Datasets:
AI4M
/

text
stringlengths
0
3.34M
lemma open_Int_closure_eq_empty: "open S \<Longrightarrow> (S \<inter> closure T) = {} \<longleftrightarrow> S \<inter> T = {}"
library(digest) resultCode = 0 getColumnMap = function() { map = list( table=NULL, columns=list( login="login", password="password", enabled="enabled" ) ) if(userBankType == "table") { map = fromJSON(userBankTable) } return(map) } getUserByLogin = function(login, columnMap) { if(userBankType == "direct") { userList = fromJSON(userBankList) if(length(userList) == 0) { resultCode <<- 1 return(NULL) } for(i in 1:length(userList)) { user = userList[[i]] if(user$login == login && user$enabled == 1) { return(user) } } resultCode <<- 1 return(NULL) } else { sql = " SELECT * FROM {{table}} WHERE {{loginColumn}}='{{login}}' AND {{enabledColumn}}=1 " user = concerto.table.query(sql, params=list( table=columnMap$table, loginColumn=columnMap$columns$login, enabledColumn=columnMap$columns$enabled, login=login )) if(dim(user)[1] == 0) { resultCode <<- 1 return(NULL) } return(as.list(user[1,])) } } checkPassword = function(rawPassword, encryptedPassword, encryption) { if(is.na(encryptedPassword) || encryptedPassword == "") { return(T) } if(is.na(rawPassword)) { return(F) } if(encryption=="plain") { return(rawPassword == encryptedPassword) } return(digest(rawPassword, encryption, serialize=F) == encryptedPassword) } authorizeUser = function(login, password, columnMap) { user = getUserByLogin(login, columnMap) concerto.log(login, "login checked") concerto.log(password, "password checked") concerto.log(user, "user checked for password") if(!is.null(user) && checkPassword(password, user[[columnMap$columns$password]], userBankEncryption)) { return(user) } resultCode <<- 1 return(NULL) } columnMap = getColumnMap() user = authorizeUser(login, password, columnMap) if(is.null(user)) { concerto.log(paste0("user ",login," unauthorized"), title="authorization result") .branch = "unauthorized" } else { concerto.log(paste0("user ",login," authorized"), title="authorization result") .branch = "authorized" }
function [params, names] = rbfwhiteKernExtractParam(kern) % RBFWHITEKERNEXTRACTPARAM Extract parameters from the RBF-WHITE kernel % structure. % FORMAT % DESC extracts parameters from the RBF-WHITE kernel structure into a vector % of parameters for optimisation. % ARG kern : the kernel structure containing the parameters to be % extracted. % RETURN param : vector of parameters extracted from the kernel. If % the field 'transforms' is not empty in the kernel structure, the % parameters will be transformed before optimisation (for example % positive only parameters could be logged before being returned). % % FORMAT % DESC extracts parameters and parameter names from the RBF-WHITE kernel % structure. % ARG kern : the kernel structure containing the parameters to be % extracted. % RETURN param : vector of parameters extracted from the kernel. If the % field 'transforms' is not empty in the kernel structure, the parameters % will be transformed before optimisation (for example positive only % parameters could be logged before being returned). % RETURN names : cell array of strings containing names for each % parameter. % % SEEALSO rbfwhiteKernParamInit, rbfwhiteKernExpandParam, kernExtractParam, % scg, conjgrad % % COPYRIGHT : David Luengo, 2009 % % KERN params = [kern.inverseWidth kern.variance]; if nargout > 1 names = {'inverse width', 'variance'}; end
{-# OPTIONS --without-K --exact-split --rewriting #-} module index where -- An organised list of modules: import Pi.Everything -- An exhaustive list of all modules:
Require Import VST.floyd.proofauto. Require Import sha.SHA256. Require Import sha.spec_sha. Require Import sha.sha. Require Export sha.pure_lemmas. Require Export sha.general_lemmas. Export ListNotations. Local Open Scope logic. Global Opaque K256. Transparent peq. Lemma mapsto_tc_val: forall sh t p v, readable_share sh -> v <> Vundef -> mapsto sh t p v = !! tc_val t v && mapsto sh t p v . Proof. intros. apply pred_ext; [ | normalize]. apply andp_right; auto. unfold mapsto; simpl. destruct (access_mode t); try apply FF_left. destruct (attr_volatile (attr_of_type t)); try apply FF_left. destruct p; try apply FF_left. if_tac; try contradiction. apply orp_left. normalize. normalize. Qed. Fixpoint loops (s: statement) : list statement := match s with | Ssequence a b => loops a ++ loops b | Sloop _ _ => [s] | Sifthenelse _ a b => loops a ++ loops b | _ => nil end. Lemma nth_big_endian_integer: forall i bl w, nth_error bl i = Some w -> w = big_endian_integer (sublist (Z.of_nat i * WORD) (Z.succ (Z.of_nat i) * WORD) (map Int.repr (intlist_to_Zlist bl))). Proof. induction i; destruct bl; intros; inv H. * unfold sublist; simpl. rewrite big_endian_integer4. repeat rewrite Int.repr_unsigned. assert (Int.zwordsize=32)%Z by reflexivity. unfold Z_to_Int, Shr; simpl. change 255%Z with (Z.ones 8). apply Int.same_bits_eq; intros; autorewrite with testbit. if_tac; simpl. if_tac; simpl. if_tac; simpl; autorewrite with testbit. auto. f_equal; omega. rewrite if_false by omega. autorewrite with testbit. f_equal; omega. rewrite if_false by omega. rewrite if_false by omega. autorewrite with testbit. f_equal; omega. * specialize (IHi _ _ H1); clear H1. simpl map. rewrite IHi. unfold sublist. replace (Z.to_nat (Z.of_nat (S i) * WORD)) with (4 + Z.to_nat (Z.of_nat i * WORD))%nat by (rewrite plus_comm, inj_S; unfold Z.succ; rewrite Z.mul_add_distr_r; rewrite Z2Nat.inj_add by (change WORD with 4; omega); reflexivity). rewrite <- skipn_skipn. simpl skipn. f_equal. f_equal. f_equal. rewrite inj_S. unfold Z.succ. rewrite !Z.mul_add_distr_r; omega. Qed. Lemma Znth_big_endian_integer: forall i bl, 0 <= i < Zlength bl -> Znth i bl Int.zero = big_endian_integer (sublist (i * WORD) (Z.succ i * WORD) (map Int.repr (intlist_to_Zlist bl))). Proof. intros. unfold Znth. rewrite if_false by omega. pose proof (nth_error_nth _ Int.zero (Z.to_nat i) bl). rewrite <- (Z2Nat.id i) at 2 3 by omega. apply nth_big_endian_integer. apply H0. apply Nat2Z.inj_lt. rewrite Z2Nat.id by omega. rewrite <- Zlength_correct; omega. Qed. Fixpoint sequence (cs: list statement) s := match cs with | nil => s | c::cs' => Ssequence c (sequence cs' s) end. Fixpoint rsequence (cs: list statement) s := match cs with | nil => s | c::cs' => Ssequence (rsequence cs' s) c end. Lemma sequence_rsequence: forall Espec CS Delta P cs s0 s R, @semax CS Espec Delta P (Ssequence s0 (sequence cs s)) R <-> @semax CS Espec Delta P (Ssequence (rsequence (rev cs) s0) s) R. Proof. intros. revert Delta P R s0 s; induction cs; intros. simpl. apply iff_refl. simpl. rewrite seq_assoc. rewrite IHcs; clear IHcs. replace (rsequence (rev cs ++ [a]) s0) with (rsequence (rev cs) (Ssequence s0 a)); [apply iff_refl | ]. revert s0 a; induction (rev cs); simpl; intros; auto. rewrite IHl. auto. Qed. Lemma seq_assocN: forall {Espec: OracleKind} CS, forall Q Delta P cs s R, @semax CS Espec Delta P (sequence cs Sskip) (normal_ret_assert Q) -> @semax CS Espec (update_tycon Delta (sequence cs Sskip)) Q s R -> @semax CS Espec Delta P (sequence cs s) R. Proof. intros. rewrite semax_skip_seq. rewrite sequence_rsequence. rewrite semax_skip_seq in H. rewrite sequence_rsequence in H. rewrite <- semax_seq_skip in H. eapply semax_seq'; [apply H | ]. eapply semax_extensionality_Delta; try apply H0. clear. revert Delta; induction cs; simpl; intros. apply tycontext_sub_refl. eapply tycontext_sub_trans; [apply IHcs | ]. clear. revert Delta; induction (rev cs); simpl; intros. apply tycontext_sub_refl. apply update_tycon_sub. apply IHl. Qed. Fixpoint sequenceN (n: nat) (s: statement) : list statement := match n, s with | S n', Ssequence a s' => a::sequenceN n' s' | _, _ => nil end. Lemma data_block_local_facts: forall {cs: compspecs} sh f data, data_block sh f data |-- prop (field_compatible (tarray tuchar (Zlength f)) [] data /\ Forall isbyteZ f). Proof. intros. unfold data_block, array_at. simpl. entailer. Qed. Hint Resolve @data_block_local_facts : saturate_local. Require Import JMeq. Lemma reptype_tarray {cs: compspecs}: forall t len, reptype (tarray t len) = list (reptype t). Proof. intros. rewrite reptype_eq. simpl. reflexivity. Qed. Local Open Scope nat. (*** Application of Omega stuff ***) Lemma CBLOCKz_eq : CBLOCKz = 64%Z. Proof. reflexivity. Qed. Lemma LBLOCKz_eq : LBLOCKz = 16%Z. Proof. reflexivity. Qed. Ltac helper2 := match goal with | |- context [CBLOCK] => add_nonredundant (CBLOCK_eq) | |- context [LBLOCK] => add_nonredundant (LBLOCK_eq) | |- context [CBLOCKz] => add_nonredundant (CBLOCKz_eq) | |- context [LBLOCKz] => add_nonredundant (LBLOCKz_eq) | H: context [CBLOCK] |- _ => add_nonredundant (CBLOCK_eq) | H: context [LBLOCK] |- _ => add_nonredundant (LBLOCK_eq) | H: context [CBLOCKz] |- _ => add_nonredundant (CBLOCKz_eq) | H: context [LBLOCKz] |- _ => add_nonredundant (LBLOCKz_eq) end. Ltac Omega1 := Omega (helper1 || helper2). Ltac MyOmega := rewrite ?length_list_repeat, ?skipn_length, ?map_length, ?Zlength_map, ?Zlength_nil; pose proof CBLOCK_eq; pose proof CBLOCKz_eq; pose proof LBLOCK_eq; pose proof LBLOCKz_eq; Omega1. (*** End Omega stuff ***) Local Open Scope Z. Local Open Scope logic. Lemma data_block_valid_pointer {cs: compspecs} sh l p: sepalg.nonidentity sh -> Zlength l > 0 -> data_block sh l p |-- valid_pointer p. Proof. unfold data_block. simpl; intros. apply andp_valid_pointer2. apply data_at_valid_ptr; auto; simpl. rewrite Z.max_r, Z.mul_1_l; omega. Qed. Lemma data_block_isbyteZ {cs: compspecs}: forall sh data v, data_block sh data v = !! Forall isbyteZ data && data_block sh data v. Proof. unfold data_block; intros. simpl. normalize. f_equal. f_equal. apply prop_ext. intuition. Qed. Lemma sizeof_tarray_tuchar: forall (n:Z), (n>=0)%Z -> (sizeof (tarray tuchar n) = n)%Z. Proof. intros. unfold sizeof,tarray; cbv beta iota. rewrite Z.max_r by omega. unfold alignof, tuchar; cbv beta iota. rewrite Z.mul_1_l. auto. Qed. Lemma isbyte_value_fits_tuchar: forall x, isbyteZ x -> value_fits tuchar (Vint (Int.repr x)). Proof. intros. hnf in H|-*; intros. simpl. rewrite Int.unsigned_repr by rep_omega. change Byte.max_unsigned with 255%Z. omega. Qed. Lemma Zlength_Zlist_to_intlist: forall (n:Z) (l: list Z), (Zlength l = WORD*n)%Z -> Zlength (Zlist_to_intlist l) = n. Proof. intros. rewrite Zlength_correct in *. assert (0 <= n)%Z by ( change WORD with 4%Z in H; omega). rewrite (length_Zlist_to_intlist (Z.to_nat n)). apply Z2Nat.id; auto. apply Nat2Z.inj. rewrite H. rewrite Nat2Z.inj_mul. f_equal. rewrite Z2Nat.id; omega. Qed. Lemma nth_intlist_to_Zlist_eq: forall d (n i j k: nat) al, (i < n)%nat -> (i < j*4)%nat -> (i < k*4)%nat -> nth i (intlist_to_Zlist (firstn j al)) d = nth i (intlist_to_Zlist (firstn k al)) d. Proof. induction n; destruct i,al,j,k; simpl; intros; auto; try omega. destruct i; auto. destruct i; auto. destruct i; auto. apply IHn; omega. Qed. Hint Resolve isbyteZ_sublist. Lemma split2_data_block: forall {cs: compspecs} n sh data d, (0 <= n <= Zlength data)%Z -> data_block sh data d = (data_block sh (sublist 0 n data) d * data_block sh (sublist n (Zlength data) data) (field_address0 (tarray tuchar (Zlength data)) [ArraySubsc n] d))%logic. Proof. intros. unfold data_block. simpl. normalize. f_equal. f_equal. apply prop_ext. split; intro. split; apply Forall_sublist; auto. erewrite <- (sublist_same 0 (Zlength data)); auto. rewrite (sublist_split 0 n) by omega. apply Forall_app; auto. rewrite <- !sublist_map. unfold tarray. rewrite split2_data_at_Tarray_tuchar with (n1:=n) by (autorewrite with sublist; auto). autorewrite with sublist. reflexivity. Qed. Lemma split3_data_block: forall {cs: compspecs} lo hi sh data d, 0 <= lo <= hi -> hi <= Zlength data -> data_block sh data d = (data_block sh (sublist 0 lo data) d * data_block sh (sublist lo hi data) (field_address0 (tarray tuchar (Zlength data)) [ArraySubsc lo] d) * data_block sh (sublist hi (Zlength data) data) (field_address0 (tarray tuchar (Zlength data)) [ArraySubsc hi] d))%logic. Proof. intros. unfold data_block. simpl. normalize. f_equal. f_equal. apply prop_ext. split; intro. split3; apply Forall_sublist; auto. erewrite <- (sublist_same 0 (Zlength data)); auto. rewrite (sublist_split 0 lo (Zlength data)) by omega. rewrite (sublist_split lo hi (Zlength data)) by omega. destruct H1 as [? [? ?]]. repeat (apply Forall_app; split); auto. rewrite <- !sublist_map. unfold tarray. rewrite split3_data_at_Tarray_tuchar with (n1:=lo)(n2:=hi) by (autorewrite with sublist; auto). autorewrite with sublist. reflexivity. Qed. Global Opaque WORD. Lemma S256abs_data: forall hashed data, (LBLOCKz | Zlength hashed) -> Zlength data < CBLOCKz -> s256a_data (S256abs hashed data) = data. Proof. intros. unfold S256abs, s256a_data. rewrite Zlength_app. rewrite Zlength_intlist_to_Zlist. destruct H as [n ?]. rewrite H. assert (CBLOCKz > 0) by (rewrite CBLOCKz_eq; omega). pose proof (Zmod_eq (n * CBLOCKz + Zlength data) CBLOCKz H1). pose proof (Zmod_eq (Zlength data) CBLOCKz H1). pose proof (Zlength_nonneg data). rewrite sublist_app2; rewrite Zlength_intlist_to_Zlist; rewrite H; rewrite <- Z.mul_assoc; change (LBLOCKz * 4)%Z with CBLOCKz. apply sublist_same. rewrite Z.div_add_l by omega. rewrite Z.mul_add_distr_r. rewrite Z.div_small by omega. omega. omega. rewrite Z.div_add_l by omega. rewrite Z.mul_add_distr_r. rewrite Z.div_small by omega. split; [ | omega]. apply Z.mul_nonneg_nonneg. clear - H. assert (n < 0 \/ 0 <= n) by omega. destruct H0; auto. pose proof (Zlength_nonneg hashed). assert (n * LBLOCKz < 0). apply Z.mul_neg_pos; auto. omega. omega. Qed. Lemma S256abs_hashed: forall hashed data, (LBLOCKz | Zlength hashed) -> Zlength data < CBLOCKz -> s256a_hashed (S256abs hashed data) = hashed. Proof. intros; unfold S256abs, s256a_hashed. rewrite Zlength_app. rewrite Zlength_intlist_to_Zlist. destruct H as [n ?]. assert (CBLOCKz > 0) by (rewrite CBLOCKz_eq; omega). pose proof (Zmod_eq (n * CBLOCKz + Zlength data) CBLOCKz H1). pose proof (Zmod_eq (Zlength data) CBLOCKz H1). pose proof (Zlength_nonneg data). rewrite sublist_app1; rewrite ?Zlength_intlist_to_Zlist; rewrite H. rewrite sublist_same; try omega. apply intlist_to_Zlist_to_intlist. rewrite Zlength_intlist_to_Zlist. rewrite H. rewrite <- Z.mul_assoc; change (LBLOCKz*4)%Z with CBLOCKz. rewrite Z.div_add_l by omega. rewrite Z.mul_add_distr_r. rewrite Z.div_small by omega. omega. split; [omega | ]. rewrite <- Z.mul_assoc; change (LBLOCKz*4)%Z with CBLOCKz. rewrite Z.div_add_l by omega. rewrite Z.mul_add_distr_r. rewrite Z.div_small by omega. clear - H. assert (n < 0 \/ 0 <= n) by omega. simpl. destruct H0. pose proof (Zlength_nonneg hashed). assert (n * LBLOCKz < 0). apply Z.mul_neg_pos; auto. omega. rewrite Z.add_0_r. apply Z.mul_nonneg_nonneg; auto. rewrite <- Z.mul_assoc; change (LBLOCKz*4)%Z with CBLOCKz. rewrite Z.div_add_l by omega. rewrite Z.mul_add_distr_r. rewrite Z.div_small by omega. omega. Qed. Lemma s256a_hashed_divides: forall a, (LBLOCKz | Zlength (s256a_hashed a)). Proof. intros. unfold s256a_hashed. exists (Zlength a / CBLOCKz)%Z. erewrite Zlength_Zlist_to_intlist; [reflexivity |]. rewrite Zlength_sublist. rewrite (Z.mul_comm WORD). rewrite <- Z.mul_assoc. change (LBLOCKz * WORD)%Z with CBLOCKz. omega. split; [ omega |] . apply Z.mul_nonneg_nonneg; auto. apply Z.div_pos. apply Zlength_nonneg. rewrite CBLOCKz_eq; omega. assert (CBLOCKz > 0) by (rewrite CBLOCKz_eq; omega). pose proof (Zmod_eq (Zlength a) CBLOCKz H). pose proof (Z_mod_lt (Zlength a) CBLOCKz H). omega. Qed. Lemma s256a_data_len: forall a: s256abs, Zlength (s256a_data a) = Zlength a mod CBLOCKz. Proof. intros. unfold s256a_data. assert (CBLOCKz > 0) by (rewrite CBLOCKz_eq; omega). pose proof (Zmod_eq (Zlength a) CBLOCKz H). pose proof (Z_mod_lt (Zlength a) CBLOCKz H). rewrite H0. rewrite Zlength_sublist; try omega. split; try omega. apply Z.mul_nonneg_nonneg. apply Z.div_pos. apply Zlength_nonneg. omega. omega. Qed. Lemma s256a_data_Zlength_less: forall a, Zlength (s256a_data a) < CBLOCKz. Proof. intros. rewrite s256a_data_len. apply Z_mod_lt. rewrite CBLOCKz_eq; omega. Qed. Lemma hashed_data_recombine: forall a, Forall isbyteZ a -> intlist_to_Zlist (s256a_hashed a) ++ s256a_data a = a. Proof. intros. rename H into BYTES. unfold s256a_hashed, s256a_data. assert (CBLOCKz > 0) by (rewrite CBLOCKz_eq; omega). rewrite Zlist_to_intlist_to_Zlist. rewrite sublist_rejoin. autorewrite with sublist. auto. split; [ omega |] . apply Z.mul_nonneg_nonneg; auto. apply Z.div_pos. apply Zlength_nonneg. rewrite CBLOCKz_eq; omega. assert (CBLOCKz > 0) by (rewrite CBLOCKz_eq; omega). pose proof (Zmod_eq (Zlength a) CBLOCKz H). pose proof (Z_mod_lt (Zlength a) CBLOCKz H). omega. rewrite Zlength_sublist. rewrite Z.sub_0_r. apply Z.divide_mul_r. exists LBLOCKz. reflexivity. split; [ omega |] . apply Z.mul_nonneg_nonneg; auto. apply Z.div_pos. apply Zlength_nonneg. omega. pose proof (Zmod_eq (Zlength a) CBLOCKz H). pose proof (Z_mod_lt (Zlength a) CBLOCKz H). omega. apply Forall_sublist. auto. Qed. Definition bitlength (hashed: list int) (data: list Z) : Z := ((Zlength hashed * WORD + Zlength data) * 8)%Z. Lemma bitlength_eq: forall hashed data, bitlength hashed data = s256a_len (S256abs hashed data). Proof. intros. unfold bitlength, s256a_len, S256abs. rewrite Zlength_app. rewrite Zlength_intlist_to_Zlist. reflexivity. Qed. Lemma S256abs_recombine: forall a, Forall isbyteZ a -> S256abs (s256a_hashed a) (s256a_data a) = a. Proof. intros. apply hashed_data_recombine; auto. Qed. Lemma Zlist_to_intlist_app: forall a b, (WORD | Zlength a) -> Zlist_to_intlist (a++b) = Zlist_to_intlist a ++ Zlist_to_intlist b. Proof. intros. destruct H as [na H]. rewrite <- (Z2Nat.id na) in H. Focus 2. destruct (zlt na 0); try omega. assert (na * WORD < 0); [apply Z.mul_neg_pos; auto | ]. pose proof (Zlength_nonneg a); omega. revert a H; induction (Z.to_nat na); intros. simpl in H. destruct a. simpl. auto. rewrite Zlength_cons in H. pose proof (Zlength_nonneg a); omega. rewrite inj_S in H. unfold Z.succ in H. rewrite Z.mul_add_distr_r in H. change (1*WORD)%Z with 4 in H. assert (Zlength a >= 4). assert (0 <= Z.of_nat n * WORD); [ | omega]. apply Z.mul_nonneg_nonneg; try omega. change WORD with 4%Z; omega. do 4 (destruct a; [rewrite Zlength_nil in H0; omega | rewrite Zlength_cons in H,H0 ]). simpl. do 4 f_equal. apply IHn. omega. Qed. Lemma round_range: forall {A} (a: list A) (N:Z), N > 0 -> 0 <= Zlength a / N * N <= Zlength a. Proof. intros. split. apply Z.mul_nonneg_nonneg; auto; try omega. apply Z.div_pos; try omega. apply Zlength_nonneg. pose proof (Zmod_eq (Zlength a) N H). pose proof (Z_mod_lt (Zlength a) N H). omega. Qed. Lemma CBLOCKz_gt: CBLOCKz > 0. Proof. rewrite CBLOCKz_eq; omega. Qed. Lemma Zlist_to_intlist_inj: forall a b, (WORD | Zlength a) -> (WORD | Zlength b) -> Forall isbyteZ a -> Forall isbyteZ b -> Zlist_to_intlist a = Zlist_to_intlist b -> a=b. Proof. intros. rewrite <- (Zlist_to_intlist_to_Zlist a) by auto. rewrite H3. apply Zlist_to_intlist_to_Zlist; auto. Qed. Definition update_abs (incr: list Z) (a: list Z) (a': list Z) := a' = a ++ incr. Lemma update_abs_eq: forall msg a a', Forall isbyteZ (a++msg) -> Forall isbyteZ a' -> (update_abs msg a a' <-> exists blocks, s256a_hashed a' = s256a_hashed a ++ blocks /\ s256a_data a ++ msg = intlist_to_Zlist blocks ++ s256a_data a'). Proof. intros. rename H0 into H'. unfold update_abs. assert (0 <= 0 <= Zlength a / CBLOCKz * CBLOCKz). { split; [omega | ]. apply Z.mul_nonneg_nonneg. apply Z.div_pos. apply Zlength_nonneg. rewrite CBLOCKz_eq; omega. rewrite CBLOCKz_eq; omega. } pose proof (round_range a _ CBLOCKz_gt). pose proof (round_range (a++msg) _ CBLOCKz_gt). split; intro. * subst a'. unfold s256a_hashed. exists (Zlist_to_intlist (sublist (Zlength a / CBLOCKz * CBLOCKz) (Zlength (a++msg) / CBLOCKz * CBLOCKz) (a++msg))). split. + rewrite (sublist_split 0 (Zlength a / CBLOCKz * CBLOCKz)); auto. rewrite Zlist_to_intlist_app. f_equal. rewrite sublist_app1; auto. omega. rewrite Zlength_sublist; auto. rewrite Z.sub_0_r. apply Z.divide_mul_r. exists LBLOCKz; reflexivity. rewrite Zlength_app. pose proof (Zlength_nonneg msg); omega. split; [ | apply round_range; apply CBLOCKz_gt]. apply Zmult_le_compat_r; [ | rewrite CBLOCKz_eq; omega]. apply Z.div_le_mono; [rewrite CBLOCKz_eq; omega| ]. rewrite Zlength_app; Omega1. + rewrite Zlist_to_intlist_to_Zlist. Focus 2. rewrite Zlength_sublist. rewrite <- Z.mul_sub_distr_r. apply Z.divide_mul_r. exists LBLOCKz; reflexivity. split; [Omega1 | ]. apply Zmult_le_compat_r; [ | rewrite CBLOCKz_eq; omega]. apply Z.div_le_mono; [rewrite CBLOCKz_eq; omega| ]. rewrite Zlength_app; Omega1. apply round_range. apply CBLOCKz_gt. 2: apply Forall_sublist; auto. unfold s256a_data. destruct (zlt (Zlength (a ++ msg) / CBLOCKz * CBLOCKz) (Zlength a) ). - rewrite sublist_app1; try omega. rewrite (sublist_split (Zlength (a ++ msg) / CBLOCKz * CBLOCKz) (Zlength a) (Zlength (a ++ msg))); try omega. rewrite sublist_app1; try omega. rewrite sublist_app2 by omega. autorewrite with sublist. rewrite (sublist_same 0) by omega. rewrite <- app_ass. f_equal. rewrite sublist_rejoin; try omega. auto. split. apply round_range; apply CBLOCKz_gt. apply Zmult_le_compat_r; [ | rewrite CBLOCKz_eq; omega]. apply Z.div_le_mono; [rewrite CBLOCKz_eq; omega| ]. Omega1. rewrite Zlength_app in l; omega. rewrite Zlength_app; Omega1. split. apply round_range; apply CBLOCKz_gt. apply Zmult_le_compat_r; [ | rewrite CBLOCKz_eq; omega]. apply Z.div_le_mono; [rewrite CBLOCKz_eq; omega| ]. rewrite Zlength_app; Omega1. - rewrite (sublist_split (Zlength a / CBLOCKz * CBLOCKz) (Zlength a) (Zlength (a ++ msg) / CBLOCKz * CBLOCKz) ); auto. rewrite app_ass. rewrite sublist_app1; try omega. rewrite sublist_app2; try omega. rewrite Z.sub_diag. f_equal. rewrite sublist_app2; try omega. rewrite sublist_rejoin. autorewrite with sublist. auto. omega. split; try omega. rewrite Zlength_app; Omega1. omega. * destruct H3 as [blocks [? ?]]. match type of H3 with ?A = ?B => assert (Zlength A * WORD = Zlength B * WORD)%Z by congruence end. match type of H4 with ?A = ?B => assert (sublist 0 (Zlength a / CBLOCKz * CBLOCKz) a ++ A = sublist 0 (Zlength a / CBLOCKz * CBLOCKz) a ++ B) by congruence end. unfold s256a_hashed, s256a_data in *. rewrite <- app_ass in H6. rewrite sublist_rejoin in H6 by omega. rewrite sublist_same in H6 by omega. rewrite H6. clear H6 H4. rewrite <- (sublist_same 0 (Zlength a') a') at 1; auto. rewrite <- app_ass. rewrite (sublist_split 0 (Zlength a' / CBLOCKz * CBLOCKz) (Zlength a')); try omega. f_equal. apply Zlist_to_intlist_inj. rewrite Zlength_sublist. rewrite Z.sub_0_r. apply Z.divide_mul_r. exists LBLOCKz; reflexivity. split; [clear; omega | ]. apply Z.mul_nonneg_nonneg; [ | rewrite CBLOCKz_eq; omega]. apply Z.div_pos; [ | rewrite CBLOCKz_eq; omega]. apply Zlength_nonneg. apply round_range; apply CBLOCKz_gt. rewrite Zlength_app. apply Z.divide_add_r. rewrite Zlength_sublist. rewrite Z.sub_0_r. apply Z.divide_mul_r. exists LBLOCKz; reflexivity. split; [clear; omega | ]. apply Z.mul_nonneg_nonneg; [ | rewrite CBLOCKz_eq; omega]. apply Z.div_pos; [ | rewrite CBLOCKz_eq; omega]. apply Zlength_nonneg. apply round_range; apply CBLOCKz_gt. exists (Zlength blocks). apply Zlength_intlist_to_Zlist. apply Forall_sublist; auto. apply Forall_app; split. apply Forall_app in H; destruct H; apply Forall_sublist; auto. apply isbyte_intlist_to_Zlist. rewrite H3. rewrite Zlist_to_intlist_app. f_equal. symmetry; apply intlist_to_Zlist_to_intlist. rewrite Zlength_sublist. rewrite Z.sub_0_r. apply Z.divide_mul_r. exists LBLOCKz; reflexivity. auto. omega. split; [clear; omega |]. apply round_range; apply CBLOCKz_gt. split; [ | clear; omega]. apply round_range; apply CBLOCKz_gt. Qed. Lemma array_at_memory_block: forall {cs: compspecs} sh t gfs lo hi v p n, sizeof (nested_field_array_type t gfs lo hi) = n -> lo <= hi -> array_at sh t gfs lo hi v p |-- memory_block sh n (field_address0 t (ArraySubsc lo :: gfs) p). Proof. intros. rewrite array_at_data_at by auto. normalize. unfold at_offset. rewrite field_address0_offset by auto. subst n. apply data_at_memory_block. Qed. Hint Extern 2 (array_at _ _ _ _ _ _ _ |-- memory_block _ _ _) => (apply array_at_memory_block; try reflexivity; try omega) : cancel.
\documentclass[red]{mytest} \usepackage[utf8]{inputenc} \usepackage[english]{babel} \usepackage{blindtext} \title{Example to show how classes work} \author{Team Learn ShareLaTeX} \date{2019/4/20} \begin{document} \maketitle \noindent Let's begin with a simple working example here. \blindtext \section{Introduction} The Monty Hall problem... \blindtext \section{The same thing} The Monty... \blindtext \section{The same thing} The Monty... \blindtext \section{The same thing} The Monty... \blindtext \section{The same thing} The Monty... \blindtext \end{document}
[STATEMENT] lemma before_exists: "\<turnstile> $(\<exists> x. P x) = (\<exists> x. $(P x))" [PROOF STATE] proof (prove) goal (1 subgoal): 1. \<turnstile> $(\<exists>x. P x) = (\<exists>x. $P x) [PROOF STEP] by (auto simp: before_def)
The fractional part of $1$ is $1$.
[STATEMENT] lemma prime_factors_characterization_nat: "S = {p. 0 < f (p::nat)} \<Longrightarrow> finite S \<Longrightarrow> \<forall>p\<in>S. prime p \<Longrightarrow> n = (\<Prod>p\<in>S. p ^ f p) \<Longrightarrow> prime_factors n = S" [PROOF STATE] proof (prove) goal (1 subgoal): 1. \<lbrakk>S = {p. 0 < f p}; finite S; \<forall>p\<in>S. prime p; n = (\<Prod>p\<in>S. p ^ f p)\<rbrakk> \<Longrightarrow> prime_factors n = S [PROOF STEP] by (rule prime_factorization_unique_nat [THEN conjunct1, symmetric])
(* Default settings (from HsToCoq.Coq.Preamble) *) Generalizable All Variables. Unset Implicit Arguments. Set Maximal Implicit Insertion. Unset Strict Implicit. Unset Printing Implicit Defensive. Require Coq.Program.Tactics. Require Coq.Program.Wf. (* Converted imports: *) Require GHC.Base. Import GHC.Base.Notations. (* Converted type declarations: *) Inductive StateR s a : Type := | Mk_StateR (runStateR : s -> (s * a)%type) : StateR s a. Inductive StateL s a : Type := | Mk_StateL (runStateL : s -> (s * a)%type) : StateL s a. Inductive Min a : Type := | Mk_Min (getMin : option a) : Min a. Inductive Max a : Type := | Mk_Max (getMax : option a) : Max a. Arguments Mk_StateR {_} {_} _. Arguments Mk_StateL {_} {_} _. Arguments Mk_Min {_} _. Arguments Mk_Max {_} _. Definition runStateR {s} {a} (arg_0__ : StateR s a) := let 'Mk_StateR runStateR := arg_0__ in runStateR. Definition runStateL {s} {a} (arg_0__ : StateL s a) := let 'Mk_StateL runStateL := arg_0__ in runStateL. Definition getMin {a} (arg_0__ : Min a) := let 'Mk_Min getMin := arg_0__ in getMin. Definition getMax {a} (arg_0__ : Max a) := let 'Mk_Max getMax := arg_0__ in getMax. (* Midamble *) (* We should be able to automatically generate these *) Instance Unpeel_StateR {s}{a} : HsToCoq.Unpeel.Unpeel (StateR s a) (s -> (s * a)%type) := HsToCoq.Unpeel.Build_Unpeel _ _ (fun arg => match arg with | Mk_StateR x => x end) Mk_StateR. Instance Unpeel_StateL {s}{a} : HsToCoq.Unpeel.Unpeel (StateL s a) (s -> (s * a)%type) := HsToCoq.Unpeel.Build_Unpeel _ _ (fun arg => match arg with | Mk_StateL x => x end) Mk_StateL. Instance Unpeel_Min {a} : HsToCoq.Unpeel.Unpeel (Min a) (option a) := HsToCoq.Unpeel.Build_Unpeel _ _ (fun arg => match arg with | Mk_Min x => x end) Mk_Min. Instance Unpeel_Max {a} : HsToCoq.Unpeel.Unpeel (Max a) (option a) := HsToCoq.Unpeel.Build_Unpeel _ _ (fun arg => match arg with | Mk_Max x => x end) Mk_Max. (* Converted value declarations: *) Local Definition Semigroup__Max_op_zlzlzgzg__ {inst_a : Type} `{GHC.Base.Ord inst_a} : Max inst_a -> Max inst_a -> Max inst_a := fun arg_0__ arg_1__ => match arg_0__, arg_1__ with | m, Mk_Max None => m | Mk_Max None, n => n | Mk_Max (Some x as m), Mk_Max (Some y as n) => if x GHC.Base.>= y : bool then Mk_Max m else Mk_Max n end. Program Instance Semigroup__Max {a : Type} `{GHC.Base.Ord a} : GHC.Base.Semigroup (Max a) := fun _ k__ => k__ {| GHC.Base.op_zlzlzgzg____ := Semigroup__Max_op_zlzlzgzg__ |}. Local Definition Monoid__Max_mappend {inst_a : Type} `{GHC.Base.Ord inst_a} : Max inst_a -> Max inst_a -> Max inst_a := _GHC.Base.<<>>_. Local Definition Monoid__Max_mempty {inst_a : Type} `{GHC.Base.Ord inst_a} : Max inst_a := Mk_Max None. Local Definition Monoid__Max_mconcat {inst_a : Type} `{GHC.Base.Ord inst_a} : list (Max inst_a) -> Max inst_a := GHC.Base.foldr Monoid__Max_mappend Monoid__Max_mempty. Program Instance Monoid__Max {a : Type} `{GHC.Base.Ord a} : GHC.Base.Monoid (Max a) := fun _ k__ => k__ {| GHC.Base.mappend__ := Monoid__Max_mappend ; GHC.Base.mconcat__ := Monoid__Max_mconcat ; GHC.Base.mempty__ := Monoid__Max_mempty |}. Local Definition Semigroup__Min_op_zlzlzgzg__ {inst_a : Type} `{GHC.Base.Ord inst_a} : Min inst_a -> Min inst_a -> Min inst_a := fun arg_0__ arg_1__ => match arg_0__, arg_1__ with | m, Mk_Min None => m | Mk_Min None, n => n | Mk_Min (Some x as m), Mk_Min (Some y as n) => if x GHC.Base.<= y : bool then Mk_Min m else Mk_Min n end. Program Instance Semigroup__Min {a : Type} `{GHC.Base.Ord a} : GHC.Base.Semigroup (Min a) := fun _ k__ => k__ {| GHC.Base.op_zlzlzgzg____ := Semigroup__Min_op_zlzlzgzg__ |}. Local Definition Monoid__Min_mappend {inst_a : Type} `{GHC.Base.Ord inst_a} : Min inst_a -> Min inst_a -> Min inst_a := _GHC.Base.<<>>_. Local Definition Monoid__Min_mempty {inst_a : Type} `{GHC.Base.Ord inst_a} : Min inst_a := Mk_Min None. Local Definition Monoid__Min_mconcat {inst_a : Type} `{GHC.Base.Ord inst_a} : list (Min inst_a) -> Min inst_a := GHC.Base.foldr Monoid__Min_mappend Monoid__Min_mempty. Program Instance Monoid__Min {a : Type} `{GHC.Base.Ord a} : GHC.Base.Monoid (Min a) := fun _ k__ => k__ {| GHC.Base.mappend__ := Monoid__Min_mappend ; GHC.Base.mconcat__ := Monoid__Min_mconcat ; GHC.Base.mempty__ := Monoid__Min_mempty |}. Local Definition Functor__StateL_fmap {inst_s : Type} : forall {a : Type}, forall {b : Type}, (a -> b) -> StateL inst_s a -> StateL inst_s b := fun {a : Type} {b : Type} => fun arg_0__ arg_1__ => match arg_0__, arg_1__ with | f, Mk_StateL k => Mk_StateL (fun s => let 'pair s' v := k s in pair s' (f v)) end. Local Definition Functor__StateL_op_zlzd__ {inst_s : Type} : forall {a : Type}, forall {b : Type}, a -> StateL inst_s b -> StateL inst_s a := fun {a : Type} {b : Type} => Functor__StateL_fmap GHC.Base.∘ GHC.Base.const. Program Instance Functor__StateL {s : Type} : GHC.Base.Functor (StateL s) := fun _ k__ => k__ {| GHC.Base.fmap__ := fun {a : Type} {b : Type} => Functor__StateL_fmap ; GHC.Base.op_zlzd____ := fun {a : Type} {b : Type} => Functor__StateL_op_zlzd__ |}. Local Definition Applicative__StateL_liftA2 {inst_s : Type} : forall {a : Type}, forall {b : Type}, forall {c : Type}, (a -> b -> c) -> StateL inst_s a -> StateL inst_s b -> StateL inst_s c := fun {a : Type} {b : Type} {c : Type} => fun arg_0__ arg_1__ arg_2__ => match arg_0__, arg_1__, arg_2__ with | f, Mk_StateL kx, Mk_StateL ky => Mk_StateL (fun s => let 'pair s' x := kx s in let 'pair s'' y := ky s' in pair s'' (f x y)) end. Local Definition Applicative__StateL_op_zlztzg__ {inst_s : Type} : forall {a : Type}, forall {b : Type}, StateL inst_s (a -> b) -> StateL inst_s a -> StateL inst_s b := fun {a : Type} {b : Type} => fun arg_0__ arg_1__ => match arg_0__, arg_1__ with | Mk_StateL kf, Mk_StateL kv => Mk_StateL (fun s => let 'pair s' f := kf s in let 'pair s'' v := kv s' in pair s'' (f v)) end. Local Definition Applicative__StateL_op_ztzg__ {inst_s : Type} : forall {a : Type}, forall {b : Type}, StateL inst_s a -> StateL inst_s b -> StateL inst_s b := fun {a : Type} {b : Type} => fun a1 a2 => Applicative__StateL_op_zlztzg__ (GHC.Base.id GHC.Base.<$ a1) a2. Local Definition Applicative__StateL_pure {inst_s : Type} : forall {a : Type}, a -> StateL inst_s a := fun {a : Type} => fun x => Mk_StateL (fun s => pair s x). Program Instance Applicative__StateL {s : Type} : GHC.Base.Applicative (StateL s) := fun _ k__ => k__ {| GHC.Base.liftA2__ := fun {a : Type} {b : Type} {c : Type} => Applicative__StateL_liftA2 ; GHC.Base.op_zlztzg____ := fun {a : Type} {b : Type} => Applicative__StateL_op_zlztzg__ ; GHC.Base.op_ztzg____ := fun {a : Type} {b : Type} => Applicative__StateL_op_ztzg__ ; GHC.Base.pure__ := fun {a : Type} => Applicative__StateL_pure |}. Local Definition Functor__StateR_fmap {inst_s : Type} : forall {a : Type}, forall {b : Type}, (a -> b) -> StateR inst_s a -> StateR inst_s b := fun {a : Type} {b : Type} => fun arg_0__ arg_1__ => match arg_0__, arg_1__ with | f, Mk_StateR k => Mk_StateR (fun s => let 'pair s' v := k s in pair s' (f v)) end. Local Definition Functor__StateR_op_zlzd__ {inst_s : Type} : forall {a : Type}, forall {b : Type}, a -> StateR inst_s b -> StateR inst_s a := fun {a : Type} {b : Type} => Functor__StateR_fmap GHC.Base.∘ GHC.Base.const. Program Instance Functor__StateR {s : Type} : GHC.Base.Functor (StateR s) := fun _ k__ => k__ {| GHC.Base.fmap__ := fun {a : Type} {b : Type} => Functor__StateR_fmap ; GHC.Base.op_zlzd____ := fun {a : Type} {b : Type} => Functor__StateR_op_zlzd__ |}. Local Definition Applicative__StateR_liftA2 {inst_s : Type} : forall {a : Type}, forall {b : Type}, forall {c : Type}, (a -> b -> c) -> StateR inst_s a -> StateR inst_s b -> StateR inst_s c := fun {a : Type} {b : Type} {c : Type} => fun arg_0__ arg_1__ arg_2__ => match arg_0__, arg_1__, arg_2__ with | f, Mk_StateR kx, Mk_StateR ky => Mk_StateR (fun s => let 'pair s' y := ky s in let 'pair s'' x := kx s' in pair s'' (f x y)) end. Local Definition Applicative__StateR_op_zlztzg__ {inst_s : Type} : forall {a : Type}, forall {b : Type}, StateR inst_s (a -> b) -> StateR inst_s a -> StateR inst_s b := fun {a : Type} {b : Type} => fun arg_0__ arg_1__ => match arg_0__, arg_1__ with | Mk_StateR kf, Mk_StateR kv => Mk_StateR (fun s => let 'pair s' v := kv s in let 'pair s'' f := kf s' in pair s'' (f v)) end. Local Definition Applicative__StateR_op_ztzg__ {inst_s : Type} : forall {a : Type}, forall {b : Type}, StateR inst_s a -> StateR inst_s b -> StateR inst_s b := fun {a : Type} {b : Type} => fun a1 a2 => Applicative__StateR_op_zlztzg__ (GHC.Base.id GHC.Base.<$ a1) a2. Local Definition Applicative__StateR_pure {inst_s : Type} : forall {a : Type}, a -> StateR inst_s a := fun {a : Type} => fun x => Mk_StateR (fun s => pair s x). Program Instance Applicative__StateR {s : Type} : GHC.Base.Applicative (StateR s) := fun _ k__ => k__ {| GHC.Base.liftA2__ := fun {a : Type} {b : Type} {c : Type} => Applicative__StateR_liftA2 ; GHC.Base.op_zlztzg____ := fun {a : Type} {b : Type} => Applicative__StateR_op_zlztzg__ ; GHC.Base.op_ztzg____ := fun {a : Type} {b : Type} => Applicative__StateR_op_ztzg__ ; GHC.Base.pure__ := fun {a : Type} => Applicative__StateR_pure |}. (* Skipping definition `Data.Functor.Utils.hash_compose' *) (* External variables: None Some Type bool list op_zt__ option pair GHC.Base.Applicative GHC.Base.Functor GHC.Base.Monoid GHC.Base.Ord GHC.Base.Semigroup GHC.Base.const GHC.Base.fmap__ GHC.Base.foldr GHC.Base.id GHC.Base.liftA2__ GHC.Base.mappend__ GHC.Base.mconcat__ GHC.Base.mempty__ GHC.Base.op_z2218U__ GHC.Base.op_zgze__ GHC.Base.op_zlzd__ GHC.Base.op_zlzd____ GHC.Base.op_zlze__ GHC.Base.op_zlzlzgzg__ GHC.Base.op_zlzlzgzg____ GHC.Base.op_zlztzg____ GHC.Base.op_ztzg____ GHC.Base.pure__ *)
(* File: FinCard.thy Time-stamp: <2015-12-12T10:47:26Z> Author: JRF Web: http://jrf.cocolog-nifty.com/software/2016/01/post.html Logic Image: ZF (of Isabelle2015) *) theory FinCard imports Finite Cardinal begin lemma Fin_subset2: assumes "X: Fin(A)" and "X <= B" shows "X: Fin(B)" apply (rule assms(2) [THEN rev_mp]) apply (rule assms(1) [THEN Fin_induct]) apply (rule impI) apply (rule Fin.emptyI) apply (rule impI) apply (erule cons_subsetE) apply (rule Fin.consI) apply (drule_tac [2] mp) apply assumption+ done lemma Fin_domainI [TC]: "X: Fin(A*B) ==> domain(X): Fin(A)" apply (erule Fin_induct) apply (erule_tac [2] SigmaE) apply simp_all done lemma Fin_rangeI [TC]: "X: Fin(A*B) ==> range(X): Fin(B)" apply (erule Fin_induct) apply (erule_tac [2] SigmaE) apply simp_all done lemma Fin_RepFunI [TC]: "[| X: Fin(A); !!x. x: A ==> f(x): B |] ==> {f(x). x: X}: Fin(B)" apply (erule Fin_induct) apply simp_all done lemmas Fin_imp_Finite = Fin_into_Finite lemmas Finite_imp_Fin = Finite_into_Fin lemma Finite_imp_card_nat [TC]: "Finite(A) ==> |A|: nat" apply (unfold Finite_def) apply (erule bexE) apply (drule cardinal_cong) apply (erule ssubst) apply (rule lt_nat_in_nat) apply (rule Ord_cardinal_le) apply (erule nat_into_Ord) apply (erule nat_succI) done lemma Fin_complete_induct_lemma: "n: nat ==> (ALL X: Fin(A). |X| = n --> (ALL x: Fin(A). (ALL y. y: Fin(A) & |y| < |x| --> P(y)) --> P(x)) --> P(X))" apply (erule complete_induct) apply clarsimp apply (erule bspec [THEN mp]) apply assumption apply clarsimp apply (drule ltD) apply simp done lemma Fin_complete_induct: assumes major: "X: Fin(A)" and indstep: "!!x. [| x: Fin(A); ALL y. y: Fin(A) & |y| < |x| --> P(y) |] ==> P(x)" shows "P(X)" apply (rule major [THEN Fin_into_Finite, THEN Finite_imp_card_nat, THEN Fin_complete_induct_lemma, THEN bspec, THEN mp, THEN mp]) apply ((rule major refl ballI impI indstep) | assumption)+ done lemma Finite_lepoll_imp_le: assumes major: "A lepoll B" and prem: "Finite(B)" shows "|A| le |B|" apply (insert lepoll_Finite [OF major prem] prem major) apply (unfold Finite_def cardinal_def) apply clarify apply (rule le_trans) apply (rule Least_le) apply (erule eqpoll_sym) apply (erule nat_into_Ord) apply (rule_tac P="%x. n le x" in ssubst) apply (rule Least_equality) apply (erule eqpoll_sym) apply (erule nat_into_Ord) apply (rule notI) apply (drule eqpoll_trans, assumption) apply (frule lt_nat_in_nat) apply assumption apply (drule nat_eqpoll_iff [THEN iffD1], assumption, assumption) apply hypsubst apply (erule lt_irrefl) apply (rule nat_lepoll_imp_le) apply assumption+ apply (rule lepoll_trans) apply (rule eqpoll_sym [THEN eqpoll_imp_lepoll], assumption) apply (rule lepoll_trans, assumption) apply (erule eqpoll_imp_lepoll) done lemma Finite_cardinal_succ: "Finite(A) ==> |succ(A)| = succ(|A|)" apply (unfold Finite_def) apply (erule bexE) apply (rule_tac b="|succ(n)|" in trans) apply (rule cardinal_cong) apply (simp only: succ_def) apply (blast elim!: mem_irrefl intro: cons_eqpoll_cong) apply (drule cardinal_cong) apply (simp add: nat_into_Card [THEN Card_cardinal_eq]) done lemma Finite_cardinal_cons: assumes major: "Finite(A)" shows "a ~: A ==> |cons(a, A)| = succ(|A|)" apply (rule major [THEN Finite_cardinal_succ, THEN [2] trans]) apply (rule cardinal_cong) apply (unfold succ_def) apply (blast elim!: mem_irrefl intro: eqpoll_refl cons_eqpoll_cong) done lemmas FinCard_simps = Finite_cardinal_cons cons_absorb cardinal_0 end
lemmas independent_imp_finite = finiteI_independent
Formal statement is: lemma Sup_sigma: assumes [simp]: "M \<noteq> {}" and M: "\<And>m. m \<in> M \<Longrightarrow> m \<subseteq> Pow \<Omega>" shows "(SUP m\<in>M. sigma \<Omega> m) = (sigma \<Omega> (\<Union>M))" Informal statement is: If $M$ is a nonempty set of subsets of $\Omega$, then $\sigma(\bigcup M) = \sigma(\bigcup_{m \in M} m)$.
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Mon Jul 17 16:17:25 2017 @author: jorgemauricio """ # librerias import pandas as pd import numpy as np import matplotlib.pyplot as plt from sklearn.linear_model i # leer el CSV data = pd.read_csv('../../data/data/dataFromAguascalientestTest.csv') #
||| A simple module to process 'literate' documents. ||| ||| The module uses a lexer to split the document into code blocks, ||| delineated by user-defined markers, and code lines that are ||| indicated be a line marker. The lexer returns a document stripped ||| of non-code elements but preserving the original document's line ||| count. Column numbering of code lines are not preserved. ||| ||| The underlying tokeniser is greedy. ||| ||| Once it identifies a line marker it reads a prettifying space then ||| consumes until the end of line. Once identifies a starting code ||| block marker, the lexer will consume input until the next ||| identifiable end block is encountered. Any other content is ||| treated as part of the original document. ||| ||| Thus, the input literate files *must* be well-formed w.r.t ||| to code line markers and code blocks. ||| ||| A further restriction is that literate documents cannot contain ||| the markers within the document's main text: This will confuse the ||| lexer. ||| module Text.Literate import Text.Lexer import Data.List import Data.List1 import Data.List.Views import Data.String import Data.String.Extra %default total untilEOL : Recognise False untilEOL = manyUntil newline any line : String -> Lexer line s = exact s <+> (newline <|> space <+> untilEOL) block : String -> String -> Lexer block s e = surround (exact s <+> untilEOL) (exact e <+> untilEOL) any notCodeLine : Lexer notCodeLine = newline <|> any <+> untilEOL data Token = CodeBlock String String String | Any String | CodeLine String String Show Token where showPrec d (CodeBlock l r x) = showCon d "CodeBlock" $ showArg l ++ showArg r ++ showArg x showPrec d (Any x) = showCon d "Any" $ showArg x showPrec d (CodeLine m x) = showCon d "CodeLine" $ showArg m ++ showArg x rawTokens : (delims : List (String, String)) -> (markers : List String) -> TokenMap (Token) rawTokens delims ls = map (\(l,r) => (block l r, CodeBlock (trim l) (trim r))) delims ++ map (\m => (line m, CodeLine (trim m))) ls ++ [(notCodeLine, Any)] namespace Compat -- `reduce` below was depending on the old behaviour of `lines` before #1585 -- was merged. That old `lines` function is added here to preserve behaviour -- of `reduce`. lines' : List Char -> List1 (List Char) lines' [] = singleton [] lines' s = case break isNL s of (l, s') => l ::: case s' of [] => [] _ :: s'' => forget $ lines' (assert_smaller s s'') export lines : String -> List1 String lines s = map pack (lines' (unpack s)) ||| Merge the tokens into a single source file. reduce : List (WithBounds Token) -> List String -> String reduce [] acc = fastAppend (reverse acc) reduce (MkBounded (Any x) _ _ :: rest) acc = -- newline will always be tokenized as a single token if x == "\n" then reduce rest ("\n"::acc) else reduce rest acc reduce (MkBounded (CodeLine m src) _ _ :: rest) acc = if m == trim src then reduce rest ("\n"::acc) else reduce rest ((substr (length m + 1) -- remove space to right of marker. (length src) src )::acc) reduce (MkBounded (CodeBlock l r src) _ _ :: rest) acc with (Compat.lines src) -- Strip the deliminators surrounding the block. reduce (MkBounded (CodeBlock l r src) _ _ :: rest) acc | (s ::: ys) with (snocList ys) reduce (MkBounded (CodeBlock l r src) _ _ :: rest) acc | (s ::: []) | Empty = reduce rest acc -- 2 reduce (MkBounded (CodeBlock l r src) _ _ :: rest) acc | (s ::: (srcs ++ [f])) | (Snoc f srcs rec) = -- the "\n" counts for the open deliminator; the closing deliminator should always be followed by a (Any "\n"), so we don't add a newline reduce rest (((unlines srcs) ++ "\n") :: "\n" :: acc) -- [ NOTE ] 1 & 2 shouldn't happen as code blocks are well formed i.e. have two deliminators. public export record LiterateError where constructor MkLitErr line : Int column : Int input : String ||| Description of literate styles. ||| ||| A 'literate' style comprises of ||| ||| + a list of code block deliminators (`deliminators`); ||| + a list of code line markers (`line_markers`); and ||| + a list of known file extensions `file_extensions`. ||| ||| Some example specifications: ||| ||| + Bird Style ||| |||``` |||MkLitStyle Nil [">"] [".lidr"] |||``` ||| ||| + Literate Haskell (for LaTeX) ||| |||``` |||MkLitStyle [("\\begin{code}", "\\end{code}"),("\\begin{spec}","\\end{spec}")] ||| Nil ||| [".lhs", ".tex"] |||``` ||| ||| + OrgMode ||| |||``` |||MkLitStyle [("#+BEGIN_SRC idris","#+END_SRC"), ("#+COMMENT idris","#+END_COMMENT")] ||| ["#+IDRIS:"] ||| [".org"] |||``` ||| ||| + Common Mark ||| |||``` |||MkLitStyle [("```idris","```"), ("<!-- idris","--!>")] ||| Nil ||| [".md", ".markdown"] |||``` ||| public export record LiterateStyle where constructor MkLitStyle ||| The pairs of start and end tags for code blocks. deliminators : List (String, String) ||| Line markers that indicate a line contains code. line_markers : List String ||| Recognised file extensions. Not used by the module, but will be ||| of use when connecting to code that reads in the original source ||| files. file_extensions : List String ||| Given a 'literate specification' extract the code from the ||| literate source file (`litStr`) that follows the presented style. ||| ||| @specification The literate specification to use. ||| @litStr The literate source file. ||| ||| Returns a `LiterateError` if the literate file contains malformed ||| code blocks or code lines. ||| export extractCode : (specification : LiterateStyle) -> (litStr : String) -> Either LiterateError String extractCode (MkLitStyle delims markers exts) str = case lex (rawTokens delims markers) str of (toks, (_,_,"")) => Right (reduce toks Nil) (_, (l,c,i)) => Left (MkLitErr l c i) ||| Synonym for `extractCode`. export unlit : (specification : LiterateStyle) -> (litStr : String) -> Either LiterateError String unlit = extractCode ||| Is the provided line marked up using a line marker? ||| ||| If the line is suffixed by any one of the style's set of line ||| markers then return length of literate line marker, and the code stripped from the line ||| marker. Otherwise, return Nothing and the unmarked line. export isLiterateLine : (specification : LiterateStyle) -> (str : String) -> Pair (Maybe String) String isLiterateLine (MkLitStyle delims markers _) str with (lex (rawTokens delims markers) str) isLiterateLine (MkLitStyle delims markers _) str | ([MkBounded (CodeLine m str') _ _], (_,_, "")) = (Just m, str') isLiterateLine (MkLitStyle delims markers _) str | (_, _) = (Nothing, str) ||| Given a 'literate specification' embed the given code using the ||| literate style provided. ||| ||| If the style uses deliminators to denote code blocks use the first ||| pair of deliminators in the style. Otherwise use first linemarker ||| in the style. If there is **no style** return the presented code ||| string unembedded. ||| ||| ||| @specification The literate specification to use. ||| @code The code to embed, ||| ||| export embedCode : (specification : LiterateStyle) -> (code : String) -> String embedCode (MkLitStyle ((s,e)::delims) _ _) str = unlines [s,str,e] embedCode (MkLitStyle Nil (m::markers) _) str = unwords [m, str] embedCode (MkLitStyle _ _ _) str = str ||| Synonm for `embedCode` export relit : (specification : LiterateStyle) -> (code : String) -> String relit = embedCode -- --------------------------------------------------------------------- [ EOF ]
server <- function(input, output){ output$distPlot <- renderPlot({ x <- faithful$waiting bins <- seq(min(x), max(x), length.out = input$bins +1) hist(x, breaks = bins, col= "#75AADB", border = "white", xlab = "waiting time till next (in min)", main = "histogram of waiting times") }) }
module Parser where import Data.Binary import Data.Binary.Get import qualified Data.ByteString.Lazy as BS import Codec.Compression.GZip (decompress) import Control.Monad import Numeric.LinearAlgebra import Numeric.LinearAlgebra.Devel import qualified Data.Vector as V import Control.Monad.ST type Pixel = Word8 type Image = V.Vector (Matrix Float) type Label = Vector Float decodeImages :: Get [Image] decodeImages = do mc <- getWord32be guard (mc == 0x00000803) [d1,d2,d3] <- many 3 getWord32be guard (d2 == 28 && d3 == 28) many d1 pic where pic :: Get Image pic = do bs <- getByteString (28*28) return . V.singleton . reshape 28 . toVecDouble . fromByteString $ bs toVecDouble :: Vector Pixel -> Vector Float -- mapVectorM requires the monad be strict -- so Identity monad shall not be used toVecDouble v = runST $ mapVectorM (return . (/255) . fromIntegral) v decodeLabels :: Get [Label] decodeLabels = do mc <- getWord32be guard (mc == 0x00000801) d1 <- getWord32be many d1 lbl where lbl :: Get Label lbl = do v <- fromIntegral <$> (get :: Get Word8) return $ fromList (replicate v 0 ++ [1] ++ replicate (9-v) 0) many :: (Integral n, Monad m) => n -> m a -> m [a] many cnt dec = sequence (replicate (fromIntegral cnt) dec) trainingData :: IO ([Image], [Label]) trainingData = do s <- decompress <$> BS.readFile "tdata/train-images-idx3-ubyte.gz" t <- decompress <$> BS.readFile "tdata/train-labels-idx1-ubyte.gz" return (runGet decodeImages s, runGet decodeLabels t) testData :: IO ([Image], [Label]) testData = do s <- decompress <$> BS.readFile "tdata/t10k-images-idx3-ubyte.gz" t <- decompress <$> BS.readFile "tdata/t10k-labels-idx1-ubyte.gz" return (runGet decodeImages s, runGet decodeLabels t)
subsection\<open>Simplified Variant with Simple Entailment in Logic K (Fig.~8 in \<^cite>\<open>"C85"\<close>)\<close> theory SimpleVariantSE imports HOML MFilter BaseDefs begin text\<open>Axiom's of new variant based on ultrafilters.\<close> axiomatization where A1': "\<lfloor>\<^bold>\<not>(\<P>(\<lambda>x.(x\<^bold>\<noteq>x)))\<rfloor>" and A2'': "\<lfloor>\<^bold>\<forall>X Y.(((\<P> X) \<^bold>\<and> (X\<^bold>\<sqsubseteq>Y)) \<^bold>\<rightarrow> (\<P> Y))\<rfloor>" and T2: "\<lfloor>\<P> \<G>\<rfloor>" text\<open>Necessary existence of a Godlike entity.\<close> theorem T6: "\<lfloor>\<^bold>\<box>(\<^bold>\<exists>\<^sup>E \<G>)\<rfloor>" using A1' A2'' T2 by blast theorem T7: "\<lfloor>\<^bold>\<exists>\<^sup>E \<G>\<rfloor>" using A1' A2'' T2 by blast text\<open>Possible existence of a Godlike: has counterodel.\<close> lemma T3: "\<lfloor>\<^bold>\<diamond>(\<^bold>\<exists>\<^sup>E \<G>)\<rfloor>" nitpick oops \<comment>\<open>Countermodel\<close> lemma T3': assumes T: "\<lfloor>\<^bold>\<forall>\<phi>.((\<^bold>\<box>\<phi>) \<^bold>\<rightarrow> \<phi>)\<rfloor>" shows "\<lfloor>\<^bold>\<diamond>(\<^bold>\<exists>\<^sup>E \<G>)\<rfloor>" using A1' A2'' T2 T by metis end
import data.nat.basic import tactic.linarith import tactic.ring namespace nat lemma power_geq_1 {k n : ℕ} : (succ k)^n ≥ 1 := begin induction n, { rw [pow_zero], exact le_refl _ }, { rw [pow_succ], exact _root_.le_add_left n_ih } end lemma mul_left_cancel {a b c : ℕ} : a > 0 → a * b = a * c → b = c := λ pos eq, calc b = b * a / a : symm (nat.mul_div_cancel _ pos) ... = a * b / a : by rw [mul_comm] ... = a * c / a : by rw [eq] ... = c * a / a : by rw [mul_comm] ... = c : nat.mul_div_cancel _ pos lemma sub_add_from_add_sub : Π {a b c : ℕ}, a ≥ c -> b ≥ c -> a + (b - c) = (a - c) + b | 0 b c a_ge_c b_ge_c := begin have : c = 0 := by linarith, simp [this] end | (a+1) 0 c a_ge_c b_ge_c := begin have : c = 0 := by linarith, simp [this] end | (a+1) (b+1) 0 a_ge_c b_ge_c := by simp | (a+1) (b+1) (c+1) a_ge_c b_ge_c := begin have a_ge_c : a ≥ c := lt_succ_iff.mp a_ge_c, have b_ge_c : b ≥ c := lt_succ_iff.mp b_ge_c, repeat { rw [add_one] }, repeat { rw [add_succ] <|> rw [succ_add] }, repeat { rw [succ_sub_succ] }, rw [sub_add_from_add_sub a_ge_c b_ge_c] end lemma pow_le_pow {a b k : ℕ} : a ≥ b -> a^k ≥ b^k := begin intro gt, induction k, { simp }, rw [pow_succ, pow_succ], exact (mul_le_mul k_ih gt (by linarith) (by linarith)) end lemma pow_ge_one {a k : ℕ} : a ≥ 1 -> a^k ≥ 1 := λ a_pos, calc a^k ≥ 1^k : pow_le_pow a_pos ... = 1 : by simp lemma prime_positive {p : ℕ} : prime p -> p > 0 := λ pr, have h : p ≥ 2 := prime.two_le pr, by linarith lemma prime_pow_ge_one {p k : ℕ} : prime p -> p^k ≥ 1 := λ pr, pow_ge_one (prime_positive pr) lemma pow_lt_pow_right {a k l : ℕ} : a > 1 -> k < l -> a^k < a^l := begin intros a_big lt, induction lt, { exact calc a^k = 1 * a^k : symm (one_mul _) ... < a * a^k : mul_lt_mul a_big (refl _) (pow_ge_one (by linarith)) (by linarith) ... = a^k * a : mul_comm _ _ ... = a^(k + 1) : by simp [pow_succ]}, exact calc a^k = 1 * a^k : symm (one_mul _) ... < a * a^lt_b : mul_lt_mul a_big (by linarith) (pow_ge_one (by linarith)) (by linarith) ... = a^lt_b * a : mul_comm _ _ ... = a^(lt_b + 1) : by simp [pow_succ] end lemma prod_lt_gt {a a' b b' : ℕ} : b > 0 -> a * b = a' * b' -> a < a' -> b > b' := begin intros b_pos eq a_lt_a', have : a' * b > a' * b' := calc a' * b > a * b : mul_lt_mul_of_pos_right a_lt_a' b_pos ... = a' * b' : eq, apply lt_of_mul_lt_mul_left this (zero_le _) end lemma prod_gt_lt {a a' b b' : ℕ} : a > 0 -> a * b = a' * b' -> b < b' -> a > a' := begin rw [mul_comm a b, mul_comm a' b'], apply prod_lt_gt end lemma pos_of_mul_pos {a b : ℕ} : a * b > 0 -> a > 0 := begin cases a, { simp }, intros _, exact succ_pos a end lemma pos_of_mul_pos_right {a b : ℕ} : a * b > 0 -> b > 0 := begin cases b, { simp }, intros _, exact succ_pos b end lemma pos_of_dvd_pos {a b : ℕ} : b > 0 -> a ∣ b -> a > 0 := begin rintros gt ⟨k, prod⟩, rw [prod] at gt, apply pos_of_mul_pos gt, end lemma dvd_pow_succ {p k n : ℕ} : prime p -> n ∣ p^(k + 1) -> n = p^(k + 1) ∨ n ∣ p^k := begin rintros pr divides, obtain ⟨l , bound, pf⟩ := (dvd_prime_pow pr).1 divides, rcases lt_trichotomy l (k+1) with h | h | h, { have : l ≤ k := by linarith, apply or.inr, apply (dvd_prime_pow pr).2, finish }, { apply or.inl, rw [pf, h] }, have : p^(k + 1) > 0 := prime_pow_ge_one pr, have : n ≤ p^(k + 1) := le_of_dvd this divides, have : p^(k + 1) < p^(k + 1) := calc p^(k + 1) < p^l : pow_lt_pow_right (prime.two_le pr) h ... = n : symm pf ... ≤ p^(k + 1) : this, linarith end lemma coprime_gcd {a b c : ℕ} : coprime b c → coprime (gcd a b) (gcd a c) := coprime.coprime_dvd_left (gcd_dvd_right a b) ∘ coprime.coprime_dvd_right (gcd_dvd_right a c) lemma prod_coprime_gcd {a b c : ℕ} : a > 0 -> coprime b c -> gcd a b * gcd a c = gcd a (b * c) := begin intros a_pos coprime, apply le_antisymm; apply le_of_dvd, { exact gcd_pos_of_pos_left _ a_pos }, { exact nat.coprime.mul_dvd_of_dvd_of_dvd (coprime_gcd coprime) (gcd_dvd_gcd_mul_right_right a b c) (gcd_dvd_gcd_mul_left_right a c b) }, { exact (mul_lt_mul_left (gcd_pos_of_pos_left _ a_pos)).2 (gcd_pos_of_pos_left _ a_pos) }, { exact gcd_mul_dvd_mul_gcd _ _ _ } end lemma prod_coprime_gcd_left {a b c : ℕ} : c > 0 -> coprime a b -> gcd a c * gcd b c = gcd (a * b) c := begin rw [gcd_comm a c, gcd_comm b c, gcd_comm (a * b) c], exact prod_coprime_gcd end open nat (succ) @[simp] lemma gcd_add {a b : ℕ} : nat.gcd a (a + b) = nat.gcd b a := begin cases a, { simp }, cases b, { simp }, exact calc nat.gcd (succ a) (succ a + succ b) = nat.gcd (succ b % succ a) (succ a) : by rw [nat.gcd_succ, nat.add_mod_left] ... = nat.gcd (succ b) (succ a) : by rw [←nat.gcd_succ, nat.gcd_comm] end theorem coprime_sub_one {n : ℕ} : n > 0 -> coprime (n - 1) n := begin intro n_pos, cases n, { linarith }, exact calc nat.gcd ((n + 1) - 1) (n + 1) = nat.gcd 1 n : by simp ... = 1 : nat.gcd_one_left _ end end nat
Formal statement is: lemma measure_space_closed: assumes "measure_space \<Omega> M \<mu>" shows "M \<subseteq> Pow \<Omega>" Informal statement is: If $(\Omega, M, \mu)$ is a measure space, then $M \subseteq \mathcal{P}(\Omega)$.
\section{User Guide} When using this model, the user should follow the setup procedure corresponding to his or her desired conversion described below. The procedures outline the required inputs and some recommended parameter values. \begin{itemize} \item \textit{eclipseCondition} \begin{itemize} \item \textit{full} for full eclipse \item \textit{partial} for partial eclipse \item \textit{annular} for annular eclipse \item \textit{none} for no eclipse \end{itemize} \item $\mu$ is recommended to be $3.86\text{e+}14$ $\frac{\text{m}^3}{\text{s}^2}$ for Earth. \item \textit{UTCCalInit} is used in this test as \textit{2021 MAY 04 07:47:49.965 (UTC)} but can be any UTC time. \item Keplerian orbital elements are given in Table \ref{tab:OrbElem} previously. These are just suggested values that are used for the test and can be varied. The module only accepts Cartesian vectors. \begin{itemize} \item To convert from orbital elements to Cartesian vectors, use the \textit{elem2rv} method from orbitalMotion \end{itemize} \item Planet Names \begin{itemize} \item \textit{venus} \item \textit{earth} \item \textit{mars barycenter} \end{itemize} \end{itemize} \subsection{Variable Definition and Code Description} The variables in Table \ref{tabular:vars} are available for user input. Variables used by the module but not available to the user are not mentioned here. Variables with default settings do not necessarily need to be changed by the user, but may be. \begin{table}[H] \caption{Definition and Explanation of Variables Used.} \label{tab:errortol} \centering \fontsize{10}{10}\selectfont \begin{tabular}{| m{3.4cm}| m{3cm} | m{2.5cm} | m{6cm}|} % Column formatting, \hline \textbf{Variable} & \textbf{LaTeX Equivalent} & \textbf{Variable Type} & \textbf{Notes} \\ \hline r$_BN_N$ &$\bm{r}$ & double & [m]Default setting: 0.0. Spacecract position vector used as an input.\\ \hline $\mu$ & $\mu$ & double & [m3/s2] Required Input. This is the gravitational parameter of the body. Replaces the product of Earth's gravitational force and mass for this test..\\ \hline a & $a$ & double & [km] Required Input. The semimajor axis of the body's orbit.\\ \hline e & $e$ & double & Required Input. The eccentricity of the body's orbit.\\ \hline i & $i$ & double & [rad] Required Input. The inclination of the body's orbit\\ \hline Omega & $\Omega$ & double & [rad] Required Input. The ascending node of the body's orbit. \\ \hline omega & $\omega$ & double & [rad] Required Input. The argument of periapses of the body's orbit. \\ \hline f & $f$ & double & [rad] Required Input. The true anomaly of the body's orbit \\ \hline spiceObject.UTCCalInit & \textit{UTCCalInit} & str & Required Input. A UTC time that provides the means of obtaining planet and sun state data. \\ \hline Planet Names & N/A & str & Required Input. Identifies the planets desired to be evaluated.\\ \hline \end{tabular} \label{tabular:vars} \end{table} \begin{thebibliography}{1} \bibitem{bib:1} Montenbruck, O., and Gill, E., \textit{Satellite Orbits Models, Methods and Applications}, 1st ed. Berlin: Springer Berlin, 2000 \end{thebibliography}
url = "http://wiki.puzzlers.org/pub/wordlists/unixdict.txt" wordlist = open(readlines, download(url)) wsort(word::AbstractString) = join(sort(collect(word))) function anagram(wordlist::Vector{<:AbstractString}) dict = Dict{String, Set{String}}() for word in wordlist sorted = wsort(word) push!(get!(dict, sorted, Set{String}()), word) end wcnt = maximum(length, values(dict)) return collect(Iterators.filter((y) -> length(y) == wcnt, values(dict))) end println.(anagram(wordlist))
using FastDMTransform, NPZ, Test, Statistics function standardize(A; dims=1) μ = mean(A; dims=dims) σ = std(A; mean=μ, dims=dims) return @. (A - μ) / σ end @testset "FastDMTransform.jl" begin pulse = npzread("../pulse.npz") dedispersed = standardize(npzread("../dedispersed.npz")) dedisped = standardize(fdmt(pulse, 1500, 1200, 1e-3, 0, 2000)) @test findmax(dedisped) == findmax(dedispersed) end
How Bruker’s innovative methods and non-destructive analytical techniques help to protect and preserve artifacts and historical monuments all over the world. Bruker’s art conservation solutions are perfectly suited to analyze artifacts, help to restore objects without destroying their original substance and determine the composition of materials used for production. Bruker offers mobile Micro-XRF and handheld XRF solutions for non-destructive in-situ analysis as well as innovative FT-IR and Raman solutions for optimal sample visualization and sample collection. Bruker’s instruments enable a reliable and fast analysis of ceramics, paintings, photographs, glass, obsidians, bronzes, coppers and alloys. Precious artifacts and historical monument are often affected by decay and through environmental pollution, vandalism, climate change, lack of budgets or just simple neglect. Conservators around the world are working day by day to save the world’s heritage for the future. Researching artifacts to help see the big picture.
