Datasets:
AI4M
/

text
stringlengths
0
3.34M
/- Copyright (c) 2019 Neil Strickland. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Neil Strickland ! This file was ported from Lean 3 source module data.pnat.xgcd ! leanprover-community/mathlib commit 6afc9b06856ad973f6a2619e3e8a0a8d537a58f2 ! Please do not edit these lines, except to modify the commit id ! if you have ported upstream changes. -/ import Mathlib.Tactic.Ring import Mathlib.Data.PNat.Prime /-! # Euclidean algorithm for ℕ This file sets up a version of the Euclidean algorithm that only works with natural numbers. Given `0 < a, b`, it computes the unique `(w, x, y, z, d)` such that the following identities hold: * `a = (w + x) d` * `b = (y + z) d` * `w * z = x * y + 1` `d` is then the gcd of `a` and `b`, and `a' := a / d = w + x` and `b' := b / d = y + z` are coprime. This story is closely related to the structure of SL₂(ℕ) (as a free monoid on two generators) and the theory of continued fractions. ## Main declarations * `XgcdType`: Helper type in defining the gcd. Encapsulates `(wp, x, y, zp, ap, bp)`. where `wp` `zp`, `ap`, `bp` are the variables getting changed through the algorithm. * `IsSpecial`: States `wp * zp = x * y + 1` * `IsReduced`: States `ap = a ∧ bp = b` ## Notes See `Nat.Xgcd` for a very similar algorithm allowing values in `ℤ`. -/ open Nat namespace PNat /-- A term of `XgcdType` is a system of six naturals. They should be thought of as representing the matrix [[w, x], [y, z]] = [[wp + 1, x], [y, zp + 1]] together with the vector [a, b] = [ap + 1, bp + 1]. -/ structure XgcdType where /-- `wp` is a variable which changes through the algorithm. -/ wp : ℕ /-- `x` satisfies `a / d = w + x` at the final step. -/ x : ℕ /-- `y` satisfies `b / d = z + y` at the final step. -/ y : ℕ /-- `zp` is a variable which changes through the algorithm. -/ zp : ℕ /-- `ap` is a variable which changes through the algorithm. -/ ap : ℕ /-- `bp` is a variable which changes through the algorithm. -/ bp : ℕ deriving Inhabited #align pnat.xgcd_type PNat.XgcdType namespace XgcdType variable (u : XgcdType) instance : SizeOf XgcdType := ⟨fun u => u.bp⟩ /-- The `Repr` instance converts terms to strings in a way that reflects the matrix/vector interpretation as above. -/ instance : Repr XgcdType where reprPrec | g, _ => s!"[[[ {repr (g.wp + 1)}, {(repr g.x)} ], [" ++ s!"{repr g.y}, {repr (g.zp + 1)}]], [" ++ s!"{repr (g.ap + 1)}, {repr (g.bp + 1)}]]" /-- Another `mk` using ℕ and ℕ+ -/ def mk' (w : ℕ+) (x : ℕ) (y : ℕ) (z : ℕ+) (a : ℕ+) (b : ℕ+) : XgcdType := mk w.val.pred x y z.val.pred a.val.pred b.val.pred #align pnat.xgcd_type.mk' PNat.XgcdType.mk' /-- `w = wp + 1` -/ def w : ℕ+ := succPNat u.wp #align pnat.xgcd_type.w PNat.XgcdType.w /-- `z = zp + 1` -/ def z : ℕ+ := succPNat u.zp #align pnat.xgcd_type.z PNat.XgcdType.z /-- `a = ap + 1` -/ def a : ℕ+ := succPNat u.ap #align pnat.xgcd_type.a PNat.XgcdType.a /-- `b = bp + 1` -/ def b : ℕ+ := succPNat u.bp #align pnat.xgcd_type.b PNat.XgcdType.b /-- `r = a % b`: remainder -/ def r : ℕ := (u.ap + 1) % (u.bp + 1) #align pnat.xgcd_type.r PNat.XgcdType.r /-- `q = ap / bp`: quotient -/ def q : ℕ := (u.ap + 1) / (u.bp + 1) #align pnat.xgcd_type.q PNat.XgcdType.q /-- `qp = q - 1` -/ def qp : ℕ := u.q - 1 #align pnat.xgcd_type.qp PNat.XgcdType.qp /-- The map `v` gives the product of the matrix [[w, x], [y, z]] = [[wp + 1, x], [y, zp + 1]] and the vector [a, b] = [ap + 1, bp + 1]. The map `vp` gives [sp, tp] such that v = [sp + 1, tp + 1]. -/ def vp : ℕ × ℕ := ⟨u.wp + u.x + u.ap + u.wp * u.ap + u.x * u.bp, u.y + u.zp + u.bp + u.y * u.ap + u.zp * u.bp⟩ #align pnat.xgcd_type.vp PNat.XgcdType.vp /-- `v = [sp + 1, tp + 1]`, check `vp` -/ def v : ℕ × ℕ := ⟨u.w * u.a + u.x * u.b, u.y * u.a + u.z * u.b⟩ #align pnat.xgcd_type.v PNat.XgcdType.v /-- `succ₂ [t.1, t.2] = [t.1.succ, t.2.succ]` -/ def succ₂ (t : ℕ × ℕ) : ℕ × ℕ := ⟨t.1.succ, t.2.succ⟩ #align pnat.xgcd_type.succ₂ PNat.XgcdType.succ₂ theorem v_eq_succ_vp : u.v = succ₂ u.vp := by ext <;> dsimp [v, vp, w, z, a, b, succ₂] <;> (repeat' rw [Nat.succ_eq_add_one]; ring_nf) #align pnat.xgcd_type.v_eq_succ_vp PNat.XgcdType.v_eq_succ_vp /-- `IsSpecial` holds if the matrix has determinant one. -/ def IsSpecial : Prop := u.wp + u.zp + u.wp * u.zp = u.x * u.y #align pnat.xgcd_type.is_special PNat.XgcdType.IsSpecial /-- `IsSpecial'` is an alternative of `IsSpecial`. -/ def IsSpecial' : Prop := u.w * u.z = succPNat (u.x * u.y) #align pnat.xgcd_type.is_special' PNat.XgcdType.IsSpecial' theorem isSpecial_iff : u.IsSpecial ↔ u.IsSpecial' := by dsimp [IsSpecial, IsSpecial'] let ⟨wp, x, y, zp, ap, bp⟩ := u constructor <;> intro h <;> simp [w, z, succPNat] at * <;> simp only [← coe_inj, mul_coe, mk_coe] at * . simp_all [← h, Nat.mul, Nat.succ_eq_add_one]; ring . simp [Nat.succ_eq_add_one, Nat.mul_add, Nat.add_mul, ← Nat.add_assoc] at h; rw [← h]; ring -- Porting note: Old code has been removed as it was much more longer. #align pnat.xgcd_type.is_special_iff PNat.XgcdType.isSpecial_iff /-- `IsReduced` holds if the two entries in the vector are the same. The reduction algorithm will produce a system with this property, whose product vector is the same as for the original system. -/ def IsReduced : Prop := u.ap = u.bp #align pnat.xgcd_type.is_reduced PNat.XgcdType.IsReduced /-- `IsReduced'` is an alternative of `IsReduced`. -/ def IsReduced' : Prop := u.a = u.b #align pnat.xgcd_type.is_reduced' PNat.XgcdType.IsReduced' theorem isReduced_iff : u.IsReduced ↔ u.IsReduced' := succPNat_inj.symm #align pnat.xgcd_type.is_reduced_iff PNat.XgcdType.isReduced_iff /-- `flip` flips the placement of variables during the algorithm. -/ def flip : XgcdType where wp := u.zp x := u.y y := u.x zp := u.wp ap := u.bp bp := u.ap #align pnat.xgcd_type.flip PNat.XgcdType.flip @[simp] theorem flip_w : (flip u).w = u.z := rfl #align pnat.xgcd_type.flip_w PNat.XgcdType.flip_w @[simp] theorem flip_x : (flip u).x = u.y := rfl #align pnat.xgcd_type.flip_x PNat.XgcdType.flip_x @[simp] theorem flip_y : (flip u).y = u.x := rfl #align pnat.xgcd_type.flip_y PNat.XgcdType.flip_y @[simp] theorem flip_z : (flip u).z = u.w := rfl #align pnat.xgcd_type.flip_z PNat.XgcdType.flip_z @[simp] theorem flip_a : (flip u).a = u.b := rfl #align pnat.xgcd_type.flip_a PNat.XgcdType.flip_a @[simp] theorem flip_b : (flip u).b = u.a := rfl #align pnat.xgcd_type.flip_b PNat.XgcdType.flip_b theorem flip_isReduced : (flip u).IsReduced ↔ u.IsReduced := by dsimp [IsReduced, flip] constructor <;> intro h <;> exact h.symm #align pnat.xgcd_type.flip_is_reduced PNat.XgcdType.flip_isReduced theorem flip_isSpecial : (flip u).IsSpecial ↔ u.IsSpecial := by dsimp [IsSpecial, flip] rw [mul_comm u.x, mul_comm u.zp, add_comm u.zp] #align pnat.xgcd_type.flip_is_special PNat.XgcdType.flip_isSpecial theorem flip_v : (flip u).v = u.v.swap := by dsimp [v] ext · simp only ring · simp only ring #align pnat.xgcd_type.flip_v PNat.XgcdType.flip_v /-- Properties of division with remainder for a / b. -/ theorem rq_eq : u.r + (u.bp + 1) * u.q = u.ap + 1 := Nat.mod_add_div (u.ap + 1) (u.bp + 1) #align pnat.xgcd_type.rq_eq PNat.XgcdType.rq_eq theorem qp_eq (hr : u.r = 0) : u.q = u.qp + 1 := by by_cases hq : u.q = 0 · let h := u.rq_eq rw [hr, hq, mul_zero, add_zero] at h cases h · exact (Nat.succ_pred_eq_of_pos (Nat.pos_of_ne_zero hq)).symm #align pnat.xgcd_type.qp_eq PNat.XgcdType.qp_eq /-- The following function provides the starting point for our algorithm. We will apply an iterative reduction process to it, which will produce a system satisfying IsReduced. The gcd can be read off from this final system. -/ def start (a b : ℕ+) : XgcdType := ⟨0, 0, 0, 0, a - 1, b - 1⟩ #align pnat.xgcd_type.start PNat.XgcdType.start theorem start_isSpecial (a b : ℕ+) : (start a b).IsSpecial := by dsimp [start, IsSpecial] #align pnat.xgcd_type.start_is_special PNat.XgcdType.start_isSpecial theorem start_v (a b : ℕ+) : (start a b).v = ⟨a, b⟩ := by dsimp [start, v, XgcdType.a, XgcdType.b, w, z] have : succ 0 = 1 := rfl rw [this, one_mul, one_mul, zero_mul, zero_mul, zero_add, add_zero] rw [← Nat.pred_eq_sub_one, ← Nat.pred_eq_sub_one] rw [Nat.succ_pred_eq_of_pos a.pos, Nat.succ_pred_eq_of_pos b.pos] #align pnat.xgcd_type.start_v PNat.XgcdType.start_v /-- `finish` happens when the reducing process ends. -/ def finish : XgcdType := XgcdType.mk u.wp ((u.wp + 1) * u.qp + u.x) u.y (u.y * u.qp + u.zp) u.bp u.bp #align pnat.xgcd_type.finish PNat.XgcdType.finish theorem finish_isReduced : u.finish.IsReduced := by dsimp [IsReduced] rfl #align pnat.xgcd_type.finish_is_reduced PNat.XgcdType.finish_isReduced theorem finish_isSpecial (hs : u.IsSpecial) : u.finish.IsSpecial := by dsimp [IsSpecial, finish] at hs⊢ rw [add_mul _ _ u.y, add_comm _ (u.x * u.y), ← hs] ring #align pnat.xgcd_type.finish_is_special PNat.XgcdType.finish_isSpecial theorem finish_v (hr : u.r = 0) : u.finish.v = u.v := by let ha : u.r + u.b * u.q = u.a := u.rq_eq rw [hr, zero_add] at ha ext · change (u.wp + 1) * u.b + ((u.wp + 1) * u.qp + u.x) * u.b = u.w * u.a + u.x * u.b have : u.wp + 1 = u.w := rfl rw [this, ← ha, u.qp_eq hr] ring_nf · change u.y * u.b + (u.y * u.qp + u.z) * u.b = u.y * u.a + u.z * u.b rw [← ha, u.qp_eq hr] ring #align pnat.xgcd_type.finish_v PNat.XgcdType.finish_v /-- This is the main reduction step, which is used when u.r ≠ 0, or equivalently b does not divide a. -/ def step : XgcdType := XgcdType.mk (u.y * u.q + u.zp) u.y ((u.wp + 1) * u.q + u.x) u.wp u.bp (u.r - 1) #align pnat.xgcd_type.step PNat.XgcdType.step /-- We will apply the above step recursively. The following result is used to ensure that the process terminates. -/ theorem step_wf (hr : u.r ≠ 0) : SizeOf.sizeOf u.step < SizeOf.sizeOf u := by change u.r - 1 < u.bp have h₀ : u.r - 1 + 1 = u.r := Nat.succ_pred_eq_of_pos (Nat.pos_of_ne_zero hr) have h₁ : u.r < u.bp + 1 := Nat.mod_lt (u.ap + 1) u.bp.succ_pos rw [← h₀] at h₁ exact lt_of_succ_lt_succ h₁ #align pnat.xgcd_type.step_wf PNat.XgcdType.step_wf theorem step_isSpecial (hs : u.IsSpecial) : u.step.IsSpecial := by dsimp [IsSpecial, step] at hs⊢ rw [mul_add, mul_comm u.y u.x, ← hs] ring #align pnat.xgcd_type.step_is_special PNat.XgcdType.step_isSpecial /-- The reduction step does not change the product vector. -/ theorem step_v (hr : u.r ≠ 0) : u.step.v = u.v.swap := by let ha : u.r + u.b * u.q = u.a := u.rq_eq let hr : u.r - 1 + 1 = u.r := (add_comm _ 1).trans (add_tsub_cancel_of_le (Nat.pos_of_ne_zero hr)) ext · change ((u.y * u.q + u.z) * u.b + u.y * (u.r - 1 + 1) : ℕ) = u.y * u.a + u.z * u.b rw [← ha, hr] ring · change ((u.w * u.q + u.x) * u.b + u.w * (u.r - 1 + 1) : ℕ) = u.w * u.a + u.x * u.b rw [← ha, hr] ring #align pnat.xgcd_type.step_v PNat.XgcdType.step_v -- Porting note: removed 'have' and added decreasing_by to avoid lint errors /-- We can now define the full reduction function, which applies step as long as possible, and then applies finish. Note that the "have" statement puts a fact in the local context, and the equation compiler uses this fact to help construct the full definition in terms of well-founded recursion. The same fact needs to be introduced in all the inductive proofs of properties given below. -/ def reduce (u : XgcdType) : XgcdType := dite (u.r = 0) (fun _ => u.finish) fun _h => flip (reduce u.step) decreasing_by apply u.step_wf _h #align pnat.xgcd_type.reduce PNat.XgcdType.reduce theorem reduce_a {u : XgcdType} (h : u.r = 0) : u.reduce = u.finish := by rw [reduce] exact if_pos h #align pnat.xgcd_type.reduce_a PNat.XgcdType.reduce_a theorem reduce_b {u : XgcdType} (h : u.r ≠ 0) : u.reduce = u.step.reduce.flip := by rw [reduce] exact if_neg h #align pnat.xgcd_type.reduce_b PNat.XgcdType.reduce_b theorem reduce_isReduced : ∀ u : XgcdType, u.reduce.IsReduced | u => dite (u.r = 0) (fun h => by rw [reduce_a h] exact u.finish_isReduced) fun h => by have : SizeOf.sizeOf u.step < SizeOf.sizeOf u := u.step_wf h rw [reduce_b h, flip_isReduced] apply reduce_isReduced #align pnat.xgcd_type.reduce_reduced PNat.XgcdType.reduce_isReduced theorem reduce_isReduced' (u : XgcdType) : u.reduce.IsReduced' := (isReduced_iff _).mp u.reduce_isReduced #align pnat.xgcd_type.reduce_reduced' PNat.XgcdType.reduce_isReduced' theorem reduce_isSpecial : ∀ u : XgcdType, u.IsSpecial → u.reduce.IsSpecial | u => dite (u.r = 0) (fun h hs => by rw [reduce_a h] exact u.finish_isSpecial hs) fun h hs => by have : SizeOf.sizeOf u.step < SizeOf.sizeOf u := u.step_wf h rw [reduce_b h] exact (flip_isSpecial _).mpr (reduce_isSpecial _ (u.step_isSpecial hs)) #align pnat.xgcd_type.reduce_special PNat.XgcdType.reduce_isSpecial theorem reduce_isSpecial' (u : XgcdType) (hs : u.IsSpecial) : u.reduce.IsSpecial' := (isSpecial_iff _).mp (u.reduce_isSpecial hs) #align pnat.xgcd_type.reduce_special' PNat.XgcdType.reduce_isSpecial' theorem reduce_v : ∀ u : XgcdType, u.reduce.v = u.v | u => dite (u.r = 0) (fun h => by rw [reduce_a h, finish_v u h]) fun h => by have : SizeOf.sizeOf u.step < SizeOf.sizeOf u := u.step_wf h rw [reduce_b h, flip_v, reduce_v (step u), step_v u h, Prod.swap_swap] #align pnat.xgcd_type.reduce_v PNat.XgcdType.reduce_v end XgcdType section gcd variable (a b : ℕ+) /-- Extended Euclidean algorithm -/ def xgcd : XgcdType := (XgcdType.start a b).reduce #align pnat.xgcd PNat.xgcd /-- `gcdD a b = gcd a b` -/ def gcdD : ℕ+ := (xgcd a b).a #align pnat.gcd_d PNat.gcdD /-- Final value of `w` -/ def gcdW : ℕ+ := (xgcd a b).w #align pnat.gcd_w PNat.gcdW /-- Final value of `x` -/ def gcdX : ℕ := (xgcd a b).x #align pnat.gcd_x PNat.gcdX /-- Final value of `y` -/ def gcdY : ℕ := (xgcd a b).y #align pnat.gcd_y PNat.gcdY /-- Final value of `z` -/ def gcdZ : ℕ+ := (xgcd a b).z #align pnat.gcd_z PNat.gcdZ /-- Final value of `a / d` -/ def gcdA' : ℕ+ := succPNat ((xgcd a b).wp + (xgcd a b).x) #align pnat.gcd_a' PNat.gcdA' /-- Final value of `b / d` -/ def gcdB' : ℕ+ := succPNat ((xgcd a b).y + (xgcd a b).zp) #align pnat.gcd_b' PNat.gcdB' theorem gcdA'_coe : (gcdA' a b : ℕ) = gcdW a b + gcdX a b := by dsimp [gcdA', gcdX, gcdW, XgcdType.w] rw [Nat.succ_eq_add_one, Nat.succ_eq_add_one, add_right_comm] #align pnat.gcd_a'_coe PNat.gcdA'_coe theorem gcdB'_coe : (gcdB' a b : ℕ) = gcdY a b + gcdZ a b := by dsimp [gcdB', gcdY, gcdZ, XgcdType.z] rw [Nat.succ_eq_add_one, Nat.succ_eq_add_one, add_assoc] #align pnat.gcd_b'_coe PNat.gcdB'_coe theorem gcd_props : let d := gcdD a b let w := gcdW a b let x := gcdX a b let y := gcdY a b let z := gcdZ a b let a' := gcdA' a b let b' := gcdB' a b w * z = succPNat (x * y) ∧ a = a' * d ∧ b = b' * d ∧ z * a' = succPNat (x * b') ∧ w * b' = succPNat (y * a') ∧ (z * a : ℕ) = x * b + d ∧ (w * b : ℕ) = y * a + d := by intros d w x y z a' b' let u := XgcdType.start a b let ur := u.reduce have _ : d = ur.a := rfl have hb : d = ur.b := u.reduce_isReduced' have ha' : (a' : ℕ) = w + x := gcdA'_coe a b have hb' : (b' : ℕ) = y + z := gcdB'_coe a b have hdet : w * z = succPNat (x * y) := u.reduce_isSpecial' rfl constructor exact hdet have hdet' : (w * z : ℕ) = x * y + 1 := by rw [← mul_coe, hdet, succPNat_coe] have _ : u.v = ⟨a, b⟩ := XgcdType.start_v a b let hv : Prod.mk (w * d + x * ur.b : ℕ) (y * d + z * ur.b : ℕ) = ⟨a, b⟩ := u.reduce_v.trans (XgcdType.start_v a b) rw [← hb, ← add_mul, ← add_mul, ← ha', ← hb'] at hv have ha'' : (a : ℕ) = a' * d := (congr_arg Prod.fst hv).symm have hb'' : (b : ℕ) = b' * d := (congr_arg Prod.snd hv).symm constructor exact eq ha'' constructor exact eq hb'' have hza' : (z * a' : ℕ) = x * b' + 1 := by rw [ha', hb', mul_add, mul_add, mul_comm (z : ℕ), hdet'] ring have hwb' : (w * b' : ℕ) = y * a' + 1 := by rw [ha', hb', mul_add, mul_add, hdet'] ring constructor · apply eq rw [succPNat_coe, Nat.succ_eq_add_one, mul_coe, hza'] constructor · apply eq rw [succPNat_coe, Nat.succ_eq_add_one, mul_coe, hwb'] rw [ha'', hb''] repeat' rw [← @mul_assoc] rw [hza', hwb'] constructor <;> ring #align pnat.gcd_props PNat.gcd_props theorem gcd_eq : gcdD a b = gcd a b := by rcases gcd_props a b with ⟨_, h₁, h₂, _, _, h₅, _⟩ apply dvd_antisymm · apply dvd_gcd exact Dvd.intro (gcdA' a b) (h₁.trans (mul_comm _ _)).symm exact Dvd.intro (gcdB' a b) (h₂.trans (mul_comm _ _)).symm · have h₇ : (gcd a b : ℕ) ∣ gcdZ a b * a := (Nat.gcd_dvd_left a b).trans (dvd_mul_left _ _) have h₈ : (gcd a b : ℕ) ∣ gcdX a b * b := (Nat.gcd_dvd_right a b).trans (dvd_mul_left _ _) rw [h₅] at h₇ rw [dvd_iff] exact (Nat.dvd_add_iff_right h₈).mpr h₇ #align pnat.gcd_eq PNat.gcd_eq theorem gcd_det_eq : gcdW a b * gcdZ a b = succPNat (gcdX a b * gcdY a b) := (gcd_props a b).1 #align pnat.gcd_det_eq PNat.gcd_det_eq theorem gcd_b_eq : b = gcdB' a b * gcd a b := gcd_eq a b ▸ (gcd_props a b).2.2.1 #align pnat.gcd_b_eq PNat.gcd_b_eq theorem gcd_rel_left' : gcdZ a b * gcdA' a b = succPNat (gcdX a b * gcdB' a b) := (gcd_props a b).2.2.2.1 #align pnat.gcd_rel_left' PNat.gcd_rel_left' theorem gcd_rel_right' : gcdW a b * gcdB' a b = succPNat (gcdY a b * gcdA' a b) := (gcd_props a b).2.2.2.2.1 #align pnat.gcd_rel_right' PNat.gcd_rel_right' theorem gcd_rel_left : (gcdZ a b * a : ℕ) = gcdX a b * b + gcd a b := gcd_eq a b ▸ (gcd_props a b).2.2.2.2.2.1 #align pnat.gcd_rel_left PNat.gcd_rel_left theorem gcd_rel_right : (gcdW a b * b : ℕ) = gcdY a b * a + gcd a b := gcd_eq a b ▸ (gcd_props a b).2.2.2.2.2.2 #align pnat.gcd_rel_right PNat.gcd_rel_right end gcd end PNat
{-# OPTIONS --universe-polymorphism #-} module Categories.Monoidal.IntConstruction where open import Level open import Data.Fin open import Data.Product open import Categories.Category open import Categories.Product open import Categories.Monoidal open import Categories.Functor hiding (id; _∘_; identityʳ; assoc) open import Categories.Monoidal.Braided open import Categories.Monoidal.Helpers open import Categories.Monoidal.Braided.Helpers open import Categories.Monoidal.Symmetric open import Categories.NaturalIsomorphism open import Categories.NaturalTransformation hiding (id) open import Categories.Monoidal.Traced ------------------------------------------------------------------------------ record Polarized {o o' : Level} (A : Set o) (B : Set o') : Set (o ⊔ o') where constructor ± field pos : A neg : B IntC : ∀ {o ℓ e} {C : Category o ℓ e} {M : Monoidal C} {B : Braided M} {S : Symmetric B} → (T : Traced S) → Category o ℓ e IntC {o} {ℓ} {e} {C} {M} {B} {S} T = record { Obj = Polarized C.Obj C.Obj ; _⇒_ = λ { (± A+ A-) (± B+ B-) → C [ F.⊗ₒ (A+ , B-) , F.⊗ₒ (B+ , A-) ]} ; _≡_ = C._≡_ ; _∘_ = λ { {(± A+ A-)} {(± B+ B-)} {(± C+ C-)} g f → T.trace { B- } {F.⊗ₒ (A+ , C-)} {F.⊗ₒ (C+ , A-)} (ηassoc⇐ (ternary C C+ A- B-) C.∘ F.⊗ₘ (C.id , ηbraid (binary C B- A-)) C.∘ ηassoc⇒ (ternary C C+ B- A-) C.∘ F.⊗ₘ (g , C.id) C.∘ ηassoc⇐ (ternary C B+ C- A-) C.∘ F.⊗ₘ (C.id , ηbraid (binary C A- C-)) C.∘ ηassoc⇒ (ternary C B+ A- C-) C.∘ F.⊗ₘ (f , C.id) C.∘ ηassoc⇐ (ternary C A+ B- C-) C.∘ F.⊗ₘ (C.id , ηbraid (binary C C- B-)) C.∘ ηassoc⇒ (ternary C A+ C- B-))} ; id = F.⊗ₘ (C.id , C.id) ; assoc = λ { {(± A+ A-)} {(± B+ B-)} {(± C+ C-)} {(± D+ D-)} {f} {g} {h} → {!!} } ; identityˡ = λ { {(± A+ A-)} {(± B+ B-)} {f} → (begin {!!} ↓⟨ {!!} ⟩ f ∎) } ; identityʳ = λ { {(± A+ A-)} {(± B+ B-)} {f} → {!!} } ; equiv = C.equiv ; ∘-resp-≡ = λ { {(± A+ A-)} {(± B+ B-)} {(± C+ C-)} {f} {h} {g} {i} f≡h g≡i → {!!} } } where module C = Category C open C.HomReasoning module M = Monoidal M renaming (id to 𝟙) module F = Functor M.⊗ renaming (F₀ to ⊗ₒ; F₁ to ⊗ₘ) module B = Braided B module S = Symmetric S module T = Traced T module NIassoc = NaturalIsomorphism M.assoc open NaturalTransformation NIassoc.F⇒G renaming (η to ηassoc⇒) open NaturalTransformation NIassoc.F⇐G renaming (η to ηassoc⇐) module NIbraid = NaturalIsomorphism B.braid open NaturalTransformation NIbraid.F⇒G renaming (η to ηbraid) IntConstruction : ∀ {o ℓ e} {C : Category o ℓ e} {M : Monoidal C} {B : Braided M} {S : Symmetric B} → (T : Traced S) → Σ[ IntC ∈ Category o ℓ e ] Σ[ MIntC ∈ Monoidal IntC ] Σ[ BIntC ∈ Braided MIntC ] Σ[ SIntC ∈ Symmetric BIntC ] Traced SIntC IntConstruction = {!!}
Finally we found a safe & secure tool that allows us to surf the net from all over the world. As QA Manager/Lead Tester for an organization that currently performs financial transactions in over 60 countries worldwide, GeoSurf has been an invaluable tool, allowing me to perform verifications of transaction flows and localized UI components that I would otherwise be unable to check in person. This reduces test cycle times immensely and in a lot of circumstances allows me to do testing that I simply would not be able to do otherwise. With GeoSurf, we can build truly global applications and experience our games as users from every corner of the world. We at iMesh are constantly using GeoSurf in the Marketing, Development, and of course, the QA departments. Since we started using GeoSurf, it is now easier than ever to research and qualify new markets and verticals that we haven’t yet explored. GeoSurf saves us LOTS of valuable time! GeoSurf is by far one of the most powerful tools Secco Squared uses on a daily basis. The intelligence we gather from GeoSurf allows Secco Squared to stay ahead of the curve. GeoSurf is a flexible and powerful tool that has proven invaluable to our international ad operations. It’s customizable, easy to use and furthermore, they’re always innovating with their products – they listen to their customers.
(* * Copyright 2014, NICTA * * This software may be distributed and modified according to the terms of * the BSD 2-Clause license. Note that NO WARRANTY is provided. * See "LICENSE_BSD2.txt" for details. * * @TAG(NICTA_BSD) *) (* * This file contains theorems for dealing with a "simply" lifted * heap, where each byte of memory can be accessed as one (and only) * type. * * This is a simpler model of Tuch's "lift_t" model, where nested * struct fields cannot be directly accessed as pointers. *) theory TypHeapSimple imports "../../lib/TypHeapLib" begin (* * Each address in the heap can contain one of three things: * * - A type tag, which inidicates that this address is the first * byte of an object; * * - A footprint, which indicates that this address is a latter byte * of an object; * * - Nothing, which indicates that this address does not fall inside * an object. *) datatype heap_typ_contents = HeapType typ_uinfo | HeapFootprint | HeapEmpty (* * Given a Tuch-style heap representation (where each memory location * contains a set of different types, representing nested field types) * calculate a single top-level type of the heap. * * We just want to commit to a single type for this heap location, * and nothing more. *) definition heap_type_tag :: "heap_typ_desc \<Rightarrow> word32 \<Rightarrow> heap_typ_contents" where "heap_type_tag d a \<equiv> (if fst (d a) = False \<or> (\<forall>x. (snd (d a)) x = None) \<or> (\<forall>x. (snd (d a)) x \<noteq> None) then HeapEmpty else case (snd (d a)) (GREATEST x. snd (d a) x \<noteq> None) of Some (_, False) \<Rightarrow> HeapFootprint | Some (x, True) \<Rightarrow> HeapType x | None \<Rightarrow> HeapEmpty)" (* * Determine if the heap has a valid footprint for the given type at * the given address. * * A valid footprint means that the user has committed that the given * memory location will only be used for the given type. * * A "simple" footprint differs from the Tuch-style because we only * commit to a single type, and have no support for accessing nested * structures. *) definition valid_simple_footprint :: "heap_typ_desc \<Rightarrow> word32 \<Rightarrow> typ_uinfo \<Rightarrow> bool" where "valid_simple_footprint d x t \<equiv> heap_type_tag d x = HeapType t \<and> (\<forall>y. y \<in> {x + 1..+ (size_td t)- Suc 0} \<longrightarrow> heap_type_tag d y = HeapFootprint)" lemma valid_simple_footprintI: "\<lbrakk> heap_type_tag d x = HeapType t; \<And>y. y \<in> {x + 1..+(size_td t) - Suc 0} \<Longrightarrow> heap_type_tag d y = HeapFootprint \<rbrakk> \<Longrightarrow> valid_simple_footprint d x t" by (clarsimp simp: valid_simple_footprint_def) lemma valid_simple_footprintD: "valid_simple_footprint d x t \<Longrightarrow> heap_type_tag d x = HeapType t" by (simp add: valid_simple_footprint_def) lemma valid_simple_footprintD2: "\<lbrakk> valid_simple_footprint d x t; y \<in> {x + 1..+(size_td t) - Suc 0} \<rbrakk> \<Longrightarrow> heap_type_tag d y = HeapFootprint" by (simp add: valid_simple_footprint_def) lemma typ_slices_not_empty: "typ_slices (x::('a::{mem_type} itself)) \<noteq> []" apply (clarsimp simp: typ_slices_def) done lemma last_typ_slice_t: "(last (typ_slice_t t 0)) = (t, True)" apply (case_tac t) apply clarsimp done lemma if_eqI: "\<lbrakk> a \<Longrightarrow> x = z; \<not> a \<Longrightarrow> y = z \<rbrakk> \<Longrightarrow> (if a then x else y) = z" by simp lemma heap_type_tag_ptr_retyp: "snd (s (ptr_val t)) = empty \<Longrightarrow> heap_type_tag (ptr_retyp (t :: 'a::mem_type ptr) s) (ptr_val t) = HeapType (typ_uinfo_t TYPE('a))" apply (unfold ptr_retyp_def heap_type_tag_def) apply (subst htd_update_list_index, fastforce, fastforce)+ apply (rule if_eqI) apply clarsimp apply (erule disjE) apply (erule_tac x=0 in allE) apply clarsimp apply (erule_tac x="length (typ_slice_t (typ_uinfo_t TYPE('a)) 0)" in allE) apply (clarsimp simp: list_map_eq) apply (clarsimp simp: list_map_eq last_conv_nth [simplified, symmetric] last_typ_slice_t split: option.splits if_split_asm prod.splits) done lemma not_snd_last_typ_slice_t: "k \<noteq> 0 \<Longrightarrow> \<not> snd (last (typ_slice_t z k))" by (case_tac z, clarsimp) lemma heap_type_tag_ptr_retyp_rest: "\<lbrakk> snd (s (ptr_val t + k)) = empty; 0 < k; unat k < size_td (typ_uinfo_t TYPE('a)) \<rbrakk> \<Longrightarrow> heap_type_tag (ptr_retyp (t :: 'a::mem_type ptr) s) (ptr_val t + k) = HeapFootprint" apply (unfold ptr_retyp_def heap_type_tag_def) apply (subst htd_update_list_index, simp, clarsimp, metis intvlI size_of_def word_unat.Rep_inverse)+ apply (rule if_eqI) apply clarsimp apply (erule disjE) apply (erule_tac x=0 in allE) apply (clarsimp simp: typ_slices_index size_of_def) apply (erule_tac x="length (typ_slice_t (typ_uinfo_t TYPE('a)) (unat k))" in allE) apply (clarsimp simp: typ_slices_index size_of_def list_map_eq) apply (clarsimp simp: list_map_eq last_conv_nth [simplified, symmetric] size_of_def split: option.splits if_split_asm prod.splits bool.splits) apply (metis surj_pair) apply (subst (asm) (2) surjective_pairing) apply (subst (asm) not_snd_last_typ_slice_t) apply clarsimp apply unat_arith apply simp done lemma typ_slices_addr_card [simp]: "length (typ_slices (x::('a::{mem_type} itself))) < addr_card" apply (clarsimp simp: typ_slices_def) done lemma htd_update_list_same': "\<lbrakk>0 < unat k; unat k \<le> addr_card - length v\<rbrakk> \<Longrightarrow> htd_update_list (p + k) v h p = h p" apply (insert htd_update_list_same [where v=v and p=p and h=h and k="unat k"]) apply clarsimp done lemma unat_less_impl_less: "unat a < unat b \<Longrightarrow> a < b" by unat_arith lemma valid_simple_footprint_ptr_retyp: "\<lbrakk> \<forall>k < size_td (typ_uinfo_t TYPE('a)). snd (s (ptr_val t + of_nat k)) = Map.empty; 1 \<le> size_td (typ_uinfo_t TYPE('a)); size_td (typ_uinfo_t TYPE('a)) < addr_card \<rbrakk> \<Longrightarrow> valid_simple_footprint (ptr_retyp (t :: 'a::mem_type ptr) s) (ptr_val t) (typ_uinfo_t TYPE('a))" apply (clarsimp simp: valid_simple_footprint_def) apply (rule conjI) apply (subst heap_type_tag_ptr_retyp) apply (erule allE [where x="0"]) apply clarsimp apply clarsimp apply (clarsimp simp: intvl_def) apply (erule_tac x="k + 1" in allE) apply (erule impE) apply (metis One_nat_def less_diff_conv) apply (subst add.assoc, subst heap_type_tag_ptr_retyp_rest) apply clarsimp apply (case_tac "1 + of_nat k = (0 :: word32)") apply (metis add.left_neutral intvlI intvl_Suc_nmem size_of_def) apply unat_arith apply clarsimp apply (metis lt_size_of_unat_simps size_of_def Suc_eq_plus1 One_nat_def less_diff_conv of_nat_Suc) apply simp done (* Determine if the given pointer is valid in the given heap. *) definition heap_ptr_valid :: "heap_typ_desc \<Rightarrow> 'a::c_type ptr \<Rightarrow> bool" where "heap_ptr_valid d p \<equiv> valid_simple_footprint d (ptr_val (p::'a ptr)) (typ_uinfo_t TYPE('a)) \<and> c_guard p" (* * Lift a heap from raw bytes and a heap description into * higher-level objects. * * This differs from Tuch's "lift_t" because we only support * simple lifting; that is, each byte in the heap may only * be accessed as a single type. Accessing struct fields by * their pointers is not supported. *) definition simple_lift :: "heap_raw_state \<Rightarrow> ('a::c_type) ptr \<Rightarrow> 'a option" where "simple_lift s p = ( if (heap_ptr_valid (hrs_htd s) p) then (Some (h_val (hrs_mem s) p)) else None)" lemma simple_lift_heap_ptr_valid: "simple_lift s p = Some x \<Longrightarrow> heap_ptr_valid (hrs_htd s) p" apply (clarsimp simp: simple_lift_def split: if_split_asm) done lemma simple_lift_c_guard: "simple_lift s p = Some x \<Longrightarrow> c_guard p" apply (clarsimp simp: simple_lift_def heap_ptr_valid_def split: if_split_asm) done (* Two valid footprints will either overlap completely or not at all. *) lemma valid_simple_footprint_neq: assumes valid_p: "valid_simple_footprint d p s" and valid_q: "valid_simple_footprint d q t" and neq: "p \<noteq> q" shows "p \<notin> {q..+ (size_td t)}" proof - have heap_type_p: "heap_type_tag d p = HeapType s" apply (metis valid_p valid_simple_footprint_def) done have heap_type_q: "heap_type_tag d q = HeapType t" apply (metis valid_q valid_simple_footprint_def) done have heap_type_q_footprint: "\<And>x. x \<in> {(q + 1)..+(size_td t - Suc 0)} \<Longrightarrow> heap_type_tag d x = HeapFootprint" apply (insert valid_q) apply (simp add: valid_simple_footprint_def) done show ?thesis using heap_type_q_footprint heap_type_p neq intvl_neq_start heap_type_q by (metis heap_typ_contents.simps(2)) qed (* Two valid footprints with different types will never overlap. *) lemma valid_simple_footprint_type_neq: "\<lbrakk> valid_simple_footprint d p s; valid_simple_footprint d q t; s \<noteq> t \<rbrakk> \<Longrightarrow> p \<notin> {q..+ (size_td t)}" apply (subgoal_tac "p \<noteq> q") apply (rule valid_simple_footprint_neq, simp_all)[1] apply (clarsimp simp: valid_simple_footprint_def) done lemma valid_simple_footprint_neq_disjoint: "\<lbrakk> valid_simple_footprint d p s; valid_simple_footprint d q t; p \<noteq> q \<rbrakk> \<Longrightarrow> {p..+(size_td s)} \<inter> {q..+ (size_td t)} = {}" apply (rule ccontr) apply (fastforce simp: valid_simple_footprint_neq dest!: intvl_inter) done lemma valid_simple_footprint_type_neq_disjoint: "\<lbrakk> valid_simple_footprint d p s; valid_simple_footprint d q t; s \<noteq> t \<rbrakk> \<Longrightarrow> {p..+(size_td s)} \<inter> {q..+ (size_td t)} = {}" apply (subgoal_tac "p \<noteq> q") apply (rule valid_simple_footprint_neq_disjoint, simp_all)[1] apply (clarsimp simp: valid_simple_footprint_def) done lemma heap_ptr_valid_neq_disjoint: "\<lbrakk> heap_ptr_valid d (p::'a::c_type ptr); heap_ptr_valid d (q::'b::c_type ptr); ptr_val p \<noteq> ptr_val q \<rbrakk> \<Longrightarrow> {ptr_val p..+size_of TYPE('a)} \<inter> {ptr_val q..+size_of TYPE('b)} = {}" apply (clarsimp simp only: size_of_tag [symmetric]) apply (rule valid_simple_footprint_neq_disjoint [where d="d"]) apply (clarsimp simp: heap_ptr_valid_def) apply (clarsimp simp: heap_ptr_valid_def) apply simp done lemma heap_ptr_valid_type_neq_disjoint: "\<lbrakk> heap_ptr_valid d (p::'a::c_type ptr); heap_ptr_valid d (q::'b::c_type ptr); typ_uinfo_t TYPE('a) \<noteq> typ_uinfo_t TYPE('b) \<rbrakk> \<Longrightarrow> {ptr_val p..+size_of TYPE('a)} \<inter> {ptr_val q..+size_of TYPE('b)} = {}" apply (subgoal_tac "ptr_val p \<noteq> ptr_val q") apply (rule heap_ptr_valid_neq_disjoint, auto)[1] apply (clarsimp simp: heap_ptr_valid_def valid_simple_footprint_def) done (* If we update one pointer in the heap, other valid pointers will be unaffected. *) lemma heap_ptr_valid_heap_update_other: assumes val_p: "heap_ptr_valid d (p::'a::mem_type ptr)" and val_q: "heap_ptr_valid d (q::'b::c_type ptr)" and neq: "ptr_val p \<noteq> ptr_val q" shows "h_val (heap_update p v h) q = h_val h q" apply (clarsimp simp: h_val_def heap_update_def) apply (subst heap_list_update_disjoint_same) apply simp apply (rule heap_ptr_valid_neq_disjoint [OF val_p val_q neq]) apply simp done (* If we update one type in the heap, other types will be unaffected. *) lemma heap_ptr_valid_heap_update_other_typ: assumes val_p: "heap_ptr_valid d (p::'a::mem_type ptr)" and val_q: "heap_ptr_valid d (q::'b::c_type ptr)" and neq: "typ_uinfo_t TYPE('a) \<noteq> typ_uinfo_t TYPE('b)" shows "h_val (heap_update p v h) q = h_val h q" apply (clarsimp simp: h_val_def heap_update_def) apply (subst heap_list_update_disjoint_same) apply simp apply (rule heap_ptr_valid_type_neq_disjoint [OF val_p val_q neq]) apply simp done (* Updating the raw heap is equivalent to updating the lifted heap. *) lemma simple_lift_heap_update: "\<lbrakk> heap_ptr_valid (hrs_htd h) p \<rbrakk> \<Longrightarrow> simple_lift (hrs_mem_update (heap_update p v) h) = (simple_lift h)(p := Some (v::'a::mem_type))" apply (rule ext) apply (clarsimp simp: simple_lift_def hrs_mem_update h_val_heap_update) apply (fastforce simp: heap_ptr_valid_heap_update_other ptr_val_inj) done (* Updating the raw heap of one type doesn't affect the lifted heap of other types. *) lemma simple_lift_heap_update_other: "\<lbrakk> heap_ptr_valid (hrs_htd d) (p::'b::mem_type ptr); typ_uinfo_t TYPE('a) \<noteq> typ_uinfo_t TYPE('b) \<rbrakk> \<Longrightarrow> simple_lift (hrs_mem_update (heap_update p v) d) = ((simple_lift d)::'a::c_type typ_heap)" apply (rule ext)+ apply (clarsimp simp: simple_lift_def h_val_heap_update hrs_mem_update) apply (auto intro: heap_ptr_valid_heap_update_other_typ) done lemma h_val_simple_lift: "simple_lift h p = Some v \<Longrightarrow> h_val (hrs_mem h) p = v" apply (clarsimp simp: simple_lift_def split: if_split_asm) done lemma h_val_field_simple_lift: "\<lbrakk> simple_lift h (pa :: 'a ptr) = Some (v::'a::mem_type); \<exists>t. field_ti TYPE('a) f = Some t; export_uinfo (the (field_ti TYPE('a) f)) = export_uinfo (typ_info_t TYPE('b :: mem_type)) \<rbrakk> \<Longrightarrow> h_val (hrs_mem h) (Ptr &(pa\<rightarrow>f) :: 'b :: mem_type ptr) = from_bytes (access_ti\<^sub>0 (the (field_ti TYPE('a) f)) v)" apply (clarsimp simp: simple_lift_def split: if_split_asm) apply (clarsimp simp: h_val_field_from_bytes) done lemma simple_lift_heap_update': "simple_lift h p = Some v' \<Longrightarrow> simple_lift (hrs_mem_update (heap_update (p::('a::{mem_type}) ptr) v) h) = (simple_lift h)(p := Some v)" apply (rule simple_lift_heap_update) apply (erule simple_lift_heap_ptr_valid) done lemma simple_lift_hrs_mem_update_None [simp]: "(simple_lift (hrs_mem_update a hp) x = None) = (simple_lift hp x = None)" apply (clarsimp simp: simple_lift_def) done lemma simple_lift_data_eq: "\<lbrakk> h_val (hrs_mem h) p = h_val (hrs_mem h') p'; heap_ptr_valid (hrs_htd h) p = heap_ptr_valid (hrs_htd h') p' \<rbrakk> \<Longrightarrow> simple_lift h p = simple_lift h' p'" apply (clarsimp simp: simple_lift_def) done lemma h_val_heap_update_disjoint: "\<lbrakk> {ptr_val p ..+ size_of TYPE('a::c_type)} \<inter> {ptr_val q ..+ size_of TYPE('b::mem_type)} = {} \<rbrakk> \<Longrightarrow> h_val (heap_update (q :: 'b ptr) r h) (p :: 'a ptr) = h_val h p" apply (clarsimp simp: h_val_def) apply (clarsimp simp: heap_update_def) apply (subst heap_list_update_disjoint_same) apply clarsimp apply blast apply clarsimp done lemma update_ti_t_valid_size: "size_of TYPE('b) = size_td t \<Longrightarrow> update_ti_t t (to_bytes_p (val::'b::mem_type)) obj = update_ti t (to_bytes_p val) obj" apply (clarsimp simp: update_ti_t_def to_bytes_p_def) done lemma h_val_field_from_bytes': "\<lbrakk> field_ti TYPE('a::{mem_type}) f = Some t; export_uinfo t = export_uinfo (typ_info_t TYPE('b::{mem_type})) \<rbrakk> \<Longrightarrow> h_val h (Ptr &(pa\<rightarrow>f) :: 'b ptr) = from_bytes (access_ti\<^sub>0 t (h_val h pa))" apply (insert h_val_field_from_bytes [where f=f and pa=pa and t=t and h="(h,x)" and 'a='a and 'b='b]) apply (clarsimp simp: hrs_mem_def) done lemma simple_lift_super_field_update_lookup: fixes dummy :: "'b :: mem_type" assumes "field_lookup (typ_info_t TYPE('b::mem_type)) f 0 = Some (s,n)" and "typ_uinfo_t TYPE('a) = export_uinfo s" and "simple_lift h p = Some v'" shows "(super_field_update_t (Ptr (&(p\<rightarrow>f))) (v::'a::mem_type) ((simple_lift h)::'b ptr \<Rightarrow> 'b option)) = ((simple_lift h)(p \<mapsto> field_update (field_desc s) (to_bytes_p v) v'))" proof - from assms have [simp]: "unat (of_nat n :: 32 word) = n" apply (subst unat_of_nat) apply (subst mod_less) apply (drule td_set_field_lookupD)+ apply (drule td_set_offset_size)+ apply (subst len_of_addr_card) apply (subst (asm) size_of_def [symmetric, where t="TYPE('b)"])+ apply (subgoal_tac "size_of TYPE('b) < addr_card") apply arith apply simp apply simp done from assms show ?thesis apply (clarsimp simp: super_field_update_t_def) apply (rule ext) apply (clarsimp simp: field_lvalue_def split: option.splits) apply (safe, simp_all) apply (frule_tac v=v and v'=v' in update_field_update) apply (clarsimp simp: field_of_t_def field_of_def typ_uinfo_t_def) apply (frule_tac m=0 in field_names_SomeD2) apply simp apply clarsimp apply (simp add: field_typ_def field_typ_untyped_def) apply (frule field_lookup_export_uinfo_Some) apply (frule_tac s=k in field_lookup_export_uinfo_Some) apply simp apply (drule (1) field_lookup_inject) apply (subst typ_uinfo_t_def [symmetric, where t="TYPE('b)"]) apply simp apply simp apply (drule field_of_t_mem)+ apply (case_tac h) apply (clarsimp simp: simple_lift_def split: if_split_asm) apply (drule (1) heap_ptr_valid_neq_disjoint) apply simp apply fast apply (clarsimp simp: field_of_t_def field_of_def) apply (subst (asm) td_set_field_lookup) apply simp apply simp apply (frule field_lookup_export_uinfo_Some) apply (simp add: typ_uinfo_t_def) apply (clarsimp simp: field_of_t_def field_of_def) apply (subst (asm) td_set_field_lookup) apply simp apply simp apply (frule field_lookup_export_uinfo_Some) apply (simp add: typ_uinfo_t_def) done qed lemma field_offset_addr_card: "\<exists>x. field_lookup (typ_info_t TYPE('a::mem_type)) f 0 = Some x \<Longrightarrow> field_offset TYPE('a) f < addr_card" apply (clarsimp simp: field_offset_def field_offset_untyped_def typ_uinfo_t_def) apply (subst field_lookup_export_uinfo_Some) apply assumption apply (frule td_set_field_lookupD) apply (drule td_set_offset_size) apply (insert max_size [where ?'a="'a"]) apply (clarsimp simp: size_of_def) done lemma unat_of_nat_field_offset: "\<exists>x. field_lookup (typ_info_t TYPE('a::mem_type)) f 0 = Some x \<Longrightarrow> unat (of_nat (field_offset TYPE('a) f) :: word32 ) = field_offset TYPE('a) f" apply (subst word_unat.Abs_inverse) apply (clarsimp simp: unats_def) apply (insert field_offset_addr_card [where f=f and ?'a="'a"])[1] apply (fastforce simp: addr_card) apply simp done lemma field_of_t_field_lookup: assumes a: "field_lookup (typ_info_t TYPE('a::mem_type)) f 0 = Some (s, n)" assumes b: "export_uinfo s = typ_uinfo_t TYPE('b::mem_type)" assumes n: "n = field_offset TYPE('a) f" shows "field_of_t (Ptr &(ptr\<rightarrow>f) :: ('b ptr)) (ptr :: 'a ptr)" apply (clarsimp simp del: field_lookup_offset_eq simp: field_of_t_def field_of_def) apply (subst td_set_field_lookup) apply (rule wf_desc_typ_tag) apply (rule exI [where x=f]) using a[simplified n] b apply (clarsimp simp: typ_uinfo_t_def) apply (subst field_lookup_export_uinfo_Some) apply assumption apply (clarsimp simp del: field_lookup_offset_eq simp: field_lvalue_def unat_of_nat_field_offset) done lemma simple_lift_field_update': fixes val :: "'b :: mem_type" and ptr :: "'a :: mem_type ptr" assumes fl: "field_lookup (typ_info_t TYPE('a)) f 0 = Some (adjust_ti (typ_info_t TYPE('b)) xf xfu, n)" and xf_xfu: "fg_cons xf xfu" and cl: "simple_lift hp ptr = Some z" shows "(simple_lift (hrs_mem_update (heap_update (Ptr &(ptr\<rightarrow>f)) val) hp)) = simple_lift hp(ptr \<mapsto> xfu val z)" (is "?LHS = ?RHS") proof (rule ext) fix p have eui: "typ_uinfo_t TYPE('b) = export_uinfo (adjust_ti (typ_info_t TYPE('b)) xf xfu)" using xf_xfu apply (subst export_tag_adjust_ti2 [OF _ wf_lf wf_desc]) apply (simp add: fg_cons_def ) apply (rule meta_eq_to_obj_eq [OF typ_uinfo_t_def]) done have n_is_field_offset: "n = field_offset TYPE('a) f" apply (insert field_lookup_offset_eq [OF fl]) apply (clarsimp) done have equal_case: "?LHS ptr = ?RHS ptr" apply (insert cl) apply (clarsimp simp: simple_lift_def split: if_split_asm) apply (clarsimp simp: hrs_mem_update) apply (subst h_val_super_update_bs) apply (rule field_of_t_field_lookup [OF fl]) apply (clarsimp simp: eui) apply (clarsimp simp: n_is_field_offset) apply clarsimp apply (unfold from_bytes_def) apply (subst fi_fu_consistentD [where f=f and s="adjust_ti (typ_info_t TYPE('b)) xf xfu"]) apply (clarsimp simp: fl) apply (clarsimp simp: n_is_field_offset field_lvalue_def) apply (metis unat_of_nat_field_offset fl) apply clarsimp apply (clarsimp simp: size_of_def) apply (clarsimp simp: size_of_def) apply clarsimp apply (subst update_ti_s_from_bytes) apply clarsimp apply (subst update_ti_adjust_ti) apply (rule xf_xfu) apply (subst update_ti_s_from_bytes) apply clarsimp apply clarsimp apply (clarsimp simp: h_val_def) done show "?LHS p = ?RHS p" apply (case_tac "p = ptr") apply (erule ssubst) apply (rule equal_case) apply (insert cl) apply (clarsimp simp: simple_lift_def hrs_mem_update split: if_split_asm) apply (rule h_val_heap_update_disjoint) apply (insert field_tag_sub [OF fl, where p=ptr]) apply (clarsimp simp: size_of_def) apply (clarsimp simp: heap_ptr_valid_def) apply (frule (1) valid_simple_footprint_neq_disjoint, fastforce) apply clarsimp apply blast done qed lemma simple_lift_field_update: fixes val :: "'b :: mem_type" and ptr :: "'a :: mem_type ptr" assumes fl: "field_ti TYPE('a) f = Some (adjust_ti (typ_info_t TYPE('b)) xf (xfu o (\<lambda>x _. x)))" and xf_xfu: "fg_cons xf (xfu o (\<lambda>x _. x))" and cl: "simple_lift hp ptr = Some z" shows "(simple_lift (hrs_mem_update (heap_update (Ptr &(ptr\<rightarrow>f)) val) hp)) = simple_lift hp(ptr \<mapsto> xfu (\<lambda>_. val) z)" (is "?LHS = ?RHS") apply (insert fl [unfolded field_ti_def]) apply (clarsimp split: option.splits) apply (subst simple_lift_field_update' [where xf=xf and xfu="xfu o (\<lambda>x _. x)" and z=z]) apply (clarsimp simp: o_def split: option.splits) apply (rule refl) apply (rule xf_xfu) apply (rule cl) apply clarsimp done lemma simple_heap_diff_types_impl_diff_ptrs: "\<lbrakk> heap_ptr_valid h (p::('a::c_type) ptr); heap_ptr_valid h (q::('b::c_type) ptr); typ_uinfo_t TYPE('a) \<noteq> typ_uinfo_t TYPE('b) \<rbrakk> \<Longrightarrow> ptr_val p \<noteq> ptr_val q" apply (clarsimp simp: heap_ptr_valid_def) apply (clarsimp simp: valid_simple_footprint_def) done lemma h_val_update_regions_disjoint: "\<lbrakk> { ptr_val p ..+ size_of TYPE('a) } \<inter> { ptr_val x ..+ size_of TYPE('b)} = {} \<rbrakk> \<Longrightarrow> h_val (heap_update p (v::('a::mem_type)) h) x = h_val h (x::('b::c_type) ptr)" apply (clarsimp simp: heap_update_def) apply (clarsimp simp: h_val_def) apply (subst heap_list_update_disjoint_same) apply clarsimp apply clarsimp done lemma simple_lift_field_update_t: fixes val :: "'b :: mem_type" and ptr :: "'a :: mem_type ptr" assumes fl: "field_ti TYPE('a) f = Some t" and diff: "typ_uinfo_t TYPE('a) \<noteq> typ_uinfo_t TYPE('c :: c_type)" and eu: "export_uinfo t = export_uinfo (typ_info_t TYPE('b))" and cl: "simple_lift hp ptr = Some z" shows "((simple_lift (hrs_mem_update (heap_update (Ptr &(ptr\<rightarrow>f)) val) hp)) :: 'c ptr \<Rightarrow> 'c option) = simple_lift hp" apply (rule ext) apply (case_tac "simple_lift hp x") apply clarsimp apply (case_tac "ptr_val x = ptr_val ptr") apply clarsimp apply (clarsimp simp: simple_lift_def hrs_mem_update split: if_split_asm) apply (cut_tac simple_lift_heap_ptr_valid [OF cl]) apply (drule (1) simple_heap_diff_types_impl_diff_ptrs [OF _ _ diff]) apply simp apply (clarsimp simp: simple_lift_def hrs_mem_update split: if_split_asm) apply (rule field_ti_field_lookupE [OF fl]) apply (frule_tac p=ptr in field_tag_sub) apply (clarsimp simp: h_val_def heap_update_def) apply (subst heap_list_update_disjoint_same) apply clarsimp apply (cut_tac simple_lift_heap_ptr_valid [OF cl]) apply (drule (2) heap_ptr_valid_neq_disjoint) apply (clarsimp simp: export_size_of [unfolded typ_uinfo_t_def, OF eu]) apply blast apply simp done lemma simple_lift_heap_update_other': "\<lbrakk> simple_lift h (p::'b::mem_type ptr) = Some v'; typ_uinfo_t TYPE('a) \<noteq> typ_uinfo_t TYPE('b) \<rbrakk> \<Longrightarrow> simple_lift (hrs_mem_update (heap_update p v) h) = ((simple_lift h)::'a::c_type typ_heap)" apply (rule simple_lift_heap_update_other) apply (erule simple_lift_heap_ptr_valid) apply simp done (* If you update bytes inside an object of one type, it won't affect * heaps of other types. *) lemma simple_lift_heap_update_bytes_in_other: "\<lbrakk> simple_lift h (p::'b::mem_type ptr) = Some v'; typ_uinfo_t TYPE('b) \<noteq> typ_uinfo_t TYPE('c); { ptr_val q ..+ size_of TYPE('a)} \<subseteq> {ptr_val p ..+ size_of TYPE('b) } \<rbrakk> \<Longrightarrow> simple_lift (hrs_mem_update (heap_update (q::'a::mem_type ptr) v) h) = ((simple_lift h)::'c::mem_type typ_heap)" apply (rule ext) apply (clarsimp simp: simple_lift_def split: if_split_asm) apply (drule (1) heap_ptr_valid_type_neq_disjoint, simp) apply (clarsimp simp: hrs_mem_update) apply (rule h_val_heap_update_disjoint) apply blast done lemma typ_name_neq: "typ_name (export_uinfo (typ_info_t TYPE('a::c_type))) \<noteq> typ_name (export_uinfo (typ_info_t TYPE('b::c_type))) \<Longrightarrow> typ_uinfo_t TYPE('a) \<noteq> typ_uinfo_t TYPE('b)" apply (metis typ_uinfo_t_def) done lemma of_nat_mod_div_decomp: "of_nat k = of_nat (k div size_of TYPE('b)) * of_nat (size_of TYPE('b::mem_type)) + of_nat (k mod size_of TYPE('b))" by (metis mod_div_decomp of_nat_add of_nat_mult) lemma c_guard_array_c_guard: "\<lbrakk> \<And>x. x < CARD('a) \<Longrightarrow> c_guard (ptr_coerce p +\<^sub>p int x :: 'b ptr) \<rbrakk> \<Longrightarrow> c_guard ( p :: ('b :: mem_type, 'a :: finite) array ptr)" apply atomize apply (clarsimp simp: c_guard_def) apply (rule conjI) apply (drule_tac x=0 in spec) apply (clarsimp simp: ptr_aligned_def align_of_def align_td_array) apply (simp add: c_null_guard_def) apply (clarsimp simp: intvl_def) apply (drule_tac x="k div size_of TYPE('b)" in spec) apply (erule impE) apply (metis (full_types) less_nat_zero_code mult_is_0 neq0_conv td_gal_lt) apply clarsimp apply (drule_tac x="k mod size_of TYPE('b)" in spec) apply (clarsimp simp: CTypesDefs.ptr_add_def) apply (subst (asm) add.assoc) apply (subst (asm) of_nat_mod_div_decomp [symmetric]) apply clarsimp done lemma heap_list_update_list': "\<lbrakk> n + x \<le> length v; length v < addr_card; q = (p + of_nat x) \<rbrakk> \<Longrightarrow> heap_list (heap_update_list p v h) n q = take n (drop x v)" by (metis heap_list_update_list) lemma outside_intvl_range: "p \<notin> {a ..+ b} \<Longrightarrow> p < a \<or> p \<ge> a + of_nat b" apply (clarsimp simp: intvl_def not_le not_less) apply (drule_tac x="unat (p-a)" in spec) apply clarsimp apply (metis add_diff_cancel2 le_less_linear le_unat_uoi mpl_lem not_add_less2 unat_mono word_less_minus_mono_left) done lemma first_in_intvl: "b \<noteq> 0 \<Longrightarrow> a \<in> {a ..+ b}" by (force simp: intvl_def) lemma zero_not_in_intvl_no_overflow: "0 \<notin> {a :: 'a::len word ..+ b} \<Longrightarrow> unat a + b \<le> 2 ^ len_of TYPE('a)" apply (rule ccontr) apply (simp add: intvl_def not_le) apply (drule_tac x="2 ^ len_of TYPE('a) - unat a" in spec) apply (clarsimp simp: not_less) apply (erule disjE) apply (metis (erased, hide_lams) diff_add_inverse less_imp_add_positive of_nat_2p of_nat_add unat_lt2p word_neq_0_conv word_unat.Rep_inverse) apply (metis le_add_diff_inverse le_antisym le_diff_conv le_refl less_imp_le_nat add.commute not_add_less1 unat_lt2p) done lemma intvl_split: "\<lbrakk> n \<ge> a \<rbrakk> \<Longrightarrow> { p :: ('a :: len) word ..+ n } = { p ..+ a } \<union> { p + of_nat a ..+ (n - a)}" apply (rule set_eqI, rule iffI) apply (clarsimp simp: intvl_def not_less) apply (rule_tac x=k in exI) apply clarsimp apply (rule classical) apply (drule_tac x="k - a" in spec) apply (clarsimp simp: not_less) apply (metis diff_less_mono not_less) apply (clarsimp simp: intvl_def not_less) apply (rule_tac x="unat (x - p)" in exI) apply clarsimp apply (erule disjE) apply clarsimp apply (metis le_unat_uoi less_or_eq_imp_le not_less order_trans) apply clarsimp apply (metis le_def le_eq_less_or_eq le_unat_uoi less_diff_conv add.commute of_nat_add) done lemma heap_ptr_valid_range_not_NULL: "heap_ptr_valid htd (p :: ('a :: c_type) ptr) \<Longrightarrow> 0 \<notin> {ptr_val p ..+ size_of TYPE('a)}" apply (clarsimp simp: heap_ptr_valid_def) apply (metis c_guard_def c_null_guard_def) done lemma heap_ptr_valid_last_byte_no_overflow: "heap_ptr_valid htd (p :: ('a :: c_type) ptr) \<Longrightarrow> unat (ptr_val p) + size_of TYPE('a) \<le> 2 ^ len_of TYPE(32)" by (metis c_guard_def c_null_guard_def heap_ptr_valid_def zero_not_in_intvl_no_overflow) lemma heap_ptr_valid_intersect_array: "\<lbrakk> \<forall>j < n. heap_ptr_valid htd (p +\<^sub>p int j); heap_ptr_valid htd (q :: ('a :: c_type) ptr) \<rbrakk> \<Longrightarrow> (\<exists>m < n. q = (p +\<^sub>p int m)) \<or> ({ptr_val p ..+ size_of TYPE ('a) * n} \<inter> {ptr_val q ..+ size_of TYPE ('a :: c_type)} = {})" apply (induct n) apply clarsimp apply atomize apply simp apply (case_tac "n = 0") apply clarsimp apply (metis heap_ptr_valid_neq_disjoint ptr_val_inj) apply (erule disjE) apply (metis less_Suc_eq) apply (case_tac "q = p +\<^sub>p int n") apply force apply (frule_tac x=n in spec) apply (erule impE, simp) apply (drule (1) heap_ptr_valid_neq_disjoint) apply simp apply (simp add: CTypesDefs.ptr_add_def) apply (rule disjI2) apply (cut_tac a=" of_nat n * of_nat (size_of TYPE('a))" and p="ptr_val p" and n="n * size_of TYPE('a) + size_of TYPE('a)" in intvl_split) apply clarsimp apply (clarsimp simp: field_simps Int_Un_distrib2) apply (metis IntI emptyE intvl_empty intvl_inter intvl_self neq0_conv) done (* Simplification rules for dealing with "lift_simple". *) lemmas simple_lift_simps = typ_name_neq simple_lift_c_guard h_val_simple_lift simple_lift_heap_update' simple_lift_heap_update_other' c_guard_field h_val_field_simple_lift simple_lift_field_update simple_lift_field_update_t c_guard_array_field nat_to_bin_string_simps (* Old name for the above simpset. *) lemmas typ_simple_heap_simps = simple_lift_simps end
= = Specifications ( Tu @-@ 12 ) = =
Require Import String. Require Import StringGraph. Require Import ListUtil. Require Import Bool.Bool. Require Import ZArith. Require Import Coq.Lists.List. Import ListNotations. Section Collapse. Definition Double (S : list StringGraphEdge) : list StringGraphEdge := S ++ S. Fixpoint FindInEdgesFrom (L : list StringGraphEdge) (A : String) {struct L} : list StringGraphEdge := match L with | [] => [] | e :: R => if str_eq_dec (To e) A then e :: FindInEdgesFrom R A else FindInEdgesFrom R A end. (* H : connected components of the same level as A *) Fixpoint CollapseNodeAtLevel' (H : list list String) (S L : list StringGraphEdge) (A : String) {struct L} : list StringGraphEdge) := match L with | [] => S | e :: R => if str_eq_dec (To e) A then (* L is sorted so no more edges will be removed *) S else match FindInEdgesFrom L A with | [] => CollapseNodeAtLevel' S R A | [u] => (* ... *) | u :: U => let eCollapsed := pair (pref (suff (From e))) (To e) in let uCollapsed := pair (From u) (suff (pref (To u))) in CollapseNodeAtLevel' (eCollapsed :: uCollapsed :: (RemoveList StringGraphEdge edge_eq_dec S [e; u])) R A end end. Fixpoint CollapseLevel' (S B : list StringGraphEdge) (l : nat) {struct S} : list StringGraphEdge := match S with | [] => [] | e :: R => S (* ... *) (*if (length ())*) end. Definition CollapseLevel (S : list StringGraphEdge) (l : nat) : list StringGraphEdge := CollapseLevel' S [] l. Fixpoint RemoveLowerPairsFor' (S B : list StringGraphEdge) (V : String) {struct S} : list StringGraphEdge := match S with | [] => [] | e :: R => if Contains StringGraphEdge edge_eq_dec B e then (* B: edges marked for removal *) RemoveLowerPairsFor' R (RemoveFirst StringGraphEdge edge_eq_dec B e) V else let eInv := pair (To e) (From e) in let eInvBlacklisted := Count StringGraphEdge edge_eq_dec B eInv in let eInvRemaining := Count StringGraphEdge edge_eq_dec R eInv in let eRemaining := Count StringGraphEdge edge_eq_dec R e in if str_eq_dec (From e) [] then if (eInvBlacklisted + 2) <=? eInvRemaining then RemoveLowerPairsFor' R (eInv :: B) V else if (0 <? eRemaining) && ((1 + eInvBlacklisted) <=? eInvRemaining) then RemoveLowerPairsFor' R (eInv :: B) V else e :: RemoveLowerPairsFor' R B V else if str_eq_dec (To e) [] then if (eInvBlacklisted + 2) <=? eInvRemaining then RemoveLowerPairsFor' R (eInv :: B) V else if (0 <? eRemaining) && ((1 + eInvBlacklisted) <=? eInvRemaining) then RemoveLowerPairsFor' R (eInv :: B) V else e :: RemoveLowerPairsFor' R B V else e :: RemoveLowerPairsFor' R B V end. Definition RemoveLowerPairsFor (S : list StringGraphEdge) (V : String) : list StringGraphEdge := RemoveLowerPairsFor' S [] V. Fixpoint RemoveLowerPairs' (S : list StringGraphEdge) (V : list String) {struct V} : list StringGraphEdge := match V with | [] => S | v :: R => RemoveLowerPairs' (RemoveLowerPairsFor S v) R end. Definition RemoveLowerPairs (S : list StringGraphEdge) := RemoveLowerPairs' S (FilterVertexLevel S 1). Fixpoint Collapse' (S : list StringGraphEdge) (l : nat) {struct l} : list StringGraphEdge := match l with | 0 | 1 => RemoveLowerPairs S | S k => Collapse' (CollapseLevel S l) k end. Definition Collapse (S : list StringGraphEdge) : list StringGraphEdge := Collapse' S (GraphHeight S). Definition DoubleAndCollapse (S : list String) : String := GenerateSuperstring (Collapse (Double (FindTrivialSolution S (ConstructFullGraph S)))). End Collapse.
(* * Copyright 2014, NICTA * * This software may be distributed and modified according to the terms of * the GNU General Public License version 2. Note that NO WARRANTY is provided. * See "LICENSE_GPLv2.txt" for details. * * @TAG(NICTA_GPL) *) theory Noninterference_Refinement imports "Noninterference" "ADT_IF_Refine_C" "Noninterference_Base_Refinement" begin (* FIXME: fp is currently ignored by ADT_C_if *) consts fp :: bool context begin interpretation Arch . (*FIXME: arch_split*) lemma internal_R_ADT_A_if: "internal_R (ADT_A_if uop) R = R" apply (rule ext, rule ext) apply (simp add: internal_R_def ADT_A_if_def) done lemma LI_trans: "\<lbrakk>LI A H R (Ia \<times> Ih); LI H C S (Ih \<times> Ic); H \<Turnstile> Ih\<rbrakk> \<Longrightarrow> LI A C (R O (S \<inter> {(h, c). h \<in> Ih})) (Ia \<times> Ic)" apply (clarsimp simp: LI_def) apply safe apply (clarsimp simp: Image_def) apply (erule_tac x=s in allE)+ apply (drule(1) set_mp) apply clarsimp apply (drule(1) set_mp) apply (clarsimp simp: invariant_holds_def) apply blast apply (clarsimp simp: rel_semi_def) apply (erule_tac x=j in allE)+ apply (drule_tac x="(ya, z)" in set_mp) apply blast apply (clarsimp simp: invariant_holds_def) apply blast apply (erule_tac x=x in allE) apply (erule_tac x=y in allE)+ apply (erule_tac x=z in allE) apply simp done end context kernel_m begin definition big_step_ADT_C_if where "big_step_ADT_C_if utf \<equiv> big_step_adt (ADT_C_if fp utf) (internal_R (ADT_C_if fp utf) big_step_R) big_step_evmap" (*Note: Might be able to generalise big_step_adt_refines for fw_sim*) lemma big_step_ADT_C_if_big_step_ADT_A_if_refines: "uop_nonempty utf \<Longrightarrow> refines (big_step_ADT_C_if utf) (big_step_ADT_A_if utf) " apply (simp add: big_step_ADT_A_if_def big_step_ADT_C_if_def) apply (rule big_step_adt_refines[where A="ADT_A_if utf", simplified internal_R_ADT_A_if]) apply (rule LI_trans) apply (erule global_automata_refine.fw_sim_abs_conc[OF haskell_to_abs]) apply (erule global_automata_refine.fw_sim_abs_conc[OF c_to_haskell]) apply (rule global_automaton_invs.ADT_invs[OF haskell_invs]) apply (rule global_automaton_invs.ADT_invs[OF abstract_invs]) apply simp done end context begin interpretation Arch . (*FIXME: arch_split*) lemma LI_sub_big_steps': "\<lbrakk>(s',as) \<in> sub_big_steps C (internal_R C R) s; LI A C S (Ia \<times> Ic); A [> Ia; C [> Ic; (t, s) \<in> S; s \<in> Ic; t \<in> Ia\<rbrakk> \<Longrightarrow> \<exists>t'. (t',as) \<in> sub_big_steps A (internal_R A R) t \<and> (t', s') \<in> S \<and> t' \<in> Ia" apply (induct rule: sub_big_steps.induct) apply(clarsimp simp: LI_def) apply (rule_tac x=t in exI) apply clarsimp apply (rule sub_big_steps.nil, simp_all)[1] apply (force simp: internal_R_def) apply (clarsimp simp: LI_def) apply (erule_tac x=e in allE) apply (clarsimp simp: rel_semi_def) apply (drule_tac x="(t', ta)" in set_mp) apply (rule_tac b=s' in relcompI) apply simp apply (rule sub_big_steps_I_holds) apply assumption+ apply clarsimp apply (rule_tac x=y in exI) apply clarsimp apply (subst conj_commute) apply (rule context_conjI) apply (erule inv_holdsE) apply assumption+ apply (rule sub_big_steps.step[OF refl]) apply assumption+ apply (subgoal_tac "z \<in> Ic") prefer 2 apply (rule_tac I=Ic in inv_holdsE) apply assumption+ apply (erule sub_big_steps_I_holds) apply assumption+ apply (force simp: internal_R_def) done lemma LI_rel_terminate: assumes ex_abs: "\<And>s'. s' \<in> Ic \<Longrightarrow> (\<exists>s. s \<in> Ia \<and> (s, s') \<in> S)" assumes rel_correct: "\<And>s s' s0''. \<lbrakk>(internal_R C R)\<^sup>+\<^sup>+ s0'' s'; s0''\<in>Init C s0; (s, s') \<in> S\<rbrakk> \<Longrightarrow> \<exists>s0'\<in>Init A s0. (internal_R A R)\<^sup>+\<^sup>+ s0' s" assumes init_rel_correct: "\<And>s0''. s0'' \<in> Init C s0 \<Longrightarrow> \<exists>s0' \<in> Init A s0. (s0', s0'') \<in> S" assumes Ia_inv: "A [> Ia" assumes s0_Ia: "Init A s0 \<subseteq> Ia" assumes Ic_inv: "C [> Ic" assumes s0_Ic: "Init C s0 \<subseteq> Ic" assumes li: "LI A C S (Ia \<times> Ic)" shows "\<lbrakk>rel_terminate A s0 (internal_R A R) Ia (internal_R A measuref)\<rbrakk> \<Longrightarrow> rel_terminate C s0 (internal_R C R) Ic (internal_R C measuref)" apply (simp add: rel_terminate_def) apply (clarsimp simp: rtranclp_def2) apply (erule disjE) apply (cut_tac s'=s in ex_abs, assumption) apply clarsimp apply (cut_tac s=sa and s'=s in rel_correct, assumption+) apply (erule_tac x="sa" in allE) apply simp apply (erule impE) apply blast apply (erule_tac x=as in allE) apply (frule(3) LI_sub_big_steps'[OF _ li Ia_inv Ic_inv]) apply clarsimp apply (erule_tac x=t' in allE) apply simp using li apply (clarsimp simp: LI_def) apply (erule_tac x=a in allE) apply (clarsimp simp: rel_semi_def) apply (frule(1) sub_big_steps_I_holds[OF Ic_inv]) apply (drule_tac x="(t', s'')" in set_mp) apply blast apply clarsimp apply (erule_tac x=y in allE) apply (erule impE) apply blast apply (simp add: internal_R_def) apply (frule_tac x=sa in spec, drule_tac x=s in spec) apply (frule_tac x=y in spec, drule_tac x=z in spec) apply (drule_tac x=x in spec, drule_tac x=s' in spec) apply simp using Ia_inv Ic_inv apply (clarsimp simp: invariant_holds_def inv_holds_def) apply (erule_tac x=a in allE)+ apply (drule_tac x=y in set_mp, blast) apply (drule_tac x=z in set_mp, blast) apply simp apply clarsimp apply (cut_tac s0''=s0' in init_rel_correct, assumption+) apply clarsimp apply (erule_tac x="s0'a" in allE) apply (frule set_mp[OF s0_Ia]) apply (erule impE) apply blast apply (erule_tac x=as in allE) apply (frule(3) LI_sub_big_steps'[OF _ li Ia_inv Ic_inv]) apply clarsimp apply (erule_tac x=t' in allE) apply simp using li apply (clarsimp simp: LI_def) apply (erule_tac x=a in allE)+ apply (clarsimp simp: rel_semi_def) apply (frule(1) sub_big_steps_I_holds[OF Ic_inv]) apply (drule_tac x="(t', s'')" in set_mp) apply blast apply clarsimp apply (erule_tac x=y in allE) apply (erule impE) apply blast apply (simp add: internal_R_def) apply (frule_tac x=s0'a in spec, drule_tac x=s0' in spec) apply (frule_tac x=y in spec, drule_tac x=z in spec) apply (drule_tac x=x in spec, drule_tac x=s' in spec) apply simp using Ia_inv Ic_inv apply (clarsimp simp: invariant_holds_def inv_holds_def) apply (erule_tac x=a in allE)+ apply (drule_tac x=y in set_mp, blast) apply (drule_tac x=z in set_mp, blast) apply simp done end locale valid_initial_state_C = valid_initial_state + kernel_m + assumes ADT_C_if_serial: "\<forall>s' a. (\<exists>hs. (hs, s') \<in> lift_fst_rel (lift_snd_rel rf_sr) \<and> hs \<in> full_invs_if') \<longrightarrow> (\<exists>t. (s', t) \<in> data_type.Step (ADT_C_if fp utf) a)" lemma internal_R_tranclp: "(internal_R A R)\<^sup>+\<^sup>+ s s' \<Longrightarrow> R\<^sup>+\<^sup>+ (Fin A s) (Fin A s')" apply (induct rule: tranclp.induct) apply (simp add: internal_R_def) apply (simp add: internal_R_def) done lemma inv_holds_transport: "\<lbrakk> A [> Ia; C [> Ic; LI A C R (Ia \<times> Ic) \<rbrakk> \<Longrightarrow> C [> {s'. \<exists>s. (s,s') \<in> R \<and> s \<in> Ia \<and> s' \<in> Ic}" apply (clarsimp simp: LI_def inv_holds_def) apply (erule_tac x=j in allE)+ apply (clarsimp simp: rel_semi_def) apply (subgoal_tac "(s,x) \<in> Step A j O R") prefer 2 apply blast apply blast done lemma inv_holds_T: "A [> UNIV" by (simp add: inv_holds_def) context valid_initial_state_C begin lemma LI_abs_to_c: "LI (ADT_A_if utf) (ADT_C_if fp utf) (((lift_fst_rel (lift_snd_rel state_relation))) O ((lift_fst_rel (lift_snd_rel rf_sr)) \<inter> {(h, c). h \<in> full_invs_if'})) (full_invs_if \<times> UNIV)" apply (rule LI_trans) apply (rule global_automata_refine.fw_sim_abs_conc[OF haskell_to_abs]) apply (rule uop_nonempty) apply (rule global_automata_refine.fw_sim_abs_conc[OF c_to_haskell]) apply (rule uop_nonempty) apply (rule global_automaton_invs.ADT_invs[OF haskell_invs]) done lemma ADT_C_if_Init_Fin_serial: "Init_Fin_serial (ADT_C_if fp utf) s {s'. \<exists>hs. (hs, s') \<in> lift_fst_rel (lift_snd_rel rf_sr) \<and> hs \<in> full_invs_if'}" apply (unfold_locales) apply (subgoal_tac "ADT_C_if fp utf \<Turnstile> P" for P) prefer 2 apply (rule fw_inv_transport) apply (rule global_automaton_invs.ADT_invs) apply (rule haskell_invs) apply (rule invariant_T) apply (rule global_automata_refine.fw_sim_abs_conc) apply (rule c_to_haskell) apply (rule uop_nonempty) apply simp apply (rule ADT_C_if_serial[rule_format]) apply simp apply (clarsimp simp: ADT_C_if_def lift_fst_rel_def lift_snd_rel_def) apply blast apply (clarsimp simp: lift_fst_rel_def lift_snd_rel_def ADT_C_if_def) apply (rule_tac x=bb in exI) apply (clarsimp simp: full_invs_if'_def) apply (case_tac "sys_mode_of s", simp_all) done lemma ADT_C_if_Init_Fin_serial_weak: "Init_Fin_serial_weak (ADT_C_if fp utf) s {s'. \<exists>hs. (hs, s') \<in> lift_fst_rel (lift_snd_rel rf_sr) \<and> hs \<in> full_invs_if'}" apply (rule Init_Fin_serial.serial_to_weak) apply (rule ADT_C_if_Init_Fin_serial) done lemma Fin_ADT_C_if: "Fin (ADT_C_if fp utf) ((uc, s), m) = ((uc, cstate_to_A s), m)" by (simp add: ADT_C_if_def) lemma Fin_Init_s0_ADT_C_if: "s0' \<in> Init (ADT_C_if fp utf) s0 \<Longrightarrow> Fin (ADT_C_if fp utf) s0' = s0" by (clarsimp simp: ADT_C_if_def s0_def) lemma big_step_R_tranclp_abs': "\<lbrakk>(s, s') \<in> lift_fst_rel (lift_snd_rel state_relation) O lift_fst_rel (lift_snd_rel rf_sr); big_step_R\<^sup>+\<^sup>+ s0 s''\<rbrakk> \<Longrightarrow> s'' = (Fin (ADT_C_if fp utf) s') \<longrightarrow> big_step_R\<^sup>+\<^sup>+ s0 s" apply (erule tranclp_induct) apply (clarsimp simp: Fin_ADT_C_if lift_fst_rel_def) apply (rule tranclp.r_into_trancl) apply (simp add: big_step_R_def) apply (clarsimp simp: Fin_ADT_C_if lift_fst_rel_def) apply (rule tranclp.trancl_into_trancl) apply assumption apply (simp add: big_step_R_def) done lemmas big_step_R_tranclp_abs = big_step_R_tranclp_abs'[rule_format] lemma ADT_C_if_inv_holds_transport: "ADT_C_if fp utf [> {s'. \<exists>hs. (hs, s') \<in> lift_fst_rel (lift_snd_rel rf_sr) \<and> hs \<in> full_invs_if' \<and> (\<exists>as. (as, hs) \<in> lift_fst_rel (lift_snd_rel state_relation) \<and> invs_if as)}" apply (subst arg_cong[where f="\<lambda>S. ADT_C_if fp utf [> S"]) prefer 2 apply (rule_tac A="ADT_A_if utf" in inv_holds_transport) prefer 3 apply (rule weaken_LI) apply (rule LI_abs_to_c) prefer 2 apply (rule invs_if_inv_holds_ADT_A_if) prefer 2 apply (rule inv_holds_T) apply (clarsimp simp: invs_if_full_invs_if) apply force done lemma ADT_C_if_Init_transport: "Init (ADT_C_if fp utf) s0 \<subseteq> {s'. \<exists>hs. (hs, s') \<in> lift_fst_rel (lift_snd_rel rf_sr) \<and> hs \<in> full_invs_if' \<and> (\<exists>as. (as, hs) \<in> lift_fst_rel (lift_snd_rel state_relation) \<and> invs_if as)}" apply clarsimp apply (frule set_mp[OF global_automata_refine.init_refinement[OF c_to_haskell[OF uop_nonempty]]]) apply (clarsimp simp: Image_def lift_fst_rel_def lift_snd_rel_def) apply (frule set_mp[OF global_automata_refine.init_refinement[OF haskell_to_abs[OF uop_nonempty]]]) apply (clarsimp simp: Image_def lift_fst_rel_def lift_snd_rel_def) apply (rule_tac x=bb in exI) apply simp apply (rule conjI) apply (force simp: ADT_H_if_def) apply (rule_tac x=ba in exI) apply (clarsimp simp: ADT_A_if_def) done lemma ADT_C_if_big_step_R_terminate: "rel_terminate (ADT_C_if fp utf) s0 (internal_R (ADT_C_if fp utf) big_step_R) {s'. \<exists>hs. (hs, s') \<in> lift_fst_rel (lift_snd_rel rf_sr) \<and> hs \<in> full_invs_if' \<and> (\<exists>as. (as, hs) \<in> lift_fst_rel (lift_snd_rel state_relation) \<and> invs_if as)} (\<lambda>s s'. internal_R (ADT_C_if fp utf) measuref_if s s')" apply (rule_tac S="lift_fst_rel (lift_snd_rel state_relation) O (lift_fst_rel (lift_snd_rel rf_sr) \<inter> {(h, c). h \<in> full_invs_if'})" and Ia="Collect invs_if" and A="ADT_A_if utf" in LI_rel_terminate) apply blast prefer 8 apply (simp add: internal_R_ADT_A_if) apply (rule ADT_A_if_big_step_R_terminate) apply (simp add: internal_R_ADT_A_if, simp add: ADT_A_if_def) apply (rule_tac x="s0" in bexI) apply (drule internal_R_tranclp) apply (simp add: Fin_Init_s0_ADT_C_if) apply clarsimp apply (rule big_step_R_tranclp_abs) apply force apply assumption apply simp apply (clarsimp simp: invs_if_full_invs_if extras_s0) apply (drule set_mp[OF global_automata_refine.init_refinement[OF c_to_haskell[OF uop_nonempty]]]) apply (clarsimp simp: Image_def lift_fst_rel_def lift_snd_rel_def) apply (frule set_mp[OF global_automata_refine.init_refinement[OF haskell_to_abs[OF uop_nonempty]]]) apply (clarsimp simp: Image_def lift_fst_rel_def lift_snd_rel_def) apply (rule_tac x="((aa, bc), bd)" in bexI) apply (rule_tac b="((aa, bb), bd)" in relcompI) apply simp apply (force simp: ADT_H_if_def) apply simp apply (rule invs_if_inv_holds_ADT_A_if) apply (simp add: ADT_A_if_def invs_if_full_invs_if extras_s0) apply (rule ADT_C_if_inv_holds_transport) apply (rule ADT_C_if_Init_transport) apply (rule weaken_LI[OF LI_abs_to_c]) apply (clarsimp simp: invs_if_full_invs_if) done lemma big_step_ADT_C_if_enabled_system: "enabled_system (big_step_ADT_C_if utf) s0" apply (simp add: big_step_ADT_C_if_def) apply (rule_tac measuref="internal_R (ADT_C_if fp utf) measuref_if" in big_step_adt_enabled_system) apply simp apply (force simp: big_step_R_def internal_R_def) apply (rule Init_Fin_serial_weak_strengthen) apply (rule ADT_C_if_Init_Fin_serial_weak) apply (rule ADT_C_if_inv_holds_transport) apply force apply (rule ADT_C_if_Init_transport) apply (rule ADT_C_if_big_step_R_terminate) done end sublocale valid_initial_state_C \<subseteq> abstract_to_C: noninterference_refinement "big_step_ADT_A_if utf" (* the ADT that we prove infoflow for *) s0 (* initial state *) "\<lambda>e s. part s" (* dom function *) "uwr" (* uwr *) "policyFlows (pasPolicy initial_aag)" (* policy *) "undefined" (* out -- unused *) PSched (* scheduler partition name *) "big_step_ADT_C_if utf" apply(unfold_locales) apply(insert big_step_ADT_C_if_enabled_system)[1] apply(fastforce simp: enabled_system_def) apply(rule big_step_ADT_C_if_big_step_ADT_A_if_refines) apply (rule uop_nonempty) done context valid_initial_state_C begin lemma xnonleakage_C: "abstract_to_C.conc.xNonleakage_gen" apply(rule abstract_to_C.xNonleakage_gen_refinement_closed) apply(rule xnonleakage) done end end
subroutine dbesig (x1, alpha, kode, n, y, nz,w,ierr) c Author Serge Steer, Copyright INRIA, 2005 c extends dbesi for the case where alpha is negative double precision x1,alpha,y(n),w(n) integer kode,n,nz,ierr c double precision a,pi,inf,x,a1 integer ier1,ier2 double precision dlamch data pi /3.14159265358979324D0/ inf=dlamch('o')*2.0d0 x=x1 ier2=0 if (x.ne.x.or.alpha.ne.alpha) then c . NaN case call dset(n,inf-inf,y,1) ierr=4 elseif (alpha .ge. 0.0d0) then call dbesi(abs(x),alpha,kode,n,y,nz,ierr) if (ierr.eq.2) call dset(n,inf,y,1) if(x.lt.0.0d0) then i0=mod(int(abs(alpha))+1,2) call dscal((n-i0+1)/2,-1.0d0,y(1+i0),2) endif else if (alpha .eq. dint(alpha)) then c . alpha <0 and integer, c . transform to positive value of alpha if(alpha-1+n.ge.0) then c . 0 is between alpha and alpha+n a1=0.0d0 nn=min(n,int(-alpha)) else a1=-(alpha-1+n) nn=n endif call dbesi(abs(x),a1,kode,n,w,nz,ierr) if (ierr.eq.2) then call dset(n,inf,y,1) else if(n.gt.nn) then c . 0 is between alpha and alpha+n call dcopy(n-nn,w,1,y(nn+1),1) call dcopy(nn,w(2),-1,y,1) else c . alpha and alpha+n are negative call dcopy(nn,w,-1,y,1) endif endif if(x.lt.0.0d0) then i0=mod(int(abs(alpha))+1,2) call dscal((n-i0+1)/2,-1.0d0,y(1+i0),2) endif else if (x .eq. 0.0d0) then c . alpha <0 and x==0 if(alpha-1.0d0+n.ge.0.0d0) then c . 0 is between alpha and alpha+n nn=int(-alpha)+1 else nn=n endif ierr=2 call dset(nn,-inf,y,1) if (n.gt.nn) call dset(n-nn,0.0d0,y(nn+1),1) else c . first alpha is negative non integer, x should be positive (with C . x negative the result is complex. CHECKED c . transform to positive value of alpha if(alpha-1.0d0+n.ge.0.0d0) then c . 0 is between alpha and alpha+n nn=int(-alpha)+1 else nn=n endif c . compute for negative value of alpha+k, transform problem for c . a1:a1+(nn-1) with a1 positive a1+k =abs(alpha+nn-k) a1=-(alpha-1.0d0+nn) call dbesi(x,a1,kode,nn,w,nz1,ierr) call dbesk(x,a1,1,nn,y,nz2,ier) ierr=max(ierr,ier) nz=max(nz1,nz2) if (ierr.eq.0) then a=(2.0d0/pi)*dsin(a1*pi) if (kode.eq.2) a=a*dexp(-x) c . change sign to take into account that sin((a1+k)*pi) C . changes sign with k if (nn.ge.2) call dscal(nn/2,-1.0d0,y(2),2) call daxpy(nn,a,y,1,w,1) elseif (ierr.eq.2) then call dset(nn,inf,w,1) elseif (ierr.eq.4) then call dset(nn,inf-inf,w,1) endif c . store the result in the correct order call dcopy(nn,w,-1,y,1) c . compute for positive value of alpha+k is any (note that x>0) if (n.gt.nn) then call dbesi(x,1.0d0-a1,kode,n-nn,y(nn+1),nz,ier) if (ier.eq.2) call dset(n-nn,inf,y(nn+1),1) ierr=max(ierr,ier) endif endif end subroutine dbesiv (x,nx,alpha,na, kode,y,w,ierr) c Author Serge Steer, Copyright INRIA, 2005 c compute besseli function for x and alpha given by vectors c w : working array of size 2*na (used only if nz>0 and alpha contains negative C values double precision x(nx),alpha(na),y(*),w(*) integer kode,nx,na,ier double precision e,dlamch,w1,eps eps=dlamch('p') ierr=0 if (na.lt.0) then c . element wise case x and alpha are supposed to have the same size do i=1,nx call dbesig (x(i), alpha(i),kode,1,y(i), nz, w1,ier) ierr=max(ierr,ier) enddo elseif (na.eq.1) then c . element wise case x and alpha are supposed to have the same size do i=1,nx call dbesig (x(i), alpha(1),kode,1,y(i), nz, w1,ier) ierr=max(ierr,ier) enddo else c . compute besseli(x(i),y(j)), i=1,nx,j=1,na j0=1 05 n=0 10 n=n+1 j=j0+n if (j.le.na.and.abs((1+alpha(j-1))-alpha(j)).le.eps) then goto 10 endif do i=1,nx call dbesig(x(i),alpha(j0),kode,n, w, nz, w(na+1),ier) ierr=max(ierr,ier) call dcopy(n,w,1,y(i+(j0-1)*nx),nx) enddo j0=j if (j0.le.na) goto 05 endif end
source("calculate/distance.r") source("calculate/norms.r") # Renderable data.frame of nearest neighbours neighbours_table <- function(word, distance_type, count, radius) { if (radius <= 0) { radius = Inf } mx = distance_matrix(vector_for_word(word), matrix_for_words(all_words), distance_type) argsort <- order(mx) nearest_idxs <- argsort[2:(count+1)] # Skip the guaranteed nearest neighbour: the word itself nearest_words <- all_words[nearest_idxs] nearest_distances <- mx[nearest_idxs] if (!is.infinite(radius)) { nearest_distances <- nearest_distances[nearest_distances <= radius] nearest_words <- nearest_words[1:length(nearest_distances)] } table <- data.frame(order = 1:length(nearest_words), Concept = nearest_words, distance = nearest_distances) names(table) <- c("Order", "Concept", distance_col_name(distance_type)) return(table) }
Formal statement is: lemma isCont_Lb_Ub: fixes f :: "real \<Rightarrow> real" assumes "a \<le> b" "\<forall>x. a \<le> x \<and> x \<le> b \<longrightarrow> isCont f x" shows "\<exists>L M. (\<forall>x. a \<le> x \<and> x \<le> b \<longrightarrow> L \<le> f x \<and> f x \<le> M) \<and> (\<forall>y. L \<le> y \<and> y \<le> M \<longrightarrow> (\<exists>x. a \<le> x \<and> x \<le> b \<and> (f x = y)))" Informal statement is: If $f$ is continuous on the closed interval $[a,b]$, then $f$ attains its maximum and minimum on $[a,b]$.
