Datasets:
AI4M
/

text
stringlengths
0
3.34M
= = Numbering = =
// // Copyright © 2017 Arm Ltd. All rights reserved. // SPDX-License-Identifier: MIT // #include <armnn/Descriptors.hpp> #include <armnn/IRuntime.hpp> #include <armnn/INetwork.hpp> #include <armnn/Types.hpp> #include <Runtime.hpp> #include <boost/test/unit_test.hpp> BOOST_AUTO_TEST_SUITE(DebugCallback) namespace { using namespace armnn; INetworkPtr CreateSimpleNetwork() { INetworkPtr net(INetwork::Create()); IConnectableLayer* input = net->AddInputLayer(0, "Input"); ActivationDescriptor descriptor; descriptor.m_Function = ActivationFunction::ReLu; IConnectableLayer* activationLayer = net->AddActivationLayer(descriptor, "Activation:ReLu"); IConnectableLayer* output = net->AddOutputLayer(0); input->GetOutputSlot(0).Connect(activationLayer->GetInputSlot(0)); activationLayer->GetOutputSlot(0).Connect(output->GetInputSlot(0)); input->GetOutputSlot(0).SetTensorInfo(TensorInfo({ 1, 1, 1, 5 }, DataType::Float32)); activationLayer->GetOutputSlot(0).SetTensorInfo(TensorInfo({ 1, 1, 1, 5 }, DataType::Float32)); return net; } BOOST_AUTO_TEST_CASE(RuntimeRegisterDebugCallback) { INetworkPtr net = CreateSimpleNetwork(); IRuntime::CreationOptions options; IRuntimePtr runtime(IRuntime::Create(options)); // Optimize the network with debug option OptimizerOptions optimizerOptions(false, true); std::vector<BackendId> backends = { "CpuRef" }; IOptimizedNetworkPtr optNet = Optimize(*net, backends, runtime->GetDeviceSpec(), optimizerOptions); NetworkId netId; BOOST_TEST(runtime->LoadNetwork(netId, std::move(optNet)) == Status::Success); // Set up callback function int callCount = 0; std::vector<TensorShape> tensorShapes; std::vector<unsigned int> slotIndexes; auto mockCallback = [&](LayerGuid guid, unsigned int slotIndex, ITensorHandle* tensor) { IgnoreUnused(guid); slotIndexes.push_back(slotIndex); tensorShapes.push_back(tensor->GetShape()); callCount++; }; runtime->RegisterDebugCallback(netId, mockCallback); std::vector<float> inputData({-2, -1, 0, 1, 2}); std::vector<float> outputData(5); InputTensors inputTensors { {0, ConstTensor(runtime->GetInputTensorInfo(netId, 0), inputData.data())} }; OutputTensors outputTensors { {0, Tensor(runtime->GetOutputTensorInfo(netId, 0), outputData.data())} }; runtime->EnqueueWorkload(netId, inputTensors, outputTensors); // Check that the callback was called twice BOOST_TEST(callCount == 2); // Check that tensor handles passed to callback have correct shapes const std::vector<TensorShape> expectedShapes({TensorShape({1, 1, 1, 5}), TensorShape({1, 1, 1, 5})}); BOOST_TEST(tensorShapes == expectedShapes); // Check that slot indexes passed to callback are correct const std::vector<unsigned int> expectedSlotIndexes({0, 0}); BOOST_TEST(slotIndexes == expectedSlotIndexes); } } // anonymous namespace BOOST_AUTO_TEST_SUITE_END()
/- Copyright (c) 2018 Keeley Hoek. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Keeley Hoek -/ import tactic.converter.interactive import tactic.ring example : 0 + 0 = 0 := begin conv_lhs {erw [add_zero]} end example : 0 + 0 = 0 := begin conv_lhs {simp} end example : 0 = 0 + 0 := begin conv_rhs {simp} end -- Example with ring discharging the goal example : 22 + 7 * 4 + 3 * 8 = 0 + 7 * 4 + 46 := begin conv { ring, }, end -- Example with ring failing to discharge, to normalizing the goal example : (22 + 7 * 4 + 3 * 8 = 0 + 7 * 4 + 47) = (74 = 75) := begin conv { ring_nf, }, end -- Example with ring discharging the goal example (x : ℕ) : 22 + 7 * x + 3 * 8 = 0 + 7 * x + 46 := begin conv { ring, }, end -- Example with ring failing to discharge, to normalizing the goal example (x : ℕ) : (22 + 7 * x + 3 * 8 = 0 + 7 * x + 46 + 1) = (7 * x + 46 = 7 * x + 47) := begin conv { ring_nf, }, end -- norm_num examples: example : 22 + 7 * 4 + 3 * 8 = 74 := begin conv { norm_num, }, end example (x : ℕ) : 22 + 7 * x + 3 * 8 = 7 * x + 46 := begin simp [add_comm, add_left_comm], conv { norm_num, }, end
Require Import String. Require Import Bool. Require Import core.utils.Utils. Require Import core.modeling.Metamodel. Require Import core.Model. Require Import core.Engine. Require Import core.Syntax. Require Import core.Semantics. Require Import core.Certification. Require Import core.EqDec. Require Import core.modeling.iteratetraces.IterateTracesSemantics. Require Import Coq.Logic.FunctionalExtensionality. Section IterateTracesCertification. Context {tc: TransformationConfiguration} {mtc: ModelingTransformationConfiguration tc}. (** EXECUTE TRACE *) Lemma tr_executeTraces_in_elements : forall (tr: Transformation) (sm : SourceModel) (te : TargetModelElement), In te (allModelElements (executeTraces tr sm)) <-> (exists (tl : TraceLink) (sp : list SourceModelElement), In sp (allTuples tr sm) /\ In tl (tracePattern tr sm sp) /\ te = TraceLink_getTargetElement tl). Proof. intros. split. + intro. assert (exists (tl : TraceLink), In tl (trace tr sm) /\ te = (TraceLink_getTargetElement tl) ). { simpl in H. induction (trace tr sm). ++ crush. ++ intros. simpl in H. destruct H. +++ exists a. crush. +++ specialize (IHl H). destruct IHl. exists x. crush. } destruct H0. destruct H0. assert (exists (sp : list SourceModelElement), In sp (allTuples tr sm) /\ In x (tracePattern tr sm sp)). { apply in_flat_map. crush. } destruct H2. destruct H2. exists x. exists x0. crush. + intros. destruct H. destruct H. destruct H. destruct H0. rewrite H1. apply in_map. apply in_flat_map. exists x0. split. ++ exact H. ++ exact H0. Qed. (** Instantiate *) (* Please check the lemma formula *) (* These lemmas of traces are useful when we get sth like (In e traces) *) Lemma tr_trace_in: forall (tr: Transformation) (sm : SourceModel) (tl : TraceLink), In tl (trace tr sm) <-> (exists (sp : list SourceModelElement), In sp (allTuples tr sm) /\ In tl (tracePattern tr sm sp)). Proof. intros. apply in_flat_map. Qed. Lemma tr_tracePattern_in: forall (tr: Transformation) (sm : SourceModel) (sp : list SourceModelElement) (tl : TraceLink), In tl (tracePattern tr sm sp) <-> (exists (r:Rule), In r (matchPattern tr sm sp) /\ In tl (traceRuleOnPattern r sm sp)). Proof. intros. apply in_flat_map. Qed. Lemma tr_traceRuleOnPattern_in: forall (r: Rule) (sm : SourceModel) (sp : list SourceModelElement) (tl : TraceLink), In tl (traceRuleOnPattern r sm sp) <-> (exists (iter: nat), In iter (seq 0 (evalIteratorExpr r sm sp)) /\ In tl (traceIterationOnPattern r sm sp iter)). Proof. intros. apply in_flat_map. Qed. Lemma tr_traceIterationOnPattern_in: forall (r: Rule) (sm : SourceModel) (sp : list SourceModelElement) (iter: nat) (tl : TraceLink), In tl (traceIterationOnPattern r sm sp iter) <-> (exists (o: OutputPatternElement), In o (Rule_getOutputPatternElements r) /\ In tl ((fun o => optionToList (traceElementOnPattern o sm sp iter)) o)). Proof. intros. apply in_flat_map. Qed. (* TODO works inside TwoPhaseSemantics.v *) Lemma tr_traceElementOnPattern_leaf: forall (o: OutputPatternElement) (sm : SourceModel) (sp : list SourceModelElement) (iter: nat) (o: OutputPatternElement) (tl : TraceLink), Some tl = (traceElementOnPattern o sm sp iter) <-> (exists (e: TargetModelElement), Some e = (instantiateElementOnPattern o sm sp iter) /\ tl = (buildTraceLink (sp, iter, OutputPatternElement_getName o) e)). Proof. intros. split. - intros. unfold traceElementOnPattern in H. destruct (instantiateElementOnPattern o0 sm sp iter) eqn: e1. -- exists t. split. crush. crush. -- crush. - intros. destruct H. destruct H. unfold traceElementOnPattern. destruct (instantiateElementOnPattern o0 sm sp iter). -- crush. -- crush. Qed. (** * Apply **) Lemma tr_applyPatternTraces_in: forall (tr: Transformation) (sm : SourceModel) (sp: list SourceModelElement) (tl : TargetModelLink) (tls: list TraceLink), In tl (applyPatternTraces tr sm sp tls) <-> (exists (r : Rule), In r (matchPattern tr sm sp) /\ In tl (applyRuleOnPatternTraces r tr sm sp tls)). Proof. intros. apply in_flat_map. Qed. Lemma tr_applyRuleOnPatternTraces_in : forall (tr: Transformation) (r : Rule) (sm : SourceModel) (sp: list SourceModelElement) (tl : TargetModelLink) (tls: list TraceLink), In tl (applyRuleOnPatternTraces r tr sm sp tls) <-> (exists (i: nat), In i (seq 0 (evalIteratorExpr r sm sp)) /\ In tl (applyIterationOnPatternTraces r tr sm sp i tls)). Proof. intros. apply in_flat_map. Qed. Lemma tr_applyIterationOnPatternTraces_in : forall (tr: Transformation) (r : Rule) (sm : SourceModel) (sp: list SourceModelElement) (tl : TargetModelLink) (i:nat) (tls: list TraceLink), In tl (applyIterationOnPatternTraces r tr sm sp i tls) <-> (exists (ope: OutputPatternElement), In ope (Rule_getOutputPatternElements r) /\ In tl (applyElementOnPatternTraces ope tr sm sp i tls)). Proof. intros. apply in_flat_map. Qed. Lemma tr_applyElementOnPatternTraces_in : forall (tr: Transformation) (sm : SourceModel) (sp: list SourceModelElement) (tl : TargetModelLink) (i:nat) (ope: OutputPatternElement) (tls: list TraceLink), In tl (applyElementOnPatternTraces ope tr sm sp i tls) <-> (exists (oper: OutputPatternLink) (te: TargetModelElement), In oper (OutputPatternElement_getOutputLinks ope) /\ (evalOutputPatternElementExpr sm sp i ope) = Some te /\ applyLinkOnPatternTraces oper tr sm sp i te tls = Some tl). Proof. split. * intros. apply in_flat_map in H. destruct H. exists x. unfold optionToList in H. destruct H. destruct (evalOutputPatternElementExpr sm sp i ope) eqn: eval_ca. - destruct (applyLinkOnPatternTraces x tr sm sp i t) eqn: ref_ca. -- eexists t. split; crush. -- contradiction. - contradiction. * intros. apply in_flat_map. destruct H. exists x. unfold optionToList. destruct H. destruct H. destruct H0. split. - assumption. - crush. Qed. Lemma tr_applyLinkOnPatternTraces_leaf : forall (oper: OutputPatternLink) (tr: Transformation) (sm: SourceModel) (sp: list SourceModelElement) (iter: nat) (te: TargetModelElement) (tls: list TraceLink), applyLinkOnPatternTraces oper tr sm sp iter te tls = evalOutputPatternLinkExpr sm sp te iter tls oper. Proof. crush. Qed. Lemma tr_applyTraces_in : forall (tr: Transformation) (sm : SourceModel) (tl : TargetModelLink), In tl (applyTraces tr sm (trace tr sm)) <-> (exists (sp : list SourceModelElement), In sp (allTuples tr sm) /\ In tl (applyPatternTraces tr sm sp (trace tr sm))). Proof. split. - intros. apply in_flat_map in H. destruct H. exists x. crush. apply In_noDup_sp in H0. unfold trace in H0. induction (allTuples tr sm). * simpl in H0. contradiction. * simpl. simpl in H0. rewrite map_app in H0. Admitted. (* apply in_app_or in H0. destruct H0. + left. unfold tracePattern in H. induction (matchPattern tr sm a). -- simpl in H. contradiction. -- simpl in H. rewrite map_app in H. apply in_app_or in H. destruct H. ** apply in_map_iff in H. destruct H. destruct H. apply tr_traceRuleOnPattern_in in H0. destruct H0. destruct H0. apply tr_traceIterationOnPattern_in in H2. destruct H2. destruct H2. unfold traceElementOnPattern in H3. destruct (instantiateElementOnPattern x2 sm a x1) eqn:inst. simpl in H3. destruct H3. *** rewrite <- H3 in H. simpl in H. assumption. *** contradiction. *** contradiction. ** apply IHl0 in H. assumption. + auto. - intros. destruct H. destruct H. unfold applyTraces. apply in_flat_map. exists x. crush. unfold trace. unfold tracePattern. apply tr_applyPatternTraces_in in H0. repeat destruct H0. apply tr_matchPattern_in in H0. repeat destruct H0. induction (allTuples tr sm). + contradiction. + simpl in H. simpl. Admitted.*) Lemma tr_executeTraces_in_links : forall (tr: Transformation) (sm : SourceModel) (tl : TargetModelLink), In tl (allModelLinks (executeTraces tr sm)) <-> (exists (sp : list SourceModelElement), In sp (allTuples tr sm) /\ In tl (applyPatternTraces tr sm sp (trace tr sm))). Proof. apply tr_applyTraces_in. Qed. Theorem exe_preserv : forall (tr: Transformation) (sm : SourceModel), core.modeling.iteratetraces.IterateTracesSemantics.executeTraces tr sm = core.Semantics.execute tr sm. Proof. intros. unfold core.Semantics.execute, executeTraces. simpl. f_equal. unfold trace. rewrite flat_map_concat_map. rewrite flat_map_concat_map. rewrite concat_map. f_equal. rewrite map_map. f_equal. unfold tracePattern, Semantics.instantiatePattern. apply functional_extensionality. intros. rewrite flat_map_concat_map. rewrite flat_map_concat_map. rewrite concat_map. f_equal. rewrite map_map. f_equal. unfold traceRuleOnPattern, Semantics.instantiateRuleOnPattern. apply functional_extensionality. intros. rewrite flat_map_concat_map. rewrite flat_map_concat_map. rewrite concat_map. f_equal. rewrite map_map. f_equal. unfold traceIterationOnPattern, Semantics.instantiateIterationOnPattern. apply functional_extensionality. intros. rewrite flat_map_concat_map. rewrite flat_map_concat_map. rewrite concat_map. f_equal. rewrite map_map. f_equal. unfold traceElementOnPattern. apply functional_extensionality. intros. (* TODO FACTOR OUT *) assert ((Semantics.instantiateElementOnPattern x2 sm x x1) = (instantiateElementOnPattern x2 sm x x1)). { crush. } destruct (instantiateElementOnPattern x2 sm x x1). reflexivity. reflexivity. Admitted. Lemma tr_execute_in_elements' : forall (tr: Transformation) (sm : SourceModel) (te : TargetModelElement), In te (allModelElements (executeTraces tr sm)) <-> (exists (sp : list SourceModelElement), In sp (allTuples tr sm) /\ In te (instantiatePattern tr sm sp)). Proof. intros. assert ((executeTraces tr sm) = (execute tr sm)). { apply exe_preserv. } rewrite H. specialize (Certification.tr_execute_in_elements tr sm te). crush. Qed. Lemma tr_execute_in_links' : forall (tr: Transformation) (sm : SourceModel) (tl : TargetModelLink), In tl (allModelLinks (executeTraces tr sm)) <-> (exists (sp : list SourceModelElement), In sp (allTuples tr sm) /\ In tl (applyPattern tr sm sp)). Proof. intros. assert ((executeTraces tr sm) = (execute tr sm)). { apply exe_preserv. } rewrite H. specialize (Certification.tr_execute_in_links tr sm tl). crush. Qed. (* Instance CoqTLEngine : TransformationEngine := { SourceModelElement := SourceModelElement; SourceModelClass := SourceModelClass; SourceModelLink := SourceModelLink; SourceModelReference := SourceModelReference; TargetModelElement := TargetModelElement; TargetModelClass := TargetModelClass; TargetModelLink := TargetModelLink; TargetModelReference := TargetModelReference; (* syntax and accessors *) Transformation := Transformation; Rule := Rule; OutputPatternElement := OutputPatternElement; OutputPatternLink := OutputPatternLink; TraceLink := TraceLink; Transformation_getRules := Transformation_getRules; Rule_getInTypes := Rule_getInTypes; Rule_getOutputPatternElements := Rule_getOutputPatternElements; OutputPatternElement_getOutputLinks := OutputPatternElement_getOutputLinks; TraceLink_getSourcePattern := TraceLink_getSourcePattern; TraceLink_getIterator := TraceLink_getIterator; TraceLink_getName := TraceLink_getName; TraceLink_getTargetElement := TraceLink_getTargetElement; (* semantic functions *) execute := executeTraces; matchPattern := matchPattern; matchRuleOnPattern := matchRuleOnPattern; instantiatePattern := instantiatePattern; instantiateRuleOnPattern := instantiateRuleOnPattern; instantiateIterationOnPattern := instantiateIterationOnPattern; instantiateElementOnPattern := instantiateElementOnPattern; applyPattern := applyPattern; applyRuleOnPattern := applyRuleOnPattern; applyIterationOnPattern := applyIterationOnPattern; applyElementOnPattern := applyElementOnPattern; applyLinkOnPattern := applyLinkOnPattern; evalOutputPatternElementExpr := evalOutputPatternElementExpr; evalIteratorExpr := evalIteratorExpr; evalOutputPatternLinkExpr := evalOutputPatternLinkExpr; evalGuardExpr := evalGuardExpr; trace := trace; resolveAll := resolveAllIter; resolve := resolveIter; (* lemmas *) tr_execute_in_elements := tr_execute_in_elements'; tr_execute_in_links := tr_execute_in_links'; tr_matchPattern_in := tr_matchPattern_in; tr_matchRuleOnPattern_Leaf := tr_matchRuleOnPattern_Leaf; tr_instantiatePattern_in := tr_instantiatePattern_in; tr_instantiateRuleOnPattern_in := tr_instantiateRuleOnPattern_in; tr_instantiateIterationOnPattern_in := tr_instantiateIterationOnPattern_in; tr_instantiateElementOnPattern_leaf := tr_instantiateElementOnPattern_leaf; tr_applyPattern_in := tr_applyPattern_in; tr_applyRuleOnPattern_in := tr_applyRuleOnPattern_in; tr_applyIterationOnPattern_in := tr_applyIterationOnPattern_in; tr_applyElementOnPattern_in := tr_applyElementOnPattern_in; tr_applyLinkOnPatternTraces_leaf := tr_applyLinkOnPattern_leaf; tr_resolveAll_in := tr_resolveAllIter_in; tr_resolve_Leaf := tr_resolveIter_leaf; (*tr_matchPattern_None := tr_matchPattern_None; tr_matchRuleOnPattern_None := tr_matchRuleOnPattern_None; tr_instantiatePattern_non_None := tr_instantiatePattern_non_None; tr_instantiatePattern_None := tr_instantiatePattern_None; tr_instantiateRuleOnPattern_non_None := tr_instantiateRuleOnPattern_non_None; tr_instantiateIterationOnPattern_non_None := tr_instantiateIterationOnPattern_non_None; tr_instantiateElementOnPattern_None := tr_instantiateElementOnPattern_None; tr_instantiateElementOnPattern_None_iterator := tr_instantiateElementOnPattern_None_iterator; tr_applyPattern_non_None := tr_applyPattern_non_None; tr_applyPattern_None := tr_applyPattern_None; tr_applyRuleOnPattern_non_None := tr_applyRuleOnPattern_non_None; tr_applyIterationOnPattern_non_None := tr_applyIterationOnPattern_non_None; tr_applyElementOnPattern_non_None := tr_applyElementOnPattern_non_None; tr_applyLinkOnPattern_None := tr_applyLinkOnPattern_None; tr_applyLinkOnPattern_None_iterator := tr_applyLinkOnPattern_None_iterator; tr_maxArity_in := tr_maxArity_in; tr_instantiateElementOnPattern_Leaf := tr_instantiateElementOnPattern_Leaf; tr_applyLinkOnPattern_Leaf := tr_applyLinkOnPattern_Leaf; tr_matchRuleOnPattern_Leaf := tr_matchRuleOnPattern_Leaf; tr_resolveAll_in := tr_resolveAllIter_in; tr_resolve_Leaf := tr_resolveIter_Leaf';*) }. Instance CoqTLEngineTrace : (TransformationEngineTrace CoqTLEngine). Proof. eexists. (* tr_executeTraces_in_elements *) exact tr_executeTraces_in_elements. (* tr_executeTraces_in_links *) exact tr_executeTraces_in_links. (* tr_tracePattern_in *) exact tr_tracePattern_in. (* tr_traceRuleOnPattern_in *) exact tr_traceRuleOnPattern_in. (* tr_traceIterationOnPattern_in *) exact tr_traceIterationOnPattern_in. (* tr_traceElementOnPattern_leaf *) exact tr_traceElementOnPattern_leaf. (* tr_applyPatternTraces_in *) exact tr_applyPatternTraces_in. (* tr_applyRuleOnPattern_in *) exact tr_applyRuleOnPatternTraces_in. (* tr_applyIterationOnPattern_in *) exact tr_applyIterationOnPatternTraces_in. (* tr_applyElementOnPatternTraces_in *) exact tr_applyElementOnPatternTraces_in. (* tr_applyLinkOnPatternTraces_leaf *) exact tr_applyLinkOnPatternTraces_leaf. Qed. *) End IterateTracesCertification.
import Mathbin.Data.Set.Basic import Mathbin.Data.Complex.Exponential import CvxLean.Lib.Missing.Mathlib import Mathbin.Algebra.GroupWithZero.Basic attribute [-simp] Set.inj_on_empty Set.inj_on_singleton Quot.lift_on₂_mk Quot.lift_on_mk Quot.lift₂_mk namespace Real def expCone (x y z : ℝ) : Prop := (0 < y ∧ y * exp (x / y) ≤ z) ∨ (y = 0 ∧ 0 ≤ z ∧ x ≤ 0) def Vec.expCone (x y z : Finₓ n → ℝ) : Prop := ∀ i, Real.expCone (x i) (y i) (z i) theorem exp_iff_expCone (t x : ℝ) : exp x ≤ t ↔ expCone x 1 t := by unfold expCone rw [iff_def] apply And.intro · intro hexp apply Or.intro_left apply And.intro apply zero_lt_one change One.one * exp (x / One.one) ≤ t rw [@div_one ℝ (@GroupWithZeroₓ.toDivisionMonoid Real (@DivisionSemiring.toGroupWithZero Real (@DivisionRing.toDivisionSemiring Real Real.divisionRing)))] rw [one_mulₓ] assumption · intro h cases h with | inl h => have h : One.one * exp (x / One.one) ≤ t := h.2 rwa [@div_one ℝ (@GroupWithZeroₓ.toDivisionMonoid Real (@DivisionSemiring.toGroupWithZero Real (@DivisionRing.toDivisionSemiring Real Real.divisionRing))), one_mulₓ] at h | inr h => exfalso apply @one_ne_zero Real apply h.1 end Real
function [y] = gt(x, val) y = cell(size(x)); for k = 1:numel(x) y{k} = x{k}>val; end
{-# LANGUAGE AllowAmbiguousTypes #-} {-# LANGUAGE DataKinds #-} {-# LANGUAGE FlexibleContexts #-} {-# LANGUAGE GADTs #-} {-# LANGUAGE OverloadedStrings #-} {-# LANGUAGE PolyKinds #-} {-# LANGUAGE ScopedTypeVariables #-} {-# LANGUAGE TypeApplications #-} {-# LANGUAGE TypeOperators #-} {-# LANGUAGE UndecidableInstances #-} module BlueRipple.Model.Preference where import qualified Control.Foldl as FL import qualified Control.Lens as L import qualified Control.Monad.Except as X import Control.Monad.IO.Class ( MonadIO(liftIO) ) import qualified Colonnade as C import qualified Text.Blaze.Colonnade as BC import qualified Text.Blaze.Html as BH import qualified Text.Blaze.Html5.Attributes as BHA import qualified Data.List as L import qualified Data.Map as M import qualified Data.Array as A import qualified Data.Vector as VB import qualified Data.Vector.Storable as VS import qualified Text.Pandoc.Error as PA import qualified Data.Profunctor as PF import qualified Data.Text as T import qualified Data.Time.Calendar as Time import qualified Data.Time.Clock as Time import qualified Data.Time.Format as Time import qualified Data.Vinyl as V import qualified Text.Printf as PF import qualified Frames as F import qualified Frames.Melt as F import qualified Frames.CSV as F import qualified Frames.InCore as F hiding ( inCoreAoS ) import qualified Pipes as P import qualified Pipes.Prelude as P import qualified Statistics.Types as S import qualified Statistics.Distribution as S import qualified Statistics.Distribution.StudentT as S import qualified Numeric.LinearAlgebra as LA import qualified Graphics.Vega.VegaLite as GV import Graphics.Vega.VegaLite.Configuration as FV import qualified Graphics.Vega.VegaLite.Compat as FV import qualified Frames.Visualization.VegaLite.Data as FV import qualified Frames.Visualization.VegaLite.StackedArea as FV import qualified Frames.Visualization.VegaLite.LineVsTime as FV import qualified Frames.Visualization.VegaLite.ParameterPlots as FV import qualified Frames.Visualization.VegaLite.Correlation as FV import qualified Frames.Transform as FT import qualified Frames.Folds as FF import qualified Frames.MapReduce as MR import qualified Frames.Enumerations as FE import qualified Knit.Report as K import qualified Knit.Report.Input.MarkDown.PandocMarkDown as K import Polysemy.Error (Error) import qualified Text.Pandoc.Options as PA import Data.String.Here ( here, i ) import qualified Relude.Extra as Relude import BlueRipple.Configuration import BlueRipple.Utilities.KnitUtils import BlueRipple.Utilities.TableUtils import BlueRipple.Data.DataFrames import BlueRipple.Data.PrefModel import BlueRipple.Data.PrefModel.SimpleAgeSexRace import BlueRipple.Data.PrefModel.SimpleAgeSexEducation import qualified BlueRipple.Model.PreferenceBayes as PB import qualified BlueRipple.Model.TurnoutAdjustment as TA modeledResults :: ( MonadIO (K.Sem r) , K.KnitEffects r , Show tr , Show b , Enum b , Bounded b , A.Ix b , FL.Vector (F.VectorFor b) b) => DemographicStructure dr tr HouseElections b -> (F.Record LocationKey -> Bool) -> F.Frame dr -> F.Frame tr -> F.Frame HouseElections -> M.Map Int Int -> K.Sem r (M.Map Int (PreferenceResults b FV.ParameterEstimate)) modeledResults ds locFilter dFrame tFrame eFrame years = flip traverse years $ \y -> do K.logLE K.Info $ "inferring " <> show (dsCategories ds) <> " for " <> show y preferenceModel ds locFilter y dFrame eFrame tFrame -- PreferenceResults to list of group names and predicted D votes -- But we want them as a fraction of D/D+R data VoteShare = ShareOfAll | ShareOfD modeledDVotes :: forall b. (A.Ix b, Bounded b, Enum b, Show b) => VoteShare -> PreferenceResults b Double -> [(T.Text, Double)] modeledDVotes vs pr = let summed = FL.fold (votesAndPopByDistrictF @b) (F.rcast <$> votesAndPopByDistrict pr) popArray = F.rgetField @(PopArray b) summed turnoutArray = F.rgetField @(TurnoutArray b) summed predVoters = zipWith (*) (A.elems turnoutArray) $ fmap realToFrac (A.elems popArray) allDVotes = F.rgetField @DVotes summed allRVotes = F.rgetField @RVotes summed dVotes b = realToFrac (popArray A.! b) * (turnoutArray A.! b) * (modeled pr A.! b) allPredictedD = FL.fold FL.sum $ fmap dVotes Relude.universe --[minBound..maxBound] scale = case vs of ShareOfAll -> (realToFrac allDVotes/realToFrac (allDVotes + allRVotes))/allPredictedD ShareOfD -> 1/allPredictedD in fmap (\b -> (show b, scale * dVotes b)) [(minBound :: b) .. maxBound] data DeltaTableRow = DeltaTableRow { dtrGroup :: T.Text , dtrPop :: Int , dtrFromPop :: Int , dtrFromTurnout :: Int , dtrFromOpinion :: Int , dtrTotal :: Int , dtrPct :: Double } deriving (Show) deltaTable :: forall dr tr e b r . (A.Ix b , Bounded b , Enum b , Show b , MonadIO (K.Sem r) , K.KnitEffects r ) => DemographicStructure dr tr e b -> (F.Record LocationKey -> Bool) -> F.Frame e -> Int -- ^ year A -> Int -- ^ year B -> PreferenceResults b FV.ParameterEstimate -> PreferenceResults b FV.ParameterEstimate -> K.Sem r ([DeltaTableRow], (Int, Int), (Int, Int)) deltaTable ds locFilter electionResultsFrame yA yB trA trB = do let groupNames = show <$> dsCategories ds getPopAndTurnout :: Int -> PreferenceResults b FV.ParameterEstimate -> K.Sem r (A.Array b Int, A.Array b Double) getPopAndTurnout y tr = do resultsFrame <- knitX $ dsPreprocessElectionData ds y electionResultsFrame let totalDRVotes = let filteredResultsF = F.filterFrame (locFilter . F.rcast) resultsFrame in FL.fold (FL.premap (\r -> F.rgetField @DVotes r + F.rgetField @RVotes r) FL.sum) filteredResultsF totalRec = FL.fold votesAndPopByDistrictF ( fmap (F.rcast @'[PopArray b, TurnoutArray b, DVotes, RVotes] ) $ F.filterFrame (locFilter . F.rcast) $ F.toFrame $ votesAndPopByDistrict tr ) totalCounts = F.rgetField @(PopArray b) totalRec unAdjTurnout = nationalTurnout tr tDelta <- liftIO $ TA.findDeltaA totalDRVotes totalCounts unAdjTurnout let adjTurnout = TA.adjTurnoutP tDelta unAdjTurnout return (totalCounts, adjTurnout) (popA, turnoutA) <- getPopAndTurnout yA trA (popB, turnoutB) <- getPopAndTurnout yB trB {- K.logLE K.Info $ (T.pack $ show yA) <> "->" <> (T.pack $ show yB) K.logLE K.Info $ T.pack $ show turnoutA K.logLE K.Info $ T.pack $ show turnoutB -} let pop = FL.fold FL.sum popA probsArray = fmap FV.value . modeled probA = probsArray trA probB = probsArray trB modeledVotes popArray turnoutArray probArray = let dVotes b = round $ realToFrac (popArray A.! b) * (turnoutArray A.! b) * (probArray A.! b) rVotes b = round $ realToFrac (popArray A.! b) * (turnoutArray A.! b) * (1.0 - probArray A.! b) in FL.fold ((,) <$> FL.premap dVotes FL.sum <*> FL.premap rVotes FL.sum) Relude.universe makeDTR b = let pop0 = realToFrac $ popA A.! b dPop = realToFrac $ (popB A.! b) - (popA A.! b) turnout0 = realToFrac $ turnoutA A.! b dTurnout = realToFrac $ (turnoutB A.! b) - (turnoutA A.! b) prob0 = realToFrac (probA A.! b) dProb = realToFrac $ (probB A.! b) - (probA A.! b) dtrCombo = dPop * dTurnout * (2 * dProb) / 4 -- the rest is accounted for in other terms, we spread this among them dtrN = round $ dPop * (turnout0 + dTurnout / 2) * (2 * (prob0 + dProb / 2) - 1) + (dtrCombo / 3) dtrT = round $ (pop0 + dPop / 2) * dTurnout * (2 * (prob0 + dProb / 2) - 1) + (dtrCombo / 3) dtrO = round $ (pop0 + dPop / 2) * (turnout0 + dTurnout / 2) * (2 * dProb) + (dtrCombo / 3) dtrTotal = dtrN + dtrT + dtrO in DeltaTableRow (show b) (popB A.! b) dtrN dtrT dtrO dtrTotal (realToFrac dtrTotal / realToFrac pop) groupRows = fmap makeDTR [minBound ..] addRow (DeltaTableRow g p fp ft fo t _) (DeltaTableRow _ p' fp' ft' fo' t' _) = DeltaTableRow g (p + p') (fp + fp') (ft + ft') (fo + fo') (t + t') (realToFrac (t + t') / realToFrac (p + p')) totalRow = FL.fold (FL.Fold addRow (DeltaTableRow "Total" 0 0 0 0 0 0) id) groupRows dVotesA = modeledVotes popA turnoutA probA dVotesB = modeledVotes popB turnoutB probB return (groupRows ++ [totalRow], dVotesA, dVotesB) deltaTableColonnade :: C.Colonnade C.Headed DeltaTableRow T.Text deltaTableColonnade = C.headed "Group" dtrGroup <> C.headed "Population (k)" (show . (`div` 1000) . dtrPop) <> C.headed "+/- From Population (k)" (show . (`div` 1000) . dtrFromPop) <> C.headed "+/- From Turnout (k)" (show . (`div` 1000) . dtrFromTurnout) <> C.headed "+/- From Opinion (k)" (show . (`div` 1000) . dtrFromOpinion) <> C.headed "+/- Total (k)" (show . (`div` 1000) . dtrTotal) <> C.headed "+/- %Vote" (toText @String . PF.printf "%2.2f" . (* 100) . dtrPct) deltaTableColonnadeBlaze :: CellStyle DeltaTableRow T.Text -> C.Colonnade C.Headed DeltaTableRow BC.Cell deltaTableColonnadeBlaze cas = C.headed "Group" (toCell cas "Group" "" (textToStyledHtml . dtrGroup)) <> C.headed "Population (k)" (toCell cas "Population" "Population" (textToStyledHtml . show . (`div` 1000) . dtrPop)) <> C.headed "+/- From Population (k)" (toCell cas "FromPop" "+/- From Population" (numberToStyledHtml "%d" . (`div` 1000) . dtrFromPop)) <> C.headed "+/- From Turnout (k)" (toCell cas "FromTurnout" "+/- From Turnout" (numberToStyledHtml "%d" . (`div` 1000) . dtrFromTurnout)) <> C.headed "+/- From Opinion (k)" (toCell cas "FromOpinion" "+/- From Opinion" (numberToStyledHtml "%d" . (`div` 1000) . dtrFromOpinion)) -- (\tr -> (numberCell "%.0d" (opinionHighlight (dtrGroup tr)) . (`div` 1000) $ dtrFromOpinion tr)) <> C.headed "+/- Total (k)" (toCell cas "Total" "Total" (numberToStyledHtml "%d" . (`div` 1000) . dtrTotal)) <> C.headed "+/- %Vote" (toCell cas "PctVote" "% Vote" (numberToStyledHtml "%2.2f" . (* 100) . dtrPct)) type X = "X" F.:-> Double type ScaledDVotes = "ScaledDVotes" F.:-> Int type ScaledRVotes = "ScaledRVotes" F.:-> Int type PopArray b = "PopArray" F.:-> A.Array b Int type TurnoutArray b = "TurnoutArray" F.:-> A.Array b Double votesAndPopByDistrictF :: forall b . (A.Ix b, Bounded b, Enum b) => FL.Fold (F.Record '[PopArray b, TurnoutArray b, DVotes, RVotes]) (F.Record '[PopArray b, TurnoutArray b, DVotes, RVotes]) votesAndPopByDistrictF = let voters r = A.listArray (minBound, maxBound) $ zipWith (*) (A.elems $ F.rgetField @(TurnoutArray b) r) (fmap realToFrac $ A.elems $ F.rgetField @(PopArray b) r) g r = A.listArray (minBound, maxBound) $ zipWith (/) (A.elems $ F.rgetField @(TurnoutArray b) r) (fmap realToFrac $ A.elems $ F.rgetField @(PopArray b) r) recomputeTurnout r = F.rputField @(TurnoutArray b) (g r) r in PF.dimap (F.rcast @'[PopArray b, TurnoutArray b, DVotes, RVotes]) recomputeTurnout $ FF.sequenceRecFold $ FF.FoldRecord (PF.dimap (F.rgetField @(PopArray b)) V.Field FE.sumTotalNumArray) V.:& FF.FoldRecord (PF.dimap voters V.Field FE.sumTotalNumArray) V.:& FF.FoldRecord (PF.dimap (F.rgetField @DVotes) V.Field FL.sum) V.:& FF.FoldRecord (PF.dimap (F.rgetField @RVotes) V.Field FL.sum) V.:& V.RNil data Aggregation c b where Aggregation :: (Enum b, Bounded b, Eq b, Ord b, A.Ix b, Enum c, Bounded c, Eq c, Ord c, A.Ix c) => (c -> [b]) -> Aggregation c b aggregateFold :: forall c b a x. Aggregation c b -> FL.Fold a x -> A.Array b a -> A.Array c x aggregateFold (Aggregation children) fld arr = let cs = Relude.universe expanded :: [[a]] expanded = fmap (fmap (arr A.!) . children) cs folded = fmap (FL.fold fld) expanded in A.listArray (minBound,maxBound) folded aggregateFold2 :: Aggregation c b -> FL.Fold (a,w) x -> A.Array b a -> A.Array b w -> A.Array c x aggregateFold2 (Aggregation children) fld arrA arrW = let cs = Relude.universe as = fmap (fmap (arrA A.!) . children) cs ws = fmap (fmap (arrW A.!) . children) cs folded = FL.fold fld . uncurry zip <$> zip as ws in A.listArray (minBound, maxBound) folded weightedFold :: (Num a, Fractional a) => FL.Fold (a,a) a weightedFold = let sumWeightsF = FL.premap snd FL.sum weightedSumF = FL.premap (uncurry (*)) FL.sum in fmap (uncurry (/)) $ (,) <$> weightedSumF <*> sumWeightsF popWeightedAggregate :: (Num d, Fractional d) => Aggregation c b -> A.Array b Int -> A.Array b d -> A.Array c d popWeightedAggregate agg popArray datArray = aggregateFold2 agg weightedFold datArray (fmap realToFrac popArray) aggregateRecord :: forall b c. Aggregation c b -> F.Record [StateAbbreviation , CongressionalDistrict , PopArray b -- population by group , TurnoutArray b -- adjusted turnout by group , DVotes , RVotes ] -> F.Record [StateAbbreviation , CongressionalDistrict , PopArray c -- population by group , TurnoutArray c -- adjusted turnout by group , DVotes , RVotes ] aggregateRecord agg r = let f :: F.Record [PopArray b, TurnoutArray b] -> F.Record [PopArray c, TurnoutArray c] f x = let popB = F.rgetField @(PopArray b) x turnoutB = F.rgetField @(TurnoutArray b) x in aggregateFold agg FL.sum popB F.&: popWeightedAggregate agg popB turnoutB F.&: V.RNil in F.rcast $ FT.transform f r cByB :: Aggregation c b -> LA.Matrix Double cByB (Aggregation children) = let allBs = Relude.universe toZeroOne y = if y then 1 else 0 getCol c = LA.fromList $ fmap (toZeroOne . (`elem` children c)) allBs in LA.fromColumns $ fmap getCol Relude.universe aggregatePreferenceResults :: Fractional a => Aggregation c b -> PreferenceResults b a -> PreferenceResults c a aggregatePreferenceResults agg pr = let prVBPAD' = fmap (aggregateRecord agg) (votesAndPopByDistrict pr) prTurnout' = popWeightedAggregate agg (nationalVoters pr) (nationalTurnout pr) prVoters' = aggregateFold agg FL.sum (nationalVoters pr) prModeled' = popWeightedAggregate agg (nationalVoters pr) (modeled pr) mCB = cByB agg prCovar' = LA.tr mCB LA.<> covariances pr LA.<> mCB in PreferenceResults prVBPAD' prTurnout' prVoters' prModeled' prCovar' data PreferenceResults b a = PreferenceResults { votesAndPopByDistrict :: [F.Record [ StateAbbreviation , CongressionalDistrict , PopArray b -- population by group , TurnoutArray b -- adjusted turnout by group , DVotes , RVotes ]] , nationalTurnout :: A.Array b Double , nationalVoters :: A.Array b Int , modeled :: A.Array b a , covariances :: LA.Matrix Double } instance Functor (PreferenceResults b) where fmap f (PreferenceResults v nt nv m c) = PreferenceResults v nt nv (fmap f m) c preferenceModel :: forall dr tr b r . ( Show tr , Show b , Enum b , Bounded b , A.Ix b , FL.Vector (F.VectorFor b) b , K.KnitEffects r , MonadIO (K.Sem r) ) => DemographicStructure dr tr HouseElections b -> (F.Record LocationKey -> Bool) -> Int -> F.Frame dr -> F.Frame HouseElections -> F.Frame tr -> K.Sem r (PreferenceResults b FV.ParameterEstimate) preferenceModel ds locFilter year identityDFrame houseElexFrame turnoutFrame = do -- reorganize data from loaded Frames resultsFlattenedFrameFull <- knitX $ dsPreprocessElectionData ds year houseElexFrame let resultsFlattenedFrame = F.filterFrame (locFilter . F.rcast) resultsFlattenedFrameFull filteredTurnoutFrame <- knitX $ dsPreprocessTurnoutData ds year turnoutFrame let year' = year --if (year == 2018) then 2017 else year -- we're using 2017 for now, until census updated ACS data longByDCategoryFrame <- knitX $ dsPreprocessDemographicData ds year' identityDFrame -- turn long-format data into Arrays by demographic category, beginning with national turnout turnoutByGroupArray <- K.knitMaybe "Missing or extra group in turnout data?" $ FL.foldM (FE.makeArrayMF (F.rgetField @(DemographicCategory b)) (F.rgetField @VotedPctOfAll) (flip const) ) filteredTurnoutFrame -- now the populations in each district let votersArrayMF = MR.mapReduceFoldM (MR.generalizeUnpack MR.noUnpack) (MR.generalizeAssign $ MR.splitOnKeys @LocationKey) (MR.foldAndLabelM (fmap (FT.recordSingleton @(PopArray b)) (FE.recordsToArrayMF @(DemographicCategory b) @PopCount) ) V.rappend ) -- F.Frame (LocationKey V.++ (PopArray b)) populationsFrame <- K.knitMaybe "Error converting long demographic data to arrays!" $ F.toFrame <$> FL.foldM votersArrayMF longByDCategoryFrame -- and the total populations in each group let addArray :: (A.Ix k, Num a) => A.Array k a -> A.Array k a -> A.Array k a addArray a1 a2 = A.accum (+) a1 (A.assocs a2) zeroArray :: (A.Ix k, Bounded k, Enum k, Num a) => A.Array k a zeroArray = A.listArray (minBound, maxBound) $ L.repeat 0 popByGroupArray = FL.fold (FL.premap (F.rgetField @(PopArray b)) (FL.Fold addArray zeroArray id)) populationsFrame let resultsWithPopulationsFrame = catMaybes $ fmap F.recMaybe $ F.leftJoin @LocationKey resultsFlattenedFrame populationsFrame K.logLE K.Info "Computing Ghitza-Gelman turnout adjustment for each district so turnouts produce correct number D+R votes." resultsWithPopulationsAndGGAdjFrame <- fmap F.toFrame $ flip traverse resultsWithPopulationsFrame $ \r -> do let tVotesF x = F.rgetField @DVotes x + F.rgetField @RVotes x -- Should this be D + R or total? ggDelta <- ggTurnoutAdj r tVotesF turnoutByGroupArray K.logLE K.Diagnostic $ "Ghitza-Gelman turnout adj=" <> show ggDelta <> "; Adj Turnout=" <> show (TA.adjTurnoutP ggDelta turnoutByGroupArray) return $ FT.mutate (const $ FT.recordSingleton @(TurnoutArray b) $ TA.adjTurnoutP ggDelta turnoutByGroupArray) r let onlyOpposed r = (F.rgetField @DVotes r > 0) && (F.rgetField @RVotes r > 0) opposedFrame = F.filterFrame onlyOpposed resultsWithPopulationsAndGGAdjFrame numCompetitiveRaces = FL.fold FL.length opposedFrame K.logLE K.Info $ "After removing races where someone is running unopposed we have " <> show numCompetitiveRaces <> " contested races." totalVoteDiagnostics @b resultsWithPopulationsAndGGAdjFrame opposedFrame let scaleInt s n = round $ s * realToFrac n mcmcData = fmap (\r -> ( F.rgetField @DVotes r , VB.fromList $ fmap round (adjVotersL (F.rgetField @(TurnoutArray b) r) (F.rgetField @(PopArray b) r)) ) ) $ FL.fold FL.list opposedFrame numParams = length $ dsCategories ds (cgRes, _, _) <- liftIO $ PB.cgOptimizeAD mcmcData (VB.fromList $ (const 0.5) <$> dsCategories ds) let cgParamsA = A.listArray (minBound :: b, maxBound) $ VB.toList cgRes cgVarsA = A.listArray (minBound :: b, maxBound) $ VS.toList $ PB.variances mcmcData cgRes npe cl b = let x = cgParamsA A.! b sigma = sqrt $ cgVarsA A.! b dof = realToFrac $ numCompetitiveRaces - L.length (A.elems cgParamsA) interval = S.quantile (S.studentTUnstandardized dof 0 sigma) (1.0 - (S.significanceLevel cl/2)) in FV.ParameterEstimate x (x - interval/2.0, x + interval/2.0) -- in FV.NamedParameterEstimate (T.pack $ show b) pEstimate parameterEstimatesA = A.listArray (minBound :: b, maxBound) $ fmap (npe S.cl95) Relude.universe K.logLE K.Info $ "MLE results: " <> show (A.elems parameterEstimatesA) -- For now this bit is diagnostic. But we should chart the correlations -- and, perhaps, the eigenvectors of the covariance?? let cgCovar = PB.covar mcmcData cgRes -- TODO: make a chart out of this (cgEv, cgEvs) = PB.mleCovEigens mcmcData cgRes K.logLE K.Diagnostic $ "sigma = " <> show (fmap sqrt $ cgVarsA) K.logLE K.Diagnostic $ "Covariances=" <> toText (PB.disps 3 cgCovar) K.logLE K.Diagnostic $ "Correlations=" <> toText (PB.disps 3 $ PB.correlFromCov cgCovar) K.logLE K.Diagnostic $ "Eigenvalues=" <> show cgEv K.logLE K.Diagnostic $ "Eigenvectors=" <> toText (PB.disps 3 cgEvs) return $ PreferenceResults (F.rcast <$> FL.fold FL.list opposedFrame) turnoutByGroupArray popByGroupArray parameterEstimatesA cgCovar ggTurnoutAdj :: forall b rs r. (A.Ix b , F.ElemOf rs (PopArray b) , MonadIO (K.Sem r) ) => F.Record rs -> (F.Record rs -> Int) -> A.Array b Double -> K.Sem r Double ggTurnoutAdj r totalVotesF unadjTurnoutP = do let population = F.rgetField @(PopArray b) r totalVotes = totalVotesF r liftIO $ TA.findDeltaA totalVotes population unadjTurnoutP adjVotersL :: A.Array b Double -> A.Array b Int -> [Double] adjVotersL turnoutPA popA = zipWith (*) (A.elems turnoutPA) (realToFrac <$> A.elems popA) totalVoteDiagnostics :: forall b rs f r . (A.Ix b , Foldable f , F.ElemOf rs (PopArray b) , F.ElemOf rs (TurnoutArray b) , F.ElemOf rs Totalvotes , F.ElemOf rs DVotes , F.ElemOf rs RVotes , K.KnitEffects r ) => f (F.Record rs) -- ^ frame with all rows -> f (F.Record rs) -- ^ frame with only rows from competitive races -> K.Sem r () totalVoteDiagnostics allFrame opposedFrame = K.wrapPrefix "VoteSummary" $ do let allVoters r = FL.fold FL.sum $ zipWith (*) (A.elems $ F.rgetField @(TurnoutArray b) r) (fmap realToFrac $ A.elems $ F.rgetField @(PopArray b) r) allVotersF = FL.premap allVoters FL.sum allVotesF = FL.premap (F.rgetField @Totalvotes) FL.sum allDVotesF = FL.premap (F.rgetField @DVotes) FL.sum allRVotesF = FL.premap (F.rgetField @RVotes) FL.sum -- allDRVotesF = FL.premap (\r -> F.rgetField @DVotes r + F.rgetField @RVotes r) FL.sum (totalVoters, totalVotes, totalDVotes, totalRVotes) = FL.fold ((,,,) <$> allVotersF <*> allVotesF <*> allDVotesF <*> allRVotesF) allFrame (totalVotersCD, totalVotesCD, totalDVotesCD, totalRVotesCD) = FL.fold ((,,,) <$> allVotersF <*> allVotesF <*> allDVotesF <*> allRVotesF) opposedFrame K.logLE K.Info $ "voters=" <> show totalVoters K.logLE K.Info $ "house votes=" <> show totalVotes K.logLE K.Info $ "D/R/D+R house votes=" <> show totalDVotes <> "/" <> show totalRVotes <> "/" <> show (totalDVotes + totalRVotes) K.logLE K.Info $ "voters (competitive districts)=" <> show totalVotersCD K.logLE K.Info $ "house votes (competitive districts)=" <> show totalVotesCD K.logLE K.Info $ "D/R/D+R house votes (competitive districts)=" <> show totalDVotesCD <> "/" <> show totalRVotesCD <> "/" <> show (totalDVotesCD + totalRVotesCD) totalArrayZipWith :: (A.Ix b, Enum b, Bounded b) => (x -> y -> z) -> A.Array b x -> A.Array b y -> A.Array b z totalArrayZipWith f xs ys = A.listArray (minBound, maxBound) $ zipWith f (A.elems xs) (A.elems ys) vlGroupingChart :: Foldable f => T.Text -> FV.ViewConfig -> f (F.Record ['("Group", T.Text) ,'("VotingAgePop", Int) ,'("Turnout",Double) ,'("Voters", Int) ,'("D Voter Preference", Double) ]) -> GV.VegaLite vlGroupingChart title vc rows = let dat = FV.recordsToVLData id FV.defaultParse rows xLabel = "Inferred (%) Likelihood of Voting Democratic" estimateXenc = GV.position GV.X [FV.pName @'("D Voter Preference", Double) ,GV.PmType GV.Quantitative ,GV.PAxis [GV.AxTitle xLabel] ] estimateYenc = GV.position GV.Y [FV.pName @'("Group",T.Text) ,GV.PmType GV.Ordinal ,GV.PAxis [GV.AxTitle "Demographic Group"] ] estimateSizeEnc = GV.size [FV.mName @'("Voters",Int) , GV.MmType GV.Quantitative , GV.MScale [GV.SDomain $ GV.DNumbers [5e6,30e6]] , GV.MLegend [GV.LFormatAsNum] ] estimateColorEnc = GV.color [FV.mName @'("Turnout", Double) , GV.MmType GV.Quantitative , GV.MScale [GV.SDomain $ GV.DNumbers [0.2,0.8] ,GV.SScheme "blues" [0.3,1.0] ] , GV.MLegend [GV.LGradientLength (vcHeight vc / 3) , GV.LFormatAsNum , GV.LFormat "%" ] ] estEnc = estimateXenc . estimateYenc . estimateSizeEnc . estimateColorEnc estSpec = GV.asSpec [(GV.encoding . estEnc) [], GV.mark GV.Point [GV.MFilled True]] in FV.configuredVegaLite vc [FV.title title, GV.layer [estSpec], dat] exitCompareChart :: Foldable f => T.Text -> FV.ViewConfig -> f (F.Record ['("Group", T.Text) ,'("Model Dem Pref", Double) ,'("ModelvsExit",Double) ]) -> GV.VegaLite exitCompareChart title vc rows = let dat = FV.recordsToVLData id FV.defaultParse rows xLabel = "Modeled % Likelihood of Voting Democratic" xEnc = GV.position GV.X [FV.pName @'("Model Dem Pref", Double) ,GV.PmType GV.Quantitative ,GV.PAxis [GV.AxTitle xLabel , GV.AxFormatAsNum , GV.AxFormat "%" ] ] yEnc = GV.position GV.Y [FV.pName @'("ModelvsExit", Double) ,GV.PmType GV.Quantitative ,GV.PScale [GV.SDomain $ GV.DNumbers [negate 0.15,0.15]] ,GV.PAxis [GV.AxTitle "Model - Exit Poll" , GV.AxFormatAsNum , GV.AxFormat "%" ] ] colorEnc = GV.color [FV.mName @'("Group", T.Text) , GV.MmType GV.Nominal ] enc = xEnc . yEnc . colorEnc spec = GV.asSpec [(GV.encoding . enc) [], GV.mark GV.Point [GV.MFilled True, GV.MSize 100]] in FV.configuredVegaLite vc [FV.title title, GV.layer [spec], dat] vlGroupingChartExit :: Foldable f => T.Text -> FV.ViewConfig -> f (F.Record ['("Group", T.Text) ,'("VotingAgePop", Int) ,'("Voters", Int) ,'("D Voter Preference", Double) ,'("InfMinusExit", Double) ]) -> GV.VegaLite vlGroupingChartExit title vc rows = let dat = FV.recordsToVLData id FV.defaultParse rows xLabel = "Inferred Likelihood of Voting Democratic" estimateXenc = GV.position GV.X [FV.pName @'("D Voter Preference", Double) ,GV.PmType GV.Quantitative ,GV.PAxis [GV.AxTitle xLabel] ] estimateYenc = GV.position GV.Y [FV.pName @'("Group",T.Text) ,GV.PmType GV.Ordinal ] estimateSizeEnc = GV.size [FV.mName @'("VotingAgePop",Int) , GV.MmType GV.Quantitative] estimateColorEnc = GV.color [FV.mName @'("InfMinusExit", Double) , GV.MmType GV.Quantitative] estEnc = estimateXenc . estimateYenc . estimateSizeEnc . estimateColorEnc estSpec = GV.asSpec [(GV.encoding . estEnc) [], GV.mark GV.Point []] in FV.configuredVegaLite vc [FV.title title, GV.layer [estSpec], dat]
(** * Perm: Basic Techniques for Comparisons and Permutations *) (** Consider these algorithms and data structures: - sort a sequence of numbers - finite maps from numbers to (arbitrary-type) data - finite maps from any ordered type to (arbitrary-type) data - priority queues: finding/deleting the highest number in a set To prove the correctness of such programs, we need to reason about comparisons, and about whether two collections have the same contents. In this chapter, we introduce some techniques for reasoning about: - less-than comparisons on natural numbers, and - permutations (rearrangements of lists). In later chapters, we'll apply these proof techniques to reasoning about algorithms and data structures. *) Set Warnings "-notation-overridden,-parsing,-deprecated-hint-without-locality". From Coq Require Import Strings.String. (* for manual grading *) From Coq Require Export Bool.Bool. From Coq Require Export Arith.Arith. From Coq Require Export Arith.EqNat. From Coq Require Export Lia. From Coq Require Export Lists.List. Export ListNotations. From Coq Require Export Permutation. (* ################################################################# *) (** * The Less-Than Order on the Natural Numbers *) (** In our proofs about searching and sorting algorithms, we often have to reason about the less-than order on natural numbers. greater-than. Recall that the Coq standard library contains both propositional and Boolean less-than operators on natural numbers. We write [x < y] for the proposition that [x] is less than [y]: *) Locate "_ < _". (* "x < y" := lt x y *) Check lt : nat -> nat -> Prop. (** And we write [x <? y] for the computation that returns [true] or [false] depending on whether [x] is less than [y]: *) Locate "_ <? _". (* x <? y := Nat.ltb x y *) Check Nat.ltb : nat -> nat -> bool. (** Operation [<] is a reflection of [<?], as discussed in [Logic] and [IndProp]. The [Nat] module has a theorem showing how they relate: *) Check Nat.ltb_lt : forall n m : nat, (n <? m) = true <-> n < m. (** The [Nat] module contains a synonym for [lt]. *) Print Nat.lt. (* Nat.lt = lt *) (** For unknown reasons, [Nat] does not define notations for [>?] or [>=?]. So we define them here: *) Notation "a >=? b" := (Nat.leb b a) (at level 70) : nat_scope. Notation "a >? b" := (Nat.ltb b a) (at level 70) : nat_scope. (* ================================================================= *) (** ** The Lia Tactic *) (** Reasoning about inequalities by hand can be a little painful. Luckily, Coq provides a tactic called [lia] that is quite helpful. *) Theorem lia_example1: forall i j k, i < j -> ~ (k - 3 <= j) -> k > i. Proof. intros. (** The hard way to prove this is by hand. *) (* try to remember the name of the lemma about negation and [<=] *) Search (~ _ <= _ -> _). apply not_le in H0. (* try to remember the name of the transitivity lemma about [>] *) Search (_ > _ -> _ > _ -> _ > _). apply gt_trans with j. apply gt_trans with (k-3). (* Is [k] greater than [k-3]? On the integers, sure. But we're working with natural numbers, which truncate subtraction at zero. *) Abort. Theorem truncated_subtraction: ~ (forall k:nat, k > k - 3). Proof. intros contra. (* [specialize] applies a hypothesis to an argument *) specialize (contra 0). simpl in contra. inversion contra. Qed. (** Since subtraction is truncated, does [lia_example1] actually hold? It does. Let's try again, the hard way, to find the proof. *) Theorem lia_example1: forall i j k, i < j -> ~ (k - 3 <= j) -> k > i. Proof. (* try again! *) intros. apply not_le in H0. unfold gt in H0. unfold gt. (* try to remember the name ... *) Search (_ < _ -> _ <= _ -> _ < _). apply lt_le_trans with j. apply H. apply le_trans with (k-3). Search (_ < _ -> _ <= _). apply lt_le_weak. auto. apply le_minus. Qed. (** That was tedious. Here's a much easier way: *) Theorem lia_example2: forall i j k, i < j -> ~ (k - 3 <= j) -> k > i. Proof. intros. lia. Qed. (** Lia is a decision procedure for integer linear arithemetic. The [lia] tactic was made available by importing [Lia] at the beginning of the file. The tactic works with Coq types [Z] and [nat], and these operators: [<] [=] [>] [<=] [>=] [+] [-] [~], as well as multiplication by small integer literals (such as 0,1,2,3...), and some uses of [\/], [/\], and [<->]. Lia does not "understand" other operators. It treats expressions such as [f x y] as variables. That is, it can prove [f x y > a * b -> f x y + 3 >= a * b], in the same way it would prove [u > v -> u + 3 >= v]. *) Theorem lia_example_3 : forall (f : nat -> nat -> nat) a b x y, f x y > a * b -> f x y + 3 >= a * b. Proof. intros. lia. Qed. (* ################################################################# *) (** * Swapping *) (** Consider trying to sort a list of natural numbers. As a small piece of a sorting algorithm, we might need to swap the first two elements of a list if they are out of order. *) Definition maybe_swap (al: list nat) : list nat := match al with | a :: b :: ar => if a >? b then b :: a :: ar else a :: b :: ar | _ => al end. Example maybe_swap_123: maybe_swap [1; 2; 3] = [1; 2; 3]. Proof. reflexivity. Qed. Example maybe_swap_321: maybe_swap [3; 2; 1] = [2; 3; 1]. Proof. reflexivity. Qed. (** Applying [maybe_swap] twice should give the same result as applying it once. That is, [maybe_swap] is _idempotent_. *) Theorem maybe_swap_idempotent: forall al, maybe_swap (maybe_swap al) = maybe_swap al. Proof. intros [ | a [ | b al]]; simpl; try reflexivity. destruct (b <? a) eqn:Hb_lt_a; simpl. - destruct (a <? b) eqn:Ha_lt_b; simpl. + (** Now what? We have a contradiction in the hypotheses: it cannot hold that [a] is less than [b] and [b] is less than [a]. Unfortunately, [lia] cannot immediately show that for us, because it reasons about comparisons in [Prop] not [bool]. *) Fail lia. Abort. (** Of course we could finish the proof by reasoning directly about inequalities in [bool]. But this situation is going to occur repeatedly in our study of sorting. *) (** Let's set up some machinery to enable using [lia] on boolean tests. *) (* ================================================================= *) (** ** Reflection *) (** The [reflect] type, defined in the standard library (and presented in [IndProp]), relates a proposition to a Boolean. That is, a value of type [reflect P b] contains a proof of [P] if [b] is [true], or a proof of [~ P] if [b] is [false]. *) Print reflect. (* Inductive reflect (P : Prop) : bool -> Set := | ReflectT : P -> reflect P true | ReflectF : ~ P -> reflect P false *) (** The standard library proves a theorem that says if [P] is provable whenever [b = true] is provable, then [P] reflects [b]. *) Check iff_reflect : forall (P : Prop) (b : bool), P <-> b = true -> reflect P b. (** Using that theorem, we can quickly prove that the propositional (in)equality operators are reflections of the Boolean operators. *) Lemma eqb_reflect : forall x y, reflect (x = y) (x =? y). Proof. intros x y. apply iff_reflect. symmetry. apply Nat.eqb_eq. Qed. Lemma ltb_reflect : forall x y, reflect (x < y) (x <? y). Proof. intros x y. apply iff_reflect. symmetry. apply Nat.ltb_lt. Qed. Lemma leb_reflect : forall x y, reflect (x <= y) (x <=? y). Proof. intros x y. apply iff_reflect. symmetry. apply Nat.leb_le. Qed. (** Here's an example of how you could use these lemmas. Suppose you have this simple program, [(if a <? 5 then a else 2)], and you want to prove that it evaluates to a number smaller than 6. You can use [ltb_reflect] "by hand": *) Example reflect_example1: forall a, (if a <? 5 then a else 2) < 6. Proof. intros a. (* The next two lines aren't strictly necessary, but they help make it clear what [destruct] does. *) assert (R: reflect (a < 5) (a <? 5)) by apply ltb_reflect. remember (a <? 5) as guard. destruct R as [H|H] eqn:HR. * (* ReflectT *) lia. * (* ReflectF *) lia. Qed. (** For the [ReflectT] constructor, the guard [a <? 5] must be equal to [true]. The [if] expression in the goal has already been simplified to take advantage of that fact. Also, for [ReflectT] to have been used, there must be evidence [H] that [a < 5] holds. From there, all that remains is to show [a < 5] entails [a < 6]. The [lia] tactic, which is capable of automatically proving some theorems about inequalities, succeeds. For the [ReflectF] constructor, the guard [a <? 5] must be equal to [false]. So the [if] expression simplifies to [2 < 6], which is immediately provable by [lia]. *) (** A less didactic version of the above proof wouldn't do the [assert] and [remember]: we can directly skip to [destruct]. *) Example reflect_example1': forall a, (if a <? 5 then a else 2) < 6. Proof. intros a. destruct (ltb_reflect a 5); lia. Qed. (** But even that proof is a little unsatisfactory. The original expression, [a <? 5], is not perfectly apparent from the expression [ltb_reflect a 5] that we pass to [destruct]. *) (** It would be nice to be able to just say something like [destruct (a <? 5)] and get the reflection "for free." That's what we'll engineer, next. *) (* ================================================================= *) (** ** A Tactic for Boolean Destruction *) (** We're now going to build a tactic that you'll want to _use_, but you won't need to understand the details of how to _build_ it yourself. Let's put several of these [reflect] lemmas into a Hint database. We call it [bdestruct], because we'll use it in our boolean-destruction tactic: *) Hint Resolve ltb_reflect leb_reflect eqb_reflect : bdestruct. (** Here is the tactic, the body of which you do not need to understand. Invoking [bdestruct] on Boolean expression [b] does the same kind of reasoning we did above: reflection and destruction. It also attempts to simplify negations involving inequalities in hypotheses. *) Ltac bdestruct X := let H := fresh in let e := fresh "e" in evar (e: Prop); assert (H: reflect e X); subst e; [eauto with bdestruct | destruct H as [H|H]; [ | try first [apply not_lt in H | apply not_le in H]]]. (** This tactic makes quick, easy-to-read work of our running example. *) Example reflect_example2: forall a, (if a <? 5 then a else 2) < 6. Proof. intros. bdestruct (a <? 5); (* instead of: [destruct (ltb_reflect a 5)]. *) lia. Qed. (* ================================================================= *) (** ** Finishing the [maybe_swap] Proof *) (** Now that we have [bdestruct], we can finish the proof of [maybe_swap]'s idempotence. *) Theorem maybe_swap_idempotent: forall al, maybe_swap (maybe_swap al) = maybe_swap al. Proof. intros [ | a [ | b al]]; simpl; try reflexivity. bdestruct (a >? b); simpl. (** Note how [b < a] is a hypothesis, rather than [b <? a = true]. *) - bdestruct (b >? a); simpl. + (** [lia] can take care of the contradictory propositional inequalities. *) lia. + reflexivity. - bdestruct (a >? b); simpl. + lia. + reflexivity. Qed. (** When proving theorems about a program that uses Boolean comparisons, use [bdestruct] followed by [lia], rather than [destruct] followed by application of various theorems about Boolean operators. *) (* ################################################################# *) (** * Permutations *) (** Another useful fact about [maybe_swap] is that it doesn't add or remove elements from the list: it only reorders them. That is, the output list is a permutation of the input. List [al] is a _permutation_ of list [bl] if the elements of [al] can be reordered to get the list [bl]. Note that reordering does not permit adding or removing duplicate elements. *) (** Coq's [Permutation] library has an inductive definition of permutations. *) Print Permutation. (* Inductive Permutation {A : Type} : list A -> list A -> Prop := | perm_nil : Permutation [] [] | perm_skip : forall (x : A) (l l' : list A), Permutation l l' -> Permutation (x :: l) (x :: l') | perm_swap : forall (x y : A) (l : list A), Permutation (y :: x :: l) (x :: y :: l) | perm_trans : forall l l' l'' : list A, Permutation l l' -> Permutation l' l'' -> Permutation l l''. *) (** You might wonder, "is that really the right definition?" And indeed, it's important that we get a right definition, because [Permutation] is going to be used in our specifications of searching and sorting algorithms. If we have the wrong specification, then all our proofs of "correctness" will be useless. It's not obvious that this is indeed the right specification of permutations. (It happens to be, but that's not obvious.) To gain confidence that we have the right specification, let's use it prove some properties that permutations ought to have. *) (** **** Exercise: 2 stars, standard (Permutation_properties) Think of some desirable properties of the [Permutation] relation and write them down informally in English, or a mix of Coq and English. Here are four to get you started: - 1. If [Permutation al bl], then [length al = length bl]. - 2. If [Permutation al bl], then [Permutation bl al]. - 3. [[1;1]] is NOT a permutation of [[1;2]]. - 4. [[1;2;3;4]] IS a permutation of [[3;4;2;1]]. YOUR TASK: Add three more properties. Write them here: *) (** Now, let's examine all the theorems in the Coq library about permutations: *) Search Permutation. (* Browse through the results of this query! *) (** Which of the properties that you wrote down above have already been proved as theorems by the Coq library developers? Answer here: *) (* Do not modify the following line: *) Definition manual_grade_for_Permutation_properties : option (nat*string) := None. (** [] *) (** Let's use the permutation theorems in the library to prove the following theorem. *) Example butterfly: forall b u t e r f l y : nat, Permutation ([b;u;t;t;e;r]++[f;l;y]) ([f;l;u;t;t;e;r]++[b;y]). Proof. intros. (** Let's group [[u;t;t;e;r]] together on both sides. Tactic [change t with u] replaces [t] with [u]. Terms [t] and [u] must be _convertible_, here meaning that they evalute to the same term. *) change [b;u;t;t;e;r] with ([b]++[u;t;t;e;r]). change [f;l;u;t;t;e;r] with ([f;l]++[u;t;t;e;r]). (** We don't actually need to know the list elements in [[u;t;t;e;r]]. Let's forget about them and just remember them as a variable named [utter]. *) remember [u;t;t;e;r] as utter. clear Hequtter. (** Likewise, let's group [[f;l]] and remember it as a variable. *) change [f;l;y] with ([f;l]++[y]). remember [f;l] as fl. clear Heqfl. (** Next, let's cancel [fl] from both sides. In order to do that, we need to bring it to the beginning of each list. For the right list, that follows easily from the associativity of [++]. *) replace ((fl ++ utter) ++ [b;y]) with (fl ++ utter ++ [b;y]) by apply app_assoc. (** But for the left list, we can't just use associativity. Instead, we need to reason about permutations and use some library theorems. *) apply perm_trans with (fl ++ [y] ++ ([b] ++ utter)). - replace (fl ++ [y] ++ [b] ++ utter) with ((fl ++ [y]) ++ [b] ++ utter). + apply Permutation_app_comm. + rewrite <- app_assoc. reflexivity. - (** A library theorem will now help us cancel [fl]. *) apply Permutation_app_head. (** Next let's cancel [utter]. *) apply perm_trans with (utter ++ [y] ++ [b]). + replace ([y] ++ [b] ++ utter) with (([y] ++ [b]) ++ utter). * apply Permutation_app_comm. * rewrite app_assoc. reflexivity. + apply Permutation_app_head. (** Finally we're left with just [y] and [b]. *) apply perm_swap. Qed. (** That example illustrates a general method for proving permutations involving cons [::] and append [++]: - Identify some portion appearing in both sides. - Bring that portion to the front on each side using lemmas such as [Permutation_app_comm] and [perm_swap], with generous use of [perm_trans]. - Use [Permutation_app_head] to cancel an appended head. You can also use [perm_skip] to cancel a single element. *) (** **** Exercise: 3 stars, standard (permut_example) Use the permutation rules in the library to prove the following theorem. The following [Check] commands are a hint about useful lemmas. You don't need all of them, and depending on your approach you will find lemmas to be more useful than others. Use [Search Permutation] to find others, if you like. *) Check perm_skip. Check perm_trans. Check Permutation_refl. Check Permutation_app_comm. Check app_assoc. Check app_nil_r. Check app_comm_cons. Example permut_example: forall (a b: list nat), Permutation (5 :: 6 :: a ++ b) ((5 :: b) ++ (6 :: a ++ [])). Proof. intros. change (5 :: 6 :: a ++ b) with (5 :: (6 :: a) ++ b). change ((5 :: b) ++ 6 :: a ++ []) with (5 :: (b ++ (6 :: a) ++ [])). remember (6 :: a) as a'. clear Heqa'. rewrite app_nil_r. apply perm_skip. apply Permutation_app_comm. Qed. (** [] *) (** **** Exercise: 2 stars, standard (not_a_permutation) Prove that [[1;1]] is not a permutation of [[1;2]]. Hints are given as [Check] commands. *) Check Permutation_cons_inv. Check Permutation_length_1_inv. Example not_a_permutation: ~ Permutation [1;1] [1;2]. Proof. unfold not. intros. apply Permutation_cons_inv in H. apply Permutation_length_1_inv in H. discriminate H. Qed. (** [] *) (* ================================================================= *) (** ** Correctness of [maybe_swap] *) (** Now we can prove that [maybe_swap] is a permutation: it reorders elements but does not add or remove any. *) Theorem maybe_swap_perm: forall al, Permutation al (maybe_swap al). Proof. (* WORKED IN CLASS *) unfold maybe_swap. destruct al as [ | a [ | b al]]. - simpl. apply perm_nil. - apply Permutation_refl. - bdestruct (b <? a). + apply perm_swap. + apply Permutation_refl. Qed. (** And, we can prove that [maybe_swap] permutes elements such that the first is less than or equal to the second. *) Definition first_le_second (al: list nat) : Prop := match al with | a :: b :: _ => a <= b | _ => True end. Theorem maybe_swap_correct: forall al, Permutation al (maybe_swap al) /\ first_le_second (maybe_swap al). Proof. intros. split. - apply maybe_swap_perm. - (* WORKED IN CLASS *) unfold maybe_swap. destruct al as [ | a [ | b al]]; simpl; auto. bdestruct (a >? b); simpl; lia. Qed. (* ################################################################# *) (** * Summary: Comparisons and Permutations *) (** To prove correctness of algorithms for sorting and searching, we'll reason about comparisons and permutations using the tools developed in this chapter. The [maybe_swap] program is a tiny little example of a sorting program. The proof style in [maybe_swap_correct] will be applied (at a larger scale) in the next few chapters. *) (** **** Exercise: 3 stars, standard (Forall_perm) To close, we define a utility tactic and lemma. First, the tactic. *) (** Coq's [inversion H] tactic is so good at extracting information from the hypothesis [H] that [H] sometimes becomes completely redundant, and one might as well [clear] it from the goal. Then, since the [inversion] typically creates some equality facts, why not then [subst] ? Tactic [inv] does just that. *) Ltac inv H := inversion H; clear H; subst. (** Second, the lemma. You will find [inv] useful in proving it. [Forall] is Coq library's version of the [All] proposition defined in [Logic], but defined as an inductive proposition rather than a fixpoint. Prove this lemma by induction. You will need to decide what to induct on: [al], [bl], [Permutation al bl], and [Forall f al] are possibilities. *) Theorem Forall_perm: forall {A} (f: A -> Prop) al bl, Permutation al bl -> Forall f al -> Forall f bl. Proof. intros A f al bl H__permutation H__forall. induction H__permutation. - (* nil *) constructor. - (* x :: l *) inv H__forall. auto. - (* x :: y :: l *) inv H__forall. inv H2. auto. - (* l -> l' -> l'' *) auto. Qed. (** [] *) (* 2021-08-11 15:15 *)
/* specfunc/test_hyperg.c * * Copyright (C) 2007, 2009, 2010 Brian Gough * Copyright (C) 1996, 1997, 1998, 1999, 2000, 2004 Gerard Jungman * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ /* Author: G. Jungman */ #include <config.h> #include <gsl/gsl_test.h> #include <gsl/gsl_sf.h> #include "test_sf.h" int test_hyperg(void) { gsl_sf_result r; int s = 0; /* 0F1 */ TEST_SF(s, gsl_sf_hyperg_0F1_e, (1, 0.5, &r), 1.5660829297563505373, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_0F1_e, (5, 0.5, &r), 1.1042674404828684574, TEST_TOL1, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_0F1_e, (100, 30, &r), 1.3492598639485110176, TEST_TOL2, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_0F1_e, (-0.5, 3, &r), -39.29137997543434276, TEST_TOL1, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_0F1_e, (-100.5, 50, &r), 0.6087930289227538496, TEST_TOL3, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_0F1_e, (1, -5.0, &r), -0.3268752818235339109, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_0F1_e, (-0.5, -5.0, &r),-4.581634759005381184, TEST_TOL1, GSL_SUCCESS); /* 1F1 for integer parameters */ TEST_SF(s, gsl_sf_hyperg_1F1_int_e, (1, 1, 0.5, &r), 1.6487212707001281468, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_1F1_int_e, (1, 2, 500.0, &r), 2.8071844357056748215e+214, TEST_TOL2, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_1F1_int_e, (1, 2, -500.0, &r), 0.002, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_1F1_int_e, (8, 1, 0.5, &r), 13.108875178030540372, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_1F1_int_e, (10, 1, 1.0, &r), 131.63017574352619931, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_1F1_int_e, (10, 1, 10.0, &r), 8.514625476546280796e+09, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_1F1_int_e, (10, 1, 100.0, &r), 1.5671363646800353320e+56, TEST_TOL2, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_1F1_int_e, (10, 20, 1.0, &r), 1.6585618002669675465, TEST_TOL2, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_1F1_int_e, (10, 20, 10.0, &r), 265.26686430340188871, TEST_TOL2, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_1F1_int_e, (10, 20, 100.0, &r), 3.640477355063227129e+34, TEST_TOL2, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_1F1_int_e, (10, 100, 1.0, &r), 1.1056660194025527099, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_1F1_int_e, (10, 100, 10.0, &r), 2.8491063634727594206, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_1F1_int_e, (10, 100, 40.0, &r), 133.85880835831230986, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_1F1_int_e, (10, 100, 80.0, &r), 310361.16228011433406, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_1F1_int_e, (10, 100, 100.0, &r), 8.032171336754168282e+07, TEST_TOL2, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_1F1_int_e, (10, 100, 500.0, &r), 7.633961202528731426e+123, TEST_TOL2, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_1F1_int_e, (100, 1, 1.0, &r), 6.892842729046469965e+07, TEST_TOL1, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_1F1_int_e, (100, 1, 10.0, &r), 2.4175917112200409098e+28, TEST_TOL1, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_1F1_int_e, (100, 1, 100.0, &r), 1.9303216896309102993e+110, TEST_TOL2, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_1F1_int_e, (100, 200, 1.0, &r), 1.6497469106162459226, TEST_TOL2, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_1F1_int_e, (100, 200, 10.0, &r), 157.93286197349321981, TEST_TOL2, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_1F1_int_e, (100, 200, 100.0, &r), 2.1819577501255075240e+24, TEST_TOL2, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_1F1_int_e, (100, 200, 400.0, &r), 3.728975529926573300e+119, TEST_TOL2, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_1F1_int_e, (100, 400, 10.0, &r), 12.473087623658878813, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_1F1_int_e, (100, 400, 100.0, &r), 9.071230376818550241e+11, TEST_TOL1, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_1F1_int_e, (100, 400, 150.0, &r), 7.160949515742170775e+18, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_1F1_int_e, (100, 400, 200.0, &r), 2.7406690412731576823e+26, TEST_TOL2, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_1F1_int_e, (100, 400, 300.0, &r), 6.175110613473276193e+43, TEST_TOL2, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_1F1_int_e, (100, 400, 400.0, &r), 1.1807417662711371440e+64, TEST_TOL3, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_1F1_int_e, (100, 400, 600.0, &r), 2.4076076354888886030e+112, TEST_TOL3, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_1F1_int_e, (10, 1, -1.0, &r), 0.11394854824644542810, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_1F1_int_e, (10, 1, -10.0, &r), 0.0006715506365396127863, TEST_TOL1, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_1F1_int_e, (10, 1, -100.0, &r), -4.208138537480269868e-32, TEST_TOL2, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_1F1_int_e, (10, 50, -1.0, &r), 0.820006196079380, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_1F1_int_e, (10, 100, -10.0, &r), 0.38378859043466243, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_1F1_int_e, (10, 100, -100.0, &r), 0.0008460143401464189061, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_1F1_int_e, (10, 100, -500.0, &r), 1.1090822141973655929e-08, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_1F1_int_e, (10, 100, -10000.0, &r), 5.173783508088272292e-21, TEST_TOL2, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_1F1_int_e, (50, 1, -90.0, &r), -1.6624258547648311554e-21, TEST_TOL2, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_1F1_int_e, (50, 1, -100.0, &r), 4.069661775122048204e-24, TEST_TOL2, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_1F1_int_e, (50, 1, -110.0, &r), 1.0072444993946236025e-25, TEST_TOL2, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_1F1_int_e, (100, 10, -100.0, &r), -2.7819353611733941962e-37, TEST_TOL2, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_1F1_int_e, (100, 1, -90.0, &r), 7.501705041159802854e-22, TEST_TOL2, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_1F1_int_e, (100, 1, -100.0, &r), 6.305128893152291187e-25, TEST_TOL3, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_1F1_int_e, (100, 1, -110.0, &r), -7.007122115422439755e-26, TEST_TOL3, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_1F1_int_e, (100, 10, -100.0, &r), -2.7819353611733941962e-37, TEST_TOL2, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_1F1_int_e, (200, 50, -1.0, &r), 0.016087060191732290813, TEST_TOL1, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_1F1_int_e, (200, 50, -300.0, &r), -4.294975979706421471e-121, TEST_TOL2, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_1F1_int_e, (200, 100, -1.0, &r), 0.13397521083325179687, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_1F1_int_e, (200, 100, -10.0, &r), 5.835134393749807387e-10, TEST_TOL1, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_1F1_int_e, (200, 100, -100.0, &r), 4.888460453078914804e-74, TEST_TOL2, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_1F1_int_e, (200, 100, -500.0, &r), -1.4478509059582015053e-195, TEST_TOL2, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_1F1_int_e, (-1, 1, 2.0, &r), -1.0, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_1F1_int_e, (-1, -2, 2.0, &r), 2.0, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_1F1_int_e, (-2, -3, 2.0, &r), 3.0, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_1F1_int_e, (-10, 1, 1.0, &r), 0.4189459325396825397, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_1F1_int_e, (-10, 1, 10.0, &r), 27.984126984126984127, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_1F1_int_e, (-10, 1, 100.0, &r), 9.051283795429571429e+12, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_1F1_int_e, (-100, 20, 1.0, &r), 0.0020203016320697069566, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_1F1_int_e, (-10, -20, 1.0, &r), 1.6379141878548080173, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_1F1_int_e, (-10, -20, 10.0, &r), 78.65202404521289970, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_1F1_int_e, (-10, -20, 100.0, &r), 4.416169713262624315e+08, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_1F1_int_e, (-10, -100, 1.0, &r), 1.1046713999681950919, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_1F1_int_e, (-10, -100, 10.0, &r), 2.6035952191039006838, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_1F1_int_e, (-10, -100, 100.0, &r), 1151.6852040836932392, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_1F1_int_e, (-100, -200, 1.0, &r), 1.6476859702535324743, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_1F1_int_e, (-100, -200, 10.0, &r), 139.38026829540687270, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_1F1_int_e, (-100, -200, 100.0, &r), 1.1669433576237933752e+19, TEST_TOL1, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_1F1_int_e, (-10, -20, -1.0, &r), 0.6025549561148035735, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_1F1_int_e, (-10, -20, -10.0, &r), 0.00357079636732993491, TEST_TOL1, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_1F1_int_e, (-10, -20, -100.0, &r), 1.64284868563391159e-35, TEST_TOL2, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_1F1_int_e, (-10, -100, -1.0, &r), 0.90442397250313899, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_1F1_int_e, (-10, -100, -10.0, &r), 0.35061515251367215, TEST_TOL1, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_1F1_int_e, (-10, -100, -100.0, &r), 8.19512187960476424e-09, TEST_TOL2, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_1F1_int_e, (-100, -200, -1.0, &r), 0.6061497939628952629, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_1F1_int_e, (-100, -200, -10.0, &r), 0.0063278543908877674, TEST_TOL1, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_1F1_int_e, (-100, -200, -100.0, &r), 4.34111795007336552e-25, TEST_TOL2, GSL_SUCCESS); /* 1F1 */ TEST_SF(s, gsl_sf_hyperg_1F1_e, (1, 1.5, 1, &r), 2.0300784692787049755, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_1F1_e, (1, 1.5, 10, &r), 6172.859561078406855, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_1F1_e, (1, 1.5, 100, &r), 2.3822817898485692114e+42, TEST_TOL1, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_1F1_e, (1, 1.5, 500, &r), 5.562895351723513581e+215, TEST_TOL2, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_1F1_e, (1.5, 2.5, 1, &r), 1.8834451238277954398, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_1F1_e, (1.5, 2.5, 10, &r), 3128.7352996840916381, TEST_TOL1, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_1F1_e, (10, 1.1, 1, &r), 110.17623733873889579, TEST_TOL1, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_1F1_e, (10, 1.1, 10, &r), 6.146657975268385438e+09, TEST_TOL1, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_1F1_e, (10, 1.1, 100, &r), 9.331833897230312331e+55, TEST_TOL2, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_1F1_e, (10, 1.1, 500, &r), 4.519403368795715843e+235, TEST_TOL2, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_1F1_e, (10, 50.1, 2, &r), 1.5001295507968071788, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_1F1_e, (10, 50.1, 10, &r), 8.713385849265044908, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_1F1_e, (10, 50.1, 100, &r), 5.909423932273380330e+18, TEST_TOL2, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_1F1_e, (10, 50.1, 500, &r), 9.740060618457198900e+165, TEST_TOL2, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_1F1_e, (100, 1.1, 1, &r), 5.183531067116809033e+07, TEST_TOL2, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_1F1_e, (100, 1.1, 10, &r), 1.6032649110096979462e+28, TEST_TOL2, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_1F1_e, (100, 1.1, 100, &r), 1.1045151213192280064e+110, TEST_TOL2, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_1F1_e, (100, 50.1, 1, &r), 7.222953133216603757, TEST_TOL1, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_1F1_e, (100, 50.1, 10, &r), 1.0998696410887171538e+08, TEST_TOL1, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_1F1_e, (100, 50.1, 100, &r), 7.235304862322283251e+63, TEST_TOL2, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_1F1_e, (1, 1.5, -1, &r), 0.5380795069127684191, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_1F1_e, (1, 1.5, -10, &r), 0.05303758099290164485, TEST_TOL1, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_1F1_e, (1, 1.5, -100, &r), 0.005025384718759852803, TEST_TOL1, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_1F1_e, (1, 1.5, -500, &r), 0.0010010030151059555322, TEST_TOL1, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_1F1_e, (1, 1.1, -500, &r), 0.00020036137599690208265, TEST_TOL1, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_1F1_e, (10, 1.1, -1, &r), 0.07227645648935938168, TEST_TOL1, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_1F1_e, (10, 1.1, -10, &r), 0.0003192415409695588126, TEST_TOL1, GSL_SUCCESS); /* sensitive to the pair_ratio hack in hyperg_1F1.c TEST_SF_RLX(s, gsl_sf_hyperg_1F1_e, (10, 1.1, -100, &r), -8.293425316123158950e-16, 50.0*TEST_SNGL, GSL_SUCCESS); */ TEST_SF(s, gsl_sf_hyperg_1F1_e, (10, 1.1, -500, &r), -3.400379216707701408e-23, TEST_TOL2, GSL_SUCCESS); TEST_SF_RLX(s, gsl_sf_hyperg_1F1_e, (50, 1.1, -90, &r), -7.843129411802921440e-22, TEST_SQRT_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_1F1_e, (50, 1.1, -100, &r), 4.632883869540640460e-24, TEST_SQRT_TOL0, GSL_SUCCESS); /* FIXME: tolerance is poor, but is consistent within reported error */ TEST_SF(s, gsl_sf_hyperg_1F1_e, (50, 1.1, -110.0, &r), 5.642684651305310023e-26, 0.03, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_1F1_e, (100, 1.1, -1, &r), 0.0811637344096042096, TEST_TOL2, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_1F1_e, (100, 1.1, -10, &r), 0.00025945610092231574387, TEST_TOL2, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_1F1_e, (100, 1.1, -50, &r), 2.4284830988994084452e-13, TEST_TOL2, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_1F1_e, (100, 1.1, -90, &r), 2.4468224638378426461e-22, TEST_TOL2, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_1F1_e, (100, 1.1, -99, &r), 1.0507096272617608461e-23, TEST_TOL2, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_1F1_e, (100, 1.1, -100, &r), 1.8315497474210138602e-24, TEST_TOL2, GSL_SUCCESS); /* FIXME: Reported error is too small. TEST_SF(s, gsl_sf_hyperg_1F1_e, (100, 1.1, -101, &r), -2.3916306291344452490e-24, 0.04, GSL_SUCCESS); */ /* FIXME: Reported error is too small. TEST_SF(s, gsl_sf_hyperg_1F1_e, (100, 1.1, -110, &r), -4.517581986037732280e-26, TEST_TOL0, GSL_SUCCESS); */ /* FIXME: Result is terrible, but reported error is very large, so consistent. TEST_SF(s, gsl_sf_hyperg_1F1_e, (100, 10.1, -220, &r), -4.296130300021696573e-64, TEST_TOL1, GSL_SUCCESS); */ TEST_SF(s, gsl_sf_hyperg_1F1_e, (-10, -10.1, 10.0, &r), 10959.603204633058116, TEST_TOL1, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_1F1_e, (-10, -10.1, 1000.0, &r), 2.0942691895502242831e+23, TEST_TOL2, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_1F1_e, (-10, -100.1, 10.0, &r), 2.6012036337980078062, TEST_TOL1, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_1F1_e, (-1000, -1000.1, 10.0, &r), 22004.341698908631636, TEST_TOL3, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_1F1_e, (-1000, -1000.1, 200.0, &r), 7.066514294896245043e+86, TEST_TOL3, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_1F1_e, (-8.1, -10.1, -10.0, &r), 0.00018469685276347199258, TEST_TOL0, GSL_SUCCESS); /* TEST_SF(s, gsl_sf_hyperg_1F1_e, (-8.1, -1000.1, -10.0, &r), 0.9218280185080036020, TEST_TOL0, GSL_SUCCESS); */ TEST_SF(s, gsl_sf_hyperg_1F1_e, (-10, -5.1, 1, &r), 16.936141866089601635, TEST_TOL2, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_1F1_e, (-10, -5.1, 10, &r), 771534.0349543820541, TEST_TOL2, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_1F1_e, (-10, -5.1, 100, &r), 2.2733956505084964469e+17, TEST_TOL2, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_1F1_e, (-100, -50.1, -1, &r), 0.13854540373629275583, TEST_TOL3, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_1F1_e, (-100, -50.1, -10, &r), -9.142260314353376284e+19, TEST_TOL3, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_1F1_e, (-100, -50.1, -100, &r), -1.7437371339223929259e+87, TEST_TOL3, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_1F1_e, (-100, -50.1, 1, &r), 7.516831748170351173, TEST_TOL3, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_1F1_e, (-100, -50.1, 10, &r), 1.0551632286359671976e+11, TEST_SQRT_TOL0, GSL_SUCCESS); /* These come out way off. On the other hand, the error estimates are also very large; so much so that the answers are consistent within the reported error. Something will need to be done about this eventually TEST_SF(s, gsl_sf_hyperg_1F1_e, (-100, -50.1, 50, &r), -7.564755600940346649e+36, TEST_TOL3, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_1F1_e, (-100, -50.1, 100, &r), 4.218776962675977e+55, TEST_TOL3, GSL_SUCCESS); */ TEST_SF(s, gsl_sf_hyperg_1F1_e, (-10.5, -8.1, 0.1, &r), 1.1387201443786421724, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_1F1_e, (-10.5, -11.1, 1, &r), 2.5682766147138452362, TEST_TOL1, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_1F1_e, (-100.5, -80.1, 10, &r), 355145.4517305220603, TEST_TOL3, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_1F1_e, (-100.5, -102.1, 10, &r), 18678.558725244365016, TEST_TOL1, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_1F1_e, (-100.5, -500.1, 10, &r), 7.342209011101454, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_1F1_e, (-100.5, -500.1, 100, &r), 1.2077443075367177662e+8, TEST_TOL1, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_1F1_e, (-500.5, -80.1, 2, &r), 774057.8541325341699, TEST_TOL4, GSL_SUCCESS); /* UNIMPL TEST_SF(s, gsl_sf_hyperg_1F1_e, (100, -10.1, 1, &r), -2.1213846338338567395e+12, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_1F1_e, (100, -10.1, 10, &r), -6.624849346145112398e+39, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_1F1_e, (100, -10.1, 100, &r), -1.2413466759089171904e+129, TEST_TOL0, GSL_SUCCESS); */ /* UNIMPL TEST_SF(s, gsl_sf_hyperg_1F1_e, (100, -10.1, -1, &r), 34456.29405305551691, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_1F1_e, (100, -10.1, -10, &r), -7.809224251467710833e+07, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_1F1_e, (100, -10.1, -100, &r), -5.214065452753988395e-07, TEST_TOL0, GSL_SUCCESS); */ TEST_SF(s, gsl_sf_hyperg_1F1_e, (-100, 1.1, 1, &r), 0.21519810496314438414, TEST_TOL2, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_1F1_e, (-100, 1.1, 10, &r), 8.196123715597869948, TEST_TOL1, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_1F1_e, (-100, 1.1, 100, &r), -1.4612966715976530293e+20, TEST_TOL1, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_1F1_e, (-100, 20.1, 1, &r), 0.0021267655527278456412, TEST_TOL2, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_1F1_e, (-100, 20.1, 10, &r), 2.0908665169032186979e-11, TEST_TOL2, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_1F1_e, (-100, 20.1, 100, &r), -0.04159447537001340412, TEST_TOL2, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_1F1_e, (-100, 1.1, -1, &r), 2.1214770215694685282e+07, TEST_TOL3, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_1F1_e, (-100, 1.1, -10, &r), 1.0258848879387572642e+24, TEST_TOL3, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_1F1_e, (-100, 1.1, -100, &r), 1.1811367147091759910e+67, TEST_TOL3, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_1F1_e, (-100, 50.1, -1, &r), 6.965259317271427390, TEST_TOL3, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_1F1_e, (-100, 50.1, -10, &r), 1.0690052487716998389e+07, TEST_TOL3, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_1F1_e, (-100, 50.1, -100, &r), 6.889644435777096248e+36, TEST_TOL3, GSL_SUCCESS); /* Bug report from Fernando Pilotto */ TEST_SF(s, gsl_sf_hyperg_1F1_e, (-2.05, 1.0, 5.05, &r), 3.79393389516785e+00, TEST_TOL3, GSL_SUCCESS); /* Bug reports from Ivan Liu */ TEST_SF(s, gsl_sf_hyperg_1F1_e, (-26, 2.0, 100.0, &r), 1.444786781107436954e+19, TEST_TOL3, GSL_SUCCESS); #ifdef FIXME /* This one is computed with a huge error, there is loss of precision but the error estimate flags the problem (assuming the user looks at it). We should probably trap any return with err>|val| and signal loss of precision */ TEST_SF(s, gsl_sf_hyperg_1F1_e, (-26.1, 2.0, 100.0, &r), 1.341557199575986995e+19, TEST_TOL3, GSL_SUCCESS); #endif /* Bug report H.Moseby */ TEST_SF(s, gsl_sf_hyperg_1F1_e, (1.2, 1.1e-15, 1.5, &r), 8254503159672429.02, TEST_TOL3, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_1F1_e, (1.0, 1000000.5, 0.8e6 + 0.5, &r), 4.999922505099443804e+00, TEST_TOL3, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_1F1_e, (1.0, 1000000.5, 1001000.5, &r), 3480.3699557431856166, TEST_TOL4, GSL_SUCCESS); #ifdef FIXME /* FIX THESE NEXT RELEASE */ TEST_SF(s, gsl_sf_hyperg_1F1_e, (1.1, 1000000.5, 1001000.5, &r), 7304.6126942641350122, TEST_TOL3, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_1F1_e, (0.9, 1000000.5, 1001000.5, &r), 1645.4879293475410982, TEST_TOL3, GSL_SUCCESS); #endif TEST_SF(s, gsl_sf_hyperg_1F1_e, (-1.1, 1000000.5, 1001000.5, &r), -5.30066488697455e-04, TEST_TOL3, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_1F1_e, (1.5, 1000000.5, 0.8e6 + 0.5, &r), 11.18001288977894650469927615, TEST_TOL4, GSL_SUCCESS); /* Bug report Lorenzo Moneta <[email protected]> */ TEST_SF(s, gsl_sf_hyperg_1F1_e, (-1.5, 1.5, -100., &r), 456.44010011787485545, TEST_TOL4, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_1F1_e, (-1.5, 1.5, 99., &r), 4.13360436014643309757065e36, TEST_TOL4, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_1F1_e, (-1.5, 1.5, 100., &r), 1.0893724312430935129254e37, TEST_TOL4, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_1F1_e, (-1.5, 1.5, 709., &r), 8.7396804160264899999692120e298, TEST_TOL4, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_1F1_e, (-1.5, 1.5, 710., &r), 2.36563187217417898169834615e299, TEST_TOL4, GSL_SUCCESS); /* Bug report from Weibin Li <[email protected]> */ #ifdef FIXME TEST_SF(s, gsl_sf_hyperg_1F1_e, (-37.8, 2.01, 103.58, &r), -6.21927211009e17, TEST_TOL1, GSL_SUCCESS); #endif /* Testing BJG */ #ifdef COMPARISON_WITH_MATHEMATICA /* Mathematica uses a different convention for M(-m,-n,x) */ TEST_SF(s, gsl_sf_hyperg_1F1_int_e, (-1, -1, 0.1, &r), 1.1, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_1F1_e, (-1, -1, 0.1, &r), 1.1, TEST_TOL0, GSL_SUCCESS); #endif /* U for integer parameters */ TEST_SF(s, gsl_sf_hyperg_U_int_e, (1, 1, 0.0001, &r), 8.634088070212725330, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_U_int_e, (1, 1, 0.01, &r), 4.078511443456425847, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_U_int_e, (1, 1, 0.5, &r), 0.9229106324837304688, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_U_int_e, (1, 1, 2.0, &r), 0.3613286168882225847, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_U_int_e, (1, 1, 100, &r), 0.009901942286733018406, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_U_int_e, (1, 1, 1000, &r), 0.0009990019940238807150, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_U_int_e, (1, 8, 0.01, &r), 7.272361203006010000e+16, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_U_int_e, (1, 8, 1, &r), 1957.0, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_U_int_e, (1, 8, 5, &r), 1.042496, TEST_TOL1, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_U_int_e, (1, 8, 8, &r), 0.3207168579101562500, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_U_int_e, (1, 8, 50, &r), 0.022660399001600000000, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_U_int_e, (1, 8, 100, &r), 0.010631236727200000000, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_U_int_e, (1, 8, 1000, &r), 0.0010060301203607207200, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_U_int_e, (1, 20, 1, &r), 1.7403456103284421000e+16, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_U_int_e, (1, 20, 20, &r), 0.22597813610531052969, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_U_int_e, (1, 50, 1, &r), 3.374452117521520758e+61, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_U_int_e, (1, 50, 50, &r), 0.15394136814987651785, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_U_int_e, (1, 100, 0.1, &r), 1.0418325171990852858e+253, TEST_TOL2, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_U_int_e, (1, 100, 1, &r), 2.5624945006073464385e+154, TEST_TOL2, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_U_int_e, (1, 100, 50, &r), 3.0978624160896431391e+07, TEST_TOL2, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_U_int_e, (1, 100, 100, &r), 0.11323192555773717475, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_U_int_e, (1, 100, 200, &r), 0.009715680951406713589, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_U_int_e, (1, 100, 1000, &r), 0.0011085142546061528661, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_U_int_e, (1, 1000, 2000, &r), 0.0009970168547036318206, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_U_int_e, (1, -1, 1, &r), 0.29817368116159703717, TEST_TOL1, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_U_int_e, (1, -1, 10, &r), 0.07816669698940409380, TEST_TOL1, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_U_int_e, (1, -10, 1, &r), 0.08271753756946041959, TEST_TOL1, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_U_int_e, (1, -10, 5, &r), 0.06127757419425055261, TEST_TOL2, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_U_int_e, (1, -10, 10, &r), 0.04656199948873187212, TEST_TOL2, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_U_int_e, (1, -10, 20, &r), 0.031606421847946077709, TEST_TOL1, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_U_int_e, (1, -100, 0.01, &r), 0.009900000099999796950, TEST_TOL2, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_U_int_e, (1, -100, 1, &r), 0.009802970197050404429, TEST_TOL2, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_U_int_e, (1, -100, 10, &r), 0.009001648897173103447, TEST_TOL2, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_U_int_e, (1, -100, 20, &r), 0.008253126487166557546, TEST_TOL2, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_U_int_e, (1, -100, 50, &r), 0.006607993916432051008, TEST_TOL2, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_U_int_e, (1, -100, 90, &r), 0.005222713769726871937, TEST_TOL2, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_U_int_e, (1, -100, 110, &r), 0.004727658137692606210, TEST_TOL2, GSL_SUCCESS); TEST_SF_RLX(s, gsl_sf_hyperg_U_int_e, (1, -1000, 1, &r), 0.0009980029970019970050, TEST_SQRT_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_U_int_e, (1, -1000, 1010, &r), 0.0004971408839859245170, TEST_TOL4, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_U_int_e, (8, 1, 0.001, &r), 0.0007505359326875706975, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_U_int_e, (8, 1, 0.5, &r), 6.449509938973479986e-06, TEST_TOL3, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_U_int_e, (8, 1, 8, &r), 6.190694573035761284e-10, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_U_int_e, (8, 1, 20, &r), 3.647213845460374016e-12, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_U_int_e, (8, 8, 1, &r), 0.12289755012652317578, TEST_TOL1, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_U_int_e, (8, 8, 10, &r), 5.687710359507564272e-09, TEST_TOL1, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_U_int_e, (8, 8, 20, &r), 2.8175404594901039724e-11, TEST_TOL1, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_U_int_e, (100, 100, 0.01, &r), 1.0099979491941914867e+196, TEST_TOL2, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_U_int_e, (100, 100, 0.1, &r), 1.0090713562719862833e+97, TEST_TOL2, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_U_int_e, (100, 100, 1, &r), 0.009998990209084729106, TEST_TOL2, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_U_int_e, (100, 100, 20, &r), 1.3239363905866130603e-131, TEST_TOL2, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_U_int_e, (-10, 1, 0.01, &r), 3.274012540759009536e+06, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_U_int_e, (-10, 1, 1, &r), 1.5202710000000000000e+06, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_U_int_e, (-10, 1, 10, &r), 1.0154880000000000000e+08, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_U_int_e, (-10, 1, 100, &r), 3.284529863685482880e+19, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_U_int_e, (-10, 10, 1, &r), 1.1043089864100000000e+11, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_U_int_e, (-10, 100, 1, &r), 1.3991152402448957897e+20, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_U_int_e, (-10, 100, 10, &r), 5.364469916567136000e+19, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_U_int_e, (-10, 100, 100, &r), 3.909797568000000000e+12, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_U_int_e, (-10, 100, 500, &r), 8.082625576697984130e+25, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_U_int_e, (-50, 1, 0.01, &r), 1.6973422555823855798e+64, TEST_TOL2, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_U_int_e, (-50, 1, 1, &r), 7.086160198304780325e+63, TEST_TOL1, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_U_int_e, (-50, 1, 10, &r), 5.332862895528712200e+65, TEST_TOL1, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_U_int_e, (-50, 10, 1, &r), -7.106713471565790573e+71, TEST_TOL1, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_U_int_e, (-50, 100, 1, &r), 2.4661377199407186476e+104, TEST_TOL1, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_U_int_e, (-50, 10, 10, &r), 5.687538583671241287e+68, TEST_TOL1, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_U_int_e, (-50, 100, 10, &r), 1.7880761664553373445e+102, TEST_TOL1, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_U_int_e, (-90, 1, 0.01, &r), 4.185245354032917715e+137, TEST_TOL2, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_U_int_e, (-90, 1, 0.1, &r), 2.4234043408007841358e+137, TEST_TOL3, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_U_int_e, (-90, 1, 10, &r), -1.8987677149221888807e+139, TEST_TOL1, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_U_int_e, (-90, 10, 10, &r), -5.682999988842066677e+143, TEST_TOL1, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_U_int_e, (-90, 100, 10, &r), 2.3410029853990624280e+189, TEST_TOL2, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_U_int_e, (-90, 1000, 10, &r), 1.9799451517572225316e+271, TEST_TOL3, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_U_int_e, (-50, -1, 10, &r), -9.083195466262584149e+64, TEST_TOL1, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_U_int_e, (-50, -10, 10, &r), -1.4418257327071634407e+62, TEST_TOL1, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_U_int_e, (-50, -100, 0.01, &r), 3.0838993811468983931e+93, TEST_TOL2, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_U_int_e, (-50, -100, 10, &r), 4.014552630378340665e+95, TEST_TOL2, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_U_int_e, (-100, -100, 10, &r), 2.0556466922347982030e+162, TEST_TOL2, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_U_int_e, (-100, -200, 10, &r), 1.1778399522973555582e+219, TEST_TOL2, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_U_int_e, (-100, -200, 100, &r), 9.861313408898201873e+235, TEST_TOL3, GSL_SUCCESS); /* U */ TEST_SF(s, gsl_sf_hyperg_U_e, (0.0001, 0.0001, 0.0001, &r), 1.0000576350699863577, TEST_TOL1, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_U_e, (0.0001, 0.0001, 1.0, &r), 0.9999403679233247536, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_U_e, (0.0001, 0.0001, 100.0, &r), 0.9995385992657260887, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_U_e, (0.0001, 1, 0.0001, &r), 1.0009210608660065989, TEST_TOL2, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_U_e, (0.0001, 1.0, 1.0, &r), 0.9999999925484179084, TEST_TOL2, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_U_e, (0.0001, 10, 1, &r), 13.567851006281412726, TEST_TOL3, GSL_SUCCESS); TEST_SF_RLX(s, gsl_sf_hyperg_U_e, (0.0001, 10, 5, &r), 1.0006265020064596364, TEST_SQRT_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_U_e, (0.0001, 10, 10, &r), 0.9999244381454633265, TEST_TOL0, GSL_SUCCESS); TEST_SF_RLX(s, gsl_sf_hyperg_U_e, (0.0001, 100, 1, &r), 2.5890615708804247881e+150, TEST_SQRT_TOL0, GSL_SUCCESS); TEST_SF_RLX(s, gsl_sf_hyperg_U_e, (0.0001, 100, 10, &r), 2.3127845417739661466e+55, TEST_SQRT_TOL0, GSL_SUCCESS); TEST_SF_RLX(s, gsl_sf_hyperg_U_e, (0.0001, 100, 50, &r), 6402.818715083582554, TEST_SQRT_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_U_e, (0.0001, 100, 98, &r), 0.9998517867411840044, TEST_TOL2, GSL_SUCCESS); TEST_SF_RLX(s, gsl_sf_hyperg_U_e, (0.0001, 1000, 300, &r), 2.5389557274938010716e+213, TEST_SQRT_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_U_e, (0.0001, 1000, 999, &r), 0.9997195294193261604, TEST_TOL2, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_U_e, (0.0001, 1000, 1100, &r), 0.9995342990014584713, TEST_TOL1, GSL_SUCCESS); TEST_SF_RLX(s, gsl_sf_hyperg_U_e, (0.5, 1000, 300, &r), 1.1977955438214207486e+217, TEST_SQRT_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_U_e, (0.5, 1000, 800, &r), 9.103916020464797207e+08, TEST_TOL2, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_U_e, (0.5, 1000, 998, &r), 0.21970269691801966806, TEST_TOL2, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_U_e, (0.5, 0.5, 1.0, &r), 0.7578721561413121060, TEST_TOL2, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_U_e, (1, 0.0001, 0.0001, &r), 0.9992361337764090785, TEST_TOL1, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_U_e, (1, 0.0001, 1, &r), 0.4036664068111504538, TEST_TOL2, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_U_e, (1, 0.0001, 100, &r), 0.009805780851264329587, TEST_TOL1, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_U_e, (1, 1.2, 2.0, &r), 0.3835044780075602550, TEST_TOL1, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_U_e, (1, -0.0001, 1, &r), 0.4036388693605999482, TEST_TOL1, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_U_e, (8, 10.5, 1, &r), 27.981926466707438538, TEST_TOL1, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_U_e, (8, 10.5, 10, &r), 2.4370135607662056809e-8, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_U_e, (8, 10.5, 100, &r), 1.1226567526311488330e-16, TEST_TOL2, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_U_e, (10, -2.5, 10, &r), 6.734690720346560349e-14, TEST_TOL1, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_U_e, (10, 2.5, 10, &r), 6.787780794037971638e-13, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_U_e, (10, 2.5, 50, &r), 2.4098720076596087125e-18, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_U_e, (-10.5, 1.1, 1, &r), -3.990841457734147e+6, TEST_TOL2, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_U_e, (-10.5, 1.1, 10, &r), 1.307472052129343e+8, TEST_TOL1, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_U_e, (-10.5, 1.1, 50, &r), 3.661978424114088e+16, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_U_e, (-10.5, 1.1, 90, &r), 8.09469542130868e+19, TEST_TOL1, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_U_e, (-10.5, 1.1, 99, &r), 2.546328328942063e+20, TEST_TOL1, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_U_e, (-10.5, 1.1, 100, &r), 2.870463201832814e+20, TEST_TOL1, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_U_e, (-10.5, 1.1, 200, &r), 8.05143453769373e+23, TEST_TOL2, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_U_e, (-10.5, 10.1, 0.1, &r), -3.043016255306515e+20, TEST_TOL2, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_U_e, (-10.5, 10.1, 1, &r), -3.194745265896115e+12, TEST_TOL1, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_U_e, (-10.5, 10.1, 4, &r), -6.764203430361954e+07, TEST_TOL2, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_U_e, (-10.5, 10.1, 10, &r), -2.067399425480545e+09, TEST_TOL1, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_U_e, (-10.5, 10.1, 50, &r), 4.661837330822824e+14, TEST_TOL1, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_U_e, (-10.5, 100.4, 10, &r), -6.805460513724838e+66, TEST_TOL1, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_U_e, (-10.5, 100.4, 50, &r), -2.081052558162805e+18, TEST_TOL1, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_U_e, (-10.5, 100.4, 80, &r), 2.034113191014443e+14, TEST_TOL2, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_U_e, (-10.5, 100.4, 100, &r), 6.85047268436107e+13, TEST_TOL1, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_U_e, (-10.5, 100.4, 200, &r), 1.430815706105649e+20, TEST_TOL2, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_U_e, (-19.5, 82.1, 10, &r), 5.464313196201917432e+60, TEST_TOL2, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_U_e, (-50.5, 100.1, 10, &r), -5.5740216266953e+126, TEST_TOL1, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_U_e, (-50.5, 100.1, 40, &r), 5.937463786613894e+91, TEST_TOL1, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_U_e, (-50.5, 100.1, 50, &r), -1.631898534447233e+89, TEST_TOL1, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_U_e, (-50.5, 100.1, 70, &r), 3.249026971618851e+84, TEST_TOL2, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_U_e, (-50.5, 100.1, 100, &r), 1.003401902126641e+85, TEST_TOL1, GSL_SUCCESS); /* Bug report from Stefan Gerlach */ TEST_SF(s, gsl_sf_hyperg_U_e, (-2.0, 4.0, 1.0, &r), 11.0, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_U_e, (-2.0, 0.5, 3.14, &r), 1.1896, TEST_TOL2, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_U_e, (-2.0, 0.5, 1.13, &r), -1.3631, TEST_TOL2, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_U_e, (-2.0, 0.5, 0.0, &r), 0.75, TEST_TOL2, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_U_e, (-2.0, 0.5, 1e-20, &r), 0.75, TEST_TOL2, GSL_SUCCESS); /* U(a,b,x) for x<0 [bug #27859] */ /* Tests for b >= 0 */ TEST_SF(s, gsl_sf_hyperg_U_e, ( 0, 0, -0.1, &r), 1, TEST_TOL0, GSL_SUCCESS); #ifdef FIXME /* unimplemented case */ TEST_SF(s, gsl_sf_hyperg_U_e, (-1, 0, -0.1, &r), -0.1, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_U_e, (-2, 0, -0.1, &r), 0.21, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_U_e, (-3, 0, -0.1, &r), -0.661, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_U_e, (-4, 0, -0.1, &r), 2.7721, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_U_e, (-5, 0, -0.1, &r), -14.52201, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_U_e, (-6, 0, -0.1, &r), 91.230301, TEST_TOL0, GSL_SUCCESS); #endif TEST_SF(s, gsl_sf_hyperg_U_e, ( 0, 1, -0.1, &r), 1.0, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_U_e, (-1, 1, -0.1, &r), -1.1, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_U_e, (-2, 1, -0.1, &r), 2.41, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_U_e, (-3, 1, -0.1, &r), -7.891, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_U_e, (-4, 1, -0.1, &r), 34.3361, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_U_e, (-5, 1, -0.1, &r), -186.20251, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_U_e, (-6, 1, -0.1, &r), 1208.445361, TEST_TOL0, GSL_SUCCESS); #ifdef FIXME /* unimplemented case */ TEST_SF(s, gsl_sf_hyperg_U_e, ( 1, 2, -0.1, &r), -10.0, TEST_TOL0, GSL_SUCCESS); #endif TEST_SF(s, gsl_sf_hyperg_U_e, ( 0, 2, -0.1, &r), 1.0, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_U_e, (-1, 2, -0.1, &r), -2.1, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_U_e, (-2, 2, -0.1, &r), 6.61, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_U_e, (-3, 2, -0.1, &r), -27.721, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_U_e, (-4, 2, -0.1, &r), 145.2201, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_U_e, (-5, 2, -0.1, &r), -912.30301, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_U_e, (-6, 2, -0.1, &r), 6682.263421, TEST_TOL0, GSL_SUCCESS); #ifdef FIXME /* unimplemented case */ TEST_SF(s, gsl_sf_hyperg_U_e, ( 2, 3, -0.1, &r), 100.0, TEST_TOL0, GSL_SUCCESS); #endif TEST_SF(s, gsl_sf_hyperg_U_e, ( 1, 3, -0.1, &r), 90.0, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_U_e, ( 0, 3, -0.1, &r), 1.0, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_U_e, (-1, 3, -0.1, &r), -3.10, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_U_e, (-2, 3, -0.1, &r), 12.81, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_U_e, (-3, 3, -0.1, &r), -66.151, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_U_e, (-4, 3, -0.1, &r), 409.8241, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_U_e, (-5, 3, -0.1, &r), -2961.42351, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_U_e, (-6, 3, -0.1, &r), 24450.804481, TEST_TOL0, GSL_SUCCESS); #ifdef FIXME /* unimplemented case */ TEST_SF(s, gsl_sf_hyperg_U_e, ( 3, 4, -0.1, &r), -1000.0, TEST_TOL0, GSL_SUCCESS); #endif TEST_SF(s, gsl_sf_hyperg_U_e, ( 2, 4, -0.1, &r), -1900.0, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_U_e, ( 1, 4, -0.1, &r), -1810.0, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_U_e, ( 0, 4, -0.1, &r), 1.0, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_U_e, (-1, 4, -0.1, &r), -4.10, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_U_e, (-2, 4, -0.1, &r), 21.01, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_U_e, (-3, 4, -0.1, &r), -129.181, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_U_e, (-4, 4, -0.1, &r), 926.5481, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_U_e, (-5, 4, -0.1, &r), -7594.16401, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_U_e, (-6, 4, -0.1, &r), 70015.788541, TEST_TOL0, GSL_SUCCESS); /* Tests for b < 0 */ TEST_SF(s, gsl_sf_hyperg_U_e, ( 0, -1, -0.1, &r), 1.0, TEST_TOL0, GSL_SUCCESS); #ifdef FIXME /* unimplemented case */ TEST_SF(s, gsl_sf_hyperg_U_e, (-1, -1, -0.1, &r), 0.9, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_U_e, (-2, -1, -0.1, &r), 0.01, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_U_e, (-3, -1, -0.1, &r), -0.031, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_U_e, (-4, -1, -0.1, &r), 0.1281, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_U_e, (-5, -1, -0.1, &r), -0.66151, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_U_e, (-6, -1, -0.1, &r), 4.098241, TEST_TOL0, GSL_SUCCESS); #endif TEST_SF(s, gsl_sf_hyperg_U_e, ( 0, -2, -0.1, &r), 1.0, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_U_e, (-1, -2, -0.1, &r), 1.9, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_U_e, (-2, -2, -0.1, &r), 1.81, TEST_TOL0, GSL_SUCCESS); #ifdef FIXME /* unimplemented case */ TEST_SF(s, gsl_sf_hyperg_U_e, (-3, -2, -0.1, &r), -0.001, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_U_e, (-4, -2, -0.1, &r), 0.0041, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_U_e, (-5, -2, -0.1, &r), -0.02101, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_U_e, (-6, -2, -0.1, &r), 0.129181, TEST_TOL0, GSL_SUCCESS); #endif TEST_SF(s, gsl_sf_hyperg_U_e, ( 0, -3, -0.1, &r), 1.0, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_U_e, (-1, -3, -0.1, &r), 2.9, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_U_e, (-2, -3, -0.1, &r), 5.61, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_U_e, (-3, -3, -0.1, &r), 5.429, TEST_TOL0, GSL_SUCCESS); #ifdef FIXME /* unimplemented case */ TEST_SF(s, gsl_sf_hyperg_U_e, (-4, -3, -0.1, &r), 0.0001, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_U_e, (-5, -3, -0.1, &r), -0.00051, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_U_e, (-6, -3, -0.1, &r), 0.003121, TEST_TOL0, GSL_SUCCESS); #endif TEST_SF(s, gsl_sf_hyperg_U_e, ( 0, -4, -0.1, &r), 1.0, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_U_e, (-1, -4, -0.1, &r), 3.9, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_U_e, (-2, -4, -0.1, &r), 11.41, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_U_e, (-3, -4, -0.1, &r), 22.259, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_U_e, (-4, -4, -0.1, &r), 21.7161, TEST_TOL0, GSL_SUCCESS); #ifdef FIXME /* unimplemented case */ TEST_SF(s, gsl_sf_hyperg_U_e, (-5, -4, -0.1, &r), -1e-5, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_U_e, (-6, -4, -0.1, &r), 0.000061, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_U_e, (-7, -4, -0.1, &r), -0.0004341, TEST_TOL0, GSL_SUCCESS); #endif /* Tests for integer a */ TEST_SF(s, gsl_sf_hyperg_U_e, (-3, 0.5, -0.5, &r), -9.5, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_U_e, (-8, 0.5, -0.5, &r), 180495.0625, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_U_e, (-8, 1.5, -0.5, &r), 827341.0625, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_U_e, (-8, 1.5, -10, &r), 7.162987810253906e9, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_U_e, (3, 6, -0.5, &r), -296.0, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_U_e, (3, 7, -0.5, &r), 2824, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_U_e, (5, 12, -1.7, &r), -153.262676210016018065768591104, TEST_TOL0, GSL_SUCCESS); /* A few random tests */ TEST_SF(s, gsl_sf_hyperg_U_e, (0, 0, -0.5, &r), 1, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_U_e, (0, 1, -0.5, &r), 1, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_U_e, (0, 1, -0.001, &r), 1, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_U_e, (-1, 0.99, -0.1, &r), -1.09, TEST_TOL0, GSL_SUCCESS); #ifdef FIXME /* unimplemented case */ TEST_SF(s, gsl_sf_hyperg_U_e, (-1, 0, -0.5, &r), -0.5, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_U_e, (-2, 0, -0.5, &r), 1.25, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_U_e, (-7, 0, -0.1, &r), -668.2263421, TEST_TOL0, GSL_SUCCESS); #endif TEST_SF(s, gsl_sf_hyperg_U_int_e, (3, 6, -0.5, &r), -296.0, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_U_int_e, (3, 7, -0.5, &r), 2824, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_U_int_e, (5, 12, -1.7, &r), -153.262676210016018065768591104, TEST_TOL0, GSL_SUCCESS); /* 2F1 */ TEST_SF(s, gsl_sf_hyperg_2F1_e, (1, 1, 1, 0.5, &r), 2.0, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_2F1_e, (8, 8, 1, 0.5, &r), 12451584.0, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_2F1_e, (8, -8, 1, 0.5, &r), 0.13671875, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_2F1_e, (8, -8.1, 1, 0.5, &r), 0.14147385378899930422, TEST_TOL4, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_2F1_e, (8, -8, 1, -0.5, &r), 4945.136718750000000, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_2F1_e, (8, -8, -5.5, 0.5, &r), -906.6363636363636364, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_2F1_e, (8, -8, -5.5, -0.5, &r), 24565.363636363636364, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_2F1_e, (8, 8, 1, -0.5, &r), -0.006476312098196747669, TEST_TOL2, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_2F1_e, (8, 8, 5, 0.5, &r), 4205.714285714285714, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_2F1_e, (8, 8, 5, -0.5, &r), 0.0028489656290296436616, TEST_TOL2, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_2F1_e, (9, 9, 1, 0.99, &r), 1.2363536673577259280e+38 , TEST_TOL2, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_2F1_e, (9, 9, -1.5, 0.99, &r), 3.796186436458346579e+46, TEST_TOL2, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_2F1_e, (9, 9, -1.5, -0.99, &r), 0.14733409946001025146, TEST_TOL1, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_2F1_e, (9, 9, -8.5, 0.99, &r), -1.1301780432998743440e+65, TEST_TOL2, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_2F1_e, (9, 9, -8.5, -0.99, &r), -8.856462606575344483, TEST_TOL1, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_2F1_e, (9, 9, -21.5, 0.99, &r), 2.0712920991876073253e+95, TEST_TOL3, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_2F1_e, (9, 9, -21.5, -0.99, &r), -74.30517015382249216, TEST_TOL2, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_2F1_e, (9, 9, -100.5, 0.99, &r), -3.186778061428268980e+262, TEST_TOL3, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_2F1_e, (9, 9, -100.5, -0.99, &r), 2.4454358338375677520, TEST_TOL1, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_2F1_e, (25, 25, 1, -0.5, &r), -2.9995530823639545027e-06, TEST_SQRT_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_2F1_e, (1.5, 0.5, 2.0, 1.0-1.0/64.0, &r), 3.17175539044729373926, TEST_TOL3, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_2F1_e, (1.5, 0.5, 2.0, 1.0-1.0/128.0, &r), 3.59937243502024563424, TEST_TOL2, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_2F1_e, (1.5, 0.5, 2.0, 1.0-1.0/256.0, &r), 4.03259299524392504369, TEST_TOL1, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_2F1_e, (1.5, 0.5, 2.0, 1.0-1.0/1024.0, &r), 4.90784159359675398250, TEST_TOL1, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_2F1_e, (1.5, 0.5, 2.0, 1.0-1.0/65536.0, &r), 7.552266033399683914, TEST_TOL1, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_2F1_e, (1.5, 0.5, 2.0, 1.0-1.0/16777216.0, &r), 11.08235454026043830363, TEST_TOL1, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_2F1_e, (1.5, 0.5, 2.0, -1.0+1.0/1024.0, &r), 0.762910940909954974527, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_2F1_e, (1.5, 0.5, 2.0, -1.0+1.0/65536.0, &r), 0.762762124908845424449, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_2F1_e, (1.5, 0.5, 2.0, -1.0+1.0/1048576.0, &r), 0.762759911089064738044, TEST_TOL0, GSL_SUCCESS); /* added special handling with x == 1.0 , Richard J. Mathar, 2008-01-09 */ TEST_SF(s, gsl_sf_hyperg_2F1_e, (1.5, 0.5, 3.0, 1.0, &r), 1.6976527263135502482014268 , TEST_TOL2, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_2F1_e, (1.5, -4.2, 3.0, 1.0, &r), .15583601560025710649555254 , TEST_TOL2, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_2F1_e, (-7.4, 0.7, -1.5, 1.0, &r), -.34478866959246584996859 , TEST_TOL2, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_2F1_e, (0.1, -2.7, -1.5, 1.0, &r), 1.059766766063610122925 , TEST_TOL2, GSL_SUCCESS); /* Taylor Binnington a = 0 */ TEST_SF(s, gsl_sf_hyperg_2F1_e, (0, -2, -4, 0.5, &r), 1.0 , TEST_TOL2, GSL_SUCCESS); /* 2F1 conj */ TEST_SF(s, gsl_sf_hyperg_2F1_conj_e, (1, 1, 1, 0.5, &r), 3.352857095662929028, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_2F1_conj_e, (8, 8, 1, 0.5, &r), 1.7078067538891293983e+09, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_2F1_conj_e, (8, 8, 5, 0.5, &r), 285767.15696901140627, TEST_TOL1, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_2F1_conj_e, (8, 8, 1, -0.5, &r), 0.007248196261471276276, TEST_TOL3, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_2F1_conj_e, (8, 8, 5, -0.5, &r), 0.00023301916814505902809, TEST_TOL3, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_2F1_conj_e, (25, 25, 1, -0.5, &r), 5.1696944096e-06, TEST_SQRT_TOL0, GSL_SUCCESS); /* updated correct values, testing enabled, Richard J. Mathar, 2008-01-09 */ TEST_SF(s, gsl_sf_hyperg_2F0_e, (0.01, 1.0, -0.02, &r), .99980388665511730901180717 , TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_2F0_e, (0.1, 0.5, -0.02, &r), .99901595171179281891589794 , TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_2F0_e, (1, 1, -0.02, &r), .98075549650574351826538049000 , TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_2F0_e, (8, 8, -0.02, &r), .32990592849626965538692141 , TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_2F0_e, (50, 50, -0.02, &r), .2688995263772964415245902e-12 , TEST_TOL0, GSL_SUCCESS); /* 2F1 renorm */ TEST_SF(s, gsl_sf_hyperg_2F1_renorm_e, (1, 1, 1, 0.5, &r), 2.0, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_2F1_renorm_e, (8, 8, 1, 0.5, &r), 12451584.0, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_2F1_renorm_e, (8, -8, 1, 0.5, &r), 0.13671875, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_2F1_renorm_e, (8, -8, 1, -0.5, &r), 4945.13671875, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_2F1_renorm_e, (8, -8, -5.5, 0.5, &r), -83081.19167659493609, TEST_TOL2, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_2F1_renorm_e, (8, -8, -5.5, -0.5, &r), 2.2510895952730178518e+06, TEST_TOL2, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_2F1_renorm_e, (8, 8, 5, 0.5, &r), 175.2380952380952381, TEST_TOL1, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_2F1_renorm_e, (9, 9, -1.5, 0.99, &r), 1.6063266334913066551e+46, TEST_TOL2, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_2F1_renorm_e, (9, 9, -1.5, -0.99, &r), 0.06234327316254516616, TEST_TOL2, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_2F1_renorm_e, (5, 5, -1, 0.5, &r), 4949760.0, TEST_TOL1, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_2F1_renorm_e, (5, 5, -10, 0.5, &r), 139408493229637632000.0, TEST_TOL2, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_2F1_renorm_e, (5, 5, -100, 0.5, &r), 3.0200107544594411315e+206, TEST_TOL3, GSL_SUCCESS); /* 2F1 conj renorm */ TEST_SF(s, gsl_sf_hyperg_2F1_conj_renorm_e, (9, 9, -1.5, 0.99, &r), 5.912269095984229412e+49, TEST_TOL2, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_2F1_conj_renorm_e, (9, 9, -1.5, -0.99, &r), 0.10834020229476124874, TEST_TOL2, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_2F1_conj_renorm_e, (5, 5, -1, 0.5, &r), 1.4885106335357933625e+08, TEST_TOL2, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_2F1_conj_renorm_e, (5, 5, -10, 0.5, &r), 7.968479361426355095e+21, TEST_TOL2, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_2F1_conj_renorm_e, (5, 5, -100, 0.5, &r), 3.1113180227052313057e+208, TEST_TOL3, GSL_SUCCESS); return s; }
When Bart is talking to the boy 's father on the phone he says " I think I hear a dingo eating your baby " , referencing the case of Azaria Chamberlain , a ten @-@ week @-@ old baby who was killed by dingoes . The bullfrogs taking over Australia and destroying all the crops is a reference to the cane toad , originally introduced to Australia in order to protect sugar canes from the cane beetle , but became a pest in the country .