State Before: n : ℕ h : n < size ⊢ Nat.isValidChar ↑(UInt32.ofNat n).val State After: n : ℕ h : n < size ⊢ Nat.isValidChar n n : ℕ h : n < size ⊢ n < UInt32.size Tactic: rw [UInt32.val_eq_of_lt] State Before: n : ℕ h : n < size ⊢ Nat.isValidChar n n : ℕ h : n < size ⊢ n < UInt32.size State After: n : ℕ h : n < size ⊢ n < UInt32.size Tactic: exact Or.inl $ Nat.lt_trans h $ by decide State Before: n : ℕ h : n < size ⊢ n < UInt32.size State After: no goals Tactic: exact Nat.lt_trans h $ by decide State Before: n : ℕ h : n < size ⊢ size < 55296 State After: no goals Tactic: decide State Before: n : ℕ h : n < size ⊢ size < UInt32.size State After: no goals Tactic: decide
(* Copyright 2014 Cornell University Copyright 2015 Cornell University Copyright 2016 Cornell University Copyright 2017 Cornell University This file is part of VPrl (the Verified Nuprl project). VPrl is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. VPrl is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with VPrl. If not, see <http://www.gnu.org/licenses/>. Websites: http://nuprl.org/html/verification/ http://nuprl.org/html/Nuprl2Coq https://github.com/vrahli/NuprlInCoq Authors: Vincent Rahli *) Require Export sequents2. Require Export sequents_lib. Require Export sequents_tacs. Require Export sequents_equality. Require Export per_props_uni. Require Export per_props_halts. Definition rule_universe_equality_concl {o} (H : @bhyps o) i j : baresequent := mk_baresequent H (mk_conclax (mk_member (mk_uni i) (mk_uni j))). (* H |- Type(i) = Type(i) in Type(j) By universeEquality (i < j) *) Definition rule_universe_equality {o} (H : @bhyps o) (i j : nat) := mk_rule (rule_universe_equality_concl H i j) [] []. Lemma rule_universe_equality_true3 {o} : forall lib (H : @bhyps o) (i j : nat), i < j -> rule_true3 lib (rule_universe_equality H i j). Proof. intros. unfold rule_universe_equality, rule_true3, wf_bseq, closed_type_baresequent, closed_extract_baresequent; simpl. intros; repnd. clear cargs hyps. (* We prove the well-formedness of things *) destseq; allsimpl; proof_irr; GC. assert (wf_csequent (H) ||- (mk_conclax (mk_member (mk_uni i) (mk_uni j)))) as wfc. { unfold wf_csequent, closed_type, closed_extract, wf_sequent, wf_concl; simpl. dwfseq. rw @vswf_hypotheses_nil_eq. dands; tcsp. } exists wfc. unfold wf_csequent, wf_sequent, wf_concl in wfc; allsimpl; repnd; proof_irr; GC. (* We prove some simple facts on our sequents *) (* done with proving these simple facts *) (* we now start proving the sequent *) vr_seq_true. lsubst_tac. pose proof (teq_and_member_if_member lib (mk_uni j) (mk_uni i) s1 s2 H wT wt ct ct0 cT cT0) as q. rw <- @member_member_iff. lsubst_tac. apply q; auto. { apply tequality_mkc_uni. } clear dependent s1; clear dependent s2. introv hf sim. lsubst_tac. apply uni_in_uni; auto. Qed. Lemma rule_universe_equality_true_ext_lib {o} : forall lib (H : @bhyps o) (i j : nat), i < j -> rule_true_ext_lib lib (rule_universe_equality H i j). Proof. introv ltij. apply rule_true3_implies_rule_true_ext_lib. introv. apply rule_universe_equality_true3; auto. Qed. Definition rule_cumulativity_concl {o} (H : @bhyps o) T j := mk_baresequent H (mk_conclax (mk_member T (mk_uni j))). Definition rule_cumulativity_hyp {o} (H : @bhyps o) T i e := mk_baresequent H (mk_concl (mk_member T (mk_uni i)) e). (* H |- T in Type(j) By cumulativity (i < j) H |- T in Type(i) *) Definition rule_cumulativity {o} (H : @bhyps o) (T e : NTerm) (i j : nat) := mk_rule (rule_cumulativity_concl H T j) [ rule_cumulativity_hyp H T i e ] []. Lemma rule_cumulativity_true3 {o} : forall lib (H : @bhyps o) T e (i j : nat), i <= j -> rule_true3 lib (rule_cumulativity H T e i j). Proof. intros. unfold rule_cumulativity, rule_true3, wf_bseq, closed_type_baresequent, closed_extract_baresequent; simpl. intros; repnd. clear cargs. (* We prove the well-formedness of things *) destseq; allsimpl. dLin_hyp; exrepnd. destruct Hyp as [ ws1 hyp1 ]. destseq; allsimpl; proof_irr; GC. assert (wf_csequent (H) ||- (mk_conclax (mk_member T (mk_uni j)))) as wfc. { clear hyp1. unfold wf_csequent, closed_type, closed_extract, wf_sequent, wf_concl; simpl. dwfseq. rw @vswf_hypotheses_nil_eq. dands; tcsp. introv xx; allrw in_app_iff; tcsp. } exists wfc. unfold wf_csequent, wf_sequent, wf_concl in wfc; allsimpl; repnd; proof_irr; GC. (* We prove some simple facts on our sequents *) (* done with proving these simple facts *) (* we now start proving the sequent *) vr_seq_true. lsubst_tac. rw <- @member_member_iff. pose proof (teq_and_member_if_member lib (mk_uni j) T s1 s2 H wT wt ct0 ct1 cT cT0) as q. lsubst_tac. apply q; auto. { apply tequality_mkc_uni. } clear dependent s1; clear dependent s2. introv hf sim. vr_seq_true in hyp1. pose proof (hyp1 s1 s2 hf sim) as q; clear hyp1; exrepnd. lsubst_tac. apply member_if_inhabited in q1. apply tequality_mkc_member in q0; repnd; clear q2. dimp q0. eapply cumulativity;eauto. Qed. Lemma rule_cumulativity_true_ext_lib {o} : forall lib (H : @bhyps o) T e (i j : nat), i <= j -> rule_true_ext_lib lib (rule_cumulativity H T e i j). Proof. introv ltij. apply rule_true3_implies_rule_true_ext_lib. introv. apply rule_cumulativity_true3; auto. Qed. Lemma rule_cumulativity_wf2 {o} : forall (H : @bhyps o) T e (i j : nat), wf_rule2 (rule_cumulativity H T e i j). Proof. introv wf k. allsimpl; repndors; subst; tcsp; allunfold @wf_bseq; repnd; allsimpl; wfseq. Qed. (* H |- halts(t) By callbyvalueType H |- t in Type(i) *) Definition rule_callbyvalue_type {o} (H : @bhyps o) (t : NTerm) (i : nat) := mk_rule (mk_baresequent H (mk_conclax (mk_halts t))) [ mk_baresequent H (mk_conclax (mk_member t (mk_uni i))) ] []. Lemma rule_callbyvalue_type_true3 {o} : forall lib (H : @bhyps o) t i, rule_true3 lib (rule_callbyvalue_type H t i). Proof. intros. unfold rule_callbyvalue_type, rule_true3, wf_bseq, closed_type_baresequent, closed_extract_baresequent; simpl. intros; repnd. clear cargs. (* We prove the well-formedness of things *) destseq; allsimpl. dLin_hyp; exrepnd. destruct Hyp as [ ws1 hyp1 ]. destseq; allsimpl; proof_irr; GC. match goal with | [ |- sequent_true2 _ ?s ] => assert (wf_csequent s) as wfc end. { clear hyp1. unfold wf_csequent, closed_type, closed_extract, wf_sequent, wf_concl; simpl. dwfseq. rw @vswf_hypotheses_nil_eq. dands; tcsp. } exists wfc. unfold wf_csequent, wf_sequent, wf_concl in wfc; allsimpl; repnd; proof_irr; GC. (* We prove some simple facts on our sequents *) (* done with proving these simple facts *) (* we now start proving the sequent *) vr_seq_true. vr_seq_true in hyp1. pose proof (hyp1 s1 s2 eqh sim) as h; clear hyp1; exrepnd. lsubst_tac. rw <- @member_member_iff in h1. repeat (rw <- @fold_mkc_member in h0). apply equality_commutes in h0; auto. clear h1. apply equality_in_uni in h0. applydup @tequality_refl in h0. apply tequality_sym in h0. apply tequality_refl in h0. apply types_converge in h0. apply types_converge in h1. spcast. rw @equality_in_mkc_halts_ax. eapply teq_and_eq_if_halts; eauto; spcast; auto. Qed.
import category_theory.isomorphism category_theory.concrete_category import category_theory.limits.shapes.equalizers import category_theory.endomorphism import category_theory.category.preorder data.fin.basic import category_theory.arrow import category_theory.category.Cat import category_theory.limits.presheaf import category_theory.limits.comma -- Should not be here... lemma nat.iterate_succ {α : Type*} (f : α → α) : ∀ (n : ℕ) (x0 : α), f^[n + 1] x0 = f (f^[n] x0) | 0 x0 := rfl | (n + 1) x0 := nat.iterate_succ n (f x0) namespace category_theory open category_theory category_theory.limits local attribute [instance] category_theory.concrete_category.has_coe_to_sort category_theory.concrete_category.has_coe_to_fun lemma iso.eq_app_inv_of_app_hom_eq {C : Type*} [category C] [concrete_category C] {X Y : C} (f : X ≅ Y) {x : X} {y : Y} (H : f.hom x = y) : x = f.inv y := begin transitivity f.inv (f.hom x), { rw [← comp_apply, iso.hom_inv_id, id_apply] }, { rw H } end lemma is_iso.eq_app_inv_of_app_hom_eq {C : Type*} [category C] [concrete_category C] {X Y : C} (f : X ⟶ Y) [is_iso f] {x : X} {y : Y} : f x = y → x = inv f y := iso.eq_app_inv_of_app_hom_eq (as_iso f) theorem is_iso.cancel_iso_inv_left {C : Type*} [category C] {X Y Z : C} (f : Y ⟶ X) [is_iso f] : ∀ (g g' : Y ⟶ Z), inv f ≫ g = inv f ≫ g' ↔ g = g' := iso.cancel_iso_inv_left (as_iso f) lemma parallel_pair_comp {C : Type*} {D : Type*} [category C] [category D] (F : C ⥤ D) {X Y : C} (f g : X ⟶ Y) : parallel_pair f g ⋙ F = parallel_pair (F.map f) (F.map g) := begin apply category_theory.functor.hext, { intro u, cases u; refl }, { intros u v i, cases u; cases v; cases i, all_goals { simp }, all_goals { refl } }, end def parallel_pair_comp.cocone_comp_to_cocone_pair {C : Type*} {D : Type*} [category C] [category D] (F : C ⥤ D) {X Y : C} (f g : X ⟶ Y) (c : cocone (parallel_pair f g ⋙ F)) : cocone (parallel_pair (F.map f) (F.map g)) := { X := c.X, ι := eq_to_hom (parallel_pair_comp F f g).symm ≫ c.ι } def parallel_pair_comp.cocone_pair_to_cocone_comp {C : Type*} {D : Type*} [category C] [category D] (F : C ⥤ D) {X Y : C} (f g : X ⟶ Y) (c : cocone (parallel_pair (F.map f) (F.map g))) : cocone (parallel_pair f g ⋙ F) := { X := c.X, ι := eq_to_hom (parallel_pair_comp F f g) ≫ c.ι } def parallel_pair_comp.is_colimit_comp_to_is_colimit_pair {C : Type*} {D : Type*} [category C] [category D] (F : C ⥤ D) {X Y : C} (f g : X ⟶ Y) (c : cocone (parallel_pair f g ⋙ F)) (hc : is_colimit c) : is_colimit (parallel_pair_comp.cocone_comp_to_cocone_pair F f g c) := { desc := λ s, hc.desc (parallel_pair_comp.cocone_pair_to_cocone_comp F f g s), fac' := by { intros, refine eq.trans (category.assoc _ _ _) _, rw hc.fac', refine eq.trans (category.assoc _ _ _).symm _, simp }, uniq' := λ s m h, hc.uniq' (parallel_pair_comp.cocone_pair_to_cocone_comp F f g s) m (λ u, by { refine eq.trans _ (congr_arg (λ w, nat_trans.app (eq_to_hom (parallel_pair_comp F f g)) u ≫ w) (h u)), refine eq.trans _ (category.assoc _ _ _), refine congr_arg (λ w, w ≫ m) _, refine eq.trans _ (category.assoc _ _ _), simp }) } def parallel_pair_comp.is_colimit_pair_to_is_colimit_comp {C : Type*} {D : Type*} [category C] [category D] (F : C ⥤ D) {X Y : C} (f g : X ⟶ Y) (c : cocone (parallel_pair (F.map f) (F.map g))) (hc : is_colimit c) : is_colimit (parallel_pair_comp.cocone_pair_to_cocone_comp F f g c) := { desc := λ s, hc.desc (parallel_pair_comp.cocone_comp_to_cocone_pair F f g s), fac' := by { intros, refine eq.trans (category.assoc _ _ _) _, rw hc.fac', refine eq.trans (category.assoc _ _ _).symm _, simp }, uniq' := λ s m h, hc.uniq' (parallel_pair_comp.cocone_comp_to_cocone_pair F f g s) m (λ u, by { refine eq.trans _ (congr_arg (λ w, nat_trans.app (eq_to_hom (parallel_pair_comp F f g).symm) u ≫ w) (h u)), refine eq.trans _ (category.assoc _ _ _), refine congr_arg (λ w, w ≫ m) _, refine eq.trans _ (category.assoc _ _ _), simp }) } lemma concrete_category.pow_eq_iter {C : Type*} [category C] [concrete_category C] {X : C} (f : X ⟶ X) (k : ℕ) : @coe_fn _ _ concrete_category.has_coe_to_fun (f ^ k : End X) = (f^[k]) := begin ext x, induction k with k ih, { simp }, { rw nat.iterate_succ, rw ← npow_eq_pow, dsimp [monoid.npow, npow_rec], simp, congr, exact ih } end universe u def restricted_yoneda_functor {C : Type u} [small_category C] {ℰ : Type*} [category ℰ] : (C ⥤ ℰ)ᵒᵖ ⥤ ℰ ⥤ Cᵒᵖ ⥤ Type u := category_theory.functor.op_hom _ _ ⋙ whiskering_left Cᵒᵖ ℰᵒᵖ (Type u) ⋙ (whiskering_left _ _ _).obj yoneda lemma restricted_yoneda_functor_obj {C : Type u} [small_category C] {ℰ : Type*} [category ℰ] (A : C ⥤ ℰ) : restricted_yoneda_functor.obj (opposite.op A) = colimit_adj.restricted_yoneda A := rfl def functor.map_cone_comp {J C D E : Type*} [category J] [category C] [category D] [category E] (K : J ⥤ C) (F : C ⥤ D) (G : D ⥤ E) : cones.functoriality K (F ⋙ G) ≅ cones.functoriality K F ⋙ cones.functoriality (K ⋙ F) G ⋙ cones.postcompose (functor.associator K F G).hom := begin refine nat_iso.of_components _ _, { intro c, refine category_theory.limits.cones.ext (iso.refl _) _, intro j, symmetry, exact eq.trans (category.id_comp _) (category.comp_id _) }, { intros c c' f, ext, exact eq.trans (category.comp_id _) (category.id_comp _).symm } end def functor.map_cone_map_cone {J C D E : Type*} [category J] [category C] [category D] [category E] (K : J ⥤ C) (F : C ⥤ D) (G : D ⥤ E) : cones.functoriality K (F ⋙ G) ⋙ cones.postcompose (functor.associator K F G).inv ≅ cones.functoriality K F ⋙ cones.functoriality (K ⋙ F) G := ((whiskering_right _ _ _).obj (cones.postcompose (functor.associator K F G).inv)).map_iso (functor.map_cone_comp K F G) ≪≫ ((whiskering_right _ _ _).obj (cones.postcompose (functor.associator K F G).inv)).map_iso (functor.associator (cones.functoriality K F) (cones.functoriality (K ⋙ F) G) (cones.postcompose (K.associator F G).hom)).symm ≪≫ (functor.associator _ _ _) ≪≫ ((whiskering_left _ _ _).obj _).map_iso ((limits.cones.postcompose_comp _ _).symm ≪≫ by { rw (K.associator F G).hom_inv_id, exact limits.cones.postcompose_id }) ≪≫ (functor.right_unitor _) def functor.map_cone_comp' {J C D E : Type*} [category J] [category C] [category D] [category E] (K : J ⥤ C) (F : C ⥤ D) (G : D ⥤ E) (c : cone K) : (F ⋙ G).map_cone c ≅ (cones.postcompose (functor.associator K F G).hom).obj (G.map_cone (F.map_cone c)) := ((evaluation _ _).obj c).map_iso (functor.map_cone_comp K F G) def functor.map_cone_map_cone' {J C D E : Type*} [category J] [category C] [category D] [category E] (K : J ⥤ C) (F : C ⥤ D) (G : D ⥤ E) (c : cone K) : (cones.postcompose (functor.associator K F G).inv).obj ((F ⋙ G).map_cone c) ≅ G.map_cone (F.map_cone c) := ((evaluation _ _).obj c).map_iso (functor.map_cone_map_cone K F G) def functor.map_cocone_comp {J C D E : Type*} [category J] [category C] [category D] [category E] (K : J ⥤ C) (F : C ⥤ D) (G : D ⥤ E) : cocones.functoriality K (F ⋙ G) ≅ cocones.functoriality K F ⋙ cocones.functoriality (K ⋙ F) G ⋙ cocones.precompose (functor.associator K F G).hom := begin refine nat_iso.of_components _ _, { intro c, refine category_theory.limits.cocones.ext (iso.refl _) _, intro j, exact eq.trans (category.comp_id _) (category.id_comp _).symm }, { intros c c' f, ext, exact eq.trans (category.comp_id _) (category.id_comp _).symm } end def functor.map_cocone_map_cocone {J C D E : Type*} [category J] [category C] [category D] [category E] (K : J ⥤ C) (F : C ⥤ D) (G : D ⥤ E) : cocones.functoriality K (F ⋙ G) ⋙ cocones.precompose (functor.associator K F G).inv ≅ cocones.functoriality K F ⋙ cocones.functoriality (K ⋙ F) G := ((whiskering_right _ _ _).obj (cocones.precompose (functor.associator K F G).inv)).map_iso (functor.map_cocone_comp K F G) ≪≫ ((whiskering_right _ _ _).obj (cocones.precompose (functor.associator K F G).inv)).map_iso (functor.associator (cocones.functoriality K F) (cocones.functoriality (K ⋙ F) G) (cocones.precompose (K.associator F G).hom)).symm ≪≫ (functor.associator _ _ _) ≪≫ ((whiskering_left _ _ _).obj _).map_iso ((limits.cocones.precompose_comp _ _).symm ≪≫ by { rw (K.associator F G).inv_hom_id, exact limits.cocones.precompose_id }) ≪≫ (functor.right_unitor _) def functor.map_cocone_comp' {J C D E : Type*} [category J] [category C] [category D] [category E] (K : J ⥤ C) (F : C ⥤ D) (G : D ⥤ E) (c : cocone K) : (F ⋙ G).map_cocone c ≅ (cocones.precompose (functor.associator K F G).hom).obj (G.map_cocone (F.map_cocone c)) := ((evaluation _ _).obj c).map_iso (functor.map_cocone_comp K F G) def functor.map_cocone_map_cocone' {J C D E : Type*} [category J] [category C] [category D] [category E] (K : J ⥤ C) (F : C ⥤ D) (G : D ⥤ E) (c : cocone K) : (cocones.precompose (functor.associator K F G).inv).obj ((F ⋙ G).map_cocone c) ≅ G.map_cocone (F.map_cocone c) := ((evaluation _ _).obj c).map_iso (functor.map_cocone_map_cocone K F G) def category_theory.limits.preserves_limits_of_equiv_domain {C : Type*} [category C] {D : Type*} [category D] {J : Type*} [category J] {K : J ⥤ C} {C' : Type*} [category C'] (F : C ⥤ D) (e : C ≌ C') (h : preserves_limit (K ⋙ e.functor) (e.inverse ⋙ F)) : preserves_limit K F := begin constructor, intros c hc, let α : K ⋙ F ≅ (K ⋙ e.functor) ⋙ (e.inverse ⋙ F) := calc K ⋙ F ≅ K ⋙ (𝟭 C ⋙ F) : ((whiskering_left _ _ _).obj K).map_iso F.left_unitor.symm ... ≅ K ⋙ ((e.functor ⋙ e.inverse) ⋙ F) : ((whiskering_left _ _ _).obj K).map_iso (((whiskering_right _ _ _).obj F).map_iso e.unit_iso) ... ≅ K ⋙ (e.functor ⋙ (e.inverse ⋙ F)) : ((whiskering_left _ _ _).obj K).map_iso (functor.associator _ _ _) ... ≅ (K ⋙ e.functor) ⋙ (e.inverse ⋙ F) : functor.associator _ _ _, refine is_limit.equiv_of_nat_iso_of_iso α.symm ((e.inverse ⋙ F).map_cone (e.functor.map_cone c)) (F.map_cone c) _ _, { ext, swap, { exact F.map_iso (e.unit_iso.app c.X).symm }, { dsimp, refine eq.trans (congr_arg _ (category.id_comp _)) (eq.trans (congr_arg _ (category.id_comp _)) (eq.trans (congr_arg _ (category.comp_id _)) _)), rw [← F.map_comp, ← F.map_comp], refine congr_arg _ _, rw [← functor.comp_map], apply e.unit_iso.inv.naturality } }, { destruct h, intros h' _, refine h' _, destruct adjunction.is_equivalence_preserves_limits e.functor, intros h'' _, destruct h'', intros h''' _, destruct @h''' K, intros H _, exact H hc, } end. def category_theory.limits.preserves_colimits_of_equiv_domain {C : Type*} [category C] {D : Type*} [category D] {J : Type*} [category J] {K : J ⥤ C} {C' : Type*} [category C'] (F : C ⥤ D) (e : C ≌ C') (h : preserves_colimit (K ⋙ e.functor) (e.inverse ⋙ F)) : preserves_colimit K F := begin constructor, intros c hc, let α : K ⋙ F ≅ (K ⋙ e.functor) ⋙ (e.inverse ⋙ F) := calc K ⋙ F ≅ K ⋙ (𝟭 C ⋙ F) : ((whiskering_left _ _ _).obj K).map_iso F.left_unitor.symm ... ≅ K ⋙ ((e.functor ⋙ e.inverse) ⋙ F) : ((whiskering_left _ _ _).obj K).map_iso (((whiskering_right _ _ _).obj F).map_iso e.unit_iso) ... ≅ K ⋙ (e.functor ⋙ (e.inverse ⋙ F)) : ((whiskering_left _ _ _).obj K).map_iso (functor.associator _ _ _) ... ≅ (K ⋙ e.functor) ⋙ (e.inverse ⋙ F) : functor.associator _ _ _, refine is_colimit.equiv_of_nat_iso_of_iso α.symm ((e.inverse ⋙ F).map_cocone (e.functor.map_cocone c)) (F.map_cocone c) _ _, { ext, swap, { exact F.map_iso (e.unit_iso.app c.X).symm }, { dsimp, refine eq.trans (congr_arg2 _ (congr_arg2 _ (category.comp_id _) rfl) rfl) _, refine eq.trans (congr_arg2 _ (congr_arg2 _ (category.comp_id _) rfl) rfl) _, refine eq.trans (congr_arg2 _ (congr_arg2 _ (category.id_comp _) rfl) rfl) _, rw [← F.map_comp, ← F.map_comp], refine congr_arg _ _, rw [← functor.comp_map], rw ← e.unit_iso.hom.naturality, simp } }, { destruct h, intros h' _, refine h' _, destruct adjunction.is_equivalence_preserves_colimits e.functor, intros h'' _, destruct h'', intros h''' _, destruct @h''' K, intros H _, exact H hc, } end. def category_theory.limits.preserves_colimits_of_equiv_codomain {C : Type*} [category C] {D : Type*} [category D] {J : Type*} [category J] {K : J ⥤ C} {D' : Type*} [category D'] (F : C ⥤ D) (e : D ≌ D') (h : preserves_colimit K (F ⋙ e.functor)) : preserves_colimit K F := @limits.preserves_colimit_of_nat_iso _ _ _ _ _ _ _ _ _ (functor.associator _ _ _ ≪≫ ((whiskering_left _ _ _).obj F).map_iso e.unit_iso.symm ≪≫ functor.right_unitor _) (@limits.comp_preserves_colimit C _ D' _ J _ K D _ (F ⋙ e.functor) e.inverse h _) def category_theory.iso_to_equiv {C : Type*} [category C] {D : Type*} [category D] (F : Cat.of C ≅ Cat.of D) : C ≌ D := ⟨F.hom, F.inv, eq_to_iso (F.hom_inv_id.symm), eq_to_iso (F.inv_hom_id), by { intro, simp, rw category_theory.eq_to_hom_map, simp, refl }⟩. lemma colimit_iso_colimit_cocone_desc {J C : Type*} [category J] [category C] (F : J ⥤ C) [has_colimit F] (c : colimit_cocone F) (c' : cocone F) : (colimit.iso_colimit_cocone c).inv ≫ colimit.desc F c' = c.is_colimit.desc c' := by { apply c.is_colimit.hom_ext, intro j, simp } -- universes v₁ v₂ v₃ v₄ u₁ u₂ u₃ u₄ -- I think the universe levels are borked :( -- def comma.cocone_of_preserves_is_colimit' -- {J : Type u₁} [small_category.{u₁} J] {A : Type u₂} -- [category.{(max u₁ u₂) u₂} A] {B : Type u₃} -- [category.{(max u₁ u₃) u₃} B] {T : Type u₄} -- [category.{(max u₁ u₄) u₄} T] {L : A ⥤ T} {R : B ⥤ T} -- (F : J ⥤ comma L R) -- [preserves_colimit (F ⋙ comma.fst L R) L] -- {c₁ : cocone (F ⋙ comma.fst L R)} (t₁ : is_colimit c₁) -- {c₂ : cocone (F ⋙ comma.snd L R)} (t₂ : is_colimit c₂) : -- is_colimit (comma.cocone_of_preserves.{u₁} F t₁ c₂) := -- { desc := λ s, -- { left := t₁.desc ((fst L R).map_cocone s), -- right := t₂.desc ((snd L R).map_cocone s), -- w' := (is_colimit_of_preserves L t₁).hom_ext $ λ j, -- begin -- rw [cocone_of_preserves_X_hom, (is_colimit_of_preserves L t₁).fac_assoc, -- colimit_auxiliary_cocone_ι_app, assoc, ←R.map_comp, t₂.fac, L.map_cocone_ι_app, -- ←L.map_comp_assoc, t₁.fac], -- exact (s.ι.app j).w, -- end }, -- uniq' := λ s m w, comma_morphism.ext _ _ -- (t₁.uniq ((fst L R).map_cocone s) _ (by simp [←w])) -- (t₂.uniq ((snd L R).map_cocone s) _ (by simp [←w])) } end category_theory
# 2D Stokes Solver $\newcommand{\dd}{\,{\rm d}}$ $\newcommand{\uu}{\mathbf{u}}$ $\newcommand{\ff}{\mathbf{f}}$ $\newcommand{\Div}{\nabla \cdot}$ We consider now the Stokes problem for the steady-state modelling of an incompressible fluid \begin{align} \left\{ \begin{array}{rl} - \nabla^2 \uu + \nabla p = \ff & \mbox{in} ~ \Omega, \\ \Div \uu = 0 & \mbox{in} ~ \Omega, \\ \uu = 0 & \mbox{on} ~ \partial \Omega, \end{array} \right. \label{eq:stokes} \end{align} ## First mixed formulation of the Stokes problem For the variational formulation, we take the dot product of the first equation with $v$ and integrate over the whole domain $$\int_{\Omega} (-\Delta \mathbf{u} + \nabla p)\cdot \mathbf{v} \dd \mathbf{x} =\int_{\Omega}\nabla \mathbf{u}:\nabla \mathbf{v} \dd \mathbf{x} + \int_{\Omega} \nabla p \cdot \mathbf{v} \dd \mathbf{x} = \int_{\Omega} \mathbf{f}\cdot \mathbf{v} \dd \mathbf{x}$$ The integration by parts is performed component by component. We impose the essential boundary condition $ \mathbf{v}=0$ on $\partial\Omega$, and we denote by $$\int_{\Omega}\nabla \mathbf{u}:\nabla \mathbf{v} \dd \mathbf{x} =\sum_{i=1}^3 \int_{\Omega}\nabla u_i\cdot\nabla v_i \dd \mathbf{x} =\sum_{i,j=1}^3 \int_{\Omega}\partial_j u_i\partial_j v_i \dd \mathbf{x} .$$ We now need to deal with the constraint $\nabla\cdot \mathbf{u}=0$. The theoretical framework for saddle point problems requires that the corresponding bilinear form is the same as the second one appearing in the first part of the variational formulation. To this aim we multiply $\nabla\cdot \mathbf{u}=0$ by a scalar test function (which will be associated to $p$) and integrate on the full domain, with an integration by parts in order to get the same bilinear form as in the first equation $$\int_{\Omega} \nabla\cdot \mathbf{u} \,q \dd \mathbf{x}= - \int_{\Omega} \mathbf{u}\cdot \nabla q\dd \mathbf{x}=0,$$ using that $q=0$ on the boundary as an essential boundary condition. We finally obtain the mixed variational formulation: --- Find $( \mathbf{u},p)\in H^1_0(\Omega)^3\times H^1_0(\Omega)$ such that \begin{align} \left\{ \begin{array}{llll} \int_{\Omega}\nabla \mathbf{u}:\nabla \mathbf{v} \dd \mathbf{x} &+ \int_{\Omega} \nabla p \cdot \mathbf{v} \dd \mathbf{x} &= \int_{\Omega} \mathbf{f}\cdot \mathbf{v} \dd \mathbf{x}, & \forall \mathbf{v}\in H_0^1(\Omega)^3 \\ \int_{\Omega} \mathbf{u}\cdot \nabla q\dd \mathbf{x} & &=0, & \forall p\in H^1_0(\Omega) \end{array} \right. \label{eq:abs_var_mixed_stokes_1} \end{align} --- ## Second mixed formulation of the Stokes problem Another possibility to obtained a well posed variational formulation, is to integrate by parts the $ \int_{\Omega} \nabla p \cdot \mathbf{v} \dd \mathbf{x}$ term in the first formulation: $$ \int_{\Omega} \nabla p \cdot \mathbf{v} \dd \mathbf{x} = - \int_{\Omega} p \nabla \cdot \mathbf{v} \dd \mathbf{x} + \int_{\partial\Omega} p \mathbf{v} \cdot \mathbf{n}\dd \sigma= -\int_{\Omega} p \,\nabla \cdot \mathbf{v} \dd \mathbf{x} ,$$ using here $p=0$ as a natural boundary condition. Note that in the other variational formulation the same boundary condition was essential. In this case, for the second variational formulation, we just multiply $\nabla\cdot \mathbf{u}=0$ by $q$ and integrate. No integration by parts is needed in this case. $$\int_{\Omega} \nabla \cdot \mathbf{u}\, q \dd \mathbf{x} =0.$$ This then leads to the following variational formulation: --- Find $( \mathbf{u},p)\in H^1(\Omega)^3\times L^2(\Omega)$ such that \begin{align} \left\{ \begin{array}{llll} \int_{\Omega}\nabla \mathbf{u}:\nabla \mathbf{v} \dd \mathbf{x} &- \int_{\Omega} p \, \nabla\cdot \mathbf{v} \dd \mathbf{x} &= \int_{\Omega} \mathbf{f}\cdot \mathbf{v} \dd \mathbf{x}, &\forall \mathbf{v}\in H^1(\Omega)^3 \\ \int_{\Omega} \nabla\cdot\mathbf{u}\, q\dd \mathbf{x} & &=0, &\forall q\in L^2(\Omega) \end{array} \right. \label{eq:abs_var_mixed_stokes_2} \end{align} --- ```python import numpy as np from sympy import pi, cos, sin, sqrt, Matrix, Tuple, lambdify from scipy.sparse.linalg import spsolve from scipy.sparse.linalg import gmres as sp_gmres from scipy.sparse.linalg import minres as sp_minres from scipy.sparse.linalg import cg as sp_cg from scipy.sparse.linalg import bicg as sp_bicg from scipy.sparse.linalg import bicgstab as sp_bicgstab from sympde.calculus import grad, dot, inner, div, curl, cross from sympde.topology import NormalVector from sympde.topology import ScalarFunctionSpace, VectorFunctionSpace from sympde.topology import ProductSpace from sympde.topology import element_of, elements_of from sympde.topology import Square from sympde.expr import BilinearForm, LinearForm, integral from sympde.expr import Norm from sympde.expr import find, EssentialBC from psydac.fem.basic import FemField from psydac.fem.vector import ProductFemSpace from psydac.api.discretization import discretize from psydac.linalg.utilities import array_to_stencil from psydac.linalg.iterative_solvers import pcg, bicg ``` ## Solving the first mixed formulation using Psydac ```python # ... abstract model domain = Square() x, y = domain.coordinates V1 = VectorFunctionSpace('V1', domain, kind='H1') V2 = ScalarFunctionSpace('V2', domain, kind='L2') X = ProductSpace(V1, V2) # ... Exact solution fx = -x**2*(x - 1)**2*(24*y - 12) - 4*y*(x**2 + 4*x*(x - 1) + (x - 1)**2)*(2*y**2 - 3*y + 1) - 2*pi*cos(2*pi*x) fy = 4*x*(2*x**2 - 3*x + 1)*(y**2 + 4*y*(y - 1) + (y - 1)**2) + y**2*(24*x - 12)*(y - 1)**2 + 2*pi*cos(2*pi*y) f = Tuple(fx, fy) ux = x**2*(-x + 1)**2*(4*y**3 - 6*y**2 + 2*y) uy =-y**2*(-y + 1)**2*(4*x**3 - 6*x**2 + 2*x) ue = Tuple(ux, uy) pe = -sin(2*pi*x) + sin(2*pi*y) # ... u, v = elements_of(V1, names='u, v') p, q = elements_of(V2, names='p, q') x, y = domain.coordinates int_0 = lambda expr: integral(domain , expr) a = BilinearForm(((u, p), (v, q)), int_0(inner(grad(u), grad(v)) - div(u)*q - p*div(v)) ) l = LinearForm((v, q), int_0(dot(f, v))) # Dirichlet boundary conditions are given in the form u = g where g may be # just 0 (hence homogeneous BCs are prescribed) or a symbolic expression # g(x, y) that represents the boundary data. Here we use the exact solution bc = EssentialBC(u, 0, domain.boundary) equation = find((u, p), forall=(v, q), lhs=a((u, p), (v, q)), rhs=l(v, q), bc=bc) ``` ```python ncells = [2**3, 2**3] degree = [2, 2] ``` ```python # ... create the computational domain from a topological domain domain_h = discretize(domain, ncells=ncells) # ... discrete spaces V1h = discretize(V1, domain_h, degree=degree) V2h = discretize(V2, domain_h, degree=degree, basis='M') Xh = discretize(X , domain_h, degree=degree, basis='M') # ... discretize the equation using Dirichlet bc equation_h = discretize(equation, domain_h, [Xh, Xh]) ``` ```python equation_h.set_solver('cg', info=True) phi_h, info = equation_h.solve() x = phi_h.coeffs print(info) ``` {'niter': 75, 'success': True, 'res_norm': 8.078519203112407e-10} ```python # Numerical solution: velocity field # TODO: allow this: uh = FemField(V1h, coeffs=x[0:2]) or similar uh = FemField(V1h) uh.coeffs[0][:] = x[0][:] uh.coeffs[1][:] = x[1][:] # Numerical solution: pressure field # TODO: allow this: uh = FemField(V2h, coeffs=x[2]) ph = FemField(V2h) ph.coeffs[:] = x[2][:] # Compute norms of exact solution x1, x2 = domain.coordinates ue_1 = lambdify([x1, x2], ue[0]) ue_2 = lambdify([x1, x2], ue[1]) pe_c = lambdify([x1, x2], pe ) l2_norm_ue = np.sqrt(V1h.spaces[0].integral(lambda *x: ue_1(*x)**2 + ue_2(*x)**2)) l2_norm_pe = np.sqrt(V2h.integral(lambda *x: pe_c(*x)**2)) # Average value of the pressure (should be 0) domain_area = V2h.integral(lambda x1, x2: 1.0) p_avg = V2h.integral(ph) / domain_area # L2 error norm of the velocity field error_u = [ue[0]-u[0], ue[1]-u[1]] l2norm_u = Norm(error_u, domain, kind='l2') l2norm_uh = discretize(l2norm_u, domain_h, V1h) # L2 error norm of the pressure, after removing the average value from the field l2norm_p = Norm(pe - (p - p_avg), domain, kind='l2') l2norm_ph = discretize(l2norm_p, domain_h, V2h) # Compute error norms l2_error_u = l2norm_uh.assemble(u = uh) l2_error_p = l2norm_ph.assemble(p = ph) print() print('Relative l2_error(u) = {}'.format(l2_error_u / l2_norm_ue)) print('Relative l2_error(p) = {}'.format(l2_error_p / l2_norm_pe)) print('Average(p) = {}'.format(p_avg)) ``` Relative l2_error(u) = 0.0023928602597358293 Relative l2_error(p) = 0.02442817246105665 Average(p) = -5.784464418329125e-12 ```python ```
Formal statement is: lemma coeffs_eq_Nil [simp]: "coeffs p = [] \<longleftrightarrow> p = 0" Informal statement is: The coefficients of a polynomial are the empty list if and only if the polynomial is zero.
%! Author = tstreule \section{Generation of X-rays} \subsection{Basic formulas} % \begin{itemize} \item \highlight{$\displaystyle c = \frac{1}{\sqrt{\mu_0\epsilon_0}} = \lambda\nu$} \highlight{$\displaystyle E = h\nu = \frac{hc}{\lambda}$} \hfill rest mass: $mc^2=\unit[511]{eV}$ \item Range of X-Rays: $\lambda = \unit[10]{pm} - \unit[10]{nm}$ \item $E\ped{radiation} = n \cdot E\ped{photon}$ \quad with \quad $E\ped{photon} = h \cdot \nu = e U_a$ \item $p\ped{photon} = mc = h/\lambda, \qquad \lambda\ped{min} = \frac{hc}{e U_a}$ \end{itemize} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \subsection{Spectrum} % Photon flux vs E: Speaks by \textbf{Characteristic Radiation}. Continuous spectrum by \textbf{Bremsstrahlung}: 1st el. deflection: Spectrum $0-E_{max}$, 2nd el. defl. Not to $E\ped{max}$ anymore. If material changes: $E\ped{max} = const$, slope changes\\ If E changes: slope const., intersection with E-axis @ E Low-Energy rad. absorbed anyway $\to$ Al filter $\to$ dose $\downarrow$ %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \subsection{Heat generation \& dissipation} % Efficiency: $\eta = \frac{\textrm{absorbed power}}{\textrm{incident power}} = 1\%$\\ $P_\textrm{heat} = U_a \cdot I_a \cdot (1-\eta)$ \textcolor{gray}{$= P - P_\textrm{X-ray}$} \textbf{Dissipation} (Infrared): Diffusion ($\propto T^4$) and\\ Radiation ($\propto\Delta T$): $\lambda$ vs. $I$, $\lambda_\textrm{peak} = b/T$, $b = \unit[2.9\E{-3}]{mK}$
section \<open>Computing the Gcd via the subresultant PRS\<close> text \<open>This theory now formalizes how the subresultant PRS can be used to calculate the gcd of two polynomials. Moreover, it proves the connection between resultants and gcd, namely that the resultant is 0 iff the degree of the gcd is non-zero.\<close> theory Subresultant_Gcd imports Subresultant Polynomial_Factorization.Missing_Polynomial_Factorial begin subsection \<open>Algorithm\<close> definition gcd_impl_primitive where [code del]: "gcd_impl_primitive G1 G2 = normalize (primitive_part (fst (subresultant_prs dichotomous_Lazard G1 G2)))" definition gcd_impl_main where [code del]: "gcd_impl_main G1 G2 = (if G1 = 0 then 0 else if G2 = 0 then normalize G1 else smult (gcd (content G1) (content G2)) (gcd_impl_primitive (primitive_part G1) (primitive_part G2)))" definition gcd_impl where "gcd_impl f g = (if length (coeffs f) \<ge> length (coeffs g) then gcd_impl_main f g else gcd_impl_main g f)" subsection \<open>Soundness Proof for @{term "gcd_impl = gcd"}\<close> locale subresultant_prs_gcd = subresultant_prs_locale2 F n \<delta> f k \<beta> G1 G2 for F :: "nat \<Rightarrow> 'a :: {factorial_ring_gcd,semiring_gcd_mult_normalize} fract poly" and n :: "nat \<Rightarrow> nat" and \<delta> :: "nat \<Rightarrow> nat" and f :: "nat \<Rightarrow> 'a fract" and k :: nat and \<beta> :: "nat \<Rightarrow> 'a fract" and G1 G2 :: "'a poly" begin text \<open>The subresultant PRS computes the gcd up to a scalar multiple.\<close> lemma subresultant_prs_gcd: assumes "subresultant_prs dichotomous_Lazard G1 G2 = (Gk, hk)" shows "\<exists> a b. a \<noteq> 0 \<and> b \<noteq> 0 \<and> smult a (gcd G1 G2) = smult b (normalize Gk)" proof - from subresultant_prs[OF dichotomous_Lazard assms] have Fk: "F k = ffp Gk" and "\<forall> i. \<exists> H. i \<noteq> 0 \<longrightarrow> F i = ffp H" and "\<forall> i. \<exists> b. 3 \<le> i \<longrightarrow> i \<le> Suc k \<longrightarrow> \<beta> i = ff b" by auto from choice[OF this(2)] choice[OF this(3)] obtain H beta where FH: "\<And> i. i \<noteq> 0 \<Longrightarrow> F i = ffp (H i)" and beta: "\<And> i. 3 \<le> i \<Longrightarrow> i \<le> Suc k \<Longrightarrow> \<beta> i = ff (beta i)" by auto from Fk FH[OF k0] FH[of 1] FH[of 2] FH[of "Suc k"] F0[of "Suc k"] F1 F2 have border: "H k = Gk" "H 1 = G1" "H 2 = G2" "H (Suc k) = 0" by auto have "i \<noteq> 0 \<Longrightarrow> i \<le> k \<Longrightarrow> \<exists> a b. a \<noteq> 0 \<and> b \<noteq> 0 \<and> smult a (gcd G1 G2) = smult b (gcd (H i) (H (Suc i)))" for i proof (induct i rule: less_induct) case (less i) from less(3) have ik: "i \<le> k" . from less(2) have "i = 1 \<or> i \<ge> 2" by auto thus ?case proof assume "i = 1" thus ?thesis unfolding border[symmetric] by (intro exI[of _ 1], auto simp: numeral_2_eq_2) next assume i2: "i \<ge> 2" with ik have "i - 1 < i" "i - 1 \<noteq> 0" and imk: "i - 1 \<le> k" by auto from less(1)[OF this] i2 obtain a b where a: "a \<noteq> 0" and b: "b \<noteq> 0" and IH: "smult a (gcd G1 G2) = smult b (gcd (H (i - 1)) (H i))" by auto define M where "M = pseudo_mod (H (i - 1)) (H i)" define c where "c = \<beta> (Suc i)" have M: "pseudo_mod (F (i - 1)) (F i) = ffp M" unfolding to_fract_hom.pseudo_mod_hom[symmetric] M_def using i2 FH by auto have c: "c \<noteq> 0" using \<beta>0 unfolding c_def . from i2 ik have 3: "Suc i \<ge> 3" "Suc i \<le> Suc k" by auto from pmod[OF 3] have pm: "smult c (F (Suc i)) = pseudo_mod (F (i - 1)) (F i)" unfolding c_def by simp from beta[OF 3, folded c_def] obtain d where cd: "c = ff d" by auto with c have d: "d \<noteq> 0" by auto from pm[unfolded cd M] FH[of "Suc i"] have "ffp (smult d (H (Suc i))) = ffp M" by auto hence pm: "smult d (H (Suc i)) = M" by (rule map_poly_hom.injectivity) from ik F0[of i] i2 FH[of i] have Hi0: "H i \<noteq> 0" by auto from pseudo_mod[OF this, of "H (i - 1)", folded M_def] obtain c Q where c: "c \<noteq> 0" and "smult c (H (i - 1)) = H i * Q + M" by auto from this[folded pm] have "smult c (H (i - 1)) = Q * H i + smult d (H (Suc i))" by simp from gcd_add_mult[of "H i" Q "smult d (H (Suc i))", folded this] have "gcd (H i) (smult c (H (i - 1))) = gcd (H i) (smult d (H (Suc i)))" . with gcd_smult_ex[OF c, of "H (i - 1)" "H i"] obtain e where e: "e \<noteq> 0" and "gcd (H i) (smult d (H (Suc i))) = smult e (gcd (H i) (H (i - 1)))" unfolding gcd.commute[of "H i"] by auto with gcd_smult_ex[OF d, of "H (Suc i)" "H i"] obtain c where c: "c \<noteq> 0" and "smult c (gcd (H i) (H (Suc i))) = smult e (gcd (H (i - 1)) (H i))" unfolding gcd.commute[of "H i"] by auto from arg_cong[OF this(2), of "smult b"] arg_cong[OF IH, of "smult e"] have "smult (e * a) (gcd G1 G2) = smult (b * c) (gcd (H i) (H (Suc i)))" unfolding smult_smult by (simp add: ac_simps) moreover have "e * a \<noteq> 0" "b * c \<noteq> 0" using a b c e by auto ultimately show ?thesis by blast qed qed from this[OF k0 le_refl, unfolded border] obtain a b where "a \<noteq> 0" "b \<noteq> 0" and "smult a (gcd G1 G2) = smult b (normalize Gk)" by auto thus ?thesis by auto qed lemma gcd_impl_primitive: assumes "primitive_part G1 = G1" and "primitive_part G2 = G2" shows "gcd_impl_primitive G1 G2 = gcd G1 G2" proof - let ?pp = primitive_part let ?c = "content" let ?n = normalize from F2 F0[of 2] k2 have G2: "G2 \<noteq> 0" by auto obtain Gk hk where sub: "subresultant_prs dichotomous_Lazard G1 G2 = (Gk, hk)" by force have impl: "gcd_impl_primitive G1 G2 = ?n (?pp Gk)" unfolding gcd_impl_primitive_def sub by auto from subresultant_prs_gcd[OF sub] obtain a b where a: "a \<noteq> 0" and b: "b \<noteq> 0" and id: "smult a (gcd G1 G2) = smult b (?n Gk)" by auto define c where "c = unit_factor (gcd G1 G2)" define d where "d = smult (unit_factor a) c" from G2 have c: "is_unit c" unfolding c_def by auto from arg_cong[OF id, of ?pp, unfolded primitive_part_smult primitive_part_gcd assms primitive_part_normalize c_def[symmetric]] have id: "d * gcd G1 G2 = smult (unit_factor b) (?n (?pp Gk))" unfolding d_def by simp have d: "is_unit d" unfolding d_def using c a by (simp add: is_unit_smult_iff) from is_unitE[OF d] obtain e where e: "is_unit e" and de: "d * e = 1" by metis define a where "a = smult (unit_factor b) e" from arg_cong[OF id, of "\<lambda> x. e * x"] have "(d * e) * gcd G1 G2 = a * (?n (?pp Gk))" by (simp add: ac_simps a_def) hence id: "gcd G1 G2 = a * (?n (?pp Gk))" using de by simp have a: "is_unit a" unfolding a_def using b e by (simp add: is_unit_smult_iff) define b where "b = unit_factor (?pp Gk)" have "Gk \<noteq> 0" using subresultant_prs[OF dichotomous_Lazard sub] F0[OF k0] by auto hence b: "is_unit b" unfolding b_def by auto from is_unitE[OF b] obtain c where c: "is_unit c" and bc: "b * c = 1" by metis obtain d where d: "is_unit d" and dac: "d = a * c" using c a by auto have "gcd G1 G2 = d * (b * ?n (?pp Gk))" unfolding id dac using bc by (simp add: ac_simps) also have "b * ?n (?pp Gk) = ?pp Gk" unfolding b_def by simp finally have "gcd G1 G2 = d * ?pp Gk" by simp from arg_cong[OF this, of ?n] have "gcd G1 G2 = ?n (d * ?pp Gk)" by simp also have "\<dots> = ?n (?pp Gk)" using d unfolding normalize_mult by (simp add: is_unit_normalize) finally show ?thesis unfolding impl .. qed end lemma gcd_impl_main: assumes len: "length (coeffs G1) \<ge> length (coeffs G2)" shows "gcd_impl_main G1 G2 = gcd G1 G2" proof (cases "G1 = 0") case G1: False show ?thesis proof (cases "G2 = 0") case G2: False let ?pp = "primitive_part" from G2 have G2: "?pp G2 \<noteq> 0" and id: "(G2 = 0) = False" by auto from len have len: "length (coeffs (?pp G1)) \<ge> length (coeffs (?pp G2))" by simp from enter_subresultant_prs[OF len G2] obtain F n d f k b where "subresultant_prs_locale2 F n d f k b (?pp G1) (?pp G2)" by auto interpret subresultant_prs_locale2 F n d f k b "?pp G1" "?pp G2" by fact interpret subresultant_prs_gcd F n d f k b "?pp G1" "?pp G2" .. show ?thesis unfolding gcd_impl_main_def gcd_poly_decompose[of G1] id if_False using G1 by (subst gcd_impl_primitive, auto) next case True thus ?thesis unfolding gcd_impl_main_def by simp qed next case True with len have "G2 = 0" by auto thus ?thesis using True unfolding gcd_impl_main_def by simp qed text \<open>The implementation also reveals an important connection between resultant and gcd.\<close> lemma resultant_0_gcd: "resultant f g = 0 \<longleftrightarrow> degree (gcd f g) \<noteq> 0" proof - { fix f g :: "'a poly" assume len: "length (coeffs f) \<ge> length (coeffs g)" { assume g: "g \<noteq> 0" with len have f: "f \<noteq> 0" by auto let ?f = "primitive_part f" let ?g = "primitive_part g" let ?c = "content" from len have len: "length (coeffs ?f) \<ge> length (coeffs ?g)" by simp obtain Gk hk where sub: "subresultant_prs dichotomous_Lazard ?f ?g = (Gk,hk)" by force have cf: "?c f \<noteq> 0" and cg: "?c g \<noteq> 0" using f g by auto { from g have "?g \<noteq> 0" by auto from enter_subresultant_prs[OF len this] obtain F n d f k b where "subresultant_prs_locale2 F n d f k b ?f ?g" by auto interpret subresultant_prs_locale2 F n d f k b ?f ?g by fact from subresultant_prs[OF dichotomous_Lazard sub] have "h k = ff hk" by auto with h0[OF le_refl] have "hk \<noteq> 0" by auto } note hk0 = this have "resultant f g = 0 \<longleftrightarrow> resultant (smult (?c f) ?f) (smult (?c g) ?g) = 0" by simp also have "\<dots> \<longleftrightarrow> resultant ?f ?g = 0" unfolding resultant_smult_left[OF cf] resultant_smult_right[OF cg] using cf cg by auto also have "\<dots> \<longleftrightarrow> resultant_impl_main dichotomous_Lazard ?f ?g = 0" unfolding resultant_impl[symmetric] resultant_impl_def resultant_impl_main_def resultant_impl_generic_def using len by auto also have "\<dots> \<longleftrightarrow> (degree Gk \<noteq> 0)" unfolding resultant_impl_main_def sub split using g hk0 by auto also have "degree Gk = degree (gcd_impl_primitive ?f ?g)" unfolding gcd_impl_primitive_def sub by simp also have "\<dots> = degree (gcd_impl_main f g)" unfolding gcd_impl_main_def using f g by auto also have "\<dots> = degree (gcd f g)" unfolding gcd_impl[symmetric] gcd_impl_def using len by auto finally have "(resultant f g = 0) = (degree (gcd f g) \<noteq> 0)" . } moreover { assume g: "g = 0" and f: "degree f \<noteq> 0" have "(resultant f g = 0) = (degree (gcd f g) \<noteq> 0)" unfolding g using f by auto } moreover { assume g: "g = 0" and f: "degree f = 0" have "(resultant f g = 0) = (degree (gcd f g) \<noteq> 0)" unfolding g using f by (auto simp: resultant_def sylvester_mat_def sylvester_mat_sub_def) } ultimately have "(resultant f g = 0) = (degree (gcd f g) \<noteq> 0)" by blast } note main = this show ?thesis proof (cases "length (coeffs f) \<ge> length (coeffs g)") case True from main[OF True] show ?thesis . next case False hence "length (coeffs g) \<ge> length (coeffs f)" by auto from main[OF this] show ?thesis unfolding gcd.commute[of g f] resultant_swap[of g f] by (simp split: if_splits) qed qed subsection \<open>Code Equations\<close> definition [code del]: "gcd_impl_rec = subresultant_prs_main_impl fst" definition [code del]: "gcd_impl_start = subresultant_prs_impl fst" lemma gcd_impl_rec_code[code]: "gcd_impl_rec Gi_1 Gi ni_1 d1_1 hi_2 = ( let pmod = pseudo_mod Gi_1 Gi in if pmod = 0 then Gi else let ni = degree Gi; d1 = ni_1 - ni; gi_1 = lead_coeff Gi_1; hi_1 = (if d1_1 = 1 then gi_1 else dichotomous_Lazard gi_1 hi_2 d1_1); divisor = if d1 = 1 then gi_1 * hi_1 else if even d1 then - gi_1 * hi_1 ^ d1 else gi_1 * hi_1 ^ d1; Gi_p1 = sdiv_poly pmod divisor in gcd_impl_rec Gi Gi_p1 ni d1 hi_1)" unfolding gcd_impl_rec_def subresultant_prs_main_impl.simps[of _ Gi_1] split Let_def unfolding gcd_impl_rec_def[symmetric] by (rule if_cong, auto) lemma gcd_impl_start_code[code]: "gcd_impl_start G1 G2 = (let pmod = pseudo_mod G1 G2 in if pmod = 0 then G2 else let n2 = degree G2; n1 = degree G1; d1 = n1 - n2; G3 = if even d1 then - pmod else pmod; pmod = pseudo_mod G2 G3 in if pmod = 0 then G3 else let g2 = lead_coeff G2; n3 = degree G3; h2 = (if d1 = 1 then g2 else g2 ^ d1); d2 = n2 - n3; divisor = (if d2 = 1 then g2 * h2 else if even d2 then - g2 * h2 ^ d2 else g2 * h2 ^ d2); G4 = sdiv_poly pmod divisor in gcd_impl_rec G3 G4 n3 d2 h2)" proof - obtain d1 where d1: "degree G1 - degree G2 = d1" by auto have id1: "(if even d1 then - pmod else pmod) = (-1)^ (d1 + 1) * (pmod :: 'a poly)" for pmod by simp show ?thesis unfolding gcd_impl_start_def subresultant_prs_impl_def gcd_impl_rec_def[symmetric] Let_def split unfolding d1 unfolding id1 by (rule if_cong, auto) qed lemma gcd_impl_main_code[code]: "gcd_impl_main G1 G2 = (if G1 = 0 then 0 else if G2 = 0 then normalize G1 else let c1 = content G1; c2 = content G2; p1 = map_poly (\<lambda> x. x div c1) G1; p2 = map_poly (\<lambda> x. x div c2) G2 in smult (gcd c1 c2) (normalize (primitive_part (gcd_impl_start p1 p2))))" unfolding gcd_impl_main_def Let_def primitive_part_def gcd_impl_start_def gcd_impl_primitive_def subresultant_prs_impl by simp corollary gcd_via_subresultant: "gcd f g = gcd_impl f g" by simp text \<open>Note that we did not activate @{thm gcd_via_subresultant} as code-equation, since according to our experiments, the subresultant-gcd algorithm is not always more efficient than the currently active equation. In particular, on @{typ "int poly"} @{const gcd_impl} performs worse, but on multi-variate polynomials, e.g., @{typ "int poly poly poly"}, @{const gcd_impl} is preferable.\<close> end
/* * Copyright 2020 Naval Postgraduate School * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. * */ #include <assert.h> #include <sys/stat.h> #include <tf/tf.h> #include <sensor_msgs/image_encodings.h> #include <cv_bridge/cv_bridge.h> #include <sensor_msgs/point_cloud2_iterator.h> #include <nps_uw_sensors_gazebo/sonar_calculation_cuda.cuh> #include <opencv2/core/core.hpp> #include <boost/thread/thread.hpp> #include <boost/bind.hpp> #include <nps_uw_sensors_gazebo/gazebo_ros_image_sonar.hh> #include <gazebo/sensors/Sensor.hh> #include <sdf/sdf.hh> #include <gazebo/sensors/SensorTypes.hh> #include <algorithm> #include <string> #include <vector> #include <limits> namespace gazebo { // Register this plugin with the simulator GZ_REGISTER_SENSOR_PLUGIN(NpsGazeboRosImageSonar) // Constructor NpsGazeboRosImageSonar::NpsGazeboRosImageSonar() : SensorPlugin(), width(0), height(0), depth(0) { this->depth_image_connect_count_ = 0; this->depth_info_connect_count_ = 0; this->point_cloud_connect_count_ = 0; this->sonar_image_connect_count_ = 0; this->last_depth_image_camera_info_update_time_ = common::Time(0); // for csv write logs this->writeCounter = 0; this->writeNumber = 1; } // Destructor NpsGazeboRosImageSonar::~NpsGazeboRosImageSonar() { this->newDepthFrameConnection.reset(); this->newImageFrameConnection.reset(); this->newRGBPointCloudConnection.reset(); this->newSonarImageConnection.reset(); this->parentSensor.reset(); this->depthCamera.reset(); // CSV log write stream close writeLog.close(); } // Load the controller void NpsGazeboRosImageSonar::Load(sensors::SensorPtr _parent, sdf::ElementPtr _sdf) { this->parentSensor = std::dynamic_pointer_cast<sensors::DepthCameraSensor>(_parent); this->depthCamera = this->parentSensor->DepthCamera(); if (!this->parentSensor) { gzerr << "DepthCameraPlugin not attached to a depthCamera sensor\n"; return; } this->width = this->depthCamera->ImageWidth(); this->height = this->depthCamera->ImageHeight(); this->depth = this->depthCamera->ImageDepth(); this->format = this->depthCamera->ImageFormat(); this->newDepthFrameConnection = this->depthCamera->ConnectNewDepthFrame( std::bind(&NpsGazeboRosImageSonar::OnNewDepthFrame, this, std::placeholders::_1, std::placeholders::_2, std::placeholders::_3, std::placeholders::_4, std::placeholders::_5)); this->newImageFrameConnection = this->depthCamera->ConnectNewImageFrame( std::bind(&NpsGazeboRosImageSonar::OnNewImageFrame, this, std::placeholders::_1, std::placeholders::_2, std::placeholders::_3, std::placeholders::_4, std::placeholders::_5)); this->newSonarImageConnection = this->depthCamera->ConnectNewDepthFrame( std::bind(&NpsGazeboRosImageSonar::OnNewDepthFrame, this, std::placeholders::_1, std::placeholders::_2, std::placeholders::_3, std::placeholders::_4, std::placeholders::_5)); this->parentSensor->SetActive(true); // Make sure the ROS node for Gazebo has already been initialized if (!ros::isInitialized()) { ROS_FATAL_STREAM_NAMED("depth_camera", "A ROS node for Gazebo " << "has not been initialized, unable to load plugin. " << "Load the Gazebo system plugin 'libgazebo_ros_api_plugin.so'" << " in the gazebo_ros package)"); return; } // copying from DepthCameraPlugin into GazeboRosCameraUtils this->parentSensor_ = this->parentSensor; this->width_ = this->width; this->height_ = this->height; this->depth_ = this->depth; this->format_ = this->format; this->camera_ = this->depthCamera; // not using default GazeboRosCameraUtils topics if (!_sdf->HasElement("imageTopicName")) this->image_topic_name_ = "ir/image_raw"; if (!_sdf->HasElement("cameraInfoTopicName")) this->camera_info_topic_name_ = "ir/camera_info"; // depth image stuff if (!_sdf->HasElement("depthImageTopicName")) this->depth_image_topic_name_ = "depth/image_raw"; else this->depth_image_topic_name_ = _sdf->GetElement("depthImageTopicName")->Get<std::string>(); if (!_sdf->HasElement("depthImageCameraInfoTopicName")) this->depth_image_camera_info_topic_name_ = "depth/camera_info"; else this->depth_image_camera_info_topic_name_ = _sdf->GetElement("depthImageCameraInfoTopicName")->Get<std::string>(); if (!_sdf->HasElement("pointCloudTopicName")) this->point_cloud_topic_name_ = "points"; else this->point_cloud_topic_name_ = _sdf->GetElement("pointCloudTopicName")->Get<std::string>(); if (!_sdf->HasElement("pointCloudCutoff")) this->point_cloud_cutoff_ = 0.4; else this->point_cloud_cutoff_ = _sdf->GetElement("pointCloudCutoff")->Get<double>(); // sonar stuff if (!_sdf->HasElement("sonarImageRawTopicName")) this->sonar_image_raw_topic_name_ = "sonar_image_raw"; else this->sonar_image_raw_topic_name_ = _sdf->GetElement("sonarImageRawTopicName")->Get<std::string>(); if (!_sdf->HasElement("sonarImageTopicName")) this->sonar_image_topic_name_ = "sonar_image"; else this->sonar_image_topic_name_ = _sdf->GetElement("sonarImageTopicName")->Get<std::string>(); if (!_sdf->HasElement("clip")) { gzerr << "We do not have clip" << std::endl; } else { gzerr << "We do have clip" << std::endl; gzerr << _sdf->GetElement("clip")->GetElement("far")->Get<double>() << std::endl; } // TODO: Implement additional SDF options (ROS namespaces & topics) here // Read sonar properties from model.sdf if (!_sdf->HasElement("sonarFreq")) this->sonarFreq = 900e3; // Blueview P900 [Hz] else this->sonarFreq = _sdf->GetElement("sonarFreq")->Get<double>(); if (!_sdf->HasElement("bandwidth")) this->bandwidth = 29.5e6; // Blueview P900 [Hz] else this->bandwidth = _sdf->GetElement("bandwidth")->Get<double>(); if (!_sdf->HasElement("soundSpeed")) this->soundSpeed = 1500; else this->soundSpeed = _sdf->GetElement("soundSpeed")->Get<double>(); if (!_sdf->HasElement("maxDistance")) this->maxDistance = 60; else this->maxDistance = _sdf->GetElement("maxDistance")->Get<double>(); if (!_sdf->HasElement("sourceLevel")) this->sourceLevel = 220; else this->sourceLevel = _sdf->GetElement("sourceLevel")->Get<double>(); if (!_sdf->HasElement("constantReflectivity")) this->constMu = true; else this->constMu = _sdf->GetElement("constantReflectivity")->Get<bool>(); if (!_sdf->HasElement("raySkips")) this->raySkips = 10; else this->raySkips = _sdf->GetElement("raySkips")->Get<int>(); if (!_sdf->HasElement("plotScaler")) this->plotScaler = 1; else this->plotScaler = _sdf->GetElement("plotScaler")->Get<int>(); // Configure skips if (this->raySkips == 0) this->raySkips = 1; // --- Calculate common sonar parameters ---- // // if (this->constMu) this->mu = 1e-3; // else // // nothing yet // Transmission path properties (typical model used here) // More sophisticated model by Francois-Garrison model is available this->absorption = 0.0354; // [dB/m] this->attenuation = this->absorption*log(10)/20.0; // Range vector const float max_T = this->maxDistance*2.0/this->soundSpeed; float delta_f = 1.0/max_T; const float delta_t = 1.0/this->bandwidth; this->nFreq = ceil(this->bandwidth/delta_f); delta_f = this->bandwidth/this->nFreq; const int nTime = nFreq; this->rangeVector = new float[nTime]; for (int i = 0; i < nTime; i++) { this->rangeVector[i] = delta_t*i*this->soundSpeed/2.0; } // FOV, Number of beams, number of rays are defined at model.sdf // Currently, this->width equals # of beams, and this->height equals # of rays // Each beam consists of (elevation,azimuth)=(this->height,1) rays // Beam patterns this->nBeams = this->width; this->nRays = this->height; this->ray_nElevationRays = this->height; this->ray_nAzimuthRays = 1; // Print sonar calculation settings ROS_INFO_STREAM(""); ROS_INFO_STREAM("=================================================="); ROS_INFO_STREAM("============ SONAR PLUGIN LOADED ============="); ROS_INFO_STREAM("=================================================="); ROS_INFO_STREAM("Maximum view range [m] = " << this->maxDistance); ROS_INFO_STREAM("Distance resolution [m] = " << this->soundSpeed*(1.0/(this->nFreq*delta_f))); ROS_INFO_STREAM("# of Beams = " << this->nBeams); ROS_INFO_STREAM("# of Rays / Beam (Elevation, Azimuth) = (" << ray_nElevationRays << ", " << ray_nAzimuthRays << ")"); ROS_INFO_STREAM("Calculation skips (Elevation) = " << this->raySkips); ROS_INFO_STREAM("# of Time data / Beam = " << this->nFreq); ROS_INFO_STREAM("=================================================="); ROS_INFO_STREAM(""); // get writeLog Flag if (!_sdf->HasElement("writeLog")) this->writeLogFlag = false; else { this->writeLogFlag = _sdf->Get<bool>("writeLog"); if (this->writeLogFlag) { if (_sdf->HasElement("writeFrameInterval")) this->writeInterval = _sdf->Get<int>("writeFrameInterval"); else this->writeInterval = 10; ROS_INFO_STREAM("Raw data at " << "/tmp/SonarRawData_{numbers}.csv"); ROS_INFO_STREAM("every " << this->writeInterval << " frames"); ROS_INFO_STREAM(""); struct stat buffer; std::string logfilename("/tmp/SonarRawData_000001.csv"); if (stat (logfilename.c_str(), &buffer) == 0) system("rm /tmp/SonarRawData*.csv"); } } // Get debug flag for computation time display if (!_sdf->HasElement("debugFlag")) this->debugFlag = false; else this->debugFlag = _sdf->GetElement("debugFlag")->Get<bool>(); // -- Pre calculations for sonar -- // // Hamming window this->window = new float[this->nFreq]; float windowSum = 0; for (size_t f = 0; f < this->nFreq; f++) { this->window[f] = 0.54 - 0.46 * cos(2.0*M_PI*(f+1)/this->nFreq); windowSum += pow(this->window[f], 2.0); } for (size_t f = 0; f < this->nFreq; f++) this->window[f] = this->window[f]/sqrt(windowSum); // Sonar corrector preallocation this->beamCorrector = new float*[nBeams]; for (int i = 0; i < nBeams; i++) this->beamCorrector[i] = new float[nBeams]; this->beamCorrectorSum = 0.0; load_connection_ = GazeboRosCameraUtils::OnLoad( boost::bind(&NpsGazeboRosImageSonar::Advertise, this)); GazeboRosCameraUtils::Load(_parent, _sdf); } void NpsGazeboRosImageSonar::Advertise() { ros::AdvertiseOptions depth_image_ao = ros::AdvertiseOptions::create<sensor_msgs::Image>( this->depth_image_topic_name_, 1, boost::bind(&NpsGazeboRosImageSonar::DepthImageConnect, this), boost::bind(&NpsGazeboRosImageSonar::DepthImageDisconnect, this), ros::VoidPtr(), &this->camera_queue_); this->depth_image_pub_ = this->rosnode_->advertise(depth_image_ao); ros::AdvertiseOptions depth_image_camera_info_ao = ros::AdvertiseOptions::create<sensor_msgs::CameraInfo>( this->depth_image_camera_info_topic_name_, 1, boost::bind(&NpsGazeboRosImageSonar::DepthInfoConnect, this), boost::bind(&NpsGazeboRosImageSonar::DepthInfoDisconnect, this), ros::VoidPtr(), &this->camera_queue_); this->depth_image_camera_info_pub_ = this->rosnode_->advertise(depth_image_camera_info_ao); ros::AdvertiseOptions normal_image_ao = ros::AdvertiseOptions::create<sensor_msgs::Image>( this->depth_image_topic_name_+"_normals", 1, boost::bind(&NpsGazeboRosImageSonar::NormalImageConnect, this), boost::bind(&NpsGazeboRosImageSonar::NormalImageDisconnect, this), ros::VoidPtr(), &this->camera_queue_); this->normal_image_pub_ = this->rosnode_->advertise(normal_image_ao); ros::AdvertiseOptions point_cloud_ao = ros::AdvertiseOptions::create<sensor_msgs::PointCloud2>( this->point_cloud_topic_name_, 1, boost::bind(&NpsGazeboRosImageSonar::PointCloudConnect, this), boost::bind(&NpsGazeboRosImageSonar::PointCloudDisconnect, this), ros::VoidPtr(), &this->camera_queue_); this->point_cloud_pub_ = this->rosnode_->advertise(point_cloud_ao); // Publisher for sonar image ros::AdvertiseOptions sonar_image_raw_ao = ros::AdvertiseOptions::create<acoustic_msgs::SonarImage>( this->sonar_image_raw_topic_name_, 1, boost::bind(&NpsGazeboRosImageSonar::SonarImageRawConnect, this), boost::bind(&NpsGazeboRosImageSonar::SonarImageRawDisconnect, this), ros::VoidPtr(), &this->camera_queue_); this->sonar_image_raw_pub_ = this->rosnode_->advertise(sonar_image_raw_ao); ros::AdvertiseOptions sonar_image_ao = ros::AdvertiseOptions::create<sensor_msgs::Image>( this->sonar_image_topic_name_, 1, boost::bind(&NpsGazeboRosImageSonar::SonarImageConnect, this), boost::bind(&NpsGazeboRosImageSonar::SonarImageDisconnect, this), ros::VoidPtr(), &this->camera_queue_); this->sonar_image_pub_ = this->rosnode_->advertise(sonar_image_ao); this->sonar_image_pub_ = this->rosnode_->advertise<sensor_msgs::Image> ("sonar_image", 10); } //---------------------------------------------------------------- // Increment and decriment a connection counter so that the sensor // is only active and ROS messages being published when required // TODO: Update once new message (plugin output) is being published //---------------------------------------------------------------- void NpsGazeboRosImageSonar::DepthImageConnect() { this->depth_image_connect_count_++; this->parentSensor->SetActive(true); } void NpsGazeboRosImageSonar::DepthImageDisconnect() { this->depth_image_connect_count_--; } void NpsGazeboRosImageSonar::NormalImageConnect() { this->depth_image_connect_count_++; this->parentSensor->SetActive(true); } void NpsGazeboRosImageSonar::NormalImageDisconnect() { this->depth_image_connect_count_--; } void NpsGazeboRosImageSonar::DepthInfoConnect() { this->depth_info_connect_count_++; } void NpsGazeboRosImageSonar::DepthInfoDisconnect() { this->depth_info_connect_count_--; } void NpsGazeboRosImageSonar::PointCloudConnect() { this->point_cloud_connect_count_++; (*this->image_connect_count_)++; this->parentSensor->SetActive(true); } void NpsGazeboRosImageSonar::PointCloudDisconnect() { this->point_cloud_connect_count_--; (*this->image_connect_count_)--; if (this->point_cloud_connect_count_ <= 0) this->parentSensor->SetActive(false); } void NpsGazeboRosImageSonar::SonarImageConnect() { this->sonar_image_connect_count_++; this->parentSensor->SetActive(true); } void NpsGazeboRosImageSonar::SonarImageDisconnect() { this->sonar_image_connect_count_--; } void NpsGazeboRosImageSonar::SonarImageRawConnect() { this->sonar_image_connect_count_++; this->parentSensor->SetActive(true); } void NpsGazeboRosImageSonar::SonarImageRawDisconnect() { this->sonar_image_connect_count_--; } // Update everything when Gazebo provides a new depth frame (texture) void NpsGazeboRosImageSonar::OnNewDepthFrame(const float *_image, unsigned int _width, unsigned int _height, unsigned int _depth, const std::string &_format) { if (!this->initialized_ || this->height_ <=0 || this->width_ <=0) return; this->depth_sensor_update_time_ = this->parentSensor->LastMeasurementTime(); if (this->parentSensor->IsActive()) { // Deactivate if no subscribers if (this->depth_image_connect_count_ <= 0 && this->point_cloud_connect_count_ <= 0 && (*this->image_connect_count_) <= 0) { this->parentSensor->SetActive(false); } else { // Generate a point cloud every time regardless of subscriptions // for use in sonar computation (published in function if needed) this->ComputePointCloud(_image); // Generate sonar image data if topics have subscribers if (this->depth_image_connect_count_ > 0) this->ComputeSonarImage(_image); } } else { // Won't this just toggle on and off unnecessarily? // TODO: Find a better way to ensure it runs once after activation if (this->depth_image_connect_count_ <= 0 || this->point_cloud_connect_count_ > 0) // do this first so there's chance for sensor // to run 1 frame after activate this->parentSensor->SetActive(true); } } // Process the camera image when Gazebo provides one. Do we actually need this? void NpsGazeboRosImageSonar::OnNewImageFrame(const unsigned char *_image, unsigned int _width, unsigned int _height, unsigned int _depth, const std::string &_format) { if (!this->initialized_ || this->height_ <=0 || this->width_ <=0) return; this->sensor_update_time_ = this->parentSensor->LastMeasurementTime(); if (!this->parentSensor->IsActive()) { if ((*this->image_connect_count_) > 0) // do this first so there's chance for sensor // to run 1 frame after activate this->parentSensor->SetActive(true); } else { if ((*this->image_connect_count_) > 0) { this->PutCameraData(_image); } } } // Most of the plugin work happens here void NpsGazeboRosImageSonar::ComputeSonarImage(const float *_src) { this->lock_.lock(); cv::Mat depth_image = this->point_cloud_image_; cv::Mat normal_image = this->ComputeNormalImage(depth_image); double vFOV = this->parentSensor->DepthCamera()->VFOV().Radian(); double hFOV = this->parentSensor->DepthCamera()->HFOV().Radian(); double vPixelSize = vFOV / this->height; double hPixelSize = hFOV / this->width; // rand number generator cv::Mat rand_image = cv::Mat(depth_image.rows, depth_image.cols, CV_32FC2); uint64 randN = static_cast<uint64>(std::rand()); cv::theRNG().state = randN; cv::RNG rng = cv::theRNG(); rng.fill(rand_image, cv::RNG::NORMAL, 0.f, 1.f); if (this->beamCorrectorSum == 0) ComputeCorrector(); // For calc time measure auto start = std::chrono::high_resolution_clock::now(); // ------------------------------------------------// // -------- Sonar calculations -------- // // ------------------------------------------------// CArray2D P_Beams = NpsGazeboSonar::sonar_calculation_wrapper( depth_image, // cv::Mat& depth_image normal_image, // cv::Mat& normal_image rand_image, // cv::Mat& rand_image hPixelSize, // hPixelSize vPixelSize, // vPixelSize hFOV, // hFOV vFOV, // VFOV hPixelSize, // _beam_azimuthAngleWidth vPixelSize, // _beam_elevationAngleWidth hPixelSize, // _ray_azimuthAngleWidth vPixelSize*(raySkips), // _ray_elevationAngleWidth this->soundSpeed, // _soundSpeed this->maxDistance, // _maxDistance this->sourceLevel, // _sourceLevel this->nBeams, // _nBeams this->nRays, // _nRays this->raySkips, // _raySkips this->sonarFreq, // _sonarFreq this->bandwidth, // _bandwidth this->nFreq, // _nFreq this->mu, // _mu this->attenuation, // _attenuation this->window, // _window this->beamCorrector, // _beamCorrector this->beamCorrectorSum, // _beamCorrectorSum this->debugFlag); // For calc time measure auto stop = std::chrono::high_resolution_clock::now(); auto duration = std::chrono::duration_cast< std::chrono::microseconds>(stop - start); if (debugFlag) { ROS_INFO_STREAM("GPU Sonar Frame Calc Time " << duration.count()/10000 << "/100 [s]\n"); } // CSV log write stream // Each cols corresponds to each beams if (this->writeLogFlag) { this->writeCounter = this->writeCounter + 1; if (this->writeCounter == 1 ||this->writeCounter % this->writeInterval == 0) { double time = this->parentSensor_->LastMeasurementTime().Double(); std::stringstream filename; filename << "/tmp/SonarRawData_" << std::setw(6) << std::setfill('0') << this->writeNumber << ".csv"; writeLog.open(filename.str().c_str(), std::ios_base::app); filename.clear(); writeLog << "# Raw Sonar Data Log (Row: beams, Col: time series data)\n"; writeLog << "# First column is range vector\n"; writeLog << "# nBeams : " << nBeams << "\n"; writeLog << "# Simulation time : " << time << "\n"; for (size_t i = 0; i < P_Beams[0].size(); i++) { // writing range vector at first column writeLog << this->rangeVector[i]; for (size_t b = 0; b < nBeams; b ++) { if (P_Beams[b][i].imag() > 0) writeLog << "," << P_Beams[b][i].real() << "+" << P_Beams[b][i].imag() << "i"; else writeLog << "," << P_Beams[b][i].real() << P_Beams[b][i].imag() << "i"; } writeLog << "\n"; } writeLog.close(); this->writeNumber = this->writeNumber + 1; } } // Sonar image ROS msg this->sonar_image_raw_msg_.header.frame_id = this->frame_name_.c_str(); this->sonar_image_raw_msg_.header.stamp.sec = this->depth_sensor_update_time_.sec; this->sonar_image_raw_msg_.header.stamp.nsec = this->depth_sensor_update_time_.nsec; this->sonar_image_raw_msg_.frequency = this->sonarFreq; this->sonar_image_raw_msg_.sound_speed = this->soundSpeed; this->sonar_image_raw_msg_.azimuth_beamwidth = hPixelSize; this->sonar_image_raw_msg_.elevation_beamwidth = hPixelSize*this->nRays; std::vector<float> azimuth_angles; double fl = static_cast<double>(width) / (2.0 * tan(hFOV/2.0)); for (size_t beam = 0; beam < nBeams; beam ++) azimuth_angles.push_back(atan2(static_cast<double>(beam) - 0.5 * static_cast<double>(width-1), fl)); this->sonar_image_raw_msg_.azimuth_angles = azimuth_angles; // std::vector<float> elevation_angles; // elevation_angles.push_back(vFOV / 2.0); // 1D in elevation // this->sonar_image_raw_msg_.elevation_angles = elevation_angles; std::vector<float> ranges; for (size_t i = 0; i < P_Beams[0].size(); i ++) ranges.push_back(rangeVector[i]); this->sonar_image_raw_msg_.ranges = ranges; // this->sonar_image_raw_msg_.is_bigendian = false; this->sonar_image_raw_msg_.data_size = 1; // sizeof(float) * nFreq * nBeams; std::vector<uchar> intensities; for (size_t f = 0; f < nFreq; f ++) for (size_t beam = 0; beam < nBeams; beam ++) intensities.push_back( static_cast<uchar>(static_cast<int>(abs(P_Beams[beam][f])))); this->sonar_image_raw_msg_.intensities = intensities; this->sonar_image_raw_pub_.publish(this->sonar_image_raw_msg_); // Construct visual sonar image for rqt plot in sensor::image msg format cv_bridge::CvImage img_bridge; // Calculate and allocate plot data int Intensity[nBeams][nFreq]; for (size_t beam = 0; beam < nBeams; beam ++) for (size_t f = 0; f < nFreq; f ++) Intensity[beam][f] = static_cast<int>(abs(P_Beams[beam][f])); // Generate image of 16UC1 cv::Mat Intensity_image = cv::Mat::zeros(cv::Size(nBeams, nFreq), CV_16UC1); const float rangeMax = maxDistance; const float rangeRes = ranges[1]-ranges[0]; const int nEffectiveRanges = ceil(rangeMax / rangeRes); const unsigned int radius = Intensity_image.size().height; const cv::Point origin(Intensity_image.size().width/2, Intensity_image.size().height); const float binThickness = 2 * ceil(radius / nEffectiveRanges); struct BearingEntry { float begin, center, end; BearingEntry(float b, float c, float e) : begin(b), center(c), end(e) {;} }; std::vector<BearingEntry> angles; angles.reserve(nBeams); for ( int b = 0; b < nBeams; ++b ) { const float center = azimuth_angles[b]; float begin = 0.0, end = 0.0; if (b == 0) { end = (azimuth_angles[b + 1] + center) / 2.0; begin = 2 * center - end; } else if (b == nBeams - 1) { begin = angles[b - 1].end; end = 2 * center - begin; } else { begin = angles[b - 1].end; end = (azimuth_angles[b + 1] + center) / 2.0; } angles.push_back(BearingEntry(begin, center, end)); } const float ThetaShift = 1.5*M_PI; for ( int r = 0; r < ranges.size(); ++r ) { if ( ranges[r] > rangeMax ) continue; for ( int b = 0; b < nBeams; ++b ) { const float range = ranges[r]; const int intensity = Intensity[b][r]; const float begin = angles[b].begin + ThetaShift, end = angles[b].end + ThetaShift; const float rad = static_cast<float>(radius) * range/rangeMax; // Assume angles are in image frame x-right, y-down cv::ellipse(Intensity_image, origin, cv::Size(rad, rad), 0, begin * 180/M_PI, end * 180/M_PI, intensity*256/5*this->plotScaler, binThickness); } } // Publish final sonar image this->sonar_image_msg_.header.frame_id = this->frame_name_; this->sonar_image_msg_.header.stamp.sec = this->depth_sensor_update_time_.sec; this->sonar_image_msg_.header.stamp.nsec = this->depth_sensor_update_time_.nsec; img_bridge = cv_bridge::CvImage(this->sonar_image_msg_.header, sensor_msgs::image_encodings::MONO16, Intensity_image); // from cv_bridge to sensor_msgs::Image img_bridge.toImageMsg(this->sonar_image_msg_); this->sonar_image_pub_.publish(this->sonar_image_msg_); // ---------------------------------------- End of sonar calculation // Still publishing the depth and normal image (just because) // Depth image this->depth_image_msg_.header.frame_id = this->frame_name_; this->depth_image_msg_.header.stamp.sec = this->depth_sensor_update_time_.sec; this->depth_image_msg_.header.stamp.nsec = this->depth_sensor_update_time_.nsec; img_bridge = cv_bridge::CvImage(this->depth_image_msg_.header, sensor_msgs::image_encodings::TYPE_32FC1, depth_image); // from cv_bridge to sensor_msgs::Image img_bridge.toImageMsg(this->depth_image_msg_); this->depth_image_pub_.publish(this->depth_image_msg_); // Normal image this->normal_image_msg_.header.frame_id = this->frame_name_; this->normal_image_msg_.header.stamp.sec = this->depth_sensor_update_time_.sec; this->normal_image_msg_.header.stamp.nsec = this->depth_sensor_update_time_.nsec; cv::Mat normal_image8; normal_image.convertTo(normal_image8, CV_8UC3, 255.0); img_bridge = cv_bridge::CvImage(this->normal_image_msg_.header, sensor_msgs::image_encodings::RGB8, normal_image8); img_bridge.toImageMsg(this->normal_image_msg_); // from cv_bridge to sensor_msgs::Image this->normal_image_pub_.publish(this->normal_image_msg_); this->lock_.unlock(); } void NpsGazeboRosImageSonar::ComputePointCloud(const float *_src) { this->lock_.lock(); this->point_cloud_msg_.header.frame_id = this->frame_name_; this->point_cloud_msg_.header.stamp.sec = this->depth_sensor_update_time_.sec; this->point_cloud_msg_.header.stamp.nsec = this->depth_sensor_update_time_.nsec; this->point_cloud_msg_.width = this->width; this->point_cloud_msg_.height = this->height; this->point_cloud_msg_.row_step = this->point_cloud_msg_.point_step * this->width; sensor_msgs::PointCloud2Modifier pcd_modifier(point_cloud_msg_); pcd_modifier.setPointCloud2FieldsByString(2, "xyz", "rgb"); pcd_modifier.resize(this->height * this->width); // resize if point cloud image to camera parameters if required this->point_cloud_image_.create(this->height, this->width, CV_32FC1); sensor_msgs::PointCloud2Iterator<float> iter_x(point_cloud_msg_, "x"); sensor_msgs::PointCloud2Iterator<float> iter_y(point_cloud_msg_, "y"); sensor_msgs::PointCloud2Iterator<float> iter_z(point_cloud_msg_, "z"); sensor_msgs::PointCloud2Iterator<uint8_t> iter_rgb(point_cloud_msg_, "rgb"); cv::MatIterator_<float> iter_image = this->point_cloud_image_.begin<float>(); point_cloud_msg_.is_dense = true; float* toCopyFrom = const_cast<float*>(_src); int index = 0; double hfov = this->parentSensor->DepthCamera()->HFOV().Radian(); double fl = static_cast<double>(this->width) / (2.0 * tan(hfov/2.0)); for (uint32_t j = 0; j < this->height; j++) { double elevation; if (this->height > 1) elevation = atan2(static_cast<double>(j) - 0.5 * static_cast<double>(this->height-1), fl); else elevation = 0.0; for (uint32_t i = 0; i < this->width; i++, ++iter_x, ++iter_y, ++iter_z, ++iter_rgb, ++iter_image) { double azimuth; if (this->width > 1) azimuth = atan2(static_cast<double>(i) - 0.5 * static_cast<double>(this->width-1), fl); else azimuth = 0.0; double depth = toCopyFrom[index++]; // in optical frame hardcoded rotation // rpy(-M_PI/2, 0, -M_PI/2) is built-in // to urdf, where the *_optical_frame should have above relative // rotation from the physical camera *_frame *iter_x = depth * tan(azimuth); *iter_y = depth * tan(elevation); if (depth > this->point_cloud_cutoff_) { *iter_z = depth; *iter_image = sqrt(*iter_x * *iter_x + *iter_y * *iter_y + *iter_z * *iter_z); } else // point in the unseeable range { *iter_x = *iter_y = *iter_z = std::numeric_limits<float>::quiet_NaN(); *iter_image = 0.0; point_cloud_msg_.is_dense = false; } // put image color data for each point uint8_t* image_src = static_cast<uint8_t*>(&(this->image_msg_.data[0])); if (this->image_msg_.data.size() == this->height * this->width*3) { // color iter_rgb[0] = image_src[i*3+j*this->width*3+0]; iter_rgb[1] = image_src[i*3+j*this->width*3+1]; iter_rgb[2] = image_src[i*3+j*this->width*3+2]; } else if (this->image_msg_.data.size() == this->height * this->width) { // mono (or bayer? @todo; fix for bayer) iter_rgb[0] = image_src[i+j*this->width]; iter_rgb[1] = image_src[i+j*this->width]; iter_rgb[2] = image_src[i+j*this->width]; } else { // no image iter_rgb[0] = 0; iter_rgb[1] = 0; iter_rgb[2] = 0; } } } if (this->point_cloud_connect_count_ > 0) this->point_cloud_pub_.publish(this->point_cloud_msg_); this->lock_.unlock(); } ///////////////////////////////////////////////// // incidence angle is target's normal angle accounting for the ray's azimuth // and elevation double NpsGazeboRosImageSonar::ComputeIncidence(double azimuth, double elevation, cv::Vec3f normal) { // ray normal from camera azimuth and elevation double camera_x = cos(-azimuth)*cos(elevation); double camera_y = sin(-azimuth)*cos(elevation); double camera_z = sin(elevation); cv::Vec3f ray_normal(camera_x, camera_y, camera_z); // target normal with axes compensated to camera axes cv::Vec3f target_normal(normal[2], -normal[0], -normal[1]); // dot product double dot_product = ray_normal.dot(target_normal); return M_PI - acos(dot_product); } ///////////////////////////////////////////////// // Precalculation of corrector sonar calculation void NpsGazeboRosImageSonar::ComputeCorrector() { double hFOV = this->parentSensor->DepthCamera()->HFOV().Radian(); double hPixelSize = hFOV / this->width; // Beam culling correction precalculation for (size_t beam = 0; beam < nBeams; beam ++) { float beam_azimuthAngle = -(hFOV/2.0) + beam * hPixelSize + hPixelSize/2.0; for (size_t beam_other = 0; beam_other < nBeams; beam_other ++) { float beam_azimuthAngle_other = -(hFOV/2.0) + beam_other * hPixelSize + hPixelSize/2.0; float azimuthBeamPattern = unnormalized_sinc(M_PI * 0.884 / hPixelSize * sin(beam_azimuthAngle-beam_azimuthAngle_other)); this->beamCorrector[beam][beam_other] = azimuthBeamPattern; this->beamCorrectorSum += pow(azimuthBeamPattern, 2); } } this->beamCorrectorSum = sqrt(this->beamCorrectorSum); } ///////////////////////////////////////////////// cv::Mat NpsGazeboRosImageSonar::ComputeNormalImage(cv::Mat& depth) { // filters cv::Mat_<float> f1 = (cv::Mat_<float>(3, 3) << 1, 2, 1, 0, 0, 0, -1, -2, -1) / 8; cv::Mat_<float> f2 = (cv::Mat_<float>(3, 3) << 1, 0, -1, 2, 0, -2, 1, 0, -1) / 8; cv::Mat f1m, f2m; cv::flip(f1, f1m, 0); cv::flip(f2, f2m, 1); cv::Mat n1, n2; cv::filter2D(depth, n1, -1, f1m, cv::Point(-1, -1), 0, cv::BORDER_REPLICATE); cv::filter2D(depth, n2, -1, f2m, cv::Point(-1, -1), 0, cv::BORDER_REPLICATE); cv::Mat no_readings; cv::erode(depth == 0, no_readings, cv::Mat(), cv::Point(-1, -1), 2, 1, 1); // cv::dilate(no_readings, no_readings, cv::Mat(), // cv::Point(-1, -1), 2, 1, 1); n1.setTo(0, no_readings); n2.setTo(0, no_readings); std::vector<cv::Mat> images(3); cv::Mat white = cv::Mat::ones(depth.rows, depth.cols, CV_32FC1); // NOTE: with different focal lengths, the expression becomes // (-dzx*fy, -dzy*fx, fx*fy) images.at(0) = n1; // for green channel images.at(1) = n2; // for red channel images.at(2) = 1.0/this->focal_length_*depth; // for blue channel cv::Mat normal_image; cv::merge(images, normal_image); for (int i = 0; i < normal_image.rows; ++i) { for (int j = 0; j < normal_image.cols; ++j) { cv::Vec3f& n = normal_image.at<cv::Vec3f>(i, j); n = cv::normalize(n); float& d = depth.at<float>(i, j); } } return normal_image; } ///////////////////////////////////////////////// void NpsGazeboRosImageSonar::PublishCameraInfo() { ROS_DEBUG_NAMED("depth_camera", "publishing default camera info, then depth camera info"); GazeboRosCameraUtils::PublishCameraInfo(); if (this->depth_info_connect_count_ > 0) { common::Time sensor_update_time = this->parentSensor_->LastMeasurementTime(); this->sensor_update_time_ = sensor_update_time; if (sensor_update_time - this->last_depth_image_camera_info_update_time_ >= this->update_period_) { this->PublishCameraInfo(this->depth_image_camera_info_pub_); // , sensor_update_time); this->last_depth_image_camera_info_update_time_ = sensor_update_time; } } } }
[GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 r : α → α → Prop s✝ t✝ : Multiset α a✝ : α s : Multiset α h : ∀ (a : α) (t : Multiset α), s ≠ a ::ₘ a ::ₘ t a : α le : a ::ₘ a ::ₘ 0 ≤ s t : Multiset α s_eq : s = a ::ₘ a ::ₘ 0 + t ⊢ s = a ::ₘ a ::ₘ t [PROOFSTEP] rwa [cons_add, cons_add, zero_add] at s_eq [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 r : α → α → Prop s✝ t : Multiset α a : α inst✝ : DecidableEq α s : Multiset α _l : List α ⊢ Nodup (Quot.mk Setoid.r _l) ↔ ∀ (a : α), count a (Quot.mk Setoid.r _l) ≤ 1 [PROOFSTEP] simp only [quot_mk_to_coe'', coe_nodup, mem_coe, coe_count] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 r : α → α → Prop s✝ t : Multiset α a : α inst✝ : DecidableEq α s : Multiset α _l : List α ⊢ List.Nodup _l ↔ ∀ (a : α), List.count a _l ≤ 1 [PROOFSTEP] apply List.nodup_iff_count_le_one [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 r : α → α → Prop s✝ t : Multiset α a✝ : α inst✝ : DecidableEq α a : α s : Multiset α d : Nodup s ⊢ count a s = if a ∈ s then 1 else 0 [PROOFSTEP] split_ifs with h [GOAL] case pos α : Type u_1 β : Type u_2 γ : Type u_3 r : α → α → Prop s✝ t : Multiset α a✝ : α inst✝ : DecidableEq α a : α s : Multiset α d : Nodup s h : a ∈ s ⊢ count a s = 1 [PROOFSTEP] exact count_eq_one_of_mem d h [GOAL] case neg α : Type u_1 β : Type u_2 γ : Type u_3 r : α → α → Prop s✝ t : Multiset α a✝ : α inst✝ : DecidableEq α a : α s : Multiset α d : Nodup s h : ¬a ∈ s ⊢ count a s = 0 [PROOFSTEP] exact count_eq_zero_of_not_mem h [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 r : α → α → Prop s t : Multiset α a : α d₁ : Nodup s d₂ : Nodup t ⊢ Nodup (s + t) ↔ Disjoint s t [PROOFSTEP] simp [nodup_add, d₁, d₂] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 r : α → α → Prop s t : Multiset α a✝ : α inst✝ : DecidableEq α a b : α l : Multiset α d : Nodup l ⊢ a ∈ Multiset.erase l b ↔ a ≠ b ∧ a ∈ l [PROOFSTEP] rw [d.erase_eq_filter b, mem_filter, and_comm] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 r : α → α → Prop s t✝ : Multiset α a : α t : Multiset β l₁ : List α l₂ : List β d₁ : Nodup (Quotient.mk (isSetoid α) l₁) d₂ : Nodup (Quotient.mk (isSetoid β) l₂) ⊢ Nodup (Quotient.mk (isSetoid α) l₁ ×ˢ Quotient.mk (isSetoid β) l₂) [PROOFSTEP] simp [List.Nodup.product d₁ d₂] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 r : α → α → Prop s t✝ : Multiset α a : α σ : α → Type u_4 t : (a : α) → Multiset (σ a) l₁ : List α ⊢ Nodup (Quot.mk Setoid.r l₁) → (∀ (a : α), Nodup (t a)) → Nodup (Multiset.sigma (Quot.mk Setoid.r l₁) t) [PROOFSTEP] choose f hf using fun a => Quotient.exists_rep (t a) [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 r : α → α → Prop s t✝ : Multiset α a : α σ : α → Type u_4 t : (a : α) → Multiset (σ a) l₁ : List α f : (a : α) → List (σ a) hf : ∀ (a : α), Quotient.mk (isSetoid (σ a)) (f a) = t a ⊢ Nodup (Quot.mk Setoid.r l₁) → (∀ (a : α), Nodup (t a)) → Nodup (Multiset.sigma (Quot.mk Setoid.r l₁) t) [PROOFSTEP] simpa [← funext hf] using List.Nodup.sigma [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 r : α → α → Prop s✝ t✝ : Multiset α a✝ : α inst✝ : DecidableEq α s t : Multiset α x✝ : Nodup s ∧ Nodup t h₁ : Nodup s h₂ : Nodup t a : α ⊢ count a (s ∪ t) ≤ 1 [PROOFSTEP] rw [count_union] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 r : α → α → Prop s✝ t✝ : Multiset α a✝ : α inst✝ : DecidableEq α s t : Multiset α x✝ : Nodup s ∧ Nodup t h₁ : Nodup s h₂ : Nodup t a : α ⊢ max (count a s) (count a t) ≤ 1 [PROOFSTEP] exact max_le (nodup_iff_count_le_one.1 h₁ a) (nodup_iff_count_le_one.1 h₂ a) [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 r : α → α → Prop s✝ t✝ : Multiset α a : α s : Multiset α t : α → Multiset β h₁ : ∀ (a : α), ∃ l, t a = ↑l t' : α → List β h' : ∀ (x : α), t x = ↑(t' x) this : t = fun a => ↑(t' a) hd : Symmetric fun a b => List.Disjoint (t' a) (t' b) ⊢ ∀ (a : List α), Nodup (bind (Quot.mk Setoid.r a) t) ↔ (∀ (a_1 : α), a_1 ∈ Quot.mk Setoid.r a → Nodup (t a_1)) ∧ Pairwise (fun a b => Disjoint (t a) (t b)) (Quot.mk Setoid.r a) [PROOFSTEP] simp [this, List.nodup_bind, pairwise_coe_iff_pairwise hd] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 r : α → α → Prop s✝ t✝ : Multiset α a✝ : α inst✝ : DecidableEq α a : α s t : Multiset α d : Nodup s h : a ∈ s - t h' : a ∈ t ⊢ False [PROOFSTEP] refine' count_eq_zero.1 _ h [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 r : α → α → Prop s✝ t✝ : Multiset α a✝ : α inst✝ : DecidableEq α a : α s t : Multiset α d : Nodup s h : a ∈ s - t h' : a ∈ t ⊢ count a (s - t) = 0 [PROOFSTEP] rw [count_sub a s t, tsub_eq_zero_iff_le] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 r : α → α → Prop s✝ t✝ : Multiset α a✝ : α inst✝ : DecidableEq α a : α s t : Multiset α d : Nodup s h : a ∈ s - t h' : a ∈ t ⊢ count a s ≤ count a t [PROOFSTEP] exact le_trans (nodup_iff_count_le_one.1 d _) (count_pos.2 h') [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 r : α → α → Prop s✝ t✝ : Multiset α a : α f : α → γ g : β → γ s : Multiset α t : Multiset β hs : Nodup s ht : Nodup t i : (a : α) → a ∈ s → β hi : ∀ (a : α) (ha : a ∈ s), i a ha ∈ t h : ∀ (a : α) (ha : a ∈ s), f a = g (i a ha) i_inj : ∀ (a₁ a₂ : α) (ha₁ : a₁ ∈ s) (ha₂ : a₂ ∈ s), i a₁ ha₁ = i a₂ ha₂ → a₁ = a₂ i_surj : ∀ (b : β), b ∈ t → ∃ a ha, b = i a ha x : β ⊢ x ∈ t ↔ x ∈ map (fun x => i ↑x (_ : ↑x ∈ s)) (attach s) [PROOFSTEP] simp only [mem_map, true_and_iff, Subtype.exists, eq_comm, mem_attach] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 r : α → α → Prop s✝ t✝ : Multiset α a : α f : α → γ g : β → γ s : Multiset α t : Multiset β hs : Nodup s ht : Nodup t i : (a : α) → a ∈ s → β hi : ∀ (a : α) (ha : a ∈ s), i a ha ∈ t h : ∀ (a : α) (ha : a ∈ s), f a = g (i a ha) i_inj : ∀ (a₁ a₂ : α) (ha₁ : a₁ ∈ s) (ha₂ : a₂ ∈ s), i a₁ ha₁ = i a₂ ha₂ → a₁ = a₂ i_surj : ∀ (b : β), b ∈ t → ∃ a ha, b = i a ha x : β ⊢ x ∈ t ↔ ∃ a h, x = i a (_ : ↑{ val := a, property := (_ : a ∈ s) } ∈ s) [PROOFSTEP] exact ⟨i_surj _, fun ⟨y, hy⟩ => hy.snd.symm ▸ hi _ _⟩ [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 r : α → α → Prop s✝ t✝ : Multiset α a : α f : α → γ g : β → γ s : Multiset α t : Multiset β hs : Nodup s ht : Nodup t i : (a : α) → a ∈ s → β hi : ∀ (a : α) (ha : a ∈ s), i a ha ∈ t h : ∀ (a : α) (ha : a ∈ s), f a = g (i a ha) i_inj : ∀ (a₁ a₂ : α) (ha₁ : a₁ ∈ s) (ha₂ : a₂ ∈ s), i a₁ ha₁ = i a₂ ha₂ → a₁ = a₂ i_surj : ∀ (b : β), b ∈ t → ∃ a ha, b = i a ha this : t = map (fun x => i ↑x (_ : ↑x ∈ s)) (attach s) ⊢ map f s = pmap (fun x x_1 => f x) s (_ : ∀ (x : α), x ∈ s → x ∈ s) [PROOFSTEP] rw [pmap_eq_map] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 r : α → α → Prop s✝ t✝ : Multiset α a : α f : α → γ g : β → γ s : Multiset α t : Multiset β hs : Nodup s ht : Nodup t i : (a : α) → a ∈ s → β hi : ∀ (a : α) (ha : a ∈ s), i a ha ∈ t h : ∀ (a : α) (ha : a ∈ s), f a = g (i a ha) i_inj : ∀ (a₁ a₂ : α) (ha₁ : a₁ ∈ s) (ha₂ : a₂ ∈ s), i a₁ ha₁ = i a₂ ha₂ → a₁ = a₂ i_surj : ∀ (b : β), b ∈ t → ∃ a ha, b = i a ha this : t = map (fun x => i ↑x (_ : ↑x ∈ s)) (attach s) ⊢ pmap (fun x x_1 => f x) s (_ : ∀ (x : α), x ∈ s → x ∈ s) = map (fun x => f ↑x) (attach s) [PROOFSTEP] rw [pmap_eq_map_attach] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 r : α → α → Prop s✝ t✝ : Multiset α a : α f : α → γ g : β → γ s : Multiset α t : Multiset β hs : Nodup s ht : Nodup t i : (a : α) → a ∈ s → β hi : ∀ (a : α) (ha : a ∈ s), i a ha ∈ t h : ∀ (a : α) (ha : a ∈ s), f a = g (i a ha) i_inj : ∀ (a₁ a₂ : α) (ha₁ : a₁ ∈ s) (ha₂ : a₂ ∈ s), i a₁ ha₁ = i a₂ ha₂ → a₁ = a₂ i_surj : ∀ (b : β), b ∈ t → ∃ a ha, b = i a ha this : t = map (fun x => i ↑x (_ : ↑x ∈ s)) (attach s) ⊢ map (fun x => f ↑x) (attach s) = map g t [PROOFSTEP] rw [this, Multiset.map_map] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 r : α → α → Prop s✝ t✝ : Multiset α a : α f : α → γ g : β → γ s : Multiset α t : Multiset β hs : Nodup s ht : Nodup t i : (a : α) → a ∈ s → β hi : ∀ (a : α) (ha : a ∈ s), i a ha ∈ t h : ∀ (a : α) (ha : a ∈ s), f a = g (i a ha) i_inj : ∀ (a₁ a₂ : α) (ha₁ : a₁ ∈ s) (ha₂ : a₂ ∈ s), i a₁ ha₁ = i a₂ ha₂ → a₁ = a₂ i_surj : ∀ (b : β), b ∈ t → ∃ a ha, b = i a ha this : t = map (fun x => i ↑x (_ : ↑x ∈ s)) (attach s) ⊢ map (fun x => f ↑x) (attach s) = map (g ∘ fun x => i ↑x (_ : ↑x ∈ s)) (attach s) [PROOFSTEP] exact map_congr rfl fun x _ => h _ _
// Copyright Louis Dionne 2013-2016 // Distributed under the Boost Software License, Version 1.0. // (See accompanying file LICENSE.md or copy at http://boost.org/LICENSE_1_0.txt) #ifndef BOOST_HANA_TEST_AUTO_TRANSFORM_HPP #define BOOST_HANA_TEST_AUTO_TRANSFORM_HPP #include <boost/hana/assert.hpp> #include <boost/hana/equal.hpp> #include <boost/hana/transform.hpp> #include "test_case.hpp" #include <laws/base.hpp> TestCase test_transform{[] { namespace hana = boost::hana; using hana::test::ct_eq; struct undefined { }; constexpr hana::test::_injection<0> f{}; BOOST_HANA_CONSTANT_CHECK(hana::equal( hana::transform(MAKE_TUPLE(), undefined{}), MAKE_TUPLE() )); BOOST_HANA_CONSTANT_CHECK(hana::equal( hana::transform(MAKE_TUPLE(ct_eq<1>{}), f), MAKE_TUPLE(f(ct_eq<1>{})) )); BOOST_HANA_CONSTANT_CHECK(hana::equal( hana::transform(MAKE_TUPLE(ct_eq<1>{}, ct_eq<2>{}), f), MAKE_TUPLE(f(ct_eq<1>{}), f(ct_eq<2>{})) )); BOOST_HANA_CONSTANT_CHECK(hana::equal( hana::transform(MAKE_TUPLE(ct_eq<1>{}, ct_eq<2>{}, ct_eq<3>{}), f), MAKE_TUPLE(f(ct_eq<1>{}), f(ct_eq<2>{}), f(ct_eq<3>{})) )); BOOST_HANA_CONSTANT_CHECK(hana::equal( hana::transform(MAKE_TUPLE(ct_eq<1>{}, ct_eq<2>{}, ct_eq<3>{}, ct_eq<4>{}), f), MAKE_TUPLE(f(ct_eq<1>{}), f(ct_eq<2>{}), f(ct_eq<3>{}), f(ct_eq<4>{})) )); #ifndef MAKE_TUPLE_NO_CONSTEXPR struct incr { constexpr int operator()(int i) const { return i + 1; } }; static_assert(hana::equal( hana::transform(MAKE_TUPLE(1), incr{}), MAKE_TUPLE(2) ), ""); static_assert(hana::equal( hana::transform(MAKE_TUPLE(1, 2), incr{}), MAKE_TUPLE(2, 3) ), ""); static_assert(hana::equal( hana::transform(MAKE_TUPLE(1, 2, 3), incr{}), MAKE_TUPLE(2, 3, 4) ), ""); static_assert(hana::equal( hana::transform(MAKE_TUPLE(1, 2, 3, 4), incr{}), MAKE_TUPLE(2, 3, 4, 5) ), ""); #endif }}; #endif // !BOOST_HANA_TEST_AUTO_TRANSFORM_HPP
% -*- root: Main.tex -*- \section{SVD} $\mathbf{A} = \mathbf{U} \mathbf{D} \mathbf{V}^\top = \sum_{k=1}^{\operatorname{rank}(\mathbf{A})} d_{k,k} u_k (v_k)^\top$\\ $\mathbf{A} \in \mathbb{R}^{N \times P}, \mathbf{U} \in \mathbb{R}^{N \times N}, \mathbf{D} \in \mathbb{R}^{N \times P}, \mathbf{V} \in \mathbb{R}^{P \times P}$\\ $\mathbf{U}^\top \mathbf{U} = I = \mathbf{V}^\top \mathbf{V}$ ($\mathbf{U}, \mathbf{V}$ orthogonal)\\ $\mathbf{U}$ columns are eigenvectors of $\mathbf{A} \mathbf{A}^\top$, $\mathbf{V}$ columns are eigenvectors of $\mathbf{A}^\top \mathbf{A}$, $\mathbf{D}$ diagonal elements are singular values.\\ $(\mathbf{D}^{-1})_{i,i} = \frac{1}{\mathbf{D}_{i, i}}$ (don't forget to transpose) 1. calculate $\mathbf{A}^\top \mathbf{A}$.\\ 2. calculate eigenvalues of $\mathbf{A}^\top \mathbf{A}$, the square root of them, in descending order, are the diagonal elements of $\mathbf{D}$.\\ 3. calculate eigenvectors of $\mathbf{A}^\top \mathbf{A}$ using the eigenvalues resulting in the columns of $\mathbf{V}$.\\ 4. calculate the missing matrix: $\mathbf{U} = \mathbf{A} \mathbf{V} \mathbf{D}^{-1}$.\\ 5. normalize each column of $\mathbf{U}$ and $\mathbf{V}$. \subsection*{Low-Rank approximation} Using only $K$ largest eigenvalues and corresponding eigenvectors. $\tilde{\mathbf{A}}_{i, j} = \sum_{k=1}^K \mathbf{U}_{i, k} \mathbf{D}_{k,k} \mathbf{V}_{j, k} = \sum_{k=1}^K \mathbf{U}_{i, k} \mathbf{D}_{k,k} (\mathbf{V}^\top)_{k, j}$. \subsection*{Collaborative Filtering \textendash\ Prediction} For $\mathbf{U}, \mathbf{V}$ (Movie-/User-embedding) use $k$-rank approx (fill up dimensions). Predict user preferences: $\mathbf{U_k} \mathbf{U_k^T} b$. \subsection*{Echart-Young Theorem} $\min_{rank(B)=K} ||A-B||_F^2 = ||A-A_k||_F^2 = \sum_{r=k+1}^{rank(A)} \sigma_r^2$ $\min_{rank(B)=K} ||A-B||_2 = ||A-A_k||_2 = \sigma_{k+1}$
module Loading import JSON import Tables using AtBackslash: @\ using BangBang using Transducers function as_sorted_namedtuple(d) xs = sort!(collect(d); by = first) (; (Symbol(k) => v for (k, v) in xs)...) end paths_to_rows_xf(; bench_xf = Map(identity), result_xf = Map(identity)) = Map(as_sorted_namedtuple ∘ JSON.parsefile) |> Zip( Map(x -> delete!!(x, :benchmarks)), # broadcast scalars MapCat(@\ _.benchmarks) |> Map(as_sorted_namedtuple), ) |> MapSplat(merge) |> bench_xf |> Zip( Map(x -> delete!!(x, :results)), # broadcast scalars MapCat(@\ _.results) |> Map(as_sorted_namedtuple), ) |> MapSplat(merge) |> result_xf |> Zip( Map(x -> delete!!(x, :trial)), # broadcast scalars MapCat() do x Tables.namedtupleiterator(( time = x[:trial]["times"], gctime = x[:trial]["gctimes"], itime = 1:length(x[:trial]["times"]), )) end, ) |> MapSplat(merge) results(jsonpath::AbstractString; kw...) = results([jsonpath]; kw...) results(jsonpaths::AbstractVector{<:AbstractString}; kw...) = eduction(paths_to_rows_xf(; kw...), jsonpaths) results_by_benchname(benchname::AbstractString, args...; kw...) = results_by_benchname(==(benchname), args...; kw...) results_by_benchname(predicate, args...; kw...) = results( args...; bench_xf = Filter(@\ predicate(:benchname)), result_xf = Map(x -> merge(delete!!(x, :parameter), as_sorted_namedtuple(x.parameter))), kw..., ) end # module
import topology.tactic import topology.instances.real example {X : Type*} [topological_space X] : continuous (@id X) := by { continuity, } example : continuous (λ (x : ℝ), -x) := by { exact continuous_id'.neg, }
(* Author: René Thiemann Akihisa Yamada License: BSD *) subsection \<open>Missing List\<close> text \<open>The provides some standard algorithms and lemmas on lists.\<close> theory Missing_List imports Matrix.Utility "HOL-Library.Monad_Syntax" begin fun concat_lists :: "'a list list \<Rightarrow> 'a list list" where "concat_lists [] = [[]]" | "concat_lists (as # xs) = concat (map (\<lambda>vec. map (\<lambda>a. a # vec) as) (concat_lists xs))" lemma concat_lists_listset: "set (concat_lists xs) = listset (map set xs)" by (induct xs, auto simp: set_Cons_def) lemma sum_list_concat: "sum_list (concat ls) = sum_list (map sum_list ls)" by (induct ls, auto) (* TODO: move to src/HOL/List *) lemma listset: "listset xs = { ys. length ys = length xs \<and> (\<forall> i < length xs. ys ! i \<in> xs ! i)}" proof (induct xs) case (Cons x xs) let ?n = "length xs" from Cons have "?case = (set_Cons x {ys. length ys = ?n \<and> (\<forall>i < ?n. ys ! i \<in> xs ! i)} = {ys. length ys = Suc ?n \<and> ys ! 0 \<in> x \<and> (\<forall>i < ?n. ys ! Suc i \<in> xs ! i)})" (is "_ = (?L = ?R)") by (auto simp: all_Suc_conv) also have "?L = ?R" by (auto simp: set_Cons_def, case_tac xa, auto) finally show ?case by simp qed auto declare concat_lists.simps[simp del] fun find_map_filter :: "('a \<Rightarrow> 'b) \<Rightarrow> ('b \<Rightarrow> bool) \<Rightarrow> 'a list \<Rightarrow> 'b option" where "find_map_filter f p [] = None" | "find_map_filter f p (a # as) = (let b = f a in if p b then Some b else find_map_filter f p as)" lemma find_map_filter_None: "find_map_filter f p as = None \<Longrightarrow> \<forall> b \<in> f ` set as. \<not> p b" by (induct f p as rule: find_map_filter.induct, auto simp: Let_def split: if_splits) lemma remdups_adj_sorted_distinct[simp]: "sorted xs \<Longrightarrow> distinct (remdups_adj xs)" by (induct xs rule: remdups_adj.induct) (auto) lemma subseqs_length_simple: assumes "b \<in> set (subseqs xs)" shows "length b \<le> length xs" using assms by(induct xs arbitrary:b;auto simp:Let_def Suc_leD) lemma subseqs_length_simple_False: assumes "b \<in> set (subseqs xs)" " length xs < length b" shows False using assms subseqs_length_simple by fastforce lemma full_list_subseqs: "{ys. ys \<in> set (subseqs xs) \<and> length ys = length xs} = {xs}" proof (induct xs) case (Cons x xs) have "?case = ({ys \<in> (#) x ` set (subseqs xs) \<union> set (subseqs xs). length ys = Suc (length xs)} = (#) x ` {xs})" (is "_ = (?l = ?r)") by (auto simp: Let_def) also have "?l = {ys \<in> (#) x ` set (subseqs xs). length ys = Suc (length xs)}" using length_subseqs[of xs] using subseqs_length_simple_False by force also have "\<dots> = (#) x ` {ys \<in> set (subseqs xs). length ys = length xs}" by auto also have "\<dots> = (#) x ` {xs}" unfolding Cons by auto finally show ?case by simp qed simp lemma nth_concat_split: assumes "i < length (concat xs)" shows "\<exists> j k. j < length xs \<and> k < length (xs ! j) \<and> concat xs ! i = xs ! j ! k" using assms proof (induct xs arbitrary: i) case (Cons x xs i) define I where "I = i - length x" show ?case proof (cases "i < length x") case True note l = this hence i: "concat (Cons x xs) ! i = x ! i" by (auto simp: nth_append) show ?thesis unfolding i by (rule exI[of _ 0], rule exI[of _ i], insert Cons l, auto) next case False note l = this from l Cons(2) have i: "i = length x + I" "I < length (concat xs)" unfolding I_def by auto hence iI: "concat (Cons x xs) ! i = concat xs ! I" by (auto simp: nth_append) from Cons(1)[OF i(2)] obtain j k where IH: "j < length xs \<and> k < length (xs ! j) \<and> concat xs ! I = xs ! j ! k" by auto show ?thesis unfolding iI by (rule exI[of _ "Suc j"], rule exI[of _ k], insert IH, auto) qed qed simp lemma nth_concat_diff: assumes "i1 < length (concat xs)" "i2 < length (concat xs)" "i1 \<noteq> i2" shows "\<exists> j1 k1 j2 k2. (j1,k1) \<noteq> (j2,k2) \<and> j1 < length xs \<and> j2 < length xs \<and> k1 < length (xs ! j1) \<and> k2 < length (xs ! j2) \<and> concat xs ! i1 = xs ! j1 ! k1 \<and> concat xs ! i2 = xs ! j2 ! k2" using assms proof (induct xs arbitrary: i1 i2) case (Cons x xs) define I1 where "I1 = i1 - length x" define I2 where "I2 = i2 - length x" show ?case proof (cases "i1 < length x") case True note l1 = this hence i1: "concat (Cons x xs) ! i1 = x ! i1" by (auto simp: nth_append) show ?thesis proof (cases "i2 < length x") case True note l2 = this hence i2: "concat (Cons x xs) ! i2 = x ! i2" by (auto simp: nth_append) show ?thesis unfolding i1 i2 by (rule exI[of _ 0], rule exI[of _ i1], rule exI[of _ 0], rule exI[of _ i2], insert Cons(4) l1 l2, auto) next case False note l2 = this from l2 Cons(3) have i22: "i2 = length x + I2" "I2 < length (concat xs)" unfolding I2_def by auto hence i2: "concat (Cons x xs) ! i2 = concat xs ! I2" by (auto simp: nth_append) from nth_concat_split[OF i22(2)] obtain j2 k2 where *: "j2 < length xs \<and> k2 < length (xs ! j2) \<and> concat xs ! I2 = xs ! j2 ! k2" by auto show ?thesis unfolding i1 i2 by (rule exI[of _ 0], rule exI[of _ i1], rule exI[of _ "Suc j2"], rule exI[of _ k2], insert * l1, auto) qed next case False note l1 = this from l1 Cons(2) have i11: "i1 = length x + I1" "I1 < length (concat xs)" unfolding I1_def by auto hence i1: "concat (Cons x xs) ! i1 = concat xs ! I1" by (auto simp: nth_append) show ?thesis proof (cases "i2 < length x") case False note l2 = this from l2 Cons(3) have i22: "i2 = length x + I2" "I2 < length (concat xs)" unfolding I2_def by auto hence i2: "concat (Cons x xs) ! i2 = concat xs ! I2" by (auto simp: nth_append) from Cons(4) i11 i22 have diff: "I1 \<noteq> I2" by auto from Cons(1)[OF i11(2) i22(2) diff] obtain j1 k1 j2 k2 where IH: "(j1,k1) \<noteq> (j2,k2) \<and> j1 < length xs \<and> j2 < length xs \<and> k1 < length (xs ! j1) \<and> k2 < length (xs ! j2) \<and> concat xs ! I1 = xs ! j1 ! k1 \<and> concat xs ! I2 = xs ! j2 ! k2" by auto show ?thesis unfolding i1 i2 by (rule exI[of _ "Suc j1"], rule exI[of _ k1], rule exI[of _ "Suc j2"], rule exI[of _ k2], insert IH, auto) next case True note l2 = this hence i2: "concat (Cons x xs) ! i2 = x ! i2" by (auto simp: nth_append) from nth_concat_split[OF i11(2)] obtain j1 k1 where *: "j1 < length xs \<and> k1 < length (xs ! j1) \<and> concat xs ! I1 = xs ! j1 ! k1" by auto show ?thesis unfolding i1 i2 by (rule exI[of _ "Suc j1"], rule exI[of _ k1], rule exI[of _ 0], rule exI[of _ i2], insert * l2, auto) qed qed qed auto lemma list_all2_map_map: "(\<And> x. x \<in> set xs \<Longrightarrow> R (f x) (g x)) \<Longrightarrow> list_all2 R (map f xs) (map g xs)" by (induct xs, auto) subsection \<open>Partitions\<close> text \<open>Check whether a list of sets forms a partition, i.e., whether the sets are pairwise disjoint.\<close> definition is_partition :: "('a set) list \<Rightarrow> bool" where "is_partition cs \<longleftrightarrow> (\<forall>j<length cs. \<forall>i<j. cs ! i \<inter> cs ! j = {})" (* and an equivalent but more symmetric version *) definition is_partition_alt :: "('a set) list \<Rightarrow> bool" where "is_partition_alt cs \<longleftrightarrow> (\<forall> i j. i < length cs \<and> j < length cs \<and> i \<noteq> j \<longrightarrow> cs!i \<inter> cs!j = {})" lemma is_partition_alt: "is_partition = is_partition_alt" proof (intro ext) fix cs :: "'a set list" { assume "is_partition_alt cs" hence "is_partition cs" unfolding is_partition_def is_partition_alt_def by auto } moreover { assume part: "is_partition cs" have "is_partition_alt cs" unfolding is_partition_alt_def proof (intro allI impI) fix i j assume "i < length cs \<and> j < length cs \<and> i \<noteq> j" with part show "cs ! i \<inter> cs ! j = {}" unfolding is_partition_def by (cases "i < j", simp, cases "j < i", force, simp) qed } ultimately show "is_partition cs = is_partition_alt cs" by auto qed lemma is_partition_Nil: "is_partition [] = True" unfolding is_partition_def by auto lemma is_partition_Cons: "is_partition (x#xs) \<longleftrightarrow> is_partition xs \<and> x \<inter> \<Union>(set xs) = {}" (is "?l = ?r") proof assume ?l have one: "is_partition xs" proof (unfold is_partition_def, intro allI impI) fix j i assume "j < length xs" and "i < j" hence "Suc j < length(x#xs)" and "Suc i < Suc j" by auto from \<open>?l\<close>[unfolded is_partition_def,THEN spec,THEN mp,THEN spec,THEN mp,OF this] have "(x#xs)!(Suc i) \<inter> (x#xs)!(Suc j) = {}" . thus "xs!i \<inter> xs!j = {}" by simp qed have two: "x \<inter> \<Union>(set xs) = {}" proof (rule ccontr) assume "x \<inter> \<Union>(set xs) \<noteq> {}" then obtain y where "y \<in> x" and "y \<in> \<Union>(set xs)" by auto then obtain z where "z \<in> set xs" and "y \<in> z" by auto then obtain i where "i < length xs" and "xs!i = z" using in_set_conv_nth[of z xs] by auto with \<open>y \<in> z\<close> have "y \<in> (x#xs)!Suc i" by auto moreover with \<open>y \<in> x\<close> have "y \<in> (x#xs)!0" by simp ultimately have "(x#xs)!0 \<inter> (x#xs)!Suc i \<noteq> {}" by auto moreover from \<open>i < length xs\<close> have "Suc i < length(x#xs)" by simp ultimately show False using \<open>?l\<close>[unfolded is_partition_def] by best qed from one two show ?r .. next assume ?r show ?l proof (unfold is_partition_def, intro allI impI) fix j i assume j: "j < length (x # xs)" assume i: "i < j" from i obtain j' where j': "j = Suc j'" by (cases j, auto) with j have j'len: "j' < length xs" and j'elem: "(x # xs) ! j = xs ! j'" by auto show "(x # xs) ! i \<inter> (x # xs) ! j = {}" proof (cases i) case 0 with j'elem have "(x # xs) ! i \<inter> (x # xs) ! j = x \<inter> xs ! j'" by auto also have "\<dots> \<subseteq> x \<inter> \<Union>(set xs)" using j'len by force finally show ?thesis using \<open>?r\<close> by auto next case (Suc i') with i j' have i'j': "i' < j'" by auto from Suc j' have "(x # xs) ! i \<inter> (x # xs) ! j = xs ! i' \<inter> xs ! j'" by auto with \<open>?r\<close> i'j' j'len show ?thesis unfolding is_partition_def by auto qed qed qed lemma is_partition_sublist: assumes "is_partition (us @ xs @ ys @ zs @ vs)" shows "is_partition (xs @ zs)" proof (rule ccontr) assume "\<not> is_partition (xs @ zs)" then obtain i j where j:"j < length (xs @ zs)" and i:"i < j" and *:"(xs @ zs) ! i \<inter> (xs @ zs) ! j \<noteq> {}" unfolding is_partition_def by blast then show False proof (cases "j < length xs") case True let ?m = "j + length us" let ?n = "i + length us" from True have "?m < length (us @ xs @ ys @ zs @ vs)" by auto moreover from i have "?n < ?m" by auto moreover have "(us @ xs @ ys @ zs @ vs) ! ?n \<inter> (us @ xs @ ys @ zs @ vs) ! ?m \<noteq> {}" using i True * nth_append by (metis (no_types, lifting) add_diff_cancel_right' not_add_less2 order.strict_trans) ultimately show False using assms unfolding is_partition_def by auto next case False let ?m = "j + length us + length ys" from j have m:"?m < length (us @ xs @ ys @ zs @ vs)" by auto have mj:"(us @ (xs @ ys @ zs @ vs)) ! ?m = (xs @ zs) ! j" unfolding nth_append using False j by auto show False proof (cases "i < length xs") case True let ?n = "i + length us" from i have "?n < ?m" by auto moreover have "(us @ xs @ ys @ zs @ vs) ! ?n = (xs @ zs) ! i" by (simp add: True nth_append) ultimately show False using * m assms mj unfolding is_partition_def by blast next case False let ?n = "i + length us + length ys" from i have i:"?n < ?m" by auto moreover have "(us @ xs @ ys @ zs @ vs) ! ?n = (xs @ zs) ! i" unfolding nth_append using False i j less_diff_conv2 by auto ultimately show False using * m assms mj unfolding is_partition_def by blast qed qed qed lemma is_partition_inj_map: assumes "is_partition xs" and "inj_on f (\<Union>x \<in> set xs. x)" shows "is_partition (map ((`) f) xs)" proof (rule ccontr) assume "\<not> is_partition (map ((`) f) xs)" then obtain i j where neq:"i \<noteq> j" and i:"i < length (map ((`) f) xs)" and j:"j < length (map ((`) f) xs)" and "map ((`) f) xs ! i \<inter> map ((`) f) xs ! j \<noteq> {}" unfolding is_partition_alt is_partition_alt_def by auto then obtain x where "x \<in> map ((`) f) xs ! i" and "x \<in> map ((`) f) xs ! j" by auto then obtain y z where yi:"y \<in> xs ! i" and yx:"f y = x" and zj:"z \<in> xs ! j" and zx:"f z = x" using i j by auto show False proof (cases "y = z") case True with zj yi neq assms(1) i j show ?thesis by (auto simp: is_partition_alt is_partition_alt_def) next case False have "y \<in> (\<Union>x \<in> set xs. x)" using yi i by force moreover have "z \<in> (\<Union>x \<in> set xs. x)" using zj j by force ultimately show ?thesis using assms(2) inj_on_def[of f "(\<Union>x\<in>set xs. x)"] False zx yx by blast qed qed context begin private fun is_partition_impl :: "'a set list \<Rightarrow> 'a set option" where "is_partition_impl [] = Some {}" | "is_partition_impl (as # rest) = do { all \<leftarrow> is_partition_impl rest; if as \<inter> all = {} then Some (all \<union> as) else None }" lemma is_partition_code[code]: "is_partition as = (is_partition_impl as \<noteq> None)" proof - note [simp] = is_partition_Cons is_partition_Nil have "\<And> bs. (is_partition as = (is_partition_impl as \<noteq> None)) \<and> (is_partition_impl as = Some bs \<longrightarrow> bs = \<Union> (set as))" proof (induct as) case (Cons as rest bs) show ?case proof (cases "is_partition rest") case False thus ?thesis using Cons by auto next case True with Cons obtain c where rest: "is_partition_impl rest = Some c" by (cases "is_partition_impl rest", auto) with Cons True show ?thesis by auto qed qed auto thus ?thesis by blast qed end lemma case_prod_partition: "case_prod f (partition p xs) = f (filter p xs) (filter (Not \<circ> p) xs)" by simp lemmas map_id[simp] = list.map_id subsection \<open>merging functions\<close> definition fun_merge :: "('a \<Rightarrow> 'b)list \<Rightarrow> 'a set list \<Rightarrow> 'a \<Rightarrow> 'b" where "fun_merge fs as a \<equiv> (fs ! (LEAST i. i < length as \<and> a \<in> as ! i)) a" lemma fun_merge: assumes i: "i < length as" and a: "a \<in> as ! i" and ident: "\<And> i j a. i < length as \<Longrightarrow> j < length as \<Longrightarrow> a \<in> as ! i \<Longrightarrow> a \<in> as ! j \<Longrightarrow> (fs ! i) a = (fs ! j) a" shows "fun_merge fs as a = (fs ! i) a" proof - let ?p = "\<lambda> i. i < length as \<and> a \<in> as ! i" let ?l = "LEAST i. ?p i" have p: "?p ?l" by (rule LeastI, insert i a, auto) show ?thesis unfolding fun_merge_def by (rule ident[OF _ i _ a], insert p, auto) qed lemma fun_merge_part: assumes part: "is_partition as" and i: "i < length as" and a: "a \<in> as ! i" shows "fun_merge fs as a = (fs ! i) a" proof(rule fun_merge[OF i a]) fix i j a assume "i < length as" and "j < length as" and "a \<in> as ! i" and "a \<in> as ! j" hence "i = j" using part[unfolded is_partition_alt is_partition_alt_def] by (cases "i = j", auto) thus "(fs ! i) a = (fs ! j) a" by simp qed lemma map_nth_conv: "map f ss = map g ts \<Longrightarrow> \<forall>i < length ss. f(ss!i) = g(ts!i)" proof (intro allI impI) fix i show "map f ss = map g ts \<Longrightarrow> i < length ss \<Longrightarrow> f(ss!i) = g(ts!i)" proof (induct ss arbitrary: i ts) case Nil thus ?case by (induct ts) auto next case (Cons s ss) thus ?case by (induct ts, simp, (cases i, auto)) qed qed lemma distinct_take_drop: assumes dist: "distinct vs" and len: "i < length vs" shows "distinct(take i vs @ drop (Suc i) vs)" (is "distinct(?xs@?ys)") proof - from id_take_nth_drop[OF len] have vs[symmetric]: "vs = ?xs @ vs!i # ?ys" . with dist have "distinct ?xs" and "distinct(vs!i#?ys)" and "set ?xs \<inter> set(vs!i#?ys) = {}" using distinct_append[of ?xs "vs!i#?ys"] by auto hence "distinct ?ys" and "set ?xs \<inter> set ?ys = {}" by auto with \<open>distinct ?xs\<close> show ?thesis using distinct_append[of ?xs ?ys] vs by simp qed lemma map_nth_eq_conv: assumes len: "length xs = length ys" shows "(map f xs = ys) = (\<forall>i<length ys. f (xs ! i) = ys ! i)" (is "?l = ?r") proof - have "(map f xs = ys) = (map f xs = map id ys)" by auto also have "... = (\<forall> i < length ys. f (xs ! i) = id (ys ! i))" using map_nth_conv[of f xs id ys] nth_map_conv[OF len, of f id] unfolding len by blast finally show ?thesis by auto qed lemma map_upt_len_conv: "map (\<lambda> i . f (xs!i)) [0..<length xs] = map f xs" by (rule nth_equalityI, auto) lemma map_upt_add': "map f [a..<a+b] = map (\<lambda> i. f (a + i)) [0..<b]" by (induct b, auto) definition generate_lists :: "nat \<Rightarrow> 'a list \<Rightarrow> 'a list list" where "generate_lists n xs \<equiv> concat_lists (map (\<lambda> _. xs) [0 ..< n])" lemma set_generate_lists[simp]: "set (generate_lists n xs) = {as. length as = n \<and> set as \<subseteq> set xs}" proof - { fix as have "(length as = n \<and> (\<forall>i<n. as ! i \<in> set xs)) = (length as = n \<and> set as \<subseteq> set xs)" proof - { assume "length as = n" hence n: "n = length as" by auto have "(\<forall>i<n. as ! i \<in> set xs) = (set as \<subseteq> set xs)" unfolding n unfolding all_set_conv_all_nth[of as "\<lambda> x. x \<in> set xs", symmetric] by auto } thus ?thesis by auto qed } thus ?thesis unfolding generate_lists_def unfolding set_concat_lists by auto qed lemma nth_append_take: assumes "i \<le> length xs" shows "(take i xs @ y#ys)!i = y" proof - from assms have a: "length(take i xs) = i" by simp have "(take i xs @ y#ys)!(length(take i xs)) = y" by (rule nth_append_length) thus ?thesis unfolding a . qed lemma nth_append_take_is_nth_conv: assumes "i < j" and "j \<le> length xs" shows "(take j xs @ ys)!i = xs!i" proof - from assms have "i < length(take j xs)" by simp hence "(take j xs @ ys)!i = take j xs ! i" unfolding nth_append by simp thus ?thesis unfolding nth_take[OF assms(1)] . qed lemma nth_append_drop_is_nth_conv: assumes "j < i" and "j \<le> length xs" and "i \<le> length xs" shows "(take j xs @ y # drop (Suc j) xs)!i = xs!i" proof - from \<open>j < i\<close> obtain n where ij: "Suc(j + n) = i" using less_imp_Suc_add by auto with assms have i: "i = length(take j xs) + Suc n" by auto have len: "Suc j + n \<le> length xs" using assms i by auto have "(take j xs @ y # drop (Suc j) xs)!i = (y # drop (Suc j) xs)!(i - length(take j xs))" unfolding nth_append i by auto also have "\<dots> = (y # drop (Suc j) xs)!(Suc n)" unfolding i by simp also have "\<dots> = (drop (Suc j) xs)!n" by simp finally show ?thesis using ij len by simp qed lemma nth_append_take_drop_is_nth_conv: assumes "i \<le> length xs" and "j \<le> length xs" and "i \<noteq> j" shows "(take j xs @ y # drop (Suc j) xs)!i = xs!i" proof - from assms have "i < j \<or> i > j" by auto thus ?thesis using assms by (auto simp: nth_append_take_is_nth_conv nth_append_drop_is_nth_conv) qed lemma take_drop_imp_nth: "\<lbrakk>take i ss @ x # drop (Suc i) ss = ss\<rbrakk> \<Longrightarrow> x = ss!i" proof (induct ss arbitrary: i) case (Cons s ss) from \<open>take i (s#ss) @ x # drop (Suc i) (s#ss) = (s#ss)\<close> show ?case proof (induct i) case (Suc i) from Cons have IH: "take i ss @ x # drop (Suc i) ss = ss \<Longrightarrow> x = ss!i" by auto from Suc have "take i ss @ x # drop (Suc i) ss = ss" by auto with IH show ?case by auto qed auto qed auto lemma take_drop_update_first: assumes "j < length ds" and "length cs = length ds" shows "(take j ds @ drop j cs)[j := ds ! j] = take (Suc j) ds @ drop (Suc j) cs" using assms proof (induct j arbitrary: ds cs) case 0 then obtain d dds c ccs where ds: "ds = d # dds" and cs: "cs = c # ccs" by (cases ds, simp, cases cs, auto) show ?case unfolding ds cs by auto next case (Suc j) then obtain d dds c ccs where ds: "ds = d # dds" and cs: "cs = c # ccs" by (cases ds, simp, cases cs, auto) from Suc(1)[of dds ccs] Suc(2) Suc(3) show ?case unfolding ds cs by auto qed lemma take_drop_update_second: assumes "j < length ds" and "length cs = length ds" shows "(take j ds @ drop j cs)[j := cs ! j] = take j ds @ drop j cs" using assms proof (induct j arbitrary: ds cs) case 0 then obtain d dds c ccs where ds: "ds = d # dds" and cs: "cs = c # ccs" by (cases ds, simp, cases cs, auto) show ?case unfolding ds cs by auto next case (Suc j) then obtain d dds c ccs where ds: "ds = d # dds" and cs: "cs = c # ccs" by (cases ds, simp, cases cs, auto) from Suc(1)[of dds ccs] Suc(2) Suc(3) show ?case unfolding ds cs by auto qed lemma nth_take_prefix: "length ys \<le> length xs \<Longrightarrow> \<forall>i < length ys. xs!i = ys!i \<Longrightarrow> take (length ys) xs = ys" proof (induct xs ys rule: list_induct2') case (4 x xs y ys) have "take (length ys) xs = ys" by (rule 4(1), insert 4(2-3), auto) moreover from 4(3) have "x = y" by auto ultimately show ?case by auto qed auto lemma take_upt_idx: assumes i: "i < length ls" shows "take i ls = [ ls ! j . j \<leftarrow> [0..<i]]" proof - have e: "0 + i \<le> i" by auto show ?thesis using take_upt[OF e] take_map map_nth by (metis (hide_lams, no_types) add.left_neutral i nat_less_le take_upt) qed fun distinct_eq :: "('a \<Rightarrow> 'a \<Rightarrow> bool) \<Rightarrow> 'a list \<Rightarrow> bool" where "distinct_eq _ [] = True" | "distinct_eq eq (x # xs) = ((\<forall> y \<in> set xs. \<not> (eq y x)) \<and> distinct_eq eq xs)" lemma distinct_eq_append: "distinct_eq eq (xs @ ys) = (distinct_eq eq xs \<and> distinct_eq eq ys \<and> (\<forall> x \<in> set xs. \<forall> y \<in> set ys. \<not> (eq y x)))" by (induct xs, auto) lemma append_Cons_nth_left: assumes "i < length xs" shows "(xs @ u # ys) ! i = xs ! i" using assms nth_append[of xs _ i] by simp lemma append_Cons_nth_middle: assumes "i = length xs" shows "(xs @ y # zs) ! i = y" using assms by auto lemma append_Cons_nth_right: assumes "i > length xs" shows "(xs @ u # ys) ! i = (xs @ z # ys) ! i" proof - from assms have "i - length xs > 0" by auto then obtain j where j: "i - length xs = Suc j" by (cases "i - length xs", auto) thus ?thesis by (simp add: nth_append) qed lemma append_Cons_nth_not_middle: assumes "i \<noteq> length xs" shows "(xs @ u # ys) ! i = (xs @ z # ys) ! i" proof (cases "i < length xs") case True thus ?thesis by (simp add: append_Cons_nth_left) next case False with assms have "i > length xs" by arith thus ?thesis by (rule append_Cons_nth_right) qed lemmas append_Cons_nth = append_Cons_nth_middle append_Cons_nth_not_middle lemma concat_all_nth: assumes "length xs = length ys" and "\<And>i. i < length xs \<Longrightarrow> length (xs ! i) = length (ys ! i)" and "\<And>i j. i < length xs \<Longrightarrow> j < length (xs ! i) \<Longrightarrow> P (xs ! i ! j) (ys ! i ! j)" shows "\<forall>k<length (concat xs). P (concat xs ! k) (concat ys ! k)" using assms proof (induct xs ys rule: list_induct2) case (Cons x xs y ys) from Cons(3)[of 0] have xy: "length x = length y" by simp from Cons(4)[of 0] xy have pxy: "\<And> j. j < length x \<Longrightarrow> P (x ! j) (y ! j)" by auto { fix i assume i: "i < length xs" with Cons(3)[of "Suc i"] have len: "length (xs ! i) = length (ys ! i)" by simp from Cons(4)[of "Suc i"] i have "\<And> j. j < length (xs ! i) \<Longrightarrow> P (xs ! i ! j) (ys ! i ! j)" by auto note len and this } from Cons(2)[OF this] have ind: "\<And> k. k < length (concat xs) \<Longrightarrow> P (concat xs ! k) (concat ys ! k)" by auto show ?case unfolding concat.simps proof (intro allI impI) fix k assume k: "k < length (x @ concat xs)" show "P ((x @ concat xs) ! k) ((y @ concat ys) ! k)" proof (cases "k < length x") case True show ?thesis unfolding nth_append using True xy pxy[OF True] by simp next case False with k have "k - (length x) < length (concat xs)" by auto then obtain n where n: "k - length x = n" and nxs: "n < length (concat xs)" by auto show ?thesis unfolding nth_append n n[unfolded xy] using False xy ind[OF nxs] by auto qed qed qed auto lemma eq_length_concat_nth: assumes "length xs = length ys" and "\<And>i. i < length xs \<Longrightarrow> length (xs ! i) = length (ys ! i)" shows "length (concat xs) = length (concat ys)" using assms proof (induct xs ys rule: list_induct2) case (Cons x xs y ys) from Cons(3)[of 0] have xy: "length x = length y" by simp { fix i assume "i < length xs" with Cons(3)[of "Suc i"] have "length (xs ! i) = length (ys ! i)" by simp } from Cons(2)[OF this] have ind: "length (concat xs) = length (concat ys)" by simp show ?case using xy ind by auto qed auto primrec list_union :: "'a list \<Rightarrow> 'a list \<Rightarrow> 'a list" where "list_union [] ys = ys" | "list_union (x # xs) ys = (let zs = list_union xs ys in if x \<in> set zs then zs else x # zs)" lemma set_list_union[simp]: "set (list_union xs ys) = set xs \<union> set ys" proof (induct xs) case (Cons x xs) thus ?case by (cases "x \<in> set (list_union xs ys)") (auto) qed simp declare list_union.simps[simp del] (*Why was list_inter thrown out of List.thy?*) fun list_inter :: "'a list \<Rightarrow> 'a list \<Rightarrow> 'a list" where "list_inter [] bs = []" | "list_inter (a#as) bs = (if a \<in> set bs then a # list_inter as bs else list_inter as bs)" lemma set_list_inter[simp]: "set (list_inter xs ys) = set xs \<inter> set ys" by (induct rule: list_inter.induct) simp_all declare list_inter.simps[simp del] primrec list_diff :: "'a list \<Rightarrow> 'a list \<Rightarrow> 'a list" where "list_diff [] ys = []" | "list_diff (x # xs) ys = (let zs = list_diff xs ys in if x \<in> set ys then zs else x # zs)" lemma set_list_diff[simp]: "set (list_diff xs ys) = set xs - set ys" proof (induct xs) case (Cons x xs) thus ?case by (cases "x \<in> set ys") (auto) qed simp declare list_diff.simps[simp del] lemma set_foldr_remdups_set_map_conv[simp]: "set (foldr (\<lambda>x xs. remdups (f x @ xs)) xs []) = \<Union>(set (map (set \<circ> f) xs))" by (induct xs) auto lemma subset_set_code[code_unfold]: "set xs \<subseteq> set ys \<longleftrightarrow> list_all (\<lambda>x. x \<in> set ys) xs" unfolding list_all_iff by auto fun union_list_sorted where "union_list_sorted (x # xs) (y # ys) = (if x = y then x # union_list_sorted xs ys else if x < y then x # union_list_sorted xs (y # ys) else y # union_list_sorted (x # xs) ys)" | "union_list_sorted [] ys = ys" | "union_list_sorted xs [] = xs" fun subtract_list_sorted :: "('a :: linorder) list \<Rightarrow> 'a list \<Rightarrow> 'a list" where "subtract_list_sorted (x # xs) (y # ys) = (if x = y then subtract_list_sorted xs (y # ys) else if x < y then x # subtract_list_sorted xs (y # ys) else subtract_list_sorted (x # xs) ys)" | "subtract_list_sorted [] ys = []" | "subtract_list_sorted xs [] = xs" lemma set_subtract_list_sorted[simp]: "sorted xs \<Longrightarrow> sorted ys \<Longrightarrow> set (subtract_list_sorted xs ys) = set xs - set ys" proof (induct xs ys rule: subtract_list_sorted.induct) case (1 x xs y ys) have xxs: "sorted (x # xs)" by fact have yys: "sorted (y # ys)" by fact have xs: "sorted xs" using xxs by (simp) show ?case proof (cases "x = y") case True thus ?thesis using 1(1)[OF True xs yys] by auto next case False note neq = this note IH = 1(2-3)[OF this] show ?thesis by (cases "x < y", insert IH xxs yys False, auto) qed qed auto lemma subset_subtract_listed_sorted: "set (subtract_list_sorted xs ys) \<subseteq> set xs" by (induct xs ys rule: subtract_list_sorted.induct, auto) lemma set_subtract_list_distinct[simp]: "distinct xs \<Longrightarrow> distinct (subtract_list_sorted xs ys)" by (induct xs ys rule: subtract_list_sorted.induct, insert subset_subtract_listed_sorted, auto) definition "remdups_sort xs = remdups_adj (sort xs)" lemma remdups_sort[simp]: "sorted (remdups_sort xs)" "set (remdups_sort xs) = set xs" "distinct (remdups_sort xs)" by (simp_all add: remdups_sort_def) text \<open>maximum and minimum\<close> lemma max_list_mono: assumes "\<And> x. x \<in> set xs - set ys \<Longrightarrow> \<exists> y. y \<in> set ys \<and> x \<le> y" shows "max_list xs \<le> max_list ys" using assms proof (induct xs) case (Cons x xs) have "x \<le> max_list ys" proof (cases "x \<in> set ys") case True from max_list[OF this] show ?thesis . next case False with Cons(2)[of x] obtain y where y: "y \<in> set ys" and xy: "x \<le> y" by auto from xy max_list[OF y] show ?thesis by arith qed moreover have "max_list xs \<le> max_list ys" by (rule Cons(1)[OF Cons(2)], auto) ultimately show ?case by auto qed auto fun min_list :: "('a :: linorder) list \<Rightarrow> 'a" where "min_list [x] = x" | "min_list (x # xs) = min x (min_list xs)" lemma min_list: "(x :: 'a :: linorder) \<in> set xs \<Longrightarrow> min_list xs \<le> x" proof (induct xs) case oCons : (Cons y ys) show ?case proof (cases ys) case Nil thus ?thesis using oCons by auto next case (Cons z zs) hence id: "min_list (y # ys) = min y (min_list ys)" by auto show ?thesis proof (cases "x = y") case True show ?thesis unfolding id True by auto next case False have "min y (min_list ys) \<le> min_list ys" by auto also have "... \<le> x" using oCons False by auto finally show ?thesis unfolding id . qed qed qed simp lemma min_list_Cons: assumes xy: "x \<le> y" and len: "length xs = length ys" and xsys: "min_list xs \<le> min_list ys" shows "min_list (x # xs) \<le> min_list (y # ys)" proof (cases xs) case Nil with len have ys: "ys = []" by simp with xy Nil show ?thesis by simp next case (Cons x' xs') with len obtain y' ys' where ys: "ys = y' # ys'" by (cases ys, auto) from Cons have one: "min_list (x # xs) = min x (min_list xs)" by auto from ys have two: "min_list (y # ys) = min y (min_list ys)" by auto show ?thesis unfolding one two using xy xsys unfolding min_def by auto qed lemma min_list_nth: assumes "length xs = length ys" and "\<And>i. i < length ys \<Longrightarrow> xs ! i \<le> ys ! i" shows "min_list xs \<le> min_list ys" using assms proof (induct xs arbitrary: ys) case (Cons x xs zs) from Cons(2) obtain y ys where zs: "zs = y # ys" by (cases zs, auto) note Cons = Cons[unfolded zs] from Cons(2) have len: "length xs = length ys" by simp from Cons(3)[of 0] have xy: "x \<le> y" by simp { fix i assume "i < length xs" with Cons(3)[of "Suc i"] Cons(2) have "xs ! i \<le> ys ! i" by simp } from Cons(1)[OF len this] Cons(2) have ind: "min_list xs \<le> min_list ys" by simp show ?case unfolding zs by (rule min_list_Cons[OF xy len ind]) qed auto lemma min_list_ex: assumes "xs \<noteq> []" shows "\<exists>x\<in>set xs. min_list xs = x" using assms proof (induct xs) case oCons : (Cons x xs) show ?case proof (cases xs) case (Cons y ys) hence id: "min_list (x # xs) = min x (min_list xs)" and nNil: "xs \<noteq> []" by auto show ?thesis proof (cases "x \<le> min_list xs") case True show ?thesis unfolding id by (rule bexI[of _ x], insert True, auto simp: min_def) next case False show ?thesis unfolding id min_def using oCons(1)[OF nNil] False by auto qed qed auto qed auto lemma min_list_subset: assumes subset: "set ys \<subseteq> set xs" and mem: "min_list xs \<in> set ys" shows "min_list xs = min_list ys" proof - from subset mem have "xs \<noteq> []" by auto from min_list_ex[OF this] obtain x where x: "x \<in> set xs" and mx: "min_list xs = x" by auto from min_list[OF mem] have two: "min_list ys \<le> min_list xs" by auto from mem have "ys \<noteq> []" by auto from min_list_ex[OF this] obtain y where y: "y \<in> set ys" and my: "min_list ys = y" by auto from y subset have "y \<in> set xs" by auto from min_list[OF this] have one: "min_list xs \<le> y" by auto from one two show ?thesis unfolding mx my by auto qed text\<open>Apply a permutation to a list.\<close> primrec permut_aux :: "'a list \<Rightarrow> (nat \<Rightarrow> nat) \<Rightarrow> 'a list \<Rightarrow> 'a list" where "permut_aux [] _ _ = []" | "permut_aux (a # as) f bs = (bs ! f 0) # (permut_aux as (\<lambda>n. f (Suc n)) bs)" definition permut :: "'a list \<Rightarrow> (nat \<Rightarrow> nat) \<Rightarrow> 'a list" where "permut as f = permut_aux as f as" declare permut_def[simp] lemma permut_aux_sound: assumes "i < length as" shows "permut_aux as f bs ! i = bs ! (f i)" using assms proof (induct as arbitrary: i f bs) case (Cons x xs) show ?case proof (cases i) case (Suc j) with Cons(2) have "j < length xs" by simp from Cons(1)[OF this] and Suc show ?thesis by simp qed simp qed simp lemma permut_sound: assumes "i < length as" shows "permut as f ! i = as ! (f i)" using assms and permut_aux_sound by simp lemma permut_aux_length: assumes "bij_betw f {..<length as} {..<length bs}" shows "length (permut_aux as f bs) = length as" by (induct as arbitrary: f bs, simp_all) lemma permut_length: assumes "bij_betw f {..< length as} {..< length as}" shows "length (permut as f) = length as" using permut_aux_length[OF assms] by simp declare permut_def[simp del] lemma foldl_assoc: fixes b :: "('a \<Rightarrow> 'a) \<Rightarrow> ('a \<Rightarrow> 'a) \<Rightarrow> 'a \<Rightarrow> 'a" (infixl "\<cdot>" 55) assumes "\<And>f g h. f \<cdot> (g \<cdot> h) = f \<cdot> g \<cdot> h" shows "foldl (\<cdot>) (x \<cdot> y) zs = x \<cdot> foldl (\<cdot>) y zs" using assms[symmetric] by (induct zs arbitrary: y) simp_all lemma foldr_assoc: assumes "\<And>f g h. b (b f g) h = b f (b g h)" shows "foldr b xs (b y z) = b (foldr b xs y) z" using assms by (induct xs) simp_all lemma foldl_foldr_o_id: "foldl (\<circ>) id fs = foldr (\<circ>) fs id" proof (induct fs) case (Cons f fs) have "id \<circ> f = f \<circ> id" by simp with Cons [symmetric] show ?case by (simp only: foldl_Cons foldr_Cons o_apply [of _ _ id] foldl_assoc o_assoc) qed simp lemma foldr_o_o_id[simp]: "foldr ((\<circ>) \<circ> f) xs id a = foldr f xs a" by (induct xs) simp_all lemma Ex_list_of_length_P: assumes "\<forall>i<n. \<exists>x. P x i" shows "\<exists>xs. length xs = n \<and> (\<forall>i<n. P (xs ! i) i)" proof - from assms have "\<forall> i. \<exists> x. i < n \<longrightarrow> P x i" by simp from choice[OF this] obtain xs where xs: "\<And> i. i < n \<Longrightarrow> P (xs i) i" by auto show ?thesis by (rule exI[of _ "map xs [0 ..< n]"], insert xs, auto) qed lemma ex_set_conv_ex_nth: "(\<exists>x\<in>set xs. P x) = (\<exists>i<length xs. P (xs ! i))" using in_set_conv_nth[of _ xs] by force lemma map_eq_set_zipD [dest]: assumes "map f xs = map f ys" and "(x, y) \<in> set (zip xs ys)" shows "f x = f y" using assms proof (induct xs arbitrary: ys) case (Cons x xs) then show ?case by (cases ys) auto qed simp fun span :: "('a \<Rightarrow> bool) \<Rightarrow> 'a list \<Rightarrow> 'a list \<times> 'a list" where "span P (x # xs) = (if P x then let (ys, zs) = span P xs in (x # ys, zs) else ([], x # xs))" | "span _ [] = ([], [])" lemma span[simp]: "span P xs = (takeWhile P xs, dropWhile P xs)" by (induct xs, auto) declare span.simps[simp del] lemma parallel_list_update: assumes one_update: "\<And> xs i y. length xs = n \<Longrightarrow> i < n \<Longrightarrow> r (xs ! i) y \<Longrightarrow> p xs \<Longrightarrow> p (xs[i := y])" and init: "length xs = n" "p xs" and rel: "length ys = n" "\<And> i. i < n \<Longrightarrow> r (xs ! i) (ys ! i)" shows "p ys" proof - note len = rel(1) init(1) { fix i assume "i \<le> n" hence "p (take i ys @ drop i xs)" proof (induct i) case 0 with init show ?case by simp next case (Suc i) hence IH: "p (take i ys @ drop i xs)" by simp from Suc have i: "i < n" by simp let ?xs = "(take i ys @ drop i xs)" have "length ?xs = n" using i len by simp from one_update[OF this i _ IH, of "ys ! i"] rel(2)[OF i] i len show ?case by (simp add: nth_append take_drop_update_first) qed } from this[of n] show ?thesis using len by auto qed lemma nth_concat_two_lists: "i < length (concat (xs :: 'a list list)) \<Longrightarrow> length (ys :: 'b list list) = length xs \<Longrightarrow> (\<And> i. i < length xs \<Longrightarrow> length (ys ! i) = length (xs ! i)) \<Longrightarrow> \<exists> j k. j < length xs \<and> k < length (xs ! j) \<and> (concat xs) ! i = xs ! j ! k \<and> (concat ys) ! i = ys ! j ! k" proof (induct xs arbitrary: i ys) case (Cons x xs i yys) then obtain y ys where yys: "yys = y # ys" by (cases yys, auto) note Cons = Cons[unfolded yys] from Cons(4)[of 0] have [simp]: "length y = length x" by simp show ?case proof (cases "i < length x") case True show ?thesis unfolding yys by (rule exI[of _ 0], rule exI[of _ i], insert True Cons(2-4), auto simp: nth_append) next case False let ?i = "i - length x" from False Cons(2-3) have "?i < length (concat xs)" "length ys = length xs" by auto note IH = Cons(1)[OF this] { fix i assume "i < length xs" with Cons(4)[of "Suc i"] have "length (ys ! i) = length (xs ! i)" by simp } from IH[OF this] obtain j k where IH1: "j < length xs" "k < length (xs ! j)" "concat xs ! ?i = xs ! j ! k" "concat ys ! ?i = ys ! j ! k" by auto show ?thesis unfolding yys by (rule exI[of _ "Suc j"], rule exI[of _ k], insert IH1 False, auto simp: nth_append) qed qed simp text \<open>Removing duplicates w.r.t. some function.\<close> fun remdups_gen :: "('a \<Rightarrow> 'b) \<Rightarrow> 'a list \<Rightarrow> 'a list" where "remdups_gen f [] = []" | "remdups_gen f (x # xs) = x # remdups_gen f [y <- xs. \<not> f x = f y]" lemma remdups_gen_subset: "set (remdups_gen f xs) \<subseteq> set xs" by (induct f xs rule: remdups_gen.induct, auto) lemma remdups_gen_elem_imp_elem: "x \<in> set (remdups_gen f xs) \<Longrightarrow> x \<in> set xs" using remdups_gen_subset[of f xs] by blast lemma elem_imp_remdups_gen_elem: "x \<in> set xs \<Longrightarrow> \<exists> y \<in> set (remdups_gen f xs). f x = f y" proof (induct f xs rule: remdups_gen.induct) case (2 f z zs) show ?case proof (cases "f x = f z") case False with 2(2) have "x \<in> set [y\<leftarrow>zs . f z \<noteq> f y]" by auto from 2(1)[OF this] show ?thesis by auto qed auto qed auto lemma take_nth_drop_concat: assumes "i < length xss" and "xss ! i = ys" and "j < length ys" and "ys ! j = z" shows "\<exists>k < length (concat xss). take k (concat xss) = concat (take i xss) @ take j ys \<and> concat xss ! k = xss ! i ! j \<and> drop (Suc k) (concat xss) = drop (Suc j) ys @ concat (drop (Suc i) xss)" using assms(1, 2) proof (induct xss arbitrary: i rule: List.rev_induct) case (snoc xs xss) then show ?case using assms by (cases "i < length xss") (auto simp: nth_append) qed simp lemma concat_map_empty [simp]: "concat (map (\<lambda>_. []) xs) = []" by simp lemma map_upt_len_same_len_conv: assumes "length xs = length ys" shows "map (\<lambda>i. f (xs ! i)) [0 ..< length ys] = map f xs" unfolding assms [symmetric] by (rule map_upt_len_conv) lemma concat_map_concat [simp]: "concat (map concat xs) = concat (concat xs)" by (induct xs) simp_all lemma concat_concat_map: "concat (concat (map f xs)) = concat (map (concat \<circ> f) xs)" by (induct xs) simp_all lemma UN_upt_len_conv [simp]: "length xs = n \<Longrightarrow> (\<Union>i \<in> {0 ..< n}. f (xs ! i)) = \<Union>(set (map f xs))" by (force simp: in_set_conv_nth) lemma Ball_at_Least0LessThan_conv [simp]: "length xs = n \<Longrightarrow> (\<forall>i \<in> {0 ..< n}. P (xs ! i)) \<longleftrightarrow> (\<forall>x \<in> set xs. P x)" by (metis atLeast0LessThan in_set_conv_nth lessThan_iff) lemma sum_list_replicate_length [simp]: "sum_list (replicate (length xs) (Suc 0)) = length xs" by (induct xs) simp_all lemma list_all2_in_set2: assumes "list_all2 P xs ys" and "y \<in> set ys" obtains x where "x \<in> set xs" and "P x y" using assms by (induct) auto lemma map_eq_conv': "map f xs = map g ys \<longleftrightarrow> length xs = length ys \<and> (\<forall>i < length xs. f (xs ! i) = g (ys ! i))" by (auto dest: map_eq_imp_length_eq map_nth_conv simp: nth_map_conv) lemma list_3_cases[case_names Nil 1 2]: assumes "xs = [] \<Longrightarrow> P" and "\<And>x. xs = [x] \<Longrightarrow> P" and "\<And>x y ys. xs = x#y#ys \<Longrightarrow> P" shows P using assms by (cases xs; cases "tl xs", auto) lemma list_4_cases[case_names Nil 1 2 3]: assumes "xs = [] \<Longrightarrow> P" and "\<And>x. xs = [x] \<Longrightarrow> P" and "\<And>x y. xs = [x,y] \<Longrightarrow> P" and "\<And>x y z zs. xs = x # y # z # zs \<Longrightarrow> P" shows P using assms by (cases xs; cases "tl xs"; cases "tl (tl xs)", auto) lemma foldr_append2 [simp]: "foldr ((@) \<circ> f) xs (ys @ zs) = foldr ((@) \<circ> f) xs ys @ zs" by (induct xs) simp_all lemma foldr_append2_Nil [simp]: "foldr ((@) \<circ> f) xs [] @ zs = foldr ((@) \<circ> f) xs zs" unfolding foldr_append2 [symmetric] by simp lemma UNION_set_zip: "(\<Union>x \<in> set (zip [0..<length xs] (map f xs)). g x) = (\<Union>i < length xs. g (i, f (xs ! i)))" by (auto simp: set_conv_nth) lemma zip_fst: "p \<in> set (zip as bs) \<Longrightarrow> fst p \<in> set as" by (cases p, rule set_zip_leftD, simp) lemma zip_snd: "p \<in> set (zip as bs) \<Longrightarrow> snd p \<in> set bs" by (cases p, rule set_zip_rightD, simp) lemma zip_size_aux: "size_list (size o snd) (zip ts ls) \<le> (size_list size ls)" proof (induct ls arbitrary: ts) case (Cons l ls ts) thus ?case by (cases ts, auto) qed auto text\<open>We definie the function that remove the nth element of a list. It uses take and drop and the soundness is therefore not too hard to prove thanks to the already existing lemmas.\<close> definition remove_nth :: "nat \<Rightarrow> 'a list \<Rightarrow> 'a list" where "remove_nth n xs \<equiv> (take n xs) @ (drop (Suc n) xs)" declare remove_nth_def[simp] lemma remove_nth_len: assumes i: "i < length xs" shows "length xs = Suc (length (remove_nth i xs))" proof - show ?thesis unfolding arg_cong[where f = "length", OF id_take_nth_drop[OF i]] unfolding remove_nth_def by simp qed lemma remove_nth_length : assumes n_bd: "n < length xs" shows "length (remove_nth n xs) = length xs - 1" proof- from length_take have ll:"n < length xs \<longrightarrow> length (take n xs) = n" by auto from length_drop have lr: "length (drop (Suc n) xs) = length xs - (Suc n)" by simp from ll and lr and length_append and n_bd show ?thesis by auto qed lemma remove_nth_id : "length xs \<le> n \<Longrightarrow> remove_nth n xs = xs" using take_all drop_all append_Nil2 by simp lemma remove_nth_sound_l : assumes p_ub: "p < n" shows "(remove_nth n xs) ! p = xs ! p" proof (cases "n < length xs") case True from length_take and True have ltk: "length (take n xs) = n" by simp { assume pltn: "p < n" from this and ltk have plttk: "p < length (take n xs)" by simp with nth_append[of "take n xs" _ p] have "((take n xs) @ (drop (Suc n) xs)) ! p = take n xs ! p" by auto with pltn and nth_take have "((take n xs) @ (drop (Suc n) xs)) ! p = xs ! p" by simp } from this and ltk and p_ub show ?thesis by simp next case False hence "length xs \<le> n" by arith with remove_nth_id show ?thesis by force qed lemma remove_nth_sound_r : assumes "n \<le> p" and "p < length xs" shows "(remove_nth n xs) ! p = xs ! (Suc p)" proof- from \<open>n \<le> p\<close> and \<open>p < length xs\<close> have n_ub: "n < length xs" by arith from length_take and n_ub have ltk: "length (take n xs) = n" by simp from \<open>n \<le> p\<close> and ltk and nth_append[of "take n xs" _ p] have Hrew: "((take n xs) @ (drop (Suc n) xs)) ! p = drop (Suc n) xs ! (p - n)" by auto from \<open>n \<le> p\<close> have idx: "Suc n + (p - n) = Suc p" by arith from \<open>p < length xs\<close> have Sp_ub: "Suc p \<le> length xs" by arith from idx and Sp_ub and nth_drop have Hrew': "drop (Suc n) xs ! (p - n) = xs ! (Suc p)" by simp from Hrew and Hrew' show ?thesis by simp qed lemma nth_remove_nth_conv: assumes "i < length (remove_nth n xs)" shows "remove_nth n xs ! i = xs ! (if i < n then i else Suc i)" using assms remove_nth_sound_l remove_nth_sound_r[of n i xs] by auto lemma remove_nth_P_compat : assumes aslbs: "length as = length bs" and Pab: "\<forall>i. i < length as \<longrightarrow> P (as ! i) (bs ! i)" shows "\<forall>i. i < length (remove_nth p as) \<longrightarrow> P (remove_nth p as ! i) (remove_nth p bs ! i)" proof (cases "p < length as") case True hence p_ub: "p < length as" by assumption with remove_nth_length have lr_ub: "length (remove_nth p as) = length as - 1" by auto { fix i assume i_ub: "i < length (remove_nth p as)" have "P (remove_nth p as ! i) (remove_nth p bs ! i)" proof (cases "i < p") case True from i_ub and lr_ub have i_ub2: "i < length as" by arith from i_ub2 and Pab have P: "P (as ! i) (bs ! i)" by blast from P and remove_nth_sound_l[OF True, of as] and remove_nth_sound_l[OF True, of bs] show ?thesis by simp next case False hence p_ub2: "p \<le> i" by arith from i_ub and lr_ub have Si_ub: "Suc i < length as" by arith with Pab have P: "P (as ! Suc i) (bs ! Suc i)" by blast from i_ub and lr_ub have i_uba: "i < length as" by arith from i_uba and aslbs have i_ubb: "i < length bs" by simp from P and p_ub and aslbs and remove_nth_sound_r[OF p_ub2 i_uba] and remove_nth_sound_r[OF p_ub2 i_ubb] show ?thesis by auto qed } thus ?thesis by simp next case False hence p_lba: "length as \<le> p" by arith with aslbs have p_lbb: "length bs \<le> p" by simp from remove_nth_id[OF p_lba] and remove_nth_id[OF p_lbb] and Pab show ?thesis by simp qed declare remove_nth_def[simp del] definition adjust_idx :: "nat \<Rightarrow> nat \<Rightarrow> nat" where "adjust_idx i j \<equiv> (if j < i then j else (Suc j))" definition adjust_idx_rev :: "nat \<Rightarrow> nat \<Rightarrow> nat" where "adjust_idx_rev i j \<equiv> (if j < i then j else j - Suc 0)" lemma adjust_idx_rev1: "adjust_idx_rev i (adjust_idx i j) = j" unfolding adjust_idx_def adjust_idx_rev_def by (cases "i < j", auto) lemma adjust_idx_rev2: assumes "j \<noteq> i" shows "adjust_idx i (adjust_idx_rev i j) = j" unfolding adjust_idx_def adjust_idx_rev_def using assms by (cases "i < j", auto) lemma adjust_idx_i: "adjust_idx i j \<noteq> i" unfolding adjust_idx_def by (cases "j < i", auto) lemma adjust_idx_nth: assumes i: "i < length xs" shows "remove_nth i xs ! j = xs ! adjust_idx i j" (is "?l = ?r") proof - let ?j = "adjust_idx i j" from i have ltake: "length (take i xs) = i" by simp note nth_xs = arg_cong[where f = "\<lambda> xs. xs ! ?j", OF id_take_nth_drop[OF i], unfolded nth_append ltake] show ?thesis proof (cases "j < i") case True hence j: "?j = j" unfolding adjust_idx_def by simp show ?thesis unfolding nth_xs unfolding j remove_nth_def nth_append ltake using True by simp next case False hence j: "?j = Suc j" unfolding adjust_idx_def by simp from i have lxs: "min (length xs) i = i" by simp show ?thesis unfolding nth_xs unfolding j remove_nth_def nth_append using False by (simp add: lxs) qed qed lemma adjust_idx_rev_nth: assumes i: "i < length xs" and ji: "j \<noteq> i" shows "remove_nth i xs ! adjust_idx_rev i j = xs ! j" (is "?l = ?r") proof - let ?j = "adjust_idx_rev i j" from i have ltake: "length (take i xs) = i" by simp note nth_xs = arg_cong[where f = "\<lambda> xs. xs ! j", OF id_take_nth_drop[OF i], unfolded nth_append ltake] show ?thesis proof (cases "j < i") case True hence j: "?j = j" unfolding adjust_idx_rev_def by simp show ?thesis unfolding nth_xs unfolding j remove_nth_def nth_append ltake using True by simp next case False with ji have ji: "j > i" by auto hence j: "?j = j - Suc 0" unfolding adjust_idx_rev_def by simp show ?thesis unfolding nth_xs unfolding j remove_nth_def nth_append ltake using ji by auto qed qed lemma adjust_idx_length: assumes i: "i < length xs" and j: "j < length (remove_nth i xs)" shows "adjust_idx i j < length xs" using j unfolding remove_nth_len[OF i] adjust_idx_def by (cases "j < i", auto) lemma adjust_idx_rev_length: assumes "i < length xs" and "j < length xs" and "j \<noteq> i" shows "adjust_idx_rev i j < length (remove_nth i xs)" using assms by (cases "j < i") (simp_all add: adjust_idx_rev_def remove_nth_len[OF assms(1)]) text\<open>If a binary relation holds on two couples of lists, then it holds on the concatenation of the two couples.\<close> lemma P_as_bs_extend: assumes lab: "length as = length bs" and lcd: "length cs = length ds" and nsab: "\<forall>i. i < length bs \<longrightarrow> P (as ! i) (bs ! i)" and nscd: "\<forall>i. i < length ds \<longrightarrow> P (cs ! i) (ds ! i)" shows "\<forall>i. i < length (bs @ ds) \<longrightarrow> P ((as @ cs) ! i) ((bs @ ds) ! i)" proof- { fix i assume i_bd: "i < length (bs @ ds)" have "P ((as @ cs) ! i) ((bs @ ds) ! i)" proof (cases "i < length as") case True with nth_append and nsab and lab show ?thesis by metis next case False with lab and lcd and i_bd and length_append[of bs ds] have "(i - length as) < length cs" by arith with False and nth_append[of _ _ i] and lab and lcd and nscd[rule_format] show ?thesis by metis qed } thus ?thesis by clarify qed text\<open>Extension of filter and partition to binary relations.\<close> fun filter2 :: "('a \<Rightarrow> 'b \<Rightarrow> bool) \<Rightarrow> 'a list \<Rightarrow> 'b list \<Rightarrow> ('a list \<times> 'b list)" where "filter2 P [] _ = ([], [])" | "filter2 P _ [] = ([], [])" | "filter2 P (a # as) (b # bs) = (if P a b then (a # fst (filter2 P as bs), b # snd (filter2 P as bs)) else filter2 P as bs)" lemma filter2_length: "length (fst (filter2 P as bs)) \<equiv> length (snd (filter2 P as bs))" proof (induct as arbitrary: bs) case Nil show ?case by simp next case (Cons a as) note IH = this thus ?case proof (cases bs) case Nil thus ?thesis by simp next case (Cons b bs) thus ?thesis proof (cases "P a b") case True with Cons and IH show ?thesis by simp next case False with Cons and IH show ?thesis by simp qed qed qed lemma filter2_sound: "\<forall>i. i < length (fst (filter2 P as bs)) \<longrightarrow> P (fst (filter2 P as bs) ! i) (snd (filter2 P as bs) ! i)" proof (induct as arbitrary: bs) case Nil thus ?case by simp next case (Cons a as) note IH = this thus ?case proof (cases bs) case Nil thus ?thesis by simp next case (Cons b bs) thus ?thesis proof (cases "P a b") case False with Cons and IH show ?thesis by simp next case True { fix i assume i_bd: "i < length (fst (filter2 P (a # as) (b # bs)))" have "P (fst (filter2 P (a # as) (b # bs)) ! i) (snd (filter2 P (a # as) (b # bs)) ! i)" proof (cases i) case 0 with True show ?thesis by simp next case (Suc j) with i_bd and True have "j < length (fst (filter2 P as bs))" by auto with Suc and IH and True show ?thesis by simp qed } with Cons show ?thesis by simp qed qed qed definition partition2 :: "('a \<Rightarrow> 'b \<Rightarrow> bool) \<Rightarrow> 'a list \<Rightarrow> 'b list \<Rightarrow> ('a list \<times> 'b list) \<times> ('a list \<times> 'b list)" where "partition2 P as bs \<equiv> ((filter2 P as bs) , (filter2 (\<lambda>a b. \<not> (P a b)) as bs))" lemma partition2_sound_P: "\<forall>i. i < length (fst (fst (partition2 P as bs))) \<longrightarrow> P (fst (fst (partition2 P as bs)) ! i) (snd (fst (partition2 P as bs)) ! i)" proof- from filter2_sound show ?thesis unfolding partition2_def by simp qed lemma partition2_sound_nP: "\<forall>i. i < length (fst (snd (partition2 P as bs))) \<longrightarrow> \<not> P (fst (snd (partition2 P as bs)) ! i) (snd (snd (partition2 P as bs)) ! i)" proof- from filter2_sound show ?thesis unfolding partition2_def by simp qed text\<open>Membership decision function that actually returns the value of the index where the value can be found.\<close> fun mem_idx :: "'a \<Rightarrow> 'a list \<Rightarrow> nat Option.option" where "mem_idx _ [] = None" | "mem_idx x (a # as) = (if x = a then Some 0 else map_option Suc (mem_idx x as))" lemma mem_idx_sound_output: assumes "mem_idx x as = Some i" shows "i < length as \<and> as ! i = x" using assms proof (induct as arbitrary: i) case Nil thus ?case by simp next case (Cons a as) note IH = this thus ?case proof (cases "x = a") case True with IH(2) show ?thesis by simp next case False note neq_x_a = this show ?thesis proof (cases "mem_idx x as") case None with IH(2) and neq_x_a show ?thesis by simp next case (Some j) with IH(2) and neq_x_a have "i = Suc j" by simp with IH(1) and Some show ?thesis by simp qed qed qed lemma mem_idx_sound_output2: assumes "mem_idx x as = Some i" shows "\<forall>j. j < i \<longrightarrow> as ! j \<noteq> x" using assms proof (induct as arbitrary: i) case Nil thus ?case by simp next case (Cons a as) note IH = this thus ?case proof (cases "x = a") case True with IH show ?thesis by simp next case False note neq_x_a = this show ?thesis proof (cases "mem_idx x as") case None with IH(2) and neq_x_a show ?thesis by simp next case (Some j) with IH(2) and neq_x_a have eq_i_Sj: "i = Suc j" by simp { fix k assume k_bd: "k < i" have "(a # as) ! k \<noteq> x" proof (cases k) case 0 with neq_x_a show ?thesis by simp next case (Suc l) with k_bd and eq_i_Sj have l_bd: "l < j" by arith with IH(1) and Some have "as ! l \<noteq> x" by simp with Suc show ?thesis by simp qed } thus ?thesis by simp qed qed qed lemma mem_idx_sound: "(x \<in> set as) = (\<exists>i. mem_idx x as = Some i)" proof (induct as) case Nil thus ?case by simp next case (Cons a as) note IH = this show ?case proof (cases "x = a") case True thus ?thesis by simp next case False { assume "x \<in> set (a # as)" with False have "x \<in> set as" by simp with IH obtain i where Some_i: "mem_idx x as = Some i" by auto with False have "mem_idx x (a # as) = Some (Suc i)" by simp hence "\<exists>i. mem_idx x (a # as) = Some i" by simp } moreover { assume "\<exists>i. mem_idx x (a # as) = Some i" then obtain i where Some_i: "mem_idx x (a # as) = Some i" by fast have "x \<in> set as" proof (cases i) case 0 with mem_idx_sound_output[OF Some_i] and False show ?thesis by simp next case (Suc j) with Some_i and False have "mem_idx x as = Some j" by simp hence "\<exists>i. mem_idx x as = Some i" by simp with IH show ?thesis by simp qed hence "x \<in> set (a # as)" by simp } ultimately show ?thesis by fast qed qed lemma mem_idx_sound2: "(x \<notin> set as) = (mem_idx x as = None)" unfolding mem_idx_sound by auto lemma sum_list_replicate_mono: assumes "w1 \<le> (w2 :: nat)" shows "sum_list (replicate n w1) \<le> sum_list (replicate n w2)" proof (induct n) case (Suc n) thus ?case using \<open>w1 \<le> w2\<close> by auto qed simp lemma all_gt_0_sum_list_map: assumes *: "\<And>x. f x > (0::nat)" and x: "x \<in> set xs" and len: "1 < length xs" shows "f x < (\<Sum>x\<leftarrow>xs. f x)" using x len proof (induct xs) case (Cons y xs) show ?case proof (cases "y = x") case True with *[of "hd xs"] Cons(3) show ?thesis by (cases xs, auto) next case False with Cons(2) have x: "x \<in> set xs" by auto then obtain z zs where xs: "xs = z # zs" by (cases xs, auto) show ?thesis proof (cases "length zs") case 0 with x xs *[of y] show ?thesis by auto next case (Suc n) with xs have "1 < length xs" by auto from Cons(1)[OF x this] show ?thesis by simp qed qed qed simp lemma finite_distinct_subset: assumes "finite X" shows "finite { xs . distinct xs \<and> set xs \<subseteq> X}" (is "finite (?S X)") proof - let ?X = "{ { xs. distinct xs \<and> set xs = Y} | Y. Y \<subseteq> X}" have id: "?S X = \<Union> ?X" by blast show ?thesis unfolding id proof (rule finite_Union) show "finite ?X" using assms by auto next fix M assume "M \<in> ?X" with finite_distinct show "finite M" by auto qed qed lemma map_of_filter: assumes "P x" shows "map_of [(x',y) \<leftarrow> ys. P x'] x = map_of ys x" proof (induct ys) case (Cons xy ys) obtain x' y where xy: "xy = (x',y)" by force show ?case by (cases "x' = x", insert assms xy Cons, auto) qed simp lemma set_subset_insertI: "set xs \<subseteq> set (List.insert x xs)" by auto lemma set_removeAll_subset: "set (removeAll x xs) \<subseteq> set xs" by auto lemma map_of_append_Some: "map_of xs y = Some z \<Longrightarrow> map_of (xs @ ys) y = Some z" by (induction xs) auto lemma map_of_append_None: "map_of xs y = None \<Longrightarrow> map_of (xs @ ys) y = map_of ys y" by (induction xs) auto end
[STATEMENT] lemma bot_ca_lf_rep [intro, simp]: "(\<bottom>, P) \<in> ca_lf_rep r" [PROOF STATE] proof (prove) goal (1 subgoal): 1. (\<bottom>, P) \<in> ca_lf_rep r [PROOF STEP] unfolding ca_lf_rep_def [PROOF STATE] proof (prove) goal (1 subgoal): 1. (\<bottom>, P) \<in> (case r of (rm, rp) \<Rightarrow> {\<bottom>} \<times> UNIV \<union> {(d, P) |d P. (\<exists>n. d = ValN\<cdot>n \<and> unProg P \<Down> DBNum n) \<or> d = ValTT \<and> unProg P \<Down> DBtt \<or> d = ValFF \<and> unProg P \<Down> DBff \<or> (\<exists>f M. d = ValF\<cdot>f \<and> unProg P \<Down> DBAbsN M \<and> (\<forall>(x, X)\<in>unsynlr (undual rm). (f\<cdot>x, mkProg (M<unProg X/0>)) \<in> unsynlr rp)) \<or> (\<exists>f M. d = ValF\<cdot>f \<and> unProg P \<Down> DBAbsV M \<and> f\<cdot>\<bottom> = \<bottom> \<and> (\<forall>(x, X)\<in>unsynlr (undual rm). \<forall>V. unProg X \<Down> V \<longrightarrow> (f\<cdot>x, mkProg (M<V/0>)) \<in> unsynlr rp))}) [PROOF STEP] by (simp add: split_def)
{-# OPTIONS --warning=error #-} module UselessPrivatePragma where postulate Char : Set private {-# BUILTIN CHAR Char #-}
(************************************************************************************) (** *) (** The SQLEngines Library *) (** *) (** LRI, CNRS & Université Paris-Sud, Université Paris-Saclay *) (** *) (** Copyright 2016-2019 : FormalData *) (** *) (** Authors: Véronique Benzaken *) (** Évelyne Contejean *) (** *) (************************************************************************************) Set Implicit Arguments. Require Import Relations SetoidList List String Ascii Bool ZArith NArith. Require Import ListFacts OrderedSet FiniteSet. Section Sec. Hypothesis All : Type. Hypothesis OAll : Oeset.Rcd All. Inductive tree : Type := | Leaf : All -> tree | Node : N -> list tree -> tree. Fixpoint tree_compare (t1 t2 : tree) : comparison := match t1, t2 with | Leaf a1, Leaf a2 => Oeset.compare OAll a1 a2 | Leaf _, Node _ _ => Lt | Node _ _, Leaf _ => Gt | Node n1 l1, Node n2 l2 => compareAB (Oset.compare ON) (comparelA tree_compare) (n1, l1) (n2, l2) end. Lemma tree_compare_unfold : forall t1 t2, tree_compare t1 t2 = match t1, t2 with | Leaf a1, Leaf a2 => Oeset.compare OAll a1 a2 | Leaf _, Node _ _ => Lt | Node _ _, Leaf _ => Gt | Node n1 l1, Node n2 l2 => compareAB (Oset.compare ON) (comparelA tree_compare) (n1, l1) (n2, l2) end. Proof. intros t1 t2; destruct t1; destruct t2; apply refl_equal. Qed. Close Scope N_scope. Fixpoint tree_size (t : tree) : nat := match t with | Leaf _ => 1 | Node _ l => 1 + list_size tree_size l end. Lemma tree_size_unfold : forall t, tree_size t = match t with | Leaf _ => 1 | Node _ l => 1 + list_size tree_size l end. Proof. intro t; destruct t; apply refl_equal. Qed. Notation suitable_x n size_a a_compare x1 := (size_a x1 <= n -> a_compare x1 x1 = Eq /\ forall x2, (a_compare x1 x2 = CompOpp (a_compare x2 x1)) /\ forall x3, (a_compare x1 x2 = Eq -> a_compare x2 x3 = Eq -> a_compare x1 x3 = Eq) /\ (a_compare x1 x2 = Eq -> a_compare x2 x3 = Lt -> a_compare x1 x3 = Lt) /\ (a_compare x1 x2 = Lt -> a_compare x2 x3 = Eq -> a_compare x1 x3 = Lt) /\ (a_compare x1 x2 = Lt -> a_compare x2 x3 = Lt -> a_compare x1 x3 = Lt)). Notation suitable n size_a a_compare := (forall x1, suitable_x n size_a a_compare x1). Lemma all_suitable_tree_rec1 : forall n, suitable n tree_size tree_compare -> forall a, suitable_x (S n) tree_size tree_compare (Leaf a). Proof. intros n IHt a1 _. split; [ | intro t2; split; [ | intro t3; split; [ | split; [ | split]]]]. - (* 1/6 *) simpl; (trivial || discriminate || oeset_compare_tac). - (* 1/5 *) case t2; simpl; intros; (trivial || discriminate || oeset_compare_tac). - (* 1/4 *) case t2; clear t2; try discriminate. intro a2; case t3; simpl; intros; (trivial || discriminate || oeset_compare_tac). - (* 1/3 *) case t2; clear t2; try discriminate. intro a2; case t3; simpl; intros; (trivial || discriminate || oeset_compare_tac). - (* 1/2 *) case t2; clear t2; try discriminate; intro a2; case t3; simpl; intros; (trivial || discriminate || oeset_compare_tac). - (* 1/1 *) case t2; clear t2; try discriminate; intro a2; case t3; simpl; intros; (trivial || discriminate || oeset_compare_tac). Qed. Lemma all_suitable_tree_rec2 : forall n, suitable n tree_size tree_compare -> forall m l, suitable_x (S n) tree_size tree_compare (Node m l). Proof. intros n IHt m l L. assert (Sl : forall t, List.In t l -> tree_size t <= n). { intros t Ht; apply le_trans with (list_size tree_size l). - apply in_list_size; apply Ht. - apply le_S_n; apply L. } assert (IH := fun t (h : List.In t l) => IHt t (Sl t h)). split; [ | intro t2; split; [ | intro t3; split; [ | split; [ | split]]]]. - (* 1/6 *) rewrite tree_compare_unfold; compareAB_tac. apply comparelA_eq_refl. intros t Ht; apply (proj1 (IH t Ht)). - (* 1/5 *) destruct t2 as [a2 | m2 l2]; [simpl; apply refl_equal | ]. rewrite 2 tree_compare_unfold; compareAB_tac. + oset_compare_tac. + comparelA_tac. apply (proj1 (proj2 (IH _ H) _)). - (* 1/4 *) destruct t2 as [a1 | m2 l2]; [intro H1; discriminate H1 | ]. destruct t3 as [a3 | m3 l3]; [intros H1 H2; discriminate H2 | ]. rewrite 3 tree_compare_unfold; compareAB_tac. + oset_compare_tac. + comparelA_tac. apply (proj1 (proj2 (proj2 (IH _ H) _) _)). - (* 1/3 *) destruct t2 as [a2 | m2 l2]; [intro H1; discriminate H1 | ]. destruct t3 as [a3 | m3 l3]; [intros H1 H2; discriminate H2 | ]. rewrite 3 tree_compare_unfold; compareAB_tac; (oset_compare_tac || comparelA_tac). + apply (proj1 (proj2 (proj2 (IH _ H) _) _)). + apply (proj1 (proj2 (proj2 (proj2 (IH _ H) _) _))). - (* 1/2 *) destruct t2 as [a2 | m2 l2]; [intro H1; discriminate H1 | ]. destruct t3 as [a3 | m3 l3]; [intros H1 H2; discriminate H2 | ]. rewrite 3 tree_compare_unfold; compareAB_tac; (oset_compare_tac || comparelA_tac). + apply (proj1 (proj2 (proj2 (IH _ H) _) _)). + apply (proj1 (proj2 (proj2 (proj2 (proj2 (IH _ H) _) _)))). - (* 1/1 *) destruct t2 as [a2 | m2 l2]; [intro H1; discriminate H1 | ]. destruct t3 as [a3 | m3 l3]; [intros H1 H2; discriminate H2 | ]. rewrite 3 tree_compare_unfold; compareAB_tac; (oset_compare_tac || comparelA_tac). + apply (proj1 (proj2 (proj2 (IH _ H) _) _)). + apply (proj1 (proj2 (proj2 (proj2 (IH _ H) _) _))). + apply (proj1 (proj2 (proj2 (proj2 (proj2 (IH _ H) _) _)))). + apply (proj2 (proj2 (proj2 (proj2 (proj2 (IH _ H) _) _)))). Qed. Lemma all_suitable_tree : forall x1, tree_compare x1 x1 = Eq /\ forall x2, (tree_compare x1 x2 = CompOpp (tree_compare x2 x1)) /\ forall x3, (tree_compare x1 x2 = Eq -> tree_compare x2 x3 = Eq -> tree_compare x1 x3 = Eq) /\ (tree_compare x1 x2 = Eq -> tree_compare x2 x3 = Lt -> tree_compare x1 x3 = Lt) /\ (tree_compare x1 x2 = Lt -> tree_compare x2 x3 = Eq -> tree_compare x1 x3 = Lt) /\ (tree_compare x1 x2 = Lt -> tree_compare x2 x3 = Lt -> tree_compare x1 x3 = Lt). Proof. intro x1. set (n := tree_size x1). assert (Sx : tree_size x1 <= n). apply le_n. clearbody n. revert x1 Sx; induction n as [ | n]. intros x1 Sx; destruct x1; simpl in Sx; inversion Sx. intro x1; case x1. apply all_suitable_tree_rec1; assumption. apply all_suitable_tree_rec2; assumption. Qed. Lemma tree_compare_lt_gt : forall x1 x2, tree_compare x1 x2 = CompOpp (tree_compare x2 x1). Proof. intros x1 x2. destruct (all_suitable_tree x1) as [_ H]; apply (proj1 (H x2)). Qed. Lemma tree_compare_eq_refl : forall x1, tree_compare x1 x1 = Eq. Proof. intros x1. destruct (all_suitable_tree x1) as [H _]; apply H. Qed. Lemma tree_compare_size_eq : forall t1 t2, tree_compare t1 t2 = Eq -> tree_size t1 = tree_size t2. Proof. intro t1; set (n := tree_size t1). assert (Hn := le_n n); unfold n at 1 in Hn. unfold n; clearbody n. revert t1 Hn; induction n as [ | n]; intros [a1 | f1 l1] Hn [a2 | f2 l2] Ht; simpl; simpl in Hn; try (trivial || discriminate Ht). - inversion Hn. - subst; apply f_equal. rewrite tree_compare_unfold in Ht; unfold compareAB in Ht. case_eq (Oset.compare ON f1 f2); intro Hl; rewrite Hl in Ht; try discriminate Ht. generalize (le_S_n _ _ Hn); clear Hn; intro Hn. clear Hl. assert (IH : forall t1 : tree, List.In t1 l1 -> forall t2 : tree, tree_compare t1 t2 = Eq -> tree_size t1 = tree_size t2). { intros t1 Ht1 t2; apply IHn. clear Ht. refine (le_trans _ _ _ _ Hn). apply in_list_size; assumption. } clear IHn. revert l2 Ht; induction l1 as [ | t1 l1]; intros [ | t2 l2] Ht. * apply refl_equal. * discriminate Ht. * discriminate Ht. * simpl in Ht; simpl. case_eq (tree_compare t1 t2); intro Kt; rewrite Kt in Ht; try discriminate Ht. apply f_equal2; [apply (IH t1 (or_introl _ (refl_equal _)) t2 Kt) | ]. { apply IHl1. - refine (le_trans _ _ _ _ Hn). simpl; apply le_plus_r. - do 3 intro; apply IH; right; assumption. - assumption. } Qed. Lemma tree_rec3 : forall (P : tree -> Type), (forall a, P (Leaf a)) -> (forall m l, (forall t, In t l -> P t) -> P (Node m l)) -> forall t, P t. Proof. intros P IH1 IH2 t. set (n := tree_size t). assert (Hn := le_n n). unfold n at 1 in Hn; clearbody n. revert t Hn; induction n as [ | n]. - intros t Hn; destruct t; simpl in Hn; (assert (H : False); [inversion Hn | contradiction H]). - intros t Hn; destruct t as [a | m l]; [apply IH1 | ]. apply IH2; intros t Ht; apply IHn. simpl in Hn. refine (le_trans _ _ _ _ (le_S_n _ _ Hn)). apply in_list_size; assumption. Qed. End Sec. Section Equality. Hypothesis All : Type. Hypothesis OAll : Oset.Rcd All. Definition OTree : Oset.Rcd (tree All). set (AST := all_suitable_tree (oeset_of_oset OAll)). split with (tree_compare (oeset_of_oset OAll)). - intros x1; pattern x1; apply tree_rec3; clear x1. + intros a1 [a2 | m2 l2]; simpl; [ | discriminate]. oset_compare_tac. + intros m1 l1 IH1 [a1 | m2 l2]; [simpl; discriminate | ]. rewrite tree_compare_unfold. unfold compareAB. generalize (Oset.eq_bool_ok ON m1 m2). case (Oset.compare ON m1 m2). * intros H1; subst m2. { case_eq (comparelA (tree_compare (oeset_of_oset OAll)) l1 l2); intro H2. - apply f_equal. revert l2 H2; induction l1 as [ | a1 l1]; intros [ | a2 l2] H2; try (trivial || discriminate H2). simpl in H2. case_eq (tree_compare (oeset_of_oset OAll) a1 a2); intro Ha; rewrite Ha in H2; try discriminate H2. apply f_equal2. + assert (IHa1 := IH1 a1 (or_introl _ (refl_equal _)) a2). rewrite Ha in IHa1; apply IHa1. + apply IHl1; [ | assumption]. do 2 intro; apply IH1; right; assumption. - intro H; injection H; clear H; intro; subst l2. induction l1 as [ | a1 l1]; [discriminate H2 | ]. simpl in H2. assert (IHa1 := IH1 a1 (or_introl _ (refl_equal _)) a1). case_eq (tree_compare (oeset_of_oset OAll) a1 a1); intro Ha1; rewrite Ha1 in IHa1, H2. + refine (IHl1 _ H2). do 2 intro; apply IH1; right; assumption. + apply False_rec; apply IHa1; apply refl_equal. + apply False_rec; apply IHa1; apply refl_equal. - intro H; injection H; clear H; intro; subst l2. induction l1 as [ | a1 l1]; [discriminate H2 | ]. simpl in H2. assert (IHa1 := IH1 a1 (or_introl _ (refl_equal _)) a1). case_eq (tree_compare (oeset_of_oset OAll) a1 a1); intro Ha1; rewrite Ha1 in IHa1, H2. + refine (IHl1 _ H2). do 2 intro; apply IH1; right; assumption. + apply False_rec; apply IHa1; apply refl_equal. + apply False_rec; apply IHa1; apply refl_equal. } * intros H1 H2; injection H2; clear H2; do 2 intro; subst; apply H1; apply refl_equal. * intros H1 H2; injection H2; clear H2; do 2 intro; subst; apply H1; apply refl_equal. - intros x1 x2 x3. destruct (AST x1) as [_ H]; apply (proj2 (proj2 (proj2 (proj2 (H x2) x3)))). - intros x1 x2. destruct (AST x1) as [_ H]; apply (proj1 (H x2)). Defined. End Equality. Section Equivalence. Hypothesis All : Type. Hypothesis OEAll : Oeset.Rcd All. Definition OETree : Oeset.Rcd (tree All). set (AST := all_suitable_tree OEAll). split with (tree_compare OEAll). - intros x1 x2 x3; destruct (AST x1) as [_ H]. apply (proj1 ((proj2 (H x2)) x3)). - intros x1 x2 x3; destruct (AST x1) as [_ H]. apply (proj1 (proj2 ((proj2 (H x2)) x3))). - intros x1 x2 x3; destruct (AST x1) as [_ H]. apply (proj1 (proj2 (proj2 ((proj2 (H x2)) x3)))). - intros x1 x2 x3; destruct (AST x1) as [_ H]. apply (proj2 (proj2 (proj2 ((proj2 (H x2)) x3)))). - intros x1 x2. destruct (AST x1) as [_ H]; apply (proj1 (H x2)). Defined. End Equivalence.
