text
stringlengths 0
3.34M
|
---|
MODULE mod1
USE mod2
USE mod3
END MODULE mod1
|
subroutine jtwo(n2,n3,n4,n5,n6,n1,za,zb,zab,zba,j2,jw2)
implicit none
include 'constants.f'
include 'zprods_decl.f'
double complex zab(mxpart,4,mxpart),zba(mxpart,4,mxpart),
& j2(4,2,2,2,2),j2_34_56_1(4,2,2,2,2),j2_56_34_1(4,2,2,2,2),
& jw2(4,2,2,2),jw2_34_56_1(4,2,2,2),jw2_56_34_1(4,2,2,2)
integer n1,n2,n3,n4,n5,n6,jdu,h21,h34,h56
C---The two Z-current divided by (-i)
call jtwo3456(n2,n3,n4,n5,n6,n1,
& za,zb,zab,zba,j2_34_56_1,jw2_34_56_1)
call jtwo3456(n2,n5,n6,n3,n4,n1,
& za,zb,zab,zba,j2_56_34_1,jw2_56_34_1)
do jdu=1,2
do h56=1,2
do h34=1,2
jw2(1:4,jdu,h34,h56)=
& jw2_34_56_1(1:4,jdu,h34,h56)
& +jw2_56_34_1(1:4,jdu,h56,h34)
do h21=1,2
j2(1:4,jdu,h21,h34,h56)=
& j2_34_56_1(1:4,jdu,h21,h34,h56)
& +j2_56_34_1(1:4,jdu,h21,h56,h34)
enddo
enddo
enddo
enddo
return
end
|
/-
Copyright (c) 2023 Kevin Buzzard. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Author : Kevin Buzzard
-/
import tactic
import number_theory.divisors -- added to make Bhavik's proof work
/-
# Find all integers x ≠ 3 such that x - 3 divides x^3 - 3
This is the second question in Sierpinski's book "250 elementary problems
in number theory".
My solution: x - 3 divides x^3-27, and hence if it divides x^3-3
then it also divides the difference, which is 24. Conversely,
if x-3 divides 24 then because it divides x^3-27 it also divides x^3-3.
But getting Lean to find all the integers divisors of 24 is a nightmare!
Bhavik (last year) managed to figure out how to do this.
-/
-- This isn't so hard
lemma lemma1 (x : ℤ) : x - 3 ∣ x^3 - 3 ↔ x - 3 ∣ 24 :=
begin
have h : x - 3 ∣ x ^ 3 - 27,
{ use x ^ 2 + 3 * x + 9,
ring, },
split,
{ intro h1,
have h2 := dvd_sub h1 h,
convert h2,
ring },
{ intro h1,
convert dvd_add h h1,
ring },
end
lemma int_dvd_iff (x : ℤ) (n : ℤ) (hn : n ≠ 0) :
x ∣ n ↔ x.nat_abs ∈ n.nat_abs.divisors :=
by simp [hn]
-- Thanks to Bhavik Mehta for showing me how to prove this in Lean 3 without timing out!
lemma lemma2 (x : ℤ) : x ∣ 24 ↔ x ∈ ({-24,-12,-8,-6,-4,-3,-2,-1,1,2,3,4,6,8,12,24} : set ℤ) :=
begin
suffices : x ∣ 24 ↔ x.nat_abs ∈ ({1,2,3,4,6,8,12,24} : finset ℕ),
{ simp only [this, int.nat_abs_eq_iff, set.mem_insert_iff, set.mem_singleton_iff,
finset.mem_insert, finset.mem_singleton],
norm_cast,
rw ←eq_iff_iff,
ac_refl },
exact int_dvd_iff _ 24 (by norm_num),
end
-- This seems much harder :-) (it's really a computer science question, not a maths question,
-- feel free to skip)
example (x : ℤ) : x - 3 ∣ x^3 - 3 ↔ x ∈ ({-21, -9, -5, -3, -1, 0, 1, 2, 4, 5, 6, 7, 9, 11, 15, 27} : set ℤ) :=
begin
rw lemma1,
rw lemma2,
simp only [set.mem_insert_iff, sub_eq_neg_self, set.mem_singleton_iff],
repeat {apply or_congr },
all_goals { omega },
end
|
/-
Copyright (c) 2019 Kenny Lau. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Kenny Lau
-/
import ring_theory.adjoin.fg
import ring_theory.polynomial.scale_roots
import ring_theory.polynomial.tower
/-!
# Integral closure of a subring.
If A is an R-algebra then `a : A` is integral over R if it is a root of a monic polynomial
with coefficients in R. Enough theory is developed to prove that integral elements
form a sub-R-algebra of A.
## Main definitions
Let `R` be a `comm_ring` and let `A` be an R-algebra.
* `ring_hom.is_integral_elem (f : R →+* A) (x : A)` : `x` is integral with respect to the map `f`,
* `is_integral (x : A)` : `x` is integral over `R`, i.e., is a root of a monic polynomial with
coefficients in `R`.
* `integral_closure R A` : the integral closure of `R` in `A`, regarded as a sub-`R`-algebra of `A`.
-/
open_locale classical
open_locale big_operators
open polynomial submodule
section ring
variables {R S A : Type*}
variables [comm_ring R] [ring A] [ring S] (f : R →+* S)
/-- An element `x` of `A` is said to be integral over `R` with respect to `f`
if it is a root of a monic polynomial `p : polynomial R` evaluated under `f` -/
def ring_hom.is_integral_elem (f : R →+* A) (x : A) :=
∃ p : polynomial R, monic p ∧ eval₂ f x p = 0
/-- A ring homomorphism `f : R →+* A` is said to be integral
if every element `A` is integral with respect to the map `f` -/
def ring_hom.is_integral (f : R →+* A) :=
∀ x : A, f.is_integral_elem x
variables [algebra R A] (R)
/-- An element `x` of an algebra `A` over a commutative ring `R` is said to be *integral*,
if it is a root of some monic polynomial `p : polynomial R`.
Equivalently, the element is integral over `R` with respect to the induced `algebra_map` -/
def is_integral (x : A) : Prop :=
(algebra_map R A).is_integral_elem x
variable (A)
/-- An algebra is integral if every element of the extension is integral over the base ring -/
def algebra.is_integral : Prop :=
(algebra_map R A).is_integral
variables {R A}
lemma ring_hom.is_integral_map {x : R} : f.is_integral_elem (f x) :=
⟨X - C x, monic_X_sub_C _, by simp⟩
theorem is_integral_algebra_map {x : R} : is_integral R (algebra_map R A x) :=
(algebra_map R A).is_integral_map
theorem is_integral_of_noetherian (H : is_noetherian R A) (x : A) :
is_integral R x :=
begin
let leval : (polynomial R →ₗ[R] A) := (aeval x).to_linear_map,
let D : ℕ → submodule R A := λ n, (degree_le R n).map leval,
let M := well_founded.min (is_noetherian_iff_well_founded.1 H)
(set.range D) ⟨_, ⟨0, rfl⟩⟩,
have HM : M ∈ set.range D := well_founded.min_mem _ _ _,
cases HM with N HN,
have HM : ¬M < D (N+1) := well_founded.not_lt_min
(is_noetherian_iff_well_founded.1 H) (set.range D) _ ⟨N+1, rfl⟩,
rw ← HN at HM,
have HN2 : D (N+1) ≤ D N := classical.by_contradiction (λ H, HM
(lt_of_le_not_le (map_mono (degree_le_mono
(with_bot.coe_le_coe.2 (nat.le_succ N)))) H)),
have HN3 : leval (X^(N+1)) ∈ D N,
{ exact HN2 (mem_map_of_mem (mem_degree_le.2 (degree_X_pow_le _))) },
rcases HN3 with ⟨p, hdp, hpe⟩,
refine ⟨X^(N+1) - p, monic_X_pow_sub (mem_degree_le.1 hdp), _⟩,
show leval (X ^ (N + 1) - p) = 0,
rw [linear_map.map_sub, hpe, sub_self]
end
theorem is_integral_of_submodule_noetherian (S : subalgebra R A)
(H : is_noetherian R S.to_submodule) (x : A) (hx : x ∈ S) :
is_integral R x :=
begin
suffices : is_integral R (show S, from ⟨x, hx⟩),
{ rcases this with ⟨p, hpm, hpx⟩,
replace hpx := congr_arg S.val hpx,
refine ⟨p, hpm, eq.trans _ hpx⟩,
simp only [aeval_def, eval₂, sum_def],
rw S.val.map_sum,
refine finset.sum_congr rfl (λ n hn, _),
rw [S.val.map_mul, S.val.map_pow, S.val.commutes, S.val_apply, subtype.coe_mk], },
refine is_integral_of_noetherian H ⟨x, hx⟩
end
end ring
section
variables {R A B S : Type*}
variables [comm_ring R] [comm_ring A] [comm_ring B] [comm_ring S]
variables [algebra R A] [algebra R B] (f : R →+* S)
theorem is_integral_alg_hom (f : A →ₐ[R] B) {x : A} (hx : is_integral R x) : is_integral R (f x) :=
let ⟨p, hp, hpx⟩ :=
hx in ⟨p, hp, by rw [← aeval_def, aeval_alg_hom_apply, aeval_def, hpx, f.map_zero]⟩
@[simp]
theorem is_integral_alg_equiv (f : A ≃ₐ[R] B) {x : A} : is_integral R (f x) ↔ is_integral R x :=
⟨λ h, by simpa using is_integral_alg_hom f.symm.to_alg_hom h, is_integral_alg_hom f.to_alg_hom⟩
theorem is_integral_of_is_scalar_tower [algebra A B] [is_scalar_tower R A B]
(x : B) (hx : is_integral R x) : is_integral A x :=
let ⟨p, hp, hpx⟩ := hx in
⟨p.map $ algebra_map R A, monic_map _ hp,
by rw [← aeval_def, ← is_scalar_tower.aeval_apply, aeval_def, hpx]⟩
theorem is_integral_of_subring {x : A} (T : subring R)
(hx : is_integral T x) : is_integral R x :=
is_integral_of_is_scalar_tower x hx
lemma is_integral.algebra_map [algebra A B] [is_scalar_tower R A B]
{x : A} (h : is_integral R x) :
is_integral R (algebra_map A B x) :=
begin
rcases h with ⟨f, hf, hx⟩,
use [f, hf],
rw [is_scalar_tower.algebra_map_eq R A B, ← hom_eval₂, hx, ring_hom.map_zero]
end
lemma is_integral_algebra_map_iff [algebra A B] [is_scalar_tower R A B]
{x : A} (hAB : function.injective (algebra_map A B)) :
is_integral R (algebra_map A B x) ↔ is_integral R x :=
begin
refine ⟨_, λ h, h.algebra_map⟩,
rintros ⟨f, hf, hx⟩,
use [f, hf],
exact is_scalar_tower.aeval_eq_zero_of_aeval_algebra_map_eq_zero R A B hAB hx,
end
theorem is_integral_iff_is_integral_closure_finite {r : A} :
is_integral R r ↔ ∃ s : set R, s.finite ∧ is_integral (subring.closure s) r :=
begin
split; intro hr,
{ rcases hr with ⟨p, hmp, hpr⟩,
refine ⟨_, set.finite_mem_finset _, p.restriction, monic_restriction.2 hmp, _⟩,
erw [← aeval_def, is_scalar_tower.aeval_apply _ R, map_restriction, aeval_def, hpr] },
rcases hr with ⟨s, hs, hsr⟩,
exact is_integral_of_subring _ hsr
end
theorem fg_adjoin_singleton_of_integral (x : A) (hx : is_integral R x) :
(algebra.adjoin R ({x} : set A)).to_submodule.fg :=
begin
rcases hx with ⟨f, hfm, hfx⟩,
existsi finset.image ((^) x) (finset.range (nat_degree f + 1)),
apply le_antisymm,
{ rw span_le, intros s hs, rw finset.mem_coe at hs,
rcases finset.mem_image.1 hs with ⟨k, hk, rfl⟩, clear hk,
exact (algebra.adjoin R {x}).pow_mem (algebra.subset_adjoin (set.mem_singleton _)) k },
intros r hr, change r ∈ algebra.adjoin R ({x} : set A) at hr,
rw algebra.adjoin_singleton_eq_range_aeval at hr,
rcases (aeval x).mem_range.mp hr with ⟨p, rfl⟩,
rw ← mod_by_monic_add_div p hfm,
rw ← aeval_def at hfx,
rw [alg_hom.map_add, alg_hom.map_mul, hfx, zero_mul, add_zero],
have : degree (p %ₘ f) ≤ degree f := degree_mod_by_monic_le p hfm,
generalize_hyp : p %ₘ f = q at this ⊢,
rw [← sum_C_mul_X_eq q, aeval_def, eval₂_sum, sum_def],
refine sum_mem _ (λ k hkq, _),
rw [eval₂_mul, eval₂_C, eval₂_pow, eval₂_X, ← algebra.smul_def],
refine smul_mem _ _ (subset_span _),
rw finset.mem_coe, refine finset.mem_image.2 ⟨_, _, rfl⟩,
rw [finset.mem_range, nat.lt_succ_iff], refine le_of_not_lt (λ hk, _),
rw [degree_le_iff_coeff_zero] at this,
rw [mem_support_iff] at hkq, apply hkq, apply this,
exact lt_of_le_of_lt degree_le_nat_degree (with_bot.coe_lt_coe.2 hk)
end
theorem fg_adjoin_of_finite {s : set A} (hfs : s.finite)
(his : ∀ x ∈ s, is_integral R x) : (algebra.adjoin R s).to_submodule.fg :=
set.finite.induction_on hfs (λ _, ⟨{1}, submodule.ext $ λ x,
by { erw [algebra.adjoin_empty, finset.coe_singleton, ← one_eq_span, one_eq_range,
linear_map.mem_range, algebra.mem_bot], refl }⟩)
(λ a s has hs ih his, by rw [← set.union_singleton, algebra.adjoin_union_coe_submodule]; exact
fg_mul _ _ (ih $ λ i hi, his i $ set.mem_insert_of_mem a hi)
(fg_adjoin_singleton_of_integral _ $ his a $ set.mem_insert a s)) his
lemma is_noetherian_adjoin_finset [is_noetherian_ring R] (s : finset A)
(hs : ∀ x ∈ s, is_integral R x) :
is_noetherian R (algebra.adjoin R (↑s : set A)) :=
is_noetherian_of_fg_of_noetherian _ (fg_adjoin_of_finite s.finite_to_set hs)
/-- If `S` is a sub-`R`-algebra of `A` and `S` is finitely-generated as an `R`-module,
then all elements of `S` are integral over `R`. -/
theorem is_integral_of_mem_of_fg (S : subalgebra R A)
(HS : S.to_submodule.fg) (x : A) (hx : x ∈ S) : is_integral R x :=
begin
-- say `x ∈ S`. We want to prove that `x` is integral over `R`.
-- Say `S` is generated as an `R`-module by the set `y`.
cases HS with y hy,
-- We can write `x` as `∑ rᵢ yᵢ` for `yᵢ ∈ Y`.
obtain ⟨lx, hlx1, hlx2⟩ :
∃ (l : A →₀ R) (H : l ∈ finsupp.supported R R ↑y), (finsupp.total A A R id) l = x,
{ rwa [←(@finsupp.mem_span_image_iff_total A A R _ _ _ id ↑y x), set.image_id ↑y, hy] },
-- Note that `y ⊆ S`.
have hyS : ∀ {p}, p ∈ y → p ∈ S := λ p hp, show p ∈ S.to_submodule,
by { rw ← hy, exact subset_span hp },
-- Now `S` is a subalgebra so the product of two elements of `y` is also in `S`.
have : ∀ (jk : (↑(y.product y) : set (A × A))), jk.1.1 * jk.1.2 ∈ S.to_submodule :=
λ jk, S.mul_mem (hyS (finset.mem_product.1 jk.2).1) (hyS (finset.mem_product.1 jk.2).2),
rw [← hy, ← set.image_id ↑y] at this, simp only [finsupp.mem_span_image_iff_total] at this,
-- Say `yᵢyⱼ = ∑rᵢⱼₖ yₖ`
choose ly hly1 hly2,
-- Now let `S₀` be the subring of `R` generated by the `rᵢ` and the `rᵢⱼₖ`.
let S₀ : subring R :=
subring.closure ↑(lx.frange ∪ finset.bUnion finset.univ (finsupp.frange ∘ ly)),
-- It suffices to prove that `x` is integral over `S₀`.
refine is_integral_of_subring S₀ _,
letI : comm_ring S₀ := subring.to_comm_ring S₀,
letI : algebra S₀ A := algebra.of_subring S₀,
-- Claim: the `S₀`-module span (in `A`) of the set `y ∪ {1}` is closed under
-- multiplication (indeed, this is the motivation for the definition of `S₀`).
have :
span S₀ (insert 1 ↑y : set A) * span S₀ (insert 1 ↑y : set A) ≤ span S₀ (insert 1 ↑y : set A),
{ rw span_mul_span, refine span_le.2 (λ z hz, _),
rcases set.mem_mul.1 hz with ⟨p, q, rfl | hp, hq, rfl⟩,
{ rw one_mul, exact subset_span hq },
rcases hq with rfl | hq,
{ rw mul_one, exact subset_span (or.inr hp) },
erw ← hly2 ⟨(p, q), finset.mem_product.2 ⟨hp, hq⟩⟩,
rw [finsupp.total_apply, finsupp.sum],
refine (span S₀ (insert 1 ↑y : set A)).sum_mem (λ t ht, _),
have : ly ⟨(p, q), finset.mem_product.2 ⟨hp, hq⟩⟩ t ∈ S₀ :=
subring.subset_closure (finset.mem_union_right _ $ finset.mem_bUnion.2
⟨⟨(p, q), finset.mem_product.2 ⟨hp, hq⟩⟩, finset.mem_univ _,
finsupp.mem_frange.2 ⟨finsupp.mem_support_iff.1 ht, _, rfl⟩⟩),
change (⟨_, this⟩ : S₀) • t ∈ _, exact smul_mem _ _ (subset_span $ or.inr $ hly1 _ ht) },
-- Hence this span is a subring. Call this subring `S₁`.