lemma (in topological_space) at_within_empty [simp]: "at a within {} = bot"
/- Copyright (c) 2016 Minchao Wu. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Minchao Wu -/ import tools.super open classical nat function prod subtype super noncomputable theory theorem lt_or_eq_of_lt_succ {n m : ℕ} (H : n < succ m) : n < m ∨ n = m := lt_or_eq_of_le (le_of_lt_succ H) theorem and_of_not_imp {p q : Prop} (H : ¬ (p → ¬ q)) : p ∧ q := by super theorem not_not_elim {a : Prop} : ¬¬a → a := by_contradiction theorem exists_not_of_not_forall {A : Type} {p : A → Prop} (H : ¬∀x, p x) : ∃x, ¬p x := by_contradiction (λ neg, have ∀ x, ¬ ¬ p x, from forall_not_of_not_exists neg, show _, from H (λ x, not_not_elim (this x))) theorem existence_of_nat_gt (n : ℕ) : ∃ m, n < m := ⟨(succ n),(lt_succ_self n)⟩ namespace kruskal structure [class] quasiorder (A : Type) extends has_le A := (refl : ∀ a, le a a) (trans : ∀ {a b c}, le a b → le b c → le a c) structure [class] wqo (A : Type) extends quasiorder A := (is_good : ∀ f : ℕ → A, ∃ i j, i < j ∧ le (f i) (f j)) def is_good {A : Type} (f : ℕ → A) (o : A → A → Prop) := ∃ i j : ℕ, i < j ∧ o (f i) (f j) def prod_order {A B : Type} (o₁ : A → A → Prop) (o₂ : B → B → Prop) (s : A × B) (t : A × B) := o₁ (s.1) (t.1) ∧ o₂ (s.2) (t.2) instance qo_prod {A B: Type} [o₁ : quasiorder A] [o₂ : quasiorder B] : quasiorder (A × B) := let op : A × B → A × B → Prop := prod_order o₁.le o₂.le in have refl : ∀ p : A × B, op p p, by intro; apply and.intro; repeat {apply quasiorder.refl}, have trans : ∀ a b c, op a b → op b c → op a c, from λ x y z h1 h2, ⟨(quasiorder.trans h1^.left h2^.left), quasiorder.trans h1^.right h2^.right⟩, show _, from quasiorder.mk (has_le.mk op) refl trans def terminal {A : Type} (o : A → A → Prop) (f : ℕ → A) (m : ℕ) := ∀ n, m < n → ¬ o (f m) (f n) theorem lt_of_non_terminal {A : Type} {o : A → A → Prop} {f : ℕ → A} {m : ℕ} (H : ¬ @terminal _ o f m) : ∃ n, m < n ∧ o (f m) (f n) := let ⟨n,h⟩ := exists_not_of_not_forall H in ⟨n,(and_of_not_imp h)⟩ section parameter {A : Type} parameter [o : wqo A] parameter f : ℕ → A section parameter H : ∀ N, ∃ r, N < r ∧ terminal o.le f r def terminal_index (n : ℕ) : {x : ℕ // n < x ∧ terminal o.le f x} := nat.rec_on n (let i := some (H 0) in ⟨i, (some_spec (H 0))⟩) (λ a rec_call, let i' := rec_call.1, i := some (H i') in have p : i' < i ∧ terminal o.le f i, from some_spec (H i'), have a < i', from (rec_call.2)^.left, have succ a < i, from lt_of_le_of_lt this p^.left, ⟨i, ⟨this,p^.right⟩⟩) lemma increasing_ti {n m : ℕ} : n < m → (terminal_index n).1 < (terminal_index m).1 := nat.rec_on m (λ H, absurd H dec_trivial) (λ a ih lt, have disj : n < a ∨ n = a, from lt_or_eq_of_lt_succ lt, have (terminal_index a).1 < (terminal_index (succ a)).1, from (some_spec $ H (terminal_index a).1)^.left, or.elim disj (λ Hl, lt_trans (ih Hl) this) (λ Hr, by rw Hr;exact this)) private def g (n : ℕ) := f (terminal_index n).1 lemma terminal_g (n : ℕ) : terminal o.le g n := have ∀ n', (terminal_index n).1 < n' → ¬ (f (terminal_index n)^.1) ≤ (f n'), from ((terminal_index n).2)^.right, λ n' h, this (terminal_index n').1 (increasing_ti h) lemma bad_g : ¬ is_good g o.le := have H1 : ∀ i j, i < j → ¬ (g i) ≤ (g j), from λ i j h, (terminal_g i) j h, suppose ∃ i j, i < j ∧ (g i) ≤ (g j), let ⟨i,j,h⟩ := this in have ¬ (g i) ≤ (g j), from H1 i j h^.left, show _, from this h^.right lemma local_contradiction : false := bad_g (wqo.is_good g) end theorem finite_terminal : ∃ N, ∀ r, N < r → ¬ terminal o.le f r := have ¬ ∀ N, ∃ r, N < r ∧ @terminal A o.le f r, by apply local_contradiction, have ∃ N, ¬ ∃ r, N < r ∧ @terminal A o.le f r, by super, let ⟨n,h⟩ := this in have ∀ r, n < r → ¬ @terminal A o.le f r, by super, ⟨n,this⟩ end section parameters {A B : Type} parameters [o₁ : wqo A] [o₂ : wqo B] section parameter f : ℕ → A × B theorem finite_terminal_on_A : ∃ N, ∀ r, N < r → ¬ @terminal A o₁.le (fst ∘ f) r := finite_terminal (fst ∘ f) def sentinel := some finite_terminal_on_A def h_helper (n : ℕ) : {x : ℕ // sentinel < x ∧ ¬ @terminal A o₁.le (fst ∘ f) x} := nat.rec_on n (have ∃ m, sentinel < m, by apply existence_of_nat_gt, let i := some this in have ge : sentinel < i, from some_spec this, have ¬ @terminal A o₁.le (fst ∘ f) i, from (some_spec finite_terminal_on_A) i ge, have sentinel < i ∧ ¬ terminal o₁.le (fst ∘ f) i, from ⟨ge,this⟩, ⟨i, this⟩) (λ a rec_call, let i' := rec_call.1 in have lt' : sentinel < i', from (rec_call.2)^.left, have ¬ terminal o₁.le (fst ∘ f) i', from (rec_call.2)^.right, have ∃ n, i' < n ∧ ((fst ∘ f) i') ≤ ((fst ∘ f) n), from lt_of_non_terminal this, let i := some this in have i' < i, from (some_spec this)^.left, have lt : sentinel < i, from lt.trans lt' this, have ∀ r, sentinel < r → ¬ terminal o₁.le (fst ∘ f) r, from some_spec finite_terminal_on_A, have ¬ terminal o₁.le (fst ∘ f) i, from this i lt, have sentinel < i ∧ ¬ terminal o₁.le (fst ∘ f) i, from ⟨lt,this⟩, ⟨i,this⟩) private def h (n : ℕ) : ℕ := (h_helper n).1 private lemma foo (a : ℕ) : h a < h (succ a) ∧ (fst ∘ f) (h a) ≤ (fst ∘ f) (h (succ a)) := have ¬ terminal o₁.le (fst ∘ f) (h a), from ((h_helper a).2)^.right, have ∃ n, (h a) < n ∧ ((fst ∘ f) (h a)) ≤ ((fst ∘ f) n), from lt_of_non_terminal this, show _, from some_spec this theorem property_of_h {i j : ℕ} : i < j → (fst ∘ f) (h i) ≤ (fst ∘ f) (h j) := nat.rec_on j (λ H, absurd H dec_trivial) (λ a IH lt, have H1 : (fst ∘ f) (h a) ≤ (fst ∘ f) (h (succ a)), from (foo a)^.right, have disj : i < a ∨ i = a, from lt_or_eq_of_lt_succ lt, or.elim disj (λ Hl, quasiorder.trans (IH Hl) H1) (λ Hr, by simp [Hr, H1])) theorem increasing_h {i j : ℕ} : i < j → h i < h j := nat.rec_on j (λ H, absurd H dec_trivial) (λ a ih lt, have H1 : (h a) < h (succ a), from (foo a)^.left, have disj : i < a ∨ i = a, from lt_or_eq_of_lt_succ lt, or.elim disj (λ Hl, lt_trans (ih Hl) H1) (λ Hr, by simp [Hr, H1])) theorem good_f : is_good f (prod_order o₁.le o₂.le) := have ∃ i j : ℕ, i < j ∧ (snd ∘ f ∘ h) i ≤ (snd ∘ f ∘ h) j, from wqo.is_good (snd ∘ f ∘ h), let ⟨i,j,H⟩ := this in have (fst ∘ f) (h i) ≤ (fst ∘ f) (h j), from property_of_h H^.left, have Hr : (fst ∘ f) (h i) ≤ (fst ∘ f) (h j) ∧ (snd ∘ f) (h i) ≤ (snd ∘ f) (h j), from ⟨this, H^.right⟩, have h i < h j, from increasing_h H^.left, ⟨(h i), (h j), ⟨this,Hr⟩⟩ end theorem good_pairs (f : ℕ → A × B) : is_good f (prod_order o₁.le o₂.le) := good_f f end def wqo_prod {A B : Type} [o₁ : wqo A] [o₂ : wqo B] : wqo (A × B) := let op : A × B → A × B → Prop := prod_order o₁.le o₂.le in have refl : ∀ p : A × B, op p p, from λ p, ⟨quasiorder.refl p.1,quasiorder.refl p.2⟩, -- by intro; apply and.intro;repeat {apply wqo.refl}, have trans : ∀ a b c, op a b → op b c → op a c, from λ a b c h1 h2, ⟨quasiorder.trans h1^.left h2^.left, quasiorder.trans h1^.right h2^.right⟩, show _, from wqo.mk ⟨⟨op⟩,refl,trans⟩ good_pairs -- example {A B : Type} [o₁ : wqo A] [o₂ : wqo B] : (@wqo_prod A B _ _).le = prod_order o₁.le o₂.le := rfl end kruskal
function launcher(alignmentType) % clc; clear; close all addpath(genpath('thirdparty')); %% if ~exist('alignmentType','var') alignmentType = 1; %0 for nowarp, 1 for optical flow, 2 for homography, 3 for similarity end path2dataset = '../dataset/qualitative_datasets'; %% datasets = dir(path2dataset); dirFlags = [datasets.isdir]; datasets(~dirFlags) = []; datasets = {datasets(3:end).name}; % permute and divide into training and testing sets num_datasets = numel(datasets); seed = 12; rng(seed); ds_idx = randperm(num_datasets); alignment = ''; if alignmentType == 0 alignment = '_nowarp'; elseif alignmentType == 1 alignment = '_OF'; elseif alignmentType == 2 alignment = '_homography'; end path2output = @(stage,d) sprintf('../data/testing_real_all_nostab%s/%s/image_%s',alignment,stage,d); fn_in = @(dsi,type,fri) [path2dataset '/' datasets{ds_idx(dsi)} '/' type '/' sprintf('%05d.jpg',fri)]; fn_out = @(stage,fri,frid) sprintf('%s/%05d.jpg',path2output(stage,frid),fri); ds_range = 1:num_datasets; for l = -2:2 for i = 1:num_datasets checkDir(path2output(datasets{i},num2str(l))); end end %% for ii = 1:length(ds_range) fr_cnt = 0; i = ds_range(ii); % get the frame range datasets{ds_idx(i)} files = dir([path2dataset '/' datasets{ds_idx(i)} '/input/*.jpg']); if isempty(files) files = dir([path2dataset '/' datasets{ds_idx(i)} '/input/*.png']); end if ~isempty(files) [~,ststr,~] = fileparts(files(1).name); [~,enstr,~] = fileparts(files(end).name); start_frame = str2num(ststr); end_frame = str2num(enstr); frame_range = start_frame:min(start_frame+99,end_frame); num_frame = numel(frame_range); fr_idx = floor(linspace(frame_range(1),frame_range(end),num_frame)); for j = 1:num_frame fr_cnt = fr_cnt+1; % save image_1 to image_5 v0 = im2double(imread(fn_in(i,'input',fr_idx(j)+0))); v0g = single(rgb2gray(v0)); [h,w,~] = size(v0); for l = -2:2 if l ~= 0 vi = im2double(imread(fn_in(i,'input',max(min(fr_idx(j)+l,frame_range(end)),frame_range(1))))); vig = single(rgb2gray(vi)); if alignmentType == 0 v_i0 = vi; elseif alignmentType == 1 flo_i0 = genFlow(v0g, vig); [v_i0, ~] = warpToRef(v0, vi, flo_i0); elseif alignmentType == 2 v_i0 = homographyAlignment(v0,vi,0); elseif alignmentType == 3 v_i0 = similarityAlignment(v0,vi,0); end else v_i0 = v0; end imwrite(v_i0, fn_out(datasets{ds_idx(i)},fr_cnt,num2str(l))); end end end end
{-# LANGUAGE ViewPatterns #-} module AsteriskGaussian where import Control.Parallel.Strategies import Data.Array.Repa as R import Data.Complex as C import Data.List as L import Data.Vector.Storable as VS import Data.Vector.Unboxed as VU import Graphics.Rendering.Chart.Backend.Cairo import Graphics.Rendering.Chart.Easy import Math.Gamma import Pinwheel.FourierSeries2D -- import Pinwheel.Gaussian import qualified FourierPinwheel.Filtering as FP import System.Directory import System.Environment import System.FilePath import Text.Printf import Utils.BLAS import Utils.List import Utils.Distribution main = do args@(numR2FreqStr:numThetaFreqStr:numRFreqStr:numPointStr:numThetaStr:numRStr:xStr:yStr:periodStr:std1Str:std2Str:stdR2Str:_) <- getArgs let numR2Freq = read numR2FreqStr :: Int numThetaFreq = read numThetaFreqStr :: Int numRFreq = read numRFreqStr :: Int numPoint = read numPointStr :: Int numTheta = read numThetaStr :: Int numR = read numRStr :: Int x = read xStr :: Double y = read yStr :: Double period = read periodStr :: Double std1 = read std1Str :: Double std2 = read std2Str :: Double stdR2 = read stdR2Str :: Double folderPath = "output/test/AsteriskGaussian" let centerR2Freq = div numR2Freq 2 centerThetaFreq = div numThetaFreq 2 periodEnv = period ^ 2 / 4 a = std1 b = std2 asteriskGaussianFreqTheta = VS.concat . parMap rdeepseq (\tFreq' -> let tFreq = tFreq' - centerThetaFreq arr = R.map (* (gaussian1DFreq (fromIntegral tFreq) b :+ 0)) $ analyticalFourierCoefficients1 numR2Freq 1 tFreq 0 a period periodEnv in VS.convert . toUnboxed . computeS $ centerHollowArray numR2Freq arr) $ [0 .. numThetaFreq - 1] deltaTheta = 2 * pi / Prelude.fromIntegral numTheta harmonicsThetaD = fromFunction (Z :. numTheta :. numThetaFreq :. numR2Freq :. numR2Freq) $ \(Z :. theta' :. tFreq' :. xFreq' :. yFreq') -> let tFreq = fromIntegral $ tFreq' - centerThetaFreq xFreq = fromIntegral $ xFreq' - centerR2Freq yFreq = fromIntegral $ yFreq' - centerR2Freq theta = fromIntegral theta' * deltaTheta in (1 / (2 * pi) :+ 0) * cis (2 * pi / period * (x * xFreq + y * yFreq) + tFreq * theta) harmonicsTheta <- computeUnboxedP harmonicsThetaD xs <- VS.toList . VS.map magnitude <$> gemmBLAS numTheta 1 (numThetaFreq * numR2Freq ^ 2) (VS.convert . toUnboxed $ harmonicsTheta) asteriskGaussianFreqTheta toFile def (folderPath </> "theta.png") $ do layout_title .= printf "(%d , %d)" (Prelude.round x :: Int) (Prelude.round y :: Int) plot (line "" [ L.zip [fromIntegral i * deltaTheta / pi | i <- [0 .. numTheta - 1]] xs ]) let centerRFreq = div numRFreq 2 centerR2Freq = div numR2Freq 2 gaussian2D = computeUnboxedS . fromFunction (Z :. numR2Freq :. numR2Freq) $ \(Z :. i' :. j') -> let i = i' - centerR2Freq j = j' - centerR2Freq in exp (pi * fromIntegral (i ^ 2 + j ^ 2) / ((-1) * period ^ 2 * stdR2 ^ 2)) / (2 * pi * stdR2 ^ 2) :+ 0 asteriskGaussianFreqR = VS.concat . parMap rdeepseq (\rFreq' -> let rFreq = rFreq' - centerRFreq arr = R.map (* ((gaussian1DFourierCoefficients (fromIntegral rFreq) (log periodEnv) b :+ 0) -- * -- cis -- ((-2) * pi / log periodEnv * fromIntegral rFreq * -- log 0.25) )) . centerHollowArray numR2Freq $ analyticalFourierCoefficients1 numR2Freq 1 0 rFreq a period periodEnv in VS.convert . toUnboxed . computeS . centerHollowArray numR2Freq $ arr -- *^ gaussian2D ) $ [0 .. numRFreq - 1] deltaR = log periodEnv / Prelude.fromIntegral numR harmonicsRD = fromFunction (Z :. numR :. numRFreq :. numR2Freq :. numR2Freq) $ \(Z :. r' :. rFreq' :. xFreq' :. yFreq') -> let rFreq = fromIntegral $ rFreq' - centerRFreq xFreq = fromIntegral $ xFreq' - centerR2Freq yFreq = fromIntegral $ yFreq' - centerR2Freq r = fromIntegral r' * deltaR - log periodEnv / 2 in (1 / log periodEnv :+ 0) * cis (2 * pi / period * (x * xFreq + y * yFreq) + 2 * pi / log periodEnv * rFreq * r) harmonicsR <- computeUnboxedP harmonicsRD ys <- VS.toList . VS.map magnitude <$> gemmBLAS numR 1 (numRFreq * numR2Freq ^ 2) (VS.convert . toUnboxed $ harmonicsR) asteriskGaussianFreqR toFile def (folderPath </> "R.png") $ do layout_title .= printf "(%.3f , %.3f)" x y plot (line "" [ L.zip [ fromIntegral i * deltaR - log periodEnv / 2 | i <- [0 .. numR - 1] ] ys ])
# Scientific Computing with Python (Second Edition) # Chapter 16 ## 16.1 What are symbolic computations?¶ ```python from scipy.integrate import quad quad(lambda x : 1/(x**2+x+1),a=0, b=4) ``` (0.9896614396122965, 1.1735663442283496e-08) ### 16.1.1 Elaborating an example in SymPy ```python from sympy import * init_printing() ``` ```python x = symbols('x') f = Lambda(x, 1/(x**2 + x + 1)) ``` ```python integrate(f(x),x) ``` ```python pf = Lambda(x, integrate(f(x),x)) diff(pf(x),x) ``` ```python simplify(diff(pf(x),x)) ``` ```python pf(4) - pf(0) ``` ```python (pf(4)-pf(0)).evalf() ``` ## 16.2 Basic elements of SymPy ### 16.2.1 Symbols – the basis of all formulas ```python x, y, mass, torque = symbols('x y mass torque') ``` ```python symbol_list=[symbols(l) for l in 'x y mass torque'.split()] symbol_list ``` ```python x, y, mass, torque = symbol_list ``` ```python row_index=symbols('i',integer=True) print(row_index**2) # returns i**2 ``` i**2 ```python integervariables = symbols('i:l', integer=True) dimensions = symbols('m:n', integer=True) realvariables = symbols('x:z', real=True) ``` ```python A = symbols('A1:3(1:4)') A ``` ### 16.2.2 Numbers ```python 1/3 # returns 0.3333333333333333 sympify(1)/sympify(3) # returns '1/3' ``` ```python Rational(1,3) ``` ### 16.2.3 Functions ```python f, g = symbols('f g', cls=Function) ``` ```python f = Function('f') g = Function('g') ``` ```python x = symbols('x') f, g = symbols('f g', cls=Function) diff(f(x*g(x)),x) ``` ```python x = symbols('x:3') f(*x) ``` ```python [f(*x).diff(xx) for xx in x] ``` ```python x = symbols('x') f(x).series(x,0,n=4) ``` ### 16.2.4 Elementary functions ```python x = symbols('x') simplify(cos(x)**2 + sin(x)**2) # returns 1 ``` ```python atan(x).diff(x) - 1./(x**2+1) # returns 0 ``` ```python import numpy as np import sympy as sym # working with numbers x=3 y=np.sin(x) y ``` ```python # working with symbols x=sym.symbols('x') y=sym.sin(x) y ``` ### 16.2.5 Lambda - functions ```python C,rho,A,v=symbols('C rho A v') # C drag coefficient, A coss-sectional area, rho density # v speed f_drag = Lambda(v,-Rational(1,2)*C*rho*A*v**2) f_drag ``` ```python x = symbols('x') f_drag(2) ``` ```python f_drag(x/3) ``` ```python x,y=symbols('x y') t=Lambda((x,y),sin(x) + cos(2*y)) ``` ```python t(pi,pi/2) # returns -1 ``` ```python p=(pi,pi/2) t(*p) # returns -1 ``` ```python F=Lambda((x,y),Matrix([sin(x) + cos(2*y), sin(x)*cos(y)])) F ``` ```python F ``` ```python F(x,y).jacobian((x,y)) ``` ## 16.3 Symbolic Linear Algebra ### 16.3.1 Symbolic matrices ```python phi=symbols('phi') rotation=Matrix([[cos(phi), -sin(phi)], [sin(phi), cos(phi)]]) rotation ``` ```python simplify(rotation.T*rotation -eye(2)) # returns a 2 x 2 zero matrix ``` ```python simplify(rotation.T - rotation.inv()) ``` ```python M = Matrix(3,3, symbols('M:3(:3)')) M ``` ```python def toeplitz(n): a = symbols('a:'+str(2*n)) f = lambda i,j: a[i-j+n-1] return Matrix(n,n,f) ``` ```python toeplitz(5) ``` ```python M[0,2]=0 # changes one element M[1,:]=Matrix(1,3,[1,2,3]) # changes an entire row M ``` ### 16.3.2 Examples for linear algebra methods in SymPy ```python A = Matrix(3,3,symbols('A1:4(1:4)')) b = Matrix(3,1,symbols('b1:4')) x = A.LUsolve(b) x ``` ```python simplify(x) ``` ## 16.4 Substitutions ```python x, a = symbols('x a') b = x + a b ``` ```python x, a = symbols('x a') b = x + a c = b.subs(x,0) d = c.subs(a,2*a) print(c, d) # returns (a, 2a) ``` a 2*a ```python b.subs(x,0) ``` ```python b.subs({x:0}) # a dictionary as argument ``` ```python b.subs({x:0, a:2*a}) # several substitutions in one ``` ```python x, a, y = symbols('x a y') b = x + a b.subs({a:a*y, x:2*x, y:a/y}) b.subs({y:a/y, a:a*y, x:2*x}) ``` ```python b.subs([(y,a/y), (a,a*y), (x,2*x)]) ``` ```python n, alpha = symbols('n alpha') b = cos(n*alpha) b.subs(cos(n*alpha), 2*cos(alpha)*cos((n-1)*alpha)-cos((n-2)*alpha)) ``` ```python T=toeplitz(5) T ``` ```python T.subs(T[0,2],0) ``` ```python a2 = symbols('a2') T.subs(a2,0) ``` ```python symbs = [symbols('a'+str(i)) for i in range(19) if i < 3 or i > 5] substitutions=list(zip(symbs,len(symbs)*[0])) T.subs(substitutions) ``` ## 16. 5 Evaluating symbolic expressions ```python pi.evalf() # returns 3.14159265358979 ``` ```python pi.evalf(30) # returns 3.14159265358979323846264338328 ``` ### 16.5.1 Example: A study on the convergence order of Newton's Method ```python import sympy as sym x = sym.Rational(1,2) xns=[x] for i in range(1,9): x = (x - sym.atan(x)*(1+x**2)).evalf(3000) xns.append(x) ``` ```python # Test for cubic convergence import numpy as np # Test for cubic convergence print(np.array(np.abs(np.diff(xns[1:]))/np.abs(np.diff(xns[:-1]))**3,dtype=np.float64)) ``` [0.41041618 0.65747717 0.6666665 0.66666667 0.66666667 0.66666667 0.66666667] ### 16.5.2 Converting a symbolic expression into a numeric function ```python t=symbols('t') x=[0,t,1] # The Vandermonde Matrix V = Matrix([[0, 0, 1], [t**2, t, 1], [1, 1,1]]) y = Matrix([0,1,-1]) # the data vector a = simplify(V.LUsolve(y)) # the coefficients # the leading coefficient as a function of the parameter a2 = Lambda(t,a[0]) a2 ``` ```python leading_coefficient = lambdify(t,a2(t)) ``` ```python import numpy as np import matplotlib.pyplot as mp t_list= np.linspace(-0.4,1.4,200) ax=mp.subplot(111) lc_list = [leading_coefficient(t) for t in t_list] ax.plot(t_list, lc_list) ax.axis([-.4,1.4,-15,10]) ax.set_xlabel('Free parameter $t$') ax.set_ylabel('$a_2(t)$') ```
-- Idris2 module Sinter import Data.List import Data.Vect import Data.String.Extra import Core.Context import Core.CompileExpr import Compiler.LambdaLift import Compiler.Common import Idris.Driver ------------ -- SINTER -- ------------ sqBrack : String -> String sqBrack s = "[ " ++ s ++ " ]" -- only literals in sinter are ints data SinterLit = SinInt Int Nat -- TODO: Int is value then width | SinStr String -- IDs are basically strings (not really, TODO) data SinterID = MkSinterID String genSinterID : SinterID -> String genSinterID (MkSinterID id_) = id_ Show SinterID where show = genSinterID -- declared here, defined later data SinterGlobal : Type where -- an expression is a list of expressions, an ID, or a literal data Sexpr : Type where SexprList : (es : List Sexpr) -> Sexpr SexprID : (id_ : SinterID) -> Sexpr SexprLit : SinterLit -> Sexpr SexprLet : (next : Sexpr) -> (defFun : SinterGlobal) -> Sexpr -- let-in for sinter genSexpr : Sexpr -> String genSexpr (SexprList []) = "[]" genSexpr (SexprList es) = let exprs = map genSexpr es in sqBrack $ join " " exprs -- in "[ " ++ (concat exprs) ++ " ]" genSexpr (SexprID id_) = show id_ genSexpr (SexprLit (SinInt v w)) = "( " ++ show w ++ "; " ++ show v ++ " )" genSexpr (SexprLit (SinStr s)) = show s -- TODO genSexpr (SexprLet next defFun) = genSexpr next Show Sexpr where show = genSexpr ------------------------------- -- Things that can be global -- ------------------------------- -- declared earlier, defined here data SinterGlobal = SinDef SinterID (List SinterID) Sexpr | SinDecl SinterID (List SinterID) | SinType SinterID (List SinterID) genSinter : SinterGlobal -> String genSinter (SinDef fName args body) = let args' = map show args argsStr = sqBrack $ join " " args' in sqBrack $ "def " ++ show fName ++ " " ++ argsStr ++ "\n\t" ++ genSexpr body genSinter (SinDecl fName args) = let args' = map show args argsStr = sqBrack $ join " " args' in sqBrack $ "dec " ++ show fName ++ " " ++ argsStr genSinter (SinType tName membs) = let membs' = map show membs membsStr = sqBrack $ join " " membs' in sqBrack $ "type " ++ show tName ++ membsStr Show SinterGlobal where show = genSinter testCase : SinterGlobal testCase = SinDef (MkSinterID "test") [(MkSinterID "arg1"), (MkSinterID "arg2")] (SexprList [SexprLit (SinInt 1 2)]) ----------------------- -- Sinter primitives -- ----------------------- ||| Primitive implemented in sinter sinterPrim : String -> Sexpr sinterPrim name = SexprID $ MkSinterID name ||| Primitive supplied by stdlib sinterStdlib : String -> Sexpr sinterStdlib name = SexprID $ MkSinterID ("stdlib_" ++ name) ||| Call the special sinter function for creating closures sinterClosureCon : Sexpr sinterClosureCon = sinterPrim ">makeClosure" ||| Call the special sinter function for running or adding args to closures sinterClosureAdd : Sexpr sinterClosureAdd = sinterPrim ">closureAddElem" ||| Crash sinter very inelegantly sinterCrash : Sexpr sinterCrash = SexprList [ sinterPrim "CRASH" ] ------------------ -- GORY DETAILS -- ------------------ ||| Symbol for indicating membership of namespace: "--|" specialSep : String specialSep = "--|" ||| Symbol for indicating record access: "." recordAcc : String recordAcc = "." ||| Separate two ids by "specialSep" stitch : SinterID -> SinterID -> SinterID stitch (MkSinterID x) (MkSinterID y) = MkSinterID $ x ++ specialSep ++ y ||| Turn a NS into a string separated by "specialSep" mangleNS : Namespace -> SinterID mangleNS ns = MkSinterID $ showNSWithSep specialSep ns ||| Sinter doesn't have a concept of NameSpaces, so define unique, but ||| identifiable names/strings instead. mangle : Name -> SinterID mangle (NS nameSpace name) = let nameSpace' = mangleNS nameSpace name' = mangle name in stitch nameSpace' name' mangle (UN x) = MkSinterID x mangle (MN x i) = MkSinterID $ x ++ "-" ++ show i mangle (PV n i) = MkSinterID $ (show $ mangle n) ++ "-" ++ show i --mangle (DN x y) = MkSinterID x -- FIXME: correct? (assumes x repr.s y) mangle (DN _ y) = mangle y -- ^ incorrect! the Name itself still -- needs to be mangled; the way to display -- it doesn't necessarily match our way of -- representing names. mangle (RF x) = MkSinterID $ recordAcc ++ x mangle (Nested (i, j) n) = MkSinterID $ "nested_" ++ (show i) ++ "_" ++ (show j) ++ (show $ mangle n) -- string repr.n of case followed by unique Int (?) mangle (CaseBlock x i) = MkSinterID $ "case_" ++ x ++ "-" ++ (show i) mangle (WithBlock x i) = MkSinterID $ "with_" ++ x ++ "-" ++ (show i) mangle (Resolved i) = MkSinterID $ "resolved_" ++ (show i) idrisWorld : Sexpr idrisWorld = SexprID $ MkSinterID "**IDRIS_WORLD**" ||| Assume < 2^31 number of args to any function (seriously, what would you do ||| with 2^31 args?...) nArgsWidth : Nat nArgsWidth = 32 ||| Turn all the arguments (including the scope) into SinterIDs superArgsToSinter : List Name -> List SinterID superArgsToSinter ns = map mangle ns -- Constants constantToSexpr : Constant -> Sexpr constantToSexpr (I x) = SexprLit $ SinInt (cast x) 64 constantToSexpr (BI x) = ?sexprConstBI constantToSexpr (B8 x) = SexprLit $ SinInt (cast x) 8 constantToSexpr (B16 x) = SexprLit $ SinInt (cast x) 16 constantToSexpr (B32 x) = SexprLit $ SinInt (cast x) 32 constantToSexpr (B64 x) = SexprLit $ SinInt (cast x) 64 constantToSexpr (Str x) = SexprLit $ SinStr x constantToSexpr (Ch x) = ?constantToSexpr_rhs_8 constantToSexpr (Db x) = ?constantToSexpr_rhs_9 constantToSexpr WorldVal = idrisWorld constantToSexpr IntType = ?constantToSexpr_rhs_11 constantToSexpr IntegerType = ?constantToSexpr_rhs_12 constantToSexpr Bits8Type = ?constantToSexpr_rhs_13 constantToSexpr Bits16Type = ?constantToSexpr_rhs_14 constantToSexpr Bits32Type = ?constantToSexpr_rhs_15 constantToSexpr Bits64Type = ?constantToSexpr_rhs_16 constantToSexpr StringType = ?constantToSexpr_rhs_17 constantToSexpr CharType = ?constantToSexpr_rhs_18 constantToSexpr DoubleType = ?constantToSexpr_rhs_19 constantToSexpr WorldType = ?constantToSexpr_rhs_20 mutual -- Primitive Functions primFnToSexpr : {scope : _} -> {args : _} -> PrimFn arity -> Vect arity (Lifted (scope ++ args)) -> Sexpr primFnToSexpr (Add ty) [x, y] = SexprList [ sinterStdlib "add", liftedToSexpr x, liftedToSexpr y ] primFnToSexpr (Sub ty) [x, y] = SexprList [ sinterStdlib "sub", liftedToSexpr x, liftedToSexpr y ] primFnToSexpr (Mul ty) [x, y] = SexprList [ sinterStdlib "mul", liftedToSexpr x, liftedToSexpr y ] primFnToSexpr (Div ty) [x, y] = SexprList [ sinterStdlib "div", liftedToSexpr x, liftedToSexpr y ] primFnToSexpr (Mod ty) [x, y] = SexprList [ sinterStdlib "mod", liftedToSexpr x, liftedToSexpr y ] primFnToSexpr (Neg ty) [x] = SexprList [ sinterStdlib "neg", liftedToSexpr x ] primFnToSexpr (ShiftL ty) [x, y] = SexprList [ sinterStdlib "shiftl", liftedToSexpr x, liftedToSexpr y ] primFnToSexpr (ShiftR ty) [x, y] = SexprList [ sinterStdlib "shiftr", liftedToSexpr x, liftedToSexpr y ] primFnToSexpr (BAnd ty) [x, y] = SexprList [ sinterStdlib "bitwAnd", liftedToSexpr x, liftedToSexpr y ] primFnToSexpr (BOr ty) [x, y] = SexprList [ sinterStdlib "bitwOr", liftedToSexpr x, liftedToSexpr y ] primFnToSexpr (BXOr ty) [x, y] = SexprList [ sinterStdlib "bitwXor", liftedToSexpr x, liftedToSexpr y ] primFnToSexpr (LT ty) [x, y] = SexprList [ sinterStdlib "lt", liftedToSexpr x, liftedToSexpr y ] primFnToSexpr (LTE ty) [x, y] = SexprList [ sinterStdlib "lte", liftedToSexpr x, liftedToSexpr y ] primFnToSexpr (EQ ty) [x, y] = SexprList [ sinterStdlib "eq", liftedToSexpr x, liftedToSexpr y ] primFnToSexpr (GTE ty) [x, y] = SexprList [ sinterStdlib "gte", liftedToSexpr x, liftedToSexpr y ] primFnToSexpr (GT ty) [x, y] = SexprList [ sinterStdlib "gt", liftedToSexpr x, liftedToSexpr y ] -- TODO primFnToSexpr StrLength [s] = ?sinterStrLen primFnToSexpr StrHead [s] = ?sinterStrHead primFnToSexpr StrTail [s] = ?sinterStrTail primFnToSexpr StrIndex [s, i] = ?sinterStrIndex primFnToSexpr StrCons [s1, s2] = ?sinterStrCons primFnToSexpr StrAppend [s1, s2] = SexprList [ sinterStdlib "strAppend", liftedToSexpr s1, liftedToSexpr s2 ] primFnToSexpr StrReverse [s] = ?sinterStrReverse primFnToSexpr StrSubstr [i, j, s] = ?sinterSubstr -- TODO primFnToSexpr DoubleExp [d] = ?primFnToSexpr_rhs_25 primFnToSexpr DoubleLog [d] = ?primFnToSexpr_rhs_26 primFnToSexpr DoubleSin [d] = ?primFnToSexpr_rhs_27 primFnToSexpr DoubleCos [d] = ?primFnToSexpr_rhs_28 primFnToSexpr DoubleTan [d] = ?primFnToSexpr_rhs_29 primFnToSexpr DoubleASin [d] = ?primFnToSexpr_rhs_30 primFnToSexpr DoubleACos [d] = ?primFnToSexpr_rhs_31 primFnToSexpr DoubleATan [d] = ?primFnToSexpr_rhs_32 primFnToSexpr DoubleSqrt [d] = ?primFnToSexpr_rhs_33 primFnToSexpr DoubleFloor [d] = ?primFnToSexpr_rhs_34 primFnToSexpr DoubleCeiling [d] = ?primFnToSexpr_rhs_35 -- TODO primFnToSexpr (Cast x y) [z] = ?primFnToSexpr_rhs_36 primFnToSexpr BelieveMe [_, _, thing] = liftedToSexpr thing -- ^ I believe this is correct? primFnToSexpr Crash [fc, reason] = sinterCrash ||| Create a call to a function which evaluates `in` over `let` ||| let f x = y in z ||| is equivalent to ||| (\f . z) (\x . y) lletToSexpr : {scope : _} -> {args : _} -> FC -> (n : Name) -> (existing : Lifted (scope ++ args)) -> (in_expr : Lifted (n :: (scope ++ args))) -> Sexpr lletToSexpr fc n existing in_expr = let -- containing IN vars = scope ++ args cursedFuncName = show fc ++ show n cFunName = MkSinterID cursedFuncName cFunArgs = (mangle n) :: map mangle vars cFunBody = liftedToSexpr {scope=(n :: scope)} {args=args} in_expr cFunDef = SinDef cFunName cFunArgs cFunBody -- applying this cFunCallArgs = liftedToSexpr {scope=scope} {args=args} existing cFunCall = SexprList $ (SexprID cFunName) :: cFunCallArgs :: (map (SexprID . mangle) vars) in SexprLet cFunCall cFunDef -- Functions ||| Compile the definition to sexprs liftedToSexpr : {scope : _} -> {args : _} -> Lifted (scope ++ args) -> Sexpr -- idx points to right variable; de bruijn index liftedToSexpr (LLocal {idx} fc p) = -- ?llocalToSinter case take (S idx) (scope ++ args) of -- FIXME: this is very naughty and should be handled better [] => assert_total $ idris_crash "scope ++ args did not contain name" (n :: _) => SexprID $ mangle n -- complete function call liftedToSexpr (LAppName fc _ n fArgs) = let funName = SexprID $ mangle n funArgs = map (liftedToSexpr {scope=scope} {args=args}) fArgs in SexprList $ funName :: funArgs -- partial function call liftedToSexpr (LUnderApp fc n missing fArgs) = let sinName = SexprID $ mangle n sinMiss = SexprLit $ SinInt (cast missing) nArgsWidth nArgs = length args sinNArgs = SexprLit $ SinInt (cast nArgs) nArgsWidth -- number of args function expects sinArity = SexprLit $ SinInt (cast (missing + nArgs)) nArgsWidth -- list of arguments --sinArgs = SexprList $ map liftedToSexpr fArgs sinArgs = SexprList $ map (liftedToSexpr {scope=scope} {args=args}) fArgs in -- make a closure containing the above info (sinter-specific closure) SexprList [sinterClosureCon , sinName , sinArity , sinNArgs , sinArgs] -- application of a closure to another argument; potentially to the last arg liftedToSexpr (LApp fc _ closure arg) = let sinClosure = liftedToSexpr closure sinArg = liftedToSexpr arg in SexprList [sinterClosureAdd, sinClosure, sinArg] -- let expressions liftedToSexpr (LLet fc n existing in_expr) = lletToSexpr fc n existing in_expr -- constructor calls liftedToSexpr (LCon fc n tag xs) = let (MkSinterID mn) = mangle n name = MkSinterID $ mn ++ show tag fArgs = map (liftedToSexpr {scope=scope} {args=args}) xs in SexprList $ (SexprID name) :: fArgs -- primitive operators liftedToSexpr (LOp fc _ x xs) = primFnToSexpr x xs liftedToSexpr (LExtPrim fc _ p xs) = ?liftedToSexpr_rhs_8 liftedToSexpr (LConCase fc x xs y) = ?liftedToSexpr_rhs_9 liftedToSexpr (LConstCase fc lvars lConAlts m_default) = let comparator = liftedToSexpr lvars in case m_default of Nothing => sinterCrash (Just x) => ifHelper comparator lConAlts (liftedToSexpr x) liftedToSexpr (LPrimVal fc x) = constantToSexpr x liftedToSexpr (LErased fc) = SexprLit $ SinInt 0 0 liftedToSexpr (LCrash fc x) = sinterCrash ifHelper : {scope : _} -> {args : _} -> Sexpr -> List (LiftedConstAlt (scope ++ args)) -> Sexpr -> Sexpr ifHelper x [] def = def ifHelper x ((MkLConstAlt c body) :: alts) def = let sinC = constantToSexpr c sinBody = liftedToSexpr body ifCond = SexprList [ (sinterStdlib "eq") , x , sinC ] elseBody = ifHelper x alts def in SexprList [ SexprID $ MkSinterID "if" , ifCond, sinBody , elseBody , SexprID $ MkSinterID "32" ] ||| Compile a constructor's definition liftedConToSinter : (tag : Maybe Int) -> (arity : Nat) -> (nt : Maybe Nat) -> Core SinterGlobal liftedConToSinter tag arity nt = ?liftedConToSinter_rhs ||| Compile a pair of Name and its associated definition into a SinterGlobal, ||| i.e.: ||| - mangle the Name into a valid sinter name ||| - compile the definition into a sexpr liftedToSinter : (Name, LiftedDef) -> Core SinterGlobal -- FUNCTIONS liftedToSinter (name, (MkLFun args scope body)) = let sinName = mangle name superArgs = args ++ reverse scope sinArgs = superArgsToSinter superArgs sinDefn = liftedToSexpr body in pure $ SinDef sinName sinArgs sinDefn -- CONSTRUCTORS liftedToSinter (name, (MkLCon tag arity nt)) = let sinName = mangle name sinDefn = liftedConToSinter tag arity nt in pure $ SinType sinName ?liftedConBody -- FFI CALLS liftedToSinter (name, (MkLForeign ccs fargs x)) = ?liftedFFICalltoSinter -- GLOBAL ERRORS liftedToSinter (name, (MkLError x)) = ?liftedErrorToSinter ---------------- -- TOP OF API -- ---------------- compile : Ref Ctxt Defs -> (tmpDir : String) -> (outputDir : String) -> ClosedTerm -> (outfile : String) -> Core (Maybe String) compile context tmpDir outputDir term outfile = do compData <- getCompileData False Lifted term let defs = lambdaLifted compData sinterGlobs <- traverse liftedToSinter defs -- readyForCG <- traverse bubbleLets sinterGlobs ?compile_rhs execute : Ref Ctxt Defs -> (tmpDir : String) -> ClosedTerm -> Core () execute context tmpDir term = throw $ InternalError "Sinter backend can only compile, sorry." sinterCodegen : Codegen sinterCodegen = MkCG compile execute main : IO () main = mainWithCodegens [("sinter", sinterCodegen)]
# Clothing Recognition Task If this is your first time running a notebook - welcome!! Notebooks are awesome because they let us play around and experiment with code with near-instant feedback. Some pointers: 1. To execute a cell, click on it and hit SHIFT-Enter 2. Once something is executed, the variables are in memory - inspect them! ## Getting Started This first cell imports the necessary libraries so we can get started: ```python import torch import numpy as np from PIL import Image import torch.nn as nn import torch.onnx as onnx import torch.nn.functional as F import matplotlib.pyplot as plt from torch.utils.data import DataLoader from torchvision import datasets, transforms ``` ## Data! Without data we really can't do anything with machine learning. At this point we have our sharp question **can we predict a digit given a 28x28 vector of numbers?** Once that is all squared away we need to take a look at our data. The next cell is a helper function that visualizes the the digits (a sanity check). The next cell downloads the standard digit dataset (called FashionMNIST). The `transform` and `target_transform` parts of this call add some conversion steps to make the data more suitable for the models we will try. ```python clothing = datasets.FashionMNIST('data', train=True, download=True, transform=transforms.Compose([ transforms.ToTensor(), transforms.Lambda(lambda x: x.reshape(28*28)) ]), target_transform=transforms.Compose([ transforms.Lambda(lambda y: torch.zeros(10, dtype=torch.float).scatter_(0, torch.tensor(y), value=1)) ]) ) ``` Now to get for the actual clothing classes ```python classes = ["T-shirt/top", "Trouser", "Pullover", "Dress", "Coat", "Sandal", "Shirt", "Sneaker", "Bag", "Ankle boot"] ``` A little helper to draw the clothing ```python def draw_clothes(clothing): fig, axes = plt.subplots(7, 10, figsize=(18, 7), subplot_kw={'xticks':[], 'yticks':[]}, gridspec_kw=dict(hspace=0.1, wspace=2.5)) for i, ax in enumerate(axes.flat): X, y = clothing[i] ax.imshow(255 - X.reshape(28,28) * 255, cmap='gray') ax.set_title('{0}'.format(classes[torch.argmax(y).item()])) ``` Here is our sanity check! ```python draw_clothes(clothing) ``` Feel free to take a look at the data by printing out `x` and/or `y`. They really are just numbers! A couple of things that might seem strange when you print them out: 1. "I thought you said the images were 784 sized vectors of 0-255???" - They were! We just normalized the vectors by dividing by 255 so the new range is 0-1 (it makes the numbers more tidy) 2. "I thought the `y` was a numerical answer?? Instead it's a 10 sized vector!" - Yes - this is called a one-hot encoding of the answer. Now there's a `1` in the index of the right answer. Again, this makes the math work a lot better for the models we will be creating. ```python x, y = clothing[0] print(x) print(y) ``` # Choosing Models Now that we have some data it's time to start picking models we think might work. This is where the science part of data-science comes in: we guess and then check if our assumptions were right. Imagine models like water pipes that have to distribute water to 10 different hoses depending on 784 knobs. These 784 knobs represent the individual pixels in the digit and the 10 hoses at the end represent the actual number (or at least the index of the one with the most water coming out of it). Our job now is to pick the plumbing in between. The next three cells represent three different constructions in an increasingly more complex order: 1. The first is a simple linear model, 2. The second is a 3 layer Neural Network, 3. and the last is a full convolutional neural network While it is out of the scope of this tutorial to fully explain how they work, just imagine they are basically plumbing with internal knobs that have to be tuned to produce the right water pressure at the end to push the most water out of the right index. As you go down each cell the plumbing and corresponding internal knobs just get more complicated. ```python class SimpleLinear(nn.Module): def __init__(self): super(SimpleLinear, self).__init__() self.layer1 = nn.Linear(28*28, 10) def forward(self, x): x = self.layer1(x) return F.softmax(x, dim=1) ``` ```python class NeuralNework(nn.Module): def __init__(self): super(NeuralNework, self).__init__() self.layer1 = nn.Linear(28*28, 512) self.layer2 = nn.Linear(512, 512) self.output = nn.Linear(512, 10) def forward(self, x): x = F.relu(self.layer1(x)) x = F.relu(self.layer2(x)) x = self.output(x) return F.softmax(x, dim=1) ``` ```python class CNN(nn.Module): def __init__(self): super(CNN, self).__init__() self.conv1 = nn.Conv2d(1, 10, kernel_size=5) self.conv2 = nn.Conv2d(10, 20, kernel_size=5) self.conv2_drop = nn.Dropout2d() self.fc1 = nn.Linear(320, 50) self.fc2 = nn.Linear(50, 10) def forward(self, x): x = x.view(-1, 1, 28, 28) x = F.relu(F.max_pool2d(self.conv1(x), 2)) x = F.relu(F.max_pool2d(self.conv2_drop(self.conv2(x)), 2)) x = x.view(-1, 320) x = F.relu(self.fc1(x)) x = F.dropout(x, training=self.training) x = self.fc2(x) return F.softmax(x, dim=1) ``` # Optimizing Model Parameters Now that we have some models it's time to optimize the internal parameters to see if it can do a good job at recognizing digits! It turns out there are some parameters that we can give the optimization algorithm to tune how it trains - these are called hyper-parameters. That's what the two variables represent below: ```python learning_rate = 1e-3 batch_size = 64 epochs = 5 ``` The `learning_rate` basically specifies how fast the algorithm will learn the model parameters. Right now you're probably thinking "let's set it to fifty million #amirite?" The best analogy for why this is a bad idea is golf. I'm a terrible golfist (is that right?) so I don't really know anything - but pretend you are trying to sink a shot (again sorry) but can only hit the ball the same distance every time. Easy right? Hit it the exact length from where you are to the hole! Done! Now pretend you don't know where the hole is but just know the general direction. Now the distance you choose actually matters. If it is too long a distance you'll miss the hole, and then when you hit it back you'll overshoot again. If the distance is too small then it will take forever to get there but for sure you'll eventually get it in. Basically you have to guess what the right distance per shot should be and then try it out. That is basically what the learning rate does for finding the "hole in one" for the right parameters (ok, I'm done with the golf stuff). Below there are three things that make this all work: 1. **The Model** - this is the function we're making that takes in the digit vector and should return the right number 2. **The Cost Function** (sometimes called the loss function). I know I promised I was done with golf but I lied. Remember how I said in our screwy golf game you knew the general direction of the hole? The cost function tells us the distance to the hole - when it's zero we're there! In actual scientific terms, the cost function tells us how bad the model is at getting the right answer. As we take shots you should see the cost function decreasing. If this does not happen then something is wrong. At this point I would change the shot distance (or `learning_rate`) to something smaller and try again. If that doesn't work maybe change the model! 3. **The Optimizer** - this part is the bit that actually changes the model parameters. It has a sense for the direction we should be shooting and updates all of the internal numbers inside the model to find the best internal knobs to predict the right digits. In this case I am using the Binary Cross Entropy cost function because, well, I know it works. There are a ton of different cost functions you can choose from that fit a variety of different scenarios. ```python # where to run device = 'cuda' if torch.cuda.is_available() else 'cpu' print('Using {} device'.format(device)) # selected model - you can uncomment # the other models for future runs model = SimpleLinear().to(device) #model = NeuralNework().to(device) #model = CNN().to(device) print(model) # cost function used to determine best parameters cost = torch.nn.BCELoss() # used to create optimal parameters optimizer = torch.optim.Adam(model.parameters(), lr=learning_rate) ``` I forgot to mention the whole `cuda` thing. GPUs speed this whole process up because this is basically all a big Matrix multiplcation problem in a `for` loop. PyTorch is great because you basically need to tell the model where to run (either on the CPU or using CUDA - which is a platform for moving computations to the GPU). Now for the learning part! The `dataloader`'s job is to iterate through the entire dataset (in this case 60,000 examples of digits and their corresponding label) but to take chunks of size `batch_size` of the data to process. This is another hyperparameter that needs to be chosen. `epochs` is the number of times we want to loop through the dataset in its entirety (again something we choose based upon how our experiment goes). A word on how long this takes - it takes a while. ```python # loader dataloader = DataLoader(clothing, batch_size=batch_size, num_workers=0, pin_memory=True) # golfing time! for t in range(epochs): print('Epoch {}'.format(t)) print('-------------------------------') # go through the entire dataset once for batch, (X, Y) in enumerate(dataloader): X, Y = X.to(device), Y.to(device) # zero out gradient optimizer.zero_grad() # make a prediction on this batch! pred = model(X) # how bad is it? loss = cost(pred, Y) # compute gradients loss.backward() # update parameters optimizer.step() if batch % 100 == 0: print('loss: {:>10f} [{:>5d}/{:>5d}]'.format(loss.item(), batch * len(X), len(dataloader.dataset))) print('loss: {:>10f} [{:>5d}/{:>5d}]\n'.format(loss.item(), len(dataloader.dataset), len(dataloader.dataset))) print('Done!') ``` So what the heck did this actually do? Great question. I will explain this `SimpleLinear` model since its the on we ran first. We are basically learning one matrix and one vector. That's it (it's really anti-climacttic if you ask me). Let me show you why that actually does anything: \begin{align} prediction = W \cdot x + b \end{align} \begin{align} \begin{bmatrix} \hat{y}_1 \\ \vdots \\ \hat{y}_{10} \end{bmatrix}_{10 \times 1} = \begin{bmatrix} w_{1,1} & \ldots & w_{1,784} \\ \vdots & \ddots & \\ w_{10,1} & \ldots & w_{10, 784} \\ \end{bmatrix}_{10 \times 784} \cdot \begin{bmatrix}x_1 \\ x_2 \\ \vdots \\ x_{783} \\ x_{784}\end{bmatrix}_{784 \times 1} + \begin{bmatrix} b_1 \\ \vdots \\ b_{10} \end{bmatrix}_{10 \times 1} \end{align} The matrix `W`and the vector `b` is what the `SimpleLinear` model learns. The output is a 10 by 1 matrix whose largest value is the index of the thing number we want to predict. Take a look at what the algorithm learned for the two variables (as well as the sizes): ```python for p in model.parameters(): print(p.shape) print(p) ``` # Is it working??? The best way to figure out if it is working is to test the model on data the learning process hasn't used. Luckily we have such a dataset (it is basically a held out section of the data we already have used). I'm loading it all up the same way as before and printing them out to show you that they're different. ```python test_clothing = datasets.FashionMNIST('data', train=False, download=True, transform=transforms.Compose([ transforms.ToTensor(), transforms.Lambda(lambda x: x.reshape(28*28)) ]), target_transform=transforms.Compose([ transforms.Lambda(lambda y: torch.zeros(10, dtype=torch.float).scatter_(0, torch.tensor(y), value=1)) ]) ) draw_clothes(test_clothing) ``` Let's test it on the first trousers above (index 2). ```python x, y = test_clothing[2] x = x.to(device).view(1, 28*28) ``` We'll tell the model we are using it for evaluation (sometimes called inference) and pass in our previously unseen digit. ```python model.eval() with torch.no_grad(): pred = model(x) pred = pred.to('cpu').detach()[0] print(pred) ``` Now let's see if the predicted clothing item matches the actual clothing item: ```python classes[pred.argmax(0)], classes[y.argmax(0)] ``` Let's see how well we do over *all* of the test data! ```python # data loader for test digits test_dataloader = DataLoader(test_clothing, batch_size=64, num_workers=0, pin_memory=True) # set model to evaluation mode model.eval() test_loss = 0 correct = 0 # loop! with torch.no_grad(): for batch, (X, Y) in enumerate(dataloader): X, Y = X.to(device), Y.to(device) pred = model(X) test_loss += cost(pred, Y).item() correct += (pred.argmax(1) == Y.argmax(1)).type(torch.float).sum().item() test_loss /= len(dataloader.dataset) correct /= len(dataloader.dataset) print('\nTest Error:') print('acc: {:>0.1f}%, avg loss: {:>8f}'.format(100*correct, test_loss)) ``` # Saving the Model Every framework is different - in this case PyTorch let's us save the model (which you remember is just a big matrix `W` and a vector `b`) to an internal format as well as to the ONNX format. These can then be loaded up as an asset to a program that is executed every time you need to recognize a digit! ```python # create dummy variable to traverse graph x = torch.randint(255, (1, 28*28), dtype=torch.float).to(device) / 255 onnx.export(model, x, 'model.onnx') print('Saved onnx model to model.onnx') # saving PyTorch Model Dictionary torch.save(model.state_dict(), 'model.pth') print('Saved PyTorch Model to model.pth') ``` # Play! Now that you've gone through the whole process, please go back up to play around! Try changing: 1. The actual model! The other models are almost identical with the exception that they learn additional Matrices (W's and b's) that the images pass through to get the final answer. 2. The hyperparameters like `learning_rate`, `batch_size`, and `epoch`. Does it make things better or worse? 92% is ok, does any other combination of model's and hyperparamters fare better? ## Final Thoughts Would love your feedback! Was this helpful? Any parts confusing? Drop me a line! ```python ```
[STATEMENT] lemma assumes "P dvd x" shows "[x = 0] (mod P)" [PROOF STATE] proof (prove) goal (1 subgoal): 1. [x = 0::'a] (mod P) [PROOF STEP] using assms cong_def [PROOF STATE] proof (prove) using this: P dvd x [?b = ?c] (mod ?a) = (?b mod ?a = ?c mod ?a) goal (1 subgoal): 1. [x = 0::'a] (mod P) [PROOF STEP] by force
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! !!!! !!!! MIT License !!!! !!!! ParaMonte: plain powerful parallel Monte Carlo library. !!!! !!!! Copyright (C) 2012-present, The Computational Data Science Lab !!!! !!!! This file is part of the ParaMonte library. !!!! !!!! Permission is hereby granted, free of charge, to any person obtaining a !!!! copy of this software and associated documentation files (the "Software"), !!!! to deal in the Software without restriction, including without limitation !!!! the rights to use, copy, modify, merge, publish, distribute, sublicense, !!!! and/or sell copies of the Software, and to permit persons to whom the !!!! Software is furnished to do so, subject to the following conditions: !!!! !!!! The above copyright notice and this permission notice shall be !!!! included in all copies or substantial portions of the Software. !!!! !!!! THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, !!!! EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF !!!! MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. !!!! IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, !!!! DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR !!!! OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE !!!! OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. !!!! !!!! ACKNOWLEDGMENT !!!! !!!! ParaMonte is an honor-ware and its currency is acknowledgment and citations. !!!! As per the ParaMonte library license agreement terms, if you use any parts of !!!! this library for any purposes, kindly acknowledge the use of ParaMonte in your !!!! work (education/research/industry/development/...) by citing the ParaMonte !!!! library as described on this page: !!!! !!!! https://github.com/cdslaborg/paramonte/blob/main/ACKNOWLEDGMENT.md !!!! !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! !> \brief !> This module contains the classes and procedures for setting up the `restartFileFormat` attribute of ParaMonte samplers. !> For more information, see the description of this attribute in the body of the module. !> \author Amir Shahmoradi module SpecBase_RestartFileFormat_mod use Constants_mod, only: IK implicit none character(*), parameter :: MODULE_NAME = "@SpecBase_RestartFileFormat_mod" integer(IK), parameter :: MAX_LEN_RESTART_FILE_FORMAT = 63 character(MAX_LEN_RESTART_FILE_FORMAT) :: restartFileFormat type :: RestartFileFormat_type logical :: isBinary logical :: isAscii character(6) :: binary character(5) :: ascii character(:), allocatable :: def character(:), allocatable :: val character(:), allocatable :: null character(:), allocatable :: desc contains procedure, pass :: set => setRestartFileFormat, checkForSanity, nullifyNameListVar end type RestartFileFormat_type interface RestartFileFormat_type module procedure :: constructRestartFileFormat end interface RestartFileFormat_type private :: constructRestartFileFormat, setRestartFileFormat, checkForSanity, nullifyNameListVar !%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% contains !%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function constructRestartFileFormat(methodName) result(RestartFileFormatObj) #if INTEL_COMPILER_ENABLED && defined DLL_ENABLED && (OS_IS_WINDOWS || defined OS_IS_DARWIN) !DEC$ ATTRIBUTES DLLEXPORT :: constructRestartFileFormat #endif use Constants_mod, only: NULL_SK, FILE_EXT, FILE_TYPE use String_mod, only: num2str implicit none character(*), intent(in) :: methodName type(RestartFileFormat_type) :: RestartFileFormatObj RestartFileFormatObj%isBinary = .false. RestartFileFormatObj%isAscii = .false. RestartFileFormatObj%binary = FILE_TYPE%binary RestartFileFormatObj%ascii = FILE_TYPE%ascii RestartFileFormatObj%def = RestartFileFormatObj%binary RestartFileFormatObj%null = repeat(NULL_SK, MAX_LEN_RESTART_FILE_FORMAT) RestartFileFormatObj%desc = & "restartFileFormat is a string variable that represents the format of the output restart file(s) which are used to restart & &an interrupted "// methodName //" simulation. The string value must be enclosed by either single or double quotation & &marks when provided as input. Two values are possible:\n\n& & restartFileFormat = '" // RestartFileFormatObj%binary // "'\n\n& & This is the binary file format which is not human-readable, but preserves the exact values of the & &specification variables required for the simulation restart. This full accuracy representation is required & &to exactly reproduce an interrupted simulation. The binary format is also normally the fastest mode of restart file & &generation. Binary restart files will have the " // FILE_EXT%binary // " file extensions.\n\n& & restartFileFormat = '" // RestartFileFormatObj%ascii // "'\n\n& & This is the ASCII (text) file format which is human-readable but does not preserve the full accuracy of & &the specification variables required for the simulation restart. It is also a significantly slower mode of & &restart file generation, compared to the binary format. Therefore, its usage should be limited to situations where & &the user wants to track the dynamics of simulation specifications throughout the simulation time. & &ASCII restart file(s) will have the " // FILE_EXT%ascii //" file extensions.\n\n& &The default value is restartFileFormat = '" // RestartFileFormatObj%def // "'. Note that the input values are case-insensitive." end function constructRestartFileFormat !%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% subroutine nullifyNameListVar(RestartFileFormatObj) #if INTEL_COMPILER_ENABLED && defined DLL_ENABLED && (OS_IS_WINDOWS || defined OS_IS_DARWIN) !DEC$ ATTRIBUTES DLLEXPORT :: nullifyNameListVar #endif implicit none class(RestartFileFormat_type), intent(in) :: RestartFileFormatObj restartFileFormat = RestartFileFormatObj%null end subroutine nullifyNameListVar !%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% subroutine setRestartFileFormat(RestartFileFormatObj,restartFileFormat) #if INTEL_COMPILER_ENABLED && defined DLL_ENABLED && (OS_IS_WINDOWS || defined OS_IS_DARWIN) !DEC$ ATTRIBUTES DLLEXPORT :: setRestartFileFormat #endif use String_mod, only: getLowerCase implicit none class(RestartFileFormat_type), intent(inout) :: RestartFileFormatObj character(*), intent(in) :: restartFileFormat character(:), allocatable :: restartFileFormatLowerCase RestartFileFormatObj%val = trim(adjustl(restartFileFormat)) if ( RestartFileFormatObj%val==trim(adjustl(RestartFileFormatObj%null)) ) then RestartFileFormatObj%val = trim(adjustl(RestartFileFormatObj%def)) end if restartFileFormatLowerCase = getLowerCase(RestartFileFormatObj%val) RestartFileFormatObj%isBinary = restartFileFormatLowerCase == getLowerCase(RestartFileFormatObj%binary) RestartFileFormatObj%isAscii = restartFileFormatLowerCase == getLowerCase(RestartFileFormatObj%ascii) end subroutine setRestartFileFormat !%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% subroutine checkForSanity(RestartFileFormat,Err,methodName) #if INTEL_COMPILER_ENABLED && defined DLL_ENABLED && (OS_IS_WINDOWS || defined OS_IS_DARWIN) !DEC$ ATTRIBUTES DLLEXPORT :: checkForSanity #endif use Err_mod, only: Err_type use String_mod, only: num2str implicit none class(RestartFileFormat_type), intent(in) :: RestartFileFormat character(*), intent(in) :: methodName type(Err_type), intent(inout) :: Err character(*), parameter :: PROCEDURE_NAME = "@checkForSanity()" if ( .not.(RestartFileFormat%isBinary .or. RestartFileFormat%isAscii) ) then Err%occurred = .true. Err%msg = Err%msg // & MODULE_NAME // PROCEDURE_NAME // ": Error occurred. & &The input requested restart file format ('" // RestartFileFormat%val // & "') represented by the variable restartFileFormat cannot be anything other than '" // & RestartFileFormat%binary // "' or '" // RestartFileFormat%ascii // "'. If you don't know an appropriate & &value for RestartFileFormat, drop it from the input list. " // methodName // & " will automatically assign an appropriate value to it.\n\n" end if end subroutine checkForSanity !%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% end module SpecBase_RestartFileFormat_mod ! LCOV_EXCL_LINE
------------------------------------------------------------------------ -- A virtual machine ------------------------------------------------------------------------ {-# OPTIONS --sized-types #-} module Lambda.Simplified.Delay-monad.Virtual-machine where open import Equality.Propositional open import Prelude open import Monad equality-with-J open import Delay-monad open import Delay-monad.Monad open import Lambda.Simplified.Delay-monad.Interpreter open import Lambda.Simplified.Syntax open import Lambda.Simplified.Virtual-machine open Closure Code -- A functional semantics for the VM. exec : ∀ {i} → State → Delay (Maybe Value) i exec s with step s ... | continue s′ = later λ { .force → exec s′ } ... | done v = return (just v) ... | crash = return nothing
Formal statement is: lemmas continuous_on_of_real [continuous_intros] = bounded_linear.continuous_on [OF bounded_linear_of_real] Informal statement is: The function $x \mapsto \mathrm{Re}(x)$ is continuous.
[STATEMENT] lemma complex_cnj_i [simp]: "cnj \<i> = - \<i>" [PROOF STATE] proof (prove) goal (1 subgoal): 1. cnj \<i> = - \<i> [PROOF STEP] by (simp add: complex_eq_iff)
Finkelstein has written of his Jewish parents ' experiences during World War II . His mother , <unk> <unk> , grew up in Warsaw , survived the Warsaw Ghetto , the Majdanek concentration camp , and two slave labor camps . Her first husband died in the war . She considered the day of her liberation as the most horrible day of her life , as she realized that she was alone , her parents and siblings gone . Norman 's father , Zacharias Finkelstein , active in Hashomer <unk> , was a survivor of both the Warsaw Ghetto and the Auschwitz concentration camp .
section \<open>Union-Find Data-Structure\<close> theory Union_Find_Fun imports Collections.Partial_Equivalence_Relation (* "../Sep_Main" "HOL-Library.Code_Target_Numeral" *) begin text \<open> We implement a simple union-find data-structure based on an array. It uses path compression and a size-based union heuristics. \<close> subsection \<open>Abstract Union-Find on Lists\<close> text \<open> We first formulate union-find structures on lists, and later implement them using Imperative/HOL. This is a separation of proof concerns between proving the algorithmic idea correct and generating the verification conditions. \<close> subsubsection \<open>Representatives\<close> text \<open> We define a function that searches for the representative of an element. This function is only partially defined, as it does not terminate on all lists. We use the domain of this function to characterize valid union-find lists. \<close> function (domintros) rep_of where "rep_of l i = (if l!i = i then i else rep_of l (l!i))" by pat_completeness auto text \<open>A valid union-find structure only contains valid indexes, and the \<open>rep_of\<close> function terminates for all indexes.\<close> definition "ufa_invar l \<equiv> \<forall>i<length l. rep_of_dom (l,i) \<and> l!i<length l" lemma ufa_invarD: "\<lbrakk>ufa_invar l; i<length l\<rbrakk> \<Longrightarrow> rep_of_dom (l,i)" "\<lbrakk>ufa_invar l; i<length l\<rbrakk> \<Longrightarrow> l!i<length l" unfolding ufa_invar_def by auto text \<open>We derive the following equations for the \<open>rep-of\<close> function.\<close> lemma rep_of_refl: "l!i=i \<Longrightarrow> rep_of l i = i" apply (subst rep_of.psimps) apply (rule rep_of.domintros) apply (auto) done lemma rep_of_step: "\<lbrakk>ufa_invar l; i<length l; l!i\<noteq>i\<rbrakk> \<Longrightarrow> rep_of l i = rep_of l (l!i)" apply (subst rep_of.psimps) apply (auto dest: ufa_invarD) done lemmas rep_of_simps = rep_of_refl rep_of_step lemma rep_of_iff: "\<lbrakk>ufa_invar l; i<length l\<rbrakk> \<Longrightarrow> rep_of l i = (if l!i=i then i else rep_of l (l!i))" by (simp add: rep_of_simps) text \<open>We derive a custom induction rule, that is more suited to our purposes.\<close> lemma rep_of_induct[case_names base step, consumes 2]: assumes I: "ufa_invar l" assumes L: "i<length l" assumes BASE: "\<And>i. \<lbrakk> ufa_invar l; i<length l; l!i=i \<rbrakk> \<Longrightarrow> P l i" assumes STEP: "\<And>i. \<lbrakk> ufa_invar l; i<length l; l!i\<noteq>i; P l (l!i) \<rbrakk> \<Longrightarrow> P l i" shows "P l i" proof - from ufa_invarD[OF I L] have "ufa_invar l \<and> i<length l \<longrightarrow> P l i" apply (induct l\<equiv>l i rule: rep_of.pinduct) apply (auto intro: STEP BASE dest: ufa_invarD) done thus ?thesis using I L by simp qed text \<open>In the following, we define various properties of \<open>rep_of\<close>.\<close> lemma rep_of_min: "\<lbrakk> ufa_invar l; i<length l \<rbrakk> \<Longrightarrow> l!(rep_of l i) = rep_of l i" proof - have "\<lbrakk>rep_of_dom (l,i) \<rbrakk> \<Longrightarrow> l!(rep_of l i) = rep_of l i" apply (induct arbitrary: rule: rep_of.pinduct) apply (subst rep_of.psimps, assumption) apply (subst (2) rep_of.psimps, assumption) apply auto done thus "\<lbrakk> ufa_invar l; i<length l \<rbrakk> \<Longrightarrow> l!(rep_of l i) = rep_of l i" by (metis ufa_invarD(1)) qed lemma rep_of_bound: "\<lbrakk> ufa_invar l; i<length l \<rbrakk> \<Longrightarrow> rep_of l i < length l" apply (induct rule: rep_of_induct) apply (auto simp: rep_of_iff) done lemma rep_of_idem: "\<lbrakk> ufa_invar l; i<length l \<rbrakk> \<Longrightarrow> rep_of l (rep_of l i) = rep_of l i" by (auto simp: rep_of_min rep_of_refl) lemma rep_of_min_upd: "\<lbrakk> ufa_invar l; x<length l; i<length l \<rbrakk> \<Longrightarrow> rep_of (l[rep_of l x := rep_of l x]) i = rep_of l i" by (metis list_update_id rep_of_min) lemma rep_of_idx: "\<lbrakk>ufa_invar l; i<length l\<rbrakk> \<Longrightarrow> rep_of l (l!i) = rep_of l i" by (metis rep_of_step) subsubsection \<open>Abstraction to Partial Equivalence Relation\<close> definition ufa_\<alpha> :: "nat list \<Rightarrow> (nat\<times>nat) set" where "ufa_\<alpha> l \<equiv> {(x,y). x<length l \<and> y<length l \<and> rep_of l x = rep_of l y}" lemma ufa_\<alpha>_equiv[simp, intro!]: "part_equiv (ufa_\<alpha> l)" by rule (auto simp: ufa_\<alpha>_def intro: symI transI) lemma ufa_\<alpha>_lenD: "(x,y)\<in>ufa_\<alpha> l \<Longrightarrow> x<length l" "(x,y)\<in>ufa_\<alpha> l \<Longrightarrow> y<length l" unfolding ufa_\<alpha>_def by auto lemma ufa_\<alpha>_dom[simp]: "Domain (ufa_\<alpha> l) = {0..<length l}" unfolding ufa_\<alpha>_def by auto lemma ufa_\<alpha>_refl[simp]: "(i,i)\<in>ufa_\<alpha> l \<longleftrightarrow> i<length l" unfolding ufa_\<alpha>_def by simp lemma ufa_\<alpha>_len_eq: assumes "ufa_\<alpha> l = ufa_\<alpha> l'" shows "length l = length l'" by (metis assms le_antisym less_not_refl linorder_le_less_linear ufa_\<alpha>_refl) subsubsection \<open>Operations\<close> lemma ufa_init_invar: "ufa_invar [0..<n]" unfolding ufa_invar_def by (auto intro: rep_of.domintros) lemma ufa_init_correct: "ufa_\<alpha> [0..<n] = {(x,x) | x. x<n}" unfolding ufa_\<alpha>_def using ufa_init_invar[of n] apply (auto simp: rep_of_refl) done lemma ufa_find_correct: "\<lbrakk>ufa_invar l; x<length l; y<length l\<rbrakk> \<Longrightarrow> rep_of l x = rep_of l y \<longleftrightarrow> (x,y)\<in>ufa_\<alpha> l" unfolding ufa_\<alpha>_def by auto abbreviation "ufa_union l x y \<equiv> l[rep_of l x := rep_of l y]" lemma ufa_union_invar: assumes I: "ufa_invar l" assumes L: "x<length l" "y<length l" shows "ufa_invar (ufa_union l x y)" unfolding ufa_invar_def proof (intro allI impI, simp only: length_list_update) fix i assume A: "i<length l" with I have "rep_of_dom (l,i)" by (auto dest: ufa_invarD) have "ufa_union l x y ! i < length l" using I L A apply (cases "i=rep_of l x") apply (auto simp: rep_of_bound dest: ufa_invarD) done moreover have "rep_of_dom (ufa_union l x y, i)" using I A L proof (induct rule: rep_of_induct) case (base i) thus ?case apply - apply (rule rep_of.domintros) apply (cases "i=rep_of l x") apply auto apply (rule rep_of.domintros) apply (auto simp: rep_of_min) done next case (step i) from step.prems \<open>ufa_invar l\<close> \<open>i<length l\<close> \<open>l!i\<noteq>i\<close> have [simp]: "ufa_union l x y ! i = l!i" apply (auto simp: rep_of_min rep_of_bound nth_list_update) done from step show ?case apply - apply (rule rep_of.domintros) apply simp done qed ultimately show "rep_of_dom (ufa_union l x y, i) \<and> ufa_union l x y ! i < length l" by blast qed lemma ufa_union_aux: assumes I: "ufa_invar l" assumes L: "x<length l" "y<length l" assumes IL: "i<length l" shows "rep_of (ufa_union l x y) i = (if rep_of l i = rep_of l x then rep_of l y else rep_of l i)" using I IL proof (induct rule: rep_of_induct) case (base i) have [simp]: "rep_of l i = i" using \<open>l!i=i\<close> by (simp add: rep_of_refl) note [simp] = \<open>ufa_invar l\<close> \<open>i<length l\<close> show ?case proof (cases) assume A[simp]: "rep_of l x = i" have [simp]: "l[i := rep_of l y] ! i = rep_of l y" by (auto simp: rep_of_bound) show ?thesis proof (cases) assume [simp]: "rep_of l y = i" show ?thesis by (simp add: rep_of_refl) next assume A: "rep_of l y \<noteq> i" have [simp]: "rep_of (l[i := rep_of l y]) i = rep_of l y" apply (subst rep_of_step[OF ufa_union_invar[OF I L], simplified]) using A apply simp_all apply (subst rep_of_refl[where i="rep_of l y"]) using I L apply (simp_all add: rep_of_min) done show ?thesis by (simp add: rep_of_refl) qed next assume A: "rep_of l x \<noteq> i" hence "ufa_union l x y ! i = l!i" by (auto) also note \<open>l!i=i\<close> finally have "rep_of (ufa_union l x y) i = i" by (simp add: rep_of_refl) thus ?thesis using A by auto qed next case (step i) note [simp] = I L \<open>i<length l\<close> have "rep_of l x \<noteq> i" by (metis I L(1) rep_of_min \<open>l!i\<noteq>i\<close>) hence [simp]: "ufa_union l x y ! i = l!i" by (auto simp add: nth_list_update rep_of_bound \<open>l!i\<noteq>i\<close>) [] have "rep_of (ufa_union l x y) i = rep_of (ufa_union l x y) (l!i)" by (auto simp add: rep_of_iff[OF ufa_union_invar[OF I L]]) also note step.hyps(4) finally show ?case by (auto simp: rep_of_idx) qed lemma ufa_union_correct: "\<lbrakk> ufa_invar l; x<length l; y<length l \<rbrakk> \<Longrightarrow> ufa_\<alpha> (ufa_union l x y) = per_union (ufa_\<alpha> l) x y" unfolding ufa_\<alpha>_def per_union_def by (auto simp: ufa_union_aux split: if_split_asm ) lemma ufa_compress_aux: assumes I: "ufa_invar l" assumes L[simp]: "x<length l" shows "ufa_invar (l[x := rep_of l x])" and "\<forall>i<length l. rep_of (l[x := rep_of l x]) i = rep_of l i" proof - { fix i assume "i<length (l[x := rep_of l x])" hence IL: "i<length l" by simp have G1: "l[x := rep_of l x] ! i < length (l[x := rep_of l x])" using I IL by (auto dest: ufa_invarD[OF I] simp: nth_list_update rep_of_bound) from I IL have G2: "rep_of (l[x := rep_of l x]) i = rep_of l i \<and> rep_of_dom (l[x := rep_of l x], i)" proof (induct rule: rep_of_induct) case (base i) thus ?case apply (cases "x=i") apply (auto intro: rep_of.domintros simp: rep_of_refl) done next case (step i) hence D: "rep_of_dom (l[x := rep_of l x], i)" apply - apply (rule rep_of.domintros) apply (cases "x=i") apply (auto intro: rep_of.domintros simp: rep_of_min) done thus ?case apply simp using step apply - apply (subst rep_of.psimps[OF D]) apply (cases "x=i") apply (auto simp: rep_of_min rep_of_idx) apply (subst rep_of.psimps[where i="rep_of l i"]) apply (auto intro: rep_of.domintros simp: rep_of_min) done qed note G1 G2 } note G=this thus "\<forall>i<length l. rep_of (l[x := rep_of l x]) i = rep_of l i" by auto from G show "ufa_invar (l[x := rep_of l x])" by (auto simp: ufa_invar_def) qed lemma ufa_compress_invar: assumes I: "ufa_invar l" assumes L[simp]: "x<length l" shows "ufa_invar (l[x := rep_of l x])" using assms by (rule ufa_compress_aux) lemma ufa_compress_correct: assumes I: "ufa_invar l" assumes L[simp]: "x<length l" shows "ufa_\<alpha> (l[x := rep_of l x]) = ufa_\<alpha> l" by (auto simp: ufa_\<alpha>_def ufa_compress_aux[OF I]) end
State Before: G : Type u_1 G' : Type ?u.308406 inst✝⁴ : Group G inst✝³ : Group G' A : Type ?u.308415 inst✝² : AddGroup A H✝ K✝ : Subgroup G k : Set G N : Type u_2 inst✝¹ : Group N P : Type ?u.308442 inst✝ : Group P H : Subgroup G K : Subgroup N ⊢ prod H K = ⊥ ↔ H = ⊥ ∧ K = ⊥ State After: no goals Tactic: simpa only [← Subgroup.toSubmonoid_eq] using Submonoid.prod_eq_bot_iff
function time_sec() time_ns() * 1e-9 end function timed_result(action::Function, seed::Int64) start = time_sec() result = action(seed) delta = time_sec() - start return (delta, result) end function time_clock(niter::Integer) start = time_sec() for _ in 1:niter time_sec() end time_sec() - start end function timed_noresult(action::Function, seed::Int64) start = time_sec() for _ in 1:seed action() end time_sec() - start end function run_for_atleast(howlong::Float64, seed::Int64, action::Function) #ensure that time_sec is compiled time_sec() init_time = time_sec() iters = 0 while true now = time_sec() if ((now - init_time) > 10.0 * howlong) throw(error("took too long to run: seed $seed, iters $iters")) end elapsed, result = timed_result(action, seed) if elapsed < howlong seed *= 2 iters += 1 else return elapsed, seed, result end end end function timed_func(func::Function, n::Integer) start = time_ns() local ret for _ in 1:n ret = func() end (int(time_ns() - start), 1.0) end function collect_samples(sample_count::Integer, exec_count::Integer, func::Function, gc_before::Bool) @assert sample_count > 0 results = zeros(sample_count) times = zeros(sample_count) for i in 1:sample_count if gc_before Base.gc() end t, r = timed_func(func, exec_count) times[i] = t; results[i] = r end (times, results) end function estimate_execution_count(period, func, gc_before_sample, est_run_time) print("Estimating execution count...") n = int(max(period / est_run_time / 5, 1)) while true times = collect_samples(1, n, func, gc_before_sample)[1] t = max(1.0, mean(times)) # prevent zero times print("....") if t >= period print("\n") return n end n = min(2 * n, n * (period / t) + 1) end @printf("%d\n", n) return n end function time_str(k::Float64) function fmt(time::Float64, unit::String) if time >= 1e9 return @sprintf("%.4f %s", time, unit) elseif time >= 1e6 return @sprintf("%.0f %s", time, unit) elseif time >= 1e5 return @sprintf("%.1f %s", time, unit) elseif time >= 1e4 return @sprintf("%.2f %s", time, unit) elseif time >= 1e3 return @sprintf("%.3f %s", time, unit) elseif time >= 1e2 return @sprintf("%.4f %s", time, unit) elseif time >= 1e1 return @sprintf("%.5f %s", time, unit) else return @sprintf("%.6f %s", time, unit) end end if k < 0 return "-" + secs(-k) elseif k >= 60 return fmt(k / 60.0, "min") elseif k >= 1 return fmt(k, "s") elseif k >= 1e-03 return fmt(k * 1e03, "ms") elseif k >= 1e-06 return fmt(k * 1e06, "us") elseif k >= 1e-09 return fmt(k * 1e09, "ns") elseif k >= 1e-12 return fmt(k * 1e12, "ps") else return @sprintf("%.6f %s", k * 1e12, "ps") end end
[STATEMENT] lemma multiset_remove_induct [case_names empty remove]: assumes "P {#}" "\<And>A. A \<noteq> {#} \<Longrightarrow> (\<And>x. x \<in># A \<Longrightarrow> P (A - {#x#})) \<Longrightarrow> P A" shows "P A" [PROOF STATE] proof (prove) goal (1 subgoal): 1. P A [PROOF STEP] proof (induction A rule: full_multiset_induct) [PROOF STATE] proof (state) goal (1 subgoal): 1. \<And>B. \<forall>A. A \<subset># B \<longrightarrow> P A \<Longrightarrow> P B [PROOF STEP] case (less A) [PROOF STATE] proof (state) this: \<forall>A. A \<subset># A \<longrightarrow> P A goal (1 subgoal): 1. \<And>B. \<forall>A. A \<subset># B \<longrightarrow> P A \<Longrightarrow> P B [PROOF STEP] hence IH: "P B" if "B \<subset># A" for B [PROOF STATE] proof (prove) using this: \<forall>A. A \<subset># A \<longrightarrow> P A goal (1 subgoal): 1. P B [PROOF STEP] using that [PROOF STATE] proof (prove) using this: \<forall>A. A \<subset># A \<longrightarrow> P A B \<subset># A goal (1 subgoal): 1. P B [PROOF STEP] by blast [PROOF STATE] proof (state) this: ?B \<subset># A \<Longrightarrow> P ?B goal (1 subgoal): 1. \<And>B. \<forall>A. A \<subset># B \<longrightarrow> P A \<Longrightarrow> P B [PROOF STEP] show ?case [PROOF STATE] proof (prove) goal (1 subgoal): 1. P A [PROOF STEP] proof (cases "A = {#}") [PROOF STATE] proof (state) goal (2 subgoals): 1. A = {#} \<Longrightarrow> P A 2. A \<noteq> {#} \<Longrightarrow> P A [PROOF STEP] case True [PROOF STATE] proof (state) this: A = {#} goal (2 subgoals): 1. A = {#} \<Longrightarrow> P A 2. A \<noteq> {#} \<Longrightarrow> P A [PROOF STEP] thus ?thesis [PROOF STATE] proof (prove) using this: A = {#} goal (1 subgoal): 1. P A [PROOF STEP] by (simp add: assms) [PROOF STATE] proof (state) this: P A goal (1 subgoal): 1. A \<noteq> {#} \<Longrightarrow> P A [PROOF STEP] next [PROOF STATE] proof (state) goal (1 subgoal): 1. A \<noteq> {#} \<Longrightarrow> P A [PROOF STEP] case False [PROOF STATE] proof (state) this: A \<noteq> {#} goal (1 subgoal): 1. A \<noteq> {#} \<Longrightarrow> P A [PROOF STEP] hence "P (A - {#x#})" if "x \<in># A" for x [PROOF STATE] proof (prove) using this: A \<noteq> {#} goal (1 subgoal): 1. P (A - {#x#}) [PROOF STEP] using that [PROOF STATE] proof (prove) using this: A \<noteq> {#} x \<in># A goal (1 subgoal): 1. P (A - {#x#}) [PROOF STEP] by (intro IH) (simp add: mset_subset_diff_self) [PROOF STATE] proof (state) this: ?x \<in># A \<Longrightarrow> P (A - {#?x#}) goal (1 subgoal): 1. A \<noteq> {#} \<Longrightarrow> P A [PROOF STEP] from False and this [PROOF STATE] proof (chain) picking this: A \<noteq> {#} ?x \<in># A \<Longrightarrow> P (A - {#?x#}) [PROOF STEP] show "P A" [PROOF STATE] proof (prove) using this: A \<noteq> {#} ?x \<in># A \<Longrightarrow> P (A - {#?x#}) goal (1 subgoal): 1. P A [PROOF STEP] by (rule assms) [PROOF STATE] proof (state) this: P A goal: No subgoals! [PROOF STEP] qed [PROOF STATE] proof (state) this: P A goal: No subgoals! [PROOF STEP] qed
\documentclass[11pt,twoside]{article} %\documentclass[10pt,twoside,twocolumn]{article} \usepackage[english]{babel} \usepackage{times,subeqnarray} \usepackage{url} % following is for pdflatex vs. old(dvi) latex \newif\myifpdf \ifx\pdfoutput\undefined % \pdffalse % we are not running PDFLaTeX \usepackage[dvips]{graphicx} \else \pdfoutput=1 % we are running PDFLaTeX % \pdftrue \usepackage[pdftex]{graphicx} \fi \usepackage{apatitlepages} % if you want to be more fully apa-style for submission, then use this %\usepackage{setspace,psypub,ulem} %\usepackage{setspace} % must come before psypub %\usepackage{psypub} \usepackage{psydraft} %\usepackage{one-in-margins} % use instead of psydraft for one-in-margs %\usepackage{apa} % apa must come last \usepackage[natbibapa]{apacite} % natbib % \usepackage{csquotes} % biblatex % \usepackage[style=apa]{biblatex} \usepackage{placeins} % \input netsym \usepackage{diagbox} % table % tell pdflatex to prefer .pdf files over .png files!! \myifpdf \DeclareGraphicsExtensions{.pdf,.eps,.png,.jpg,.mps,.tif} \fi % use 0 for psypub format \parskip 2pt % for double-spacing, determines spacing %\doublespacing %\setstretch{1.7} \columnsep .25in % 3/8 in column separation \def\myheading{ Correcting the Hebbian Mistake } % no twoside for pure apa style, use \markright with heading only \pagestyle{myheadings} \markboth{\hspace{.5in} \myheading \hfill}{\hfill Zheng et al \hspace{.5in}} \begin{document} \bibliographystyle{apacite} % sloppy is the way to go! \sloppy \raggedbottom \def\mytitle{ Correcting the Hebbian Mistake: Toward a Fully Error-Driven Hippocampus } \def\myauthor{Yicong Zheng$^{1,2}$, Xiaonan L. Liu$^{1,2}$, Satoru Nishiyama$^{3,4}$, Charan Ranganath$^{1,2}$, and Randall C. O'Reilly$^{1,2,5}$\\ $^1$Department of Psychology, University of California, Davis\\ $^2$Center for Neuroscience, University of California, Davis\\ $^3$Graduate School of Education, Kyoto University\\ $^4$Japan Society for the Promotion of Science\\ $^5$Department of Computer Science, University of California, Davis\\ {\small [email protected]}\\} \def\mynote{R. C. O'Reilly is Director of Science at Obelisk Lab in the Astera Institute, and Chief Scientist at eCortex, Inc., which may derive indirect benefit from the work presented here. Supported by: ONR grants N00014-20-1-2578, N00014-19-1-2684/ N00014-18-1-2116, N00014-18-C-2067, N00014-17-1-2961, N00014-15-1-0033 } % ROR: the abstract was too long! Also You generally can't add actual references in an abstract. \def\myabstract{ The hippocampus plays a critical role in the rapid learning of new episodic memories. Many computational models propose that the hippocampus is an autoassociator that relies on Hebbian learning (i.e., “cells that fire together, wire together”). However, Hebbian learning is computationally suboptimal as it modifies weights unnecessarily beyond what is actually needed to achieve effective retrieval, causing more interference and resulting in a lower learning capacity. Our previous computational models have utilized a powerful, biologically plausible form of error-driven learning in hippocampal CA1 and entorhinal cortex (EC) (functioning as a sparse autoencoder) by contrasting local activity states at different phases in the theta cycle. Based on specific neural data and a recent abstract computational model, we propose a new model called Theremin (Total Hippocampal ERror MINimization) that extends error-driven learning to area CA3 --- the mnemonic heart of the hippocampal system. In the model, CA3 responds to the EC monosynaptic input prior to the EC disynaptic input through dentate gyrus (DG), giving rise to a temporal difference between these two activation states, which drives error-driven learning in the EC$\rightarrow$CA3 and CA3$\leftrightarrow$CA3 projections. In effect, DG serves as a teacher to CA3, correcting its patterns into more pattern-separated ones, thereby reducing interference. Results showed that Theremin, compared with our original model, has significantly increased capacity and learning speed. The model makes several novel predictions that can be tested in future studies. } % \titlesepage{\mytitle}{\myauthor}{\mynote}{\myabstract} % \twocolumn %\titlesamepage{\mytitle}{\myauthor}{\mynote}{\myabstract} \titlesamepageoc{\mytitle}{\myauthor}{\mynote}{\myabstract} % single-spaced table of contents, delete if unwanted % \newpage % \begingroup % \parskip 0em % \tableofcontents % \endgroup % \newpage % \twocolumn \pagestyle{myheadings} \section{Introduction} It is well-established that the hippocampus plays a critical role in the rapid learning of new episodic memories \citep{EichenbaumYonelinasRanganath07}. Most computational and conceptual models of this hippocampal function are based on principles first articulated by Donald O. Hebb and David Marr \citep{Hebb49,Marr71,McNaughtonNadel90,McClellandMcNaughtonOReilly95}. At the core of this framework is the notion that recurrent connections among CA3 neurons are strengthened when they are co-activated (``cells that fire together, wire together''), essentially creating a cell assembly of interconnected neurons that bind the different elements of an event. As a result of this Hebbian learning, subsequent partial cues can drive pattern completion to recall the entire original memory, by reactivating the entire cell assembly via the strengthened interconnections. In addition, Marr's fundamental insight was that sparse levels of neural activity in area CA3 and especially the dentate gyrus (DG) granule cells, will drive the creation of cell assemblies that involve a distinct combination of neurons for each event, otherwise known as \emph{pattern separation} \citep{Marr71,OReillyMcClelland94,YassaStark11}. As a consequence, the DG to CA3 pathway has the capability to minimize interference from learning across even closely overlapping episodes (e.g., where you parked your car today vs. where you parked it yesterday). Note that it is the patterns of activity over area CA3 that constitute the principal hippocampal representation of an episodic memory, and learning in these CA3 synapses is thus essential for cementing the storage of these memories. Overall, the basic tenets established by Hebb and Marr account for a vast amount of behavioral and neural data on hippocampal function, and represents one of the most widely accepted theories in neuroscience \citep{MilnerSquireKandel98,OReillyBhattacharyyaHowardEtAl14,Eichenbaum16,YonelinasRanganathEkstromEtAl19} Although almost every biologically-based computational model of hippocampal function incorporates Hebbian plasticity, it is notable that Hebbian learning is computationally suboptimal in various respects, especially in terms of overall learning capacity \citep{Abu-MostafaSt.Jacques85,TrevesRolls91}. In models that rely solely on Hebbian learning, whenever two neurons are active together, the synaptic weight between them is increased, regardless of how necessary that change might be to achieve better memory recall. As a result, such models do not know when to stop learning, and continue to drive synaptic changes beyond what is actually necessary to achieve effective pattern completion. The consequence of this ``learning overkill'' is that all those unnecessary synaptic weight changes end up driving more interference with the weights needed to recall other memories, significantly reducing overall memory capacity. Even the high degree of pattern separation in the DG and CA3 pathways might not be sufficient to make up for the interference caused by reliance on Hebbian learning. Although it is difficult to quantitatively assess the capacity of the hippocampus in various species, there is reason to believe that even the high degree of pattern separation in the DG and CA3 pathways might not be sufficient to make up for the interference caused by reliance on Hebbian learning. One logical alternative to the simple Hebbian approach is to introduce a self-limiting learning mechanism that drives only synaptic changes that are absolutely necessary to support learning. However, determining this minimal amount of learning can be challenging: how can local synaptic changes ``know'' what is functionally necessary in terms of the overall memory system function? One well-established class of such learning mechanisms are error-driven learning rules: by driving synaptic changes directly in proportion to a functionally-defined error signal, learning automatically stops when that error signal goes to zero. For example, the well-known Rescorla-Wagner learning rule for classical conditioning \citep{RescorlaWagner72} is an instance of the delta-rule error-driven learning rule \citep{WidrowHoff60}: \begin{equation} dW = x (r - y), \end{equation} where $dW$ is the amount of synaptic weight change, $x$ is the sending neuron activity level (e.g., average firing rate of sensory inputs representing conditioned stimuli), $r$ is the actual amount of reward received, and $y$ is the expected amount of reward, computed according to the existing synaptic weights: \begin{equation} y = \sum x W. \end{equation} This learning rule drives learning (changes in weights, $dW$) up to the point where the expected prediction of reward ($y$) matches the actual reward received ($r$), at which point learning stops, because the difference term in the parentheses goes to 0. The dependency on $x$ is critical for \emph{credit assignment}, which ensures that the most active sending neurons change their weights the most, as such weight changes will be the most effective in reducing the error. The widely-used error backpropagation learning algorithm is a mathematical extension of this simpler delta-rule form of learning \citep{RumelhartHintonWilliams86}, and demonstrates the general-purpose power of these error-driven learning principles, underlying the current success in large-scale deep learning models \citep{LeCunBengioHinton15}. We have previously shown that these error-driven learning principles can be applied to the CA1 region of the hippocampus \citep{KetzMorkondaOReilly13}, building on theta-phase dynamics discovered by \citet{HasselmoBodelonWyble02}. The critical \emph{target} value driving this error-driven learning is the full pattern of activity over the entorhinal cortex (EC) representing the current state of the rest of the cortex. Learning stops when the hippocampal encoding of this EC pattern projecting from CA3 through CA1 matches the target version driven by the excitatory projections into the EC. These error-driven learning dynamics have been supported empirically by studies of CA1 learning in various tasks \citep{SchapiroTurk-BrowneNormanEtAl16,SchapiroTurk-BrowneBotvinickEtAl17}. However, this prior model retained the standard Hebbian learning for all of the connections within CA3 and DG, because the error signal that drives CA1 learning does not have any way of propagating back to these earlier areas within the overall circuit: the connectivity is only feedforward from CA3 to CA1. To be able to apply a similar type of self-limiting error-driven learning to the core area CA3 of the hippocampus, we need a suitable target signal available to neurons within the CA3 that determines when the learning has accomplished what it needs to do. Recently, \citet{KowadloAhmedRawlinson20} proposed in an abstract, backpropagation-based model that the DG can serve as a kind of teacher to the CA3, driving learning just to the point where CA3 on its own can replicate the same highly pattern-separated representations that the DG imparts on the CA3. We build on this idea here, by showing how error-driven learning based on this DG-driven target signal can emerge naturally within the activation dynamics of the hippocampal circuitry, driving learning in the feedforward and recurrent synapses of area CA3. Thus, we are able to extend the application of error-driven learning to the ``heart'' of the hippocampus. We show that this more fully error-driven hippocampal learning system has significantly improved memory capacity and resistance to interference compared to one with Hebbian learning in CA3. Furthermore, we show how these error-driven learning dynamics fit with detailed features of the neuroanatomy and physiology of the hippocampal circuits, and can have broad implications for understanding important learning phenomena such as the \emph{testing effect} \citep{LiuOReillyRanganath21}. Overall, this new framework provides a consistent computational and biological account of hippocampal episodic learning, which departs from the tradition of Hebbian learning at a computational level, while retaining the overall conceptual understanding of the essential role of the hippocampus in episodic memory. Thus, we do not throw the baby out with the bathwater here, and our model remains consistent with the vast majority of behavioral and neural data consistent with the classic Hebb-Marr model. Nevertheless, it also does make novel predictions, and at a broad, behavioral level, the improved performance of our model is more compatible with the remarkable capacity of the relatively small hippocampal system for encoding so many distinct memories over the course of our lives. In the remainder of the paper, we first introduce the computational and biological framework for error-driven learning in the hippocampal circuits, and then present the details of an implemented computational model, followed by results of this model as compared to our previous Hebbian-CA3 version \citep{KetzMorkondaOReilly13}, as well as representational analyses that capture the subregional dynamics in the model. We conclude with a general discussion, including testable predictions from this framework and implications for some salient existing behavioral and neural data on hippocampal learning. \section{Sources of Error Driven Learning in the Hippocampal Circuit} \begin{figure} \centering\includegraphics[width=4in]{fig_hip_edl_model} \caption{\footnotesize Architecture of the Theremin model. Visual depiction of one full theta-cycle training trial, separated into four different phases within the cycle (i.e., four \emph{quarters}). The CA1 learns to properly decode the CA3 pattern into the corresponding EC representation, while CA3 learns to encode the EC input in a more pattern-separated manner reflecting DG input. Arrows depict pathways of particular relevance for that quarter. First quarter: Blue arrows show initial activation of CA3 and DG via monosynaptic pathways from ECin (superficial layers of EC). Green shows CA1 likewise being monosynaptically driven from ECin, and in turn driving ECout (deep layers). Second quarter: Red arrow indicates DG driving CA3, providing a target activity state over CA3 relative to the first quarter state. Also, CA3 starts to drive CA1, resulting in full ``attempted recall'' state over ECout by the end of the Third quarter. In the Fourth quarter, the ECin drives ECout (Orange arrow), which in turn drives any resulting changes in CA1. The activation state at the end of this quarter represents the full target state for all error-driven learning throughout the hippocampus.