MODULE mdl_planets ! --------------------------------------------------------------------------- ! Purpose: ! Module used in the modified version of the JPL source code for the ! DE (Development Ephemeris) data processing: ! --------------------------------------------------------------------------- ! Variables: ! TTL_glb,CNAM__glb,SS_glb,NCON_glb,AU_glb,EMRAT_glb, IPT_glb,NUMDE_glb, ! LPT_glb,RPT_glb,TPT_glb ! CVAL_glb, DB_glb ! ---------------------------------------------------------------------- ! Allocatable arrays: CVAL_2, DB_array ! Related subroutine: asc2eph.f90 (reading DE data format) ! --------------------------------------------------------------------------- ! Dr. Thomas D. Papanikolaou, Geoscience Australia October 2015 ! --------------------------------------------------------------------------- USE mdl_precision IMPLICIT NONE SAVE ! --------------------------------------------------------------------------- CHARACTER (LEN=50) :: TTL_2(14,3) CHARACTER (LEN=50) :: CNAM_2(1000) REAL (KIND = prec_q) :: SS_2(3) REAL (KIND = prec_q) :: AU_2, EMRAT_2 INTEGER (KIND = prec_int2) :: NCON_2, NUMDE_2 INTEGER (KIND = prec_int2) :: IPT_2(3,12) INTEGER (KIND = prec_int2) :: LPT_2(3), RPT_2(3), TPT_2(3) ! --------------------------------------------------------------------------- ! Gravity Constants of Sun, Moon and Planets REAL (KIND = prec_q) :: GMconst_au(11), GMconst(11) ! Allocatable Arrays ! --------------------------------------------------------------------------- ! Chebyshev coefficients REAL (KIND = prec_q), DIMENSION(:), ALLOCATABLE :: CVAL_2 REAL (KIND = prec_q), DIMENSION(:,:), ALLOCATABLE :: DB_array ! --------------------------------------------------------------------------- END
[STATEMENT] lemma FL_valid_Conj [simp]: assumes "finite (supp xset)" shows "P \<Turnstile> Conj xset \<longleftrightarrow> (\<forall>x\<in>set_bset xset. P \<Turnstile> x)" [PROOF STATE] proof (prove) goal (1 subgoal): 1. P \<Turnstile> Conj xset = (\<forall>x\<in>set_bset xset. P \<Turnstile> x) [PROOF STEP] using assms [PROOF STATE] proof (prove) using this: finite (supp xset) goal (1 subgoal): 1. P \<Turnstile> Conj xset = (\<forall>x\<in>set_bset xset. P \<Turnstile> x) [PROOF STEP] by (simp add: FL_valid_def Conj_def map_bset.rep_eq)
/- Copyright (c) 2018 Jeremy Avigad. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Author: Jeremy Avigad, Mario Carneiro, Simon Hudon -/ import Mathlib.PrePort import Mathlib.Lean3Lib.init.default import Mathlib.data.fin2 import Mathlib.data.typevec import Mathlib.logic.function.basic import Mathlib.tactic.basic import Mathlib.PostPort universes u_1 u_2 l u v namespace Mathlib /-! Functors between the category of tuples of types, and the category Type Features: `mvfunctor n` : the type class of multivariate functors `f <$$> x` : notation for map -/ /-- multivariate functors, i.e. functor between the category of type vectors and the category of Type -/ class mvfunctor {n : ℕ} (F : typevec n → Type u_2) where map : {α β : typevec n} → typevec.arrow α β → F α → F β namespace mvfunctor /-- predicate lifting over multivariate functors -/ def liftp {n : ℕ} {F : typevec n → Type v} [mvfunctor F] {α : typevec n} (p : (i : fin2 n) → α i → Prop) (x : F α) := ∃ (u : F fun (i : fin2 n) => Subtype (p i)), map (fun (i : fin2 n) => subtype.val) u = x /-- relational lifting over multivariate functors -/ def liftr {n : ℕ} {F : typevec n → Type v} [mvfunctor F] {α : typevec n} (r : {i : fin2 n} → α i → α i → Prop) (x : F α) (y : F α) := ∃ (u : F fun (i : fin2 n) => Subtype fun (p : α i × α i) => r (prod.fst p) (prod.snd p)), map (fun (i : fin2 n) (t : Subtype fun (p : α i × α i) => r (prod.fst p) (prod.snd p)) => prod.fst (subtype.val t)) u = x ∧ map (fun (i : fin2 n) (t : Subtype fun (p : α i × α i) => r (prod.fst p) (prod.snd p)) => prod.snd (subtype.val t)) u = y /-- given `x : F α` and a projection `i` of type vector `α`, `supp x i` is the set of `α.i` contained in `x` -/ def supp {n : ℕ} {F : typevec n → Type v} [mvfunctor F] {α : typevec n} (x : F α) (i : fin2 n) : set (α i) := set_of fun (y : α i) => ∀ {p : (i : fin2 n) → α i → Prop}, liftp p x → p i y theorem of_mem_supp {n : ℕ} {F : typevec n → Type v} [mvfunctor F] {α : typevec n} {x : F α} {p : {i : fin2 n} → α i → Prop} (h : liftp p x) (i : fin2 n) (y : α i) (H : y ∈ supp x i) : p y := hy h end mvfunctor /-- laws for `mvfunctor` -/ class is_lawful_mvfunctor {n : ℕ} (F : typevec n → Type u_2) [mvfunctor F] where id_map : ∀ {α : typevec n} (x : F α), mvfunctor.map typevec.id x = x comp_map : ∀ {α β γ : typevec n} (g : typevec.arrow α β) (h : typevec.arrow β γ) (x : F α), mvfunctor.map (typevec.comp h g) x = mvfunctor.map h (mvfunctor.map g x) namespace mvfunctor /-- adapt `mvfunctor.liftp` to accept predicates as arrows -/ def liftp' {n : ℕ} {α : typevec n} {F : typevec n → Type v} [mvfunctor F] (p : typevec.arrow α (typevec.repeat n Prop)) : F α → Prop := liftp fun (i : fin2 n) (x : α i) => typevec.of_repeat (p i x) /-- adapt `mvfunctor.liftp` to accept relations as arrows -/ def liftr' {n : ℕ} {α : typevec n} {F : typevec n → Type v} [mvfunctor F] (r : typevec.arrow (typevec.prod α α) (typevec.repeat n Prop)) : F α → F α → Prop := liftr fun (i : fin2 n) (x y : α i) => typevec.of_repeat (r i (typevec.prod.mk i x y)) @[simp] theorem id_map {n : ℕ} {α : typevec n} {F : typevec n → Type v} [mvfunctor F] [is_lawful_mvfunctor F] (x : F α) : map typevec.id x = x := is_lawful_mvfunctor.id_map x @[simp] theorem id_map' {n : ℕ} {α : typevec n} {F : typevec n → Type v} [mvfunctor F] [is_lawful_mvfunctor F] (x : F α) : map (fun (i : fin2 n) (a : α i) => a) x = x := id_map x theorem map_map {n : ℕ} {α : typevec n} {β : typevec n} {γ : typevec n} {F : typevec n → Type v} [mvfunctor F] [is_lawful_mvfunctor F] (g : typevec.arrow α β) (h : typevec.arrow β γ) (x : F α) : map h (map g x) = map (typevec.comp h g) x := Eq.symm (comp_map g h x) theorem exists_iff_exists_of_mono {n : ℕ} {α : typevec n} {β : typevec n} (F : typevec n → Type v) [mvfunctor F] [is_lawful_mvfunctor F] {p : F α → Prop} {q : F β → Prop} (f : typevec.arrow α β) (g : typevec.arrow β α) (h₀ : typevec.comp f g = typevec.id) (h₁ : ∀ (u : F α), p u ↔ q (map f u)) : (∃ (u : F α), p u) ↔ ∃ (u : F β), q u := sorry theorem liftp_def {n : ℕ} {α : typevec n} {F : typevec n → Type v} [mvfunctor F] (p : typevec.arrow α (typevec.repeat n Prop)) [is_lawful_mvfunctor F] (x : F α) : liftp' p x ↔ ∃ (u : F (typevec.subtype_ p)), map (typevec.subtype_val p) u = x := sorry theorem liftr_def {n : ℕ} {α : typevec n} {F : typevec n → Type v} [mvfunctor F] (r : typevec.arrow (typevec.prod α α) (typevec.repeat n Prop)) [is_lawful_mvfunctor F] (x : F α) (y : F α) : liftr' r x y ↔ ∃ (u : F (typevec.subtype_ r)), map (typevec.comp typevec.prod.fst (typevec.subtype_val r)) u = x ∧ map (typevec.comp typevec.prod.snd (typevec.subtype_val r)) u = y := sorry end mvfunctor namespace mvfunctor theorem liftp_last_pred_iff {n : ℕ} {F : typevec (n + 1) → Type u_1} [mvfunctor F] [is_lawful_mvfunctor F] {α : typevec n} {β : Type u} (p : β → Prop) (x : F (α ::: β)) : liftp' (typevec.pred_last' α p) x ↔ liftp (typevec.pred_last α p) x := sorry theorem liftr_last_rel_iff {n : ℕ} {F : typevec (n + 1) → Type u_1} [mvfunctor F] [is_lawful_mvfunctor F] {α : typevec n} {β : Type u} (rr : β → β → Prop) (x : F (α ::: β)) (y : F (α ::: β)) : liftr' (typevec.rel_last' α rr) x y ↔ liftr (typevec.rel_last α rr) x y := sorry
module Cam.Platform import Cam.FFI public export %inline platformName : () -> Boxed String platformName () = believe_me . unsafePerformIO $ fcall1 "platform_name" (believe_me ()) public export %inline platformSystem : () -> Boxed String platformSystem () = believe_me . unsafePerformIO $ fcall1 "platform_system" (believe_me ())
using FunctionZeros using BenchmarkTools import SpecialFunctions @btime besselj_zero(3,10) @btime besselj_zero(3,10) const z = besselj_zero(3,10) zer = SpecialFunctions.besselj(3,z)
module Compiler.Erlang.Codegen.ErlExprToAbstractFormat.Serialise import Compiler.Erlang.Name import Compiler.Erlang.IR.AbstractFormat import Compiler.Erlang.Codegen.ErlExprToAbstractFormat.Internal %default total defaultEndianness : BitEndianness defaultEndianness = ABBig genSerialiseDecodeResultSuccess : Line -> Expr -> Expr genSerialiseDecodeResultSuccess l value = genDataCtorExpr l (constructorName (NS serialiseCoreNS (UN (Basic "Success")))) [value] genSerialiseDecodeResultFail : Line -> String -> Expr genSerialiseDecodeResultFail l err = genDataCtorExpr l (constructorName (NS serialiseCoreNS (UN (Basic "Fail")))) [genStringLiteralExpr l err] genSerialiseMkIteratorRes : Line -> Expr -> Expr -> Expr genSerialiseMkIteratorRes l value it = genDataCtorExpr l (constructorName (NS serialiseCoreNS (UN (Basic "MkIteratorRes")))) [value, it] -- Similar to the following Erlang code: -- ``` -- <<Bin/binary, Value:8/integer>>. -- ``` setGeneric : (targetTSL : TypeSpecifierList) -> (targetSize : Int) -> Line -> (builder : Expr) -> (value : Expr) -> Expr setGeneric targetTSL targetSize l builder value = let binary = AEBitstring l [ MkBitSegment l builder ABSDefault ABBinary , MkBitSegment l value (ABSInteger l (cast targetSize)) targetTSL ] in binary -- Similar to the following Erlang code: -- ``` -- get_byte(<<Value:8/integer, NewIt/binary>>) -> -- {{next, Value}, NewIt}; -- get_byte(It) -> -- {fail, It}. -- ``` getGeneric : (targetTSL : TypeSpecifierList) -> (targetSize : Int) -> Line -> (it : Expr) -> Expr getGeneric targetTSL targetSize l it = let successPattern = APBitstring l [ MkBitSegment l (ABPVar l "Value") (ABSInteger l (cast targetSize)) targetTSL , MkBitSegment l (ABPVar l "NewIt") ABSDefault ABBinary ] successBody = genSerialiseMkIteratorRes l (genSerialiseDecodeResultSuccess l (AEVar l "Value")) (AEVar l "NewIt") ::: [] failPattern = APVar l "It" failBody = genSerialiseMkIteratorRes l (genSerialiseDecodeResultFail l "Failed to decode number") (AEVar l "It") ::: [] funExpr = AEFun l 1 (MkFunClause l [successPattern] [] successBody ::: [ MkFunClause l [failPattern] [] failBody ] ) in AEFunCall l funExpr [it] export setUnsignedInt : (size : Int) -> Line -> (builder : Expr) -> (value : Expr) -> Expr setUnsignedInt = setGeneric (ABInteger {endianness=defaultEndianness}) export getUnsignedInt : (size : Int) -> Line -> (it : Expr) -> Expr getUnsignedInt = getGeneric (ABInteger {endianness=defaultEndianness}) export setSignedInt : (size : Int) -> Line -> (builder : Expr) -> (value : Expr) -> Expr setSignedInt = setGeneric (ABInteger {endianness=defaultEndianness}) export getSignedInt : (size : Int) -> Line -> (it : Expr) -> Expr getSignedInt = getGeneric (ABInteger {endianness=defaultEndianness}) export setDouble : Line -> (builder : Expr) -> (value : Expr) -> Expr setDouble = setGeneric (ABFloat {endianness=defaultEndianness}) 64 export getDouble : Line -> (it : Expr) -> Expr getDouble = getGeneric (ABFloat {endianness=defaultEndianness}) 64 -- Similar to the following Erlang code: -- ``` -- set_binary(Bin, Value) -> -- Size = erlang:byte_size(Value), -- <<Bin/binary, Size:32/integer, Value/binary>>. -- ``` export setBinary : Line -> (builder : Expr) -> (value : Expr) -> Expr setBinary l builder value = let binary = AEBitstring l [ MkBitSegment l (AEVar l "Bin") ABSDefault ABBinary , MkBitSegment l (AEVar l "Size") (ABSInteger l 32) (ABInteger {endianness=defaultEndianness}) , MkBitSegment l (AEVar l "Value") ABSDefault ABBinary ] body = AEMatch l (APVar l "Size") (genFunCall l "erlang" "byte_size" [AEVar l "Value"]) ::: [ binary ] funExpr = AEFun l 2 (singleton $ MkFunClause l [APVar l "Bin", APVar l "Value"] [] body ) in AEFunCall l funExpr [builder, value] -- Similar to the following Erlang code: -- ``` -- get_binary(<<Size:32/integer, Value:Size/binary, NewIt/binary>>) -> -- {{next, Value}, NewIt}; -- get_binary(It) -> -- {fail, It}. -- ``` export getBinary : Line -> (it : Expr) -> Expr getBinary l it = let successPattern = APBitstring l [ MkBitSegment l (ABPVar l "Size") (ABSInteger l 32) (ABInteger {endianness=defaultEndianness}) , MkBitSegment l (ABPVar l "Value") (ABSVar l "Size") ABBinary , MkBitSegment l (ABPVar l "NewIt") ABSDefault ABBinary ] successBody = genSerialiseMkIteratorRes l (genSerialiseDecodeResultSuccess l (AEVar l "Value")) (AEVar l "NewIt") ::: [] failPattern = APVar l "It" failBody = genSerialiseMkIteratorRes l (genSerialiseDecodeResultFail l "Failed to decode binary") (AEVar l "It") ::: [] funExpr = AEFun l 1 (MkFunClause l [successPattern] [] successBody ::: [ MkFunClause l [failPattern] [] failBody ] ) in AEFunCall l funExpr [it]
{-# LANGUAGE NamedFieldPuns #-} module School.Unit.Affine ( affine ) where import Numeric.LinearAlgebra ((<>), R, add, tr') import School.Unit.Unit (Unit(..)) import School.Unit.UnitActivation (UnitActivation(..)) import School.Unit.UnitParams (UnitParams(..)) import School.Unit.UnitGradient (UnitGradient(..)) import School.Utils.LinearAlgebra (mapRows, sumRows) affine :: Unit Double affine = Unit { apply = affineApply , deriv = affineDeriv } affineApply :: UnitParams R -> UnitActivation R -> UnitActivation R affineApply AffineParams { affineBias, affineWeights } (BatchActivation inMatrix) = BatchActivation $ mapRows (add affineBias) (inMatrix <> tr' affineWeights) affineApply _ (ApplyFail msg) = ApplyFail msg affineApply _ _ = ApplyFail "Failure when applying affine unit" failure :: String -> ( UnitGradient R , UnitParams R ) failure msg = (GradientFail msg, EmptyParams) affineDeriv :: UnitParams R -> UnitGradient R -> UnitActivation R -> ( UnitGradient R , UnitParams R ) affineDeriv AffineParams { affineWeights } (BatchGradient inGrad) (BatchActivation input) = (outGrad, paramDerivs) where outGrad = BatchGradient $ inGrad <> affineWeights bias = sumRows inGrad weights = tr' inGrad <> input paramDerivs = AffineParams { affineBias = bias , affineWeights = weights } affineDeriv _ (GradientFail msg) _ = failure msg affineDeriv _ _ (ApplyFail msg) = failure msg affineDeriv _ _ _ = failure "Failure when differentiating affine unit"
/** * Orthanc - A Lightweight, RESTful DICOM Store * Copyright (C) 2012-2016 Sebastien Jodogne, Medical Physics * Department, University Hospital of Liege, Belgium * Copyright (C) 2017-2020 Osimis S.A., Belgium * * This program is free software: you can redistribute it and/or * modify it under the terms of the GNU General Public License as * published by the Free Software Foundation, either version 3 of the * License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see <http://www.gnu.org/licenses/>. **/ #include "../Common/OrthancPluginCppWrapper.h" #include <json/reader.h> #include <json/value.h> #include <boost/filesystem.hpp> #include <boost/date_time/posix_time/posix_time.hpp> #if HAS_ORTHANC_EXCEPTION == 1 # error The macro HAS_ORTHANC_EXCEPTION must be set to 0 to compile this plugin #endif static std::map<std::string, std::string> extensions_; static std::map<std::string, std::string> folders_; static const char* INDEX_URI = "/app/plugin-serve-folders.html"; static bool allowCache_ = false; static bool generateETag_ = true; static void SetHttpHeaders(OrthancPluginRestOutput* output) { if (!allowCache_) { // http://stackoverflow.com/a/2068407/881731 OrthancPluginContext* context = OrthancPlugins::GetGlobalContext(); OrthancPluginSetHttpHeader(context, output, "Cache-Control", "no-cache, no-store, must-revalidate"); OrthancPluginSetHttpHeader(context, output, "Pragma", "no-cache"); OrthancPluginSetHttpHeader(context, output, "Expires", "0"); } } static void RegisterDefaultExtensions() { extensions_["css"] = "text/css"; extensions_["gif"] = "image/gif"; extensions_["html"] = "text/html"; extensions_["jpeg"] = "image/jpeg"; extensions_["jpg"] = "image/jpeg"; extensions_["js"] = "application/javascript"; extensions_["json"] = "application/json"; extensions_["nexe"] = "application/x-nacl"; extensions_["nmf"] = "application/json"; extensions_["pexe"] = "application/x-pnacl"; extensions_["png"] = "image/png"; extensions_["svg"] = "image/svg+xml"; extensions_["wasm"] = "application/wasm"; extensions_["woff"] = "application/x-font-woff"; extensions_["xml"] = "application/xml"; extensions_["pdf"] = "application/pdf"; extensions_["woff2"] = "font/woff2"; } static std::string GetMimeType(const std::string& path) { size_t dot = path.find_last_of('.'); std::string extension = (dot == std::string::npos) ? "" : path.substr(dot + 1); std::transform(extension.begin(), extension.end(), extension.begin(), tolower); std::map<std::string, std::string>::const_iterator found = extensions_.find(extension); if (found != extensions_.end() && !found->second.empty()) { return found->second; } else { OrthancPlugins::LogWarning("ServeFolders: Unknown MIME type for extension \"" + extension + "\""); return "application/octet-stream"; } } static bool LookupFolder(std::string& folder, OrthancPluginRestOutput* output, const OrthancPluginHttpRequest* request) { const std::string uri = request->groups[0]; std::map<std::string, std::string>::const_iterator found = folders_.find(uri); if (found == folders_.end()) { OrthancPlugins::LogError("Unknown URI in plugin server-folders: " + uri); OrthancPluginSendHttpStatusCode(OrthancPlugins::GetGlobalContext(), output, 404); return false; } else { folder = found->second; return true; } } static void Answer(OrthancPluginRestOutput* output, const char* content, size_t size, const std::string& mime) { if (generateETag_) { OrthancPlugins::OrthancString md5; md5.Assign(OrthancPluginComputeMd5(OrthancPlugins::GetGlobalContext(), content, size)); std::string etag = "\"" + std::string(md5.GetContent()) + "\""; OrthancPluginSetHttpHeader(OrthancPlugins::GetGlobalContext(), output, "ETag", etag.c_str()); } SetHttpHeaders(output); OrthancPluginAnswerBuffer(OrthancPlugins::GetGlobalContext(), output, content, size, mime.c_str()); } void ServeFolder(OrthancPluginRestOutput* output, const char* url, const OrthancPluginHttpRequest* request) { namespace fs = boost::filesystem; if (request->method != OrthancPluginHttpMethod_Get) { OrthancPluginSendMethodNotAllowed(OrthancPlugins::GetGlobalContext(), output, "GET"); return; } std::string folder; if (LookupFolder(folder, output, request)) { const fs::path item(request->groups[1]); const fs::path parent((fs::path(folder) / item).parent_path()); if (item.filename().string() == "index.html" && fs::is_directory(parent) && !fs::is_regular_file(fs::path(folder) / item)) { // On-the-fly generation of an "index.html" std::string s; s += "<html>\n"; s += " <body>\n"; s += " <ul>\n"; fs::directory_iterator end; for (fs::directory_iterator it(parent) ; it != end; ++it) { if (fs::is_directory(it->status())) { std::string f = it->path().filename().string(); s += " <li><a href=\"" + f + "/index.html\">" + f + "/</a></li>\n"; } } for (fs::directory_iterator it(parent) ; it != end; ++it) { fs::file_type type = it->status().type(); if (type == fs::regular_file || type == fs::reparse_file) // cf. BitBucket issue #11 { std::string f = it->path().filename().string(); s += " <li><a href=\"" + f + "\">" + f + "</a></li>\n"; } } s += " </ul>\n"; s += " </body>\n"; s += "</html>\n"; Answer(output, s.c_str(), s.size(), "text/html"); } else { std::string path = folder + "/" + item.string(); std::string mime = GetMimeType(path); OrthancPlugins::MemoryBuffer content; try { content.ReadFile(path); } catch (...) { ORTHANC_PLUGINS_THROW_EXCEPTION(InexistentFile); } boost::posix_time::ptime lastModification = boost::posix_time::from_time_t(fs::last_write_time(path)); std::string t = boost::posix_time::to_iso_string(lastModification); OrthancPluginSetHttpHeader(OrthancPlugins::GetGlobalContext(), output, "Last-Modified", t.c_str()); Answer(output, content.GetData(), content.GetSize(), mime); } } } void ListServedFolders(OrthancPluginRestOutput* output, const char* url, const OrthancPluginHttpRequest* request) { if (request->method != OrthancPluginHttpMethod_Get) { OrthancPluginSendMethodNotAllowed(OrthancPlugins::GetGlobalContext(), output, "GET"); return; } std::string s = "<html><body><h1>Additional folders served by Orthanc</h1>\n"; if (folders_.empty()) { s += "<p>Empty section <tt>ServeFolders</tt> in your configuration file: No additional folder is served.</p>\n"; } else { s += "<ul>\n"; for (std::map<std::string, std::string>::const_iterator it = folders_.begin(); it != folders_.end(); ++it) { // The URI is relative to INDEX_URI ("/app/plugin-serve-folders.html") s += "<li><a href=\"../" + it->first + "/index.html\">" + it->first + "</li>\n"; } s += "</ul>\n"; } s += "</body></html>\n"; Answer(output, s.c_str(), s.size(), "text/html"); } static void ConfigureFolders(const Json::Value& folders) { if (folders.type() != Json::objectValue) { OrthancPlugins::LogError("The list of folders to be served is badly formatted (must be a JSON object)"); ORTHANC_PLUGINS_THROW_EXCEPTION(BadFileFormat); } Json::Value::Members members = folders.getMemberNames(); // Register the callback for each base URI for (Json::Value::Members::const_iterator it = members.begin(); it != members.end(); ++it) { if (folders[*it].type() != Json::stringValue) { OrthancPlugins::LogError("The folder to be served \"" + *it + "\" must be associated with a string value (its mapped URI)"); ORTHANC_PLUGINS_THROW_EXCEPTION(BadFileFormat); } std::string baseUri = *it; // Remove the heading and trailing slashes in the root URI, if any while (!baseUri.empty() && *baseUri.begin() == '/') { baseUri = baseUri.substr(1); } while (!baseUri.empty() && *baseUri.rbegin() == '/') { baseUri.resize(baseUri.size() - 1); } if (baseUri.empty()) { OrthancPlugins::LogError("The URI of a folder to be served cannot be empty"); ORTHANC_PLUGINS_THROW_EXCEPTION(BadFileFormat); } // Check whether the source folder exists and is indeed a directory const std::string folder = folders[*it].asString(); if (!boost::filesystem::is_directory(folder)) { OrthancPlugins::LogError("Trying to serve an inexistent folder: " + folder); ORTHANC_PLUGINS_THROW_EXCEPTION(InexistentFile); } folders_[baseUri] = folder; // Register the callback to serve the folder { const std::string regex = "/(" + baseUri + ")/(.*)"; OrthancPlugins::RegisterRestCallback<ServeFolder>(regex.c_str(), true); } } } static void ConfigureExtensions(const Json::Value& extensions) { if (extensions.type() != Json::objectValue) { OrthancPlugins::LogError("The list of extensions is badly formatted (must be a JSON object)"); ORTHANC_PLUGINS_THROW_EXCEPTION(BadFileFormat); } Json::Value::Members members = extensions.getMemberNames(); for (Json::Value::Members::const_iterator it = members.begin(); it != members.end(); ++it) { if (extensions[*it].type() != Json::stringValue) { OrthancPlugins::LogError("The file extension \"" + *it + "\" must be associated with a string value (its MIME type)"); ORTHANC_PLUGINS_THROW_EXCEPTION(BadFileFormat); } const std::string& mime = extensions[*it].asString(); std::string name = *it; if (!name.empty() && name[0] == '.') { name = name.substr(1); // Remove the leading dot "." } extensions_[name] = mime; if (mime.empty()) { OrthancPlugins::LogWarning("ServeFolders: Removing MIME type for file extension \"." + name + "\""); } else { OrthancPlugins::LogWarning("ServeFolders: Associating file extension \"." + name + "\" with MIME type \"" + mime + "\""); } } } static void ReadConfiguration() { OrthancPlugins::OrthancConfiguration configuration; { OrthancPlugins::OrthancConfiguration globalConfiguration; globalConfiguration.GetSection(configuration, "ServeFolders"); } if (!configuration.IsSection("Folders")) { // This is a basic configuration ConfigureFolders(configuration.GetJson()); } else { // This is an advanced configuration ConfigureFolders(configuration.GetJson()["Folders"]); bool tmp; if (configuration.LookupBooleanValue(tmp, "AllowCache")) { allowCache_ = tmp; OrthancPlugins::LogWarning("ServeFolders: Requesting the HTTP client to " + std::string(tmp ? "enable" : "disable") + " its caching mechanism"); } if (configuration.LookupBooleanValue(tmp, "GenerateETag")) { generateETag_ = tmp; OrthancPlugins::LogWarning("ServeFolders: The computation of an ETag for the " "served resources is " + std::string(tmp ? "enabled" : "disabled")); } OrthancPlugins::OrthancConfiguration extensions; configuration.GetSection(extensions, "Extensions"); ConfigureExtensions(extensions.GetJson()); } if (folders_.empty()) { OrthancPlugins::LogWarning("ServeFolders: Empty configuration file: " "No additional folder will be served!"); } } extern "C" { ORTHANC_PLUGINS_API int32_t OrthancPluginInitialize(OrthancPluginContext* context) { OrthancPlugins::SetGlobalContext(context); /* Check the version of the Orthanc core */ if (OrthancPluginCheckVersion(context) == 0) { OrthancPlugins::ReportMinimalOrthancVersion(ORTHANC_PLUGINS_MINIMAL_MAJOR_NUMBER, ORTHANC_PLUGINS_MINIMAL_MINOR_NUMBER, ORTHANC_PLUGINS_MINIMAL_REVISION_NUMBER); return -1; } RegisterDefaultExtensions(); OrthancPluginSetDescription(context, "Serve additional folders with the HTTP server of Orthanc."); OrthancPluginSetRootUri(context, INDEX_URI); OrthancPlugins::RegisterRestCallback<ListServedFolders>(INDEX_URI, true); try { ReadConfiguration(); } catch (OrthancPlugins::PluginException& e) { OrthancPlugins::LogError("Error while initializing the ServeFolders plugin: " + std::string(e.What(context))); } return 0; } ORTHANC_PLUGINS_API void OrthancPluginFinalize() { } ORTHANC_PLUGINS_API const char* OrthancPluginGetName() { return "serve-folders"; } ORTHANC_PLUGINS_API const char* OrthancPluginGetVersion() { return SERVE_FOLDERS_VERSION; } }
section {*composition\_of\_fixed\_point\_iterators*} theory composition_of_fixed_point_iterators imports operations_on_discrete_event_systems begin lemma unused_Characteristic_Fixed_Point_Iterator_F_spec_cont1: " IsDES P \<Longrightarrow> IsDES S \<Longrightarrow> Characteristic_Fixed_Point_Iterator ((Enforce_Specification_Satisfaction S)\<circ>(Enforce_Star_Controllable_Subset SigmaUC (des_langUM P))) IsDES (predicate_AND (predicate_AND IsDES (DES_controllability SigmaUC P)) (predicate_AND IsDES (DES_specification_satisfied S))) (predicate_AND IsDES (DES_specification_satisfied S))" apply(rule Characteristic_Composition_of_Fixed_Point_Iterators) apply(rule Characteristic_Fixed_Point_Iterator_Enforce_Star_Controllable_Subset) apply(force) apply(rule Characteristic_Fixed_Point_Iterator_Enforce_Specification_Satisfaction) apply(force) apply(rename_tac Q)(*strict*) apply(simp add: DES_controllability_def) done lemma unused_Characteristic_Fixed_Point_Iterator_F_spec_cont1_bf: " IsDES P \<Longrightarrow> IsDES S \<Longrightarrow> Characteristic_Fixed_Point_Iterator (((Enforce_Specification_Satisfaction S)\<circ>(Enforce_Star_Controllable_Subset SigmaUC (des_langUM P)))\<circ>Enforce_Nonblockingness_DES) IsDES (predicate_AND (predicate_AND IsDES DES_nonblockingness) ((predicate_AND (predicate_AND IsDES (DES_controllability SigmaUC P)) (predicate_AND IsDES (DES_specification_satisfied S))))) (predicate_AND IsDES (DES_specification_satisfied S))" apply(rule Characteristic_Composition_of_Fixed_Point_Iterators) apply(rule Characteristic_Fixed_Point_Iterator_Enforce_Nonblockingness_DES) apply(rule unused_Characteristic_Fixed_Point_Iterator_F_spec_cont1) apply(force) apply(force) apply(rename_tac Q)(*strict*) apply(force) done lemma unused_Characteristic_Fixed_Point_Iterator_F_spec_cont1_bf_Enforce_Valid_DES: " IsDES P \<Longrightarrow> IsDES S \<Longrightarrow> Characteristic_Fixed_Point_Iterator (((Enforce_Specification_Satisfaction S)\<circ>(Enforce_Star_Controllable_Subset SigmaUC (des_langUM P)))\<circ>Enforce_Nonblockingness_DES\<circ>Enforce_Valid_DES) UNIVmap (predicate_AND IsDES (predicate_AND (predicate_AND IsDES DES_nonblockingness) ((predicate_AND (predicate_AND IsDES (DES_controllability SigmaUC P)) (predicate_AND IsDES (DES_specification_satisfied S)))))) (predicate_AND IsDES (DES_specification_satisfied S))" apply(rule Characteristic_Composition_of_Fixed_Point_Iterators) prefer 2 apply(rule unused_Characteristic_Fixed_Point_Iterator_F_spec_cont1_bf) apply(force) apply(force) apply(rule Characteristic_Fixed_Point_Iterator_Enforce_Valid_DES) apply(rename_tac Q)(*strict*) apply(force) done lemma unused_Characteristic_Fixed_Point_IteratorX_F_spec_cont1_bf_Enforce_Valid_DES: " IsDES P \<Longrightarrow> IsDES S \<Longrightarrow> Characteristic_Fixed_Point_IteratorX (((Enforce_Specification_Satisfaction S)\<circ>(Enforce_Star_Controllable_Subset SigmaUC (des_langUM P)))\<circ>Enforce_Nonblockingness_DES\<circ>Enforce_Valid_DES) (predicate_AND IsDES (predicate_AND (predicate_AND IsDES DES_nonblockingness) ((predicate_AND (predicate_AND IsDES (DES_controllability SigmaUC P)) (predicate_AND IsDES (DES_specification_satisfied S))))))" apply(rule_tac ssubst) apply(rule Characteristic_Fixed_Point_IteratorX_vs_Characteristic_Fixed_Point_Iterator) apply(rule Characteristic_Fixed_Point_Iterator_weakening) apply(rule unused_Characteristic_Fixed_Point_Iterator_F_spec_cont1_bf_Enforce_Valid_DES) apply(force) apply(force) done corollary unused_decomposition_sound_and_least_restrictive: " IsDES P \<Longrightarrow> IsDES S \<Longrightarrow> F = (((Enforce_Specification_Satisfaction S)\<circ>(Enforce_Star_Controllable_Subset SigmaUC (des_langUM P)))\<circ>Enforce_Nonblockingness_DES\<circ>Enforce_Valid_DES) \<Longrightarrow> gfp (\<lambda>X. F (inf X (F Y))) = gfp (\<lambda>X. F (inf X Y))" apply(rule gfp_invariant) apply(rule_tac t="F" and s="(((Enforce_Specification_Satisfaction S)\<circ>(Enforce_Star_Controllable_Subset SigmaUC (des_langUM P)))\<circ>Enforce_Nonblockingness_DES\<circ>Enforce_Valid_DES)" in ssubst) apply(force) apply(rule unused_Characteristic_Fixed_Point_IteratorX_F_spec_cont1_bf_Enforce_Valid_DES) apply(force) apply(force) done lemma unused_Characteristic_Fixed_Point_Iterator_F_spec2_cont: " IsDES P \<Longrightarrow> IsDES S \<Longrightarrow> Characteristic_Fixed_Point_Iterator ((Enforce_Specification_Satisfaction S)\<circ>(Enforce_Controllable_Subset SigmaUC (des_langUM P))) IsDES (predicate_AND (predicate_AND IsDES (DES_controllability SigmaUC P)) (predicate_AND IsDES (DES_specification_satisfied S))) (predicate_AND IsDES (DES_specification_satisfied S))" apply(rule Characteristic_Composition_of_Fixed_Point_Iterators) apply(rule Characteristic_Fixed_Point_Iterator_Enforce_Controllable_Subset) apply(force) apply(rule Characteristic_Fixed_Point_Iterator_Enforce_Specification_Satisfaction) apply(force) apply(rename_tac Q)(*strict*) apply(force) done lemma unused_Characteristic_Fixed_Point_Iterator_F_spec2_cont_bf: " IsDES P \<Longrightarrow> IsDES S \<Longrightarrow> Characteristic_Fixed_Point_Iterator (((Enforce_Specification_Satisfaction S)\<circ>(Enforce_Controllable_Subset SigmaUC (des_langUM P)))\<circ>Enforce_Nonblockingness_DES) IsDES (predicate_AND (predicate_AND IsDES DES_nonblockingness) (predicate_AND (predicate_AND IsDES (DES_controllability SigmaUC P)) (predicate_AND IsDES (DES_specification_satisfied S)))) (predicate_AND IsDES (DES_specification_satisfied S))" apply(rule Characteristic_Composition_of_Fixed_Point_Iterators) prefer 2 apply(rule unused_Characteristic_Fixed_Point_Iterator_F_spec2_cont) apply(force) apply(force) apply(rule Characteristic_Fixed_Point_Iterator_Enforce_Nonblockingness_DES) apply(rename_tac Q)(*strict*) apply(force) done lemma unused_Characteristic_Fixed_Point_Iterator_F_spec_cont2_bf_Enforce_Valid_DES: " IsDES P \<Longrightarrow> IsDES S \<Longrightarrow> Characteristic_Fixed_Point_Iterator (((Enforce_Specification_Satisfaction S)\<circ>(Enforce_Controllable_Subset SigmaUC (des_langUM P)))\<circ>Enforce_Nonblockingness_DES\<circ>Enforce_Valid_DES) UNIVmap (predicate_AND IsDES (predicate_AND (predicate_AND IsDES DES_nonblockingness) (predicate_AND (predicate_AND IsDES (DES_controllability SigmaUC P)) (predicate_AND IsDES (DES_specification_satisfied S))))) (predicate_AND IsDES (DES_specification_satisfied S))" apply(rule Characteristic_Composition_of_Fixed_Point_Iterators) prefer 2 apply(rule unused_Characteristic_Fixed_Point_Iterator_F_spec2_cont_bf) apply(force) apply(force) apply(rule Characteristic_Fixed_Point_Iterator_Enforce_Valid_DES) apply(rename_tac Q)(*strict*) apply(force) done lemma unused_Characteristic_Fixed_Point_IteratorX_F_spec_cont2_bf_Enforce_Valid_DES: " IsDES P \<Longrightarrow> IsDES S \<Longrightarrow> Characteristic_Fixed_Point_IteratorX (((Enforce_Specification_Satisfaction S)\<circ>(Enforce_Controllable_Subset SigmaUC (des_langUM P)))\<circ>Enforce_Nonblockingness_DES\<circ>Enforce_Valid_DES) (predicate_AND IsDES (predicate_AND (predicate_AND IsDES DES_nonblockingness) (predicate_AND (predicate_AND IsDES (DES_controllability SigmaUC P)) (predicate_AND IsDES (DES_specification_satisfied S)))))" apply(rule_tac P="\<lambda>X. X" in ssubst) apply(rule Characteristic_Fixed_Point_IteratorX_vs_Characteristic_Fixed_Point_Iterator) apply(rule Characteristic_Fixed_Point_Iterator_weakening) apply(rule unused_Characteristic_Fixed_Point_Iterator_F_spec_cont2_bf_Enforce_Valid_DES) apply(force) apply(force) done lemma unused_Characteristic_Fixed_Point_Iterator_F_spec_cont4: " IsDES P \<Longrightarrow> IsDES S \<Longrightarrow> Characteristic_Fixed_Point_Iterator ((Enforce_Specification_Satisfaction S)\<circ>(Enforce_Marked_Controllable_Subset SigmaUC (des_langUM P))) (predicate_AND IsDES DES_nonblockingness) (predicate_AND (predicate_AND IsDES (predicate_AND DES_nonblockingness (DES_controllability SigmaUC P))) (predicate_AND IsDES (DES_specification_satisfied S))) (predicate_AND IsDES (DES_specification_satisfied S))" apply(rule Characteristic_Composition_of_Fixed_Point_Iterators) apply(rule Characteristic_Fixed_Point_Iterator_Enforce_Marked_Controllable_Subset) apply(force) apply(rule Characteristic_Fixed_Point_Iterator_Enforce_Specification_Satisfaction) apply(force) apply(rename_tac Q)(*strict*) apply(force) done lemma unused_Characteristic_Fixed_Point_Iterator_F_spec_cont4_bf: " IsDES P \<Longrightarrow> IsDES S \<Longrightarrow> Characteristic_Fixed_Point_Iterator (((Enforce_Specification_Satisfaction S)\<circ>(Enforce_Marked_Controllable_Subset SigmaUC (des_langUM P)))\<circ>Enforce_Nonblockingness_DES) IsDES (predicate_AND (predicate_AND IsDES DES_nonblockingness) (predicate_AND (predicate_AND IsDES (predicate_AND DES_nonblockingness (DES_controllability SigmaUC P))) (predicate_AND IsDES (DES_specification_satisfied S)))) (predicate_AND IsDES (DES_specification_satisfied S))" apply(rule Characteristic_Composition_of_Fixed_Point_Iterators) prefer 2 apply(rule unused_Characteristic_Fixed_Point_Iterator_F_spec_cont4) apply(force) apply(force) apply(rule Characteristic_Fixed_Point_Iterator_Enforce_Nonblockingness_DES) apply(rename_tac Q)(*strict*) apply(force) done lemma unused_Characteristic_Fixed_Point_Iterator_F_spec_cont4_bf_Enforce_Valid_DES: " IsDES P \<Longrightarrow> IsDES S \<Longrightarrow> Characteristic_Fixed_Point_Iterator (((Enforce_Specification_Satisfaction S)\<circ>(Enforce_Marked_Controllable_Subset SigmaUC (des_langUM P) ))\<circ>Enforce_Nonblockingness_DES\<circ>Enforce_Valid_DES) UNIVmap (predicate_AND IsDES (predicate_AND (predicate_AND IsDES DES_nonblockingness) (predicate_AND (predicate_AND IsDES (predicate_AND DES_nonblockingness (DES_controllability SigmaUC P))) (predicate_AND IsDES (DES_specification_satisfied S))))) (predicate_AND IsDES (DES_specification_satisfied S))" apply(rule Characteristic_Composition_of_Fixed_Point_Iterators) prefer 2 apply(rule unused_Characteristic_Fixed_Point_Iterator_F_spec_cont4_bf) apply(force) apply(force) apply(rule Characteristic_Fixed_Point_Iterator_Enforce_Valid_DES) apply(rename_tac Q)(*strict*) apply(force) done lemma unused_Characteristic_Fixed_Point_IteratorX_F_spec_cont4_bf_Enforce_Valid_DES: " IsDES P \<Longrightarrow> IsDES S \<Longrightarrow> Characteristic_Fixed_Point_IteratorX (((Enforce_Specification_Satisfaction S)\<circ>(Enforce_Marked_Controllable_Subset SigmaUC (des_langUM P)))\<circ>Enforce_Nonblockingness_DES\<circ>Enforce_Valid_DES) (predicate_AND IsDES (predicate_AND (predicate_AND IsDES DES_nonblockingness) (predicate_AND (predicate_AND IsDES (predicate_AND DES_nonblockingness (DES_controllability SigmaUC P))) (predicate_AND IsDES (DES_specification_satisfied S)))))" apply(rule_tac P="\<lambda>X. X" in ssubst) apply(rule Characteristic_Fixed_Point_IteratorX_vs_Characteristic_Fixed_Point_Iterator) apply(rule Characteristic_Fixed_Point_Iterator_weakening) apply(rule unused_Characteristic_Fixed_Point_Iterator_F_spec_cont4_bf_Enforce_Valid_DES) apply(force) apply(force) done lemma unused_Characteristic_Fixed_Point_Iterator_F_bf_spec: " IsDES P \<Longrightarrow> IsDES S \<Longrightarrow> Characteristic_Fixed_Point_Iterator (Enforce_Nonblockingness_DES\<circ>(\<lambda>C. Enforce_Specification_Satisfaction S C)) IsDES (predicate_AND (predicate_AND IsDES (DES_specification_satisfied S)) (predicate_AND IsDES DES_nonblockingness)) (predicate_AND IsDES DES_nonblockingness)" apply(rule_tac Characteristic_Composition_of_Fixed_Point_Iterators) apply(rule Characteristic_Fixed_Point_Iterator_Enforce_Specification_Satisfaction) apply(force) apply(rule Characteristic_Fixed_Point_Iterator_Enforce_Nonblockingness_DES) apply(rename_tac Q)(*strict*) apply(force) done lemma unused_Characteristic_Fixed_Point_Iterator_F_bf_cont4_bf_des: " IsDES P \<Longrightarrow> IsDES S \<Longrightarrow> Characteristic_Fixed_Point_Iterator (Enforce_Nonblockingness_DES\<circ>(Enforce_Marked_Controllable_Subset SigmaUC (des_langUM P))\<circ>Enforce_Nonblockingness_DES\<circ>Enforce_Valid_DES) UNIVmap (predicate_AND IsDES (predicate_AND (predicate_AND IsDES DES_nonblockingness) (predicate_AND (predicate_AND IsDES (predicate_AND DES_nonblockingness (DES_controllability SigmaUC P))) (predicate_AND IsDES DES_nonblockingness)))) (predicate_AND IsDES DES_nonblockingness)" apply(rule_tac ?Qinter1.0="IsDES" and ?Qinter2.0="IsDES" in Characteristic_Composition_of_Fixed_Point_Iterators) apply(rule Characteristic_Fixed_Point_Iterator_Enforce_Valid_DES) prefer 2 apply(rename_tac Q)(*strict*) apply(force) apply(rule_tac ?Qinter1.0="(predicate_AND IsDES DES_nonblockingness)" and ?Qinter2.0="(predicate_AND IsDES DES_nonblockingness)" in Characteristic_Composition_of_Fixed_Point_Iterators) apply(rule Characteristic_Fixed_Point_Iterator_Enforce_Nonblockingness_DES) prefer 2 apply(rename_tac Q)(*strict*) apply(force) apply(rule_tac ?Qinter1.0="IsDES" and ?Qinter2.0="IsDES" in Characteristic_Composition_of_Fixed_Point_Iterators) apply(rule Characteristic_Fixed_Point_Iterator_Enforce_Marked_Controllable_Subset) apply(force) prefer 2 apply(rename_tac Q)(*strict*) apply(force) apply(rule Characteristic_Fixed_Point_Iterator_Enforce_Nonblockingness_DES) done end
State Before: k : ℕ ⊢ (k + 1 + 1)! = (k + 1 + 1)‼ * (k + 1)‼ State After: no goals Tactic: rw [doubleFactorial_add_two, factorial, factorial_eq_mul_doubleFactorial _, mul_comm _ k‼, mul_assoc]
C C SUBROUTINE MYFORTRAN(A,B, C, D, E) CALL MAIN(A,B,C) CALL COUNT_ARGS(A,B,C,D,E,F) CALL MAIN(A,B,C,D) RETURN END C C SUBROUTINE ZORG() RETURN END
module Web.Internal.ClipboardTypes import JS -------------------------------------------------------------------------------- -- Enums -------------------------------------------------------------------------------- namespace PresentationStyle public export data PresentationStyle = Unspecified | Inline | Attachment public export Show PresentationStyle where show Unspecified = "unspecified" show Inline = "inline" show Attachment = "attachment" public export Eq PresentationStyle where (==) = (==) `on` show public export Ord PresentationStyle where compare = compare `on` show public export read : String -> Maybe PresentationStyle read "unspecified" = Just Unspecified read "inline" = Just Inline read "attachment" = Just Attachment read _ = Nothing public export fromString : (s : String) -> {auto 0 _ : IsJust (PresentationStyle.read s)} -> PresentationStyle fromString s = fromJust $ read s export ToFFI PresentationStyle String where toFFI = show export FromFFI PresentationStyle String where fromFFI = read -------------------------------------------------------------------------------- -- Interfaces -------------------------------------------------------------------------------- export data Clipboard : Type where [external] export ToFFI Clipboard Clipboard where toFFI = id export FromFFI Clipboard Clipboard where fromFFI = Just export SafeCast Clipboard where safeCast = unsafeCastOnPrototypeName "Clipboard" export data ClipboardEvent : Type where [external] export ToFFI ClipboardEvent ClipboardEvent where toFFI = id export FromFFI ClipboardEvent ClipboardEvent where fromFFI = Just export SafeCast ClipboardEvent where safeCast = unsafeCastOnPrototypeName "ClipboardEvent" export data ClipboardItem : Type where [external] export ToFFI ClipboardItem ClipboardItem where toFFI = id export FromFFI ClipboardItem ClipboardItem where fromFFI = Just export SafeCast ClipboardItem where safeCast = unsafeCastOnPrototypeName "ClipboardItem" -------------------------------------------------------------------------------- -- Dictionaries -------------------------------------------------------------------------------- export data ClipboardEventInit : Type where [external] export ToFFI ClipboardEventInit ClipboardEventInit where toFFI = id export FromFFI ClipboardEventInit ClipboardEventInit where fromFFI = Just export data ClipboardItemOptions : Type where [external] export ToFFI ClipboardItemOptions ClipboardItemOptions where toFFI = id export FromFFI ClipboardItemOptions ClipboardItemOptions where fromFFI = Just export data ClipboardPermissionDescriptor : Type where [external] export ToFFI ClipboardPermissionDescriptor ClipboardPermissionDescriptor where toFFI = id export FromFFI ClipboardPermissionDescriptor ClipboardPermissionDescriptor where fromFFI = Just -------------------------------------------------------------------------------- -- Callbacks -------------------------------------------------------------------------------- export data ClipboardItemDelayedCallback : Type where [external] export ToFFI ClipboardItemDelayedCallback ClipboardItemDelayedCallback where toFFI = id export FromFFI ClipboardItemDelayedCallback ClipboardItemDelayedCallback where fromFFI = Just
lemma CauchyI: "(\<And>e. 0 < e \<Longrightarrow> \<exists>M. \<forall>m\<ge>M. \<forall>n\<ge>M. norm (X m - X n) < e) \<Longrightarrow> Cauchy X" for X :: "nat \<Rightarrow> 'a::real_normed_vector"
theory Scott_S5U imports QML_S5U begin consts P :: "(\<mu>\<Rightarrow>\<sigma>)\<Rightarrow>\<sigma>" (* Positive *) axiomatization where A1a: "\<lfloor>\<^bold>\<forall>\<Phi>. P(\<^sup>\<not>\<Phi>) \<^bold>\<rightarrow> \<^bold>\<not>P(\<Phi>)\<rfloor>" and A1b: "\<lfloor>\<^bold>\<forall>\<Phi>. \<^bold>\<not>P(\<Phi>) \<^bold>\<rightarrow> P(\<^sup>\<not>\<Phi>)\<rfloor>" and A2: "\<lfloor>\<^bold>\<forall>\<Phi> \<Psi>. P(\<Phi>) \<^bold>\<and> \<^bold>\<box>(\<^bold>\<forall>x. \<Phi>(x) \<^bold>\<rightarrow> \<Psi>(x)) \<^bold>\<rightarrow> P(\<Psi>)\<rfloor>" definition G where "G(x) = (\<^bold>\<forall>\<Phi>. P(\<Phi>) \<^bold>\<rightarrow> \<Phi>(x))" (* Definition of God *) axiomatization where A3: "\<lfloor>P(G)\<rfloor>" and A4: "\<lfloor>\<^bold>\<forall>\<Phi>. P(\<Phi>) \<^bold>\<rightarrow> \<^bold>\<box>(P(\<Phi>))\<rfloor>" definition ess (infixr "ess" 85) where "\<Phi> ess x = \<Phi>(x) \<^bold>\<and> (\<^bold>\<forall>\<Psi>. \<Psi>(x) \<^bold>\<rightarrow> \<^bold>\<box>(\<^bold>\<forall>y. \<Phi>(y) \<^bold>\<rightarrow> \<Psi>(y)))" (* Essence *) definition NE where "NE(x) = (\<^bold>\<forall>\<Phi>. \<Phi> ess x \<^bold>\<rightarrow> \<^bold>\<box>(\<^bold>\<exists> \<Phi>))"(* Necessary Existence *) axiomatization where A5: "\<lfloor>P(NE)\<rfloor>" theorem T3: "\<lfloor>\<^bold>\<box>(\<^bold>\<exists>x. G(x))\<rfloor>" (* Necessarily, God exists: LEO-II proof in 2,5sec *) sledgehammer [provers = remote_leo2,verbose] by (metis (lifting, full_types) A1a A1b A2 A3 A4 A5 G_def NE_def ess_def) lemma True nitpick [satisfy,user_axioms] oops (* Consistency check with Nitpick *) lemma False sledgehammer [provers = remote_leo2,verbose] oops (* Inconsistency check with Leo-II *) theorem T2: "\<lfloor>\<^bold>\<forall>x. G(x) \<^bold>\<rightarrow> G ess x\<rfloor>" sledgehammer [provers = remote_leo2] by (metis A1b A4 G_def ess_def) lemma MC: "\<lfloor>\<^bold>\<forall>\<Phi>. \<Phi> \<^bold>\<rightarrow> (\<^bold>\<box> \<Phi>)\<rfloor>" (* Modal Collapse *) sledgehammer [provers = remote_satallax, timeout=600] by (meson T2 T3 ess_def) end
lemma of_real_Re [simp]: "z \<in> \<real> \<Longrightarrow> of_real (Re z) = z"
State Before: α : Type ?u.565531 β : Type ?u.565534 γ : Type ?u.565537 inst✝ : PseudoEMetricSpace α a b : ℝ h : a ≤ b ⊢ Metric.diam (Ioo a b) = b - a State After: no goals Tactic: simp [Metric.diam, ENNReal.toReal_ofReal (sub_nonneg.2 h)]
! ################################################################### ! Copyright (c) 2013-2022, Marc De Graef Research Group/Carnegie Mellon University ! All rights reserved. ! ! Redistribution and use in source and binary forms, with or without modification, are ! permitted provided that the following conditions are met: ! ! - Redistributions of source code must retain the above copyright notice, this list ! of conditions and the following disclaimer. ! - Redistributions in binary form must reproduce the above copyright notice, this ! list of conditions and the following disclaimer in the documentation and/or ! other materials provided with the distribution. ! - Neither the names of Marc De Graef, Carnegie Mellon University nor the names ! of its contributors may be used to endorse or promote products derived from ! this software without specific prior written permission. ! ! THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" ! AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE ! IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ! ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE ! LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL ! DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR ! SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER ! CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, ! OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE ! USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. ! ################################################################### module mod_OrientationViz !! author: MDG !! version: 1.0 !! date: 03/27/20 !! !! class definition for the EMOrientationViz program use mod_kinds use mod_global IMPLICIT NONE ! namelist for the EMOrientationViz program type, public :: OrientationVizNameListType integer(kind=irg) :: cubochoric integer(kind=irg) :: homochoric integer(kind=irg) :: rodrigues integer(kind=irg) :: stereographic integer(kind=irg) :: eulerspace integer(kind=irg) :: reducetoRFZ integer(kind=irg) :: nx integer(kind=irg) :: ny integer(kind=irg) :: nz integer(kind=irg) :: overridepgnum integer(kind=irg) :: MacKenzieCell real(kind=sgl) :: rgb(3) real(kind=sgl) :: sphrad real(kind=sgl) :: distance character(3) :: scalingmode character(3) :: mrcmode character(fnlen) :: df3file character(fnlen) :: mrcfile character(fnlen) :: framemrcfile character(fnlen) :: xtalname character(fnlen) :: povrayfile character(fnlen) :: anglefile end type OrientationVizNameListType ! class definition type, public :: OrientationViz_T private character(fnlen) :: nmldeffile = 'EMOrientationViz.nml' type(OrientationVizNameListType) :: nml contains private procedure, pass(self) :: readNameList_ procedure, pass(self) :: getNameList_ procedure, pass(self) :: OrientationViz_ procedure, pass(self) :: get_cubochoric_ procedure, pass(self) :: get_homochoric_ procedure, pass(self) :: get_rodrigues_ procedure, pass(self) :: get_stereographic_ procedure, pass(self) :: get_eulerspace_ procedure, pass(self) :: get_reducetoRFZ_ procedure, pass(self) :: get_nx_ procedure, pass(self) :: get_ny_ procedure, pass(self) :: get_nz_ procedure, pass(self) :: get_overridepgnum_ procedure, pass(self) :: get_MacKenzieCell_ procedure, pass(self) :: get_rgb_ procedure, pass(self) :: get_sphrad_ procedure, pass(self) :: get_distance_ procedure, pass(self) :: get_scalingmode_ procedure, pass(self) :: get_mrcmode_ procedure, pass(self) :: get_df3file_ procedure, pass(self) :: get_mrcfile_ procedure, pass(self) :: get_framemrcfile_ procedure, pass(self) :: get_xtalname_ procedure, pass(self) :: get_povrayfile_ procedure, pass(self) :: get_anglefile_ procedure, pass(self) :: set_cubochoric_ procedure, pass(self) :: set_homochoric_ procedure, pass(self) :: set_rodrigues_ procedure, pass(self) :: set_stereographic_ procedure, pass(self) :: set_eulerspace_ procedure, pass(self) :: set_reducetoRFZ_ procedure, pass(self) :: set_nx_ procedure, pass(self) :: set_ny_ procedure, pass(self) :: set_nz_ procedure, pass(self) :: set_overridepgnum_ procedure, pass(self) :: set_MacKenzieCell_ procedure, pass(self) :: set_rgb_ procedure, pass(self) :: set_sphrad_ procedure, pass(self) :: set_distance_ procedure, pass(self) :: set_scalingmode_ procedure, pass(self) :: set_mrcmode_ procedure, pass(self) :: set_df3file_ procedure, pass(self) :: set_mrcfile_ procedure, pass(self) :: set_framemrcfile_ procedure, pass(self) :: set_xtalname_ procedure, pass(self) :: set_povrayfile_ procedure, pass(self) :: set_anglefile_ generic, public :: getNameList => getNameList_ generic, public :: readNameList => readNameList_ generic, public :: OrientationViz => OrientationViz_ generic, public :: get_cubochoric => get_cubochoric_ generic, public :: get_homochoric => get_homochoric_ generic, public :: get_rodrigues => get_rodrigues_ generic, public :: get_stereographic => get_stereographic_ generic, public :: get_eulerspace => get_eulerspace_ generic, public :: get_reducetoRFZ => get_reducetoRFZ_ generic, public :: get_nx => get_nx_ generic, public :: get_ny => get_ny_ generic, public :: get_nz => get_nz_ generic, public :: get_overridepgnum => get_overridepgnum_ generic, public :: get_MacKenzieCell => get_MacKenzieCell_ generic, public :: get_rgb => get_rgb_ generic, public :: get_sphrad => get_sphrad_ generic, public :: get_distance => get_distance_ generic, public :: get_scalingmode => get_scalingmode_ generic, public :: get_mrcmode => get_mrcmode_ generic, public :: get_df3file => get_df3file_ generic, public :: get_mrcfile => get_mrcfile_ generic, public :: get_framemrcfile => get_framemrcfile_ generic, public :: get_xtalname => get_xtalname_ generic, public :: get_povrayfile => get_povrayfile_ generic, public :: get_anglefile => get_anglefile_ generic, public :: set_cubochoric => set_cubochoric_ generic, public :: set_homochoric => set_homochoric_ generic, public :: set_rodrigues => set_rodrigues_ generic, public :: set_stereographic => set_stereographic_ generic, public :: set_eulerspace => set_eulerspace_ generic, public :: set_reducetoRFZ => set_reducetoRFZ_ generic, public :: set_nx => set_nx_ generic, public :: set_ny => set_ny_ generic, public :: set_nz => set_nz_ generic, public :: set_overridepgnum => set_overridepgnum_ generic, public :: set_MacKenzieCell => set_MacKenzieCell_ generic, public :: set_rgb => set_rgb_ generic, public :: set_sphrad => set_sphrad_ generic, public :: set_distance => set_distance_ generic, public :: set_scalingmode => set_scalingmode_ generic, public :: set_mrcmode => set_mrcmode_ generic, public :: set_df3file => set_df3file_ generic, public :: set_mrcfile => set_mrcfile_ generic, public :: set_framemrcfile => set_framemrcfile_ generic, public :: set_xtalname => set_xtalname_ generic, public :: set_povrayfile => set_povrayfile_ generic, public :: set_anglefile => set_anglefile_ end type OrientationViz_T ! the constructor routine for this class interface OrientationViz_T module procedure OrientationViz_constructor end interface OrientationViz_T contains !-------------------------------------------------------------------------- type(OrientationViz_T) function OrientationViz_constructor( nmlfile ) result(OrientationViz) !DEC$ ATTRIBUTES DLLEXPORT :: OrientationViz_constructor !! author: MDG !! version: 1.0 !! date: 03/27/20 !! !! constructor for the OrientationViz_T Class; reads the name list IMPLICIT NONE character(fnlen), OPTIONAL :: nmlfile call OrientationViz%readNameList(nmlfile) end function OrientationViz_constructor !-------------------------------------------------------------------------- subroutine OrientationViz_destructor(self) !DEC$ ATTRIBUTES DLLEXPORT :: OrientationViz_destructor !! author: MDG !! version: 1.0 !! date: 03/27/20 !! !! destructor for the OrientationViz_T Class IMPLICIT NONE type(OrientationViz_T), INTENT(INOUT) :: self call reportDestructor('OrientationViz_T') end subroutine OrientationViz_destructor !-------------------------------------------------------------------------- subroutine readNameList_(self, nmlfile, initonly) !DEC$ ATTRIBUTES DLLEXPORT :: readNameList_ !! author: MDG !! version: 1.0 !! date: 03/27/20 !! !! read the namelist from an nml file for the OrientationViz_T Class use mod_io use mod_EMsoft IMPLICIT NONE class(OrientationViz_T), INTENT(INOUT) :: self character(fnlen),INTENT(IN) :: nmlfile !! full path to namelist file logical,OPTIONAL,INTENT(IN) :: initonly !! fill in the default values only; do not read the file type(EMsoft_T) :: EMsoft type(IO_T) :: Message logical :: skipread = .FALSE. integer(kind=irg) :: cubochoric integer(kind=irg) :: homochoric integer(kind=irg) :: rodrigues integer(kind=irg) :: stereographic integer(kind=irg) :: eulerspace integer(kind=irg) :: reducetoRFZ integer(kind=irg) :: nx integer(kind=irg) :: ny integer(kind=irg) :: nz integer(kind=irg) :: overridepgnum integer(kind=irg) :: MacKenzieCell real(kind=sgl) :: rgb(3) real(kind=sgl) :: sphrad real(kind=sgl) :: distance character(3) :: scalingmode character(3) :: mrcmode character(fnlen) :: df3file character(fnlen) :: mrcfile character(fnlen) :: framemrcfile character(fnlen) :: xtalname character(fnlen) :: povrayfile character(fnlen) :: anglefile ! define the IO namelist to facilitate passing variables to the program. namelist / EMOrientationViz / cubochoric, homochoric, rodrigues, stereographic, eulerspace, & xtalname, povrayfile, anglefile, reducetoRFZ, rgb, sphrad, df3file, & mrcfile, framemrcfile, mrcmode, & nx, ny, nz, distance, scalingmode, overridepgnum, MacKenzieCell ! initialize cubochoric = 0 homochoric = 0 rodrigues = 0 stereographic = 0 eulerspace = 0 reducetoRFZ = 1 overridepgnum = 0 MacKenzieCell = 0 rgb = (/ 0.0, 0.0, 1.0 /) sphrad = 0.015 distance = 4.0 nx = 64 ny = 64 nz = 64 scalingmode = 'lev' ! or 'log' or 'lev' (for equi-level contours) mrcmode = 'off' ! 'off', 'reg', 'frm' df3file = 'undefined' mrcfile = 'undefined' framemrcfile = 'undefined' xtalname = 'undefined' povrayfile = 'undefined' anglefile = 'undefined' if (present(initonly)) then if (initonly) skipread = .TRUE. end if if (.not.skipread) then ! read the namelist file open(UNIT=dataunit,FILE=trim(nmlfile),DELIM='apostrophe',STATUS='old') read(UNIT=dataunit,NML=EMOrientationViz) close(UNIT=dataunit,STATUS='keep') ! check for required entries if (trim(xtalname).eq.'undefined') then call Message%printError('readNameList:',' structure file name is undefined in '//nmlfile) end if if (mrcmode.eq.'off') then if (trim(povrayfile).eq.'undefined') then call Message%printError('readNameList:',' povray file name is undefined in '//nmlfile) end if else if (mrcmode.eq.'reg') then if (trim(mrcfile).eq.'undefined') then call Message%printError('readNameList:',' mrc file name is undefined in '//nmlfile) end if else if (trim(framemrcfile).eq.'undefined') then call Message%printError('readNameList:',' frame mrc file name is undefined in '//nmlfile) end if end if end if if (trim(anglefile).eq.'undefined') then call Message%printError('readNameList:',' angle file name is undefined in '//nmlfile) end if end if self%nml%cubochoric = cubochoric self%nml%homochoric = homochoric self%nml%rodrigues = rodrigues self%nml%stereographic = stereographic self%nml%eulerspace = eulerspace self%nml%reducetoRFZ = reducetoRFZ self%nml%nx = nx self%nml%ny = ny self%nml%nz = nz self%nml%overridepgnum = overridepgnum self%nml%MacKenzieCell = MacKenzieCell self%nml%rgb = rgb self%nml%sphrad = sphrad self%nml%distance = distance self%nml%scalingmode = scalingmode self%nml%mrcmode = mrcmode self%nml%df3file = df3file self%nml%mrcfile = mrcfile self%nml%framemrcfile = framemrcfile self%nml%xtalname = trim(xtalname) self%nml%povrayfile = trim(povrayfile) self%nml%anglefile = trim(anglefile) end subroutine readNameList_ !-------------------------------------------------------------------------- function getNameList_(self) result(nml) !DEC$ ATTRIBUTES DLLEXPORT :: getNameList_ !! author: MDG !! version: 1.0 !! date: 03/27/20 !! !! pass the namelist for the OrientationViz_T Class to the calling program IMPLICIT NONE class(OrientationViz_T), INTENT(INOUT) :: self type(OrientationVizNameListType) :: nml nml = self%nml end function getNameList_ !-------------------------------------------------------------------------- function get_cubochoric_(self) result(out) !DEC$ ATTRIBUTES DLLEXPORT :: get_cubochoric_ !! author: MDG !! version: 1.0 !! date: 03/27/20 !! !! get cubochoric from the OrientationViz_T class IMPLICIT NONE class(OrientationViz_T), INTENT(INOUT) :: self integer(kind=irg) :: out out = self%nml%cubochoric end function get_cubochoric_ !-------------------------------------------------------------------------- subroutine set_cubochoric_(self,inp) !DEC$ ATTRIBUTES DLLEXPORT :: set_cubochoric_ !! author: MDG !! version: 1.0 !! date: 03/27/20 !! !! set cubochoric in the OrientationViz_T class IMPLICIT NONE class(OrientationViz_T), INTENT(INOUT) :: self integer(kind=irg), INTENT(IN) :: inp self%nml%cubochoric = inp end subroutine set_cubochoric_ !-------------------------------------------------------------------------- function get_homochoric_(self) result(out) !DEC$ ATTRIBUTES DLLEXPORT :: get_homochoric_ !! author: MDG !! version: 1.0 !! date: 03/27/20 !! !! get homochoric from the OrientationViz_T class IMPLICIT NONE class(OrientationViz_T), INTENT(INOUT) :: self integer(kind=irg) :: out out = self%nml%homochoric end function get_homochoric_ !-------------------------------------------------------------------------- subroutine set_homochoric_(self,inp) !DEC$ ATTRIBUTES DLLEXPORT :: set_homochoric_ !! author: MDG !! version: 1.0 !! date: 03/27/20 !! !! set homochoric in the OrientationViz_T class IMPLICIT NONE class(OrientationViz_T), INTENT(INOUT) :: self integer(kind=irg), INTENT(IN) :: inp self%nml%homochoric = inp end subroutine set_homochoric_ !-------------------------------------------------------------------------- function get_rodrigues_(self) result(out) !DEC$ ATTRIBUTES DLLEXPORT :: get_rodrigues_ !! author: MDG !! version: 1.0 !! date: 03/27/20 !! !! get rodrigues from the OrientationViz_T class IMPLICIT NONE class(OrientationViz_T), INTENT(INOUT) :: self integer(kind=irg) :: out out = self%nml%rodrigues end function get_rodrigues_ !-------------------------------------------------------------------------- subroutine set_rodrigues_(self,inp) !DEC$ ATTRIBUTES DLLEXPORT :: set_rodrigues_ !! author: MDG !! version: 1.0 !! date: 03/27/20 !! !! set rodrigues in the OrientationViz_T class IMPLICIT NONE class(OrientationViz_T), INTENT(INOUT) :: self integer(kind=irg), INTENT(IN) :: inp self%nml%rodrigues = inp end subroutine set_rodrigues_ !-------------------------------------------------------------------------- function get_stereographic_(self) result(out) !DEC$ ATTRIBUTES DLLEXPORT :: get_stereographic_ !! author: MDG !! version: 1.0 !! date: 03/27/20 !! !! get stereographic from the OrientationViz_T class IMPLICIT NONE class(OrientationViz_T), INTENT(INOUT) :: self integer(kind=irg) :: out out = self%nml%stereographic end function get_stereographic_ !-------------------------------------------------------------------------- subroutine set_stereographic_(self,inp) !DEC$ ATTRIBUTES DLLEXPORT :: set_stereographic_ !! author: MDG !! version: 1.0 !! date: 03/27/20 !! !! set stereographic in the OrientationViz_T class IMPLICIT NONE class(OrientationViz_T), INTENT(INOUT) :: self integer(kind=irg), INTENT(IN) :: inp self%nml%stereographic = inp end subroutine set_stereographic_ !-------------------------------------------------------------------------- function get_eulerspace_(self) result(out) !DEC$ ATTRIBUTES DLLEXPORT :: get_eulerspace_ !! author: MDG !! version: 1.0 !! date: 03/27/20 !! !! get eulerspace from the OrientationViz_T class IMPLICIT NONE class(OrientationViz_T), INTENT(INOUT) :: self integer(kind=irg) :: out out = self%nml%eulerspace end function get_eulerspace_ !