intros t; simp, unfold D delay; simp, split_ifs, { subst t, assumption }, { have hle := hp (t - 1), have heq : t - 1 + 1 = t := by omega, rw heq at hle, assumption, }, end lemma derivative_pos_counter_example : (∃ (x:a), x < 0) → ¬(∀ (s: stream a), stream_monotone s → positive (D s)) := begin intros h, cases h with x hneg, simp, -- pushing the negation through, we're going to prove -- ∃ (x : stream a), stream_monotone x ∧ ¬positive (D x) use (λ _n, x), split, { intros t, simp, }, { unfold positive, rw stream_le_ext, simp, use 0, simp [D], apply not_le_of_gt, assumption, }, end
[STATEMENT] lemma card_sccs_verts: "card G.sccs_verts = card H.sccs_verts" [PROOF STATE] proof (prove) goal (1 subgoal): 1. card G.sccs_verts = card H.sccs_verts [PROOF STEP] unfolding sccs_eq [PROOF STATE] proof (prove) goal (1 subgoal): 1. card ((`) proj_verts_H ` H.sccs_verts) = card H.sccs_verts [PROOF STEP] by (intro card_image inj_on_proj_verts_H)
// Copyright 2007-2008 Google Inc. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License") // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an AS IS BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. // // Author: [email protected] (Moshe Looks) /**** Basic output and input on trees, format is e.g. f(x g(y z)). To output a tree as an s-expression, e.g. (f x (g y z)) do ostream << sexpr_format(tree), likewise to read do istream >> sexpr_format(tree). ****/ #ifndef _TREE_TREE_IO_HPP_ #define _TREE_TREE_IO_HPP_ #define BOOST_SPIRIT_USE_OLD_NAMESPACE 1 #include <algorithm> #include <istream> #include <ostream> #include <string> #include <stdexcept> #include <boost/spirit/include/classic.hpp> #include <boost/lexical_cast.hpp> #include "tree.hpp" namespace TREE_TREE_NAMESPACE { template<typename> struct sexpr_io_wrapper; template<typename T> struct sexpr_io_wrapper<subtree<T> > { explicit sexpr_io_wrapper(subtree<T> t) : _tr(t) {} subtree<T> expr() { return _tr; } const_subtree<T> expr() const { return _tr; } typedef subtree<T> tree_t; private: subtree<T> _tr; }; template<typename T> struct sexpr_io_wrapper<const_subtree<T> > { explicit sexpr_io_wrapper(const_subtree<T> t) : _tr(t) {} const_subtree<T> expr() const { return _tr; } typedef const_subtree<T> tree_t; private: const_subtree<T> _tr; }; template<typename T> struct sexpr_io_wrapper<tree<T>*> { explicit sexpr_io_wrapper(tree<T>& t) : _tr(&t) {} tree<T>& expr() { return *_tr; } const tree<T>& expr() const { return *_tr; } typedef tree<T> tree_t; private: tree<T>* _tr; }; template<typename T> struct sexpr_io_wrapper<const tree<T>*> { explicit sexpr_io_wrapper(const tree<T>& t) : _tr(&t) {} const tree<T>& expr() const { return *_tr; } typedef tree<T> tree_t; private: const tree<T>* _tr; }; template<typename T> sexpr_io_wrapper<tree<T> > sexpr_format(subtree<T> t) { return sexpr_io_wrapper<subtree<T> >(t); } template<typename T> sexpr_io_wrapper<const_subtree<T> > sexpr_format(const_subtree<T> t) { return sexpr_io_wrapper<const_subtree<T> >(t); } template<typename T> sexpr_io_wrapper<tree<T>*> sexpr_format(tree<T>& t) { return sexpr_io_wrapper<tree<T>*>(t); } template<typename T> sexpr_io_wrapper<const tree<T>*> sexpr_format(const tree<T>& t) { return sexpr_io_wrapper<const tree<T>*>(t); } // output template<typename T> std::ostream& operator<<(std::ostream& out,const_subtree<T> tr) { if (tr.childless()) return out << tr.root(); out << tr.root() << "("; for (typename const_subtree<T>::const_sub_child_iterator it=tr.begin_sub_child();it!=tr.end_sub_child();++it) out << *it << (boost::next(it)==tr.end_sub_child() ? ")" : " "); return out; } template<typename T> std::ostream& operator<<(std::ostream& out,subtree<T> tr) { return out << const_subtree<T>(tr); } template<typename T> std::ostream& operator<<(std::ostream& out,const tree<T>& tr) { if (!tr.empty()) out << const_subtree<T>(tr); return out; } // sexpr output template<typename Tree> std::ostream& operator<<(std::ostream& out,sexpr_io_wrapper<Tree> s) { if (s.expr().empty()) return out << "()"; //empty tree else if (s.expr().childless()) return out << s.expr().root(); out << "(" << s.expr().root() << " "; for (typename sexpr_io_wrapper<Tree>::tree_t::const_sub_child_iterator it=s.expr().begin_sub_child();it!=s.expr().end_sub_child();++it) out << sexpr_format(*it) << (boost::next(it)==s.expr().end_sub_child() ? ")" : " "); return out; } // input namespace _tree_io_private { using namespace boost::spirit; using std::string; struct tree_grammar : public boost::spirit::grammar<tree_grammar> { mutable tree<string>* tr; mutable tree<string>::sub_child_iterator at; bool sexpr_io; void begin_internal(const char* from, const char* to) const { if (sexpr_io) ++from; else --to; at=tr->insert(at,string(from,to))->begin_child(); } void end_internal(const char) const { ++++at; } void add_leaf(const char* from, const char* to) const { tr->insert(at,string(from,to)); } template<typename ScannerT> struct definition { definition(const tree_grammar& g) { term=lexeme_d[(+( anychar_p - ch_p('(') - ch_p(')') - space_p))] [boost::bind<void>(&tree_grammar::add_leaf,&g,_1,_2)]; if (g.sexpr_io) beg=lexeme_d['(' >> (+( anychar_p - ch_p('(') - ch_p(')') - space_p))]; else beg=lexeme_d[(+( anychar_p - ch_p('(') - ch_p(')') - space_p)) >> '(']; expr=(beg[boost::bind(&tree_grammar::begin_internal,&g,_1,_2)] >> +expr >> ch_p(')') [boost::bind(&tree_grammar::end_internal,&g,_1)]) | term; } rule<ScannerT> expr,beg,term; const rule<ScannerT>& start() const { return expr; } }; }; inline bool lparen(char c) { return (c=='(' || c=='[' || c=='{'); } inline bool rparen(char c) { return (c==')' || c==']' || c=='}'); } inline bool whitespace(char c) { return (c==' ' || c=='\t' || c=='\n'); } inline bool all_whitespace(const std::string& s) { return std::find_if(s.begin(),s.end(),!boost::bind(&whitespace,_1))==s.end(); } inline std::string chomp(const std::string& s) { std::size_t i=0,j=s.length(); while (i<j && whitespace(s[i])) ++i; do { --j; } while (i<j && whitespace(s[j])); return s.substr(i,++j); } inline void read_string_tree(std::istream& in,tree<std::string>& dst, bool sexpr_io) { std::string str; std::string::size_type nparen=0; char c; bool started=false; do { c=in.get(); if (lparen(c)) { started=true; ++nparen; } else if (rparen(c)) { --nparen; } else if (whitespace(c) && !started && !all_whitespace(str)) { dst=tree<std::string>(chomp(str)); //a single node return; } str.push_back(c); } while (in && c!=EOF && (nparen>0 || !started)); if (c==EOF || whitespace(c)) { str.erase(--str.end()); in.putback(c); } str=chomp(str); if (nparen!=0) throw std::runtime_error("paren mismatch reading: '"+str+"'"); tree_grammar g; g.tr=&dst; g.at=dst.begin(); g.sexpr_io=sexpr_io; parse(str.c_str(),g,space_p); } template<typename T> void rec_copy(subtree<std::string> str,subtree<T> dst) { for (typename tree<std::string>::sub_child_iterator i=str.begin_sub_child(); i!=str.end_sub_child();++i) rec_copy(*i,*dst.insert(dst.end_sub_child(), boost::lexical_cast<T>(i->root()))); } template<typename T> std::istream& read_tree(std::istream& in,tree<T>& dst,bool sexpr_io) { tree<std::string> str; _tree_io_private::read_string_tree(in,str,sexpr_io); dst.clear(); if (!str.empty()) { rec_copy(subtree<std::string>(str), *dst.insert(dst.end_sub(),boost::lexical_cast<T>(str.root()))); } return in; } template<typename T> std::istream& read_tree(std::istream& in,subtree<T> dst,bool sexpr_io) { tree<std::string> str; _tree_io_private::read_string_tree(in,str,sexpr_io); if (str.empty()) throw std::runtime_error("can't read empty input into a subtree"); dst.prune(); dst.root()=boost::lexical_cast<T>(str.root()); rec_copy(str,dst); return in; } } //namespace _tree_io_private template<typename T> std::istream& operator>>(std::istream& in,tree<T>& dst) { return _tree_io_private::read_tree(in,dst,false); } template<typename T> std::istream& operator>>(std::istream& in,subtree<T> dst) { return _tree_io_private::read_tree(in,dst,false); } template<typename Tree> std::istream& operator>>(std::istream& in,sexpr_io_wrapper<Tree> s) { return _tree_io_private::read_tree(in,s.expr(),true); } } //namespace TREE_TREE_NAMESPACE #endif //_TREE_TREE_IO_HPP_
State Before: k : Type u_2 V : Type u_3 P : Type u_1 inst✝³ : Ring k inst✝² : AddCommGroup V inst✝¹ : Module k V inst✝ : AffineSpace V P s₁ s₂ : Set P h : affineSpan k s₁ ∥ affineSpan k s₂ ⊢ vectorSpan k s₁ = vectorSpan k s₂ State After: k : Type u_2 V : Type u_3 P : Type u_1 inst✝³ : Ring k inst✝² : AddCommGroup V inst✝¹ : Module k V inst✝ : AffineSpace V P s₁ s₂ : Set P h : affineSpan k s₁ ∥ affineSpan k s₂ ⊢ direction (affineSpan k s₁) = direction (affineSpan k s₂) Tactic: simp_rw [← direction_affineSpan] State Before: k : Type u_2 V : Type u_3 P : Type u_1 inst✝³ : Ring k inst✝² : AddCommGroup V inst✝¹ : Module k V inst✝ : AffineSpace V P s₁ s₂ : Set P h : affineSpan k s₁ ∥ affineSpan k s₂ ⊢ direction (affineSpan k s₁) = direction (affineSpan k s₂) State After: no goals Tactic: exact h.direction_eq
State Before: M : Type w A : Set M L : Language inst✝ : Structure L M α : Type u₁ β : Type u_1 B : Set M s✝ : Set (α → M) f : α → β s : Set (α → M) h : Definable A L s ⊢ Definable A L ((fun g => g ∘ f) ⁻¹' s) State After: case intro M : Type w A : Set M L : Language inst✝ : Structure L M α : Type u₁ β : Type u_1 B : Set M s : Set (α → M) f : α → β φ : Formula (L[[↑A]]) α ⊢ Definable A L ((fun g => g ∘ f) ⁻¹' setOf (Formula.Realize φ)) Tactic: obtain ⟨φ, rfl⟩ := h State Before: case intro M : Type w A : Set M L : Language inst✝ : Structure L M α : Type u₁ β : Type u_1 B : Set M s : Set (α → M) f : α → β φ : Formula (L[[↑A]]) α ⊢ Definable A L ((fun g => g ∘ f) ⁻¹' setOf (Formula.Realize φ)) State After: case intro M : Type w A : Set M L : Language inst✝ : Structure L M α : Type u₁ β : Type u_1 B : Set M s : Set (α → M) f : α → β φ : Formula (L[[↑A]]) α ⊢ (fun g => g ∘ f) ⁻¹' setOf (Formula.Realize φ) = setOf (Formula.Realize (Formula.relabel f φ)) Tactic: refine' ⟨φ.relabel f, _⟩ State Before: case intro M : Type w A : Set M L : Language inst✝ : Structure L M α : Type u₁ β : Type u_1 B : Set M s : Set (α → M) f : α → β φ : Formula (L[[↑A]]) α ⊢ (fun g => g ∘ f) ⁻¹' setOf (Formula.Realize φ) = setOf (Formula.Realize (Formula.relabel f φ)) State After: case intro.h M : Type w A : Set M L : Language inst✝ : Structure L M α : Type u₁ β : Type u_1 B : Set M s : Set (α → M) f : α → β φ : Formula (L[[↑A]]) α x✝ : β → M ⊢ x✝ ∈ (fun g => g ∘ f) ⁻¹' setOf (Formula.Realize φ) ↔ x✝ ∈ setOf (Formula.Realize (Formula.relabel f φ)) Tactic: ext State Before: case intro.h M : Type w A : Set M L : Language inst✝ : Structure L M α : Type u₁ β : Type u_1 B : Set M s : Set (α → M) f : α → β φ : Formula (L[[↑A]]) α x✝ : β → M ⊢ x✝ ∈ (fun g => g ∘ f) ⁻¹' setOf (Formula.Realize φ) ↔ x✝ ∈ setOf (Formula.Realize (Formula.relabel f φ)) State After: no goals Tactic: simp only [Set.preimage_setOf_eq, mem_setOf_eq, Formula.realize_relabel]
# -*- coding: utf-8 -*- """ Created on Mon Aug 14 15:11:13 2017 @author: Benjamin """ import sys import numpy as np from copy import deepcopy def get_contact_bins(device, contacts, interact_mtrx): """ Returns the nested list "contact_starter_atom_list". For each contact, this nested list contains another list of all the atoms in said contact that are interacting with device atoms. """ contact_starter_atom_list = [] for contact in contacts: contact_edge_list = [] for contact_idx in contact: for device_idx in device: if interact_mtrx[contact_idx, device_idx]: if not contact_idx in contact_edge_list: contact_edge_list.append(contact_idx) contact_starter_atom_list.append(np.array(contact_edge_list)) return contact_starter_atom_list def get_next_bins(curr_bins, prev_bins, interact_mtrx): """ List of bins. Each element contains the bins corresponding to a contact. """ next_bins = [] num_atoms = np.size(interact_mtrx, axis=0) atoms = np.array(list(range(num_atoms))) for curr_bin in curr_bins: bin_candidates = np.array([]) for atom_idx in curr_bin: # print(atom_idx) # print(interact_mtrx[atom_idx, :]) bin_add_candidates = atoms[interact_mtrx[atom_idx, :]] for prev_bin in prev_bins: # print("prev_bin" + str(prev_bin)) bin_add_candidates = [x for x in bin_add_candidates if x not in prev_bin] bin_add_candidates = np.array(bin_add_candidates) bin_candidates = np.append(bin_candidates, bin_add_candidates) bin_candidates = [int(x) for x in bin_candidates] # print("bin_add_candidates" + str(bin_add_candidates)) # print("bin_candidates" + str(bin_candidates)) bin_atoms = np.unique(bin_candidates) # print("bin_atoms: " + str(bin_atoms)) next_bins.append(bin_atoms) return next_bins def bins_are_neighbours(bin1, bin2, interact_mtrx): """ Check if bin1 and bin2 contain interacting atoms, or have atoms in common. """ max_atom_idx = len(interact_mtrx[:, 0])-1 for atom_idx1 in bin1: if atom_idx1 > max_atom_idx: sys.exit("FATAL ERROR: atom_idx out of range!") continue for atom_idx2 in bin2: if atom_idx2 > max_atom_idx: sys.exit("FATAL ERROR: atom_idx out of range!") continue if interact_mtrx[atom_idx1, atom_idx2]: return True return False def get_chain_length(chains, chain_idx, start_gen_idx): """ Get length of the chain with index "chain_idx", starting from (and including) generation "start_gen_idx" to end of chain, or until first empty bin (while excluding empty bin). """ length = 0 for gen_idx, gen in enumerate(chains[start_gen_idx:]): bn = gen[chain_idx] if len(bn) == 0: break length += 1 # print("\nbn: " + str([x+1 for x in bn])) return length def get_dead_ends(chains, final_chain_idxs, gen_idx_of_last_collision): vrb_local = False dead_ends = [] dead_end_start_idx = gen_idx_of_last_collision+1 for chain_idx in final_chain_idxs: if vrb_local: print("chain_idx = " + str(chain_idx)) if vrb_local: print("dead_end_start_idx = " + str(dead_end_start_idx)) length = get_chain_length(chains, chain_idx, dead_end_start_idx) if vrb_local: print("length = " + str(length)) if length == 0: dead_ends.append([]) else: dead_end = [] for gen in chains[dead_end_start_idx:]: if vrb_local: print("gen: " + str([x+1 for x in gen])) dead_end.append(gen[chain_idx]) dead_ends.append(deepcopy(dead_end)) return dead_ends
# Used for objectives and solvers where the gradient is available/exists mutable struct OnceDifferentiable{TF, TDF, TX} <: AbstractObjective f # objective df # (partial) derivative of objective fdf # objective and (partial) derivative of objective F::TF # cache for f output DF::TDF # cache for df output x_f::TX # x used to evaluate f (stored in F) x_df::TX # x used to evaluate df (stored in DF) f_calls::Vector{Int} df_calls::Vector{Int} end ### Only the objective # Ambiguity OnceDifferentiable(f, x::AbstractArray, F::Real = real(zero(eltype(x))), DF::AbstractArray = alloc_DF(x, F); inplace = true, autodiff = :finite, chunk::ForwardDiff.Chunk = ForwardDiff.Chunk(x)) = OnceDifferentiable(f, x, F, DF, autodiff, chunk) #OnceDifferentiable(f, x::AbstractArray, F::AbstractArray; autodiff = :finite) = # OnceDifferentiable(f, x::AbstractArray, F::AbstractArray, alloc_DF(x, F)) function OnceDifferentiable(f, x::AbstractArray, F::AbstractArray, DF::AbstractArray = alloc_DF(x, F); inplace = true, autodiff = :finite) f! = f!_from_f(f, F, inplace) OnceDifferentiable(f!, x::AbstractArray, F::AbstractArray, DF, autodiff) end function OnceDifferentiable(f, x_seed::AbstractArray{T}, F::Real, DF::AbstractArray, autodiff, chunk) where T # When here, at the constructor with positional autodiff, it should already # be the case, that f is inplace. if typeof(f) <: Union{InplaceObjective, NotInplaceObjective} fF = make_f(f, x_seed, F) dfF = make_df(f, x_seed, F) fdfF = make_fdf(f, x_seed, F) return OnceDifferentiable(fF, dfF, fdfF, x_seed, F, DF) else if is_finitediff(autodiff) # Figure out which Val-type to use for FiniteDiff based on our # symbol interface. fdtype = finitediff_fdtype(autodiff) df_array_spec = DF x_array_spec = x_seed return_spec = typeof(F) gcache = FiniteDiff.GradientCache(df_array_spec, x_array_spec, fdtype, return_spec) function g!(storage, x) FiniteDiff.finite_difference_gradient!(storage, f, x, gcache) return end function fg!(storage, x) g!(storage, x) return f(x) end elseif is_forwarddiff(autodiff) gcfg = ForwardDiff.GradientConfig(f, x_seed, chunk) g! = (out, x) -> ForwardDiff.gradient!(out, f, x, gcfg) fg! = (out, x) -> begin gr_res = DiffResults.DiffResult(zero(T), out) ForwardDiff.gradient!(gr_res, f, x, gcfg) DiffResults.value(gr_res) end else error("The autodiff value $autodiff is not support. Use :finite or :forward.") end return OnceDifferentiable(f, g!, fg!, x_seed, F, DF) end end has_not_dep_symbol_in_ad = Ref{Bool}(true) OnceDifferentiable(f, x::AbstractArray, F::AbstractArray, autodiff::Symbol, chunk::ForwardDiff.Chunk = ForwardDiff.Chunk(x)) = OnceDifferentiable(f, x, F, alloc_DF(x, F), autodiff, chunk) function OnceDifferentiable(f, x::AbstractArray, F::AbstractArray, autodiff::Bool, chunk::ForwardDiff.Chunk = ForwardDiff.Chunk(x)) if autodiff == false throw(ErrorException("It is not possible to set the `autodiff` keyword to `false` when constructing a OnceDifferentiable instance from only one function. Pass in the (partial) derivative or specify a valid `autodiff` symbol.")) elseif has_not_dep_symbol_in_ad[] @warn("Setting the `autodiff` keyword to `true` is deprecated. Please use a valid symbol instead.") has_not_dep_symbol_in_ad[] = false end OnceDifferentiable(f, x, F, alloc_DF(x, F), :forward, chunk) end function OnceDifferentiable(f, x_seed::AbstractArray, F::AbstractArray, DF::AbstractArray, autodiff::Symbol , chunk::ForwardDiff.Chunk = ForwardDiff.Chunk(x_seed)) if typeof(f) <: Union{InplaceObjective, NotInplaceObjective} fF = make_f(f, x_seed, F) dfF = make_df(f, x_seed, F) fdfF = make_fdf(f, x_seed, F) return OnceDifferentiable(fF, dfF, fdfF, x_seed, F, DF) else if is_finitediff(autodiff) # Figure out which Val-type to use for FiniteDiff based on our # symbol interface. fdtype = finitediff_fdtype(autodiff) # Apparently only the third input is aliased. j_finitediff_cache = FiniteDiff.JacobianCache(copy(x_seed), copy(F), copy(F), fdtype) if autodiff == :finiteforward # These copies can be done away with if we add a keyword for # reusing arrays instead for overwriting them. Fx = copy(F) DF = copy(DF) x_f, x_df = x_of_nans(x_seed), x_of_nans(x_seed) f_calls, j_calls = [0,], [0,] function j_finiteforward!(J, x) # Exploit the possibility that it might be that x_f == x # then we don't have to call f again. # if at least one element of x_f is different from x, update if any(x_f .!= x) f(Fx, x) f_calls .+= 1 end FiniteDiff.finite_difference_jacobian!(J, f, x, j_finitediff_cache, Fx) end function fj_finiteforward!(F, J, x) f(F, x) FiniteDiff.finite_difference_jacobian!(J, f, x, j_finitediff_cache, F) end return OnceDifferentiable(f, j_finiteforward!, fj_finiteforward!, Fx, DF, x_f, x_df, f_calls, j_calls) end function fj_finitediff!(F, J, x) f(F, x) FiniteDiff.finite_difference_jacobian!(J, f, x, j_finitediff_cache) F end function j_finitediff!(J, x) F_cache = copy(F) fj_finitediff!(F_cache, J, x) end return OnceDifferentiable(f, j_finitediff!, fj_finitediff!, x_seed, F, DF) elseif is_forwarddiff(autodiff) jac_cfg = ForwardDiff.JacobianConfig(f, F, x_seed, chunk) ForwardDiff.checktag(jac_cfg, f, x_seed) F2 = copy(F) function j_forwarddiff!(J, x) ForwardDiff.jacobian!(J, f, F2, x, jac_cfg, Val{false}()) end function fj_forwarddiff!(F, J, x) jac_res = DiffResults.DiffResult(F, J) ForwardDiff.jacobian!(jac_res, f, F2, x, jac_cfg, Val{false}()) DiffResults.value(jac_res) end return OnceDifferentiable(f, j_forwarddiff!, fj_forwarddiff!, x_seed, F, DF) else error("The autodiff value $(autodiff) is not supported. Use :finite or :forward.") end end end ### Objective and derivative function OnceDifferentiable(f, df, x::AbstractArray, F::Real = real(zero(eltype(x))), DF::AbstractArray = alloc_DF(x, F); inplace = true) df! = df!_from_df(df, F, inplace) fdf! = make_fdf(x, F, f, df!) OnceDifferentiable(f, df!, fdf!, x, F, DF) end function OnceDifferentiable(f, j, x::AbstractArray, F::AbstractArray, J::AbstractArray = alloc_DF(x, F); inplace = true) f! = f!_from_f(f, F, inplace) j! = df!_from_df(j, F, inplace) fj! = make_fdf(x, F, f!, j!) OnceDifferentiable(f!, j!, fj!, x, F, J) end ### Objective, derivative and combination function OnceDifferentiable(f, df, fdf, x::AbstractArray, F::Real = real(zero(eltype(x))), DF::AbstractArray = alloc_DF(x, F); inplace = true) # f is never "inplace" since F is scalar df! = df!_from_df(df, F, inplace) fdf! = fdf!_from_fdf(fdf, F, inplace) x_f, x_df = x_of_nans(x), x_of_nans(x) OnceDifferentiable{typeof(F),typeof(DF),typeof(x)}(f, df!, fdf!, copy(F), copy(DF), x_f, x_df, [0,], [0,]) end function OnceDifferentiable(f, df, fdf, x::AbstractArray, F::AbstractArray, DF::AbstractArray = alloc_DF(x, F); inplace = true) f = f!_from_f(f, F, inplace) df! = df!_from_df(df, F, inplace) fdf! = fdf!_from_fdf(fdf, F, inplace) x_f, x_df = x_of_nans(x), x_of_nans(x) OnceDifferentiable(f, df!, fdf!, copy(F), copy(DF), x_f, x_df, [0,], [0,]) end
Christy Marsden Basics I finished my Masters in Horticulture and Agronomy in 2011. I graduated in June 2008 with a BS in Human Development, minor in Environmental Horticulture from UC Davis. I currently live in Decorah, Iowa and work at Seed Savers Exchange. Decorah could use a wiki. Past Work I worked as a plant technician for the National Clonal Germplasm Repository with the USDAARS, which included frequent trips to the elusive Wolfskill Experimental Orchard Wolfskill in Winters. During the summer, I split my time between the Repository and a plant pathology lab on campus working with Agrobacterium tumefaciens. I drove buses for Unitrans, and was the Human Resources Manager from 20072008. During graduate school, I was a TA for various horticulture courses. My favorite part of grad school by far. Extras I Davis Knit Night knit. A lot. I enjoy playing Kubb. I like plants. I was the 100th member of DavisWiki, and because I love the wiki I have a weirdly vast knowledge of Davis. Oh, Davis I really liked Davis in the summer when the city seems to relax for a few months. Davis Noodle City was my favorite place to eat. Taste of Thai was a close second. Woodstocks Pizza Woodstocks is an excellent place to drink beer. And Sophias for everything else (drink wise, not food wise). de Veres Irish Pub de Veres will be when the crowds die down. Leftovers I was a member of Prytanean Womens Honor Society Prytanean. I was in Integrated Studies. I worked as a CASA. I volunteered for four years in the Arboretum. Hopes and Dreams Fall in love. Find a happy place to be. I like to think Im a good person to know. But hey, I hardly know myself, so who knows? 20060417 21:54:36 nbsp Hey, cool. Users/CarlosOverstreet 20060502 23:25:06 nbsp Im in that Anthro class too! Users/JosephBleckman 20060724 18:42:07 nbsp PAs kick ass! Users/TracyPerkins 20060726 13:55:04 nbsp Hey there! Yeah it wasnt so much that John was conservative as he was kind of an asshole about it. Like I know so much more than you and whatever you have to say Im going to argue with just for the hell of it. Yeah but anyways... we should play more IM sports in the fall and winter! Users/AngelaPourtabib 20060728 08:22:55 nbsp Hey Christy! Do you think Friends of the Arboretum would be willing to donate one of their very cool plants for the wiki fundraiser? Im thinking you might have a contact. Users/AlphaDog 20060811 12:11:32 nbsp Nice page Christy! Users/VinceBuffalo 20060811 12:13:41 nbsp Oh and thanks for the edit! and check out my new project http://coursecollab.org ! Users/VinceBuffalo 20060820 20:18:03 nbsp I see that you have Watch every Star Wars movie listed. I dont have episodes IIII, but I have the original trilogy if you want to watch them sometime. Users/TracyPerkins 20061115 23:05:44 nbsp I mostly dont get any trouble from Unitrans drivers about the RT sticker, but that would still be helpful. Thanks. Users/NickSchmalenberger 20061120 05:32:27 nbsp Lulz, Thanks Christy! I know a lot of ppl get those, but you wouldnt believe how much spam i get back from sending them ;) Users/MaxMikalonis 20070515 11:43:33 nbsp Thank you for your positive feed back on 3rd street jeweler. it was a pleasure. Frank A. Users/3rdstreetjeweler 20070607 23:54:49 nbsp Yo yo you volunteer at CASA? Good work man... Users/AngelaPourtabib 20070724 12:13:17 nbsp Yeah, I noticed Prytanean when I was reading through the California Aggie through the 1950s and 60s. Its been in Davis longer than most of the fraternities, even, so Id love to see what kind of history you have. Users/BrentLaabs 20080621 19:59:45 nbsp I finally got my ass in gear and made a Davis Wiki account...and the first Random Page to pop up on the home page is none other than...ChristyMarsden. What are the odds? Users/TimFrazee 20080917 11:23:57 nbsp I love the Wiki and I love that youre on it! Users/AynReyes 20081219 19:31:52 nbsp Ive never heard people call baby grasses cute. Do you pat them too? Users/glyster 20090602 02:56:36 nbsp Hey, thanks for making the page! Im more of a sewing guy myself, but us strings and needles folk need to stick together. :) Users/JabberWokky 20090602 22:12:00 nbsp thanks for your comments on the growlers hop plot. I do plan to continue to update the hole process... pest management, harvesting, processing the hops, and then brewing a batch of beer with the hops. If you ever want a tour I am happy to provide, I am often down at the garden on the weekends or some weeknights. Are you a brewer? Users/matiasek 20100207 18:48:24 nbsp Agreed! Lets hope they go scurrying back to SoCal with their tail between their legs. Users/CovertProfessor 20100215 16:19:08 nbsp hey are you looking to move out of your apt this year? i am willing to pay $ for the lease pass down Users/meghanolmstead 20100310 11:26:58 nbsp That iPod thing is pretty crazy. Keep us updated! And if you want any help looking into it Id be happy to make some calls or whatever as well (nothing better to do at the moment). Users/TomGarberson 20100310 16:37:26 nbsp Wooo IS! And wow, thats pretty crazy. Thanks for the update, good to know how that works. And, if the ARC knows about it, its incredibly shady of them to keep doing it. Users/TomGarberson 20100311 08:51:41 nbsp I assume this is the UCDPD, not the DPD? My suggestion would be to drop by the Aggie office and find an enterprising journalist who wants to do some investigation for what could be a really quality article, and let them know the details of what youve learned. If theres any sort of a pattern here, thats a BIG dealwhether its the PD or the ARC responsible. Its possible the Enterprise would be interested as well... while its a pretty universitycentric thing, its definitely a story. Users/TomGarberson 20100311 08:52:35 nbsp Dang. I was hoping the best for you. Users/JabberWokky 20100311 08:57:27 nbsp Its funny... if a private citizen did what the police did, it would be wiki:wikipedia:Conversion (law) conversion. But since theyre the police, they can do what they did, even though there is no compelling reason for them to have the special ability to auction property that doesnt belong to them, especially when an iPod has identifying information on it, be it in software or the optional engraving on it. Users/WilliamLewis I dont know that they necessarily can (I also dont know that they cant). People are just far less likely to challenge them on it. Its pretty common for PDs to just do whats convenient for them until they get a reason not to (i.e. a lawsuit or threat of a lawsuit). The same is true of businesses and pretty much everyone else, they just get called on it far more often, so they learn