} \label{fig.theremin} \end{figure} We begin by briefly reviewing our earlier work showing how the monosynaptic pathway interconnecting the entorhinal cortex (EC) and area CA1 can support error-driven learning, via systematic changes in pathway strengths across the theta cycle \citep{KetzMorkondaOReilly13,HasselmoBodelonWyble02} (Figure~\ref{fig.theremin}). Although nominally a central part of the hippocampus, from a computational perspective it makes more sense to think of this monosynaptic CA1 $\leftrightarrow$ EC pathway (sometimes known as the temporo-ammonic pathway) as an extension of the neocortex, where the principles of error-driven learning have been well-developed \citep{OReilly96,WhittingtonBogacz19,LillicrapSantoroMarrisEtAl20}. Specifically, this pathway can be thought of as learning to encode the EC information in CA1 in a way that can then support reactivation of the corresponding EC activity patterns when memories are later retrieved via CA3 pattern completion. Computationally, this is known as an \emph{auto-encoder}, and error-driven learning in this case amounts to adjusting the synapses in this monosynaptic pathway to ensure that the EC pattern is accurately reconstructed from the CA1 activity pattern. Using the delta rule equation shown above, this objective can be formulated as: \begin{equation} dW = \mbox{CA1} (\mbox{ECin} - \mbox{ECout}), \end{equation} where \emph{ECin} is the EC input pattern driven by cortical inputs to the EC, and \emph{ECout} is the output produced by the CA1 encoding of this ECin pattern (Figure~\ref{fig.theremin}). If these are identical, then the error is 0, and no learning occurs, and any learning that does occur is directly in proportion to the extent of error correction required. The detailed biological story for how the system could implement this error-driven learning mechanism depends on the relative out-of-phase strengths of the two major projections into the CA1 \citep{HasselmoBodelonWyble02}: in one phase the CA1 is driven more strongly by direct ECin layer 3 inputs, and in another it is driven more by the CA3 projections. Furthermore, the ECout (deep layers) is initially driven by CA1, but then is driven more by ECin (layer 3). The net effect is that, by learning based on temporal differences in activation state over time, the delta rule is realized. Specifically, the difference in ECout activation between their CA1-driven vs. ECin-driven states produces the (ECin -- ECout) difference in the above equation. Likewise, CA1 neurons directly experience a ``reflection'' of this temporal difference, conveyed via the projections from ECout $\rightarrow$ CA1, and they also can learn using their own local delta-rule-like equation based on this temporal difference. Mathematically, this is a form of error backpropagation \citep{OReilly96,WhittingtonBogacz19,LillicrapSantoroMarrisEtAl20}. See \citet{KetzMorkondaOReilly13} for more details. Consistent with the idea that this monosynaptic pathway is more cortex-like in nature, \citet{SchapiroTurk-BrowneBotvinickEtAl17} have shown that this pathway can learn to integrate across multiple learning experiences to encode sequential structure, in a way that depends critically on the error-driven nature of this pathway, and is compatible with multiple sources of data \citep{SchapiroTurk-BrowneNormanEtAl16}. To extend this error-driven learning mechanism to area CA3, it is essential to have two different activation states, one that represents a better, target representation (e.g., the actual reward, or the actual ECin input in the examples considered previously), and the other that represents what the current synaptic weights produce on their own. The key idea in our new Theremin model is that the highly pattern-separated activity pattern in the DG drives a target representation as a pattern of activity over CA3, which can be compared to what the CA3 can produce on its own (i.e., prior to the arrival of DG $\rightarrow$ CA3 inputs). Thus, in effect, the DG, which is the sparsest and most pattern-separated hippocampal layer, is serving as a teacher to the CA3, driving error-driven learning signals there just to the point where CA3 on its own can replicate the DG-driven sparse, pattern-separated representations \citep{KowadloAhmedRawlinson20}. The delta-rule formulation for this new error-driven learning component is: \begin{equation} dW = \mbox{ECin} (\mbox{CA3}_{dg} - \mbox{CA3}_{nodg}), \end{equation} where \emph{ECin} is the sending activity into CA3 (via the perforant pathway (PP) projections), $\mbox{CA3}_{dg}$ is the activity of the CA3 neurons when being driven by the strong mossy fiber (MF) inputs from the DG, and $\mbox{CA3}_{nodg}$ is the CA3 activity when not being driven by those DG inputs, i.e., from only the PP and CA3 recurrent inputs prior to the arrival of DG $\rightarrow$ CA3 inputs. Critically, to the extent that CA3 prior to DG input is already matching the DG-driven pattern, no additional learning needs to occur, thus producing the interference minimization benefits of error-driven learning. Note that the same error-driven signal in CA3 trains the lateral recurrent pathway within CA3 in addition to the ECin $\rightarrow$ CA3 PP projections, so that these recurrent connections also adapt to fit the DG-driven pattern, but no further. Although this form of error-driven learning might make sense computationally, how could something like this delta error signal emerge naturally from the hippocampal biology? First, as in our prior model of learning in the monosynaptic pathway \citep{KetzMorkondaOReilly13}, we adopt the idea that the delta arises as a \emph{temporal difference} between two states of activity over the CA3, which is also consistent with a broader understanding of how error-driven learning works in the neocortex; \citep{OReilly96,OReillyMunakata00,OReillyRussinZolfagharEtAl21}. The appropriate temporal difference over CA3 should actually emerge naturally from the additional delay associated with the propagation of the MF signal through the DG to the CA3, compared to the more direct PP signal from ECin to CA3. Thus, as in our prior models, the minus phase term in the delta rule occurs first (i.e., $\mbox{CA3}_{nodg}$), followed by the plus phase (this terminology goes back to the Boltzmann machine, which also used a temporal-difference error-driven learning mechanism; \citealp{AckleyHintonSejnowski85}). Neurophysiologically, there are a number of lines of empirical evidence consistent with this temporal difference error-driven learning dynamic in the CA3: \begin{itemize} \item CA3 pyramidal cells respond to PP stimulation prior to the granule cells (GCs) in the DG, in vivo \citep{YeckelBerger90,DoMartinezMartinezEtAl02}, such that the indirect input through the DG will be that much more delayed due to the slower DG response (by roughly 5 msec at least). \item MF inputs from the DG GCs to the CA3 can induce heterosynaptic plasticity at PP and CA3 recurrent connections \citep{McMahonBarrionuevo02,TsukamotoYasuiYamadaEtAl03,KobayashiPoo04,RebolaCartaMulle17}. This is consistent with ability of the later-arriving DG inputs to drive the CA3 synaptic changes toward that imposed by this stronger target-like pattern, compared to the earlier pattern initially evoked by PP and CA3 recurrent inputs. \item Although several studies have found that contextual fear learning is intact without MF input to CA3 \citep{McHughJonesQuinnEtAl07,NakashibaCushmanPelkeyEtAl12,KitamuraSunMartinEtAl15}, incomplete patterns from DG during encoding impair the function of EC $\rightarrow$ CA3 pathway in contextual fear conditioning tasks \citep{BernierLacagninaAyoubEtAl17}, suggesting that DG still plays an important role in heterosynaptic plasticity at CA3. \end{itemize} In addition to this DG-driven error learning in CA3, we explored a few other important principles that also help improve overall learning performance. First, reducing the strength of the MF inputs to the CA3 during memory recall helped shift the dynamics toward pattern completion instead of pattern separation, as was hypothesized in \citet{OReillyMcClelland94}. This is consistent with evidence and models showing that MF projections are not necessary in naturally recalling a memory \citep{NakashibaCushmanPelkeyEtAl12,BernierLacagninaAyoubEtAl17,Rolls13}. However, other data suggests that it still plays an important role in increasing recall precision \citep{RuedigerVittoriBednarekEtAl11,NakashibaCushmanPelkeyEtAl12,BernierLacagninaAyoubEtAl17,PignatelliRyanRoyEtAl19}. Thus, consistent with these data, we found that reducing, but not entirely eliminating MF input to the CA3 during recall was beneficial, most likely because it enabled the other pathways to exert a somewhat stronger influence in favor of pattern completion, while still preserving the informative inputs from the DG. Second, we experimented with the parameters on the one remaining Hebbian form of learning in the network, which is in the ECin $\rightarrow$ DG pathway (i.e., the perforant path). This pathway does not have an obvious source of error-driven contrast, given that there is only one set of projections into the DG granule cells. Thus, we sought to determine if there were particular parameterizations of Hebbian learning that would optimize learning in this pathway, and found that shifting the balance of weight decreases over weight increases helped learning overall, working to increase pattern separation in this pathway still further. Finally, we tested a range of different learning rates for all of the pathways in the model, along with relative strengths of the projections, across a wide range of network sizes and numbers of training items, to determine the overall best parameterization under these new mechanisms. Next, we describe our computational implementation within the existing \citet{KetzMorkondaOReilly13} framework, and then present the results of a systematic large-scale parameter search of all relevant parameters in the model, to determine the overall best-performing configuration of the new model. \section{Methods} \subsection{Hippocampal Architecture} The current model, which we refer to as the Theremin (i.e., Total Hippocampal ERror MINimization) (Figure~\ref{fig.theremin}), is based on our previous theta-phase hippocampus model \citep{KetzMorkondaOReilly13}, which was developed within the earlier Complementary Learning System (CLS) model of the hippocampus \citep{NormanOReilly03,OReillyRudy01}. The broader implementation framework is the Leabra model (Local, Error-driven, and Associative, Biologically Realistic Algorithm), which provides standard point-neuron rate-coded neurons, inhibitory interneuron-mediated competition and sparse, distributed representations, full bidirectional connectivity, and temporal-difference based error-driven learning dynamics \citep{OReillyMunakata00,OReillyMunakataFrankEtAl12}. See \url{https://github.com/emer/leabra} for fully-documented equations, code, and several example simulations, including the exact model presented here. Figure~\ref{fig.theremin} shows the standard hippocampal architecture captured in our models. The EC superficial layer (ECin) is the source of input to the hippocampus, integrated from all over the cortex. Based on anatomical and physiological data, we organize the EC into different pools (also called slots) that reflect the inputs from different cortical areas, and thus have different types of representations reflecting the specializations of these different areas \citep{WitterDoanJacobsenEtAl17}. In the present model, we assume some pools reflect item-specific information, while others reflect the various aspects of information that together constitute context, which is important for distinguishing different memory lists in our tests. The ECin projects to the DG and CA3 via broad, diffuse PP projections, which have a uniform 25\% random chance of connection. This connectivity is essential for driving conjunctive encoding in the DG and CA3, such that each receiving neuron receives a random sample of information across the full spectrum present in the ECin. Further, the DG and CA3 have high levels of inhibition, driving extreme competition, such that only those neurons that have a particularly favorable conjunction of input features are able to get active in the face of the strong inhibition. This is the core principle behind Marr's pattern separation mechanism, captured by his simple R-theta codon model \citep{Marr71}. Using the standard FFFB (feedforward \& feedback) inhibition mechanism in Leabra, DG has a inhibitory conductance multiplier of 3.8 and CA3 has 2.8, compared to the standard cortical value of 1.8 which produces activity levels of around 15\%. These resulted in DG activity around 1\% and CA3 around 2\%. The number of units in DG is roughly 5 times of that in CA3, consistent with the theta-phase hippocampus model. The CA3 receives strong MF projections from the DG, which have a strength multiplier of 4 (during encoding), giving the DG a much stronger influence on CA3 activity compared to the direct PP inputs from ECin. CA3 also receives recurrent collateral projections which have a strength multiplier of 2, which are the critical Hebbian cell-assembly autoassociation projections in the standard Hebb-Marr model, as captured in \cite{KetzMorkondaOReilly13} using a Hebbian learning mechanism. That model also uses Hebbian learning in the PP pathways from ECin to DG and CA3, which also facilitate pattern completion during recall as analyzed in \citet{OReillyMcClelland94}. In the monosynaptic pathway, ECin (superficial) layers project to CA1, which then projects back into the deep layers of EC, called ECout in the model, such that CA1 encodes the information in ECin and can drive ECout during recall to drive the hippocampal memory back out into the cortex. This is the auto-encoder function of CA1, which is essential for translating the highly pattern-separated representations in CA3 back into the ``language'' of the cortex. Thus, a critical locus of memory encoding is in the CA3 $\rightarrow$ CA1 connections that associate the CA3 conjunctive memory with the CA1 decoding thereof --- without this, the randomized CA3 patterns would be effectively unintelligible to the cortex. Unlike the broad and diffuse PP projections, the EC $\leftrightarrow$ CA1 connections obey the pool-wise organization of EC, consistent with the focal, point-to-point nature of the EC $\leftrightarrow$ CA1 projections \citep{WitterDoanJacobsenEtAl17}. Thus, each pool is separately auto-encoding the specific, specialized information associated with a given cortical area, which enables these connections to slowly learn the systematic ``language'' of that area. The entire episodic memory is thus the distributed pattern across all of these pools, but the monosynaptic pathway only sees a systematic subset, which it can efficiently and systematically auto-encode. The purpose of the theta-phase error-driven learning in the \citet{KetzMorkondaOReilly13} model is to shape these synaptic weights to support this systematic auto-encoding of information within the monosynaptic pathway. Specifically, CA1 patterns at peaks and troughs of theta cycles come from CA3-retrieved memory and ECin inputs, respectively. As shown in equation 3 above, the target plus-phase activation comes from the ECout being strongly driven by the ECin superficial patterns, in contrast to the minus phase where ECout is being driven directly by CA1. Thus, over iterations of learning, this error-driven mechanism shapes synapses so that the CA1 projection to ECout will replicate the corresponding pattern on ECin. Relative to this theta-phase model, the new Theremin model introduces error-driven learning in the CA3, using equation 4 as shown above, which was achieved by delaying the output of DG $\rightarrow$ CA3 until the 2nd theta phase cycle (Figure~\ref{fig.theremin}). Thus, the plus phase represents the CA3 activity in the presence of these strong DG inputs, while the minus phase is the activity prior to the activation of these inputs. In addition, as noted earlier, we tested the effects of reducing the strength of MF inputs to CA3 during recall testing, along with testing all other relevant parameters in a massive grid search. \subsection{Model Testing} \begin{figure} \centering\includegraphics[width=5in]{fig_hip_edl_abac} \caption{\footnotesize AB--AC list learning paradigm diagram and human data reproduced from an empirical experiment \citep{BarnesUnderwood59}. A) The first AB list is traind until memory accuracy reaches 100\% or 15 epochs, whichever is less; the second AC list is then trained to same criterion, while continuing to test AB and AC items. Detailed procedure is described in Methods. B) Human participants show moderate interference of the AB list after learning the AC list.} \label{fig.abac} \end{figure} The task used in the current study is a standard AB-AC paired-associates list-learning paradigm, widely used to stress interference effects \citep{BarnesUnderwood59,McCloskeyCohen89} (Figure~\ref{fig.abac}). In these paradigms, typically, a participant learns a list of word pairs, with each pair referred to as \emph{A-B}. Once the pairs are learned to a criterion or a fixed number of repetitions, participants learn a new list of \emph{A-C} word pairs, in which the first word in each \emph{A-B} pair is now associated with a new word. Learning of A-C pairs is typically slowed due to competition with previously learned A-B pairs (\emph{proactive interference}), and once the A-C pairs are learned, retention of A-B pairs is reduced (\emph{retroactive interference}). To simulate the AB--AC paradigm, each pair of A and B items (unique random bit patterns in the model) was trained, and then tested by probing with the A item and testing for recall of the associated B item. A list context representation was also present during training and testing, to distinguish the AB vs. AC list. Once recall accuracy for all AB pairs reached 100\%, or 15 epochs of the whole AB list have been trained, the model switched to learn the AC list, where previously learned A items were paired with novel C items and AC list context. Similarly, if memory for all AC pairs reached 100\%, or 30 epochs have been trained in total, that run was considered complete. We ran 30 different simulated subjects (i.e., runs) on each configuration and set of parameters, with each such subject having a different set of random initial synaptic weights. There are several central questions that we address in turn. First, we compared the earlier theta-phase hippocampus model with the new Theremin model to determine the overall improvement resulting from the new error-driven learning mechanism and other optimized parameters. This provides an overall sense of the importance of these mechanisms for episodic memory performance, and an indication of what kinds of problems can now be solved using these models, at a practical level. In short, the Theremin model can be expected to perform quite well learning challenging, overlapping patterns, opening up significant new practical applications of the model. Next, we tested different parameterizations of the Theremin model, to determine the specific contributions of: 1) error-driven learning specifically in the CA3, compared to Hebbian learning in this pathway, with everything else the same; 2) reduced MF strength during testing (cued recall); 3) the balance of weight decreases vs. increases in the ECin $\rightarrow$ DG projections; 4) the effect of pretraining on the monosynaptic pathway between EC and CA1, which simulates the accumulated learning in CA1 about the semantics of EC representations, reflecting in turn the slower learning of cortical representations. In other words, human participants have extensive real life experience of knowing the A/B/C list items, enabling the CA1 to already be able to invertably reconstruct the corresponding EC patterns for them, and pretraining captures this prior learning. Pretraining has relatively moderate benefits for the Theremin model, and was used by default outside of this specific test. The pretraining process involved turning DG and CA3 off, while training the model with items and context separately only in the monosynaptic EC $\leftrightarrow$ CA1 pathway for 5 epochs. The learning capacity of a model is proportional to its size, so we tested a set of three network sizes (small, medium, large, see Appendix for detailed parameters) to determine the relationship between size and capacity in each case. The list sizes ranged from 20 to 100 pairs of AB--AC associations (for comparison, \citet{BarnesUnderwood59} used 8 pairs of nonsense syllables). For the basic performance tests, the two dependent variables were NEpochs and ABmem. NEpochs measures the total number of epochs used to finish one full run through AB and AC lists, which measures the overall speed of learning (capped at 30 if the network failed to learn). ABmem is the memory for AB pairs after learning the AC list, thus representing the models' ability to resist interference. In addition to these performance tests, we ran representational analyses on different network layers (i.e., hippocampal subregions) over the course of learning. This enabled us to directly measure the temporal difference error signals that drove learning in Theremin, and how representations evolved through learning. Furthermore, by comparing across differences in learning algorithm and other parameters, we can directly understand the overall performance differences. The main analytic tool here is to compute cycle-by-cycle correlations between the activity patterns present at that cycle and the patterns present at the end of a trial of processing (100 cycles), which provides a simple 1-dimensional summary of the high-dimensional layer activation patterns as they evolve over time. \section{Results} \subsection{Overall memory performance} \begin{figure} \centering\includegraphics[width=4in]{fig_hip_edl_thetaphase} \caption{\footnotesize Theremin vs. ThetaPhase on AB memory and learning time for all three network sizes. The Theremin model was better at counteracting interference across all list sizes and network sizes, and had significantly faster training time across all list sizes and network sizes.} \label{fig.thetaphase} \end{figure} First, we examined the broadest measure of overall learning performance improvements in Theremin compared to the earlier theta-phase model from \citet{KetzMorkondaOReilly13}. Figure~\ref{fig.thetaphase} shows the results across all three network sizes and numbers of list items. For all three network sizes, the ABmem results show that Theremin was better at counteracting interference and retained more memory for AB pairs than the theta-phase hippocampus model across all list sizes and network sizes (\emph{ps} \textless \ .01 except SmallHip List100 (\emph{p} = 0.736)). Moreover, the full Theremin model completed learning significantly faster (i.e., the NEpochs measure) than the theta-phase hippocampus model across all list sizes and network sizes (\emph{ps} \textless \ .01 except SmallHip List100 (all NEpochs = 30)). \begin{figure} \centering\includegraphics[width=4in]{fig_hip_edl_mods} \caption{\footnotesize Theremin vs. other Models on AB memory and learning time. NoEDL is the Theremin without the new error-driven learning mechanism. NoDynMF is the Theremin with same mossy fiber strength during training and testing. NoDGLearn is the Theremin with ECin $\rightarrow$ DG learning off. NoPretrain is the Theremin without pretraining CA1. Each of these factors makes a significant contribution as seen in decrements relative to the full Theremin in interference resistance (AB memory) and learning time.} \label{fig.mods} \end{figure} To more specifically test the effects of the new error-driven CA3 mechanism in the Theremin model, we directly compared the Theremin model with another Theremin model without error-driven CA3 component (labeled as NoEDL), but with everything else the same. For this and subsequent comparisons, we focus on the medium and large network sizes, as the small case often failed to learn at all for larger list sizes. Figure~\ref{fig.mods} shows that, except for the smallest list size (20 items), Theremin retained significantly more AB memory (\emph{ps} \textless \ .01, except large network with list size of 20 (\emph{p} = 0.321)) and learned faster (\emph{ps} \textless \ .01, except large network with list size of 20 (\emph{p} = 0.343)) than NoEDL. Thus, it is clear that this error-driven learning mechanism is responsible for a significant amount of the improved performance of the Theremin model relative to the earlier theta-phase model. To determine the contributions of the other new mechanisms included in the Theremin model, we compared the full Theremin to versions without each of these mechanisms (Figure~\ref{fig.mods}). The NoDynMF version eliminated the mechanism of dynamically decreasing the strength of MF inputs from DG to the CA3 during recall, and the results show a significant effect on performance for all but the smallest list size (20 items) (NEpoch \emph{ps} \textless \ .01, except large network with list size of 20 (\emph{p} = .013), ABMem \emph{ps} \textless \ .01, except large network with list size of 20 and 80 (\emph{p} = 0.127)). To determine the importance of learning in ECin $\rightarrow$ DG pathway overall, we tested a NoDGLearn variant with no learning at all in this pathway. In principle, the DG could support its pattern separation function without any learning at all, relying only on the high levels of pattern separation and random PP connectivity. However, we found that learning in this pathway is indeed important, with an overall decrease in performance for larger list sizes (above 40 items) (NEpoch \emph{ps} \textless \ .01, BigHip List40 \emph{p} = .011; ABMem \emph{ps} \textless \ .01, BigHip List40 \emph{p} = .025). Interestingly, as the list size scaled up, the NoDGLearn model learned increasingly more slowly, such that it was even slower than the theta-phase model at a list size of 100. This effect is attributable to the strong effect of DG on training the CA3, and when the DG's ability to drive strong pattern separation is compromised, it significantly affects CA3 and thus the overall memory performance. The higher rate of weight decrease (LTD = long-term depression in biological terms) relative to weight increases in the ECin $\rightarrow$ DG pathway were also important: eliminating this asymmetry significantly decreased performance for larger list sizes (above 60 items) (NEpoch \emph{ps} \textless \ .01, SmallHip List60 \emph{p} = .051; ABMem \emph{ps} \textless \ .05, BigHip List80 \emph{p} = .129). We also found that a lower learning rate in the ECin $\rightarrow$ DG pathway improved the ABMem score (reducing interference), but resulted in slower learning, and vice-versa for higher learning rates, consistent with the fundamental tradeoff between learning rate and interference that underlies the complementary learning systems framework \citep{McClellandMcNaughtonOReilly95}. Likewise, due to optimized parameters in Theremin, comparing it to a lower or higher learning rate model would result in significant improvement in ABMem or NEpoch, respectively, but not both. Thus, we compared two Theremin variants that had dramatic differences in both ABMem and NEpoch. Higher learning rate resulted in faster learning (\emph{ps} \textless \ .01) but less ABMem (\emph{ps} \textless \ .01) compared to lower learning rate for list sizes over 40, vice versa. The final mechanism we tested was the pretraining of the EC $\leftrightarrow$ CA1 encoder pathway, to reflect long-term semantic learning in this pathway. The NoPretrain variant showed significantly worse performance at all but the smallest list sizes (NEpoch \emph{ps} \textless \ .01; ABMem \emph{ps} \textless \ .05 except BigHip List20 (\emph{p} = .155)). \subsection{Representational dynamics} \begin{figure} \centering\includegraphics[width=4in]{fig_hip_edl_test_stats} \caption{\footnotesize Statistics for area CA3 over the course of testing (List 100, Medium sized network). Representational similarity analyses (RSA) for area CA3 for Theremin vs. NoEDL show how the error-driven learning in Theremin reduces the representational overlap (top left) whereas the Hebbian learning in NoEDL increases the representational overlap (top right). This explains the differential interference as shown in the AB Memory plot for each case (bottom row). The number of epochs used in Theremin training was set to a fixed number (i.e., 10) that enabled complete learning of AB and AC lists, while in NoEDL was set to the maximum amount used in the current paper (i.e., 30).} \label{fig.test_stats} \end{figure} Having established the basic memory performance effects of the error-driven CA3 and other mechanisms in the Theremin model, we now turn to some analyses of the network representations and dynamics to attempt to understand in greater detail how the error-driven learning shapes representations during learning, how the activation dynamics unfold over the course of the theta cycle within a single trial of learning, and how these dynamics change over multiple iterations of learning. For these analyses, we focus on the 100-item list size, and the medium sized network, comparing the full Theremin model vs. the NoEDL model, to focus specifically on the effects of error-driven learning in the CA3 pathways. Figure~\ref{fig.test_stats} shows a representational similarity analysis (RSA) of the different hippocampal layers over the course of learning, comparing the average correlation of representations in CA3 within each list (all AB items and all AC items, e.g., A1B1 vs. A2B2) and between lists (AB vs. AC, e.g., A1B1 vs. A1C1). These plots also show the proportion of items correctly recalled from each list, with the switch over from the AB to AC list happening half-way through the run (we fixed this crossover point to enable consistent averaging across 30 simulated subjects, using a number of epochs that allowed successful learning for each condition). These results show that the error-driven learning in the full Theremin model immediately learns to decrease the similarity of representations within the list (e.g., WithinAB when learning AB) and between lists over training, while the Hebbian learning in the NoEDL model fails to separate these representations and results in increases in similarity over time. This explains the reduced interference and improved learning times for the error-driven learning mechanism, and is consistent with the idea that the continuous weight changes associated with Hebbian learning are deleterious. \begin{figure} \centering\includegraphics[width=4in]{fig_hip_edl_pat_sim} \caption{\footnotesize Changes in hippocampal subregions' pattern similarities over the course of the first 4 epochs of learning, within a full trial for an example AB pair (model timing equivalent to 100 ms), for the Theremin (top row) and NoEDL models (bottom row). Each line reflects the correlation of the current-time activity pattern relative to the activity pattern at the end of the trial. Two major effects are evident. First, the CA1 pattern learns over epochs to quickly converge on the final plus-phase activation state, based on learning in the CA3 $\rightarrow$ CA1 pathway. Second, the Theremin model shows how the CA3 pattern learns over epochs to converge on the DG-driven activation state that arises after cycle 25, reflecting CA3 error-driven learning. Additionally, big-loop signals from ECout back to ECin could be observed from cycle 25 to 75 in the first epoch for both models, shifting CA3 patterns slightly off its final patterns. Drops seen within the first few cycles were due to the settling of temporally different patterns and were not of interest to the current paper.} \label{fig.pat_sim} \end{figure} Figure~\ref{fig.pat_sim} shows an example AB pair plot, with each layer's correlation with the final activation state at the end of the trial across 4 training epochs. As illustrated in the plot, the learning dynamics in DG, CA3 and CA1 layers follow different learning rules across 4 quarters in one trial. In the CA3, error-driven learning in the Theremin model causes its activation to converge over the course of learning based on the target DG input that arrives starting after cycle 25. This learning progression is not evident in the NoEDL model, where Hebbian learning in the CA3 establishes a relatively stable representation early on. The CA1 shows increasing convergence to the final plus-phase pattern starting in the second and third quarter (cycle 26-75), when CA3 starts to drive CA1. Interestingly, there is evidence for a ``big-loop'' error signal \citep{KumaranMcClelland12} reflecting activation circulating through the trisynaptic pathway and out through the EC, and back into the CA3, deviating its pattern from the stabilized one, as depicted by the slightly curved green line in the first epoch. To elaborate on the error-driven learning dynamics in the Theremin model, as learning progresses, the CA3 pattern in the first quarter becomes increasingly similar to its final pattern (Figure~\ref{fig.pat_sim}). In effect, this similarity signal reflects how close the CA3 pattern is to its final DG-dominated pattern, before DG starts to have an effect on CA3. In the first epoch, CA3 is driven only by ECin $\rightarrow$ CA3 and CA3 $\rightarrow$ CA3 inputs, resulting in a large temporal difference (error signal), which in turn modifies these connections (i.e., heterosynaptic plasticity). This error becomes smaller fast, and learning will stop when there is no more error. On the other hand, the NoEDL model continually increases the synaptic weights between CA3 and other regions whenever two neurons are active together, according to the Hebbian learning principle. \section{Discussion} By incorporating biologically plausible error-driven learning mechanisms at the core CA3 synapses in our computational model of the hippocampus, along with a few other important optimizations, we have been able to significantly improve learning speed and memory capacity (resistance to interference) compared to our previous model that used Hebbian learning in these synapses. These results demonstrate the critical ability of error-driven learning to automatically limit further learning once it has achieved sufficient changes to support effective memory recall, which then significantly reduces the amount of interference that would otherwise occur from continued synaptic changes. Furthermore, representational similarity analysis (RSA) was used to illustrate temporal dynamics within the hippocampal formation, which explains the effects of the error-driven learning mechanism, making it possible for the model to make specific subregional predictions that could be tested in experiments. Another contribution of the current model is to test several computationally-motivated mechanisms that improve overall performance, and could plausibly be implemented in the hippocampal biology. First, decreasing the DG $\rightarrow$ CA3 strength during recall improves performance, because the DG otherwise biases more strongly toward pattern separation rather than the pattern completion needed for recall. Second, as opposed to the intuitive idea that the DG naturally forms highly separated patterns, learning in ECin $\rightarrow$ DG pathway is important for overall performance. Furthermore, favoring of LTD over LTP in this pathway is beneficial as it forces DG to form sparse representations, suggesting that learning overall is helping with the DG pattern separation dynamics. Although our previous model without all of these improvements was sufficient for simulating smaller-scale one-off experiments, the significantly improved capacity of the present model opens up the potential to examine longer time-scale learning contributions of the hippocampus, and other larger-scale datasets as emphasized in \citet{KowadloAhmedRawlinson20}. The Theremin model retains the major tenets of the Hebb-Marr paradigm based on rapid episodic learning, while incorporating error-driven learning to optimize the learning capacity of the system relative to the predominant use of Hebbian learning in other models. In the following subsections, we consider other theoretical models of the hippocampus that can usefully be compared with the present model, including a number of widely-cited theories that postulate some form of error-signaling or error-driven learning. At the heart of many of these models is the idea that the hippocampus can generate predictions in order to then compute a novelty or error signal relative to such predictions, or to learn and predict sequences of future states. After briefly summarizing these models, we discuss what roles the hippocampus and the neocortex play in generating predictions according to the complementary learning systems (CLS) framework in which the current model is based \citep{McClellandMcNaughtonOReilly95,OReillyBhattacharyyaHowardEtAl14,OReillyRanganathRussin21}. \subsection{Prediction-based Models of the Hippocampus} One longstanding and influential set of theories suggests that the hippocampus acts as a \emph{comparator}, generating predictions in order to detect and signal \emph{novelty} or \emph{surprise} \citep{Gray82,Vinogradova01,LismanGrace05}. Specifically, the hippocampus in these models generates a global \emph{scalar} signal as a function of the relative mismatch between a predicted state and the actual next state. For example \citet{Gray82} proposed that combining previous sensory information and the motor plan creates predictions about the current state, which are then compared with the actual current sensory information. The motor plan is maintained if the two states match, but it is interrupted in the case of incorrect predictions (i.e., surprise or novelty), so that the animal can attempt to solve the problem in a different way. In the \citet{LismanGrace05} model, the hippocampal novelty or surprise signal is hypothesized to drive phasic dopamine firing via its subcortical projection pathway through the subiculum. These different models vary in terms of the exact mechanisms and subfields proposed to compute the mismatch signal (CA3, CA1 or subiculum), but they assume a similar overall functional role for the hippocampus in terms of synthesizing predictions. In the present model, error signals are not summed, but rather used to optimize learning of specific associations. However, it is possible that the temporal-difference error signals present in our hippocampal model could play a role in generating a global novelty signal. For example, at different points in the theta phase cycle (Figure~\ref{fig.theremin}), area CA1 and ECout are representing the current information as encoded in CA3 and its projections into CA1, versus the bottom-up cortical state present in ECin. The difference between these two activation states could be converted into a global mismatch signal that would reflect the relative novelty of the current state compared to prior episodic memory learning in the CA3 of the hippocampus. Likewise, it is possible that a similar global error signal could be computed from the temporal differences over CA3 in our model, reflecting the extent to which CA3 has learned to encode the more pattern-separated DG-driven pattern, which is likely to also reflect the relative novelty of the current input state. We will investigate these possibilities in future research. Prediction-based learning in the hippocampus is also central to another early computational model, which is based on error-driven backpropagation learning in the context of a predictive autoencoder \citep{MyersGluck95}. In this model, the hippocampal network learns by simultaneously attempting to recreate the current input patterns, and also predict future reinforcement outcomes. The cortical network representations are then shaped by hippocampal training signals, similar in spirit to the scalar novelty / surprise signals. Simulations with this model and its hippocampus-lesioned variant have been shown to replicate a wide range of conditioned behaviors in rats and rabbits \citep{GluckMyers94}, although it is notable that many of these same phenomena can also be accounted for using an earlier version of the episodic memory model presented here \citep{OReillyRudy01}. Another class of models hypothesizes that the hippocampus learns \emph{sequences} of events over time, such that, when a past state is encountered, the hippocampus can enable the prediction of potential outcomes of actions taken in novel situations, based on what has happened previously \citep{Levy96,WallensteinHasselmo97,JensenLisman96,TsodyksSkaggsSejnowskiEtAl96,Rolls13,SchapiroTurk-BrowneBotvinickEtAl17,StachenfeldBotvinickGershman17}. In some of these models, the recurrent connections in area CA3 learn to associate prior time step representations with subsequent time step patterns, thus learning to predict the next state based on the current state. Other models suggest that the hippocampus learns systematic predictive representations (e.g., a successor map of subsequent states following from the current state in the case of \citealp{StachenfeldBotvinickGershman17}). Most of the models suggest that the hippocampus itself is capable of synthesizing novel predictions based on these learned sequences. \subsection{Neural Mechanisms of Prediction in Hippocampus and Cortex} The models discussed above emphasize the idea that memory retrieval in the hippocampus is a form of prediction, and at a broader level, many researchers have embraced the idea that the hippocampus might be specialized for generating predictions in the service of navigation, reasoning, and imagination \citep{DavachiDuBrow15,KokTurk-Browne18,Mizumori13,LismanRedish09,ZeithamovaSchlichtingPreston12,MackLovePreston18,ZeithamovaSchlichtingPreston12}. These theories, however, tend to describe prediction in broad strokes, and as such, we argue that they do not respect the computational limitations of the hippocampus. In contrast to the above models, we do not believe that the hippocampus itself is well-suited for generating predictions in novel situations, and instead we think the relevant data can be better captured in terms of the simple episodic memory framework that the Hebb-Marr model embodies (as updated in the present paper). Here, the hippocampus is specialized for rapidly encoding memories of distinct events or episodes using highly pattern-separated representations, which can later be recalled through the process of pattern completion. Given the overwhelming empirical support for the idea that the hippocampus is specialized for rapidly learning new episodic memories, we believe that it also cannot support a semantic prediction system capable of generating systematic predictions in novel situations. Specifically, generating a novel prediction typically requires a cognitive process to synthesize prior experience and general principles (e.g., a scientific theory, or implicitly-learned regularities of the world, such as intuitive physics) to specify what will happen in the future. This kind of systematic generalization from prior experience to novel situations is precisely what the neocortex is thought to be optimized for according to the CLS theory \citep{McClellandMcNaughtonOReilly95,OReillyBhattacharyyaHowardEtAl14,OReillyRanganathRussin21}. This is because the overlapping representations of cortical networks are optimized to slowly integrate statistical regularities across many different experiences to learn \emph{semantic} representations capable of supporting systematic generalization in novel situations. Indeed there are various models of error-driven predictive learning in the neocortex capable of learning such systematic predictive abilities, including a biologically-detailed proposal based on thalamocortical loops \citep{OReillyRussinZolfagharEtAl21}. Although the computational architecture of the hippocampus is not well-suited for generating predictions on its own, it can certainly provide relevant episodic memories as input to the cortical prediction generation process. For example, strategic recall of particular memories, followed by appropriate updating of the details to better match the current circumstances, could produce a more generative predictive system that can synthesize novel predictions for new situations. These kinds of complex interactions, however, go well beyond the capabilities of the hippocampal circuit by itself, as captured in any implemented computational model. \subsection{Nonmonotonic Plasticity vs. Error-driven Learning} The temporal difference error signals that drive learning in our model can be related to the neural activation signals that drive nonmonotonic plasticity (NMP) learning dynamics as explored by Norman and colleagues \citep{RitvoTurk-BrowneNorman19}. Specifically, the nonmonotonic plasticity function drives LTD when activations are at a middling, above-zero level, while LTP occurs for more strongly activated neurons. This is the same underlying learning function that we use in our error-driven learning model \citep{OReillyMunakataFrankEtAl12}, and thus it can be difficult to strongly distinguish the predictions of these two models. In particular, the conditions under which errors drive LTD in our model can be construed as being within the LTD range of the nonmonotonic plasticity function, under various additional assumptions. However, the NMP models have not been implemented within the context of a full hippocampal circuit, and it is unclear how those models might actually perform in specific conditions. Thus, the difficulties are more at the level of abstract principles rather than detailed model comparisons at this point. \subsection{Novel Predictions} There are several novel, testable predictions from our model that can distinguish it from a more standard Hebbian-based model: \begin{itemize} \item As shown in Figure~\ref{fig.test_stats}, the error-driven learning in area CA3 serves to drive pattern separation over time among otherwise similar representations, whereas the Hebbian version of the model showed increasing patterns similarity over learning. Thus, experiments that track the progression of representational similarity over the course of learning could distinguish these two patterns. \item Our model depends critically on the modulation of different pathways of connectivity within the hippocampus, organized according to the theta cycle in rodents according to \citet{HasselmoBodelonWyble02}, creating the temporal differences that drive learning. Thus, neural manipulations that selectively disrupt the theta cycle and / or these pathway-specific modulations should affect error-driven learning, but may not affect recall of previously-learned information to the same extent. By contrast, it is not clear why from the purely Hebbian learning framework that disrupting the theta cycle should impair that form of learning. Intriguingly, a recent report appears to be consistent with the predictions of our model: \citet{QuirkZutshiSrikanthEtAl21} found that a highly selective disruption of the timing of the theta cycle produced selective deficits in learning. Even more selective tests of the specific temporal dynamics associated with the CA3 and CA1 could more specifically test our model. \item Our model also generates novel predictions about the functional characteristics of human memory. For instance, there is a large body of evidence about the \emph{testing effect}, in which items that are tested with partial information (as compared to restudy of the complete original information) are better retained than items that are re-studied \citep{LiuOReillyRanganath21}. The superiority of testing over restudy presents a challenge to models depending on Hebbian learning because learning a precise input pattern should be as good or better than learning from a partial cue. Theremin, however, provides a natural explanation for the testing effect, as the difference between an initial guess and subsequent correct answer provides an opportunity for error-driven learning, whereas restudy provides no opportunity to make the initial guess needed in order to optimize weights. \end{itemize} \subsection{Conclusions} In summary, results from our simulations show that error-driven learning mechanisms can dramatically improves both memory capacity and learning speed by reducing competition between learned representations. Furthermore, these mechanisms can potentially explain a wide range of learning and memory phenomena. Error-driven learning in CA3 can emerge naturally out of neurophysiological properties of the hippocampal circuits, building on the basic framework for error-driven learning in the monosynaptic EC $\leftrightarrow$ CA1 pathway \citep{KetzMorkondaOReilly13}. There are many further implications and applications of this work, and many important empirical tests needed to more fully establish its validity. Hopefully, the results presented here provide sufficient motivation to undertake this important future research. \section{Appendix} In this appendix we provide some of the key parameters to understanding how the Theremin model is structured, and organized to do the AB-AC memory task. See table captions for detailed descriptions on parameters/diagrams. The best documentation for those interested in all the details is the fully-functioning Theremin model along with further detailed documentation, available at: \url{https://github.com/ccnlab/hip-edl}. \FloatBarrier \subsection{Network Size Parameters} \begin{table}[hbt!] \begin{tabular}{|l|c|c|c|} \hline \diagbox{Parameter}{Network Size} & Small & Medium & Large \\ \hline Input Pool Size & 7x7 & 7x7 & 7x7 \\ \hline Input Number of Pools & 2x3 & 2x3 & 2x3 \\ \hline ECin Pool Size & 7x7 & 7x7 & 7x7 \\ \hline ECin Number of Pools & 2x3 & 2x3 & 2x3 \\ \hline ECout Pool Size & 7x7 & 7x7 & 7x7 \\ \hline ECout Number of Pools & 2x3 & 2x3 & 2x3 \\ \hline DG Size & 44x44 & 67x67 & 89x89 \\ \hline CA3 Size & 20x20 & 30x30 & 40x40 \\ \hline CA1 Pool Size & 10x10 & 15x15 & 20x20 \\ \hline CA1 Number of Pools & 2x3 & 2x3 & 2x3 \\ \hline \end{tabular} \caption{Parameters for network sizes. In neural networks, larger network size usually leads to higher capacity, when controlled for other settings. In the current study, we tested different variations of the hippocampus model for three different network sizes to show the benefit of error-driven learning for hippocampus regardless of sizes, meaning the mechanism is generalizable. For pool sizes, the numbers in the table refer to number of neurons in that specific pool. Note: DG size is around five times CA3 size as specified in our previous model \citep{KetzMorkondaOReilly13}} \end{table} \FloatBarrier \subsection{Training Input Diagram} \begin{table}[hbt!] \begin{tabular}{|c|c|} \hline Context B3/C3 & Context B4/C4 \\ \hline Context B1/C1 & Context B2/C2 \\ \hline A & B/C \\ \hline \end{tabular} \caption{Training phase patterns for network input. Each unit here represents a pool in the Input layer. Memory of AB and AC pairs are categorized into different experiences, with four different context pools for each experience. } \end{table} \FloatBarrier \subsection{Testing Input Diagram} \begin{table}[hbt!] \begin{tabular}{|c|c|} \hline Context B3/C3 & Context B4/C4 \\ \hline Context B1/C1 & Context B2/C2 \\ \hline A & empty \\ \hline \end{tabular} \caption{Testing phase patterns for network input. Each unit here represents a pool in the Input layer. Memory of AB and AC pairs are categorized into different experiences, with four different context pools for each experience. During testing, no input is given for the B/C pool, while A and context pools are used as partial cues for the hippocampus to do pattern completion (i.e., complete the pattern for the B/C pool).} \end{table} % \bibliography{ccnlab} % use: bibexport -o hip_edl.bib hip_edl_2021.aux to regenerate: \bibliography{hip_edl} \end{document}
{- HOW TO: 1) install cabal and idris 2) run: $ idris hello.idr -o hello $ ./hello -} module Main main : IO () main = putStrLn "Hello world"
State Before: α✝ : Type ?u.19256 β✝ : Type ?u.19259 σ : Type ?u.19262 inst✝⁴ : Primcodable α✝ inst✝³ : Primcodable β✝ inst✝² : Primcodable σ α : Type u_1 β : Type u_2 inst✝¹ : Denumerable α inst✝ : Primcodable β f : α → β h : Primrec f n : ℕ ⊢ Nat.pred (encode (Option.map f (decode n))) = encode (f (ofNat α n)) State After: no goals Tactic: simp State Before: α✝ : Type ?u.19256 β✝ : Type ?u.19259 σ : Type ?u.19262 inst✝⁴ : Primcodable α✝ inst✝³ : Primcodable β✝ inst✝² : Primcodable σ α : Type u_1 β : Type u_2 inst✝¹ : Denumerable α inst✝ : Primcodable β f : α → β h : Nat.Primrec fun n => encode (f (ofNat α n)) n : ℕ ⊢ Nat.succ (encode (f (ofNat α n))) = encode (Option.map f (decode n)) State After: no goals Tactic: simp
=begin # sample-groebner01.rb require "algebra" P = MPolynomial(Rational, "xyz") x, y, z = P.vars("xyz") f1 = x**2 + y**2 + z**2 -1 f2 = x**2 + z**2 - y f3 = x - z p Groebner.basis([f1, f2, f3]) #=> [x - z, y - 2z^2, z^4 + 1/2z^2 - 1/4] ((<_|CONTENTS>)) =end
function [sUnitVector, OUnitVector, vInfMag] = computeHyperSVectOVect(hSMA, hEcc, hInc, hRAAN, hArg, hTA, gmu) %computeHyperSVectOVect Summary of this function goes here % Detailed explanation goes here [hRVect,hVVect]=getStatefromKepler(hSMA, hEcc, hInc, hRAAN, hArg, hTA, gmu); hHat = normVector(cross(hRVect, hVVect)); flyByAngle=2*asin(1/hEcc); SigmaAngle=pi/2 - flyByAngle/2; hUnitVector=hHat; eVector=(norm(hVVect)^2/gmu - 1/norm(hRVect))*hRVect - (dot(hRVect,hVVect)/gmu)*hVVect; eUnitVect=eVector/norm(eVector); sUnitVector=cos(SigmaAngle)*eUnitVect + sin(SigmaAngle)*cross(hUnitVector,eUnitVect); BUnitVector=cross(sUnitVector,hUnitVector)/norm(cross(sUnitVector,hUnitVector)); OUnitVector=cos(flyByAngle)*sUnitVector - sin(flyByAngle)*BUnitVector; sUnitVector = real(sUnitVector); OUnitVector = real(OUnitVector); vInfMag = sqrt(-gmu/hSMA); end
myseries := series(sin(x), x = 0, 10); poly := convert(myseries, polynom); plotsetup(gif,plotoutput="plot.gif"): plot(poly, x = -2*Pi .. 2*Pi, y = -3 .. 3);
{-# OPTIONS_GHC -fplugin GHC.TypeLits.KnownNat.Solver #-} {-# OPTIONS_GHC -fno-warn-missing-signatures #-} {-# OPTIONS_GHC -fno-warn-incomplete-patterns #-} {-# LANGUAGE CPP #-} {-# LANGUAGE ConstraintKinds #-} {-# LANGUAGE DataKinds #-} {-# LANGUAGE GADTs #-} {-# LANGUAGE KindSignatures #-} {-# LANGUAGE ScopedTypeVariables #-} {-# LANGUAGE TemplateHaskell #-} {-# LANGUAGE TypeOperators #-} module Test.Grenade.Layers.BatchNorm where import Control.Monad import Data.List (zipWith5) import Data.Proxy import GHC.TypeLits import Numeric.LinearAlgebra.Static (L, R) import qualified Numeric.LinearAlgebra.Static as H import Hedgehog import Test.Hedgehog.Compat import Test.Hedgehog.Hmatrix import Grenade.Core import Grenade.Layers.BatchNormalisation import Grenade.Utils.LinearAlgebra import Grenade.Utils.ListStore batchnorm :: forall channels rows columns momentum. (KnownNat channels, KnownNat rows, KnownNat columns, KnownNat momentum) => Bool -> R channels -> R channels -> R channels -> R channels -> BatchNorm channels rows columns momentum batchnorm training gamma beta mean var = let ε = 0.00001 in BatchNorm training (BatchNormParams gamma beta) mean var ε mkListStore prop_batchnorm_train_behaves_as_reference :: Property prop_batchnorm_train_behaves_as_reference = property $ do height :: Int <- forAll $ choose 2 100 width :: Int <- forAll $ choose 2 100 channels :: Int <- forAll $ choose 1 100 case (someNatVal (fromIntegral height), someNatVal (fromIntegral width), someNatVal (fromIntegral channels), channels) of (Just (SomeNat (Proxy :: Proxy h)), Just (SomeNat (Proxy :: Proxy w)), _, 1) -> do inp :: S ('D2 h w) <- forAll genOfShape guard . not $ elementsEqual inp g :: R 1 <- forAll randomVector b :: R 1 <- forAll randomVector m :: R 1 <- forAll randomVector v :: R 1 <- forAll randomPositiveVector let layer = batchnorm False g b m v :: BatchNorm 1 h w 90 S2D out = snd $ runForwards layer inp :: S ('D2 h w) S2D ref = run2DBatchNorm layer inp :: S ('D2 h w) H.extract out === H.extract ref (Just (SomeNat (Proxy :: Proxy h)), Just (SomeNat (Proxy :: Proxy w)), Just (SomeNat (Proxy :: Proxy c)), _) -> do inp :: S ('D3 h w c) <- forAll genOfShape g :: R c <- forAll randomVector b :: R c <- forAll randomVector m :: R c <- forAll randomVector v :: R c <- forAll randomPositiveVector let layer = batchnorm False g b m v :: BatchNorm c h w 90 S3D out = snd $ runForwards layer inp :: S ('D3 h w c) S3D ref = run3DBatchNorm layer inp :: S ('D3 h w c) H.extract out === H.extract ref prop_batchnorm_1D_forward_same_as_torch :: Property prop_batchnorm_1D_forward_same_as_torch = withTests 1 $ property $ do let g = H.fromList weight :: R 10 b = H.fromList bias :: R 10 m = H.fromList mean :: R 10 v = H.fromList var :: R 10 bn = batchnorm False g b m v :: BatchNorm 10 4 4 90 mat = H.fromList . concat . concat $ input :: L 40 4 x = S3D mat :: S ('D3 4 4 10) y = snd $ runForwards bn x :: S ('D3 4 4 10) mat' = H.fromList . concat . concat $ ref_out :: L 40 4 assert $ allClose y (S3D mat') where weight = [ -0.9323, 1.0161, 0.1728, 0.3656, -0.6816, 0.0334, 0.8494, -0.6669, -0.1527, -0.7004 ] bias = [ 0.7582, 1.0068, -0.2532, -1.5240, -1.0370, 0.8442, 0.5867, -1.2567, 0.4283, -0.0001 ] mean = [ -0.4507, 0.9090, -1.4717, 0.5009, 0.8931, -0.4792, 0.0432, 0.4649, -0.6547, -1.3197 ] var = [ 1.2303, 1.4775, 0.8372, 0.1644, 0.9392, 0.2103, 0.4951, 0.2482, 0.7559, 0.3686 ] input = [ [ [ -0.70681204, -0.20616523, -0.33806887, -1.52378976 ] , [ 0.056113367, -0.51263034, -0.28884589, -2.64030218 ] , [ -1.19894597, -1.16714501, -0.19816216, -1.13361239 ] , [ -0.81997509, -1.05715847, 0.59198695, 0.51939314 ] ] , [ [ -0.18338945, -1.08975303, 0.30558434, 0.85780441 ] , [ -0.47586514, 0.16499641, 2.18205571, -0.11155529 ] , [ 1.090167402, 0.92460924, 0.42982020, 1.30098605 ] , [ 0.286766794, -1.90825951, -0.91737461, -1.11035680 ] ] , [ [ 1.042808533, 0.08287286, -0.92343962, -0.49747768 ] , [ -0.21943949, 0.61554014, -2.25771808, -0.04292159 ] , [ 1.290057424, -1.07323992, -1.00024509, 1.30155622 ] , [ 0.472014425, -0.96431374, 0.77593171, -1.19090688 ] ] , [ [ 0.993361895, 0.82586401, -1.64278686, 1.25544464 ] , [ 0.239656539, -0.81472164, 1.32814168, 0.78350490 ] , [ -0.16597847, 0.74175131, -1.29834091, -1.28858852 ] , [ 1.307537318, 0.55525642, -0.04312540, 0.24699424 ] ] , [ [ 0.391699581, -0.09803850, -0.41061267, 0.34999904 ] , [ -2.22257169, 0.43748092, -1.21343314, 0.39576068 ] , [ 0.003147978, -1.00396716, 1.27623140, 1.17001295 ] , [ -0.58247902, -0.15453417, -0.37016496, 0.04613848 ] ] , [ [ 0.521356827, 0.94643139, 1.11394095, 0.60162323 ] , [ -0.90214585, -0.75316292, 2.20823979, -1.63446676 ] , [ 0.668517357, 0.62832462, 0.31174039, -0.04457542 ] , [ -0.24607617, 0.12855675, -1.62831199, -0.23100854 ] ] , [ [ -0.43619379, -0.41219231, 0.07910434, -0.20312546 ] , [ 1.670419093, -0.26496240, -1.53759109, 1.00907373 ] , [ -1.04028647, -1.37309467, -0.79040497, -0.15661381 ] , [ 0.009049783, -0.05525103, 1.44492578, 0.44786781 ] ] , [ [ 1.431640263, -0.12869687, 1.25025844, 0.07864278 ] , [ -1.69032764, -0.07707843, 0.11284181, -0.00826502 ] , [ -0.92387816, -0.83121442, 0.42292186, -0.49128937 ] , [ -1.62631051, 0.98236626, -1.69256067, -0.66552013 ] ] , [ [ 0.154654814, 0.59295737, 0.48604089, 0.46829459 ] , [ 0.624001921, 2.11190581, -1.80008912, 0.26847255 ] , [ -0.36086676, 0.94211035, 0.19112136, -0.04113261 ] , [ -0.94438538, -0.38932472, -0.29867526, 0.34307864 ] ] , [ [ 1.016388653, -0.41974341, -0.94618958, 0.22629515 ] , [ -2.04437517, -1.14956784, 0.38054388, 0.82105201 ] , [ 0.054255251, 1.03682625, 0.29021424, -0.42736151 ] , [ -0.00021907, 0.98816186, 0.23878140, -0.17728853 ] ] ] ref_out = [ [ [ 0.9734674096107483, 0.5526634454727173, 0.6635311841964722, 1.660154104232788] , [0.3322128653526306, 0.8102537393569946, 0.6221582293510437, 2.5986058712005615] , [1.3871161937713623, 1.360386848449707, 0.5459367036819458, 1.3322019577026367] , [1.068583369255066, 1.267940878868103, -0.11819997429847717, -0.05718337371945381] ] , [ [0.0936361625790596, -0.66402268409729, 0.5023852586746216, 0.9640040397644043] , [-0.15085376799106598, 0.3848632574081421, 2.070988893508911, 0.15368467569351196] , [1.1582437753677368, 1.019848346710205, 0.606238067150116, 1.334473967552185] , [0.4866550862789154, -1.3482388257980347, -0.5199258923530579, -0.6812460422515869] ] , [ [0.22167539596557617, 0.04038754478096962, -0.14965875446796417, -0.06921406835317612] , [-0.016705399379134178, 0.14098398387432098, -0.4016427993774414, 0.016630740836262703] , [0.2683693766593933, -0.17794916033744812, -0.16416378319263458, 0.2705409526824951] , [0.11387854814529419, -0.15737800300121307, 0.1712745875120163, -0.20017105340957642] ] , [ [-1.0799674987792969, -1.230993390083313, -3.456873655319214, -0.8436583876609802] , [-1.7595523595809937, -2.7102415561676025, -0.7781105041503906, -1.2691868543624878] , [-2.1252965927124023, -1.30683434009552, -3.146301031112671, -3.137507677078247] , [-0.7966886162757874, -1.4749890565872192, -2.0145251750946045, -1.7529363632202148] ] , [ [-0.6843588948249817, -0.3399200439453125, -0.1200828030705452, -0.655030369758606] , [1.1542901992797852, -0.7165574431419373, 0.44455069303512573, -0.6872150897979736] , [-0.41108575463294983, 0.29723069071769714, -1.306460976600647, -1.2317562103271484] , [0.0007928922423161566, -0.3001859486103058, -0.14853018522262573, -0.4413214921951294] ] , [ [0.9170715808868408, 0.9480301737785339, 0.9602301120758057, 0.9229174852371216] , [0.8133963942527771, 0.8242470026016235, 1.0399290323257446, 0.760060727596283] , [0.9277894496917725, 0.9248621463775635, 0.9018049836158752, 0.8758541345596313] , [0.8611786365509033, 0.88846355676651, 0.7605089545249939, 0.862276017665863] ] , [ [0.007999604567885399, 0.036973003298044205, 0.6300419569015503, 0.28934815526008606] , [2.5509982109069824, 0.21470165252685547, -1.3215526342391968, 1.7526549100875854] , [-0.7212311029434204, -1.1229807138442993, -0.4195865988731384, 0.34549471735954285] , [0.5454756021499634, 0.4678548276424408, 2.278794050216675, 1.0751949548721313] ] , [ [-2.550779104232788, -0.4621109068393707, -2.307981491088867, -0.7396559119224548] , [1.628288984298706, -0.5312073826789856, -0.7854347229003906, -0.6233210563659668] , [0.6023192405700684, 0.4782795310020447, -1.2005081176757812, 0.023255640640854836] , [1.542595624923706, -1.9493807554244995, 1.631278157234192, 0.2564810514450073] ] , [ [0.28615128993988037, 0.20917125046253204, 0.22794923186302185, 0.2310660481452942] , [0.20371884107589722, -0.05760492384433746, 0.6294671297073364, 0.2661612331867218] , [0.3766934275627136, 0.14784877002239227, 0.2797465920448303, 0.32053783535957336] , [0.4791780710220337, 0.381691575050354, 0.3657706081867218, 0.25305798649787903] ] , [ [-2.6950571537017822, -1.0383073091506958, -0.4309888482093811, -1.7835899591445923] , [0.8358993530273438, -0.19636774063110352, -1.9615343809127808, -2.469712972640991] , [-1.5851213932037354, -2.7186343669891357, -1.8573282957077026, -1.029518961906433] , [-1.5222787857055664, -2.66249418258667, -1.7979943752288818, -1.3180080652236938] ] ] tests :: IO Bool tests = checkParallel $$(discover) -- REFERENCE FUNCTIONS run2DBatchNorm :: forall h w m. (KnownNat h, KnownNat w, KnownNat m) => BatchNorm 1 h w m -> S ('D2 h w) -> S ('D2 h w) run2DBatchNorm (BatchNorm False (BatchNormParams gamma beta) runningMean runningVar ε _) (S2D x) = let [m] = vectorToList runningMean [v] = vectorToList runningVar [g] = vectorToList gamma [b] = vectorToList beta std = sqrt $ v + ε x_norm = H.dmmap (\a -> (a - m) / std) x out = H.dmmap (\a -> g * a + b) x_norm in S2D out run3DBatchNorm :: forall h w m c. (KnownNat h, KnownNat w, KnownNat m, KnownNat c) => BatchNorm c h w m -> S ('D3 h w c) -> S ('D3 h w c) run3DBatchNorm (BatchNorm False (BatchNormParams gamma beta) runningMean runningVar ε _) inp = let ms = vectorToList runningMean vs = vectorToList runningVar gs = vectorToList gamma bs = vectorToList beta cs = splitChannels inp :: [S ('D2 h w)] f c g b m v = let gs' = listToVector [g] :: R 1 bs' = listToVector [b] :: R 1 ms' = listToVector [m] :: R 1 vs' = listToVector [v] :: R 1 bn' = BatchNorm False (BatchNormParams gs' bs') ms' vs' ε undefined :: BatchNorm 1 h w m in run2DBatchNorm bn' c in combineChannels $ zipWith5 f cs gs bs ms vs
/- Copyright (c) 2020 Bhavik Mehta. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Bhavik Mehta, Jakob von Raumer -/ import data.list.chain import category_theory.punit import category_theory.groupoid import category_theory.category.ulift /-! # Connected category > THIS FILE IS SYNCHRONIZED WITH MATHLIB4. > Any changes to this file require a corresponding PR to mathlib4. Define a connected category as a _nonempty_ category for which every functor to a discrete category is isomorphic to the constant functor. NB. Some authors include the empty category as connected, we do not. We instead are interested in categories with exactly one 'connected component'. We give some equivalent definitions: - A nonempty category for which every functor to a discrete category is constant on objects. See `any_functor_const_on_obj` and `connected.of_any_functor_const_on_obj`. - A nonempty category for which every function `F` for which the presence of a morphism `f : j₁ ⟶ j₂` implies `F j₁ = F j₂` must be constant everywhere. See `constant_of_preserves_morphisms` and `connected.of_constant_of_preserves_morphisms`. - A nonempty category for which any subset of its elements containing the default and closed under morphisms is everything. See `induct_on_objects` and `connected.of_induct`. - A nonempty category for which every object is related under the reflexive transitive closure of the relation "there is a morphism in some direction from `j₁` to `j₂`". See `connected_zigzag` and `zigzag_connected`. - A nonempty category for which for any two objects there is a sequence of morphisms (some reversed) from one to the other. See `exists_zigzag'` and `connected_of_zigzag`. We also prove the result that the functor given by `(X × -)` preserves any connected limit. That is, any limit of shape `J` where `J` is a connected category is preserved by the functor `(X × -)`. This appears in `category_theory.limits.connected`. -/ universes v₁ v₂ u₁ u₂ noncomputable theory open category_theory.category open opposite namespace category_theory /-- A possibly empty category for which every functor to a discrete category is constant. -/ class is_preconnected (J : Type u₁) [category.{v₁} J] : Prop := (iso_constant : Π {α : Type u₁} (F : J ⥤ discrete α) (j : J), nonempty (F ≅ (functor.const J).obj (F.obj j))) /-- We define a connected category as a _nonempty_ category for which every functor to a discrete category is constant. NB. Some authors include the empty category as connected, we do not. We instead are interested in categories with exactly one 'connected component'. This allows us to show that the functor X ⨯ - preserves connected limits. See <https://stacks.math.columbia.edu/tag/002S> -/ class is_connected (J : Type u₁) [category.{v₁} J] extends is_preconnected J : Prop := [is_nonempty : nonempty J] attribute [instance, priority 100] is_connected.is_nonempty variables {J : Type u₁} [category.{v₁} J] variables {K : Type u₂} [category.{v₂} K] /-- If `J` is connected, any functor `F : J ⥤ discrete α` is isomorphic to the constant functor with value `F.obj j` (for any choice of `j`). -/ def iso_constant [is_preconnected J] {α : Type u₁} (F : J ⥤ discrete α) (j : J) : F ≅ (functor.const J).obj (F.obj j) := (is_preconnected.iso_constant F j).some /-- If J is connected, any functor to a discrete category is constant on objects. The converse is given in `is_connected.of_any_functor_const_on_obj`. -/ lemma any_functor_const_on_obj [is_preconnected J] {α : Type u₁} (F : J ⥤ discrete α) (j j' : J) : F.obj j = F.obj j' := by { ext, exact ((iso_constant F j').hom.app j).down.1 } /-- If any functor to a discrete category is constant on objects, J is connected. The converse of `any_functor_const_on_obj`. -/ lemma is_connected.of_any_functor_const_on_obj [nonempty J] (h : ∀ {α : Type u₁} (F : J ⥤ discrete α), ∀ (j j' : J), F.obj j = F.obj j') : is_connected J := { iso_constant := λ α F j', ⟨nat_iso.of_components (λ j, eq_to_iso (h F j j')) (λ _ _ _, subsingleton.elim _ _)⟩ } /-- If `J` is connected, then given any function `F` such that the presence of a morphism `j₁ ⟶ j₂` implies `F j₁ = F j₂`, we have that `F` is constant. This can be thought of as a local-to-global property. The converse is shown in `is_connected.of_constant_of_preserves_morphisms` -/ lemma constant_of_preserves_morphisms [is_preconnected J] {α : Type u₁} (F : J → α) (h : ∀ (j₁ j₂ : J) (f : j₁ ⟶ j₂), F j₁ = F j₂) (j j' : J) : F j = F j' := by simpa using any_functor_const_on_obj { obj := discrete.mk ∘ F, map := λ _ _ f, eq_to_hom (by { ext, exact (h _ _ f), }) } j j' /-- `J` is connected if: given any function `F : J → α` which is constant for any `j₁, j₂` for which there is a morphism `j₁ ⟶ j₂`, then `F` is constant. This can be thought of as a local-to-global property. The converse of `constant_of_preserves_morphisms`. -/ lemma is_connected.of_constant_of_preserves_morphisms [nonempty J] (h : ∀ {α : Type u₁} (F : J → α), (∀ {j₁ j₂ : J} (f : j₁ ⟶ j₂), F j₁ = F j₂) → (∀ j j' : J, F j = F j')) : is_connected J := is_connected.of_any_functor_const_on_obj (λ _ F, h F.obj (λ _ _ f, by { ext, exact discrete.eq_of_hom (F.map f) })) /-- An inductive-like property for the objects of a connected category. If the set `p` is nonempty, and `p` is closed under morphisms of `J`, then `p` contains all of `J`. The converse is given in `is_connected.of_induct`. -/ lemma induct_on_objects [is_preconnected J] (p : set J) {j₀ : J} (h0 : j₀ ∈ p) (h1 : ∀ {j₁ j₂ : J} (f : j₁ ⟶ j₂), j₁ ∈ p ↔ j₂ ∈ p) (j : J) : j ∈ p := begin injection (constant_of_preserves_morphisms (λ k, ulift.up (k ∈ p)) (λ j₁ j₂ f, _) j j₀) with i, rwa i, dsimp, exact congr_arg ulift.up (propext (h1 f)), end /-- If any maximal connected component containing some element j₀ of J is all of J, then J is connected. The converse of `induct_on_objects`. -/ lemma is_connected.of_induct [nonempty J] {j₀ : J} (h : ∀ (p : set J), j₀ ∈ p → (∀ {j₁ j₂ : J} (f : j₁ ⟶ j₂), j₁ ∈ p ↔ j₂ ∈ p) → ∀ (j : J), j ∈ p) : is_connected J := is_connected.of_constant_of_preserves_morphisms (λ α F a, begin have w := h {j | F j = F j₀} rfl (λ _ _ f, by simp [a f]), dsimp at w, intros j j', rw [w j, w j'], end) /-- Lifting the universe level of morphisms and objects preserves connectedness. -/ instance [hc : is_connected J] : is_connected (ulift_hom.{v₂} (ulift.{u₂} J)) := begin haveI : nonempty (ulift_hom.{v₂} (ulift.{u₂} J)), { simp [ulift_hom, hc.is_nonempty] }, apply is_connected.of_induct, rintros p hj₀ h ⟨j⟩, let p' : set J := ((λ (j : J), p {down := j}) : set J), have hj₀' : (classical.choice hc.is_nonempty) ∈ p', { simp only [p'], exact hj₀ }, apply induct_on_objects (λ (j : J), p {down := j}) hj₀' (λ _ _ f, h ((ulift_hom_ulift_category.equiv J).functor.map f)) end /-- Another induction principle for `is_preconnected J`: given a type family `Z : J → Sort*` and a rule for transporting in *both* directions along a morphism in `J`, we can transport an `x : Z j₀` to a point in `Z j` for any `j`. -/ lemma is_preconnected_induction [is_preconnected J] (Z : J → Sort*) (h₁ : Π {j₁ j₂ : J} (f : j₁ ⟶ j₂), Z j₁ → Z j₂) (h₂ : Π {j₁ j₂ : J} (f : j₁ ⟶ j₂), Z j₂ → Z j₁) {j₀ : J} (x : Z j₀) (j : J) : nonempty (Z j) := (induct_on_objects {j | nonempty (Z j)} ⟨x⟩ (λ j₁ j₂ f, ⟨by { rintro ⟨y⟩, exact ⟨h₁ f y⟩, }, by { rintro ⟨y⟩, exact ⟨h₂ f y⟩, }⟩) j : _) /-- If `J` and `K` are equivalent, then if `J` is preconnected then `K` is as well. -/ lemma is_preconnected_of_equivalent {K : Type u₁} [category.{v₂} K] [is_preconnected J] (e : J ≌ K) : is_preconnected K := { iso_constant := λ α F k, ⟨ calc F ≅ e.inverse ⋙ e.functor ⋙ F : (e.inv_fun_id_assoc F).symm ... ≅ e.inverse ⋙ (functor.const J).obj ((e.functor ⋙ F).obj (e.inverse.obj k)) : iso_whisker_left e.inverse (iso_constant (e.functor ⋙ F) (e.inverse.obj k)) ... ≅ e.inverse ⋙ (functor.const J).obj (F.obj k) : iso_whisker_left _ ((F ⋙ functor.const J).map_iso (e.counit_iso.app k)) ... ≅ (functor.const K).obj (F.obj k) : nat_iso.of_components (λ X, iso.refl _) (by simp), ⟩ } /-- If `J` and `K` are equivalent, then if `J` is connected then `K` is as well. -/ lemma is_connected_of_equivalent {K : Type u₁} [category.{v₂} K] (e : J ≌ K) [is_connected J] : is_connected K := { is_nonempty := nonempty.map e.functor.obj (by apply_instance), to_is_preconnected := is_preconnected_of_equivalent e } /-- If `J` is preconnected, then `Jᵒᵖ` is preconnected as well. -/ instance is_preconnected_op [is_preconnected J] : is_preconnected Jᵒᵖ := { iso_constant := λ α F X, ⟨nat_iso.of_components (λ Y, eq_to_iso (discrete.ext _ _ (discrete.eq_of_hom ((nonempty.some (is_preconnected.iso_constant (F.right_op ⋙ (discrete.opposite α).functor) (unop X))).app (unop Y)).hom))) (λ Y Z f, subsingleton.elim _ _)⟩ } /-- If `J` is connected, then `Jᵒᵖ` is connected as well. -/ instance is_connected_op [is_connected J] : is_connected Jᵒᵖ := { is_nonempty := nonempty.intro (op (classical.arbitrary J)) } lemma is_preconnected_of_is_preconnected_op [is_preconnected Jᵒᵖ] : is_preconnected J := is_preconnected_of_equivalent (op_op_equivalence J) lemma is_connected_of_is_connected_op [is_connected Jᵒᵖ] : is_connected J := is_connected_of_equivalent (op_op_equivalence J) /-- j₁ and j₂ are related by `zag` if there is a morphism between them. -/ @[reducible] def zag (j₁ j₂ : J) : Prop := nonempty (j₁ ⟶ j₂) ∨ nonempty (j₂ ⟶ j₁) lemma zag_symmetric : symmetric (@zag J _) := λ j₂ j₁ h, h.swap /-- `j₁` and `j₂` are related by `zigzag` if there is a chain of morphisms from `j₁` to `j₂`, with backward morphisms allowed. -/ @[reducible] def zigzag : J → J → Prop := relation.refl_trans_gen zag lemma zigzag_symmetric : symmetric (@zigzag J _) := relation.refl_trans_gen.symmetric zag_symmetric lemma zigzag_equivalence : _root_.equivalence (@zigzag J _) := mk_equivalence _ relation.reflexive_refl_trans_gen zigzag_symmetric relation.transitive_refl_trans_gen /-- The setoid given by the equivalence relation `zigzag`. A quotient for this setoid is a connected component of the category. -/ def zigzag.setoid (J : Type u₂) [category.{v₁} J] : setoid J := { r := zigzag, iseqv := zigzag_equivalence } /-- If there is a zigzag from `j₁` to `j₂`, then there is a zigzag from `F j₁` to `F j₂` as long as `F` is a functor. -/ lemma zigzag_obj_of_zigzag (F : J ⥤ K) {j₁ j₂ : J} (h : zigzag j₁ j₂) : zigzag (F.obj j₁) (F.obj j₂) := h.lift _ $ λ j k, or.imp (nonempty.map (λ f, F.map f)) (nonempty.map (λ f, F.map f)) -- TODO: figure out the right way to generalise this to `zigzag`. lemma zag_of_zag_obj (F : J ⥤ K) [full F] {j₁ j₂ : J} (h : zag (F.obj j₁) (F.obj j₂)) : zag j₁ j₂ := or.imp (nonempty.map F.preimage) (nonempty.map F.preimage) h /-- Any equivalence relation containing (⟶) holds for all pairs of a connected category. -/ lemma equiv_relation [is_connected J] (r : J → J → Prop) (hr : _root_.equivalence r) (h : ∀ {j₁ j₂ : J} (f : j₁ ⟶ j₂), r j₁ j₂) : ∀ (j₁ j₂ : J), r j₁ j₂ := begin have z : ∀ (j : J), r (classical.arbitrary J) j := induct_on_objects (λ k, r (classical.arbitrary J) k) (hr.1 (classical.arbitrary J)) (λ _ _ f, ⟨λ t, hr.2.2 t (h f), λ t, hr.2.2 t (hr.2.1 (h f))⟩), intros, apply hr.2.2 (hr.2.1 (z _)) (z _) end /-- In a connected category, any two objects are related by `zigzag`. -/ lemma is_connected_zigzag [is_connected J] (j₁ j₂ : J) : zigzag j₁ j₂ := equiv_relation _ zigzag_equivalence (λ _ _ f, relation.refl_trans_gen.single (or.inl (nonempty.intro f))) _ _ /-- If any two objects in an nonempty category are related by `zigzag`, the category is connected. -/ lemma zigzag_is_connected [nonempty J] (h : ∀ (j₁ j₂ : J), zigzag j₁ j₂) : is_connected J := begin apply is_connected.of_induct, intros p hp hjp j, have: ∀ (j₁ j₂ : J), zigzag j₁ j₂ → (j₁ ∈ p ↔ j₂ ∈ p), { introv k, induction k with _ _ rt_zag zag, { refl }, { rw k_ih, rcases zag with ⟨⟨_⟩⟩ | ⟨⟨_⟩⟩, apply hjp zag, apply (hjp zag).symm } }, rwa this j (classical.arbitrary J) (h _ _) end lemma exists_zigzag' [is_connected J] (j₁ j₂ : J) : ∃ l, list.chain zag j₁ l ∧ list.last (j₁ :: l) (list.cons_ne_nil _ _) = j₂ := list.exists_chain_of_relation_refl_trans_gen (is_connected_zigzag _ _) /-- If any two objects in an nonempty category are linked by a sequence of (potentially reversed) morphisms, then J is connected. The converse of `exists_zigzag'`. -/ lemma is_connected_of_zigzag [nonempty J] (h : ∀ (j₁ j₂ : J), ∃ l, list.chain zag j₁ l ∧ list.last (j₁ :: l) (list.cons_ne_nil _ _) = j₂) : is_connected J := begin apply zigzag_is_connected, intros j₁ j₂, rcases h j₁ j₂ with ⟨l, hl₁, hl₂⟩, apply list.relation_refl_trans_gen_of_exists_chain l hl₁ hl₂, end /-- If `discrete α` is connected, then `α` is (type-)equivalent to `punit`. -/ def discrete_is_connected_equiv_punit {α : Type u₁} [is_connected (discrete α)] : α ≃ punit := discrete.equiv_of_equivalence.{u₁ u₁} { functor := functor.star (discrete α), inverse := discrete.functor (λ _, classical.arbitrary _), unit_iso := by { exact (iso_constant _ (classical.arbitrary _)), }, counit_iso := functor.punit_ext _ _ } variables {C : Type u₂} [category.{u₁} C] /-- For objects `X Y : C`, any natural transformation `α : const X ⟶ const Y` from a connected category must be constant. This is the key property of connected categories which we use to establish properties about limits. -/ instance [is_connected J] : full (functor.const J : C ⥤ J ⥤ C) := { preimage := λ X Y f, f.app (classical.arbitrary J), witness' := λ X Y f, begin ext j, apply nat_trans_from_is_connected f (classical.arbitrary J) j, end } instance nonempty_hom_of_connected_groupoid {G} [groupoid G] [is_connected G] : ∀ (x y : G), nonempty (x ⟶ y) := begin refine equiv_relation _ _ (λ j₁ j₂, nonempty.intro), exact ⟨λ j, ⟨𝟙 _⟩, λ j₁ j₂, nonempty.map (λ f, inv f), λ _ _ _, nonempty.map2 (≫)⟩, end end category_theory
function re=rev(x); % REV % REV(x) reverses the elements of x d=size(x); li=d(1,1); ind=li:-1:1; re=x(ind,:);
Formal statement is: lemma Borsuk_map_into_sphere: "(\<lambda>x. inverse(norm (x - a)) *\<^sub>R (x - a)) ` s \<subseteq> sphere 0 1 \<longleftrightarrow> (a \<notin> s)" Informal statement is: The image of a set $s$ under the map $x \mapsto \frac{x - a}{\|x - a\|}$ is contained in the unit sphere if and only if $a \notin s$.
import numpy as np from tensorflow import convert_to_tensor def Xy(df, target, clss, tensor = False): if clss: temp = df.drop([target], axis=1), df[target] >0 else: temp = df.drop([target], axis=1), df[target] return [convert_to_tensor(i) for i in temp]
The ideal way to create masterpieces without the mess at home. Sticky, glue, paint, get messy and have fun. Summer term starts week commencing Monday, June 8, classes available at Ickleford Village Hall on Thursday 1.30pm (other classes available on Mondays and Fridays), for further details contact Helen or Lisa on 01462 451522/07769 952853.
setwd("~/slurm/slurmer") suppressPackageStartupMessages(require(dplyr)) i_am <- Sys.info()[6] my_bla <- read.table(".file1") rownames(my_bla) <- NULL coln <- unlist(unname(my_bla[1,])) colnames(my_bla) <- coln my_bla <- my_bla[-1,] my_bla <- my_bla[,-9] bla <- my_bla my_blub <- unique(my_bla[,c(2,5)]) my_blub <- cbind(my_blub,matrix(nrow = dim(my_blub)[1], ncol = 3)) colnames(my_blub)[3:5] <- c("JOBS", "MEM", "CPUS") for(i in 1:dim(my_blub)[1]){ my_blub[i,3] <- (filter(my_bla, my_bla[,2] == my_blub[i,1] & my_bla[,5]== my_blub[i,2]) %>% dim())[1] my_blub[i,4] <- strsplit(as.character(filter(my_bla, my_bla$USER == my_blub[i,1] & my_bla[,5] == my_blub[i,2])$MIN_MEMORY),"M") %>% unlist() %>% as.numeric() %>% sum(na.rm = TRUE) my_blub[i,5] <- filter(my_bla, my_bla[,2] == my_blub[i,1] & my_bla[,5] == my_blub[i,2])$CPUS %>% as.numeric() %>% sum(na.rm = TRUE) } my_blub$MEM <- trunc((my_blub$MEM)*0.001) my_blub my_jobs <- filter(my_bla, my_bla$USER == i_am) cat(" ","\n", "My Jobs\n" , "\n") my_jobs
# Regression Analyse ```python import numpy as np import pandas as pd import matplotlib.pyplot as plt import seaborn as sns import itertools import warnings import mysql.connector from sqlalchemy import create_engine, exc from time import gmtime, strftime ``` ```python # Settings pd.set_option('display.max_rows', 500) pd.set_option('display.max_columns', 500) # Seaborn sns.set() sns.set_style("darkgrid") plt.matplotlib.style.use('default') my_colors = ["windows blue", "saffron", "hot pink", "algae green", "dusty purple", "greyish", "petrol", "denim blue", "lime"] sns.set_palette(sns.xkcd_palette(my_colors)) colors = sns.xkcd_palette(my_colors) # Warnings warnings.filterwarnings("ignore") ``` ```python def my_df_summary(data): '''function for the summary''' try: dat = data.copy() df = pd.DataFrame([dat.min(), dat.max(), dat.mean(), dat.std(), dat.isna().sum(), dat.nunique(), dat.dtypes], index=['Minimum', 'Maximum', 'Mean', 'Stand. Dev.','#NA', '#Uniques', 'dtypes']) print(f'Dataset has {len(data)} rows.') return df except: print('No summary!!') return data ``` ```python df = pd.read_csv('data/Werbungseffekte.csv') df.head() ``` <div> <style scoped> .dataframe tbody tr th:only-of-type { vertical-align: middle; } .dataframe tbody tr th { vertical-align: top; } .dataframe thead th { text-align: right; } </style> <table border="1" class="dataframe"> <thead> <tr style="text-align: right;"> <th></th> <th>ID</th> <th>TV</th> <th>Radio</th> <th>Newspaper</th> <th>Sales</th> </tr> </thead> <tbody> <tr> <th>0</th> <td>1</td> <td>230.1</td> <td>37.8</td> <td>69.2</td> <td>22.1</td> </tr> <tr> <th>1</th> <td>2</td> <td>44.5</td> <td>39.3</td> <td>45.1</td> <td>10.4</td> </tr> <tr> <th>2</th> <td>3</td> <td>17.2</td> <td>45.9</td> <td>69.3</td> <td>9.3</td> </tr> <tr> <th>3</th> <td>4</td> <td>151.5</td> <td>41.3</td> <td>58.5</td> <td>18.5</td> </tr> <tr> <th>4</th> <td>5</td> <td>180.8</td> <td>10.8</td> <td>58.4</td> <td>12.9</td> </tr> </tbody> </table> </div> ```python my_df_summary(df) ``` Dataset has 200 rows. <div> <style scoped> .dataframe tbody tr th:only-of-type { vertical-align: middle; } .dataframe tbody tr th { vertical-align: top; } .dataframe thead th { text-align: right; } </style> <table border="1" class="dataframe"> <thead> <tr style="text-align: right;"> <th></th> <th>ID</th> <th>TV</th> <th>Radio</th> <th>Newspaper</th> <th>Sales</th> </tr> </thead> <tbody> <tr> <th>Minimum</th> <td>1</td> <td>0.7</td> <td>0</td> <td>0.3</td> <td>1.6</td> </tr> <tr> <th>Maximum</th> <td>200</td> <td>296.4</td> <td>49.6</td> <td>114</td> <td>27</td> </tr> <tr> <th>Mean</th> <td>100.5</td> <td>147.042</td> <td>23.264</td> <td>30.554</td> <td>14.0225</td> </tr> <tr> <th>Stand. Dev.</th> <td>57.8792</td> <td>85.8542</td> <td>14.8468</td> <td>21.7786</td> <td>5.21746</td> </tr> <tr> <th>#NA</th> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> </tr> <tr> <th>#Uniques</th> <td>200</td> <td>190</td> <td>167</td> <td>172</td> <td>121</td> </tr> <tr> <th>dtypes</th> <td>int64</td> <td>float64</td> <td>float64</td> <td>float64</td> <td>float64</td> </tr> </tbody> </table> </div> ```python df.info() ``` <class 'pandas.core.frame.DataFrame'> RangeIndex: 200 entries, 0 to 199 Data columns (total 5 columns): # Column Non-Null Count Dtype --- ------ -------------- ----- 0 ID 200 non-null int64 1 TV 200 non-null float64 2 Radio 200 non-null float64 3 Newspaper 200 non-null float64 4 Sales 200 non-null float64 dtypes: float64(4), int64(1) memory usage: 7.9 KB ```python df.describe() ``` <div> <style scoped> .dataframe tbody tr th:only-of-type { vertical-align: middle; } .dataframe tbody tr th { vertical-align: top; } .dataframe thead th { text-align: right; } </style> <table border="1" class="dataframe"> <thead> <tr style="text-align: right;"> <th></th> <th>ID</th> <th>TV</th> <th>Radio</th> <th>Newspaper</th> <th>Sales</th> </tr> </thead> <tbody> <tr> <th>count</th> <td>200.000000</td> <td>200.000000</td> <td>200.000000</td> <td>200.000000</td> <td>200.000000</td> </tr> <tr> <th>mean</th> <td>100.500000</td> <td>147.042500</td> <td>23.264000</td> <td>30.554000</td> <td>14.022500</td> </tr> <tr> <th>std</th> <td>57.879185</td> <td>85.854236</td> <td>14.846809</td> <td>21.778621</td> <td>5.217457</td> </tr> <tr> <th>min</th> <td>1.000000</td> <td>0.700000</td> <td>0.000000</td> <td>0.300000</td> <td>1.600000</td> </tr> <tr> <th>25%</th> <td>50.750000</td> <td>74.375000</td> <td>9.975000</td> <td>12.750000</td> <td>10.375000</td> </tr> <tr> <th>50%</th> <td>100.500000</td> <td>149.750000</td> <td>22.900000</td> <td>25.750000</td> <td>12.900000</td> </tr> <tr> <th>75%</th> <td>150.250000</td> <td>218.825000</td> <td>36.525000</td> <td>45.100000</td> <td>17.400000</td> </tr> <tr> <th>max</th> <td>200.000000</td> <td>296.400000</td> <td>49.600000</td> <td>114.000000</td> <td>27.000000</td> </tr> </tbody> </table> </div> ### Understanding Data ```python %matplotlib inline plt.rcParams['figure.figsize'] = [16, 16] fig, axs = plt.subplots(4, 1) sns.distplot(df.iloc[:,1], color=colors[0], ax=axs[0], bins=20) sns.distplot(df.iloc[:,2], color=colors[1], ax=axs[1], bins=20) sns.distplot(df.iloc[:,3], color=colors[2], ax=axs[2], bins=20) sns.distplot(df.iloc[:,4], color=colors[3], ax=axs[3], bins=20) plt.show() ``` ```python %matplotlib inline plt.rcParams['figure.figsize'] = [16, 16] fig, axs = plt.subplots(4, 1) sns.boxplot(df.iloc[:,1], color=colors[0], ax=axs[0]) sns.boxplot(df.iloc[:,2], color=colors[1], ax=axs[1]) sns.boxplot(df.iloc[:,3], color=colors[2], ax=axs[2]) sns.boxplot(df.iloc[:,4], color=colors[3], ax=axs[3]) plt.show() ``` ## Exploring Sales data ### 1. Linear Correlation ```python df.iloc[:,1:].corr() ``` <div> <style scoped> .dataframe tbody tr th:only-of-type { vertical-align: middle; } .dataframe tbody tr th { vertical-align: top; } .dataframe thead th { text-align: right; } </style> <table border="1" class="dataframe"> <thead> <tr style="text-align: right;"> <th></th> <th>TV</th> <th>Radio</th> <th>Newspaper</th> <th>Sales</th> </tr> </thead> <tbody> <tr> <th>TV</th> <td>1.000000</td> <td>0.054809</td> <td>0.056648</td> <td>0.782224</td> </tr> <tr> <th>Radio</th> <td>0.054809</td> <td>1.000000</td> <td>0.354104</td> <td>0.576223</td> </tr> <tr> <th>Newspaper</th> <td>0.056648</td> <td>0.354104</td> <td>1.000000</td> <td>0.228299</td> </tr> <tr> <th>Sales</th> <td>0.782224</td> <td>0.576223</td> <td>0.228299</td> <td>1.000000</td> </tr> </tbody> </table> </div> ```python %matplotlib inline plt.rcParams['figure.figsize'] = [8, 8] plt.matshow(df.iloc[:,1:].corr()) plt.colorbar() plt.show() ``` ## 2. Regression Analyse ```python %matplotlib inline plt.rcParams['figure.figsize'] = [16, 8] fig, axs = plt.subplots(1, 3) df.plot(kind='scatter', x='TV', y='Sales', ax=axs[0]) df.plot(kind='scatter', x='Radio', y='Sales', ax=axs[1]) df.plot(kind='scatter', x='Newspaper', y='Sales', ax=axs[2]) plt.show() ``` ## Einfache lineare Regression (häufig auch einfach OLS-Regression) <font size = 3><br> Mit einer einfachen linearen Regression misst man den direkten, linearen Zusammenhang (häufig engl. Response) zwischen zwei Werten. Gleichung: $y = \beta_0 + \beta_1x$ - $y$ ist die zu erklärende Größe (Response-Value) - $x$ ist die erklärende Größe (häufig engl. Feature) - $\beta_0$ ist der geschätzte Achsenabschnitt - $\beta_1$ ist der geschätzte lineare Wirkzusammenhang (Steigung der Geraden) $\beta_0$ und $\beta_1$ zusammen nennt man **Koeffizienten**. </font> ## Berechnung der Koeffizienten <font size = 3> <br> Schätzfunktion: $y = \hat{\beta}_0 + \hat{\beta}_{1x} + \epsilon$ <br> Die optimalen Werte für $\beta_0$ und $\beta_1$ werden für eine OLS-Regression so berechnet: <br> ### Root Mean Squared Error - RMSE <font size="4"> Tipp: https://de.wikipedia.org/wiki/Lineare_Regression<br> \begin{align} \hat{\beta}_1 \; &= \frac{\sum_{i=1}^n (X_i - \bar{X})(Y_i - \bar{Y})}{\sum_{i=1}^n (X_i - \bar{X})^2} \end{align} <br> \begin{align*} \hat{\beta}_0 \; &= \bar{Y} - \hat{\beta}_1 \bar{X} \end{align*} <br> D.h., der Steigungs-Koeffizient ($\beta_1$) lässt sich direkt als Cov(X,Y)/Var(X) berechnen. ```python %matplotlib inline plt.rcParams['figure.figsize'] = [16, 8] g = sns.lmplot(x="TV", y="Sales", data=df) plt.show() ``` ```python df.head() ``` <div> <style scoped> .dataframe tbody tr th:only-of-type { vertical-align: middle; } .dataframe tbody tr th { vertical-align: top; } .dataframe thead th { text-align: right; } </style> <table border="1" class="dataframe"> <thead> <tr style="text-align: right;"> <th></th> <th>ID</th> <th>TV</th> <th>Radio</th> <th>Newspaper</th> <th>Sales</th> </tr> </thead> <tbody> <tr> <th>0</th> <td>1</td> <td>230.1</td> <td>37.8</td> <td>69.2</td> <td>22.1</td> </tr> <tr> <th>1</th> <td>2</td> <td>44.5</td> <td>39.3</td> <td>45.1</td> <td>10.4</td> </tr> <tr> <th>2</th> <td>3</td> <td>17.2</td> <td>45.9</td> <td>69.3</td> <td>9.3</td> </tr> <tr> <th>3</th> <td>4</td> <td>151.5</td> <td>41.3</td> <td>58.5</td> <td>18.5</td> </tr> <tr> <th>4</th> <td>5</td> <td>180.8</td> <td>10.8</td> <td>58.4</td> <td>12.9</td> </tr> </tbody> </table> </div> ```python # Coefficients on Statsmodel import statsmodels.formula.api as smf # create a fitted model in one line lm = smf.ols(formula='Sales ~ TV', data=df).fit() ``` ```python dir(lm) ``` ['HC0_se', 'HC1_se', 'HC2_se', 'HC3_se', '_HCCM', '__class__', '__delattr__', '__dict__', '__dir__', '__doc__', '__eq__', '__format__', '__ge__', '__getattribute__', '__gt__', '__hash__', '__init__', '__init_subclass__', '__le__', '__lt__', '__module__', '__ne__', '__new__', '__reduce__', '__reduce_ex__', '__repr__', '__setattr__', '__sizeof__', '__str__', '__subclasshook__', '__weakref__', '_cache', '_data_attr', '_get_robustcov_results', '_is_nested', '_use_t', '_wexog_singular_values', 'aic', 'bic', 'bse', 'centered_tss', 'compare_f_test', 'compare_lm_test', 'compare_lr_test', 'condition_number', 'conf_int', 'conf_int_el', 'cov_HC0', 'cov_HC1', 'cov_HC2', 'cov_HC3', 'cov_kwds', 'cov_params', 'cov_type', 'df_model', 'df_resid', 'eigenvals', 'el_test', 'ess', 'f_pvalue', 'f_test', 'fittedvalues', 'fvalue', 'get_influence', 'get_prediction', 'get_robustcov_results', 'initialize', 'k_constant', 'llf', 'load', 'model', 'mse_model', 'mse_resid', 'mse_total', 'nobs', 'normalized_cov_params', 'outlier_test', 'params', 'predict', 'pvalues', 'remove_data', 'resid', 'resid_pearson', 'rsquared', 'rsquared_adj', 'save', 'scale', 'ssr', 'summary', 'summary2', 't_test', 't_test_pairwise', 'tvalues', 'uncentered_tss', 'use_t', 'wald_test', 'wald_test_terms', 'wresid'] ```python # summary function lm.summary() ``` <table class="simpletable"> <caption>OLS Regression Results</caption> <tr> <th>Dep. Variable:</th> <td>Sales</td> <th> R-squared: </th> <td> 0.612</td> </tr> <tr> <th>Model:</th> <td>OLS</td> <th> Adj. R-squared: </th> <td> 0.610</td> </tr> <tr> <th>Method:</th> <td>Least Squares</td> <th> F-statistic: </th> <td> 312.1</td> </tr> <tr> <th>Date:</th> <td>Mon, 27 Jul 2020</td> <th> Prob (F-statistic):</th> <td>1.47e-42</td> </tr> <tr> <th>Time:</th> <td>11:43:17</td> <th> Log-Likelihood: </th> <td> -519.05</td> </tr> <tr> <th>No. Observations:</th> <td> 200</td> <th> AIC: </th> <td> 1042.</td> </tr> <tr> <th>Df Residuals:</th> <td> 198</td> <th> BIC: </th> <td> 1049.</td> </tr> <tr> <th>Df Model:</th> <td> 1</td> <th> </th> <td> </td> </tr> <tr> <th>Covariance Type:</th> <td>nonrobust</td> <th> </th> <td> </td> </tr> </table> <table class="simpletable"> <tr> <td></td> <th>coef</th> <th>std err</th> <th>t</th> <th>P>|t|</th> <th>[0.025</th> <th>0.975]</th> </tr> <tr> <th>Intercept</th> <td> 7.0326</td> <td> 0.458</td> <td> 15.360</td> <td> 0.000</td> <td> 6.130</td> <td> 7.935</td> </tr> <tr> <th>TV</th> <td> 0.0475</td> <td> 0.003</td> <td> 17.668</td> <td> 0.000</td> <td> 0.042</td> <td> 0.053</td> </tr> </table> <table class="simpletable"> <tr> <th>Omnibus:</th> <td> 0.531</td> <th> Durbin-Watson: </th> <td> 1.935</td> </tr> <tr> <th>Prob(Omnibus):</th> <td> 0.767</td> <th> Jarque-Bera (JB): </th> <td> 0.669</td> </tr> <tr> <th>Skew:</th> <td>-0.089</td> <th> Prob(JB): </th> <td> 0.716</td> </tr> <tr> <th>Kurtosis:</th> <td> 2.779</td> <th> Cond. No. </th> <td> 338.</td> </tr> </table><br/><br/>Warnings:<br/>[1] Standard Errors assume that the covariance matrix of the errors is correctly specified. ## Wie lese ich die Ergebnisse einer OLS-Regression? <font size = 3><br> To check whether a regression has good explanatory power at all, we should look at the following key-features:<br> 1. Determination coefficient adj. R-squared<br> 2. The estimation statistics of all coefficients<br> 3. Jarque-Bera-Test<br> 4. Durbin-Watson-Test<br> Only when these values have the desired properties we should go further with the actual coefficients ### Analyse the Rest ```python # The residuals are also directly ejected by the statsmodel %matplotlib inline plt.rcParams['figure.figsize'] = [16, 8] fig, axs = plt.subplots(2, 1) lm.resid.plot(ax=axs[0]) lm.resid.plot(kind='hist', bins=25, ax=axs[1]) plt.show() ``` ### Once we have estimated the model, we can also use it to explain Y with new x values. ```python # Important: predict expects the values with the same labels as data with which estimates were made. X_neu = pd.DataFrame({'TV': [100, 200, 300]}) pred = lm.predict(X_neu) pred ``` 0 11.786258 1 16.539922 2 21.293586 dtype: float64 ### The quality of an estimate can also be made again with training and test data. With an OLS model, however, this is only very rarely necessary due to the large number of estimation statistics. ```python from sklearn.model_selection import train_test_split train, test = train_test_split(df, test_size=0.2) ``` ```python lm = smf.ols(formula='Sales ~ TV', data=train).fit() ``` ```python lm.summary() ``` <table class="simpletable"> <caption>OLS Regression Results</caption> <tr> <th>Dep. Variable:</th> <td>Sales</td> <th> R-squared: </th> <td> 0.585</td> </tr> <tr> <th>Model:</th> <td>OLS</td> <th> Adj. R-squared: </th> <td> 0.583</td> </tr> <tr> <th>Method:</th> <td>Least Squares</td> <th> F-statistic: </th> <td> 222.9</td> </tr> <tr> <th>Date:</th> <td>Mon, 27 Jul 2020</td> <th> Prob (F-statistic):</th> <td>5.33e-32</td> </tr> <tr> <th>Time:</th> <td>11:56:55</td> <th> Log-Likelihood: </th> <td> -417.26</td> </tr> <tr> <th>No. Observations:</th> <td> 160</td> <th> AIC: </th> <td> 838.5</td> </tr> <tr> <th>Df Residuals:</th> <td> 158</td> <th> BIC: </th> <td> 844.7</td> </tr> <tr> <th>Df Model:</th> <td> 1</td> <th> </th> <td> </td> </tr> <tr> <th>Covariance Type:</th> <td>nonrobust</td> <th> </th> <td> </td> </tr> </table> <table class="simpletable"> <tr> <td></td> <th>coef</th> <th>std err</th> <th>t</th> <th>P>|t|</th> <th>[0.025</th> <th>0.975]</th> </tr> <tr> <th>Intercept</th> <td> 7.3339</td> <td> 0.535</td> <td> 13.702</td> <td> 0.000</td> <td> 6.277</td> <td> 8.391</td> </tr> <tr> <th>TV</th> <td> 0.0461</td> <td> 0.003</td> <td> 14.930</td> <td> 0.000</td> <td> 0.040</td> <td> 0.052</td> </tr> </table> <table class="simpletable"> <tr> <th>Omnibus:</th> <td> 0.476</td> <th> Durbin-Watson: </th> <td> 1.920</td> </tr> <tr> <th>Prob(Omnibus):</th> <td> 0.788</td> <th> Jarque-Bera (JB): </th> <td> 0.620</td> </tr> <tr> <th>Skew:</th> <td>-0.097</td> <th> Prob(JB): </th> <td> 0.733</td> </tr> <tr> <th>Kurtosis:</th> <td> 2.765</td> <th> Cond. No. </th> <td> 355.</td> </tr> </table><br/><br/>Warnings:<br/>[1] Standard Errors assume that the covariance matrix of the errors is correctly specified. ```python y_hat = lm.predict(test) y_hat.head() ``` 192 8.126934 108 7.937909 80 10.856274 23 17.859427 139 15.858526 dtype: float64 ```python # Error estimation over sklearn from sklearn.metrics import mean_squared_error from math import sqrt ``` ```python rmse = sqrt(mean_squared_error(test.Sales, y_hat)) me = (test.Sales - y_hat).sum() / len(test) print('ME: {0:.4f}, RMSE: {1:.4f}.'.format(me,rmse)) ``` ME: -0.4533, RMSE: 3.0903. ## Multivariate lineare Regression <font size = 3><br> Das Schätzverfahren lässt sich (theoretisch) beliebig erweitern. Sobald wir y mit mehr als einer Variablen erklären wollen, schätzen wir eine **Multivariatie Regression**: $y = \beta_0 + \beta_1x_1 + ... + \beta_nx_n$ <br> <br> Jedes $x$ ist ein eigenes "Feature" und hat dementsprechend einen eigenen Koeffizienten: $y = \beta_0 + \beta_1 \times TV + \beta_2 \times Radio + \beta_3 \times Newspaper$ ```python df.head() ``` <div> <style scoped> .dataframe tbody tr th:only-of-type { vertical-align: middle; } .dataframe tbody tr th { vertical-align: top; } .dataframe thead th { text-align: right; } </style> <table border="1" class="dataframe"> <thead> <tr style="text-align: right;"> <th></th> <th>ID</th> <th>TV</th> <th>Radio</th> <th>Newspaper</th> <th>Sales</th> </tr> </thead> <tbody> <tr> <th>0</th> <td>1</td> <td>230.1</td> <td>37.8</td> <td>69.2</td> <td>22.1</td> </tr> <tr> <th>1</th> <td>2</td> <td>44.5</td> <td>39.3</td> <td>45.1</td> <td>10.4</td> </tr> <tr> <th>2</th> <td>3</td> <td>17.2</td> <td>45.9</td> <td>69.3</td> <td>9.3</td> </tr> <tr> <th>3</th> <td>4</td> <td>151.5</td> <td>41.3</td> <td>58.5</td> <td>18.5</td> </tr> <tr> <th>4</th> <td>5</td> <td>180.8</td> <td>10.8</td> <td>58.4</td> <td>12.9</td> </tr> </tbody> </table> </div> ```python # Estimation lm = smf.ols(formula='Sales ~ TV + Radio + Newspaper', data=df).fit() # Coefficients lm.params ``` Intercept 2.938889 TV 0.045765 Radio 0.188530 Newspaper -0.001037 dtype: float64 ```python lm.summary() ``` <table class="simpletable"> <caption>OLS Regression Results</caption> <tr> <th>Dep. Variable:</th> <td>Sales</td> <th> R-squared: </th> <td> 0.897</td> </tr> <tr> <th>Model:</th> <td>OLS</td> <th> Adj. R-squared: </th> <td> 0.896</td> </tr> <tr> <th>Method:</th> <td>Least Squares</td> <th> F-statistic: </th> <td> 570.3</td> </tr> <tr> <th>Date:</th> <td>Mon, 27 Jul 2020</td> <th> Prob (F-statistic):</th> <td>1.58e-96</td> </tr> <tr> <th>Time:</th> <td>11:59:21</td> <th> Log-Likelihood: </th> <td> -386.18</td> </tr> <tr> <th>No. Observations:</th> <td> 200</td> <th> AIC: </th> <td> 780.4</td> </tr> <tr> <th>Df Residuals:</th> <td> 196</td> <th> BIC: </th> <td> 793.6</td> </tr> <tr> <th>Df Model:</th> <td> 3</td> <th> </th> <td> </td> </tr> <tr> <th>Covariance Type:</th> <td>nonrobust</td> <th> </th> <td> </td> </tr> </table> <table class="simpletable"> <tr> <td></td> <th>coef</th> <th>std err</th> <th>t</th> <th>P>|t|</th> <th>[0.025</th> <th>0.975]</th> </tr> <tr> <th>Intercept</th> <td> 2.9389</td> <td> 0.312</td> <td> 9.422</td> <td> 0.000</td> <td> 2.324</td> <td> 3.554</td> </tr> <tr> <th>TV</th> <td> 0.0458</td> <td> 0.001</td> <td> 32.809</td> <td> 0.000</td> <td> 0.043</td> <td> 0.049</td> </tr> <tr> <th>Radio</th> <td> 0.1885</td> <td> 0.009</td> <td> 21.893</td> <td> 0.000</td> <td> 0.172</td> <td> 0.206</td> </tr> <tr> <th>Newspaper</th> <td> -0.0010</td> <td> 0.006</td> <td> -0.177</td> <td> 0.860</td> <td> -0.013</td> <td> 0.011</td> </tr> </table> <table class="simpletable"> <tr> <th>Omnibus:</th> <td>60.414</td> <th> Durbin-Watson: </th> <td> 2.084</td> </tr> <tr> <th>Prob(Omnibus):</th> <td> 0.000</td> <th> Jarque-Bera (JB): </th> <td> 151.241</td> </tr> <tr> <th>Skew:</th> <td>-1.327</td> <th> Prob(JB): </th> <td>1.44e-33</td> </tr> <tr> <th>Kurtosis:</th> <td> 6.332</td> <th> Cond. No. </th> <td> 454.</td> </tr> </table><br/><br/>Warnings:<br/>[1] Standard Errors assume that the covariance matrix of the errors is correctly specified. ```python %matplotlib inline plt.rcParams['figure.figsize'] = [16, 8] fig, axs = plt.subplots(2, 1) lm.resid.plot(ax=axs[0]) lm.resid.plot(kind='hist', bins=25, ax=axs[1]) plt.show() ``` ### The estimate is already better (has a higher adj. R-squared), but it also has significantly more noticeable (not normally distributed) residuals, so we should remove the insignificant feature. ```python lm = smf.ols(formula='Sales ~ TV + Radio', data=df).fit() lm.summary() ``` <table class="simpletable"> <caption>OLS Regression Results</caption> <tr> <th>Dep. Variable:</th> <td>Sales</td> <th> R-squared: </th> <td> 0.897</td> </tr> <tr> <th>Model:</th> <td>OLS</td> <th> Adj. R-squared: </th> <td> 0.896</td> </tr> <tr> <th>Method:</th> <td>Least Squares</td> <th> F-statistic: </th> <td> 859.6</td> </tr> <tr> <th>Date:</th> <td>Mon, 27 Jul 2020</td> <th> Prob (F-statistic):</th> <td>4.83e-98</td> </tr> <tr> <th>Time:</th> <td>12:03:07</td> <th> Log-Likelihood: </th> <td> -386.20</td> </tr> <tr> <th>No. Observations:</th> <td> 200</td> <th> AIC: </th> <td> 778.4</td> </tr> <tr> <th>Df Residuals:</th> <td> 197</td> <th> BIC: </th> <td> 788.3</td> </tr> <tr> <th>Df Model:</th> <td> 2</td> <th> </th> <td> </td> </tr> <tr> <th>Covariance Type:</th> <td>nonrobust</td> <th> </th> <td> </td> </tr> </table> <table class="simpletable"> <tr> <td></td> <th>coef</th> <th>std err</th> <th>t</th> <th>P>|t|</th> <th>[0.025</th> <th>0.975]</th> </tr> <tr> <th>Intercept</th> <td> 2.9211</td> <td> 0.294</td> <td> 9.919</td> <td> 0.000</td> <td> 2.340</td> <td> 3.502</td> </tr> <tr> <th>TV</th> <td> 0.0458</td> <td> 0.001</td> <td> 32.909</td> <td> 0.000</td> <td> 0.043</td> <td> 0.048</td> </tr> <tr> <th>Radio</th> <td> 0.1880</td> <td> 0.008</td> <td> 23.382</td> <td> 0.000</td> <td> 0.172</td> <td> 0.204</td> </tr> </table> <table class="simpletable"> <tr> <th>Omnibus:</th> <td>60.022</td> <th> Durbin-Watson: </th> <td> 2.081</td> </tr> <tr> <th>Prob(Omnibus):</th> <td> 0.000</td> <th> Jarque-Bera (JB): </th> <td> 148.679</td> </tr> <tr> <th>Skew:</th> <td>-1.323</td> <th> Prob(JB): </th> <td>5.19e-33</td> </tr> <tr> <th>Kurtosis:</th> <td> 6.292</td> <th> Cond. No. </th> <td> 425.