-------------------------------------------------------------------------- subroutine set_eulerspace_(self,inp) !DEC$ ATTRIBUTES DLLEXPORT :: set_eulerspace_ !! author: MDG !! version: 1.0 !! date: 03/27/20 !! !! set eulerspace in the OrientationViz_T class IMPLICIT NONE class(OrientationViz_T), INTENT(INOUT) :: self integer(kind=irg), INTENT(IN) :: inp self%nml%eulerspace = inp end subroutine set_eulerspace_ !-------------------------------------------------------------------------- function get_reducetoRFZ_(self) result(out) !DEC$ ATTRIBUTES DLLEXPORT :: get_reducetoRFZ_ !! author: MDG !! version: 1.0 !! date: 03/27/20 !! !! get reducetoRFZ from the OrientationViz_T class IMPLICIT NONE class(OrientationViz_T), INTENT(INOUT) :: self integer(kind=irg) :: out out = self%nml%reducetoRFZ end function get_reducetoRFZ_ !-------------------------------------------------------------------------- subroutine set_reducetoRFZ_(self,inp) !DEC$ ATTRIBUTES DLLEXPORT :: set_reducetoRFZ_ !! author: MDG !! version: 1.0 !! date: 03/27/20 !! !! set reducetoRFZ in the OrientationViz_T class IMPLICIT NONE class(OrientationViz_T), INTENT(INOUT) :: self integer(kind=irg), INTENT(IN) :: inp self%nml%reducetoRFZ = inp end subroutine set_reducetoRFZ_ !-------------------------------------------------------------------------- function get_nx_(self) result(out) !DEC$ ATTRIBUTES DLLEXPORT :: get_nx_ !! author: MDG !! version: 1.0 !! date: 03/27/20 !! !! get nx from the OrientationViz_T class IMPLICIT NONE class(OrientationViz_T), INTENT(INOUT) :: self integer(kind=irg) :: out out = self%nml%nx end function get_nx_ !-------------------------------------------------------------------------- subroutine set_nx_(self,inp) !DEC$ ATTRIBUTES DLLEXPORT :: set_nx_ !! author: MDG !! version: 1.0 !! date: 03/27/20 !! !! set nx in the OrientationViz_T class IMPLICIT NONE class(OrientationViz_T), INTENT(INOUT) :: self integer(kind=irg), INTENT(IN) :: inp self%nml%nx = inp end subroutine set_nx_ !-------------------------------------------------------------------------- function get_ny_(self) result(out) !DEC$ ATTRIBUTES DLLEXPORT :: get_ny_ !! author: MDG !! version: 1.0 !! date: 03/27/20 !! !! get ny from the OrientationViz_T class IMPLICIT NONE class(OrientationViz_T), INTENT(INOUT) :: self integer(kind=irg) :: out out = self%nml%ny end function get_ny_ !-------------------------------------------------------------------------- subroutine set_ny_(self,inp) !DEC$ ATTRIBUTES DLLEXPORT :: set_ny_ !! author: MDG !! version: 1.0 !! date: 03/27/20 !! !! set ny in the OrientationViz_T class IMPLICIT NONE class(OrientationViz_T), INTENT(INOUT) :: self integer(kind=irg), INTENT(IN) :: inp self%nml%ny = inp end subroutine set_ny_ !-------------------------------------------------------------------------- function get_nz_(self) result(out) !DEC$ ATTRIBUTES DLLEXPORT :: get_nz_ !! author: MDG !! version: 1.0 !! date: 03/27/20 !! !! get nz from the OrientationViz_T class IMPLICIT NONE class(OrientationViz_T), INTENT(INOUT) :: self integer(kind=irg) :: out out = self%nml%nz end function get_nz_ !-------------------------------------------------------------------------- subroutine set_nz_(self,inp) !DEC$ ATTRIBUTES DLLEXPORT :: set_nz_ !! author: MDG !! version: 1.0 !! date: 03/27/20 !! !! set nz in the OrientationViz_T class IMPLICIT NONE class(OrientationViz_T), INTENT(INOUT) :: self integer(kind=irg), INTENT(IN) :: inp self%nml%nz = inp end subroutine set_nz_ !-------------------------------------------------------------------------- function get_overridepgnum_(self) result(out) !DEC$ ATTRIBUTES DLLEXPORT :: get_overridepgnum_ !! author: MDG !! version: 1.0 !! date: 03/27/20 !! !! get overridepgnum from the OrientationViz_T class IMPLICIT NONE class(OrientationViz_T), INTENT(INOUT) :: self integer(kind=irg) :: out out = self%nml%overridepgnum end function get_overridepgnum_ !-------------------------------------------------------------------------- subroutine set_overridepgnum_(self,inp) !DEC$ ATTRIBUTES DLLEXPORT :: set_overridepgnum_ !! author: MDG !! version: 1.0 !! date: 03/27/20 !! !! set overridepgnum in the OrientationViz_T class IMPLICIT NONE class(OrientationViz_T), INTENT(INOUT) :: self integer(kind=irg), INTENT(IN) :: inp self%nml%overridepgnum = inp end subroutine set_overridepgnum_ !-------------------------------------------------------------------------- function get_MacKenzieCell_(self) result(out) !DEC$ ATTRIBUTES DLLEXPORT :: get_MacKenzieCell_ !! author: MDG !! version: 1.0 !! date: 03/27/20 !! !! get MacKenzieCell from the OrientationViz_T class IMPLICIT NONE class(OrientationViz_T), INTENT(INOUT) :: self integer(kind=irg) :: out out = self%nml%MacKenzieCell end function get_MacKenzieCell_ !-------------------------------------------------------------------------- subroutine set_MacKenzieCell_(self,inp) !DEC$ ATTRIBUTES DLLEXPORT :: set_MacKenzieCell_ !! author: MDG !! version: 1.0 !! date: 03/27/20 !! !! set MacKenzieCell in the OrientationViz_T class IMPLICIT NONE class(OrientationViz_T), INTENT(INOUT) :: self integer(kind=irg), INTENT(IN) :: inp self%nml%MacKenzieCell = inp end subroutine set_MacKenzieCell_ !-------------------------------------------------------------------------- function get_rgb_(self) result(out) !DEC$ ATTRIBUTES DLLEXPORT :: get_rgb_ !! author: MDG !! version: 1.0 !! date: 03/27/20 !! !! get rgb from the OrientationViz_T class IMPLICIT NONE class(OrientationViz_T), INTENT(INOUT) :: self real(kind=sgl) :: out(3) out = self%nml%rgb end function get_rgb_ !-------------------------------------------------------------------------- subroutine set_rgb_(self,inp) !DEC$ ATTRIBUTES DLLEXPORT :: set_rgb_ !! author: MDG !! version: 1.0 !! date: 03/27/20 !! !! set rgb(3) in the OrientationViz_T class IMPLICIT NONE class(OrientationViz_T), INTENT(INOUT) :: self real(kind=sgl), INTENT(IN) :: inp(3) self%nml%rgb = inp end subroutine set_rgb_ !-------------------------------------------------------------------------- function get_sphrad_(self) result(out) !DEC$ ATTRIBUTES DLLEXPORT :: get_sphrad_ !! author: MDG !! version: 1.0 !! date: 03/27/20 !! !! get sphrad from the OrientationViz_T class IMPLICIT NONE class(OrientationViz_T), INTENT(INOUT) :: self real(kind=sgl) :: out out = self%nml%sphrad end function get_sphrad_ !-------------------------------------------------------------------------- subroutine set_sphrad_(self,inp) !DEC$ ATTRIBUTES DLLEXPORT :: set_sphrad_ !! author: MDG !! version: 1.0 !! date: 03/27/20 !! !! set sphrad in the OrientationViz_T class IMPLICIT NONE class(OrientationViz_T), INTENT(INOUT) :: self real(kind=sgl), INTENT(IN) :: inp self%nml%sphrad = inp end subroutine set_sphrad_ !-------------------------------------------------------------------------- function get_distance_(self) result(out) !DEC$ ATTRIBUTES DLLEXPORT :: get_distance_ !! author: MDG !! version: 1.0 !! date: 03/27/20 !! !! get distance from the OrientationViz_T class IMPLICIT NONE class(OrientationViz_T), INTENT(INOUT) :: self real(kind=sgl) :: out out = self%nml%distance end function get_distance_ !-------------------------------------------------------------------------- subroutine set_distance_(self,inp) !DEC$ ATTRIBUTES DLLEXPORT :: set_distance_ !! author: MDG !! version: 1.0 !! date: 03/27/20 !! !! set distance in the OrientationViz_T class IMPLICIT NONE class(OrientationViz_T), INTENT(INOUT) :: self real(kind=sgl), INTENT(IN) :: inp self%nml%distance = inp end subroutine set_distance_ !-------------------------------------------------------------------------- function get_scalingmode_(self) result(out) !DEC$ ATTRIBUTES DLLEXPORT :: get_scalingmode_ !! author: MDG !! version: 1.0 !! date: 03/27/20 !! !! get scalingmode from the OrientationViz_T class IMPLICIT NONE class(OrientationViz_T), INTENT(INOUT) :: self character(3) :: out out = self%nml%scalingmode end function get_scalingmode_ !-------------------------------------------------------------------------- subroutine set_scalingmode_(self,inp) !DEC$ ATTRIBUTES DLLEXPORT :: set_scalingmode_ !! author: MDG !! version: 1.0 !! date: 03/27/20 !! !! set scalingmode in the OrientationViz_T class IMPLICIT NONE class(OrientationViz_T), INTENT(INOUT) :: self character(3), INTENT(IN) :: inp self%nml%scalingmode = inp end subroutine set_scalingmode_ !-------------------------------------------------------------------------- function get_mrcmode_(self) result(out) !DEC$ ATTRIBUTES DLLEXPORT :: get_mrcmode_ !! author: MDG !! version: 1.0 !! date: 03/27/20 !! !! get mrcmode from the OrientationViz_T class IMPLICIT NONE class(OrientationViz_T), INTENT(INOUT) :: self character(3) :: out out = self%nml%mrcmode end function get_mrcmode_ !-------------------------------------------------------------------------- subroutine set_mrcmode_(self,inp) !DEC$ ATTRIBUTES DLLEXPORT :: set_mrcmode_ !! author: MDG !! version: 1.0 !! date: 03/27/20 !! !! set mrcmode in the OrientationViz_T class IMPLICIT NONE class(OrientationViz_T), INTENT(INOUT) :: self character(3), INTENT(IN) :: inp self%nml%mrcmode = inp end subroutine set_mrcmode_ !-------------------------------------------------------------------------- function get_df3file_(self) result(out) !DEC$ ATTRIBUTES DLLEXPORT :: get_df3file_ !! author: MDG !! version: 1.0 !! date: 03/27/20 !! !! get df3file from the OrientationViz_T class IMPLICIT NONE class(OrientationViz_T), INTENT(INOUT) :: self character(fnlen) :: out out = self%nml%df3file end function get_df3file_ !-------------------------------------------------------------------------- subroutine set_df3file_(self,inp) !DEC$ ATTRIBUTES DLLEXPORT :: set_df3file_ !! author: MDG !! version: 1.0 !! date: 03/27/20 !! !! set df3file in the OrientationViz_T class IMPLICIT NONE class(OrientationViz_T), INTENT(INOUT) :: self character(fnlen), INTENT(IN) :: inp self%nml%df3file = inp end subroutine set_df3file_ !-------------------------------------------------------------------------- function get_mrcfile_(self) result(out) !DEC$ ATTRIBUTES DLLEXPORT :: get_mrcfile_ !! author: MDG !! version: 1.0 !! date: 03/27/20 !! !! get mrcfile from the OrientationViz_T class IMPLICIT NONE class(OrientationViz_T), INTENT(INOUT) :: self character(fnlen) :: out out = self%nml%mrcfile end function get_mrcfile_ !-------------------------------------------------------------------------- subroutine set_mrcfile_(self,inp) !DEC$ ATTRIBUTES DLLEXPORT :: set_mrcfile_ !! author: MDG !! version: 1.0 !! date: 03/27/20 !! !! set mrcfile in the OrientationViz_T class IMPLICIT NONE class(OrientationViz_T), INTENT(INOUT) :: self character(fnlen), INTENT(IN) :: inp self%nml%mrcfile = inp end subroutine set_mrcfile_ !-------------------------------------------------------------------------- function get_framemrcfile_(self) result(out) !DEC$ ATTRIBUTES DLLEXPORT :: get_framemrcfile_ !! author: MDG !! version: 1.0 !! date: 03/27/20 !! !! get framemrcfile from the OrientationViz_T class IMPLICIT NONE class(OrientationViz_T), INTENT(INOUT) :: self character(fnlen) :: out out = self%nml%framemrcfile end function get_framemrcfile_ !-------------------------------------------------------------------------- subroutine set_framemrcfile_(self,inp) !DEC$ ATTRIBUTES DLLEXPORT :: set_framemrcfile_ !! author: MDG !! version: 1.0 !! date: 03/27/20 !! !! set framemrcfile in the OrientationViz_T class IMPLICIT NONE class(OrientationViz_T), INTENT(INOUT) :: self character(fnlen), INTENT(IN) :: inp self%nml%framemrcfile = inp end subroutine set_framemrcfile_ !-------------------------------------------------------------------------- function get_xtalname_(self) result(out) !DEC$ ATTRIBUTES DLLEXPORT :: get_xtalname_ !! author: MDG !! version: 1.0 !! date: 03/27/20 !! !! get xtalname from the OrientationViz_T class IMPLICIT NONE class(OrientationViz_T), INTENT(INOUT) :: self character(fnlen) :: out out = self%nml%xtalname end function get_xtalname_ !-------------------------------------------------------------------------- subroutine set_xtalname_(self,inp) !DEC$ ATTRIBUTES DLLEXPORT :: set_xtalname_ !! author: MDG !! version: 1.0 !! date: 03/27/20 !! !! set xtalname in the OrientationViz_T class IMPLICIT NONE class(OrientationViz_T), INTENT(INOUT) :: self character(fnlen), INTENT(IN) :: inp self%nml%xtalname = inp end subroutine set_xtalname_ !-------------------------------------------------------------------------- function get_povrayfile_(self) result(out) !DEC$ ATTRIBUTES DLLEXPORT :: get_povrayfile_ !! author: MDG !! version: 1.0 !! date: 03/27/20 !! !! get povrayfile from the OrientationViz_T class IMPLICIT NONE class(OrientationViz_T), INTENT(INOUT) :: self character(fnlen) :: out out = self%nml%povrayfile end function get_povrayfile_ !-------------------------------------------------------------------------- subroutine set_povrayfile_(self,inp) !DEC$ ATTRIBUTES DLLEXPORT :: set_povrayfile_ !! author: MDG !! version: 1.0 !! date: 03/27/20 !! !! set povrayfile in the OrientationViz_T class IMPLICIT NONE class(OrientationViz_T), INTENT(INOUT) :: self character(fnlen), INTENT(IN) :: inp self%nml%povrayfile = inp end subroutine set_povrayfile_ !-------------------------------------------------------------------------- function get_anglefile_(self) result(out) !DEC$ ATTRIBUTES DLLEXPORT :: get_anglefile_ !! author: MDG !! version: 1.0 !! date: 03/27/20 !! !! get anglefile from the OrientationViz_T class IMPLICIT NONE class(OrientationViz_T), INTENT(INOUT) :: self character(fnlen) :: out out = self%nml%anglefile end function get_anglefile_ !-------------------------------------------------------------------------- subroutine set_anglefile_(self,inp) !DEC$ ATTRIBUTES DLLEXPORT :: set_anglefile_ !! author: MDG !! version: 1.0 !! date: 03/27/20 !! !! set anglefile in the OrientationViz_T class IMPLICIT NONE class(OrientationViz_T), INTENT(INOUT) :: self character(fnlen), INTENT(IN) :: inp self%nml%anglefile = inp end subroutine set_anglefile_ !-------------------------------------------------------------------------- subroutine OrientationViz_(self, EMsoft, progname, progdesc) !DEC$ ATTRIBUTES DLLEXPORT :: OrientationViz_ !! author: MDG !! version: 1.0 !! date: 03/27/20 !! !! perform the computations use mod_EMsoft use mod_io use mod_crystallography use mod_symmetry use mod_rotations use mod_Lambert use mod_quaternions use mod_povray use mod_so3 use mod_dirstats use mod_math use mod_so3 use mod_HDFsupport, only: openFortranHDFInterface, closeFortranHDFInterface IMPLICIT NONE class(OrientationViz_T), INTENT(INOUT) :: self type(EMsoft_T), INTENT(INOUT) :: EMsoft character(fnlen), INTENT(INOUT) :: progname character(fnlen), INTENT(INOUT) :: progdesc type(IO_T) :: Message type(PoVRay_T) :: PoVcu, PoVho, PoVro, PoVst, PoVeu type(DirStat_T) :: dict type(so3_T) :: SO type(SpaceGroup_T) :: SG type(cell_T) :: cell type(QuaternionArray_T) :: Pm, dummy type(r_T) :: ro type(h_T) :: ho type(s_T) :: st type(e_T) :: eu type(c_T) :: cu real(kind=dbl) :: rod(4), sh(3), xyz(3), xyz4(4), XY(2), euFZ(3), rstep, ac, dd, qur(4) integer(kind=irg) :: i,j,k, icnt, imax, nt, npx, ngroups, groups(10), dataunit4=25, dataunit5=40, & ierr, ig, ix, iy, iz, num, ixyz(3), pgnum, io_int(2), nums(3) real(kind=dbl) :: delta, eps = 1.0D-2 character(fnlen) :: locationline, fname, dataname, outname, lightline, skyline, rgbstring, locationlineeu, & colorstring, df3name, mrcname character(11) :: p0 character(21) :: p1, p2 character(9) :: px, py, pz, pd character(7) :: pd2 character(3) :: gid(10) character(2) :: angleformat integer(kind=irg) :: FZtype, FZorder, numpoints, seed, istat, FZtype_override, FZorder_override logical :: levelset, skipthis, drawMK real(kind=dbl),allocatable :: samples(:,:) real(kind=dbl) :: muhat(4), kappahat ! rendering volumes real(kind=sgl),allocatable :: rovol(:,:,:), spvol(:,:,:), euvol(:,:,:), cuvol(:,:,:), hovol(:,:,:) real(kind=sgl) :: maxRFZdis(5), rodx, rody, rodz, eudx, eudy, eudz, spdx, spdy, spdz, cudx, cudy, cudz, & hodx, hody, hodz, scalefactors(3,5), acubo, ahomo, grid3(3,3,3), eyepos(3) type(FZpointd),pointer :: FZtmp associate( enl=>self%nml ) call setRotationPrecision('Double') ! turn off the automatic range check whenever a rotation class is instantiated; ! in the povray module, we get a lot of out-of-range warnings for the euler mode ! so we turn those off since they are not errors. rotationRangeCheck = .FALSE. ! init a few parameters and arrays grid3 = trilinear_splat( (/ 0.0, 0.0, 0.0/), (/ 0.0, 0.0, 0.0/), init=.TRUE.) ! define some parameters sh = (/ sngl(cPi), sngl(cPi/2.D0), sngl(cPi) /) ! offset parameter for primary Euler cell ! get the space group symmetry call openFortranHDFInterface() call cell%getCrystalData(enl%xtalname, SG, EMsoft) call closeFortranHDFInterface() pgnum = SG%getPGnumber() ! set the FZtype and FZorder parameters in the SO class if (enl%overridepgnum.ne.0) then pgnum = enl%overridepgnum end if SO = so3_T( pgnum, zerolist='FZ') call SO%getFZtypeandorder(FZtype, FZorder) ! Regular or MacKenzie FZ ? if (enl%MacKenzieCell.eq.1) then call SO%setMK(.TRUE.) call SO%setMFZtypeandorder(pgnum) call SO%getMFZtypeandorder(FZtype, FZorder) end if ! define some FZ dimensional parameters (used for volume rendering) maxRFZdis = (/ 5.0, 2.5, 1.0, 1.0/3.0, sqrt(2.0)-1.0 /) scalefactors(1:3,1) = (/ 1.0, 1.0, 1.0 /) if (FZorder.ne.0) then scalefactors(1:3,2) = (/ 2.0, 2.0, 2.0*tan(sngl(cPi)*0.5/float(FZorder)) /) scalefactors(1:3,3) = (/ 2.0, 2.0, 2.0*tan(sngl(cPi)*0.5/float(FZorder)) /) end if scalefactors(1:3,4) = (/ 2.0/3.0, 2.0/3.0, 2.0/3.0 /) scalefactors(1:3,5) = (/ (sqrt(2.0)-1.0)/0.5, (sqrt(2.0)-1.0)/0.5, (sqrt(2.0)-1.0)/0.5 /) ! get the symmetry operator quaternions for the point group call dummy%QSym_Init(pgnum, Pm) ! make sure that the outname does not have an extension (no . in the string) outname = trim(enl%povrayfile) if ((index(trim(outname),'.').ne.0).and.(index(trim(outname),'.').gt.20)) then call Message%printError('EMOrientationViz','the output filename may not contain any periods') end if outname = EMsoft%generateFilePath('EMdatapathname', enl%povrayfile) ! generate the locationline parameters for PoVRay rendering dd = enl%distance eyepos = (/ 0.387, 0.825, 0.412 /) eyepos = eyepos/sqrt( sum( eyepos*eyepos)) write (px,"(F9.3)") eyepos(1) write (py,"(F9.3)") eyepos(2) write (pz,"(F9.3)") eyepos(3) write (pd,"(F9.3)") dd p0 = "location < " p1 = "*cos(clock*0.0174533)" p2 = "*sin(clock*0.0174533)" locationline = p0//px//p1//"-"//py//p2//","//px//p2//"+"//py//p1//","//pz//">*"//pd locationlineeu = p0//'5.0, 1.0, 0.0>*'//pd ! PoVRay/DF3 initializations (this opens the file, sets the camera and light source ! and allocates the rendering volume) !=========== ! cubochoric !=========== if (enl%cubochoric.ne.0) then if (enl%mrcmode.eq.'off') then call initFiles(EMsoft, enl, PoVcu, SO, 'cu', outname, dataunit, locationline ) end if ! create the rendering volume allocate(cuvol(-enl%nx:enl%nx,-enl%ny:enl%ny,-enl%nz:enl%nz),stat=istat) cuvol = 0.0 ! generate the x/y/z scaling factors ! these should be set so that the render box has the outer dimensions of the cubochoric cube, acubo = sngl(cPi)**0.6666666 * 0.5 cudx = float(enl%nx) / acubo cudy = float(enl%nx) / acubo cudz = float(enl%nz) / acubo end if !=========== ! homochoric !=========== if (enl%homochoric.ne.0) then if (enl%mrcmode.eq.'off') then call initFiles(EMsoft, enl, PoVcu, SO, 'ho', outname, dataunit2, locationline ) end if ! create the rendering volume allocate(hovol(-enl%nx:enl%nx,-enl%ny:enl%ny,-enl%nz:enl%nz),stat=istat) hovol = 0.0 ! generate the x/y/z scaling factors ! these should be set so that the render box has the outer dimensions of the cubochoric cube, ahomo = (3.0*sngl(cPi)/4.0)**0.3333333 hodx = float(enl%nx) / ahomo hody = float(enl%nx) / ahomo hodz = float(enl%nz) / ahomo end if !=========== ! Rodrigues !=========== if (enl%rodrigues.ne.0) then if (enl%mrcmode.eq.'off') then call initFiles(EMsoft, enl, PoVro, SO, 'ro', outname, dataunit3, locationline ) end if ! create the rendering volume allocate(rovol(-enl%nx:enl%nx,-enl%ny:enl%ny,-enl%nz:enl%nz),stat=istat) rovol = 0.0 ! generate the x/y/z scaling factors ! these should be set so that the render box has the outer dimensions of the RFZ, ! with the exception of the cyclic groups for which we pick some value that is ! reasonable. For the dihedral groups the box should have an edge length of 2, ! for tetrahedral 1/3, and for octahedral sqrt(2)-1. rodx = float(enl%nx) rody = float(enl%nx) rodz = float(enl%nx) end if !============== ! stereographic !============== if (enl%stereographic.ne.0) then if (enl%mrcmode.eq.'off') then call initFiles(EMsoft, enl, PoVst, SO, 'st', outname, dataunit4, locationline ) end if ! create the rendering volume allocate(spvol(-enl%nx:enl%nx,-enl%ny:enl%ny,-enl%nz:enl%nz),stat=istat) spvol = 0.0 ! generate the x/y/z scaling factors ! these should be set so that the render box has the outer dimensions of the stereographic sphere, ! which has unit radius. spdx = float(enl%nx) spdy = float(enl%nx) spdz = float(enl%nz) end if !============== ! stereographic !============== if (enl%eulerspace.ne.0) then if (enl%mrcmode.eq.'off') then ! Euler space has a slightly different eye position so we need to redefine the locationline and skyline strings fname = trim(outname)//'-eu.pov' skyline = 'sky <0.0, 1.0, 0.0>' PoVeu = PoVRay_T( EMsoft, fname, dunit=dataunit5, nmlfile=EMsoft%nmldeffile, skyline = skyline, & locationline = locationlineeu ) call initFiles(EMsoft, enl, PoVeu, SO, 'eu', outname, dataunit5, locationlineeu ) end if ! create the rendering volume allocate(euvol(1:2*enl%nx+1,1:2*enl%ny+1,1:2*enl%nz+1),stat=istat) euvol = 0.0 ! generate the x/y/z scaling factors ! these should be set so that the render box has the outer dimensions of the primary Euler cell eudx = float(2*enl%nx+1) / (2.0*cPi) eudy = float(2*enl%ny+1) / (2.0*cPi) eudz = float(2*enl%nz+1) / (2.0*cPi) end if ! data file of orientations, convert the orientations to the RFZ fname = EMsoft%generateFilePath('EMdatapathname', enl%anglefile) call SO%getOrientationsfromFile(fname) ! next, we reduce these orientations to the RFZ or MacKenzie cell if (enl%MacKenzieCell.eq.0) then call SO%ReducelisttoRFZ(Pm) else call SO%ReducelisttoMFZ(SG) ! this requires the full crystal point group end if FZtmp => SO%getListHead('FZ') ! point to the top of the list numpoints = SO%getListCount('FZ') pointloop: do ix = 1,numpoints ro = FZtmp%rod ! are we drawing a point or splatting it into a volume ? if ((trim(enl%df3file).eq.'undefined').and.(enl%mrcmode.eq.'off')) then ! we have the point, so now transform it to all alternative representations and draw the ! corresponding spheres ! cubochoric if (enl%cubochoric.ne.0) then cu = ro%rc() xyz = sngl(cu%c_copyd()) write (dataunit,"('sphere { <',2(F14.6,','),F14.6,'>,',F6.4,' }')") xyz(1:3), enl%sphrad end if ! homochoric if (enl%homochoric.ne.0) then ho = ro%rh() xyz = sngl(ho%h_copyd()) write (dataunit2,"('sphere { <',2(F14.6,','),F14.6,'>,',F6.4,' }')") xyz(1:3), enl%sphrad end if ! rodrigues if (enl%rodrigues.ne.0) then xyz4 = sngl(ro%r_copyd()) if (xyz4(4).le.1000.0) then write (dataunit3,"('sphere { <',2(F20.6,','),F20.6,'>,',F6.4,' }')") xyz4(1:3)*xyz4(4), enl%sphrad end if end if ! stereographic if (enl%stereographic.ne.0) then st = ro%rs() xyz = sngl(st%s_copyd()) write (dataunit4,"('sphere { <',2(F14.6,','),F14.6,'>,',F6.4,' }')") xyz(1:3), enl%sphrad end if ! Euler box if (enl%eulerspace.ne.0) then eu = ro%re() xyz = sngl(eu%e_copyd()) write (dataunit5,"('sphere { <',2(F14.6,','),F14.6,'>,',F6.4,' }')") xyz(1:3) - sh(1:3), enl%sphrad end if else ! we're filling up the rendering volume(s) ! cubochoric rendering volume if (enl%cubochoric.ne.0) then cu = ro%rc() xyz = sngl(cu%c_copyd()) grid3 = trilinear_splat( sngl(xyz(1:3)), (/ cudx, cudy, cudz /), init=.FALSE.) ixyz(1:3) = nint(xyz(1:3) * (/ cudx, cudy, cudz /)) if ((abs(ixyz(1)).lt.enl%nx).and.(abs(ixyz(2)).lt.enl%ny).and.(abs(ixyz(3)).lt.enl%nz) ) then cuvol(ixyz(1)-1:ixyz(1)+1,ixyz(2)-1:ixyz(2)+1,ixyz(3)-1:ixyz(3)+1) = & cuvol(ixyz(1)-1:ixyz(1)+1,ixyz(2)-1:ixyz(2)+1,ixyz(3)-1:ixyz(3)+1) + grid3 end if end if ! homochoric rendering volume if (enl%homochoric.ne.0) then ho = ro%rh() xyz = sngl(ho%h_copyd()) grid3 = trilinear_splat( sngl(xyz(1:3)), (/ hodx, hody, hodz /), init=.FALSE.) ixyz(1:3) = nint(xyz(1:3) * (/ hodx, hody, hodz /)) if ((abs(ixyz(1)).lt.enl%nx).and.(abs(ixyz(2)).lt.enl%ny).and.(abs(ixyz(3)).lt.enl%nz) ) then hovol(ixyz(1)-1:ixyz(1)+1,ixyz(2)-1:ixyz(2)+1,ixyz(3)-1:ixyz(3)+1) = & hovol(ixyz(1)-1:ixyz(1)+1,ixyz(2)-1:ixyz(2)+1,ixyz(3)-1:ixyz(3)+1) + grid3 end if end if ! rodrigues rendering volume if (enl%rodrigues.ne.0) then xyz4 = sngl(ro%r_copyd()) grid3 = trilinear_splat( sngl(xyz4(1:3)*xyz4(4)), (/ rodx, rody, rodz /), init=.FALSE.) ixyz(1:3) = nint((xyz4(1:3)*xyz4(4)) * (/ rodx, rody, rodz /)) if ((abs(ixyz(1)).lt.enl%nx).and.(abs(ixyz(2)).lt.enl%ny).and.(abs(ixyz(3)).lt.enl%nz) ) then rovol(ixyz(1)-1:ixyz(1)+1,ixyz(2)-1:ixyz(2)+1,ixyz(3)-1:ixyz(3)+1) = & rovol(ixyz(1)-1:ixyz(1)+1,ixyz(2)-1:ixyz(2)+1,ixyz(3)-1:ixyz(3)+1) + grid3 end if end if ! stereographic rendering volume if (enl%stereographic.ne.0) then st = ro%rs() xyz = sngl(st%s_copyd()) grid3 = trilinear_splat( sngl(xyz), (/ spdx, spdy, spdz /), init=.FALSE.) ixyz(1:3) = nint(xyz(1:3) * (/ spdx, spdy, spdz /)) ! in the following test, we are potentially eliminating a few points that lie on ! the surface of the volume array... if ((abs(ixyz(1)).lt.enl%nx).and.(abs(ixyz(2)).lt.enl%ny).and.(abs(ixyz(3)).lt.enl%nz) ) then spvol(ixyz(1)-1:ixyz(1)+1,ixyz(2)-1:ixyz(2)+1,ixyz(3)-1:ixyz(3)+1) = & spvol(ixyz(1)-1:ixyz(1)+1,ixyz(2)-1:ixyz(2)+1,ixyz(3)-1:ixyz(3)+1) + grid3 end if end if ! Euler primary cell rendering volume [needs to be updated with trilinear splatting] if (enl%eulerspace.ne.0) then eu = ro%re() xyz = sngl(eu%e_copyd()) xyz(1) = mod(xyz(1)+10.0*cPi,2.0*cPi) xyz(2) = mod(xyz(2)+5.0*cPi,cPi) xyz(3) = mod(xyz(3)+10.0*cPi,2.0*cPi) ixyz(1:3) = nint(xyz(1:3) * (/ eudx, eudy * 2.0, eudz /)) if ((ixyz(1).le.2*enl%nx).and.(ixyz(2).le.2*enl%ny).and.(ixyz(3).le.2*enl%nz) ) then euvol(ixyz(1)+1,ixyz(2)+1,ixyz(3)+1) = euvol(ixyz(1)+1,ixyz(2)+1,ixyz(3)+1) + 1.0 end if end if end if FZtmp => FZtmp%next end do pointloop ! final stage of the program so close the PoVray files if (enl%mrcmode.eq.'off') then if (trim(enl%df3file).eq.'undefined') then ! we're drawing spheres, so close the union and add color information write(rgbstring,"(F8.6,',',F8.6,',',F8.6)") enl%rgb(1:3) colorstring = 'material { texture { pigment { rgb <'//trim(rgbstring)//'> filter 0.95 }' if (enl%cubochoric.ne.0) then write (dataunit,"(A)") trim(colorstring) write (dataunit,"(' finish { diffuse 0.6, 0.6 brilliance 1.0 } } } } ')") write (dataunit,"(A)") 'background { color rgb <0.9, 0.9, 0.9> }' call PoVcu%closeFile() call Message%printMessage('PoVray rendering script stored in '//trim(outname)//'-cu.pov') end if if (enl%homochoric.ne.0) then write (dataunit2,"(A)") trim(colorstring) write (dataunit2,"(' finish { diffuse 0.6, 0.6 brilliance 1.0 } } } }')") write (dataunit2,"(A)") 'background { color rgb <0.9, 0.9, 0.9> }' call PoVho%closeFile() call Message%printMessage('PoVray rendering script stored in '//trim(outname)//'-ho.pov') end if if (enl%rodrigues.ne.0) then write (dataunit3,"(A)") trim(colorstring) write (dataunit3,"('finish { diffuse 0.6, 0.6 brilliance 1.0 } } } }')") write (dataunit3,"(A)") 'background { color rgb <0.9, 0.9, 0.9> }' call PoVro%closeFile() call Message%printMessage('PoVray rendering script stored in '//trim(outname)//'-ro.pov') end if if (enl%stereographic.ne.0) then write (dataunit4,"(A)") trim(colorstring) write (dataunit4,"(' finish { diffuse 0.6, 0.6 brilliance 1.0 } } } }')") write (dataunit4,"(A)") 'background { color rgb <0.9, 0.9, 0.9> }' call PoVst%closeFile() call Message%printMessage('PoVray rendering script stored in '//trim(outname)//'-sp.pov') end if if (enl%eulerspace.ne.0) then write (dataunit5,"(A)") trim(colorstring) write (dataunit5,"(' finish { diffuse 0.6, 0.6 brilliance 1.0 } } } }')") write (dataunit5,"(A)") 'background { color rgb <0.9, 0.9, 0.9> }' call PoVeu%closeFile() call Message%printMessage('PoVray rendering script stored in '//trim(outname)//'-eu.pov') end if else ! we're writing the rendering volume to a DF3 file and closing the povray file if (enl%cubochoric.ne.0) then ! output the final rendering commands write (dataunit,"(A)") 'background { color rgb <0.2, 0.2, 0.2> }' write (dataunit,"('object { renderbox translate <-0.5, -0.5, -0.5>')") write (dataunit,"(' scale <',F10.6,',',F10.6,',',F10.6,' > }')") 2.0 * (/ acubo, acubo, acubo /) ! and close the file call PoVcu%closeFile() call Message%printMessage('PoVray rendering script stored in '//trim(outname)//'-cu.pov') df3name = trim(EMsoft%generateFilePath('EMdatapathname', enl%df3file))//'-cu.df3' call PoVcu%write_DF3file(df3name, cuvol, (/ enl%nx, enl%ny, enl%nz /), enl%scalingmode) end if if (enl%homochoric.ne.0) then ! output the final rendering commands write (dataunit2,"(A)") 'background { color rgb <0.2, 0.2, 0.2> }' write (dataunit2,"('object { renderbox translate <-0.5, -0.5, -0.5>')") write (dataunit2,"(' scale <',F10.6,',',F10.6,',',F10.6,' > }')") 2.0 * (/ ahomo, ahomo, ahomo /) ! and close the file call PoVho%closeFile() call Message%printMessage('PoVray rendering script stored in '//trim(outname)//'-ho.pov') df3name = trim(EMsoft%generateFilePath('EMdatapathname', enl%df3file))//'-ho.df3' call PoVho%write_DF3file(df3name, hovol, (/ enl%nx, enl%ny, enl%nz /), enl%scalingmode) end if if (enl%rodrigues.ne.0) then ! output the final rendering commands write (dataunit3,"(A)") 'background { color rgb <0.2, 0.2, 0.2> }' write (dataunit3,"('object { renderbox translate <-0.5, -0.5, -0.5>')") ! if (enl%overridepgnum.eq.0) then write (dataunit3,"(' scale <',F10.6,',',F10.6,',',F10.6,' > }')") scalefactors(1:3,FZtype+1) ! else ! write (dataunit3,"(' scale <',F10.6,',',F10.6,',',F10.6,' > }')") scalefactors(1:3,FZtype_override+1) ! end if ! and close the file call PoVro%closeFile() call Message%printMessage('PoVray rendering script stored in '//trim(outname)//'-ro.pov') df3name = trim(EMsoft%generateFilePath('EMdatapathname', enl%df3file))//'-ro.df3' call PoVro%write_DF3file(df3name, rovol, (/ enl%nx, enl%ny, enl%nz /), enl%scalingmode) end if if (enl%stereographic.ne.0) then ! output the final rendering commands write (dataunit4,"(A)") 'background { color rgb <0.2, 0.2, 0.2> }' write (dataunit4,"('object { renderbox translate <-0.5, -0.5, -0.5>')") write (dataunit4,"(' scale <',F10.6,',',F10.6,',',F10.6,' > }')") (/ 2.0, 2.0, 2.0 /) ! and close the file call PoVst%closeFile() call Message%printMessage('PoVray rendering script stored in '//trim(outname)//'-sp.pov') df3name = trim(EMsoft%generateFilePath('EMdatapathname', enl%df3file))//'-sp.df3' call PoVst%write_DF3file(df3name, spvol, (/ enl%nx, enl%ny, enl%nz /), enl%scalingmode) end if if (enl%eulerspace.ne.0) then ! output the final rendering commands write (dataunit5,"(A)") 'background { color rgb <0.2, 0.2, 0.2> }' write (dataunit5,"('object { renderbox scale < 6.2831855, 3.1415927, 6.2831855 > ')") write (dataunit5,"(' translate < -3.1415927, -1.5707964, -3.1415927 > } ')") ! and close the file call PoVeu%closeFile() call Message%printMessage('PoVray rendering script stored in '//trim(outname)//'-eu.pov') df3name = trim(EMsoft%generateFilePath('EMdatapathname', enl%df3file))//'-eu.df3' call PoVeu%write_DF3file(df3name, euvol, (/ enl%nx, enl%ny, enl%nz /), enl%scalingmode) end if end if else ! we're creating an .mrc file, so we do not need any of the povray commands... nums = (/ 2*enl%nx+1, 2*enl%ny+1, 2*enl%nz+1 /) if (enl%cubochoric.ne.0) then call generateMRCfile(EMsoft, enl, nums, dble(cuvol), 'cu') end if if (enl%homochoric.ne.0) then call generateMRCfile(EMsoft, enl, nums, dble(hovol), 'ho') end if if (enl%rodrigues.ne.0) then call generateMRCfile(EMsoft, enl, nums, dble(rovol), 'ro') end if if (enl%stereographic.ne.0) then call generateMRCfile(EMsoft, enl, nums, dble(spvol), 'sp') end if if (enl%eulerspace.ne.0) then call generateMRCfile(EMsoft, enl, nums, dble(euvol), 'eu') end if end if end associate end subroutine OrientationViz_ !-------------------------------------------------------------------------- subroutine initFiles(EMsoft, enl, PoV, SO, rep, outname, dunit, locationline) !DEC$ ATTRIBUTES DLLEXPORT :: initFiles !! author: MDG !! version: 1.0 !! date: 03/27/20 !! !! perform the file initializations use mod_EMsoft use mod_io use mod_povray use mod_so3 IMPLICIT NONE type(EMsoft_T),INTENT(INOUT) :: EMsoft type(OrientationVizNameListType),INTENT(INOUT) :: enl type(PoVRay_T),INTENT(INOUT) :: PoV character(2),INTENT(IN) :: rep type(so3_T),INTENT(INOUT) :: SO character(fnlen),INTENT(IN) :: outname integer(kind=irg),INTENT(IN) :: dunit character(fnlen),INTENT(IN) :: locationline type(IO_T) :: Message character(fnlen) :: fname, DF3name logical :: drawMK = .FALSE. integer(kind=irg) :: dFZ drawMK = SO%getMK() select case(rep) case('cu') dFZ = 1 case('ho') dFZ = 2 case('st') dFZ = 3 case('ro') dFZ = 4 case('eu') dFZ = 5 end select fname = trim(outname)//'-'//rep//'.pov' call Message%printMessage('opening '//trim(fname)) if (rep.ne.'eu') then PoV = PoVRay_T( EMsoft, fname, dunit=dunit, nmlfile=EMsoft%nmldeffile, locationline=locationline ) end if if (trim(enl%df3file).eq.'undefined') then ! we're just going to draw a bunch of spheres, so put them together in a PoVRay union call PoV%drawFZ(SO, dFZ, 0.005D0) ! open the union here write (dunit,"('union { ')") else ! insert code to read in a 3D Density File (df3) containing the object to be rendered df3name = trim(EMsoft%generateFilePath('EMdatapathname',enl%df3file))//'-'//rep//'.df3' if (enl%scalingmode.eq.'lev') then call PoV%declare_DF3file(df3name,levelset=.TRUE.) else call PoV%declare_DF3file(df3name) end if call PoV%drawFZ(SO, dFZ, 0.005D0) end if end subroutine initFiles !-------------------------------------------------------------------------- subroutine generateMRCfile(EMsoft, enl, nums, volume, rep) !DEC$ ATTRIBUTES DLLEXPORT :: generateMRCfile use mod_EMsoft use mod_MRC use mod_io IMPLICIT NONE type(EMsoft_T),INTENT(INOUT) :: EMsoft type(OrientationVizNameListType),INTENT(INOUT) :: enl integer(kind=irg), INTENT(IN) :: nums(3) real(kind=dbl),INTENT(IN) :: volume(nums(1),nums(2),nums(3)) character(2),INTENT(IN) :: rep character(fnlen) :: mrcname type(MRC_T) :: MRC type(MRCstruct) :: MRCheader type(FEIstruct) :: FEIheaders(1024) integer(kind=irg) :: iz real(kind=dbl) :: psum(nums(3)) type(IO_T) :: Message mrcname = trim(EMsoft%generateFilePath('EMdatapathname', enl%mrcfile))//'-'//rep//'.mrc' MRC = MRC_T(mrcname) MRCheader = MRC%getMRCheader() FEIheaders = MRC%getFEIheaders() call setMRCvals(MRCheader, FEIheaders, nums ) call MRC%setVolumeDimensions( nums ) psum = sum(sum(volume,1),1) do iz=1,nums(3) FEIheaders(iz)%mean_int = psum(iz)/float(nums(1))/float(nums(2)) end do MRCheader%amin = minval(volume) MRCheader%amax = maxval(volume) MRCheader%amean = sum(volume)/float(nums(1))/float(nums(2))/float(nums(3)) ! and write the volume to file call MRC%setMRCheader(MRCheader) call MRC%setFEIheaders(FEIheaders) call MRC%write_3Dvolume(volume,verbose=.TRUE.) call MRC%closeFile() call Message%printMessage(' Volume data stored in '//trim(mrcname)) end subroutine generateMRCfile !-------------------------------------------------------------------------- subroutine setMRCvals(MRCheader, FEIheaders, nums) !DEC$ ATTRIBUTES DLLEXPORT :: setMRCvals use mod_MRC IMPLICIT NONE type(MRCstruct), INTENT(INOUT) :: MRCheader type(FEIstruct), INTENT(INOUT) :: FEIheaders(1024) integer(kind=irg), INTENT(IN) :: nums(3) integer(kind=irg) :: i MRCheader%nx = nums(1) MRCheader%ny = nums(2) MRCheader%nz = nums(3) MRCheader%mode = 2 ! for floating point output MRCheader%mx = nums(1) MRCheader%my = nums(2) MRCheader%mz = nums(3) MRCheader%xlen = nums(1) MRCheader%ylen = nums(2) MRCheader%zlen = nums(3) do i=1,nums(3) FEIheaders(i)%b_tilt = 0.0 FEIheaders(i)%defocus = 0.0 FEIheaders(i)%pixelsize = 1.0e-9 FEIheaders(i)%magnification = 1000.0 FEIheaders(i)%voltage = 0.0 end do end subroutine setMRCvals end module mod_OrientationViz
/- Copyright (c) 2014 Robert Lewis. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Robert Lewis, Leonardo de Moura, Johannes Hölzl, Mario Carneiro -/ import algebra.field.defs import algebra.group_with_zero.power import algebra.parity /-! # Results about powers in fields or division rings. > THIS FILE IS SYNCHRONIZED WITH MATHLIB4. > Any changes to this file require a corresponding PR to mathlib4. This file exists to ensure we can define `field` with minimal imports, so contains some lemmas about powers of elements which need imports beyond those needed for the basic definition. -/ variables {α : Type*} section division_ring variables [division_ring α] {n : ℤ} @[simp] lemma zpow_bit1_neg (a : α) (n : ℤ) : (-a) ^ bit1 n = - a ^ bit1 n := by rw [zpow_bit1', zpow_bit1', neg_mul_neg, neg_mul_eq_mul_neg] lemma odd.neg_zpow (h : odd n) (a : α) : (-a) ^ n = - a ^ n := by { obtain ⟨k, rfl⟩ := h.exists_bit1, exact zpow_bit1_neg _ _ } lemma odd.neg_one_zpow (h : odd n) : (-1 : α) ^ n = -1 := by rw [h.neg_zpow, one_zpow] end division_ring
""" ESS Elliptical slice sampling algorithm. # Examples ```jldoctest; setup = :(Random.seed!(1)) julia> @model gdemo(x) = begin m ~ Normal() x ~ Normal(m, 0.5) end gdemo (generic function with 2 methods) julia> sample(gdemo(1.0), ESS(), 1_000) |> mean Mean │ Row │ parameters │ mean │ │ │ Symbol │ Float64 │ ├─────┼────────────┼──────────┤ │ 1 │ m │ 0.824853 │ ``` """ struct ESS{space} <: InferenceAlgorithm end ESS() = ESS{()}() ESS(space::Symbol) = ESS{(space,)}() # always accept in the first step function DynamicPPL.initialstep( rng::AbstractRNG, model::Model, spl::Sampler{<:ESS}, vi::AbstractVarInfo; kwargs... ) # Sanity check vns = _getvns(vi, spl) length(vns) == 1 || error("[ESS] does only support one variable ($(length(vns)) variables specified)") for vn in vns[1] dist = getdist(vi, vn) EllipticalSliceSampling.isgaussian(typeof(dist)) || error("[ESS] only supports Gaussian prior distributions") end return Transition(vi), vi end function AbstractMCMC.step( rng::AbstractRNG, model::Model, spl::Sampler{<:ESS}, vi::AbstractVarInfo; kwargs... ) # obtain previous sample f = vi[spl] # define previous sampler state # (do not use cache to avoid in-place sampling from prior) oldstate = EllipticalSliceSampling.ESSState(f, getlogp(vi), nothing) # compute next state sample, state = AbstractMCMC.step( rng, EllipticalSliceSampling.ESSModel( ESSPrior(model, spl, vi), ESSLogLikelihood(model, spl, vi), ), EllipticalSliceSampling.ESS(), oldstate, ) # update sample and log-likelihood vi[spl] = sample setlogp!(vi, state.loglikelihood) return Transition(vi), vi end # Prior distribution of considered random variable struct ESSPrior{M<:Model,S<:Sampler{<:ESS},V<:AbstractVarInfo,T} model::M sampler::S varinfo::V μ::T function ESSPrior{M,S,V}(model::M, sampler::S, varinfo::V) where { M<:Model,S<:Sampler{<:ESS},V<:AbstractVarInfo } vns = _getvns(varinfo, sampler) μ = mapreduce(vcat, vns[1]) do vn dist = getdist(varinfo, vn) EllipticalSliceSampling.isgaussian(typeof(dist)) || error("[ESS] only supports Gaussian prior distributions") vectorize(dist, mean(dist)) end return new{M,S,V,typeof(μ)}(model, sampler, varinfo, μ) end end function ESSPrior(model::Model, sampler::Sampler{<:ESS}, varinfo::AbstractVarInfo) return ESSPrior{typeof(model),typeof(sampler),typeof(varinfo)}( model, sampler, varinfo, ) end # Ensure that the prior is a Gaussian distribution (checked in the constructor) EllipticalSliceSampling.isgaussian(::Type{<:ESSPrior}) = true # Only define out-of-place sampling function Base.rand(rng::Random.AbstractRNG, p::ESSPrior) sampler = p.sampler varinfo = p.varinfo vns = _getvns(varinfo, sampler) set_flag!(varinfo, vns[1][1], "del") p.model(rng, varinfo, sampler) return varinfo[sampler] end # Mean of prior distribution Distributions.mean(p::ESSPrior) = p.μ # Evaluate log-likelihood of proposals struct ESSLogLikelihood{M<:Model,S<:Sampler{<:ESS},V<:AbstractVarInfo} model::M sampler::S varinfo::V end function (ℓ::ESSLogLikelihood)(f) sampler = ℓ.sampler varinfo = ℓ.varinfo varinfo[sampler] = f ℓ.model(varinfo, sampler) return getlogp(varinfo) end function DynamicPPL.tilde(rng, ctx::DefaultContext, sampler::Sampler{<:ESS}, right, vn::VarName, inds, vi) if inspace(vn, sampler) return DynamicPPL.tilde(rng, LikelihoodContext(), SampleFromPrior(), right, vn, inds, vi) else return DynamicPPL.tilde(rng, ctx, SampleFromPrior(), right, vn, inds, vi) end end function DynamicPPL.tilde(ctx::DefaultContext, sampler::Sampler{<:ESS}, right, left, vi) return DynamicPPL.tilde(ctx, SampleFromPrior(), right, left, vi) end function DynamicPPL.dot_tilde(rng, ctx::DefaultContext, sampler::Sampler{<:ESS}, right, left, vn::VarName, inds, vi) if inspace(vn, sampler) return DynamicPPL.dot_tilde(rng, LikelihoodContext(), SampleFromPrior(), right, left, vn, inds, vi) else return DynamicPPL.dot_tilde(rng, ctx, SampleFromPrior(), right, left, vn, inds, vi) end end function DynamicPPL.dot_tilde(rng, ctx::DefaultContext, sampler::Sampler{<:ESS}, right, left, vi) return DynamicPPL.dot_tilde(rng, ctx, SampleFromPrior(), right, left, vi) end
[STATEMENT] lemma shrinking: assumes "is_zariski_open U" and "\<pp> \<in> U" and "s \<in> \<O> U" and "t \<in> \<O> U" obtains V a f b g where "is_zariski_open V" "V \<subseteq> U" "\<pp> \<in> V" "a \<in> R" "f \<in> R" "b \<in> R" "g \<in> R" "f \<notin> \<pp>" "g \<notin> \<pp>" "\<And>\<qq>. \<qq> \<in> V \<Longrightarrow> f \<notin> \<qq> \<and> s \<qq> = quotient_ring.frac (R\<setminus>\<qq>) R (+) (\<cdot>) \<zero> a f" "\<And>\<qq>. \<qq> \<in> V \<Longrightarrow> g \<notin> \<qq> \<and> t \<qq> = quotient_ring.frac (R\<setminus>\<qq>) R (+) (\<cdot>) \<zero> b g" [PROOF STATE] proof (prove) goal (1 subgoal): 1. (\<And>V a f b g. \<lbrakk>is_zariski_open V; V \<subseteq> U; \<pp> \<in> V; a \<in> R; f \<in> R; b \<in> R; g \<in> R; f \<notin> \<pp>; g \<notin> \<pp>; \<And>\<qq>. \<qq> \<in> V \<Longrightarrow> f \<notin> \<qq> \<and> s \<qq> = quotient_ring.frac (R\<setminus>\<qq>) R (+) (\<cdot>) \<zero> a f; \<And>\<qq>. \<qq> \<in> V \<Longrightarrow> g \<notin> \<qq> \<and> t \<qq> = quotient_ring.frac (R\<setminus>\<qq>) R (+) (\<cdot>) \<zero> b g\<rbrakk> \<Longrightarrow> thesis) \<Longrightarrow> thesis [PROOF STEP] proof- [PROOF STATE] proof (state) goal (1 subgoal): 1. (\<And>V a f b g. \<lbrakk>is_zariski_open V; V \<subseteq> U; \<pp> \<in> V; a \<in> R; f \<in> R; b \<in> R; g \<in> R; f \<notin> \<pp>; g \<notin> \<pp>; \<And>\<qq>. \<qq> \<in> V \<Longrightarrow> f \<notin> \<qq> \<and> s \<qq> = quotient_ring.frac (R\<setminus>\<qq>) R (+) (\<cdot>) \<zero> a f; \<And>\<qq>. \<qq> \<in> V \<Longrightarrow> g \<notin> \<qq> \<and> t \<qq> = quotient_ring.frac (R\<setminus>\<qq>) R (+) (\<cdot>) \<zero> b g\<rbrakk> \<Longrightarrow> thesis) \<Longrightarrow> thesis [PROOF STEP] obtain Vs a f where "is_zariski_open Vs" "Vs \<subseteq> U" "\<pp> \<in> Vs" "a \<in> R" "f \<in> R" "\<And>\<qq>. \<qq> \<in> Vs \<Longrightarrow> f \<notin> \<qq> \<and> s \<qq> = quotient_ring.frac (R\<setminus>\<qq>) R (+) (\<cdot>) \<zero> a f" [PROOF STATE] proof (prove) goal (1 subgoal): 1. (\<And>Vs a f. \<lbrakk>is_zariski_open Vs; Vs \<subseteq> U; \<pp> \<in> Vs; a \<in> R; f \<in> R; \<And>\<qq>. \<qq> \<in> Vs \<Longrightarrow> f \<notin> \<qq> \<and> s \<qq> = quotient_ring.frac (R\<setminus>\<qq>) R (+) (\<cdot>) \<zero> a f\<rbrakk> \<Longrightarrow> thesis) \<Longrightarrow> thesis [PROOF STEP] using assms(2,3) sheaf_spec_def is_regular_def is_locally_frac_def [PROOF STATE] proof (prove) using this: \<pp> \<in> U s \<in> \<O> U \<O> ?U \<equiv> {s \<in> \<Pi>\<^sub>E \<pp>\<in>?U. R \<^bsub>\<pp> (+) (\<cdot>) \<zero>\<^esub>. is_regular s ?U} is_regular ?s ?U \<equiv> \<forall>\<pp>. \<pp> \<in> ?U \<longrightarrow> (\<exists>V. is_zariski_open V \<and> V \<subseteq> ?U \<and> \<pp> \<in> V \<and> is_locally_frac ?s V) is_locally_frac ?s ?V \<equiv> \<exists>r f. r \<in> R \<and> f \<in> R \<and> (\<forall>\<qq>\<in>?V. f \<notin> \<qq> \<and> ?s \<qq> = quotient_ring.frac (R\<setminus>\<qq>) R (+) (\<cdot>) \<zero> r f) goal (1 subgoal): 1. (\<And>Vs a f. \<lbrakk>is_zariski_open Vs; Vs \<subseteq> U; \<pp> \<in> Vs; a \<in> R; f \<in> R; \<And>\<qq>. \<qq> \<in> Vs \<Longrightarrow> f \<notin> \<qq> \<and> s \<qq> = quotient_ring.frac (R\<setminus>\<qq>) R (+) (\<cdot>) \<zero> a f\<rbrakk> \<Longrightarrow> thesis) \<Longrightarrow> thesis [PROOF STEP] by auto [PROOF STATE] proof (state) this: is_zariski_open Vs Vs \<subseteq> U \<pp> \<in> Vs a \<in> R f \<in> R ?\<qq>3 \<in> Vs \<Longrightarrow> f \<notin> ?\<qq>3 \<and> s ?\<qq>3 = quotient_ring.frac (R\<setminus>?\<qq>3) R (+) (\<cdot>) \<zero> a f goal (1 subgoal): 1. (\<And>V a f b g. \<lbrakk>is_zariski_open V; V \<subseteq> U; \<pp> \<in> V; a \<in> R; f \<in> R; b \<in> R; g \<in> R; f \<notin> \<pp>; g \<notin> \<pp>; \<And>\<qq>. \<qq> \<in> V \<Longrightarrow> f \<notin> \<qq> \<and> s \<qq> = quotient_ring.frac (R\<setminus>\<qq>) R (+) (\<cdot>) \<zero> a f; \<And>\<qq>. \<qq> \<in> V \<Longrightarrow> g \<notin> \<qq> \<and> t \<qq> = quotient_ring.frac (R\<setminus>\<qq>) R (+) (\<cdot>) \<zero> b g\<rbrakk> \<Longrightarrow> thesis) \<Longrightarrow> thesis [PROOF STEP] obtain Vt b g where "is_zariski_open Vt" "Vt \<subseteq> U" "\<pp> \<in> Vt" "b \<in> R" "g \<in> R" "\<And>\<qq>. \<qq> \<in> Vt \<Longrightarrow> g \<notin> \<qq> \<and> t \<qq> = quotient_ring.frac (R\<setminus>\<qq>) R (+) (\<cdot>) \<zero> b g" [PROOF STATE] proof (prove) goal (1 subgoal): 1. (\<And>Vt b g. \<lbrakk>is_zariski_open Vt; Vt \<subseteq> U; \<pp> \<in> Vt; b \<in> R; g \<in> R; \<And>\<qq>. \<qq> \<in> Vt \<Longrightarrow> g \<notin> \<qq> \<and> t \<qq> = quotient_ring.frac (R\<setminus>\<qq>) R (+) (\<cdot>) \<zero> b g\<rbrakk> \<Longrightarrow> thesis) \<Longrightarrow> thesis [PROOF STEP] using assms(2,4) sheaf_spec_def is_regular_def is_locally_frac_def [PROOF STATE] proof (prove) using this: \<pp> \<in> U t \<in> \<O> U \<O> ?U \<equiv> {s \<in> \<Pi>\<^sub>E \<pp>\<in>?U. R \<^bsub>\<pp> (+) (\<cdot>) \<zero>\<^esub>. is_regular s ?U} is_regular ?s ?U \<equiv> \<forall>\<pp>. \<pp> \<in> ?U \<longrightarrow> (\<exists>V. is_zariski_open V \<and> V \<subseteq> ?U \<and> \<pp> \<in> V \<and> is_locally_frac ?s V) is_locally_frac ?s ?V \<equiv> \<exists>r f. r \<in> R \<and> f \<in> R \<and> (\<forall>\<qq>\<in>?V. f \<notin> \<qq> \<and> ?s \<qq> = quotient_ring.frac (R\<setminus>\<qq>) R (+) (\<cdot>) \<zero> r f) goal (1 subgoal): 1. (\<And>Vt b g. \<lbrakk>is_zariski_open Vt; Vt \<subseteq> U; \<pp> \<in> Vt; b \<in> R; g \<in> R; \<And>\<qq>. \<qq> \<in> Vt \<Longrightarrow> g \<notin> \<qq> \<and> t \<qq> = quotient_ring.frac (R\<setminus>\<qq>) R (+) (\<cdot>) \<zero> b g\<rbrakk> \<Longrightarrow> thesis) \<Longrightarrow> thesis [PROOF STEP] by auto [PROOF STATE] proof (state) this: is_zariski_open Vt Vt \<subseteq> U \<pp> \<in> Vt b \<in> R g \<in> R ?\<qq>3 \<in> Vt \<Longrightarrow> g \<notin> ?\<qq>3 \<and> t ?\<qq>3 = quotient_ring.frac (R\<setminus>?\<qq>3) R (+) (\<cdot>) \<zero> b g goal (1 subgoal): 1. (\<And>V a f b g. \<lbrakk>is_zariski_open V; V \<subseteq> U; \<pp> \<in> V; a \<in> R; f \<in> R; b \<in> R; g \<in> R; f \<notin> \<pp>; g \<notin> \<pp>; \<And>\<qq>. \<qq> \<in> V \<Longrightarrow> f \<notin> \<qq> \<and> s \<qq> = quotient_ring.frac (R\<setminus>\<qq>) R (+) (\<cdot>) \<zero> a f; \<And>\<qq>. \<qq> \<in> V \<Longrightarrow> g \<notin> \<qq> \<and> t \<qq> = quotient_ring.frac (R\<setminus>\<qq>) R (+) (\<cdot>) \<zero> b g\<rbrakk> \<Longrightarrow> thesis) \<Longrightarrow> thesis [PROOF STEP] then [PROOF STATE] proof (chain) picking this: is_zariski_open Vt Vt \<subseteq> U \<pp> \<in> Vt b \<in> R g \<in> R ?\<qq>3 \<in> Vt \<Longrightarrow> g \<notin> ?\<qq>3 \<and> t ?\<qq>3 = quotient_ring.frac (R\<setminus>?\<qq>3) R (+) (\<cdot>) \<zero> b g [PROOF STEP] have "is_zariski_open (Vs \<inter> Vt)" "Vs \<inter> Vt \<subseteq> U" "\<pp> \<in> Vs \<inter> Vt" "\<And>\<qq>. \<qq> \<in> (Vs \<inter> Vt) \<Longrightarrow> f \<notin> \<qq> \<and> s \<qq> = quotient_ring.frac (R\<setminus>\<qq>) R (+) (\<cdot>) \<zero> a f" "\<And>\<qq>. \<qq> \<in> (Vs \<inter> Vt) \<Longrightarrow> g \<notin> \<qq> \<and> t \<qq> = quotient_ring.frac (R\<setminus>\<qq>) R (+) (\<cdot>) \<zero> b g" [PROOF STATE] proof (prove) using this: is_zariski_open Vt Vt \<subseteq> U \<pp> \<in> Vt b \<in> R g \<in> R ?\<qq>3 \<in> Vt \<Longrightarrow> g \<notin> ?\<qq>3 \<and> t ?\<qq>3 = quotient_ring.frac (R\<setminus>?\<qq>3) R (+) (\<cdot>) \<zero> b g goal (1 subgoal): 1. (is_zariski_open (Vs \<inter> Vt) &&& Vs \<inter> Vt \<subseteq> U) &&& \<pp> \<in> Vs \<inter> Vt &&& (\<And>\<qq>. \<qq> \<in> Vs \<inter> Vt \<Longrightarrow> f \<notin> \<qq> \<and> s \<qq> = quotient_ring.frac (R\<setminus>\<qq>) R (+) (\<cdot>) \<zero> a f) &&& (\<And>\<qq>. \<qq> \<in> Vs \<inter> Vt \<Longrightarrow> g \<notin> \<qq> \<and> t \<qq> = quotient_ring.frac (R\<setminus>\<qq>) R (+) (\<cdot>) \<zero> b g) [PROOF STEP] using topological_space.open_inter [PROOF STATE] proof (prove) using this: is_zariski_open Vt Vt \<subseteq> U \<pp> \<in> Vt b \<in> R g \<in> R ?\<qq>3 \<in> Vt \<Longrightarrow> g \<notin> ?\<qq>3 \<and> t ?\<qq>3 = quotient_ring.frac (R\<setminus>?\<qq>3) R (+) (\<cdot>) \<zero> b g \<lbrakk>topological_space ?S ?is_open; ?is_open ?U; ?is_open ?V\<rbrakk> \<Longrightarrow> ?is_open (?U \<inter> ?V) goal (1 subgoal): 1. (is_zariski_open (Vs \<inter> Vt) &&& Vs \<inter> Vt \<subseteq> U) &&& \<pp> \<in> Vs \<inter> Vt &&& (\<And>\<qq>. \<qq> \<in> Vs \<inter> Vt \<Longrightarrow> f \<notin> \<qq> \<and> s \<qq> = quotient_ring.frac (R\<setminus>\<qq>) R (+) (\<cdot>) \<zero> a f) &&& (\<And>\<qq>. \<qq> \<in> Vs \<inter> Vt \<Longrightarrow> g \<notin> \<qq> \<and> t \<qq> = quotient_ring.frac (R\<setminus>\<qq>) R (+) (\<cdot>) \<zero> b g) [PROOF STEP] apply (simp add: \<open>is_zariski_open Vs\<close>) [PROOF STATE] proof (prove) goal (4 subgoals): 1. Vs \<inter> Vt \<subseteq> U 2. \<pp> \<in> Vs \<inter> Vt 3. \<And>\<qq>. \<qq> \<in> Vs \<inter> Vt \<Longrightarrow> f \<notin> \<qq> \<and> s \<qq> = quotient_ring.frac (R\<setminus>\<qq>) R (+) (\<cdot>) \<zero> a f 4. \<And>\<qq>. \<qq> \<in> Vs \<inter> Vt \<Longrightarrow> g \<notin> \<qq> \<and> t \<qq> = quotient_ring.frac (R\<setminus>\<qq>) R (+) (\<cdot>) \<zero> b g [PROOF STEP] using \<open>Vs \<subseteq> U\<close> [PROOF STATE] proof (prove) using this: Vs \<subseteq> U goal (4 subgoals): 1. Vs \<inter> Vt \<subseteq> U 2. \<pp> \<in> Vs \<inter> Vt 3. \<And>\<qq>. \<qq> \<in> Vs \<inter> Vt \<Longrightarrow> f \<notin> \<qq> \<and> s \<qq> = quotient_ring.frac (R\<setminus>\<qq>) R (+) (\<cdot>) \<zero> a f 4. \<And>\<qq>. \<qq> \<in> Vs \<inter> Vt \<Longrightarrow> g \<notin> \<qq> \<and> t \<qq> = quotient_ring.frac (R\<setminus>\<qq>) R (+) (\<cdot>) \<zero> b g [PROOF STEP] apply auto[1] [PROOF STATE] proof (prove) goal (3 subgoals): 1. \<pp> \<in> Vs \<inter> Vt 2. \<And>\<qq>. \<qq> \<in> Vs \<inter> Vt \<Longrightarrow> f \<notin> \<qq> \<and> s \<qq> = quotient_ring.frac (R\<setminus>\<qq>) R (+) (\<cdot>) \<zero> a f 3. \<And>\<qq>. \<qq> \<in> Vs \<inter> Vt \<Longrightarrow> g \<notin> \<qq> \<and> t \<qq> = quotient_ring.frac (R\<setminus>\<qq>) R (+) (\<cdot>) \<zero> b g [PROOF STEP] apply (simp add: \<open>\<pp> \<in> Vs\<close> \<open>\<pp> \<in> Vt\<close>) [PROOF STATE] proof (prove) goal (2 subgoals): 1. \<And>\<qq>. \<qq> \<in> Vs \<inter> Vt \<Longrightarrow> f \<notin> \<qq> \<and> s \<qq> = quotient_ring.frac (R\<setminus>\<qq>) R (+) (\<cdot>) \<zero> a f 2. \<And>\<qq>. \<qq> \<in> Vs \<inter> Vt \<Longrightarrow> g \<notin> \<qq> \<and> t \<qq> = quotient_ring.frac (R\<setminus>\<qq>) R (+) (\<cdot>) \<zero> b g [PROOF STEP] apply (simp add: \<open>\<And>\<qq>. \<qq> \<in> Vs \<Longrightarrow> f \<notin> \<qq> \<and> s \<qq> = quotient_ring.frac (R\<setminus>\<qq>) R (+) (\<cdot>) \<zero> a f\<close>) [PROOF STATE] proof (prove) goal (1 subgoal): 1. \<And>\<qq>. \<qq> \<in> Vs \<inter> Vt \<Longrightarrow> g \<notin> \<qq> \<and> t \<qq> = quotient_ring.frac (R\<setminus>\<qq>) R (+) (\<cdot>) \<zero> b g [PROOF STEP] by (simp add: \<open>\<And>\<qq>. \<qq> \<in> Vt \<Longrightarrow> g \<notin> \<qq> \<and> t \<qq> = quotient_ring.frac (R\<setminus>\<qq>) R (+) (\<cdot>) \<zero> b g\<close>) [PROOF STATE] proof (state) this: is_zariski_open (Vs \<inter> Vt) Vs \<inter> Vt \<subseteq> U \<pp> \<in> Vs \<inter> Vt ?\<qq>3 \<in> Vs \<inter> Vt \<Longrightarrow> f \<notin> ?\<qq>3 \<and> s ?\<qq>3 = quotient_ring.frac (R\<setminus>?\<qq>3) R (+) (\<cdot>) \<zero> a f ?\<qq>3 \<in> Vs \<inter> Vt \<Longrightarrow> g \<notin> ?\<qq>3 \<and> t ?\<qq>3 = quotient_ring.frac (R\<setminus>?\<qq>3) R (+) (\<cdot>) \<zero> b g goal (1 subgoal): 1. (\<And>V a f b g. \<lbrakk>is_zariski_open V; V \<subseteq> U; \<pp> \<in> V; a \<in> R; f \<in> R; b \<in> R; g \<in> R; f \<notin> \<pp>; g \<notin> \<pp>; \<And>\<qq>. \<qq> \<in> V \<Longrightarrow> f \<notin> \<qq> \<and> s \<qq> = quotient_ring.frac (R\<setminus>\<qq>) R (+) (\<cdot>) \<zero> a f; \<And>\<qq>. \<qq> \<in> V \<Longrightarrow> g \<notin> \<qq> \<and> t \<qq> = quotient_ring.frac (R\<setminus>\<qq>) R (+) (\<cdot>) \<zero> b g\<rbrakk> \<Longrightarrow> thesis) \<Longrightarrow> thesis [PROOF STEP] thus ?thesis [PROOF STATE] proof (prove) using this: is_zariski_open (Vs \<inter> Vt) Vs \<inter> Vt \<subseteq> U \<pp> \<in> Vs \<inter> Vt ?\<qq>3 \<in> Vs \<inter> Vt \<Longrightarrow> f \<notin> ?\<qq>3 \<and> s ?\<qq>3 = quotient_ring.frac (R\<setminus>?\<qq>3) R (+) (\<cdot>) \<zero> a f ?\<qq>3 \<in> Vs \<inter> Vt \<Longrightarrow> g \<notin> ?\<qq>3 \<and> t ?\<qq>3 = quotient_ring.frac (R\<setminus>?\<qq>3) R (+) (\<cdot>) \<zero> b g goal (1 subgoal): 1. thesis [PROOF STEP] using \<open>a \<in> R\<close> \<open>b \<in> R\<close> \<open>f \<in> R\<close> \<open>g \<in> R\<close> that [PROOF STATE] proof (prove) using this: is_zariski_open (Vs \<inter> Vt) Vs \<inter> Vt \<subseteq> U \<pp> \<in> Vs \<inter> Vt ?\<qq>3 \<in> Vs \<inter> Vt \<Longrightarrow> f \<notin> ?\<qq>3 \<and> s ?\<qq>3 = quotient_ring.frac (R\<setminus>?\<qq>3) R (+) (\<cdot>) \<zero> a f ?\<qq>3 \<in> Vs \<inter> Vt \<Longrightarrow> g \<notin> ?\<qq>3 \<and> t ?\<qq>3 = quotient_ring.frac (R\<setminus>?\<qq>3) R (+) (\<cdot>) \<zero> b g a \<in> R b \<in> R f \<in> R g \<in> R \<lbrakk>is_zariski_open ?V3; ?V3 \<subseteq> U; \<pp> \<in> ?V3; ?a3 \<in> R; ?f3 \<in> R; ?b3 \<in> R; ?g3 \<in> R; ?f3 \<notin> \<pp>; ?g3 \<notin> \<pp>; \<And>\<qq>. \<qq> \<in> ?V3 \<Longrightarrow> ?f3 \<notin> \<qq> \<and> s \<qq> = quotient_ring.frac (R\<setminus>\<qq>) R (+) (\<cdot>) \<zero> ?a3 ?f3; \<And>\<qq>. \<qq> \<in> ?V3 \<Longrightarrow> ?g3 \<notin> \<qq> \<and> t \<qq> = quotient_ring.frac (R\<setminus>\<qq>) R (+) (\<cdot>) \<zero> ?b3 ?g3\<rbrakk> \<Longrightarrow> thesis goal (1 subgoal): 1. thesis [PROOF STEP] by presburger [PROOF STATE] proof (state) this: thesis goal: No subgoals! [PROOF STEP] qed
module Coirc.Network where open import Function open import Coinduction open import Data.Unit open import Data.String open import Data.Maybe open import IO open import Coirc open import Coirc.Parser import Coirc.Network.Primitive as Prim private Handle = Prim.Handle hConnect : String → IO Handle hConnect s = lift (Prim.hConnect s) hGetLine : Handle → IO String hGetLine h = ♯ lift (Prim.hGetLine h) >>= λ s → ♯ (♯ putStrLn s >> ♯ return (s ++ "\n")) hPutStr : Handle → String → IO ⊤ hPutStr h s = ♯ lift (Prim.hPutStr h s) >> ♯ return tt hSend : Handle → String → IO ⊤ hSend h s = ♯ putStrLn ("> " ++ s) >> ♯ hPutStr h (s ++ "\r\n") getEvent : Handle → IO (Maybe Event) getEvent h = ♯ hGetLine h >>= (λ x → ♯ f x) where f : String → IO (Maybe Event) f = return ∘ parse-Event ∘ toList runAction : Handle → Action → IO ⊤ runAction h (print text) = putStrLn text runAction h (nick name) = hSend h ("NICK " ++ name) runAction h (user name real) = hSend h ("USER " ++ name ++ " 0 * :" ++ real) runAction h (pong name) = hSend h ("PONG " ++ name) runAction h (join channel) = hSend h ("JOIN " ++ channel) runAction h (part channel) = hSend h ("PART " ++ channel) runAction h (privmsg target text) = hSend h ("PRIVMSG " ++ target ++ " :" ++ text) runAction h (quit text) = hSend h ("QUIT :" ++ text) runSP : Handle → Bot → IO ⊤ runSP h (get f) = ♯ getEvent h >>= λ e? → ♯ g e? where g : Maybe Event → IO ⊤ g nothing = ♯ putStrLn "<disconnect>" >> ♯ return tt g (just e) = runSP h (f e) runSP h (put a sp) = ♯ runAction h a >> ♯ runSP h (♭ sp) runBot : Bot → String → IO ⊤ runBot bot server = ♯ hConnect server >>= λ h → ♯ runSP h bot
/- Copyright (c) 2020 Bolton Bailey. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Bolton Bailey -/ import data.fintype.basic import group_theory.order_of_element import tactic.zify import data.nat.totient /-! # The Lucas test for primes. This file implements the Lucas test for primes (not to be confused with the Lucas-Lehmer test for Mersenne primes). A number `a` witnesses that `n` is prime if `a` has order `n-1` in the multiplicative group of integers mod `n`. This is checked by verifying that `a^(n-1) = 1 (mod n)` and `a^d ≠ 1 (mod n)` for any divisor `d | n - 1`. This test is the basis of the Pratt primality certificate. ## TODO - Bonus: Show the reverse implication i.e. if a number is prime then it has a Lucas witness. Use `units.is_cyclic` from `ring_theory/integral_domain` to show the group is cyclic. - Write a tactic that uses this theorem to generate Pratt primality certificates - Integrate Pratt primality certificates into the norm_num primality verifier ## Implementation notes Note that the proof for `lucas_primality` relies on analyzing the multiplicative group modulo `p`. Despite this, the theorem still holds vacuously for `p = 0` and `p = 1`: In these cases, we can take `q` to be any prime and see that `hd` does not hold, since `a^((p-1)/q)` reduces to `1`. -/ /-- If `a^(p-1) = 1 mod p`, but `a^((p-1)/q) ≠ 1 mod p` for all prime factors `q` of `p-1`, then `p` is prime. This is true because `a` has order `p-1` in the multiplicative group mod `p`, so this group must itself have order `p-1`, which only happens when `p` is prime. -/ theorem lucas_primality (p : ℕ) (a : zmod p) (ha : a^(p-1) = 1) (hd : ∀ q : ℕ, q.prime → q ∣ (p-1) → a^((p-1)/q) ≠ 1) : p.prime := begin have h0 : p ≠ 0, { rintro ⟨⟩, exact hd 2 nat.prime_two (dvd_zero _) (pow_zero _) }, have h1 : p ≠ 1, { rintro ⟨⟩, exact hd 2 nat.prime_two (dvd_zero _) (pow_zero _) }, have hp1 : 1 < p := lt_of_le_of_ne h0.bot_lt h1.symm, have order_of_a : order_of a = p-1, { apply order_of_eq_of_pow_and_pow_div_prime _ ha hd, exact tsub_pos_of_lt hp1, }, haveI : ne_zero p := ⟨h0⟩, rw nat.prime_iff_card_units, -- Prove cardinality of `units` of `zmod p` is both `≤ p-1` and `≥ p-1` refine le_antisymm (nat.card_units_zmod_lt_sub_one hp1) _, have hp' : p - 2 + 1 = p - 1 := tsub_add_eq_add_tsub hp1, let a' : (zmod p)ˣ := units.mk_of_mul_eq_one a (a ^ (p-2)) (by rw [←pow_succ, hp', ha]), calc p - 1 = order_of a : order_of_a.symm ... = order_of a' : order_of_injective (units.coe_hom (zmod p)) units.ext a' ... ≤ fintype.card (zmod p)ˣ : order_of_le_card_univ, end
# Use data from EveryCen-boxplot.pl and process taking the ratio of ChIP/ Input ## Rscript plot_median.r sample1 sample2 output args <- commandArgs(trailingOnly = TRUE) # Load data sample1 <- read.table(args[1]) sample2 <- read.table(args[2]) library(dplyr) #calculate the median per region sample1_median <- as.data.frame(sample1) %>% summarise_each(funs(median(., na.rm=TRUE) )) sample2_median <- as.data.frame(sample2) %>% summarise_each(funs(median(., na.rm=TRUE) )) # windows are 100bp, + - 25000bp from the centre of the centromere Coords <- (1:499 * 100) -25000 #Plot pdf(paste(args[3], ".pdf", sep=""), width=15) plot(Coords, log2(sample1_median), pch='.', col="red", xlab="Position", ylab="log2 of median ratio of reads: ChIP/Input") lines (Coords, log2(sample1_median), pch='.', col="red", lw=3) lines (Coords, log2(sample2_median), pch='.', col="darkblue", lw=3)
There are 5 XING members by the name of Sebastian Streit. There are 6 XING members by the name of Sonja Streit. There are 7 XING members by the name of Stefan Streit. Projektmitarbeiterin im Projekt "Wie macht man Teilhabe?" There are 18 XING members by the name of Thomas Streit. There are 5 XING members by the name of Yvonne Streit. There are 6 XING members by the name of Michael Streitberger.