better. Users/TomGarberson 20100328 18:54:23 nbsp I just read your posts about your lost ipod. You should call the school paper. Thats a pretty dang good story and an issue that obviously needs attention. Users/gkrisser 20100907 10:40:20 nbsp coot puppy! If you want to be a runner, jog in the arbo its looong How is the plant path coming along? Users/StevenDaubert 20100910 00:34:57 nbsp Sweet, Yeah pops works in George Bruenings lab... How many career hours did you have with unitrans? Users/StevenDaubert 20100914 00:55:41 nbsp Daaamn above 3k niiice When I was little I would take a bluebird P/G to West D for occupational therapy, this is long time ago Users/StevenDaubert 20101011 21:34:31 nbsp Wow, thanks for the info on The Dumpling House! Thats amazing news, Im going to have to take advantage. Dont hesitate to edit the main text of a page, especially with awesome stuff like thatits definitely noteworthy! I went ahead and noted it up at the top. Users/TomGarberson 20101011 22:54:38 nbsp Blerg... Honestly, just about everyone I know whos been to Bistro more than once or twice has had bad experiences there. For some reason, though, they keep going back. I prefer to give businesses feedback in the form of money. If I like them, I support them. If they give me horrible service and then treat me like Im trying to rip them off when I tell a manager about it, I stop supporting them. Im always surprised when I see it crowded (which it usually is). Users/TomGarberson 20101011 23:52:51 nbsp More pages are good pages! Just make sure you tie them into the wiki. If they dont link to anything, theyre essentially dead ends. If nothing links to them, theyre impossible to find except on Recent Changes or via a direct search. If you need help with anything, just drop it on a page or in an edit note and someones sure to swing by. Users/TomGarberson 20101014 18:35:02 nbsp Thanks! When I read his comment, first I did one of those O.o things, then I cracked up. Users/TomGarberson 20101021 23:24:13 nbsp Nice! Ive got a good friend recently out of the entomology masters program working as a PCA down in Watsonville. He loves the work, hours of the summer were brutal, though. Congrats on your success in the running department! Users/TomGarberson 20101101 16:23:49 nbsp Ew... I would have preferred it to be sap rather than poo... Unfortunately I live in an apartment complex so I really have no control over what I can do to the tree unless I take it up with the property manager I guess. Users/hankim 20101207 19:02:17 nbsp The qualifying phrase at least as Davisites go is important. Im not sure what Dunnings standards are, but I think its at least 20 years. :) Users/CovertProfessor 20101207 23:27:02 nbsp The ARC in my opinion mismanages itself or is overrun with corruption when compared to all the other gyms I have been to and I am pretty sure the university does not have a contractor running the place (so it is run by university people). Not that I have faith that the university will make a deal that benefits students if they ever did get a contractor to run the place (look at Sodexo). Here is a small slice of all the problems I have with the ARC: http://ucdbs.com/?page_id12 Users/hankim 20101208 10:31:35 nbsp Ah ha! I have discovered you are not Jewish! Of course, neither am I... I forgot it was Hanukkah until I was flipping through my Old Farmers Almanac this morning. The holiday only lasts for another day, but I figured Id toss up a nice logo to recognize the folks in Davis who are celebrating the holiday. Bashfully, I must admit I have forgotten both it and Ramadan in the past through simple ignorance, but Im generally try to catch as many holidays as possible that are commonly celebrated in Davis (thus the Picnic Day logos, etc). Anybody can contribute a logo at Wiki Logo... nobody has made one for Christmas or New Years yet! Pi Day and March 28th would be other neat ones to have (March 28th being the day Davis was incorporated). Users/JabberWokky 20101208 22:19:30 nbsp Ah, but you never know. Maybe you will get a PhD here, or postdoc... or... or...? Users/CovertProfessor 20110121 21:15:55 nbsp Since you work at Wolfskill, would you mind taking some pictures? The picture we have on there right now isnt licensed for people to use freely and we really could use some more, anyway! Users/WilliamLewis 20110121 23:16:25 nbsp Haha, actually, unfortunately (very much so), Dr. Jones isnt my dentist. I spent a lot of time trying to figure out a way to get him, because his reviews are so uniformly exemplary, but my strange insurance situation meant no PPOs for me. However, when my Users/kingjesse2 housemate (who does have a PPO) asked me if I knew any good dentists, there was really no hesitation involved. Users/JoePomidor 20110123 01:51:53 nbsp Wow, Im always amazed by the coincidences that seem to crop up. For instance, another one of my housemates mother just happen to work with my father...in Livermore. We found this out after becoming housemates. Users/JoePomidor 20110226 17:02:16 nbsp Coco and her companions have been reunited. Users/PaulThober 20110315 11:23:33 nbsp No worries! Thanks! Users/WilliamLewis 20110315 13:43:53 nbsp Sent you an email with permissions. I hope thats what you were looking for! Users/GregHirson 20110509 21:14:36 nbsp No problem, thanks for putting the event on the board! Users/TomGarberson 20110512 19:42:35 nbsp It was a blast! Pretty good turnout, lots of fun with the live Karaoke. The staff at the Grad seemed really into it, they were really engaging. Definitely a success. Users/TomGarberson 20111007 15:38:02 nbsp Im not heading up Occupy Davis. Im just pointing people in the right direction :) It seems like someone has got some facebook stuff happening. Im not on facebook though, so I thought Id help out however I can. Ill be there tonight though, maybe Ill see ya there. Users/ConsciousConsumer 20111008 16:18:44 nbsp Thanks. I wasnt aware of the activity on the bikepedestrian bridge. The top 1% will surely quickly make things equitable now that the issue has been called to their attention, so there wont be any need to say anything from the bridges ha. Users/BruceHansen 20111104 19:25:49 nbsp Ah, I didnt realize it was on the page twice! I restored your edit. I thought it was funny you dont seem like the type to go around deleting history. I should have known! Users/CovertProfessor 20111128 17:17:40 nbsp Leaving Davis is sad :( Congrats on landing a job, though. Thats always something to be thankful for. I hope Decorah is good to you! Users/TomGarberson
/* permutation/gsl_permutation.h * * Copyright (C) 1996, 1997, 1998, 1999, 2000, 2004, 2007 Brian Gough * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ #ifndef __GSL_PERMUTATION_H__ #define __GSL_PERMUTATION_H__ #include <stdlib.h> #include <gsl/gsl_types.h> #include <gsl/gsl_errno.h> #include <gsl/gsl_inline.h> #include <gsl/gsl_check_range.h> #undef __BEGIN_DECLS #undef __END_DECLS #ifdef __cplusplus # define __BEGIN_DECLS extern "C" { # define __END_DECLS } #else # define __BEGIN_DECLS /* empty */ # define __END_DECLS /* empty */ #endif __BEGIN_DECLS struct gsl_permutation_struct { size_t size; size_t *data; }; typedef struct gsl_permutation_struct gsl_permutation; gsl_permutation *gsl_permutation_alloc (const size_t n); gsl_permutation *gsl_permutation_calloc (const size_t n); void gsl_permutation_init (gsl_permutation * p); void gsl_permutation_free (gsl_permutation * p); int gsl_permutation_memcpy (gsl_permutation * dest, const gsl_permutation * src); int gsl_permutation_fread (FILE * stream, gsl_permutation * p); int gsl_permutation_fwrite (FILE * stream, const gsl_permutation * p); int gsl_permutation_fscanf (FILE * stream, gsl_permutation * p); int gsl_permutation_fprintf (FILE * stream, const gsl_permutation * p, const char *format); size_t gsl_permutation_size (const gsl_permutation * p); size_t * gsl_permutation_data (const gsl_permutation * p); int gsl_permutation_swap (gsl_permutation * p, const size_t i, const size_t j); int gsl_permutation_valid (const gsl_permutation * p); void gsl_permutation_reverse (gsl_permutation * p); int gsl_permutation_inverse (gsl_permutation * inv, const gsl_permutation * p); int gsl_permutation_next (gsl_permutation * p); int gsl_permutation_prev (gsl_permutation * p); int gsl_permutation_mul (gsl_permutation * p, const gsl_permutation * pa, const gsl_permutation * pb); int gsl_permutation_linear_to_canonical (gsl_permutation * q, const gsl_permutation * p); int gsl_permutation_canonical_to_linear (gsl_permutation * p, const gsl_permutation * q); size_t gsl_permutation_inversions (const gsl_permutation * p); size_t gsl_permutation_linear_cycles (const gsl_permutation * p); size_t gsl_permutation_canonical_cycles (const gsl_permutation * q); INLINE_DECL size_t gsl_permutation_get (const gsl_permutation * p, const size_t i); #ifdef HAVE_INLINE INLINE_FUN size_t gsl_permutation_get (const gsl_permutation * p, const size_t i) { #if GSL_RANGE_CHECK if (GSL_RANGE_COND(i >= p->size)) { GSL_ERROR_VAL ("index out of range", GSL_EINVAL, 0); } #endif return p->data[i]; } #endif /* HAVE_INLINE */ __END_DECLS #endif /* __GSL_PERMUTATION_H__ */
[STATEMENT] lemma "all_security_requirements_fulfilled invariants policy" [PROOF STATE] proof (prove) goal (1 subgoal): 1. TopoS_Composition_Theory_impl.all_security_requirements_fulfilled invariants policy [PROOF STEP] by eval
#pragma once #include <boost/beast/core.hpp> #include <boost/beast/websocket.hpp> #include <boost/asio/strand.hpp> #include <cstdlib> #include <functional> #include <iostream> #include <memory> #include <string> #include "session.hpp" namespace beast_machine { namespace server { namespace beast = boost::beast; // from <boost/beast.hpp> namespace http = beast::http; // from <boost/beast/http.hpp> namespace websocket = beast::websocket; // from <boost/beast/websocket.hpp> namespace net = boost::asio; // from <boost/asio.hpp> using tcp = boost::asio::ip::tcp; // from <boost/asio/ip/tcp.hpp> //------------------------------------------------------------------------------ // Echoes back all received WebSocket messages template<class T, class FailSync> class session : public std::enable_shared_from_this<session<T, FailSync>>, public T { websocket::stream<beast::tcp_stream> ws_; beast::flat_buffer buffer_; std::shared_ptr<FailSync> fail_sync; public: // Take ownership of the socket explicit session(tcp::socket&& socket, std::shared_ptr<FailSync>& fs) : ws_(std::move(socket)) , fail_sync(fs) { } // Start the asynchronous operation void run() { // Set suggested timeout settings for the websocket ws_.set_option(websocket::stream_base::timeout::suggested(beast::role_type::server)); // Set a decorator to change the Server of the handshake ws_.set_option(websocket::stream_base::decorator([](websocket::response_type& res) { res.set(http::field::server, std::string(BOOST_BEAST_VERSION_STRING) + " websocket-server-async"); })); // Accept the websocket handshake ws_.async_accept(beast::bind_front_handler(&session::on_accept, session<T, FailSync>::shared_from_this())); } void process_message(size_t bytes) { callback_return ret = T::callback(buffer_, bytes, ws_.is_message_done()); buffer_.consume(buffer_.size()); try { switch (std::get<0>(ret)) { case callback_result::read: // Read a message into our buffer do_read(); return; case callback_result::need_more_reading: // Read a message into our buffer do_read_blob(); return; case callback_result::need_more_writing: // Send the message ws_.async_write_some(false, net::buffer(std::get<1>(ret)), beast::bind_front_handler(&session::on_write_contunue, session<T, FailSync>::shared_from_this())); return; case callback_result::write_complete: // Send the message ws_.async_write_some( true, net::buffer(std::get<1>(ret)), beast::bind_front_handler(&session::on_write, session<T, FailSync>::shared_from_this())); return; case callback_result::write_complete_async_read: // Send the message ws_.async_write_some(true, net::buffer(std::get<1>(ret)), beast::bind_front_handler(&session::on_write_complete_async_read, session<T, FailSync>::shared_from_this())); return; case callback_result::close: break; default: throw std::logic_error("unexpected switch state"); break; } } catch (std::logic_error ex) { return fail(make_error_code(errc::unrecognised_state), ex.what()); } catch (std::exception& ex) { return fail(make_error_code(errc::unexpected_exception), ex.what()); } // Close the WebSocket connection ws_.async_close(websocket::close_code::normal, beast::bind_front_handler(&session::on_close, session<T, FailSync>::shared_from_this())); } void on_accept(beast::error_code ec) { if (ec) return fail(ec, "accept"); // tell the business logic we have accepted a connection request process_message(0); } void do_read() { // Read a message into our buffer ws_.async_read(buffer_, beast::bind_front_handler(&session::on_read, session<T, FailSync>::shared_from_this())); } void do_read_blob() { // Read a message into our buffer ws_.async_read_some(buffer_, buffer_.capacity(), beast::bind_front_handler(&session::on_read, session<T, FailSync>::shared_from_this())); } void on_read(beast::error_code ec, std::size_t bytes_transferred) { boost::ignore_unused(bytes_transferred); // This indicates that the session was closed if (ec == websocket::error::closed) return; if (ec) fail(ec, "read"); process_message(bytes_transferred); } void on_write(beast::error_code ec, std::size_t bytes_transferred) { boost::ignore_unused(bytes_transferred); if (ec) return fail(ec, "write"); // Read a message into our buffer do_read(); } void on_write_complete_async_read(beast::error_code ec, std::size_t bytes_transferred) { boost::ignore_unused(bytes_transferred); if (ec) return fail(ec, "write"); // Read a message into our buffer do_read_blob(); } void on_write_contunue(beast::error_code ec, std::size_t bytes_transferred) { boost::ignore_unused(bytes_transferred); if (ec) return fail(ec, "write"); process_message(0); } void on_close(beast::error_code ec) { if (ec) return fail(ec, "close"); } private: template<class err_code> void fail(err_code ec, char const* what) { (*fail_sync)(ec, what); } }; //------------------------------------------------------------------------------ // Accepts incoming connections and launches the sessions template<class T, class FailSync> class listener : public std::enable_shared_from_this<listener<T, FailSync>> { net::io_context& ioc_; tcp::acceptor acceptor_; bool single_request_; std::shared_ptr<FailSync> fail_sync; public: listener(net::io_context& ioc, tcp::endpoint endpoint, bool single_request, std::shared_ptr<FailSync>& fs) : ioc_(ioc) , acceptor_(ioc) , single_request_(single_request) , fail_sync(fs) { beast::error_code ec; // Open the acceptor acceptor_.open(endpoint.protocol(), ec); if (ec) { fail(ec, "open"); return; } // Allow address reuse acceptor_.set_option(net::socket_base::reuse_address(true), ec); if (ec) { fail(ec, "set_option"); return; } // Bind to the server address acceptor_.bind(endpoint, ec); if (ec) { fail(ec, "bind"); return; } // Start listening for connections acceptor_.listen(net::socket_base::max_listen_connections, ec); if (ec) { fail(ec, "listen"); return; } } // Start accepting incoming connections void run() { do_accept(); } private: void do_accept() { // The new connection gets its own strand acceptor_.async_accept( net::make_strand(ioc_), beast::bind_front_handler(&listener::on_accept, listener<T, FailSync>::shared_from_this())); } void on_accept(beast::error_code ec, tcp::socket socket) { if (ec) { fail(ec, "accept"); } else { // Create the session and run it std::make_shared<session<T, FailSync>>(std::move(socket), fail_sync)->run(); } // Accept another connection if (!single_request_) { do_accept(); } } template<class err_code> void fail(err_code ec, char const* what) { (*fail_sync)(ec, what); } }; } // namespace server struct errc_category : std::error_category { const char* name() const noexcept override; std::string message(int ev) const override; }; const char* errc_category::name() const noexcept { return "websocket_server"; } std::string errc_category::message(int ev) const { switch (static_cast<errc>(ev)) { case errc::unrecognised_state: return "unrecognised state"; case errc::unexpected_exception: return "unexpected exception"; default: return "(unrecognized error)"; } } const errc_category the_category {}; std::error_code make_error_code(beast_machine::errc e) { return {static_cast<int>(e), beast_machine::the_category}; } } // namespace beast_machine
State Before: α : Type u_1 inst✝¹ : Fintype α inst✝ : DecidableEq α σ : Perm α s : Finset (Perm α) h1 : ∀ (f : Perm α), f ∈ s → IsCycle f h2 : Set.Pairwise (↑s) Disjoint h0 : Finset.noncommProd s id (_ : Set.Pairwise ↑s fun a b => Commute (id a) (id b)) = σ ⊢ cycleType σ = map (Finset.card ∘ support) s.val State After: α : Type u_1 inst✝¹ : Fintype α inst✝ : DecidableEq α σ : Perm α s : Finset (Perm α) h1 : ∀ (f : Perm α), f ∈ s → IsCycle f h2 : Set.Pairwise (↑s) Disjoint h0 : Finset.noncommProd s id (_ : Set.Pairwise ↑s fun a b => Commute (id a) (id b)) = σ ⊢ map (Finset.card ∘ support) (cycleFactorsFinset σ).val = map (Finset.card ∘ support) s.val Tactic: rw [cycleType_def] State Before: α : Type u_1 inst✝¹ : Fintype α inst✝ : DecidableEq α σ : Perm α s : Finset (Perm α) h1 : ∀ (f : Perm α), f ∈ s → IsCycle f h2 : Set.Pairwise (↑s) Disjoint h0 : Finset.noncommProd s id (_ : Set.Pairwise ↑s fun a b => Commute (id a) (id b)) = σ ⊢ map (Finset.card ∘ support) (cycleFactorsFinset σ).val = map (Finset.card ∘ support) s.val State After: case e_s.e_self α : Type u_1 inst✝¹ : Fintype α inst✝ : DecidableEq α σ : Perm α s : Finset (Perm α) h1 : ∀ (f : Perm α), f ∈ s → IsCycle f h2 : Set.Pairwise (↑s) Disjoint h0 : Finset.noncommProd s id (_ : Set.Pairwise ↑s fun a b => Commute (id a) (id b)) = σ ⊢ cycleFactorsFinset σ = s Tactic: congr State Before: case e_s.e_self α : Type u_1 inst✝¹ : Fintype α inst✝ : DecidableEq α σ : Perm α s : Finset (Perm α) h1 : ∀ (f : Perm α), f ∈ s → IsCycle f h2 : Set.Pairwise (↑s) Disjoint h0 : Finset.noncommProd s id (_ : Set.Pairwise ↑s fun a b => Commute (id a) (id b)) = σ ⊢ cycleFactorsFinset σ = s State After: case e_s.e_self α : Type u_1 inst✝¹ : Fintype α inst✝ : DecidableEq α σ : Perm α s : Finset (Perm α) h1 : ∀ (f : Perm α), f ∈ s → IsCycle f h2 : Set.Pairwise (↑s) Disjoint h0 : Finset.noncommProd s id (_ : Set.Pairwise ↑s fun a b => Commute (id a) (id b)) = σ ⊢ (∀ (f : Perm α), f ∈ s → IsCycle f) ∧ ∃ h, Finset.noncommProd s id (_ : Set.Pairwise ↑s fun a b => Commute (id a) (id b)) = σ Tactic: rw [cycleFactorsFinset_eq_finset] State Before: case e_s.e_self α : Type u_1 inst✝¹ : Fintype α inst✝ : DecidableEq α σ : Perm α s : Finset (Perm α) h1 : ∀ (f : Perm α), f ∈ s → IsCycle f h2 : Set.Pairwise (↑s) Disjoint h0 : Finset.noncommProd s id (_ : Set.Pairwise ↑s fun a b => Commute (id a) (id b)) = σ ⊢ (∀ (f : Perm α), f ∈ s → IsCycle f) ∧ ∃ h, Finset.noncommProd s id (_ : Set.Pairwise ↑s fun a b => Commute (id a) (id b)) = σ State After: no goals Tactic: exact ⟨h1, h2, h0⟩
(** 「Coq/SSReflect/MathCompによる定理証明」第5章で導入された公理について ======================== @suharahiromichi 2020/12/26 *) (** # はじめに 文献 [1.] (以下、テキストと呼びます)の第5章では集合形式化について説明されています。 そこでは、ふたつの公理が導入されています。 5章の冒頭に記載されているとおり、形式化の方法は一通りではないため、 別な公理や公理を導入しないで済ますことができないか、考えてたいと思います。 *) From mathcomp Require Import all_ssreflect. Set Implicit Arguments. Unset Strict Implicit. Unset Printing Implicit Defensive. Set Print All. (** # 集合の形式化(復習) 型 M の要素である元 x が、型Mの要素全体を母集合とする集合 A に属することを、 M型を引数とする命題型P (すなわち M -> Prop) の型をもつ命題によってあらわす (テキストのことばでいうと「形式化」することにします。 なお、型Mは任意な型とします。あとで制限することになるので、注意しておいてください。 *) Definition mySet (M : Type) := M -> Prop. Definition belong {M : Type} (A : mySet M) (x : M) : Prop := A x. Notation "x ∈ A" := (belong A x) (at level 11). Definition myEmptySet {M : Type} : mySet M := fun (_ : M) => False. Definition myMotherSet {M : Type} : mySet M := fun (_ : M) => True. Definition mySub {M : Type} := fun (A B : mySet M) => forall (x : M), x ∈ A -> x ∈ B. Notation "A ⊂ B" := (mySub A B) (at level 11). Definition eqmySet {M : Type} (A B : mySet M) := (A ⊂ B) /\ (B ⊂ A). Definition myComplement {M : Type} (A : mySet M) : mySet M := fun (x : M) => ~(A x). Notation "A ^c" := (myComplement A) (at level 11). Definition myCup {M : Type} (A B : mySet M) : mySet M := fun (x : M) => x ∈ A \/ x ∈ B. Notation "A ∪ B" := (myCup A B) (at level 11). (** # CSMの第5章の公理 上記の集合の形式化の定義には問題がふたつあります。(要補足) - 元xが集合Aに含まれることは言えても、含まれないと言えるとは限らない。 これは、Coqが採用する直観主義論理の立場から、命題が証明できればそれが真だといえます。 しかし、命題が証明できないと言い切ることができない(場合がある)ため、 偽であるとの証明ができない(できるとは限らない)からです。 - 集合AがBに含まれ、かつ、BがAに含まれることから、集合AとBが等しいことを証明できない。 これは、Coqの等号``=``は、ライプニッツの等式といって、 その型の(Inductiveな)定義に遡って「同じに見える」場合に限り成立します。 例 ``1 + 1 = 2`` は、``S (S O) = S (S O)`` この場合、集合AとBが等しいこと ``(A ⊂ B) /\ (B ⊂ A)`` は集合の帰納的な定義に基づくものでないため ``A = B`` というこができません。 結果として、テキストの本文にあるように、 「補集合の補集合がもとの集合になること」の証明ができません。 テキストではふたつの公理を導入することで解決しています。 ここでは、それぞれを「公理 1」「公理 2」と呼ぶことにします。 *) (** ## (公理 1.) axiom_mySet テキストの第5章に沿って、 「元xが集合Aに含まれるか、含まれないかのどちらかである」を公理として導入します。 *) Axiom axiom_mySet : forall (M : Type) (A : mySet M), forall (x : M), x ∈ A \/ ~(x ∈ A). (** ## (公理 2.) axiom_ExteqmySet テキストの第5章に沿って、集合AとBが等しいことを、 集合AがBに含まれ、かつ、BがAに含まれることとして定義します。 *) Axiom axiom_ExteqmySet : forall {M : Type} (A B : mySet M), eqmySet A B -> A = B. (** ## 補集合の補集合の証明 *) Section Test1. Variable M : Type. (* 注意してください。 *) Lemma cc_cancel (A : mySet M) : (A^c)^c = A. Proof. apply: axiom_ExteqmySet. split; rewrite /myComplement => x H; by case: (axiom_mySet A x) => HxA. Qed. Lemma myUnionCompMother (A : mySet M) : A ∪ (A^c) = myMotherSet. Proof. apply: axiom_ExteqmySet. split=> [x | x H] //=. case: (axiom_mySet A x); by [left | right]. Qed. End Test1. (** # (公理 1.)について ## 排中律 (公理 1.)は排中律を使えば証明できます。 *) Section ExMid. Variable M : Type. (* 注意してください。 *) Axiom ExMid : forall (P : Prop), P \/ ~ P. (* 排中律 *) Lemma axiom_mySet'' : forall (A : mySet M), forall (x : M), x ∈ A \/ ~(x ∈ A). Proof. move=> A x. by apply: ExMid. Qed. End ExMid. (* ## morita_hmさんの公理 ``refl_mySet`` ProofCafe において @morita_hm さんから別の公理が提案されました。より単純な、 ``reflect (A x) true`` から、(公理 1.)を導くものです。 *) Section Morita. Variable M : Type. (* 注意してください。 *) Axiom refl_mySet : forall (A : mySet M) (x : M), reflect (A x) true. Lemma axiom_mySet' : forall (A : mySet M), forall (x : M), x ∈ A \/ ~(x ∈ A). Proof. rewrite /belong => A x. by case: (refl_mySet A x); [left | right]. Undo. move: (@refl_mySet A x) => Hr. (* ここで refl_mySet に M A x を与えている。 *) case: Hr. - by left. - by right. Qed. (** ここで実際に証明しているのは、次の命題であることが解ります。 *) Goal forall (A : mySet M) (x : M), reflect (A x) true -> x ∈ A \/ ~(x ∈ A). Proof. move=> A x. by case; [left | right]. Qed. End Morita. (** ## 別の説明 公理 ``refl_mySet`` は、かたちを変えた排中律であり、 排中律を経由して(公理 1.)を証明していることになります。これを以下で説明します。 *) (** 文献[2.] p.101 にあるとおり、``reflect P b`` は、 - 命題(Prop型の) P がTrueであると証明できるとき、 bool型の命題が真(true)である。 - 命題(Prop型の) P がFalseであると証明できるとき、bool型の命題が偽(false)である。 と場合分けできることを示します。 *) Section Test2. Lemma A_ref (P : Prop) : P -> reflect P true. Proof. move=> H. by apply: ReflectT. Qed. Lemma notA_ref (P : Prop) : ~ P -> reflect P false. Proof. move=> H. by apply: ReflectF. Qed. (** 場合分けができ、また、bool型の命題 true が false であるとは、false のことですから、 ``reflect P true`` から排中律を導くことができます。 *) Lemma refl_exmid (P : Prop): reflect P true -> P \/ ~ P. Proof. case=> Hr. - by left. - by right. Qed. End Test2. (** ## 依存和の使用 かたちを変えた排中律としては、依存和があります。 命題 P が P または ~ P のどちらかに決定可能である、 ということから排中律が求められます。 *) Section Depend. Lemma dec_exmid (P : Prop) : {P} + {~ P} -> P \/ ~ P. Proof. case=> Hd. - by left. - by right. Qed. End Depend. (** ## finType の場合 テキストの 5.5節にあるように、 母集合にあたる型 M を任意の型から、有限型 (finType) に制限することでも、 (公理 1.)を不要にすることもできます。 *) Section FinType. Variable M : finType. (* これまでは ``M : Type`` だった。 *) (** なぜなら、有限型(母集合が有限)ならば、元が集合に含まれるかどうかを決定する命題を 定義することができるからです。 このような命題はbool型の値をとるようにすると扱いやすいので、pA であらわします。 そして、bool述語 pA が x で成り立つときことを MathCompの演算子 \in を使って ``x \in pA`` とあらわします。 - pA は ``pred M`` 型となっていますが、これは ``M -> bool`` のことです(深い意味は無い)。 - ``x \in pA`` を ``pA x`` に置き換えても(ここでは)同じです。 ただし、単純な構文糖衣ではないので、つねに同じであるわけではありません。 以下の説明も参照してください。 https://github.com/suharahiromichi/coq/blob/master/csm/csm_4_1_ssrbool.v *) (** ``pA : pred M`` が ``P : mySet M`` で形式化された集合の定で使えるように、 変換する関数 p2S を定義します。 なお、テキストで定義されている構文糖衣 ``\{ x 'in' pA \}`` は使わないことにしました。 すなわち `` \{ x in M \}`` は ``p2S M`` のことで x に意味はありません。 *) Definition p2S (pA : pred M) : mySet M := fun (x : M) => if x \in pA then True else False. Lemma Mother_predT : myMotherSet = p2S M. Proof. by []. Qed. Lemma myFinBelongP (x : M) (pA : pred M) : reflect (x ∈ p2S pA) (x \in pA). Proof. rewrite /belong /p2S. apply/(iffP idP) => H1. - by rewrite H1. - by case H : (x \in pA); last rewrite H in H1. Qed. (** 「元xが集合Aに含まれるか、含まれないかのどちらかである」ことを(公理 1.)を使わずに、 定理として導くことができます。 *) Lemma fin_mySet (pA : pred M) (x : M) : x \in pA \/ ~(x \in pA). Proof. case: (myFinBelongP x pA); by [left | right]. Qed. (** 実際の集合の証明では、``M : Type, P : mySet M`` を ``M : finType, pA : pred M`` に変更する必要があります。 *) Lemma Mother_Sub (pA : pred M) : myMotherSet ⊂ p2S pA -> forall x, x ∈ p2S pA. Proof. rewrite Mother_predT. (* 省略可能 *) move=> H x. Check H x : x ∈ p2S M -> x ∈ p2S pA. apply: (H x). done. Qed. Lemma transitive_Sub (pA pB pC : pred M) : pA ⊂ pB -> pB ⊂ pC -> pA ⊂ pC. Proof. move=> HAB HBC t HtA. by auto. Qed. (** axiom_mySet ではなく、fin_mySet を使って証明することができます。 すなわち(公理 1.)を使用せずに証明できたことになります。 *) Lemma cc_cancel' (pA : pred M) : (pA^c)^c = pA. Proof. apply: axiom_ExteqmySet. split; rewrite /myComplement => x H; by case: (fin_mySet pA x) => HxA. Qed. Lemma myUnionCompMother' (pA : pred M) : pA ∪ (pA^c) = myMotherSet. Proof. apply: axiom_ExteqmySet. split=> [x | x H] //=. case: (fin_mySet pA x); by [left | right]. Qed. End FinType. Section 具体的なfinType. Definition p0 := @Ordinal 5 0 is_true_true. Check p2S 'I_5 : mySet 'I_5. Goal p0 ∈ p2S 'I_5. Proof. by []. Qed. End 具体的なfinType. (** ## mySet を bool型であらわす場合 そもそも ``mySet M`` を bool型の ``pred M`` であらわすことで、(公理 1.)は不要になります。 belongがbool述語となるので、公理なしで決定性が保証されるからです。以下を参照してください。 https://github.com/suharahiromichi/coq/blob/master/csm/csm_5_set_theory_class.v (ご注意。ファイル名に意味はありません) *) (** # 公理 2. について これは、外延性の公理です。 *) Section Test3. Variable M : finType. (* 注意してください。 *) Definition myMotherSet' : mySet M := fun (_ : M) => true. Lemma cc_cancel'' (pA : pred M) : (pA^c)^c =1 pA. Proof. move=> x. rewrite /myComplement. (* Goal : (~ ~ pA x) = pA x *) Admitted. Lemma myUnionCompMother'' (pA : pred M) : (pA ∪ (pA^c)) =1 myMotherSet'. Proof. move=> x. case: (fin_mySet pA x). move/myFinBelongP=> H. rewrite /myCup /myComplement /myMotherSet'. Admitted. End Test3. (** # 文献 [1.] 萩原学 アフェルト・レナルド、「Coq/SSReflect/MathCompによる定理証明」、森北出版 [2.] Mathematical Components (MathComp Book) https://math-comp.github.io *) (* END *)