import cv2 import numpy as np import time color_map = { "Animal" : (64, 128, 64 ), "Archway" : (192, 0, 128 ), "Bicyclist" : (0, 128, 192 ), "Bridge" : (0, 128, 64 ), "Building" : (128, 0, 0 ), "Car" : (64, 0, 128 ), "CartLuggagePram" : (64, 0, 192 ), "Child" : (192, 128, 64 ), "Column_Pole" : (192, 192, 128), "Fence" : (64, 64, 128 ), "LaneMkgsDriv" : (128, 0, 192 ), "LaneMkgsNonDriv" : (192, 0, 64 ), "Misc_Text" : (128, 128, 64 ), "MotorcycleScooter" : (192, 0, 192 ), "OtherMoving" : (128, 64, 64 ), "ParkingBlock" : (64, 192, 128 ), "Pedestrian" : (64, 64, 0 ), "Road" : (128, 64, 128 ), "RoadShoulder" : (128, 128, 192), "Sidewalk" : (0, 0, 192 ), "SignSymbol" : (192, 128, 128), "Sky" : (128, 128, 128), "SUVPickupTruck" : (64, 128, 192 ), "TrafficCone" : (0, 0, 64 ), "TrafficLight" : (0, 64, 64 ), "Train" : (192, 64, 128 ), "Tree" : (128, 128, 0 ), "Truck_Bus" : (192, 128, 192), "Tunnel" : (64, 0, 64 ), "VegetationMisc" : (192, 192, 0 ), "Void" : (0, 0, 0 ), "Wall" : (64, 192, 0 ), } img = cv2.imread('result_label.png', cv2.IMREAD_GRAYSCALE) result = np.zeros((img.shape[0], img.shape[1], 3)) start = time.time() for i, v in enumerate(color_map.values()): result[img == i] = v if np.any(img==i): print(i, list(color_map.items())[i]) print(time.time()-start) result = cv2.cvtColor(np.array(result, dtype=np.uint8), cv2.COLOR_RGB2BGR) cv2.imwrite("result_color.png", result)
# Fishbone-Moncrief Initial Data ## Author: Zach Etienne ### Formatting improvements courtesy Brandon Clark [comment]: <> (Abstract: TODO) [comment]: <> (Notebook Status and Validation Notes: TODO) ### NRPy+ Source Code for this module: [FishboneMoncriefID/FishboneMoncriefID.py](../edit/FishboneMoncriefID/FishboneMoncriefID.py) ## Introduction: This goal of this module will be to construct Fishbone-Moncrief initial data for GRMHD simulations in a format suitable for the Einstein Toolkit (ETK). We will be using the equations as derived in [the original paper](http://articles.adsabs.harvard.edu/cgi-bin/nph-iarticle_query?1976ApJ...207..962F&amp;data_type=PDF_HIGH&amp;whole_paper=YES&amp;type=PRINTER&amp;filetype=.pdf), which will hereafter be called "***the FM paper***". Since we want to use this with the ETK, our final result will be in Cartesian coordinates. The natural coordinate system for these data is spherical, however, so we will use [reference_metric.py](../edit/reference_metric.py) ([**Tutorial**](Tutorial-Reference_Metric.ipynb)) to help with the coordinate transformation. This notebook documents the equations in the NRPy+ module [FishboneMoncrief.py](../edit/FishboneMoncriefID/FishboneMoncriefID.py). Then, we will build an Einstein Toolkit [thorn](Tutorial-ETK_thorn-FishboneMoncriefID.ipynb) to set this initial data. <a id='toc'></a> # Table of Contents $$\label{toc}$$ This notebook is organized as follows 1. [Step 1](#initializenrpy): Initialize core Python/NRPy+ modules 1. [Step 2](#fishbonemoncrief): Implementing Fishbone-Moncrief initial data within NRPy+ 1. [Step 2.a](#registergridfunctions): Register within NRPy+ needed gridfunctions and initial parameters 1. [Step 2.b](#l_of_r): Specific angular momentum $l(r)$ 1. [Step 2.c](#enthalpy): Specific enthalpy $h$ 1. [Step 2.d](#pressure_density): Pressure and density, from the specific enthalpy 1. [Step 2.e](#covariant_velocity): Nonzero covariant velocity components $u_\mu$ 1. [Step 2.f](#inverse_bl_metric): Inverse metric $g^{\mu\nu}$ for the black hole in Boyer-Lindquist coordinates 1. [Step 2.g](#xform_to_ks): Transform components of four-veloicty $u^\mu$ to Kerr-Schild 1. [Step 2.h](#ks_metric): Define Kerr-Schild metric $g_{\mu\nu}$ and extrinsic curvature $K_{ij}$ 1. [Step 2.i](#magnetic_field): Seed poloidal magnetic field $B^i$ 1. [Step 2.j](#adm_metric): Set the ADM quantities $\alpha$, $\beta^i$, and $\gamma_{ij}$ from the spacetime metric $g_{\mu\nu}$ 1. [Step 2.k](#magnetic_field_comoving_frame): Set the magnetic field components in the comoving frame $b^\mu$, and $b^2$, which is twice the magnetic pressure 1. [Step 2.l](#lorentz_fac_valencia): Lorentz factor $\Gamma = \alpha u^0$ and Valencia 3-velocity $v^i_{(n)}$ 1. [Step 3](#output_to_c): Output SymPy expressions to C code, using NRPy+ 1. [Step 4](#code_validation): Code Validation against Code Validation against `FishboneMoncriefID.FishboneMoncriefID` NRPy+ module NRPy+ module 1. [Step 5](#latex_pdf_output): Output this notebook to $\LaTeX$-formatted PDF file <a id='initializenrpy'></a> # Step 1: Initialize core Python/NRPy+ modules \[Back to [top](#toc)\] $$\label{initializenrpy}$$ We begin by importing the packages and NRPy+ modules that we will need. We will also set some of the most commonly used parameters. ```python # Step 1a: Import needed NRPy+ core modules: import NRPy_param_funcs as par import indexedexp as ixp import grid as gri import finite_difference as fin from outputC import * import loop import reference_metric as rfm par.set_parval_from_str("reference_metric::CoordSystem","Cartesian") rfm.reference_metric() #Set the spatial dimension parameter to 3. par.set_parval_from_str("grid::DIM", 3) DIM = par.parval_from_str("grid::DIM") thismodule = "FishboneMoncriefID" ``` <a id='fishbonemoncrief'></a> # Step 2: The Fishbone-Moncrief Initial Data Prescription \[Back to [top](#toc)\] $$\label{fishbonemoncrief}$$ With NRPy's most important functions now available to us, we can start to set up the rest of the tools we will need to build the initial data. <a id='registergridfunctions'></a> ## Step 2.a: Register within NRPy+ needed gridfunctions and initial parameters \[Back to [top](#toc)\] $$\label{registergridfunctions}$$ We will now register the gridfunctions we expect to use. Critically, we register the physical metric and extrinsic curvature tensors. ```python gPhys4UU = ixp.register_gridfunctions_for_single_rank2("AUX","gPhys4UU", "sym01", DIM=4) KDD = ixp.register_gridfunctions_for_single_rank2("EVOL","KDD", "sym01") # Variables needed for initial data given in spherical basis r, th, ph = gri.register_gridfunctions("AUX",["r","th","ph"]) r_in,r_at_max_density,a,M = par.Cparameters("REAL",thismodule, ["r_in","r_at_max_density", "a","M"], [ 6.0, 12.0, 0.9375,1.0]) kappa,gamma = par.Cparameters("REAL",thismodule,["kappa","gamma"], [1.0e-3, 4.0/3.0]) LorentzFactor = gri.register_gridfunctions("AUX","LorentzFactor") ``` <a id='l_of_r'></a> ## Step 2.b: Specific angular momentum $l(r)$ \[Back to [top](#toc)\] $$\label{l_of_r}$$ Now, we can begin actually building the ID equations. We will start with the value of the angular momentum $l$ at the position $r \equiv$`r_at_max_density` where the density is at a maximum, as in equation 3.8 of the FM paper: \begin{align} l(r) &= \pm \left( \frac{M}{r^3} \right) ^{1/2} \left[ \frac{r^4+r^2a^2-2Mra^2 \mp a(Mr)^{1/2}(r^2-a^2)} {r^2 -3Mr \pm 2a(Mr)^{1/2}} \right]. \end{align} ```python def calculate_l_at_r(r): l = sp.sqrt(M/r**3) * (r**4 + r**2*a**2 - 2*M*r*a**2 - a*sp.sqrt(M*r)*(r**2-a**2)) l /= r**2 - 3*M*r + 2*a*sp.sqrt(M*r) return l # First compute angular momentum at r_at_max_density, TAKING POSITIVE ROOT. This way disk is co-rotating with black hole # Eq 3.8: l = calculate_l_at_r(r_at_max_density) ``` <a id='enthalpy'></a> ## Step 2.c: Specific enthalpy $h$ \[Back to [top](#toc)\] $$\label{enthalpy}$$ Next, we will follow equation 3.6 of the FM paper to compute the enthalpy $h$ by first finding its logarithm $\ln h$. Fortunately, we can make this process quite a bit simpler by first identifying the common subexpressions. Let \begin{align} \Delta &= r^2 - 2Mr + a^2 \\ \Sigma &= r^2 + a^2 \cos^2 (\theta) \\ A &= (r^2+a^2)^2 - \Delta a^2 \sin^2(\theta); \end{align} furthermore, let \begin{align} \text{tmp3} &= \sqrt{\frac{1 + 4 l^2 \Sigma^2 \Delta}{A \sin^2 (\theta)}}. \\ \end{align} (These terms reflect the radially-independent part of the log of the enthalpy, `ln_h_const`.) So, $$ {\rm ln\_h\_const} = \frac{1}{2} * \log \left( \frac{1+\text{tmp3}}{\Sigma \Delta/A} \right) - \frac{1}{2} \text{tmp3} - \frac{2aMrl}{A} $$ ```python # Eq 3.6: # First compute the radially-independent part of the log of the enthalpy, ln_h_const Delta = r**2 - 2*M*r + a**2 Sigma = r**2 + a**2*sp.cos(th)**2 A = (r**2 + a**2)**2 - Delta*a**2*sp.sin(th)**2 # Next compute the radially-dependent part of log(enthalpy), ln_h tmp3 = sp.sqrt(1 + 4*l**2*Sigma**2*Delta/(A*sp.sin(th))**2) # Term 1 of Eq 3.6 ln_h = sp.Rational(1,2)*sp.log( ( 1 + tmp3) / (Sigma*Delta/A)) # Term 2 of Eq 3.6 ln_h -= sp.Rational(1,2)*tmp3 # Term 3 of Eq 3.6 ln_h -= 2*a*M*r*l/A ``` Additionally, let \begin{align} \Delta_{\rm in} &= r_{\rm in}^2 - 2Mr_{\rm in} + a^2 \\ \Sigma_{\rm in} &= r_{\rm in}^2 + a^2 \cos^2 (\pi/2) \\ A_{\rm in} &= (r_{\rm in}^2+a^2)^2 - \Delta_{\rm in} a^2 \sin^2(\pi/2) \end{align} and \begin{align} \text{tmp3in} &= \sqrt{\frac{1 + 4 l^2 \Sigma_{\rm in}^2 \Delta_{\rm in}}{A_{\rm in} \sin^2 (\theta)}}, \\ \end{align} corresponding to the radially Independent part of log(enthalpy), $\ln h$: \begin{align} {\rm mln\_h\_in} = -\frac{1}{2} * \log \left( \frac{1+\text{tmp3in}}{\Sigma_{\rm in} \Delta_{\rm in}/A_{\rm in}} \right) + \frac{1}{2} \text{tmp3in} + \frac{2aMr_{\rm in}l}{A_{\rm in}}. \\ \end{align} (Note that there is some typo in the expression for these terms given in Eq 3.6, so we opt to just evaluate negative of the first three terms at r=`r_in` and th=pi/2 (the integration constant), as described in the text below Eq. 3.6.) So, then, we exponentiate: \begin{align} \text{hm1} \equiv h-1 &= e^{{\rm ln\_h}+{\rm mln\_h\_in}}-1. \\ \end{align} ```python # Next compute the radially-INdependent part of log(enthalpy), ln_h # Note that there is some typo in the expression for these terms given in Eq 3.6, so we opt to just evaluate # negative of the first three terms at r=r_in and th=pi/2 (the integration constant), as described in # the text below Eq. 3.6, basically just copying the above lines of code. # Delin = Delta_in ; Sigin = Sigma_in ; Ain = A_in . Delin = r_in**2 - 2*M*r_in + a**2 Sigin = r_in**2 + a**2*sp.cos(sp.pi/2)**2 Ain = (r_in**2 + a**2)**2 - Delin*a**2*sp.sin(sp.pi/2)**2 tmp3in = sp.sqrt(1 + 4*l**2*Sigin**2*Delin/(Ain*sp.sin(sp.pi/2))**2) # Term 4 of Eq 3.6 mln_h_in = -sp.Rational(1,2)*sp.log( ( 1 + tmp3in) / (Sigin*Delin/Ain)) # Term 5 of Eq 3.6 mln_h_in += sp.Rational(1,2)*tmp3in # Term 6 of Eq 3.6 mln_h_in += 2*a*M*r_in*l/Ain hm1 = sp.exp(ln_h + mln_h_in) - 1 ``` <a id='pressure_density'></a> ## Step 2.d: Pressure and density, from the specific enthalpy \[Back to [top](#toc)\] $$\label{pressure_density}$$ Python 3.4 + SymPy 1.0.0 has a serious problem taking the power here; it hangs forever, so instead we use the identity $x^{1/y} = \exp(\frac{1}{y} * \log(x))$. Thus, our expression for density becomes (in Python 2.7 + SymPy 0.7.4.1): \begin{align} \rho_0 &= \left( \frac{(h-1)(\gamma-1)}{\kappa \gamma} \right)^{1/(\gamma-1)} \\ &= \exp \left[ {\frac{1}{\gamma-1} \log \left( \frac{(h-1)(\gamma-1)}{\kappa \gamma}\right)} \right] \end{align} Additionally, the pressure $P_0 = \kappa \rho_0^\gamma$ ```python rho_initial,Pressure_initial = gri.register_gridfunctions("AUX",["rho_initial","Pressure_initial"]) # Python 3.4 + sympy 1.0.0 has a serious problem taking the power here, hangs forever. # so instead we use the identity x^{1/y} = exp( [1/y] * log(x) ) # Original expression (works with Python 2.7 + sympy 0.7.4.1): # rho_initial = ( hm1*(gamma-1)/(kappa*gamma) )**(1/(gamma - 1)) # New expression (workaround): rho_initial = sp.exp( (1/(gamma-1)) * sp.log( hm1*(gamma-1)/(kappa*gamma) )) Pressure_initial = kappa * rho_initial**gamma ``` <a id='covariant_velocity'></a> ## Step 2.e: Nonzero covariant velocity components $u_\mu$ \[Back to [top](#toc)\] $$\label{covariant_velocity}$$ We now want to compute eq 3.3; we will start by finding $e^{-2 \chi}$ in Boyer-Lindquist (BL) coordinates. By eq 2.16, $\chi = \psi - \nu$, so, by eqs. 3.5, \begin{align} e^{2 \nu} &= \frac{\Sigma \Delta}{A} \\ e^{2 \psi} &= \frac{A \sin^2 \theta}{\Sigma} \\ e^{-2 \chi} &= e^{2 \nu} / e^{2 \psi} = e^{2(\nu - \psi)}. \end{align} Next, we will calculate the 4-velocity $u_i$ of the fluid disk in BL coordinates. We start with eqs. 3.3 and 2.13, finding \begin{align} u_{(r)} = u_{(\theta)} &= 0 \\ u_{(\phi)} &= \sqrt{-1+ \frac{1}{2}\sqrt{1 + 4l^2e^{-2 \chi}}} \\ u_{(t)} &= - \sqrt{1 + u_{(\phi)}^2}. \end{align} Given that $\omega = 2aMr/A$, we then find that, in BL coordinates, \begin{align} u_r = u_{\theta} &= 0 \\ u_{\phi} &= u_{(\phi)} \sqrt{e^{2 \psi}} \\ u_t &= u_{(t)} \sqrt{e^{2 \nu}} - \omega u_{\phi}, \end{align} using eq. 2.13 to get the last relation. ```python # Eq 3.3: First compute exp(-2 chi), assuming Boyer-Lindquist coordinates # Eq 2.16: chi = psi - nu, so # Eq 3.5 -> exp(-2 chi) = exp(-2 (psi - nu)) = exp(2 nu)/exp(2 psi) exp2nu = Sigma*Delta / A exp2psi = A*sp.sin(th)**2 / Sigma expm2chi = exp2nu / exp2psi # Eq 3.3: Next compute u_(phi). u_pphip = sp.sqrt((-1 + sp.sqrt(1 + 4*l**2*expm2chi))/2) # Eq 2.13: Compute u_(t) u_ptp = -sp.sqrt(1 + u_pphip**2) # Next compute spatial components of 4-velocity in Boyer-Lindquist coordinates: uBL4D = ixp.zerorank1(DIM=4) # Components 1 and 2: u_r = u_theta = 0 # Eq 2.12 (typo): u_(phi) = e^(-psi) u_phi -> u_phi = e^(psi) u_(phi) uBL4D[3] = sp.sqrt(exp2psi)*u_pphip # Assumes Boyer-Lindquist coordinates: omega = 2*a*M*r/A # Eq 2.13: u_(t) = 1/sqrt(exp2nu) * ( u_t + omega*u_phi ) # --> u_t = u_(t) * sqrt(exp2nu) - omega*u_phi # --> u_t = u_ptp * sqrt(exp2nu) - omega*uBL4D[3] uBL4D[0] = u_ptp*sp.sqrt(exp2nu) - omega*uBL4D[3] ``` <a id='inverse_bl_metric'></a> ## Step 2.f: Inverse metric $g^{\mu\nu}$ for the black hole in Boyer-Lindquist coordinates \[Back to [top](#toc)\] $$\label{inverse_bl_metric}$$ Next, we will use eq. 2.1 to find the inverse physical (as opposed to conformal) metric in BL coordinates, using the shorthands defined in eq. 3.5: \begin{align} g_{tt} &= - \frac{\Sigma \Delta}{A} + \omega^2 \sin^2 \theta \frac{A}{\Sigma} \\ g_{t \phi} = g_{\phi t} &= - \omega \sin^2 \theta \frac{A}{\Sigma} \\ g_{\phi \phi} &= \sin^2 \theta \frac{A}{\Sigma}, \end{align} which can be inverted to show that \begin{align} g^{tt} &= - \frac{A}{\Delta \Sigma} \\ g^{t \phi} = g^{\phi t} &= \frac{2aMr}{\Delta \Sigma} \\ g^{\phi \phi} &= - \frac{4a^2M^2r^2}{\Delta A \Sigma} + \frac{\Sigma^2}{A \Sigma \sin^2 \theta}. \end{align} With this, we will now be able to raise the index on the BL $u_i$: $u^i = g^{ij} u_j$ ```python # Eq. 3.5: # w = 2*a*M*r/A; # Eqs. 3.5 & 2.1: # gtt = -Sig*Del/A + w^2*Sin[th]^2*A/Sig; # gtp = w*Sin[th]^2*A/Sig; # gpp = Sin[th]^2*A/Sig; # FullSimplify[Inverse[{{gtt,gtp},{gtp,gpp}}]] gPhys4BLUU = ixp.zerorank2(DIM=4) gPhys4BLUU[0][0] = -A/(Delta*Sigma) # DO NOT NEED TO SET gPhys4BLUU[1][1] or gPhys4BLUU[2][2]! gPhys4BLUU[0][3] = gPhys4BLUU[3][0] = -2*a*M*r/(Delta*Sigma) gPhys4BLUU[3][3] = -4*a**2*M**2*r**2/(Delta*A*Sigma) + Sigma**2/(A*Sigma*sp.sin(th)**2) uBL4U = ixp.zerorank1(DIM=4) for i in range(4): for j in range(4): uBL4U[i] += gPhys4BLUU[i][j]*uBL4D[j] ``` <a id='xform_to_ks'></a> ## Step 2.g: Transform components of four-velocity $u^\mu$ to Kerr-Schild \[Back to [top](#toc)\] $$\label{xform_to_ks}$$ Now, we will transform the 4-velocity from the Boyer-Lindquist to the Kerr-Schild basis. This algorithm is adapted from [HARM](https://github.com/atchekho/harmpi/blob/master/init.c). This definees the tensor `transformBLtoKS`, where the diagonal elements are $1$, and the non-zero off-diagonal elements are \begin{align} \text{transformBLtoKS}_{tr} &= \frac{2r}{r^2-2r+a^2} \\ \text{transformBLtoKS}_{\phi r} &= \frac{a}{r^2-2r+a^2} \\ \end{align} ```python # https://github.com/atchekho/harmpi/blob/master/init.c # Next transform Boyer-Lindquist velocity to Kerr-Schild basis: transformBLtoKS = ixp.zerorank2(DIM=4) for i in range(4): transformBLtoKS[i][i] = 1 transformBLtoKS[0][1] = 2*r/(r**2 - 2*r + a*a) transformBLtoKS[3][1] = a/(r**2 - 2*r + a*a) #uBL4U = ixp.declarerank1("UBL4U",DIM=4) # After the xform below, print(uKS4U) outputs: # [UBL4U0 + 2*UBL4U1*r/(a**2 + r**2 - 2*r), UBL4U1, UBL4U2, UBL4U1*a/(a**2 + r**2 - 2*r) + UBL4U3] uKS4U = ixp.zerorank1(DIM=4) for i in range(4): for j in range(4): uKS4U[i] += transformBLtoKS[i][j]*uBL4U[j] ``` <a id='ks_metric'></a> ## Step 2.h: Define Kerr-Schild metric $g_{\mu\nu}$ and extrinsic curvature $K_{ij}$ \[Back to [top](#toc)\] $$\label{ks_metric}$$ We will also adopt the Kerr-Schild metric for Fishbone-Moncrief disks. Further details can be found in [Cook's Living Review](http://gravity.psu.edu/numrel/jclub/jc/Cook___LivRev_2000-5.pdf) article on initial data, or in the appendix of [this](https://arxiv.org/pdf/1704.00599.pdf) article. So, in KS coordinates, \begin{align} \rho^2 &= r^2 + a^2 \cos^2 \theta \\ \Delta &= r^2 - 2Mr + a^2 \\ \alpha &= \left(1 + \frac{2Mr}{\rho^2}\right)^{-2} \\ \beta^0 &= \frac{2 \alpha^2 Mr}{\rho^2} \\ \gamma_{00} &= 1 + \frac{2Mr}{\rho^2} \\ \gamma_{02} = \gamma_{20} &= -\left(1+\frac{2Mr}{\rho^2}\right) a \sin^2 \theta \\ \gamma_{11} &= \rho^2 \\ \gamma_{22} &= \left(r^2+a^2+\frac{2Mr}{\rho^2} a^2 \sin^2 \theta\right) \sin^2 \theta. \end{align} (Note that only the non-zero components of $\beta^i$ and $\gamma_{ij}$ are defined here.) ```python # Adopt the Kerr-Schild metric for Fishbone-Moncrief disks # http://gravity.psu.edu/numrel/jclub/jc/Cook___LivRev_2000-5.pdf # Alternatively, Appendix of https://arxiv.org/pdf/1704.00599.pdf rhoKS2 = r**2 + a**2*sp.cos(th)**2 # Eq 79 of Cook's Living Review article DeltaKS = r**2 - 2*M*r + a**2 # Eq 79 of Cook's Living Review article alphaKS = 1/sp.sqrt(1 + 2*M*r/rhoKS2) betaKSU = ixp.zerorank1() betaKSU[0] = alphaKS**2*2*M*r/rhoKS2 gammaKSDD = ixp.zerorank2() gammaKSDD[0][0] = 1 + 2*M*r/rhoKS2 gammaKSDD[0][2] = gammaKSDD[2][0] = -(1 + 2*M*r/rhoKS2)*a*sp.sin(th)**2 gammaKSDD[1][1] = rhoKS2 gammaKSDD[2][2] = (r**2 + a**2 + 2*M*r/rhoKS2 * a**2*sp.sin(th)**2) * sp.sin(th)**2 ``` We can also define the following useful quantities, continuing in KS coordinates: \begin{align} A &= a^2 \cos (2 \theta) + a^2 +2r^2 \\ B &= A + 4Mr \\ D &= \sqrt{\frac{2Mr}{a^2 \cos^2 \theta +r^2}+1}; \end{align} we will also define the extrinsic curvature: \begin{align} K_{00} &= D\frac{A+2Mr}{A^2 B} (4M(a^2 \cos(2 \theta)+a^s-2r^2)) \\ K_{01} = K_{10} &= \frac{D}{AB} (8a^2Mr\sin \theta \cos \theta) \\ K_{02} = K_{20} &= \frac{D}{A^2} (-2aM \sin^2 \theta (a^2\cos(2 \theta)+a^2-2r^2)) \\ K_{11} &= \frac{D}{B} (4Mr^2) \\ K_{12} = K_{21} &= \frac{D}{AB} (-8a^3Mr \sin^3 \theta \cos \theta) \\ K_{22} &= \frac{D}{A^2 B} (2Mr \sin^2 \theta (a^4(r-M) \cos(4 \theta) + a^4 (M+3r) + 4a^2 r^2 (2r-M) + 4a^2 r \cos(2 \theta) (a^2 + r(M+2r)) + 8r^5)). \\ \end{align} Note that the indexing for extrinsic curvature only runs from 0 to 2, since there are no time components to the tensor. ```python AA = a**2 * sp.cos(2*th) + a**2 + 2*r**2 BB = AA + 4*M*r DD = sp.sqrt(2*M*r / (a**2 * sp.cos(th)**2 + r**2) + 1) KDD[0][0] = DD*(AA + 2*M*r)/(AA**2*BB) * (4*M*(a**2 * sp.cos(2*th) + a**2 - 2*r**2)) KDD[0][1] = KDD[1][0] = DD/(AA*BB) * 8*a**2*M*r*sp.sin(th)*sp.cos(th) KDD[0][2] = KDD[2][0] = DD/AA**2 * (-2*a*M*sp.sin(th)**2 * (a**2 * sp.cos(2*th) + a**2 - 2*r**2)) KDD[1][1] = DD/BB * 4*M*r**2 KDD[1][2] = KDD[2][1] = DD/(AA*BB) * (-8*a**3*M*r*sp.sin(th)**3*sp.cos(th)) KDD[2][2] = DD/(AA**2*BB) * \ (2*M*r*sp.sin(th)**2 * (a**4*(r-M)*sp.cos(4*th) + a**4*(M+3*r) + 4*a**2*r**2*(2*r-M) + 4*a**2*r*sp.cos(2*th)*(a**2 + r*(M+2*r)) + 8*r**5)) ``` We must also compute the inverse and determinant of the KS metric. We can use the NRPy+ [indexedexp.py](../edit/indexedexp.py) function to do this easily for the inverse physical 3-metric $\gamma^{ij}$, and then use the lapse $\alpha$ and the shift $\beta^i$ to find the full, inverse 4-dimensional metric, $g^{ij}$. We use the general form relating the 3- and 4- metric from (B&S 2.122) \begin{equation} g_{\mu\nu} = \begin{pmatrix} -\alpha^2 + \beta\cdot\beta & \beta_i \\ \beta_j & \gamma_{ij} \end{pmatrix}, \end{equation} and invert it. That is, \begin{align} g^{00} &= -\frac{1}{\alpha^2} \\ g^{0i} = g^{i0} &= \frac{\beta^{i-1}}{\alpha^2} \\ g^{ij} = g^{ji} &= \gamma^{(i-1) (j-1)} - \frac{\beta^{i-1} \beta^{j-1}}{\alpha^2}, \end{align} keeping careful track of the differences in the indexing conventions for 3-dimensional quantities and 4-dimensional quantities (Python always indexes lists from 0, but in four dimensions, the 0 direction corresponds to time, while in 3+1, the connection to time is handled by other variables). ```python # For compatibility, we must compute gPhys4UU gammaKSUU,gammaKSDET = ixp.symm_matrix_inverter3x3(gammaKSDD) # See, e.g., Eq. 4.49 of https://arxiv.org/pdf/gr-qc/0703035.pdf , where N = alpha gPhys4UU[0][0] = -1 / alphaKS**2 for i in range(1,4): if i>0: # if the quantity does not have a "4", then it is assumed to be a 3D quantity. # E.g., betaKSU[] is a spatial vector, with indices ranging from 0 to 2: gPhys4UU[0][i] = gPhys4UU[i][0] = betaKSU[i-1]/alphaKS**2 for i in range(1,4): for j in range(1,4): # if the quantity does not have a "4", then it is assumed to be a 3D quantity. # E.g., betaKSU[] is a spatial vector, with indices ranging from 0 to 2, # and gammaKSUU[][] is a spatial tensor, with indices again ranging from 0 to 2. gPhys4UU[i][j] = gPhys4UU[j][i] = gammaKSUU[i-1][j-1] - betaKSU[i-1]*betaKSU[j-1]/alphaKS**2 ``` <a id='magnetic_field'></a> ## Step 2.i: Seed poloidal magnetic field $B^i$ \[Back to [top](#toc)\] $$\label{magnetic_field}$$ The original Fishbone-Moncrief initial data prescription describes a non-self-gravitating accretion disk in hydrodynamical equilibrium about a black hole. The following assumes that a very weak magnetic field seeded into this disk will not significantly disturb this equilibrium, at least on a dynamical (free-fall) timescale. Now, we will set up the magnetic field that, when simulated with a GRMHD code, will give us insight into the electromagnetic emission from the disk. We define the vector potential $A_i$ to be proportional to $\rho_0$, and, as usual, let the magnetic field $B^i$ be the curl of the vector potential. ```python A_b = par.Cparameters("REAL",thismodule,"A_b",1.0) A_3vecpotentialD = ixp.zerorank1() # Set A_phi = A_b*rho_initial FIXME: why is there a sign error? A_3vecpotentialD[2] = -A_b * rho_initial BtildeU = ixp.register_gridfunctions_for_single_rank1("EVOL","BtildeU") # Eq 15 of https://arxiv.org/pdf/1501.07276.pdf: # B = curl A -> B^r = d_th A_ph - d_ph A_th BtildeU[0] = sp.diff(A_3vecpotentialD[2],th) - sp.diff(A_3vecpotentialD[1],ph) # B = curl A -> B^th = d_ph A_r - d_r A_ph BtildeU[1] = sp.diff(A_3vecpotentialD[0],ph) - sp.diff(A_3vecpotentialD[2],r) # B = curl A -> B^ph = d_r A_th - d_th A_r BtildeU[2] = sp.diff(A_3vecpotentialD[1],r) - sp.diff(A_3vecpotentialD[0],th) ``` <a id='adm_metric'></a> ## Step 2.j: Set the ADM quantities $\alpha$, $\beta^i$, and $\gamma_{ij}$ from the spacetime metric $g_{\mu\nu}$ \[Back to [top](#toc)\] $$\label{adm_metric}$$ Now, we wish to build the 3+1-dimensional variables in terms of the inverse 4-dimensional spacetime metric $g^{ij},$ as demonstrated in eq. 4.49 of [Gourgoulhon's lecture notes on 3+1 formalisms](https://arxiv.org/pdf/gr-qc/0703035.pdf) (letting $N=\alpha$). So, \begin{align} \alpha &= \sqrt{-\frac{1}{g^{00}}} \\ \beta^i &= \alpha^2 g^{0 (i+1)} \\ \gamma^{ij} &= g^{(i+1) (j+1)} + \frac{\beta^i \beta_j}{\alpha^2}, \end{align} again keeping careful track of the differences in the indexing conventions for 3-dimensional quantities and 4-dimensional quantities. We will also take the inverse of $\gamma^{ij}$, obtaining (naturally) $\gamma_{ij}$ and its determinant $|\gamma|$. (Note that the function we use gives the determinant of $\gamma^{ij}$, which is the reciprocal of $|\gamma|$.) ```python # Construct spacetime metric in 3+1 form: # See, e.g., Eq. 4.49 of https://arxiv.org/pdf/gr-qc/0703035.pdf , where N = alpha alpha = gri.register_gridfunctions("EVOL",["alpha"]) betaU = ixp.register_gridfunctions_for_single_rank1("EVOL","betaU") alpha = sp.sqrt(1/(-gPhys4UU[0][0])) betaU = ixp.zerorank1() for i in range(3): betaU[i] = alpha**2 * gPhys4UU[0][i+1] gammaUU = ixp.zerorank2() for i in range(3): for j in range(3): gammaUU[i][j] = gPhys4UU[i+1][j+1] + betaU[i]*betaU[j]/alpha**2 gammaDD = ixp.register_gridfunctions_for_single_rank2("EVOL","gammaDD","sym01") gammaDD,igammaDET = ixp.symm_matrix_inverter3x3(gammaUU) gammaDET = 1/igammaDET ``` Now, we will lower the index on the shift vector $\beta_j = \gamma_{ij} \beta^i$ and use that to calculate the 4-dimensional metric tensor, $g_{ij}$. So, we have \begin{align} g_{00} &= -\alpha^2 + \beta^2 \\ g_{0 (i+1)} = g_{(i+1) 0} &= \beta_i \\ g_{(i+1) (j+1)} &= \gamma_{ij}, \end{align} where $\beta^2 \equiv \beta^i \beta_i$. ```python ############### # Next compute g_{\alpha \beta} from lower 3-metric, using # Eq 4.47 of https://arxiv.org/pdf/gr-qc/0703035.pdf betaD = ixp.zerorank1() for i in range(3): for j in range(3): betaD[i] += gammaDD[i][j]*betaU[j] beta2 = sp.sympify(0) for i in range(3): beta2 += betaU[i]*betaD[i] gPhys4DD = ixp.zerorank2(DIM=4) gPhys4DD[0][0] = -alpha**2 + beta2 for i in range(3): gPhys4DD[0][i+1] = gPhys4DD[i+1][0] = betaD[i] for j in range(3): gPhys4DD[i+1][j+1] = gammaDD[i][j] ``` <a id='magnetic_field_comoving_frame'></a> ## Step 2.k: Set the magnetic field components in the comoving frame $b^\mu$, and $b^2$, which is twice the magnetic pressure \[Back to [top](#toc)\] $$\label{magnetic_field_comoving_frame}$$ Next compute $b^{\mu}$ using Eqs 23, 24, 27 and 31 of [this paper](https://arxiv.org/pdf/astro-ph/0503420.pdf): \begin{align} B^i &= \frac{\tilde{B}}{\sqrt{|\gamma|}} \\ B^0_{(u)} &= \frac{u_{i+1} B^i}{\alpha} \\ b^0 &= \frac{B^0_{(u)}}{\sqrt{4 \pi}} \\ b^{i+1} &= \frac{\frac{B^i}{\alpha} + B^0_{(u)} u^{i+1}}{u^0 \sqrt{4 \pi}} \end{align} ```python ############### # Next compute b^{\mu} using Eqs 23 and 31 of https://arxiv.org/pdf/astro-ph/0503420.pdf uKS4D = ixp.zerorank1(DIM=4) for i in range(4): for j in range(4): uKS4D[i] += gPhys4DD[i][j] * uKS4U[j] # Eq 27 of https://arxiv.org/pdf/astro-ph/0503420.pdf BU = ixp.zerorank1() for i in range(3): BU[i] = BtildeU[i]/sp.sqrt(gammaDET) # Eq 23 of https://arxiv.org/pdf/astro-ph/0503420.pdf BU0_u = sp.sympify(0) for i in range(3): BU0_u += uKS4D[i+1]*BU[i]/alpha smallbU = ixp.zerorank1(DIM=4) smallbU[0] = BU0_u / sp.sqrt(4 * sp.pi) # Eqs 24 and 31 of https://arxiv.org/pdf/astro-ph/0503420.pdf for i in range(3): smallbU[i+1] = (BU[i]/alpha + BU0_u*uKS4U[i+1])/(sp.sqrt(4*sp.pi)*uKS4U[0]) smallbD = ixp.zerorank1(DIM=4) for i in range(4): for j in range(4): smallbD[i] += gPhys4DD[i][j]*smallbU[j] smallb2 = sp.sympify(0) for i in range(4): smallb2 += smallbU[i]*smallbD[i] ``` <a id='lorentz_fac_valencia'></a> ## Step 2.l: Lorentz factor $\Gamma = \alpha u^0$ and Valencia 3-velocity $v^i_{(n)}$ \[Back to [top](#toc)\] $$\label{lorentz_fac_valencia}$$ Now, we will define the Lorentz factor ($= \alpha u^0$) and the Valencia 3-velocity $v^i_{(n)}$, which sets the 3-velocity as measured by normal observers to the spatial slice: \begin{align} v^i_{(n)} &= \frac{u^i}{u^0 \alpha} + \frac{\beta^i}{\alpha}, \\ \end{align} as shown in eq 11 of [this](https://arxiv.org/pdf/1501.07276.pdf) paper. We will also compute the product of the square root of the determinant of the 3-metric with the lapse. ```python ############### LorentzFactor = alpha * uKS4U[0] # Define Valencia 3-velocity v^i_(n), which sets the 3-velocity as measured by normal observers to the spatial slice: # v^i_(n) = u^i/(u^0*alpha) + beta^i/alpha. See eq 11 of https://arxiv.org/pdf/1501.07276.pdf Valencia3velocityU = ixp.zerorank1() for i in range(3): Valencia3velocityU[i] = uKS4U[i + 1] / (alpha * uKS4U[0]) + betaU[i] / alpha sqrtgamma4DET = sp.symbols("sqrtgamma4DET") sqrtgamma4DET = sp.sqrt(gammaDET)*alpha ``` <a id='output_to_c'></a> ## Step 3: Output above-generated expressions to C code, using NRPy+ \[Back to [top](#toc)\] $$\label{output_to_c}$$ Finally, we have contructed the underlying expressions necessary for the Fishbone-Moncrief initial data. By means of demonstration, we will use NRPy+'s `FD_outputC()` to print the expressions. (The actual output statements are commented out right now, to save time in testing.) ```python KerrSchild_CKernel = [\ lhrh(lhs=gri.gfaccess("out_gfs","alpha"),rhs=alpha),\ lhrh(lhs=gri.gfaccess("out_gfs","betaU0"),rhs=betaU[0]),\ lhrh(lhs=gri.gfaccess("out_gfs","betaU1"),rhs=betaU[1]),\ lhrh(lhs=gri.gfaccess("out_gfs","betaU2"),rhs=betaU[2]),\ lhrh(lhs=gri.gfaccess("out_gfs","gammaDD00"),rhs=gammaDD[0][0]),\ lhrh(lhs=gri.gfaccess("out_gfs","gammaDD01"),rhs=gammaDD[0][1]),\ lhrh(lhs=gri.gfaccess("out_gfs","gammaDD02"),rhs=gammaDD[0][2]),\ lhrh(lhs=gri.gfaccess("out_gfs","gammaDD11"),rhs=gammaDD[1][1]),\ lhrh(lhs=gri.gfaccess("out_gfs","gammaDD12"),rhs=gammaDD[1][2]),\ lhrh(lhs=gri.gfaccess("out_gfs","gammaDD22"),rhs=gammaDD[2][2]),\ lhrh(lhs=gri.gfaccess("out_gfs","KDD00"),rhs=KDD[0][0]),\ lhrh(lhs=gri.gfaccess("out_gfs","KDD01"),rhs=KDD[0][1]),\ lhrh(lhs=gri.gfaccess("out_gfs","KDD02"),rhs=KDD[0][2]),\ lhrh(lhs=gri.gfaccess("out_gfs","KDD11"),rhs=KDD[1][1]),\ lhrh(lhs=gri.gfaccess("out_gfs","KDD12"),rhs=KDD[1][2]),\ lhrh(lhs=gri.gfaccess("out_gfs","KDD22"),rhs=KDD[2][2]),\ ] #fin.FD_outputC("stdout",KerrSchild_CKernel) FMdisk_Lorentz_uUs_CKernel = [\ lhrh(lhs=gri.gfaccess("out_gfs","LorentzFactor"),rhs=LorentzFactor),\ # lhrh(lhs=gri.gfaccess("out_gfs","uKS4U1"),rhs=uKS4U[1]),\ # lhrh(lhs=gri.gfaccess("out_gfs","uKS4U2"),rhs=uKS4U[2]),\ # lhrh(lhs=gri.gfaccess("out_gfs","uKS4U3"),rhs=uKS4U[3]),\ ] #fin.FD_outputC("stdout",FMdisk_Lorentz_uUs_CKernel) FMdisk_hm1_rho_P_CKernel = [\ # lhrh(lhs=gri.gfaccess("out_gfs","hm1"),rhs=hm1),\ lhrh(lhs=gri.gfaccess("out_gfs","rho_initial"),rhs=rho_initial),\ lhrh(lhs=gri.gfaccess("out_gfs","Pressure_initial"),rhs=Pressure_initial),\ ] #fin.FD_outputC("stdout",FMdisk_hm1_rho_P_CKernel) udotu = sp.sympify(0) for i in range(4): udotu += uKS4U[i]*uKS4D[i] #NRPy_file_output(OUTDIR+"/standalone-spherical_coords/NRPy_codegen/FMdisk_Btildes.h", [],[],[], # ID_protected_variables + ["r","th","ph"], # [],[uKS4U[0], "uKS4Ut", uKS4U[1],"uKS4Ur", uKS4U[2],"uKS4Uth", uKS4U[3],"uKS4Uph", # uKS4D[0], "uKS4Dt", uKS4D[1],"uKS4Dr", uKS4D[2],"uKS4Dth", uKS4D[3],"uKS4Dph", # uKS4D[1] * BU[0] / alpha, "Bur", uKS4D[2] * BU[1] / alpha, "Buth", uKS4D[3] * BU[2] / alpha, "Buph", # gPhys4DD[0][0], "g4DD00", gPhys4DD[0][1], "g4DD01",gPhys4DD[0][2], "g4DD02",gPhys4DD[0][3], "g4DD03", # BtildeU[0], "BtildeUr", BtildeU[1], "BtildeUth",BtildeU[2], "BtildeUph", # smallbU[0], "smallbUt", smallbU[1], "smallbUr", smallbU[2], "smallbUth",smallbU[3], "smallbUph", # smallb2,"smallb2",udotu,"udotu"]) FMdisk_Btildes_CKernel = [\ lhrh(lhs=gri.gfaccess("out_gfs","BtildeU0"),rhs=BtildeU[0]),\ lhrh(lhs=gri.gfaccess("out_gfs","BtildeU1"),rhs=BtildeU[1]),\ lhrh(lhs=gri.gfaccess("out_gfs","BtildeU2"),rhs=BtildeU[2]),\ ] #fin.FD_outputC("stdout",FMdisk_Btildes_CKernel) ``` We will now use the relationships between coordinate systems provided by [reference_metric.py](../edit/reference_metric.py) to convert our expressions to Cartesian coordinates. See [Tutorial-Reference_Metric](Tutorial-Reference_Metric.ipynb) for more detail. ```python # Now that all derivatives of ghat and gbar have been computed, # we may now substitute the definitions r = rfm.xxSph[0], th=rfm.xxSph[1],... # WARNING: Substitution only works when the variable is not an integer. Hence the if not isinstance(...,...) stuff. # If the variable isn't an integer, we revert transcendental functions inside to normal variables. E.g., sin(x2) -> sinx2 # Reverting to normal variables in this way makes expressions simpler in NRPy, and enables transcendental functions # to be pre-computed in SENR. alpha = alpha.subs(r,rfm.xxSph[0]).subs(th,rfm.xxSph[1]).subs(ph,rfm.xxSph[2]) for i in range(DIM): betaU[i] = betaU[i].subs(r,rfm.xxSph[0]).subs(th,rfm.xxSph[1]).subs(ph,rfm.xxSph[2]) for j in range(DIM): gammaDD[i][j] = gammaDD[i][j].subs(r,rfm.xxSph[0]).subs(th,rfm.xxSph[1]).subs(ph,rfm.xxSph[2]) KDD[i][j] = KDD[i][j].subs(r,rfm.xxSph[0]).subs(th,rfm.xxSph[1]).subs(ph,rfm.xxSph[2]) # GRMHD variables: # Density and pressure: hm1 = hm1.subs(r,rfm.xxSph[0]).subs(th,rfm.xxSph[1]).subs(ph,rfm.xxSph[2]) rho_initial = rho_initial.subs(r,rfm.xxSph[0]).subs(th,rfm.xxSph[1]).subs(ph,rfm.xxSph[2]) Pressure_initial = Pressure_initial.subs(r,rfm.xxSph[0]).subs(th,rfm.xxSph[1]).subs(ph,rfm.xxSph[2]) LorentzFactor = LorentzFactor.subs(r,rfm.xxSph[0]).subs(th,rfm.xxSph[1]).subs(ph,rfm.xxSph[2]) # "Valencia" three-velocity for i in range(DIM): BtildeU[i] = BtildeU[i].subs(r,rfm.xxSph[0]).subs(th,rfm.xxSph[1]).subs(ph,rfm.xxSph[2]) uKS4U[i+1] = uKS4U[i+1].subs(r,rfm.xxSph[0]).subs(th,rfm.xxSph[1]).subs(ph,rfm.xxSph[2]) uBL4U[i+1] = uBL4U[i+1].subs(r,rfm.xxSph[0]).subs(th,rfm.xxSph[1]).subs(ph,rfm.xxSph[2]) Valencia3velocityU[i] = Valencia3velocityU[i].subs(r,rfm.xxSph[0]).subs(th,rfm.xxSph[1]).subs(ph,rfm.xxSph[2]) ``` At last, we will use our reference metric formalism and the Jacobian associated with the two coordinate systems to convert the spherical initial data to Cartesian coordinates. The module reference_metric.py provides us with the definition of $r, \theta, \phi$ in Cartesian coordinates. To find dthe Jacobian to then transform from spherical to Cartesian, we must find the tensor \begin{equation} \frac{\partial x_i}{\partial y_j}, \end{equation} where $x_i \in \{r,\theta,\phi\}$ and $y_i \in \{x,y,z\}$. We will also compute its inverse. ```python # uUphi = uKS4U[3] # uUphi = sympify_integers__replace_rthph(uUphi,r,th,ph,rfm.xxSph[0],rfm.xxSph[1],rfm.xxSph[2]) # uUt = uKS4U[0] # uUt = sympify_integers__replace_rthph(uUt,r,th,ph,rfm.xxSph[0],rfm.xxSph[1],rfm.xxSph[2]) # Transform initial data to our coordinate system: # First compute Jacobian and its inverse drrefmetric__dx_0UDmatrix = sp.Matrix([[sp.diff(rfm.xxSph[0],rfm.xx[0]), sp.diff( rfm.xxSph[0],rfm.xx[1]), sp.diff( rfm.xxSph[0],rfm.xx[2])], [sp.diff(rfm.xxSph[1],rfm.xx[0]), sp.diff(rfm.xxSph[1],rfm.xx[1]), sp.diff(rfm.xxSph[1],rfm.xx[2])], [sp.diff(rfm.xxSph[2],rfm.xx[0]), sp.diff(rfm.xxSph[2],rfm.xx[1]), sp.diff(rfm.xxSph[2],rfm.xx[2])]]) dx__drrefmetric_0UDmatrix = drrefmetric__dx_0UDmatrix.inv() # Declare as gridfunctions the final quantities we will output for the initial data IDalpha = gri.register_gridfunctions("EVOL","IDalpha") IDgammaDD = ixp.register_gridfunctions_for_single_rank2("EVOL","IDgammaDD","sym01") IDKDD = ixp.register_gridfunctions_for_single_rank2("EVOL","IDKDD","sym01") IDbetaU = ixp.register_gridfunctions_for_single_rank1("EVOL","IDbetaU") IDValencia3velocityU = ixp.register_gridfunctions_for_single_rank1("EVOL","IDValencia3velocityU") IDalpha = alpha for i in range(3): IDbetaU[i] = 0 IDValencia3velocityU[i] = 0 for j in range(3): # Matrices are stored in row, column format, so (i,j) <-> (row,column) IDbetaU[i] += dx__drrefmetric_0UDmatrix[(i,j)]*betaU[j] IDValencia3velocityU[i] += dx__drrefmetric_0UDmatrix[(i,j)]*Valencia3velocityU[j] IDgammaDD[i][j] = 0 IDKDD[i][j] = 0 for k in range(3): for l in range(3): IDgammaDD[i][j] += drrefmetric__dx_0UDmatrix[(k,i)]*drrefmetric__dx_0UDmatrix[(l,j)]*gammaDD[k][l] IDKDD[i][j] += drrefmetric__dx_0UDmatrix[(k,i)]*drrefmetric__dx_0UDmatrix[(l,j)]* KDD[k][l] # -={ Spacetime quantities: Generate C code from expressions and output to file }=- KerrSchild_to_print = [\ lhrh(lhs=gri.gfaccess("out_gfs","IDalpha"),rhs=IDalpha),\ lhrh(lhs=gri.gfaccess("out_gfs","IDbetaU0"),rhs=IDbetaU[0]),\ lhrh(lhs=gri.gfaccess("out_gfs","IDbetaU1"),rhs=IDbetaU[1]),\ lhrh(lhs=gri.gfaccess("out_gfs","IDbetaU2"),rhs=IDbetaU[2]),\ lhrh(lhs=gri.gfaccess("out_gfs","IDgammaDD00"),rhs=IDgammaDD[0][0]),\ lhrh(lhs=gri.gfaccess("out_gfs","IDgammaDD01"),rhs=IDgammaDD[0][1]),\ lhrh(lhs=gri.gfaccess("out_gfs","IDgammaDD02"),rhs=IDgammaDD[0][2]),\ lhrh(lhs=gri.gfaccess("out_gfs","IDgammaDD11"),rhs=IDgammaDD[1][1]),\ lhrh(lhs=gri.gfaccess("out_gfs","IDgammaDD12"),rhs=IDgammaDD[1][2]),\ lhrh(lhs=gri.gfaccess("out_gfs","IDgammaDD22"),rhs=IDgammaDD[2][2]),\ lhrh(lhs=gri.gfaccess("out_gfs","IDKDD00"),rhs=IDKDD[0][0]),\ lhrh(lhs=gri.gfaccess("out_gfs","IDKDD01"),rhs=IDKDD[0][1]),\ lhrh(lhs=gri.gfaccess("out_gfs","IDKDD02"),rhs=IDKDD[0][2]),\ lhrh(lhs=gri.gfaccess("out_gfs","IDKDD11"),rhs=IDKDD[1][1]),\ lhrh(lhs=gri.gfaccess("out_gfs","IDKDD12"),rhs=IDKDD[1][2]),\ lhrh(lhs=gri.gfaccess("out_gfs","IDKDD22"),rhs=IDKDD[2][2]),\ ] # -={ GRMHD quantities: Generate C code from expressions and output to file }=- FMdisk_GRHD_hm1_to_print = [lhrh(lhs=gri.gfaccess("out_gfs","rho_initial"),rhs=rho_initial)] FMdisk_GRHD_velocities_to_print = [\ lhrh(lhs=gri.gfaccess("out_gfs","IDValencia3velocityU0"),rhs=IDValencia3velocityU[0]),\ lhrh(lhs=gri.gfaccess("out_gfs","IDValencia3velocityU1"),rhs=IDValencia3velocityU[1]),\ lhrh(lhs=gri.gfaccess("out_gfs","IDValencia3velocityU2"),rhs=IDValencia3velocityU[2]),\ ] ``` To verify this against the old version of FishboneMoncriefID from the old version of NRPy, we use the `mathematica_code()` output function. ```python # Comment out debug code for now, to reduce this file's size. #from mathematica_output import * # print("ID1alpha = " + sp.mathematica_code(IDalpha) + ";") # print("ID1beta0 = " + sp.mathematica_code(IDbetaU[0]) + ";") # print("ID1beta1 = " + sp.mathematica_code(IDbetaU[1]) + ";") # print("ID1beta2 = " + sp.mathematica_code(IDbetaU[2]) + ";") # print("ID1gamma00 = " + sp.mathematica_code(IDgammaDD[0][0]) + ";") # print("ID1gamma01 = " + sp.mathematica_code(IDgammaDD[0][1]) + ";") # print("ID1gamma02 = " + sp.mathematica_code(IDgammaDD[0][2]) + ";") # print("ID1gamma11 = " + sp.mathematica_code(IDgammaDD[1][1]) + ";") # print("ID1gamma12 = " + sp.mathematica_code(IDgammaDD[1][2]) + ";") # print("ID1gamma22 = " + sp.mathematica_code(IDgammaDD[2][2]) + ";") # print("ID1K00 = " + sp.mathematica_code(IDKDD[0][0]) + ";") # print("ID1K01 = " + sp.mathematica_code(IDKDD[0][1]) + ";") # print("ID1K02 = " + sp.mathematica_code(IDKDD[0][2]) + ";") # print("ID1K11 = " + sp.mathematica_code(IDKDD[1][1]) + ";") # print("ID1K12 = " + sp.mathematica_code(IDKDD[1][2]) + ";") # print("ID1K22 = " + sp.mathematica_code(IDKDD[2][2]) + ";") # print("hm11 = " + sp.mathematica_code(hm1) + ";") # print("ID1Valencia3velocityU0 = " + sp.mathematica_code(IDValencia3velocityU[0]) + ";") # print("ID1Valencia3velocityU1 = " + sp.mathematica_code(IDValencia3velocityU[1]) + ";") # print("ID1Valencia3velocityU2 = " + sp.mathematica_code(IDValencia3velocityU[2]) + ";") ``` <a id='code_validation'></a> # Step 4: Code Validation against `FishboneMoncriefID.FishboneMoncriefID` NRPy+ module \[Back to [top](#toc)\] $$\label{code_validation}$$ Here, as a code validation check, we verify agreement in the SymPy expressions for these Fishbone-Moncrief initial data between 1. this tutorial and 2. the NRPy+ [FishboneMoncriefID.FishboneMoncriefID](../edit/FishboneMoncriefID/FishboneMoncriefID.py) module. ```python gri.glb_gridfcs_list = [] import FishboneMoncriefID.FishboneMoncriefID as fmid fmid.FishboneMoncriefID() print("IDalpha - fmid.IDalpha = " + str(IDalpha - fmid.IDalpha)) print("rho_initial - fmid.rho_initial = " + str(rho_initial - fmid.rho_initial)) print("hm1 - fmid.hm1 = " + str(hm1 - fmid.hm1)) for i in range(DIM): print("IDbetaU["+str(i)+"] - fmid.IDbetaU["+str(i)+"] = " + str(IDbetaU[i] - fmid.IDbetaU[i])) print("IDValencia3velocityU["+str(i)+"] - fmid.IDValencia3velocityU["+str(i)+"] = "\ + str(IDValencia3velocityU[i] - fmid.IDValencia3velocityU[i])) for j in range(DIM): print("IDgammaDD["+str(i)+"]["+str(j)+"] - fmid.IDgammaDD["+str(i)+"]["+str(j)+"] = " + str(IDgammaDD[i][j] - fmid.IDgammaDD[i][j])) print("IDKDD["+str(i)+"]["+str(j)+"] - fmid.IDKDD["+str(i)+"]["+str(j)+"] = " + str(IDKDD[i][j] - fmid.IDKDD[i][j])) ``` IDalpha - fmid.IDalpha = 0 rho_initial - fmid.rho_initial = 0 hm1 - fmid.hm1 = 0 IDbetaU[0] - fmid.IDbetaU[0] = 0 IDValencia3velocityU[0] - fmid.IDValencia3velocityU[0] = 0 IDgammaDD[0][0] - fmid.IDgammaDD[0][0] = 0 IDKDD[0][0] - fmid.IDKDD[0][0] = 0 IDgammaDD[0][1] - fmid.IDgammaDD[0][1] = 0 IDKDD[0][1] - fmid.IDKDD[0][1] = 0 IDgammaDD[0][2] - fmid.IDgammaDD[0][2] = 0 IDKDD[0][2] - fmid.IDKDD[0][2] = 0 IDbetaU[1] - fmid.IDbetaU[1] = 0 IDValencia3velocityU[1] - fmid.IDValencia3velocityU[1] = 0 IDgammaDD[1][0] - fmid.IDgammaDD[1][0] = 0 IDKDD[1][0] - fmid.IDKDD[1][0] = 0 IDgammaDD[1][1] - fmid.IDgammaDD[1][1] = 0 IDKDD[1][1] - fmid.IDKDD[1][1] = 0 IDgammaDD[1][2] - fmid.IDgammaDD[1][2] = 0 IDKDD[1][2] - fmid.IDKDD[1][2] = 0 IDbetaU[2] - fmid.IDbetaU[2] = 0 IDValencia3velocityU[2] - fmid.IDValencia3velocityU[2] = 0 IDgammaDD[2][0] - fmid.IDgammaDD[2][0] = 0 IDKDD[2][0] - fmid.IDKDD[2][0] = 0 IDgammaDD[2][1] - fmid.IDgammaDD[2][1] = 0 IDKDD[2][1] - fmid.IDKDD[2][1] = 0 IDgammaDD[2][2] - fmid.IDgammaDD[2][2] = 0 IDKDD[2][2] - fmid.IDKDD[2][2] = 0 <a id='latex_pdf_output'></a> # Step 5: Output this notebook to $\LaTeX$-formatted PDF file \[Back to [top](#toc)\] $$\label{latex_pdf_output}$$ The following code cell converts this Jupyter notebook into a proper, clickable $\LaTeX$-formatted PDF file. After the cell is successfully run, the generated PDF may be found in the root NRPy+ tutorial directory, with filename [Tutorial-FishboneMoncriefID.pdf](Tutorial-FishboneMoncriefID.pdf) (Note that clicking on this link may not work; you may need to open the PDF file through another means.) ```python !jupyter nbconvert --to latex --template latex_nrpy_style.tplx --log-level='WARN' Tutorial-FishboneMoncriefID.ipynb !pdflatex -interaction=batchmode Tutorial-FishboneMoncriefID.tex !pdflatex -interaction=batchmode Tutorial-FishboneMoncriefID.tex !pdflatex -interaction=batchmode Tutorial-FishboneMoncriefID.tex !rm -f Tut*.out Tut*.aux Tut*.log ``` [NbConvertApp] Converting notebook Tutorial-FishboneMoncriefID.ipynb to latex [pandoc warning] Duplicate link reference `[comment]' "source" (line 17, column 1) [NbConvertApp] Writing 129778 bytes to Tutorial-FishboneMoncriefID.tex This is pdfTeX, Version 3.14159265-2.6-1.40.18 (TeX Live 2017/Debian) (preloaded format=pdflatex) restricted \write18 enabled. entering extended mode This is pdfTeX, Version 3.14159265-2.6-1.40.18 (TeX Live 2017/Debian) (preloaded format=pdflatex) restricted \write18 enabled. entering extended mode This is pdfTeX, Version 3.14159265-2.6-1.40.18 (TeX Live 2017/Debian) (preloaded format=pdflatex) restricted \write18 enabled. entering extended mode
module Language.JSON.Data import Data.Bits import Data.List import Data.Nat import Data.String.Extra import Data.String %default total public export data JSON = JNull | JBoolean Bool | JNumber Double | JString String | JArray (List JSON) | JObject (List (String, JSON)) %name JSON json private b16ToHexString : Bits16 -> String b16ToHexString n = case n of 0 => "0" 1 => "1" 2 => "2" 3 => "3" 4 => "4" 5 => "5" 6 => "6" 7 => "7" 8 => "8" 9 => "9" 10 => "A" 11 => "B" 12 => "C" 13 => "D" 14 => "E" 15 => "F" other => assert_total $ b16ToHexString (n `shiftR` fromNat 4) ++ b16ToHexString (n .&. 15) private showChar : Char -> String showChar c = case c of '\b' => "\\b" '\f' => "\\f" '\n' => "\\n" '\r' => "\\r" '\t' => "\\t" '\\' => "\\\\" '"' => "\\\"" c => if isControl c || c >= '\127' then let hex = b16ToHexString (cast $ ord c) in "\\u" ++ justifyRight 4 '0' hex else singleton c private showString : String -> String showString x = "\"" ++ concatMap showChar (unpack x) ++ "\"" ||| Convert a JSON value into its string representation. ||| No whitespace is added. private stringify : JSON -> String stringify JNull = "null" stringify (JBoolean x) = if x then "true" else "false" stringify (JNumber x) = show x stringify (JString x) = showString x stringify (JArray xs) = "[" ++ stringifyValues xs ++ "]" where stringifyValues : List JSON -> String stringifyValues [] = "" stringifyValues (x :: xs) = stringify x ++ if isNil xs then "" else "," ++ stringifyValues xs stringify (JObject xs) = "{" ++ stringifyProps xs ++ "}" where stringifyProp : (String, JSON) -> String stringifyProp (key, value) = showString key ++ ":" ++ stringify value stringifyProps : List (String, JSON) -> String stringifyProps [] = "" stringifyProps (x :: xs) = stringifyProp x ++ if isNil xs then "" else "," ++ stringifyProps xs export Show JSON where show = stringify ||| Format a JSON value, indenting by `n` spaces per nesting level. ||| ||| @curr The current indentation amount, measured in spaces. ||| @n The amount of spaces to indent per nesting level. export format : {default 0 curr : Nat} -> (n : Nat) -> JSON -> String format {curr} n json = indent curr $ formatValue curr n json where formatValue : (curr, n : Nat) -> JSON -> String formatValue _ _ (JArray []) = "[]" formatValue curr n (JArray xs@(_ :: _)) = "[\n" ++ formatValues xs ++ indent curr "]" where formatValues : (xs : List JSON) -> {auto ok : NonEmpty xs} -> String formatValues (x :: xs) = format {curr=(curr + n)} n x ++ case xs of _ :: _ => ",\n" ++ formatValues xs [] => "\n" formatValue _ _ (JObject []) = "{}" formatValue curr n (JObject xs@(_ :: _)) = "{\n" ++ formatProps xs ++ indent curr "}" where formatProp : (String, JSON) -> String formatProp (key, value) = indent (curr + n) (showString key ++ ": ") ++ formatValue (curr + n) n value formatProps : (xs : List (String, JSON)) -> {auto ok : NonEmpty xs} -> String formatProps (x :: xs) = formatProp x ++ case xs of _ :: _ => ",\n" ++ formatProps xs [] => "\n" formatValue _ _ x = stringify x
# A simple SymPy example First we import SymPy and initialize printing: ``` from sympy import init_printing from sympy import * init_printing() ``` Create a few symbols: ``` x,y,z = symbols('x y z') ``` Here is a basic expression: ``` e = x**2 + 2.0*y + sin(z); e ``` ``` diff(e, x) ``` ``` integrate(e, z) ``` ``` ```
function [c ceq gradc gradceq] = hs71C(x) c = -(prod(x)-25); ceq = sum(x.^2)-40; if(nargout > 2) gradc = -(prod(x)./x')'; gradceq = 2*x; end
/* * SOCI_ConvertersLong.hpp * * Created on: 29 Aug 2016 * Author: gishara */ //Copyright (c) 2016 Singapore-MIT Alliance for Research and Technology //Licensed under the terms of the MIT License, as described in the file: // license.txt (http://opensource.org/licenses/MIT) #pragma once #include <boost/algorithm/string.hpp> #include <boost/tokenizer.hpp> #include <database/entity/JobsByIndustryTypeByTaz.hpp> #include <database/entity/WorkersGrpByLogsumParams.hpp> #include <map> #include <soci/soci.h> #include <string> #include "database/entity/HedonicCoeffs.hpp" #include "database/entity/LagPrivateT.hpp" #include "database/entity/LtVersion.hpp" #include "database/entity/HedonicLogsums.hpp" #include "database/entity/TAOByUnitType.hpp" #include "database/entity/StudyArea.hpp" #include "database/entity/JobsWithIndustryTypeAndTazId.hpp" #include "database/entity/ResidentialWTP_Coefs.hpp" #include "database/entity/StudentStop.hpp" #include "database/entity/EzLinkStop.hpp" using namespace sim_mob; using namespace long_term; namespace soci { template<> struct type_conversion<sim_mob::long_term::HedonicCoeffs> { typedef values base_type; static void from_base(soci::values const & values, soci::indicator & indicator, sim_mob::long_term::HedonicCoeffs& hedonicCoeffs) { hedonicCoeffs.setPropertyTypeId(values.get<BigSerial>("property_type_id", INVALID_ID)); hedonicCoeffs.setIntercept(values.get<double>("intercept", 0)); hedonicCoeffs.setLogSqrtArea(values.get<double>("log_area", 0)); hedonicCoeffs.setFreehold( values.get<double>("freehold", 0)); hedonicCoeffs.setLogsumWeighted(values.get<double>("logsum_weighted", 0)); hedonicCoeffs.setPms1km(values.get<double>("pms_1km", 0)); hedonicCoeffs.setDistanceMallKm(values.get<double>("distance_mall_km", 0)); hedonicCoeffs.setMrt200m(values.get<double>("mrt_200m", 0)); hedonicCoeffs.setMrt_2_400m(values.get<double>("mrt_2_400m", 0)); hedonicCoeffs.setExpress200m(values.get<double>("express_200m", 0)); hedonicCoeffs.setBus400m(values.get<double>("bus2_400m", 0)); hedonicCoeffs.setBusGt400m(values.get<double>("bus_gt400m", 0)); hedonicCoeffs.setAge(values.get<double>("age", 0)); hedonicCoeffs.setLogAgeSquared(values.get<double>("age_squared", 0)); hedonicCoeffs.setMisage(values.get<double>("misage", 0)); hedonicCoeffs.setStorey(values.get<double>("storey", 0)); hedonicCoeffs.setStoreySquared(values.get<double>("storey_squared", 0)); } }; template<> struct type_conversion<sim_mob::long_term::HedonicCoeffsByUnitType> { typedef values base_type; static void from_base(soci::values const & values, soci::indicator & indicator, sim_mob::long_term::HedonicCoeffsByUnitType& hedonicCoeffsByUT) { hedonicCoeffsByUT.setUnitTypeId(values.get<BigSerial>("unit_type_id", INVALID_ID)); hedonicCoeffsByUT.setIntercept(values.get<double>("intercept", 0)); hedonicCoeffsByUT.setLogArea(values.get<double>("log_area", 0)); hedonicCoeffsByUT.setFreehold( values.get<double>("freehold", 0)); hedonicCoeffsByUT.setLogsumWeighted(values.get<double>("logsum_weighted", 0)); hedonicCoeffsByUT.setPms1km(values.get<double>("pms_1km", 0)); hedonicCoeffsByUT.setDistanceMallKm(values.get<double>("distance_mall_km", 0)); hedonicCoeffsByUT.setMrt200m(values.get<double>("mrt_200m", 0)); hedonicCoeffsByUT.setMrt2400m(values.get<double>("mrt_2_400m", 0)); hedonicCoeffsByUT.setExpress200m(values.get<double>("express_200m", 0)); hedonicCoeffsByUT.setBus2400m(values.get<double>("bus2_400m", 0)); hedonicCoeffsByUT.setBusGt400m(values.get<double>("bus_gt400m", 0)); hedonicCoeffsByUT.setAge(values.get<double>("age", 0)); hedonicCoeffsByUT.setAgeSquared(values.get<double>("age_squared", 0)); hedonicCoeffsByUT.setMisage(values.get<double>("misage", 0)); hedonicCoeffsByUT.setNonMature(values.get<double>("non_mature", 0)); hedonicCoeffsByUT.setOtherMature(values.get<double>("other_mature", 0)); hedonicCoeffsByUT.setStorey(values.get<double>("storey", 0)); hedonicCoeffsByUT.setStoreySquared(values.get<double>("storey_squared", 0)); } }; template<> struct type_conversion<sim_mob::long_term::LagPrivateT> { typedef values base_type; static void from_base(soci::values const & values, soci::indicator & indicator, sim_mob::long_term::LagPrivateT& lagPrivateT) { lagPrivateT.setPropertyTypeId(values.get<BigSerial>("property_type_id", INVALID_ID)); lagPrivateT.setIntercept(values.get<double>("intercept", 0)); lagPrivateT.setT4(values.get<double>("t4", 0)); } }; template<> struct type_conversion<sim_mob::long_term::LtVersion> { typedef values base_type; static void from_base(soci::values const & values, soci::indicator & indicator, sim_mob::long_term::LtVersion& ltVersion) { ltVersion.setId(values.get<long long>("id", INVALID_ID)); ltVersion.setBase_version(values.get<string>("base_version", "")); ltVersion.setChange_date(values.get<std::tm>("change_date", tm())); ltVersion.setComments(values.get<string>("comments", "")); ltVersion.setUser_id(values.get<string>("userid", "")); } }; template<> struct type_conversion<sim_mob::long_term::HedonicLogsums> { typedef values base_type; static void from_base(soci::values const & values, soci::indicator & indicator, sim_mob::long_term::HedonicLogsums& hedonicLogsums) { hedonicLogsums.setTazId(values.get<long long>("taz_id", INVALID_ID)); hedonicLogsums.setLogsumWeighted(values.get<double>("logsum_weighted", 0)); } }; template<> struct type_conversion<sim_mob::long_term::WorkersGrpByLogsumParams> { typedef values base_type; static void from_base(soci::values const & values, soci::indicator & indicator, sim_mob::long_term::WorkersGrpByLogsumParams& workersGrpByLogsumParams) { workersGrpByLogsumParams.setIndividualId(values.get<long long>("id", INVALID_ID)); workersGrpByLogsumParams.setLogsumCharacteristicsGroupId(values.get<int>("rowid", 0)); } }; template<> struct type_conversion<sim_mob::long_term::BuildingMatch> { typedef values base_type; static void from_base(soci::values const & values, soci::indicator & indicator, sim_mob::long_term::BuildingMatch& buildingMatch) { buildingMatch.setFm_building(values.get<long long>("fm_building_id", INVALID_ID)); buildingMatch.setFm_building_id_2008(values.get<long long>("fm_building_id_2008", INVALID_ID)); buildingMatch.setSla_building_id(values.get<string>("sla_building_id", "")); buildingMatch.setSla_inc_cnc(values.get<string>("sla_inc_cnc","")); buildingMatch.setMatch_code(values.get<int>("match_code",0)); buildingMatch.setMatch_date(values.get<tm>("match_date",tm())); } }; template<> struct type_conversion<sim_mob::long_term::SlaBuilding> { typedef values base_type; static void from_base(soci::values const & values, soci::indicator & indicator, sim_mob::long_term::SlaBuilding& slaBuilding) { slaBuilding.setSla_address_id(values.get<long long>("sla_address_id",0)); slaBuilding.setSla_building_id(values.get<string>("sla_building_id","")); slaBuilding.setSla_inc_crc(values.get<string>("sla_inc_crc","")); } }; template<> struct type_conversion<sim_mob::long_term::TAOByUnitType> { typedef values base_type; static void from_base(soci::values const & values, soci::indicator & indicator, sim_mob::long_term::TAOByUnitType& taoByUT) { taoByUT.setId(values.get<BigSerial>("id",0)); taoByUT.setQuarter(values.get<std::string>("quarter",std::string())); taoByUT.setTreasuryBillYield1Year(values.get<double>("treasury_bill_yield_1year",0)); taoByUT.setGdpRate(values.get<double>("gdp_rate",0)); taoByUT.setInflation(values.get<double>("inflation",0)); taoByUT.setTApartment7(values.get<double>("tapt_7",0)); taoByUT.setTApartment8(values.get<double>("tapt_8",0)); taoByUT.setTApartment9(values.get<double>("tapt_9",0)); taoByUT.setTApartment10(values.get<double>("tapt_10",0)); taoByUT.setTApartment11(values.get<double>("tapt_11",0)); taoByUT.setTCondo12(values.get<double>("tcondo_12",0)); taoByUT.setTCondo13(values.get<double>("tcondo_13",0)); taoByUT.setTCondo14(values.get<double>("tcondo_14",0)); taoByUT.setTCondo15(values.get<double>("tcondo_15",0)); taoByUT.setTCondo16(values.get<double>("tcondo_16",0)); } }; template<> struct type_conversion<sim_mob::long_term::LagPrivate_TByUnitType> { typedef values base_type; static void from_base(soci::values const & values, soci::indicator & indicator, sim_mob::long_term::LagPrivate_TByUnitType& lagPvtTByUT) { lagPvtTByUT.setUnitTypeId(values.get<BigSerial>("unit_type_id",0)); lagPvtTByUT.setIntercept(values.get<double>("intercept",0)); lagPvtTByUT.setT4(values.get<double>("t4",0)); lagPvtTByUT.setT5(values.get<double>("t5",0)); lagPvtTByUT.setT6(values.get<double>("t6",0)); lagPvtTByUT.setT7(values.get<double>("t7",0)); lagPvtTByUT.setGdpRate(values.get<double>("gdp_rate",0)); } }; template<> struct type_conversion<sim_mob::long_term::StudyArea> { typedef values base_type; static void from_base(soci::values const & values, soci::indicator & indicator, sim_mob::long_term::StudyArea& studyArea) { studyArea.setId(values.get<BigSerial>("id",0)); studyArea.setFmTazId(values.get<BigSerial>("fm_taz_id",0)); studyArea.setStudyCode(values.get<std::string>("study_code",std::string())); } }; template<> struct type_conversion<sim_mob::long_term::JobAssignmentCoeffs> { typedef values base_type; static void from_base(soci::values const & values, soci::indicator & indicator, sim_mob::long_term::JobAssignmentCoeffs& jobAssignmentCoeff) { jobAssignmentCoeff.setId(values.get<int>("id",0)); jobAssignmentCoeff.setBetaInc1(values.get<double>("beta_inc1",0)); jobAssignmentCoeff.setBetaInc2(values.get<double>("beta_inc2",0)); jobAssignmentCoeff.setBetaInc3(values.get<double>("beta_inc3",0)); jobAssignmentCoeff.setBetaLgs(values.get<double>("beta_lgs",0)); jobAssignmentCoeff.setBetaS1(values.get<double>("beta_s1",0)); jobAssignmentCoeff.setBetaS2(values.get<double>("beta_s2",0)); jobAssignmentCoeff.setBetaS3(values.get<double>("beta_s3",0)); jobAssignmentCoeff.setBetaS4(values.get<double>("beta_s4",0)); jobAssignmentCoeff.setBetaS5(values.get<double>("beta_s5",0)); jobAssignmentCoeff.setBetaS6(values.get<double>("beta_s6",0)); jobAssignmentCoeff.setBetaS7(values.get<double>("beta_s7",0)); jobAssignmentCoeff.setBetaS8(values.get<double>("beta_s8",0)); jobAssignmentCoeff.setBetaS9(values.get<double>("beta_s9",0)); jobAssignmentCoeff.setBetaS10(values.get<double>("beta_s10",0)); jobAssignmentCoeff.setBetaS11(values.get<double>("beta_s11",0)); jobAssignmentCoeff.setBetaS98(values.get<double>("beta_s98",0)); jobAssignmentCoeff.setBetaLnJob(values.get<double>("beta_lnjob",0)); } }; template<> struct type_conversion<sim_mob::long_term::JobsByIndustryTypeByTaz> { typedef values base_type; static void from_base(soci::values const & values, soci::indicator & indicator, sim_mob::long_term::JobsByIndustryTypeByTaz& jobsByIndustryByTaz) { jobsByIndustryByTaz.setTazId(values.get<BigSerial>("taz_id",0)); jobsByIndustryByTaz.setIndustryType1(values.get<int>("industry1",0)); jobsByIndustryByTaz.setIndustryType2(values.get<int>("industry2",0)); jobsByIndustryByTaz.setIndustryType3(values.get<int>("industry3",0)); jobsByIndustryByTaz.setIndustryType4(values.get<int>("industry4",0)); jobsByIndustryByTaz.setIndustryType5(values.get<int>("industry5",0)); jobsByIndustryByTaz.setIndustryType6(values.get<int>("industry6",0)); jobsByIndustryByTaz.setIndustryType7(values.get<int>("industry7",0)); jobsByIndustryByTaz.setIndustryType8(values.get<int>("industry8",0)); jobsByIndustryByTaz.setIndustryType9(values.get<int>("industry9",0)); jobsByIndustryByTaz.setIndustryType10(values.get<int>("industry10",0)); jobsByIndustryByTaz.setIndustryType11(values.get<int>("industry11",0)); jobsByIndustryByTaz.setIndustryType98(values.get<int>("industry98",0)); } }; template<> struct type_conversion<sim_mob::long_term::IndLogsumJobAssignment> { typedef values base_type; static void from_base(soci::values const & values, soci::indicator & indicator, sim_mob::long_term::IndLogsumJobAssignment& indLogsumJobAssignment) { indLogsumJobAssignment.setIndividualId(values.get<BigSerial>("individual_id",0)); indLogsumJobAssignment.setTazId(values.get<std::string>("taz_id",0)); indLogsumJobAssignment.setLogsum(values.get<float>("logsum",.0)); } }; template<> struct type_conversion<sim_mob::long_term::JobsWithIndustryTypeAndTazId> { typedef values base_type; static void from_base(soci::values const & values, soci::indicator & indicator, sim_mob::long_term::JobsWithIndustryTypeAndTazId& jobsWithIndustryTypeAndTazId) { jobsWithIndustryTypeAndTazId.setJobId(values.get<BigSerial>("job_id",0)); jobsWithIndustryTypeAndTazId.setIndustryTypeId(values.get<int>("industry_type_id",0)); jobsWithIndustryTypeAndTazId.setTazId(values.get<BigSerial>("taz_id",0)); } }; template<> struct type_conversion<sim_mob::long_term::School> { typedef values base_type; static void from_base(soci::values const & values, soci::indicator & indicator, sim_mob::long_term::School& school) { school.setId(values.get<BigSerial>("id",0)); school.setFmBuildingId(values.get<BigSerial>("fm_building_id",0)); school.setFloorArea(values.get<double>("floor_area",0)); school.setSchoolSlot(values.get<double>("school_slot",0)); school.setCentroidX(values.get<double>("centroid_x",0)); school.setCentroidY(values.get<double>("centroid_y",0)); school.setGiftedProgram(values.get<int>("gifted_program",0)); school.setSapProgram(values.get<int>("sap_program",0)); school.setPlanningArea(values.get<std::string>("planning_area",std::string())); school.setTazName(values.get<BigSerial>("taz_name",0)); school.setSchoolType(values.get<std::string>("school_type",std::string())); school.setArtProgram(values.get<int>("art_program",0)); school.setMusicProgram(values.get<int>("music_program",0)); school.setLangProgram(values.get<int>("lang_program",0)); school.setStudentDensity(values.get<double>("student_den",0)); school.setExpressTest(values.get<int>("express_test",0)); } }; template<> struct type_conversion<sim_mob::long_term::EzLinkStop> { typedef values base_type; static void from_base(soci::values const & values, soci::indicator & indicator, sim_mob::long_term::EzLinkStop& ezLinkStop) { ezLinkStop.setId(values.get<BigSerial>("id",0)); ezLinkStop.setXCoord(values.get<double>("x_coord",0)); ezLinkStop.setYCoord(values.get<double>("y_coord",0)); } }; template<> struct type_conversion<sim_mob::long_term::StudentStop> { typedef values base_type; static void from_base(soci::values const & values, soci::indicator & indicator, sim_mob::long_term::StudentStop& studentStop) { studentStop.setHomeStopEzLinkId(values.get<int>("home_stop_ez_link_id",0)); studentStop.setSchoolStopEzLinkId(values.get<int>("school_stop_ez_link_id",0)); } }; template<> struct type_conversion<sim_mob::long_term::SchoolDesk> { typedef values base_type; static void from_base(soci::values const & values, soci::indicator & indicator, sim_mob::long_term::SchoolDesk& schoolDesk) { schoolDesk.setSchoolDeskId(values.get<BigSerial>("school_desk_id",0)); schoolDesk.setSchoolId(values.get<BigSerial>("school_id",0)); } }; template<> struct type_conversion<sim_mob::long_term::ResidentialWTP_Coefs> { typedef values base_type; static void from_base(soci::values const & values, soci::indicator & indicator, sim_mob::long_term::ResidentialWTP_Coefs& wtpCoeffs) { wtpCoeffs.setId(values.get<int>("id",0)); wtpCoeffs.setPropertyType(values.get<std::string>("property_type",std::string())); wtpCoeffs.setSde(values.get<double>("sde",0)); wtpCoeffs.setM2(values.get<double>("m2",0)); wtpCoeffs.setS2(values.get<double>("s2",0)); wtpCoeffs.setConstant(values.get<double>("constant",0)); wtpCoeffs.setLogArea(values.get<double>("log_area",0)); wtpCoeffs.setLogsumTaz(values.get<double>("logsum_taz",0)); wtpCoeffs.setAge(values.get<double>("age",0)); wtpCoeffs.setAgeSquared(values.get<double>("age_squared",0)); wtpCoeffs.setMissingAgeDummy(values.get<double>("missing_age_dummy",0)); wtpCoeffs.setCarDummy(values.get<double>("car_dummy",0)); wtpCoeffs.setCarIntoLogsumTaz(values.get<double>("car_into_logsum_taz",0)); wtpCoeffs.setDistanceMall(values.get<double>("distance_mall",0)); wtpCoeffs.setMrt200m400m(values.get<double>("mrt_200_400m_dummy",0)); wtpCoeffs.setMatureDummy(values.get<double>("mature_dummy",0)); wtpCoeffs.setMatureOtherDummy(values.get<double>("mature_other_dummy",0)); wtpCoeffs.setFloorNumber(values.get<double>("floor_number",0)); wtpCoeffs.setLogIncome(values.get<double>("log_income",0)); wtpCoeffs.setLogIncomeIntoLogArea(values.get<double>("log_income_into_log_area",0)); wtpCoeffs.setFreeholdApartment(values.get<double>("freehold_apartment",0)); wtpCoeffs.setFreeholdCondo(values.get<double>("freehold_condo",0)); wtpCoeffs.setFreeholdTerrace(values.get<double>("freehold_terrace",0)); wtpCoeffs.setFreeholdDetached(values.get<double>("freehold_detached",0)); wtpCoeffs.setBus200m400mDummy(values.get<double>("bus_200_400m_dummy",0)); wtpCoeffs.setOneTwoFullTimeWorkerDummy(values.get<double>("one_two_fulltime_worker_dummy",0));; wtpCoeffs.setFullTimeWorkersTwoIntoLogArea(values.get<double>("fulltime_workers2_into_log_area",0)); wtpCoeffs.setHhSizeworkersDiff(values.get<double>("hh_size_wrokers_diff",0)); } }; } //namespace soci
= Why Does It Hurt So Bad =
{-# OPTIONS --without-K --exact-split --safe #-} module Fragment.Setoid.Morphism.Properties where open import Fragment.Setoid.Morphism.Base open import Fragment.Setoid.Morphism.Setoid open import Level using (Level) open import Relation.Binary using (Setoid) private variable a b c d ℓ₁ ℓ₂ ℓ₃ ℓ₄ : Level A : Setoid a ℓ₁ B : Setoid b ℓ₂ C : Setoid c ℓ₃ D : Setoid d ℓ₄ id-unitˡ : ∀ {f : A ↝ B} → id · f ≗ f id-unitˡ {B = B} = Setoid.refl B id-unitʳ : ∀ {f : A ↝ B} → f · id ≗ f id-unitʳ {B = B} = Setoid.refl B ·-assoc : ∀ (h : C ↝ D) (g : B ↝ C) (f : A ↝ B) → (h · g) · f ≗ h · (g · f) ·-assoc {D = D} _ _ _ = Setoid.refl D ·-congˡ : ∀ (h : B ↝ C) (f g : A ↝ B) → f ≗ g → h · f ≗ h · g ·-congˡ h _ _ f≗g = ∣ h ∣-cong f≗g ·-congʳ : ∀ (h : A ↝ B) (f g : B ↝ C) → f ≗ g → f · h ≗ g · h ·-congʳ _ _ _ f≗g = f≗g
(* Title: HOL/Quotient.thy Author: Cezary Kaliszyk and Christian Urban *) section \<open>Definition of Quotient Types\<close> theory Quotient imports Lifting keywords "print_quotmapsQ3" "print_quotientsQ3" "print_quotconsts" :: diag and "quotient_type" :: thy_goal and "/" and "quotient_definition" :: thy_goal begin text \<open> Basic definition for equivalence relations that are represented by predicates. \<close> text \<open>Composition of Relations\<close> abbreviation rel_conj :: "('a \<Rightarrow> 'b \<Rightarrow> bool) \<Rightarrow> ('b \<Rightarrow> 'a \<Rightarrow> bool) \<Rightarrow> 'a \<Rightarrow> 'b \<Rightarrow> bool" (infixr "OOO" 75) where "r1 OOO r2 \<equiv> r1 OO r2 OO r1" lemma eq_comp_r: shows "((op =) OOO R) = R" by (auto simp add: fun_eq_iff) context includes lifting_syntax begin subsection \<open>Quotient Predicate\<close> definition "Quotient3 R Abs Rep \<longleftrightarrow> (\<forall>a. Abs (Rep a) = a) \<and> (\<forall>a. R (Rep a) (Rep a)) \<and> (\<forall>r s. R r s \<longleftrightarrow> R r r \<and> R s s \<and> Abs r = Abs s)" lemma Quotient3I: assumes "\<And>a. Abs (Rep a) = a" and "\<And>a. R (Rep a) (Rep a)" and "\<And>r s. R r s \<longleftrightarrow> R r r \<and> R s s \<and> Abs r = Abs s" shows "Quotient3 R Abs Rep" using assms unfolding Quotient3_def by blast context fixes R Abs Rep assumes a: "Quotient3 R Abs Rep" begin lemma Quotient3_abs_rep: "Abs (Rep a) = a" using a unfolding Quotient3_def by simp lemma Quotient3_rep_reflp: "R (Rep a) (Rep a)" using a unfolding Quotient3_def by blast lemma Quotient3_rel: "R r r \<and> R s s \<and> Abs r = Abs s \<longleftrightarrow> R r s" \<comment> \<open>orientation does not loop on rewriting\<close> using a unfolding Quotient3_def by blast lemma Quotient3_refl1: "R r s \<Longrightarrow> R r r" using a unfolding Quotient3_def by fast lemma Quotient3_refl2: "R r s \<Longrightarrow> R s s" using a unfolding Quotient3_def by fast lemma Quotient3_rel_rep: "R (Rep a) (Rep b) \<longleftrightarrow> a = b" using a unfolding Quotient3_def by metis lemma Quotient3_rep_abs: "R r r \<Longrightarrow> R (Rep (Abs r)) r" using a unfolding Quotient3_def by blast lemma Quotient3_rel_abs: "R r s \<Longrightarrow> Abs r = Abs s" using a unfolding Quotient3_def by blast lemma Quotient3_symp: "symp R" using a unfolding Quotient3_def using sympI by metis lemma Quotient3_transp: "transp R" using a unfolding Quotient3_def using transpI by (metis (full_types)) lemma Quotient3_part_equivp: "part_equivp R" by (metis Quotient3_rep_reflp Quotient3_symp Quotient3_transp part_equivpI) lemma abs_o_rep: "Abs o Rep = id" unfolding fun_eq_iff by (simp add: Quotient3_abs_rep) lemma equals_rsp: assumes b: "R xa xb" "R ya yb" shows "R xa ya = R xb yb" using b Quotient3_symp Quotient3_transp by (blast elim: sympE transpE) lemma rep_abs_rsp: assumes b: "R x1 x2" shows "R x1 (Rep (Abs x2))" using b Quotient3_rel Quotient3_abs_rep Quotient3_rep_reflp by metis lemma rep_abs_rsp_left: assumes b: "R x1 x2" shows "R (Rep (Abs x1)) x2" using b Quotient3_rel Quotient3_abs_rep Quotient3_rep_reflp by metis end lemma identity_quotient3: "Quotient3 (op =) id id" unfolding Quotient3_def id_def by blast lemma fun_quotient3: assumes q1: "Quotient3 R1 abs1 rep1" and q2: "Quotient3 R2 abs2 rep2" shows "Quotient3 (R1 ===> R2) (rep1 ---> abs2) (abs1 ---> rep2)" proof - have "\<And>a.(rep1 ---> abs2) ((abs1 ---> rep2) a) = a" using q1 q2 by (simp add: Quotient3_def fun_eq_iff) moreover have "\<And>a.(R1 ===> R2) ((abs1 ---> rep2) a) ((abs1 ---> rep2) a)" by (rule rel_funI) (insert q1 q2 Quotient3_rel_abs [of R1 abs1 rep1] Quotient3_rel_rep [of R2 abs2 rep2], simp (no_asm) add: Quotient3_def, simp) moreover { fix r s have "(R1 ===> R2) r s = ((R1 ===> R2) r r \<and> (R1 ===> R2) s s \<and> (rep1 ---> abs2) r = (rep1 ---> abs2) s)" proof - have "(R1 ===> R2) r s \<Longrightarrow> (R1 ===> R2) r r" unfolding rel_fun_def using Quotient3_part_equivp[OF q1] Quotient3_part_equivp[OF q2] by (metis (full_types) part_equivp_def) moreover have "(R1 ===> R2) r s \<Longrightarrow> (R1 ===> R2) s s" unfolding rel_fun_def using Quotient3_part_equivp[OF q1] Quotient3_part_equivp[OF q2] by (metis (full_types) part_equivp_def) moreover have "(R1 ===> R2) r s \<Longrightarrow> (rep1 ---> abs2) r = (rep1 ---> abs2) s" apply(auto simp add: rel_fun_def fun_eq_iff) using q1 q2 unfolding Quotient3_def by metis moreover have "((R1 ===> R2) r r \<and> (R1 ===> R2) s s \<and> (rep1 ---> abs2) r = (rep1 ---> abs2) s) \<Longrightarrow> (R1 ===> R2) r s" apply(auto simp add: rel_fun_def fun_eq_iff) using q1 q2 unfolding Quotient3_def by (metis map_fun_apply) ultimately show ?thesis by blast qed } ultimately show ?thesis by (intro Quotient3I) (assumption+) qed lemma lambda_prs: assumes q1: "Quotient3 R1 Abs1 Rep1" and q2: "Quotient3 R2 Abs2 Rep2" shows "(Rep1 ---> Abs2) (\<lambda>x. Rep2 (f (Abs1 x))) = (\<lambda>x. f x)" unfolding fun_eq_iff using Quotient3_abs_rep[OF q1] Quotient3_abs_rep[OF q2] by simp lemma lambda_prs1: assumes q1: "Quotient3 R1 Abs1 Rep1" and q2: "Quotient3 R2 Abs2 Rep2" shows "(Rep1 ---> Abs2) (\<lambda>x. (Abs1 ---> Rep2) f x) = (\<lambda>x. f x)" unfolding fun_eq_iff using Quotient3_abs_rep[OF q1] Quotient3_abs_rep[OF q2] by simp text\<open> In the following theorem R1 can be instantiated with anything, but we know some of the types of the Rep and Abs functions; so by solving Quotient assumptions we can get a unique R1 that will be provable; which is why we need to use \<open>apply_rsp\<close> and not the primed version\<close> lemma apply_rspQ3: fixes f g::"'a \<Rightarrow> 'c" assumes q: "Quotient3 R1 Abs1 Rep1" and a: "(R1 ===> R2) f g" "R1 x y" shows "R2 (f x) (g y)" using a by (auto elim: rel_funE) lemma apply_rspQ3'': assumes "Quotient3 R Abs Rep" and "(R ===> S) f f" shows "S (f (Rep x)) (f (Rep x))" proof - from assms(1) have "R (Rep x) (Rep x)" by (rule Quotient3_rep_reflp) then show ?thesis using assms(2) by (auto intro: apply_rsp') qed subsection \<open>lemmas for regularisation of ball and bex\<close> lemma ball_reg_eqv: fixes P :: "'a \<Rightarrow> bool" assumes a: "equivp R" shows "Ball (Respects R) P = (All P)" using a unfolding equivp_def by (auto simp add: in_respects) lemma bex_reg_eqv: fixes P :: "'a \<Rightarrow> bool" assumes a: "equivp R" shows "Bex (Respects R) P = (Ex P)" using a unfolding equivp_def by (auto simp add: in_respects) lemma ball_reg_right: assumes a: "\<And>x. x \<in> R \<Longrightarrow> P x \<longrightarrow> Q x" shows "All P \<longrightarrow> Ball R Q" using a by fast lemma bex_reg_left: assumes a: "\<And>x. x \<in> R \<Longrightarrow> Q x \<longrightarrow> P x" shows "Bex R Q \<longrightarrow> Ex P" using a by fast lemma ball_reg_left: assumes a: "equivp R" shows "(\<And>x. (Q x \<longrightarrow> P x)) \<Longrightarrow> Ball (Respects R) Q \<longrightarrow> All P" using a by (metis equivp_reflp in_respects) lemma bex_reg_right: assumes a: "equivp R" shows "(\<And>x. (Q x \<longrightarrow> P x)) \<Longrightarrow> Ex Q \<longrightarrow> Bex (Respects R) P" using a by (metis equivp_reflp in_respects) lemma ball_reg_eqv_range: fixes P::"'a \<Rightarrow> bool" and x::"'a" assumes a: "equivp R2" shows "(Ball (Respects (R1 ===> R2)) (\<lambda>f. P (f x)) = All (\<lambda>f. P (f x)))" apply(rule iffI) apply(rule allI) apply(drule_tac x="\<lambda>y. f x" in bspec) apply(simp add: in_respects rel_fun_def) apply(rule impI) using a equivp_reflp_symp_transp[of "R2"] apply (auto elim: equivpE reflpE) done lemma bex_reg_eqv_range: assumes a: "equivp R2" shows "(Bex (Respects (R1 ===> R2)) (\<lambda>f. P (f x)) = Ex (\<lambda>f. P (f x)))" apply(auto) apply(rule_tac x="\<lambda>y. f x" in bexI) apply(simp) apply(simp add: Respects_def in_respects rel_fun_def) apply(rule impI) using a equivp_reflp_symp_transp[of "R2"] apply (auto elim: equivpE reflpE) done (* Next four lemmas are unused *) lemma all_reg: assumes a: "!x :: 'a. (P x --> Q x)" and b: "All P" shows "All Q" using a b by fast lemma ex_reg: assumes a: "!x :: 'a. (P x --> Q x)" and b: "Ex P" shows "Ex Q" using a b by fast lemma ball_reg: assumes a: "!x :: 'a. (x \<in> R --> P x --> Q x)" and b: "Ball R P" shows "Ball R Q" using a b by fast lemma bex_reg: assumes a: "!x :: 'a. (x \<in> R --> P x --> Q x)" and b: "Bex R P" shows "Bex R Q" using a b by fast lemma ball_all_comm: assumes "\<And>y. (\<forall>x\<in>P. A x y) \<longrightarrow> (\<forall>x. B x y)" shows "(\<forall>x\<in>P. \<forall>y. A x y) \<longrightarrow> (\<forall>x. \<forall>y. B x y)" using assms by auto lemma bex_ex_comm: assumes "(\<exists>y. \<exists>x. A x y) \<longrightarrow> (\<exists>y. \<exists>x\<in>P. B x y)" shows "(\<exists>x. \<exists>y. A x y) \<longrightarrow> (\<exists>x\<in>P. \<exists>y. B x y)" using assms by auto subsection \<open>Bounded abstraction\<close> definition Babs :: "'a set \<Rightarrow> ('a \<Rightarrow> 'b) \<Rightarrow> 'a \<Rightarrow> 'b" where "x \<in> p \<Longrightarrow> Babs p m x = m x" lemma babs_rsp: assumes q: "Quotient3 R1 Abs1 Rep1" and a: "(R1 ===> R2) f g" shows "(R1 ===> R2) (Babs (Respects R1) f) (Babs (Respects R1) g)" apply (auto simp add: Babs_def in_respects rel_fun_def) apply (subgoal_tac "x \<in> Respects R1 \<and> y \<in> Respects R1") using a apply (simp add: Babs_def rel_fun_def) apply (simp add: in_respects rel_fun_def) using Quotient3_rel[OF q] by metis lemma babs_prs: assumes q1: "Quotient3 R1 Abs1 Rep1" and q2: "Quotient3 R2 Abs2 Rep2" shows "((Rep1 ---> Abs2) (Babs (Respects R1) ((Abs1 ---> Rep2) f))) = f" apply (rule ext) apply (simp add:) apply (subgoal_tac "Rep1 x \<in> Respects R1") apply (simp add: Babs_def Quotient3_abs_rep[OF q1] Quotient3_abs_rep[OF q2]) apply (simp add: in_respects Quotient3_rel_rep[OF q1]) done lemma babs_simp: assumes q: "Quotient3 R1 Abs Rep" shows "((R1 ===> R2) (Babs (Respects R1) f) (Babs (Respects R1) g)) = ((R1 ===> R2) f g)" apply(rule iffI) apply(simp_all only: babs_rsp[OF q]) apply(auto simp add: Babs_def rel_fun_def) apply (subgoal_tac "x \<in> Respects R1 \<and> y \<in> Respects R1") apply(metis Babs_def) apply (simp add: in_respects) using Quotient3_rel[OF q] by metis (* If a user proves that a particular functional relation is an equivalence this may be useful in regularising *) lemma babs_reg_eqv: shows "equivp R \<Longrightarrow> Babs (Respects R) P = P" by (simp add: fun_eq_iff Babs_def in_respects equivp_reflp) (* 3 lemmas needed for proving repabs_inj *) lemma ball_rsp: assumes a: "(R ===> (op =)) f g" shows "Ball (Respects R) f = Ball (Respects R) g" using a by (auto simp add: Ball_def in_respects elim: rel_funE) lemma bex_rsp: assumes a: "(R ===> (op =)) f g" shows "(Bex (Respects R) f = Bex (Respects R) g)" using a by (auto simp add: Bex_def in_respects elim: rel_funE) lemma bex1_rsp: assumes a: "(R ===> (op =)) f g" shows "Ex1 (\<lambda>x. x \<in> Respects R \<and> f x) = Ex1 (\<lambda>x. x \<in> Respects R \<and> g x)" using a by (auto elim: rel_funE simp add: Ex1_def in_respects) (* 2 lemmas needed for cleaning of quantifiers *) lemma all_prs: assumes a: "Quotient3 R absf repf" shows "Ball (Respects R) ((absf ---> id) f) = All f" using a unfolding Quotient3_def Ball_def in_respects id_apply comp_def map_fun_def by metis lemma ex_prs: assumes a: "Quotient3 R absf repf" shows "Bex (Respects R) ((absf ---> id) f) = Ex f" using a unfolding Quotient3_def Bex_def in_respects id_apply comp_def map_fun_def by metis subsection \<open>\<open>Bex1_rel\<close> quantifier\<close> definition Bex1_rel :: "('a \<Rightarrow> 'a \<Rightarrow> bool) \<Rightarrow> ('a \<Rightarrow> bool) \<Rightarrow> bool" where "Bex1_rel R P \<longleftrightarrow> (\<exists>x \<in> Respects R. P x) \<and> (\<forall>x \<in> Respects R. \<forall>y \<in> Respects R. ((P x \<and> P y) \<longrightarrow> (R x y)))" lemma bex1_rel_aux: "\<lbrakk>\<forall>xa ya. R xa ya \<longrightarrow> x xa = y ya; Bex1_rel R x\<rbrakk> \<Longrightarrow> Bex1_rel R y" unfolding Bex1_rel_def apply (erule conjE)+ apply (erule bexE) apply rule apply (rule_tac x="xa" in bexI) apply metis apply metis apply rule+ apply (erule_tac x="xaa" in ballE) prefer 2 apply (metis) apply (erule_tac x="ya" in ballE) prefer 2 apply (metis) apply (metis in_respects) done lemma bex1_rel_aux2: "\<lbrakk>\<forall>xa ya. R xa ya \<longrightarrow> x xa = y ya; Bex1_rel R y\<rbrakk> \<Longrightarrow> Bex1_rel R x" unfolding Bex1_rel_def apply (erule conjE)+ apply (erule bexE) apply rule apply (rule_tac x="xa" in bexI) apply metis apply metis apply rule+ apply (erule_tac x="xaa" in ballE) prefer 2 apply (metis) apply (erule_tac x="ya" in ballE) prefer 2 apply (metis) apply (metis in_respects) done lemma bex1_rel_rsp: assumes a: "Quotient3 R absf repf" shows "((R ===> op =) ===> op =) (Bex1_rel R) (Bex1_rel R)" apply (simp add: rel_fun_def) apply clarify apply rule apply (simp_all add: bex1_rel_aux bex1_rel_aux2) apply (erule bex1_rel_aux2) apply assumption done lemma ex1_prs: assumes a: "Quotient3 R absf repf" shows "((absf ---> id) ---> id) (Bex1_rel R) f = Ex1 f" apply (simp add:) apply (subst Bex1_rel_def) apply (subst Bex_def) apply (subst Ex1_def) apply simp apply rule apply (erule conjE)+ apply (erule_tac exE) apply (erule conjE) apply (subgoal_tac "\<forall>y. R y y \<longrightarrow> f (absf y) \<longrightarrow> R x y") apply (rule_tac x="absf x" in exI) apply (simp) apply rule+ using a unfolding Quotient3_def apply metis apply rule+ apply (erule_tac x="x" in ballE) apply (erule_tac x="y" in ballE) apply simp apply (simp add: in_respects) apply (simp add: in_respects) apply (erule_tac exE) apply rule apply (rule_tac x="repf x" in exI) apply (simp only: in_respects) apply rule apply (metis Quotient3_rel_rep[OF a]) using a unfolding Quotient3_def apply (simp) apply rule+ using a unfolding Quotient3_def in_respects apply metis done lemma bex1_bexeq_reg: shows "(\<exists>!x\<in>Respects R. P x) \<longrightarrow> (Bex1_rel R (\<lambda>x. P x))" by (auto simp add: Ex1_def Bex1_rel_def Bex_def Ball_def in_respects) lemma bex1_bexeq_reg_eqv: assumes a: "equivp R" shows "(\<exists>!x. P x) \<longrightarrow> Bex1_rel R P" using equivp_reflp[OF a] apply (intro impI) apply (elim ex1E) apply (rule mp[OF bex1_bexeq_reg]) apply (rule_tac a="x" in ex1I) apply (subst in_respects) apply (rule conjI) apply assumption apply assumption apply clarify apply (erule_tac x="xa" in allE) apply simp done subsection \<open>Various respects and preserve lemmas\<close> lemma quot_rel_rsp: assumes a: "Quotient3 R Abs Rep" shows "(R ===> R ===> op =) R R" apply(rule rel_funI)+ apply(rule equals_rsp[OF a]) apply(assumption)+ done lemma o_prs: assumes q1: "Quotient3 R1 Abs1 Rep1" and q2: "Quotient3 R2 Abs2 Rep2" and q3: "Quotient3 R3 Abs3 Rep3" shows "((Abs2 ---> Rep3) ---> (Abs1 ---> Rep2) ---> (Rep1 ---> Abs3)) op \<circ> = op \<circ>" and "(id ---> (Abs1 ---> id) ---> Rep1 ---> id) op \<circ> = op \<circ>" using Quotient3_abs_rep[OF q1] Quotient3_abs_rep[OF q2] Quotient3_abs_rep[OF q3] by (simp_all add: fun_eq_iff) lemma o_rsp: "((R2 ===> R3) ===> (R1 ===> R2) ===> (R1 ===> R3)) op \<circ> op \<circ>" "(op = ===> (R1 ===> op =) ===> R1 ===> op =) op \<circ> op \<circ>" by (force elim: rel_funE)+ lemma cond_prs: assumes a: "Quotient3 R absf repf" shows "absf (if a then repf b else repf c) = (if a then b else c)" using a unfolding Quotient3_def by auto lemma if_prs: assumes q: "Quotient3 R Abs Rep" shows "(id ---> Rep ---> Rep ---> Abs) If = If" using Quotient3_abs_rep[OF q] by (auto simp add: fun_eq_iff) lemma if_rsp: assumes q: "Quotient3 R Abs Rep" shows "(op = ===> R ===> R ===> R) If If" by force lemma let_prs: assumes q1: "Quotient3 R1 Abs1 Rep1" and q2: "Quotient3 R2 Abs2 Rep2" shows "(Rep2 ---> (Abs2 ---> Rep1) ---> Abs1) Let = Let" using Quotient3_abs_rep[OF q1] Quotient3_abs_rep[OF q2] by (auto simp add: fun_eq_iff) lemma let_rsp: shows "(R1 ===> (R1 ===> R2) ===> R2) Let Let" by (force elim: rel_funE) lemma id_rsp: shows "(R ===> R) id id" by auto lemma id_prs: assumes a: "Quotient3 R Abs Rep" shows "(Rep ---> Abs) id = id" by (simp add: fun_eq_iff Quotient3_abs_rep [OF a]) end locale quot_type = fixes R :: "'a \<Rightarrow> 'a \<Rightarrow> bool" and Abs :: "'a set \<Rightarrow> 'b" and Rep :: "'b \<Rightarrow> 'a set" assumes equivp: "part_equivp R" and rep_prop: "\<And>y. \<exists>x. R x x \<and> Rep y = Collect (R x)" and rep_inverse: "\<And>x. Abs (Rep x) = x" and abs_inverse: "\<And>c. (\<exists>x. ((R x x) \<and> (c = Collect (R x)))) \<Longrightarrow> (Rep (Abs c)) = c" and rep_inject: "\<And>x y. (Rep x = Rep y) = (x = y)" begin definition abs :: "'a \<Rightarrow> 'b" where "abs x = Abs (Collect (R x))" definition rep :: "'b \<Rightarrow> 'a" where "rep a = (SOME x. x \<in> Rep a)" lemma some_collect: assumes "R r r" shows "R (SOME x. x \<in> Collect (R r)) = R r" apply simp by (metis assms exE_some equivp[simplified part_equivp_def]) lemma Quotient: shows "Quotient3 R abs rep" unfolding Quotient3_def abs_def rep_def proof (intro conjI allI) fix a r s show x: "R (SOME x. x \<in> Rep a) (SOME x. x \<in> Rep a)" proof - obtain x where r: "R x x" and rep: "Rep a = Collect (R x)" using rep_prop[of a] by auto have "R (SOME x. x \<in> Rep a) x" using r rep some_collect by metis then have "R x (SOME x. x \<in> Rep a)" using part_equivp_symp[OF equivp] by fast then show "R (SOME x. x \<in> Rep a) (SOME x. x \<in> Rep a)" using part_equivp_transp[OF equivp] by (metis \<open>R (SOME x. x \<in> Rep a) x\<close>) qed have "Collect (R (SOME x. x \<in> Rep a)) = (Rep a)" by (metis some_collect rep_prop) then show "Abs (Collect (R (SOME x. x \<in> Rep a))) = a" using rep_inverse by auto have "R r r \<Longrightarrow> R s s \<Longrightarrow> Abs (Collect (R r)) = Abs (Collect (R s)) \<longleftrightarrow> R r = R s" proof - assume "R r r" and "R s s" then have "Abs (Collect (R r)) = Abs (Collect (R s)) \<longleftrightarrow> Collect (R r) = Collect (R s)" by (metis abs_inverse) also have "Collect (R r) = Collect (R s) \<longleftrightarrow> (\<lambda>A x. x \<in> A) (Collect (R r)) = (\<lambda>A x. x \<in> A) (Collect (R s))" by rule simp_all finally show "Abs (Collect (R r)) = Abs (Collect (R s)) \<longleftrightarrow> R r = R s" by simp qed then show "R r s \<longleftrightarrow> R r r \<and> R s s \<and> (Abs (Collect (R r)) = Abs (Collect (R s)))" using equivp[simplified part_equivp_def] by metis qed end subsection \<open>Quotient composition\<close> lemma OOO_quotient3: fixes R1 :: "'a \<Rightarrow> 'a \<Rightarrow> bool" fixes Abs1 :: "'a \<Rightarrow> 'b" and Rep1 :: "'b \<Rightarrow> 'a" fixes Abs2 :: "'b \<Rightarrow> 'c" and Rep2 :: "'c \<Rightarrow> 'b" fixes R2' :: "'a \<Rightarrow> 'a \<Rightarrow> bool" fixes R2 :: "'b \<Rightarrow> 'b \<Rightarrow> bool" assumes R1: "Quotient3 R1 Abs1 Rep1" assumes R2: "Quotient3 R2 Abs2 Rep2" assumes Abs1: "\<And>x y. R2' x y \<Longrightarrow> R1 x x \<Longrightarrow> R1 y y \<Longrightarrow> R2 (Abs1 x) (Abs1 y)" assumes Rep1: "\<And>x y. R2 x y \<Longrightarrow> R2' (Rep1 x) (Rep1 y)" shows "Quotient3 (R1 OO R2' OO R1) (Abs2 \<circ> Abs1) (Rep1 \<circ> Rep2)" apply (rule Quotient3I) apply (simp add: o_def Quotient3_abs_rep [OF R2] Quotient3_abs_rep [OF R1]) apply simp apply (rule_tac b="Rep1 (Rep2 a)" in relcomppI) apply (rule Quotient3_rep_reflp [OF R1]) apply (rule_tac b="Rep1 (Rep2 a)" in relcomppI [rotated]) apply (rule Quotient3_rep_reflp [OF R1]) apply (rule Rep1) apply (rule Quotient3_rep_reflp [OF R2]) apply safe apply (rename_tac x y) apply (drule Abs1) apply (erule Quotient3_refl2 [OF R1]) apply (erule Quotient3_refl1 [OF R1]) apply (drule Quotient3_refl1 [OF R2], drule Rep1) apply (subgoal_tac "R1 r (Rep1 (Abs1 x))") apply (rule_tac b="Rep1 (Abs1 x)" in relcomppI, assumption) apply (erule relcomppI) apply (erule Quotient3_symp [OF R1, THEN sympD]) apply (rule Quotient3_rel[symmetric, OF R1, THEN iffD2]) apply (rule conjI, erule Quotient3_refl1 [OF R1]) apply (rule conjI, rule Quotient3_rep_reflp [OF R1]) apply (subst Quotient3_abs_rep [OF R1]) apply (erule Quotient3_rel_abs [OF R1]) apply (rename_tac x y) apply (drule Abs1) apply (erule Quotient3_refl2 [OF R1]) apply (erule Quotient3_refl1 [OF R1]) apply (drule Quotient3_refl2 [OF R2], drule Rep1) apply (subgoal_tac "R1 s (Rep1 (Abs1 y))") apply (rule_tac b="Rep1 (Abs1 y)" in relcomppI, assumption) apply (erule relcomppI) apply (erule Quotient3_symp [OF R1, THEN sympD]) apply (rule Quotient3_rel[symmetric, OF R1, THEN iffD2]) apply (rule conjI, erule Quotient3_refl2 [OF R1]) apply (rule conjI, rule Quotient3_rep_reflp [OF R1]) apply (subst Quotient3_abs_rep [OF R1]) apply (erule Quotient3_rel_abs [OF R1, THEN sym]) apply simp apply (rule Quotient3_rel_abs [OF R2]) apply (rule Quotient3_rel_abs [OF R1, THEN ssubst], assumption) apply (rule Quotient3_rel_abs [OF R1, THEN subst], assumption) apply (erule Abs1) apply (erule Quotient3_refl2 [OF R1]) apply (erule Quotient3_refl1 [OF R1]) apply (rename_tac a b c d) apply simp apply (rule_tac b="Rep1 (Abs1 r)" in relcomppI) apply (rule Quotient3_rel[symmetric, OF R1, THEN iffD2]) apply (rule conjI, erule Quotient3_refl1 [OF R1]) apply (simp add: Quotient3_abs_rep [OF R1] Quotient3_rep_reflp [OF R1]) apply (rule_tac b="Rep1 (Abs1 s)" in relcomppI [rotated]) apply (rule Quotient3_rel[symmetric, OF R1, THEN iffD2]) apply (simp add: Quotient3_abs_rep [OF R1] Quotient3_rep_reflp [OF R1]) apply (erule Quotient3_refl2 [OF R1]) apply (rule Rep1) apply (drule Abs1) apply (erule Quotient3_refl2 [OF R1]) apply (erule Quotient3_refl1 [OF R1]) apply (drule Abs1) apply (erule Quotient3_refl2 [OF R1]) apply (erule Quotient3_refl1 [OF R1]) apply (drule Quotient3_rel_abs [OF R1]) apply (drule Quotient3_rel_abs [OF R1]) apply (drule Quotient3_rel_abs [OF R1]) apply (drule Quotient3_rel_abs [OF R1]) apply simp apply (rule Quotient3_rel[symmetric, OF R2, THEN iffD2]) apply simp done lemma OOO_eq_quotient3: fixes R1 :: "'a \<Rightarrow> 'a \<Rightarrow> bool" fixes Abs1 :: "'a \<Rightarrow> 'b" and Rep1 :: "'b \<Rightarrow> 'a" fixes Abs2 :: "'b \<Rightarrow> 'c" and Rep2 :: "'c \<Rightarrow> 'b" assumes R1: "Quotient3 R1 Abs1 Rep1" assumes R2: "Quotient3 op= Abs2 Rep2" shows "Quotient3 (R1 OOO op=) (Abs2 \<circ> Abs1) (Rep1 \<circ> Rep2)" using assms by (rule OOO_quotient3) auto subsection \<open>Quotient3 to Quotient\<close> lemma Quotient3_to_Quotient: assumes "Quotient3 R Abs Rep" and "T \<equiv> \<lambda>x y. R x x \<and> Abs x = y" shows "Quotient R Abs Rep T" using assms unfolding Quotient3_def by (intro QuotientI) blast+ lemma Quotient3_to_Quotient_equivp: assumes q: "Quotient3 R Abs Rep" and T_def: "T \<equiv> \<lambda>x y. Abs x = y" and eR: "equivp R" shows "Quotient R Abs Rep T" proof (intro QuotientI) fix a show "Abs (Rep a) = a" using q by(rule Quotient3_abs_rep) next fix a show "R (Rep a) (Rep a)" using q by(rule Quotient3_rep_reflp) next fix r s show "R r s = (R r r \<and> R s s \<and> Abs r = Abs s)" using q by(rule Quotient3_rel[symmetric]) next show "T = (\<lambda>x y. R x x \<and> Abs x = y)" using T_def equivp_reflp[OF eR] by simp qed subsection \<open>ML setup\<close> text \<open>Auxiliary data for the quotient package\<close> named_theorems quot_equiv "equivalence relation theorems" and quot_respect "respectfulness theorems" and quot_preserve "preservation theorems" and id_simps "identity simp rules for maps" and quot_thm "quotient theorems" ML_file "Tools/Quotient/quotient_info.ML" declare [[mapQ3 "fun" = (rel_fun, fun_quotient3)]] lemmas [quot_thm] = fun_quotient3 lemmas [quot_respect] = quot_rel_rsp if_rsp o_rsp let_rsp id_rsp lemmas [quot_preserve] = if_prs o_prs let_prs id_prs lemmas [quot_equiv] = identity_equivp text \<open>Lemmas about simplifying id's.\<close> lemmas [id_simps] = id_def[symmetric] map_fun_id id_apply id_o o_id eq_comp_r vimage_id text \<open>Translation functions for the lifting process.\<close> ML_file "Tools/Quotient/quotient_term.ML" text \<open>Definitions of the quotient types.\<close> ML_file "Tools/Quotient/quotient_type.ML" text \<open>Definitions for quotient constants.\<close> ML_file "Tools/Quotient/quotient_def.ML" text \<open> An auxiliary constant for recording some information about the lifted theorem in a tactic. \<close> definition Quot_True :: "'a \<Rightarrow> bool" where "Quot_True x \<longleftrightarrow> True" lemma shows QT_all: "Quot_True (All P) \<Longrightarrow> Quot_True P" and QT_ex: "Quot_True (Ex P) \<Longrightarrow> Quot_True P" and QT_ex1: "Quot_True (Ex1 P) \<Longrightarrow> Quot_True P" and QT_lam: "Quot_True (\<lambda>x. P x) \<Longrightarrow> (\<And>x. Quot_True (P x))" and QT_ext: "(\<And>x. Quot_True (a x) \<Longrightarrow> f x = g x) \<Longrightarrow> (Quot_True a \<Longrightarrow> f = g)" by (simp_all add: Quot_True_def ext) lemma QT_imp: "Quot_True a \<equiv> Quot_True b" by (simp add: Quot_True_def) context includes lifting_syntax begin text \<open>Tactics for proving the lifted theorems\<close> ML_file "Tools/Quotient/quotient_tacs.ML" end subsection \<open>Methods / Interface\<close> method_setup lifting = \<open>Attrib.thms >> (fn thms => fn ctxt => SIMPLE_METHOD' (Quotient_Tacs.lift_tac ctxt [] thms))\<close> \<open>lift theorems to quotient types\<close> method_setup lifting_setup = \<open>Attrib.thm >> (fn thm => fn ctxt => SIMPLE_METHOD' (Quotient_Tacs.lift_procedure_tac ctxt [] thm))\<close> \<open>set up the three goals for the quotient lifting procedure\<close> method_setup descending = \<open>Scan.succeed (fn ctxt => SIMPLE_METHOD' (Quotient_Tacs.descend_tac ctxt []))\<close> \<open>decend theorems to the raw level\<close> method_setup descending_setup = \<open>Scan.succeed (fn ctxt => SIMPLE_METHOD' (Quotient_Tacs.descend_procedure_tac ctxt []))\<close> \<open>set up the three goals for the decending theorems\<close> method_setup partiality_descending = \<open>Scan.succeed (fn ctxt => SIMPLE_METHOD' (Quotient_Tacs.partiality_descend_tac ctxt []))\<close> \<open>decend theorems to the raw level\<close> method_setup partiality_descending_setup = \<open>Scan.succeed (fn ctxt => SIMPLE_METHOD' (Quotient_Tacs.partiality_descend_procedure_tac ctxt []))\<close> \<open>set up the three goals for the decending theorems\<close> method_setup regularize = \<open>Scan.succeed (fn ctxt => SIMPLE_METHOD' (Quotient_Tacs.regularize_tac ctxt))\<close> \<open>prove the regularization goals from the quotient lifting procedure\<close> method_setup injection = \<open>Scan.succeed (fn ctxt => SIMPLE_METHOD' (Quotient_Tacs.all_injection_tac ctxt))\<close> \<open>prove the rep/abs injection goals from the quotient lifting procedure\<close> method_setup cleaning = \<open>Scan.succeed (fn ctxt => SIMPLE_METHOD' (Quotient_Tacs.clean_tac ctxt))\<close> \<open>prove the cleaning goals from the quotient lifting procedure\<close> attribute_setup quot_lifted = \<open>Scan.succeed Quotient_Tacs.lifted_attrib\<close> \<open>lift theorems to quotient types\<close> no_notation rel_conj (infixr "OOO" 75) end
\chapter*{Preface} \label{sec:preface} \addcontentsline{toc}{chapter}{\nameref{sec:preface}} % I am priviliged. % insert 'especially' if more text before this I am very grateful that I got the opportunity to do my master's thesis at NERF\footnote{Neuro-Electronics Research Flanders. A collaborative research initiative between the university of Leuven, the Flemish life sciences institute VIB, and imec (a ``boutique, not-for-profit microelectronics shop'', in the \href{https://www.economist.com/science-and-technology/2017/11/09/a-new-nerve-cell-monitor-will-help-those-studying-brains}{words} of The Economist).}, where I was introduced to the wonderful world of circuit-level neuroscience.\footnote{I watched the fluorescent neural fireworks through a laser confocal microscope; I heard live the crackling firing of neurons in a sleeping brain; and I saw beautiful brain tissue photographs where virally infected cells fluoresced in bright colours. I learned about animal surgery, 3D printing, behavioural experiments, cluster and GPU computing, and the manufacture of bespoke, electromechanical scientific tools.} I want to thank Alexander Bertrand and Fabian Kloosterman, whose collaboration made this possible. They, and my thesis supervisors Jasper Wouters and Davide Ciliberti, spent many hours on very helpful feedback, guidance, and support. I also want to thank Jo\~ao Couto, \c{C}a\u{g}atay Ayd{\i}n, and Luis Hoffman for setting up the NERF computing cluster, writing a comprehensive usage guide for it, and helping me to get started with it. I thank Luis Hoffman specifically for his magnanimous help with various imec networking issues. Finally, a big thanks to my family and friends for the continued support throughout the thesis work. You know who y'all are. % todo: make link a proper reference
# -*- coding: utf-8 -*- # Copyright 2020 The PsiZ Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """Test EmbeddingND.""" import pytest import numpy as np import tensorflow as tf from tensorflow.keras.layers import Embedding from psiz.keras.layers import EmbeddingND def test_init(): phys_emb = Embedding( input_dim=12, output_dim=3 ) # Raise no error, since shapes are compatible. nd_emb = EmbeddingND( embedding=phys_emb ) nd_emb = EmbeddingND( embedding=phys_emb, input_dims=[12] ) nd_emb = EmbeddingND( embedding=phys_emb, input_dims=[2, 6] ) nd_emb = EmbeddingND( embedding=phys_emb, input_dims=[2, 2, 3] ) # Raise ValueError for incompatible shapes. with pytest.raises(Exception) as e_info: nd_emb = EmbeddingND( embedding=phys_emb, input_dims=[3, 5] ) assert str(e_info.value) == ( 'The provided `input_dims` and `embedding` are not shape ' 'compatible. The provided embedding has input_dim=12, which ' 'cannot be reshaped to ([3, 5]).' ) def test_standard_2d_call(flat_embeddings): """Test 2D input embedding call.""" phys_emb = Embedding( input_dim=12, output_dim=3, embeddings_initializer=tf.keras.initializers.Constant( flat_embeddings ) ) nd_emb = EmbeddingND( embedding=phys_emb, input_dims=[6, 2] ) reshaped_embeddings = np.reshape(flat_embeddings, [6, 2, 3]) # Test reshape. inputs = [ tf.constant(np.array(2, dtype=np.int32)), tf.constant(np.array(1, dtype=np.int32)) ] multi_index = tf.stack(inputs, axis=0) output = nd_emb(multi_index).numpy() desired_output = reshaped_embeddings[2, 1] np.testing.assert_array_almost_equal(output, desired_output) inputs = [ tf.constant(np.array(5, dtype=np.int32)), tf.constant(np.array(1, dtype=np.int32)) ] multi_index = tf.stack(inputs, axis=0) output = nd_emb(multi_index).numpy() desired_output = reshaped_embeddings[5, 1] np.testing.assert_array_almost_equal(output, desired_output) inputs_0 = tf.constant( np.array([ [1, 2], [1, 2] ], dtype=np.int32) ) inputs_1 = tf.constant( np.array([ [0, 0], [1, 1] ], dtype=np.int32) ) inputs = [inputs_0, inputs_1] multi_index = tf.stack(inputs, axis=0) output = nd_emb(multi_index).numpy() desired_output = np.array([ [[2.0, 2.1, 2.2], [4.0, 4.1, 4.2]], [[3.0, 3.1, 3.2], [5.0, 5.1, 5.2]], ]) # Assert almost equal because of TF 32 bit casting. np.testing.assert_array_almost_equal(output, desired_output) def test_standard_3d_call(flat_embeddings): """Test 3D input Embedding call.""" phys_emb = Embedding( input_dim=12, output_dim=3, embeddings_initializer=tf.keras.initializers.Constant( flat_embeddings ) ) nd_emb = EmbeddingND( embedding=phys_emb, input_dims=[3, 2, 2] ) reshaped_embeddings = np.reshape(flat_embeddings, [3, 2, 2, 3]) # Test reshape. inputs = [ tf.constant(np.array(0, dtype=np.int32)), tf.constant(np.array(0, dtype=np.int32)), tf.constant(np.array(0, dtype=np.int32)) ] multi_index = tf.stack(inputs, axis=0) output = nd_emb(multi_index).numpy() desired_output = reshaped_embeddings[0, 0, 0] np.testing.assert_array_almost_equal(output, desired_output) inputs = [ tf.constant(np.array(2, dtype=np.int32)), tf.constant(np.array(1, dtype=np.int32)), tf.constant(np.array(1, dtype=np.int32)) ] multi_index = tf.stack(inputs, axis=0) output = nd_emb(multi_index).numpy() desired_output = reshaped_embeddings[2, 1, 1] np.testing.assert_array_almost_equal(output, desired_output) inputs = [ tf.constant(np.array(1, dtype=np.int32)), tf.constant(np.array(1, dtype=np.int32)), tf.constant(np.array(0, dtype=np.int32)) ] multi_index = tf.stack(inputs, axis=0) output = nd_emb(multi_index).numpy() desired_output = reshaped_embeddings[1, 1, 0] np.testing.assert_array_almost_equal(output, desired_output) inputs_0 = tf.constant( np.array([ [1, 2], [1, 2] ], dtype=np.int32) ) inputs_1 = tf.constant( np.array([ [0, 0], [1, 1] ], dtype=np.int32) ) inputs_2 = tf.constant( np.array([ [0, 1], [0, 1] ], dtype=np.int32) ) inputs = (inputs_0, inputs_1, inputs_2) multi_index = tf.stack(inputs, axis=0) output = nd_emb(multi_index).numpy() desired_output = np.array([ [[4.0, 4.1, 4.2], [9.0, 9.1, 9.2]], [[6.0, 6.1, 6.2], [11.0, 11.1, 11.2]], ]) np.testing.assert_array_almost_equal(output, desired_output) def test_serialization(flat_embeddings): # Build ND embedding. phys_emb = Embedding( input_dim=12, output_dim=3, embeddings_initializer=tf.keras.initializers.Constant( flat_embeddings ) ) nd_emb = EmbeddingND( embedding=phys_emb, input_dims=[3, 2, 2] ) # Get configuration. config = nd_emb.get_config() # Reconstruct layer from configuration. nd_emb_reconstructed = EmbeddingND.from_config(config) # Assert reconstructed attributes are the same as original. np.testing.assert_array_equal( nd_emb.input_dims, nd_emb_reconstructed.input_dims ) assert nd_emb.output_dim == nd_emb_reconstructed.output_dim # Assert calls are equal (given constant initializer). inputs = [ tf.constant(np.array(1, dtype=np.int32)), tf.constant(np.array(1, dtype=np.int32)), tf.constant(np.array(0, dtype=np.int32)) ] multi_index = tf.stack(inputs, axis=0) output_orig = nd_emb(multi_index).numpy() output_recon = nd_emb_reconstructed(inputs).numpy() np.testing.assert_array_almost_equal(output_orig, output_recon)
The interior of a singleton set is empty.
#ifdef _WIN32 #define _WIN32_WINNT 0x0601 #endif #include <iostream> #include <chrono> #include <string> #include <vector> #include <utility> #include <string> #include <sstream> #include <boost/asio.hpp> #include <boost/thread.hpp> using namespace boost; using namespace std::chrono_literals; constexpr uint16_t port = 54'000; std::vector<uint8_t> input_buffer(1024 * 20); std::vector<uint8_t> output_buffer(1024 * 20); std::vector<std::shared_ptr<asio::ip::tcp::socket>> clients; enum class MessageType : uint8_t { Ping, Hello, Text, Exit }; void ReadData(asio::ip::tcp::socket&); void WriteData(asio::ip::tcp::socket& sock, size_t mess_size) { sock.async_write_some(asio::buffer(output_buffer.data(), mess_size), [&](system::error_code err, size_t length) { if (err) { std::cout << err.what() << std::endl; } else { ReadData(sock); } } ); } void ReadData(asio::ip::tcp::socket& sock) { sock.async_read_some(asio::buffer(input_buffer.data(), input_buffer.size()), [&](system::error_code err, size_t length) { if (err) { std::cout << err.what() << std::endl; } else { for (int i = 0; i < length; ++i) { std::cout.put(input_buffer[i]); } std::cout << std::endl; } } ); } int main() { asio::io_context context; asio::ip::tcp::socket sock(context); sock.connect(asio::ip::tcp::endpoint(asio::ip::make_address("127.0.0.1"), port)); std::string str; do { std::cout << "Enter the option (1 - ping, 2 - hello, 3 - text, 4 - exit)" << std::endl; std::cin >> str; std::string message; switch (std::stoi(str)) { case 1: { uint64_t time = std::chrono::steady_clock::now().time_since_epoch().count(); message = std::to_string(static_cast<uint8_t>(MessageType::Ping)) + std::to_string(time) + "\n"; } break; case 2: message = std::to_string(static_cast<uint8_t>(MessageType::Hello)) + "Hello"; break; case 3: { std::string mess; std::cout << "enter a message: " << std::endl; std::cin >> mess; message = std::to_string(static_cast<uint8_t>(MessageType::Text)) + mess + "\n"; } break; case 4: { std::cout << "Disconnecting..." << std::endl; std::string str = std::to_string(static_cast<uint8_t>(MessageType::Exit)) + "Bye\n"; sock.write_some(asio::buffer(str.data(), str.size())); sock.close(); exit(0); } default: break; } std::copy(message.begin(), message.end(), output_buffer.begin()); WriteData(sock, message.size()); context.run(); context.restart(); } while (true); return 0; }
-- Andreas, 2017-01-12 data D {A : Set} : A → Set where c : (a : A) → D {!!} -- fill with a d : (a : A) → {!!} -- fill with D a
If $f$ is not an essential singularity at $z$ and $f$ has an isolated singularity at $z$, then $1/f$ is not an essential singularity at $z$.