{-# LANGUAGE RecordWildCards #-} module Statistics.Block ( BlockHeader (..) , blockHeadersF , blockChain , blockChainF , txBlocksF , inBlockChainF , txCntInChainF , TxFate (..) , txFateF ) where import Control.Foldl (Fold (..), fold) import qualified Data.Map.Lazy as ML import qualified Data.Map.Strict as MS import Data.Maybe (fromJust, isJust) import qualified Data.Set as S import qualified Data.Text as T import Data.Time.Units (Microsecond) import JSONLog (IndexedJLTimedEvent (..)) import Pos.Infra.Util.JsonLog.Events (JLBlock (..), JLEvent (..)) import Prelude (id) import Statistics.Tx (txFirstReceivedF) import Types import Universum hiding (fold) data BlockHeader = BlockHeader { bhNode :: !NodeId , bhTimestamp :: !Timestamp , bhHash :: !BlockHash , bhPrevBlock :: !BlockHash , bhSlot :: !Slot , bhTxCnt :: !Int } deriving Show type SMap k a = MS.Map k a type LMap k a = ML.Map k a blockHeadersF :: Fold IndexedJLTimedEvent (SMap BlockHash BlockHeader) blockHeadersF = Fold step MS.empty id where step :: SMap Text BlockHeader -> IndexedJLTimedEvent -> SMap Text BlockHeader step m IndexedJLTimedEvent{..} = case ijlEvent of JLCreatedBlock JLBlock{..} -> let bh = BlockHeader { bhNode = ijlNode , bhTimestamp = ijlTimestamp , bhHash = jlHash , bhPrevBlock = jlPrevBlock , bhSlot = jlSlot , bhTxCnt = length jlTxs } in MS.insert jlHash bh m _ -> m blockChain :: SMap BlockHash BlockHeader -> Set BlockHash blockChain m = S.fromList $ maybe [] id $ (fmap fst . uncons) $ sortByLengthDesc [getLongestChain h | h <- allHashes] where allHashes :: [BlockHash] allHashes = MS.keys m sortByLengthDesc :: [[a]] -> [[a]] sortByLengthDesc = sortBy (compare `on` (negate . length)) successors :: SMap BlockHash [BlockHash] successors = foldl' f MS.empty allHashes getSuccessors :: BlockHash -> [BlockHash] getSuccessors h = MS.findWithDefault [] h successors f :: SMap BlockHash [BlockHash] -> BlockHash -> SMap BlockHash [BlockHash] f s h = let BlockHeader{..} = m MS.! h in MS.alter (Just . maybe [bhHash] (bhHash :)) bhPrevBlock s longestChains :: LMap Text [Text] longestChains = ML.fromList [(h, getLongestChain h) | h <- allHashes] getLongestChain :: Text -> [Text] getLongestChain h = case sortByLengthDesc $ map (longestChains ML.!) $ getSuccessors h of [] -> [h] (c : _) -> h : c blockChainF :: Fold IndexedJLTimedEvent (Set BlockHash) blockChainF = blockChain <$> blockHeadersF txBlocksF :: Fold IndexedJLTimedEvent (SMap TxHash [(Timestamp, BlockHash)]) txBlocksF = Fold step MS.empty id where step :: SMap Text [(Microsecond, Text)] -> IndexedJLTimedEvent -> SMap Text [(Microsecond, Text)] step m IndexedJLTimedEvent{..} = case ijlEvent of JLCreatedBlock JLBlock{..} -> foldl' (f ijlTimestamp jlHash) m [T.take 16 x | x <- jlTxs] _ -> m f :: Timestamp -> Text -> SMap Text [(Timestamp, Text)] -> Text -> SMap Text [(Timestamp, Text)] f ts h m tx = let y = (ts, h) in MS.alter (Just . maybe [y] (y :)) tx m inBlockChainF :: Fold IndexedJLTimedEvent (SMap TxHash Timestamp) inBlockChainF = f <$> txFateF where f :: SMap TxHash TxFate -> SMap TxHash Timestamp f = MS.map fromJust . MS.filter isJust . MS.map txInBlockChain txCntInChainF :: Fold IndexedJLTimedEvent [(NodeId, Timestamp, Int)] txCntInChainF = f <$> blockHeadersF <*> blockChainF where f :: Map BlockHash BlockHeader -> Set BlockHash -> [(NodeId, Timestamp, Int)] f m cs = [(bhNode, bhTimestamp, bhTxCnt) | (_, BlockHeader{..}) <- MS.toList m, bhHash `S.member` cs] data TxFate = InNoBlock | InBlockChain !Timestamp !BlockHash !(Set (Timestamp, BlockHash)) | InFork !(Set (Timestamp, BlockHash)) deriving Show txInBlockChain :: TxFate -> Maybe Timestamp txInBlockChain InNoBlock = Nothing txInBlockChain (InBlockChain ts _ _) = Just ts txInBlockChain (InFork _) = Nothing txFateF :: Fold IndexedJLTimedEvent (SMap TxHash TxFate) txFateF = f <$> txFirstReceivedF <*> txBlocksF <*> blockChainF where f :: SMap TxHash Timestamp -> SMap TxHash [(Timestamp, BlockHash)] -> Set BlockHash -> SMap TxHash TxFate f received blocks chain = MS.fromList [(tx, fate tx) | tx <- MS.keys received] where fate :: TxHash -> TxFate fate tx = case MS.lookup tx blocks of Nothing -> InNoBlock Just xs -> fold (Fold step (Nothing, S.empty) extract) xs step :: (Maybe (Timestamp, BlockHash), Set (Timestamp, BlockHash)) -> (Timestamp, BlockHash) -> (Maybe (Timestamp, BlockHash), Set (Timestamp, BlockHash)) step (Nothing, s) (ts, h) | S.member h chain = (Just (ts, h), s) | otherwise = (Nothing , S.insert (ts, h) s) step (p , s) q = (p , S.insert q s) extract :: (Maybe (Timestamp, BlockHash), Set (Timestamp, BlockHash)) -> TxFate extract (Nothing , s) = InFork s extract (Just (ts, h), s) = InBlockChain ts h s
(* * © 2019 Massachusetts Institute of Technology. * MIT Proprietary, Subject to FAR52.227-11 Patent Rights - Ownership by the Contractor (May 2014) * SPDX-License-Identifier: MIT * *) From Coq Require Import List Eqdep Lia . From SPICY Require Import MyPrelude AdversaryUniverse Automation Keys Maps Messages MessageEq RealWorld Simulation Tactics Theory.KeysTheory ModelCheck.ClosureStepLemmas ModelCheck.SafeProtocol ModelCheck.UniverseEqAutomation ModelCheck.ProtocolFunctions ModelCheck.PartialOrderReduction ModelCheck.RealWorldStepLemmas ModelCheck.SilentStepElimination . From SPICY Require IdealWorld RealWorld ChMaps . From Frap Require Sets . Import ChMaps.ChMapNotation ChMaps.ChNotation. Set Implicit Arguments. Module SimulationAutomation. #[export] Hint Constructors RealWorld.msg_accepted_by_pattern : core. #[export] Hint Extern 1 (_ $k++ _ $? _ = Some _) => solve [ solve_perm_merges ] : core. Module T. Import RealWorld. Lemma message_match_not_match_pattern_different : forall t1 t2 (msg1 : crypto t1) (msg2 : crypto t2) cs suid froms pat, ~ msg_accepted_by_pattern cs suid froms pat msg1 -> msg_accepted_by_pattern cs suid froms pat msg2 -> existT _ _ msg1 <> existT _ _ msg2. Proof. intros. unfold not; intros. generalize (projT1_eq H1); intros EQ; simpl in EQ; subst. eapply inj_pair2 in H1; subst. contradiction. Qed. Lemma message_queue_split_head : forall t1 t2 (msg1 : crypto t1) (msg2 : crypto t2) qmsgs qmsgs1 qmsgs2 cs suid froms pat, existT _ _ msg2 :: qmsgs = qmsgs1 ++ existT _ _ msg1 :: qmsgs2 -> msg_accepted_by_pattern cs suid froms pat msg1 -> ~ msg_accepted_by_pattern cs suid froms pat msg2 -> Forall (fun '(existT _ _ msg') => ~ msg_accepted_by_pattern cs suid froms pat msg') qmsgs1 -> exists qmsgs1', qmsgs1 = (existT _ _ msg2) :: qmsgs1'. Proof. intros. destruct qmsgs1. - rewrite app_nil_l in H. eapply message_match_not_match_pattern_different in H0; eauto. invert H; contradiction. - rewrite <- app_comm_cons in H. invert H; eauto. Qed. Lemma message_queue_solve_head : forall t1 t2 (msg1 : crypto t1) (msg2 : crypto t2) qmsgs qmsgs1 qmsgs2 cs suid froms pat, existT _ _ msg2 :: qmsgs = qmsgs1 ++ existT _ _ msg1 :: qmsgs2 -> msg_accepted_by_pattern cs suid froms pat msg1 -> msg_accepted_by_pattern cs suid froms pat msg2 -> Forall (fun '(existT _ _ msg') => ~ msg_accepted_by_pattern cs suid froms pat msg') qmsgs1 -> qmsgs1 = [] /\ qmsgs2 = qmsgs /\ existT _ _ msg1 = existT _ _ msg2. Proof. intros. subst. destruct qmsgs1. rewrite app_nil_l in H ; invert H ; eauto. exfalso. rewrite <- app_comm_cons in H. invert H; eauto. invert H2; contradiction. Qed. Ltac pr_message cs uid froms pat msg := (assert (msg_accepted_by_pattern cs uid froms pat msg) by (econstructor; eauto)) || (assert (~ msg_accepted_by_pattern cs uid froms pat msg) by (let MA := fresh "MA" in unfold not; intros MA; invert MA; clean_map_lookups)). Ltac cleanup_msg_queue := repeat ( invert_base_equalities1 || match goal with | [ H : context [ (_ :: _) ++ _ ] |- _ ] => rewrite <- app_comm_cons in H end ). Ltac process_message_queue := cleanup_msg_queue; match goal with | [ H : (existT _ _ ?m) :: ?msgs = ?msgs1 ++ (existT _ _ ?msg) :: ?msgs2, M : msg_accepted_by_pattern ?cs ?suid ?froms ?pat ?msg |- _ ] => pr_message cs suid froms pat m ; match goal with | [ MSA : msg_accepted_by_pattern cs suid froms pat m , HD : Forall _ msgs1 |- _ ] => idtac "solving " H M MSA HD ; pose proof (message_queue_solve_head _ H M MSA HD) ; split_ex; subst ; cleanup_msg_queue; subst | [ MSA : ~ msg_accepted_by_pattern cs suid froms pat m , HD : Forall _ msgs1 |- _ ] => idtac "splitting" ; pose proof (message_queue_split_head _ H M MSA HD) ; split_ex; subst ; invert HD ; cleanup_msg_queue; subst ; process_message_queue (* recurse *) end end. Ltac step_usr_hyp H cmd := match cmd with | Return _ => apply step_user_inv_ret in H; contradiction (* | Bind _ _ => apply step_user_inv_bind in H; split_ands; split_ors; split_ands; subst; try discriminate *) | Bind _ _ => apply step_user_inv_bind in H; destruct H; split_ex; subst; try discriminate | Gen => apply step_user_inv_gen in H | Send _ _ => apply step_user_inv_send in H | Recv _ => apply step_user_inv_recv in H; split_ex; subst; process_message_queue | SignEncrypt _ _ _ _ => apply step_user_inv_enc in H | Decrypt _ => apply step_user_inv_dec in H | Sign _ _ _ => apply step_user_inv_sign in H | Verify _ _ => apply step_user_inv_verify in H | GenerateKey _ _ => apply step_user_inv_genkey in H | realServer 0 _ _ => rewrite realserver_done in H | realServer _ _ _ => erewrite unroll_realserver_step in H by reflexivity | _ => idtac "***Missing inversion: " cmd; invert H end; split_ex; subst. Lemma inv_univ_silent_step : forall t__hon t__adv ru ru' suid b, lameAdv b ru.(RealWorld.adversary) -> @RealWorld.step_universe t__hon t__adv suid ru Silent ru' -> exists uid ud usrs adv cs gks ks qmsgs mycs froms sents cur_n cmd, ru.(RealWorld.users) $? uid = Some ud /\ step_user Silent (Some uid) (build_data_step ru ud) (usrs, adv, cs, gks, ks, qmsgs, mycs, froms, sents, cur_n, cmd) /\ ru' = buildUniverse usrs adv cs gks uid {| key_heap := ks ; msg_heap := qmsgs ; protocol := cmd ; c_heap := mycs ; from_nons := froms ; sent_nons := sents ; cur_nonce := cur_n |}. Proof. intros * LAME STEP ; invert STEP. - unfold mkULbl in H2 ; destruct lbl ; try discriminate ; eauto 20. - unfold lameAdv in LAME. unfold build_data_step in H ; rewrite LAME in H ; invert H. Qed. Lemma inv_univ_labeled_step : forall t__hon t__adv ru ru' suid uid a, @RealWorld.step_universe t__hon t__adv suid ru (Action (uid,a)) ru' -> exists ud usrs adv cs gks ks qmsgs mycs froms sents cur_n cmd, ru.(RealWorld.users) $? uid = Some ud /\ suid = Some uid /\ step_user (@Action RealWorld.action a) (Some uid) (build_data_step ru ud) (usrs, adv, cs, gks, ks, qmsgs, mycs, froms, sents, cur_n, cmd) /\ ru' = buildUniverse usrs adv cs gks uid {| key_heap := ks ; msg_heap := qmsgs ; protocol := cmd ; c_heap := mycs ; from_nons := froms ; sent_nons := sents ; cur_nonce := cur_n |}. Proof. intros * STEP ; invert STEP. unfold mkULbl in H2 ; destruct lbl ; try discriminate. invert H2; eauto 20. Qed. Ltac rw_step1 := match goal with (* Only take a user step if we have chosen a user *) | [ H : RealWorld.step_user _ (Some ?u) _ _ |- _ ] => progress simpl in H | [ H : RealWorld.step_user _ (Some ?u) (_,_,_,_,_,_,_,_,_,_,?cmd) _ |- _ ] => is_not_var u; step_usr_hyp H cmd | [ STEP : RealWorld.step_user _ None (_,_,_,_,_,_,_,_,_,_,RealWorld.protocol ?adv) _ , LAME : lameAdv _ ?adv |- _ ] => pose proof (adv_no_step LAME STEP); contradiction | [ H : RealWorld.step_user _ _ (build_data_step _ _) _ |- _ ] => unfold build_data_step in H; autounfold with user_build in H; simpl in H | [ |- context [RealWorld.buildUniverse _ _ _ _ _ _] ] => unfold RealWorld.buildUniverse | [ H: step_universe _ ?U Silent _ |- _ ] => is_not_var U ; eapply inv_univ_silent_step in H ; eauto ; split_ex ; subst | [ H: step_universe _ ?U (Action _) _ |- _ ] => is_not_var U ; eapply inv_univ_labeled_step in H ; eauto ; split_ex ; subst end. Ltac prove_alignment1 := equality1 || match goal with | [ |- labels_align _ ] => unfold labels_align; intros | [ H : _ \/ False |- _ ] => destruct H; [|contradiction] | [ H : _ \/ ?r |- _ ] => destruct H | [ H : indexedRealStep _ _ _ _ |- _ ] => invert H | [ H : users _ $? _ = Some _ |- _ ] => progress (autounfold in H; simpl in H) (* | [ H : _ $+ (_,_) $? _ = Some _ |- _ ] => progress clean_map_lookups *) | [ H : _ $+ (?k1,_) $? ?k2 = Some _ |- _ ] => destruct (k1 ==n k2); subst | [ H : step_user (Action _) (Some ?uid) _ _ |- _ ] => progress (autounfold in H; unfold RealWorld.build_data_step in H; simpl in H) | [ H : step_user _ (Some ?u) (_,_,_,_,_,_,_,_,_,_,?cmd) _ |- _ ] => is_not_var u; is_not_evar u; step_usr_hyp H cmd | [ |- exists _ _ _, _ ] => simpl; (do 3 eexists); repeat simple apply conj end. (* || equality1. *) Lemma label_align_step_split : forall t__hon t__adv st st', @step t__hon t__adv st st' -> labels_align st -> forall ru ru' iu iu' b b' a, st = (ru,iu,b) -> st' = (ru',iu',b') -> lameAdv a ru.(adversary) -> b = b' /\ exists uid, ( indexedRealStep uid Silent ru ru' /\ iu = iu' ) \/ exists iu0 ra ia, indexedRealStep uid (Action ra) ru ru' /\ (indexedIdealStep uid Silent) ^* iu iu0 /\ indexedIdealStep uid (Action ia) iu0 iu' /\ action_matches (all_ciphers ru) (all_keys ru) (uid,ra) ia. Proof. intros. subst; invert H; try contradiction. - invert H2; try match goal with | [ H : Silent = mkULbl ?lbl _ |- _ ] => unfold mkULbl in H; destruct lbl; try discriminate end; split; eexists; left; eauto. unfold build_data_step in *; unfold lameAdv in H3; rewrite H3 in *. invert H. - split; eexists; right; eauto 10. Unshelve. auto. Qed. Lemma label_align_indexedModelStep_split : forall t__hon t__adv st st' uid, @indexedModelStep t__hon t__adv uid st st' -> labels_align st -> forall ru ru' iu iu' b b' a, st = (ru,iu,b) -> st' = (ru',iu',b') -> lameAdv a ru.(adversary) -> b = b' /\ ( (indexedRealStep uid Silent ru ru' /\ iu = iu') \/ (exists iu0 ra ia, indexedRealStep uid (Action ra) ru ru' /\ (indexedIdealStep uid Silent) ^* iu iu0 /\ indexedIdealStep uid (Action ia) iu0 iu' /\ action_matches (all_ciphers ru) (all_keys ru) (uid,ra) ia)). Proof. intros; subst; invert H; try contradiction; eauto 12. Qed. End T. Import T. Export T. Ltac fill_unification_var_ineq uni v := match goal with | [ H : ?uni' = v -> False |- _ ] => unify uni uni' | [ H : v = ?uni' -> False |- _ ] => unify uni uni' end. Ltac solve_simple_ineq := repeat match goal with | [ |- ?kid1 <> ?kid2 ] => congruence || (is_evar kid1; fill_unification_var_ineq kid1 kid2) || (is_evar kid2; fill_unification_var_ineq kid2 kid1) || (is_not_var kid1; progress unfold kid1) || (is_not_var kid2; progress unfold kid2) end. Ltac solve_concrete_maps1 := clean_map_lookups1 || ChMaps.ChMap.clean_map_lookups1 || match goal with (* | [ H : Some _ = Some _ |- _ ] => invert H *) (* | [ H : Some _ = None |- _ ] => discriminate *) (* | [ H : None = Some _ |- _ ] => discriminate *) | [ H : mkKeys _ $? _ = _ |- _ ] => unfold mkKeys in H; simpl in H | [ H : ?m $? _ = _ |- _ ] => progress (unfold m in H) | [ H : ?m #? _ = _ |- _ ] => progress (unfold m in H) | [ |- context [ ?m $? _ ] ] => progress (unfold m) | [ |- context [ ?m #? _ ] ] => progress (unfold m) | [ H : ?m $+ (?k1,_) $? ?k2 = _ |- _ ] => progress ( repeat ( rewrite add_neq_o in H by solve_simple_ineq ) ) | [ H : ?m #+ (?k1,_) #? ?k2 = _ |- _ ] => progress ( repeat ( rewrite ChMaps.ChMap.F.add_neq_o in H by solve_simple_ineq ) ) | [ |- context [ _ $+ (?kid2,_) $? ?kid1 ] ] => progress ( repeat ( rewrite add_neq_o by solve_simple_ineq ) ) | [ |- context [ _ #+ (?kid2,_) #? ?kid1 ] ] => progress ( repeat ( rewrite ChMaps.ChMap.F.add_neq_o by solve_simple_ineq ) ) | [ H : In ?k ?m -> False |- _ ] => is_not_var k; assert (In k m) by (clear H; rewrite in_find_iff; unfold not; intros; repeat solve_concrete_maps1); contradiction | [ H : In _ _ |- _ ] => rewrite in_find_iff in H | [ H : ~ In _ _ |- _ ] => rewrite not_find_in_iff in H | [ |- ~ In _ _ ] => rewrite not_find_in_iff; try eassumption | [ H : In ?x ?xs -> False |- _ ] => change (In x xs -> False) with (~ In x xs) in H | [ H : ChMaps.ChMap.Map.In ?k ?m -> False |- _ ] => is_not_var k ; assert (ChMaps.ChMap.Map.In k m) by (clear H; rewrite ChMaps.ChMap.F.in_find_iff; unfold not; intros; repeat solve_concrete_maps1) ; contradiction | [ H : ChMaps.ChMap.Map.In _ _ |- _ ] => rewrite ChMaps.ChMap.F.in_find_iff in H | [ H : ~ ChMaps.ChMap.Map.In _ _ |- _ ] => rewrite ChMaps.ChMap.F.not_find_in_iff in H | [ |- ~ ChMaps.ChMap.Map.In _ _ ] => rewrite ChMaps.ChMap.F.not_find_in_iff; try eassumption | [ H : ChMaps.ChMap.Map.In ?x ?xs -> False |- _ ] => change (ChMaps.ChMap.Map.In x xs -> False) with (~ ChMaps.ChMap.Map.In x xs) in H | [ |- context [ next_key ] ] => progress (unfold next_key; simpl) | [ |- _ $+ (?k1,_) $? ?k2 = _ ] => is_not_evar k2; is_not_evar k2; (is_var k1 || is_var k2) ; destruct (k1 ==n k2); subst; try contradiction | [ |- _ #+ (?k1,_) #? ?k2 = _ ] => is_not_evar k2; is_not_evar k2; (is_var k1 || is_var k2) ; destruct (ChMaps.ChMap.F.eq_dec k1 k2); subst; try contradiction | [ |- context [ add_key_perm _ _ _ ]] => progress (unfold add_key_perm) | [ |- _ = _ ] => reflexivity | [ |- _ $+ (_,_) = _ ] => apply map_eq_Equal; unfold Equal; intros | [ |- _ #+ (_,_) = _ ] => apply ChMaps.ChMap.map_eq_Equal; unfold ChMaps.ChMap.Map.Equal; intros | [ |- Some _ = Some _ ] => f_equal | [ |- {| RealWorld.key_heap := _ |} = _ ] => f_equal | [ |- _ $? _ = _ ] => eassumption | [ |- _ #? _ = _ ] => eassumption | [ H : ?m $+ (?k1,_) $? ?k2 = _ |- _ $+ (_,_) $? _ = _ ] => (is_var k1 || is_var k2); idtac "destructing1 " k1 k2; destruct (k1 ==n k2); subst | [ H : ?m $+ (?k1,_) $? ?k2 = _ |- (match _ $+ (_,_) $? _ with _ => _ end) $? _ = _ ] => (is_var k1 || is_var k2); idtac "destructing2 " k1 k2; destruct (k1 ==n k2); subst | [ H : ?m #+ (?k1,_) #? ?k2 = _ |- _ #+ (_,_) #? _ = _ ] => (is_var k1 || is_var k2); idtac "#destructing1 " k1 k2; destruct (ChMaps.ChMap.F.eq_dec k1 k2); subst | [ H : ?m #+ (?k1,_) #? ?k2 = _ |- (match _ #+ (_,_) #? _ with _ => _ end) #? _ = _ ] => (is_var k1 || is_var k2); idtac "#destructing2 " k1 k2; destruct (ChMaps.ChMap.F.eq_dec k1 k2); subst end. Ltac solve_concrete_maps := repeat solve_concrete_maps1. Ltac churn2 := (repeat equality1); subst; split_ors; try contradiction; rw_step1. (* (repeat equality1); subst; rw_step1; intuition idtac; split_ex; intuition idtac; subst; try discriminate; solve_concrete_maps. *) Ltac churn := repeat churn2. Ltac i_single_silent_step := eapply IdealWorld.LStepBindProceed || eapply IdealWorld.LStepGen || eapply IdealWorld.LStepCreateChannel . Ltac r_single_silent_step := eapply RealWorld.StepBindProceed || eapply RealWorld.StepGen (* || eapply RealWorld.StepRecvDrop *) || eapply RealWorld.StepEncrypt || eapply RealWorld.StepDecrypt || eapply RealWorld.StepSign || eapply RealWorld.StepVerify || eapply RealWorld.StepGenerateKey . Ltac pick_user uid := match goal with | [ |- _ $? ?euid = Some _ ] => unify euid uid end; reflexivity. Ltac istep_univ uid := eapply IdealWorld.LStepUser'; simpl; swap 2 3; [ pick_user uid | ..]; (try eapply @eq_refl); (try f_equal); simpl. Ltac rstep_univ uid := eapply RealWorld.StepUser; simpl; swap 2 3; [ pick_user uid | ..]; (try eapply @eq_refl); simpl. Ltac rw H := (rewrite ChMaps.ChMap.F.add_neq_o in H by congruence) || (rewrite ChMaps.ChMap.F.add_eq_o in H by congruence). Ltac solve_ideal_step_stuff1 := match goal with | [ H : context [ _ #+ (_,_) #? _ ] |- _ ] => progress (repeat rw H) | [ Heq : ?k = _, H : _ #+ (?k1,_) #? ?k2 = None |- _ ] => match k2 with | # k => idtac k | _ => fail 1 end; assert (k1 <> k2) by (destruct (ChMaps.ChMap.F.eq_dec k1 k2); clear Heq; try assumption; unfold ChMaps.ChannelType.eq in *; subst; ChMaps.ChMap.clean_map_lookups); ChMaps.ChMap.clean_map_lookups | [ H : # ?x = # ?y -> False |- _ ] => assert (x <> y) by congruence; clear H | [ |- Forall _ _ ] => econstructor | [ |- {| IdealWorld.channel_vector := _; IdealWorld.users := _ |} = _] => smash_universe; solve_concrete_maps | [ |- _ = {| IdealWorld.channel_vector := _; IdealWorld.users := _ |}] => smash_universe; solve_concrete_maps | [ |- IdealWorld.screen_msg _ _ ] => econstructor | [ |- IdealWorld.permission_subset _ _ ] => econstructor | [ |- IdealWorld.check_perm _ _ _ ] => unfold IdealWorld.check_perm | [ |- ?m #? (# ?k) = None ] => solve [ is_evar k; unify k (ChMaps.next_key_nat m); apply ChMaps.next_key_not_in; trivial ] | [ |- context [ ChMaps.next_key_nat ?m ]] => match goal with | [ |- context [ IdealWorld.addMsg ] ] => unfold IdealWorld.addMsg; simpl | _ => idtac "posing" ; pose proof (ChMaps.next_key_not_in m _ eq_refl) ; let k := fresh "k" in let Heq := fresh "Heq" in remember (ChMaps.next_key_nat m) as k eqn:Heq end (* | [ |- context [ match ?m $+ (?kid1,_) $? ?kid1 with _ => _ end ] ] => *) (* rewrite add_eq_o by trivial *) | [ |- context [ match ?m $+ (?kid2,_) $? ?kid1 with _ => _ end] ] => progress ( repeat ( ( rewrite add_eq_o by trivial) || (rewrite add_neq_o by solve_simple_ineq) ) ) | [ |- context [ #0 #? _ ]] => rewrite ChMaps.ChMap.lookup_empty_none | [ |- _ = _ ] => subst; reflexivity | [ |- context [ _ $? _ ] ] => progress solve_concrete_maps | [ |- context [ _ #? _ ] ] => progress solve_concrete_maps | [ H : match _ $+ (?k1,_) $? ?k2 with _ => _ end |- _ ] => try ( progress ( repeat (( rewrite add_eq_o in H by trivial) || (rewrite add_neq_o in H by solve_simple_ineq) || (rewrite lookup_empty_none in H)) )) || destruct (k1 ==n k2); subst end; simpl. Ltac solve_ideal_step_stuff := repeat solve_ideal_step_stuff1. Ltac isilent_step_univ uid := eapply IdealWorld.LStepUser'; simpl; swap 2 3; [ pick_user uid | ..]; (try simple eapply @eq_refl); ((eapply IdealWorld.LStepBindRecur; i_single_silent_step; solve [ solve_ideal_step_stuff; eauto 2 ]) || (i_single_silent_step; solve [ solve_ideal_step_stuff; eauto 2 ])). Ltac rsilent_step_univ uid := eapply RealWorld.StepUser; simpl; swap 2 3; [ pick_user uid | ..]; (try simple eapply @eq_refl); ((eapply RealWorld.StepBindRecur; r_single_silent_step) || r_single_silent_step). Ltac single_silent_multistep usr_step := eapply TrcFront; [usr_step |]; simpl. Ltac single_silent_multistep3 usr_step := eapply Trc3Front; swap 1 2; [usr_step |..]; simpl; trivial. Ltac real_single_silent_multistep uid := single_silent_multistep3 ltac:(rsilent_step_univ uid). Ltac ideal_single_silent_multistep uid := single_silent_multistep ltac:(isilent_step_univ uid). Ltac figure_out_ideal_user_step step_tac U1 U2 := match U1 with | context [ add ?u ?usr1 _ ] => match U2 with | context [ add u ?usr2 _ ] => let p1 := constr:(IdealWorld.protocol usr1) in let p2 := constr:(IdealWorld.protocol usr2) in does_not_unify p1 p2; step_tac u end end. Ltac figure_out_real_user_step step_tac U1 U2 := match U1 with | context [ add ?u ?usr1 _ ] => match U2 with | context [ add u ?usr2 _ ] => let p1 := constr:(RealWorld.protocol usr1) in let p2 := constr:(RealWorld.protocol usr2) in does_not_unify p1 p2; step_tac u end end. #[export] Remove Hints TrcRefl TrcFront Trc3Refl Trc3Front : core. #[export] Hint Extern 1 (_ ^* ?U ?U) => apply TrcRefl : core. #[export] Remove Hints eq_sym (* includes_lookup *) trans_eq_bool mult_n_O plus_n_O eq_add_S f_equal_nat : core. #[export] Hint Constructors action_matches : core. #[export] Hint Resolve IdealWorld.LStepSend IdealWorld.LStepRecv' : core. Lemma TrcRefl' : forall {A} (R : A -> A -> Prop) x1 x2, x1 = x2 -> trc R x1 x2. Proof. intros. subst. apply TrcRefl. Qed. Lemma Trc3Refl' : forall {A B} (R : A -> B -> A -> Prop) x1 x2 P, x1 = x2 -> trc3 R P x1 x2. Proof. intros. subst. apply Trc3Refl. Qed. Ltac solve_refl := solve [ eapply TrcRefl | eapply TrcRefl'; simpl; eauto ]. Ltac solve_refl3 := solve [ eapply Trc3Refl | eapply Trc3Refl'; simpl; smash_universe; solve_concrete_maps ]. Ltac simpl_real_users_context := simpl; repeat match goal with | [ |- context [ RealWorld.buildUniverse ] ] => progress (unfold RealWorld.buildUniverse; simpl) | [ |- context [ {| RealWorld.users := ?usrs |}] ] => progress canonicalize_map usrs (* | [ |- context [ RealWorld.mkUniverse ?usrs _ _ _] ] => canonicalize_map usrs *) end. Ltac simpl_ideal_users_context := simpl; repeat match goal with | [ |- context [ {| IdealWorld.users := ?usrs |}] ] => progress canonicalize_map usrs end. Ltac rss_clean uid := real_single_silent_multistep uid; [ solve [eauto 3] .. |]. Ltac ideal_silent_multistep := simpl_ideal_users_context; match goal with | [ |- istepSilent ^* ?U1 ?U2 ] => is_not_evar U1; is_not_evar U2; first [ solve_refl | figure_out_ideal_user_step ideal_single_silent_multistep U1 U2 ] end. Ltac single_step_ideal_universe := simpl_ideal_users_context; match goal with | [ |- IdealWorld.lstep_universe _ ?U1 _ ?U2] => match U1 with | IdealWorld.construct_universe _ ?usrs1 => match U2 with | IdealWorld.construct_universe _ ?usrs2 => figure_out_ideal_user_step istep_univ usrs1 usrs2 end end end. Ltac single_labeled_ideal_step uid := eapply IdealWorld.LStepUser' with (u_id := uid); [ solve [ solve_concrete_maps ] | simpl | reflexivity ]; eapply IdealWorld.LStepBindRecur; ( (eapply IdealWorld.LStepRecv'; solve [ solve_ideal_step_stuff ]) || (eapply IdealWorld.LStepSend; solve [ solve_ideal_step_stuff ])). Ltac step_each_ideal_user U := match U with | ?usrs $+ (?AB,_) => idtac "stepping " AB; (single_labeled_ideal_step AB || step_each_ideal_user usrs) end. (* TODO: during canonicalization, cleanup the channels map *) Local Ltac blah1 := match goal with | [ |- context [ IdealWorld.addMsg ]] => unfold IdealWorld.addMsg; simpl | [ |- context [ ?m #? _ ]] => progress unfold m | [ |- context [ _ #+ (?k1,_) #? ?k1 ]] => rewrite ChMaps.ChMap.F.add_eq_o by trivial | [ |- context [ _ #+ (?k1,_) #? ?k2 ]] => rewrite ChMaps.ChMap.F.add_neq_o by congruence end. Ltac step_ideal_user := match goal with | [ |- IdealWorld.lstep_universe _ _ (Action _) ?U' ] => is_evar U'; simpl_ideal_users_context; (repeat blah1); match goal with | [ |- IdealWorld.lstep_universe {| IdealWorld.users := ?usrs; IdealWorld.channel_vector := _ |} _ _ ] => step_each_ideal_user usrs end end. Ltac idealUserSilentStep := (eapply IdealWorld.LStepBindRecur; i_single_silent_step; solve [ solve_ideal_step_stuff; eauto 2 ]) || (i_single_silent_step; solve [ solve_ideal_step_stuff; eauto 2 ]). Ltac indexedIdealSilentStep := econstructor; simpl; [ solve [ clean_map_lookups; trivial ] | solve [ idealUserSilentStep ] | reflexivity ]. Ltac solve_indexed_silent_multistep := simpl_ideal_users_context; eapply TrcFront; [ indexedIdealSilentStep |]. Ltac unBindi := match goal with | [ |- IdealWorld.lstep_user _ (Action _) (_,IdealWorld.Bind _ _,_) _ ] => eapply IdealWorld.LStepBindRecur end. Ltac ideal_user_labeled_step := simpl ; (try match goal with | [ |- IdealWorld.lstep_user _ (Action _) (_,idealServer 0 _ _,_) _ ] => rewrite idealserver_done | [ |- IdealWorld.lstep_user _ (Action _) (_,idealServer _ _ _,_) _ ] => erewrite unroll_idealserver_step by reflexivity end) ; repeat unBindi ; match goal with | [ |- IdealWorld.lstep_user _ (Action _) (_,IdealWorld.Recv _,_) _ ] => eapply IdealWorld.LStepRecv'; solve_ideal_step_stuff | [ |- IdealWorld.lstep_user _ (Action _) (_,IdealWorld.Send _ _,_) _ ] => eapply IdealWorld.LStepSend; solve_ideal_step_stuff end. Ltac indexedIdealStep := match goal with | [ |- indexedIdealStep _ (Action _) _ ?U' ] => is_evar U'; simpl_ideal_users_context; (repeat blah1); econstructor; simpl; [ solve [ clean_map_lookups; trivial ] | ideal_user_labeled_step | reflexivity ] end. #[export] Hint Extern 1 ((indexedIdealStep _ Silent) ^* _ _) => repeat solve_indexed_silent_multistep; solve_refl : core. #[export] Hint Extern 1 (indexedIdealStep _ (Action _) _ _) => indexedIdealStep : core. #[export] Hint Extern 1 (istepSilent ^* _ _) => ideal_silent_multistep : core. #[export] Hint Extern 1 ({| IdealWorld.channel_vector := _; IdealWorld.users := _ |} = _) => smash_universe; solve_concrete_maps : core. #[export] Hint Extern 1 (_ = {| IdealWorld.channel_vector := _; IdealWorld.users := _ |}) => smash_universe; solve_concrete_maps : core. #[export] Hint Extern 1 (IdealWorld.lstep_universe _ _ _) => step_ideal_user : core. #[export] Hint Extern 1 (List.In _ _) => progress simpl : core. #[export] Hint Extern 1 (~ In ?k ?m) => solve_concrete_maps : core. #[export] Hint Extern 1 (action_adversary_safe _ _ _ = _) => unfold action_adversary_safe; simpl : core. #[export] Hint Extern 1 (IdealWorld.screen_msg _ _) => econstructor; progress simpl : core. #[export] Hint Extern 1 (_ = RealWorld.addUserKeys _ _) => unfold RealWorld.addUserKeys, map; simpl : core. #[export] Hint Extern 1 (_ $+ (_,_) = _) => reflexivity || (solve [ solve_concrete_maps ] ) || (progress m_equal) || (progress clean_map_lookups) : core. #[export] Hint Extern 1 (_ $? _ = _) => reflexivity || (solve [ solve_concrete_maps ] ) || (progress m_equal) || (progress clean_map_lookups) : core. #[export] Hint Extern 1 (_ #+ (_,_) = _) => reflexivity || (solve [ solve_concrete_maps ] ) || (progress ChMaps.m_equal) || (progress ChMaps.ChMap.clean_map_lookups) : core. #[export] Hint Extern 1 (_ #? _ = _) => reflexivity || (solve [ solve_concrete_maps ] ) || (progress ChMaps.m_equal) || (progress ChMaps.ChMap.clean_map_lookups) : core. Local Ltac merge_perms_helper := repeat match goal with | [ |- _ = _ ] => reflexivity | [ |- _ $? _ = _ ] => solve_concrete_maps end. Ltac solve_action_matches1 := match goal with | [ |- content_eq _ _ _ ] => progress simpl | [ |- action_matches _ _ _ _ ] => progress simpl_real_users_context | [ |- action_matches _ _ _ _ ] => progress simpl_ideal_users_context | [ H : ?cs $? ?cid = Some (SigCipher _ _ _ _ ) |- action_matches ?cs _ (_,RealWorld.Output (SignedCiphertext ?cid) _ _ _) _ ] => eapply OutSig | [ H : ?cs $? ?cid = Some (SigEncCipher _ _ _ _ _ ) |- action_matches ?cs _ (_,RealWorld.Output (SignedCiphertext ?cid) _ _ _) _ ] => eapply OutEnc | [ H : ?cs $? ?cid = Some (SigCipher _ _ _ _ ) |- action_matches ?cs _ (_,RealWorld.Input (SignedCiphertext ?cid) _ _) _ ] => eapply InpSig | [ H : ?cs $? ?cid = Some (SigEncCipher _ _ _ _ _ ) |- action_matches ?cs _ (_,RealWorld.Input (SignedCiphertext ?cid) _ _) _ ] => eapply InpEnc | [ |- action_matches ?cs _ (_,RealWorld.Output (SignedCiphertext ?cid) _ _ _) _ ] => match cs with | context [ _ $+ (cid, SigCipher _ _ _ _)] => eapply OutSig | context [_ $+ (cid, SigEncCipher _ _ _ _ _)] => eapply OutEnc end | [ |- action_matches ?cs _ (_,RealWorld.Input (SignedCiphertext ?cid) _ _) _ ] => match cs with | context[ _ $+ (cid, SigCipher _ _ _ _)] => eapply InpSig | context[ _ $+ (cid, SigEncCipher _ _ _ _ _)] => eapply InpEnc end | [ H : _ $+ (?k1,_) $? ?k2 = Some ?d__rw |- context [ RealWorld.key_heap ?d__rw $? _ = Some _ ] ] => is_var d__rw; is_var k2; is_not_var k1; destruct (k1 ==n k2); subst; clean_map_lookups; simpl | [ H : ?P $? _ = Some {| IdealWorld.read := _; IdealWorld.write := _ |} |- _ ] => simpl in *; unfold P in H; solve_concrete_maps | [ |- _ $? _ = Some _ ] => progress solve_concrete_maps | [ |- context [ IdealWorld.addMsg ]] => unfold IdealWorld.addMsg; simpl | [ |- context [ ?m #? _ ]] => progress unfold m | [ |- context [ _ #+ (?k1,_) #? ?k1 ]] => rewrite ChMaps.ChMap.F.add_eq_o by trivial | [ |- context [ _ #+ (?k1,_) #? ?k2 ]] => rewrite ChMaps.ChMap.F.add_neq_o by congruence | [ |- context [ IdealWorld.perm_intersection ] ] => unfold IdealWorld.perm_intersection; simpl | [ H : _ $k++ _ $? _ = Some ?b |- context [ ?b ]] => solve [ solve_perm_merges; solve_concrete_maps ] | [ |- _ $k++ _ $? _ = Some _ ] => solve [ erewrite merge_perms_adds_ks1; (swap 2 4; merge_perms_helper) ] || solve [ erewrite merge_perms_adds_ks2; (swap 2 4; merge_perms_helper) ] | [ H : match _ $+ (?k1,_) $? ?k1 with _ => _ end = _ |- _ ] => rewrite add_eq_o in H by trivial | [ H : match _ $+ (?k1,_) $? ?k2 with _ => _ end = _ |- _ ] => rewrite add_neq_o in H by congruence | [ |- _ <-> _ ] => split | [ |- _ -> _ ] => intros | [ |- _ = _ ] => reflexivity | [ |- _ /\ _ ] => split | [ |- context [ _ $? _ ]] => progress ( repeat ( (rewrite add_eq_o by trivial) || (rewrite add_neq_o by congruence) || (rewrite lookup_empty_none by congruence) ) ) end; split_ex; simpl in *. #[export] Hint Extern 1 (action_matches _ _ _ _) => repeat (solve_action_matches1) ; NatMap.clean_map_lookups ; ChMaps.ChMap.clean_map_lookups : core. #[export] Hint Resolve findUserKeys_foldfn_proper findUserKeys_foldfn_transpose : core. Lemma findUserKeys_add_reduce : forall {A} (usrs : RealWorld.honest_users A) u_id ks p qmsgs mycs froms sents cur_n, ~ In u_id usrs -> RealWorld.findUserKeys (usrs $+ (u_id, {| RealWorld.key_heap := ks; RealWorld.protocol := p; RealWorld.msg_heap := qmsgs; RealWorld.c_heap := mycs; RealWorld.from_nons := froms; RealWorld.sent_nons := sents; RealWorld.cur_nonce := cur_n |})) = RealWorld.findUserKeys usrs $k++ ks. Proof. intros. unfold RealWorld.findUserKeys. rewrite fold_add; eauto. Qed. Lemma findUserKeys_empty_is_empty : forall A, @RealWorld.findUserKeys A $0 = $0. Proof. trivial. Qed. #[export] Hint Constructors RealWorld.msg_pattern_safe : core. Lemma reduce_merge_perms : forall perms1 perms2 kid perm1 perm2, perm1 = match perms1 $? kid with | Some p => p | None => false end -> perm2 = match perms2 $? kid with | Some p => p | None => false end -> (perms1 $? kid = None -> perms2 $? kid = None -> False) -> perms1 $k++ perms2 $? kid = Some (perm1 || perm2). Proof. intros; solve_perm_merges; subst; eauto. - rewrite orb_false_r; auto. - exfalso; eauto. Qed. Ltac solve_concrete_perm_merges := repeat match goal with | [ |- context [true || _] ] => rewrite orb_true_l | [ |- context [_ || true] ] => rewrite orb_true_r | [ |- context [$0 $k++ _] ] => rewrite merge_perms_left_identity | [ |- context [_ $k++ $0] ] => rewrite merge_perms_right_identity | [ |- context [_ $k++ _] ] => erewrite reduce_merge_perms by (clean_map_lookups; eauto) end; trivial. Ltac simplify_terms := unfold RealWorld.msg_honestly_signed , RealWorld.msg_signing_key , RealWorld.msg_to_this_user , RealWorld.msg_destination_user , RealWorld.cipher_signing_key , RealWorld.honest_keyb , RealWorld.cipher_nonce , add_key_perm. Ltac assert_lkp ks k tac := let ev' := fresh "ev" in evar (ev' : option bool); let ev := eval unfold ev' in ev' in (clear ev' ; match ks with | ?ks1 $k++ ?ks2 => assert (ks $? k = ev) by tac | _ => assert (ks $? k = ev) by tac end). Ltac bldLkup ks k tac := match goal with | [ H : ks $? k = ?ans |- _ ] => idtac (* idtac "done with: " ks *) | _ => match ks with | ?ks1 $k++ ?ks2 => (* idtac "splitting: " ks1 " and " ks2; *) bldLkup ks1 k tac; bldLkup ks2 k tac | _ => idtac (* "will build: " ks *) end; assert_lkp ks k tac end. Ltac prove_lookup := solve [ repeat match goal with | [ |- None = _ ] => reflexivity | [ |- Some _ = _ ] => reflexivity | [ |- $0 $? _ = _ ] => rewrite lookup_empty_none | [ |- ?ks $+ (?k1,_) $? ?k2 = _ ] => (rewrite add_eq_o by trivial) || (rewrite add_neq_o by auto 2) || fail 2 | [ |- ?m $? _ = _ ] => progress (unfold m) | [ H1 : ?ks1 $? ?kid = Some _ , H2 : ?ks2 $? ?kid = Some _ |- ?ks1 $k++ ?ks2 $? ?kid = _ ] => rewrite (merge_perms_chooses_greatest _ _ H1 H2) by trivial; unfold greatest_permission; simpl | [ H1 : ?ks1 $? ?kid = Some _ , H2 : ?ks2 $? ?kid = None |- ?ks1 $k++ ?ks2 $? ?kid = _ ] => rewrite (merge_perms_adds_ks1 _ _ _ H1 H2) by trivial | [ H1 : ?ks1 $? ?kid = None , H2 : ?ks2 $? ?kid = Some _ |- ?ks1 $k++ ?ks2 $? ?kid = _ ] => rewrite (merge_perms_adds_ks2 _ _ _ H1 H2) by trivial | [ H1 : ?ks1 $? ?kid = None , H2 : ?ks2 $? ?kid = None |- ?ks1 $k++ ?ks2 $? ?kid = _ ] => rewrite (merge_perms_adds_no_new_perms _ _ _ H1 H2) by trivial | [ H : ?ks1 $? ?kid = _ |- ?ks1 $k++ ?ks2 $? ?kid = _ ] => assert_lkp ks2 kid prove_lookup | [ H : ?ks2 $? ?kid = _ |- ?ks1 $k++ ?ks2 $? ?kid = _ ] => assert_lkp ks1 kid prove_lookup | [ |- ?ks1 $k++ ?ks2 $? ?kid = _ ] => assert_lkp ks1 kid prove_lookup ; assert_lkp ks2 kid prove_lookup end ]. Ltac solve_merges := repeat match goal with | [ |- context [true || _] ] => rewrite orb_true_l | [ |- context [_ || true] ] => rewrite orb_true_r | [ |- context [ _ $k++ $0 ] ] => rewrite merge_perms_right_identity | [ |- context [ $0 $k++ _ ] ] => rewrite merge_perms_left_identity | [ RW : ?ks $? ?k = _ |- context [ ?ks $? ?k ] ] => rewrite RW | [ |- context [ ?ks $? ?k ] ] => (* idtac "building: " ks; *) bldLkup ks k prove_lookup end; trivial. Lemma reduce_merge_perms_r : forall perms1 perms2 kid p2, perms1 $? kid = None -> perms1 $k++ (perms2 $+ (kid,p2)) = perms1 $+ (kid,p2) $k++ (perms2 $- kid). Proof. intros. eapply map_eq_Equal; unfold Equal; intros. cases (perms1 $? y); cases (perms2 $? y); destruct (kid ==n y); subst; clean_map_lookups. - erewrite !merge_perms_chooses_greatest; try reflexivity; clean_map_lookups; eauto. - erewrite merge_perms_adds_ks1 with (ks1 := perms1) (ks2 := perms2 $+ (kid, p2)); eauto. erewrite merge_perms_adds_ks1 with (ks1 := perms1 $+ (kid, p2)) (ks2 := perms2 $- kid); eauto. - erewrite merge_perms_adds_ks2 with (ks1 := perms1) (ks2 := perms2 $+ (y, p2)); eauto. erewrite merge_perms_adds_ks1 with (ks1 := perms1 $+ (y, p2)) (ks2 := perms2 $- y); eauto. - erewrite merge_perms_adds_ks2 with (ks1 := perms1) (ks2 := perms2 $+ (kid, p2) ); eauto. erewrite merge_perms_adds_ks2 with (ks1 := perms1 $+ (kid, p2)) (ks2 := perms2 $- kid); eauto. - erewrite merge_perms_adds_ks2 with (ks1 := perms1); eauto; clean_map_lookups; try reflexivity. erewrite merge_perms_adds_ks1 with (ks1 := perms1 $+ (y, p2)) (ks2 := perms2 $- y); eauto. - rewrite !merge_perms_adds_no_new_perms; eauto. Qed. Lemma reduce_merge_perms_both : forall perms1 perms2 kid p1 p2, perms1 $? kid = Some p1 -> perms1 $k++ (perms2 $+ (kid,p2)) = perms1 $+ (kid,greatest_permission p1 p2) $k++ (perms2 $- kid). Proof. intros. eapply map_eq_Equal; unfold Equal; intros. cases (perms1 $? y); cases (perms2 $? y); destruct (kid ==n y); subst; clean_map_lookups. - erewrite merge_perms_chooses_greatest; eauto; clean_map_lookups; try reflexivity. erewrite merge_perms_adds_ks1 with (ks1 := perms1 $+ (y, greatest_permission b p2)) (ks2 := perms2 $- y); eauto. - erewrite !merge_perms_chooses_greatest; try reflexivity; clean_map_lookups; trivial. - erewrite merge_perms_chooses_greatest; eauto; clean_map_lookups; try reflexivity. erewrite merge_perms_adds_ks1 with (ks1 := perms1 $+ (y, greatest_permission b p2)) (ks2 := perms2 $- y); eauto. - erewrite merge_perms_adds_ks1 with (ks1 := perms1) (ks2 := perms2 $+ (kid, p2)); eauto. erewrite merge_perms_adds_ks1 with (ks1 := perms1 $+ (kid, greatest_permission p1 p2)) (ks2 := perms2 $- kid); eauto. - erewrite merge_perms_adds_ks2 with (ks1 := perms1) (ks2 := perms2 $+ (kid, p2)); eauto. erewrite merge_perms_adds_ks2 with (ks1 := perms1 $+ (kid, greatest_permission p1 p2)) (ks2 := perms2 $- kid); eauto. - rewrite !merge_perms_adds_no_new_perms; eauto. Qed. Ltac xx := clean_map_lookups; try match goal with | [ |- $0 $? _ = _ ] => rewrite lookup_empty_none end; eauto. Ltac find_merge_rewrite ks1 ks2 := match ks1 with | ?ks1' $k++ ?ks2' => find_merge_rewrite ks1' ks2' | _ => match ks2 with | ?ks $+ (?k,?p) => assert_lkp ks1 k xx ; match goal with | [ H : ks1 $? k = ?opt |- _ ] => match opt with | Some ?p' => rewrite reduce_merge_perms_both with (perms1 := ks1) (perms2 := ks) (kid := k) (p1 := p') (p2 := p) | None => rewrite reduce_merge_perms_r with (perms1 := ks1) (perms2 := ks) (kid := k) (p2 := p) end end end end. Lemma remove_empty : forall k V, (@empty V) $- k = $0. Proof. intros. eapply map_eq_Equal; unfold Equal; intros; eauto. Qed. Ltac elim_removes1 := (rewrite !map_add_remove_eq by trivial) || (rewrite !map_add_remove_neq by eauto) || (rewrite !remove_empty). Ltac elim_removes := repeat elim_removes. Ltac reduce_merges := repeat match goal with | [ |- context [true || _] ] => rewrite orb_true_l | [ |- context [_ || true] ] => rewrite orb_true_r | [ |- context [ _ $k++ $0 ] ] => rewrite merge_perms_right_identity | [ |- context [ $0 $k++ _ ] ] => rewrite merge_perms_left_identity | [ |- context [ _ $- _ ]] => elim_removes1 | [ |- context [ ?ks1 $k++ ?ks2 ]] => find_merge_rewrite ks1 ks2 | [ RW : ?ks $? ?k = _ |- context [ ?ks $? ?k ] ] => rewrite RW end; trivial. Ltac has_key ks k := match ks with | context [ _ $+ (k,_) ] => idtac end. Ltac solve_merges1 := match goal with | [ H : Some _ = Some _ |- _ ] => injection H; subst | [ H : Some _ = None |- _ ] => discriminate H | [ H : None = Some _ |- _ ] => discriminate H | [ H : findKeysMessage _ $? _ = _ |- _ ] => progress (simpl in H) | [ H : ?ks $? ?k = _ |- _ ] => progress ( repeat ( (rewrite add_eq_o in H by trivial) || (rewrite add_neq_o in H by congruence) || (rewrite lookup_empty_none in H by congruence) ) ) | [ H : _ $+ (?k1,_) $? ?k2 = _ |- _ ] => destruct (k1 ==n k2); subst | [ H : _ $k++ _ $? _ = None |- _ ] => apply merge_perms_no_disappear_perms in H ; destruct H | [ H : _ $k++ _ $? ?kid = Some _ |- _ ] => apply merge_perms_split in H ; destruct H | [ |- context [ ?kss1 $k++ ?kss2 $? ?ky ] ] => has_key kss1 ky; has_key kss2 ky ; erewrite merge_perms_chooses_greatest with (ks1 := kss1) (ks2 := kss2) (k := ky) (k' := ky) | [ |- context [ ?kss1 $k++ ?kss2 $? ?ky ] ] => has_key kss1 ky ; erewrite merge_perms_adds_ks1 with (ks1 := kss1) (ks2 := kss2) (k := ky) ; try reflexivity | [ |- context [ ?kss1 $k++ ?kss2 $? ?ky ] ] => has_key kss2 ky ; erewrite merge_perms_adds_ks2 with (ks1 := kss1) (ks2 := kss2) (k := ky) ; try reflexivity | [ |- context [ ?kss1 $k++ ?kss2 $? ?ky ] ] => erewrite merge_perms_adds_no_new_perms with (ks1 := kss1) (ks2 := kss2) (k := ky) | [ |- ?ks $? ?k = _ ] => progress ( repeat ( (rewrite add_eq_o by trivial) || (rewrite add_neq_o by congruence) || (rewrite lookup_empty_none by congruence) ) ) | [ |- _ = _ ] => (progress simpl) || reflexivity end. Ltac solve_honest_actions_safe1 := solve_merges1 || match goal with | [ H : _ = {| RealWorld.users := _; RealWorld.adversary := _; RealWorld.all_ciphers := _; RealWorld.all_keys := _ |} |- _ ] => invert H | [ |- honest_cmds_safe _ ] => unfold honest_cmds_safe; intros; simpl in * | [ |- next_cmd_safe _ _ _ _ _ _ ] => unfold next_cmd_safe; intros | [ H : _ $+ (?id1,_) $? ?id2 = _ |- _ ] => is_var id2; destruct (id1 ==n id2); subst; clean_map_lookups | [ H : nextAction _ _ |- _ ] => invert H | [ H : mkKeys _ $? _ = _ |- _ ] => unfold mkKeys in H; simpl in H | [ |- context [ RealWorld.findUserKeys ?usrs ] ] => canonicalize_map usrs | [ |- context [ RealWorld.findUserKeys _ ] ] => rewrite !findUserKeys_add_reduce, findUserKeys_empty_is_empty by eauto | [ H : RealWorld.findKeysMessage _ $? _ = _ |- _ ] => progress (simpl in H) | [ |- (_ -> _) ] => intros | [ |- context [ _ $+ (_,_) $? _ ] ] => progress clean_map_lookups | [ |- RealWorld.msg_pattern_safe _ _ ] => econstructor | [ |- RealWorld.honest_key _ _ ] => econstructor (* | [ |- context [_ $k++ _ ] ] => progress reduce_merges *) (* | [ |- context [_ $k++ _ $? _ ] ] => progress solve_merges *) | [ |- context [ ?m $? _ ] ] => unfold m | [ |- Forall _ _ ] => econstructor | [ |- exists x y, (_ /\ _)] => (do 2 eexists); repeat simple apply conj; eauto 2 | [ |- _ /\ _ ] => repeat simple apply conj | [ |- ~ List.In _ _ ] => progress simpl | [ |- ~ (_ \/ _) ] => unfold not; intros; split_ors; subst; try contradiction | [ H : (_,_) = (_,_) |- _ ] => invert H end. Ltac solve_honest_actions_safe := repeat (solve_honest_actions_safe1 || (progress simplify_terms) (* ; simpl; cbn *)). Ltac solve_labels_align := (do 3 eexists); repeat (simple apply conj); [ solve [ eauto 3 ] | indexedIdealStep; simpl | subst; repeat solve_action_matches1; clean_map_lookups; ChMaps.ChMap.clean_map_lookups ]; eauto 3; simpl; eauto. End SimulationAutomation. Import SimulationAutomation Sets. Module Foo <: EMPTY. End Foo. Module Import SN := SetNotations(Foo). Ltac univ_equality1 := match goal with | [ |- _ = _ ] => reflexivity | [ |- _ /\ _ ] => repeat simple apply conj | [ |- (_,_) = (_,_) ] => rewrite pair_equal_spec | [ |- {| RealWorld.users := _ |} = _ ] => eapply real_univ_eq_fields_eq | [ |- {| IdealWorld.users := _ |} = _ ] => eapply ideal_univ_eq_fields_eq end || ( progress m_equal ) || ( progress ChMaps.m_equal ). Ltac univ_equality := progress (repeat univ_equality1). Ltac sets0 := Sets.sets ltac:(simpl in * ; intuition (subst; auto; try congruence; try univ_equality; try lia)). Ltac sets' := propositional; try match goal with | [ |- @eq (?T -> Prop) _ _ ] => change (T -> Prop) with (set T) end; try match goal with | [ |- @eq (set _) _ _ ] => let x := fresh "x" in apply sets_equal; intro x; repeat match goal with | [ H : @eq (set _) _ _ |- _ ] => apply (f_equal (fun f => f x)) in H; apply eq_iff in H end end; sets0; try match goal with | [ H : @eq (set ?T) _ _, x : ?T |- _ ] => repeat match goal with | [ H : @eq (set T) _ _ |- _ ] => apply (f_equal (fun f => f x)) in H; apply eq_iff in H end; solve [ sets0 ] end. Tactic Notation "sets" := sets'. Module SetLemmas. Lemma setminus_empty_subtr : forall {A} (s : set A), s \setminus {} = s. Proof. sets. Qed. Lemma setminus_empty_minu : forall {A} (s : set A), {} \setminus s = {}. Proof. sets. Qed. Lemma setminus_self : forall {A} (s : set A), s \setminus s = {}. Proof. sets. Qed. Lemma setminus_other : forall {A} (s1 s2 : set A), s1 \cap s2 = {} -> s1 \setminus s2 = s1. Proof. sets. Qed. Lemma setminus_distr_subtr : forall {A} (s1 s2 s3 : set A), (s1 \cup s2) \setminus s3 = (s1 \setminus s3) \cup (s2 \setminus s3). Proof. sets. Qed. Lemma setminus_distr_minu : forall {A} (s1 s2 s3 : set A), s1 \setminus (s2 \cup s3) = (s1 \setminus s2) \cap (s1 \setminus s3). Proof. sets. Qed. Lemma union_self : forall {A} (s : set A), s \cup s = s. Proof. sets. Qed. Lemma union_self_thru : forall {A} (s1 s2 : set A), s1 \cup (s1 \cup s2) = s1 \cup s2. Proof. sets. Qed. Lemma union_empty_r : forall {A} (s : set A), s \cup {} = s. Proof. sets. Qed. Lemma union_empty_l : forall {A} (s : set A), {} \cup s = s. Proof. sets. Qed. Lemma intersect_self : forall {A} (s : set A), s \cap s = s. Proof. sets. Qed. Lemma intersect_empty_r : forall {A} (s : set A), s \cap {} = {}. Proof. sets. Qed. Lemma intersect_empty_l : forall {A} (s : set A), {} \cap s = {}. Proof. sets. Qed. End SetLemmas. Module Tacs. Import SetLemmas. Ltac simpl_sets1 disj_tac := match goal with | [|- context[?s' \cup ?s']] => rewrite union_self with (s := s') | [|- context[?s1' \cup (?s1' \cup ?s2')]] => rewrite union_self_thru with (s1 := s1') (s2 := s2') | [|- context[?s' \cup {}]] => rewrite union_empty_r with (s := s') | [|- context[{} \cup ?s']] => rewrite union_empty_l with (s := s') | [|- context[?s' \cap ?s']] => rewrite intersect_self with (s := s') | [|- context[?s' \cap {}]] => rewrite intersect_empty_r with (s := s') | [|- context[{} \cap ?s']] => rewrite intersect_empty_l with (s := s') | [|- context[?s' \setminus ?s']] => rewrite setminus_self with (s := s') | [|- context[?s' \setminus {}]] => rewrite setminus_empty_subtr with (s := s') | [|- context[{} \setminus ?s']] => rewrite setminus_empty_minu with (s := s') | [|- context[(?s1' \cup ?s2') \setminus ?s3']] => rewrite setminus_distr_subtr with (s1 := s1') (s2 := s2') (s3 := s3') | [|- context[?s1' \setminus (?s2' \cup ?s3')]] => rewrite setminus_distr_minu with (s1 := s1') (s2 := s2') (s3 := s3') | [|- context[?s1' \setminus ?s2']] => rewrite setminus_other with (s1 := s1') (s2 := s2') by disj_tac end. Ltac sets_invert := repeat match goal with | [H : (_ \cup _) _ |- _] => invert H | [H : (_ \cap _) _ |- _] => invert H | [H : [_ | _] _ |- _] => invert H | [H : (_ \setminus _) _ |- _] => invert H | [H : _ \in _ |- _] => invert H | [H : (complement _) _ |- _] => invert H | [H : { } _ |- _] => invert H | [H : { _ } _ |- _] => invert H | [H : _ \/ False |- _ ] => destruct H; [ | contradiction] end. Ltac case_lookup H := match type of H with | ?m $? ?k = Some ?v => let t := type of v in repeat match m with | context[add ?k' ?v' _ ] => let t' := type of v' in unify t t' ; match goal with | [e : k = k' |- _] => fail 2 | [n : k <> k' |- _] => fail 2 | _ => destruct (k ==n k') end end ; subst ; simpl in * ; clean_map_lookups ; simpl in * end. Lemma map_sym : forall {v} (m : NatMap.t v) k1 k2 v1 v2, k1 <> k2 -> m $+ (k1, v1) $+ (k2, v2) = m $+ (k2, v2) $+ (k1, v1). Proof. intros; maps_equal. Qed. Ltac reorder_usrs n := repeat match n with | context[add ?a ?va (add ?b ?vb ?rest)] => match eval cbv in (Nat.leb a b) with | true => rewrite map_sym with (m := rest) (k1 := b) (k2 := a) (v1 := vb) (v2 := va) by auto end end. Tactic Notation "simpl_sets" := repeat (simpl_sets1 ltac:(shelve)). Tactic Notation "simpl_sets" tactic(disj_tac) := repeat (simpl_sets1 ltac:(disj_tac)). Tactic Notation "ifnot" tactic(t) "at" int_or_var(lvl) := tryif t then fail lvl else idtac. Tactic Notation "ifnot" tactic(t) := ifnot t at 0. Tactic Notation "concrete" constr(x) "at" int_or_var(lvl) := (ifnot (is_var x) at lvl); (ifnot (is_evar x) at lvl). Tactic Notation "concrete" constr(x) := concrete x at 0. Tactic Notation "concrete" "iuniv" constr(u) := match u with | {| IdealWorld.channel_vector := ?cv ; IdealWorld.users := ?usrs |} => concrete cv; concrete usrs end. Tactic Notation "concrete" "iproc" constr(p) := match p with | (IdealWorld.protocol ?p) => concrete p at 1 | _ => concrete p at 1 end. Tactic Notation "canonicalize" "rusers" := repeat match goal with | [|- context[{| RealWorld.users := ?usrs ; RealWorld.adversary := _ ; RealWorld.all_ciphers := _ ; RealWorld.all_keys := _ |}]] => progress canonicalize_concrete_map usrs end. Tactic Notation "canonicalize" "iusers" := repeat match goal with | [|- context[{| IdealWorld.channel_vector := _ ; IdealWorld.users := ?usrs |}]] => progress canonicalize_concrete_map usrs end. Tactic Notation "canonicalize" "users" := canonicalize rusers; canonicalize iusers. End Tacs. Import Tacs. Module Gen. Import SetLemmas. #[export] Hint Unfold oneStepClosure oneStepClosure_current oneStepClosure_new : osc. Lemma oneStepClosure_grow : forall state (sys : trsys state) (inv1 inv2 : state -> Prop), (forall st st', inv1 st -> sys.(Step) st st' -> inv2 st') -> oneStepClosure sys inv1 (inv1 \cup inv2). Proof. sets; repeat autounfold with osc in *; propositional; eauto. Qed. Lemma msc_step_alt : forall {state} (sys : trsys state) wl wl' inv inv', oneStepClosure_new sys wl wl' -> wl' \cap (wl \cup inv) = { } -> multiStepClosure sys ((inv \cup wl) \cup wl') wl' inv' -> multiStepClosure sys (inv \cup wl) wl inv'. Proof. Ltac uf := repeat autounfold with osc in *. intros. apply MscStep with (inv'0 := (wl \cup wl')). - uf; sets; firstorder. - replace ((inv \cup wl) \cup (wl \cup wl')) with (inv \cup wl \cup wl') by sets. replace (((wl \cup wl') \setminus (inv \cup wl))) with wl' by sets. assumption. Qed. Lemma in_empty_map_contra : (forall {t} x, Map.In (elt := t) x $0 -> False). Proof. propositional. invert H. invert H0. Qed. Lemma incl_empty_empty : (forall {t}, @incl t [] []). Proof. cbv; auto. Qed. #[export] Hint Resolve incl_empty_empty : core. Ltac concrete_isteps := match goal with | [H : indexedIdealStep _ _ _ _ |- _ ] => invert H | [H : (indexedIdealStep _ Silent)^* ?u _ |- _] => concrete iuniv u; invert H | [H : istepSilent^* ?u _ |- _] => concrete iuniv u; invert H | [H : istepSilent ?u _ |- _] => concrete iuniv u; invert H | [H : IdealWorld.lstep_universe ?u _ _ |- _] => concrete iuniv u; invert H | [H : IdealWorld.lstep_user _ _ (_, idealServer 0 _ _, _) _ |- _] => rewrite idealserver_done in H by reflexivity | [H : IdealWorld.lstep_user _ _ (_, idealServer _ _ _, _) _ |- _] => erewrite unroll_idealserver_step in H by reflexivity | [H : IdealWorld.lstep_user _ _ (_, ?p, _) _ |- _] => concrete iproc p; invert H end. Ltac simplify := repeat (unifyTails); repeat match goal with | [ H : True |- _ ] => clear H end; repeat progress (simpl in *; intros; try autorewrite with core in *); repeat (normalize_set || doSubtract). Ltac infer_istep := match goal with | [H : IdealWorld.lstep_user _ _ (_, ?u.(IdealWorld.protocol), _) _, L : ?m $? ?u_id = Some ?u |- _] => case_lookup L end. Ltac istep := repeat ((repeat concrete_isteps); try infer_istep). Ltac incorp := let rec preconditions acc := (match goal with | [H : ?P |- _] => match type of P with | Prop => match eval hnf in acc with | context[P] => fail 1 | _ => let acc' := eval hnf in (P /\ acc) in preconditions acc' end end | _ => acc end) in let rec existentialize p := (match goal with | [x : ?A |- _] => match type of A with | Prop => fail 1 | _ => match A with | ((RealWorld.universe _ _) * (IdealWorld.universe _) * bool)%type => fail 2 | _ => match p with | context[x] => match eval pattern x in p with | ?g _ => let p' := (eval hnf in (exists y : A, g y)) in existentialize p' end end end end | _ => p end) in let conds := (preconditions True) in match goal with | [|- ?i ?v] => is_evar i ; let lp := constr:(exists x , conds /\ x = v) in let p := fresh "p" in let p' := fresh "p'" in let x := fresh "x" in assert (p : lp) by (eexists; intuition eauto) ; destruct p as [x p'] ; let lp' := type of p' in clear p' ; let lp'' := existentialize lp' in match eval pattern x in lp'' with | ?f _ => clear x ; let scomp := (eval simpl in [e | (f e)]) in instantiate (1 := (scomp \cup _)) end end. Ltac solve_returns_align1 := match goal with | [ H : users _ $? _ = Some _ |- _ ] => progress (simpl in H) | [ H1 : _ $? ?u = Some ?ud, H2 : protocol ?ud = Return _ |- _ ] => progress ( repeat ( (rewrite add_eq_o in H1 by trivial) || (rewrite add_neq_o in H1 by congruence) || (rewrite lookup_empty_none in H1; discriminate H1) ) ) | [ H1 : _ $+ (?u1,_) $? ?u2 = Some ?ud, H2 : protocol ?ud = Return _ |- _ ] => destruct (u1 ==n u2); subst | [ H1 : Some _ = Some ?ud, H2 : protocol ?ud = Return _ |- _ ] => injection H1; subst | [ H : _ = Return _ |- _ ] => discriminate H end. Ltac idealUnivSilentStep uid := eapply IdealWorld.LStepUser with (u_id := uid) ; simpl ; [ solve [ clean_map_lookups; trivial ] | solve [ idealUserSilentStep ] ]. Ltac step_ideal1 uid := idtac "stepping " uid ; eapply TrcFront ; [ idealUnivSilentStep uid |]. Ltac multistep_ideal usrs := simpl_ideal_users_context; match usrs with | ?us $+ (?uid,_) => idtac "multi stepping " uid ; (repeat step_ideal1 uid) ; multistep_ideal us | _ => eapply TrcRefl end. Ltac run_ideal_silent_steps_to_end := simpl_ideal_users_context; match goal with | [ |- istepSilent ^* {| IdealWorld.users := ?usrs |} ?U ] => is_evar U ; multistep_ideal usrs end. Ltac solve_real_step_stuff1 := equality1 || (progress subst) || solve_merges1 || match goal with | [ |- RealWorld.keys_mine _ _ ] => simpl in *; hnf | [ |- ?m $? next_key ?m = None ] => apply Maps.next_key_not_in ; trivial | [ |- ~ Map.In (next_key ?m) ?m ] => rewrite not_find_in_iff ; apply Maps.next_key_not_in ; trivial | [ H : _ $+ (?k1,_) $? ?kid = Some _ |- context [ ?kid ] ] => is_var kid ; destruct (k1 ==n kid); subst; clean_map_lookups | [ |- context [ $0 $? _ ]] => rewrite lookup_empty_none (* | [ |- _ $? _ = _ ] => *) | [ |- context [ _ $? _ = _ ] ] => progress clean_map_lookups | [ |- _ -> _ ] => intros | [ |- _ ] => ( progress simpl ) || ( progress hnf ) end. Ltac solve_indexedRealStep := repeat (match goal with [ |- exists _ , _ ] => eexists end) ; econstructor; [ solve [ simpl; clean_map_lookups; trivial ] | autounfold; unfold RealWorld.build_data_step; simpl; repeat ( match goal with | [ |- RealWorld.step_user _ _ _ _ ] => solve [ eapply RealWorld.StepBindProceed; eauto ] | [ |- RealWorld.step_user _ _ _ _ ] => eapply RealWorld.StepBindRecur; eauto | [ |- RealWorld.step_user _ _ (_,_,?cs,?gks,_,_,_,_,_,_,?cmd) _ ] => match cmd with | RealWorld.SignEncrypt _ _ _ _ => eapply RealWorld.StepEncrypt with (c_id := next_key cs) | RealWorld.Sign _ _ _ => eapply RealWorld.StepSign with (c_id := next_key cs) | RealWorld.GenerateKey _ _ => eapply RealWorld.StepGenerateKey with (k_id := next_key gks) | _ => econstructor end end ) ; trivial (* take a first pass to get the simple stuff *) ; repeat (solve_real_step_stuff1; trivial) ; eauto | reflexivity ]. Ltac find_indexed_real_step usrs uid := match usrs with | ?us $+ (?u,_) => (unify uid u; solve [ solve_indexedRealStep ]) || find_indexed_real_step us uid | $0 => fail 1 end. (* note the automation here creates a bunch of extra existentials while * doint the search for available steps. This creates several nats * that need to be resolved at the end of proofs that use it. * Should look at fixing this. *) Ltac find_step_or_solve := simpl in *; match goal with | [ H1 : forall _ _ _, indexedRealStep _ _ ?ru _ -> False , H2 : ?usrs $? _ = Some ?ur , H3 : RealWorld.protocol ?ur = RealWorld.Return _ |- _ ] => ( assert (exists uid lbl ru', indexedRealStep uid lbl ru ru') by (eexists ?[uid]; (do 2 eexists); find_indexed_real_step usrs ?uid) ; split_ex; exfalso; eauto ) || ( repeat solve_returns_align1 ; ( (do 3 eexists); simpl in *; (repeat equality1) ; subst ; repeat simple apply conj ; [ solve [ run_ideal_silent_steps_to_end ] | solve [ simpl; clean_map_lookups; trivial ] | reflexivity | reflexivity ] )) end. Ltac invert_commutes := match goal with | [ H : commutes (RealWorld.Recv _) _ |- _ ] => invert H | [ H : commutes (RealWorld.Send _ _) _ |- _ ] => invert H | [ H : commutes _ _ |- _ ] => fail 2 end. Ltac non_commuter uid := exists uid; eexists; repeat simple apply conj; [ congruence | solve [ autounfold; simpl; clean_map_lookups; trivial ] | solve [ intros; simpl; trivial] ]. Ltac non_commuter_all uids := match uids with | [] => fail 2 | (?uid :: ?uids') => (non_commuter uid) || (non_commuter_all uids') end. Ltac non_commuters := non_commuter_all [0;1;2;3;4;5]. Ltac discharge_nextStep2 := repeat match goal with | [ H : (forall _ _, ~ indexedRealStep ?uid _ ?ru _) \/ (exists _ _, ?uid <> _ /\ _ $? _ = Some _ /\ (forall _, ?sums $? _ = Some _ -> commutes ?proto _ -> False)) |- _ ] => split_ex; exfalso; destruct H | [ H : (forall _ _, ~ indexedRealStep ?uid _ ?ru _), ARG : indexedRealStep ?uid _ ?ru _ |- _ ] => eapply H in ARG; contradiction | [ H : summarize_univ ?ru ?sums, ARG : (forall _, ?sums $? ?uid = Some _ -> commutes _ _), USR : _ $? ?uid = Some _ |- _ ] => specialize (H _ _ {| sending_to := { } |} USR); split_ex | [ H : ?sums $? ?uid = Some _, COMM : (forall _, ?sums $? ?uid = Some _ -> commutes _ _) |- _ ] => specialize (COMM _ H); simpl in COMM; contradiction end. Lemma upper_users_cant_step_rewrite : forall A B (U : RealWorld.universe A B) uid, (forall uid' ud' U', U.(RealWorld.users) $? uid' = Some ud' -> uid' > uid -> ~ indexedRealStep uid' Silent U U') -> (forall uid' U', uid' > uid -> ~ indexedRealStep uid' Silent U U'). Proof. intros * H * INEQ. unfold not; intros IRS. invert IRS; eauto. eapply H; eauto. Qed. Lemma indexedModelStep_user_step : forall t__hon t__adv uid ru ru' iu iu' b b', @indexedModelStep t__hon t__adv uid (ru,iu,b) (ru',iu',b') -> (indexedRealStep uid Silent ru ru' /\ iu = iu' /\ b = b') \/ (exists a, indexedRealStep uid (Action a) ru ru') . Proof. induct 1; eauto 8. Qed. Lemma sstep_inv_silent : forall A B (U U' : RealWorld.universe A B) uid U__i b st', indexedRealStep uid Silent U U' -> (forall uid' U', uid' > uid -> ~ indexedRealStep uid' Silent U U') -> stepSS (U,U__i,b) st' -> exists U__r, indexedModelStep uid (U,U__i,b) (U__r,U__i,b) /\ indexedRealStep uid Silent U U__r /\ st' = (U__r,U__i,b). Proof. intros. invert H1; repeat equality1. destruct (u_id ==n uid); subst. - invert H2; clear_mislabeled_steps; clean_map_lookups. invert H5; clear_mislabeled_steps. eexists; eauto 8. - invert H2. + invert H5; try solve [ clear_mislabeled_steps ]. apply not_eq in n; split_ors. * assert (uid > u_id) as GT by lia. specialize (H4 _ U' GT); contradiction. * assert (u_id > uid) as GT by lia. specialize (H0 _ ru' GT); contradiction. + eapply H3 in H; contradiction. Qed. Lemma sstep_inv_labeled : forall A B st st' ru, (forall uid U', ~ @indexedRealStep A B uid Silent ru U') -> @stepSS A B st st' -> labels_align st -> forall ru' iu iu' b b', st = (ru,iu,b) -> st' = (ru',iu',b') -> b = b' /\ (exists uid iu0 ra ia, indexedRealStep uid (Action ra) ru ru' /\ (indexedIdealStep uid Silent) ^* iu iu0 /\ indexedIdealStep uid (Action ia) iu0 iu' /\ action_matches (RealWorld.all_ciphers ru) (RealWorld.all_keys ru) (uid,ra) ia). Proof. intros; subst. invert H0; clear_mislabeled_steps. repeat equality1. invert H2. specialize (H u_id U'); simpl in *; contradiction. invert H5; try contradiction; eauto 12. clear_mislabeled_steps. Qed. Ltac rstep := repeat (autounfold ; equality1 || (progress ( simpl in * )) || discriminate || match goal with | [H : action_matches _ _ _ _ |- _] => invert H | [ H : forall _ _ _, _ -> _ -> _ -> _ <-> _ |- _ ] => clear H | [ H : forall _ _ _ _, _ -> _ -> _ -> _ -> _ <-> _ |- _ ] => clear H | [ H : (forall _ _ _, indexedRealStep _ _ ?ru _ -> exists _ _ _, (indexedIdealStep _ _) ^* ?iu _ /\ _) |- _ ] => clear H | [ H : summarize_univ _ _ |- _ ] => clear H | [H : indexedRealStep _ _ _ _ |- _ ] => invert H | [H : RealWorld.step_universe _ ?u _ _ |- _] => concrete u; churn | [H : RealWorld.step_user _ None _ _ |- _] => invert H | [H : RealWorld.step_user _ _ ?u _ |- _] => concrete u; churn end). Ltac prove_gt_pred := intros ; simpl in * ; repeat match goal with | [ H : context [ _ $+ (_,_) $- _ ] |- _ ] => repeat ( (rewrite map_add_remove_neq in H by congruence) || (rewrite map_add_remove_eq in H by trivial) || (rewrite remove_empty in H) ) | [ H : _ $+ (?uid,_) $? ?uid' = Some _ |- _ ] => destruct (uid ==n uid'); subst; clean_map_lookups; try lia | [ |- ~ indexedRealStep _ _ _ _ ] => unfold not; intros; rstep end. Ltac assert_gt_pred U uid := let P := fresh "P" in assert (forall uid' ud' U', U.(RealWorld.users) $? uid' = Some ud' -> uid' > uid -> ~ indexedRealStep uid' Silent U U') as P by prove_gt_pred ; pose proof (upper_users_cant_step_rewrite P); clear P . Ltac assert_no_silents U := let P := fresh "P" in assert (forall uid U', ~ indexedRealStep uid Silent U U') as P by prove_gt_pred . Ltac find_silent U us := let MAX := fresh "MEQ" in remember (O.max_elt us) eqn:MAX ; unfold O.max_elt in MAX ; simpl in MAX ; match type of MAX with | _ = Some (?uid,?u) => ( ( assert (exists U', indexedRealStep uid Silent U U') by solve_indexedRealStep ; assert_gt_pred U uid) || find_silent U (us $- uid) ) || assert_no_silents U end ; subst; split_ex . Ltac inv_stepSS1 := match goal with | [ H : stepSS (?U,_,_) _ |- _ ] => match U with | {| RealWorld.users := ?usrs |} => find_silent U usrs end | [ STEP : stepSS (?U,_,_) _ , IRS : indexedRealStep ?uid Silent ?U _ , P : (forall _ _, _ > ?uid -> _) |- _ ] => pose proof (sstep_inv_silent IRS P STEP) ; clear STEP IRS P ; split_ex ; subst | [ STEP : stepSS (?ru,?iu,?b) _ , P : (forall _ _, ~ indexedRealStep _ Silent _ _) |- _ ] => progress ( unfold not in P ) | [ STEP : stepSS (?ru,?iu,?b) (_,_,_) , P : (forall _ _, indexedRealStep _ Silent _ _ -> False) |- _ ] => concrete ru ; match goal with | [ LA : labels_align (?ru,?iu,?b) |- _ ] => pose proof (sstep_inv_labeled P STEP LA eq_refl eq_refl ) ; split_ex; subst ; clear STEP P LA | _ => idtac "proving alignment 4" ; assert (labels_align (ru,iu,b)) by ((repeat prove_alignment1); eauto) end | [ STEP : stepSS ?st ?st' , P : (forall _ _, indexedRealStep _ Silent _ _ -> False) |- _ ] => match st with | (_,_,_) => idtac | _ => destruct st as [[?ru ?iu] ?b] end ; match st' with | (_,_,_) => idtac | _ => destruct st' as [[?ru' ?iu'] ?b'] end | [ H : stepSS (?U,_,_) _ |- _ ] => match U with | {| RealWorld.users := ?usrs |} => find_silent U usrs end | [ IMS : indexedModelStep ?uid (?U,_,_) _ , IRS : indexedRealStep ?uid _ ?U _ |- _ ] => clear IMS end. Ltac step_model1 := match goal with | [H : Step _ _ _ |- _] => simpl in H | [H : exists _, _ |- _] => destruct H; split_ex; subst (* invert H; propositional; subst *) | [ H : nextAction _ _ |- _ ] => progress (simpl in H) | [ H : nextAction ?cmd1 ?cmd2 |- _ ] => is_var cmd2; match cmd1 with (* doubt this is general enough *) | (RealWorld.protocol ?ud) => concrete ud || fail 1 | _ => concrete cmd1 end; invert H | [ H : O.max_elt _ = Some _ |- _ ] => unfold O.max_elt in H; simpl in H; invert H | [H : In _ $0 |- _] => apply in_empty_map_contra in H; contradiction (* invert H *) | [H : Raw.PX.MapsTo _ _ $0 |- _] => invert H | [H : (existT _ _ _) = (existT _ _ _) |- _] => invert H | [ S : step ?st ?st' |- _ ] => concrete st; is_var st'; match st' with | (_,_,_) => fail 2 | (?f,_) => destruct f as [?ru ?iu] | _ => destruct st' as [[?ru ?iu] ?b] end | [ S : step ?st _ |- _ ] => concrete st; match goal with | [ LA : labels_align ?st |- _ ] => eapply label_align_step_split in S; (reflexivity || eauto 2); split_ex; split_ors; split_ex; subst | _ => idtac "proving alignment 1"; assert (labels_align st) by ((repeat prove_alignment1); eauto) end | [ S : stepC ?st _ |- _ ] => concrete st; invert S | [ H : nextStep _ _ _ |- _ ] => invert H | [ S : indexedModelStep ?uid ?st _ |- _ ] => concrete st; match goal with | [ LA : labels_align ?st |- _ ] => eapply label_align_indexedModelStep_split in S; (reflexivity || eauto 2); split_ex; split_ors; split_ex; subst | _ => idtac "proving alignment 2"; assert (labels_align st) by ((repeat prove_alignment1); eauto) end | [ H : (forall _ _, ~ indexedRealStep ?uid _ ?ru _) \/ (exists _ _, ?uid <> _ /\ _ $? _ = Some _ /\ (forall _, ?sums $? _ = Some _ -> commutes ?proto _ -> False)) , S : summarize_univ ?ru ?sums |- _ ] => ( (assert (exists lbl ru', indexedRealStep uid lbl ru ru') by solve_indexedRealStep ) ; (assert (exists uid2 ud2, uid <> uid2 /\ ru.(RealWorld.users) $? uid2 = Some ud2 /\ (forall s, sums $? uid2 = Some s -> commutes proto s)) by non_commuters )) ; discharge_nextStep2 (* clear this goal since the preconditions weren't satisfied *) end. Ltac gen_val_typ t := match t with | Nat => constr:(0) | Bool => constr:(true) | Unit => constr:(tt) | Access => constr:((0,false)) | (TPair ?t1 ?t2) => let v1 := gen_val_typ t1 in let v2 := gen_val_typ t2 in constr:((v1,v2)) end. Ltac gen_msg t := match t with | Access => let v := gen_val_typ Access in constr:(message.Permission v) | Nat => let v := gen_val_typ Nat in constr:(message.Content v) | (TPair ?t1 ?t2) => let m1 := gen_msg t1 in let m2 := gen_msg t2 in constr:(message.MsgPair m1 m2) end. Ltac gen_crypto t := let m := gen_msg t in constr:(Content m). Ltac gen_val_cmd_typ ct := match ct with | Base ?t => gen_val_typ t | Message ?t => gen_msg t | Crypto ?t => gen_crypto t | UPair ?t1 ?t2 => let v1 := gen_val_cmd_typ t1 in let v2 := gen_val_cmd_typ t2 in constr:((v1,v2)) end. (* We have to be careful here when inverting the model checking terms. If we run injection * on universes which only differ in their protocols, it seems that this fact gets erased. * I am not entirely sure why this happens. For this reason, we carefully do the inversions * here manually rather than running injection. * *) Ltac univ_equality_discr := discriminate || match goal with | [ H : RealWorld.Bind _ _ = RealWorld.Bind _ _ |- _ ] => apply invert_bind_eq in H; split_ex | [ H1 : ?x = ?y1, H2 : ?x = ?y2 |- _ ] => rewrite H1 in H2 ; clear H1 | [ H1 : ?x = ?y1, H2 : ?y2 = ?x |- _ ] => rewrite H1 in H2 ; clear H1 | [ H : (?x1,?y1) = (?x2,?y2) |- _ ] => apply tuple_eq_inv in H; split_ex; subst | [ H : {| users := _ |} = {| users := _ |} |- _ ] => apply split_real_univ_fields in H; split_ex | [ H : Some _ = Some _ |- _ ] => apply some_eq_inv in H; split_ex; subst | [ H : {| key_heap := _ |} = {| key_heap := _ |} |- _ ] => apply split_real_user_data_fields in H; split_ex; subst | [ H : _ $+ (_,_) = _ |- _ ] => apply map_eq_fields_eq in H; clean_map_lookups | [ H : << ?t >> -> _ = _ |- _ ] => let vt := gen_val_cmd_typ t in specialize (H vt) end. Ltac tidy := autounfold ; intros ; sets_invert ; propositional ; subst ; clean_map_lookups ; subst ; idtac "discriminating univ - tidy" ; repeat ( univ_equality_discr (* equality has to run after univ equality discrimination because equality1 uses injeection * which isn't always safe to use on universes. See comment on univ_equality_discr *) || equality1 || inv_stepSS1 || step_model1 ) ; idtac "discriminating univ - tidy done" . Ltac s := simpl in *. Ltac cleanup := repeat ( equality1 || match goal with | [ H : True |- _ ] => clear H | [ H : ?X = ?X |- _ ] => clear H | [ H : ?x <> ?y |- _ ] => match type of x with | nat => concrete x; concrete y; clear H end | [ H : ?x = ?y -> False |- _ ] => match type of x with | nat => concrete x; concrete y; clear H end | [ H: RealWorld.keys_mine _ $0 |- _ ] => clear H | [ H : _ $+ (?k1,_) $? ?k2 = None |- _ ] => (rewrite add_neq_o in H by solve_simple_ineq) || (rewrite add_eq_o in H by trivial) || (destruct (k1 ==n k2); subst) | [ H : context [ ChMaps.ChannelType.eq _ _ ] |- _ ] => unfold ChMaps.ChannelType.eq in H | [ H : _ #+ (?k1,_) #? ?k2 = None |- _ ] => (rewrite ChMaps.ChMap.F.add_neq_o in H by solve_simple_ineq) || (rewrite ChMaps.ChMap.F.add_eq_o in H by trivial) || (destruct (ChMaps.ChMap.F.eq_dec k1 k2); subst) | [ H : context [ _ #+ (?k,_) #? ?k ] |- _ ] => is_not_evar k ; rewrite ChMaps.ChMap.F.add_eq_o in H by trivial | [ H : context [ _ #+ (?k1,_) #? ?k2 ] |- _ ] => is_not_evar k1 ; is_not_evar k2 ; rewrite ChMaps.ChMap.F.add_neq_o in H by congruence | [ H : mkKeys _ $? _ = _ |- _ ] => unfold mkKeys in H; simpl in H | [ H : RealWorld.msg_accepted_by_pattern _ _ _ _ _ |- _ ] => clear H | [ H : ~ RealWorld.msg_accepted_by_pattern _ _ _ _ _ |- _ ] => clear H | [ H : RealWorld.msg_accepted_by_pattern _ _ _ _ _ -> False |- _ ] => clear H | [ H : IdealWorld.screen_msg _ _ |- _ ] => invert H | [ H : IdealWorld.permission_subset _ _ |- _ ] => invert H | [ H : IdealWorld.check_perm _ _ _ |- _ ] => unfold IdealWorld.check_perm in H | [ H : context [ IdealWorld.addMsg _ _ _ ] |- _ ] => unfold IdealWorld.addMsg in H; simpl in H | [ H : Forall _ [] |- _ ] => clear H | [ H : context [true || _] |- _] => rewrite orb_true_l in H | [ H : context [_ || true] |- _] => rewrite orb_true_r in H | [ H : context [false || _] |- _] => rewrite orb_false_l in H | [ H : context [_ || false] |- _] => rewrite orb_false_r in H | [ H : context [$0 $k++ _] |- _] => rewrite merge_perms_left_identity in H | [ H : context [_ $k++ $0] |- _] => rewrite merge_perms_right_identity in H | [ H : context [_ $k++ _] |- _] => erewrite reduce_merge_perms in H by (clean_map_lookups; eauto) | [ H : context [_ $k++ _] |- _] => unfold merge_perms, add_key_perm, fold in H; simpl in H; clean_map_lookups | [ H : context [ _ $+ (?k1,_) $? ?k2] |- _ ] => (rewrite add_neq_o in H by solve_simple_ineq) || (rewrite add_eq_o in H by trivial) | [ H : context [ ?m $? _ ] |- _ ] => progress (unfold m in H) | [ |- context [$0 $k++ _] ] => rewrite !merge_perms_left_identity | [ |- context [_ $k++ $0] ] => rewrite !merge_perms_right_identity end ). Ltac close := match goal with | [|- [_ | _] (?ru, ?iu, _)] => concrete ru ; concrete iuniv iu ; tidy (* ; repeat( progress (subst; cleanup) ) *) ; repeat eexists ; propositional ; solve[ eauto | canonicalize users ; repeat univ_equality1 ] | [|- (?inv1 \cup ?inv2) (?ru, ?iu, _)] => concrete inv1 ; concrete ru ; concrete iuniv iu ; solve[ idtac "trying left"; left; close | idtac "left fails; trying right"; right; close | idtac "something is horribly wrong" (* prevent an infinite loop *) ] | [|- ?inv (?ru, ?iu, _)] => is_evar inv ; concrete ru ; concrete iuniv iu ; repeat equality1 ; solve_concrete_maps ; canonicalize users ; clean_context ; repeat( progress (subst; cleanup) ) (* ; cleanup *) ; NatMap.clean_map_lookups ; ChMaps.ChMap.clean_map_lookups ; incorp ; solve[ close ] end. Ltac gen1' := simplify ; tidy ; idtac "rstep start" ; rstep ; idtac "istep start" ; istep ; idtac "istep done" ; subst ; canonicalize users ; idtac "close start" ; repeat close ; idtac "close done". Locate intersect_empty_l. Ltac normalize_set_arg s := match s with | context[@union ?A ?X ?Y] => quote (@union A X Y) (@nil A) ltac:(fun e env => change (@union A X Y) with (interp_setexpr env e)); rewrite <- normalize_setexpr_ok; sets_cbv end. Ltac gen1 := match goal with | [|- multiStepClosure _ _ { } _] => eapply MscDone | [|- multiStepClosure _ {(_,_,_)} {(_,_,_)} _] => eapply MscStep ; [ solve[ apply oneStepClosure_grow; repeat gen1' ] | simplify; simpl_sets (sets; tidy)] | [|- multiStepClosure _ (?pr \cup ?wl) ?wl _] => progress ( normalize_set_arg pr ; normalize_set_arg wl ) | [|- multiStepClosure _ (_ \cup ?wl) ?wl _] => eapply msc_step_alt ; [ solve[ unfold oneStepClosure_new; repeat gen1' ] | solve[ idtac "proving empty intersection" ; simplify ; sets ; split_ex ; propositional ; idtac "preparing to discriminate universes" (* equality has to run after univ equality discrimination because equality1 uses injeection * which isn't always safe to use on universes. See comment on univ_equality_discr *) ; repeat (univ_equality_discr || equality1) ; idtac "universes discriminated" | eapply intersect_empty_l] | rewrite ?union_empty_r ] end. (* Use this to generate the invariant *) Ltac gen := repeat gen1. Ltac discr_sets := simplify ; sets ; split_ex (* equality has to run after univ equality discrimination because equality1 uses injeection * which isn't always safe to use on universes. See comment on univ_equality_discr *) ; repeat (univ_equality_discr || equality1). Ltac dedup_worklist wl k := let rec dedup_wl acc wl := idtac "iterating"; match wl with | ?s1 \cup ?s2 => ( assert ( acc \cap s1 = { } ) by discr_sets ; dedup_wl (acc \cup s1) s2 ) || dedup_wl acc s2 | ?s => ( assert ( acc \cap s = { } ) by discr_sets ; k (acc \cup s) ) || k acc end in idtac "wl"; match wl with | { } \cup ?s => dedup_worklist s k | ?s1 \cup ?s2 => dedup_wl s1 s2 | ?s1 => k s1 end. End Gen. (* Helps with initial universe state proofs *) Ltac focus_user := repeat match goal with | [ H : _ $+ (?k1,_) $? ?k2 = Some ?v |- _ ] => is_var v; match type of v with | RealWorld.user_data _ => idtac end; destruct (k1 ==n k2); subst; clean_map_lookups end.