Text provided under a Creative Commons Attribution license, CC-BY. Code under MIT license. (c)2014 Lorena A. Barba, Olivier Mesnard. Thanks: NSF for support via CAREER award #1149784. [@LorenaABarba](https://twitter.com/LorenaABarba) ##### Version 0.3 -- February 2015 # Vortex Let's recap. In the first three lessons of _AeroPython_, you computed: 1. [a source-sink pair](http://nbviewer.ipython.org/github/barbagroup/AeroPython/blob/master/lessons/01_Lesson01_sourceSink.ipynb)—you learned how to make a `streamplot()` and use `scatter()` to mark the location of the singular points. If you did your challenge task, you saw that equipotential lines are perpendicular to streamlines. 2. [a source-sink pair in a free stream](http://nbviewer.ipython.org/github/barbagroup/AeroPython/blob/master/lessons/02_Lesson02_sourceSinkFreestream.ipynb), creating a _Rankine oval_. For the first time, we see that we can model the flow around an object using potential flow solutions. You also learned to define custom functions, to make Python work for you and look even more like plain English. 3. [a doublet](http://nbviewer.ipython.org/github/barbagroup/AeroPython/blob/master/lessons/03_Lesson03_doublet.ipynb)—this one is wonderful, because the stream-line pattern gives the flow around a circular cylinder (in two dimensions). You encountered the _D'Alembert paradox_ and hopefully that got you thinking. (If not, go back to that lesson and _think_!) Did you also do the [assignment](http://nbviewer.ipython.org/github/barbagroup/AeroPython/blob/master/lessons/03_Lesson03_Assignment.ipynb)? It shows you how a *distribution of sources* can be used to model potential flow around an airfoil. This starts looking like aerodynamics! But what is the most important thing we want from applied aerodynamics? We want to make things fly, of course! And to fly, there must be a force of *aerodynamic lift* to counteract the weight of the object. In this section of the course, we learn about lift. First, we will compute the flow of a potential vortex. It turns out, vortex circulation and lift are intimately related. ## What's a vortex? This question is deeper than you might think! The simple answer is that a vortex is motion in circular streamlines. Imagine streamlines that are concentric circles about a given point—what's confusing is that this _does not mean_ that fluid elements are themselves rotating! In an irrotational vortex, the tangential velocity is constant along a (circular) streamline and inversely proportional to the radius, while the radial velocity is zero. In polar coordinates: \begin{equation} u_\theta\left(r,\theta\right) = \frac{\text{constant}}{r} \quad \text{,} \quad u_r\left(r,\theta\right) = 0 \end{equation} The vorticity is zero everywhere, except at the location of the point vortex, where the derivative of $u_\theta$ is infinite. We introduced the concept of circulation in the first lesson ([Source & Sink](http://nbviewer.ipython.org/urls/github.com/barbagroup/AeroPython/blob/master/lessons/01_Lesson01_sourceSink.ipynb)). Let's use that. Around any circular streamline enclosing the vortex, and using the sign convention that a negative vortex circulates anti-clockwise, we have: \begin{equation}\Gamma = -\oint \mathbf{v}\cdot d\vec{l} = -u_\theta 2 \pi r\end{equation} Thus, the constant in the expression for $u_\theta$ in $(1)$ is equal to $\Gamma/2\pi$, and we now write: \begin{equation}u_\theta\left(r,\theta\right) = \frac{\Gamma}{2\pi r}\end{equation} We can get the stream function by integrating the velocity components: \begin{equation}\psi\left(r,\theta\right) = \frac{\Gamma}{2\pi}\ln r\end{equation} In Cartesian coordinates, the stream function is \begin{equation}\psi\left(x,y\right) = \frac{\Gamma}{4\pi}\ln\left(x^2+y^2\right)\end{equation} while the velocity components would be: \begin{equation}u\left(x,y\right) = \frac{\Gamma}{2\pi}\frac{y}{x^2+y^2} \qquad v\left(x,y\right) = -\frac{\Gamma}{2\pi}\frac{x}{x^2+y^2}\end{equation} This vortex flow is irrotational everywhere, except at the vortex center, where it is infinite. The strenth of the point vortex is equal to the circulation $\Gamma$ around it. ## Let's compute a vortex The set-up is the same as before: we load our favorite libraries, and we create a grid of points to evaluate the velocity field. ``` import numpy import math from matplotlib import pyplot ``` ``` N = 50 # Number of points in each direction x_start, x_end = -2.0, 2.0 # x-direction boundaries y_start, y_end = -1.0, 1.0 # y-direction boundaries x = numpy.linspace(x_start, x_end, N) # computes a 1D-array for x y = numpy.linspace(y_start, y_end, N) # computes a 1D-array for y X, Y = numpy.meshgrid(x, y) # generates a mesh grid ``` Give your vortex a strength $\Gamma=5$ and place it at the center of your domain: ``` gamma = 5.0 # strength of the vortex x_vortex, y_vortex = 0.0, 0.0 # location of the vortex ``` We will define two functions, * `get_velocity_vortex()` and * `get_stream_function_vortex()`, to compute the velocity components and the stream function on our Cartesian grid, given the strength and the location of the vortex. Then, we will use our custom functions to evaluate everything on the grid points. Let's write those functions first. ``` def get_velocity_vortex(strength, xv, yv, X, Y): """Returns the velocity field generated by a vortex. Arguments --------- strength -- strength of the vortex. xv, yv -- coordinates of the vortex. X, Y -- mesh grid. """ u = + strength/(2*math.pi)*(Y-yv)/((X-xv)**2+(Y-yv)**2) v = - strength/(2*math.pi)*(X-xv)/((X-xv)**2+(Y-yv)**2) return u, v ``` ``` def get_stream_function_vortex(strength, xv, yv, X, Y): """Returns the stream-function generated by a vortex. Arguments --------- strength -- strength of the vortex. xv, yv -- coordinates of the vortex. X, Y -- mesh grid. """ psi = strength/(4*math.pi)*numpy.log((X-xv)**2+(Y-yv)**2) return psi ``` An now, call the functions with the vortex strength and position, plus the coordinates of the evaluation grid, to get the velocity and streamfunction of the vortex. ``` # computes the velocity field on the mesh grid u_vortex, v_vortex = get_velocity_vortex(gamma, x_vortex, y_vortex, X, Y) # computes the stream-function on the mesh grid psi_vortex = get_stream_function_vortex(gamma, x_vortex, y_vortex, X, Y) ``` We are now able to visualize the streamlines of a vortex, and they look like concentric circles around the vortex center, as expected. ``` # plots the streamlines %matplotlib inline size = 10 pyplot.figure(figsize=(size, (y_end-y_start)/(x_end-x_start)*size)) pyplot.xlabel('x', fontsize=16) pyplot.ylabel('y', fontsize=16) pyplot.xlim(x_start, x_end) pyplot.ylim(y_start, y_end) pyplot.streamplot(X, Y, u_vortex, v_vortex, density=2, linewidth=1, arrowsize=1, arrowstyle='->') pyplot.scatter(x_vortex, y_vortex, color='#CD2305', s=80, marker='o'); ``` ## Vortex & Sink For fun, let's use our superposition powers. Add a vortex to a sink, using two new functions to compute the velocity components and the stream function of the sink, and adding to those of a vortex (remember that the sink can be easily replaced by a source by just changing the sign of the strength). ``` strength_sink = -1.0 # strength of the sink x_sink, y_sink = 0.0, 0.0 # location of the sink ``` ``` def get_velocity_sink(strength, xs, ys, X, Y): """Returns the velocity field generated by a sink. Arguments --------- strength -- strength of the sink. xs, ys -- coordinates of the sink. X, Y -- mesh grid. """ u = strength/(2*math.pi)*(X-xs)/((X-xs)**2+(Y-ys)**2) v = strength/(2*math.pi)*(Y-ys)/((X-xs)**2+(Y-ys)**2) return u, v ``` ``` def get_stream_function_sink(strength, xs, ys, X, Y): """Returns the stream-function generated by a sink. Arguments --------- strength -- strength of the sink. xs, ys -- coordinates of the sink. X, Y -- mesh grid. """ psi = strength/(2*math.pi)*numpy.arctan2((Y-ys), (X-xs)) return psi ``` ``` # computes the velocity field on the mesh grid u_sink, v_sink = get_velocity_sink(strength_sink, x_sink, y_sink, X, Y) # computes the stream-function on the mesh grid psi_sink = get_stream_function_sink(strength_sink, x_sink, y_sink, X, Y) ``` Now, let's visualize the streamlines of the vortex-sink, and admire our artistic creation: ``` # superposition of the sink and the vortex u = u_vortex + u_sink v = v_vortex + v_sink psi = psi_vortex + psi_sink # plots the streamlines size = 10 pyplot.figure(figsize=(size, (y_end-y_start)/(x_end-x_start)*size)) pyplot.xlabel('x', fontsize=16) pyplot.ylabel('y', fontsize=16) pyplot.xlim(x_start, x_end) pyplot.ylim(y_start, y_end) pyplot.streamplot(X, Y, u, v, density=2, linewidth=1, arrowsize=1, arrowstyle='->') pyplot.scatter(x_vortex, y_vortex, color='#CD2305', s=80, marker='o'); ``` Very cool op-art. (And a good model for your typical bath-tub vortex.) But is all this useful? Yes! First, you will take your training wheels off and—on your own—compute the flow of an [infinite row of vortices](http://nbviewer.ipython.org/github/barbagroup/AeroPython/blob/master/lessons/05_Lesson05_InfiniteRowOfVortices.ipynb). Your mission, should you choose to accept it, is in the next notebook. After that, we will learn about the connection between a vortex, and the force of lift. This turns out to be very important in aerodynamics! ## What's this "irrotational" vortex thing? I know what you are thinking. What does it mean that the vortex is *irrotational*? Surely if there's a vortex, there's rotation! You are not crazy. It's natural to think this way, but the potential vortex is a flow where streamlines are circular, yet fluid elements do not rotate around themselves—they just go around the circular path. This classic video will help you understand ... just watch the 25 seconds of video after time 4m 25s, and see a "vorticity meter" go around a free vortex without rotating itself. ``` from IPython.display import YouTubeVideo from datetime import timedelta start=int(timedelta(hours=0, minutes=4, seconds=25).total_seconds()) YouTubeVideo("loCLkcYEWD4", start=start) ``` Remember: vorticity measures the local angular velocity of each fluid element. If the fluid elements go around a circular path, but do not spin themselves, there is no vorticity! This animation from [Wikipedia](http://en.wikipedia.org/wiki/Vortex#Irrotational_vortices) helps further illustrate what happens in an irrotational vortex: the orange markers with a line across them are going around in circles, but they are not themselves rotating (notice the white lines keep their orientation). ## Next ... The next IPython Notebook of the *AeroPython* series presents the exercise ["Infinite row of vortices,"](http://nbviewer.ipython.org/github/barbagroup/AeroPython/blob/master/lessons/05_Lesson05_InfiniteRowOfVortices.ipynb) as independent student work. --- Please ignore the cell below. It just loads our style for the notebook. ``` from IPython.core.display import HTML def css_styling(): styles = open('../styles/custom.css', 'r').read() return HTML(styles) css_styling() ``` <link href='http://fonts.googleapis.com/css?family=Fenix' rel='stylesheet' type='text/css'> <link href='http://fonts.googleapis.com/css?family=Alegreya+Sans:100,300,400,500,700,800,900,100italic,300italic,400italic,500italic,700italic,800italic,900italic' rel='stylesheet' type='text/css'> <link href='http://fonts.googleapis.com/css?family=Source+Code+Pro:300,400' rel='stylesheet' type='text/css'> <style> @font-face { font-family: "Computer Modern"; src: url('http://mirrors.ctan.org/fonts/cm-unicode/fonts/otf/cmunss.otf'); } div.cell{ width:800px; margin-left:16% !important; margin-right:auto; } h1 { font-family: 'Alegreya Sans', sans-serif; } h2 { font-family: 'Fenix', serif; } h3{ font-family: 'Fenix', serif; margin-top:12px; margin-bottom: 3px; } h4{ font-family: 'Fenix', serif; } h5 { font-family: 'Alegreya Sans', sans-serif; } div.text_cell_render{ font-family: 'Alegreya Sans',Computer Modern, "Helvetica Neue", Arial, Helvetica, Geneva, sans-serif; line-height: 135%; font-size: 120%; width:600px; margin-left:auto; margin-right:auto; } .CodeMirror{ font-family: "Source Code Pro"; font-size: 90%; } /* .prompt{ display: None; }*/ .text_cell_render h1 { font-weight: 200; font-size: 50pt; line-height: 100%; color:#CD2305; margin-bottom: 0.5em; margin-top: 0.5em; display: block; } .text_cell_render h5 { font-weight: 300; font-size: 16pt; color: #CD2305; font-style: italic; margin-bottom: .5em; margin-top: 0.5em; display: block; } .warning{ color: rgb( 240, 20, 20 ) } </style>
context("consume iterator") test_that("consume consumes an iterator when n < length(iterator)", { it <- iterators::iter(letters) consume(it, n=4) expect_equal(nextElem(it), "e") }) test_that("consume consumes an iterator when n=0 or n > length(iterator)", { it <- iterators::iter(letters) consume(it, n=0) expect_error(nextElem(it), "StopIteration") it2 <- iterators::iter(letters) consume(it2, n=27) expect_error(nextElem(it), "StopIteration") }) test_that("consume rejects non-positive or non-integer n", { it <- iterators::iter(letters) expect_error(consume(it, -1), "n must be a non-negative integer of length 1") expect_error(consume(it, "a"), "n must be a non-negative integer of length 1") }) test_that("nth consumes an iterator when n < length(iterable)", { it <- iterators::iter(letters) expect_equal(nth(it, 5), "e") }) test_that("nth returns the given default value when the iterator is consumed", { it <- iterators::iter(letters) expect_equal(nth(it, 27), NA) }) test_that("nth rejects negative or non-integer n", { it <- iterators::iter(letters) expect_error(nth(it, -1), "n must be a positive integer of length 1") expect_error(nth(it, "a"), "n must be a positive integer of length 1") })
import BrownCs22.Library.Tactics /- In this file, we'll prove some of the identities from https://brown-cs22.github.io/resources/math-resources/logic.pdf Note that these identities are stated with the symbol `≡`, meaning "the formula on the left is equivalent to the formula on the right." In Lean, we can use iff (bi-implication, `↔`) to mean the same thing. Remember the tactics we learned in Lecture 4. We'll see a bit of new Lean syntax along the way. Also remember that it doesn't matter what we name our hypotheses. In our examples, we use patterns like `hp` for the hypothesis `p`, `hnpq` for the hypothesis `¬ p ∧ q` (hnpq for "hypothesis not p q"), etc. But this is just a custom. You can choose any names you want. As they say, the hardest problem in computer science is naming variables. Your task: fill in all the `sorry`s with proofs! -/ variable (p q r : Prop) -- ## Commutative Laws -- We'll do the first for you, as an example. -- Notice two things. -- One, must of these problems will start with `split_goal`, -- to turn the `iff` goal into two `implies` goals. -- Two, we structure our proof by putting each *subproof* in `{...}`. -- This isn't necessary but it helps with organization! example : p ∧ q ↔ q ∧ p := by split_goal { intro hpq eliminate hpq with hp hq split_goal assumption assumption } { intro hqp eliminate hqp with hq hp split_goal assumption assumption } example : p ∨ q ↔ q ∨ p := by sorry -- ## Associative laws -- Notice that Lean doesn't print parentheses unless it needs to. example : (p ∧ q) ∧ r ↔ p ∧ (q ∧ r) := by sorry -- This is getting a little repetitive. -- To mix it up, we'll only do one direction of the iff this time. -- You won't start with `split_goal`, but instead, ... what? example : (p ∨ q) ∨ r → p ∨ (q ∨ r) := by sorry -- ## Distributive laws example : p ∧ (q ∨ r) ↔ (p ∧ q) ∨ (p ∧ r) := by sorry -- Again, let's just do one direction. -- When we're proving an implication `→`, we'll always start with `intro`. -- This is such a common pattern that Lean gives us special syntax for it: -- we can do the intro "in advance," before we start the proof, -- by naming the hypothesis to the left of the `:`. -- Notice that at the beginning of our proof, we already have the -- hypothesis `hpqr` in our context. example (hpqr : p ∨ (q ∧ r)) : (p ∨ q) ∧ (p ∨ r) := by sorry -- ## Identity laws /- We'll do a few more together. Let's sneak a new tactic in. To prove a goal `True`, you can use the tactic `trivial`. This is a sensible proof rule: trivially, you can always show `True` is true! -/ example : p ∧ True ↔ p := by split_goal { intro hpT eliminate hpT assumption } { intro hpT split_goal assumption trivial } -- Before, we saw `contradiction` would work if we had hypotheses -- `p` and `¬ p` at the same time. -- It also works if we have a hypothesis `False`! example : p ∨ False ↔ p := by split_goal { intro hpF eliminate hpF with hp hF assumption contradiction } { intro hp left assumption } /- ## Negation laws If you're following along with the list of identities, you'll see that we've come to some laws like `(p ∨ ¬ p) ↔ True`. Unfortunately, we don't have the tools to prove these in Lean yet. But, you can do the **Idempotent laws** and **Universal bound laws**. Try stating and proving these yourself! -/ /- ## De Morgan's Laws These can be a bit of a challenge! Like the negation laws, a few of the implications here will require some new tools. But try out these directions. Remember that to prove a negation `¬ X`, you can use a *proof by contradiction*: add a hypothesis `h : X` using `intro h`, and then show a contradiction. -/ example (hnpnq : ¬ p ∨ ¬ q) : ¬(p ∧ q) := by sorry example (hnpnq : ¬ p ∧ ¬ q) : ¬ (p ∨ q) := by sorry /- That's it for the moment! Try the **Absorption laws** and **Negation of True and False** on your own, if you want to. Skip the definition laws for now. -/
State Before: α : Type u β : α → Type v l✝ l₁ l₂ : List (Sigma β) inst✝ : DecidableEq α a : α s : Sigma β l : List (Sigma β) h : a = s.fst ⊢ kerase a (s :: l) = l State After: no goals Tactic: simp [kerase, h]
/* interpolation/interp2d.c * * Copyright 2012 David Zaslavsky * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ #include <config.h> #include <stdlib.h> #include <gsl/gsl_errno.h> #include <gsl/gsl_math.h> #include <gsl/gsl_interp.h> #include <gsl/gsl_interp2d.h> /** * Triggers a GSL error if the argument is not equal to GSL_SUCCESS. * If the argument is GSL_SUCCESS, this does nothing. */ #define DISCARD_STATUS(s) if ((s) != GSL_SUCCESS) { GSL_ERROR_VAL("interpolation error", (s), GSL_NAN); } #define IDX2D(i, j, w) ((j) * ((w)->xsize) + (i)) gsl_interp2d * gsl_interp2d_alloc(const gsl_interp2d_type * T, const size_t xsize, const size_t ysize) { gsl_interp2d * interp; if (xsize < T->min_size || ysize < T->min_size) { GSL_ERROR_NULL ("insufficient number of points for interpolation type", GSL_EINVAL); } interp = (gsl_interp2d *) calloc(1, sizeof(gsl_interp2d)); if (interp == NULL) { GSL_ERROR_NULL ("failed to allocate space for gsl_interp2d struct", GSL_ENOMEM); } interp->type = T; interp->xsize = xsize; interp->ysize = ysize; if (interp->type->alloc == NULL) { interp->state = NULL; return interp; } interp->state = interp->type->alloc(xsize, ysize); if (interp->state == NULL) { free(interp); GSL_ERROR_NULL ("failed to allocate space for gsl_interp2d state", GSL_ENOMEM); } return interp; } /* gsl_interp2d_alloc() */ void gsl_interp2d_free (gsl_interp2d * interp) { RETURN_IF_NULL(interp); if (interp->type->free) interp->type->free(interp->state); free(interp); } /* gsl_interp2d_free() */ int gsl_interp2d_init (gsl_interp2d * interp, const double xarr[], const double yarr[], const double zarr[], const size_t xsize, const size_t ysize) { size_t i; if (xsize != interp->xsize || ysize != interp->ysize) { GSL_ERROR("data must match size of interpolation object", GSL_EINVAL); } for (i = 1; i < xsize; i++) { if (xarr[i-1] >= xarr[i]) { GSL_ERROR("x values must be strictly increasing", GSL_EINVAL); } } for (i = 1; i < ysize; i++) { if (yarr[i-1] >= yarr[i]) { GSL_ERROR("y values must be strictly increasing", GSL_EINVAL); } } interp->xmin = xarr[0]; interp->xmax = xarr[xsize - 1]; interp->ymin = yarr[0]; interp->ymax = yarr[ysize - 1]; { int status = interp->type->init(interp->state, xarr, yarr, zarr, xsize, ysize); return status; } } /* gsl_interp2d_init() */ /* * A wrapper function that checks boundary conditions, calls an evaluator * which implements the actual calculation of the function value or * derivative etc., and checks the return status. */ static int interp2d_eval(int (*evaluator)(const void *, const double xa[], const double ya[], const double za[], size_t xsize, size_t ysize, double x, double y, gsl_interp_accel *, gsl_interp_accel *, double * z), const gsl_interp2d * interp, const double xarr[], const double yarr[], const double zarr[], const double x, const double y, gsl_interp_accel * xa, gsl_interp_accel * ya, double * result) { if (x < interp->xmin || x > interp->xmax) { GSL_ERROR ("interpolation x value out of range", GSL_EDOM); } else if (y < interp->ymin || y > interp->ymax) { GSL_ERROR ("interpolation y value out of range", GSL_EDOM); } return evaluator(interp->state, xarr, yarr, zarr, interp->xsize, interp->ysize, x, y, xa, ya, result); } /* * Another wrapper function that serves as a drop-in replacement for * interp2d_eval but does not check the bounds. This can be used * for extrapolation. */ static int interp2d_eval_extrap(int (*evaluator)(const void *, const double xa[], const double ya[], const double za[], size_t xsize, size_t ysize, double x, double y, gsl_interp_accel *, gsl_interp_accel *, double * z), const gsl_interp2d * interp, const double xarr[], const double yarr[], const double zarr[], const double x, const double y, gsl_interp_accel * xa, gsl_interp_accel * ya, double * result) { return evaluator(interp->state, xarr, yarr, zarr, interp->xsize, interp->ysize, x, y, xa, ya, result); } double gsl_interp2d_eval (const gsl_interp2d * interp, const double xarr[], const double yarr[], const double zarr[], const double x, const double y, gsl_interp_accel * xa, gsl_interp_accel * ya) { double z; int status = gsl_interp2d_eval_e(interp, xarr, yarr, zarr, x, y, xa, ya, &z); DISCARD_STATUS(status) return z; } /* gsl_interp2d_eval() */ double gsl_interp2d_eval_extrap (const gsl_interp2d * interp, const double xarr[], const double yarr[], const double zarr[], const double x, const double y, gsl_interp_accel * xa, gsl_interp_accel * ya) { double z; int status = interp2d_eval_extrap(interp->type->eval, interp, xarr, yarr, zarr, x, y, xa, ya, &z); DISCARD_STATUS(status) return z; } int gsl_interp2d_eval_e (const gsl_interp2d * interp, const double xarr[], const double yarr[], const double zarr[], const double x, const double y, gsl_interp_accel * xa, gsl_interp_accel * ya, double * z) { return interp2d_eval(interp->type->eval, interp, xarr, yarr, zarr, x, y, xa, ya, z); } /* gsl_interp2d_eval_e() */ int gsl_interp2d_eval_e_extrap (const gsl_interp2d * interp, const double xarr[], const double yarr[], const double zarr[], const double x, const double y, gsl_interp_accel * xa, gsl_interp_accel * ya, double * z) { return interp2d_eval_extrap(interp->type->eval, interp, xarr, yarr, zarr, x, y, xa, ya, z); } double gsl_interp2d_eval_deriv_x (const gsl_interp2d * interp, const double xarr[], const double yarr[], const double zarr[], const double x, const double y, gsl_interp_accel * xa, gsl_interp_accel * ya) { double z; int status = gsl_interp2d_eval_deriv_x_e(interp, xarr, yarr, zarr, x, y, xa, ya, &z); DISCARD_STATUS(status) return z; } int gsl_interp2d_eval_deriv_x_e (const gsl_interp2d * interp, const double xarr[], const double yarr[], const double zarr[], const double x, const double y, gsl_interp_accel * xa, gsl_interp_accel * ya, double * z) { return interp2d_eval(interp->type->eval_deriv_x, interp, xarr, yarr, zarr, x, y, xa, ya, z); } double gsl_interp2d_eval_deriv_y (const gsl_interp2d * interp, const double xarr[], const double yarr[], const double zarr[], const double x, const double y, gsl_interp_accel * xa, gsl_interp_accel * ya) { double z; int status = gsl_interp2d_eval_deriv_y_e(interp, xarr, yarr, zarr, x, y, xa, ya, &z); DISCARD_STATUS(status) return z; } int gsl_interp2d_eval_deriv_y_e (const gsl_interp2d * interp, const double xarr[], const double yarr[], const double zarr[], const double x, const double y, gsl_interp_accel * xa, gsl_interp_accel * ya, double * z) { return interp2d_eval(interp->type->eval_deriv_y, interp, xarr, yarr, zarr, x, y, xa, ya, z); } double gsl_interp2d_eval_deriv_xx (const gsl_interp2d * interp, const double xarr[], const double yarr[], const double zarr[], const double x, const double y, gsl_interp_accel * xa, gsl_interp_accel * ya) { double z; int status = gsl_interp2d_eval_deriv_xx_e(interp, xarr, yarr, zarr, x, y, xa, ya, &z); DISCARD_STATUS(status) return z; } int gsl_interp2d_eval_deriv_xx_e (const gsl_interp2d * interp, const double xarr[], const double yarr[], const double zarr[], const double x, const double y, gsl_interp_accel * xa, gsl_interp_accel * ya, double * z) { return interp2d_eval(interp->type->eval_deriv_xx, interp, xarr, yarr, zarr, x, y, xa, ya, z); } double gsl_interp2d_eval_deriv_yy (const gsl_interp2d * interp, const double xarr[], const double yarr[], const double zarr[], const double x, const double y, gsl_interp_accel * xa, gsl_interp_accel * ya) { double z; int status = gsl_interp2d_eval_deriv_yy_e(interp, xarr, yarr, zarr, x, y, xa, ya, &z); DISCARD_STATUS(status) return z; } int gsl_interp2d_eval_deriv_yy_e (const gsl_interp2d * interp, const double xarr[], const double yarr[], const double zarr[], const double x, const double y, gsl_interp_accel * xa, gsl_interp_accel * ya, double * z) { return interp2d_eval(interp->type->eval_deriv_yy, interp, xarr, yarr, zarr, x, y, xa, ya, z); } double gsl_interp2d_eval_deriv_xy (const gsl_interp2d * interp, const double xarr[], const double yarr[], const double zarr[], const double x, const double y, gsl_interp_accel * xa, gsl_interp_accel * ya) { double z; int status = gsl_interp2d_eval_deriv_xy_e(interp, xarr, yarr, zarr, x, y, xa, ya, &z); DISCARD_STATUS(status) return z; } int gsl_interp2d_eval_deriv_xy_e (const gsl_interp2d * interp, const double xarr[], const double yarr[], const double zarr[], const double x, const double y, gsl_interp_accel * xa, gsl_interp_accel * ya, double * z) { return interp2d_eval(interp->type->eval_deriv_xy, interp, xarr, yarr, zarr, x, y, xa, ya, z); } size_t gsl_interp2d_type_min_size(const gsl_interp2d_type * T) { return T->min_size; } size_t gsl_interp2d_min_size(const gsl_interp2d * interp) { return interp->type->min_size; } const char * gsl_interp2d_name(const gsl_interp2d * interp) { return interp->type->name; } size_t gsl_interp2d_idx(const gsl_interp2d * interp, const size_t i, const size_t j) { if (i >= interp->xsize) { GSL_ERROR_VAL ("x index out of range", GSL_ERANGE, 0); } else if (j >= interp->ysize) { GSL_ERROR_VAL ("y index out of range", GSL_ERANGE, 0); } else { return IDX2D(i, j, interp); } } /* gsl_interp2d_idx() */ int gsl_interp2d_set(const gsl_interp2d * interp, double zarr[], const size_t i, const size_t j, const double z) { if (i >= interp->xsize) { GSL_ERROR ("x index out of range", GSL_ERANGE); } else if (j >= interp->ysize) { GSL_ERROR ("y index out of range", GSL_ERANGE); } else { zarr[IDX2D(i, j, interp)] = z; return GSL_SUCCESS; } } /* gsl_interp2d_set() */ double gsl_interp2d_get(const gsl_interp2d * interp, const double zarr[], const size_t i, const size_t j) { if (i >= interp->xsize) { GSL_ERROR_VAL ("x index out of range", GSL_ERANGE, 0); } else if (j >= interp->ysize) { GSL_ERROR_VAL ("y index out of range", GSL_ERANGE, 0); } else { return zarr[IDX2D(i, j, interp)]; } } /* gsl_interp2d_get() */ #undef IDX2D
In late 1982 , Congress passed a law which forbade the United States from funding groups aiming to overthrow the Sandinista government of Nicaragua . Then , in 1983 , Bedell visited Nicaragua and Honduras along with Representative Robert G. Torricelli . During the trip , Bedell spoke with soldiers , generals , governmental officials and members of the contras . His conclusion at the end of the trip was that Ronald Reagan was aiding the contras in violation of federal law . He promised to hold hearings after returning to Congress . Bedell would later join other House Democrats in demanding documents from the White House related to the contras , but the Reagan Administration refused to provide them . Bedell became angrier with the Reagan Administration as the decade wore on . He called his Central American policies " sheer lunacy , " saying that the mining of harbors was an acts of war . Bedell would retire from Congress before Reagan 's acts in Central America would culminate with the Iran @-@ Contra Affair .