let S₁ : subring A :=
{ carrier := span S₀ (insert 1 ↑y : set A),
one_mem' := subset_span $ or.inl rfl,
mul_mem' := λ p q hp hq, this $ mul_mem_mul hp hq,
zero_mem' := (span S₀ (insert 1 ↑y : set A)).zero_mem,
add_mem' := λ _ _, (span S₀ (insert 1 ↑y : set A)).add_mem,
neg_mem' := λ _, (span S₀ (insert 1 ↑y : set A)).neg_mem },
have : S₁ = (algebra.adjoin S₀ (↑y : set A)).to_subring,
{ ext z,
suffices : z ∈ span ↥S₀ (insert 1 ↑y : set A) ↔
z ∈ (algebra.adjoin ↥S₀ (y : set A)).to_submodule,
{ simpa },
split; intro hz,
{ exact (span_le.2
(set.insert_subset.2 ⟨(algebra.adjoin S₀ ↑y).one_mem, algebra.subset_adjoin⟩)) hz },
{ rw [subalgebra.mem_to_submodule, algebra.mem_adjoin_iff] at hz,
suffices : subring.closure (set.range ⇑(algebra_map ↥S₀ A) ∪ ↑y) ≤ S₁,
{ exact this hz },
refine subring.closure_le.2 (set.union_subset _ (λ t ht, subset_span $ or.inr ht)),
rw set.range_subset_iff,
intro y,
rw algebra.algebra_map_eq_smul_one,
exact smul_mem _ y (subset_span (or.inl rfl)) } },
have foo : ∀ z, z ∈ S₁ ↔ z ∈ algebra.adjoin ↥S₀ (y : set A),
simp [this],
haveI : is_noetherian_ring ↥S₀ := is_noetherian_subring_closure _ (finset.finite_to_set _),
refine is_integral_of_submodule_noetherian (algebra.adjoin S₀ ↑y)
(is_noetherian_of_fg_of_noetherian _ ⟨insert 1 y,
by { rw [finset.coe_insert], ext z, simp [S₁], convert foo z}⟩) _ _,
rw [← hlx2, finsupp.total_apply, finsupp.sum], refine subalgebra.sum_mem _ (λ r hr, _),
have : lx r ∈ S₀ :=
subring.subset_closure (finset.mem_union_left _ (finset.mem_image_of_mem _ hr)),
change (⟨_, this⟩ : S₀) • r ∈ _,
rw finsupp.mem_supported at hlx1,
exact subalgebra.smul_mem _ (algebra.subset_adjoin $ hlx1 hr) _
end
lemma ring_hom.is_integral_of_mem_closure {x y z : S}
(hx : f.is_integral_elem x) (hy : f.is_integral_elem y)
(hz : z ∈ subring.closure ({x, y} : set S)) :
f.is_integral_elem z :=
begin
letI : algebra R S := f.to_algebra,
have := fg_mul _ _ (fg_adjoin_singleton_of_integral x hx) (fg_adjoin_singleton_of_integral y hy),
rw [← algebra.adjoin_union_coe_submodule, set.singleton_union] at this,
exact is_integral_of_mem_of_fg (algebra.adjoin R {x, y}) this z
(algebra.mem_adjoin_iff.2 $ subring.closure_mono (set.subset_union_right _ _) hz),
end
theorem is_integral_of_mem_closure {x y z : A}
(hx : is_integral R x) (hy : is_integral R y)
(hz : z ∈ subring.closure ({x, y} : set A)) :
is_integral R z :=
(algebra_map R A).is_integral_of_mem_closure hx hy hz
lemma ring_hom.is_integral_zero : f.is_integral_elem 0 :=
f.map_zero ▸ f.is_integral_map
theorem is_integral_zero : is_integral R (0:A) :=
(algebra_map R A).is_integral_zero
lemma ring_hom.is_integral_one : f.is_integral_elem 1 :=
f.map_one ▸ f.is_integral_map
theorem is_integral_one : is_integral R (1:A) :=
(algebra_map R A).is_integral_one
lemma ring_hom.is_integral_add {x y : S}
(hx : f.is_integral_elem x) (hy : f.is_integral_elem y) :
f.is_integral_elem (x + y) :=
f.is_integral_of_mem_closure hx hy $ subring.add_mem _
(subring.subset_closure (or.inl rfl)) (subring.subset_closure (or.inr rfl))
theorem is_integral_add {x y : A}
(hx : is_integral R x) (hy : is_integral R y) :
is_integral R (x + y) :=
(algebra_map R A).is_integral_add hx hy
lemma ring_hom.is_integral_neg {x : S}
(hx : f.is_integral_elem x) : f.is_integral_elem (-x) :=
f.is_integral_of_mem_closure hx hx (subring.neg_mem _ (subring.subset_closure (or.inl rfl)))
theorem is_integral_neg {x : A}
(hx : is_integral R x) : is_integral R (-x) :=
(algebra_map R A).is_integral_neg hx
lemma ring_hom.is_integral_sub {x y : S}
(hx : f.is_integral_elem x) (hy : f.is_integral_elem y) : f.is_integral_elem (x - y) :=
by simpa only [sub_eq_add_neg] using f.is_integral_add hx (f.is_integral_neg hy)
theorem is_integral_sub {x y : A}
(hx : is_integral R x) (hy : is_integral R y) : is_integral R (x - y) :=
(algebra_map R A).is_integral_sub hx hy
lemma ring_hom.is_integral_mul {x y : S}
(hx : f.is_integral_elem x) (hy : f.is_integral_elem y) : f.is_integral_elem (x * y) :=
f.is_integral_of_mem_closure hx hy (subring.mul_mem _
(subring.subset_closure (or.inl rfl)) (subring.subset_closure (or.inr rfl)))
theorem is_integral_mul {x y : A}
(hx : is_integral R x) (hy : is_integral R y) : is_integral R (x * y) :=
(algebra_map R A).is_integral_mul hx hy
variables (R A)
/-- The integral closure of R in an R-algebra A. -/
def integral_closure : subalgebra R A :=
{ carrier := { r | is_integral R r },
zero_mem' := is_integral_zero,
one_mem' := is_integral_one,
add_mem' := λ _ _, is_integral_add,
mul_mem' := λ _ _, is_integral_mul,
algebra_map_mem' := λ x, is_integral_algebra_map }
theorem mem_integral_closure_iff_mem_fg {r : A} :
r ∈ integral_closure R A ↔ ∃ M : subalgebra R A, M.to_submodule.fg ∧ r ∈ M :=
⟨λ hr, ⟨algebra.adjoin R {r}, fg_adjoin_singleton_of_integral _ hr, algebra.subset_adjoin rfl⟩,
λ ⟨M, Hf, hrM⟩, is_integral_of_mem_of_fg M Hf _ hrM⟩
variables {R} {A}
/-- Mapping an integral closure along an `alg_equiv` gives the integral closure. -/
lemma integral_closure_map_alg_equiv (f : A ≃ₐ[R] B) :
(integral_closure R A).map (f : A →ₐ[R] B) = integral_closure R B :=
begin
ext y,
rw subalgebra.mem_map,
split,
{ rintros ⟨x, hx, rfl⟩,
exact is_integral_alg_hom f hx },
{ intro hy,
use [f.symm y, is_integral_alg_hom (f.symm : B →ₐ[R] A) hy],
simp }
end
lemma integral_closure.is_integral (x : integral_closure R A) : is_integral R x :=
let ⟨p, hpm, hpx⟩ := x.2 in ⟨p, hpm, subtype.eq $
by rwa [← aeval_def, subtype.val_eq_coe, ← subalgebra.val_apply, aeval_alg_hom_apply] at hpx⟩
lemma ring_hom.is_integral_of_is_integral_mul_unit (x y : S) (r : R) (hr : f r * y = 1)
(hx : f.is_integral_elem (x * y)) : f.is_integral_elem x :=
begin
obtain ⟨p, ⟨p_monic, hp⟩⟩ := hx,
refine ⟨scale_roots p r, ⟨(monic_scale_roots_iff r).2 p_monic, _⟩⟩,
convert scale_roots_eval₂_eq_zero f hp,
rw [mul_comm x y, ← mul_assoc, hr, one_mul],
end
theorem is_integral_of_is_integral_mul_unit {x y : A} {r : R} (hr : algebra_map R A r * y = 1)
(hx : is_integral R (x * y)) : is_integral R x :=
(algebra_map R A).is_integral_of_is_integral_mul_unit x y r hr hx
/-- Generalization of `is_integral_of_mem_closure` bootstrapped up from that lemma -/
lemma is_integral_of_mem_closure' (G : set A) (hG : ∀ x ∈ G, is_integral R x) :
∀ x ∈ (subring.closure G), is_integral R x :=
λ x hx, subring.closure_induction hx hG is_integral_zero is_integral_one
(λ _ _, is_integral_add) (λ _, is_integral_neg) (λ _ _, is_integral_mul)
lemma is_integral_of_mem_closure'' {S : Type*} [comm_ring S] {f : R →+* S} (G : set S)
(hG : ∀ x ∈ G, f.is_integral_elem x) : ∀ x ∈ (subring.closure G), f.is_integral_elem x :=
λ x hx, @is_integral_of_mem_closure' R S _ _ f.to_algebra G hG x hx
lemma is_integral.pow {x : A} (h : is_integral R x) (n : ℕ) : is_integral R (x ^ n) :=
(integral_closure R A).pow_mem h n
lemma is_integral.nsmul {x : A} (h : is_integral R x) (n : ℕ) : is_integral R (n • x) :=
(integral_closure R A).nsmul_mem h n
lemma is_integral.zsmul {x : A} (h : is_integral R x) (n : ℤ) : is_integral R (n • x) :=
(integral_closure R A).zsmul_mem h n
lemma is_integral.multiset_prod {s : multiset A} (h : ∀ x ∈ s, is_integral R x) :
is_integral R s.prod :=
(integral_closure R A).multiset_prod_mem h
lemma is_integral.multiset_sum {s : multiset A} (h : ∀ x ∈ s, is_integral R x) :
is_integral R s.sum :=
(integral_closure R A).multiset_sum_mem h
lemma is_integral.prod {α : Type*} {s : finset α} (f : α → A) (h : ∀ x ∈ s, is_integral R (f x)) :
is_integral R (∏ x in s, f x) :=
(integral_closure R A).prod_mem h
lemma is_integral.sum {α : Type*} {s : finset α} (f : α → A) (h : ∀ x ∈ s, is_integral R (f x)) :
is_integral R (∑ x in s, f x) :=
(integral_closure R A).sum_mem h
end
section is_integral_closure
/-- `is_integral_closure A R B` is the characteristic predicate stating `A` is
the integral closure of `R` in `B`,
i.e. that an element of `B` is integral over `R` iff it is an element of (the image of) `A`.
-/
class is_integral_closure (A R B : Type*) [comm_ring R] [comm_semiring A] [comm_ring B]
[algebra R B] [algebra A B] : Prop :=
(algebra_map_injective [] : function.injective (algebra_map A B))
(is_integral_iff : ∀ {x : B}, is_integral R x ↔ ∃ y, algebra_map A B y = x)
instance integral_closure.is_integral_closure (R A : Type*) [comm_ring R] [comm_ring A]
[algebra R A] : is_integral_closure (integral_closure R A) R A :=
⟨subtype.coe_injective, λ x, ⟨λ h, ⟨⟨x, h⟩, rfl⟩, by { rintro ⟨⟨_, h⟩, rfl⟩, exact h }⟩⟩
namespace is_integral_closure
variables {R A B : Type*} [comm_ring R] [comm_ring A] [comm_ring B]
variables [algebra R B] [algebra A B] [is_integral_closure A R B]
variables (R) {A} (B)
protected theorem is_integral [algebra R A] [is_scalar_tower R A B] (x : A) : is_integral R x :=
(is_integral_algebra_map_iff (algebra_map_injective A R B)).mp $
show is_integral R (algebra_map A B x), from is_integral_iff.mpr ⟨x, rfl⟩
theorem is_integral_algebra [algebra R A] [is_scalar_tower R A B] :
algebra.is_integral R A :=
λ x, is_integral_closure.is_integral R B x
variables {R} (A) {B}
/-- If `x : B` is integral over `R`, then it is an element of the integral closure of `R` in `B`. -/
noncomputable def mk' (x : B) (hx : is_integral R x) : A :=
classical.some (is_integral_iff.mp hx)
@[simp] lemma algebra_map_mk' (x : B) (hx : is_integral R x) :
algebra_map A B (mk' A x hx) = x :=
classical.some_spec (is_integral_iff.mp hx)
@[simp] lemma mk'_one (h : is_integral R (1 : B) := is_integral_one) :
mk' A 1 h = 1 :=
algebra_map_injective A R B $ by rw [algebra_map_mk', ring_hom.map_one]
@[simp] lemma mk'_zero (h : is_integral R (0 : B) := is_integral_zero) :
mk' A 0 h = 0 :=
algebra_map_injective A R B $ by rw [algebra_map_mk', ring_hom.map_zero]
@[simp]
@[simp] lemma mk'_mul (x y : B) (hx : is_integral R x) (hy : is_integral R y) :
mk' A (x * y) (is_integral_mul hx hy) = mk' A x hx * mk' A y hy :=
algebra_map_injective A R B $ by simp only [algebra_map_mk', ring_hom.map_mul]
@[simp] lemma mk'_algebra_map [algebra R A] [is_scalar_tower R A B] (x : R)
(h : is_integral R (algebra_map R B x) := is_integral_algebra_map) :
is_integral_closure.mk' A (algebra_map R B x) h = algebra_map R A x :=
algebra_map_injective A R B $ by rw [algebra_map_mk', ← is_scalar_tower.algebra_map_apply]
section lift
variables {R} (A B) {S : Type*} [comm_ring S] [algebra R S] [algebra S B] [is_scalar_tower R S B]
variables [algebra R A] [is_scalar_tower R A B] (h : algebra.is_integral R S)
/-- If `B / S / R` is a tower of ring extensions where `S` is integral over `R`,
then `S` maps (uniquely) into an integral closure `B / A / R`. -/
noncomputable def lift : S →ₐ[R] A :=
{ to_fun := λ x, mk' A (algebra_map S B x) (is_integral.algebra_map (h x)),
map_one' := by simp only [ring_hom.map_one, mk'_one],
map_zero' := by simp only [ring_hom.map_zero, mk'_zero],
map_add' := λ x y, by simp_rw [← mk'_add, ring_hom.map_add],
map_mul' := λ x y, by simp_rw [← mk'_mul, ring_hom.map_mul],
commutes' := λ x, by simp_rw [← is_scalar_tower.algebra_map_apply, mk'_algebra_map] }
@[simp] lemma algebra_map_lift (x : S) : algebra_map A B (lift A B h x) = algebra_map S B x :=
algebra_map_mk' _ _ _
end lift
section equiv
variables (R A B) (A' : Type*) [comm_ring A'] [algebra A' B] [is_integral_closure A' R B]
variables [algebra R A] [algebra R A'] [is_scalar_tower R A B] [is_scalar_tower R A' B]
/-- Integral closures are all isomorphic to each other. -/
noncomputable def equiv : A ≃ₐ[R] A' :=
alg_equiv.of_alg_hom (lift _ B (is_integral_algebra R B)) (lift _ B (is_integral_algebra R B))
(by { ext x, apply algebra_map_injective A' R B, simp })
(by { ext x, apply algebra_map_injective A R B, simp })
@[simp] lemma algebra_map_equiv (x : A) : algebra_map A' B (equiv R A B A' x) = algebra_map A B x :=
algebra_map_lift _ _ _ _
end equiv
end is_integral_closure
end is_integral_closure
section algebra
open algebra
variables {R A B S T : Type*}
variables [comm_ring R] [comm_ring A] [comm_ring B] [comm_ring S] [comm_ring T]
variables [algebra A B] [algebra R B] (f : R →+* S) (g : S →+* T)
lemma is_integral_trans_aux (x : B) {p : polynomial A} (pmonic : monic p) (hp : aeval x p = 0) :
is_integral (adjoin R (↑(p.map $ algebra_map A B).frange : set B)) x :=
begin
generalize hS : (↑(p.map $ algebra_map A B).frange : set B) = S,
have coeffs_mem : ∀ i, (p.map $ algebra_map A B).coeff i ∈ adjoin R S,
{ intro i, by_cases hi : (p.map $ algebra_map A B).coeff i = 0,
{ rw hi, exact subalgebra.zero_mem _ },
rw ← hS,
exact subset_adjoin (coeff_mem_frange _ _ hi) },
obtain ⟨q, hq⟩ : ∃ q : polynomial (adjoin R S), q.map (algebra_map (adjoin R S) B) =
(p.map $ algebra_map A B),
{ rw ← set.mem_range, exact (polynomial.mem_map_range _).2 (λ i, ⟨⟨_, coeffs_mem i⟩, rfl⟩) },
use q,
split,
{ suffices h : (q.map (algebra_map (adjoin R S) B)).monic,
{ refine monic_of_injective _ h,
exact subtype.val_injective },
{ rw hq, exact monic_map _ pmonic } },
{ convert hp using 1,
replace hq := congr_arg (eval x) hq,
convert hq using 1; symmetry; apply eval_map },
end
variables [algebra R A] [is_scalar_tower R A B]
/-- If A is an R-algebra all of whose elements are integral over R,
and x is an element of an A-algebra that is integral over A, then x is integral over R.-/
lemma is_integral_trans (A_int : is_integral R A) (x : B) (hx : is_integral A x) :
is_integral R x :=
begin
rcases hx with ⟨p, pmonic, hp⟩,
let S : set B := ↑(p.map $ algebra_map A B).frange,
refine is_integral_of_mem_of_fg (adjoin R (S ∪ {x})) _ _ (subset_adjoin $ or.inr rfl),
refine fg_trans (fg_adjoin_of_finite (finset.finite_to_set _) (λ x hx, _)) _,
{ rw [finset.mem_coe, frange, finset.mem_image] at hx,
rcases hx with ⟨i, _, rfl⟩,
rw coeff_map,
exact is_integral_alg_hom (is_scalar_tower.to_alg_hom R A B) (A_int _) },
{ apply fg_adjoin_singleton_of_integral,
exact is_integral_trans_aux _ pmonic hp }
end
/-- If A is an R-algebra all of whose elements are integral over R,
and B is an A-algebra all of whose elements are integral over A,
then all elements of B are integral over R.-/
lemma algebra.is_integral_trans (hA : is_integral R A) (hB : is_integral A B) : is_integral R B :=
λ x, is_integral_trans hA x (hB x)
lemma ring_hom.is_integral_trans (hf : f.is_integral) (hg : g.is_integral) :
(g.comp f).is_integral :=
@algebra.is_integral_trans R S T _ _ _ g.to_algebra (g.comp f).to_algebra f.to_algebra
(@is_scalar_tower.of_algebra_map_eq R S T _ _ _ f.to_algebra g.to_algebra (g.comp f).to_algebra
(ring_hom.comp_apply g f)) hf hg
lemma ring_hom.is_integral_of_surjective (hf : function.surjective f) : f.is_integral :=
λ x, (hf x).rec_on (λ y hy, (hy ▸ f.is_integral_map : f.is_integral_elem x))
lemma is_integral_of_surjective (h : function.surjective (algebra_map R A)) : is_integral R A :=
(algebra_map R A).is_integral_of_surjective h
/-- If `R → A → B` is an algebra tower with `A → B` injective,
then if the entire tower is an integral extension so is `R → A` -/
lemma is_integral_tower_bot_of_is_integral (H : function.injective (algebra_map A B))
{x : A} (h : is_integral R (algebra_map A B x)) : is_integral R x :=
begin
rcases h with ⟨p, ⟨hp, hp'⟩⟩,
refine ⟨p, ⟨hp, _⟩⟩,
rw [is_scalar_tower.algebra_map_eq R A B, ← eval₂_map,
eval₂_hom, ← ring_hom.map_zero (algebra_map A B)] at hp',
rw [eval₂_eq_eval_map],
exact H hp',
end
lemma ring_hom.is_integral_tower_bot_of_is_integral (hg : function.injective g)
(hfg : (g.comp f).is_integral) : f.is_integral :=
λ x,
@is_integral_tower_bot_of_is_integral R S T _ _ _ g.to_algebra (g.comp f).to_algebra f.to_algebra
(@is_scalar_tower.of_algebra_map_eq R S T _ _ _ f.to_algebra g.to_algebra (g.comp f).to_algebra
(ring_hom.comp_apply g f)) hg x (hfg (g x))
lemma is_integral_tower_bot_of_is_integral_field {R A B : Type*} [comm_ring R] [field A]
[comm_ring B] [nontrivial B] [algebra R A] [algebra A B] [algebra R B] [is_scalar_tower R A B]
{x : A} (h : is_integral R (algebra_map A B x)) : is_integral R x :=
is_integral_tower_bot_of_is_integral (algebra_map A B).injective h
lemma ring_hom.is_integral_elem_of_is_integral_elem_comp {x : T}
(h : (g.comp f).is_integral_elem x) : g.is_integral_elem x :=
let ⟨p, ⟨hp, hp'⟩⟩ := h in ⟨p.map f, monic_map f hp, by rwa ← eval₂_map at hp'⟩
lemma ring_hom.is_integral_tower_top_of_is_integral (h : (g.comp f).is_integral) : g.is_integral :=
λ x, ring_hom.is_integral_elem_of_is_integral_elem_comp f g (h x)
/-- If `R → A → B` is an algebra tower,
then if the entire tower is an integral extension so is `A → B`. -/
lemma is_integral_tower_top_of_is_integral {x : B} (h : is_integral R x) : is_integral A x :=
begin
rcases h with ⟨p, ⟨hp, hp'⟩⟩,
refine ⟨p.map (algebra_map R A), ⟨monic_map (algebra_map R A) hp, _⟩⟩,
rw [is_scalar_tower.algebra_map_eq R A B, ← eval₂_map] at hp',
exact hp',
end
lemma ring_hom.is_integral_quotient_of_is_integral {I : ideal S} (hf : f.is_integral) :
(ideal.quotient_map I f le_rfl).is_integral :=
begin
rintros ⟨x⟩,
obtain ⟨p, ⟨p_monic, hpx⟩⟩ := hf x,
refine ⟨p.map (ideal.quotient.mk _), ⟨monic_map _ p_monic, _⟩⟩,
simpa only [hom_eval₂, eval₂_map] using congr_arg (ideal.quotient.mk I) hpx
end
lemma is_integral_quotient_of_is_integral {I : ideal A} (hRA : is_integral R A) :
is_integral (R ⧸ I.comap (algebra_map R A)) (A ⧸ I) :=
(algebra_map R A).is_integral_quotient_of_is_integral hRA
lemma is_integral_quotient_map_iff {I : ideal S} :
(ideal.quotient_map I f le_rfl).is_integral ↔
((ideal.quotient.mk I).comp f : R →+* S ⧸ I).is_integral :=
begin
let g := ideal.quotient.mk (I.comap f),
have := ideal.quotient_map_comp_mk le_rfl,
refine ⟨λ h, _, λ h, ring_hom.is_integral_tower_top_of_is_integral g _ (this ▸ h)⟩,
refine this ▸ ring_hom.is_integral_trans g (ideal.quotient_map I f le_rfl) _ h,
exact ring_hom.is_integral_of_surjective g ideal.quotient.mk_surjective,
end
/-- If the integral extension `R → S` is injective, and `S` is a field, then `R` is also a field. -/
lemma is_field_of_is_integral_of_is_field
{R S : Type*} [comm_ring R] [is_domain R] [comm_ring S] [is_domain S]
[algebra R S] (H : is_integral R S) (hRS : function.injective (algebra_map R S))
(hS : is_field S) : is_field R :=
begin
refine ⟨⟨0, 1, zero_ne_one⟩, mul_comm, λ a ha, _⟩,
-- Let `a_inv` be the inverse of `algebra_map R S a`,
-- then we need to show that `a_inv` is of the form `algebra_map R S b`.
obtain ⟨a_inv, ha_inv⟩ := hS.mul_inv_cancel (λ h, ha (hRS (trans h (ring_hom.map_zero _).symm))),
-- Let `p : polynomial R` be monic with root `a_inv`,
-- and `q` be `p` with coefficients reversed (so `q(a) = q'(a) * a + 1`).
-- We claim that `q(a) = 0`, so `-q'(a)` is the inverse of `a`.
obtain ⟨p, p_monic, hp⟩ := H a_inv,
use -∑ (i : ℕ) in finset.range p.nat_degree, (p.coeff i) * a ^ (p.nat_degree - i - 1),
-- `q(a) = 0`, because multiplying everything with `a_inv^n` gives `p(a_inv) = 0`.
-- TODO: this could be a lemma for `polynomial.reverse`.
have hq : ∑ (i : ℕ) in finset.range (p.nat_degree + 1), (p.coeff i) * a ^ (p.nat_degree - i) = 0,
{ apply (algebra_map R S).injective_iff.mp hRS,
have a_inv_ne_zero : a_inv ≠ 0 := right_ne_zero_of_mul (mt ha_inv.symm.trans one_ne_zero),
refine (mul_eq_zero.mp _).resolve_right (pow_ne_zero p.nat_degree a_inv_ne_zero),
rw [eval₂_eq_sum_range] at hp,
rw [ring_hom.map_sum, finset.sum_mul],
refine (finset.sum_congr rfl (λ i hi, _)).trans hp,
rw [ring_hom.map_mul, mul_assoc],
congr,
have : a_inv ^ p.nat_degree = a_inv ^ (p.nat_degree - i) * a_inv ^ i,
{ rw [← pow_add a_inv, tsub_add_cancel_of_le (nat.le_of_lt_succ (finset.mem_range.mp hi))] },
rw [ring_hom.map_pow, this, ← mul_assoc, ← mul_pow, ha_inv, one_pow, one_mul] },
-- Since `q(a) = 0` and `q(a) = q'(a) * a + 1`, we have `a * -q'(a) = 1`.