/*************************************************************************** File : FrequencyCountDialog.h Project : QtiPlot -------------------------------------------------------------------- Copyright : (C) 2008 by Ion Vasilief Email (use @ for *) : ion_vasilief*yahoo.fr Description : Frequency count options dialog ***************************************************************************/ /*************************************************************************** * * * This program is free software; you can redistribute it and/or modify * * it under the terms of the GNU General Public License as published by * * the Free Software Foundation; either version 2 of the License, or * * (at your option) any later version. * * * * This program is distributed in the hope that it will be useful, * * but WITHOUT ANY WARRANTY; without even the implied warranty of * * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * * GNU General Public License for more details. * * * * You should have received a copy of the GNU General Public License * * along with this program; if not, write to the Free Software * * Foundation, Inc., 51 Franklin Street, Fifth Floor, * * Boston, MA 02110-1301 USA * * * ***************************************************************************/ #ifndef FREQUENCYCOUNTDIALOG_H #define FREQUENCYCOUNTDIALOG_H #include <QDialog> #include <gsl/gsl_vector.h> class QPushButton; class DoubleSpinBox; class Table; //! Filter options dialog class FrequencyCountDialog : public QDialog { Q_OBJECT public: FrequencyCountDialog(Table *t, QWidget* parent = 0, Qt::WFlags fl = 0 ); ~FrequencyCountDialog(); private slots: bool apply(); void accept(); private: Table *d_source_table; Table *d_result_table; QString d_col_name; gsl_vector *d_col_values; int d_bins; QPushButton* buttonApply; QPushButton* buttonCancel; QPushButton* buttonOk; DoubleSpinBox* boxStart; DoubleSpinBox* boxEnd; DoubleSpinBox* boxStep; }; #endif
! { dg-do run } integer, allocatable :: a(:, :) integer :: b(6, 3) integer :: i, j logical :: k, l b(:, :) = 16 l = .false. if (allocated (a)) call abort !$omp task private (a, b) shared (l) l = l.or.allocated (a) allocate (a(3, 6)) l = l.or..not.allocated (a) l = l.or.size(a).ne.18.or.size(a,1).ne.3.or.size(a,2).ne.6 a(3, 2) = 1 b(3, 2) = 1 deallocate (a) l = l.or.allocated (a) !$omp end task !$omp taskwait if (allocated (a).or.l) call abort allocate (a(6, 3)) a(:, :) = 3 if (.not.allocated (a)) call abort l = l.or.size(a).ne.18.or.size(a,1).ne.6.or.size(a,2).ne.3 if (l) call abort !$omp task private (a, b) shared (l) l = l.or..not.allocated (a) a(3, 2) = 1 b(3, 2) = 1 !$omp end task !$omp taskwait if (l.or..not.allocated (a)) call abort !$omp task firstprivate (a, b) shared (l) l = l.or..not.allocated (a) l = l.or.size(a).ne.18.or.size(a,1).ne.6.or.size(a,2).ne.3 do i = 1, 6 l = l.or.(a(i, 1).ne.3).or.(a(i, 2).ne.3) l = l.or.(a(i, 3).ne.3).or.(b(i, 1).ne.16) l = l.or.(b(i, 2).ne.16).or.(b(i, 3).ne.16) end do a(:, :) = 7 b(:, :) = 8 !$omp end task !$omp taskwait if (any (a.ne.3).or.any (b.ne.16).or.l) call abort end
module Libgit.Object import Control.Monad.Managed import Libgit.FFI import Libgit.Oid import Libgit.Types enrichGitObject : AnyPtr -> (typ ** GitObject typ) enrichGitObject ptr = let objTyp = gitObjectTypeFromInt (git_object_type ptr) in (objTyp ** MkGitObject ptr) withGitObject : GitRepository -> GitOid -> (GitResult (typ ** GitObject typ) -> IO a) -> IO a withGitObject (MkGitRepository repoPtr) (MkGitOid oidPtr) act = do let cgr = git_lookup_object repoPtr oidPtr (gitObjectTypeToInt GitObjectAny) result <- getGitResult cgr let objResult = enrichGitObject <$> result actResult <- act objResult case result of Right ptr => pure actResult <* primIO (prim_git_object_free ptr) Left _ => pure actResult ||| Retrieve an object of any type from a Git repository. ||| ||| Returns on success a dependent pair of the object's type and a managed ||| reference to the object. ||| Returns on failure a Git error code. ||| ||| @repo The GitRepository to retrieve the object from. ||| @oid The object ID to retrieve from the repository. export gitObject : (repo : GitRepository) -> (oid : GitOid) -> Managed (GitResult (typ ** GitObject typ)) gitObject repo oid = managed (withGitObject repo oid) ||| Retrieve an object of any type from a Git repository based on the object ||| ID's string representation. ||| ||| Returns on success a dependent pair of the object's type and a managed ||| reference to the object. ||| Returns on failure a Git error code. ||| ||| @repo The GitRepository to retrieve the object from. ||| @str The string representation of an object ID. export gitObjectFromString : GitRepository -> String -> Managed (GitResult (typ ** GitObject typ)) gitObjectFromString repo str = do Right oid <- oidFromString str | Left err => pure (Left err) gitObject repo oid withParsedRev : (repo : GitRepository) -> (rev : String) -> (GitResult (typ ** GitObject typ) -> IO a) -> IO a withParsedRev (MkGitRepository repo) rev act = do cgr <- primIO (prim_git_single_revparse repo rev) (err, ptr) <- getGitResultPair cgr let revResult = enrichGitObject <$> toGitResult err ptr result <- act revResult primIO (prim_git_object_free ptr) pure result ||| Parse a formatted revision string into a Git object. ||| ||| Returns on success a managed reference to the Git object. ||| Returns on failure a Git error code. ||| ||| @repo The Git repository to perform the lookup in. ||| @rev The string, formatted per the git revision spec ||| http://git-scm.com/docs/git-rev-parse.html#_specifying_revisions), ||| to parse into an object. export revParse : (repo : GitRepository) -> (rev : String) -> Managed (GitResult (typ ** GitObject typ)) revParse repo rev = managed (withParsedRev repo rev) withTypedGitObject : GitRepository -> GitOid -> (typ : GitObjectType) -> (GitResult (GitObject typ) -> IO a) -> IO a withTypedGitObject (MkGitRepository repoPtr) (MkGitOid oidPtr) typ act = do let cgr = git_lookup_object repoPtr oidPtr (gitObjectTypeToInt typ) result <- getGitResult cgr actResult <- act (MkGitObject <$> result) case result of Right ptr => pure actResult <* primIO (prim_git_object_free ptr) Left _ => pure actResult ||| Retrieve an object of a specific type from a Git repository. ||| ||| Returns on success a managed reference to the object. ||| Returns on failure a Git error code. ||| ||| @repo The GitRepository to retrieve the object from. ||| @oid The object ID to retrieve from the repository. ||| @typ The GitObjectType of the object to retrieve. export typedGitObject : GitRepository -> GitOid -> (typ : GitObjectType) -> Managed (GitResult (GitObject typ)) typedGitObject repo oid typ = managed (withTypedGitObject repo oid typ) ||| Retrieve an object of a specific type from a Git repository based on the ||| object ID's string representation. ||| ||| Returns on success a managed reference to the object. ||| Returns on failure a Git error code. ||| ||| @repo The GitRepository to retrieve the object from. ||| @str The string representation of an object ID. ||| @typ The GitObjectType of the object to retrieve. export typedGitObjectFromString : GitRepository -> String -> (typ : GitObjectType) -> Managed (GitResult (GitObject typ)) typedGitObjectFromString repo str typ = do Right oid <- oidFromString str | Left err => pure (Left err) managed (withTypedGitObject repo oid typ)
section \<open>Integers\<close> theory Integers imports Integers_Rep Set_Extensions Transport.Transport begin unbundle no_HOL_groups_syntax subsection \<open>The Integers as a Subset of the Naturals\<close> interpretation Int : set_extension \<nat> int_rep Int_Rep_nonneg by unfold_locales (auto intro: ElementI) abbreviation "int \<equiv> Int.Abs" bundle isa_set_int_syntax begin notation int ("\<int>") end bundle no_isa_set_int_syntax begin no_notation int ("\<int>") end unbundle isa_set_int_syntax abbreviation "Int \<equiv> Element \<int>" lemmas nat_subset_int [iff] = Int.Core_subset_Abs corollary Int_if_Nat [derive]: "n : Nat \<Longrightarrow> n : Int" using subsetD[OF nat_subset_int] by unfold_types subsection \<open>Arithmetic operations lifted to Int\<close> text \<open>We lift constants/functions from @{term "Int_Rep"} to @{term "\<int>"} manually. This should be automated in the future.\<close> definition "int_nonneg n \<equiv> Int.l (Int_Rep_nonneg n)" definition "int_neg n \<equiv> Int.l (Int_Rep_neg n)" definition "int_succ i \<equiv> Int.l (Int_Rep_succ (Int.r i))" definition "int_pred i \<equiv> Int.l (Int_Rep_pred (Int.r i))" definition "int_inv i \<equiv> Int.l (Int_Rep_inv (Int.r i))" definition "int_add i j \<equiv> Int.l (Int_Rep_add (Int.r i) (Int.r j))" definition "int_sub i j \<equiv> Int.l (Int_Rep_sub (Int.r i) (Int.r j))" definition "int_mul i j \<equiv> Int.l (Int_Rep_mul (Int.r i) (Int.r j))" (*TODO: automatic translation between @{term "Nat \<Coprod> Element (\<nat> \<setminus> {0})"} and @{term "Element (\<nat> \<Coprod> \<nat> \<setminus> {0})"} not working at the moment; maybe we want to introduce extensionality for types?*) lemma shows int_nonneg_type [type]: "int_nonneg : Nat \<Rightarrow> Int" and int_neg_type [type]: "int_neg : Element (\<nat> \<setminus> {0}) \<Rightarrow> Int" and int_succ_type [type]: "int_succ : Int \<Rightarrow> Int" and int_pred_type [type]: "int_pred : Int \<Rightarrow> Int" and int_inv_type [type]: "int_inv : Int \<Rightarrow> Int" and int_add_type [type]: "int_add : Int \<Rightarrow> Int \<Rightarrow> Int" and int_sub_type [type]: "int_sub : Int \<Rightarrow> Int \<Rightarrow> Int" and int_mul_type [type]: "int_mul : Int \<Rightarrow> Int \<Rightarrow> Int" unfolding int_nonneg_def int_neg_def int_succ_def int_pred_def int_inv_def int_add_def int_sub_def int_mul_def oops (* using [[type_derivation_depth=3]] *) (* by auto *) text \<open>We need a notation package that also does inference to determine if a number is a Nat, Int, etc. Typeclass integration here already?\<close> bundle isa_set_int_add_syntax begin notation int_add (infixl "+" 65) end bundle no_isa_set_int_add_syntax begin no_notation int_add (infixl "+" 65) end bundle isa_set_int_sub_syntax begin notation int_sub (infixl "-" 65) end bundle no_isa_set_int_sub_syntax begin no_notation int_sub (infixl "-" 65) end bundle isa_set_int_mul_syntax begin notation int_mul (infixl "*" 70) end bundle no_isa_set_int_mul_syntax begin no_notation int_mul (infixl "*" 70) end unbundle no_isa_set_nat_add_syntax no_isa_set_nat_sub_syntax no_isa_set_nat_mul_syntax isa_set_int_add_syntax isa_set_int_sub_syntax isa_set_int_mul_syntax (*TODO: no proper normal forms at the moment*) subsubsection \<open>Examples\<close> experiment begin named_theorems arith lemmas [arith] = int_nonneg_def int_neg_def int_add_def int_sub_def int_mul_def Int_Rep_zero_def[symmetric] Int_Rep_one_def[symmetric] Int_Rep_nonneg_succ_add_eq text \<open>At some point we want to just be able to write \<open>succ n\<close> below, and automatically infer that it has to have soft type \<open>Int\<close>.\<close> schematic_goal "int_nonneg (succ 0) + int_nonneg (succ 0) + int_neg (succ 0) = ?a" by (simp add: arith) schematic_goal "int_nonneg 0 * int_neg (succ 0) + int_nonneg (succ 0) - int_neg (succ 0) = ?a" by (simp add: arith) end subsection \<open>Algebraic Structures\<close> text \<open>Additive group structure\<close> definition "int_Group \<equiv> object { \<langle>@zero, 0\<rangle>, \<langle>@add, \<lambda>i j \<in> \<int>. int_add i j\<rangle>, \<langle>@inv, \<lambda>i \<in> \<int>. Int_Rep_inv i\<rangle> }" bundle isa_set_int_Group_syntax begin notation int_Group ("'(\<int>, +')") end bundle no_isa_set_int_Monoid_syntax begin no_notation int_Group ("'(\<int>, +')") end unbundle isa_set_int_Group_syntax (*TODO: The following should be automatically generated*) lemma "(\<int>, +) : Group Int" (* proof (rule GroupI, rule MonoidI) show "(\<int>, +) : Zero Int" by (rule ZeroI) simp show "(\<int>, +) : Add Int" (*TODO: object selector simplifier not working properly*) (* unfolding nat_Monoid_def by (rule AddI) simp *) proof (rule AddI) have select_add_eq: "(\<int>, +)@@add = \<lambda>i j \<in> \<int>. int_add i j" by simp show "(\<int>, +)@@add : Int \<rightarrow>s Int \<rightarrow>s Int" by (subst select_add_eq) discharge_types qed (*TODO: needs transferred theorems from representation type*) qed (unfold add_def zero_def inv_def, auto) *) oops text \<open>Multiplicative monoid structure\<close> definition "int_Mul_Monoid \<equiv> object { \<langle>@one, 1\<rangle>, \<langle>@mul, \<lambda>i j \<in> \<int>. int_mul i j\<rangle> }" bundle isa_set_int_Mul_Monoid_syntax begin notation int_Mul_Monoid ("'(\<int>, *')") end bundle no_isa_set_int_Mul_Monoid_syntax begin no_notation int_Mul_Monoid ("'(\<int>, *')") end unbundle isa_set_int_Mul_Monoid_syntax (* lemma int_mul_assoc: assumes "i : Int" "j : Int" "k : Int" shows "i * j * k = i * (j * k)" (* using assms Int_Rep_mul_assoc unfolding int_mul_def by simp *) oops *) lemma "(\<int>, *) : Mul_Monoid Int" \<comment> \<open> proof (intro Mul_MonoidI) show "(\<int>, *) : One \<int>" unfolding int_Mul_Monoid_def by (rule OneI) simp next show "(\<int>, *) : Mul \<int>" unfolding int_Mul_Monoid_def by (rule MulI) simp next fix x assume "x \<in> \<int>" then show "mul int_Mul_Monoid (one int_Mul_Monoid) x = x" and "mul int_Mul_Monoid x (one int_Mul_Monoid) = x" unfolding int_Mul_Monoid_def mul_def one_def by auto next fix x y z assume "x \<in> \<int>" "y \<in> \<int>" "z \<in> \<int>" show "mul int_Mul_Monoid (mul int_Mul_Monoid x y) z = mul int_Mul_Monoid x (mul int_Mul_Monoid y z)" (* using int_mul_assoc unfolding int_Mul_Monoid_def mul_def by simp *) qed\<close> oops end
using Plots f(x) = 100*x - 60 g(x) = 30 - 60*x h(x) = 0 v(x) = max.(f(x),g(x),h(x)) x = 0:0.1:1 plot(x, f.(x), xaxis = ("prob. (mu)", [0.0, 0.5, 0.6, 1.0]), yaxis = ("expected value", (-10,40)), label = "outdoor") plot!(x, g.(x), label = "indoor") plot!(x, h.(x), label = "none") plot!(x, v.(x), label = "max{o,i,n}")
Stephen Thomas Erlewine from Allmusic gave the album three out of five stars , but felt that the track list could have been shortened . Erlewine complimented some of the remixes , including those by Pet Shop Boys and Space Cowboy , adding that The Remix " is not an essential addition to Gaga ’ s canon goes without saying ... but there ’ s glitz and glamour to enjoy here . " Mark Beech , reviewing the album for Bloomberg Television , noticed that the already familiar tracks from Gaga " are given a new sheen by the Pet Shop Boys and sometime Madonna producer Stuart Price . " Nicki Escudero from Phoenix New Times gave a positive review saying that the songs featured in The Remix can be a great addition during workouts , as well as staple dance floor music . She listed the Chew Fu remix of " LoveGame " as a highlight from the album . Monica Herrera from Billboard complimented the album saying " Gaga has employed a collection of more @-@ than @-@ capable producers to make her dance @-@ ready smashes from The Fame and The Fame Monster even more <unk> . " Giving it three out of five stars , Caryn Ganz from Rolling Stone noted an uneven sequencing among the tracks in The Remix . She felt that the Passion Pit remix of " Telephone " was the best remix on the album .
{-# OPTIONS --cubical --no-import-sorts --safe #-} module Cubical.HITs.Rationals.QuoQ.Properties where open import Cubical.Foundations.Everything hiding (_⁻¹) open import Cubical.HITs.Ints.QuoInt as ℤ using (ℤ; Sign; signed; pos; neg; posneg; sign) open import Cubical.HITs.SetQuotients as SetQuotient using () renaming (_/_ to _//_) open import Cubical.Data.Nat as ℕ using (ℕ; zero; suc) open import Cubical.Data.NatPlusOne open import Cubical.Data.Sigma open import Cubical.Data.Sum open import Cubical.Relation.Nullary open import Cubical.HITs.Rationals.QuoQ.Base ℚ-cancelˡ : ∀ {a b} (c : ℕ₊₁) → [ ℕ₊₁→ℤ c ℤ.· a / c ·₊₁ b ] ≡ [ a / b ] ℚ-cancelˡ {a} {b} c = eq/ _ _ (cong (ℤ._· ℕ₊₁→ℤ b) (ℤ.·-comm (ℕ₊₁→ℤ c) a) ∙ sym (ℤ.·-assoc a (ℕ₊₁→ℤ c) (ℕ₊₁→ℤ b))) ℚ-cancelʳ : ∀ {a b} (c : ℕ₊₁) → [ a ℤ.· ℕ₊₁→ℤ c / b ·₊₁ c ] ≡ [ a / b ] ℚ-cancelʳ {a} {b} c = eq/ _ _ (sym (ℤ.·-assoc a (ℕ₊₁→ℤ c) (ℕ₊₁→ℤ b)) ∙ cong (a ℤ.·_) (ℤ.·-comm (ℕ₊₁→ℤ c) (ℕ₊₁→ℤ b))) -- useful functions for defining operations on ℚ onCommonDenom : (g : ℤ × ℕ₊₁ → ℤ × ℕ₊₁ → ℤ) (g-eql : ∀ ((a , b) (c , d) (e , f) : ℤ × ℕ₊₁) (p : a ℤ.· ℕ₊₁→ℤ d ≡ c ℤ.· ℕ₊₁→ℤ b) → ℕ₊₁→ℤ d ℤ.· (g (a , b) (e , f)) ≡ ℕ₊₁→ℤ b ℤ.· (g (c , d) (e , f))) (g-eqr : ∀ ((a , b) (c , d) (e , f) : ℤ × ℕ₊₁) (p : c ℤ.· ℕ₊₁→ℤ f ≡ e ℤ.· ℕ₊₁→ℤ d) → (g (a , b) (c , d)) ℤ.· ℕ₊₁→ℤ f ≡ (g (a , b) (e , f)) ℤ.· ℕ₊₁→ℤ d) → ℚ → ℚ → ℚ onCommonDenom g g-eql g-eqr = SetQuotient.rec2 isSetℚ (λ { (a , b) (c , d) → [ g (a , b) (c , d) / b ·₊₁ d ] }) (λ { (a , b) (c , d) (e , f) p → eql (a , b) (c , d) (e , f) p }) (λ { (a , b) (c , d) (e , f) p → eqr (a , b) (c , d) (e , f) p }) where eql : ∀ ((a , b) (c , d) (e , f) : ℤ × ℕ₊₁) (p : a ℤ.· ℕ₊₁→ℤ d ≡ c ℤ.· ℕ₊₁→ℤ b) → [ g (a , b) (e , f) / b ·₊₁ f ] ≡ [ g (c , d) (e , f) / d ·₊₁ f ] eql (a , b) (c , d) (e , f) p = [ g (a , b) (e , f) / b ·₊₁ f ] ≡⟨ sym (ℚ-cancelˡ d) ⟩ [ ℕ₊₁→ℤ d ℤ.· (g (a , b) (e , f)) / d ·₊₁ (b ·₊₁ f) ] ≡[ i ]⟨ [ ℕ₊₁→ℤ d ℤ.· (g (a , b) (e , f)) / ·₊₁-assoc d b f i ] ⟩ [ ℕ₊₁→ℤ d ℤ.· (g (a , b) (e , f)) / (d ·₊₁ b) ·₊₁ f ] ≡[ i ]⟨ [ g-eql (a , b) (c , d) (e , f) p i / ·₊₁-comm d b i ·₊₁ f ] ⟩ [ ℕ₊₁→ℤ b ℤ.· (g (c , d) (e , f)) / (b ·₊₁ d) ·₊₁ f ] ≡[ i ]⟨ [ ℕ₊₁→ℤ b ℤ.· (g (c , d) (e , f)) / ·₊₁-assoc b d f (~ i) ] ⟩ [ ℕ₊₁→ℤ b ℤ.· (g (c , d) (e , f)) / b ·₊₁ (d ·₊₁ f) ] ≡⟨ ℚ-cancelˡ b ⟩ [ g (c , d) (e , f) / d ·₊₁ f ] ∎ eqr : ∀ ((a , b) (c , d) (e , f) : ℤ × ℕ₊₁) (p : c ℤ.· ℕ₊₁→ℤ f ≡ e ℤ.· ℕ₊₁→ℤ d) → [ g (a , b) (c , d) / b ·₊₁ d ] ≡ [ g (a , b) (e , f) / b ·₊₁ f ] eqr (a , b) (c , d) (e , f) p = [ g (a , b) (c , d) / b ·₊₁ d ] ≡⟨ sym (ℚ-cancelʳ f) ⟩ [ (g (a , b) (c , d)) ℤ.· ℕ₊₁→ℤ f / (b ·₊₁ d) ·₊₁ f ] ≡[ i ]⟨ [ (g (a , b) (c , d)) ℤ.· ℕ₊₁→ℤ f / ·₊₁-assoc b d f (~ i) ] ⟩ [ (g (a , b) (c , d)) ℤ.· ℕ₊₁→ℤ f / b ·₊₁ (d ·₊₁ f) ] ≡[ i ]⟨ [ g-eqr (a , b) (c , d) (e , f) p i / b ·₊₁ ·₊₁-comm d f i ] ⟩ [ (g (a , b) (e , f)) ℤ.· ℕ₊₁→ℤ d / b ·₊₁ (f ·₊₁ d) ] ≡[ i ]⟨ [ (g (a , b) (e , f)) ℤ.· ℕ₊₁→ℤ d / ·₊₁-assoc b f d i ] ⟩ [ (g (a , b) (e , f)) ℤ.· ℕ₊₁→ℤ d / (b ·₊₁ f) ·₊₁ d ] ≡⟨ ℚ-cancelʳ d ⟩ [ g (a , b) (e , f) / b ·₊₁ f ] ∎ onCommonDenomSym : (g : ℤ × ℕ₊₁ → ℤ × ℕ₊₁ → ℤ) (g-sym : ∀ x y → g x y ≡ g y x) (g-eql : ∀ ((a , b) (c , d) (e , f) : ℤ × ℕ₊₁) (p : a ℤ.· ℕ₊₁→ℤ d ≡ c ℤ.· ℕ₊₁→ℤ b) → ℕ₊₁→ℤ d ℤ.· (g (a , b) (e , f)) ≡ ℕ₊₁→ℤ b ℤ.· (g (c , d) (e , f))) → ℚ → ℚ → ℚ onCommonDenomSym g g-sym g-eql = onCommonDenom g g-eql q-eqr where q-eqr : ∀ ((a , b) (c , d) (e , f) : ℤ × ℕ₊₁) (p : c ℤ.· ℕ₊₁→ℤ f ≡ e ℤ.· ℕ₊₁→ℤ d) → (g (a , b) (c , d)) ℤ.· ℕ₊₁→ℤ f ≡ (g (a , b) (e , f)) ℤ.· ℕ₊₁→ℤ d q-eqr (a , b) (c , d) (e , f) p = (g (a , b) (c , d)) ℤ.· ℕ₊₁→ℤ f ≡[ i ]⟨ ℤ.·-comm (g-sym (a , b) (c , d) i) (ℕ₊₁→ℤ f) i ⟩ ℕ₊₁→ℤ f ℤ.· (g (c , d) (a , b)) ≡⟨ g-eql (c , d) (e , f) (a , b) p ⟩ ℕ₊₁→ℤ d ℤ.· (g (e , f) (a , b)) ≡[ i ]⟨ ℤ.·-comm (ℕ₊₁→ℤ d) (g-sym (e , f) (a , b) i) i ⟩ (g (a , b) (e , f)) ℤ.· ℕ₊₁→ℤ d ∎ onCommonDenomSym-comm : ∀ {g} g-sym {g-eql} (x y : ℚ) → onCommonDenomSym g g-sym g-eql x y ≡ onCommonDenomSym g g-sym g-eql y x onCommonDenomSym-comm g-sym = SetQuotient.elimProp2 (λ _ _ → isSetℚ _ _) (λ { (a , b) (c , d) i → [ g-sym (a , b) (c , d) i / ·₊₁-comm b d i ] }) -- basic arithmetic operations on ℚ infixl 6 _+_ infixl 7 _·_ private lem₁ : ∀ a b c d e (p : a ℤ.· b ≡ c ℤ.· d) → b ℤ.· (a ℤ.· e) ≡ d ℤ.· (c ℤ.· e) lem₁ a b c d e p = ℤ.·-assoc b a e ∙ cong (ℤ._· e) (ℤ.·-comm b a ∙ p ∙ ℤ.·-comm c d) ∙ sym (ℤ.·-assoc d c e) lem₂ : ∀ a b c → a ℤ.· (b ℤ.· c) ≡ c ℤ.· (b ℤ.· a) lem₂ a b c = cong (a ℤ.·_) (ℤ.·-comm b c) ∙ ℤ.·-assoc a c b ∙ cong (ℤ._· b) (ℤ.·-comm a c) ∙ sym (ℤ.·-assoc c a b) ∙ cong (c ℤ.·_) (ℤ.·-comm a b) _+_ : ℚ → ℚ → ℚ _+_ = onCommonDenomSym (λ { (a , b) (c , d) → a ℤ.· (ℕ₊₁→ℤ d) ℤ.+ c ℤ.· (ℕ₊₁→ℤ b) }) (λ { (a , b) (c , d) → ℤ.+-comm (a ℤ.· (ℕ₊₁→ℤ d)) (c ℤ.· (ℕ₊₁→ℤ b)) }) (λ { (a , b) (c , d) (e , f) p → ℕ₊₁→ℤ d ℤ.· (a ℤ.· ℕ₊₁→ℤ f ℤ.+ e ℤ.· ℕ₊₁→ℤ b) ≡⟨ sym (ℤ.·-distribˡ (ℕ₊₁→ℤ d) (a ℤ.· ℕ₊₁→ℤ f) (e ℤ.· ℕ₊₁→ℤ b)) ⟩ ℕ₊₁→ℤ d ℤ.· (a ℤ.· ℕ₊₁→ℤ f) ℤ.+ ℕ₊₁→ℤ d ℤ.· (e ℤ.· ℕ₊₁→ℤ b) ≡[ i ]⟨ lem₁ a (ℕ₊₁→ℤ d) c (ℕ₊₁→ℤ b) (ℕ₊₁→ℤ f) p i ℤ.+ lem₂ (ℕ₊₁→ℤ d) e (ℕ₊₁→ℤ b) i ⟩ ℕ₊₁→ℤ b ℤ.· (c ℤ.· ℕ₊₁→ℤ f) ℤ.+ ℕ₊₁→ℤ b ℤ.· (e ℤ.· ℕ₊₁→ℤ d) ≡⟨ ℤ.·-distribˡ (ℕ₊₁→ℤ b) (c ℤ.· ℕ₊₁→ℤ f) (e ℤ.· ℕ₊₁→ℤ d) ⟩ ℕ₊₁→ℤ b ℤ.· (c ℤ.· ℕ₊₁→ℤ f ℤ.+ e ℤ.· ℕ₊₁→ℤ d) ∎ }) +-comm : ∀ x y → x + y ≡ y + x +-comm = onCommonDenomSym-comm (λ { (a , b) (c , d) → ℤ.+-comm (a ℤ.· (ℕ₊₁→ℤ d)) (c ℤ.· (ℕ₊₁→ℤ b)) }) +-identityˡ : ∀ x → 0 + x ≡ x +-identityˡ = SetQuotient.elimProp (λ _ → isSetℚ _ _) (λ { (a , b) i → [ ℤ.·-identityʳ a i / ·₊₁-identityˡ b i ] }) +-identityʳ : ∀ x → x + 0 ≡ x +-identityʳ x = +-comm x _ ∙ +-identityˡ x +-assoc : ∀ x y z → x + (y + z) ≡ (x + y) + z +-assoc = SetQuotient.elimProp3 (λ _ _ _ → isSetℚ _ _) (λ { (a , b) (c , d) (e , f) i → [ eq a (ℕ₊₁→ℤ b) c (ℕ₊₁→ℤ d) e (ℕ₊₁→ℤ f) i / ·₊₁-assoc b d f i ] }) where eq₁ : ∀ a b c → (a ℤ.· b) ℤ.· c ≡ a ℤ.· (c ℤ.· b) eq₁ a b c = sym (ℤ.·-assoc a b c) ∙ cong (a ℤ.·_) (ℤ.·-comm b c) eq₂ : ∀ a b c → (a ℤ.· b) ℤ.· c ≡ (a ℤ.· c) ℤ.· b eq₂ a b c = eq₁ a b c ∙ ℤ.·-assoc a c b eq : ∀ a b c d e f → Path ℤ _ _ eq a b c d e f = a ℤ.· (d ℤ.· f) ℤ.+ (c ℤ.· f ℤ.+ e ℤ.· d) ℤ.· b ≡[ i ]⟨ a ℤ.· (d ℤ.· f) ℤ.+ ℤ.·-distribʳ (c ℤ.· f) (e ℤ.· d) b (~ i) ⟩ a ℤ.· (d ℤ.· f) ℤ.+ ((c ℤ.· f) ℤ.· b ℤ.+ (e ℤ.· d) ℤ.· b) ≡[ i ]⟨ ℤ.+-assoc (ℤ.·-assoc a d f i) (eq₂ c f b i) (eq₁ e d b i) i ⟩ ((a ℤ.· d) ℤ.· f ℤ.+ (c ℤ.· b) ℤ.· f) ℤ.+ e ℤ.· (b ℤ.· d) ≡[ i ]⟨ ℤ.·-distribʳ (a ℤ.· d) (c ℤ.· b) f i ℤ.+ e ℤ.· (b ℤ.· d) ⟩ (a ℤ.· d ℤ.+ c ℤ.· b) ℤ.· f ℤ.+ e ℤ.· (b ℤ.· d) ∎ _·_ : ℚ → ℚ → ℚ _·_ = onCommonDenomSym (λ { (a , _) (c , _) → a ℤ.· c }) (λ { (a , _) (c , _) → ℤ.·-comm a c }) (λ { (a , b) (c , d) (e , _) p → lem₁ a (ℕ₊₁→ℤ d) c (ℕ₊₁→ℤ b) e p }) ·-comm : ∀ x y → x · y ≡ y · x ·-comm = onCommonDenomSym-comm (λ { (a , _) (c , _) → ℤ.·-comm a c }) ·-identityˡ : ∀ x → 1 · x ≡ x ·-identityˡ = SetQuotient.elimProp (λ _ → isSetℚ _ _) (λ { (a , b) i → [ ℤ.·-identityˡ a i / ·₊₁-identityˡ b i ] }) ·-identityʳ : ∀ x → x · 1 ≡ x ·-identityʳ = SetQuotient.elimProp (λ _ → isSetℚ _ _) (λ { (a , b) i → [ ℤ.·-identityʳ a i / ·₊₁-identityʳ b i ] }) ·-zeroˡ : ∀ x → 0 · x ≡ 0 ·-zeroˡ = SetQuotient.elimProp (λ _ → isSetℚ _ _) (λ { (a , b) → (λ i → [ p a b i / 1 ·₊₁ b ]) ∙ ℚ-cancelʳ b }) where p : ∀ a b → 0 ℤ.· a ≡ 0 ℤ.· ℕ₊₁→ℤ b p a b = ℤ.·-zeroˡ {ℤ.spos} a ∙ sym (ℤ.·-zeroˡ {ℤ.spos} (ℕ₊₁→ℤ b)) ·-zeroʳ : ∀ x → x · 0 ≡ 0 ·-zeroʳ = SetQuotient.elimProp (λ _ → isSetℚ _ _) (λ { (a , b) → (λ i → [ p a b i / b ·₊₁ 1 ]) ∙ ℚ-cancelˡ b }) where p : ∀ a b → a ℤ.· 0 ≡ ℕ₊₁→ℤ b ℤ.· 0 p a b = ℤ.·-zeroʳ {ℤ.spos} a ∙ sym (ℤ.·-zeroʳ {ℤ.spos} (ℕ₊₁→ℤ b)) ·-assoc : ∀ x y z → x · (y · z) ≡ (x · y) · z ·-assoc = SetQuotient.elimProp3 (λ _ _ _ → isSetℚ _ _) (λ { (a , b) (c , d) (e , f) i → [ ℤ.·-assoc a c e i / ·₊₁-assoc b d f i ] }) ·-distribˡ : ∀ x y z → (x · y) + (x · z) ≡ x · (y + z) ·-distribˡ = SetQuotient.elimProp3 (λ _ _ _ → isSetℚ _ _) (λ { (a , b) (c , d) (e , f) → eq a b c d e f }) where lem : ∀ {ℓ} {A : Type ℓ} (_·_ : A → A → A) (·-comm : ∀ x y → x · y ≡ y · x) (·-assoc : ∀ x y z → x · (y · z) ≡ (x · y) · z) a c b d → (a · c) · (b · d) ≡ (a · (c · d)) · b lem _·_ ·-comm ·-assoc a c b d = (a · c) · (b · d) ≡[ i ]⟨ (a · c) · ·-comm b d i ⟩ (a · c) · (d · b) ≡⟨ ·-assoc (a · c) d b ⟩ ((a · c) · d) · b ≡[ i ]⟨ ·-assoc a c d (~ i) · b ⟩ (a · (c · d)) · b ∎ lemℤ = lem ℤ._·_ ℤ.·-comm ℤ.·-assoc lemℕ₊₁ = lem _·₊₁_ ·₊₁-comm ·₊₁-assoc eq : ∀ a b c d e f → [ (a ℤ.· c) ℤ.· ℕ₊₁→ℤ (b ·₊₁ f) ℤ.+ (a ℤ.· e) ℤ.· ℕ₊₁→ℤ (b ·₊₁ d) / (b ·₊₁ d) ·₊₁ (b ·₊₁ f) ] ≡ [ a ℤ.· (c ℤ.· ℕ₊₁→ℤ f ℤ.+ e ℤ.· ℕ₊₁→ℤ d) / b ·₊₁ (d ·₊₁ f) ] eq a b c d e f = (λ i → [ lemℤ a c (ℕ₊₁→ℤ b) (ℕ₊₁→ℤ f) i ℤ.+ lemℤ a e (ℕ₊₁→ℤ b) (ℕ₊₁→ℤ d) i / lemℕ₊₁ b d b f i ]) ∙ (λ i → [ ℤ.·-distribʳ (a ℤ.· (c ℤ.· ℕ₊₁→ℤ f)) (a ℤ.· (e ℤ.· ℕ₊₁→ℤ d)) (ℕ₊₁→ℤ b) i / (b ·₊₁ (d ·₊₁ f)) ·₊₁ b ]) ∙ ℚ-cancelʳ {a ℤ.· (c ℤ.· ℕ₊₁→ℤ f) ℤ.+ a ℤ.· (e ℤ.· ℕ₊₁→ℤ d)} {b ·₊₁ (d ·₊₁ f)} b ∙ (λ i → [ ℤ.·-distribˡ a (c ℤ.· ℕ₊₁→ℤ f) (e ℤ.· ℕ₊₁→ℤ d) i / b ·₊₁ (d ·₊₁ f) ]) ·-distribʳ : ∀ x y z → (x · z) + (y · z) ≡ (x + y) · z ·-distribʳ x y z = (λ i → ·-comm x z i + ·-comm y z i) ∙ ·-distribˡ z x y ∙ ·-comm z (x + y) -_ : ℚ → ℚ - x = -1 · x negate-invol : ∀ x → - - x ≡ x negate-invol x = ·-assoc -1 -1 x ∙ ·-identityˡ x negateEquiv : ℚ ≃ ℚ negateEquiv = isoToEquiv (iso -_ -_ negate-invol negate-invol) negateEq : ℚ ≡ ℚ negateEq = ua negateEquiv +-inverseˡ : ∀ x → (- x) + x ≡ 0 +-inverseˡ x = (λ i → (-1 · x) + ·-identityˡ x (~ i)) ∙ ·-distribʳ -1 1 x ∙ ·-zeroˡ x _-_ : ℚ → ℚ → ℚ x - y = x + (- y) +-inverseʳ : ∀ x → x - x ≡ 0 +-inverseʳ x = +-comm x (- x) ∙ +-inverseˡ x +-injˡ : ∀ x y z → x + y ≡ x + z → y ≡ z +-injˡ x y z p = sym (q y) ∙ cong ((- x) +_) p ∙ q z where q : ∀ y → (- x) + (x + y) ≡ y q y = +-assoc (- x) x y ∙ cong (_+ y) (+-inverseˡ x) ∙ +-identityˡ y +-injʳ : ∀ x y z → x + y ≡ z + y → x ≡ z +-injʳ x y z p = +-injˡ y x z (+-comm y x ∙ p ∙ +-comm z y)
[GOAL] a b x : ℕ ⊢ x ∈ (fun a b => { val := ↑(List.range' a (b + 1 - a)), nodup := (_ : List.Nodup (List.range' a (b + 1 - a))) }) a b ↔ a ≤ x ∧ x ≤ b [PROOFSTEP] rw [Finset.mem_mk, Multiset.mem_coe, List.mem_range'_1] [GOAL] a b x : ℕ ⊢ a ≤ x ∧ x < a + (b + 1 - a) ↔ a ≤ x ∧ x ≤ b [PROOFSTEP] cases le_or_lt a b with | inl h => rw [add_tsub_cancel_of_le (Nat.lt_succ_of_le h).le, Nat.lt_succ_iff] | inr h => rw [tsub_eq_zero_iff_le.2 (succ_le_of_lt h), add_zero] exact iff_of_false (fun hx => hx.2.not_le hx.1) fun hx => h.not_le (hx.1.trans hx.2) [GOAL] a b x : ℕ x✝ : a ≤ b ∨ b < a ⊢ a ≤ x ∧ x < a + (b + 1 - a) ↔ a ≤ x ∧ x ≤ b [PROOFSTEP] cases le_or_lt a b with | inl h => rw [add_tsub_cancel_of_le (Nat.lt_succ_of_le h).le, Nat.lt_succ_iff] | inr h => rw [tsub_eq_zero_iff_le.2 (succ_le_of_lt h), add_zero] exact iff_of_false (fun hx => hx.2.not_le hx.1) fun hx => h.not_le (hx.1.trans hx.2) [GOAL] case inl a b x : ℕ h : a ≤ b ⊢ a ≤ x ∧ x < a + (b + 1 - a) ↔ a ≤ x ∧ x ≤ b [PROOFSTEP] | inl h => rw [add_tsub_cancel_of_le (Nat.lt_succ_of_le h).le, Nat.lt_succ_iff] [GOAL] case inl a b x : ℕ h : a ≤ b ⊢ a ≤ x ∧ x < a + (b + 1 - a) ↔ a ≤ x ∧ x ≤ b [PROOFSTEP] rw [add_tsub_cancel_of_le (Nat.lt_succ_of_le h).le, Nat.lt_succ_iff] [GOAL] case inr a b x : ℕ h : b < a ⊢ a ≤ x ∧ x < a + (b + 1 - a) ↔ a ≤ x ∧ x ≤ b [PROOFSTEP] | inr h => rw [tsub_eq_zero_iff_le.2 (succ_le_of_lt h), add_zero] exact iff_of_false (fun hx => hx.2.not_le hx.1) fun hx => h.not_le (hx.1.trans hx.2) [GOAL] case inr a b x : ℕ h : b < a ⊢ a ≤ x ∧ x < a + (b + 1 - a) ↔ a ≤ x ∧ x ≤ b [PROOFSTEP] rw [tsub_eq_zero_iff_le.2 (succ_le_of_lt h), add_zero] [GOAL] case inr a b x : ℕ h : b < a ⊢ a ≤ x ∧ x < a ↔ a ≤ x ∧ x ≤ b [PROOFSTEP] exact iff_of_false (fun hx => hx.2.not_le hx.1) fun hx => h.not_le (hx.1.trans hx.2) [GOAL] a b x : ℕ ⊢ x ∈ (fun a b => { val := ↑(List.range' a (b - a)), nodup := (_ : List.Nodup (List.range' a (b - a))) }) a b ↔ a ≤ x ∧ x < b [PROOFSTEP] rw [Finset.mem_mk, Multiset.mem_coe, List.mem_range'_1] [GOAL] a b x : ℕ ⊢ a ≤ x ∧ x < a + (b - a) ↔ a ≤ x ∧ x < b [PROOFSTEP] cases le_or_lt a b with | inl h => rw [add_tsub_cancel_of_le h] | inr h => rw [tsub_eq_zero_iff_le.2 h.le, add_zero] exact iff_of_false (fun hx => hx.2.not_le hx.1) fun hx => h.not_le (hx.1.trans hx.2.le) [GOAL] a b x : ℕ x✝ : a ≤ b ∨ b < a ⊢ a ≤ x ∧ x < a + (b - a) ↔ a ≤ x ∧ x < b [PROOFSTEP] cases le_or_lt a b with | inl h => rw [add_tsub_cancel_of_le h] | inr h => rw [tsub_eq_zero_iff_le.2 h.le, add_zero] exact iff_of_false (fun hx => hx.2.not_le hx.1) fun hx => h.not_le (hx.1.trans hx.2.le) [GOAL] case inl a b x : ℕ h : a ≤ b ⊢ a ≤ x ∧ x < a + (b - a) ↔ a ≤ x ∧ x < b [PROOFSTEP] | inl h => rw [add_tsub_cancel_of_le h] [GOAL] case inl a b x : ℕ h : a ≤ b ⊢ a ≤ x ∧ x < a + (b - a) ↔ a ≤ x ∧ x < b [PROOFSTEP] rw [add_tsub_cancel_of_le h] [GOAL] case inr a b x : ℕ h : b < a ⊢ a ≤ x ∧ x < a + (b - a) ↔ a ≤ x ∧ x < b [PROOFSTEP] | inr h => rw [tsub_eq_zero_iff_le.2 h.le, add_zero] exact iff_of_false (fun hx => hx.2.not_le hx.1) fun hx => h.not_le (hx.1.trans hx.2.le) [GOAL] case inr a b x : ℕ h : b < a ⊢ a ≤ x ∧ x < a + (b - a) ↔ a ≤ x ∧ x < b [PROOFSTEP] rw [tsub_eq_zero_iff_le.2 h.le, add_zero] [GOAL] case inr a b x : ℕ h : b < a ⊢ a ≤ x ∧ x < a ↔ a ≤ x ∧ x < b [PROOFSTEP] exact iff_of_false (fun hx => hx.2.not_le hx.1) fun hx => h.not_le (hx.1.trans hx.2.le) [GOAL] a b x : ℕ ⊢ x ∈ (fun a b => { val := ↑(List.range' (a + 1) (b - a)), nodup := (_ : List.Nodup (List.range' (a + 1) (b - a))) }) a b ↔ a < x ∧ x ≤ b [PROOFSTEP] rw [Finset.mem_mk, Multiset.mem_coe, List.mem_range'_1] [GOAL] a b x : ℕ ⊢ a + 1 ≤ x ∧ x < a + 1 + (b - a) ↔ a < x ∧ x ≤ b [PROOFSTEP] cases le_or_lt a b with | inl h => rw [← succ_sub_succ, add_tsub_cancel_of_le (succ_le_succ h), Nat.lt_succ_iff, Nat.succ_le_iff] | inr h => rw [tsub_eq_zero_iff_le.2 h.le, add_zero] exact iff_of_false (fun hx => hx.2.not_le hx.1) fun hx => h.not_le (hx.1.le.trans hx.2) [GOAL] a b x : ℕ x✝ : a ≤ b ∨ b < a ⊢ a + 1 ≤ x ∧ x < a + 1 + (b - a) ↔ a < x ∧ x ≤ b [PROOFSTEP] cases le_or_lt a b with | inl h => rw [← succ_sub_succ, add_tsub_cancel_of_le (succ_le_succ h), Nat.lt_succ_iff, Nat.succ_le_iff] | inr h => rw [tsub_eq_zero_iff_le.2 h.le, add_zero] exact iff_of_false (fun hx => hx.2.not_le hx.1) fun hx => h.not_le (hx.1.le.trans hx.2) [GOAL] case inl a b x : ℕ h : a ≤ b ⊢ a + 1 ≤ x ∧ x < a + 1 + (b - a) ↔ a < x ∧ x ≤ b [PROOFSTEP] | inl h => rw [← succ_sub_succ, add_tsub_cancel_of_le (succ_le_succ h), Nat.lt_succ_iff, Nat.succ_le_iff] [GOAL] case inl a b x : ℕ h : a ≤ b ⊢ a + 1 ≤ x ∧ x < a + 1 + (b - a) ↔ a < x ∧ x ≤ b [PROOFSTEP] rw [← succ_sub_succ, add_tsub_cancel_of_le (succ_le_succ h), Nat.lt_succ_iff, Nat.succ_le_iff] [GOAL] case inr a b x : ℕ h : b < a ⊢ a + 1 ≤ x ∧ x < a + 1 + (b - a) ↔ a < x ∧ x ≤ b [PROOFSTEP] | inr h => rw [tsub_eq_zero_iff_le.2 h.le, add_zero] exact iff_of_false (fun hx => hx.2.not_le hx.1) fun hx => h.not_le (hx.1.le.trans hx.2) [GOAL] case inr a b x : ℕ h : b < a ⊢ a + 1 ≤ x ∧ x < a + 1 + (b - a) ↔ a < x ∧ x ≤ b [PROOFSTEP] rw [tsub_eq_zero_iff_le.2 h.le, add_zero] [GOAL] case inr a b x : ℕ h : b < a ⊢ a + 1 ≤ x ∧ x < a + 1 ↔ a < x ∧ x ≤ b [PROOFSTEP] exact iff_of_false (fun hx => hx.2.not_le hx.1) fun hx => h.not_le (hx.1.le.trans hx.2) [GOAL] a b x : ℕ ⊢ x ∈ (fun a b => { val := ↑(List.range' (a + 1) (b - a - 1)), nodup := (_ : List.Nodup (List.range' (a + 1) (b - a - 1))) }) a b ↔ a < x ∧ x < b [PROOFSTEP] rw [Finset.mem_mk, Multiset.mem_coe, List.mem_range'_1, ← tsub_add_eq_tsub_tsub] [GOAL] a b x : ℕ ⊢ a + 1 ≤ x ∧ x < a + 1 + (b - (a + 1)) ↔ a < x ∧ x < b [PROOFSTEP] cases le_or_lt (a + 1) b with | inl h => rw [add_tsub_cancel_of_le h, Nat.succ_le_iff] | inr h => rw [tsub_eq_zero_iff_le.2 h.le, add_zero] exact iff_of_false (fun hx => hx.2.not_le hx.1) fun hx => h.not_le (hx.1.trans hx.2) [GOAL] a b x : ℕ x✝ : a + 1 ≤ b ∨ b < a + 1 ⊢ a + 1 ≤ x ∧ x < a + 1 + (b - (a + 1)) ↔ a < x ∧ x < b [PROOFSTEP] cases le_or_lt (a + 1) b with | inl h => rw [add_tsub_cancel_of_le h, Nat.succ_le_iff] | inr h => rw [tsub_eq_zero_iff_le.2 h.le, add_zero] exact iff_of_false (fun hx => hx.2.not_le hx.1) fun hx => h.not_le (hx.1.trans hx.2) [GOAL] case inl a b x : ℕ h : a + 1 ≤ b ⊢ a + 1 ≤ x ∧ x < a + 1 + (b - (a + 1)) ↔ a < x ∧ x < b [PROOFSTEP] | inl h => rw [add_tsub_cancel_of_le h, Nat.succ_le_iff] [GOAL] case inl a b x : ℕ h : a + 1 ≤ b ⊢ a + 1 ≤ x ∧ x < a + 1 + (b - (a + 1)) ↔ a < x ∧ x < b [PROOFSTEP] rw [add_tsub_cancel_of_le h, Nat.succ_le_iff] [GOAL] case inr a b x : ℕ h : b < a + 1 ⊢ a + 1 ≤ x ∧ x < a + 1 + (b - (a + 1)) ↔ a < x ∧ x < b [PROOFSTEP] | inr h => rw [tsub_eq_zero_iff_le.2 h.le, add_zero] exact iff_of_false (fun hx => hx.2.not_le hx.1) fun hx => h.not_le (hx.1.trans hx.2) [GOAL] case inr a b x : ℕ h : b < a + 1 ⊢ a + 1 ≤ x ∧ x < a + 1 + (b - (a + 1)) ↔ a < x ∧ x < b [PROOFSTEP] rw [tsub_eq_zero_iff_le.2 h.le, add_zero] [GOAL] case inr a b x : ℕ h : b < a + 1 ⊢ a + 1 ≤ x ∧ x < a + 1 ↔ a < x ∧ x < b [PROOFSTEP] exact iff_of_false (fun hx => hx.2.not_le hx.1) fun hx => h.not_le (hx.1.trans hx.2) [GOAL] a b c : ℕ ⊢ Iio = range [PROOFSTEP] ext b x [GOAL] case h.a a b✝ c b x : ℕ ⊢ x ∈ Iio b ↔ x ∈ range b [PROOFSTEP] rw [mem_Iio, mem_range] [GOAL] a b c : ℕ ⊢ Ico 0 = range [PROOFSTEP] rw [← bot_eq_zero, ← Iio_eq_Ico, Iio_eq_range] [GOAL] a b c : ℕ ⊢ card (uIcc a b) = Int.natAbs (↑b - ↑a) + 1 [PROOFSTEP] refine' (card_Icc _ _).trans (Int.ofNat.inj _) [GOAL] a b c : ℕ ⊢ Int.ofNat (a ⊔ b + 1 - a ⊓ b) = Int.ofNat (Int.natAbs (↑b - ↑a) + 1) [PROOFSTEP] change ((↑) : ℕ → ℤ) _ = _ [GOAL] a b c : ℕ ⊢ ↑(a ⊔ b + 1 - a ⊓ b) = Int.ofNat (Int.natAbs (↑b - ↑a) + 1) [PROOFSTEP] rw [sup_eq_max, inf_eq_min, Int.ofNat_sub] [GOAL] a b c : ℕ ⊢ ↑(max a b + 1) - ↑(min a b) = Int.ofNat (Int.natAbs (↑b - ↑a) + 1) [PROOFSTEP] rw [add_comm, Int.ofNat_add, add_sub_assoc] -- porting note: `norm_cast` puts a `Int.subSubNat` in the goal -- norm_cast [GOAL] a b c : ℕ ⊢ ↑1 + (↑(max a b) - ↑(min a b)) = Int.ofNat (Int.natAbs (↑b - ↑a) + 1) [PROOFSTEP] change _ = ↑(Int.natAbs (b - a) + 1) [GOAL] a b c : ℕ ⊢ ↑1 + (↑(max a b) - ↑(min a b)) = ↑(Int.natAbs (↑b - ↑a) + 1) [PROOFSTEP] push_cast [GOAL] a b c : ℕ ⊢ 1 + (max ↑a ↑b - min ↑a ↑b) = |↑b - ↑a| + 1 [PROOFSTEP] rw [max_sub_min_eq_abs, add_comm] [GOAL] a b c : ℕ ⊢ min a b ≤ max a b + 1 [PROOFSTEP] exact min_le_max.trans le_self_add [GOAL] a b c : ℕ ⊢ card (Iic b) = b + 1 [PROOFSTEP] rw [Iic_eq_Icc, card_Icc, bot_eq_zero, tsub_zero] [GOAL] a b c : ℕ ⊢ card (Iio b) = b [PROOFSTEP] rw [Iio_eq_Ico, card_Ico, bot_eq_zero, tsub_zero] [GOAL] a b c : ℕ ⊢ Fintype.card ↑(Set.Icc a b) = b + 1 - a [PROOFSTEP] rw [Fintype.card_ofFinset, card_Icc] [GOAL] a b c : ℕ ⊢ Fintype.card ↑(Set.Ico a b) = b - a [PROOFSTEP] rw [Fintype.card_ofFinset, card_Ico] [GOAL] a b c : ℕ ⊢ Fintype.card ↑(Set.Ioc a b) = b - a [PROOFSTEP] rw [Fintype.card_ofFinset, card_Ioc] [GOAL] a b c : ℕ ⊢ Fintype.card ↑(Set.Ioo a b) = b - a - 1 [PROOFSTEP] rw [Fintype.card_ofFinset, card_Ioo] [GOAL] a b c : ℕ ⊢ Fintype.card ↑(Set.Iic b) = b + 1 [PROOFSTEP] rw [Fintype.card_ofFinset, card_Iic] [GOAL] a b c : ℕ ⊢ Fintype.card ↑(Set.Iio b) = b [PROOFSTEP] rw [Fintype.card_ofFinset, card_Iio] [GOAL] a b c : ℕ ⊢ Icc (succ a) b = Ioc a b [PROOFSTEP] ext x [GOAL] case a a b c x : ℕ ⊢ x ∈ Icc (succ a) b ↔ x ∈ Ioc a b [PROOFSTEP] rw [mem_Icc, mem_Ioc, succ_le_iff] [GOAL] a b c : ℕ ⊢ Ico a (succ b) = Icc a b [PROOFSTEP] ext x [GOAL] case a a b c x : ℕ ⊢ x ∈ Ico a (succ b) ↔ x ∈ Icc a b [PROOFSTEP] rw [mem_Ico, mem_Icc, lt_succ_iff] [GOAL] a b c : ℕ ⊢ Ico (succ a) b = Ioo a b [PROOFSTEP] ext x [GOAL] case a a b c x : ℕ ⊢ x ∈ Ico (succ a) b ↔ x ∈ Ioo a b [PROOFSTEP] rw [mem_Ico, mem_Ioo, succ_le_iff] [GOAL] a b✝ c b : ℕ h : 0 < b ⊢ Icc a (b - 1) = Ico a b [PROOFSTEP] ext x [GOAL] case a a b✝ c b : ℕ h : 0 < b x : ℕ ⊢ x ∈ Icc a (b - 1) ↔ x ∈ Ico a b [PROOFSTEP] rw [mem_Icc, mem_Ico, lt_iff_le_pred h] [GOAL] a b c : ℕ ⊢ Ico (succ a) (succ b) = Ioc a b [PROOFSTEP] ext x [GOAL] case a a b c x : ℕ ⊢ x ∈ Ico (succ a) (succ b) ↔ x ∈ Ioc a b [PROOFSTEP] rw [mem_Ico, mem_Ioc, succ_le_iff, lt_succ_iff] [GOAL] a b c : ℕ ⊢ Ico a (a + 1) = {a} [PROOFSTEP] rw [Ico_succ_right, Icc_self] [GOAL] a✝ b c a : ℕ h : 0 < a ⊢ Ico (a - 1) a = {a - 1} [PROOFSTEP] rw [← Icc_pred_right _ h, Icc_self] [GOAL] a b c : ℕ ⊢ Ioc b (b + 1) = {b + 1} [PROOFSTEP] rw [← Nat.Icc_succ_left, Icc_self] [GOAL] a b c : ℕ h : a ≤ b ⊢ Ico a (b + 1) = insert b (Ico a b) [PROOFSTEP] rw [Ico_succ_right, ← Ico_insert_right h] [GOAL] a b c : ℕ h : a < b ⊢ insert a (Ico (succ a) b) = Ico a b [PROOFSTEP] rw [Ico_succ_left, ← Ioo_insert_left h] [GOAL] a b c : ℕ h : c ≤ a ⊢ image (fun x => x - c) (Ico a b) = Ico (a - c) (b - c) [PROOFSTEP] ext x [GOAL] case a a b c : ℕ h : c ≤ a x : ℕ ⊢ x ∈ image (fun x => x - c) (Ico a b) ↔ x ∈ Ico (a - c) (b - c) [PROOFSTEP] rw [mem_image] [GOAL] case a a b c : ℕ h : c ≤ a x : ℕ ⊢ (∃ a_1, a_1 ∈ Ico a b ∧ a_1 - c = x) ↔ x ∈ Ico (a - c) (b - c) [PROOFSTEP] constructor [GOAL] case a.mp a b c : ℕ h : c ≤ a x : ℕ ⊢ (∃ a_1, a_1 ∈ Ico a b ∧ a_1 - c = x) → x ∈ Ico (a - c) (b - c) [PROOFSTEP] rintro ⟨x, hx, rfl⟩ [GOAL] case a.mp.intro.intro a b c : ℕ h : c ≤ a x : ℕ hx : x ∈ Ico a b ⊢ x - c ∈ Ico (a - c) (b - c) [PROOFSTEP] rw [mem_Ico] at hx ⊢ [GOAL] case a.mp.intro.intro a b c : ℕ h : c ≤ a x : ℕ hx : a ≤ x ∧ x < b ⊢ a - c ≤ x - c ∧ x - c < b - c [PROOFSTEP] exact ⟨tsub_le_tsub_right hx.1 _, tsub_lt_tsub_right_of_le (h.trans hx.1) hx.2⟩ [GOAL] case a.mpr a b c : ℕ h : c ≤ a x : ℕ ⊢ x ∈ Ico (a - c) (b - c) → ∃ a_2, a_2 ∈ Ico a b ∧ a_2 - c = x [PROOFSTEP] rintro h [GOAL] case a.mpr a b c : ℕ h✝ : c ≤ a x : ℕ h : x ∈ Ico (a - c) (b - c) ⊢ ∃ a_1, a_1 ∈ Ico a b ∧ a_1 - c = x [PROOFSTEP] refine' ⟨x + c, _, add_tsub_cancel_right _ _⟩ [GOAL] case a.mpr a b c : ℕ h✝ : c ≤ a x : ℕ h : x ∈ Ico (a - c) (b - c) ⊢ x + c ∈ Ico a b [PROOFSTEP] rw [mem_Ico] at h ⊢ [GOAL] case a.mpr a b c : ℕ h✝ : c ≤ a x : ℕ h : a - c ≤ x ∧ x < b - c ⊢ a ≤ x + c ∧ x + c < b [PROOFSTEP] exact ⟨tsub_le_iff_right.1 h.1, lt_tsub_iff_right.1 h.2⟩ [GOAL] a b c : ℕ hac : a ≤ c ⊢ image (fun x => c - x) (Ico a b) = Ico (c + 1 - b) (c + 1 - a) [PROOFSTEP] ext x [GOAL] case a a b c : ℕ hac : a ≤ c x : ℕ ⊢ x ∈ image (fun x => c - x) (Ico a b) ↔ x ∈ Ico (c + 1 - b) (c + 1 - a) [PROOFSTEP] rw [mem_image, mem_Ico] [GOAL] case a a b c : ℕ hac : a ≤ c x : ℕ ⊢ (∃ a_1, a_1 ∈ Ico a b ∧ c - a_1 = x) ↔ c + 1 - b ≤ x ∧ x < c + 1 - a [PROOFSTEP] constructor [GOAL] case a.mp a b c : ℕ hac : a ≤ c x : ℕ ⊢ (∃ a_1, a_1 ∈ Ico a b ∧ c - a_1 = x) → c + 1 - b ≤ x ∧ x < c + 1 - a [PROOFSTEP] rintro ⟨x, hx, rfl⟩ [GOAL] case a.mp.intro.intro a b c : ℕ hac : a ≤ c x : ℕ hx : x ∈ Ico a b ⊢ c + 1 - b ≤ c - x ∧ c - x < c + 1 - a [PROOFSTEP] rw [mem_Ico] at hx [GOAL] case a.mp.intro.intro a b c : ℕ hac : a ≤ c x : ℕ hx : a ≤ x ∧ x < b ⊢ c + 1 - b ≤ c - x ∧ c - x < c + 1 - a [PROOFSTEP] refine' ⟨_, ((tsub_le_tsub_iff_left hac).2 hx.1).trans_lt ((tsub_lt_tsub_iff_right hac).2 (Nat.lt_succ_self _))⟩ [GOAL] case a.mp.intro.intro a b c : ℕ hac : a ≤ c x : ℕ hx : a ≤ x ∧ x < b ⊢ c + 1 - b ≤ c - x [PROOFSTEP] cases lt_or_le c b with | inl h => rw [tsub_eq_zero_iff_le.mpr (succ_le_of_lt h)] exact zero_le _ | inr h => rw [← succ_sub_succ c] exact (tsub_le_tsub_iff_left (succ_le_succ <| hx.2.le.trans h)).2 hx.2 [GOAL] case a.mp.intro.intro a b c : ℕ hac : a ≤ c x : ℕ hx : a ≤ x ∧ x < b x✝ : c < b ∨ b ≤ c ⊢ c + 1 - b ≤ c - x [PROOFSTEP] cases lt_or_le c b with | inl h => rw [tsub_eq_zero_iff_le.mpr (succ_le_of_lt h)] exact zero_le _ | inr h => rw [← succ_sub_succ c] exact (tsub_le_tsub_iff_left (succ_le_succ <| hx.2.le.trans h)).2 hx.2 [GOAL] case a.mp.intro.intro.inl a b c : ℕ hac : a ≤ c x : ℕ hx : a ≤ x ∧ x < b h : c < b ⊢ c + 1 - b ≤ c - x [PROOFSTEP] | inl h => rw [tsub_eq_zero_iff_le.mpr (succ_le_of_lt h)] exact zero_le _ [GOAL] case a.mp.intro.intro.inl a b c : ℕ hac : a ≤ c x : ℕ hx : a ≤ x ∧ x < b h : c < b ⊢ c + 1 - b ≤ c - x [PROOFSTEP] rw [tsub_eq_zero_iff_le.mpr (succ_le_of_lt h)] [GOAL] case a.mp.intro.intro.inl a b c : ℕ hac : a ≤ c x : ℕ hx : a ≤ x ∧ x < b h : c < b ⊢ 0 ≤ c - x [PROOFSTEP] exact zero_le _ [GOAL] case a.mp.intro.intro.inr a b c : ℕ hac : a ≤ c x : ℕ hx : a ≤ x ∧ x < b h : b ≤ c ⊢ c + 1 - b ≤ c - x [PROOFSTEP] | inr h => rw [← succ_sub_succ c] exact (tsub_le_tsub_iff_left (succ_le_succ <| hx.2.le.trans h)).2 hx.2 [GOAL] case a.mp.intro.intro.inr a b c : ℕ hac : a ≤ c x : ℕ hx : a ≤ x ∧ x < b h : b ≤ c ⊢ c + 1 - b ≤ c - x [PROOFSTEP] rw [← succ_sub_succ c] [GOAL] case a.mp.intro.intro.inr a b c : ℕ hac : a ≤ c x : ℕ hx : a ≤ x ∧ x < b h : b ≤ c ⊢ c + 1 - b ≤ succ c - succ x [PROOFSTEP] exact (tsub_le_tsub_iff_left (succ_le_succ <| hx.2.le.trans h)).2 hx.2 [GOAL] case a.mpr a b c : ℕ hac : a ≤ c x : ℕ ⊢ c + 1 - b ≤ x ∧ x < c + 1 - a → ∃ a_2, a_2 ∈ Ico a b ∧ c - a_2 = x [PROOFSTEP] rintro ⟨hb, ha⟩ [GOAL] case a.mpr.intro a b c : ℕ hac : a ≤ c x : ℕ hb : c + 1 - b ≤ x ha : x < c + 1 - a ⊢ ∃ a_1, a_1 ∈ Ico a b ∧ c - a_1 = x [PROOFSTEP] rw [lt_tsub_iff_left, lt_succ_iff] at ha [GOAL] case a.mpr.intro a b c : ℕ hac : a ≤ c x : ℕ hb : c + 1 - b ≤ x ha✝ : x < c + 1 - a ha : a + x ≤ c ⊢ ∃ a_1, a_1 ∈ Ico a b ∧ c - a_1 = x [PROOFSTEP] have hx : x ≤ c := (Nat.le_add_left _ _).trans ha [GOAL] case a.mpr.intro a b c : ℕ hac : a ≤ c x : ℕ hb : c + 1 - b ≤ x ha✝ : x < c + 1 - a ha : a + x ≤ c hx : x ≤ c ⊢ ∃ a_1, a_1 ∈ Ico a b ∧ c - a_1 = x [PROOFSTEP] refine' ⟨c - x, _, tsub_tsub_cancel_of_le hx⟩ [GOAL] case a.mpr.intro a b c : ℕ hac : a ≤ c x : ℕ hb : c + 1 - b ≤ x ha✝ : x < c + 1 - a ha : a + x ≤ c hx : x ≤ c ⊢ c - x ∈ Ico a b [PROOFSTEP] rw [mem_Ico] [GOAL] case a.mpr.intro a b c : ℕ hac : a ≤ c x : ℕ hb : c + 1 - b ≤ x ha✝ : x < c + 1 - a ha : a + x ≤ c hx : x ≤ c ⊢ a ≤ c - x ∧ c - x < b [PROOFSTEP] exact ⟨le_tsub_of_add_le_right ha, (tsub_lt_iff_left hx).2 <| succ_le_iff.1 <| tsub_le_iff_right.1 hb⟩ [GOAL] a b c : ℕ ⊢ Ico (succ a) b = erase (Ico a b) a [PROOFSTEP] ext x [GOAL] case a a b c x : ℕ ⊢ x ∈ Ico (succ a) b ↔ x ∈ erase (Ico a b) a [PROOFSTEP] rw [Ico_succ_left, mem_erase, mem_Ico, mem_Ioo, ← and_assoc, ne_comm, @and_comm (a ≠ x), lt_iff_le_and_ne] [GOAL] a✝ b c n a : ℕ ⊢ Set.InjOn (fun x => x % a) ↑(Ico n (n + a)) [PROOFSTEP] induction' n with n ih [GOAL] case zero a✝ b c a : ℕ ⊢ Set.InjOn (fun x => x % a) ↑(Ico zero (zero + a)) [PROOFSTEP] simp only [zero_add, Nat.zero_eq, Ico_zero_eq_range] [GOAL] case zero a✝ b c a : ℕ ⊢ Set.InjOn (fun x => x % a) ↑(range a) [PROOFSTEP] rintro k hk l hl (hkl : k % a = l % a) [GOAL] case zero a✝ b c a k : ℕ hk : k ∈ ↑(range a) l : ℕ hl : l ∈ ↑(range a) hkl : k % a = l % a ⊢ k = l [PROOFSTEP] simp only [Finset.mem_range, Finset.mem_coe] at hk hl [GOAL] case zero a✝ b c a k l : ℕ hkl : k % a = l % a hk : k < a hl : l < a ⊢ k = l [PROOFSTEP] rwa [mod_eq_of_lt hk, mod_eq_of_lt hl] at hkl [GOAL] case succ a✝ b c a n : ℕ ih : Set.InjOn (fun x => x % a) ↑(Ico n (n + a)) ⊢ Set.InjOn (fun x => x % a) ↑(Ico (succ n) (succ n + a)) [PROOFSTEP] rw [Ico_succ_left_eq_erase_Ico, succ_add, succ_eq_add_one, Ico_succ_right_eq_insert_Ico le_self_add] [GOAL] case succ a✝ b c a n : ℕ ih : Set.InjOn (fun x => x % a) ↑(Ico n (n + a)) ⊢ Set.InjOn (fun x => x % a) ↑(erase (insert (n + a) (Ico n (n + a))) n) [PROOFSTEP] rintro k hk l hl (hkl : k % a = l % a) [GOAL] case succ a✝ b c a n : ℕ ih : Set.InjOn (fun x => x % a) ↑(Ico n (n + a)) k : ℕ hk : k ∈ ↑(erase (insert (n + a) (Ico n (n + a))) n) l : ℕ hl : l ∈ ↑(erase (insert (n + a) (Ico n (n + a))) n) hkl : k % a = l % a ⊢ k = l [PROOFSTEP] have ha : 0 < a := by by_contra ha simp only [not_lt, nonpos_iff_eq_zero] at ha simp [ha] at hk [GOAL] a✝ b c a n : ℕ ih : Set.InjOn (fun x => x % a) ↑(Ico n (n + a)) k : ℕ hk : k ∈ ↑(erase (insert (n + a) (Ico n (n + a))) n) l : ℕ hl : l ∈ ↑(erase (insert (n + a) (Ico n (n + a))) n) hkl : k % a = l % a ⊢ 0 < a [PROOFSTEP] by_contra ha [GOAL] a✝ b c a n : ℕ ih : Set.InjOn (fun x => x % a) ↑(Ico n (n + a)) k : ℕ hk : k ∈ ↑(erase (insert (n + a) (Ico n (n + a))) n) l : ℕ hl : l ∈ ↑(erase (insert (n + a) (Ico n (n + a))) n) hkl : k % a = l % a ha : ¬0 < a ⊢ False [PROOFSTEP] simp only [not_lt, nonpos_iff_eq_zero] at ha [GOAL] a✝ b c a n : ℕ ih : Set.InjOn (fun x => x % a) ↑(Ico n (n + a)) k : ℕ hk : k ∈ ↑(erase (insert (n + a) (Ico n (n + a))) n) l : ℕ hl : l ∈ ↑(erase (insert (n + a) (Ico n (n + a))) n) hkl : k % a = l % a ha : a = 0 ⊢ False [PROOFSTEP] simp [ha] at hk [GOAL] case succ a✝ b c a n : ℕ ih : Set.InjOn (fun x => x % a) ↑(Ico n (n + a)) k : ℕ hk : k ∈ ↑(erase (insert (n + a) (Ico n (n + a))) n) l : ℕ hl : l ∈ ↑(erase (insert (n + a) (Ico n (n + a))) n) hkl : k % a = l % a ha : 0 < a ⊢ k = l [PROOFSTEP] simp only [Finset.mem_coe, Finset.mem_insert, Finset.mem_erase] at hk hl [GOAL] case succ a✝ b c a n : ℕ ih : Set.InjOn (fun x => x % a) ↑(Ico n (n + a)) k l : ℕ hkl : k % a = l % a ha : 0 < a hk : k ≠ n ∧ (k = n + a ∨ k ∈ Ico n (n + a)) hl : l ≠ n ∧ (l = n + a ∨ l ∈ Ico n (n + a)) ⊢ k = l [PROOFSTEP] rcases hk with ⟨hkn, rfl | hk⟩ [GOAL] case succ.intro.inl a✝ b c a n : ℕ ih : Set.InjOn (fun x => x % a) ↑(Ico n (n + a)) l : ℕ ha : 0 < a hl : l ≠ n ∧ (l = n + a ∨ l ∈ Ico n (n + a)) hkl : (n + a) % a = l % a hkn : n + a ≠ n ⊢ n + a = l [PROOFSTEP] rcases hl with ⟨hln, rfl | hl⟩ [GOAL] case succ.intro.inr a✝ b c a n : ℕ ih : Set.InjOn (fun x => x % a) ↑(Ico n (n + a)) k l : ℕ hkl : k % a = l % a ha : 0 < a hl : l ≠ n ∧ (l = n + a ∨ l ∈ Ico n (n + a)) hkn : k ≠ n hk : k ∈ Ico n (n + a) ⊢ k = l [PROOFSTEP] rcases hl with ⟨hln, rfl | hl⟩ [GOAL] case succ.intro.inl.intro.inl a✝ b c a n : ℕ ih : Set.InjOn (fun x => x % a) ↑(Ico n (n + a)) ha : 0 < a hkn : n + a ≠ n hkl : (n + a) % a = (n + a) % a hln : n + a ≠ n ⊢ n + a = n + a [PROOFSTEP] rfl [GOAL] case succ.intro.inl.intro.inr a✝ b c a n : ℕ ih : Set.InjOn (fun x => x % a) ↑(Ico n (n + a)) l : ℕ ha : 0 < a hkl : (n + a) % a = l % a hkn : n + a ≠ n hln : l ≠ n hl : l ∈ Ico n (n + a) ⊢ n + a = l [PROOFSTEP] rw [add_mod_right] at hkl [GOAL] case succ.intro.inl.intro.inr a✝ b c a n : ℕ ih : Set.InjOn (fun x => x % a) ↑(Ico n (n + a)) l : ℕ ha : 0 < a hkl : n % a = l % a hkn : n + a ≠ n hln : l ≠ n hl : l ∈ Ico n (n + a) ⊢ n + a = l [PROOFSTEP] refine' (hln <| ih hl _ hkl.symm).elim [GOAL] case succ.intro.inl.intro.inr a✝ b c a n : ℕ ih : Set.InjOn (fun x => x % a) ↑(Ico n (n + a)) l : ℕ ha : 0 < a hkl : n % a = l % a hkn : n + a ≠ n hln : l ≠ n hl : l ∈ Ico n (n + a) ⊢ n ∈ ↑(Ico n (n + a)) [PROOFSTEP] simp only [lt_add_iff_pos_right, Set.left_mem_Ico, Finset.coe_Ico, ha] [GOAL] case succ.intro.inr.intro.inl a✝ b c a n : ℕ ih : Set.InjOn (fun x => x % a) ↑(Ico n (n + a)) k : ℕ ha : 0 < a hkn : k ≠ n hk : k ∈ Ico n (n + a) hkl : k % a = (n + a) % a hln : n + a ≠ n ⊢ k = n + a [PROOFSTEP] rw [add_mod_right] at hkl [GOAL] case succ.intro.inr.intro.inl a✝ b c a n : ℕ ih : Set.InjOn (fun x => x % a) ↑(Ico n (n + a)) k : ℕ ha : 0 < a hkn : k ≠ n hk : k ∈ Ico n (n + a) hkl : k % a = n % a hln : n + a ≠ n ⊢ k = n + a [PROOFSTEP] suffices k = n by contradiction [GOAL] a✝ b c a n : ℕ ih : Set.InjOn (fun x => x % a) ↑(Ico n (n + a)) k : ℕ ha : 0 < a hkn : k ≠ n hk : k ∈ Ico n (n + a) hkl : k % a = n % a hln : n + a ≠ n this : k = n ⊢ k = n + a [PROOFSTEP] contradiction [GOAL] case succ.intro.inr.intro.inl a✝ b c a n : ℕ ih : Set.InjOn (fun x => x % a) ↑(Ico n (n + a)) k : ℕ ha : 0 < a hkn : k ≠ n hk : k ∈ Ico n (n + a) hkl : k % a = n % a hln : n + a ≠ n ⊢ k = n [PROOFSTEP] refine' ih hk _ hkl [GOAL] case succ.intro.inr.intro.inl a✝ b c a n : ℕ ih : Set.InjOn (fun x => x % a) ↑(Ico n (n + a)) k : ℕ ha : 0 < a hkn : k ≠ n hk : k ∈ Ico n (n + a) hkl : k % a = n % a hln : n + a ≠ n ⊢ n ∈ ↑(Ico n (n + a)) [PROOFSTEP] simp only [lt_add_iff_pos_right, Set.left_mem_Ico, Finset.coe_Ico, ha] [GOAL] case succ.intro.inr.intro.inr a✝ b c a n : ℕ ih : Set.InjOn (fun x => x % a) ↑(Ico n (n + a)) k l : ℕ hkl : k % a = l % a ha : 0 < a hkn : k ≠ n hk : k ∈ Ico n (n + a) hln : l ≠ n hl : l ∈ Ico n (n + a) ⊢ k = l [PROOFSTEP] refine' ih _ _ hkl [GOAL] case succ.intro.inr.intro.inr.refine'_1 a✝ b c a n : ℕ ih : Set.InjOn (fun x => x % a) ↑(Ico n (n + a)) k l : ℕ hkl : k % a = l % a ha : 0 < a hkn : k ≠ n hk : k ∈ Ico n (n + a) hln : l ≠ n hl : l ∈ Ico n (n + a) ⊢ k ∈ ↑(Ico n (n + a)) [PROOFSTEP] simp only [Finset.mem_coe, hk, hl] [GOAL] case succ.intro.inr.intro.inr.refine'_2 a✝ b c a n : ℕ ih : Set.InjOn (fun x => x % a) ↑(Ico n (n + a)) k l : ℕ hkl : k % a = l % a ha : 0 < a hkn : k ≠ n hk : k ∈ Ico n (n + a) hln : l ≠ n hl : l ∈ Ico n (n + a) ⊢ l ∈ ↑(Ico n (n + a)) [PROOFSTEP] simp only [Finset.mem_coe, hk, hl] [GOAL] a✝ b c n a : ℕ ⊢ image (fun x => x % a) (Ico n (n + a)) = range a [PROOFSTEP] obtain rfl | ha := eq_or_ne a 0 [GOAL] case inl a b c n : ℕ ⊢ image (fun x => x % 0) (Ico n (n + 0)) = range 0 [PROOFSTEP] rw [range_zero, add_zero, Ico_self, image_empty] [GOAL] case inr a✝ b c n a : ℕ ha : a ≠ 0 ⊢ image (fun x => x % a) (Ico n (n + a)) = range a [PROOFSTEP] ext i [GOAL] case inr.a a✝ b c n a : ℕ ha : a ≠ 0 i : ℕ ⊢ i ∈ image (fun x => x % a) (Ico n (n + a)) ↔ i ∈ range a [PROOFSTEP] simp only [mem_image, exists_prop, mem_range, mem_Ico] [GOAL] case inr.a a✝ b c n a : ℕ ha : a ≠ 0 i : ℕ ⊢ (∃ a_1, (n ≤ a_1 ∧ a_1 < n + a) ∧ a_1 % a = i) ↔ i < a [PROOFSTEP] constructor [GOAL] case inr.a.mp a✝ b c n a : ℕ ha : a ≠ 0 i : ℕ ⊢ (∃ a_1, (n ≤ a_1 ∧ a_1 < n + a) ∧ a_1 % a = i) → i < a [PROOFSTEP] rintro ⟨i, _, rfl⟩ [GOAL] case inr.a.mp.intro.intro a✝ b c n a : ℕ ha : a ≠ 0 i : ℕ left✝ : n ≤ i ∧ i < n + a ⊢ i % a < a [PROOFSTEP] exact mod_lt i ha.bot_lt [GOAL] case inr.a.mpr a✝ b c n a : ℕ ha : a ≠ 0 i : ℕ ⊢ i < a → ∃ a_2, (n ≤ a_2 ∧ a_2 < n + a) ∧ a_2 % a = i [PROOFSTEP] intro hia [GOAL] case inr.a.mpr a✝ b c n a : ℕ ha : a ≠ 0 i : ℕ hia : i < a ⊢ ∃ a_1, (n ≤ a_1 ∧ a_1 < n + a) ∧ a_1 % a = i [PROOFSTEP] have hn := Nat.mod_add_div n a [GOAL] case inr.a.mpr a✝ b c n a : ℕ ha : a ≠ 0 i : ℕ hia : i < a hn : n % a + a * (n / a) = n ⊢ ∃ a_1, (n ≤ a_1 ∧ a_1 < n + a) ∧ a_1 % a = i [PROOFSTEP] obtain hi | hi := lt_or_le i (n % a) [GOAL] case inr.a.mpr.inl a✝ b c n a : ℕ ha : a ≠ 0 i : ℕ hia : i < a hn : n % a + a * (n / a) = n hi : i < n % a ⊢ ∃ a_1, (n ≤ a_1 ∧ a_1 < n + a) ∧ a_1 % a = i [PROOFSTEP] refine' ⟨i + a * (n / a + 1), ⟨_, _⟩, _⟩ [GOAL] case inr.a.mpr.inl.refine'_1 a✝ b c n a : ℕ ha : a ≠ 0 i : ℕ hia : i < a hn : n % a + a * (n / a) = n hi : i < n % a ⊢ n ≤ i + a * (n / a + 1) [PROOFSTEP] rw [add_comm (n / a), mul_add, mul_one, ← add_assoc] [GOAL] case inr.a.mpr.inl.refine'_1 a✝ b c n a : ℕ ha : a ≠ 0 i : ℕ hia : i < a hn : n % a + a * (n / a) = n hi : i < n % a ⊢ n ≤ i + a + a * (n / a) [PROOFSTEP] refine' hn.symm.le.trans (add_le_add_right _ _) [GOAL] case inr.a.mpr.inl.refine'_1 a✝ b c n a : ℕ ha : a ≠ 0 i : ℕ hia : i < a hn : n % a + a * (n / a) = n hi : i < n % a ⊢ n % a ≤ i + a [PROOFSTEP] simpa only [zero_add] using add_le_add (zero_le i) (Nat.mod_lt n ha.bot_lt).le [GOAL] case inr.a.mpr.inl.refine'_2 a✝ b c n a : ℕ ha : a ≠ 0 i : ℕ hia : i < a hn : n % a + a * (n / a) = n hi : i < n % a ⊢ i + a * (n / a + 1) < n + a [PROOFSTEP] refine' lt_of_lt_of_le (add_lt_add_right hi (a * (n / a + 1))) _ [GOAL] case inr.a.mpr.inl.refine'_2 a✝ b c n a : ℕ ha : a ≠ 0 i : ℕ hia : i < a hn : n % a + a * (n / a) = n hi : i < n % a ⊢ n % a + a * (n / a + 1) ≤ n + a [PROOFSTEP] rw [mul_add, mul_one, ← add_assoc, hn] [GOAL] case inr.a.mpr.inl.refine'_3 a✝ b c n a : ℕ ha : a ≠ 0 i : ℕ hia : i < a hn : n % a + a * (n / a) = n hi : i < n % a ⊢ (i + a * (n / a + 1)) % a = i [PROOFSTEP] rw [Nat.add_mul_mod_self_left, Nat.mod_eq_of_lt hia] [GOAL] case inr.a.mpr.inr a✝ b c n a : ℕ ha : a ≠ 0 i : ℕ hia : i < a hn : n % a + a * (n / a) = n hi : n % a ≤ i ⊢ ∃ a_1, (n ≤ a_1 ∧ a_1 < n + a) ∧ a_1 % a = i [PROOFSTEP] refine' ⟨i + a * (n / a), ⟨_, _⟩, _⟩ [GOAL] case inr.a.mpr.inr.refine'_1 a✝ b c n a : ℕ ha : a ≠ 0 i : ℕ hia : i < a hn : n % a + a * (n / a) = n hi : n % a ≤ i ⊢ n ≤ i + a * (n / a) [PROOFSTEP] exact hn.symm.le.trans (add_le_add_right hi _) [GOAL] case inr.a.mpr.inr.refine'_2 a✝ b c n a : ℕ ha : a ≠ 0 i : ℕ hia : i < a hn : n % a + a * (n / a) = n hi : n % a ≤ i ⊢ i + a * (n / a) < n + a [PROOFSTEP] rw [add_comm n a] [GOAL] case inr.a.mpr.inr.refine'_2 a✝ b c n a : ℕ ha : a ≠ 0 i : ℕ hia : i < a hn : n % a + a * (n / a) = n hi : n % a ≤ i ⊢ i + a * (n / a) < a + n [PROOFSTEP] refine' add_lt_add_of_lt_of_le hia (le_trans _ hn.le) [GOAL] case inr.a.mpr.inr.refine'_2 a✝ b c n a : ℕ ha : a ≠ 0 i : ℕ hia : i < a hn : n % a + a * (n / a) = n hi : n % a ≤ i ⊢ a * (n / a) ≤ n % a + a * (n / a) [PROOFSTEP] simp only [zero_le, le_add_iff_nonneg_left] [GOAL] case inr.a.mpr.inr.refine'_3 a✝ b c n a : ℕ ha : a ≠ 0 i : ℕ hia : i < a hn : n % a + a * (n / a) = n hi : n % a ≤ i ⊢ (i + a * (n / a)) % a = i [PROOFSTEP] rw [Nat.add_mul_mod_self_left, Nat.mod_eq_of_lt hia] [GOAL] a✝ b c n a : ℕ ⊢ Multiset.map (fun x => x % a) (Multiset.Ico n (n + a)) = Multiset.range a [PROOFSTEP] convert congr_arg Finset.val (image_Ico_mod n a) [GOAL] case h.e'_2 a✝ b c n a : ℕ ⊢ Multiset.map (fun x => x % a) (Multiset.Ico n (n + a)) = (image (fun x => x % a) (Finset.Ico n (n + a))).val [PROOFSTEP] refine' ((nodup_map_iff_inj_on (Finset.Ico _ _).nodup).2 <| _).dedup.symm [GOAL] case h.e'_2 a✝ b c n a : ℕ ⊢ ∀ (x : ℕ), x ∈ (Finset.Ico n (n + a)).val → ∀ (y : ℕ), y ∈ (Finset.Ico n (n + a)).val → x % a = y % a → x = y [PROOFSTEP] exact mod_injOn_Ico _ _ [GOAL] a b c n : ℕ ⊢ image (fun j => n - 1 - j) (range n) = range n [PROOFSTEP] cases n [GOAL] case zero a b c : ℕ ⊢ image (fun j => zero - 1 - j) (range zero) = range zero [PROOFSTEP] rw [range_zero, image_empty] [GOAL] case succ a b c n✝ : ℕ ⊢ image (fun j => succ n✝ - 1 - j) (range (succ n✝)) = range (succ n✝) [PROOFSTEP] rw [Finset.range_eq_Ico, Nat.Ico_image_const_sub_eq_Ico (Nat.zero_le _)] [GOAL] case succ a b c n✝ : ℕ ⊢ Ico (succ n✝ - 1 + 1 - succ n✝) (succ n✝ - 1 + 1 - 0) = Ico 0 (succ n✝) [PROOFSTEP] simp_rw [succ_sub_succ, tsub_zero, tsub_self] [GOAL] a b c : ℕ ⊢ range (a + b) = range a ∪ map (addLeftEmbedding a) (range b) [PROOFSTEP] rw [Finset.range_eq_Ico, map_eq_image] [GOAL] a b c : ℕ ⊢ Ico 0 (a + b) = Ico 0 a ∪ image (↑(addLeftEmbedding a)) (Ico 0 b) [PROOFSTEP] convert (@Ico_union_Ico_eq_Ico _ _ _ _ _ (a + b) a.zero_le le_self_add).symm [GOAL] case h.e'_3.h.e'_4 a b c : ℕ ⊢ image (↑(addLeftEmbedding a)) (Ico 0 b) = Ico a (a + b) [PROOFSTEP] exact image_add_left_Ico _ _ _ [GOAL] a b c : ℕ P : ℕ → Prop h : ∀ (n : ℕ), P (n + 1) → P n seed : ℕ hs : P seed hi : ∀ (x : ℕ), seed ≤ x → P x → ∃ y, x < y ∧ P y n : ℕ ⊢ P n [PROOFSTEP] apply Nat.decreasing_induction_of_infinite h fun hf => _ [GOAL] a b c : ℕ P : ℕ → Prop h : ∀ (n : ℕ), P (n + 1) → P n seed : ℕ hs : P seed hi : ∀ (x : ℕ), seed ≤ x → P x → ∃ y, x < y ∧ P y n : ℕ ⊢ Set.Finite {x | P x} → False [PROOFSTEP] intro hf [GOAL] a b c : ℕ P : ℕ → Prop h : ∀ (n : ℕ), P (n + 1) → P n seed : ℕ hs : P seed hi : ∀ (x : ℕ), seed ≤ x → P x → ∃ y, x < y ∧ P y n : ℕ hf : Set.Finite {x | P x} ⊢ False [PROOFSTEP] obtain ⟨m, hP, hm⟩ := hf.exists_maximal_wrt id _ ⟨seed, hs⟩ [GOAL] case intro.intro a b c : ℕ P : ℕ → Prop h : ∀ (n : ℕ), P (n + 1) → P n seed : ℕ hs : P seed hi : ∀ (x : ℕ), seed ≤ x → P x → ∃ y, x < y ∧ P y n : ℕ hf : Set.Finite {x | P x} m : ℕ hP : m ∈ {x | P x} hm : ∀ (a' : ℕ), a' ∈ {x | P x} → id m ≤ id a' → id m = id a' ⊢ False [PROOFSTEP] obtain ⟨y, hl, hy⟩ := hi m (le_of_not_lt fun hl => hl.ne <| hm seed hs hl.le) hP [GOAL] case intro.intro.intro.intro a b c : ℕ P : ℕ → Prop h : ∀ (n : ℕ), P (n + 1) → P n seed : ℕ hs : P seed hi : ∀ (x : ℕ), seed ≤ x → P x → ∃ y, x < y ∧ P y n : ℕ hf : Set.Finite {x | P x} m : ℕ hP : m ∈ {x | P x} hm : ∀ (a' : ℕ), a' ∈ {x | P x} → id m ≤ id a' → id m = id a' y : ℕ hl : m < y hy : P y ⊢ False [PROOFSTEP] exact hl.ne (hm y hy hl.le) [GOAL] a b c : ℕ P : ℕ → Prop h : ∀ (n : ℕ), P (n + 1) → P n k seed : ℕ hk : 1 < k hs : P (succ seed) hm : ∀ (x : ℕ), seed < x → P x → P (k * x) n : ℕ ⊢ P n [PROOFSTEP] apply Nat.cauchy_induction h _ hs ((· * ·) k) fun x hl hP => ⟨_, hm x hl hP⟩ [GOAL] a b c : ℕ P : ℕ → Prop h : ∀ (n : ℕ), P (n + 1) → P n k seed : ℕ hk : 1 < k hs : P (succ seed) hm : ∀ (x : ℕ), seed < x → P x → P (k * x) n : ℕ ⊢ ∀ (x : ℕ), succ seed ≤ x → P x → x < (fun x x_1 => x * x_1) k x [PROOFSTEP] intro _ hl _ [GOAL] a b c : ℕ P : ℕ → Prop h : ∀ (n : ℕ), P (n + 1) → P n k seed : ℕ hk : 1 < k hs : P (succ seed) hm : ∀ (x : ℕ), seed < x → P x → P (k * x) n x✝ : ℕ hl : succ seed ≤ x✝ hP✝ : P x✝ ⊢ x✝ < (fun x x_1 => x * x_1) k x✝ [PROOFSTEP] convert (mul_lt_mul_right <| seed.succ_pos.trans_le hl).2 hk [GOAL] case h.e'_3 a b c : ℕ P : ℕ → Prop h : ∀ (n : ℕ), P (n + 1) → P n k seed : ℕ hk : 1 < k hs : P (succ seed) hm : ∀ (x : ℕ), seed < x → P x → P (k * x) n x✝ : ℕ hl : succ seed ≤ x✝ hP✝ : P x✝ ⊢ x✝ = 1 * x✝ [PROOFSTEP] rw [one_mul]
#include <boost/phoenix/function/lazy_smart.hpp>
module Dbcritic.Interface export formatMessage : Int -> String -> List String -> List String -> String formatMessage index description problems solutions = "\x1B[34mISSUE #" ++ show index ++ ": " ++ description ++ "\x1B[0m\n" ++ "\n" ++ "\x1B[31m If you do not solve this issue, you will encounter the following problems:\x1B[0m\n" ++ "\n" ++ concatMap (\p => " \x1B[31m• " ++ p ++ "\x1B[0m\n") (problems) ++ "\n" ++ "\x1B[32m You can solve this issue by taking one of the following measures:\x1B[0m\n" ++ "\n" ++ concatMap (\p => " \x1B[32m• " ++ p ++ "\x1B[0m\n") (solutions)