= = = = 2011 = = = =
= = = = 2011 = = = =
(** * A10 *) (* Do not modify these imports. *) Require Import List Arith Bool. Require String. Import ListNotations. Module Author. Open Scope string_scope. Definition author := "Andrew Wang". Definition netid := "ayw24". Definition hours_worked := 0. Definition collaborators := "Jack Ding". (* The latter should be the names of other students with whom you discussed ideas on this assignment, following the collaboration policy stated in the handout. *) End Author. (******************************************************************** AAA 1111111 000000000 A:::A 1::::::1 00:::::::::00 A:::::A 1:::::::1 00:::::::::::::00 A:::::::A 111:::::1 0:::::::000:::::::0 A:::::::::A 1::::1 0::::::0 0::::::0 A:::::A:::::A 1::::1 0:::::0 0:::::0 A:::::A A:::::A 1::::1 0:::::0 0:::::0 A:::::A A:::::A 1::::l 0:::::0 000 0:::::0 A:::::A A:::::A 1::::l 0:::::0 000 0:::::0 A:::::AAAAAAAAA:::::A 1::::l 0:::::0 0:::::0 A:::::::::::::::::::::A 1::::l 0:::::0 0:::::0 A:::::AAAAAAAAAAAAA:::::A 1::::l 0::::::0 0::::::0 A:::::A A:::::A 111::::::1110:::::::000:::::::0 A:::::A A:::::A 1::::::::::1 00:::::::::::::00 A:::::A A:::::A 1::::::::::1 00:::::::::00 AAAAAAA AAAAAAA111111111111 000000000 *********************************************************************) (** Here is an OCaml interface for queues: << (* ['a t] is a queue containing values of type ['a]. *) type 'a t (* [empty] is the empty queue *) val empty : 'a t (* [is_empty q] is whether [q] is empty *) val is_empty : 'a t -> bool (* [front q] is [Some x], where [x] the front element of [q], * or [None] if [q] is empty. *) val front : 'a t -> 'a option (* [enq x q] is the queue that is the same as [q], but with [x] * enqueued (i.e., inserted) at the end. *) val enq : 'a -> 'a t -> 'a t (* [deq x q] is the queue that is the same as [q], but with its * front element dequeued (i.e., removed). If [q] is empty, * [deq q] is also empty. *) val deq : 'a t -> 'a t >> Note that the specification for [deq] differs from what we have given before: the [deq] of an empty list is the empty list; there are no options or exceptions involved. Here is an equational specification for that interface: << (1) is_empty empty = true (2) is_empty (enq _ _ ) = false (3) front empty = None (4) front (enq x q) = Some x if is_empty q = true (5) front (enq _ q) = front q if is_empty q = false (6) deq empty = empty (7) deq (enq _ q) = empty if is_empty q = true (8) deq (enq x q) = enq x (deq q) if is_empty q = false >> Your task in the next two parts of this file is to implement the Coq equivalent of that interface and prove that your implementation satisfies the equational specification. Actually, you will do this twice, with two different representation types: - _simple queues_, which represent a queue as a singly-linked list and have worst-case linear time performance. - _two-list queues_, which represent a queue with two singly-linked lists, and have amortized constant time performance. You will find both of those implementations in section 5.9 of the textbook. *) (********************************************************************) (** ** Part 1: Simple Queues *) (********************************************************************) Module SimpleQueue. (** Your first task is to implement and verify simple queues. To get you started, we provide the following definitions for the representation type of a simple queue, and for the empty simple queue. *) (** [queue A] is the type that represents a queue as a singly-linked list. The list [[x1; x2; ...; xn]] represents the queue with [x1] at its front, then [x2], ..., and finally [xn] at its end. The list [[]] represents the empty queue. *) Definition queue (A : Type) := list A. Definition empty {A : Type} : queue A := []. (** *** Implementation of simple queues. Define [is_empty], [front], [enq], and [deq]. We have provided some starter code below that type checks, but it defines those operations in trivial and incorrect ways. _Hint:_ this isn't meant to be tricky; you just need to translate the code you would naturally write in OCaml into Coq syntax. *) Definition is_empty {A : Type} (q : queue A) : bool := match q with | nil => true | cons _ _ => false end. Definition front {A : Type} (q : queue A) : option A := match q with | nil => None | x :: _ => Some x end. Fixpoint enq {A : Type} (x : A) (q : queue A) : queue A := match q with | nil => x::q | cons h t => h::enq x t end. Definition deq {A : Type} (q : queue A) : queue A := match q with | nil => nil | cons h t => t end. (** *** Verification of simple queues. Prove that the equations in the queue specification hold. We have written them for you, below, but instead of a proof we have written [Admitted]. That tells Coq to accept the theorem as true (hence it will compile) even though there is no proof. You need to replace [Admitted] with [Proof. ... Qed.] _Hint:_ the only tactics you need are [intros], [trivial], [discriminate], and [destruct]. You might also find [simpl] to be useful in making a goal easier to read. If [simpl] won't simplify a computation involving a queue, instead try [destruct] on that queue. Always pay attention to the hypotheses to see whether one might be false, in which case you should concentrate on it rather than the goal. *) Theorem eqn1 : forall (A : Type), is_empty (@empty A) = true. Proof. trivial. Qed. Theorem eqn2 : forall (A : Type) (x : A) (q : queue A), is_empty (enq x q) = false. Proof. intros A x q. destruct q. all: trivial. Qed. Theorem eqn3 : forall (A : Type), front (@empty A) = None. Proof. trivial. Qed. Theorem eqn4 : forall (A : Type) (x : A) (q : queue A), is_empty q = true -> front (enq x q) = Some x. Proof. intros A x q empty_is_true. destruct q. trivial. discriminate. Qed. Theorem eqn5 : forall (A : Type) (x : A) (q : queue A), is_empty q = false -> front (enq x q) = front q. Proof. intros A x q empty_is_false. destruct q. discriminate. trivial. Qed. Theorem eqn6 : forall (A : Type), deq (@empty A) = (@empty A). Proof. trivial. Qed. Theorem eqn7 : forall (A : Type) (x : A) (q : queue A), is_empty q = true -> deq (enq x q) = empty. Proof. intros A x q empty_is_true. destruct q. simpl. trivial. simpl. discriminate. Qed. Theorem eqn8 : forall (A : Type) (x : A) (q : queue A), is_empty q = false -> deq (enq x q) = enq x (deq q). Proof. intros A x q empty_is_false. destruct q. simpl. discriminate. simpl. trivial. Qed. End SimpleQueue. (********************************************************************) (** ** Part 2: Two-list Queues *) (********************************************************************) Module TwoListQueue. (** Your second task is to implement and verify two-list queues. To get you started, we provide the following definitions for the representation type of a two-list queue, and for the empty two-list queue. *) (** [queue A] is the type that represents a queue as a pair of two singly-linked lists. The pair [(f,b)] represents the same queue as does the simple queue [f ++ rev b]. The list [f] is the front of the queue, and the list [b] is the back of the queue stored in reversed order. _Representation invariant:_ if [f] is [nil] then [b] is [nil]. The syntax [% type] in this definition tells Coq to treat the [*] symbol as the pair constructor rather than multiplication. You shouldn't need to use that syntax anywhere in your solution. *) Definition queue (A : Type) := (list A * list A) % type. (** [rep_ok q] holds iff [q] satisfies its RI as stated above *) Definition rep_ok {A : Type} (q : queue A) : Prop := match q with | (f,b) => f = [] -> b = [] end. Definition empty {A : Type} : queue A := ([],[]). (** *** Implementation of two-list queues. Define [is_empty], [front], [enq], and [deq]. We have provided some starter code below that type checks, but it defines those operations in trivial and incorrect ways. You must use the efficient implementation described in the textbook. You may not store the entire queue in the first component of the pair and use the inefficient implementation on that component. _Hint:_ this isn't meant to be tricky; you just need to translate the code you would naturally write in OCaml into Coq syntax. You will need to define one new function as part of that. *) Definition is_empty {A : Type} (q : queue A) : bool := match q with | (nil, _) => true | _ => false end. Definition front {A : Type} (q : queue A) : option A := match q with | (nil, _) => None | (cons x _, _) => Some x end. Definition norm {A : Type} (q: queue A) : queue A := match q with | (nil, b) => (rev b, nil) | q => q end. Definition enq {A : Type} (x : A) (q : queue A) : queue A := match q with | (nil, _) => norm (nil, x::[]) | (f, t) => norm (f, x::t) end. Definition deq {A : Type} (q : queue A) : queue A := match q with | (nil, _) => (nil, []) | (cons h t, b) => norm (t, b) end. (** This "unit test" checks to make sure your implementation correctly uses both the front and back list on a simple example. You should be able to prove it just by changing [Admitted.] to [trivial. Qed.] If not, you probably have coded up the [enq] function or a helper incorrectly. In that case, fix it before moving on to the theorems below. *) Example test_two_lists : enq 1 (enq 0 empty) = ([0], [1]). Proof. trivial. Qed. (** *** Verification of two-list queues. Next you need to prove that the equations in the queue specification hold. The statements of those equations below now include as a precondition that the RI holds of any input queues. _Hint:_ in addition to the tactics you used for simple queues, you will also find [apply...in], [rewrite], and [assumption] to be helpful. We suggest factoring out helper lemmas whenever you discover that a hypothesis is difficult to work with in its current form. *) Theorem eqn1 : forall (A : Type), is_empty (@empty A) = true. Proof. trivial. Qed. Theorem eqn2 : forall (A : Type) (x : A) (q : queue A), rep_ok q -> is_empty (enq x q) = false. Proof. intros A x q evRep. destruct q as [front back]. destruct front. trivial. destruct back. all: trivial. Qed. Theorem eqn3 : forall (A : Type), front (@empty A) = None. Proof. trivial. Qed. Theorem eqn4 : forall (A : Type) (x : A) (q : queue A), rep_ok q -> is_empty q = true -> front (enq x q) = Some x. Proof. intros A x q evRep empty_eq_true. destruct q as [f b]. destruct f. trivial. discriminate. Qed. Theorem eqn5 : forall (A : Type) (x : A) (q : queue A), rep_ok q -> is_empty q = false -> front (enq x q) = front q. Proof. intros A x q evRep empty_eq_true. destruct q as [f b]. simpl. destruct f. discriminate. trivial. Qed. Theorem eqn6 : forall (A : Type), deq (@empty A) = @empty A. Proof. trivial. Qed. Theorem eqn7_helper : forall (A : Type) (x : A) (q: queue A), rep_ok q -> is_empty q = true -> q = ([], []). Proof. intros. destruct q as [f back]. simpl. destruct f. simpl. rewrite H. trivial. trivial. discriminate. Qed. (** Look into how to break this one up *) Theorem eqn7 : forall (A : Type) (x : A) (q : queue A), rep_ok q -> is_empty q = true -> deq (enq x q) = empty. Proof. intros A x q evRep empty_eq_true. destruct q as [f b]. destruct f. destruct b. simpl. trivial. trivial. discriminate. Qed. (** It turns out that two-list queues actually do not satisfy [eqn8]! To show that, find a counterexample: values for [x] and [q] that cause [eqn8] to be invalid. Plug in your values for [x] and [q] below, then prove the three theorems [counter1], [counter2], and [counter3]. _Hint_: if you choose your values well, the proofs should be short and easy, requiring only [discriminate] or [trivial]. *) Module CounterEx. Definition x : nat := 0. (* change [0] to a value of your choice *) Definition q : (list nat * list nat) := ([x], [x]). (* change [empty] to a value of your choice *) Theorem counter1 : rep_ok q. Proof. discriminate. Qed. Theorem counter2 : is_empty q = false. Proof. trivial. Qed. Theorem counter3 : deq (enq x q) <> enq x (deq q). Proof. discriminate. Qed. End CounterEx. (** Two-list queues do satisfy a relaxed version of [eqn8], though, where instead of requiring [deq (enq x q)] and [enq x (deq q)] to be _equal_, we only require them to be _equivalent_ after being converted to simple queues. The following definition implements that idea of equivalence: *) Definition equiv {A:Type} (q1 q2 : queue A) : Prop := match (q1, q2) with | ((f1,b1),(f2,b2)) => f1 ++ rev b1 = f2 ++ rev b2 end. (** Now prove that the following relaxed form of [eqn8] holds. _Hint:_ this is probably the hardest proof in the assignment. Don't hesitate to manage the complexity of the proof by stating and proving helper lemmas. We found uses for some additional tactics in this proof: [contradiction], [destruct (e)], and [unfold]. We also found a theorem involving [++] from the [List] library to be helpful. *) (* Lemma eqn8_equiv' : forall (A : Type) (x : A) (q : queue A), rep_ok q -> is_empty q = false -> (deq (enq x q)) *) Lemma front_no_back : forall (A : Type) (x : A) (f : list A), f <> [] -> equiv (deq (enq x (f, []))) (enq x (deq (f, []))). Proof. intros A x f f_not_empty. destruct f. contradiction. simpl. destruct f. simpl. unfold equiv. trivial. simpl. unfold equiv. simpl. trivial. Qed. Lemma elt_cons_front : forall (A : Type) (x : A) (f b: list A), f <> [] -> is_empty (f, b) = false. Proof. intros. destruct f. contradiction. trivial. Qed. Lemma enq_nonempty : forall (A : Type) (x : A) (f b : list A), rep_ok (f,b) -> is_empty (f,b) = false -> enq x (f,b) = (f, x::b). Proof. intros A x f b rep_ok is_not_empty. destruct f. destruct b. discriminate. simpl. discriminate. simpl. trivial. Qed. Lemma deq_nonempty : forall (A : Type) (x : A) (f b : list A), rep_ok (f,b) -> is_empty (f,b) = false -> deq (x::f,b) = (f, b). Proof. intros. destruct f. discriminate. trivial. Qed. Lemma one_front_back : forall (A : Type) (x a a0 : A) (b : list A), deq (enq x ([a], a0 :: b)) = (rev (x :: a0 :: b), []). Proof. trivial. Qed. Lemma some_deq : forall (A : Type) (x a a0 : A) (b : list A), deq ([a], a0 :: b) = (rev (a0 :: b), []). Proof. trivial. Qed. Theorem eqn8_equiv : forall (A : Type) (x : A) (q : queue A), rep_ok q -> is_empty q = false -> equiv (deq (enq x q)) (enq x (deq q)). Proof. intros A x q rep_good is_not_empty. destruct q as [front back]. destruct front. destruct back. discriminate. discriminate. destruct back. destruct front0. unfold equiv. simpl. trivial. unfold equiv. simpl. trivial. destruct front0. rewrite one_front_back. rewrite some_deq. unfold equiv. simpl. destruct (rev back). simpl. trivial. simpl. rewrite app_nil_r. trivial. assumption. simpl. unfold equiv. trivial. Qed. (** Finally, verify that [empty] satisfies the RI, and that [enq] and [deq] both preserve the RI. *) Theorem rep_ok_empty : forall (A : Type), rep_ok (@empty A). Proof. intros A. intros evRep. trivial. Qed. Theorem rep_ok_enq : forall (A : Type) (q : queue A), rep_ok q -> forall (x : A), rep_ok (enq x q). Proof. intros A q rep_good. intros x. destruct q as [front back]. destruct front. all: discriminate. Qed. Theorem rep_ok_deq: forall (A : Type) (q : queue A), rep_ok q -> rep_ok (deq q). Proof. intros. destruct q. destruct l. simpl. trivial. destruct l. trivial. simpl. destruct (rev l0). trivial. discriminate. discriminate. Qed. End TwoListQueue. (********************************************************************) (** ** Part 3: Logic, and Programs as Proofs *) (********************************************************************) Module Logic. (** Change each of the following conjectures into a definition. Your definition should provide a Coq program that is the proof of the conjecture. For example, given << Conjecture logic0 : forall P : Prop, P -> P. >> You would transform it into << Definition logic0 : forall P : Prop, P -> P := fun (P : Prop) (p : P) => p. >> Please note that if you use tactics to find the programs you will negatively impact your ability to solve similar problems on the final exam. *) Definition logic1 : forall P Q R S T: Prop, ((P /\ Q) /\ R) -> (S /\ T) -> (Q /\ S) := fun (P Q R S T: Prop) (pq_and_r: ((P /\ Q) /\ R)) (s_and_t: (S /\ T)) => match (pq_and_r, s_and_t) with | (conj (conj p q) r, conj s t) => conj q s end. Definition logic2 : forall P Q R S : Prop, (P -> Q) -> (R -> S) -> (P \/ R) -> (Q \/ S) := fun (P Q R S: Prop) (p_imp_q: P -> Q) (r_imp_s: R -> S) (p_or_r: P \/ R) => match p_or_r with | or_introl p => or_introl (p_imp_q p) | or_intror r => or_intror (r_imp_s r) end. Definition logic3 : forall P Q : Prop, (P -> Q) -> (((P /\ Q) -> P) /\ (P -> (P /\ Q))) := fun (P Q: Prop) (p_imp_q: P -> Q) => conj (fun (p_and_q: P /\ Q) => (match p_and_q with | conj p q => p end )) (fun (p: P) => conj p (p_imp_q p)). Definition logic4 : forall P Q : Prop, (P -> Q) -> (~~P -> ~~Q) := fun (P Q : Prop) (p_imp_q: P -> Q) (double_neg_p: (P -> False) -> False) (neg_q: Q -> False) => double_neg_p (fun (p: P) => neg_q (p_imp_q p)). End Logic. (********************************************************************) (** ** Part 4: Induction *) (********************************************************************) Module Induction. (** For the proofs in this part of the assignment, in addition to the tactics already used, we found these to be useful: [induction] and [ring]. *) (** Here is an OCaml function: << let rec sumsq_to n = if n = 0 then 0 else n*n + sumsq_to (n-1) >> Prove that << sumsq_to n = n * (n+1) * (2*n + 1) / 6 >> by completing the following code. *) (** [sumsq_to n] is [0*0 + 1*1 + ... + n*n]. *) Fixpoint sumsq_to (n:nat) : nat := match n with | 0 => n | S k => n * n + (sumsq_to k) end. Lemma sumsq_helper : forall n : nat, 6 * sumsq_to (S n) = 6 * (S n) * (S n) + 6 * sumsq_to n. Proof. intros n. simpl. ring. Qed. Theorem sumsq : forall n, 6 * sumsq_to n = n * (n+1) * (2*n+1). Proof. intros n. induction n as [ | k IH]. - trivial. - rewrite -> sumsq_helper. rewrite -> IH. ring. Qed. (** Here is a "backwards" definition of lists, which is why we spell all the names backwards. Unlike OCaml lists, in which as you pattern match you encounter the first element of the list, then the second, etc., with these lists, you encounter the last element of the list, then the next-to-last, etc. You may not change this definition. *) Inductive tsil (A : Type) : Type := | lin : tsil A | snoc : tsil A -> A -> tsil A. (** Don't worry about understanding these commands. For those who are curious: they make it possible to omit the [A] argument when writing constructors. E.g., to write [lin] instead of [lin A]. *) Arguments lin {A}. Arguments snoc {A} xs x. (** For example, the list whose first element is [1], second is [2], and third is [3] would be written << snoc (snoc (snoc lin 1) 2) 3. >> *) (** [length lst] is the number of elements in [lst]. You may not change this definition. *) Fixpoint length {A : Type} (lst : tsil A) : nat := match lst with | lin => 0 | snoc xs _ => 1 + length xs end. (** [app lst1 lst2] contains all the elements of [lst1] followed by all the elements of [lst2]. "app" is short for "append". You may not change this definition. *) Fixpoint app {A : Type} (lst1 lst2: tsil A) : tsil A := match lst2 with | lin => lst1 | snoc xs x => snoc (app lst1 xs) x end. (** Prove the next two theorems. You will need to use induction. Think carefully about which list to induct on, based on how [tsil] is defined. *) Theorem app_assoc : forall (A : Type) (lst1 lst2 lst3 : tsil A), app lst1 (app lst2 lst3) = app (app lst1 lst2) lst3. Proof. intros A lst1 lst2 lst3. induction lst3 as [ | h IH t]. - simpl. trivial. - simpl. rewrite <- IH. trivial. Qed. Theorem app_length : forall (A : Type) (lst1 lst2 : tsil A), length (app lst1 lst2) = length lst1 + length lst2. Proof. intros A lst1 lst2. induction lst2 as [ | h IH t]. - simpl. trivial. - simpl. rewrite -> IH. trivial. Qed. End Induction. (********************************************************************) (** THE END *) (********************************************************************)
#Oktay Saraçoğlu #160401083 import numpy as np def asal(kaca_kadar): asallar = [2] if kaca_kadar < 2: return None elif kaca_kadar == 2: return asallar else: for i in range(3,kaca_kadar,2): bolundu = False # karekökün aşağı yuvarlanma ihtimaline karşı, + 1 ekliyoruz. limit = (i ** 0.5) + 1 for j in asallar: if i % j == 0: bolundu=True break if j > limit: break if bolundu == False: asallar.append(i) return asallar asallar = asal(600) asallartxt = open("asallar.txt","w") for i in range(len(asallar)): asallar[i] = str(asallar[i]) asallartxt.write(asallar[i]+"\n") def det(l): n=len(l) if (n>2): i=1 t=0 sum=0 while t<=n-1: d={} t1=1 while t1<=n-1: m=0 d[t1]=[] while m<=n-1: if (m==t): u=0 else: d[t1].append(l[t1][m]) m+=1 t1+=1 l1=[d[x] for x in d] sum=sum+i*(l[0][t])*(det(l1)) i=i*(-1) t+=1 return sum else: return (l[0][0]*l[1][1]-l[0][1]*l[1][0]) train_sample_number = len(asallar) X_train = [] Y_train = [] for i in range(train_sample_number): X_train.append(i+1) Y_train.append(float(asallar[i])) degree = int(input("polinom derecesi : ")) matris = np.full((degree+1,degree+1),0).astype("float") for i in range(degree+1): for j in range(degree+1): sum_x = 0 for k in range(train_sample_number): sum_x += X_train[k]**(i+j) matris[i][j] = sum_x sonuc = [] for i in range(degree+1): sum = 0 for j in range(train_sample_number): sum = sum + (Y_train[j]*(X_train[j]**i)) sonuc.append(sum) array = np.array(sonuc) array.reshape(-1,1) delta = det(matris) dete = [] x = np.full((degree+1,degree+1),0).astype("float") for i in range(degree+1): for j in range(degree+1): for k in range(degree+1): x[j][k] = matris[j][k] #print(x) for j in range(degree+1): x[j][i] = array[j] #print(det(x)) dete.append(det(x)/delta) prediction = float(input("tahmin edilecek değer : ")) sonuc = 0 for i in range(degree+1): sonuc = sonuc + dete[i]*(prediction**i) print(dete[i]) #print(sonuc) delta = 1 degree = 4 point = 160401083% 100 fx = 0 def f(degree,fx,dete,point): for i in range(degree): fx = fx + dete[i] * (point ** i) return fx central_derivation = (f(degree,fx,dete,(point+delta)) - f(degree,fx,dete,(point-delta)))/2*delta print("Polinom ile türev : ",central_derivation) def polinomsuzTurev(): x0 =160401083% 100 h = 1 xprime = (float(asallar[x0 - 1 + h]) - float(asallar[x0 - 1 - h])) / (2 * h) return xprime turev2 = polinomsuzTurev() print("Polinomsuz türev ",turev2)
Image(XperimentalFarm.jpg, left, thumbnail, 350, left) The UC Davis Student Experimental Farm focuses on organic and Sustainability sustainable agriculture, including seeding, pest control, irrigation, sales, and marketing. Work hours are from 8am to 12pm Monday thru Friday. All new volunteers are welcomed! On its 20 acres, researchers and students plant a variety of crops to investigate methods of organic farming. Compost is provided by Project Compost, which composts food wastes from the campus in long aerobic windrows off the side of the road here. Some of the equipment runs on biofuel made at the farm. A portion of the farm is dedicated to the Market Garden, which sells organicallygrown vegetables to the (Universityaffiliated) public and the Coffee House. Produce from the Market Garden is provided in weekly Community Supported Agriculture CSA baskets for a monthly or quarterly subscription. See the official Web site for more details. To help out on the farm, contact Mark Van Horn and Raoul Adamchak. Many of those working on the farm are students at the University. Plucky, the Student Farm cat, has taken a liking to hanging out in front of my apartment in the colleges. So if someone is worried, dont be! Users/ChristyMarsden 20110825 15:14:27 nbsp Just an fyi, I asked about becoming a subscriber and the response I got back was that there is a 1.5 year waiting list. Users/Strategiry
from uptrop.fresco_cld_err import process_file, CloudVariableStore, MAX_LAT, MAX_LON, MIN_LAT, MIN_LON, DELTA_LAT, DELTA_LON import numpy as np import datetime as dt # I don't like having these here, but they're stuck until I refactor the last bit of fresco_cld_err out_lon = np.arange(MIN_LON, MAX_LON, DELTA_LON) out_lat = np.arange(MIN_LAT, MAX_LAT, DELTA_LAT) def test_process_file(): X, Y = np.meshgrid(out_lon, out_lat, indexing='ij') start_date = dt.datetime(year=2019, month=10, day=25) end_date = dt.datetime(year=2019, month=10, day=26) test_container = CloudVariableStore(X.shape, start_date, end_date) fresco_path = "test_data/S5P_OFFL_L2__NO2____20191025T085808_20191025T103937_10527_01_010302_20191031T111532.nc" dlr_path = "test_data/S5P_OFFL_L2__CLOUD__20191025T085808_20191025T103937_10527_01_010107_20191031T081901.nc" process_file(dlr_path, fresco_path, test_container) assert test_container.nobs_dlr != 0 assert test_container.nobs_fresco != 0
import week_8.Part_B_H0 import group_theory.quotient_group /- # A crash course in H¹(G,M) We stick to the conventions that `G` is a group (or even a monoid, we never use inversion) and that `M` is a `G`-module, that is, an additive abelian group with a `G`-action. A key concept here is that of a cocycle, or a twisted homomorphism. These things were later renamed 1-cocycles when people realised that higher cocycles existed; today whenever I say "cocycle" I mean 1-cocycle). A cocycle is a function `f : G → M` satisfying the axiom `∀ (g h : G), f (g * h) = f g + g • f h`. These things naturally form an abelian group under pointwise addition and negation, by which I mean "operate on the target": `(f₁ + f₂) g = f₁ g + f₂ g`. Let `Z1 G M` denote the abelian group of cocycles. There is a subgroup `B1 G M` of coboundaries, consisting of the functions `f` for which there exists `m : M` such that `f g = g • m - m` (note that it is at this point where we crucially use the fact that `M` is an abelian group and not just an abelian monoid). One easily checks that all coboundaries are cocycles, and that coboundaries are a subgroup (you will be doing this below). The quotient group `H1 G M`, written `H¹(G,M)` by mathematicians, is the main definition in this file. The first two theorems we shall prove about it here are that it is functorial (i.e. a map `φ : M →+[G] N` gives rise to a map `φ.H1_hom : H1 G M →+ H1 G N`), and exact in the middle (i.e. if `0 → A → B → C → 0` is a short exact sequence of `G`-modules then the sequence `H1 G A →+ H1 G B →+ H1 G C` is exact). Further work would be to verify "inf-res", otherwise known as the beginning of the long exact sequence of terms of low degree in the Hochschild-Serre spectral sequence for group cohomology (i.e. `0 → H¹(G/N, Aᴺ) → H¹(G, A) → H¹(N, A)` ) and of course one could go on to define n-cocycles and n-coboundaries (please get in touch if you're interested in doing this -- I have ideas about how to set it all up) and to construct the Hochschild-Serre spectral sequence itself. I have no doubt that these kinds of results could be turned into a research paper. Let's start with a definition of `H1 G M`. First we need to define cocycles and coboundaries. -/ -- 1-cocycles as an additive subgroup of the group `Hom(G,M)` -- a.k.a. `G → M` of functions from `G` to `M`, with group -- law induced from `M`. def Z1_subgroup (G M : Type) [monoid G] [add_comm_group M] [distrib_mul_action G M] : add_subgroup (G → M) := { carrier := { f : G → M | ∀ (g h : G), f (g * h) = f g + g • f h }, zero_mem' := begin -- the zero map is a cocycle sorry end, add_mem' := begin sorry, end, neg_mem' := begin sorry, end } -- Just like `H0 G M`, we promote this term to a type structure Z1 (G M : Type) [monoid G] [add_comm_group M] [distrib_mul_action G M] : Type := (to_fun : G → M) (is_cocycle : ∀ (g h : G), to_fun (g * h) = to_fun g + g • to_fun h) -- This is a definition so we need to make an API namespace Z1 -- let G be a group (or a monoid) and let M be a G-module. variables {G M : Type} [monoid G] [add_comm_group M] [distrib_mul_action G M] -- add a coercion from a cocycle to the function G → M instance : has_coe_to_fun (Z1 G M) := { F := λ _, G → M, coe := to_fun } @[simp] lemma coe_apply (to_fun : G → M) (is_cocycle : ∀ (g h : G), to_fun (g * h) = to_fun g + g • to_fun h) (g : G) : ({ to_fun := to_fun, is_cocycle := is_cocycle } : Z1 G M) g = to_fun g := rfl -- add a specification for the coercion lemma spec (a : Z1 G M) : ∀ (g h : G), a (g * h) = a g + g • a h := -- this is the last time we'll see `a.is_cocycle`: we'll -- use `a.spec` from now on because it applies to `⇑a` and not `a.to_fun`. a.is_cocycle -- add an extensionality lemma @[ext] lemma ext (a b : Z1 G M) (h : ∀ g, a g = b g) : a = b := begin cases a, cases b, simp, ext g, exact h g, end -- can you prove addition of two cocycles is a cocycle def add (a b : Z1 G M) : Z1 G M := { to_fun := λ g, a g + b g, is_cocycle := begin sorry, end } instance : has_add (Z1 G M) := ⟨add⟩ @[simp] lemma coe_add (a b : Z1 G M) (g : G) : (a + b) g = a g + b g := rfl -- the zero cocycle is a cocycle def zero : Z1 G M := { to_fun := λ g, 0, is_cocycle := begin sorry, end } instance : has_zero (Z1 G M) := ⟨zero⟩ @[simp] lemma coe_zero (g : G) : (0 : Z1 G M) g = 0 := rfl -- negation of a cocycle is a cocycle def neg (a : Z1 G M) : Z1 G M := { to_fun := λ g, -(a g), is_cocycle := begin sorry end } instance : has_neg (Z1 G M) := ⟨neg⟩ @[simp] lemma coe_neg (a : Z1 G M) (g : G) : (-a) g = -(a g) := rfl def sub (a b : Z1 G M) : Z1 G M := a + -b instance : has_sub (Z1 G M) := ⟨sub⟩ -- make the cocycles into a group instance : add_comm_group (Z1 G M) := begin refine_struct { add := (+), zero := (0 : Z1 G M), neg := has_neg.neg, sub := has_sub.sub, -- ignore this, we have to fill in this proof for technical reasons sub_eq_add_neg := λ _ _, rfl }; -- we now have five goals. Let's use the semicolon trick to work on -- all of them at once. I'll show you what happens to the proof -- of associativity, the others are the same mutatis mutandis -- (but harder to see) -- *TODO* could documentstring commutativity and remark that -- they can see associativity using the cursor. -- ⊢ ∀ (a b c : Z1 G M), a + b + c = a + (b + c) intros; -- ⊢ a + b + c = a + (b + c) ext; -- ⊢ ⇑(a + b + c) g = ⇑(a + (b + c)) g simp; -- ⊢ ⇑a g + ⇑b g + ⇑c g = ⇑a g + (⇑b g + ⇑c g) abel -- general additive abelian group tactic which solves -- goals which are (absolute) identities in every abelian group. -- Hypotheses are not looked at though. See Chris Hughes' forthcoming -- Imperial MSc thesis for a new group theory tactic which is to `abel` -- what `nlinarith` is to `ring`. end end Z1 namespace distrib_mul_action_hom -- The Z1 construction is functorial in the module `M`. Let's construct -- the relevant function, showing that if `φ : M →+[G] N` then -- composition induces an additive group homomorphism `Z1 G M → Z1 G N`. -- Just like `H0` we first define the auxiliary bare function, -- and then beef it up to an abelian group homomorphism. variables {G M N : Type} [monoid G] [add_comm_group M] [distrib_mul_action G M] [add_comm_group N] [distrib_mul_action G N] def Z1_hom_underlying_function (φ : M →+[G] N) (f : Z1 G M) : Z1 G N := ⟨λ g, φ (f g), begin -- need to prove that this function obtained by composing the cocycle -- f with the G-module homomorphism φ is also a cocycle. sorry end⟩ @[norm_cast] lemma Z1_hom_underlying_function_coe_comp (φ : M →+[G] N) (f : Z1 G M) (g : G) : (Z1_hom_underlying_function φ f g : N) = φ (f g) := rfl def Z1 (φ : M →+[G] N) : Z1 G M →+ Z1 G N := -- to make a term of type `X →+ Y` (a group homomorphism) from a function -- `f : X → Y` and -- a proof that it preserves addition we use the following constructor: add_monoid_hom.mk' -- We now throw in the bare function (Z1_hom_underlying_function φ) -- (or could try direct definition:) -- (λ f, ⟨λ g, φ (f g), begin -- -- need to prove that this function obtained by composing the cocycle -- -- f with the G-module homomorphism φ is also a cocycle. -- intros g h, -- rw ←φ.map_smul, -- rw f.spec, -- simp, -- end⟩) -- and now the proof that it preserves addition begin intros e f, ext g, simp [φ.Z1_hom_underlying_function_coe_comp], end -- it's a functor variables {P : Type} [add_comm_group P] [distrib_mul_action G P] def map_comp (φ: M →+[G] N) (ψ : N →+[G] P) (z : _root_.Z1 G M) : (ψ.Z1) ((φ.Z1) z) = (ψ ∘ᵍ φ).Z1 z := begin -- what do you think? sorry end @[simp] lemma Z1_spec (φ : M →+[G] N) (a : _root_.Z1 G M) (g : G) : φ.Z1 a g = φ (a g) := rfl @[simp] lemma Z1_spec' (φ : M →+[G] N) (a : _root_.Z1 G M) (g : G) : (φ.Z1 a : G → N) = ((φ : M → N) ∘ a) := rfl end distrib_mul_action_hom section cochain_map variables (G M : Type) [monoid G] [add_comm_group M] [distrib_mul_action G M] def cochain_map : M →+ Z1 G M := { to_fun := λ m, { to_fun := λ g, g • m - m, is_cocycle := begin simp [mul_smul, smul_sub], end}, map_zero' := begin sorry end, map_add' := begin sorry, end } @[simp] lemma cochain_map_apply (m : M) (g : G) : cochain_map G M m g = g • m - m := rfl end cochain_map -- question : do we have cokernels? If A B are abelian groups and -- `f : A → B` is a group hom, how do I make the type coker f` -- Lean has inbuilt quotients of additive abelian groups by subgroups -- so we just take the quotient by the range @[derive add_comm_group] def H1 (G M : Type) [monoid G] [add_comm_group M] [distrib_mul_action G M] : Type := quotient_add_group.quotient ((cochain_map G M).range) --quotient_add_group.quotient (B1 G M) section quotient_stuff variables {G M : Type} [monoid G] [add_comm_group M] [distrib_mul_action G M] def Z1.quotient : Z1 G M →+ H1 G M := quotient_add_group.mk' _ lemma ab_H1.ker_quotient : (Z1.quotient).ker = (cochain_map G M).range := quotient_add_group.ker_mk _ end quotient_stuff namespace H1 variables {G M : Type} [monoid G] [add_comm_group M] [distrib_mul_action G M] @[elab_as_eliminator] def induction_on {p : H1 G M → Prop} (IH : ∀ z : Z1 G M, p (z.quotient)) (h : H1 G M) : p h := quot.induction_on h IH end H1 /- We have just defined `H1 G M` as a quotient group, and told Lean to figure out (or "derive") the obvious abelian group structure on it, which it did. If you want to go any further, check out the `ideas` directory. In there we show that if `φ : M →+[G] N` is a `G`-module hom then `φ` induces a map `H1 G M → H1 G N`. To prove this we will need to figure out how to define maps from and to quotient group structures. Just like last week, this is simply a matter of learning the API for the definition `quotient_add_group.quotient`. -/
(*! Language | Continuation-passing semantics and weakest precondition calculus !*) Require Import CompactSemantics. Require Import Magic. Section CPS. Context {pos_t var_t fn_name_t rule_name_t reg_t ext_fn_t: Type}. Context {reg_t_eq_dec: EqDec reg_t}. Context {R: reg_t -> type}. Context {Sigma: ext_fn_t -> ExternalSignature}. Context {REnv: Env reg_t}. Notation Log := (Log R REnv). Notation rule := (rule pos_t var_t fn_name_t R Sigma). Notation action := (action pos_t var_t fn_name_t R Sigma). Notation scheduler := (scheduler pos_t rule_name_t). Definition tcontext (sig: tsig var_t) := context (fun k_tau => type_denote (snd k_tau)) sig. Definition acontext (sig argspec: tsig var_t) := context (fun k_tau => action sig (snd k_tau)) argspec. Definition interp_continuation A sig R := option (Log * R * (tcontext sig)) -> A. Definition action_continuation A sig tau := interp_continuation A sig (type_denote tau). Definition rule_continuation A := option Log -> A. Definition scheduler_continuation A := Log -> A. Definition cycle_continuation A := REnv.(env_t) R -> A. (* FIXME what's the right terminology for interpreter? *) Definition action_interpreter A sig := forall (Gamma: tcontext sig) (action_log: Log), A. Definition interpreter A := forall (log: Log), A. (* Definition wp_bind (p: Log * tau * (tcontext sig) -> Prop) p' := *) (* fun res => *) (* match res with *) (* | Some res => p res *) (* | None => p None *) (* end *) (* FIXME monad *) Section Action. Context (r: REnv.(env_t) R). Context (sigma: forall f, Sig_denote (Sigma f)). Section Args. Context (interp_action_cps: forall {sig: tsig var_t} {tau} (a: action sig tau) {A} (k: action_continuation A sig tau), action_interpreter A sig). Fixpoint interp_args'_cps {sig: tsig var_t} {argspec: tsig var_t} (args: acontext sig argspec) {A} (k: interp_continuation A sig (tcontext argspec)) : action_interpreter A sig := match args in context _ argspec return interp_continuation A sig (tcontext argspec) -> action_interpreter A sig with | CtxEmpty => fun k Gamma l => k (Some (l, CtxEmpty, Gamma)) | @CtxCons _ _ argspec k_tau arg args => fun k => interp_args'_cps args (fun res => match res with | Some (l, ctx, Gamma) => interp_action_cps _ _ arg _ (fun res => match res with | Some (l, v, Gamma) => k (Some (l, CtxCons k_tau v ctx, Gamma)) | None => k None end) Gamma l | None => k None end) end k. End Args. Fixpoint interp_action_cps {sig tau} (L: Log) (a: action sig tau) {A} (k: action_continuation A sig tau) : action_interpreter A sig := let cps {sig tau} a {A} k := @interp_action_cps sig tau L a A k in match a in TypedSyntax.action _ _ _ _ _ ts tau return (action_continuation A ts tau -> action_interpreter A ts) with | Fail tau => fun k Gamma l => k None | Var m => fun k Gamma l => k (Some (l, cassoc m Gamma, Gamma)) | Const cst => fun k Gamma l => k (Some (l, cst, Gamma)) | Seq r1 r2 => fun k => cps r1 (fun res => match res with | Some (l, v, Gamma) => cps r2 k Gamma l | None => k None end) | Assign m ex => fun k => cps ex (fun res => match res with | Some (l, v, Gamma) => k (Some (l, Ob, creplace m v Gamma)) | None => k None end) | Bind var ex body => fun k => cps ex (fun res => match res with | Some (l, v, Gamma) => cps body (fun res => match res with | Some (l, v, Gamma) => k (Some (l, v, ctl Gamma)) | None => k None end) (CtxCons (var, _) v Gamma) l | None => k None end) | If cond tbranch fbranch => fun k => cps cond (fun res => match res with | Some (l, v, Gamma) => if Bits.single v then cps tbranch k Gamma l else cps fbranch k Gamma l | None => k None end) | Read P0 idx => fun k Gamma l => if may_read0 L idx then k (Some (Environments.update REnv l idx (fun rl => {| lread0 := true; lread1 := rl.(lread1); lwrite0 := rl.(lwrite0); lwrite1 := rl.(lwrite1) |}), REnv.(getenv) r idx, Gamma)) else k None | Read P1 idx => fun k Gamma l => if may_read1 L idx then k (Some (Environments.update REnv l idx (fun rl => {| lread0 := rl.(lread1); lread1 := true; lwrite0 := rl.(lwrite0); lwrite1 := rl.(lwrite1) |}), match (REnv.(getenv) l idx).(lwrite0), (REnv.(getenv) L idx).(lwrite0) with | Some v, _ => v | _, Some v => v | _, _ => REnv.(getenv) r idx end, Gamma)) else k None | Write P0 idx value => fun k => cps value (fun res => match res with | Some (l, v, Gamma) => if may_write0 L l idx then k (Some (Environments.update REnv l idx (fun rl => {| lread0 := rl.(lread1); lread1 := rl.(lread1); lwrite0 := Some v; lwrite1 := rl.(lwrite1) |}), Ob, Gamma)) else k None | None => k None end) | Write P1 idx value => fun k => cps value (fun res => match res with | Some (l, v, Gamma) => if may_write1 L l idx then k (Some (Environments.update REnv l idx (fun rl => {| lread0 := rl.(lread1); lread1 := rl.(lread1); lwrite0 := rl.(lwrite0); lwrite1 := Some v |}), Ob, Gamma)) else k None | None => k None end) | Unop fn arg1 => fun k => cps arg1 (fun res => match res with | Some (l, v, Gamma) => k (Some (l, (PrimSpecs.sigma1 fn) v, Gamma)) | None => k None end) | Binop fn arg1 arg2 => fun k => cps arg1 (fun res => match res with | Some (l, v1, Gamma) => cps arg2 (fun res => match res with | Some (l, v2, Gamma) => k (Some (l, (PrimSpecs.sigma2 fn) v1 v2, Gamma)) | None => k None end) Gamma l | None => k None end) | ExternalCall fn arg => fun k => cps arg (fun res => match res with | Some (l, v, Gamma) => k (Some (l, (sigma fn) v, Gamma)) | None => k None end) | InternalCall fn args body => fun k => interp_args'_cps (@cps) args (fun res => match res with | Some (l, argvals, Gamma) => cps body (fun res => match res with | Some (l, v, _) => k (Some (l, v, Gamma)) | None => k None end) argvals l | None => k None end) | APos pos a => fun k => cps a k end k. Definition interp_rule_cps (rl: rule) {A} (k: rule_continuation A) : interpreter A := fun L => interp_action_cps L rl (fun res => match res with | Some (l, _, _) => k (Some l) | None => k None end) CtxEmpty log_empty. End Action. Section Scheduler. Context (r: REnv.(env_t) R). Context (sigma: forall f, Sig_denote (Sigma f)). Context (rules: rule_name_t -> rule). Fixpoint interp_scheduler'_cps (s: scheduler) {A} (k: scheduler_continuation A) {struct s} : interpreter A := let interp_try rl s1 s2 : interpreter A := fun L => interp_rule_cps r sigma (rules rl) (fun res => match res with | Some l => interp_scheduler'_cps s1 k (log_app l L) | None => interp_scheduler'_cps s2 k L end) L in match s with | Done => k | Cons r s => interp_try r s s | Try r s1 s2 => interp_try r s1 s2 | SPos _ s => interp_scheduler'_cps s k end. Definition interp_scheduler_cps (s: scheduler) {A} (k: scheduler_continuation A) : A := interp_scheduler'_cps s k log_empty. End Scheduler. Definition interp_cycle_cps (sigma: forall f, Sig_denote (Sigma f)) (rules: rule_name_t -> rule) (s: scheduler) (r: REnv.(env_t) R) {A} (k: _ -> A) := interp_scheduler_cps r sigma rules s (fun L => k (commit_update r L)). Section WP. Context (r: REnv.(env_t) R). Context (sigma: forall f, Sig_denote (Sigma f)). Definition action_precondition := action_interpreter Prop. Definition action_postcondition := action_continuation Prop. Definition precondition := interpreter Prop. Definition rule_postcondition := rule_continuation Prop. Definition scheduler_postcondition := scheduler_continuation Prop. Definition cycle_postcondition := cycle_continuation Prop. Definition wp_action {sig tau} (L: Log) (a: action sig tau) (post: action_postcondition sig tau) : action_precondition sig := interp_action_cps r sigma L a post. Definition wp_rule (rl: rule) (post: rule_postcondition) : precondition := interp_rule_cps r sigma rl post. Definition wp_scheduler (rules: rule_name_t -> rule) (s: scheduler) (post: scheduler_postcondition) : Prop := interp_scheduler_cps r sigma rules s post. Definition wp_cycle (rules: rule_name_t -> rule) (s: scheduler) r (post: cycle_postcondition) : Prop := interp_cycle_cps sigma rules s r post. End WP. Section Proofs. Context (r: REnv.(env_t) R). Context (sigma: forall f, Sig_denote (Sigma f)). Section Args. Context (IHa : forall (sig : tsig var_t) (tau : type) (L : Log) (a : action sig tau) (A : Type) (k : option (Log * tau * tcontext sig) -> A) (Gamma : tcontext sig) (l : Log), interp_action_cps r sigma L a k Gamma l = k (interp_action r sigma Gamma L l a)). Lemma interp_args'_cps_correct : forall L {sig} {argspec} args Gamma l {A} (k: interp_continuation A sig (tcontext argspec)), interp_args'_cps (fun sig tau a A k => interp_action_cps r sigma L a k) args k Gamma l = k (interp_args r sigma Gamma L l args). Proof. induction args; cbn; intros. - reflexivity. - rewrite IHargs. destruct (interp_args r sigma Gamma L l args) as [((?, ?), ?) | ]; cbn; try reflexivity. rewrite IHa. destruct (interp_action r sigma _ L _ _) as [((?, ?), ?) | ]; cbn; reflexivity. Defined. End Args. Lemma interp_action_cps_correct: forall {sig: tsig var_t} {tau} (L: Log) (a: action sig tau) {A} (k: _ -> A) (Gamma: tcontext sig) (l: Log), interp_action_cps r sigma L a k Gamma l = k (interp_action r sigma Gamma L l a). Proof. fix IHa 4; destruct a; cbn; intros. all: repeat match goal with | _ => progress simpl | [ H: context[_ = _] |- _ ] => rewrite H | [ |- context[interp_action] ] => destruct interp_action as [((?, ?), ?) | ] | [ |- context[match ?x with _ => _ end] ] => destruct x | _ => rewrite interp_args'_cps_correct | _ => reflexivity || assumption end. Qed. Lemma interp_action_cps_correct_rev: forall {sig: tsig var_t} {tau} (L: Log) (a: action sig tau) (Gamma: tcontext sig) (l: Log), interp_action r sigma Gamma L l a = interp_action_cps r sigma L a id Gamma l. Proof. intros; rewrite interp_action_cps_correct; reflexivity. Qed. Lemma interp_rule_cps_correct: forall (L: Log) (a: rule) {A} (k: _ -> A), interp_rule_cps r sigma a k L = k (interp_rule r sigma L a). Proof. unfold interp_rule, interp_rule_cps; intros. rewrite interp_action_cps_correct. destruct interp_action as [((?, ?), ?) | ]; reflexivity. Qed. Lemma interp_rule_cps_correct_rev: forall (L: Log) (a: rule), interp_rule r sigma L a = interp_rule_cps r sigma a id L. Proof. intros; rewrite interp_rule_cps_correct; reflexivity. Qed. Lemma interp_scheduler'_cps_correct: forall (rules: rule_name_t -> rule) (s: scheduler) (L: Log) {A} (k: _ -> A), interp_scheduler'_cps r sigma rules s k L = k (interp_scheduler' r sigma rules L s). Proof. induction s; cbn; intros. all: repeat match goal with | _ => progress simpl | _ => rewrite interp_rule_cps_correct | [ H: context[_ = _] |- _ ] => rewrite H | [ |- context[interp_rule] ] => destruct interp_action as [((?, ?), ?) | ] | [ |- context[match ?x with _ => _ end] ] => destruct x | _ => reflexivity end. Qed. Lemma interp_scheduler_cps_correct: forall (rules: rule_name_t -> rule) (s: scheduler) {A} (k: _ -> A), interp_scheduler_cps r sigma rules s k = k (interp_scheduler r sigma rules s). Proof. intros; apply interp_scheduler'_cps_correct. Qed. Lemma interp_cycle_cps_correct: forall (rules: rule_name_t -> rule) (s: scheduler) {A} (k: _ -> A), interp_cycle_cps sigma rules s r k = k (interp_cycle sigma rules s r). Proof. unfold interp_cycle, interp_cycle_cps; intros; rewrite interp_scheduler_cps_correct. reflexivity. Qed. Lemma interp_cycle_cps_correct_rev: forall (rules: rule_name_t -> rule) (s: scheduler), interp_cycle sigma rules s r = interp_cycle_cps sigma rules s r id. Proof. intros; rewrite interp_cycle_cps_correct; reflexivity. Qed. Section WP. Lemma wp_action_correct: forall {sig: tsig var_t} {tau} (Gamma: tcontext sig) (L: Log) (l: Log) (a: action sig tau) (post: action_postcondition sig tau), wp_action r sigma L a post Gamma l <-> post (interp_action r sigma Gamma L l a). Proof. intros; unfold wp_action; rewrite interp_action_cps_correct; reflexivity. Qed. Lemma wp_rule_correct: forall (L: Log) (rl: rule) (post: rule_postcondition), wp_rule r sigma rl post L <-> post (interp_rule r sigma L rl). Proof. intros; unfold wp_rule; rewrite interp_rule_cps_correct; reflexivity. Qed. Lemma wp_scheduler_correct: forall (rules: rule_name_t -> rule) (s: scheduler) (post: scheduler_postcondition), wp_scheduler r sigma rules s post <-> post (interp_scheduler r sigma rules s). Proof. intros; unfold wp_scheduler; rewrite interp_scheduler_cps_correct; reflexivity. Qed. Lemma wp_cycle_correct: forall (rules: rule_name_t -> rule) (s: scheduler) (post: cycle_postcondition), wp_cycle sigma rules s r post <-> post (interp_cycle sigma rules s r). Proof. intros; unfold wp_cycle; rewrite interp_cycle_cps_correct; reflexivity. Qed. End WP. End Proofs. End CPS. Arguments interp_action_cps {pos_t var_t fn_name_t reg_t ext_fn_t} {R Sigma} {REnv} r sigma {sig tau} L !a / A k. Arguments interp_rule_cps {pos_t var_t fn_name_t reg_t ext_fn_t} {R Sigma} {REnv} r sigma !rl / {A} k. Arguments interp_scheduler_cps {pos_t var_t fn_name_t rule_name_t reg_t ext_fn_t} {R Sigma} {REnv} r sigma rules !s / {A} k : assert. Arguments interp_cycle_cps {pos_t var_t fn_name_t rule_name_t reg_t ext_fn_t} {R Sigma} {REnv} sigma rules !s r / {A} k : assert. Arguments wp_action {pos_t var_t fn_name_t reg_t ext_fn_t} {R Sigma} {REnv} r sigma {sig tau} L !a post / Gamma action_log : assert. Arguments wp_rule {pos_t var_t fn_name_t reg_t ext_fn_t} {R Sigma} {REnv} r sigma !rl / post. Arguments wp_scheduler {pos_t var_t fn_name_t rule_name_t reg_t ext_fn_t} {R Sigma} {REnv} r sigma rules !s / post : assert. Arguments wp_cycle {pos_t var_t fn_name_t rule_name_t reg_t ext_fn_t} {R Sigma} {REnv} sigma rules !s r / post : assert.