/- Copyright (c) 2021 Yaël Dillies. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Yaël Dillies, Eric Wieser -/ import algebra.order.module import data.real.basic /-! # Pointwise operations on sets of reals This file relates `Inf (a • s)`/`Sup (a • s)` with `a • Inf s`/`a • Sup s` for `s : set ℝ`. From these, it relates `⨅ i, a • f i` / `⨆ i, a • f i` with `a • (⨅ i, f i)` / `a • (⨆ i, f i)`, and provides lemmas about distributing `*` over `⨅` and `⨆`. # TODO This is true more generally for conditionally complete linear order whose default value is `0`. We don't have those yet. -/ open set open_locale pointwise variables {ι : Sort*} {α : Type*} [linear_ordered_field α] section mul_action_with_zero variables [mul_action_with_zero α ℝ] [ordered_smul α ℝ] {a : α} lemma real.Inf_smul_of_nonneg (ha : 0 ≤ a) (s : set ℝ) : Inf (a • s) = a • Inf s := begin obtain rfl | hs := s.eq_empty_or_nonempty, { rw [smul_set_empty, real.Inf_empty, smul_zero'] }, obtain rfl | ha' := ha.eq_or_lt, { rw [zero_smul_set hs, zero_smul], exact cInf_singleton 0 }, by_cases bdd_below s, { exact ((order_iso.smul_left ℝ ha').map_cInf' hs h).symm }, { rw [real.Inf_of_not_bdd_below (mt (bdd_below_smul_iff_of_pos ha').1 h), real.Inf_of_not_bdd_below h, smul_zero'] } end lemma real.smul_infi_of_nonneg (ha : 0 ≤ a) (f : ι → ℝ) : a • (⨅ i, f i) = ⨅ i, a • f i := (real.Inf_smul_of_nonneg ha _).symm.trans $ congr_arg Inf $ (range_comp _ _).symm lemma real.Sup_smul_of_nonneg (ha : 0 ≤ a) (s : set ℝ) : Sup (a • s) = a • Sup s := begin obtain rfl | hs := s.eq_empty_or_nonempty, { rw [smul_set_empty, real.Sup_empty, smul_zero'] }, obtain rfl | ha' := ha.eq_or_lt, { rw [zero_smul_set hs, zero_smul], exact cSup_singleton 0 }, by_cases bdd_above s, { exact ((order_iso.smul_left ℝ ha').map_cSup' hs h).symm }, { rw [real.Sup_of_not_bdd_above (mt (bdd_above_smul_iff_of_pos ha').1 h), real.Sup_of_not_bdd_above h, smul_zero'] } end lemma real.smul_supr_of_nonneg (ha : 0 ≤ a) (f : ι → ℝ) : a • (⨆ i, f i) = ⨆ i, a • f i := (real.Sup_smul_of_nonneg ha _).symm.trans $ congr_arg Sup $ (range_comp _ _).symm end mul_action_with_zero section module variables [module α ℝ] [ordered_smul α ℝ] {a : α} lemma real.Inf_smul_of_nonpos (ha : a ≤ 0) (s : set ℝ) : Inf (a • s) = a • Sup s := begin obtain rfl | hs := s.eq_empty_or_nonempty, { rw [smul_set_empty, real.Inf_empty, real.Sup_empty, smul_zero'] }, obtain rfl | ha' := ha.eq_or_lt, { rw [zero_smul_set hs, zero_smul], exact cInf_singleton 0 }, by_cases bdd_above s, { exact ((order_iso.smul_left_dual ℝ ha').map_cSup' hs h).symm }, { rw [real.Inf_of_not_bdd_below (mt (bdd_below_smul_iff_of_neg ha').1 h), real.Sup_of_not_bdd_above h, smul_zero'] } end lemma real.smul_supr_of_nonpos (ha : a ≤ 0) (f : ι → ℝ) : a • (⨆ i, f i) = ⨅ i, a • f i := (real.Inf_smul_of_nonpos ha _).symm.trans $ congr_arg Inf $ (range_comp _ _).symm lemma real.Sup_smul_of_nonpos (ha : a ≤ 0) (s : set ℝ) : Sup (a • s) = a • Inf s := begin obtain rfl | hs := s.eq_empty_or_nonempty, { rw [smul_set_empty, real.Sup_empty, real.Inf_empty, smul_zero] }, obtain rfl | ha' := ha.eq_or_lt, { rw [zero_smul_set hs, zero_smul], exact cSup_singleton 0 }, by_cases bdd_below s, { exact ((order_iso.smul_left_dual ℝ ha').map_cInf' hs h).symm }, { rw [real.Sup_of_not_bdd_above (mt (bdd_above_smul_iff_of_neg ha').1 h), real.Inf_of_not_bdd_below h, smul_zero] } end lemma real.smul_infi_of_nonpos (ha : a ≤ 0) (f : ι → ℝ) : a • (⨅ i, f i) = ⨆ i, a • f i := (real.Sup_smul_of_nonpos ha _).symm.trans $ congr_arg Sup $ (range_comp _ _).symm end module /-! ## Special cases for real multiplication -/ section mul variables {r : ℝ} lemma real.mul_infi_of_nonneg (ha : 0 ≤ r) (f : ι → ℝ) : r * (⨅ i, f i) = ⨅ i, r * f i := real.smul_infi_of_nonneg ha f lemma real.mul_supr_of_nonneg (ha : 0 ≤ r) (f : ι → ℝ) : r * (⨆ i, f i) = ⨆ i, r * f i := real.smul_supr_of_nonneg ha f lemma real.mul_infi_of_nonpos (ha : r ≤ 0) (f : ι → ℝ) : r * (⨅ i, f i) = ⨆ i, r * f i := real.smul_infi_of_nonpos ha f lemma real.mul_supr_of_nonpos (ha : r ≤ 0) (f : ι → ℝ) : r * (⨆ i, f i) = ⨅ i, r * f i := real.smul_supr_of_nonpos ha f lemma real.infi_mul_of_nonneg (ha : 0 ≤ r) (f : ι → ℝ) : (⨅ i, f i) * r = ⨅ i, f i * r := by simp only [real.mul_infi_of_nonneg ha, mul_comm] lemma real.supr_mul_of_nonneg (ha : 0 ≤ r) (f : ι → ℝ) : (⨆ i, f i) * r = ⨆ i, f i * r := by simp only [real.mul_supr_of_nonneg ha, mul_comm] lemma real.infi_mul_of_nonpos (ha : r ≤ 0) (f : ι → ℝ) : (⨅ i, f i) * r = ⨆ i, f i * r := by simp only [real.mul_infi_of_nonpos ha, mul_comm] lemma real.supr_mul_of_nonpos (ha : r ≤ 0) (f : ι → ℝ) : (⨆ i, f i) * r = ⨅ i, f i * r := by simp only [real.mul_supr_of_nonpos ha, mul_comm] end mul
\section{Tricks} \begin{enumerate} \item In a script, line breaking is allowed provided the line breaks occur immediately after operators. The scanner will automatically go to the next line after an operator. \item Setting \verb$trace=1$ in a script causes each line to be printed just before it is evaluated. This is useful for debugging. \item The last result is stored in the symbol $last$. \item Use \verb$contract(A)$ to get the mathematical trace of matrix $A$. \item Use \verb$binding(s)$ to get the unevaluated binding of symbol $s$. \item Use \verb$s=quote(s)$ to clear symbol $s$. \item Use \verb$float(pi)$ to get the floating point value of $\pi$. Set \verb$pi=float(pi)$ to evaluate expressions with a numerical value for $\pi$. Set \verb$pi=quote(pi)$ to make $\pi$ symbolic again. \item Assign strings to unit names so they are printed normally. For example, setting \verb$meter="meter"$ causes the symbol {\it meter} to be printed as meter instead of $m_{eter}$. \item Use \verb$expsin$ and \verb$expcos$ instead of \verb$sin$ and \verb$cos$. Trigonometric simplifications occur automatically when exponentials are used. \item Use \verb$A==B$ or \verb$A-B==0$ to test for equality of $A$ and $B$. The equality operator \verb$==$ uses a cross multiply algorithm to eliminate denominators. Hence \verb$==$ can typically determine equality even when the unsimplified result of $A-B$ is nonzero. Note: Equality tests involving floating point numbers can be problematic due to roundoff error. \item If local symbols are needed in a function, they can be appended to {\it arg-list}. (The caller does not have to supply all the arguments.) The following example uses Rodrigues's formula to compute an associated Legendre function of $\cos\theta$. \begin{equation*} P_n^m(x)=\frac{1}{2^n\,n!}(1-x^2)^{m/2}\frac{d^{n+m}}{dx^{n+m}}(x^2-1)^n \end{equation*} Function $P$ below first computes $P_n^m(x)$ for local variable $x$ and then uses {\it eval} to replace $x$ with $f$. In this case, $f=\cos\theta$. \begin{Verbatim}[formatcom=\color{blue}] x = 123 -- global x in use, need local x in P P(f,n,m,x) = eval(1/(2^n n!) (1 - x^2)^(m/2) d((x^2 - 1)^n,x,n + m),x,f) P(cos(theta),2,0) -- arguments f, n, m, but not x \end{Verbatim} \noindent $\displaystyle \tfrac{3}{2} \cos(\theta)^2-\tfrac{1}{2}$ \bigskip \noindent Note: The maximum number of arguments is nine. \end{enumerate}
""" =========== Path Editor =========== Sharing events across GUIs. This example demonstrates a cross-GUI application using Matplotlib event handling to interact with and modify objects on the canvas. """ import numpy as np from matplotlib.backend_bases import MouseButton from matplotlib.path import Path from matplotlib.patches import PathPatch import matplotlib.pyplot as plt fig, ax = plt.subplots() pathdata = [ (Path.MOVETO, (1.58, -2.57)), (Path.CURVE4, (0.35, -1.1)), (Path.CURVE4, (-1.75, 2.0)), (Path.CURVE4, (0.375, 2.0)), (Path.LINETO, (0.85, 1.15)), (Path.CURVE4, (2.2, 3.2)), (Path.CURVE4, (3, 0.05)), (Path.CURVE4, (2.0, -0.5)), (Path.CLOSEPOLY, (1.58, -2.57)), ] codes, verts = zip(*pathdata) path = Path(verts, codes) patch = PathPatch( path, facecolor='green', edgecolor='yellow', alpha=0.5) ax.add_patch(patch) class PathInteractor: """ An path editor. Press 't' to toggle vertex markers on and off. When vertex markers are on, they can be dragged with the mouse. """ showverts = True epsilon = 5 # max pixel distance to count as a vertex hit def __init__(self, pathpatch): self.ax = pathpatch.axes canvas = self.ax.figure.canvas self.pathpatch = pathpatch self.pathpatch.set_animated(True) x, y = zip(*self.pathpatch.get_path().vertices) self.line, = ax.plot( x, y, marker='o', markerfacecolor='r', animated=True) self._ind = None # the active vertex canvas.mpl_connect('draw_event', self.on_draw) canvas.mpl_connect('button_press_event', self.on_button_press) canvas.mpl_connect('key_press_event', self.on_key_press) canvas.mpl_connect('button_release_event', self.on_button_release) canvas.mpl_connect('motion_notify_event', self.on_mouse_move) self.canvas = canvas def get_ind_under_point(self, event): """ Return the index of the point closest to the event position or *None* if no point is within ``self.epsilon`` to the event position. """ # display coords xy = np.asarray(self.pathpatch.get_path().vertices) xyt = self.pathpatch.get_transform().transform(xy) xt, yt = xyt[:, 0], xyt[:, 1] d = np.sqrt((xt - event.x)**2 + (yt - event.y)**2) ind = d.argmin() if d[ind] >= self.epsilon: ind = None return ind def on_draw(self, event): """Callback for draws.""" self.background = self.canvas.copy_from_bbox(self.ax.bbox) self.ax.draw_artist(self.pathpatch) self.ax.draw_artist(self.line) self.canvas.blit(self.ax.bbox) def on_button_press(self, event): """Callback for mouse button presses.""" if (event.inaxes is None or event.button != MouseButton.LEFT or not self.showverts): return self._ind = self.get_ind_under_point(event) def on_button_release(self, event): """Callback for mouse button releases.""" if (event.button != MouseButton.LEFT or not self.showverts): return self._ind = None def on_key_press(self, event): """Callback for key presses.""" if not event.inaxes: return if event.key == 't': self.showverts = not self.showverts self.line.set_visible(self.showverts) if not self.showverts: self._ind = None self.canvas.draw() def on_mouse_move(self, event): """Callback for mouse movements.""" if (self._ind is None or event.inaxes is None or event.button != MouseButton.LEFT or not self.showverts): return vertices = self.pathpatch.get_path().vertices vertices[self._ind] = event.xdata, event.ydata self.line.set_data(zip(*vertices)) self.canvas.restore_region(self.background) self.ax.draw_artist(self.pathpatch) self.ax.draw_artist(self.line) self.canvas.blit(self.ax.bbox) interactor = PathInteractor(patch) ax.set_title('drag vertices to update path') ax.set_xlim(-3, 4) ax.set_ylim(-3, 4) plt.show()
-- Given two abelian groups A, B -- the set of all group homomorphisms from A to B -- is itself an abelian group. -- In other words, Ab is cartesian closed. -- This is needed to show Ab is an abelian category. {-# OPTIONS --safe #-} module Cubical.Algebra.AbGroup.Instances.Hom where open import Cubical.Algebra.AbGroup.Base open import Cubical.Algebra.Group.Morphisms open import Cubical.Algebra.Group.MorphismProperties open import Cubical.Algebra.Group.Properties open import Cubical.Foundations.Prelude private variable ℓ ℓ' : Level module _ (A : AbGroup ℓ) (B : AbGroup ℓ') where -- These names are useful for the proofs private open IsGroupHom open AbGroupStr (A .snd) using () renaming (0g to 0A; _+_ to _⋆_; -_ to inv) open AbGroupStr (B .snd) using (_+_; -_; +Comm; +Assoc; +IdR ; +InvR) renaming (0g to 0B) open GroupTheory (AbGroup→Group B) using (invDistr) renaming (inv1g to inv0B) -- Some lemmas idrB : (b : B .fst) → b + 0B ≡ b idrB b = +IdR b invrB : (b : B .fst) → b + (- b) ≡ 0B invrB b = +InvR b hom0AB : (f : AbGroupHom A B) → f .fst 0A ≡ 0B hom0AB f = hom1g (AbGroupStr→GroupStr (A .snd)) (f .fst) (AbGroupStr→GroupStr (B .snd)) (f .snd .pres·) homInvAB : (f : AbGroupHom A B) → (a : A .fst) → f .fst (inv a) ≡ (- f .fst a) homInvAB f a = homInv (AbGroupStr→GroupStr (A .snd)) (f .fst) (AbGroupStr→GroupStr (B .snd)) (f .snd .pres·) a -- Zero morphism zero : AbGroupHom A B zero .fst a = 0B zero .snd .pres· a a' = sym (idrB _) zero .snd .pres1 = refl zero .snd .presinv a = sym (inv0B) -- Pointwise addition of morphisms module _ (f* g* : AbGroupHom A B) where private f = f* .fst g = g* .fst HomAdd : AbGroupHom A B HomAdd .fst = λ a → f a + g a HomAdd .snd .pres· a a' = f (a ⋆ a') + g (a ⋆ a') ≡⟨ cong (_+ g(a ⋆ a')) (f* .snd .pres· _ _) ⟩ (f a + f a') + g (a ⋆ a') ≡⟨ cong ((f a + f a') +_) (g* .snd .pres· _ _) ⟩ (f a + f a') + (g a + g a') ≡⟨ sym (+Assoc _ _ _) ⟩ f a + (f a' + (g a + g a')) ≡⟨ cong (f a +_) (+Assoc _ _ _) ⟩ f a + ((f a' + g a) + g a') ≡⟨ cong (λ b → (f a + b + g a')) (+Comm _ _) ⟩ f a + ((g a + f a') + g a') ≡⟨ cong (f a +_) (sym (+Assoc _ _ _)) ⟩ f a + (g a + (f a' + g a')) ≡⟨ +Assoc _ _ _ ⟩ (f a + g a) + (f a' + g a') ∎ HomAdd .snd .pres1 = f 0A + g 0A ≡⟨ cong (_+ g 0A) (hom0AB f*) ⟩ 0B + g 0A ≡⟨ cong (0B +_) (hom0AB g*) ⟩ 0B + 0B ≡⟨ idrB _ ⟩ 0B ∎ HomAdd .snd .presinv a = f (inv a) + g (inv a) ≡⟨ cong (_+ g (inv a)) (homInvAB f* _) ⟩ (- f a) + g (inv a) ≡⟨ cong ((- f a) +_) (homInvAB g* _) ⟩ (- f a) + (- g a) ≡⟨ +Comm _ _ ⟩ (- g a) + (- f a) ≡⟨ sym (invDistr _ _) ⟩ - (f a + g a) ∎ -- Pointwise inverse of morphism module _ (f* : AbGroupHom A B) where private f = f* .fst HomInv : AbGroupHom A B HomInv .fst = λ a → - f a HomInv .snd .pres· a a' = - f (a ⋆ a') ≡⟨ cong -_ (f* .snd .pres· _ _) ⟩ - (f a + f a') ≡⟨ invDistr _ _ ⟩ (- f a') + (- f a) ≡⟨ +Comm _ _ ⟩ (- f a) + (- f a') ∎ HomInv .snd .pres1 = - (f 0A) ≡⟨ cong -_ (f* .snd .pres1) ⟩ - 0B ≡⟨ inv0B ⟩ 0B ∎ HomInv .snd .presinv a = - f (inv a) ≡⟨ cong -_ (homInvAB f* _) ⟩ - (- f a) ∎ -- Group laws for morphisms private 0ₕ = zero _+ₕ_ = HomAdd -ₕ_ = HomInv -- Morphism addition is associative HomAdd-assoc : (f g h : AbGroupHom A B) → (f +ₕ (g +ₕ h)) ≡ ((f +ₕ g) +ₕ h) HomAdd-assoc f g h = GroupHom≡ (funExt λ a → +Assoc _ _ _) -- Morphism addition is commutative HomAdd-comm : (f g : AbGroupHom A B) → (f +ₕ g) ≡ (g +ₕ f) HomAdd-comm f g = GroupHom≡ (funExt λ a → +Comm _ _) -- zero is right identity HomAdd-zero : (f : AbGroupHom A B) → (f +ₕ zero) ≡ f HomAdd-zero f = GroupHom≡ (funExt λ a → idrB _) -- -ₕ is right inverse HomInv-invr : (f : AbGroupHom A B) → (f +ₕ (-ₕ f)) ≡ zero HomInv-invr f = GroupHom≡ (funExt λ a → invrB _) -- Abelian group structure on AbGroupHom A B open AbGroupStr HomAbGroupStr : (A : AbGroup ℓ) → (B : AbGroup ℓ') → AbGroupStr (AbGroupHom A B) HomAbGroupStr A B .0g = zero A B HomAbGroupStr A B ._+_ = HomAdd A B HomAbGroupStr A B .-_ = HomInv A B HomAbGroupStr A B .isAbGroup = makeIsAbGroup isSetGroupHom (HomAdd-assoc A B) (HomAdd-zero A B) (HomInv-invr A B) (HomAdd-comm A B) HomAbGroup : (A : AbGroup ℓ) → (B : AbGroup ℓ') → AbGroup (ℓ-max ℓ ℓ') HomAbGroup A B = AbGroupHom A B , HomAbGroupStr A B
-- Tasty makes it easy to test your code. It is a test framework that can -- combine many different types of tests into one suite. See its website for -- help: <http://documentup.com/feuerbach/tasty>. import Test.Tasty -- Hspec is one of the providers for Tasty. It provides a nice syntax for -- writing tests. Its website has more info: <https://hspec.github.io>. -- import Test.Tasty.Hspec import Test.Tasty.HUnit import ExplicitSimplexStream import Persistence import Numeric.LinearAlgebra -- EXAMPLE STREAMS -- stream1 :: Stream Int stream1 = addSimplex (addVertex (addVertex (addVertex initializeStream 1) 2) 3) (Simplex [1,2]) stream2 :: Stream Int stream2 = addVertex (addSimplex (addVertex (addVertex initializeStream 1) 2) (Simplex [2,1])) 3 stream3 :: Stream Int stream3 = addVertex (addVertex (addVertex (addVertex initializeStream 1) 2) 3) 4 stream4 :: Stream Int stream4 = initializeStream stream5 :: Stream Int stream5 = addSimplex stream4 (Simplex [1,2,3,4]) ---- main :: IO () main = do defaultMain (testGroup "SimplexStream tests" [addSingleVertexTest, initializeStreamTest, streamEqualityTest, streamNumVerticesEmptyTest, streamNumVertices4CellTest, streamGetSizeEmptyTest, streamGetSize4CellTest, streamGetSize4VertexTest, streamToOrderedSimplexListFourVerticesTest, streamToOrderedSimplexListThreeVerticesOneEdgeTest, getBoundaryMapTest, getBoundaryMapTest2, getBoundaryMapTest3, getHomologyDimensionTest, persistenceTest, persistenceTest2, persistenceTest3, persistenceTest4]) addSingleVertexTest :: TestTree addSingleVertexTest = testCase "Testing addition of single vertex" (assertEqual "Should return true for search of vertex 5" (True) (isVertexInStream (addVertex (initializeStream :: Stream Int) 5) 5)) initializeStreamTest :: TestTree initializeStreamTest = testCase "Testing initialization of stream" (assertEqual "Should return Simplices []" (Simplices [Simplex []] :: Stream Int) (initializeStream :: Stream Int)) -- Testing stream equality. -- Order of Simplex in Stream data type _should not matter_ streamEqualityTest :: TestTree streamEqualityTest = testCase "Testing quality of streams" (assertEqual "Should return Simplices []" (True) (stream1 == stream2)) -- Test numVertices streamNumVerticesEmptyTest :: TestTree streamNumVerticesEmptyTest = testCase "Testing number of vertices in empty stream" (assertEqual "Should return 0" (0) (numVertices stream4)) streamNumVertices4CellTest :: TestTree streamNumVertices4CellTest = testCase "Testing number of vertices in a 4-cell" (assertEqual "Should return 4" (4) (numVertices stream5)) -- Test getSize streamGetSizeEmptyTest :: TestTree streamGetSizeEmptyTest = testCase "Testing get size on empty stream." (assertEqual "Should return 1 (the null-cell)" (1) (getSize stream4)) streamGetSize4CellTest :: TestTree streamGetSize4CellTest = testCase "Testing get size on 4-cell stream." (assertEqual "Should return 16" (16) (getSize stream5)) streamGetSize4VertexTest :: TestTree streamGetSize4VertexTest = testCase "Testing get size on stream with 4 vertices." (assertEqual "Should return 5 (four vertices + 1 null cell)." (5) (getSize stream3)) -- Test streamToOrderedSimplexList streamToOrderedSimplexListFourVerticesTest :: TestTree streamToOrderedSimplexListFourVerticesTest = testCase "Testing streamToOrderedSimplexList on stream with 4 vertices." (assertEqual "Should return object with lengths 0 and 1 with four vertices inside the 1 key." (OrderedSimplexList [SimplexListByDegree 0 [(Simplex [])], SimplexListByDegree 1 [(Simplex [1]), (Simplex [2]), (Simplex [3]), (Simplex [4])]]) (streamToOrderedSimplexList stream3)) streamToOrderedSimplexListThreeVerticesOneEdgeTest :: TestTree streamToOrderedSimplexListThreeVerticesOneEdgeTest = testCase "Testing streamToOrderedSimplexList on stream with 3 vertices and one edge." (assertEqual "Should return object with lengths 0, 1, and 2 with three vertices inside the 1 key and 1 edge inside the 2 key." (OrderedSimplexList [SimplexListByDegree 0 [(Simplex [])], SimplexListByDegree 1 [(Simplex [1]), (Simplex [2]), (Simplex [3])], SimplexListByDegree 2 [(Simplex [1,2])]]) (streamToOrderedSimplexList stream1)) -- Test getBoundaryMap simplexList1 :: SimplexListByDegree Int simplexList2 :: SimplexListByDegree Int simplexList1 = SimplexListByDegree 3 [(Simplex [1,2,3]), (Simplex [2,3,4])] simplexList2 = SimplexListByDegree 2 [(Simplex [1,2]), (Simplex [2,3]), (Simplex [1,3]), (Simplex [2,4]), (Simplex [3,4])] getBoundaryMapTest :: TestTree getBoundaryMapTest = testCase "Testing getBoundaryMap." (assertEqual "Should return ..." (fromLists [[1,0],[1,1],[-1,0],[0,-1],[0,1]]) (getBoundaryMap simplexList2 simplexList1)) simplexList3 :: SimplexListByDegree Int simplexList4 :: SimplexListByDegree Int simplexList3 = SimplexListByDegree 1 [(Simplex [1]), (Simplex [2]), (Simplex [3]), (Simplex [4])] simplexList4 = SimplexListByDegree 2 [(Simplex [1,2]), (Simplex [1,3]), (Simplex [1,4]), (Simplex [2,3]), (Simplex [3,4])] getBoundaryMapTest2 :: TestTree getBoundaryMapTest2 = testCase "Testing getBoundaryMap." (assertEqual "Should return ..." (fromLists [[-1,-1,-1,0,0],[1,0,0,-1,0],[0,1,0,1,-1],[0,0,1,0,1]]) (getBoundaryMap simplexList3 simplexList4)) simplexList5 :: SimplexListByDegree Int simplexList6 :: SimplexListByDegree Int simplexList5 = SimplexListByDegree 0 [(Simplex [])] simplexList6 = SimplexListByDegree 1 [(Simplex [1]), (Simplex [2])] getBoundaryMapTest3 :: TestTree getBoundaryMapTest3 = testCase "Testing trivial case for getBoundaryMap." (assertEqual "Should return ..." (fromLists [[1, 1]]) (getBoundaryMap simplexList5 simplexList6)) -- Test getHomologyDimension simplexList7 :: SimplexListByDegree Int simplexList8 :: SimplexListByDegree Int simplexList9 :: SimplexListByDegree Int simplexList7 = SimplexListByDegree 0 [(Simplex [])] simplexList8 = SimplexListByDegree 1 [(Simplex [1]), (Simplex [2]), (Simplex [3])] simplexList9 = SimplexListByDegree 2 [(Simplex [1,2]), (Simplex [2,3]), (Simplex [1,3])] map1 :: Matrix Double map2 :: Matrix Double map1 = getBoundaryMap simplexList7 simplexList8 map2 = getBoundaryMap simplexList8 simplexList9 getHomologyDimensionTest :: TestTree getHomologyDimensionTest = testCase "Testing getHomologyDimension function." (assertEqual "Should return ..." (1) (getHomologyDimension map2 map1 0)) -- Test persistence stream6 :: Stream Int stream6 = addSimplex (addSimplex (addSimplex initializeStream (Simplex [1,2])) (Simplex [2,3])) (Simplex [1,3]) persistenceTest :: TestTree persistenceTest = testCase "Testing persistence function." (assertEqual "Should return ..." (BettiVector [1,1]) (persistence stream6 1)) persistenceTest2 :: TestTree persistenceTest2 = testCase "Testing persistence function on filled tetrahedron." (assertEqual "Should return ..." (BettiVector [1,0,0,0]) (persistence stream5 1)) persistenceTest3 :: TestTree persistenceTest3 = testCase "Testing persistence function on four vertices." (assertEqual "Should return ..." (BettiVector [4]) (persistence stream3 1)) stream7 :: Stream Int stream7 = subtractSimplex (addSimplex initializeStream (Simplex [1,2,3,4])) (Simplex [1,2,3,4]) persistenceTest4 :: TestTree persistenceTest4 = testCase "Testing persistence function." (assertEqual "Should return ..." (BettiVector [1,0,1]) (persistence stream7 1))
#============================================================================== # Test for cforest #============================================================================== source("tests.r") test.data <- list( call = list( substitute( cforest( Sepal.Length ~ ., data = iris, controls = cforest_control(ntree = 10, mtry = 3) ) ), substitute( cforest( Species ~ ., data = iris, controls = cforest_control(ntree = 10, mtry = 3) ) ) ), formula = list( Sepal.Length ~ Sepal.Width + Petal.Length + Petal.Width + Species, Species ~ Sepal.Length + Sepal.Width + Petal.Length + Petal.Width ), model.type = list("regression", "classification") ) test.model.adapter("cforest", iris, test.data, object.has.call = FALSE) rm(test.data)
Formal statement is: proposition isolated_zeros: assumes holf: "f holomorphic_on S" and "open S" "connected S" "\<xi> \<in> S" "f \<xi> = 0" "\<beta> \<in> S" "f \<beta> \<noteq> 0" obtains r where "0 < r" and "ball \<xi> r \<subseteq> S" and "\<And>z. z \<in> ball \<xi> r - {\<xi>} \<Longrightarrow> f z \<noteq> 0" Informal statement is: If $f$ is a holomorphic function on an open connected set $S$ and $f(\xi) = 0$ for some $\xi \in S$, then there exists a neighborhood of $\xi$ in $S$ on which $f$ is nonzero.
Require Import Bool Arith List Omega. Require Import Recdef Morphisms. Require Import Program.Tactics. Require Import Relation_Operators. Require FMapList. Require FMapFacts. Require Import Classical. Require Import Coq.Classes.RelationClasses. Require Import OrderedType OrderedTypeEx DecidableType. Require Import Sorting.Permutation. Import ListNotations. Module NatMap := FMapList.Make Nat_as_OT. Definition address := nat. Definition version := nat. Definition value := nat. Definition lock := bool. Definition variable := nat. Definition store := NatMap.t value. Definition heap := address -> option (value * lock * version). Definition tid := nat. Ltac myauto := repeat match goal with | |- context[_] => auto 100; intuition; cbn in *; simpl in *; auto 100 | |- context[_] => try contradiction; try discriminate end. Inductive action:= |dummy: action |start_txn: action |read_item: version -> action |write_item: value -> action |try_commit_txn: action |lock_write_item: action |validate_read_item: Prop -> action |abort_txn: Prop -> action (*True means abort needs to unlock before abort, False means the transaction about to be aborted does not contain locks*) (*|restart_txn: action*) |complete_write_item: (*value -> action*)version -> action (*|unlock_write_item: version -> action*) (*|invalid_write_item: value -> action*) |commit_txn: action |seq_point: action. (*|obtain_global_tid: action.*) (*sp later than last lock, but must before the first commit*) Definition trace := list (tid * action). (* Returns all tid*action with tid tid in the trace. *) Definition trace_filter_tid tid tr : trace := filter (fun pr => fst pr =? tid) tr. (* Returns all commit actions in the trace. *) (* Definition trace_filter_commit tr: trace := filter (fun pr => match snd pr with | commit_txn => true | _ => false end) tr. *) (* Returns all write actions in the trace. *) Definition trace_filter_write tr: trace := filter (fun pr => match snd pr with | write_item _ => true | _ => false end) tr. (* Returns all read actions in the trace. *) Definition trace_filter_read tr: trace := filter (fun pr => match snd pr with | read_item _ => true | _ => false end) tr. (* Returns all complete_write actions in the trace for updating version number of reads *) Definition trace_filter_complete tr: trace := filter (fun pr => match snd pr with | complete_write_item _ => true | _ => false end) tr. (* Returns the last action of the transaction tid Returns dummy if there is no transaction with id tid. *) Definition trace_tid_last tid t: action := hd dummy (map snd (trace_filter_tid tid t)). Ltac remove_unrelevant_last_txn := repeat match goal with | [H: context[trace_tid_last ?tid ((?tid0, _) :: ?t) = _] |-_] => unfold trace_tid_last in H; inversion H; destruct (Nat.eq_dec tid tid0); subst | [H: context[hd _ (map snd (if ?tid0 =? ?tid0 then (?tid0, ?x) :: trace_filter_tid ?tid0 ?t else trace_filter_tid ?tid0 ?t)) = ?y] |-_] => rewrite <- beq_nat_refl in H; simpl in H; inversion H | [H: context[?tid <> ?tid0] |-_] => apply not_eq_sym in H; apply Nat.eqb_neq in H end. (* Returns the version number of the last commit If there is no commit in the trace, returns 0. *) (* Definition trace_commit_last t: version := match hd dummy (map snd (trace_filter_commit t)) with | commit_txn n => n | _ => 0 end. *) (* Returns the value of the last write If there is no write in the trace, returns 0. *) (* PROBLEMATIC: last write cannot be 0 in this case. SUGGESTION: Use "option" *) Definition trace_write_last t: value := match hd dummy (map snd (trace_filter_write t)) with | write_item n => n | _ => 0 end. (* Returns the version number of the last commit/complete_write If there is no commit in the trace, returns 0. *) (* Definition trace_commit_complete_last t: version := match hd dummy (map snd (trace_filter_commit_complete t)) with | commit_txn n => n | complete_write_item n => n | _ => 0 end. *) Definition trace_complete_last t: version := match hd dummy (map snd (trace_filter_complete t)) with | complete_write_item n => n | _ => 0 end. (* Returns all lock_write_item actions in the trace. *) Definition trace_filter_lock tr: trace := filter (fun pr => match snd pr with | lock_write_item => true | _ => false end) tr. (* All commit and abort have unlock_write_item. If a transaction contains either of the actions, the transaction has unlock *) Definition trace_filter_unlock tr: trace := filter (fun pr => match snd pr with | complete_write_item _ => true | abort_txn True => true | _ => false end) tr. (* Returns the length of a trace *) Function length (tr: trace) : nat := match tr with | [] => 0 | _ :: tr' => S (length tr') end. (* Returns True if there exists no lock_write_item Returns False if there exists locks *) Definition check_lock_or_unlock tr: Prop := match length (trace_filter_lock tr) <=? length (trace_filter_unlock tr) with | true => True | false => False end. (* Returns true if an action is not a write action Returns false if an action is a write action. *) Definition action_no_write e : Prop := match e with | write_item _ => False | _ => True end. Definition action_no_read e : Prop := match e with | read_item _ => False | _ => True end. (* Returns true if an action is not a commit_txn action Returns false if an action is a commit_txn action. *) Definition action_no_commit e : Prop := match e with | commit_txn => False | _ => True end. Definition action_no_seq_point e: Prop:= match e with | seq_point => False | _ => True end. Definition action_is_lock e: Prop:= match e with | lock_write_item => True | _ => False end. (* Returns true if the transaction tid's trace has no writes Returns false otherwise. *) Definition trace_no_writes tid t: Prop := Forall action_no_write (map snd (trace_filter_tid tid t)). Definition trace_no_reads tid t: Prop := Forall action_no_read (map snd (trace_filter_tid tid t)). (* Returns true if the transaction tid's trace has no commits Returns false otherwise. *) Definition trace_no_commits tid t: Prop := Forall action_no_commit (map snd (trace_filter_tid tid t)). Definition trace_no_seq_points tid t: Prop := Forall action_no_seq_point (map snd (trace_filter_tid tid t)). Definition trace_has_locks tid t: Prop := Forall action_is_lock (map snd (trace_filter_tid tid t)). (* Returns all read_item versions in a trace of a particular transaction. *) Function read_versions tr: list version := match tr with | [] => [] | (read_item v) :: tail => v :: read_versions tail | _ :: tail => read_versions tail end. (* Returns all read_item versions of tid in a trace tr. *) Definition read_versions_tid tid tr: list version := read_versions (map snd (trace_filter_tid tid tr)). (* Returns True if reads are valid Returns False otherwise *) Function check_version (vs : list version) (v : version) : Prop := match vs with | [] => True | hd :: tail => if hd =? v then check_version tail v else False end. (* Returns all start/read/write actions in the trace. *) (* Definition trace_filter_startreadwrite tid tr: trace := filter (fun pr => (fst pr =? tid) && (match snd pr with | read_item _ => true | write_item _ => true | start_txn => true | _ => false end)) tr. *) (* Returns all newtid with start/read/write actions in the trace. *) (* Function trace_rollback (newtid: nat) (newver: version) (tr:trace): trace := match tr with | [] => [] | (tid, read_item _) :: tr' => [(newtid, read_item newver)] ++ trace_rollback newtid newver tr' | (tid, write_item val) :: tr' => [(newtid, write_item val)] ++ trace_rollback newtid newver tr' | (tid, start_txn) :: tr' => [(newtid, start_txn)] ++ trace_rollback newtid newver tr' | _ :: tr' => trace_rollback newtid newver tr' end. *) Inductive sto_trace : trace -> Prop := | empty_step : sto_trace [] | start_txn_step: forall t tid, (*trace_tid_last tid t = dummy*) (* this tid doesn’t have start_txn*) trace_filter_tid tid t = [] -> sto_trace t -> sto_trace ((tid, start_txn)::t) | read_item_step: forall t tid val oldver, trace_tid_last tid t = start_txn (* start/read/write before read*) \/ trace_tid_last tid t = read_item oldver \/ trace_tid_last tid t = write_item val (*check locked or not*) -> check_lock_or_unlock t -> sto_trace t -> sto_trace ((tid, read_item (trace_complete_last t)) :: t) | write_item_step: forall t tid oldval val ver, trace_tid_last tid t = start_txn \/ trace_tid_last tid t = read_item ver \/ trace_tid_last tid t = write_item oldval -> sto_trace t -> sto_trace ((tid, write_item val) :: t) | try_commit_txn_step: forall t tid ver val, trace_tid_last tid t = read_item ver \/ trace_tid_last tid t = write_item val -> sto_trace t -> sto_trace ((tid, try_commit_txn)::t) | lock_write_item_step: forall t tid, ~ trace_no_writes tid t -> check_lock_or_unlock t -> trace_tid_last tid t = try_commit_txn -> sto_trace t -> sto_trace ((tid, lock_write_item) :: t) | validate_read_item_step: forall t tid, ~ trace_no_reads tid t -> (trace_tid_last tid t = try_commit_txn /\ trace_no_writes tid t ) (*read only*) \/ trace_tid_last tid t = lock_write_item (*/\ ~ trace_no_writes tid t*)(*lock write*) -> sto_trace t -> sto_trace ((tid, validate_read_item (check_version (read_versions_tid tid t) (trace_complete_last t) ))::t) (* <<<<<<<<<<<<<<<<<<<>>>>>>>>>>>>>>>>>>> The other abort condition is not included here If when trying to lock memory location to write (in lock_write_item_step), there already exists a lock on that location, then the transaction should be aborted: lock_write_item -> abort The other similar situation that is not encoded is: read_item -> abort THIS MODEL IS NOT COMPLETE *) | abort_txn_step: forall t tid, trace_tid_last tid t = validate_read_item False -> sto_trace t -> sto_trace ((tid, abort_txn (trace_has_locks tid t)) :: t) (*abort will contain unlock....*) (*sequential point*) | seq_point_step: forall t tid, (trace_tid_last tid t = validate_read_item True (*/\ ~ trace_no_reads tid t*)) \/ (trace_tid_last tid t = lock_write_item /\ trace_no_reads tid t) (*-> trace_no_commits tid t*) -> trace_no_seq_points tid t -> sto_trace t -> sto_trace ((tid, seq_point) :: t) | complete_write_item_step: forall t tid, ~ trace_no_writes tid t -> trace_tid_last tid t = seq_point -> sto_trace t -> sto_trace ((tid, complete_write_item (S (trace_complete_last t))) :: t) | commit_txn_step: forall t tid ver, (trace_tid_last tid t = seq_point /\ trace_no_writes tid t) \/ (trace_tid_last tid t = complete_write_item ver) -> sto_trace t -> sto_trace ((tid, commit_txn) :: t). Hint Constructors sto_trace. Definition example_txn:= [(2, commit_txn); (2, complete_write_item 1); (2, seq_point); (2, validate_read_item True); (2, lock_write_item); (2, try_commit_txn); (2, write_item 4); (2, read_item 0); (2, start_txn); (1, commit_txn); (1, seq_point); (1, validate_read_item True); (1, try_commit_txn); (1, read_item 0); (1, start_txn)]. Definition example_txn2:= [(3, commit_txn); (3, seq_point); (3, validate_read_item True); (3, try_commit_txn); (3, read_item 1); (3, start_txn); (1, abort_txn False); (1, validate_read_item False); (1, try_commit_txn); (2, commit_txn); (2, complete_write_item 1); (2, seq_point); (2, validate_read_item True); (2, lock_write_item); (2, try_commit_txn); (2, write_item 4); (1, read_item 0); (2, read_item 0); (2, start_txn); (1, start_txn)]. (* Returns the serialized sequence of transactions in the STO trace based on seq_point of each transaction The first element (tid) of the sequence is the first transaction that completes in the serial trace Note that STO-trace is constructed in a reverse order: the first (tid * action) pair is the last operation in the trace *) Function seq_list (sto_trace: trace): list nat:= match sto_trace with | [] => [] | (tid, seq_point) :: tail => tid :: seq_list tail | (tid, dummy) :: tail => seq_list tail | (tid, start_txn) :: tail => seq_list tail | (tid, read_item n) :: tail => seq_list tail | (tid, write_item n) :: tail => seq_list tail | (tid, try_commit_txn) :: tail => seq_list tail | (tid, lock_write_item) :: tail => seq_list tail | (tid, validate_read_item b) :: tail => seq_list tail | (tid, abort_txn _) :: tail => seq_list tail | (tid, complete_write_item n) :: tail => seq_list tail | (tid, commit_txn) :: tail => seq_list tail end. Eval compute in seq_list example_txn. Eval compute in seq_list example_txn2. Function create_serialized_trace (sto_trace: trace) (seqls : list nat): trace:= match seqls with | [] => [] | head :: tail => trace_filter_tid head sto_trace ++ create_serialized_trace sto_trace tail end. (* Check whether an element a is in the list l *) Fixpoint In_bool (a:nat) (l:list nat) : bool := match l with | [] => false | b :: m => (b =? a) || In_bool a m end. Fixpoint does_not_contain_tid tid (tr:trace) : Prop := match tr with | [] => True | (tid', _) :: rest => tid <> tid' /\ does_not_contain_tid tid rest end. (* The function checks if a trace is a serial trace by making sure that tid is only increaing as we traverse the trace In this function, we assume that the trace is in the correct order. That is, the first (tid*action) in the trace is actually the first one that gets to be executed *) Function check_is_serial_trace (tr: trace) : Prop := match tr with | [] => True | (tid, x) :: rest => match rest with | [] => True | (tid', y) :: _ => (tid = tid' \/ trace_filter_tid tid rest = []) /\ check_is_serial_trace rest end end. (* This function executes STO trace in the reverse order The goal is to record all read and write actions of all *committed* transactions *) Function exec (sto_trace: trace) (commit_tid: list nat) : list (tid * action) := match sto_trace with | [] => [] | (tid, action) :: tail => if (In_bool tid commit_tid) then match action with | read_item _ => (tid, action) :: exec tail commit_tid | write_item _ => (tid, action) :: exec tail commit_tid | _ => exec tail commit_tid end else exec tail commit_tid end. Eval compute in exec example_txn (seq_list example_txn). (* This function returns all values that is written in a trace to a memory location *) Function tid_write_value (trace: trace) : list value := match trace with | [] => [] | (_, write_item val) :: tail => val :: tid_write_value tail | _ :: tail => tid_write_value tail end. (* This function returns a list of pair that records write values of each tids in the trace the first element in a pair is tid the second element is all the write values written by the transaction with the id tid *) Function get_write_value (trace: trace) (tids: list nat) : list (nat * (list value)):= match tids with | [] => [] | head :: tail => (head, tid_write_value (trace_filter_tid head trace)) :: get_write_value trace tail end. Definition get_write_value_out (sto_trace: trace) : list (nat * (list value)) := get_write_value sto_trace (seq_list sto_trace). Eval compute in get_write_value_out example_txn. (* This function compares values in two lists one by one The value at each position in one list should be the same as that in the other list *) Function compare_value (ls1: list value) (ls2: list value): bool:= match ls1, ls2 with | [], [] => true | _ , [] => false | [], _ => false | h1::t1, h2::t2 => if h1=?h2 then compare_value t1 t2 else false end. (* We compare writes of two traces in this function If they have the same write sequence, then the function will return True **************************************************** We assume that two traces have the same tids in the same sequence Should we actually add tid1 =? tid2 in the code to remove this assumption? **************************************************** *) Function compare_write_list (ls1: list (nat * (list value))) (ls2:list (nat * (list value))): Prop := match ls1, ls2 with | [], [] => True | _ , [] => False | [], _ => False | (tid1, ver1)::t1, (tid2, ver2)::t2 => if (tid1 =? tid2 ) && (compare_value ver1 ver2) then compare_write_list t1 t2 else False end. Definition write_synchronization trace1 trace2: Prop:= compare_write_list (get_write_value_out trace1) (get_write_value_out trace2). (* The function returns the last write value of a STO-trace *) Definition last_write_value trace: nat:= trace_write_last (exec trace (seq_list trace)). Eval compute in last_write_value example_txn. (* Definition write_synchronization trace1 trace2: Prop:= if (last_write_value trace1) =? (last_write_value trace2) then True else False. *) Eval compute in write_synchronization example_txn (create_serialized_trace example_txn (seq_list example_txn)). (* This function returns the version numbers of all the reads in a trace *) Function tid_read_version (trace: trace) : list version := match trace with | [] => [] | (_, read_item ver) :: tail => ver :: tid_read_version tail | _ :: tail => tid_read_version tail end. (* This function groups all versions of reads of a transaction in a trace. This returns a list of pairs The first element of a pair is the tid The second element is a list of all versions of the reads from the transaction tid *) Function get_read_version (trace: trace) (tids: list nat) : list (nat * (list version)):= match tids with | [] => [] | head :: tail => (head, tid_read_version (trace_filter_tid head trace)) :: get_read_version trace tail end. Definition get_read_version_out (trace: trace) : list (nat * (list version)) := get_read_version trace (seq_list trace). Eval compute in get_read_version_out example_txn. Eval compute in get_read_version_out example_txn2. (* This function compares all read versions of two list This is the same as compare all write in previous functions *) Function compare_version (ls1: list version) (ls2: list version): bool:= match ls1, ls2 with | [], [] => true | _ , [] => false | [], _ => false | h1::t1, h2::t2 => if h1=?h2 then compare_version t1 t2 else false end. Function compare_read_list (ls1: list (nat * (list version))) (ls2:list (nat * (list version))): Prop := match ls1, ls2 with | [], [] => True | _ , [] => False | [], _ => False | (tid1, ver1)::t1, (tid2, ver2)::t2 => if (tid1 =? tid2 ) && (compare_version ver1 ver2) then compare_read_list t1 t2 else False end. Definition read_synchronization trace1 trace2: Prop:= compare_read_list (get_read_version_out trace1) (get_read_version_out trace2). Eval compute in read_synchronization example_txn (create_serialized_trace example_txn (seq_list example_txn)). Eval compute in compare_read_list [(1, [0;0]); (2, [1;1])] [(1, [0]);(2, [1;1])]. (* Two traces can be considered equivalent in execution if they produce the same reads and writes *) Definition Exec_Equivalence trace1 trace2: Prop:= write_synchronization trace1 trace2 /\ read_synchronization trace1 trace2. Eval compute in Exec_Equivalence example_txn (create_serialized_trace example_txn (seq_list example_txn)). (* Function create_serialized_trace (sto_trace: trace) (sto_trace_copy: trace): trace:= match sto_trace with | [] => [] | (tid, seq_point) :: tail => trace_filter_tid tid sto_trace_copy ++ create_serialized_trace tail sto_trace_copy | _ :: tail => create_serialized_trace tail sto_trace_copy end. Eval compute in create_serialized_trace example_txn example_txn. Eval compute in create_serialized_trace example_txn2 example_txn2. Lemma serial_action_remove tid action t: sto_trace ((tid, action) :: t) -> ~ In (tid, seq_point) t -> create_serialized_trace t ((tid, action) :: t) = create_serialized_trace t t. Proof. intros. apply sto_trace_app in H. induction H. simpl. auto. simpl. Admitted. *) Lemma sto_trace_app tid action t: sto_trace ((tid, action) :: t) -> sto_trace t. Proof. intros. inversion H; subst; auto. Qed. Lemma sto_trace_app2 t1 t2: sto_trace (t1 ++ t2) -> sto_trace t2. Proof. intros. induction t1. rewrite app_nil_l in H. auto. simpl in *. destruct a. apply sto_trace_app with (tid0 := t) (action0:= a) in H. apply IHt1 in H. auto. Qed. (* some error with this lemma Lemma sto_trace_app2 tid tid0 action action0 t: tid <> tid0 -> sto_trace ((tid, action) :: (tid0, action0) :: t) -> sto_trace ((tid, action) :: t). Proof. intros. inversion H0; subst. apply sto_trace_app in H5. unfold trace_tid_last in H3; simpl in H3. apply not_eq_sym in H. apply Nat.eqb_neq in H; rewrite H in H3. apply start_txn_step with (tid := tid) in H5; [ auto | unfold trace_tid_last; auto ]. apply sto_trace_app in H6. unfold trace_tid_last in H4; simpl in H4. apply not_eq_sym in H. apply Nat.eqb_neq in H; rewrite H in H4. unfold check_lock_or_unlock in H5. unfold trace_filter_lock in H5. unfold trace_filter_unlock in H5. apply read_item_step with (tid := tid) (val := val) (oldver := oldver) in H6; [ auto | unfold trace_tid_last; auto | auto]. Qed. *) Lemma seq_list_not_seqpoint tid action t: sto_trace ((tid, action) :: t) -> action <> seq_point -> ~ In tid (seq_list ((tid, action) :: t)) -> ~ In tid (seq_list t). Proof. intros; destruct action; simpl in *; auto. Qed. Lemma seq_list_not_seqpoint2 tid action t: sto_trace ((tid, action) :: t) -> ~ In tid (seq_list ((tid, action) :: t)) -> ~ In tid (seq_list t). Proof. intros; destruct action; simpl in *; auto. Qed. Lemma seq_list_seqpoint tid action t: sto_trace ((tid, action) :: t) -> action = seq_point -> In tid (seq_list ((tid, action) :: t)). Proof. intros; subst; simpl. left. auto. Qed. Lemma trace_seqlist_seqpoint t tid: In (tid, seq_point) t -> In tid (seq_list t). Proof. intros. functional induction seq_list t. inversion H. destruct (Nat.eq_dec tid tid0); subst; simpl. left. auto. right. apply IHl. apply in_inv in H. destruct H. inversion H. apply Nat.eq_sym in H1. contradiction. auto. all: destruct (Nat.eq_dec tid tid0); subst; apply IHl; apply in_inv in H; destruct H; try inversion H; auto. Qed. Lemma trace_seqlist_seqpoint_rev t tid: In tid (seq_list t) -> In (tid, seq_point) t. Proof. intros. functional induction seq_list t. inversion H. destruct (Nat.eq_dec tid tid0); subst; simpl; simpl in H. left. auto. destruct H. apply eq_sym in H. congruence. apply IHl in H. right. auto. all: destruct (Nat.eq_dec tid tid0); subst; apply in_cons; auto. Qed. Lemma filter_app (f: nat * action -> bool) l1 l2: filter f (l1 ++ l2) = filter f l1 ++ filter f l2. Proof. induction l1. - simpl. auto. - Search (filter). simpl. remember (f a) as X. destruct X. simpl. rewrite IHl1. auto. auto. Qed. Lemma trace_filter_tid_app tid tr1 tr2: trace_filter_tid tid (tr1 ++ tr2) = trace_filter_tid tid tr1 ++ trace_filter_tid tid tr2. Proof. unfold trace_filter_tid. apply filter_app. Qed. Lemma Forall_app (P: action -> Prop) l1 l2: Forall P (l1 ++ l2) <-> Forall P l1 /\ Forall P l2. Proof. split. - intros. split; rewrite Forall_forall in *. intros. Search (In _ ( _ ++ _ )). assert (In x l1 \/ In x l2 -> In x (l1 ++ l2)). apply in_or_app. assert (In x l1 \/ In x l2). left. auto. apply H1 in H2. auto. intros. assert (In x l1 \/ In x l2 -> In x (l1 ++ l2)). apply in_or_app. assert (In x l1 \/ In x l2). right. auto. apply H1 in H2. auto. - intros. destruct_pairs. rewrite Forall_forall in *. Search (In _ ( _ ++ _ )). intros. apply in_app_or in H1. (* firstorder. solved here*) destruct H1. apply H in H1. auto. apply H0 in H1. auto. Qed. Lemma seq_list_no_two_seqpoint t tid: sto_trace ((tid, seq_point) :: t) -> ~ In (tid, seq_point) t. Proof. intros. assert (sto_trace t). { apply sto_trace_app with (tid0 := tid) (action0 := seq_point). auto. } inversion H. intuition. unfold trace_no_seq_points in H4. apply in_split in H6. destruct H6. destruct H3. rewrite H3 in H4. simpl in H4. rewrite trace_filter_tid_app in H4. simpl in H4. rewrite <-beq_nat_refl in H4. rewrite map_app in H4. rewrite Forall_app in H4. destruct H4. simpl in H6. apply Forall_inv in H6. simpl in H6. auto. unfold trace_no_seq_points in H4. apply in_split in H6. destruct H6. destruct H6. rewrite H6 in H4. simpl in H4. rewrite trace_filter_tid_app in H4. simpl in H4. rewrite <-beq_nat_refl in H4. rewrite map_app in H4. rewrite Forall_app in H4. destruct H4. simpl in H7. apply Forall_inv in H7. simpl in H7. auto. Qed. Lemma seq_list_no_two_seqpoint2 t1 t2 tid: sto_trace (t1 ++ (tid, seq_point) :: t2) -> ~ In (tid, seq_point) t1. Proof. intros. intuition. apply in_split in H0. destruct H0. destruct H0. rewrite H0 in H. rewrite <- app_assoc in H. apply sto_trace_app2 in H. inversion H; subst. unfold trace_no_seq_points in H4. rewrite trace_filter_tid_app in H4. rewrite map_app in H4. rewrite Forall_app in H4. destruct H4. simpl in H1. rewrite <- beq_nat_refl in H1. simpl in H1. apply Forall_inv in H1. simpl in H1. auto. Qed. Lemma seq_point_after t1 t2 tid action: sto_trace ((tid, action) :: t1 ++ (tid, seq_point) :: t2) -> action = commit_txn \/ action = complete_write_item (S (trace_complete_last (t1 ++ (tid, seq_point) :: t2))). Proof. intros. induction t1. simpl in H. - inversion H; subst. -- simpl in H2. rewrite <- beq_nat_refl in H2. inversion H2. -- unfold trace_tid_last in H3. simpl in H3. rewrite <- beq_nat_refl in H3. repeat destruct or H3; inversion H3. -- unfold trace_tid_last in H2. simpl in H2. rewrite <- beq_nat_refl in H2. repeat destruct or H2; inversion H2. -- unfold trace_tid_last in H2. simpl in H2. rewrite <- beq_nat_refl in H2. repeat destruct or H2; inversion H2. -- unfold trace_tid_last in H5. simpl in H5. rewrite <- beq_nat_refl in H5. inversion H5. -- unfold trace_tid_last in H4. simpl in H4. rewrite <- beq_nat_refl in H4. destruct H4. destruct H0. simpl in H0. inversion H0. simpl in H0. inversion H0. -- unfold trace_tid_last in H2. simpl in H2. rewrite <- beq_nat_refl in H2. inversion H2. -- unfold trace_tid_last in H3. simpl in H3. rewrite <- beq_nat_refl in H3. destruct H3. inversion H0. inversion H0. inversion H1. -- unfold trace_tid_last in H4. simpl in H4. rewrite <- beq_nat_refl in H4. simpl in *. right. auto. -- auto. - destruct a. destruct a. -- destruct (Nat.eq_dec tid t); subst; apply sto_trace_app in H; inversion H. -- destruct (Nat.eq_dec tid t); subst. admit. Admitted. Lemma seq_list_last_tid_start_txn tid t: sto_trace t -> In tid (seq_list t) -> trace_tid_last tid t <> start_txn. Proof. intros ST; induction ST; intros. all: cbn in *. contradiction. all: unfold trace_tid_last; simpl; destruct (Nat.eq_dec tid0 tid); [subst |]. apply trace_seqlist_seqpoint_rev in H0. apply in_split in H0. destruct H0. destruct H0. rewrite H0 in H. rewrite trace_filter_tid_app in H. simpl in H. rewrite <- beq_nat_refl in H. apply app_eq_nil in H. destruct H. inversion H1. apply IHST in H0. unfold trace_tid_last in H0. apply Nat.eqb_neq in n; rewrite n. auto. all: try rewrite <- beq_nat_refl; simpl; try congruence. all: apply Nat.eqb_neq in n; rewrite n; try apply IHST in H1; auto. apply Nat.eqb_neq in n. destruct H1. congruence. apply IHST in H1; auto. Qed. (* Lemma seq_list_last_tid_read_item tid t: sto_trace t -> In tid (seq_list t) -> exists ver, trace_tid_last tid t <> read_item ver. Proof. intros ST; induction ST; intros. all: cbn in *. contradiction. all: unfold trace_tid_last; simpl; destruct (Nat.eq_dec tid0 tid); [subst |]. apply trace_seqlist_seqpoint_rev in H0. apply in_split in H0. destruct H0. destruct H0. rewrite H0 in H. rewrite trace_filter_tid_app in H. simpl in H. rewrite <- beq_nat_refl in H. apply app_eq_nil in H. destruct H. inversion H1. apply IHST in H0. unfold trace_tid_last in H0. apply Nat.eqb_neq in n; rewrite n. auto. all: try rewrite <- beq_nat_refl; simpl; try congruence. all: apply Nat.eqb_neq in n; rewrite n; try apply IHST in H1; auto. apply Nat.eqb_neq in n. apply in_app_or in H1. destruct H1. apply IHST in H1; auto. simpl in H1. destruct H1. congruence. contradiction. Qed.*) Lemma seq_list_seq tid t: sto_trace t -> trace_tid_last tid t = seq_point -> In tid (seq_list t). Proof. intros. induction H; simpl; try discriminate. 1, 3-4, 7, 10 : remove_unrelevant_last_txn; rewrite n in H3; apply IHsto_trace in H3; auto. 1, 3, 5: remove_unrelevant_last_txn; rewrite n in H4; apply IHsto_trace in H4; auto. 1: remove_unrelevant_last_txn; rewrite n in H5; apply IHsto_trace in H5; auto. remove_unrelevant_last_txn. left. auto. rewrite n in H4. apply IHsto_trace in H4. right. auto. Qed. Lemma same_version v1 v2: complete_write_item v1 = complete_write_item v2 -> v1 = v2. Admitted. Lemma seq_list_complete tid t ver: sto_trace t -> trace_tid_last tid t = complete_write_item ver -> In tid (seq_list t). Proof. intros. induction H; simpl; try discriminate. 1, 3-4, 7, 10 : remove_unrelevant_last_txn; rewrite n in H3; apply IHsto_trace in H3; auto. 1, 3, 4: remove_unrelevant_last_txn; rewrite n in H4; apply IHsto_trace in H4; auto. 1: remove_unrelevant_last_txn; rewrite n in H5; apply IHsto_trace in H5; auto. remove_unrelevant_last_txn. simpl in *. rewrite <- beq_nat_refl in H0; simpl in *. apply seq_list_seq in H1. auto. auto. rewrite n in H4. apply IHsto_trace in H4. myauto. Qed. Lemma seq_point_before_commit (t:trace) (tid: tid): sto_trace ((tid, commit_txn) :: t) -> In (tid, seq_point) t. Proof. intros. inversion H. destruct H2. destruct H2. apply seq_list_seq in H2. apply trace_seqlist_seqpoint_rev in H2. auto. auto. apply seq_list_complete in H2. apply trace_seqlist_seqpoint_rev in H2. auto. auto. Qed. Lemma seq_point_before_complete (t:trace) (tid: tid): sto_trace ((tid, complete_write_item (S (trace_complete_last t))) :: t) -> In (tid, seq_point) t. Proof. intros. inversion H. apply seq_list_seq in H4. apply trace_seqlist_seqpoint_rev in H4. auto. auto. Qed. Lemma seq_list_action tid action t: sto_trace ((tid, action) :: t) -> action = seq_point \/ action = commit_txn \/ action = complete_write_item (S (trace_complete_last t)) <-> In tid (seq_list ((tid, action) :: t)). Proof. split. intros. destruct H0. apply seq_list_seqpoint; auto. subst. inversion H; subst. simpl. 1-8: destruct H0; inversion H0. simpl. apply seq_list_seq in H5. auto. auto. destruct H3. destruct H1. simpl. apply seq_list_seq in H1; auto. apply seq_list_complete in H1; auto. intros. apply trace_seqlist_seqpoint_rev in H0. apply in_inv in H0. destruct H0. inversion H0. left. auto. right. apply in_split in H0. destruct H0. destruct H0. rewrite H0 in *. apply seq_point_after in H. auto. Qed. Lemma seq_list_action_neg tid action t: sto_trace ((tid, action) :: t) -> action <> seq_point /\ action <> commit_txn /\ action <> complete_write_item (S (trace_complete_last t)) <-> ~ In tid (seq_list ((tid, action) :: t)). Proof. intros. split. intros. intuition. apply seq_list_action in H . destruct H. apply H3 in H1. destruct H1; auto. destruct H1; auto. intros. intuition. apply seq_list_action in H . destruct H. assert (action = seq_point \/ action = commit_txn \/ action = complete_write_item (S (trace_complete_last t))). { left. auto. } apply H in H3. auto. apply seq_list_action in H . destruct H. assert (action = seq_point \/ action = commit_txn \/ action = complete_write_item (S (trace_complete_last t))). { right. left. auto. } apply H in H3. auto. apply seq_list_action in H . destruct H. assert (action = seq_point \/ action = commit_txn \/ action = complete_write_item (S (trace_complete_last t))). { right. right. auto. } apply H in H3. auto. Qed. Lemma seqlist_filter t t' tid: sto_trace t -> ~ In (tid, seq_point) t -> seq_list (trace_filter_tid tid t ++ t') = seq_list t'. Proof. intros. induction H; simpl; auto. all: destruct (Nat.eq_dec tid0 tid); subst. all: simpl in H0; apply not_or_and in H0; destruct H0; try apply IHsto_trace in H2. all: try rewrite <- beq_nat_refl; simpl; auto. all: try rewrite <- Nat.eqb_neq in n; try rewrite n; auto. intuition. Qed. Lemma seq_list_split_no_seqpoint t1 t2: seq_list (t1 ++ t2) = seq_list t1 ++ seq_list t2. Proof. intros. induction t1. simpl. auto. simpl in *. destruct a. destruct a. all: simpl in *; auto. rewrite IHt1. auto. Qed. Lemma seq_list_split_with_seqpoint t1 tid t2: seq_list (t1 ++ (tid, seq_point) :: t2) = seq_list t1 ++ tid :: (seq_list t2). Proof. intros. rewrite seq_list_split_no_seqpoint. simpl in *. auto. Qed. (* This function creates a serialized trace. Just like STO-trace, the order is reversed: that is, the first (tid*action) pair in the serial trace constructed by this function is the last operation performed in this trace *) Lemma serial_action_remove tid action t: ~ In tid (seq_list t) -> create_serialized_trace ((tid, action) :: t) (seq_list t)= create_serialized_trace t (seq_list t). Proof. intros. induction (seq_list t). simpl. auto. simpl. simpl in H. assert (a <> tid /\ ~ In tid l). { intuition. } destruct H0. apply not_eq_sym in H0. rewrite <- Nat.eqb_neq in H0. rewrite H0. apply IHl in H1. rewrite H1. auto. Qed. Lemma serial_action_helper tid action t: sto_trace ((tid, action) :: t) -> action <> seq_point /\ action <> commit_txn /\ action <> complete_write_item (S (trace_complete_last t)) -> create_serialized_trace ((tid, action) :: t) (seq_list ((tid, action) :: t)) = create_serialized_trace t (seq_list t). Proof. intros. assert (sto_trace ((tid, action) :: t)). { auto. } assert (sto_trace ((tid, action) :: t)). { auto. } inversion H; subst. apply seq_list_action_neg in H. destruct H. apply H in H0. apply seq_list_not_seqpoint2 in H1; [ | auto ]. apply serial_action_remove with (action0 := start_txn) in H1. auto. apply seq_list_action_neg in H. destruct H. apply H in H0. apply seq_list_not_seqpoint2 in H1; [ | auto ]. apply serial_action_remove with (action0 := read_item (trace_complete_last t)) in H1; auto. apply seq_list_action_neg in H. destruct H. apply H in H0. apply seq_list_not_seqpoint2 in H1; [ | auto ]. apply serial_action_remove with (action0 := write_item val) in H1; auto. apply seq_list_action_neg in H. destruct H. apply H in H0. apply seq_list_not_seqpoint2 in H1; [ | auto ]. apply serial_action_remove with (action0 := try_commit_txn) in H1; auto. apply seq_list_action_neg in H. destruct H. apply H in H0. apply seq_list_not_seqpoint2 in H1; [ | auto ]. apply serial_action_remove with (action0 := lock_write_item) in H1; auto. apply seq_list_action_neg in H. destruct H. apply H in H0. apply seq_list_not_seqpoint2 in H1; [ | auto ]. apply serial_action_remove with (action0 := validate_read_item (check_version (read_versions_tid tid t) (trace_complete_last t))) in H1; auto. apply seq_list_action_neg in H. destruct H. apply H in H0. apply seq_list_not_seqpoint2 in H1; [ | auto ]. apply serial_action_remove with (action0 := abort_txn (trace_has_locks tid t)) in H1; auto. destruct H0. congruence. destruct H0. destruct H3. congruence. destruct H0. destruct H3. congruence. Qed. Lemma serial_action_helper2 tid t: sto_trace ((tid, seq_point)::t) -> create_serialized_trace ((tid, seq_point)::t) (seq_list ((tid, seq_point)::t)) = trace_filter_tid tid ((tid, seq_point)::t) ++ create_serialized_trace t (seq_list t). Proof. intros. simpl. rewrite <- beq_nat_refl. assert (sto_trace ((tid, seq_point) :: t)). { auto. } apply seq_list_no_two_seqpoint in H. assert (~ In (tid, seq_point) t -> ~ In tid (seq_list t)). { intuition. apply trace_seqlist_seqpoint_rev in H2. auto. } apply H1 in H. apply serial_action_remove with (action0:= seq_point) in H. rewrite H. auto. auto. Qed. Lemma serial_action_seq_list tid action t: sto_trace ((tid, action) :: t) -> ~ In tid (seq_list ((tid, action) :: t)) -> create_serialized_trace ((tid, action) :: t) (seq_list ((tid, action) :: t)) = create_serialized_trace t (seq_list t). Proof. intros. assert (sto_trace ((tid, action):: t)). { auto. } assert (sto_trace ((tid, action):: t)). { auto. } assert (~ In tid (seq_list t)). { apply seq_list_not_seqpoint2 with (action0:= action); auto. } apply seq_list_action_neg in H. destruct H. apply H4 in H0. destruct action; simpl; try apply serial_action_helper; auto. destruct H0. congruence. Qed. (* This lemma proves that the seq_point of each transaction in a STO-trace determines its serialized order in the serial trace *) Lemma serial_action_split tid t t1 t2: sto_trace t -> t = t1 ++ (tid, seq_point) :: t2 -> create_serialized_trace t (seq_list t) = create_serialized_trace t (seq_list t1) ++ trace_filter_tid tid ((t1 ++ (tid, seq_point) :: t2)) ++ create_serialized_trace t (seq_list t2). Proof. intros. rewrite H0 in *. rewrite seq_list_split_with_seqpoint. clear H H0. induction (seq_list t1). simpl in *. auto. simpl. rewrite IHl. apply app_assoc. Qed. Lemma serial_action_before_commit tid t1 t2 t: sto_trace ((tid, commit_txn) :: t) -> t = t1 ++ (tid, seq_point) :: t2 -> create_serialized_trace ((tid, commit_txn) :: t) (seq_list ((tid, commit_txn) :: t)) = create_serialized_trace t (seq_list t1) ++ (tid, commit_txn) :: trace_filter_tid tid t ++ create_serialized_trace t (seq_list t2). Proof. intros. remember ((tid, commit_txn) :: t) as tbig. assert (create_serialized_trace tbig (seq_list tbig) = create_serialized_trace tbig (seq_list ((tid, commit_txn) :: t1)) ++ trace_filter_tid tid tbig ++ create_serialized_trace tbig (seq_list t2)). { repeat rewrite Heqtbig. repeat rewrite H0. rewrite app_comm_cons. apply serial_action_split. rewrite <- app_comm_cons. rewrite <- H0. rewrite <- Heqtbig. auto. auto. } rewrite Heqtbig in H1; simpl in H1. rewrite <- beq_nat_refl in H1. assert (~ In tid (seq_list t1)). { rewrite Heqtbig in H. rewrite H0 in H. apply sto_trace_app in H. apply seq_list_no_two_seqpoint2 in H. intuition. apply trace_seqlist_seqpoint_rev in H2. auto. } apply serial_action_remove with (action0:= commit_txn) in H2. Admitted. Lemma serial_action_before_complete tid t1 t2 t: sto_trace ((tid, complete_write_item (S (trace_complete_last t))) :: t) -> t = t1 ++ (tid, seq_point) :: t2 -> create_serialized_trace ((tid, complete_write_item (S (trace_complete_last t))) :: t) (seq_list ((tid, complete_write_item (S (trace_complete_last t))) :: t)) = create_serialized_trace t (seq_list t1) ++ (tid, complete_write_item (S (trace_complete_last t))) :: trace_filter_tid tid t ++ create_serialized_trace t (seq_list t2). Proof. intros. assert (~ In tid (seq_list t2)). Admitted. Lemma seq_list_equal trace: sto_trace trace -> seq_list (create_serialized_trace trace (seq_list trace)) = seq_list trace. Proof. intros. simpl. induction H; simpl. auto. apply start_txn_step with (tid0 := tid0) in H0. apply serial_action_helper in H0. rewrite <- H0 in IHsto_trace. auto. split; intuition; inversion H1. auto. apply read_item_step with (tid := tid0) (val:= val) (oldver:= oldver) in H0. apply serial_action_helper in H0. rewrite <- H0 in IHsto_trace. auto. split; intuition; inversion H2; inversion H. auto. auto. apply write_item_step with (tid := tid0) (ver:= ver) (oldval:= oldval) (val := val) in H0. apply serial_action_helper in H0. rewrite <- H0 in IHsto_trace. auto. split; intuition; inversion H1; inversion H. auto. apply try_commit_txn_step with (tid := tid0) (ver:= ver) (val:= val) in H0. apply serial_action_helper in H0. rewrite <- H0 in IHsto_trace. auto. split; intuition; inversion H1; inversion H. auto. apply lock_write_item_step with (tid := tid0) in H0. apply serial_action_helper in H0. rewrite <- H0 in IHsto_trace. auto. split; intuition; inversion H3. auto. auto. auto. apply validate_read_item_step with (tid := tid0) in H0. apply serial_action_helper in H0. rewrite <- H0 in IHsto_trace. auto. split; intuition; inversion H2. auto. auto. apply abort_txn_step with (tid := tid0) in H0. apply serial_action_helper in H0. rewrite <- H0 in IHsto_trace. auto. split; intuition; inversion H1. auto. rewrite <- beq_nat_refl. simpl. apply seq_point_step with (tid:= tid0) in H1. assert (sto_trace ((tid0, seq_point) :: t)). { auto. } apply seq_list_no_two_seqpoint in H1. assert (~ In (tid0, seq_point) t -> ~ In tid0 (seq_list t)). { intuition; apply trace_seqlist_seqpoint_rev in H4; apply H3 in H4; auto. } apply H3 in H1. apply serial_action_remove with (action0 := seq_point) in H1. rewrite <- H1 in IHsto_trace. assert (seq_list (trace_filter_tid tid0 t ++ create_serialized_trace ((tid0, seq_point) :: t) (seq_list t)) = seq_list (create_serialized_trace ((tid0, seq_point) :: t) (seq_list t))). { apply seqlist_filter. assert (sto_trace ((tid0, seq_point) :: t)). { auto. } apply sto_trace_app in H2. auto. apply seq_list_no_two_seqpoint in H2. auto. } rewrite H4. remember (seq_list (create_serialized_trace ((tid0, seq_point) :: t) (seq_list t))) as too_long. rewrite <- IHsto_trace. rewrite Heqtoo_long. auto. auto. auto. auto. apply complete_write_item_step with (tid := tid0) in H0; [ | auto | auto]. assert (sto_trace t). { apply sto_trace_app in H0. auto. } assert (sto_trace ((tid0, complete_write_item (S (trace_complete_last t))) :: t)). { auto. } apply seq_point_before_complete in H0. apply in_split in H0. destruct H0. destruct H0. assert (t = x ++ (tid0, seq_point) :: x0). { auto. } assert (t = x ++ (tid0, seq_point) :: x0). { auto. } apply serial_action_before_complete in H0; [ | auto]. simpl in H0. unfold tid in H0. rewrite H0. rewrite seq_list_split_no_seqpoint. simpl. apply serial_action_split in H4; [ | auto]. rewrite <- IHsto_trace. rewrite H4. rewrite H5. rewrite <- seq_list_split_no_seqpoint. auto. apply commit_txn_step with (tid := tid0) (ver:= ver) in H0; [ | auto]. assert (sto_trace t). { apply sto_trace_app in H0. auto. } assert (sto_trace ((tid0, commit_txn) :: t)). { auto. } apply seq_point_before_commit in H0. apply in_split in H0. destruct H0. destruct H0. assert (t = x ++ (tid0, seq_point) :: x0). { auto. } assert (t = x ++ (tid0, seq_point) :: x0). { auto. } apply serial_action_before_commit in H0; [ | auto]. simpl in H0. unfold tid in H0. rewrite H0. rewrite seq_list_split_no_seqpoint. simpl. apply serial_action_split in H4; [ | auto]. rewrite <- IHsto_trace. rewrite H4. rewrite H3. rewrite <- seq_list_split_no_seqpoint. auto. Qed. (* Lemma serial_action_add tid t: sto_trace t -> sto_trace (create_serialized_trace t (seq_list t)) -> ~ In tid (seq_list t) -> sto_trace (trace_filter_tid tid t ++ create_serialized_trace t (seq_list t)). Proof. intros. assert (~ In (tid, seq_point) t). { intuition. apply trace_seqlist_seqpoint in H2. apply H1 in H2. auto. } assert (~ In (tid, seq_point) (trace_filter_tid tid t)). { unfold trace_filter_tid. intuition. apply filter_In in H3. destruct H3. apply H2 in H3. auto. } induction (trace_filter_tid tid t). simpl. auto. destruct a. simpl in H3. apply not_or_and in H3. destruct H3. apply IHt0 in H4. Admitted. *) Lemma sto_trace_single tid t: sto_trace ((tid, seq_point) :: t) -> sto_trace (create_serialized_trace t (seq_list t)) -> sto_trace ((trace_filter_tid tid ((tid, seq_point) :: t)) ++ (create_serialized_trace t (seq_list t))). Proof. intros; simpl. rewrite <- beq_nat_refl. inversion H. induction H. Admitted. Lemma is_sto_trace trace: sto_trace trace -> sto_trace (create_serialized_trace trace (seq_list trace)). Proof. intros. induction H; simpl. auto. apply start_txn_step in H; [ | auto]. apply serial_action_helper in H. simpl in H. rewrite <- H in IHsto_trace. auto. split; intuition; inversion H1. apply read_item_step in H; [ | auto | auto]. apply serial_action_helper in H. simpl in H. rewrite <- H in IHsto_trace. auto. split; intuition; inversion H2. apply write_item_step with (val := val) in H; [ | auto]. apply serial_action_helper in H. simpl in H. rewrite <- H in IHsto_trace. auto. split; intuition; inversion H1. apply try_commit_txn_step in H; [ | auto]. apply serial_action_helper in H. simpl in H. rewrite <- H in IHsto_trace. auto. split; intuition; inversion H1. apply lock_write_item_step in H; [ | auto | auto | auto]. apply serial_action_helper in H. simpl in H. rewrite <- H in IHsto_trace. auto. split; intuition; inversion H3. apply validate_read_item_step in H; [ | auto| auto]. apply serial_action_helper in H. simpl in H. rewrite <- H in IHsto_trace. auto. split; intuition; inversion H2; inversion H0. apply abort_txn_step in H; [ | auto]. apply serial_action_helper in H. simpl in H. rewrite <- H in IHsto_trace. auto. split; intuition; inversion H1. rewrite <- beq_nat_refl. apply seq_point_step in H; [ | auto | auto]. apply sto_trace_single with (tid0 := tid0) in IHsto_trace. unfold trace_filter_tid in IHsto_trace. simpl in IHsto_trace. rewrite <- beq_nat_refl in IHsto_trace. unfold trace_filter_tid. assert (sto_trace ((tid0, seq_point) :: t)). { auto. } apply seq_list_no_two_seqpoint in H. assert (~ In (tid0, seq_point) t -> ~ In tid0 (seq_list t)). { intuition. apply trace_seqlist_seqpoint_rev in H4. apply H3 in H4. auto. } apply H3 in H. apply serial_action_remove with (action0 := seq_point) in H; [ | auto]. rewrite <- H in IHsto_trace. auto. auto. apply complete_write_item_step in H; [ | auto | auto]. admit. apply commit_txn_step in H; [ | auto]. admit. Admitted. Lemma check_app a tr: check_is_serial_trace (a :: tr) -> check_is_serial_trace tr. Proof. intros. destruct a. destruct tr. auto. destruct p. destruct tr. simpl. auto. simpl in H. destruct (Nat.eq_dec t0 t). subst. rewrite <- beq_nat_refl in H. simpl in *. destruct H. auto. rewrite <- Nat.eqb_neq in n. rewrite n in H. simpl in *. destruct H. auto. Qed. Lemma check_split_right tr1 tr2: check_is_serial_trace (tr1 ++ tr2) -> check_is_serial_trace tr2. Proof. intros. induction tr1. rewrite app_nil_l in H. auto. simpl in H. apply check_app in H. apply IHtr1 in H. auto. Qed. (* Eval compute in check_is_serial_trace [(2, commit_txn 1); (2, seq_point); (2, complete_write_item 1); (2, validate_read_item True); (2, lock_write_item); (2, try_commit_txn); (2, write_item 4); (2, read_item 0); (2, start_txn); (3, commit_txn 1); (3, seq_point); (3, validate_read_item True); (3, try_commit_txn); (3, read_item 1); (3, start_txn)]. Eval compute in check_is_serial_trace [(3, commit_txn 1); (3, seq_point); (3, validate_read_item True); (3, try_commit_txn); (3, read_item 1); (3, start_txn); (1, abort_txn); (1, validate_read_item False); (1, try_commit_txn); (2, commit_txn 1); (2, seq_point); (2, complete_write_item 1); (2, validate_read_item True); (2, lock_write_item); (2, try_commit_txn); (2, write_item 4); (1, read_item 0); (2, read_item 0); (2, start_txn); (1, start_txn)]. *) Eval compute in check_is_serial_trace example_txn. (***************************************************) Lemma is_serial trace: sto_trace trace -> check_is_serial_trace (create_serialized_trace trace (seq_list trace)). Proof. intros. induction H. simpl. auto. simpl. apply start_txn_step with (tid0 := tid0) in H0. rewrite serial_action_helper; auto. split; intuition; inversion H1. auto. simpl. apply read_item_step with (tid := tid0) (val:= val) (oldver:= oldver) in H0. rewrite serial_action_helper; auto. split; intuition; inversion H2; inversion H. auto. auto. simpl. apply write_item_step with (tid := tid0) (oldval:= oldval) (ver:= ver) (val:= val) in H0. rewrite serial_action_helper; auto. split; intuition; inversion H1; inversion H. auto. simpl. apply try_commit_txn_step with (tid := tid0) (ver:= ver) (val:= val) in H0. rewrite serial_action_helper; auto. split; intuition; inversion H1; inversion H. auto. simpl. apply lock_write_item_step with (tid := tid0) in H0. rewrite serial_action_helper; auto. split; intuition; inversion H3; inversion H. auto. auto. auto. simpl. apply validate_read_item_step with (tid := tid0) in H0. rewrite serial_action_helper; auto. split; intuition; inversion H2; inversion H. auto. auto. simpl. apply abort_txn_step with (tid := tid0) in H0. rewrite serial_action_helper; auto. split; intuition; inversion H1. auto. simpl. rewrite <- beq_nat_refl. apply seq_point_step with (tid := tid0) in H1; [ | auto| auto]. assert (sto_trace ((tid0, seq_point) :: t)). { auto. } apply seq_list_no_two_seqpoint in H1. assert (~ In (tid0, seq_point) t -> ~ In tid0 (seq_list t)). { intuition; apply trace_seqlist_seqpoint_rev in H4; apply H3 in H4; auto. } apply H3 in H1. apply serial_action_remove with (action0 := seq_point) in H1; [ | auto]. admit. simpl. apply complete_write_item_step with (tid := tid0) in H0; [ | auto | auto]. admit. simpl. apply commit_txn_step with (tid := tid0) (ver:= ver) in H0; [ | auto]. admit. Admitted. (***************************************************) Lemma write_sync_list_unchanged_noseq : forall t tid a, sto_trace ((tid, a)::t) -> a = start_txn -> get_write_value_out t = get_write_value_out ((tid, a)::t). Proof. intros. unfold get_write_value_out. subst. simpl. induction (seq_list t). simpl. auto. simpl. destruct (Nat.eq_dec tid0 a). - subst. rewrite <- beq_nat_refl. rewrite IHl. intuition. - rewrite <- Nat.eqb_neq in n. rewrite n. rewrite IHl. auto. Qed. Lemma write_sync_list_unchanged_noseq2 : forall t tid a, sto_trace ((tid, a)::t) -> a <> seq_point -> get_write_value_out t = get_write_value_out ((tid, a)::t). Proof. intros. unfold get_write_value_out. subst. destruct a. simpl. induction (seq_list t). simpl. auto. simpl. destruct (Nat.eq_dec tid0 a). - subst. rewrite <- beq_nat_refl. rewrite IHl. intuition. - rewrite <- Nat.eqb_neq in n. rewrite n. rewrite IHl. auto. Admitted. (* A STO-trace and its serial trace should have the same writes. ************************************************** Should we prove that create_serialized_trace function actually prove the correct serial trace of the STO-trace ************************************************** *) (***************************************************) Lemma write_consistency trace: sto_trace trace -> sto_trace (create_serialized_trace trace (seq_list trace)) -> check_is_serial_trace (create_serialized_trace trace (seq_list trace)) -> write_synchronization trace (create_serialized_trace trace (seq_list trace)). Proof. intros. induction H. - unfold write_synchronization; unfold get_write_value_out; simpl; auto. - unfold write_synchronization. unfold get_write_value_out. apply start_txn_step in H; [ | auto]. apply serial_action_helper in H; [ | split]. unfold tid in H. rewrite H. Admitted. (***************************************************) (* Now we proceed to the read part of the proof. *) (* A STO-trace and its serial trace should have the same reads. *) (***************************************************) Lemma read_consistency trace: sto_trace trace -> read_synchronization trace (create_serialized_trace trace (seq_list trace)). Admitted. (***************************************************) (* The capstone theorem: prove serializability of a sto-trace *) Theorem txn_equal t: sto_trace t -> exists t', sto_trace t' -> check_is_serial_trace t' -> Exec_Equivalence t t'. Proof. exists (create_serialized_trace t (seq_list t)). intros. unfold Exec_Equivalence. split. apply write_consistency; auto. apply read_consistency; auto. Qed.
Formal statement is: lemmas prime_imp_coprime_int = prime_imp_coprime[where ?'a = int] Informal statement is: If $p$ is a prime number, then $p$ and $n$ are coprime if and only if $p$ does not divide $n$.
lemma continuous_map_o_Pair: assumes h: "continuous_map (prod_topology X Y) Z h" and t: "t \<in> topspace X" shows "continuous_map Y Z (h \<circ> Pair t)"
[STATEMENT] lemma mkuexpr_uminus [mkuexpr]: "mk\<^sub>e (\<lambda> s. - f s) = - mk\<^sub>e f" [PROOF STATE] proof (prove) goal (1 subgoal): 1. mk\<^sub>e (\<lambda>s. - f s) = - mk\<^sub>e f [PROOF STEP] by (simp add: uminus_uexpr_def, transfer, simp)
r=359.97 https://sandbox.dams.library.ucdavis.edu/fcrepo/rest/collection/sherry-lehmann/catalogs/d7fw2v/media/images/d7fw2v-026/svc:tesseract/full/full/359.97/default.jpg Accept:application/hocr+xml
// // Copyright (c) 2019 Vinnie Falco ([email protected]) // // Distributed under the Boost Software License, Version 1.0. (See accompanying // file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt) // // Official repository: https://github.com/boostorg/json // #ifndef BOOST_JSON_IMPL_STREAM_PARSER_IPP #define BOOST_JSON_IMPL_STREAM_PARSER_IPP #include <boost/json/stream_parser.hpp> #include <boost/json/basic_parser_impl.hpp> #include <boost/json/error.hpp> #include <cstring> #include <stdexcept> #include <utility> BOOST_JSON_NS_BEGIN stream_parser:: stream_parser( storage_ptr sp, parse_options const& opt, unsigned char* buffer, std::size_t size) noexcept : p_( opt, std::move(sp), buffer, size) { reset(); } stream_parser:: stream_parser( storage_ptr sp, parse_options const& opt) noexcept : p_( opt, std::move(sp), nullptr, 0) { reset(); } void stream_parser:: reset(storage_ptr sp) noexcept { p_.reset(); p_.handler().st.reset(sp); } std::size_t stream_parser:: write_some( char const* data, std::size_t size, error_code& ec) { return p_.write_some( true, data, size, ec); } std::size_t stream_parser:: write_some( char const* data, std::size_t size) { error_code ec; auto const n = write_some( data, size, ec); if(ec) detail::throw_system_error(ec, BOOST_CURRENT_LOCATION); return n; } std::size_t stream_parser:: write( char const* data, std::size_t size, error_code& ec) { auto const n = write_some( data, size, ec); if(! ec && n < size) { ec = error::extra_data; p_.fail(ec); } return n; } std::size_t stream_parser:: write( char const* data, std::size_t size) { error_code ec; auto const n = write( data, size, ec); if(ec) detail::throw_system_error(ec, BOOST_CURRENT_LOCATION); return n; } void stream_parser:: finish(error_code& ec) { p_.write_some(false, nullptr, 0, ec); } void stream_parser:: finish() { error_code ec; finish(ec); if(ec) detail::throw_system_error(ec, BOOST_CURRENT_LOCATION); } value stream_parser:: release() { if(! p_.done()) { // prevent undefined behavior finish(); } return p_.handler().st.release(); } BOOST_JSON_NS_END #endif
/- Copyright (c) 2017 Mario Carneiro. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Mario Carneiro -/ import data.semiquot import data.rat.floor /-! # Implementation of floating-point numbers (experimental). -/ def int.shift2 (a b : ℕ) : ℤ → ℕ × ℕ | (int.of_nat e) := (a.shiftl e, b) | -[1+ e] := (a, b.shiftl e.succ) namespace fp @[derive inhabited] inductive rmode | NE -- round to nearest even class float_cfg := (prec emax : ℕ) (prec_pos : 0 < prec) (prec_max : prec ≤ emax) variable [C : float_cfg] include C def prec := C.prec def emax := C.emax def emin : ℤ := 1 - C.emax def valid_finite (e : ℤ) (m : ℕ) : Prop := emin ≤ e + prec - 1 ∧ e + prec - 1 ≤ emax ∧ e = max (e + m.size - prec) emin instance dec_valid_finite (e m) : decidable (valid_finite e m) := by unfold valid_finite; apply_instance inductive float | inf : bool → float | nan : float | finite : bool → Π e m, valid_finite e m → float def float.is_finite : float → bool | (float.finite s e m f) := tt | _ := ff def to_rat : Π (f : float), f.is_finite → ℚ | (float.finite s e m f) _ := let (n, d) := int.shift2 m 1 e, r := rat.mk_nat n d in if s then -r else r theorem float.zero.valid : valid_finite emin 0 := ⟨begin rw add_sub_assoc, apply le_add_of_nonneg_right, apply sub_nonneg_of_le, apply int.coe_nat_le_coe_nat_of_le, exact C.prec_pos end, suffices prec ≤ 2 * emax, begin rw ← int.coe_nat_le at this, rw ← sub_nonneg at *, simp only [emin, emax] at *, ring_nf, assumption end, le_trans C.prec_max (nat.le_mul_of_pos_left dec_trivial), by rw max_eq_right; simp [sub_eq_add_neg]⟩ def float.zero (s : bool) : float := float.finite s emin 0 float.zero.valid instance : inhabited float := ⟨float.zero tt⟩ protected def float.sign' : float → semiquot bool | (float.inf s) := pure s | float.nan := ⊤ | (float.finite s e m f) := pure s protected def float.sign : float → bool | (float.inf s) := s | float.nan := ff | (float.finite s e m f) := s protected def float.is_zero : float → bool | (float.finite s e 0 f) := tt | _ := ff protected def float.neg : float → float | (float.inf s) := float.inf (bnot s) | float.nan := float.nan | (float.finite s e m f) := float.finite (bnot s) e m f def div_nat_lt_two_pow (n d : ℕ) : ℤ → bool | (int.of_nat e) := n < d.shiftl e | -[1+ e] := n.shiftl e.succ < d -- TODO(Mario): Prove these and drop 'meta' meta def of_pos_rat_dn (n : ℕ+) (d : ℕ+) : float × bool := begin let e₁ : ℤ := n.1.size - d.1.size - prec, cases h₁ : int.shift2 d.1 n.1 (e₁ + prec) with d₁ n₁, let e₂ := if n₁ < d₁ then e₁ - 1 else e₁, let e₃ := max e₂ emin, cases h₂ : int.shift2 d.1 n.1 (e₃ + prec) with d₂ n₂, let r := rat.mk_nat n₂ d₂, let m := r.floor, refine (float.finite ff e₃ (int.to_nat m) _, r.denom = 1), { exact undefined } end meta def next_up_pos (e m) (v : valid_finite e m) : float := let m' := m.succ in if ss : m'.size = m.size then float.finite ff e m' (by unfold valid_finite at *; rw ss; exact v) else if h : e = emax then float.inf ff else float.finite ff e.succ (nat.div2 m') undefined meta def next_dn_pos (e m) (v : valid_finite e m) : float := match m with | 0 := next_up_pos _ _ float.zero.valid | nat.succ m' := if ss : m'.size = m.size then float.finite ff e m' (by unfold valid_finite at *; rw ss; exact v) else if h : e = emin then float.finite ff emin m' undefined else float.finite ff e.pred (bit1 m') undefined end meta def next_up : float → float | (float.finite ff e m f) := next_up_pos e m f | (float.finite tt e m f) := float.neg $ next_dn_pos e m f | f := f meta def next_dn : float → float | (float.finite ff e m f) := next_dn_pos e m f | (float.finite tt e m f) := float.neg $ next_up_pos e m f | f := f meta def of_rat_up : ℚ → float | ⟨0, _, _, _⟩ := float.zero ff | ⟨nat.succ n, d, h, _⟩ := let (f, exact) := of_pos_rat_dn n.succ_pnat ⟨d, h⟩ in if exact then f else next_up f | ⟨-[1+n], d, h, _⟩ := float.neg (of_pos_rat_dn n.succ_pnat ⟨d, h⟩).1 meta def of_rat_dn (r : ℚ) : float := float.neg $ of_rat_up (-r) meta def of_rat : rmode → ℚ → float | rmode.NE r := let low := of_rat_dn r, high := of_rat_up r in if hf : high.is_finite then if r = to_rat _ hf then high else if lf : low.is_finite then if r - to_rat _ lf > to_rat _ hf - r then high else if r - to_rat _ lf < to_rat _ hf - r then low else match low, lf with float.finite s e m f, _ := if 2 ∣ m then low else high end else float.inf tt else float.inf ff namespace float instance : has_neg float := ⟨float.neg⟩ meta def add (mode : rmode) : float → float → float | nan _ := nan | _ nan := nan | (inf tt) (inf ff) := nan | (inf ff) (inf tt) := nan | (inf s₁) _ := inf s₁ | _ (inf s₂) := inf s₂ | (finite s₁ e₁ m₁ v₁) (finite s₂ e₂ m₂ v₂) := let f₁ := finite s₁ e₁ m₁ v₁, f₂ := finite s₂ e₂ m₂ v₂ in of_rat mode (to_rat f₁ rfl + to_rat f₂ rfl) meta instance : has_add float := ⟨float.add rmode.NE⟩ meta def sub (mode : rmode) (f1 f2 : float) : float := add mode f1 (-f2) meta instance : has_sub float := ⟨float.sub rmode.NE⟩ meta def mul (mode : rmode) : float → float → float | nan _ := nan | _ nan := nan | (inf s₁) f₂ := if f₂.is_zero then nan else inf (bxor s₁ f₂.sign) | f₁ (inf s₂) := if f₁.is_zero then nan else inf (bxor f₁.sign s₂) | (finite s₁ e₁ m₁ v₁) (finite s₂ e₂ m₂ v₂) := let f₁ := finite s₁ e₁ m₁ v₁, f₂ := finite s₂ e₂ m₂ v₂ in of_rat mode (to_rat f₁ rfl * to_rat f₂ rfl) meta def div (mode : rmode) : float → float → float | nan _ := nan | _ nan := nan | (inf s₁) (inf s₂) := nan | (inf s₁) f₂ := inf (bxor s₁ f₂.sign) | f₁ (inf s₂) := zero (bxor f₁.sign s₂) | (finite s₁ e₁ m₁ v₁) (finite s₂ e₂ m₂ v₂) := let f₁ := finite s₁ e₁ m₁ v₁, f₂ := finite s₂ e₂ m₂ v₂ in if f₂.is_zero then inf (bxor s₁ s₂) else of_rat mode (to_rat f₁ rfl / to_rat f₂ rfl) end float end fp
lemma lipschitz_on_normD: "norm (f x - f y) \<le> L * norm (x - y)" if "lipschitz_on L X f" "x \<in> X" "y \<in> X"
lemma sets_null_measure[simp, measurable_cong]: "sets (null_measure M) = sets M"
[STATEMENT] lemma lt__le: assumes "A B Lt C D" shows "A B Le C D" [PROOF STATE] proof (prove) goal (1 subgoal): 1. A B Le C D [PROOF STEP] using Lt_def assms [PROOF STATE] proof (prove) using this: ?A ?B Lt ?C ?D \<equiv> ?A ?B Le ?C ?D \<and> \<not> Cong ?A ?B ?C ?D A B Lt C D goal (1 subgoal): 1. A B Le C D [PROOF STEP] by blast
""" Disjoint set data structure """ import collections class DisjointSet: """ Disjoint set data structure for incremental connectivity queries. .. versionadded:: 1.6.0 Attributes ---------- n_subsets : int The number of subsets. Methods ------- add merge connected subset subsets __getitem__ Notes ----- This class implements the disjoint set [1]_, also known as the *union-find* or *merge-find* data structure. The *find* operation (implemented in `__getitem__`) implements the *path halving* variant. The *merge* method implements the *merge by size* variant. References ---------- .. [1] https://en.wikipedia.org/wiki/Disjoint-set_data_structure Examples -------- >>> from scipy.cluster.hierarchy import DisjointSet Initialize a disjoint set: >>> disjoint_set = DisjointSet([1, 2, 3, 'a', 'b']) Merge some subsets: >>> disjoint_set.merge(1, 2) True >>> disjoint_set.merge(3, 'a') True >>> disjoint_set.merge('a', 'b') True >>> disjoint_set.merge('b', 'b') False Find root elements: >>> disjoint_set[2] 1 >>> disjoint_set['b'] 3 Test connectivity: >>> disjoint_set.connected(1, 2) True >>> disjoint_set.connected(1, 'b') False List elements in disjoint set: >>> list(disjoint_set) [1, 2, 3, 'a', 'b'] Get the subset containing 'a': >>> disjoint_set.subset('a') {'a', 3, 'b'} Get all subsets in the disjoint set: >>> disjoint_set.subsets() [{1, 2}, {'a', 3, 'b'}] """ def __init__(self, elements=None): self.n_subsets = 0 self._sizes = {} self._parents = {} # _nbrs is a circular linked list which links connected elements. self._nbrs = {} # _indices tracks the element insertion order - OrderedDict is used to # ensure correct ordering in `__iter__`. self._indices = collections.OrderedDict() if elements is not None: for x in elements: self.add(x) def __iter__(self): """Returns an iterator of the elements in the disjoint set. Elements are ordered by insertion order. """ return iter(self._indices) def __len__(self): return len(self._indices) def __contains__(self, x): return x in self._indices def __getitem__(self, x): """Find the root element of `x`. Parameters ---------- x : hashable object Input element. Returns ------- root : hashable object Root element of `x`. """ if x not in self._indices: raise KeyError(x) # find by "path halving" parents = self._parents while self._indices[x] != self._indices[parents[x]]: parents[x] = parents[parents[x]] x = parents[x] return x def add(self, x): """Add element `x` to disjoint set """ if x in self._indices: return self._sizes[x] = 1 self._parents[x] = x self._nbrs[x] = x self._indices[x] = len(self._indices) self.n_subsets += 1 def merge(self, x, y): """Merge the subsets of `x` and `y`. The smaller subset (the child) is merged into the larger subset (the parent). If the subsets are of equal size, the root element which was first inserted into the disjoint set is selected as the parent. Parameters ---------- x, y : hashable object Elements to merge. Returns ------- merged : bool True if `x` and `y` were in disjoint sets, False otherwise. """ xr = self[x] yr = self[y] if self._indices[xr] == self._indices[yr]: return False sizes = self._sizes if (sizes[xr], self._indices[yr]) < (sizes[yr], self._indices[xr]): xr, yr = yr, xr self._parents[yr] = xr self._sizes[xr] += self._sizes[yr] self._nbrs[xr], self._nbrs[yr] = self._nbrs[yr], self._nbrs[xr] self.n_subsets -= 1 return True def connected(self, x, y): """Test whether `x` and `y` are in the same subset. Parameters ---------- x, y : hashable object Elements to test. Returns ------- result : bool True if `x` and `y` are in the same set, False otherwise. """ return self._indices[self[x]] == self._indices[self[y]] def subset(self, x): """Get the subset containing `x`. Parameters ---------- x : hashable object Input element. Returns ------- result : set Subset containing `x`. """ if x not in self._indices: raise KeyError(x) result = [x] nxt = self._nbrs[x] while self._indices[nxt] != self._indices[x]: result.append(nxt) nxt = self._nbrs[nxt] return set(result) def subsets(self): """Get all the subsets in the disjoint set. Returns ------- result : set Subsets in the disjoint set. """ result = [] visited = set() for x in self: if x not in visited: xset = self.subset(x) visited.update(xset) result.append(xset) return result
import data.list.chain import data.sigma.basic variables {ι : Type*} {M : ι → Type*} {G : ι → Type*} {N : Type*} variables [Π i, monoid (M i)] [Π i, group (G i)] [monoid N] open list function namespace coprod.pre def reduced (l : list (Σ i, M i)) : Prop := l.chain' (λ a b, a.1 ≠ b.1) ∧ ∀ a : Σ i, M i, a ∈ l → a.2 ≠ 1 @[simp] lemma reduced_nil : reduced ([] : list (Σ i, M i)) := ⟨list.chain'_nil, λ _, false.elim⟩ lemma reduced_singleton {i : Σ i, M i} (hi : i.2 ≠ 1) : reduced [i] := ⟨by simp, begin cases i with i a, rintros ⟨j, b⟩, simp only [and_imp, ne.def, mem_singleton], rintro rfl h₂, simp * at * end⟩ lemma reduced_of_reduced_cons {i : Σ i, M i} {l : list (Σ i, M i)} (h : reduced (i :: l)) : reduced l := ⟨(list.chain'_cons'.1 h.1).2, λ b hb, h.2 _ (mem_cons_of_mem _ hb)⟩ lemma reduced_cons_of_reduced_cons {i : ι} {a b : M i} {l : list (Σ i, M i)} (h : reduced (⟨i, a⟩ :: l)) (hb : b ≠ 1) : reduced (⟨i, b⟩ :: l) := ⟨chain'_cons'.2 (chain'_cons'.1 h.1), begin rintros ⟨k, c⟩ hk, cases (mem_cons_iff _ _ _).1 hk with hk hk, { simp only at hk, rcases hk with ⟨rfl, h⟩, simp * at * }, { exact h.2 _ (mem_cons_of_mem _ hk) } end⟩ lemma reduced_cons_cons {i j : ι} {a : M i} {b : M j} {l : list (Σ i, M i)} (hij : i ≠ j) (ha : a ≠ 1) (hbl : reduced (⟨j, b⟩ :: l)) : reduced (⟨i, a⟩ :: ⟨j, b⟩ :: l) := ⟨chain'_cons.2 ⟨hij, hbl.1⟩, begin rintros ⟨k, c⟩ hk, cases (mem_cons_iff _ _ _).1 hk with hk hk, { simp only at hk, rcases hk with ⟨rfl, h⟩, simp * at * }, { exact hbl.2 _ hk } end⟩ lemma reduced_reverse {l : list (Σ i, M i)} (h : reduced l) : reduced l.reverse := ⟨chain'_reverse.2 $ by {convert h.1, simp [function.funext_iff, eq_comm] }, by simpa using h.2⟩ @[simp] lemma reduced_reverse_iff {l : list (Σ i, M i)} : reduced l.reverse ↔ reduced l := ⟨λ h, by convert reduced_reverse h; simp, reduced_reverse⟩ lemma reduced_of_reduced_append_right : ∀ {l₁ l₂ : list (Σ i, M i)} (h : reduced (l₁ ++ l₂)), reduced l₂ | [] l₂ h := h | (i::l₁) l₂ h := begin rw cons_append at h, exact reduced_of_reduced_append_right (reduced_of_reduced_cons h) end lemma reduced_of_reduced_append_left {l₁ l₂ : list (Σ i, M i)} (h : reduced (l₁ ++ l₂)) : reduced l₁ := begin rw [← reduced_reverse_iff], rw [← reduced_reverse_iff, reverse_append] at h, exact reduced_of_reduced_append_right h end variables {ι} [decidable_eq ι] {M} [Π i, decidable_eq (M i)] def rcons : (Σ i, M i) → list (Σ i, M i) → list (Σ i, M i) | i [] := [i] | i (j::l) := if hij : i.1 = j.1 then let c := i.2 * cast (congr_arg M hij).symm j.2 in if c = 1 then l else ⟨i.1, c⟩ :: l else i::j::l def reduce : list (Σ i, M i) → list (Σ i, M i) | [] := [] | (i :: l) := if i.2 = 1 then reduce l else rcons i (reduce l) @[simp] lemma reduce_nil : reduce ([] : list (Σ i, M i)) = [] := rfl lemma reduce_cons (i : Σ i, M i) (l : list (Σ i, M i)) : reduce (i::l) = if i.2 = 1 then reduce l else rcons i (reduce l) := rfl lemma reduced_rcons : ∀ {i : Σ i, M i} {l : list (Σ i, M i)}, i.2 ≠ 1 → reduced l → reduced (rcons i l) | ⟨i, a⟩ [] hi h := ⟨list.chain'_singleton _, begin rintros ⟨j, b⟩ hj, simp only [rcons, list.mem_singleton] at hj, rcases hj with ⟨rfl, h⟩, simp * at * end⟩ | ⟨i, a⟩ (⟨j, b⟩ :: l) hi h := begin simp [rcons], split_ifs, { exact reduced_of_reduced_cons h }, { dsimp only at h_1, subst h_1, exact reduced_cons_of_reduced_cons h h_2 }, { exact reduced_cons_cons h_1 hi h } end lemma reduced_reduce : ∀ l : list (Σ i, M i), reduced (reduce l) | [] := reduced_nil | (a::l) := begin rw reduce, split_ifs, { exact reduced_reduce l }, { exact reduced_rcons h (reduced_reduce l) } end lemma rcons_eq_cons : ∀ {i : Σ i, M i} {l : list (Σ i, M i)}, reduced (i :: l) → rcons i l = i :: l | i [] h := rfl | i (j::l) h := dif_neg (chain'_cons.1 h.1).1 lemma rcons_reduce_eq_reduce_cons : ∀ {i : Σ i, M i} {l : list (Σ i, M i)}, i.2 ≠ 1 → rcons i (reduce l) = reduce (i :: l) | a [] ha := by simp [rcons, reduce, ha] | a (b::l) ha := begin rw [reduce], split_ifs, { rw [reduce, if_neg ha, reduce, if_pos h] }, { rw [reduce, if_neg ha, reduce, if_neg h] } end lemma reduce_eq_self_of_reduced : ∀ {l : list (Σ i, M i)}, reduced l → reduce l = l | [] h := rfl | (a::l) h := by rw [← rcons_reduce_eq_reduce_cons (h.2 a (mem_cons_self _ _)), reduce_eq_self_of_reduced (reduced_of_reduced_cons h), rcons_eq_cons h] lemma rcons_eq_reduce_cons {i : Σ i, M i} {l : list (Σ i, M i)} (ha : i.2 ≠ 1) (hl : reduced l) : rcons i l = reduce (i :: l) := by rw [← rcons_reduce_eq_reduce_cons ha, reduce_eq_self_of_reduced hl] @[simp] lemma reduce_reduce (l : list (Σ i, M i)) : reduce (reduce l) = reduce l := reduce_eq_self_of_reduced (reduced_reduce l) @[simp] lemma reduce_cons_reduce_eq_reduce_cons (i : Σ i, M i) (l : list (Σ i, M i)) : reduce (i :: reduce l) = reduce (i :: l) := if ha : i.2 = 1 then by rw [reduce, if_pos ha, reduce, if_pos ha, reduce_reduce] else by rw [← rcons_reduce_eq_reduce_cons ha, ← rcons_reduce_eq_reduce_cons ha, reduce_reduce] lemma length_rcons_le : ∀ (i : Σ i, M i) (l : list (Σ i, M i)), (rcons i l).length ≤ (i::l : list _).length | i [] := le_refl _ | ⟨i, a⟩ (⟨j, b⟩::l) := begin simp [rcons], split_ifs, { repeat { constructor } }, { simp }, { simp } end lemma length_reduce_le : ∀ (l : list (Σ i, M i)), (reduce l).length ≤ l.length | [] := le_refl _ | [a] := by { simp [reduce], split_ifs; simp [rcons] } | (a::b::l) := begin simp only [reduce, rcons], split_ifs, { exact le_trans (length_reduce_le _) (le_trans (nat.le_succ _) (nat.le_succ _)) }, { exact le_trans (length_rcons_le _ _) (nat.succ_le_succ (le_trans (length_reduce_le _) (nat.le_succ _))) }, { exact le_trans (length_rcons_le _ _) (nat.succ_le_succ (le_trans (length_reduce_le _) (nat.le_succ _))) }, { exact le_trans (length_rcons_le _ _) (nat.succ_le_succ (le_trans (length_rcons_le _ _) (nat.succ_le_succ (length_reduce_le _)))) } end lemma length_rcons_lt_or_eq_rcons : ∀ (i : Σ i, M i) (l : list (Σ i, M i)), (rcons i l).length < (i :: l : list _).length ∨ rcons i l = (i::l) | i [] := or.inr rfl | i (j::l) := begin simp only [rcons], split_ifs, { exact or.inl (nat.lt_succ_of_le (nat.le_succ _)) }, { exact or.inl (nat.lt_succ_self _) }, { simp } end lemma length_reduce_lt_or_eq_reduce : ∀ (l : list (Σ i, M i)), (reduce l).length < l.length ∨ reduce l = l | [] := or.inr rfl | (i::l) := begin simp only [reduce], split_ifs, { exact or.inl (nat.lt_succ_of_le (length_reduce_le _)) }, { cases length_rcons_lt_or_eq_rcons i (reduce l) with h h, { exact or.inl (lt_of_lt_of_le h (nat.succ_le_succ (length_reduce_le _))) }, { rw h, cases length_reduce_lt_or_eq_reduce l with h h, { exact or.inl (nat.succ_lt_succ h) }, { rw h, right, refl } } } end lemma rcons_append : ∀ {i j : Σ i, M i} {l₁ l₂ : list (Σ i, M i)}, rcons i ((j::l₁) ++ l₂) = rcons i (j::l₁) ++ l₂ | i j [] l₂ := begin simp [rcons], split_ifs; simp end | a b (c::l₁) l₂ := begin rw [cons_append, rcons], dsimp, split_ifs, { simp [rcons, *] }, { simp [rcons, *] }, { simp [rcons, *] } end lemma rcons_rcons_of_mul_eq_one {i : ι} {a b : M i} : ∀ {l : list (Σ i, M i)}, a * b = 1 → reduced l → rcons ⟨i, a⟩ (rcons ⟨i, b⟩ l) = l | [] hab hl := by simp [rcons, cast, hab] | (⟨j, c⟩::l) hab hl := begin simp only [rcons], split_ifs, { dsimp only at h, subst h, rw [← rcons_eq_cons hl, left_inv_eq_right_inv hab h_1, cast_eq] }, { dsimp only at h, subst h, simp only [rcons, dif_pos rfl], rw [cast_eq, cast_eq, if_neg, ← mul_assoc, hab, one_mul], { rw [← mul_assoc, hab, one_mul], exact hl.2 ⟨i, c⟩ (mem_cons_self _ _) } }, { rw [rcons, dif_pos rfl, cast_eq], dsimp, rw [if_pos hab] } end lemma rcons_rcons_of_mul_ne_one {i : ι} {a b : M i} : ∀ {l : list (Σ i, M i)}, a * b ≠ 1 → a ≠ 1 → reduced l → rcons ⟨i, a⟩ (rcons ⟨i, b⟩ l) = rcons ⟨i, a * b⟩ l | [] hab ha hl := by simp [rcons, hab] | [⟨j, c⟩] hab ha hl := begin simp only [rcons], split_ifs, { rw [mul_assoc, h_1, mul_one] at h_2, exact (ha h_2).elim }, { simp [rcons, mul_assoc, h_1] }, { simp only [rcons, ← mul_assoc, *, dif_pos rfl, if_pos rfl, cast_eq] }, { dsimp only at h, subst h, simp only [rcons, dif_pos rfl, ← mul_assoc, cast_eq, *] at *, simp, }, { simp [rcons, if_neg hab, if_pos rfl] } end | (⟨j, c⟩::⟨k, d⟩::l) hab ha hl := begin have hjk : j ≠ k, from (chain'_cons.1 hl.1).1, dsimp only [rcons], split_ifs, { rw [mul_assoc, h_1, mul_one] at h_2, exact (ha h_2).elim }, { dsimp [rcons], subst h, simp [*, rcons, mul_assoc] at * }, { simp [*, rcons, ← mul_assoc] at * }, { simp [*, rcons, ← mul_assoc] }, { simp [*, rcons] } end lemma reduce_rcons : ∀ {i : Σ i, M i} (l : list (Σ i, M i)), i.2 ≠ 1 → reduce (rcons i l) = rcons i (reduce l) | i [] hi := by simp [rcons, reduce, hi] | ⟨i, a⟩ [⟨j, b⟩] ha := begin replace ha : a ≠ 1 := ha, dsimp only [reduce, rcons], by_cases hij : i = j, { subst hij, split_ifs; simp [*, reduce, rcons] at * }, { simp [hij, reduce, rcons, ha] } end | ⟨i, a⟩ (⟨j, b⟩::l) ha := begin dsimp only [rcons], split_ifs, { subst h, rw [cast_eq] at h_1, rw [reduce, if_neg, rcons_rcons_of_mul_eq_one h_1 (reduced_reduce _)], { refine λ hb : b = 1, _, rw [hb, mul_one] at h_1, exact ha h_1 } }, { subst h, rw [reduce, if_neg h_1, reduce], split_ifs, { erw [cast_eq, show b = 1, from h, mul_one] }, { rw cast_eq at h_1, rw [rcons_rcons_of_mul_ne_one h_1 ha (reduced_reduce l), cast_eq], } }, { rw [rcons_eq_reduce_cons ha (reduced_reduce _), reduce_cons_reduce_eq_reduce_cons] } end lemma reduce_cons_cons_of_mul_eq_one {l : list (Σ i, M i)} {i : ι} {a b : M i} (ha : a ≠ 1) (hb : b ≠ 1) (hab : a * b = 1) : reduce (⟨i, a⟩ :: ⟨i, b⟩ :: l) = reduce l := by rw [reduce, if_neg ha, reduce, if_neg hb, rcons_rcons_of_mul_eq_one hab (reduced_reduce _)] lemma reduce_cons_cons_of_mul_ne_one {l : list (Σ i, M i)} {i : ι} {a b : M i} (ha : a ≠ 1) (hab : a * b ≠ 1) : reduce (⟨i, a⟩ :: ⟨i, b⟩ :: l) = reduce (⟨i, a * b⟩ :: l) := begin rw [reduce, if_neg ha, reduce], split_ifs, { rw [rcons_eq_reduce_cons (show (⟨i, a⟩ : Σ i, M i).snd ≠ 1, from ha) (reduced_reduce _), show b = 1, from h, mul_one, reduce_cons_reduce_eq_reduce_cons] }, { rw [rcons_rcons_of_mul_ne_one hab ha (reduced_reduce _), rcons_eq_reduce_cons (show (⟨i, a * b⟩ : Σ i, M i).snd ≠ 1, from hab : _) (reduced_reduce _), reduce_cons_reduce_eq_reduce_cons] } end @[simp] lemma reduce_reduce_append_eq_reduce_append : ∀ (l₁ l₂ : list (Σ i, M i)), reduce (reduce l₁ ++ l₂) = reduce (l₁ ++ l₂) | [] l₂ := rfl | (a::l₁) l₂ := begin simp only [reduce, cons_append], split_ifs with ha ha, { exact reduce_reduce_append_eq_reduce_append _ _ }, { rw [← reduce_reduce_append_eq_reduce_append l₁ l₂], induction h : reduce l₁, { simp [rcons, rcons_eq_reduce_cons ha (reduced_reduce _)] }, { rw [← rcons_append, reduce_rcons _ ha] } } end @[simp] lemma reduce_append_reduce_eq_reduce_append : ∀ (l₁ l₂ : list (Σ i, M i)), reduce (l₁ ++ reduce l₂) = reduce (l₁ ++ l₂) | [] l₂ := by simp | (a::l₁) l₂ := by rw [cons_append, ← reduce_cons_reduce_eq_reduce_cons, reduce_append_reduce_eq_reduce_append, reduce_cons_reduce_eq_reduce_cons, cons_append] lemma reduced_iff_reduce_eq_self {l : list (Σ i, M i)} : reduced l ↔ reduce l = l := ⟨reduce_eq_self_of_reduced, λ h, h ▸ reduced_reduce l⟩ lemma reduced_append_overlap {l₁ l₂ l₃ : list (Σ i, M i)} (h₁ : reduced (l₁ ++ l₂)) (h₂ : reduced (l₂ ++ l₃)) (hn : l₂ ≠ []): reduced (l₁ ++ l₂ ++ l₃) := ⟨chain'.append_overlap h₁.1 h₂.1 hn, λ i hi, (mem_append.1 hi).elim (h₁.2 _) (λ hi, h₂.2 _ (mem_append_right _ hi))⟩ /-- `mul_aux` returns `reduce (l₁.reverse ++ l₂)` -/ @[simp] def mul_aux : Π (l₁ l₂ : list (Σ i, M i)), list (Σ i, M i) | [] l₂ := l₂ | (i::l₁) [] := reverse (i :: l₁) | (i::l₁) (j::l₂) := if hij : i.1 = j.1 then let c := i.2 * cast (congr_arg M hij).symm j.2 in if c = 1 then mul_aux l₁ l₂ else l₁.reverse_core (⟨i.1, c⟩::l₂) else l₁.reverse_core (i::j::l₂) local attribute [simp] reverse_core_eq @[simp] def mul_aux' : Π (l₁ l₂ : list (Σ i, M i)), list (Σ i, M i) | [] l₂ := l₂ | (i::l₁) [] := reverse (i :: l₁) | (i::l₁) (j::l₂) := if hij : i.1 = j.1 then let c := i.2 * cast (congr_arg M hij).symm j.2 in if c = 1 then mul_aux' l₁ l₂ else mul_aux' l₁ (⟨i.1, c⟩::l₂) else mul_aux' l₁ (i::j::l₂) lemma mul_aux'_eq_append : Π {l₁ l₂ : list (Σ i, M i)}, reduced (l₁.reverse ++ l₂) → mul_aux' l₁ l₂ = l₁.reverse ++ l₂ | [] l₂ h := rfl | (i::l₁) [] h := by simp | (i::l₁) (j::l₂) h := begin rw [mul_aux'], have hij : i.fst ≠ j.fst, { rw [reduced, chain'_split, ← reverse_cons, chain'_reverse, chain'_cons] at h, simp [flip] at h, tauto }, rw [dif_neg hij, mul_aux'_eq_append]; simp * at * end lemma mul_aux_eq_mul_aux' : Π {l₁ l₂ : list (Σ i, M i)} (h₁ : reduced l₁) (h₂ : reduced l₂), mul_aux l₁ l₂ = mul_aux' l₁ l₂ | [] l₂ _ _ := rfl | (i::l₁) [] _ _ := rfl | [i] (j::l₂) _ _ := begin unfold mul_aux mul_aux', split_ifs; simp end | (i::j::l₁) (k::l₂) h₁ h₂:= begin unfold mul_aux mul_aux', have hij : j.fst ≠ i.fst, by simp [reduced] at h₁; tauto, simp only [dif_neg hij], split_ifs, { rw mul_aux_eq_mul_aux' (reduced_of_reduced_cons h₁) (reduced_of_reduced_cons h₂) }, { cases i with i a, cases k with k b, dsimp only at h, subst h, rw [reverse_core_eq, ← mul_aux_eq_mul_aux' (reduced_of_reduced_cons h₁) (reduced_cons_of_reduced_cons h₂ h_1), mul_aux, dif_neg hij], simp }, { have : reduced (l₁.reverse ++ j :: i :: k :: l₂), { suffices : reduced ((j :: l₁).reverse ++ [i, k] ++ l₂), { simpa }, cases i with i a, cases j with j b, cases k with k c, have hc1 : c ≠ 1, from h₂.2 ⟨k, c⟩ (mem_cons_self _ _), have ha1 : a ≠ 1, from h₁.2 ⟨i, a⟩ (mem_cons_self _ _), refine reduced_append_overlap _ _ (cons_ne_nil _ _), { suffices : reduced (⟨k, c⟩ :: ⟨i, a⟩ :: ⟨j, b⟩ :: l₁), { rw [← reduced_reverse_iff], simpa }, exact reduced_cons_cons (ne.symm h) hc1 h₁ }, { suffices : reduced (⟨i, a⟩ :: ⟨k, c⟩ :: l₂), { simpa }, exact reduced_cons_cons h ha1 h₂ } }, rw [mul_aux'_eq_append this], simp } end @[simp] lemma mul_aux'_nil (l : list (Σ i, M i)) : mul_aux' l [] = l.reverse := by cases l; simp lemma mul_aux'_single : Π (l₁ l₂ : list (Σ i, M i)) (i : Σ i, M i), mul_aux' l₁ (mul_aux' l₂.reverse [i]) = mul_aux' (mul_aux' l₁ l₂).reverse [i] | [] l₂ i := by simp | (j::l₁) [] i := by simp | (⟨j, b⟩::l₁) (⟨k, c⟩::l₂) ⟨i, a⟩ := list.reverse_rec_on l₂ begin end (begin rintros l₂ ⟨m, d⟩ ih, simp at *, dsimp at *, split_ifs at *, end) lemma mul_aux'_cons : ∀ (l₁ l₂ : list (Σ i, M i)) (i : Σ i, M i), mul_aux' (rcons i l₁) l₂ = mul_aux' l₁ (rcons i l₂) | [] l₂ i := by simp [rcons]; admit | (j::l₁) [] i := begin simp [rcons, eq_comm], split_ifs, { refl }, end lemma mul_aux'_single : Π (l₁ l₂ : list (Σ i, M i)) (i : Σ i, M i), mul_aux' l₁ (mul_aux' [i] l₂) = mul_aux' (mul_aux' l₁ [i]).reverse l₂ | [] l₂ i := by simp | (j::l₁) [] i := by simp | (⟨j, b⟩::l₁) (⟨k, c⟩::l₂) ⟨i, a⟩ := begin rw [mul_aux', mul_aux'], dsimp, split_ifs, { simp, } end lemma mul_aux'_single : Π (l₁ l₂ : list (Σ i, M i)) (i : Σ i, M i), mul_aux' l₁ (mul_aux' l₂ [i]) = mul_aux' (mul_aux' l₁ l₂.reverse).reverse [i] | [] l₂ i := by simp | (j::l₁) [] i := by simp | (⟨j, b⟩::l₁) (⟨k, c⟩::l₂) ⟨i, a⟩ := list.reverse_rec_on l₂ @[simp] lemma mul_aux_nil (l : list (Σ i, M i)) : mul_aux l [] = l.reverse := by cases l; refl @[simp] lemma nil_mul_aux (l : list (Σ i, M i)) : mul_aux [] l = l := rfl lemma mul_aux_single_reverse : ∀ (l : list (Σ i, M i)) (i : Σ i, M i), mul_aux l [i] = mul_aux [i] l | [] i := by simp | (i::l) j := list.reverse_rec_on l (by simp [mul_aux, reverse_core_eq]; split_ifs; simp) _ lemma mul_aux_single : Π (l₁ l₂ : list (Σ i, M i)) (i : Σ i, M i), mul_aux l₁ (mul_aux l₂.reverse [i]) = mul_aux (mul_aux l₁ l₂).reverse [i] | [] l₂ i := by simp [mul_aux] | (j::l₁) [] i := by simp [mul_aux] | (j::l₁) (k::l₂) i := begin simp only [mul_aux], split_ifs, { rw ← mul_aux_single, sorry }, { simp [reverse_core_eq], } end lemma mul_aux_eq_reduce_append : ∀ {l₁ l₂: list (Σ i, M i)}, reduced l₁ → reduced l₂ → mul_aux l₁ l₂ = reduce (l₁.reverse ++ l₂) | [] l₂ := λ h₁ h₂, by clear_aux_decl; simp [mul_aux, reduce_eq_self_of_reduced, *] | (i::hd) [] := λ h₁ h₂, by rw [mul_aux, append_nil, reduce_eq_self_of_reduced (reduced_reverse h₁)] | (⟨i,a⟩::l₁) (⟨j,b⟩::l₂) := λ h₁ h₂, begin simp only [mul_aux], dsimp only, have ha : a ≠ 1, from h₁.2 ⟨i, a⟩ (by simp), have hb : b ≠ 1, from h₂.2 ⟨j, b⟩ (list.mem_cons_self _ _), rcases decidable.em (i = j) with ⟨rfl, hij⟩, { rw [dif_pos rfl, cast_eq], split_ifs, { have hrl₁ : reduced l₁, { exact reduced_of_reduced_cons h₁ }, have hrl₂ : reduced l₂, from reduced_of_reduced_cons h₂, rw [mul_aux_eq_reduce_append hrl₁ hrl₂, reverse_cons, append_assoc, cons_append, nil_append, ← reduce_append_reduce_eq_reduce_append _ (_ :: _), reduce_cons_cons_of_mul_eq_one ha hb h_1, reduce_append_reduce_eq_reduce_append] }, { have hrl₁ :reduced (l₁.reverse ++ [⟨i, a * b⟩]), { rw [← reduced_reverse_iff, reverse_append, reverse_reverse, reverse_singleton, singleton_append], exact reduced_cons_of_reduced_cons h₁ h_1 }, have hrl₂ :reduced ([⟨i, a * b⟩] ++ l₂), { rw [singleton_append], exact reduced_cons_of_reduced_cons h₂ h_1 }, simp only [reverse_cons, singleton_append, append_assoc, reverse_core_eq], rw [← reduce_append_reduce_eq_reduce_append, reduce_cons_cons_of_mul_ne_one ha h_1, reduce_append_reduce_eq_reduce_append, ← singleton_append, ← append_assoc], exact (reduce_eq_self_of_reduced (reduced_append_overlap hrl₁ hrl₂ (by simp))).symm } }, { suffices : reduce (l₁.reverse ++ [⟨i, a⟩, ⟨j, b⟩] ++ l₂) = l₁.reverse ++ [⟨i, a⟩, ⟨j, b⟩] ++ l₂, { simpa [eq_comm, dif_neg h, reverse_core_eq] }, have hrl₁ : reduced (l₁.reverse ++ [⟨i, a⟩, ⟨j, b⟩]), { rw [← reduced_reverse_iff], simp only [reverse_append, reverse_cons, cons_append, reverse_nil, nil_append, reverse_reverse], refine reduced_cons_cons (ne.symm h) hb h₁ }, have hrl₂ : reduced ([⟨i, a⟩, ⟨j, b⟩] ++ l₂), { simp only [cons_append, nil_append], refine reduced_cons_cons h ha h₂ }, exact reduce_eq_self_of_reduced (reduced_append_overlap hrl₁ hrl₂ (by simp)) } end protected def mul (l₁ l₂ : list (Σ i, M i)) : list (Σ i, M i) := mul_aux l₁.reverse l₂ lemma mul_eq_reduce_append {l₁ l₂ : list (Σ i, M i)} (h₁ : reduced l₁) (h₂ : reduced l₂) : coprod.pre.mul l₁ l₂ = reduce (l₁ ++ l₂) := by rw [coprod.pre.mul, mul_aux_eq_reduce_append (reduced_reverse h₁) h₂, reverse_reverse] lemma reduced_mul {l₁ l₂ : list (Σ i, M i)} (h₁ : reduced l₁) (h₂ : reduced l₂) : reduced (coprod.pre.mul l₁ l₂) := (mul_eq_reduce_append h₁ h₂).symm ▸ reduced_reduce _ protected lemma mul_assoc {l₁ l₂ l₃ : list (Σ i, M i)} (h₁ : reduced l₁) (h₂ : reduced l₂) (h₃ : reduced l₃) : pre.mul (pre.mul l₁ l₂) l₃ = pre.mul l₁ (pre.mul l₂ l₃) := begin rw [mul_eq_reduce_append (reduced_mul h₁ h₂) h₃, mul_eq_reduce_append h₁ h₂, mul_eq_reduce_append h₂ h₃, mul_eq_reduce_append h₁ (reduced_reduce _)], simp [append_assoc] end protected lemma one_mul (l : list (Σ i, M i)) : pre.mul [] l = l := rfl protected lemma mul_one {l : list (Σ i, M i)} (h : reduced l) : pre.mul l [] = l := by rw [mul_eq_reduce_append h reduced_nil, append_nil, reduce_eq_self_of_reduced h] section lift variable (f : Π i, M i →* N) def lift (l : list (Σ i, M i)) : N := l.foldl (λ n i, n * f i.1 i.2) 1 lemma lift_eq_map_prod (l : list (Σ i, M i)) : lift f l = (l.map (λ i : Σ i, M i, f i.1 i.2)).prod := begin rw [lift, ← one_mul (l.map _).prod], generalize h : (1 : N) = n, clear h, induction l with i l ih generalizing n, { simp }, { rw [foldl_cons, ih, map_cons, prod_cons, mul_assoc] } end lemma map_prod_mul_aux : ∀ (l₁ l₂ : list (Σ i, M i)), ((mul_aux l₁ l₂).map (λ i : Σ i, M i, f i.1 i.2)).prod = (l₁.reverse.map (λ i : Σ i, M i, f i.1 i.2)).prod * (l₂.map (λ i : Σ i, M i, f i.1 i.2)).prod | [] l₂ := by simp [mul_aux] | (i::l₁) [] := by simp [mul_aux] | (⟨i,a⟩::l₁) (⟨j,b⟩::l₂) := begin rw [mul_aux], split_ifs, { dsimp only at h, subst h, rw [cast_eq] at h_1, simp only [prod_nil, mul_one, reverse_cons, map, prod_cons, prod_append, map_append, map_reverse, mul_assoc], rw [← mul_assoc (f _ _), ← monoid_hom.map_mul, h_1], simp [map_prod_mul_aux] }, { dsimp only at h, subst h, simp [reverse_core_eq, mul_assoc] }, { simp [reverse_core_eq, mul_assoc] } end lemma lift_mul (l₁ l₂ : list (Σ i, M i)) : lift f (pre.mul l₁ l₂) = lift f l₁ * lift f l₂ := by simp [pre.mul, lift_eq_map_prod, map_prod_mul_aux] end lift section of variables (i : ι) (a b : M i) def of (i : ι) (a : M i) : list (Σ i, M i) := if a = 1 then [] else [⟨i, a⟩] lemma reduced_of (i : ι) (a : M i) : reduced (of i a) := begin rw of, split_ifs, { simp }, { exact reduced_singleton h } end lemma of_one : of i (1 : M i) = [] := if_pos rfl lemma of_mul : of i (a * b) = pre.mul (of i a) (of i b) := begin simp only [of, pre.mul, mul_aux], split_ifs; simp [mul_aux, *, reverse_core_eq] at * end lemma lift_of (f : Π i, M i →* N) : lift f (of i a) = f i a := begin simp [lift, of], split_ifs; simp * end end of section embedding variables {κ : Type*} {O : κ → Type*} [Π i, monoid (O i)] variables (f : ι → κ) (hf : injective f) (g : Π i, M i →* O (f i)) (hg : ∀ i a, g i a = 1 → a = 1) protected def embedding (l : list (Σ i, M i)) : list Σ i, O i := l.map (λ i, ⟨f i.1, g i.1 i.2⟩) include hf hg variables [decidable_eq κ] [Π i, decidable_eq (O i)] lemma embedding_mul_aux : ∀ (l₁ l₂ : list (Σ i, M i)), pre.embedding f g (mul_aux l₁ l₂) = mul_aux (pre.embedding f g l₁) (pre.embedding f g l₂) | [] l₂ := rfl | (i::l₁) [] := by simp [pre.embedding, mul_aux] | (⟨i,a⟩::l₁) (⟨j, b⟩::l₂) := begin rw [mul_aux], split_ifs, { dsimp only at h, subst h, have : g i a * g i b = 1, { erw [← monoid_hom.map_mul, h_1, monoid_hom.map_one] }, rw [embedding_mul_aux], simp [pre.embedding, mul_aux, this] }, { dsimp only at h, subst h, have : g i a * g i b ≠ 1, { rw [← monoid_hom.map_mul], exact mt (hg i (a * b)) h_1 }, simp [pre.embedding, mul_aux, this, reverse_core_eq] }, { dsimp only at h, simp [pre.embedding, mul_aux, reverse_core_eq, hf.eq_iff, h] } end lemma embedding_mul {l₁ l₂ : list (Σ i, M i)} : pre.embedding f g (pre.mul l₁ l₂) = pre.mul (pre.embedding f g l₁) (pre.embedding f g l₂) := begin simp [pre.mul, embedding_mul_aux _ hf _ hg], simp [pre.embedding] end lemma reduced_embedding {l : list (Σ i, M i)} (hl : reduced l) : reduced (pre.embedding f g l) := ⟨by simp [pre.embedding, list.chain'_map, hf.eq_iff, hl.1], begin simp only [pre.embedding, mem_map, and_imp, sigma.forall], rintros i a ⟨⟨j, b⟩, hjb, rfl, h⟩, rw [heq_iff_eq] at h, subst a, exact mt (hg j b) (hl.2 _ hjb) end⟩ end embedding section inv variable [Π i, decidable_eq (G i)] protected def inv (l : list (Σ i, G i)) : list (Σ i, G i) := list.reverse (l.map (λ i : Σ i, G i, ⟨i.1, i.2⁻¹⟩)) lemma reduced_inv (l : list (Σ i, G i)) (hl : reduced l) : reduced (pre.inv l) := ⟨list.chain'_reverse.2 ((list.chain'_map _).2 $ by { convert hl.1, simp [function.funext_iff, eq_comm, flip] }), begin rintros ⟨i, a⟩ hi, rw [pre.inv, mem_reverse, mem_map] at hi, rcases hi with ⟨⟨j, b⟩, hjl, h⟩, simp only at h, cases h with hij hba, subst hij, convert inv_ne_one.2 (hl.2 ⟨j, b⟩ hjl), simp * at * end⟩ protected lemma mul_left_inv_aux : ∀ l : list (Σ i, G i), mul_aux (l.map (λ i : Σ i, G i, ⟨i.1, i.2⁻¹⟩)) l = [] | [] := rfl | (i::l) := by simp [mul_aux, mul_left_inv_aux l] protected lemma mul_left_inv (l : list (Σ i, G i)) : pre.mul (pre.inv l) l = [] := by rw [pre.mul, pre.inv, reverse_reverse, pre.mul_left_inv_aux] end inv end coprod.pre
#include <bsplines/BSplinePose.hpp> #include <sm/assert_macros.hpp> // boost::tie #include <boost/tuple/tuple.hpp> #include <sm/kinematics/transformations.hpp> using namespace sm::kinematics; using namespace bsplines; BSplinePose::BSplinePose(int splineOrder, const RotationalKinematics::Ptr& rotationalKinematics) : BSpline(splineOrder), rotation_(rotationalKinematics) {} BSplinePose::~BSplinePose() {} Eigen::Matrix4d BSplinePose::transformation(double tk) const { return curveValueToTransformation(eval(tk)); } Eigen::Matrix4d BSplinePose::transformationAndJacobian(double tk, Eigen::MatrixXd* J, Eigen::VectorXi* coefficientIndices) const { Eigen::MatrixXd JS; Eigen::VectorXd p; p = evalDAndJacobian(tk, 0, &JS, coefficientIndices); Eigen::MatrixXd JT; Eigen::Matrix4d T = curveValueToTransformationAndJacobian(p, &JT); if (J) { *J = JT * JS; } return T; } Eigen::Matrix3d BSplinePose::orientationAndJacobian(double tk, Eigen::MatrixXd* J, Eigen::VectorXi* coefficientIndices) const { Eigen::Matrix3d C; Eigen::MatrixXd JS; Eigen::VectorXd p; p = evalDAndJacobian(tk, 0, &JS, coefficientIndices); Eigen::Matrix3d S; C = rotation_->parametersToRotationMatrix(p.tail<3>(), &S); Eigen::MatrixXd JO = Eigen::MatrixXd::Zero(3, 6); JO.block(0, 3, 3, 3) = S; if (J) { *J = JO * JS; } return C; } Eigen::Matrix3d BSplinePose::inverseOrientationAndJacobian(double tk, Eigen::MatrixXd* J, Eigen::VectorXi* coefficientIndices) const { Eigen::Matrix3d C; Eigen::MatrixXd JS; Eigen::VectorXd p; p = evalDAndJacobian(tk, 0, &JS, coefficientIndices); Eigen::Matrix3d S; C = rotation_->parametersToRotationMatrix(p.tail<3>(), &S).transpose(); Eigen::MatrixXd JO = Eigen::MatrixXd::Zero(3, 6); JO.block(0, 3, 3, 3) = S; if (J) { *J = -C * JO * JS; } return C; } Eigen::Matrix4d BSplinePose::inverseTransformationAndJacobian(double tk, Eigen::MatrixXd* J, Eigen::VectorXi* coefficientIndices) const { // std::cout << __FUNCTION__ << "()\n"; // ASRL_THROW(std::runtime_error,"Not Implemented"); Eigen::MatrixXd JS; Eigen::VectorXd p; p = evalDAndJacobian(tk, 0, &JS, coefficientIndices); Eigen::MatrixXd JT; Eigen::Matrix4d T = curveValueToTransformationAndJacobian(p, &JT); // Invert the transformation. T.topLeftCorner<3, 3>().transposeInPlace(); T.topRightCorner<3, 1>() = (-T.topLeftCorner<3, 3>() * T.topRightCorner<3, 1>()).eval(); if (J) { // The "box times" is the linearized transformation way of inverting the jacobian. *J = -sm::kinematics::boxTimes(T) * JT * JS; } if (coefficientIndices) { *coefficientIndices = localCoefficientVectorIndices(tk); } return T; } Eigen::Matrix4d BSplinePose::inverseTransformation(double tk) const { Eigen::Matrix4d T = curveValueToTransformation(eval(tk)); T.topLeftCorner<3, 3>().transposeInPlace(); T.topRightCorner<3, 1>() = (-T.topLeftCorner<3, 3>() * T.topRightCorner<3, 1>()).eval(); return T; } Eigen::Vector4d BSplinePose::transformVectorAndJacobian(double tk, const Eigen::Vector4d& v_tk, Eigen::MatrixXd* J, Eigen::VectorXi* coefficientIndices) const { Eigen::MatrixXd JT; Eigen::Matrix4d T_n_vk = transformationAndJacobian(tk, &JT, coefficientIndices); Eigen::Vector4d v_n = T_n_vk * v_tk; if (J) { *J = sm::kinematics::boxMinus(v_n) * JT; } return v_n; } // Position at certain time. p = x[:3] Eigen::Vector3d BSplinePose::position(double tk) const { return eval(tk).head<3>(); } // Orientation at certain time, phi = x[3:], R = Exp(phi) Eigen::Matrix3d BSplinePose::orientation(double tk) const { return rotation_->parametersToRotationMatrix(eval(tk).tail<3>()); } Eigen::Matrix3d BSplinePose::inverseOrientation(double tk) const { return rotation_->parametersToRotationMatrix(eval(tk).tail<3>()).transpose(); } // v_W = dp/dt Eigen::Vector3d BSplinePose::linearVelocity(double tk) const { return evalD(tk, 1).head<3>(); } // v_B = R_BW * v_W = R_WB^T * dp/dt Eigen::Vector3d BSplinePose::linearVelocityBodyFrame(double tk) const { Eigen::VectorXd r = evalD(tk, 0); Eigen::Matrix3d C_wb = rotation_->parametersToRotationMatrix(r.tail<3>()); return C_wb.transpose() * evalD(tk, 1).head<3>(); } // a_W = dp^2/dt^2 Eigen::Vector3d BSplinePose::linearAcceleration(double tk) const { return evalD(tk, 2).head<3>(); } // a_B = R_BW * a_W = R_WB^T * dp^2/dt^2 Eigen::Vector3d BSplinePose::linearAccelerationBodyFrame(double tk) const { Eigen::VectorXd r = evalD(tk, 0); Eigen::Matrix3d C_wb = rotation_->parametersToRotationMatrix(r.tail<3>()); return C_wb.transpose() * evalD(tk, 2).head<3>(); } Eigen::Vector3d BSplinePose::linearAccelerationAndJacobian(double tk, Eigen::MatrixXd* J, Eigen::VectorXi* coefficientIndices) const { Eigen::Vector3d a = evalDAndJacobian(tk, 2, J, coefficientIndices).head<3>(); if (J) { J->conservativeResize(3, J->cols()); } return a; } // \omega_w_{b,w} (angular velocity of the body frame as seen from the world frame, expressed in the world frame) Eigen::Vector3d BSplinePose::angularVelocity(double tk) const { Eigen::Vector3d omega; Eigen::VectorXd r = evalD(tk, 0); Eigen::VectorXd v = evalD(tk, 1); // \omega = S(\bar \theta) \dot \theta omega = -rotation_->parametersToSMatrix(r.tail<3>()) * v.tail<3>(); return omega; } // \omega_b_{w,b} (angular velocity of the world frame as seen from the body frame, expressed in the body frame) Eigen::Vector3d BSplinePose::angularVelocityBodyFrame(double tk) const { Eigen::Vector3d omega; Eigen::VectorXd r = evalD(tk, 0); Eigen::VectorXd v = evalD(tk, 1); Eigen::Matrix3d S; Eigen::Matrix3d C_w_b = rotation_->parametersToRotationMatrix(r.tail<3>(), &S); // \omega = S(\bar \theta) \dot \theta omega = -C_w_b.transpose() * S * v.tail<3>(); return omega; } // \omega_b_{w,b} (angular velocity of the world frame as seen from the body frame, expressed in the body frame) Eigen::Vector3d BSplinePose::angularVelocityBodyFrameAndJacobian(double tk, Eigen::MatrixXd* J, Eigen::VectorXi* coefficientIndices) const { Eigen::Vector3d omega; Eigen::Vector3d p; Eigen::Vector3d pdot; Eigen::MatrixXd Jp; Eigen::MatrixXd Jpdot; p = evalDAndJacobian(tk, 0, &Jp, NULL).tail<3>(); pdot = evalDAndJacobian(tk, 1, &Jpdot, coefficientIndices).tail<3>(); Eigen::MatrixXd Jr; Eigen::Matrix3d C_w_b = inverseOrientationAndJacobian(tk, &Jr, NULL); // Rearrange the spline jacobian matrices. Now Jpdot is the // jacobian of p wrt the spline coefficients stacked on top // of the jacobian of pdot wrt the spline coefficients. Jpdot.block(0, 0, 3, Jpdot.cols()) = Jp.block(3, 0, 3, Jp.cols()); // std::cout << "Jpdot\n" << Jpdot << std::endl; Eigen::Matrix<double, 3, 6> Jo; omega = -C_w_b * rotation_->angularVelocityAndJacobian(p, pdot, &Jo); Jo = (-C_w_b * Jo).eval(); // std::cout << "Jo:\n" << Jo << std::endl; if (J) { *J = Jo * Jpdot + sm::kinematics::crossMx(omega) * Jr; } return omega; } // \omega_w_{b,w} (angular velocity of the body frame as seen from the world frame, expressed in the world frame) Eigen::Vector3d BSplinePose::angularVelocityAndJacobian(double tk, Eigen::MatrixXd* J, Eigen::VectorXi* coefficientIndices) const { Eigen::Vector3d omega; Eigen::Vector3d p; Eigen::Vector3d pdot; Eigen::MatrixXd Jp; Eigen::MatrixXd Jpdot; p = evalDAndJacobian(tk, 0, &Jp, nullptr).tail<3>(); pdot = evalDAndJacobian(tk, 1, &Jpdot, coefficientIndices).tail<3>(); // Rearrange the spline jacobian matrices. Now Jpdot is the // jacobian of p wrt the spline coefficients stacked on top // of the jacobian of pdot wrt the spline coefficients. Jpdot.block(0, 0, 3, Jpdot.cols()) = Jp.block(3, 0, 3, Jp.cols()); // std::cout << "Jpdot\n" << Jpdot << std::endl; Eigen::Matrix<double, 3, 6> Jo; // FixMe by CC: seems like lost the minus "-"? omega = rotation_->angularVelocityAndJacobian(p, pdot, &Jo); // std::cout << "Jo:\n" << Jo << std::endl; if (J) { *J = Jo * Jpdot; } return omega; } // \omega_dot_b_{w,b} (angular acceleration of the world frame as seen from the body frame, expressed in the body frame) Eigen::Vector3d BSplinePose::angularAccelerationBodyFrame(double tk) const { Eigen::Vector3d omega; Eigen::VectorXd r = evalD(tk, 0); Eigen::VectorXd v = evalD(tk, 2); Eigen::Matrix3d S; Eigen::Matrix3d C_w_b = rotation_->parametersToRotationMatrix(r.tail<3>(), &S); // \omega = S(\bar \theta) \dot \theta omega = -C_w_b.transpose() * S * v.tail<3>(); return omega; } // \omega_dot_b_{w,b} (angular acceleration of the world frame as seen from the body frame, expressed in the body frame) Eigen::Vector3d BSplinePose::angularAccelerationBodyFrameAndJacobian(double tk, Eigen::MatrixXd* J, Eigen::VectorXi* coefficientIndices) const { Eigen::Vector3d omega; Eigen::Vector3d p; Eigen::Vector3d pdot; Eigen::MatrixXd Jp; Eigen::MatrixXd Jpdot; p = evalDAndJacobian(tk, 0, &Jp, NULL).tail<3>(); pdot = evalDAndJacobian(tk, 2, &Jpdot, coefficientIndices).tail<3>(); Eigen::MatrixXd Jr; Eigen::Matrix3d C_w_b = inverseOrientationAndJacobian(tk, &Jr, NULL); // Rearrange the spline jacobian matrices. Now Jpdot is the // jacobian of p wrt the spline coefficients stacked on top // of the jacobian of pdot wrt the spline coefficients. Jpdot.block(0, 0, 3, Jpdot.cols()) = Jp.block(3, 0, 3, Jp.cols()); Eigen::Matrix<double, 3, 6> Jo; omega = -C_w_b * rotation_->angularVelocityAndJacobian(p, pdot, &Jo); Jo = (-C_w_b * Jo).eval(); if (J) { *J = Jo * Jpdot + sm::kinematics::crossMx(omega) * Jr; } return omega; } // \omega_dot_w_{b,w} (angular acceleration of the body frame as seen from the world frame, expressed in the world // frame) Eigen::Vector3d BSplinePose::angularAccelerationAndJacobian(double tk, Eigen::MatrixXd* J, Eigen::VectorXi* coefficientIndices) const { Eigen::Vector3d omega; Eigen::Vector3d p; Eigen::Vector3d pdot; Eigen::MatrixXd Jp; Eigen::MatrixXd Jpdot; p = evalDAndJacobian(tk, 0, &Jp, NULL).tail<3>(); pdot = evalDAndJacobian(tk, 2, &Jpdot, coefficientIndices).tail<3>(); // Rearrange the spline jacobian matrices. Now Jpdot is the // jacobian of p wrt the spline coefficients stacked on top // of the jacobian of pdot wrt the spline coefficients. Jpdot.block(0, 0, 3, Jpdot.cols()) = Jp.block(3, 0, 3, Jp.cols()); Eigen::Matrix<double, 3, 6> Jo; // FixMe by CC: seems like lost the minus "-"? omega = rotation_->angularVelocityAndJacobian(p, pdot, &Jo); if (J) { *J = Jo * Jpdot; } return omega; } void BSplinePose::initPoseSpline(double t0, double t1, const Eigen::Matrix4d& T_n_t0, const Eigen::Matrix4d& T_n_t1) { Eigen::VectorXd v0 = transformationToCurveValue(T_n_t0); Eigen::VectorXd v1 = transformationToCurveValue(T_n_t1); initSpline(t0, t1, v0, v1); } void BSplinePose::initPoseSpline2(const Eigen::VectorXd& times, const Eigen::Matrix<double, 6, Eigen::Dynamic>& poses, int numSegments, double lambda) { initSpline2(times, poses, numSegments, lambda); } void BSplinePose::initPoseSpline3(const Eigen::VectorXd& times, const Eigen::Matrix<double, 6, Eigen::Dynamic>& poses, int numSegments, double lambda) { initSpline3(times, poses, numSegments, lambda); } void BSplinePose::initPoseSplineSparse(const Eigen::VectorXd& times, const Eigen::Matrix<double, 6, Eigen::Dynamic>& poses, int numSegments, double lambda) { initSplineSparse(times, poses, numSegments, lambda); } void BSplinePose::initPoseSplineSparseKnots(const Eigen::VectorXd& times, const Eigen::MatrixXd& interpolationPoints, const Eigen::VectorXd& knots, double lambda) { initSplineSparseKnots(times, interpolationPoints, knots, lambda); } void BSplinePose::addPoseSegment(double tk, const Eigen::Matrix4d& T_n_tk) { Eigen::VectorXd vk = transformationToCurveValue(T_n_tk); addCurveSegment(tk, vk); } void BSplinePose::addPoseSegment2(double tk, const Eigen::Matrix4d& T_n_tk, double lambda) { Eigen::VectorXd vk = transformationToCurveValue(T_n_tk); addCurveSegment2(tk, vk, lambda); } Eigen::Matrix4d BSplinePose::curveValueToTransformation(const Eigen::VectorXd& c) const { SM_ASSERT_EQ_DBG(Exception, c.size(), 6, "The curve value is an unexpected size!"); Eigen::Matrix4d T = Eigen::Matrix4d::Identity(); T.topLeftCorner<3, 3>() = rotation_->parametersToRotationMatrix(c.tail<3>()); T.topRightCorner<3, 1>() = c.head<3>(); return T; } Eigen::VectorXd BSplinePose::transformationToCurveValue(const Eigen::Matrix4d& T) const { Eigen::VectorXd c(6); c.head<3>() = T.topRightCorner<3, 1>(); c.tail<3>() = rotation_->rotationMatrixToParameters(T.topLeftCorner<3, 3>()); return c; } RotationalKinematics::Ptr BSplinePose::rotation() const { return rotation_; } Eigen::Matrix4d BSplinePose::curveValueToTransformationAndJacobian(const Eigen::VectorXd& p, Eigen::MatrixXd* J) const { SM_ASSERT_EQ_DBG(Exception, p.size(), 6, "The curve value is an unexpected size!"); Eigen::Matrix4d T = Eigen::Matrix4d::Identity(); Eigen::Matrix3d S; T.topLeftCorner<3, 3>() = rotation_->parametersToRotationMatrix(p.tail<3>(), &S); T.topRightCorner<3, 1>() = p.head<3>(); if (J) { *J = Eigen::MatrixXd::Identity(6, 6); J->topRightCorner<3, 3>() = -crossMx(p.head<3>()) * S; J->bottomRightCorner<3, 3>() = S; } return T; }
September’s Free Book of the Month is here. Get yours now. The story of Joseph offers a vivid picture of redemption, reconciliation, and forgiveness. But it’s so much more than that. The Joseph story is sometimes described by scholars as ‘the Joseph cycle’. This is a helpful term. In Genesis, there are similarly ‘cycles’ of stories about Abraham (Gen. 12–25) and Jacob (Gen. 26–36); and in other parts of the Bible, there is a ‘David Cycle’ for example (1 Sam. 16–1 Kgs. 2) and one about Elijah (1 Kgs. 17–2 Kgs. 2). A ‘cycle’ in this sense is a series of connected and continuous narratives about a central figure, in which the component parts nevertheless have their own separate coherence and integrity—like episodes in a TV drama series perhaps or like the individual parts in a ‘cycle’ of Medieval mystery plays. If you’ve ever wanted to take a closer look at this classic Bible story, Living the Dream provides easily digestible chunks to help you get the most from it. Each chapter of the book often aligns with a single chapter of the story of Joseph. While you’re at it, add another book from the same collection for just $0.99! This month only, when you get Living the Dream for free, you can also snag God, Pharaoh and Moses for less than a buck. In God, Pharaoh and Moses, William Ford tackles questions like: why does God send a series of plagues to Egypt? How do we understand the hardening of Pharaoh’s heart? 1. Get your free book. 2. Add another for $0.99. 3. Enter to win the entire 9-volume Old Testament Studies Collection.