</td> </tr> </table><br/><br/>Warnings:<br/>[1] Standard Errors assume that the covariance matrix of the errors is correctly specified. ```python %matplotlib inline plt.rcParams['figure.figsize'] = [16, 8] fig, axs = plt.subplots(2, 1) lm.resid.plot(ax=axs[0]) lm.resid.plot(kind='hist', bins=25, ax=axs[1]) plt.show() ``` ### Logarithmic relationships can also be measured ```python lm = smf.ols(formula='np.log(Sales) ~ np.log(TV) + np.log(Radio + 0.00000001)', data=df).fit() lm.summary() ``` <table class="simpletable"> <caption>OLS Regression Results</caption> <tr> <th>Dep. Variable:</th> <td>np.log(Sales)</td> <th> R-squared: </th> <td> 0.823</td> </tr> <tr> <th>Model:</th> <td>OLS</td> <th> Adj. R-squared: </th> <td> 0.821</td> </tr> <tr> <th>Method:</th> <td>Least Squares</td> <th> F-statistic: </th> <td> 458.4</td> </tr> <tr> <th>Date:</th> <td>Mon, 27 Jul 2020</td> <th> Prob (F-statistic):</th> <td>7.84e-75</td> </tr> <tr> <th>Time:</th> <td>12:04:07</td> <th> Log-Likelihood: </th> <td> 66.155</td> </tr> <tr> <th>No. Observations:</th> <td> 200</td> <th> AIC: </th> <td> -126.3</td> </tr> <tr> <th>Df Residuals:</th> <td> 197</td> <th> BIC: </th> <td> -116.4</td> </tr> <tr> <th>Df Model:</th> <td> 2</td> <th> </th> <td> </td> </tr> <tr> <th>Covariance Type:</th> <td>nonrobust</td> <th> </th> <td> </td> </tr> </table> <table class="simpletable"> <tr> <td></td> <th>coef</th> <th>std err</th> <th>t</th> <th>P>|t|</th> <th>[0.025</th> <th>0.975]</th> </tr> <tr> <th>Intercept</th> <td> 0.7467</td> <td> 0.061</td> <td> 12.177</td> <td> 0.000</td> <td> 0.626</td> <td> 0.868</td> </tr> <tr> <th>np.log(TV)</th> <td> 0.3516</td> <td> 0.012</td> <td> 28.456</td> <td> 0.000</td> <td> 0.327</td> <td> 0.376</td> </tr> <tr> <th>np.log(Radio + 0.00000001)</th> <td> 0.0649</td> <td> 0.007</td> <td> 9.498</td> <td> 0.000</td> <td> 0.051</td> <td> 0.078</td> </tr> </table> <table class="simpletable"> <tr> <th>Omnibus:</th> <td>65.501</td> <th> Durbin-Watson: </th> <td> 1.803</td> </tr> <tr> <th>Prob(Omnibus):</th> <td> 0.000</td> <th> Jarque-Bera (JB): </th> <td> 338.943</td> </tr> <tr> <th>Skew:</th> <td> 1.138</td> <th> Prob(JB): </th> <td>2.51e-74</td> </tr> <tr> <th>Kurtosis:</th> <td> 8.958</td> <th> Cond. No. </th> <td> 28.4</td> </tr> </table><br/><br/>Warnings:<br/>[1] Standard Errors assume that the covariance matrix of the errors is correctly specified. ```python lm.resid ``` 0 0.201211 1 0.022522 2 0.234834 3 0.164581 4 -0.171073 5 0.214404 6 0.070447 7 -0.043245 8 0.017286 9 -0.310161 10 -0.182454 11 0.015936 12 0.127256 13 -0.216273 14 0.101235 15 0.257064 16 0.063035 17 0.226443 18 -0.007461 19 -0.026788 20 0.034526 21 -0.249626 22 -0.110562 23 -0.098525 24 -0.091624 25 -0.301884 26 -0.002318 27 -0.089989 28 0.038922 29 -0.071846 30 0.102973 31 -0.117171 32 -0.120246 33 -0.047025 34 -0.120773 35 -0.282951 36 0.278665 37 0.171619 38 0.029575 39 0.177081 40 -0.005798 41 0.044977 42 0.070267 43 -0.202168 44 0.049652 45 -0.063309 46 -0.115390 47 0.229063 48 -0.138672 49 -0.111859 50 -0.248816 51 -0.143620 52 0.238791 53 0.227896 54 0.082383 55 0.304965 56 0.042704 57 -0.085839 58 0.288485 59 0.065037 60 -0.098907 61 0.239374 62 -0.096635 63 0.044157 64 0.185710 65 -0.149937 66 0.083872 67 -0.060493 68 0.054460 69 0.221442 70 0.077119 71 -0.053491 72 0.045073 73 -0.171343 74 -0.006788 75 0.177515 76 -0.010813 77 0.004608 78 0.107617 79 -0.152430 80 -0.016110 81 -0.255128 82 -0.036524 83 0.131595 84 0.200904 85 -0.064902 86 -0.000758 87 0.130811 88 0.025113 89 0.165906 90 -0.156576 91 0.035940 92 0.098218 93 0.177573 94 -0.119695 95 0.065129 96 -0.226824 97 -0.038498 98 0.252110 99 0.131111 100 -0.281748 101 0.188935 102 -0.183343 103 -0.084194 104 0.129910 105 0.227230 106 -0.059860 107 -0.088743 108 0.076039 109 0.076719 110 -0.193307 111 0.169910 112 -0.095093 113 -0.055850 114 0.152205 115 0.037955 116 -0.153158 117 -0.015856 118 0.086070 119 -0.082033 120 0.040218 121 -0.031923 122 -0.255008 123 0.052571 124 0.097374 125 -0.116846 126 0.180629 127 1.082072 128 0.310896 129 -0.072882 130 -0.390074 131 -0.236047 132 0.031191 133 0.105100 134 0.127266 135 0.091303 136 0.126877 137 0.097008 138 -0.018406 139 0.202942 140 -0.052066 141 0.125339 142 0.129756 143 -0.152635 144 -0.093319 145 -0.194230 146 -0.222388 147 0.304076 148 0.123359 149 0.018986 150 -0.120503 151 -0.119802 152 -0.000033 153 0.150632 154 -0.037846 155 -0.238670 156 0.139461 157 -0.212244 158 0.142317 159 -0.094255 160 -0.078061 161 0.044139 162 -0.074925 163 0.117871 164 -0.119368 165 -0.268183 166 0.083181 167 -0.226667 168 -0.001510 169 -0.178163 170 -0.152833 171 -0.063781 172 0.040635 173 -0.216513 174 -0.283749 175 0.319674 176 0.098980 177 -0.226353 178 -0.309430 179 -0.158737 180 -0.233994 181 -0.248464 182 -0.112724 183 0.284612 184 -0.023707 185 0.252730 186 -0.198715 187 0.039502 188 -0.139579 189 -0.035945 190 0.099257 191 -0.128770 192 -0.063473 193 0.187426 194 0.111356 195 -0.084128 196 -0.175685 197 -0.161683 198 0.263982 199 -0.206073 dtype: float64 ```python ``` ## What can we do if we have text or category information? ```python np.random.seed(12345) nums = np.random.rand(len(df)) mask_large = nums > 0.5 df['Size'] = 'small' df.loc[mask_large, 'Size'] = 'large' df.head() ``` <div> <style scoped> .dataframe tbody tr th:only-of-type { vertical-align: middle; } .dataframe tbody tr th { vertical-align: top; } .dataframe thead th { text-align: right; } </style> <table border="1" class="dataframe"> <thead> <tr style="text-align: right;"> <th></th> <th>ID</th> <th>TV</th> <th>Radio</th> <th>Newspaper</th> <th>Sales</th> <th>Size</th> </tr> </thead> <tbody> <tr> <th>0</th> <td>1</td> <td>230.1</td> <td>37.8</td> <td>69.2</td> <td>22.1</td> <td>large</td> </tr> <tr> <th>1</th> <td>2</td> <td>44.5</td> <td>39.3</td> <td>45.1</td> <td>10.4</td> <td>small</td> </tr> <tr> <th>2</th> <td>3</td> <td>17.2</td> <td>45.9</td> <td>69.3</td> <td>9.3</td> <td>small</td> </tr> <tr> <th>3</th> <td>4</td> <td>151.5</td> <td>41.3</td> <td>58.5</td> <td>18.5</td> <td>small</td> </tr> <tr> <th>4</th> <td>5</td> <td>180.8</td> <td>10.8</td> <td>58.4</td> <td>12.9</td> <td>large</td> </tr> </tbody> </table> </div> ### The easiest way is to simply convert the categories into dummy variables (variables that can take 0 and 1). ```python df['IsLarge'] = df.Size.map({'small':0, 'large':1}) df.head() ``` <div> <style scoped> .dataframe tbody tr th:only-of-type { vertical-align: middle; } .dataframe tbody tr th { vertical-align: top; } .dataframe thead th { text-align: right; } </style> <table border="1" class="dataframe"> <thead> <tr style="text-align: right;"> <th></th> <th>ID</th> <th>TV</th> <th>Radio</th> <th>Newspaper</th> <th>Sales</th> <th>Size</th> <th>IsLarge</th> </tr> </thead> <tbody> <tr> <th>0</th> <td>1</td> <td>230.1</td> <td>37.8</td> <td>69.2</td> <td>22.1</td> <td>large</td> <td>1</td> </tr> <tr> <th>1</th> <td>2</td> <td>44.5</td> <td>39.3</td> <td>45.1</td> <td>10.4</td> <td>small</td> <td>0</td> </tr> <tr> <th>2</th> <td>3</td> <td>17.2</td> <td>45.9</td> <td>69.3</td> <td>9.3</td> <td>small</td> <td>0</td> </tr> <tr> <th>3</th> <td>4</td> <td>151.5</td> <td>41.3</td> <td>58.5</td> <td>18.5</td> <td>small</td> <td>0</td> </tr> <tr> <th>4</th> <td>5</td> <td>180.8</td> <td>10.8</td> <td>58.4</td> <td>12.9</td> <td>large</td> <td>1</td> </tr> </tbody> </table> </div> ### Dummy variables can easily be included in the prediction. #### ATTENTION: In this case, the dummy variable was created randomly and has no meaning. This is for demonstration purposes only. ```python lm = smf.ols(formula='Sales ~ TV + Radio + IsLarge', data=df).fit() lm.summary() ``` <table class="simpletable"> <caption>OLS Regression Results</caption> <tr> <th>Dep. Variable:</th> <td>Sales</td> <th> R-squared: </th> <td> 0.897</td> </tr> <tr> <th>Model:</th> <td>OLS</td> <th> Adj. R-squared: </th> <td> 0.896</td> </tr> <tr> <th>Method:</th> <td>Least Squares</td> <th> F-statistic: </th> <td> 570.3</td> </tr> <tr> <th>Date:</th> <td>Mon, 27 Jul 2020</td> <th> Prob (F-statistic):</th> <td>1.56e-96</td> </tr> <tr> <th>Time:</th> <td>12:07:46</td> <th> Log-Likelihood: </th> <td> -386.17</td> </tr> <tr> <th>No. Observations:</th> <td> 200</td> <th> AIC: </th> <td> 780.3</td> </tr> <tr> <th>Df Residuals:</th> <td> 196</td> <th> BIC: </th> <td> 793.5</td> </tr> <tr> <th>Df Model:</th> <td> 3</td> <th> </th> <td> </td> </tr> <tr> <th>Covariance Type:</th> <td>nonrobust</td> <th> </th> <td> </td> </tr> </table> <table class="simpletable"> <tr> <td></td> <th>coef</th> <th>std err</th> <th>t</th> <th>P>|t|</th> <th>[0.025</th> <th>0.975]</th> </tr> <tr> <th>Intercept</th> <td> 2.8938</td> <td> 0.318</td> <td> 9.092</td> <td> 0.000</td> <td> 2.266</td> <td> 3.522</td> </tr> <tr> <th>TV</th> <td> 0.0457</td> <td> 0.001</td> <td> 32.493</td> <td> 0.000</td> <td> 0.043</td> <td> 0.048</td> </tr> <tr> <th>Radio</th> <td> 0.1882</td> <td> 0.008</td> <td> 23.258</td> <td> 0.000</td> <td> 0.172</td> <td> 0.204</td> </tr> <tr> <th>IsLarge</th> <td> 0.0555</td> <td> 0.242</td> <td> 0.229</td> <td> 0.819</td> <td> -0.422</td> <td> 0.533</td> </tr> </table> <table class="simpletable"> <tr> <th>Omnibus:</th> <td>59.724</td> <th> Durbin-Watson: </th> <td> 2.082</td> </tr> <tr> <th>Prob(Omnibus):</th> <td> 0.000</td> <th> Jarque-Bera (JB): </th> <td> 147.220</td> </tr> <tr> <th>Skew:</th> <td>-1.319</td> <th> Prob(JB): </th> <td>1.08e-32</td> </tr> <tr> <th>Kurtosis:</th> <td> 6.272</td> <th> Cond. No. </th> <td> 490.</td> </tr> </table><br/><br/>Warnings:<br/>[1] Standard Errors assume that the covariance matrix of the errors is correctly specified. ### If there are many different text values in a column, we can easily create dummy variables with the "OneHotEncoder" from the sklearn module. ```python from sklearn import preprocessing ``` ```python df_titanic = sns.load_dataset('titanic') df_titanic.head() ``` <div> <style scoped> .dataframe tbody tr th:only-of-type { vertical-align: middle; } .dataframe tbody tr th { vertical-align: top; } .dataframe thead th { text-align: right; } </style> <table border="1" class="dataframe"> <thead> <tr style="text-align: right;"> <th></th> <th>survived</th> <th>pclass</th> <th>sex</th> <th>age</th> <th>sibsp</th> <th>parch</th> <th>fare</th> <th>embarked</th> <th>class</th> <th>who</th> <th>adult_male</th> <th>deck</th> <th>embark_town</th> <th>alive</th> <th>alone</th> </tr> </thead> <tbody> <tr> <th>0</th> <td>0</td> <td>3</td> <td>male</td> <td>22.0</td> <td>1</td> <td>0</td> <td>7.2500</td> <td>S</td> <td>Third</td> <td>man</td> <td>True</td> <td>NaN</td> <td>Southampton</td> <td>no</td> <td>False</td> </tr> <tr> <th>1</th> <td>1</td> <td>1</td> <td>female</td> <td>38.0</td> <td>1</td> <td>0</td> <td>71.2833</td> <td>C</td> <td>First</td> <td>woman</td> <td>False</td> <td>C</td> <td>Cherbourg</td> <td>yes</td> <td>False</td> </tr> <tr> <th>2</th> <td>1</td> <td>3</td> <td>female</td> <td>26.0</td> <td>0</td> <td>0</td> <td>7.9250</td> <td>S</td> <td>Third</td> <td>woman</td> <td>False</td> <td>NaN</td> <td>Southampton</td> <td>yes</td> <td>True</td> </tr> <tr> <th>3</th> <td>1</td> <td>1</td> <td>female</td> <td>35.0</td> <td>1</td> <td>0</td> <td>53.1000</td> <td>S</td> <td>First</td> <td>woman</td> <td>False</td> <td>C</td> <td>Southampton</td> <td>yes</td> <td>False</td> </tr> <tr> <th>4</th> <td>0</td> <td>3</td> <td>male</td> <td>35.0</td> <td>0</td> <td>0</td> <td>8.0500</td> <td>S</td> <td>Third</td> <td>man</td> <td>True</td> <td>NaN</td> <td>Southampton</td> <td>no</td> <td>True</td> </tr> </tbody> </table> </div> ```python my_df_summary(df_titanic) ``` Dataset has 891 rows. <div> <style scoped> .dataframe tbody tr th:only-of-type { vertical-align: middle; } .dataframe tbody tr th { vertical-align: top; } .dataframe thead th { text-align: right; } </style> <table border="1" class="dataframe"> <thead> <tr style="text-align: right;"> <th></th> <th>survived</th> <th>pclass</th> <th>sex</th> <th>age</th> <th>sibsp</th> <th>parch</th> <th>fare</th> <th>class</th> <th>who</th> <th>adult_male</th> <th>alive</th> <th>alone</th> <th>embarked</th> <th>deck</th> <th>embark_town</th> </tr> </thead> <tbody> <tr> <th>Minimum</th> <td>0</td> <td>1</td> <td>female</td> <td>0.42</td> <td>0</td> <td>0</td> <td>0</td> <td>First</td> <td>child</td> <td>False</td> <td>no</td> <td>False</td> <td>NaN</td> <td>NaN</td> <td>NaN</td> </tr> <tr> <th>Maximum</th> <td>1</td> <td>3</td> <td>male</td> <td>80</td> <td>8</td> <td>6</td> <td>512.329</td> <td>Third</td> <td>woman</td> <td>True</td> <td>yes</td> <td>True</td> <td>NaN</td> <td>NaN</td> <td>NaN</td> </tr> <tr> <th>Mean</th> <td>0.383838</td> <td>2.30864</td> <td>NaN</td> <td>29.6991</td> <td>0.523008</td> <td>0.381594</td> <td>32.2042</td> <td>NaN</td> <td>NaN</td> <td>0.602694</td> <td>NaN</td> <td>0.602694</td> <td>NaN</td> <td>NaN</td> <td>NaN</td> </tr> <tr> <th>Stand. Dev.</th> <td>0.486592</td> <td>0.836071</td> <td>NaN</td> <td>14.5265</td> <td>1.10274</td> <td>0.806057</td> <td>49.6934</td> <td>NaN</td> <td>NaN</td> <td>0.489615</td> <td>NaN</td> <td>0.489615</td> <td>NaN</td> <td>NaN</td> <td>NaN</td> </tr> <tr> <th>#NA</th> <td>0</td> <td>0</td> <td>0</td> <td>177</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>2</td> <td>688</td> <td>2</td> </tr> <tr> <th>#Uniques</th> <td>2</td> <td>3</td> <td>2</td> <td>88</td> <td>7</td> <td>7</td> <td>248</td> <td>3</td> <td>3</td> <td>2</td> <td>2</td> <td>2</td> <td>3</td> <td>7</td> <td>3</td> </tr> <tr> <th>dtypes</th> <td>int64</td> <td>int64</td> <td>object</td> <td>float64</td> <td>int64</td> <td>int64</td> <td>float64</td> <td>category</td> <td>object</td> <td>bool</td> <td>object</td> <td>bool</td> <td>object</td> <td>category</td> <td>object</td> </tr> </tbody> </table> </div> ```python df_text = df_titanic[['class']].dropna() my_df_summary(df_text) ``` Dataset has 891 rows. <div> <style scoped> .dataframe tbody tr th:only-of-type { vertical-align: middle; } .dataframe tbody tr th { vertical-align: top; } .dataframe thead th { text-align: right; } </style> <table border="1" class="dataframe"> <thead> <tr style="text-align: right;"> <th></th> <th>class</th> </tr> </thead> <tbody> <tr> <th>Minimum</th> <td>First</td> </tr> <tr> <th>Maximum</th> <td>Third</td> </tr> <tr> <th>Mean</th> <td>NaN</td> </tr> <tr> <th>Stand. Dev.</th> <td>NaN</td> </tr> <tr> <th>#NA</th> <td>0</td> </tr> <tr> <th>#Uniques</th> <td>3</td> </tr> <tr> <th>dtypes</th> <td>category</td> </tr> </tbody> </table> </div> ### Text-Encoder ```python enc = preprocessing.OneHotEncoder() ``` ```python enc.fit(df_text) ``` OneHotEncoder(categories='auto', drop=None, dtype=<class 'numpy.float64'>, handle_unknown='error', sparse=True) ```python onehotlabels = enc.transform(df_text).toarray() df_dummys = pd.DataFrame(onehotlabels) df_dummys.sum(axis=1).describe() ``` count 891.0 mean 1.0 std 0.0 min 1.0 25% 1.0 50% 1.0 75% 1.0 max 1.0 dtype: float64 ```python dir(enc) ``` ['__class__', '__delattr__', '__dict__', '__dir__', '__doc__', '__eq__', '__format__', '__ge__', '__getattribute__', '__getstate__', '__gt__', '__hash__', '__init__', '__init_subclass__', '__le__', '__lt__', '__module__', '__ne__', '__new__', '__reduce__', '__reduce_ex__', '__repr__', '__setattr__', '__setstate__', '__sizeof__', '__str__', '__subclasshook__', '__weakref__', '_check_X', '_compute_drop_idx', '_fit', '_get_feature', '_get_param_names', '_get_tags', '_more_tags', '_transform', '_validate_keywords', 'categories', 'categories_', 'drop', 'drop_idx_', 'dtype', 'fit', 'fit_transform', 'get_feature_names', 'get_params', 'handle_unknown', 'inverse_transform', 'set_params', 'sparse', 'transform'] ### Sometimes (NOT WITH LINEAR REGRESSION) it can also be helpful not to label in dummies, but simply in numerical values. This is very easy with the label encoder. ```python le = preprocessing.LabelEncoder() ``` ```python df_labels = df_text.apply(le.fit_transform) df_labels.head() ``` <div> <style scoped> .dataframe tbody tr th:only-of-type { vertical-align: middle; } .dataframe tbody tr th { vertical-align: top; } .dataframe thead th { text-align: right; } </style> <table border="1" class="dataframe"> <thead> <tr style="text-align: right;"> <th></th> <th>class</th> </tr> </thead> <tbody> <tr> <th>0</th> <td>2</td> </tr> <tr> <th>1</th> <td>0</td> </tr> <tr> <th>2</th> <td>2</td> </tr> <tr> <th>3</th> <td>0</td> </tr> <tr> <th>4</th> <td>2</td> </tr> </tbody> </table> </div>
# "Performance Mid to higher severity" # Setting ```{r} # reset rm(list=ls(all=TRUE)) # library library(data.table) library(dplyr) library(psych) library(caret) library(gam) library(RSNNS) library(e1071) library(ranger) library(randomForest) library(xgboost) # Directory setwd(".") # Get data Data <- fread("Data_demo.csv", encoding = "UTF-8" ) Data$V1 <- NULL # Train Test Data_train <- Data[TrainTest == "Train", , ] #*eligible Data_train <- data.frame(Data_train) Data_test <- Data[TrainTest == "Test", , ] #*eligible Data_test <- data.frame(Data_test) ``` # define functions ```{r} RMSE <- function(Obs, Pred){ Dif <- Pred - Obs RMSE <- round(sqrt(mean(Dif**2)), 2) return(RMSE) } MAE <- function(Obs, Pred){ Dif <- Pred - Obs MAE <- Dif %>% abs() %>% mean() %>% round(., 2) return(MAE) } MAPE <- function(Obs, Pred){ Dif <- Pred - Obs MAPE <- mean(abs(Dif/Obs)*100) %>% round(., 2) return(MAPE) } ``` # Performance All SeverityHigherMid in Train and Test ```{r} Models <- c( "glm_uni.rds" , "GLM_temp.rds" , "gamSpline_temp.rds" , "RF_temp.rds" , "xgbTree_temp.rds" ) # get model list Model_list <- Models # Save performance Hoge <- c() # loop for(iii in Model_list){ # load models Model <- readRDS(iii) # get predicted values Data_train$Pred <- if(iii == "glm_uni.rds"){Data_train$Pred <- predict(Model, Data_train, type = "response")}else{Data_train$Pred <- predict(Model, Data_train)} Data_train$Pred <- ifelse(Data_train$Pred < 0, 0, Data_train$Pred) # get performance RMSE_train <- RMSE(Obs = Data_train$SeverityHigherMid, Pred = Data_train$Pred) MAE_train <- MAE(Obs = Data_train$SeverityHigherMid, Pred = Data_train$Pred) Cor_train <- paste( cor.test(Data_train$SeverityHigherMid, Data_train$Pred)$estimate %>% round(., 2), " (", cor.test(Data_train$SeverityHigherMid, Data_train$Pred)$conf.int[1] %>% round(., 2), " to ", cor.test(Data_train$SeverityHigherMid, Data_train$Pred)$conf.int[2] %>% round(., 2), ")", sep = "" ) # get predicted values Data_test$Pred <- if(iii == "glm_uni.rds"){Data_test$Pred <- predict(Model, Data_test, type = "response")}else{Data_test$Pred <- predict(Model, Data_test)} Data_test$Pred <- ifelse(Data_test$Pred < 0, 0, Data_test$Pred) # get performance RMSE_test <- RMSE(Obs = Data_test$SeverityHigherMid, Pred = Data_test$Pred) MAE_test <- MAE(Obs = Data_test$SeverityHigherMid, Pred = Data_test$Pred) Cor_test <- paste( cor.test(Data_test$SeverityHigherMid, Data_test$Pred)$estimate %>% round(., 2), " (", cor.test(Data_test$SeverityHigherMid, Data_test$Pred)$conf.int[1] %>% round(., 2), " to ", cor.test(Data_test$SeverityHigherMid, Data_test$Pred)$conf.int[2] %>% round(., 2), ")", sep = "" ) # Summarize Performance <- c( iii, RMSE_train , RMSE_test , Cor_train , Cor_test ) Hoge <- cbind(Hoge, Performance) } Hoge <- data.table(Hoge) Hoge fwrite(Hoge, "Out_RMSE.csv") ``` # MAPE by 24 ```{r} # get model list Model_list <- Models # Save performance Hoge <- c() # loop for(iii in Model_list){ # load models Model <- readRDS(iii) # get predicted values Data_train$Pred <- if(iii == "glm_uni.rds"){Data_train$Pred <- predict(Model, Data_train, type = "response")}else{Data_train$Pred <- predict(Model, Data_train)} Data_train$Pred <- ifelse(Data_train$Pred < 0, 0, Data_train$Pred) # Organized dataset Data_train_MAPE <- Data_train %>% group_by(Date) %>% summarise( Obs = sum(SeverityHigherMid), Pred = sum(Pred) ) %>% data.table() Data_train_MAPE[, Year := year(Date), ] Data_train_MAPE[, Spike := ifelse(Year == 2015 & Obs >= Data_train_MAPE[Year == 2015, quantile(Obs, 0.8), ], 1, ifelse(Year == 2016 & Obs >= Data_train_MAPE[Year == 2016, quantile(Obs, 0.8), ], 1, ifelse(Year == 2017 & Obs >= Data_train_MAPE[Year == 2017, quantile(Obs, 0.8), ], 1, 0))) , ] Data_train_MAPE[, table(Spike), ] Data_train_MAPE[, table(Spike), ] / nrow(Data_train_MAPE) # get performance MAPE_train <- MAPE( Obs = Data_train_MAPE[Spike == 1, Obs, ], Pred = Data_train_MAPE[Spike == 1, Pred, ] ) PE_train <- Data_train_MAPE[Spike == 1, round( (abs(sum(Pred) - sum(Obs)) / sum(Obs) ) * 100, 2), ] # get predicted values Data_test$Pred <- if(iii == "glm_uni.rds"){Data_test$Pred <- predict(Model, Data_test, type = "response")}else{Data_test$Pred <- predict(Model, Data_test)} Data_test$Pred <- ifelse(Data_test$Pred < 0, 0, Data_test$Pred) # Organized dataset Data_test_MAPE <- Data_test %>% group_by(Date) %>% summarise( Obs = sum(SeverityHigherMid), Pred = sum(Pred) ) %>% data.table() Data_test_MAPE[, Year := year(Date), ] Data_test_MAPE[, Spike := ifelse(Year == 2018 & Obs >= Data_test_MAPE[Year == 2018, quantile(Obs, 0.8), ], 1, 0) , ] Data_test_MAPE[, table(Spike), ] Data_test_MAPE[, table(Spike), ] / nrow(Data_test_MAPE) # get performance MAPE_test <- MAPE( Obs = Data_test_MAPE[Spike == 1, Obs, ], Pred = Data_test_MAPE[Spike == 1, Pred, ] ) PE_est <- Data_test_MAPE[Spike == 1, round( (abs(sum(Pred) - sum(Obs)) / sum(Obs) ) * 100, 2), ] # Summarize Performance <- c( iii, MAPE_train , MAPE_test , PE_train , PE_est ) Hoge <- cbind(Hoge, Performance) } Hoge <- data.table(Hoge) Hoge fwrite(Hoge, "Out_MAPE_24.csv") ``` # Figure time series by 24h ```{r} # get model list Model_list <- Models # Save performance Hoge <- c() # loop for(iii in Model_list){ # load models Model <- readRDS(iii) # get predicted values Data_train$Pred <- if(iii == "glm_uni.rds"){Data_train$Pred <- predict(Model, Data_train, type = "response")}else{Data_train$Pred <- predict(Model, Data_train)} Data_train$Predicted <- ifelse(Data_train$Pred < 0, 0, Data_train$Pred) Data_train$Obserbved <- Data_train$SeverityHigherMid Data_train$Dif <- Data_train$Predicted - Data_train$Obserbved # get predicted values Data_test$Pred <- if(iii == "glm_uni.rds"){Data_test$Pred <- predict(Model, Data_test, type = "response")}else{Data_test$Pred <- predict(Model, Data_test)} Data_test$Predicted <- ifelse(Data_test$Pred < 0, 0, Data_test$Pred) Data_test$Obserbved <- Data_test$SeverityHigherMid Data_test$Dif <- Data_test$Predicted - Data_test$Obserbved ### Make figures ggplot(data = Data_train, aes(x = Predicted, y = Obserbved)) + geom_point() + geom_smooth(method = lm) + scale_x_continuous(limits = c(0, 40), breaks = seq(0, 40, 5)) + scale_y_continuous(limits = c(0, 40), breaks = seq(0, 40, 5)) + xlab("") + ylab("") + theme_classic() ggsave(paste("Out_plot_", iii, "_train.png", sep = ""), width = 4.2, height = 3.2) #*action ### Make figures taest ggplot(data = Data_test, aes(x = Predicted, y = Obserbved)) + geom_point() + geom_smooth(method = lm) + scale_x_continuous(limits = c(0, 40), breaks = seq(0, 40, 5)) + scale_y_continuous(limits = c(0, 40), breaks = seq(0, 40, 5)) + xlab("") + ylab("") + theme_classic() ggsave(paste("Out_plot_", iii, "_test.png", sep = ""), width = 4.2, height = 3.2) #*action ### Make Fig train DataSum_train <- Data_train %>% group_by(Date) %>% summarise( Obserbved = sum(Obserbved), Predicted = sum(Predicted) ) %>% data.table() %>% print() DataSum_test <- Data_test %>% group_by(Date) %>% summarise( Obserbved = sum(Obserbved), Predicted = sum(Predicted) ) %>% data.table() %>% print() DataSum <- rbind(DataSum_train, DataSum_test) DataSum[, Date:=as.Date(Date), ] DataSum[, YearUse:=year(Date), ] DataSum <- DataSum[order(Date), , ] DataSum[, Day:=1:length(Obserbved), by = YearUse] DataSum DataSum[Date == as.Date("2015-06-01"), , ] DataSum[Date == as.Date("2015-07-01"), , ] DataSum[Date == as.Date("2015-08-01"), , ] DataSum[Date == as.Date("2015-09-01"), , ] ggplot(data = DataSum, aes(x = Day), group=factor(YearUse)) + geom_line(aes(y = Obserbved, x=Day), colour = "Black", size = 0.4) + geom_line(aes(y = Predicted, x=Day), colour = "Red", size = 0.4) + xlab("") + ylab("") + scale_y_continuous( limits = c(0, 150), breaks = seq(0, 150, 30) ) + scale_x_continuous( label = c("Jun.", "Jul.", "Aug.", "Sep."), breaks = c(1, 31, 62, 93) ) + theme(axis.text.x = element_text(angle = 90, hjust = 1)) + facet_grid(~YearUse) + theme_classic() ggsave(paste("Out_time_24_", iii, ".png", sep = ""), width = 6.7 * 1.5, height = 3.5 * 0.66) #*action fwrite(DataSum, paste("Out_data_figure4_", iii, ".csv", sep = "")) } Hoge <- data.table(Hoge) Hoge ```
#include <stdio.h> #include <gsl/gsl_math.h> #include <gsl/gsl_deriv.h> double f (double x, void * params) { return pow (x, 1.5); } int main (void) { gsl_function F; double result, abserr; F.function = &f; F.params = 0; printf ("f(x) = x^(3/2)\n"); gsl_deriv_central (&F, 2.0, 1e-8, &result, &abserr); printf ("x = 2.0\n"); printf ("f'(x) = %.10f +/- %.10f\n", result, abserr); printf ("exact = %.10f\n\n", 1.5 * sqrt(2.0)); gsl_deriv_forward (&F, 0.0, 1e-8, &result, &abserr); printf ("x = 0.0\n"); printf ("f'(x) = %.10f +/- %.10f\n", result, abserr); printf ("exact = %.10f\n", 0.0); return 0; }
using .Pluto @info "You can use the notebooks in `TropicalTensors` now by typing, e.g. ∘ `TropicalTensors.notebook(\"spinglass\")`, solving square lattice spinglass using a quantum simulator. ∘ `TropicalTensors.notebook(\"ising_and_2sat\")`, solving Ising spinglass and 2-SAT counting using tensor network contraction. " """ notebook(which; dev=false, kwargs...) Open a notebook, the first argument can be * "spinglass": solving spinglass model with Yao. * "randomgraph": solving randomgraph model with tensor network contraction. """ function notebook(which; dev=false, kwargs...) src = project_relative_path("notebooks", "$which.jl") if dev dest = src else dest = tempname() cp(src, dest) chmod(dest, 0o664) end Pluto.run(; notebook=dest, project=project_relative_path(), kwargs...) end
import Relation.Binary.Reasoning.Setoid as SetoidR open import MultiSorted.AlgebraicTheory import MultiSorted.Interpretation as Interpretation import MultiSorted.Model as Model import MultiSorted.UniversalInterpretation as UniversalInterpretation import MultiSorted.Substitution as Substitution import MultiSorted.SyntacticCategory as SyntacticCategory module MultiSorted.UniversalModel {ℓt} {𝓈 ℴ} {Σ : Signature {𝓈} {ℴ}} (T : Theory ℓt Σ) where open Theory T open Substitution T open UniversalInterpretation T open Interpretation.Interpretation ℐ open SyntacticCategory T 𝒰 : Model.Is-Model T ℐ 𝒰 = record { model-eq = λ ε var-var → let open SetoidR (eq-setoid (ax-ctx ε) (sort-of (ctx-slot (ax-sort ε)) var-var)) in begin interp-term (ax-lhs ε) var-var ≈⟨ interp-term-self (ax-lhs ε) var-var ⟩ ax-lhs ε ≈⟨ id-action ⟩ ax-lhs ε [ id-s ]s ≈⟨ eq-axiom ε id-s ⟩ ax-rhs ε [ id-s ]s ≈˘⟨ id-action ⟩ ax-rhs ε ≈˘⟨ interp-term-self (ax-rhs ε) var-var ⟩ interp-term (ax-rhs ε) var-var ∎ } -- The universal model is universal universality : ∀ (ε : Equation Σ) → ⊨ ε → ⊢ ε universality ε p = let open Equation in let open SetoidR (eq-setoid (eq-ctx ε) (eq-sort ε)) in (begin eq-lhs ε ≈˘⟨ interp-term-self (eq-lhs ε) var-var ⟩ interp-term (eq-lhs ε) var-var ≈⟨ p var-var ⟩ interp-term (eq-rhs ε) var-var ≈⟨ interp-term-self (eq-rhs ε) var-var ⟩ eq-rhs ε ∎)
% !TeX root = ../main.tex % Add the above to each chapter to make compiling the PDF easier in some editors. \chapter{Case Studies}\label{chapter:case_studies} This chapter examines the performance of the previously described models and algorithms using real server traces. Thereby we focus on two aspects: First, we are interested in how well the discussed algorithms compare in absolute terms and relative to each other. Second, we are interested in the general promise of dynamically right-sizing data centers, which we study by conservatively estimating cost savings and relating them to previous research. \section{Method} First, we describe our experimental setup. We begin with a detailed discussion of the characteristics of the server traces, which we use as a basis for our analysis. Then, we examine the underlying assumptions of our analysis. This is followed by a discussion of alternative approaches to right-sizing data centers, which we use as a foundation for estimating the cost savings resulting from dynamic right-sizing of data centers. Next, we describe the general model parameters we use in our analysis and relate them to previous research. Lastly, we introduce the precise performance metrics used in the subsequent sections. Throughout our experiments, we seek to determine conservative approximations for the resulting performance and cost savings. Our experimental results were obtained on a machine with 16 GB memory and an Intel Core i7-8550U CPU with a base clock rate of 1.80GHz. \subsection{Traces}\label{section:case_studies:method:traces} We use several traces with varying characteristics for our experiments. Some traces are from clusters rather than individual data centers. However, to simplify our analysis, we assume traces apply to a single data center without restricting the considered server architectures. \citeauthor{Amvrosiadis2018}~\cite{Amvrosiadis2018} showed that the characteristics of traces vary drastically even within a single trace when different subsets are considered individually. Their observation shows that it is crucial to examine long server traces and various server traces from different sources to gain a proper perspective of real-world performance. \subsubsection{Characteristics} To understand the varying effectiveness of dynamic right-sizing for the considered traces, we first analyze the properties of the given traces. The most immediate and fundamental properties of a trace are its duration, the number of appearing jobs, the number of job types, and the underlying server infrastructure -- especially whether this infrastructure is homogeneous or heterogeneous. Then, we also consider several more specific characteristics. The \emph{interarrival time}\index{interarrival time} (or submission rate) of jobs is the distribution of times between job arrivals. This distribution indicates the average system load as well as load uniformity. The \emph{peak-to-mean ratio (PMR)}\index{peak-to-mean ratio} is defined as the ratio of the maximum load and the mean load. It is a good indicator of the uniformity of loads. We refer to time slots as \emph{peaks}\index{peak load} when their load is greater than the 0.9-quantile of loads. We call the ratio of the 0.9-quantile of loads and the mean load \emph{true peak-to-mean-ratio (TPMR)}\index{true peak-to-mean ratio} as it is less sensitive to outliers than the PMR. We refer to periods between peaks as \emph{valleys}\index{valley}. More concretely, we refer to the time between two consecutive peaks as \emph{peak distance}\index{peak distance} and the number of consecutive time slots up to a time slot with a smaller load as \emph{valley length}\index{valley length}. Further, we say that a trace follows a \emph{diurnal pattern}\index{diurnal pattern} if during every 24 hours, excluding the final day, there is at least one valley spanning 12 hours or more. We exclude the final day as the final valley might be shortened by the end of the trace. We also consider some additional information included in some traces, such as the measured scheduling rate (or queuing delay), an indicator for utilization. % and, if provided, the distribution of the measured utilization of servers which may be an indicator for resource over-commitment. \subsubsection{Overview} We now give an overview of all used traces. For our initial analysis, we use a time slot length of 10 minutes. \paragraph{MapReduce\footnote{MapReduce is a programming model for processing and generating large data sets in a functional style~\cite{Dean2004}} Workload from a Hadoop\footnote{Apache Hadoop is an open-source software for managing clusters} Cluster at Facebook~\cite{SWIM2013}} This trace encompasses three day-long traces from 2009 and 2010, extracted from a 6-month and a 1.5-month-long trace containing 1 million homogeneous jobs each. The traces are visualized in \cref{fig:facebook:histogram} and summarized in \cref{tab:facebook}. The cluster consists of 600 machines which we assume to be homogeneous. For the trace from 2010, we adjust the maximum number of servers to 1000 as otherwise the trace is infeasible under our models. \Cref{fig:facebook:schedule} visualizes the corresponding dynamic and static offline optimal schedules under our second model (which is described in \cref{section:case_studies:traces:model-parameters}). The trace was published by \citeauthor{SWIM2013}~\cite{SWIM2013} as part of the SWIM project at UC Berkeley. \begin{figure} \begin{subfigure}[b]{.3425\linewidth} \resizebox{\textwidth}{!}{\input{thesis/figures/facebook_2009_0_histogram.tex}} \caption{2009-0} \end{subfigure} \begin{subfigure}[b]{.32\linewidth} \resizebox{\textwidth}{!}{\input{thesis/figures/facebook_2009_1_histogram.tex}} \caption{2009-1} \end{subfigure} \begin{subfigure}[b]{.32\linewidth} \resizebox{\textwidth}{!}{\input{thesis/figures/facebook_2010_histogram.tex}} \caption{2010} \end{subfigure} \caption{Facebook MapReduce workloads.} \label{fig:facebook:histogram} \end{figure} \begin{figure} \begin{subfigure}[b]{.33\linewidth} \resizebox{\textwidth}{!}{\input{thesis/figures/facebook_2009_0_schedule.tex}} \caption{2009-0} \end{subfigure} \begin{subfigure}[b]{.3075\linewidth} \resizebox{\textwidth}{!}{\input{thesis/figures/facebook_2009_1_schedule}} \caption{2009-1} \end{subfigure} \begin{subfigure}[b]{.3475\linewidth} \resizebox{\textwidth}{!}{\input{thesis/figures/facebook_2010_schedule}} \caption{2010} \end{subfigure} \caption{Optimal dynamic and static offline schedules for the last day of the Facebook workloads. The left y axis shows the number of servers of the static and dynamic offline optima at a given time (black). The right y axis shows the number of jobs (i.e., the load) at a given time (red).} \label{fig:facebook:schedule} \end{figure} \begin{table} \centering \begin{tabularx}{\textwidth}{>{\bfseries}l|X|X|X} characteristic & 2009-0 & 2009-1 & 2010 \\\hline duration & 1 day & 1 day & 1 day \\ number of jobs & 6 thousand & 7 thousand & 24 thousand \\ median interarrival time & 7 seconds & 7 seconds & 2 seconds \\ PMR & 3.91 & 2.97 & 2.2 \\ TPMR & 2.04 & 1.93 & 1.69 \\ mean peak distance & 95 minutes & 106 minutes & 87 minutes \\ mean valley length & 44 minutes & 36 minutes & 35 minutes \\ % diurnal pattern & \emph{trace too short} & \emph{trace too short} & \emph{trace too short} \\ \caption{Characteristics of Facebook's MapReduce workloads.} \end{tabularx} \label{tab:facebook} \end{table} \paragraph{Los Alamos National Lab HPC Traces~\cite{Amvrosiadis2018_3, Amvrosiadis2018, Amvrosiadis2018_2}} This trace comprises two separate traces from high-performance computing clusters from Los Alamos National Lab (LANL). The traces were published by \citeauthor{Amvrosiadis2018}~\cite{Amvrosiadis2018} as part of the Atlas project at Carnegie Mellon University. The first trace is from the Mustang cluster, a general-purpose cluster consisting of 1600 homogeneous servers. Jobs were assigned to entire servers. The dataset covers 61 months from October 2011 to November 2016 and is shown in \cref{fig:los_alamos:histogram}. Note that the PMR is large at $622$ due to some outliers in the data. The median job duration is roughly 7 minutes, although the trace includes some extremely long-running outliers, resulting in a mean job duration of over 2.5 hours. In the trace, jobs were assigned to one or multiple servers. To normalize the trace, we consider each job once for each server it was processed on. \Cref{fig:los_alamos:schedule} shows the dynamic and static offline optimal schedules under our second model. The second trace is from the Trinity supercomputer. This trace is very similar to the Mustang trace but includes an even more significant number of long-running jobs. We, therefore, do not consider this trace in our analysis. \paragraph{Microsoft Fiddle Trace~\cite{Jeon2019}} This trace consists of deep neural network training workloads on internal servers from Microsoft. The trace was published as part of the Fiddle project from Microsoft Research. The jobs are run on a heterogeneous set of servers which we group based on the number of GPUs of each server. There are 321 servers with two GPUs and 231 servers with eight GPUs. The median job duration is just below 15 minutes. The load profiles are visualized in \cref{fig:microsoft:histogram}. The CPU utilization of the trace is extremely low, with more than 80\% of servers running with utilization 30\% or less~\cite{Santhanam2019}. However, memory utilization is high, with an average of more than 80\% indicating that overall server utilization is already very high~\cite{Santhanam2019}. Again, the PMR is rather large at 89.43 due to outliers. In our model, we adjust the runtime of jobs relative to the number of available GPUs in the respective server, i.e., the average runtime of jobs on a 2-GPU-server is four times as long as the average runtime of jobs on an 8-GPU-server. We adjust for the increased energy consumption of a server with eight GPUs by increasing the energy consumption of servers with two GPUs by a factor of 4.2. We also associate a fifteen times higher switching cost with servers with eight GPUs. The dynamic and static offline optimal schedules under our second model are shown in \cref{fig:microsoft:schedule}. Note that under the given load servers with two GPUs are preferred to servers with eight GPUs when they are only needed for a short period due to their lower switching costs. This might seem counterintuitive at first, as 2-GPU-servers seem to be strictly better than 8-GPU-servers as the operating and switching cost of 8-GPU-servers is worse by a factor greater than four than the respective cost of 2-GPU-servers. However, we assume an average job runtime of 7.5 minutes on 8-GPU-servers as opposed to an average job runtime of 30 minutes on 2-GPU-servers (a factor of four), implying that 8-GPU-servers can process more than four jobs in an hour without a significant increase in delay, whereas 2-GPU-servers are limited to one job per time slot. \paragraph{Alibaba Trace~\cite{Alibaba2018}} This trace consists of a mixture of long-running applications and batch jobs. We are using their trace from 2018, covering eight days. The trace is visualized in \cref{fig:alibaba:histogram}, the dynamic and static offline optimal schedules under our second model are shown in \cref{fig:alibaba:schedule}. The jobs are processed on 4000 homogeneous servers. In our models, we assume a total of 10,000 servers to ensure that the number of servers is not a bottleneck. Jobs themselves are grouped into 11 types which we further simplify to 4 types based on their average runtime. We consider \emph{short}, \emph{medium}, \emph{long}, and \emph{very long} jobs. Their average runtime in the trace is shown in \cref{tab:alibaba:job_types}. The mean job duration is just below 15 minutes. The median job duration is 8 seconds, and the mean job duration is just over 1.5 minutes. \begin{table} \centering \begin{tabularx}{\textwidth}{>{\bfseries}l|c} job type & mean runtime \\\hline short & 68 seconds \\ medium & 196 seconds \\ long & 534 seconds \\ very long & 1180 seconds \\ \caption{Characterization of the job types of the Alibaba trace.} \end{tabularx} \label{tab:alibaba:job_types} \end{table} Data from a previous trace indicates that mean CPU utilization varies between 10\% and 40\% while mean memory utilization varies between 40\% and 65\%~\cite{Lu2017}. This indicates that the overall server utilization is not optimal. In our model, we scale job runtimes by a factor of 2.5 from short to very long jobs, roughly matching the runtimes of jobs from the trace. \begin{figure} \begin{subfigure}[b]{.3425\linewidth} \resizebox{\textwidth}{!}{\input{thesis/figures/los_alamos_mustang_histogram.tex}} \caption{LANL Mustang}\label{fig:los_alamos:histogram} \end{subfigure} \begin{subfigure}[b]{.32\linewidth} \resizebox{\textwidth}{!}{\input{thesis/figures/microsoft_histogram}} \caption{Microsoft Fiddle}\label{fig:microsoft:histogram} \end{subfigure} \begin{subfigure}[b]{.32\linewidth} \resizebox{\textwidth}{!}{\input{thesis/figures/alibaba_histogram}} \caption{Alibaba}\label{fig:alibaba:histogram} \end{subfigure} \caption{LANL Mustang, Microsoft Fiddle, and Alibaba traces. The figures display the average number of job arrivals throughout a day. The interquartile range is shown as the shaded region.} \end{figure} \begin{figure} \begin{subfigure}[b]{.345\linewidth} \resizebox{\textwidth}{!}{\input{thesis/figures/los_alamos_mustang_schedule.tex}} \caption{LANL Mustang}\label{fig:los_alamos:schedule} \end{subfigure} \begin{subfigure}[b]{.305\linewidth} \resizebox{\textwidth}{!}{\input{thesis/figures/microsoft_schedule}} \caption{Microsoft Fiddle}\label{fig:microsoft:schedule} \end{subfigure} \begin{subfigure}[b]{.335\linewidth} \resizebox{\textwidth}{!}{\input{thesis/figures/alibaba_schedule}} \caption{Alibaba}\label{fig:alibaba:schedule} \end{subfigure} \caption{Optimal dynamic and static offline schedules for the last day of the LANL Mustang, Microsoft Fiddle, and the second to last day of the Alibaba trace. The left y axis shows the number of servers of the static and dynamic offline optima at a given time (black). The right y axis shows the number of jobs (i.e., the load) at a given time (red).} \end{figure} \paragraph{} We have seen traces from very different real-world use cases. The Microsoft Fiddle trace is based on a heterogeneous server architecture, and the Alibaba trace receives heterogeneous loads. The PMR and valley lengths of the days used in our analysis are shown in \cref{tab:pmr_vl}. Interestingly, as shown in \cref{tab:traces}, their TPMR, peak distances, and valley lengths are mostly similar. \subsection{Assumptions} We impose a couple of assumptions to simplify our analysis. First, and already mentioned, our analysis is inherently limited by the traces we used as a basis for our experiments. While we examine a wide variety of traces, the high variability in traces indicates they are a fundamental limitation to any estimation of real-world performance. Another common limitation of models is that the interarrival times of jobs are on the order of seconds or smaller~\cite{Amvrosiadis2018}. However, this is not a limitation of our analysis as we are using a general Poisson process with an appropriate mean arrival rate in our delay model. In the context of high-performance computing, jobs typically have a \emph{gang scheduling}\index{gang scheduling} requirement, i.e., a requirement that related jobs are processed simultaneously even though they are run on different hardware~\cite{Amvrosiadis2018}. For simplification, we assume this requirement always to be satisfied. However, this is not a substantial limitation as the scheduling of jobs within a time slot is not determined by the discussed algorithms and instead left to the server operator. Nevertheless, in principle, the gang scheduling requirement may render some schedules infeasible if the processing time on servers exceeds the length of a time slot when gang scheduling constraints are considered. There are also some limitations resulting from the design of our model. As was mentioned previously, we assume that the jobs arrive at the beginning of a new time slot rather than at random times throughout the time slot. Moreover, we assumed that for every job, a server type exists that can process this job within one time slot. In other words, there exists no job running longer than $\delta$. We have seen in \cref{section:case_studies:method:traces} that this assumption is violated in most practical scenarios. In \cref{section:application:dynamic_duration}, we described how this assumption can be removed. The same approach can also be used to remove the assumption that jobs must arrive at the beginning of a time slot. \subsection{Alternatives to Right-Sizing Data Centers}\label{section:case_studies:method:alternatives} To determine the benefit of dynamically right-sizing data centers, we must first describe the alternative strategies to managing a data center. We will then use these approaches as a point of reference in our analysis. Most data centers are statically provisioned; that is, the configuration of active servers is only changed rarely (often manually) and remains constant during most periods~\cite{Whitney2014}. To support the highest loads, the data centers are peak-provisioned, i.e., the number of servers is chosen such that they suffice to process all jobs even during times where most jobs arrive. Moreover, as a safety measure, data centers are typically provisioned to handle much higher loads than the loads encountered in practice~\cite{Whitney2014}. \begin{table} \centering \begin{tabularx}{\textwidth}{>{\bfseries}l|X|X|X} characteristic & LANL Mustang & Microsoft Fiddle & Alibaba \\\hline duration & 5 years & 30 days & 8 days \\ number of jobs & 20 million & 120 thousand & 14 million \\ median interarrival time & 0 seconds & 8 seconds & 0 seconds \\ PMR & 621.94 & 89.43 & 3.93 \\ TPMR & 2.5 & 1.68 & 1.77 \\ mean peak distance & 100 minutes & 105 minutes & 89 minutes \\ mean valley length & 120 minutes & 115 minutes & 74 minutes \\ diurnal pattern & yes & - & yes \\ \caption{Characteristics of the LANL Mustang, Microsoft Fiddle, and Alibaba traces.} \end{tabularx} \label{tab:traces} \end{table} Naturally, traces with a high PMR or long valleys are more likely to benefit from alternatives to static provisioning. Therefore another widely used alternative is \emph{valley filling}\index{valley filling}, which aims to schedule lower priority jobs (i.e., some batch jobs) during valleys. In an ideal scenario, this approach can achieve $\text{PMR} \approx 1$, which would allow for efficient static provisioning. Crucially, this approach requires a large number of low-priority jobs which may be processed with a significant delay (requiring a considerable minimum perceptible delay $\delta_i$ for a large number of jobs of type $i$), and thus in most cases, valleys cannot be eliminated entirely. \citeauthor{Lin2011}~\cite{Lin2011} showed that dynamic-right sizing can be combined with valley filling to achieve a significant cost reduction. The optimal balancing of dynamic right-sizing and valley filling is mainly determined by the change to the PMR. \citeauthor{Lin2011}~\cite{Lin2011} showed that cost savings of 20\% are possible with a PMR of 2 and a PMR of approximately 1.3 can still achieve cost savings of more than 5\%. Generally, the cost reduction vanishes once the PMR approaches $1$, which may happen between 30\% to 70\% mean background load~\cite{Lin2011}. The results when dynamic right-sizing is used together with valley filling can be estimated from previous results. \subsection{Performance Metrics} Let $OPT$ denote the dynamic offline optimum and $OPT_s$ denote the static offline optimum. In our analysis, the \emph{normalized cost}\index{normalized cost} of an online algorithm is the ratio of the obtained cost and the dynamic optimal offline cost, i.e. $NC(ALG) = c(ALG) / c(OPT)$. Further, we base our estimated \emph{cost reduction}\index{cost reduction} on an optimal offline static provisioning: \begin{align*} CR(ALG) = \frac{c(OPT_s) - c(ALG)}{c(OPT_s)}. \end{align*} Note that this definition is similar to the definition of regret, but expressed relative to the overall cost. We refer to $SDR = c(OPT_s) / c(OPT)$ as the \emph{static/dynamic ratio}\index{static/dynamic ratio}, which is closely related to the \emph{potential cost reduction}\index{potential cost reduction} $PCR = CR(OPT)$. \subsection{Previous Results} \citeauthor{Lin2011}~\cite{Lin2011} showed that the cost reduction is directly proportional to the PMR and inversely proportional to the normalized switching cost. Additionally, \citeauthor{Lin2011}~\cite{Lin2011} showed that, as one would expect, the possible cost reduction decreases as the delay cost assumes a more significant fraction of the overall hitting costs. In practice, this can be understood as the effect of making the model more conservative. \begin{table} \centering \begin{tabularx}{\textwidth}{>{\bfseries}l|c|c} trace & PMR & mean valley length (hours) \\\hline Facebook 2009-0 & 2.115 & 2.565 \\ Facebook 2009-1 & 1.913 & 1.522 \\ Facebook 2010 & 1.549 & 1.435 \\ LANL Mustang & 6.575 & 1.167 \\ Microsoft Fiddle & 3.822 & 2.125 \\ Alibaba & 1.339 & 2.792 \\ \caption{PMR and mean valley length of the traces used in our analysis. Note that the valley lengths are typically shorter than the normalized switching cost of our model.} \end{tabularx} \label{tab:pmr_vl} \end{table} \subsection{Model Parameters}\label{section:case_studies:traces:model-parameters} We now describe how we parametrized our model in our case studies. In our models, we strive to choose conservative estimates to under-estimate the cost savings from dynamically right-sizing data centers. This approach is similar to the study by \citeauthor{Lin2011}~\cite{Lin2011}. \Cref{tab:model} gives an overview of the used parameters producing the results of subsequent sections. \paragraph{Energy} We use the linear energy consumption model from \autoref{eq:energy_model:1} in our experiments. In their analysis, \citeauthor{Lin2011}~\cite{Lin2011} choose energy cost and energy consumption such that the fixed energy cost (i.e., the energy cost of a server when idling) is $1$ and the dynamic energy cost is $0$ as, on most servers, the fixed costs dominate the dynamic costs~\cite{Clark2005}. We investigate this model and an alternative model. In the alternative model, we estimate the power consumption of a server with 1 kW during peak loads and with 500 W when idling to yield a conservative estimate (as cooling costs are included). According to the U.S. Energy Information Administration (EIA), the average cost of energy in the industrial sector in the United States during April 2021 was 6.77 cents per kilowatt-hour~\cite{EIA2021}. We use this as a conservative estimate as data centers typically use a more expensive portfolio of energy sources. If the actual carbon cost of the used energy were to be considered, which is the case in some data centers as discussed in \cref{section:application:operating_cost:energy}, energy costs are likely to be substantially higher. \paragraph{Revenue Loss} According to measurements, a 500 ms increase in delay results in a revenue loss of 20\% or 0.04\%/ms~\cite{Lin2012, Hamilton2009}. Thus, scaling the delay measured in ms by 0.1 can be used as a slight over-approximation of revenue loss. \citeauthor{Lin2011}~\cite{Lin2011} choose the minimal perceptible delay as 1.5 times the time to run a job, which is a very conservative estimate if valley filling is assumed a viable alternative. In our model, we choose the minimal perceptible delay as 2.5 times the time to run a job which is equivalent as we also added the processing time of a job to the delay. In the case of valley filling, jobs are typically processed with a much more significant delay. Similar to \citeauthor{Lin2012}~\cite{Lin2012}, we also estimate a constant network delay of 10 ms. \paragraph{Switching Cost} We mentioned in \cref{section:application:switching_cost} that in practice, the switching cost should be on the order of operating a server between an hour to several hours. To obtain a conservative estimate, we choose $\beta$ such that the normalized switching cost times the length of a time slot equals 4 hours. \paragraph{Time Slot Length} We choose a time slot length of 1 hour. We further assume that the average processing time of jobs is $\delta / 2$ unless noted otherwise. \begin{table} \centering \begin{tabularx}{\textwidth}{>{\bfseries}l|X|X} parameter & model 1 & model 2 \\\hline time slot length & 1 hour & 1 hour \\ energy cost & $c=1$ & $c=0.0677$ \\ energy consumption & $\Phi_{\text{min}}=1, \Phi_{\text{max}}=1$ & $\Phi_{\text{min}}=0.5, \Phi_{\text{max}}=1$ \\ revenue loss & $\gamma = 0.1, \delta_i = 2.5 \eta_i$ & $\gamma = 0.1, \delta_i = 2.5 \eta_i$ \\ normalized switching cost & 4 hours & 4 hours \\ \caption{Models used in our case studies. $\eta_i$ is the processing time of jobs of type $i$.} \end{tabularx} \label{tab:model} \end{table} \section{Uni-Dimensional Algorithms} The results of this section are based on the final day of the LANL Mustang, Facebook, and the second to last day of the Alibaba trace. We begin by discussing the general features of the traces. Then, we compare the uni-dimensional online algorithms with respect to their achieved normalized cost, cost reduction, and runtime. \paragraph{Fractional vs. Integral Cost} For all traces, the ratio of the fractional and the integral costs is 1 for a precision of at least $10^{-3}$. This is not surprising due to the large number of servers used in each model. \begin{figure} \begin{subfigure}[b]{.5\linewidth} \resizebox{\textwidth}{!}{\input{thesis/figures/opt_vs_opts}} \caption{Ratio of static and dynamic optima} \end{subfigure} \begin{subfigure}[b]{.5\linewidth} \resizebox{\textwidth}{!}{\input{thesis/figures/opts_opt_vs_pmr}} \caption{Correlation of the PMR and the static/dynamic ratio}\label{fig:case_studies:ud:opt_vs_opts:pmr} \end{subfigure} \caption{Ratio of static and dynamic offline optima for each trace. The LANL Mustang and Microsoft Fiddle traces have a significantly higher PMR than the remaining traces. Generally, we observe a strong correlation of PMR and the static/dynamic ratio.}\label{fig:case_studies:ud:opt_vs_opts} \end{figure} \begin{figure} \begin{subfigure}[b]{.49\linewidth} \resizebox{\textwidth}{!}{\input{thesis/figures/opt_vs_opts_against_normalized_cost}} \caption{Normalized cost}\label{fig:case_studies:ud:opt_vs_opts_against_normalized_cost} \end{subfigure} \begin{subfigure}[b]{.51\linewidth} \resizebox{\textwidth}{!}{\input{thesis/figures/opt_vs_opts_against_mean_cost_reduction}} \caption{Cost reduction}\label{fig:case_studies:ud:opt_vs_opts_against_mean_cost_reduction} \end{subfigure} \caption{Effect of the ratio of static and dynamic optima on the cost reduction and normalized cost achieved by the memoryless algorithm.} \end{figure} \paragraph{Dynamic vs. Static Cost} The dynamic and static costs differ significantly depending on the trace. The ratio of dynamic and static optimal costs for each trace is shown in \cref{fig:case_studies:ud:opt_vs_opts}. \Cref{fig:case_studies:ud:opt_vs_opts_against_mean_cost_reduction} shows a strong positive correlation between the average cost reduction achieved by the memoryless algorithm and the ratio of the static and dynamic optima. As $OPT_s / OPT$ is directly linked to the PMR, this also indicates a strong correlation between cost reduction and the PMR. Even under our very conservative estimates of parameters, we achieve a significant cost reduction when the ratio of the static and dynamic offline optimum exceeds 1.5. Similar to \citeauthor{Lin2011}~\cite{Lin2011}, we observe that cost savings increase rapidly as the PMR increases. We also observe in \cref{fig:case_studies:ud:opt_vs_opts_against_normalized_cost} that as the static/dynamic ratio increases, the normalized costs achieved by the memoryless algorithm increases too but not as much as the potential energy savings, resulting in the observed significant cost reduction. \begin{figure} \begin{subfigure}[b]{.3425\linewidth} \resizebox{\textwidth}{!}{\input{thesis/figures/fb90_normalized_cost}} \caption{Facebook 2009-0} \end{subfigure} \begin{subfigure}[b]{.32\linewidth} \resizebox{\textwidth}{!}{\input{thesis/figures/fb91_normalized_cost}} \caption{Facebook 2009-1} \end{subfigure} \begin{subfigure}[b]{.32\linewidth} \resizebox{\textwidth}{!}{\input{thesis/figures/fb10_normalized_cost}} \caption{Facebook 2010} \end{subfigure} \par\bigskip \begin{subfigure}[b]{.50\linewidth} \resizebox{\textwidth}{!}{\input{thesis/figures/lanl_normalized_cost}} \caption{LANL Mustang} \end{subfigure} \begin{subfigure}[b]{.48\linewidth} \resizebox{\textwidth}{!}{\input{thesis/figures/alibaba_normalized_cost}} \caption{Alibaba} \end{subfigure} \caption{Normalized costs of uni-dimensional online algorithms. For the Facebook 2010 trace, the second model results in an optimal schedule constantly using all servers, explaining the disparate performance compared to the first model. Further, Probabilistic and Rand-Probabilistic perform very poorly in this setting and are therefore not shown for model 2. Generally, Probabilistic and Rand-Probabilistic achieve similar results. Interestingly, we observe that LCP outperforms Int-LCP when the potential cost reduction is small. In contrast, Int-LCP and the probabilistic algorithms outperform Memoryless and LCP significantly when the potential cost reduction is large. \Cref{fig:case_studies:ud:lcp_vs_int_lcp} compares the schedules obtained by LCP and Int-LCP in greater detail.}\label{fig:case_studies:ud:normalized_cost} \end{figure} \begin{figure} \begin{subfigure}[b]{.3425\linewidth} \resizebox{\textwidth}{!}{\input{thesis/figures/fb90_cost_reduction}} \caption{Facebook 2009-0} \end{subfigure} \begin{subfigure}[b]{.32\linewidth} \resizebox{\textwidth}{!}{\input{thesis/figures/fb91_cost_reduction}} \caption{Facebook 2009-1} \end{subfigure} \begin{subfigure}[b]{.32\linewidth} \resizebox{\textwidth}{!}{\input{thesis/figures/fb10_cost_reduction}} \caption{Facebook 2010} \end{subfigure} \par\bigskip \begin{subfigure}[b]{.50\linewidth} \resizebox{\textwidth}{!}{\input{thesis/figures/lanl_cost_reduction}} \caption{LANL Mustang} \end{subfigure} \begin{subfigure}[b]{.48\linewidth} \resizebox{\textwidth}{!}{\input{thesis/figures/alibaba_cost_reduction}} \caption{Alibaba} \end{subfigure} \caption{Cost reduction of uni-dimensional online algorithms. For the Facebook 2010 trace, the second model results in an optimal schedule constantly using all servers, explaining the disparate performance compared to the first model. Further, Probabilistic and Rand-Probabilistic perform very poorly in this setting and are therefore not shown for model 2. Results are mainly determined by the normalized cost and the potential cost reduction (or static/dynamic ratio). We observe that the achieved cost reduction is dominated by the potential cost reduction (see \cref{fig:case_studies:ud:cost_reduction_vs_normalized_cost}).}\label{fig:case_studies:ud:cost_reduction} \end{figure} \begin{figure} \centering \input{thesis/figures/cr_vs_nc} \caption{Weak positive correlation of achieved normalized cost and cost reduction. Intuitively, one would expect a strong negative correlation, i.e., the achieved cost reduction increases as the normalized cost approaches 1. Here, we find a positive correlation as the achieved cost reduction is dominated by the potential cost reduction (see \cref{fig:case_studies:ud:opt_vs_opts_against_mean_cost_reduction}).}\label{fig:case_studies:ud:cost_reduction_vs_normalized_cost} \end{figure} \paragraph{Normalized Cost} In the application of right-sizing data centers, we are interested in the cost associated with integral schedules. \Cref{fig:case_studies:ud:normalized_cost} shows the normalized cost of each algorithm. For fractional algorithms, we consider the cost of the associated integral schedule obtained by ceiling each configuration. Notably, LCP and Int-LCP perform differently depending on the trace and used model. We explore this behavior in \cref{fig:case_studies:ud:lcp_vs_int_lcp}. \paragraph{Cost Reduction} \Cref{fig:case_studies:ud:cost_reduction} shows the achieved cost reduction. In general, we observe in \cref{fig:case_studies:ud:opt_vs_opts_against_normalized_cost}, \cref{fig:case_studies:ud:opt_vs_opts_against_mean_cost_reduction}, and \cref{fig:case_studies:ud:cost_reduction_vs_normalized_cost} that the achieved cost reduction is dominated by the potential cost reduction (which is mainly influenced by the PMR, see \cref{fig:case_studies:ud:opt_vs_opts:pmr}). When the potential cost reduction is small, algorithms with a smaller normalized cost in a particular setting, achieve a significantly higher cost reduction. \begin{figure} \begin{subfigure}[b]{.5175\linewidth} \resizebox{\textwidth}{!}{\input{thesis/figures/lcp_vs_ilcp_1}} \caption{Facebook 2009-0} \end{subfigure} \begin{subfigure}[b]{.4825\linewidth} \resizebox{\textwidth}{!}{\input{thesis/figures/lcp_vs_ilcp_2}} \caption{LANL Mustang} \end{subfigure} \caption{Comparison of the schedules obtained by LCP and Int-LCP under our first model. We observe that LCP is much ``stickier'' than Int-LCP, which is beneficial when the potential cost reduction is small (i.e., for the Facebook 2009-0 trace) but detrimental when the potential cost reduction is large (i.e., for the LANL Mustang trace). In our experiments, we observe that the memoryless algorithm tends to behave similarly to LCP (i.e., is more ``sticky''), whereas the probabilistic algorithms tend to behave similarly to Int-LCP (i.e., are less ``sticky'').}\label{fig:case_studies:ud:lcp_vs_int_lcp} \end{figure} \begin{figure} \begin{subfigure}[b]{.5175\linewidth} \resizebox{\textwidth}{!}{\input{thesis/figures/ud_runtimes}} \end{subfigure} \begin{subfigure}[b]{.4825\linewidth} \resizebox{\textwidth}{!}{\input{thesis/figures/ud_runtimes_slow}} \end{subfigure} \caption{Runtimes of uni-dimensional online algorithms.}\label{fig:case_studies:ud:runtimes} \end{figure} \paragraph{Runtime} \cref{fig:case_studies:ud:runtimes} shows the distribution of runtimes (per iteration) of the online algorithms using the Facebook 2009-1 trace. The memoryless algorithm, LCP, and Int-LCP are very fast, even as the number of time slots increases. The runtime of Probabilistic and Rand-Probabilistic is slightly dependent on the used trace and model but generally good. However, when resulting schedules are thight around the upper bound of the decision space, as is the case for the Facebook 2010 trace under our second model, the probabilistic algorithms perform take multiple minutes per iteration. Rand-Probabilistic is significantly slower than Probabilistic as due to the relaxation the integrals need to be computed in a piecewise fashion. The runtime of RBG grows linearly with time and is shown in \cref{fig:case_studies:ud:runtimes} for the first four time slots. \begin{figure} \centering \input{thesis/figures/costs} \caption{Cost profiles of uni-dimensional online algorithms. Note that integral algorithms seem to prefer revenue loss and switching costs over energy costs, whereas fractional algorithms prefer energy costs. However, this is likely because integral algorithms balance energy costs and revenue loss more accurately than the ceiled schedules of fractional algorithms.}\label{fig:case_studies:ud:costs} \end{figure} \paragraph{Cost Makeup} An interesting aspect of the (integral) schedules obtained by the online algorithms is the makeup of their associated costs to understand whether an algorithm systematically prefers some cost over another. We measure this preference of an algorithm as the normalized deviation, i.e., the cost of the algorithm minus the mean cost among all algorithms divided by the standard deviation of costs among all algorithms. We then average the results between all traces. \Cref{fig:case_studies:ud:costs} shows the cost profiles for each algorithm. We observe that fractional algorithms prefer energy cost over revenue loss and switching cost, while integral algorithms prefer revenue loss and switching cost over energy cost. This is likely because fractional algorithms cannot balance energy cost and revenue loss optimally. When fractional schedules are ceiled, this results in an additional energy cost while reducing revenue loss. In absolute terms, the deviations make up less than 1\% of the overall costs of each type. \paragraph{} We have seen that even in our conservative model, significant cost savings with respect to the optimal static provisioning in hindsight can be achieved in practical settings when the PMR is large enough or the normalized switching cost is less than the typical valley length. Due to the conservative estimates of our model, it is likely that in practice, much more drastic cost savings are possible. For example, when energy costs are higher, or the switching costs are on the order of operating a server in an idle state for one hour rather than four hours. \section{Multi-Dimensional Algorithms} Now, we turn to the discussed multi-dimensional algorithms. We begin by analyzing the simplified settings, SLO and SBLO, from \cref{section:online_algorithms:md:lazy_budgeting}. Then, we analyze the gradient-based methods from \cref{section:online_algorithms:md:descent_methods}. \subsection{Smoothed Load Optimization} Recall that for SLO, during a single time slot a server can process at most one job. Hence, we cannot use dynamic job durations to model the different runtimes of jobs on servers with two GPUs and servers with eight GPUs. Instead, we use a simplified model based on our second model, which is described in \cref{tab:simp_model}. Note that we disregard revenue loss and that we assume, servers operate at full utilization (if they are active). Overall, we obtain the operating costs $c = (243.720, 219.348)$ and switching costs $\beta = (487.440, 663.672)$. \begin{table} \centering \begin{tabularx}{\textwidth}{>{\bfseries}l|X} cost & simplified model \\\hline operating cost & servers with eight GPUs have $0.9$ times the energy consumption (per processed job) as servers with two GPUs due to improved cooling efficiency \\ switching cost & servers with eight GPUs have $1.3$ times the switching cost as servers with two GPUs due to an increased associated risk \\ \caption{Simplified model used in our case studies of SLO and SBLO. The model parameters are based on our second model described in \cref{tab:model}.} \end{tabularx} \label{tab:simp_model} \end{table} The achieved normalized cost and cost reduction of lazy budgeting are shown in \cref{fig:case_studies:md:slo:normalized_cost} and \cref{fig:case_studies:md:slo:cost_reduction}, respectively. The dynamic offline optimal schedule primarily uses 8-GPU-servers and only uses 2-GPU-servers for short periods. The static offline optimal schedule uses 122 8-GPU-servers and no 2-GPU-servers as they have a larger operating cost, which would have to be paid throughout the entire day. The lazy budgeting algorithms primarily use 2-GPU-servers due to their lower switching cost and stick with 8-GPU-servers once they were powered up. \Cref{fig:case_studies:md:slo:det:schedule} and \cref{fig:case_studies:md:slo:rand:schedule} show the schedules obtained by the online algorithms in comparison to the offline optimal schedule. The runtime of the deterministic and randomized variants is shown in \cref{fig:case_studies:md:slo:runtimes}. \begin{figure} \begin{subfigure}[b]{.5\linewidth} \resizebox{\textwidth}{!}{\input{thesis/figures/slo_normalized_cost}} \caption{Normalized cost}\label{fig:case_studies:md:slo:normalized_cost} \end{subfigure} \begin{subfigure}[b]{.5\linewidth} \resizebox{\textwidth}{!}{\input{thesis/figures/slo_cost_reduction}} \caption{Cost reduction}\label{fig:case_studies:md:slo:cost_reduction} \end{subfigure} \caption{Performance of lazy budgeting (SLO) for the Microsoft Fiddle trace when compared against the offline optimum. The results of the randomized algorithm are based on five individual runs.} \end{figure} \begin{figure} \begin{subfigure}[b]{.3425\linewidth} \resizebox{\textwidth}{!}{\input{thesis/figures/slo_det_schedule}} \caption{SLO (deterministic)}\label{fig:case_studies:md:slo:det:schedule} \end{subfigure} \begin{subfigure}[b]{.32\linewidth} \resizebox{\textwidth}{!}{\input{thesis/figures/slo_rand_schedule}} \caption{SLO (randomized)}\label{fig:case_studies:md:slo:rand:schedule} \end{subfigure} \begin{subfigure}[b]{.32\linewidth} \resizebox{\textwidth}{!}{\input{thesis/figures/sblo_schedule}} \caption{SBLO ($\epsilon = 1/4$)}\label{fig:case_studies:md:sblo:schedule} \end{subfigure} \caption{Comparison of the schedules obtained by lazy budgeting for the Microsoft Fiddle trace and the offline optimum. For SLO, the deterministic algorithm is shown in blue and one result of the randomized algorithm is shown in red. The lazy budgeting algorithm for SBLO is shown in green. Note that the lazy budgeting algorithms prefer the 2-GPU-servers initially due to their low switching costs. For SLO, the randomized algorithm appears to be less ``sticky'' than the deterministic algorithm, resulting in a better normalized cost.} \end{figure} \begin{figure} \begin{subfigure}[b]{.5175\linewidth} \resizebox{\textwidth}{!}{\input{thesis/figures/slo_runtimes}} \caption{SLO}\label{fig:case_studies:md:slo:runtimes} \end{subfigure} \begin{subfigure}[b]{.4825\linewidth} \resizebox{\textwidth}{!}{\input{thesis/figures/sblo_runtimes}} \caption{SBLO}\label{fig:case_studies:md:sblo:runtimes} \end{subfigure} \caption{Runtime of lazy budgeting algorithms.} \end{figure} \subsection{Smoothed Balanced-Load Optimization} For our analysis of SBLO, we use the same simplified model that we used in our analysis of SLO (see \cref{tab:simp_model}). In particular, we still assume that a server can at most process a single job during a time slot. The dynamic and static offline optimum are similar to those in our analysis of SLO. In particular, the static offline optimum still only uses 8-GPU-servers. \Cref{fig:case_studies:md:sblo:schedule} shows the schedule obtained by lazy budgeting ($\epsilon = 1/4$) in comparison with the offline optimal. Lazy budgeting achieves normalized costs 1.284 and a cost reduction of 11\%. The runtime of the algorithm is shown in \cref{fig:case_studies:md:sblo:runtimes}. \subsection{Descent Methods} We also evaluated the performance of P-OBD and D-OBD on the Microsoft Fiddle trace under our original models (see \cref{tab:model}). In our analysis, we use the squared $\ell_2$ norm as the distance-generating function, i.e. $h(x) = \frac{1}{2} \norm{x}_2^2$, which is strongly convex and Lipschitz smooth in the $\ell_2$ norm. In our data center model, we use the $\ell_1$ norm to calculate switching costs, however, we observe that this approximation still achieves a good performance when compared against the dynamic offline optimum. The negative entropy $h(x) = \sum_{k=1}^d x_k \log_2 x_k$, which is commonly used as a distance-generating function for the $\ell_1$ norm cannot be used in the right-sizing data center setting as $\mathbf{0} \in \mathcal{X}$. \Cref{fig:case_studies:md:obd:normalized_cost} and \cref{fig:case_studies:md:obd:cost_reduction} show the achieved normalized cost and cost reduction. The resulting schedules under the first model are compared with the offline optimal in \cref{fig:case_studies:md:obd:schedule}. Remarkably, P-OBD and D-OBD obtain the exact same schedule under our second model. \Cref{fig:case_studies:md:obd:runtimes} visualizes the runtime of P-OBD and D-OBD under our first model. \begin{figure} \begin{subfigure}[b]{.5\linewidth} \resizebox{\textwidth}{!}{\input{thesis/figures/obd_normalized_cost}} \caption{Normalized cost}\label{fig:case_studies:md:obd:normalized_cost} \end{subfigure} \begin{subfigure}[b]{.5\linewidth} \resizebox{\textwidth}{!}{\input{thesis/figures/obd_cost_reduction}} \caption{Cost reduction}\label{fig:case_studies:md:obd:cost_reduction} \end{subfigure} \caption{Performance of P-OBD ($\beta = 1/2$) and D-OBD ($\eta = 1$) for the Microsoft Fiddle trace when compared against the offline optimum. $h(x) = \frac{1}{2} \norm{x}_2^2$ is used as the distance-generating function.} \end{figure} \begin{figure} \begin{subfigure}[b]{.5175\linewidth} \resizebox{\textwidth}{!}{\input{thesis/figures/pobd_schedule}} \caption{P-OBD} \end{subfigure} \begin{subfigure}[b]{.4825\linewidth} \resizebox{\textwidth}{!}{\input{thesis/figures/dobd_schedule}} \caption{D-OBD} \end{subfigure} \caption{Comparison of the schedules obtained by OBD for the Microsoft Fiddle trace under our first model and the offline optimum. P-OBD ($\beta = 1/2$) is shown in blue and D-OBD ($\eta = 1$) is shown in red. The two time slots during which P-OBD and D-OBD differ are marked in yellow ($t \in \{6, 20\}$). In both time slots, D-OBD is slightly less ``sticky'', resulting in a slightly better normalized cost. Also observe that under our first model, the dynamic offline optimum strictly prefers 2-GPU-servers over 8-GPU-servers In contrast, under our second model, 8-GPU-servers are slightly preferred by the dynamic offline optimum (see \cref{fig:microsoft:schedule}). $h(x) = \frac{1}{2} \norm{x}_2^2$ is used as the distance-generating function.}\label{fig:case_studies:md:obd:schedule} \end{figure} Although, OBD incurs an increased cost compared to the static offline optimal (the optimal static choice in hindsight) albeit by a factor less than 1, our very conservative model indicates that in practice, significant cost savings are possible. \begin{figure} \centering \input{thesis/figures/obd_runtimes} \caption{Runtime of OBD algorithms.}\label{fig:case_studies:md:obd:runtimes} \end{figure} \section{Predictions} In our analysis, we use the Alibaba trace under our second model to evaluate the effects of using predictions. We consider two different types of predictions: perfect predictions, and actual predictions that are obtained using Prophet as described in \cref{section:online_algorithms:md:predictions:making_predictions}. The obtained predictions are based on the four preceding days of the Alibaba trace up until the second to last day. \Cref{fig:case_studies:predictions:prediction} visualizes the used prediction for the most common job type (i.e., short jobs). Note that in our analysis, we use the mean predicted load. \begin{figure} \centering \input{thesis/figures/prediction} \caption{Prediction of the load of short jobs for the second to last day of the Alibaba trace. The mean prediction is shown as the black line. The interquartile range of the predicted distribution is shown as the shaded region. The marks represent actual loads.}\label{fig:case_studies:predictions:prediction} \end{figure} \Cref{fig:case_studies:predictions:lcp} shows the effect of the prediction window $w$ when used with LCP for perfect and actual predictions. We observe that in practice, the prediction window can significantly improve the algorithm performance. Additionally, we find that this effect is also achieved with imperfect (i.e., actual) predictions. Previously, \citeauthor{Lin2011}~\cite{Lin2011} only showed this effect for perfect predictions with additive white Gaussian noise. Interestingly, RHC and AFHC achieve equivalent results for perfect and imperfect predictions. \Cref{fig:case_studies:predictions:mpc} shows how the achieved normalized cost changes with the prediction window. Crucially, note that the MPC-style algorithms do not necessarily perform better for a growing prediction window. \citeauthor{Lin2012}~\cite{Lin2012} showed this effect previously for an adversarially chosen example, however, we observe this behavior with AFHC in a practical setting. In fact, for the Alibaba trace, RHC and AFHC achieve their best result when used without a prediction window, i.e. $w = 0$. \begin{figure} \begin{subfigure}[b]{.5175\linewidth} \resizebox{\textwidth}{!}{\input{thesis/figures/pred_lcp_cost}} \caption{LCP and Int-LCP}\label{fig:case_studies:predictions:lcp} \end{subfigure} \begin{subfigure}[b]{.4825\linewidth} \resizebox{\textwidth}{!}{\input{thesis/figures/pred_mpc_cost}} \caption{RHC and AFHC}\label{fig:case_studies:predictions:mpc} \end{subfigure} \caption{Performance of online algorithms with a prediction window for the Alibaba trace. The left figure shows the performance of LCP and Int-LCP. The right figure shows the performance of RHC and AFHC. Note that LCP does not continuously approach the normalized cost $1$ as $w \to 24$ because of numerical inaccuracies solving the convex optimizations and as the obtained is compared to the integral offline optimum rather than the fractional offline optimum. For RHC and AFHC, the achieved normalized cost is independent of whether perfect predictions or the predictions from \cref{fig:case_studies:predictions:prediction} are used.} \end{figure}
module Control.Effect.Lift import Control.EffectAlgebra namespace Algebra public export [Lift] Monad m => Algebra (Lift m) m where alg ctxx hdl (MkLift x) = x >>= hdl . ( <$ ctxx) %hint public export HintLift : Monad m => Algebra (Lift m) m HintLift = Lift ||| Lift a computation to the underlying effect stack. public export lift : Monad n => Inj (Lift n) sig => Algebra sig m => n a -> m a lift x = send {eff = Lift n} $ MkLift (map pure x)
import HTTP import JSON include("./request.jl") function delete_project(server::Bool=true) :: Nothing cd("..") rm("demo", recursive=true) if server Dance.CoreEngine.close_server() end Dance.Router.delete_routes!() nothing end function dirs_add_multiple() :: Nothing mkdir("code") mkdir("node_modules") # test ignores node dir cd("code") # test dir with file & sub-dir touch("file1.jl") mkdir("sub-dir1") # test dir with only sub-dir cd("sub-dir1") mkdir("sub-dir2") # test dir with file cd("sub-dir2") touch("file2.jl") cd("../../..") nothing end function dirs_add_single() :: Nothing mkdir("code") mkdir("node_modules") # test ignores node dir cd("code") # test dir with file & sub-dir touch("file1.jl") cd("..") nothing end function make_and_test_request_get(path::String, status::Int64, headers::Dict{String, String}, content_length::Int64, is_json_body::Bool, body::Any) :: Nothing r = HTTP.request("GET", "http://127.0.0.1:8000$path") parse_and_test_request(r, status, headers, content_length, is_json_body, body) end function make_and_test_request_options(path::String) :: Nothing r = HTTP.request("OPTIONS", "http://127.0.0.1:8000$path") compare_http_header(r.headers, "Allow", "POST") compare_http_header(r.headers, "Access-Control-Allow-Methods", "POST") compare_http_header(r.headers, "Access-Control-Allow-Headers", "X-PINGOTHER, Content-Type") end function make_and_test_request_post(path::String, payload::Union{Array, Dict}, status::Int64, headers::Dict{String, String}, content_length::Int64, is_json_body::Bool, body::Any) :: Nothing r = HTTP.request("POST", "http://127.0.0.1:8000$path", [], JSON.json(payload)) parse_and_test_request(r, status, headers, content_length, is_json_body, body) end function project_settings() :: Nothing ## Add `dev.jl` file with 1 overwrite & 1 new entry ## cd("demo/settings") touch("dev.jl") open("dev.jl", "w") do io write(io, ":dev = true\n") write(io, ":foo = \"bar\"") end open("Global.jl", "a+") do io write(io, "include(\"dev.jl\")") end cd("..") end function routes(file_suffix::String) :: Nothing open("routes.jl", "w") do io_routes open("../sample/routes/" * file_suffix * ".jl") do io_file write(io_routes, io_file) end end nothing end
""" Projector(ϕs, orbitals) Represents the projector on the subspace spanned by the radial orbitals `ϕs` (corresponding to `orbitals`). """ struct Projector{T,B<:AbstractQuasiMatrix,RO<:RadialOrbital{T,B},O} <: NBodyOperator{1} ϕs::Vector{RO} orbitals::Vector{O} end Base.iszero(me::OrbitalMatrixElement{1,A,<:Projector,B}) where {A<:SpinOrbital,B<:SpinOrbital} = me.a[1] ∉ me.o.orbitals || me.b[1] ∉ me.o.orbitals function Base.show(io::IO, projector::Projector) write(io, "P(") write(io, join(string.(projector.orbitals), " ")) write(io, ")") end projectout!(y::RO, ::Nothing) where RO = y """ projectout!(y, projector) Project out all components of `y` parallel to the radial orbitals `projector.ϕs`. """ function projectout!(y::RO, projector::Proj) where {RO,Proj<:Projector} yc = y.args[2] for ϕ in projector.ϕs c = materialize(applied(*, ϕ', y)) yc .-= c*ϕ.args[2] # y -= c*ϕ end y end
Require Import VST.progs.io. Require Import VST.progs.io_specs. Require Import VST.floyd.proofauto. Require Import ITree.ITree. (*Import ITreeNotations.*) Notation "t1 >>= k2" := (ITree.bind t1 k2) (at level 50, left associativity) : itree_scope. Notation "x <- t1 ;; t2" := (ITree.bind t1 (fun x => t2)) (at level 100, t1 at next level, right associativity) : itree_scope. Notation "t1 ;; t2" := (ITree.bind t1 (fun _ => t2)) (at level 100, right associativity) : itree_scope. Notation "' p <- t1 ;; t2" := (ITree.bind t1 (fun x_ => match x_ with p => t2 end)) (at level 100, t1 at next level, p pattern, right associativity) : itree_scope. Instance CompSpecs : compspecs. make_compspecs prog. Defined. Definition Vprog : varspecs. mk_varspecs prog. Defined. Definition putchar_spec := DECLARE _putchar putchar_spec. Definition getchar_spec := DECLARE _getchar getchar_spec. Lemma div_10_dec : forall n, 0 < n -> (Z.to_nat (n / 10) < Z.to_nat n)%nat. Proof. intros. change 10 with (Z.of_nat 10). rewrite <- (Z2Nat.id n) by omega. rewrite <- div_Zdiv by discriminate. rewrite !Nat2Z.id. apply Nat2Z.inj_lt. rewrite div_Zdiv, Z2Nat.id by omega; simpl. apply Z.div_lt; auto; omega. Qed. Program Fixpoint chars_of_Z (n : Z) { measure (Z.to_nat n) } : list int := let n' := n / 10 in match n' <=? 0 with true => [Int.repr (n + char0)] | false => chars_of_Z n' ++ [Int.repr (n mod 10 + char0)] end. Next Obligation. Proof. apply div_10_dec. symmetry in Heq_anonymous; apply Z.leb_nle in Heq_anonymous. eapply Z.lt_le_trans, Z_mult_div_ge with (b := 10); omega. Defined. (* The function computed by print_intr *) Program Fixpoint intr n { measure (Z.to_nat n) } : list int := match n <=? 0 with | true => [] | false => intr (n / 10) ++ [Int.repr (n mod 10 + char0)] end. Next Obligation. Proof. apply div_10_dec. symmetry in Heq_anonymous; apply Z.leb_nle in Heq_anonymous; omega. Defined. Definition print_intr_spec := DECLARE _print_intr WITH i : Z, tr : IO_itree PRE [ _i OF tuint ] PROP (0 <= i <= Int.max_unsigned) LOCAL (temp _i (Vint (Int.repr i))) SEP (ITREE (write_list (intr i) ;; tr)) POST [ tvoid ] PROP () LOCAL () SEP (ITREE tr). Definition print_int_spec := DECLARE _print_int WITH i : Z, tr : IO_itree PRE [ _i OF tuint ] PROP (0 <= i <= Int.max_unsigned) LOCAL (temp _i (Vint (Int.repr i))) SEP (ITREE (write_list (chars_of_Z i) ;; tr)) POST [ tvoid ] PROP () LOCAL () SEP (ITREE tr). Definition read_sum n d : IO_itree := ITree.aloop (fun '(n, d) => if zlt n 1000 then if zlt d 10 then inl (write_list (chars_of_Z (n + d));; write (Int.repr newline);; c <- read;; Ret (n + d, Int.unsigned c - char0)) (* loop again with these parameters *) else inr tt else inr tt) (* inr to end the loop *) (n, d). Definition main_itree := c <- read;; read_sum 0 (Int.unsigned c - char0). Definition main_spec := DECLARE _main WITH gv : globals PRE [] main_pre_ext prog main_itree nil gv POST [ tint ] main_post prog nil gv. Definition Gprog : funspecs := ltac:(with_library prog [putchar_spec; getchar_spec; print_intr_spec; print_int_spec; main_spec]). Lemma divu_repr : forall x y, 0 <= x <= Int.max_unsigned -> 0 <= y <= Int.max_unsigned -> Int.divu (Int.repr x) (Int.repr y) = Int.repr (x / y). Proof. intros; unfold Int.divu. rewrite !Int.unsigned_repr; auto. Qed. Opaque Nat.div Nat.modulo. Lemma intr_eq : forall n, intr n = match n <=? 0 with | true => [] | false => intr (n / 10) ++ [Int.repr (n mod 10 + char0)] end. Proof. intros. unfold intr at 1. rewrite Wf.WfExtensionality.fix_sub_eq_ext; simpl; fold intr. destruct n; reflexivity. Qed. Lemma bind_ret' : forall E (s : itree E unit), eutt eq (s;; Ret tt) s. Proof. intros. etransitivity; [|apply subrelation_eq_eutt, bind_ret2]. apply eutt_bind; [intros []|]; reflexivity. Qed. Lemma body_print_intr: semax_body Vprog Gprog f_print_intr print_intr_spec. Proof. start_function. forward_if (PROP () LOCAL () SEP (ITREE tr)). - forward. forward. rewrite modu_repr, divu_repr by (omega || computable). rewrite intr_eq. destruct (Z.leb_spec i 0); try omega. erewrite ITREE_ext by (rewrite write_list_app, bind_bind; reflexivity). forward_call (i / 10, write_list [Int.repr (i mod 10 + char0)];; tr). { split; [apply Z.div_pos; omega | apply Z.div_le_upper_bound; omega]. } simpl write_list. forward_call (Int.repr (i mod 10 + char0), tr). { rewrite <- sepcon_emp at 1; apply sepcon_derives; [|cancel]. apply ITREE_impl; rewrite bind_ret'; reflexivity. } entailer!. - forward. subst; entailer!. erewrite ITREE_ext; [apply derives_refl|]. simpl. rewrite Shallow.bind_ret; reflexivity. - forward. Qed. Lemma chars_of_Z_eq : forall n, chars_of_Z n = let n' := n / 10 in match n' <=? 0 with true => [Int.repr (n + char0)] | false => chars_of_Z n' ++ [Int.repr (n mod 10 + char0)] end. Proof. intros. unfold chars_of_Z at 1. rewrite Wf.WfExtensionality.fix_sub_eq_ext; simpl; fold chars_of_Z. destruct (_ <=? _); reflexivity. Qed. Lemma chars_of_Z_intr : forall n, 0 < n -> chars_of_Z n = intr n. Proof. induction n using (well_founded_induction (Zwf.Zwf_well_founded 0)); intro. rewrite chars_of_Z_eq, intr_eq. destruct (n <=? 0) eqn: Hn; [apply Zle_bool_imp_le in Hn; omega|]. simpl. destruct (n / 10 <=? 0) eqn: Hdiv. - apply Zle_bool_imp_le in Hdiv. assert (0 <= n / 10). { apply Z.div_pos; omega. } assert (n / 10 = 0) as Hz by omega. rewrite Hz; simpl. apply Z.div_small_iff in Hz as [|]; try omega. rewrite Zmod_small; auto. - apply Z.leb_nle in Hdiv. rewrite H; auto; try omega. split; try omega. apply Z.div_lt; auto; omega. Qed. Lemma body_print_int: semax_body Vprog Gprog f_print_int print_int_spec. Proof. start_function. forward_if (PROP () LOCAL () SEP (ITREE tr)). - subst. forward_call (Int.repr char0, tr). { rewrite chars_of_Z_eq; simpl. erewrite <- sepcon_emp at 1; apply sepcon_derives; [|cancel]. erewrite ITREE_ext; [apply derives_refl|]. rewrite bind_ret'; reflexivity. } entailer!. - forward_call (i, tr). { rewrite chars_of_Z_intr by omega; cancel. } entailer!. - forward. Qed. Lemma read_sum_eq : forall n d, read_sum n d ≈ (if zlt n 1000 then if zlt d 10 then write_list (chars_of_Z (n + d));; write (Int.repr newline);; c <- read;; read_sum (n + d) (Int.unsigned c - char0) else Ret tt else Ret tt). Proof. intros. unfold read_sum; rewrite unfold_aloop. unfold ITree._aloop. if_tac; [|reflexivity]. if_tac; [|reflexivity]. unfold id. repeat setoid_rewrite bind_bind. setoid_rewrite Shallow.bind_ret. reflexivity. Qed. Lemma body_main: semax_body Vprog Gprog f_main main_spec. Proof. start_function. unfold main_pre_ext. replace_SEP 0 (ITREE main_itree). { go_lower. apply has_ext_ITREE. } forward. unfold main_itree. rewrite <- !seq_assoc. (* Without this, forward_call gives a type error! *) forward_call (fun c => read_sum 0 (Int.unsigned c - char0)). Intros c. forward. rewrite sign_ext_inrange by auto. set (Inv := EX n : Z, EX c : int, PROP (0 <= n < 1009) LOCAL (temp _c (Vint c); temp _n (Vint (Int.repr n))) SEP (ITREE (read_sum n (Int.unsigned c - char0)))). unfold Swhile; forward_loop Inv break: Inv. { Exists 0 c; entailer!. } subst Inv. clear dependent c; Intros n c. forward_if. forward. forward_if. { forward. Exists n c; entailer!. } forward. rewrite <- (Int.repr_unsigned c) in H1. rewrite sub_repr in H1. pose proof (Int.unsigned_range c). destruct (zlt (Int.unsigned c) char0). { rewrite Int.unsigned_repr_eq in H1. rewrite <- Z_mod_plus_full with (b := 1), Zmod_small in H1; unfold char0 in *; rep_omega. } rewrite Int.unsigned_repr in H1 by (unfold char0 in *; rep_omega). erewrite ITREE_ext by apply read_sum_eq. rewrite if_true by auto. destruct (zlt _ _); [|unfold char0 in *; omega]. forward_call (n + (Int.unsigned c - char0), write (Int.repr newline);; c' <- read;; read_sum (n + (Int.unsigned c - char0)) (Int.unsigned c' - char0)). { entailer!. rewrite <- (Int.repr_unsigned c) at 1. rewrite sub_repr, add_repr; auto. } { unfold char0 in *; rep_omega. } forward_call (Int.repr newline, c' <- read;; read_sum (n + (Int.unsigned c - char0)) (Int.unsigned c' - char0)). forward_call (fun c' => read_sum (n + (Int.unsigned c - char0)) (Int.unsigned c' - char0)). Intros c'. forward. rewrite sign_ext_inrange by auto. Exists (n + (Int.unsigned c - char0)) c'; entailer!. rewrite <- (Int.repr_unsigned c) at 2; rewrite sub_repr, add_repr; auto. { forward. Exists n c; entailer!. } subst Inv. Intros n c'. forward. Qed. Definition ext_link := ext_link_prog prog. Instance Espec : OracleKind := IO_Espec ext_link. Lemma prog_correct: semax_prog_ext prog main_itree Vprog Gprog. Proof. prove_semax_prog. semax_func_cons_ext. { simpl; Intro i. apply typecheck_return_value; auto. } semax_func_cons_ext. semax_func_cons body_print_intr. semax_func_cons body_print_int. semax_func_cons body_main. Qed. Require Import VST.veric.SequentialClight. Require Import VST.progs.io_dry. Definition init_mem_exists : { m | Genv.init_mem prog = Some m }. Proof. unfold Genv.init_mem; simpl. Admitted. (* seems true, but hard to prove -- can we compute it? *) Definition init_mem := proj1_sig init_mem_exists. Definition main_block_exists : {b | Genv.find_symbol (Genv.globalenv prog) (prog_main prog) = Some b}. Proof. eexists; simpl. unfold Genv.find_symbol; simpl; reflexivity. Qed. Definition main_block := proj1_sig main_block_exists. Theorem prog_toplevel : exists q : Clight_new.corestate, semantics.initial_core (Clight_new.cl_core_sem (globalenv prog)) 0 init_mem q init_mem (Vptr main_block Ptrofs.zero) [] /\ forall n, @step_lemmas.dry_safeN _ _ _ _ Clight_sim.genv_symb_injective (Clight_sim.coresem_extract_cenv (Clight_new.cl_core_sem (globalenv prog)) (prog_comp_env prog)) (io_dry_spec ext_link) {| Clight_sim.CC.genv_genv := Genv.globalenv prog; Clight_sim.CC.genv_cenv := prog_comp_env prog |} n main_itree q init_mem. Proof. edestruct whole_program_sequential_safety_ext with (V := Vprog) as (b & q & m' & Hb & Hq & Hsafe). - apply juicy_dry_specs. - apply dry_spec_mem. - apply CSHL_Sound.semax_prog_ext_sound, prog_correct. - apply (proj2_sig init_mem_exists). - exists q. rewrite (proj2_sig main_block_exists) in Hb; inv Hb. assert (m' = init_mem); [|subst; auto]. destruct Hq; tauto. Qed.
! ! Copyright 2016 ARTED developers ! ! Licensed under the Apache License, Version 2.0 (the "License"); ! you may not use this file except in compliance with the License. ! You may obtain a copy of the License at ! ! http://www.apache.org/licenses/LICENSE-2.0 ! ! Unless required by applicable law or agreed to in writing, software ! distributed under the License is distributed on an "AS IS" BASIS, ! WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. ! See the License for the specific language governing permissions and ! limitations under the License. ! Subroutine init_wf use Global_Variables implicit none integer :: iseed,ib,ik,i real(8) :: r2,x1,y1,z1,rnd real(8) :: x0,y0,z0 real(8) :: r22,x2,y2,z2 zu_GS=0.d0 iseed=123 do ik=1,NK do ib=1,NB call quickrnd(iseed,rnd) x0=rnd call quickrnd(iseed,rnd) y0=rnd call quickrnd(iseed,rnd) z0=rnd if(ik >= NK_s .and. ik<=NK_e)then do i=1,NL x1=Lx(1,i)-x0 y1=Lx(2,i)-y0 z1=Lx(3,i)-z0 x2=A_matrix(1,1)*x1+A_matrix(1,2)*y1+A_matrix(1,3)*z1 y2=A_matrix(2,1)*x1+A_matrix(2,2)*y1+A_matrix(2,3)*z1 z2=A_matrix(3,1)*x1+A_matrix(3,2)*y1+A_matrix(3,3)*z1 r2=x2**2+y2**2+z2**2 zu_GS(i,ib,ik)=exp(-0.5d0*r2) enddo end if enddo enddo if(Myrank == 0)write(*,'(A)')'wave-functions initialization is completed' return End Subroutine init_wf
#' memuse Arithmetic #' #' Binary arithmetic operations for \code{memuse} objects. #' #' Simple arithmetic reductions. #' #' @param x #' A \code{memuse} object. #' @param ... #' Additional arguments #' @param na.rm #' Whether \code{NA}'s should be ignored. #' #' @return #' Returns a \code{memuse} class object. #' #' @examples #' \dontrun{ #' x = mu(2000) #' y = mu(5000) #' #' sum(x, y) #' #' ### Mixing numeric and memuse objects will work, but the first one must be a #' ### memuse object. #' sum(mu(10), 10) # This will work #' sum(10, mu(10)) # This will not #' } #' #' @seealso \code{ \link{Constructor} \link{memuse-class} } #' @keywords Methods #' @export setMethod("sum", signature(x="memuse"), function(x, ..., na.rm=FALSE) { ret <- mu.size(x, as.is=FALSE) other <- list(...) # checking type of inputs typecheck <- sapply(other, sumargcheck) if (length(other) > 0) { other <- sum(sapply(other, vectorizedsum)) ret <- ret + other } internal.mu(ret, unit.prefix=mu.prefix(x), unit.names=mu.names(x)) } ) sumargcheck = function(i) { if ( !is.memuse(i) && !(is.numeric(i) && is.vector(i)) ) stop("method 'sum' can only work with combinations of memuse and vector objects") } vectorizedsum = function(i) { if (is.memuse(i)) mu.size(i, as.is=FALSE) else sum(i) }
The corn crake is mainly a lowland species , but breeds up to 1 @,@ 400 m ( 4 @,@ 600 ft ) altitude in the Alps , 2 @,@ 700 m ( 8 @,@ 900 ft ) in China and 3 @,@ 000 m ( 9 @,@ 800 ft ) in Russia . When breeding in Eurasia , the corn crake 's habitats would originally have included river meadows with tall grass and meadow plants including sedges and irises . It is now mainly found in cool moist grassland used for the production of hay , particularly moist traditional farmland with limited cutting or fertiliser use . It also utilises other treeless grasslands in mountains or taiga , on coasts , or where created by fire . <unk> areas like wetland edges may be used , but very wet habitats are avoided , as are open areas and those with vegetation more than 50 cm ( 20 in ) tall , or too dense to walk through . The odd bush or hedge may be used as a calling post . Grassland which is not mown or grazed becomes too matted to be suitable for nesting , but locally crops such as cereals , peas , rape , clover or potatoes may be used . After breeding , adults move to taller vegetation such as common reed , iris , or nettles to moult , returning to the hay and silage meadows for the second brood . In China , flax is also used for nest sites . Although males often sing in intensively managed grass or cereal crops , successful breeding is uncommon , and nests in the field margins or nearby fallow ground are more likely to succeed .
World Heritage Sites
#include <stdio.h> #include <gsl/gsl_statistics.h> #include <assert.h> extern "C" { #include <quadmath.h> } #ifndef N #define N 64 #endif #define K N/2 #ifndef FB #define FB 64 #endif #if(FB==64) #define FT double #elif(FB==80) #define FT long double #endif int main(int argc, char *argv[]) { assert(argc == 3); int i; char *inname = argv[1]; char *outname = argv[2]; FILE *infile = fopen(inname, "r"); FILE *outfile = fopen(outname, "w"); FT data[K], w[K]; FT wsd; for (i = 0 ; i < K ; i++) { __float128 in_data; fread(&in_data, sizeof(__float128), 1, infile); data[i] = (float) in_data; } for (i = 0 ; i < K ; i++) { __float128 in_data; fread(&in_data, sizeof(__float128), 1, infile); w[i] = (float) in_data; } fclose(infile); // library call double wmean; #if(FB==64) wmean = gsl_stats_wmean(w, 1, data, 1, K); wsd = gsl_stats_wsd_with_fixed_mean(w, 1, data, 1, K, wmean); #elif(FB==80) wmean = gsl_stats_long_double_wmean(w, 1, data, 1, K); wsd = gsl_stats_long_double_wsd_with_fixed_mean(w, 1, data, 1, K, wmean); #else exit(-1); #endif //printf ("The sample wsd is %g\n", wsd); __float128 out_data; out_data = (__float128) wsd; fwrite(&out_data, sizeof(__float128), 1, outfile); fclose(outfile); return 0; }
From mathcomp Require Import ssreflect ssrbool ssrnat eqtype seq ssrfun. From fcsl Require Import prelude pred pcm unionmap heap. From HTT Require Import stmod stsep stlog stlogR. From SSL Require Import core. From Hammer Require Import Hammer. (* Configure Hammer *) Set Hammer ATPLimit 60. Unset Hammer Eprover. Unset Hammer Vampire. Add Search Blacklist "fcsl.". Add Search Blacklist "HTT.". Add Search Blacklist "Coq.ssr.ssrfun". Add Search Blacklist "mathcomp.ssreflect.ssrfun". Add Search Blacklist "mathcomp.ssreflect.bigop". Add Search Blacklist "mathcomp.ssreflect.choice". Add Search Blacklist "mathcomp.ssreflect.div". Add Search Blacklist "mathcomp.ssreflect.finfun". Add Search Blacklist "mathcomp.ssreflect.fintype". Add Search Blacklist "mathcomp.ssreflect.path". Add Search Blacklist "mathcomp.ssreflect.tuple". Inductive sll (x : ptr) (s : seq nat) (h : heap) : Prop := | sll_1 of (x) == (null) of @perm_eq nat_eqType (s) (@nil nat) /\ h = empty | sll_2 of ~~ ((x) == (null)) of exists (v : nat) (s1 : seq nat) (nxt : ptr), exists h_sll_nxts1_1, @perm_eq nat_eqType (s) (([:: v]) ++ (s1)) /\ h = x :-> (v) \+ x .+ 1 :-> (nxt) \+ h_sll_nxts1_1 /\ sll nxt s1 h_sll_nxts1_1. Inductive dll (x : ptr) (z : ptr) (s : seq nat) (h : heap) : Prop := | dll_1 of (x) == (null) of @perm_eq nat_eqType (s) (@nil nat) /\ h = empty | dll_2 of ~~ ((x) == (null)) of exists (v : nat) (s1 : seq nat) (w : ptr), exists h_dll_wxs1_0, @perm_eq nat_eqType (s) (([:: v]) ++ (s1)) /\ h = x :-> (v) \+ x .+ 1 :-> (w) \+ x .+ 2 :-> (z) \+ h_dll_wxs1_0 /\ dll w x s1 h_dll_wxs1_0.