State Before: α : Type u_2 β : Type u_1 l : Filter α k f g g' : α → β inst✝² : TopologicalSpace β inst✝¹ : CommSemiring β inst✝ : ContinuousMul β hf : SuperpolynomialDecay l k f c : β z : ℕ ⊢ Tendsto (fun a => k a ^ z * (fun n => f n * c) a) l (𝓝 0) State After: no goals Tactic: simpa only [← mul_assoc, MulZeroClass.zero_mul] using Tendsto.mul_const c (hf z)
The imaginary part of an integer is zero.
State Before: α : Type u_1 s✝ t : Set α a : α inst✝¹ : Group α inst✝ : StarSemigroup α s : Set α ⊢ s⁻¹⋆ = s⋆⁻¹ State After: case h α : Type u_1 s✝ t : Set α a : α inst✝¹ : Group α inst✝ : StarSemigroup α s : Set α x✝ : α ⊢ x✝ ∈ s⁻¹⋆ ↔ x✝ ∈ s⋆⁻¹ Tactic: ext State Before: case h α : Type u_1 s✝ t : Set α a : α inst✝¹ : Group α inst✝ : StarSemigroup α s : Set α x✝ : α ⊢ x✝ ∈ s⁻¹⋆ ↔ x✝ ∈ s⋆⁻¹ State After: no goals Tactic: simp only [mem_star, mem_inv, star_inv]
```python from ngames.evaluation.extensivegames import ExtensiveFormGame, plot_game,\ subgame_perfect_equilibrium, DFS_equilibria_paths ``` # Market game From S. Fatima, S. Kraus, M. Wooldridge, Principles of Automated Negotiation, Cambridge University Press, 2014, see Figure 3.3. ```python m = ExtensiveFormGame(title='Market game') m.add_players('firm 1', 'firm 2') m.add_node(1, 'chance', is_root=True) m.add_node(2, 'firm 1') m.add_node(3, 'firm 1') for i in range(4, 8): m.add_node(i, 'firm 2') for i in range(8, 16): m.add_node(i) m.add_edge(1, 2, label='small') m.add_edge(1, 3, label='large') m.add_edge(2, 4, label='L') m.add_edge(2, 5, label='H') m.add_edge(3, 6, label='L') m.add_edge(3, 7, label='H') m.add_edge(4, 8, label='L') m.add_edge(4, 9, label='H') m.add_edge(5, 10, label='L') m.add_edge(5, 11, label='H') m.add_edge(6, 12, label='L') m.add_edge(6, 13, label='H') m.add_edge(7, 14, label='L') m.add_edge(7, 15, label='H') m.set_information_partition('firm 2', {4, 6}, {5, 7}) m.set_information_partition('firm 1', {2, 3}) m.set_uniform_probability_distribution(1) m.set_utility(8, {'firm 1': 16, 'firm 2': 8}) m.set_utility(9, {'firm 1': 8, 'firm 2': 16}) m.set_utility(10, {'firm 1': 20, 'firm 2': 4}) m.set_utility(11, {'firm 1': 16, 'firm 2': 8}) m.set_utility(12, {'firm 1': 30, 'firm 2': 10}) m.set_utility(13, {'firm 1': 28, 'firm 2': 12}) m.set_utility(14, {'firm 1': 16, 'firm 2': 24}) m.set_utility(15, {'firm 1': 24, 'firm 2': 16}) position_colors = {'firm 1': 'cyan', 'firm 2': 'red'} my_fig_kwargs = dict(figsize=(12, 12), frameon=False) my_node_kwargs = dict(font_size=24, node_size=2000, edgecolors='k', linewidths=3) my_edge_kwargs = dict(arrowsize=25, width=5) my_edge_labels_kwargs = dict(font_size=24) my_patch_kwargs = dict(linewidth=3) my_legend_kwargs = dict(fontsize=24, loc='upper right', edgecolor='white') my_utility_label_kwargs = dict(horizontalalignment='center', fontsize=20) my_info_sets_kwargs = dict(linestyle='--', linewidth=3) fig = plot_game(m, position_colors, fig_kwargs=my_fig_kwargs, node_kwargs=my_node_kwargs, edge_kwargs=my_edge_kwargs, edge_labels_kwargs=my_edge_labels_kwargs, patch_kwargs=my_patch_kwargs, legend_kwargs=my_legend_kwargs, utility_label_kwargs=my_utility_label_kwargs, utility_label_shift=0.075, info_sets_kwargs=my_info_sets_kwargs) ``` # Prisoner's Dilemma Classical one-shot Prioner's Dilemma, but in extensive form. ```python pd = ExtensiveFormGame(name='Prisoners Dilemma') pd.add_players('player 1', 'player 2') pd.add_node(1, 'player 1', is_root=True) pd.add_node(2, 'player 2') pd.add_node(3, 'player 2') for i in range(4, 8): pd.add_node(i) pd.add_edge(1, 2, 'cooperate') pd.add_edge(1, 3, 'defect') pd.add_edge(2, 4, 'cooperate') pd.add_edge(2, 5, 'defect') pd.add_edge(3, 6, 'cooperate') pd.add_edge(3, 7, 'defect') pd.set_information_partition('player 2', {2, 3}) pd.set_utility(4, {'player 1': 6, 'player 2': 6}) pd.set_utility(5, {'player 1': 0, 'player 2': 9}) pd.set_utility(6, {'player 1': 9, 'player 2': 0}) pd.set_utility(7, {'player 1': 3, 'player 2': 3}) position_colors = {'player 1': 'aquamarine', 'player 2': 'lightcoral'} my_fig_kwargs = dict(figsize=(12, 12), tight_layout=True) my_node_kwargs = dict(font_size=36, node_size=4500, edgecolors='k', linewidths=3) my_edge_kwargs = dict(arrowsize=50, width=5) my_edge_labels_kwargs = dict(font_size=32) my_patch_kwargs = dict(linewidth=3) my_legend_kwargs = dict(fontsize=32, loc='upper left', edgecolor='white') my_utility_label_kwargs = dict(horizontalalignment='center', fontsize=28, weight='bold') my_info_sets_kwargs = dict(linestyle='--', linewidth=3) fig = plot_game(pd, position_colors, fig_kwargs=my_fig_kwargs, node_kwargs=my_node_kwargs, edge_kwargs=my_edge_kwargs, edge_labels_kwargs=my_edge_labels_kwargs, patch_kwargs=my_patch_kwargs, legend_kwargs=my_legend_kwargs, utility_label_kwargs=my_utility_label_kwargs, decimals=0, utility_label_shift=0.06, info_sets_kwargs=my_info_sets_kwargs) ``` # Example of information rules ```python example = ExtensiveFormGame() example.add_players('position 1', 'position 2') example.add_node(1, 'position 1', is_root=True) example.add_node(2, 'position 2') example.add_node(3, 'position 2') example.add_edge(1, 2, label='do A') example.add_edge(1, 3, label='do B') example.set_information_partition('position 2', {2, 3}) position_colors = {'position 1': 'green', 'position 2': 'cyan'} my_fig_kwargs['figsize'] = (6, 6) my_legend_kwargs['loc'] = 'upper left' my_legend_kwargs['fontsize'] = 20 my_patch_kwargs['linewidth'] = 2 fig = plot_game(example, position_colors, utility_label_shift=0., fig_kwargs=my_fig_kwargs, node_kwargs=my_node_kwargs, edge_kwargs=my_edge_kwargs, edge_labels_kwargs=my_edge_labels_kwargs, patch_kwargs=my_patch_kwargs, legend_kwargs=my_legend_kwargs, utility_label_kwargs=my_utility_label_kwargs, info_sets_kwargs=my_info_sets_kwargs) ``` ```python example.set_information_partition('position 2', {2}, {3}) example.is_perfect_information = True fig = plot_game(example, position_colors, utility_label_shift=0., fig_kwargs=my_fig_kwargs, node_kwargs=my_node_kwargs, edge_kwargs=my_edge_kwargs, edge_labels_kwargs=my_edge_labels_kwargs, patch_kwargs=my_patch_kwargs, legend_kwargs=my_legend_kwargs, utility_label_kwargs=my_utility_label_kwargs, info_sets_kwargs=my_info_sets_kwargs) ``` # Ostrom's fishing game ```python fishing_game = ExtensiveFormGame(title='Fishing game C1') # add the two positions for the two fishers fishing_game.add_players('fisher 1', 'fisher 2') # add the nodes to the graph fishing_game.add_node(1, player_turn='fisher 1', is_root=True) fishing_game.add_node(2, player_turn='fisher 2') fishing_game.add_node(3, player_turn='fisher 2') fishing_game.add_node(4, player_turn='fisher 1') fishing_game.add_node(5) fishing_game.add_node(6) fishing_game.add_node(7, player_turn='fisher 1') fishing_game.add_node(8, player_turn='fisher 2') fishing_game.add_node(9, player_turn='fisher 2') fishing_game.add_node(10, player_turn='fisher 2') fishing_game.add_node(11, player_turn='fisher 2') fishing_game.add_node(12, player_turn='chance') fishing_game.add_node(13) fishing_game.add_node(14) fishing_game.add_node(15, player_turn='chance') fishing_game.add_node(16, player_turn='chance') fishing_game.add_node(17) fishing_game.add_node(18) fishing_game.add_node(19, player_turn='chance') for i in range(20, 28): fishing_game.add_node(i) # add the edges to the graph fishing_game.add_edge(1, 2, label='go to spot 1') fishing_game.add_edge(1, 3, label='go to spot 2') fishing_game.add_edge(2, 4, label='go to spot 1') fishing_game.add_edge(2, 5, label='go to spot 2') fishing_game.add_edge(3, 6, label='go to spot 1') fishing_game.add_edge(3, 7, label='go to spot 2') fishing_game.add_edge(4, 8, label='stay') fishing_game.add_edge(4, 9, label='leave') fishing_game.add_edge(7, 10, label='stay') fishing_game.add_edge(7, 11, label='leave') fishing_game.add_edge(8, 12, label='stay') fishing_game.add_edge(8, 13, label='leave') fishing_game.add_edge(9, 14, label='stay') fishing_game.add_edge(9, 15, label='leave') fishing_game.add_edge(10, 16, label='stay') fishing_game.add_edge(10, 17, label='leave') fishing_game.add_edge(11, 18, label='stay') fishing_game.add_edge(11, 19, label='leave') fishing_game.add_edge(12, 20, label='1 wins') fishing_game.add_edge(12, 21, label='2 wins') fishing_game.add_edge(15, 22, label='1 wins') fishing_game.add_edge(15, 23, label='2 wins') fishing_game.add_edge(16, 24, label='1 wins') fishing_game.add_edge(16, 25, label='2 wins') fishing_game.add_edge(19, 26, label='1 wins') fishing_game.add_edge(19, 27, label='2 wins') # add imperfect information, equivalent to having players take the actions # simultaneously fishing_game.set_information_partition('fisher 2', {2, 3}, {8, 9}, {10, 11}) ``` ## Rule configuration C1 (default) See page 85 in E. Ostrom, R. Gardner, J. Walker, Rules, Games, and Common-Pool Resources, The University of Michigan Press, Ann Arbor, 1994. https://doi.org/10.3998/mpub.9739. First, build the default situation as an extensive-form game. Two fishers competing for two fishing spots, the first spot being better than the other. The utilities and probability at chance nodes of the game are parametrized with the following variables: * $v_i$: economical value of the $i$-th spot. It is assumed that the first spot is the better one, so $v_1>v_2$. * $P$: the probability that fisher 1 wins the fight if one happens. It is assumed that fisher 1 is the stronger one, so $P>0.5$. Then, the probability that fisher 2 wins a fight is $(1-P)<0.5$. * $c$: cost of travel between the two spots. * $d$: damage incurred to the loser of the fight. $w(j, i)$ denotes the *expected* value for fisher $j$ of having a fight at spot $i$: \begin{align} w(1,i) =& Pv_i+(1-P)(-d)\\ w(2,i) =& (1-P)v_i+P(-d) \end{align} Start assigning utilities with made-up values. ```python # parameters v1, v2 = 5, 3 P = 0.6 c = 0.5 d = 2 def set_parameters(v1: float, v2: float, P: float, c: float, d: float, game: ExtensiveFormGame): w11 = P*v1+(1-P)*(-d) w12 = P*v2+(1-P)*(-d) w21 = (1-P)*v1+P*(-d) w22 = (1-P)*v2+P*(-d) # set utility parameters and probabilities over outgoing edges at # chance nodes game.set_utility(5, {'fisher 1': v1, 'fisher 2': v2}) game.set_utility(6, {'fisher 1': v2, 'fisher 2': v1}) game.set_utility(13, {'fisher 1': v1, 'fisher 2': v2-c}) game.set_utility(14, {'fisher 1': v2-c, 'fisher 2': v1}) game.set_utility(17, {'fisher 1': v2, 'fisher 2': v1-c}) game.set_utility(18, {'fisher 1': v2-c, 'fisher 2': v1}) game.set_probability_distribution(12, {(12, 20): P, (12, 21): (1-P)}) game.set_probability_distribution(15, {(15, 22): P, (15, 23): (1-P)}) game.set_probability_distribution(16, {(16, 24): P, (16, 25): (1-P)}) game.set_probability_distribution(19, {(19, 26): P, (19, 27): (1-P)}) game.set_utility(20, {'fisher 1': v1, 'fisher 2': -d}) game.set_utility(21, {'fisher 1': -d, 'fisher 2': v1}) game.set_utility(22, {'fisher 1': v2-c, 'fisher 2': -c-d}) game.set_utility(23, {'fisher 1': -c-d, 'fisher 2': v2-c}) game.set_utility(24, {'fisher 1': v2, 'fisher 2': -d}) game.set_utility(25, {'fisher 1': -d, 'fisher 2': v2}) game.set_utility(26, {'fisher 1': v1-c, 'fisher 2': -c-d}) game.set_utility(27, {'fisher 1': -c-d, 'fisher 2': v1-c}) return (w11, w12), (w21, w22) _ = set_parameters(v1, v2, P, c, d, fishing_game) # default keywords for rendering the figure my_fig_kwargs = dict(figsize=(45, 24), frameon=False) my_node_kwargs = dict(font_size=30, node_size=2250, edgecolors='k', linewidths=2) my_edge_kwargs = dict(arrowsize=25, width=3) my_edge_labels_kwargs = dict(font_size=20) my_patch_kwargs = dict(linewidth=2) my_legend_kwargs = dict(fontsize=24, loc='upper right', edgecolor='white') my_utility_label_kwargs = dict(horizontalalignment='center', fontsize=24) my_info_sets_kwargs = dict(linestyle='--', linewidth=3) position_colors = {'fisher 1': 'aquamarine', 'fisher 2': 'greenyellow'} fig = plot_game(fishing_game, position_colors, fig_kwargs=my_fig_kwargs, node_kwargs=my_node_kwargs, edge_kwargs=my_edge_kwargs, edge_labels_kwargs=my_edge_labels_kwargs, patch_kwargs=my_patch_kwargs, legend_kwargs=my_legend_kwargs, utility_label_kwargs=my_utility_label_kwargs, utility_label_shift=0.07, info_sets_kwargs=my_info_sets_kwargs) ``` Compute the subgame perfect equilibria strategy: ```python spe = subgame_perfect_equilibrium(fishing_game) ``` Compute the paths of play that arise from following the subgame perfect equilibria strategy, alongside with the probability of being played. It is necessary to include probabilities since there are chance nodes: ```python path_store = [] DFS_equilibria_paths(fishing_game, fishing_game.game_tree.root, spe, [], 1, path_store) print("Path -- Probability") print("-------------------") for (path, prob) in path_store: print("{} -- {:.2f}".format(path, prob)) ``` Path -- Probability ------------------- [1, 'go to spot 1', 2, 'go to spot 2', 5] -- 1.00 In order to introduce the later changes to the game in the other rule configurations, establish that the utility at the terminal nodes can be computed as: *Utility* = (*payoff of the outcome*) + (*cost of the path of actions to get there*) __Costs assigned to actions__: | Action | Cost | |--------------|----------| | Go to spot 1 | 0 | | Go to spot 2 | 0 | | Stay | 0 | | Leave | -c (c>0) | __Costs assigned to payoffs__: | Outcome | Payoff | |---------|--------| | Fish at spot 1 | $v_1$ | | Fish at spot 2 | $v_2$ | | Looser of fight* | -d (d>0) | *: in more general terms, a fight can be encompassed under the term "competition". This will make the transition from C1 to C2 easier. To reproduce the analysis of the game by Ostrom in an automated way, I use backward induction. This is not technically correct because the game is imperfect information, but for the moment the focus is not so much on the correctness of the solution concept. The first three cases fulfill $$w(1, 1)>v_2-c$$ and $w(2, 1)>v_2-c$: * Case 1: $w(1,1)>v_2;\;w(2,1)>v_2$ * Case 2: $w(1,1)>v_2;\;w(2,1)<v_2$ * Case 3: $w(1,1)<v_2;\;w(2,1)<v_2$ The other two cases are: * Case 4: $w(1,1)>v_2-c;\;w(2,1)<v_2-c$ * Case 5: $w(1,1)<v_2-c;\;w(2,1)<v_2-c$ ### Case C1-1 $w(1,1)>v_2;\;w(2,1)>v_2$ As predicted by Ostrom, in the equilibrium both fishers go to spot 1, stay there and fight. ```python v1, v2 = 10, 2 P = 0.55 c = 1 d = 2 (w11, w12), (w21, w22) = set_parameters(v1, v2, P, c, d, fishing_game) print("w(1,1) = {:.1f}".format(w11)) print("w(2,1) = {:.1f}".format(w21)) print("v2 = {:.1f}".format(v2)) spe = subgame_perfect_equilibrium(fishing_game) path_store = [] DFS_equilibria_paths(fishing_game, fishing_game.game_tree.root, spe, [], 1, path_store) print("\nPath -- Probability") print("-------------------") for (path, prob) in path_store: print("{} -- {:.2f}".format(path, prob)) ``` w(1,1) = 4.6 w(2,1) = 3.4 v2 = 2.0 Path -- Probability ------------------- [1, 'go to spot 1', 2, 'go to spot 1', 4, 'stay', 8, 'stay', 12, '1 wins', 20] -- 0.55 [1, 'go to spot 1', 2, 'go to spot 1', 4, 'stay', 8, 'stay', 12, '2 wins', 21] -- 0.45 ### Case C1-2 $w(1,1)>v_2;\;w(2,1)<v_2$ As predicted by Ostrom, in the equilibrium the stronger fisher 1 ($P>0.5$) goes to spot 1, the weaker fisher 2 goes to spot 2. ```python v1, v2 = 10, 4 P = 0.6 c = 1 d = 2 (w11, w12), (w21, w22) = set_parameters(v1, v2, P, c, d, fishing_game) print("w(1,1) = {:.1f}".format(w11)) print("w(2,1) = {:.1f}".format(w21)) print("v2 = {:.1f}".format(v2)) spe = subgame_perfect_equilibrium(fishing_game) path_store = [] DFS_equilibria_paths(fishing_game, fishing_game.game_tree.root, spe, [], 1, path_store) print("\nPath -- Probability") print("-------------------") for (path, prob) in path_store: print("{} -- {:.2f}".format(path, prob)) ``` ### Case C1-3 $w(1,1)<v_2;\;w(2,1)<v_2$ As predicted by Ostrom, again in the equilibrium the stronger fisher 1 ($P>0.5$) goes to spot 1, the weaker fisher 2 goes to spot 2. Ostrom points out that there is another pure strategy equilibrium in which fisher 1 goes to the worse spot 2, and fisher 2 goes to the better spot 1. However, that outcome is part of a Nash equilibrium that is not sequentially rational (?). ```python v1, v2 = 6, 4 P = 0.6 c = 1 d = 2 (w11, w12), (w21, w22) = set_parameters(v1, v2, P, c, d, fishing_game) print("w(1,1) = {:.1f}".format(w11)) print("w(2,1) = {:.1f}".format(w21)) print("v2 = {:.1f}".format(v2)) spe = subgame_perfect_equilibrium(fishing_game) path_store = [] DFS_equilibria_paths(fishing_game, fishing_game.game_tree.root, spe, [], 1, path_store) print("\nPath -- Probability") print("-------------------") for (path, prob) in path_store: print("{} -- {:.2f}".format(path, prob)) ``` ### Case C1-4 $w(1,1)>v_2-c;\;w(2,1)<v_2-c$ As predicted by Ostrom, again in the equilibrium the stronger fisher 1 goes to spot 1, the weaker fisher 2 goes to spot 2. ```python v1, v2 = 10, 5 P = 0.6 c = 1 d = 2 (w11, w12), (w21, w22) = set_parameters(v1, v2, P, c, d, fishing_game) print("w(1,1) = {:.1f}".format(w11)) print("w(2,1) = {:.1f}".format(w21)) print("v2-c = {:.1f}".format(v2-c)) spe = subgame_perfect_equilibrium(fishing_game) path_store = [] DFS_equilibria_paths(fishing_game, fishing_game.game_tree.root, spe, [], 1, path_store) print("\nPath -- Probability") print("-------------------") for (path, prob) in path_store: print("{} -- {:.2f}".format(path, prob)) ``` ### Case C1-5 $w(1,1)<v_2-c;\;w(2,1)<v_2-c$ As predicted by Ostrom, again in the equilibrium the stronger fisher 1 goes to spot 1, the weaker fisher 2 goes to spot 2. ```python v1, v2 = 7, 5 P = 0.6 c = 1 d = 2 (w11, w12), (w21, w22) = set_parameters(v1, v2, P, c, d, fishing_game) print("w(1,1) = {:.1f}".format(w11)) print("w(2,1) = {:.1f}".format(w21)) print("v2-c = {:.1f}".format(v2-c)) spe = subgame_perfect_equilibrium(fishing_game) path_store = [] DFS_equilibria_paths(fishing_game, fishing_game.game_tree.root, spe, [], 1, path_store) print("\nPath -- Probability") print("-------------------") for (path, prob) in path_store: print("{} -- {:.2f}".format(path, prob)) ``` ## Rule configuration C2 First fisher in arrival has the right to fish at that spot for the remaining of the day. ```python fishing_game_C2 = ExtensiveFormGame(title='Fishing game C2') # add the two positions for the two fishers fishing_game_C2.add_players('fisher 1', 'fisher 2') # add the nodes to the graph fishing_game_C2.add_node(1, player_turn='fisher 1', is_root=True) fishing_game_C2.add_node(2, player_turn='fisher 2') fishing_game_C2.add_node(3, player_turn='fisher 2') fishing_game_C2.add_node(4, player_turn='chance') fishing_game_C2.add_node(5) fishing_game_C2.add_node(6) fishing_game_C2.add_node(7, player_turn='chance') fishing_game_C2.add_node(8, player_turn='fisher 2') fishing_game_C2.add_node(9, player_turn='fisher 1') fishing_game_C2.add_node(10, player_turn='fisher 2') fishing_game_C2.add_node(11, player_turn='fisher 1') for i in range(12, 15+1): fishing_game_C2.add_node(i) # add the edges to the graph fishing_game_C2.add_edge(1, 2, label='go to spot 1') fishing_game_C2.add_edge(1, 3, label='go to spot 2') fishing_game_C2.add_edge(2, 4, label='go to spot 1') fishing_game_C2.add_edge(2, 5, label='go to spot 2') fishing_game_C2.add_edge(3, 6, label='go to spot 1') fishing_game_C2.add_edge(3, 7, label='go to spot 2') fishing_game_C2.add_edge(4, 8, label='1 first') fishing_game_C2.add_edge(4, 9, label='2 first') fishing_game_C2.add_edge(7, 10, label='1 first') fishing_game_C2.add_edge(7, 11, label='2 first') fishing_game_C2.add_edge(8, 12, label='leave') fishing_game_C2.add_edge(9, 13, label='leave') fishing_game_C2.add_edge(10, 14, label='leave') fishing_game_C2.add_edge(11, 15, label='leave') # add imperfect information, equivalent to having players take the actions # simultaneously fishing_game_C2.set_information_partition('fisher 2', {2, 3}, {8}, {10}) ``` The utilities and probability at chance nodes of the game are parametrized with the following variables: * $v_i$: economical value of the $i$-th spot. It is assumed that the first spot is the better one, so $v_1>v_2$. * $P$: the probability that fisher 1 gets to a spot first. It is assumed that fisher 1 has better technology than fisher 2, and hence $P>0.5$. * $c$: cost of travel between the two spots. $w(j, i)$ denotes the *expected* value for fisher $j$ of spot $i$ if the other fisher has gone there too: \begin{align} w(1,i) =& Pv_i+(1-P)(v_{-i}-c)\\ w(2,i) =& (1-P)v_i+P(v_{-i}-c) \end{align} ```python # parameters v1, v2 = 5, 3 P = 0.6 c = 0.5 def set_parameters_C2(v1: float, v2: float, P: float, c: float, game: ExtensiveFormGame): w11 = P*v1+(1-P)*(v2-c) w12 = P*v2+(1-P)*(v1-c) w21 = (1-P)*v1+P*(v2-c) w22 = (1-P)*v2+P*(v1-c) # set utility parameters and probabilities over outgoing edges at # chance nodes game.set_utility(5, {'fisher 1': v1, 'fisher 2': v2}) game.set_utility(6, {'fisher 1': v2, 'fisher 2': v1}) game.set_utility(12, {'fisher 1': v1, 'fisher 2': v2-c}) game.set_utility(13, {'fisher 1': v2-c, 'fisher 2': v1}) game.set_utility(14, {'fisher 1': v2, 'fisher 2': v1-c}) game.set_utility(15, {'fisher 1': v1-c, 'fisher 2': v2}) game.set_probability_distribution(4, {(4, 8): P, (4, 9): (1-P)}) game.set_probability_distribution(7, {(7, 10): P, (7, 11): (1-P)}) return (w11, w12), (w21, w22) _ = set_parameters_C2(v1, v2, P, c, fishing_game_C2) # default keywords for rendering the figure my_fig_kwargs = dict(figsize=(30, 20), frameon=False) my_node_kwargs = dict(font_size=30, node_size=2250, edgecolors='k', linewidths=2) my_edge_kwargs = dict(arrowsize=25, width=3) my_edge_labels_kwargs = dict(font_size=20) my_patch_kwargs = dict(linewidth=2) my_legend_kwargs = dict(fontsize=24, loc='upper right', edgecolor='white') my_utility_label_kwargs = dict(horizontalalignment='center', fontsize=20) my_info_sets_kwargs = dict(linestyle='--', linewidth=3) position_colors = {'fisher 1': 'aquamarine', 'fisher 2': 'greenyellow'} fig = plot_game(fishing_game_C2, position_colors, fig_kwargs=my_fig_kwargs, node_kwargs=my_node_kwargs, edge_kwargs=my_edge_kwargs, edge_labels_kwargs=my_edge_labels_kwargs, patch_kwargs=my_patch_kwargs, legend_kwargs=my_legend_kwargs, utility_label_kwargs=my_utility_label_kwargs, utility_label_shift=0.06, info_sets_kwargs=my_info_sets_kwargs) ``` **Changes to go from C1 to C2:** * If fisher1.location == fisher2.location $\longrightarrow$ engage in a "competition". In the game tree of C1: "shortcut edge" from node 4 to node 12. * Looser of fight from a final to an intermediate outcome (no longer a terminal node). * Change in payoff of outcome: $d>0\longrightarrow d=0$. Because fishers are engaged in a different, non-violent type of competition, it is not costly to lose the race. (this change might be redundant because being the looser is now an intermediate instead of a final outcome). * Additional edges: if fisher $i$ loses the competition $\longrightarrow$ fisher $i$ has to leave. ### Case C2-1 $w(1,1)>v_2;\;w(2,1)>v_2$ As predicted by Ostrom, in the equilibrium both fishers go to spot 1, and let chance decide who was first. ```python v1, v2 = 10, 2 P = 0.55 c = 1 (w11, w12), (w21, w22) = set_parameters_C2(v1, v2, P, c, fishing_game_C2) print("w(1,1) = {:.1f}".format(w11)) print("w(2,1) = {:.1f}".format(w21)) print("v2 = {:.1f}".format(v2)) spe = subgame_perfect_equilibrium(fishing_game_C2) path_store = [] DFS_equilibria_paths(fishing_game_C2, fishing_game_C2.game_tree.root, spe, [], 1, path_store) print("\nPath -- Probability") print("-------------------") for (path, prob) in path_store: print("{} -- {:.2f}".format(path, prob)) ``` ### Case C2-2 $w(1,1)>v_2;\;w(2,1)<v_2$ As predicted by Ostrom, in the equilibrium fisher 1 (the faster) goes to spot 1, while fisher 2 (the slower) goes to spot 2. ```python v1, v2 = 10, 5 P = 0.7 c = 3 (w11, w12), (w21, w22) = set_parameters_C2(v1, v2, P, c, fishing_game_C2) print("w(1,1) = {:.1f}".format(w11)) print("w(2,1) = {:.1f}".format(w21)) print("v2 = {:.1f}".format(v2)) spe = subgame_perfect_equilibrium(fishing_game_C2) path_store = [] DFS_equilibria_paths(fishing_game_C2, fishing_game_C2.game_tree.root, spe, [], 1, path_store) print("\nPath -- Probability") print("-------------------") for (path, prob) in path_store: print("{} -- {:.2f}".format(path, prob)) ``` ### Case C2-3 $w(1,1)<v_2;\;w(2,1)<v_2$ As predicted by Ostrom, in the equilibrium fisher 1 (the faster) goes to spot 1, while fisher 2 (the slower) goes to spot 2. As in case C1-3, there is another Nash equilibria in which the most resourceful fisher 1 goes to the worse spot 2. However, that is not predicted by backward induction, possibly because that Nash equilibria is not sequentially rational. ```python v1, v2 = 10, 8 P = 0.55 c = 3 (w11, w12), (w21, w22) = set_parameters_C2(v1, v2, P, c, fishing_game_C2) print("w(1,1) = {:.1f}".format(w11)) print("w(2,1) = {:.1f}".format(w21)) print("v2 = {:.1f}".format(v2)) spe = subgame_perfect_equilibrium(fishing_game_C2) path_store = [] DFS_equilibria_paths(fishing_game_C2, fishing_game_C2.game_tree.root, spe, [], 1, path_store) print("\nPath -- Probability") print("-------------------") for (path, prob) in path_store: print("{} -- {:.2f}".format(path, prob)) ``` ## Rule configuration C3 Fisher 1 announces first, and he has the right to go fish wherever he wants. If fisher 2 goes to the spot taken by fisher 1, he has to leave for the other spot. ```python fishing_game_C3 = ExtensiveFormGame(title='Fishing game C3') # add the two positions for the two fishers fishing_game_C3.add_players('fisher 1', 'fisher 2') # add the nodes to the graph fishing_game_C3.add_node(1, player_turn='fisher 1', is_root=True) fishing_game_C3.add_node(2, player_turn='fisher 2') fishing_game_C3.add_node(3, player_turn='fisher 2') fishing_game_C3.add_node(4, player_turn='fisher 2') fishing_game_C3.add_node(5) fishing_game_C3.add_node(6) fishing_game_C3.add_node(7, player_turn='fisher 