\DIFaddbegin \clearpage \subsection{\DIFadd{The Leather merchant}} \label{sec:appendix:moj:leather} \DIFadd{Viking leather workers made shoes for those who could afford them. To own a pair of shoes was a status symbol and showed that you had wealth. They also made bags, belts and scabbards for swords. } \begin{display}{The leather stall} \label{fig:appendix:moj:places:leather:stall} \DIFadd{\includegraphics[width=0.65\columnwidth]{img/Jorvik/places/leather stall} }\end{display} \begin{display}{The leather stall with a background and a merchant} \label{fig:appendix:moj:places:leather} \DIFadd{\includegraphics[width=0.65\columnwidth]{img/Jorvik/places/leather} }\end{display} \clearpage \begin{table}[ht!] \centering \begin{tabular}{ p{3cm} c }\toprule \textbf{\DIFaddFL{Name:}} & \multirow{5}{*}{\includegraphics[height=30mm]{img/Jorvik/objects/leather/sheath}}\\ \DIFaddFL{Sheath }& \\ \textbf{\DIFaddFL{Price:}} & \\ \DIFaddFL{14.11 silver. }& \\ \textbf{\DIFaddFL{Description:}} & \\ \multicolumn{2}{p{12cm}}{When a sword was not in use it was kept safe in its sheath, called a scabbard. They were sometimes lined with fleece or fabric to further protect the blade}\\ \bottomrule \end{tabular} \end{table} \begin{table}[ht!] \centering \begin{tabular}{ p{3cm} c }\toprule \textbf{\DIFaddFL{Name:}} & \multirow{5}{*}{\includegraphics[height=30mm]{img/Jorvik/objects/leather/drinking bottle}}\\ \DIFaddFL{Drinking Bottle }& \\ \textbf{\DIFaddFL{Price:}} & \\ \DIFaddFL{11.03 silver. }& \\ \textbf{\DIFaddFL{Description:}} & \\ \multicolumn{2}{p{12cm}}{A bottle, or costrel, used for storing and serving drinks could be made out of leather, wood or clay.}\\ \bottomrule \end{tabular} \end{table} \begin{table}[ht!] \centering \begin{tabular}{ p{3cm} c }\toprule \textbf{\DIFaddFL{Name:}} & \multirow{5}{*}{\includegraphics[height=30mm]{img/Jorvik/objects/leather/vambraces}}\\ \DIFaddFL{Vambraces }& \\ \textbf{\DIFaddFL{Price:}} & \\ \DIFaddFL{22.05 silver. }& \\ \textbf{\DIFaddFL{Description:}} & \\ \multicolumn{2}{p{12cm}}{Vikings often wore chainmail in battle to protect their body in battle but they needed leather vambraces to give protection to their arms.}\\ \bottomrule \end{tabular} \end{table} \begin{table}[ht!] \centering \begin{tabular}{ p{3cm} c }\toprule \textbf{\DIFaddFL{Name:}} & \multirow{5}{*}{\includegraphics[height=30mm]{img/Jorvik/objects/leather/thong}}\\ \DIFaddFL{Thong }& \\ \textbf{\DIFaddFL{Price:}} & \\ \DIFaddFL{2.21 silver. }& \\ \textbf{\DIFaddFL{Description:}} & \\ \multicolumn{2}{p{12cm}}{Leather thongs could be used as a belt or to attach skates to shoes. They were very useful to have around the home.}\\ \bottomrule \end{tabular} \end{table} \begin{table}[ht!] \centering \begin{tabular}{ p{3cm} c }\toprule \textbf{\DIFaddFL{Name:}} & \multirow{5}{*}{\includegraphics[height=30mm]{img/Jorvik/objects/leather/shoes}}\\ \DIFaddFL{Shoes }& \\ \textbf{\DIFaddFL{Price:}} & \\ \DIFaddFL{26.46 silver. }& \\ \textbf{\DIFaddFL{Description:}} & \\ \multicolumn{2}{p{12cm}}{Norse shoes may not have lasted very long so they either underwent many repairs or were replaced regularly. }\\ \bottomrule \end{tabular} \end{table} \begin{table}[ht!] \centering \begin{tabular}{ p{3cm} c }\toprule \textbf{\DIFaddFL{Name:}} & \multirow{5}{*}{\includegraphics[height=30mm]{img/Jorvik/objects/leather/belt}}\\ \DIFaddFL{Belt }& \\ \textbf{\DIFaddFL{Price:}} & \\ \DIFaddFL{8.82 silver. }& \\ \textbf{\DIFaddFL{Description:}} & \\ \multicolumn{2}{p{12cm}}{Belts were made to be about 2cm wide, much narrower than modern belts. Every part of the belt might be decorated, the Coppergate dig have unearthed examples of both decorated and non-decorated belts and buckles.}\\ \bottomrule \end{tabular} \end{table} \begin{table}[ht!] \centering \begin{tabular}{ p{3cm} c }\toprule \textbf{\DIFaddFL{Name:}} & \multirow{5}{*}{\includegraphics[height=30mm]{img/Jorvik/objects/leather/bag}}\\ \DIFaddFL{Bag }& \\ \textbf{\DIFaddFL{Price:}} & \\ \DIFaddFL{17.64 silver. }& \\ \textbf{\DIFaddFL{Description:}} & \\ \multicolumn{2}{p{12cm}}{Viking clothing had no pockets so they used leather bags to carry coins, keys, a clean cloth and other small, useful items. The pouches would hang from their belts.}\\ \bottomrule \end{tabular} \end{table} \DIFaddend
= = = Demographics = = =
import Data.Vect total allLengths' : Vect len String -> Vect len Nat allLengths' [] = [] allLengths' (word :: words) = length word :: allLengths' words
lemma poly_cancel_eq_conv: fixes x :: "'a::field" shows "x = 0 \<Longrightarrow> a \<noteq> 0 \<Longrightarrow> y = 0 \<longleftrightarrow> a * y - b * x = 0"
Require Import Coq.Lists.List. Import ListNotations. Require Import Coq.Classes.Morphisms. Require Import Coq.Classes.RelationClasses. Require Import Coq.Logic.PropExtensionality. Require Import Coq.Logic.FunctionalExtensionality. Require Import coqutil.Tactics.destr. Definition set(A: Type) := A -> Prop. Definition elem_of{K: Type}(k: K)(ks: K -> Prop): Prop := ks k. Notation "x '\in' s" := (elem_of x s) (at level 70, no associativity). Section PropSet. Local Set Default Proof Using "All". Context {E: Type}. (* basic definitions (which require knowing that set E = E -> Prop *) Definition empty_set: set E := fun _ => False. Definition singleton_set: E -> set E := eq. Definition union: set E -> set E -> set E := fun s1 s2 x => x \in s1 \/ x \in s2. Definition intersect: set E -> set E -> set E := fun s1 s2 x => x \in s1 /\ x \in s2. Definition diff: set E -> set E -> set E := fun s1 s2 x => x \in s1 /\ ~ x \in s2. Definition of_list(l: list E): set E := fun e => List.In e l. (* derived definitions (based on basic definitions, without knowing that set E = E -> Prop) *) Definition add(s: set E)(e: E) := union (singleton_set e) s. Definition remove(s: set E)(e: E) := diff s (singleton_set e). Definition subset(s1 s2: set E) := forall x, x \in s1 -> x \in s2. Definition sameset(s1 s2: set E) := subset s1 s2 /\ subset s2 s1. Definition disjoint(s1 s2: set E) := forall x, (~ x \in s1) \/ (~ x \in s2). Definition of_option(o: option E) := match o with | Some e => singleton_set e | None => empty_set end. End PropSet. #[global] Hint Unfold elem_of empty_set singleton_set union intersect diff of_list : unf_basic_set_defs. #[global] Hint Unfold add remove subset sameset disjoint of_option : unf_derived_set_defs. Section PropSetLemmas. Local Set Default Proof Using "All". Context {E: Type}. Lemma of_list_cons: forall (e: E) (l: list E), sameset (of_list (e :: l)) (add (of_list l) e). Proof. intros. repeat autounfold with unf_derived_set_defs. simpl. auto. Qed. Lemma of_list_app: forall (l1 l2: list E), sameset (of_list (l1 ++ l2)) (union (of_list l1) (of_list l2)). Proof. induction l1; repeat autounfold with unf_basic_set_defs unf_derived_set_defs in *; intros; simpl; [intuition idtac|]. setoid_rewrite in_app_iff in IHl1. setoid_rewrite in_app_iff. intuition idtac. Qed. Lemma disjoint_diff_l: forall (A B C: set E), disjoint A C -> disjoint (diff A B) C. Proof. intros. unfold set, disjoint, diff in *. firstorder idtac. Qed. Lemma disjoint_diff_r: forall (A B C: set E), disjoint C A -> disjoint C (diff A B). Proof. intros. unfold set, disjoint, diff in *. firstorder idtac. Qed. Lemma subset_empty_l (s : set E) : subset empty_set s. Proof. firstorder idtac. Qed. Lemma subset_refl: forall (s: set E), subset s s. Proof. intros s x. exact id. Qed. Lemma union_empty_l (s : set E) : sameset (union empty_set s) s. Proof. firstorder idtac. Qed. Lemma union_empty_r (s : set E) : sameset (union s empty_set) s. Proof. firstorder idtac. Qed. Lemma disjoint_empty_l (s : set E) : disjoint empty_set s. Proof. firstorder idtac. Qed. Lemma disjoint_empty_r (s : set E) : disjoint s empty_set. Proof. firstorder idtac. Qed. Lemma union_comm (s1 s2 : set E) : sameset (union s1 s2) (union s2 s1). Proof. firstorder idtac. Qed. Lemma union_assoc (s1 s2 s3 : set E) : sameset (union s1 (union s2 s3)) (union (union s1 s2) s3). Proof. firstorder idtac. Qed. Lemma of_list_nil : sameset (@of_list E []) empty_set. Proof. firstorder idtac. Qed. Lemma of_list_singleton x: sameset (@of_list E [x]) (singleton_set x). Proof. firstorder idtac. Qed. Lemma singleton_set_eq_of_list: forall (x: E), singleton_set x = of_list [x]. Proof. unfold singleton_set, of_list, elem_of, In. intros. extensionality y. apply propositional_extensionality. intuition idtac. Qed. Lemma in_union_l: forall x (s1 s2: set E), x \in s1 -> x \in (union s1 s2). Proof. unfold union, elem_of. auto. Qed. Lemma in_union_r: forall x (s1 s2: set E), x \in s2 -> x \in (union s1 s2). Proof. unfold union, elem_of. auto. Qed. Lemma in_of_list: forall x (l: list E), List.In x l -> x \in (of_list l). Proof. unfold of_list, elem_of. auto. Qed. Lemma in_singleton_set: forall (x: E), x \in singleton_set x. Proof. unfold elem_of, singleton_set. intros. reflexivity. Qed. Lemma sameset_iff (s1 s2 : set E) : sameset s1 s2 <-> (forall e, s1 e <-> s2 e). Proof. firstorder idtac. Qed. Lemma add_union_singleton (x : E) s : add s x = union (singleton_set x) s. Proof. firstorder idtac. Qed. Lemma not_union_iff (s1 s2 : set E) x : ~ union s1 s2 x <-> ~ s1 x /\ ~ s2 x. Proof. firstorder idtac. Qed. Lemma disjoint_cons (s : set E) x l : disjoint s (of_list (x :: l)) -> disjoint s (of_list l) /\ disjoint s (singleton_set x). Proof. firstorder idtac. Qed. Lemma disjoint_sameset (s1 s2 s3 : set E) : sameset s3 s1 -> disjoint s1 s2 -> disjoint s3 s2. Proof. firstorder idtac. Qed. Lemma disjoint_union_l_iff (s1 s2 s3 : set E) : disjoint (union s1 s2) s3 <-> disjoint s1 s3 /\ disjoint s2 s3. Proof. firstorder idtac. Qed. Lemma disjoint_union_r_iff (s1 s2 s3 : set E) : disjoint s1 (union s2 s3) <-> disjoint s1 s2 /\ disjoint s1 s3. Proof. firstorder idtac. Qed. Lemma subset_union_l (s1 s2 s3 : set E) : subset s1 s3 -> subset s2 s3 -> subset (union s1 s2) s3. Proof. firstorder idtac. Qed. Lemma subset_union_rl (s1 s2 s3 : set E) : subset s1 s2 -> subset s1 (union s2 s3). Proof. firstorder idtac. Qed. Lemma subset_union_rr (s1 s2 s3 : set E) : subset s1 s3 -> subset s1 (union s2 s3). Proof. firstorder idtac. Qed. Lemma subset_disjoint_r (s1 s2 s3 : set E) : subset s2 s3 -> disjoint s1 s3 -> disjoint s1 s2. Proof. firstorder idtac. Qed. Lemma subset_disjoint_l (s1 s2 s3 : set E) : subset s1 s3 -> disjoint s3 s2 -> disjoint s1 s2. Proof. firstorder idtac. Qed. Global Instance Proper_union : Proper (sameset ==> sameset ==> sameset) (@union E). Proof. firstorder idtac. Defined. Global Instance Proper_intersect : Proper (sameset ==> sameset ==> sameset) (@intersect E). Proof. firstorder idtac. Defined. Global Instance Proper_diff : Proper (sameset ==> sameset ==> sameset) (@diff E). Proof. firstorder idtac. Defined. Global Instance Proper_add : Proper (sameset ==> eq ==> sameset) (@add E). Proof. repeat intro; apply Proper_union; auto. subst. firstorder idtac. Defined. Global Instance Proper_remove : Proper (sameset ==> eq ==> sameset) (@remove E). Proof. repeat intro; apply Proper_diff; auto. subst. firstorder idtac. Defined. Global Instance subset_trans : Transitive (@subset E) | 10. Proof. firstorder idtac. Defined. Global Instance subset_ref : Reflexive (@subset E) | 10. Proof. firstorder idtac. Defined. Global Instance Proper_subset : Proper (sameset ==> sameset ==> iff) (@subset E). Proof. firstorder idtac. Defined. Global Instance sameset_sym : Symmetric (@sameset E) | 10. Proof. firstorder idtac. Defined. Global Instance sameset_trans : Transitive (@sameset E) | 10. Proof. firstorder idtac. Defined. Global Instance sameset_ref : Reflexive (@sameset E) | 10. Proof. firstorder idtac. Defined. Global Instance disjoint_sym : Symmetric (@disjoint E) | 10. Proof. firstorder idtac. Defined. Global Instance Proper_disjoint : Proper (sameset ==> sameset ==> iff) (@disjoint E). Proof. firstorder idtac. Defined. Section with_eqb. Local Set Default Proof Using "All". Context {eqb} {eq_dec : forall x y : E, BoolSpec (x = y) (x <> y) (eqb x y)}. Lemma disjoint_singleton_r_iff (x : E) (s : set E) : ~ s x <-> disjoint s (singleton_set x). Proof. intros. split; [|firstorder idtac]. intros. intro y. destruct (eq_dec x y); subst; try firstorder idtac. Qed. Lemma disjoint_singleton_singleton (x y : E) : y <> x -> disjoint (singleton_set x) (singleton_set y). Proof. intros. apply disjoint_singleton_r_iff; firstorder congruence. Qed. Lemma disjoint_not_in x (l : list E) : ~ In x l -> disjoint (singleton_set x) (of_list l). Proof. intros. symmetry. apply disjoint_singleton_r_iff; eauto. Qed. Lemma NoDup_disjoint (l1 l2 : list E) : NoDup (l1 ++ l2) -> disjoint (of_list l1) (of_list l2). Proof. revert l2; induction l1; intros *; rewrite ?app_nil_l, <-?app_comm_cons; [ solve [firstorder idtac] | ]. inversion 1; intros; subst. rewrite of_list_cons. apply disjoint_union_l_iff; split; eauto. apply disjoint_not_in; eauto. rewrite in_app_iff in *. tauto. Qed. Lemma disjoint_NoDup (l1 l2 : list E) : NoDup l1 -> NoDup l2 -> disjoint (of_list l1) (of_list l2) -> NoDup (l1 ++ l2). Proof. revert l2; induction l1; intros *; rewrite ?app_nil_l, <-?app_comm_cons; [ solve [firstorder idtac] | ]. inversion 1; intros; subst. match goal with H : disjoint (of_list (_ :: _)) _ |- _ => symmetry in H; apply disjoint_cons in H; destruct H end. match goal with H : disjoint _ (singleton_set _) |- _ => apply disjoint_singleton_r_iff in H1; cbv [of_list] in H1 end. constructor; [ rewrite in_app_iff; tauto | ]. apply IHl1; eauto using disjoint_sym. Qed. Lemma disjoint_of_list_disjoint_Forall: forall (l1 l2: list E) (P1 P2: E -> Prop), Forall P1 l1 -> Forall P2 l2 -> (forall x, P1 x -> P2 x -> False) -> disjoint (of_list l1) (of_list l2). Proof. unfold disjoint, of_list, elem_of. intros. destr (List.find (eqb x) l1). - eapply find_some in E0. destruct E0 as [E1 E2]. destr (eqb x e). 2: discriminate. destr (List.find (eqb e) l2). + eapply find_some in E0. destruct E0 as [F1 F2]. destr (eqb e e0). 2: discriminate. eapply Forall_forall in H. 2: eassumption. eapply Forall_forall in H0. 2: eassumption. exfalso. eauto. + right. intro C. eapply find_none in E0. 2: exact C. destr (eqb e e); congruence. - left. intro C. eapply find_none in E0. 2: exact C. destr (eqb x x); congruence. Qed. End with_eqb. End PropSetLemmas. Require Import Coq.Program.Tactics. Require Import coqutil.Tactics.Tactics. Ltac set_solver_generic E := repeat (so fun hyporgoal => match hyporgoal with | context [of_list (?l1 ++ ?l2)] => unique pose proof (of_list_app l1 l2) | context [of_list (?h :: ?t)] => unique pose proof (of_list_cons h t) end); repeat autounfold with unf_basic_set_defs unf_derived_set_defs in *; unfold elem_of in *; destruct_products; intros; specialize_with E; intuition (subst *; auto). Goal forall T (l1 l2: list T) (e: T), subset (of_list (l2 ++ l1)) (union (of_list (e :: l1)) (of_list l2)). Proof. intros. set_solver_generic T. Qed.
Formal statement is: lemma components_nonoverlap: "\<lbrakk>c \<in> components s; c' \<in> components s\<rbrakk> \<Longrightarrow> (c \<inter> c' = {}) \<longleftrightarrow> (c \<noteq> c')" Informal statement is: If $c$ and $c'$ are components of $s$, then $c$ and $c'$ are disjoint if and only if $c \neq c'$.
\title{Digital Arithmetic Cells with myHDL} \author{Steven K Armour} \maketitle <h1>Table of Contents<span class="tocSkip"></span></h1> <div class="toc"><ul class="toc-item"><li><span><a href="#Compression-of-Number-System-Values" data-toc-modified-id="Compression-of-Number-System-Values-1"><span class="toc-item-num">1&nbsp;&nbsp;</span>Compression of Number System Values</a></span></li><li><span><a href="#Half-Adder" data-toc-modified-id="Half-Adder-2"><span class="toc-item-num">2&nbsp;&nbsp;</span>Half Adder</a></span></li><li><span><a href="#The-full-adder" data-toc-modified-id="The-full-adder-3"><span class="toc-item-num">3&nbsp;&nbsp;</span>The full adder</a></span></li></ul></div> ```python from myhdl import * from myhdlpeek import Peeker import numpy as np import pandas as pd import matplotlib.pyplot as plt %matplotlib inline from sympy import * init_printing() import random #https://github.com/jrjohansson/version_information %load_ext version_information %version_information myhdl, myhdlpeek, numpy, pandas, matplotlib, sympy, random ``` The version_information extension is already loaded. To reload it, use: %reload_ext version_information <table><tr><th>Software</th><th>Version</th></tr><tr><td>Python</td><td>3.6.4 64bit [GCC 7.2.0]</td></tr><tr><td>IPython</td><td>6.2.1</td></tr><tr><td>OS</td><td>Linux 4.13.0 45 generic x86_64 with debian stretch sid</td></tr><tr><td>myhdl</td><td>0.10</td></tr><tr><td>myhdlpeek</td><td>0.0.6</td></tr><tr><td>numpy</td><td>1.13.3</td></tr><tr><td>pandas</td><td>0.21.1</td></tr><tr><td>matplotlib</td><td>2.1.1</td></tr><tr><td>sympy</td><td>1.1.1</td></tr><tr><td>random</td><td>The 'random' distribution was not found and is required by the application</td></tr><tr><td colspan='2'>Fri Jun 29 23:35:01 2018 MDT</td></tr></table> ```python #helper functions to read in the .v and .vhd generated files into python def VerilogTextReader(loc, printresult=True): with open(f'{loc}.v', 'r') as vText: VerilogText=vText.read() if printresult: print(f'***Verilog modual from {loc}.v***\n\n', VerilogText) return VerilogText def VHDLTextReader(loc, printresult=True): with open(f'{loc}.vhd', 'r') as vText: VerilogText=vText.read() if printresult: print(f'***VHDL modual from {loc}.vhd***\n\n', VerilogText) return VerilogText ``` # Compression of Number System Values ```python ConversionTable=pd.DataFrame() ConversionTable['Decimal']=np.arange(0, 21) ConversionTable['Binary']=[bin(i, 3) for i in np.arange(0, 21)] ConversionTable['hex']=[hex(i) for i in np.arange(0, 21)] ConversionTable['oct']=[oct(i) for i in np.arange(0, 21)] ConversionTable ``` <div> <style scoped> .dataframe tbody tr th:only-of-type { vertical-align: middle; } .dataframe tbody tr th { vertical-align: top; } .dataframe thead th { text-align: right; } </style> <table border="1" class="dataframe"> <thead> <tr style="text-align: right;"> <th></th> <th>Decimal</th> <th>Binary</th> <th>hex</th> <th>oct</th> </tr> </thead> <tbody> <tr> <th>0</th> <td>0</td> <td>000</td> <td>0x0</td> <td>0o0</td> </tr> <tr> <th>1</th> <td>1</td> <td>001</td> <td>0x1</td> <td>0o1</td> </tr> <tr> <th>2</th> <td>2</td> <td>010</td> <td>0x2</td> <td>0o2</td> </tr> <tr> <th>3</th> <td>3</td> <td>011</td> <td>0x3</td> <td>0o3</td> </tr> <tr> <th>4</th> <td>4</td> <td>100</td> <td>0x4</td> <td>0o4</td> </tr> <tr> <th>5</th> <td>5</td> <td>101</td> <td>0x5</td> <td>0o5</td> </tr> <tr> <th>6</th> <td>6</td> <td>110</td> <td>0x6</td> <td>0o6</td> </tr> <tr> <th>7</th> <td>7</td> <td>111</td> <td>0x7</td> <td>0o7</td> </tr> <tr> <th>8</th> <td>8</td> <td>1000</td> <td>0x8</td> <td>0o10</td> </tr> <tr> <th>9</th> <td>9</td> <td>1001</td> <td>0x9</td> <td>0o11</td> </tr> <tr> <th>10</th> <td>10</td> <td>1010</td> <td>0xa</td> <td>0o12</td> </tr> <tr> <th>11</th> <td>11</td> <td>1011</td> <td>0xb</td> <td>0o13</td> </tr> <tr> <th>12</th> <td>12</td> <td>1100</td> <td>0xc</td> <td>0o14</td> </tr> <tr> <th>13</th> <td>13</td> <td>1101</td> <td>0xd</td> <td>0o15</td> </tr> <tr> <th>14</th> <td>14</td> <td>1110</td> <td>0xe</td> <td>0o16</td> </tr> <tr> <th>15</th> <td>15</td> <td>1111</td> <td>0xf</td> <td>0o17</td> </tr> <tr> <th>16</th> <td>16</td> <td>10000</td> <td>0x10</td> <td>0o20</td> </tr> <tr> <th>17</th> <td>17</td> <td>10001</td> <td>0x11</td> <td>0o21</td> </tr> <tr> <th>18</th> <td>18</td> <td>10010</td> <td>0x12</td> <td>0o22</td> </tr> <tr> <th>19</th> <td>19</td> <td>10011</td> <td>0x13</td> <td>0o23</td> </tr> <tr> <th>20</th> <td>20</td> <td>10100</td> <td>0x14</td> <td>0o24</td> </tr> </tbody> </table> </div> ```python binarySum=lambda a, b, bits=2: np.binary_repr(a+b, bits) ``` ```python for i in [[0,0], [0,1], [1,0], [1,1]]: print(f'{i[0]} + {i[1]} yields {binarySum(*i)}_2, {int(binarySum(*i), 2)}_10') ``` 0 + 0 yields 00_2, 0_10 0 + 1 yields 01_2, 1_10 1 + 0 yields 01_2, 1_10 1 + 1 yields 10_2, 2_10 Notice that when we add $1_2+1_2$ we get instead of just a single bit we also get a new bit in the next binary column which we call the carry bit. This yields the following truth table for what is called the Two Bit or Half adder # Half Adder ```python TwoBitAdderTT=pd.DataFrame() TwoBitAdderTT['x2']=[0,0,1,1] TwoBitAdderTT['x1']=[0,1,0,1] TwoBitAdderTT['Sum']=[0,1,1,0] TwoBitAdderTT['Carry']=[0,0,0,1] TwoBitAdderTT ``` <div> <style scoped> .dataframe tbody tr th:only-of-type { vertical-align: middle; } .dataframe tbody tr th { vertical-align: top; } .dataframe thead th { text-align: right; } </style> <table border="1" class="dataframe"> <thead> <tr style="text-align: right;"> <th></th> <th>x2</th> <th>x1</th> <th>Sum</th> <th>Carry</th> </tr> </thead> <tbody> <tr> <th>0</th> <td>0</td> <td>0</td> <td>0</td> <td>0</td> </tr> <tr> <th>1</th> <td>0</td> <td>1</td> <td>1</td> <td>0</td> </tr> <tr> <th>2</th> <td>1</td> <td>0</td> <td>1</td> <td>0</td> </tr> <tr> <th>3</th> <td>1</td> <td>1</td> <td>0</td> <td>1</td> </tr> </tbody> </table> </div> Looking at this truth table we can surmise the following ```python x1, x2=symbols('x_1, x_2') Sum, Carry=symbols(r'\text{Sum}, \text{Carry}') HASumDef=x1^x2; HACarryDef=x1 & x2 HASumEq=Eq(Sum, HASumDef); HACarryDef=Eq(Carry, HACarryDef) HASumEq, HACarryDef ``` $$\left ( \text{Sum} = x_{1} \veebar x_{2}, \quad \text{Carry} = x_{1} \wedge x_{2}\right )$$ We can thus generate the following myHDL ```python @block def HalfAdder(x1, x2, Sum, Carry): """ Half adder in myHDL I/O: x1 (bool): x1 input x2 (bool): x2 input Sum (bool): the sum Half Adder ouput Carry (bool): the carry Half Adder ouput """ @always_comb def logic(): Sum.next=x1^x2 Carry.next=x1 & x2 return logic ``` ```python Peeker.clear() x1=Signal(bool(0)); Peeker(x1, 'x1') x2=Signal(bool(0)); Peeker(x2, 'x2') Sum=Signal(bool(0)); Peeker(Sum, 'Sum') Carry=Signal(bool(0)); Peeker(Carry, 'Carry') DUT=HalfAdder(x1, x2, Sum, Carry) def HalfAdder_TB(): """ Half Adder Testbench for use in python only """ @instance def Stimules(): for _, row in TwoBitAdderTT.iterrows(): x1.next=row['x1'] x2.next=row['x2'] yield delay(1) raise StopSimulation() return instances() sim = Simulation(DUT, HalfAdder_TB(), *Peeker.instances()).run() ``` ```python Peeker.to_wavedrom('x2 x1 | Sum Carry', title='Half Adder Wave Form', tock=True) ``` <div></div> ```python HARes=Peeker.to_dataframe() HARes=HARes[['x2', 'x1','Sum', 'Carry']] HARes ``` <div> <style scoped> .dataframe tbody tr th:only-of-type { vertical-align: middle; } .dataframe tbody tr th { vertical-align: top; } .dataframe thead th { text-align: right; } </style> <table border="1" class="dataframe"> <thead> <tr style="text-align: right;"> <th></th> <th>x2</th> <th>x1</th> <th>Sum</th> <th>Carry</th> </tr> </thead> <tbody> <tr> <th>0</th> <td>0</td> <td>0</td> <td>0</td> <td>0</td> </tr> <tr> <th>1</th> <td>0</td> <td>1</td> <td>1</td> <td>0</td> </tr> <tr> <th>2</th> <td>1</td> <td>0</td> <td>1</td> <td>0</td> </tr> <tr> <th>3</th> <td>1</td> <td>1</td> <td>0</td> <td>1</td> </tr> </tbody> </table> </div> Wich, we can then confirm via these results to the expected results via ```python TwoBitAdderTT==HARes ``` <div> <style scoped> .dataframe tbody tr th:only-of-type { vertical-align: middle; } .dataframe tbody tr th { vertical-align: top; } .dataframe thead th { text-align: right; } </style> <table border="1" class="dataframe"> <thead> <tr style="text-align: right;"> <th></th> <th>x2</th> <th>x1</th> <th>Sum</th> <th>Carry</th> </tr> </thead> <tbody> <tr> <th>0</th> <td>True</td> <td>True</td> <td>True</td> <td>True</td> </tr> <tr> <th>1</th> <td>True</td> <td>True</td> <td>True</td> <td>True</td> </tr> <tr> <th>2</th> <td>True</td> <td>True</td> <td>True</td> <td>True</td> </tr> <tr> <th>3</th> <td>True</td> <td>True</td> <td>True</td> <td>True</td> </tr> </tbody> </table> </div> ```python DUT.convert() VerilogTextReader('HalfAdder'); ``` ***Verilog modual from HalfAdder.v*** // File: HalfAdder.v // Generated by MyHDL 0.10 // Date: Fri Jun 29 23:13:48 2018 `timescale 1ns/10ps module HalfAdder ( x1, x2, Sum, Carry ); // Half adder in myHDL // I/O: // x1 (bool): x1 input // x2 (bool): x2 input // Sum (bool): the sum Half Adder ouput // Carry (bool): the carry Half Adder ouput input x1; input x2; output Sum; wire Sum; output Carry; wire Carry; assign Sum = (x1 ^ x2); assign Carry = (x1 & x2); endmodule **HalfAdder RTL** **HalfAdder Synthesis** ```python @block def HalfAdder_TBV(): """ Half Adder Testbench for use in Verilog """ x1 = Signal(bool(0)) x2 = Signal(bool(0)) Sum = Signal(bool(0)) Carry = Signal(bool(0)) DUT = HalfAdder(x1, x2, Sum, Carry) testx1=Signal(intbv(int("".join([str(i) for i in TwoBitAdderTT['x1'].tolist()]), 2))[4:]) testx2=Signal(intbv(int("".join([str(i) for i in TwoBitAdderTT['x2'].tolist()]), 2))[4:]) @instance def Stimulus(): for i in range(len(testx1)): x1.next = testx1[i] x2.next = testx2[i] yield delay(1) raise StopSimulation() @always_comb def print_data(): print(x1, x2, Sum, Carry) return instances() # create instaince of TB TB = HalfAdder_TBV() # convert to verilog with reintilzed values TB.convert(hdl="verilog", initial_values=True) VerilogTextReader('HalfAdder_TBV'); ``` <class 'myhdl._Signal._Signal'> <class '_ast.Name'> <class 'myhdl._Signal._Signal'> <class '_ast.Name'> <class 'myhdl._Signal._Signal'> <class '_ast.Name'> <class 'myhdl._Signal._Signal'> <class '_ast.Name'> ***Verilog modual from HalfAdder_TBV.v*** // File: HalfAdder_TBV.v // Generated by MyHDL 0.10 // Date: Fri Jun 29 23:16:26 2018 `timescale 1ns/10ps module HalfAdder_TBV ( ); // Half Adder Testbench for use in Verilog wire Sum; reg x1 = 0; reg x2 = 0; wire Carry; wire [3:0] testx1; wire [3:0] testx2; assign testx1 = 4'd5; assign testx2 = 4'd3; assign Sum = (x1 ^ x2); assign Carry = (x1 & x2); initial begin: HALFADDER_TBV_STIMULUS integer i; for (i=0; i<4; i=i+1) begin x1 <= testx1[i]; x2 <= testx2[i]; # 1; end $finish; end always @(Carry, x2, Sum, x1) begin: HALFADDER_TBV_PRINT_DATA $write("%h", x1); $write(" "); $write("%h", x2); $write(" "); $write("%h", Sum); $write(" "); $write("%h", Carry); $write("\n"); end endmodule /home/iridium/anaconda3/lib/python3.6/site-packages/myhdl/conversion/_toVerilog.py:349: ToVerilogWarning: Signal is not driven: testx1 category=ToVerilogWarning /home/iridium/anaconda3/lib/python3.6/site-packages/myhdl/conversion/_toVerilog.py:349: ToVerilogWarning: Signal is not driven: testx2 category=ToVerilogWarning Where the above warning can be ignored since we are using `testx1` and `testx2` as stores for the binay set of inputs to apply to `x1` and `x2` # The full adder If we assume that a carry is an input we can then extend the truth table for the two-bit adder to a three-bit adder yielding ```python ThreeBitAdderTT=pd.DataFrame() ThreeBitAdderTT['c1']=[0,0,0,0,1,1,1,1] ThreeBitAdderTT['x2']=[0,0,1,1,0,0,1,1] ThreeBitAdderTT['x1']=[0,1,0,1,0,1,0,1] ThreeBitAdderTT['Sum']=[0,1,1,0,1,0,0,1] ThreeBitAdderTT['Carry']=[0,0,0,1,0,1,1,1] ThreeBitAdderTT ``` <div> <style scoped> .dataframe tbody tr th:only-of-type { vertical-align: middle; } .dataframe tbody tr th { vertical-align: top; } .dataframe thead th { text-align: right; } </style> <table border="1" class="dataframe"> <thead> <tr style="text-align: right;"> <th></th> <th>c1</th> <th>x2</th> <th>x1</th> <th>Sum</th> <th>Carry</th> </tr> </thead> <tbody> <tr> <th>0</th> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> </tr> <tr> <th>1</th> <td>0</td> <td>0</td> <td>1</td> <td>1</td> <td>0</td> </tr> <tr> <th>2</th> <td>0</td> <td>1</td> <td>0</td> <td>1</td> <td>0</td> </tr> <tr> <th>3</th> <td>0</td> <td>1</td> <td>1</td> <td>0</td> <td>1</td> </tr> <tr> <th>4</th> <td>1</td> <td>0</td> <td>0</td> <td>1</td> <td>0</td> </tr> <tr> <th>5</th> <td>1</td> <td>0</td> <td>1</td> <td>0</td> <td>1</td> </tr> <tr> <th>6</th> <td>1</td> <td>1</td> <td>0</td> <td>0</td> <td>1</td> </tr> <tr> <th>7</th> <td>1</td> <td>1</td> <td>1</td> <td>1</td> <td>1</td> </tr> </tbody> </table> </div> ! need a way to make K-Maps in python whereupon making and reducing the maps from the three-bit adder truth table we get the following equations ```python c1, x1, x2=symbols('c_1,x_1, x_2') Sum, Carry=symbols(r'\text{Sum}, \text{Carry}') FASumDef=x1^x2^c1; FACarryDef=x1&x2 | x1&c1 | x2&c1 FASumEq=Eq(Sum, FASumDef); FACarryDef=Eq(Carry, FACarryDef) FASumEq, FACarryDef ``` $$\left ( \text{Sum} = c_{1} \veebar x_{1} \veebar x_{2}, \quad \text{Carry} = \left(c_{1} \wedge x_{1}\right) \vee \left(c_{1} \wedge x_{2}\right) \vee \left(x_{1} \wedge x_{2}\right)\right )$$ yielding the following next myHDL module ```python @block def FullAdder(x1, x2, c1, Sum, Carry): """ Full adder in myHDL I/O: x1 (bool): x1 input x2 (bool): x2 input c1 (bool): carry input Sum (bool): the sum Full Adder ouput Carry (bool): the carry Full Adder ouput Note!: There something wrong on the HDL side at the moment """ @always_comb def logic(): Sum.next=x1 ^ x2 ^c1 Carry.next=(x1 & x2) | (x1 & c1) | (x2 & c1) return logic ``` ```python Peeker.clear() x1=Signal(bool(0)); Peeker(x1, 'x1') x2=Signal(bool(0)); Peeker(x2, 'x2') c1=Signal(bool(0)); Peeker(c1, 'c1') Sum=Signal(bool(0)); Peeker(Sum, 'Sum') Carry=Signal(bool(0)); Peeker(Carry, 'Carry') DUT=FullAdder(x1, x2, c1, Sum, Carry) def FullAdder_TB(): @instance def Stimules(): for _, row in ThreeBitAdderTT.iterrows(): x1.next=row['x1'] x2.next=row['x2'] c1.next=row['c1'] yield delay(1) raise StopSimulation() return instances() sim = Simulation(DUT, HalfAdder_TB(), *Peeker.instances()).run() ``` ```python Peeker.to_wavedrom('c1 x2 x1 | Sum Carry', title='Full Adder Wave Form', tock=True) ``` <div></div> ```python FARes=Peeker.to_dataframe() FARes=FARes[['c1, x2','x1','Sum', 'Carry']] FARes ``` ```python ThreeBitAdderTT==FARes ``` ```python DUT.convert() VerilogTextReader('FullAdder'); ``` ***Verilog modual from FullAdder.v*** // File: FullAdder.v // Generated by MyHDL 0.10 // Date: Fri Jun 29 23:15:35 2018 `timescale 1ns/10ps module FullAdder ( x1, x2, c1, Sum, Carry ); // Full adder in myHDL // I/O: // x1 (bool): x1 input // x2 (bool): x2 input // c1 (bool): carry input // Sum (bool): the sum Full Adder ouput // Carry (bool): the carry Full Adder ouput input x1; input x2; input c1; output Sum; wire Sum; output Carry; wire Carry; assign Sum = ((x1 ^ x2) ^ c1); assign Carry = (((x1 & x2) | (x1 & c1)) | (x2 & c1)); endmodule **FullAdder RTL** **FullAdder Synthesis** ```python @block def FullAdder_TBV(): """ Full Adder Testbench for use in Verilog """ x1=Signal(bool(0)) x2=Signal(bool(0)) c1=Signal(bool(0)) Sum=Signal(bool(0)) Carry=Signal(bool(0)) DUT = FullAdder(x1, x2, c1, Sum, Carry) testx1=Signal(intbv(int("".join([str(i) for i in ThreeBitAdderTT['x1'].tolist()]), 2))[4:]) testx2=Signal(intbv(int("".join([str(i) for i in ThreeBitAdderTT['x2'].tolist()]), 2))[4:]) testc1=Signal(intbv(int("".join([str(i) for i in ThreeBitAdderTT['c1'].tolist()]), 2))[4:]) @instance def Stimulus(): for i in range(len(testx1)): x1.next=testx1[i] x2.next=testx2[i] c1.next=testc1[i] yield delay(1) raise StopSimulation() @always_comb def print_data(): print(x1, x2, c1, Sum, Carry) return instances() # create instaince of TB TB = FullAdder_TBV() # convert to verilog with reintilzed values TB.convert(hdl="verilog", initial_values=True) VerilogTextReader('FullAdder_TBV'); ``` <class 'myhdl._Signal._Signal'> <class '_ast.Name'> <class 'myhdl._Signal._Signal'> <class '_ast.Name'> <class 'myhdl._Signal._Signal'> <class '_ast.Name'> <class 'myhdl._Signal._Signal'> <class '_ast.Name'> <class 'myhdl._Signal._Signal'> <class '_ast.Name'> ***Verilog modual from FullAdder_TBV.v*** // File: FullAdder_TBV.v // Generated by MyHDL 0.10 // Date: Fri Jun 29 23:24:09 2018 `timescale 1ns/10ps module FullAdder_TBV ( ); // Full Adder Testbench for use in Verilog wire Sum; reg x1 = 0; reg x2 = 0; wire Carry; reg c1 = 0; wire [3:0] testx1; wire [3:0] testx2; wire [3:0] testc1; assign testx1 = 4'd5; assign testx2 = 4'd3; assign testc1 = 4'd15; assign Sum = ((x1 ^ x2) ^ c1); assign Carry = (((x1 & x2) | (x1 & c1)) | (x2 & c1)); initial begin: FULLADDER_TBV_STIMULUS integer i; for (i=0; i<4; i=i+1) begin x1 <= testx1[i]; x2 <= testx2[i]; c1 <= testc1[i]; # 1; end $finish; end always @(Carry, x1, c1, x2, Sum) begin: FULLADDER_TBV_PRINT_DATA $write("%h", x1); $write(" "); $write("%h", x2); $write(" "); $write("%h", c1); $write(" "); $write("%h", Sum); $write(" "); $write("%h", Carry); $write("\n"); end endmodule /home/iridium/anaconda3/lib/python3.6/site-packages/myhdl/conversion/_toVerilog.py:349: ToVerilogWarning: Signal is not driven: testx1 category=ToVerilogWarning /home/iridium/anaconda3/lib/python3.6/site-packages/myhdl/conversion/_toVerilog.py:349: ToVerilogWarning: Signal is not driven: testx2 category=ToVerilogWarning /home/iridium/anaconda3/lib/python3.6/site-packages/myhdl/conversion/_toVerilog.py:349: ToVerilogWarning: Signal is not driven: testc1 category=ToVerilogWarning Where the above warning can be ignored since we are using `testx1`, `testx2`, and `testc1` as stores for the binay set of inputs to apply to `x1`, `x2`, and `c1` ```python ```
#===================================================== #Web of Science was used to locate the citations #of individual papers that used or cited the #following software packages: #ADMB, Stan, TMB, JAGS, Classic BUGS, WinBUGS, #OpenBUGS #Since multiple methods were used to find citing #papers, duplicates must be removed before returning #the cites by year. #===================================================== XX <- read.csv("Citation analysis.csv", stringsAsFactors=F) software <- c("Classic BUGS", "WinBUGS", "OpenBUGS", "JAGS", "ADMB", "TMB", "Stan") nsoftware <- length(software) years <- seq(min(XX$PY), 2015, 1) nyears <- length(years) results <- matrix(nrow=nyears, ncol=nsoftware, dimnames=list(years,software)) #get data in the right format for (i in 1:nsoftware) { #go through the data for each software package in turn Xdata <- XX[XX$Software.package==software[i],] #find the duplicated doi values doi.dups <- duplicated(Xdata$DI, incomparables=c("")) #find the duplicated journal+vol+pagestart journal.dups <- duplicated(paste(Xdata$SO, Xdata$VL, Xdata$BP), incomparables=c("")) #find the duplicated WOS codes WOS.dups <- duplicated(Xdata$UT, incomparables=c("")) #extract the years (PY) from the data where there #are no duplicates #results[,i] <- hist(Xdata[!(doi.dups | journal.dups | WOS.dups),"PY"], # breaks=seq(years[1]-0.5,years[nyears]+0.5,1), main="", # xlab="Year", ylab="Citations", col="gray50")$counts results[,i] <- tabulate(factor(Xdata[!(doi.dups | journal.dups | WOS.dups),"PY"], levels = years)) #alt way of getting results ## mtext(side=3,line=-1,software[i], cex=1.3) } write.csv(file="CountsByYear.csv",results) ## #create plot of citations ## pdf("Draft.pdf",width=12,height=12) ## mat <- matrix(1:nsoftware, nrow=nsoftware, ncol=1) ## par(mar=c(0,0,0,0), oma=c(3,3,1,1)) ## ylims <- 110+apply(results, MARGIN=2, FUN=max) ## layout(mat=mat, widths=1, heights=ylims) ## for (i in 1:nsoftware) { ## if (i==nsoftware) { ## names.arg <- years ## } else { ## names.arg <- NA ## } ## barplot(results[,i], col="gray", ann=F, axes=F, names.arg=names.arg, ## xaxs="i", yaxs="i", ylim=c(0,ylims[i])) ## box() ## axis(side=2, las=1, at=seq(0,600,100)) ## mtext(side=3, line =-1.7, outer=F, software[i], cex=1) ## } ## mtext(side=1, line=3, outer=T, "Year", cex=1.3) ## mtext(side=2, line=3, outer=T, "Number of citations", cex=1.3) ## dev.off()
{-# OPTIONS --cubical --safe #-} module Cubical.Data.Empty.Properties where open import Cubical.Core.Everything open import Cubical.Foundations.Prelude open import Cubical.Data.Empty.Base isProp⊥ : isProp ⊥ isProp⊥ x = ⊥-elim x
```python %matplotlib inline import numpy as np import pandas as pd import scipy.stats import matplotlib.pyplot as plt from matplotlib import animation from matplotlib import rcParams rcParams['figure.dpi'] = 120 from IPython.display import HTML from IPython.display import YouTubeVideo from functools import partial YouTubeVideo_formato = partial(YouTubeVideo, modestbranding=1, disablekb=0, width=640, height=360, autoplay=0, rel=0, showinfo=0) ``` # Estadística inferencial La inferencia busca > Extraer **conclusiones** a partir de **hechos u observaciones** a través de un **método o premisa** En el caso particular de la **inferencia estadística** podemos realizar las siguientes asociaciones - Hechos: Datos - Premisa: Modelo probabilístico - Conclusión: Una cantidad no observada que es interesante Y lo que buscamos es > Cuantificar la incerteza de la conclusión dado los datos y el modelo La inferencia estadística puede dividirse en los siguientes tres niveles 1. Ajustar un modelo a nuestros datos 1. Verificar que el modelo sea confiable 1. Responder una pregunta usando el modelo En esta lección estudiaremos las herramientas más utilizadas asociadas a cada uno de estos niveles 1. **Estimador de máxima verosimilitud** 1. **Bondad de ajuste** e **Intervalos de confianza** 1. **Test de hipótesis** ## Ajuste de modelos: Estimación de máxima verosimilitud En este nivel de inferencia se busca **ajustar** un modelo teórico sobre nuestros datos. En esta lección nos enfocaremos en **modelos de tipo parámetrico**. Un modelo parámetrico es aquel donde **se explicita una distribución de probabilidad**. Recordemos que una distribución tiene **parámetros**. Por ejemplo la distribución Gaussiana (univariada) se describe por su media $\mu$ y su varianza $\sigma^2$. Luego ajustar una distribución Gaussiana corresponde a encontrar el valor de $\mu$ y $\sigma$ que hace que el modelo se parezca lo más posible a la distribución empírica de los datos. A continuación veremos los pasos necesarios para ajustar una distribución a nuestros datos ### ¿Qué distribución ajustar? Antes de ajustar debemos realizar un supuesto sobre la distribución para nuestro modelo. En general podemos ajustar cualquier distribución pero un mal supuesto podría invalidar nuestra inferencia Podemos usar las herramientas de **estadística descriptiva** para estudiar nuestros datos y tomar esta decisión de manera informada En el siguiente ejemplo, un histograma de los datos revela que un modelo gaussiano no es una buena decisión ¿Por qué? La distribución empírica es claramente asimétrica, su cola derecha es más pesada que su cola izquierda. La distribución Gaussiana es simétrica por lo tanto no es apropiada en este caso ¿Qué distribución podría ser más apropiada? ### ¿Cómo ajustar mi modelo? Estimación de máxima verosimilitud A continuación describiremos un procedimiento para ajustar modelos paramétricos llamado *maximum likelihood estimation* (MLE) Sea un conjunto de datos $\{x_1, x_2, \ldots, x_N\}$ **Supuesto 1** Los datos siguen el modelo $f(x;\theta)$ donde $f(\cdot)$ es una distribución y $\theta$ son sus parámetros $$ f(x_1, x_2, \ldots, x_N |\theta) $$ **Supuesto 2** Las observaciones son independientes e idénticamente distribuidas (iid) - Si dos variables son independientes se cumple que $P(x, y) = P(x)P(y)$ - Si son además idénticamente distribuidas entonces tienen **la misma distribución y parámetros** Usando esto podemos escribir $$ \begin{align} f(x_1, x_2, \ldots, x_N |\theta) &= f(x_1|\theta) f(x_2|\theta) \ldots f(x_N|\theta) \nonumber \\ & = \prod_{i=1}^N f(x_i|\theta) \nonumber \\ & = \mathcal{L}(\theta) \end{align} $$ donde $\mathcal{L}(\theta)$ se conoce como la verosimilitud o probabilidad inversa de $\theta$ Si consideramos que los datos son fijos podemos buscar el valor de $\theta$ de máxima verosimilitud $$ \begin{align} \hat \theta &= \text{arg} \max_\theta \mathcal{L}(\theta) \nonumber \\ &= \text{arg} \max_\theta \log \mathcal{L}(\theta) \nonumber \\ &= \text{arg} \max_\theta \sum_{i=1}^N \log f(x_i|\theta) \end{align} $$ El segundo paso es valido por que el máximo de $g(x)$ y $\log(g(x))$ es el mismo. El logaritmo es monoticamente creciente. Además aplicar el logaritmo es muy conveniente ya que convierte la multiplicatoria en una sumatoria. Ahora sólo falta encontrar el máximo. Podemos hacerlo - Analíticamente, derivando con respecto a $\theta$ e igualando a cero - Usando técnicas de optimización iterativas como gradiente descedente **Ejemplo:** La pesa defectuosa Su profesor quiere medir su peso pero sospecha que su pesa está defectuosa. Para comprobarlo mide su peso $N$ veces obteniendo un conjunto de observaciones $\{x_i\}$. ¿Es posible obtener un estimador del peso real $\hat x$ a partir de estas observaciones? Modelaremos las observaciones como $$ x_i = \hat x + \varepsilon_i $$ donde $\varepsilon_i$ corresponde al ruido o error del instrumento y asumiremos que $\varepsilon_i \sim \mathcal{N}(0, \sigma_\varepsilon^2)$, es decir que el ruido es **independiente** y **Gaussiano** con media cero y **varianza** $\sigma_\varepsilon^2$ **conocida** Entonces la distribución de $x_i$ es $$ f(x_i|\hat x) = \mathcal{N}(\hat x, \sigma_\varepsilon^2) $$ Para encontrar $\hat x$, primero escribimos el logaritmo de la **verosimilitud** $$ \begin{align} \log \mathcal{L}(\hat x) &= \sum_{i=1}^N \log f(x_i|\hat x) \nonumber \\ &= \sum_{i=1}^N \log \frac{1}{\sqrt{2\pi\sigma_\varepsilon^2}} \exp \left ( - \frac{1}{2\sigma_\varepsilon^2} (x_i - \hat x)^2 \right) \nonumber \\ &= -\frac{N}{2}\log(2\pi\sigma_\varepsilon^2) - \frac{1}{2\sigma_\varepsilon^2} \sum_{i=1}^N (x_i - \hat x)^2 \nonumber \end{align} $$ Luego debemos resolver $$ \begin{align} \hat \theta &= \text{arg} \max_\theta \log \mathcal{L}(\theta) \nonumber \\ &= \text{arg} \max_\theta - \frac{1}{2\sigma_\varepsilon^2} \sum_{i=1}^N (x_i - \hat x)^2 \end{align} $$ donde podemos ignorar el primer término de la verosimilitud ya que no depende de $\theta$. Para encontrar el máximo derivamos la expresión anterior e igualamos a cero $$ -\frac{1}{2\sigma_\varepsilon^2} \sum_{i=1}^N 2(x_i - \hat x ) = 0. $$ Finalmente si despejamos llegamos a que $$ \hat x = \frac{1}{N} \sum_{i=1}^N x_i, $$ que se conoce como el estimador de máxima verosimilitud **para la media de una Gaussiana** Recordemos que podemos comprobar que es un máximo utilizando la segunda derivada ### Estimación MLE con `scipy` Como vimos en la lección anterior el módulo [`scipy.stats`](https://docs.scipy.org/doc/scipy/reference/stats.html) provee de un gran número de distribuciones teóricas organizadas como - continuas de una variable - discretas de una variable - multivariadas Las distribuciones comparten muchos de sus métodos, a continuación revisaremos los más importantes. A modo de ejemplo consideremos la distribución Gaussiana (Normal) ```python from scipy.stats import norm dist = norm() # Esto crea una Gaussiana con media 0 y desviación estándar (std) 1 dist = norm(loc=2, scale=2) # Esto crea una Gaussiana con media 2 y std 2 ``` **Crear una muestra aleatoria con `rvs`** Luego de crear un objeto distribución podemos obtener una muestra aleatoria usando el método el atributo `rvs` ```python dist = norm(loc=2, scale=2) dist.rvs(size=10, # Cantidad de números aleatorios generados random_state=None #Semilla aleatoria ) ``` Esto retorna un arreglo de 10 números generados aleatoriamente a partir de `dist` **Evaluar la función de densidad de probabilidad** La función de densidad de la Gaussiana es $$ f(x; \mu, \sigma^2) = \frac{1}{\sqrt{2\pi \sigma^2}} \exp \left( -\frac{1}{2\sigma^2} (x-\mu)^2 \right) $$ La densidad de un objeto distribución continuo puede obtenerse con el método `pdf` el cual es función de `x` ```python dist = norm(loc=2, scale=2) p = dist.pdf(x # Un ndrray que representa x en la ecuación superior ) plt.plot(x, p) # Luego podemos graficar la fdp ``` De forma equivalente, si deseamos la función de densidad acumulada usamos el método `cdf` Para objetos distribución discretos debemos usar el atributo `pmf` **Ajustar los parámetros con MLE** Para hacer el ajuste se usa el método `fit` ```python params = norm.fit(data # Un ndarray con los datos ) ``` En el caso de la Gaussiana el vector `params` tiene dos componentes `loc` y `scale`. La cantidad de parámetros depende de la distribución que estemos ajustando. También es importante notar que para ajustar se usa `norm` (clase abstracta) y no `norm()` (instancia) Una vez que tenemos los parámetros ajustados podemos usarlos con ```python dist = norm(loc=params[0], scale=params[1]) ``` Para distribuciones que tienen más de dos parámetros podemos usar ```python dist = norm(*params[:-2], loc=params[-2], scale=params[-1]) ``` ### Ejercicio Observe la siguiente distribución y reflexione ¿Qué características resaltan de la misma? ¿Qué distribución sería apropiado ajustar en este caso? ```python df = pd.read_csv('../data/cancer.csv', index_col=0) df = df[["diagnosis", "radius1", "texture1"]] x = df["radius1"].values fig, ax = plt.subplots(figsize=(5, 3), tight_layout=True) ax.hist(x, bins=20, density=True) ax.set_xlabel('Radio del nucleo'); ``` - Seleccione una distribución de `scipy.stats` ajustela a los datos - Grafique la pdf teórica sobre el histograma ```python ``` ## Verificación de modelos: Tests de bondad de ajuste Una vez que hemos ajustado un modelo es buena práctica verificar que tan confiable es este ajuste. Las herramientas más típicas para medir que tan bien se ajusta nuestra distribución teórica son - el [test de Akaike](https://en.wikipedia.org/wiki/Akaike_information_criterion) - los [gráficos cuantil-cuantil](https://es.wikipedia.org/wiki/Gr%C3%A1fico_Q-Q) (QQ plot) - el test no-paramétrico de Kolmogorov-Smirnov (KS) A continuación revisaremos el test de KS para bondad de ajuste **El test de Kolmogorov-Smirnov** Es un test no-paramétrico que compara una muestra de datos estandarizados (distribución empírica) con una distribución de densidad acumulada (CDF) teórica. Este test busca refutar la siguiente hipótesis > **Hipótesis nula:** Las distribuciones son idénticas Para aplicar el test primero debemos **estandarizar** los datos. Estandarizar se refiere a la transformación $$ z = \frac{x - \mu_x}{\sigma_x} $$ es decir los datos estándarizados tienen media cero y desviación estándar uno Esto puede hacerse fácilmente con NumPy usando ```python z = (x - np.mean(x))/np.std(x) ``` ### Test de KS con `scipy` Podemos realizar el test de KS con la función [`scipy.stats.kstest`](https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.kstest.html) donde ```python scipy.stats.kstest(rvs, # Una muestra de observaciones estandarizadas cdf, # Una distribución acumulada teórica, por ejemplo scipy.stats.norm.cdf ... ) ``` Esta función retorna el valor del estadístico de KS y su *p-value* asociado. Mientras más cerca de cero sea el estadístico de KS mejor es el ajuste. Más adelante haremos un repaso de tests de hipótesis en detalle. De momento recordemos que si el *p-value* es menor que una confianza $\alpha=0.05$ entonces rechazamos la hipótesis nula con confianza $1-\alpha = 0.95$ o $95\%$ ### Ejercicio Considere la muestra de datos anterior - Seleccione un conjunto de distribuciones teóricas - Encuentra la que tiene mejor ajuste usando `kstest` ```python ``` ## Responder preguntas con nuestro modelo: Test de hipótesis Se aplica un tratamiento nuevo a una muestra de la población - ¿Es el tratamiento efectivo? - ¿Existe una diferencia entre los que tomaron el tratamiento y los que no? El test de hipótesis es un procedimiento estadístico para comprobar si el resultado de un experimento es significativo en la población Para esto formulamos dos escenarios cada uno con una hipótesis asociada - Hipótesis nula ($H_0$): Por ejemplo - "El experimento no produjo diferencia" - "El experimento no tuvo efecto" - "Las observaciones son producto del azar" - Hipótesis alternativa ($H_A$): Usualmente el complemento de $H_0$ > El test de hipótesis se diseña para medir que tan fuerte es la evidencia **en contra** de la hipótesis nula ### Algoritmo general de un test de hipótesis El siguiente es el algoritmo general de un test de hipótesis paramétrico 1. Definimos $H_0$ y $H_A$ 1. Definimos un estadístico $T$ 1. Asumimos una distribución para $T$ dado que $H_0$ es cierto 1. Seleccionamos un nivel de significancia $\alpha$ 1. Calculamos el $T$ para nuestros datos $T_{data}$ 1. Calculamos el **p-value** - Si nuestro test es de una cola: - Superior: $p = P(T>T_{data})$ - Inferior: $p = P(T<T_{data})$ - Si nuestro test es dos colas: $p = P(T>T_{data}) + P(T<T_{data})$ Finalmente: `Si` $p < \alpha$ > Rechazamos la hipótesis nula con confianza (1-$\alpha$) `De lo contrario` > No hay suficiente evidencia para rechazar la hipótesis nula El valor de $\alpha$ nos permite controlar el **[Error tipo I](https://es.wikipedia.org/wiki/Errores_de_tipo_I_y_de_tipo_II)**, es decir el error que cometemos si rechazamos $H_0$ cuando en realidad era cierta (falso positivo) Tipicamente se usa $\alpha=0.05$ o $\alpha=0.01$ **Errores de interpretación comunes** Muchas veces se asume que el p-value es la probabilidad de que $H_0$ sea cierta dado nuestras observaciones $$ p = P(H_0 | T> T_{data}) $$ Esto es un **grave error**. Formálmente el **p-value** es la probabilidad de observar un valor de $T$ más extremo que el observado, es decir $$ p = P(T> T_{data} | H_0) $$ Otro error común es creer que no ser capaz de rechazar $H_0$ es lo mismo que aceptar $H_0$ No tener suficiente evidencia para rechazar no es lo mismo que aceptar ### Un primer test de hipótesis: El t-test de una muestra Sea un conjunto de $N$ observaciones iid $X = {x_1, x_2, \ldots, x_N}$ con media muestral $\bar x = \sum_{i=1}^N x_i$ El t-test de una muestra es un test de hipótesis que busca verificar si $\bar x$ es significativamente distinta de la **media poblacional** $\mu$, en el caso de que **no conocemos la varianza poblacional** $\sigma^2$ Las hipótesis son - $H_0:$ $\bar x = \mu$ - $H_A:$ $\bar x \neq \mu$ (dos colas) El estadístico de prueba es $$ t = \frac{\bar x - \mu}{\hat \sigma /\sqrt{N-1}} $$ donde $\hat \sigma = \sqrt{ \frac{1}{N} \sum_{i=1}^N (x_i - \bar x)^2}$ es la desviación estándar muestral (sesgada) Si asumimos que $\bar x$ se distribuye $\mathcal{N}(\mu, \frac{\sigma^2}{N})$ entonces $t$ se distribuye [t-student](https://en.wikipedia.org/wiki/Student%27s_t-distribution) con $N-1$ grados de libertad - Para muestras iid y $N$ grande el supuesto se cumple por teorema central del límite - Si $N$ es pequeño debemos verificar la normalidad de los datos ### Aplicación de t-test para probar que la regresión es significativa En un modelo de regresión lineal donde tenemos $N$ ejemplos $$ y_i = x_i \theta_1 + \theta_0, ~ i=1, 2, \ldots, N $$ Podemos probar que la correlación entre $x$ es $y$ es significativa con un test sobre $\theta_1$ Por ejemplo podemos plantear las siguientes hipótesis - $H_0:$ La pendiente es nula $\theta_1= 0$ - $H_A:$ La pendiente no es nula: $\theta_1\neq 0$ (dos colas) Y asumiremos que $\theta_1$ es normal pero que desconocemos su varianza. Bajo este supuesto se puede formular el siguiente estadístico de prueba $$ t = \frac{(\theta_1-\theta^*) }{\text{SE}_{\theta_1}/\sqrt{N-2}} = \frac{ r\sqrt{N-2}}{\sqrt{1-r^2}}, $$ donde $r$ es el coeficiente de correlación de Pearson (detalles más adelante) y la última expresión se obtiene reemplazando $\theta^*=0$ y $\text{SE}_{\theta_1} = \sqrt{ \frac{\frac{1}{N} \sum_i (y_i - \hat y_i)^2}{\text{Var}(x)}}$. El estadístico tiene distribución t-student con dos grados de libertad (modelo de dos parámetros) ## Ejercicio formativo: Regresión lineal En lecciones anteriores estudiamos el modelo de regresión lineal el cual nos permite estudiar si existe correlación entre variables continuas. También vimos como ajustar los parámetros del modelo usando el método de mínimos cuadrados. En este ejercicio formativo veremos como verificar si el modelo de regresión ajustado es correcto Luego de revisar este ejercicio usted habrá aprendido - La interpretación probabilística de la regresión lineal y la relación entre mínimos cuadrados ordinarios y la estimación por máxima verosimilitud - El estadístico $r$ para medir la fuerza de la correlación entre dos variables - Un test de hipótesis para verificar que la correlación encontrada es estadística significativa Usaremos el siguiente dataset de consumo de helados. Referencia: [A handbook of small datasets](https://www.routledge.com/A-Handbook-of-Small-Data-Sets/Hand-Daly-McConway-Lunn-Ostrowski/p/book/9780367449667), estudio realizado en los años 50 ```python df = pd.read_csv('../data/helados.csv', header=0, index_col=0) df.columns = ['consumo', 'ingreso', 'precio', 'temperatura'] display(df.head()) ``` El dataset tiene la temperatura promedio del día (grados Fahrenheit), el precio promedio de los helados comprados (dolares), el ingreso promedio familiar semanal de las personas que compraron helado (dolares) y el consumo ([pintas](https://en.wikipedia.org/wiki/Pint) per capita). A continuación se muestra un gráfico de dispersión del consumo en función de las demás variables. ¿Cree usted que existe correlación en este caso? ```python fig, ax = plt.subplots(1, 3, figsize=(8, 3), tight_layout=True, sharey=True) for i, col in enumerate(df.columns[1:]): ax[i].scatter(df[col], df["consumo"], s=10) ax[i].set_xlabel(col) ax[0].set_ylabel(df.columns[0]); ``` ### Interpretación probabilística y MLE de la regresión lineal Sea $y$ el consumo y $x$ la temperatura. Asumiremos errores gaussianos iid $$ y_i = \hat y_i + \epsilon_i, \epsilon_i \sim \mathcal{N}(0, \sigma^2), $$ y un modelo lineal de **dos parámetros** (linea recta) $$ \hat y_i = \theta_0 + \theta_1 x_i $$ Bajo estos supuestos el estimador de máxima verosimilitud es $$ \begin{align} \hat \theta &= \text{arg}\max_\theta \log \mathcal{L}(\theta) \nonumber \\ &=\text{arg}\max_\theta - \frac{1}{2\sigma^2} \sum_{i=1}^N (y_i - \theta_0 - \theta_1 x_i)^2 \nonumber \end{align} $$ Es decir que el estimador de máxima verosimilitud es equivalente al de mínimos cuadrados ordanrios $\hat \theta= (X^T X)^{-1} X^T y$ que vimos anteriormente **Importante:** Cuando utilizamos la solución de mínimos cuadrados estamos asumiendo implicitamente que las observaciones son iid y que la verosimilitud es Gaussiana Derivando con respecto a los parámetros e igualado a cero tenemos que $$ \begin{align} \sum_i y_i - N\theta_0 - \theta_1 \sum_i x_i &= 0 \nonumber \\ \sum_i y_i x_i - \theta_0 \sum_i x_i - \theta_1 \sum_i x_i^2 &= 0 \nonumber \end{align} $$ Finalmente podemos despejar $$ \begin{align} \theta_0 &= \bar y - \theta_1 \bar x \nonumber \\ \theta_1 &= \frac{\sum_i x_i y_i - N \bar x \bar y}{\sum_i x_i^2 - M \bar x^2} \nonumber \\ &= \frac{ \sum_i (y_i - \bar y)(x_i - \bar x)}{\sum_i (x_i - \bar x)^2} = \frac{\text{COV}(x, y)}{\text{Var}(x)} \end{align} $$ de donde reconocemos las expresiones para la covarianza entre $x$ e $y$ y la varianza de $x$ ### Coeficiente de correlación de Pearson La fuerza de la correlación se suele medir usando $$ r^2 = 1 - \frac{\sum_i ( y_i - \hat y_i)^2}{\sum_i ( y_i - \bar y)^2} = 1 - \frac{\frac{1}{M} \sum_i (y_i - \hat y_i)^2}{\text{Var}(y)} = \frac{\text{COV}^2(x, y)}{\text{Var}(x) \text{Var}(y)} $$ donde $r = \frac{\text{COV}(x, y)}{\sqrt{\text{Var}(x) \text{Var}(y)}} \in [-1, 1]$ se conoce como [coeficiente de correlación de Pearson](https://en.wikipedia.org/wiki/Pearson_correlation_coefficient) donde - si $r=1$ existe una correlación lineal perfecta - si $r=-1$ existe una anticorrelación lineal perfecta - si $r=0$ no hay correlación lineal entre las variables En general un $r>0.5$ se considera una correlación importante **Calculando $r$ con y los parámetros de la regresión lineal** Podemos usar el atributo de dataframe ```python df.corr() ``` Que retorna la matriz de correlaciones lineales ```python df.corr() ``` Si queremos también el valor de los parámetros podemos usar la función de scipy ```python scipy.stats.linregress(x, # Variable independiente unidimensional y # Variable dependiente unidimensional ) ``` Esta función retorna una tupla con - Valor de la pendiente: $\theta_1$ - Valor de la intercepta: $\theta_0$ - Coeficiente de correlación $r$ - p-value - Error estándar del ajuste ```python fig, ax = plt.subplots(1, 3, figsize=(8, 3), tight_layout=True, sharey=True) ax[0].set_ylabel(df.columns[0]); for i, col in enumerate(df.columns[1:]): res = scipy.stats.linregress(df[col], df["consumo"]) x_plot = np.linspace(np.amin(df[col]), np. amax(df[col]), num=100) ax[i].scatter(df[col], df["consumo"], label='datos', s=10) ax[i].plot(x_plot, res.slope*x_plot + res.intercept, lw=2, c='r', label='modelo'); ax[i].set_xlabel(col) ax[i].set_title(f"$r$: {res.rvalue:0.5f}") ax[i].legend() ``` Es decir que visualmente parece existir - una correlación positiva alta entre consumo y temperatura - una correlación negativa moderada entre consumo y precio - una correlación cercana a cero entre consumo e ingreso ### Test de hipótesis y conclusiones La función `linregress` implementa el t-test sobre $\theta_1$ que vimos anteriormente. Usemos estos resultados para verificar si las correlaciones son estadísticamente significativas ```python alpha = 0.05 for i, col in enumerate(df.columns[1:]): res = scipy.stats.linregress(df[col], df["consumo"]) print(f"{col}: \t p-value:{res.pvalue:0.4f} \t ¿Menor que {alpha}?: {res.pvalue < alpha}") ``` Como complemento visualizemos - las distribuciones bajo la hipótesis nula: linea azul - los límites dados por $\alpha$: linea punteada negra - El valor del observado para cada una de las variables: linea roja ```python fig, ax = plt.subplots(1, 3, figsize=(8, 2), tight_layout=True, sharey=True) ax[0].set_ylabel(df.columns[0]); N = df.shape[0] t = np.linspace(-7, 7, num=1000) dist = scipy.stats.t(loc=0, scale=1, df=N-2) # dos grados de libertad for i, col in enumerate(df.columns[1:]): res = scipy.stats.linregress(df[col], df["consumo"]) t_data = res.rvalue*np.sqrt(N-2)/np.sqrt(1.-res.rvalue**2) ax[i].plot(t, dist.pdf(t)) ax[i].plot([dist.ppf(alpha/2)]*2, [0, np.amax(dist.pdf(t))], 'k--') ax[i].plot([dist.ppf(1-alpha/2)]*2, [0, np.amax(dist.pdf(t))], 'k--') ax[i].plot([t_data]*2, [0, np.amax(dist.pdf(t))], 'r-') ax[i].set_xlabel(col) ``` **Conclusión** Basado en los p-values y considerando $\alpha=0.05$ ¿Qué podemos decir de las correlaciones con el consumo de helados? > Rechazamos la hipótesis nula de que no existe correlación entre temperatura y consumo con un 95% de confianza Para las variables ingreso y precio no existe suficiente evidencia para rechazar $H_0$ ### Reflexión final En el ejercicio anterior usamos t-test para una regresión lineal entre dos variables ¿Qué prueba puedo usar si quiero hacer regresión lineal multivariada? > Se puede usar [ANOVA](https://pythonfordatascience.org/anova-python/) ¿Qué pasa si... - mis datos tienen una relación que no es lineal? - $\theta_1$ no es Gaussiano/normal? - si el ruido no es Gaussiano? - si el ruido es Gaussiano pero su varianza cambia en el tiempo? > En estos casos no se cumplen los supuestos del modelo o del test, por ende el resultado no es confiable Si mis supuestos no se cumplen con ninguna prueba parámetrica, la opión es utilizar pruebas no-paramétricas ## Prueba no-paramétrica: *Bootstrap* Podemos estimar la incerteza de un estimador de forma no-paramétrica usando **muestreo tipo *bootstrap*** Esto consiste en tomar nuestro conjunto de datos de tamaño $N$ y crear $T$ nuevos conjuntos que "se le parezcan". Luego se calcula el valor del estimador que estamos buscando en los $T$ conjuntos. Con esto obtenemos una distribución para el estimador como muestra el siguiente diagrama Para crear los subconjuntos podríamos suponer independencia y utilizar **muestreo con reemplazo**. Esto consiste en tomar $N$ muestras al azar permitiendo repeticiones, como muestra el siguiente diagrama Si no es posible suponer indepdencia se puede realizar bootstrap basado en residuos y bootstrap dependiente. Puedes consultar más detalles sobre [*bootstrap*](https://www.stat.cmu.edu/~cshalizi/402/lectures/08-bootstrap/lecture-08.pdf) [aquí](http://homepage.divms.uiowa.edu/~rdecook/stat3200/notes/bootstrap_4pp.pdf) y [acá](https://www.sagepub.com/sites/default/files/upm-binaries/21122_Chapter_21.pdf). A continuación nos enfocaremos en el clásico muestreo con reemplazo y como implementarlo en Python ### Implementación con Numpy y Scipy La función `numpy.random.choice` permite remuestrear un conjunto de datos Por ejemplo para la regresión lineal debemos remuestrar las parejas/tuplas $(x_i, y_i)$ Luego calculamos y guardamos los parámetros del modelo para cada remuestreo. En este ejemplo haremos $1000$ repeticiones del conjunto de datos ```python df = pd.read_csv('../data/helados.csv', header=0, index_col=0) df.columns = ['consumo', 'ingreso', 'precio', 'temperatura'] x, y = df["temperatura"].values, df["consumo"].values params = scipy.stats.linregress(x, y) def muestreo_con_reemplazo(x, y): N = len(x) idx = np.random.choice(N, size=N, replace=True) return x[idx], y[idx] def boostrap_linregress(x, y, T=100): # Parámetros: t0, t1 y r params = np.zeros(shape=(T, 3)) for t in range(T): res = scipy.stats.linregress(*muestreo_con_reemplazo(x, y)) params[t, :] = [res.intercept, res.slope, res.rvalue] return params boostrap_params = boostrap_linregress(x, y, T=1000) ``` ### Intervalos de confianza empíricos Veamos la distribución empírica de $r$ obtenida usando bootstrap En la figura de abajo tenemos - Histograma azul: Distribución bootstrap de $r$ - Linea roja: $r$ de los datos - Lineas punteadas negras: Intervalo de confianza empírico al 95% ```python r_bootstrap = boostrap_params[:, 2] fig, ax = plt.subplots(figsize=(4, 3), tight_layout=True) hist_val, hist_lim, _ = ax.hist(r_bootstrap, bins=20, density=True) ax.plot([params.rvalue]*2, [0, np.max(hist_val)], 'r-', lw=2) IC = np.percentile(r_bootstrap, [2.5, 97.5]) ax.plot([IC[0]]*2, [0, np.max(hist_val)], 'k--', lw=2) ax.plot([IC[1]]*2, [0, np.max(hist_val)], 'k--', lw=2) print(f"Intervalo de confianza al 95% de r: {IC}") ``` De la figura podemos notar que el 95% de la distribución empírica esta sobre $r=0.5$ También podemos notar que la distribución empírica de $r$ no es simétrica, por lo que aplicar un t-test parámetrico sobre $r$ no hubiera sido correcto ### Visualizando la incerteza del modelo Usando la distribución empírica de los parámetros $\theta_0$ y $\theta_1$ podemos visualizar la incerteza de nuestro modelo de regresión lineal En la figura de abajo tenemos - Puntos azules: Datos - Linea roja: Modelo de regresión lineal en los datos - Sombra rojo claro: $\pm 2$ desviaciones estándar del modelo en base a la distribución empírica ```python fig, ax = plt.subplots(figsize=(4, 3), tight_layout=True) ax.set_ylabel('Consumo') ax.set_xlabel('Temperatura') ax.scatter(x, y, zorder=100, s=10, label='datos') def model(theta0, theta1, x): return x*theta1 + theta0 ax.plot(x_plot, model(params.intercept, params.slope, x_plot), c='r', lw=2, label='mejor ajuste') dist_lines = model(boostrap_params[:, 0], boostrap_params[:, 1], x_plot.reshape(-1, 1)).T mean_lines, std_lines = np.mean(dist_lines, axis=0), np.std(dist_lines, axis=0) ax.fill_between(x_plot, mean_lines - 2*std_lines, mean_lines + 2*std_lines, color='r', alpha=0.25, label='incerteza') plt.legend(); ``` ```python ```
(** * Projeto de LC1 - 2022-1 (30 pontos) *) (** Projeto De Lógica Computacional 1. 2022/1 Integrantes: 1] Andrey Calaca Resende 180062433 2]Gustavo Lopes Dezan 202033463 3]Felipe Dantas Borges 202021749 4]Eduardo Ferreira Marques Cavalcante 202006368 Descrição: Projeto que formaliza a equivalência entre as diferentes noções de permutação denominadas perm e equiv utilizado o coq. *) Require Import PeanoNat List. Open Scope nat_scope. Require Import List Arith. Require Import Permutation. Open Scope nat_scope. (** perm_hd = perm_skip acredito *) (** perm_eq = perm_eq *) (* Noção de permutação utilziado no trabalho, Permutation não tem perm_eq *) Inductive perm : list nat -> list nat -> Prop := | perm_eq: forall l1, perm l1 l1 | perm_swap: forall x y l1, perm (x :: y :: l1) (y :: x :: l1) | perm_hd: forall x l1 l2, perm l1 l2 -> perm (x :: l1) (x :: l2) | perm_trans: forall l1 l2 l3, perm l1 l2 -> perm l2 l3 -> perm l1 l3. (** (2 pontos) *) (** Mostrar que o Permutation do coq library possui equivalência com perm deste trabalho *) Lemma perm_equiv_Permutation: forall l1 l2, perm l1 l2 <-> Permutation l1 l2. Proof. split. - intro H. induction H. -- apply Permutation_refl. -- apply Permutation.perm_swap. -- apply Permutation.perm_skip. --- apply IHperm. -- apply Permutation.perm_trans with (l2). --- apply IHperm1. --- apply IHperm2. - intro H. induction H. -- apply perm_eq. -- apply perm_hd. --- apply IHPermutation. -- apply perm_swap. -- apply perm_trans with (l'). --- apply IHPermutation1. --- apply IHPermutation2. Qed. (* Fixpoint para definir número de ocorrencias de algum elemento em uma lista *) Fixpoint num_oc (x: nat) (l: list nat): nat := match l with | nil => 0 | h::tl => if (x =? h) then S (num_oc x tl) else num_oc x tl end. (* Definição de equiv *) Definition equiv l l' := forall n:nat, num_oc n l = num_oc n l'. Lemma perm_app_cons: forall l1 l2 a, perm (a :: l1 ++ l2) (l1 ++ a :: l2). Proof. induction l1. - intros l2 a. simpl. apply perm_eq. - intros l2 a2. (* porque o coq usa o 'a' como o numero natural?*) simpl. apply perm_trans with (a :: a2 :: l1 ++ l2). + apply perm_swap. + apply perm_hd. apply IHl1. Qed. Lemma num_oc_S: forall x l1 l2, num_oc x (l1 ++ x :: l2) = S (num_oc x (l1 ++ l2)). Proof. induction l1. - intro l2. simpl. rewrite Nat.eqb_refl; reflexivity. - intro l2. simpl. destruct (x =? a); rewrite IHl1; reflexivity. Qed. Lemma num_occ_cons: forall l x n, num_oc x l = S n -> exists l1 l2, l = l1 ++ x :: l2 /\ num_oc x (l1 ++ l2) = n. Proof. induction l. -intros. simpl in H. inversion H. -intros. simpl in H. destruct (x =? a) eqn: H1. +specialize (IHl x n). apply Nat.eqb_eq in H1. rewrite H1. exists nil. exists l. simpl. rewrite H1 in H. apply eq_add_S in H. split. *reflexivity. *assumption. +apply IHl in H. destruct H. destruct H. destruct H. rewrite H. exists (a :: x0). exists x1. split. *reflexivity. *simpl. rewrite H1. assumption. Qed. Lemma num_oc_neq: forall n a l1 l2, n =? a = false -> num_oc n (l1 ++ a :: l2) = num_oc n (l1 ++ l2). Proof. induction l1. - intros l2 H. simpl. rewrite H. reflexivity. - intros l2 Hfalse. simpl. destruct (n =? a0) eqn:H. + apply (IHl1 l2) in Hfalse. rewrite Hfalse; reflexivity. + apply (IHl1 l2) in Hfalse. assumption. Qed. Lemma equiv_nil: forall l, equiv nil l -> l = nil. Proof. intro l. case l. - intro H. reflexivity. - intros n l' H. unfold equiv in H. specialize (H n). simpl in H. rewrite Nat.eqb_refl in H. inversion H. Qed. Lemma equiv_to_perm: forall l l', equiv l l' -> perm l l'. Proof. induction l. - intros. apply equiv_nil in H. rewrite H. apply perm_eq. - intros. assert (H' := H). unfold equiv in H'. specialize (H' a). simpl in H'. rewrite Nat.eqb_refl in H'. symmetry in H'. apply num_occ_cons in H'. destruct H'. destruct H0. destruct H0. assert(H2:=IHl). specialize (IHl (x++x0)). rewrite H0. apply (perm_trans (a :: l) (a :: x ++ x0) (x ++ a :: x0) ). -- apply perm_hd. apply IHl. rewrite H0 in H. intro. unfold equiv in H. specialize (H n). inversion H. destruct (n =? a) eqn: eq. --- apply Nat.eqb_eq in eq. rewrite eq in H4. rewrite (num_oc_S a x x0) in H4 . inversion H4. rewrite eq. auto. --- replace (num_oc n (x ++ a :: x0)) with (num_oc n (x ++ x0)) in H4. ---- auto. ---- symmetry. apply (num_oc_neq n a x x0 ). auto. -- apply perm_app_cons. Qed. (** (18 pontos) *) (* Prova do equiv <-> perm *) Theorem perm_equiv: forall l l', equiv l l' <-> perm l l'. Proof. intros l l'. split. - apply equiv_to_perm. (* equiv -> perm dificil de se provar sem lemas separados *) - intro H. induction H. -- unfold equiv. intro x. reflexivity. -- unfold equiv in *. intro n. simpl. destruct (n =? x) eqn: H. + destruct (n =? y) eqn: H'. --- reflexivity. --- reflexivity. + destruct (n =? y) eqn: H'. --- reflexivity. --- reflexivity. -- unfold equiv in *. intro n. destruct (n=?x) eqn:H'. --- simpl. rewrite H'. rewrite IHperm. reflexivity. --- simpl. rewrite H'. rewrite IHperm. reflexivity. -- unfold equiv in *. intro n. specialize (IHperm1 n). rewrite IHperm1. apply IHperm2. Qed.