```python import numpy as np import matplotlib.pyplot as plt import scipy.io.wavfile import subprocess import librosa import librosa.display import IPython.display as ipd from pathlib import Path, PurePath from tqdm.notebook import tqdm import os import random import pickle import pandas as pd from collections import defaultdict import utility import functions ``` ## Task 1 #### Settings ```python N_TRACKS = 1413 HOP_SIZE = 512 OFFSET = 1.0 DURATION = 30 ``` do not run again below this line ```python data_folder = Path("data/mp3s-32k/") mp3_tracks = data_folder.glob("*/*/*.mp3") tracks = data_folder.glob("*/*/*.wav") tracks_list = list(enumerate(tracks)) # save tracks_list open_file = open("tracks_list.pkl", "wb") pickle.dump(tracks_list, open_file) open_file.close() ``` ```python tracks_list[0] ``` (0, WindowsPath('data/mp3s-32k/aerosmith/Aerosmith/01-Make_It.wav')) ```python data_folder = Path("query/") mp3_tracks = data_folder.glob("*.mp3") query = data_folder.glob("*.wav") query_list = list(enumerate(query)) # save query_list open_file = open("query_list.pkl", "wb") pickle.dump(query_list, open_file) open_file.close() ``` #### Preprocessing ```python # convert mp3 to wav for track in tqdm(mp3_tracks, total=N_TRACKS): utility.convert_mp3_to_wav(str(track)) ``` do not run again above this line #### Audio signals ```python open_file = open("tracks_list.pkl", "rb") tracks_list = pickle.load(open_file) open_file.close() ``` ```python # list of track title and author tracks_title = [] for i in range(len(tracks_list)): aux = tracks_list[i][1].__str__().replace('_', ' ').replace('.wav', '').split("\\", 4) tracks_title.append([aux[-1], aux[2]]) tracks_titles = list(enumerate(tracks_title)) ``` ```python tracks_titles[0] ``` (0, ['01-Make It', 'aerosmith']) ```python for idx, audio in tracks_list: if idx >= 2: break track, sr, onset_env, peaks = utility.load_audio_peaks(audio, OFFSET, DURATION, HOP_SIZE) utility.plot_spectrogram_and_peaks(track, sr, peaks, onset_env) ``` ### 1 Minhashing By using the function <code>functions.zeros_ones_matrix</code> we compute a zeros-ones matrix of representative of the dataset. The number of rows corresponds to the maximum possible peak index and each column is representative of a track. For each track we assign ones-entries to the indexes of peaks (bins where peaks occur). ```python m = round(sr*DURATION/HOP_SIZE) # maximum peak index m ``` 1292 do not run again below this line ```python # generate and store tracks matrix tracks_matrix = functions.zeros_ones_matrix(m, 'tracks', tracks_list) ``` 0%| | 0/1413 [00:00<?, ?it/s] do not run again above this line ```python open_file = open("tracks_matrix.pkl", "rb") tracks_matrix = pickle.load(open_file) open_file.close() tracks_matrix.shape, tracks_matrix.nbytes ``` ((1292, 1413), 1825596) ```python # pandas visualization of tracks matrix new_col = [item[1][0].split("-", 1)[1] for item in tracks_titles] df = pd.DataFrame(tracks_matrix, columns=new_col) df ``` <div> <style scoped> .dataframe tbody tr th:only-of-type { vertical-align: middle; } .dataframe tbody tr th { vertical-align: top; } .dataframe thead th { text-align: right; } </style> <table border="1" class="dataframe"> <thead> <tr style="text-align: right;"> <th></th> <th>Make It</th> <th>Somebody</th> <th>Dream On</th> <th>One Way Street</th> <th>Mama Kin</th> <th>Write Me a Letter</th> <th>Movin Out</th> <th>Walking the Dog</th> <th>Draw the Line</th> <th>I Wanna Know Why</th> <th>...</th> <th>Zooropa</th> <th>Babyface</th> <th>Numb</th> <th>Lemon</th> <th>Stay Faraway So Close</th> <th>Daddy s Gonna Pay For Your Crashed Car</th> <th>Some Days Are Better Than Others</th> <th>The First Time</th> <th>Dirty Day</th> <th>The Wanderer</th> </tr> </thead> <tbody> <tr> <th>0</th> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>...</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> </tr> <tr> <th>1</th> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>...</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> </tr> <tr> <th>2</th> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>...</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> </tr> <tr> <th>3</th> <td>1</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>...</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>1</td> <td>0</td> <td>0</td> <td>0</td> </tr> <tr> <th>4</th> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>...</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> </tr> <tr> <th>...</th> <td>...</td> <td>...</td> <td>...</td> <td>...</td> <td>...</td> <td>...</td> <td>...</td> <td>...</td> <td>...</td> <td>...</td> <td>...</td> <td>...</td> <td>...</td> <td>...</td> <td>...</td> <td>...</td> <td>...</td> <td>...</td> <td>...</td> <td>...</td> <td>...</td> </tr> <tr> <th>1287</th> <td>1</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>1</td> <td>...</td> <td>0</td> <td>0</td> <td>1</td> <td>0</td> <td>1</td> <td>0</td> <td>0</td> <td>0</td> <td>1</td> <td>0</td> </tr> <tr> <th>1288</th> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>1</td> <td>0</td> <td>...</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> </tr> <tr> <th>1289</th> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>...</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>1</td> </tr> <tr> <th>1290</th> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>...</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> </tr> <tr> <th>1291</th> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>1</td> <td>0</td> <td>1</td> <td>0</td> <td>0</td> <td>...</td> <td>1</td> <td>1</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> </tr> </tbody> </table> <p>1292 rows × 1413 columns</p> </div> We want to associate each track with a *signature* based on the previously defined representative matrix of the dataset. In order to do this, first we generate $n_{hash}$ random hash functions from an *universal family of hash functions with a prime field*: \begin{equation} H = \{h_{c_0, c_1} | c_0 \in \{1,2,..., p - 1\}, c_1 \in \{1,2,..., p - 1\}\} \end{equation} \begin{equation} h_{c_0, c_1}(x) = ((c_1x + c_0)\mod p)\mod n); x \in U \end{equation} - $U : \{0,1,..., m-1\}$ - number $n \le m$ - prime number $p \ge m$ The probability that distinct elements $x_1, x_2 \in U$ collide in $n$ is $P(h(x_1) = h(x_2)) \le \frac{1}{n}$ ```python # hash settings p = 1789 # prime number n = 1000 nh = 24 # number of random hash functions ``` do not run again below this line ```python # generate random coefficients c_0 = random.sample(range(0, p - 1), nh) c_1 = random.sample(range(0, p - 1), nh) # save coefficients with open('coefficient.npy', 'wb') as f: np.save(f, c_0) np.save(f, c_1) ``` do not run again above this line ```python with open('coefficient.npy', 'rb') as f: c_0 = np.load(f) c_1 = np.load(f) c_0, c_1, [len(set(c_0)), len(set(c_1))] ``` (array([1576, 17, 372, 516, 208, 297, 307, 1447, 1147, 684, 1078, 706, 785, 523, 363, 774, 1589, 525, 1212, 539, 1584, 268, 62, 318]), array([ 821, 1457, 1596, 1441, 1051, 889, 611, 204, 1724, 392, 361, 1412, 560, 194, 394, 869, 1110, 605, 1693, 1389, 590, 1136, 261, 1190]), [24, 24]) For each $k^{th}$ track (column of tracks matrix) we apply the $i^{th}$ *hash function* to each *row-index* with non-zero entry. The $i^{th}$ component of the signature is equal to the *minimum* among these values. - $k \in \{1, 2, 3,..., n_{tracks}\}$ where $n_{tracks}$ is the number of tracks in the dataset (variable <code>N_TRACKS</code>) - $i \in \{1, 2, 3,..., n_{hash}\}$ where $n_{hash}$ is the number of random hash functions generated from the previously defined family (variable <code>nh</code>) The function <code>functions.minhash</code> performs these operations. The *signature matrix* - we compute through the function <code>functions.generate_signature</code> - has shape $(n_{hash}, n_{tracks})$. do not run again below this line ```python # generate and store signature matrix signature_matrix = functions.generate_signature(tracks_list, tracks_matrix, 'tracks', nh, c_0, c_1, p, n) ``` 0%| | 0/1413 [00:00<?, ?it/s] do not run again above this line ```python open_file = open("signature_matrix_tracks.pkl", "rb") signature_matrix = pickle.load(open_file) open_file.close() signature_matrix.shape, signature_matrix.nbytes ``` ((24, 1413), 33912) ```python # pandas visualization of signature matrix new_col = [item[1][0].split("-", 1)[1] for item in tracks_titles] df = pd.DataFrame(signature_matrix, columns=new_col) df ``` <div> <style scoped> .dataframe tbody tr th:only-of-type { vertical-align: middle; } .dataframe tbody tr th { vertical-align: top; } .dataframe thead th { text-align: right; } </style> <table border="1" class="dataframe"> <thead> <tr style="text-align: right;"> <th></th> <th>Make It</th> <th>Somebody</th> <th>Dream On</th> <th>One Way Street</th> <th>Mama Kin</th> <th>Write Me a Letter</th> <th>Movin Out</th> <th>Walking the Dog</th> <th>Draw the Line</th> <th>I Wanna Know Why</th> <th>...</th> <th>Zooropa</th> <th>Babyface</th> <th>Numb</th> <th>Lemon</th> <th>Stay Faraway So Close</th> <th>Daddy s Gonna Pay For Your Crashed Car</th> <th>Some Days Are Better Than Others</th> <th>The First Time</th> <th>Dirty Day</th> <th>The Wanderer</th> </tr> </thead> <tbody> <tr> <th>0</th> <td>33</td> <td>4</td> <td>7</td> <td>20</td> <td>8</td> <td>5</td> <td>6</td> <td>4</td> <td>19</td> <td>1</td> <td>...</td> <td>16</td> <td>8</td> <td>23</td> <td>16</td> <td>11</td> <td>5</td> <td>24</td> <td>1</td> <td>1</td> <td>3</td> </tr> <tr> <th>1</th> <td>20</td> <td>46</td> <td>7</td> <td>14</td> <td>5</td> <td>9</td> <td>7</td> <td>54</td> <td>8</td> <td>35</td> <td>...</td> <td>45</td> <td>13</td> <td>24</td> <td>1</td> <td>14</td> <td>11</td> <td>1</td> <td>7</td> <td>3</td> <td>7</td> </tr> <tr> <th>2</th> <td>13</td> <td>19</td> <td>8</td> <td>2</td> <td>19</td> <td>3</td> <td>14</td> <td>2</td> <td>2</td> <td>48</td> <td>...</td> <td>22</td> <td>6</td> <td>6</td> <td>9</td> <td>19</td> <td>38</td> <td>2</td> <td>10</td> <td>18</td> <td>7</td> </tr> <tr> <th>3</th> <td>10</td> <td>4</td> <td>15</td> <td>4</td> <td>19</td> <td>11</td> <td>5</td> <td>1</td> <td>0</td> <td>8</td> <td>...</td> <td>13</td> <td>5</td> <td>9</td> <td>4</td> <td>18</td> <td>6</td> <td>11</td> <td>4</td> <td>0</td> <td>19</td> </tr> <tr> <th>4</th> <td>11</td> <td>1</td> <td>4</td> <td>12</td> <td>16</td> <td>45</td> <td>66</td> <td>27</td> <td>1</td> <td>11</td> <td>...</td> <td>2</td> <td>15</td> <td>27</td> <td>2</td> <td>17</td> <td>10</td> <td>14</td> <td>27</td> <td>3</td> <td>6</td> </tr> <tr> <th>5</th> <td>21</td> <td>6</td> <td>14</td> <td>36</td> <td>6</td> <td>10</td> <td>21</td> <td>53</td> <td>18</td> <td>45</td> <td>...</td> <td>20</td> <td>3</td> <td>7</td> <td>8</td> <td>8</td> <td>17</td> <td>17</td> <td>8</td> <td>30</td> <td>29</td> </tr> <tr> <th>6</th> <td>9</td> <td>1</td> <td>6</td> <td>3</td> <td>27</td> <td>2</td> <td>7</td> <td>9</td> <td>81</td> <td>9</td> <td>...</td> <td>87</td> <td>14</td> <td>4</td> <td>0</td> <td>11</td> <td>22</td> <td>2</td> <td>17</td> <td>16</td> <td>2</td> </tr> <tr> <th>7</th> <td>1</td> <td>5</td> <td>0</td> <td>15</td> <td>18</td> <td>0</td> <td>22</td> <td>39</td> <td>25</td> <td>12</td> <td>...</td> <td>34</td> <td>2</td> <td>2</td> <td>1</td> <td>12</td> <td>1</td> <td>28</td> <td>6</td> <td>12</td> <td>17</td> </tr> <tr> <th>8</th> <td>4</td> <td>14</td> <td>0</td> <td>0</td> <td>0</td> <td>35</td> <td>7</td> <td>68</td> <td>7</td> <td>9</td> <td>...</td> <td>3</td> <td>3</td> <td>9</td> <td>6</td> <td>55</td> <td>57</td> <td>4</td> <td>4</td> <td>9</td> <td>3</td> </tr> <tr> <th>9</th> <td>7</td> <td>22</td> <td>10</td> <td>10</td> <td>11</td> <td>7</td> <td>10</td> <td>20</td> <td>34</td> <td>10</td> <td>...</td> <td>59</td> <td>12</td> <td>12</td> <td>46</td> <td>41</td> <td>18</td> <td>10</td> <td>6</td> <td>4</td> <td>4</td> </tr> <tr> <th>10</th> <td>6</td> <td>58</td> <td>5</td> <td>0</td> <td>19</td> <td>19</td> <td>9</td> <td>5</td> <td>37</td> <td>48</td> <td>...</td> <td>1</td> <td>6</td> <td>53</td> <td>26</td> <td>12</td> <td>20</td> <td>9</td> <td>0</td> <td>6</td> <td>2</td> </tr> <tr> <th>11</th> <td>7</td> <td>9</td> <td>11</td> <td>18</td> <td>0</td> <td>9</td> <td>6</td> <td>7</td> <td>11</td> <td>33</td> <td>...</td> <td>12</td> <td>0</td> <td>11</td> <td>0</td> <td>5</td> <td>16</td> <td>13</td> <td>6</td> <td>4</td> <td>6</td> </tr> <tr> <th>12</th> <td>22</td> <td>13</td> <td>36</td> <td>5</td> <td>9</td> <td>3</td> <td>7</td> <td>54</td> <td>9</td> <td>5</td> <td>...</td> <td>3</td> <td>6</td> <td>20</td> <td>1</td> <td>61</td> <td>18</td> <td>12</td> <td>2</td> <td>2</td> <td>9</td> </tr> <tr> <th>13</th> <td>19</td> <td>39</td> <td>10</td> <td>12</td> <td>13</td> <td>9</td> <td>19</td> <td>12</td> <td>6</td> <td>19</td> <td>...</td> <td>17</td> <td>17</td> <td>4</td> <td>9</td> <td>6</td> <td>9</td> <td>6</td> <td>18</td> <td>3</td> <td>11</td> </tr> <tr> <th>14</th> <td>4</td> <td>17</td> <td>1</td> <td>1</td> <td>16</td> <td>7</td> <td>7</td> <td>6</td> <td>11</td> <td>1</td> <td>...</td> <td>40</td> <td>8</td> <td>5</td> <td>9</td> <td>5</td> <td>17</td> <td>9</td> <td>8</td> <td>37</td> <td>7</td> </tr> <tr> <th>15</th> <td>2</td> <td>13</td> <td>16</td> <td>15</td> <td>16</td> <td>14</td> <td>4</td> <td>18</td> <td>14</td> <td>0</td> <td>...</td> <td>20</td> <td>6</td> <td>16</td> <td>2</td> <td>14</td> <td>18</td> <td>0</td> <td>0</td> <td>6</td> <td>1</td> </tr> <tr> <th>16</th> <td>19</td> <td>10</td> <td>3</td> <td>2</td> <td>29</td> <td>19</td> <td>3</td> <td>1</td> <td>16</td> <td>0</td> <td>...</td> <td>14</td> <td>0</td> <td>0</td> <td>30</td> <td>58</td> <td>32</td> <td>0</td> <td>12</td> <td>27</td> <td>2</td> </tr> <tr> <th>17</th> <td>4</td> <td>30</td> <td>19</td> <td>11</td> <td>24</td> <td>17</td> <td>10</td> <td>4</td> <td>4</td> <td>8</td> <td>...</td> <td>44</td> <td>3</td> <td>10</td> <td>3</td> <td>6</td> <td>16</td> <td>3</td> <td>25</td> <td>39</td> <td>9</td> </tr> <tr> <th>18</th> <td>25</td> <td>14</td> <td>5</td> <td>1</td> <td>28</td> <td>11</td> <td>40</td> <td>19</td> <td>4</td> <td>7</td> <td>...</td> <td>42</td> <td>9</td> <td>13</td> <td>4</td> <td>14</td> <td>23</td> <td>7</td> <td>10</td> <td>7</td> <td>2</td> </tr> <tr> <th>19</th> <td>1</td> <td>29</td> <td>14</td> <td>0</td> <td>0</td> <td>14</td> <td>35</td> <td>2</td> <td>3</td> <td>1</td> <td>...</td> <td>4</td> <td>29</td> <td>0</td> <td>2</td> <td>9</td> <td>20</td> <td>10</td> <td>15</td> <td>1</td> <td>8</td> </tr> <tr> <th>20</th> <td>15</td> <td>10</td> <td>12</td> <td>14</td> <td>1</td> <td>24</td> <td>37</td> <td>6</td> <td>22</td> <td>5</td> <td>...</td> <td>31</td> <td>11</td> <td>1</td> <td>1</td> <td>2</td> <td>15</td> <td>3</td> <td>22</td> <td>25</td> <td>6</td> </tr> <tr> <th>21</th> <td>58</td> <td>10</td> <td>8</td> <td>2</td> <td>13</td> <td>13</td> <td>13</td> <td>1</td> <td>25</td> <td>15</td> <td>...</td> <td>3</td> <td>13</td> <td>1</td> <td>29</td> <td>18</td> <td>9</td> <td>10</td> <td>53</td> <td>18</td> <td>0</td> </tr> <tr> <th>22</th> <td>2</td> <td>9</td> <td>3</td> <td>3</td> <td>6</td> <td>3</td> <td>2</td> <td>1</td> <td>2</td> <td>7</td> <td>...</td> <td>29</td> <td>21</td> <td>19</td> <td>2</td> <td>9</td> <td>15</td> <td>8</td> <td>19</td> <td>1</td> <td>3</td> </tr> <tr> <th>23</th> <td>0</td> <td>4</td> <td>2</td> <td>3</td> <td>5</td> <td>16</td> <td>12</td> <td>6</td> <td>5</td> <td>1</td> <td>...</td> <td>9</td> <td>2</td> <td>4</td> <td>2</td> <td>19</td> <td>20</td> <td>3</td> <td>22</td> <td>0</td> <td>9</td> </tr> </tbody> </table> <p>24 rows × 1413 columns</p> </div> Now we're applying the same operations to the queries, stored in the query folder. ```python open_file = open("query_list.pkl", "rb") query_list = pickle.load(open_file) open_file.close() ``` do not run again below this line ```python # generate and store query matrix query_matrix = functions.zeros_ones_matrix(m, 'query', query_list) ``` 0%| | 0/10 [00:00<?, ?it/s] do not run again below this line ```python # generate and store signature query signature_query = functions.generate_signature(query_list, query_matrix, "query", nh, c_0, c_1, p, n) ``` 0%| | 0/10 [00:00<?, ?it/s] ```python open_file = open("query_matrix.pkl", "rb") query_matrix = pickle.load(open_file) open_file.close() query_matrix ``` array([[0, 0, 0, ..., 0, 0, 0], [0, 0, 0, ..., 0, 0, 0], [0, 0, 0, ..., 0, 0, 0], ..., [0, 0, 1, ..., 0, 0, 0], [0, 0, 0, ..., 0, 0, 0], [0, 0, 0, ..., 1, 0, 0]], dtype=int8) ```python open_file = open("signature_matrix_query.pkl", "rb") signature_query = pickle.load(open_file) open_file.close() signature_query ``` array([[ 7, 11, 61, 13, 27, 33, 16, 3, 41, 20], [ 7, 8, 1, 3, 28, 1, 1, 7, 10, 30], [ 8, 26, 29, 18, 3, 2, 3, 0, 6, 2], [ 15, 0, 5, 4, 0, 13, 25, 1, 14, 47], [ 4, 3, 2, 26, 42, 0, 0, 2, 33, 0], [ 14, 10, 47, 7, 26, 4, 8, 13, 51, 0], [ 6, 14, 7, 1, 9, 12, 9, 1, 6, 12], [ 0, 6, 11, 13, 6, 0, 14, 11, 1, 3], [ 0, 6, 9, 0, 26, 15, 3, 17, 9, 4], [ 10, 4, 101, 1, 19, 1, 56, 9, 21, 6], [ 5, 8, 20, 6, 2, 0, 16, 33, 43, 10], [ 11, 11, 54, 9, 6, 7, 30, 9, -99, 27], [ 36, 5, 13, 2, 1, 31, 3, 1, -71, 1], [ 10, 6, 32, 3, 31, 3, 3, 33, 10, 2], [ 1, 9, 82, 5, 6, 22, 6, 11, 16, 17], [ 16, 0, 1, 2, 33, 6, 6, 0, 28, 29], [ 3, 5, 85, 5, 18, 8, 4, 35, 39, 0], [ 19, 10, 1, 18, 10, 3, 3, 6, 8, 34], [ 5, 15, 84, 2, 16, 9, 65, 11, 37, 6], [ 14, 1, 9, 23, 0, 1, 3, 5, 79, 22], [ 12, 10, 26, 8, 2, 0, 36, 6, 37, 18], [ 8, 10, 3, 11, 0, 1, 33, 5, 73, 29], [ 3, 3, 3, 7, 8, 29, 6, 0, 2, 1], [ 2, 1, 0, 12, 22, 3, 1, 27, 9, 0]], dtype=int8) ### 1 LSH matching We look for possible matches with queries by performing Locality Sensitive Hashing. Steps we made: - split the signature matrix and the query matrix into equidimensional bands; - generate hash function of random coefficients for each band; - hash each split-signature belonging to a specific band to a bucket; - a dictionary for each band maps bucket to track index; - a dictionary (print of the following functions) maps query to a list of sets (one for each band) of candidates, track indexes that share the bucket with the query for that band; - final candidates are those that share at least one bucket with the query; - evaluate Jaccard similarity. ```python bands = [4, 6, 8] ``` ```python # generate directories for i in bands: path = f'{i}_bands' os.makedirs(path) ``` #### bands = 4 ```python candidates_4 = functions.lsh(bands[0], signature_query, signature_matrix) ``` defaultdict(None, {0: [{2}, {2, 770}, {1210, 2, 394}, {2, 42}], 1: [{976}, {976}, {976}, {976, 310}], 2: [{1367}, {1056, 779, 332, 822, 1367}, {1367}, {1367}], 3: [{125}, {125, 1151}, {125, 510, 79}, {125, 1351}], 4: [{624, 1024, 1362, 1318}, {1024, 629, 543}, {1024}, {1024}], 5: [{837, 669, 1109}, {1332, 669, 287}, {914, 669}, {752, 650, 669}], 6: [{456}, {456, 1295}, {456, 1072}, {456, 1043}], 7: [{561, 1409}, {561}, {561, 572, 61, 390}, {561}], 8: [{396, 533}, {488, 396}, {396}, {793, 396}], 9: [{1166}, {1166}, {1166, 382, 895}, {1313, 1166}]}) ```python candidates_4 ``` [[2, 770, 42, 1210, 394], [976, 310], [1056, 822, 1367, 779, 332], [79, 1351, 125, 510, 1151], [624, 1024, 1362, 629, 1318, 543], [837, 650, 752, 914, 1332, 1109, 669, 287], [1072, 1043, 456, 1295], [561, 1409, 390, 572, 61], [533, 488, 793, 396], [1313, 1166, 382, 895]] ```python # threshold = 0.2 functions.find_matches(signature_matrix, signature_query, cand, tracks_titles, 0.2) ``` The 1st track you are looking for could be Dream On, sung by Aerosmith. Jaccard similarity is equal to 1.0. The 2nd track you are looking for could be Penny Lane, sung by Beatles. Jaccard similarity is equal to 0.2. The 2nd track you are looking for could be I Want To Break Free, sung by Queen. Jaccard similarity is equal to 1.0. The 2nd track you are looking for could be Shout, sung by Depeche Mode. Jaccard similarity is equal to 0.3. The 3th track you are looking for could be Everybody s Trying To Be My Baby, sung by Beatles. Jaccard similarity is equal to 0.2. The 3th track you are looking for could be October, sung by U2. Jaccard similarity is equal to 1.0. The 4th track you are looking for could be Ob-La-Di Ob-La-Da, sung by Beatles. Jaccard similarity is equal to 1.0. The 5th track you are looking for could be Karma Police, sung by Radiohead. Jaccard similarity is equal to 1.0. The 6th track you are looking for could be Heartbreaker, sung by Led Zeppelin. Jaccard similarity is equal to 1.0. The 6th track you are looking for could be Slither, sung by Metallica. Jaccard similarity is equal to 0.2. The 7th track you are looking for could be Go Your Own Way, sung by Fleetwood Mac. Jaccard similarity is equal to 1.0. The 7th track you are looking for could be Save Me, sung by Queen. Jaccard similarity is equal to 0.2. The 8th track you are looking for could be American Idiot, sung by Green Day. Jaccard similarity is equal to 1.0. The 9th track you are looking for could be Somebody, sung by Depeche Mode. Jaccard similarity is equal to 1.0. The 10th track you are looking for could be Black Friday, sung by Steely Dan. Jaccard similarity is equal to 1.0. [[[2, 1.0]], [[105, 0.2], [976, 1.0], [413, 0.3]], [[96, 0.2], [1367, 1.0]], [[125, 1.0]], [[1024, 1.0]], [[669, 1.0], [821, 0.2]], [[456, 1.0], [969, 0.2]], [[561, 1.0]], [[396, 1.0]], [[1166, 1.0]]] ```python # threshold = 0.3 functions.find_matches(signature_matrix, signature_query, cand, tracks_titles, 0.3) ``` The 1st track you are looking for could be Dream On, sung by Aerosmith. Jaccard similarity is equal to 1.0. The 2nd track you are looking for could be I Want To Break Free, sung by Queen. Jaccard similarity is equal to 1.0. The 3th track you are looking for could be October, sung by U2. Jaccard similarity is equal to 1.0. The 4th track you are looking for could be Ob-La-Di Ob-La-Da, sung by Beatles. Jaccard similarity is equal to 1.0. The 5th track you are looking for could be Karma Police, sung by Radiohead. Jaccard similarity is equal to 1.0. The 6th track you are looking for could be Heartbreaker, sung by Led Zeppelin. Jaccard similarity is equal to 1.0. The 7th track you are looking for could be Go Your Own Way, sung by Fleetwood Mac. Jaccard similarity is equal to 1.0. The 8th track you are looking for could be American Idiot, sung by Green Day. Jaccard similarity is equal to 1.0. The 9th track you are looking for could be Somebody, sung by Depeche Mode. Jaccard similarity is equal to 1.0. The 10th track you are looking for could be Black Friday, sung by Steely Dan. Jaccard similarity is equal to 1.0. [[[2, 1.0]], [[976, 1.0]], [[1367, 1.0]], [[125, 1.0]], [[1024, 1.0]], [[669, 1.0]], [[456, 1.0]], [[561, 1.0]], [[396, 1.0]], [[1166, 1.0]]] #### bands = 6 ```python candidates_6 = functions.lsh(bands[1], signature_query, signature_matrix) ``` defaultdict(None, {0: [{2}, {2, 659}, {1088, 2}, {2}, {2, 282, 1340}, {2}], 1: [{72, 771, 976}, {976}, {976, 1257, 527}, {664, 556, 976}, {976, 212}, {976, 1088, 182}], 2: [{1367}, {1367}, {203, 1367}, {112, 1367}, {726, 1367}, {1367}], 3: [{9, 125}, {125}, {125, 661}, {125}, {762, 125}, {125}], 4: [{1024, 137, 425}, {16, 1024}, {1024, 430, 1240}, {224, 33, 1024, 790, 1183}, {1024, 146}, {1024, 1359}], 5: [{669, 1118}, {669}, {1083, 669}, {841, 236, 669}, {669, 182, 375}, {669}], 6: [{456, 1248}, {456}, {456}, {456, 305}, {456}, {456, 641}], 7: [{561, 170}, {561, 691}, {561}, {561}, {561}, {561}], 8: [{396, 276}, {666, 523, 396, 45}, {396}, {396}, {416, 932, 396}, {396}], 9: [{1166}, {221, 1166, 847}, {429, 1166}, {1166}, {1085, 725, 1166}, {763, 1166}]}) ```python candidates_6 ``` [[1088, 2, 659, 282, 1340], [1088, 771, 72, 1257, 556, 527, 976, 212, 182, 664], [112, 726, 1367, 203], [661, 9, 762, 125], [1024, 224, 33, 137, 425, 430, 1359, 16, 146, 790, 1240, 1183], [182, 375, 841, 1083, 236, 669, 1118], [1248, 305, 641, 456], [561, 170, 691], [416, 276, 932, 666, 523, 396, 45], [1085, 725, 763, 429, 221, 1166, 847]] #### bands = 8 ```python candidates_8 = functions.lsh(bands[2], signature_query, signature_matrix) ``` defaultdict(None, {0: [{2}, {2}, {2, 1391, 853, 410}, {2, 199}, {2}, {2, 118}, {2}, {2}], 1: [{976, 1153}, {976}, {976, 105, 413}, {976, 357, 975}, {976, 482}, {976}, {976}, {976}], 2: [{674, 1367}, {547, 1367}, {640, 109, 1367}, {1367}, {541, 1367, 671}, {1367}, {1367}, {96, 751, 1271, 253, 1367}], 3: [{125}, {125}, {508, 125, 1078}, {41, 125}, {125}, {125}, {955, 988, 125}, {125}], 4: [{1024, 1001}, {1024}, {1024, 1256, 427, 1005, 1328, 786, 764}, {1024, 1208}, {1024}, {1024, 1073}, {1024}, {1024}], 5: [{669}, {572, 669, 534}, {669}, {669}, {724, 669}, {821, 669, 926}, {628, 669}, {669}], 6: [{456, 914}, {456, 140, 492, 1261, 633, 470, 409, 1083}, {456, 969}, {456}, {456, 292}, {456, 457}, {456}, {456}], 7: [{561}, {472, 561}, {561}, {561}, {385, 666, 561}, {561, 477}, {561}, {561, 811, 1053}], 8: [{396}, {396}, {396, 492, 422}, {396}, {33, 396}, {396}, {396}, {396}], 9: [{1166}, {1166}, {149, 1166}, {435, 1166, 1019}, {209, 1166}, {1166}, {1166}, {1166, 685, 1158}]}) ```python candidates_8 ``` [[2, 853, 118, 199, 410, 1391], [976, 1153, 482, 357, 105, 413, 975], [640, 96, 674, 547, 109, 751, 1367, 253, 1271, 541, 671], [1078, 988, 41, 955, 508, 125], [1024, 1256, 1001, 427, 1005, 1328, 1073, 786, 1208, 764], [724, 821, 534, 628, 572, 669, 926], [292, 456, 969, 409, 457, 140, 492, 1261, 914, 470, 633, 1083], [561, 385, 1053, 472, 666, 811, 477], [33, 422, 396, 492], [209, 435, 149, 1158, 1019, 685, 1166]] #### Masking matching We check the results by performing for each signature query a boolean comparison with all the signatures (not only with the candidates). ```python threshold_0 = 0.5 matches_0 = functions.find_similarities(signature_matrix, signature_query, tracks_titles, threshold_0) ``` The 1st track you are looking for could be Dream On, sung by Aerosmith. Jaccard similarity is equal to 1.0. The 2nd track you are looking for could be I Want To Break Free, sung by Queen. Jaccard similarity is equal to 1.0. The 3th track you are looking for could be October, sung by U2. Jaccard similarity is equal to 1.0. The 4th track you are looking for could be Ob-La-Di Ob-La-Da, sung by Beatles. Jaccard similarity is equal to 1.0. The 5th track you are looking for could be Karma Police, sung by Radiohead. Jaccard similarity is equal to 1.0. The 6th track you are looking for could be Heartbreaker, sung by Led Zeppelin. Jaccard similarity is equal to 1.0. The 7th track you are looking for could be Go Your Own Way, sung by Fleetwood Mac. Jaccard similarity is equal to 1.0. The 8th track you are looking for could be American Idiot, sung by Green Day. Jaccard similarity is equal to 1.0. The 9th track you are looking for could be Somebody, sung by Depeche Mode. Jaccard similarity is equal to 1.0. The 10th track you are looking for could be Black Friday, sung by Steely Dan. Jaccard similarity is equal to 1.0. ```python threshold_1 = 0.25 matches_1 = functions.find_similarities(signature_matrix, signature_query, tracks_titles, threshold_1) ``` The 1st track you are looking for could be Dream On, sung by Aerosmith. Jaccard similarity is equal to 1.0. The 1st track you are looking for could be Kyoto Song, sung by Cure. Jaccard similarity is equal to 0.4. The 1st track you are looking for could be Cry Freedom, sung by Dave Matthews Band. Jaccard similarity is equal to 0.3. The 2nd track you are looking for could be Shout, sung by Depeche Mode. Jaccard similarity is equal to 0.3. The 2nd track you are looking for could be I Want To Break Free, sung by Queen. Jaccard similarity is equal to 1.0. The 3th track you are looking for could be October, sung by U2. Jaccard similarity is equal to 1.0. The 4th track you are looking for could be Ob-La-Di Ob-La-Da, sung by Beatles. Jaccard similarity is equal to 1.0. The 4th track you are looking for could be Sail Away Sweet Sister, sung by Queen. Jaccard similarity is equal to 0.3. The 5th track you are looking for could be Karma Police, sung by Radiohead. Jaccard similarity is equal to 1.0. The 6th track you are looking for could be Cross-Tie Walker, sung by Creedence Clearwater Revival. Jaccard similarity is equal to 0.3. The 6th track you are looking for could be Heartbreaker, sung by Led Zeppelin. Jaccard similarity is equal to 1.0. The 7th track you are looking for could be Go Your Own Way, sung by Fleetwood Mac. Jaccard similarity is equal to 1.0. The 7th track you are looking for could be Fun It, sung by Queen. Jaccard similarity is equal to 0.3. The 8th track you are looking for could be American Idiot, sung by Green Day. Jaccard similarity is equal to 1.0. The 9th track you are looking for could be Somebody, sung by Depeche Mode. Jaccard similarity is equal to 1.0. The 10th track you are looking for could be Hero Of The Day, sung by Metallica. Jaccard similarity is equal to 0.3. The 10th track you are looking for could be Black Friday, sung by Steely Dan. Jaccard similarity is equal to 1.0. ```python matches_1 ``` [[[2, 1.0], [224, 0.4], [302, 0.3]], [[413, 0.3], [976, 1.0]], [[1367, 1.0]], [[125, 1.0], [967, 0.3]], [[1024, 1.0]], [[171, 0.3], [669, 1.0]], [[456, 1.0], [928, 0.3]], [[561, 1.0]], [[396, 1.0]], [[787, 0.3], [1166, 1.0]]] ## Q2.1 On this first part we are collecting the data and merge them in a single pandas file. The merge is process on the track_id ```python import os import fun import pandas as pd import warnings import numpy as np from ex2function import kmean from sklearn import preprocessing from sklearn.decomposition import PCA from sklearn.preprocessing import StandardScaler from yellowbrick.cluster import KElbowVisualizer from sklearn.cluster import KMeans from sklearn.metrics import silhouette_score import matplotlib.pyplot as plt from sklearn.metrics import confusion_matrix, plot_confusion_matrix from sklearn.preprocessing import OneHotEncoder from sklearn.metrics import accuracy_score ``` ```python # it check if the data are download if not it download it dir = 'data/csv/' files = os.listdir(dir) if (len(files) < 3) : #download the data if there is not the csv fun.downloadcsv() files.remove("tr.txt") #load the differente csv file into pd df1 = pd.read_csv(dir+files[0]) df2 = pd.read_csv(dir+files[1]) df3 = pd.read_csv(dir+files[2]) ``` ```python #merge the data dataset = pd.merge(df1, df2, on='track_id', how='inner') dataset = pd.merge(dataset, df3, on='track_id', how='inner') print(dataset.shape, df1.shape, df2.shape, df3.shape) ``` (13129, 820) (13129, 250) (106574, 519) (106574, 53) ## Q2.2 On this part we are will aplly a dimential reduction on the continuous variable we will use Principal Component Analysis. However in a first time we will transform the non numerical variaibles into discret numerical varaible Note that we won't apply the dimential reduction to this row ```python # transform non numerical variaibles le = preprocessing.LabelEncoder() dataset_all = dataset.copy() for n in dataset_all.columns.values: #columns with non-numeric values if dataset_all[n].dtype == object : #replace missing values by 'None' dataset_all[n].fillna("None", inplace = True) le = preprocessing.LabelEncoder() dataset_all[n]= le.fit_transform(dataset_all[n]) elif dataset_all[n].dtype == float : #replace missing values by 0. dataset_all[n].fillna(0., inplace = True) elif dataset_all[n].dtype == int: #replace missing values by 0 dataset_all[n].fillna(0, inplace = True) #take the row that are only numérical dataset_Num = dataset[dataset.T[dataset.dtypes!=np.object].index] ``` On the following method we decide how many compenent are been keep in orther to keep > 70% of the total variance. this is done via a brute force algorithm ```python def reduc07(dataset): for n in range(len(dataset)): pca = PCA(n_components=n) x = StandardScaler().fit_transform(dataset[dataset.columns.values]) principalComponents = pca.fit_transform(x) principalDf = pd.DataFrame(data = principalComponents) if sum(pca.explained_variance_ratio_) < .7: continue return principalDf ``` ```python # find .7 without the discret value principalDf = reduc07(dataset_all[dataset_Num.columns.values[1:]]) track_id = dataset_all["track_id"] print(len(principalDf)) ``` 13129 ```python #merge the discret value with the coninuous value dataset_all.drop(dataset_Num.columns.values, axis = 1, inplace = True) x = StandardScaler().fit_transform(dataset_all[dataset_all.columns.values]) principalDf = pd.DataFrame(data = x) dataset_all = pd.merge(dataset_all, principalDf, left_index=True, right_index=True) dataset_all["track_id"] = track_id # Note that every time that we will use k mean we will remove the track_id ``` ## Q2.3 On this task we were ask to implement our K-means this as been done into the class kmean who is in the file function.py Following this transformation of the data we are trying to find the optimal number of cluster On this purpose we will use two different method in the first place we will use the Elbow Method. In a segond time we wil use the Silhouette analysis. ```python # find the number of cluster with Elbow Method model = KMeans() visualizer = KElbowVisualizer(model, k=(2,30), metric='distortion', timings=False) visualizer.fit(dataset_all[dataset_all.columns.values[:-1]]) visualizer.show() print("according to the Elbow Method the otimal number of k is",visualizer.elbow_value_) ``` ```python range_n_clusters = [i for i in range(2,30)] silhouette_avg = [] for num_clusters in range_n_clusters: # initialise kmeans kmeans = KMeans(n_clusters=3) kmeans.fit(dataset_all[dataset_all.columns.values[:-1]]) cluster_labels = kmeans.labels_ # silhouette score silhouette_avg.append(silhouette_score(dataset_all[dataset_all.columns.values[:-1]], cluster_labels)) plt.plot(range_n_clusters,silhouette_avg,'bx-') plt.show() ``` The conclution of this two different analysis is difficult to do the Elbow Method seems two indicated a k at 7. However, the silhouette analysis indicate that the number of cluster does not have an important impact on the result. This would mean that depending on our purpose we could select the number of cluster. However, it could also mean that the k-mean aproach does not suits this dataset <br /> <br /> On the next point we will perform the k-means the we implement ad compare it to the Kmeans++ of sklearn we will take K as 7 ```python k = 7 # our method km = kmean(dataset_all[dataset_all.columns.values[:-1]]) cluster1 = km.fit(k) # kmean ++ ourmodel = KMeans(n_clusters=k) ourmodel.fit(dataset_all[dataset_all.columns.values[:-1]]) cluster2 = ourmodel.predict(dataset_all[dataset_all.columns.values[:-1]]) ``` Now that we have our cluster find by two different method we will try to see if they are similar the following code will take each cluster of our kmeans and see with which cluster of kmeans++ is the most similar ```python onehot_encoder = OneHotEncoder(sparse=False) c1 = onehot_encoder.fit_transform(cluster1.reshape(-1,1)) c2 = onehot_encoder.fit_transform(cluster2.reshape(-1,1)) for i in range(k): y_one = c1[:,i] max = -1 m = [0, 0] for y in range(k): y_two = c2[:,y] ac = np.round(accuracy_score(y_one, y_two),3) if ac > max: max = ac m = [i, y] print('cluster',m[0],'map to cluster',m[1],'with an accuracy of',max) ``` cluster 0 map to cluster 6 with an accuracy of 0.997 cluster 1 map to cluster 3 with an accuracy of 0.996 cluster 2 map to cluster 1 with an accuracy of 0.999 cluster 3 map to cluster 2 with an accuracy of 0.999 cluster 4 map to cluster 5 with an accuracy of 0.999 cluster 5 map to cluster 4 with an accuracy of 0.998 cluster 6 map to cluster 0 with an accuracy of 0.994 As we could observe all the cluster have find an equivalent cluster in the other k-mean even if they are never exactly the same. It should be expected as we work with a large number of k ## Q2.4 During this last part we will apply the k-mean on the dataset and put the result in corelation with some variable.<br /> On a first time we will create tables were the different cluster are visible with the variaibles <br /> It is important to know that we take the same amount of point for all the data this as the purpose to make the data clear. Furthermore, we select only 7 feature (the same amount as k) for each variaibles ```python #The 5 varaible v1 = "artist_location" v2 = "track_genre_top" v3 = "track_language_code" v4 = "album_type" v5 = "track_publisher" variaibles = [v1, v2, v3, v4, v5] ``` ```python # creation of the pivot table + Calculation of the percentage pivot = list() for v in variaibles: value = dataset[v].value_counts()[:k].index.values df = pd.DataFrame() value = np.append(value, 'total') df[v] = value df.set_index(v, inplace= True) ba = min(dataset[v].value_counts()[:k][-1],100) for i in range(k): df[i] = 0 for v1 in value: ids = dataset[dataset[v] == v1]['track_id'].values va = list() bal = 0 for id in ids: cu = km.predic(dataset_all[dataset_all['track_id'] == id][dataset_all.columns.values[:-1]]) df.loc[v1,cu[0]] += 1 if bal > ba: break bal += 1 for i in range(k): df[i] = round((df[i]/df[i].sum())*100, 3) df.loc['total',i] += df[i].sum() pivot.append(df) ``` ## Analysis Important some data on the following chart as mark as NaN this mean that no value have been assigne for this cluster ```python pivot[0] ``` <div> <style scoped> .dataframe tbody tr th:only-of-type { vertical-align: middle; } .dataframe tbody tr th { vertical-align: top; } .dataframe thead th { text-align: right; } </style> <table border="1" class="dataframe"> <thead> <tr style="text-align: right;"> <th></th> <th>0</th> <th>1</th> <th>2</th> <th>3</th> <th>4</th> <th>5</th> <th>6</th> </tr> <tr> <th>artist_location</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> </tr> </thead> <tbody> <tr> <th>Brooklyn, NY</th> <td>0.0</td> <td>15.566</td> <td>0.0</td> <td>0.0</td> <td>NaN</td> <td>16.972</td> <td>13.502</td> </tr> <tr> <th>New York, NY</th> <td>0.0</td> <td>14.151</td> <td>0.0</td> <td>0.0</td> <td>NaN</td> <td>15.596</td> <td>16.034</td> </tr> <tr> <th>San Francisco, CA</th> <td>0.0</td> <td>15.566</td> <td>0.0</td> <td>0.0</td> <td>NaN</td> <td>11.009</td> <td>18.987</td> </tr> <tr> <th>Chicago, IL</th> <td>0.0</td> <td>12.736</td> <td>0.0</td> <td>0.0</td> <td>NaN</td> <td>12.385</td> <td>20.253</td> </tr> <tr> <th>Italy</th> <td>100.0</td> <td>11.321</td> <td>100.0</td> <td>100.0</td> <td>NaN</td> <td>12.385</td> <td>1.688</td> </tr> <tr> <th>Baltimore, MD</th> <td>0.0</td> <td>16.509</td> <td>0.0</td> <td>0.0</td> <td>NaN</td> <td>18.349</td> <td>11.392</td> </tr> <tr> <th>Providence, RI</th> <td>0.0</td> <td>14.151</td> <td>0.0</td> <td>0.0</td> <td>NaN</td> <td>13.303</td> <td>18.143</td> </tr> <tr> <th>total</th> <td>100.0</td> <td>100.000</td> <td>100.0</td> <td>100.0</td> <td>NaN</td> <td>99.999</td> <td>99.999</td> </tr> </tbody> </table> </div> As we could see on this table the K-means as perfectly identify the cluster (0, 2, 3) as part of Italy for the rest of the data there is no outstanding identification ```python pivot[1] ``` <div> <style scoped> .dataframe tbody tr th:only-of-type { vertical-align: middle; } .dataframe tbody tr th { vertical-align: top; } .dataframe thead th { text-align: right; } </style> <table border="1" class="dataframe"> <thead> <tr style="text-align: right;"> <th></th> <th>0</th> <th>1</th> <th>2</th> <th>3</th> <th>4</th> <th>5</th> <th>6</th> </tr> <tr> <th>track_genre_top</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> </tr> </thead> <tbody> <tr> <th>Rock</th> <td>0.000</td> <td>11.923</td> <td>NaN</td> <td>NaN</td> <td>NaN</td> <td>17.062</td> <td>15.556</td> </tr> <tr> <th>Electronic</th> <td>0.000</td> <td>14.231</td> <td>NaN</td> <td>NaN</td> <td>NaN</td> <td>14.692</td> <td>15.111</td> </tr> <tr> <th>Hip-Hop</th> <td>0.000</td> <td>13.077</td> <td>NaN</td> <td>NaN</td> <td>NaN</td> <td>17.062</td> <td>14.222</td> </tr> <tr> <th>Folk</th> <td>0.000</td> <td>12.692</td> <td>NaN</td> <td>NaN</td> <td>NaN</td> <td>13.270</td> <td>18.222</td> </tr> <tr> <th>Old-Time / Historic</th> <td>83.333</td> <td>13.462</td> <td>NaN</td> <td>NaN</td> <td>NaN</td> <td>10.900</td> <td>12.889</td> </tr> <tr> <th>Pop</th> <td>0.000</td> <td>14.615</td> <td>NaN</td> <td>NaN</td> <td>NaN</td> <td>13.744</td> <td>15.556</td> </tr> <tr> <th>Classical</th> <td>16.667</td> <td>20.000</td> <td>NaN</td> <td>NaN</td> <td>NaN</td> <td>13.270</td> <td>8.444</td> </tr> <tr> <th>total</th> <td>100.000</td> <td>100.000</td> <td>NaN</td> <td>NaN</td> <td>NaN</td> <td>100.000</td> <td>100.000</td> </tr> </tbody> </table> </div> As we see on this data Old-Time/Historic track genre as been identify and assign to the cluster 0. An important aspect to consider is that none of the genre as been put in the cluster 2, 3, 4. this could indicated that the k 2, 3 and 4 are farways from the parameters who as an impact on the genre it could be interesting to do further investigation to determine which parameters have an significant impact on the genre. (Question 2.4.6) ```python pivot[2] ``` <div> <style scoped> .dataframe tbody tr th:only-of-type { vertical-align: middle; } .dataframe tbody tr th { vertical-align: top; } .dataframe thead th { text-align: right; } </style> <table border="1" class="dataframe"> <thead> <tr style="text-align: right;"> <th></th> <th>0</th> <th>1</th> <th>2</th> <th>3</th> <th>4</th> <th>5</th> <th>6</th> </tr> <tr> <th>track_language_code</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> </tr> </thead> <tbody> <tr> <th>en</th> <td>0.000</td> <td>15.0</td> <td>0.0</td> <td>0.0</td> <td>0.0</td> <td>11.111</td> <td>31.818</td> </tr> <tr> <th>es</th> <td>0.000</td> <td>15.0</td> <td>0.0</td> <td>0.0</td> <td>0.0</td> <td>14.815</td> <td>27.273</td> </tr> <tr> <th>pt</th> <td>44.444</td> <td>0.0</td> <td>75.0</td> <td>0.0</td> <td>0.0</td> <td>14.815</td> <td>9.091</td> </tr> <tr> <th>tr</th> <td>0.000</td> <td>20.0</td> <td>0.0</td> <td>0.0</td> <td>0.0</td> <td>18.519</td> <td>18.182</td> </tr> <tr> <th>fr</th> <td>22.222</td> <td>35.0</td> <td>25.0</td> <td>0.0</td> <td>20.0</td> <td>3.704</td> <td>4.545</td> </tr> <tr> <th>it</th> <td>33.333</td> <td>15.0</td> <td>0.0</td> <td>0.0</td> <td>0.0</td> <td>18.519</td> <td>9.091</td> </tr> <tr> <th>ru</th> <td>0.000</td> <td>0.0</td> <td>0.0</td> <td>100.0</td> <td>80.0</td> <td>18.519</td> <td>0.000</td> </tr> <tr> <th>total</th> <td>99.999</td> <td>100.0</td> <td>100.0</td> <td>100.0</td> <td>100.0</td> <td>100.002</td> <td>100.000</td> </tr> </tbody> </table> </div> This result are more interessting as more cluster have been identify we cloud first say that the pt language as most likely been identify in the cluster 2 (Note that the cluster 0 cloud also been an option) but the most standing result come from the ru who as been identify in the cluster 3 and mostlikely in cluster 4 ```python pivot[3] ``` <div> <style scoped> .dataframe tbody tr th:only-of-type { vertical-align: middle; } .dataframe tbody tr th { vertical-align: top; } .dataframe thead th { text-align: right; } </style> <table border="1" class="dataframe"> <thead> <tr style="text-align: right;"> <th></th> <th>0</th> <th>1</th> <th>2</th> <th>3</th> <th>4</th> <th>5</th> <th>6</th> </tr> <tr> <th>album_type</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> </tr> </thead> <tbody> <tr> <th>Album</th> <td>0.0</td> <td>35.714</td> <td>0.0</td> <td>0.0</td> <td>0.0</td> <td>17.647</td> <td>24.242</td> </tr> <tr> <th>Radio Program</th> <td>0.0</td> <td>21.429</td> <td>0.0</td> <td>0.0</td> <td>0.0</td> <td>29.412</td> <td>24.242</td> </tr> <tr> <th>Live Performance</th> <td>0.0</td> <td>21.429</td> <td>0.0</td> <td>0.0</td> <td>0.0</td> <td>41.176</td> <td>18.182</td> </tr> <tr> <th>Single Tracks</th> <td>0.0</td> <td>21.429</td> <td>0.0</td> <td>0.0</td> <td>0.0</td> <td>11.765</td> <td>33.333</td> </tr> <tr> <th>Contest</th> <td>100.0</td> <td>0.000</td> <td>100.0</td> <td>100.0</td> <td>100.0</td> <td>0.000</td> <td>0.000</td> </tr> <tr> <th>total</th> <td>100.0</td> <td>100.001</td> <td>100.0</td> <td>100.0</td> <td>100.0</td> <td>100.000</td> <td>99.999</td> </tr> </tbody> </table> </div> As we cloud see the contest seems to belong to the cluster 0, 2, 3 and 4. On of that top we cloud see that the live Performance seems to be identify in cluster 5. ```python pivot[4] ``` <div> <style scoped> .dataframe tbody tr th:only-of-type { vertical-align: middle; } .dataframe tbody tr th { vertical-align: top; } .dataframe thead th { text-align: right; } </style> <table border="1" class="dataframe"> <thead> <tr style="text-align: right;"> <th></th> <th>0</th> <th>1</th> <th>2</th> <th>3</th> <th>4</th> <th>5</th> <th>6</th> </tr> <tr> <th>track_publisher</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> </tr> </thead> <tbody> <tr> <th>Victrola Dog (ASCAP)</th> <td>0.0</td> <td>0.0</td> <td>100.0</td> <td>25.0</td> <td>57.143</td> <td>0.000</td> <td>0.000</td> </tr> <tr> <th>Cherry Red Music (UK)</th> <td>0.0</td> <td>0.0</td> <td>0.0</td> <td>0.0</td> <td>0.000</td> <td>54.545</td> <td>0.000</td> </tr> <tr> <th>Edison</th> <td>50.0</td> <td>40.0</td> <td>0.0</td> <td>0.0</td> <td>0.000</td> <td>9.091</td> <td>0.000</td> </tr> <tr> <th>WFMU</th> <td>0.0</td> <td>20.0</td> <td>0.0</td> <td>0.0</td> <td>0.000</td> <td>0.000</td> <td>83.333</td> </tr> <tr> <th>Allister Thompson</th> <td>0.0</td> <td>0.0</td> <td>0.0</td> <td>75.0</td> <td>42.857</td> <td>0.000</td> <td>0.000</td> </tr> <tr> <th>Maximum R&amp;amp;D (ASCAP)</th> <td>50.0</td> <td>20.0</td> <td>0.0</td> <td>0.0</td> <td>0.000</td> <td>18.182</td> <td>0.000</td> </tr> <tr> <th>Zen Schlubbo Music, BMI</th> <td>0.0</td> <td>20.0</td> <td>0.0</td> <td>0.0</td> <td>0.000</td> <td>18.182</td> <td>16.667</td> </tr> <tr> <th>total</th> <td>100.0</td> <td>100.0</td> <td>100.0</td> <td>100.0</td> <td>100.000</td> <td>100.000</td> <td>100.000</td> </tr> </tbody> </table> </div> from this chart we cloud say that WFMU seems to belong to cluster 6, Allister Thompson to cluster 3, Cherry Red Music (UK) to cluster 5. <br /> <br /> During this analysis of the chart different correlation as been identify this does not mean that there is causation ## Q2.4.7 In a first time we wil genereate all the data ```python #merge the data dataset = df2 dataset = pd.merge(dataset, df3, on='track_id', how='inner') # transform non numerical variaibles le = preprocessing.LabelEncoder() dataset_all = dataset.copy() for n in dataset_all.columns.values: #columns with non-numeric values if dataset_all[n].dtype == object : #replace missing values by 'None' dataset_all[n].fillna("None", inplace = True) le = preprocessing.LabelEncoder() dataset_all[n]= le.fit_transform(dataset_all[n]) elif dataset_all[n].dtype == float : #replace missing values by 0. dataset_all[n].fillna(0., inplace = True) elif dataset_all[n].dtype == int: #replace missing values by 0 dataset_all[n].fillna(0, inplace = True) #take the row that are only numérical dataset_Num = dataset[dataset.T[dataset.dtypes!=np.object].index] # find .7 without the discret value principalDf = reduc07(dataset_all[dataset_Num.columns.values[1:]]) track_id = dataset_all["track_id"] print(len(principalDf)) #merge the discret value with the coninuous value dataset_all.drop(dataset_Num.columns.values, axis = 1, inplace = True) x = StandardScaler().fit_transform(dataset_all[dataset_all.columns.values]) principalDf = pd.DataFrame(data = x) dataset_all = pd.merge(dataset_all, principalDf, left_index=True, right_index=True) dataset_all["track_id"] = track_id # Note that every time that we will use k mean we will remove the track_id ``` 106574 ```python #KMeans++ ourmodel = KMeans(n_clusters=k) ourmodel.fit(dataset_all[dataset_all.columns.values[:-1]]) # creation of the pivot table + Calculation of the percentage pivot = list() for v in variaibles: value = dataset[v].value_counts()[:k].index.values df = pd.DataFrame() value = np.append(value, 'total') df[v] = value df.set_index(v, inplace= True) ba = min(dataset[v].value_counts()[:k][-1],100) for i in range(k): df[i] = 0 for v1 in value: ids = dataset[dataset[v] == v1]['track_id'].values va = list() bal = 0 for id in ids: cu = ourmodel.predict(dataset_all[dataset_all['track_id'] == id][dataset_all.columns.values[:-1]]) df.loc[v1,cu[0]] += 1 if bal > ba: break bal += 1 for i in range(k): df[i] = round((df[i]/df[i].sum())*100, 3) df.loc['total',i] += df[i].sum() pivot.append(df) ``` ```python pivot[0] ``` <div> <style scoped> .dataframe tbody tr th:only-of-type { vertical-align: middle; } .dataframe tbody tr th { vertical-align: top; } .dataframe thead th { text-align: right; } </style> <table border="1" class="dataframe"> <thead> <tr style="text-align: right;"> <th></th> <th>0</th> <th>1</th> <th>2</th> <th>3</th> <th>4</th> <th>5</th> <th>6</th> </tr> <tr> <th>artist_location</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> </tr> </thead> <tbody> <tr> <th>Brooklyn, NY</th> <td>0.0</td> <td>18.713</td> <td>16.477</td> <td>15.356</td> <td>0.0</td> <td>0.0</td> <td>0.0</td> </tr> <tr> <th>France</th> <td>0.0</td> <td>12.865</td> <td>23.864</td> <td>14.232</td> <td>0.0</td> <td>0.0</td> <td>0.0</td> </tr> <tr> <th>New York, NY</th> <td>0.0</td> <td>14.620</td> <td>17.045</td> <td>17.603</td> <td>0.0</td> <td>0.0</td> <td>0.0</td> </tr> <tr> <th>Chicago, IL</th> <td>0.0</td> <td>14.035</td> <td>14.773</td> <td>19.476</td> <td>0.0</td> <td>0.0</td> <td>0.0</td> </tr> <tr> <th>Perm, Russia</th> <td>100.0</td> <td>1.170</td> <td>0.000</td> <td>0.000</td> <td>100.0</td> <td>100.0</td> <td>100.0</td> </tr> <tr> <th>Portland, OR</th> <td>0.0</td> <td>15.205</td> <td>15.341</td> <td>18.352</td> <td>0.0</td> <td>0.0</td> <td>0.0</td> </tr> <tr> <th>Italy</th> <td>0.0</td> <td>23.392</td> <td>12.500</td> <td>14.981</td> <td>0.0</td> <td>0.0</td> <td>0.0</td> </tr> <tr> <th>total</th> <td>100.0</td> <td>100.000</td> <td>100.000</td> <td>100.000</td> <td>100.0</td> <td>100.0</td> <td>100.0</td> </tr> </tbody> </table> </div> As we cloud observe there is a difference in comparaison with our previous result we don't have the italy who is clearly identify but Perm, Russia ```python pivot[1] ``` <div> <style scoped> .dataframe tbody tr th:only-of-type { vertical-align: middle; } .dataframe tbody tr th { vertical-align: top; } .dataframe thead th { text-align: right; } </style> <table border="1" class="dataframe"> <thead> <tr style="text-align: right;"> <th></th> <th>0</th> <th>1</th> <th>2</th> <th>3</th> <th>4</th> <th>5</th> <th>6</th> </tr> <tr> <th>track_genre_top</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> </tr> </thead> <tbody> <tr> <th>Rock</th> <td>NaN</td> <td>15.084</td> <td>14.163</td> <td>13.907</td> <td>NaN</td> <td>NaN</td> <td>NaN</td> </tr> <tr> <th>Experimental</th> <td>NaN</td> <td>15.084</td> <td>21.888</td> <td>7.947</td> <td>NaN</td> <td>NaN</td> <td>NaN</td> </tr> <tr> <th>Electronic</th> <td>NaN</td> <td>15.084</td> <td>9.442</td> <td>17.550</td> <td>NaN</td> <td>NaN</td> <td>NaN</td> </tr> <tr> <th>Hip-Hop</th> <td>NaN</td> <td>15.084</td> <td>14.163</td> <td>13.907</td> <td>NaN</td> <td>NaN</td> <td>NaN</td> </tr> <tr> <th>Folk</th> <td>NaN</td> <td>13.966</td> <td>12.876</td> <td>15.563</td> <td>NaN</td> <td>NaN</td> <td>NaN</td> </tr> <tr> <th>Pop</th> <td>NaN</td> <td>11.173</td> <td>12.876</td> <td>17.219</td> <td>NaN</td> <td>NaN</td> <td>NaN</td> </tr> <tr> <th>Instrumental</th> <td>NaN</td> <td>14.525</td> <td>14.592</td> <td>13.907</td> <td>NaN</td> <td>NaN</td> <td>NaN</td> </tr> <tr> <th>total</th> <td>NaN</td> <td>100.000</td> <td>100.000</td> <td>100.000</td> <td>NaN</td> <td>NaN</td> <td>NaN</td> </tr> </tbody> </table> </div> There is also significant change on this table as there is no clear cluster anymore ```python pivot[2] ``` <div> <style scoped> .dataframe tbody tr th:only-of-type { vertical-align: middle; } .dataframe tbody tr th { vertical-align: top; } .dataframe thead th { text-align: right; } </style> <table border="1" class="dataframe"> <thead> <tr style="text-align: right;"> <th></th> <th>0</th> <th>1</th> <th>2</th> <th>3</th> <th>4</th> <th>5</th> <th>6</th> </tr> <tr> <th>track_language_code</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> </tr> </thead> <tbody> <tr> <th>en</th> <td>0.000</td> <td>8.163</td> <td>24.390</td> <td>21.333</td> <td>0.000</td> <td>0.0</td> <td>NaN</td> </tr> <tr> <th>es</th> <td>0.000</td> <td>26.531</td> <td>9.756</td> <td>17.333</td> <td>0.000</td> <td>0.0</td> <td>NaN</td> </tr> <tr> <th>fr</th> <td>0.000</td> <td>8.163</td> <td>29.268</td> <td>18.667</td> <td>0.000</td> <td>0.0</td> <td>NaN</td> </tr> <tr> <th>pt</th> <td>0.000</td> <td>32.653</td> <td>2.439</td> <td>17.333</td> <td>0.000</td> <td>0.0</td> <td>NaN</td> </tr> <tr> <th>de</th> <td>20.833</td> <td>0.000</td> <td>7.317</td> <td>8.000</td> <td>86.667</td> <td>75.0</td> <td>NaN</td> </tr> <tr> <th>ru</th> <td>50.000</td> <td>12.245</td> <td>9.756</td> <td>6.667</td> <td>13.333</td> <td>25.0</td> <td>NaN</td> </tr> <tr> <th>it</th> <td>29.167</td> <td>12.245</td> <td>17.073</td> <td>10.667</td> <td>0.000</td> <td>0.0</td> <td>NaN</td> </tr> <tr> <th>total</th> <td>100.000</td> <td>100.000</td> <td>99.999</td> <td>100.000</td> <td>100.000</td> <td>100.0</td> <td>NaN</td> </tr> </tbody> </table> </div> The change as also append on this chart as the only language who is clearly identify is de ```python pivot[3] ``` <div> <style scoped> .dataframe tbody tr th:only-of-type { vertical-align: middle; } .dataframe tbody tr th { vertical-align: top; } .dataframe thead th { text-align: right; } </style> <table border="1" class="dataframe"> <thead> <tr style="text-align: right;"> <th></th> <th>0</th> <th>1</th> <th>2</th> <th>3</th> <th>4</th> <th>5</th> <th>6</th> </tr> <tr> <th>album_type</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> </tr> </thead> <tbody> <tr> <th>Album</th> <td>NaN</td> <td>22.222</td> <td>25.926</td> <td>16.667</td> <td>NaN</td> <td>NaN</td> <td>NaN</td> </tr> <tr> <th>Radio Program</th> <td>NaN</td> <td>44.444</td> <td>7.407</td> <td>23.810</td> <td>NaN</td> <td>NaN</td> <td>NaN</td> </tr> <tr> <th>Live Performance</th> <td>NaN</td> <td>0.000</td> <td>51.852</td> <td>4.762</td> <td>NaN</td> <td>NaN</td> <td>NaN</td> </tr> <tr> <th>Single Tracks</th> <td>NaN</td> <td>22.222</td> <td>7.407</td> <td>28.571</td> <td>NaN</td> <td>NaN</td> <td>NaN</td> </tr> <tr> <th>Contest</th> <td>NaN</td> <td>11.111</td> <td>7.407</td> <td>26.190</td> <td>NaN</td> <td>NaN</td> <td>NaN</td> </tr> <tr> <th>total</th> <td>NaN</td> <td>99.999</td> <td>99.999</td> <td>100.000</td> <td>NaN</td> <td>NaN</td> <td>NaN</td> </tr> </tbody> </table> </div> As on the previous chart there are some change. However, we are able to refind a cluster that we had previously Live performance seem to be identify in cluster 2 ```python pivot[4] ``` <div> <style scoped> .dataframe tbody tr th:only-of-type { vertical-align: middle; } .dataframe tbody tr th { vertical-align: top; } .dataframe thead th { text-align: right; } </style> <table border="1" class="dataframe"> <thead> <tr style="text-align: right;"> <th></th> <th>0</th> <th>1</th> <th>2</th> <th>3</th> <th>4</th> <th>5</th> <th>6</th> </tr> <tr> <th>track_publisher</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> </tr> </thead> <tbody> <tr> <th>Victrola Dog (ASCAP)</th> <td>24.324</td> <td>27.273</td> <td>0.000</td> <td>0.000</td> <td>0.0</td> <td>18.182</td> <td>0.0</td> </tr> <tr> <th>You've Been a Wonderful Laugh Track (ASCAP)</th> <td>31.081</td> <td>4.545</td> <td>12.121</td> <td>19.231</td> <td>0.0</td> <td>0.000</td> <td>0.0</td> </tr> <tr> <th>Section 27</th> <td>8.108</td> <td>22.727</td> <td>30.303</td> <td>30.769</td> <td>0.0</td> <td>0.000</td> <td>0.0</td> </tr> <tr> <th>www.headphonica.com</th> <td>0.000</td> <td>22.727</td> <td>33.333</td> <td>50.000</td> <td>0.0</td> <td>0.000</td> <td>0.0</td> </tr> <tr> <th>Studio 11</th> <td>17.568</td> <td>0.000</td> <td>0.000</td> <td>0.000</td> <td>45.0</td> <td>54.545</td> <td>0.0</td> </tr> <tr> <th>Mitoma Industries</th> <td>18.919</td> <td>22.727</td> <td>24.242</td> <td>0.000</td> <td>0.0</td> <td>0.000</td> <td>0.0</td> </tr> <tr> <th>Toucan Music</th> <td>0.000</td> <td>0.000</td> <td>0.000</td> <td>0.000</td> <td>55.0</td> <td>27.273</td> <td>100.0</td> </tr> <tr> <th>total</th> <td>100.000</td> <td>99.999</td> <td>99.999</td> <td>100.000</td> <td>100.0</td> <td>100.000</td> <td>100.0</td> </tr> </tbody> </table> </div> This chart is the one who as change the most in our previous version we had 3 clear cluster. Now we cloud sat that Toucan Music seems to be in cluster 4 but with less confidence as previously If you could choose, would you rather collect more observations (with fewer features) or fewer observations (with more features) based on the previous analyses? <br /> I will collect more data having a large data set will be more challeging. As we will mostlikely have to clean the data. However, such a dataset will allow us to explore more possibilies. In the same times these kind of dataset will reduce problems such as overfitting. In global a small data set is always more easy to use but a large dataset if properly clean and explore will be more generale and will have more valuable observation. ## Task 3 ```python ##NAIVE SOLUTION: naive approach to this problem would be to loop through each number and then loop again through the array # looking for a pair that sums to S.The running time for the below solution would be O(n2) # because in the worst case we are looping through the array twice to find a pair. ##FASTER SOLUTION: We can write a faster algorithm that will find pairs that sum to S in linear time. #The algorithm makes a dictionary import time import itertools ``` ```python # Getting the inputs from the user my_list = [] target_sum = int(input('Please enter the summation target: ')) list_len = int(input('Enter the length of the desired list of integers: ')) print('Please enter the desired list of integers: ') for inp in range(list_len): my_list.append(int(input(''))) unique_list = set(my_list) # For measuring the run-time # start_time = time.time() # Iterating between the elements of the list and calculating the sum of each pair for n in itertools.combinations(unique_list, 2): if n[0] + n[1] == target_sum: print ([n[0], n[1]]) # Uncomment to print out the run-time # print(f"Running time is: {time.time() - start_time}") ``` ```python # Now solving the problem with O(n) time complexity unique_list = list(unique_list) my_dict = {} # Uncomment for measuring the run-time # start_time = time.time() for i in unique_list: if i in my_dict.keys(): print (f"({i}, {my_dict[i]})") key = target_sum - i my_dict[key] = i # Uncomment to print out the run-time # print(f"Running time is: {time.time() - start_time}") ```
% !TEX root = main.tex %---------------------------------------------------------------------- \section{The method of moments} %---------------------------------------------------------------------- Perhaps the simplest estimators are based on the \emph{method of moments}. \bigskip Let $X$ be a random variable, let $f(x;\mathbf{\theta})$ be its PMF/PDF and consider its $k$th moment: \[\begin{array}{lll} \expe(X^k) & = \displaystyle\sum_{i=1}^{\infty} x_i^k f(x_i;\mathbf{\theta}) \qquad & \text{(discrete case),} \\[3ex] \expe(X^k) & = \displaystyle\int_{-\infty}^{\infty} x^k f(x;\mathbf{\theta})\,dx & \text{(continuous case)}. \end{array}\] Let $X_1,X_2,\ldots,X_n$ be a random sample from the distribution of $X$. To estimate $k$ parameters $\mathbf{\theta} = (\theta_1,\theta_2,\ldots,\theta_k)$, we equate the expressions for the first $k$ moments with the first $k$ empirical moments, then solve the resulting system of equations with respect to $\theta_1,\theta_2,\ldots,\theta_k$. The number of equations must be equal to the number of unknown parameters we wish to estimate: these are known as the \emph{moment equations}. \[ \expe(X) = \frac{1}{n}\sum_{i=1}^n X_i, \quad \expe(X^2) = \frac{1}{n}\sum_{i=1}^n X_i^2, \quad\ldots,\quad \expe(X^k) = \frac{1}{n}\sum_{i=1}^n X_i^k. \] % %\ben %\it % single parameter %To estimate a scalar parameter $\theta$ using the \emph{method of moments}, we equate the first theoretical moment with the first empirical moment (i.e.\ the sample mean), then solve this with respect to $\theta$: %\[ %\expe(X;\theta) = \frac{1}{n}\sum_{i=1}^n X_i.% \equiv \bar{X}. %\] %\it % two parameters %To estimate two parameters $\mathbf{\theta} = (\theta_1,\theta_2)$, we equate the first two theoretical moments with the first two empirical moments, then solve this system of two equations with respect to $\theta_1$ and $\theta_2$: %\[ %\expe(X;\mathbf{\theta}) = \frac{1}{n}\sum_{i=1}^n X_i %\qquad\text{and}\qquad %\expe(X^2;\mathbf{\theta}) = \frac{1}{n}\sum_{i=1}^n X_i^2, %\] %\it % k parameters %To estimate $k$ parameters $\mathbf{\theta} = (\theta_1,\theta_2,\ldots,\theta_k)$, we equate the first $k$ theoretical moments with the first $k$ empirical moments, then solve the resulting system of equations with respect to $\theta_1,\theta_2,\ldots,\theta_k$. The number of equations must be equal to the number of unknown parameters we wish to estimate. %%\it In fact, we can equate the theoretical and empirical expected values of \emph{any} functions of $X$: %%\begin{align*} %%\expe\big[g_1(X);\mathbf{\theta}\big] & = \frac{1}{n}\sum_{i=1}^n g_1(X_i), \\ %%\expe\big[g_2(X);\mathbf{\theta}\big] & = \frac{1}{n}\sum_{i=1}^n g_2(X_i), \quad\text{etc.} %%\end{align*} %\een % example: uniform \begin{example} Let $X_1,X_2,\ldots,X_n$ be a random sample from the continuous $\text{Uniform}(0,\theta)$ distribution, where $\theta>0$ is unknown. Find an estimator of $\theta$ using the method of moments. \begin{solution} Let $X\sim\text{Uniform}(0,\theta)$. In this case, $\expe(X) = \theta/2$ so the first moment equation is \[ \frac{1}{2}\theta = \frac{1}{n}\sum_{i=1}^n X_i. \] Solving for $\theta$ we obtain $\hat{\theta}_{\text{\scriptsize{MME}}} = \displaystyle\frac{2}{n}\sum_{i=1}^n X_i$. \end{solution} \end{example} % example: normal \begin{example} Let $X_1,X_2,\ldots,X_n$ be a random sample from the $N(\mu,\sigma^2)$ distribution. Find estimators of $\mu$ and $\sigma^2$ using the method of moments. \end{example} \begin{solution} Let $X\sim N(\mu,\sigma^2)$ and let $\theta=(\mu,\sigma^2)$ be the parameter vector. Equating the first and second moments with the empirical first and second moments, \[ \expe(X) = \frac{1}{n}\sum_{i=1}^n X_i \qquad\text{and}\qquad \expe(X^2) = \frac{1}{n}\sum_{i=1}^n X_i^2. \] The theoretical moments are $\expe(X) = \mu$ and $\expe(X^2) = \sigma^2 + \mu^2$. Solving the resulting equations for $\mu$ and $\sigma^2$, we obtain %the following MMEs of $\mu$ and $\sigma^2$: \[ \hat{\mu}_{\text{\scriptsize{MME}}} = \Xbar \qquad\text{and}\qquad \hat{\sigma}^2_{\text{\scriptsize{MME}}} %= \frac{1}{n}\sum_{i=1}^n X_i^2 - \bar{X}^2 = \frac{1}{n}\sum_{i=1}^n (X_i-\bar{X})^2. \] %\begin{align*} %\hat{\mu} & = \Xbar, \\ %\hat{\sigma}^2 & = \frac{1}{n}\sum_{i=1}^n X_i^2 - \bar{X}^2 = \frac{1}{n}\sum_{i=1}^n (X_i-\bar{X})^2. %\end{align*} \bit \it The MME of $\mu$ is the \emph{sample mean}. \it The MME of $\sigma^2$ is the \emph{empirical mean squared deviation from the sample mean}. \eit Note that the latter is \emph{not} the sample variance. \end{solution} %---------------------------------------------------------------------- \begin{exercise} \begin{questions} % MME of Bernoulli distribution \question Let $X_1,X_2,\ldots,X_n$ be a random sample from the $\text{Bernoulli}(\theta)$ distribution. Find an estimator of $\theta$ using the method of moments. \begin{answer} The first moment of the $\text{Bernoulli}(\theta)$ distribution is $\theta$. Equating this to the first empirical moment (i.e.\ the sample mean), \[ \hat{\theta}_{\text{\scriptsize{MME}}} = \frac{1}{n}\sum_{i=1}^n X_i. \] The MME of $\theta$ is thus the proportion of successes observed in $n$ trials. \end{answer} % MME of exponential distribution \question Let $X_1,X_2,\ldots,X_n$ be a random sample from the $\text{Exponential}(\lambda)$ distribution, where $\lambda>0$ is an unknown rate parameter. Find an estimator of $\lambda$ using the method of moments. \begin{answer} Let $X\sim\text{Exponential}(\lambda)$. Then $\expe(X) = 1/\lambda$, so the first moment equation is \[ \frac{1}{\lambda} = \bar{X}. \] Solving for $\lambda$, we obtain $\hat{\lambda}_{\text{\scriptsize{MME}}} = \bar{X}^{-1}$. \end{answer} % MME of Poisson distribution \question Let $X_1,X_2,\ldots,X_n$ be a random sample from the $\text{Poisson}(\lambda)$ distribution, where $\lambda>0$ is unknown. Find an estimator of $\lambda$ using the method of moments. \begin{answer} Let $X\sim\text{Poisson}(\lambda)$. The expected value of $X$ is $\expe(X)=\lambda$, so the first moment equation is simply \[ \lambda = \bar{X}. \] Solving for $\lambda$, we obtain $\hat{\lambda}_{\text{\scriptsize{MME}}} = \bar{X}$. \end{answer} \end{questions} \end{exercise} %----------------------------------------------------------------------
State Before: ι : Type u_1 inst✝ : Fintype ι I J : Box ι ⊢ J ∈ splitCenter I ↔ ∃ s, Box.splitCenterBox I s = J State After: no goals Tactic: simp [splitCenter]
module Mod_plcd_elmdir contains subroutine plcd_elmdir(a,e,elmat,elrhs) !------------------------------------------------------------------------ ! This routine modifies the element stiffness to impose the correct ! boundary conditions !------------------------------------------------------------------------ use typre use Mod_PLCD use Mod_Element use Mod_plcd_Stages use Mod_plcdExacso implicit none class(PLCDProblem), target :: a class(FiniteElement), intent(in) :: e real(rp), intent(inout) :: elmat(:,:,:,:),elrhs(:,:) real(rp) :: adiag, pressval, pressgrad(3) integer(ip) :: inode,ipoin,idofn,iffix_aux type(plcdExacso) :: Exacso real(rp), pointer :: coord(:) !Dirichlet boundary conditions do inode=1,e%pnode ipoin=e%lnods(inode) do idofn=1,a%ndofbc iffix_aux = a%cs%kfl_fixno(idofn,ipoin) if(iffix_aux==1) then adiag=elmat(idofn,inode,idofn,inode) !Only if the Dirichlet columns are to be deleted if (a%kfl_DeleteDirichletColumns) then elrhs(:,1:e%pnode)=elrhs(:,1:e%pnode) & - elmat(:,1:e%pnode,idofn,inode)*(a%cs%bvess(idofn,ipoin)*a%css%CurrentLoadFactor - a%Displacement(idofn,ipoin,1)) elmat(:,1:e%pnode,idofn,inode)=0.0_rp endif elrhs(idofn,inode)=adiag*(a%cs%bvess(idofn,ipoin)*a%css%CurrentLoadFactor - a%Displacement(idofn,ipoin,1)) elmat(idofn,inode,:,1:e%pnode)=0.0_rp elmat(idofn,inode,idofn,inode)=adiag end if end do end do !FixPressure if required if (a%UseUPFormulation .and. (a%kfl_confi == 1)) then do inode = 1,e%pnode ipoin=e%lnods(inode) if (ipoin == a%nodpr) then adiag=elmat(a%ndofbc+1,inode,a%ndofbc+1,inode) if (a%kfl_DeleteDirichletColumns) then elmat(:,1:e%pnode,a%ndofbc+1,inode)=0.0_rp endif elmat(a%ndofbc+1,inode,:,1:e%pnode)=0.0_rp elrhs(a%ndofbc+1,inode) = 0.0_rp elmat(a%ndofbc+1,inode,a%ndofbc+1,inode) = adiag if (a%kfl_exacs > 0) then call a%Mesh%GetPointCoord(ipoin,coord) call Exacso%ComputeSolution(e%ndime,coord,a) call Exacso%GetPressure(e%ndime,pressval,pressgrad) elrhs(a%ndofbc+1,inode) = adiag*(pressval*a%css%CurrentLoadFactor - a%Pressure(ipoin,1)) endif endif enddo endif end subroutine plcd_elmdir end module
open import Prelude module Implicits.Substitutions.Lemmas.Type where open import Implicits.Syntax.Type open import Implicits.Substitutions open import Data.Fin.Substitution open import Data.Fin.Substitution.Lemmas open import Data.Vec.Properties open import Extensions.Substitution open import Data.Star using (Star; ε; _◅_) open import Data.Product hiding (map) typeLemmas : TermLemmas Type typeLemmas = record { termSubst = TypeSubst.typeSubst; app-var = refl ; /✶-↑✶ = Lemma./✶-↑✶ } where open TypeSubst module Lemma {T₁ T₂} {lift₁ : Lift T₁ Type} {lift₂ : Lift T₂ Type} where open Lifted lift₁ using () renaming (_↑✶_ to _↑✶₁_; _/✶_ to _/✶₁_) open Lifted lift₂ using () renaming (_↑✶_ to _↑✶₂_; _/✶_ to _/✶₂_) /✶-↑✶ : ∀ {m n} (σs₁ : Subs T₁ m n) (σs₂ : Subs T₂ m n) → (∀ k x → (simpl (tvar x)) /✶₁ σs₁ ↑✶₁ k ≡ (simpl (tvar x)) /✶₂ σs₂ ↑✶₂ k) → ∀ k t → t /✶₁ σs₁ ↑✶₁ k ≡ t /✶₂ σs₂ ↑✶₂ k /✶-↑✶ ρs₁ ρs₂ hyp k (simpl (tvar x)) = hyp k x /✶-↑✶ ρs₁ ρs₂ hyp k (simpl (tc c)) = begin (simpl $ tc c) /✶₁ ρs₁ ↑✶₁ k ≡⟨ TypeApp.tc-/✶-↑✶ _ k ρs₁ ⟩ (simpl $ tc c) ≡⟨ sym $ TypeApp.tc-/✶-↑✶ _ k ρs₂ ⟩ (simpl $ tc c) /✶₂ ρs₂ ↑✶₂ k ∎ /✶-↑✶ ρs₁ ρs₂ hyp k (simpl (a →' b)) = begin (simpl $ a →' b) /✶₁ ρs₁ ↑✶₁ k ≡⟨ TypeApp.→'-/✶-↑✶ _ k ρs₁ ⟩ simpl ((a /✶₁ ρs₁ ↑✶₁ k) →' (b /✶₁ ρs₁ ↑✶₁ k)) ≡⟨ cong₂ (λ a b → simpl (a →' b)) (/✶-↑✶ ρs₁ ρs₂ hyp k a) (/✶-↑✶ ρs₁ ρs₂ hyp k b) ⟩ simpl ((a /✶₂ ρs₂ ↑✶₂ k) →' (b /✶₂ ρs₂ ↑✶₂ k)) ≡⟨ sym (TypeApp.→'-/✶-↑✶ _ k ρs₂) ⟩ (simpl $ a →' b) /✶₂ ρs₂ ↑✶₂ k ∎ /✶-↑✶ ρs₁ ρs₂ hyp k (a ⇒ b) = begin (a ⇒ b) /✶₁ ρs₁ ↑✶₁ k ≡⟨ TypeApp.⇒-/✶-↑✶ _ k ρs₁ ⟩ -- (a /✶₁ ρs₁ ↑✶₁ k) ⇒ (b /✶₁ ρs₁ ↑✶₁ k) ≡⟨ cong₂ _⇒_ (/✶-↑✶ ρs₁ ρs₂ hyp k a) (/✶-↑✶ ρs₁ ρs₂ hyp k b) ⟩ (a /✶₂ ρs₂ ↑✶₂ k) ⇒ (b /✶₂ ρs₂ ↑✶₂ k) ≡⟨ sym (TypeApp.⇒-/✶-↑✶ _ k ρs₂) ⟩ (a ⇒ b) /✶₂ ρs₂ ↑✶₂ k ∎ /✶-↑✶ ρs₁ ρs₂ hyp k (∀' a) = begin (∀' a) /✶₁ ρs₁ ↑✶₁ k ≡⟨ TypeApp.∀'-/✶-↑✶ _ k ρs₁ ⟩ ∀' (a /✶₁ ρs₁ ↑✶₁ (suc k)) ≡⟨ cong ∀' (/✶-↑✶ ρs₁ ρs₂ hyp (suc k) a) ⟩ ∀' (a /✶₂ ρs₂ ↑✶₂ (suc k)) ≡⟨ sym (TypeApp.∀'-/✶-↑✶ _ k ρs₂) ⟩ (∀' a) /✶₂ ρs₂ ↑✶₂ k ∎ open TermLemmas typeLemmas public hiding (var; id) open AdditionalLemmas typeLemmas public open TypeSubst using (module Lifted) -- The above lemma /✶-↑✶ specialized to single substitutions /-↑⋆ : ∀ {T₁ T₂} {lift₁ : Lift T₁ Type} {lift₂ : Lift T₂ Type} → let open Lifted lift₁ using () renaming (_↑⋆_ to _↑⋆₁_; _/_ to _/₁_) open Lifted lift₂ using () renaming (_↑⋆_ to _↑⋆₂_; _/_ to _/₂_) in ∀ {n k} (ρ₁ : Sub T₁ n k) (ρ₂ : Sub T₂ n k) → (∀ i x → (simpl (tvar x)) /₁ ρ₁ ↑⋆₁ i ≡ (simpl (tvar x)) /₂ ρ₂ ↑⋆₂ i) → ∀ i a → a /₁ ρ₁ ↑⋆₁ i ≡ a /₂ ρ₂ ↑⋆₂ i /-↑⋆ ρ₁ ρ₂ hyp i a = /✶-↑✶ (ρ₁ ◅ ε) (ρ₂ ◅ ε) hyp i a -- weakening a simple type gives a simple type simpl-wk : ∀ {ν} k (τ : SimpleType (k + ν)) → ∃ λ τ' → (simpl τ) / wk ↑⋆ k ≡ simpl τ' simpl-wk k (tc x) = , refl simpl-wk k (tvar n) = , var-/-wk-↑⋆ k n simpl-wk k (x →' x₁) = , refl
Benedetto <unk> ( September 26 , 1766 ) – Cardinal @-@ Deacon of SS . Cosma e Damiano ; prefect of the S.C. of Index
module Data.Maybe.Instance where open import Class.Equality open import Class.Monad open import Data.Maybe open import Data.Maybe.Properties instance Maybe-Monad : ∀ {a} -> Monad (Maybe {a}) Maybe-Monad = record { _>>=_ = λ x f → maybe f nothing x ; return = just } Maybe-Eq : ∀ {A} {{_ : Eq A}} → Eq (Maybe A) Maybe-Eq ⦃ record { _≟_ = _≟_ } ⦄ = record { _≟_ = ≡-dec _≟_ } Maybe-EqB : ∀ {A} {{_ : Eq A}} → EqB (Maybe A) Maybe-EqB = Eq→EqB
[STATEMENT] lemma map_eq_replicate_imp_list_all_const: "map f xs = replicate n x \<Longrightarrow> n = length xs \<Longrightarrow> list_all (\<lambda>y. f y = x) xs" [PROOF STATE] proof (prove) goal (1 subgoal): 1. \<lbrakk>map f xs = replicate n x; n = length xs\<rbrakk> \<Longrightarrow> list_all (\<lambda>y. f y = x) xs [PROOF STEP] by (induction xs arbitrary: n) simp_all
%NOFRICTION return link object with zero friction % % LINK = NOFRICTION(LINK) % % % Ryan Steindl based on Robotics Toolbox for MATLAB (v6 and v9) % % Copyright (C) 1993-2011, by Peter I. Corke % % This file is part of The Robotics Toolbox for MATLAB (RTB). % % RTB is free software: you can redistribute it and/or modify % it under the terms of the GNU Lesser General Public License as published by % the Free Software Foundation, either version 3 of the License, or % (at your option) any later version. % % RTB is distributed in the hope that it will be useful, % but WITHOUT ANY WARRANTY; without even the implied warranty of % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the % GNU Lesser General Public License for more details. % % You should have received a copy of the GNU Leser General Public License % along with RTB. If not, see <http://www.gnu.org/licenses/>. % % http://www.petercorke.com function l2 = nofriction(l, only) %Link.nofriction Remove friction % % LN = L.nofriction() is a link object with the same parameters as L except % nonlinear (Coulomb) friction parameter is zero. % % LN = L.nofriction('all') is a link object with the same parameters as L % except all friction parameters are zero. l2 = Link(l); if (nargin == 2) && strcmpi(only(1:3), 'all') l2.B = 0; end l2.Tc = [0 0]; end
# Defines various functions for "moving" around # Pascal's triangle. _upval(a::Entry{<: Integer}) = a.val*(a.n - a.k)÷a.n _upval(a::Entry{<: AbstractFloat}) = a.val*(a.n - a.k)/a.n function up!(a::Entry) if isatright(a) || isfirst(a) throw(OutOfBoundsError("no entry above")) end a.val = _upval(a) a.n -= 1 return a end up(a::Entry) = up!(Entry(a)) up!(r::Row) = prev!(r) up(r::Row) = prev(r) _downval(a::Entry{<: Integer}) = a.val*(a.n + 1)÷(a.n - a.k + 1) _downval(a::Entry{<: AbstractFloat}) = a.val*(a.n + 1)/(a.n - a.k + 1) function down!(a::Entry) a.val = _downval(a) a.n += 1 return a end down(a::Entry) = down!(Entry(a)) down!(r::Row) = next!(r) down(r::Row) = next(r) _leftval(a::Entry{<: Integer}) = a.val*a.k÷(a.n - a.k + 1) _leftval(a::Entry{<: AbstractFloat}) = a.val*a.k/(a.n - a.k + 1) function _left!(a) a.val = _leftval(a) a.k -= 1 return a end function left!(a::Entry) isatleft(a) && throw(OutOfBoundsError("no entry to the left")) return _left!(a) end left(a::Entry) = left!(Entry(a)) left!(c::Column) = prev!(c) left(c::Column) = prev(c) left!(c::LazyColumn) = prev!(c) left(c::LazyColumn) = prev(c) _rightval(a::Entry{<: Integer}) = a.val*(a.n - a.k)÷(a.k + 1) _rightval(a::Entry{<: AbstractFloat}) = a.val*(a.n - a.k)/(a.k + 1) function _right!(a::Entry) a.val = _rightval(a) a.k += 1 return a end function right!(a::Entry) isatright(a) && throw(OutOfBoundsError("no entry to the right")) return _right!(a) end right(a::Entry) = right!(Entry(a)) right!(c::Column) = next!(c) right(c::Column) = next(c) right!(c::LazyColumn) = next!(c) right(c::LazyColumn) = next(c) function prev!(a::Entry) isfirst(a) && throw(OutOfBoundsError("no previous entry")) if !isatleft(a) return _left!(a) else a.n -= 1 a.k = a.n a.val = one(a.val) return a end end prev(a::Entry) = prev!(Entry(a)) function prev!(r::Row) isfirst(r) && throw(OutOfBoundsError("no previous row")) r.rownum -= 1 datalength = numelements(r.rownum) if datalength ≥ 1 r.data[1] -= r.rownum for i ∈ 2:datalength r.data[i] -= r.data[i-1] end end return r end function prev(r::Row) newrow = Row(r) return prev!(newrow) end function prev!(c::Column) isfirst(c) && throw(OutOfBoundsError("no previous column")) c.colnum -= 1 for i ∈ length(c.data):-1:2 c.data[i] -= c.data[i-1] end return c end function prev(c::Column) newcol = Column(c) return prev!(newcol) end function prev!(c::LazyColumn) isfirst(c) && throw(OutOfBoundsError("no previous column")) c.colnum -= 1 for (r, val) ∈ c.data c.data[r] = value(up!(Entry(r + c.colnum, r - 1, val))) end return c end function prev(c::LazyColumn) newcol = LazyColumn(c) return prev!(newcol) end function next!(a::Entry) if !isatright(a) return _right!(a) else a.n += 1 a.k = zero(a.k) a.val = one(a.val) return a end end next(a::Entry) = next!(Entry(a)) function next!(r::Row) datalength = numelements(r.rownum) if isodd(r.rownum) && r.rownum ≥ 3 if r.rownum == 3 newdata = one(eltype(r.data))*6 else newdata = r.data[datalength] end if length(r.data) > datalength r.data[datalength+1] = newdata else push!(r.data, newdata) end datalength += 1 end if datalength ≥ 1 for i ∈ datalength:-1:2 r.data[i] += r.data[i-1] end r.data[1] += r.rownum end r.rownum += 1 return r end function next(r::Row) newrow = Row(r) return next!(newrow) end function next!(c::Column) c.colnum += 1 for i ∈ 2:length(c.data) c.data[i] += c.data[i-1] end return c end function next(c::Column) newcol = Column(c) return next!(newcol) end function _downright!(e::Entry) if isatright(e) e.n += 1 e.k += 1 return e end a = right(e) e += a return e end function next!(c::LazyColumn) for (r, val) ∈ c.data e = Entry(r + c.colnum - 1, c.colnum, val) _downright!(e) c.data[r] = value(e) end c.colnum += 1 return c end function next(c::LazyColumn) newcol = LazyColumn(c) return next!(newcol) end
text_raw \<open>\subsection[Inverse Images]{Inverse Images\isalabel{subsec:inverse-morphism-image}}\<close> theory InverseImageMorphismChoice imports ParticularStructureMorphisms MorphismImage begin context particular_struct_morphism begin definition same_image (infix \<open>\<sim>\<close> 75) where \<open>x \<sim> y \<equiv> x \<in> src.\<P> \<and> y \<in> src.\<P> \<and> \<phi> x = \<phi> y\<close> lemma \<^marker>\<open>tag (proof) aponly\<close> same_image_I[intro!]: assumes \<open>x \<in> src.\<P>\<close> \<open>y \<in> src.\<P>\<close> \<open>\<phi> x = \<phi> y\<close> shows \<open>x \<sim> y\<close> using assms by (auto simp: same_image_def) lemma \<^marker>\<open>tag (proof) aponly\<close> same_image_E[elim!]: assumes \<open>x \<sim> y\<close> obtains \<open>x \<in> src.\<P>\<close> \<open>y \<in> src.\<P>\<close> \<open>\<phi> x = \<phi> y\<close> using assms by (auto simp: same_image_def) lemma \<^marker>\<open>tag (proof) aponly\<close> same_image_iff[simp]: \<open>x \<sim> y \<longleftrightarrow> x \<in> src.\<P> \<and> y \<in> src.\<P> \<and> \<phi> x = \<phi> y\<close> by (auto simp: same_image_def) lemma \<^marker>\<open>tag (proof) aponly\<close> same_image_sym[sym]: \<open>x \<sim> y \<Longrightarrow> y \<sim> x\<close> by auto lemma \<^marker>\<open>tag (proof) aponly\<close> same_image_trans[trans]: \<open>\<lbrakk> x \<sim> y ; y \<sim> z \<rbrakk> \<Longrightarrow> x \<sim> z\<close> by auto lemma \<^marker>\<open>tag (proof) aponly\<close> same_image_refl[intro!]: \<open>x \<in> src.\<P> \<Longrightarrow> x \<sim> x\<close> by auto definition \<open>eq_class x \<equiv> { y . x \<sim> y }\<close> lemma \<^marker>\<open>tag (proof) aponly\<close> eq_class_I[intro!]: \<open>x \<sim> y \<Longrightarrow> y \<in> eq_class x\<close> by (auto simp: eq_class_def) lemma \<^marker>\<open>tag (proof) aponly\<close> eq_class_D[dest!]: \<open>y \<in> eq_class x \<Longrightarrow> x \<sim> y\<close> by (auto simp: eq_class_def) lemma \<^marker>\<open>tag (proof) aponly\<close> eq_class_swap[simp]: \<open>y \<in> eq_class x \<longleftrightarrow> x \<in> eq_class y\<close> by auto lemma \<^marker>\<open>tag (proof) aponly\<close> eq_class_unique[simp]: \<open>\<lbrakk> x \<in> eq_class y ; x \<in> eq_class z \<rbrakk> \<Longrightarrow> eq_class x = eq_class z\<close> by auto lemma \<^marker>\<open>tag (proof) aponly\<close> eq_class_subset_P[intro!]: \<open>eq_class x \<subseteq> src.\<P>\<close> by auto lemma \<^marker>\<open>tag (proof) aponly\<close> eq_class_endurant_cases[cases set]: obtains (eq_class_subst) \<open>eq_class x \<subseteq> src.\<S>\<close> | (eq_class_moment) \<open>eq_class x \<subseteq> src.\<M>\<close> proof (cases \<open>x \<in> src.\<P>\<close>) assume \<open>x \<in> src.\<P>\<close> then consider (substantial) \<open>x \<in> src.\<S>\<close> | (moment) \<open>x \<in> src.\<M>\<close> by blast then show ?thesis proof (cases) case substantial then show ?thesis apply (intro that(1)) using morph_preserves_substantials \<open>x \<in> src.\<P>\<close> by (metis eq_class_D particular_struct_morphism.same_image_E particular_struct_morphism_axioms subsetI) next case moment then show ?thesis apply (intro that(2)) using morph_preserves_moments \<open>x \<in> src.\<P>\<close> by (metis eq_class_D morph_preserves_moments_simp particular_struct_morphism.same_image_E particular_struct_morphism_axioms subsetI) qed next assume \<open>x \<notin> src.\<P>\<close> then have \<open>eq_class x = \<emptyset>\<close> by auto then show ?thesis using that by auto qed lemma \<^marker>\<open>tag (proof) aponly\<close> eq_class_moment[simp]: \<open>eq_class x \<subseteq> src.\<M> \<longleftrightarrow> x \<notin> src.\<S>\<close> apply (cases x rule: eq_class_endurant_cases ; safe ; simp add: eq_class_def) subgoal by blast subgoal by auto by blast lemma \<^marker>\<open>tag (proof) aponly\<close> eq_class_substantial[simp]: \<open>eq_class x \<subseteq> src.\<S> \<longleftrightarrow> x \<notin> src.\<M>\<close> apply (cases x rule: eq_class_endurant_cases ; safe ; simp add: eq_class_def) subgoal by blast subgoal by auto by (simp add: subset_iff) definition \<open>eq_classes \<equiv> { eq_class x | x . x \<in> src.\<P> }\<close> lemma \<^marker>\<open>tag (proof) aponly\<close> eq_classes_I[intro]: \<open>\<lbrakk> x \<in> src.\<P> ; X = eq_class x \<rbrakk> \<Longrightarrow> X \<in> eq_classes \<close> by (auto simp: eq_classes_def) lemma \<^marker>\<open>tag (proof) aponly\<close> eq_classes_E[elim!]: assumes \<open>X \<in> eq_classes\<close> obtains x where \<open>x \<in> src.\<P>\<close> \<open>X = eq_class x\<close> using assms by (auto simp: eq_classes_def) lemma \<^marker>\<open>tag (proof) aponly\<close> eq_classes_disj: \<open>\<lbrakk> X \<in> eq_classes ; Y \<in> eq_classes ; x \<in> X ; x \<in> Y \<rbrakk> \<Longrightarrow> X = Y\<close> by auto lemma \<^marker>\<open>tag (proof) aponly\<close> eq_classes_un: \<open>\<Union> eq_classes = src.\<P>\<close> by auto lemma \<^marker>\<open>tag (proof) aponly\<close> eq_classes_non_empty[dest]: \<open>X \<in> eq_classes \<Longrightarrow> X \<noteq> \<emptyset>\<close> by (auto simp: eq_classes_def eq_class_def) lemma \<^marker>\<open>tag (proof) aponly\<close> eq_class_non_empty[simp]: \<open>eq_class x \<noteq> \<emptyset> \<longleftrightarrow> x \<in> src.\<P>\<close> by (auto simp: eq_class_def) definition \<open>subst_eq_classes \<equiv> { X . X \<in> eq_classes \<and> X \<subseteq> src.\<S>}\<close> lemma \<^marker>\<open>tag (proof) aponly\<close> subst_eq_classes_I: \<open>\<lbrakk> X \<in> eq_classes ; X \<subseteq> src.\<S> \<rbrakk> \<Longrightarrow> X \<in> subst_eq_classes\<close> by (auto simp: subst_eq_classes_def) lemma \<^marker>\<open>tag (proof) aponly\<close> subst_eq_classes_E: assumes \<open>X \<in> subst_eq_classes\<close> obtains \<open>X \<in> eq_classes\<close> \<open>X \<subseteq> src.\<S>\<close> using assms by (auto simp: subst_eq_classes_def) lemma \<^marker>\<open>tag (proof) aponly\<close> subst_eq_classes_E1[elim!]: assumes \<open>X \<in> subst_eq_classes\<close> obtains x where \<open>X \<in> eq_classes\<close> \<open>x \<in> X\<close> \<open>\<And>x. x \<in> X \<Longrightarrow> x \<in> src.\<S>\<close> using assms by (auto simp: subst_eq_classes_def) lemma \<^marker>\<open>tag (proof) aponly\<close> subst_eq_classes_iff: \<open>X \<in> subst_eq_classes \<longleftrightarrow> X \<in> eq_classes \<and> X \<subseteq> src.\<S>\<close> by (auto simp: subst_eq_classes_def) lemma \<^marker>\<open>tag (proof) aponly\<close> subst_eq_classes_I1[intro]: \<open>\<lbrakk> x \<in> src.\<S> ; X = eq_class x \<rbrakk> \<Longrightarrow> X \<in> subst_eq_classes\<close> by (auto simp: subst_eq_classes_def) lemma \<^marker>\<open>tag (proof) aponly\<close> subst_eq_classes_D1: \<open>\<lbrakk> X \<in> subst_eq_classes ; x \<in> X \<rbrakk> \<Longrightarrow> x \<in> src.\<S>\<close> by auto lemma \<^marker>\<open>tag (proof) aponly\<close> subst_eq_classes_D2: \<open>X \<in> subst_eq_classes \<Longrightarrow> X \<in> eq_classes\<close> by auto lemma \<^marker>\<open>tag (proof) aponly\<close> subst_classes_disj[simp]: \<open>\<lbrakk> X \<in> subst_eq_classes ; Y \<in> subst_eq_classes ; x \<in> X ; x \<in> Y \<rbrakk> \<Longrightarrow> X = Y\<close> using subst_eq_classes_D2 eq_classes_disj by metis lemma \<^marker>\<open>tag (proof) aponly\<close> subst_eq_classes_un[simp]: \<open>\<Union> subst_eq_classes = src.\<S>\<close> by auto lemma \<^marker>\<open>tag (proof) aponly\<close> subst_eq_class_non_empty[dest]: \<open>X \<in> subst_eq_classes \<Longrightarrow> X \<noteq> \<emptyset>\<close> by auto end context particular_struct_morphism_sig begin end locale choice_function = fixes f :: \<open>'a set \<Rightarrow> 'a\<close> assumes f_in_X1: \<open>\<forall>X. X \<noteq> \<emptyset> \<longrightarrow> f X \<in> X\<close> locale particular_struct_morphism_with_choice = particular_struct_morphism where Typ\<^sub>p\<^sub>1 = Typ\<^sub>p\<^sub>1 and Typ\<^sub>p\<^sub>2 = Typ\<^sub>p\<^sub>2 and Typ\<^sub>q = Typ\<^sub>q + choice_function f for f :: \<open>'p\<^sub>1 set \<Rightarrow> 'p\<^sub>1\<close> and Typ\<^sub>p\<^sub>1 :: \<open>'p\<^sub>1 itself\<close> and Typ\<^sub>p\<^sub>2 :: \<open>'p\<^sub>2 itself\<close> and Typ\<^sub>q :: \<open>'q itself\<close> begin inductive_set delta :: \<open>('p\<^sub>2 \<times> 'p\<^sub>1) set\<close> (\<open>\<Delta>\<close>) where delta_substantial: \<open>X \<in> subst_eq_classes \<Longrightarrow> (\<phi> (f X), f X) \<in> \<Delta>\<close> | delta_moment: \<open>\<lbrakk> (x\<^sub>1,y\<^sub>1) \<in> \<Delta> ; x\<^sub>2 \<in> src.\<P> ; \<phi> x\<^sub>2 \<triangleleft>\<^sub>t x\<^sub>1 \<rbrakk> \<Longrightarrow> (\<phi> x\<^sub>2,f (eq_class x\<^sub>2)) \<in> \<Delta>\<close> lemma \<^marker>\<open>tag (proof) aponly\<close> f_in_X[simp]: \<open>f X \<in> X \<longleftrightarrow> X \<noteq> \<emptyset>\<close> using f_in_X1 by auto lemma \<^marker>\<open>tag (proof) aponly\<close> f_eq_class[simp]: \<open>x \<in> src.\<P> \<Longrightarrow> \<phi> (f (eq_class x)) = \<phi> x\<close> by (metis eq_class_def eq_class_non_empty f_in_X1 mem_Collect_eq same_image_E) lemma \<^marker>\<open>tag (proof) aponly\<close> f_eq_class_in_end[intro!,simp]: \<open>x \<in> src.\<P> \<Longrightarrow> f (eq_class x) \<in> src.\<P>\<close> by (metis eq_class_non_empty eq_class_unique f_in_X1) lemma \<^marker>\<open>tag (proof) aponly\<close> x_sim_f_eq_class[simp,intro!]: \<open>x \<sim> f (eq_class x)\<close> if \<open>x \<in> src.\<P>\<close> for x by (auto simp: that) lemma \<^marker>\<open>tag (proof) aponly\<close> delta_dom: assumes \<open>(x,y) \<in> \<Delta>\<close> shows \<open>x \<in> \<phi> ` src.\<P> \<and> y \<in> src.\<P>\<close> using assms by (induct rule: delta.induct ; safe? ; simp) lemma \<^marker>\<open>tag (proof) aponly\<close> delta_domE: assumes \<open>(x,y) \<in> \<Delta>\<close> obtains z where \<open>z \<in> src.\<P>\<close> \<open>x = \<phi> z\<close> \<open>\<phi> z \<in> tgt.\<P>\<close> \<open>y \<in> src.\<P>\<close> using assms[THEN delta_dom] by (elim conjE imageE ; simp add: morph_preserves_particulars) lemma \<^marker>\<open>tag (proof) aponly\<close> delta_img: assumes \<open>(x,y) \<in> \<Delta>\<close> shows \<open>\<phi> y = x\<close> proof - show ?thesis using assms by (induct ; hypsubst_thin? ; simp) qed declare [[smt_timeout=600]] lemma \<^marker>\<open>tag (proof) aponly\<close> delta_E1: assumes \<open>(x,y) \<in> \<Delta>\<close> obtains x\<^sub>s where \<open>x = \<phi> x\<^sub>s\<close> \<open>y = f (eq_class x\<^sub>s)\<close> using assms apply (cases ; simp) using f_eq_class by blast lemma \<^marker>\<open>tag (proof) aponly\<close> delta_E2: assumes \<open>(x,y) \<in> \<Delta>\<close> obtains X where \<open>X \<in> eq_classes\<close> \<open>x = \<phi> y\<close> \<open>y = f X\<close> using assms apply (cases ; simp) subgoal by auto by blast lemma \<^marker>\<open>tag (proof) aponly\<close> delta_single: assumes \<open>(x,y\<^sub>1) \<in> \<Delta>\<close> \<open>(x,y\<^sub>2) \<in> \<Delta>\<close> shows \<open>y\<^sub>1 = y\<^sub>2\<close> using assms proof - obtain doms[simp,intro!]: \<open>y\<^sub>1 \<in> src.\<P>\<close> \<open>y\<^sub>2 \<in> src.\<P>\<close> \<open>x \<in> \<phi> ` src.\<P>\<close> and phi_y[simp]: \<open>\<phi> y\<^sub>1 = x\<close> \<open>\<phi> y\<^sub>2 = x\<close> using assms by (simp add: delta_dom delta_img) show ?thesis using assms doms phi_y proof (induct arbitrary: y\<^sub>2) show G1: \<open>f X = y\<^sub>2\<close> if A: \<open>X \<in> subst_eq_classes\<close> \<open>(\<phi> (f X), y\<^sub>2) \<in> \<Delta>\<close> and doms: \<open>f X \<in> src.\<P>\<close> \<open>y\<^sub>2 \<in> src.\<P>\<close> \<open>\<phi> (f X) \<in> \<phi> ` src.\<P>\<close> \<open>\<phi> (f X) = \<phi> (f X)\<close> \<open>\<phi> y\<^sub>2 = \<phi> (f X)\<close> for X y\<^sub>2 proof - have B: \<open>f X \<in> src.\<S>\<close> using A by blast then have C: \<open>\<phi> (f X) \<in> tgt.\<S>\<close> using morph_preserves_substantials by blast from doms(2) show \<open>f X = y\<^sub>2\<close> proof (cases y\<^sub>2 rule: src.endurant_cases) assume substantial: \<open>y\<^sub>2 \<in> src.\<S>\<close> then obtain D: \<open>\<phi> y\<^sub>2 \<in> tgt.\<S>\<close> \<open>\<phi> (f X) \<in> tgt.\<S>\<close> using \<open>f X \<in> src.\<S>\<close> by (meson inherence_sig.\<S>_E morph_preserves_substantials) show ?thesis using A(2) apply (cases rule: delta.cases) subgoal by (metis (mono_tags, lifting) A(1) B doms(2) eq_class_I eq_classes_I f_in_X1 mem_Collect_eq particular_struct_morphism.eq_classes_disj particular_struct_morphism.same_image_I particular_struct_morphism_axioms src.endurantI3 subst_eq_class_non_empty subst_eq_classes_def) using C by auto next assume moment: \<open>y\<^sub>2 \<in> src.\<M>\<close> show ?thesis using A(2) apply (cases) subgoal using moment by blast by (metis C inherence_sig.\<M>_I inherence_sig.\<S>_E) qed qed fix x\<^sub>3 y\<^sub>3 x\<^sub>4 y\<^sub>4 assume A: \<open>(x\<^sub>3, y\<^sub>3) \<in> \<Delta>\<close> \<open>\<And>y\<^sub>2. \<lbrakk> (x\<^sub>3, y\<^sub>2) \<in> \<Delta> ; y\<^sub>3 \<in> src.\<P> ; y\<^sub>2 \<in> src.\<P> ; x\<^sub>3 \<in> \<phi> ` src.\<P> ; \<phi> y\<^sub>3 = x\<^sub>3 ; \<phi> y\<^sub>2 = x\<^sub>3 \<rbrakk> \<Longrightarrow> y\<^sub>3 = y\<^sub>2\<close> \<open>x\<^sub>4 \<in> src.\<P>\<close> \<open>\<phi> x\<^sub>4 \<triangleleft>\<^sub>t x\<^sub>3\<close> \<open>(\<phi> x\<^sub>4, y\<^sub>4) \<in> \<Delta>\<close> \<open>f (eq_class x\<^sub>4) \<in> src.\<P>\<close> \<open>y\<^sub>4 \<in> src.endurants\<close> \<open>\<phi> x\<^sub>4 \<in> \<phi> ` src.endurants\<close> \<open>\<phi> (f (eq_class x\<^sub>4)) = \<phi> x\<^sub>4\<close> \<open>\<phi> y\<^sub>4 = \<phi> x\<^sub>4\<close> then have \<open>eq_class x\<^sub>4 = eq_class y\<^sub>4\<close> using A(3) A(7) by auto obtain Y where Y: \<open>Y \<in> eq_classes\<close> \<open>y\<^sub>4 = f Y\<close> using delta_E2[OF \<open>(\<phi> x\<^sub>4, y\<^sub>4) \<in> \<Delta>\<close>] by metis have \<open>Y = eq_class y\<^sub>4\<close> using Y(1) Y(2) eq_class_unique by blast then have \<open>f (eq_class y\<^sub>4) = y\<^sub>4\<close> using Y(2) by simp then show \<open>f (eq_class x\<^sub>4) = y\<^sub>4\<close> using \<open>eq_class x\<^sub>4 = eq_class y\<^sub>4\<close> by simp qed qed lemma \<^marker>\<open>tag (proof) aponly\<close> delta_range: assumes \<open>x \<in> \<phi> ` src.\<P>\<close> shows \<open>\<exists>y. (x,y) \<in> \<Delta>\<close> using assms apply (induct x rule: wfP_induct[OF tgt.inherence_is_noetherian] ; simp) proof - fix x assume A: \<open>\<forall>y. x \<triangleleft>\<^sub>t y \<longrightarrow> y \<in> \<phi> ` src.\<P> \<longrightarrow> (\<exists>ya. (y, ya) \<in> \<Delta>)\<close> \<open>x \<in> \<phi> ` src.\<P>\<close> then obtain x\<^sub>s where B[simp]: \<open>x = \<phi> x\<^sub>s\<close> \<open>x\<^sub>s \<in> src.\<P>\<close> using A(2) by blast have D: \<open>eq_class x\<^sub>s \<in> subst_eq_classes\<close> if \<open>x\<^sub>s \<in> src.\<S>\<close> using that by auto have E: \<open>\<phi> (f (eq_class x\<^sub>s)) = \<phi> x\<^sub>s\<close> using B(2) by simp have substantial: \<open>\<exists>y. (\<phi> x\<^sub>s, y) \<in> \<Delta>\<close> if \<open>x\<^sub>s \<in> src.\<S>\<close> proof- have \<open>(\<phi> x\<^sub>s, f (eq_class x\<^sub>s)) \<in> \<Delta>\<close> if \<open>x\<^sub>s \<in> src.\<S>\<close> using delta.intros(1)[OF D,simplified E,OF that] . then show ?thesis using that by blast qed have moment: \<open>\<exists>y. (\<phi> x\<^sub>s, y) \<in> \<Delta>\<close> if as: \<open>x\<^sub>s \<in> src.\<M>\<close> proof- obtain y\<^sub>s where F: \<open>x\<^sub>s \<triangleleft>\<^sub>s y\<^sub>s\<close> using as by blast then obtain G: \<open>y\<^sub>s \<in> src.\<P>\<close> \<open>\<phi> x\<^sub>s \<triangleleft>\<^sub>t \<phi> y\<^sub>s\<close> using morph_reflects_inherence by auto then have H: \<open>\<phi> y\<^sub>s \<in> \<phi> ` src.\<P>\<close> by blast obtain y where I: \<open>(\<phi> y\<^sub>s,y) \<in> \<Delta>\<close> using A(1)[rule_format,simplified,OF G(2) H] by blast have \<open>(\<phi> x\<^sub>s, f (eq_class x\<^sub>s)) \<in> \<Delta>\<close> using delta.intros(2)[OF I B(2) G(2)] by blast then show ?thesis by blast qed show \<open>\<exists>y. (x, y) \<in> \<Delta>\<close> apply (simp) using B(2) apply (cases x\<^sub>s rule: src.endurant_cases) using substantial moment by auto qed lemma \<^marker>\<open>tag (proof) aponly\<close> delta_inj: assumes \<open>(x\<^sub>1,y) \<in> \<Delta>\<close> \<open>(x\<^sub>2,y) \<in> \<Delta>\<close> shows \<open>x\<^sub>1 = x\<^sub>2\<close> using assms delta_img by auto definition someInvMorph :: \<open>'p\<^sub>2 \<Rightarrow> 'p\<^sub>1\<close> where \<open>someInvMorph x \<equiv> if x \<in> \<phi> ` src.\<P> then THE y. (x,y) \<in> \<Delta> else undefined\<close> lemma \<^marker>\<open>tag (proof) aponly\<close> someInvMorph_ex: assumes \<open>x \<in> \<phi> ` src.\<P>\<close> shows \<open>\<exists>!y. (x,y) \<in> \<Delta>\<close> using assms by (intro ex_ex1I ; simp add: delta_range delta_single) lemma \<^marker>\<open>tag (proof) aponly\<close> someInvMorph_eq_iff: assumes \<open>x \<in> \<phi> ` src.\<P>\<close> shows \<open>someInvMorph x = y \<longleftrightarrow> (x,y) \<in> \<Delta>\<close> apply (simp add: someInvMorph_def assms) apply (rule the1I2[OF someInvMorph_ex[OF assms]] ; intro iffI ; simp?) using delta_single by simp lemma \<^marker>\<open>tag (proof) aponly\<close> someInvMorph_inj_phi_img: \<open>inj_on someInvMorph (\<phi> ` src.\<P>)\<close> apply (intro inj_onI) subgoal premises P for x y supply S = P(1,2)[THEN someInvMorph_eq_iff,simplified P(3)] using S(1)[simplified S(2)] by (meson P(1) delta_range delta_inj) done lemma \<^marker>\<open>tag (proof) aponly\<close> someInvMorph_delta_I[intro!]: assumes \<open>x \<in> \<phi> ` src.\<P>\<close> \<open>y = someInvMorph x\<close> shows \<open>(x,y) \<in> \<Delta>\<close> using assms someInvMorph_eq_iff by blast lemma \<^marker>\<open>tag (proof) aponly\<close> someInvMorph_delta_E: assumes \<open>(x,y) \<in> \<Delta>\<close> obtains \<open>x \<in> \<phi> ` src.\<P>\<close> \<open>y = someInvMorph x\<close> using assms by (metis delta_dom someInvMorph_eq_iff) lemma \<^marker>\<open>tag (proof) aponly\<close> someInvMorph_phi_phi[simp]: assumes \<open>x \<in> src.\<P>\<close> shows \<open>\<phi> (someInvMorph (\<phi> x)) = \<phi> x\<close> apply (simp add: someInvMorph_def imageI[OF assms]) apply (rule the1I2[of \<open>\<lambda>y. (\<phi> x, y) \<in> \<Delta>\<close>]) subgoal using assms by (simp add: someInvMorph_ex) using assms delta_img by blast lemma \<^marker>\<open>tag (proof) aponly\<close> someInvMorph_as_inv[simp]: \<open>x \<in> \<phi> ` src.\<P> \<Longrightarrow> \<phi> (someInvMorph x) = x\<close> by auto lemma \<^marker>\<open>tag (proof) aponly\<close> someInvMorph_delta_simp: \<open>(x,y) \<in> \<Delta> \<longleftrightarrow> x \<in> \<phi> ` src.\<P> \<and> y = someInvMorph x\<close> using someInvMorph_delta_E by blast lemma \<^marker>\<open>tag (proof) aponly\<close> someInvMorph_image: \<open>someInvMorph ` \<phi> ` src.\<P> \<subseteq> src.\<P>\<close> using delta_dom by blast lemma \<^marker>\<open>tag (proof) aponly\<close> someInvMorphImgUnique: assumes \<open>x \<sim> y\<close> \<open>x \<in> someInvMorph ` \<phi> ` src.\<P>\<close> \<open>y \<in> someInvMorph ` \<phi> ` src.\<P>\<close> shows \<open>x = y\<close> using assms by auto context begin interpretation img: particular_struct_surjection \<Gamma>\<^sub>1 \<open>MorphImg \<phi> \<Gamma>\<^sub>1\<close> \<phi> by simp declare img.morph_is_surjective[simp del] interpretation some_inv_to_some_inv_img: particular_struct_bijection_1 \<open>MorphImg \<phi> \<Gamma>\<^sub>1\<close> someInvMorph \<open>TYPE('p\<^sub>2)\<close> \<open>TYPE('p\<^sub>1)\<close> apply (intro img.tgt.inj_morph_img_isomorphism[simplified morph_image_tgt_struct]) subgoal using someInvMorph_inj_phi_img img.morph_is_surjective by auto using src.injection_to_ZF_exist by blast private lemma \<^marker>\<open>tag (proof) aponly\<close> A1[simp]: \<open>some_inv_to_some_inv_img.tgt.\<Q>\<S> = src.\<Q>\<S>\<close> by auto private lemma \<^marker>\<open>tag (proof) aponly\<close> S1[simp]: \<open>some_inv_to_some_inv_img.tgt.endurants = someInvMorph ` \<phi> ` src.\<P>\<close> using img.morph_is_surjective by auto private lemma \<^marker>\<open>tag (proof) aponly\<close> C1: \<open>someInvMorph ` \<phi> ` src.\<P> \<subseteq> src.\<P>\<close> using someInvMorph_image by blast private lemma \<^marker>\<open>tag (proof) aponly\<close> A2: \<open>x \<in> src.\<P>\<close> if \<open>x \<in> someInvMorph ` \<phi> ` src.\<P>\<close> for x using C1 that by blast private lemma \<^marker>\<open>tag (proof) aponly\<close> A3[simp]: \<open>some_inv_to_some_inv_img.img_inheres_in x y \<longleftrightarrow> (\<exists>x\<^sub>1 y\<^sub>1. img.src_inheres_in x\<^sub>1 y\<^sub>1 \<and> x = someInvMorph (\<phi> x\<^sub>1) \<and> y = someInvMorph(\<phi> y\<^sub>1))\<close> for x y apply (intro iffI ; (elim exE conjE)? ; hypsubst_thin?) subgoal by (metis delta_dom morph_image_inheres_in_E morph_reflects_inherence someInvMorph_as_inv someInvMorph_delta_I some_inv_to_some_inv_img.inv_inheres_in_reflects some_inv_to_some_inv_img.inv_morph_morph some_inv_to_some_inv_img.tgt.inherence_scope) subgoal for x\<^sub>1 y\<^sub>1 by blast done private lemma \<^marker>\<open>tag (proof) aponly\<close> A4[simp]: \<open>some_inv_to_some_inv_img.img_towards x y \<longleftrightarrow> (\<exists>x\<^sub>1 y\<^sub>1. img.src_towards x\<^sub>1 y\<^sub>1 \<and> x = someInvMorph (\<phi> x\<^sub>1) \<and> y = someInvMorph(\<phi> y\<^sub>1))\<close> for x y apply (intro iffI ; (elim exE conjE)? ; hypsubst_thin?) subgoal by (metis S1 delta_dom img.I_img_eq_tgt_I morph_image_def morph_image_towards_D morph_reflects_towardness someInvMorph_as_inv someInvMorph_delta_I some_inv_to_some_inv_img.inv_morph_morph some_inv_to_some_inv_img.inv_towardness_reflects some_inv_to_some_inv_img.morph_image_towards_D(1,2)) subgoal for x\<^sub>1 y\<^sub>1 apply (simp only: particular_struct_morphism_image_simps) by blast done private lemma \<^marker>\<open>tag (proof) aponly\<close> A5[simp]: \<open>some_inv_to_some_inv_img.img_assoc_quale x q \<longleftrightarrow> (\<exists>y. img.src_assoc_quale y q \<and> x = someInvMorph (\<phi> y))\<close> for x q apply (intro iffI ; (elim exE conjE)? ; hypsubst_thin?) subgoal by (metis delta_E2 delta_dom img.I_img_eq_tgt_I morph_image_def morph_image_dests(9) morph_reflects_quale_assoc someInvMorph_delta_I some_inv_to_some_inv_img.I_img_eq_tgt_I some_inv_to_some_inv_img.morph_image_E some_inv_to_some_inv_img.morph_image_iff some_inv_to_some_inv_img.morph_reflects_quale_assoc some_inv_to_some_inv_img.tgt.assoc_quale_scopeD(1) src.\<P>_def) subgoal for x\<^sub>1 apply (simp only: particular_struct_morphism_image_simps) by blast done private lemma \<^marker>\<open>tag (proof) aponly\<close> ex_simp1: \<open>(\<exists>x \<in> X. y = x) \<longleftrightarrow> y \<in> X\<close> for y :: 'p\<^sub>1 and X by blast private lemma \<^marker>\<open>tag (proof) aponly\<close> A6: \<open>\<exists>y\<in>someInvMorph ` \<phi> ` src.\<P>. z = y\<close> if as: \<open>x \<in> someInvMorph ` \<phi> ` src.\<P>\<close> \<open>img.src_towards x z\<close> for x z proof (simp only: ex_simp1) obtain y where Y: \<open>y \<in> src.\<P>\<close> \<open>x = someInvMorph (\<phi> y)\<close> using as imageE by blast have AA: \<open>img.src_towards (someInvMorph (\<phi> y)) z\<close> using as(2) Y by simp then have \<open>img.tgt_towards (\<phi> (someInvMorph (\<phi> y))) (\<phi> z)\<close> using Y(1) by (meson particular_struct_morphism_image_simps(5)) then have \<open>img.tgt_towards (\<phi> y) (\<phi> z)\<close> using someInvMorph_phi_phi Y by simp then have \<open>some_inv_to_some_inv_img.tgt_towards (someInvMorph (\<phi> y)) (someInvMorph (\<phi> z))\<close> apply (simp only: particular_struct_morphism_image_simps ; elim exE conjE) by blast then have \<open>some_inv_to_some_inv_img.tgt_towards x (someInvMorph (\<phi> z))\<close> using Y(2) by simp then have BB: \<open>img.src_towards x (someInvMorph (\<phi> z))\<close> by (metis A2 Y(2) \<open>some_inv_to_some_inv_img.src_towards (\<phi> (someInvMorph (\<phi> y))) (\<phi> z)\<close> img.I_img_eq_tgt_I img.morph_reflects_towardness morph_image_def morph_image_towards_D(2) someInvMorph_as_inv some_inv_to_some_inv_img.morph_image_towards_D(2) that(1)) have CC: \<open>someInvMorph (\<phi> z) = z\<close> using src.towardness_single as(2) BB by simp then show \<open>z \<in> someInvMorph ` \<phi> ` src.endurants\<close> using CC by (metis \<open>some_inv_to_some_inv_img.src_towards (\<phi> y) (\<phi> z)\<close> image_eqI morph_image_towards_E) qed interpretation some_inv_img_to_src: pre_particular_struct_morphism \<open>MorphImg (someInvMorph \<circ> \<phi>) \<Gamma>\<^sub>1\<close> \<Gamma>\<^sub>1 id \<open>TYPE('p\<^sub>1)\<close> \<open>TYPE('p\<^sub>1)\<close> proof - show \<open>pre_particular_struct_morphism (MorphImg (someInvMorph \<circ> \<phi>) \<Gamma>\<^sub>1) \<Gamma>\<^sub>1 id\<close> apply (simp only: morph_img_comp ; unfold_locales ; (simp only: id_def A1 S1 A3 A4 A5)?) subgoal AX2 using A2 . subgoal AX3 for x y by (metis A2 S1 img.I_img_eq_tgt_I img.morph_reflects_inherence morph_image_def someInvMorph_as_inv someInvMorph_phi_phi some_inv_to_some_inv_img.I_img_eq_tgt_I some_inv_to_some_inv_img.morph_image_E src.inherence_scope) subgoal AX4 for x z by (metis AX2 S1 img.morph_preserves_particulars img.morph_reflects_inherence someInvMorph_phi_phi some_inv_to_some_inv_img.I_img_eq_tgt_I some_inv_to_some_inv_img.morph_image_I src.endurantI2 src.moment_non_migration) subgoal AX5 for x y (* slow *) by (metis (no_types, lifting) A4 AX2 S1 img.morph_reflects_towardness morph_image_particulars particular_struct_morphism_sig.morph_image_iff someInvMorph_as_inv some_inv_to_some_inv_img.I_img_eq_tgt_I some_inv_to_some_inv_img.morph_reflects_towardness) subgoal AX6 for x z using A6 . subgoal AX7 for x q by (metis A2 S1 morph_image_particulars morph_reflects_quale_assoc someInvMorph_as_inv someInvMorph_phi_phi some_inv_to_some_inv_img.I_img_eq_tgt_I some_inv_to_some_inv_img.morph_image_iff src.assoc_quale_scopeD(1)) done qed private lemma \<^marker>\<open>tag (proof) aponly\<close> A7: \<open>\<exists>w\<^sub>s \<in> src.\<W>. w \<subseteq> w\<^sub>s\<close> if as: \<open>w \<in> some_inv_to_some_inv_img.\<W>\<^sub>\<phi>\<close> for w proof (rule ccontr ; simp) assume AA: \<open>\<forall>x\<in>src.\<W>. \<not> w \<subseteq> x\<close> then have BB: False if \<open>w\<^sub>1 \<in> src.\<W>\<close> \<open>w \<subseteq> w\<^sub>1\<close> for w\<^sub>1 using that by metis obtain w\<^sub>2 where CC: \<open>some_inv_to_some_inv_img.world_corresp w\<^sub>2 w\<close> using as by blast then obtain DD: \<open>w\<^sub>2 \<in> some_inv_to_some_inv_img.src.\<W>\<close> \<open>\<And>x. x \<in> some_inv_to_some_inv_img.src.\<P> \<Longrightarrow> x \<in> w\<^sub>2 \<longleftrightarrow> someInvMorph x \<in> w\<close> using some_inv_to_some_inv_img.world_corresp_E[OF CC] by metis have EE: \<open>w\<^sub>2 \<in> ((`) \<phi>) ` src.\<W>\<close> using DD(1) by (simp add: morph_image_worlds_src) then obtain w\<^sub>3 where FF: \<open>w\<^sub>2 = \<phi> ` w\<^sub>3\<close> \<open>w\<^sub>3 \<in> src.\<W>\<close> by blast have GG: \<open>\<And>x. x \<in> \<phi> ` src.\<P> \<Longrightarrow> x \<in> \<phi> ` w\<^sub>3 \<longleftrightarrow> someInvMorph x \<in> w\<close> using DD(2) img.morph_is_surjective by (simp only: FF(1) ; simp) have HH: \<open>\<And>x. x \<in> \<phi> ` w\<^sub>3 \<Longrightarrow> someInvMorph x \<in> w\<close> using GG src.worlds_are_made_of_particulars FF(2) by blast then have II: \<open>\<And>x. x \<in> w\<^sub>3 \<Longrightarrow> someInvMorph (\<phi> x) \<in> w\<close> by blast then have JJ: \<open>\<And>x. x \<in> w\<^sub>3 \<Longrightarrow> \<phi> (someInvMorph (\<phi> x)) \<in> \<phi> ` w\<close> by blast then have KK: \<open>\<And>x. x \<in> w\<^sub>3 \<Longrightarrow> (\<phi> x) \<in> \<phi> ` w\<close> using FF(2) src.\<P>_I by auto show False by (metis A2 BB DD(1) DD(2) img.morph_worlds_correspond_tgt_src img.world_corresp_def morph_image_particulars someInvMorph_as_inv some_inv_to_some_inv_img.I_img_eq_tgt_I some_inv_to_some_inv_img.morph_image_iff some_inv_to_some_inv_img.morph_is_surjective some_inv_to_some_inv_img.tgt.\<P>_I subsetI that) qed private abbreviation srcWorlds (\<open>\<W>\<^sub>A\<close>) where \<open>\<W>\<^sub>A \<equiv> src.\<W>\<close> private abbreviation srcParticulars (\<open>\<P>\<^sub>A\<close>) where \<open>\<P>\<^sub>A \<equiv> src.\<P>\<close> private abbreviation srcInheresIn (infix \<open>\<triangleleft>\<^sub>A\<close> 75) where \<open>(\<triangleleft>\<^sub>A) \<equiv> src_inheres_in\<close> private abbreviation srcAssocQuale (infix \<open>\<leadsto>\<^sub>A\<close> 75) where \<open>(\<leadsto>\<^sub>A) \<equiv> src_assoc_quale\<close> private abbreviation srcQualia (\<open>\<Q>\<^sub>A\<close>) where \<open>\<Q>\<^sub>A \<equiv> img.\<Q>\<^sub>s\<close> private abbreviation srcQualitySpaces (\<open>\<Q>\<S>\<^sub>A\<close>) where \<open>\<Q>\<S>\<^sub>A \<equiv> some_inv_img_to_src.tgt.\<Q>\<S>\<close> private abbreviation revImageParticulars (\<open>\<P>\<^sub>R\<close>) where \<open>\<P>\<^sub>R \<equiv> some_inv_to_some_inv_img.tgt.endurants\<close> private abbreviation revImageInheresIn (infix \<open>\<triangleleft>\<^sub>R\<close> 75) where \<open>(\<triangleleft>\<^sub>R) \<equiv> some_inv_img_to_src.src_inheres_in\<close> private lemma \<^marker>\<open>tag (proof) aponly\<close> some_inv_to_some_inv_img_img_inheres_in_eq: \<open>some_inv_to_some_inv_img.img_inheres_in = (\<triangleleft>\<^sub>R)\<close> by (intro ext ; simp) private abbreviation revImageAssocQuale (infix \<open>\<leadsto>\<^sub>R\<close> 75) where \<open>(\<leadsto>\<^sub>R) \<equiv> some_inv_to_some_inv_img.img_assoc_quale\<close> private abbreviation revImageQualia (\<open>\<Q>\<^sub>R\<close>) where \<open>\<Q>\<^sub>R \<equiv> some_inv_img_to_src.\<Q>\<^sub>s\<close> private abbreviation revImageWorldCorresp (infix \<open>\<Leftrightarrow>\<^sub>R\<close> 75) where \<open>(\<Leftrightarrow>\<^sub>R) \<equiv> some_inv_img_to_src.world_corresp\<close> private abbreviation revImageWorlds (\<open>\<W>\<^sub>R\<close>) where \<open>\<W>\<^sub>R \<equiv> some_inv_img_to_src.src.\<W>\<close> private lemma \<^marker>\<open>tag (proof) aponly\<close> some_inv_to_some_inv_img_\<W>\<^sub>\<phi>: \<open>some_inv_to_some_inv_img.\<W>\<^sub>\<phi> = \<W>\<^sub>R\<close> by auto private abbreviation imageInheresIn (infix \<open>\<triangleleft>\<^sub>I\<close> 75) where \<open>(\<triangleleft>\<^sub>I) \<equiv> img.tgt_inheres_in\<close> private abbreviation imageWorlds (\<open>\<W>\<^sub>I\<close>) where \<open>\<W>\<^sub>I \<equiv> img.tgt.\<W>\<close> private abbreviation imageAssocQuale (infix \<open>\<leadsto>\<^sub>I\<close> 75) where \<open>(\<leadsto>\<^sub>I) \<equiv> img.tgt_assoc_quale\<close> private abbreviation imageQualia (\<open>\<Q>\<^sub>I\<close>) where \<open>\<Q>\<^sub>I \<equiv> img.\<Q>\<^sub>t\<close> private abbreviation imageParticulars (\<open>\<P>\<^sub>I\<close>) where \<open>\<P>\<^sub>I \<equiv> img.tgt.\<P>\<close> private abbreviation imageWorldCorresp (infix \<open>\<Leftrightarrow>\<^sub>I\<close> 75) where \<open>(\<Leftrightarrow>\<^sub>I) \<equiv> img.world_corresp\<close> private abbreviation someInvMorphAbbrev (\<open>\<phi>\<^sub>\<leftarrow>\<close>) where \<open>\<phi>\<^sub>\<leftarrow> \<equiv> someInvMorph\<close> interpretation some_inv_img_to_src: particular_struct_morphism \<open>MorphImg (someInvMorph \<circ> \<phi>) \<Gamma>\<^sub>1\<close> \<Gamma>\<^sub>1 id \<open>TYPE('p\<^sub>1)\<close> \<open>TYPE('p\<^sub>1)\<close> apply (unfold_locales) subgoal G1 for w\<^sub>s apply (auto ; simp only: particular_struct_morphism_sig.world_corresp_def) apply (simp only: particular_struct_morphism_image_simps possible_worlds_sig.\<P>_def id_def ; simp) apply (elim exE conjE ; simp) subgoal for w\<^sub>1 w\<^sub>2 apply (intro exI[of _ w\<^sub>2]) (* apply (intro exI[of _ w\<^sub>s]) *) apply (intro conjI allI impI ballI iffI ; (elim exE conjE)? ; simp? ; hypsubst_thin?) subgoal for _ y _ w\<^sub>4 by (metis A2 S1 img.I_img_eq_tgt_I img.world_corresp_def morph_image_def someInvMorph_as_inv some_inv_to_some_inv_img.I_img_eq_tgt_I some_inv_to_some_inv_img.morph_image_iff some_inv_to_some_inv_img.src_world_corresp_image some_inv_to_some_inv_img.tgt.\<P>_I some_inv_to_some_inv_img.world_corresp_def src_to_img1_world_corresp) subgoal for _ y _ w\<^sub>4 by (smt image_iff img.I_img_eq_tgt_I img.world_preserve_img morph_image_def someInvMorph_as_inv some_inv_to_some_inv_img.I_img_eq_tgt_I some_inv_to_some_inv_img.morph_image_iff some_inv_to_some_inv_img.tgt.\<P>_I some_inv_to_some_inv_img.world_preserve_img) done done subgoal G2 for w\<^sub>t apply (auto ; simp only: particular_struct_morphism_sig.world_corresp_def) apply (simp only: particular_struct_morphism_image_simps possible_worlds_sig.\<P>_def id_def ) subgoal premises P apply (rule exE[OF img.morph_worlds_correspond_src_tgt[OF P]]) subgoal for w\<^sub>1 apply (elim img.world_corresp_E) subgoal premises Q apply (rule exE[OF some_inv_to_some_inv_img.morph_worlds_correspond_src_tgt[OF Q(2)]]) subgoal for w\<^sub>2 apply (elim some_inv_to_some_inv_img.world_corresp_E) subgoal premises T apply (rule T(2)[THEN A7, THEN bexE]) subgoal premises V for w\<^sub>3 apply (intro exI[of _ w\<^sub>2] conjI ballI iffI ; (intro CollectI)? ; (elim UnionE CollectE exE conjE)? ; simp) prefer 2 subgoal G2_2 using P Q T V(1) V(2)[THEN subsetD] by (metis A2 S1 morph_image_particulars someInvMorph_as_inv some_inv_to_some_inv_img.I_img_eq_tgt_I some_inv_to_some_inv_img.morph_image_iff some_inv_to_some_inv_img.tgt.\<P>_I) prefer 2 subgoal G2_3 using P Q T V(1) V(2)[THEN subsetD] by (metis img.world_preserve_img morph_image_particulars someInvMorph_as_inv some_inv_to_some_inv_img.I_img_eq_tgt_I some_inv_to_some_inv_img.morph_image_iff some_inv_to_some_inv_img.tgt.\<P>_I some_inv_to_some_inv_img.world_preserve_img src.\<P>_I) subgoal G2_1 apply (intro exI[of _ w\<^sub>1] conjI exI[of _ w\<^sub>t] ) subgoal G2_1_1 using P Q T V apply auto subgoal G2_1_1_1 for x by (metis some_inv_to_some_inv_img.morph_image_E some_inv_to_some_inv_img.morph_image_def some_inv_to_some_inv_img.morph_is_surjective some_inv_to_some_inv_img.src_world_corresp_image some_inv_to_some_inv_img.tgt.\<P>_I some_inv_to_some_inv_img.world_corresp_E) subgoal G2_1_1_2 for x by blast done subgoal G2_1_2 using P Q T V apply auto subgoal for x by (smt A2 imageI morph_image_particulars possible_worlds_sig.\<P>_I someInvMorph_as_inv) done subgoal G2_1_3 using P Q T V by auto done done done done done done done done done private lemma \<^marker>\<open>tag (proof) aponly\<close> lemma1: \<open>particular_struct_morphism \<Gamma>\<^sub>1 \<Gamma>\<^sub>1 (id \<circ> someInvMorph \<circ> \<phi>)\<close> apply (intro particular_struct_morphism_comp[of _ \<open>MorphImg (someInvMorph \<circ> \<phi>) \<Gamma>\<^sub>1\<close>] particular_struct_morphism_comp[of _ \<open>MorphImg \<phi> \<Gamma>\<^sub>1\<close>]) using img.particular_struct_morphism_axioms some_inv_to_some_inv_img.particular_struct_morphism_axioms some_inv_img_to_src.particular_struct_morphism_axioms by auto interpretation src_to_src: particular_struct_morphism \<Gamma>\<^sub>1 \<Gamma>\<^sub>1 \<open>someInvMorph \<circ> \<phi>\<close> \<open>TYPE('p\<^sub>1)\<close> \<open>TYPE('p\<^sub>1)\<close> using lemma1 by simp private lemma \<^marker>\<open>tag (proof) aponly\<close> someInvMorph_to_endomorphism: \<open>particular_struct_endomorphism \<Gamma>\<^sub>1 (someInvMorph \<circ> \<phi>)\<close> by (intro_locales) private lemma \<^marker>\<open>tag (proof) aponly\<close> someInvMorph_to_eq_class_choice: \<open>(someInvMorph \<circ> \<phi>) x = f (eq_class x)\<close> if \<open>x \<in> \<P>\<^sub>A\<close> using that apply simp by (smt delta_E2 delta_dom f_in_X1 img.eq_class_I img.eq_classes_I img.eq_classes_disj img.eq_classes_non_empty morph_image_I morph_image_def particular_struct_morphism.same_image_I particular_struct_morphism_axioms someInvMorph_delta_I) lemma \<^marker>\<open>tag (proof) aponly\<close> eq_class_choice_inv_morph_ex: \<open>\<exists>\<sigma>. particular_struct_endomorphism \<Gamma>\<^sub>1 \<sigma> \<and> (\<forall>x \<in> src.\<P>. \<sigma> x = f (eq_class x))\<close> by (intro exI[of _ \<open>someInvMorph \<circ> \<phi>\<close>] conjI ballI someInvMorph_to_endomorphism someInvMorph_to_eq_class_choice ; simp) end lemmas eq_class_choice = eq_class_choice_inv_morph_ex end context particular_struct_morphism begin lemma \<^marker>\<open>tag (proof) aponly\<close> choice_from_choice_ex: assumes \<open>x \<in> src.\<P>\<close> \<open>y \<in> src.\<P>\<close> \<open>\<phi> x = \<phi> y\<close> \<open>\<exists>(f :: 'p\<^sub>1 set \<Rightarrow> 'p\<^sub>1). particular_struct_morphism_with_choice \<Gamma>\<^sub>1 \<Gamma>\<^sub>2 \<phi> f\<close> shows \<open>\<exists>(\<sigma> :: 'p\<^sub>1 \<Rightarrow> 'p\<^sub>1). particular_struct_endomorphism \<Gamma>\<^sub>1 \<sigma> \<and> \<sigma> x = y \<and> \<sigma> y = y\<close> proof - obtain f :: \<open>'p\<^sub>1 set \<Rightarrow> 'p\<^sub>1\<close> where \<open>particular_struct_morphism_with_choice \<Gamma>\<^sub>1 \<Gamma>\<^sub>2 \<phi> f\<close> using assms by blast then interpret f_choice: particular_struct_morphism_with_choice \<open>\<Gamma>\<^sub>1\<close> \<open>\<Gamma>\<^sub>2\<close> \<open>\<phi>\<close> \<open>f\<close> by simp define g where \<open>g X \<equiv> if y \<in> X then y else f X\<close> for X interpret g_choice: particular_struct_morphism_with_choice \<open>\<Gamma>\<^sub>1\<close> \<open>\<Gamma>\<^sub>2\<close> \<phi> g apply (unfold_locales) apply (intro allI impI ; simp only: g_def) subgoal for X by (cases \<open>y \<in> X\<close> ; simp) done obtain \<sigma> where A: \<open>particular_struct_endomorphism \<Gamma>\<^sub>1 \<sigma>\<close> \<open>\<And>x. x \<in> src.\<P> \<Longrightarrow> \<sigma> x = g (eq_class x)\<close> using g_choice.eq_class_choice by blast have B: \<open>\<sigma> x = y\<close> by (auto simp: g_def A(2) assms) have C: \<open>\<sigma> y = y\<close> by (auto simp: g_def A(2) assms) show ?thesis by (intro exI[of _ \<sigma>] conjI A(1) B C) qed lemma \<^marker>\<open>tag (proof) aponly\<close> choice_exists: \<open>\<exists>(f :: 'p\<^sub>1 set \<Rightarrow> 'p\<^sub>1). particular_struct_morphism_with_choice \<Gamma>\<^sub>1 \<Gamma>\<^sub>2 \<phi> f\<close> apply (intro exI[of _ "\<lambda>X. SOME x. x \<in> X"]) apply (unfold_locales ; auto) subgoal for X x using someI[of \<open>\<lambda>x. x \<in> X\<close>,of x] by blast done lemma \<^marker>\<open>tag (proof) aponly\<close> choice: assumes \<open>x \<in> src.\<P>\<close> \<open>y \<in> src.\<P>\<close> \<open>\<phi> x = \<phi> y\<close> shows \<open>\<exists>(\<sigma> :: 'p\<^sub>1 \<Rightarrow> 'p\<^sub>1). particular_struct_endomorphism \<Gamma>\<^sub>1 \<sigma> \<and> \<sigma> x = y \<and> \<sigma> y = y\<close> using choice_from_choice_ex[OF assms choice_exists] by blast end end
lemma topological_basis_prod: assumes A: "topological_basis A" and B: "topological_basis B" shows "topological_basis ((\<lambda>(a, b). a \<times> b) ` (A \<times> B))"
require(graphics) require(Matrix) pdf(file="plots/Experiment5b.pdf", width=3.7, height=4.0, family="serif", pointsize=14) data = as.matrix(read.table("results/Experiment5b_times.dat", sep=",")[3])/1000 plot_colors <- c("orangered","orange","cornflowerblue") barplot( data, space = c(0.1,0.1), xlab = "", ylab = "", col=plot_colors, ylim = c(0,1350), log = "", axes = FALSE, names.arg = c("MT-Ops","","Dist-PFor"), args.legend = list(x="topleft", bty="n", bty="n", ncol=1), beside = TRUE, ) axis(2, las=1) mtext(2,text="Execution Time [s]",line=2.8) mtext(1,text="MT-PFor",line=0.2) mtext(1,text="Parallel Configurations",line=2) text(2.73,800,"scale-out") text(2.5,1200,"1x USCensus") box() # box around plot dev.off()
From mathcomp Require Import ssreflect ssrbool ssrnat eqtype seq ssrfun. From fcsl Require Import prelude pred pcm unionmap heap. From HTT Require Import stmod stsep stlog stlogR. From SSL Require Import core. From Hammer Require Import Hammer. (* Configure Hammer *) Set Hammer ATPLimit 60. Unset Hammer Eprover. Unset Hammer Vampire. Add Search Blacklist "fcsl.". Add Search Blacklist "HTT.". Add Search Blacklist "Coq.ssr.ssrfun". Add Search Blacklist "mathcomp.ssreflect.ssrfun". Add Search Blacklist "mathcomp.ssreflect.bigop". Add Search Blacklist "mathcomp.ssreflect.choice". Add Search Blacklist "mathcomp.ssreflect.div". Add Search Blacklist "mathcomp.ssreflect.finfun". Add Search Blacklist "mathcomp.ssreflect.fintype". Add Search Blacklist "mathcomp.ssreflect.path". Add Search Blacklist "mathcomp.ssreflect.tuple". Inductive sll (x : ptr) (s : seq nat) (h : heap) : Prop := | sll_1 of (x) == (null) of (s) == (@nil nat) /\ h = empty | sll_2 of ~~ ((x) == (null)) of exists (v : nat) (s1 : seq nat) (nxt : ptr), exists h_sll_nxts1_0, (s) == (([:: v]) ++ (s1)) /\ h = x :-> (v) \+ x .+ 1 :-> (nxt) \+ h_sll_nxts1_0 /\ sll nxt s1 h_sll_nxts1_0.