2') fishing_game_C3.add_node(8) fishing_game_C3.add_node(9) # add the edges to the graph fishing_game_C3.add_edge(1, 2, label='go to spot 1') fishing_game_C3.add_edge(1, 3, label='go to spot 2') fishing_game_C3.add_edge(2, 4, label='go to spot 1') fishing_game_C3.add_edge(2, 5, label='go to spot 2') fishing_game_C3.add_edge(3, 6, label='go to spot 1') fishing_game_C3.add_edge(3, 7, label='go to spot 2') fishing_game_C3.add_edge(4, 8, label='leave') fishing_game_C3.add_edge(7, 9, label='leave') ``` The utilities are parametrized with the following variables: * $v_i$: economical value of the $i$-th spot. It is assumed that the first spot is the better one, so $v_1>v_2$. * $c$: cost of travel between the two spots. ```python # parameters v1, v2 = 5, 3 P = 0.6 c = 0.5 fishing_game_C3.set_utility(5, {'fisher 1': v1, 'fisher 2': v2}) fishing_game_C3.set_utility(6, {'fisher 1': v2, 'fisher 2': v1}) fishing_game_C3.set_utility(8, {'fisher 1': v1, 'fisher 2': v2-c}) fishing_game_C3.set_utility(9, {'fisher 1': v2, 'fisher 2': v1-c}) # default keywords for rendering the figure my_fig_kwargs = dict(figsize=(30, 20)) my_node_kwargs = dict(font_size=30, node_size=2250, edgecolors='k', linewidths=2) my_edge_kwargs = dict(arrowsize=25, width=3) my_edge_labels_kwargs = dict(font_size=20) my_patch_kwargs = dict(linewidth=2) my_legend_kwargs = dict(fontsize=24, loc='upper right', edgecolor='white') my_utility_label_kwargs = dict(horizontalalignment='center', fontsize=20) my_info_sets_kwargs = dict(linestyle='--', linewidth=3) position_colors = {'fisher 1': 'aquamarine', 'fisher 2': 'greenyellow'} fig = plot_game(fishing_game_C3, position_colors, fig_kwargs=my_fig_kwargs, node_kwargs=my_node_kwargs, edge_kwargs=my_edge_kwargs, edge_labels_kwargs=my_edge_labels_kwargs, patch_kwargs=my_patch_kwargs, legend_kwargs=my_legend_kwargs, utility_label_kwargs=my_utility_label_kwargs, utility_label_shift=0.05, info_sets_kwargs=my_info_sets_kwargs) ``` **Changes to go from C1 to C3:** * Fisher 1 announces: the information set {2,3} of fisher 2 gets split into two information sets {2}, {3} * If fisher$_i$.action == 'go to' fisher$_j$.location $\implies$ fisher$_i$.action $\leftarrow$ 'leave'. In terms of edges in the game tree from C1: direct edge from 4$\longrightarrow$13 and 7$\longrightarrow$17 ```python spe = subgame_perfect_equilibrium(fishing_game_C3) path_store = [] DFS_equilibria_paths(fishing_game_C3, fishing_game_C3.game_tree.root, spe, [], 1, path_store) print("\nPath -- Probability") print("-------------------") for (path, prob) in path_store: print("{} -- {:.2f}".format(path, prob)) ``` Path -- Probability ------------------- [1, 'go to spot 1', 2, 'go to spot 2', 5] -- 1.00 As predicted by Ostrom, in equilibrium the fisher who gets to announce first (fisher 1) goes to the best spot 1, and the other fish goes to the other spot. The second fisher will never go to the same spot that the first fisher went to, because $v_2>v_2-c$. ## Rule configuration C4 This configuration consists of a prearranged rotation of the game in rule configuration C3. It would consist of alternating between the game in C3 as presented before, and the same game in C3 but with fisher 1 and fisher swapped. # Axelrod's norms game ```python norms_game = ExtensiveFormGame(title='Axelrod norms game') norms_game.add_players('i', 'j') norms_game.add_node(1, player_turn='i', is_root=True) norms_game.add_node(2, player_turn='chance') norms_game.add_node(3) norms_game.add_node(4, player_turn='j') norms_game.add_node(5) norms_game.add_node(6) norms_game.add_node(7) norms_game.add_edge(1, 2, 'defect') norms_game.add_edge(1, 3, '~defect') norms_game.add_edge(2, 4, 'j sees i') norms_game.add_edge(2, 5, '~j sees i') norms_game.add_edge(4, 6, 'punish') norms_game.add_edge(4, 7, '~punish') T = 3 H = -1 S = 0.6 P = -9 E = -2 norms_game.set_utility(3, {'i': 0, 'j': 0}) norms_game.set_utility(5, {'i': T, 'j': H}) norms_game.set_utility(6, {'i': P, 'j': E}) norms_game.set_utility(7, {'i': T, 'j': H}) norms_game.set_probability_distribution(2, {(2, 4): S, (2, 5): (1-S)}) # default keywords for rendering the figure my_fig_kwargs = dict(figsize=(15, 15), frameon=False) my_node_kwargs = dict(font_size=30, node_size=2250, edgecolors='k', linewidths=2) my_edge_kwargs = dict(arrowsize=25, width=3) my_edge_labels_kwargs = dict(font_size=20) my_patch_kwargs = dict(linewidth=2) my_legend_kwargs = dict(fontsize=24, loc='upper right', edgecolor='white') my_utility_label_kwargs = dict(horizontalalignment='center', fontsize=20) my_info_sets_kwargs = dict(linestyle='--', linewidth=3) position_colors = {'i': 'aquamarine', 'j': 'greenyellow'} fig = plot_game(norms_game, position_colors, fig_kwargs=my_fig_kwargs, node_kwargs=my_node_kwargs, edge_kwargs=my_edge_kwargs, edge_labels_kwargs=my_edge_labels_kwargs, patch_kwargs=my_patch_kwargs, legend_kwargs=my_legend_kwargs, utility_label_kwargs=my_utility_label_kwargs, utility_label_shift=0.06, info_sets_kwargs=my_info_sets_kwargs) ``` **CASE 1:** $E<H$ Theoretical prediction: $i$ will defect but $j$ will not punishes if she detects $i$. ```python print("E = {:.1f}".format(E)) print("H = {:.1f}".format(H)) spe = subgame_perfect_equilibrium(norms_game) path_store = [] DFS_equilibria_paths(norms_game, norms_game.game_tree.root, spe, [], 1, path_store) print("\nPath -- Probability") print("-------------------") for (path, prob) in path_store: print("{} -- {:.2f}".format(path, prob)) ``` E = -2.0 H = -1.0 Path -- Probability ------------------- [1, 'defect', 2, 'j sees i', 4, '~punish', 7] -- 0.60 [1, 'defect', 2, '~j sees i', 5] -- 0.40 **CASE 2:** $E>H$ Theoretical prediction: $i$ will not defect ```python T = 3 H = -2 S = 0.6 P = -9 E = -1 norms_game.set_utility(3, {'i': 0, 'j': 0}) norms_game.set_utility(5, {'i': T, 'j': H}) norms_game.set_utility(6, {'i': P, 'j': E}) norms_game.set_utility(7, {'i': T, 'j': H}) norms_game.set_probability_distribution(2, {(2, 4): S, (2, 5): (1-S)}) print("E = {:.1f}".format(E)) print("H = {:.1f}".format(H)) spe = subgame_perfect_equilibrium(norms_game) path_store = [] DFS_equilibria_paths(norms_game, norms_game.game_tree.root, spe, [], 1, path_store) print("\nPath -- Probability") print("-------------------") for (path, prob) in path_store: print("{} -- {:.2f}".format(path, prob)) ``` E = -1.0 H = -2.0 Path -- Probability ------------------- [1, '~defect', 3] -- 1.00 ## Metanorms game ```python metanorms_game = ExtensiveFormGame(title='Axelrod metanorms game') metanorms_game.add_players('i', 'j', 'k') metanorms_game.add_node(1, player_turn='i', is_root=True) metanorms_game.add_node(2, player_turn='chance') metanorms_game.add_node(3) metanorms_game.add_node(4, player_turn='j') metanorms_game.add_node(5) metanorms_game.add_node(6) metanorms_game.add_node(7, player_turn='chance') metanorms_game.add_node(8, player_turn='k') metanorms_game.add_node(9) metanorms_game.add_node(10) metanorms_game.add_node(11) metanorms_game.add_edge(1, 2, 'defect') metanorms_game.add_edge(1, 3, '~defect') metanorms_game.add_edge(2, 4, 'j sees i') metanorms_game.add_edge(2, 5, '~j sees i') metanorms_game.add_edge(4, 6, 'punish i') metanorms_game.add_edge(4, 7, '~punish i') metanorms_game.add_edge(7, 8, 'k sees j') metanorms_game.add_edge(7, 9, '~k sees j') metanorms_game.add_edge(8, 10, 'punish j') metanorms_game.add_edge(8, 11, '~punish j') ``` ```python T = 3 H = -1 S = 0.6 P = -9 E = -2 P_prime = P E_prime = E metanorms_game.set_utility(3, {'i': 0, 'j': 0, 'k': 0}) metanorms_game.set_utility(5, {'i': T, 'j': H, 'k': H}) metanorms_game.set_utility(6, {'i': P, 'j': E, 'k': 0}) metanorms_game.set_utility(9, {'i': T, 'j': H, 'k': H}) metanorms_game.set_utility(10, {'i': T, 'j': P_prime, 'k': E_prime}) metanorms_game.set_utility(11, {'i': T, 'j': H, 'k': H}) metanorms_game.set_probability_distribution(2, {(2, 4): S, (2, 5): (1-S)}) metanorms_game.set_probability_distribution(7, {(7, 8): S, (7, 9): (1-S)}) # default keywords for rendering the figure my_fig_kwargs = dict(figsize=(25, 25), frameon=False) my_node_kwargs = dict(font_size=30, node_size=2250, edgecolors='k', linewidths=2) my_edge_kwargs = dict(arrowsize=25, width=3) my_edge_labels_kwargs = dict(font_size=16) my_patch_kwargs = dict(linewidth=2) my_legend_kwargs = dict(fontsize=24, loc='upper right', edgecolor='white') my_utility_label_kwargs = dict(horizontalalignment='center', fontsize=20) my_info_sets_kwargs = dict(linestyle='--', linewidth=3) position_colors = {'i': 'aquamarine', 'j': 'greenyellow', 'k': 'violet'} fig = plot_game(metanorms_game, position_colors, fig_kwargs=my_fig_kwargs, node_kwargs=my_node_kwargs, edge_kwargs=my_edge_kwargs, edge_labels_kwargs=my_edge_labels_kwargs, patch_kwargs=my_patch_kwargs, legend_kwargs=my_legend_kwargs, utility_label_kwargs=my_utility_label_kwargs, utility_label_shift=0.09, info_sets_kwargs=my_info_sets_kwargs) ``` ```python spe = subgame_perfect_equilibrium(metanorms_game) path_store = [] DFS_equilibria_paths(metanorms_game, metanorms_game.game_tree.root, spe, [], 1, path_store) print("\nPath -- Probability") print("-------------------") for (path, prob) in path_store: print("{} -- {:.2f}".format(path, prob)) ``` Path -- Probability ------------------- [1, 'defect', 2, 'j sees i', 4, '~punish i', 7, 'k sees j', 8, '~punish j', 11] -- 0.36 [1, 'defect', 2, 'j sees i', 4, '~punish i', 7, '~k sees j', 9] -- 0.24 [1, 'defect', 2, '~j sees i', 5] -- 0.40
If $f$ is holomorphic on $S - \{ \xi \}$ and $\xi$ is an interior point of $S$, then the following are equivalent: $f$ can be extended to a holomorphic function on $S$. $\lim_{z \to \xi} (z - \xi) f(z) = 0$. $f$ is bounded in a neighborhood of $\xi$.
Ask us WHATEVER you need. We offer professional VIP services in Ibiza Spain. Just tell us your wishes, we will assist your hassle-free dream vacation. We specialize in reserving the best VIP tables in popular discos and clubs for memorable party experiences. Even all tables are sold out, we will negotiate special prices for you!
(************************************************************************) (* * The Coq Proof Assistant / The Coq Development Team *) (* v * INRIA, CNRS and contributors - Copyright 1999-2018 *) (* <O___,, * (see CREDITS file for the list of authors) *) (* \VV/ **************************************************************) (* // * This file is distributed under the terms of the *) (* * GNU Lesser General Public License Version 2.1 *) (* * (see LICENSE file for the text of the license) *) (************************************************************************) (* Evgeny Makarov, INRIA, 2007 *) (************************************************************************) Require Import OrderedRing. Require Import RingMicromega. Require Import ZArith. Require Import InitialRing. Require Import Setoid. Import OrderedRingSyntax. Set Implicit Arguments. Section InitialMorphism. Variable R : Type. Variables rO rI : R. Variables rplus rtimes rminus: R -> R -> R. Variable ropp : R -> R. Variables req rle rlt : R -> R -> Prop. Variable sor : SOR rO rI rplus rtimes rminus ropp req rle rlt. Notation "0" := rO. Notation "1" := rI. Notation "x + y" := (rplus x y). Notation "x * y " := (rtimes x y). Notation "x - y " := (rminus x y). Notation "- x" := (ropp x). Notation "x == y" := (req x y). Notation "x ~= y" := (~ req x y). Notation "x <= y" := (rle x y). Notation "x < y" := (rlt x y). Lemma req_refl : forall x, req x x. Proof. destruct sor.(SORsetoid) as (Equivalence_Reflexive,_,_). apply Equivalence_Reflexive. Qed. Lemma req_sym : forall x y, req x y -> req y x. Proof. destruct sor.(SORsetoid) as (_,Equivalence_Symmetric,_). apply Equivalence_Symmetric. Qed. Lemma req_trans : forall x y z, req x y -> req y z -> req x z. Proof. destruct sor.(SORsetoid) as (_,_,Equivalence_Transitive). apply Equivalence_Transitive. Qed. Add Relation R req reflexivity proved by sor.(SORsetoid).(@Equivalence_Reflexive _ _) symmetry proved by sor.(SORsetoid).(@Equivalence_Symmetric _ _) transitivity proved by sor.(SORsetoid).(@Equivalence_Transitive _ _) as sor_setoid. Add Morphism rplus with signature req ==> req ==> req as rplus_morph. Proof. exact sor.(SORplus_wd). Qed. Add Morphism rtimes with signature req ==> req ==> req as rtimes_morph. Proof. exact sor.(SORtimes_wd). Qed. Add Morphism ropp with signature req ==> req as ropp_morph. Proof. exact sor.(SORopp_wd). Qed. Add Morphism rle with signature req ==> req ==> iff as rle_morph. Proof. exact sor.(SORle_wd). Qed. Add Morphism rlt with signature req ==> req ==> iff as rlt_morph. Proof. exact sor.(SORlt_wd). Qed. Add Morphism rminus with signature req ==> req ==> req as rminus_morph. Proof. exact (rminus_morph sor). Qed. Ltac le_less := rewrite (Rle_lt_eq sor); left; try assumption. Ltac le_equal := rewrite (Rle_lt_eq sor); right; try reflexivity; try assumption. Definition gen_order_phi_Z : Z -> R := gen_phiZ 0 1 rplus rtimes ropp. Declare Equivalent Keys gen_order_phi_Z gen_phiZ. Notation phi_pos := (gen_phiPOS 1 rplus rtimes). Notation phi_pos1 := (gen_phiPOS1 1 rplus rtimes). Notation "[ x ]" := (gen_order_phi_Z x). Lemma ring_ops_wd : ring_eq_ext rplus rtimes ropp req. Proof. constructor. exact rplus_morph. exact rtimes_morph. exact ropp_morph. Qed. Lemma Zring_morph : ring_morph 0 1 rplus rtimes rminus ropp req 0%Z 1%Z Z.add Z.mul Z.sub Z.opp Zeq_bool gen_order_phi_Z. Proof. exact (gen_phiZ_morph sor.(SORsetoid) ring_ops_wd sor.(SORrt)). Qed. Lemma phi_pos1_pos : forall x : positive, 0 < phi_pos1 x. Proof. induction x as [x IH | x IH |]; simpl; try apply (Rplus_pos_pos sor); try apply (Rtimes_pos_pos sor); try apply (Rplus_pos_pos sor); try apply (Rlt_0_1 sor); assumption. Qed. Lemma phi_pos1_succ : forall x : positive, phi_pos1 (Pos.succ x) == 1 + phi_pos1 x. Proof. exact (ARgen_phiPOS_Psucc sor.(SORsetoid) ring_ops_wd (Rth_ARth sor.(SORsetoid) ring_ops_wd sor.(SORrt))). Qed. Lemma clt_pos_morph : forall x y : positive, (x < y)%positive -> phi_pos1 x < phi_pos1 y. Proof. intros x y H. pattern y; apply Pos.lt_ind with x. rewrite phi_pos1_succ; apply (Rlt_succ_r sor). clear y H; intros y _ H. rewrite phi_pos1_succ. now apply (Rlt_lt_succ sor). assumption. Qed. Lemma clt_morph : forall x y : Z, (x < y)%Z -> [x] < [y]. Proof. intros x y H. do 2 rewrite (same_genZ sor.(SORsetoid) ring_ops_wd sor.(SORrt)); destruct x; destruct y; simpl in *; try discriminate. apply phi_pos1_pos. now apply clt_pos_morph. apply <- (Ropp_neg_pos sor); apply phi_pos1_pos. apply (Rlt_trans sor) with 0. apply <- (Ropp_neg_pos sor); apply phi_pos1_pos. apply phi_pos1_pos. apply -> (Ropp_lt_mono sor); apply clt_pos_morph. red. now rewrite Pos.compare_antisym. Qed. Lemma Zcleb_morph : forall x y : Z, Z.leb x y = true -> [x] <= [y]. Proof. unfold Z.leb; intros x y H. case_eq (x ?= y)%Z; intro H1; rewrite H1 in H. le_equal. apply Zring_morph.(morph_eq). unfold Zeq_bool; now rewrite H1. le_less. now apply clt_morph. discriminate. Qed. Lemma Zcneqb_morph : forall x y : Z, Zeq_bool x y = false -> [x] ~= [y]. Proof. intros x y H. unfold Zeq_bool in H. case_eq (Z.compare x y); intro H1; rewrite H1 in *; (discriminate || clear H). apply (Rlt_neq sor). now apply clt_morph. fold (x > y)%Z in H1. rewrite Z.gt_lt_iff in H1. apply (Rneq_symm sor). apply (Rlt_neq sor). now apply clt_morph. Qed. End InitialMorphism.
The circlepath function is periodic with period 1.
------------------------------------------------------------------------ -- A tiny library of derived combinators ------------------------------------------------------------------------ module TotalRecognisers.LeftRecursion.Lib (Tok : Set) where open import Codata.Musical.Notation open import Data.Bool hiding (_∧_; _≤_) open import Data.Bool.Properties open import Function hiding (_∋_) open import Function.Equality using (_⟨$⟩_) open import Function.Equivalence using (module Equivalence) open import Data.List open import Data.Nat using (ℕ; zero; suc) open import Data.Product as Prod open import Relation.Binary open import Relation.Binary.PropositionalEquality hiding ([_]) open import Relation.Nullary.Decidable import TotalRecognisers.LeftRecursion open TotalRecognisers.LeftRecursion Tok ------------------------------------------------------------------------ -- Kleene star -- The intended semantics of the Kleene star. infixr 5 _∷_ infix 4 _∈[_]⋆ data _∈[_]⋆ {n} : List Tok → P n → Set where [] : ∀ {p} → [] ∈[ p ]⋆ _∷_ : ∀ {s₁ s₂ p} → s₁ ∈ p → s₂ ∈[ p ]⋆ → s₁ ++ s₂ ∈[ p ]⋆ module KleeneStar₁ where infix 15 _⋆ _+ -- This definition requires that the argument recognisers are not -- nullable. mutual _⋆ : P false → P true p ⋆ = empty ∣ p + _+ : P false → P false p + = p · ♯ (p ⋆) -- The definition of _⋆ above is correct. ⋆-sound : ∀ {s p} → s ∈ p ⋆ → s ∈[ p ]⋆ ⋆-sound (∣-left empty) = [] ⋆-sound (∣-right (pr₁ · pr₂)) = pr₁ ∷ ⋆-sound pr₂ ⋆-complete : ∀ {s p} → s ∈[ p ]⋆ → s ∈ p ⋆ ⋆-complete [] = ∣-left empty ⋆-complete (_∷_ {[]} pr₁ pr₂) = ⋆-complete pr₂ ⋆-complete (_∷_ {_ ∷ _} pr₁ pr₂) = ∣-right {n₁ = true} (pr₁ · ⋆-complete pr₂) module KleeneStar₂ where infix 15 _⋆ -- This definition works for any argument recogniser. _⋆ : ∀ {n} → P n → P true _⋆ = KleeneStar₁._⋆ ∘ nonempty -- The definition of _⋆ above is correct. ⋆-sound : ∀ {s n} {p : P n} → s ∈ p ⋆ → s ∈[ p ]⋆ ⋆-sound (∣-left empty) = [] ⋆-sound (∣-right (nonempty pr₁ · pr₂)) = pr₁ ∷ ⋆-sound pr₂ ⋆-complete : ∀ {s n} {p : P n} → s ∈[ p ]⋆ → s ∈ p ⋆ ⋆-complete [] = ∣-left empty ⋆-complete (_∷_ {[]} pr₁ pr₂) = ⋆-complete pr₂ ⋆-complete (_∷_ {_ ∷ _} pr₁ pr₂) = ∣-right {n₁ = true} (nonempty pr₁ · ⋆-complete pr₂) -- Note, however, that for actual parsing the corresponding -- definition would not be correct. The reason is that p would give -- a result also when the empty string was accepted, and these -- results are ignored by the definition above. In the case of -- actual parsing the result of p ⋆, when p is nullable, should be a -- stream and not a finite list. ------------------------------------------------------------------------ -- A simplified sequencing operator infixl 10 _⊙_ _⊙_ : ∀ {n₁ n₂} → P n₁ → P n₂ → P (n₁ ∧ n₂) _⊙_ {n₁ = n₁} p₁ p₂ = ♯? p₁ · ♯? {b = n₁} p₂ module ⊙ where complete : ∀ {n₁ n₂ s₁ s₂} {p₁ : P n₁} {p₂ : P n₂} → s₁ ∈ p₁ → s₂ ∈ p₂ → s₁ ++ s₂ ∈ p₁ ⊙ p₂ complete {n₁} {n₂} s₁∈p₁ s₂∈p₂ = add-♭♯ n₂ s₁∈p₁ · add-♭♯ n₁ s₂∈p₂ infixl 10 _⊙′_ infix 4 _⊙_∋_ data _⊙_∋_ {n₁ n₂} (p₁ : P n₁) (p₂ : P n₂) : List Tok → Set where _⊙′_ : ∀ {s₁ s₂} (s₁∈p₁ : s₁ ∈ p₁) (s₂∈p₂ : s₂ ∈ p₂) → p₁ ⊙ p₂ ∋ s₁ ++ s₂ sound : ∀ {n₁} n₂ {s} {p₁ : P n₁} {p₂ : P n₂} → s ∈ p₁ ⊙ p₂ → p₁ ⊙ p₂ ∋ s sound {n₁} n₂ (s₁∈p₁ · s₂∈p₂) = drop-♭♯ n₂ s₁∈p₁ ⊙′ drop-♭♯ n₁ s₂∈p₂ ------------------------------------------------------------------------ -- A combinator which repeats a recogniser a fixed number of times ⟨_^_⟩-nullable : Bool → ℕ → Bool ⟨ n ^ zero ⟩-nullable = true ⟨ n ^ suc i ⟩-nullable = n ∧ ⟨ n ^ i ⟩-nullable infixl 15 _^_ _^_ : ∀ {n} → P n → (i : ℕ) → P ⟨ n ^ i ⟩-nullable p ^ 0 = empty p ^ suc i = p ⊙ p ^ i -- Some lemmas relating _^_ to _⋆. open KleeneStar₂ ^≤⋆ : ∀ {n} {p : P n} i → p ^ i ≤ p ⋆ ^≤⋆ {n} {p} i s∈ = ⋆-complete $ helper i s∈ where helper : ∀ i {s} → s ∈ p ^ i → s ∈[ p ]⋆ helper zero empty = [] helper (suc i) (s₁∈p · s₂∈pⁱ) = drop-♭♯ ⟨ n ^ i ⟩-nullable s₁∈p ∷ helper i (drop-♭♯ n s₂∈pⁱ) ⋆≤^ : ∀ {n} {p : P n} {s} → s ∈ p ⋆ → ∃ λ i → s ∈ p ^ i ⋆≤^ {n} {p} s∈p⋆ = helper (⋆-sound s∈p⋆) where helper : ∀ {s} → s ∈[ p ]⋆ → ∃ λ i → s ∈ p ^ i helper [] = (0 , empty) helper (s₁∈p ∷ s₂∈p⋆) = Prod.map suc (λ {i} s₂∈pⁱ → add-♭♯ ⟨ n ^ i ⟩-nullable s₁∈p · add-♭♯ n s₂∈pⁱ) (helper s₂∈p⋆) ------------------------------------------------------------------------ -- A recogniser which only accepts a given token module Tok (dec : Decidable (_≡_ {A = Tok})) where tok : Tok → P false tok t = sat (⌊_⌋ ∘ dec t) sound : ∀ {s t} → s ∈ tok t → s ≡ [ t ] sound (sat ok) = cong [_] $ sym $ toWitness ok complete : ∀ {t} → [ t ] ∈ tok t complete = sat (fromWitness refl) ------------------------------------------------------------------------ -- A recogniser which accepts the empty string iff the argument is -- true (and never accepts non-empty strings) accept-if-true : ∀ b → P b accept-if-true true = empty accept-if-true false = fail module AcceptIfTrue where sound : ∀ b {s} → s ∈ accept-if-true b → s ≡ [] × T b sound true empty = (refl , _) sound false () complete : ∀ {b} → T b → [] ∈ accept-if-true b complete ok with Equivalence.to T-≡ ⟨$⟩ ok ... | refl = empty
From Test Require Import tactic. Section FOFProblem. Variable Universe : Set. Variable UniverseElement : Universe. Variable p_ : Universe -> Universe -> Universe -> Universe -> Universe -> Universe -> Universe -> Universe -> Universe -> Universe -> Universe -> Universe -> Universe -> Universe -> Universe -> Universe -> Universe -> Universe -> Universe -> Universe -> Universe -> Universe -> Universe -> Universe -> Universe -> Universe -> Universe -> Universe -> Universe -> Universe -> Universe -> Universe -> Universe -> Universe -> Universe -> Universe -> Universe -> Universe -> Universe -> Universe -> Universe -> Universe -> Universe -> Universe -> Universe -> Universe -> Universe -> Universe -> Universe -> Universe -> Universe -> Universe -> Universe -> Universe -> Universe -> Universe -> Universe -> Universe -> Universe -> Universe -> Universe -> Universe -> Universe -> Prop. Variable goal_ : Prop. Variable dom_ : Universe -> Prop. Variable a9_ : Universe. Variable a8_ : Universe. Variable a7_ : Universe. Variable a63_ : Universe. Variable a62_ : Universe. Variable a61_ : Universe. Variable a60_ : Universe. Variable a6_ : Universe. Variable a59_ : Universe. Variable a58_ : Universe. Variable a57_ : Universe. Variable a56_ : Universe. Variable a55_ : Universe. Variable a54_ : Universe. Variable a53_ : Universe. Variable a52_ : Universe. Variable a51_ : Universe. Variable a50_ : Universe. Variable a5_ : Universe. Variable a49_ : Universe. Variable a48_ : Universe. Variable a47_ : Universe. Variable a46_ : Universe. Variable a45_ : Universe. Variable a44_ : Universe. Variable a43_ : Universe. Variable a42_ : Universe. Variable a41_ : Universe. Variable a40_ : Universe. Variable a4_ : Universe. Variable a39_ : Universe. Variable a38_ : Universe. Variable a37_ : Universe. Variable a36_ : Universe. Variable a35_ : Universe. Variable a34_ : Universe. Variable a33_ : Universe. Variable a32_ : Universe. Variable a31_ : Universe. Variable a30_ : Universe. Variable a3_ : Universe. Variable a29_ : Universe. Variable a28_ : Universe. Variable a27_ : Universe. Variable a26_ : Universe. Variable a25_ : Universe. Variable a24_ : Universe. Variable a23_ : Universe. Variable a22_ : Universe. Variable a21_ : Universe. Variable a20_ : Universe. Variable a2_ : Universe. Variable a19_ : Universe. Variable a18_ : Universe. Variable a17_ : Universe. Variable a16_ : Universe. Variable a15_ : Universe. Variable a14_ : Universe. Variable a13_ : Universe. Variable a12_ : Universe. Variable a11_ : Universe. Variable a10_ : Universe. Variable a1_ : Universe. Variable ax1_1 : (dom_ a1_ /\ (dom_ a2_ /\ (dom_ a3_ /\ (dom_ a4_ /\ (dom_ a5_ /\ (dom_ a6_ /\ (dom_ a7_ /\ (dom_ a8_ /\ (dom_ a9_ /\ (dom_ a10_ /\ (dom_ a11_ /\ (dom_ a12_ /\ (dom_ a13_ /\ (dom_ a14_ /\ (dom_ a15_ /\ (dom_ a16_ /\ (dom_ a17_ /\ (dom_ a18_ /\ (dom_ a19_ /\ (dom_ a20_ /\ (dom_ a21_ /\ (dom_ a22_ /\ (dom_ a23_ /\ (dom_ a24_ /\ (dom_ a25_ /\ (dom_ a26_ /\ (dom_ a27_ /\ (dom_ a28_ /\ (dom_ a29_ /\ (dom_ a30_ /\ (dom_ a31_ /\ (dom_ a32_ /\ (dom_ a33_ /\ (dom_ a34_ /\ (dom_ a35_ /\ (dom_ a36_ /\ (dom_ a37_ /\ (dom_ a38_ /\ (dom_ a39_ /\ (dom_ a40_ /\ (dom_ a41_ /\ (dom_ a42_ /\ (dom_ a43_ /\ (dom_ a44_ /\ (dom_ a45_ /\ (dom_ a46_ /\ (dom_ a47_ /\ (dom_ a48_ /\ (dom_ a49_ /\ (dom_ a50_ /\ (dom_ a51_ /\ (dom_ a52_ /\ (dom_ a53_ /\ (dom_ a54_ /\ (dom_ a55_ /\ (dom_ a56_ /\ (dom_ a57_ /\ (dom_ a58_ /\ (dom_ a59_ /\ (dom_ a60_ /\ (dom_ a61_ /\ (dom_ a62_ /\ dom_ a63_)))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))). Variable ax2_2 : (forall A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A12 A13 A14 A15 A16 A17 A18 A19 A20 A21 A22 A23 A24 A25 A26 A27 A28 A29 A30 A31 A32 A33 A34 A35 A36 A37 A38 A39 A40 A41 A42 A43 A44 A45 A46 A47 A48 A49 A50 A51 A52 A53 A54 A55 A56 A57 A58 A59 A60 A61 A62 A63 : Universe, ((dom_ A1 /\ (dom_ A2 /\ (dom_ A3 /\ (dom_ A4 /\ (dom_ A5 /\ (dom_ A6 /\ (dom_ A7 /\ (dom_ A8 /\ (dom_ A9 /\ (dom_ A10 /\ (dom_ A11 /\ (dom_ A12 /\ (dom_ A13 /\ (dom_ A14 /\ (dom_ A15 /\ (dom_ A16 /\ (dom_ A17 /\ (dom_ A18 /\ (dom_ A19 /\ (dom_ A20 /\ (dom_ A21 /\ (dom_ A22 /\ (dom_ A23 /\ (dom_ A24 /\ (dom_ A25 /\ (dom_ A26 /\ (dom_ A27 /\ (dom_ A28 /\ (dom_ A29 /\ (dom_ A30 /\ (dom_ A31 /\ (dom_ A32 /\ (dom_ A33 /\ (dom_ A34 /\ (dom_ A35 /\ (dom_ A36 /\ (dom_ A37 /\ (dom_ A38 /\ (dom_ A39 /\ (dom_ A40 /\ (dom_ A41 /\ (dom_ A42 /\ (dom_ A43 /\ (dom_ A44 /\ (dom_ A45 /\ (dom_ A46 /\ (dom_ A47 /\ (dom_ A48 /\ (dom_ A49 /\ (dom_ A50 /\ (dom_ A51 /\ (dom_ A52 /\ (dom_ A53 /\ (dom_ A54 /\ (dom_ A55 /\ (dom_ A56 /\ (dom_ A57 /\ (dom_ A58 /\ (dom_ A59 /\ (dom_ A60 /\ (dom_ A61 /\ (dom_ A62 /\ dom_ A63)))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))) -> p_ A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A12 A13 A14 A15 A16 A17 A18 A19 A20 A21 A22 A23 A24 A25 A26 A27 A28 A29 A30 A31 A32 A33 A34 A35 A36 A37 A38 A39 A40 A41 A42 A43 A44 A45 A46 A47 A48 A49 A50 A51 A52 A53 A54 A55 A56 A57 A58 A59 A60 A61 A62 A63)). Variable ax3_3 : (p_ a63_ a62_ a61_ a60_ a59_ a58_ a57_ a56_ a55_ a54_ a53_ a52_ a51_ a50_ a49_ a48_ a47_ a46_ a45_ a44_ a43_ a42_ a41_ a40_ a39_ a38_ a37_ a36_ a35_ a34_ a33_ a32_ a31_ a30_ a29_ a28_ a27_ a26_ a25_ a24_ a23_ a22_ a21_ a20_ a19_ a18_ a17_ a16_ a15_ a14_ a13_ a12_ a11_ a10_ a9_ a8_ a7_ a6_ a5_ a4_ a3_ a2_ a1_ -> goal_). Theorem lemma63_4 : goal_. Proof. time tac. Qed. End FOFProblem.