-- | -- Module : BenchShow.Report -- Copyright : (c) 2018 Composewell Technologies -- -- License : BSD3 -- Maintainer : [email protected] -- Stability : experimental -- Portability : GHC -- {-# LANGUAGE FlexibleContexts #-} {-# LANGUAGE RecordWildCards #-} {-# LANGUAGE TupleSections #-} module BenchShow.Report ( report ) where import Control.Applicative (ZipList(..)) import Control.Monad (forM_) import Data.Maybe (fromMaybe) import Statistics.Types (Estimate(..)) import Text.PrettyPrint.ANSI.Leijen hiding ((<$>)) import Text.Printf (printf) import BenchShow.Common import BenchShow.Analysis multiplesToPercentDiff :: Double -> Double multiplesToPercentDiff x = (if x > 0 then x - 1 else x + 1) * 100 colorCode :: Word -> Double -> Doc -> Doc colorCode thresh x = if x > fromIntegral thresh then dullred else if x < (-1) * fromIntegral thresh then dullgreen else id -- XXX in comparative reports render lower than baseline in green and higher -- than baseline in red genGroupReport :: RawReport -> Config -> IO () genGroupReport RawReport{..} cfg@Config{..} = do let diffStr = if length reportColumns > 1 then diffString presentation diffStrategy else Nothing case mkTitle of Just _ -> putStrLn $ maybe "" (\f -> f reportIdentifier) mkTitle Nothing -> putStrLn $ makeTitle reportIdentifier diffStr cfg let benchcol = "Benchmark" : reportRowIds groupcols = let firstCol : tailCols = reportColumns colorCol ReportColumn{..} = let f x = case presentation of Groups Diff -> if x > 0 then dullred else dullgreen Groups PercentDiff -> colorCode threshold x Groups Multiples -> let y = multiplesToPercentDiff x in colorCode threshold y _ -> id in map f colValues renderTailCols estimators col analyzed = let regular = renderGroupCol $ showCol col Nothing analyzed colored = zipWith ($) (id : id : colorCol col) $ renderGroupCol $ showCol col estimators analyzed in case presentation of Groups Diff -> colored Groups PercentDiff -> colored Groups Multiples -> colored _ -> regular in renderGroupCol (showFirstCol firstCol) : case reportEstimators of Just ests -> getZipList $ renderTailCols <$> ZipList (map Just $ tail ests) <*> ZipList tailCols <*> ZipList (tail reportAnalyzed) Nothing -> getZipList $ renderTailCols <$> pure Nothing <*> ZipList tailCols <*> ZipList (tail reportAnalyzed) rows = foldl (zipWith (<+>)) (renderCol benchcol) groupcols putDoc $ vcat rows putStrLn "\n" where renderCol [] = error "Bug: header row missing" renderCol col@(h : rows) = let maxlen = maximum (map length col) in map (fill maxlen . text) (h : replicate maxlen '-' : rows) renderGroupCol [] = error "Bug: There has to be at least one column in raw report" renderGroupCol col@(h : rows) = let maxlen = maximum (map length col) in map (\x -> indent (maxlen - length x) $ text x) (h : replicate maxlen '-' : rows) showEstimator est = case est of Mean -> "(mean)" Median -> "(medi)" Regression -> "(regr)" showEstVal estvals est = case est of Mean -> let sd = analyzedStdDev estvals val = analyzedMean estvals in if val /= 0 then printf "(%.2f)" $ sd / abs val else "" Median -> let x = ovFraction $ analyzedOutlierVar estvals in printf "(%.2f)" x Regression -> case analyzedRegRSq estvals of Just rsq -> printf "(%.2f)" (estPoint rsq) Nothing -> "" showFirstCol ReportColumn{..} = let showVal = printf "%.2f" withEstimator val estvals = showVal val ++ if verbose then showEstVal estvals estimator else "" withEstVal = zipWith withEstimator colValues (head reportAnalyzed) in colName : withEstVal showCol ReportColumn{..} estimators analyzed = colName : let showVal val = let showDiff = if val > 0 then printf "+%.2f" val else printf "%.2f" val in case presentation of Groups Diff -> showDiff Groups PercentDiff -> showDiff Groups Multiples -> if val > 0 then printf "%.2f" val else printf "1/%.2f" (negate val) _ -> printf "%.2f" val showEstAnnot est = case presentation of Groups Diff -> showEstimator est Groups PercentDiff -> showEstimator est Groups Multiples -> showEstimator est _ -> "" in case estimators of Just ests -> let withAnnot val estvals est = showVal val ++ if verbose then showEstVal estvals est ++ showEstAnnot est else "" in getZipList $ withAnnot <$> ZipList colValues <*> ZipList analyzed <*> ZipList ests Nothing -> let withEstVal val estvals est = showVal val ++ if verbose then showEstVal estvals est else "" in getZipList $ withEstVal <$> ZipList colValues <*> ZipList analyzed <*> pure estimator -- | Presents the benchmark results in a CSV input file as text reports -- according to the provided configuration. The first parameter is the input -- file name. The second parameter, when specified using 'Just', is the name -- prefix for the output SVG image file(s). One or more output files may be -- generated with the given prefix depending on the 'Presentation' setting. -- When the second parameter is 'Nothing' the reports are printed on the -- console. The last parameter is the configuration to customize the report, -- you can start with 'defaultConfig' as the base and override any of the -- fields that you may want to change. -- -- For example: -- -- @ -- report "bench-results.csv" Nothing 'defaultConfig' -- @ -- -- @since 0.2.0 report :: FilePath -> Maybe FilePath -> Config -> IO () report inputFile outputFile cfg@Config{..} = do let dir = fromMaybe "." outputDir (csvlines, fields) <- prepareToReport inputFile cfg (runs, matrices) <- prepareGroupMatrices cfg inputFile csvlines fields case presentation of Groups style -> forM_ fields $ reportComparingGroups style dir outputFile TextReport runs cfg genGroupReport matrices Fields -> do forM_ matrices $ reportPerGroup dir outputFile TextReport cfg genGroupReport Solo -> let funcs = map (\mx -> reportComparingGroups Absolute dir (fmap (++ "-" ++ groupName mx) outputFile) TextReport runs cfg genGroupReport [mx]) matrices in sequence_ $ funcs <*> fields
/*** Some usefull math macros ***/ #define SIGN(a,b) ((b) >= 0.0 ? fabs(a) : -fabs(a)) static double mnarg1,mnarg2; #define FMAX(a,b) (mnarg1=(a),mnarg2=(b),(mnarg1) > (mnarg2) ?\ (mnarg1) : (mnarg2)) static double mnarg1,mnarg2; #define FMIN(a,b) (mnarg1=(a),mnarg2=(b),(mnarg1) < (mnarg2) ?\ (mnarg1) : (mnarg2)) #define ERFC_NPTS (int) 75 #define ERFC_PARAM_DELTA (float) 0.1 static double log_erfc_table[ERFC_NPTS], erfc_params[ERFC_NPTS]; static gsl_interp_accel *erfc_acc; static gsl_spline *erfc_spline; #define NGaussLegendre 40 //defines the number of points in the Gauss-Legendre quadrature integration #define NMass 300 #define NSFR_high 200 #define NSFR_low 250 #define NGL_SFR 100 // 100 #define NMTURN 50//100 #define LOG10_MTURN_MAX ((double)(10)) #define LOG10_MTURN_MIN ((double)(5.-9e-8)) #define NR_END 1 #define FREE_ARG char* #define MM 7 #define NSTACK 50 #define EPS2 3.0e-11 #define Luv_over_SFR (double)(1./1.15/1e-28) // Luv/SFR = 1 / 1.15 x 10^-28 [M_solar yr^-1/erg s^-1 Hz^-1] // G. Sun and S. R. Furlanetto (2016) MNRAS, 417, 33 #define delta_lnMhalo (double)(5e-6) #define Mhalo_min (double)(1e6) #define Mhalo_max (double)(1e16) float calibrated_NF_min; double *deltaz, *deltaz_smoothed, *NeutralFractions, *z_Q, *Q_value, *nf_vals, *z_vals; int N_NFsamples,N_extrapolated, N_analytic, N_calibrated, N_deltaz; bool initialised_ComputeLF = false; gsl_interp_accel *LF_spline_acc; gsl_spline *LF_spline; gsl_interp_accel *deriv_spline_acc; gsl_spline *deriv_spline; struct CosmoParams *cosmo_params_ps; struct UserParams *user_params_ps; struct FlagOptions *flag_options_ps; //double sigma_norm, R, theta_cmb, omhh, z_equality, y_d, sound_horizon, alpha_nu, f_nu, f_baryon, beta_c, d2fact, R_CUTOFF, DEL_CURR, SIG_CURR; double sigma_norm, theta_cmb, omhh, z_equality, y_d, sound_horizon, alpha_nu, f_nu, f_baryon, beta_c, d2fact, R_CUTOFF, DEL_CURR, SIG_CURR; float MinMass, mass_bin_width, inv_mass_bin_width; double sigmaparam_FgtrM_bias(float z, float sigsmallR, float del_bias, float sig_bias); float *Mass_InterpTable, *Sigma_InterpTable, *dSigmadm_InterpTable; float *log10_overdense_spline_SFR, *log10_Nion_spline, *Overdense_spline_SFR, *Nion_spline; float *prev_log10_overdense_spline_SFR, *prev_log10_Nion_spline, *prev_Overdense_spline_SFR, *prev_Nion_spline; float *Mturns, *Mturns_MINI; float *log10_Nion_spline_MINI, *Nion_spline_MINI; float *prev_log10_Nion_spline_MINI, *prev_Nion_spline_MINI; float *xi_SFR,*wi_SFR, *xi_SFR_Xray, *wi_SFR_Xray; float *overdense_high_table, *overdense_low_table, *log10_overdense_low_table; float **log10_SFRD_z_low_table, **SFRD_z_high_table; float **log10_SFRD_z_low_table_MINI, **SFRD_z_high_table_MINI; double *lnMhalo_param, *Muv_param, *Mhalo_param; double *log10phi, *M_uv_z, *M_h_z; double *lnMhalo_param_MINI, *Muv_param_MINI, *Mhalo_param_MINI; double *log10phi_MINI; *M_uv_z_MINI, *M_h_z_MINI; double *deriv, *lnM_temp, *deriv_temp; double *z_val, *z_X_val, *Nion_z_val, *SFRD_val; double *Nion_z_val_MINI, *SFRD_val_MINI; void initialiseSigmaMInterpTable(float M_Min, float M_Max); void freeSigmaMInterpTable(); void initialiseGL_Nion(int n, float M_Min, float M_Max); void initialiseGL_Nion_Xray(int n, float M_Min, float M_Max); float Mass_limit (float logM, float PL, float FRAC); void bisection(float *x, float xlow, float xup, int *iter); float Mass_limit_bisection(float Mmin, float Mmax, float PL, float FRAC); double sheth_delc(double del, double sig); float dNdM_conditional(float growthf, float M1, float M2, float delta1, float delta2, float sigma2); double dNion_ConditionallnM(double lnM, void *params); double Nion_ConditionalM(double growthf, double M1, double M2, double sigma2, double delta1, double delta2, double MassTurnover, double Alpha_star, double Alpha_esc, double Fstar10, double Fesc10, double Mlim_Fstar, double Mlim_Fesc, bool FAST_FCOLL_TABLES); double dNion_ConditionallnM_MINI(double lnM, void *params); double Nion_ConditionalM_MINI(double growthf, double M1, double M2, double sigma2, double delta1, double delta2, double MassTurnover, double MassTurnover_upper, double Alpha_star, double Alpha_esc, double Fstar10, double Fesc10, double Mlim_Fstar, double Mlim_Fesc, bool FAST_FCOLL_TABLES); float GaussLegendreQuad_Nion(int Type, int n, float growthf, float M2, float sigma2, float delta1, float delta2, float MassTurnover, float Alpha_star, float Alpha_esc, float Fstar10, float Fesc10, float Mlim_Fstar, float Mlim_Fesc, bool FAST_FCOLL_TABLES); float GaussLegendreQuad_Nion_MINI(int Type, int n, float growthf, float M2, float sigma2, float delta1, float delta2, float MassTurnover, float MassTurnover_upper, float Alpha_star, float Alpha_esc, float Fstar7_MINI, float Fesc7_MINI, float Mlim_Fstar_MINI, float Mlim_Fesc_MINI, bool FAST_FCOLL_TABLES); //JBM: Exact integral for power-law indices non zero (for zero it's erfc) double Fcollapprox (double numin, double beta); int n_redshifts_1DTable; double zmin_1DTable, zmax_1DTable, zbin_width_1DTable; double *FgtrM_1DTable_linear; static gsl_interp_accel *Q_at_z_spline_acc; static gsl_spline *Q_at_z_spline; static gsl_interp_accel *z_at_Q_spline_acc; static gsl_spline *z_at_Q_spline; static double Zmin, Zmax, Qmin, Qmax; void Q_at_z(double z, double *splined_value); void z_at_Q(double Q, double *splined_value); static gsl_interp_accel *deltaz_spline_for_photoncons_acc; static gsl_spline *deltaz_spline_for_photoncons; static gsl_interp_accel *NFHistory_spline_acc; static gsl_spline *NFHistory_spline; static gsl_interp_accel *z_NFHistory_spline_acc; static gsl_spline *z_NFHistory_spline; void initialise_NFHistory_spline(double *redshifts, double *NF_estimate, int NSpline); void z_at_NFHist(double xHI_Hist, double *splined_value); void NFHist_at_z(double z, double *splined_value); //int nbin; //double *z_Q, *Q_value, *Q_z, *z_value; double FinalNF_Estimate, FirstNF_Estimate; struct parameters_gsl_FgtrM_int_{ double z_obs; double gf_obs; }; struct parameters_gsl_SFR_General_int_{ double z_obs; double gf_obs; double Mdrop; double Mdrop_upper; double pl_star; double pl_esc; double frac_star; double frac_esc; double LimitMass_Fstar; double LimitMass_Fesc; }; struct parameters_gsl_SFR_con_int_{ double gf_obs; double Mval; double sigma2; double delta1; double delta2; double Mdrop; double Mdrop_upper; double pl_star; double pl_esc; double frac_star; double frac_esc; double LimitMass_Fstar; double LimitMass_Fesc; }; unsigned long *lvector(long nl, long nh); void free_lvector(unsigned long *v, long nl, long nh); float *vector(long nl, long nh); void free_vector(float *v, long nl, long nh); void spline(float x[], float y[], int n, float yp1, float ypn, float y2[]); void splint(float xa[], float ya[], float y2a[], int n, float x, float *y); void gauleg(float x1, float x2, float x[], float w[], int n); /***** FUNCTION PROTOTYPES *****/ double init_ps(); /* initialize global variables, MUST CALL THIS FIRST!!! returns R_CUTOFF */ void free_ps(); /* deallocates the gsl structures from init_ps */ double sigma_z0(double M); //calculates sigma at z=0 (no dicke) double power_in_k(double k); /* Returns the value of the linear power spectrum density (i.e. <|delta_k|^2>/V) at a given k mode at z=0 */ double TFmdm(double k); //Eisenstein & Hu power spectrum transfer function void TFset_parameters(); double TF_CLASS(double k, int flag_int, int flag_dv); //transfer function of matter (flag_dv=0) and relative velocities (flag_dv=1) fluctuations from CLASS double power_in_vcb(double k); /* Returns the value of the DM-b relative velocity power spectrum density (i.e. <|delta_k|^2>/V) at a given k mode at z=0 */ double FgtrM(double z, double M); double FgtrM_wsigma(double z, double sig); double FgtrM_st(double z, double M); double FgtrM_Watson(double growthf, double M); double FgtrM_Watson_z(double z, double growthf, double M); double FgtrM_General(double z, double M); float erfcc(float x); double splined_erfc(double x); double M_J_WDM(); void Broadcast_struct_global_PS(struct UserParams *user_params, struct CosmoParams *cosmo_params){ cosmo_params_ps = cosmo_params; user_params_ps = user_params; } /* this function reads the z=0 matter (CDM+baryons) and relative velocity transfer functions from CLASS (from a file) flag_int = 0 to initialize interpolator, flag_int = -1 to free memory, flag_int = else to interpolate. flag_dv = 0 to output density, flag_dv = 1 to output velocity. similar to built-in function "double T_RECFAST(float z, int flag)" */ double TF_CLASS(double k, int flag_int, int flag_dv) { static double kclass[CLASS_LENGTH], Tmclass[CLASS_LENGTH], Tvclass_vcb[CLASS_LENGTH]; static gsl_interp_accel *acc_density, *acc_vcb; static gsl_spline *spline_density, *spline_vcb; float trash, currk, currTm, currTv; double ans; int i; int gsl_status; FILE *F; char filename[500]; sprintf(filename,"%s/%s",global_params.external_table_path,CLASS_FILENAME); if (flag_int == 0) { // Initialize vectors and read file if (!(F = fopen(filename, "r"))) { LOG_ERROR("Unable to open file: %s for reading.", filename); Throw(IOError); } int nscans; for (i = 0; i < CLASS_LENGTH; i++) { nscans = fscanf(F, "%e %e %e ", &currk, &currTm, &currTv); if (nscans != 3) { LOG_ERROR("Reading CLASS Transfer Function failed."); Throw(IOError); } kclass[i] = currk; Tmclass[i] = currTm; Tvclass_vcb[i] = currTv; if (i > 0 && kclass[i] <= kclass[i - 1]) { LOG_WARNING("Tk table not ordered"); LOG_WARNING("k=%.1le kprev=%.1le", kclass[i], kclass[i - 1]); } } fclose(F); LOG_SUPER_DEBUG("Read CLASS Transfer file"); gsl_set_error_handler_off(); // Set up spline table for densities acc_density = gsl_interp_accel_alloc (); spline_density = gsl_spline_alloc (gsl_interp_cspline, CLASS_LENGTH); gsl_status = gsl_spline_init(spline_density, kclass, Tmclass, CLASS_LENGTH); GSL_ERROR(gsl_status); LOG_SUPER_DEBUG("Generated CLASS Density Spline."); //Set up spline table for velocities acc_vcb = gsl_interp_accel_alloc (); spline_vcb = gsl_spline_alloc (gsl_interp_cspline, CLASS_LENGTH); gsl_status = gsl_spline_init(spline_vcb, kclass, Tvclass_vcb, CLASS_LENGTH); GSL_ERROR(gsl_status); LOG_SUPER_DEBUG("Generated CLASS velocity Spline."); return 0; } else if (flag_int == -1) { gsl_spline_free (spline_density); gsl_interp_accel_free(acc_density); gsl_spline_free (spline_vcb); gsl_interp_accel_free(acc_vcb); return 0; } if (k > kclass[CLASS_LENGTH-1]) { // k>kmax LOG_WARNING("Called TF_CLASS with k=%f, larger than kmax! Returning value at kmax.", k); if(flag_dv == 0){ // output is density return (Tmclass[CLASS_LENGTH]/kclass[CLASS_LENGTH-1]/kclass[CLASS_LENGTH-1]); } else if(flag_dv == 1){ // output is rel velocity return (Tvclass_vcb[CLASS_LENGTH]/kclass[CLASS_LENGTH-1]/kclass[CLASS_LENGTH-1]); } //we just set it to the last value, since sometimes it wants large k for R<<cell_size, which does not matter much. } else { // Do spline if(flag_dv == 0){ // output is density ans = gsl_spline_eval (spline_density, k, acc_density); } else if(flag_dv == 1){ // output is relative velocity ans = gsl_spline_eval (spline_vcb, k, acc_vcb); } else{ ans=0.0; //neither densities not velocities? } } return ans/k/k; //we have to divide by k^2 to agree with the old-fashioned convention. } // FUNCTION sigma_z0(M) // Returns the standard deviation of the normalized, density excess (delta(x)) field, // smoothed on the comoving scale of M (see filter definitions for M<->R conversion). // The sigma is evaluated at z=0, with the time evolution contained in the dicke(z) factor, // i.e. sigma(M,z) = sigma_z0(m) * dicke(z) // normalized so that sigma_z0(M->8/h Mpc) = SIGMA8 in ../Parameter_files/COSMOLOGY.H // NOTE: volume is normalized to = 1, so this is equvalent to the mass standard deviation // M is in solar masses // References: Padmanabhan, pg. 210, eq. 5.107 double dsigma_dk(double k, void *params){ double p, w, T, gamma, q, aa, bb, cc, kR; // get the power spectrum.. choice of 5: if (user_params_ps->POWER_SPECTRUM == 0){ // Eisenstein & Hu T = TFmdm(k); // check if we should cuttoff power spectrum according to Bode et al. 2000 transfer function if (global_params.P_CUTOFF) T *= pow(1 + pow(BODE_e*k*R_CUTOFF, 2*BODE_v), -BODE_n/BODE_v); p = pow(k, cosmo_params_ps->POWER_INDEX) * T * T; } else if (user_params_ps->POWER_SPECTRUM == 1){ // BBKS gamma = cosmo_params_ps->OMm * cosmo_params_ps->hlittle * pow(E, -(cosmo_params_ps->OMb) - (cosmo_params_ps->OMb/cosmo_params_ps->OMm)); q = k / (cosmo_params_ps->hlittle*gamma); T = (log(1.0+2.34*q)/(2.34*q)) * pow( 1.0+3.89*q + pow(16.1*q, 2) + pow( 5.46*q, 3) + pow(6.71*q, 4), -0.25); p = pow(k, cosmo_params_ps->POWER_INDEX) * T * T; } else if (user_params_ps->POWER_SPECTRUM == 2){ // Efstathiou,G., Bond,J.R., and White,S.D.M., MNRAS,258,1P (1992) gamma = 0.25; aa = 6.4/(cosmo_params_ps->hlittle*gamma); bb = 3.0/(cosmo_params_ps->hlittle*gamma); cc = 1.7/(cosmo_params_ps->hlittle*gamma); p = pow(k, cosmo_params_ps->POWER_INDEX) / pow( 1+pow( aa*k + pow(bb*k, 1.5) + pow(cc*k,2), 1.13), 2.0/1.13 ); } else if (user_params_ps->POWER_SPECTRUM == 3){ // Peebles, pg. 626 gamma = cosmo_params_ps->OMm * cosmo_params_ps->hlittle * pow(E, -(cosmo_params_ps->OMb) - (cosmo_params_ps->OMb/cosmo_params_ps->OMm)); aa = 8.0 / (cosmo_params_ps->hlittle*gamma); bb = 4.7 / pow(cosmo_params_ps->hlittle*gamma, 2); p = pow(k, cosmo_params_ps->POWER_INDEX) / pow(1 + aa*k + bb*k*k, 2); } else if (user_params_ps->POWER_SPECTRUM == 4){ // White, SDM and Frenk, CS, 1991, 379, 52 gamma = cosmo_params_ps->OMm * cosmo_params_ps->hlittle * pow(E, -(cosmo_params_ps->OMb) - (cosmo_params_ps->OMb/cosmo_params_ps->OMm)); aa = 1.7/(cosmo_params_ps->hlittle*gamma); bb = 9.0/pow(cosmo_params_ps->hlittle*gamma, 1.5); cc = 1.0/pow(cosmo_params_ps->hlittle*gamma, 2); p = pow(k, cosmo_params_ps->POWER_INDEX) * 19400.0 / pow(1 + aa*k + bb*pow(k, 1.5) + cc*k*k, 2); } else if (user_params_ps->POWER_SPECTRUM == 5){ // output of CLASS T = TF_CLASS(k, 1, 0); //read from z=0 output of CLASS. Note, flag_int = 1 here always, since now we have to have initialized the interpolator for CLASS p = pow(k, cosmo_params_ps->POWER_INDEX) * T * T; if(user_params_ps->USE_RELATIVE_VELOCITIES) { //jbm:Add average relvel suppression p *= 1.0 - A_VCB_PM*exp( -pow(log(k/KP_VCB_PM),2.0)/(2.0*SIGMAK_VCB_PM*SIGMAK_VCB_PM)); //for v=vrms } } else{ LOG_ERROR("No such power spectrum defined: %i. Output is bogus.", user_params_ps->POWER_SPECTRUM); Throw(ValueError); } double Radius; Radius = *(double *)params; kR = k*Radius; if ( (global_params.FILTER == 0) || (sigma_norm < 0) ){ // top hat if ( (kR) < 1.0e-4 ){ w = 1.0;} // w converges to 1 as (kR) -> 0 else { w = 3.0 * (sin(kR)/pow(kR, 3) - cos(kR)/pow(kR, 2));} } else if (global_params.FILTER == 1){ // gaussian of width 1/R w = pow(E, -kR*kR/2.0); } else { LOG_ERROR("No such filter: %i. Output is bogus.", global_params.FILTER); Throw(ValueError); } return k*k*p*w*w; } double sigma_z0(double M){ double result, error, lower_limit, upper_limit; gsl_function F; double rel_tol = FRACT_FLOAT_ERR*10; //<- relative tolerance gsl_integration_workspace * w = gsl_integration_workspace_alloc (1000); double kstart, kend; double Radius; // R = MtoR(M); Radius = MtoR(M); // now lets do the integral for sigma and scale it with sigma_norm if(user_params_ps->POWER_SPECTRUM == 5){ kstart = fmax(1.0e-99/Radius, KBOT_CLASS); kend = fmin(350.0/Radius, KTOP_CLASS); }//we establish a maximum k of KTOP_CLASS~1e3 Mpc-1 and a minimum at KBOT_CLASS,~1e-5 Mpc-1 since the CLASS transfer function has a max! else{ kstart = 1.0e-99/Radius; kend = 350.0/Radius; } lower_limit = kstart;//log(kstart); upper_limit = kend;//log(kend); F.function = &dsigma_dk; F.params = &Radius; int status; gsl_set_error_handler_off(); status = gsl_integration_qag (&F, lower_limit, upper_limit, 0, rel_tol,1000, GSL_INTEG_GAUSS61, w, &result, &error); if(status!=0) { LOG_ERROR("gsl integration error occured!"); LOG_ERROR("(function argument): lower_limit=%e upper_limit=%e rel_tol=%e result=%e error=%e",lower_limit,upper_limit,rel_tol,result,error); LOG_ERROR("data: M=%e",M); GSL_ERROR(status); } gsl_integration_workspace_free (w); return sigma_norm * sqrt(result); } // FUNCTION TFmdm is the power spectrum transfer function from Eisenstein & Hu ApJ, 1999, 511, 5 double TFmdm(double k){ double q, gamma_eff, q_eff, TF_m, q_nu; q = k*pow(theta_cmb,2)/omhh; gamma_eff=sqrt(alpha_nu) + (1.0-sqrt(alpha_nu))/(1.0+pow(0.43*k*sound_horizon, 4)); q_eff = q/gamma_eff; TF_m= log(E+1.84*beta_c*sqrt(alpha_nu)*q_eff); TF_m /= TF_m + pow(q_eff,2) * (14.4 + 325.0/(1.0+60.5*pow(q_eff,1.11))); q_nu = 3.92*q/sqrt(f_nu/N_nu); TF_m *= 1.0 + (1.2*pow(f_nu,0.64)*pow(N_nu,0.3+0.6*f_nu)) / (pow(q_nu,-1.6)+pow(q_nu,0.8)); return TF_m; } void TFset_parameters(){ double z_drag, R_drag, R_equality, p_c, p_cb, f_c, f_cb, f_nub, k_equality; LOG_DEBUG("Setting Transfer Function parameters."); z_equality = 25000*omhh*pow(theta_cmb, -4) - 1.0; k_equality = 0.0746*omhh/(theta_cmb*theta_cmb); z_drag = 0.313*pow(omhh,-0.419) * (1 + 0.607*pow(omhh, 0.674)); z_drag = 1 + z_drag*pow(cosmo_params_ps->OMb*cosmo_params_ps->hlittle*cosmo_params_ps->hlittle, 0.238*pow(omhh, 0.223)); z_drag *= 1291 * pow(omhh, 0.251) / (1 + 0.659*pow(omhh, 0.828)); y_d = (1 + z_equality) / (1.0 + z_drag); R_drag = 31.5 * cosmo_params_ps->OMb*cosmo_params_ps->hlittle*cosmo_params_ps->hlittle * pow(theta_cmb, -4) * 1000 / (1.0 + z_drag); R_equality = 31.5 * cosmo_params_ps->OMb*cosmo_params_ps->hlittle*cosmo_params_ps->hlittle * pow(theta_cmb, -4) * 1000 / (1.0 + z_equality); sound_horizon = 2.0/3.0/k_equality * sqrt(6.0/R_equality) * log( (sqrt(1+R_drag) + sqrt(R_drag+R_equality)) / (1.0 + sqrt(R_equality)) ); p_c = -(5 - sqrt(1 + 24*(1 - f_nu-f_baryon)))/4.0; p_cb = -(5 - sqrt(1 + 24*(1 - f_nu)))/4.0; f_c = 1 - f_nu - f_baryon; f_cb = 1 - f_nu; f_nub = f_nu+f_baryon; alpha_nu = (f_c/f_cb) * (2*(p_c+p_cb)+5)/(4*p_cb+5.0); alpha_nu *= 1 - 0.553*f_nub+0.126*pow(f_nub,3); alpha_nu /= 1-0.193*sqrt(f_nu)+0.169*f_nu; alpha_nu *= pow(1+y_d, p_c-p_cb); alpha_nu *= 1+ (p_cb-p_c)/2.0 * (1.0+1.0/(4.0*p_c+3.0)/(4.0*p_cb+7.0))/(1.0+y_d); beta_c = 1.0/(1.0-0.949*f_nub); } // Returns the value of the linear power spectrum DENSITY (i.e. <|delta_k|^2>/V) // at a given k mode linearly extrapolated to z=0 double power_in_k(double k){ double p, T, gamma, q, aa, bb, cc; // get the power spectrum.. choice of 5: if (user_params_ps->POWER_SPECTRUM == 0){ // Eisenstein & Hu T = TFmdm(k); // check if we should cuttoff power spectrum according to Bode et al. 2000 transfer function if (global_params.P_CUTOFF) T *= pow(1 + pow(BODE_e*k*R_CUTOFF, 2*BODE_v), -BODE_n/BODE_v); p = pow(k, cosmo_params_ps->POWER_INDEX) * T * T; //p = pow(k, POWER_INDEX - 0.05*log(k/0.05)) * T * T; //running, alpha=0.05 } else if (user_params_ps->POWER_SPECTRUM == 1){ // BBKS gamma = cosmo_params_ps->OMm * cosmo_params_ps->hlittle * pow(E, -(cosmo_params_ps->OMb) - (cosmo_params_ps->OMb/cosmo_params_ps->OMm)); q = k / (cosmo_params_ps->hlittle*gamma); T = (log(1.0+2.34*q)/(2.34*q)) * pow( 1.0+3.89*q + pow(16.1*q, 2) + pow( 5.46*q, 3) + pow(6.71*q, 4), -0.25); p = pow(k, cosmo_params_ps->POWER_INDEX) * T * T; } else if (user_params_ps->POWER_SPECTRUM == 2){ // Efstathiou,G., Bond,J.R., and White,S.D.M., MNRAS,258,1P (1992) gamma = 0.25; aa = 6.4/(cosmo_params_ps->hlittle*gamma); bb = 3.0/(cosmo_params_ps->hlittle*gamma); cc = 1.7/(cosmo_params_ps->hlittle*gamma); p = pow(k, cosmo_params_ps->POWER_INDEX) / pow( 1+pow( aa*k + pow(bb*k, 1.5) + pow(cc*k,2), 1.13), 2.0/1.13 ); } else if (user_params_ps->POWER_SPECTRUM == 3){ // Peebles, pg. 626 gamma = cosmo_params_ps->OMm * cosmo_params_ps->hlittle * pow(E, -(cosmo_params_ps->OMb) - (cosmo_params_ps->OMb)/(cosmo_params_ps->OMm)); aa = 8.0 / (cosmo_params_ps->hlittle*gamma); bb = 4.7 / pow(cosmo_params_ps->hlittle*gamma, 2); p = pow(k, cosmo_params_ps->POWER_INDEX) / pow(1 + aa*k + bb*k*k, 2); } else if (user_params_ps->POWER_SPECTRUM == 4){ // White, SDM and Frenk, CS, 1991, 379, 52 gamma = cosmo_params_ps->OMm * cosmo_params_ps->hlittle * pow(E, -(cosmo_params_ps->OMb) - (cosmo_params_ps->OMb/cosmo_params_ps->OMm)); aa = 1.7/(cosmo_params_ps->hlittle*gamma); bb = 9.0/pow(cosmo_params_ps->hlittle*gamma, 1.5); cc = 1.0/pow(cosmo_params_ps->hlittle*gamma, 2); p = pow(k, cosmo_params_ps->POWER_INDEX) * 19400.0 / pow(1 + aa*k + bb*pow(k, 1.5) + cc*k*k, 2); } else if (user_params_ps->POWER_SPECTRUM == 5){ // output of CLASS T = TF_CLASS(k, 1, 0); //read from z=0 output of CLASS. Note, flag_int = 1 here always, since now we have to have initialized the interpolator for CLASS p = pow(k, cosmo_params_ps->POWER_INDEX) * T * T; if(user_params_ps->USE_RELATIVE_VELOCITIES) { //jbm:Add average relvel suppression p *= 1.0 - A_VCB_PM*exp( -pow(log(k/KP_VCB_PM),2.0)/(2.0*SIGMAK_VCB_PM*SIGMAK_VCB_PM)); //for v=vrms } } else{ LOG_ERROR("No such power spectrum defined: %i. Output is bogus.", user_params_ps->POWER_SPECTRUM); Throw(ValueError); } return p*TWOPI*PI*sigma_norm*sigma_norm; } /* Returns the value of the linear power spectrum of the DM-b relative velocity at kinematic decoupling (which we set at zkin=1010) */ double power_in_vcb(double k){ double p, T, gamma, q, aa, bb, cc; //only works if using CLASS if (user_params_ps->POWER_SPECTRUM == 5){ // CLASS T = TF_CLASS(k, 1, 1); //read from CLASS file. flag_int=1 since we have initialized before, flag_vcb=1 for velocity p = pow(k, cosmo_params_ps->POWER_INDEX) * T * T; } else{ LOG_ERROR("Cannot get P_cb unless using CLASS: %i\n Set USE_RELATIVE_VELOCITIES 0 or use CLASS.\n", user_params_ps->POWER_SPECTRUM); Throw(ValueError); } return p*TWOPI*PI*sigma_norm*sigma_norm; } double init_ps(){ double result, error, lower_limit, upper_limit; gsl_function F; double rel_tol = FRACT_FLOAT_ERR*10; //<- relative tolerance gsl_integration_workspace * w = gsl_integration_workspace_alloc (1000); double kstart, kend; //we start the interpolator if using CLASS: if (user_params_ps->POWER_SPECTRUM == 5){ LOG_DEBUG("Setting CLASS Transfer Function inits."); TF_CLASS(1.0, 0, 0); } // Set cuttoff scale for WDM (eq. 4 in Barkana et al. 2001) in comoving Mpc R_CUTOFF = 0.201*pow((cosmo_params_ps->OMm-cosmo_params_ps->OMb)*cosmo_params_ps->hlittle*cosmo_params_ps->hlittle/0.15, 0.15)*pow(global_params.g_x/1.5, -0.29)*pow(global_params.M_WDM, -1.15); omhh = cosmo_params_ps->OMm*cosmo_params_ps->hlittle*cosmo_params_ps->hlittle; theta_cmb = T_cmb / 2.7; // Translate Parameters into forms GLOBALVARIABLES form f_nu = global_params.OMn/cosmo_params_ps->OMm; f_baryon = cosmo_params_ps->OMb/cosmo_params_ps->OMm; if (f_nu < TINY) f_nu = 1e-10; if (f_baryon < TINY) f_baryon = 1e-10; TFset_parameters(); sigma_norm = -1; double Radius_8; Radius_8 = 8.0/cosmo_params_ps->hlittle; if(user_params_ps->POWER_SPECTRUM == 5){ kstart = fmax(1.0e-99/Radius_8, KBOT_CLASS); kend = fmin(350.0/Radius_8, KTOP_CLASS); }//we establish a maximum k of KTOP_CLASS~1e3 Mpc-1 and a minimum at KBOT_CLASS,~1e-5 Mpc-1 since the CLASS transfer function has a max! else{ kstart = 1.0e-99/Radius_8; kend = 350.0/Radius_8; } lower_limit = kstart; upper_limit = kend; LOG_DEBUG("Initializing Power Spectrum with lower_limit=%e, upper_limit=%e, rel_tol=%e, radius_8=%g", lower_limit,upper_limit, rel_tol, Radius_8); F.function = &dsigma_dk; F.params = &Radius_8; int status; gsl_set_error_handler_off(); status = gsl_integration_qag (&F, lower_limit, upper_limit, 0, rel_tol, 1000, GSL_INTEG_GAUSS61, w, &result, &error); if(status!=0) { LOG_ERROR("gsl integration error occured!"); LOG_ERROR("(function argument): lower_limit=%e upper_limit=%e rel_tol=%e result=%e error=%e",lower_limit,upper_limit,rel_tol,result,error); GSL_ERROR(status); } gsl_integration_workspace_free (w); LOG_DEBUG("Initialized Power Spectrum."); sigma_norm = cosmo_params_ps->SIGMA_8/sqrt(result); //takes care of volume factor return R_CUTOFF; } //function to free arrays related to the power spectrum void free_ps(){ //we free the PS interpolator if using CLASS: if (user_params_ps->POWER_SPECTRUM == 5){ TF_CLASS(1.0, -1, 0); } return; } /* FUNCTION dsigmasqdm_z0(M) returns d/dm (sigma^2) (see function sigma), in units of Msun^-1 */ double dsigmasq_dm(double k, void *params){ double p, w, T, gamma, q, aa, bb, cc, dwdr, drdm, kR; // get the power spectrum.. choice of 5: if (user_params_ps->POWER_SPECTRUM == 0){ // Eisenstein & Hu ApJ, 1999, 511, 5 T = TFmdm(k); // check if we should cuttoff power spectrum according to Bode et al. 2000 transfer function if (global_params.P_CUTOFF) T *= pow(1 + pow(BODE_e*k*R_CUTOFF, 2*BODE_v), -BODE_n/BODE_v); p = pow(k, cosmo_params_ps->POWER_INDEX) * T * T; //p = pow(k, POWER_INDEX - 0.05*log(k/0.05)) * T * T; //running, alpha=0.05 } else if (user_params_ps->POWER_SPECTRUM == 1){ // BBKS gamma = cosmo_params_ps->OMm * cosmo_params_ps->hlittle * pow(E, -(cosmo_params_ps->OMb) - (cosmo_params_ps->OMb)/(cosmo_params_ps->OMm)); q = k / (cosmo_params_ps->hlittle*gamma); T = (log(1.0+2.34*q)/(2.34*q)) * pow( 1.0+3.89*q + pow(16.1*q, 2) + pow( 5.46*q, 3) + pow(6.71*q, 4), -0.25); p = pow(k, cosmo_params_ps->POWER_INDEX) * T * T; } else if (user_params_ps->POWER_SPECTRUM == 2){ // Efstathiou,G., Bond,J.R., and White,S.D.M., MNRAS,258,1P (1992) gamma = 0.25; aa = 6.4/(cosmo_params_ps->hlittle*gamma); bb = 3.0/(cosmo_params_ps->hlittle*gamma); cc = 1.7/(cosmo_params_ps->hlittle*gamma); p = pow(k, cosmo_params_ps->POWER_INDEX) / pow( 1+pow( aa*k + pow(bb*k, 1.5) + pow(cc*k,2), 1.13), 2.0/1.13 ); } else if (user_params_ps->POWER_SPECTRUM == 3){ // Peebles, pg. 626 gamma = cosmo_params_ps->OMm * cosmo_params_ps->hlittle * pow(E, -(cosmo_params_ps->OMb) - (cosmo_params_ps->OMb)/(cosmo_params_ps->OMm)); aa = 8.0 / (cosmo_params_ps->hlittle*gamma); bb = 4.7 / (cosmo_params_ps->hlittle*gamma); p = pow(k, cosmo_params_ps->POWER_INDEX) / pow(1 + aa*k + bb*k*k, 2); } else if (user_params_ps->POWER_SPECTRUM == 4){ // White, SDM and Frenk, CS, 1991, 379, 52 gamma = cosmo_params_ps->OMm * cosmo_params_ps->hlittle * pow(E, -(cosmo_params_ps->OMb) - (cosmo_params_ps->OMb)/(cosmo_params_ps->OMm)); aa = 1.7/(cosmo_params_ps->hlittle*gamma); bb = 9.0/pow(cosmo_params_ps->hlittle*gamma, 1.5); cc = 1.0/pow(cosmo_params_ps->hlittle*gamma, 2); p = pow(k, cosmo_params_ps->POWER_INDEX) * 19400.0 / pow(1 + aa*k + pow(bb*k, 1.5) + cc*k*k, 2); } else if (user_params_ps->POWER_SPECTRUM == 5){ // JBM: CLASS T = TF_CLASS(k, 1, 0); //read from z=0 output of CLASS p = pow(k, cosmo_params_ps->POWER_INDEX) * T * T; if(user_params_ps->USE_RELATIVE_VELOCITIES) { //jbm:Add average relvel suppression p *= 1.0 - A_VCB_PM*exp( -pow(log(k/KP_VCB_PM),2.0)/(2.0*SIGMAK_VCB_PM*SIGMAK_VCB_PM)); //for v=vrms } } else{ LOG_ERROR("No such power spectrum defined: %i. Output is bogus.", user_params_ps->POWER_SPECTRUM); Throw(ValueError); } double Radius; Radius = *(double *)params; // now get the value of the window function kR = k * Radius; if (global_params.FILTER == 0){ // top hat if ( (kR) < 1.0e-4 ){ w = 1.0; }// w converges to 1 as (kR) -> 0 else { w = 3.0 * (sin(kR)/pow(kR, 3) - cos(kR)/pow(kR, 2));} // now do d(w^2)/dm = 2 w dw/dr dr/dm if ( (kR) < 1.0e-10 ){ dwdr = 0;} else{ dwdr = 9*cos(kR)*k/pow(kR,3) + 3*sin(kR)*(1 - 3/(kR*kR))/(kR*Radius);} //3*k*( 3*cos(kR)/pow(kR,3) + sin(kR)*(-3*pow(kR, -4) + 1/(kR*kR)) );} // dwdr = -1e8 * k / (R*1e3); drdm = 1.0 / (4.0*PI * cosmo_params_ps->OMm*RHOcrit * Radius*Radius); } else if (global_params.FILTER == 1){ // gaussian of width 1/R w = pow(E, -kR*kR/2.0); dwdr = - k*kR * w; drdm = 1.0 / (pow(2*PI, 1.5) * cosmo_params_ps->OMm*RHOcrit * 3*Radius*Radius); } else { LOG_ERROR("No such filter: %i. Output is bogus.", global_params.FILTER); Throw(ValueError); } // return k*k*p*2*w*dwdr*drdm * d2fact; return k*k*p*2*w*dwdr*drdm; } double dsigmasqdm_z0(double M){ double result, error, lower_limit, upper_limit; gsl_function F; double rel_tol = FRACT_FLOAT_ERR*10; //<- relative tolerance gsl_integration_workspace * w = gsl_integration_workspace_alloc (1000); double kstart, kend; double Radius; // R = MtoR(M); Radius = MtoR(M); // now lets do the integral for sigma and scale it with sigma_norm if(user_params_ps->POWER_SPECTRUM == 5){ kstart = fmax(1.0e-99/Radius, KBOT_CLASS); kend = fmin(350.0/Radius, KTOP_CLASS); }//we establish a maximum k of KTOP_CLASS~1e3 Mpc-1 and a minimum at KBOT_CLASS,~1e-5 Mpc-1 since the CLASS transfer function has a max! else{ kstart = 1.0e-99/Radius; kend = 350.0/Radius; } lower_limit = kstart;//log(kstart); upper_limit = kend;//log(kend); if (user_params_ps->POWER_SPECTRUM == 5){ // for CLASS we do not need to renormalize the sigma integral. d2fact=1.0; } else { d2fact = M*10000/sigma_z0(M); } F.function = &dsigmasq_dm; F.params = &Radius; int status; gsl_set_error_handler_off(); status = gsl_integration_qag (&F, lower_limit, upper_limit, 0, rel_tol,1000, GSL_INTEG_GAUSS61, w, &result, &error); if(status!=0) { LOG_ERROR("gsl integration error occured!"); LOG_ERROR("(function argument): lower_limit=%e upper_limit=%e rel_tol=%e result=%e error=%e",lower_limit,upper_limit,rel_tol,result,error); LOG_ERROR("data: M=%e",M); GSL_ERROR(status); } gsl_integration_workspace_free (w); // return sigma_norm * sigma_norm * result /d2fact; return sigma_norm * sigma_norm * result; } /* sheth correction to delta crit */ double sheth_delc(double del, double sig){ return sqrt(SHETH_a)*del*(1. + global_params.SHETH_b*pow(sig*sig/(SHETH_a*del*del), global_params.SHETH_c)); } /* FUNCTION dNdM_st(z, M) Computes the Press_schechter mass function with Sheth-Torman correction for ellipsoidal collapse at redshift z, and dark matter halo mass M (in solar masses). Uses interpolated sigma and dsigmadm to be computed faster. Necessary for mass-dependent ionising efficiencies. The return value is the number density per unit mass of halos in the mass range M to M+dM in units of: comoving Mpc^-3 Msun^-1 Reference: Sheth, Mo, Torman 2001 */ double dNdM_st(double growthf, double M){ double sigma, dsigmadm, nuhat; float MassBinLow; int MassBin; if(user_params_ps->USE_INTERPOLATION_TABLES) { MassBin = (int)floor( (log(M) - MinMass )*inv_mass_bin_width ); MassBinLow = MinMass + mass_bin_width*(float)MassBin; sigma = Sigma_InterpTable[MassBin] + ( log(M) - MassBinLow )*( Sigma_InterpTable[MassBin+1] - Sigma_InterpTable[MassBin] )*inv_mass_bin_width; dsigmadm = dSigmadm_InterpTable[MassBin] + ( log(M) - MassBinLow )*( dSigmadm_InterpTable[MassBin+1] - dSigmadm_InterpTable[MassBin] )*inv_mass_bin_width; dsigmadm = -pow(10.,dsigmadm); } else { sigma = sigma_z0(M); dsigmadm = dsigmasqdm_z0(M); } sigma = sigma * growthf; dsigmadm = dsigmadm * (growthf*growthf/(2.*sigma)); nuhat = sqrt(SHETH_a) * Deltac / sigma; return (-(cosmo_params_ps->OMm)*RHOcrit/M) * (dsigmadm/sigma) * sqrt(2./PI)*SHETH_A * (1+ pow(nuhat, -2*SHETH_p)) * nuhat * pow(E, -nuhat*nuhat/2.0); } /* FUNCTION dNdM_WatsonFOF(z, M) Computes the Press_schechter mass function with Warren et al. 2011 correction for ellipsoidal collapse at redshift z, and dark matter halo mass M (in solar masses). The Universial FOF function (Eq. 12) of Watson et al. 2013 The return value is the number density per unit mass of halos in the mass range M to M+dM in units of: comoving Mpc^-3 Msun^-1 Reference: Watson et al. 2013 */ double dNdM_WatsonFOF(double growthf, double M){ double sigma, dsigmadm, f_sigma; float MassBinLow; int MassBin; if(user_params_ps->USE_INTERPOLATION_TABLES) { MassBin = (int)floor( (log(M) - MinMass )*inv_mass_bin_width ); MassBinLow = MinMass + mass_bin_width*(float)MassBin; sigma = Sigma_InterpTable[MassBin] + ( log(M) - MassBinLow )*( Sigma_InterpTable[MassBin+1] - Sigma_InterpTable[MassBin] )*inv_mass_bin_width; dsigmadm = dSigmadm_InterpTable[MassBin] + ( log(M) - MassBinLow )*( dSigmadm_InterpTable[MassBin+1] - dSigmadm_InterpTable[MassBin] )*inv_mass_bin_width; dsigmadm = -pow(10.,dsigmadm); } else { sigma = sigma_z0(M); dsigmadm = dsigmasqdm_z0(M); } sigma = sigma * growthf; dsigmadm = dsigmadm * (growthf*growthf/(2.*sigma)); f_sigma = Watson_A * ( pow( Watson_beta/sigma, Watson_alpha) + 1. ) * exp( - Watson_gamma/(sigma*sigma) ); return (-(cosmo_params_ps->OMm)*RHOcrit/M) * (dsigmadm/sigma) * f_sigma; } /* FUNCTION dNdM_WatsonFOF_z(z, M) Computes the Press_schechter mass function with Warren et al. 2011 correction for ellipsoidal collapse at redshift z, and dark matter halo mass M (in solar masses). The Universial FOF function, with redshift evolution (Eq. 12 - 15) of Watson et al. 2013. The return value is the number density per unit mass of halos in the mass range M to M+dM in units of: comoving Mpc^-3 Msun^-1 Reference: Watson et al. 2013 */ double dNdM_WatsonFOF_z(double z, double growthf, double M){ double sigma, dsigmadm, A_z, alpha_z, beta_z, Omega_m_z, f_sigma; float MassBinLow; int MassBin; if(user_params_ps->USE_INTERPOLATION_TABLES) { MassBin = (int)floor( (log(M) - MinMass )*inv_mass_bin_width ); MassBinLow = MinMass + mass_bin_width*(float)MassBin; sigma = Sigma_InterpTable[MassBin] + ( log(M) - MassBinLow )*( Sigma_InterpTable[MassBin+1] - Sigma_InterpTable[MassBin] )*inv_mass_bin_width; dsigmadm = dSigmadm_InterpTable[MassBin] + ( log(M) - MassBinLow )*( dSigmadm_InterpTable[MassBin+1] - dSigmadm_InterpTable[MassBin] )*inv_mass_bin_width; dsigmadm = -pow(10.,dsigmadm); } else { sigma = sigma_z0(M); dsigmadm = dsigmasqdm_z0(M); } sigma = sigma * growthf; dsigmadm = dsigmadm * (growthf*growthf/(2.*sigma)); Omega_m_z = (cosmo_params_ps->OMm)*pow(1.+z,3.) / ( (cosmo_params_ps->OMl) + (cosmo_params_ps->OMm)*pow(1.+z,3.) + (global_params.OMr)*pow(1.+z,4.) ); A_z = Omega_m_z * ( Watson_A_z_1 * pow(1. + z, Watson_A_z_2 ) + Watson_A_z_3 ); alpha_z = Omega_m_z * ( Watson_alpha_z_1 * pow(1.+z, Watson_alpha_z_2 ) + Watson_alpha_z_3 ); beta_z = Omega_m_z * ( Watson_beta_z_1 * pow(1.+z, Watson_beta_z_2 ) + Watson_beta_z_3 ); f_sigma = A_z * ( pow(beta_z/sigma, alpha_z) + 1. ) * exp( - Watson_gamma_z/(sigma*sigma) ); return (-(cosmo_params_ps->OMm)*RHOcrit/M) * (dsigmadm/sigma) * f_sigma; } /* FUNCTION dNdM(growthf, M) Computes the Press_schechter mass function at redshift z (using the growth factor), and dark matter halo mass M (in solar masses). Uses interpolated sigma and dsigmadm to be computed faster. Necessary for mass-dependent ionising efficiencies. The return value is the number density per unit mass of halos in the mass range M to M+dM in units of: comoving Mpc^-3 Msun^-1 Reference: Padmanabhan, pg. 214 */ double dNdM(double growthf, double M){ double sigma, dsigmadm; float MassBinLow; int MassBin; if(user_params_ps->USE_INTERPOLATION_TABLES) { MassBin = (int)floor( (log(M) - MinMass )*inv_mass_bin_width ); MassBinLow = MinMass + mass_bin_width*(float)MassBin; sigma = Sigma_InterpTable[MassBin] + ( log(M) - MassBinLow )*( Sigma_InterpTable[MassBin+1] - Sigma_InterpTable[MassBin] )*inv_mass_bin_width; dsigmadm = dSigmadm_InterpTable[MassBin] + ( log(M) - MassBinLow )*( dSigmadm_InterpTable[MassBin+1] - dSigmadm_InterpTable[MassBin] )*inv_mass_bin_width; dsigmadm = -pow(10.,dsigmadm); } else { sigma = sigma_z0(M); dsigmadm = dsigmasqdm_z0(M); } sigma = sigma * growthf; dsigmadm = dsigmadm * (growthf*growthf/(2.*sigma)); return (-(cosmo_params_ps->OMm)*RHOcrit/M) * sqrt(2/PI) * (Deltac/(sigma*sigma)) * dsigmadm * pow(E, -(Deltac*Deltac)/(2*sigma*sigma)); } /* FUNCTION FgtrM(z, M) Computes the fraction of mass contained in haloes with mass > M at redshift z */ double FgtrM(double z, double M){ double del, sig; del = Deltac/dicke(z); //regular spherical collapse delta sig = sigma_z0(M); return splined_erfc(del / (sqrt(2)*sig)); } /* FUNCTION FgtrM_wsigma(z, sigma_z0(M)) Computes the fraction of mass contained in haloes with mass > M at redshift z. Requires sigma_z0(M) rather than M to make certain heating integrals faster */ double FgtrM_wsigma(double z, double sig){ double del; del = Deltac/dicke(z); //regular spherical collapse delta return splined_erfc(del / (sqrt(2)*sig)); } /* FUNCTION FgtrM_Watson(z, M) Computes the fraction of mass contained in haloes with mass > M at redshift z Uses Watson et al (2013) correction */ double dFdlnM_Watson_z (double lnM, void *params){ struct parameters_gsl_FgtrM_int_ vals = *(struct parameters_gsl_FgtrM_int_ *)params; double M = exp(lnM); double z = vals.z_obs; double growthf = vals.gf_obs; return dNdM_WatsonFOF_z(z, growthf, M) * M * M; } double FgtrM_Watson_z(double z, double growthf, double M){ double result, error, lower_limit, upper_limit; gsl_function F; double rel_tol = 0.001; //<- relative tolerance gsl_integration_workspace * w = gsl_integration_workspace_alloc (1000); F.function = &dFdlnM_Watson_z; struct parameters_gsl_FgtrM_int_ parameters_gsl_FgtrM = { .z_obs = z, .gf_obs = growthf, }; F.params = &parameters_gsl_FgtrM; lower_limit = log(M); upper_limit = log(fmax(global_params.M_MAX_INTEGRAL, M*100)); int status; gsl_set_error_handler_off(); status = gsl_integration_qag (&F, lower_limit, upper_limit, 0, rel_tol, 1000, GSL_INTEG_GAUSS61, w, &result, &error); if(status!=0) { LOG_ERROR("gsl integration error occured!"); LOG_ERROR("(function argument): lower_limit=%e upper_limit=%e rel_tol=%e result=%e error=%e",lower_limit,upper_limit,rel_tol,result,error); LOG_ERROR("data: z=%e growthf=%e M=%e",z,growthf,M); GSL_ERROR(status); } gsl_integration_workspace_free (w); return result / (cosmo_params_ps->OMm*RHOcrit); } /* FUNCTION FgtrM_Watson(z, M) Computes the fraction of mass contained in haloes with mass > M at redshift z Uses Watson et al (2013) correction */ double dFdlnM_Watson (double lnM, void *params){ double growthf = *(double *)params; double M = exp(lnM); return dNdM_WatsonFOF(growthf, M) * M * M; } double FgtrM_Watson(double growthf, double M){ double result, error, lower_limit, upper_limit; gsl_function F; double rel_tol = 0.001; //<- relative tolerance gsl_integration_workspace * w = gsl_integration_workspace_alloc (1000); F.function = &dFdlnM_Watson; F.params = &growthf; lower_limit = log(M); upper_limit = log(fmax(global_params.M_MAX_INTEGRAL, M*100)); int status; gsl_set_error_handler_off(); status = gsl_integration_qag (&F, lower_limit, upper_limit, 0, rel_tol, 1000, GSL_INTEG_GAUSS61, w, &result, &error); if(status!=0) { LOG_ERROR("gsl integration error occured!"); LOG_ERROR("lower_limit=%e upper_limit=%e rel_tol=%e result=%e error=%e",lower_limit,upper_limit,rel_tol,result,error); LOG_ERROR("data: growthf=%e M=%e",growthf,M); GSL_ERROR(status); } gsl_integration_workspace_free (w); return result / (cosmo_params_ps->OMm*RHOcrit); } double dFdlnM_General(double lnM, void *params){ struct parameters_gsl_FgtrM_int_ vals = *(struct parameters_gsl_FgtrM_int_ *)params; double M = exp(lnM); double z = vals.z_obs; double growthf = vals.gf_obs; double MassFunction; if(user_params_ps->HMF==0) { MassFunction = dNdM(growthf, M); } if(user_params_ps->HMF==1) { MassFunction = dNdM_st(growthf, M); } if(user_params_ps->HMF==2) { MassFunction = dNdM_WatsonFOF(growthf, M); } if(user_params_ps->HMF==3) { MassFunction = dNdM_WatsonFOF_z(z, growthf, M); } return MassFunction * M * M; } /* FUNCTION FgtrM_General(z, M) Computes the fraction of mass contained in haloes with mass > M at redshift z */ double FgtrM_General(double z, double M){ double del, sig, growthf; int status; growthf = dicke(z); struct parameters_gsl_FgtrM_int_ parameters_gsl_FgtrM = { .z_obs = z, .gf_obs = growthf, }; if(user_params_ps->HMF<4 && user_params_ps->HMF>-1) { double result, error, lower_limit, upper_limit; gsl_function F; double rel_tol = 0.001; //<- relative tolerance gsl_integration_workspace * w = gsl_integration_workspace_alloc (1000); F.function = &dFdlnM_General; F.params = &parameters_gsl_FgtrM; lower_limit = log(M); upper_limit = log(fmax(global_params.M_MAX_INTEGRAL, M*100)); gsl_set_error_handler_off(); status = gsl_integration_qag (&F, lower_limit, upper_limit, 0, rel_tol, 1000, GSL_INTEG_GAUSS61, w, &result, &error); if(status!=0) { LOG_ERROR("gsl integration error occured!"); LOG_ERROR("lower_limit=%e upper_limit=%e rel_tol=%e result=%e error=%e",lower_limit,upper_limit,rel_tol,result,error); LOG_ERROR("data: z=%e growthf=%e M=%e",z,growthf,M); GSL_ERROR(status); } gsl_integration_workspace_free (w); return result / (cosmo_params_ps->OMm*RHOcrit); } else { LOG_ERROR("Incorrect HMF selected: %i (should be between 0 and 3).", user_params_ps->HMF); Throw(ValueError); } } double dNion_General(double lnM, void *params){ struct parameters_gsl_SFR_General_int_ vals = *(struct parameters_gsl_SFR_General_int_ *)params; double M = exp(lnM); double z = vals.z_obs; double growthf = vals.gf_obs; double MassTurnover = vals.Mdrop; double Alpha_star = vals.pl_star; double Alpha_esc = vals.pl_esc; double Fstar10 = vals.frac_star; double Fesc10 = vals.frac_esc; double Mlim_Fstar = vals.LimitMass_Fstar; double Mlim_Fesc = vals.LimitMass_Fesc; double Fstar, Fesc, MassFunction; if (Alpha_star > 0. && M > Mlim_Fstar) Fstar = 1./Fstar10; else if (Alpha_star < 0. && M < Mlim_Fstar) Fstar = 1/Fstar10; else Fstar = pow(M/1e10,Alpha_star); if (Alpha_esc > 0. && M > Mlim_Fesc) Fesc = 1./Fesc10; else if (Alpha_esc < 0. && M < Mlim_Fesc) Fesc = 1./Fesc10; else Fesc = pow(M/1e10,Alpha_esc); if(user_params_ps->HMF==0) { MassFunction = dNdM(growthf, M); } if(user_params_ps->HMF==1) { MassFunction = dNdM_st(growthf,M); } if(user_params_ps->HMF==2) { MassFunction = dNdM_WatsonFOF(growthf, M); } if(user_params_ps->HMF==3) { MassFunction = dNdM_WatsonFOF_z(z, growthf, M); } return MassFunction * M * M * exp(-MassTurnover/M) * Fstar * Fesc; } double Nion_General(double z, double M_Min, double MassTurnover, double Alpha_star, double Alpha_esc, double Fstar10, double Fesc10, double Mlim_Fstar, double Mlim_Fesc){ double growthf; growthf = dicke(z); double result, error, lower_limit, upper_limit; gsl_function F; double rel_tol = 0.001; //<- relative tolerance gsl_integration_workspace * w = gsl_integration_workspace_alloc (1000); struct parameters_gsl_SFR_General_int_ parameters_gsl_SFR = { .z_obs = z, .gf_obs = growthf, .Mdrop = MassTurnover, .pl_star = Alpha_star, .pl_esc = Alpha_esc, .frac_star = Fstar10, .frac_esc = Fesc10, .LimitMass_Fstar = Mlim_Fstar, .LimitMass_Fesc = Mlim_Fesc, }; int status; if(user_params_ps->HMF<4 && user_params_ps->HMF>-1) { F.function = &dNion_General; F.params = &parameters_gsl_SFR; lower_limit = log(M_Min); upper_limit = log(fmax(global_params.M_MAX_INTEGRAL, M_Min*100)); gsl_set_error_handler_off(); status = gsl_integration_qag (&F, lower_limit, upper_limit, 0, rel_tol, 1000, GSL_INTEG_GAUSS61, w, &result, &error); if(status!=0) { LOG_ERROR("gsl integration error occured!"); LOG_ERROR("(function argument): lower_limit=%e upper_limit=%e rel_tol=%e result=%e error=%e",lower_limit,upper_limit,rel_tol,result,error); LOG_ERROR("data: z=%e growthf=%e MassTurnover=%e Alpha_star=%e Alpha_esc=%e",z,growthf,MassTurnover,Alpha_star,Alpha_esc); LOG_ERROR("data: Fstar10=%e Fesc10=%e Mlim_Fstar=%e Mlim_Fesc=%e",Fstar10,Fesc10,Mlim_Fstar,Mlim_Fesc); GSL_ERROR(status); } gsl_integration_workspace_free (w); return result / ((cosmo_params_ps->OMm)*RHOcrit); } else { LOG_ERROR("Incorrect HMF selected: %i (should be between 0 and 3).", user_params_ps->HMF); Throw(ValueError); } } double dNion_General_MINI(double lnM, void *params){ struct parameters_gsl_SFR_General_int_ vals = *(struct parameters_gsl_SFR_General_int_ *)params; double M = exp(lnM); double z = vals.z_obs; double growthf = vals.gf_obs; double MassTurnover = vals.Mdrop; double MassTurnover_upper = vals.Mdrop_upper; double Alpha_star = vals.pl_star; double Alpha_esc = vals.pl_esc; double Fstar7_MINI = vals.frac_star; double Fesc7_MINI = vals.frac_esc; double Mlim_Fstar = vals.LimitMass_Fstar; double Mlim_Fesc = vals.LimitMass_Fesc; double Fstar, Fesc, MassFunction; if (Alpha_star > 0. && M > Mlim_Fstar) Fstar = 1./Fstar7_MINI; else if (Alpha_star < 0. && M < Mlim_Fstar) Fstar = 1/Fstar7_MINI; else Fstar = pow(M/1e7,Alpha_star); if (Alpha_esc > 0. && M > Mlim_Fesc) Fesc = 1./Fesc7_MINI; else if (Alpha_esc < 0. && M < Mlim_Fesc) Fesc = 1./Fesc7_MINI; else Fesc = pow(M/1e7,Alpha_esc); if(user_params_ps->HMF==0) { MassFunction = dNdM(growthf, M); } if(user_params_ps->HMF==1) { MassFunction = dNdM_st(growthf,M); } if(user_params_ps->HMF==2) { MassFunction = dNdM_WatsonFOF(growthf, M); } if(user_params_ps->HMF==3) { MassFunction = dNdM_WatsonFOF_z(z, growthf, M); } return MassFunction * M * M * exp(-MassTurnover/M) * exp(-M/MassTurnover_upper) * Fstar * Fesc; } double Nion_General_MINI(double z, double M_Min, double MassTurnover, double MassTurnover_upper, double Alpha_star, double Alpha_esc, double Fstar7_MINI, double Fesc7_MINI, double Mlim_Fstar, double Mlim_Fesc){ double growthf; int status; growthf = dicke(z); double result, error, lower_limit, upper_limit; gsl_function F; double rel_tol = 0.001; //<- relative tolerance gsl_integration_workspace * w = gsl_integration_workspace_alloc (1000); struct parameters_gsl_SFR_General_int_ parameters_gsl_SFR = { .z_obs = z, .gf_obs = growthf, .Mdrop = MassTurnover, .Mdrop_upper = MassTurnover_upper, .pl_star = Alpha_star, .pl_esc = Alpha_esc, .frac_star = Fstar7_MINI, .frac_esc = Fesc7_MINI, .LimitMass_Fstar = Mlim_Fstar, .LimitMass_Fesc = Mlim_Fesc, }; if(user_params_ps->HMF<4 && user_params_ps->HMF>-1) { F.function = &dNion_General_MINI; F.params = &parameters_gsl_SFR; lower_limit = log(M_Min); upper_limit = log(fmax(global_params.M_MAX_INTEGRAL, M_Min*100)); gsl_set_error_handler_off(); status = gsl_integration_qag (&F, lower_limit, upper_limit, 0, rel_tol, 1000, GSL_INTEG_GAUSS61, w, &result, &error); if(status!=0) { LOG_ERROR("gsl integration error occurred!"); LOG_ERROR("lower_limit=%e upper_limit=%e rel_tol=%e result=%e error=%e",lower_limit,upper_limit,rel_tol,result,error); LOG_ERROR("data: z=%e growthf=%e MassTurnover=%e MassTurnover_upper=%e",z,growthf,MassTurnover,MassTurnover_upper); LOG_ERROR("data: Alpha_star=%e Alpha_esc=%e Fstar7_MINI=%e Fesc7_MINI=%e Mlim_Fstar=%e Mlim_Fesc=%e",Alpha_star,Alpha_esc,Fstar7_MINI,Fesc7_MINI,Mlim_Fstar,Mlim_Fesc); GSL_ERROR(status); } gsl_integration_workspace_free (w); return result / ((cosmo_params_ps->OMm)*RHOcrit); } else { LOG_ERROR("Incorrect HMF selected: %i (should be between 0 and 3).", user_params_ps->HMF); Throw(ValueError); } } /* returns the "effective Jeans mass" in Msun corresponding to the gas analog of WDM ; eq. 10 in Barkana+ 2001 */ double M_J_WDM(){ double z_eq, fudge=60; if (!(global_params.P_CUTOFF)) return 0; z_eq = 3600*(cosmo_params_ps->OMm-cosmo_params_ps->OMb)*cosmo_params_ps->hlittle*cosmo_params_ps->hlittle/0.15; return fudge*3.06e8 * (1.5/global_params.g_x) * sqrt((cosmo_params_ps->OMm-cosmo_params_ps->OMb)*cosmo_params_ps->hlittle*cosmo_params_ps->hlittle/0.15) * pow(global_params.M_WDM, -4) * pow(z_eq/3000.0, 1.5); } float erfcc(float x) { double t,q,ans; q=fabs(x); t=1.0/(1.0+0.5*q); ans=t*exp(-q*q-1.2655122+t*(1.0000237+t*(0.374092+t*(0.0967842+ t*(-0.1862881+t*(0.2788681+t*(-1.13520398+t*(1.4885159+ t*(-0.82215223+t*0.17087277))))))))); return x >= 0.0 ? ans : 2.0-ans; } double splined_erfc(double x){ if (x < 0){ return 1.0; } // TODO: This could be wrapped in a Try/Catch to try the fast way and if it doesn't // work, use the slow way. return erfcc(x); // the interpolation below doesn't seem to be stable in Ts.c if (x > ERFC_PARAM_DELTA*(ERFC_NPTS-1)) return erfcc(x); else return exp(gsl_spline_eval(erfc_spline, x, erfc_acc)); } void gauleg(float x1, float x2, float x[], float w[], int n) //Given the lower and upper limits of integration x1 and x2, and given n, this routine returns arrays x[1..n] and w[1..n] of length n, //containing the abscissas and weights of the Gauss- Legendre n-point quadrature formula. { int m,j,i; double z1,z,xm,xl,pp,p3,p2,p1; m=(n+1)/2; xm=0.5*(x2+x1); xl=0.5*(x2-x1); for (i=1;i<=m;i++) { //High precision is a good idea for this routine. //The roots are symmetric in the interval, so we only have to find half of them. //Loop over the desired roots. z=cos(3.141592654*(i-0.25)/(n+0.5)); //Starting with the above approximation to the ith root, we enter the main loop of refinement by Newton’s method. do { p1=1.0; p2=0.0; for (j=1;j<=n;j++) { //Loop up the recurrence relation to get the Legendre polynomial evaluated at z. p3=p2; p2=p1; p1=((2.0*j-1.0)*z*p2-(j-1.0)*p3)/j; } //p1 is now the desired Legendre polynomial. We next compute pp, its derivative, by a standard relation involving also p2, //the polynomial of one lower order. pp=n*(z*p1-p2)/(z*z-1.0); z1=z; z=z1-p1/pp; } while (fabs(z-z1) > EPS2); x[i]=xm-xl*z; x[n+1-i]=xm+xl*z; w[i]=2.0*xl/((1.0-z*z)*pp*pp); w[n+1-i]=w[i]; } } void initialiseSigmaMInterpTable(float M_Min, float M_Max) { int i; float Mass; if (Mass_InterpTable == NULL){ Mass_InterpTable = calloc(NMass,sizeof(float)); Sigma_InterpTable = calloc(NMass,sizeof(float)); dSigmadm_InterpTable = calloc(NMass,sizeof(float)); } #pragma omp parallel shared(Mass_InterpTable,Sigma_InterpTable,dSigmadm_InterpTable) private(i) num_threads(user_params_ps->N_THREADS) { #pragma omp for for(i=0;i<NMass;i++) { Mass_InterpTable[i] = log(M_Min) + (float)i/(NMass-1)*( log(M_Max) - log(M_Min) ); Sigma_InterpTable[i] = sigma_z0(exp(Mass_InterpTable[i])); dSigmadm_InterpTable[i] = log10(-dsigmasqdm_z0(exp(Mass_InterpTable[i]))); } } for(i=0;i<NMass;i++) { if(isfinite(Mass_InterpTable[i]) == 0 || isfinite(Sigma_InterpTable[i]) == 0 || isfinite(dSigmadm_InterpTable[i])==0) { LOG_ERROR("Detected either an infinite or NaN value in initialiseSigmaMInterpTable"); // Throw(ParameterError); Throw(TableGenerationError); } } MinMass = log(M_Min); mass_bin_width = 1./(NMass-1)*( log(M_Max) - log(M_Min) ); inv_mass_bin_width = 1./mass_bin_width; } void freeSigmaMInterpTable() { free(Mass_InterpTable); free(Sigma_InterpTable); free(dSigmadm_InterpTable); Mass_InterpTable = NULL; } void nrerror(char error_text[]) { LOG_ERROR("Numerical Recipes run-time error..."); LOG_ERROR("%s",error_text); Throw(MemoryAllocError); } float *vector(long nl, long nh) /* allocate a float vector with subscript range v[nl..nh] */ { float *v; v = (float *)malloc((size_t) ((nh-nl+1+NR_END)*sizeof(float))); if(!v) nrerror("allocation failure in vector()"); return v - nl + NR_END; } void free_vector(float *v, long nl, long nh) /* free a float vector allocated with vector() */ { free((FREE_ARG) (v+nl-NR_END)); } void spline(float x[], float y[], int n, float yp1, float ypn, float y2[]) /*Given arrays x[1..n] and y[1..n] containing a tabulated function, i.e., yi = f(xi), with x1 <x2 < :: : < xN, and given values yp1 and ypn for the first derivative of the interpolating function at points 1 and n, respectively, this routine returns an array y2[1..n] that contains the second derivatives of the interpolating function at the tabulated points xi. If yp1 and/or ypn are equal to 1e30 or larger, the routine is signaled to set the corresponding boundary condition for a natural spline, with zero second derivative on that boundary.*/ { int i,k; float p,qn,sig,un,*u; int na,nb,check; u=vector(1,n-1); if (yp1 > 0.99e30) // The lower boundary condition is set either to be "natural" y2[1]=u[1]=0.0; else { // or else to have a specified first derivative. y2[1] = -0.5; u[1]=(3.0/(x[2]-x[1]))*((y[2]-y[1])/(x[2]-x[1])-yp1); } for (i=2;i<=n-1;i++) { //This is the decomposition loop of the tridiagonal algorithm. sig=(x[i]-x[i-1])/(x[i+1]-x[i-1]); //y2 and u are used for temporary na = 1; nb = 1; check = 0; while(((float)(x[i+na*1]-x[i-nb*1])==(float)0.0)) { check = check + 1; if(check%2==0) { na = na + 1; } else { nb = nb + 1; } sig=(x[i]-x[i-1])/(x[i+na*1]-x[i-nb*1]); } p=sig*y2[i-1]+2.0; //storage of the decomposed y2[i]=(sig-1.0)/p; // factors. u[i]=(y[i+1]-y[i])/(x[i+1]-x[i]) - (y[i]-y[i-1])/(x[i]-x[i-1]); u[i]=(6.0*u[i]/(x[i+1]-x[i-1])-sig*u[i-1])/p; if(((float)(x[i+1]-x[i])==(float)0.0) || ((float)(x[i]-x[i-1])==(float)0.0)) { na = 0; nb = 0; check = 0; while((float)(x[i+na*1]-x[i-nb])==(float)(0.0) || ((float)(x[i+na]-x[i-nb*1])==(float)0.0)) { check = check + 1; if(check%2==0) { na = na + 1; } else { nb = nb + 1; } } u[i]=(y[i+1]-y[i])/(x[i+na*1]-x[i-nb]) - (y[i]-y[i-1])/(x[i+na]-x[i-nb*1]); u[i]=(6.0*u[i]/(x[i+na*1]-x[i-nb*1])-sig*u[i-1])/p; } } if (ypn > 0.99e30) //The upper boundary condition is set either to be "natural" qn=un=0.0; else { //or else to have a specified first derivative. qn=0.5; un=(3.0/(x[n]-x[n-1]))*(ypn-(y[n]-y[n-1])/(x[n]-x[n-1])); } y2[n]=(un-qn*u[n-1])/(qn*y2[n-1]+1.0); for (k=n-1;k>=1;k--) { //This is the backsubstitution loop of the tridiagonal y2[k]=y2[k]*y2[k+1]+u[k]; //algorithm. } free_vector(u,1,n-1); } void splint(float xa[], float ya[], float y2a[], int n, float x, float *y) /*Given the arrays xa[1..n] and ya[1..n], which tabulate a function (with the xai's in order), and given the array y2a[1..n], which is the output from spline above, and given a value of x, this routine returns a cubic-spline interpolated value y.*/ { void nrerror(char error_text[]); int klo,khi,k; float h,b,a; klo=1; // We will find the right place in the table by means of khi=n; //bisection. This is optimal if sequential calls to this while (khi-klo > 1) { //routine are at random values of x. If sequential calls k=(khi+klo) >> 1; //are in order, and closely spaced, one would do better if (xa[k] > x) khi=k; //to store previous values of klo and khi and test if else klo=k; //they remain appropriate on the next call. } // klo and khi now bracket the input value of x. h=xa[khi]-xa[klo]; if (h == 0.0) nrerror("Bad xa input to routine splint"); //The xa's must be distinct. a=(xa[khi]-x)/h; b=(x-xa[klo])/h; //Cubic spline polynomial is now evaluated. *y=a*ya[klo]+b*ya[khi]+((a*a*a-a)*y2a[klo]+(b*b*b-b)*y2a[khi])*(h*h)/6.0; } unsigned long *lvector(long nl, long nh) /* allocate an unsigned long vector with subscript range v[nl..nh] */ { unsigned long *v; v = (unsigned long *)malloc((size_t) ((nh-nl+1+NR_END)*sizeof(long))); if(!v) nrerror("allocation failure in lvector()"); return v - nl + NR_END; } void free_lvector(unsigned long *v, long nl, long nh) /* free an unsigned long vector allocated with lvector() */ { free((FREE_ARG) (v+nl-NR_END)); } /* dnbiasdM */ double dnbiasdM(double M, float z, double M_o, float del_o){ double sigsq, del, sig_one, sig_o; if ((M_o-M) < TINY){ LOG_ERROR("In function dnbiasdM: M must be less than M_o!\nAborting...\n"); Throw(ValueError); } del = Deltac/dicke(z) - del_o; if (del < 0){ LOG_ERROR(" In function dnbiasdM: del_o must be less than del_1 = del_crit/dicke(z)!\nAborting...\n"); Throw(ValueError); } sig_o = sigma_z0(M_o); sig_one = sigma_z0(M); sigsq = sig_one*sig_one - sig_o*sig_o; return -(RHOcrit*cosmo_params_ps->OMm)/M /sqrt(2*PI) *del*pow(sigsq,-1.5)*pow(E, -0.5*del*del/sigsq)*dsigmasqdm_z0(M); } /* calculates the fraction of mass contained in haloes with mass > M at redshift z, in regions with a linear overdensity of del_bias, and standard deviation sig_bias */ double FgtrM_bias(double z, double M, double del_bias, double sig_bias){ double del, sig, sigsmallR; sigsmallR = sigma_z0(M); if (!(sig_bias < sigsmallR)){ // biased region is smaller that halo! // fprintf(stderr, "FgtrM_bias: Biased region is smaller than halo!\nResult is bogus.\n"); // return 0; return 0.000001; } del = Deltac/dicke(z) - del_bias; sig = sqrt(sigsmallR*sigsmallR - sig_bias*sig_bias); return splined_erfc(del / (sqrt(2)*sig)); } /* Uses sigma parameters instead of Mass for scale */ double sigmaparam_FgtrM_bias(float z, float sigsmallR, float del_bias, float sig_bias){ double del, sig; if (!(sig_bias < sigsmallR)){ // biased region is smaller that halo! // fprintf(stderr, "local_FgtrM_bias: Biased region is smaller than halo!\nResult is bogus.\n"); // return 0; return 0.000001; } del = Deltac/dicke(z) - del_bias; sig = sqrt(sigsmallR*sigsmallR - sig_bias*sig_bias); return splined_erfc(del / (sqrt(2)*sig)); } /* redshift derivative of the growth function at z */ double ddicke_dz(double z){ float dz = 1e-10; double omegaM_z, ddickdz, dick_0, x, x_0, domegaMdz; return (dicke(z+dz)-dicke(z))/dz; } /* compute a mass limit where the stellar baryon fraction and the escape fraction exceed unity */ float Mass_limit (float logM, float PL, float FRAC) { return FRAC*pow(pow(10.,logM)/1e10,PL); } void bisection(float *x, float xlow, float xup, int *iter){ *x=(xlow + xup)/2.; ++(*iter); } float Mass_limit_bisection(float Mmin, float Mmax, float PL, float FRAC){ int i, iter, max_iter=200; float rel_tol=0.001; float logMlow, logMupper, x, x1; iter = 0; logMlow = log10(Mmin); logMupper = log10(Mmax); if (PL < 0.) { if (Mass_limit(logMlow,PL,FRAC) <= 1.) { return Mmin; } } else if (PL > 0.) { if (Mass_limit(logMupper,PL,FRAC) <= 1.) { return Mmax; } } else return 0; bisection(&x, logMlow, logMupper, &iter); do { if((Mass_limit(logMlow,PL,FRAC)-1.)*(Mass_limit(x,PL,FRAC)-1.) < 0.) logMupper = x; else logMlow = x; bisection(&x1, logMlow, logMupper, &iter); if(fabs(x1-x) < rel_tol) { return pow(10.,x1); } x = x1; } while(iter < max_iter); // Got to max_iter without finding a solution. LOG_ERROR("Failed to find a mass limit to regulate stellar fraction/escape fraction is between 0 and 1."); LOG_ERROR(" The solution does not converge or iterations are not sufficient."); // Throw(ParameterError); Throw(MassDepZetaError); return(0.0); } int initialise_ComputeLF(int nbins, struct UserParams *user_params, struct CosmoParams *cosmo_params, struct AstroParams *astro_params, struct FlagOptions *flag_options) { Broadcast_struct_global_PS(user_params,cosmo_params); Broadcast_struct_global_UF(user_params,cosmo_params); lnMhalo_param = calloc(nbins,sizeof(double)); Muv_param = calloc(nbins,sizeof(double)); Mhalo_param = calloc(nbins,sizeof(double)); LF_spline_acc = gsl_interp_accel_alloc(); LF_spline = gsl_spline_alloc(gsl_interp_cspline, nbins); init_ps(); int status; Try initialiseSigmaMInterpTable(0.999*Mhalo_min,1.001*Mhalo_max); Catch(status) { LOG_ERROR("\t...called from initialise_ComputeLF"); return(status); } initialised_ComputeLF = true; return(0); } void cleanup_ComputeLF(){ free(lnMhalo_param); free(Muv_param); free(Mhalo_param); gsl_spline_free (LF_spline); gsl_interp_accel_free(LF_spline_acc); freeSigmaMInterpTable(); initialised_ComputeLF = 0; } int ComputeLF(int nbins, struct UserParams *user_params, struct CosmoParams *cosmo_params, struct AstroParams *astro_params, struct FlagOptions *flag_options, int component, int NUM_OF_REDSHIFT_FOR_LF, float *z_LF, float *M_TURNs, double *M_uv_z, double *M_h_z, double *log10phi) { /* This is an API-level function and thus returns an int status. */ int status; Try{ // This try block covers the whole function. // This NEEDS to be done every time, because the actual object passed in as // user_params, cosmo_params etc. can change on each call, freeing up the memory. initialise_ComputeLF(nbins, user_params,cosmo_params,astro_params,flag_options); int i,i_z; int i_unity, i_smth, mf, nbins_smth=7; double dlnMhalo, lnMhalo_i, SFRparam, Muv_1, Muv_2, dMuvdMhalo; double Mhalo_i, lnMhalo_min, lnMhalo_max, lnMhalo_lo, lnMhalo_hi, dlnM, growthf; double f_duty_upper, Mcrit_atom; float Fstar, Fstar_temp; double dndm; int gsl_status; gsl_set_error_handler_off(); if (astro_params->ALPHA_STAR < -0.5) LOG_WARNING( "ALPHA_STAR is %f, which is unphysical value given the observational LFs.\n"\ "Also, when ALPHA_STAR < -.5, LFs may show a kink. It is recommended to set ALPHA_STAR > -0.5.", astro_params->ALPHA_STAR ); mf = user_params_ps->HMF; lnMhalo_min = log(Mhalo_min*0.999); lnMhalo_max = log(Mhalo_max*1.001); dlnMhalo = (lnMhalo_max - lnMhalo_min)/(double)(nbins - 1); for (i_z=0; i_z<NUM_OF_REDSHIFT_FOR_LF; i_z++) { growthf = dicke(z_LF[i_z]); Mcrit_atom = atomic_cooling_threshold(z_LF[i_z]); i_unity = -1; for (i=0; i<nbins; i++) { // generate interpolation arrays lnMhalo_param[i] = lnMhalo_min + dlnMhalo*(double)i; Mhalo_i = exp(lnMhalo_param[i]); if (component == 1) Fstar = astro_params->F_STAR10*pow(Mhalo_i/1e10,astro_params->ALPHA_STAR); else Fstar = astro_params->F_STAR7_MINI*pow(Mhalo_i/1e7,astro_params->ALPHA_STAR_MINI); if (Fstar > 1.) Fstar = 1; if (i_unity < 0) { // Find the array number at which Fstar crosses unity. if (astro_params->ALPHA_STAR > 0.) { if ( (1.- Fstar) < FRACT_FLOAT_ERR ) i_unity = i; } else if (astro_params->ALPHA_STAR < 0. && i < nbins-1) { if (component == 1) Fstar_temp = astro_params->F_STAR10*pow( exp(lnMhalo_min + dlnMhalo*(double)(i+1))/1e10,astro_params->ALPHA_STAR); else Fstar_temp = astro_params->F_STAR7_MINI*pow( exp(lnMhalo_min + dlnMhalo*(double)(i+1))/1e7,astro_params->ALPHA_STAR_MINI); if (Fstar_temp < 1. && (1.- Fstar) < FRACT_FLOAT_ERR) i_unity = i; } } // parametrization of SFR SFRparam = Mhalo_i * cosmo_params->OMb/cosmo_params->OMm * (double)Fstar * (double)(hubble(z_LF[i_z])*SperYR/astro_params->t_STAR); // units of M_solar/year Muv_param[i] = 51.63 - 2.5*log10(SFRparam*Luv_over_SFR); // UV magnitude // except if Muv value is nan or inf, but avoid error put the value as 10. if ( isinf(Muv_param[i]) || isnan(Muv_param[i]) ) Muv_param[i] = 10.; M_uv_z[i + i_z*nbins] = Muv_param[i]; } gsl_status = gsl_spline_init(LF_spline, lnMhalo_param, Muv_param, nbins); GSL_ERROR(gsl_status); lnMhalo_lo = log(Mhalo_min); lnMhalo_hi = log(Mhalo_max); dlnM = (lnMhalo_hi - lnMhalo_lo)/(double)(nbins - 1); // There is a kink on LFs at which Fstar crosses unity. This kink is a numerical artefact caused by the derivate of dMuvdMhalo. // Most of the cases the kink doesn't appear in magnitude ranges we are interested (e.g. -22 < Muv < -10). However, for some extreme // parameters, it appears. To avoid this kink, we use the interpolation of the derivate in the range where the kink appears. // 'i_unity' is the array number at which the kink appears. 'i_unity-3' and 'i_unity+12' are related to the range of interpolation, // which is an arbitrary choice. // NOTE: This method does NOT work in cases with ALPHA_STAR < -0.5. But, this parameter range is unphysical given that the // observational LFs favour positive ALPHA_STAR in this model. // i_smth = 0: calculates LFs without interpolation. // i_smth = 1: calculates LFs using interpolation where Fstar crosses unity. if (i_unity-3 < 0) i_smth = 0; else if (i_unity+12 > nbins-1) i_smth = 0; else i_smth = 1; if (i_smth == 0) { for (i=0; i<nbins; i++) { // calculate luminosity function lnMhalo_i = lnMhalo_lo + dlnM*(double)i; Mhalo_param[i] = exp(lnMhalo_i); M_h_z[i + i_z*nbins] = Mhalo_param[i]; Muv_1 = gsl_spline_eval(LF_spline, lnMhalo_i - delta_lnMhalo, LF_spline_acc); Muv_2 = gsl_spline_eval(LF_spline, lnMhalo_i + delta_lnMhalo, LF_spline_acc); dMuvdMhalo = (Muv_2 - Muv_1) / (2.*delta_lnMhalo * exp(lnMhalo_i)); if (component == 1) f_duty_upper = 1.; else f_duty_upper = exp(-(Mhalo_param[i]/Mcrit_atom)); if(mf==0) { log10phi[i + i_z*nbins] = log10( dNdM(growthf, exp(lnMhalo_i)) * exp(-(M_TURNs[i_z]/Mhalo_param[i])) * f_duty_upper / fabs(dMuvdMhalo) ); } else if(mf==1) { log10phi[i + i_z*nbins] = log10( dNdM_st(growthf, exp(lnMhalo_i)) * exp(-(M_TURNs[i_z]/Mhalo_param[i])) * f_duty_upper / fabs(dMuvdMhalo) ); } else if(mf==2) { log10phi[i + i_z*nbins] = log10( dNdM_WatsonFOF(growthf, exp(lnMhalo_i)) * exp(-(M_TURNs[i_z]/Mhalo_param[i])) * f_duty_upper / fabs(dMuvdMhalo) ); } else if(mf==3) { log10phi[i + i_z*nbins] = log10( dNdM_WatsonFOF_z(z_LF[i_z], growthf, exp(lnMhalo_i)) * exp(-(M_TURNs[i_z]/Mhalo_param[i])) * f_duty_upper / fabs(dMuvdMhalo) ); } else{ LOG_ERROR("HMF should be between 0-3, got %d", mf); Throw(ValueError); } if (isinf(log10phi[i + i_z*nbins]) || isnan(log10phi[i + i_z*nbins]) || log10phi[i + i_z*nbins] < -30.) log10phi[i + i_z*nbins] = -30.; } } else { lnM_temp = calloc(nbins_smth,sizeof(double)); deriv_temp = calloc(nbins_smth,sizeof(double)); deriv = calloc(nbins,sizeof(double)); for (i=0; i<nbins; i++) { // calculate luminosity function lnMhalo_i = lnMhalo_lo + dlnM*(double)i; Mhalo_param[i] = exp(lnMhalo_i); M_h_z[i + i_z*nbins] = Mhalo_param[i]; Muv_1 = gsl_spline_eval(LF_spline, lnMhalo_i - delta_lnMhalo, LF_spline_acc); Muv_2 = gsl_spline_eval(LF_spline, lnMhalo_i + delta_lnMhalo, LF_spline_acc); dMuvdMhalo = (Muv_2 - Muv_1) / (2.*delta_lnMhalo * exp(lnMhalo_i)); deriv[i] = fabs(dMuvdMhalo); } deriv_spline_acc = gsl_interp_accel_alloc(); deriv_spline = gsl_spline_alloc(gsl_interp_cspline, nbins_smth); // generate interpolation arrays to smooth discontinuity of the derivative causing a kink // Note that the number of array elements and the range of interpolation are made by arbitrary choices. lnM_temp[0] = lnMhalo_param[i_unity - 3]; lnM_temp[1] = lnMhalo_param[i_unity - 2]; lnM_temp[2] = lnMhalo_param[i_unity + 8]; lnM_temp[3] = lnMhalo_param[i_unity + 9]; lnM_temp[4] = lnMhalo_param[i_unity + 10]; lnM_temp[5] = lnMhalo_param[i_unity + 11]; lnM_temp[6] = lnMhalo_param[i_unity + 12]; deriv_temp[0] = deriv[i_unity - 3]; deriv_temp[1] = deriv[i_unity - 2]; deriv_temp[2] = deriv[i_unity + 8]; deriv_temp[3] = deriv[i_unity + 9]; deriv_temp[4] = deriv[i_unity + 10]; deriv_temp[5] = deriv[i_unity + 11]; deriv_temp[6] = deriv[i_unity + 12]; gsl_status = gsl_spline_init(deriv_spline, lnM_temp, deriv_temp, nbins_smth); GSL_ERROR(gsl_status); for (i=0;i<9;i++){ deriv[i_unity + i - 1] = gsl_spline_eval(deriv_spline, lnMhalo_param[i_unity + i - 1], deriv_spline_acc); } for (i=0; i<nbins; i++) { if (component == 1) f_duty_upper = 1.; else f_duty_upper = exp(-(Mhalo_param[i]/Mcrit_atom)); if(mf==0) dndm = dNdM(growthf, Mhalo_param[i]); else if(mf==1) dndm = dNdM_st(growthf, Mhalo_param[i]); else if(mf==2) dndm = dNdM_WatsonFOF(growthf, Mhalo_param[i]); else if(mf==3) dndm = dNdM_WatsonFOF_z(z_LF[i_z], growthf, Mhalo_param[i]); else{ LOG_ERROR("HMF should be between 0-3, got %d", mf); Throw(ValueError); } log10phi[i + i_z*nbins] = log10(dndm * exp(-(M_TURNs[i_z]/Mhalo_param[i])) * f_duty_upper / deriv[i]); if (isinf(log10phi[i + i_z*nbins]) || isnan(log10phi[i + i_z*nbins]) || log10phi[i + i_z*nbins] < -30.) log10phi[i + i_z*nbins] = -30.; } } } cleanup_ComputeLF(); } // End try Catch(status){ return status; } return(0); } void initialiseGL_Nion_Xray(int n, float M_Min, float M_Max){ //calculates the weightings and the positions for Gauss-Legendre quadrature. gauleg(log(M_Min),log(M_Max),xi_SFR_Xray,wi_SFR_Xray,n); } float dNdM_conditional(float growthf, float M1, float M2, float delta1, float delta2, float sigma2){ float sigma1, dsigmadm,dsigma_val; float MassBinLow; int MassBin; if(user_params_ps->USE_INTERPOLATION_TABLES) { MassBin = (int)floor( (M1 - MinMass )*inv_mass_bin_width ); MassBinLow = MinMass + mass_bin_width*(float)MassBin; sigma1 = Sigma_InterpTable[MassBin] + ( M1 - MassBinLow )*( Sigma_InterpTable[MassBin+1] - Sigma_InterpTable[MassBin] )*inv_mass_bin_width; dsigma_val = dSigmadm_InterpTable[MassBin] + ( M1 - MassBinLow )*( dSigmadm_InterpTable[MassBin+1] - dSigmadm_InterpTable[MassBin] )*inv_mass_bin_width; dsigmadm = -pow(10.,dsigma_val); } else { sigma1 = sigma_z0(exp(M1)); dsigmadm = dsigmasqdm_z0(exp(M1)); } M1 = exp(M1); M2 = exp(M2); sigma1 = sigma1*sigma1; sigma2 = sigma2*sigma2; dsigmadm = dsigmadm/(2.0*sigma1); // This is actually sigma1^{2} as calculated above, however, it should just be sigma1. It cancels with the same factor below. Why I have decided to write it like that I don't know! if((sigma1 > sigma2)) { return -(( delta1 - delta2 )/growthf)*( 2.*sigma1*dsigmadm )*( exp( - ( delta1 - delta2 )*( delta1 - delta2 )/( 2.*growthf*growthf*( sigma1 - sigma2 ) ) ) )/(pow( sigma1 - sigma2, 1.5)); } else if(sigma1==sigma2) { return -(( delta1 - delta2 )/growthf)*( 2.*sigma1*dsigmadm )*( exp( - ( delta1 - delta2 )*( delta1 - delta2 )/( 2.*growthf*growthf*( 1.e-6 ) ) ) )/(pow( 1.e-6, 1.5)); } else { return 0.; } } void initialiseGL_Nion(int n, float M_Min, float M_Max){ //calculates the weightings and the positions for Gauss-Legendre quadrature. gauleg(log(M_Min),log(M_Max),xi_SFR,wi_SFR,n); } double dNion_ConditionallnM_MINI(double lnM, void *params) { struct parameters_gsl_SFR_con_int_ vals = *(struct parameters_gsl_SFR_con_int_ *)params; double M = exp(lnM); // linear scale double growthf = vals.gf_obs; double M2 = vals.Mval; // natural log scale double sigma2 = vals.sigma2; double del1 = vals.delta1; double del2 = vals.delta2; double MassTurnover = vals.Mdrop; double MassTurnover_upper = vals.Mdrop_upper; double Alpha_star = vals.pl_star; double Alpha_esc = vals.pl_esc; double Fstar7_MINI = vals.frac_star; double Fesc7_MINI = vals.frac_esc; double Mlim_Fstar = vals.LimitMass_Fstar; double Mlim_Fesc = vals.LimitMass_Fesc; double Fstar,Fesc; if (Alpha_star > 0. && M > Mlim_Fstar) Fstar = 1./Fstar7_MINI; else if (Alpha_star < 0. && M < Mlim_Fstar) Fstar = 1./Fstar7_MINI; else Fstar = pow(M/1e7,Alpha_star); if (Alpha_esc > 0. && M > Mlim_Fesc) Fesc = 1./Fesc7_MINI; else if (Alpha_esc < 0. && M < Mlim_Fesc) Fesc = 1./Fesc7_MINI; else Fesc = pow(M/1e7,Alpha_esc); return M*exp(-MassTurnover/M)*exp(-M/MassTurnover_upper)*Fstar*Fesc*dNdM_conditional(growthf,log(M),M2,del1,del2,sigma2)/sqrt(2.*PI); } double dNion_ConditionallnM(double lnM, void *params) { struct parameters_gsl_SFR_con_int_ vals = *(struct parameters_gsl_SFR_con_int_ *)params; double M = exp(lnM); // linear scale double growthf = vals.gf_obs; double M2 = vals.Mval; // natural log scale double sigma2 = vals.sigma2; double del1 = vals.delta1; double del2 = vals.delta2; double MassTurnover = vals.Mdrop; double Alpha_star = vals.pl_star; double Alpha_esc = vals.pl_esc; double Fstar10 = vals.frac_star; double Fesc10 = vals.frac_esc; double Mlim_Fstar = vals.LimitMass_Fstar; double Mlim_Fesc = vals.LimitMass_Fesc; double Fstar,Fesc; if (Alpha_star > 0. && M > Mlim_Fstar) Fstar = 1./Fstar10; else if (Alpha_star < 0. && M < Mlim_Fstar) Fstar = 1./Fstar10; else Fstar = pow(M/1e10,Alpha_star); if (Alpha_esc > 0. && M > Mlim_Fesc) Fesc = 1./Fesc10; else if (Alpha_esc < 0. && M < Mlim_Fesc) Fesc = 1./Fesc10; else Fesc = pow(M/1e10,Alpha_esc); return M*exp(-MassTurnover/M)*Fstar*Fesc*dNdM_conditional(growthf,log(M),M2,del1,del2,sigma2)/sqrt(2.*PI); } double Nion_ConditionalM_MINI(double growthf, double M1, double M2, double sigma2, double delta1, double delta2, double MassTurnover, double MassTurnover_upper, double Alpha_star, double Alpha_esc, double Fstar10, double Fesc10, double Mlim_Fstar, double Mlim_Fesc, bool FAST_FCOLL_TABLES) { if (FAST_FCOLL_TABLES) { //JBM: Fast tables. Assume sharp Mturn, not exponential cutoff. return GaussLegendreQuad_Nion_MINI(0, 0, (float) growthf, (float) M2, (float) sigma2, (float) delta1, (float) delta2, (float) MassTurnover, (float) MassTurnover_upper, (float) Alpha_star, (float) Alpha_esc, (float) Fstar10, (float) Fesc10, (float) Mlim_Fstar, (float) Mlim_Fesc, FAST_FCOLL_TABLES); } else{ //standard old code double result, error, lower_limit, upper_limit; gsl_function F; double rel_tol = 0.01; //<- relative tolerance gsl_integration_workspace * w = gsl_integration_workspace_alloc (1000); struct parameters_gsl_SFR_con_int_ parameters_gsl_SFR_con = { .gf_obs = growthf, .Mval = M2, .sigma2 = sigma2, .delta1 = delta1, .delta2 = delta2, .Mdrop = MassTurnover, .Mdrop_upper = MassTurnover_upper, .pl_star = Alpha_star, .pl_esc = Alpha_esc, .frac_star = Fstar10, .frac_esc = Fesc10, .LimitMass_Fstar = Mlim_Fstar, .LimitMass_Fesc = Mlim_Fesc }; int status; F.function = &dNion_ConditionallnM_MINI; F.params = &parameters_gsl_SFR_con; lower_limit = M1; upper_limit = M2; gsl_set_error_handler_off(); status = gsl_integration_qag (&F, lower_limit, upper_limit, 0, rel_tol, 1000, GSL_INTEG_GAUSS61, w, &result, &error); if(status!=0) { LOG_ERROR("gsl integration error occured!"); LOG_ERROR("(function argument): lower_limit=%e upper_limit=%e rel_tol=%e result=%e error=%e",lower_limit,upper_limit,rel_tol,result,error); LOG_ERROR("data: growthf=%e M2=%e sigma2=%e delta1=%e delta2=%e MassTurnover=%e",growthf,M2,sigma2,delta1,delta2,MassTurnover); LOG_ERROR("data: MassTurnover_upper=%e Alpha_star=%e Alpha_esc=%e Fstar10=%e Fesc10=%e Mlim_Fstar=%e Mlim_Fesc=%e",MassTurnover_upper,Alpha_star,Alpha_esc,Fstar10,Fesc10,Mlim_Fstar,Mlim_Fesc); GSL_ERROR(status); } gsl_integration_workspace_free (w); if(delta2 > delta1) { result = 1.; return result; } else { return result; } } } double Nion_ConditionalM(double growthf, double M1, double M2, double sigma2, double delta1, double delta2, double MassTurnover, double Alpha_star, double Alpha_esc, double Fstar10, double Fesc10, double Mlim_Fstar, double Mlim_Fesc, bool FAST_FCOLL_TABLES) { if (FAST_FCOLL_TABLES && global_params.USE_FAST_ATOMIC) { //JBM: Fast tables. Assume sharp Mturn, not exponential cutoff. return GaussLegendreQuad_Nion(0, 0, (float) growthf, (float) M2, (float) sigma2, (float) delta1, (float) delta2, (float) MassTurnover, (float) Alpha_star, (float) Alpha_esc, (float) Fstar10, (float) Fesc10, (float) Mlim_Fstar, (float) Mlim_Fesc, FAST_FCOLL_TABLES); } else{ //standard double result, error, lower_limit, upper_limit; gsl_function F; double rel_tol = 0.01; //<- relative tolerance gsl_integration_workspace * w = gsl_integration_workspace_alloc (1000); struct parameters_gsl_SFR_con_int_ parameters_gsl_SFR_con = { .gf_obs = growthf, .Mval = M2, .sigma2 = sigma2, .delta1 = delta1, .delta2 = delta2, .Mdrop = MassTurnover, .pl_star = Alpha_star, .pl_esc = Alpha_esc, .frac_star = Fstar10, .frac_esc = Fesc10, .LimitMass_Fstar = Mlim_Fstar, .LimitMass_Fesc = Mlim_Fesc }; F.function = &dNion_ConditionallnM; F.params = &parameters_gsl_SFR_con; lower_limit = M1; upper_limit = M2; int status; gsl_set_error_handler_off(); status = gsl_integration_qag (&F, lower_limit, upper_limit, 0, rel_tol, 1000, GSL_INTEG_GAUSS61, w, &result, &error); if(status!=0) { LOG_ERROR("gsl integration error occured!"); LOG_ERROR("(function argument): lower_limit=%e upper_limit=%e rel_tol=%e result=%e error=%e",lower_limit,upper_limit,rel_tol,result,error); LOG_ERROR("data: growthf=%e M1=%e M2=%e sigma2=%e delta1=%e delta2=%e",growthf,M1,M2,sigma2,delta1,delta2); LOG_ERROR("data: MassTurnover=%e Alpha_star=%e Alpha_esc=%e Fstar10=%e Fesc10=%e Mlim_Fstar=%e Mlim_Fesc=%e",MassTurnover,Alpha_star,Alpha_esc,Fstar10,Fesc10,Mlim_Fstar,Mlim_Fesc); GSL_ERROR(status); } gsl_integration_workspace_free (w); if(delta2 > delta1) { result = 1.; return result; } else { return result; } } } float Nion_ConditionallnM_GL_MINI(float lnM, struct parameters_gsl_SFR_con_int_ parameters_gsl_SFR_con){ float M = exp(lnM); float growthf = parameters_gsl_SFR_con.gf_obs; float M2 = parameters_gsl_SFR_con.Mval; float sigma2 = parameters_gsl_SFR_con.sigma2; float del1 = parameters_gsl_SFR_con.delta1; float del2 = parameters_gsl_SFR_con.delta2; float MassTurnover = parameters_gsl_SFR_con.Mdrop; float MassTurnover_upper = parameters_gsl_SFR_con.Mdrop_upper; float Alpha_star = parameters_gsl_SFR_con.pl_star; float Alpha_esc = parameters_gsl_SFR_con.pl_esc; float Fstar7_MINI = parameters_gsl_SFR_con.frac_star; float Fesc7_MINI = parameters_gsl_SFR_con.frac_esc; float Mlim_Fstar = parameters_gsl_SFR_con.LimitMass_Fstar; float Mlim_Fesc = parameters_gsl_SFR_con.LimitMass_Fesc; float Fstar,Fesc; if (Alpha_star > 0. && M > Mlim_Fstar) Fstar = 1./Fstar7_MINI; else if (Alpha_star < 0. && M < Mlim_Fstar) Fstar = 1./Fstar7_MINI; else Fstar = pow(M/1e7,Alpha_star); if (Alpha_esc > 0. && M > Mlim_Fesc) Fesc = 1./Fesc7_MINI; else if (Alpha_esc < 0. && M < Mlim_Fesc) Fesc = 1./Fesc7_MINI; else Fesc = pow(M/1e7,Alpha_esc); return M*exp(-MassTurnover/M)*exp(-M/MassTurnover_upper)*Fstar*Fesc*dNdM_conditional(growthf,log(M),M2,del1,del2,sigma2)/sqrt(2.*PI); } float Nion_ConditionallnM_GL(float lnM, struct parameters_gsl_SFR_con_int_ parameters_gsl_SFR_con){ float M = exp(lnM); float growthf = parameters_gsl_SFR_con.gf_obs; float M2 = parameters_gsl_SFR_con.Mval; float sigma2 = parameters_gsl_SFR_con.sigma2; float del1 = parameters_gsl_SFR_con.delta1; float del2 = parameters_gsl_SFR_con.delta2; float MassTurnover = parameters_gsl_SFR_con.Mdrop; float Alpha_star = parameters_gsl_SFR_con.pl_star; float Alpha_esc = parameters_gsl_SFR_con.pl_esc; float Fstar10 = parameters_gsl_SFR_con.frac_star; float Fesc10 = parameters_gsl_SFR_con.frac_esc; float Mlim_Fstar = parameters_gsl_SFR_con.LimitMass_Fstar; float Mlim_Fesc = parameters_gsl_SFR_con.LimitMass_Fesc; float Fstar,Fesc; if (Alpha_star > 0. && M > Mlim_Fstar) Fstar = 1./Fstar10; else if (Alpha_star < 0. && M < Mlim_Fstar) Fstar = 1./Fstar10; else Fstar = pow(M/1e10,Alpha_star); if (Alpha_esc > 0. && M > Mlim_Fesc) Fesc = 1./Fesc10; else if (Alpha_esc < 0. && M < Mlim_Fesc) Fesc = 1./Fesc10; else Fesc = pow(M/1e10,Alpha_esc); return M*exp(-MassTurnover/M)*Fstar*Fesc*dNdM_conditional(growthf,log(M),M2,del1,del2,sigma2)/sqrt(2.