#include <memory> #include <iostream> #include <iterator> #include <algorithm> #include <exception> #include <string> #include <boost/tuple/tuple.hpp> #include <boost/tuple/tuple_io.hpp> #include <boost/bind/bind.hpp> #ifdef WIN32 #include "gettimeofday_win.hxx" #else #include <sys/time.h> #endif #include "library.hxx" using std::cerr; using std::endl; using boost::cref; using namespace library; using namespace boost::tuples; using namespace boost::placeholders; #ifdef WITH_LEESA #include "library-meta.hxx" #include "LEESA/LEESA.h" using namespace LEESA; #endif // WITH_LEESA template <class T> struct SeqType { typedef ::xsd::cxx::tree::sequence< T > type; }; #include <vector> #ifdef TEST1 // Get a sequence of books. SeqType<book>::type get_books(catalog & c) { #ifdef WITH_LEESA SeqType<book>::type book_seq = evaluate (c, catalog() >> book()); #endif #ifdef WITHOUT_LEESA SeqType<book>::type book_seq = c.book(); #endif return book_seq; }; #endif // TEST1 #ifdef TEST2 // Get a sequence of authors. SeqType<author>::type get_authors (catalog & c) { #ifdef WITH_LEESA SeqType<author>::type author_seq = evaluate (c, catalog() >> book() >> author()); #endif #ifdef WITHOUT_LEESA SeqType<author>::type author_seq; for (catalog::book_const_iterator bi (c.book().begin ()); bi != c.book().end (); ++bi) { author_seq.insert(author_seq.end(), bi->author().begin(), bi->author().end()); } #endif return author_seq; } #endif // TEST2 #ifdef TEST3 // Get a sequence of author names. SeqType<name>::type //unsigned int get_author_names (catalog & c) { #ifdef WITH_LEESA SeqType<name>::type name_seq = evaluate (c, catalog() >> book() >> author() >> name()); #endif #ifdef WITHOUT_LEESA SeqType<name>::type name_seq; for (catalog::book_const_iterator bi (c.book().begin ()); bi != c.book().end (); ++bi) { for (book::author_const_iterator ai (bi->author().begin ()); ai != bi->author().end (); ++ai) { name_seq.push_back(ai->name()); } } #endif return name_seq; } #endif // TEST3 #ifdef TEST4 // Get a sequence of author names. SeqType<name>::type get_author_names_descendants_of (catalog & c) { #ifdef WITH_LEESA SeqType<name>::type name_seq = // evaluate (c, catalog() >> DescendantsOf(catalog(), name())); DescendantsOf(catalog(), name())(c); #endif #ifdef WITHOUT_LEESA SeqType<name>::type name_seq; for (catalog::book_const_iterator bi (c.book().begin ()); bi != c.book().end (); ++bi) { for (book::author_const_iterator ai (bi->author().begin ()); ai != bi->author().end (); ++ai) { name_seq.push_back(ai->name()); } } #endif return name_seq; } #endif // TEST4 #ifdef TEST5 bool comparator(library::name const & n) { return n=="Leo Tolstoy"; } struct match_unary { bool operator () (library::name const & n) { return n=="Leo Tolstoy"; } }; // Get a sequence of author names. SeqType<name>::type get_author_names_level_descendants_of (catalog & c) { #ifdef WITH_LEESA SeqType<name>::type name_seq = evaluate (c, catalog() >> LevelDescendantsOf(catalog(), _, _, name()) >> Select(name(), comparator)); evaluate (c, catalog() >> LevelDescendantsOf(catalog(), _, _, name()) >> Select(name(), match_unary())); evaluate (c, catalog() >> LevelDescendantsOf(catalog(), _, _, name()) >> Select(name(), boost::bind(std::equal_to<std::string>(), _1, "Leo Tolstoy"))); #ifdef LEESA_SUPPORTS_LAMBDA evaluate (c, catalog() >> LevelDescendantsOf(catalog(), _, _, name()) >> Select(name(), [](const library::name & n) { return n=="Leo Tolstoy"; })); #endif #endif #ifdef WITHOUT_LEESA SeqType<name>::type name_seq; for (catalog::book_const_iterator bi (c.book().begin ()); bi != c.book().end (); ++bi) { for (book::author_const_iterator ai (bi->author().begin ()); ai != bi->author().end (); ++ai) { name_seq.push_back(ai->name()); } } #endif return name_seq; } #endif // TEST5 #ifdef TEST6 // Get a sequence of tuples of author names and born. typedef tuple<name *, died *> PtrTuple; std::vector<PtrTuple> get_tuples (catalog & c) { #ifdef WITH_LEESA std::vector<PtrTuple> tuple_seq = evaluate (c, catalog() >> book() >> author() >> MembersAsTupleOf(author(), PtrTuple())); #endif #ifdef WITHOUT_LEESA std::vector<tuple<name *, born *> > tuple_seq; for (catalog::book_iterator bi (c.book().begin ()); bi != c.book().end (); ++bi) { for (book::author_iterator ai (bi->author().begin ()); ai != bi->author().end (); ++ai) { tuple_seq.push_back(make_tuple(&ai->name(), &ai->born())); } } #endif return tuple_seq; } #endif // TEST6 #ifdef TEST7 // Get a sequence of "died" date, which is optional. SeqType<died>::type get_died (catalog & c) { #ifdef WITH_LEESA SeqType<died>::type died_seq = evaluate (c, catalog() >> DescendantsOf(catalog(), died())); #endif #ifdef WITHOUT_LEESA SeqType<died>::type died_seq; for (catalog::book_const_iterator bi (c.book().begin ()); bi != c.book().end (); ++bi) { for (book::author_const_iterator ai (bi->author().begin ()); ai != bi->author().end (); ++ai) { if(ai->died().present()) died_seq.push_back(ai->died().get()); } } #endif return died_seq; } #endif // TEST7 #ifdef TEST8 // Nesting test void visit (catalog & c, visitor & v) { #ifdef WITH_LEESA BOOST_AUTO(inner_author, author() >>= born() >> v >> Leave(born(), v)); BOOST_AUTO(inner_book, book() >>= author() >> v >> Call(author(), inner_author) >> Leave(author(), v)); BOOST_AUTO(inner_catalog, catalog() >>= book() >> v >> Call(book(), inner_book) >> Leave(book(), v)); evaluate (c, catalog() >> v >> Call(catalog(), inner_catalog) >> Leave(catalog(), v)); #endif } #endif // TEST8 #ifdef TEST9 // Nesting test void pair_caller_many (catalog & c, visitor & v) { #ifdef WITH_LEESA BOOST_AUTO(inner_author, author() >>= born() >> Visit(born(), v) >> Leave(born(), v)); BOOST_AUTO(inner_book, book() >>= author() >> VisitLeave(author(), v, inner_author)); BOOST_AUTO(inner_catalog, catalog() >>= book() >> VisitLeave(book(), v, inner_book)); evaluate(c, catalog() >> VisitLeave(catalog(), v, inner_catalog)); #endif } #endif // TEST9 #ifdef TEST10 // Nesting test void pair_caller_single (catalog & c, visitor & v) { #ifdef WITH_LEESA evaluate(c, catalog() >> VisitLeave(catalog(), v, catalog() >>= book() >> VisitLeave(book(), v, book() >>= author() >> VisitLeave(author(), v, author() >>= born() >> VisitLeave(born(), v))))); #endif } #endif // TEST10 #ifdef TEST11 void fulltd(catalog &c, visitor &v) { evaluate(c, catalog() >> FullTD(catalog(), LeaveStrategy(v))); } #endif // TEST11 #ifdef TEST12 void aroundfulltd(catalog &c, visitor &v) { AroundFullTD(catalog(), VisitStrategy(v), LeaveStrategy(v))(c); } #endif // TEST12 #ifdef TEST13 void membersof(catalog &c, visitor &v) { BOOST_AUTO(v_born, author() >> v >> born() >> v); BOOST_AUTO(v_title, title() >> v); BOOST_AUTO(members, MembersOf(book(), v_born, v_title)); SeqType<catalog>::type catalogs; catalogs.push_back(c); catalogs.push_back(c); /* There is a critical difference in semantics between the following two evaluate expressions. This example shows how to begin depth-frist traversal from the root. Note the different in the return type. */ /* The one with Identity begins depth-first traversal from catalog itself. I.e., It visits one catalog and goes deeper in it and only when the specified sub- tree is traversed, it goes to the next catalog. Note the return type is container of catalogs. */ catalogs = evaluate(catalogs, Identity(catalog()) >>= catalog() >> v >>= book() >> members); std::cout << "*********************************************************\n"; /* The expression without Identity, visits all catalogs first and then begins depth-first traversal from books. Note the return type is container of books. */ SeqType<book>::type books = evaluate(catalogs, catalog() >> v >>= book() >> members); } #endif // TEST13 timeval operator - (timeval t1, timeval t2) { if (t1.tv_usec < t2.tv_usec) { t1.tv_sec--; t1.tv_usec += 1000000; } time_t sec = t1.tv_sec - t2.tv_sec; suseconds_t usec = t1.tv_usec - t2.tv_usec; timeval retval; retval.tv_sec = sec; retval.tv_usec = usec; return retval; } std::ostream & operator << (std::ostream & o, timeval const & t) { o << "[" << t.tv_sec << ", " << t.tv_usec << "]"; //o << t.tv_sec << " " << t.tv_usec; return o; } #ifdef WITH_LEESA class MyVisitor : public visitor { public: virtual void visit_catalog(catalog &) { std::cout << "Catalog:" << std::endl; } virtual void visit_author(author & x) { std::cout << "Author: " << x.name() << std::endl; } virtual void visit_book(book & x) { std::cout << "Book: " << x.title() << std::endl; } virtual void visit_born(born & x) { std::cout << "Born: " << x << std::endl; } virtual void visit_title(title & t) { std::cout << "Title: " << t << std::endl; } virtual void leave_catalog(catalog &) { std::cout << "Leave Catalog:" << std::endl; } virtual void leave_author(author & x) { std::cout << "Leave Author: " << x.name() << std::endl; } virtual void leave_book(book & x) { std::cout << "Leave Book: " << x.title() << std::endl; } virtual void leave_born(born & x) { std::cout << "Leave Born: " << x << std::endl; } virtual void leave_title(title & t) { std::cout << "Leave Title: " << t << std::endl; } }; #endif // WITH_LEESA #ifdef TEST20 namespace LEESA { template <class Vector, unsigned SIZE = boost::mpl::size<Vector>::Value> struct ComposedIterator : ComposedIterator<typename boost::mpl::pop_front<Vector>::type> { typedef typename boost::mpl::front<Vector>::type Head; typedef typename ContainerTraits<Head>::Container HeadContainer; typedef typename HeadContainer::iterator HeadIterator; HeadIterator head_iter_; }; template <class Vector> struct ComposedIterator<Vector, 0> { }; template <class Expr> struct ComposedIterator2 { typedef Expr type; }; template <class Context, class Expr> typename ComposedIterator2<Expr>::type evaluate_lazy(Context &c, Expr e) { BOOST_AUTO(result, e(c)); return e; } }; #endif // TEST20 int main (int argc, char* argv[]) { if (argc != 2) { cerr << "usage: " << argv[0] << "<xml filename>" << endl; return 1; } try { timeval start, end; MyVisitor v; gettimeofday(&start, 0); std::auto_ptr<catalog> c (catalog_ (argv[1])); gettimeofday(&end, 0); std::cout << "Parsing time = " << end-start << std::endl; gettimeofday(&start, 0); #ifdef TEST1 std::cout << "Size = " << get_books(*c).size() << std::endl; #endif #ifdef TEST2 std::cout << "Size = " << get_authors(*c).size() << std::endl; #endif #ifdef TEST3 std::cout << "Size = " << get_author_names(*c).size() << std::endl; #endif #ifdef TEST4 std::cout << "Size = " << get_author_names_descendants_of(*c).size() << std::endl; #endif #ifdef TEST5 std::cout << "Size = " << get_author_names_level_descendants_of(*c).size() << std::endl; #endif #ifdef TEST6 typedef std::vector<PtrTuple> TupleVector; TupleVector tuple_vec = get_tuples(*c); std::cout << "Size = " << tuple_vec.size() << std::endl; for(TupleVector::const_iterator iter(tuple_vec.begin()); iter != tuple_vec.end(); ++iter) { if (get<0>(*iter) && get<1>(*iter)) std::cout << "[" << *get<0>(*iter) << ", " << *get<1>(*iter) << "]\n"; else if (!get<0>(*iter) && get<1>(*iter)) std::cout << "[NULL, " << *get<1>(*iter) << "]\n"; else if (get<0>(*iter) && !get<1>(*iter)) std::cout << "[" << *get<0>(*iter) << ", NULL]\n"; else std::cout << "[NULL, NULL]\n"; } #endif #ifdef TEST7 SeqType<died>::type died_seq = get_died(*c); std::cout << "Size = " << died_seq.size() << std::endl; //std::copy(died_seq.begin(), died_seq.end(), std::ostream_iterator<died> (std::cout, "\n")); #endif #ifdef TEST8 visit(*c, v); #endif #ifdef TEST9 pair_caller_many(*c, v); #endif #ifdef TEST10 pair_caller_single(*c, v); #endif #ifdef TEST11 fulltd(*c, v); #endif #ifdef TEST12 aroundfulltd(*c, v); #endif #ifdef TEST13 membersof(*c, v); #endif #ifdef TEST20 LEESA::evaluate_lazy(*c, catalog() >>= book() >>= author()); #endif gettimeofday(&end, 0); std::cout << "Query-time = " << end-start << std::endl; } catch (const xml_schema::exception& e) { cerr << e << endl; return 1; } }
State Before: α : Type u β : Type v ι✝ : Sort w a : α s✝ s₁ s₂ t : Set α p p₁ p₂ : α → Prop inst✝ : TopologicalSpace α ι : Type u_1 s : Finset ι f : ι → Set α ⊢ closure (⋃ (i : ι) (_ : i ∈ s), f i) = ⋃ (i : ι) (_ : i ∈ s), closure (f i) State After: no goals Tactic: classical refine' s.induction_on (by simp) _ intro i s _ h₂ simp [h₂] State Before: α : Type u β : Type v ι✝ : Sort w a : α s✝ s₁ s₂ t : Set α p p₁ p₂ : α → Prop inst✝ : TopologicalSpace α ι : Type u_1 s : Finset ι f : ι → Set α ⊢ closure (⋃ (i : ι) (_ : i ∈ s), f i) = ⋃ (i : ι) (_ : i ∈ s), closure (f i) State After: α : Type u β : Type v ι✝ : Sort w a : α s✝ s₁ s₂ t : Set α p p₁ p₂ : α → Prop inst✝ : TopologicalSpace α ι : Type u_1 s : Finset ι f : ι → Set α ⊢ ∀ ⦃a : ι⦄ {s : Finset ι}, ¬a ∈ s → (closure (⋃ (i : ι) (_ : i ∈ s), f i) = ⋃ (i : ι) (_ : i ∈ s), closure (f i)) → closure (⋃ (i : ι) (_ : i ∈ insert a s), f i) = ⋃ (i : ι) (_ : i ∈ insert a s), closure (f i) Tactic: refine' s.induction_on (by simp) _ State Before: α : Type u β : Type v ι✝ : Sort w a : α s✝ s₁ s₂ t : Set α p p₁ p₂ : α → Prop inst✝ : TopologicalSpace α ι : Type u_1 s : Finset ι f : ι → Set α ⊢ ∀ ⦃a : ι⦄ {s : Finset ι}, ¬a ∈ s → (closure (⋃ (i : ι) (_ : i ∈ s), f i) = ⋃ (i : ι) (_ : i ∈ s), closure (f i)) → closure (⋃ (i : ι) (_ : i ∈ insert a s), f i) = ⋃ (i : ι) (_ : i ∈ insert a s), closure (f i) State After: α : Type u β : Type v ι✝ : Sort w a : α s✝¹ s₁ s₂ t : Set α p p₁ p₂ : α → Prop inst✝ : TopologicalSpace α ι : Type u_1 s✝ : Finset ι f : ι → Set α i : ι s : Finset ι a✝ : ¬i ∈ s h₂ : closure (⋃ (i : ι) (_ : i ∈ s), f i) = ⋃ (i : ι) (_ : i ∈ s), closure (f i) ⊢ closure (⋃ (i_1 : ι) (_ : i_1 ∈ insert i s), f i_1) = ⋃ (i_1 : ι) (_ : i_1 ∈ insert i s), closure (f i_1) Tactic: intro i s _ h₂ State Before: α : Type u β : Type v ι✝ : Sort w a : α s✝¹ s₁ s₂ t : Set α p p₁ p₂ : α → Prop inst✝ : TopologicalSpace α ι : Type u_1 s✝ : Finset ι f : ι → Set α i : ι s : Finset ι a✝ : ¬i ∈ s h₂ : closure (⋃ (i : ι) (_ : i ∈ s), f i) = ⋃ (i : ι) (_ : i ∈ s), closure (f i) ⊢ closure (⋃ (i_1 : ι) (_ : i_1 ∈ insert i s), f i_1) = ⋃ (i_1 : ι) (_ : i_1 ∈ insert i s), closure (f i_1) State After: no goals Tactic: simp [h₂] State Before: α : Type u β : Type v ι✝ : Sort w a : α s✝ s₁ s₂ t : Set α p p₁ p₂ : α → Prop inst✝ : TopologicalSpace α ι : Type u_1 s : Finset ι f : ι → Set α ⊢ closure (⋃ (i : ι) (_ : i ∈ ∅), f i) = ⋃ (i : ι) (_ : i ∈ ∅), closure (f i) State After: no goals Tactic: simp
\documentclass{article} \usepackage{lipsum} \title{My Second \LaTeX Document} \author{Perry J. Williams} \date{\today} \begin{document} \maketitle \section*{Abstract} \begin{enumerate} \item The key result from this research is \ldots \item My research took place in Reno, Nevada. \end{enumerate} Here is my own abstract. It is pretty short. \section*{Introduction} \lipsum[1] File $\beta_{3,2}$ \section*{Methods} \lipsum[1] \section*{Results} \lipsum[1] \section*{Discussion} \lipsum[1] \end{document}
/* * libasiotap - A portable TAP adapter extension for Boost::ASIO. * Copyright (C) 2010-2011 Julien KAUFFMANN <[email protected]> * * This file is part of libasiotap. * * libasiotap is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License as * published by the Free Software Foundation; either version 3 of * the License, or (at your option) any later version. * * libasiotap is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public * License along with this program. If not, see * <http://www.gnu.org/licenses/>. * * In addition, as a special exception, the copyright holders give * permission to link the code of portions of this program with the * OpenSSL library under certain conditions as described in each * individual source file, and distribute linked combinations * including the two. * You must obey the GNU General Public License in all respects * for all of the code used other than OpenSSL. If you modify * file(s) with this exception, you may extend this exception to your * version of the file(s), but you are not obligated to do so. If you * do not wish to do so, delete this exception statement from your * version. If you delete this exception statement from all source * files in the program, then also delete it here. * * If you intend to use libasiotap in a commercial software, please * contact me : we may arrange this for a small fee or no fee at all, * depending on the nature of your project. */ /** * \file ip_configuration.cpp * \author Julien KAUFFMANN <[email protected]> * \brief Deals with IP configurations. */ #include "types/ip_route.hpp" #include "types/stream_operations.hpp" #include <boost/lexical_cast.hpp> namespace asiotap { template <typename AddressType> std::istream& operator>>(std::istream& is, base_ip_route<AddressType>& value) { std::string ip_address; std::string prefix_length; std::string gateway; if (read_ip_address_prefix_length_gateway<AddressType>(is, ip_address, prefix_length, gateway)) { base_ip_network_address<AddressType> ina; if (prefix_length.empty()) { ina = AddressType::from_string(ip_address); } else { ina = { AddressType::from_string(ip_address), boost::lexical_cast<unsigned int>(prefix_length) }; } if (gateway.empty()) { value = ina; } else { value = { ina, AddressType::from_string(gateway) }; } } return is; } template std::istream& operator>>(std::istream& is, ipv4_route& value); template std::istream& operator>>(std::istream& is, ipv6_route& value); template <typename AddressType> std::ostream& operator<<(std::ostream& os, const base_ip_route<AddressType>& value) { if (value.gateway()) { return os << value.network_address() << " => " << *value.gateway(); } else { return os << value.network_address(); } } template std::ostream& operator<<(std::ostream& is, const ipv4_route& value); template std::ostream& operator<<(std::ostream& is, const ipv6_route& value); std::istream& operator>>(std::istream& is, ip_route& value) { if (is) { ipv6_route ir; if (is >> ir) { value = ir; return is; } is.clear(); } if (is) { ipv4_route ir; if (is >> ir) { value = ir; return is; } } return is; } std::ostream& operator<<(std::ostream& os, const ip_route_set& routes) { if (routes.size() > 0) { auto route = routes.begin(); os << *route; for (++route; route != routes.end(); ++route) { os << ", " << *route; } } return os; } }
Inductive ALVec (A : Type) : nat -> Type := | Nil : ALVec A 0 | Cons : forall (m : nat) (h : A) {n : nat} (t : ALVec A n), ALVec A (1 + m + n).
# # Copyright © 2021 United States Government as represented by the Administrator # of the National Aeronautics and Space Administration. No copyright is claimed # in the United States under Title 17, U.S. Code. All Other Rights Reserved. # # SPDX-License-Identifier: NASA-1.3 # """Spacecraft orbit.""" from astroplan import Observer from astropy.coordinates import SkyCoord, TEME from astropy import units as u from astropy.utils.data import get_readable_fileobj import numpy as np from sgp4.api import Satrec, SGP4_ERRORS from .constraints import OrbitNightConstraint __all__ = ('Orbit',) class Orbit: """An Earth satellite whose orbit is specified by its TLE. Parameters ---------- tle : str, file The filename or file-like object containing the two-line element (TLE). Examples -------- Load an example TLE from a file: >>> from importlib import resources >>> from astropy.time import Time >>> from astropy import units as u >>> from dorado.scheduling import Orbit >>> from astropy.utils.data import get_pkg_data_filename >>> with resources.path('dorado.scheduling.data', ... 'dorado-625km-sunsync.tle') as path: ... orbit = Orbit(path) Get the orbital period: >>> orbit.period <Quantity 97.20725153 min> Evaluate the position and velocity of the satellite at one specific time: >>> time = Time('2021-04-16 15:27') >>> orbit(time) <SkyCoord (ITRS: obstime=2021-04-16 15:27:00.000): (x, y, z) in km (3902.59776726, -5209.69991116, 2582.69921222) (v_x, v_y, v_z) in km / s (-2.9282713, 1.25697383, 6.93396922)> Or evaluate at an array of times: >>> times = time + np.linspace(0 * u.min, 2 * u.min, 50) >>> orbit(times).shape (50,) """ # noqa: E501 def __init__(self, tle): with get_readable_fileobj(tle) as f: *_, line1, line2 = f.readlines() self._tle = Satrec.twoline2rv(line1, line2) @property def period(self): """The orbital period at the epoch of the TLE.""" return 2 * np.pi / self._tle.no * u.minute def __call__(self, time): """Get the position and velocity of the satellite. Parameters ---------- time : :class:`astropy.time.Time` The time of the observation. Returns ------- coord : :class:`astropy.coordinates.SkyCoord` The coordinates of the satellite in the ITRS frame. Notes ----- The orbit propagation is based on the example code at https://docs.astropy.org/en/stable/coordinates/satellites.html. """ shape = time.shape time = time.ravel() time = time.utc e, xyz, vxyz = self._tle.sgp4_array(time.jd1, time.jd2) x, y, z = xyz.T vx, vy, vz = vxyz.T # If any errors occurred, only raise for the first error e = e[e != 0] if e.size > 0: raise RuntimeError(SGP4_ERRORS[e[0]]) coord = SkyCoord(x=x*u.km, v_x=vx*u.km/u.s, y=y*u.km, v_y=vy*u.km/u.s, z=z*u.km, v_z=vz*u.km/u.s, frame=TEME(obstime=time)).itrs if shape: coord = coord.reshape(shape) else: coord = coord[0] return coord def is_night(self, time): """Determine if the spacecraft is in orbit night. Parameters ---------- time : :class:`astropy.time.Time` The time of the observation. Returns ------- bool, :class:`np.ndarray` True when the spacecraft is in orbit night, False otherwise. """ return OrbitNightConstraint().compute_constraint( time, Observer(self(time).earth_location))
module examples.Vec where {- Computed datatypes -} data One : Set where unit : One data Nat : Set where zero : Nat suc : Nat -> Nat data _*_ (A B : Set) : Set where pair : A -> B -> A * B infixr 20 _=>_ data _=>_ (A B : Set) : Set where lam : (A -> B) -> A => B lam2 : {A B C : Set} -> (A -> B -> C) -> (A => B => C) lam2 f = lam (\x -> lam (f x)) app : {A B : Set} -> (A => B) -> A -> B app (lam f) x = f x Vec : Nat -> Set -> Set Vec zero X = One Vec (suc n) X = X * Vec n X {- ... construct the vectors of a given length -} vHead : {X : Set} -> (n : Nat)-> Vec (suc n) X -> X vHead n (pair a b) = a vTail : {X : Set} -> (n : Nat)-> Vec (suc n) X -> Vec n X vTail n (pair a b) = b {- safe destructors for nonempty vectors -} {- useful vector programming operators -} vec : {X : Set} -> (n : Nat) -> X -> Vec n X vec zero x = unit vec (suc n) x = pair x (vec n x) vapp : {S T : Set} -> (n : Nat) -> Vec n (S => T) -> Vec n S -> Vec n T vapp zero unit unit = unit vapp (suc n) (pair f fs) (pair s ss) = pair (app f s) (vapp n fs ss) {- mapping and zipping come from these -} vMap : {S T : Set} -> (n : Nat) -> (S -> T) -> Vec n S -> Vec n T vMap n f ss = vapp n (vec n (lam f)) ss {- transposition gets the type it deserves -} transpose : {X : Set} -> (m n : Nat)-> Vec m (Vec n X) -> Vec n (Vec m X) transpose zero n xss = vec n unit transpose (suc m) n (pair xs xss) = vapp n (vapp n (vec n (lam2 pair)) xs) (transpose m n xss) {- Sets of a given finite size may be computed as follows... -} {- Resist the temptation to mention idioms. -} data Zero : Set where data _+_ (A B : Set) : Set where inl : A -> A + B inr : B -> A + B Fin : Nat -> Set Fin zero = Zero Fin (suc n) = One + Fin n {- We can use these sets to index vectors safely. -} vProj : {X : Set} -> (n : Nat)-> Vec n X -> Fin n -> X -- vProj zero () we can pretend that there is an exhaustiveness check vProj (suc n) (pair x xs) (inl unit) = x vProj (suc n) (pair x xs) (inr i) = vProj n xs i {- We can also tabulate a function as a vector. Resist the temptation to mention logarithms. -} vTab : {X : Set} -> (n : Nat)-> (Fin n -> X) -> Vec n X vTab zero _ = unit vTab (suc n) f = pair (f (inl unit)) (vTab n (\x -> f (inr x))) {- Question to ponder in your own time: if we use functional vectors what are vec and vapp -} {- Answer: K and S -} {- Inductive datatypes of the unfocused variety -} {- Every constructor must target the whole family rather than focusing on specific indices. -} data Tm (n : Nat) : Set where evar : Fin n -> Tm n eapp : Tm n -> Tm n -> Tm n elam : Tm (suc n) -> Tm n {- Renamings -} Ren : Nat -> Nat -> Set Ren m n = Vec m (Fin n) _`Ren`_ = Ren {- identity and composition -} idR : (n : Nat) -> n `Ren` n idR n = vTab n (\i -> i) coR : (l m n : Nat) -> m `Ren` n -> l `Ren` m -> l `Ren` n coR l m n m2n l2m = vMap l (vProj m m2n) l2m {- what theorems should we prove -} {- the lifting functor for Ren -} liftR : (m n : Nat) -> m `Ren` n -> suc m `Ren` suc n liftR m n m2n = pair (inl unit) (vMap m inr m2n) {- what theorems should we prove -} {- the functor from Ren to Tm-arrows -} rename : {m n : Nat} -> (m `Ren` n) -> Tm m -> Tm n rename {m}{n} m2n (evar i) = evar (vProj m m2n i) rename {m}{n} m2n (eapp f s) = eapp (rename m2n f) (rename m2n s) rename {m}{n} m2n (elam t) = elam (rename (liftR m n m2n) t) {- Substitutions -} Sub : Nat -> Nat -> Set Sub m n = Vec m (Tm n) _`Sub`_ = Sub {- identity; composition must wait; why -} idS : (n : Nat) -> n `Sub` n idS n = vTab n (evar {n}) {- functor from renamings to substitutions -} Ren2Sub : (m n : Nat) -> m `Ren` n -> m `Sub` n Ren2Sub m n m2n = vMap m evar m2n {- lifting functor for substitution -} liftS : (m n : Nat) -> m `Sub` n -> suc m `Sub` suc n liftS m n m2n = pair (evar (inl unit)) (vMap m (rename (vMap n inr (idR n))) m2n) {- functor from Sub to Tm-arrows -} subst : {m n : Nat} -> m `Sub` n -> Tm m -> Tm n subst {m}{n} m2n (evar i) = vProj m m2n i subst {m}{n} m2n (eapp f s) = eapp (subst m2n f) (subst m2n s) subst {m}{n} m2n (elam t) = elam (subst (liftS m n m2n) t) {- and now we can define composition -} coS : (l m n : Nat) -> m `Sub` n -> l `Sub` m -> l `Sub` n coS l m n m2n l2m = vMap l (subst m2n) l2m
! RUN: not %flang -fsyntax-only 2>&1 %s | FileCheck %s module m contains subroutine subr1(f) character(5) f print *, f('abcde') end subroutine subroutine subr2(f) character(*) f print *, f('abcde') end subroutine character(5) function explicitLength(x) character(5), intent(in) :: x explicitLength = x end function real function notChar(x) character(*), intent(in) :: x notChar = 0 end function end module character(*) function assumedLength(x) character(*), intent(in) :: x assumedLength = x end function subroutine subr3(f) character(5) f print *, f('abcde') end subroutine program main use m external assumedlength character(5) :: assumedlength call subr1(explicitLength) call subr1(assumedLength) !CHECK: error: Actual argument function associated with procedure dummy argument 'f=' has incompatible result type call subr1(notChar) call subr2(explicitLength) call subr2(assumedLength) !CHECK: error: Actual argument function associated with procedure dummy argument 'f=' has incompatible result type call subr2(notChar) call subr3(explicitLength) call subr3(assumedLength) !CHECK: warning: If the procedure's interface were explicit, this reference would be in error: !CHECK: because: Actual argument function associated with procedure dummy argument 'f=' has incompatible result type call subr3(notChar) end program
State Before: m : Type u_1 → Type u_2 ε α : Type u_1 inst✝ : Monad m x y : ExceptT ε m α h : run x = run y ⊢ x = y State After: m : Type u_1 → Type u_2 ε α : Type u_1 inst✝ : Monad m x y : ExceptT ε m α h : x = y ⊢ x = y Tactic: simp [run] at h State Before: m : Type u_1 → Type u_2 ε α : Type u_1 inst✝ : Monad m x y : ExceptT ε m α h : x = y ⊢ x = y State After: no goals Tactic: assumption
lemma degree_prod_eq_sum_degree: fixes A :: "'a set" and f :: "'a \<Rightarrow> 'b::idom poly" assumes f0: "\<forall>i\<in>A. f i \<noteq> 0" shows "degree (\<Prod>i\<in>A. (f i)) = (\<Sum>i\<in>A. degree (f i))"
If $S$ is a bounded set, then its closure is bounded.
\section{Related work} \label{sec:related-work} In the world of tiny (IoT) several mobility-enabling routing protocols have been proposed. Firstly we highlight $\mu$Matrix's features against its original static version \cite{Peres:2016}. Then, we survey recent protocols in the context of 6LoWPAN and put them in perspective with $\mu$Matrix. Matrix was originally proposed without support for mobility\cite{Peres:2016}. If a node moved from its home location, the hierarchical IPv6 address allocation would become invalid and compromise downward routing. Although RPL~\cite{rfc6550} is the standard protocol for 6LoWPANs, it presents limitations, for example, in mobility scenarios, scalability issues, reliability and robustness for point-to-multipoint traffic~\cite{iova2016rpl, Peres:2016}. Most recent mobile-enabled routing protocols are RPL extensions. They deal with mobile issues, but they do not handle RPL drawbacks. Co-RPL~\cite{gaddour2014co} provides mobility support to RPL but without Trickle. This turns Co-RPL more responsive but has higher overhead. MMRPL~\cite{cobarzan2014analysis} modifies the RPL beacon periodicity by replacing the Trickle mechanism with a Reverse Trickle-Like. Their Reverse Trickle decays exponentially, while our approach quickly goes to the minimum after an unacknowledged beacon. MMRPL also needs some static nodes. In ME-RPL~\cite{el2012mobility}, static nodes have higher priority than mobile ones. ME-RPL requires some fixed nodes. The memory requirement to downward routes is still prohibitive. mRPL~\cite{fotouhi2015mrpl} proposes a hand-off mechanism for mobile nodes in RPL by separating nodes into mobile (MN) or serving access point (AP). They use smart-HOP algorithm on MN nodes to perform hand-off between AP. XCTP~\cite{santos2015extend} extends CTP to support bidirectional traffic. XCTP does not support IPv6 addressing and any-to-any traffic. Hydro~\cite{dawson2010hydro} fills the gap of any-to-any traffic, but it requires static nodes with a large memory to perform the routing and support mobility nodes. Mobile IP~\cite{perkins2011mobility} and Hierarchical Mobile IPv6 (HMIPv6) Mobility Management~\cite{rfc5380} are standards for IPv6 networks for handling local mobility. However, they are not designed for 6LoWPANs, they do not present a mobility detection or adjustable timers. LOAD~\cite{kim20076lowpan} and DYMO-Low~\cite{kim2007dynamic} are 6LoWPAN protocols inspired in AODV and DYMO, but they are not suitable for mobile networks. Table~\ref{tab:rel-works} summarizes properties of the related protocols. \input{related-work-table}
/* * Copyright (c) 2019 Opticks Team. All Rights Reserved. * * This file is part of Opticks * (see https://bitbucket.org/simoncblyth/opticks). * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "numpydelegate.hpp" #include <sstream> #include <iostream> #include <iomanip> #include <boost/thread.hpp> #include "NPY.hpp" #include "numpyserver.hpp" #include "NumpyEvt.hpp" #include "Cfg.hh" #include <boost/log/trivial.hpp> #define LOG BOOST_LOG_TRIVIAL // trace/debug/info/warning/error/fatal numpydelegate::numpydelegate() : m_server(NULL), m_udp_port(8080), m_npy_echo(0), m_zmq_backend("tcp://127.0.0.1:5002"), m_evt(NULL) { } void numpydelegate::setServer(numpyserver<numpydelegate>* server) { m_server = server ; } void numpydelegate::setNumpyEvt(NumpyEvt* evt) { m_evt = evt ; } void numpydelegate::configureI(const char* name, std::vector<int> values) { if(values.empty()) return ; if(strcmp(name, "udpport")==0) setUDPPort(values.back()); if(strcmp(name, "npyecho")==0) setNPYEcho(values.back()); } void numpydelegate::configureS(const char* name, std::vector<std::string> values) { if(values.empty()) return ; if(strcmp(name, "zmqbackend")==0) setZMQBackend(values.back()); } void numpydelegate::setUDPPort(int port) { m_udp_port = port ; } void numpydelegate::setNPYEcho(int echo) { m_npy_echo = echo ; } void numpydelegate::setZMQBackend(std::string& backend) { m_zmq_backend = backend ; } int numpydelegate::getUDPPort() { return m_udp_port ; } int numpydelegate::getNPYEcho() { return m_npy_echo ; } std::string& numpydelegate::getZMQBackend() { return m_zmq_backend ; } void numpydelegate::liveConnect(Cfg* cfg) { if( cfg->containsOthers()) { for(size_t i=0 ; i<cfg->getNumOthers() ; i++) { Cfg* other = cfg->getOther(i); if(other->isLive()) { m_live_cfg.push_back(other); } } } else { m_live_cfg.push_back(cfg); } } void numpydelegate::interpretExternalMessage(std::string msg) { //printf("numpydelegate::interpretExternalMessage %s \n", msg.c_str()); for(size_t i=0 ; i<m_live_cfg.size() ; ++i) { Cfg* cfg = m_live_cfg[i]; cfg->liveline(msg.c_str()); // cfg listener objects may get live configured } } void numpydelegate::on_msg(std::string _addr, unsigned short port, std::string msg) { //std::cout << std::setw(20) << boost::this_thread::get_id() LOG(info) << "numpydelegate::on_msg " << " addr [" << _addr << "] " << " port [" << port << "] " << " msg [" << msg << "] " << std::endl; interpretExternalMessage(msg); std::stringstream ss ; ss << msg ; ss << " returned from numpydelegate " ; boost::shared_ptr<std::string> addr(new std::string(_addr)); boost::shared_ptr<std::string> reply(new std::string(ss.str())); m_server->send( *addr, port, *reply ); // is passing a deref-ed shared_ptr simply a cunning way to leak } void numpydelegate::on_npy(std::vector<int> _shape, std::vector<float> _data, std::string _metadata) { assert(_shape.size() == 3); //std::cout << std::setw(20) << boost::this_thread::get_id() LOG(info) << " numpydelegate::on_npy " << " shape dimension " << _shape.size() << " [" << _shape[0] << "/" << _shape[1] << "/" << _shape[2] << "] " << " data size " << _data.size() << " metadata [" << _metadata << "]" << std::endl ; // copying and replying boost::shared_ptr<std::vector<int>> shape(new std::vector<int>(_shape)); boost::shared_ptr<std::vector<float>> data(new std::vector<float>(_data)); boost::shared_ptr<std::string> metadata(new std::string(_metadata)); if(m_evt) { m_evt->setIncomingData(new NPY<float>(*shape, *data, *metadata)); // TODO: avoid excessive copying LOG(info) << m_evt->description("NPY lodged incoming data into NumpyEvt"); } // demo that can modify the npy //for(size_t i=0 ; i< data->size() ; ++i) (*data)[i] = (*data)[i]*2.0f ; m_server->response( *shape, *data, *metadata ); }
#this is a test script.
\documentclass[twoside]{article} \usepackage[sc]{mathpazo} % Use the Palatino font \usepackage[T1]{fontenc} % Use 8-bit encoding that has 256 glyphs \linespread{1.05} % Line spacing - Palatino needs more space between lines \usepackage{microtype} % Slightly tweak font spacing for aesthetics \usepackage[hmarginratio=1:1,top=32mm,columnsep=20pt]{geometry} % Document margins \usepackage{multicol} % Used for the two-column layout of the document \usepackage[hang, small,labelfont=bf,up,textfont=it,up]{caption} % Custom captions under/above floats in tables or figures \usepackage{booktabs} % Horizontal rules in tables \usepackage{float} % Required for tables and figures in the multi-column environment - they need to be placed in specific locations with the [H] (e.g. \begin{table}[H]) \usepackage{hyperref} % For hyperlinks in the PDF \usepackage{lettrine} % The lettrine is the first enlarged letter at the beginning of the text \usepackage{paralist} % Used for the compactitem environment which makes bullet points with less space between them \usepackage{abstract} % Allows abstract customization \renewcommand{\abstractnamefont}{\normalfont\bfseries} % Set the "Abstract" text to bold \renewcommand{\abstracttextfont}{\normalfont\small\itshape} % Set the abstract itself to small italic text \usepackage{titlesec} % Allows customization of titles \renewcommand\thesection{\Roman{section}} % Roman numerals for the sections \renewcommand\thesubsection{\Roman{subsection}} % Roman numerals for subsections \titleformat{\section}[block]{\large\scshape\centering}{\thesection.}{1em}{} % Change the look of the section titles \titleformat{\subsection}[block]{\large}{\thesubsection.}{1em}{} % Change the look of the section titles \usepackage{fancyhdr} % Headers and footers \pagestyle{fancy} % All pages have headers and footers \fancyhead{} % Blank out the default header \fancyfoot{} % Blank out the default footer \fancyhead[C]{Bitquant Research Laboratories Working Paper No. 1} % Custom header text \fancyfoot[RO,LE]{\thepage} % Custom footer text \title{\vspace{-15mm}\fontsize{24pt}{10pt}\selectfont\textbf{A simple macroeconomic model of bitcoin}} % Article title \author{ \large \textsc{Joseph C Wang} \normalsize Bitquant Research Laboratories\\ \normalsize \href{http://www.bitquant.com.hk/}{http://www.bitquant.com.hk/} \\ \normalsize \href{mailto:[email protected]}{[email protected]} \\ \date{2014 February 11} } \usepackage{natbib} \bibliographystyle{plainnat} \usepackage{url} \begin{document} \maketitle \thispagestyle{fancy} \begin{abstract} This working paper presents a simple model for the macroeconomic behavior of bitcoin based on the economic equation of exchange. According to this model, the value of bitcoin is determined largely by the willingness of bitcoin holders to save bitcoin and not by its transactional use. This model therefore predicts that increased use of bitcoin will not cause its value to rise, but that the value of bitcoin in terms of fiat currency will be almost solely determined by the willingness of bitcoin holders to pull bitcoin out of circulation. This model suggests that bitcoin will not fall victim to a liquidity trap as suggested by some economists. \end{abstract} \begin{multicols}{2} \section{Introduction} In this working paper, we present a model for the valuation of bitcoin based on simple macroeconomic arguments. We caution that our model is intended primarily to stimulate discussion and that the truth of this model or any economic model will be determined by empirical observation of the bitcoin market. \section{Macroeconomics of Bitcoin} We begin our money with the equation of exchange where \begin{equation} M \cdot V = P \cdot Q \end{equation} where \begin{eqnarray*} & M & \mbox{is the nominal amount of money}\\ & V & \mbox{is the velocity of money}\\ & P & \mbox{is the price level}\\ & Q & \mbox{is the index of real expenditures}\\ \end{eqnarray*} We now modify the equation in order to take into account the unique aspects of bitcoin. First we express all of our quantities in units of fiat currency. By expressing all of our quantities in terms of fiat currency, we can set the $P$ to $1$. Since we are expressing all quantities in units of fiat currency, the value for $M$ is now the value of bitcoin as measured in fiat currency units. We next expand the quantity $M$ in terms of the number of bitcoin in circulation $n_b$ and the price of a single bitcoin $p_b$. The number of bitcoin in circulation is externally determined and slowing and predictable varying, whereas the price of a single bitcoin will fluctuate. Substituting $M=n_b p_b$ we and rearranging we get. \begin{equation} p_b = \frac{Q}{n_b V} \end{equation} We note that $n_b$ is an externally determined and slowing changing variable. The main determinant of the price of bitcoin is the interaction between the level of bitcoin usage and the velocity of bitcoin. At this point we have made no assumptions concerning the dynamics of bitcoin. We shall now add some dynamical assumptions concerning the relationship between the number of bitcoin expended $Q$ and the velocity of an individual bitcoin $V$. We decompose the velocity of bitcoin into a portion that is saved and portion that is transacted. We denote the likelihood that a invididual bitcoin is saved by $l_s$ and the likelihood that a bitcoin is transacted as $l_t$. These two variables will sum to $1$. These portions have a corresponding set of velocities $v_s$ being the velocity of a saved bitcoin and $v_t$ being the velocity of a transacted bitcoin. We now make several claims about the dynamics of bitcoin. Because $v_t \gg v_s$ we claim that we can set the velocity of saved bitcoins to $0$. We further claim that the velocity of transacted bitcoins can be modeled as a linear function of $Q$. We therefore have the following expression for the total velocity of bitcoin. \begin{equation} V = l_t\alpha_t Q \end{equation}. Substituting back into the original equation we see that \begin{equation} p_b = \frac{1}{l_t \alpha_t} \end{equation}. We claim that $\alpha_t$ will remain roughly constant over time. That leaves only one term which impacts the price of bitcoin, which is the $l_t$ the likelihood that a given bitcoin will be transacted rathr than saved. \section{Implications of our model} Our model makes very strong claims concerning the price of bitcoins. In particular, it states that the price of bitcoin is determined almost solely by the likelihood that a given bitcoin will be saved. If a user uses bitcoin for transaction purposes then this has no impact on the value of bitcoin, while the value of bitcoin rises a given bitcoin is more likely to be saved rather than transacted. This model seems to agree with the changes in bitcoin pricing in 2013. The two events that caused bitcoin prices to increase were the Cyprus banking crisis in April 2013 and the rise of mainland Chinese bitcoin exchanges in October 2013. Both these events increased the likelihood that a given bitcoin would be saved rather than transacted which increased the price of bitcoin. We note that the main drivers for bitcoin prices have been news reports concerning the convertibility of bitcoin, and that news reports concerning the increasing usage of bitcoin has made very little impact on its price. We also note that bitcoin has is prone to sudden changes in price due to news events but that the price of bitcoin after a sudden shock has returned to stable levels. Our model explains this phenomenon by asserting that although shocks can cause a sudden change in the price of bitcoin, to the extent that it does not cause a change in how likely a bitcoin is saved or transacted, it will not cause a change in the long-run price level of bitcoin. Our model also makes predictions concerning the future price of bitcoin. If our model is correct, then we should expect that increased usage of bitcoin should manifest itself in larger volumes rather than increased prices. Prices in bitcoin would only be effected by events which increase or decrease the likelihood that a given bitcoin would be saved rather than transacted. Some economists, notably Paul Krugman, are pessimistic about the viability of bitcoin as a medium of exchange, because they believe that bitcoin will fall into a liquidity trap caused by the fixed supply of bitcoin \cite{krugman1}. Krugman claims that as the price of bitcoin rises, the amount of bitcoin in circulation will decrease thereby increasing the price, ultimately creating a situation in which bitcoin is completely hoarded. This effect has been observed in scrip economies such as the Capital Hill Babysitting Co-op \cite{krugman2}. However, our model provides a mechanism by which bitcoin can avoid a liquidity trap and explains why bitcoin has not experienced such a trap. The mechanism which we claim this will occur involves the interaction between bitcoin and fiat currency. As the price of bitcoin rises, we claim that people will be more likely to spend their bitcoin rather than fiat currency, which will decrease saved bitcoin thereby cause bitcoin prices to fall. Conversely a fall in the price of bitcoin will increase the likelihood that people will save bitcoin as they will be more likely to spend fiat, and this will cause bitcoin prices to rise. Our models claims that long-run increases or decreases in the price of bitcoin will not influenced by the transactional use of bitcoin but rather by external factors which change the likelihood that a given bitcoin will be saved. Krugman's belief that bitcoin is destined for a liquidity trap ignores the fact that bitcoin exists within an fiat-based economy, and that the ease of convertibility to and from fiat prevents a liquidity trap that exists when convertibility is difficult. \section{Conclusion} We caution that the correctness of the model will be determined by future empirical observations of the bitcoin market. However, we hope to illustrate that the behavior of bitcoin can be modelled using basic economic principles, and we hope that this working paper will stimulate research and discussion in this area. \bibliography{macro} \end{multicols} \end{document}
lemma compact_fip_Heine_Borel: fixes \<F> :: "'a::heine_borel set set" assumes clof: "\<And>T. T \<in> \<F> \<Longrightarrow> compact T" and none: "\<And>\<F>'. \<lbrakk>finite \<F>'; \<F>' \<subseteq> \<F>\<rbrakk> \<Longrightarrow> \<Inter>\<F>' \<noteq> {}" shows "\<Inter>\<F> \<noteq> {}"
integer(4) :: x x = 6 x
\chapter{Code: quantinf Module} The code developed to extend QuTiP with QI functionality, all put together in a single module file. Save it with the name \texttt{quantinf.py} in order to run the time evolution and Werner states programs from chapter 6. Save the programs in the same directory as this module for convenience, if not familiar with how to add a module to the Python path.\\ A copy can be obtained from\\ https://github.com/saad440/undergrad-project \\ \begin{verbatim} # -*- coding: utf-8 -*- """ This module implements a number of quantum information functions in QuTiP (Quantum Toolbox in Python) Project: Investigation of Entanglement Measures in QuTiP (IIUI, Fall 2015) @author: Muhammad Saad <[email protected]> """ __all__ = ['purity','ispure','purity_of_reduced','ismixed_reduced', 'peres_horodecki_bipartite','schmidt_decomposition', 'dist_kl', 'entropy_entg', 'entropy_linear_entg', 'negativity', 'log_neg', 'linear_entropy', 'entropy_renyi', 'entropy_renyi_entg' ] from qutip import ( Qobj, ket2dm, entropy_vn, ptrace, partial_transpose ) from numpy import log2 import numpy as np def purity(dm): """ Calculates trace of density matrix squared Parameters ---------- dm: qobj/array-like Input density matrix Returns ------- purity: Purity of the state. 1 for pure, 0.5 for maximally mixed. """ if dm.type == 'ket': dm = ket2dm(dm) if dm.type != 'oper': raise TypeError("Input must be a state ket or density matrix") purity = (dm**2).tr() return purity def purity_of_reduced(rho): """ Calculates trace of reduced density matrix square Parameters ---------- dm: qobj/array-like Input density matrix Returns ------- purityreduced: Purity of the reduced DM. 1 for pure, 0.5 for maximally mixed. """ rhopartial = ptrace(rho,0) purityreduced = purity(rhopartial) return purityreduced def ispure(dm): """ Checks whether or not a density matrix represents a pure state Parameters ---------- dm : qobj/array-like Density operator representing the state. ------- pure : bool Whether or not the state is pure. True: Pure, False: Mixed. """ if np.round(purity(dm),8) == 1: return True else: return False def ismixed_reduced(dm): """ One way to check for entanglement is that the reduced density matrix is mixed. This function checks for that criterion. Parameters ---------- dm : qobj/array-like Density operator representing the state. ------- mixed : bool Whether or not the reduced DM is mixed. True: Mixed, False: Pure """ if np.round(purity_of_reduced(dm),8) != 1: return True else: return False def schmidt_decomposition(vec): """ Schmidt decomposition of a bipartite vector Based on the implementation in QETLAB 0.9 which was written by Nathaniel Johnston ([email protected]) and as of this port, last updated on December 1, 2012 Parameters ---------- vec : qobj, ket vector of product state ket vector representing the bipartite state ------- Returns: [s, u, v] s : list of floats Schmidt coefficients u : list of Qobj list of left Schmidt vectors of ket v : list of Qobj list of right Schmidt vectors of ket """ if vec.type != 'ket': raise TypeError("Input must be a ket vector.") if len(vec.dims[0])==1: raise TypeError("Input must be a joint state.") dim = vec.dims[0][0] vecnp = vec.full() vecnpr = np.reshape(vecnp,[dim,dim]) um,s,vm = np.linalg.svd(vecnpr) s = list(s) def extract_vecs(mat): veclist = list() for j in range(mat.shape[1]): veclist.append(Qobj(mat[:,j])) return veclist u = extract_vecs(um) v = extract_vecs(vm) return [s,u,v] def peres_horodecki_bipartite(rho, mask=[0,1]): """ Tests the given bipartite state for Peres-Horodecki criterion Parameters ---------- rho: qobj/array-like Density operator for the state mask: list of int, length 2 mask used for partial transpose Returns ------- isentangled: bool True for entangled, False for disentangled """ if rho.type != 'oper': raise TypeError("Input must be a density matrix") rhopt = partial_transpose(rho,mask) rhopt_eigs = rhopt.eigenenergies() if min(rhopt_eigs) < 0: isentangled = True else: isentangled = False return isentangled def entropy_entg(rho, base=2): """ Calculates the entropy of entanglement of a density matrix Parameters: ----------- rho : qobj/array-like Input density matrix base: Base of log Returns: -------- ent_entg: Entropy of Entanglement """ if rho.type == 'ket': rho = ket2dm(rho) if rho.type != 'oper': raise TypeError("Input must be density matrix") rhopartial = ptrace(rho,0) ent_entg = entropy_vn(rhopartial,base) return ent_entg def linear_entropy(dm, normalize=False): """ Returns the linear entropy of a state. Parameters ---------- dm : qobj/array-like Density operator representing the state. normalize : bool Optional argument to normalize linear entropy such that the completely mixed state has LE = 1 rather than 1-1/d. [1] Default: False ---------- le : float Linear entropy ---------- References: [1] "Linear entropy and Bell inequalities", Santos and Ferrero, Phys. Rev. A 62, 024101 """ if dm.type not in ('oper','ket'): raise TypeError("Input must be a Qobj representing a state.") if dm.type=='ket': dm = ket2dm(dm) le = 1 - (dm**2).tr() if normalize: d = dm.shape[0] le = le * d/(d-1) return le def entropy_linear_entg(rho, normalize=True): """ Calculates the linear entropy of entanglement of a density matrix Parameters: ----------- rho : qobj/array-like Input density matrix Returns: -------- linent_entg: Linear Entropy of Entanglement """ if rho.type == 'ket': rho = ket2dm(rho) if rho.type != 'oper': raise TypeError("Input must be density matrix") rhopartial = ptrace(rho,0) linent_entg = linear_entropy(rhopartial,normalize) return linent_entg def entropy_renyi(rho,alpha): """ Calculate Renyi entropy of the density matrix with given index (Currently limited to 2-level systems) Parameters ---------- dm: qobj/array-like Input density matrix alpha: Renyi index alpha Returns ------- ent_rn: Renyi Entropy """ if rho.type != 'oper': raise TypeError("Input must be a density matrix") qi = rho.eigenenergies() if alpha == 1: ent_rn = entropy_vn(rho,2) elif alpha >= 0: ent_rn = ( 1/(1-alpha) ) * log2 ( sum( qi**alpha ) ) else: raise ValueError("alpha must be a non-negative number") return ent_rn def entropy_renyi_entg(rho,alpha): """ Calculate Renyi entropy of entanglement for the DM with given index (Currently limited to 2-level systems) Parameters ---------- dm: qobj/array-like Input density matrix alpha: Renyi index alpha Returns ------- ent_rn_entg: Renyi Entropy of Entanglement """ rhopartial = ptrace(rho,0) ent_rn_entg = entropy_renyi(rhopartial,alpha) return ent_rn_entg def negativity(rho,mask=[1,0]): """ Calculate the negativity for a density matrix Parameters: ----------- rho : qobj/array-like Input density matrix Returns: -------- neg : Negativity """ if rho.type != 'oper': raise TypeError("Input must be a density matrix") rhopt = partial_transpose(rho,mask) neg = ( rhopt.norm() - 1 ) / 2 return neg def log_neg(rho,mask=[1,0]): """ Calculate the logarithmic negativity for a density matrix Parameters: ----------- rho : qobj/array-like Input density matrix Returns: -------- logneg: Logarithmic Negativity """ if rho.type != 'oper': raise TypeError("Input must be a density matrix") rhopt = partial_transpose(rho,mask) logneg = log2( rhopt.norm() ) return logneg def dist_kl(rho, sgm): """ Calculates the Kullback-Leibler distance (a.k.a. relative entropy) between DMs rho and sgm representing two-level systems. Parameters ---------- rho : qobj/array-like First density operator. sgm : qobj/array-like Second density operator. Returns ------- kldist : float Relative Entropy between rho and sgm. """ if rho.type != 'oper' or sgm.type != 'oper': raise TypeError("Inputs must be density matrices..") ent_vn = entropy_vn(rho,2) r_eigs = rho.eigenenergies() s_eigs = sgm.eigenenergies() # too small negtive values may give trouble s_eigs = np.round(s_eigs,8) kldist = -ent_vn for pj, qj in zip(r_eigs,s_eigs): if qj==0: pass else: kldist -= pj * log2(qj) kldist = abs(kldist) return kldist \end{verbatim}
import Statistics.Distribution import Statistics.Distribution.Normal nd :: NormalDistribution nd = normalDistr 0.0 1.0 main = do putStrLn $ "P( 2< Z) = " ++ show (complCumulative nd 2) putStrLn $ "P(-2<=Z<=2)= " ++ show (cumulative nd 2 - cumulative nd (-2)) putStrLn $ "P( 0<=Z<=1.73)= " ++ show (cumulative nd 1.73 - cumulative nd 0)
Formal statement is: lemma vector_derivative_part_circlepath: "vector_derivative (part_circlepath z r s t) (at x) = \<i> * r * (of_real t - of_real s) * exp(\<i> * linepath s t x)" Informal statement is: The derivative of the part of a circle path from $s$ to $t$ is $\iota r (t - s) \exp(\iota \text{ linepath } s t x)$.
```python # Solving an expression in python my_value = 2 * (3 + 2)**2 / 5 - 4 print(my_value) ``` 6.0 ```python # making use of parenthesis for clarity in python my_value = 2 * ((3 + 2)**2 / 5) - 4 print(my_value) # prints 6.0 ``` 6.0 ```python # Functions are expressions that define relationships between two or more variables. # More specifically, a function takes input variables (also called domain variables or independent variables), # plugs them into an expression, and then results in an output variable (also called dependent variable). def f(x): return 2 * x + 1 x_values = [0, 1, 2, 3] for x in x_values: y = f(x) print(y) ``` 1 3 5 7 ```python # Charting a linear function in python using Sympy (Sympy comes auto bundled in Anaconda) from matplotlib import * from sympy import * x = symbols('x') f = 2*x + 1 plot(f) ``` ```python x = symbols('x') f = x**2 + 1 plot(f) ``` ```python from sympy.plotting import plot3d x, y = symbols('x y') f = 2*x + 3*y plot3d(f) ``` ```python # A summation is expressed as a sigma and adds elements together. # Summation in python summation = sum(2*i for i in range(1,6)) print(summation) ``` 30 ```python # Exponents multiplies a number by itself a specified number of times # .The base is the variable or value we are exponentiating, # and the exponent is the number of times we multiply the base value. # using sympy to print exponent expression x = symbols('x') expr = x**2 / x**5 print(expr) # x**(-3) ``` x**(-3) ```python # A logarithm is a math function that finds a power for a specific number and base. # Using the log function in python from math import log # 2 raised to what power gives me 8? x = log(8, 2) print(x) ``` 3.0 ```python # There is a special number that shows up quite a bit in math called Euler’s number e. # It is a special number much like Pi π, and is approximately 2.71828. # e is used a lot because it mathematically simplifies a lot of problems. # Calculating continuous interest in python, A = P*e**rt from math import exp p = 100 # principal, starting amount r = .20 # interest rate, by year t = 2.0 # time, number of years a = p * exp(r*t) print(a) ``` 149.18246976412703 ```python # When we use e as our base for a logarithm, we call it a natural logarithm. from math import log # e raised to what power gives us 10? x = log(10) print(x) # prints 2.302585092994046 ``` 2.302585092994046 ```python # A derivative tells the slope of a function, and it is useful to measure the rate of change at any point in a function. # derivative calculator in python def derivative_x(f, x, step_size): m = (f(x + step_size) - f(x)) / ((x + step_size) - x) return m def my_function(x): return x**2 slope_at_2 = derivative_x(my_function, 2, .00001) print(slope_at_2) ``` 4.000010000000827 ```python # Calculating a derivative in Sympy # Declare 'x' to SymPy x = symbols('x') # Now just use Python syntax to declare function f = x**2 # Calculate the derivative of the function dx_f = diff(f) print(dx_f) # prints 2*x ``` 2*x ```python # Calculating partial derivative with Sympy # Declare x and y to SymPy x,y = symbols('x y') # Now just use Python syntax to declare function f = 2*x**3 + 3*y**3 # Calculate the partial derivatives for x and y dx_f = diff(f, x) dy_f = diff(f, y) print(dx_f) # prints 6*x**2 print(dy_f) # prints 9*y**2 # plot the function plot3d(f) ``` ```python # integral, which finds the area under the curve for a given range. # Integral approximation in python def approximate_integral(a, b, n, f): delta_x = (b - a) / n total_sum = 0 for i in range(1, n + 1): midpoint = 0.5 * (2 * a + delta_x * (2 * i - 1)) total_sum += f(midpoint) return total_sum * delta_x def my_function(x): return x**2 + 1 area = approximate_integral(a=0, b=1, n=5, f=my_function) print(area) ``` 1.33 ```python ```
! (C) Copyright 2019 UCAR ! ! This software is licensed under the terms of the Apache Licence Version 2.0 ! which can be obtained at http://www.apache.org/licenses/LICENSE-2.0. !> This Define interfaces for accessing C++ Locations objects from Fortran !------------------------------------------------------------------------------- interface !------------------------------------------------------------------------------- function aq_locs_nlocs_c(locs) bind(C,name="aq_locs_nlocs_f90") use iso_c_binding, only: c_ptr, c_int integer(c_int) :: aq_locs_nlocs_c type(c_ptr), value :: locs end function function aq_locs_lonlat_c(locs) bind(C,name="aq_locs_lonlat_f90") use iso_c_binding, only: c_ptr type(c_ptr) :: aq_locs_lonlat_c type(c_ptr), value :: locs end function function aq_locs_altitude_c(locs) bind(C,name="aq_locs_altitude_f90") use iso_c_binding, only: c_ptr type(c_ptr) :: aq_locs_altitude_c type(c_ptr), value :: locs end function function aq_locs_times_c(locs, idx) bind(C,name="aq_locs_times_f90") use iso_c_binding, only: c_ptr, c_size_t type(c_ptr) :: aq_locs_times_c type(c_ptr), value :: locs integer(c_size_t) idx end function !------------------------------------------------------------------------------- end interface !-------------------------------------------------------------------------------
{-# OPTIONS --without-K --safe #-} module Cats.Category.Fun.Facts.Terminal where open import Cats.Category.Base open import Cats.Category.Constructions.Terminal using (HasTerminal) open import Cats.Category.Fun using (_↝_ ; ≈-intro) open import Cats.Functor using (Functor) open import Cats.Functor.Const using (Const) open Functor instance hasTerminal : ∀ {lo la l≈ lo′ la′ l≈′} → {C : Category lo la l≈} {D : Category lo′ la′ l≈′} → {{_ : HasTerminal D}} → HasTerminal (C ↝ D) hasTerminal {C = C} {D = D} {{D⊤}} = record { ⊤ = Const C ⊤ ; isTerminal = λ X → record { arr = record { component = λ c → ! (fobj X c) ; natural = λ {c} {d} {f} → ⇒⊤-unique _ _ } ; unique = λ _ → ≈-intro (⇒⊤-unique _ _) } } where open HasTerminal D⊤