Suppose $f$, $g$, and $h$ are functions defined on a filter $F$ such that $f(x) \neq 0$, $g(x) \neq 0$, and $h(x) \neq 0$ for all $x$ in $F$. Then $h(x)/f(x)$ converges to $h(x)/g(x)$ if and only if $g(x)$ converges to $f(x)$.
#include <boost/process.hpp> #include <iostream> #include <string> /*! \file super_agent.cpp \author Igor Roshchin start mongo agent and decorate */ using namespace boost::process; int main() { return system("./start"); }
\subsection{Artistic style transfer for videos} \label{seq:ruder} \textit{Artistic style transfer for videos} is a paper written by Manuel Ruder et al. \cite{Ruder:1} And is based on Gatys \cite{Gatys:1} way of implementing style transfer, but introduces a temporal constraint in order to get rid of the randomness that appears when styling each frame individually. \nextline \subsubsection{Loss function} The temporal constraint is described in the loss function of the style transfer model. The idea is to penalize the model for deviations between two adjacent frames. So as well as having a content-loss and a style-loss, they introduce a third component for temporal loss: \begin{equation} \mathcal{L}_{temporal}(x, \omega, c) = \frac{1}{D}\sum_{k=1} c_k \cdot (x_k - \omega_k)^2 \end{equation} \nextline This loss component takes three arguments: x, $\omega$ and c. x is the model variable, or more specifically the image we are styling. $\omega$ is the warped previous styled frame. By warped we mean warped using the flow calculated between the current frame and the previous frame. This can be done using a variety of flow calculation algorithms and the article mentions some of these, including DeepFlow and EpicFlow. The c parameter is a mask with the same shape as the styled image, containing integer values 0 or 1. The loss function calculates the squared difference on each pixel (k) of the frame and uses the c-matrix as a weighting for the pixels. For every channel in every pixel where the c-matrix has a value 0 we tell the loss function that this channel in the pixel does not count on the temporal loss. In short, the loss function gives higher loss if the generated image is different from the warped previous stylized frame on every pixel where the c-matrix has value 1. If c has value 0 the difference is not added to the loss. \subsubsection{Usage of optical flow} \label{sec:usage_of_optical_flow} In this implementation the optical flow is used in order to warp previously styled images, detecting disoccluded areas and motion boundaries. These areas are in turn used to create the c-matrix used in the loss function. this is done by giving the disoccluded areas and motion boundaries the value 0 in the c-matrix, and the rest of the image the value 1.\newline\newline To detect the disoccluded areas between two frames, we need the forward flow $(w)$, backward flow$(\hat{w})$, and the forward flow warped to the second image (\~{w}): \newline \begin{equation}\~{w}(x, y) = w( (x, y) + \hat{w}(x, y))\end{equation}. \newline Using these functions the disoccluded areas are calculated using this inequality:\newline \begin{equation} |\~{w} + \hat{w}|^2 > 0.01(|\~{w}|^2 + |\hat{w}|^2) + 0.5 \end{equation} When it comes to detecting motion boundaries this inequality is used: \begin{equation} |\nabla\hat{u}|^2 + |\nabla\hat{v}|^2 > 0.01|\hat{w}|^2 + 0.002 \end{equation} Where $\hat{u}$ and $\hat{v}$ are the two components of the backward flow function output: $\hat{w}(x, y) = (u, v)$ \subsubsection{Long-term temporal loss} \label{sec:long_term_temporal_loss} In the first section, the temporal loss is described using only the previous frame, resulting in the total loss-function: \begin{equation} \mathcal{L}_{shortterm}(p^{(i)}, a, x) = \alpha \mathcal{L}_{content} + \beta \mathcal{L}_{style} + \gamma \mathcal{L}_{temporal}(x^{(i)}, \omega_{i-1}^i(x^{i-1}, c^{i-1, i})) \end{equation} where the temporal loss is the function we described earlier, $x^{(i)}$ is the currently generated frame, $\omega_{i-1}^i(x^{i-1})$ is the previous stylized image warped with the flow from previous frame to current frame, and $c^{i-1, i}$ is the weights of disoccluded areas and motion boundaries between last image and current image. However, the longterm loss function is described like this: \newline \begin{equation} \mathcal{L}_{longterm}(p^{(i)}, a, x) = \alpha \mathcal{L}_{content} + \beta \\\mathcal{L}_{style} + \gamma \sum_{j\in J: i-j \leq 1}\mathcal{L}_{temporal}(x^{(i)}, \omega_{i-j}^i(x^{i-j}), c_{long}^{i-j, i})) \end{equation} where e.g $J = [1, 2, 4]$. the most important part of this long-term loss function are the $c_{long}$ weights. They are calculated like this:\newline \begin{equation} c_{long}^{(i-j, i)} = max(c^{(i-j, i)} - \sum_{k\in J: i - k > i - j} c^{(i-k, i)}, 0) \end{equation} Here, max is taken element-wise.\newline \subsubsection{Multi-pass algorithm} When generating videos with the new longterm temporal loss, the contrast is less diverse near image boundaries, and is especially noticable in videos with a lot of camera motion, mostly because the flow of information to base each frame on only comes from the first frame. This issue was solved by developing a multi-pass algorithm that initially stylizes every frame individually and then blend frames with non-disoccluded parts of previous frames warped according to the optical flow, and then again run some optimization steps for some iterations with the blend as an initialization.\newline The initialization of frame i for pass j, when processed in forward direction is created like this:\newline if i = 1: \begin{equation} x'^{(i)(j)} = x^{(i)(j-1)} \end{equation} else: \begin{equation} x'^{(i)(j)} = \delta c^{i-1, i} \circ \omega_{i-1}^i(x^{(i-1)(j)}) + (\bar{\delta}1 + \delta \bar{c}^{(i-1, i)})\circ x^{(i)(j-1)} \end{equation}\newline when processed in backward direction, it's created like this:\newline if i = $N_{frames}$:\newline \begin{equation} x'^{(i)(j)} = x^{(i)(j-1)} \end{equation} else:\newline \begin{equation} x'^{(i)(j)} = \delta c^{i+1, i} \circ \omega_{i+1}^i(x^{(i+1)(j)}) + (\bar{\delta}1 + \delta \bar{c}^{(i+1, i)})\circ x^{(i)(j-1)} \end{equation} \newline In these calculations $\circ$ means element-wise vector multiplication. $\delta$ and $1 -\bar{\delta}$ are the blend factors where 1 is a vector of all ones. $\omega$ is the function for warping an image using the flow between two images. And c is the c-matrix we described in section \ref{sec:usage_of_optical_flow}.
.IP \fBadmshot\fR 0.75i A set of files and scripts that allow for the simple execution of one\-shot procedures. .IP \fBarcwtmp\fR Utility for archiving login history. .IP \fBbanner\fR Banner printing utility. .IP \fBbeuucp\fR Change the effective group and user ids to .BR uucp . .IP \fBbooz\fR Unpacker for ZOO\-format archives. .IP \fBcflow\fR Produces a listing of the program's calling hierarchy based upon C function calls and declarations. .IP \fBchess\fR This program plays a fairly respectable game of chess, although it is not competetive with state-of-the art commercial programs. .IP \fBchoose\fR Randomly selects lines from its input. Useful for building your own .BR fortune -like games. .IP \fBcmenu\fR A menu package that lets you execute commands from a menu. .IP \fBcnews\fR A distribution of .B cnews for COHERENT. .IP \fBcomb\fR An alternative to COHERENT's standard mailer, .BR /bin/mail . Features screen-oriented menuing and reply functions. .IP \fBcrc\fR Computes encrypted checksums. Can improve security of your file transfers or your system. .IP \fBctags\fR This is the Berkeley version of .BR ctags , ported to COHERENT. .IP \fBcurses2\fR Header with additional functions for the COHERENT .B curses library. .IP \fBfinger\fR Displays information about a user. .IP \fBfocal\fR .B focal language interpreter. .IP \fBfonts\fR Computer Modern shareware font collection for HP LaserJet and compatible printers. .IP \fBgetppid\fR A C program that returns your parent process id. .IP \fBgnews\fR A nice ``news'' system which includes everything you need to receive and read news. .IP \fBGNUgo\fR This program plays quite a respectable game of .IR go . .IP \fBgomoku\fR An .IR Othello -style game played on a 19 by 19 grid. .IP \fBhd\fR Similar to COHERENT's command \fBod -c\fP, but dumps files in a friendlier hexadecimal format. .IP \fBhotel\fR A board game of hotel development. Players take turns placing tiles on the board and buying stock in the hotels they create. .IP \fBless\fR An enhanced version of the traditional Berkeley screen pager .BR more . .IP \fBlibndir\fR Directory-access subroutine library. .IP \fBmc\fR A powerful shareware spreadsheet program for COHERENT. .IP \fBmenubar\fR Creates a menu window. Usefel for writing programs that prompt the user for menu choices. .IP \fBmonth\fR An appointment calendar. .IP \fBmtalk\fR A small, simple multi-user ``chat'' program. .IP \fBmterm\fR A basic terminal-services program. This program utilizes the serial-port handler portions of the .B kermit program supplied with COHERENT as the base for a simple terminal package. .IP \fBmwdl\fR A simple shell script used to download files from the Mark Williams Company bulletin board, .BR mwcbbs . .IP \fBogre\fR A game of tank warfare in the 21st Century. .IP \fBorigami\fR A powerful folding screen editor that is able to use the same key bindings as MicroEMACS. .IP \fBpclist\fR Yet another screen pager. .IP \fBps\fR This archive contains a collection of independent, self\-documented PostScript programs, including .BR pscal , a useful calendar printing utility. .IP \fBprolog\fR A Prolog logic programming language interpreter. Includes a manual and some tutorial information. .IP \fBquebbs\fR This is a Bulletin Board System that was ported to COHERENT. .IP \fBrcs\fR A revision control system. Manages software libraries, stores and retrieves multiple revisions of text files, and much more. .IP \fBrn\fR Larry Wall's popular news reading program. .IP \fBsc\fR A greatly modified version of the public domain spreadsheet, .BR vc . .IP \fBsdbm\fR A clone of the Berkeley .B ndbm library. .IP \fBshar\fR Combines files into shell archive (shar) files. .IP \fBsokoban\fR A clone of the popular .B Boxxle game. .IP \fBTASS\fR A full\-screen, threaded news reader. .IP \fBtassgn\fR Allows you to use TASS 3.2 for reading and posting news articles with the GNEWS package. .IP \fBtetris\fR A clone of the popular arcade game Tetris. .IP \fBtrek73\fR A computer simulated battle based on the famous .I "Star Trek" television series and the game .IR "Star Fleet Battles" . .IP \fBumodem\fR This version of .B umodem was modified for COHERENT. It is based upon .B umodem version 4.0 which is also included. .IP \fBuucp\fR An .B awk script for COHERENT that lets you to see the cost of your UUCP communications. .IP \fBvtree\fR A utility which shows the layout of a directory tree or file system. .IP \fBwhich\fR An implementation of the Berkeley .B which command. It searches your path for the first executable file that matches the command line argument. .IP \fBwmail\fR A .B mailx clone which is easy to use and one of the best mailers for small systems. WMAIL needs SMAIL25, included in \*(PN Volume I. .IP \fBwnews\fR A small news package which resembles a subset of the original B-News package. .IP \fBwsh\fR A shareware window shell for COHERENT. .IP \fBxcmalt\fR XCMALT is a massive expansion and modification of XCOMM 2.2, a UNIX dialout telecommunications program. .IP \fBxlisp\fR XLISP is an experimental programming language combining some of the features of LISP with object\-oriented extensions. .IP \fBxo\fR A tic-tac-toe game. .IP \fBzoo\fR Contains two programs, .B zoo and .BR fiz . .B zoo manipulates archives of files in compressed form. .B fiz analyzes damaged .B zoo archives for data recovery.
1981
lemma convex_real_interval [iff]: fixes a b :: "real" shows "convex {a..}" and "convex {..b}" and "convex {a<..}" and "convex {..<b}" and "convex {a..b}" and "convex {a<..b}" and "convex {a..<b}" and "convex {a<..<b}"
[STATEMENT] lemma porder_on_restrictPI': "\<lbrakk> porder_on A r; B = A \<inter> C \<rbrakk> \<Longrightarrow> porder_on B (r |` C)" [PROOF STATE] proof (prove) goal (1 subgoal): 1. \<lbrakk>porder_on A r; B = A \<inter> C\<rbrakk> \<Longrightarrow> porder_on B (r |` C) [PROOF STEP] by(simp add: porder_on_restrictPI)
#ifndef TRADESREQUESTPARAMETERS_HPP #define TRADESREQUESTPARAMETERS_HPP #include <QVariant> #include <QMetaType> #include <boost/optional.hpp> #include "basictypes.h" namespace bitinvest { namespace core { namespace bom { struct TradesParameters { TradesParameters(): mSymbol(boost::none), mFilterSpecifier(boost::none), mDataSpecifier(boost::none) {} TradesParameters( const Symbol &iSymbol): mSymbol(iSymbol), mFilterSpecifier(boost::none), mDataSpecifier(boost::none) {} TradesParameters( const Symbol &iSymbol, const DataSpecifier& iDataSpecifier): mSymbol(iSymbol), mFilterSpecifier(boost::none), mDataSpecifier(iDataSpecifier) {} TradesParameters( const Symbol &iSymbol, const FilterSpecifier & iFilterSpecifier): mSymbol(iSymbol), mFilterSpecifier(iFilterSpecifier), mDataSpecifier(boost::none) {} TradesParameters( const Symbol & iSymbol, const FilterSpecifier & iFilterSpecifier, const DataSpecifier & iDataSpecifier): mSymbol(iSymbol), mFilterSpecifier(iFilterSpecifier), mDataSpecifier(iDataSpecifier) {} TradesParameters(const TradesParameters & other): mSymbol(other.mSymbol), mFilterSpecifier(other.mFilterSpecifier), mDataSpecifier(other.mDataSpecifier) {} boost::optional<Symbol> mSymbol; boost::optional<FilterSpecifier> mFilterSpecifier; boost::optional<DataSpecifier> mDataSpecifier; }; } } } Q_DECLARE_METATYPE(bitinvest::core::bom::TradesParameters) #endif // TRADESREQUESTPARAMETERS_HPP
State Before: l : Type ?u.916992 m : Type u_2 n : Type u_1 o : Type ?u.917001 m' : o → Type ?u.917006 n' : o → Type ?u.917011 R : Type ?u.917014 S : Type ?u.917017 α : Type v β : Type w γ : Type ?u.917024 inst✝¹ : NonUnitalCommSemiring α inst✝ : Fintype n A : Matrix m n α x : n → α ⊢ vecMul x Aᵀ = mulVec A x State After: case h l : Type ?u.916992 m : Type u_2 n : Type u_1 o : Type ?u.917001 m' : o → Type ?u.917006 n' : o → Type ?u.917011 R : Type ?u.917014 S : Type ?u.917017 α : Type v β : Type w γ : Type ?u.917024 inst✝¹ : NonUnitalCommSemiring α inst✝ : Fintype n A : Matrix m n α x : n → α x✝ : m ⊢ vecMul x Aᵀ x✝ = mulVec A x x✝ Tactic: ext State Before: case h l : Type ?u.916992 m : Type u_2 n : Type u_1 o : Type ?u.917001 m' : o → Type ?u.917006 n' : o → Type ?u.917011 R : Type ?u.917014 S : Type ?u.917017 α : Type v β : Type w γ : Type ?u.917024 inst✝¹ : NonUnitalCommSemiring α inst✝ : Fintype n A : Matrix m n α x : n → α x✝ : m ⊢ vecMul x Aᵀ x✝ = mulVec A x x✝ State After: no goals Tactic: apply dotProduct_comm
/* Copyright (C) 2016 Quaternion Risk Management Ltd All rights reserved. This file is part of ORE, a free-software/open-source library for transparent pricing and risk analysis - http://opensourcerisk.org ORE is free software: you can redistribute it and/or modify it under the terms of the Modified BSD License. You should have received a copy of the license along with this program. The license is also available online at <http://opensourcerisk.org> This program is distributed on the basis that it will form a useful contribution to risk analytics and model standardisation, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the license for more details. */ /*! \file ored/utilities/indexparser.cpp \brief \ingroup utilities */ #include <boost/algorithm/string.hpp> #include <boost/make_shared.hpp> #include <map> #include <ored/configuration/conventions.hpp> #include <ored/utilities/indexparser.hpp> #include <ored/utilities/parsers.hpp> #include <ql/errors.hpp> #include <ql/indexes/all.hpp> #include <ql/time/calendars/target.hpp> #include <ql/time/daycounters/all.hpp> #include <qle/indexes/bmaindexwrapper.hpp> #include <qle/indexes/dkcpi.hpp> #include <qle/indexes/equityindex.hpp> #include <qle/indexes/fxindex.hpp> #include <qle/indexes/genericiborindex.hpp> #include <qle/indexes/ibor/audbbsw.hpp> #include <qle/indexes/ibor/brlcdi.hpp> #include <qle/indexes/ibor/chfsaron.hpp> #include <qle/indexes/ibor/chftois.hpp> #include <qle/indexes/ibor/clpcamara.hpp> #include <qle/indexes/ibor/copibr.hpp> #include <qle/indexes/ibor/corra.hpp> #include <qle/indexes/ibor/czkpribor.hpp> #include <qle/indexes/ibor/demlibor.hpp> #include <qle/indexes/ibor/dkkcibor.hpp> #include <qle/indexes/ibor/dkkois.hpp> #include <qle/indexes/ibor/hkdhibor.hpp> #include <qle/indexes/ibor/hufbubor.hpp> #include <qle/indexes/ibor/idridrfix.hpp> #include <qle/indexes/ibor/idrjibor.hpp> #include <qle/indexes/ibor/ilstelbor.hpp> #include <qle/indexes/ibor/inrmifor.hpp> #include <qle/indexes/ibor/krwcd.hpp> #include <qle/indexes/ibor/krwkoribor.hpp> #include <qle/indexes/ibor/mxntiie.hpp> #include <qle/indexes/ibor/myrklibor.hpp> #include <qle/indexes/ibor/noknibor.hpp> #include <qle/indexes/ibor/nowa.hpp> #include <qle/indexes/ibor/nzdbkbm.hpp> #include <qle/indexes/ibor/plnpolonia.hpp> #include <qle/indexes/ibor/phpphiref.hpp> #include <qle/indexes/ibor/plnwibor.hpp> #include <qle/indexes/ibor/rubmosprime.hpp> #include <qle/indexes/ibor/saibor.hpp> #include <qle/indexes/ibor/seksior.hpp> #include <qle/indexes/ibor/sekstibor.hpp> #include <qle/indexes/ibor/sgdsibor.hpp> #include <qle/indexes/ibor/sgdsor.hpp> #include <qle/indexes/ibor/skkbribor.hpp> #include <qle/indexes/ibor/thbbibor.hpp> #include <qle/indexes/ibor/tonar.hpp> #include <qle/indexes/ibor/twdtaibor.hpp> #include <qle/indexes/secpi.hpp> using namespace QuantLib; using namespace QuantExt; using namespace std; using ore::data::Convention; namespace ore { namespace data { // Helper build classes for static map class IborIndexParser { public: virtual ~IborIndexParser() {} virtual boost::shared_ptr<IborIndex> build(Period p, const Handle<YieldTermStructure>& h) const = 0; }; template <class T> class IborIndexParserWithPeriod : public IborIndexParser { public: boost::shared_ptr<IborIndex> build(Period p, const Handle<YieldTermStructure>& h) const override { QL_REQUIRE(p != 1 * Days, "must have a period longer than 1D"); return boost::make_shared<T>(p, h); } }; // Specialise for MXN-TIIE. If tenor equates to 28 Days, i.e. tenor is 4W or 28D, ensure that the index is created // with a tenor of 4W under the hood. Things work better this way especially cap floor stripping. template <> class IborIndexParserWithPeriod<MXNTiie> : public IborIndexParser { public: boost::shared_ptr<IborIndex> build(Period p, const Handle<YieldTermStructure>& h) const override { QL_REQUIRE(p != 1 * Days, "must have a period longer than 1D"); if (p.units() == Days && p.length() == 28) { return boost::make_shared<MXNTiie>(4 * Weeks, h); } else { return boost::make_shared<MXNTiie>(p, h); } } }; template <class T> class IborIndexParserOIS : public IborIndexParser { public: boost::shared_ptr<IborIndex> build(Period p, const Handle<YieldTermStructure>& h) const override { QL_REQUIRE(p == 1 * Days, "must have period 1D"); return boost::make_shared<T>(h); } }; template <class T> class IborIndexParserBMA : public IborIndexParser { public: boost::shared_ptr<IborIndex> build(Period p, const Handle<YieldTermStructure>& h) const override { QL_REQUIRE((p.length() == 7 && p.units() == Days) || (p.length() == 1 && p.units() == Weeks), "BMA indexes are uniquely available with a tenor of 1 week."); const boost::shared_ptr<BMAIndex> bma = boost::make_shared<BMAIndex>(h); return boost::make_shared<T>(bma); } }; boost::shared_ptr<FxIndex> parseFxIndex(const string& s) { std::vector<string> tokens; split(tokens, s, boost::is_any_of("-")); QL_REQUIRE(tokens.size() == 4, "four tokens required in " << s << ": FX-TAG-CCY1-CCY2"); QL_REQUIRE(tokens[0] == "FX", "expected first token to be FX"); return boost::make_shared<FxIndex>(tokens[0] + "/" + tokens[1], 0, parseCurrency(tokens[2]), parseCurrency(tokens[3]), NullCalendar()); } boost::shared_ptr<EquityIndex> parseEquityIndex(const string& s) { std::vector<string> tokens; split(tokens, s, boost::is_any_of("-")); QL_REQUIRE(tokens.size() == 2, "two tokens required in " << s << ": EQ-NAME"); QL_REQUIRE(tokens[0] == "EQ", "expected first token to be EQ"); if (tokens.size() == 2) { return boost::make_shared<EquityIndex>(tokens[1], NullCalendar(), Currency()); } else { QL_FAIL("Error parsing equity string " + s); } } bool tryParseIborIndex(const string& s, boost::shared_ptr<IborIndex>& index) { try { index = parseIborIndex(s); } catch (...) { return false; } return true; } boost::shared_ptr<IborIndex> parseIborIndex(const string& s, const Handle<YieldTermStructure>& h) { string dummy; return parseIborIndex(s, dummy, h); } boost::shared_ptr<IborIndex> parseIborIndex(const string& s, string& tenor, const Handle<YieldTermStructure>& h) { std::vector<string> tokens; split(tokens, s, boost::is_any_of("-")); QL_REQUIRE(tokens.size() == 2 || tokens.size() == 3, "Two or three tokens required in " << s << ": CCY-INDEX or CCY-INDEX-TERM"); Period p; if (tokens.size() == 3) { tenor = tokens[2]; p = parsePeriod(tokens[2]); } else { tenor = ""; p = 1 * Days; } static map<string, boost::shared_ptr<IborIndexParser>> m = { {"EUR-EONIA", boost::make_shared<IborIndexParserOIS<Eonia>>()}, {"GBP-SONIA", boost::make_shared<IborIndexParserOIS<Sonia>>()}, {"JPY-TONAR", boost::make_shared<IborIndexParserOIS<Tonar>>()}, {"CHF-TOIS", boost::make_shared<IborIndexParserOIS<CHFTois>>()}, {"CHF-SARON", boost::make_shared<IborIndexParserOIS<CHFSaron>>()}, {"USD-FedFunds", boost::make_shared<IborIndexParserOIS<FedFunds>>()}, {"AUD-AONIA", boost::make_shared<IborIndexParserOIS<Aonia>>()}, {"CAD-CORRA", boost::make_shared<IborIndexParserOIS<CORRA>>()}, {"DKK-DKKOIS", boost::make_shared<IborIndexParserOIS<DKKOis>>()}, {"DKK-TNR", boost::make_shared<IborIndexParserOIS<DKKOis>>()}, {"SEK-SIOR", boost::make_shared<IborIndexParserOIS<SEKSior>>()}, {"AUD-BBSW", boost::make_shared<IborIndexParserWithPeriod<AUDbbsw>>()}, {"AUD-LIBOR", boost::make_shared<IborIndexParserWithPeriod<AUDLibor>>()}, {"EUR-EURIBOR", boost::make_shared<IborIndexParserWithPeriod<Euribor>>()}, {"EUR-EURIB", boost::make_shared<IborIndexParserWithPeriod<Euribor>>()}, {"CAD-CDOR", boost::make_shared<IborIndexParserWithPeriod<Cdor>>()}, {"CAD-BA", boost::make_shared<IborIndexParserWithPeriod<Cdor>>()}, {"CZK-PRIBOR", boost::make_shared<IborIndexParserWithPeriod<CZKPribor>>()}, {"EUR-LIBOR", boost::make_shared<IborIndexParserWithPeriod<EURLibor>>()}, {"USD-LIBOR", boost::make_shared<IborIndexParserWithPeriod<USDLibor>>()}, {"GBP-LIBOR", boost::make_shared<IborIndexParserWithPeriod<GBPLibor>>()}, {"JPY-LIBOR", boost::make_shared<IborIndexParserWithPeriod<JPYLibor>>()}, {"JPY-TIBOR", boost::make_shared<IborIndexParserWithPeriod<Tibor>>()}, {"CAD-LIBOR", boost::make_shared<IborIndexParserWithPeriod<CADLibor>>()}, {"CHF-LIBOR", boost::make_shared<IborIndexParserWithPeriod<CHFLibor>>()}, {"SEK-LIBOR", boost::make_shared<IborIndexParserWithPeriod<SEKLibor>>()}, {"SEK-STIBOR", boost::make_shared<IborIndexParserWithPeriod<SEKStibor>>()}, {"NOK-NIBOR", boost::make_shared<IborIndexParserWithPeriod<NOKNibor>>()}, {"HKD-HIBOR", boost::make_shared<IborIndexParserWithPeriod<HKDHibor>>()}, {"SAR-SAIBOR", boost::make_shared<IborIndexParserWithPeriod<SAibor>>()}, {"SGD-SIBOR", boost::make_shared<IborIndexParserWithPeriod<SGDSibor>>()}, {"SGD-SOR", boost::make_shared<IborIndexParserWithPeriod<SGDSor>>()}, {"DKK-CIBOR", boost::make_shared<IborIndexParserWithPeriod<DKKCibor>>()}, {"DKK-LIBOR", boost::make_shared<IborIndexParserWithPeriod<DKKLibor>>()}, {"HUF-BUBOR", boost::make_shared<IborIndexParserWithPeriod<HUFBubor>>()}, {"IDR-IDRFIX", boost::make_shared<IborIndexParserWithPeriod<IDRIdrfix>>()}, {"IDR-JIBOR", boost::make_shared<IborIndexParserWithPeriod<IDRJibor>>()}, {"ILS-TELBOR", boost::make_shared<IborIndexParserWithPeriod<ILSTelbor>>()}, {"INR-MIFOR", boost::make_shared<IborIndexParserWithPeriod<INRMifor>>()}, {"MXN-TIIE", boost::make_shared<IborIndexParserWithPeriod<MXNTiie>>()}, {"PLN-WIBOR", boost::make_shared<IborIndexParserWithPeriod<PLNWibor>>()}, {"SKK-BRIBOR", boost::make_shared<IborIndexParserWithPeriod<SKKBribor>>()}, {"NZD-BKBM", boost::make_shared<IborIndexParserWithPeriod<NZDBKBM>>()}, {"TRY-TRLIBOR", boost::make_shared<IborIndexParserWithPeriod<TRLibor>>()}, {"TWD-TAIBOR", boost::make_shared<IborIndexParserWithPeriod<TWDTaibor>>()}, {"MYR-KLIBOR", boost::make_shared<IborIndexParserWithPeriod<MYRKlibor>>()}, {"KRW-CD", boost::make_shared<IborIndexParserWithPeriod<KRWCd>>()}, {"KRW-KORIBOR", boost::make_shared<IborIndexParserWithPeriod<KRWKoribor>>()}, {"ZAR-JIBAR", boost::make_shared<IborIndexParserWithPeriod<Jibar>>()}, {"RUB-MOSPRIME", boost::make_shared<IborIndexParserWithPeriod<RUBMosprime>>()}, {"USD-SIFMA", boost::make_shared<IborIndexParserBMA<BMAIndexWrapper>>()}, {"THB-BIBOR", boost::make_shared<IborIndexParserWithPeriod<THBBibor>>()}, {"PHP-PHIREF", boost::make_shared<IborIndexParserWithPeriod<PHPPhiref>>()}, {"COP-IBR", boost::make_shared<IborIndexParserOIS<COPIbr>>()}, {"DEM-LIBOR", boost::make_shared<IborIndexParserWithPeriod<DEMLibor>>()}, {"BRL-CDI", boost::make_shared<IborIndexParserOIS<BRLCdi>>()}, {"NOK-NOWA", boost::make_shared<IborIndexParserOIS<Nowa>>()}, {"CLP-CAMARA", boost::make_shared<IborIndexParserOIS<CLPCamara>>()}, {"NZD-OCR", boost::make_shared<IborIndexParserOIS<Nzocr>>()}, {"PLN-POLONIA", boost::make_shared<IborIndexParserOIS<PLNPolonia>>()}}; auto it = m.find(tokens[0] + "-" + tokens[1]); if (it != m.end()) { return it->second->build(p, h); } else if (tokens[1] == "GENERIC") { // We have a generic index auto ccy = parseCurrency(tokens[0]); return boost::make_shared<GenericIborIndex>(p, ccy, h); } else { QL_FAIL("parseIborIndex \"" << s << "\" not recognized"); } } bool isGenericIndex(const string& indexName) { return indexName.find("-GENERIC-") != string::npos; } bool isInflationIndex(const string& indexName) { try { // Currently, only way to have an inflation index is to have a ZeroInflationIndex parseZeroInflationIndex(indexName); } catch (...) { return false; } return true; } // Swap Index Parser base class SwapIndexParser { public: virtual ~SwapIndexParser() {} virtual boost::shared_ptr<SwapIndex> build(Period p, const Handle<YieldTermStructure>& f, const Handle<YieldTermStructure>& d) const = 0; }; // We build with both a forwarding and discounting curve template <class T> class SwapIndexParserDualCurve : public SwapIndexParser { public: boost::shared_ptr<SwapIndex> build(Period p, const Handle<YieldTermStructure>& f, const Handle<YieldTermStructure>& d) const override { return boost::make_shared<T>(p, f, d); } }; boost::shared_ptr<SwapIndex> parseSwapIndex(const string& s, const Handle<YieldTermStructure>& f, const Handle<YieldTermStructure>& d, boost::shared_ptr<data::IRSwapConvention> convention) { std::vector<string> tokens; split(tokens, s, boost::is_any_of("-")); QL_REQUIRE(tokens.size() == 3, "three tokens required in " << s << ": CCY-CMS-TENOR"); QL_REQUIRE(tokens[0].size() == 3, "invalid currency code in " << s); QL_REQUIRE(tokens[1] == "CMS", "expected CMS as middle token in " << s); Period p = parsePeriod(tokens[2]); string familyName = tokens[0] + "LiborSwapIsdaFix"; Currency ccy = parseCurrency(tokens[0]); boost::shared_ptr<IborIndex> index = f.empty() || !convention ? boost::shared_ptr<IborIndex>() : convention->index()->clone(f); QuantLib::Natural settlementDays = index ? index->fixingDays() : 0; QuantLib::Calendar calender = convention ? convention->fixedCalendar() : NullCalendar(); Period fixedLegTenor = convention ? Period(convention->fixedFrequency()) : Period(1, Months); BusinessDayConvention fixedLegConvention = convention ? convention->fixedConvention() : ModifiedFollowing; DayCounter fixedLegDayCounter = convention ? convention->fixedDayCounter() : ActualActual(); if (d.empty()) return boost::make_shared<SwapIndex>(familyName, p, settlementDays, ccy, calender, fixedLegTenor, fixedLegConvention, fixedLegDayCounter, index); else return boost::make_shared<SwapIndex>(familyName, p, settlementDays, ccy, calender, fixedLegTenor, fixedLegConvention, fixedLegDayCounter, index, d); } // Zero Inflation Index Parser class ZeroInflationIndexParserBase { public: virtual ~ZeroInflationIndexParserBase() {} virtual boost::shared_ptr<ZeroInflationIndex> build(bool isInterpolated, const Handle<ZeroInflationTermStructure>& h) const = 0; }; template <class T> class ZeroInflationIndexParser : public ZeroInflationIndexParserBase { public: boost::shared_ptr<ZeroInflationIndex> build(bool isInterpolated, const Handle<ZeroInflationTermStructure>& h) const override { return boost::make_shared<T>(isInterpolated, h); } }; boost::shared_ptr<ZeroInflationIndex> parseZeroInflationIndex(const string& s, bool isInterpolated, const Handle<ZeroInflationTermStructure>& h) { static map<string, boost::shared_ptr<ZeroInflationIndexParserBase>> m = { {"EUHICP", boost::make_shared<ZeroInflationIndexParser<EUHICP>>()}, {"EU HICP", boost::make_shared<ZeroInflationIndexParser<EUHICP>>()}, {"EUHICPXT", boost::make_shared<ZeroInflationIndexParser<EUHICPXT>>()}, {"EU HICPXT", boost::make_shared<ZeroInflationIndexParser<EUHICPXT>>()}, {"FRHICP", boost::make_shared<ZeroInflationIndexParser<FRHICP>>()}, {"FR HICP", boost::make_shared<ZeroInflationIndexParser<FRHICP>>()}, {"UKRPI", boost::make_shared<ZeroInflationIndexParser<UKRPI>>()}, {"UK RPI", boost::make_shared<ZeroInflationIndexParser<UKRPI>>()}, {"USCPI", boost::make_shared<ZeroInflationIndexParser<USCPI>>()}, {"US CPI", boost::make_shared<ZeroInflationIndexParser<USCPI>>()}, {"ZACPI", boost::make_shared<ZeroInflationIndexParser<ZACPI>>()}, {"ZA CPI", boost::make_shared<ZeroInflationIndexParser<ZACPI>>()}, {"SECPI", boost::make_shared<ZeroInflationIndexParser<SECPI>>()}, {"DKCPI", boost::make_shared<ZeroInflationIndexParser<DKCPI>>()}}; auto it = m.find(s); if (it != m.end()) { return it->second->build(isInterpolated, h); } else { QL_FAIL("parseZeroInflationIndex: \"" << s << "\" not recognized"); } } boost::shared_ptr<Index> parseIndex(const string& s, const data::Conventions& conventions) { boost::shared_ptr<QuantLib::Index> ret_idx; try { ret_idx = parseIborIndex(s); } catch (...) { } if (!ret_idx) { try { auto c = boost::dynamic_pointer_cast<SwapIndexConvention>(conventions.get(s)); QL_REQUIRE(c, "no swap index convention"); auto c2 = boost::dynamic_pointer_cast<IRSwapConvention>(conventions.get(c->conventions())); QL_REQUIRE(c2, "no swap convention"); ret_idx = parseSwapIndex(s, Handle<YieldTermStructure>(), Handle<YieldTermStructure>(), c2); } catch (...) { } } if (!ret_idx) { try { ret_idx = parseZeroInflationIndex(s); } catch (...) { } } if (!ret_idx) { try { ret_idx = parseFxIndex(s); } catch (...) { } } if (!ret_idx) { try { ret_idx = parseEquityIndex(s); } catch (...) { } } QL_REQUIRE(ret_idx, "parseIndex \"" << s << "\" not recognized"); return ret_idx; } bool isOvernightIndex(const string& indexName) { boost::shared_ptr<IborIndex> index; if (tryParseIborIndex(indexName, index)) { auto onIndex = boost::dynamic_pointer_cast<OvernightIndex>(index); if (onIndex) return true; } return false; } } // namespace data } // namespace ore
Formal statement is: lemma finite_imp_null_set_lborel: "finite A \<Longrightarrow> A \<in> null_sets lborel" Informal statement is: If $A$ is a finite set, then $A$ is a null set.