-- TODO: we could use a lemma for `polynomial.div_X` here.
rw [finset.sum_range_succ_comm, p_monic.coeff_nat_degree, one_mul, tsub_self, pow_zero,
add_eq_zero_iff_eq_neg, eq_comm] at hq,
rw [mul_comm, ← neg_mul_eq_neg_mul, finset.sum_mul],
convert hq using 2,
refine finset.sum_congr rfl (λ i hi, _),
have : 1 ≤ p.nat_degree - i := le_tsub_of_add_le_left (finset.mem_range.mp hi),
rw [mul_assoc, ← pow_succ', tsub_add_cancel_of_le this]
end
end algebra
theorem integral_closure_idem {R : Type*} {A : Type*} [comm_ring R] [comm_ring A] [algebra R A] :
integral_closure (integral_closure R A : set A) A = ⊥ :=
eq_bot_iff.2 $ λ x hx, algebra.mem_bot.2
⟨⟨x, @is_integral_trans _ _ _ _ _ _ _ _ (integral_closure R A).algebra
_ integral_closure.is_integral x hx⟩, rfl⟩
section is_domain
variables {R S : Type*} [comm_ring R] [comm_ring S] [is_domain S] [algebra R S]
instance : is_domain (integral_closure R S) :=
infer_instance
end is_domain
|
import data.fintype.basic
import linear_algebra.basic
universe variables u v
variables {G :Type u} (R : Type v) [group G]
/--
A central fonction is a function `f : G → R` s.t `∀ s t : G, f (s * t) = f (t * s)`
-/
def central_function (f : G → R) := ∀ s t : G, f (s * t) = f (t * s)
lemma central (f : G → R)(hyp : central_function R f) (s t : G) : f (s * t) = f (t * s) := hyp s t
/--
A central function satisfy `∀ s t : G, f (t⁻¹ * s * t) = f s`
-/
theorem central_function_are_constant_on_conjugacy_classses (f : G → R)(hyp : central_function R f)
: ∀ s t : G, f (t⁻¹ * s * t) = f s :=
begin
intros s t, rw hyp,rw ← mul_assoc, rw mul_inv_self, rw one_mul,
end
variables [comm_ring R]
/--
We show that central function form a `free R-submodule` of `G → R`
-/
def central_submodule : submodule R (G → R) := {
carrier := λ f, central_function R f,
zero := begin unfold central_function, intros s t, exact rfl end,
add :=
begin
intros f g, intros hypf hypg, intros s t,
change f _ + g _ = f _ + g _, erw hypf, erw hypg,
end,
smul :=
begin
intros c, intros f, intros hyp, intros s t,
change c • f _ = c • f _, rw hyp,
end
} |
open classical
variables (A B : Prop)
example : A ∨ ¬ A :=
by_contradiction
(assume h1 : ¬ (A ∨ ¬ A),
have h2 : ¬ A, from
assume h3 : A,
have h4 : A ∨ ¬ A, from or.inl h3,
show false, from h1 h4,
have h5 : A ∨ ¬ A, from or.inr h2,
show false, from h1 h5)
example (p : Prop) : p ∨ ¬ p :=
em p
example (h : ¬ B → ¬ A) : A → B :=
assume h1 : A,
show B, from
by_contradiction
(assume h2 : ¬ B,
have h3 : ¬ A, from h h2,
show false, from h3 h1)
example (h : ¬ (A ∧ ¬ B)) : A → B :=
assume : A,
show B, from
by_contradiction
(assume : ¬ B,
have A ∧ ¬ B, from and.intro ‹A› this,
show false, from h this) |
Amongst the many interesting discussions I had at Build Stuff last week was about how it’s desirable to switch off disk caching for the disks used for Event Store databases to help ensure that data is durable in the face of power failures.
This is actually true of many databases, indeed, postgres gives you a warning about the possible dire consequences of having write caching switched on when you may experience power failure.
Obviously here you should replace /dev/sda with whichever device your database is on!
Note that simply disabling drive caching is actually not enough to ensure that writes are durable – many drives still misbehave (especially the Intel 520 series SSDs)! |
data Nat : Set where
zero : Nat
suc : Nat → Nat
test : ∀{N M : Nat} → Nat → Nat → Nat
test N M = {!.N N .M!}
|
/-
Copyright (c) 2021 Sébastien Gouëzel. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Sébastien Gouëzel
! This file was ported from Lean 3 source module analysis.subadditive
! leanprover-community/mathlib commit f2ce6086713c78a7f880485f7917ea547a215982
! Please do not edit these lines, except to modify the commit id
! if you have ported upstream changes.
-/
import Mathlib.Topology.Instances.Real
import Mathlib.Order.Filter.Archimedean
/-!
# Convergence of subadditive sequences
A subadditive sequence `u : ℕ → ℝ` is a sequence satisfying `u (m + n) ≤ u m + u n` for all `m, n`.
We define this notion as `Subadditive u`, and prove in `Subadditive.tendsto_lim` that, if `u n / n`
is bounded below, then it converges to a limit (that we denote by `Subadditive.lim` for
convenience). This result is known as Fekete's lemma in the literature.
## TODO
Define a bundled `SubadditiveHom`, use it.
-/
noncomputable section
open Set Filter Topology
/-- A real-valued sequence is subadditive if it satisfies the inequality `u (m + n) ≤ u m + u n`
for all `m, n`. -/
def Subadditive (u : ℕ → ℝ) : Prop :=
∀ m n, u (m + n) ≤ u m + u n
#align subadditive Subadditive
namespace Subadditive
variable {u : ℕ → ℝ} (h : Subadditive u)
/-- The limit of a bounded-below subadditive sequence. The fact that the sequence indeed tends to
this limit is given in `Subadditive.tendsto_lim` -/
@[nolint unusedArguments] -- porting note: was irreducible
protected def lim (_h : Subadditive u) :=
infₛ ((fun n : ℕ => u n / n) '' Ici 1)
#align subadditive.lim Subadditive.lim
theorem lim_le_div (hbdd : BddBelow (range fun n => u n / n)) {n : ℕ} (hn : n ≠ 0) :
h.lim ≤ u n / n := by
rw [Subadditive.lim]
exact cinfₛ_le (hbdd.mono <| image_subset_range _ _) ⟨n, hn.bot_lt, rfl⟩
#align subadditive.lim_le_div Subadditive.lim_le_div
theorem eventually_div_lt_of_div_lt {L : ℝ} {n : ℕ} (hn : n ≠ 0) (hL : u n / n < L) :
∀ᶠ p in atTop, u p / p < L := by
/- It suffices to prove the statement for each arithmetic progression `(n * · + r)`. -/
refine .atTop_of_arithmetic hn fun r _ => ?_
/- `(k * u n + u r) / (k * n + r)` tends to `u n / n < L`, hence
`(k * u n + u r) / (k * n + r) < L` for sufficiently large `k`. -/
have A : Tendsto (fun x : ℝ => (u n + u r / x) / (n + r / x)) atTop (𝓝 ((u n + 0) / (n + 0))) :=
(tendsto_const_nhds.add <| tendsto_const_nhds.div_atTop tendsto_id).div
(tendsto_const_nhds.add <| tendsto_const_nhds.div_atTop tendsto_id) <| by simpa
have B : Tendsto (fun x => (x * u n + u r) / (x * n + r)) atTop (𝓝 (u n / n)) := by
rw [add_zero, add_zero] at A
refine A.congr' <| (eventually_ne_atTop 0).mono fun x hx => ?_
simp only [(· ∘ ·), add_div' _ _ _ hx, div_div_div_cancel_right _ hx, mul_comm]
refine ((B.comp tendsto_nat_cast_atTop_atTop).eventually (gt_mem_nhds hL)).mono fun k hk => ?_
/- Finally, we use an upper estimate on `u (k * n + r)` to get an estimate on
`u (k * n + r) / (k * n + r)`. -/
rw [mul_comm]
refine lt_of_le_of_lt ?_ hk
simp only [(· ∘ ·), ← Nat.cast_add, ← Nat.cast_mul]
exact div_le_div_of_le (Nat.cast_nonneg _) (h.apply_mul_add_le _ _ _)
#align subadditive.eventually_div_lt_of_div_lt Subadditive.eventually_div_lt_of_div_lt
/-- Fekete's lemma: a subadditive sequence which is bounded below converges. -/
theorem tendsto_lim (hbdd : BddBelow (range fun n => u n / n)) :
Tendsto (fun n => u n / n) atTop (𝓝 h.lim) := by
refine' tendsto_order.2 ⟨fun l hl => _, fun L hL => _⟩
· refine' eventually_atTop.2
⟨1, fun n hn => hl.trans_le (h.lim_le_div hbdd (zero_lt_one.trans_le hn).ne')⟩
· obtain ⟨n, npos, hn⟩ : ∃ n : ℕ, 0 < n ∧ u n / n < L := by
rw [Subadditive.lim] at hL
rcases exists_lt_of_cinfₛ_lt (by simp) hL with ⟨x, hx, xL⟩
rcases (mem_image _ _ _).1 hx with ⟨n, hn, rfl⟩
exact ⟨n, zero_lt_one.trans_le hn, xL⟩
exact h.eventually_div_lt_of_div_lt npos.ne' hn
#align subadditive.tendsto_lim Subadditive.tendsto_lim
end Subadditive
|
readallmcmc <- function(file){
years <- scan(file,skip=1,nlines=1)
nyrs <- length(years)
ages <- scan(file,skip=3,nlines=1)
nages <- length(ages)
variables <- scan(file,skip=5,nlines=1) #. 1 N etc
names(variables) <- c("n","cw","sw","mat","f","cno")
n1 <- length(variables[variables==1])
print(paste("n1",n1))
nvar <- 1:length(variables)
nvar <- nvar[variables==1]
dat <- read.table(file,skip=8,header=F)
niter <- nrow(dat)/(nyrs*n1)
iter <- 1:niter
result <- expand.grid(list(year=years,variable=nvar,iter=iter,age=ages))
result$value <- c(unlist(dat))
return(result)
}
|
-- Math 52: Quiz 5
-- Open this file in a folder that contains 'utils'.
import utils
definition divides (a b : ℤ) : Prop := ∃ (k : ℤ), b = a * k
local infix ∣ := divides
axiom not_3_divides : ∀ (m : ℤ), ¬ (3 ∣ m) ↔ 3 ∣ m - 1 ∨ 3 ∣ m + 1
theorem main : ∀ (n : ℤ), ¬ (3 ∣ n) → 3 ∣ n * n - 1 :=
begin
sorry
end
|
module System.File where
open import System.FilePath
open import Prelude.IO
open import Prelude.String
open import Prelude.Unit
open import Prelude.Function
open import Prelude.Bytes
{-# FOREIGN GHC import qualified Data.Text as Text #-}
{-# FOREIGN GHC import qualified Data.Text.IO as Text #-}
{-# FOREIGN GHC import qualified Data.ByteString as B #-}
private
module Internal where
StrFilePath : Set
StrFilePath = String
postulate
readTextFile : StrFilePath → IO String
writeTextFile : StrFilePath → String → IO Unit
readBinaryFile : StrFilePath → IO Bytes
writeBinaryFile : StrFilePath → Bytes → IO Unit
{-# COMPILE GHC readTextFile = Text.readFile . Text.unpack #-}
{-# COMPILE GHC writeTextFile = Text.writeFile . Text.unpack #-}
{-# COMPILE GHC readBinaryFile = B.readFile . Text.unpack #-}
{-# COMPILE GHC writeBinaryFile = B.writeFile . Text.unpack #-}
{-# COMPILE UHC readTextFile = UHC.Agda.Builtins.primReadFile #-}
{-# COMPILE UHC writeTextFile = UHC.Agda.Builtins.primWriteFile #-}
readTextFile : ∀ {k} → Path k → IO String
readTextFile = Internal.readTextFile ∘ toString
writeTextFile : ∀ {k} → Path k → String → IO Unit
writeTextFile = Internal.writeTextFile ∘ toString
readBinaryFile : ∀ {k} → Path k → IO Bytes
readBinaryFile = Internal.readBinaryFile ∘ toString
writeBinaryFile : ∀ {k} → Path k → Bytes → IO Unit
writeBinaryFile = Internal.writeBinaryFile ∘ toString
|
State Before: α : Type ?u.308464
inst✝ : Preorder α
a b c : ℕ
H3 : 2 * (b + c) ≤ 9 * a + 3
h : b < 2 * c
⊢ b < 3 * a + 1 State After: no goals Tactic: linarith |
import .love05_inductive_predicates_demo
/- # LoVe Demo 7: Metaprogramming
Users can extend Lean with custom monadic tactics and tools. This kind of
programming—programming the prover—is called metaprogramming.
Lean's metaprogramming framework uses mostly the same notions and syntax as
Lean's input language itself.
Abstract syntax trees __reflect__ internal data structures, e.g., for
expressions (terms).
The prover's C++ internals are exposed through Lean interfaces, which we can
use for accessing the current context and goal, unifying expressions, querying
and modifying the environment, and setting attributes (e.g., `@[simp]`).
Most of Lean's predefined tactics are implemented in Lean (and not in C++).
Example applications:
* proof goal transformations;
* heuristic proof search;
* decision procedures;
* definition generators;
* advisor tools;
* exporters;
* ad hoc automation.
Advantages of Lean's metaprogramming framework:
* Users do not need to learn another programming language to write
metaprograms; they can work with the same constructs and notation used to
define ordinary objects in the prover's library.
* Everything in that library is available for metaprogramming purposes.
* Metaprograms can be written and debugged in the same interactive environment,
encouraging a style where formal libraries and supporting automation are
developed at the same time. -/
set_option pp.beta true
set_option pp.generalized_field_notation false
namespace LoVe
/- ## Tactics and Tactic Combinators
When programming our own tactics, we often need to repeat some actions on
several goals, or to recover if a tactic fails. Tactic combinators help in such
case.
`repeat` applies its argument repeatedly on all (sub…sub)goals until it cannot
be applied any further. -/
lemma repeat_example :
even 4 ∧ even 7 ∧ even 3 ∧ even 0 :=
begin
repeat { apply and.intro },
repeat { apply even.add_two },
repeat { sorry }
end
/- The "orelse" combinator `<|>` tries its first argument and applies its
second argument in case of failure. -/
lemma repeat_orelse_example :
even 4 ∧ even 7 ∧ even 3 ∧ even 0 :=
begin
repeat { apply and.intro },
repeat {
apply even.add_two
<|> apply even.zero },
repeat { sorry }
end
/- `iterate` works repeatedly on the first goal until it fails; then it
stops. -/
lemma iterate_orelse_example :
even 4 ∧ even 7 ∧ even 3 ∧ even 0 :=
begin
repeat { apply and.intro },
iterate {
apply even.add_two
<|> apply even.zero },
repeat { sorry }
end
/- `all_goals` applies its argument exactly once to each goal. It succeeds only
if the argument succeeds on **all** goals. -/
lemma all_goals_example :
even 4 ∧ even 7 ∧ even 3 ∧ even 0 :=
begin
repeat { apply and.intro },
all_goals { apply even.add_two }, -- fails
repeat { sorry }
end
/- `try` transforms its argument into a tactic that never fails. -/
lemma all_goals_try_example :
even 4 ∧ even 7 ∧ even 3 ∧ even 0 :=
begin
repeat { apply and.intro },
all_goals { try { apply even.add_two } },
repeat { sorry }
end
/- `any_goals` applies its argument exactly once to each goal. It succeeds
if the argument succeeds on **any** goal. -/
lemma any_goals_example :
even 4 ∧ even 7 ∧ even 3 ∧ even 0 :=
begin
repeat { apply and.intro },
any_goals { apply even.add_two },
repeat { sorry }
end
/- `solve1` transforms its argument into an all-or-nothing tactic. If the
argument does not prove the goal, `solve1` fails. -/
lemma any_goals_solve1_repeat_orelse_example :
even 4 ∧ even 7 ∧ even 3 ∧ even 0 :=
begin
repeat { apply and.intro },
any_goals { solve1 { repeat {
apply even.add_two
<|> apply even.zero } } },
repeat { sorry }
end
/- The combinators `repeat`, `iterate`, `all_goals`, and `any_goals` can easily
lead to infinite looping: -/
/-
lemma repeat_not_example :
¬ even 1 :=
begin
repeat { apply not.intro },
sorry
end
-/
/- Let us start with the actual metaprogramming, by coding a custom tactic. The
tactic embodies the behavior we hardcoded in the `solve1` example above: -/
meta def intro_and_even : tactic unit :=
do
tactic.repeat (tactic.applyc ``and.intro),
tactic.any_goals (tactic.solve1 (tactic.repeat
(tactic.applyc ``even.add_two
<|> tactic.applyc ``even.zero))),
pure ()
/- The `meta` keyword makes it possible for the function to call other
metafunctions. The `do` keyword enters a monad, and the `<|>` operator is the
"orelse" operator of alternative monads. At the end, we return `()`, of type
`unit`, to ensure the metaprogram has the desired type.
Any executable Lean definition can be used as a metaprogram. In addition, we can
put `meta` in front of a definition to indicate that is a metadefinition. Such
definitions need not terminate but cannot be used in non-`meta` contexts.
Let us apply our custom tactic: -/
lemma any_goals_solve1_repeat_orelse_example₂ :
even 4 ∧ even 7 ∧ even 3 ∧ even 0 :=
begin
intro_and_even,
repeat { sorry }
end
/- ## The Metaprogramming Monad
Tactics have access to
* the list of **goals** as metavariables (each metavariables has a type and a
local context (hypothesis); they can optionally be instantiated);
* the **elaborator** (to elaborate expressions and compute their type);
* the **environment**, containing all declarations and inductive types;
* the **attributes** (e.g., the list of `@[simp]` rules).
The tactic monad is an alternative monad, with `fail` and `<|>`. Tactics can
also produce trace messages. -/
lemma even_14 :
even 14 :=
by do
tactic.trace "Proving evenness …",
intro_and_even
meta def hello_then_intro_and_even : tactic unit :=
do
tactic.trace "Proving evenness …",
intro_and_even
lemma even_16 :
even 16 :=
by hello_then_intro_and_even
run_cmd tactic.trace "Hello, Metaworld!"
meta def trace_goals : tactic unit :=
do
tactic.trace "local context:",
ctx ← tactic.local_context,
tactic.trace ctx,
tactic.trace "target:",
P ← tactic.target,
tactic.trace P,
tactic.trace "all missing proofs:",
Hs ← tactic.get_goals,
tactic.trace Hs,
τs ← list.mmap tactic.infer_type Hs,
tactic.trace τs
lemma even_18_and_even_20 (α : Type) (a : α) :
even 18 ∧ even 20 :=
by do
tactic.applyc ``and.intro,
trace_goals,
intro_and_even
lemma triv_imp (a : Prop) (h : a) :
a :=
by do
h ← tactic.get_local `h,
tactic.trace "h:",
tactic.trace h,
tactic.trace "raw h:",
tactic.trace (expr.to_raw_fmt h),
tactic.trace "type of h:",
τ ← tactic.infer_type h,
tactic.trace τ,
tactic.trace "type of type of h:",
υ ← tactic.infer_type τ,
tactic.trace υ,
tactic.apply h
meta def exact_list : list expr → tactic unit
| [] := tactic.fail "no matching expression found"
| (h :: hs) :=
do {
tactic.trace "trying",
tactic.trace h,
tactic.exact h }
<|> exact_list hs
meta def hypothesis : tactic unit :=
do
hs ← tactic.local_context,
exact_list hs
lemma app_of_app {α : Type} {p : α → Prop} {a : α}
(h : p a) :
p a :=
by hypothesis
/- ## Names, Expressions, Declarations, and Environments
The metaprogramming framework is articulated around five main types:
* `tactic` manages the proof state, the global context, and more;
* `name` represents a structured name (e.g., `x`, `even.add_two`);
* `expr` represents an expression (a term) as an abstract syntax tree;
* `declaration` represents a constant declaration, a definition, an axiom, or a
lemma;
* `environment` stores all the declarations and notations that make up the
global context. -/
#print expr
#check expr tt -- elaborated expressions
#check expr ff -- unelaborated expressions (pre-expressions)
#print name
#check (expr.const `ℕ [] : expr)
#check expr.sort level.zero -- Sort 0, i.e., Prop
#check expr.sort (level.succ level.zero)
-- Sort 1, i.e., Type
#check expr.var 0 -- bound variable with De Bruijn index 0
#check (expr.local_const `uniq_name `pp_name binder_info.default
`(ℕ) : expr)
#check (expr.mvar `uniq_name `pp_name `(ℕ) : expr)
#check (expr.pi `pp_name binder_info.default `(ℕ)
(expr.sort level.zero) : expr)
#check (expr.lam `pp_name binder_info.default `(ℕ)
(expr.var 0) : expr)
#check expr.elet
#check expr.macro
/- We can create literal expressions conveniently using backticks and
parentheses:
* Expressions with a single backtick must be fully elaborated.
* Expressions with two backticks are __pre-expressions__: They may contain some
holes to be filled in later, based on some context.
* Expressions with three backticks are pre-expressions without name checking. -/
run_cmd do
let e : expr := `(list.map (λn : ℕ, n + 1) [1, 2, 3]),
tactic.trace e
run_cmd do
let e : expr := `(list.map _ [1, 2, 3]), -- fails
tactic.trace e
run_cmd do
let e₁ : pexpr := ``(list.map (λn, n + 1) [1, 2, 3]),
let e₂ : pexpr := ``(list.map _ [1, 2, 3]),
tactic.trace e₁,
tactic.trace e₂
run_cmd do
let e : pexpr := ```(seattle.washington),
tactic.trace e
/- We can also create literal names with backticks:
* Names with a single backtick, `n, are not checked for existence.
* Names with two backticks, ``n, are resolved and checked. -/
run_cmd tactic.trace `and.intro
run_cmd tactic.trace `intro_and_even
run_cmd tactic.trace `seattle.washington
run_cmd tactic.trace ``and.intro
run_cmd tactic.trace ``intro_and_even
run_cmd tactic.trace ``seattle.washington -- fails
/- __Antiquotations__ embed an existing expression in a larger expression. They
are announced by the prefix `%%` followed by a name from the current context.