data ⊥ : Set where module M₁ where postulate ∥_∥ : Set → Set {-# POLARITY ∥_∥ ++ #-} data D : Set where c : ∥ D ∥ → D module M₂ where postulate _⇒_ : Set → Set → Set lambda : {A B : Set} → (A → B) → A ⇒ B apply : {A B : Set} → A ⇒ B → A → B {-# POLARITY _⇒_ ++ #-} data D : Set where c : D ⇒ ⊥ → D not-inhabited : D → ⊥ not-inhabited (c f) = apply f (c f) d : D d = c (lambda not-inhabited) bad : ⊥ bad = not-inhabited d postulate F₁ : Set → Set → Set₁ → Set₁ → Set₁ → Set {-# POLARITY F₁ _ ++ + - * #-} data D₁ : Set where c : F₁ (D₁ → ⊥) D₁ Set Set Set → D₁ postulate F₂ : ∀ {a} → Set a → Set a → Set a {-# POLARITY F₂ * * ++ #-} data D₂ (A : Set) : Set where c : F₂ A (D₂ A) → D₂ A module _ (A : Set₁) where postulate F₃ : Set → Set {-# POLARITY F₃ ++ #-} data D₃ : Set where c : F₃ Set D₃ → D₃ postulate F₄ : ∀ {a} → Set a → Set a → Set a {-# POLARITY F₄ * ++ #-} data D₄ (A : Set) : Set where c : F₄ (D₄ A) A → D₄ A postulate F₅ : ⦃ _ : Set ⦄ → Set {-# POLARITY F₅ ++ #-} data D₅ : Set where c : F₅ ⦃ D₅ ⦄ → D₅
(* Author: Tobias Nipkow, 2007 *) theory QElin_inf imports LinArith begin subsection {*Quantifier elimination with infinitesimals \label{sec:lin-inf}*} text{* This section formalizes Loos and Weispfenning's quantifier elimination procedure based on (the simulation of) infinitesimals~\cite{LoosW93}. *} fun asubst_peps :: "real * real list \<Rightarrow> atom \<Rightarrow> atom fm" ("asubst\<^sub>+") where "asubst_peps (r,cs) (Less s (d#ds)) = (if d=0 then Atom(Less s ds) else let u = s - d*r; v = d *\<^sub>s cs + ds; less = Atom(Less u v) in if d<0 then less else Or less (Atom(Eq u v)))" | "asubst_peps rcs (Eq r (d#ds)) = (if d=0 then Atom(Eq r ds) else FalseF)" | "asubst_peps rcs a = Atom a" abbreviation subst_peps :: "atom fm \<Rightarrow> real * real list \<Rightarrow> atom fm" ("subst\<^sub>+") where "subst\<^sub>+ \<phi> rcs \<equiv> amap\<^bsub>fm\<^esub> (asubst\<^sub>+ rcs) \<phi>" definition "nolb f xs l x = (\<forall>y\<in>{l<..<x}. y \<notin> LB f xs)" lemma nolb_And[simp]: "nolb (And f g) xs l x = (nolb f xs l x \<and> nolb g xs l x)" apply(clarsimp simp:nolb_def) apply blast done lemma nolb_Or[simp]: "nolb (Or f g) xs l x = (nolb f xs l x \<and> nolb g xs l x)" apply(clarsimp simp:nolb_def) apply blast done declare[[simp_depth_limit=4]] definition "EQ2 = EQ" lemma EQ2_Or[simp]: "EQ2 (Or f g) xs = (EQ2 f xs Un EQ2 g xs)" by(auto simp:EQ2_def) lemma EQ2_And[simp]: "EQ2 (And f g) xs = (EQ2 f xs Un EQ2 g xs)" by(auto simp:EQ2_def) lemma innermost_intvl2: "\<lbrakk> nqfree f; nolb f xs l x; l < x; x \<notin> EQ2 f xs; R.I f (x#xs); l < y; y \<le> x\<rbrakk> \<Longrightarrow> R.I f (y#xs)" unfolding EQ2_def by(blast intro:innermost_intvl) lemma I_subst_peps2: "nqfree f \<Longrightarrow> r+\<langle>cs,xs\<rangle> < x \<Longrightarrow> nolb f xs (r+\<langle>cs,xs\<rangle>) x \<Longrightarrow> \<forall>y \<in> {r+\<langle>cs,xs\<rangle> <.. x}. R.I f (y#xs) \<and> y \<notin> EQ2 f xs \<Longrightarrow> R.I (subst\<^sub>+ f (r,cs)) xs" proof(induct f) case FalseF thus ?case by simp (metis linorder_antisym_conv1 linorder_neq_iff) next case (Atom a) show ?case proof(cases "((r,cs),a)" rule:asubst_peps.cases) case (1 r cs s d ds) { assume "d=0" hence ?thesis using Atom 1 by auto } moreover { assume "d<0" have "s < d*x + \<langle>ds,xs\<rangle>" using Atom 1 by simp moreover have "d*x < d*(r + \<langle>cs,xs\<rangle>)" using `d<0` Atom 1 by (simp add: mult_strict_left_mono_neg) ultimately have "s < d * (r + \<langle>cs,xs\<rangle>) + \<langle>ds,xs\<rangle>" by(simp add:algebra_simps) hence ?thesis using 1 by (auto simp add: iprod_left_add_distrib algebra_simps) } moreover { let ?L = "(s - \<langle>ds,xs\<rangle>) / d" let ?U = "r + \<langle>cs,xs\<rangle>" assume "d>0" hence "?U < x" and "\<forall>y. ?U < y \<and> y < x \<longrightarrow> y \<noteq> ?L" and "\<forall>y. ?U < y \<and> y \<le> x \<longrightarrow> ?L < y" using Atom 1 by(simp_all add:nolb_def depends\<^sub>R_def Ball_def field_simps) hence "?L < ?U \<or> ?L = ?U" by (metis linorder_neqE_linordered_idom order_refl) hence ?thesis using Atom 1 `d>0` by (simp add: iprod_left_add_distrib field_simps) } ultimately show ?thesis by force next case 2 thus ?thesis using Atom by (fastforce simp: nolb_def EQ2_def depends\<^sub>R_def field_simps split: split_if_asm) qed (insert Atom, auto) next case Or thus ?case by(simp add:Ball_def)(metis order_refl innermost_intvl2) qed simp_all declare[[simp_depth_limit=50]] lemma I_subst_peps: "nqfree f \<Longrightarrow> R.I (subst\<^sub>+ f (r,cs)) xs \<Longrightarrow> (\<exists>leps>r+\<langle>cs,xs\<rangle>. \<forall>x. r+\<langle>cs,xs\<rangle> < x \<and> x \<le> leps \<longrightarrow> R.I f (x#xs))" proof(induct f) case TrueF thus ?case by simp (metis less_add_one) next case (Atom a) show ?case proof (cases "((r,cs),a)" rule: asubst_peps.cases) case (1 r cs s d ds) { assume "d=0" hence ?thesis using Atom 1 by auto (metis less_add_one) } moreover { assume "d<0" with Atom 1 have "r + \<langle>cs,xs\<rangle> < (s - \<langle>ds,xs\<rangle>)/d" (is "?a < ?b") by(simp add:field_simps iprod_left_add_distrib) then obtain x where "?a < x" "x < ?b" by(metis dense) hence " \<forall>y. ?a < y \<and> y \<le> x \<longrightarrow> s < d*y + \<langle>ds,xs\<rangle>" using `d<0` by (simp add:field_simps) (metis add_le_cancel_right mult_le_cancel_left order_antisym linear mult.commute xt1(8)) hence ?thesis using 1 `?a<x` by auto } moreover { let ?a = "s - d * r" let ?b = "\<langle>d *\<^sub>s cs + ds,xs\<rangle>" assume "d>0" with Atom 1 have "?a < ?b \<or> ?a = ?b" by auto hence ?thesis proof assume "?a = ?b" thus ?thesis using `d>0` Atom 1 by(simp add:field_simps iprod_left_add_distrib) (metis add_0_left add_less_cancel_right distrib_left mult.commute mult_strict_left_mono) next assume "?a < ?b" { fix x assume "r+\<langle>cs,xs\<rangle> < x \<and> x \<le> r+\<langle>cs,xs\<rangle> + 1" hence "d*(r + \<langle>cs,xs\<rangle>) < d*x" using `d>0` by(metis mult_strict_left_mono) hence "s < d*x + \<langle>ds,xs\<rangle>" using `d>0` `?a < ?b` by (simp add:algebra_simps iprod_left_add_distrib) } thus ?thesis using 1 `d>0` by(force simp: iprod_left_add_distrib) qed } ultimately show ?thesis by (metis less_linear) qed (insert Atom, auto split:split_if_asm intro: less_add_one) next case And thus ?case apply clarsimp apply(rule_tac x="min leps lepsa" in exI) apply simp done next case Or thus ?case by force qed simp_all definition "qe_eps\<^sub>1(f) = (let as = R.atoms\<^sub>0 f; lbs = lbounds as; ebs = ebounds as in list_disj (inf\<^sub>- f # map (subst\<^sub>+ f) lbs @ map (subst f) ebs))" theorem I_eps1: assumes "nqfree f" shows "R.I (qe_eps\<^sub>1 f) xs = (\<exists>x. R.I f (x#xs))" (is "?QE = ?EX") proof let ?as = "R.atoms\<^sub>0 f" let ?ebs = "ebounds ?as" assume ?QE { assume "R.I (inf\<^sub>- f) xs" hence ?EX using `?QE` min_inf[of f xs] `nqfree f` by(auto simp add:qe_eps\<^sub>1_def amap_fm_list_disj) } moreover { assume "\<forall>x \<in> EQ f xs. \<not>R.I f (x#xs)" "\<not> R.I (inf\<^sub>- f) xs" with `?QE` `nqfree f` obtain r cs where "R.I (subst\<^sub>+ f (r,cs)) xs" by (fastforce simp: qe_eps\<^sub>1_def set_ebounds diff_divide_distrib eval_def I_subst `nqfree f`) then obtain leps where "R.I f (leps#xs)" using I_subst_peps[OF `nqfree f`] by fastforce hence ?EX .. } ultimately show ?EX by blast next let ?as = "R.atoms\<^sub>0 f" let ?ebs = "ebounds ?as" assume ?EX then obtain x where x: "R.I f (x#xs)" .. { assume "R.I (inf\<^sub>- f) xs" hence ?QE using `nqfree f` by(auto simp:qe_eps\<^sub>1_def) } moreover { assume "\<exists>rcs \<in> set ?ebs. R.I (subst f rcs) xs" hence ?QE by(auto simp:qe_eps\<^sub>1_def) } moreover { assume "\<not> R.I (inf\<^sub>- f) xs" and "\<forall>rcs \<in> set ?ebs. \<not> R.I (subst f rcs) xs" hence noE: "\<forall>e \<in> EQ f xs. \<not> R.I f (e#xs)" using `nqfree f` by (force simp:set_ebounds I_subst diff_divide_distrib eval_def split:split_if_asm) hence "x \<notin> EQ f xs" using x by fastforce obtain l where "l \<in> LB f xs" "l < x" using LBex[OF `nqfree f` x `\<not> R.I(inf\<^sub>- f) xs` `x \<notin> EQ f xs`] .. have "\<exists>l\<in>LB f xs. l<x \<and> nolb f xs l x \<and> (\<forall>y. l < y \<and> y \<le> x \<longrightarrow> R.I f (y#xs))" using dense_interval[where P = "\<lambda>x. R.I f (x#xs)", OF finite_LB `l\<in>LB f xs` `l<x` x] x innermost_intvl[OF `nqfree f` _ _ `x \<notin> EQ f xs`] by (simp add:nolb_def) then obtain r c cs where *: "Less r (c#cs) \<in> set(R.atoms\<^sub>0 f) \<and> c>0 \<and> (r - \<langle>cs,xs\<rangle>)/c < x \<and> nolb f xs ((r - \<langle>cs,xs\<rangle>)/c) x \<and> (\<forall>y. (r - \<langle>cs,xs\<rangle>)/c < y \<and> y \<le> x \<longrightarrow> R.I f (y#xs))" by blast then have "R.I (subst\<^sub>+ f (r/c, (-1/c) *\<^sub>s cs)) xs" using noE by(auto intro!: I_subst_peps2[OF `nqfree f`] simp:EQ2_def diff_divide_distrib algebra_simps) with * have ?QE by(simp add:qe_eps\<^sub>1_def bex_Un set_lbounds) metis } ultimately show ?QE by blast qed lemma qfree_asubst_peps: "qfree (asubst\<^sub>+ rcs a)" by(cases "(rcs,a)" rule:asubst_peps.cases) simp_all lemma qfree_subst_peps: "nqfree \<phi> \<Longrightarrow> qfree (subst\<^sub>+ \<phi> rcs)" by(induct \<phi>) (simp_all add:qfree_asubst_peps) lemma qfree_qe_eps\<^sub>1: "nqfree \<phi> \<Longrightarrow> qfree(qe_eps\<^sub>1 \<phi>)" apply(simp add:qe_eps\<^sub>1_def) apply(rule qfree_list_disj) apply (auto simp:qfree_min_inf qfree_subst_peps qfree_map_fm) done definition "qe_eps = R.lift_nnf_qe qe_eps\<^sub>1" lemma qfree_qe_eps: "qfree(qe_eps \<phi>)" by(simp add: qe_eps_def R.qfree_lift_nnf_qe qfree_qe_eps\<^sub>1) lemma I_qe_eps: "R.I (qe_eps \<phi>) xs = R.I \<phi> xs" by(simp add:qe_eps_def R.I_lift_nnf_qe qfree_qe_eps\<^sub>1 I_eps1) end
!move_nodes.f90 !Algoritmo para deteccao de comunidades em rede, baseado no artigo: !------------------------------------------------------------------ !Paper: Fast unfolding of communities in large networks !Authors: Vincent D Blondel, Jean-Loup Guillaume, Renaud Lambiotte and Etienne Lefebvre !doi:10.1088/1742-5468/2008/10/P10008 !------------------------------------------------------------------ !Este programa eh composto de tres partes: louvain.f90; move_nodes.f90; aggregate.f90 !A variavel ki(i) nesta subrotina eh diferente da usada em louvain.f90 !variaveis comuns somente a move_nodes.f90 e suas funcoes module variaveis_move integer*8, allocatable :: ki(:) end module subroutine move_nodes() use variaveis use variaveis_move real*8 gain_q, q, best_q, best_c integer*8 kc, e_ic integer*8 i, j, move, n !-------grau dos nos (ki) do grafo G1--- allocate (ki(numb_comun)) do i=1,numb_comun ki(i) = 0 do j =1,numb_comun ki(i) = ki(i)+G1(i,j) end do end do !--------------------------------------- deallocate(C1, C2) allocate (C1(numb_comun),C2(numb_comun)) do i=1,numb_comun !Aloca o no i na comunidade Ci C2(i)=i C1(i)=C2(i) end do move = numb_comun do while (move.ne.0)!mova enquanto houver ganho de modularidade move = numb_comun do i=1,numb_comun ! i= int(rand(0)*(numb_comun+1-1))+1 best_q = -1000 best_c = C2(i) do j=1,numb_comun if(G1(i,j).gt.0) then gain_q = (1.d0/m)*(e_ic(C2(j),i)- & (ki(i)*kc(C2(j),i)/(2.d0*m))) if(best_q.lt.gain_q) then best_q = gain_q best_c = C2(j) end if end if end do C2(i) = best_c if(C1(i).eq.C2(i)) then move = move - 1 end if C1(i) = C2(i) end do end do deallocate (ki) end subroutine move_nodes !-------grau da comunidade (kc)-------------- function kc(cmt,node) use variaveis use variaveis_move integer*8 i, kc,node, cmt kc = 0 do i = 1,numb_comun if (C2(i).eq.cmt) then kc = kc+ki(i) end if end do if (C2(node).eq.cmt) then kc = kc - ki(node) end if return end function kc !-soma dos pesos dos links entre o no i e a comunidade C(cmt)- function e_ic(cmt,node) use variaveis use variaveis_move integer*8 j, e_ic, cmt, node e_ic = 0 do j = 1,numb_comun if(node.ne.j) then if ( (C2(j).eq.cmt).and.(G1(node,j).gt.0) ) then e_ic = e_ic+G1(node,j) end if end if end do return end function e_ic
State Before: case empty m : Type ?u.1702450 n : Type u_1 inst✝⁴ : DecidableEq n inst✝³ : Fintype n inst✝² : DecidableEq m inst✝¹ : Fintype m R : Type v inst✝ : CommRing R A B : Matrix n n R ⊢ ∀ (c : n → R), (∀ (i : n), ¬i ∈ ∅ → c i = 0) → ∀ (k : n), ¬k ∈ ∅ → (∀ (i j : n), A i j = B i j + c i * B k j) → det A = det B State After: case empty m : Type ?u.1702450 n : Type u_1 inst✝⁴ : DecidableEq n inst✝³ : Fintype n inst✝² : DecidableEq m inst✝¹ : Fintype m R : Type v inst✝ : CommRing R A B : Matrix n n R c : n → R hs : ∀ (i : n), ¬i ∈ ∅ → c i = 0 k : n A_eq : ∀ (i j : n), A i j = B i j + c i * B k j ⊢ det A = det B Tactic: rintro c hs k - A_eq State Before: case empty m : Type ?u.1702450 n : Type u_1 inst✝⁴ : DecidableEq n inst✝³ : Fintype n inst✝² : DecidableEq m inst✝¹ : Fintype m R : Type v inst✝ : CommRing R A B : Matrix n n R c : n → R hs : ∀ (i : n), ¬i ∈ ∅ → c i = 0 k : n A_eq : ∀ (i j : n), A i j = B i j + c i * B k j ⊢ det A = det B State After: case empty m : Type ?u.1702450 n : Type u_1 inst✝⁴ : DecidableEq n inst✝³ : Fintype n inst✝² : DecidableEq m inst✝¹ : Fintype m R : Type v inst✝ : CommRing R A B : Matrix n n R c : n → R hs : ∀ (i : n), ¬i ∈ ∅ → c i = 0 k : n A_eq : ∀ (i j : n), A i j = B i j + c i * B k j this : ∀ (i : n), c i = 0 ⊢ det A = det B Tactic: have : ∀ i, c i = 0 := by intro i specialize hs i contrapose! hs simp [hs] State Before: case empty m : Type ?u.1702450 n : Type u_1 inst✝⁴ : DecidableEq n inst✝³ : Fintype n inst✝² : DecidableEq m inst✝¹ : Fintype m R : Type v inst✝ : CommRing R A B : Matrix n n R c : n → R hs : ∀ (i : n), ¬i ∈ ∅ → c i = 0 k : n A_eq : ∀ (i j : n), A i j = B i j + c i * B k j this : ∀ (i : n), c i = 0 ⊢ det A = det B State After: case empty.e_M m : Type ?u.1702450 n : Type u_1 inst✝⁴ : DecidableEq n inst✝³ : Fintype n inst✝² : DecidableEq m inst✝¹ : Fintype m R : Type v inst✝ : CommRing R A B : Matrix n n R c : n → R hs : ∀ (i : n), ¬i ∈ ∅ → c i = 0 k : n A_eq : ∀ (i j : n), A i j = B i j + c i * B k j this : ∀ (i : n), c i = 0 ⊢ A = B Tactic: congr State Before: case empty.e_M m : Type ?u.1702450 n : Type u_1 inst✝⁴ : DecidableEq n inst✝³ : Fintype n inst✝² : DecidableEq m inst✝¹ : Fintype m R : Type v inst✝ : CommRing R A B : Matrix n n R c : n → R hs : ∀ (i : n), ¬i ∈ ∅ → c i = 0 k : n A_eq : ∀ (i j : n), A i j = B i j + c i * B k j this : ∀ (i : n), c i = 0 ⊢ A = B State After: case empty.e_M.a.h m : Type ?u.1702450 n : Type u_1 inst✝⁴ : DecidableEq n inst✝³ : Fintype n inst✝² : DecidableEq m inst✝¹ : Fintype m R : Type v inst✝ : CommRing R A B : Matrix n n R c : n → R hs : ∀ (i : n), ¬i ∈ ∅ → c i = 0 k : n A_eq : ∀ (i j : n), A i j = B i j + c i * B k j this : ∀ (i : n), c i = 0 i j : n ⊢ A i j = B i j Tactic: ext (i j) State Before: case empty.e_M.a.h m : Type ?u.1702450 n : Type u_1 inst✝⁴ : DecidableEq n inst✝³ : Fintype n inst✝² : DecidableEq m inst✝¹ : Fintype m R : Type v inst✝ : CommRing R A B : Matrix n n R c : n → R hs : ∀ (i : n), ¬i ∈ ∅ → c i = 0 k : n A_eq : ∀ (i j : n), A i j = B i j + c i * B k j this : ∀ (i : n), c i = 0 i j : n ⊢ A i j = B i j State After: no goals Tactic: rw [A_eq, this, MulZeroClass.zero_mul, add_zero] State Before: m : Type ?u.1702450 n : Type u_1 inst✝⁴ : DecidableEq n inst✝³ : Fintype n inst✝² : DecidableEq m inst✝¹ : Fintype m R : Type v inst✝ : CommRing R A B : Matrix n n R c : n → R hs : ∀ (i : n), ¬i ∈ ∅ → c i = 0 k : n A_eq : ∀ (i j : n), A i j = B i j + c i * B k j ⊢ ∀ (i : n), c i = 0 State After: m : Type ?u.1702450 n : Type u_1 inst✝⁴ : DecidableEq n inst✝³ : Fintype n inst✝² : DecidableEq m inst✝¹ : Fintype m R : Type v inst✝ : CommRing R A B : Matrix n n R c : n → R hs : ∀ (i : n), ¬i ∈ ∅ → c i = 0 k : n A_eq : ∀ (i j : n), A i j = B i j + c i * B k j i : n ⊢ c i = 0 Tactic: intro i State Before: m : Type ?u.1702450 n : Type u_1 inst✝⁴ : DecidableEq n inst✝³ : Fintype n inst✝² : DecidableEq m inst✝¹ : Fintype m R : Type v inst✝ : CommRing R A B : Matrix n n R c : n → R hs : ∀ (i : n), ¬i ∈ ∅ → c i = 0 k : n A_eq : ∀ (i j : n), A i j = B i j + c i * B k j i : n ⊢ c i = 0 State After: m : Type ?u.1702450 n : Type u_1 inst✝⁴ : DecidableEq n inst✝³ : Fintype n inst✝² : DecidableEq m inst✝¹ : Fintype m R : Type v inst✝ : CommRing R A B : Matrix n n R c : n → R k : n A_eq : ∀ (i j : n), A i j = B i j + c i * B k j i : n hs : ¬i ∈ ∅ → c i = 0 ⊢ c i = 0 Tactic: specialize hs i State Before: m : Type ?u.1702450 n : Type u_1 inst✝⁴ : DecidableEq n inst✝³ : Fintype n inst✝² : DecidableEq m inst✝¹ : Fintype m R : Type v inst✝ : CommRing R A B : Matrix n n R c : n → R k : n A_eq : ∀ (i j : n), A i j = B i j + c i * B k j i : n hs : ¬i ∈ ∅ → c i = 0 ⊢ c i = 0 State After: m : Type ?u.1702450 n : Type u_1 inst✝⁴ : DecidableEq n inst✝³ : Fintype n inst✝² : DecidableEq m inst✝¹ : Fintype m R : Type v inst✝ : CommRing R A B : Matrix n n R c : n → R k : n A_eq : ∀ (i j : n), A i j = B i j + c i * B k j i : n hs : c i ≠ 0 ⊢ ¬i ∈ ∅ ∧ c i ≠ 0 Tactic: contrapose! hs State Before: m : Type ?u.1702450 n : Type u_1 inst✝⁴ : DecidableEq n inst✝³ : Fintype n inst✝² : DecidableEq m inst✝¹ : Fintype m R : Type v inst✝ : CommRing R A B : Matrix n n R c : n → R k : n A_eq : ∀ (i j : n), A i j = B i j + c i * B k j i : n hs : c i ≠ 0 ⊢ ¬i ∈ ∅ ∧ c i ≠ 0 State After: no goals Tactic: simp [hs] State Before: case insert m : Type ?u.1702450 n : Type u_1 inst✝⁴ : DecidableEq n inst✝³ : Fintype n inst✝² : DecidableEq m inst✝¹ : Fintype m R : Type v inst✝ : CommRing R A : Matrix n n R i : n s : Finset n _hi : ¬i ∈ s ih : ∀ {B : Matrix n n R} (c : n → R), (∀ (i : n), ¬i ∈ s → c i = 0) → ∀ (k : n), ¬k ∈ s → (∀ (i j : n), A i j = B i j + c i * B k j) → det A = det B B : Matrix n n R ⊢ ∀ (c : n → R), (∀ (i_1 : n), ¬i_1 ∈ insert i s → c i_1 = 0) → ∀ (k : n), ¬k ∈ insert i s → (∀ (i j : n), A i j = B i j + c i * B k j) → det A = det B State After: case insert m : Type ?u.1702450 n : Type u_1 inst✝⁴ : DecidableEq n inst✝³ : Fintype n inst✝² : DecidableEq m inst✝¹ : Fintype m R : Type v inst✝ : CommRing R A : Matrix n n R i : n s : Finset n _hi : ¬i ∈ s ih : ∀ {B : Matrix n n R} (c : n → R), (∀ (i : n), ¬i ∈ s → c i = 0) → ∀ (k : n), ¬k ∈ s → (∀ (i j : n), A i j = B i j + c i * B k j) → det A = det B B : Matrix n n R c : n → R hs : ∀ (i_1 : n), ¬i_1 ∈ insert i s → c i_1 = 0 k : n hk : ¬k ∈ insert i s A_eq : ∀ (i j : n), A i j = B i j + c i * B k j ⊢ det A = det B Tactic: intro c hs k hk A_eq State Before: case insert m : Type ?u.1702450 n : Type u_1 inst✝⁴ : DecidableEq n inst✝³ : Fintype n inst✝² : DecidableEq m inst✝¹ : Fintype m R : Type v inst✝ : CommRing R A : Matrix n n R i : n s : Finset n _hi : ¬i ∈ s ih : ∀ {B : Matrix n n R} (c : n → R), (∀ (i : n), ¬i ∈ s → c i = 0) → ∀ (k : n), ¬k ∈ s → (∀ (i j : n), A i j = B i j + c i * B k j) → det A = det B B : Matrix n n R c : n → R hs : ∀ (i_1 : n), ¬i_1 ∈ insert i s → c i_1 = 0 k : n hk : ¬k ∈ insert i s A_eq : ∀ (i j : n), A i j = B i j + c i * B k j ⊢ det A = det B State After: case insert m : Type ?u.1702450 n : Type u_1 inst✝⁴ : DecidableEq n inst✝³ : Fintype n inst✝² : DecidableEq m inst✝¹ : Fintype m R : Type v inst✝ : CommRing R A : Matrix n n R i : n s : Finset n _hi : ¬i ∈ s ih : ∀ {B : Matrix n n R} (c : n → R), (∀ (i : n), ¬i ∈ s → c i = 0) → ∀ (k : n), ¬k ∈ s → (∀ (i j : n), A i j = B i j + c i * B k j) → det A = det B B : Matrix n n R c : n → R hs : ∀ (i_1 : n), ¬i_1 ∈ insert i s → c i_1 = 0 k : n hk : ¬k ∈ insert i s A_eq : ∀ (i j : n), A i j = B i j + c i * B k j hAi : A i = B i + c i • B k ⊢ det A = det B Tactic: have hAi : A i = B i + c i • B k := funext (A_eq i) State Before: case insert m : Type ?u.1702450 n : Type u_1 inst✝⁴ : DecidableEq n inst✝³ : Fintype n inst✝² : DecidableEq m inst✝¹ : Fintype m R : Type v inst✝ : CommRing R A : Matrix n n R i : n s : Finset n _hi : ¬i ∈ s ih : ∀ {B : Matrix n n R} (c : n → R), (∀ (i : n), ¬i ∈ s → c i = 0) → ∀ (k : n), ¬k ∈ s → (∀ (i j : n), A i j = B i j + c i * B k j) → det A = det B B : Matrix n n R c : n → R hs : ∀ (i_1 : n), ¬i_1 ∈ insert i s → c i_1 = 0 k : n hk : ¬k ∈ insert i s A_eq : ∀ (i j : n), A i j = B i j + c i * B k j hAi : A i = B i + c i • B k ⊢ det A = det B State After: case insert.hij m : Type ?u.1702450 n : Type u_1 inst✝⁴ : DecidableEq n inst✝³ : Fintype n inst✝² : DecidableEq m inst✝¹ : Fintype m R : Type v inst✝ : CommRing R A : Matrix n n R i : n s : Finset n _hi : ¬i ∈ s ih : ∀ {B : Matrix n n R} (c : n → R), (∀ (i : n), ¬i ∈ s → c i = 0) → ∀ (k : n), ¬k ∈ s → (∀ (i j : n), A i j = B i j + c i * B k j) → det A = det B B : Matrix n n R c : n → R hs : ∀ (i_1 : n), ¬i_1 ∈ insert i s → c i_1 = 0 k : n hk : ¬k ∈ insert i s A_eq : ∀ (i j : n), A i j = B i j + c i * B k j hAi : A i = B i + c i • B k ⊢ i ≠ k case insert.x m : Type ?u.1702450 n : Type u_1 inst✝⁴ : DecidableEq n inst✝³ : Fintype n inst✝² : DecidableEq m inst✝¹ : Fintype m R : Type v inst✝ : CommRing R A : Matrix n n R i : n s : Finset n _hi : ¬i ∈ s ih : ∀ {B : Matrix n n R} (c : n → R), (∀ (i : n), ¬i ∈ s → c i = 0) → ∀ (k : n), ¬k ∈ s → (∀ (i j : n), A i j = B i j + c i * B k j) → det A = det B B : Matrix n n R c : n → R hs : ∀ (i_1 : n), ¬i_1 ∈ insert i s → c i_1 = 0 k : n hk : ¬k ∈ insert i s A_eq : ∀ (i j : n), A i j = B i j + c i * B k j hAi : A i = B i + c i • B k ⊢ ∀ (i_1 : n), ¬i_1 ∈ s → update c i 0 i_1 = 0 case insert.k m : Type ?u.1702450 n : Type u_1 inst✝⁴ : DecidableEq n inst✝³ : Fintype n inst✝² : DecidableEq m inst✝¹ : Fintype m R : Type v inst✝ : CommRing R A : Matrix n n R i : n s : Finset n _hi : ¬i ∈ s ih : ∀ {B : Matrix n n R} (c : n → R), (∀ (i : n), ¬i ∈ s → c i = 0) → ∀ (k : n), ¬k ∈ s → (∀ (i j : n), A i j = B i j + c i * B k j) → det A = det B B : Matrix n n R c : n → R hs : ∀ (i_1 : n), ¬i_1 ∈ insert i s → c i_1 = 0 k : n hk : ¬k ∈ insert i s A_eq : ∀ (i j : n), A i j = B i j + c i * B k j hAi : A i = B i + c i • B k ⊢ n case insert.x m : Type ?u.1702450 n : Type u_1 inst✝⁴ : DecidableEq n inst✝³ : Fintype n inst✝² : DecidableEq m inst✝¹ : Fintype m R : Type v inst✝ : CommRing R A : Matrix n n R i : n s : Finset n _hi : ¬i ∈ s ih : ∀ {B : Matrix n n R} (c : n → R), (∀ (i : n), ¬i ∈ s → c i = 0) → ∀ (k : n), ¬k ∈ s → (∀ (i j : n), A i j = B i j + c i * B k j) → det A = det B B : Matrix n n R c : n → R hs : ∀ (i_1 : n), ¬i_1 ∈ insert i s → c i_1 = 0 k : n hk : ¬k ∈ insert i s A_eq : ∀ (i j : n), A i j = B i j + c i * B k j hAi : A i = B i + c i • B k ⊢ ¬?insert.k ∈ s case insert.x m : Type ?u.1702450 n : Type u_1 inst✝⁴ : DecidableEq n inst✝³ : Fintype n inst✝² : DecidableEq m inst✝¹ : Fintype m R : Type v inst✝ : CommRing R A : Matrix n n R i : n s : Finset n _hi : ¬i ∈ s ih : ∀ {B : Matrix n n R} (c : n → R), (∀ (i : n), ¬i ∈ s → c i = 0) → ∀ (k : n), ¬k ∈ s → (∀ (i j : n), A i j = B i j + c i * B k j) → det A = det B B : Matrix n n R c : n → R hs : ∀ (i_1 : n), ¬i_1 ∈ insert i s → c i_1 = 0 k : n hk : ¬k ∈ insert i s A_eq : ∀ (i j : n), A i j = B i j + c i * B k j hAi : A i = B i + c i • B k ⊢ ∀ (i_1 j : n), A i_1 j = updateRow B i (A i) i_1 j + update c i 0 i_1 * updateRow B i (A i) ?insert.k j Tactic: rw [@ih (updateRow B i (A i)) (Function.update c i 0), hAi, det_updateRow_add_smul_self] State Before: case insert.hij m : Type ?u.1702450 n : Type u_1 inst✝⁴ : DecidableEq n inst✝³ : Fintype n inst✝² : DecidableEq m inst✝¹ : Fintype m R : Type v inst✝ : CommRing R A : Matrix n n R i : n s : Finset n _hi : ¬i ∈ s ih : ∀ {B : Matrix n n R} (c : n → R), (∀ (i : n), ¬i ∈ s → c i = 0) → ∀ (k : n), ¬k ∈ s → (∀ (i j : n), A i j = B i j + c i * B k j) → det A = det B B : Matrix n n R c : n → R hs : ∀ (i_1 : n), ¬i_1 ∈ insert i s → c i_1 = 0 k : n hk : ¬k ∈ insert i s A_eq : ∀ (i j : n), A i j = B i j + c i * B k j hAi : A i = B i + c i • B k ⊢ i ≠ k State After: no goals Tactic: exact mt (fun h => show k ∈ insert i s from h ▸ Finset.mem_insert_self _ _) hk State Before: case insert.x m : Type ?u.1702450 n : Type u_1 inst✝⁴ : DecidableEq n inst✝³ : Fintype n inst✝² : DecidableEq m inst✝¹ : Fintype m R : Type v inst✝ : CommRing R A : Matrix n n R i : n s : Finset n _hi : ¬i ∈ s ih : ∀ {B : Matrix n n R} (c : n → R), (∀ (i : n), ¬i ∈ s → c i = 0) → ∀ (k : n), ¬k ∈ s → (∀ (i j : n), A i j = B i j + c i * B k j) → det A = det B B : Matrix n n R c : n → R hs : ∀ (i_1 : n), ¬i_1 ∈ insert i s → c i_1 = 0 k : n hk : ¬k ∈ insert i s A_eq : ∀ (i j : n), A i j = B i j + c i * B k j hAi : A i = B i + c i • B k ⊢ ∀ (i_1 : n), ¬i_1 ∈ s → update c i 0 i_1 = 0 State After: case insert.x m : Type ?u.1702450 n : Type u_1 inst✝⁴ : DecidableEq n inst✝³ : Fintype n inst✝² : DecidableEq m inst✝¹ : Fintype m R : Type v inst✝ : CommRing R A : Matrix n n R i : n s : Finset n _hi : ¬i ∈ s ih : ∀ {B : Matrix n n R} (c : n → R), (∀ (i : n), ¬i ∈ s → c i = 0) → ∀ (k : n), ¬k ∈ s → (∀ (i j : n), A i j = B i j + c i * B k j) → det A = det B B : Matrix n n R c : n → R hs : ∀ (i_1 : n), ¬i_1 ∈ insert i s → c i_1 = 0 k : n hk : ¬k ∈ insert i s A_eq : ∀ (i j : n), A i j = B i j + c i * B k j hAi : A i = B i + c i • B k i' : n hi' : ¬i' ∈ s ⊢ update c i 0 i' = 0 Tactic: intro i' hi' State Before: case insert.x m : Type ?u.1702450 n : Type u_1 inst✝⁴ : DecidableEq n inst✝³ : Fintype n inst✝² : DecidableEq m inst✝¹ : Fintype m R : Type v inst✝ : CommRing R A : Matrix n n R i : n s : Finset n _hi : ¬i ∈ s ih : ∀ {B : Matrix n n R} (c : n → R), (∀ (i : n), ¬i ∈ s → c i = 0) → ∀ (k : n), ¬k ∈ s → (∀ (i j : n), A i j = B i j + c i * B k j) → det A = det B B : Matrix n n R c : n → R hs : ∀ (i_1 : n), ¬i_1 ∈ insert i s → c i_1 = 0 k : n hk : ¬k ∈ insert i s A_eq : ∀ (i j : n), A i j = B i j + c i * B k j hAi : A i = B i + c i • B k i' : n hi' : ¬i' ∈ s ⊢ update c i 0 i' = 0 State After: case insert.x m : Type ?u.1702450 n : Type u_1 inst✝⁴ : DecidableEq n inst✝³ : Fintype n inst✝² : DecidableEq m inst✝¹ : Fintype m R : Type v inst✝ : CommRing R A : Matrix n n R i : n s : Finset n _hi : ¬i ∈ s ih : ∀ {B : Matrix n n R} (c : n → R), (∀ (i : n), ¬i ∈ s → c i = 0) → ∀ (k : n), ¬k ∈ s → (∀ (i j : n), A i j = B i j + c i * B k j) → det A = det B B : Matrix n n R c : n → R hs : ∀ (i_1 : n), ¬i_1 ∈ insert i s → c i_1 = 0 k : n hk : ¬k ∈ insert i s A_eq : ∀ (i j : n), A i j = B i j + c i * B k j hAi : A i = B i + c i • B k i' : n hi' : ¬i' ∈ s ⊢ (if i' = i then 0 else c i') = 0 Tactic: rw [Function.update_apply] State Before: case insert.x m : Type ?u.1702450 n : Type u_1 inst✝⁴ : DecidableEq n inst✝³ : Fintype n inst✝² : DecidableEq m inst✝¹ : Fintype m R : Type v inst✝ : CommRing R A : Matrix n n R i : n s : Finset n _hi : ¬i ∈ s ih : ∀ {B : Matrix n n R} (c : n → R), (∀ (i : n), ¬i ∈ s → c i = 0) → ∀ (k : n), ¬k ∈ s → (∀ (i j : n), A i j = B i j + c i * B k j) → det A = det B B : Matrix n n R c : n → R hs : ∀ (i_1 : n), ¬i_1 ∈ insert i s → c i_1 = 0 k : n hk : ¬k ∈ insert i s A_eq : ∀ (i j : n), A i j = B i j + c i * B k j hAi : A i = B i + c i • B k i' : n hi' : ¬i' ∈ s ⊢ (if i' = i then 0 else c i') = 0 State After: case insert.x.inl m : Type ?u.1702450 n : Type u_1 inst✝⁴ : DecidableEq n inst✝³ : Fintype n inst✝² : DecidableEq m inst✝¹ : Fintype m R : Type v inst✝ : CommRing R A : Matrix n n R i : n s : Finset n _hi : ¬i ∈ s ih : ∀ {B : Matrix n n R} (c : n → R), (∀ (i : n), ¬i ∈ s → c i = 0) → ∀ (k : n), ¬k ∈ s → (∀ (i j : n), A i j = B i j + c i * B k j) → det A = det B B : Matrix n n R c : n → R hs : ∀ (i_1 : n), ¬i_1 ∈ insert i s → c i_1 = 0 k : n hk : ¬k ∈ insert i s A_eq : ∀ (i j : n), A i j = B i j + c i * B k j hAi : A i = B i + c i • B k i' : n hi' : ¬i' ∈ s hi'i : i' = i ⊢ 0 = 0 case insert.x.inr m : Type ?u.1702450 n : Type u_1 inst✝⁴ : DecidableEq n inst✝³ : Fintype n inst✝² : DecidableEq m inst✝¹ : Fintype m R : Type v inst✝ : CommRing R A : Matrix n n R i : n s : Finset n _hi : ¬i ∈ s ih : ∀ {B : Matrix n n R} (c : n → R), (∀ (i : n), ¬i ∈ s → c i = 0) → ∀ (k : n), ¬k ∈ s → (∀ (i j : n), A i j = B i j + c i * B k j) → det A = det B B : Matrix n n R c : n → R hs : ∀ (i_1 : n), ¬i_1 ∈ insert i s → c i_1 = 0 k : n hk : ¬k ∈ insert i s A_eq : ∀ (i j : n), A i j = B i j + c i * B k j hAi : A i = B i + c i • B k i' : n hi' : ¬i' ∈ s hi'i : ¬i' = i ⊢ c i' = 0 Tactic: split_ifs with hi'i State Before: case insert.x.inl m : Type ?u.1702450 n : Type u_1 inst✝⁴ : DecidableEq n inst✝³ : Fintype n inst✝² : DecidableEq m inst✝¹ : Fintype m R : Type v inst✝ : CommRing R A : Matrix n n R i : n s : Finset n _hi : ¬i ∈ s ih : ∀ {B : Matrix n n R} (c : n → R), (∀ (i : n), ¬i ∈ s → c i = 0) → ∀ (k : n), ¬k ∈ s → (∀ (i j : n), A i j = B i j + c i * B k j) → det A = det B B : Matrix n n R c : n → R hs : ∀ (i_1 : n), ¬i_1 ∈ insert i s → c i_1 = 0 k : n hk : ¬k ∈ insert i s A_eq : ∀ (i j : n), A i j = B i j + c i * B k j hAi : A i = B i + c i • B k i' : n hi' : ¬i' ∈ s hi'i : i' = i ⊢ 0 = 0 State After: no goals Tactic: rfl State Before: case insert.x.inr m : Type ?u.1702450 n : Type u_1 inst✝⁴ : DecidableEq n inst✝³ : Fintype n inst✝² : DecidableEq m inst✝¹ : Fintype m R : Type v inst✝ : CommRing R A : Matrix n n R i : n s : Finset n _hi : ¬i ∈ s ih : ∀ {B : Matrix n n R} (c : n → R), (∀ (i : n), ¬i ∈ s → c i = 0) → ∀ (k : n), ¬k ∈ s → (∀ (i j : n), A i j = B i j + c i * B k j) → det A = det B B : Matrix n n R c : n → R hs : ∀ (i_1 : n), ¬i_1 ∈ insert i s → c i_1 = 0 k : n hk : ¬k ∈ insert i s A_eq : ∀ (i j : n), A i j = B i j + c i * B k j hAi : A i = B i + c i • B k i' : n hi' : ¬i' ∈ s hi'i : ¬i' = i ⊢ c i' = 0 State After: no goals Tactic: exact hs i' fun h => hi' ((Finset.mem_insert.mp h).resolve_left hi'i) State Before: case insert.k m : Type ?u.1702450 n : Type u_1 inst✝⁴ : DecidableEq n inst✝³ : Fintype n inst✝² : DecidableEq m inst✝¹ : Fintype m R : Type v inst✝ : CommRing R A : Matrix n n R i : n s : Finset n _hi : ¬i ∈ s ih : ∀ {B : Matrix n n R} (c : n → R), (∀ (i : n), ¬i ∈ s → c i = 0) → ∀ (k : n), ¬k ∈ s → (∀ (i j : n), A i j = B i j + c i * B k j) → det A = det B B : Matrix n n R c : n → R hs : ∀ (i_1 : n), ¬i_1 ∈ insert i s → c i_1 = 0 k : n hk : ¬k ∈ insert i s A_eq : ∀ (i j : n), A i j = B i j + c i * B k j hAi : A i = B i + c i • B k ⊢ n State After: no goals Tactic: exact k State Before: case insert.x m : Type ?u.1702450 n : Type u_1 inst✝⁴ : DecidableEq n inst✝³ : Fintype n inst✝² : DecidableEq m inst✝¹ : Fintype m R : Type v inst✝ : CommRing R A : Matrix n n R i : n s : Finset n _hi : ¬i ∈ s ih : ∀ {B : Matrix n n R} (c : n → R), (∀ (i : n), ¬i ∈ s → c i = 0) → ∀ (k : n), ¬k ∈ s → (∀ (i j : n), A i j = B i j + c i * B k j) → det A = det B B : Matrix n n R c : n → R hs : ∀ (i_1 : n), ¬i_1 ∈ insert i s → c i_1 = 0 k : n hk : ¬k ∈ insert i s A_eq : ∀ (i j : n), A i j = B i j + c i * B k j hAi : A i = B i + c i • B k ⊢ ¬k ∈ s State After: no goals Tactic: exact fun h => hk (Finset.mem_insert_of_mem h) State Before: case insert.x m : Type ?u.1702450 n : Type u_1 inst✝⁴ : DecidableEq n inst✝³ : Fintype n inst✝² : DecidableEq m inst✝¹ : Fintype m R : Type v inst✝ : CommRing R A : Matrix n n R i : n s : Finset n _hi : ¬i ∈ s ih : ∀ {B : Matrix n n R} (c : n → R), (∀ (i : n), ¬i ∈ s → c i = 0) → ∀ (k : n), ¬k ∈ s → (∀ (i j : n), A i j = B i j + c i * B k j) → det A = det B B : Matrix n n R c : n → R hs : ∀ (i_1 : n), ¬i_1 ∈ insert i s → c i_1 = 0 k : n hk : ¬k ∈ insert i s A_eq : ∀ (i j : n), A i j = B i j + c i * B k j hAi : A i = B i + c i • B k ⊢ ∀ (i_1 j : n), A i_1 j = updateRow B i (A i) i_1 j + update c i 0 i_1 * updateRow B i (A i) k j State After: case insert.x m : Type ?u.1702450 n : Type u_1 inst✝⁴ : DecidableEq n inst✝³ : Fintype n inst✝² : DecidableEq m inst✝¹ : Fintype m R : Type v inst✝ : CommRing R A : Matrix n n R i : n s : Finset n _hi : ¬i ∈ s ih : ∀ {B : Matrix n n R} (c : n → R), (∀ (i : n), ¬i ∈ s → c i = 0) → ∀ (k : n), ¬k ∈ s → (∀ (i j : n), A i j = B i j + c i * B k j) → det A = det B B : Matrix n n R c : n → R hs : ∀ (i_1 : n), ¬i_1 ∈ insert i s → c i_1 = 0 k : n hk : ¬k ∈ insert i s A_eq : ∀ (i j : n), A i j = B i j + c i * B k j hAi : A i = B i + c i • B k i' j' : n ⊢ A i' j' = updateRow B i (A i) i' j' + update c i 0 i' * updateRow B i (A i) k j' Tactic: intro i' j' State Before: case insert.x m : Type ?u.1702450 n : Type u_1 inst✝⁴ : DecidableEq n inst✝³ : Fintype n inst✝² : DecidableEq m inst✝¹ : Fintype m R : Type v inst✝ : CommRing R A : Matrix n n R i : n s : Finset n _hi : ¬i ∈ s ih : ∀ {B : Matrix n n R} (c : n → R), (∀ (i : n), ¬i ∈ s → c i = 0) → ∀ (k : n), ¬k ∈ s → (∀ (i j : n), A i j = B i j + c i * B k j) → det A = det B B : Matrix n n R c : n → R hs : ∀ (i_1 : n), ¬i_1 ∈ insert i s → c i_1 = 0 k : n hk : ¬k ∈ insert i s A_eq : ∀ (i j : n), A i j = B i j + c i * B k j hAi : A i = B i + c i • B k i' j' : n ⊢ A i' j' = updateRow B i (A i) i' j' + update c i 0 i' * updateRow B i (A i) k j' State After: case insert.x m : Type ?u.1702450 n : Type u_1 inst✝⁴ : DecidableEq n inst✝³ : Fintype n inst✝² : DecidableEq m inst✝¹ : Fintype m R : Type v inst✝ : CommRing R A : Matrix n n R i : n s : Finset n _hi : ¬i ∈ s ih : ∀ {B : Matrix n n R} (c : n → R), (∀ (i : n), ¬i ∈ s → c i = 0) → ∀ (k : n), ¬k ∈ s → (∀ (i j : n), A i j = B i j + c i * B k j) → det A = det B B : Matrix n n R c : n → R hs : ∀ (i_1 : n), ¬i_1 ∈ insert i s → c i_1 = 0 k : n hk : ¬k ∈ insert i s A_eq : ∀ (i j : n), A i j = B i j + c i * B k j hAi : A i = B i + c i • B k i' j' : n ⊢ A i' j' = (if i' = i then A i j' else B i' j') + (if i' = i then 0 else c i') * updateRow B i (A i) k j' Tactic: rw [updateRow_apply, Function.update_apply] State Before: case insert.x m : Type ?u.1702450 n : Type u_1 inst✝⁴ : DecidableEq n inst✝³ : Fintype n inst✝² : DecidableEq m inst✝¹ : Fintype m R : Type v inst✝ : CommRing R A : Matrix n n R i : n s : Finset n _hi : ¬i ∈ s ih : ∀ {B : Matrix n n R} (c : n → R), (∀ (i : n), ¬i ∈ s → c i = 0) → ∀ (k : n), ¬k ∈ s → (∀ (i j : n), A i j = B i j + c i * B k j) → det A = det B B : Matrix n n R c : n → R hs : ∀ (i_1 : n), ¬i_1 ∈ insert i s → c i_1 = 0 k : n hk : ¬k ∈ insert i s A_eq : ∀ (i j : n), A i j = B i j + c i * B k j hAi : A i = B i + c i • B k i' j' : n ⊢ A i' j' = (if i' = i then A i j' else B i' j') + (if i' = i then 0 else c i') * updateRow B i (A i) k j' State After: case insert.x.inl m : Type ?u.1702450 n : Type u_1 inst✝⁴ : DecidableEq n inst✝³ : Fintype n inst✝² : DecidableEq m inst✝¹ : Fintype m R : Type v inst✝ : CommRing R A : Matrix n n R i : n s : Finset n _hi : ¬i ∈ s ih : ∀ {B : Matrix n n R} (c : n → R), (∀ (i : n), ¬i ∈ s → c i = 0) → ∀ (k : n), ¬k ∈ s → (∀ (i j : n), A i j = B i j + c i * B k j) → det A = det B B : Matrix n n R c : n → R hs : ∀ (i_1 : n), ¬i_1 ∈ insert i s → c i_1 = 0 k : n hk : ¬k ∈ insert i s A_eq : ∀ (i j : n), A i j = B i j + c i * B k j hAi : A i = B i + c i • B k i' j' : n hi'i : i' = i ⊢ A i' j' = A i j' + 0 * updateRow B i (A i) k j' case insert.x.inr m : Type ?u.1702450 n : Type u_1 inst✝⁴ : DecidableEq n inst✝³ : Fintype n inst✝² : DecidableEq m inst✝¹ : Fintype m R : Type v inst✝ : CommRing R A : Matrix n n R i : n s : Finset n _hi : ¬i ∈ s ih : ∀ {B : Matrix n n R} (c : n → R), (∀ (i : n), ¬i ∈ s → c i = 0) → ∀ (k : n), ¬k ∈ s → (∀ (i j : n), A i j = B i j + c i * B k j) → det A = det B B : Matrix n n R c : n → R hs : ∀ (i_1 : n), ¬i_1 ∈ insert i s → c i_1 = 0 k : n hk : ¬k ∈ insert i s A_eq : ∀ (i j : n), A i j = B i j + c i * B k j hAi : A i = B i + c i • B k i' j' : n hi'i : ¬i' = i ⊢ A i' j' = B i' j' + c i' * updateRow B i (A i) k j' Tactic: split_ifs with hi'i State Before: case insert.x.inr m : Type ?u.1702450 n : Type u_1 inst✝⁴ : DecidableEq n inst✝³ : Fintype n inst✝² : DecidableEq m inst✝¹ : Fintype m R : Type v inst✝ : CommRing R A : Matrix n n R i : n s : Finset n _hi : ¬i ∈ s ih : ∀ {B : Matrix n n R} (c : n → R), (∀ (i : n), ¬i ∈ s → c i = 0) → ∀ (k : n), ¬k ∈ s → (∀ (i j : n), A i j = B i j + c i * B k j) → det A = det B B : Matrix n n R c : n → R hs : ∀ (i_1 : n), ¬i_1 ∈ insert i s → c i_1 = 0 k : n hk : ¬k ∈ insert i s A_eq : ∀ (i j : n), A i j = B i j + c i * B k j hAi : A i = B i + c i • B k i' j' : n hi'i : ¬i' = i ⊢ A i' j' = B i' j' + c i' * updateRow B i (A i) k j' State After: no goals Tactic: rw [A_eq, updateRow_ne fun h : k = i => hk <| h ▸ Finset.mem_insert_self k s] State Before: case insert.x.inl m : Type ?u.1702450 n : Type u_1 inst✝⁴ : DecidableEq n inst✝³ : Fintype n inst✝² : DecidableEq m inst✝¹ : Fintype m R : Type v inst✝ : CommRing R A : Matrix n n R i : n s : Finset n _hi : ¬i ∈ s ih : ∀ {B : Matrix n n R} (c : n → R), (∀ (i : n), ¬i ∈ s → c i = 0) → ∀ (k : n), ¬k ∈ s → (∀ (i j : n), A i j = B i j + c i * B k j) → det A = det B B : Matrix n n R c : n → R hs : ∀ (i_1 : n), ¬i_1 ∈ insert i s → c i_1 = 0 k : n hk : ¬k ∈ insert i s A_eq : ∀ (i j : n), A i j = B i j + c i * B k j hAi : A i = B i + c i • B k i' j' : n hi'i : i' = i ⊢ A i' j' = A i j' + 0 * updateRow B i (A i) k j' State After: no goals Tactic: simp [hi'i]
Require Import VerdiRaft.Raft. Local Arguments update {_} {_} _ _ _ _ _ : simpl never. Require Import VerdiRaft.CommonTheorems. Require Import VerdiRaft.SpecLemmas. Require Import VerdiRaft.AppendEntriesReplySublogInterface. Require Import VerdiRaft.SortedInterface. Require Import VerdiRaft.NextIndexSafetyInterface. Section NextIndexSafety. Context {orig_base_params : BaseParams}. Context {one_node_params : OneNodeParams orig_base_params}. Context {raft_params : RaftParams orig_base_params}. Context {aersi : append_entries_reply_sublog_interface}. Context {si : sorted_interface}. Lemma nextIndex_safety_init : raft_net_invariant_init nextIndex_safety. Proof using. unfold raft_net_invariant_init, nextIndex_safety. intros. discriminate. Qed. Definition nextIndex_preserved st st' := (type st' = Leader -> type st = Leader /\ maxIndex (log st) <= maxIndex (log st') /\ nextIndex st' = nextIndex st). Lemma nextIndex_safety_preserved : forall st st', (forall h', type st = Leader -> Nat.pred (getNextIndex st h') <= maxIndex (log st)) -> nextIndex_preserved st st' -> (forall h', type st' = Leader -> Nat.pred (getNextIndex st' h') <= maxIndex (log st')). Proof using. unfold getNextIndex, nextIndex_preserved in *. intuition. repeat find_rewrite. auto. unfold assoc_default in *. specialize (H h'). break_match. - eauto using Nat.le_trans. - lia. Qed. Theorem handleClientRequest_nextIndex_preserved : forall h st client id c out st' ps, handleClientRequest h st client id c = (out, st', ps) -> nextIndex_preserved st st'. Proof using. unfold handleClientRequest, nextIndex_preserved. intros. repeat break_match; repeat find_inversion; simpl in *; try congruence. intuition. Qed. Lemma nextIndex_safety_client_request : raft_net_invariant_client_request nextIndex_safety. Proof using. unfold raft_net_invariant_client_request, nextIndex_safety. simpl. intros. repeat find_higher_order_rewrite. update_destruct_simplify. - eauto using nextIndex_safety_preserved, handleClientRequest_nextIndex_preserved. - auto. Qed. Lemma handleTimeout_nextIndex_preserved : forall h d out d' l, handleTimeout h d = (out, d', l) -> nextIndex_preserved d d'. Proof using. unfold handleTimeout, tryToBecomeLeader, nextIndex_preserved. intros. repeat break_match; repeat find_inversion; simpl in *; try congruence. auto. Qed. Lemma nextIndex_safety_timeout : raft_net_invariant_timeout nextIndex_safety. Proof using. unfold raft_net_invariant_timeout, nextIndex_safety. simpl. intros. repeat find_higher_order_rewrite. update_destruct_simplify. - eauto using nextIndex_safety_preserved, handleTimeout_nextIndex_preserved. - auto. Qed. Lemma handleAppendEntries_nextIndex_preserved : forall h st t n pli plt es ci st' ps, handleAppendEntries h st t n pli plt es ci = (st', ps) -> nextIndex_preserved st st'. Proof using. unfold handleAppendEntries, nextIndex_preserved, advanceCurrentTerm. intros. repeat break_match; repeat find_inversion; simpl in *; try congruence; auto. Qed. Lemma nextIndex_safety_append_entries : raft_net_invariant_append_entries nextIndex_safety. Proof using. unfold raft_net_invariant_append_entries, nextIndex_safety. simpl. intros. repeat find_higher_order_rewrite. update_destruct_simplify. - eauto using nextIndex_safety_preserved, handleAppendEntries_nextIndex_preserved. - auto. Qed. Lemma handleAppendEntriesReply_nextIndex : forall h st st' m t es res h', handleAppendEntriesReply h st h' t es res = (st', m) -> type st' = Leader -> type st = Leader /\ ((nextIndex st' = nextIndex st \/ (res = true /\ currentTerm st = t /\ nextIndex st' = (assoc_set name_eq_dec (nextIndex st) h' (Nat.max (getNextIndex st h') (S (maxIndex es)))))) \/ (res = false /\ currentTerm st = t /\ nextIndex st' = (assoc_set name_eq_dec (nextIndex st) h' (pred (getNextIndex st h'))))). Proof using. unfold handleAppendEntriesReply, advanceCurrentTerm. intros. repeat break_match; repeat find_inversion; do_bool; simpl in *; intuition; congruence. Qed. Lemma nextIndex_safety_append_entries_reply : raft_net_invariant_append_entries_reply nextIndex_safety. Proof using si aersi. unfold raft_net_invariant_append_entries_reply, nextIndex_safety, getNextIndex. simpl. intros. repeat find_higher_order_rewrite. update_destruct_simplify. - erewrite handleAppendEntriesReply_log by eauto. find_copy_apply_lem_hyp handleAppendEntriesReply_nextIndex; auto. intuition; repeat find_rewrite. + auto. + destruct (name_eq_dec h' (pSrc p)). * subst. rewrite get_set_same_default. unfold getNextIndex. apply Nat.max_case; auto. { destruct es; simpl. * lia. * pose proof append_entries_reply_sublog_invariant _ ltac:(eauto). unfold append_entries_reply_sublog in *. eapply_prop_hyp pBody pBody; simpl; eauto. apply maxIndex_is_max; auto. apply logs_sorted_invariant; auto. } * rewrite get_set_diff_default by auto. auto. + destruct (name_eq_dec h' (pSrc p)). * subst. rewrite get_set_same_default. unfold getNextIndex. apply NPeano.Nat.le_le_pred. auto. * rewrite get_set_diff_default by auto. auto. - auto. Qed. Lemma handleRequestVote_nextIndex_preserved : forall st h h' t lli llt st' m, handleRequestVote h st t h' lli llt = (st', m) -> nextIndex_preserved st st'. Proof using. unfold handleRequestVote, nextIndex_preserved, advanceCurrentTerm. intros. repeat break_match; repeat find_inversion; simpl in *; auto; try congruence. Qed. Lemma nextIndex_safety_request_vote : raft_net_invariant_request_vote nextIndex_safety. Proof using. unfold raft_net_invariant_request_vote, nextIndex_safety. simpl. intros. repeat find_higher_order_rewrite. update_destruct_simplify. - eauto using nextIndex_safety_preserved, handleRequestVote_nextIndex_preserved. - auto. Qed. Lemma handleRequestVoteReply_matchIndex : forall n st src t v, type (handleRequestVoteReply n st src t v) = Leader -> type st = Leader /\ nextIndex (handleRequestVoteReply n st src t v) = nextIndex st \/ nextIndex (handleRequestVoteReply n st src t v) = []. Proof using. unfold handleRequestVoteReply. intros. repeat break_match; repeat find_inversion; simpl in *; auto; try congruence. Qed. Lemma nextIndex_safety_request_vote_reply : raft_net_invariant_request_vote_reply nextIndex_safety. Proof using. unfold raft_net_invariant_request_vote_reply, nextIndex_safety. simpl. intros. repeat find_higher_order_rewrite. update_destruct_simplify. - find_copy_apply_lem_hyp handleRequestVoteReply_matchIndex. unfold getNextIndex in *. erewrite handleRequestVoteReply_log in * by eauto. intuition; repeat find_rewrite. + auto. + unfold assoc_default. simpl. auto using NPeano.Nat.le_le_pred. - auto. Qed. Lemma doLeader_nextIndex_preserved : forall st h os st' ms, doLeader st h = (os, st', ms) -> nextIndex_preserved st st'. Proof using. unfold doLeader, nextIndex_preserved. intros. repeat break_match; repeat find_inversion; auto; try congruence. Qed. Lemma nextIndex_safety_do_leader : raft_net_invariant_do_leader nextIndex_safety. Proof using. unfold raft_net_invariant_do_leader, nextIndex_safety. simpl. intros. repeat find_higher_order_rewrite. update_destruct_simplify. - eauto using nextIndex_safety_preserved, doLeader_nextIndex_preserved. - auto. Qed. Lemma doGenericServer_nextIndex_preserved : forall h st os st' ms, doGenericServer h st = (os, st', ms) -> nextIndex_preserved st st'. Proof using. unfold doGenericServer, nextIndex_preserved. intros. repeat break_match; repeat find_inversion; simpl in *; auto; try congruence; use_applyEntries_spec; subst; simpl in *; auto. Qed. Lemma nextIndex_safety_do_generic_server : raft_net_invariant_do_generic_server nextIndex_safety. Proof using. unfold raft_net_invariant_do_generic_server, nextIndex_safety. simpl. intros. repeat find_higher_order_rewrite. update_destruct_simplify. - eauto using nextIndex_safety_preserved, doGenericServer_nextIndex_preserved. - auto. Qed. Lemma nextIndex_safety_state_same_packet_subset : raft_net_invariant_state_same_packet_subset nextIndex_safety. Proof using. unfold raft_net_invariant_state_same_packet_subset, nextIndex_safety. simpl. intros. repeat find_reverse_higher_order_rewrite. auto. Qed. Lemma nextIndex_safety_reboot : raft_net_invariant_reboot nextIndex_safety. Proof using. unfold raft_net_invariant_reboot, nextIndex_safety, reboot. simpl. intros. subst. repeat find_higher_order_rewrite. update_destruct_simplify. - unfold getNextIndex, assoc_default. simpl. lia. - auto. Qed. Lemma nextIndex_safety_invariant : forall net, raft_intermediate_reachable net -> nextIndex_safety net. Proof using si aersi. intros. apply raft_net_invariant; auto. - apply nextIndex_safety_init. - apply nextIndex_safety_client_request. - apply nextIndex_safety_timeout. - apply nextIndex_safety_append_entries. - apply nextIndex_safety_append_entries_reply. - apply nextIndex_safety_request_vote. - apply nextIndex_safety_request_vote_reply. - apply nextIndex_safety_do_leader. - apply nextIndex_safety_do_generic_server. - apply nextIndex_safety_state_same_packet_subset. - apply nextIndex_safety_reboot. Qed. Instance nisi : nextIndex_safety_interface. Proof. split. exact nextIndex_safety_invariant. Qed. End NextIndexSafety.
It was with great surprise that an email and telephone call has led to this posting. On Wednesday, April 10, 2013, I was notified by Niko Wahl, curator of the Mauthausen Memorial, about 90 miles from Vienna, Austria, that a permanent display of “This Is Your Life, Hanna Bloch Kohner” would be opening along with the an entirely new exhibition at the memorial on Sunday, May 5. The museum, which was closed for many years, has been restructured and modernized to enable visitors to bear witness to the testimonies and artifacts from this infamous concentration camp. The result of the contact made by Mr. Wahl led to an invitation by the Austrian Ministry of Culture, for myself and my husband, Steve, to come to Mauthausen and take part in the ceremonial re-dedication of the memorial and museum. With more than one-thousand invited guests, including the Heads of State from Austria, Poland, and Hungary, Ministers from Israel and Russia, and American Ambassador to Austria, William Eacho, we had the opportunity to witness the dedication speeches, the introduction of 30 Mauthausen survivors, and ceremonial commemorations to be included in a time capsule that will remain in place at the memorial for at least 100 years. I was honored to see the promenant place that Hanna’s story has, just off the main museum entrence. Hanna’s display features an eight minute segment of the “This Is Your Life” episode. As I observed the many guests in attendance who came through the permanent exhibit, I had the opportunity to share Hanna’s story in more detail. This was the experience of a life-time, and the result of work we do at Voices of the Generations, that continues to be rewarding, fulfilling, and ever more important. Julie Kohner with American Ambassador to Austria, William Eacho and his wife, Donna Eacho, at the re-dedication of the Mauthausen Memorial. The State of Israel memorial at Mauthausen.
[GOAL] ⊢ |exp 1 - 2244083 / 825552| ≤ 1 / 10 ^ 10 [PROOFSTEP] apply exp_approx_start [GOAL] case h ⊢ |exp 1 - expNear 0 1 (2244083 / 825552)| ≤ |1| ^ 0 / ↑(Nat.factorial 0) * (1 / 10 ^ 10) [PROOFSTEP] iterate 13 refine' exp_1_approx_succ_eq (by norm_num1; rfl) (by norm_cast) _ [GOAL] case h ⊢ |exp 1 - expNear 0 1 (2244083 / 825552)| ≤ |1| ^ 0 / ↑(Nat.factorial 0) * (1 / 10 ^ 10) [PROOFSTEP] refine' exp_1_approx_succ_eq (by norm_num1; rfl) (by norm_cast) _ [GOAL] ⊢ 0 + 1 = ?m.664 [PROOFSTEP] norm_num1 [GOAL] ⊢ 1 = ?m.664 [PROOFSTEP] rfl [GOAL] ⊢ ↑1 = ?m.675 [PROOFSTEP] norm_cast [GOAL] case h ⊢ |exp 1 - expNear 1 1 ((2244083 / 825552 - 1) * 1)| ≤ |1| ^ 1 / ↑(Nat.factorial 1) * (1 / 10 ^ 10 * 1) [PROOFSTEP] refine' exp_1_approx_succ_eq (by norm_num1; rfl) (by norm_cast) _ [GOAL] ⊢ 1 + 1 = ?m.1007 [PROOFSTEP] norm_num1 [GOAL] ⊢ 2 = ?m.1007 [PROOFSTEP] rfl [GOAL] ⊢ ↑2 = ?m.1009 [PROOFSTEP] norm_cast [GOAL] case h ⊢ |exp 1 - expNear 2 1 (((2244083 / 825552 - 1) * 1 - 1) * 2)| ≤ |1| ^ 2 / ↑(Nat.factorial 2) * (1 / 10 ^ 10 * 1 * 2) [PROOFSTEP] refine' exp_1_approx_succ_eq (by norm_num1; rfl) (by norm_cast) _ [GOAL] ⊢ 2 + 1 = ?m.1077 [PROOFSTEP] norm_num1 [GOAL] ⊢ 3 = ?m.1077 [PROOFSTEP] rfl [GOAL] ⊢ ↑3 = ?m.1079 [PROOFSTEP] norm_cast [GOAL] case h ⊢ |exp 1 - expNear 3 1 ((((2244083 / 825552 - 1) * 1 - 1) * 2 - 1) * 3)| ≤ |1| ^ 3 / ↑(Nat.factorial 3) * (1 / 10 ^ 10 * 1 * 2 * 3) [PROOFSTEP] refine' exp_1_approx_succ_eq (by norm_num1; rfl) (by norm_cast) _ [GOAL] ⊢ 3 + 1 = ?m.1147 [PROOFSTEP] norm_num1 [GOAL] ⊢ 4 = ?m.1147 [PROOFSTEP] rfl [GOAL] ⊢ ↑4 = ?m.1149 [PROOFSTEP] norm_cast [GOAL] case h ⊢ |exp 1 - expNear 4 1 (((((2244083 / 825552 - 1) * 1 - 1) * 2 - 1) * 3 - 1) * 4)| ≤ |1| ^ 4 / ↑(Nat.factorial 4) * (1 / 10 ^ 10 * 1 * 2 * 3 * 4) [PROOFSTEP] refine' exp_1_approx_succ_eq (by norm_num1; rfl) (by norm_cast) _ [GOAL] ⊢ 4 + 1 = ?m.1217 [PROOFSTEP] norm_num1 [GOAL] ⊢ 5 = ?m.1217 [PROOFSTEP] rfl [GOAL] ⊢ ↑5 = ?m.1219 [PROOFSTEP] norm_cast [GOAL] case h ⊢ |exp 1 - expNear 5 1 ((((((2244083 / 825552 - 1) * 1 - 1) * 2 - 1) * 3 - 1) * 4 - 1) * 5)| ≤ |1| ^ 5 / ↑(Nat.factorial 5) * (1 / 10 ^ 10 * 1 * 2 * 3 * 4 * 5) [PROOFSTEP] refine' exp_1_approx_succ_eq (by norm_num1; rfl) (by norm_cast) _ [GOAL] ⊢ 5 + 1 = ?m.1287 [PROOFSTEP] norm_num1 [GOAL] ⊢ 6 = ?m.1287 [PROOFSTEP] rfl [GOAL] ⊢ ↑6 = ?m.1289 [PROOFSTEP] norm_cast [GOAL] case h ⊢ |exp 1 - expNear 6 1 (((((((2244083 / 825552 - 1) * 1 - 1) * 2 - 1) * 3 - 1) * 4 - 1) * 5 - 1) * 6)| ≤ |1| ^ 6 / ↑(Nat.factorial 6) * (1 / 10 ^ 10 * 1 * 2 * 3 * 4 * 5 * 6) [PROOFSTEP] refine' exp_1_approx_succ_eq (by norm_num1; rfl) (by norm_cast) _ [GOAL] ⊢ 6 + 1 = ?m.1357 [PROOFSTEP] norm_num1 [GOAL] ⊢ 7 = ?m.1357 [PROOFSTEP] rfl [GOAL] ⊢ ↑7 = ?m.1359 [PROOFSTEP] norm_cast [GOAL] case h ⊢ |exp 1 - expNear 7 1 ((((((((2244083 / 825552 - 1) * 1 - 1) * 2 - 1) * 3 - 1) * 4 - 1) * 5 - 1) * 6 - 1) * 7)| ≤ |1| ^ 7 / ↑(Nat.factorial 7) * (1 / 10 ^ 10 * 1 * 2 * 3 * 4 * 5 * 6 * 7) [PROOFSTEP] refine' exp_1_approx_succ_eq (by norm_num1; rfl) (by norm_cast) _ [GOAL] ⊢ 7 + 1 = ?m.1427 [PROOFSTEP] norm_num1 [GOAL] ⊢ 8 = ?m.1427 [PROOFSTEP] rfl [GOAL] ⊢ ↑8 = ?m.1429 [PROOFSTEP] norm_cast [GOAL] case h ⊢ |exp 1 - expNear 8 1 (((((((((2244083 / 825552 - 1) * 1 - 1) * 2 - 1) * 3 - 1) * 4 - 1) * 5 - 1) * 6 - 1) * 7 - 1) * 8)| ≤ |1| ^ 8 / ↑(Nat.factorial 8) * (1 / 10 ^ 10 * 1 * 2 * 3 * 4 * 5 * 6 * 7 * 8) [PROOFSTEP] refine' exp_1_approx_succ_eq (by norm_num1; rfl) (by norm_cast) _ [GOAL] ⊢ 8 + 1 = ?m.1497 [PROOFSTEP] norm_num1 [GOAL] ⊢ 9 = ?m.1497 [PROOFSTEP] rfl [GOAL] ⊢ ↑9 = ?m.1499 [PROOFSTEP] norm_cast [GOAL] case h ⊢ |exp 1 - expNear 9 1 ((((((((((2244083 / 825552 - 1) * 1 - 1) * 2 - 1) * 3 - 1) * 4 - 1) * 5 - 1) * 6 - 1) * 7 - 1) * 8 - 1) * 9)| ≤ |1| ^ 9 / ↑(Nat.factorial 9) * (1 / 10 ^ 10 * 1 * 2 * 3 * 4 * 5 * 6 * 7 * 8 * 9) [PROOFSTEP] refine' exp_1_approx_succ_eq (by norm_num1; rfl) (by norm_cast) _ [GOAL] ⊢ 9 + 1 = ?m.1567 [PROOFSTEP] norm_num1 [GOAL] ⊢ 10 = ?m.1567 [PROOFSTEP] rfl [GOAL] ⊢ ↑10 = ?m.1569 [PROOFSTEP] norm_cast [GOAL] case h ⊢ |exp 1 - expNear 10 1 (((((((((((2244083 / 825552 - 1) * 1 - 1) * 2 - 1) * 3 - 1) * 4 - 1) * 5 - 1) * 6 - 1) * 7 - 1) * 8 - 1) * 9 - 1) * 10)| ≤ |1| ^ 10 / ↑(Nat.factorial 10) * (1 / 10 ^ 10 * 1 * 2 * 3 * 4 * 5 * 6 * 7 * 8 * 9 * 10) [PROOFSTEP] refine' exp_1_approx_succ_eq (by norm_num1; rfl) (by norm_cast) _ [GOAL] ⊢ 10 + 1 = ?m.1637 [PROOFSTEP] norm_num1 [GOAL] ⊢ 11 = ?m.1637 [PROOFSTEP] rfl [GOAL] ⊢ ↑11 = ?m.1639 [PROOFSTEP] norm_cast [GOAL] case h ⊢ |exp 1 - expNear 11 1 ((((((((((((2244083 / 825552 - 1) * 1 - 1) * 2 - 1) * 3 - 1) * 4 - 1) * 5 - 1) * 6 - 1) * 7 - 1) * 8 - 1) * 9 - 1) * 10 - 1) * 11)| ≤ |1| ^ 11 / ↑(Nat.factorial 11) * (1 / 10 ^ 10 * 1 * 2 * 3 * 4 * 5 * 6 * 7 * 8 * 9 * 10 * 11) [PROOFSTEP] refine' exp_1_approx_succ_eq (by norm_num1; rfl) (by norm_cast) _ [GOAL] ⊢ 11 + 1 = ?m.1707 [PROOFSTEP] norm_num1 [GOAL] ⊢ 12 = ?m.1707 [PROOFSTEP] rfl [GOAL] ⊢ ↑12 = ?m.1709 [PROOFSTEP] norm_cast [GOAL] case h ⊢ |exp 1 - expNear 12 1 (((((((((((((2244083 / 825552 - 1) * 1 - 1) * 2 - 1) * 3 - 1) * 4 - 1) * 5 - 1) * 6 - 1) * 7 - 1) * 8 - 1) * 9 - 1) * 10 - 1) * 11 - 1) * 12)| ≤ |1| ^ 12 / ↑(Nat.factorial 12) * (1 / 10 ^ 10 * 1 * 2 * 3 * 4 * 5 * 6 * 7 * 8 * 9 * 10 * 11 * 12) [PROOFSTEP] refine' exp_1_approx_succ_eq (by norm_num1; rfl) (by norm_cast) _ [GOAL] ⊢ 12 + 1 = ?m.1777 [PROOFSTEP] norm_num1 [GOAL] ⊢ 13 = ?m.1777 [PROOFSTEP] rfl [GOAL] ⊢ ↑13 = ?m.1779 [PROOFSTEP] norm_cast [GOAL] case h ⊢ |exp 1 - expNear 13 1 ((((((((((((((2244083 / 825552 - 1) * 1 - 1) * 2 - 1) * 3 - 1) * 4 - 1) * 5 - 1) * 6 - 1) * 7 - 1) * 8 - 1) * 9 - 1) * 10 - 1) * 11 - 1) * 12 - 1) * 13)| ≤ |1| ^ 13 / ↑(Nat.factorial 13) * (1 / 10 ^ 10 * 1 * 2 * 3 * 4 * 5 * 6 * 7 * 8 * 9 * 10 * 11 * 12 * 13) [PROOFSTEP] norm_num1 [GOAL] case h ⊢ |exp 1 - expNear 13 1 (5 / 7)| ≤ |1| ^ 13 / ↑(Nat.factorial 13) * (243243 / 390625) [PROOFSTEP] refine' exp_approx_end' _ (by norm_num1; rfl) _ (by norm_cast) (by simp) _ [GOAL] ⊢ 13 + 1 = ?m.2354 [PROOFSTEP] norm_num1 [GOAL] ⊢ 14 = ?m.2354 [PROOFSTEP] rfl [GOAL] ⊢ ↑14 = ?m.2356 [PROOFSTEP] norm_cast [GOAL] ⊢ |1| ≤ 1 [PROOFSTEP] simp [GOAL] case h ⊢ |1 - 5 / 7| ≤ 243243 / 390625 - |1| / 14 * ((14 + 1) / 14) [PROOFSTEP] rw [_root_.abs_one, abs_of_pos] [GOAL] case h ⊢ 1 - 5 / 7 ≤ 243243 / 390625 - 1 / 14 * ((14 + 1) / 14) [PROOFSTEP] norm_num1 [GOAL] case h ⊢ 0 < 1 - 5 / 7 [PROOFSTEP] norm_num1 [GOAL] ⊢ |exp 1 - 363916618873 / 133877442384| ≤ 1 / 10 ^ 20 [PROOFSTEP] apply exp_approx_start [GOAL] case h ⊢ |exp 1 - expNear 0 1 (363916618873 / 133877442384)| ≤ |1| ^ 0 / ↑(Nat.factorial 0) * (1 / 10 ^ 20) [PROOFSTEP] iterate 21 refine' exp_1_approx_succ_eq (by norm_num1; rfl) (by norm_cast) _ [GOAL] case h ⊢ |exp 1 - expNear 0 1 (363916618873 / 133877442384)| ≤ |1| ^ 0 / ↑(Nat.factorial 0) * (1 / 10 ^ 20) [PROOFSTEP] refine' exp_1_approx_succ_eq (by norm_num1; rfl) (by norm_cast) _ [GOAL] ⊢ 0 + 1 = ?m.3624 [PROOFSTEP] norm_num1 [GOAL] ⊢ 1 = ?m.3624 [PROOFSTEP] rfl [GOAL] ⊢ ↑1 = ?m.3635 [PROOFSTEP] norm_cast [GOAL] case h ⊢ |exp 1 - expNear 1 1 ((363916618873 / 133877442384 - 1) * 1)| ≤ |1| ^ 1 / ↑(Nat.factorial 1) * (1 / 10 ^ 20 * 1) [PROOFSTEP] refine' exp_1_approx_succ_eq (by norm_num1; rfl) (by norm_cast) _ [GOAL] ⊢ 1 + 1 = ?m.3967 [PROOFSTEP] norm_num1 [GOAL] ⊢ 2 = ?m.3967 [PROOFSTEP] rfl [GOAL] ⊢ ↑2 = ?m.3969 [PROOFSTEP] norm_cast [GOAL] case h ⊢ |exp 1 - expNear 2 1 (((363916618873 / 133877442384 - 1) * 1 - 1) * 2)| ≤ |1| ^ 2 / ↑(Nat.factorial 2) * (1 / 10 ^ 20 * 1 * 2) [PROOFSTEP] refine' exp_1_approx_succ_eq (by norm_num1; rfl) (by norm_cast) _ [GOAL] ⊢ 2 + 1 = ?m.4037 [PROOFSTEP] norm_num1 [GOAL] ⊢ 3 = ?m.4037 [PROOFSTEP] rfl [GOAL] ⊢ ↑3 = ?m.4039 [PROOFSTEP] norm_cast [GOAL] case h ⊢ |exp 1 - expNear 3 1 ((((363916618873 / 133877442384 - 1) * 1 - 1) * 2 - 1) * 3)| ≤ |1| ^ 3 / ↑(Nat.factorial 3) * (1 / 10 ^ 20 * 1 * 2 * 3) [PROOFSTEP] refine' exp_1_approx_succ_eq (by norm_num1; rfl) (by norm_cast) _ [GOAL] ⊢ 3 + 1 = ?m.4107 [PROOFSTEP] norm_num1 [GOAL] ⊢ 4 = ?m.4107 [PROOFSTEP] rfl [GOAL] ⊢ ↑4 = ?m.4109 [PROOFSTEP] norm_cast [GOAL] case h ⊢ |exp 1 - expNear 4 1 (((((363916618873 / 133877442384 - 1) * 1 - 1) * 2 - 1) * 3 - 1) * 4)| ≤ |1| ^ 4 / ↑(Nat.factorial 4) * (1 / 10 ^ 20 * 1 * 2 * 3 * 4) [PROOFSTEP] refine' exp_1_approx_succ_eq (by norm_num1; rfl) (by norm_cast) _ [GOAL] ⊢ 4 + 1 = ?m.4177 [PROOFSTEP] norm_num1 [GOAL] ⊢ 5 = ?m.4177 [PROOFSTEP] rfl [GOAL] ⊢ ↑5 = ?m.4179 [PROOFSTEP] norm_cast [GOAL] case h ⊢ |exp 1 - expNear 5 1 ((((((363916618873 / 133877442384 - 1) * 1 - 1) * 2 - 1) * 3 - 1) * 4 - 1) * 5)| ≤ |1| ^ 5 / ↑(Nat.factorial 5) * (1 / 10 ^ 20 * 1 * 2 * 3 * 4 * 5) [PROOFSTEP] refine' exp_1_approx_succ_eq (by norm_num1; rfl) (by norm_cast) _ [GOAL] ⊢ 5 + 1 = ?m.4247 [PROOFSTEP] norm_num1 [GOAL] ⊢ 6 = ?m.4247 [PROOFSTEP] rfl [GOAL] ⊢ ↑6 = ?m.4249 [PROOFSTEP] norm_cast [GOAL] case h ⊢ |exp 1 - expNear 6 1 (((((((363916618873 / 133877442384 - 1) * 1 - 1) * 2 - 1) * 3 - 1) * 4 - 1) * 5 - 1) * 6)| ≤ |1| ^ 6 / ↑(Nat.factorial 6) * (1 / 10 ^ 20 * 1 * 2 * 3 * 4 * 5 * 6) [PROOFSTEP] refine' exp_1_approx_succ_eq (by norm_num1; rfl) (by norm_cast) _ [GOAL] ⊢ 6 + 1 = ?m.4317 [PROOFSTEP] norm_num1 [GOAL] ⊢ 7 = ?m.4317 [PROOFSTEP] rfl [GOAL] ⊢ ↑7 = ?m.4319 [PROOFSTEP] norm_cast [GOAL] case h ⊢ |exp 1 - expNear 7 1 ((((((((363916618873 / 133877442384 - 1) * 1 - 1) * 2 - 1) * 3 - 1) * 4 - 1) * 5 - 1) * 6 - 1) * 7)| ≤ |1| ^ 7 / ↑(Nat.factorial 7) * (1 / 10 ^ 20 * 1 * 2 * 3 * 4 * 5 * 6 * 7) [PROOFSTEP] refine' exp_1_approx_succ_eq (by norm_num1; rfl) (by norm_cast) _ [GOAL] ⊢ 7 + 1 = ?m.4387 [PROOFSTEP] norm_num1 [GOAL] ⊢ 8 = ?m.4387 [PROOFSTEP] rfl [GOAL] ⊢ ↑8 = ?m.4389 [PROOFSTEP] norm_cast [GOAL] case h ⊢ |exp 1 - expNear 8 1 (((((((((363916618873 / 133877442384 - 1) * 1 - 1) * 2 - 1) * 3 - 1) * 4 - 1) * 5 - 1) * 6 - 1) * 7 - 1) * 8)| ≤ |1| ^ 8 / ↑(Nat.factorial 8) * (1 / 10 ^ 20 * 1 * 2 * 3 * 4 * 5 * 6 * 7 * 8) [PROOFSTEP] refine' exp_1_approx_succ_eq (by norm_num1; rfl) (by norm_cast) _ [GOAL] ⊢ 8 + 1 = ?m.4457 [PROOFSTEP] norm_num1 [GOAL] ⊢ 9 = ?m.4457 [PROOFSTEP] rfl [GOAL] ⊢ ↑9 = ?m.4459 [PROOFSTEP] norm_cast [GOAL] case h ⊢ |exp 1 - expNear 9 1 ((((((((((363916618873 / 133877442384 - 1) * 1 - 1) * 2 - 1) * 3 - 1) * 4 - 1) * 5 - 1) * 6 - 1) * 7 - 1) * 8 - 1) * 9)| ≤ |1| ^ 9 / ↑(Nat.factorial 9) * (1 / 10 ^ 20 * 1 * 2 * 3 * 4 * 5 * 6 * 7 * 8 * 9) [PROOFSTEP] refine' exp_1_approx_succ_eq (by norm_num1; rfl) (by norm_cast) _ [GOAL] ⊢ 9 + 1 = ?m.4527 [PROOFSTEP] norm_num1 [GOAL] ⊢ 10 = ?m.4527 [PROOFSTEP] rfl [GOAL] ⊢ ↑10 = ?m.4529 [PROOFSTEP] norm_cast [GOAL] case h ⊢ |exp 1 - expNear 10 1 (((((((((((363916618873 / 133877442384 - 1) * 1 - 1) * 2 - 1) * 3 - 1) * 4 - 1) * 5 - 1) * 6 - 1) * 7 - 1) * 8 - 1) * 9 - 1) * 10)| ≤ |1| ^ 10 / ↑(Nat.factorial 10) * (1 / 10 ^ 20 * 1 * 2 * 3 * 4 * 5 * 6 * 7 * 8 * 9 * 10) [PROOFSTEP] refine' exp_1_approx_succ_eq (by norm_num1; rfl) (by norm_cast) _ [GOAL] ⊢ 10 + 1 = ?m.4597 [PROOFSTEP] norm_num1 [GOAL] ⊢ 11 = ?m.4597 [PROOFSTEP] rfl [GOAL] ⊢ ↑11 = ?m.4599 [PROOFSTEP] norm_cast [GOAL] case h ⊢ |exp 1 - expNear 11 1 ((((((((((((363916618873 / 133877442384 - 1) * 1 - 1) * 2 - 1) * 3 - 1) * 4 - 1) * 5 - 1) * 6 - 1) * 7 - 1) * 8 - 1) * 9 - 1) * 10 - 1) * 11)| ≤ |1| ^ 11 / ↑(Nat.factorial 11) * (1 / 10 ^ 20 * 1 * 2 * 3 * 4 * 5 * 6 * 7 * 8 * 9 * 10 * 11) [PROOFSTEP] refine' exp_1_approx_succ_eq (by norm_num1; rfl) (by norm_cast) _ [GOAL] ⊢ 11 + 1 = ?m.4667 [PROOFSTEP] norm_num1 [GOAL] ⊢ 12 = ?m.4667 [PROOFSTEP] rfl [GOAL] ⊢ ↑12 = ?m.4669 [PROOFSTEP] norm_cast [GOAL] case h ⊢ |exp 1 - expNear 12 1 (((((((((((((363916618873 / 133877442384 - 1) * 1 - 1) * 2 - 1) * 3 - 1) * 4 - 1) * 5 - 1) * 6 - 1) * 7 - 1) * 8 - 1) * 9 - 1) * 10 - 1) * 11 - 1) * 12)| ≤ |1| ^ 12 / ↑(Nat.factorial 12) * (1 / 10 ^ 20 * 1 * 2 * 3 * 4 * 5 * 6 * 7 * 8 * 9 * 10 * 11 * 12) [PROOFSTEP] refine' exp_1_approx_succ_eq (by norm_num1; rfl) (by norm_cast) _ [GOAL] ⊢ 12 + 1 = ?m.4737 [PROOFSTEP] norm_num1 [GOAL] ⊢ 13 = ?m.4737 [PROOFSTEP] rfl [GOAL] ⊢ ↑13 = ?m.4739 [PROOFSTEP] norm_cast [GOAL] case h ⊢ |exp 1 - expNear 13 1 ((((((((((((((363916618873 / 133877442384 - 1) * 1 - 1) * 2 - 1) * 3 - 1) * 4 - 1) * 5 - 1) * 6 - 1) * 7 - 1) * 8 - 1) * 9 - 1) * 10 - 1) * 11 - 1) * 12 - 1) * 13)| ≤ |1| ^ 13 / ↑(Nat.factorial 13) * (1 / 10 ^ 20 * 1 * 2 * 3 * 4 * 5 * 6 * 7 * 8 * 9 * 10 * 11 * 12 * 13) [PROOFSTEP] refine' exp_1_approx_succ_eq (by norm_num1; rfl) (by norm_cast) _ [GOAL] ⊢ 13 + 1 = ?m.4807 [PROOFSTEP] norm_num1 [GOAL] ⊢ 14 = ?m.4807 [PROOFSTEP] rfl [GOAL] ⊢ ↑14 = ?m.4809 [PROOFSTEP] norm_cast [GOAL] case h ⊢ |exp 1 - expNear 14 1 (((((((((((((((363916618873 / 133877442384 - 1) * 1 - 1) * 2 - 1) * 3 - 1) * 4 - 1) * 5 - 1) * 6 - 1) * 7 - 1) * 8 - 1) * 9 - 1) * 10 - 1) * 11 - 1) * 12 - 1) * 13 - 1) * 14)| ≤ |1| ^ 14 / ↑(Nat.factorial 14) * (1 / 10 ^ 20 * 1 * 2 * 3 * 4 * 5 * 6 * 7 * 8 * 9 * 10 * 11 * 12 * 13 * 14) [PROOFSTEP] refine' exp_1_approx_succ_eq (by norm_num1; rfl) (by norm_cast) _ [GOAL] ⊢ 14 + 1 = ?m.4877 [PROOFSTEP] norm_num1 [GOAL] ⊢ 15 = ?m.4877 [PROOFSTEP] rfl [GOAL] ⊢ ↑15 = ?m.4879 [PROOFSTEP] norm_cast [GOAL] case h ⊢ |exp 1 - expNear 15 1 ((((((((((((((((363916618873 / 133877442384 - 1) * 1 - 1) * 2 - 1) * 3 - 1) * 4 - 1) * 5 - 1) * 6 - 1) * 7 - 1) * 8 - 1) * 9 - 1) * 10 - 1) * 11 - 1) * 12 - 1) * 13 - 1) * 14 - 1) * 15)| ≤ |1| ^ 15 / ↑(Nat.factorial 15) * (1 / 10 ^ 20 * 1 * 2 * 3 * 4 * 5 * 6 * 7 * 8 * 9 * 10 * 11 * 12 * 13 * 14 * 15) [PROOFSTEP] refine' exp_1_approx_succ_eq (by norm_num1; rfl) (by norm_cast) _ [GOAL] ⊢ 15 + 1 = ?m.4947 [PROOFSTEP] norm_num1 [GOAL] ⊢ 16 = ?m.4947 [PROOFSTEP] rfl [GOAL] ⊢ ↑16 = ?m.4949 [PROOFSTEP] norm_cast [GOAL] case h ⊢ |exp 1 - expNear 16 1 (((((((((((((((((363916618873 / 133877442384 - 1) * 1 - 1) * 2 - 1) * 3 - 1) * 4 - 1) * 5 - 1) * 6 - 1) * 7 - 1) * 8 - 1) * 9 - 1) * 10 - 1) * 11 - 1) * 12 - 1) * 13 - 1) * 14 - 1) * 15 - 1) * 16)| ≤ |1| ^ 16 / ↑(Nat.factorial 16) * (1 / 10 ^ 20 * 1 * 2 * 3 * 4 * 5 * 6 * 7 * 8 * 9 * 10 * 11 * 12 * 13 * 14 * 15 * 16) [PROOFSTEP] refine' exp_1_approx_succ_eq (by norm_num1; rfl) (by norm_cast) _ [GOAL] ⊢ 16 + 1 = ?m.5017 [PROOFSTEP] norm_num1 [GOAL] ⊢ 17 = ?m.5017 [PROOFSTEP] rfl [GOAL] ⊢ ↑17 = ?m.5019 [PROOFSTEP] norm_cast [GOAL] case h ⊢ |exp 1 - expNear 17 1 ((((((((((((((((((363916618873 / 133877442384 - 1) * 1 - 1) * 2 - 1) * 3 - 1) * 4 - 1) * 5 - 1) * 6 - 1) * 7 - 1) * 8 - 1) * 9 - 1) * 10 - 1) * 11 - 1) * 12 - 1) * 13 - 1) * 14 - 1) * 15 - 1) * 16 - 1) * 17)| ≤ |1| ^ 17 / ↑(Nat.factorial 17) * (1 / 10 ^ 20 * 1 * 2 * 3 * 4 * 5 * 6 * 7 * 8 * 9 * 10 * 11 * 12 * 13 * 14 * 15 * 16 * 17) [PROOFSTEP] refine' exp_1_approx_succ_eq (by norm_num1; rfl) (by norm_cast) _ [GOAL] ⊢ 17 + 1 = ?m.5087 [PROOFSTEP] norm_num1 [GOAL] ⊢ 18 = ?m.5087 [PROOFSTEP] rfl [GOAL] ⊢ ↑18 = ?m.5089 [PROOFSTEP] norm_cast [GOAL] case h ⊢ |exp 1 - expNear 18 1 (((((((((((((((((((363916618873 / 133877442384 - 1) * 1 - 1) * 2 - 1) * 3 - 1) * 4 - 1) * 5 - 1) * 6 - 1) * 7 - 1) * 8 - 1) * 9 - 1) * 10 - 1) * 11 - 1) * 12 - 1) * 13 - 1) * 14 - 1) * 15 - 1) * 16 - 1) * 17 - 1) * 18)| ≤ |1| ^ 18 / ↑(Nat.factorial 18) * (1 / 10 ^ 20 * 1 * 2 * 3 * 4 * 5 * 6 * 7 * 8 * 9 * 10 * 11 * 12 * 13 * 14 * 15 * 16 * 17 * 18) [PROOFSTEP] refine' exp_1_approx_succ_eq (by norm_num1; rfl) (by norm_cast) _ [GOAL] ⊢ 18 + 1 = ?m.5157 [PROOFSTEP] norm_num1 [GOAL] ⊢ 19 = ?m.5157 [PROOFSTEP] rfl [GOAL] ⊢ ↑19 = ?m.5159 [PROOFSTEP] norm_cast [GOAL] case h ⊢ |exp 1 - expNear 19 1 ((((((((((((((((((((363916618873 / 133877442384 - 1) * 1 - 1) * 2 - 1) * 3 - 1) * 4 - 1) * 5 - 1) * 6 - 1) * 7 - 1) * 8 - 1) * 9 - 1) * 10 - 1) * 11 - 1) * 12 - 1) * 13 - 1) * 14 - 1) * 15 - 1) * 16 - 1) * 17 - 1) * 18 - 1) * 19)| ≤ |1| ^ 19 / ↑(Nat.factorial 19) * (1 / 10 ^ 20 * 1 * 2 * 3 * 4 * 5 * 6 * 7 * 8 * 9 * 10 * 11 * 12 * 13 * 14 * 15 * 16 * 17 * 18 * 19) [PROOFSTEP] refine' exp_1_approx_succ_eq (by norm_num1; rfl) (by norm_cast) _ [GOAL] ⊢ 19 + 1 = ?m.5227 [PROOFSTEP] norm_num1 [GOAL] ⊢ 20 = ?m.5227 [PROOFSTEP] rfl [GOAL] ⊢ ↑20 = ?m.5229 [PROOFSTEP] norm_cast [GOAL] case h ⊢ |exp 1 - expNear 20 1 (((((((((((((((((((((363916618873 / 133877442384 - 1) * 1 - 1) * 2 - 1) * 3 - 1) * 4 - 1) * 5 - 1) * 6 - 1) * 7 - 1) * 8 - 1) * 9 - 1) * 10 - 1) * 11 - 1) * 12 - 1) * 13 - 1) * 14 - 1) * 15 - 1) * 16 - 1) * 17 - 1) * 18 - 1) * 19 - 1) * 20)| ≤ |1| ^ 20 / ↑(Nat.factorial 20) * (1 / 10 ^ 20 * 1 * 2 * 3 * 4 * 5 * 6 * 7 * 8 * 9 * 10 * 11 * 12 * 13 * 14 * 15 * 16 * 17 * 18 * 19 * 20) [PROOFSTEP] refine' exp_1_approx_succ_eq (by norm_num1; rfl) (by norm_cast) _ [GOAL] ⊢ 20 + 1 = ?m.5297 [PROOFSTEP] norm_num1 [GOAL] ⊢ 21 = ?m.5297 [PROOFSTEP] rfl [GOAL] ⊢ ↑21 = ?m.5299 [PROOFSTEP] norm_cast [GOAL] case h ⊢ |exp 1 - expNear 21 1 ((((((((((((((((((((((363916618873 / 133877442384 - 1) * 1 - 1) * 2 - 1) * 3 - 1) * 4 - 1) * 5 - 1) * 6 - 1) * 7 - 1) * 8 - 1) * 9 - 1) * 10 - 1) * 11 - 1) * 12 - 1) * 13 - 1) * 14 - 1) * 15 - 1) * 16 - 1) * 17 - 1) * 18 - 1) * 19 - 1) * 20 - 1) * 21)| ≤ |1| ^ 21 / ↑(Nat.factorial 21) * (1 / 10 ^ 20 * 1 * 2 * 3 * 4 * 5 * 6 * 7 * 8 * 9 * 10 * 11 * 12 * 13 * 14 * 15 * 16 * 17 * 18 * 19 * 20 * 21) [PROOFSTEP] norm_num1 [GOAL] case h ⊢ |exp 1 - expNear 21 1 (36295539 / 44271641)| ≤ |1| ^ 21 / ↑(Nat.factorial 21) * (311834363841 / 610351562500) [PROOFSTEP] refine' exp_approx_end' _ (by norm_num1; rfl) _ (by norm_cast) (by simp) _ [GOAL] ⊢ 21 + 1 = ?m.5994 [PROOFSTEP] norm_num1 [GOAL] ⊢ 22 = ?m.5994 [PROOFSTEP] rfl [GOAL] ⊢ ↑22 = ?m.5996 [PROOFSTEP] norm_cast [GOAL] ⊢ |1| ≤ 1 [PROOFSTEP] simp [GOAL] case h ⊢ |1 - 36295539 / 44271641| ≤ 311834363841 / 610351562500 - |1| / 22 * ((22 + 1) / 22) [PROOFSTEP] rw [_root_.abs_one, abs_of_pos] [GOAL] case h ⊢ 1 - 36295539 / 44271641 ≤ 311834363841 / 610351562500 - 1 / 22 * ((22 + 1) / 22) [PROOFSTEP] norm_num1 [GOAL] case h ⊢ 0 < 1 - 36295539 / 44271641 [PROOFSTEP] norm_num1 [GOAL] ⊢ 2.7182818283 < 2244083 / 825552 - 1 / 10 ^ 10 [PROOFSTEP] norm_num [GOAL] ⊢ 1 / 10 ^ 10 + 2244083 / 825552 < 2.7182818286 [PROOFSTEP] norm_num [GOAL] ⊢ 0.36787944116 < exp (-1) [PROOFSTEP] rw [exp_neg, lt_inv _ (exp_pos _)] [GOAL] ⊢ exp 1 < 0.36787944116⁻¹ ⊢ 0 < 0.36787944116 [PROOFSTEP] refine' lt_of_le_of_lt (sub_le_iff_le_add.1 (abs_sub_le_iff.1 exp_one_near_10).1) _ [GOAL] ⊢ 1 / 10 ^ 10 + 2244083 / 825552 < 0.36787944116⁻¹ ⊢ 0 < 0.36787944116 [PROOFSTEP] all_goals norm_num [GOAL] ⊢ 1 / 10 ^ 10 + 2244083 / 825552 < 0.36787944116⁻¹ [PROOFSTEP] norm_num [GOAL] ⊢ 0 < 0.36787944116 [PROOFSTEP] norm_num [GOAL] ⊢ exp (-1) < 0.3678794412 [PROOFSTEP] rw [exp_neg, inv_lt (exp_pos _)] [GOAL] ⊢ 0.3678794412⁻¹ < exp 1 ⊢ 0 < 0.3678794412 [PROOFSTEP] refine' lt_of_lt_of_le _ (sub_le_comm.1 (abs_sub_le_iff.1 exp_one_near_10).2) [GOAL] ⊢ 0.3678794412⁻¹ < 2244083 / 825552 - 1 / 10 ^ 10 ⊢ 0 < 0.3678794412 [PROOFSTEP] all_goals norm_num [GOAL] ⊢ 0.3678794412⁻¹ < 2244083 / 825552 - 1 / 10 ^ 10 [PROOFSTEP] norm_num [GOAL] ⊢ 0 < 0.3678794412 [PROOFSTEP] norm_num [GOAL] ⊢ |log 2 - 287209 / 414355| ≤ 1 / 10 ^ 10 [PROOFSTEP] suffices |log 2 - 287209 / 414355| ≤ 1 / 17179869184 + (1 / 10 ^ 10 - 1 / 2 ^ 34) by norm_num1 at * assumption [GOAL] this : |log 2 - 287209 / 414355| ≤ 1 / 17179869184 + (1 / 10 ^ 10 - 1 / 2 ^ 34) ⊢ |log 2 - 287209 / 414355| ≤ 1 / 10 ^ 10 [PROOFSTEP] norm_num1 at * [GOAL] this : |log 2 - 287209 / 414355| ≤ 1 / 10000000000 ⊢ |log 2 - 287209 / 414355| ≤ 1 / 10000000000 [PROOFSTEP] assumption [GOAL] ⊢ |log 2 - 287209 / 414355| ≤ 1 / 17179869184 + (1 / 10 ^ 10 - 1 / 2 ^ 34) [PROOFSTEP] have t : |(2⁻¹ : ℝ)| = 2⁻¹ := by rw [abs_of_pos]; norm_num [GOAL] ⊢ |2⁻¹| = 2⁻¹ [PROOFSTEP] rw [abs_of_pos] [GOAL] ⊢ 0 < 2⁻¹ [PROOFSTEP] norm_num [GOAL] t : |2⁻¹| = 2⁻¹ ⊢ |log 2 - 287209 / 414355| ≤ 1 / 17179869184 + (1 / 10 ^ 10 - 1 / 2 ^ 34) [PROOFSTEP] have z := Real.abs_log_sub_add_sum_range_le (show |(2⁻¹ : ℝ)| < 1 by rw [t]; norm_num) 34 [GOAL] t : |2⁻¹| = 2⁻¹ ⊢ |2⁻¹| < 1 [PROOFSTEP] rw [t] [GOAL] t : |2⁻¹| = 2⁻¹ ⊢ 2⁻¹ < 1 [PROOFSTEP] norm_num [GOAL] t : |2⁻¹| = 2⁻¹ z : |(Finset.sum (range 34) fun i => 2⁻¹ ^ (i + 1) / (↑i + 1)) + log (1 - 2⁻¹)| ≤ |2⁻¹| ^ (34 + 1) / (1 - |2⁻¹|) ⊢ |log 2 - 287209 / 414355| ≤ 1 / 17179869184 + (1 / 10 ^ 10 - 1 / 2 ^ 34) [PROOFSTEP] rw [t] at z [GOAL] t : |2⁻¹| = 2⁻¹ z : |(Finset.sum (range 34) fun i => 2⁻¹ ^ (i + 1) / (↑i + 1)) + log (1 - 2⁻¹)| ≤ 2⁻¹ ^ (34 + 1) / (1 - 2⁻¹) ⊢ |log 2 - 287209 / 414355| ≤ 1 / 17179869184 + (1 / 10 ^ 10 - 1 / 2 ^ 34) [PROOFSTEP] norm_num1 at z [GOAL] t : |2⁻¹| = 2⁻¹ z : |(Finset.sum (range 34) fun x => (1 / 2) ^ (x + 1) / (↑x + 1)) + log (1 / 2)| ≤ 1 / 17179869184 ⊢ |log 2 - 287209 / 414355| ≤ 1 / 17179869184 + (1 / 10 ^ 10 - 1 / 2 ^ 34) [PROOFSTEP] rw [one_div (2 : ℝ), log_inv, ← sub_eq_add_neg, _root_.abs_sub_comm] at z [GOAL] t : |2⁻¹| = 2⁻¹ z : |log 2 - Finset.sum (range 34) fun x => 2⁻¹ ^ (x + 1) / (↑x + 1)| ≤ 1 / 17179869184 ⊢ |log 2 - 287209 / 414355| ≤ 1 / 17179869184 + (1 / 10 ^ 10 - 1 / 2 ^ 34) [PROOFSTEP] apply le_trans (_root_.abs_sub_le _ _ _) (add_le_add z _) [GOAL] t : |2⁻¹| = 2⁻¹ z : |log 2 - Finset.sum (range 34) fun x => 2⁻¹ ^ (x + 1) / (↑x + 1)| ≤ 1 / 17179869184 ⊢ |(Finset.sum (range 34) fun x => 2⁻¹ ^ (x + 1) / (↑x + 1)) - 287209 / 414355| ≤ 1 / 10 ^ 10 - 1 / 2 ^ 34 [PROOFSTEP] simp_rw [sum_range_succ] [GOAL] t : |2⁻¹| = 2⁻¹ z : |log 2 - Finset.sum (range 34) fun x => 2⁻¹ ^ (x + 1) / (↑x + 1)| ≤ 1 / 17179869184 ⊢ |(Finset.sum (range 0) fun x => 2⁻¹ ^ (x + 1) / (↑x + 1)) + 2⁻¹ ^ (0 + 1) / (↑0 + 1) + 2⁻¹ ^ (1 + 1) / (↑1 + 1) + 2⁻¹ ^ (2 + 1) / (↑2 + 1) + 2⁻¹ ^ (3 + 1) / (↑3 + 1) + 2⁻¹ ^ (4 + 1) / (↑4 + 1) + 2⁻¹ ^ (5 + 1) / (↑5 + 1) + 2⁻¹ ^ (6 + 1) / (↑6 + 1) + 2⁻¹ ^ (7 + 1) / (↑7 + 1) + 2⁻¹ ^ (8 + 1) / (↑8 + 1) + 2⁻¹ ^ (9 + 1) / (↑9 + 1) + 2⁻¹ ^ (10 + 1) / (↑10 + 1) + 2⁻¹ ^ (11 + 1) / (↑11 + 1) + 2⁻¹ ^ (12 + 1) / (↑12 + 1) + 2⁻¹ ^ (13 + 1) / (↑13 + 1) + 2⁻¹ ^ (14 + 1) / (↑14 + 1) + 2⁻¹ ^ (15 + 1) / (↑15 + 1) + 2⁻¹ ^ (16 + 1) / (↑16 + 1) + 2⁻¹ ^ (17 + 1) / (↑17 + 1) + 2⁻¹ ^ (18 + 1) / (↑18 + 1) + 2⁻¹ ^ (19 + 1) / (↑19 + 1) + 2⁻¹ ^ (20 + 1) / (↑20 + 1) + 2⁻¹ ^ (21 + 1) / (↑21 + 1) + 2⁻¹ ^ (22 + 1) / (↑22 + 1) + 2⁻¹ ^ (23 + 1) / (↑23 + 1) + 2⁻¹ ^ (24 + 1) / (↑24 + 1) + 2⁻¹ ^ (25 + 1) / (↑25 + 1) + 2⁻¹ ^ (26 + 1) / (↑26 + 1) + 2⁻¹ ^ (27 + 1) / (↑27 + 1) + 2⁻¹ ^ (28 + 1) / (↑28 + 1) + 2⁻¹ ^ (29 + 1) / (↑29 + 1) + 2⁻¹ ^ (30 + 1) / (↑30 + 1) + 2⁻¹ ^ (31 + 1) / (↑31 + 1) + 2⁻¹ ^ (32 + 1) / (↑32 + 1) + 2⁻¹ ^ (33 + 1) / (↑33 + 1) - 287209 / 414355| ≤ 1 / 10 ^ 10 - 1 / 2 ^ 34 [PROOFSTEP] norm_num [GOAL] t : |2⁻¹| = 2⁻¹ z : |log 2 - Finset.sum (range 34) fun x => 2⁻¹ ^ (x + 1) / (↑x + 1)| ≤ 1 / 17179869184 ⊢ |30417026706710207 / 51397301678363663775930777600| ≤ 7011591 / 167772160000000000 [PROOFSTEP] rw [abs_of_pos] [GOAL] t : |2⁻¹| = 2⁻¹ z : |log 2 - Finset.sum (range 34) fun x => 2⁻¹ ^ (x + 1) / (↑x + 1)| ≤ 1 / 17179869184 ⊢ 30417026706710207 / 51397301678363663775930777600 ≤ 7011591 / 167772160000000000 [PROOFSTEP] norm_num [GOAL] t : |2⁻¹| = 2⁻¹ z : |log 2 - Finset.sum (range 34) fun x => 2⁻¹ ^ (x + 1) / (↑x + 1)| ≤ 1 / 17179869184 ⊢ 0 < 30417026706710207 / 51397301678363663775930777600 [PROOFSTEP] norm_num [GOAL] ⊢ 0.6931471803 < 287209 / 414355 - 1 / 10 ^ 10 [PROOFSTEP] norm_num1 [GOAL] ⊢ 1 / 10 ^ 10 + 287209 / 414355 < 0.6931471808 [PROOFSTEP] norm_num
State Before: A B : NonemptyFinLinOrdCat f : A ⟶ B ⊢ Mono f ↔ Function.Injective ↑f State After: A B : NonemptyFinLinOrdCat f : A ⟶ B ⊢ Mono f → Function.Injective ↑f Tactic: refine' ⟨_, ConcreteCategory.mono_of_injective f⟩ State Before: A B : NonemptyFinLinOrdCat f : A ⟶ B ⊢ Mono f → Function.Injective ↑f State After: A B : NonemptyFinLinOrdCat f : A ⟶ B a✝ : Mono f ⊢ Function.Injective ↑f Tactic: intro State Before: A B : NonemptyFinLinOrdCat f : A ⟶ B a✝ : Mono f ⊢ Function.Injective ↑f State After: A B : NonemptyFinLinOrdCat f : A ⟶ B a✝ : Mono f a₁ a₂ : ↑A h : ↑f a₁ = ↑f a₂ ⊢ a₁ = a₂ Tactic: intro a₁ a₂ h State Before: A B : NonemptyFinLinOrdCat f : A ⟶ B a✝ : Mono f a₁ a₂ : ↑A h : ↑f a₁ = ↑f a₂ ⊢ a₁ = a₂ State After: A B : NonemptyFinLinOrdCat f : A ⟶ B a✝ : Mono f a₁ a₂ : ↑A h : ↑f a₁ = ↑f a₂ X : NonemptyFinLinOrdCat := of (ULift (Fin 1)) ⊢ a₁ = a₂ Tactic: let X := NonemptyFinLinOrdCat.of (ULift (Fin 1)) State Before: A B : NonemptyFinLinOrdCat f : A ⟶ B a✝ : Mono f a₁ a₂ : ↑A h : ↑f a₁ = ↑f a₂ X : NonemptyFinLinOrdCat := of (ULift (Fin 1)) ⊢ a₁ = a₂ State After: A B : NonemptyFinLinOrdCat f : A ⟶ B a✝ : Mono f a₁ a₂ : ↑A h : ↑f a₁ = ↑f a₂ X : NonemptyFinLinOrdCat := of (ULift (Fin 1)) g₁ : X ⟶ A := { toFun := fun x => a₁, monotone' := (_ : ∀ (x x_1 : ↑X), x ≤ x_1 → (fun x => a₁) x ≤ (fun x => a₁) x) } ⊢ a₁ = a₂ Tactic: let g₁ : X ⟶ A := ⟨fun _ => a₁, fun _ _ _ => by rfl⟩ State Before: A B : NonemptyFinLinOrdCat f : A ⟶ B a✝ : Mono f a₁ a₂ : ↑A h : ↑f a₁ = ↑f a₂ X : NonemptyFinLinOrdCat := of (ULift (Fin 1)) g₁ : X ⟶ A := { toFun := fun x => a₁, monotone' := (_ : ∀ (x x_1 : ↑X), x ≤ x_1 → (fun x => a₁) x ≤ (fun x => a₁) x) } ⊢ a₁ = a₂ State After: A B : NonemptyFinLinOrdCat f : A ⟶ B a✝ : Mono f a₁ a₂ : ↑A h : ↑f a₁ = ↑f a₂ X : NonemptyFinLinOrdCat := of (ULift (Fin 1)) g₁ : X ⟶ A := { toFun := fun x => a₁, monotone' := (_ : ∀ (x x_1 : ↑X), x ≤ x_1 → (fun x => a₁) x ≤ (fun x => a₁) x) } g₂ : X ⟶ A := { toFun := fun x => a₂, monotone' := (_ : ∀ (x x_1 : ↑X), x ≤ x_1 → (fun x => a₂) x ≤ (fun x => a₂) x) } ⊢ a₁ = a₂ Tactic: let g₂ : X ⟶ A := ⟨fun _ => a₂, fun _ _ _ => by rfl⟩ State Before: A B : NonemptyFinLinOrdCat f : A ⟶ B a✝ : Mono f a₁ a₂ : ↑A h : ↑f a₁ = ↑f a₂ X : NonemptyFinLinOrdCat := of (ULift (Fin 1)) g₁ : X ⟶ A := { toFun := fun x => a₁, monotone' := (_ : ∀ (x x_1 : ↑X), x ≤ x_1 → (fun x => a₁) x ≤ (fun x => a₁) x) } g₂ : X ⟶ A := { toFun := fun x => a₂, monotone' := (_ : ∀ (x x_1 : ↑X), x ≤ x_1 → (fun x => a₂) x ≤ (fun x => a₂) x) } ⊢ a₁ = a₂ State After: A B : NonemptyFinLinOrdCat f : A ⟶ B a✝ : Mono f a₁ a₂ : ↑A h : ↑f a₁ = ↑f a₂ X : NonemptyFinLinOrdCat := of (ULift (Fin 1)) g₁ : X ⟶ A := { toFun := fun x => a₁, monotone' := (_ : ∀ (x x_1 : ↑X), x ≤ x_1 → (fun x => a₁) x ≤ (fun x => a₁) x) } g₂ : X ⟶ A := { toFun := fun x => a₂, monotone' := (_ : ∀ (x x_1 : ↑X), x ≤ x_1 → (fun x => a₂) x ≤ (fun x => a₂) x) } ⊢ ↑g₁ { down := 0 } = ↑g₂ { down := 0 } Tactic: change g₁ (ULift.up (0 : Fin 1)) = g₂ (ULift.up (0 : Fin 1)) State Before: A B : NonemptyFinLinOrdCat f : A ⟶ B a✝ : Mono f a₁ a₂ : ↑A h : ↑f a₁ = ↑f a₂ X : NonemptyFinLinOrdCat := of (ULift (Fin 1)) g₁ : X ⟶ A := { toFun := fun x => a₁, monotone' := (_ : ∀ (x x_1 : ↑X), x ≤ x_1 → (fun x => a₁) x ≤ (fun x => a₁) x) } g₂ : X ⟶ A := { toFun := fun x => a₂, monotone' := (_ : ∀ (x x_1 : ↑X), x ≤ x_1 → (fun x => a₂) x ≤ (fun x => a₂) x) } ⊢ ↑g₁ { down := 0 } = ↑g₂ { down := 0 } State After: A B : NonemptyFinLinOrdCat f : A ⟶ B a✝ : Mono f a₁ a₂ : ↑A h : ↑f a₁ = ↑f a₂ X : NonemptyFinLinOrdCat := of (ULift (Fin 1)) g₁ : X ⟶ A := { toFun := fun x => a₁, monotone' := (_ : ∀ (x x_1 : ↑X), x ≤ x_1 → (fun x => a₁) x ≤ (fun x => a₁) x) } g₂ : X ⟶ A := { toFun := fun x => a₂, monotone' := (_ : ∀ (x x_1 : ↑X), x ≤ x_1 → (fun x => a₂) x ≤ (fun x => a₂) x) } eq : g₁ ≫ f = g₂ ≫ f ⊢ ↑g₁ { down := 0 } = ↑g₂ { down := 0 } Tactic: have eq : g₁ ≫ f = g₂ ≫ f := by ext exact h State Before: A B : NonemptyFinLinOrdCat f : A ⟶ B a✝ : Mono f a₁ a₂ : ↑A h : ↑f a₁ = ↑f a₂ X : NonemptyFinLinOrdCat := of (ULift (Fin 1)) g₁ : X ⟶ A := { toFun := fun x => a₁, monotone' := (_ : ∀ (x x_1 : ↑X), x ≤ x_1 → (fun x => a₁) x ≤ (fun x => a₁) x) } g₂ : X ⟶ A := { toFun := fun x => a₂, monotone' := (_ : ∀ (x x_1 : ↑X), x ≤ x_1 → (fun x => a₂) x ≤ (fun x => a₂) x) } eq : g₁ ≫ f = g₂ ≫ f ⊢ ↑g₁ { down := 0 } = ↑g₂ { down := 0 } State After: A B : NonemptyFinLinOrdCat f : A ⟶ B a✝ : Mono f a₁ a₂ : ↑A h : ↑f a₁ = ↑f a₂ X : NonemptyFinLinOrdCat := of (ULift (Fin 1)) g₁ : X ⟶ A := { toFun := fun x => a₁, monotone' := (_ : ∀ (x x_1 : ↑X), x ≤ x_1 → (fun x => a₁) x ≤ (fun x => a₁) x) } g₂ : X ⟶ A := { toFun := fun x => a₂, monotone' := (_ : ∀ (x x_1 : ↑X), x ≤ x_1 → (fun x => a₂) x ≤ (fun x => a₂) x) } eq : g₁ = g₂ ⊢ ↑g₁ { down := 0 } = ↑g₂ { down := 0 } Tactic: rw [cancel_mono] at eq State Before: A B : NonemptyFinLinOrdCat f : A ⟶ B a✝ : Mono f a₁ a₂ : ↑A h : ↑f a₁ = ↑f a₂ X : NonemptyFinLinOrdCat := of (ULift (Fin 1)) g₁ : X ⟶ A := { toFun := fun x => a₁, monotone' := (_ : ∀ (x x_1 : ↑X), x ≤ x_1 → (fun x => a₁) x ≤ (fun x => a₁) x) } g₂ : X ⟶ A := { toFun := fun x => a₂, monotone' := (_ : ∀ (x x_1 : ↑X), x ≤ x_1 → (fun x => a₂) x ≤ (fun x => a₂) x) } eq : g₁ = g₂ ⊢ ↑g₁ { down := 0 } = ↑g₂ { down := 0 } State After: no goals Tactic: rw [eq] State Before: A B : NonemptyFinLinOrdCat f : A ⟶ B a✝ : Mono f a₁ a₂ : ↑A h : ↑f a₁ = ↑f a₂ X : NonemptyFinLinOrdCat := of (ULift (Fin 1)) x✝² x✝¹ : ↑X x✝ : x✝² ≤ x✝¹ ⊢ (fun x => a₁) x✝² ≤ (fun x => a₁) x✝¹ State After: no goals Tactic: rfl State Before: A B : NonemptyFinLinOrdCat f : A ⟶ B a✝ : Mono f a₁ a₂ : ↑A h : ↑f a₁ = ↑f a₂ X : NonemptyFinLinOrdCat := of (ULift (Fin 1)) g₁ : X ⟶ A := { toFun := fun x => a₁, monotone' := (_ : ∀ (x x_1 : ↑X), x ≤ x_1 → (fun x => a₁) x ≤ (fun x => a₁) x) } x✝² x✝¹ : ↑X x✝ : x✝² ≤ x✝¹ ⊢ (fun x => a₂) x✝² ≤ (fun x => a₂) x✝¹ State After: no goals Tactic: rfl State Before: A B : NonemptyFinLinOrdCat f : A ⟶ B a✝ : Mono f a₁ a₂ : ↑A h : ↑f a₁ = ↑f a₂ X : NonemptyFinLinOrdCat := of (ULift (Fin 1)) g₁ : X ⟶ A := { toFun := fun x => a₁, monotone' := (_ : ∀ (x x_1 : ↑X), x ≤ x_1 → (fun x => a₁) x ≤ (fun x => a₁) x) } g₂ : X ⟶ A := { toFun := fun x => a₂, monotone' := (_ : ∀ (x x_1 : ↑X), x ≤ x_1 → (fun x => a₂) x ≤ (fun x => a₂) x) } ⊢ g₁ ≫ f = g₂ ≫ f State After: case w A B : NonemptyFinLinOrdCat f : A ⟶ B a✝ : Mono f a₁ a₂ : ↑A h : ↑f a₁ = ↑f a₂ X : NonemptyFinLinOrdCat := of (ULift (Fin 1)) g₁ : X ⟶ A := { toFun := fun x => a₁, monotone' := (_ : ∀ (x x_1 : ↑X), x ≤ x_1 → (fun x => a₁) x ≤ (fun x => a₁) x) } g₂ : X ⟶ A := { toFun := fun x => a₂, monotone' := (_ : ∀ (x x_1 : ↑X), x ≤ x_1 → (fun x => a₂) x ≤ (fun x => a₂) x) } x✝ : (forget NonemptyFinLinOrdCat).obj X ⊢ (forget NonemptyFinLinOrdCat).map (g₁ ≫ f) x✝ = (forget NonemptyFinLinOrdCat).map (g₂ ≫ f) x✝ Tactic: ext State Before: case w A B : NonemptyFinLinOrdCat f : A ⟶ B a✝ : Mono f a₁ a₂ : ↑A h : ↑f a₁ = ↑f a₂ X : NonemptyFinLinOrdCat := of (ULift (Fin 1)) g₁ : X ⟶ A := { toFun := fun x => a₁, monotone' := (_ : ∀ (x x_1 : ↑X), x ≤ x_1 → (fun x => a₁) x ≤ (fun x => a₁) x) } g₂ : X ⟶ A := { toFun := fun x => a₂, monotone' := (_ : ∀ (x x_1 : ↑X), x ≤ x_1 → (fun x => a₂) x ≤ (fun x => a₂) x) } x✝ : (forget NonemptyFinLinOrdCat).obj X ⊢ (forget NonemptyFinLinOrdCat).map (g₁ ≫ f) x✝ = (forget NonemptyFinLinOrdCat).map (g₂ ≫ f) x✝ State After: no goals Tactic: exact h
Players listed with no appearances have been in the matchday squad but only as unused substitutes .