*PI); } //JBM: Same as above but for minihaloes. Has two cutoffs, lower and upper. float GaussLegendreQuad_Nion_MINI(int Type, int n, float growthf, float M2, float sigma2, float delta1, float delta2, float MassTurnover, float MassTurnover_upper, float Alpha_star, float Alpha_esc, float Fstar7_MINI, float Fesc7_MINI, float Mlim_Fstar_MINI, float Mlim_Fesc_MINI, bool FAST_FCOLL_TABLES) { double result, nu_lower_limit, nu_higher_limit, nupivot; int i; double integrand, x; integrand = 0.; struct parameters_gsl_SFR_con_int_ parameters_gsl_SFR_con = { .gf_obs = growthf, .Mval = M2, .sigma2 = sigma2, .delta1 = delta1, .delta2 = delta2, .Mdrop = MassTurnover, .Mdrop_upper = MassTurnover_upper, .pl_star = Alpha_star, .pl_esc = Alpha_esc, .frac_star = Fstar7_MINI, .frac_esc = Fesc7_MINI, .LimitMass_Fstar = Mlim_Fstar_MINI, .LimitMass_Fesc = Mlim_Fesc_MINI }; if(delta2 > delta1*0.9999) { result = 1.; return result; } if(FAST_FCOLL_TABLES){ //JBM: Fast tables. Assume sharp Mturn, not exponential cutoff. if(MassTurnover_upper <= MassTurnover){ return 1e-40; //in sharp cut it's zero } double delta_arg = pow( (delta1 - delta2)/growthf , 2.); double LogMass=log(MassTurnover); int MassBin = (int)floor( (LogMass - MinMass )*inv_mass_bin_width ); double MassBinLow = MinMass + mass_bin_width*(double)MassBin; double sigmaM1 = Sigma_InterpTable[MassBin] + ( LogMass - MassBinLow )*( Sigma_InterpTable[MassBin+1] - Sigma_InterpTable[MassBin] )*inv_mass_bin_width; nu_lower_limit = delta_arg/(sigmaM1 * sigmaM1 - sigma2 * sigma2); LogMass = log(MassTurnover_upper); MassBin = (int)floor( (LogMass - MinMass )*inv_mass_bin_width ); MassBinLow = MinMass + mass_bin_width*(double)MassBin; double sigmaM2 = Sigma_InterpTable[MassBin] + ( LogMass - MassBinLow )*( Sigma_InterpTable[MassBin+1] - Sigma_InterpTable[MassBin] )*inv_mass_bin_width; nu_higher_limit = delta_arg/(sigmaM2*sigmaM2-sigma2*sigma2); //note we keep nupivot1 just in case very negative delta makes it reach that nu LogMass = log(MPIVOT1); //jbm could be done outside and it'd be even faster int MassBinpivot = (int)floor( (LogMass - MinMass )*inv_mass_bin_width ); double MassBinLowpivot = MinMass + mass_bin_width*(double)MassBinpivot; double sigmapivot1 = Sigma_InterpTable[MassBinpivot] + ( LogMass - MassBinLowpivot )*( Sigma_InterpTable[MassBinpivot+1] - Sigma_InterpTable[MassBinpivot] )*inv_mass_bin_width; double nupivot1 = delta_arg/(sigmapivot1*sigmapivot1); //note, it does not have the sigma2 on purpose. LogMass = log(MPIVOT2); //jbm could be done outside and it'd be even faster MassBinpivot = (int)floor( (LogMass - MinMass )*inv_mass_bin_width ); MassBinLowpivot = MinMass + mass_bin_width*(double)MassBinpivot; double sigmapivot2 = Sigma_InterpTable[MassBinpivot] + ( LogMass - MassBinLowpivot )*( Sigma_InterpTable[MassBinpivot+1] - Sigma_InterpTable[MassBinpivot] )*inv_mass_bin_width; double nupivot2 = delta_arg/(sigmapivot2*sigmapivot2); double beta1 = (Alpha_star+Alpha_esc) * AINDEX1 * (0.5); //exponent for Fcollapprox for nu>nupivot1 (large M) double beta2 = (Alpha_star+Alpha_esc) * AINDEX2 * (0.5); //exponent for Fcollapprox for nupivot1>nu>nupivot2 (small M) double beta3 = (Alpha_star+Alpha_esc) * AINDEX3 * (0.5); //exponent for Fcollapprox for nu<nupivot2 (smallest M) //beta2 fixed by continuity. // // 3PLs double fcollres=0.0; double fcollres_high=0.0; //for the higher threshold to subtract // re-written for further speedups if (nu_higher_limit <= nupivot2){ //if both are below pivot2 don't bother adding and subtracting the high contribution fcollres=(Fcollapprox(nu_lower_limit,beta3))*pow(nupivot2,-beta3); fcollres_high=(Fcollapprox(nu_higher_limit,beta3))*pow(nupivot2,-beta3); } else { fcollres_high=(Fcollapprox(nu_higher_limit,beta2))*pow(nupivot1,-beta2); if (nu_lower_limit > nupivot2){ fcollres=(Fcollapprox(nu_lower_limit,beta2))*pow(nupivot1,-beta2); } else { fcollres=(Fcollapprox(nupivot2,beta2))*pow(nupivot1,-beta2); fcollres+=(Fcollapprox(nu_lower_limit,beta3)-Fcollapprox(nupivot2,beta3) )*pow(nupivot2,-beta3); } } if (fcollres < fcollres_high){ return 1e-40; } return (fcollres-fcollres_high); } else{ for(i=1; i<(n+1); i++){ if(Type==1) { x = xi_SFR_Xray[i]; integrand += wi_SFR_Xray[i]*Nion_ConditionallnM_GL_MINI(x,parameters_gsl_SFR_con); } if(Type==0) { x = xi_SFR[i]; integrand += wi_SFR[i]*Nion_ConditionallnM_GL_MINI(x,parameters_gsl_SFR_con); } } return integrand; } } //JBM: Added the approximation if user_params->FAST_FCOLL_TABLES==True float GaussLegendreQuad_Nion(int Type, int n, float growthf, float M2, float sigma2, float delta1, float delta2, float MassTurnover, float Alpha_star, float Alpha_esc, float Fstar10, float Fesc10, float Mlim_Fstar, float Mlim_Fesc, bool FAST_FCOLL_TABLES) { //Performs the Gauss-Legendre quadrature. int i; double result, nu_lower_limit, nupivot; if(delta2 > delta1*0.9999) { result = 1.; return result; } double integrand, x; integrand = 0.; struct parameters_gsl_SFR_con_int_ parameters_gsl_SFR_con = { .gf_obs = growthf, .Mval = M2, .sigma2 = sigma2, .delta1 = delta1, .delta2 = delta2, .Mdrop = MassTurnover, .pl_star = Alpha_star, .pl_esc = Alpha_esc, .frac_star = Fstar10, .frac_esc = Fesc10, .LimitMass_Fstar = Mlim_Fstar, .LimitMass_Fesc = Mlim_Fesc }; if (FAST_FCOLL_TABLES && global_params.USE_FAST_ATOMIC){ //JBM: Fast tables. Assume sharp Mturn, not exponential cutoff. double delta_arg = pow( (delta1 - delta2)/growthf , 2.0); double LogMass=log(MassTurnover); int MassBin = (int)floor( (LogMass - MinMass )*inv_mass_bin_width ); double MassBinLow = MinMass + mass_bin_width*(double)MassBin; double sigmaM1 = Sigma_InterpTable[MassBin] + ( LogMass - MassBinLow )*( Sigma_InterpTable[MassBin+1] - Sigma_InterpTable[MassBin] )*inv_mass_bin_width; nu_lower_limit = delta_arg/(sigmaM1*sigmaM1-sigma2*sigma2); LogMass = log(MPIVOT1); //jbm could be done outside and it'd be even faster int MassBinpivot = (int)floor( (LogMass - MinMass )*inv_mass_bin_width ); double MassBinLowpivot = MinMass + mass_bin_width*(double)MassBinpivot; double sigmapivot1 = Sigma_InterpTable[MassBinpivot] + ( LogMass - MassBinLowpivot )*( Sigma_InterpTable[MassBinpivot+1] - Sigma_InterpTable[MassBinpivot] )*inv_mass_bin_width; double nupivot1 = delta_arg/(sigmapivot1*sigmapivot1); //note, it does not have the sigma2 on purpose. LogMass = log(MPIVOT2); //jbm could be done outside and it'd be even faster MassBinpivot = (int)floor( (LogMass - MinMass )*inv_mass_bin_width ); MassBinLowpivot = MinMass + mass_bin_width*(double)MassBinpivot; double sigmapivot2 = Sigma_InterpTable[MassBinpivot] + ( LogMass - MassBinLowpivot )*( Sigma_InterpTable[MassBinpivot+1] - Sigma_InterpTable[MassBinpivot] )*inv_mass_bin_width; double nupivot2 = delta_arg/(sigmapivot2*sigmapivot2); double beta1 = (Alpha_star+Alpha_esc) * AINDEX1 * (0.5); //exponent for Fcollapprox for nu>nupivot1 (large M) double beta2 = (Alpha_star+Alpha_esc) * AINDEX2 * (0.5); //exponent for Fcollapprox for nupivot2<nu<nupivot1 (small M) double beta3 = (Alpha_star+Alpha_esc) * AINDEX3 * (0.5); //exponent for Fcollapprox for nu<nupivot2 (smallest M) //beta2 fixed by continuity. double nucrit_sigma2 = delta_arg*pow(sigma2+1e-10,-2.0); //above this nu sigma2>sigma1, so HMF=0. eps added to avoid infinities // // 3PLs double fcollres=0.0; if(nu_lower_limit >= nucrit_sigma2){ //fully in the flat part of sigma(nu), M^alpha is nu-independent. return 1e-40; } else{ //we subtract the contribution from high nu, since the HMF is set to 0 if sigma2>sigma1 fcollres -= Fcollapprox(nucrit_sigma2,beta1)*pow(nupivot1,-beta1); } if(nu_lower_limit >= nupivot1){ fcollres+=Fcollapprox(nu_lower_limit,beta1)*pow(nupivot1,-beta1); } else{ fcollres+=Fcollapprox(nupivot1,beta1)*pow(nupivot1,-beta1); if (nu_lower_limit > nupivot2){ fcollres+=(Fcollapprox(nu_lower_limit,beta2)-Fcollapprox(nupivot1,beta2))*pow(nupivot1,-beta2); } else { fcollres+=(Fcollapprox(nupivot2,beta2)-Fcollapprox(nupivot1,beta2) )*pow(nupivot1,-beta2); fcollres+=(Fcollapprox(nu_lower_limit,beta3)-Fcollapprox(nupivot2,beta3) )*pow(nupivot2,-beta3); } } if (fcollres<=0.0){ LOG_DEBUG("Negative fcoll? fc=%.1le Mt=%.1le \n",fcollres, MassTurnover); fcollres=1e-40; } return fcollres; } else{ for(i=1; i<(n+1); i++){ if(Type==1) { x = xi_SFR_Xray[i]; integrand += wi_SFR_Xray[i]*Nion_ConditionallnM_GL(x,parameters_gsl_SFR_con); } if(Type==0) { x = xi_SFR[i]; integrand += wi_SFR[i]*Nion_ConditionallnM_GL(x,parameters_gsl_SFR_con); } } return integrand; } } #include <gsl/gsl_sf_gamma.h> //JBM: Integral of a power-law times exponential for EPS: \int dnu nu^beta * exp(-nu/2)/sqrt(nu) from numin to infty. double Fcollapprox (double numin, double beta){ //nu is deltacrit^2/sigma^2, corrected by delta(R) and sigma(R) double gg = gsl_sf_gamma_inc(0.5+beta,0.5*numin); return gg*pow(2,0.5+beta)*pow(2.0*PI,-0.5); } void initialise_Nion_General_spline(float z, float min_density, float max_density, float Mmax, float MassTurnover, float Alpha_star, float Alpha_esc, float Fstar10, float Fesc10, float Mlim_Fstar, float Mlim_Fesc, bool FAST_FCOLL_TABLES){ float Mmin = MassTurnover/50.; double overdense_val, growthf, sigma2; double overdense_large_high = Deltac, overdense_large_low = global_params.CRIT_DENS_TRANSITION*0.999; double overdense_small_high, overdense_small_low; int i; float ln_10; if(max_density > global_params.CRIT_DENS_TRANSITION*1.001) { overdense_small_high = global_params.CRIT_DENS_TRANSITION*1.001; } else { overdense_small_high = max_density; } overdense_small_low = min_density; ln_10 = log(10); float MassBinLow; int MassBin; growthf = dicke(z); Mmin = log(Mmin); Mmax = log(Mmax); MassBin = (int)floor( ( Mmax - MinMass )*inv_mass_bin_width ); MassBinLow = MinMass + mass_bin_width*(float)MassBin; sigma2 = Sigma_InterpTable[MassBin] + ( Mmax - MassBinLow )*( Sigma_InterpTable[MassBin+1] - Sigma_InterpTable[MassBin] )*inv_mass_bin_width; #pragma omp parallel shared(log10_overdense_spline_SFR,log10_Nion_spline,overdense_small_low,overdense_small_high,growthf,Mmax,sigma2,MassTurnover,Alpha_star,Alpha_esc,Fstar10,Fesc10,Mlim_Fstar,Mlim_Fesc) private(i,overdense_val) num_threads(user_params_ps->N_THREADS) { #pragma omp for for (i=0; i<NSFR_low; i++){ overdense_val = log10(1. + overdense_small_low) + (double)i/((double)NSFR_low-1.)*(log10(1.+overdense_small_high)-log10(1.+overdense_small_low)); log10_overdense_spline_SFR[i] = overdense_val; log10_Nion_spline[i] = GaussLegendreQuad_Nion(0,NGL_SFR,growthf,Mmax,sigma2,Deltac,pow(10.,overdense_val)-1.,MassTurnover,Alpha_star,Alpha_esc,Fstar10,Fesc10,Mlim_Fstar,Mlim_Fesc, FAST_FCOLL_TABLES); if(fabs(log10_Nion_spline[i]) < 1e-38) { log10_Nion_spline[i] = 1e-38; } log10_Nion_spline[i] = log10(log10_Nion_spline[i]); if(log10_Nion_spline[i] < -40.){ log10_Nion_spline[i] = -40.; } log10_Nion_spline[i] *= ln_10; } } for (i=0; i<NSFR_low; i++){ if(!isfinite(log10_Nion_spline[i])) { LOG_ERROR("Detected either an infinite or NaN value in log10_Nion_spline"); // Throw(ParameterError); Throw(TableGenerationError); } } #pragma omp parallel shared(Overdense_spline_SFR,Nion_spline,overdense_large_low,overdense_large_high,growthf,Mmin,Mmax,sigma2,MassTurnover,Alpha_star,Alpha_esc,Fstar10,Fesc10,Mlim_Fstar,Mlim_Fesc) private(i) num_threads(user_params_ps->N_THREADS) { #pragma omp for for(i=0;i<NSFR_high;i++) { Overdense_spline_SFR[i] = overdense_large_low + (float)i/((float)NSFR_high-1.)*(overdense_large_high - overdense_large_low); Nion_spline[i] = Nion_ConditionalM(growthf,Mmin,Mmax,sigma2,Deltac,Overdense_spline_SFR[i],MassTurnover,Alpha_star,Alpha_esc,Fstar10,Fesc10,Mlim_Fstar,Mlim_Fesc, FAST_FCOLL_TABLES); if(Nion_spline[i]<0.) { Nion_spline[i]=pow(10.,-40.0); } } } for(i=0;i<NSFR_high;i++) { if(!isfinite(Nion_spline[i])) { LOG_ERROR("Detected either an infinite or NaN value in log10_Nion_spline"); // Throw(ParameterError); Throw(TableGenerationError); } } } void initialise_Nion_General_spline_MINI(float z, float Mcrit_atom, float min_density, float max_density, float Mmax, float Mmin, float log10Mturn_min, float log10Mturn_max, float log10Mturn_min_MINI, float log10Mturn_max_MINI, float Alpha_star, float Alpha_star_mini, float Alpha_esc, float Fstar10, float Fesc10, float Mlim_Fstar, float Mlim_Fesc, float Fstar7_MINI, float Fesc7_MINI, float Mlim_Fstar_MINI, float Mlim_Fesc_MINI, bool FAST_FCOLL_TABLES){ double growthf, sigma2; double overdense_large_high = Deltac, overdense_large_low = global_params.CRIT_DENS_TRANSITION*0.999; double overdense_small_high, overdense_small_low; int i,j; float ln_10; if(max_density > global_params.CRIT_DENS_TRANSITION*1.001) { overdense_small_high = global_params.CRIT_DENS_TRANSITION*1.001; } else { overdense_small_high = max_density; } overdense_small_low = min_density; ln_10 = log(10); float MassBinLow; int MassBin; growthf = dicke(z); Mmin = log(Mmin); Mmax = log(Mmax); MassBin = (int)floor( ( Mmax - MinMass )*inv_mass_bin_width ); MassBinLow = MinMass + mass_bin_width*(float)MassBin; sigma2 = Sigma_InterpTable[MassBin] + ( Mmax - MassBinLow )*( Sigma_InterpTable[MassBin+1] - Sigma_InterpTable[MassBin] )*inv_mass_bin_width; for (i=0; i<NSFR_low; i++){ log10_overdense_spline_SFR[i] = log10(1. + overdense_small_low) + (double)i/((double)NSFR_low-1.)*(log10(1.+overdense_small_high)-log10(1.+overdense_small_low)); } for (i=0;i<NSFR_high;i++) { Overdense_spline_SFR[i] = overdense_large_low + (float)i/((float)NSFR_high-1.)*(overdense_large_high - overdense_large_low); } for (i=0;i<NMTURN;i++){ Mturns[i] = pow(10., log10Mturn_min + (float)i/((float)NMTURN-1.)*(log10Mturn_max-log10Mturn_min)); Mturns_MINI[i] = pow(10., log10Mturn_min_MINI + (float)i/((float)NMTURN-1.)*(log10Mturn_max_MINI-log10Mturn_min_MINI)); } #pragma omp parallel shared(log10_Nion_spline,growthf,Mmax,sigma2,log10_overdense_spline_SFR,Mturns,Mturns_MINI,\ Alpha_star,Alpha_star_mini,Alpha_esc,Fstar10,Fesc10,Mlim_Fstar,Mlim_Fesc,ln_10,log10_Nion_spline_MINI,Mcrit_atom,\ Fstar7_MINI,Fesc7_MINI,Mlim_Fstar_MINI,Mlim_Fesc_MINI) \ private(i,j) num_threads(user_params_ps->N_THREADS) { #pragma omp for for (i=0; i<NSFR_low; i++){ for (j=0; j<NMTURN; j++){ log10_Nion_spline[i+j*NSFR_low] = log10(GaussLegendreQuad_Nion(0,NGL_SFR,growthf,Mmax,sigma2,Deltac,\ pow(10.,log10_overdense_spline_SFR[i])-1.,Mturns[j],Alpha_star,\ Alpha_esc,Fstar10,Fesc10,Mlim_Fstar,Mlim_Fesc, FAST_FCOLL_TABLES)); if(log10_Nion_spline[i+j*NSFR_low] < -40.){ log10_Nion_spline[i+j*NSFR_low] = -40.; } log10_Nion_spline[i+j*NSFR_low] *= ln_10; log10_Nion_spline_MINI[i+j*NSFR_low] = log10(GaussLegendreQuad_Nion_MINI(0,NGL_SFR,growthf,Mmax,sigma2,Deltac,\ pow(10.,log10_overdense_spline_SFR[i])-1.,Mturns_MINI[j],Mcrit_atom,\ Alpha_star_mini,Alpha_esc,Fstar7_MINI,Fesc7_MINI,Mlim_Fstar_MINI,Mlim_Fesc_MINI, FAST_FCOLL_TABLES)); if(log10_Nion_spline_MINI[i+j*NSFR_low] < -40.){ log10_Nion_spline_MINI[i+j*NSFR_low] = -40.; } log10_Nion_spline_MINI[i+j*NSFR_low] *= ln_10; } } } for (i=0; i<NSFR_low; i++){ for (j=0; j<NMTURN; j++){ if(isfinite(log10_Nion_spline[i+j*NSFR_low])==0) { LOG_ERROR("Detected either an infinite or NaN value in log10_Nion_spline"); // Throw(ParameterError); Throw(TableGenerationError); } if(isfinite(log10_Nion_spline_MINI[i+j*NSFR_low])==0) { LOG_ERROR("Detected either an infinite or NaN value in log10_Nion_spline_MINI"); // Throw(ParameterError); Throw(TableGenerationError); } } } #pragma omp parallel shared(Nion_spline,growthf,Mmin,Mmax,sigma2,Overdense_spline_SFR,Mturns,Alpha_star,Alpha_star_mini,\ Alpha_esc,Fstar10,Fesc10,Mlim_Fstar,Mlim_Fesc,Nion_spline_MINI,Mturns_MINI,Mcrit_atom,\ Fstar7_MINI,Fesc7_MINI,Mlim_Fstar_MINI,Mlim_Fesc_MINI) \ private(i,j) num_threads(user_params_ps->N_THREADS) { #pragma omp for for(i=0;i<NSFR_high;i++) { for (j=0; j<NMTURN; j++){ Nion_spline[i+j*NSFR_high] = Nion_ConditionalM( growthf,Mmin,Mmax,sigma2,Deltac,Overdense_spline_SFR[i], Mturns[j],Alpha_star,Alpha_esc,Fstar10,Fesc10,Mlim_Fstar,Mlim_Fesc, FAST_FCOLL_TABLES ); if(Nion_spline[i+j*NSFR_high]<0.) { Nion_spline[i+j*NSFR_high]=pow(10.,-40.0); } Nion_spline_MINI[i+j*NSFR_high] = Nion_ConditionalM_MINI( growthf,Mmin,Mmax,sigma2,Deltac,Overdense_spline_SFR[i], Mturns_MINI[j],Mcrit_atom,Alpha_star_mini,Alpha_esc,Fstar7_MINI,Fesc7_MINI, Mlim_Fstar_MINI,Mlim_Fesc_MINI, FAST_FCOLL_TABLES ); if(Nion_spline_MINI[i+j*NSFR_high]<0.) { Nion_spline_MINI[i+j*NSFR_high]=pow(10.,-40.0); } } } } for(i=0;i<NSFR_high;i++) { for (j=0; j<NMTURN; j++){ if(isfinite(Nion_spline[i+j*NSFR_high])==0) { LOG_ERROR("Detected either an infinite or NaN value in Nion_spline"); // Throw(ParameterError); Throw(TableGenerationError); } if(isfinite(Nion_spline_MINI[i+j*NSFR_high])==0) { LOG_ERROR("Detected either an infinite or NaN value in Nion_spline_MINI"); // Throw(ParameterError); Throw(TableGenerationError); } } } } void initialise_Nion_General_spline_MINI_prev(float z, float Mcrit_atom, float min_density, float max_density, float Mmax, float Mmin, float log10Mturn_min, float log10Mturn_max, float log10Mturn_min_MINI, float log10Mturn_max_MINI, float Alpha_star, float Alpha_star_mini, float Alpha_esc, float Fstar10, float Fesc10, float Mlim_Fstar, float Mlim_Fesc, float Fstar7_MINI, float Fesc7_MINI, float Mlim_Fstar_MINI, float Mlim_Fesc_MINI, bool FAST_FCOLL_TABLES){ double growthf, sigma2; double overdense_large_high = Deltac, overdense_large_low = global_params.CRIT_DENS_TRANSITION*0.999; double overdense_small_high, overdense_small_low; int i,j; float ln_10; if(max_density > global_params.CRIT_DENS_TRANSITION*1.001) { overdense_small_high = global_params.CRIT_DENS_TRANSITION*1.001; } else { overdense_small_high = max_density; } overdense_small_low = min_density; ln_10 = log(10); float MassBinLow; int MassBin; growthf = dicke(z); Mmin = log(Mmin); Mmax = log(Mmax); MassBin = (int)floor( ( Mmax - MinMass )*inv_mass_bin_width ); MassBinLow = MinMass + mass_bin_width*(float)MassBin; sigma2 = Sigma_InterpTable[MassBin] + ( Mmax - MassBinLow )*( Sigma_InterpTable[MassBin+1] - Sigma_InterpTable[MassBin] )*inv_mass_bin_width; for (i=0; i<NSFR_low; i++){ prev_log10_overdense_spline_SFR[i] = log10(1. + overdense_small_low) + (double)i/((double)NSFR_low-1.)*(log10(1.+overdense_small_high)-log10(1.+overdense_small_low)); } for (i=0;i<NSFR_high;i++) { prev_Overdense_spline_SFR[i] = overdense_large_low + (float)i/((float)NSFR_high-1.)*(overdense_large_high - overdense_large_low); } for (i=0;i<NMTURN;i++){ Mturns[i] = pow(10., log10Mturn_min + (float)i/((float)NMTURN-1.)*(log10Mturn_max-log10Mturn_min)); Mturns_MINI[i] = pow(10., log10Mturn_min_MINI + (float)i/((float)NMTURN-1.)*(log10Mturn_max_MINI-log10Mturn_min_MINI)); } #pragma omp parallel shared(prev_log10_Nion_spline,growthf,Mmax,sigma2,prev_log10_overdense_spline_SFR,Mturns,Alpha_star,Alpha_star_mini,\ Alpha_esc,Fstar10,Fesc10,Mlim_Fstar,Mlim_Fesc,prev_log10_Nion_spline_MINI,Mturns_MINI,Mcrit_atom,\ Fstar7_MINI,Fesc7_MINI,Mlim_Fstar_MINI,Mlim_Fesc_MINI) \ private(i,j) num_threads(user_params_ps->N_THREADS) { #pragma omp for for (i=0; i<NSFR_low; i++){ for (j=0; j<NMTURN; j++){ prev_log10_Nion_spline[i+j*NSFR_low] = log10(GaussLegendreQuad_Nion(0,NGL_SFR,growthf,Mmax,sigma2,Deltac,\ pow(10.,prev_log10_overdense_spline_SFR[i])-1.,Mturns[j],\ Alpha_star,Alpha_esc,Fstar10,Fesc10,Mlim_Fstar,Mlim_Fesc, FAST_FCOLL_TABLES)); if(prev_log10_Nion_spline[i+j*NSFR_low] < -40.){ prev_log10_Nion_spline[i+j*NSFR_low] = -40.; } prev_log10_Nion_spline[i+j*NSFR_low] *= ln_10; prev_log10_Nion_spline_MINI[i+j*NSFR_low] = log10(GaussLegendreQuad_Nion_MINI(0,NGL_SFR,growthf,Mmax,sigma2,Deltac,\ pow(10.,prev_log10_overdense_spline_SFR[i])-1.,Mturns_MINI[j],Mcrit_atom,\ Alpha_star_mini,Alpha_esc,Fstar7_MINI,Fesc7_MINI,Mlim_Fstar_MINI,Mlim_Fesc_MINI, FAST_FCOLL_TABLES)); if(prev_log10_Nion_spline_MINI[i+j*NSFR_low] < -40.){ prev_log10_Nion_spline_MINI[i+j*NSFR_low] = -40.; } prev_log10_Nion_spline_MINI[i+j*NSFR_low] *= ln_10; } } } for (i=0; i<NSFR_low; i++){ for (j=0; j<NMTURN; j++){ if(isfinite(prev_log10_Nion_spline[i+j*NSFR_low])==0) { LOG_ERROR("Detected either an infinite or NaN value in prev_log10_Nion_spline"); // Throw(ParameterError); Throw(TableGenerationError); } if(isfinite(prev_log10_Nion_spline_MINI[i+j*NSFR_low])==0) { LOG_ERROR("Detected either an infinite or NaN value in prev_log10_Nion_spline_MINI"); // Throw(ParameterError); Throw(TableGenerationError); } } } #pragma omp parallel shared(prev_Nion_spline,growthf,Mmin,Mmax,sigma2,prev_Overdense_spline_SFR,Mturns,\ Alpha_star,Alpha_star_mini,Alpha_esc,Fstar10,Fesc10,Mlim_Fstar,Mlim_Fesc,prev_Nion_spline_MINI,Mturns_MINI,\ Mcrit_atom,Fstar7_MINI,Fesc7_MINI,Mlim_Fstar_MINI,Mlim_Fesc_MINI) \ private(i,j) num_threads(user_params_ps->N_THREADS) { #pragma omp for for(i=0;i<NSFR_high;i++) { for (j=0; j<NMTURN; j++){ prev_Nion_spline[i+j*NSFR_high] = Nion_ConditionalM(growthf,Mmin,Mmax,sigma2,Deltac,prev_Overdense_spline_SFR[i],\ Mturns[j],Alpha_star,Alpha_esc,Fstar10,Fesc10,Mlim_Fstar,Mlim_Fesc, FAST_FCOLL_TABLES); if(prev_Nion_spline[i+j*NSFR_high]<0.) { prev_Nion_spline[i+j*NSFR_high]=pow(10.,-40.0); } prev_Nion_spline_MINI[i+j*NSFR_high] = Nion_ConditionalM_MINI(growthf,Mmin,Mmax,sigma2,Deltac,\ prev_Overdense_spline_SFR[i],Mturns_MINI[j],Mcrit_atom,Alpha_star_mini,\ Alpha_esc,Fstar7_MINI,Fesc7_MINI,Mlim_Fstar_MINI,Mlim_Fesc_MINI, FAST_FCOLL_TABLES); if(prev_Nion_spline_MINI[i+j*NSFR_high]<0.) { prev_Nion_spline_MINI[i+j*NSFR_high]=pow(10.,-40.0); } } } } for(i=0;i<NSFR_high;i++) { for (j=0; j<NMTURN; j++){ if(isfinite(prev_Nion_spline[i+j*NSFR_high])==0) { LOG_ERROR("Detected either an infinite or NaN value in prev_Nion_spline"); // Throw(ParameterError); Throw(TableGenerationError); } if(isfinite(prev_Nion_spline_MINI[i+j*NSFR_high])==0) { LOG_ERROR("Detected either an infinite or NaN value in prev_Nion_spline_MINI"); // Throw(ParameterError); Throw(TableGenerationError); } } } } void initialise_Nion_Ts_spline( int Nbin, float zmin, float zmax, float MassTurn, float Alpha_star, float Alpha_esc, float Fstar10, float Fesc10 ){ int i; float Mmin = MassTurn/50., Mmax = global_params.M_MAX_INTEGRAL; float Mlim_Fstar, Mlim_Fesc; if (z_val == NULL){ z_val = calloc(Nbin,sizeof(double)); Nion_z_val = calloc(Nbin,sizeof(double)); } Mlim_Fstar = Mass_limit_bisection(Mmin, Mmax, Alpha_star, Fstar10); Mlim_Fesc = Mass_limit_bisection(Mmin, Mmax, Alpha_esc, Fesc10); #pragma omp parallel shared(z_val,Nion_z_val,zmin,zmax, MassTurn, Alpha_star, Alpha_esc, Fstar10, Fesc10, Mlim_Fstar, Mlim_Fesc) private(i) num_threads(user_params_ps->N_THREADS) { #pragma omp for for (i=0; i<Nbin; i++){ z_val[i] = zmin + (double)i/((double)Nbin-1.)*(zmax - zmin); Nion_z_val[i] = Nion_General(z_val[i], Mmin, MassTurn, Alpha_star, Alpha_esc, Fstar10, Fesc10, Mlim_Fstar, Mlim_Fesc); } } for (i=0; i<Nbin; i++){ if(isfinite(Nion_z_val[i])==0) { LOG_ERROR("Detected either an infinite or NaN value in Nion_z_val"); // Throw(ParameterError); Throw(TableGenerationError); } } } void initialise_Nion_Ts_spline_MINI( int Nbin, float zmin, float zmax, float Alpha_star, float Alpha_star_mini, float Alpha_esc, float Fstar10, float Fesc10, float Fstar7_MINI, float Fesc7_MINI ){ int i,j; float Mmin = global_params.M_MIN_INTEGRAL, Mmax = global_params.M_MAX_INTEGRAL; float Mlim_Fstar, Mlim_Fesc, Mlim_Fstar_MINI, Mlim_Fesc_MINI, Mcrit_atom_val; if (z_val == NULL){ z_val = calloc(Nbin,sizeof(double)); Nion_z_val = calloc(Nbin,sizeof(double)); Nion_z_val_MINI = calloc(Nbin*NMTURN,sizeof(double)); } Mlim_Fstar = Mass_limit_bisection(Mmin, Mmax, Alpha_star, Fstar10); Mlim_Fesc = Mass_limit_bisection(Mmin, Mmax, Alpha_esc, Fesc10); Mlim_Fstar_MINI = Mass_limit_bisection(Mmin, Mmax, Alpha_star_mini, Fstar7_MINI * pow(1e3, Alpha_star_mini)); Mlim_Fesc_MINI = Mass_limit_bisection(Mmin, Mmax, Alpha_esc, Fesc7_MINI * pow(1e3, Alpha_esc)); float MassTurnover[NMTURN]; for (i=0;i<NMTURN;i++){ MassTurnover[i] = pow(10., LOG10_MTURN_MIN + (float)i/((float)NMTURN-1.)*(LOG10_MTURN_MAX-LOG10_MTURN_MIN)); } #pragma omp parallel shared(z_val,Nion_z_val,Nbin,zmin,zmax,Mmin,Alpha_star,Alpha_star_mini,Alpha_esc,Fstar10,Fesc10,Mlim_Fstar,Mlim_Fesc,\ Nion_z_val_MINI,MassTurnover,Fstar7_MINI, Fesc7_MINI, Mlim_Fstar_MINI, Mlim_Fesc_MINI) \ private(i,j,Mcrit_atom_val) num_threads(user_params_ps->N_THREADS) { #pragma omp for for (i=0; i<Nbin; i++){ z_val[i] = zmin + (double)i/((double)Nbin-1.)*(zmax - zmin); Mcrit_atom_val = atomic_cooling_threshold(z_val[i]); Nion_z_val[i] = Nion_General(z_val[i], Mmin, Mcrit_atom_val, Alpha_star, Alpha_esc, Fstar10, Fesc10, Mlim_Fstar, Mlim_Fesc); for (j=0; j<NMTURN; j++){ Nion_z_val_MINI[i+j*Nbin] = Nion_General_MINI(z_val[i], Mmin, MassTurnover[j], Mcrit_atom_val, Alpha_star_mini, Alpha_esc, Fstar7_MINI, Fesc7_MINI, Mlim_Fstar_MINI, Mlim_Fesc_MINI); } } } for (i=0; i<Nbin; i++){ if(isfinite(Nion_z_val[i])==0) { i = Nbin; LOG_ERROR("Detected either an infinite or NaN value in Nion_z_val"); // Throw(ParameterError); Throw(TableGenerationError); } for (j=0; j<NMTURN; j++){ if(isfinite(Nion_z_val_MINI[i+j*Nbin])==0){ j = NMTURN; LOG_ERROR("Detected either an infinite or NaN value in Nion_z_val_MINI"); // Throw(ParameterError); Throw(TableGenerationError); } } } } void initialise_SFRD_spline(int Nbin, float zmin, float zmax, float MassTurn, float Alpha_star, float Fstar10){ int i; float Mmin = MassTurn/50., Mmax = global_params.M_MAX_INTEGRAL; float Mlim_Fstar; if (z_X_val == NULL){ z_X_val = calloc(Nbin,sizeof(double)); SFRD_val = calloc(Nbin,sizeof(double)); } Mlim_Fstar = Mass_limit_bisection(Mmin, Mmax, Alpha_star, Fstar10); #pragma omp parallel shared(z_X_val,SFRD_val,zmin,zmax, MassTurn, Alpha_star, Fstar10, Mlim_Fstar) private(i) num_threads(user_params_ps->N_THREADS) { #pragma omp for for (i=0; i<Nbin; i++){ z_X_val[i] = zmin + (double)i/((double)Nbin-1.)*(zmax - zmin); SFRD_val[i] = Nion_General(z_X_val[i], Mmin, MassTurn, Alpha_star, 0., Fstar10, 1.,Mlim_Fstar,0.); } } for (i=0; i<Nbin; i++){ if(isfinite(SFRD_val[i])==0) { LOG_ERROR("Detected either an infinite or NaN value in SFRD_val"); // Throw(ParameterError); Throw(TableGenerationError); } } } void initialise_SFRD_spline_MINI(int Nbin, float zmin, float zmax, float Alpha_star, float Alpha_star_mini, float Fstar10, float Fstar7_MINI){ int i,j; float Mmin = global_params.M_MIN_INTEGRAL, Mmax = global_params.M_MAX_INTEGRAL; float Mlim_Fstar, Mlim_Fstar_MINI, Mcrit_atom_val; if (z_X_val == NULL){ z_X_val = calloc(Nbin,sizeof(double)); SFRD_val = calloc(Nbin,sizeof(double)); SFRD_val_MINI = calloc(Nbin*NMTURN,sizeof(double)); } Mlim_Fstar = Mass_limit_bisection(Mmin, Mmax, Alpha_star, Fstar10); Mlim_Fstar_MINI = Mass_limit_bisection(Mmin, Mmax, Alpha_star_mini, Fstar7_MINI * pow(1e3, Alpha_star_mini)); float MassTurnover[NMTURN]; for (i=0;i<NMTURN;i++){ MassTurnover[i] = pow(10., LOG10_MTURN_MIN + (float)i/((float)NMTURN-1.)*(LOG10_MTURN_MAX-LOG10_MTURN_MIN)); } #pragma omp parallel shared(z_X_val,zmin,zmax,Nbin,SFRD_val,Mmin, Alpha_star,Alpha_star_mini,Fstar10,Mlim_Fstar,\ SFRD_val_MINI,MassTurnover,Fstar7_MINI,Mlim_Fstar_MINI) \ private(i,j,Mcrit_atom_val) num_threads(user_params_ps->N_THREADS) { #pragma omp for for (i=0; i<Nbin; i++){ z_X_val[i] = zmin + (double)i/((double)Nbin-1.)*(zmax - zmin); Mcrit_atom_val = atomic_cooling_threshold(z_X_val[i]); SFRD_val[i] = Nion_General(z_X_val[i], Mmin, Mcrit_atom_val, Alpha_star, 0., Fstar10, 1.,Mlim_Fstar,0.); for (j=0; j<NMTURN; j++){ SFRD_val_MINI[i+j*Nbin] = Nion_General_MINI(z_X_val[i], Mmin, MassTurnover[j], Mcrit_atom_val, Alpha_star_mini, 0., Fstar7_MINI, 1.,Mlim_Fstar_MINI,0.); } } } for (i=0; i<Nbin; i++){ if(isfinite(SFRD_val[i])==0) { i = Nbin; LOG_ERROR("Detected either an infinite or NaN value in SFRD_val"); // Throw(ParameterError); Throw(TableGenerationError); } for (j=0; j<NMTURN; j++){ if(isfinite(SFRD_val_MINI[i+j*Nbin])==0) { j = NMTURN; LOG_ERROR("Detected either an infinite or NaN value in SFRD_val_MINI"); // Throw(ParameterError); Throw(TableGenerationError); } } } } void initialise_SFRD_Conditional_table( int Nfilter, float min_density[], float max_density[], float growthf[], float R[], float MassTurnover, float Alpha_star, float Fstar10, bool FAST_FCOLL_TABLES ){ double overdense_val; double overdense_large_high = Deltac, overdense_large_low = global_params.CRIT_DENS_TRANSITION; double overdense_small_high, overdense_small_low; float Mmin,Mmax,Mlim_Fstar,sigma2; int i,j,k,i_tot; float ln_10; ln_10 = log(10); Mmin = MassTurnover/50.; Mmax = RtoM(R[Nfilter-1]); Mlim_Fstar = Mass_limit_bisection(Mmin, Mmax, Alpha_star, Fstar10); Mmin = log(Mmin); for (i=0; i<NSFR_high;i++) { overdense_high_table[i] = overdense_large_low + (float)i/((float)NSFR_high-1.)*(overdense_large_high - overdense_large_low); } float MassBinLow; int MassBin; for (j=0; j < Nfilter; j++) { Mmax = RtoM(R[j]); initialiseGL_Nion_Xray(NGL_SFR, MassTurnover/50., Mmax); Mmax = log(Mmax); MassBin = (int)floor( ( Mmax - MinMass )*inv_mass_bin_width ); MassBinLow = MinMass + mass_bin_width*(float)MassBin; sigma2 = Sigma_InterpTable[MassBin] + ( Mmax - MassBinLow )*( Sigma_InterpTable[MassBin+1] - Sigma_InterpTable[MassBin] )*inv_mass_bin_width; if(min_density[j]*growthf[j] < -1.) { overdense_small_low = -1. + global_params.MIN_DENSITY_LOW_LIMIT; } else { overdense_small_low = min_density[j]*growthf[j]; } overdense_small_high = max_density[j]*growthf[j]; if(overdense_small_high > global_params.CRIT_DENS_TRANSITION) { overdense_small_high = global_params.CRIT_DENS_TRANSITION; } for (i=0; i<NSFR_low; i++) { overdense_val = log10(1. + overdense_small_low) + (float)i/((float)NSFR_low-1.)*(log10(1.+overdense_small_high)-log10(1.+overdense_small_low)); overdense_low_table[i] = pow(10.,overdense_val); } #pragma omp parallel shared(log10_SFRD_z_low_table,growthf,Mmax,sigma2,overdense_low_table,MassTurnover,Alpha_star,Fstar10,Mlim_Fstar) private(i) num_threads(user_params_ps->N_THREADS) { #pragma omp for for (i=0; i<NSFR_low; i++){ log10_SFRD_z_low_table[j][i] = GaussLegendreQuad_Nion(1,NGL_SFR,growthf[j],Mmax,sigma2,Deltac,overdense_low_table[i]-1.,MassTurnover,Alpha_star,0.,Fstar10,1.,Mlim_Fstar,0., FAST_FCOLL_TABLES); if(fabs(log10_SFRD_z_low_table[j][i]) < 1e-38) { log10_SFRD_z_low_table[j][i] = 1e-38; } log10_SFRD_z_low_table[j][i] = log10(log10_SFRD_z_low_table[j][i]); log10_SFRD_z_low_table[j][i] += 10.0; log10_SFRD_z_low_table[j][i] *= ln_10; } } for (i=0; i<NSFR_low; i++){ if(isfinite(log10_SFRD_z_low_table[j][i])==0) { LOG_ERROR("Detected either an infinite or NaN value in log10_SFRD_z_low_table"); // Throw(ParameterError); Throw(TableGenerationError); } } #pragma omp parallel shared(SFRD_z_high_table,growthf,Mmin,Mmax,sigma2,overdense_high_table,MassTurnover,Alpha_star,Fstar10,Mlim_Fstar) private(i) num_threads(user_params_ps->N_THREADS) { #pragma omp for for(i=0;i<NSFR_high;i++) { SFRD_z_high_table[j][i] = Nion_ConditionalM(growthf[j],Mmin,Mmax,sigma2,Deltac,overdense_high_table[i],MassTurnover,Alpha_star,0.,Fstar10,1.,Mlim_Fstar,0., FAST_FCOLL_TABLES); SFRD_z_high_table[j][i] *= pow(10., 10.0); } } for(i=0;i<NSFR_high;i++) { if(isfinite(SFRD_z_high_table[j][i])==0) { LOG_ERROR("Detected either an infinite or NaN value in SFRD_z_high_table"); // Throw(ParameterError); Throw(TableGenerationError); } } } } void initialise_SFRD_Conditional_table_MINI( int Nfilter, float min_density[], float max_density[], float growthf[], float R[], float Mcrit_atom[], float Alpha_star, float Alpha_star_mini, float Fstar10, float Fstar7_MINI, bool FAST_FCOLL_TABLES ){ double overdense_val; double overdense_large_high = Deltac, overdense_large_low = global_params.CRIT_DENS_TRANSITION; double overdense_small_high, overdense_small_low; float Mmin,Mmax,Mlim_Fstar,sigma2,Mlim_Fstar_MINI; int i,j,k,i_tot; float ln_10; ln_10 = log(10); Mmin = global_params.M_MIN_INTEGRAL; Mmax = RtoM(R[Nfilter-1]); Mlim_Fstar = Mass_limit_bisection(Mmin, Mmax, Alpha_star, Fstar10); Mlim_Fstar_MINI = Mass_limit_bisection(Mmin, Mmax, Alpha_star_mini, Fstar7_MINI * pow(1e3, Alpha_star_mini)); float MassTurnover[NMTURN]; for (i=0;i<NMTURN;i++){ MassTurnover[i] = pow(10., LOG10_MTURN_MIN + (float)i/((float)NMTURN-1.)*(LOG10_MTURN_MAX-LOG10_MTURN_MIN)); } Mmin = log(Mmin); for (i=0; i<NSFR_high;i++) { overdense_high_table[i] = overdense_large_low + (float)i/((float)NSFR_high-1.)*(overdense_large_high - overdense_large_low); } float MassBinLow; int MassBin; for (j=0; j < Nfilter; j++) { Mmax = RtoM(R[j]); initialiseGL_Nion_Xray(NGL_SFR, global_params.M_MIN_INTEGRAL, Mmax); Mmax = log(Mmax); MassBin = (int)floor( ( Mmax - MinMass )*inv_mass_bin_width ); MassBinLow = MinMass + mass_bin_width*(float)MassBin; sigma2 = Sigma_InterpTable[MassBin] + ( Mmax - MassBinLow )*( Sigma_InterpTable[MassBin+1] - Sigma_InterpTable[MassBin] )*inv_mass_bin_width; if(min_density[j]*growthf[j] < -1.) { overdense_small_low = -1. + global_params.MIN_DENSITY_LOW_LIMIT; } else { overdense_small_low = min_density[j]*growthf[j]; } overdense_small_high = max_density[j]*growthf[j]; if(overdense_small_high > global_params.CRIT_DENS_TRANSITION) { overdense_small_high = global_params.CRIT_DENS_TRANSITION; } for (i=0; i<NSFR_low; i++) { overdense_val = log10(1. + overdense_small_low) + (float)i/((float)NSFR_low-1.)*(log10(1.+overdense_small_high)-log10(1.+overdense_small_low)); overdense_low_table[i] = pow(10.,overdense_val); } #pragma omp parallel shared(log10_SFRD_z_low_table,growthf,Mmax,sigma2,overdense_low_table,Mcrit_atom,Alpha_star,Alpha_star_mini,Fstar10,Mlim_Fstar,\ log10_SFRD_z_low_table_MINI,MassTurnover,Fstar7_MINI,Mlim_Fstar_MINI,ln_10) \ private(i,k) num_threads(user_params_ps->N_THREADS) { #pragma omp for for (i=0; i<NSFR_low; i++){ log10_SFRD_z_low_table[j][i] = log10(GaussLegendreQuad_Nion(1,NGL_SFR,growthf[j],Mmax,sigma2,Deltac,overdense_low_table[i]-1.,Mcrit_atom[j],Alpha_star,0.,Fstar10,1.,Mlim_Fstar,0., FAST_FCOLL_TABLES)); if(log10_SFRD_z_low_table[j][i] < -50.){ log10_SFRD_z_low_table[j][i] = -50.; } log10_SFRD_z_low_table[j][i] += 10.0; log10_SFRD_z_low_table[j][i] *= ln_10; for (k=0; k<NMTURN; k++){ log10_SFRD_z_low_table_MINI[j][i+k*NSFR_low] = log10(GaussLegendreQuad_Nion_MINI(1,NGL_SFR,growthf[j],Mmax,sigma2,Deltac,overdense_low_table[i]-1.,MassTurnover[k], Mcrit_atom[j],Alpha_star_mini,0.,Fstar7_MINI,1.,Mlim_Fstar_MINI, 0., FAST_FCOLL_TABLES)); if(log10_SFRD_z_low_table_MINI[j][i+k*NSFR_low] < -50.){ log10_SFRD_z_low_table_MINI[j][i+k*NSFR_low] = -50.; } log10_SFRD_z_low_table_MINI[j][i+k*NSFR_low] += 10.0; log10_SFRD_z_low_table_MINI[j][i+k*NSFR_low] *= ln_10; } } } for (i=0; i<NSFR_low; i++){ if(isfinite(log10_SFRD_z_low_table[j][i])==0) { LOG_ERROR("Detected either an infinite or NaN value in log10_SFRD_z_low_table"); // Throw(ParameterError); Throw(TableGenerationError); } for (k=0; k<NMTURN; k++){ if(isfinite(log10_SFRD_z_low_table_MINI[j][i+k*NSFR_low])==0) { LOG_ERROR("Detected either an infinite or NaN value in log10_SFRD_z_low_table_MINI"); // Throw(ParameterError); Throw(TableGenerationError); } } } #pragma omp parallel shared(SFRD_z_high_table,growthf,Mmin,Mmax,sigma2,overdense_high_table,Mcrit_atom,Alpha_star,Alpha_star_mini,Fstar10,\ Mlim_Fstar,SFRD_z_high_table_MINI,MassTurnover,Fstar7_MINI,Mlim_Fstar_MINI) \ private(i,k) num_threads(user_params_ps->N_THREADS) { #pragma omp for for(i=0;i<NSFR_high;i++) { SFRD_z_high_table[j][i] = Nion_ConditionalM(growthf[j],Mmin,Mmax,sigma2,Deltac,overdense_high_table[i],\ Mcrit_atom[j],Alpha_star,0.,Fstar10,1.,Mlim_Fstar,0., FAST_FCOLL_TABLES); if (SFRD_z_high_table[j][i] < 1e-50){ SFRD_z_high_table[j][i] = 1e-50; } SFRD_z_high_table[j][i] *= pow(10., 10.0); for (k=0; k<NMTURN; k++){ SFRD_z_high_table_MINI[j][i+k*NSFR_high] = Nion_ConditionalM_MINI(growthf[j],Mmin,Mmax,sigma2,Deltac,\ overdense_high_table[i],MassTurnover[k],Mcrit_atom[j],\ Alpha_star_mini,0.,Fstar7_MINI,1.,Mlim_Fstar_MINI, 0., FAST_FCOLL_TABLES); if (SFRD_z_high_table_MINI[j][i+k*NSFR_high] < 1e-50){ SFRD_z_high_table_MINI[j][i+k*NSFR_high] = 1e-50; } } } } for(i=0;i<NSFR_high;i++) { if(isfinite(SFRD_z_high_table[j][i])==0) { LOG_ERROR("Detected either an infinite or NaN value in SFRD_z_high_table"); // Throw(ParameterError); Throw(TableGenerationError); } for (k=0; k<NMTURN; k++){ if(isfinite(SFRD_z_high_table_MINI[j][i+k*NSFR_high])==0) { LOG_ERROR("Detected either an infinite or NaN value in SFRD_z_high_table_MINI"); // Throw(ParameterError); Throw(TableGenerationError); } } } } } // The volume filling factor at a given redshift, Q(z), or find redshift at a given Q, z(Q). // // The evolution of Q can be written as // dQ/dt = n_{ion}/dt - Q/t_{rec}, // where n_{ion} is the number of ionizing photons per baryon. The averaged recombination time is given by // t_{rec} ~ 0.93 Gyr * (C_{HII}/3)^-1 * (T_0/2e4 K)^0.7 * ((1+z)/7)^-3. // We assume the clumping factor of C_{HII}=3 and the IGM temperature of T_0 = 2e4 K, following // Section 2.1 of Kuhlen & Faucher-Gigue`re (2012) MNRAS, 423, 862 and references therein. // 1) initialise interpolation table // -> initialise_Q_value_spline(NoRec, M_TURN, ALPHA_STAR, ALPHA_ESC, F_STAR10, F_ESC10) // NoRec = 0: Compute dQ/dt with the recombination time. // NoRec = 1: Ignore recombination. // 2) find Q value at a given z -> Q_at_z(z, &(Q)) // or find z at a given Q -> z_at_Q(Q, &(z)). // 3) free memory allocation -> free_Q_value() // Set up interpolation table for the volume filling factor, Q, at a given redshift z and redshift at a given Q. int InitialisePhotonCons(struct UserParams *user_params, struct CosmoParams *cosmo_params, struct AstroParams *astro_params, struct FlagOptions *flag_options) { /* This is an API-level function for initialising the photon conservation. */ int status; Try{ // this try wraps the whole function. Broadcast_struct_global_PS(user_params,cosmo_params); Broadcast_struct_global_UF(user_params,cosmo_params); init_ps(); // To solve differentail equation, uses Euler's method. // NOTE: // (1) With the fiducial parameter set, // when the Q value is < 0.9, the difference is less than 5% compared with accurate calculation. // When Q ~ 0.98, the difference is ~25%. To increase accuracy one can reduce the step size 'da', but it will increase computing time. // (2) With the fiducial parameter set, // the difference for the redshift where the reionization end (Q = 1) is ~0.2 % compared with accurate calculation. float ION_EFF_FACTOR,M_MIN,M_MIN_z0,M_MIN_z1,Mlim_Fstar, Mlim_Fesc; double a_start = 0.03, a_end = 1./(1. + global_params.PhotonConsEndCalibz); // Scale factors of 0.03 and 0.17 correspond to redshifts of ~32 and ~5.0, respectively. double C_HII = 3., T_0 = 2e4; double reduce_ratio = 1.003; double Q0,Q1,Nion0,Nion1,Trec,da,a,z0,z1,zi,dadt,ans,delta_a,zi_prev,Q1_prev; double *z_arr,*Q_arr; int Nmax = 2000; // This is the number of step, enough with 'da = 2e-3'. If 'da' is reduced, this number should be checked. int cnt, nbin, i, istart; int fail_condition, not_mono_increasing, num_fails; int gsl_status; z_arr = calloc(Nmax,sizeof(double)); Q_arr = calloc(Nmax,sizeof(double)); //set the minimum source mass if (flag_options->USE_MASS_DEPENDENT_ZETA) { ION_EFF_FACTOR = global_params.Pop2_ion * astro_params->F_STAR10 * astro_params->F_ESC10; M_MIN = astro_params->M_TURN/50.; Mlim_Fstar = Mass_limit_bisection(M_MIN, global_params.M_MAX_INTEGRAL, astro_params->ALPHA_STAR, astro_params->F_STAR10); Mlim_Fesc = Mass_limit_bisection(M_MIN, global_params.M_MAX_INTEGRAL, astro_params->ALPHA_ESC, astro_params->F_ESC10); if(user_params->FAST_FCOLL_TABLES){ initialiseSigmaMInterpTable(fmin(MMIN_FAST,M_MIN),1e20); } else{ initialiseSigmaMInterpTable(M_MIN,1e20); } } else { ION_EFF_FACTOR = astro_params->HII_EFF_FACTOR; } fail_condition = 1; num_fails = 0; // We are going to come up with the analytic curve for the photon non conservation correction // This can be somewhat numerically unstable and as such we increase the sampling until it works // If it fails to produce a monotonically increasing curve (for Q as a function of z) after 10 attempts we crash out while(fail_condition!=0) { a = a_start; if(num_fails < 3) { da = 3e-3 - ((double)num_fails)*(1e-3); } else { da = 1e-3 - ((double)num_fails - 2.)*(1e-4); } delta_a = 1e-7; zi_prev = Q1_prev = 0.; not_mono_increasing = 0; if(num_fails>0) { for(i=0;i<Nmax;i++) { z_arr[i] = 0.; Q_arr[i] = 0.; } } cnt = 0; Q0 = 0.; while (a < a_end) { zi = 1./a - 1.; z0 = 1./(a+delta_a) - 1.; z1 = 1./(a-delta_a) - 1.; // Ionizing emissivity (num of photons per baryon) if (flag_options->USE_MASS_DEPENDENT_ZETA) { Nion0 = ION_EFF_FACTOR*Nion_General(z0, astro_params->M_TURN/50., astro_params->M_TURN, astro_params->ALPHA_STAR, astro_params->ALPHA_ESC, astro_params->F_STAR10, astro_params->F_ESC10, Mlim_Fstar, Mlim_Fesc); Nion1 = ION_EFF_FACTOR*Nion_General(z1, astro_params->M_TURN/50., astro_params->M_TURN, astro_params->ALPHA_STAR, astro_params->ALPHA_ESC, astro_params->F_STAR10, astro_params->F_ESC10, Mlim_Fstar, Mlim_Fesc); } else { //set the minimum source mass if (astro_params->ION_Tvir_MIN < 9.99999e3) { // neutral IGM M_MIN_z0 = (float)TtoM(z0, astro_params->ION_Tvir_MIN, 1.22); M_MIN_z1 = (float)TtoM(z1, astro_params->ION_Tvir_MIN, 1.22); } else { // ionized IGM M_MIN_z0 = (float)TtoM(z0, astro_params->ION_Tvir_MIN, 0.6); M_MIN_z1 = (float)TtoM(z1, astro_params->ION_Tvir_MIN, 0.6); } if(M_MIN_z0 < M_MIN_z1) { if(user_params->FAST_FCOLL_TABLES){ initialiseSigmaMInterpTable(fmin(MMIN_FAST,M_MIN_z0),1e20); } else{ initialiseSigmaMInterpTable(M_MIN_z0,1e20); } } else { if(user_params->FAST_FCOLL_TABLES){ initialiseSigmaMInterpTable(fmin(MMIN_FAST,M_MIN_z1),1e20); } else{ initialiseSigmaMInterpTable(M_MIN_z1,1e20); } } Nion0 = ION_EFF_FACTOR*FgtrM_General(z0,M_MIN_z0); Nion1 = ION_EFF_FACTOR*FgtrM_General(z1,M_MIN_z1); freeSigmaMInterpTable(); } // With scale factor a, the above equation is written as dQ/da = n_{ion}/da - Q/t_{rec}*(dt/da) if (!global_params.RecombPhotonCons) { Q1 = Q0 + ((Nion0-Nion1)/2/delta_a)*da; // No Recombination } else { dadt = Ho*sqrt(cosmo_params_ps->OMm/a + global_params.OMr/a/a + cosmo_params_ps->OMl*a*a); // da/dt = Ho*a*sqrt(OMm/a^3 + OMr/a^4 + OMl) Trec = 0.93 * 1e9 * SperYR * pow(C_HII/3.,-1) * pow(T_0/2e4,0.7) * pow((1.+zi)/7.,-3); Q1 = Q0 + ((Nion0-Nion1)/2./delta_a - Q0/Trec/dadt)*da; } // Curve is no longer monotonically increasing, we are going to have to exit and start again if(Q1 < Q1_prev) { not_mono_increasing = 1; break; } zi_prev = zi; Q1_prev = Q1; z_arr[cnt] = zi; Q_arr[cnt] = Q1; cnt = cnt + 1; if (Q1 >= 1.0) break; // if fully ionized, stop here. // As the Q value increases, the bin size decreases gradually because more accurate calculation is required. if (da < 7e-5) da = 7e-5; // set minimum bin size. else da = pow(da,reduce_ratio); Q0 = Q1; a = a + da; } // A check to see if we ended up with a monotonically increasing function if(not_mono_increasing==0) { fail_condition = 0; } else { num_fails += 1; if(num_fails>10) { LOG_ERROR("Failed too many times."); // Throw ParameterError; Throw(PhotonConsError); } } } cnt = cnt - 1; istart = 0; for (i=1;i<cnt;i++){ if (Q_arr[i-1] == 0. && Q_arr[i] != 0.) istart = i-1; } nbin = cnt - istart; N_analytic = nbin; // initialise interploation Q as a function of z z_Q = calloc(nbin,sizeof(double)); Q_value = calloc(nbin,sizeof(double)); Q_at_z_spline_acc = gsl_interp_accel_alloc (); Q_at_z_spline = gsl_spline_alloc (gsl_interp_cspline, nbin); for (i=0; i<nbin; i++){ z_Q[i] = z_arr[cnt-i]; Q_value[i] = Q_arr[cnt-i]; } gsl_set_error_handler_off(); gsl_status = gsl_spline_init(Q_at_z_spline, z_Q, Q_value, nbin); GSL_ERROR(gsl_status); Zmin = z_Q[0]; Zmax = z_Q[nbin-1]; Qmin = Q_value[nbin-1]; Qmax = Q_value[0]; // initialise interpolation z as a function of Q double *Q_z = calloc(nbin,sizeof(double)); double *z_value = calloc(nbin,sizeof(double)); z_at_Q_spline_acc = gsl_interp_accel_alloc (); z_at_Q_spline = gsl_spline_alloc (gsl_interp_linear, nbin); for (i=0; i<nbin; i++){ Q_z[i] = Q_value[nbin-1-i]; z_value[i] = z_Q[nbin-1-i]; } gsl_status = gsl_spline_init(z_at_Q_spline, Q_z, z_value, nbin); GSL_ERROR(gsl_status); free(z_arr); free(Q_arr); if (flag_options->USE_MASS_DEPENDENT_ZETA) { freeSigmaMInterpTable; } LOG_DEBUG("Initialised PhotonCons."); } // End of try Catch(status){ return status; } return(0); } // Function to construct the spline for the calibration curve of the photon non-conservation int PhotonCons_Calibration(double *z_estimate, double *xH_estimate, int NSpline){ int status; Try{ if(xH_estimate[NSpline-1] > 0.0 && xH_estimate[NSpline-2] > 0.0 && xH_estimate[NSpline-3] > 0.0 && xH_estimate[0] <= global_params.PhotonConsStart) { initialise_NFHistory_spline(z_estimate,xH_estimate,NSpline); } } Catch(status){ return status; } return(0); } // Function callable from Python to know at which redshift to start sampling the calibration curve (to minimise function calls) int ComputeZstart_PhotonCons(double *zstart) { int status; double temp; Try{ if((1.-global_params.PhotonConsStart) > Qmax) { // It is possible that reionisation never even starts // Just need to arbitrarily set a high redshift to perform the algorithm temp = 20.; } else { z_at_Q(1. - global_params.PhotonConsStart,&(temp)); // Multiply the result by 10 per-cent to fix instances when this isn't high enough temp *= 1.1; } } Catch(status){ return(status); // Use the status to determine if something went wrong. } *zstart = temp; return(0); } void determine_deltaz_for_photoncons() { int i, j, increasing_val, counter, smoothing_int; double temp; float z_cal, z_analytic, NF_sample, returned_value, NF_sample_min, gradient_analytic, z_analytic_at_endpoint, const_offset, z_analytic_2, smoothing_width; float bin_width, delta_NF, val1, val2, extrapolated_value; LOG_DEBUG("Determining deltaz for photon cons."); // Number of points for determine the delta z correction of the photon non-conservation N_NFsamples = 100; // Determine the change in neutral fraction to calculate the gradient for the linear extrapolation of the photon non-conservation correction delta_NF = 0.025; // A width (in neutral fraction data points) in which point we average over to try and avoid sharp features in the correction (removes some kinks) // Effectively acts as filtering step smoothing_width = 35.; // The photon non-conservation correction has a threshold (in terms of neutral fraction; global_params.PhotonConsEnd) for which we switch // from using the exact correction between the calibrated (21cmFAST all flag options off) to analytic expression to some extrapolation. // This threshold is required due to the behaviour of 21cmFAST at very low neutral fractions, which cause extreme behaviour with recombinations on // A lot of the steps and choices are not completely rubust, just chosed to smooth/average the data to have smoother resultant reionisation histories // Determine the number of extrapolated points required, if required at all. if(calibrated_NF_min < global_params.PhotonConsEnd) { // We require extrapolation, set minimum point to the threshold, and extrapolate beyond. NF_sample_min = global_params.PhotonConsEnd; // Determine the number of extrapolation points (to better smooth the correction) between the threshod (global_params.PhotonConsEnd) and a // point close to zero neutral fraction (set by global_params.PhotonConsAsymptoteTo) // Choice is to get the delta neutral fraction between extrapolated points to be similar to the cadence in the exact correction if(calibrated_NF_min > global_params.PhotonConsAsymptoteTo) { N_extrapolated = ((float)N_NFsamples - 1.)*(NF_sample_min - calibrated_NF_min)/( global_params.PhotonConsStart - NF_sample_min ); } else { N_extrapolated = ((float)N_NFsamples - 1.)*(NF_sample_min - global_params.PhotonConsAsymptoteTo)/( global_params.PhotonConsStart - NF_sample_min ); } N_extrapolated = (int)floor( N_extrapolated ) - 1; // Minus one as the zero point is added below } else { // No extrapolation required, neutral fraction never reaches zero NF_sample_min = calibrated_NF_min; N_extrapolated = 0; } // Determine the bin width for the sampling of the neutral fraction for the correction bin_width = ( global_params.PhotonConsStart - NF_sample_min )/((float)N_NFsamples - 1.); // allocate memory for arrays required to determine the photon non-conservation correction deltaz = calloc(N_NFsamples + N_extrapolated + 1,sizeof(double)); deltaz_smoothed = calloc(N_NFsamples + N_extrapolated + 1,sizeof(double)); NeutralFractions = calloc(N_NFsamples + N_extrapolated + 1,sizeof(double)); // Go through and fill the data points (neutral fraction and corresponding delta z between the calibrated and analytic curves). for(i=0;i<N_NFsamples;i++) { NF_sample = NF_sample_min + bin_width*(float)i; // Determine redshift given a neutral fraction for the calibration curve z_at_NFHist(NF_sample,&(temp)); z_cal = temp; // Determine redshift given a neutral fraction for the analytic curve z_at_Q(1. - NF_sample,&(temp)); z_analytic = temp; deltaz[i+1+N_extrapolated] = fabs( z_cal - z_analytic ); NeutralFractions[i+1+N_extrapolated] = NF_sample; } // Determining the end-point (lowest neutral fraction) for the photon non-conservation correction if(calibrated_NF_min >= global_params.PhotonConsEnd) { increasing_val = 0; counter = 0; // Check if all the values of delta z are increasing for(i=0;i<(N_NFsamples-1);i++) { if(deltaz[i+1+N_extrapolated] >= deltaz[i+N_extrapolated]) { counter += 1; } } // If all the values of delta z are increasing, then some of the smoothing of the correction done below cannot be performed if(counter==(N_NFsamples-1)) { increasing_val = 1; } // Since we never have reionisation, need to set an appropriate end-point for the correction // Take some fraction of the previous point to determine the end-point NeutralFractions[0] = 0.999*NF_sample_min; if(increasing_val) { // Values of delta z are always increasing with decreasing neutral fraction thus make the last point slightly larger deltaz[0] = 1.001*deltaz[1]; } else { // Values of delta z are always decreasing with decreasing neutral fraction thus make the last point slightly smaller deltaz[0] = 0.999*deltaz[1]; } } else { // Ok, we are going to be extrapolating the photon non-conservation (delta z) beyond the threshold // Construct a linear curve for the analytic function to extrapolate to the new endpoint // The choice for doing so is to ensure the corrected reionisation history is mostly smooth, and doesn't // artificially result in kinks due to switching between how the delta z should be calculated z_at_Q(1. - (NeutralFractions[1+N_extrapolated] + delta_NF),&(temp)); z_analytic = temp; z_at_Q(1. - NeutralFractions[1+N_extrapolated],&(temp)); z_analytic_2 = temp; // determine the linear curve // Multiplitcation by 1.1 is arbitrary but effectively smooths out most kinks observed in the resultant corrected reionisation histories gradient_analytic = 1.1*( delta_NF )/( z_analytic - z_analytic_2 ); const_offset = ( NeutralFractions[1+N_extrapolated] + delta_NF ) - gradient_analytic * z_analytic; // determine the extrapolation end point if(calibrated_NF_min > global_params.PhotonConsAsymptoteTo) { extrapolated_value = calibrated_NF_min; } else { extrapolated_value = global_params.PhotonConsAsymptoteTo; } // calculate the delta z for the extrapolated end point z_at_NFHist(extrapolated_value,&(temp)); z_cal = temp; z_analytic_at_endpoint = ( extrapolated_value - const_offset )/gradient_analytic ; deltaz[0] = fabs( z_cal - z_analytic_at_endpoint ); NeutralFractions[0] = extrapolated_value; // If performing extrapolation, add in all the extrapolated points between the end-point and the threshold to end the correction (global_params.PhotonConsEnd) for(i=0;i<N_extrapolated;i++) { if(calibrated_NF_min > global_params.PhotonConsAsymptoteTo) { NeutralFractions[i+1] = calibrated_NF_min + (NF_sample_min - calibrated_NF_min)*(float)(i+1)/((float)N_extrapolated + 1.); } else { NeutralFractions[i+1] = global_params.PhotonConsAsymptoteTo + (NF_sample_min - global_params.PhotonConsAsymptoteTo)*(float)(i+1)/((float)N_extrapolated + 1.); } deltaz[i+1] = deltaz[0] + ( deltaz[1+N_extrapolated] - deltaz[0] )*(float)(i+1)/((float)N_extrapolated + 1.); } } // We have added the extrapolated values, now check if they are all increasing or not (again, to determine whether or not to try and smooth the corrected curve increasing_val = 0; counter = 0; for(i=0;i<(N_NFsamples-1);i++) { if(deltaz[i+1+N_extrapolated] >= deltaz[i+N_extrapolated]) { counter += 1; } } if(counter==(N_NFsamples-1)) { increasing_val = 1; } // For some models, the resultant delta z for extremely high neutral fractions ( > 0.95) seem to oscillate or sometimes drop in value. // This goes through and checks if this occurs, and tries to smooth this out // This doesn't occur very often, but can cause an artificial drop in the reionisation history (neutral fraction value) connecting the // values before/after the photon non-conservation correction starts. for(i=0;i<(N_NFsamples+N_extrapolated);i++) { val1 = deltaz[i]; val2 = deltaz[i+1]; counter = 0; // Check if we have a neutral fraction above 0.95, that the values are decreasing (val2 < val1), that we haven't sampled too many points (counter) // and that the NF_sample_min is less than around 0.8. That is, if a reasonable fraction of the reionisation history is sampled. while( NeutralFractions[i+1] > 0.95 && val2 < val1 && NF_sample_min < 0.8 && counter < 100) { NF_sample = global_params.PhotonConsStart - 0.001*(counter+1); // Determine redshift given a neutral fraction for the calibration curve z_at_NFHist(NF_sample,&(temp)); z_cal = temp; // Determine redshift given a neutral fraction for the analytic curve z_at_Q(1. - NF_sample,&(temp)); z_analytic = temp; // Determine the delta z val2 = fabs( z_cal - z_analytic ); deltaz[i+1] = val2; counter += 1; // If after 100 samplings we couldn't get the value to increase (like it should), just modify it from the previous point. if(counter==100) { deltaz[i+1] = deltaz[i] * 1.01; } } } // Store the data in its intermediate state before averaging for(i=0;i<(N_NFsamples+N_extrapolated+1);i++) { deltaz_smoothed[i] = deltaz[i]; } // If we are not increasing for all values, we can smooth out some features in delta z when connecting the extrapolated delta z values // compared to those from the exact correction (i.e. when we cross the threshold). if(!increasing_val) { for(i=0;i<(N_NFsamples+N_extrapolated);i++) { val1 = deltaz[0]; val2 = deltaz[i+1]; counter = 0; // Try and find a point which can be used to smooth out any dip in delta z as a function of neutral fraction. // It can be flat, then drop, then increase. This smooths over this drop (removes a kink in the resultant reionisation history). // Choice of 75 is somewhat arbitrary while(val2 < val1 && (counter < 75 || (1+(i+1)+counter) > (N_NFsamples+N_extrapolated))) { counter += 1; val2 = deltaz[i+1+counter]; deltaz_smoothed[i+1] = ( val1 + deltaz[1+(i+1)+counter] )/2.; } if(counter==75 || (1+(i+1)+counter) > (N_NFsamples+N_extrapolated)) { deltaz_smoothed[i+1] = deltaz[i+1]; } } } // Here we effectively filter over the delta z as a function of neutral fraction to try and minimise any possible kinks etc. in the functional curve. for(i=0;i<(N_NFsamples+N_extrapolated+1);i++) { // We are at the end-points, cannot smooth if(i==0 || i==(N_NFsamples+N_extrapolated)) { deltaz[i] = deltaz_smoothed[i]; } else { deltaz[i] = 0.; // We are symmetrically smoothing, making sure we have the same number of data points either side of the point we are filtering over // This determins the filter width when close to the edge of the data ranges if( (i - (int)floor(smoothing_width/2.) ) < 0) { smoothing_int = 2*( i ) + (int)((int)smoothing_width%2); } else if( (i - (int)floor(smoothing_width/2.) + ((int)smoothing_width - 1) ) > (N_NFsamples + N_extrapolated) ) { smoothing_int = ((int)smoothing_width - 1) - 2*((i - (int)floor(smoothing_width/2.) + ((int)smoothing_width - 1) ) - (N_NFsamples + N_extrapolated) ) + (int)((int)smoothing_width%2); } else { smoothing_int = (int)smoothing_width; } // Average (filter) over the delta z values to smooth the result counter = 0; for(j=0;j<(int)smoothing_width;j++) { if(((i - (int)floor((float)smoothing_int/2.) + j)>=0) && ((i - (int)floor((float)smoothing_int/2.) + j) <= (N_NFsamples + N_extrapolated + 1)) && counter < smoothing_int ) { deltaz[i] += deltaz_smoothed[i - (int)floor((float)smoothing_int/2.) + j]; counter += 1; } } deltaz[i] /= (float)counter; } } N_deltaz = N_NFsamples + N_extrapolated + 1; // Now, we can construct the spline of the photon non-conservation correction (delta z as a function of neutral fraction) deltaz_spline_for_photoncons_acc = gsl_interp_accel_alloc (); deltaz_spline_for_photoncons = gsl_spline_alloc (gsl_interp_linear, N_NFsamples + N_extrapolated + 1); gsl_set_error_handler_off(); int gsl_status; gsl_status = gsl_spline_init(deltaz_spline_for_photoncons, NeutralFractions, deltaz, N_NFsamples + N_extrapolated + 1); GSL_ERROR(gsl_status); } float adjust_redshifts_for_photoncons( struct AstroParams *astro_params, struct FlagOptions *flag_options, float *redshift, float *stored_redshift, float *absolute_delta_z ) { int i, new_counter; double temp; float required_NF, adjusted_redshift, future_z, gradient_extrapolation, const_extrapolation, temp_redshift, check_required_NF; LOG_DEBUG("Adjusting redshifts for photon cons."); if(*redshift < global_params.PhotonConsEndCalibz) { LOG_ERROR( "You have passed a redshift (z = %f) that is lower than the enpoint of the photon non-conservation correction "\ "(global_params.PhotonConsEndCalibz = %f). If this behaviour is desired then set global_params.PhotonConsEndCalibz "\ "to a value lower than z = %f.",*redshift,global_params.PhotonConsEndCalibz,*redshift ); // Throw(ParameterError); Throw(PhotonConsError); } // Determine the neutral fraction (filling factor) of the analytic calibration expression given the current sampled redshift Q_at_z(*redshift, &(temp)); required_NF = 1.0 - (float)temp; // Find which redshift we need to sample in order for the calibration reionisation history to match the analytic expression if(required_NF > global_params.PhotonConsStart) { // We haven't started ionising yet, so keep redshifts the same adjusted_redshift = *redshift; *absolute_delta_z = 0.; } else if(required_NF<=global_params.PhotonConsEnd) { // We have gone beyond the threshold for the end of the photon non-conservation correction // Deemed to be roughly where the calibration curve starts to approach the analytic expression if(FirstNF_Estimate <= 0. && required_NF <= 0.0) { // Reionisation has already happened well before the calibration adjusted_redshift = *redshift; } else { // We have crossed the NF threshold for the photon conservation correction so now set to the delta z at the threshold if(required_NF < global_params.PhotonConsAsymptoteTo) { // This counts the number of times we have exceeded the extrapolated point and attempts to modify the delta z // to try and make the function a little smoother *absolute_delta_z = gsl_spline_eval(deltaz_spline_for_photoncons, global_params.PhotonConsAsymptoteTo, deltaz_spline_for_photoncons_acc); new_counter = 0; temp_redshift = *redshift; check_required_NF = required_NF; // Ok, find when in the past we exceeded the asymptote threshold value using the global_params.ZPRIME_STEP_FACTOR // In doing it this way, co-eval boxes will be the same as lightcone boxes with regard to redshift sampling while( check_required_NF < global_params.PhotonConsAsymptoteTo ) { temp_redshift = ((1. + temp_redshift)*global_params.ZPRIME_STEP_FACTOR - 1.); Q_at_z(temp_redshift, &(temp)); check_required_NF = 1.0 - (float)temp; new_counter += 1; } // Now adjust the final delta_z by some amount to smooth if over successive steps if(deltaz[1] > deltaz[0]) { *absolute_delta_z = pow( 0.96 , (new_counter - 1) + 1. ) * ( *absolute_delta_z ); } else { *absolute_delta_z = pow( 1.04 , (new_counter - 1) + 1. ) * ( *absolute_delta_z ); } // Check if we go into the future (z < 0) and avoid it adjusted_redshift = (*redshift) - (*absolute_delta_z); if(adjusted_redshift < 0.0) { adjusted_redshift = 0.0; } } else { *absolute_delta_z = gsl_spline_eval(deltaz_spline_for_photoncons, required_NF, deltaz_spline_for_photoncons_acc); adjusted_redshift = (*redshift) - (*absolute_delta_z); } } } else { // Initialise the photon non-conservation correction curve if(!photon_cons_allocated) { determine_deltaz_for_photoncons(); photon_cons_allocated = true; } // We have exceeded even the end-point of the extrapolation // Just smooth ever subsequent point // Note that this is deliberately tailored to light-cone quantites, but will still work with co-eval cubes // Though might produce some very minor discrepancies when comparing outputs. if(required_NF < NeutralFractions[0]) { new_counter = 0; temp_redshift = *redshift; check_required_NF = required_NF; // Ok, find when in the past we exceeded the asymptote threshold value using the global_params.ZPRIME_STEP_FACTOR // In doing it this way, co-eval boxes will be the same as lightcone boxes with regard to redshift sampling while( check_required_NF < NeutralFractions[0] ) { temp_redshift = ((1. + temp_redshift)*global_params.ZPRIME_STEP_FACTOR - 1.); Q_at_z(temp_redshift, &(temp)); check_required_NF = 1.0 - (float)temp; new_counter += 1; } if(new_counter > 5) { LOG_WARNING( "The photon non-conservation correction has employed an extrapolation for\n"\ "more than 5 consecutive snapshots. This can be unstable, thus please check "\ "resultant history. Parameters are:\n" ); #if LOG_LEVEL >= LOG_WARNING writeAstroParams(flag_options, astro_params); #endif } // Now adjust the final delta_z by some amount to smooth if over successive steps if(deltaz[1] > deltaz[0]) { *absolute_delta_z = pow( 0.998 , (new_counter - 1) + 1. ) * ( *absolute_delta_z ); } else { *absolute_delta_z = pow( 1.002 , (new_counter - 1) + 1. ) * ( *absolute_delta_z ); } // Check if we go into the future (z < 0) and avoid it adjusted_redshift = (*redshift) - (*absolute_delta_z); if(adjusted_redshift < 0.0) { adjusted_redshift = 0.0; } } else { // Find the corresponding redshift for the calibration curve given the required neutral fraction (filling factor) from the analytic expression *absolute_delta_z = gsl_spline_eval(deltaz_spline_for_photoncons, (double)required_NF, deltaz_spline_for_photoncons_acc); adjusted_redshift = (*redshift) - (*absolute_delta_z); } } // keep the original sampled redshift *stored_redshift = *redshift; // This redshift snapshot now uses the modified redshift following the photon non-conservation correction *redshift = adjusted_redshift; } void Q_at_z(double z, double *splined_value){ float returned_value; if (z >= Zmax) { *splined_value = 0.; } else if (z <= Zmin) { *splined_value = 1.; } else { returned_value = gsl_spline_eval(Q_at_z_spline, z, Q_at_z_spline_acc); *splined_value = returned_value; } } void z_at_Q(double Q, double *splined_value){ float returned_value; if (Q < Qmin) { LOG_ERROR("The minimum value of Q is %.4e",Qmin); // Throw(ParameterError); Throw(PhotonConsError); } else if (Q > Qmax) { LOG_ERROR("The maximum value of Q is %.4e. Reionization ends at ~%.4f.",Qmax,Zmin); LOG_ERROR("This error can occur if global_params.PhotonConsEndCalibz is close to "\ "the final sampled redshift. One can consider a lower value for "\ "global_params.PhotonConsEndCalibz to mitigate this"); // Throw(ParameterError); Throw(PhotonConsError); } else { returned_value = gsl_spline_eval(z_at_Q_spline, Q, z_at_Q_spline_acc); *splined_value = returned_value; } } void free_Q_value() { gsl_spline_free (Q_at_z_spline); gsl_interp_accel_free (Q_at_z_spline_acc); gsl_spline_free (z_at_Q_spline); gsl_interp_accel_free (z_at_Q_spline_acc); } void initialise_NFHistory_spline(double *redshifts, double *NF_estimate, int NSpline){ int i, counter, start_index, found_start_index; // This takes in the data for the calibration curve for the photon non-conservation correction counter = 0; start_index = 0; found_start_index = 0; FinalNF_Estimate = NF_estimate[0]; FirstNF_Estimate = NF_estimate[NSpline-1]; // Determine the point in the data where its no longer zero (basically to avoid too many zeros in the spline) for(i=0;i<NSpline-1;i++) { if(NF_estimate[i+1] > NF_estimate[i]) { if(found_start_index == 0) { start_index = i; found_start_index = 1; } } counter += 1; } counter = counter - start_index; N_calibrated = (counter+1); // Store the data points for determining the photon non-conservation correction nf_vals = calloc((counter+1),sizeof(double)); z_vals = calloc((counter+1),sizeof(double)); calibrated_NF_min = 1.; // Store the data, and determine the end point of the input data for estimating the extrapolated results for(i=0;i<(counter+1);i++) { nf_vals[i] = NF_estimate[start_index+i]; z_vals[i] = redshifts[start_index+i]; // At the extreme high redshift end, there can be numerical issues with the solution of the analytic expression if(i>0) { while(nf_vals[i] <= nf_vals[i-1]) { nf_vals[i] += 0.000001; } } if(nf_vals[i] < calibrated_NF_min) { calibrated_NF_min = nf_vals[i]; } } NFHistory_spline_acc = gsl_interp_accel_alloc (); // NFHistory_spline = gsl_spline_alloc (gsl_interp_cspline, (counter+1)); NFHistory_spline = gsl_spline_alloc (gsl_interp_linear, (counter+1)); gsl_set_error_handler_off(); int gsl_status; gsl_status = gsl_spline_init(NFHistory_spline, nf_vals, z_vals, (counter+1)); GSL_ERROR(gsl_status); z_NFHistory_spline_acc = gsl_interp_accel_alloc (); // z_NFHistory_spline = gsl_spline_alloc (gsl_interp_cspline, (counter+1)); z_NFHistory_spline = gsl_spline_alloc (gsl_interp_linear, (counter+1)); gsl_status = gsl_spline_init(z_NFHistory_spline, z_vals, nf_vals, (counter+1)); GSL_ERROR(gsl_status); } void z_at_NFHist(double xHI_Hist, double *splined_value){ float returned_value; returned_value = gsl_spline_eval(NFHistory_spline, xHI_Hist, NFHistory_spline_acc); *splined_value = returned_value; } void NFHist_at_z(double z, double *splined_value){ float returned_value; returned_value = gsl_spline_eval(z_NFHistory_spline, z, NFHistory_spline_acc); *splined_value = returned_value; } int ObtainPhotonConsData( double *z_at_Q_data, double *Q_data, int *Ndata_analytic, double *z_cal_data, double *nf_cal_data, int *Ndata_calibration, double *PhotonCons_NFdata, double *PhotonCons_deltaz, int *Ndata_PhotonCons) { int i; *Ndata_analytic = N_analytic; *Ndata_calibration = N_calibrated; *Ndata_PhotonCons = N_deltaz; for(i=0;i<N_analytic;i++) { z_at_Q_data[i] = z_Q[i]; Q_data[i] = Q_value[i]; } for(i=0;i<N_calibrated;i++) { z_cal_data[i] = z_vals[i]; nf_cal_data[i] = nf_vals[i]; } for(i=0;i<N_deltaz;i++) { PhotonCons_NFdata[i] = NeutralFractions[i]; PhotonCons_deltaz[i] = deltaz[i]; } return(0); } void FreePhotonConsMemory() { LOG_DEBUG("Freeing some photon cons memory."); free(deltaz); free(deltaz_smoothed); free(NeutralFractions); free(z_Q); free(Q_value); free(nf_vals); free(z_vals); free_Q_value(); gsl_spline_free (NFHistory_spline); gsl_interp_accel_free (NFHistory_spline_acc); gsl_spline_free (z_NFHistory_spline); gsl_interp_accel_free (z_NFHistory_spline_acc); gsl_spline_free (deltaz_spline_for_photoncons); gsl_interp_accel_free (deltaz_spline_for_photoncons_acc); LOG_DEBUG("Done Freeing photon cons memory."); photon_cons_allocated = false; } void FreeTsInterpolationTables(struct FlagOptions *flag_options) { LOG_DEBUG("Freeing some interpolation table memory."); freeSigmaMInterpTable(); if (flag_options->USE_MASS_DEPENDENT_ZETA) { free(z_val); z_val = NULL; free(Nion_z_val); free(z_X_val); z_X_val = NULL; free(SFRD_val); if (flag_options->USE_MINI_HALOS){ free(Nion_z_val_MINI); free(SFRD_val_MINI); } } else{ free(FgtrM_1DTable_linear); } LOG_DEBUG("Done Freeing interpolation table memory."); interpolation_tables_allocated = false; }
State Before: 𝕜 : Type u_1 inst✝⁴ : NontriviallyNormedField 𝕜 F : Type u_2 inst✝³ : NormedAddCommGroup F inst✝² : NormedSpace 𝕜 F E : Type ?u.53911 inst✝¹ : NormedAddCommGroup E inst✝ : NormedSpace 𝕜 E n✝ : ℕ f : 𝕜 → F s : Set 𝕜 x : 𝕜 n : ℕ∞ m : ℕ h : ContDiffWithinAt 𝕜 n f s x hmn : ↑m < n hs : UniqueDiffOn 𝕜 (insert x s) ⊢ DifferentiableWithinAt 𝕜 (iteratedDerivWithin m f s) s x State After: no goals Tactic: simpa only [iteratedDerivWithin_eq_equiv_comp, LinearIsometryEquiv.comp_differentiableWithinAt_iff] using h.differentiableWithinAt_iteratedFDerivWithin hmn hs
-- Inductively constructed substitution maps module SOAS.ContextMaps.Inductive {T : Set} where open import SOAS.Common open import SOAS.Context open import SOAS.Sorting open import SOAS.Families.Core {T} open import SOAS.Variable private variable α : T Γ Δ : Ctx 𝒳 𝒴 : Familyₛ -- A list of terms in context Δ for every variable in context Γ data Sub (𝒳 : Familyₛ) : Ctx → Ctx → Set where • : Sub 𝒳 ∅ Δ _◂_ : 𝒳 α Δ → Sub 𝒳 Γ Δ → Sub 𝒳 (α ∙ Γ) Δ infixl 120 _◂_ infix 150 _⟩ pattern _⟩ t = t ◂ • -- Functorial mapping Sub₁ : (f : 𝒳 ⇾̣ 𝒴) → Sub 𝒳 Γ Δ → Sub 𝒴 Γ Δ Sub₁ f • = • Sub₁ f (x ◂ σ) = f x ◂ Sub₁ f σ -- Conversion between inductive substitutions and context maps module _ {𝒳 : Familyₛ} where index : Sub 𝒳 Γ Δ → Γ ~[ 𝒳 ]↝ Δ index • () index (t ◂ σ) new = t index (t ◂ σ) (old v) = index σ v tabulate : Γ ~[ 𝒳 ]↝ Δ → Sub 𝒳 Γ Δ tabulate {Γ = ∅} σ = • tabulate {Γ = α ∙ Γ} σ = σ new ◂ tabulate (σ ∘ old) ix∘tab≈id : (σ : Γ ~[ 𝒳 ]↝ Δ) (v : ℐ α Γ) → index (tabulate σ) v ≡ σ v ix∘tab≈id {Γ = α ∙ Γ} σ new = refl ix∘tab≈id {Γ = α ∙ Γ} σ (old v) = ix∘tab≈id (σ ∘ old) v tab∘ix≈id : (σ : Sub 𝒳 Γ Δ) → tabulate (index σ) ≡ σ tab∘ix≈id • = refl tab∘ix≈id (x ◂ σ) rewrite tab∘ix≈id σ = refl -- Naturality conditions tabulate-nat : (f : 𝒳 ⇾̣ 𝒴)(σ : Γ ~[ 𝒳 ]↝ Δ) → tabulate {𝒴} (f ∘ σ) ≡ Sub₁ f (tabulate {𝒳} σ) tabulate-nat {Γ = ∅} f σ = refl tabulate-nat {Γ = α ∙ Γ} f σ = cong (f (σ new) ◂_) (tabulate-nat f (σ ∘ old)) index-nat : (f : 𝒳 ⇾̣ 𝒴)(σ : Sub 𝒳 Γ Δ)(v : ℐ α Γ) → index (Sub₁ f σ) v ≡ f (index σ v) index-nat f (x ◂ σ) new = refl index-nat f (x ◂ σ) (old v) = index-nat f σ v
lemma connected_Ioo[simp]: "connected {a<..<b}" for a b :: "'a::linear_continuum_topology"
## REMEMBER TO UPDATE TESTS FOR BOTH THE N-GMRES and the O-ACCEL TEST SETS @testset "N-GMRES" begin method = NGMRES solver = method() skip = ("Trigonometric", ) run_optim_tests(solver; skip = skip, iteration_exceptions = (("Penalty Function I", 10000), ), show_name = debug_printing) # Specialized tests prob = MVP.UnconstrainedProblems.examples["Rosenbrock"] df = OnceDifferentiable(MVP.objective(prob), MVP.gradient(prob), prob.initial_x) @test solver.nlpreconopts.iterations == 1 @test solver.nlpreconopts.allow_f_increases == true defopts = Optim.default_options(solver) @test defopts == Dict(:allow_f_increases => true) state = Optim.initial_state(solver, Optim.Options(;defopts...), df, prob.initial_x) @test state.x === state.nlpreconstate.x @test state.x_previous === state.nlpreconstate.x_previous @test size(state.X) == (length(state.x), solver.wmax) @test size(state.R) == (length(state.x), solver.wmax) @test size(state.Q) == (solver.wmax, solver.wmax) @test size(state.ξ) == (solver.wmax,) @test state.curw == 1 @test size(state.A) == (solver.wmax, solver.wmax) @test length(state.b) == solver.wmax @test length(state.xA) == length(state.x) # Test that tracing doesn't throw errors res = optimize(df, prob.initial_x, solver, Optim.Options(extended_trace=true, store_trace=true; defopts...)) @test Optim.converged(res) # The bounds are due to different systems behaving differently # TODO: is it a bad idea to hardcode these? @test 64 < Optim.iterations(res) < 84 @test 234 < Optim.f_calls(res) < 286 @test 234 < Optim.g_calls(res) < 286 @test Optim.minimum(res) < 1e-10 @test_throws AssertionError method(manifold=Optim.Sphere(), nlprecon = GradientDescent()) for nlprec in (LBFGS, BFGS) solver = method(nlprecon=nlprec()) clear!(df) res = optimize(df, prob.initial_x, solver) if !Optim.converged(res) display(res) end @test Optim.converged(res) @test Optim.minimum(res) < 1e-10 end # O-ACCEL handles the InitialConstantChange functionality in a special way, # so we should test that it works well. for nlprec in (GradientDescent(), GradientDescent(alphaguess = LineSearches.InitialConstantChange())) solver = method(nlprecon = nlprec, alphaguess = LineSearches.InitialConstantChange()) clear!(df) res = optimize(df, prob.initial_x, solver) if !Optim.converged(res) display(res) end @test Optim.converged(res) @test Optim.minimum(res) < 1e-10 end end @testset "O-ACCEL" begin method = OACCEL solver = method() skip = ("Trigonometric", ) run_optim_tests(solver; skip = skip, iteration_exceptions = (("Penalty Function I", 10000), ), show_name = debug_printing) prob = MVP.UnconstrainedProblems.examples["Rosenbrock"] df = OnceDifferentiable(MVP.objective(prob), MVP.gradient(prob), prob.initial_x) @test solver.nlpreconopts.iterations == 1 @test solver.nlpreconopts.allow_f_increases == true defopts = Optim.default_options(solver) @test defopts == Dict(:allow_f_increases => true) state = Optim.initial_state(solver, Optim.Options(;defopts...), df, prob.initial_x) @test state.x === state.nlpreconstate.x @test state.x_previous === state.nlpreconstate.x_previous @test size(state.X) == (length(state.x), solver.wmax) @test size(state.R) == (length(state.x), solver.wmax) @test size(state.Q) == (solver.wmax, solver.wmax) @test size(state.ξ) == (solver.wmax, 2) @test state.curw == 1 @test size(state.A) == (solver.wmax, solver.wmax) @test length(state.b) == solver.wmax @test length(state.xA) == length(state.x) # Test that tracing doesn't throw errors res = optimize(df, prob.initial_x, solver, Optim.Options(extended_trace=true, store_trace=true; defopts...)) @test Optim.converged(res) # The bounds are due to different systems behaving differently # TODO: is it a bad idea to hardcode these? @test 72 < Optim.iterations(res) < 88 @test 245 < Optim.f_calls(res) < 292 @test 245 < Optim.g_calls(res) < 292 @test Optim.minimum(res) < 1e-10 @test_throws AssertionError method(manifold=Optim.Sphere(), nlprecon = GradientDescent()) for nlprec in (LBFGS, BFGS) solver = method(nlprecon=nlprec()) clear!(df) res = optimize(df, prob.initial_x, solver) if !Optim.converged(res) display(res) end @test Optim.converged(res) @test Optim.minimum(res) < 1e-10 end # O-ACCEL handles the InitialConstantChange functionality in a special way, # so we should test that it works well. for nlprec in (GradientDescent(), GradientDescent(alphaguess = LineSearches.InitialConstantChange())) solver = method(nlprecon = nlprec, alphaguess = LineSearches.InitialConstantChange()) clear!(df) res = optimize(df, prob.initial_x, solver) if !Optim.converged(res) display(res) end @test Optim.converged(res) @test Optim.minimum(res) < 1e-10 end end
(* Author: Tobias Nipkow *) subsection \<open>Transfer of Tree Analysis to List Representation\<close> theory Pairing_Heap_List1_Analysis2 imports Pairing_Heap_List1_Analysis Pairing_Heap_Tree_Analysis begin text\<open>This theory transfers the amortized analysis of the tree-based pairing heaps to Okasaki's pairing heaps.\<close> abbreviation "is_root' == Pairing_Heap_List1_Analysis.is_root" abbreviation "del_min' == Pairing_Heap_List1.del_min" abbreviation "insert' == Pairing_Heap_List1.insert" abbreviation "merge' == Pairing_Heap_List1.merge" abbreviation "pass\<^sub>1' == Pairing_Heap_List1.pass\<^sub>1" abbreviation "pass\<^sub>2' == Pairing_Heap_List1.pass\<^sub>2" abbreviation "T\<^sub>p\<^sub>a\<^sub>s\<^sub>s\<^sub>1' == Pairing_Heap_List1_Analysis.T\<^sub>p\<^sub>a\<^sub>s\<^sub>s\<^sub>1" abbreviation "T\<^sub>p\<^sub>a\<^sub>s\<^sub>s\<^sub>2' == Pairing_Heap_List1_Analysis.T\<^sub>p\<^sub>a\<^sub>s\<^sub>s\<^sub>2" fun homs :: "'a heap list \<Rightarrow> 'a tree" where "homs [] = Leaf" | "homs (Hp x lhs # rhs) = Node (homs lhs) x (homs rhs)" fun hom :: "'a heap \<Rightarrow> 'a tree" where "hom heap.Empty = Leaf" | "hom (Hp x hs) = (Node (homs hs) x Leaf)" lemma homs_pass1': "no_Emptys hs \<Longrightarrow> homs(pass\<^sub>1' hs) = pass\<^sub>1 (homs hs)" apply(induction hs rule: Pairing_Heap_List1.pass\<^sub>1.induct) subgoal for h1 h2 apply(case_tac h1) apply simp apply(case_tac h2) apply (auto) done apply simp subgoal for h apply(case_tac h) apply (auto) done done lemma hom_merge': "\<lbrakk> no_Emptys lhs; Pairing_Heap_List1_Analysis.is_root h\<rbrakk> \<Longrightarrow> hom (merge' (Hp x lhs) h) = link \<langle>homs lhs, x, hom h\<rangle>" by(cases h) auto lemma hom_pass2': "no_Emptys hs \<Longrightarrow> hom(pass\<^sub>2' hs) = pass\<^sub>2 (homs hs)" by(induction hs rule: homs.induct) (auto simp: hom_merge' is_root_pass2) lemma del_min': "is_root' h \<Longrightarrow> hom(del_min' h) = del_min (hom h)" by(cases h) (auto simp: homs_pass1' hom_pass2' no_Emptys_pass1 is_root_pass2) lemma insert': "is_root' h \<Longrightarrow> hom(insert' x h) = insert x (hom h)" by(cases h)(auto) lemma merge': "\<lbrakk> is_root' h1; is_root' h2 \<rbrakk> \<Longrightarrow> hom(merge' h1 h2) = merge (hom h1) (hom h2)" apply(cases h1) apply(simp) apply(cases h2) apply(auto) done lemma T_pass1': "no_Emptys hs \<Longrightarrow> T\<^sub>p\<^sub>a\<^sub>s\<^sub>s\<^sub>1' hs = T\<^sub>p\<^sub>a\<^sub>s\<^sub>s\<^sub>1(homs hs)" apply(induction hs rule: Pairing_Heap_List1.pass\<^sub>1.induct) subgoal for h1 h2 apply(case_tac h1) apply simp apply(case_tac h2) apply (auto) done apply simp subgoal for h apply(case_tac h) apply (auto) done done lemma T_pass2': "no_Emptys hs \<Longrightarrow> T\<^sub>p\<^sub>a\<^sub>s\<^sub>s\<^sub>2' hs = T\<^sub>p\<^sub>a\<^sub>s\<^sub>s\<^sub>2(homs hs)" by(induction hs rule: homs.induct) (auto simp: hom_merge' is_root_pass2) lemma size_hp: "is_root' h \<Longrightarrow> size_hp h = size (hom h)" proof(induction h) case (Hp _ hs) thus ?case apply(induction hs rule: homs.induct) apply simp apply force apply simp done qed simp interpretation Amortized2 where arity = arity and exec = exec and inv = is_root and cost = cost and \<Phi> = \<Phi> and U = U and hom = hom and exec' = Pairing_Heap_List1_Analysis.exec and cost' = Pairing_Heap_List1_Analysis.cost and inv' = "is_root'" and U' = Pairing_Heap_List1_Analysis.U proof (standard, goal_cases) case (1 _ f) thus ?case by (cases f)(auto simp: merge' del_min' numeral_eq_Suc) next case (2 ts f) show ?case proof(cases f) case [simp]: Del_min then obtain h where [simp]: "ts = [h]" using 2 by auto show ?thesis using 2 by(cases h) (auto simp: is_root_pass2 no_Emptys_pass1) qed (insert 2, auto simp: Pairing_Heap_List1_Analysis.is_root_merge numeral_eq_Suc) next case (3 t) thus ?case by (cases t) (auto) next case (4 ts f) show ?case proof (cases f) case [simp]: Del_min then obtain h where [simp]: "ts = [h]" using 4 by auto show ?thesis using 4 by (cases h)(auto simp: T_pass1' T_pass2' no_Emptys_pass1 homs_pass1') qed (insert 4, auto) next case (5 _ f) thus ?case by(cases f) (auto simp: size_hp numeral_eq_Suc) qed end
#ifndef AST_STMT_H #define AST_STMT_H #include <boost/optional.hpp> #include <memory> #include <vector> #include "ast.hpp" #include "../typing/substitution.hpp" namespace splicpp { class ast_id; class ast_exp; class ast_fun_call; class symboltable; class varcontext; class typecontext; class ircontext; class ir_stmt; class ast_stmt_mapper; #pragma GCC diagnostic push #pragma GCC diagnostic ignored "-Weffc++" /* Ignore non-virtual-destructor warning This is a bug in GCC4.6 See http://stackoverflow.com/questions/2571850/why-does-enable-shared-from-this-have-a-non-virtual-destructor */ class ast_stmt : public std::enable_shared_from_this<ast_stmt>, public ast { public: enum ast_stmt_type { type_stmts, type_if, type_while, type_assignment, type_fun_call, type_return }; ast_stmt(const sloc sl) : ast(sl) {} virtual void assign_ids(const varcontext& c) = 0; virtual ast_stmt_type type() const = 0; virtual void pretty_print(std::ostream& s, const uint tab) const = 0; virtual substitution infer_type(const typecontext& c, const s_ptr<const sl_type> t) const = 0; virtual bool contains_return() const = 0; virtual s_ptr<const ir_stmt> translate(const ircontext& c) const = 0; virtual void map(ast_stmt_mapper& m) const = 0; }; #pragma GCC diagnostic pop class ast_stmt_stmts : public ast_stmt { public: const std::vector<s_ptr<ast_stmt>> stmts; ast_stmt_stmts(const std::vector<s_ptr<ast_stmt>> stmts, const sloc sl) : ast_stmt(sl) , stmts(stmts) {} virtual void assign_ids(const varcontext& c); virtual ast_stmt_type type() const; virtual void pretty_print(std::ostream& s, const uint tab) const; virtual substitution infer_type(const typecontext& c, const s_ptr<const sl_type> t) const; virtual bool contains_return() const; virtual s_ptr<const ir_stmt> translate(const ircontext& c) const; virtual void map(ast_stmt_mapper& m) const; }; class ast_stmt_if : public ast_stmt { public: const s_ptr<ast_exp> exp; const s_ptr<ast_stmt> stmt_true; const boost::optional<s_ptr<ast_stmt>> stmt_false; ast_stmt_if(s_ptr<ast_exp> exp, s_ptr<ast_stmt> stmt_true, const sloc sl) : ast_stmt(sl) , exp(exp) , stmt_true(stmt_true) , stmt_false() {} ast_stmt_if(s_ptr<ast_exp> exp, s_ptr<ast_stmt> stmt_true, s_ptr<ast_stmt> stmt_false, const sloc sl) : ast_stmt(sl) , exp(exp) , stmt_true(stmt_true) , stmt_false(stmt_false) {} virtual void assign_ids(const varcontext& c); virtual ast_stmt_type type() const; virtual void pretty_print(std::ostream& s, const uint tab) const; virtual substitution infer_type(const typecontext& c, const s_ptr<const sl_type> t) const; virtual bool contains_return() const; virtual s_ptr<const ir_stmt> translate(const ircontext& c) const; virtual void map(ast_stmt_mapper& m) const; }; class ast_stmt_while : public ast_stmt { public: const s_ptr<ast_exp> exp; const s_ptr<ast_stmt> stmt; ast_stmt_while(__decltype(exp) exp, __decltype(stmt) stmt, const sloc sl) : ast_stmt(sl) , exp(exp) , stmt(stmt) {} virtual void assign_ids(const varcontext& c); virtual ast_stmt_type type() const; virtual void pretty_print(std::ostream& s, const uint tab) const; virtual substitution infer_type(const typecontext& c, const s_ptr<const sl_type> t) const; virtual bool contains_return() const; virtual s_ptr<const ir_stmt> translate(const ircontext& c) const; virtual void map(ast_stmt_mapper& m) const; }; class ast_stmt_assignment : public ast_stmt { public: const s_ptr<ast_id> id; const s_ptr<ast_exp> exp; ast_stmt_assignment(__decltype(id) id, __decltype(exp) exp, const sloc sl) : ast_stmt(sl) , id(id) , exp(exp) {} virtual void assign_ids(const varcontext& c); virtual ast_stmt_type type() const; virtual void pretty_print(std::ostream& s, const uint tab) const; virtual substitution infer_type(const typecontext& c, const s_ptr<const sl_type> t) const; virtual bool contains_return() const; virtual s_ptr<const ir_stmt> translate(const ircontext& c) const; virtual void map(ast_stmt_mapper& m) const; }; class ast_stmt_fun_call : public ast_stmt { public: const s_ptr<ast_fun_call> f; ast_stmt_fun_call(__decltype(f) f, const sloc sl) : ast_stmt(sl) , f(f) {} virtual void assign_ids(const varcontext& c); virtual ast_stmt_type type() const; virtual void pretty_print(std::ostream& s, const uint tab) const; virtual substitution infer_type(const typecontext& c, const s_ptr<const sl_type> t) const; virtual bool contains_return() const; virtual s_ptr<const ir_stmt> translate(const ircontext& c) const; virtual void map(ast_stmt_mapper& m) const; }; class ast_stmt_return : public ast_stmt { public: const boost::optional<s_ptr<ast_exp>> exp; ast_stmt_return(const sloc sl) : ast_stmt(sl) , exp() {} ast_stmt_return(__decltype(exp) exp, const sloc sl) : ast_stmt(sl) , exp(exp) {} virtual void assign_ids(const varcontext& c); virtual ast_stmt_type type() const; virtual void pretty_print(std::ostream& s, const uint tab) const; virtual substitution infer_type(const typecontext& c, const s_ptr<const sl_type> t) const; virtual bool contains_return() const; virtual s_ptr<const ir_stmt> translate(const ircontext& c) const; virtual void map(ast_stmt_mapper& m) const; }; } #endif
Require Import SOL. Require Import Decidable Enumerable. Require Import List. Import ListNotations. Inductive full_logic_sym : Type := | Conj : full_logic_sym | Disj : full_logic_sym | Impl : full_logic_sym. Inductive full_logic_quant : Type := | All : full_logic_quant | Ex : full_logic_quant. Instance full_operators : operators := {| binop := full_logic_sym ; quantop := full_logic_quant |}. Instance eqdec_full_logic_sym : eq_dec full_logic_sym. Proof. intros x y. unfold dec. decide equality. Qed. Instance eqdec_full_logic_quant : Decidable.eq_dec full_logic_quant. Proof. intros x y. unfold dec. decide equality. Qed. Definition L_binop (n : nat) := [Conj; Impl; Disj]. Instance enum_binop : list_enumerator__T L_binop binop. Proof. intros []; exists 0; cbn; tauto. Qed. Definition L_quantop (n : nat) := [All; Ex]. Instance enum_quantop : list_enumerator__T L_quantop quantop. Proof. intros []; exists 0; cbn; tauto. Qed. Lemma enumT_binop : enumerable__T binop. Proof. apply enum_enumT. exists L_binop. apply enum_binop. Qed. Lemma enumT_quantop : enumerable__T quantop. Proof. apply enum_enumT. exists L_quantop. apply enum_quantop. Qed. (** Mutliple quantors and closing operations *) Require Import Lia. Section Close. Fixpoint iter {X} (f : X -> X) n x := match n with O => x | S n' => f (iter f n' x) end. Lemma iter_switch {X} f n (x : X) : iter f n (f x) = f (iter f n x). Proof. induction n; cbn; congruence. Qed. Context {Σf : funcs_signature}. Context {Σp : preds_signature}. Definition quant_indi_n op n := iter (@quant_indi _ _ full_operators op) n. Definition quant_pred_n op ar n := iter (quant_pred op ar) n. Definition close_indi op phi := quant_indi_n op (proj1_sig (find_bounded_indi phi)) phi. Definition close_pred' ar op phi := quant_pred_n op ar (proj1_sig (find_bounded_pred ar phi)) phi. Fixpoint close_pred'' n op phi := match n with 0 => phi | S n => close_pred' n op (close_pred'' n op phi) end. Definition close_pred op phi := close_pred'' (find_arity_bound_p phi) op phi. Definition close op phi := close_indi op (close_pred op phi). Fixpoint forall_n n phi := match n with | 0 => phi | S n => quant_indi All (forall_n n phi) end. Lemma nat_ind_2 (P : nat -> nat -> Prop) : (forall x, P x 0) -> (forall x y, P x y -> P y x -> P x (S y)) -> forall x y, P x y. Proof. intros H1 H2. intros x y. revert x. induction y. - apply H1. - intros x. apply H2. apply IHy. induction x; firstorder. Qed. Lemma close_indi_correct op phi : bounded_indi 0 (close_indi op phi). Proof. enough (forall n m, bounded_indi n phi -> bounded_indi (n-m) (iter (quant_indi op) m phi)) as X. { unfold close_indi. destruct find_bounded_indi as [n H]. cbn. specialize (X n n). replace (n-n) with 0 in X by lia. now apply X. } apply (nat_ind_2 (fun n m => bounded_indi n phi -> bounded_indi (n - m) (iter (quant_indi op) m phi))); cbn. - intros n B. now replace (n-0) with n by lia. - intros n m IH _ B. eapply bounded_indi_up. 2: apply IH. lia. exact B. Qed. Lemma close_indi_bounded_pred ar n op phi : bounded_pred ar n phi -> bounded_pred ar n (close_indi op phi). Proof. intros H. unfold close_indi. destruct find_bounded_indi as [b B]; cbn. clear B. now induction b. Qed. Lemma close_pred'_correct ar op phi : bounded_pred ar 0 (close_pred' ar op phi). Proof. enough (forall n m, bounded_pred ar n phi -> bounded_pred ar (n-m) (iter (quant_pred op ar) m phi)) as X. { unfold close_pred'. destruct find_bounded_pred as [n H]. cbn. specialize (X n n). replace (n-n) with 0 in X by lia. now apply X. } apply (nat_ind_2 (fun n m => bounded_pred ar n phi -> bounded_pred ar (n - m) (iter (quant_pred op ar) m phi))); cbn. - intros n B. now replace (n-0) with n by lia. - intros n m IH _ B. left. split. reflexivity. eapply bounded_pred_up. 2: apply IH. lia. exact B. Qed. Lemma close_pred'_bounded_pred ar n m op phi : bounded_pred ar n phi -> bounded_pred ar n (close_pred' m op phi). Proof. intros H. unfold close_pred'. destruct find_bounded_pred as [b B]. cbn. clear B. induction b; cbn. easy. assert (ar = m \/ ar <> m) as [] by lia. left. split. easy. eapply bounded_pred_up. 2: apply IHb. lia. now right. Qed. Lemma close_pred'_arity_bounded_p n m op phi : arity_bounded_p n phi -> arity_bounded_p n (close_pred' m op phi). Proof. intros H. unfold close_pred'. destruct find_bounded_pred as [b B]. cbn. clear B. now induction b. Qed. Lemma close_pred''_arity_bounded_p n m op phi : arity_bounded_p n phi -> arity_bounded_p n (close_pred'' m op phi). Proof. intros H. induction m; cbn. easy. apply close_pred'_arity_bounded_p, IHm. Qed. Lemma close_pred_correct op phi : forall ar, bounded_pred ar 0 (close_pred op phi). Proof. intros ar. assert (ar >= find_arity_bound_p phi \/ ar < find_arity_bound_p phi) as [H|H] by lia. - eapply bounded_pred_arity_bound. 2: apply H. apply close_pred''_arity_bounded_p, find_arity_bound_p_correct. - revert H. enough (forall n, ar < n -> bounded_pred ar 0 (close_pred'' n op phi)) by eauto. induction n. lia. intros H. assert (ar = n \/ ar < n) as [->|] by lia. + apply close_pred'_correct. + now apply close_pred'_bounded_pred, IHn. Qed. Lemma close_indi_funcfree op phi : funcfree phi -> funcfree (close_indi op phi). Proof. intros F. unfold close_indi. destruct find_bounded_indi as [n B]. cbn. clear B. now induction n. Qed. Lemma close_pred_funcfree op phi : funcfree phi -> funcfree (close_pred op phi). Proof. intros F. unfold close_pred. enough (forall n, funcfree (close_pred'' n op phi)) by easy. induction n; cbn. apply F. enough (forall psi m, funcfree psi -> funcfree (close_pred' m op psi)) by firstorder. intros psi m. unfold close_pred'. destruct find_bounded_pred as [b B]. cbn. clear B. now induction b. Qed. Lemma forall_n_funcfree n phi : funcfree phi -> funcfree (forall_n n phi). Proof. now induction n. Qed. End Close. Notation "∀i Phi" := (@quant_indi _ _ full_operators All Phi) (at level 50). Notation "∃i Phi" := (@quant_indi _ _ full_operators Ex Phi) (at level 50). Notation "∀f ( ar ) Phi" := (@quant_func _ _ full_operators All ar Phi) (at level 50). Notation "∃f ( ar ) Phi" := (@quant_func _ _ full_operators Ex ar Phi) (at level 50). Notation "∀p ( ar ) Phi" := (@quant_pred _ _ full_operators All ar Phi) (at level 50). Notation "∃p ( ar ) Phi" := (@quant_pred _ _ full_operators Ex ar Phi) (at level 50). Notation "⊥" := fal. Notation "A ∧ B" := (@bin _ _ full_operators Conj A B) (at level 41). Notation "A ∨ B" := (@bin _ _ full_operators Disj A B) (at level 42). Notation "A '-->' B" := (@bin _ _ full_operators Impl A B) (at level 43, right associativity). Notation "A '<-->' B" := ((A --> B) ∧ (B --> A)) (at level 43). Notation "¬ A" := (A --> ⊥) (at level 40).