Antiquotations are available with one, two, and three backticks: -/
run_cmd do
let x : expr := `(2 : ℕ),
let e : expr := `(%%x + 1),
tactic.trace e
run_cmd do
let x : expr := `(@id ℕ),
let e : pexpr := ``(list.map %%x),
tactic.trace e
run_cmd do
let x : expr := `(@id ℕ),
let e : pexpr := ```(a _ %%x),
tactic.trace e
lemma one_add_two_eq_three :
1 + 2 = 3 :=
by do
`(%%a + %%b = %%c) ← tactic.target,
tactic.trace a,
tactic.trace b,
tactic.trace c,
`(@eq %%α %%l %%r) ← tactic.target,
tactic.trace α,
tactic.trace l,
tactic.trace r,
tactic.exact `(refl _ : 3 = 3)
#print declaration
/- The `environment` type is presented as an abstract type, equipped with some
operations to query and modify it. The `environment.fold` metafunction iterates
over all declarations making up the environment. -/
run_cmd do
env ← tactic.get_env,
tactic.trace (environment.fold env 0 (λdecl n, n + 1))
/- ## First Example: A Conjuction-Destructing Tactic
We define a `destruct_and` tactic that automates the elimination of `∧` in
premises, automating proofs such as these: -/
lemma abcd_a (a b c d : Prop) (h : a ∧ (b ∧ c) ∧ d) :
a :=
and.elim_left h
lemma abcd_b (a b c d : Prop) (h : a ∧ (b ∧ c) ∧ d) :
b :=
and.elim_left (and.elim_left (and.elim_right h))
lemma abcd_bc (a b c d : Prop) (h : a ∧ (b ∧ c) ∧ d) :
b ∧ c :=
and.elim_left (and.elim_right h)
/- Our tactic relies on a helper metafunction, which takes as argument the
hypothesis `h` to use as an expression rather than as a name: -/
meta def destruct_and_helper : expr → tactic unit
| h :=
do
t ← tactic.infer_type h,
match t with
| `(%%a ∧ %%b) :=
tactic.exact h
<|>
do {
ha ← tactic.to_expr ``(and.elim_left %%h),
destruct_and_helper ha }
<|>
do {
hb ← tactic.to_expr ``(and.elim_right %%h),
destruct_and_helper hb }
| _ := tactic.exact h
end
meta def destruct_and (nam : name) : tactic unit :=
do
h ← tactic.get_local nam,
destruct_and_helper h
/- Let us check that our tactic works: -/
lemma abc_a (a b c : Prop) (h : a ∧ b ∧ c) :
a :=
by destruct_and `h
lemma abc_b (a b c : Prop) (h : a ∧ b ∧ c) :
b :=
by destruct_and `h
lemma abc_bc (a b c : Prop) (h : a ∧ b ∧ c) :
b ∧ c :=
by destruct_and `h
lemma abc_ac (a b c : Prop) (h : a ∧ b ∧ c) :
a ∧ c :=
by destruct_and `h -- fails
/- ## Second Example: A Provability Advisor
Next, we implement a `prove_direct` tool that traverses all lemmas in the
database and checks whether one of them can be used to prove the current goal. A
similar tactic is available in `mathlib` under the name `library_search`. -/
meta def is_theorem : declaration → bool
| (declaration.defn _ _ _ _ _ _) := ff
| (declaration.thm _ _ _ _) := tt
| (declaration.cnst _ _ _ _) := ff
| (declaration.ax _ _ _) := tt
meta def get_all_theorems : tactic (list name) :=
do
env ← tactic.get_env,
pure (environment.fold env [] (λdecl nams,
if is_theorem decl then declaration.to_name decl :: nams
else nams))
meta def prove_with_name (nam : name) : tactic unit :=
do
tactic.applyc nam
({ md := tactic.transparency.reducible, unify := ff }
: tactic.apply_cfg),
tactic.all_goals tactic.assumption,
pure ()
meta def prove_direct : tactic unit :=
do
nams ← get_all_theorems,
list.mfirst (λnam,
do
prove_with_name nam,
tactic.trace ("directly proved by " ++ to_string nam))
nams
lemma nat.eq_symm (x y : ℕ) (h : x = y) :
y = x :=
by prove_direct
lemma nat.eq_symm₂ (x y : ℕ) (h : x = y) :
y = x :=
by library_search
lemma list.reverse_twice (xs : list ℕ) :
list.reverse (list.reverse xs) = xs :=
by prove_direct
lemma list.reverse_twice_symm (xs : list ℕ) :
xs = list.reverse (list.reverse xs) :=
by prove_direct -- fails
/- As a small refinement, we propose a version of `prove_direct` that also
looks for equalities stated in symmetric form. -/
meta def prove_direct_symm : tactic unit :=
prove_direct
<|>
do {
tactic.applyc `eq.symm,
prove_direct }
lemma list.reverse_twice₂ (xs : list ℕ) :
list.reverse (list.reverse xs) = xs :=
by prove_direct_symm
lemma list.reverse_twice_symm₂ (xs : list ℕ) :
xs = list.reverse (list.reverse xs) :=
by prove_direct_symm
/- ## A Look at Two Predefined Tactics
Quite a few of Lean's predefined tactics are implemented as metaprograms and
not in C++. We can find these definitions by clicking the name of a construct
in Visual Studio Code while holding the control or command key. -/
#check tactic.intro
#check tactic.assumption
end LoVe
|
[STATEMENT]
lemma (in real_distribution) char_approx3:
fixes t
assumes
integrable_1: "integrable M (\<lambda>x. x)" and
integral_1: "expectation (\<lambda>x. x) = 0" and
integrable_2: "integrable M (\<lambda>x. x^2)" and
integral_2: "variance (\<lambda>x. x) = \<sigma>2"
shows "cmod (char M t - (1 - t^2 * \<sigma>2 / 2)) \<le>
(t^2 / 6) * expectation (\<lambda>x. min (6 * x^2) (abs t * (abs x)^3) )"
[PROOF STATE]
proof (prove)
goal (1 subgoal):
1. cmod (char M t - complex_of_real (1 - t\<^sup>2 * \<sigma>2 / 2)) \<le> t\<^sup>2 / 6 * expectation (\<lambda>x. min (6 * x\<^sup>2) (\<bar>t\<bar> * \<bar>x\<bar> ^ 3))
[PROOF STEP]
proof -
[PROOF STATE]
proof (state)
goal (1 subgoal):
1. cmod (char M t - complex_of_real (1 - t\<^sup>2 * \<sigma>2 / 2)) \<le> t\<^sup>2 / 6 * expectation (\<lambda>x. min (6 * x\<^sup>2) (\<bar>t\<bar> * \<bar>x\<bar> ^ 3))
[PROOF STEP]
note real_distribution.char_approx2 [of M 2 t, simplified]
[PROOF STATE]
proof (state)
this:
\<lbrakk>real_distribution M; \<And>k. k \<le> 2 \<Longrightarrow> integrable M (\<lambda>x. x ^ k)\<rbrakk> \<Longrightarrow> cmod (char M t - (\<Sum>k\<le>2. (\<i> * complex_of_real t) ^ k * complex_of_real (expectation (\<lambda>x. x ^ k)) / fact k)) \<le> t\<^sup>2 * expectation (\<lambda>x. min (6 * x\<^sup>2) (\<bar>t\<bar> * \<bar>x\<bar> ^ 3)) / fact 3
goal (1 subgoal):
1. cmod (char M t - complex_of_real (1 - t\<^sup>2 * \<sigma>2 / 2)) \<le> t\<^sup>2 / 6 * expectation (\<lambda>x. min (6 * x\<^sup>2) (\<bar>t\<bar> * \<bar>x\<bar> ^ 3))
[PROOF STEP]
have [simp]: "prob UNIV = 1"
[PROOF STATE]
proof (prove)
goal (1 subgoal):
1. prob UNIV = 1
[PROOF STEP]
by (metis prob_space space_eq_univ)
[PROOF STATE]
proof (state)
this:
prob UNIV = 1
goal (1 subgoal):
1. cmod (char M t - complex_of_real (1 - t\<^sup>2 * \<sigma>2 / 2)) \<le> t\<^sup>2 / 6 * expectation (\<lambda>x. min (6 * x\<^sup>2) (\<bar>t\<bar> * \<bar>x\<bar> ^ 3))
[PROOF STEP]
from integral_2
[PROOF STATE]
proof (chain)
picking this:
expectation (\<lambda>x. (x - expectation (\<lambda>x. x))\<^sup>2) = \<sigma>2
[PROOF STEP]
have [simp]: "expectation (\<lambda>x. x * x) = \<sigma>2"
[PROOF STATE]
proof (prove)
using this:
expectation (\<lambda>x. (x - expectation (\<lambda>x. x))\<^sup>2) = \<sigma>2
goal (1 subgoal):
1. expectation (\<lambda>x. x * x) = \<sigma>2
[PROOF STEP]
by (simp add: integral_1 numeral_eq_Suc)
[PROOF STATE]
proof (state)
this:
expectation (\<lambda>x. x * x) = \<sigma>2
goal (1 subgoal):
1. cmod (char M t - complex_of_real (1 - t\<^sup>2 * \<sigma>2 / 2)) \<le> t\<^sup>2 / 6 * expectation (\<lambda>x. min (6 * x\<^sup>2) (\<bar>t\<bar> * \<bar>x\<bar> ^ 3))
[PROOF STEP]
have 1: "k \<le> 2 \<Longrightarrow> integrable M (\<lambda>x. x^k)" for k
[PROOF STATE]
proof (prove)
goal (1 subgoal):
1. k \<le> 2 \<Longrightarrow> integrable M (\<lambda>x. x ^ k)
[PROOF STEP]
using assms
[PROOF STATE]
proof (prove)
using this:
integrable M (\<lambda>x. x)
expectation (\<lambda>x. x) = 0
integrable M power2
expectation (\<lambda>x. (x - expectation (\<lambda>x. x))\<^sup>2) = \<sigma>2
goal (1 subgoal):
1. k \<le> 2 \<Longrightarrow> integrable M (\<lambda>x. x ^ k)
[PROOF STEP]
by (auto simp: eval_nat_numeral le_Suc_eq)
[PROOF STATE]
proof (state)
this:
?k12 \<le> 2 \<Longrightarrow> integrable M (\<lambda>x. x ^ ?k12)
goal (1 subgoal):
1. cmod (char M t - complex_of_real (1 - t\<^sup>2 * \<sigma>2 / 2)) \<le> t\<^sup>2 / 6 * expectation (\<lambda>x. min (6 * x\<^sup>2) (\<bar>t\<bar> * \<bar>x\<bar> ^ 3))
[PROOF STEP]
note char_approx1
[PROOF STATE]
proof (state)
this:
(\<And>k. k \<le> ?n \<Longrightarrow> integrable M (\<lambda>x. x ^ k)) \<Longrightarrow> cmod (char M ?t - (\<Sum>k\<le>?n. (\<i> * complex_of_real ?t) ^ k / fact k * complex_of_real (expectation (\<lambda>x. x ^ k)))) \<le> 2 * \<bar>?t\<bar> ^ ?n / fact ?n * expectation (\<lambda>x. \<bar>x\<bar> ^ ?n)
goal (1 subgoal):
1. cmod (char M t - complex_of_real (1 - t\<^sup>2 * \<sigma>2 / 2)) \<le> t\<^sup>2 / 6 * expectation (\<lambda>x. min (6 * x\<^sup>2) (\<bar>t\<bar> * \<bar>x\<bar> ^ 3))
[PROOF STEP]
note 2 = char_approx1 [of 2 t, OF 1, simplified]
[PROOF STATE]
proof (state)
this:
cmod (char M t - (\<Sum>k\<le>2. (\<i> * complex_of_real t) ^ k * complex_of_real (expectation (\<lambda>x. x ^ k)) / fact k)) \<le> t\<^sup>2 * expectation power2
goal (1 subgoal):
1. cmod (char M t - complex_of_real (1 - t\<^sup>2 * \<sigma>2 / 2)) \<le> t\<^sup>2 / 6 * expectation (\<lambda>x. min (6 * x\<^sup>2) (\<bar>t\<bar> * \<bar>x\<bar> ^ 3))
[PROOF STEP]
have "cmod (char M t - (\<Sum>k\<le>2. (\<i> * t) ^ k * (expectation (\<lambda>x. x ^ k)) / (fact k))) \<le>
t\<^sup>2 * expectation (\<lambda>x. min (6 * x\<^sup>2) (\<bar>t\<bar> * \<bar>x\<bar> ^ 3)) / fact (3::nat)"
[PROOF STATE]
proof (prove)
goal (1 subgoal):
1. cmod (char M t - (\<Sum>k\<le>2. (\<i> * complex_of_real t) ^ k * complex_of_real (expectation (\<lambda>x. x ^ k)) / fact k)) \<le> t\<^sup>2 * expectation (\<lambda>x. min (6 * x\<^sup>2) (\<bar>t\<bar> * \<bar>x\<bar> ^ 3)) / fact 3
[PROOF STEP]
using char_approx2 [of 2 t, OF 1]
[PROOF STATE]
proof (prove)
using this:
(\<And>k. k \<le> 2 \<Longrightarrow> k \<le> 2) \<Longrightarrow> cmod (char M t - (\<Sum>k\<le>2. (\<i> * complex_of_real t) ^ k / fact k * complex_of_real (expectation (\<lambda>x. x ^ k)))) \<le> \<bar>t\<bar>\<^sup>2 / fact (Suc 2) * expectation (\<lambda>x. min (2 * \<bar>x\<bar>\<^sup>2 * real (Suc 2)) (\<bar>t\<bar> * \<bar>x\<bar> ^ Suc 2))
goal (1 subgoal):
1. cmod (char M t - (\<Sum>k\<le>2. (\<i> * complex_of_real t) ^ k * complex_of_real (expectation (\<lambda>x. x ^ k)) / fact k)) \<le> t\<^sup>2 * expectation (\<lambda>x. min (6 * x\<^sup>2) (\<bar>t\<bar> * \<bar>x\<bar> ^ 3)) / fact 3
[PROOF STEP]
by simp
[PROOF STATE]
proof (state)
this:
cmod (char M t - (\<Sum>k\<le>2. (\<i> * complex_of_real t) ^ k * complex_of_real (expectation (\<lambda>x. x ^ k)) / fact k)) \<le> t\<^sup>2 * expectation (\<lambda>x. min (6 * x\<^sup>2) (\<bar>t\<bar> * \<bar>x\<bar> ^ 3)) / fact 3
goal (1 subgoal):
1. cmod (char M t - complex_of_real (1 - t\<^sup>2 * \<sigma>2 / 2)) \<le> t\<^sup>2 / 6 * expectation (\<lambda>x. min (6 * x\<^sup>2) (\<bar>t\<bar> * \<bar>x\<bar> ^ 3))
[PROOF STEP]
also
[PROOF STATE]
proof (state)
this:
cmod (char M t - (\<Sum>k\<le>2. (\<i> * complex_of_real t) ^ k * complex_of_real (expectation (\<lambda>x. x ^ k)) / fact k)) \<le> t\<^sup>2 * expectation (\<lambda>x. min (6 * x\<^sup>2) (\<bar>t\<bar> * \<bar>x\<bar> ^ 3)) / fact 3
goal (1 subgoal):
1. cmod (char M t - complex_of_real (1 - t\<^sup>2 * \<sigma>2 / 2)) \<le> t\<^sup>2 / 6 * expectation (\<lambda>x. min (6 * x\<^sup>2) (\<bar>t\<bar> * \<bar>x\<bar> ^ 3))
[PROOF STEP]
have "(\<Sum>k\<le>2. (\<i> * t) ^ k * expectation (\<lambda>x. x ^ k) / (fact k)) = 1 - t^2 * \<sigma>2 / 2"
[PROOF STATE]
proof (prove)
goal (1 subgoal):
1. (\<Sum>k\<le>2. (\<i> * complex_of_real t) ^ k * complex_of_real (expectation (\<lambda>x. x ^ k)) / fact k) = complex_of_real (1 - t\<^sup>2 * \<sigma>2 / 2)
[PROOF STEP]
by (simp add: complex_eq_iff numeral_eq_Suc integral_1 Re_divide Im_divide)
[PROOF STATE]
proof (state)
this:
(\<Sum>k\<le>2. (\<i> * complex_of_real t) ^ k * complex_of_real (expectation (\<lambda>x. x ^ k)) / fact k) = complex_of_real (1 - t\<^sup>2 * \<sigma>2 / 2)
goal (1 subgoal):
1. cmod (char M t - complex_of_real (1 - t\<^sup>2 * \<sigma>2 / 2)) \<le> t\<^sup>2 / 6 * expectation (\<lambda>x. min (6 * x\<^sup>2) (\<bar>t\<bar> * \<bar>x\<bar> ^ 3))
[PROOF STEP]
also
[PROOF STATE]
proof (state)
this:
(\<Sum>k\<le>2. (\<i> * complex_of_real t) ^ k * complex_of_real (expectation (\<lambda>x. x ^ k)) / fact k) = complex_of_real (1 - t\<^sup>2 * \<sigma>2 / 2)
goal (1 subgoal):
1. cmod (char M t - complex_of_real (1 - t\<^sup>2 * \<sigma>2 / 2)) \<le> t\<^sup>2 / 6 * expectation (\<lambda>x. min (6 * x\<^sup>2) (\<bar>t\<bar> * \<bar>x\<bar> ^ 3))
[PROOF STEP]
have "fact 3 = 6"
[PROOF STATE]
proof (prove)
goal (1 subgoal):
1. fact 3 = (6::'a)
[PROOF STEP]
by (simp add: eval_nat_numeral)
[PROOF STATE]
proof (state)
this:
fact 3 = (6::?'a13)
goal (1 subgoal):
1. cmod (char M t - complex_of_real (1 - t\<^sup>2 * \<sigma>2 / 2)) \<le> t\<^sup>2 / 6 * expectation (\<lambda>x. min (6 * x\<^sup>2) (\<bar>t\<bar> * \<bar>x\<bar> ^ 3))
[PROOF STEP]
also
[PROOF STATE]
proof (state)
this:
fact 3 = (6::?'a13)
goal (1 subgoal):
1. cmod (char M t - complex_of_real (1 - t\<^sup>2 * \<sigma>2 / 2)) \<le> t\<^sup>2 / 6 * expectation (\<lambda>x. min (6 * x\<^sup>2) (\<bar>t\<bar> * \<bar>x\<bar> ^ 3))
[PROOF STEP]
have "t\<^sup>2 * expectation (\<lambda>x. min (6 * x\<^sup>2) (\<bar>t\<bar> * \<bar>x\<bar> ^ 3)) / 6 =
t\<^sup>2 / 6 * expectation (\<lambda>x. min (6 * x\<^sup>2) (\<bar>t\<bar> * \<bar>x\<bar> ^ 3))"
[PROOF STATE]
proof (prove)
goal (1 subgoal):
1. t\<^sup>2 * expectation (\<lambda>x. min (6 * x\<^sup>2) (\<bar>t\<bar> * \<bar>x\<bar> ^ 3)) / 6 = t\<^sup>2 / 6 * expectation (\<lambda>x. min (6 * x\<^sup>2) (\<bar>t\<bar> * \<bar>x\<bar> ^ 3))
[PROOF STEP]
by (simp add: field_simps)
[PROOF STATE]
proof (state)
this:
t\<^sup>2 * expectation (\<lambda>x. min (6 * x\<^sup>2) (\<bar>t\<bar> * \<bar>x\<bar> ^ 3)) / 6 = t\<^sup>2 / 6 * expectation (\<lambda>x. min (6 * x\<^sup>2) (\<bar>t\<bar> * \<bar>x\<bar> ^ 3))
goal (1 subgoal):
1. cmod (char M t - complex_of_real (1 - t\<^sup>2 * \<sigma>2 / 2)) \<le> t\<^sup>2 / 6 * expectation (\<lambda>x. min (6 * x\<^sup>2) (\<bar>t\<bar> * \<bar>x\<bar> ^ 3))
[PROOF STEP]
finally
[PROOF STATE]
proof (chain)
picking this:
cmod (char M t - complex_of_real (1 - t\<^sup>2 * \<sigma>2 / 2)) \<le> t\<^sup>2 / 6 * expectation (\<lambda>x. min (6 * x\<^sup>2) (\<bar>t\<bar> * \<bar>x\<bar> ^ 3))
[PROOF STEP]
show ?thesis
[PROOF STATE]
proof (prove)
using this:
cmod (char M t - complex_of_real (1 - t\<^sup>2 * \<sigma>2 / 2)) \<le> t\<^sup>2 / 6 * expectation (\<lambda>x. min (6 * x\<^sup>2) (\<bar>t\<bar> * \<bar>x\<bar> ^ 3))
goal (1 subgoal):
1. cmod (char M t - complex_of_real (1 - t\<^sup>2 * \<sigma>2 / 2)) \<le> t\<^sup>2 / 6 * expectation (\<lambda>x. min (6 * x\<^sup>2) (\<bar>t\<bar> * \<bar>x\<bar> ^ 3))
[PROOF STEP]
.
[PROOF STATE]
proof (state)
this:
cmod (char M t - complex_of_real (1 - t\<^sup>2 * \<sigma>2 / 2)) \<le> t\<^sup>2 / 6 * expectation (\<lambda>x. min (6 * x\<^sup>2) (\<bar>t\<bar> * \<bar>x\<bar> ^ 3))
goal:
No subgoals!