using BinDeps WORD_SIZE = 32 @BinDeps.setup group = library_group("libav") deps = [ libavcodec = library_dependency("libavcodec", aliases=[["libavcodec-ffmpeg.so.","libavcodec.","libavcodec.so.","libavcodec.ffmpeg.so.","avcodec-"].*["53" "54" "55" "56"]...], group = group) libavformat = library_dependency("libavformat", aliases=[["libavformat-ffmpeg.so.","libavformat.","libavformat.so.","libavformat.ffmpeg.so.","avformat-"].*["53" "54" "55" "56"]...], group = group) libavutil = library_dependency("libavutil", aliases=[["libavutil-ffmpeg.so.", "libavutil.","libavutil.so.", "libavutil.ffmpeg.so.", "avutil-"].*["51" "52" "54"]...], group = group) libswscale = library_dependency("libswscale", aliases=[["libswscale-ffmpeg.so.","libswscale.","libswscale.so.","libswscale.ffmpeg.so.","swscale-"].*["2" "3"]...], group = group) libavfilter = library_dependency("libavfilter", aliases=[["libavfilter-ffmpeg.so.","libavfilter.","libavfilter.so.","libavfilter.ffmpeg.so.","avfilter-"].*["2" "3" "4" "5"]...], group = group) libavdevice = library_dependency("libavdevice", aliases=[["libavdevice-ffmpeg.so.","libavdevice.","libavdevice.so.","libavdevice.ffmpeg.so.","avdevice-"].*["53" "54" "55" "56"]...], group = group) ] libav_libs = [libavutil, libavcodec, libavformat, libavfilter, libswscale, libavdevice] # if (have_avresample = dlopen_e("libavresample") != C_NULL) # libavresample = library_dependency("libavresample", aliases=[["libavresample.so.","avresample-"].*["1"]...], group = group) # push!(deps, libavresample) # end # if (have_swresample = dlopen_e("libswresample") != C_NULL) # libswresample = library_dependency("libswresample", aliases=[["libswresample.so.","libswresample.ffmpeg.so.","swresample-"].*["0"]...], group = group) # push!(deps, libswresample) # push!(libav_libs, libswresample) # end if is_windows() provides(Binaries, URI("http://www.daniel-thiem.de/ffmpeg/ffmpeg-2.2.3-win64-shared.7z"), libav_libs, os = :Windows, unpacked_dir="ffmpeg-2.2.3-win64-shared/bin") end if is_apple() using Homebrew provides( Homebrew.HB, "ffmpeg", libav_libs, os = :Darwin ) end # System Package Managers apt_packages = Dict( "libavcodec-extra-53" => libavcodec, "libavcodec53" => libavcodec, "libavcodec-extra-54" => libavcodec, "libavcodec54" => libavcodec, "libavcodec-extra-55" => libavcodec, "libavcodec55" => libavcodec, "libavdevice53" => libavdevice, "libavfilter2" => libavfilter, "libavfilter3" => libavfilter, "libavfilter4" => libavfilter, "libavformat53" => libavformat, "libavformat54" => libavformat, "libavformat55" => libavformat, #"libavresample1" => libavresample, "libavutil51" => libavutil, "libavutil52" => libavutil, "libswscale2" => libswscale, ## Available from https://launchpad.net/~jon-severinsson/+archive/ubuntu/ffmpeg "libavcodec55-ffmpeg" => libavcodec, "libavdevice55-ffmpeg" => libavdevice, "libavfilter4-ffmpeg" => libavfilter, "libavformat55-ffmpeg" => libavformat, "libavutil52-ffmpeg" => libavutil, #"libswresample0-ffmpeg" => libswresample, "libswscale2-ffmpeg" => libswscale, # ffmpeg is again available in standard packages as of ubuntu 15.04 "libavcodec-ffmpeg56" => libavcodec, "libavdevice-ffmpeg56" => libavdevice, "libavfilter-ffmpeg5" => libavfilter, "libavformat-ffmpeg56" => libavformat, "libavutil-ffmpeg54" => libavutil, "libswscale-ffmpeg3" => libswscale, #"libavresample-ffmpeg2" => libavresample, ) #if have_swresample # apt_packages["libswresample0-ffmpeg"] = libswresample #end #if have_avresample # apt_packages["libavresample1"] = libavresample #end provides(AptGet, apt_packages) provides(Yum, Dict("ffmpeg" => libav_libs)) provides(Pacman, Dict("ffmpeg" => libav_libs)) provides(Sources, URI("http://www.ffmpeg.org/releases/ffmpeg-2.3.2.tar.gz"), libav_libs) provides(BuildProcess, Autotools(configure_options=["--enable-gpl"]), libav_libs, os = :Unix) @BinDeps.install Dict( :libavcodec => :libavcodec, :libavformat => :libavformat, :libavutil => :libavutil, :libswscale => :libswscale, :libavfilter => :libavfilter, :libavdevice => :libavdevice )
source("common.r") df <- read.csv("../results/determinism.csv") df <- df %>% filter(Commutativity == "true") %>% select(-Commutativity) maxTime <- max(df %>% select(Time) %>% filter(!((Time == "memout") | (Time == "timeout"))) %>% transform(Time = strtoi(Time))) outValue <-((maxTime %/% 30) + 10) * 30 df <- df %>% transform(Time = ifelse(Time == "memout" | Time == "timeout", outValue, strtoi(Time)) / 1000) %>% transform(Pruning = gsub("true", "Yes", gsub("false", "No", Pruning))) range <- seq(0, max(df %>% select(Time)), by=0.5) ticks <- range print(ticks) ticks[length(ticks)] <- "Timeout" df <- ddply(df, c("Name", "Pruning"), summarise, Mean = mean(Time), Trials = length(Time), Sd = sd(Time), Se = Sd / sqrt(Trials)) plot <- ggplot(df, aes(x=Name,y=Mean,fill=Pruning)) + mytheme() + scale_fill_manual(values=c("red", "blue")) + theme(legend.title = element_text(size = 8), legend.position = c(0.85, 0.8), axis.text.x=element_text(angle=50, vjust=0.5)) + geom_bar(stat="identity",position="dodge") + geom_errorbar(aes(ymin=Mean-Se,ymax=Mean+Se,width=.4), position=position_dodge(0.9)) + scale_y_continuous(breaks = range, labels = ticks) + labs(x = "Benchmark", y = "Time (s)") mysave("../results/determinism.pdf", plot)
Formal statement is: lemma lift_prime_elem_poly: assumes "prime_elem (c :: 'a :: semidom)" shows "prime_elem [:c:]" Informal statement is: If $c$ is a prime element, then $[:c:]$ is a prime element.
[STATEMENT] lemma iteration_mono_eq: assumes xn: "x ^ p = (n :: int)" shows "(n div x ^ pm + x * int pm) div int p = x" [PROOF STATE] proof (prove) goal (1 subgoal): 1. (n div x ^ pm + x * int pm) div int p = x [PROOF STEP] proof - [PROOF STATE] proof (state) goal (1 subgoal): 1. (n div x ^ pm + x * int pm) div int p = x [PROOF STEP] have [simp]: "\<And> n. (x + x * n) = x * (1 + n)" [PROOF STATE] proof (prove) goal (1 subgoal): 1. \<And>n. x + x * n = x * (1 + n) [PROOF STEP] by (auto simp: field_simps) [PROOF STATE] proof (state) this: x + x * ?n = x * (1 + ?n) goal (1 subgoal): 1. (n div x ^ pm + x * int pm) div int p = x [PROOF STEP] show ?thesis [PROOF STATE] proof (prove) goal (1 subgoal): 1. (n div x ^ pm + x * int pm) div int p = x [PROOF STEP] unfolding xn[symmetric] p [PROOF STATE] proof (prove) goal (1 subgoal): 1. (x ^ Suc pm div x ^ pm + x * int pm) div int (Suc pm) = x [PROOF STEP] by simp [PROOF STATE] proof (state) this: (n div x ^ pm + x * int pm) div int p = x goal: No subgoals! [PROOF STEP] qed
#include <gsl/gsl_test.h> #include <gsl/gsl_ieee_utils.h> #include <gsl/gsl_math.h> #include <gsl/gsl_cblas.h> #include "tests.h" void test_spr (void) { const double flteps = 1e-4, dbleps = 1e-6; { int order = 101; int uplo = 121; int N = 2; float alpha = -0.3f; float Ap[] = { -0.764f, -0.257f, -0.064f }; float X[] = { 0.455f, -0.285f }; int incX = -1; float Ap_expected[] = { -0.788367f, -0.218097f, -0.126108f }; cblas_sspr(order, uplo, N, alpha, X, incX, Ap); { int i; for (i = 0; i < 3; i++) { gsl_test_rel(Ap[i], Ap_expected[i], flteps, "sspr(case 1426)"); } }; }; { int order = 101; int uplo = 122; int N = 2; float alpha = -0.3f; float Ap[] = { -0.764f, -0.257f, -0.064f }; float X[] = { 0.455f, -0.285f }; int incX = -1; float Ap_expected[] = { -0.788367f, -0.218097f, -0.126108f }; cblas_sspr(order, uplo, N, alpha, X, incX, Ap); { int i; for (i = 0; i < 3; i++) { gsl_test_rel(Ap[i], Ap_expected[i], flteps, "sspr(case 1427)"); } }; }; { int order = 102; int uplo = 121; int N = 2; float alpha = -0.3f; float Ap[] = { -0.764f, -0.257f, -0.064f }; float X[] = { 0.455f, -0.285f }; int incX = -1; float Ap_expected[] = { -0.788367f, -0.218097f, -0.126108f }; cblas_sspr(order, uplo, N, alpha, X, incX, Ap); { int i; for (i = 0; i < 3; i++) { gsl_test_rel(Ap[i], Ap_expected[i], flteps, "sspr(case 1428)"); } }; }; { int order = 102; int uplo = 122; int N = 2; float alpha = -0.3f; float Ap[] = { -0.764f, -0.257f, -0.064f }; float X[] = { 0.455f, -0.285f }; int incX = -1; float Ap_expected[] = { -0.788367f, -0.218097f, -0.126108f }; cblas_sspr(order, uplo, N, alpha, X, incX, Ap); { int i; for (i = 0; i < 3; i++) { gsl_test_rel(Ap[i], Ap_expected[i], flteps, "sspr(case 1429)"); } }; }; { int order = 101; int uplo = 121; int N = 2; double alpha = -1; double Ap[] = { 0.819, 0.175, -0.809 }; double X[] = { -0.645, -0.222 }; int incX = -1; double Ap_expected[] = { 0.769716, 0.03181, -1.225025 }; cblas_dspr(order, uplo, N, alpha, X, incX, Ap); { int i; for (i = 0; i < 3; i++) { gsl_test_rel(Ap[i], Ap_expected[i], dbleps, "dspr(case 1430)"); } }; }; { int order = 101; int uplo = 122; int N = 2; double alpha = -1; double Ap[] = { 0.819, 0.175, -0.809 }; double X[] = { -0.645, -0.222 }; int incX = -1; double Ap_expected[] = { 0.769716, 0.03181, -1.225025 }; cblas_dspr(order, uplo, N, alpha, X, incX, Ap); { int i; for (i = 0; i < 3; i++) { gsl_test_rel(Ap[i], Ap_expected[i], dbleps, "dspr(case 1431)"); } }; }; { int order = 102; int uplo = 121; int N = 2; double alpha = -1; double Ap[] = { 0.819, 0.175, -0.809 }; double X[] = { -0.645, -0.222 }; int incX = -1; double Ap_expected[] = { 0.769716, 0.03181, -1.225025 }; cblas_dspr(order, uplo, N, alpha, X, incX, Ap); { int i; for (i = 0; i < 3; i++) { gsl_test_rel(Ap[i], Ap_expected[i], dbleps, "dspr(case 1432)"); } }; }; { int order = 102; int uplo = 122; int N = 2; double alpha = -1; double Ap[] = { 0.819, 0.175, -0.809 }; double X[] = { -0.645, -0.222 }; int incX = -1; double Ap_expected[] = { 0.769716, 0.03181, -1.225025 }; cblas_dspr(order, uplo, N, alpha, X, incX, Ap); { int i; for (i = 0; i < 3; i++) { gsl_test_rel(Ap[i], Ap_expected[i], dbleps, "dspr(case 1433)"); } }; }; }
module Language.LSP.CodeAction.MakeLemma import Core.Context import Core.Core import Core.Env import Core.Metadata import Core.UnifyState import Data.List import Data.List1 import Data.String import Idris.REPL.Opts import Idris.Syntax import Idris.Resugar import Language.JSON import Language.LSP.CodeAction import Language.LSP.Message import Libraries.Data.List.Extra import Libraries.Data.PosMap import Parser.Unlit import Server.Configuration import Server.Log import Server.Utils import TTImp.TTImp import TTImp.Interactive.MakeLemma buildCodeAction : Name -> URI -> List TextEdit -> CodeAction buildCodeAction name uri edits = let workspaceEdit = MkWorkspaceEdit { changes = Just (singleton uri edits) , documentChanges = Nothing , changeAnnotations = Nothing } in MkCodeAction { title = "Make lemma of \{show name}" , kind = Just RefactorExtract , diagnostics = Just [] , isPreferred = Just False , disabled = Nothing , edit = Just workspaceEdit , command = Nothing , data_ = Nothing } findBlankLine : List String -> Int -> Int findBlankLine [] acc = acc findBlankLine (x :: xs) acc = if trim x == "" then acc else findBlankLine xs (acc - 1) export makeLemma : Ref LSPConf LSPConfiguration => Ref MD Metadata => Ref Ctxt Defs => Ref UST UState => Ref Syn SyntaxInfo => Ref ROpts REPLOpts => CodeActionParams -> Core (Maybe CodeAction) makeLemma params = do let True = params.range.start.line == params.range.end.line | _ => do logString Debug "makeLemma: start and end line were different" pure Nothing [] <- searchCache params.range MakeLemma | action :: _ => do logString Debug "makeLemma: found cached action" pure (Just action) nameLocs <- gets MD nameLocMap let line = params.range.start.line let col = params.range.start.character let Just (loc@(_, nstart, nend), name) = findPointInTreeLoc (line, col) nameLocs | Nothing => do logString Debug "makeLemma: couldn't find name at \{show (line, col)}" pure Nothing context <- gets Ctxt gamma toBeBracketed <- gets Syn bracketholes let toBrack = elemBy (\x, y => dropNS x == dropNS y) name toBeBracketed [(n, nidx, Hole locs _, ty)] <- lookupNameBy (\g => (definition g, type g)) name context | _ => do logString Debug $ "makeLemma: \{show name} is not a metavariable" pure Nothing (lty, lapp) <- makeLemma replFC name locs ty lemmaTy <- pterm lty papp <- pterm lapp let lemmaApp = show $ the PTerm $ if toBrack then addBracket replFC papp else papp src <- lines <$> getSource let Just srcLine = elemAt src (integerToNat (cast line)) | Nothing => do logString Debug $ "makeLemma: error while fetching the referenced line" pure Nothing let (markM, _) = isLitLine srcLine -- TODO: currently it has the same behaviour of the compiler, it puts the new -- definition in the first blank line above the hole. We want to put it -- exactly above the clause or declaration that uses the hole, however -- this information is needed within the compiler, so waiting future PRs. let blank = findBlankLine (reverse $ take (integerToNat (cast line)) src) line let appEdit = MkTextEdit (MkRange (uncurry MkPosition nstart) (uncurry MkPosition nend)) lemmaApp let tyEdit = MkTextEdit (MkRange (MkPosition blank 0) (MkPosition blank 0)) (relit markM "\{show $ dropNS name} : \{show lemmaTy}\n\n") let action = buildCodeAction name params.textDocument.uri [tyEdit, appEdit] modify LSPConf (record { cachedActions $= insert (cast loc, MakeLemma, [action]) }) pure $ Just action
How to make replayer look like actual tables? Hi can you please give me instructions on how to accomplish this? I looked in the manual but there was nothing there and a search on this site came up empty for me... Thanks! I'm sorry I should have been more clear. It says I can skin the replayer to look exactly like my tables. I use Mercury theme on stars and it only has Nova and Grinder as options. Unfortunately, there are no more skins at the moment. Our development department has now a lot of much more important tasks. But as soon as the new themes appear, they will be immediately added to the list. OK, TY! The wording in the manual made it seem like you could skin them yourself which was why I was asking. Thanks for replying to all my questions. Much appreciated.
# In below program we will calculate correlation of a and b. # So output matrix will have 4 values, # because 2*2(n*n- n is the number of arrays) import numpy as np a=np.array([5,6,4,3,2]) b=np.array([4,9,4,3,1]) print() c=np.corrcoef(a,b) print(c) print() # Covariance of three arrays print() a=np.array([[5,6,4,3,2],[4,9,4,3,1],[1,8,4,3,9]]) c=np.corrcoef(a) print(c)
{-# LANGUAGE OverloadedStrings #-} {-# LANGUAGE ScopedTypeVariables #-} ----------------------------------------------------------------------------- -- | -- Module : -- Copyright : (c) 2013 Boyun Tang -- License : BSD-style -- Maintainer : [email protected] -- Stability : experimental -- Portability : ghc -- -- -- ----------------------------------------------------------------------------- module Main where import Control.Arrow import Data.Colour.Names import Data.Colour.Palette.BrewerSet import qualified Data.HashMap.Strict as H import qualified Data.List as L import qualified Data.Text as T import qualified Data.Text.IO as T import qualified Data.Text.Read as T import qualified Data.Vector as V import qualified Data.Vector.Unboxed as UV import Diagrams.Backend.Cairo import Diagrams.HeatMap import Diagrams.HeatMap.Type import Diagrams.Prelude import Statistics.Quantile import Statistics.Sample import System.Environment import System.FilePath cluDiffOpt :: ClustOpt cluDiffOpt = ClustOpt { colorOpt = color2 , rowCluster = Nothing -- Just (eucDis,UPGMA,LeftTree) , colCluster = Just (eucDis,UPGMA,BottomTree)} color1 = let cSet = brewerSet RdBu 11 in Three (cSet !! 9) white (cSet !! 1) color2 = Three green black red mkPara w h i j (a,b,c) = Para { clustOpt = cluDiffOpt , colorVal = ColorVal a b c , matrixHeight = h , matrixWidth = w , rowTreeHeight = 0.2 * min w h , colTreeHeight = 0.2 * min w h , rowFontSize = 0.8 * h / i , colFontSize = 0.6 * w / j , legendFontSize = 0.5 * w * 0.1 , fontName = "Arial" , colorBarPos = Horizontal , tradeOff = Quality , colTreeLineWidth = 0.5 , rowTreeLineWidth = 0.5 } eucDis :: (UV.Unbox a, Num a) => UV.Vector a -> UV.Vector a -> a eucDis vec1 vec2 = UV.sum $ UV.zipWith (\v1 v2 -> (v1-v2)*(v1-v2)) vec1 vec2 toZscore :: UV.Vector Double -> UV.Vector Double toZscore vec = let (m,v) = meanVarianceUnb vec in UV.map (\e -> (e - m) / sqrt v ) vec parseTSV :: Bool -> FilePath -> FilePath -> IO Dataset parseTSV doNormalization datFile labelFile = do sampleHash <- T.readFile labelFile >>= return . H.fromList . map (((!! 0) &&& (!! 1)) . T.split (== '\t')) . T.lines . T.filter (/= '\r') T.readFile datFile >>= return . (\(h:ts) -> let sIDs = V.fromList $ tail h grIDs = V.map (sampleHash `myIdx`) sIDs gIDs = V.fromList $ map head ts j = V.length sIDs i = V.length gIDs func = if doNormalization then toZscore else id datum = UV.concat $ map (func . UV.fromList . map (fst . fromRight . T.double) . tail) ts m = Matrix i j RowMajor datum in Dataset (Just gIDs) (Just sIDs) (Just grIDs) m ) . map (T.split (== '\t')) . T.lines . T.filter (/= '\r') where myIdx h k = if k `H.member` h then h H.! k else error $ show k fromRight :: Show a => Either a b -> b fromRight (Right b) = b fromRight (Left a) = error $ show a main :: IO () main = do doNormal:w:h:datFile:labelFile:_ <- getArgs dataset <- parseTSV (read doNormal) datFile labelFile let vMin = continuousBy medianUnbiased 1 100 $ dat $ datM $ dataset vMean = if (read doNormal) then 0 else continuousBy medianUnbiased 50 100 $ dat $ datM $ dataset vMax = continuousBy medianUnbiased 99 100 $ dat $ datM $ dataset j = fromIntegral $ nCol $ datM dataset i = fromIntegral $ nRow $ datM dataset para = mkPara (read w) (read h) i j (vMin,vMean,vMax) renderCairo (replaceExtension datFile "pdf") (mkWidth 600) $ pad 1.03 $ fst $ plotHeatMap para dataset
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % REPORT OF THE PROJECT %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \documentclass[a4paper,11pt]{article} \usepackage[utf8]{inputenc} \usepackage[T1]{fontenc} \usepackage[english]{babel} \usepackage{amsmath,amssymb,amsthm,amsopn} \usepackage{mathrsfs} \usepackage{graphicx} %\usepackage{tikz} %\usepackage{array} %\usepackage[top=1cm,bottom=1cm]{geometry} %\usepackage{listings} %\usepackage{xcolor} \usepackage{hyperref} \hypersetup{ colorlinks=true, linkcolor=blue, citecolor=red, } % fancy headers and footers %\usepackage{fancyhdr} %\pagestyle{fancy} %\fancyhead[L]{BCPST 2 - Lycée Jacques Prévert} %\fancyhead[R]{Rappels d'analyse} %\pagenumbering{gobble} % no page numbering % Création des labels Théorème, Lemme, etc... \newtheoremstyle{break}% {}{}% {\itshape}{}% {\bfseries}{}% % Note that final punctuation is omitted. {\newline}{} \newtheoremstyle{sc}% {}{}% {}{}% {\scshape}{}% % Note that final punctuation is omitted. {\newline}{} \theoremstyle{break} \newtheorem{thm}{Theorem}[section] \newtheorem{lm}[thm]{Lemma} \newtheorem{prop}[thm]{Proposition} \newtheorem{cor}[thm]{Corollary} \theoremstyle{sc} \newtheorem{exo}{Exercice} \theoremstyle{definition} \newtheorem{defi}[thm]{Definition} \newtheorem{ex}[thm]{Example} \theoremstyle{remark} \newtheorem{rem}[thm]{Remark} % Raccourcis pour les opérateurs mathématiques (les espaces avant-après sont modifiés pour mieux rentrer dans les codes mathématiques usuels) \DeclareMathOperator{\Ker}{Ker} \DeclareMathOperator{\Id}{Id} \DeclareMathOperator{\Img}{Im} \DeclareMathOperator{\Card}{Card} \DeclareMathOperator{\Vect}{Vect} \DeclareMathOperator{\Tr}{Tr} \DeclareMathOperator{\Mod}{mod} \DeclareMathOperator{\Ord}{Ord} \DeclareMathOperator{\lcm}{lcm} % Nouvelles commandes \newcommand{\ps}[2]{\left\langle#1,#2\right\rangle} \newcommand{\ent}[2]{[\![#1,#2]\!]} \newcommand{\diff}{\mathop{}\!\mathrm{d}} \newcommand{\ie}{\emph{i.e. }} % opening \title{Normal bases generation in C} \author{Édouard \textsc{Rousseau}\\Supervised by Michaël \textsc{Quisquater}} \begin{document} \maketitle \begin{abstract} This is the report of a C project about the generation of normal elements in finite fields. Consider a field extension $\mathbb{F}_{p^d}/\mathbb{F}_p$, we say that $\alpha\in\mathbb{F}_{p^d}$ is normal if $\left\{ \alpha,\alpha^p,\alpha^{p^2},\cdots,\alpha^{p^{d-1}} \right\}$ is a basis of $\mathbb{F}_{p^d}$ over $\mathbb{F}_p$. We first give some theory to characterize normal elements, then we describe three algorithms to compute normal elements : a randomized algorithm, Lüneburg's algorithm, and Lenstra's algorithm. Finally, we give experimental results about our implementation. All this work is based on Gao's PhD thesis~\cite{Ga93}. \end{abstract} \tableofcontents \clearpage \section{Introduction} \subsection{Normal bases} With the rise of electronics and computer science, areas like cryptography and coding theory have been largely studied. In both these domains, finite fields often have a fundamental role. Normal bases can be used to implement efficiently the finite fields arithmetic in the hardware, consumming less power than other bases. But normal bases can also be used as a theoretic tools to understand field extensions, and it is probably why normal bases were studied since the $19^\textrm{th}$ century. Gauss, for example, used normal bases to study when regular polygons can be drawn with ruler and compass alone, a \emph{very} old problem. The notion of normal bases is not linked with finite fields, if $\mathbb{K}$ is a field and $\mathbb{L}$ is a finite Galois extension of $\mathbb{K}$ of Galois group $G$, a normal basis of $\mathbb{L}$ over $\mathbb{K}$ is a basis of the form $\left\{ \sigma(\alpha)\;|\;\sigma\in G \right\}$ where $\alpha\in\mathbb{L}$. In other words, it is a basis composed of an element $\alpha$ and all its conjugates. In the case of finite fields, the definition that we give is indeed the same as this one, since, in this case, $G$ is generated by the Frobenius automorphism. Given a finite Galois extension $\mathbb{L}/\mathbb{K}$, normal bases can also be used to realize the Galois correspondence of $\mathbb{L}/\mathbb{K}$. Theory tells us that there exists a correspondence between intermediate extensions of $\mathbb{L}/\mathbb{K}$ and subgroups of $G$, but it does not give an \emph{effective} way of realising that correspondence. Normal bases are a way to solve that problem. In this report, we focus on the problem of finding normal elements in finite fields. That is why, from now on, we do not look at cases other then finite extensions of finite fields (\ie extensions of type $\mathbb{F}_{q^d}/\mathbb{F}_q$). \subsection{Recalls and notations} In all the text, we denote by $\mathbb{F}_n$ the field with $n$ elements. We recall that $n$ must be a \emph{prime power} (\ie $n=p^d$ where $p$ is a prime number and $d$ is a positive number). We have $\mathbb{F}_{p^d}\cong\mathbb{F}_p[X]/(P)$, where $P$ is an irreducible polynomial of degree $d$ in $\mathbb{F}_p[X]$, and this is the representation that will be used in the C code. From now, we note $X$ both for the indeterminate $X$ and for its image $\bar X$ in the quotient $\mathbb{F}_p[X]/(P)$. $\mathbb{F}_{p^d}$ is a vector space over $\mathbb{F}_p$, of dimension $d$, the basis $\left\{ 1, X, X^2, \dots, X^{d-1} \right\}$ is called the \emph{polynomial basis} in the following. We also recall that $\mathbb{F}_{p^d}$ is a \emph{field extension} of $\mathbb{F}_p$ and the characteristic of $\mathbb{F}_{p^d}$ is $p$. Lastly, we denote by $\sigma$ the \emph{Frobenius map}, defined by $\sigma(x)=x^p$ for all $x\in\mathbb{F}_{p^d}$. This map is a $\mathbb{F}_p$-automorphism of $\mathbb{F}_{p^d}$ (\ie $\sigma$ is a field morphism, a bijection, and $\forall y\in\mathbb{F}_p,\;\sigma(y)=y$), as a consequence, $\sigma$ is also a linear map. Note that we look only at \emph{prime extensions}, (\ie extensions of type $\mathbb{F}_{p^d}/\mathbb{F}_p$). This choice has been made because the theory of normal elements in extensions of type $\mathbb{F}_{q^n}/\mathbb{F}_q$ is not different (replacing $p$ by $q$ in the following demontrations would be sufficient), but the implementation of the algorithms is simpler in the case of prime extensions. Speaking about implementation, we must introduce Flint (Fast Library for Number Theory), because \emph{every} function wrote in this project uses Flint. \subsection{Flint} Flint~\cite{Ha10} is a C library maintained by William Hart, and developed by him and many others since 2007. In Flint, we use the type \texttt{fq\_t}, where the elements of $F_{p^d}\cong\mathbb{F}_p[X]/(P)$ are represented as polynomials of degree less than $d$. The underlying data structure is \texttt{fmpz\_poly\_t}, that is a \texttt{struct} containing \begin{enumerate} \item a pointer to arbitrary large integers \texttt{fmpz}, representing the coefficients of the polynomial; \item the number of memory allocations for the pointer of type \texttt{slong}: Flint's own \texttt{unsigned long}; \item the degree of the polynomial, a \texttt{slong} too. \end{enumerate} In Flint, it is possible to work with finite fields of arbitrary large order and with polynomials or matrices over these fields. The basic functions are already implemented, such as gcd or derivative for polynomials, or reduced row echelon form for matrices. Using Flint save a lot of time, but it also has its limits. It is possible to deal with arbitrary \emph{prime} extensions. For extension of type $\mathbb{F}_{q^n}/\mathbb{F}_q$, it is still possible, using polynomial arithmetic over $\mathbb{F}_q$. But using polynomials over $\mathbb{F}_{q^n}$ would have required polynomial in two indeterminates, and everything would be more complicated. That is the reason we look only at prime extensions. All these recalls being made, and the true hero (Flint) of our functions being introduced, we can begin our journey. \section{Basics on normal bases} In all this section, we set $p$ a prime number and $d$ a positive number. We work with the extension $\mathbb{F}_{p^d}/\mathbb{F}_p$ and the Frobenius morphism $\sigma$ defined above. We are now able to give a formal definition of a normal element and a normal basis. \begin{defi}[normal element, normal basis] Let $\alpha\in\mathbb{F}_{p^d}$, we say that $\alpha$ is a \emph{normal element} if $\left\{ \alpha, \sigma(\alpha),\dots,\sigma^{d-1}(\alpha) \right\}=\left\{ \alpha, \alpha^{p}, \dots, \alpha^{p^{d-1}} \right\}$ is a basis of $\mathbb{F}_{p^d}$. Such a basis is called a \emph{normal basis}. \end{defi} In order to recognize a normal element $\alpha$, we can compute the dimension of the linear span of $\left\{ \sigma^i(\alpha) \;|\; 0\leq i < k \right\}$. A way of doing that is to construct the matrix $M$ which columns are the coordinates of the elements $\sigma^i(\alpha)$ in the polynomial basis, and to check if $M$ is non-singular. This can be done using Gauss algorithm. This method is not efficient so we work on other characterizations of normal elements. We need two more definitions to be able to state our results. \begin{defi}[trace function] The \emph{trace function} $\Tr_{p^d|p}:\mathbb{F}_{p^d}\to\mathbb{F}_p$ of the extension $\mathbb{F}_{p^d}/\mathbb{F}_p$ is the function defined by \[ \Tr_{p^d|p}(\alpha) = \sum_{i=0}^{d-1}\alpha^{p^i}. \] It takes its values in $\mathbb{F}_p$ since $(\Tr_{p^d|p}(\alpha))^p = \Tr_{p^d|p}(\alpha)$. \end{defi} The trace is a tool that permit to know when a family of elements $\alpha_1, \dots, \alpha_d$ forms a basis of $\mathbb{F}_{p^d}$ over $\mathbb{F}_p$, using the discrinant of these elements. \begin{defi}[discriminant] Let $\alpha_1, \dots, \alpha_d$ be elements in $\mathbb{F}_{p^d}$, the \emph{discriminant} $\Delta(\alpha_1, \dots, \alpha_d)$ of these elements is the determinant \[ \Delta(\alpha_1, \dots, \alpha_d)=\det \begin{pmatrix} \Tr(\alpha_1\alpha_1) & \Tr(\alpha_1\alpha_2) & \dots & \Tr(\alpha_1\alpha_d) \\ \Tr(\alpha_2\alpha_1) & \Tr(\alpha_2\alpha_2) & \dots & \Tr(\alpha_2\alpha_d) \\ \vdots & \vdots & & \vdots \\ \Tr(\alpha_d\alpha_1) & \Tr(\alpha_d\alpha_2) & \dots & \Tr(\alpha_d\alpha_d) \end{pmatrix} \] where $\Tr$ is the same trace as before. We ommit the indices because the extension is always the same. \end{defi} With this last tool, we can state our first theorem. \begin{thm}[Theorem 2.2.1, \cite{Ga93}] For any $n$ elements $\alpha_1, \dots, \alpha_d$ in $\mathbb{F}_{p^d}$, they form a basis of $\mathbb{F}_{p^d}$ over $\mathbb{F}_p$ if and only if $\Delta(\alpha_1, \dots, \alpha_d)\neq0$. \end{thm} \begin{proof} First assume that $\alpha_1, \dots, \alpha_d$ form a basis of $\mathbb{F}_{p^d}$ over $\mathbb{F}_p$. We prove that $\Delta(\alpha_1, \dots, \alpha_d)\neq0$ by showing that the row vectors $L_1, \dots, L_d$ of the matrix in the definition of $\Delta(\alpha_1, \dots, \alpha_d)$ are linearly independent over $\mathbb{F}_p$, and thus the matrix is nonsingular. Suppose that there exists $c_1, \dots, c_d\in\mathbb{F}_p$ with $\sum_i c_iL_i = 0$, it means \[ c_1\Tr(\alpha_1\alpha_j) + \dots + c_n\Tr(\alpha_d\alpha_j) = 0\textrm{ for }1\leq j\leq d. \] Then with $\beta=c_1\alpha_1 + \dots + c_d\alpha_d$, by linearity of the trace function, we get $\Tr(\beta\alpha_j) = 0$ for $1\leq j\leq d$. Since $\alpha_1, \dots, \alpha_d$ is a basis of $\mathbb{F}_{p^d}$, it follows that $\Tr(\beta\alpha) = 0$ for all $\alpha\in\mathbb{F}_{p^d}$. If $\beta\neq0$, it means that $\Tr(\gamma)=0$ for all $\gamma\in\mathbb{F}_{p^d}$ : we can see that this is impossible by thinking of $\Tr(\gamma)$ as the trace of the multiplication-by-$\gamma$ linear map. So we have $\beta=0$, and then $c_1\alpha_1 + \dots + c_d\alpha_d = 0$ implies $c_1=\dots=c_d=0$. Conversely, assume that $\Delta(\alpha_1, \dots, \alpha_d)\neq0$ and $c_1\alpha_1+\dots+c_d\alpha_d=0$ for some $c_1, \dots, c_d\in\mathbb{F}_p$. By multiplying by $\alpha_j$, we have \[ c_1\alpha_1\alpha_j+\dots+c_d\alpha_d\alpha_j\textrm{ for }1\leq j \leq d, \] and by applying the trace function, we get \[ c_1\Tr(\alpha_1\alpha_j)+\dots+c_n\Tr(\alpha_d\alpha_j)\textrm{ for }1\leq j\leq d. \] But this is the same as $\sum c_iL_i=0$ where the $L_i$ are the rows of the matrix in $\Delta(\alpha_1, \dots, \alpha_d)$. Since this matrix is nonsingular by hypothesis, its rows are linearly independent and it follow that $c_1=\dots=c_d$. Therefore $\alpha_1, \dots, \alpha_d$ are linearly independant over $\mathbb{F}_p$, and form a family of $d$ vectors in a $d$-dimensionnal vector space, so $\alpha_1, \dots, \alpha_d$ form basis of $\mathbb{F}_{p^d}$ over $\mathbb{F}_p$. \end{proof} This characterization is interesting in itself, but the matrix defined in $\Delta(\alpha_1, \dots, \alpha_d)$ is quite complicated. Fortunately, we can use a much simpler matrix. \begin{cor} \label{circulantCor} The elements $\alpha_1, \dots, \alpha_d$ form a basis of $\mathbb{F}_{p^d}$ over $\mathbb{F}_p$ if and only if the matrix $A$ is nonsigular, where \[ A = \begin{pmatrix} \alpha_1 & \alpha_2 & \dots & \alpha_d \\ \alpha_1^p & \alpha_2^p & \dots & \alpha_d^p \\ \vdots & \vdots & & \vdots \\ \alpha_1^{p^{d-1}} & \alpha_2^{p^{d-1}} & \dots & \alpha_d^{p^{d-1}}. \end{pmatrix} \] \end{cor} \begin{proof} We have $\Delta(\alpha_1, \dots, \alpha_d)=\det(A^tA)=(\det A)^2$. \end{proof} We now have a simpler matrix to study, but it is still a matrix, so the nature of the problem is the same as before. Next lemma allow us to change the nature of the problem, by working with polynomials. \begin{lm} \label{henselLm} For any $n$ elements $a_0, a_1, \dots, a_{d-1}\in\mathbb{F}_{p^d}$, the $d\times d$ circulant matrix \[ c[a_0, a_1, \dots, a_{d-1}] = \begin{pmatrix} a_0 & a_1 & a_2 & \dots & a_{d-1} \\ a_{d-1} & a_0 & a_1 & \dots & a_{d-2} \\ a_{d-2} & a_{d-1} & a_0 & \dots & a_{d-3} \\ \vdots & \vdots & \vdots & & \vdots \\ a_1 & a_2 & a_3 & \dots & a_0 \end{pmatrix} \] is nonsigular if and only if the polynomial $\sum a_iX^i$ is relatively prime to $X^d-1$. \end{lm} \begin{proof} Let $A$ be the following $d\times d$ permutation matrix \[ \begin{pmatrix} 0 & 1 & 0 & \dots & 0 & 0 \\ 0 & 0 & 1 & \dots & 0 & 0 \\ \vdots & \vdots & \vdots & & \vdots & \vdots \\ 0 & 0 & 0 & \dots & 0 & 1 \\ 1 & 0 & 0 & \dots & 0 & 0 \end{pmatrix}. \] Then we see that $c[a_0, a_1, \dots, a_{d-1}] = \sum_{i=0}^{d-1}a_iA^i=f(A)$, where $f(X)=\sum_{i=0}^{d-1}a_iX^i$. On the first line of $A^i$, there is only one nonzero value, it is a $1$ in position $i+1$. Hence the matrices $A^0, A, \dots, A^{d-1}$, are linearly independant, and since $A^d=I_d$, we know that the minimal polynomial of $A$ is $X^d-1$. Assume that $f(X)$ is relatively prime to $X^d-1$. Then there are polynomials $a(X), b(X)$ such that \[ a(X)f(X) + b(X)(X^d-1)=1, \] and so \[ a(A)f(A) = I_d, \] as $A^d-I_d=0$. This implies that $f(A)$ is invertible and so nonsigular. Now assume that $f(X)$ and $X^d-1$ are not relatively prime, and note $d(X)\neq1$ their gcd. Let $f(X)=f_1(X)d(X)$ and $X^d-1=h(X)d(X)$. Since $\deg h < n$, we have $h(A)\neq0$. But $h(A)d(A)=0$, so we see that $d(A)$ is singular. Therefore $f(A)=f_1(A)d(A)$ is also singular. We have shown that $f(A)$ is singular if and only if $f(X)$ is relatively prime to $X^d-1$. \end{proof} We are now able to state the last result oh this section. \begin{thm}[Hensel, 1888] \label{hensel} Let $\alpha\in\mathbb{F}_{p^d}$, $\alpha$ is a normal element of the extension $\mathbb{F}_{p^d}/\mathbb{F}_p$ if and only if the polynomial $\alpha^{p^{d-1}}X^{d-1}+\dots+\alpha^pX+\alpha\in\mathbb{F}_{p^d}[X]$ is relatively prime to $X^d-1$. \end{thm} \begin{proof} $\alpha$ is a normal element, if, by definition, the elements $\alpha, \alpha^p, \dots, \alpha^{p^{d-1}}$ form a basis of $\mathbb{F}_{p^d}$ over $\mathbb{F}_p$. By Corollary~\ref{circulantCor}, this is true if and only if the matrix \[ A = \begin{pmatrix} \alpha & \alpha^p & \alpha^{p^2} & \dots & \alpha^{p^{d-1}} \\ \alpha^p & \alpha^{p^2} & \alpha^{p^3} & \dots & \alpha \\ \vdots & \vdots & \vdots & & \vdots \\ \alpha^{p^{d-1}} & \alpha & \alpha^p & \dots & \alpha^{p^{d-2}} \end{pmatrix} \] is nonsingular. But, reversing the order of the rows in $A$, from the second row to the last, we get the matrix $c[\alpha, \alpha^p, \dots, \alpha^{p^{d-1}}]$, that is nonsingular if and only if $A$ if nonsingular. By Lemma~\ref{henselLm}, $c[\alpha, \alpha^p, \dots, \alpha^{d-1}]$ is nonsingular if and only if $X^d-1$ and $\alpha^{p^{d-1}}X^{d-1}+\dots+\alpha^pX+\alpha$ are relatively prime. This proves the theorem. \end{proof} We now have a new characterization of normal elements. We can decide if an element is normal or not by computing a gcd. It is more efficient that the naive matrix method because we have efficient algorithms to compute the gcd. The function \texttt{is\_normal} is exactly the implementation of this method. The code of this function, and of all the others, is available at \url{github.com/erou/normalBases}. \section{Computation of normal bases} Before trying to compute normal elements, a natural question is to wander if normal elements always exist in extensions of type $\mathbb{F}_{p^{d}}/\mathbb{F}_p$. We do not prove this result here (it is done in~\cite{Ga93}), but the answer is yes. Now that this natural fear has been eliminated, we give some ways to compute normal elements. We use the same notations as in the previous section. \subsection{Randomized algorithm} First, we give a randomized algorithm. Such algorithms are often based on the same strategy. \begin{enumerate} \item Take a random element, following a certain protocol. \item Check if this element verify the wanted property. \end{enumerate} Our algorithm also uses this strategy, that is why our first function \texttt{is\_normal} is very important. But the protocol is also essential. For example, if we just take an element completly at random in $\mathbb{F}_{p^d}$, our algorithm will not be very efficient. The following theorem helps us defining a better protocol. \begin{thm} Let $f(X)$ be an irreducible polynomial of degree $d$ over $\mathbb{F}_p$ and $\alpha$ a root of $f(X)$. Let \[ g(X)=\cfrac{f(X)}{(X-\alpha)f'(\alpha)}. \] Then there are at least $p -d(d-1)$ elements $u$ in $\mathbb{F}_p$ such that $g(u)$ is a normal element of $\mathbb{F}_{p^d}$ over $\mathbb{F}_p$. \end{thm} \begin{proof} Let $\sigma_i=\sigma^i$ be the automorphism $\theta\to\theta^{p^i},\theta\in\mathbb{F}_{p^d}$, for $0\leq i <d$. Then $\alpha_i=\sigma_i(\alpha)$ is also a root of $f(X)$, for $0\leq i <d$. The automorphism $\sigma_i:\mathbb{F}_{p^d}\to\mathbb{F}_{p^d}$ can be extended into a ring morphism $\sigma_i:\mathbb{F}_{p^d}[X]\to\mathbb{F}_{p^d}[X]$ by setting $\sigma_i(X)=X$. We get \[ g_i(X):=\sigma_i(g(X)) = \cfrac{f(X)}{(X-\alpha_i)f'(\alpha_i)}, \] and we note that $\sigma_i\sigma_i(g(X)) = \sigma_{i+j}(g(X))$. Then $g_i(X)$ is a polynomial in $\mathbb{F}_{p^d}[X]$ having $\alpha_k$ as a root for $k\neq i$ and $g_i(\alpha_i)=1$. Hence, for $i\neq k$, we have that every root of $f(X)$ is also a root of $g_i(X)g_k(X)$, so \begin{equation} g_i(X)g_k(X) \equiv 0 \;(\Mod f(X)), \textrm{ for }i\neq k. \label{3.1} \end{equation} Note that \begin{equation} g_1(X)+g_2(X)+\dots+g_d(X)-1=0, \label{3.2} \end{equation} since the left side is a polynomial of degree at most $d-1$ (all the $g_i$ are of degree $d-1$) and has $\alpha_0, \alpha_1, \dots, \alpha_{d-1}$ as roots. Multiplying (\ref{3.2}) by $g_i(X)$ and using (\ref{3.1}) to simplify, we have \begin{equation} g_i(X)^2 \equiv g_i(X)\;(\Mod f(x)). \label{3.3} \end{equation} We next set the matrix \[ D=(\sigma_{i+j}(g(X)))_{0\leq i,j <0} \] and we study its determinant, $\Delta(X)$. From the equations (\ref{3.1}), (\ref{3.2}) and (\ref{3.3}), we wee that the entries of $D^tD$ molulo $f(X)$ are all $0$, except on the main diagonal where they are all $1$. It follows that \[ \Delta(X)^2 = \det(D^tD) \equiv 1\;(\Mod f(x)). \] This proves that $\Delta(X)$ is a nonzero polynomial of degree at most $d(d-1)$, since it is a sum of $d$ products of polynomials of degree $d-1$. Therefore $\Delta(X)$ has at most $d(d-1)$ roots in $\mathbb{F}_p$. The result follows from Corollary~\ref{circulantCor}, since the matrix $D(u)$ is exactly the one defined in the corollary applied to the elements $g(u), \sigma(g(u)),\dots,\sigma^{d-1}(g(u))$. \end{proof} Now we have our protocol. We take $u\in\mathbb{F}_p$ at random, then we check if $g(u)$ is normal. If $p$ is large enough, for example $p>2d(d-1)$, then $g(u)$ is normal with probability at least $1/2$. We will not discuss it, but the entire computation takes $O((n+\log q)(n\log q)^2)$ bit operations. A reference for this result is given in~\cite{Ga93}. As always, we are not \emph{completely} satisfied with randomized algorithm, so we give two deterministic algorithms. \subsection{Deterministic algorithms} First, we define the $\sigma$-Order of an element $\theta\in\mathbb{F}_{p^d}$, both Lenstra's and Lüneburg's algorithms use it. \subsubsection{The $\sigma$-Order polynomials} \begin{defi}[$\sigma$-Order] Let $\theta\in\mathbb{F}_{p^d}$ be an arbitrary element. Let $k$ be the least positive integer such that $\sigma^k(\theta)=\theta^{p^k}$ belongs to $\mathbb{F}_p$-linear span of $\left\{ \sigma^i\theta\;|\;0\leq i < k \right\}$. If $\sigma^k\theta=\sum_{i=0}^{k-1}c_i\sigma^i\theta$ for that $k$, then the \emph{$\sigma$-Order} of $\theta$ is the polynomial \[ \Ord_\theta(X)=X^k-\sum_{i=0}^{k-1}c_iX^i. \] \end{defi} The $\sigma$-Order polynomials are widely used in our functions. We compute them using Gauss algorithm and the row reduced echelon form. To know if $\sigma^j(\theta)$ is in the linear span of $\left\{ \sigma^i(\theta)\;|\; 0\leq i <j \right\}$, we construct the matrix $M$ whose columns are the vectors $\theta, \sigma(\theta), \dots, \sigma^{j}(\theta)$, we compute the rank using Gauss algorithm. If the rank is $j+1$ then $\theta, \sigma(\theta), \dots, \sigma^j(\theta)$ are linearly independant. In order to compute $k$, we do this operation for $j=1$ and while the vectors are linearly independant, we increase the value of $j$ by $1$. When we get that the vectors are dependant, we use the reduced row echelon form to get a $d\times(k+1)$ matrix of type \[ \begin{pmatrix} 1 & 0 & 0 & \dots & 0 & c_0 \\ 0 & 1 & 0 & \dots & 0 & c_1 \\ 0 & 0 & 1 & \dots & 0 & c_2 \\ \vdots & \vdots & & \ddots & & \vdots \\ 0 & 0 & 0 & \dots & 1 & c_{k-1} \\ 0 & 0 & 0 & \dots & 0 & 0 \\ \vdots & \vdots & \vdots & & \vdots & \vdots \\ 0 & 0 & 0 & \dots & 0 & 0 \\ \end{pmatrix} \] where the coefficients $c_i$ are in the last column. This strategy is implemented in the function \texttt{sigma\_order}. We also see that an element $\alpha\in\mathbb{F}_{p^d}$ is normal is and only if $\Ord_\alpha(X)=X^d-1$. This characterization is the same as the definition, thus it is not very interesting. The following property is used in further demonstrations. \begin{prop} \label{orderDiv} Let $P\in\mathbb{F}_p[X]$, if $P(\sigma)\zeta=0$, then $P$ is divisible by $\Ord_{\zeta}$. \end{prop} \begin{proof} Let $I_\zeta$ be the set defined by $I_\zeta=\left\{P\in\mathbb{F}_p[X]\;|\; P(\sigma)\zeta = 0 \right\}$. This is an ideal of $\mathbb{F}_p[X]$, so $I_\zeta$ is principal. The polynomial $\Ord_\zeta$ belongs to $I_\zeta$ and has minimum degree in $I_\zeta$ by definition. Hence $I_\zeta=(\Ord_\zeta)$. \end{proof} We always have $(X^d-1)(\sigma)\theta=0$, so for any $\theta\in\mathbb{F}_{p^d}$, we have that $X^d-1$ is divisible by $\Ord_\theta$. The result below is also used both in Lenstra's and Lüneburg's algorithm. \begin{prop} \label{orderLcm} Let $\alpha$ and $\beta$ be two elements in $\mathbb{F}_{p^d}$. Then we have \[ \Ord_{\alpha+\beta}\;|\;\lcm(\Ord_\alpha,\Ord_\beta). \] \end{prop} \begin{proof} Let $P=\lcm(\Ord_\alpha,\Ord_\beta)$. By linearity, we have \[ P(\sigma)(\alpha+\beta)=P(\sigma)\alpha+P(\sigma)\beta=0+0=0. \] It follows from Proposition~\ref{orderDiv} that $\Ord_{\alpha+\beta}$ divides $P$. \end{proof} \begin{cor} \label{orderMul} Let $\alpha$ and $\beta$ be two elements in $\mathbb{F}_{p^d}$ such that $\Ord_\alpha$ and $\Ord_\beta$ are relatively prime. Then we have $\Ord_{\alpha+\beta}=\Ord_\alpha\Ord_\beta$. \end{cor} \begin{proof} Since $\Ord_\alpha$ and $\Ord_\beta$ are relatively prime, we have $\lcm(\Ord_\alpha, \Ord_\beta)=\Ord_\alpha\Ord_\beta$. It follows from Proposition~\ref{orderLcm} that $\Ord_{\alpha+\beta}$ divides $\Ord_\alpha\Ord_\beta$. Now, note that for any $\theta\in\mathbb{F}_{p^d}$, $\Ord_{-\theta}=\Ord_\theta$, then we also have \[ \Ord_{\alpha}\;|\;\lcm(\Ord_{\alpha+\beta}, \Ord_\beta) \] \[ \Ord_{\beta}\;|\;\lcm(\Ord_{\alpha+\beta}, \Ord_\alpha). \] Since $\Ord_\alpha$ and $\Ord_\beta$ are relatively prime, it follows that \[ \Ord_{\alpha}\;|\;\Ord_{\alpha+\beta} \] \[ \Ord_{\beta}\;|\;\Ord_{\alpha+\beta}. \] Therefore, $\Ord_\alpha\Ord_\beta$ divides $\Ord_{\alpha+\beta}$. Both polynomial are monic so we have the wanted equality. \end{proof} \subsubsection{Lenstra's algorithm} Lenstra's algorithm is based on linear algebra, so our implementation is based on the matrices module \texttt{fq\_mat} of Flint. Before describing the algorithm, we need two lemmas. \begin{lm} \label{lmExist} Let $\theta\in\mathbb{F}_{p^d}$ with $\Ord_\theta(X)\neq X^d-1$. Let $g(X)=(X^d-1)/\Ord_\theta(X)$. Then there exists $\beta\in\mathbb{F}_{p^d}$ such that \begin{equation} g(\sigma)\beta=\theta. \label{3.4} \end{equation} \end{lm} \begin{proof} Let $\gamma$ be a normal element of $\mathbb{F}_{p^d}$ over $\mathbb{F}_p$. Then, by definition of being a normal element, there exists a polynomial $f(X)\in\mathbb{F}_{p}[X]$ such that $f(\sigma)\gamma=\theta$. Since $\Ord_\theta(\sigma)\theta=0$, we have $(\Ord_\theta(\sigma)f(\sigma))\gamma=0$. So, by Proposition~\ref{orderDiv}, $\Ord_\theta(X)f(X)$ is divisible by $X^d-1$. We have $g(X)=(X^d-1)/\Ord_\theta(X)$ and $X^d-1|\Ord_\theta(X)f(X)$, so $g(X)|f(X)$. Let $f(X)=g(X)h(X)$. Then \[ g(\sigma)(h(\sigma)\gamma)=\theta. \] This proves that $\beta=h(\sigma)\gamma$ is a solution of (\ref{3.4}). \end{proof} \begin{lm} \label{lmDegree} Let $\theta\in\mathbb{F}_{d}$ with $\Ord_\theta(X)\neq X^d-1$. Assume that there exists a solution $\beta$ of (\ref{3.4}) such that $\deg\Ord_{\beta}\leq\deg\Ord_{\theta}$. Then there exists a nonzero element $\zeta\in\mathbb{F}_{p^d}$ such that \begin{equation} g(\sigma)\zeta=0, \label{3.5} \end{equation} where $g(X)=(X^d-1)/\Ord_\theta(X)$. Moreover any such $\zeta$ has the property that \begin{equation} \deg\Ord_{\theta+\zeta}>\deg\Ord_\theta \label{3.6} \end{equation} \end{lm} \begin{proof} Let $\gamma$ be a normal element in $\mathbb{F}_{p^d}$ over $\mathbb{F}_p$. We can see that $\zeta=\Ord_\theta(\sigma)\gamma\neq0$ is a solution of~(\ref{3.5}). In fact, we prove that~(\ref{3.6}) is true for any solution $\zeta$ of~(\ref{3.5}). From~(\ref{3.4}) and Proposition~\ref{orderDiv}, it follows that $\Ord_\theta$ divides $\Ord_\beta$, so the hypothesis that $\deg\Ord_\beta\leq\deg\Ord_\theta$ implies that $\Ord_\beta=\Ord_\theta$. It follows that $g$ and $\Ord_\theta$ are relatively prime: suppose $\gcd(g, \Ord_\theta)=d$ and $\deg d>0$, let $\Ord_\theta=\Ord_\theta'd=\Ord_\beta$ and $g=g'd$, then $\Ord_\theta'(\sigma)\theta=(\Ord_\theta' g)(\sigma)\beta=(\Ord_\beta g')(\sigma)\beta=0$ and $\deg\Ord_\theta'<\deg\Ord_\beta$, that is a contradiction. Since $\Ord_\zeta$ is a divisor of $g$, $\Ord_\zeta$ and $\Ord_\theta$ are also relatively prime. Therefore, by Corollary~\ref{orderMul} \[ \Ord_{\theta+\zeta}=\Ord_\theta\Ord_\zeta, \] and then (\ref{3.6}) follows from the fact that $\zeta\neq0$ and then $\deg\Ord_\zeta\geq1$. \end{proof} We now have a deterministic algorithm to compute a normal element of $\mathbb{F}_{p^d}$ over $\mathbb{F}_p$. \begin{enumerate} \item Take an element $\theta\in\mathbb{F}_{p^d}$ and compute $\Ord_\theta$. \item If $\Ord_\theta(X)=X^d-1$ then the algorithm stops ($\theta$ is normal). \item Calculate $g(X)=(X^d-1)/\Ord_\theta$ and then find $\beta\in\mathbb{F}_{p^d}$ such that $g(\sigma)\beta=\theta$. \item Determine $\Ord_\beta$. If $\deg\Ord_\beta>\deg\Ord_\theta$ then replace $\theta$ by $\beta$ and go to $2$; otherwise if $\deg\Ord_\beta\leq\deg\Ord_\theta$ then find a nonzero element $\zeta$ such that $g(\sigma)\zeta=0$, replace $\theta$ by $\theta+\zeta$ and determine the $\sigma$-Order of the new $\theta$, then go to $2$. \end{enumerate} This algorithm ends because with each replacement of $\theta$, the degree of $\Ord_\theta$ increases by at least one, by Lemma~\ref{lmDegree}, and because this degree is bounded by $d$ since the only possible $\sigma$-Order of degree $d$ is $X^d-1$. The existence of the elements $\beta$ of step $3$ is guaranteed by Lemma~\ref{lmExist} and the existence of $\zeta$ of step $4$ by Lemma~\ref{lmDegree}. Since $g(\sigma)$ is a linear map, we compute $\beta$ and $\zeta$, using Gauss algorithm and reduced row echelon form again. Computing elements of type $g(\sigma)\theta$ is not just polynomial evaluation, and is widely used in our algorithms, so we have a special function \texttt{sigma\_composition} to do it. The rest of the algorithm is essentially linear algebra, it uses Flint matrices and is in the function \texttt{lenstra}. \subsubsection{Lüneburg's algorithm} Lüneburg algorithm is more elementary, it is not based on a powerfull theory like linear algebra. Let $f$ be an irreducible polynomial of degree $d$ over $\mathbb{F}_p$ and $\alpha$ a root of $f$. Then $\left\{ 1, \alpha, \dots, \alpha^{d-1} \right\}$ is a basis of $\mathbb{F}_{p^d}$ over $\mathbb{F}_p$. Let $f_i=\Ord_{\alpha^i}$, for $0\leq i < d$. Let $\gamma=\sum_{i=0}^{d-1}a_i\alpha^i$ be a normal element of $\mathbb{F}_{p^d}$ over $\mathbb{F}_p$. Note that for any $a_i\in\mathbb{F}_p$, $\Ord_{a_i\alpha^i}=\Ord_{\alpha^i}=f_i$, and as seen in the demonstration of Corollary~\ref{orderMul}, $\Ord_\gamma=X^d-1$ divides $\lcm(f_0, \dots, f_{d-1})$. Since for all $i$, $f_i$ divides $X^d-1$, we have that $\lcm(f_0, \dots, f_{d-1})$ divides $X^d-1$. Therefore $\lcm(f_0, \dots, f_{d-1})=X^d-1$. Then we apply the \emph{factor refinement}~\cite{BaDrSh93}. It is an algorithm that, given a list of polynomials $f_0, \dots, f_{d-1}$, compute a new list $g_1, \dots, g_r$ of polynomials, pairwise relatively prime, such that \[ \prod_{i=0}^{d-1} f_i=\prod_{j=1}^{r} g_j^{e_j}. \] The factor refinement works that way: we first set $h_i=f_i$ and $e_i=1$ for $0\leq i <d$ and we consider the list $(h_i, e_i)_{i}$. While there exists $i\neq j$ with $p:=\gcd(h_i, h_j)\neq1$, we delete $(h_i,e_i)$ and $(h_j,e_j)$ from the list and we add $(p, e_i+e_j),( h_i/p, e_i), (h_j/p, e_j)$, except for the cases where the first entry is $1$. This algorithm stops and compute what we expect. In our case, we use it to compute the pairwise relatively prime polynomials $g_j$ $(1\leq j \leq r)$, and then we compute the integers $e_{ij}$ such that \[ f_i=\prod_{1\leq j \leq r}g_j^{e_{ij}}\textrm{, for all }0\leq i<d. \] This algorithm is implemented in the function \texttt{factor\_refinement}, it uses Flint's type \texttt{fq\_poly\_factor} to represent the list $(h_i, e_i)_i$ and to let Flint deal with the memory allocation. Next, for each $j$, $1\leq j \leq r$, we find an index $i(j)$ such that $e_{ij}$ is maximized. Let \[ h_j=f_{i(j)}/g_j^{e_{i(j)j}} \] and take $\beta_j=h_j(\sigma)\alpha^{i(j)}$. Then \[ \beta=\sum_{j=1}^r\beta_j \] is a normal element of $\mathbb{F}_{p^d}$ over $\mathbb{F}_p$. In fact, the $\sigma$-Order of $\beta_j$ is $g_j^{e_{i(j)j}}$ ($\beta_j$ has been constructed in that purpose) for $1\leq j \leq r$. As $g_1, \dots, g_r$ are pairwise relatively prime, Corollary~\ref{orderMul} states that the $\sigma$-Order of $\beta$ must \[ \prod_{j=1}^rg_j^{e_{i(j)j}}=\lcm(f_0, \dots, f_{d-1})=X^d-1, \] meaning that $\beta$ is a normal element. To implement this algorithm, we use our functions \texttt{sigma\_composition}, \texttt{sigma\_order}, \texttt{factor\_refinement}, and Flint's basic functions to deal with polynomials. The implementation is a translation of the steps we followed to obtain $\beta$. \section{Experimental results} In the source code, one can find two directories named \texttt{fq} and \texttt{fq\_nmod} with very little differences between the files inside these directories. The name of the file determines the type used in the functions. The type \texttt{fq} supports arbitrary large integers $p$ for the characteristic of the fields $\mathbb{F}_{p^d}$, whereas \texttt{fq\_nmod} supports only small integers for $p$ but is faster. \subsection{Random algorithms} We implemented the naive algorithm for computing normal elements, in order to compare this algorithm to the more elaborate one. Surprinsigly, as we see in Figure~\ref{NaiveElab}, the speed is often the same, because when we chose an element randomly in $\mathbb{F}_{p^d}$, it is often a normal element. If the naive algorithm finds a normal element with its first pick, there is no way that the the elaborate one is faster, since it does more calculus. There are still a few cases where the naive algorithm does not find a normal element easily, and where the elaborate one is faster. The time spent in those algorithms is essentially to time spent to perform the tests. \begin{figure} \begin{center} \includegraphics[scale=0.6]{../benchmarks/benchNaiveElab.pdf} \end{center} \caption{Benchmark of naive and elaborate algorithms with $p=90001$.} \label{NaiveElab} \end{figure} \subsection{Lüneburg's and Lenstra's algorithms} Lenstra's algorithm is faster than Lüneburg algorithm, though the complexity obtained seems to match with the theory in both algorithms. Also, Lenstra's algotihm is mush more stable than Lüneburg's, the latter can have really different behaviours for entries of the same sizes. The core of both Lüneburg's and Lenstra's algorithms is the computation of the $\sigma$-order polynomials. \begin{figure} \begin{center} \begin{tabular}{ccc} \textbf{d} & \textbf{Lüneburg} & \textbf{Lenstra} \\ $50$ & $1,87$ s & $0,65$ s \\ $114$ & $93,0$ s & $11,7$ s \\ $205$ & $290$ s & $187$ s \\ $249$ & $1960$ s & $253$ s \end{tabular} \caption{Benchmark of Lüneburg's and Lenstra's algorithms with $p=90001$.} \label{LuneburgLenstra} \end{center} \end{figure} \clearpage \bibliographystyle{unsrt} \bibliography{biblio} \end{document}
/*++++++++++++++++++++++++++++++++++++++++++++++++++++++++ * Set of C routines to use FFTW1.3 library * 2D- FFT's for any size * * * JLP * Version 12/12/2006 (from my BORLAND version) *--------------------------------------------------------*/ #include <stdio.h> #include <math.h> #include "jlp_fftw.h" #include "jlp_num_rename.h" /* JLP2001: To be compatible with "matlab" * I should not normalize by sqrt(nx*ny): */ /* #define NORMALIZE_SQRT */ /* Content of jlp_fftw.h: #include <fftw.h> int FFTW_1D_Y_FLT(float *re, float *im, INT4 *nx, INT4 *ny, INT4 *idim, INT4 *direct); int fftw_1D_Y_float(float *re, float *im, int nx, int ny, int direct); int FFTW_1D_Y_DBLE(double *re, double *im, INT4 *nx, INT4 *ny, INT4 *idim, INT4 *direct); int fftw_1D_Y_double(double *re, double *im, int nx, int ny, int direct); int FFTW_2D_DBLE(double *re, double *im, int *nx, int *ny, int *direct); int fftw_2D_double(double *re, double *im, int nx, int ny, int direct); int FFTW_2D_FLT(float *re, float *im, INT4 *nx, INT4 *ny, INT4 *idim, INT4 *kod); int fftw_2D_float(float *re, float *im, int nx, int ny, int direct); int fftw_setup(int nx, int ny); int FFTW_SETUP(int *nx, int *ny); int fftw_fast(FFTW_COMPLEX *image, int nx, int ny, int direct); int fftw_shutdown(); */ /* Static variables: */ static fftwnd_plan plan_fwd, plan_bkwd; /* #define MAIN_TEST */ #ifdef MAIN_TEST main() { register int i; int nx = 9, ny = 8; double re[128], im[128]; FFTW_COMPLEX* image; char s[80]; for(i = 0; i < nx * ny; i++) { re[i] = i; im[i] = -i; } fftw_2D_double(re, im, nx, ny, 1); fftw_2D_double(re, im, nx, ny, -1); for(i = 0; i < nx * ny; i++) { printf(" i=%d re=%f im=%f \n", i, re[i], im[i]); } printf(" Now going to fast fft..."); gets(s); nx = 388; ny = 128; image = (FFTW_COMPLEX *) malloc(nx * ny * sizeof(FFTW_COMPLEX)); for(i = 0; i < nx * ny; i++) { c_re(image[i]) = i; c_im(image[i]) = -i; } printf("OK, I go on, with nx=%d ny=%d",nx,ny); fftw_setup(nx, ny); fftw_fast(image, nx, ny, 1); fftw_fast(image, nx, ny, -1); fftw_shutdown(); for(i = 0; i < 200; i++) { printf(" i=%d re=%f im=%f \n", i, c_re(image[i]), c_im(image[i])); } gets(s); free(image); } #endif /* ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ * Interface with Fortran routines (with arrays of first dimension = idim) * kod=1, or 2 direct * kod=-1, or -2 inverse * kod=-2, or 2: power spectrum, and phase *--------------------------------------------------------------*/ int FFTW_2D_FLT(float *re, float *im, INT4 *nx, INT4 *ny, INT4 *idim, INT4 *kod) { int nx1, ny1, direct, status; if(*idim != *nx) {printf("FFTW_2D/Fatal error idim=%d while nx=%d \n", *idim, *nx); exit(-1); } if(*kod != 1 && *kod != -1) {printf("FFTW_2D/Fatal error kod=%d (option not yet implemented)\n", *kod); exit(-1); } nx1 = *nx; ny1 = *ny; direct = *kod; status = fftw_2D_float(re, im, nx1, ny1, direct); return(status); } /* ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ * Interface with Fortran routines * kod=1, or 2 direct * kod=-1, or -2 inverse * kod=-2, or 2: power spectrum, and phase * --------------------------------------------------------------*/ int FFTW_1D_Y_DBLE(double *re, double *im, INT4 *nx, INT4 *ny, INT4 *idim, INT4 *kod) { int nx1, ny1, direct, status; if(*idim != *nx) {printf("FFTW_1D_Y/Fatal error idim=%d while nx=%d \n", *idim, *nx); exit(-1); } if(*kod != 1 && *kod != -1) {printf("FFTW_1D_Y/Fatal error kod=%d (option not yet implemented)\n", *kod); exit(-1); } nx1 = *nx; ny1 = *ny; direct = *kod; printf("FFTW_1D_Y/ nx1=%d ny1=%d direct=%d\n",nx1,ny1,direct); status = fftw_1D_Y_double(re, im, nx1, ny1, direct); return(status); } /* ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ * Interface with Fortran routines * kod=1, or 2 direct * kod=-1, or -2 inverse * kod=-2, or 2: power spectrum, and phase * --------------------------------------------------------------*/ int FFTW_1D_Y_FLT(float *re, float *im, INT4 *nx, INT4 *ny, INT4 *idim, INT4 *kod) { int nx1, ny1, direct, status; #ifndef TOTO_ double sum; register int i; #endif if(*idim != *nx) {printf("FFTW_1D_Y_FLT/Fatal error idim=%d while nx=%d \n", *idim, *nx); exit(-1); } if(*kod != 1 && *kod != -1) {printf("FFTW_1D_Y_FLT/Fatal error kod=%d (option not yet implemented)\n", *kod); exit(-1); } nx1 = *nx; ny1 = *ny; direct = *kod; #ifdef DEBUG printf("FFTW_1D_Y_FLT/ nx1=%d ny1=%d direct=%d (fftw)\n",nx1,ny1,direct); #endif #ifndef TOTO_ sum =0; for(i=0; i < ny1; i++) sum += re[nx1/2 + i * nx1]; printf(" Sum of central line = %e and sum/sqrt(ny)=%e \n", sum,sum/sqrt((double)ny1)); #endif status = fftw_1D_Y_float(re, im, nx1, ny1, direct); /* JLP99: to check that FFT is correct: */ /* Not recentred yet !! */ #ifndef TOTO_ for(i=0; i <= 2; i++) printf("re,im [ixc,%d]: %e %e \n",i, re[nx1/2 + i*nx1],im[nx1/2 + i*nx1]); #endif return(status); } /* ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ * 2D FFT routine for double precision arrays * direct = 1 : direct or forward * direct = -1 : reverse or backward * (FORTRAN version) * --------------------------------------------------------------*/ int FFTW_2D_DBLE(double *re, double *im, int *nx, int *ny, int *direct) { int status; status = fftw_2D_double(re, im, *nx, *ny, *direct); return(status); } /* ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ * 2D FFT routine for double precision arrays * direct = 1 : direct or forward * direct = -1 : reverse or backward * * --------------------------------------------------------------*/ int fftw_2D_double(double *re, double *im, int nx, int ny, int direct) { register int i; double norm; int isize; fftwnd_plan plan; fftw_direction dir; FFTW_COMPLEX* in_out; isize = nx * ny; in_out = (FFTW_COMPLEX *) malloc(isize * sizeof(FFTW_COMPLEX)); /* Transfer to complex array structure: */ for(i = 0; i < nx * ny; i++) { c_re(in_out[i]) = re[i]; c_im(in_out[i]) = im[i]; } /* direct = 1 : forward direct = -1 : backward */ dir = (direct == 1) ? FFTW_FORWARD : FFTW_BACKWARD; /* Warning: inversion nx-ny here: */ plan = fftw2d_create_plan(ny, nx, dir, FFTW_ESTIMATE | FFTW_IN_PLACE); if(plan == NULL) {printf("FFTW_2D_DBLE: fatal error creating plan\n"); exit(-1);} /* Compute the FFT: */ fftwnd(plan, 1, in_out, 1, 0, 0, 0, 0); /* Transfer back to original arrays (and normalize by sqrt(nx * ny): */ #ifdef NORMALIZE_SQRT norm = nx * ny; norm = sqrt(norm); for(i = 0; i < nx * ny; i++) { re[i] = c_re(in_out[i]) /norm; im[i] = c_im(in_out[i]) /norm; } #else if(direct == 1) { for(i = 0; i < nx * ny; i++) { re[i] = c_re(in_out[i]); im[i] = c_im(in_out[i]); } } else { norm = nx * ny; for(i = 0; i < nx * ny; i++) { re[i] = c_re(in_out[i]) /norm; im[i] = c_im(in_out[i]) /norm; } } #endif free(in_out); /* Delete plan: */ fftwnd_destroy_plan(plan); return(0); } /* ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ * 2D FFT routine for single precision arrays (for which idim=nx) * (well suited to C arrays since nx=idim...) * direct = 1 : direct or forward * direct = -1 : reverse or backward * --------------------------------------------------------------*/ int fftw_2D_float(float *re, float *im, int nx, int ny, int direct) { register int i; double norm; int isize; fftwnd_plan plan; fftw_direction dir; FFTW_COMPLEX* in_out; isize = nx * ny; in_out = (FFTW_COMPLEX *) malloc(isize * sizeof(FFTW_COMPLEX)); /* Transfer to complex array structure: */ for(i = 0; i < nx * ny; i++) { c_re(in_out[i]) = re[i]; c_im(in_out[i]) = im[i]; } /* direct = 1 : forward direct = -1 : backward */ dir = (direct == 1) ? FFTW_FORWARD : FFTW_BACKWARD; /* Warning: inversion nx-ny here: */ plan = fftw2d_create_plan(ny, nx, dir, FFTW_ESTIMATE | FFTW_IN_PLACE); if(plan == NULL) {printf("fftw_2D_float: fatal error creating plan\n"); exit(-1);} /* Compute the FFT: */ fftwnd(plan, 1, in_out, 1, 0, 0, 0, 0); /* Transfer back to original arrays (and normalize by sqrt(nx * ny): */ #ifdef NORMALIZE_SQRT norm = nx * ny; norm = sqrt(norm); for(i = 0; i < nx * ny; i++) { re[i] = c_re(in_out[i]) /norm; im[i] = c_im(in_out[i]) /norm; } #else if(direct == 1) { for(i = 0; i < nx * ny; i++) { re[i] = c_re(in_out[i]); im[i] = c_im(in_out[i]); } } else { norm = nx * ny; for(i = 0; i < nx * ny; i++) { re[i] = c_re(in_out[i]) /norm; im[i] = c_im(in_out[i]) /norm; } } #endif free(in_out); /* Delete plan: */ fftwnd_destroy_plan(plan); return(0); } /* ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ * 1D FFT routine for single precision arrays * along the columns (for spectroscopic mode) * direct = 1 : direct or forward * direct = -1 : reverse or backward * * --------------------------------------------------------------*/ int fftw_1D_Y_float(float *re, float *im, int nx, int ny, int direct) { register int i, j; double norm; fftw_plan plan; fftw_direction dir; FFTW_COMPLEX* in_out; in_out = (FFTW_COMPLEX *) malloc(ny * sizeof(FFTW_COMPLEX)); if(in_out == NULL) {printf("fftw_1D_Y_float: fatal error allocating memory\n"); exit(-1);} /* direct = 1 : forward direct = -1 : backward */ dir = (direct == 1) ? FFTW_FORWARD : FFTW_BACKWARD; plan = fftw_create_plan(ny, dir, FFTW_ESTIMATE | FFTW_IN_PLACE); if(plan == NULL) {printf("fftw_1D_Y_float: fatal error creating plan\n"); exit(-1);} for(i = 0; i < nx; i++) { /* Transfer to complex array structure: */ for(j = 0; j < ny; j++) { c_re(in_out[j]) = re[i + j * nx]; c_im(in_out[j]) = im[i + j * nx]; } /* Compute the FFT: */ fftw(plan, 1, in_out, 1, 0, 0, 0, 0); /* Transfer back to original arrays (and normalize by sqrt(ny): */ #ifdef NORMALIZE_SQRT norm = sqrt((double)ny); for(j = 0; j < ny; j++) { re[i + j * nx] = c_re(in_out[j]) /norm; im[i + j * nx] = c_im(in_out[j]) /norm; } #else if(direct == 1) { for(j = 0; j < ny; j++) { re[i + j * nx] = c_re(in_out[j]); im[i + j * nx] = c_im(in_out[j]); } } else { norm = (double)ny; for(j = 0; j < ny; j++) { re[i + j * nx] = c_re(in_out[j]) /norm; im[i + j * nx] = c_im(in_out[j]) /norm; } } #endif /* End of loop on i (from 0 to nx-1) */ } free(in_out); /* Delete plan: */ fftw_destroy_plan(plan); return(0); } /* ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ * 1D FFT routine for double precision arrays * along the columns (for spectroscopic mode) * direct = 1 : direct or forward * direct = -1 : reverse or backward * * --------------------------------------------------------------*/ int fftw_1D_Y_double(double *re, double *im, int nx, int ny, int direct) { register int i, j; double norm; fftw_plan plan; fftw_direction dir; FFTW_COMPLEX* in_out; in_out = (FFTW_COMPLEX *) malloc(ny * sizeof(FFTW_COMPLEX)); /* direct = 1 : forward direct = -1 : backward */ dir = (direct == 1) ? FFTW_FORWARD : FFTW_BACKWARD; plan = fftw_create_plan(ny, dir, FFTW_ESTIMATE | FFTW_IN_PLACE); if(plan == NULL) {printf("fftw_1D_Y: fatal error creating plan\n"); exit(-1);} for(i = 0; i < nx; i++) { /* Transfer to complex array structure: */ for(j = 0; j < ny; j++) { c_re(in_out[j]) = re[i + j * nx]; c_im(in_out[j]) = im[i + j * nx]; } /* Compute the FFT: */ fftw(plan, 1, in_out, 1, 0, 0, 0, 0); /* Transfer back to original arrays (and normalize by sqrt(ny): */ #ifdef NORMALIZE_SQRT norm = sqrt((double)ny); for(j = 0; j < ny; j++) { re[i + j * nx] = c_re(in_out[j]) /norm; im[i + j * nx] = c_im(in_out[j]) /norm; } #else if(direct == 1) { for(j = 0; j < ny; j++) { re[i + j * nx] = c_re(in_out[j]); im[i + j * nx] = c_im(in_out[j]); } } else { norm = (double)ny; for(j = 0; j < ny; j++) { re[i + j * nx] = c_re(in_out[j]) /norm; im[i + j * nx] = c_im(in_out[j]) /norm; } } #endif /* End of loop on i (from 0 to nx-1) */ } free(in_out); /* Delete plan: */ fftw_destroy_plan(plan); return(0); } /**************************************************************** * Fortran interface to fftw_setup ****************************************************************/ int FFTW_FSETUP(int *nx, int *ny) { fftw_setup(*nx, *ny); return(0); } /* ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ // fftw_setup, to initialize FFTW routines // Create forward and backward plans // // --------------------------------------------------------------*/ int fftw_setup(int nx, int ny) { char fwd_name[60], bkwd_name[60]; FILE *fp_wisd; int ToOutput; /********************** With "forward" ***************************/ #ifdef BORLAND sprintf(fwd_name,"c:\\tc\\fftw13\\jlp\\fwd_%d.wis",nx); #else sprintf(fwd_name,"/d/fftw/fwd_%d%d.wis",nx,ny); #endif /* Check if wisdom file already exits: */ printf("fftw_setup/Read wisdom file: %s\n",fwd_name); if((fp_wisd = fopen(fwd_name,"r")) == NULL) { printf("fftw_setup/Failure to open wisdom file: %s\n",fwd_name); ToOutput = 1; } else { ToOutput = 0; if(fftw_import_wisdom_from_file(fp_wisd) == FFTW_FAILURE) ToOutput = 1; fclose(fp_wisd); } /* Create "plan" for fftw (speed is wanted for subsequent FFT's) */ /* Warning: inversion nx-ny here: */ plan_fwd = fftw2d_create_plan(ny, nx, FFTW_FORWARD, FFTW_MEASURE | FFTW_IN_PLACE | FFTW_USE_WISDOM); /* Output wisdom file if needed: */ if(ToOutput) { printf("fftw_setup/Write wisdom file: %s\n",fwd_name); if((fp_wisd = fopen(fwd_name,"w")) != NULL) fftw_export_wisdom_to_file(fp_wisd); fclose(fp_wisd); } /********************** With "backward" ***************************/ #ifdef BORLAND sprintf(bkwd_name,"c:\\tc\\fftw13\\jlp\\bk_%d%d.wis",nx,ny); #else sprintf(bkwd_name,"/d/fftw/bk_%d%d.wis",nx,ny); #endif /* Check if wisdom file already exits: */ printf("fftw_setup/Read wisdom file: %s\n",bkwd_name); if((fp_wisd = fopen(bkwd_name,"r")) == NULL) { printf("fftw_setup/Failure to open wisdom file: %s\n",bkwd_name); ToOutput = 1; } else { ToOutput = 0; if(fftw_import_wisdom_from_file(fp_wisd) == FFTW_FAILURE) ToOutput = 1; fclose(fp_wisd); } /* Create "plan" for fftw (speed is wanted for subsequent FFT's) */ /* Warning: inversion nx-ny here: */ plan_bkwd = fftw2d_create_plan(ny, nx, FFTW_BACKWARD, FFTW_MEASURE | FFTW_IN_PLACE | FFTW_USE_WISDOM); /* Output wisdom file if needed: */ if(ToOutput) { printf("fftw_setup/Write wisdom file: %s\n",bkwd_name); if((fp_wisd = fopen(bkwd_name,"w")) != NULL) fftw_export_wisdom_to_file(fp_wisd); fclose(fp_wisd); } return(0); } /************************************************************* * **************************************************************/ int FFTW_SHUTDOWN() { /* Delete plans: */ fftwnd_destroy_plan(plan_fwd); fftwnd_destroy_plan(plan_bkwd); return(0); } /* ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ * 2D FFT routine for double precision fftw_complex arrays * direction = 1 : forward * direction = -1 : backward * Should be called after fftw_setup and before fftw_shutdown * --------------------------------------------------------------*/ int fftw_fast(FFTW_COMPLEX *image, int nx, int ny, int dir) { register int i; double norm; /* Compute the FFT: */ if(dir == 1) fftwnd(plan_fwd, 1, image, 1, 0, 0, 0, 0); else fftwnd(plan_bkwd, 1, image, 1, 0, 0, 0, 0); /* Normalize by sqrt(nx * ny): */ #ifdef NORMALIZE_SQRT norm = nx * ny; norm = sqrt(norm); for(i = 0; i < nx * ny; i++) { c_re(image[i]) /= norm; c_im(image[i]) /= norm; } #else if(dir == -1) { norm = (double)(nx * ny); for(i = 0; i < nx * ny; i++) { c_re(image[i]) /= norm; c_im(image[i]) /= norm; } } #endif return(0); }
{-# OPTIONS --safe --without-K #-} module Categories.Examples.Functor.Sets where import Data.List as List import Data.List.Properties open import Data.Nat using (ℕ) import Data.Product as Product import Data.Vec as Vec import Data.Vec.Properties open import Function using (id; λ-; _$-) open import Relation.Binary.PropositionalEquality using (refl) open import Categories.Category.Discrete using (Discrete) open import Categories.Category.Instance.Sets open import Categories.Functor using (Endofunctor) open import Categories.Functor.Bifunctor using (Bifunctor; appʳ) List : ∀ {o} → Endofunctor (Sets o) List = record { F₀ = List.List ; F₁ = List.map ; identity = map-id $- ; homomorphism = map-compose $- ; F-resp-≈ = λ f≈g → map-cong (λ- f≈g) $- } where open Data.List.Properties Vec′ : ∀ {o} → Bifunctor (Sets o) (Discrete ℕ) (Sets o) Vec′ = record { F₀ = Product.uncurry Vec.Vec ; F₁ = λ { (f , refl) → Vec.map f } ; identity = map-id $- ; homomorphism = λ { {_} {_} {_} {f , refl} {g , refl} → map-∘ g f _} ; F-resp-≈ = λ { {_} {_} {_} {_ , refl} (g , refl) → map-cong (λ- g) _} } where open Product using (_,_) open Data.Vec.Properties Vec : ∀ {o} → ℕ → Endofunctor (Sets o) Vec = appʳ Vec′
[STATEMENT] theorem thmD12: assumes induct: "items_le k (\<J> k u) = Gen (paths_le k (\<P> k u))" assumes induct_tokens: "\<T> k u = \<Z> k u" shows "items_le k (\<J> k (Suc u)) \<supseteq> Gen (paths_le k (\<P> k (Suc u)))" [PROOF STATE] proof (prove) goal (1 subgoal): 1. Gen (paths_le k (\<P> k (Suc u))) \<subseteq> items_le k (\<J> k (Suc u)) [PROOF STEP] proof - [PROOF STATE] proof (state) goal (1 subgoal): 1. Gen (paths_le k (\<P> k (Suc u))) \<subseteq> items_le k (\<J> k (Suc u)) [PROOF STEP] { [PROOF STATE] proof (state) goal (1 subgoal): 1. Gen (paths_le k (\<P> k (Suc u))) \<subseteq> items_le k (\<J> k (Suc u)) [PROOF STEP] fix x :: item [PROOF STATE] proof (state) goal (1 subgoal): 1. Gen (paths_le k (\<P> k (Suc u))) \<subseteq> items_le k (\<J> k (Suc u)) [PROOF STEP] assume x_dom: "x \<in> Gen (paths_le k (\<P> k (Suc u)))" [PROOF STATE] proof (state) this: x \<in> Gen (paths_le k (\<P> k (Suc u))) goal (1 subgoal): 1. Gen (paths_le k (\<P> k (Suc u))) \<subseteq> items_le k (\<J> k (Suc u)) [PROOF STEP] have "\<exists> q. pvalid q x \<and> q \<in> \<P> k (Suc u) \<and> charslength q \<le> k" [PROOF STATE] proof (prove) goal (1 subgoal): 1. \<exists>q. pvalid q x \<and> q \<in> \<P> k (Suc u) \<and> charslength q \<le> k [PROOF STEP] proof - [PROOF STATE] proof (state) goal (1 subgoal): 1. \<exists>q. pvalid q x \<and> q \<in> \<P> k (Suc u) \<and> charslength q \<le> k [PROOF STEP] have "\<And>i I n. i \<in> I \<or> i \<notin> items_le n I" [PROOF STATE] proof (prove) goal (1 subgoal): 1. \<And>i I n. i \<in> I \<or> i \<notin> items_le n I [PROOF STEP] by (meson items_le_is_filter subsetCE) [PROOF STATE] proof (state) this: ?i \<in> ?I \<or> ?i \<notin> items_le ?n ?I goal (1 subgoal): 1. \<exists>q. pvalid q x \<and> q \<in> \<P> k (Suc u) \<and> charslength q \<le> k [PROOF STEP] then [PROOF STATE] proof (chain) picking this: ?i \<in> ?I \<or> ?i \<notin> items_le ?n ?I [PROOF STEP] show ?thesis [PROOF STATE] proof (prove) using this: ?i \<in> ?I \<or> ?i \<notin> items_le ?n ?I goal (1 subgoal): 1. \<exists>q. pvalid q x \<and> q \<in> \<P> k (Suc u) \<and> charslength q \<le> k [PROOF STEP] by (metis Gen_implies_pvalid x_dom items_le_fix_D items_le_idempotent items_le_paths_le pvalid_item_end) [PROOF STATE] proof (state) this: \<exists>q. pvalid q x \<and> q \<in> \<P> k (Suc u) \<and> charslength q \<le> k goal: No subgoals! [PROOF STEP] qed [PROOF STATE] proof (state) this: \<exists>q. pvalid q x \<and> q \<in> \<P> k (Suc u) \<and> charslength q \<le> k goal (1 subgoal): 1. Gen (paths_le k (\<P> k (Suc u))) \<subseteq> items_le k (\<J> k (Suc u)) [PROOF STEP] then [PROOF STATE] proof (chain) picking this: \<exists>q. pvalid q x \<and> q \<in> \<P> k (Suc u) \<and> charslength q \<le> k [PROOF STEP] obtain q where q: "pvalid q x \<and> q \<in> \<P> k (Suc u) \<and> charslength q \<le> k" [PROOF STATE] proof (prove) using this: \<exists>q. pvalid q x \<and> q \<in> \<P> k (Suc u) \<and> charslength q \<le> k goal (1 subgoal): 1. (\<And>q. pvalid q x \<and> q \<in> \<P> k (Suc u) \<and> charslength q \<le> k \<Longrightarrow> thesis) \<Longrightarrow> thesis [PROOF STEP] by blast [PROOF STATE] proof (state) this: pvalid q x \<and> q \<in> \<P> k (Suc u) \<and> charslength q \<le> k goal (1 subgoal): 1. Gen (paths_le k (\<P> k (Suc u))) \<subseteq> items_le k (\<J> k (Suc u)) [PROOF STEP] have "q \<in> \<P> k u \<or> q \<notin> \<P> k u" [PROOF STATE] proof (prove) goal (1 subgoal): 1. q \<in> \<P> k u \<or> q \<notin> \<P> k u [PROOF STEP] by blast [PROOF STATE] proof (state) this: q \<in> \<P> k u \<or> q \<notin> \<P> k u goal (1 subgoal): 1. Gen (paths_le k (\<P> k (Suc u))) \<subseteq> items_le k (\<J> k (Suc u)) [PROOF STEP] then [PROOF STATE] proof (chain) picking this: q \<in> \<P> k u \<or> q \<notin> \<P> k u [PROOF STEP] have "x \<in> items_le k (\<J> k (Suc u))" [PROOF STATE] proof (prove) using this: q \<in> \<P> k u \<or> q \<notin> \<P> k u goal (1 subgoal): 1. x \<in> items_le k (\<J> k (Suc u)) [PROOF STEP] proof (induct rule: disjCases2) [PROOF STATE] proof (state) goal (2 subgoals): 1. q \<in> \<P> k u \<Longrightarrow> x \<in> items_le k (\<J> k (Suc u)) 2. q \<notin> \<P> k u \<Longrightarrow> x \<in> items_le k (\<J> k (Suc u)) [PROOF STEP] case 1 [PROOF STATE] proof (state) this: q \<in> \<P> k u goal (2 subgoals): 1. q \<in> \<P> k u \<Longrightarrow> x \<in> items_le k (\<J> k (Suc u)) 2. q \<notin> \<P> k u \<Longrightarrow> x \<in> items_le k (\<J> k (Suc u)) [PROOF STEP] with q [PROOF STATE] proof (chain) picking this: pvalid q x \<and> q \<in> \<P> k (Suc u) \<and> charslength q \<le> k q \<in> \<P> k u [PROOF STEP] have "x \<in> Gen (paths_le k (\<P> k u))" [PROOF STATE] proof (prove) using this: pvalid q x \<and> q \<in> \<P> k (Suc u) \<and> charslength q \<le> k q \<in> \<P> k u goal (1 subgoal): 1. x \<in> Gen (paths_le k (\<P> k u)) [PROOF STEP] apply (auto simp add: Gen_def) [PROOF STATE] proof (prove) goal (1 subgoal): 1. \<lbrakk>q \<in> \<P> k u; pvalid q x; q \<in> limit (Append (\<Y> (\<Z> k u) (\<P> k u) k) k) (\<P> k u); length (chars q) \<le> k\<rbrakk> \<Longrightarrow> \<exists>p. p \<in> paths_le k (\<P> k u) \<and> pvalid p x [PROOF STEP] apply (rule_tac x=q in exI) [PROOF STATE] proof (prove) goal (1 subgoal): 1. \<lbrakk>q \<in> \<P> k u; pvalid q x; q \<in> limit (Append (\<Y> (\<Z> k u) (\<P> k u) k) k) (\<P> k u); length (chars q) \<le> k\<rbrakk> \<Longrightarrow> q \<in> paths_le k (\<P> k u) \<and> pvalid q x [PROOF STEP] by (simp add: paths_le_def) [PROOF STATE] proof (state) this: x \<in> Gen (paths_le k (\<P> k u)) goal (2 subgoals): 1. q \<in> \<P> k u \<Longrightarrow> x \<in> items_le k (\<J> k (Suc u)) 2. q \<notin> \<P> k u \<Longrightarrow> x \<in> items_le k (\<J> k (Suc u)) [PROOF STEP] with induct [PROOF STATE] proof (chain) picking this: items_le k (\<J> k u) = Gen (paths_le k (\<P> k u)) x \<in> Gen (paths_le k (\<P> k u)) [PROOF STEP] have "x \<in> items_le k (\<J> k u)" [PROOF STATE] proof (prove) using this: items_le k (\<J> k u) = Gen (paths_le k (\<P> k u)) x \<in> Gen (paths_le k (\<P> k u)) goal (1 subgoal): 1. x \<in> items_le k (\<J> k u) [PROOF STEP] by simp [PROOF STATE] proof (state) this: x \<in> items_le k (\<J> k u) goal (2 subgoals): 1. q \<in> \<P> k u \<Longrightarrow> x \<in> items_le k (\<J> k (Suc u)) 2. q \<notin> \<P> k u \<Longrightarrow> x \<in> items_le k (\<J> k (Suc u)) [PROOF STEP] then [PROOF STATE] proof (chain) picking this: x \<in> items_le k (\<J> k u) [PROOF STEP] show ?case [PROOF STATE] proof (prove) using this: x \<in> items_le k (\<J> k u) goal (1 subgoal): 1. x \<in> items_le k (\<J> k (Suc u)) [PROOF STEP] using LocalLexing.items_le_def LocalLexing_axioms \<J>_subset_Suc_u [PROOF STATE] proof (prove) using this: x \<in> items_le k (\<J> k u) LocalLexing ?\<NN> ?\<TT> ?\<RR> ?\<SS> ?Lex ?Sel \<Longrightarrow> items_le ?k ?I = {x \<in> ?I. item_end x \<le> ?k} LocalLexing \<NN> \<TT> \<RR> \<SS> Lex Sel \<J> ?k ?u \<subseteq> \<J> ?k (Suc ?u) goal (1 subgoal): 1. x \<in> items_le k (\<J> k (Suc u)) [PROOF STEP] by fastforce [PROOF STATE] proof (state) this: x \<in> items_le k (\<J> k (Suc u)) goal (1 subgoal): 1. q \<notin> \<P> k u \<Longrightarrow> x \<in> items_le k (\<J> k (Suc u)) [PROOF STEP] next [PROOF STATE] proof (state) goal (1 subgoal): 1. q \<notin> \<P> k u \<Longrightarrow> x \<in> items_le k (\<J> k (Suc u)) [PROOF STEP] case 2 [PROOF STATE] proof (state) this: q \<notin> \<P> k u goal (1 subgoal): 1. q \<notin> \<P> k u \<Longrightarrow> x \<in> items_le k (\<J> k (Suc u)) [PROOF STEP] have q_is_limit: "q \<in> limit (Append (\<Y> (\<Z> k u) (\<P> k u) k) k) (\<P> k u)" [PROOF STATE] proof (prove) goal (1 subgoal): 1. q \<in> limit (Append (\<Y> (\<Z> k u) (\<P> k u) k) k) (\<P> k u) [PROOF STEP] using q [PROOF STATE] proof (prove) using this: pvalid q x \<and> q \<in> \<P> k (Suc u) \<and> charslength q \<le> k goal (1 subgoal): 1. q \<in> limit (Append (\<Y> (\<Z> k u) (\<P> k u) k) k) (\<P> k u) [PROOF STEP] by auto [PROOF STATE] proof (state) this: q \<in> limit (Append (\<Y> (\<Z> k u) (\<P> k u) k) k) (\<P> k u) goal (1 subgoal): 1. q \<notin> \<P> k u \<Longrightarrow> x \<in> items_le k (\<J> k (Suc u)) [PROOF STEP] from limit_Append_path_nonelem_split[OF q_is_limit 2] [PROOF STATE] proof (chain) picking this: \<exists>qa ts. q = qa @ ts \<and> qa \<in> \<P> k u \<and> charslength qa = k \<and> admissible (qa @ ts) \<and> (\<forall>t\<in>set ts. t \<in> \<Y> (\<Z> k u) (\<P> k u) k) \<and> (\<forall>t\<in>set (butlast ts). chars_of_token t = []) [PROOF STEP] obtain p ts where p_ts: "q = p @ ts \<and> p \<in> \<P> k u \<and> charslength p = k \<and> admissible (p @ ts) \<and> (\<forall>t\<in>set ts. t \<in> \<Y> (\<Z> k u) (\<P> k u) k) \<and> (\<forall>t\<in>set (butlast ts). chars_of_token t = [])" [PROOF STATE] proof (prove) using this: \<exists>qa ts. q = qa @ ts \<and> qa \<in> \<P> k u \<and> charslength qa = k \<and> admissible (qa @ ts) \<and> (\<forall>t\<in>set ts. t \<in> \<Y> (\<Z> k u) (\<P> k u) k) \<and> (\<forall>t\<in>set (butlast ts). chars_of_token t = []) goal (1 subgoal): 1. (\<And>p ts. q = p @ ts \<and> p \<in> \<P> k u \<and> charslength p = k \<and> admissible (p @ ts) \<and> (\<forall>t\<in>set ts. t \<in> \<Y> (\<Z> k u) (\<P> k u) k) \<and> (\<forall>t\<in>set (butlast ts). chars_of_token t = []) \<Longrightarrow> thesis) \<Longrightarrow> thesis [PROOF STEP] by blast [PROOF STATE] proof (state) this: q = p @ ts \<and> p \<in> \<P> k u \<and> charslength p = k \<and> admissible (p @ ts) \<and> (\<forall>t\<in>set ts. t \<in> \<Y> (\<Z> k u) (\<P> k u) k) \<and> (\<forall>t\<in>set (butlast ts). chars_of_token t = []) goal (1 subgoal): 1. q \<notin> \<P> k u \<Longrightarrow> x \<in> items_le k (\<J> k (Suc u)) [PROOF STEP] then [PROOF STATE] proof (chain) picking this: q = p @ ts \<and> p \<in> \<P> k u \<and> charslength p = k \<and> admissible (p @ ts) \<and> (\<forall>t\<in>set ts. t \<in> \<Y> (\<Z> k u) (\<P> k u) k) \<and> (\<forall>t\<in>set (butlast ts). chars_of_token t = []) [PROOF STEP] have ts_nonempty: "ts \<noteq> []" [PROOF STATE] proof (prove) using this: q = p @ ts \<and> p \<in> \<P> k u \<and> charslength p = k \<and> admissible (p @ ts) \<and> (\<forall>t\<in>set ts. t \<in> \<Y> (\<Z> k u) (\<P> k u) k) \<and> (\<forall>t\<in>set (butlast ts). chars_of_token t = []) goal (1 subgoal): 1. ts \<noteq> [] [PROOF STEP] using 2 [PROOF STATE] proof (prove) using this: q = p @ ts \<and> p \<in> \<P> k u \<and> charslength p = k \<and> admissible (p @ ts) \<and> (\<forall>t\<in>set ts. t \<in> \<Y> (\<Z> k u) (\<P> k u) k) \<and> (\<forall>t\<in>set (butlast ts). chars_of_token t = []) q \<notin> \<P> k u goal (1 subgoal): 1. ts \<noteq> [] [PROOF STEP] using self_append_conv [PROOF STATE] proof (prove) using this: q = p @ ts \<and> p \<in> \<P> k u \<and> charslength p = k \<and> admissible (p @ ts) \<and> (\<forall>t\<in>set ts. t \<in> \<Y> (\<Z> k u) (\<P> k u) k) \<and> (\<forall>t\<in>set (butlast ts). chars_of_token t = []) q \<notin> \<P> k u (?y = ?y @ ?ys) = (?ys = []) goal (1 subgoal): 1. ts \<noteq> [] [PROOF STEP] by auto [PROOF STATE] proof (state) this: ts \<noteq> [] goal (1 subgoal): 1. q \<notin> \<P> k u \<Longrightarrow> x \<in> items_le k (\<J> k (Suc u)) [PROOF STEP] obtain T where T: "T = \<Y> (\<Z> k u) (\<P> k u) k" [PROOF STATE] proof (prove) goal (1 subgoal): 1. (\<And>T. T = \<Y> (\<Z> k u) (\<P> k u) k \<Longrightarrow> thesis) \<Longrightarrow> thesis [PROOF STEP] by blast [PROOF STATE] proof (state) this: T = \<Y> (\<Z> k u) (\<P> k u) k goal (1 subgoal): 1. q \<notin> \<P> k u \<Longrightarrow> x \<in> items_le k (\<J> k (Suc u)) [PROOF STEP] obtain J where J: "J = \<pi> k T (Gen (paths_le k (\<P> k u)))" [PROOF STATE] proof (prove) goal (1 subgoal): 1. (\<And>J. J = \<pi> k T (Gen (paths_le k (\<P> k u))) \<Longrightarrow> thesis) \<Longrightarrow> thesis [PROOF STEP] by blast [PROOF STATE] proof (state) this: J = \<pi> k T (Gen (paths_le k (\<P> k u))) goal (1 subgoal): 1. q \<notin> \<P> k u \<Longrightarrow> x \<in> items_le k (\<J> k (Suc u)) [PROOF STEP] from q p_ts [PROOF STATE] proof (chain) picking this: pvalid q x \<and> q \<in> \<P> k (Suc u) \<and> charslength q \<le> k q = p @ ts \<and> p \<in> \<P> k u \<and> charslength p = k \<and> admissible (p @ ts) \<and> (\<forall>t\<in>set ts. t \<in> \<Y> (\<Z> k u) (\<P> k u) k) \<and> (\<forall>t\<in>set (butlast ts). chars_of_token t = []) [PROOF STEP] have chars_of_token_is_empty: "\<And> t. t\<in>set ts \<Longrightarrow> chars_of_token t = []" [PROOF STATE] proof (prove) using this: pvalid q x \<and> q \<in> \<P> k (Suc u) \<and> charslength q \<le> k q = p @ ts \<and> p \<in> \<P> k u \<and> charslength p = k \<and> admissible (p @ ts) \<and> (\<forall>t\<in>set ts. t \<in> \<Y> (\<Z> k u) (\<P> k u) k) \<and> (\<forall>t\<in>set (butlast ts). chars_of_token t = []) goal (1 subgoal): 1. \<And>t. t \<in> set ts \<Longrightarrow> chars_of_token t = [] [PROOF STEP] using charslength_appendix_is_empty chars_append charslength.simps le_add1 le_imp_less_Suc le_neq_implies_less length_append not_less_eq [PROOF STATE] proof (prove) using this: pvalid q x \<and> q \<in> \<P> k (Suc u) \<and> charslength q \<le> k q = p @ ts \<and> p \<in> \<P> k u \<and> charslength p = k \<and> admissible (p @ ts) \<and> (\<forall>t\<in>set ts. t \<in> \<Y> (\<Z> k u) (\<P> k u) k) \<and> (\<forall>t\<in>set (butlast ts). chars_of_token t = []) \<lbrakk>charslength (?p @ ?ts) = charslength ?p; ?t \<in> set ?ts\<rbrakk> \<Longrightarrow> chars_of_token ?t = [] chars (?a @ ?b) = chars ?a @ chars ?b charslength ?cs = length (chars ?cs) ?n \<le> ?n + ?m ?m \<le> ?n \<Longrightarrow> ?m < Suc ?n \<lbrakk>?m \<le> ?n; ?m \<noteq> ?n\<rbrakk> \<Longrightarrow> ?m < ?n length (?xs @ ?ys) = length ?xs + length ?ys (\<not> ?m < ?n) = (?n < Suc ?m) goal (1 subgoal): 1. \<And>t. t \<in> set ts \<Longrightarrow> chars_of_token t = [] [PROOF STEP] by auto [PROOF STATE] proof (state) this: ?t \<in> set ts \<Longrightarrow> chars_of_token ?t = [] goal (1 subgoal): 1. q \<notin> \<P> k u \<Longrightarrow> x \<in> items_le k (\<J> k (Suc u)) [PROOF STEP] { [PROOF STATE] proof (state) this: ?t \<in> set ts \<Longrightarrow> chars_of_token ?t = [] goal (1 subgoal): 1. q \<notin> \<P> k u \<Longrightarrow> x \<in> items_le k (\<J> k (Suc u)) [PROOF STEP] fix sss :: "token list" [PROOF STATE] proof (state) goal (1 subgoal): 1. q \<notin> \<P> k u \<Longrightarrow> x \<in> items_le k (\<J> k (Suc u)) [PROOF STEP] have "is_prefix sss ts \<Longrightarrow> pvalid (p @ sss) x \<Longrightarrow> x \<in> J" [PROOF STATE] proof (prove) goal (1 subgoal): 1. \<lbrakk>is_prefix sss ts; pvalid (p @ sss) x\<rbrakk> \<Longrightarrow> x \<in> J [PROOF STEP] proof (induct "length sss" arbitrary: sss x rule: less_induct) [PROOF STATE] proof (state) goal (1 subgoal): 1. \<And>sss x. \<lbrakk>\<And>sssa x. \<lbrakk>length sssa < length sss; is_prefix sssa ts; pvalid (p @ sssa) x\<rbrakk> \<Longrightarrow> x \<in> J; is_prefix sss ts; pvalid (p @ sss) x\<rbrakk> \<Longrightarrow> x \<in> J [PROOF STEP] case less [PROOF STATE] proof (state) this: \<lbrakk>length ?sss < length sss; is_prefix ?sss ts; pvalid (p @ ?sss) ?x\<rbrakk> \<Longrightarrow> ?x \<in> J is_prefix sss ts pvalid (p @ sss) x goal (1 subgoal): 1. \<And>sss x. \<lbrakk>\<And>sssa x. \<lbrakk>length sssa < length sss; is_prefix sssa ts; pvalid (p @ sssa) x\<rbrakk> \<Longrightarrow> x \<in> J; is_prefix sss ts; pvalid (p @ sss) x\<rbrakk> \<Longrightarrow> x \<in> J [PROOF STEP] have "sss = [] \<or> sss \<noteq> []" [PROOF STATE] proof (prove) goal (1 subgoal): 1. sss = [] \<or> sss \<noteq> [] [PROOF STEP] by blast [PROOF STATE] proof (state) this: sss = [] \<or> sss \<noteq> [] goal (1 subgoal): 1. \<And>sss x. \<lbrakk>\<And>sssa x. \<lbrakk>length sssa < length sss; is_prefix sssa ts; pvalid (p @ sssa) x\<rbrakk> \<Longrightarrow> x \<in> J; is_prefix sss ts; pvalid (p @ sss) x\<rbrakk> \<Longrightarrow> x \<in> J [PROOF STEP] then [PROOF STATE] proof (chain) picking this: sss = [] \<or> sss \<noteq> [] [PROOF STEP] show ?case [PROOF STATE] proof (prove) using this: sss = [] \<or> sss \<noteq> [] goal (1 subgoal): 1. x \<in> J [PROOF STEP] proof (induct rule: disjCases2) [PROOF STATE] proof (state) goal (2 subgoals): 1. sss = [] \<Longrightarrow> x \<in> J 2. sss \<noteq> [] \<Longrightarrow> x \<in> J [PROOF STEP] case 1 [PROOF STATE] proof (state) this: sss = [] goal (2 subgoals): 1. sss = [] \<Longrightarrow> x \<in> J 2. sss \<noteq> [] \<Longrightarrow> x \<in> J [PROOF STEP] with less [PROOF STATE] proof (chain) picking this: \<lbrakk>length ?sss < length sss; is_prefix ?sss ts; pvalid (p @ ?sss) ?x\<rbrakk> \<Longrightarrow> ?x \<in> J is_prefix sss ts pvalid (p @ sss) x sss = [] [PROOF STEP] have pvalid_p_x: "pvalid p x" [PROOF STATE] proof (prove) using this: \<lbrakk>length ?sss < length sss; is_prefix ?sss ts; pvalid (p @ ?sss) ?x\<rbrakk> \<Longrightarrow> ?x \<in> J is_prefix sss ts pvalid (p @ sss) x sss = [] goal (1 subgoal): 1. pvalid p x [PROOF STEP] by auto [PROOF STATE] proof (state) this: pvalid p x goal (2 subgoals): 1. sss = [] \<Longrightarrow> x \<in> J 2. sss \<noteq> [] \<Longrightarrow> x \<in> J [PROOF STEP] have charslength_p: "charslength p \<le> k" [PROOF STATE] proof (prove) goal (1 subgoal): 1. charslength p \<le> k [PROOF STEP] using p_ts [PROOF STATE] proof (prove) using this: q = p @ ts \<and> p \<in> \<P> k u \<and> charslength p = k \<and> admissible (p @ ts) \<and> (\<forall>t\<in>set ts. t \<in> \<Y> (\<Z> k u) (\<P> k u) k) \<and> (\<forall>t\<in>set (butlast ts). chars_of_token t = []) goal (1 subgoal): 1. charslength p \<le> k [PROOF STEP] by blast [PROOF STATE] proof (state) this: charslength p \<le> k goal (2 subgoals): 1. sss = [] \<Longrightarrow> x \<in> J 2. sss \<noteq> [] \<Longrightarrow> x \<in> J [PROOF STEP] with p_ts [PROOF STATE] proof (chain) picking this: q = p @ ts \<and> p \<in> \<P> k u \<and> charslength p = k \<and> admissible (p @ ts) \<and> (\<forall>t\<in>set ts. t \<in> \<Y> (\<Z> k u) (\<P> k u) k) \<and> (\<forall>t\<in>set (butlast ts). chars_of_token t = []) charslength p \<le> k [PROOF STEP] have "p \<in> paths_le k (\<P> k u)" [PROOF STATE] proof (prove) using this: q = p @ ts \<and> p \<in> \<P> k u \<and> charslength p = k \<and> admissible (p @ ts) \<and> (\<forall>t\<in>set ts. t \<in> \<Y> (\<Z> k u) (\<P> k u) k) \<and> (\<forall>t\<in>set (butlast ts). chars_of_token t = []) charslength p \<le> k goal (1 subgoal): 1. p \<in> paths_le k (\<P> k u) [PROOF STEP] by (simp add: paths_le_def) [PROOF STATE] proof (state) this: p \<in> paths_le k (\<P> k u) goal (2 subgoals): 1. sss = [] \<Longrightarrow> x \<in> J 2. sss \<noteq> [] \<Longrightarrow> x \<in> J [PROOF STEP] with pvalid_p_x [PROOF STATE] proof (chain) picking this: pvalid p x p \<in> paths_le k (\<P> k u) [PROOF STEP] have "x \<in> Gen (paths_le k (\<P> k u))" [PROOF STATE] proof (prove) using this: pvalid p x p \<in> paths_le k (\<P> k u) goal (1 subgoal): 1. x \<in> Gen (paths_le k (\<P> k u)) [PROOF STEP] using Gen_def mem_Collect_eq [PROOF STATE] proof (prove) using this: pvalid p x p \<in> paths_le k (\<P> k u) Gen ?P = {uu_. \<exists>x p. uu_ = x \<and> p \<in> ?P \<and> pvalid p x} (?a \<in> Collect ?P) = ?P ?a goal (1 subgoal): 1. x \<in> Gen (paths_le k (\<P> k u)) [PROOF STEP] by blast [PROOF STATE] proof (state) this: x \<in> Gen (paths_le k (\<P> k u)) goal (2 subgoals): 1. sss = [] \<Longrightarrow> x \<in> J 2. sss \<noteq> [] \<Longrightarrow> x \<in> J [PROOF STEP] then [PROOF STATE] proof (chain) picking this: x \<in> Gen (paths_le k (\<P> k u)) [PROOF STEP] have "x \<in> \<pi> k T (Gen (paths_le k (\<P> k u)))" [PROOF STATE] proof (prove) using this: x \<in> Gen (paths_le k (\<P> k u)) goal (1 subgoal): 1. x \<in> \<pi> k T (Gen (paths_le k (\<P> k u))) [PROOF STEP] using \<pi>_apply_setmonotone [PROOF STATE] proof (prove) using this: x \<in> Gen (paths_le k (\<P> k u)) ?x \<in> ?I \<Longrightarrow> ?x \<in> \<pi> ?k ?T ?I goal (1 subgoal): 1. x \<in> \<pi> k T (Gen (paths_le k (\<P> k u))) [PROOF STEP] by blast [PROOF STATE] proof (state) this: x \<in> \<pi> k T (Gen (paths_le k (\<P> k u))) goal (2 subgoals): 1. sss = [] \<Longrightarrow> x \<in> J 2. sss \<noteq> [] \<Longrightarrow> x \<in> J [PROOF STEP] then [PROOF STATE] proof (chain) picking this: x \<in> \<pi> k T (Gen (paths_le k (\<P> k u))) [PROOF STEP] show "x \<in> J" [PROOF STATE] proof (prove) using this: x \<in> \<pi> k T (Gen (paths_le k (\<P> k u))) goal (1 subgoal): 1. x \<in> J [PROOF STEP] using pvalid_item_end q J LocalLexing.items_le_def LocalLexing_axioms charslength_p mem_Collect_eq pvalid_p_x [PROOF STATE] proof (prove) using this: x \<in> \<pi> k T (Gen (paths_le k (\<P> k u))) pvalid ?p ?x \<Longrightarrow> item_end ?x = charslength ?p pvalid q x__ \<and> q \<in> \<P> k (Suc u) \<and> charslength q \<le> k J = \<pi> k T (Gen (paths_le k (\<P> k u))) LocalLexing ?