function xyz = bvh2xyz(skel, channels, noOffset) % BVH2XYZ Compute XYZ values given structure and channels. % FORMAT % DESC Computes X, Y, Z coordinates given a BVH skeleton structure and % an associated set of channels. % ARG skel : a skeleton for the bvh file. % ARG channels : the channels for the bvh file. % ARG noOffset : don't add the offset in. % RETURN xyz : the point cloud positions for the skeleton. % % COPYRIGHT : Neil D. Lawrence, 2005, 2008, 2012 % % SEEALSO : acclaim2xyz, skel2xyz % MOCAP if nargin< 3 noOffset = false; end for i = 1:length(skel.tree) if ~isempty(skel.tree(i).posInd) xpos = channels(skel.tree(i).posInd(1)); ypos = channels(skel.tree(i).posInd(2)); zpos = channels(skel.tree(i).posInd(3)); else xpos = 0; ypos = 0; zpos = 0; end xyzStruct(i) = struct('rotation', [], 'xyz', []); if nargin < 2 | isempty(skel.tree(i).rotInd) xangle = 0; yangle = 0; zangle = 0; else xangle = deg2rad(channels(skel.tree(i).rotInd(1))); yangle = deg2rad(channels(skel.tree(i).rotInd(2))); zangle = deg2rad(channels(skel.tree(i).rotInd(3))); end thisRotation = rotationMatrix(xangle, yangle, zangle, skel.tree(i).order); thisPosition = [xpos ypos zpos]; if ~skel.tree(i).parent xyzStruct(i).rotation = thisRotation; xyzStruct(i).xyz = thisPosition + skel.tree(i).offset; else if ~noOffset thisPosition = skel.tree(i).offset + thisPosition; end xyzStruct(i).xyz = ... thisPosition*xyzStruct(skel.tree(i).parent).rotation ... + xyzStruct(skel.tree(i).parent).xyz; xyzStruct(i).rotation = thisRotation*xyzStruct(skel.tree(i).parent).rotation; end end xyz = reshape([xyzStruct(:).xyz], 3, length(skel.tree))';
module NiLang using Reexport @reexport using NiLangCore import NiLangCore: invtype using FixedPointNumbers: Q20f43, Fixed import NiLangCore: empty_global_stacks!, loaddata export Fixed43 const Fixed43 = Q20f43 include("utils.jl") include("wrappers.jl") include("vars.jl") include("instructs.jl") include("ulog.jl") include("complex.jl") include("autobcast.jl") include("macros.jl") include("autodiff/autodiff.jl") include("stdlib/stdlib.jl") include("deprecations.jl") export AD project_relative_path(xs...) = normpath(joinpath(dirname(dirname(pathof(@__MODULE__))), xs...)) if Base.VERSION >= v"1.4.2" include("precompile.jl") _precompile_() end end # module
[GOAL] α : Type u β : Type u_1 inst✝ : OrderedSemiring α a b c d : α H : 0 ≤ a ⊢ 0 ≤ a ^ 0 [PROOFSTEP] rw [pow_zero] [GOAL] α : Type u β : Type u_1 inst✝ : OrderedSemiring α a b c d : α H : 0 ≤ a ⊢ 0 ≤ 1 [PROOFSTEP] exact zero_le_one [GOAL] α : Type u β : Type u_1 inst✝ : OrderedSemiring α a b c d : α H : 0 ≤ a n : ℕ ⊢ 0 ≤ a ^ (n + 1) [PROOFSTEP] rw [pow_succ] [GOAL] α : Type u β : Type u_1 inst✝ : OrderedSemiring α a b c d : α H : 0 ≤ a n : ℕ ⊢ 0 ≤ a * a ^ n [PROOFSTEP] exact mul_nonneg H (pow_nonneg H _) [GOAL] α : Type u β : Type u_1 inst✝ : OrderedSemiring α a b c d : α a2 : 2 ≤ a b0 : 0 ≤ b ⊢ a + (a + a * b) ≤ a * (2 + b) [PROOFSTEP] rw [mul_add, mul_two, add_assoc] [GOAL] α : Type u β : Type u_1 inst✝ : OrderedSemiring α a b c d : α h : 0 < a ⊢ 0 < bit1 a [PROOFSTEP] nontriviality [GOAL] α : Type u β : Type u_1 inst✝¹ : OrderedSemiring α a b c d : α h : 0 < a inst✝ : Nontrivial α ⊢ 0 < bit1 a [PROOFSTEP] exact bit1_pos h.le [GOAL] α : Type u β : Type u_1 inst✝ : OrderedRing α a✝ b✝ c✝ d : α src✝¹ : OrderedRing α := inst✝ src✝ : Semiring α := Ring.toSemiring a b c : α h : a ≤ b hc : 0 ≤ c ⊢ c * a ≤ c * b [PROOFSTEP] simpa only [mul_sub, sub_nonneg] using OrderedRing.mul_nonneg _ _ hc (sub_nonneg.2 h) [GOAL] α : Type u β : Type u_1 inst✝ : OrderedRing α a✝ b✝ c✝ d : α src✝¹ : OrderedRing α := inst✝ src✝ : Semiring α := Ring.toSemiring a b c : α h : a ≤ b hc : 0 ≤ c ⊢ a * c ≤ b * c [PROOFSTEP] simpa only [sub_mul, sub_nonneg] using OrderedRing.mul_nonneg _ _ (sub_nonneg.2 h) hc [GOAL] α : Type u β : Type u_1 inst✝ : OrderedRing α a b c d : α h : b ≤ a hc : c ≤ 0 ⊢ c * a ≤ c * b [PROOFSTEP] simpa only [neg_mul, neg_le_neg_iff] using mul_le_mul_of_nonneg_left h (neg_nonneg.2 hc) [GOAL] α : Type u β : Type u_1 inst✝ : OrderedRing α a b c d : α h : b ≤ a hc : c ≤ 0 ⊢ a * c ≤ b * c [PROOFSTEP] simpa only [mul_neg, neg_le_neg_iff] using mul_le_mul_of_nonneg_right h (neg_nonneg.2 hc) [GOAL] α : Type u β : Type u_1 inst✝ : OrderedRing α a b c d : α ha : a ≤ 0 hb : b ≤ 0 ⊢ 0 ≤ a * b [PROOFSTEP] simpa only [zero_mul] using mul_le_mul_of_nonpos_right ha hb [GOAL] α : Type u β : Type u_1 inst✝ : OrderedRing α a b c d : α hb : b ≤ 0 h : a ≤ 1 ⊢ b ≤ a * b [PROOFSTEP] simpa only [one_mul] using mul_le_mul_of_nonpos_right h hb [GOAL] α : Type u β : Type u_1 inst✝ : OrderedRing α a b c d : α hb : b ≤ 0 h : 1 ≤ a ⊢ a * b ≤ b [PROOFSTEP] simpa only [one_mul] using mul_le_mul_of_nonpos_right h hb [GOAL] α : Type u β : Type u_1 inst✝ : OrderedRing α a b c d : α ha : a ≤ 0 h : b ≤ 1 ⊢ a ≤ a * b [PROOFSTEP] simpa only [mul_one] using mul_le_mul_of_nonpos_left h ha [GOAL] α : Type u β : Type u_1 inst✝ : OrderedRing α a b c d : α ha : a ≤ 0 h : 1 ≤ b ⊢ a * b ≤ a [PROOFSTEP] simpa only [mul_one] using mul_le_mul_of_nonpos_left h ha [GOAL] α : Type u β : Type u_1 inst✝ : OrderedRing α a✝ b✝ c d a b : α h : a ≤ b ⊢ b = a + (b - a) [PROOFSTEP] simp [GOAL] α : Type u β : Type u_1 inst✝ : OrderedRing α a✝ b✝ c✝ d a b : α x✝ : ∃ c, c ≥ 0 ∧ b = a + c c : α hc : c ≥ 0 h : b = a + c ⊢ a ≤ b [PROOFSTEP] rw [h, le_add_iff_nonneg_right] [GOAL] α : Type u β : Type u_1 inst✝ : OrderedRing α a✝ b✝ c✝ d a b : α x✝ : ∃ c, c ≥ 0 ∧ b = a + c c : α hc : c ≥ 0 h : b = a + c ⊢ 0 ≤ c [PROOFSTEP] exact hc [GOAL] α : Type u β : Type u_1 inst✝¹ : StrictOrderedSemiring α a✝ b✝ c✝ d : α inst✝ : DecidableRel fun x x_1 => x ≤ x_1 src✝ : StrictOrderedSemiring α := inst✝¹ a b c : α hab : a ≤ b hc : 0 ≤ c ⊢ c * a ≤ c * b [PROOFSTEP] obtain rfl | hab := Decidable.eq_or_lt_of_le hab [GOAL] case inl α : Type u β : Type u_1 inst✝¹ : StrictOrderedSemiring α a✝ b c✝ d : α inst✝ : DecidableRel fun x x_1 => x ≤ x_1 src✝ : StrictOrderedSemiring α := inst✝¹ a c : α hc : 0 ≤ c hab : a ≤ a ⊢ c * a ≤ c * a [PROOFSTEP] rfl [GOAL] case inr α : Type u β : Type u_1 inst✝¹ : StrictOrderedSemiring α a✝ b✝ c✝ d : α inst✝ : DecidableRel fun x x_1 => x ≤ x_1 src✝ : StrictOrderedSemiring α := inst✝¹ a b c : α hab✝ : a ≤ b hc : 0 ≤ c hab : a < b ⊢ c * a ≤ c * b [PROOFSTEP] obtain rfl | hc := Decidable.eq_or_lt_of_le hc [GOAL] case inr.inl α : Type u β : Type u_1 inst✝¹ : StrictOrderedSemiring α a✝ b✝ c d : α inst✝ : DecidableRel fun x x_1 => x ≤ x_1 src✝ : StrictOrderedSemiring α := inst✝¹ a b : α hab✝ : a ≤ b hab : a < b hc : 0 ≤ 0 ⊢ 0 * a ≤ 0 * b [PROOFSTEP] simp [GOAL] case inr.inr α : Type u β : Type u_1 inst✝¹ : StrictOrderedSemiring α a✝ b✝ c✝ d : α inst✝ : DecidableRel fun x x_1 => x ≤ x_1 src✝ : StrictOrderedSemiring α := inst✝¹ a b c : α hab✝ : a ≤ b hc✝ : 0 ≤ c hab : a < b hc : 0 < c ⊢ c * a ≤ c * b [PROOFSTEP] exact (mul_lt_mul_of_pos_left hab hc).le [GOAL] α : Type u β : Type u_1 inst✝¹ : StrictOrderedSemiring α a✝ b✝ c✝ d : α inst✝ : DecidableRel fun x x_1 => x ≤ x_1 src✝ : StrictOrderedSemiring α := inst✝¹ a b c : α hab : a ≤ b hc : 0 ≤ c ⊢ a * c ≤ b * c [PROOFSTEP] obtain rfl | hab := Decidable.eq_or_lt_of_le hab [GOAL] case inl α : Type u β : Type u_1 inst✝¹ : StrictOrderedSemiring α a✝ b c✝ d : α inst✝ : DecidableRel fun x x_1 => x ≤ x_1 src✝ : StrictOrderedSemiring α := inst✝¹ a c : α hc : 0 ≤ c hab : a ≤ a ⊢ a * c ≤ a * c [PROOFSTEP] rfl [GOAL] case inr α : Type u β : Type u_1 inst✝¹ : StrictOrderedSemiring α a✝ b✝ c✝ d : α inst✝ : DecidableRel fun x x_1 => x ≤ x_1 src✝ : StrictOrderedSemiring α := inst✝¹ a b c : α hab✝ : a ≤ b hc : 0 ≤ c hab : a < b ⊢ a * c ≤ b * c [PROOFSTEP] obtain rfl | hc := Decidable.eq_or_lt_of_le hc [GOAL] case inr.inl α : Type u β : Type u_1 inst✝¹ : StrictOrderedSemiring α a✝ b✝ c d : α inst✝ : DecidableRel fun x x_1 => x ≤ x_1 src✝ : StrictOrderedSemiring α := inst✝¹ a b : α hab✝ : a ≤ b hab : a < b hc : 0 ≤ 0 ⊢ a * 0 ≤ b * 0 [PROOFSTEP] simp [GOAL] case inr.inr α : Type u β : Type u_1 inst✝¹ : StrictOrderedSemiring α a✝ b✝ c✝ d : α inst✝ : DecidableRel fun x x_1 => x ≤ x_1 src✝ : StrictOrderedSemiring α := inst✝¹ a b c : α hab✝ : a ≤ b hc✝ : 0 ≤ c hab : a < b hc : 0 < c ⊢ a * c ≤ b * c [PROOFSTEP] exact (mul_lt_mul_of_pos_right hab hc).le [GOAL] α : Type u β : Type u_1 inst✝ : StrictOrderedSemiring α a b c d : α H : 0 < a ⊢ 0 < a ^ 0 [PROOFSTEP] nontriviality [GOAL] α : Type u β : Type u_1 inst✝¹ : StrictOrderedSemiring α a b c d : α H : 0 < a inst✝ : Nontrivial α ⊢ 0 < a ^ 0 [PROOFSTEP] rw [pow_zero] [GOAL] α : Type u β : Type u_1 inst✝¹ : StrictOrderedSemiring α a b c d : α H : 0 < a inst✝ : Nontrivial α ⊢ 0 < 1 [PROOFSTEP] exact zero_lt_one [GOAL] α : Type u β : Type u_1 inst✝ : StrictOrderedSemiring α a b c d : α H : 0 < a n : ℕ ⊢ 0 < a ^ (n + 1) [PROOFSTEP] rw [pow_succ] [GOAL] α : Type u β : Type u_1 inst✝ : StrictOrderedSemiring α a b c d : α H : 0 < a n : ℕ ⊢ 0 < a * a ^ n [PROOFSTEP] exact mul_pos H (pow_pos H _) [GOAL] α : Type u β : Type u_1 inst✝¹ : StrictOrderedSemiring α a b c d : α inst✝ : DecidableRel fun x x_1 => x ≤ x_1 h1 : a < c h2 : b < d h3 : 0 ≤ a h4 : 0 ≤ b b0 : 0 = b ⊢ a * b < c * d [PROOFSTEP] rw [← b0, mul_zero] [GOAL] α : Type u β : Type u_1 inst✝¹ : StrictOrderedSemiring α a b c d : α inst✝ : DecidableRel fun x x_1 => x ≤ x_1 h1 : a < c h2 : b < d h3 : 0 ≤ a h4 : 0 ≤ b b0 : 0 = b ⊢ 0 < c * d [PROOFSTEP] exact mul_pos (h3.trans_lt h1) (h4.trans_lt h2) [GOAL] α : Type u β : Type u_1 inst✝ : StrictOrderedSemiring α a b c d : α ⊢ a < c → b < d → 0 ≤ a → 0 ≤ b → a * b < c * d [PROOFSTEP] classical exact Decidable.mul_lt_mul'' [GOAL] α : Type u β : Type u_1 inst✝ : StrictOrderedSemiring α a b c d : α ⊢ a < c → b < d → 0 ≤ a → 0 ≤ b → a * b < c * d [PROOFSTEP] exact Decidable.mul_lt_mul'' [GOAL] α : Type u β : Type u_1 inst✝ : StrictOrderedSemiring α a b c d : α hn : 0 < a hm : 1 < b ⊢ a < b * a [PROOFSTEP] convert mul_lt_mul_of_pos_right hm hn [GOAL] case h.e'_3 α : Type u β : Type u_1 inst✝ : StrictOrderedSemiring α a b c d : α hn : 0 < a hm : 1 < b ⊢ a = 1 * a [PROOFSTEP] rw [one_mul] [GOAL] α : Type u β : Type u_1 inst✝ : StrictOrderedSemiring α a b c d : α hn : 0 < a hm : 1 < b ⊢ a < a * b [PROOFSTEP] convert mul_lt_mul_of_pos_left hm hn [GOAL] case h.e'_3 α : Type u β : Type u_1 inst✝ : StrictOrderedSemiring α a b c d : α hn : 0 < a hm : 1 < b ⊢ a = a * 1 [PROOFSTEP] rw [mul_one] [GOAL] α : Type u β : Type u_1 inst✝ : StrictOrderedRing α a✝ b✝ c✝ : α src✝¹ : StrictOrderedRing α := inst✝ src✝ : Semiring α := Ring.toSemiring a b c : α h : a < b hc : 0 < c ⊢ c * a < c * b [PROOFSTEP] simpa only [mul_sub, sub_pos] using StrictOrderedRing.mul_pos _ _ hc (sub_pos.2 h) [GOAL] α : Type u β : Type u_1 inst✝ : StrictOrderedRing α a✝ b✝ c✝ : α src✝¹ : StrictOrderedRing α := inst✝ src✝ : Semiring α := Ring.toSemiring a b c : α h : a < b hc : 0 < c ⊢ a * c < b * c [PROOFSTEP] simpa only [sub_mul, sub_pos] using StrictOrderedRing.mul_pos _ _ (sub_pos.2 h) hc [GOAL] α : Type u β : Type u_1 inst✝¹ : StrictOrderedRing α a✝ b✝ c : α inst✝ : DecidableRel fun x x_1 => x ≤ x_1 src✝¹ : StrictOrderedRing α := inst✝¹ src✝ : Semiring α := Ring.toSemiring a b : α ha : 0 ≤ a hb : 0 ≤ b ⊢ 0 ≤ a * b [PROOFSTEP] obtain ha | ha := Decidable.eq_or_lt_of_le ha [GOAL] case inl α : Type u β : Type u_1 inst✝¹ : StrictOrderedRing α a✝ b✝ c : α inst✝ : DecidableRel fun x x_1 => x ≤ x_1 src✝¹ : StrictOrderedRing α := inst✝¹ src✝ : Semiring α := Ring.toSemiring a b : α ha✝ : 0 ≤ a hb : 0 ≤ b ha : 0 = a ⊢ 0 ≤ a * b [PROOFSTEP] rw [← ha, zero_mul] [GOAL] case inr α : Type u β : Type u_1 inst✝¹ : StrictOrderedRing α a✝ b✝ c : α inst✝ : DecidableRel fun x x_1 => x ≤ x_1 src✝¹ : StrictOrderedRing α := inst✝¹ src✝ : Semiring α := Ring.toSemiring a b : α ha✝ : 0 ≤ a hb : 0 ≤ b ha : 0 < a ⊢ 0 ≤ a * b [PROOFSTEP] obtain hb | hb := Decidable.eq_or_lt_of_le hb [GOAL] case inr.inl α : Type u β : Type u_1 inst✝¹ : StrictOrderedRing α a✝ b✝ c : α inst✝ : DecidableRel fun x x_1 => x ≤ x_1 src✝¹ : StrictOrderedRing α := inst✝¹ src✝ : Semiring α := Ring.toSemiring a b : α ha✝ : 0 ≤ a hb✝ : 0 ≤ b ha : 0 < a hb : 0 = b ⊢ 0 ≤ a * b [PROOFSTEP] rw [← hb, mul_zero] [GOAL] case inr.inr α : Type u β : Type u_1 inst✝¹ : StrictOrderedRing α a✝ b✝ c : α inst✝ : DecidableRel fun x x_1 => x ≤ x_1 src✝¹ : StrictOrderedRing α := inst✝¹ src✝ : Semiring α := Ring.toSemiring a b : α ha✝ : 0 ≤ a hb✝ : 0 ≤ b ha : 0 < a hb : 0 < b ⊢ 0 ≤ a * b [PROOFSTEP] exact (StrictOrderedRing.mul_pos _ _ ha hb).le [GOAL] α : Type u β : Type u_1 inst✝ : StrictOrderedRing α a b c : α h : b < a hc : c < 0 ⊢ c * a < c * b [PROOFSTEP] simpa only [neg_mul, neg_lt_neg_iff] using mul_lt_mul_of_pos_left h (neg_pos_of_neg hc) [GOAL] α : Type u β : Type u_1 inst✝ : StrictOrderedRing α a b c : α h : b < a hc : c < 0 ⊢ a * c < b * c [PROOFSTEP] simpa only [mul_neg, neg_lt_neg_iff] using mul_lt_mul_of_pos_right h (neg_pos_of_neg hc) [GOAL] α : Type u β : Type u_1 inst✝ : StrictOrderedRing α a✝ b✝ c a b : α ha : a < 0 hb : b < 0 ⊢ 0 < a * b [PROOFSTEP] simpa only [zero_mul] using mul_lt_mul_of_neg_right ha hb [GOAL] α : Type u β : Type u_1 inst✝ : StrictOrderedRing α a b c : α hb : b < 0 h : a < 1 ⊢ b < a * b [PROOFSTEP] simpa only [one_mul] using mul_lt_mul_of_neg_right h hb [GOAL] α : Type u β : Type u_1 inst✝ : StrictOrderedRing α a b c : α hb : b < 0 h : 1 < a ⊢ a * b < b [PROOFSTEP] simpa only [one_mul] using mul_lt_mul_of_neg_right h hb [GOAL] α : Type u β : Type u_1 inst✝ : StrictOrderedRing α a b c : α ha : a < 0 h : b < 1 ⊢ a < a * b [PROOFSTEP] simpa only [mul_one] using mul_lt_mul_of_neg_left h ha [GOAL] α : Type u β : Type u_1 inst✝ : StrictOrderedRing α a b c : α ha : a < 0 h : 1 < b ⊢ a * b < a [PROOFSTEP] simpa only [mul_one] using mul_lt_mul_of_neg_left h ha [GOAL] α : Type u β : Type u_1 inst✝ : LinearOrderedSemiring α a b c d : α hab : 0 ≤ a * b ⊢ 0 ≤ a ∧ 0 ≤ b ∨ a ≤ 0 ∧ b ≤ 0 [PROOFSTEP] refine' Decidable.or_iff_not_and_not.2 _ [GOAL] α : Type u β : Type u_1 inst✝ : LinearOrderedSemiring α a b c d : α hab : 0 ≤ a * b ⊢ ¬(¬(0 ≤ a ∧ 0 ≤ b) ∧ ¬(a ≤ 0 ∧ b ≤ 0)) [PROOFSTEP] simp only [not_and, not_le] [GOAL] α : Type u β : Type u_1 inst✝ : LinearOrderedSemiring α a b c d : α hab : 0 ≤ a * b ⊢ (0 ≤ a → b < 0) → ¬(a ≤ 0 → 0 < b) [PROOFSTEP] intro ab nab [GOAL] α : Type u β : Type u_1 inst✝ : LinearOrderedSemiring α a b c d : α hab : 0 ≤ a * b ab : 0 ≤ a → b < 0 nab : a ≤ 0 → 0 < b ⊢ False [PROOFSTEP] apply not_lt_of_le hab _ -- Porting note: for the middle case, we used to have `rfl`, but it is now rejected. -- https://github.com/leanprover/std4/issues/62 [GOAL] α : Type u β : Type u_1 inst✝ : LinearOrderedSemiring α a b c d : α hab : 0 ≤ a * b ab : 0 ≤ a → b < 0 nab : a ≤ 0 → 0 < b ⊢ a * b < 0 [PROOFSTEP] rcases lt_trichotomy 0 a with (ha | ha | ha) [GOAL] case inl α : Type u β : Type u_1 inst✝ : LinearOrderedSemiring α a b c d : α hab : 0 ≤ a * b ab : 0 ≤ a → b < 0 nab : a ≤ 0 → 0 < b ha : 0 < a ⊢ a * b < 0 [PROOFSTEP] exact mul_neg_of_pos_of_neg ha (ab ha.le) [GOAL] case inr.inl α : Type u β : Type u_1 inst✝ : LinearOrderedSemiring α a b c d : α hab : 0 ≤ a * b ab : 0 ≤ a → b < 0 nab : a ≤ 0 → 0 < b ha : 0 = a ⊢ a * b < 0 [PROOFSTEP] subst ha [GOAL] case inr.inl α : Type u β : Type u_1 inst✝ : LinearOrderedSemiring α b c d : α hab : 0 ≤ 0 * b ab : 0 ≤ 0 → b < 0 nab : 0 ≤ 0 → 0 < b ⊢ 0 * b < 0 [PROOFSTEP] exact ((ab le_rfl).asymm (nab le_rfl)).elim [GOAL] case inr.inr α : Type u β : Type u_1 inst✝ : LinearOrderedSemiring α a b c d : α hab : 0 ≤ a * b ab : 0 ≤ a → b < 0 nab : a ≤ 0 → 0 < b ha : a < 0 ⊢ a * b < 0 [PROOFSTEP] exact mul_neg_of_neg_of_pos ha (nab ha.le) [GOAL] α : Type u β : Type u_1 inst✝ : LinearOrderedSemiring α a b c d : α h : 0 < c ⊢ 0 ≤ c * b ↔ 0 ≤ b [PROOFSTEP] simpa using (mul_le_mul_left h : c * 0 ≤ c * b ↔ 0 ≤ b) [GOAL] α : Type u β : Type u_1 inst✝ : LinearOrderedSemiring α a b c d : α h : 0 < c ⊢ 0 ≤ b * c ↔ 0 ≤ b [PROOFSTEP] simpa using (mul_le_mul_right h : 0 * c ≤ b * c ↔ 0 ≤ b) [GOAL] α : Type u β : Type u_1 inst✝ : LinearOrderedSemiring α a b c d : α ⊢ bit0 a ≤ bit0 b ↔ a ≤ b [PROOFSTEP] rw [bit0, bit0, ← two_mul, ← two_mul, mul_le_mul_left (zero_lt_two : 0 < (2 : α))] [GOAL] α : Type u β : Type u_1 inst✝ : LinearOrderedSemiring α a b c d : α ⊢ bit0 a < bit0 b ↔ a < b [PROOFSTEP] rw [bit0, bit0, ← two_mul, ← two_mul, mul_lt_mul_left (zero_lt_two : 0 < (2 : α))] [GOAL] α : Type u β : Type u_1 inst✝ : LinearOrderedSemiring α a b c d : α ⊢ 1 ≤ bit1 a ↔ 0 ≤ a [PROOFSTEP] rw [bit1, le_add_iff_nonneg_left, bit0, ← two_mul, zero_le_mul_left (zero_lt_two : 0 < (2 : α))] [GOAL] α : Type u β : Type u_1 inst✝ : LinearOrderedSemiring α a b c d : α ⊢ 1 < bit1 a ↔ 0 < a [PROOFSTEP] rw [bit1, lt_add_iff_pos_left, bit0, ← two_mul, zero_lt_mul_left (zero_lt_two : 0 < (2 : α))] [GOAL] α : Type u β : Type u_1 inst✝ : LinearOrderedSemiring α a b c d : α ⊢ 0 ≤ bit0 a ↔ 0 ≤ a [PROOFSTEP] rw [bit0, ← two_mul, zero_le_mul_left (zero_lt_two : 0 < (2 : α))] [GOAL] α : Type u β : Type u_1 inst✝ : LinearOrderedSemiring α a b c d : α ⊢ 0 < bit0 a ↔ 0 < a [PROOFSTEP] rw [bit0, ← two_mul, zero_lt_mul_left (zero_lt_two : 0 < (2 : α))] [GOAL] α : Type u β : Type u_1 inst✝ : LinearOrderedRing α a b c : α src✝ : LinearOrderedRing α := inst✝ ⊢ ∀ {a b : α}, a * b = 0 → a = 0 ∨ b = 0 [PROOFSTEP] intro a b hab [GOAL] α : Type u β : Type u_1 inst✝ : LinearOrderedRing α a✝ b✝ c : α src✝ : LinearOrderedRing α := inst✝ a b : α hab : a * b = 0 ⊢ a = 0 ∨ b = 0 [PROOFSTEP] refine' Decidable.or_iff_not_and_not.2 fun h => _ [GOAL] α : Type u β : Type u_1 inst✝ : LinearOrderedRing α a✝ b✝ c : α src✝ : LinearOrderedRing α := inst✝ a b : α hab : a * b = 0 h : ¬a = 0 ∧ ¬b = 0 ⊢ False [PROOFSTEP] revert hab [GOAL] α : Type u β : Type u_1 inst✝ : LinearOrderedRing α a✝ b✝ c : α src✝ : LinearOrderedRing α := inst✝ a b : α h : ¬a = 0 ∧ ¬b = 0 ⊢ a * b = 0 → False [PROOFSTEP] cases' lt_or_gt_of_ne h.1 with ha ha [GOAL] case inl α : Type u β : Type u_1 inst✝ : LinearOrderedRing α a✝ b✝ c : α src✝ : LinearOrderedRing α := inst✝ a b : α h : ¬a = 0 ∧ ¬b = 0 ha : a < 0 ⊢ a * b = 0 → False [PROOFSTEP] cases' lt_or_gt_of_ne h.2 with hb hb [GOAL] case inr α : Type u β : Type u_1 inst✝ : LinearOrderedRing α a✝ b✝ c : α src✝ : LinearOrderedRing α := inst✝ a b : α h : ¬a = 0 ∧ ¬b = 0 ha : a > 0 ⊢ a * b = 0 → False [PROOFSTEP] cases' lt_or_gt_of_ne h.2 with hb hb [GOAL] case inl.inl α : Type u β : Type u_1 inst✝ : LinearOrderedRing α a✝ b✝ c : α src✝ : LinearOrderedRing α := inst✝ a b : α h : ¬a = 0 ∧ ¬b = 0 ha : a < 0 hb : b < 0 ⊢ a * b = 0 → False case inl.inr α : Type u β : Type u_1 inst✝ : LinearOrderedRing α a✝ b✝ c : α src✝ : LinearOrderedRing α := inst✝ a b : α h : ¬a = 0 ∧ ¬b = 0 ha : a < 0 hb : b > 0 ⊢ a * b = 0 → False case inr.inl α : Type u β : Type u_1 inst✝ : LinearOrderedRing α a✝ b✝ c : α src✝ : LinearOrderedRing α := inst✝ a b : α h : ¬a = 0 ∧ ¬b = 0 ha : a > 0 hb : b < 0 ⊢ a * b = 0 → False case inr.inr α : Type u β : Type u_1 inst✝ : LinearOrderedRing α a✝ b✝ c : α src✝ : LinearOrderedRing α := inst✝ a b : α h : ¬a = 0 ∧ ¬b = 0 ha : a > 0 hb : b > 0 ⊢ a * b = 0 → False [PROOFSTEP] exacts [(mul_pos_of_neg_of_neg ha hb).ne.symm, (mul_neg_of_neg_of_pos ha hb).ne, (mul_neg_of_pos_of_neg ha hb).ne, (mul_pos ha hb).ne.symm] [GOAL] α : Type u β : Type u_1 inst✝ : LinearOrderedRing α a✝ b✝ c✝ : α src✝ : Nontrivial α := inferInstance a b c : α ha : a ≠ 0 h : a * b = a * c ⊢ b = c [PROOFSTEP] rw [← sub_eq_zero, ← mul_sub] at h [GOAL] α : Type u β : Type u_1 inst✝ : LinearOrderedRing α a✝ b✝ c✝ : α src✝ : Nontrivial α := inferInstance a b c : α ha : a ≠ 0 h✝ : a * b = a * c h : a * (b - c) = 0 ⊢ b = c [PROOFSTEP] exact sub_eq_zero.1 ((eq_zero_or_eq_zero_of_mul_eq_zero h).resolve_left ha) [GOAL] α : Type u β : Type u_1 inst✝ : LinearOrderedRing α a✝ b✝ c✝ : α src✝ : Nontrivial α := inferInstance a b c : α hb : b ≠ 0 h : a * b = c * b ⊢ a = c [PROOFSTEP] rw [← sub_eq_zero, ← sub_mul] at h [GOAL] α : Type u β : Type u_1 inst✝ : LinearOrderedRing α a✝ b✝ c✝ : α src✝ : Nontrivial α := inferInstance a b c : α hb : b ≠ 0 h✝ : a * b = c * b h : (a - c) * b = 0 ⊢ a = c [PROOFSTEP] exact sub_eq_zero.1 ((eq_zero_or_eq_zero_of_mul_eq_zero h).resolve_right hb) [GOAL] α : Type u β : Type u_1 inst✝ : LinearOrderedRing α a b c : α ⊢ a * b < 0 ↔ 0 < a ∧ b < 0 ∨ a < 0 ∧ 0 < b [PROOFSTEP] rw [← neg_pos, neg_mul_eq_mul_neg, mul_pos_iff, neg_pos, neg_lt_zero] [GOAL] α : Type u β : Type u_1 inst✝ : LinearOrderedRing α a✝ b✝ c✝ a b c : α ⊢ 0 ≤ a * b ∨ 0 ≤ b * c ∨ 0 ≤ c * a [PROOFSTEP] iterate 3 rw [mul_nonneg_iff] [GOAL] α : Type u β : Type u_1 inst✝ : LinearOrderedRing α a✝ b✝ c✝ a b c : α ⊢ 0 ≤ a * b ∨ 0 ≤ b * c ∨ 0 ≤ c * a [PROOFSTEP] rw [mul_nonneg_iff] [GOAL] α : Type u β : Type u_1 inst✝ : LinearOrderedRing α a✝ b✝ c✝ a b c : α ⊢ (0 ≤ a ∧ 0 ≤ b ∨ a ≤ 0 ∧ b ≤ 0) ∨ 0 ≤ b * c ∨ 0 ≤ c * a [PROOFSTEP] rw [mul_nonneg_iff] [GOAL] α : Type u β : Type u_1 inst✝ : LinearOrderedRing α a✝ b✝ c✝ a b c : α ⊢ (0 ≤ a ∧ 0 ≤ b ∨ a ≤ 0 ∧ b ≤ 0) ∨ (0 ≤ b ∧ 0 ≤ c ∨ b ≤ 0 ∧ c ≤ 0) ∨ 0 ≤ c * a [PROOFSTEP] rw [mul_nonneg_iff] [GOAL] α : Type u β : Type u_1 inst✝ : LinearOrderedRing α a✝ b✝ c✝ a b c : α ⊢ (0 ≤ a ∧ 0 ≤ b ∨ a ≤ 0 ∧ b ≤ 0) ∨ (0 ≤ b ∧ 0 ≤ c ∨ b ≤ 0 ∧ c ≤ 0) ∨ 0 ≤ c ∧ 0 ≤ a ∨ c ≤ 0 ∧ a ≤ 0 [PROOFSTEP] have or_a := le_total 0 a [GOAL] α : Type u β : Type u_1 inst✝ : LinearOrderedRing α a✝ b✝ c✝ a b c : α or_a : 0 ≤ a ∨ a ≤ 0 ⊢ (0 ≤ a ∧ 0 ≤ b ∨ a ≤ 0 ∧ b ≤ 0) ∨ (0 ≤ b ∧ 0 ≤ c ∨ b ≤ 0 ∧ c ≤ 0) ∨ 0 ≤ c ∧ 0 ≤ a ∨ c ≤ 0 ∧ a ≤ 0 [PROOFSTEP] have or_b := le_total 0 b [GOAL] α : Type u β : Type u_1 inst✝ : LinearOrderedRing α a✝ b✝ c✝ a b c : α or_a : 0 ≤ a ∨ a ≤ 0 or_b : 0 ≤ b ∨ b ≤ 0 ⊢ (0 ≤ a ∧ 0 ≤ b ∨ a ≤ 0 ∧ b ≤ 0) ∨ (0 ≤ b ∧ 0 ≤ c ∨ b ≤ 0 ∧ c ≤ 0) ∨ 0 ≤ c ∧ 0 ≤ a ∨ c ≤ 0 ∧ a ≤ 0 [PROOFSTEP] have or_c := le_total 0 c [GOAL] α : Type u β : Type u_1 inst✝ : LinearOrderedRing α a✝ b✝ c✝ a b c : α or_a : 0 ≤ a ∨ a ≤ 0 or_b : 0 ≤ b ∨ b ≤ 0 or_c : 0 ≤ c ∨ c ≤ 0 ⊢ (0 ≤ a ∧ 0 ≤ b ∨ a ≤ 0 ∧ b ≤ 0) ∨ (0 ≤ b ∧ 0 ≤ c ∨ b ≤ 0 ∧ c ≤ 0) ∨ 0 ≤ c ∧ 0 ≤ a ∨ c ≤ 0 ∧ a ≤ 0 [PROOFSTEP] exact Or.elim or_c (fun (h0 : 0 ≤ c) => Or.elim or_b (fun (h1 : 0 ≤ b) => Or.elim or_a (fun (h2 : 0 ≤ a) => Or.inl (Or.inl ⟨h2, h1⟩)) (fun (_ : a ≤ 0) => Or.inr (Or.inl (Or.inl ⟨h1, h0⟩)))) (fun (h1 : b ≤ 0) => Or.elim or_a (fun (h3 : 0 ≤ a) => Or.inr (Or.inr (Or.inl ⟨h0, h3⟩))) (fun (h3 : a ≤ 0) => Or.inl (Or.inr ⟨h3, h1⟩)))) (fun (h0 : c ≤ 0) => Or.elim or_b (fun (h4 : 0 ≤ b) => Or.elim or_a (fun (h5 : 0 ≤ a) => Or.inl (Or.inl ⟨h5, h4⟩)) (fun (h5 : a ≤ 0) => Or.inr (Or.inr (Or.inr ⟨h0, h5⟩)))) (fun (h4 : b ≤ 0) => Or.elim or_a (fun (_ : 0 ≤ a) => Or.inr (Or.inl (Or.inr ⟨h4, h0⟩))) (fun (h6 : a ≤ 0) => Or.inl (Or.inr ⟨h6, h4⟩)))) [GOAL] α : Type u β : Type u_1 inst✝ : LinearOrderedRing α a b c : α ⊢ a * b ≤ 0 ↔ 0 ≤ a ∧ b ≤ 0 ∨ a ≤ 0 ∧ 0 ≤ b [PROOFSTEP] rw [← neg_nonneg, neg_mul_eq_mul_neg, mul_nonneg_iff, neg_nonneg, neg_nonpos] [GOAL] α : Type u β : Type u_1 inst✝ : LinearOrderedRing α a b c : α ⊢ -a ≤ a ↔ 0 ≤ a [PROOFSTEP] simp [neg_le_iff_add_nonneg, ← two_mul, mul_nonneg_iff, zero_le_one, (zero_lt_two' α).not_le] [GOAL] α : Type u β : Type u_1 inst✝ : LinearOrderedRing α a b c : α ⊢ -a < a ↔ 0 < a [PROOFSTEP] simp [neg_lt_iff_pos_add, ← two_mul, mul_pos_iff, zero_lt_one, (zero_lt_two' α).not_lt] [GOAL] α : Type u β : Type u_1 inst✝ : LinearOrderedRing α a b c : α ⊢ a ≤ -a ↔ - -a ≤ -a [PROOFSTEP] rw [neg_neg] [GOAL] α : Type u β : Type u_1 inst✝ : LinearOrderedRing α a b c : α ⊢ a < -a ↔ - -a < -a [PROOFSTEP] rw [neg_neg] [GOAL] α : Type u β : Type u_1 inst✝ : LinearOrderedRing α a b c : α h : c * a < c * b hc : c ≤ 0 ⊢ -c * b < -c * a [PROOFSTEP] rwa [neg_mul, neg_mul, neg_lt_neg_iff] [GOAL] α : Type u β : Type u_1 inst✝ : LinearOrderedRing α a b c : α h : a * c < b * c hc : c ≤ 0 ⊢ b * -c < a * -c [PROOFSTEP] rwa [mul_neg, mul_neg, neg_lt_neg_iff] [GOAL] α : Type u β : Type u_1 inst✝ : LinearOrderedRing α a✝ b c a : α ⊢ 0 < a * a ↔ a ≠ 0 [PROOFSTEP] constructor [GOAL] case mp α : Type u β : Type u_1 inst✝ : LinearOrderedRing α a✝ b c a : α ⊢ 0 < a * a → a ≠ 0 [PROOFSTEP] rintro h rfl [GOAL] case mp α : Type u β : Type u_1 inst✝ : LinearOrderedRing α a b c : α h : 0 < 0 * 0 ⊢ False [PROOFSTEP] rw [mul_zero] at h [GOAL] case mp α : Type u β : Type u_1 inst✝ : LinearOrderedRing α a b c : α h : 0 < 0 ⊢ False [PROOFSTEP] exact h.false [GOAL] case mpr α : Type u β : Type u_1 inst✝ : LinearOrderedRing α a✝ b c a : α ⊢ a ≠ 0 → 0 < a * a [PROOFSTEP] intro h [GOAL] case mpr α : Type u β : Type u_1 inst✝ : LinearOrderedRing α a✝ b c a : α h : a ≠ 0 ⊢ 0 < a * a [PROOFSTEP] cases' h.lt_or_lt with h h [GOAL] case mpr.inl α : Type u β : Type u_1 inst✝ : LinearOrderedRing α a✝ b c a : α h✝ : a ≠ 0 h : a < 0 ⊢ 0 < a * a case mpr.inr α : Type u β : Type u_1 inst✝ : LinearOrderedRing α a✝ b c a : α h✝ : a ≠ 0 h : 0 < a ⊢ 0 < a * a [PROOFSTEP] exacts [mul_pos_of_neg_of_neg h h, mul_pos h h] [GOAL] α : Type u β : Type u_1 inst✝ : LinearOrderedRing α a b c x y : α ⊢ x * x + y * y = 0 ↔ x = 0 ∧ y = 0 [PROOFSTEP] rw [add_eq_zero_iff', mul_self_eq_zero, mul_self_eq_zero] [GOAL] case ha α : Type u β : Type u_1 inst✝ : LinearOrderedRing α a b c x y : α ⊢ 0 ≤ x * x [PROOFSTEP] apply mul_self_nonneg [GOAL] case hb α : Type u β : Type u_1 inst✝ : LinearOrderedRing α a b c x y : α ⊢ 0 ≤ y * y [PROOFSTEP] apply mul_self_nonneg [GOAL] α : Type u β : Type u_1 inst✝ : LinearOrderedCommRing α a b✝ c✝ d b c : α ha : 0 ≤ a hd : 0 ≤ d ba : b * a ≤ max d b * max c a cd : c * d ≤ max a c * max b d ⊢ a * b ≤ max a c * max d b [PROOFSTEP] simpa [mul_comm, max_comm] using ba [GOAL] α : Type u β : Type u_1 inst✝ : LinearOrderedCommRing α a b✝ c✝ d b c : α ha : 0 ≤ a hd : 0 ≤ d ba : b * a ≤ max d b * max c a cd : c * d ≤ max a c * max b d ⊢ d * c ≤ max a c * max d b [PROOFSTEP] simpa [mul_comm, max_comm] using cd
import .struc import logic.equiv.defs import .defs open propagate_struc profinite set_option class.instance_max_depth 100 section open circuit def xor_map : (boolp.prod boolp).map boolp := { to_fun := λ x, bxor x.1 x.2, preimage := λ C, C.bind (λ _, (var (sum.inl ())).xor (var (sum.inr ()))), continuous' := begin simp [circuit.to_set, eval_bind], intros x C, refl end } def and_map : (boolp.prod boolp).map boolp := { to_fun := λ x, band x.1 x.2, preimage := λ C, C.bind (λ _, (var (sum.inl ())).and (var (sum.inr ()))), continuous' := begin simp [circuit.to_set, eval_bind], intros x C, refl end } def or_map : (boolp.prod boolp).map boolp := { to_fun := λ x, bor x.1 x.2, preimage := λ C, C.bind (λ _, (var (sum.inl ())).or (var (sum.inr ()))), continuous' := begin simp [circuit.to_set, eval_bind], intros x C, refl end } def not_map : boolp.map boolp := { to_fun := bnot, preimage := λ C, C.bind (λ _, (var ()).not), continuous' := begin simp [circuit.to_set, eval_bind], intros x C, refl end } def bitwise_map2 (op : circuit (fin 2)) : (boolp.prod boolp).map boolp := { to_fun := λ x, op.eval (λ i, list.nth_le [x.1, x.2] i i.prop), preimage := λ C, C.bind (λ _, op.map (λ i, list.nth_le [sum.inl (), sum.inr ()] i i.prop)), continuous' := begin simp [circuit.to_set, eval_bind, eval_map], intros x C, rw [iff_iff_eq], congr' 2, ext i, cases i, dsimp [boolp, profinite.prod, coe_sort, has_coe_to_sort.coe], congr' 1, ext i, cases i with i hi, cases i, simp, cases i, simp, simp [nat.succ_lt_succ_iff] at hi, contradiction end } def bitwise_map3 (op : circuit (fin 3)) : (boolp.prod (boolp.prod boolp)).map boolp := { to_fun := λ x, op.eval (λ i, list.nth_le [x.1, x.2.1, x.2.2] i i.prop), preimage := λ C, C.bind (λ x, op.map (λ i, list.nth_le [sum.inl (), sum.inr (sum.inl ()), sum.inr (sum.inr ())] i i.prop)), continuous' := begin simp [circuit.to_set, eval_bind, eval_map], intros x C, rw [iff_iff_eq], congr' 2, ext i, cases i, dsimp [boolp, profinite.prod, coe_sort, has_coe_to_sort.coe], congr' 1, ext i, cases i with i hi, cases i, simp, cases i, simp, cases i, simp, simp [nat.succ_lt_succ_iff] at hi, contradiction end } def const {X Y : profinite} (y : Y) : map X Y := { to_fun := λ _, y, preimage := λ C, if y ∈ C.to_set then true else false, continuous' := λ x C, begin split_ifs; simp [circuit.to_set, *] at *, end } def xor_struc : propagate_struc (boolp.prod boolp) unitp := { init := (), transition := const (), output := sndm.comp xor_map } def and_struc : propagate_struc (boolp.prod boolp) unitp := { init := (), transition := const (), output := sndm.comp and_map } def or_struc : propagate_struc (boolp.prod boolp) unitp := { init := (), transition := const (), output := sndm.comp or_map } def not_struc : propagate_struc boolp unitp := { init := (), transition := const (), output := sndm.comp not_map } def ls_struc (b : bool) : propagate_struc boolp boolp := { init := b, transition := sndm, output := fstm } def add_struc : propagate_struc (boolp.prod boolp) boolp := { init := ff, transition := bitwise_map3 (or (and (var 0) (var 1)) (or (and (var 0) (var 2)) (and (var 1) (var 2)))), output := bitwise_map3 (xor (xor (var 0) (var 1)) (var 2)) } def sub_struc : propagate_struc (boolp.prod boolp) boolp := { init := ff, transition := bitwise_map3 (or (and (not (var 1)) (var 2)) (and (not (xor (var 1) (var 2))) (var 0))), output := bitwise_map3 (xor (xor (var 0) (var 1)) (var 2)) } def neg_struc : propagate_struc boolp boolp := { init := tt, transition := bitwise_map2 (and (not (var 1)) (var 0)), output := bitwise_map2 (xor (not (var 1)) (var 0)) } def incr_struc : propagate_struc boolp boolp := { init := tt, transition := and_map, output := xor_map } def decr_struc : propagate_struc boolp boolp := { init := tt, transition := bitwise_map2 (and (not (var 1)) (var 0)), output := xor_map } def rearrange_prod₁ {W X Y Z : profinite} : ((W.prod X).prod (Y.prod Z)).map ((W.prod Y).prod (X.prod Z)) := reindex begin dsimp [profinite.prod], refine (equiv.sum_assoc _ _ _).symm.trans _, refine equiv.trans _ (equiv.sum_assoc _ _ _), refine equiv.sum_congr _ (equiv.refl _), refine equiv.trans (equiv.sum_assoc _ _ _) _, refine equiv.trans _ (equiv.sum_assoc _ _ _).symm, refine equiv.sum_congr (equiv.refl _) _, refine equiv.sum_comm _ _ end def prod_assoc {X Y Z : profinite} : ((X.prod Y).prod Z).map (X.prod (Y.prod Z)) := reindex (equiv.sum_assoc _ _ _).symm def bin_comp {input state₁ state₂ state₃ : profinite} (p : propagate_struc (boolp.prod boolp) state₁) (q : propagate_struc input state₂) (r : propagate_struc input state₃) : propagate_struc input (state₁.prod (state₂.prod state₃)) := { init := (p.init, q.init, r.init), transition := begin have f₁ := prod_assoc.comp ((prod_mapm (map.id _) ((prod_mapm (map.id _) (diag)).comp (rearrange_prod₁.comp (prod_mapm q.output r.output)))).comp p.transition), have f₂ := (prod_mapm (sndm.comp fstm) (map.id _)).comp q.transition, have f₃ := (prod_mapm (sndm.comp sndm) (map.id _)).comp r.transition, exact prod_mk f₁ (prod_mk f₂ f₃) end, output := begin refine map.comp _ p.output, refine prod_assoc.comp _, refine prod_mapm (map.id _) _, have := rearrange_prod₁.comp (prod_mapm q.output r.output), refine map.comp _ this, refine prod_mapm (map.id _) diag, end } @[simp] lemma bin_comp_init {input state₁ state₂ state₃ : profinite} (p : propagate_struc (boolp.prod boolp) state₁) (q : propagate_struc input state₂) (r : propagate_struc input state₃) : (bin_comp p q r).init = (p.init, q.init, r.init) := rfl @[simp] lemma bin_comp_transition {input state₁ state₂ state₃ : profinite} (p : propagate_struc (boolp.prod boolp) state₁) (q : propagate_struc input state₂) (r : propagate_struc input state₃) : coe_fn (bin_comp p q r).transition = (λ x : (state₁.prod (state₂.prod state₃)).prod input, (p.transition (x.1.1, q.output (x.1.2.1, x.2), r.output (x.1.2.2, x.2)), q.transition (x.1.2.1, x.2), r.transition (x.1.2.2, x.2))) := begin funext i, rcases i with ⟨⟨i, j, k⟩, x⟩, dsimp [nth_output, bin_comp, prod_assoc, map.comp, prod_mapm, boolp, function.comp, map.id, coe_fn, has_coe_to_fun.coe, prod_mk, fstm, sndm, diag, rearrange_prod₁, reindex, equiv.sum_assoc, equiv.trans, equiv.refl, equiv.sum_congr, equiv.symm, equiv.sum_comm, profinite.prod, prod_mk_reindex], simp [inv_proj] end @[simp] lemma bin_comp_output {input state₁ state₂ state₃ : profinite} (p : propagate_struc (boolp.prod boolp) state₁) (q : propagate_struc input state₂) (r : propagate_struc input state₃) : coe_fn (bin_comp p q r).output = (λ x : (state₁.prod (state₂.prod state₃)).prod input, p.output (x.1.1, q.output (x.1.2.1, x.2), r.output (x.1.2.2, x.2))) := begin funext i, rcases i with ⟨⟨i, j, k⟩, x⟩, dsimp [nth_output, bin_comp, prod_assoc, map.comp, prod_mapm, boolp, function.comp, map.id, coe_fn, has_coe_to_fun.coe, prod_mk, fstm, sndm, diag, rearrange_prod₁, reindex, equiv.sum_assoc, equiv.trans, equiv.refl, equiv.sum_congr, equiv.symm, equiv.sum_comm, profinite.prod, prod_mk_reindex], simp [inv_proj] end lemma nth_state_bin_comp {input state₁ state₂ state₃ : profinite} (p : propagate_struc (boolp.prod boolp) state₁) (q : propagate_struc input state₂) (r : propagate_struc input state₃) (x : ℕ → input) (n : ℕ) : (bin_comp p q r).nth_state x n = (p.nth_state (λ i, (q.nth_output x i, r.nth_output x i)) n, q.nth_state x n, r.nth_state x n) ∧ (bin_comp p q r).nth_output x n = p.nth_output (λ i, (q.nth_output x i, r.nth_output x i)) n := begin induction n with n ih, { simp [nth_state] }, { simp * } end def una_comp {input state₁ state₂ : profinite} (p : propagate_struc boolp state₁) (q : propagate_struc input state₂) : propagate_struc input (state₁.prod state₂) := { init := (p.init, q.init), transition := begin have := p.transition, have := q.output, have := q.transition, refine prod_mk (prod_assoc.comp _) _, { refine (prod_mapm (map.id _) q.output).comp p.transition }, { refine (prod_mapm sndm (map.id _)).comp q.transition } end, output := begin have := p.output, have := q.output, have := prod_assoc.comp ((prod_mapm _ q.output).comp p.output), exact this, exact map.id _ end } def propagate_struc.proj (n : ℕ) : propagate_struc twoadic unitp := { init := (), transition := const (), output := sndm.comp (projm _ n) } def propagate_struc.zero : propagate_struc twoadic unitp := { init := (), transition := const (), output := const ff } def propagate_struc.neg_one : propagate_struc twoadic unitp := { init := (), transition := const (), output := const tt } def propagate_struc.one : propagate_struc twoadic boolp := { init := tt, transition := { to_fun := λ _, ff, preimage := λ C, if h : ff ∈ C.to_set then true else false, continuous' := begin intros,split_ifs; dsimp [circuit.to_set, set.mem_def, set_of] at *; simp * at * end }, output := fstm } def of_term : term → Σ (state : profinite), propagate_struc twoadic state | (term.var n) := ⟨unitp, propagate_struc.proj n⟩ | (term.zero) := ⟨unitp, propagate_struc.zero⟩ | (term.one) := ⟨_, propagate_struc.one⟩ | (term.and t₁ t₂) := let p₁ := of_term t₁, p₂ := of_term t₂ in ⟨_, bin_comp and_struc p₁.2 p₂.2⟩ | (term.or t₁ t₂) := let p₁ := of_term t₁, p₂ := of_term t₂ in ⟨_, bin_comp or_struc p₁.2 p₂.2⟩ | (term.neg t) := let p := of_term t in ⟨_, una_comp neg_struc p.2⟩ | (term.neg_one) := ⟨_, propagate_struc.neg_one⟩ | (term.add t₁ t₂) := let p₁ := of_term t₁, p₂ := of_term t₂ in ⟨_, bin_comp add_struc p₁.2 p₂.2⟩ | (term.xor t₁ t₂) := let p₁ := of_term t₁, p₂ := of_term t₂ in ⟨_, bin_comp xor_struc p₁.2 p₂.2⟩ | (term.not t) := let p := of_term t in ⟨_, una_comp not_struc p.2⟩ | (term.ls t) := let p := of_term t in ⟨_, una_comp (ls_struc ff) p.2⟩ | (term.sub t₁ t₂) := let p₁ := of_term t₁, p₂ := of_term t₂ in ⟨_, bin_comp sub_struc p₁.2 p₂.2⟩ | (term.incr t) := let p := of_term t in ⟨_, una_comp incr_struc p.2⟩ | (term.decr t) := let p := of_term t in ⟨_, una_comp decr_struc p.2⟩ instance : Π (t : term), has_repr (of_term t).1.ι | (term.var n) := by dsimp [of_term]; apply_instance | (term.zero) := by dsimp [of_term]; apply_instance | (term.one) := by dsimp [of_term]; apply_instance | (term.add t₁ t₂) := by letI := ι.has_repr t₁; letI := ι.has_repr t₂; dsimp [of_term]; apply_instance | (term.and t₁ t₂) := by letI := ι.has_repr t₁; letI := ι.has_repr t₂; dsimp [of_term]; apply_instance | (term.or t₁ t₂) := by letI := ι.has_repr t₁; letI := ι.has_repr t₂; dsimp [of_term]; apply_instance | (term.neg t) := by letI := ι.has_repr t; dsimp [of_term]; apply_instance | (term.neg_one) := by dsimp [of_term]; apply_instance | (term.xor t₁ t₂) := by letI := ι.has_repr t₁; letI := ι.has_repr t₂; dsimp [of_term]; apply_instance | (term.not t) := by letI := ι.has_repr t; dsimp [of_term]; apply_instance | (term.ls t) := by letI := ι.has_repr t; dsimp [of_term]; apply_instance | (term.sub t₁ t₂) := by letI := ι.has_repr t₁; letI := ι.has_repr t₂; dsimp [of_term]; apply_instance | (term.incr t) := by letI := ι.has_repr t; dsimp [of_term]; apply_instance | (term.decr t) := by letI := ι.has_repr t; dsimp [of_term]; apply_instance def check_eq (t₁ t₂ : term) (n : ℕ) : result := decide_if_zeros (of_term (t₁.xor t₂)).2 n end open term set_option profiler true def x : term := term.var 0 def y : term := term.var 1 def z : term := term.var 2 def a : term := term.var 3 def b : term := term.var 4 def c : term := term.var 5 def d : term := term.var 6 #eval check_eq (x +- x) 0 2 #eval check_eq (x - y) (x + -y) 2 #eval check_eq (x + 1) x.incr 2 #eval check_eq (x - 1) x.decr 2 #eval check_eq (x.xor x) term.zero 1 #eval check_eq (x + y) (y + x) 1 #eval check_eq ((x + y) + z) (x + (y + z)) 2 #eval check_eq (not (xor x y)) (and x y - or x y - 1) 2 -- #eval (bitwise_struc bxor).nth_output (λ _, (tt, tt)) 0 open term
State Before: α : Type u_1 inst✝² : Lattice α inst✝¹ : OrderBot α inst✝ : IsModularLattice α a b c : α h : Disjoint b c hsup : Disjoint a (b ⊔ c) ⊢ Disjoint (a ⊔ b) c State After: α : Type u_1 inst✝² : Lattice α inst✝¹ : OrderBot α inst✝ : IsModularLattice α a b c : α h : Disjoint b c hsup : Disjoint a (b ⊔ c) ⊢ Disjoint c (b ⊔ a) Tactic: rw [disjoint_comm, sup_comm] State Before: α : Type u_1 inst✝² : Lattice α inst✝¹ : OrderBot α inst✝ : IsModularLattice α a b c : α h : Disjoint b c hsup : Disjoint a (b ⊔ c) ⊢ Disjoint c (b ⊔ a) State After: α : Type u_1 inst✝² : Lattice α inst✝¹ : OrderBot α inst✝ : IsModularLattice α a b c : α h : Disjoint b c hsup : Disjoint a (b ⊔ c) ⊢ Disjoint (c ⊔ b) a Tactic: apply Disjoint.disjoint_sup_right_of_disjoint_sup_left h.symm State Before: α : Type u_1 inst✝² : Lattice α inst✝¹ : OrderBot α inst✝ : IsModularLattice α a b c : α h : Disjoint b c hsup : Disjoint a (b ⊔ c) ⊢ Disjoint (c ⊔ b) a State After: no goals Tactic: rwa [sup_comm, disjoint_comm] at hsup
from __future__ import annotations import numpy as np from ..core import Solver from ..nbcompat import numba from ..nbcompat.zeros import j_newton, newton_hd from ..util import classproperty class Multistep(Solver, abstract=True): GROUP = "Multistep" FIXED_STEP = True FIRST_STEPPER_CLS = "RungeKutta45" # class attributes A: np.ndarray # (n,) B: np.ndarray # (n,) Bn: float order: float ORDER: int @classproperty def ORDER(cls): return cls.A.size @classproperty def IMPLICIT(cls): return cls.Bn == 0 @classproperty def LEN_HISTORY(cls): return max(cls.ORDER, 2) def __init__(self, *args, first_stepper_cls="auto", **kwargs): super().__init__(*args, **kwargs) if first_stepper_cls is None or self.ORDER == 1: # We push 1 less because one was done at Solver.s for _ in range(self.LEN_HISTORY - 1): self.cache.push(self.t, self.y, self.f) return if first_stepper_cls == "auto": first_stepper_cls = self.FIRST_STEPPER_CLS if isinstance(first_stepper_cls, str): import nbkode first_stepper_cls = getattr(nbkode, first_stepper_cls) if first_stepper_cls.FIXED_STEP: # For fixed step solver we do N steps with the step size. solver = first_stepper_cls(self.rhs, self.t, self.y, h=self.h) for _ in range(self.ORDER - 1): solver.step() self.cache.push(solver.t, solver.y, solver.f) else: # For variable step solver we run N times until h, 2h, 3h .. (ORDER - 1)h solver = first_stepper_cls(self.rhs, self.t, self.y) ts, ys = solver.run(np.arange(1, self.ORDER) * self.h) for t, y in zip(ts, ys): self.cache.push(t, y, self.rhs(t, y)) @staticmethod def _fixed_step(): raise NotImplementedError @classmethod def _step_builder(cls): fixed_step = cls._fixed_step @numba.njit def _step(rhs, cache, h): t, y = fixed_step(rhs, cache, h) cache.push(t, y, rhs(t, y)) return _step @property def _step_args(self): return self.rhs, self.cache, self.h class ExplicitMultistep(Multistep, abstract=True): Bn = 0 @classmethod def _fixed_step_builder(cls): A, B = cls.A, cls.B if A.size < cls.LEN_HISTORY or B.size < cls.LEN_HISTORY: deltaA = cls.LEN_HISTORY - A.size deltaB = cls.LEN_HISTORY - B.size @numba.njit def _fixed_step(rhs, cache, h): t_new = cache.t + h y_new = h * B @ cache.fs[deltaB:] - A @ cache.ys[deltaA:] return t_new, y_new else: @numba.njit def _fixed_step(rhs, cache, h): t_new = cache.t + h y_new = h * B @ cache.fs - A @ cache.ys return t_new, y_new return _fixed_step class ImplicitMultistep(Multistep, abstract=True): @classmethod def _fixed_step_builder(cls): A, B, Bn = cls.A, cls.B, cls.Bn @numba.njit(inline="always") def implicit_root(y, rhs, t, h_Bn, K): return y - h_Bn * rhs(t, y) - K if A.size < cls.LEN_HISTORY or B.size < cls.LEN_HISTORY: deltaA = cls.LEN_HISTORY - A.size deltaB = cls.LEN_HISTORY - B.size @numba.njit def _fixed_step(rhs, cache, h): t_new = cache.t + h K = h * B @ cache.fs[deltaB:] - A @ cache.ys[deltaA:] if cache.y.size == 1: y_new = j_newton( implicit_root, cache.y, args=(rhs, t_new, h * Bn, K), ) else: y_new = newton_hd( implicit_root, cache.y, args=(rhs, t_new, h * Bn, K), ) return t_new, y_new else: @numba.njit def _fixed_step(rhs, cache, h): t_new = cache.t + h K = h * B @ cache.fs - A @ cache.ys if cache.y.size == 1: y_new = j_newton( implicit_root, cache.y, args=(rhs, t_new, h * Bn, K), ) else: y_new = newton_hd( implicit_root, cache.y, args=(rhs, t_new, h * Bn, K), ) return t_new, y_new return _fixed_step
||| A heterogeneous list. This was introduced in ||| chapter *Functor and Friends* and is also used in ||| later chapters module Data.HList import Data.Fin %default total public export data HList : (ts : List Type) -> Type where Nil : HList Nil (::) : (v : t) -> (vs : HList ts) -> HList (t :: ts) public export head : HList (t :: ts) -> t head (v :: _) = v public export tail : HList (t :: ts) -> HList ts tail (_ :: t) = t public export (++) : HList xs -> HList ys -> HList (xs ++ ys) [] ++ ws = ws (v :: vs) ++ ws = v :: (vs ++ ws) public export indexList : (as : List a) -> Fin (length as) -> a indexList (x :: _) FZ = x indexList (_ :: xs) (FS y) = indexList xs y indexList [] x impossible public export index : (ix : Fin (length ts)) -> HList ts -> indexList ts ix index FZ (v :: _) = v index (FS x) (_ :: vs) = index x vs index ix [] impossible
% This is part of the TFTB Tutorial. % Copyright (C) 1996 CNRS (France) and Rice University (US). % See the file tutorial.tex for copying conditions. This chapter presents some useful definitions that constitute the background of time-frequency analysis (most of the information presented in this tutorial are extracted from \cite{FLA93}). After a brief recall on time-domain and frequency-domain representations, we introduce the concepts of time and frequency localizations, time-bandwidth product and the constraint associated to this product (the Heisenberg-Gabor inequality). Then, the instantaneous frequency and the group delay are presented as a first solution to the problem of time localization of the spectrum. We carry on by defining non-stationarity from its opposite, stationarity, and show how to synthesize such non-stationary signals with the toolbox. Finally, we show that in the case of multi-component signals, these mono-dimensional functions (instantaneous frequency and group delay) are not sufficient to represent these signals ; a two-dimensional description (function of time {\em and} frequency) is necessary. \section{Time representation and frequency representation} %~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ The time representation is usually the first (and the most natural) description of a signal we consider, since almost all physical signals are obtained by receivers recording variations with time. The frequency representation, obtained by the {\it Fourier transform} \index{Fourier transform} \[X(\nu) = \int_{-\infty}^{+\infty} x(t)\ e^{-j2\pi \nu t}\ dt,\] is also a very powerful way to describe a signal, mainly because the relevance of the concept of frequency is shared by many domains (physics, astronomy, economics, biology \ldots) in which periodic events occur. But if we look more carefully at the spectrum $X(\nu)$, it can be viewed as the coefficient function obtained by expanding the signal $x(t)$ into the family of infinite waves, $\exp\{j2\pi \nu t\}$, which are completely unlocalized in time. Thus, the spectrum essentially tells us which frequencies are contained in the signal, as well as their corresponding amplitudes and phases, but does not tell us at which times these frequencies occur. \section{Localization and the Heisenberg-Gabor\\ principle} %~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ \markright{Localization and the Heisenberg-Gabor principle} A simple way to characterize a signal simultaneously in time and in frequency is to consider its mean localizations and dispersions in each of these representations. This can be obtained by considering $|x(t)|^2$ and $|X(\nu)|^2$ as probability distributions, and looking at their mean values and standard deviations : \index{average time}\index{average frequency}\index{time spreading}\index{frequency spreading} %\begin{xalignat}{2} $$ \begin{array}{rcll} t_m &=& \frac{1}{E_x}\ \int_{-\infty}^{+\infty} t\ |x(t)|^2\ dt & \mbox{\it average time}\\ \nu_m &=& \frac{1}{E_x}\ \int_{-\infty}^{+\infty} \nu\ |X(\nu)|^2\ d\nu & \mbox{\it average frequency}\\ T^2 &=& \frac{ 4\pi}{E_x}\ \int_{-\infty}^{+\infty} (t-t_m)^2\ |x(t)|^2\ dt & \mbox{\it time spreading}\\ B^2 &=& \frac{4\pi}{E_x}\ \int_{-\infty}^{+\infty} (\nu-\nu_m)^2\ |X(\nu)|^2\ d\nu & \mbox{\it frequency spreading} \end{array} $$ %\end{eqnarray*} %\end{xalignat} where $E_x$ is the \index{energy} {\it energy} of the signal, assumed to be finite (bounded) : \[E_x = \int_{-\infty}^{+\infty} |x(t)|^2\ dt < + \infty.\] Then a signal can be characterized in the time-frequency plane by its mean position $(t_m, \nu_m)$ and a domain of main energy localization whose area is proportional to the {\it time-bandwidth product} $T\times B$.\\ \index{time-bandwidth product} \subsection{Example 1} %''''''''''''''''''''' \label{ex1} These time and frequency localizations can be evaluated thanks to the M-files \index{\ttfamily loctime}{\ttfamily loctime.m} and \index{\ttfamily locfreq}{\ttfamily locfreq.m} of the Toolbox. The first one gives the average time center ($t_m$) and the duration ($T$) of a signal, and the second one the average normalized frequency ($\nu_m$) and the normalized bandwidth ($B$). For example, for a linear chirp with a gaussian amplitude modulation, we obtain (see fig. \ref{Ns2fig1})\,: \begin{verbatim} >> sig=fmlin(256).*amgauss(256); >> [tm,T]=loctime(sig) ---> tm=128 T=32 >> [num,B]=locfreq(sig) ---> num=0.249 B=0.0701 \end{verbatim} \begin{figure}[htb] \epsfxsize=10cm \epsfysize=8cm \centerline{\epsfbox{figure/ns2fig1.eps}} \caption{\label{Ns2fig1}Linear chirp with a gaussian amplitude modulation} \end{figure} One interesting property of this product $T\times B$ is that it is lower bounded : \[T \times B \geq 1.\] \index{Heisenberg-Gabor inequality} This constraint, known as the {\it Heisenberg-Gabor inequality}, illustrates the fact that a signal can not have simultaneously an arbitrarily small support in time and in frequency. This property is a consequence of the definition of the Fourier transform. The lower bound $T\times B = 1$ is reached for gaussian functions : \[x(t) = C \exp{[-\alpha(t - t_m)^2 + j2\pi \nu_m(t-t_m)]}\] %with $C \in \mathbb{R}$, $\alpha \in \mathbb{R}_{+}$. Therefore, the with $C \in \Rset$, $\alpha \in \Rset_{+}$. Therefore, the gaussian signals are those which minimize the time-bandwidth product according to the Heisenberg-Gabor inequality.\\ \subsection{Example 2} %''''''''''''''''''''' To check the Heisenberg-Gabor inequality numerically, we consider a gaussian signal and calculate its time-bandwidth product (see fig. \ref{Ns2fig2})\,: \begin{verbatim} >> sig=amgauss(256); >> [tm,T]=loctime(sig); >> [fm,B]=locfreq(sig); >> [T,B,T*B] ---> T=32 B=0.0312 T*B=1 \end{verbatim} \begin{figure}[htb] \epsfxsize=10cm \epsfysize=8cm \centerline{\epsfbox{figure/ns2fig2.eps}} \caption{\label{Ns2fig2}gaussian signal : lower bound of the Heisenberg-Gabor inequality} \end{figure} Hence, the time-bandwidth product obtained, when using the file \index{\ttfamily amgauss}{\ttfamily amgauss.m}, is minimum. \section{Instantaneous frequency} %~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ \label{anasig} \index{instantaneous frequency} \index{analytic signal} \index{Hilbert transform} Another way to describe a signal simultaneously in time and in frequency is to consider its {\it instantaneous frequency}. In order to introduce such a function, we must define first the concept of {\it analytic signal}. For any real valued signal $x(t)$, we associate a complex valued signal $x_a(t)$ defined as \[x_a(t) = x(t) + j HT(x(t))\] where $HT(x)$ is the {\it Hilbert transform} of $x$ ($x_a$ can be obtained using the M-file {\ttfamily hilbert.m} of the Signal Processing Toolbox). $x_a(t)$ is called the analytic signal associated to $x(t)$. This definition has a simple interpretation in the frequency domain since $X_a$ is a single-sided Fourier transform where the negative frequency values have been removed, the strictly positive ones have been doubled, and the DC component is kept unchanged : \begin{eqnarray*} X_a(\nu) = 0 \ \ \ \ \ \ &\mbox{if}& \nu < 0 \\ X_a(\nu) = X(0)\ \ &\mbox{if}& \nu = 0 \\ X_a(\nu) = 2X(\nu) &\mbox{if}& \nu > 0 \end{eqnarray*} ($X$ is the Fourier transform of $x$, and $X_a$ the Fourier transform of $x_a$). Thus, the analytic signal can be obtained from the real signal by forcing to zero its spectrum for the negative frequencies, which do not alter the information content since for a real signal, $X(-\nu)=X^*(\nu)$. \index{instantaneous amplitude} From this signal, it is then possible to define in a unique way the concepts of {\it instantaneous amplitude} and {\it instantaneous frequency} by : \begin{eqnarray*} a(t) &=& |x_a(t)| \ \ \ \ \ \ \ \ \ \ \ \mbox{\it instantaneous amplitude} \\ f(t) &=& \frac{1}{2\pi} \frac{d\arg{x_a(t)}}{dt}\ \mbox{\it instantaneous frequency} \end{eqnarray*} An estimation of the instantaneous frequency is given by the M-file \index{\ttfamily instfreq}{\ttfamily instfreq.m} of the Time-Frequency toolbox :\\ {\bf Example} (see fig. \ref{Ns3fig1}) \begin{verbatim} >> sig=fmlin(256); t=(3:256); >> ifr=instfreq(sig); plotifl(t,ifr); \end{verbatim} \begin{figure}[htb] \epsfxsize=10cm \epsfysize=6cm \centerline{\epsfbox{figure/ns3fig1.eps}} \caption{\label{Ns3fig1}Estimation of the instantaneous frequency of a linear chirp} \end{figure} As we can see from this plot, the instantaneous frequency shows with success the evolution with time of the frequency content of this signal. \section{Group delay} %~~~~~~~~~~~~~~~~~~~~ \index{group delay} The instantaneous frequency characterizes a local frequency behavior as a function of time. In a dual way, the local time behavior as a function of frequency is described by the {\it group delay} : \[t_x(\nu) = -\frac{1}{2\pi} \frac{d\arg{X_a(\nu)}}{d \nu}.\] This quantity measures the average time arrival of the frequency $\nu$. The M-file \index{\ttfamily sgrpdlay}{\ttfamily sgrpdlay.m} of the Time-Frequency Toolbox gives an estimation of the group delay of a signal (do not mistake it for the file {\ttfamily grpdelay.m} of the signal processing toolbox which gives the group delay of a digital filter). For example, with signal {\ttfamily sig} of the previous example, we obtain (see fig. \ref{Ns4fig1})\,: \begin{verbatim} >> sig=fmlin(256); fnorm=0:.05:.5; >> gd=sgrpdlay(sig,fnorm); plot(gd,fnorm); \end{verbatim} \begin{figure}[htb] \epsfxsize=10cm \epsfysize=6cm \centerline{\epsfbox{figure/ns4fig1.eps}} \caption{\label{Ns4fig1}Estimation of the group delay of the previous chirp} \end{figure} Be careful of the fact that in general, instantaneous frequency and group delay define two different curves in the time-frequency plane. They are approximatively identical only when the time-bandwidth product $T\times B$ is large. To illustrate this point, let us consider a simple example. We calculate the instantaneous frequency and group delay of two signals, the first one having a large $T\times B$ product, and the second one a small $T\times B$ product (see fig. \ref{Ns4fig2})\,: \begin{verbatim} >> t=2:255; >> sig1=amgauss(256,128,90).*fmlin(256,0,0.5); >> [tm,T1]=loctime(sig1); [fm,B1]=locfreq(sig1); >> T1*B1 ---> T1*B1=15.9138 >> ifr1=instfreq(sig1,t); f1=linspace(0,0.5-1/256,256); >> gd1=sgrpdlay(sig1,f1); plot(t,ifr1,'*',gd1,f1,'-') >> sig2=amgauss(256,128,30).*fmlin(256,0.2,0.4); >> [tm,T2]=loctime(sig2); [fm,B2]=locfreq(sig2); >> T2*B2 ---> T2*B2=1.224 >> ifr2=instfreq(sig2,t); f2=linspace(0.2,0.4,256); >> gd2=sgrpdlay(sig2,f2); plot(t,ifr2,'*',gd2,f2,'-') \end{verbatim} \begin{figure}[htb] \epsfxsize=10cm \epsfysize=8cm \centerline{\epsfbox{figure/ns4fig2.eps}} \caption{\label{Ns4fig2}Estimation of the instantaneous frequency (stars) and group delay (line) of two different chirps with different amplitude modulations. The first plot corresponds to a large $T\times B$ product while the second corresponds to a small one} \end{figure} On the first plot, the two curves are almost superimposed (i.e. the instantaneous frequency is the inverse transform of the group delay), whereas on the second plot, the two curves are clearly different. \section{About stationarity} %~~~~~~~~~~~~~~~~~~~~~~~~~~~ \index{stationarity} Before talking about non-stationarity, which is a 'non-property', we must define what we call {\it stationarity}. A deterministic signal is said to be {\it stationary} if it can be written as a discrete sum of sinusoids : \begin{eqnarray*} x(t)&=&\sum_{k \in \Nset} A_k \cos{[2\pi \nu_k t + \Phi_k]} \ \ \ \ \mbox{ for a real signal} \\ x(t)&=&\sum_{k \in \Nset} A_k \exp{[j(2\pi \nu_k t + \Phi_k)]} \mbox{for a complex signal} \end{eqnarray*} i.e. as a sum of elements which have constant instantaneous amplitude and instantaneous frequency. In the random case, a signal $x(t)$ is said to be {\it wide-sense stationary} (or stationary up to the second order) if its expectation is independent of time and its autocorrelation function $E[x(t_1)x^*(t_2)]$ depends only on the time difference $t_2-t_1$. We can then show that the associated analytic signal has constant instantaneous amplitude and frequency expectations, which can be connected to the deterministic case. \index{non-stationarity} So a signal is said to be {\it non-stationary} if one of these fundamental assumptions is no longer valid. For example, a finite duration signal, and in particular a {\it transient signal} (for which the length is short compared to the observation duration), is non-stationary. \section{How to synthesize a mono-component non-stationary signal} %~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ One part of the Time-Frequency Toolbox is dedicated to the generation of non-stationary signals. In that part, three groups of M-files are available\,: \begin{enumerate} \item The first one allows to synthesize different amplitude modulations. These M-files begin with the prefix '{\ttfamily am}'. For example, {\ttfamily amrect.m} computes a rectangular amplitude modulation, {\ttfamily amgauss.m} a gaussian amplitude modulation \ldots \item The second one proposes different frequency modulations. These M-files begin with '{\ttfamily fm}'. For example, {\ttfamily fmconst.m} is a constant frequency modulation, {\ttfamily fmhyp.m} a hyperbolic frequency modulation \ldots \item The third one is a set of pre-defined signals. Some of them begin with '{\ttfamily ana}' because these signals are analytic (for example {\ttfamily anastep, anabpsk, anasing} \ldots), other have special names ({\ttfamily doppler, atoms} \ldots). \end{enumerate} The first two groups of files can be combined to produce a large class of non-stationary signals, multiplying an amplitude modulation and a frequency modulation.\\ {\bf Examples} We can multiply the linear frequency modulation of Example 1 (see page \pageref{ex1}) by a gaussian amplitude modulation (see fig. \ref{Ns6fig1})\,: \begin{verbatim} >> fm1=fmlin(256,0,0.5); >> am1=amgauss(256); >> sig1=am1.*fm1; plot(real(sig1)); \end{verbatim} \begin{figure}[htb] \epsfxsize=10cm \epsfysize=6cm \centerline{\epsfbox{figure/ns6fig1.eps}} \caption{\label{Ns6fig1}Mono-component non-stationary signal with a linear frequency modulation and a gaussian amplitude modulation} \end{figure} By default, the signal is centered on the middle (256/2=128), and its spread is $T=32$. If you want to center it at an other position {\ttfamily t0}, just replace {\ttfamily am1} by {\ttfamily amgauss(256,t0)}. A second example can be to multiply a pure frequency (constant frequency modulation) by a one-sided exponential window starting at {\ttfamily t=100} (see fig. \ref{Ns6fig2})\,: \begin{verbatim} >> fm2=fmconst(256,0.2); >> am2=amexpo1s(256,100); >> sig2=am2.*fm2; plot(real(sig2)); \end{verbatim} \begin{figure}[htb] \epsfxsize=10cm \epsfysize=6cm \centerline{\epsfbox{figure/ns6fig2.eps}} \caption{\label{Ns6fig2}Mono-component non-stationary signal with a constant frequency modulation and a one-sided exponential amplitude modulation} \end{figure} As a third example of mono-component non-stationary signal, we can consider the M-file \index{\ttfamily doppler}{\ttfamily doppler.m} : this function generates a modelization of the signal received by a fixed observer from a moving target emitting a pure frequency (see fig. \ref{Ns6fig3}). \begin{verbatim} >> [fm3,am3]=doppler(256,200,4000/60,10,50); >> sig3=am3.*fm3; plot(real(sig3)); \end{verbatim} \begin{figure}[htb] \epsfxsize=10cm \epsfysize=6cm \centerline{\epsfbox{figure/ns6fig3.eps}} \caption{\label{Ns6fig3}Doppler signal} \end{figure} This example corresponds to a target (a car for instance) moving straightly at the speed of 50\,m/s, and passing at 10\,m from the observer (the radar\,!). The rotating frequency of the engine is 4000\,revolutions per minute, and the sampling frequency of the radar is 200\,Hz.\\ In order to have a more realistic modelization of physical signals, we may need to add some complex noise on these signals. To do so, two M-files \index{\ttfamily noisecg}({\ttfamily noisecg} an \index{\ttfamily noisecu}{\ttfamily noisecu}) of the Time-Frequency Toolbox are proposed : {\ttfamily noisecg.m} generates a complex white or colored gaussian noise, and {\ttfamily noisecu.m}, a complex white uniform noise. For example, if we add complex colored gaussian noise on the signal {\ttfamily sig1} with a signal to noise ratio of -10\,dB (see fig. \ref{Ns6fig4}) \begin{verbatim} >> noise=noisecg(256,.8); >> sign=sigmerge(sig1,noise,-10); plot(real(sign)); \end{verbatim} \begin{figure}[htb] \epsfxsize=10cm \epsfysize=6cm \centerline{\epsfbox{figure/ns6fig4.eps}} \caption{\label{Ns6fig4}Gaussian transient signal ({\ttfamily sig1}) embedded in a -10\,dB colored gaussian noise} \end{figure} the deterministic signal {\ttfamily sig1} is now almost imperceptible from the noise. \section{What about multi-component non-stationary signals ?} %~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ The notion of instantaneous frequency implicitly assumes that, at each time instant, there exists only a single frequency component. A dual restriction applies to the group delay : the implicit assumption is that a given frequency is concentrated around a single time instant. Thus, if these assumptions are no longer valid, which is the case for most of the multi-component signals, the result obtained using the instantaneous frequency or the group delay is meaningless.\\ {\bf Example} For example, let us consider the superposition of two linear frequency modulations : \begin{verbatim} >> N=128; x1=fmlin(N,0,0.2); x2=fmlin(N,0.3,0.5); >> x=x1+x2; \end{verbatim} At each time instant $t$, an ideal time-frequency representation should represent two different frequencies with the same amplitude. The results obtained using the instantaneous frequency and the group delay are of course completely different, and therefore irrelevant (see fig. \ref{Ns7fig1})\,: \begin{verbatim} >> ifr=instfreq(x); subplot(211); plot(ifr); >> fn=0:0.01:0.5; gd=sgrpdlay(x,fn); >> subplot(212); plot(gd,fn); \end{verbatim} \begin{figure}[htb] \epsfxsize=10cm \epsfysize=6cm \centerline{\epsfbox{figure/ns7fig1.eps}} \caption{\label{Ns7fig1}Estimation of the instantaneous frequency (first plot) and group-delay (second plot) of a multi-component signal} \end{figure} So these one-dimensional representations, instantaneous frequency and group delay, are not sufficient to represent all the non-stationary signals. A further step has to be made towards two-dimensional mixed representations, jointly in time and in frequency. Even if no gain of information can be expected since it is all contained in the time or in the frequency representation, we can obtain a better structuring of this information, and an improvement in the intelligibility of the representation. To have an idea of what can be made with a time-frequency decomposition, let us anticipate the following and have a look at the result obtained on this signal with the Short Time Fourier Transform (see fig. \ref{Ns7fig2})\,: \begin{verbatim} >> tfrstft(x); \end{verbatim} \begin{figure}[htb] \epsfxsize=10cm \epsfysize=8cm \centerline{\epsfbox{figure/ns7fig2.eps}} \caption{\label{Ns7fig2}Squared modulus of the short-time Fourier transform of the previous multi-component non-stationary signal} \end{figure} Here two ``time-frequency components'' can be clearly seen, located around the locus of the two frequency modulations.
import Lean.Elab.Tactic set_option autoImplicit false noncomputable section Theory -- :) open Classical def Set (α : Type _) : Type _ := α → Prop def Set.range' (n : Nat) : Set Nat := fun i => i ≤ n def Nat.divides (a b : Nat) : Prop := ∃ k, a * k = b def Nat.prime (n : Nat) : Prop := n ≠ 1 ∧ ∀ a b, n.divides (a * b) → n.divides a ∨ n.divides b def List.noDups {α : Type _} : List α → Prop | [] => True | (x :: xs) => x ∉ xs ∧ xs.noDups def List.toSet {α : Type _} (l : List α) : Set α := fun x => x ∈ l def List.sum : List Nat → Nat | [] => 0 | (x :: xs) => x + xs.sum def Set.finsum {α : Type _} (s : Set α) (f : α → Nat) : Nat := if h : ∃ (l : List α), l.noDups ∧ l.toSet = s then ((choose h).map f).sum else 0 def cite {α : Type _} (p : Prop) (x y : α) : α := if p then x else y @[inherit_doc ite] syntax (name := termCIfThenElse) ppRealGroup(ppRealFill(ppIndent("cif " term " then") ppSpace term) ppDedent(ppSpace) ppRealFill("else " term)) : term macro_rules | `(cif $c then $t else $e) => do let mvar ← Lean.withRef c `(?m) `(let_mvar% ?m := $c; wait_if_type_mvar% ?m; cite $mvar $t $e) def Nat.sumPrimes (n : Nat) : Nat := (Set.range' n).finsum fun i => cif i.prime then i else 0 end Theory section Computation def Req {α : Type _} (x y : α) := x = y def Riff (p : Prop) (q : Bool) := p ↔ (q = true) def Rfun {α α' β β'} (R : α → β → Prop) (R' : α' → β' → Prop) : (α → α') → (β → β') → Prop := fun f g => ∀ ⦃a b⦄, R a b → R' (f a) (g b) infixr:50 " ⇨ " => Rfun def Nat.dividesImpl (a b : Nat) : Bool := if a == 0 then b == 0 else b == a * (b / a) def Nat.primeImpl (n : Nat) : Bool := n > 1 ∧ ! n.any fun i => i > 1 ∧ i.dividesImpl n axiom Nat.primeImplCorrect (n : Nat) : Riff n.prime n.primeImpl axiom RprimeImpl : (Req ⇨ Riff) Nat.prime Nat.primeImpl -- #eval ((List.range 100).filter Nat.primeImpl).length --def Set.range'Impl₂ (n : Nat) : Impl (Set.range' n) (Nat → Bool) := fun i => i ≤ n def RSetAsList {α : Type _} (x : Set α) (y : List α) : Prop := y.noDups ∧ y.toSet = x def RSetAsFunBool {α : Type _} (x : Set α) (y : α → Bool) := ∀ a, x a ↔ y a def Rdepfun {α β : Type _} {α' : α → Type _} {β' : β → Type _} (R : α → β → Prop) (R' : (a : α) → (b : β) → α' a → β' b → Prop) : ((a : α) → α' a) → ((b : β) → β' b) → Prop := fun f g => ∀ ⦃a b⦄, R a b → R' a b (f a) (g b) infixr:50 " ⇨ᵈ " => Rdepfun theorem Rap {α α' β β'} {R : α → β → Prop} {R' : α' → β' → Prop} {f : α → α'} (g : β → β') {x : α} (y : β) : (R ⇨ R') f g → R x y → R' (f x) (g y) := fun h₁ h₂ => h₁ h₂ theorem RAP {Α Α' Β Β'} {r : Α → Β → Prop} {r' : Α' → Β' → Prop} {F : Α → Α'} (G : Β → Β') {X : Α} (Y : Β) : (r ⇨ r') F G → r X Y → r' (F X) (G Y) := fun H₁ H₂ => H₁ H₂ axiom Set.range'Impl₁ (n : Nat) : RSetAsList (Set.range' n) (List.range (n+1)) -- Use this in conjunction with ap rule for ⇒ -- axiom Set.finsumImpl : (RSetAsList ⇒ (Req ⇒ Req) ⇒ Req) (Set.finsum) (λ l g => l.map g |>.sum) -- to derive the following: axiom Set.finsumImpl {α : Type _} (s : Set α) (l : List α) (f : α → Nat) (g : α → Nat) : RSetAsList s l → (∀ j k, Req j k → Req (f j) (g k)) → -- (Req ⇒ Req) f g Req (s.finsum f) (l.map g |>.sum) theorem Set.finsumImpl₀ {α : Type _} : (RSetAsList ⇨ (Req ⇨ Req) ⇨ Req) (@Set.finsum (α := α)) (λ l g => l.map g |>.sum) := by intro s s' hs f f' hf apply Set.finsumImpl <;> assumption theorem if_classical {p : Prop} {hp : Decidable p} [hp' : Decidable p] {α : Type _} (x y : α) : @ite α p hp x y = @ite α p hp' x y := by have : hp = hp' := Subsingleton.elim _ _ rw [this] axiom if_classical' {p : Prop} (p' : Prop) {hp : Decidable p} (hp' : Decidable p') {α : Type _} (x y : α) : (p ↔ p') → Req (if p then x else y) (if p' then x else y) -- TODO: Generalize x, y to x', y' on RHS -- axiom _ : (Riff ⇒ Req ⇒ Req ⇒ Req) ite (λ p' x y, if p' then x else y) -- axiom _ {R} : (Riff ⇒ R ⇒ R ⇒ R) ite (λ p' x y, if p' then x else y) axiom if_classical'' {p : Prop} (p' : Bool) {hp : Decidable p} {α : Type _} (x y : α) : Riff p p' → Req (if p then x else y) (if p' then x else y) def id2 {α β} : (α → β) → α → β := id def Rtriv (α β : Type _) (x : α) (y : β) : Prop := True axiom Rcite {α β} {R : α → β → Prop} : (Riff ⇨ R ⇨ R ⇨ R) cite cond def BLAH {α β} (f : (α → β) → Sort _) (x : α → β) : f (λ i => x i) → f x := id def BLAH2 {α β} (f : β → Sort _) (y : α → β) (z : α) : f (y z) → f (y z) := id def CHANGE (α) : α → α := id --axiom if_classical₀ {α β} {R : α → β → Prop} : -- (Riff ⇨ R ⇨ R ⇨ R) (open Classical in fun p x y => if p then x else y) (fun b x y => if b then x else y) #print if_classical'' def Req.result {α : Type _} {x y : α} (_ : Req x y) : α := y section open Lean.Meta Lean.Elab.Tactic elab "assign " n:term " => " e:term : tactic => Lean.Elab.Tactic.withMainContext do match (← elabTerm n none) with | .mvar m => m.withContext do m.assign (← elabTerm e none) return () | _ => return () end def Nat.sumPrimesImpl₁ (n : Nat) : Nat := by have : Req (Nat.sumPrimes n) ?y1 := by unfold Nat.sumPrimes -- TODO: megahack. -- Version that worked: explicitly write the correct formula in place of ?RESULT. -- Versions that didn't work: all others. refine' Rap (R := Req ⇨ Req) ?fx (?RESULT) ?rfx ?ry case rfx => refine' Rap (R := RSetAsList) ?_ ?_ ?rf ?rx case rf => refine' Set.finsumImpl₀ case rx => refine' Set.range'Impl₁ _ case ry => -- refine_to_fun RESULT -- assign ?RESULT => (fun j => (?RESULT' : ?_ → ?_) ?_) let M1 : Nat → Nat → Nat := fun j => cond (primeImpl j) j let M2 : Nat → Nat := fun j => j intro j j' hj dsimp only refine CHANGE (Req (cite (prime j) j 0) (M1 j' (M2 j'))) ?_ set_option pp.all true in refine' Rap (R := Req) (R' := Req) _ _ ?rg ?rz₁ case rg => refine' Rap (R := Req) (R' := Req ⇨ Req) ?g₁ ?z₂ ?rg₁ ?rz₂ case rg₁ => refine' Rap ?_ ?_ ?rg₂ ?rz₃ case rg₂ => exact Rcite case rz₃ => refine' RprimeImpl ?_ assumption case rz₂ => assumption case rz₁ => rfl -- refine Set.finsumImpl _ ?_ _ ?_ ?rs ?rf -- case rs => -- refine Set.range'Impl₁ _ -- case rf => -- intro j k h -- subst h -- refine if_classical'' ?_ _ _ ?rp -- case rp => -- refine (Nat.primeImplCorrect j) exact ?y1 -- -- exact this.result #eval Nat.sumPrimesImpl₁ 5 #print Nat.sumPrimesImpl₁ #exit def Nat.sumPrimesImpl' (n : Nat) : Nat := by have : Req (Nat.sumPrimes n) ?y := by unfold sumPrimes refine Set.finsumImpl _ ?_ _ ?_ ?rs ?rf case rs => refine Set.range'Impl₁ _ case rf => intro j k h subst h refine if_classical'' ?_ _ _ ?rp case rp => refine (Nat.primeImplCorrect j) exact ?y -- exact this.result #print Nat.sumPrimesImpl' #eval Nat.sumPrimesImpl' 5000 def Nat.sumPrimesImpl'' (n : Nat) : { y : Nat // Req (n.sumPrimes) y } := by refine ⟨?_, ?r⟩ case r => unfold sumPrimes refine Set.finsumImpl _ ?_ _ ?_ ?rs ?rf case rs => refine Set.range'Impl₁ _ case rf => intro j k h subst h refine if_classical'' ?_ _ _ ?rp case rp => refine (Nat.primeImplCorrect j) abbrev Impl {α : Type _} (_a : α) : Type _ := α def Impl.done {α : Type _} (a : α) : Impl a := a def Nat.sumPrimesFun (n : Nat) : Nat := by have t : Impl (Nat.sumPrimesImpl'' n).val := by dsimp only [Nat.sumPrimesImpl''] apply Impl.done exact t def Nat.sumPrimesFun' (n : Nat) : Nat := by have : (Nat.sumPrimesImpl'' n).val = ?y := by dsimp only [Nat.sumPrimesImpl''] exact rfl clear this exact ?y theorem works (n : Nat) : Req n.sumPrimes n.sumPrimesFun' := (Nat.sumPrimesImpl'' n).property #print Nat.sumPrimesFun' #eval Nat.sumPrimesFun 500 end Computation
!! !! A _BoxArray_ is an array of boxes. !! module boxarray_module use bl_types use box_module use list_box_module implicit none type boxarray private integer :: dim = 0 integer :: nboxes = 0 type(box), pointer :: bxs(:) => Null() end type boxarray interface dataptr module procedure boxarray_dataptr end interface interface get_dim module procedure boxarray_dim end interface interface built_q module procedure boxarray_built_q end interface interface copy module procedure boxarray_build_copy end interface interface build module procedure boxarray_build_v module procedure boxarray_build_l module procedure boxarray_build_bx end interface interface destroy module procedure boxarray_destroy end interface interface nboxes module procedure boxarray_nboxes end interface interface volume module procedure boxarray_volume end interface interface get_box module procedure boxarray_get_box end interface interface boxarray_maxsize module procedure boxarray_maxsize_i module procedure boxarray_maxsize_v end interface interface boxarray_grow module procedure boxarray_grow_n end interface interface bbox module procedure boxarray_bbox end interface private :: boxarray_maxsize_l contains function boxarray_dataptr(ba) result(r) type(boxarray), intent(in) :: ba type(box), pointer :: r(:) r => ba%bxs end function boxarray_dataptr pure function boxarray_built_q(ba) result(r) logical :: r type(boxarray), intent(in) :: ba r = ba%dim /= 0 end function boxarray_built_q pure function boxarray_dim(ba) result(r) type(boxarray), intent(in) :: ba integer :: r r = ba%dim end function boxarray_dim pure function boxarray_get_box(ba, i) result(r) type(boxarray), intent(in) :: ba integer, intent(in) :: i type(box) :: r r = ba%bxs(i) end function boxarray_get_box ! kepp subroutine boxarray_build_copy(ba, ba1) use bl_error_module type(boxarray), intent(inout) :: ba type(boxarray), intent(in) :: ba1 if ( built_q(ba) ) call bl_error("BOXARRAY_BUILD_COPY: already built") if ( .not. built_q(ba1) ) return ba%nboxes = size(ba1%bxs) allocate(ba%bxs(size(ba1%bxs))) ba%bxs = ba1%bxs ba%dim = ba1%dim call boxarray_verify_dim(ba) end subroutine boxarray_build_copy subroutine boxarray_build_v(ba, bxs, sort) use bl_error_module type(boxarray), intent(inout) :: ba type(box), intent(in), dimension(:) :: bxs logical, intent(in), optional :: sort logical :: lsort lsort = .false. ; if (present(sort)) lsort = sort if ( built_q(ba) ) call bl_error("BOXARRAY_BUILD_V: already built") ba%nboxes = size(bxs) allocate(ba%bxs(size(bxs))) ba%bxs = bxs if ( ba%nboxes > 0 ) then ba%dim = ba%bxs(1)%dim end if call boxarray_verify_dim(ba) if (lsort) call boxarray_sort(ba) !! make sure all grids are sorted end subroutine boxarray_build_v subroutine boxarray_build_bx(ba, bx) use bl_error_module type(boxarray), intent(inout) :: ba type(box), intent(in) :: bx if ( built_q(ba) ) call bl_error("BOXARRAY_BUILD_BX: already built") ba%nboxes = 1 allocate(ba%bxs(1)) ba%bxs(1) = bx ba%dim = bx%dim call boxarray_verify_dim(ba) end subroutine boxarray_build_bx subroutine boxarray_build_l(ba, bl, sort) use bl_error_module type(boxarray), intent(inout) :: ba type(list_box), intent(in) :: bl logical, intent(in), optional :: sort type(list_box_node), pointer :: bln logical :: lsort integer :: i ! ! Default is to sort. ! lsort = .true. ; if ( present(sort) ) lsort = sort if ( built_q(ba) ) call bl_error("BOXARRAY_BUILD_L: already built") ba%nboxes = size(bl) allocate(ba%bxs(ba%nboxes)) bln => begin(bl) i = 1 do while (associated(bln)) ba%bxs(i) = value(bln) i = i + 1 bln=>next(bln) end do if ( ba%nboxes > 0 ) then ba%dim = ba%bxs(1)%dim end if call boxarray_verify_dim(ba) if ( lsort ) call boxarray_sort(ba) end subroutine boxarray_build_l subroutine boxarray_destroy(ba) type(boxarray), intent(inout) :: ba if ( associated(ba%bxs) ) then deallocate(ba%bxs) ba%bxs => Null() end if ba%dim = 0 ba%nboxes = 0 end subroutine boxarray_destroy subroutine boxarray_sort(ba) use sort_box_module type(boxarray), intent(inout) :: ba call box_sort(ba%bxs) end subroutine boxarray_sort subroutine boxarray_verify_dim(ba, stat) use bl_error_module type(boxarray), intent(in) :: ba integer, intent(out), optional :: stat integer :: i, dm if ( present(stat) ) stat = 0 if ( ba%nboxes < 1 ) return dm = ba%dim if ( dm == 0 ) then dm = ba%bxs(1)%dim end if if ( dm == 0 ) then call bl_error("BOXARRAY_VERIFY_DIM: dim is zero!") end if do i = 1, ba%nboxes if ( ba%dim /= ba%bxs(i)%dim ) then if ( present(stat) ) then stat = 1 return else call bl_error("BOXARRAY_VERIFY_DIM: " // & "ba%dim not equal to some boxes dim: ", ba%dim) end if end if end do end subroutine boxarray_verify_dim subroutine boxarray_grow_n(ba, n) type(boxarray), intent(inout) :: ba integer, intent(in) :: n integer :: i do i = 1, ba%nboxes ba%bxs(i) = grow(ba%bxs(i), n) end do end subroutine boxarray_grow_n subroutine boxarray_nodalize(ba, nodal) type(boxarray), intent(inout) :: ba logical, intent(in), optional :: nodal(:) integer :: i do i = 1, ba%nboxes ba%bxs(i) = box_nodalize(ba%bxs(i), nodal) end do end subroutine boxarray_nodalize subroutine boxarray_box_boundary_n(bao, bx, n) type(boxarray), intent(out) :: bao type(box), intent(in) :: bx integer, intent(in) :: n type(boxarray) :: baa call boxarray_build_bx(baa, bx) call boxarray_boundary_n(bao, baa, n) call boxarray_destroy(baa) end subroutine boxarray_box_boundary_n subroutine boxarray_boundary_n(bao, ba, n) type(boxarray), intent(out) :: bao type(boxarray), intent(in) :: ba integer, intent(in) :: n call boxarray_build_copy(bao, ba) call boxarray_grow(bao, n) call boxarray_diff(bao, ba) end subroutine boxarray_boundary_n pure function boxarray_nboxes(ba) result(r) type(boxarray), intent(in) :: ba integer :: r r = ba%nboxes end function boxarray_nboxes function boxarray_volume(ba) result(r) type(boxarray), intent(in) :: ba integer(kind=ll_t) :: r integer :: i r = 0_ll_t do i = 1, ba%nboxes r = r + box_volume(ba%bxs(i)) end do end function boxarray_volume pure function boxarray_bbox(ba) result(r) type(boxarray), intent(in) :: ba type(box) :: r integer :: i r = nobox(ba%dim) do i = 1, ba%nboxes r = bbox(r, ba%bxs(i)) end do end function boxarray_bbox subroutine boxarray_diff(bao, ba) type(boxarray), intent(inout) :: bao type(boxarray), intent(in) :: ba type(list_box) :: bl, bl1, bl2 integer :: i call build(bl1, ba%bxs) do i = 1, bao%nboxes bl2 = boxlist_boxlist_diff(bao%bxs(i), bl1) call splice(bl, bl2) end do call boxarray_destroy(bao) call boxarray_build_l(bao, bl) call destroy(bl) call destroy(bl1) end subroutine boxarray_diff subroutine boxarray_maxsize_i(bxa, chunk) type(boxarray), intent(inout) :: bxa integer, intent(in) :: chunk integer :: vchunk(bxa%dim) vchunk = chunk call boxarray_maxsize_v(bxa, vchunk) end subroutine boxarray_maxsize_i subroutine boxarray_maxsize_v(bxa, chunk) type(boxarray), intent(inout) :: bxa integer, intent(in), dimension(:) :: chunk type(list_box) :: bl bl = boxarray_maxsize_l(bxa, chunk) call boxarray_destroy(bxa) call boxarray_build_l(bxa, bl) call destroy(bl) end subroutine boxarray_maxsize_v function boxarray_maxsize_l(bxa, chunk) result(r) type(list_box) :: r type(boxarray), intent(in) :: bxa integer, intent(in), dimension(:) :: chunk integer :: i,k type(list_box_node), pointer :: li integer :: len(bxa%dim) integer :: nl, bs, rt, nblk, sz, ex, ks, ps type(box) :: bxr, bxl do i = 1, bxa%nboxes call push_back(r, bxa%bxs(i)) end do li => begin(r) do while ( associated(li) ) len = extent(value(li)) do i = 1, bxa%dim if ( len(i) > chunk(i) ) then rt = 1 bs = chunk(i) nl = len(i) do while ( mod(bs,2) == 0 .AND. mod(nl,2) == 0) rt = rt * 2 bs = bs/2 nl = nl/2 end do nblk = nl/bs if ( mod(nl,bs) /= 0 ) nblk = nblk + 1 sz = nl/nblk ex = mod(nl,nblk) do k = 0, nblk-2 if ( k < ex ) then ks = (sz+1)*rt else ks = sz*rt end if ps = upb(value(li), i) - ks + 1 call box_chop(value(li), bxr, bxl, i, ps) call set(li, bxr) call push_back(r, bxl) end do end if end do li => next(li) end do end function boxarray_maxsize_l end module boxarray_module
/* * JSONConverterInterpreter_impl.hpp * * * @date 20-10-2018 * @author Teddy DIDE * @version 1.00 */ #include <boost/algorithm/string/replace.hpp> #include "String.hpp" #include "Array.hpp" #include "Structure.hpp" #include "Numeric.hpp" #define A(str) encode<EncodingT,ansi>(str) #define C(str) encode<ansi,EncodingT>(str) NAMESPACE_BEGIN(interp) template <class EncodingT> typename EncodingT::string_t JSONConverterInterpreter<EncodingT>::escapeChar(const typename EncodingT::string_t& str) { typename EncodingT::string_t res = str; boost::algorithm::replace_all(res, "\\", "\\\\"); boost::algorithm::replace_all(res, "\"", "\\\""); boost::algorithm::replace_all(res, "\r", "\\r"); boost::algorithm::replace_all(res, "\n", "\\n"); boost::algorithm::replace_all(res, "\t", "\\t"); return res; } template <class EncodingT> typename EncodingT::string_t JSONConverterInterpreter<EncodingT>::unEscapeChar(const typename EncodingT::string_t& str) { typename EncodingT::string_t res = str; boost::algorithm::replace_all(res, "\\\"", "\""); boost::algorithm::replace_all(res, "\\r", "\r"); boost::algorithm::replace_all(res, "\\n", "\n"); boost::algorithm::replace_all(res, "\\t", "\t"); boost::algorithm::replace_all(res, "\\\\", "\\"); return res; } template <class EncodingT> typename EncodingT::string_t JSONConverterInterpreter<EncodingT>::shrinkText(const typename EncodingT::string_t& str) { size_t i = 0, j = str.size() - 1; while (i <= j && (str[i] == ' ' || str[i] == '\t' || str[i] == '\r' || str[i] == '\n')) ++i; while (j > i && (str[j] == ' ' || str[j] == '\t' || str[j] == '\r' || str[j] == '\n')) --j; typename EncodingT::string_t res; if (i < j) { res = str.substr(i, (j + 1) - i); } return res; } template <class EncodingT> size_t JSONConverterInterpreter<EncodingT>::findChar(const typename EncodingT::string_t& str, const typename EncodingT::char_t& ch, size_t start) { bool inString = false; bool escaping = false; size_t inArray = 0U; size_t inStructure = 0U; size_t res = start; while ((res < str.size()) && (inString || (inArray > 0U) || (inStructure > 0U) || (str[res] != ch))) { inString = (inString != ((str[res] == '"') && !escaping)); escaping = (str[res] == '\\') && !escaping; if (!inString && (str[res] == '[')) { ++inArray; } else if (!inString && (str[res] == ']')) { --inArray; } else if (!inString && (str[res] == '{')) { ++inStructure; } else if (!inString && (str[res] == '}')) { --inStructure; } ++res; } return res; } template <class EncodingT> typename EncodingT::string_t JSONConverterInterpreter<EncodingT>::toNativeText(const boost::shared_ptr< Base<EncodingT> >& object) { typename EncodingT::string_t result; boost::shared_ptr< Numeric<EncodingT> > num; boost::shared_ptr< String<EncodingT> > str; boost::shared_ptr< Array<EncodingT> > arr; boost::shared_ptr< Structure<EncodingT> > st; if ((num = dynamic_pointer_cast< Numeric<EncodingT> >(object)) != nullptr) { result = num->toString(); } else if ((str = dynamic_pointer_cast< String<EncodingT> >(object)) != nullptr) { result = UCS("\"") + escapeChar(str->value()) + UCS("\""); } else if ((arr = dynamic_pointer_cast< Array<EncodingT> >(object)) != nullptr) { size_t lg = arr->length(); result = UCS("["); for (size_t i = 0; i < lg; ++i) { result += toNativeText(arr->valueAt(i)); if (i != lg-1) { result += UCS(","); } } result += UCS("]"); } else if ((st = dynamic_pointer_cast< Structure<EncodingT> >(object)) != nullptr) { size_t lg = st->getFieldsCount(); result = UCS("{"); for (size_t i = 0; i < lg; ++i) { auto pairIterator = st->getField(i); result += UCS("\"") + pairIterator->first + UCS("\":") + toNativeText(pairIterator->second); if (i != lg-1) { result += UCS(","); } } result += UCS("}"); } else { Category * logger = &Category::getInstance(LOGNAME); logger->errorStream() << "Numeric, String, Array or Structure expected, got " << A(object->getClassName()); } return result; } template <class EncodingT> boost::shared_ptr< Base<EncodingT> > JSONConverterInterpreter<EncodingT>::fromNativeText(const typename EncodingT::string_t& nativeText) { boost::shared_ptr< Base<EncodingT> > obj(new Base<EncodingT>()); long long llvalue; double dvalue; if ((nativeText.size() >= 2U) && (nativeText.front() == '{') && (nativeText.back() == '}')) { Structure<EncodingT>* st = new Structure<EncodingT>(); typename EncodingT::string_t content = shrinkText(nativeText.substr(1U, nativeText.size() - 2U)); if (!content.empty()) { size_t parsed = 0U; while (parsed < content.size()) { size_t i = findChar(content, ':', parsed); if (i < content.size()) { size_t j = findChar(content, ',', i); typename EncodingT::string_t fieldstr = shrinkText(content.substr(parsed, i - parsed)); if (fieldstr.size() >= 2U) { typename EncodingT::string_t fieldName = fieldstr.substr(1U, fieldstr.size() - 2U); boost::shared_ptr< Base<EncodingT> > fieldValue = fromNativeText(content.substr(i + 1U, j - (i + 1U))); st->insertField(fieldName, fieldValue); } else { parsed = i; Category * logger = &Category::getInstance(LOGNAME); logger->errorStream() << "Unrecognized JSON text : " << A(fieldstr); } if (j < content.size()) { parsed = j + 1U; } else { parsed = j; } } else { parsed = i; Category * logger = &Category::getInstance(LOGNAME); logger->errorStream() << "Unrecognized JSON text : " << A(content); } } } obj.reset(st); } else if ((nativeText.size() >= 2U) && (nativeText.front() == '[') && (nativeText.back() == ']')) { Array<EncodingT>* arr = new Array<EncodingT>(); typename EncodingT::string_t content = shrinkText(nativeText.substr(1U, nativeText.size()-2U)); if (!content.empty()) { size_t parsed = 0U; while (parsed < content.size()) { size_t i = findChar(content, ',', parsed); boost::shared_ptr< Base<EncodingT> > fieldValue = fromNativeText(content.substr(parsed, i - parsed)); arr->addValue(fieldValue); if (i < content.size()) { parsed = i + 1U; } else { parsed = i; } } } obj.reset(arr); } else if ((nativeText.size() >= 2U) && (nativeText.front() == '"') && (nativeText.back() == '"')) { obj.reset(new String<EncodingT>(unEscapeChar(nativeText.substr(1U, nativeText.size()-2U)))); } else if (Convert<long long>::try_parse(nativeText, llvalue)) { obj.reset(new Numeric<EncodingT>(llvalue)); } else if (Convert<double>::try_parse(nativeText, dvalue)) { obj.reset(new Numeric<EncodingT>(dvalue)); } else { Category * logger = &Category::getInstance(LOGNAME); logger->errorStream() << "Unrecognized JSON text : " << A(nativeText); } return obj; } template <class EncodingT> JSONConverterInterpreter<EncodingT>::JSONConverterInterpreter() { } template <class EncodingT> typename EncodingT::string_t JSONConverterInterpreter<EncodingT>::toString() const { return EncodingT::EMPTY; } template <class EncodingT> boost::shared_ptr< Base<EncodingT> > JSONConverterInterpreter<EncodingT>::clone() const { return boost::shared_ptr< Base<EncodingT> >(new JSONConverterInterpreter<EncodingT>()); } template <class EncodingT> typename EncodingT::string_t JSONConverterInterpreter<EncodingT>::getClassName() const { return UCS("JSONConverter"); } template <class EncodingT> boost::shared_ptr< Base<EncodingT> > JSONConverterInterpreter<EncodingT>::invoke(const typename EncodingT::string_t& method, std::vector< boost::shared_ptr< Base<EncodingT> > >& params) { boost::shared_ptr< Base<EncodingT> > obj(new Base<EncodingT>()); ParameterArray args, ret; if (check_parameters_array(params, args)) { if (tryInvoke(this, UCS("JSONConverter"), method, args, ret) || tryInvoke(this, UCS("Base"), method, args, ret)) { find_parameter(ret, FACTORY_RETURN_PARAMETER, obj); for (size_t i = 0; i < params.size(); ++i) { find_parameter(ret, i, params[i]); } } else { Category* logger = &Category::getInstance(LOGNAME); logger->errorStream() << "Unexpected call in JSONConverter, no method \"" << A(method) << "\" exists."; } } return obj; } template <class EncodingT> boost::shared_ptr< Base<EncodingT> > JSONConverterInterpreter<EncodingT>::toText(const boost::shared_ptr< Base<EncodingT> >& object) const { return boost::make_shared< String<EncodingT> >(toNativeText(object)); } template <class EncodingT> boost::shared_ptr< Base<EncodingT> > JSONConverterInterpreter<EncodingT>::fromText(const boost::shared_ptr< Base<EncodingT> >& text) const { boost::shared_ptr< Base<EncodingT> > obj(new Base<EncodingT>()); boost::shared_ptr< String<EncodingT> > str = dynamic_pointer_cast< String<EncodingT> >(text); if (str != nullptr) { typename EncodingT::string_t nativeText = shrinkText(str->value()); obj = fromNativeText(nativeText); } else { Category * logger = &Category::getInstance(LOGNAME); logger->errorStream() << "String expected, got " << A(text->getClassName()); } return obj; } NAMESPACE_END #undef A #undef C
[STATEMENT] lemma emp_UNpart01: assumes "\<And> n. n < length cl \<Longrightarrow> {} \<notin> P n" shows "{} \<notin> UNpart01 cl dl P - {BrnFT cl dl}" [PROOF STATE] proof (prove) goal (1 subgoal): 1. {} \<notin> UNpart01 cl dl P - {BrnFT cl dl} [PROOF STEP] using assms emp_UNpart1 [PROOF STATE] proof (prove) using this: ?n5 < length cl \<Longrightarrow> {} \<notin> P ?n5 (\<And>n. n < length ?cl \<Longrightarrow> {} \<notin> ?P n) \<Longrightarrow> {} \<notin> UNpart1 ?cl ?dl ?P goal (1 subgoal): 1. {} \<notin> UNpart01 cl dl P - {BrnFT cl dl} [PROOF STEP] unfolding UNpart01_def [PROOF STATE] proof (prove) using this: ?n5 < length cl \<Longrightarrow> {} \<notin> P ?n5 (\<And>n. n < length ?cl \<Longrightarrow> {} \<notin> ?P n) \<Longrightarrow> {} \<notin> UNpart1 ?cl ?dl ?P goal (1 subgoal): 1. {} \<notin> {BrnFT cl dl} \<union> UNpart1 cl dl P - {BrnFT cl dl} [PROOF STEP] by auto
[GOAL] ι : Type w R : Type u M : Type v₁ N : Type v₂ P : Type v₃ Q : Type v₄ inst✝¹⁰ : CommSemiring R inst✝⁹ : AddCommMonoid M inst✝⁸ : AddCommMonoid N inst✝⁷ : AddCommMonoid P inst✝⁶ : AddCommMonoid Q inst✝⁵ : Module R M inst✝⁴ : Module R N inst✝³ : Module R P inst✝² : Module R Q inst✝¹ : DecidableEq ι inst✝ : Fintype ι b : Basis ι R M f : Dual R M m : M ⊢ ↑Dual.transpose (↑(dualTensorHom R M M) (f ⊗ₜ[R] m)) = ↑(dualTensorHom R (Dual R M) (Dual R M)) (↑(Dual.eval R M) m ⊗ₜ[R] f) [PROOFSTEP] ext f' m' [GOAL] case h.h ι : Type w R : Type u M : Type v₁ N : Type v₂ P : Type v₃ Q : Type v₄ inst✝¹⁰ : CommSemiring R inst✝⁹ : AddCommMonoid M inst✝⁸ : AddCommMonoid N inst✝⁷ : AddCommMonoid P inst✝⁶ : AddCommMonoid Q inst✝⁵ : Module R M inst✝⁴ : Module R N inst✝³ : Module R P inst✝² : Module R Q inst✝¹ : DecidableEq ι inst✝ : Fintype ι b : Basis ι R M f : Dual R M m : M f' : Dual R M m' : M ⊢ ↑(↑(↑Dual.transpose (↑(dualTensorHom R M M) (f ⊗ₜ[R] m))) f') m' = ↑(↑(↑(dualTensorHom R (Dual R M) (Dual R M)) (↑(Dual.eval R M) m ⊗ₜ[R] f)) f') m' [PROOFSTEP] simp only [Dual.transpose_apply, coe_comp, Function.comp_apply, dualTensorHom_apply, LinearMap.map_smulₛₗ, RingHom.id_apply, Algebra.id.smul_eq_mul, Dual.eval_apply, LinearMap.smul_apply] [GOAL] case h.h ι : Type w R : Type u M : Type v₁ N : Type v₂ P : Type v₃ Q : Type v₄ inst✝¹⁰ : CommSemiring R inst✝⁹ : AddCommMonoid M inst✝⁸ : AddCommMonoid N inst✝⁷ : AddCommMonoid P inst✝⁶ : AddCommMonoid Q inst✝⁵ : Module R M inst✝⁴ : Module R N inst✝³ : Module R P inst✝² : Module R Q inst✝¹ : DecidableEq ι inst✝ : Fintype ι b : Basis ι R M f : Dual R M m : M f' : Dual R M m' : M ⊢ ↑f m' * ↑f' m = ↑f' m * ↑f m' [PROOFSTEP] exact mul_comm _ _ [GOAL] ι : Type w R : Type u M : Type v₁ N : Type v₂ P : Type v₃ Q : Type v₄ inst✝¹⁰ : CommSemiring R inst✝⁹ : AddCommMonoid M inst✝⁸ : AddCommMonoid N inst✝⁷ : AddCommMonoid P inst✝⁶ : AddCommMonoid Q inst✝⁵ : Module R M inst✝⁴ : Module R N inst✝³ : Module R P inst✝² : Module R Q inst✝¹ : DecidableEq ι inst✝ : Fintype ι b : Basis ι R M f : Dual R M p : P ⊢ prodMap (↑(dualTensorHom R M P) (f ⊗ₜ[R] p)) 0 = ↑(dualTensorHom R (M × N) (P × Q)) (comp f (fst R M N) ⊗ₜ[R] ↑(inl R P Q) p) [PROOFSTEP] ext [GOAL] case hl.h.h₁ ι : Type w R : Type u M : Type v₁ N : Type v₂ P : Type v₃ Q : Type v₄ inst✝¹⁰ : CommSemiring R inst✝⁹ : AddCommMonoid M inst✝⁸ : AddCommMonoid N inst✝⁷ : AddCommMonoid P inst✝⁶ : AddCommMonoid Q inst✝⁵ : Module R M inst✝⁴ : Module R N inst✝³ : Module R P inst✝² : Module R Q inst✝¹ : DecidableEq ι inst✝ : Fintype ι b : Basis ι R M f : Dual R M p : P x✝ : M ⊢ (↑(comp (prodMap (↑(dualTensorHom R M P) (f ⊗ₜ[R] p)) 0) (inl R M N)) x✝).fst = (↑(comp (↑(dualTensorHom R (M × N) (P × Q)) (comp f (fst R M N) ⊗ₜ[R] ↑(inl R P Q) p)) (inl R M N)) x✝).fst [PROOFSTEP] simp only [coe_comp, coe_inl, Function.comp_apply, prodMap_apply, dualTensorHom_apply, fst_apply, Prod.smul_mk, LinearMap.zero_apply, smul_zero] [GOAL] case hl.h.h₂ ι : Type w R : Type u M : Type v₁ N : Type v₂ P : Type v₃ Q : Type v₄ inst✝¹⁰ : CommSemiring R inst✝⁹ : AddCommMonoid M inst✝⁸ : AddCommMonoid N inst✝⁷ : AddCommMonoid P inst✝⁶ : AddCommMonoid Q inst✝⁵ : Module R M inst✝⁴ : Module R N inst✝³ : Module R P inst✝² : Module R Q inst✝¹ : DecidableEq ι inst✝ : Fintype ι b : Basis ι R M f : Dual R M p : P x✝ : M ⊢ (↑(comp (prodMap (↑(dualTensorHom R M P) (f ⊗ₜ[R] p)) 0) (inl R M N)) x✝).snd = (↑(comp (↑(dualTensorHom R (M × N) (P × Q)) (comp f (fst R M N) ⊗ₜ[R] ↑(inl R P Q) p)) (inl R M N)) x✝).snd [PROOFSTEP] simp only [coe_comp, coe_inl, Function.comp_apply, prodMap_apply, dualTensorHom_apply, fst_apply, Prod.smul_mk, LinearMap.zero_apply, smul_zero] [GOAL] case hr.h.h₁ ι : Type w R : Type u M : Type v₁ N : Type v₂ P : Type v₃ Q : Type v₄ inst✝¹⁰ : CommSemiring R inst✝⁹ : AddCommMonoid M inst✝⁸ : AddCommMonoid N inst✝⁷ : AddCommMonoid P inst✝⁶ : AddCommMonoid Q inst✝⁵ : Module R M inst✝⁴ : Module R N inst✝³ : Module R P inst✝² : Module R Q inst✝¹ : DecidableEq ι inst✝ : Fintype ι b : Basis ι R M f : Dual R M p : P x✝ : N ⊢ (↑(comp (prodMap (↑(dualTensorHom R M P) (f ⊗ₜ[R] p)) 0) (inr R M N)) x✝).fst = (↑(comp (↑(dualTensorHom R (M × N) (P × Q)) (comp f (fst R M N) ⊗ₜ[R] ↑(inl R P Q) p)) (inr R M N)) x✝).fst [PROOFSTEP] simp only [coe_comp, coe_inl, Function.comp_apply, prodMap_apply, dualTensorHom_apply, fst_apply, Prod.smul_mk, LinearMap.zero_apply, smul_zero] [GOAL] case hr.h.h₂ ι : Type w R : Type u M : Type v₁ N : Type v₂ P : Type v₃ Q : Type v₄ inst✝¹⁰ : CommSemiring R inst✝⁹ : AddCommMonoid M inst✝⁸ : AddCommMonoid N inst✝⁷ : AddCommMonoid P inst✝⁶ : AddCommMonoid Q inst✝⁵ : Module R M inst✝⁴ : Module R N inst✝³ : Module R P inst✝² : Module R Q inst✝¹ : DecidableEq ι inst✝ : Fintype ι b : Basis ι R M f : Dual R M p : P x✝ : N ⊢ (↑(comp (prodMap (↑(dualTensorHom R M P) (f ⊗ₜ[R] p)) 0) (inr R M N)) x✝).snd = (↑(comp (↑(dualTensorHom R (M × N) (P × Q)) (comp f (fst R M N) ⊗ₜ[R] ↑(inl R P Q) p)) (inr R M N)) x✝).snd [PROOFSTEP] simp only [coe_comp, coe_inl, Function.comp_apply, prodMap_apply, dualTensorHom_apply, fst_apply, Prod.smul_mk, LinearMap.zero_apply, smul_zero] [GOAL] ι : Type w R : Type u M : Type v₁ N : Type v₂ P : Type v₃ Q : Type v₄ inst✝¹⁰ : CommSemiring R inst✝⁹ : AddCommMonoid M inst✝⁸ : AddCommMonoid N inst✝⁷ : AddCommMonoid P inst✝⁶ : AddCommMonoid Q inst✝⁵ : Module R M inst✝⁴ : Module R N inst✝³ : Module R P inst✝² : Module R Q inst✝¹ : DecidableEq ι inst✝ : Fintype ι b : Basis ι R M g : Dual R N q : Q ⊢ prodMap 0 (↑(dualTensorHom R N Q) (g ⊗ₜ[R] q)) = ↑(dualTensorHom R (M × N) (P × Q)) (comp g (snd R M N) ⊗ₜ[R] ↑(inr R P Q) q) [PROOFSTEP] ext [GOAL] case hl.h.h₁ ι : Type w R : Type u M : Type v₁ N : Type v₂ P : Type v₃ Q : Type v₄ inst✝¹⁰ : CommSemiring R inst✝⁹ : AddCommMonoid M inst✝⁸ : AddCommMonoid N inst✝⁷ : AddCommMonoid P inst✝⁶ : AddCommMonoid Q inst✝⁵ : Module R M inst✝⁴ : Module R N inst✝³ : Module R P inst✝² : Module R Q inst✝¹ : DecidableEq ι inst✝ : Fintype ι b : Basis ι R M g : Dual R N q : Q x✝ : M ⊢ (↑(comp (prodMap 0 (↑(dualTensorHom R N Q) (g ⊗ₜ[R] q))) (inl R M N)) x✝).fst = (↑(comp (↑(dualTensorHom R (M × N) (P × Q)) (comp g (snd R M N) ⊗ₜ[R] ↑(inr R P Q) q)) (inl R M N)) x✝).fst [PROOFSTEP] simp only [coe_comp, coe_inr, Function.comp_apply, prodMap_apply, dualTensorHom_apply, snd_apply, Prod.smul_mk, LinearMap.zero_apply, smul_zero] [GOAL] case hl.h.h₂ ι : Type w R : Type u M : Type v₁ N : Type v₂ P : Type v₃ Q : Type v₄ inst✝¹⁰ : CommSemiring R inst✝⁹ : AddCommMonoid M inst✝⁸ : AddCommMonoid N inst✝⁷ : AddCommMonoid P inst✝⁶ : AddCommMonoid Q inst✝⁵ : Module R M inst✝⁴ : Module R N inst✝³ : Module R P inst✝² : Module R Q inst✝¹ : DecidableEq ι inst✝ : Fintype ι b : Basis ι R M g : Dual R N q : Q x✝ : M ⊢ (↑(comp (prodMap 0 (↑(dualTensorHom R N Q) (g ⊗ₜ[R] q))) (inl R M N)) x✝).snd = (↑(comp (↑(dualTensorHom R (M × N) (P × Q)) (comp g (snd R M N) ⊗ₜ[R] ↑(inr R P Q) q)) (inl R M N)) x✝).snd [PROOFSTEP] simp only [coe_comp, coe_inr, Function.comp_apply, prodMap_apply, dualTensorHom_apply, snd_apply, Prod.smul_mk, LinearMap.zero_apply, smul_zero] [GOAL] case hr.h.h₁ ι : Type w R : Type u M : Type v₁ N : Type v₂ P : Type v₃ Q : Type v₄ inst✝¹⁰ : CommSemiring R inst✝⁹ : AddCommMonoid M inst✝⁸ : AddCommMonoid N inst✝⁷ : AddCommMonoid P inst✝⁶ : AddCommMonoid Q inst✝⁵ : Module R M inst✝⁴ : Module R N inst✝³ : Module R P inst✝² : Module R Q inst✝¹ : DecidableEq ι inst✝ : Fintype ι b : Basis ι R M g : Dual R N q : Q x✝ : N ⊢ (↑(comp (prodMap 0 (↑(dualTensorHom R N Q) (g ⊗ₜ[R] q))) (inr R M N)) x✝).fst = (↑(comp (↑(dualTensorHom R (M × N) (P × Q)) (comp g (snd R M N) ⊗ₜ[R] ↑(inr R P Q) q)) (inr R M N)) x✝).fst [PROOFSTEP] simp only [coe_comp, coe_inr, Function.comp_apply, prodMap_apply, dualTensorHom_apply, snd_apply, Prod.smul_mk, LinearMap.zero_apply, smul_zero] [GOAL] case hr.h.h₂ ι : Type w R : Type u M : Type v₁ N : Type v₂ P : Type v₃ Q : Type v₄ inst✝¹⁰ : CommSemiring R inst✝⁹ : AddCommMonoid M inst✝⁸ : AddCommMonoid N inst✝⁷ : AddCommMonoid P inst✝⁶ : AddCommMonoid Q inst✝⁵ : Module R M inst✝⁴ : Module R N inst✝³ : Module R P inst✝² : Module R Q inst✝¹ : DecidableEq ι inst✝ : Fintype ι b : Basis ι R M g : Dual R N q : Q x✝ : N ⊢ (↑(comp (prodMap 0 (↑(dualTensorHom R N Q) (g ⊗ₜ[R] q))) (inr R M N)) x✝).snd = (↑(comp (↑(dualTensorHom R (M × N) (P × Q)) (comp g (snd R M N) ⊗ₜ[R] ↑(inr R P Q) q)) (inr R M N)) x✝).snd [PROOFSTEP] simp only [coe_comp, coe_inr, Function.comp_apply, prodMap_apply, dualTensorHom_apply, snd_apply, Prod.smul_mk, LinearMap.zero_apply, smul_zero] [GOAL] ι : Type w R : Type u M : Type v₁ N : Type v₂ P : Type v₃ Q : Type v₄ inst✝¹⁰ : CommSemiring R inst✝⁹ : AddCommMonoid M inst✝⁸ : AddCommMonoid N inst✝⁷ : AddCommMonoid P inst✝⁶ : AddCommMonoid Q inst✝⁵ : Module R M inst✝⁴ : Module R N inst✝³ : Module R P inst✝² : Module R Q inst✝¹ : DecidableEq ι inst✝ : Fintype ι b : Basis ι R M f : Dual R M p : P g : Dual R N q : Q ⊢ TensorProduct.map (↑(dualTensorHom R M P) (f ⊗ₜ[R] p)) (↑(dualTensorHom R N Q) (g ⊗ₜ[R] q)) = ↑(dualTensorHom R (M ⊗[R] N) (P ⊗[R] Q)) (↑(dualDistrib R M N) (f ⊗ₜ[R] g) ⊗ₜ[R] p ⊗ₜ[R] q) [PROOFSTEP] ext m n [GOAL] case H.h.h ι : Type w R : Type u M : Type v₁ N : Type v₂ P : Type v₃ Q : Type v₄ inst✝¹⁰ : CommSemiring R inst✝⁹ : AddCommMonoid M inst✝⁸ : AddCommMonoid N inst✝⁷ : AddCommMonoid P inst✝⁶ : AddCommMonoid Q inst✝⁵ : Module R M inst✝⁴ : Module R N inst✝³ : Module R P inst✝² : Module R Q inst✝¹ : DecidableEq ι inst✝ : Fintype ι b : Basis ι R M f : Dual R M p : P g : Dual R N q : Q m : M n : N ⊢ ↑(↑(compr₂ (TensorProduct.mk R M N) (TensorProduct.map (↑(dualTensorHom R M P) (f ⊗ₜ[R] p)) (↑(dualTensorHom R N Q) (g ⊗ₜ[R] q)))) m) n = ↑(↑(compr₂ (TensorProduct.mk R M N) (↑(dualTensorHom R (M ⊗[R] N) (P ⊗[R] Q)) (↑(dualDistrib R M N) (f ⊗ₜ[R] g) ⊗ₜ[R] p ⊗ₜ[R] q))) m) n [PROOFSTEP] simp only [compr₂_apply, mk_apply, map_tmul, dualTensorHom_apply, dualDistrib_apply, ← smul_tmul_smul] [GOAL] ι : Type w R : Type u M : Type v₁ N : Type v₂ P : Type v₃ Q : Type v₄ inst✝¹⁰ : CommSemiring R inst✝⁹ : AddCommMonoid M inst✝⁸ : AddCommMonoid N inst✝⁷ : AddCommMonoid P inst✝⁶ : AddCommMonoid Q inst✝⁵ : Module R M inst✝⁴ : Module R N inst✝³ : Module R P inst✝² : Module R Q inst✝¹ : DecidableEq ι inst✝ : Fintype ι b : Basis ι R M f : Dual R M n : N g : Dual R N p : P ⊢ comp (↑(dualTensorHom R N P) (g ⊗ₜ[R] p)) (↑(dualTensorHom R M N) (f ⊗ₜ[R] n)) = ↑g n • ↑(dualTensorHom R M P) (f ⊗ₜ[R] p) [PROOFSTEP] ext m [GOAL] case h ι : Type w R : Type u M : Type v₁ N : Type v₂ P : Type v₃ Q : Type v₄ inst✝¹⁰ : CommSemiring R inst✝⁹ : AddCommMonoid M inst✝⁸ : AddCommMonoid N inst✝⁷ : AddCommMonoid P inst✝⁶ : AddCommMonoid Q inst✝⁵ : Module R M inst✝⁴ : Module R N inst✝³ : Module R P inst✝² : Module R Q inst✝¹ : DecidableEq ι inst✝ : Fintype ι b : Basis ι R M f : Dual R M n : N g : Dual R N p : P m : M ⊢ ↑(comp (↑(dualTensorHom R N P) (g ⊗ₜ[R] p)) (↑(dualTensorHom R M N) (f ⊗ₜ[R] n))) m = ↑(↑g n • ↑(dualTensorHom R M P) (f ⊗ₜ[R] p)) m [PROOFSTEP] simp only [coe_comp, Function.comp_apply, dualTensorHom_apply, LinearMap.map_smul, RingHom.id_apply, LinearMap.smul_apply] [GOAL] case h ι : Type w R : Type u M : Type v₁ N : Type v₂ P : Type v₃ Q : Type v₄ inst✝¹⁰ : CommSemiring R inst✝⁹ : AddCommMonoid M inst✝⁸ : AddCommMonoid N inst✝⁷ : AddCommMonoid P inst✝⁶ : AddCommMonoid Q inst✝⁵ : Module R M inst✝⁴ : Module R N inst✝³ : Module R P inst✝² : Module R Q inst✝¹ : DecidableEq ι inst✝ : Fintype ι b : Basis ι R M f : Dual R M n : N g : Dual R N p : P m : M ⊢ ↑f m • ↑g n • p = ↑g n • ↑f m • p [PROOFSTEP] rw [smul_comm] [GOAL] ι : Type w R : Type u M : Type v₁ N : Type v₂ P : Type v₃ Q : Type v₄ inst✝¹⁴ : CommSemiring R inst✝¹³ : AddCommMonoid M inst✝¹² : AddCommMonoid N inst✝¹¹ : AddCommMonoid P inst✝¹⁰ : AddCommMonoid Q inst✝⁹ : Module R M inst✝⁸ : Module R N inst✝⁷ : Module R P inst✝⁶ : Module R Q inst✝⁵ : DecidableEq ι inst✝⁴ : Fintype ι b : Basis ι R M m : Type u_1 n : Type u_2 inst✝³ : Fintype m inst✝² : Fintype n inst✝¹ : DecidableEq m inst✝ : DecidableEq n bM : Basis m R M bN : Basis n R N j : m i : n ⊢ ↑(toMatrix bM bN) (↑(dualTensorHom R M N) (Basis.coord bM j ⊗ₜ[R] ↑bN i)) = stdBasisMatrix i j 1 [PROOFSTEP] ext i' j' [GOAL] case a.h ι : Type w R : Type u M : Type v₁ N : Type v₂ P : Type v₃ Q : Type v₄ inst✝¹⁴ : CommSemiring R inst✝¹³ : AddCommMonoid M inst✝¹² : AddCommMonoid N inst✝¹¹ : AddCommMonoid P inst✝¹⁰ : AddCommMonoid Q inst✝⁹ : Module R M inst✝⁸ : Module R N inst✝⁷ : Module R P inst✝⁶ : Module R Q inst✝⁵ : DecidableEq ι inst✝⁴ : Fintype ι b : Basis ι R M m : Type u_1 n : Type u_2 inst✝³ : Fintype m inst✝² : Fintype n inst✝¹ : DecidableEq m inst✝ : DecidableEq n bM : Basis m R M bN : Basis n R N j : m i i' : n j' : m ⊢ ↑(toMatrix bM bN) (↑(dualTensorHom R M N) (Basis.coord bM j ⊗ₜ[R] ↑bN i)) i' j' = stdBasisMatrix i j 1 i' j' [PROOFSTEP] by_cases hij : i = i' ∧ j = j' [GOAL] case pos ι : Type w R : Type u M : Type v₁ N : Type v₂ P : Type v₃ Q : Type v₄ inst✝¹⁴ : CommSemiring R inst✝¹³ : AddCommMonoid M inst✝¹² : AddCommMonoid N inst✝¹¹ : AddCommMonoid P inst✝¹⁰ : AddCommMonoid Q inst✝⁹ : Module R M inst✝⁸ : Module R N inst✝⁷ : Module R P inst✝⁶ : Module R Q inst✝⁵ : DecidableEq ι inst✝⁴ : Fintype ι b : Basis ι R M m : Type u_1 n : Type u_2 inst✝³ : Fintype m inst✝² : Fintype n inst✝¹ : DecidableEq m inst✝ : DecidableEq n bM : Basis m R M bN : Basis n R N j : m i i' : n j' : m hij : i = i' ∧ j = j' ⊢ ↑(toMatrix bM bN) (↑(dualTensorHom R M N) (Basis.coord bM j ⊗ₜ[R] ↑bN i)) i' j' = stdBasisMatrix i j 1 i' j' [PROOFSTEP] simp [LinearMap.toMatrix_apply, Finsupp.single_eq_pi_single, hij] [GOAL] case neg ι : Type w R : Type u M : Type v₁ N : Type v₂ P : Type v₃ Q : Type v₄ inst✝¹⁴ : CommSemiring R inst✝¹³ : AddCommMonoid M inst✝¹² : AddCommMonoid N inst✝¹¹ : AddCommMonoid P inst✝¹⁰ : AddCommMonoid Q inst✝⁹ : Module R M inst✝⁸ : Module R N inst✝⁷ : Module R P inst✝⁶ : Module R Q inst✝⁵ : DecidableEq ι inst✝⁴ : Fintype ι b : Basis ι R M m : Type u_1 n : Type u_2 inst✝³ : Fintype m inst✝² : Fintype n inst✝¹ : DecidableEq m inst✝ : DecidableEq n bM : Basis m R M bN : Basis n R N j : m i i' : n j' : m hij : ¬(i = i' ∧ j = j') ⊢ ↑(toMatrix bM bN) (↑(dualTensorHom R M N) (Basis.coord bM j ⊗ₜ[R] ↑bN i)) i' j' = stdBasisMatrix i j 1 i' j' [PROOFSTEP] simp [LinearMap.toMatrix_apply, Finsupp.single_eq_pi_single, hij] [GOAL] case neg ι : Type w R : Type u M : Type v₁ N : Type v₂ P : Type v₃ Q : Type v₄ inst✝¹⁴ : CommSemiring R inst✝¹³ : AddCommMonoid M inst✝¹² : AddCommMonoid N inst✝¹¹ : AddCommMonoid P inst✝¹⁰ : AddCommMonoid Q inst✝⁹ : Module R M inst✝⁸ : Module R N inst✝⁷ : Module R P inst✝⁶ : Module R Q inst✝⁵ : DecidableEq ι inst✝⁴ : Fintype ι b : Basis ι R M m : Type u_1 n : Type u_2 inst✝³ : Fintype m inst✝² : Fintype n inst✝¹ : DecidableEq m inst✝ : DecidableEq n bM : Basis m R M bN : Basis n R N j : m i i' : n j' : m hij : ¬(i = i' ∧ j = j') ⊢ Pi.single i (Pi.single j' 1 j) i' = 0 [PROOFSTEP] rw [and_iff_not_or_not, Classical.not_not] at hij [GOAL] case neg ι : Type w R : Type u M : Type v₁ N : Type v₂ P : Type v₃ Q : Type v₄ inst✝¹⁴ : CommSemiring R inst✝¹³ : AddCommMonoid M inst✝¹² : AddCommMonoid N inst✝¹¹ : AddCommMonoid P inst✝¹⁰ : AddCommMonoid Q inst✝⁹ : Module R M inst✝⁸ : Module R N inst✝⁷ : Module R P inst✝⁶ : Module R Q inst✝⁵ : DecidableEq ι inst✝⁴ : Fintype ι b : Basis ι R M m : Type u_1 n : Type u_2 inst✝³ : Fintype m inst✝² : Fintype n inst✝¹ : DecidableEq m inst✝ : DecidableEq n bM : Basis m R M bN : Basis n R N j : m i i' : n j' : m hij : ¬i = i' ∨ ¬j = j' ⊢ Pi.single i (Pi.single j' 1 j) i' = 0 [PROOFSTEP] cases' hij with hij hij [GOAL] case neg.inl ι : Type w R : Type u M : Type v₁ N : Type v₂ P : Type v₃ Q : Type v₄ inst✝¹⁴ : CommSemiring R inst✝¹³ : AddCommMonoid M inst✝¹² : AddCommMonoid N inst✝¹¹ : AddCommMonoid P inst✝¹⁰ : AddCommMonoid Q inst✝⁹ : Module R M inst✝⁸ : Module R N inst✝⁷ : Module R P inst✝⁶ : Module R Q inst✝⁵ : DecidableEq ι inst✝⁴ : Fintype ι b : Basis ι R M m : Type u_1 n : Type u_2 inst✝³ : Fintype m inst✝² : Fintype n inst✝¹ : DecidableEq m inst✝ : DecidableEq n bM : Basis m R M bN : Basis n R N j : m i i' : n j' : m hij : ¬i = i' ⊢ Pi.single i (Pi.single j' 1 j) i' = 0 [PROOFSTEP] simp [hij] [GOAL] case neg.inr ι : Type w R : Type u M : Type v₁ N : Type v₂ P : Type v₃ Q : Type v₄ inst✝¹⁴ : CommSemiring R inst✝¹³ : AddCommMonoid M inst✝¹² : AddCommMonoid N inst✝¹¹ : AddCommMonoid P inst✝¹⁰ : AddCommMonoid Q inst✝⁹ : Module R M inst✝⁸ : Module R N inst✝⁷ : Module R P inst✝⁶ : Module R Q inst✝⁵ : DecidableEq ι inst✝⁴ : Fintype ι b : Basis ι R M m : Type u_1 n : Type u_2 inst✝³ : Fintype m inst✝² : Fintype n inst✝¹ : DecidableEq m inst✝ : DecidableEq n bM : Basis m R M bN : Basis n R N j : m i i' : n j' : m hij : ¬j = j' ⊢ Pi.single i (Pi.single j' 1 j) i' = 0 [PROOFSTEP] simp [hij] [GOAL] ι : Type w R : Type u M : Type v₁ N : Type v₂ P : Type v₃ Q : Type v₄ inst✝¹⁰ : CommRing R inst✝⁹ : AddCommGroup M inst✝⁸ : AddCommGroup N inst✝⁷ : AddCommGroup P inst✝⁶ : AddCommGroup Q inst✝⁵ : Module R M inst✝⁴ : Module R N inst✝³ : Module R P inst✝² : Module R Q inst✝¹ : DecidableEq ι inst✝ : Fintype ι b : Basis ι R M ⊢ comp (dualTensorHom R M N) (∑ i : ι, comp (↑(TensorProduct.mk R ((fun x => Dual R M) i) N) (↑(Basis.dualBasis b) i)) (↑applyₗ (↑b i))) = LinearMap.id [PROOFSTEP] ext f m [GOAL] case h.h ι : Type w R : Type u M : Type v₁ N : Type v₂ P : Type v₃ Q : Type v₄ inst✝¹⁰ : CommRing R inst✝⁹ : AddCommGroup M inst✝⁸ : AddCommGroup N inst✝⁷ : AddCommGroup P inst✝⁶ : AddCommGroup Q inst✝⁵ : Module R M inst✝⁴ : Module R N inst✝³ : Module R P inst✝² : Module R Q inst✝¹ : DecidableEq ι inst✝ : Fintype ι b : Basis ι R M f : M →ₗ[R] N m : M ⊢ ↑(↑(comp (dualTensorHom R M N) (∑ i : ι, comp (↑(TensorProduct.mk R ((fun x => Dual R M) i) N) (↑(Basis.dualBasis b) i)) (↑applyₗ (↑b i)))) f) m = ↑(↑LinearMap.id f) m [PROOFSTEP] simp only [applyₗ_apply_apply, coeFn_sum, dualTensorHom_apply, mk_apply, id_coe, id.def, Fintype.sum_apply, Function.comp_apply, Basis.coe_dualBasis, coe_comp, Basis.coord_apply, ← f.map_smul, (dualTensorHom R M N).map_sum, ← f.map_sum, b.sum_repr] [GOAL] ι : Type w R : Type u M : Type v₁ N : Type v₂ P : Type v₃ Q : Type v₄ inst✝¹⁰ : CommRing R inst✝⁹ : AddCommGroup M inst✝⁸ : AddCommGroup N inst✝⁷ : AddCommGroup P inst✝⁶ : AddCommGroup Q inst✝⁵ : Module R M inst✝⁴ : Module R N inst✝³ : Module R P inst✝² : Module R Q inst✝¹ : DecidableEq ι inst✝ : Fintype ι b : Basis ι R M ⊢ comp (∑ i : ι, comp (↑(TensorProduct.mk R ((fun x => Dual R M) i) N) (↑(Basis.dualBasis b) i)) (↑applyₗ (↑b i))) (dualTensorHom R M N) = LinearMap.id [PROOFSTEP] ext f m [GOAL] case H.h.h ι : Type w R : Type u M : Type v₁ N : Type v₂ P : Type v₃ Q : Type v₄ inst✝¹⁰ : CommRing R inst✝⁹ : AddCommGroup M inst✝⁸ : AddCommGroup N inst✝⁷ : AddCommGroup P inst✝⁶ : AddCommGroup Q inst✝⁵ : Module R M inst✝⁴ : Module R N inst✝³ : Module R P inst✝² : Module R Q inst✝¹ : DecidableEq ι inst✝ : Fintype ι b : Basis ι R M f : Dual R M m : N ⊢ ↑(↑(compr₂ (TensorProduct.mk R (Dual R M) N) (comp (∑ i : ι, comp (↑(TensorProduct.mk R ((fun x => Dual R M) i) N) (↑(Basis.dualBasis b) i)) (↑applyₗ (↑b i))) (dualTensorHom R M N))) f) m = ↑(↑(compr₂ (TensorProduct.mk R (Dual R M) N) LinearMap.id) f) m [PROOFSTEP] simp only [applyₗ_apply_apply, coeFn_sum, dualTensorHom_apply, mk_apply, id_coe, id.def, Fintype.sum_apply, Function.comp_apply, Basis.coe_dualBasis, coe_comp, compr₂_apply, tmul_smul, smul_tmul', ← sum_tmul, Basis.sum_dual_apply_smul_coord] [GOAL] ι : Type w R : Type u M : Type v₁ N : Type v₂ P : Type v₃ Q : Type v₄ inst✝¹⁰ : CommRing R inst✝⁹ : AddCommGroup M inst✝⁸ : AddCommGroup N inst✝⁷ : AddCommGroup P inst✝⁶ : AddCommGroup Q inst✝⁵ : Module R M inst✝⁴ : Module R N inst✝³ : Module R P inst✝² : Module R Q inst✝¹ : DecidableEq ι inst✝ : Fintype ι b : Basis ι R M x : Dual R M ⊗[R] N ⊢ ↑(dualTensorHomEquivOfBasis b) x = ↑(dualTensorHom R M N) x [PROOFSTEP] ext [GOAL] case h ι : Type w R : Type u M : Type v₁ N : Type v₂ P : Type v₃ Q : Type v₄ inst✝¹⁰ : CommRing R inst✝⁹ : AddCommGroup M inst✝⁸ : AddCommGroup N inst✝⁷ : AddCommGroup P inst✝⁶ : AddCommGroup Q inst✝⁵ : Module R M inst✝⁴ : Module R N inst✝³ : Module R P inst✝² : Module R Q inst✝¹ : DecidableEq ι inst✝ : Fintype ι b : Basis ι R M x : Dual R M ⊗[R] N x✝ : M ⊢ ↑(↑(dualTensorHomEquivOfBasis b) x) x✝ = ↑(↑(dualTensorHom R M N) x) x✝ [PROOFSTEP] rfl [GOAL] ι : Type w R : Type u M : Type v₁ N : Type v₂ P : Type v₃ Q : Type v₄ inst✝¹⁰ : CommRing R inst✝⁹ : AddCommGroup M inst✝⁸ : AddCommGroup N inst✝⁷ : AddCommGroup P inst✝⁶ : AddCommGroup Q inst✝⁵ : Module R M inst✝⁴ : Module R N inst✝³ : Module R P inst✝² : Module R Q inst✝¹ : DecidableEq ι inst✝ : Fintype ι b : Basis ι R M x : Dual R M ⊗[R] N ⊢ ↑(LinearEquiv.symm (dualTensorHomEquivOfBasis b)) (↑(dualTensorHom R M N) x) = x [PROOFSTEP] rw [← dualTensorHomEquivOfBasis_apply b, LinearEquiv.symm_apply_apply <| dualTensorHomEquivOfBasis (N := N) b] [GOAL] ι : Type w R : Type u M : Type v₁ N : Type v₂ P : Type v₃ Q : Type v₄ inst✝¹⁰ : CommRing R inst✝⁹ : AddCommGroup M inst✝⁸ : AddCommGroup N inst✝⁷ : AddCommGroup P inst✝⁶ : AddCommGroup Q inst✝⁵ : Module R M inst✝⁴ : Module R N inst✝³ : Module R P inst✝² : Module R Q inst✝¹ : DecidableEq ι inst✝ : Fintype ι b : Basis ι R M x : M →ₗ[R] N ⊢ ↑(dualTensorHom R M N) (↑(LinearEquiv.symm (dualTensorHomEquivOfBasis b)) x) = x [PROOFSTEP] rw [← dualTensorHomEquivOfBasis_apply b, LinearEquiv.apply_symm_apply] [GOAL] ι : Type w R : Type u M : Type v₁ N : Type v₂ P : Type v₃ Q : Type v₄ inst✝¹³ : CommRing R inst✝¹² : AddCommGroup M inst✝¹¹ : AddCommGroup N inst✝¹⁰ : AddCommGroup P inst✝⁹ : AddCommGroup Q inst✝⁸ : Module R M inst✝⁷ : Module R N inst✝⁶ : Module R P inst✝⁵ : Module R Q inst✝⁴ : Free R M inst✝³ : Module.Finite R M inst✝² : Free R N inst✝¹ : Module.Finite R N inst✝ : Nontrivial R ⊢ ↑(lTensorHomEquivHomLTensor R M P Q) = lTensorHomToHomLTensor R M P Q [PROOFSTEP] classical -- Porting note: missing decidable for choosing basis let e := congr (LinearEquiv.refl R P) (dualTensorHomEquiv R M Q) have h : Function.Surjective e.toLinearMap := e.surjective refine' (cancel_right h).1 _ ext f q m dsimp [lTensorHomEquivHomLTensor] simp only [lTensorHomEquivHomLTensor, dualTensorHomEquiv, compr₂_apply, mk_apply, coe_comp, LinearEquiv.coe_toLinearMap, Function.comp_apply, map_tmul, LinearEquiv.coe_coe, dualTensorHomEquivOfBasis_apply, LinearEquiv.trans_apply, congr_tmul, LinearEquiv.refl_apply, dualTensorHomEquivOfBasis_symm_cancel_left, leftComm_tmul, dualTensorHom_apply, tmul_smul] [GOAL] ι : Type w R : Type u M : Type v₁ N : Type v₂ P : Type v₃ Q : Type v₄ inst✝¹³ : CommRing R inst✝¹² : AddCommGroup M inst✝¹¹ : AddCommGroup N inst✝¹⁰ : AddCommGroup P inst✝⁹ : AddCommGroup Q inst✝⁸ : Module R M inst✝⁷ : Module R N inst✝⁶ : Module R P inst✝⁵ : Module R Q inst✝⁴ : Free R M inst✝³ : Module.Finite R M inst✝² : Free R N inst✝¹ : Module.Finite R N inst✝ : Nontrivial R ⊢ ↑(lTensorHomEquivHomLTensor R M P Q) = lTensorHomToHomLTensor R M P Q [PROOFSTEP] let e := congr (LinearEquiv.refl R P) (dualTensorHomEquiv R M Q) [GOAL] ι : Type w R : Type u M : Type v₁ N : Type v₂ P : Type v₃ Q : Type v₄ inst✝¹³ : CommRing R inst✝¹² : AddCommGroup M inst✝¹¹ : AddCommGroup N inst✝¹⁰ : AddCommGroup P inst✝⁹ : AddCommGroup Q inst✝⁸ : Module R M inst✝⁷ : Module R N inst✝⁶ : Module R P inst✝⁵ : Module R Q inst✝⁴ : Free R M inst✝³ : Module.Finite R M inst✝² : Free R N inst✝¹ : Module.Finite R N inst✝ : Nontrivial R e : P ⊗[R] Dual R M ⊗[R] Q ≃ₗ[R] P ⊗[R] (M →ₗ[R] Q) := TensorProduct.congr (LinearEquiv.refl R P) (dualTensorHomEquiv R M Q) ⊢ ↑(lTensorHomEquivHomLTensor R M P Q) = lTensorHomToHomLTensor R M P Q [PROOFSTEP] have h : Function.Surjective e.toLinearMap := e.surjective [GOAL] ι : Type w R : Type u M : Type v₁ N : Type v₂ P : Type v₃ Q : Type v₄ inst✝¹³ : CommRing R inst✝¹² : AddCommGroup M inst✝¹¹ : AddCommGroup N inst✝¹⁰ : AddCommGroup P inst✝⁹ : AddCommGroup Q inst✝⁸ : Module R M inst✝⁷ : Module R N inst✝⁶ : Module R P inst✝⁵ : Module R Q inst✝⁴ : Free R M inst✝³ : Module.Finite R M inst✝² : Free R N inst✝¹ : Module.Finite R N inst✝ : Nontrivial R e : P ⊗[R] Dual R M ⊗[R] Q ≃ₗ[R] P ⊗[R] (M →ₗ[R] Q) := TensorProduct.congr (LinearEquiv.refl R P) (dualTensorHomEquiv R M Q) h : Function.Surjective ↑↑e ⊢ ↑(lTensorHomEquivHomLTensor R M P Q) = lTensorHomToHomLTensor R M P Q [PROOFSTEP] refine' (cancel_right h).1 _ [GOAL] ι : Type w R : Type u M : Type v₁ N : Type v₂ P : Type v₃ Q : Type v₄ inst✝¹³ : CommRing R inst✝¹² : AddCommGroup M inst✝¹¹ : AddCommGroup N inst✝¹⁰ : AddCommGroup P inst✝⁹ : AddCommGroup Q inst✝⁸ : Module R M inst✝⁷ : Module R N inst✝⁶ : Module R P inst✝⁵ : Module R Q inst✝⁴ : Free R M inst✝³ : Module.Finite R M inst✝² : Free R N inst✝¹ : Module.Finite R N inst✝ : Nontrivial R e : P ⊗[R] Dual R M ⊗[R] Q ≃ₗ[R] P ⊗[R] (M →ₗ[R] Q) := TensorProduct.congr (LinearEquiv.refl R P) (dualTensorHomEquiv R M Q) h : Function.Surjective ↑↑e ⊢ comp ↑(lTensorHomEquivHomLTensor R M P Q) ↑e = comp (lTensorHomToHomLTensor R M P Q) ↑e [PROOFSTEP] ext f q m [GOAL] case H.h.H.h.h.h ι : Type w R : Type u M : Type v₁ N : Type v₂ P : Type v₃ Q : Type v₄ inst✝¹³ : CommRing R inst✝¹² : AddCommGroup M inst✝¹¹ : AddCommGroup N inst✝¹⁰ : AddCommGroup P inst✝⁹ : AddCommGroup Q inst✝⁸ : Module R M inst✝⁷ : Module R N inst✝⁶ : Module R P inst✝⁵ : Module R Q inst✝⁴ : Free R M inst✝³ : Module.Finite R M inst✝² : Free R N inst✝¹ : Module.Finite R N inst✝ : Nontrivial R e : P ⊗[R] Dual R M ⊗[R] Q ≃ₗ[R] P ⊗[R] (M →ₗ[R] Q) := TensorProduct.congr (LinearEquiv.refl R P) (dualTensorHomEquiv R M Q) h : Function.Surjective ↑↑e f : P q : Dual R M m : Q x✝ : M ⊢ ↑(↑(↑(compr₂ (TensorProduct.mk R (Dual R M) Q) (↑(compr₂ (TensorProduct.mk R P (Dual R M ⊗[R] Q)) (comp ↑(lTensorHomEquivHomLTensor R M P Q) ↑e)) f)) q) m) x✝ = ↑(↑(↑(compr₂ (TensorProduct.mk R (Dual R M) Q) (↑(compr₂ (TensorProduct.mk R P (Dual R M ⊗[R] Q)) (comp (lTensorHomToHomLTensor R M P Q) ↑e)) f)) q) m) x✝ [PROOFSTEP] dsimp [lTensorHomEquivHomLTensor] [GOAL] case H.h.H.h.h.h ι : Type w R : Type u M : Type v₁ N : Type v₂ P : Type v₃ Q : Type v₄ inst✝¹³ : CommRing R inst✝¹² : AddCommGroup M inst✝¹¹ : AddCommGroup N inst✝¹⁰ : AddCommGroup P inst✝⁹ : AddCommGroup Q inst✝⁸ : Module R M inst✝⁷ : Module R N inst✝⁶ : Module R P inst✝⁵ : Module R Q inst✝⁴ : Free R M inst✝³ : Module.Finite R M inst✝² : Free R N inst✝¹ : Module.Finite R N inst✝ : Nontrivial R e : P ⊗[R] Dual R M ⊗[R] Q ≃ₗ[R] P ⊗[R] (M →ₗ[R] Q) := TensorProduct.congr (LinearEquiv.refl R P) (dualTensorHomEquiv R M Q) h : Function.Surjective ↑↑e f : P q : Dual R M m : Q x✝ : M ⊢ ↑(↑(dualTensorHomEquivOfBasis (Free.chooseBasis R M)) (↑(leftComm R P (Dual R M) Q) (f ⊗ₜ[R] ↑(LinearEquiv.symm (dualTensorHomEquivOfBasis (Free.chooseBasis R M))) (↑(dualTensorHomEquivOfBasis (Free.chooseBasis R M)) (q ⊗ₜ[R] m))))) x✝ = f ⊗ₜ[R] ↑(↑(dualTensorHomEquivOfBasis (Free.chooseBasis R M)) (q ⊗ₜ[R] m)) x✝ [PROOFSTEP] simp only [lTensorHomEquivHomLTensor, dualTensorHomEquiv, compr₂_apply, mk_apply, coe_comp, LinearEquiv.coe_toLinearMap, Function.comp_apply, map_tmul, LinearEquiv.coe_coe, dualTensorHomEquivOfBasis_apply, LinearEquiv.trans_apply, congr_tmul, LinearEquiv.refl_apply, dualTensorHomEquivOfBasis_symm_cancel_left, leftComm_tmul, dualTensorHom_apply, tmul_smul] [GOAL] ι : Type w R : Type u M : Type v₁ N : Type v₂ P : Type v₃ Q : Type v₄ inst✝¹³ : CommRing R inst✝¹² : AddCommGroup M inst✝¹¹ : AddCommGroup N inst✝¹⁰ : AddCommGroup P inst✝⁹ : AddCommGroup Q inst✝⁸ : Module R M inst✝⁷ : Module R N inst✝⁶ : Module R P inst✝⁵ : Module R Q inst✝⁴ : Free R M inst✝³ : Module.Finite R M inst✝² : Free R N inst✝¹ : Module.Finite R N inst✝ : Nontrivial R ⊢ ↑(rTensorHomEquivHomRTensor R M P Q) = rTensorHomToHomRTensor R M P Q [PROOFSTEP] classical -- Porting note: missing decidable for choosing basis let e := congr (dualTensorHomEquiv R M P) (LinearEquiv.refl R Q) have h : Function.Surjective e.toLinearMap := e.surjective refine' (cancel_right h).1 _ ext f p q m simp only [rTensorHomEquivHomRTensor, dualTensorHomEquiv, compr₂_apply, mk_apply, coe_comp, LinearEquiv.coe_toLinearMap, Function.comp_apply, map_tmul, LinearEquiv.coe_coe, dualTensorHomEquivOfBasis_apply, LinearEquiv.trans_apply, congr_tmul, dualTensorHomEquivOfBasis_symm_cancel_left, LinearEquiv.refl_apply, assoc_tmul, dualTensorHom_apply, rTensorHomToHomRTensor_apply, smul_tmul'] [GOAL] ι : Type w R : Type u M : Type v₁ N : Type v₂ P : Type v₃ Q : Type v₄ inst✝¹³ : CommRing R inst✝¹² : AddCommGroup M inst✝¹¹ : AddCommGroup N inst✝¹⁰ : AddCommGroup P inst✝⁹ : AddCommGroup Q inst✝⁸ : Module R M inst✝⁷ : Module R N inst✝⁶ : Module R P inst✝⁵ : Module R Q inst✝⁴ : Free R M inst✝³ : Module.Finite R M inst✝² : Free R N inst✝¹ : Module.Finite R N inst✝ : Nontrivial R ⊢ ↑(rTensorHomEquivHomRTensor R M P Q) = rTensorHomToHomRTensor R M P Q [PROOFSTEP] let e := congr (dualTensorHomEquiv R M P) (LinearEquiv.refl R Q) [GOAL] ι : Type w R : Type u M : Type v₁ N : Type v₂ P : Type v₃ Q : Type v₄ inst✝¹³ : CommRing R inst✝¹² : AddCommGroup M inst✝¹¹ : AddCommGroup N inst✝¹⁰ : AddCommGroup P inst✝⁹ : AddCommGroup Q inst✝⁸ : Module R M inst✝⁷ : Module R N inst✝⁶ : Module R P inst✝⁵ : Module R Q inst✝⁴ : Free R M inst✝³ : Module.Finite R M inst✝² : Free R N inst✝¹ : Module.Finite R N inst✝ : Nontrivial R e : (Dual R M ⊗[R] P) ⊗[R] Q ≃ₗ[R] (M →ₗ[R] P) ⊗[R] Q := TensorProduct.congr (dualTensorHomEquiv R M P) (LinearEquiv.refl R Q) ⊢ ↑(rTensorHomEquivHomRTensor R M P Q) = rTensorHomToHomRTensor R M P Q [PROOFSTEP] have h : Function.Surjective e.toLinearMap := e.surjective [GOAL] ι : Type w R : Type u M : Type v₁ N : Type v₂ P : Type v₃ Q : Type v₄ inst✝¹³ : CommRing R inst✝¹² : AddCommGroup M inst✝¹¹ : AddCommGroup N inst✝¹⁰ : AddCommGroup P inst✝⁹ : AddCommGroup Q inst✝⁸ : Module R M inst✝⁷ : Module R N inst✝⁶ : Module R P inst✝⁵ : Module R Q inst✝⁴ : Free R M inst✝³ : Module.Finite R M inst✝² : Free R N inst✝¹ : Module.Finite R N inst✝ : Nontrivial R e : (Dual R M ⊗[R] P) ⊗[R] Q ≃ₗ[R] (M →ₗ[R] P) ⊗[R] Q := TensorProduct.congr (dualTensorHomEquiv R M P) (LinearEquiv.refl R Q) h : Function.Surjective ↑↑e ⊢ ↑(rTensorHomEquivHomRTensor R M P Q) = rTensorHomToHomRTensor R M P Q [PROOFSTEP] refine' (cancel_right h).1 _ [GOAL] ι : Type w R : Type u M : Type v₁ N : Type v₂ P : Type v₃ Q : Type v₄ inst✝¹³ : CommRing R inst✝¹² : AddCommGroup M inst✝¹¹ : AddCommGroup N inst✝¹⁰ : AddCommGroup P inst✝⁹ : AddCommGroup Q inst✝⁸ : Module R M inst✝⁷ : Module R N inst✝⁶ : Module R P inst✝⁵ : Module R Q inst✝⁴ : Free R M inst✝³ : Module.Finite R M inst✝² : Free R N inst✝¹ : Module.Finite R N inst✝ : Nontrivial R e : (Dual R M ⊗[R] P) ⊗[R] Q ≃ₗ[R] (M →ₗ[R] P) ⊗[R] Q := TensorProduct.congr (dualTensorHomEquiv R M P) (LinearEquiv.refl R Q) h : Function.Surjective ↑↑e ⊢ comp ↑(rTensorHomEquivHomRTensor R M P Q) ↑e = comp (rTensorHomToHomRTensor R M P Q) ↑e [PROOFSTEP] ext f p q m [GOAL] case H.H.h.h.h.h ι : Type w R : Type u M : Type v₁ N : Type v₂ P : Type v₃ Q : Type v₄ inst✝¹³ : CommRing R inst✝¹² : AddCommGroup M inst✝¹¹ : AddCommGroup N inst✝¹⁰ : AddCommGroup P inst✝⁹ : AddCommGroup Q inst✝⁸ : Module R M inst✝⁷ : Module R N inst✝⁶ : Module R P inst✝⁵ : Module R Q inst✝⁴ : Free R M inst✝³ : Module.Finite R M inst✝² : Free R N inst✝¹ : Module.Finite R N inst✝ : Nontrivial R e : (Dual R M ⊗[R] P) ⊗[R] Q ≃ₗ[R] (M →ₗ[R] P) ⊗[R] Q := TensorProduct.congr (dualTensorHomEquiv R M P) (LinearEquiv.refl R Q) h : Function.Surjective ↑↑e f : Dual R M p : P q : Q m : M ⊢ ↑(↑(↑(↑(compr₂ (TensorProduct.mk R (Dual R M) P) (compr₂ (TensorProduct.mk R (Dual R M ⊗[R] P) Q) (comp ↑(rTensorHomEquivHomRTensor R M P Q) ↑e))) f) p) q) m = ↑(↑(↑(↑(compr₂ (TensorProduct.mk R (Dual R M) P) (compr₂ (TensorProduct.mk R (Dual R M ⊗[R] P) Q) (comp (rTensorHomToHomRTensor R M P Q) ↑e))) f) p) q) m [PROOFSTEP] simp only [rTensorHomEquivHomRTensor, dualTensorHomEquiv, compr₂_apply, mk_apply, coe_comp, LinearEquiv.coe_toLinearMap, Function.comp_apply, map_tmul, LinearEquiv.coe_coe, dualTensorHomEquivOfBasis_apply, LinearEquiv.trans_apply, congr_tmul, dualTensorHomEquivOfBasis_symm_cancel_left, LinearEquiv.refl_apply, assoc_tmul, dualTensorHom_apply, rTensorHomToHomRTensor_apply, smul_tmul'] [GOAL] ι : Type w R : Type u M : Type v₁ N : Type v₂ P : Type v₃ Q : Type v₄ inst✝¹³ : CommRing R inst✝¹² : AddCommGroup M inst✝¹¹ : AddCommGroup N inst✝¹⁰ : AddCommGroup P inst✝⁹ : AddCommGroup Q inst✝⁸ : Module R M inst✝⁷ : Module R N inst✝⁶ : Module R P inst✝⁵ : Module R Q inst✝⁴ : Free R M inst✝³ : Module.Finite R M inst✝² : Free R N inst✝¹ : Module.Finite R N inst✝ : Nontrivial R x : P ⊗[R] (M →ₗ[R] Q) ⊢ ↑(lTensorHomEquivHomLTensor R M P Q) x = ↑(lTensorHomToHomLTensor R M P Q) x [PROOFSTEP] rw [← LinearEquiv.coe_toLinearMap, lTensorHomEquivHomLTensor_toLinearMap] [GOAL] ι : Type w R : Type u M : Type v₁ N : Type v₂ P : Type v₃ Q : Type v₄ inst✝¹³ : CommRing R inst✝¹² : AddCommGroup M inst✝¹¹ : AddCommGroup N inst✝¹⁰ : AddCommGroup P inst✝⁹ : AddCommGroup Q inst✝⁸ : Module R M inst✝⁷ : Module R N inst✝⁶ : Module R P inst✝⁵ : Module R Q inst✝⁴ : Free R M inst✝³ : Module.Finite R M inst✝² : Free R N inst✝¹ : Module.Finite R N inst✝ : Nontrivial R x : (M →ₗ[R] P) ⊗[R] Q ⊢ ↑(rTensorHomEquivHomRTensor R M P Q) x = ↑(rTensorHomToHomRTensor R M P Q) x [PROOFSTEP] rw [← LinearEquiv.coe_toLinearMap, rTensorHomEquivHomRTensor_toLinearMap] [GOAL] ι : Type w R : Type u M : Type v₁ N : Type v₂ P : Type v₃ Q : Type v₄ inst✝¹³ : CommRing R inst✝¹² : AddCommGroup M inst✝¹¹ : AddCommGroup N inst✝¹⁰ : AddCommGroup P inst✝⁹ : AddCommGroup Q inst✝⁸ : Module R M inst✝⁷ : Module R N inst✝⁶ : Module R P inst✝⁵ : Module R Q inst✝⁴ : Free R M inst✝³ : Module.Finite R M inst✝² : Free R N inst✝¹ : Module.Finite R N inst✝ : Nontrivial R ⊢ ↑(homTensorHomEquiv R M N P Q) = homTensorHomMap R M N P Q [PROOFSTEP] ext m n [GOAL] case H.h.h.H.h.h ι : Type w R : Type u M : Type v₁ N : Type v₂ P : Type v₃ Q : Type v₄ inst✝¹³ : CommRing R inst✝¹² : AddCommGroup M inst✝¹¹ : AddCommGroup N inst✝¹⁰ : AddCommGroup P inst✝⁹ : AddCommGroup Q inst✝⁸ : Module R M inst✝⁷ : Module R N inst✝⁶ : Module R P inst✝⁵ : Module R Q inst✝⁴ : Free R M inst✝³ : Module.Finite R M inst✝² : Free R N inst✝¹ : Module.Finite R N inst✝ : Nontrivial R m : M →ₗ[R] P n : N →ₗ[R] Q x✝¹ : M x✝ : N ⊢ ↑(↑(compr₂ (TensorProduct.mk R M N) (↑(↑(compr₂ (TensorProduct.mk R (M →ₗ[R] P) (N →ₗ[R] Q)) ↑(homTensorHomEquiv R M N P Q)) m) n)) x✝¹) x✝ = ↑(↑(compr₂ (TensorProduct.mk R M N) (↑(↑(compr₂ (TensorProduct.mk R (M →ₗ[R] P) (N →ₗ[R] Q)) (homTensorHomMap R M N P Q)) m) n)) x✝¹) x✝ [PROOFSTEP] simp only [homTensorHomEquiv, compr₂_apply, mk_apply, LinearEquiv.coe_toLinearMap, LinearEquiv.trans_apply, lift.equiv_apply, LinearEquiv.arrowCongr_apply, LinearEquiv.refl_symm, LinearEquiv.refl_apply, rTensorHomEquivHomRTensor_apply, lTensorHomEquivHomLTensor_apply, lTensorHomToHomLTensor_apply, rTensorHomToHomRTensor_apply, homTensorHomMap_apply, map_tmul] [GOAL] ι : Type w R : Type u M : Type v₁ N : Type v₂ P : Type v₃ Q : Type v₄ inst✝¹³ : CommRing R inst✝¹² : AddCommGroup M inst✝¹¹ : AddCommGroup N inst✝¹⁰ : AddCommGroup P inst✝⁹ : AddCommGroup Q inst✝⁸ : Module R M inst✝⁷ : Module R N inst✝⁶ : Module R P inst✝⁵ : Module R Q inst✝⁴ : Free R M inst✝³ : Module.Finite R M inst✝² : Free R N inst✝¹ : Module.Finite R N inst✝ : Nontrivial R x : (M →ₗ[R] P) ⊗[R] (N →ₗ[R] Q) ⊢ ↑(homTensorHomEquiv R M N P Q) x = ↑(homTensorHomMap R M N P Q) x [PROOFSTEP] rw [← LinearEquiv.coe_toLinearMap, homTensorHomEquiv_toLinearMap]