[PROOF STEP]
qed |
variables (x y z : ℕ) (p : ℕ → Prop)
example (h : p ((x + 0) * (0 + y * 1 + z * 0))) : p (x * y) :=
by { simp at h, assumption }
|
[STATEMENT]
theorem HFail_Inv2b:
"\<lbrakk> Inv2b s; HFail s s' p \<rbrakk>
\<Longrightarrow> Inv2b s'"
[PROOF STATE]
proof (prove)
goal (1 subgoal):
1. \<lbrakk>Inv2b s; HFail s s' p\<rbrakk> \<Longrightarrow> Inv2b s'
[PROOF STEP]
by (auto simp add: Fail_def InitializePhase_def
Inv2b_def Inv2b_inner_def hasRead_def) |
A set $S$ is homotopy equivalent to the empty set if and only if $S$ is empty. |
lemmas continuous_mult [continuous_intros] = bounded_bilinear.continuous [OF bounded_bilinear_mult] |
open classical
theorem double_neg_elim: ∀ { P }, ¬¬P → P :=
begin
assume P : Prop,
assume pfNotNotP : ¬¬P,
cases em P with pfP pfnP,
show P, from pfP,
have f: false := pfNotNotP pfnP,
show P, from false.elim f
end
theorem double_neg_elim': ∀ {P}, (P ∨ ¬P) → ¬¬P → P :=
begin
assume P: Prop,
assume h: P ∨ ¬P,
assume notnotP: ¬¬P,
cases h with a b,
show P, from a,
show P, from false.elim (notnotP b),
end
theorem p_b_c' : ∀ P: Prop, (¬P → false) → P := λ P nnP, double_neg_elim nnP
theorem proof_by_contrapositive:
∀ P Q : Prop, (¬ Q → ¬ P) → (P → Q) :=
begin
assume P Q: Prop,
assume nqnp: (¬ Q → ¬ P),
assume p : P,
have nnq : ¬ Q → false :=
begin
assume nq : ¬Q,
have np : ¬P := nqnp nq,
show false, from np p
end,
show Q, from double_neg_elim nnq
end
theorem proof_by_contrapositive':
∀ P Q : Prop, (¬ Q → ¬ P) → (P → Q) :=
begin
assume P Q: Prop,
assume nqnp: (¬ Q → ¬ P),
assume p : P,
have nnq : ¬ Q → false :=
λ nq : ¬Q, nqnp nq p,
show Q, from double_neg_elim nnq
end
theorem proof_by_contrapositive''''':
∀ P Q : Prop, (¬ Q → ¬ P) → (P → Q) :=
begin
assume (P Q: Prop) (nqnp: ¬ Q → ¬ P) (p: P),
exact double_neg_elim (λ nq : ¬Q, nqnp nq p)
end
theorem proof_by_contrapositive'''':
∀ P Q : Prop, (¬ Q → ¬ P) → (P → Q) :=
begin
assume P Q: Prop,
assume nqnp: (¬ Q → ¬ P),
assume p : P,
exact double_neg_elim (λ nq : ¬Q, nqnp nq p)
end
theorem proof_by_contrapositive'': ∀ P Q : Prop, (¬ Q → ¬ P) → (P → Q) :=
λ (P Q : Prop) (nqnp : ¬ Q → ¬ P) (p: P),
double_neg_elim (λ nq : ¬ Q, nqnp nq p)
theorem proof_by_contrapositive''': ∀ P Q : Prop, (¬ Q → ¬ P) → (P → Q) :=
λ P Q nqnp p, double_neg_elim (λ nq, nqnp nq p)
theorem z: ∀ { a }, ¬¬a → a :=
λ a b,
begin
cases em a with c d,
exact c,
exact false.elim (b d)
end
variable k: Prop
#check em k
#check or.by_cases
#check or.cases_on
theorem double_neg_elim'': ∀ {a}, ¬¬a → a :=
λ a b, or.cases_on (em a) (λ a, a) (λ c, false.elim (b c))
example {P: Prop} (a: ¬¬P) : double_neg_elim a = double_neg_elim'' a := rfl
theorem j: ∀ a b : Prop, (¬ b → ¬ a) → (a → b) :=
λ a b c d, z (λ e, c e d)
variables P Q: Prop
variable q : Q -- proof of Q
example : P → Q := λ p : P, q
example : P → Q := assume p : P, q
-- def prime (p : ℕ) := p ≥ 2 ∧ ∀ n, n | p → n = 1 ∨ n = p |
lemma unit_factor_monom [simp]: "unit_factor (monom a n) = [:unit_factor a:]" |
{-# OPTIONS --warning=error --safe --without-K #-}
open import LogicalFormulae
module Maybe where
data Maybe {a : _} (A : Set a) : Set a where
no : Maybe A
yes : A → Maybe A
joinMaybe : {a : _} → {A : Set a} → Maybe (Maybe A) → Maybe A
joinMaybe no = no
joinMaybe (yes s) = s
bindMaybe : {a b : _} → {A : Set a} → {B : Set b} → Maybe A → (A → Maybe B) → Maybe B
bindMaybe no f = no
bindMaybe (yes x) f = f x
applyMaybe : {a b : _} → {A : Set a} → {B : Set b} → Maybe (A → B) → Maybe A → Maybe B
applyMaybe f no = no
applyMaybe no (yes x) = no
applyMaybe (yes f) (yes x) = yes (f x)
yesInjective : {a : _} → {A : Set a} → {x y : A} → (yes x ≡ yes y) → x ≡ y
yesInjective {a} {A} {x} {.x} refl = refl
mapMaybe : {a b : _} → {A : Set a} → {B : Set b} → (f : A → B) → Maybe A → Maybe B
mapMaybe f no = no
mapMaybe f (yes x) = yes (f x)
defaultValue : {a : _} → {A : Set a} → (default : A) → Maybe A → A
defaultValue default no = default
defaultValue default (yes x) = x
noNotYes : {a : _} {A : Set a} {b : A} → (no ≡ yes b) → False
noNotYes ()
mapMaybePreservesNo : {a b : _} {A : Set a} {B : Set b} {f : A → B} {x : Maybe A} → mapMaybe f x ≡ no → x ≡ no
mapMaybePreservesNo {f = f} {no} pr = refl
mapMaybePreservesYes : {a b : _} {A : Set a} {B : Set b} {f : A → B} {x : Maybe A} {y : B} → mapMaybe f x ≡ yes y → Sg A (λ z → (x ≡ yes z) && (f z ≡ y))
mapMaybePreservesYes {f = f} {x} {y} map with x
mapMaybePreservesYes {f = f} {x} {y} map | yes z = z , (refl ,, yesInjective map)
|
From Tealeaves Require Export
Classes.Monad
Classes.Listable.Functor
Classes.Setlike.Monad.
Import Sets.Notations.
#[local] Generalizable Variable T A.
(** * Listable monads *)
(******************************************************************************)
Section ListableMonad.
Context
(T : Type -> Type)
`{Fmap T} `{Return T} `{Join T} `{Tolist T}.
Class ListableMonad :=
{ lmon_monad :> Monad T;
lmon_functor :> ListableFunctor T;
lmon_ret :
`(tolist T ∘ ret T = ret list (A:=A));
lmon_join :
`(tolist T ∘ join T = join list ∘ tolist T ∘ fmap T (tolist T (A:=A)));
}.
End ListableMonad.
(** ** Instance for [list] *)
(******************************************************************************)
Section Listable_list.
#[program] Instance: ListableMonad list :=
{| lmon_functor := ListableFunctor_instance_0; |}.
Next Obligation.
ext t. unfold compose. unfold_ops @Tolist_list.
now rewrite (fun_fmap_id list).
Qed.
End Listable_list.
(** * Characterizations of listable monad compatibility conditions *)
(******************************************************************************)
Section listable_monad_compatibility_conditions.
Generalizable All Variables.
Context
`{Monad T}
`{Tolist T}
`{! ListableFunctor T}.
(** The left-hand condition states that the natural transformation
<<ret T>> commutes with taking <<tolist>>, i.e. that <<ret T>> is a
list-preserving natural transformation. The right-hand condition
is one half of the statement that <<tolist>> forms a monad
homomorphism. *)
Lemma tolist_ret_iff {A} :
(tolist T ∘ ret T = tolist (fun x => x) (A:=A)) <->
(tolist T ∘ ret T = ret list (A:=A)).
Proof with auto.
split...
Qed.
(** The left-hand condition states that the natural transformation
<<join T>> is <<tolist>>-preserving. The right-hand condition is
one half of the statement that <<tolist>> forms a monad
homomorphism. *)
Lemma tolist_join_iff {A} :
`(tolist T ∘ join T (A:=A) = tolist (T ∘ T)) <->
`(tolist T ∘ join T (A:=A) = join list ∘ tolist T ∘ fmap T (tolist T)).
Proof with auto.
split...
Qed.
Theorem listable_monad_compatibility_spec :
Monad_Hom T list (@tolist T _) <->
ListPreservingTransformation (@ret T _) /\
ListPreservingTransformation (@join T _).
Proof with auto.
split.
- introv mhom. inverts mhom. inverts mhom_domain. split.
+ constructor...
introv. symmetry. rewrite tolist_ret_iff...
+ constructor...
introv. symmetry. apply tolist_join_iff...
- intros [h1 h2]. inverts h1. inverts h2.
constructor; try typeclasses eauto.
+ introv. rewrite <- tolist_ret_iff...
+ introv. rewrite <- tolist_join_iff...
Qed.
Theorem listable_monad_compatibility_spec2 :
Monad_Hom T list (@tolist T _) <->
ListableMonad T.
Proof.
rewrite listable_monad_compatibility_spec.
split.
- intros [[] []]. constructor; try typeclasses eauto; eauto.
- intros []. split.
+ constructor; try typeclasses eauto; eauto.
+ constructor; try typeclasses eauto; eauto.
Qed.
End listable_monad_compatibility_conditions.
(** * Listable monads *)
(******************************************************************************)
(** * Properties of listable monads *)
(******************************************************************************)
Section ListableMonad_theory.
Context
`{ListableMonad T}.
Corollary tolist_ret A (a : A) :
tolist T (ret T a) = ret list a.
Proof.
intros. compose near a on left.
now rewrite (lmon_ret T).
Qed.
Corollary tolist_join A (t : T (T A)) :
tolist T (join T t) = join list (tolist T (fmap T (tolist T) t)).
Proof.
intros. compose near t on left.
now rewrite (lmon_join T).
Qed.
Theorem return_injective : forall A (a b : A),
ret T a = ret T b -> a = b.
Proof.
introv. intro heq.
assert (lemma : tolist T (ret T a) = tolist T (ret T b)).
{ now rewrite heq. }
rewrite 2(tolist_ret) in lemma. now inverts lemma.
Qed.
End ListableMonad_theory.
(** ** Listable monads are set-like *)
(******************************************************************************)
Section ListableMonad_setlike.
Context
`{ListableMonad T}.
Theorem toset_ret_Listable :
`(toset T ∘ ret T (A:=A) = ret set).
Proof.
intros. unfold toset, Toset_Tolist, compose. ext a.
rewrite tolist_ret.
compose near a on left.
rewrite toset_ret_list.
reflexivity.
Qed.
Theorem toset_join_Listable :
`(toset T ∘ join T = join set ∘ toset T ∘ fmap T (toset T (A:=A))).
Proof.
intros. unfold toset, Toset_Tolist.
rewrite <- (fun_fmap_fmap T).
reassociate -> on right.
change_right (join (A:=A) set ∘ toset list ∘ (tolist T
∘ fmap T (toset list)) ∘ fmap T (tolist T)).
rewrite <- natural.
reassociate <- on right.
rewrite <- toset_join_list.
reassociate -> on left.
now rewrite (lmon_join T).
Qed.
#[export] Instance SetlikeMonad_Listable : SetlikeMonad T :=
{| xmon_ret := toset_ret_Listable;
xmon_join := toset_join_Listable;
xmon_ret_injective := return_injective;
|}.
End ListableMonad_setlike.
(*
This needs the Kleisli-style presentation available
(** * A counter-example of a respectfulness property. *)
(******************************************************************************)
(** [list] is a counterexample to the strong respectfulness condition for <<bind>>. *)
Example f1 : nat -> list nat :=
fun n => match n with
| 0 => [4 ; 5]
| 1 => [ 6 ]
| _ => [ 42 ]
end.
Example f2 : nat -> list nat :=
fun n => match n with
| 0 => [ 4 ]
| 1 => [ 5 ; 6 ]
| _ => [ 42 ]
end.
Definition l := [ 0 ; 1 ].
Import Monad.ToKleisli.
Import Monad.ToKleisli.Operation.
Lemma bind_f1_f2_equal : bind list f1 l = bind list f2 l.
reflexivity.
Qed.
Lemma f1_f2_not_equal : ~(forall x, x ∈ l -> f1 x = f2 x).
Proof.
intro hyp.
assert (0 ∈ l) by (cbn; now left).
specialize (hyp 0 ltac:(auto)).
cbv in hyp.
now inverts hyp.
Qed.
Lemma list_not_free :
~ (forall (l : list nat), bind list f1 l = bind list f2 l -> (forall x, x ∈ l -> f1 x = f2 x)).
Proof.
intro H. specialize (H l bind_f1_f2_equal).
apply f1_f2_not_equal. apply H.
Qed.
*)
|
module Nat1 where
data ℕ : Set where
zero : ℕ
succ : ℕ → ℕ
_+_ : ℕ → ℕ → ℕ
zero + b = b
succ a + b = succ (a + b)
open import Equality
one = succ zero
two = succ one
three = succ two
0-is-id : ∀ (n : ℕ) → (n + zero) ≡ n
0-is-id zero =
begin
(zero + zero) ≈ zero by definition
∎
0-is-id (succ y) =
begin
(succ y + zero) ≈ succ (y + zero) by definition
≈ succ y by cong succ (0-is-id y)
∎
+-assoc : ∀ (a b c : ℕ) → (a + b) + c ≡ a + (b + c)
+-assoc zero b c = definition
+-assoc (succ a) b c =
begin ((succ a + b) + c)
≈ succ (a + b) + c by definition
≈ succ ((a + b) + c) by definition
≈ succ (a + (b + c)) by cong succ (+-assoc a b c)
≈ succ a + (b + c) by definition
∎
{-
+-assoc zero b c = definition
+-assoc (succ a) b c =
begin ((succ a + b) + c)
≈ succ (a + b) + c by definition
≈ succ ((a + b) + c) by definition
≈ succ (a + (b + c)) by cong succ (+-assoc a b c)
≈ succ a + (b + c) by definition
∎
-}
|
lemma content_0 [simp]: "content 0 = 0" |
Good news if you are an Amazon/eCom marketer!
Launching today at 11am EDT is a new Wordpress store theme called EcomBox which allows you to create profitable eCom/Amazon affiliate store in any niche faster.
Apparel and accessories are the fastest growing sectors in eCommerce, and with EcomBox you can tap into these 2 niches faster than before.
I'll send you an email when the early bird door opens in just moments away from now. In the meantime, do check out the theme demo here. |
{-# OPTIONS --exact-split #-}
{-# OPTIONS --no-sized-types #-}
{-# OPTIONS --no-universe-polymorphism #-}
{-# OPTIONS --without-K #-}
module FOT.FOTC.Data.Conat.PropertiesI where
open import FOTC.Base
open import FOTC.Data.Conat
open import FOTC.Data.Conat.PropertiesI
open import FOTC.Data.Nat
------------------------------------------------------------------------------
-- 25 April 2014, Failed with --without-K.
--
{-# TERMINATING #-}
Conat→N : ∀ {n} → Conat n → N n
Conat→N Cn with Conat-out Cn
... | inj₁ prf = subst N (sym prf) nzero
... | inj₂ (n' , refl , Cn') = nsucc (Conat→N Cn')
|
informal statement If $x$ is an element of infinite order in $G$, prove that the elements $x^{n}, n \in \mathbb{Z}$ are all distinct.formal statement theorem exercise_1_6_4 :
is_empty (multiplicative ℝ ≃* multiplicative ℂ) := |
||| The content of this module is based on the paper
||| Applications of Applicative Proof Search
||| by Liam O'Connor
|||
||| The main difference is that we use `Colist1` for the type of
||| generators rather than `Stream`. This allows us to avoid generating
||| many duplicates when dealing with finite types which are common in
||| programming (Bool) but even more so in dependently typed programming
||| (Vect 0, Fin (S n), etc.).
module Search.Generator
import Data.Colist
import Data.Colist1
import Data.Fin
import Data.List
import Data.Stream
import Data.Vect
------------------------------------------------------------------------
-- Interface
||| A generator for a given type is a non-empty colist of values of that
||| type.
public export
interface Generator a where
generate : Colist1 a
------------------------------------------------------------------------
-- Implementations
-- Finite types
||| ALL of the natural numbers
public export
Generator Nat where
generate = fromStream nats
||| ALL of the booleans
public export
Generator Bool where
generate = True ::: [False]
||| ALL of the Fins
public export
{n : Nat} -> Generator (Fin (S n)) where
generate = fromList1 (allFins n)
-- Polymorphic generators
||| We typically want to generate a generator for a unit-terminated right-nested
||| product so we have this special case that keeps the generator minimal.
public export
Generator a => Generator (a, ()) where
generate = map (,()) generate
||| Put two generators together by exploring the plane they define.
||| This uses Cantor's zig zag traversal
public export
(Generator a, Generator b) => Generator (a, b) where
generate = plane generate (\ _ => generate)
||| Put two generators together by exploring the plane they define.
||| This uses Cantor's zig zag traversal
public export
{0 b : a -> Type} -> (Generator a, (x : a) -> Generator (b x)) =>
Generator (x : a ** b x) where
generate = plane generate (\ x => generate)
||| Build entire vectors of values
public export
{n : Nat} -> Generator a => Generator (Vect n a) where
generate = case n of
Z => [] ::: []
S n => map (uncurry (::)) generate
||| Generate arbitrary lists of values
||| Departing from the paper, to avoid having infinitely many copies of
||| the empty list, we handle the case `n = 0` separately.
public export
Generator a => Generator (List a) where
generate = [] ::: forget (planeWith listy generate vectors) where
listy : (n : Nat) -> Vect (S n) a -> List a
listy _ = toList
vectors : (n : Nat) -> Colist1 (Vect (S n) a)
vectors n = generate
|
--------------------------------------------------------------------------------
-- This is part of Agda Inference Systems
{-# OPTIONS --guardedness #-}
module is-lib.InfSys {𝓁} where
open import is-lib.InfSys.Base {𝓁} public
open import is-lib.InfSys.Induction {𝓁} public
open import is-lib.InfSys.Coinduction {𝓁} public
open import is-lib.InfSys.FlexCoinduction {𝓁} public
open MetaRule public
open FinMetaRule public
open IS public |
But , in <unk> darkness , guess each sweet
|
# This file was generated, do not modify it. # hide
misclassification_rate(mode.(ŷ), ytrain) |
{-# OPTIONS --rewriting #-}
module NewEquations where
open import Common.Prelude hiding (map; _++_)
open import Common.Equality
infixr 5 _++_
map : ∀ {A B : Set} → (A → B) → List A → List B
map f [] = []
map f (x ∷ xs) = (f x) ∷ (map f xs)
_++_ : ∀ {A : Set} → List A → List A → List A
[] ++ ys = ys
(x ∷ xs) ++ ys = x ∷ (xs ++ ys)
fold : ∀ {A B : Set} → (A → B → B) → B → List A → B
fold f v [] = v
fold f v (x ∷ xs) = f x (fold f v xs)
++-[] : ∀ {A} {xs : List A} → xs ++ [] ≡ xs
++-[] {xs = []} = refl
++-[] {xs = x ∷ xs} = cong (_∷_ x) ++-[]
++-assoc : ∀ {A} {xs ys zs : List A} → (xs ++ ys) ++ zs ≡ xs ++ (ys ++ zs)
++-assoc {xs = []} = refl
++-assoc {xs = x ∷ xs} = cong (_∷_ x) (++-assoc {xs = xs})
map-id : ∀ {A} {xs : List A} → map (λ x → x) xs ≡ xs
map-id {xs = []} = refl
map-id {xs = x ∷ xs} = cong (_∷_ x) map-id
map-fuse : ∀ {A B C} {f : B → C} {g : A → B} {xs : List A} → map f (map g xs) ≡ map (λ x → f (g x)) xs
map-fuse {xs = []} = refl
map-fuse {xs = x ∷ xs} = cong (_∷_ _) map-fuse
map-++ : ∀ {A B} {f : A → B} {xs ys : List A} → map f (xs ++ ys) ≡ (map f xs) ++ (map f ys)
map-++ {xs = []} = refl
map-++ {xs = x ∷ xs} = cong (_∷_ _) (map-++ {xs = xs})
fold-map : ∀ {A B C} {f : A → B} {c : B → C → C} {n : C} {xs : List A} →
fold c n (map f xs) ≡ fold (λ x → c (f x)) n xs
fold-map {xs = []} = refl
fold-map {c = c} {xs = x ∷ xs} = cong (c _) (fold-map {xs = xs})
fold-++ : ∀ {A B} {c : A → B → B} {n : B} {xs ys : List A} →
fold c n (xs ++ ys) ≡ fold c (fold c n ys) xs
fold-++ {xs = []} = refl
fold-++ {c = c} {xs = x ∷ xs} = cong (c _) (fold-++ {xs = xs})
{-# BUILTIN REWRITE _≡_ #-}
{-# REWRITE ++-[] #-}
{-# REWRITE ++-assoc #-}
{-# REWRITE map-id #-}
{-# REWRITE map-fuse #-}
{-# REWRITE map-++ #-}
{-# REWRITE fold-map #-}
{-# REWRITE fold-++ #-}
record _×_ (A B : Set) : Set where
constructor _,_
field
fst : A
snd : B
swap : ∀ {A B} → A × B → B × A
swap (x , y) = y , x
test₁ : ∀ {A B} {xs : List (A × B)} → map swap (map swap xs) ≡ xs
test₁ = refl
|
-- vim: set ft=idris sw=2 ts=2:
--
-- perfect_number.idr
-- Calculate 'perfect' numbers in the Idris programming language
--
module PerfectNumber
-- predicate to check whether given number is perfect
export
is_perfect : (Integral a, Ord a) => a -> Bool
is_perfect n = if n > 0 then loop n 1 0 else False
where
loop : a -> a -> a -> Bool
loop n i sum = if n == i then (sum == n) else
if (n `mod` i) == 0 then loop n (i + 1) (sum + i) else loop n (i + 1) sum
-- generate 'perfect' numbers until given limit
export
perfect_numbers : Nat -> List Nat
perfect_numbers n = filter (\x => is_perfect x) $ natRange n
|
universes u
def f {α : Type u} [BEq α] (xs : List α) (y : α) : α := do
for x in xs do
if x == y then
return x
return y
structure S :=
(key val : Nat)
instance : BEq S :=
⟨fun a b => a.key == b.key⟩
theorem ex1 : f (α := S) [⟨1, 2⟩, ⟨3, 4⟩, ⟨5, 6⟩] ⟨3, 0⟩ = ⟨3, 4⟩ :=
rfl
theorem ex2 : f (α := S) [⟨1, 2⟩, ⟨3, 4⟩, ⟨5, 6⟩] ⟨4, 10⟩ = ⟨4, 10⟩ :=
rfl
|
/-
Copyright (c) 2016 Jeremy Avigad. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Jeremy Avigad
The order relation on the integers.