\<NN> ?\<TT> ?\<RR> ?\<SS> ?Lex ?Sel \<Longrightarrow> items_le ?k ?I = {x \<in> ?I. item_end x \<le> ?k} LocalLexing \<NN> \<TT> \<RR> \<SS> Lex Sel charslength p \<le> k (?a \<in> Collect ?P) = ?P ?a pvalid p x goal (1 subgoal): 1. x \<in> J [PROOF STEP] by auto [PROOF STATE] proof (state) this: x \<in> J goal (1 subgoal): 1. sss \<noteq> [] \<Longrightarrow> x \<in> J [PROOF STEP] next [PROOF STATE] proof (state) goal (1 subgoal): 1. sss \<noteq> [] \<Longrightarrow> x \<in> J [PROOF STEP] case 2 [PROOF STATE] proof (state) this: sss \<noteq> [] goal (1 subgoal): 1. sss \<noteq> [] \<Longrightarrow> x \<in> J [PROOF STEP] then [PROOF STATE] proof (chain) picking this: sss \<noteq> [] [PROOF STEP] have "\<exists> a ss. sss = ss@[a]" [PROOF STATE] proof (prove) using this: sss \<noteq> [] goal (1 subgoal): 1. \<exists>a ss. sss = ss @ [a] [PROOF STEP] using rev_exhaust [PROOF STATE] proof (prove) using this: sss \<noteq> [] \<lbrakk>?xs = [] \<Longrightarrow> ?P; \<And>ys y. ?xs = ys @ [y] \<Longrightarrow> ?P\<rbrakk> \<Longrightarrow> ?P goal (1 subgoal): 1. \<exists>a ss. sss = ss @ [a] [PROOF STEP] by blast [PROOF STATE] proof (state) this: \<exists>a ss. sss = ss @ [a] goal (1 subgoal): 1. sss \<noteq> [] \<Longrightarrow> x \<in> J [PROOF STEP] then [PROOF STATE] proof (chain) picking this: \<exists>a ss. sss = ss @ [a] [PROOF STEP] obtain a ss where snoc: "sss = ss@[a]" [PROOF STATE] proof (prove) using this: \<exists>a ss. sss = ss @ [a] goal (1 subgoal): 1. (\<And>ss a. sss = ss @ [a] \<Longrightarrow> thesis) \<Longrightarrow> thesis [PROOF STEP] by blast [PROOF STATE] proof (state) this: sss = ss @ [a] goal (1 subgoal): 1. sss \<noteq> [] \<Longrightarrow> x \<in> J [PROOF STEP] obtain p' where p': "p' = p @ ss" [PROOF STATE] proof (prove) goal (1 subgoal): 1. (\<And>p'. p' = p @ ss \<Longrightarrow> thesis) \<Longrightarrow> thesis [PROOF STEP] by auto [PROOF STATE] proof (state) this: p' = p @ ss goal (1 subgoal): 1. sss \<noteq> [] \<Longrightarrow> x \<in> J [PROOF STEP] then [PROOF STATE] proof (chain) picking this: p' = p @ ss [PROOF STEP] have "pvalid_left (p'@[a]) x" [PROOF STATE] proof (prove) using this: p' = p @ ss goal (1 subgoal): 1. pvalid_left (p' @ [a]) x [PROOF STEP] using snoc less pvalid_left [PROOF STATE] proof (prove) using this: p' = p @ ss sss = ss @ [a] \<lbrakk>length ?sss < length sss; is_prefix ?sss ts; pvalid (p @ ?sss) ?x\<rbrakk> \<Longrightarrow> ?x \<in> J is_prefix sss ts pvalid (p @ sss) x pvalid ?p ?x = pvalid_left ?p ?x goal (1 subgoal): 1. pvalid_left (p' @ [a]) x [PROOF STEP] by simp [PROOF STATE] proof (state) this: pvalid_left (p' @ [a]) x goal (1 subgoal): 1. sss \<noteq> [] \<Longrightarrow> x \<in> J [PROOF STEP] from iffD1[OF pvalid_left_def this] [PROOF STATE] proof (chain) picking this: \<exists>u \<gamma>. wellformed_tokens (p' @ [a]) \<and> wellformed_item x \<and> u \<le> length (p' @ [a]) \<and> charslength (p' @ [a]) = item_end x \<and> charslength (take u (p' @ [a])) = item_origin x \<and> is_leftderivation (terminals (take u (p' @ [a])) @ [item_nonterminal x] @ \<gamma>) \<and> leftderives (item_\<alpha> x) (terminals (drop u (p' @ [a]))) [PROOF STEP] obtain r \<omega> where pvalid: "wellformed_tokens (p' @ [a]) \<and> wellformed_item x \<and> r \<le> length (p' @ [a]) \<and> charslength (p' @ [a]) = item_end x \<and> charslength (take r (p' @ [a])) = item_origin x \<and> is_leftderivation (terminals (take r (p' @ [a])) @ [item_nonterminal x] @ \<omega>) \<and> leftderives (item_\<alpha> x) (terminals (drop r (p' @ [a])))" [PROOF STATE] proof (prove) using this: \<exists>u \<gamma>. wellformed_tokens (p' @ [a]) \<and> wellformed_item x \<and> u \<le> length (p' @ [a]) \<and> charslength (p' @ [a]) = item_end x \<and> charslength (take u (p' @ [a])) = item_origin x \<and> is_leftderivation (terminals (take u (p' @ [a])) @ [item_nonterminal x] @ \<gamma>) \<and> leftderives (item_\<alpha> x) (terminals (drop u (p' @ [a]))) goal (1 subgoal): 1. (\<And>r \<omega>. wellformed_tokens (p' @ [a]) \<and> wellformed_item x \<and> r \<le> length (p' @ [a]) \<and> charslength (p' @ [a]) = item_end x \<and> charslength (take r (p' @ [a])) = item_origin x \<and> is_leftderivation (terminals (take r (p' @ [a])) @ [item_nonterminal x] @ \<omega>) \<and> leftderives (item_\<alpha> x) (terminals (drop r (p' @ [a]))) \<Longrightarrow> thesis) \<Longrightarrow> thesis [PROOF STEP] by blast [PROOF STATE] proof (state) this: wellformed_tokens (p' @ [a]) \<and> wellformed_item x \<and> r \<le> length (p' @ [a]) \<and> charslength (p' @ [a]) = item_end x \<and> charslength (take r (p' @ [a])) = item_origin x \<and> is_leftderivation (terminals (take r (p' @ [a])) @ [item_nonterminal x] @ \<omega>) \<and> leftderives (item_\<alpha> x) (terminals (drop r (p' @ [a]))) goal (1 subgoal): 1. sss \<noteq> [] \<Longrightarrow> x \<in> J [PROOF STEP] obtain q' where q': "q' = p'@[a]" [PROOF STATE] proof (prove) goal (1 subgoal): 1. (\<And>q'. q' = p' @ [a] \<Longrightarrow> thesis) \<Longrightarrow> thesis [PROOF STEP] by blast [PROOF STATE] proof (state) this: q' = p' @ [a] goal (1 subgoal): 1. sss \<noteq> [] \<Longrightarrow> x \<in> J [PROOF STEP] have is_prefix_ss_ts: "is_prefix ss ts" [PROOF STATE] proof (prove) goal (1 subgoal): 1. is_prefix ss ts [PROOF STEP] using snoc less [PROOF STATE] proof (prove) using this: sss = ss @ [a] \<lbrakk>length ?sss < length sss; is_prefix ?sss ts; pvalid (p @ ?sss) ?x\<rbrakk> \<Longrightarrow> ?x \<in> J is_prefix sss ts pvalid (p @ sss) x goal (1 subgoal): 1. is_prefix ss ts [PROOF STEP] by (simp add: is_prefix_append) [PROOF STATE] proof (state) this: is_prefix ss ts goal (1 subgoal): 1. sss \<noteq> [] \<Longrightarrow> x \<in> J [PROOF STEP] then [PROOF STATE] proof (chain) picking this: is_prefix ss ts [PROOF STEP] have "is_prefix (p@ss) q" [PROOF STATE] proof (prove) using this: is_prefix ss ts goal (1 subgoal): 1. is_prefix (p @ ss) q [PROOF STEP] using p' snoc p_ts [PROOF STATE] proof (prove) using this: is_prefix ss ts p' = p @ ss sss = ss @ [a] q = p @ ts \<and> p \<in> \<P> k u \<and> charslength p = k \<and> admissible (p @ ts) \<and> (\<forall>t\<in>set ts. t \<in> \<Y> (\<Z> k u) (\<P> k u) k) \<and> (\<forall>t\<in>set (butlast ts). chars_of_token t = []) goal (1 subgoal): 1. is_prefix (p @ ss) q [PROOF STEP] by simp [PROOF STATE] proof (state) this: is_prefix (p @ ss) q goal (1 subgoal): 1. sss \<noteq> [] \<Longrightarrow> x \<in> J [PROOF STEP] then [PROOF STATE] proof (chain) picking this: is_prefix (p @ ss) q [PROOF STEP] have "is_prefix p' q" [PROOF STATE] proof (prove) using this: is_prefix (p @ ss) q goal (1 subgoal): 1. is_prefix p' q [PROOF STEP] using p' [PROOF STATE] proof (prove) using this: is_prefix (p @ ss) q p' = p @ ss goal (1 subgoal): 1. is_prefix p' q [PROOF STEP] by simp [PROOF STATE] proof (state) this: is_prefix p' q goal (1 subgoal): 1. sss \<noteq> [] \<Longrightarrow> x \<in> J [PROOF STEP] then [PROOF STATE] proof (chain) picking this: is_prefix p' q [PROOF STEP] have h1: "p' \<in> \<PP>" [PROOF STATE] proof (prove) using this: is_prefix p' q goal (1 subgoal): 1. p' \<in> \<PP> [PROOF STEP] using q \<PP>_covers_\<P> prefixes_are_paths' subsetCE [PROOF STATE] proof (prove) using this: is_prefix p' q pvalid q x__ \<and> q \<in> \<P> k (Suc u) \<and> charslength q \<le> k \<P> ?k ?u \<subseteq> \<PP> \<lbrakk>?p \<in> \<PP>; is_prefix ?q ?p\<rbrakk> \<Longrightarrow> ?q \<in> \<PP> \<lbrakk>?A \<subseteq> ?B; ?c \<notin> ?A \<Longrightarrow> ?P; ?c \<in> ?B \<Longrightarrow> ?P\<rbrakk> \<Longrightarrow> ?P goal (1 subgoal): 1. p' \<in> \<PP> [PROOF STEP] by blast [PROOF STATE] proof (state) this: p' \<in> \<PP> goal (1 subgoal): 1. sss \<noteq> [] \<Longrightarrow> x \<in> J [PROOF STEP] have charslength_ss: "charslength ss = 0" [PROOF STATE] proof (prove) goal (1 subgoal): 1. charslength ss = 0 [PROOF STEP] apply (rule empty_tokens_have_charslength_0) [PROOF STATE] proof (prove) goal (1 subgoal): 1. \<And>t. t \<in> set ss \<Longrightarrow> chars_of_token t = [] [PROOF STEP] by (metis is_prefix_ss_ts append_is_Nil_conv chars_append chars_of_token_is_empty charslength.simps charslength_0 is_prefix_def length_greater_0_conv list.size(3)) [PROOF STATE] proof (state) this: charslength ss = 0 goal (1 subgoal): 1. sss \<noteq> [] \<Longrightarrow> x \<in> J [PROOF STEP] then [PROOF STATE] proof (chain) picking this: charslength ss = 0 [PROOF STEP] have h2: "charslength p' = k" [PROOF STATE] proof (prove) using this: charslength ss = 0 goal (1 subgoal): 1. charslength p' = k [PROOF STEP] using p' p_ts [PROOF STATE] proof (prove) using this: charslength ss = 0 p' = p @ ss q = p @ ts \<and> p \<in> \<P> k u \<and> charslength p = k \<and> admissible (p @ ts) \<and> (\<forall>t\<in>set ts. t \<in> \<Y> (\<Z> k u) (\<P> k u) k) \<and> (\<forall>t\<in>set (butlast ts). chars_of_token t = []) goal (1 subgoal): 1. charslength p' = k [PROOF STEP] by auto [PROOF STATE] proof (state) this: charslength p' = k goal (1 subgoal): 1. sss \<noteq> [] \<Longrightarrow> x \<in> J [PROOF STEP] have a_in_ts: "a \<in> set ts" [PROOF STATE] proof (prove) goal (1 subgoal): 1. a \<in> set ts [PROOF STEP] by (metis in_set_dropD is_prefix_append is_prefix_cons list.set_intros(1) snoc less(2)) [PROOF STATE] proof (state) this: a \<in> set ts goal (1 subgoal): 1. sss \<noteq> [] \<Longrightarrow> x \<in> J [PROOF STEP] then [PROOF STATE] proof (chain) picking this: a \<in> set ts [PROOF STEP] have h3: "a \<in> T" [PROOF STATE] proof (prove) using this: a \<in> set ts goal (1 subgoal): 1. a \<in> T [PROOF STEP] using T p_ts [PROOF STATE] proof (prove) using this: a \<in> set ts T = \<Y> (\<Z> k u) (\<P> k u) k q = p @ ts \<and> p \<in> \<P> k u \<and> charslength p = k \<and> admissible (p @ ts) \<and> (\<forall>t\<in>set ts. t \<in> \<Y> (\<Z> k u) (\<P> k u) k) \<and> (\<forall>t\<in>set (butlast ts). chars_of_token t = []) goal (1 subgoal): 1. a \<in> T [PROOF STEP] by blast [PROOF STATE] proof (state) this: a \<in> T goal (1 subgoal): 1. sss \<noteq> [] \<Longrightarrow> x \<in> J [PROOF STEP] have h4: "T \<subseteq> \<X> k" [PROOF STATE] proof (prove) goal (1 subgoal): 1. T \<subseteq> \<X> k [PROOF STEP] using LocalLexing.\<Z>.simps(2) LocalLexing_axioms T \<Z>_subset_\<X> [PROOF STATE] proof (prove) using this: LocalLexing ?\<NN> ?\<TT> ?\<RR> ?\<SS> ?Lex ?Sel \<Longrightarrow> LocalLexing.\<Z> ?\<NN> ?\<TT> ?\<RR> ?\<SS> ?Lex ?Sel ?Doc ?k (Suc ?u) = LocalLexing.\<Y> ?\<NN> ?\<TT> ?\<RR> ?\<SS> ?Lex ?Sel ?Doc (LocalLexing.\<Z> ?\<NN> ?\<TT> ?\<RR> ?\<SS> ?Lex ?Sel ?Doc ?k ?u) (LocalLexing.\<P> ?\<NN> ?\<TT> ?\<RR> ?\<SS> ?Lex ?Sel ?Doc ?k ?u) ?k LocalLexing \<NN> \<TT> \<RR> \<SS> Lex Sel T = \<Y> (\<Z> k u) (\<P> k u) k \<Z> ?k ?n \<subseteq> \<X> ?k goal (1 subgoal): 1. T \<subseteq> \<X> k [PROOF STEP] by blast [PROOF STATE] proof (state) this: T \<subseteq> \<X> k goal (1 subgoal): 1. sss \<noteq> [] \<Longrightarrow> x \<in> J [PROOF STEP] note h5 = q' [PROOF STATE] proof (state) this: q' = p' @ [a] goal (1 subgoal): 1. sss \<noteq> [] \<Longrightarrow> x \<in> J [PROOF STEP] obtain N where N: "N = item_nonterminal x" [PROOF STATE] proof (prove) goal (1 subgoal): 1. (\<And>N. N = item_nonterminal x \<Longrightarrow> thesis) \<Longrightarrow> thesis [PROOF STEP] by blast [PROOF STATE] proof (state) this: N = item_nonterminal x goal (1 subgoal): 1. sss \<noteq> [] \<Longrightarrow> x \<in> J [PROOF STEP] obtain \<alpha> where \<alpha>: "\<alpha> = item_\<alpha> x" [PROOF STATE] proof (prove) goal (1 subgoal): 1. (\<And>\<alpha>. \<alpha> = item_\<alpha> x \<Longrightarrow> thesis) \<Longrightarrow> thesis [PROOF STEP] by blast [PROOF STATE] proof (state) this: \<alpha> = item_\<alpha> x goal (1 subgoal): 1. sss \<noteq> [] \<Longrightarrow> x \<in> J [PROOF STEP] obtain \<beta> where \<beta>: "\<beta> = item_\<beta> x" [PROOF STATE] proof (prove) goal (1 subgoal): 1. (\<And>\<beta>. \<beta> = item_\<beta> x \<Longrightarrow> thesis) \<Longrightarrow> thesis [PROOF STEP] by blast [PROOF STATE] proof (state) this: \<beta> = item_\<beta> x goal (1 subgoal): 1. sss \<noteq> [] \<Longrightarrow> x \<in> J [PROOF STEP] have item_rule_x: "item_rule x = (N, \<alpha> @ \<beta>)" [PROOF STATE] proof (prove) goal (1 subgoal): 1. item_rule x = (N, \<alpha> @ \<beta>) [PROOF STEP] using N \<alpha> \<beta> item_nonterminal_def item_rhs_def item_rhs_split [PROOF STATE] proof (prove) using this: N = item_nonterminal x \<alpha> = item_\<alpha> x \<beta> = item_\<beta> x item_nonterminal ?x = fst (item_rule ?x) item_rhs ?x = snd (item_rule ?x) item_rhs ?x = item_\<alpha> ?x @ item_\<beta> ?x goal (1 subgoal): 1. item_rule x = (N, \<alpha> @ \<beta>) [PROOF STEP] by auto [PROOF STATE] proof (state) this: item_rule x = (N, \<alpha> @ \<beta>) goal (1 subgoal): 1. sss \<noteq> [] \<Longrightarrow> x \<in> J [PROOF STEP] have "wellformed_item x" [PROOF STATE] proof (prove) goal (1 subgoal): 1. wellformed_item x [PROOF STEP] using pvalid [PROOF STATE] proof (prove) using this: wellformed_tokens (p' @ [a]) \<and> wellformed_item x \<and> r \<le> length (p' @ [a]) \<and> charslength (p' @ [a]) = item_end x \<and> charslength (take r (p' @ [a])) = item_origin x \<and> is_leftderivation (terminals (take r (p' @ [a])) @ [item_nonterminal x] @ \<omega>) \<and> leftderives (item_\<alpha> x) (terminals (drop r (p' @ [a]))) goal (1 subgoal): 1. wellformed_item x [PROOF STEP] by blast [PROOF STATE] proof (state) this: wellformed_item x goal (1 subgoal): 1. sss \<noteq> [] \<Longrightarrow> x \<in> J [PROOF STEP] then [PROOF STATE] proof (chain) picking this: wellformed_item x [PROOF STEP] have h6: "(N, \<alpha>@\<beta>) \<in> \<RR>" [PROOF STATE] proof (prove) using this: wellformed_item x goal (1 subgoal): 1. (N, \<alpha> @ \<beta>) \<in> \<RR> [PROOF STEP] using item_rule_x [PROOF STATE] proof (prove) using this: wellformed_item x item_rule x = (N, \<alpha> @ \<beta>) goal (1 subgoal): 1. (N, \<alpha> @ \<beta>) \<in> \<RR> [PROOF STEP] by (simp add: wellformed_item_def) [PROOF STATE] proof (state) this: (N, \<alpha> @ \<beta>) \<in> \<RR> goal (1 subgoal): 1. sss \<noteq> [] \<Longrightarrow> x \<in> J [PROOF STEP] have h7: "r \<le> length q'" [PROOF STATE] proof (prove) goal (1 subgoal): 1. r \<le> length q' [PROOF STEP] using pvalid q' [PROOF STATE] proof (prove) using this: wellformed_tokens (p' @ [a]) \<and> wellformed_item x \<and> r \<le> length (p' @ [a]) \<and> charslength (p' @ [a]) = item_end x \<and> charslength (take r (p' @ [a])) = item_origin x \<and> is_leftderivation (terminals (take r (p' @ [a])) @ [item_nonterminal x] @ \<omega>) \<and> leftderives (item_\<alpha> x) (terminals (drop r (p' @ [a]))) q' = p' @ [a] goal (1 subgoal): 1. r \<le> length q' [PROOF STEP] by blast [PROOF STATE] proof (state) this: r \<le> length q' goal (1 subgoal): 1. sss \<noteq> [] \<Longrightarrow> x \<in> J [PROOF STEP] have h8: "leftderives [\<SS>] (terminals (take r q') @ [N] @ \<omega>)" [PROOF STATE] proof (prove) goal (1 subgoal): 1. leftderives [\<SS>] (terminals (take r q') @ [N] @ \<omega>) [PROOF STEP] using N is_leftderivation_def pvalid q' [PROOF STATE] proof (prove) using this: N = item_nonterminal x is_leftderivation ?u = leftderives [\<SS>] ?u wellformed_tokens (p' @ [a]) \<and> wellformed_item x \<and> r \<le> length (p' @ [a]) \<and> charslength (p' @ [a]) = item_end x \<and> charslength (take r (p' @ [a])) = item_origin x \<and> is_leftderivation (terminals (take r (p' @ [a])) @ [item_nonterminal x] @ \<omega>) \<and> leftderives (item_\<alpha> x) (terminals (drop r (p' @ [a]))) q' = p' @ [a] goal (1 subgoal): 1. leftderives [\<SS>] (terminals (take r q') @ [N] @ \<omega>) [PROOF STEP] by blast [PROOF STATE] proof (state) this: leftderives [\<SS>] (terminals (take r q') @ [N] @ \<omega>) goal (1 subgoal): 1. sss \<noteq> [] \<Longrightarrow> x \<in> J [PROOF STEP] have h9: "leftderives \<alpha> (terminals (drop r q'))" [PROOF STATE] proof (prove) goal (1 subgoal): 1. leftderives \<alpha> (terminals (drop r q')) [PROOF STEP] using \<alpha> pvalid q' [PROOF STATE] proof (prove) using this: \<alpha> = item_\<alpha> x wellformed_tokens (p' @ [a]) \<and> wellformed_item x \<and> r \<le> length (p' @ [a]) \<and> charslength (p' @ [a]) = item_end x \<and> charslength (take r (p' @ [a])) = item_origin x \<and> is_leftderivation (terminals (take r (p' @ [a])) @ [item_nonterminal x] @ \<omega>) \<and> leftderives (item_\<alpha> x) (terminals (drop r (p' @ [a]))) q' = p' @ [a] goal (1 subgoal): 1. leftderives \<alpha> (terminals (drop r q')) [PROOF STEP] by blast [PROOF STATE] proof (state) this: leftderives \<alpha> (terminals (drop r q')) goal (1 subgoal): 1. sss \<noteq> [] \<Longrightarrow> x \<in> J [PROOF STEP] have h10: "k = k + length (chars_of_token a)" [PROOF STATE] proof (prove) goal (1 subgoal): 1. k = k + length (chars_of_token a) [PROOF STEP] by (simp add: a_in_ts chars_of_token_is_empty) [PROOF STATE] proof (state) this: k = k + length (chars_of_token a) goal (1 subgoal): 1. sss \<noteq> [] \<Longrightarrow> x \<in> J [PROOF STEP] have h11: "x = Item (N, \<alpha> @ \<beta>) (length \<alpha>) (charslength (take r q')) k" [PROOF STATE] proof (prove) goal (1 subgoal): 1. x = Item (N, \<alpha> @ \<beta>) (length \<alpha>) (charslength (take r q')) k [PROOF STEP] by (metis \<alpha> charslength_ss a_in_ts append_Nil2 chars.simps(2) chars_append chars_of_token_is_empty charslength.simps h2 item.collapse item_dot_is_\<alpha>_length item_rule_x length_greater_0_conv list.size(3) pvalid q') [PROOF STATE] proof (state) this: x = Item (N, \<alpha> @ \<beta>) (length \<alpha>) (charslength (take r q')) k goal (1 subgoal): 1. sss \<noteq> [] \<Longrightarrow> x \<in> J [PROOF STEP] have x_dom: "x \<in> items_le k (\<pi> k {} (Scan T k (Gen (Prefixes p'))))" [PROOF STATE] proof (prove) goal (1 subgoal): 1. x \<in> items_le k (\<pi> k {} (Scan T k (Gen (Prefixes p')))) [PROOF STEP] using thmD11[OF h1 h2 h3 h4 h5 h6 h7 h8 h9 h10 h11] [PROOF STATE] proof (prove) using this: ?I = items_le k (\<pi> k {} (Scan T k (Gen (Prefixes p')))) \<Longrightarrow> x \<in> ?I goal (1 subgoal): 1. x \<in> items_le k (\<pi> k {} (Scan T k (Gen (Prefixes p')))) [PROOF STEP] by auto [PROOF STATE] proof (state) this: x \<in> items_le k (\<pi> k {} (Scan T k (Gen (Prefixes p')))) goal (1 subgoal): 1. sss \<noteq> [] \<Longrightarrow> x \<in> J [PROOF STEP] { [PROOF STATE] proof (state) this: x \<in> items_le k (\<pi> k {} (Scan T k (Gen (Prefixes p')))) goal (1 subgoal): 1. sss \<noteq> [] \<Longrightarrow> x \<in> J [PROOF STEP] fix y :: item [PROOF STATE] proof (state) goal (1 subgoal): 1. sss \<noteq> [] \<Longrightarrow> x \<in> J [PROOF STEP] fix toks :: "token list" [PROOF STATE] proof (state) goal (1 subgoal): 1. sss \<noteq> [] \<Longrightarrow> x \<in> J [PROOF STEP] assume pvalid_toks_y: "pvalid toks y" [PROOF STATE] proof (state) this: pvalid toks y goal (1 subgoal): 1. sss \<noteq> [] \<Longrightarrow> x \<in> J [PROOF STEP] assume is_prefix_toks_p': "is_prefix toks p'" [PROOF STATE] proof (state) this: is_prefix toks p' goal (1 subgoal): 1. sss \<noteq> [] \<Longrightarrow> x \<in> J [PROOF STEP] then [PROOF STATE] proof (chain) picking this: is_prefix toks p' [PROOF STEP] have charslength_toks: "charslength toks \<le> k" [PROOF STATE] proof (prove) using this: is_prefix toks p' goal (1 subgoal): 1. charslength toks \<le> k [PROOF STEP] using charslength_of_prefix h2 [PROOF STATE] proof (prove) using this: is_prefix toks p' is_prefix ?a ?b \<Longrightarrow> charslength ?a \<le> charslength ?b charslength p' = k goal (1 subgoal): 1. charslength toks \<le> k [PROOF STEP] by blast [PROOF STATE] proof (state) this: charslength toks \<le> k goal (1 subgoal): 1. sss \<noteq> [] \<Longrightarrow> x \<in> J [PROOF STEP] then [PROOF STATE] proof (chain) picking this: charslength toks \<le> k [PROOF STEP] have item_end_y: "item_end y \<le> k" [PROOF STATE] proof (prove) using this: charslength toks \<le> k goal (1 subgoal): 1. item_end y \<le> k [PROOF STEP] using pvalid_item_end pvalid_toks_y [PROOF STATE] proof (prove) using this: charslength toks \<le> k pvalid ?p ?x \<Longrightarrow> item_end ?x = charslength ?p pvalid toks y goal (1 subgoal): 1. item_end y \<le> k [PROOF STEP] by auto [PROOF STATE] proof (state) this: item_end y \<le> k goal (1 subgoal): 1. sss \<noteq> [] \<Longrightarrow> x \<in> J [PROOF STEP] have "is_prefix toks p \<or> (\<exists> ss'. is_prefix ss' ss \<and> toks = p@ss')" [PROOF STATE] proof (prove) goal (1 subgoal): 1. is_prefix toks p \<or> (\<exists>ss'. is_prefix ss' ss \<and> toks = p @ ss') [PROOF STEP] using is_prefix_of_append is_prefix_toks_p' p' [PROOF STATE] proof (prove) using this: is_prefix ?p (?a @ ?b) \<Longrightarrow> is_prefix ?p ?a \<or> (\<exists>b'. b' \<noteq> [] \<and> is_prefix b' ?b \<and> ?p = ?a @ b') is_prefix toks p' p' = p @ ss goal (1 subgoal): 1. is_prefix toks p \<or> (\<exists>ss'. is_prefix ss' ss \<and> toks = p @ ss') [PROOF STEP] by auto [PROOF STATE] proof (state) this: is_prefix toks p \<or> (\<exists>ss'. is_prefix ss' ss \<and> toks = p @ ss') goal (1 subgoal): 1. sss \<noteq> [] \<Longrightarrow> x \<in> J [PROOF STEP] then [PROOF STATE] proof (chain) picking this: is_prefix toks p \<or> (\<exists>ss'. is_prefix ss' ss \<and> toks = p @ ss') [PROOF STEP] have "y \<in> J" [PROOF STATE] proof (prove) using this: is_prefix toks p \<or> (\<exists>ss'. is_prefix ss' ss \<and> toks = p @ ss') goal (1 subgoal): 1. y \<in> J [PROOF STEP] proof (induct rule: disjCases2) [PROOF STATE] proof (state) goal (2 subgoals): 1. is_prefix toks p \<Longrightarrow> y \<in> J 2. \<exists>ss'. is_prefix ss' ss \<and> toks = p @ ss' \<Longrightarrow> y \<in> J [PROOF STEP] case 1 [PROOF STATE] proof (state) this: is_prefix toks p goal (2 subgoals): 1. is_prefix toks p \<Longrightarrow> y \<in> J 2. \<exists>ss'. is_prefix ss' ss \<and> toks = p @ ss' \<Longrightarrow> y \<in> J [PROOF STEP] then [PROOF STATE] proof (chain) picking this: is_prefix toks p [PROOF STEP] have "toks \<in> \<P> k u" [PROOF STATE] proof (prove) using this: is_prefix toks p goal (1 subgoal): 1. toks \<in> \<P> k u [PROOF STEP] using p_ts prefixes_are_paths [PROOF STATE] proof (prove) using this: is_prefix toks p q = p @ ts \<and> p \<in> \<P> k u \<and> charslength p = k \<and> admissible (p @ ts) \<and> (\<forall>t\<in>set ts. t \<in> \<Y> (\<Z> k u) (\<P> k u) k) \<and> (\<forall>t\<in>set (butlast ts). chars_of_token t = []) \<lbrakk>?p \<in> \<P> ?k ?u; is_prefix ?x ?p\<rbrakk> \<Longrightarrow> ?x \<in> \<P> ?k ?u goal (1 subgoal): 1. toks \<in> \<P> k u [PROOF STEP] by blast [PROOF STATE] proof (state) this: toks \<in> \<P> k u goal (2 subgoals): 1. is_prefix toks p \<Longrightarrow> y \<in> J 2. \<exists>ss'. is_prefix ss' ss \<and> toks = p @ ss' \<Longrightarrow> y \<in> J [PROOF STEP] with charslength_toks [PROOF STATE] proof (chain) picking this: charslength toks \<le> k toks \<in> \<P> k u [PROOF STEP] have "toks \<in> paths_le k (\<P> k u)" [PROOF STATE] proof (prove) using this: charslength toks \<le> k toks \<in> \<P> k u goal (1 subgoal): 1. toks \<in> paths_le k (\<P> k u) [PROOF STEP] by (simp add: paths_le_def) [PROOF STATE] proof (state) this: toks \<in> paths_le k (\<P> k u) goal (2 subgoals): 1. is_prefix toks p \<Longrightarrow> y \<in> J 2. \<exists>ss'. is_prefix ss' ss \<and> toks = p @ ss' \<Longrightarrow> y \<in> J [PROOF STEP] then [PROOF STATE] proof (chain) picking this: toks \<in> paths_le k (\<P> k u) [PROOF STEP] have "y \<in> Gen (paths_le k (\<P> k u))" [PROOF STATE] proof (prove) using this: toks \<in> paths_le k (\<P> k u) goal (1 subgoal): 1. y \<in> Gen (paths_le k (\<P> k u)) [PROOF STEP] using pvalid_toks_y Gen_def mem_Collect_eq [PROOF STATE] proof (prove) using this: toks \<in> paths_le k (\<P> k u) pvalid toks y Gen ?P = {uu_. \<exists>x p. uu_ = x \<and> p \<in> ?P \<and> pvalid p x} (?a \<in> Collect ?P) = ?P ?a goal (1 subgoal): 1. y \<in> Gen (paths_le k (\<P> k u)) [PROOF STEP] by blast [PROOF STATE] proof (state) this: y \<in> Gen (paths_le k (\<P> k u)) goal (2 subgoals): 1. is_prefix toks p \<Longrightarrow> y \<in> J 2. \<exists>ss'. is_prefix ss' ss \<and> toks = p @ ss' \<Longrightarrow> y \<in> J [PROOF STEP] then [PROOF STATE] proof (chain) picking this: y \<in> Gen (paths_le k (\<P> k u)) [PROOF STEP] have "y \<in> \<pi> k T (Gen (paths_le k (\<P> k u)))" [PROOF STATE] proof (prove) using this: y \<in> Gen (paths_le k (\<P> k u)) goal (1 subgoal): 1. y \<in> \<pi> k T (Gen (paths_le k (\<P> k u))) [PROOF STEP] using \<pi>_apply_setmonotone [PROOF STATE] proof (prove) using this: y \<in> Gen (paths_le k (\<P> k u)) ?x \<in> ?I \<Longrightarrow> ?x \<in> \<pi> ?k ?T ?I goal (1 subgoal): 1. y \<in> \<pi> k T (Gen (paths_le k (\<P> k u))) [PROOF STEP] by blast [PROOF STATE] proof (state) this: y \<in> \<pi> k T (Gen (paths_le k (\<P> k u))) goal (2 subgoals): 1. is_prefix toks p \<Longrightarrow> y \<in> J 2. \<exists>ss'. is_prefix ss' ss \<and> toks = p @ ss' \<Longrightarrow> y \<in> J [PROOF STEP] then [PROOF STATE] proof (chain) picking this: y \<in> \<pi> k T (Gen (paths_le k (\<P> k u))) [PROOF STEP] show "y \<in> J" [PROOF STATE] proof (prove) using this: y \<in> \<pi> k T (Gen (paths_le k (\<P> k u))) goal (1 subgoal): 1. y \<in> J [PROOF STEP] by (simp add: J items_le_def item_end_y) [PROOF STATE] proof (state) this: y \<in> J goal (1 subgoal): 1. \<exists>ss'. is_prefix ss' ss \<and> toks = p @ ss' \<Longrightarrow> y \<in> J [PROOF STEP] next [PROOF STATE] proof (state) goal (1 subgoal): 1. \<exists>ss'. is_prefix ss' ss \<and> toks = p @ ss' \<Longrightarrow> y \<in> J [PROOF STEP] case 2 [PROOF STATE] proof (state) this: \<exists>ss'. is_prefix ss' ss \<and> toks = p @ ss' goal (1 subgoal): 1. \<exists>ss'. is_prefix ss' ss \<and> toks = p @ ss' \<Longrightarrow> y \<in> J [PROOF STEP] then [PROOF STATE] proof (chain) picking this: \<exists>ss'. is_prefix ss' ss \<and> toks = p @ ss' [PROOF STEP] obtain ss' where ss': "is_prefix ss' ss \<and> toks = p@ss'" [PROOF STATE] proof (prove) using this: \<exists>ss'. is_prefix ss' ss \<and> toks = p @ ss' goal (1 subgoal): 1. (\<And>ss'. is_prefix ss' ss \<and> toks = p @ ss' \<Longrightarrow> thesis) \<Longrightarrow> thesis [PROOF STEP] by blast [PROOF STATE] proof (state) this: is_prefix ss' ss \<and> toks = p @ ss' goal (1 subgoal): 1. \<exists>ss'. is_prefix ss' ss \<and> toks = p @ ss' \<Longrightarrow> y \<in> J [PROOF STEP] then [PROOF STATE] proof (chain) picking this: is_prefix ss' ss \<and> toks = p @ ss' [PROOF STEP] have l1: "length ss' < length sss" [PROOF STATE] proof (prove) using this: is_prefix ss' ss \<and> toks = p @ ss' goal (1 subgoal): 1. length ss' < length sss [PROOF STEP] using append_eq_conv_conj append_self_conv is_prefix_length length_append less_le_trans nat_neq_iff not_Cons_self2 not_add_less1 snoc [PROOF STATE] proof (prove) using this: is_prefix ss' ss \<and> toks = p @ ss' (?xs @ ?ys = ?zs) = (?xs = take (length ?xs) ?zs \<and> ?ys = drop (length ?xs) ?zs) (?xs @ ?ys = ?xs) = (?ys = []) is_prefix ?a ?b \<Longrightarrow> length ?a \<le> length ?b length (?xs @ ?ys) = length ?xs + length ?ys \<lbrakk>?x < ?y; ?y \<le> ?z\<rbrakk> \<Longrightarrow> ?x < ?z (?m \<noteq> ?n) = (?m < ?n \<or> ?n < ?m) ?x # ?xs \<noteq> ?xs \<not> ?i + ?j < ?i sss = ss @ [a] goal (1 subgoal): 1. length ss' < length sss [PROOF STEP] by fastforce [PROOF STATE] proof (state) this: length ss' < length sss goal (1 subgoal): 1. \<exists>ss'. is_prefix ss' ss \<and> toks = p @ ss' \<Longrightarrow> y \<in> J [PROOF STEP] have l2: "is_prefix ss' ts" [PROOF STATE] proof (prove) goal (1 subgoal): 1. is_prefix ss' ts [PROOF STEP] using ss' is_prefix_ss_ts [PROOF STATE] proof (prove) using this: is_prefix ss' ss \<and> toks = p @ ss' is_prefix ss ts goal (1 subgoal): 1. is_prefix ss' ts [PROOF STEP] by (metis append_dropped_prefix is_prefix_append) [PROOF STATE] proof (state) this: is_prefix ss' ts goal (1 subgoal): 1. \<exists>ss'. is_prefix ss' ss \<and> toks = p @ ss' \<Longrightarrow> y \<in> J [PROOF STEP] have l3: "pvalid (p @ ss') y" [PROOF STATE] proof (prove) goal (1 subgoal): 1. pvalid (p @ ss') y [PROOF STEP] using ss' pvalid_toks_y [PROOF STATE] proof (prove) using this: is_prefix ss' ss \<and> toks = p @ ss' pvalid toks y goal (1 subgoal): 1. pvalid (p @ ss') y [PROOF STEP] by simp [PROOF STATE] proof (state) this: pvalid (p @ ss') y goal (1 subgoal): 1. \<exists>ss'. is_prefix ss' ss \<and> toks = p @ ss' \<Longrightarrow> y \<in> J [PROOF STEP] show ?case [PROOF STATE] proof (prove) goal (1 subgoal): 1. y \<in> J [PROOF STEP] using less.hyps[OF l1 l2 l3] [PROOF STATE] proof (prove) using this: y \<in> J goal (1 subgoal): 1. y \<in> J [PROOF STEP] by blast [PROOF STATE] proof (state) this: y \<in> J goal: No subgoals! [PROOF STEP] qed [PROOF STATE] proof (state) this: y \<in> J goal (1 subgoal): 1. sss \<noteq> [] \<Longrightarrow> x \<in> J [PROOF STEP] } [PROOF STATE] proof (state) this: \<lbrakk>pvalid ?toks2 ?y2; is_prefix ?toks2 p'\<rbrakk> \<Longrightarrow> ?y2 \<in> J goal (1 subgoal): 1. sss \<noteq> [] \<Longrightarrow> x \<in> J [PROOF STEP] then [PROOF STATE] proof (chain) picking this: \<lbrakk>pvalid ?toks2 ?y2; is_prefix ?toks2 p'\<rbrakk> \<Longrightarrow> ?y2 \<in> J [PROOF STEP] have "Gen (Prefixes p') \<subseteq> J" [PROOF STATE] proof (prove) using this: \<lbrakk>pvalid ?toks2 ?y2; is_prefix ?toks2 p'\<rbrakk> \<Longrightarrow> ?y2 \<in> J goal (1 subgoal): 1. Gen (Prefixes p') \<subseteq> J [PROOF STEP] by (meson Gen_implies_pvalid Prefixes_is_prefix subsetI) [PROOF STATE] proof (state) this: Gen (Prefixes p') \<subseteq> J goal (1 subgoal): 1. sss \<noteq> [] \<Longrightarrow> x \<in> J [PROOF STEP] with x_dom [PROOF STATE] proof (chain) picking this: x \<in> items_le k (\<pi> k {} (Scan T k (Gen (Prefixes p')))) Gen (Prefixes p') \<subseteq> J [PROOF STEP] have r0: "x \<in> items_le k (\<pi> k {} (Scan T k J))" [PROOF STATE] proof (prove) using this: x \<in> items_le k (\<pi> k {} (Scan T k (Gen (Prefixes p')))) Gen (Prefixes p') \<subseteq> J goal (1 subgoal): 1. x \<in> items_le k (\<pi> k {} (Scan T k J)) [PROOF STEP] by (metis (no_types, lifting) LocalLexing.items_le_def LocalLexing_axioms mem_Collect_eq mono_Scan mono_\<pi> mono_subset_elem subsetI) [PROOF STATE] proof (state) this: x \<in> items_le k (\<pi> k {} (Scan T k J)) goal (1 subgoal): 1. sss \<noteq> [] \<Longrightarrow> x \<in> J [PROOF STEP] then [PROOF STATE] proof (chain) picking this: x \<in> items_le k (\<pi> k {} (Scan T k J)) [PROOF STEP] have x_in_\<pi>: "x \<in> \<pi> k {} (Scan T k J)" [PROOF STATE] proof (prove) using this: x \<in> items_le k (\<pi> k {} (Scan T k J)) goal (1 subgoal): 1. x \<in> \<pi> k {} (Scan T k J) [PROOF STEP] using LocalLexing.items_le_is_filter LocalLexing_axioms subsetCE [PROOF STATE] proof (prove) using this: x \<in> items_le k (\<pi> k {} (Scan T k J)) LocalLexing ?\<NN> ?\<TT> ?\<RR> ?\<SS> ?Lex ?Sel \<Longrightarrow> items_le ?k ?I \<subseteq> ?I LocalLexing \<NN> \<TT> \<RR> \<SS> Lex Sel \<lbrakk>?A \<subseteq> ?B; ?c \<notin> ?A \<Longrightarrow> ?P; ?c \<in> ?B \<Longrightarrow> ?P\<rbrakk> \<Longrightarrow> ?P goal (1 subgoal): 1. x \<in> \<pi> k {} (Scan T k J) [PROOF STEP] by blast [PROOF STATE] proof (state) this: x \<in> \<pi> k {} (Scan T k J) goal (1 subgoal): 1. sss \<noteq> [] \<Longrightarrow> x \<in> J [PROOF STEP] have r1: "Scan T k J = J" [PROOF STATE] proof (prove) goal (1 subgoal): 1. Scan T k J = J [PROOF STEP] by (simp add: J Scan_\<pi>_fix) [PROOF STATE] proof (state) this: Scan T k J = J goal (1 subgoal): 1. sss \<noteq> [] \<Longrightarrow> x \<in> J [PROOF STEP] have r2: "\<pi> k {} J = J" [PROOF STATE] proof (prove) goal (1 subgoal): 1. \<pi> k {} J = J [PROOF STEP] using \<pi>_idempotent' [PROOF STATE] proof (prove) using this: \<pi> ?k {} (\<pi> ?k ?T ?I) = \<pi> ?k ?T ?I goal (1 subgoal): 1. \<pi> k {} J = J [PROOF STEP] using J [PROOF STATE] proof (prove) using this: \<pi> ?k {} (\<pi> ?k ?T ?I) = \<pi> ?k ?T ?I J = \<pi> k T (Gen (paths_le k (\<P> k u))) goal (1 subgoal): 1. \<pi> k {} J = J [PROOF STEP] by blast [PROOF STATE] proof (state) this: \<pi> k {} J = J goal (1 subgoal): 1. sss \<noteq> [] \<Longrightarrow> x \<in> J [PROOF STEP] from x_in_\<pi> r1 r2 [PROOF STATE] proof (chain) picking this: x \<in> \<pi> k {} (Scan T k J) Scan T k J = J \<pi> k {} J = J [PROOF STEP] show "x \<in> J" [PROOF STATE] proof (prove) using this: x \<in> \<pi> k {} (Scan T k J) Scan T k J = J \<pi> k {} J = J goal (1 subgoal): 1. x \<in> J [PROOF STEP] by auto [PROOF STATE] proof (state) this: x \<in> J goal: No subgoals! [PROOF STEP] qed [PROOF STATE] proof (state) this: x \<in> J goal: No subgoals! [PROOF STEP] qed [PROOF STATE] proof (state) this: \<lbrakk>is_prefix sss ts; pvalid (p @ sss) x\<rbrakk> \<Longrightarrow> x \<in> J goal (1 subgoal): 1. q \<notin> \<P> k u \<Longrightarrow> x \<in> items_le k (\<J> k (Suc u)) [PROOF STEP] } [PROOF STATE] proof (state) this: \<lbrakk>is_prefix ?sss2 ts; pvalid (p @ ?sss2) x\<rbrakk> \<Longrightarrow> x \<in> J goal (1 subgoal): 1. q \<notin> \<P> k u \<Longrightarrow> x \<in> items_le k (\<J> k (Suc u)) [PROOF STEP] note th = this [PROOF STATE] proof (state) this: \<lbrakk>is_prefix ?sss2 ts; pvalid (p @ ?sss2) x\<rbrakk> \<Longrightarrow> x \<in> J goal (1 subgoal): 1. q \<notin> \<P> k u \<Longrightarrow> x \<in> items_le k (\<J> k (Suc u)) [PROOF STEP] have x_in_J: "x \<in> J" [PROOF STATE] proof (prove) goal (1 subgoal): 1. x \<in> J [PROOF STEP] apply (rule th[of ts]) [PROOF STATE] proof (prove) goal (2 subgoals): 1. is_prefix ts ts 2. pvalid (p @ ts) x [PROOF STEP] apply (simp add: is_prefix_eq_proper_prefix) [PROOF STATE] proof (prove) goal (1 subgoal): 1. pvalid (p @ ts) x [PROOF STEP] using p_ts q [PROOF STATE] proof (prove) using this: q = p @ ts \<and> p \<in> \<P> k u \<and> charslength p = k \<and> admissible (p @ ts) \<and> (\<forall>t\<in>set ts. t \<in> \<Y> (\<Z> k u) (\<P> k u) k) \<and> (\<forall>t\<in>set (butlast ts). chars_of_token t = []) pvalid q x \<and> q \<in> \<P> k (Suc u) \<and> charslength q \<le> k goal (1 subgoal): 1. pvalid (p @ ts) x [PROOF STEP] by blast [PROOF STATE] proof (state) this: x \<in> J goal (1 subgoal): 1. q \<notin> \<P> k u \<Longrightarrow> x \<in> items_le k (\<J> k (Suc u)) [PROOF STEP] have \<T>_eq_\<Z>: "\<T> k (Suc u) = \<Z> k (Suc u)" [PROOF STATE] proof (prove) goal (1 subgoal): 1. \<T> k (Suc u) = \<Z> k (Suc u) [PROOF STEP] using induct induct_tokens \<T>_equals_\<Z>_induct_step [PROOF STATE] proof (prove) using this: items_le k (\<J> k u) = Gen (paths_le k (\<P> k u)) \<T> k u = \<Z> k u \<lbrakk>items_le ?k (\<J> ?k ?u) = Gen (paths_le ?k (\<P> ?k ?u)); \<T> ?k ?u = \<Z> ?k ?u\<rbrakk> \<Longrightarrow> \<T> ?k (Suc ?u) = \<Z> ?k (Suc ?u) goal (1 subgoal): 1. \<T> k (Suc u) = \<Z> k (Suc u) [PROOF STEP] by blast [PROOF STATE] proof (state) this: \<T> k (Suc u) = \<Z> k (Suc u) goal (1 subgoal): 1. q \<notin> \<P> k u \<Longrightarrow> x \<in> items_le k (\<J> k (Suc u)) [PROOF STEP] have T_alt: "T = \<T> k (Suc u)" [PROOF STATE] proof (prove) goal (1 subgoal): 1. T = \<T> k (Suc u) [PROOF STEP] using \<T>_eq_\<Z> T [PROOF STATE] proof (prove) using this: \<T> k (Suc u) = \<Z> k (Suc u) T = \<Y> (\<Z> k u) (\<P> k u) k goal (1 subgoal): 1. T = \<T> k (Suc u) [PROOF STEP] by simp [PROOF STATE] proof (state) this: T = \<T> k (Suc u) goal (1 subgoal): 1. q \<notin> \<P> k u \<Longrightarrow> x \<in> items_le k (\<J> k (Suc u)) [PROOF STEP] have "J = \<pi> k T (items_le k (\<J> k u))" [PROOF STATE] proof (prove) goal (1 subgoal): 1. J = \<pi> k T (items_le k (\<J> k u)) [PROOF STEP] using induct J [PROOF STATE] proof (prove) using this: items_le k (\<J> k u) = Gen (paths_le k (\<P> k u)) J = \<pi> k T (Gen (paths_le k (\<P> k u))) goal (1 subgoal): 1. J = \<pi> k T (items_le k (\<J> k u)) [PROOF STEP] by simp [PROOF STATE] proof (state) this: J = \<pi> k T (items_le k (\<J> k u)) goal (1 subgoal): 1. q \<notin> \<P> k u \<Longrightarrow> x \<in> items_le k (\<J> k (Suc u)) [PROOF STEP] then [PROOF STATE] proof (chain) picking this: J = \<pi> k T (items_le k (\<J> k u)) [PROOF STEP] have "J \<subseteq> \<pi> k T (\<J> k u)" [PROOF STATE] proof (prove) using this: J = \<pi> k T (items_le k (\<J> k u)) goal (1 subgoal): 1. J \<subseteq> \<pi> k T (\<J> k u) [PROOF STEP] by (simp add: items_le_is_filter monoD mono_\<pi>) [PROOF STATE] proof (state) this: J \<subseteq> \<pi> k T (\<J> k u) goal (1 subgoal): 1. q \<notin> \<P> k u \<Longrightarrow> x \<in> items_le k (\<J> k (Suc u)) [PROOF STEP] with T_alt [PROOF STATE] proof (chain) picking this: T = \<T> k (Suc u) J \<subseteq> \<pi> k T (\<J> k u) [PROOF STEP] have "J \<subseteq> \<J> k (Suc u)" [PROOF STATE] proof (prove) using this: T = \<T> k (Suc u) J \<subseteq> \<pi> k T (\<J> k u) goal (1 subgoal): 1. J \<subseteq> \<J> k (Suc u) [PROOF STEP] using \<J>.simps(2) [PROOF STATE] proof (prove) using this: T = \<T> k (Suc u) J \<subseteq> \<pi> k T (\<J> k u) \<J> ?k (Suc ?u) = \<pi> ?k (\<T> ?k (Suc ?u)) (\<J> ?k ?u) goal (1 subgoal): 1. J \<subseteq> \<J> k (Suc u) [PROOF STEP] by blast [PROOF STATE] proof (state) this: J \<subseteq> \<J> k (Suc u) goal (1 subgoal): 1. q \<notin> \<P> k u \<Longrightarrow> x \<in> items_le k (\<J> k (Suc u)) [PROOF STEP] with x_in_J [PROOF STATE] proof (chain) picking this: x \<in> J J \<subseteq> \<J> k (Suc u) [PROOF STEP] have "x \<in> \<J> k (Suc u)" [PROOF STATE] proof (prove) using this: x \<in> J J \<subseteq> \<J> k (Suc u) goal (1 subgoal): 1. x \<in> \<J> k (Suc u) [PROOF STEP] by blast [PROOF STATE] proof (state) this: x \<in> \<J> k (Suc u) goal (1 subgoal): 1. q \<notin> \<P> k u \<Longrightarrow> x \<in> items_le k (\<J> k (Suc u)) [PROOF STEP] then [PROOF STATE] proof (chain) picking this: x \<in> \<J> k (Suc u) [PROOF STEP] show ?case [PROOF STATE] proof (prove) using this: x \<in> \<J> k (Suc u) goal (1 subgoal): 1. x \<in> items_le k (\<J> k (Suc u)) [PROOF STEP] using LocalLexing.items_le_def LocalLexing_axioms pvalid_item_end q [PROOF STATE] proof (prove) using this: x \<in> \<J> k (Suc u) LocalLexing ?\<NN> ?\<TT> ?\<RR> ?\<SS> ?Lex ?Sel \<Longrightarrow> items_le ?k ?I = {x \<in> ?I. item_end x \<le> ?k} LocalLexing \<NN> \<TT> \<RR> \<SS> Lex Sel pvalid ?p ?x \<Longrightarrow> item_end ?x = charslength ?p pvalid q x \<and> q \<in> \<P> k (Suc u) \<and> charslength q \<le> k goal (1 subgoal): 1. x \<in> items_le k (\<J> k (Suc u)) [PROOF STEP] by auto [PROOF STATE] proof (state) this: x \<in> items_le k (\<J> k (Suc u)) goal: No subgoals! [PROOF STEP] qed [PROOF STATE] proof (state) this: x \<in> items_le k (\<J> k (Suc u)) goal (1 subgoal): 1. Gen (paths_le k (\<P> k (Suc u))) \<subseteq> items_le k (\<J> k (Suc u)) [PROOF STEP] } [PROOF STATE] proof (state) this: ?x2 \<in> Gen (paths_le k (\<P> k (Suc u))) \<Longrightarrow> ?x2 \<in> items_le k (\<J> k (Suc u)) goal (1 subgoal): 1. Gen (paths_le k (\<P> k (Suc u))) \<subseteq> items_le k (\<J> k (Suc u)) [PROOF STEP] then [PROOF STATE] proof (chain) picking this: ?x2 \<in> Gen (paths_le k (\<P> k (Suc u))) \<Longrightarrow> ?x2 \<in> items_le k (\<J> k (Suc u)) [PROOF STEP] show ?thesis [PROOF STATE] proof (prove) using this: ?x2 \<in> Gen (paths_le k (\<P> k (Suc u))) \<Longrightarrow> ?x2 \<in> items_le k (\<J> k (Suc u)) goal (1 subgoal): 1. Gen (paths_le k (\<P> k (Suc u))) \<subseteq> items_le k (\<J> k (Suc u)) [PROOF STEP] by auto [PROOF STATE] proof (state) this: Gen (paths_le k (\<P> k (Suc u))) \<subseteq> items_le k (\<J> k (Suc u)) goal: No subgoals! [PROOF STEP] qed
-- An ATP hint must be used with functions. -- This error is detected by TypeChecking.Rules.Decl. module ATPBadHint2 where data Bool : Set where false true : Bool {-# ATP hint Bool #-}
""" Author: Mark Bonney """ import numpy as np from Layer import Layer class NeuralNet(object): def __init__(self, l): self.learning_rate = l self.input_layer, self.output_layer = None, None self.num_inputs, self.num_outputs = 0, 0 self.loss = None self.hidden_layers = [] # List of layer objects self.bias_neuron = 1 # Set to 1 for all layers def read_input_data(self, inputs, targets): """ Read input data and populate input and output layers :param inputs: Input data to the model :param targets: Desired targets """ self.input_layer = np.loadtxt(inputs, delimiter=",", ndmin=2) self.output_layer = np.loadtxt(targets, delimiter=",", ndmin=2) self.num_inputs = self.input_layer.shape[0] self.num_outputs = self.output_layer.shape[0] def initialise_weights(self): """Randomly initialise weight matrices for each layer in ANN""" np.random.seed(42) self.add_layer(self.num_outputs) previous_layer = self.hidden_layers[0].num_neurons self.hidden_layers[0].output = self.input_layer for layer in self.hidden_layers[1:]: layer.weights = np.random.rand(layer.num_neurons, previous_layer) previous_layer = layer.num_neurons def add_layer(self, num_neurons): """ Add a hidden layer to the ANN :param num_neurons: Number of neurons in the layer """ new_layer = Layer(num_neurons) self.hidden_layers.append(new_layer) def forward_pass(self): """ Compute forward pass using matrices :return: Output matrix of ANN """ previous_layer = self.input_layer for layer in self.hidden_layers[1:]: layer.output = self.sigmoid_function(np.dot(layer.weights, previous_layer) + self.bias_neuron) previous_layer = layer.output self.loss = self.output_layer - self.hidden_layers[-1].output return self.hidden_layers[-1].output @staticmethod def sigmoid_function(x): return 1.0/(1.0 + np.exp(-x)) @staticmethod def gradient_sigmoid(f): return (1-f)*f def back_propagation(self): """Compute gradient of all functions and perform back propagation""" # Calculate delta at the output layer, using the loss self.hidden_layers[-1].deltas = np.array(self.loss * self.gradient_sigmoid(self.hidden_layers[-1].output)) previous_layer = self.hidden_layers[-1] # Start at last hidden layer and loop through all layers for layer in self.hidden_layers[::-1][1:]: layer.output_gradient = self.gradient_sigmoid(layer.output) layer.deltas = np.dot(previous_layer.weights.T, previous_layer.deltas)*layer.output_gradient update = np.dot(layer.output, previous_layer.deltas.T) previous_layer.weights += update.T * self.learning_rate previous_layer = layer
----------------------------------------------------------------------------- -- -- Module : Drool.Utils.Conversions -- Copyright : -- License : AllRightsReserved -- -- Maintainer : -- Stability : -- Portability : -- -- | -- ----------------------------------------------------------------------------- module Drool.Utils.Conversions ( gtkColorToGLColor3, gtkColorToGLColor4, glColor3ToGtkColor, glColor4ToGtkColor, freqToMs, msToFreq, floatToComplexDouble, floatsToComplexDoubles, complexDoubleToFloat, complexDoublesToFloats, listToCArray, listFromCArray, interleave, interleaveArrays, aMax, aLength, aZip, adjustBufferSize, adjustBufferSizeBack, blendModeSourceFromIndex, blendModeFrameBufferFromIndex, blendModeSourceIndex, blendModeFrameBufferIndex, ) where import qualified Graphics.UI.Gtk as Gtk import Graphics.Rendering.OpenGL import Data.Complex import Data.Array ( Array ) import Data.Array.IArray ( (!), bounds, listArray, ixmap, amap, rangeSize ) import Data.Array.CArray ( createCArray, elems ) import Foreign.Marshal.Array ( pokeArray, peekArray ) import GHC.Float import Data.Word ( Word16 ) gtkColorToGLColor3 :: Gtk.Color -> Color3 GLfloat gtkColorToGLColor3 (Gtk.Color r g b) = Color3 r' g' b' where r' = ((fromIntegral r) / 65535.0) :: GLfloat g' = ((fromIntegral g) / 65535.0) :: GLfloat b' = ((fromIntegral b) / 65535.0) :: GLfloat gtkColorToGLColor4 :: Gtk.Color -> Word16 -> Color4 GLfloat gtkColorToGLColor4 (Gtk.Color r g b) a = Color4 r' g' b' a' where r' = ((fromIntegral r) / 65535.0) :: GLfloat g' = ((fromIntegral g) / 65535.0) :: GLfloat b' = ((fromIntegral b) / 65535.0) :: GLfloat a' = ((fromIntegral a) / 65535.0) :: GLfloat glColor3ToGtkColor :: Color3 GLfloat -> Gtk.Color glColor3ToGtkColor (Color3 r g b) = Gtk.Color r' g' b' where r' = round(r * 65535.0) g' = round(g * 65535.0) b' = round(b * 65535.0) glColor4ToGtkColor :: Color4 GLfloat -> ( Gtk.Color, Word16 ) glColor4ToGtkColor (Color4 r g b a) = (Gtk.Color r' g' b', a') where r' = round(r * 65535.0) g' = round(g * 65535.0) b' = round(b * 65535.0) a' = round(a * 65535.0) freqToMs :: Int -> Int freqToMs f = round(1000.0 / fromIntegral f) msToFreq :: Int -> Int msToFreq ms = round(1000.0 / fromIntegral ms) floatToComplexDouble :: Float -> Complex Double floatToComplexDouble f = (float2Double f :+ 0.0) :: Complex Double floatsToComplexDoubles :: [Float] -> [Complex Double] floatsToComplexDoubles fs = (map (\x -> floatToComplexDouble x) fs) -- Returns magnitude of complex double as float, with magnitude = (re^2 + im^2)^0.5 complexDoubleToFloat :: Complex Double -> Float complexDoubleToFloat cd = realToFrac(sqrt (realPart cd * realPart cd + imagPart cd * imagPart cd)) :: Float -- complexDoubleToFloat cd = realToFrac(sqrt (realPart cd * realPart cd)) :: Float complexDoublesToFloats :: [Complex Double] -> [Float] complexDoublesToFloats cds = map (\x -> (complexDoubleToFloat x) / n) cds where n = fromIntegral $ length cds listToCArray lst = createCArray (0,(length lst)-1) ( \ptr -> do { pokeArray ptr lst } ) listFromCArray carr = elems carr interleave :: [a] -> [a] -> [a] interleave xsA xsB = foldl (\acc (a,b) -> acc ++ [a,b] ) [] (zip xsA xsB) aLength a = rangeSize $ bounds a aMax a = snd $ bounds a interleaveArrays :: Array Int e -> Array Int e -> Array Int e interleaveArrays a b = listArray (0,(aLength a) + (aMax b)) (concat [ [(a ! i),(b ! i)] | i <- [0..(min (aMax a) (aMax b))] ]) aZip a b = [ ((a ! i),(b ! i)) | i <- [0..(min (aMax a) (aMax b))] ] adjustBufferSize :: [a] -> Int -> [a] adjustBufferSize buf maxLen = drop ((length buf)-maxLen) buf -- drop does not alter list for values <= 0 adjustBufferSizeBack :: [a] -> Int -> [a] adjustBufferSizeBack buf maxLen = take maxLen buf -- drop does not alter list for values <= 0 blendSourceModes :: [ BlendingFactor ] blendSourceModes = [ Zero, One, DstColor, OneMinusDstColor, SrcAlpha, OneMinusSrcAlpha, DstAlpha, OneMinusDstAlpha, SrcAlphaSaturate ] blendFrameBufferModes :: [ BlendingFactor ] blendFrameBufferModes = [ Zero, One, SrcColor, OneMinusSrcColor, SrcAlpha, OneMinusSrcAlpha, DstAlpha, OneMinusDstAlpha ] blendModeSourceFromIndex :: Int -> BlendingFactor blendModeSourceFromIndex i = blendSourceModes !! i blendModeFrameBufferFromIndex :: Int -> BlendingFactor blendModeFrameBufferFromIndex i = blendFrameBufferModes !! i blendModeSourceIndex :: BlendingFactor -> Int blendModeSourceIndex bm = blendModeSourceIndex' bm 0 blendSourceModes blendModeSourceIndex' :: BlendingFactor -> Int -> [ BlendingFactor ] -> Int blendModeSourceIndex' bm i (mode:modes) = index where index = if bm == mode then i else blendModeSourceIndex' bm (i+1) modes blendModeSourceIndex' _ _ [] = 0 blendModeFrameBufferIndex :: BlendingFactor -> Int blendModeFrameBufferIndex bm = blendModeFrameBufferIndex' bm 0 blendFrameBufferModes blendModeFrameBufferIndex' :: BlendingFactor -> Int -> [ BlendingFactor ] -> Int blendModeFrameBufferIndex' bm i (mode:modes) = index where index = if bm == mode then i else blendModeFrameBufferIndex' bm (i+1) modes blendModeFrameBufferIndex' _ _ [] = 0
function [centres, options, post, errlog] = kmeans(centres, data, options) %KMEANS Trains a k means cluster model. % % Description % CENTRES = KMEANS(CENTRES, DATA, OPTIONS) uses the batch K-means % algorithm to set the centres of a cluster model. The matrix DATA % represents the data which is being clustered, with each row % corresponding to a vector. The sum of squares error function is used. % The point at which a local minimum is achieved is returned as % CENTRES. The error value at that point is returned in OPTIONS(8). % % [CENTRES, OPTIONS, POST, ERRLOG] = KMEANS(CENTRES, DATA, OPTIONS) % also returns the cluster number (in a one-of-N encoding) for each % data point in POST and a log of the error values after each cycle in % ERRLOG. The optional parameters have the following % interpretations. % % OPTIONS(1) is set to 1 to display error values; also logs error % values in the return argument ERRLOG. If OPTIONS(1) is set to 0, then % only warning messages are displayed. If OPTIONS(1) is -1, then % nothing is displayed. % % OPTIONS(2) is a measure of the absolute precision required for the % value of CENTRES at the solution. If the absolute difference between % the values of CENTRES between two successive steps is less than % OPTIONS(2), then this condition is satisfied. % % OPTIONS(3) is a measure of the precision required of the error % function at the solution. If the absolute difference between the % error functions between two successive steps is less than OPTIONS(3), % then this condition is satisfied. Both this and the previous % condition must be satisfied for termination. % % OPTIONS(14) is the maximum number of iterations; default 100. % % See also % GMMINIT, GMMEM % % Copyright (c) Ian T Nabney (1996-2001) [ndata, data_dim] = size(data); [ncentres, dim] = size(centres); if dim ~= data_dim error('Data dimension does not match dimension of centres') end if (ncentres > ndata) error('More centres than data') end % Sort out the options if (options(14)) niters = options(14); else niters = 100; end store = 0; if (nargout > 3) store = 1; errlog = zeros(1, niters); end % Check if centres and posteriors need to be initialised from data if (options(5) == 1) % Do the initialisation perm = randperm(ndata); perm = perm(1:ncentres); % Assign first ncentres (permuted) data points as centres centres = data(perm, :); end % Matrix to make unit vectors easy to construct id = eye(ncentres); % Main loop of algorithm for n = 1:niters % Save old centres to check for termination old_centres = centres; % Calculate posteriors based on existing centres d2 = dist2(data, centres); % Assign each point to nearest centre [minvals, index] = min(d2', [], 1); post = id(index,:); num_points = sum(post, 1); % Adjust the centres based on new posteriors for j = 1:ncentres if (num_points(j) > 0) centres(j,:) = sum(data(find(post(:,j)),:), 1)/num_points(j); end end % Error value is total squared distance from cluster centres e = sum(minvals); if store errlog(n) = e; end if options(1) > 0 fprintf(1, 'Cycle %4d Error %11.6f\n', n, e); end if n > 1 % Test for termination if max(max(abs(centres - old_centres))) < options(2) & ... abs(old_e - e) < options(3) options(8) = e; return; end end old_e = e; end % If we get here, then we haven't terminated in the given number of % iterations. options(8) = e; if (options(1) >= 0) disp(maxitmess); end
@testset "K8sClusterManager" begin @testset "pods not found" begin try K8sClusterManager(1) catch ex # Show the original stacktrace if an unexpected error occurred. ex isa KubeError || rethrow() @test ex isa KubeError @test length(Base.catch_stack()) == 1 end end end @testset "TimeoutException" begin e = K8sClusterManagers.TimeoutException("time out!") @test sprint(showerror, e) == "TimeoutException: time out!" end
# Solving the Cournot Oligopoly Model by Collocation **DEMAPP09 Cournot Oligopolist Problem** <br> This example is taken from section 6.8.1, page(s) 159-162 of: Miranda, M. J., & Fackler, P. L. (2002). Applied computational economics and finance (P. L. Fackler, ed.). Cambridge, Mass. : MIT Press. <br> To illustrate the implementation of the collocation method for implicit function problems, consider the case of a Cournot oligopoly. In the standard microeconomic model of the firm, the firm maximizes its profits by matching marginal revenue to marginal cost (MC). An oligopolistic firm, recognizing that its actions affect the price, knows that its marginal revenue is $p + q \frac{dp}{dq}$, where $p$ is the price, $q$ the quantity produced, and $\frac{dp}{dq}$ is the marginal impact of the product on the market price. Cournot's assumption is that the company acts as if none of its production changes would provoke a reaction from its competitors. This implies that: \begin{equation} \frac{dp}{dq} = \frac{1}{D'(p)} \tag{1} \end{equation} where $D(p)$ is the market demand curve. <br> Suppose we want to derive the firm's effective supply function, which specifies the amount $q = S(p)$ that it will supply at each price. The effective supply function of the firm is characterized by the functional equation \begin{equation} p + \frac{S(p)}{D'(p)} - MC(S(p)) = 0 \tag{2} \end{equation} for every price $p>0$. In simple cases, this function can be found explicitly. However, in more complicated cases, there is no explicit solution. Suppose for example that demand and marginal cost are given by \begin{equation*} D(p) = p^{-\eta} \qquad\qquad CM(q) = \alpha\sqrt{q} + q^2 \end{equation*} so that the functional equation to be solved for $S(p)$ is \begin{equation} \label{eq:funcional} \left[p - \frac{S(p)p^{\eta+1}}{\eta}\right] - \left[\alpha\sqrt{S(p)} + S(p)^2\right] = 0 \tag{3} \end{equation} ## The collocation method In equation (3), the unknown is the supply *function* $S(p)$, which makes (3) an infinite-dimension equation. Instead of solving the equation directly, we will approximate its solution using $n$ Chebyshev polynomials $\phi_i(x)$, which are defined recursively for $x \in [0,1]$ as: \begin{align*} \phi_0(x) & = 1 \\ \phi_1(x) & = x \\ \phi_{k + 1}(p_i) & = 2x \phi_k(x) - \phi_{k-1}(x), \qquad \text{for} \; k = 1,2, \dots \end{align*} <br> In addition, instead of requiring that both sides of the equation be exactly equal over the entire domain of $p \in \Re^+$, we will choose $n$ Chebyshev nodes $p_i$ in the interval $[a, b]$: \begin{equation} \label{eq:chebynodes} p_i = \frac{a + b}{2} + \frac{ba}{2}\ cos\left(\frac{n-i + 0.5}{n}\pi\right), \qquad\text{for } i = 1,2, \dots, n \tag{4} \end{equation} <br> Thus, the supply is approximated by \begin{equation*} S(p_i) = \sum_{k = 0}^{n-1} c_{k}\phi_k(p_i) \end{equation*} Substituting this last expression in (3) for each of the placement nodes (Chebyshev in this case) results in a non-linear system of $ n $ equations (one for each node) in $ n $ unknowns $ c_k $ (one for each polynomial of Cheybshev), which in principle can be solved by Newton's method, as in the last example. Thus, in practice, the system to be solved is \begin{equation} \label{eq:collocation} \left[p_i - \frac{\left(\sum_{k=0}^{n-1}c_{k}\phi_k(p_i)\right)p_i^{\eta+1}}{\eta}\right] - \left[\alpha\sqrt{\sum_{k=0}^{n-1}c_{k}\phi_k(p_i)} + \left(\sum_{k=0}^{n-1}c_{k}\phi_k(p_i)\right)^2\right] = 0 \tag{5} \end{equation} for $i=1,2,\dots, n$ and for $k=1,2,\dots,n$. ## Solving the model withPython To solve this model we start a new Python session: ```python %matplotlib inline import numpy as np import matplotlib.pyplot as plt from compecon import BasisChebyshev, NLP, nodeunif from compecon.demos import demo ``` and set the $\alpha$ and $\eta$ parameters ```python alpha= 1.0; eta= 1.5; ``` For convenience, we define a `lambda` function to represent the demand. **Note: A lambda function is a small anonymous function in Python that can take any number of arguments, but can have only one expression. If you are curious to learn more Google "Lambda Functions in Python".** ```python D = lambda p: p** (-eta) ``` We will approximate the solution for prices in the $p\in [a, b]$ interval, using 25 collocation nodes. The `compecon` library provides the `BasisChebyshev` class to make computations with Chebyshev bases: ```python n= 25; a= 0.1; b= 3.0 S= BasisChebyshev(n, a, b, labels= ['price'], l=['supply']) ``` Let's assume that our first guess is $S(p)=1$. To that end, we set the value of `S` to one in each of the nodes ```python p= S.nodes S.y= np.ones_like(p) ``` It is important to highlight that in this problem the unknowns are the $c_k$ coefficients from the Chebyshev basis; however, an object of `BasisChebyshev` class automatically adjusts those coefficients so they are consistent with the values we set for the function at the nodes (here indicated by the `.y` property). <br> We are now ready to define the objective function, which we will call `resid`. This function takes as its argument a vector with the 25 Chebyshev basis coefficients and returns the left-hand side of the 25 equations defined by (5). ```python def resid(c): S.c= c # update interpolation coefficients q= S(p) # compute quantity supplied at price nodes return p- q* (p** (eta+ 1)/ eta)- alpha* np.sqrt(q)- q** 2 ``` Note that the `resid` function takes a single argument (the coefficients for the Chebyshev basis). All other parameters (`Q, p, eta, alpha` must be declared in the main script, where Python will find their values. <br> To use Newton's method, it is necessary to compute the Jacobian matrix of the function whose roots we are looking for. In certain occasions, like in the problem we are dealing with, coding the computation of this Jacobian matrix correctly can be quite cumbersome. The `NLP` class provides, besides the Newton's method (which we used in the last example), the [Broyden's Method](http://www.matthewaaronlooney.com/Optim_Class_Fall2019/Broydens_Method.html), whose main appeal is that it does not require the coding of the Jacobian matrix (the method itself will approximate it). To learn more about Broyden's Method, click on the hyperlink above and see Quasi-Newton Methods in section 3.4, page(s) 39-42 of the text. ```python cournot = NLP(resid) S.c = cournot.broyden(S.c, tol=1e-12) ``` After 20 iterations, Broyden's method converges to the desired solution. We can visualize this in Figure 3, which shows the value of the function on 501 different points within the approximation interval. Notice that the residual plot crosses the horizontal axis 25 times; this occurs precisely at the collocation nodes (represented by red dots). This figure also shows the precision of the approximation: outside nodes, the function is within $\approx 1\times10^{-17}$ units from zero. <br> One of the advantages of working with the `BasisChebyshev` class is that, once the collocation coefficients have been found, we can evaluate the supply function by calling the `S` object as if it were a Python function. Thus, for example, to find out the quantity supplied by the firm when the price is 1.2, we simply evaluate `print(S(1.2))`, which returns `0.3950`. We use this feature next to compute the effective supply curve when there are 5 identical firms in the market; the result is shown in Figure 2. ##### Figure 2 Supply and demand when there are 5 firms ```python nFirms= 5; pplot = nodeunif(501, a, b) demo.figure('Cournot Effective Firm Supply Function', 'Quantity', 'Price', [0, nFirms], [a, b]) plt.plot(nFirms* S(pplot), pplot, D(pplot), pplot) plt.legend(('Supply','Demand')) plt.show(); ``` ##### Figure 3: Approximation residuals for equation (5) This block generates Figure 3. ```python p= pplot demo.figure('Residual Function for Cournot Problem', 'Quantity', 'Residual') plt.hlines(0, a, b, 'k', '--', lw= 2) plt.plot(pplot, resid(S.c)) plt.plot(S.nodes,np.zeros_like(S.nodes),'r*'); plt.show(); ``` ##### Figure 4: Change in the effective supply as the number of firms increases We now plot the effective supply for a varying number of firms; the result is shown in Figure 4. ```python m= np.array([1, 3, 5, 10, 15, 20]) demo.figure('Supply and Demand Functions', 'Quantity', 'Price', [0, 13]) plt.plot(np.outer(S(pplot), m), pplot) plt.plot(D(pplot), pplot, linewidth= 2, color='black') plt.legend(['m= 1', 'm= 3', 'm= 5', 'm= 10', 'm= 15', 'm= 20', 'demand']); plt.show(); ``` In Figure 4 notice how the equilibrium price and quantity change as the number of firms increases. ##### Figure 5: Equilibrium price as a function of the number of firms The last figure in this example (Figure 5), shows the equilibrium price as a function of the number of firms. ```python pp= (b+ a)/ 2 dp= (b- a)/ 2 m = np.arange(1, 26) for i in range(50): dp/= 2 pp= pp- np.sign(S(pp)* m- D(pp))* dp demo.figure('Cournot Equilibrium Price as Function of Industry Size', 'Number of Firms', 'Price') plt.bar(m, pp); plt.show(); ``` # References Miranda, M. J., & Fackler, P. L. (2002). Applied computational economics and finance (P. L. Fackler, ed.). Cambridge, Mass. : MIT Press. Miranda, M. J., & Fackler, P. L., Romero-Aguilar, R (2002, 2016). CompEcon Toolbox (MATLAB).
(** * Decide: Programming with Decision Procedures *) Set Warnings "-notation-overridden,-parsing". From VFA Require Import Perm. (* ################################################################# *) (** * Using [reflect] to characterize decision procedures *) (** Thus far in _Verified Functional Algorithms_ we have been using - propositions ([Prop]) such as [a<b] (which is Notation for [lt a b]) - booleans ([bool]) such as [a<?b] (which is Notation for [ltb a b]). *) Check Nat.lt. (* : nat -> nat -> Prop *) Check Nat.ltb. (* : nat -> nat -> bool *) (** The [Perm] chapter defined a tactic called [bdestruct] that does case analysis on (x <? y) while giving you hypotheses (above the line) of the form (x<y). This tactic is built using the [reflect] type and the [blt_reflect] theorem. *) Print reflect. (* Inductive reflect (P : Prop) : bool -> Set := | ReflectT : P -> reflect P true | ReflectF : ~ P -> reflect P false *) Check blt_reflect. (* : forall x y, reflect (x<y) (x <? y) *) (** The name [reflect] for this type is a reference to _computational reflection_, a technique in logic. One takes a logical formula, or proposition, or predicate, and designs a syntactic embedding of this formula as an "object value" in the logic. That is, _reflect_ the formula back into the logic. Then one can design computations expressible inside the logic that manipulate these syntactic object values. Finally, one proves that the computations make transformations that are equivalent to derivations (or equivalences) in the logic. The first use of computational reflection was by Goedel, in 1931: his syntactic embedding encoded formulas as natural numbers, a "Goedel numbering." The second and third uses of reflection were by Church and Turing, in 1936: they encoded (respectively) lambda-expressions and Turing machines. In Coq it is easy to do reflection, because the Calculus of Inductive Constructions (CiC) has Inductive data types that can easily encode syntax trees. We could, for example, take some of our propositional operators such as [and], [or], and make an [Inductive] type that is an encoding of these, and build a computational reasoning system for boolean satisfiability. But in this chapter I will show something much simpler. When reasoning about less-than comparisons on natural numbers, we have the advantage that [nat] already an inductive type; it is "pre-reflected," in some sense. (The same for [Z], [list], [bool], etc.) *) (** Now, let's examine how [reflect] expresses the coherence between [lt] and [ltb]. Suppose we have a value [v] whose type is [reflect (3<7) (3<?7)]. What is [v]? Either it is - ReflectT [P] (3<?7), where [P] is a proof of [3<7], and [3<?7] is [true], or - ReflectF [Q] (3<?7), where [Q] is a proof of [~(3<7)], and [3<?7] is [false]. In the case of [3,7], we are well advised to use [ReflectT], because (3<?7) cannot match the [false] required by [ReflectF]. *) Goal (3<?7 = true). Proof. reflexivity. Qed. (** So [v] cannot be [ReflectF Q (3<?7)] for any [Q], because that would not type-check. Now, the next question: must there exist a value of type [reflect (3<7) (3<?7)] ? The answer is yes; that is the [blt_reflect] theorem. The result of [Check blt_reflect], above, says that for any [x,y], there does exist a value (blt_reflect x y) whose type is exactly [reflect (x<y)(x<?y)]. So let's look at that value! That is, examine what [H], and [P], and [Q] are equal to at "Case 1" and "Case 2": *) Theorem three_less_seven_1: 3<7. Proof. assert (H := blt_reflect 3 7). remember (3<?7) as b. destruct H as [P|Q] eqn:?. * (* Case 1: H = ReflectT (3<7) P *) apply P. * (* Case 2: H = ReflectF (3<7) Q *) compute in Heqb. inversion Heqb. Qed. (** Here is another proof that uses [inversion] instead of [destruct]. The [ReflectF] case is eliminated automatically by [inversion] because [3<?7] does not match [false]. *) Theorem three_less_seven_2: 3<7. Proof. assert (H := blt_reflect 3 7). inversion H as [P|Q]. apply P. Qed. (** The [reflect] inductive data type is a way of relating a _decision procedure_ (a function from X to [bool]) with a predicate (a function from X to [Prop]). The convenience of [reflect], in the verification of functional programs, is that we can do [destruct (blt_reflect a b)], which relates [a<?b] (in the program) to the [a<b] (in the proof). That's just how the [bdestruct] tactic works; you can go back to [Perm.v] and examine how it is implemented in the [Ltac] tactic-definition language. *) (* ################################################################# *) (** * Using [sumbool] to Characterize Decision Procedures *) Module ScratchPad. (** An alternate way to characterize decision procedures, widely used in Coq, is via the inductive type [sumbool]. Suppose [Q] is a proposition, that is, [Q: Prop]. We say [Q] is _decidable_ if there is an algorithm for computing a proof of [Q] or [~Q]. More generally, when [P] is a predicate (a function from some type [T] to [Prop]), we say [P] is decidable when [forall x:T, decidable(P)]. We represent this concept in Coq by an inductive datatype: *) Inductive sumbool (A B : Prop) : Set := | left : A -> sumbool A B | right : B -> sumbool A B. (** Let's consider [sumbool] applied to two propositions: *) Definition t1 := sumbool (3<7) (3>2). Lemma less37: 3<7. Proof. omega. Qed. Lemma greater23: 3>2. Proof. omega. Qed. Definition v1a: t1 := left (3<7) (3>2) less37. Definition v1b: t1 := right (3<7) (3>2) greater23. (** A value of type [sumbool (3<7) (3>2)] is either one of: - [left] applied to a proof of (3<7), or - [right] applied to a proof of (3>2). *) (** Now let's consider: *) Definition t2 := sumbool (3<7) (2>3). Definition v2a: t2 := left (3<7) (2>3) less37. (** A value of type [sumbool (3<7) (2>3)] is either one of: - [left] applied to a proof of (3<7), or - [right] applied to a proof of (2>3). But since there are no proofs of 2>3, only [left] values (such as [v2a]) exist. That's OK. *) (** [sumbool] is in the Coq standard library, where there is [Notation] for it: the expression [ {A}+{B} ] means [sumbool A B]. *) Notation "{ A } + { B }" := (sumbool A B) : type_scope. (** A very common use of [sumbool] is on a proposition and its negation. For example, *) Definition t4 := forall a b, {a<b}+{~(a<b)}. (** That expression, [forall a b, {a<b}+{~(a<b)}], says that for any natural numbers [a] and [b], either [a<b] or [a>=b]. But it is _more_ than that! Because [sumbool] is an Inductive type with two constructors [left] and [right], then given the [{3<7}+{~(3<7)}] you can pattern-match on it and learn _constructively_ which thing is true. *) Definition v3: {3<7}+{~(3<7)} := left _ _ less37. Definition is_3_less_7: bool := match v3 with | left _ _ _ => true | right _ _ _ => false end. Eval compute in is_3_less_7. (* = true : bool *) Print t4. (* = forall a b : nat, {a < b} + {~ a < b} *) (** Suppose there existed a value [lt_dec] of type [t4]. That would be a _decision procedure_ for the less-than function on natural numbers. For any nats [a] and [b], you could calculate [lt_dec a b], which would be either [left ...] (if [a<b] was provable) or [right ...] (if [~(a<b)] was provable). Let's go ahead and implement [lt_dec]. We can base it on the function [ltb: nat -> nat -> bool] which calculates whether [a] is less than [b], as a boolean. We already have a theorem that this function on booleans is related to the proposition [a<b]; that theorem is called [blt_reflect]. *) Check blt_reflect. (* : forall x y, reflect (x<y) (x<?y) *) (** It's not too hard to use [blt_reflect] to define [lt_dec] *) Definition lt_dec (a: nat) (b: nat) : {a<b}+{~(a<b)} := match blt_reflect a b with | ReflectT _ P => left (a < b) (~ a < b) P | ReflectF _ Q => right (a < b) (~ a < b) Q end. (** Another, equivalent way to define [lt_dec] is to use definition-by-tactic: *) Definition lt_dec' (a: nat) (b: nat) : {a<b}+{~(a<b)}. destruct (blt_reflect a b) as [P|Q]. left. apply P. right. apply Q. Defined. Print lt_dec. Print lt_dec'. Theorem lt_dec_equivalent: forall a b, lt_dec a b = lt_dec' a b. Proof. intros. unfold lt_dec, lt_dec'. reflexivity. Qed. (** Warning: these definitions of [lt_dec] are not as nice as the definition in the Coq standard library, because these are not fully computable. See the discussion below. *) End ScratchPad. (* ================================================================= *) (** ** [sumbool] in the Coq Standard Library *) Module ScratchPad2. Locate sumbool. (* Coq.Init.Specif.sumbool *) Print sumbool. (** The output of [Print sumbool] explains that the first two arguments of [left] and [right] are implicit. We use them as follows (notice that [left] has only one explicit argument [P]: *) Definition lt_dec (a: nat) (b: nat) : {a<b}+{~(a<b)} := match blt_reflect a b with | ReflectT _ P => left P | ReflectF _ Q => right Q end. Definition le_dec (a: nat) (b: nat) : {a<=b}+{~(a<=b)} := match ble_reflect a b with | ReflectT _ P => left P | ReflectF _ Q => right Q end. (** Now, let's use [le_dec] directly in the implementation of insertion sort, without mentioning [ltb] at all. *) Fixpoint insert (x:nat) (l: list nat) := match l with | nil => x::nil | h::t => if le_dec x h then x::h::t else h :: insert x t end. Fixpoint sort (l: list nat) : list nat := match l with | nil => nil | h::t => insert h (sort t) end. Inductive sorted: list nat -> Prop := | sorted_nil: sorted nil | sorted_1: forall x, sorted (x::nil) | sorted_cons: forall x y l, x <= y -> sorted (y::l) -> sorted (x::y::l). (** **** Exercise: 2 stars (insert_sorted_le_dec) *) Lemma insert_sorted: forall a l, sorted l -> sorted (insert a l). Proof. intros a l H. induction H. - constructor. - unfold insert. destruct (le_dec a x) as [ Hle | Hgt]. (** Look at the proof state now. In the first subgoal, we have above the line, [Hle: a <= x]. In the second subgoal, we have [Hgt: ~ (a < x)]. These are put there automatically by the [destruct (le_dec a x)]. Now, the rest of the proof can proceed as it did in [Sort.v], but using [destruct (le_dec _ _)] instead of [bdestruct (_ <=? _)]. *) (* FILL IN HERE *) Admitted. (** [] *) (* ################################################################# *) (** * Decidability and Computability *) (** Before studying the rest of this chapter, it is helpful to study the [ProofObjects] chapter of _Software Foundations volume 1_ if you have not done so already. A predicate [P: T->Prop] is _decidable_ if there is a computable function [f: T->bool] such that, forall [x:T], [f x = true <-> P x]. The second and most famous example of an _undecidable_ predicate is the Halting Problem (Turing, 1936): [T] is the type of Turing-machine descriptions, and [P(x)] is, Turing machine [x] halts. The first, and not as famous, example is due to Church, 1936 (six months earlier): test whether a lambda-expression has a normal form. In 1936-37, as a first-year PhD student before beginning his PhD thesis work, Turing proved these two problems are equivalent. Classical logic contains the axiom [forall P, P \/ ~P]. This is not provable in core Coq, that is, in the bare Calculus of Inductive Constructions. But its negation is not provable either. You could add this axiom to Coq and the system would still be consistent (i.e., no way to prove [False]). But [P \/ ~P] is a weaker statement than [ {P}+{~P} ], that is, [sumbool P (~P)]. From [ {P}+{~P} ] you can actually _calculate_ or [compute] either [left (x:P)] or [right(y: ~P)]. From [P \/ ~P] you cannot [compute] whether [P] is true. Yes, you can [destruct] it in a proof, but not in a calculation. For most purposes its unnecessary to add the axiom [P \/ ~P] to Coq, because for specific predicates there's a specific way to prove [P \/ ~P] as a theorem. For example, less-than on natural numbers is decidable, and the existence of [blt_reflect] or [lt_dec] (as a theorem, not as an axiom) is a demonstration of that. Furthermore, in this "book" we are interested in _algorithms_. An axiom [P \/ ~P] does not give us an algorithm to compute whether P is true. As you saw in the definition of [insert] above, we can use [lt_dec] not only as a theorem that either [3<7] or [~(3<7)], we can use it as a function to compute whether [3<7]. In Coq, you can't compute with axioms! Let's try it: *) Axiom lt_dec_axiom_1: forall i j: nat, i<j \/ ~(i<j). (** Now, can we use this axiom to compute with? *) (* Uncomment and try this: Definition max (i j: nat) : nat := if lt_dec_axiom_1 i j then j else i. *) (** That doesn't work, because an [if] statement requires an [Inductive] data type with exactly two constructors; but [lt_dec_axiom_1 i j] has type [i<j \/ ~(i<j)], which is not Inductive. But let's try a different axiom: *) Axiom lt_dec_axiom_2: forall i j: nat, {i<j} + {~(i<j)}. Definition max_with_axiom (i j: nat) : nat := if lt_dec_axiom_2 i j then j else i. (** This typechecks, because [lt_dec_axiom_2 i j] belongs to type [sumbool (i<j) (~(i<j))] (also written [ {i<j} + {~(i<j)} ]), which does have two constructors. Now, let's use this function: *) Eval compute in max_with_axiom 3 7. (* = if lt_dec_axiom_2 3 7 then 7 else 3 : nat *) (** This [compute] didn't compute very much! Let's try to evaluate it using [unfold]: *) Lemma prove_with_max_axiom: max_with_axiom 3 7 = 7. Proof. unfold max_with_axiom. try reflexivity. (* does not do anything, reflexivity fails *) (* uncomment this line and try it: unfold lt_dec_axiom_2. *) destruct (lt_dec_axiom_2 3 7). reflexivity. contradiction n. omega. Qed. (** It is dangerous to add Axioms to Coq: if you add one that's inconsistent, then it leads to the ability to prove [False]. While that's a convenient way to get a lot of things proved, it's unsound; the proofs are useless. The Axioms above, [lt_dec_axiom_1] and [lt_dec_axiom_2], are safe enough: they are consistent. But they don't help in computation. Axioms are not useful here. *) End ScratchPad2. (* ################################################################# *) (** * Opacity of [Qed] *) (** This lemma [prove_with_max_axiom] turned out to be _provable_, but the proof could not go by _computation_. In contrast, let's use [lt_dec], which was built without any axioms: *) Lemma compute_with_lt_dec: (if ScratchPad2.lt_dec 3 7 then 7 else 3) = 7. Proof. compute. (* uncomment this line and try it: unfold blt_reflect. *) Abort. (** Unfortunately, even though [blt_reflect] was proved without any axioms, it is an _opaque theorem_ (proved with [Qed] instead of with [Defined]), and one cannot compute with opaque theorems. Not only that, but it is proved with other opaque theorems such as [iff_sym] and [Nat.ltb_lt]. If we want to compute with an implementation of [lt_dec] built from [blt_reflect], then we will have to rebuild [blt_reflect] without using [Qed] anywhere, only [Defined]. Instead, let's use the version of [lt_dec] from the Coq standard library, which _is_ carefully built without any opaque ([Qed]) theorems. *) Lemma compute_with_StdLib_lt_dec: (if lt_dec 3 7 then 7 else 3) = 7. Proof. compute. reflexivity. Qed. (** The Coq standard library has many decidability theorems. You can examine them by doing the following [Search] command. The results shown here are only for the subset of the library that's currently imported (by the [Import] commands above); there's even more out there. *) Search ({_}+{~_}). (* reflect_dec: forall (P : Prop) (b : bool), reflect P b -> {P} + {~ P} lt_dec: forall n m : nat, {n < m} + {~ n < m} list_eq_dec: forall A : Type, (forall x y : A, {x = y} + {x <> y}) -> forall l l' : list A, {l = l'} + {l <> l'} le_dec: forall n m : nat, {n <= m} + {~ n <= m} in_dec: forall A : Type, (forall x y : A, {x = y} + {x <> y}) -> forall (a : A) (l : list A), {In a l} + {~ In a l} gt_dec: forall n m : nat, {n > m} + {~ n > m} ge_dec: forall n m : nat, {n >= m} + {~ n >= m} eq_nat_decide: forall n m : nat, {eq_nat n m} + {~ eq_nat n m} eq_nat_dec: forall n m : nat, {n = m} + {n <> m} bool_dec: forall b1 b2 : bool, {b1 = b2} + {b1 <> b2} Zodd_dec: forall n : Z, {Zodd n} + {~ Zodd n} Zeven_dec: forall n : Z, {Zeven n} + {~ Zeven n} Z_zerop: forall x : Z, {x = 0%Z} + {x <> 0%Z} Z_lt_dec: forall x y : Z, {(x < y)%Z} + {~ (x < y)%Z} Z_le_dec: forall x y : Z, {(x <= y)%Z} + {~ (x <= y)%Z} Z_gt_dec: forall x y : Z, {(x > y)%Z} + {~ (x > y)%Z} Z_ge_dec: forall x y : Z, {(x >= y)%Z} + {~ (x >= y)%Z} *) (** The type of [list_eq_dec] is worth looking at. It says that if you have a decidable equality for an element type [A], then [list_eq_dec] calculates for you a decidable equality for type [list A]. Try it out: *) Definition list_nat_eq_dec: (forall al bl : list nat, {al=bl}+{al<>bl}) := list_eq_dec eq_nat_dec. Eval compute in if list_nat_eq_dec [1;3;4] [1;4;3] then true else false. (* = false : bool *) Eval compute in if list_nat_eq_dec [1;3;4] [1;3;4] then true else false. (* = true : bool *) (** **** Exercise: 2 stars (list_nat_in) *) (** Use [in_dec] to build this function. *) Definition list_nat_in: forall (i: nat) (al: list nat), {In i al}+{~ In i al} (* REPLACE THIS LINE WITH ":= _your_definition_ ." *). Admitted. Example in_4_pi: (if list_nat_in 4 [3;1;4;1;5;9;2;6] then true else false) = true. Proof. simpl. (* reflexivity. *) (* FILL IN HERE *) Admitted. (** [] *) (** In general, beyond [list_eq_dec] and [in_dec], one can construct a whole programmable calculus of decidability, using the programs-as-proof language of Coq. But is it a good idea? Read on! *) (* ################################################################# *) (** * Advantages and Disadvantages of [reflect] Versus [sumbool] *) (** I have shown two ways to program decision procedures in Coq, one using [reflect] and the other using [{_}+{~_}], i.e., [sumbool]. - With [sumbool], you define _two_ things: the operator in [Prop] such as [lt: nat -> nat -> Prop] and the decidability "theorem" in [sumbool], such as [lt_dec: forall i j, {lt i j}+{~ lt i j}]. I say "theorem" in quotes because it's not _just_ a theorem, it's also a (nonopaque) computable function. - With [reflect], you define _three_ things: the operator in [Prop], the operator in [bool] (such as [ltb: nat -> nat -> bool], and the theorem that relates them (such as [ltb_reflect]). Defining three things seems like more work than defining two. But it may be easier and more efficient. Programming in [bool], you may have more control over how your functions are implemented, you will have fewer difficult uses of dependent types, and you will run into fewer difficulties with opaque theorems. However, among Coq programmers, [sumbool] seems to be more widely used, and it seems to have better support in the Coq standard library. So you may encounter it, and it is worth understanding what it does. Either of these two methods is a reasonable way of programming with proof. *)
Prolonged skin contact with antimony dust may cause dermatitis . However , it was agreed at the European Union level that the skin rashes observed are not substance @-@ specific , but most probably due to a physical blocking of sweat ducts ( ECHA / PR / 09 / 09 , Helsinki , 6 July 2009 ) . Antimony dust may also be explosive when dispersed in the air ; when in a bulk solid it is not combustible .