lemma basis_dense: fixes B :: "'a set set" and f :: "'a set \<Rightarrow> 'a" assumes "topological_basis B" and choosefrom_basis: "\<And>B'. B' \<noteq> {} \<Longrightarrow> f B' \<in> B'" shows "\<forall>X. open X \<longrightarrow> X \<noteq> {} \<longrightarrow> (\<exists>B' \<in> B. f B' \<in> X)"
# <p style="text-align: center;"> NISQAI: One-Qubit Quantum Classifier </p> <p style="text-align: center;"> Ryan LaRose, Yousif Almulla, Nic Ezzell, Joe Iosue, Arkin Tikku </p> <blockquote cite=""> "Quantum computing needs more quantum software engineers to implement, test, and optimize quantum algorithms." -- Matthias Troyer. </blockquote> <blockquote cite=""> "Experimentation on quantum testbeds is needed." -- John Preskill. </blockquote> # <p style="text-align: center;"> What is NISQAI? </p> Quantum machine learning is an exciting but conjectural field that lacks testing on quantum computers. NISQAI is a library written to facilitate research in artificial intelligence on current quantum computers and NISQ (noisy intermediate-scale quantum) devices. In this notebook, we demonstrate the steps toward a quantum neural network working as a simple classifier. We then demonstrate how easily the NISQAI library can facilitate this task. # <p style="text-align: center;"> Requirements for this Notebook </p> Since you're reading this, you probably have a working installation of [Python](https://www.python.org/) and/or [Jupyter](http://jupyter.org/). In order to run this notebook, the following external packages are necessary. Installation instructions can be found by following the hyperlinks for each. * [NumPy](http://www.numpy.org/) * [SciPy](https://www.scipy.org/) * [pyQuil](https://pyquil.readthedocs.io/en/stable/) 2.1.0 * [Matplotlib](https://matplotlib.org/) * [QuTiP](http://qutip.org/docs/4.1/index.html) 4.1.0 (only for Bloch sphere visualization features) ```python # builtins import time # standard imports import matplotlib.pyplot as plt import numpy as np from scipy.optimize import minimize # library imports from pyquil.quil import Program from pyquil import api import pyquil.gates as ops from qutip import Bloch, ket # option for notebook plotting %matplotlib inline ``` # <p style="text-align: center;"> Quantum Neural Networks: A Five Step Process </p> To implement a neural network for classical data on a quantum computer (i.e., a _quantum neural network_), the following steps need to be performed. 1. Data encoding. * Encode the classical data into a form suitable for the quantum circuit. 1. State preparation. * Implement a quantum circuit preparing the state of a particular datum. 1. Unitary evolution. * Implement a parameterized gate sequence to transform the data. 1. Measurement/non-linearity. * Measure the state of the quantum data after unitary evolution to revert back to classical information. * Non-linearity can be introduced at this point via classical processing. 1. Training/cost function. * Define a cost function and optimize the parameters of the unitary to minimize the cost. In the rest of the notebook, we'll go over how to do each of these steps in turn for a simple classification problem. At the end of the notebook, we'll show how easily this can be done with the NISQAI library and discuss other features of NISQAI. # <p style="text-align: center;"> Problem Description </p> The specific problem we look it in this notebook falls under the category of _supervised machine learning_. Specifically, we ask: _Given $N$ data points $p = (x, y) \in \mathbb{R}^2$ with labels $z(p) = 1$ if $x \le 0.5$ and $z(p) = 0$ otherwise, learn the decision boundary and classify new points._ ## <p style="text-align: center;"> 1. Data Encoding </p> In order to run a quantum neural network on classical data, the classical data needs to be suitably encoded to allow it to be "uploaded" to a quantum computer. We demonstrate a simple encoding scheme below for $(x, y)$ Cartesian coordinates distributed uniformly in a unit square. ### <p style="text-align: center;"> Generating Data </p> First we generate a random set of classical data. For reproducibility, we'll seed our random number generator. ```python # set random seed for reproducible results SEED = 1059123109 np.random.seed(seed=SEED) ``` ```python # generate data points distributed uniformly at random in [0, 1) x [0, 1) npoints = 400 data = np.zeros((npoints, 2)) dx = np.linspace(0, 1, 20) for j in range(20): data[j * len(dx) : (j + 1) * len(dx), 0] = dx[j] data[j * len(dx) : (j + 1) * len(dx), 1] = dx # npoints = 100 # data = np.random.rand(npoints, 2) def predicate(point): """Returns true if the point satisfies the predicate, else false.""" return True if point[0] <= point[1] else False # separate the data with a linear boundary y = x labels = np.array([1 if predicate(p) else 0 for p in data]) # plot the line y = x xs = np.linspace(0, 1, 100) ys = 0.5 * np.ones_like(xs) plt.plot(xs, xs, '--k') # plot the data with the color key BLUE = 0 = LEFT, GREEN = 1 = RIGHT for i in range(npoints): if labels[i] == 0: ckey = 'g' else: ckey = 'b' plt.scatter(data[i, 0], data[i, 1], color=ckey) # title and axis lables #plt.title("Random Data Points in Unit Square", fontweight="bold", fontsize=16) # put on a grid and show the plot plt.grid() # plt.savefig("graph.pdf", format="pdf") plt.show() ``` ### <p style="text-align: center;"> Qubit Encoding </p> Here we implement a method of data encoding that we call "qubit encoding." Qubit encoding works by writing two bits of classical information into one bit of quantum information. How is this done? Note that any qubit can be written \begin{equation} |\psi\rangle = \alpha |0\rangle + \beta |1\rangle \end{equation} where $\alpha, \beta \in \mathbb{C}$ satisfying $|\alpha|^2 + |\beta|^2 = 1$. Because of this normalization condition, we may equivalently write \begin{equation} |\psi\rangle = \cos(\theta / 2) |0\rangle + e^{i \phi} \sin(\theta / 2)|1\rangle \end{equation} We then encode information into the phases $0 \le \theta \le \pi$ and $ 0 \le \phi \le 2 \pi$. For the $(x, y)$ coordinates of our points, we will use the encoding \begin{align} \theta &= \pi x \\ \phi &= 2 \pi y \end{align} This is a simple encoding, but the results of the classification will speak to it's effectivenss. Other encodings, for example \begin{align} \theta &= \frac{1}{2} \tan^{-1}\left( \frac{y}{x} \right) \\ \phi &= \pi (x^2 + y^2), \end{align} can be used for other data sets. In code, we may make this transformation as follows: ```python # encode the classical data via a simple linear "qubit encoding" qdata = np.zeros_like(data) for (index, point) in enumerate(data): qdata[index][0] = np.pi * (point[0] + 0.0 * point[1]) / 1.0 qdata[index][1] = 2 * np.pi * (0.0 * point[0] + point[1]) / 1.0 # qdata[index][0] = np.pi * point[0] # qdata[index][1] = 2 * np.pi * point[1] # qdata[index][0] = 2 * np.arcsin(point[0]) # qdata[index][1] = 4 * np.arccos(point[1]) ``` It's now possible to visualize the data as points on the surface of the Bloch sphere. ```python # break the data into two lists depending on label and turn into (x, y, z) points # empty lists to store values gxs = [] gys = [] gzs = [] bxs = [] bys = [] bzs = [] # loop over all points, convert to cartesian coords, and append to correct list for (index, point) in enumerate(qdata): theta = point[0] phi = point[1] sin = np.sin(theta) # convert to cartesian coords for plotting x = np.sin(theta) * np.cos(phi) y = np.sin(theta) * np.sin(phi) z = np.cos(theta) if labels[index] == 0: gxs.append(x) gys.append(y) gzs.append(z) else: bxs.append(x) bys.append(y) bzs.append(z) # format points correctly for bloch sphere lpoints = [gxs, gys, gzs] rpoints = [bxs, bys, bzs] # get a Bloch sphere bloch = Bloch() # options for Bloch sphere bloch.frame_color = "grey" bloch.sphere_color = "white" bloch.point_size = [40] bloch.sphere_alpha = 0.50 bloch.point_color = ["g", "b"] bloch.point_marker = ["o"] bloch.view = [-55, 10] # add the points on the Bloch sphere bloch.add_points(lpoints) bloch.add_points(rpoints) # show the Bloch sphere #bloch.save("lin-comb-bloch.pdf", format="pdf") %matplotlib notebook bloch.show() ``` ## <p style="text-align: center;"> 2. State Preparation </p> Now that we have encoded our data, we still need to prepare it in quantum form. Conventionally, all qubits start in the $|0\rangle$ state. The problem we have to solve is: Given angles $\theta, \phi$, perform the mapping \begin{equation} S(\theta, \phi) |0\rangle \rightarrow |\psi\rangle = \cos(\theta / 2) |0\rangle + e^{i \phi} \sin(\theta / 2)|1\rangle \end{equation} We call $S$ a _state preparation unitary_ or _state preparation circuit_. It is clear from the equation above that the matrix representation for $S$ in the computational basis is \begin{equation} S(\theta, \phi) = \left[ \begin{matrix} \cos(\theta / 2) & e^{-i \phi} \sin(\theta / 2)\\ e^{i \phi} \sin(\theta / 2) & - \cos(\theta / 2) \\ \end{matrix} \right] \end{equation} On current NISQ computers, circuits need to be as short-depth as possible, meaning they contain as few gates as possible. The "qubit encoding" performed above allows for a constant-depth state preparation circuit for any given values of $\theta, \phi$. Why is this? In general we need to perform some arbitrary unitary transformation $S \in SU(2)$. It is known that such a unitary can be implemented with five standard rotations that can be implemented by current quantum computers. Namely, \begin{equation} S = R_z(\gamma_1) R_x(\pi / 2) R_z(\gamma_2) R_x(\pi / 2) R_z(\gamma_3) \end{equation} where $0 \le \gamma_i \le 2 \pi$ for $i = 1, 2, 3$. We can define our gate $S$ above in pyquil and compile it to a sequence of five implementable rotations by using the Quil compiler. First we'll write a function to give us our state preparation matrix. ```python # define the matrix S as a function of theta and phi def state_prep_mtx(theta, phi): """Returns the state preparation matrix according to the qubit encoding above.""" return np.array([[np.cos(theta / 2), np.exp(-1j * phi) * np.sin(theta / 2)], [np.exp(1j * phi) * np.sin(theta / 2), - np.cos(theta / 2)]]) ``` Next we'll define this as a pyquil gate. We do this by first making a program then defining a gate for a particular encoded data point. ```python # get a pyquil program qprog = Program() # pick a particular encoded data point theta, phi = qdata[0] # get the state prep matrix for this point S = state_prep_mtx(theta, phi) # define a gate in pyquil for the state preparation qprog.defgate("S", state_prep_mtx(theta, phi)) ``` We can now use this gate in a quantum program to input our classical data into the quantum computer. To do this, we simply write: ```python # prepare the first encoded data point in quantum form qprog += ("S", 0) ``` To see our program, we can print it out: ```python print(qprog) ``` If we measure this qubit now, we get either a zero or a one with probability proportional to it's amplitudes. We'll add this measurement to our program and then run it many times to get an estimate of the probability distribution of it's outcome. ```python # add a measurement on the qubit encoding our data creg = qprog.declare("ro", memory_size=1) qprog += (ops.MEASURE(0, creg[0])) # print out the new program print(qprog) ``` ```python # run the program many times shots = 1000 qvm = api.QVMConnection() dist = qvm.run(qprog, trials=shots) ``` ```python def histogram(dist): """Makes a histogram of the probability of obtaining 0 and 1.""" # get the zero and one probabilities prob0 = dist.count([0]) / shots prob1 = dist.count([1]) / shots # make a bar plot plt.bar([0, 1], [prob0, prob1]) # make it look nice plt.grid() plt.title("Output Probability Distribution", fontsize=16, fontweight="bold") plt.xlabel("Measurement Outcomes", fontsize=14) plt.ylabel("Probability", fontsize=14) plt.ylim(0, 1) plt.xticks([0, 1]) # show it plt.show() # make a histrogram of the output distribution histogram(dist) ``` We want our output distribution to move towards either zero or one, depending on what label is assigned to that particular data point. To do this, we implement unitary evolution on the circuit, which corresponds to implementing another sequence of gates in our circuit. ## <p style="text-align: center;"> 3. Unitary Evolution </p> After the classical data has been encoded (step 1) and prepared into the quantum system (step 2), step 3 is to perform unitary evolution on the quantum state representing the data. In the language of classical learning theory, this corresponds to implementing a layer of the neural network. In the quantum neural network case, we simply need to implement a sequence of parameterized gates. First we write a function to easily implement such a unitary. ```python def unitary(angles): """Returns a circuit implementing the unitary Rz(theta0) P Rz(theta1) P Rz(theta2) where thetea0 = angles[0], theta1 = angles[1], and theta2 = angles[2] and P = Rx(pi / 2) is a pi / 2 pulse. """ return Program( ops.RZ(angles[0], 0), ops.RX(np.pi / 2, 0), ops.RZ(angles[1], 0), ops.RX(np.pi / 2, 0), ops.RZ(angles[2], 0) ) ``` Next we use it to add unitary evolution to our quantum neural network for some given angles. ```python # test angles angles = 2 * np.pi * np.random.rand(3) # pop off measurement qprog.pop() # append the unitary circuit to our quantum neural network program qprog += unitary(angles) qprog += [ops.MEASURE(0, creg[0])] ``` ```python print(qprog) ``` Now we'll run this new circuit with the unitary evolution implemented. ```python # run the quantum neural network program histogram(qvm.run(qprog, trials=shots)) ``` Now we want to use this unitary evolution to move our output probability towards the desired label. We'll suppose for a moment that this point is supposed to be mapped to the 0 output. We'll define an objective function ```obj_simple(angles)``` to capture the amount of 1 outputs, then we'll train over the angles in the unitary to minimize the objective. ```python def make_program(pangles, uangles): """Returns a pyquil program that prepares the state according to pangles and applies the unitary according to uangles. """ # instantiate a program qprog = Program() creg = qprog.declare("ro", memory_size=1) # define a gate in pyquil for the state preparation qprog.defgate("S", state_prep_mtx(pangles[0], pangles[1])) # write the program( qprog += [("S", 0), unitary(uangles), ops.MEASURE(0, creg[0])] return qprog def obj_simple(angles, shots=1000, verbose=False): """Returns the number of zero outputs of a single training example.""" # make the program qprog = make_program([theta, phi], angles) if verbose: print(qprog) dist = qvm.run(qprog, trials=shots) obj = dist.count([1]) / shots print("The current value of the objective function is:", obj, end="\r") return obj ``` Now we'll minimize the objective function `obj_simple` by using the modifed `Powell` algorithm builtin to SciPy. The minimization here should take no more than 30 seconds. ```python out = minimize(obj_simple, x0=2 * np.pi * np.random.rand(3), method="Powell") ``` Now we can verify that the output distribution skews this point towards the "zero bin." ```python # do the circuit (neural network) with the optimal parameters %matplotlib inline opt_angles = out['x'] qprog = make_program([theta, phi], opt_angles) # show the output distribution dist = qvm.run(qprog, trials=shots) histogram(dist) ``` Indeed it does! Here we demonstrated that we can use our neural network to "steer" a point in a particular direction. The idea of training is to "steer" _all_ points in the desired direction. Before we train our quantum neural network, we first discuss the measurement process and it's importance in quantum neural network implementations. ## <p style="text-align: center;"> 4. Measurement </p> Measurement is used in our circuit above to translate from quantum to classical information. In other quantum neural networks, measurement can be used to introduce non-linearity. NISQAI treats measurements as both a way to keep circuit-depth low (for implementations on current/near-term quantum computers) as well as introduce non-linearity between layers of a network. Specifically, measuremnets lead to (intermediate) classical data. On a classical computer, we can introduce any non-linear activation function we wish. The new classical data from the output of the activation function can then be prepared into quantum form again via steps 1 and 2 (data encoding and state preparation). This intermediate classical post-processing is a trademark of NISQAI. It allows for: 1. Short-depth circuits suitable for NISQ computers. 1. Non-linearity between layers of a quantum neural network. 1. Deep learning (many layers) with shallow circuits. In this simple binary classifier example, we'll restrict to just one layer of the neural network for simplicity. ## <p style="text-align: center;"> 5. Training </p> We saw above that it's easy to steer one point towards the output we want to get. But training the quantum neural network involves training over all points in the training set. For this, we need to define a cost function that captures the total loss over the entire training set. To do this, define the _indicator function_ $I(z_i = \hat{z}_i)$ to be 0 if $z_i = \hat{z}_i$ and 1 otherwise. Here, $z_i$ is the exact label of the $i$th training data $(x_i, y_i)$ and $\hat{z}_i$ is the prediction of this label by our neural network. (In code, we use the variables `labels` for $z_i$ and `predictions` for $\hat{z}_i$.) To define the cost now, we simply sum over all points (say there are $M$ points) in the training data: \begin{equation} C = \sum_{i = 1}^{M} I(z_i = \hat{z}_i) \end{equation} Note that the cost $C$ depends on the unitary evolution $U$, i.e. $C = C(U)$, because the prediction $\hat{z}_i$ depends on $U$. We now need to define a cost (objective) function ```obj(...)``` that takes into account all data in the training set. This function will encapsulate everything we've done for a single training point, but now for all of them. ```python # fraction of total data to use as training data train_frac = 0.7 def obj(uangles): """Returns the objective function C defined above over all training data. Args: uangles [type: list<float>] the angles in the unitary evolution. rtype: int """ # grab some training data from the overall data set tpoints = int(train_frac * len(qdata)) tdata = qdata[:tpoints] tlabels = labels[:tpoints] # initialize a variable to store the output predictions of the neural net predictions = np.zeros_like(tlabels, dtype=int) # loop over all training data to get the predictions for i, pangles in enumerate(tdata): # write the program qprog = make_program(pangles, uangles) # run the program out = qvm.run(qprog, trials=1000) # get the output probabilities p0 = out.count([0]) p1 = out.count([1]) # take the prediction to be max(p0, p1) if p0 >= p1: predictions[i] = 0 else: predictions[i] = 1 # compute the difference of the labels and return the cost cost = sum(abs(predictions - tlabels)) / tpoints print("The current value of the cost function is:", cost, end="\r") return cost ``` Now let's compute the objective function for some random test angles. ```python # get some random angles angs = 2 * np.pi * np.random.rand(3) cost = obj(angs) ``` We don't want just any random angles for our unitary evolution, however. We want to compute the optimal angles, which we can do by minimizing the cost function. Again we'll use the modified ```Powell``` algorithm for minimization. Training the neural network here will take more time than simply optimizing the output of a single point. On our computer, it takes around 15 seconds to evaluate the objective function for one set of angles. The `Powell` optimization algorithm generally takes on the order of 20-30 cost function evaluations--for us the optimization takes around 15 minutes on average. You can expect this training to take 15-20 minutes. If you're in a hurry and don't want to wait for this training, we've saved a set of optimal angles from previous attempts. These angles are for a horizontal boundary $x = 0.5$ trained on 70/100 data points. They will only be optimal for the first set of random points generated by the given seed. We reiterate: _Only use these angles if you haven't changed anything in the notebook and only ran each cell once!_ ```python optimal_angles = [7.85082205, 0.01934754, 9.62729993] ``` If you chose to skip the training, you should *not* execute the next two cells. Otherwise, continue through the notebook. ```python # train the quantum neural network and time how long it takes start = time.time() out = minimize(fun=obj, x0=angs, method="Powell") print("\nTotal training runtime took {} minutes.".format((time.time() - start) / 60)) ``` ```python # grab the optimal angles and minimal cost value optimal_angles = out['x'] fval = out['fun'] # print them out print(fval) print(optimal_angles) ``` # <p style="text-align: center;"> Results </p> Now that we've trained on a subset of our data, we can see how the predictions do on the whole dataset. First, we'll write a function that performs this task. ```python def get_all_predictions(angles): """Returns a numpy array of all predictions.""" # initialize a variable to store the output predictions of the neural net zhats = np.zeros_like(labels, dtype=int) # loop over all data to get predictions for i, pangles in enumerate(qdata): # write the program qprog = make_program(pangles, angles) # run the program out = qvm.run(qprog, trials=1000) # get the output probabilities p0 = out.count([0]) p1 = out.count([1]) # take the prediction to be max(p0, p1) if p0 >= p1: zhats[i] = 0 else: zhats[i] = 1 return zhats ``` Then we'll call the function to get the results. ```python # compute all the predictions of the quantum neural network predictions = get_all_predictions(optimal_angles) ``` We have now trained our neural network and classifeid all data points. Let's display the statistics below to see how our QNN performed. ```python num = 0 for a in np.linspace(0, 2 * np.pi, 25): for b in np.linspace(0, 2 * np.pi, 25): num += 1 # compute all the predictions of the quantum neural network predictions = get_all_predictions([a, b, 0]) # # compute statistics of the QNN # ntrain = int(train_frac * npoints) # ncorrect = npoints - sum(abs(predictions - labels)) # acc = ncorrect / npoints * 100 # # print them out # print(" Results of quantum neural network classification ".center(80, "=")) # print("Out of {} total data points:".format(npoints)) # print("The QNN was trained on {}% of the total data ({} training points).".format(train_frac * 100, ntrain)) # print("The QNN classified {} data points correctly ({}% accuracy).".format(ncorrect, acc)) # print("".center(80, "=")) # % matplotlib inline # # plot the points, line y = x, and prediction # #plt.plot(xs, xs, '--k') for i in range(npoints): if predictions[i] == 0: ckey = 'g' else: ckey = 'b' plt.scatter(data[i, 0], data[i, 1], color=ckey) plt.grid() plt.title("a = %0.2f, b = %0.2f" %(a, b), fontsize=16, fontweight="bold") plt.savefig(str(num) + ".png", format="png") plt.close() ``` ## <p style="text-align: center;"> Discussion of Results </p> How did your quantum neural network perform? If you followed through this notebook sequentially, you should have seen 100% accuracy in the predictions of the network. A saved plot of our results obtained by running this notebook is included below: Here, the exact decision boundary (not the learned one) is shown in the plot, and data points are colored according to the quantum neural network predictions. Blue means predicted left of the boundary (0 bin), and green means predicted right of the boundary (1 bin). As can be seen in our example results, all data points are correctly classified. # <p style="text-align: center;"> Example Done with NISQAI </p> The above example involved five steps to implementing a neural network on a quantum computer. While the steps aren't hard, programming each one for every particular example is tedious and time consuming. More time could be spent testing quantum neural networks if there were a library to implement all of these steps. This is where NISQAI comes in. NISQAI is to quantum machine learning what TensorFlow/pyTorch is to classical machine learning. Just like OpenFermion provides a library of code to simplify quantum chemistry on quantum computers, NISQAI provides a library of code to simplify neural networks and other machine learning algorithms on quantum computers. The above classifier example in NISQAI could be done with the following few lines of code. Here, we assume that ```classical_data``` exists in the program. ## Prototype NISQAI Code ``` # imports from nisqai import qnn # get a quantum neural network network = qnn.qnn(nodes=1, layers=1) # encode the classical data into quantum form network.encode(data=classical_data, scheme=qnn.encoding_schemes.SIMPLE_LINEAR) # add the unitary evolution network.add_unitary(qnn.ansatze.UNIVERSAL) # add measurements to the network network.add_measurements(basis=qnn.bases.Z) # do the training on 70% of the total data network.train(optimizer="Powell", fraction=0.7) # test the neural network on all the data or on new input data statistics = network.classify() ``` These few lines of code show the power of NISQAI. One of it's greatest strengths is the flexibility to research other quantum neural network implementations, not just the one qubit quantum classifier. ## Features of NISQAI * Shatters domain barriers. * Whether you're a machine learning researcher interested in quantum or a quantum researcher interested in machine learning, NISQAI is built for you. * Powerful builtins. * Numerous prototypes of quantum neural network architectures, including methods for data encoding, state preparation, unitary evolution, measurement, and training. * Fully modular. * For methods like `qnn.add_unitary(...)`, the user can write a function to specify whichever unitary ansatz is desired. * Loaded with examples. * Many instructive code snippets and notebooks to get you started in quantum machine learning. * Open-source. * NISQAI is currently under development with expected release in early 2019. After this, NISQAI will be free and open-source. Always. * Cross platform. * NISQAI works for Windows, Mac, and Linux. * Python/Matlab interfaces. * Two of the most popular languages for quantum computing and machine learning researchers. # Conclusions In this example, we've seen that a quantum neural network is able to successfully classify classical data in $\mathbb{R}^2$. The qubit encoding strategy is able to write two bits of classical information into one bit of quantum information. Additionally, the state preparation circuit for the qubit encoding is short-depth, particularly useful for NISQ computers. We've demonstrated how to train a quantum neural network using the modified Powell algorithm on a simple example. We've also discussed how the NISQAI library greatly simplifies quantum neural network implementations. # Acknowledgements The development of NISQAI is supported by the [unitary.fund](http://unitary.fund/). We thank [Will Zeng](https://twitter.com/wjzeng) for creating and running this program, as well as [John Hering](https://twitter.com/johnhering), Jeff Cordova, Nima Alidoust, and [PLOS](https://www.plos.org/) for sponsoring it.
using TableShowUtils using Test using DataValues using Dates @testset "TableShowUtils" begin source = [(a=1,b="A"),(a=2,b="B")] @test sprint(TableShowUtils.printtable, source, "foo file") == """ 2x2 foo file a │ b ──┼── 1 │ A 2 │ B""" @test sprint(TableShowUtils.printHTMLtable, source) == """ <table><thead><tr><th>a</th><th>b</th></tr></thead><tbody><tr><td>1</td><td>&quot;A&quot;</td></tr><tr><td>2</td><td>&quot;B&quot;</td></tr></tbody></table>""" @test sprint((stream) -> TableShowUtils.printtable(stream, source, "foo file", force_unknown_rows = true)) == "?x2 foo file\na │ b\n──┼──\n1 │ A\n2 │ B\n... with more rows" source_with_many_columns = [(a0=1,b0=1,c0=1,a1=1,b1=1,c1=1,a2=1,b2=1,c2=1,a3=1,b3=1,c3=1,a4=1,b4=1,c4=1,a5=1,b5=1,c5=1,a6=1,b6=1,c6=1,a7=1,b7=1,c7=1,a8=1,b8=1,c8=1,a9=1,b9=1,c9=1,a10=1,b10=1,c10=1)] @test sprint(TableShowUtils.printtable, source_with_many_columns, "foo file") == "1x33 foo file\na0 │ b0 │ c0 │ a1 │ b1 │ c1 │ a2 │ b2 │ c2 │ a3 │ b3 │ c3 │ a4 │ b4 │ c4 │ a5\n───┼────┼────┼────┼────┼────┼────┼────┼────┼────┼────┼────┼────┼────┼────┼───\n1 │ 1 │ 1 │ 1 │ 1 │ 1 │ 1 │ 1 │ 1 │ 1 │ 1 │ 1 │ 1 │ 1 │ 1 │ 1 \n... with 17 more columns: b5, c5, a6, b6, c6, a7, b7, c7, a8, b8, c8, a9, b9, c9, a10, b10, c10" source_with_NA = [(a=1,b="A"),(a=2,b=NA)] @test sprint(TableShowUtils.printtable, source_with_NA, "foo file") == "2x2 foo file\na │ b \n──┼────\n1 │ A \n2 │ #NA" @test sprint((stream) -> TableShowUtils.printHTMLtable(stream, source, force_unknown_rows = true)) == "<table><thead><tr><th>a</th><th>b</th></tr></thead><tbody><tr><td>1</td><td>&quot;A&quot;</td></tr><tr><td>2</td><td>&quot;B&quot;</td></tr><tr><td>&vellip;</td><td>&vellip;</td></tr></tbody></table><p>... with more rows.</p>" @test sprint(TableShowUtils.printdataresource, source) == "{\"schema\":{\"fields\":[{\"name\":\"a\",\"type\":\"integer\"},{\"name\":\"b\",\"type\":\"string\"}]},\"data\":[{\"a\":1,\"b\":\"A\"},{\"a\":2,\"b\":\"B\"}]}" @test sprint(TableShowUtils.printdataresource, source_with_NA) == "{\"schema\":{\"fields\":[{\"name\":\"a\",\"type\":\"string\"},{\"name\":\"b\",\"type\":\"string\"}]},\"data\":[{\"a\":1,\"b\":\"A\"},{\"a\":2,\"b\":null}]}" @test TableShowUtils.julia_type_to_schema_type(AbstractFloat) == "number" @test TableShowUtils.julia_type_to_schema_type(Bool) == "boolean" @test TableShowUtils.julia_type_to_schema_type(Dates.Time) == "time" @test TableShowUtils.julia_type_to_schema_type(Dates.Date) == "date" @test TableShowUtils.julia_type_to_schema_type(Dates.DateTime) == "datetime" @test TableShowUtils.julia_type_to_schema_type(DataValues.DataValue{Integer}) == "integer" end
At Foppapedretti we think it is important to use advanced technology in order to provide our products with the maximum functionality and ease of use. Since 1946 Foppapedretti has manufactured original and creative items, while paying particular attention to the use of materials and the technology within them. Decorate your dream-house with us. "It’s great to be a child" From the very first day, Foppapedretti is with your child.
[GOAL] I : Type u f : I → Type v x y : (i : I) → f i i : I inst✝ : (i : I) → Distrib (f i) ⊢ ∀ (a b c : (i : I) → f i), a * (b + c) = a * b + a * c [PROOFSTEP] intros [GOAL] I : Type u f : I → Type v x y : (i : I) → f i i : I inst✝ : (i : I) → Distrib (f i) a✝ b✝ c✝ : (i : I) → f i ⊢ a✝ * (b✝ + c✝) = a✝ * b✝ + a✝ * c✝ [PROOFSTEP] ext [GOAL] case h I : Type u f : I → Type v x y : (i : I) → f i i : I inst✝ : (i : I) → Distrib (f i) a✝ b✝ c✝ : (i : I) → f i x✝ : I ⊢ (a✝ * (b✝ + c✝)) x✝ = (a✝ * b✝ + a✝ * c✝) x✝ [PROOFSTEP] exact mul_add _ _ _ [GOAL] I : Type u f : I → Type v x y : (i : I) → f i i : I inst✝ : (i : I) → Distrib (f i) ⊢ ∀ (a b c : (i : I) → f i), (a + b) * c = a * c + b * c [PROOFSTEP] intros [GOAL] I : Type u f : I → Type v x y : (i : I) → f i i : I inst✝ : (i : I) → Distrib (f i) a✝ b✝ c✝ : (i : I) → f i ⊢ (a✝ + b✝) * c✝ = a✝ * c✝ + b✝ * c✝ [PROOFSTEP] ext [GOAL] case h I : Type u f : I → Type v x y : (i : I) → f i i : I inst✝ : (i : I) → Distrib (f i) a✝ b✝ c✝ : (i : I) → f i x✝ : I ⊢ ((a✝ + b✝) * c✝) x✝ = (a✝ * c✝ + b✝ * c✝) x✝ [PROOFSTEP] exact add_mul _ _ _
function [R, tau] = CholeskyMultIdentity(H) % Implements Cholesky with added multiple of the identity. This attempts to % to find a scalar tau > 0 such that H + tau * I is sufficiently positive % definite, where I is the identity matrix. global numFact % Number of Cholesky factorizations attempted. % First, we intially try a Cholesky factorization. [R, fail] = chol(H); numFact = numFact + 1; % If it does not fail, we're done. if fail == 0 tau = 0; return; end % If the initial Cholesky factorization fails, we attempt to find a scalar % tau > 0 such that H + tau * I is sufficiently positive definite. beta = 0.001; % Heuristic for increasing tau. min_H_diag = min(diag(H)); % Smallest diagonal of H. % If smallest diagonal of H is positive, set tau to 0; otherwise, set to % nonnegative version of the smallest diagonal plus the beta heuristic. if min_H_diag > 0 tau = 0; else tau = -min_H_diag + beta; end I = eye(size(H,1)); % Identity matrix. % Repeatedly add a tau-multiple of the identity to H until the Cholesky % factorization succeeds. Upon each failure, double tau. while 1 [R, fail] = chol(H + tau * I); numFact = numFact + 1; if fail == 0 return; else % NOTE: In order to decrease number of factorizations, we may want to % increase tau by a factor of 10 instead of 2. tau = max(2*tau, beta); end end end
[STATEMENT] lemma covering_space_locally_connected: fixes p :: "'a::real_normed_vector \<Rightarrow> 'b::real_normed_vector" assumes "locally connected C" "covering_space C p S" shows "locally connected S" [PROOF STATE] proof (prove) goal (1 subgoal): 1. locally connected S [PROOF STEP] using assms covering_space_locally_connected_eq [PROOF STATE] proof (prove) using this: locally connected C covering_space C p S covering_space ?C ?p ?S \<Longrightarrow> locally connected ?S = locally connected ?C goal (1 subgoal): 1. locally connected S [PROOF STEP] by blast
% v_rotro2eu_tab: Calculate tables needed for v_rotro2eu %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % 52 different rotation matrix patterns of -1,0,+1: % % 1- 3: identity matrix rows in order: 123, 231, 312 % % 1- 3: negated identity matrix rows in order: 132, 213, 321 % % 7-12: As 1-6 but with rows 2,3 negated % % 13-18: As 1-6 but with rows 1,3 negated % % 19-24: As 1-6 but with rows 1,2 negated % % 25-33: +1 in position (i-24) and 0's in remainder of this row and col % % 34-42: -1 in position (i-24) and 0's in remainder of this row and col % % 43-51: 0 in position (i-42) % % 52: no special symmetry % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% mes=[1:3 10:12 7:9 4:6]; % sign reversal look-up table rtci=[2 3 5 6 8 9; 3 1 6 4 9 7; 1 2 4 5 7 8]'; rtsi=[3 2 6 5 9 8; 1 3 4 6 7 9; 2 1 5 4 8 7]'; rtr=[1 4 7 2 5 8 3 6 9]; % indices to transpose a vectorized 3x3 matrix w6=ones(6,1); % th6=3*w6; x6=[2 1 2 1 2 1]'; % Index for sin components scai=[0 0 0 1; 0 0 0 2; 0 0 0 3; 1 -1 0 1; 1 -1 0 2; 1 -1 0 3; 0 0 -1 1; 0 0 -1 2; 0 0 -1 3; -1 1 0 1; -1 1 0 2; -1 1 0 3]'; % [sin; -sin; cos; xyz] for fixed rotations % create pattersn of non-zero entries nzpatt=10*ones(3,3,52); % pattern of -1,0,+1 e3=eye(3); nzpatt(:,:,1)=e3; nzpatt(:,:,2)=e3([2 3 1],:); nzpatt(:,:,3)=e3([3 1 2],:); nzpatt(:,:,4)=-e3([1 3 2],:); nzpatt(:,:,5)=-e3([2 1 3],:); nzpatt(:,:,6)=-e3([3 2 1],:); for j=1:3 f3=-e3; f3(j,j)=1; for i=1:6 nzpatt(:,:,i+6*j)=f3*nzpatt(:,:,i); end end for i=1:9 ir=1+mod(i-1,3); ic=1+(i-ir)/3; nzpatt(:,ic,i+24)=0; nzpatt(ir,:,i+24)=0; nzpatt(ir,ic,i+24)=1; nzpatt(:,ic,i+33)=0; nzpatt(ir,:,i+33)=0; nzpatt(ir,ic,i+33)=-1; nzpatt(ir,ic,i+42)=0; end nzpattv=reshape(nzpatt,9,52); % vectorize the 3x3 matrices nzpattc=reshape(sum(nzpatt~=0,1),3,52); % number of non-zero elements in each column % now create transition map trmap=zeros(52,12); % result of applying transformation j to pattern i zel=zeros(4,3,52); % elements to zero: [zero; non-zero; sine-sign; targ-sign],transformation,initial pattern jm='xyz123456789'; % rotation patterns for i=1:52 for j=1:12 rijv=reshape(v_rotqr2ro(v_roteu2qr(jm(j),pi/3))*nzpatt(:,:,i),9,1); % vectorized result of applying transformation rijv(abs(abs(abs(rijv)-0.5)-0.5)>1e-8)=10; % set entries to 10 unless close to -1,0,+1 k=find(all(round(rijv)==nzpattv,1),1); % round to integers and find a match if isempty(k) error('cannot find match for (%d,%d)'); else trmap(i,j)=k; end if j<=3 icol=mod(find([nzpattc(:,i)==1 & nzpattc(:,k)==2;nzpattc(:,i)==2 & nzpattc(:,k)==3],1)-1,3)+1; % find the column to zero an element if ~isempty(icol) irow=(1:3)*(~nzpatt(:,icol,i) & nzpatt(:,icol,k)); % find zero that disappears jrow=6-j-irow; % find other row involved in rotation zel(:,j,i)=[3*icol-3+[irow; jrow]; mod(j-irow+1,3)-1; sign(nzpatt(jrow,icol,i))]; end end end end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % print zel %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% fid=fopen('zel.txt','w'); fprintf(fid,'zel=reshape(['); for i=1:52 if i>1 fprintf(fid,';\n '); end fprintf(fid,' %2d',zel(:,:,i)); end fprintf(fid,']'',4,3,52);\n'); fclose(fid); %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % print trmap %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% fid=fopen('trmap.txt','w'); fprintf(fid,'trmap=['); for i=1:52 if i>1 fprintf(fid,';\n '); end fprintf(fid,' %2d',trmap(i,:)); end fprintf(fid,'];\n'); fclose(fid);
lemma prime_odd_int: "prime p \<Longrightarrow> p > (2::int) \<Longrightarrow> odd p"
-- -------------------------------------------------------------- [ Lens.idr ] -- Description : Idris port of Control.Lens -- Copyright : (c) Huw Campbell -- --------------------------------------------------------------------- [ EOH ] module Control.Lens.First public export record First (a : Type) where constructor MkFirst getFirst : Maybe a public export Semigroup (First a) where (MkFirst f) <+> r = case f of Nothing => r Just x => MkFirst f public export Monoid (First a) where neutral = MkFirst Nothing
State Before: α : Type u_1 β : Type ?u.23216 f fa : α → α fb : β → β x y : α m n✝ : ℕ hx : x ∈ periodicPts f n : ℕ ⊢ minimalPeriod f ((f^[n]) x) = minimalPeriod f x State After: α : Type u_1 β : Type ?u.23216 f fa : α → α fb : β → β x y : α m n✝ : ℕ hx : x ∈ periodicPts f n : ℕ ⊢ IsPeriodicPt f (minimalPeriod f x) ((f^[n]) x) α : Type u_1 β : Type ?u.23216 f fa : α → α fb : β → β x y : α m n✝ : ℕ hx : x ∈ periodicPts f n : ℕ ⊢ (f^[n]) x ∈ periodicPts f Tactic: apply (IsPeriodicPt.minimalPeriod_le (minimalPeriod_pos_of_mem_periodicPts hx) _).antisymm ((isPeriodicPt_of_mem_periodicPts_of_isPeriodicPt_iterate hx (isPeriodicPt_minimalPeriod f _)).minimalPeriod_le (minimalPeriod_pos_of_mem_periodicPts _)) State Before: α : Type u_1 β : Type ?u.23216 f fa : α → α fb : β → β x y : α m n✝ : ℕ hx : x ∈ periodicPts f n : ℕ ⊢ IsPeriodicPt f (minimalPeriod f x) ((f^[n]) x) State After: no goals Tactic: exact (isPeriodicPt_minimalPeriod f x).apply_iterate n State Before: α : Type u_1 β : Type ?u.23216 f fa : α → α fb : β → β x y : α m n✝ : ℕ hx : x ∈ periodicPts f n : ℕ ⊢ (f^[n]) x ∈ periodicPts f State After: case intro.intro α : Type u_1 β : Type ?u.23216 f fa : α → α fb : β → β x y : α m✝ n✝ n m : ℕ hm : m > 0 hx : IsPeriodicPt f m x ⊢ (f^[n]) x ∈ periodicPts f Tactic: rcases hx with ⟨m, hm, hx⟩ State Before: case intro.intro α : Type u_1 β : Type ?u.23216 f fa : α → α fb : β → β x y : α m✝ n✝ n m : ℕ hm : m > 0 hx : IsPeriodicPt f m x ⊢ (f^[n]) x ∈ periodicPts f State After: no goals Tactic: exact ⟨m, hm, hx.apply_iterate n⟩
{-# OPTIONS --safe #-} open import Relation.Ternary.Separation module Relation.Ternary.Separation.Allstar {i} {I : Set i} {c} {C : Set c} {{rc : RawSep C}} {u} {{sc : IsUnitalSep rc u}} where open import Level open import Data.Product open import Data.List hiding (concat) open import Relation.Unary {- Inductive separating forall over a list -} module _ {ℓ} where data Allstar (P : I → Pred C ℓ) : List I → SPred (ℓ ⊔ c ⊔ i) where nil : ε[ Allstar P [] ] cons : ∀ {x xs} → ∀[ P x ✴ Allstar P xs ⇒ Allstar P (x ∷ xs) ] -- not typed well in non-pattern positions infixr 5 _:⟨_⟩:_ pattern _:⟨_⟩:_ x p xs = cons (x ×⟨ p ⟩ xs) singleton : ∀ {P x} → ∀[ P x ⇒ Allstar P [ x ] ] singleton v = cons (v ×⟨ ⊎-idʳ ⟩ nil) open import Relation.Ternary.Separation.Construct.List I open import Data.List.Relation.Ternary.Interleaving.Propositional as I repartition : ∀ {P} {Σ₁ Σ₂ Σ} → Σ₁ ⊎ Σ₂ ≣ Σ → ∀[ Allstar P Σ ⇒ Allstar P Σ₁ ✴ Allstar P Σ₂ ] repartition [] nil = nil ×⟨ ⊎-idˡ ⟩ nil repartition (consˡ σ) (cons (a ×⟨ σ′ ⟩ qx)) = let xs ×⟨ σ′′ ⟩ ys = repartition σ qx _ , τ₁ , τ₂ = ⊎-unassoc σ′ σ′′ in (cons (a ×⟨ τ₁ ⟩ xs)) ×⟨ τ₂ ⟩ ys repartition (consʳ σ) (cons (a ×⟨ σ′ ⟩ qx)) = let xs ×⟨ σ′′ ⟩ ys = repartition σ qx _ , τ₁ , τ₂ = ⊎-unassoc σ′ (⊎-comm σ′′) in xs ×⟨ ⊎-comm τ₂ ⟩ (cons (a ×⟨ τ₁ ⟩ ys)) concat : ∀ {P} {Γ₁ Γ₂} → ∀[ Allstar P Γ₁ ✴ Allstar P Γ₂ ⇒ Allstar P (Γ₁ ++ Γ₂) ] concat (nil ×⟨ s ⟩ env₂) rewrite ⊎-id⁻ˡ s = env₂ concat (cons (v ×⟨ s ⟩ env₁) ×⟨ s' ⟩ env₂) = let _ , eq₁ , eq₂ = ⊎-assoc s s' in cons (v ×⟨ eq₁ ⟩ (concat (env₁ ×⟨ eq₂ ⟩ env₂)))
# Classifieur logistique ## Concepts Le classifieur logistique est une classifieur linéaire, $X$ est l'entrée (par exemple les pixels d'une image) et il applique un transformation linéaire pour effectuer ses prédictions $y$. \begin{align} WX+b = y \end{align} - $W \in \mathbb{R}^{n \times m}$ est une matrice contenant la matrice des poids, - $X \in \mathbb{R}^{m}$ est un vecteur d'entrée, - $b \in \mathbb{R}^{n}$ est le biais, - $y \in \mathbb{R}^{n}$ est la sortie prédite. L'objectif est de trouver les matrices $W$ et $b$ permettant de réaliser les meilleurs prédictions. Le problème est que $y$ n'est évidemment pas une probabilité d'appartenance à une classe. $\sum_{i=1}^{n} y_i \ne 1$. Nous allons utiliser la fonction $softmax$ sur les éléments de sortie, pour d'une part normaliser les valeurs de sortie, mais aussi "exagérer" les écarts de probabiblité: \begin{align} S(y_i) = \frac{e^{y_i}}{\sum_j e^{y_j}} \end{align} Les valeurs obtenues sont appelées **logits**. Nous avons donc maintenant des probabilités d'appartenance à une classe (ou plutôt une estimation, d'où le ^ sur le vecteur $p$: \begin{align} S(WX+b) = \hat{p} \end{align} Lors de l'apprentissage, la probabilité de la sortie désirée est donc encodée de la manière triviale suivante: nous utilisons un vecteur ayant une probabilité de $1$ pour la classe désirée, et $0$ pour les autres classes. Cet encodage est appelé **one hot encoding**. Notons $p$ ce vecteur de probabilité désiré. L'objectif est maintenant de mesurer une "distance" entre le vecteur de probabilité de la sortie désirée, et celle de la sortie effective. La mesure couremment utilisée à ces fins est la **cross entropie**. \begin{align} D(\hat{p},p) = - \sum_i p_i log (\hat{p}_i) \end{align} **Important** Notez que $\hat{p}$ est placé dans le $log$, ce point est inportant car $p$ contient $n-1$ valeurs $0$... et $log(0)= -\infty$. ## Apprentissage La première méthode est de minimiser l'erreur moyenne sur tous les exemples: \begin{align} \mathcal{L}(X,b) = \frac{1}{n} \sum_i D(S(WX_i+b),P_i) \end{align} Ce que nous recherchons, c'est: $argmin_{W,b} \mathcal{L}(W,b)$. Cf: [Exercice n°1: 1_notmnist.ipynb](1_notmnist.ipynb) # Mesure de la performance **Ensemble d'apprentissage**: un ensemble d'exemples utilisés pour l'apprentissage: pour s'adapter aux paramètres du classificateur. Dans le cas des NN, nous utiliserions l'ensemble d'apprentissage pour trouver les poids synaptiques «optimaux». **Ensemble de validation**: un ensemble d'exemples utilisés pour ajuster les hyper-paramètres paramètres d'un classificateur. Dans le cas des NN, nous utiliserions l'ensemble de validation pour trouver le nombre «optimal» de couches cachées ou déterminer un point d'arrêt pour l'algorithme de rétropropagation. **Ensemble de tests**: un ensemble d'exemples utilisés uniquement pour évaluer la performance d'un classificateur entièrement formé. Dans le cas des NN, nous utiliserions le test pour estimer le taux d'erreur après avoir choisi le modèle final (taille du NN et poids synaptiques). Pourquoi séparer les ensembles de test et de validation? Pour éviter un sur-apprentissage par over-fitting des hyper-paramètres du modèle. En vrac: - Pour annoncer une amélioration, il doit y avoir 30 données correctement classées dans l'ensemble de validation pour conclure que le modèle s'est amélioré. Soit 0.1% d'amélioration sur 30000 données dans l'ensemble de validation. # Descente de gradient vs Descente de gradient stochastique ## Description \begin{align} \mathcal{L}(X,b) = \frac{1}{n} \sum_i D(S(WX_i+b),P_i) \end{align} Il faut calculer $\Delta \mathcal{L}(W,b)$ pour tous les exemples... et de nombreuses fois. Ce processus est top couteux, au lieu de calculer $\mathcal{L}$, nous allons calculer à chaque itération une estimation des cette valeur : $\hat{\mathcal{L}}$ sur un sous ensemble des données d'apprentissage (entre 1 et 1000 données choisies aléatoirement à chaque itération). Cette méthode est appelée descente de gradient stochastique ou **SGD**. ## Contraintes pour la SGD Pour que la **SGD** fonctionne, il faut: - Des entrées: - de moyenne nulle - de variance faible - Des poids initialisés: - de manière aléatoire - de moyenne nulle - de variance faible ## Astuce pour la SGD ### Momentum Utiliser l'inertie (mumentum) plutôt que de mettre à jour les poids simplement avec $\delta_t = - \alpha \Delta \mathcal{L}(W)$, de la manière suivante : $\delta_t = (1-\beta) \Delta \mathcal{L}(W) + \beta \delta_{t-1}$ avec $\beta \in [0,1]$. Une valeur de $\beta = 0.9$ est généralement un bon choix. ### Learning rate decay L'objectif est de diminuer la taille des pas au fil des itérations. De nombreuses méthodes existent: - Exponential decay : Il a la forme mathématique $lr = lr_0 e^{- kt}$, où lr, k sont des hyperparamètres et t est le nombre d'itération. - Step Decay : consiste par exemple à réduire le taux d'apprentissage de moitié toutes les 10 epoch. - ... Dans tous les cas si l'apprentissage se passe mal... commencez par diminuer la vitesse d'apprentissage. **ADAGRAD** est un algorithme d'optimisation des descente de gradient, cet algorithme évite d'avoir à gérer un certain nombre d'hyper paramètres tels que *la vitesse d'apprentissage initiale*, le *momentum*, le *decay*. Il existe beaucoup [d'autres algorithmes](http://ruder.io/optimizing-gradient-descent/index.html#adagrad) de ce type. ## Eviter le sur-apprentissage L'objectif des techniques suivantes est de minimiser le sur-apprentissage. ### Early termination Cette technique consiste à stopper l'apprentissage dès que la précision sur l'ensemble d'apprentissage diminue. ### Techniques de regularisation Techniques ajoutant explicitement des contraintes sur les poids, par exemple : - **L2 régularisation**: On ajoute un nouveau terme à la fonction de cout pénalisant des poids trop élevés: \begin{align} \mathcal{L}_{reg} = \mathcal{L} + \beta \frac{1}{2} \| W \|_2^2 \end{align} $\beta$ est donc un autre hyper paramètre. La dérivée de l'expression de régularisation ajouté est simple à calculer et vaut simplement: $\beta W$. - **Dropout**: Le réseau neuronal se voit aléatoirement amputé d'une partie de ses neurones pendant la phase d'entrainement (leur valeur de sortie estimée à 0). Ce processus est répété à chaque itération. Une probabilité de $0.5$ est couramment utilisée pour le dropout. Si la technique de dropout ne fonctionne pas sur un modèle, c'est qu'il ne comporte pas suffisamment de poids. ```python ```
from p3ui import * import numpy as np from matplotlib.image import imread icon_char = b'\xee\x8b\x88'.decode('utf-8') def load_texture_data(path): return (imread(path) * 255).astype(np.uint8) def show_popup(window): window.add(Popup(content=Text('button clicked!'))) class TabWidgets(ScrollArea): def __init__(self, user_interface, assets): super().__init__( content=Layout( width=(100 | percent, 0, 0), direction=Direction.Vertical, align_items=Alignment.Stretch, justify_content=Justification.Start, children=[ Button( label='Button', on_click=lambda: user_interface.add(Popup(content=Text('button clicked!'))) ), Layout(direction=Direction.Horizontal, align_items=Alignment.End, children=[ Text(f'Text'), Text(f'Green Text', color='green'), Text(f'Red Text', color='#ff0000'), ]), Button( label=f"{icon_char} Icon Button", on_click=lambda: print('icon button clicked') ), Button( disabled=True, label=f"{icon_char} Icon Button", on_click=lambda: print('icon button clicked') ), Text(f'Some Text', label='Label'), CheckBox( label='CheckBox', on_change=lambda value: print(f'checkbox value: {value}') ), InputText(label='InputText', hint="enter sth."), ComboBox( label='ComboBox', options=['aaaa', 'bbbb', 'cccc'], selected_index=1, on_change=lambda index: print(f'combo selected {index}') ), Text(f'Text'), ProgressBar(label='Progress Bar', value=0.4), ProgressBar(value=0.3), ComboBox( options=['aaaa', 'bbbb', 'cccc'], selected_index=1, on_change=lambda index: print(f'combo selected {index}') ), ScrollArea( width=(200 | px, 1, 0), height=(200 | px, 1, 0), content=Image( texture=Texture( load_texture_data(assets.joinpath( "test.png" ).as_posix()) ), on_mouse_enter=lambda e: print('mouse entered image'), on_mouse_move=lambda e: print(f'{e.source} {e.x} {e.y}'), on_mouse_leave=lambda e: print('mouse left image'), ) ), SliderU8( min=0, max=100, value=20, label='SliderU8', on_change=lambda value: print(f'SliderU8 value: {value}') ), SliderU16(min=0, max=100, value=20, label='SliderU16'), SliderU32(min=0, max=100, value=20, label='SliderU32'), SliderU64(min=0, max=100, value=20, label='SliderU64'), SliderS8(min=0, max=100, value=20, label='SliderS8'), SliderS16(disabled=True, min=0, max=100, value=20, label='SliderS16'), SliderS32(min=0, max=100, value=20, label='SliderS32'), SliderS64(min=0, max=100, value=20, label='SliderS64'), SliderFloat(min=0, max=100, value=20, label='SliderFloat'), SliderDouble(min=0, max=100, value=20, label='SliderDouble'), SliderFloat( min=0, max=100, value=20, label='SliderFloat (formatted)', format="value=%.3f" ), InputU8( min=0, max=100, value=20, label='InputU8', on_change=lambda value: print(f'InputU8 value: {value}') ), InputU16(disabled=True, min=0, max=100, value=20, label='InputU16', step=1), InputU32(min=0, max=100, value=20, label='InputU32', step=2), InputU64(min=0, max=100, value=20, label='InputU64'), InputS16(min=0, max=100, value=20, label='InputS16'), InputS8(min=0, max=100, value=20, label='InputS8'), InputS32(min=0, max=100, value=20, label='InputS32'), InputS64(min=0, max=100, value=20, label='InputS64'), InputFloat(min=0, max=100, value=20, label='InputFloat'), InputDouble(min=0, max=100, value=20, label='InputDouble'), InputFloat( min=0, max=100, value=20, label='InputFloat (formatted)' , format="value=%.3f" ) ] ) )
1982
[STATEMENT] lemma PNT4_imp_PNT5: assumes "\<theta> \<sim>[at_top] (\<lambda>x. x)" shows "\<psi> \<sim>[at_top] (\<lambda>x. x)" [PROOF STATE] proof (prove) goal (1 subgoal): 1. \<psi> \<sim>[at_top] (\<lambda>x. x) [PROOF STEP] proof - [PROOF STATE] proof (state) goal (1 subgoal): 1. \<psi> \<sim>[at_top] (\<lambda>x. x) [PROOF STEP] define r where "r = (\<lambda>x. \<psi> x - \<theta> x)" [PROOF STATE] proof (state) this: r = (\<lambda>x. \<psi> x - \<theta> x) goal (1 subgoal): 1. \<psi> \<sim>[at_top] (\<lambda>x. x) [PROOF STEP] have "r \<in> O(\<lambda>x. ln x * sqrt x)" [PROOF STATE] proof (prove) goal (1 subgoal): 1. r \<in> O(\<lambda>x. ln x * sqrt x) [PROOF STEP] unfolding r_def [PROOF STATE] proof (prove) goal (1 subgoal): 1. (\<lambda>x. \<psi> x - \<theta> x) \<in> O(\<lambda>x. ln x * sqrt x) [PROOF STEP] by (fact \<psi>_minus_\<theta>_bigo) [PROOF STATE] proof (state) this: r \<in> O(\<lambda>x. ln x * sqrt x) goal (1 subgoal): 1. \<psi> \<sim>[at_top] (\<lambda>x. x) [PROOF STEP] also [PROOF STATE] proof (state) this: r \<in> O(\<lambda>x. ln x * sqrt x) goal (1 subgoal): 1. \<psi> \<sim>[at_top] (\<lambda>x. x) [PROOF STEP] have "(\<lambda>x::real. ln x * sqrt x) \<in> o(\<lambda>x. x)" [PROOF STATE] proof (prove) goal (1 subgoal): 1. (\<lambda>x. ln x * sqrt x) \<in> o(\<lambda>x. x) [PROOF STEP] by real_asymp [PROOF STATE] proof (state) this: (\<lambda>x. ln x * sqrt x) \<in> o(\<lambda>x. x) goal (1 subgoal): 1. \<psi> \<sim>[at_top] (\<lambda>x. x) [PROOF STEP] finally [PROOF STATE] proof (chain) picking this: r \<in> o(\<lambda>x. x) [PROOF STEP] have r: "r \<in> o(\<lambda>x. x)" [PROOF STATE] proof (prove) using this: r \<in> o(\<lambda>x. x) goal (1 subgoal): 1. r \<in> o(\<lambda>x. x) [PROOF STEP] . [PROOF STATE] proof (state) this: r \<in> o(\<lambda>x. x) goal (1 subgoal): 1. \<psi> \<sim>[at_top] (\<lambda>x. x) [PROOF STEP] have "(\<lambda>x. \<theta> x + r x) \<sim>[at_top] (\<lambda>x. x)" [PROOF STATE] proof (prove) goal (1 subgoal): 1. (\<lambda>x. \<theta> x + r x) \<sim>[at_top] (\<lambda>x. x) [PROOF STEP] using assms r [PROOF STATE] proof (prove) using this: \<theta> \<sim>[at_top] (\<lambda>x. x) r \<in> o(\<lambda>x. x) goal (1 subgoal): 1. (\<lambda>x. \<theta> x + r x) \<sim>[at_top] (\<lambda>x. x) [PROOF STEP] by (subst asymp_equiv_add_right) auto [PROOF STATE] proof (state) this: (\<lambda>x. \<theta> x + r x) \<sim>[at_top] (\<lambda>x. x) goal (1 subgoal): 1. \<psi> \<sim>[at_top] (\<lambda>x. x) [PROOF STEP] thus ?thesis [PROOF STATE] proof (prove) using this: (\<lambda>x. \<theta> x + r x) \<sim>[at_top] (\<lambda>x. x) goal (1 subgoal): 1. \<psi> \<sim>[at_top] (\<lambda>x. x) [PROOF STEP] by (simp add: r_def) [PROOF STATE] proof (state) this: \<psi> \<sim>[at_top] (\<lambda>x. x) goal: No subgoals! [PROOF STEP] qed
{-# OPTIONS --cubical --no-import-sorts --safe --guardedness #-} module Cubical.Codata.Stream.Base where open import Cubical.Core.Everything record Stream (A : Type₀) : Type₀ where coinductive constructor _,_ field head : A tail : Stream A
module js import GR pxwidth = 640 pxheight = 480 @static if VERSION < v"0.7.0-DEV.4762" macro cfunction(f, rt, tup) :(Base.cfunction($(esc(f)), $(esc(rt)), Tuple{$(esc(tup))...})) end end id_count = 0 js_running = false mutable struct JSTermWidget identifier::Int width::Int height::Int visible::Bool end function inject_js() global comm comm = nothing _js_fallback = "https://gr-framework.org/downloads/gr-latest.js" _gr_js = if isfile(joinpath(ENV["GRDIR"], "lib", "gr.js")) _gr_js = try _gr_js = open(joinpath(ENV["GRDIR"], "lib", "gr.js")) do f _gr_js = read(f, String) _gr_js end catch e nothing end _gr_js end _jsterm = """ if (typeof grJSTermRunning === 'undefined' || !grJstermReady) { BOXZOOM_THRESHOLD = 3; // Minimal size in pixels of the boxzoom-box to trigger a boxzoom-event BOXZOOM_TRIGGER_THRESHHOLD = 1000; // Time to wait (in ms) before triggering boxzoom event instead // of panning when pressing the left mouse button without moving the mouse MAX_KERNEL_CONNECTION_ATTEMPTS = 25; // Maximum number of kernel initialisation attempts KERNEL_CONNECT_WAIT_TIME = 100; // Time to wait between kernel initialisation attempts RECONNECT_PLOT_TIMEOUT = 100; // Time to wait between attempts to connect to a plot's canvas RECONNECT_PLOT_MAX_ATTEMPTS = 50; // Maximum number of canvas reconnection attempts BOXZOOM_FILL_STYLE = '#FFAAAA'; // Fill style of the boxzoom box BOXZOOM_STROKE_STYLE = '#FF0000'; // Outline style of the boxzoom box var gr, comm, idcount = 0, widgets = [], jupyterRunning = false; /** * Loads a javascript file from `url` and calls `callback` when loading has been finished. * @param {string} url URL to load script from * @param {Function} callback Function to call when loading is finished * @param {number} maxtime Maximum time in ms to wait for script-loading */ saveLoad = function(url, callback, maxtime) { let script = document.createElement('script'); script.onload = function() { callback(); }; script.onerror = function() { console.error(url + ' can not be loaded.'); }; script.src = url; document.head.appendChild(script); setTimeout(function() { if (!grJstermReady) { console.error(url + ' can not be loaded.'); } }, maxtime); }; /** * Sends an object describing a event via jupyter-comm * @param {Object} data Data describing the event * @param {string} id Identifikator of the calling plot */ sendEvt = function(data, id) { if (jupyterRunning) { comm.send({ "type": "evt", "content": data, "id": id }); } }; /** * Runs draw-events cached during javascript startup */ jsLoaded = function() { grJstermReady = true; for (let or in onready) { or(); onready = []; } }; /** * Sends a canvas-removed-event via jupyter-comm * @param {number} id The removed plot's id */ createCanvas = function(id, width, height) { if (jupyterRunning) { comm.send({ "type": "createCanvas", "id": id, "width": width, "height": height }); } }; /** * Sends a save-data-event via jupyter-comm * @param {Object} data Data to save * @param {string} id plot identificator */ saveData = function(data, id) { if (jupyterRunning) { comm.send({ "type": "save", "content": { "id": id, "data": JSON.stringify(data) } }); } }; /** * Registration/initialisation of the jupyter-comm * @param {[type]} kernel Jupyter kernel object */ registerComm = function(kernel) { kernel.comm_manager.register_target('jsterm_comm', function(c) { c.on_msg(function(msg) { let data = msg.content.data; if (data.type == 'evt') { if (typeof widgets[data.id] !== 'undefined') { widgets[data.id].msgHandleEvent(data); } } else if (msg.content.data.type == 'cmd') { if (typeof data.id !== 'undefined') { if (typeof widgets[data.id] !== 'undefined') { widgets[data.id].msgHandleCommand(data); } } else { for (let key in widgets) { widgets[key].msgHandleCommand(data); } } } else if (data.type == 'draw') { draw(msg); } }); c.on_close(function() {}); window.addEventListener('beforeunload', function(e) { c.close(); }); comm = c; }); }; /** * Function to call when page has been loaded. * Determines if running in a jupyter environment. */ onLoad = function() { if (typeof Jupyter !== 'undefined') { jupyterRunning = true; initKernel(1); } else { drawSavedData(); } }; /** * Jupyter specific initialisation. * Retrying maximum `MAX_KERNEL_CONNECTION_ATTEMPTS` times * @param {number} attempt number of attempt */ initKernel = function(attempt) { let kernel = Jupyter.notebook.kernel; if (typeof kernel === 'undefined' || kernel == null) { if (attempt < MAX_KERNEL_CONNECTION_ATTEMPTS) { setTimeout(function() { initKernel(attempt + 1); }, KERNEL_CONNECT_WAIT_TIME); } } else { registerComm(kernel); Jupyter.notebook.events.on('kernel_ready.Kernel', function() { registerComm(kernel); for (let key in widgets) { widgets[key].connectCanvas(); } }); drawSavedData(); } }; /** * Handles a draw command. * @param {[type]} msg The input message containing the draw command */ draw = function(msg) { if (!grJstermReady) { onready.push(function() { return draw(msg); }); } else if (!GR.is_ready) { GR.ready(function() { return draw(msg); }); } else { if (typeof gr === 'undefined') { let canvas = document.createElement('canvas'); canvas.id = 'jsterm-hidden-canvas'; canvas.width = 640; canvas.height = 480; canvas.style = 'display: none;'; document.body.appendChild(canvas); gr = new GR('jsterm-hidden-canvas'); gr.registermeta(gr.GR_META_EVENT_SIZE, sizeCallback); gr.registermeta(gr.GR_META_EVENT_NEW_PLOT, newPlotCallback); gr.registermeta(gr.GR_META_EVENT_UPDATE_PLOT, updatePlotCallback); } let arguments = gr.newmeta(); gr.readmeta(arguments, msg.content.data.json); gr.mergemeta(arguments); } }; /** * Draw data that has been saved in the loaded page */ drawSavedData = function() { let data = document.getElementsByClassName("jsterm-data"); for (let i = 0; i < data.length; i++) { let msg = data[i].innerText; draw(JSON.parse(msg)); } }; if (document.readyState!='loading') { onLoad(); } else if (document.addEventListener) { document.addEventListener('DOMContentLoaded', onLoad); } else document.attachEvent('onreadystatechange', function() { if (document.readyState=='complete') { onLoad(); } }); /** * Callback for gr-meta's size event. Handles event and resizes canvas if required. */ sizeCallback = function(evt) { widgets[evt.plot_id].resize(evt.width, evt.height); }; /** * Callback for gr-meta's new plot event. Handles event and creates new canvas. */ newPlotCallback = function(evt) { if (typeof widgets[evt.plot_id] === 'undefined') { widgets[evt.plot_id] = new JSTermWidget(evt.plot_id); } widgets[evt.plot_id].draw(); }; /** * Callback for gr-meta's update plot event. Handles event and creates canvas id needed. */ updatePlotCallback = function(evt) { if (typeof widgets[evt.plot_id] === 'undefined') { console.error('Updated plot does not exist, creating new object. (id', evt.plot_id, ')'); widgets[evt.plot_id] = new JSTermWidget(evt.plot_id); } widgets[evt.plot_id].draw(); }; /** * Creates a JSTermWidget-Object describing and managing a canvas * @param {number} id The widget's numerical identificator (belonging context in `meta.c`) * @constructor */ JSTermWidget = function(id) { /** * Initialize the JSTermWidget */ this.init = function() { this.canvas = undefined; this.overlayCanvas = undefined; this.div = undefined; this.id = id; // context id for meta.c (switchmeta) this.waiting = false; this.oncanvas = function() {}; // event handling this.pinching = false; this.panning = false; this.prevMousePos = undefined; this.boxzoom = false; this.keepAspectRatio = true; this.boxzoomTriggerTimeout = undefined; this.boxzoomPoint = [undefined, undefined]; this.pinchDiff = 0; this.prevTouches = undefined; this.sendEvents = false; this.handleEvents = true; this.width = 640; this.height = 480; }; this.init(); /** * Resizes the JSTermWidget * @param {number} width new canvas width in pixels * @param {number} height new canvas height in pixels */ this.resize = function(width, height) { this.width = width; this.height = height; if (this.canvas !== undefined) { this.canvas.width = width; this.canvas.height = height; this.overlayCanvas.width = width; this.overlayCanvas.height = height; this.div.style = "position: relative; width: " + width + "px; height: " + height + "px;"; } this.draw(); }; /** * Send a event fired by widget via jupyter-comm * @param {Object} data Event description */ this.sendEvt = function(data) { if (this.sendEvents) { sendEvt(data, this.id); } }; /** * Calculate coordinates on the canvas of the mouseevent. * @param {Event} event The mouse event to process * @return {[number, number]} The calculated [x, y]-coordinates */ this.getCoords = function(event) { let rect = this.canvas.getBoundingClientRect(); //TODO mind the canvas-padding if necessary! return [Math.floor(event.clientX - rect.left), Math.floor(event.clientY - rect.top)]; }; /** * Send a event to `meta.c` * @param {number} mouseargs (Emscripten) address of the argumentcontainer describing a event */ this.grEventinput = function(mouseargs) { gr.switchmeta(this.id); gr.inputmeta(mouseargs); gr.current_canvas = this.canvas; gr.current_context = gr.current_canvas.getContext('2d'); gr.select_canvas(); gr.plotmeta(); }; /** * Handles a wheel event (zoom) * @param {number} x x-coordinate on the canvas of the mouse * @param {number} y y-coordinate on the canvas of the mouse * @param {number} angle_delta angle the wheel has been turned */ this.handleWheel = function(x, y, angle_delta) { if (typeof this.boxzoomTriggerTimeout !== 'undefined') { clearTimeout(this.boxzoomTriggerTimeout); } let mouseargs = gr.newmeta(); gr.meta_args_push(mouseargs, "x", "i", [x]); gr.meta_args_push(mouseargs, "y", "i", [y]); gr.meta_args_push(mouseargs, "angle_delta", "d", [angle_delta]); this.grEventinput(mouseargs); }; /** * Handles a wheel event triggered by the mouse * @param {Event} event The fired mouse event */ this.mouseHandleWheel = function (event) { let coords = this.getCoords(event); this.sendEvt({ "x": coords[0], "y": coords[1], "angle_delta": event.deltaY, "event": "mousewheel", }); if (this.handleEvents) { this.handleWheel(coords[0], coords[1], event.deltaY); } event.preventDefault(); }; /** * Handles a mousedown event * @param {number} x x-coordinate on the canvas of the mouse * @param {number} y y-coordinate on the canvas of the mouse * @param {number} button Integer indicating the button pressed (0: left, 1: middle/wheel, 2: right) * @param {Boolean} ctrlKey Boolean indicating if the ctrl-key is pressed */ this.handleMousedown = function(x, y, button, ctrlKey) { if (typeof this.boxzoomTriggerTimeout !== 'undefined') { clearTimeout(this.boxzoomTriggerTimeout); } if (button == 0) { this.overlayCanvas.style.cursor = 'move'; this.panning = true; this.boxzoom = false; this.prevMousePos = [x, y]; this.boxzoomTriggerTimeout = setTimeout(function() {this.startBoxzoom(x, y, ctrlKey);}.bind(this), BOXZOOM_TRIGGER_THRESHHOLD); } else if (button == 2) { this.startBoxzoom(x, y, ctrlKey); } }; /** * Handles a mousedown event triggered by the mouse * @param {Event} event The fired mouse event */ this.mouseHandleMousedown = function (event) { let coords = this.getCoords(event); this.sendEvt({ "x": coords[0], "y": coords[1], "button": event.button, "ctrlKey": event.ctrlKey, "event": "mousedown", }); if (this.handleEvents) { this.handleMousedown(coords[0], coords[1], event.button, event.ctrlKey); } event.preventDefault(); }; /** * Initiate the boxzoom on the canvas. * @param {number} x x-coordinate of the mouse * @param {number} y y-coordinate of the mouse * @param {Boolean} ctrlKey Boolean indicating if the ctrl-key is pressed */ this.startBoxzoom = function(x, y, ctrlKey) { this.panning = false; this.boxzoom = true; if (ctrlKey) { this.keepAspectRatio = false; } this.boxzoomPoint = [x, y]; this.overlayCanvas.style.cursor = 'nwse-resize'; }; /** * Handles a mouseup event * @param {number} x x-coordinate on the canvas of the mouse * @param {number} y y-coordinate on the canvas of the mouse * @param {number} button Integer indicating the button pressed (0: left, 1: middle/wheel, 2: right) */ this.handleMouseup = function(x, y, button) { if (typeof this.boxzoomTriggerTimeout !== 'undefined') { clearTimeout(this.boxzoomTriggerTimeout); } if (this.boxzoom) { if ((Math.abs(this.boxzoomPoint[0] - x) >= BOXZOOM_THRESHOLD) && (Math.abs(this.boxzoomPoint[1] - y) >= BOXZOOM_THRESHOLD)) { let mouseargs = gr.newmeta(); let diff = [x - this.boxzoomPoint[0], y - this.boxzoomPoint[1]]; gr.meta_args_push(mouseargs, "x1", "i", [this.boxzoomPoint[0]]); gr.meta_args_push(mouseargs, "x2", "i", [this.boxzoomPoint[0] + diff[0]]); gr.meta_args_push(mouseargs, "y1", "i", [this.boxzoomPoint[1]]); gr.meta_args_push(mouseargs, "y2", "i", [this.boxzoomPoint[1] + diff[1]]); if (this.keepAspectRatio) { gr.meta_args_push(mouseargs, "keep_aspect_ratio", "i", [1]); } else { gr.meta_args_push(mouseargs, "keep_aspect_ratio", "i", [0]); } this.grEventinput(mouseargs); } } this.prevMousePos = undefined; this.overlayCanvas.style.cursor = 'auto'; this.panning = false; this.boxzoom = false; this.boxzoomPoint = [undefined, undefined]; this.keepAspectRatio = true; let context = this.overlayCanvas.getContext('2d'); context.clearRect(0, 0, this.overlayCanvas.width, this.overlayCanvas.height); }; /** * Handles a mouseup event triggered by the mouse * @param {Event} event The fired mouse event */ this.mouseHandleMouseup = function(event) { let coords = this.getCoords(event); this.sendEvt({ "x": coords[0], "y": coords[1], "button": event.button, "event": "mouseup", }); if (this.handleEvents) { this.handleMouseup(coords[0], coords[1], event.button); } event.preventDefault(); }; /** * Handles a touchstart event triggered by tapping the touchscreen * @param {Event} event The fired touch event */ this.touchHandleTouchstart = function(event) { if (event.touches.length == 1) { let coords = this.getCoords(event.touches[0]); this.handleMousedown(coords[0], coords[1], 0, false); } else if (event.touches.length == 2) { this.pinching = true; this.pinchDiff = Math.abs(event.touches[0].clientX - event.touches[1].clientX) + Math.abs(event.touches[0].clientY - event.touches[1].clientY); let c1 = this.getCoords(event.touches[0]); let c2 = this.getCoords(event.touches[1]); this.prevTouches = [c1, c2]; } else if (event.touches.length == 3) { let coords1 = this.getCoords(event.touches[0]); let coords2 = this.getCoords(event.touches[1]); let coords3 = this.getCoords(event.touches[2]); let x = 1 / 3 * coords1[0] + coords2[0] + coords3[0]; let y = 1 / 3 * coords1[1] + coords2[1] + coords3[1]; this.handleDoubleclick(x, y); } event.preventDefault(); }; /** * Handles a touchend event * @param {Event} event The fired touch event */ this.touchHandleTouchend = function(event) { this.handleMouseleave(); }; /** * Handles a touchmove event triggered by moving fingers on the touchscreen * @param {Event} event The fired touch event */ this.touchHandleTouchmove = function(event) { if (event.touches.length == 1) { let coords = this.getCoords(event.touches[0]); this.handleMousemove(coords[0], coords[1]); } else if (this.pinching && event.touches.length == 2) { let c1 = this.getCoords(event.touches[0]); let c2 = this.getCoords(event.touches[1]); let diff = Math.sqrt(Math.pow(Math.abs(c1[0] - c2[0]), 2) + Math.pow(Math.abs(c1[1] - c2[1]), 2)); if (typeof this.pinchDiff !== 'undefined' && typeof this.prevTouches !== 'undefined') { let factor = this.pinchDiff / diff; let mouseargs = gr.newmeta(); gr.meta_args_push(mouseargs, "x", "i", [(c1[0] + c2[0]) / 2]); gr.meta_args_push(mouseargs, "y", "i", [(c1[1] + c2[1]) / 2]); gr.meta_args_push(mouseargs, "factor", "d", [factor]); this.grEventinput(mouseargs); let panmouseargs = gr.newmeta(); gr.meta_args_push(panmouseargs, "x", "i", [(c1[0] + c2[0]) / 2]); gr.meta_args_push(panmouseargs, "y", "i", [(c1[1] + c2[1]) / 2]); gr.meta_args_push(panmouseargs, "xshift", "i", [(c1[0] - this.prevTouches[0][0] + c2[0] - this.prevTouches[1][0]) / 2.0]); gr.meta_args_push(panmouseargs, "yshift", "i", [(c1[1] - this.prevTouches[0][1] + c2[1] - this.prevTouches[1][1]) / 2.0]); this.grEventinput(panmouseargs); } this.pinchDiff = diff; this.prevTouches = [c1, c2]; } event.preventDefault(); }; /** * Handles a mouseleave event */ this.handleMouseleave = function() { if (typeof this.boxzoomTriggerTimeout !== 'undefined') { clearTimeout(this.boxzoomTriggerTimeout); } this.overlayCanvas.style.cursor = 'auto'; this.panning = false; this.prevMousePos = undefined; if (this.boxzoom) { let context = this.overlayCanvas.getContext('2d'); context.clearRect(0, 0, this.overlayCanvas.width, this.overlayCanvas.height); } this.boxzoom = false; this.boxzoomPoint = [undefined, undefined]; this.keepAspectRatio = true; }; /** * Handles a mouseleave event triggered by the mouse * @param {Event} event The fired mouse event */ this.mouseHandleMouseleave = function(event) { this.pinchDiff = undefined; this.prevTouches = undefined; this.sendEvt({ "event": "mouseleave", }); if (this.handleEvents) { this.handleMouseleave(); } }; /** * Handles a mousemove event * @param {number} x x-coordinate on the canvas of the mouse * @param {number} y y-coordinate on the canvas of the mouse */ this.handleMousemove = function(x, y) { if (this.panning) { if (typeof this.boxzoomTriggerTimeout !== 'undefined') { clearTimeout(this.boxzoomTriggerTimeout); } let mouseargs = gr.newmeta(); gr.meta_args_push(mouseargs, "x", "i", [this.prevMousePos[0]]); gr.meta_args_push(mouseargs, "y", "i", [this.prevMousePos[1]]); gr.meta_args_push(mouseargs, "xshift", "i", [x - this.prevMousePos[0]]); gr.meta_args_push(mouseargs, "yshift", "i", [y - this.prevMousePos[1]]); this.grEventinput(mouseargs); this.prevMousePos = [x, y]; } else if (this.boxzoom) { let context = this.overlayCanvas.getContext('2d'); let diff = [x - this.boxzoomPoint[0], y - this.boxzoomPoint[1]]; gr.switchmeta(this.id); let box = gr.meta_get_box(this.boxzoomPoint[0], this.boxzoomPoint[1], this.boxzoomPoint[0] + diff[0], this.boxzoomPoint[1] + diff[1], this.keepAspectRatio); context.clearRect(0, 0, this.overlayCanvas.width, this.overlayCanvas.height); if (diff[0] * diff[1] >= 0) { this.overlayCanvas.style.cursor = 'nwse-resize'; } else { this.overlayCanvas.style.cursor = 'nesw-resize'; } context.fillStyle = BOXZOOM_FILL_STYLE; context.strokeStyle = BOXZOOM_STROKE_STYLE; context.beginPath(); context.rect(box[0], box[1], box[2], box[3]); context.globalAlpha = 0.2; context.fill(); context.globalAlpha = 1.0; context.stroke(); context.closePath(); } }; /** * Handles a mousemove event triggered by the mouse * @param {Event} event The fired mouse event */ this.mouseHandleMousemove = function (event) { let coords = this.getCoords(event); this.sendEvt({ "x": coords[0], "y": coords[1], "event": "mousemove", }); if (this.handleEvents) { this.handleMousemove(coords[0], coords[1]); } event.preventDefault(); }; /** * Handles a doubleclick event * @param {number} x x-coordinate on the canvas of the mouse * @param {number} y y-coordinate on the canvas of the mouse */ this.handleDoubleclick = function(x, y) { let mouseargs = gr.newmeta(); gr.meta_args_push(mouseargs, "x", "i", [x]); gr.meta_args_push(mouseargs, "y", "i", [y]); gr.meta_args_push(mouseargs, "key", "s", "r"); this.grEventinput(mouseargs); this.boxzoomPoint = [undefined, undefined]; }; /** * Handles a doubleclick event triggered by the mouse * @param {Event} event The fired mouse event */ this.mouseHandleDoubleclick = function(event) { let coords = this.getCoords(event); this.sendEvt({ "x": coords[0], "y": coords[1], "event": "doubleclick", }); if (this.handleEvents) { this.handleDoubleclick(coords[0], coords[1]); } event.preventDefault(); }; /** * Handles a event triggered by a Jupyter Comm message * @param {Object} msg The message describing the event */ this.msgHandleEvent = function(msg) { switch(msg.event) { case "mousewheel": this.handleWheel(msg.x, msg.y, msg.angle_delta); break; case "mousedown": this.handleMousedown(msg.x, msg.y, msg.button, msg.ctrlKey); break; case "mouseup": this.handleMouseup(msg.x, msg.y, msg.button); break; case "mousemove": this.handleMousemove(msg.x, msg.y); break; case "doubleclick": this.handleDoubleclick(msg.x, msg.y); break; case "mouseleave": this.handleMouseleave(); break; default: break; } }; /** * Handles a command received cia jupyter comm * @param {Object} msg Received msg containing the command */ this.msgHandleCommand = function(msg) { switch(msg.command) { case 'enable_events': this.sendEvents = true; break; case 'disable_events': this.sendEvents = false; break; case 'enable_jseventhandling': this.handleEvents = true; break; case 'disable_jseventhandling': this.handleEvents = false; break; default: break; } }; /** * Draw a plot described by a message received via jupyter comm * @param {Object} msg message containing the draw-command */ this.draw = function() { if (this.waiting) { this.oncanvas = function() { return this.draw(); }; } else { console.log(document.getElementById('jsterm-' + this.id)); if (document.getElementById('jsterm-' + this.id) == null) { createCanvas(this.id, this.width, this.height); this.canvas = undefined; this.waiting = true; this.oncanvas = function() { return this.draw(); }; setTimeout(function() { this.refreshPlot(this.id, 0); }.bind(this), RECONNECT_PLOT_TIMEOUT); } else { //if (document.getElementById('jsterm-data-' + this.id) == null) { //saveData(msg, msg.content.data.id); //} //Jupyter.notebook.get_selected_cell().metadata.jsterm = msg; if (document.getElementById('jsterm-' + this.id) !== this.canvas || typeof this.canvas === 'undefined' || typeof this.overlayCanvas === 'undefined') { this.connectCanvas(); } gr.switchmeta(this.id); gr.current_canvas = this.canvas; //TODO is this always set? (check) gr.current_context = gr.current_canvas.getContext('2d'); gr.select_canvas(); gr.plotmeta(); } } }; /** * Connects a canvas to a JSTermWidget object. */ this.connectCanvas = function() { if (document.getElementById('jsterm-' + this.id) != null) { this.div = document.getElementById('jsterm-div-' + this.id); this.canvas = document.getElementById('jsterm-' + this.id); this.overlayCanvas = document.getElementById('jsterm-overlay-' + this.id); this.overlayCanvas.addEventListener('DOMNodeRemoved', function() { createCanvas(this.id, this.width, this.height); this.canvas = undefined; this.waiting = true; this.oncanvas = function() {}; }); this.overlayCanvas.style.cursor = 'auto'; //registering event handler this.overlayCanvas.addEventListener('wheel', function(evt) { this.mouseHandleWheel(evt); }.bind(this)); this.overlayCanvas.addEventListener('mousedown', function(evt) { this.mouseHandleMousedown(evt); }.bind(this)); this.overlayCanvas.addEventListener('touchstart', function(evt) { this.touchHandleTouchstart(evt); }.bind(this)); this.overlayCanvas.addEventListener('touchmove', function(evt) { this.touchHandleTouchmove(evt); }.bind(this)); this.overlayCanvas.addEventListener('touchend', function(evt) { this.touchHandleTouchend(evt); }.bind(this)); this.overlayCanvas.addEventListener('mousemove', function(evt) { this.mouseHandleMousemove(evt); }.bind(this)); this.overlayCanvas.addEventListener('mouseup', function(evt) { this.mouseHandleMouseup(evt); }.bind(this)); this.overlayCanvas.addEventListener('mouseleave', function(evt) { this.mouseHandleMouseleave(evt); }.bind(this)); this.overlayCanvas.addEventListener('dblclick', function(evt) { this.mouseHandleDoubleclick(evt); }.bind(this)); this.overlayCanvas.addEventListener('contextmenu', function(event) { event.preventDefault(); return false; }); } }; /** * Check if a deleted canvas has been recreated. * Calls itself after REFRESH_PLOT_TIMEOUTms if no canvas is found * @param {number} count [description] */ this.refreshPlot = function(count) { if (document.getElementById('jsterm-' + this.id) == null) { if (count < RECONNECT_PLOT_MAX_ATTEMPTS) { setTimeout(function() { this.refreshPlot( count + 1); }.bind(this), RECONNECT_PLOT_TIMEOUT); } } else { this.waiting = false; if (typeof this.oncanvas !== 'undefined') { this.oncanvas(); } } }; }; } var grJSTermRunning = true;""" if _gr_js === nothing _gr_js = string(""" JSTerm.saveLoad('""", _js_fallback, """', jsLoaded, 10000); var grJstermReady = false; """) else _gr_js = string(_gr_js, "var grJstermReady = true;") end display(HTML(string(""" <script type="text/javascript"> """, _gr_js, """ """, _jsterm, """ </script> """))) end function JSTermWidget(id::Int, width::Int, height::Int) global id_count, js_running if GR.isijulia() id_count += 1 if !js_running inject_js() js_running = true end JSTermWidget(id, width, height, false) else error("JSTermWidget is only available in IJulia environments") end end function jsterm_display(widget::JSTermWidget) if GR.isijulia() display(HTML(string("<div id=\"jsterm-div-", widget.identifier, "\" style=\"position: relative; width: ", widget.width, "px; height: ", widget.height, "px;\"><canvas id=\"jsterm-overlay-", widget.identifier, "\" style=\"position:absolute; top: 0; right: 0; z-index: 1;\" width=\"", widget.width, "\" height=\"", widget.height, "\"></canvas> <canvas id=\"jsterm-", widget.identifier, "\" style=\"position: absolute; top: 0; right: 0; z-index: 0;\"width=\"", widget.width, "\" height=\"", widget.height, "\"></canvas>"))) widget.visible = true else error("jsterm_display is only available in IJulia environments") end end comm = nothing evthandler = Dict() global_evthandler = nothing function register_evthandler(f::Function, device, port) global evthandler if GR.isijulia() send_command(Dict("command" => "enable_events"), "cmd", string(device, port)) evthandler[string(device, port)] = f else error("register_evthandler is only available in IJulia environments") end end function unregister_evthandler(device, port) global evthandler if GR.isijulia() if global_evthandler === nothing send_command(Dict("command" => "disable_events"), "cmd", string(device, port)) end evthandler[string(device, port)] = nothing else error("unregister_evthandler is only available in IJulia environments") end end function register_evthandler(f::Function) global global_evthandler if GR.isijulia() send_command(Dict("command" => "enable_events"), "cmd", nothing) global_evthandler = f else error("register_evthandler is only available in IJulia environments") end end function unregister_evthandler() global global_evthandler, evthandler if GR.isijulia() send_command(Dict("command" => "disable_events"), "cmd", nothing) for key in keys(evthandler) if evthandler[key] !== nothing send_command(Dict("command" => "enable_events"), "cmd", key) end end global_evthandler = nothing else error("unregister_evthandler is only available in IJulia environments") end end function send_command(msg, msgtype, id=nothing) global comm if GR.isijulia() if comm === nothing error("JSTerm comm not initialized.") else if id !== nothing Main.IJulia.send_comm(comm, merge(msg, Dict("type" => msgtype, "id" => id))) else Main.IJulia.send_comm(comm, merge(msg, Dict("type" => msgtype))) end end else error("send_command is only available in IJulia environments") end end function send_evt(msg, device, port) if GR.isijulia() send_command(msg, "evt", string(device, port)) else error("send_evt is only available in IJulia environments") end end function send_evt(msg, identifier) if GR.isijulia() send_command(msg, "evt", identifier) else error("send_evt is only available in IJulia environments") end end function disable_jseventhandling(device, port) if GR.isijulia() send_command(Dict("command" => "disable_jseventhandling"), "cmd", string(device, port)) else error("disable_jseventhandling is only available in IJulia environments") end end function enable_jseventhandling(device, port) if GR.isijulia() send_command(Dict("command" => "enable_jseventhandling"), "cmd", string(device, port)) else error("enable_jseventhandling is only available in IJulia environments") end end function disable_jseventhandling() if GR.isijulia() send_command(Dict("command" => "disable_jseventhandling"), "cmd", nothing) else error("disable_jseventhandling is only available in IJulia environments") end end function enable_jseventhandling() if GR.isijulia() send_command(Dict("command" => "enable_jseventhandling"), "cmd", nothing) else Main.IJulia.send_comm(comm, Dict("json" => f, "type" => "evt")) error("enable_jseventhandling is only available in IJulia environments") end end function jsterm_send(data::String) global js_running, draw_condition, comm, PXWIDTH, PXHEIGHT if GR.isijulia() if comm === nothing comm = Main.IJulia.Comm("jsterm_comm") comm.on_close = function comm_close_callback(msg) global js_running js_running = false end comm.on_msg = function comm_msg_callback(msg) data = msg.content["data"] if haskey(data, "type") if data["type"] == "createCanvas" id = data["id"] if haskey(jswidgets, id) widget = jswidgets[id] widget.width = data["width"] widget.height = data["height"] else widget = JSTermWidget(id, data["width"], data["height"]) jswidgets[id] = widget end jswidgets[id].visible = false jsterm_display(jswidgets[id]) elseif data["type"] == "save" display(HTML(string("<div style=\"display:none;\" id=\"jsterm-data-", data["content"]["id"], "\" class=\"jsterm-data\">", data["content"]["data"], "</div>"))) elseif data["type"] == "evt" global_evthandler(data["content"]) if haskey(evthandler, data["id"]) && evthandler[data["id"]] !== nothing evthandler[data["id"]](data["content"]) end end end end end Main.IJulia.send_comm(comm, Dict("json" => data, "type"=>"draw")) else error("jsterm_send is only available in IJulia environments") end end function recv(name::Cstring, id::Int32, msg::Cstring) # receives string from C and sends it to JS via Comm global js_running if !js_running inject_js() js_running = true end jsterm_send(unsafe_string(msg)) return convert(Int32, 1) end function send(name::Cstring, id::Int32) # Dummy function, not in use return convert(Cstring, "String") end jswidgets = nothing send_c = nothing recv_c = nothing function initjs() global jswidgets, send_c, recv_c jswidgets = Dict{Int32, JSTermWidget}() send_c = @cfunction(send, Cstring, (Cstring, Int32)) recv_c = @cfunction(recv, Int32, (Cstring, Int32, Cstring)) send_c, recv_c end end # module
Require Import init. Require Export linear_base. Require Import linear_subspace. Require Import set. Require Import unordered_list. Definition linear_span U {V} `{Plus V, Zero V, ScalarMult U V} (S : V → Prop) := λ v, ∀ sub : Subspace U V, S ⊆ subspace_set sub → subspace_set sub v. (* begin hide *) Section Span. Context U {V} `{ UP : Plus U, UZ : Zero U, UN : Neg U, UM : Mult U, UO : One U, UD : Div U, @PlusComm U UP, @PlusLid U UP UZ, @PlusLinv U UP UZ UN, @MultAssoc U UM, @MultLid U UM UO, @MultLinv U UZ UM UO UD, VP : Plus V, VZ : Zero V, VN : Neg V, @PlusComm V VP, @PlusAssoc V VP, @PlusLid V VP VZ, @PlusLinv V VP VZ VN, SM : ScalarMult U V, @ScalarComp U V UM SM, @ScalarId U V UO SM, @ScalarLdist U V VP SM, @ScalarRdist U V UP VP SM }. (* end hide *) Variable A : V → Prop. Let S := linear_span U A. Lemma linear_span_zero : S 0. Proof. intros [T T_zero T_plus T_scalar]; cbn. intros sub. exact T_zero. Qed. Lemma linear_span_plus : ∀ a b, S a → S b → S (a + b). Proof. intros a b Sa Sb T sub. specialize (Sa T sub). specialize (Sb T sub). apply subspace_plus; assumption. Qed. Lemma linear_span_scalar : ∀ a v, S v → S (a · v). Proof. intros a v Sv T sub. specialize (Sv T sub). apply subspace_scalar. exact Sv. Qed. Definition linear_span_subspace := make_subspace S linear_span_zero linear_span_plus linear_span_scalar. Theorem linear_span_sub : A ⊆ S. Proof. intros v Av. unfold S, linear_span. intros sub A_sub. apply A_sub. exact Av. Qed. Definition linear_span_quotient := quotient_space linear_span_subspace. Definition to_quotient v := to_equiv (subspace_equiv linear_span_subspace) v. Definition linear_span_quotient_plus := quotient_space_plus linear_span_subspace. Definition linear_span_quotient_plus_assoc := quotient_space_plus_assoc linear_span_subspace. Definition linear_span_quotient_plus_comm := quotient_space_plus_comm linear_span_subspace. Definition linear_span_quotient_zero := quotient_space_zero linear_span_subspace. Definition linear_span_quotient_plus_lid := quotient_space_plus_lid linear_span_subspace. Definition linear_span_quotient_neg := quotient_space_neg linear_span_subspace. Definition linear_span_quotient_plus_linv := quotient_space_plus_linv linear_span_subspace. Definition linear_span_quotient_scalar_mult := quotient_space_scalar_mult linear_span_subspace. Definition linear_span_quotient_scalar_comp := quotient_space_scalar_comp linear_span_subspace. Definition linear_span_quotient_scalar_id := quotient_space_scalar_id linear_span_subspace. Definition linear_span_quotient_scalar_ldist := quotient_space_scalar_ldist linear_span_subspace. Definition linear_span_quotient_scalar_rdist := quotient_space_scalar_rdist linear_span_subspace. Theorem span_linear_combination : S = linear_combination_of A. Proof. pose (A_sub := make_subspace _ (linear_combination_of_zero A) (linear_combination_of_plus A) (linear_combination_of_scalar A)). apply antisym. - intros v Sv. unfold S, linear_span in Sv. apply (Sv A_sub). cbn. clear v Sv. intros v Av. pose (l := (1, v) ː ulist_end). assert (linear_combination_set l) as l_comb. { unfold linear_combination_set, l. rewrite ulist_image_add, ulist_unique_add. rewrite ulist_image_end. split. - apply in_ulist_end. - apply ulist_unique_end. } exists [l|l_comb]; cbn. split. + unfold linear_combination, l; cbn. rewrite ulist_image_add, ulist_sum_add; cbn. rewrite scalar_id. rewrite ulist_image_end, ulist_sum_end. rewrite plus_rid. reflexivity. + unfold l, linear_list_in; cbn. rewrite ulist_prop_add; cbn. split; [>exact Av|apply ulist_prop_end]. - intros v [l [v_eq Sv]]. rewrite v_eq; clear v_eq. apply (subspace_linear_combination linear_span_subspace). cbn. unfold linear_list_in in *. eapply (ulist_prop_sub _ _ _ _ Sv). Unshelve. intros x. apply linear_span_sub. Qed. (* begin hide *) End Span. (* end hide *)
-- Primitive Imperative Language -- module Example.Pil import Data.List import Data.List.Elem import Data.Maybe %default total ------------------------------------------------------ --- Auxiliary data definitions and their instances --- ------------------------------------------------------ export data Name = MkName String %name Name n, m export FromString Name where fromString = MkName export Eq Name where MkName n == MkName m = n == m --- Static context in terms of which we are formulating an invariant --- public export Context : Type Context = List (Name, Type) %name Context ctx ----------------------------------------------- --- List lookup with propositional equality --- ----------------------------------------------- public export data Lookup : a -> List (a, b) -> Type where There : Lookup z xys -> Lookup z $ (x, y)::xys Here : (y : b) -> Lookup x $ (x, y)::xys -- !!! Idris searches from the bottom !!! public export reveal : Lookup {b} x xys -> b reveal (Here y) = y reveal (There subl) = reveal subl ----------------------------------- --- The main language structure --- ----------------------------------- public export data Expression : (ctx : Context) -> (res : Type) -> Type where -- Constant expression C : (x : ty) -> Expression ctx ty -- Value of the variable V : (n : Name) -> (0 ty : Lookup n ctx) => Expression ctx $ reveal ty -- Unary operation over the result of another expression U : (f : a -> b) -> Expression ctx a -> Expression ctx b -- Binary operation over the results of two another expressions B : (f : a -> b -> c) -> Expression ctx a -> Expression ctx b -> Expression ctx c infix 2 #=, ?#= infixr 1 *> public export data Statement : (pre : Context) -> (post : Context) -> Type where nop : Statement ctx ctx (.) : (0 ty : Type) -> (n : Name) -> Statement ctx $ (n, ty)::ctx (#=) : (n : Name) -> (0 ty : Lookup n ctx) => (v : Expression ctx $ reveal ty) -> Statement ctx ctx for : (init : Statement outer_ctx inside_for) -> (cond : Expression inside_for Bool) -> (upd : Statement inside_for inside_for) -> (body : Statement inside_for after_body) -> Statement outer_ctx outer_ctx if__ : (cond : Expression ctx Bool) -> Statement ctx ctx_then -> Statement ctx ctx_else -> Statement ctx ctx (*>) : Statement pre mid -> Statement mid post -> Statement pre post block : Statement outer inside -> Statement outer outer print : Show ty => Expression ctx ty -> Statement ctx ctx public export %inline (>>=) : Statement pre mid -> (Unit -> Statement mid post) -> Statement pre post a >>= f = a *> f () public export %inline if_ : (cond : Expression ctx Bool) -> Statement ctx ctx_then -> Statement ctx ctx if_ c t = if__ c t nop public export %inline while : Expression ctx Bool -> Statement ctx after_body -> Statement ctx ctx while cond = for nop cond nop -- Define with derived type and assign immediately public export %inline (?#=) : (n : Name) -> Expression ((n, ty)::ctx) ty -> Statement ctx $ (n, ty)::ctx n ?#= v = ty. n *> n #= v namespace AlternativeDefineAndAssign public export %inline (#=) : (p : (Name, Type)) -> Expression (p::ctx) (snd p) -> Statement ctx $ p::ctx (n, _) #= v = n ?#= v public export %inline (.) : a -> b -> (b, a) (.) a b = (b, a) ------------------------- --- Examples of usage --- ------------------------- --- Functions lifted to the expression level --- export %inline (+) : Expression ctx Int -> Expression ctx Int -> Expression ctx Int (+) = B (+) export %inline div : Expression ctx Int -> Expression ctx Int -> Expression ctx Int div = B div export %inline mod : Expression ctx Int -> Expression ctx Int -> Expression ctx Int mod = B mod export %inline (<) : Expression ctx Int -> Expression ctx Int -> Expression ctx Bool (<) = B (<) export %inline (>) : Expression ctx Int -> Expression ctx Int -> Expression ctx Bool (>) = B (>) export %inline (==) : Eq a => Expression ctx a -> Expression ctx a -> Expression ctx Bool (==) = B (==) export %inline (/=) : Eq a => Expression ctx a -> Expression ctx a -> Expression ctx Bool (/=) = B (/=) export %inline (&&) : Expression ctx Bool -> Expression ctx Bool -> Expression ctx Bool (&&) = B (\a, b => a && b) -- recoded because of laziness export %inline (++) : Expression ctx String -> Expression ctx String -> Expression ctx String (++) = B (++) export %inline show : Show ty => Expression ctx ty -> Expression ctx String show = U show --- Example statements --- simple_ass : Statement ctx $ ("x", Int)::ctx simple_ass = do Int. "x" "x" #= C 2 lost_block : Statement ctx ctx lost_block = do block $ do Int. "x" "x" #= C 2 Int. "y" #= V "x" Int. "z" #= C 3 print $ V "y" + V "z" + V "x" some_for : Statement ctx ctx some_for = for (do Int. "x" #= C 0; Int. "y" #= C 0) (V "x" < C 5 && V "y" < C 10) ("x" #= V "x" + C 1) $ do "y" #= V "y" + V "x" + C 1 --bad_for : Statement ctx ctx --bad_for = for (do Int. "x" #= C 0; Int. "y" #= C 0) -- (V "y") -- ("x" #= V "x" + C 1) $ do -- "y" #= V "y" `div` V "x" + C 1 euc : {0 ctx : Context} -> let c = ("a", Int)::("b", Int)::ctx in Statement c $ ("res", Int)::c euc = do while (V "a" /= C 0 && V "b" /= C 0) $ do if__ (V "a" > V "b") ("a" #= V "a" `mod` V "b") ("b" #= V "b" `mod` V "a") Int. "res" #= V "a" + V "b" name_shadowing : Statement ctx ctx name_shadowing = block $ do Int. "x" #= C 0 block $ do Int. "x" #= C 3 Int. "y" #= V "x" + C 2 String. "x" #= C "foo" print $ V "x" ++ C "bar" ++ show (V "y") Int. "z" #= V "x" + C 2
include("comlineoption.jl") include("iteration.jl") include("saveresult.jl") using .Comlineoption using .Iteration using .Saveresult function main(args) opt = Comlineoption.construct(args) data, solve_tf_param, solve_tf_val, yarray = Iteration.construct(opt) xarray = Iteration.iteration!(data, solve_tf_param, solve_tf_val, yarray) Saveresult.saveresult(data, xarray, yarray) end @time main(ARGS)