-/
import Mathlib.Init.Data.Int.Basic
import Mathlib.Algebra.Ring.Basic
namespace Int
theorem nonneg_def {a : ℤ} : NonNeg a ↔ ∃ n : ℕ, a = n :=
⟨fun ⟨n⟩ => ⟨n, rfl⟩, fun h => match a, h with | _, ⟨n, rfl⟩ => ⟨n⟩⟩
lemma NonNeg.elim {a : ℤ} : NonNeg a → ∃ n : ℕ, a = n := nonneg_def.1
lemma nonneg_or_nonneg_neg (a : ℤ) : NonNeg a ∨ NonNeg (-a) :=
match a with | ofNat n => Or.inl ⟨_⟩ | negSucc n => Or.inr ⟨_⟩
theorem le_def (a b : ℤ) : a ≤ b ↔ NonNeg (b - a) := Iff.refl _
theorem lt_iff_add_one_le (a b : ℤ) : a < b ↔ (a+1) ≤ b := Iff.refl _
theorem le.intro_sub {a b : ℤ} (n : ℕ) (h : b - a = n) : a ≤ b := by
simp [le_def, h]; constructor
attribute [local simp] Int.sub_eq_add_neg Int.add_assoc Int.add_right_neg
Int.add_left_neg Int.zero_add Int.add_zero Int.neg_add Int.neg_neg Int.neg_zero
theorem le.intro {a b : ℤ} (n : ℕ) (h : a + n = b) : a ≤ b :=
le.intro_sub n $ by rw [← h, Int.add_comm]; simp
theorem le.dest_sub {a b : ℤ} (h : a ≤ b) : ∃ n : ℕ, b - a = n := nonneg_def.1 h
theorem le.dest {a b : ℤ} (h : a ≤ b) : ∃ n : ℕ, a + n = b :=
let ⟨n, h₁⟩ := le.dest_sub h
⟨n, by rw [← h₁, Int.add_comm]; simp⟩
protected theorem le_total (a b : ℤ) : a ≤ b ∨ b ≤ a :=
(nonneg_or_nonneg_neg (b - a)).imp_right fun H => by
rwa [(by simp [Int.add_comm] : -(b - a) = a - b)] at H
@[simp, norm_cast] theorem ofNat_le {m n : ℕ} : (↑m : ℤ) ≤ ↑n ↔ m ≤ n :=
⟨fun h =>
let ⟨k, hk⟩ := le.dest h
Nat.le.intro $ Int.ofNat.inj $ (Int.ofNat_add m k).trans hk,
fun h =>
let ⟨k, (hk : m + k = n)⟩ := Nat.le.dest h
le.intro k (by rw [← hk]; rfl)⟩
theorem ofNat_zero_le (n : ℕ) : 0 ≤ (↑n : ℤ) := ofNat_le.2 n.zero_le
theorem eq_ofNat_of_zero_le {a : ℤ} (h : 0 ≤ a) : ∃ n : ℕ, a = n := by
have t := le.dest_sub h; simp at t; exact t
theorem eq_succ_of_zero_lt {a : ℤ} (h : 0 < a) : ∃ n : ℕ, a = n.succ :=
let ⟨n, (h : 1 + n = a)⟩ := le.dest h
⟨n, by rw [Nat.add_comm] at h <;> exact h.symm⟩
theorem lt_add_succ (a : ℤ) (n : ℕ) : a < a + Nat.succ n :=
le.intro n $ by rw [Int.add_comm, Int.add_left_comm]; rfl
theorem lt.intro {a b : ℤ} {n : ℕ} (h : a + Nat.succ n = b) : a < b :=
h ▸ lt_add_succ a n
theorem lt.dest {a b : ℤ} (h : a < b) : ∃ n : ℕ, a + Nat.succ n = b :=
(le.dest h).imp fun n h => by
rwa [Int.add_comm, Int.add_left_comm] at h
@[simp, norm_cast] theorem ofNat_lt {n m : ℕ} : (↑n : ℤ) < ↑m ↔ n < m := by
rw [lt_iff_add_one_le, ← Nat.cast_succ, ofNat_le]; rfl
theorem ofNat_nonneg (n : ℕ) : 0 ≤ ofNat n := ⟨_⟩
theorem ofNat_succ_pos (n : Nat) : 0 < (Nat.succ n : ℤ) := ofNat_lt.2 $ Nat.succ_pos _
protected theorem le_refl (a : ℤ) : a ≤ a :=
le.intro _ (Int.add_zero a)
protected theorem le_trans {a b c : ℤ} (h₁ : a ≤ b) (h₂ : b ≤ c) : a ≤ c :=
let ⟨n, hn⟩ := le.dest h₁; let ⟨m, hm⟩ := le.dest h₂
le.intro (n + m) $ by rw [← hm, ← hn, Int.add_assoc, Nat.cast_add]
protected theorem le_antisymm {a b : ℤ} (h₁ : a ≤ b) (h₂ : b ≤ a) : a = b := by
let ⟨n, hn⟩ := le.dest h₁; let ⟨m, hm⟩ := le.dest h₂
have := hn; rw [← hm, Int.add_assoc, ← Nat.cast_add] at this
have := Int.ofNat.inj $ Int.add_left_cancel $ this.trans (Int.add_zero _).symm
rw [← hn, Nat.eq_zero_of_add_eq_zero_left this, Nat.cast_zero, Int.add_zero a]
protected theorem lt_irrefl (a : ℤ) : ¬a < a := fun H =>
let ⟨n, hn⟩ := lt.dest H
have : (a+Nat.succ n) = a+0 := by
rw [hn, Int.add_zero]
have : Nat.succ n = 0 := Int.coe_nat_inj (Int.add_left_cancel this)
show False from Nat.succ_ne_zero _ this
protected theorem ne_of_lt {a b : ℤ} (h : a < b) : a ≠ b := fun e => by
cases e; exact Int.lt_irrefl _ h
theorem le_of_lt {a b : ℤ} (h : a < b) : a ≤ b :=
let ⟨n, hn⟩ := lt.dest h; le.intro _ hn
protected theorem lt_iff_le_and_ne {a b : ℤ} : a < b ↔ a ≤ b ∧ a ≠ b := by
refine ⟨fun h => ⟨le_of_lt h, Int.ne_of_lt h⟩, fun ⟨aleb, aneb⟩ => ?_⟩
let ⟨n, hn⟩ := le.dest aleb
have : n ≠ 0 := aneb.imp fun this' => by
rw [← hn, this', Nat.cast_zero, Int.add_zero]
exact lt.intro $ by rwa [← Nat.succ_pred_eq_of_pos (Nat.pos_of_ne_zero this)] at hn
theorem lt_succ (a : ℤ) : a < a + 1 := Int.le_refl (a + 1)
protected theorem add_le_add_left {a b : ℤ} (h : a ≤ b) (c : ℤ) : c + a ≤ c + b :=
let ⟨n, hn⟩ := le.dest h; le.intro n $ by rw [Int.add_assoc, hn]
protected theorem add_lt_add_left {a b : ℤ} (h : a < b) (c : ℤ) : c + a < c + b := by
refine Int.lt_iff_le_and_ne.2 ⟨Int.add_le_add_left (le_of_lt h) _, fun heq => ?_⟩
exact Int.lt_irrefl b $ by rwa [Int.add_left_cancel heq] at h
protected theorem mul_nonneg {a b : ℤ} (ha : 0 ≤ a) (hb : 0 ≤ b) : 0 ≤ a * b := by
let ⟨n, hn⟩ := eq_ofNat_of_zero_le ha
let ⟨m, hm⟩ := eq_ofNat_of_zero_le hb
rw [hn, hm, ← Nat.cast_mul]; exact ofNat_nonneg _
protected theorem mul_pos {a b : ℤ} (ha : 0 < a) (hb : 0 < b) : 0 < a * b := by
let ⟨n, hn⟩ := eq_succ_of_zero_lt ha
let ⟨m, hm⟩ := eq_succ_of_zero_lt hb
rw [hn, hm, ← Nat.cast_mul]; exact ofNat_succ_pos _
protected theorem zero_lt_one : (0 : ℤ) < 1 := ⟨_⟩
protected theorem lt_iff_le_not_le {a b : ℤ} : a < b ↔ a ≤ b ∧ ¬b ≤ a := by
rw [Int.lt_iff_le_and_ne]
constructor <;> refine fun ⟨h, h'⟩ => ⟨h, h'.imp fun h' => ?_⟩
· exact Int.le_antisymm h h'
· subst h'; apply Int.le_refl
instance : LinearOrder Int where
le := (·≤·)
le_refl := Int.le_refl
le_trans := @Int.le_trans
le_antisymm := @Int.le_antisymm
lt := (·<·)
lt_iff_le_not_le := @Int.lt_iff_le_not_le
le_total := Int.le_total
decidable_eq := by infer_instance
decidable_le := by infer_instance
decidable_lt := by infer_instance
theorem eq_natAbs_of_zero_le {a : ℤ} (h : 0 ≤ a) : a = natAbs a := by
let ⟨n, e⟩ := eq_ofNat_of_zero_le h
rw [e]; rfl
theorem le_natAbs {a : ℤ} : a ≤ natAbs a :=
Or.elim (le_total 0 a)
(fun h => by rw [eq_natAbs_of_zero_le h]; apply Int.le_refl)
fun h => le_trans h (ofNat_zero_le _)
theorem neg_succ_lt_zero (n : ℕ) : -[1+ n] < 0 :=
lt_of_not_ge $ fun h => by
let ⟨m, h⟩ := eq_ofNat_of_zero_le h
contradiction
theorem eq_neg_succ_of_lt_zero : ∀ {a : ℤ}, a < 0 → ∃ n : ℕ, a = -[1+ n]
| (n : ℕ), h => absurd h (not_lt_of_ge (ofNat_zero_le _))
| -[1+ n], h => ⟨n, rfl⟩
protected theorem eq_neg_of_eq_neg {a b : ℤ} (h : a = -b) : b = -a := by
rw [h, Int.neg_neg]
protected theorem neg_add_cancel_left (a b : ℤ) : -a + (a + b) = b := by
rw [← Int.add_assoc, Int.add_left_neg, Int.zero_add]
protected theorem add_neg_cancel_left (a b : ℤ) : a + (-a + b) = b := by
rw [← Int.add_assoc, Int.add_right_neg, Int.zero_add]
protected theorem add_neg_cancel_right (a b : ℤ) : a + b + -b = a := by
rw [Int.add_assoc, Int.add_right_neg, Int.add_zero]
protected theorem neg_add_cancel_right (a b : ℤ) : a + -b + b = a := by
rw [Int.add_assoc, Int.add_left_neg, Int.add_zero]
protected theorem sub_self (a : ℤ) : a - a = 0 := by
rw [Int.sub_eq_add_neg, Int.add_right_neg]
protected theorem sub_eq_zero_of_eq {a b : ℤ} (h : a = b) : a - b = 0 := by
rw [h, Int.sub_self]
protected theorem eq_of_sub_eq_zero {a b : ℤ} (h : a - b = 0) : a = b := by
have : 0 + b = b := by rw [Int.zero_add]
have : a - b + b = b := by rwa [h]
rwa [Int.sub_eq_add_neg, Int.neg_add_cancel_right] at this
protected theorem sub_eq_zero_iff_eq {a b : ℤ} : a - b = 0 ↔ a = b :=
⟨Int.eq_of_sub_eq_zero, Int.sub_eq_zero_of_eq⟩
@[simp] protected theorem neg_eq_of_add_eq_zero {a b : ℤ} (h : a + b = 0) : -a = b := by
rw [← Int.add_zero (-a), ← h, ← Int.add_assoc, Int.add_left_neg, Int.zero_add]
protected theorem neg_mul_eq_neg_mul (a b : ℤ) : -(a * b) = -a * b :=
Int.neg_eq_of_add_eq_zero $ by
rw [← Int.distrib_right, Int.add_right_neg, Int.zero_mul]
protected theorem neg_mul_eq_mul_neg (a b : ℤ) : -(a * b) = a * -b :=
Int.neg_eq_of_add_eq_zero $ by
rw [← Int.distrib_left, Int.add_right_neg, Int.mul_zero]
theorem neg_mul_eq_neg_mul_symm (a b : ℤ) : -a * b = -(a * b) :=
(Int.neg_mul_eq_neg_mul a b).symm
theorem mul_neg_eq_neg_mul_symm (a b : ℤ) : a * -b = -(a * b) :=
(Int.neg_mul_eq_mul_neg a b).symm
attribute [local simp] neg_mul_eq_neg_mul_symm mul_neg_eq_neg_mul_symm
protected theorem neg_mul_neg (a b : ℤ) : -a * -b = a * b := by simp
protected theorem neg_mul_comm (a b : ℤ) : -a * b = a * -b := by simp
protected theorem mul_sub (a b c : ℤ) : a * (b - c) = a * b - a * c :=
calc
a * (b - c) = a * b + a * -c := Int.distrib_left a b (-c)
_ = a * b - a * c := by simp
protected theorem sub_mul (a b c : ℤ) : (a - b) * c = a * c - b * c :=
calc
(a - b) * c = a * c + -b * c := Int.distrib_right a (-b) c
_ = a * c - b * c := by simp
protected theorem le_of_add_le_add_left {a b c : ℤ} (h : a + b ≤ a + c) : b ≤ c := by
have : -a + (a + b) ≤ -a + (a + c) := Int.add_le_add_left h _
simp [Int.neg_add_cancel_left] at this
assumption
protected theorem lt_of_add_lt_add_left {a b c : ℤ} (h : a + b < a + c) : b < c := by
have : -a + (a + b) < -a + (a + c) := Int.add_lt_add_left h _
simp [Int.neg_add_cancel_left] at this
assumption
protected theorem add_le_add_right {a b : ℤ} (h : a ≤ b) (c : ℤ) : a + c ≤ b + c :=
Int.add_comm c a ▸ Int.add_comm c b ▸ Int.add_le_add_left h c
protected theorem add_lt_add_right {a b : ℤ} (h : a < b) (c : ℤ) : a + c < b + c := by
rw [Int.add_comm a c, Int.add_comm b c]
exact Int.add_lt_add_left h c
protected theorem add_le_add {a b c d : ℤ} (h₁ : a ≤ b) (h₂ : c ≤ d) : a + c ≤ b + d :=
le_trans (Int.add_le_add_right h₁ c) (Int.add_le_add_left h₂ b)
protected theorem le_add_of_nonneg_right {a b : ℤ} (h : 0 ≤ b) : a ≤ a + b := by
have : a + b ≥ a + 0 := Int.add_le_add_left h a
rwa [Int.add_zero] at this
protected theorem le_add_of_nonneg_left {a b : ℤ} (h : 0 ≤ b) : a ≤ b + a := by
have : 0 + a ≤ b + a := Int.add_le_add_right h a
rwa [Int.zero_add] at this
protected theorem add_lt_add {a b c d : ℤ} (h₁ : a < b) (h₂ : c < d) : a + c < b + d :=
lt_trans (Int.add_lt_add_right h₁ c) (Int.add_lt_add_left h₂ b)
protected theorem add_lt_add_of_le_of_lt {a b c d : ℤ} (h₁ : a ≤ b) (h₂ : c < d) : a + c < b + d :=
lt_of_le_of_lt (Int.add_le_add_right h₁ c) (Int.add_lt_add_left h₂ b)
protected theorem add_lt_add_of_lt_of_le {a b c d : ℤ} (h₁ : a < b) (h₂ : c ≤ d) : a + c < b + d :=
lt_of_lt_of_le (Int.add_lt_add_right h₁ c) (Int.add_le_add_left h₂ b)
protected theorem lt_add_of_pos_right (a : ℤ) {b : ℤ} (h : 0 < b) : a < a + b := by
have : a + 0 < a + b := Int.add_lt_add_left h a
rwa [Int.add_zero] at this
protected theorem lt_add_of_pos_left (a : ℤ) {b : ℤ} (h : 0 < b) : a < b + a := by
have : 0 + a < b + a := Int.add_lt_add_right h a
rwa [Int.zero_add] at this
protected theorem le_of_add_le_add_right {a b c : ℤ} (h : a + b ≤ c + b) : a ≤ c :=
Int.le_of_add_le_add_left (a := b) $ by rwa [Int.add_comm b a, Int.add_comm b c]
protected theorem lt_of_add_lt_add_right {a b c : ℤ} (h : a + b < c + b) : a < c :=
Int.lt_of_add_lt_add_left (a := b) $ by rwa [Int.add_comm b a, Int.add_comm b c]
protected theorem add_nonneg {a b : ℤ} (ha : 0 ≤ a) (hb : 0 ≤ b) : 0 ≤ a + b :=
Int.zero_add 0 ▸ Int.add_le_add ha hb
protected theorem add_pos {a b : ℤ} (ha : 0 < a) (hb : 0 < b) : 0 < a + b :=
Int.zero_add 0 ▸ Int.add_lt_add ha hb
protected theorem add_pos_of_pos_of_nonneg {a b : ℤ} (ha : 0 < a) (hb : 0 ≤ b) : 0 < a + b :=
Int.zero_add 0 ▸ Int.add_lt_add_of_lt_of_le ha hb
protected theorem add_pos_of_nonneg_of_pos {a b : ℤ} (ha : 0 ≤ a) (hb : 0 < b) : 0 < a + b :=
Int.zero_add 0 ▸ Int.add_lt_add_of_le_of_lt ha hb
protected theorem add_nonpos {a b : ℤ} (ha : a ≤ 0) (hb : b ≤ 0) : a + b ≤ 0 :=
Int.zero_add 0 ▸ Int.add_le_add ha hb
protected theorem add_neg {a b : ℤ} (ha : a < 0) (hb : b < 0) : a + b < 0 :=
Int.zero_add 0 ▸ Int.add_lt_add ha hb
protected theorem add_neg_of_neg_of_nonpos {a b : ℤ} (ha : a < 0) (hb : b ≤ 0) : a + b < 0 :=
Int.zero_add 0 ▸ Int.add_lt_add_of_lt_of_le ha hb
protected theorem add_neg_of_nonpos_of_neg {a b : ℤ} (ha : a ≤ 0) (hb : b < 0) : a + b < 0 :=
Int.zero_add 0 ▸ Int.add_lt_add_of_le_of_lt ha hb
protected theorem lt_add_of_le_of_pos {a b c : ℤ} (hbc : b ≤ c) (ha : 0 < a) : b < c + a :=
Int.add_zero b ▸ Int.add_lt_add_of_le_of_lt hbc ha
protected theorem sub_add_cancel (a b : ℤ) : a - b + b = a :=
Int.neg_add_cancel_right a b
protected theorem add_sub_cancel (a b : ℤ) : a + b - b = a :=
Int.add_neg_cancel_right a b
protected theorem add_sub_assoc (a b c : ℤ) : a + b - c = a + (b - c) := by
rw [Int.sub_eq_add_neg, Int.add_assoc, ← Int.sub_eq_add_neg]
protected theorem neg_le_neg {a b : ℤ} (h : a ≤ b) : -b ≤ -a := by
have : 0 ≤ -a + b := Int.add_left_neg a ▸ Int.add_le_add_left h (-a)
have : 0 + -b ≤ -a + b + -b := Int.add_le_add_right this (-b)
rwa [Int.add_neg_cancel_right, Int.zero_add] at this
protected theorem le_of_neg_le_neg {a b : ℤ} (h : -b ≤ -a) : a ≤ b :=
suffices - -a ≤ - -b by simp [Int.neg_neg] at this; assumption
Int.neg_le_neg h
protected theorem nonneg_of_neg_nonpos {a : ℤ} (h : -a ≤ 0) : 0 ≤ a :=
Int.le_of_neg_le_neg $ by rwa [Int.neg_zero]
protected theorem neg_nonpos_of_nonneg {a : ℤ} (h : 0 ≤ a) : -a ≤ 0 := by
have : -a ≤ -0 := Int.neg_le_neg h
rwa [Int.neg_zero] at this
protected theorem nonpos_of_neg_nonneg {a : ℤ} (h : 0 ≤ -a) : a ≤ 0 :=
Int.le_of_neg_le_neg $ by rwa [Int.neg_zero]
protected theorem neg_nonneg_of_nonpos {a : ℤ} (h : a ≤ 0) : 0 ≤ -a := by
have : -0 ≤ -a := Int.neg_le_neg h
rwa [Int.neg_zero] at this
protected theorem neg_lt_neg {a b : ℤ} (h : a < b) : -b < -a := by
have : 0 < -a + b := Int.add_left_neg a ▸ Int.add_lt_add_left h (-a)
have : 0 + -b < -a + b + -b := Int.add_lt_add_right this (-b)
rwa [Int.add_neg_cancel_right, Int.zero_add] at this
protected theorem lt_of_neg_lt_neg {a b : ℤ} (h : -b < -a) : a < b :=
Int.neg_neg a ▸ Int.neg_neg b ▸ Int.neg_lt_neg h
protected theorem pos_of_neg_neg {a : ℤ} (h : -a < 0) : 0 < a :=
Int.lt_of_neg_lt_neg $ by rwa [Int.neg_zero]
protected theorem neg_neg_of_pos {a : ℤ} (h : 0 < a) : -a < 0 := by
have : -a < -0 := Int.neg_lt_neg h
rwa [Int.neg_zero] at this
protected theorem neg_of_neg_pos {a : ℤ} (h : 0 < -a) : a < 0 :=
have : -0 < -a := by rwa [Int.neg_zero]
Int.lt_of_neg_lt_neg this
protected theorem neg_pos_of_neg {a : ℤ} (h : a < 0) : 0 < -a := by
have : -0 < -a := Int.neg_lt_neg h
rwa [Int.neg_zero] at this
protected theorem le_neg_of_le_neg {a b : ℤ} (h : a ≤ -b) : b ≤ -a := by
have h := Int.neg_le_neg h
rwa [Int.neg_neg] at h
protected theorem neg_le_of_neg_le {a b : ℤ} (h : -a ≤ b) : -b ≤ a := by
have h := Int.neg_le_neg h
rwa [Int.neg_neg] at h
protected theorem lt_neg_of_lt_neg {a b : ℤ} (h : a < -b) : b < -a := by
have h := Int.neg_lt_neg h
rwa [Int.neg_neg] at h
protected theorem neg_lt_of_neg_lt {a b : ℤ} (h : -a < b) : -b < a := by
have h := Int.neg_lt_neg h
rwa [Int.neg_neg] at h
protected theorem sub_nonneg_of_le {a b : ℤ} (h : b ≤ a) : 0 ≤ a - b := by
have h := Int.add_le_add_right h (-b)
rwa [Int.add_right_neg] at h
protected theorem le_of_sub_nonneg {a b : ℤ} (h : 0 ≤ a - b) : b ≤ a := by
have h := Int.add_le_add_right h b
rwa [Int.sub_add_cancel, Int.zero_add] at h
protected theorem sub_nonpos_of_le {a b : ℤ} (h : a ≤ b) : a - b ≤ 0 := by
have h := Int.add_le_add_right h (-b)
rwa [Int.add_right_neg] at h
protected theorem le_of_sub_nonpos {a b : ℤ} (h : a - b ≤ 0) : a ≤ b := by