If $g$ is eventually nonzero, then $f \in L^1$ if and only if $f g \in L^1$.
Require Import UniMath.Foundations.Generalities.uu0. Require Import UniMath.Foundations.hlevel1.hProp. Require Import UniMath.Foundations.hlevel2.hSet. Require Import UniMath.RezkCompletion.precategories. Require Import UniMath.RezkCompletion.functor_categories. Require Import SubstSystems.UnicodeNotations. Require Import UniMath.RezkCompletion.whiskering. Require Import UniMath.RezkCompletion.Monads. Require Import UniMath.RezkCompletion.FunctorAlgebras. Require Import UniMath.RezkCompletion.limits.coproducts. Require Import SubstSystems.Auxiliary. Require Import SubstSystems.PointedFunctors. Require Import SubstSystems.ProductPrecategory. Require Import SubstSystems.HorizontalComposition. Require Import SubstSystems.PointedFunctorsComposition. Require Import SubstSystems.EndofunctorsMonoidal. Require Import SubstSystems.Signatures. (* Require Import SubstSystems.FunctorAlgebraViews. *) Require Import SubstSystems.FunctorsPointwiseCoproduct. Local Notation "# F" := (functor_on_morphisms F)(at level 3). Local Notation "F ⟶ G" := (nat_trans F G) (at level 39). Arguments functor_composite {_ _ _} _ _ . Arguments nat_trans_comp {_ _ _ _ _} _ _ . Local Notation "G ∙ F" := (functor_composite F G : [ _ , _ , _ ]) (at level 35). Local Notation "α ∙∙ β" := (hor_comp β α) (at level 20). Ltac pathvia b := (apply (@pathscomp0 _ _ b _ )). Local Notation "α 'ø' Z" := (pre_whisker Z α) (at level 25). Local Notation "Z ∘ α" := (post_whisker _ _ _ _ α Z) (at level 35). Local Notation "C ⟦ a , b ⟧" := (precategory_morphisms (C:=C) a b) (at level 50). Section def_hss. (** ** Some variables and assumptions *) (** Assume having a precategory [C] whose hom-types are sets *) Variable C : precategory. Variable hs : has_homsets C. Variable CP : Coproducts C. Local Notation "'EndC'":= ([C, C, hs]) . Let hsEndC : has_homsets EndC := functor_category_has_homsets C C hs. Let CPEndC : Coproducts EndC := Coproducts_functor_precat _ _ CP hs. Variable H : Signature C hs. Let θ := theta H. Let θ_strength1_int := Sig_strength_law1 _ _ H. Let θ_strength2_int := Sig_strength_law2 _ _ H. Let Id_H : functor EndC EndC := coproduct_functor _ _ CPEndC (constant_functor _ _ (functor_identity _ : EndC)) H. (* (** [H] is a rank-2 endofunctor on endofunctors *) Variable H : functor [C, C, hs] [C, C, hs]. *) (** The forgetful functor from pointed endofunctors to endofunctors *) Local Notation "'U'" := (functor_ptd_forget C hs). (** The precategory of pointed endofunctors on [C] *) Local Notation "'Ptd'" := (precategory_Ptd C hs). (** The category of endofunctors on [C] *) Local Notation "'EndC'":= ([C, C, hs]) . (** The product of two precategories *) Local Notation "A 'XX' B" := (product_precategory A B) (at level 2). (** Pre-whiskering defined as morphism part of the functor given by precomposition with a fixed functor *) Local Notation "α 'øø' Z" := (# (pre_composition_functor_data _ _ _ hs _ Z) α) (at level 25). Local Notation "A ⊗ B" := (prodcatpair _ _ A B) (at level 10). Local Coercion alg_carrier : algebra_ob >-> ob. (* Local Notation "'τ'" := (tau). *) (** ** Definition of algebra structure [τ] of a pointed functor *) (* Definition AlgStruct (T : Ptd) : UU := pr1 (H(U T)) ⟶ pr1 (U T). Definition Alg : UU := Σ T : Ptd, AlgStruct T. Coercion PtdFromAlg (T : Alg) : Ptd := pr1 T. Definition τ (T : Alg) : pr1 (H (U T)) ⟶ pr1 (U T) := pr2 T. *) (* An Id_H algebra is a pointed functor *) Definition eta_from_alg (T : algebra_ob _ Id_H) : EndC ⟦ functor_identity _, T ⟧. Proof. exact (CoproductIn1 _ _ ;; alg_map _ _ T). Defined. Definition ptd_from_alg (T : algebra_ob _ Id_H) : Ptd. Proof. exists (pr1 T). exact (eta_from_alg T). Defined. Definition tau_from_alg (T : algebra_ob _ Id_H) : EndC ⟦H T, T⟧. Proof. exact (CoproductIn2 _ _ ;; alg_map _ _ T). Defined. Local Notation "'p' T" := (ptd_from_alg T) (at level 3). (* Coercion functor_from_algebra_ob (X : algebra_ob _ Id_H) : functor C C := pr1 X. *) Local Notation "` T" := (alg_carrier _ _ T : functor C C) (at level 3). Local Notation "f ⊕ g" := (CoproductOfArrows _ (CPEndC _ _ ) (CPEndC _ _ ) f g) (at level 40). (* Definition bracket (T : algebra_ob _ Id_H) : UU := ∀ (Z : Ptd) (f : Z ⇒ ptd_from_alg T), iscontr (Σ h : `T ∙ (U Z) ⇒ T, alg_map _ _ T øø (U Z) ;; h = CoproductOfArrows _ (CPEndC _ _ ) (CPEndC _ _ ) (identity (U Z)) (θ (`T ⊗ Z)) ;; CoproductOfArrows _ (CPEndC _ _ ) (CPEndC _ _ ) (identity (U Z)) (#H h) ;; CoproductArrow _ (CPEndC _ _ ) (#U f) (tau_from_alg T )). *) Definition bracket_property (T : algebra_ob _ Id_H) {Z : Ptd} (f : Z ⇒ ptd_from_alg T) (h : `T ∙ (U Z) ⇒ T) : UU := alg_map _ _ T øø (U Z) ;; h = identity (U Z) ⊕ θ (`T ⊗ Z) ;; identity (U Z) ⊕ #H h ;; CoproductArrow _ (CPEndC _ _ ) (#U f) (tau_from_alg T). Definition bracket_at (T : algebra_ob _ Id_H) {Z : Ptd} (f : Z ⇒ ptd_from_alg T): UU := iscontr (Σ h : `T ∙ (U Z) ⇒ T, bracket_property T f h). Definition bracket (T : algebra_ob _ Id_H) : UU := ∀ (Z : Ptd) (f : Z ⇒ ptd_from_alg T), bracket_at T f. Definition bracket_property_parts (T : algebra_ob _ Id_H) {Z : Ptd} (f : Z ⇒ ptd_from_alg T) (h : `T ∙ (U Z) ⇒ T) : UU := (#U f = eta_from_alg T øø (U Z) ;; h) × (θ (`T ⊗ Z) ;; #H h ;; tau_from_alg T = tau_from_alg T øø (U Z) ;; h). Definition bracket_parts_at (T : algebra_ob _ Id_H) {Z : Ptd} (f : Z ⇒ ptd_from_alg T) : UU := iscontr (Σ h : `T ∙ (U Z) ⇒ T, bracket_property_parts T f h). Definition bracket_parts (T : algebra_ob _ Id_H) : UU := ∀ (Z : Ptd) (f : Z ⇒ ptd_from_alg T), bracket_parts_at T f. (* show that for any h of suitable type, the following are equivalent *) Lemma parts_from_whole (T : algebra_ob _ Id_H) (Z : Ptd) (f : Z ⇒ ptd_from_alg T) (h : `T ∙ (U Z) ⇒ T) : bracket_property T f h → bracket_property_parts T f h. (* alg_map _ _ T øø (U Z) ;; h = identity (U Z) ⊕ θ (`T ⊗ Z) ;; identity (U Z) ⊕ #H h ;; CoproductArrow _ (CPEndC _ _ ) (#U f) (tau_from_alg T ) → (#U f = eta_from_alg T øø (U Z) ;; h) × (θ (`T ⊗ Z) ;; #H h ;; tau_from_alg T = tau_from_alg T øø (U Z) ;; h ). *) Proof. intro Hyp. (* assert (Hyp_inst := maponpaths (fun m:EndC⟦_,_⟧ => CoproductIn1 ([C, C] hs) (CPEndC ((constant_functor ([C, C] hs) ([C, C] hs) (functor_identity C)) T) (H T));;m) Hyp). *) split. + unfold eta_from_alg. apply nat_trans_eq; try (exact hs). intro c. simpl. unfold coproduct_nat_trans_in1_data. assert (Hyp_inst := nat_trans_eq_pointwise _ _ _ _ _ _ Hyp c); clear Hyp. apply (maponpaths (fun m => CoproductIn1 C (CP _ _);; m)) in Hyp_inst. match goal with |[ H1 : _ = ?f |- _ = _ ] => pathvia (f) end. * clear Hyp_inst. rewrite <- assoc. apply CoproductIn1Commutes_right_in_ctx_dir. rewrite id_left. apply CoproductIn1Commutes_right_in_ctx_dir. rewrite id_left. apply CoproductIn1Commutes_right_dir. apply idpath. * rewrite <- Hyp_inst; clear Hyp_inst. rewrite <- assoc. apply idpath. + unfold tau_from_alg. apply nat_trans_eq; try (exact hs). intro c. simpl. unfold coproduct_nat_trans_in2_data. assert (Hyp_inst := nat_trans_eq_pointwise _ _ _ _ _ _ Hyp c); clear Hyp. apply (maponpaths (fun m => CoproductIn2 C (CP _ _);; m)) in Hyp_inst. match goal with |[ H1 : _ = ?f |- _ = _ ] => pathvia (f) end. * clear Hyp_inst. do 2 rewrite <- assoc. apply CoproductIn2Commutes_right_in_ctx_dir. simpl. rewrite <- assoc. apply maponpaths. apply CoproductIn2Commutes_right_in_ctx_dir. simpl. rewrite <- assoc. apply maponpaths. unfold tau_from_alg. apply CoproductIn2Commutes_right_dir. apply idpath. * rewrite <- Hyp_inst; clear Hyp_inst. rewrite <- assoc. apply idpath. Qed. Lemma whole_from_parts (T : algebra_ob _ Id_H) (Z : Ptd) (f : Z ⇒ ptd_from_alg T) (h : `T ∙ (U Z) ⇒ T) : bracket_property_parts T f h → bracket_property T f h. (* (#U f = eta_from_alg T øø (U Z) ;; h) × (θ (`T ⊗ Z) ;; #H h ;; tau_from_alg T = tau_from_alg T øø (U Z) ;; h ) → alg_map _ _ T øø (U Z) ;; h = identity (U Z) ⊕ θ (`T ⊗ Z) ;; identity (U Z) ⊕ #H h ;; CoproductArrow _ (CPEndC _ _ ) (#U f) (tau_from_alg T ). *) Proof. intros [Hyp1 Hyp2]. apply nat_trans_eq; try (exact hs). intro c. apply CoproductArrow_eq_cor. + clear Hyp2. assert (Hyp1_inst := nat_trans_eq_pointwise _ _ _ _ _ _ Hyp1 c); clear Hyp1. rewrite <- assoc. apply CoproductIn1Commutes_right_in_ctx_dir. rewrite id_left. apply CoproductIn1Commutes_right_in_ctx_dir. rewrite id_left. apply CoproductIn1Commutes_right_dir. rewrite Hyp1_inst. simpl. apply assoc. + clear Hyp1. assert (Hyp2_inst := nat_trans_eq_pointwise _ _ _ _ _ _ Hyp2 c); clear Hyp2. rewrite <- assoc. apply CoproductIn2Commutes_right_in_ctx_dir. simpl. rewrite assoc. eapply pathscomp0. * eapply pathsinv0. exact Hyp2_inst. * clear Hyp2_inst. simpl. do 2 rewrite <- assoc. apply maponpaths. apply CoproductIn2Commutes_right_in_ctx_dir. simpl. rewrite <- assoc. apply maponpaths. apply CoproductIn2Commutes_right_dir. apply idpath. Qed. (* show bracket_parts_point is logically equivalent to bracket_point, then use it to show that bracket_parts is equivalent to bracket using [weqonsecfibers: ∀ (X : UU) (P Q : X → UU), (∀ x : X, P x ≃ Q x) → (∀ x : X, P x) ≃ (∀ x : X, Q x)] *) Definition hss : UU := Σ T, bracket T. Coercion alg_from_hss (T : hss) : algebra_ob _ Id_H := pr1 T. Definition fbracket (T : hss) {Z : Ptd} (f : Z ⇒ ptd_from_alg T) : `T ∙ (U Z) ⇒ T := pr1 (pr1 (pr2 T Z f)). (** The bracket operation [fbracket] is unique *) Definition fbracket_unique_pointwise (T : hss) {Z : Ptd} (f : Z ⇒ ptd_from_alg T) : ∀ (α : functor_composite (U Z) `T ⟶ `T), (∀ c : C, pr1 (#U f) c = pr1 (eta_from_alg T) (pr1 (U Z) c) ;; α c) → (∀ c : C, pr1 (θ (`T ⊗ Z)) c ;; pr1 (#H α) c ;; pr1 (tau_from_alg T) c = pr1 (tau_from_alg T) (pr1 (U Z) c) ;; α c) → α = fbracket T f. Proof. intros α H1 H2. apply path_to_ctr. apply whole_from_parts. split. - apply nat_trans_eq; try assumption. - apply nat_trans_eq; assumption. Qed. Definition fbracket_unique (T : hss) {Z : Ptd} (f : Z ⇒ ptd_from_alg T) : ∀ α : functor_composite (U Z)(`T) ⟶ `T, bracket_property_parts T f α (* (#U f = eta_from_alg T øø ((U Z)) ;; α) → (θ (`T ⊗ Z) ;; #H α ;; tau_from_alg T = tau_from_alg T øø (U Z) ;; α) *) → α = fbracket T f. Proof. intros α [H1 H2]. apply path_to_ctr. apply whole_from_parts. split; assumption. Qed. Definition fbracket_unique_target_pointwise (T : hss) {Z : Ptd} (f : Z ⇒ ptd_from_alg T) : ∀ α : functor_composite (U Z)(`T) ⟶ `T, bracket_property_parts T f α (* (#U f = eta_from_alg T øø U Z ;; α) → (θ (`T ⊗ Z) ;; #H α ;; tau_from_alg T = tau_from_alg T øø U Z ;; α) *) → ∀ c, α c = pr1 (fbracket T f) c. Proof. intros α H12. set (t:= fbracket_unique _ _ α H12). apply (nat_trans_eq_weq _ _ hs _ _ _ _ t). Qed. (** Properties of [fbracket] by definition: commutative diagrams *) Lemma fbracket_η (T : hss) : ∀ {Z : Ptd} (f : Z ⇒ ptd_from_alg T), #U f = eta_from_alg T øø U Z ;; fbracket T f. Proof. intros Z f. (* assert (H' := parts_from_whole T Z f (fbracket _ f)) . *) exact (pr1 (parts_from_whole _ _ _ _ (pr2 (pr1 (pr2 T Z f))))). Qed. Lemma fbracket_τ (T : hss) : ∀ {Z : Ptd} (f : Z ⇒ ptd_from_alg T), θ (`T ⊗ Z) ;; #H (fbracket T f) ;; tau_from_alg T = tau_from_alg T øø U Z ;; (fbracket T f). Proof. intros Z f. exact (pr2 (parts_from_whole _ _ _ _ (pr2 (pr1 (pr2 T Z f))))). Qed. (** [fbracket] is also natural *) Lemma fbracket_natural (T : hss) {Z Z' : Ptd} (f : Z ⇒ Z') (g : Z' ⇒ ptd_from_alg T) : post_whisker _ _ _ _ (#U f)(`T) ;; fbracket T g = fbracket T (f ;; g). Proof. apply fbracket_unique_pointwise. - simpl. intro c. rewrite assoc. set (H':=nat_trans_ax (eta_from_alg T)). simpl in H'. rewrite <- H'; clear H'. rewrite <- assoc. apply maponpaths. set (X:= nat_trans_eq_weq _ _ hs _ _ _ _ (fbracket_η T g)). simpl in X. exact (X _ ). - intro c; simpl. assert (H':=nat_trans_ax (tau_from_alg T)). simpl in H'. eapply pathscomp0. Focus 2. apply (!assoc _ _ _ _ _ _ _ _ ). eapply pathscomp0. Focus 2. apply cancel_postcomposition. apply H'. clear H'. set (H':=fbracket_τ T g). simpl in H'. assert (X:= nat_trans_eq_pointwise _ _ _ _ _ _ H' c). simpl in X. rewrite <- assoc. rewrite <- assoc. transitivity ( # (pr1 (H ((`T)))) (pr1 (pr1 f) c) ;; (pr1 (θ ((`T) ⊗ Z')) c);; pr1 (# H (fbracket T g)) c;; pr1 (tau_from_alg T) c). Focus 2. rewrite <- assoc. rewrite <- assoc. apply maponpaths. repeat rewrite assoc. apply X. clear X. set (A:=θ_nat_2_pointwise). simpl in *. set (A':= A _ hs H θ (`T) Z Z'). simpl in A'. set (A2:= A' f). clearbody A2; clear A'; clear A. rewrite A2; clear A2. repeat rewrite <- assoc. apply maponpaths. simpl. repeat rewrite assoc. apply cancel_postcomposition. set (A := functor_comp H). simpl in A. rewrite A. apply cancel_postcomposition. clear A. clear H'. set (A:=horcomp_id_postwhisker C _ _ hs hs). rewrite A. apply idpath. Qed. (** As a consequence of naturality, we can compute [fbracket f] from [fbracket identity] *) Lemma compute_fbracket (T : hss) : ∀ {Z : Ptd} (f : Z ⇒ ptd_from_alg T), fbracket T f = post_whisker _ _ _ _ (#U f)(`T) ;; fbracket T (identity _ ). Proof. intros Z f. assert (A : f = f ;; identity _ ). { rewrite id_right; apply idpath. } rewrite A. rewrite <- fbracket_natural. rewrite id_right. apply idpath. Qed. (** ** Morphisms of heterogeneous substitution systems *) (** A morphism [f] of pointed functors is an algebra morphism when... *) (* Definition isAlgMor {T T' : Alg} (f : T ⇒ T') : UU := #H (# U f) ;; τ T' = compose (C:=EndC) (τ T) (#U f). Lemma isaprop_isAlgMor (T T' : Alg) (f : T ⇒ T') : isaprop (isAlgMor f). Proof. apply isaset_nat_trans. apply hs. Qed. *) (** a little preparation for much later *) Lemma τ_part_of_alg_mor (T T' : algebra_ob ([C, C] hs) Id_H) (β : algebra_mor ([C, C] hs) Id_H T T'): #H β ;; tau_from_alg T' = compose (C:=EndC) (tau_from_alg T) β. Proof. assert (β_is_alg_mor := pr2 β). simpl in β_is_alg_mor. assert (β_is_alg_mor_inst := maponpaths (fun m:EndC⟦_,_⟧ => (CoproductIn2 EndC (CPEndC _ _));; m) β_is_alg_mor); clear β_is_alg_mor. simpl in β_is_alg_mor_inst. apply nat_trans_eq; try (exact hs). intro c. assert (β_is_alg_mor_inst':= nat_trans_eq_pointwise _ _ _ _ _ _ β_is_alg_mor_inst c); clear β_is_alg_mor_inst. simpl in β_is_alg_mor_inst'. rewrite assoc in β_is_alg_mor_inst'. eapply pathscomp0. Focus 2. eapply pathsinv0. exact β_is_alg_mor_inst'. clear β_is_alg_mor_inst'. apply CoproductIn2Commutes_right_in_ctx_dir. simpl. rewrite <- assoc. apply idpath. Qed. (** A morphism [β] of pointed functors is a bracket morphism when... *) Lemma is_ptd_mor_alg_mor (T T' : algebra_ob ([C, C] hs) Id_H) (β : algebra_mor ([C, C] hs) Id_H T T') : @is_ptd_mor C (ptd_from_alg T) (ptd_from_alg T') (pr1 β). Proof. simpl. unfold is_ptd_mor. simpl. intro c. rewrite <- assoc. assert (X:=pr2 β). assert (X':= nat_trans_eq_pointwise _ _ _ _ _ _ X c). simpl in *. eapply pathscomp0. apply maponpaths. apply X'. unfold coproduct_nat_trans_in1_data. repeat rewrite assoc. unfold coproduct_nat_trans_data. eapply pathscomp0. apply cancel_postcomposition. apply CoproductIn1Commutes. simpl. repeat rewrite <- assoc. apply id_left. Qed. Definition ptd_from_alg_mor {T T' : algebra_ob _ Id_H} (β : algebra_mor _ _ T T') : ptd_from_alg T ⇒ ptd_from_alg T'. Proof. exists (pr1 β). apply is_ptd_mor_alg_mor. Defined. (* show functor laws for [ptd_from_alg] and [ptd_from_alg_mor] *) Definition ptd_from_alg_functor_data : functor_data (precategory_FunctorAlg _ Id_H hsEndC) Ptd. Proof. exists ptd_from_alg. intros T T' β. apply ptd_from_alg_mor. exact β. Defined. Lemma is_functor_ptd_from_alg_functor_data : is_functor ptd_from_alg_functor_data. Proof. split; simpl; intros. + unfold functor_idax. intro T. (* match goal with | [ |- ?l = _ ] => let ty:= (type of l) in idtac ty end. *) apply (invmap (eq_ptd_mor_precat _ hs _ _)). apply (invmap (eq_ptd_mor _ hs _ _)). (* match goal with | [ |- ?l = _ ] => let ty:= (type of l) in idtac ty end. *) apply idpath. + unfold functor_compax. intros T T' T'' β β'. apply (invmap (eq_ptd_mor_precat _ hs _ _)). apply (invmap (eq_ptd_mor _ hs _ _)). apply idpath. Qed. Definition ptd_from_alg_functor: functor (precategory_FunctorAlg _ Id_H hsEndC) Ptd := tpair _ _ is_functor_ptd_from_alg_functor_data. Definition isbracketMor {T T' : hss} (β : algebra_mor _ _ T T') : UU := ∀ (Z : Ptd) (f : Z ⇒ ptd_from_alg T), fbracket _ f ;; β = (β)øø (U Z) ;; fbracket _ (f ;; # ptd_from_alg_functor β ). Lemma isaprop_isbracketMor (T T':hss) (β : algebra_mor _ _ T T') : isaprop (isbracketMor β). Proof. do 2 (apply impred; intro). apply isaset_nat_trans. apply hs. Qed. (** A morphism of hss is a pointed morphism that is compatible with both [τ] and [fbracket] *) Definition ishssMor {T T' : hss} (β : algebra_mor _ _ T T') : UU := isbracketMor β. Definition hssMor (T T' : hss) : UU := Σ β : algebra_mor _ _ T T', ishssMor β. Coercion ptd_mor_from_hssMor (T T' : hss) (β : hssMor T T') : algebra_mor _ _ T T' := pr1 β. (* Definition isAlgMor_hssMor {T T' : hss} (β : hssMor T T') : isAlgMor β := pr1 (pr2 β). *) Definition isbracketMor_hssMor {T T' : hss} (β : hssMor T T') : isbracketMor β := pr2 β. (** **** Equality of morphisms of hss *) Section hssMor_equality. (** Show that equality of hssMor is equality of underlying nat. transformations *) Variables T T' : hss. Variables β β' : hssMor T T'. Definition hssMor_eq1 : β = β' ≃ (pr1 β = pr1 β'). Proof. apply total2_paths_isaprop_equiv. intro γ. apply isaprop_isbracketMor. Defined. Definition hssMor_eq : β = β' ≃ (β : EndC ⟦ _ , _ ⟧) = β'. Proof. eapply weqcomp. - apply hssMor_eq1. - apply total2_paths_isaprop_equiv. intro. apply isaset_nat_trans. apply hs. Defined. End hssMor_equality. Lemma isaset_hssMor (T T' : hss) : isaset (hssMor T T'). Proof. intros β β'. apply (isofhlevelweqb _ (hssMor_eq _ _ β β')). apply isaset_nat_trans. apply hs. Qed. (** ** The precategory of hss *) (** *** Identity morphism of hss *) Lemma ishssMor_id (T : hss) : ishssMor (identity (C:=precategory_FunctorAlg _ _ hsEndC ) (pr1 T)). Proof. unfold ishssMor. unfold isbracketMor. intros Z f. rewrite id_right. rewrite functor_id. rewrite id_right. apply pathsinv0. set (H2:=pre_composition_functor _ _ C _ hs (U Z)). set (H2' := functor_id H2). simpl in H2'. simpl. rewrite H2'. rewrite (id_left EndC). apply idpath. Qed. Definition hssMor_id (T : hss) : hssMor _ _ := tpair _ _ (ishssMor_id T). (** *** Composition of morphisms of hss *) Lemma ishssMor_comp {T T' T'' : hss} (β : hssMor T T') (γ : hssMor T' T'') : ishssMor (compose (C:=precategory_FunctorAlg _ _ hsEndC) (pr1 β) (pr1 γ)). Proof. unfold ishssMor. unfold isbracketMor. intros Z f. eapply pathscomp0. apply assoc. (* match goal with | [|- ?l = _ ] => assert (Hyp : l = fbracket T f;; pr1 β;; pr1 γ) end. *) eapply pathscomp0. apply cancel_postcomposition. apply isbracketMor_hssMor. rewrite <- assoc. eapply pathscomp0. apply maponpaths. apply isbracketMor_hssMor. rewrite assoc. rewrite functor_comp. rewrite assoc. apply cancel_postcomposition. set (H2:=functor_comp (pre_composition_functor _ _ C _ hs (U Z)) ). apply pathsinv0. apply H2. Qed. Definition hssMor_comp {T T' T'' : hss} (β : hssMor T T') (γ : hssMor T' T'') : hssMor T T'' := tpair _ _ (ishssMor_comp β γ). Definition hss_obmor : precategory_ob_mor. Proof. exists hss. exact hssMor. Defined. Definition hss_precategory_data : precategory_data. Proof. exists hss_obmor. split. - exact hssMor_id. - exact @hssMor_comp. Defined. Lemma is_precategory_hss : is_precategory hss_precategory_data. Proof. repeat split; intros. - apply (invmap (hssMor_eq _ _ _ _ )). apply (id_left EndC). - apply (invmap (hssMor_eq _ _ _ _ )). apply (id_right EndC). - apply (invmap (hssMor_eq _ _ _ _ )). apply (assoc EndC). Qed. Definition hss_precategory : precategory := tpair _ _ is_precategory_hss. End def_hss. Arguments hss {_ _} _ _ . Arguments hssMor {_ _ _ _ } _ _ . Arguments fbracket {_ _ _ _ } _ {_} _ . Arguments fbracket_η {_ _ _ _ } _ {_} _ . Arguments fbracket_τ {_ _ _ _} _ {_} _ . Arguments fbracket_unique_target_pointwise {_ _ _ _ } _ {_ _ _} _ _ . Arguments fbracket_unique {_ _ _ _ } _ {_} _ _ _ . (* Arguments Alg {_ _} _. *) Arguments hss_precategory {_ _} _ _ .