have h := Int.add_le_add_right h b
rwa [Int.sub_add_cancel, Int.zero_add] at h
protected theorem sub_pos_of_lt {a b : ℤ} (h : b < a) : 0 < a - b := by
have h := Int.add_lt_add_right h (-b)
rwa [Int.add_right_neg] at h
protected theorem lt_of_sub_pos {a b : ℤ} (h : 0 < a - b) : b < a := by
have h := Int.add_lt_add_right h b
rwa [Int.sub_add_cancel, Int.zero_add] at h
protected theorem sub_neg_of_lt {a b : ℤ} (h : a < b) : a - b < 0 := by
have h := Int.add_lt_add_right h (-b)
rwa [Int.add_right_neg] at h
protected theorem lt_of_sub_neg {a b : ℤ} (h : a - b < 0) : a < b := by
have h := Int.add_lt_add_right h b
rwa [Int.sub_add_cancel, Int.zero_add] at h
protected theorem add_le_of_le_neg_add {a b c : ℤ} (h : b ≤ -a + c) : a + b ≤ c := by
have h := Int.add_le_add_left h a
rwa [Int.add_neg_cancel_left] at h
protected theorem le_neg_add_of_add_le {a b c : ℤ} (h : a + b ≤ c) : b ≤ -a + c := by
have h := Int.add_le_add_left h (-a)
rwa [Int.neg_add_cancel_left] at h
protected theorem add_le_of_le_sub_left {a b c : ℤ} (h : b ≤ c - a) : a + b ≤ c := by
have h := Int.add_le_add_left h a
rwa [← Int.add_sub_assoc, Int.add_comm a c, Int.add_sub_cancel] at h
protected theorem le_sub_left_of_add_le {a b c : ℤ} (h : a + b ≤ c) : b ≤ c - a := by
have h := Int.add_le_add_right h (-a)
rwa [Int.add_comm a b, Int.add_neg_cancel_right] at h
protected theorem add_le_of_le_sub_right {a b c : ℤ} (h : a ≤ c - b) : a + b ≤ c := by
have h := Int.add_le_add_right h b
rwa [Int.sub_add_cancel] at h
protected theorem le_sub_right_of_add_le {a b c : ℤ} (h : a + b ≤ c) : a ≤ c - b := by
have h := Int.add_le_add_right h (-b)
rwa [Int.add_neg_cancel_right] at h
protected theorem le_add_of_neg_add_le {a b c : ℤ} (h : -b + a ≤ c) : a ≤ b + c := by
have h := Int.add_le_add_left h b
rwa [Int.add_neg_cancel_left] at h
protected theorem neg_add_le_of_le_add {a b c : ℤ} (h : a ≤ b + c) : -b + a ≤ c := by
have h := Int.add_le_add_left h (-b)
rwa [Int.neg_add_cancel_left] at h
protected theorem le_add_of_sub_left_le {a b c : ℤ} (h : a - b ≤ c) : a ≤ b + c := by
have h := Int.add_le_add_right h b
rwa [Int.sub_add_cancel, Int.add_comm] at h
protected theorem sub_left_le_of_le_add {a b c : ℤ} (h : a ≤ b + c) : a - b ≤ c := by
have h := Int.add_le_add_right h (-b)
rwa [Int.add_comm b c, Int.add_neg_cancel_right] at h
protected theorem le_add_of_sub_right_le {a b c : ℤ} (h : a - c ≤ b) : a ≤ b + c := by
have h := Int.add_le_add_right h c
rwa [Int.sub_add_cancel] at h
protected theorem sub_right_le_of_le_add {a b c : ℤ} (h : a ≤ b + c) : a - c ≤ b := by
have h := Int.add_le_add_right h (-c)
rwa [Int.add_neg_cancel_right] at h
protected theorem le_add_of_neg_add_le_left {a b c : ℤ} (h : -b + a ≤ c) : a ≤ b + c := by
rw [Int.add_comm] at h
exact Int.le_add_of_sub_left_le h
protected theorem neg_add_le_left_of_le_add {a b c : ℤ} (h : a ≤ b + c) : -b + a ≤ c := by
rw [Int.add_comm]
exact Int.sub_left_le_of_le_add h
protected theorem le_add_of_neg_add_le_right {a b c : ℤ} (h : -c + a ≤ b) : a ≤ b + c := by
rw [Int.add_comm] at h
exact Int.le_add_of_sub_right_le h
protected theorem neg_add_le_right_of_le_add {a b c : ℤ} (h : a ≤ b + c) : -c + a ≤ b := by
rw [Int.add_comm] at h
exact Int.neg_add_le_left_of_le_add h
protected theorem le_add_of_neg_le_sub_left {a b c : ℤ} (h : -a ≤ b - c) : c ≤ a + b :=
Int.le_add_of_neg_add_le_left (Int.add_le_of_le_sub_right h)
protected theorem neg_le_sub_left_of_le_add {a b c : ℤ} (h : c ≤ a + b) : -a ≤ b - c := by
have h := Int.le_neg_add_of_add_le (Int.sub_left_le_of_le_add h)
rwa [Int.add_comm] at h
protected theorem le_add_of_neg_le_sub_right {a b c : ℤ} (h : -b ≤ a - c) : c ≤ a + b :=
Int.le_add_of_sub_right_le (Int.add_le_of_le_sub_left h)
protected theorem neg_le_sub_right_of_le_add {a b c : ℤ} (h : c ≤ a + b) : -b ≤ a - c :=
Int.le_sub_left_of_add_le (Int.sub_right_le_of_le_add h)
protected theorem sub_le_of_sub_le {a b c : ℤ} (h : a - b ≤ c) : a - c ≤ b :=
Int.sub_left_le_of_le_add (Int.le_add_of_sub_right_le h)
protected theorem sub_le_sub_left {a b : ℤ} (h : a ≤ b) (c : ℤ) : c - b ≤ c - a :=
Int.add_le_add_left (Int.neg_le_neg h) c
protected theorem sub_le_sub_right {a b : ℤ} (h : a ≤ b) (c : ℤ) : a - c ≤ b - c :=
Int.add_le_add_right h (-c)
protected theorem sub_le_sub {a b c d : ℤ} (hab : a ≤ b) (hcd : c ≤ d) : a - d ≤ b - c :=
Int.add_le_add hab (Int.neg_le_neg hcd)
protected theorem add_lt_of_lt_neg_add {a b c : ℤ} (h : b < -a + c) : a + b < c := by
have h := Int.add_lt_add_left h a
rwa [Int.add_neg_cancel_left] at h
protected theorem lt_neg_add_of_add_lt {a b c : ℤ} (h : a + b < c) : b < -a + c := by
have h := Int.add_lt_add_left h (-a)
rwa [Int.neg_add_cancel_left] at h
protected theorem add_lt_of_lt_sub_left {a b c : ℤ} (h : b < c - a) : a + b < c := by
have h := Int.add_lt_add_left h a
rwa [← Int.add_sub_assoc, Int.add_comm a c, Int.add_sub_cancel] at h
protected theorem lt_sub_left_of_add_lt {a b c : ℤ} (h : a + b < c) : b < c - a := by
have h := Int.add_lt_add_right h (-a)
rwa [Int.add_comm a b, Int.add_neg_cancel_right] at h
protected theorem add_lt_of_lt_sub_right {a b c : ℤ} (h : a < c - b) : a + b < c := by
have h := Int.add_lt_add_right h b
rwa [Int.sub_add_cancel] at h
protected theorem lt_sub_right_of_add_lt {a b c : ℤ} (h : a + b < c) : a < c - b := by
have h := Int.add_lt_add_right h (-b)
rwa [Int.add_neg_cancel_right] at h
protected theorem lt_add_of_neg_add_lt {a b c : ℤ} (h : -b + a < c) : a < b + c := by
have h := Int.add_lt_add_left h b
rwa [Int.add_neg_cancel_left] at h
protected theorem neg_add_lt_of_lt_add {a b c : ℤ} (h : a < b + c) : -b + a < c := by
have h := Int.add_lt_add_left h (-b)
rwa [Int.neg_add_cancel_left] at h
protected theorem lt_add_of_sub_left_lt {a b c : ℤ} (h : a - b < c) : a < b + c := by
have h := Int.add_lt_add_right h b
rwa [Int.sub_add_cancel, Int.add_comm] at h
protected theorem sub_left_lt_of_lt_add {a b c : ℤ} (h : a < b + c) : a - b < c := by
have h := Int.add_lt_add_right h (-b)
rwa [Int.add_comm b c, Int.add_neg_cancel_right] at h
protected theorem lt_add_of_sub_right_lt {a b c : ℤ} (h : a - c < b) : a < b + c := by
have h := Int.add_lt_add_right h c
rwa [Int.sub_add_cancel] at h
protected theorem sub_right_lt_of_lt_add {a b c : ℤ} (h : a < b + c) : a - c < b := by
have h := Int.add_lt_add_right h (-c)
rwa [Int.add_neg_cancel_right] at h
protected theorem lt_add_of_neg_add_lt_left {a b c : ℤ} (h : -b + a < c) : a < b + c := by
rw [Int.add_comm] at h
exact Int.lt_add_of_sub_left_lt h
protected theorem neg_add_lt_left_of_lt_add {a b c : ℤ} (h : a < b + c) : -b + a < c := by
rw [Int.add_comm]
exact Int.sub_left_lt_of_lt_add h
protected theorem lt_add_of_neg_add_lt_right {a b c : ℤ} (h : -c + a < b) : a < b + c := by
rw [Int.add_comm] at h
exact Int.lt_add_of_sub_right_lt h
protected theorem neg_add_lt_right_of_lt_add {a b c : ℤ} (h : a < b + c) : -c + a < b := by
rw [Int.add_comm] at h
exact Int.neg_add_lt_left_of_lt_add h
protected theorem lt_add_of_neg_lt_sub_left {a b c : ℤ} (h : -a < b - c) : c < a + b :=
Int.lt_add_of_neg_add_lt_left (Int.add_lt_of_lt_sub_right h)
protected theorem neg_lt_sub_left_of_lt_add {a b c : ℤ} (h : c < a + b) : -a < b - c := by
have h := Int.lt_neg_add_of_add_lt (Int.sub_left_lt_of_lt_add h)
rwa [Int.add_comm] at h
protected theorem lt_add_of_neg_lt_sub_right {a b c : ℤ} (h : -b < a - c) : c < a + b :=
Int.lt_add_of_sub_right_lt (Int.add_lt_of_lt_sub_left h)
protected theorem neg_lt_sub_right_of_lt_add {a b c : ℤ} (h : c < a + b) : -b < a - c :=
Int.lt_sub_left_of_add_lt (Int.sub_right_lt_of_lt_add h)
protected theorem sub_lt_of_sub_lt {a b c : ℤ} (h : a - b < c) : a - c < b :=
Int.sub_left_lt_of_lt_add (Int.lt_add_of_sub_right_lt h)
protected theorem sub_lt_sub_left {a b : ℤ} (h : a < b) (c : ℤ) : c - b < c - a :=
Int.add_lt_add_left (Int.neg_lt_neg h) c
protected theorem sub_lt_sub_right {a b : ℤ} (h : a < b) (c : ℤ) : a - c < b - c :=
Int.add_lt_add_right h (-c)
protected theorem sub_lt_sub {a b c d : ℤ} (hab : a < b) (hcd : c < d) : a - d < b - c :=
Int.add_lt_add hab (Int.neg_lt_neg hcd)
protected theorem sub_lt_sub_of_le_of_lt {a b c d : ℤ}
(hab : a ≤ b) (hcd : c < d) : a - d < b - c :=
Int.add_lt_add_of_le_of_lt hab (Int.neg_lt_neg hcd)
protected theorem sub_lt_sub_of_lt_of_le {a b c d : ℤ}
(hab : a < b) (hcd : c ≤ d) : a - d < b - c :=
Int.add_lt_add_of_lt_of_le hab (Int.neg_le_neg hcd)
protected theorem sub_le_self (a : ℤ) {b : ℤ} (h : 0 ≤ b) : a - b ≤ a :=
calc
a + -b ≤ a + 0 := Int.add_le_add_left (Int.neg_nonpos_of_nonneg h) _
_ = a := by rw [Int.add_zero]
protected theorem sub_lt_self (a : ℤ) {b : ℤ} (h : 0 < b) : a - b < a :=
calc
a + -b < a + 0 := Int.add_lt_add_left (Int.neg_neg_of_pos h) _
_ = a := by rw [Int.add_zero]
protected theorem add_le_add_three {a b c d e f : ℤ}
(h₁ : a ≤ d) (h₂ : b ≤ e) (h₃ : c ≤ f) : a + b + c ≤ d + e + f := by
apply le_trans
apply Int.add_le_add
apply Int.add_le_add
assumption'
apply le_refl
protected theorem mul_lt_mul_of_pos_left {a b c : ℤ}
(h₁ : a < b) (h₂ : 0 < c) : c * a < c * b := by
have : 0 < c * (b - a) := Int.mul_pos h₂ (Int.sub_pos_of_lt h₁)
rw [Int.mul_sub] at this
exact Int.lt_of_sub_pos this
protected theorem mul_lt_mul_of_pos_right {a b c : ℤ}
(h₁ : a < b) (h₂ : 0 < c) : a * c < b * c := by
have : 0 < b - a := Int.sub_pos_of_lt h₁
have : 0 < (b - a) * c := Int.mul_pos this h₂
rw [Int.sub_mul] at this
exact Int.lt_of_sub_pos this
protected theorem mul_le_mul_of_nonneg_left {a b c : ℤ}
(h₁ : a ≤ b) (h₂ : 0 ≤ c) : c * a ≤ c * b := by
by_cases hba : b ≤ a; { simp [le_antisymm hba h₁] }
by_cases hc0 : c ≤ 0; { simp [le_antisymm hc0 h₂, Int.zero_mul] }
exact (le_not_le_of_lt (Int.mul_lt_mul_of_pos_left
(lt_of_le_not_le h₁ hba) (lt_of_le_not_le h₂ hc0))).left
protected theorem mul_le_mul_of_nonneg_right {a b c : ℤ}
(h₁ : a ≤ b) (h₂ : 0 ≤ c) : a * c ≤ b * c := by
by_cases hba : b ≤ a; { simp [le_antisymm hba h₁] }
by_cases hc0 : c ≤ 0; { simp [le_antisymm hc0 h₂, Int.mul_zero] }
exact (le_not_le_of_lt (Int.mul_lt_mul_of_pos_right
(lt_of_le_not_le h₁ hba) (lt_of_le_not_le h₂ hc0))).left
protected theorem mul_le_mul {a b c d : ℤ}
(hac : a ≤ c) (hbd : b ≤ d) (nn_b : 0 ≤ b) (nn_c : 0 ≤ c) : a * b ≤ c * d :=
calc
a * b ≤ c * b := Int.mul_le_mul_of_nonneg_right hac nn_b
_ ≤ c * d := Int.mul_le_mul_of_nonneg_left hbd nn_c
protected theorem mul_nonpos_of_nonneg_of_nonpos {a b : ℤ}
(ha : 0 ≤ a) (hb : b ≤ 0) : a * b ≤ 0 := by
have h : a * b ≤ a * 0 := Int.mul_le_mul_of_nonneg_left hb ha
rwa [Int.mul_zero] at h
protected theorem mul_nonpos_of_nonpos_of_nonneg {a b : ℤ}
(ha : a ≤ 0) (hb : 0 ≤ b) : a * b ≤ 0 := by
have h : a * b ≤ 0 * b := Int.mul_le_mul_of_nonneg_right ha hb
rwa [Int.zero_mul] at h
protected theorem mul_lt_mul {a b c d : ℤ}
(hac : a < c) (hbd : b ≤ d) (pos_b : 0 < b) (nn_c : 0 ≤ c) : a * b < c * d :=
calc
a * b < c * b := Int.mul_lt_mul_of_pos_right hac pos_b
_ ≤ c * d := Int.mul_le_mul_of_nonneg_left hbd nn_c
protected theorem mul_lt_mul' {a b c d : ℤ}
(h1 : a ≤ c) (h2 : b < d) (h3 : 0 ≤ b) (h4 : 0 < c) : a * b < c * d :=
calc
a * b ≤ c * b := Int.mul_le_mul_of_nonneg_right h1 h3
_ < c * d := Int.mul_lt_mul_of_pos_left h2 h4
protected theorem mul_neg_of_pos_of_neg {a b : ℤ} (ha : 0 < a) (hb : b < 0) : a * b < 0 := by
have h : a * b < a * 0 := Int.mul_lt_mul_of_pos_left hb ha
rwa [Int.mul_zero] at h
protected theorem mul_neg_of_neg_of_pos {a b : ℤ} (ha : a < 0) (hb : 0 < b) : a * b < 0 := by
have h : a * b < 0 * b := Int.mul_lt_mul_of_pos_right ha hb
rwa [Int.zero_mul] at h
protected theorem mul_le_mul_of_nonpos_right {a b c : ℤ}
(h : b ≤ a) (hc : c ≤ 0) : a * c ≤ b * c :=
have : -c ≥ 0 := Int.neg_nonneg_of_nonpos hc
have : b * -c ≤ a * -c := Int.mul_le_mul_of_nonneg_right h this
have : -(b * c) ≤ -(a * c) := by
rwa [← Int.neg_mul_eq_mul_neg, ← Int.neg_mul_eq_mul_neg] at this
Int.le_of_neg_le_neg this
protected theorem mul_nonneg_of_nonpos_of_nonpos {a b : ℤ}
(ha : a ≤ 0) (hb : b ≤ 0) : 0 ≤ a * b := by
have : 0 * b ≤ a * b := Int.mul_le_mul_of_nonpos_right ha hb
rwa [Int.zero_mul] at this
protected theorem mul_lt_mul_of_neg_left {a b c : ℤ} (h : b < a) (hc : c < 0) : c * a < c * b :=
have : -c > 0 := Int.neg_pos_of_neg hc
have : -c * b < -c * a := Int.mul_lt_mul_of_pos_left h this
have : -(c * b) < -(c * a) := by
rwa [← Int.neg_mul_eq_neg_mul, ← Int.neg_mul_eq_neg_mul] at this
Int.lt_of_neg_lt_neg this
protected theorem mul_lt_mul_of_neg_right {a b c : ℤ} (h : b < a) (hc : c < 0) : a * c < b * c :=
have : -c > 0 := Int.neg_pos_of_neg hc
have : b * -c < a * -c := Int.mul_lt_mul_of_pos_right h this
have : -(b * c) < -(a * c) := by
rwa [← Int.neg_mul_eq_mul_neg, ← Int.neg_mul_eq_mul_neg] at this
Int.lt_of_neg_lt_neg this
protected theorem mul_pos_of_neg_of_neg {a b : ℤ} (ha : a < 0) (hb : b < 0) : 0 < a * b := by
have : 0 * b < a * b := Int.mul_lt_mul_of_neg_right ha hb
rwa [Int.zero_mul] at this
protected theorem mul_self_le_mul_self {a b : ℤ} (h1 : 0 ≤ a) (h2 : a ≤ b) : a * a ≤ b * b :=
Int.mul_le_mul h2 h2 h1 (le_trans h1 h2)
protected theorem mul_self_lt_mul_self {a b : ℤ} (h1 : 0 ≤ a) (h2 : a < b) : a * a < b * b :=
Int.mul_lt_mul' (le_of_lt h2) h2 h1 (lt_of_le_of_lt h1 h2)
theorem exists_eq_neg_ofNat {a : ℤ} (H : a ≤ 0) : ∃ n : ℕ, a = -(n : ℤ) :=
let ⟨n, h⟩ := eq_ofNat_of_zero_le (Int.neg_nonneg_of_nonpos H)
⟨n, Int.eq_neg_of_eq_neg h.symm⟩
theorem natAbs_of_nonneg {a : ℤ} (H : 0 ≤ a) : (natAbs a : ℤ) = a :=
match a, eq_ofNat_of_zero_le H with
| _, ⟨n, rfl⟩ => rfl
theorem ofNat_natAbs_of_nonpos {a : ℤ} (H : a ≤ 0) : (natAbs a : ℤ) = -a := by
rw [← natAbs_neg, natAbs_of_nonneg (Int.neg_nonneg_of_nonpos H)]
theorem lt_of_add_one_le {a b : ℤ} (H : a + 1 ≤ b) : a < b := H
theorem add_one_le_of_lt {a b : ℤ} (H : a < b) : a + 1 ≤ b := H
theorem lt_add_one_of_le {a b : ℤ} (H : a ≤ b) : a < b + 1 := Int.add_le_add_right H 1
theorem le_of_lt_add_one {a b : ℤ} (H : a < b + 1) : a ≤ b := Int.le_of_add_le_add_right H
theorem sub_one_lt_of_le {a b : ℤ} (H : a ≤ b) : a - 1 < b :=
Int.sub_right_lt_of_lt_add $ lt_add_one_of_le H
theorem le_of_sub_one_lt {a b : ℤ} (H : a - 1 < b) : a ≤ b :=
le_of_lt_add_one $ Int.lt_add_of_sub_right_lt H
theorem le_sub_one_of_lt {a b : ℤ} (H : a < b) : a ≤ b - 1 := Int.le_sub_right_of_add_le H
theorem lt_of_le_sub_one {a b : ℤ} (H : a ≤ b - 1) : a < b := Int.add_le_of_le_sub_right H
theorem sign_of_succ (n : Nat) : sign (Nat.succ n) = 1 := rfl
theorem sign_eq_one_of_pos {a : ℤ} (h : 0 < a) : sign a = 1 :=
match a, eq_succ_of_zero_lt h with
| _, ⟨n, rfl⟩ => rfl
theorem sign_eq_neg_one_of_neg {a : ℤ} (h : a < 0) : sign a = -1 :=
match a, eq_neg_succ_of_lt_zero h with
| _, ⟨n, rfl⟩ => rfl
theorem eq_zero_of_sign_eq_zero : ∀ {a : ℤ}, sign a = 0 → a = 0
| 0, _ => rfl
theorem pos_of_sign_eq_one : ∀ {a : ℤ}, sign a = 1 → 0 < a
| (n + 1 : ℕ), _ => ofNat_lt.2 (Nat.succ_pos _)
theorem neg_of_sign_eq_neg_one : ∀ {a : ℤ}, sign a = -1 → a < 0
| (n + 1 : ℕ), h => nomatch h
| 0, h => nomatch h
| -[1+ n], _ => neg_succ_lt_zero _
theorem sign_eq_one_iff_pos (a : ℤ) : sign a = 1 ↔ 0 < a :=
⟨pos_of_sign_eq_one, sign_eq_one_of_pos⟩
theorem sign_eq_neg_one_iff_neg (a : ℤ) : sign a = -1 ↔ a < 0 :=
⟨neg_of_sign_eq_neg_one, sign_eq_neg_one_of_neg⟩
theorem sign_eq_zero_iff_zero (a : ℤ) : sign a = 0 ↔ a = 0 :=
⟨eq_zero_of_sign_eq_zero, fun h => by rw [h, sign_zero]⟩
protected
protected theorem eq_of_mul_eq_mul_right {a b c : ℤ} (ha : a ≠ 0) (h : b * a = c * a) : b = c :=
have : b * a - c * a = 0 := Int.sub_eq_zero_of_eq h
have : (b - c) * a = 0 := by rw [Int.sub_mul, this]
have : b - c = 0 := (Int.eq_zero_or_eq_zero_of_mul_eq_zero this).resolve_right ha
Int.eq_of_sub_eq_zero this
protected theorem eq_of_mul_eq_mul_left {a b c : ℤ} (ha : a ≠ 0) (h : a * b = a * c) : b = c :=
have : a * b - a * c = 0 := Int.sub_eq_zero_of_eq h
have : a * (b - c) = 0 := by rw [Int.mul_sub, this]
have : b - c = 0 := (Int.eq_zero_or_eq_zero_of_mul_eq_zero this).resolve_left ha
Int.eq_of_sub_eq_zero this
theorem eq_one_of_mul_eq_self_left {a b : ℤ} (Hpos : a ≠ 0) (H : b * a = a) : b = 1 :=
Int.eq_of_mul_eq_mul_right Hpos $ by rw [Int.one_mul, H]
theorem eq_one_of_mul_eq_self_right {a b : ℤ} (Hpos : b ≠ 0) (H : b * a = b) : a = 1 :=
Int.eq_of_mul_eq_mul_left Hpos $ by rw [Int.mul_one, H]
lemma ofNat_natAbs_eq_of_nonneg : ∀ a : ℤ, 0 ≤ a → Int.ofNat (Int.natAbs a) = a
| (ofNat n), h => rfl
| -[1+ n], h => absurd (neg_succ_lt_zero n) (not_lt_of_ge h)
end Int
|
module CFT.DependentLens
public export
record DepLens (s, a : Type) (t : s -> Type) (b : a -> Type) where
constructor MkDepLens
get : s -> a
set : (es : s) -> b (get es) -> t es
|
theory Ex046
imports Main
begin
theorem "(A \<and> (A \<longrightarrow> \<not>A)) \<Longrightarrow> (A \<and> (B \<longrightarrow> \<not>A))"
proof -
assume a:"A \<and> (A \<longrightarrow> \<not>A)"
hence b:"A \<longrightarrow> \<not>A" by (rule conjE)
from a have c:A by (rule conjE)
with b have "\<not>A" by (rule impE)
with c have False by contradiction
thus ?thesis by (rule FalseE)
qed
|
record R (X : Set) : Set₁ where
field
P : X → Set
f : ∀ {x : X} → P x → P x
open R {{…}}
test : ∀ {X} {{r : R X}} {x : X} → P x → P x
test p = f p
-- WAS: instance search fails with several candidates left
-- SHOULD: succeed
|
lemma open_empty [continuous_intros, intro, simp]: "open {}" |
[GOAL]
G : Type u_1
inst✝ : CommGroup G
n : ℤ
s : Set G
hs : (fun x => x ^ n) ⁻¹' s = s
g : G
j : ℕ
hg : g ^ n ^ j = 1
⊢ g • s = s
[PROOFSTEP]
suffices ∀ {g' : G} (_ : g' ^ n ^ j = 1), g' • s ⊆ s
by
refine' le_antisymm (this hg) _
conv_lhs => rw [← smul_inv_smul g s]
replace hg : g⁻¹ ^ n ^ j = 1
· rw [inv_zpow, hg, inv_one]
simpa only [le_eq_subset, set_smul_subset_set_smul_iff] using this hg
[GOAL]
G : Type u_1
inst✝ : CommGroup G
n : ℤ
s : Set G
hs : (fun x => x ^ n) ⁻¹' s = s
g : G
j : ℕ
hg : g ^ n ^ j = 1
this : ∀ {g' : G}, g' ^ n ^ j = 1 → g' • s ⊆ s
⊢ g • s = s
[PROOFSTEP]
refine' le_antisymm (this hg) _
[GOAL]
G : Type u_1
inst✝ : CommGroup G
n : ℤ
s : Set G
hs : (fun x => x ^ n) ⁻¹' s = s
g : G
j : ℕ
hg : g ^ n ^ j = 1
this : ∀ {g' : G}, g' ^ n ^ j = 1 → g' • s ⊆ s
⊢ s ≤ g • s
[PROOFSTEP]
conv_lhs => rw [← smul_inv_smul g s]
[GOAL]
G : Type u_1
inst✝ : CommGroup G
n : ℤ
s : Set G
hs : (fun x => x ^ n) ⁻¹' s = s
g : G
j : ℕ
hg : g ^ n ^ j = 1
this : ∀ {g' : G}, g' ^ n ^ j = 1 → g' • s ⊆ s
| s
[PROOFSTEP]
rw [← smul_inv_smul g s]
[GOAL]
G : Type u_1
inst✝ : CommGroup G
n : ℤ
s : Set G
hs : (fun x => x ^ n) ⁻¹' s = s
g : G
j : ℕ
hg : g ^ n ^ j = 1
this : ∀ {g' : G}, g' ^ n ^ j = 1 → g' • s ⊆ s
| s
[PROOFSTEP]
rw [← smul_inv_smul g s]
[GOAL]
G : Type u_1
inst✝ : CommGroup G
n : ℤ
s : Set G
hs : (fun x => x ^ n) ⁻¹' s = s
g : G
j : ℕ
hg : g ^ n ^ j = 1
this : ∀ {g' : G}, g' ^ n ^ j = 1 → g' • s ⊆ s
| s
[PROOFSTEP]
rw [← smul_inv_smul g s]
[GOAL]
G : Type u_1
inst✝ : CommGroup G
n : ℤ
s : Set G
hs : (fun x => x ^ n) ⁻¹' s = s
g : G
j : ℕ
hg : g ^ n ^ j = 1
this : ∀ {g' : G}, g' ^ n ^ j = 1 → g' • s ⊆ s
⊢ g • g⁻¹ • s ≤ g • s
[PROOFSTEP]
replace hg : g⁻¹ ^ n ^ j = 1
[GOAL]
case hg
G : Type u_1
inst✝ : CommGroup G
n : ℤ
s : Set G
hs : (fun x => x ^ n) ⁻¹' s = s
g : G
j : ℕ
hg : g ^ n ^ j = 1
this : ∀ {g' : G}, g' ^ n ^ j = 1 → g' • s ⊆ s
⊢ g⁻¹ ^ n ^ j = 1
[PROOFSTEP]
rw [inv_zpow, hg, inv_one]
[GOAL]
G : Type u_1
inst✝ : CommGroup G
n : ℤ
s : Set G
hs : (fun x => x ^ n) ⁻¹' s = s
g : G
j : ℕ
this : ∀ {g' : G}, g' ^ n ^ j = 1 → g' • s ⊆ s
hg : g⁻¹ ^ n ^ j = 1
⊢ g • g⁻¹ • s ≤ g • s
[PROOFSTEP]
simpa only [le_eq_subset, set_smul_subset_set_smul_iff] using this hg
[GOAL]
G : Type u_1
inst✝ : CommGroup G
n : ℤ
s : Set G
hs : (fun x => x ^ n) ⁻¹' s = s
g : G
j : ℕ
hg : g ^ n ^ j = 1
⊢ ∀ {g' : G}, g' ^ n ^ j = 1 → g' • s ⊆ s
[PROOFSTEP]
rw [(IsFixedPt.preimage_iterate hs j : (zpowGroupHom n)^[j] ⁻¹' s = s).symm]
[GOAL]
G : Type u_1
inst✝ : CommGroup G
n : ℤ
s : Set G
hs : (fun x => x ^ n) ⁻¹' s = s
g : G
j : ℕ
hg : g ^ n ^ j = 1
⊢ ∀ {g' : G}, g' ^ n ^ j = 1 → g' • (fun x => x ^ n)^[j] ⁻¹' s ⊆ (fun x => x ^ n)^[j] ⁻¹' s
[PROOFSTEP]
rintro g' hg' - ⟨y, hy, rfl⟩
[GOAL]
case intro.intro
G : Type u_1
inst✝ : CommGroup G
n : ℤ
s : Set G
hs : (fun x => x ^ n) ⁻¹' s = s
g : G
j : ℕ
hg : g ^ n ^ j = 1
g' : G
hg' : g' ^ n ^ j = 1
y : G
hy : y ∈ (fun x => x ^ n)^[j] ⁻¹' s
⊢ (fun x => g' • x) y ∈ (fun x => x ^ n)^[j] ⁻¹' s
[PROOFSTEP]
change (zpowGroupHom n)^[j] (g' * y) ∈ s
[GOAL]
case intro.intro
G : Type u_1
inst✝ : CommGroup G
n : ℤ
s : Set G
hs : (fun x => x ^ n) ⁻¹' s = s
g : G
j : ℕ
hg : g ^ n ^ j = 1
g' : G
hg' : g' ^ n ^ j = 1
y : G
hy : y ∈ (fun x => x ^ n)^[j] ⁻¹' s
⊢ (↑(zpowGroupHom n))^[j] (g' * y) ∈ s
[PROOFSTEP]
replace hg' : (zpowGroupHom n)^[j] g' = 1
[GOAL]
case hg'
G : Type u_1
inst✝ : CommGroup G
n : ℤ
s : Set G
hs : (fun x => x ^ n) ⁻¹' s = s
g : G
j : ℕ
hg : g ^ n ^ j = 1
g' : G
hg' : g' ^ n ^ j = 1
y : G
hy : y ∈ (fun x => x ^ n)^[j] ⁻¹' s
⊢ (↑(zpowGroupHom n))^[j] g' = 1
[PROOFSTEP]
simpa [zpowGroupHom]
[GOAL]
case intro.intro
G : Type u_1
inst✝ : CommGroup G
n : ℤ
s : Set G
hs : (fun x => x ^ n) ⁻¹' s = s
g : G
j : ℕ
hg : g ^ n ^ j = 1
g' y : G
hy : y ∈ (fun x => x ^ n)^[j] ⁻¹' s
hg' : (↑(zpowGroupHom n))^[j] g' = 1
⊢ (↑(zpowGroupHom n))^[j] (g' * y) ∈ s
[PROOFSTEP]
rwa [iterate_map_mul, hg', one_mul]
|
namespace list
universes u
variables {α : Type u} {l l₁ l₂: list α} {a : α}
@[simp] lemma rev_nil : @list.reverse α [] = [] := begin unfold reverse, unfold reverse_core end
@[simp] lemma rev_core_nil : reverse_core [] l = l := rfl
@[simp] lemma rev_core_cons : reverse_core (a::l₁) l = reverse_core l₁ (a::l) := rfl
@[simp] lemma rev_core_length : (list.length $ list.reverse_core l₁ l₂) = (list.length l₁) + (list.length l₂) :=
@well_founded.recursion
(list α)
_
(measure_wf (length))
(λ l₁, ∀ l₂, (list.length $ list.reverse_core (l₁) l₂) = (list.length (l₁)) + (list.length l₂))
(l₁)
(λ l₃,
list.rec_on l₃ (by simp) (λ h l₃ i p l₂,
begin
simp,
have p₂ : length (reverse_core l₃ (h::l₂)) = length l₃ + length (h::l₂),
apply p, focus {simp [measure, inv_image], rw add_comm, apply nat.lt_succ_self },
rw p₂, simp
end
)
)
l₂
@[simp] lemma l_rev {t : list α} : list.length (list.reverse t) = list.length t := by simp [reverse]
end list |
[GOAL]
V : Type u
G : SimpleGraph V
K L L' M : Set V
⊢ Function.Injective supp
[PROOFSTEP]
refine' ConnectedComponent.ind₂ _
[GOAL]
V : Type u
G : SimpleGraph V
K L L' M : Set V
⊢ ∀ (v w : ↑Kᶜ),
supp (connectedComponentMk (induce Kᶜ G) v) = supp (connectedComponentMk (induce Kᶜ G) w) →
connectedComponentMk (induce Kᶜ G) v = connectedComponentMk (induce Kᶜ G) w
[PROOFSTEP]
rintro ⟨v, hv⟩ ⟨w, hw⟩ h
[GOAL]
case mk.mk
V : Type u
G : SimpleGraph V
K L L' M : Set V
v : V
hv : v ∈ Kᶜ
w : V
hw : w ∈ Kᶜ
h :
supp (connectedComponentMk (induce Kᶜ G) { val := v, property := hv }) =
supp (connectedComponentMk (induce Kᶜ G) { val := w, property := hw })
⊢ connectedComponentMk (induce Kᶜ G) { val := v, property := hv } =
connectedComponentMk (induce Kᶜ G) { val := w, property := hw }
[PROOFSTEP]
simp only [Set.ext_iff, ConnectedComponent.eq, Set.mem_setOf_eq, ComponentCompl.supp] at h ⊢
[GOAL]
case mk.mk
V : Type u
G : SimpleGraph V
K L L' M : Set V
v : V
hv : v ∈ Kᶜ
w : V
hw : w ∈ Kᶜ
h :
∀ (x : V),
(∃ h, Reachable (induce Kᶜ G) { val := x, property := (_ : ¬x ∈ K) } { val := v, property := hv }) ↔
∃ h, Reachable (induce Kᶜ G) { val := x, property := (_ : ¬x ∈ K) } { val := w, property := hw }
⊢ Reachable (induce Kᶜ G) { val := v, property := hv } { val := w, property := hw }
[PROOFSTEP]
exact ((h v).mp ⟨hv, Reachable.refl _⟩).choose_spec
[GOAL]
V : Type u
G✝ : SimpleGraph V
K L L' M : Set V
G : SimpleGraph V
v w : V
vK : ¬v ∈ K
wK : ¬w ∈ K
a : Adj G v w
⊢ componentComplMk G vK = componentComplMk G wK
[PROOFSTEP]
rw [ConnectedComponent.eq]
[GOAL]
V : Type u
G✝ : SimpleGraph V
K L L' M : Set V
G : SimpleGraph V
v w : V
vK : ¬v ∈ K
wK : ¬w ∈ K
a : Adj G v w
⊢ Reachable (induce Kᶜ G) { val := v, property := vK } { val := w, property := wK }
[PROOFSTEP]
apply Adj.reachable
[GOAL]
case h
V : Type u
G✝ : SimpleGraph V
K L L' M : Set V
G : SimpleGraph V
v w : V
vK : ¬v ∈ K
wK : ¬w ∈ K
a : Adj G v w
⊢ Adj (induce Kᶜ G) { val := v, property := vK } { val := w, property := wK }
[PROOFSTEP]
exact a
[GOAL]
V : Type u
G : SimpleGraph V
K L L' M : Set V
β : Sort u_1
f : ⦃v : V⦄ → ¬v ∈ K → β
h : ∀ ⦃v w : V⦄ (hv : ¬v ∈ K) (hw : ¬w ∈ K), Adj G v w → f hv = f hw
v w : ↑Kᶜ
p : Walk (induce Kᶜ G) v w
⊢ Walk.IsPath p → (fun vv => f (_ : ↑vv ∈ Kᶜ)) v = (fun vv => f (_ : ↑vv ∈ Kᶜ)) w
[PROOFSTEP]
induction' p with _ u v w a q ih
[GOAL]
case nil
V : Type u
G : SimpleGraph V
K L L' M : Set V
β : Sort u_1
f : ⦃v : V⦄ → ¬v ∈ K → β
h : ∀ ⦃v w : V⦄ (hv : ¬v ∈ K) (hw : ¬w ∈ K), Adj G v w → f hv = f hw
v w u✝ : ↑Kᶜ
⊢ Walk.IsPath Walk.nil → (fun vv => f (_ : ↑vv ∈ Kᶜ)) u✝ = (fun vv => f (_ : ↑vv ∈ Kᶜ)) u✝
[PROOFSTEP]
rintro _
[GOAL]
case nil
V : Type u
G : SimpleGraph V
K L L' M : Set V
β : Sort u_1
f : ⦃v : V⦄ → ¬v ∈ K → β
h : ∀ ⦃v w : V⦄ (hv : ¬v ∈ K) (hw : ¬w ∈ K), Adj G v w → f hv = f hw
v w u✝ : ↑Kᶜ
a✝ : Walk.IsPath Walk.nil
⊢ (fun vv => f (_ : ↑vv ∈ Kᶜ)) u✝ = (fun vv => f (_ : ↑vv ∈ Kᶜ)) u✝
[PROOFSTEP]
rfl
[GOAL]
case cons
V : Type u
G : SimpleGraph V
K L L' M : Set V
β : Sort u_1
f : ⦃v : V⦄ → ¬v ∈ K → β
h : ∀ ⦃v w : V⦄ (hv : ¬v ∈ K) (hw : ¬w ∈ K), Adj G v w → f hv = f hw
v✝ w✝ u v w : ↑Kᶜ
a : Adj (induce Kᶜ G) u v
q : Walk (induce Kᶜ G) v w
ih : Walk.IsPath q → (fun vv => f (_ : ↑vv ∈ Kᶜ)) v = (fun vv => f (_ : ↑vv ∈ Kᶜ)) w
⊢ Walk.IsPath (Walk.cons a q) → (fun vv => f (_ : ↑vv ∈ Kᶜ)) u = (fun vv => f (_ : ↑vv ∈ Kᶜ)) w
[PROOFSTEP]
rintro h'
[GOAL]
case cons
V : Type u
G : SimpleGraph V
K L L' M : Set V
β : Sort u_1
f : ⦃v : V⦄ → ¬v ∈ K → β
h : ∀ ⦃v w : V⦄ (hv : ¬v ∈ K) (hw : ¬w ∈ K), Adj G v w → f hv = f hw
v✝ w✝ u v w : ↑Kᶜ
a : Adj (induce Kᶜ G) u v
q : Walk (induce Kᶜ G) v w
ih : Walk.IsPath q → (fun vv => f (_ : ↑vv ∈ Kᶜ)) v = (fun vv => f (_ : ↑vv ∈ Kᶜ)) w
h' : Walk.IsPath (Walk.cons a q)
⊢ (fun vv => f (_ : ↑vv ∈ Kᶜ)) u = (fun vv => f (_ : ↑vv ∈ Kᶜ)) w
[PROOFSTEP]
exact (h u.prop v.prop a).trans (ih h'.of_cons)
[GOAL]
V : Type u
G : SimpleGraph V
K L L' M : Set V
β : ComponentCompl G K → Prop
f : ∀ ⦃v : V⦄ (hv : ¬v ∈ K), β (componentComplMk G hv)
⊢ ∀ (C : ComponentCompl G K), β C
[PROOFSTEP]
apply ConnectedComponent.ind
[GOAL]
case h
V : Type u
G : SimpleGraph V
K L L' M : Set V
β : ComponentCompl G K → Prop
f : ∀ ⦃v : V⦄ (hv : ¬v ∈ K), β (componentComplMk G hv)
⊢ ∀ (v : ↑Kᶜ), β (connectedComponentMk (induce Kᶜ G) v)
[PROOFSTEP]
exact fun ⟨v, vnK⟩ => f vnK
[GOAL]
V : Type u
G : SimpleGraph V
K L L' M : Set V
C : ComponentCompl G K
⊢ Disjoint K ↑C
[PROOFSTEP]
rw [Set.disjoint_iff]
[GOAL]
V : Type u
G : SimpleGraph V
K L L' M : Set V
C : ComponentCompl G K
⊢ K ∩ ↑C ⊆ ∅
[PROOFSTEP]
exact fun v ⟨vK, vC⟩ => vC.choose vK
[GOAL]
V : Type u
G : SimpleGraph V
K L L' M : Set V
⊢ Pairwise fun C D => Disjoint ↑C ↑D
[PROOFSTEP]
rintro C D ne
[GOAL]
V : Type u
G : SimpleGraph V
K L L' M : Set V
C D : ComponentCompl G K
ne : C ≠ D
⊢ Disjoint ↑C ↑D
[PROOFSTEP]
rw [Set.disjoint_iff]
[GOAL]
V : Type u
G : SimpleGraph V
K L L' M : Set V
C D : ComponentCompl G K
ne : C ≠ D
⊢ ↑C ∩ ↑D ⊆ ∅
[PROOFSTEP]
exact fun u ⟨uC, uD⟩ => ne (uC.choose_spec.symm.trans uD.choose_spec)
[GOAL]
V : Type u
G : SimpleGraph V
K L L' M : Set V
C : ComponentCompl G K
c d : V
x✝ : c ∈ C
dnK : ¬d ∈ K
cd : Adj G c d
cnK : ¬c ∈ K
h : componentComplMk G cnK = C
⊢ componentComplMk G dnK = C
[PROOFSTEP]
rw [← h, ConnectedComponent.eq]
[GOAL]
V : Type u
G : SimpleGraph V
K L L' M : Set V
C : ComponentCompl G K
c d : V
x✝ : c ∈ C
dnK : ¬d ∈ K
cd : Adj G c d
cnK : ¬c ∈ K
h : componentComplMk G cnK = C
⊢ Reachable (induce Kᶜ G) { val := d, property := dnK } { val := c, property := cnK }
[PROOFSTEP]
exact Adj.reachable cd.symm
[GOAL]
V : Type u
G : SimpleGraph V
K L L' M : Set V
Gc : Preconnected G
hK : Set.Nonempty K
⊢ ∀ (C : ComponentCompl G K), ∃ ck, ck.fst ∈ C ∧ ck.snd ∈ K ∧ Adj G ck.fst ck.snd
[PROOFSTEP]
refine' ComponentCompl.ind fun v vnK => _
[GOAL]
V : Type u
G : SimpleGraph V
K L L' M : Set V
Gc : Preconnected G
hK : Set.Nonempty K
v : V
vnK : ¬v ∈ K
⊢ ∃ ck, ck.fst ∈ componentComplMk G vnK ∧ ck.snd ∈ K ∧ Adj G ck.fst ck.snd
[PROOFSTEP]
let C : G.ComponentCompl K := G.componentComplMk vnK
[GOAL]
V : Type u
G : SimpleGraph V
K L L' M : Set V
Gc : Preconnected G
hK : Set.Nonempty K
v : V
vnK : ¬v ∈ K
C : ComponentCompl G K := componentComplMk G vnK
⊢ ∃ ck, ck.fst ∈ componentComplMk G vnK ∧ ck.snd ∈ K ∧ Adj G ck.fst ck.snd
[PROOFSTEP]
let dis := Set.disjoint_iff.mp C.disjoint_right
[GOAL]
V : Type u
G : SimpleGraph V
K L L' M : Set V
Gc : Preconnected G
hK : Set.Nonempty K
v : V
vnK : ¬v ∈ K
C : ComponentCompl G K := componentComplMk G vnK
dis : K ∩ ↑C ⊆ ∅ := Iff.mp Set.disjoint_iff (ComponentCompl.disjoint_right C)
⊢ ∃ ck, ck.fst ∈ componentComplMk G vnK ∧ ck.snd ∈ K ∧ Adj G ck.fst ck.snd
[PROOFSTEP]
by_contra' h
[GOAL]
V : Type u
G : SimpleGraph V
K L L' M : Set V
Gc : Preconnected G
hK : Set.Nonempty K
v : V
vnK : ¬v ∈ K
C : ComponentCompl G K := componentComplMk G vnK
dis : K ∩ ↑C ⊆ ∅ := Iff.mp Set.disjoint_iff (ComponentCompl.disjoint_right C)
h : ∀ (ck : V × V), ck.fst ∈ componentComplMk G vnK → ck.snd ∈ K → ¬Adj G ck.fst ck.snd
⊢ False
[PROOFSTEP]
suffices Set.univ = (C : Set V) by exact dis ⟨hK.choose_spec, this ▸ Set.mem_univ hK.some⟩
[GOAL]
V : Type u
G : SimpleGraph V
K L L' M : Set V
Gc : Preconnected G
hK : Set.Nonempty K
v : V
vnK : ¬v ∈ K
C : ComponentCompl G K := componentComplMk G vnK
dis : K ∩ ↑C ⊆ ∅ := Iff.mp Set.disjoint_iff (ComponentCompl.disjoint_right C)
h : ∀ (ck : V × V), ck.fst ∈ componentComplMk G vnK → ck.snd ∈ K → ¬Adj G ck.fst ck.snd
this : Set.univ = ↑C
⊢ False
[PROOFSTEP]
exact dis ⟨hK.choose_spec, this ▸ Set.mem_univ hK.some⟩
[GOAL]
V : Type u
G : SimpleGraph V
K L L' M : Set V
Gc : Preconnected G
hK : Set.Nonempty K
v : V
vnK : ¬v ∈ K
C : ComponentCompl G K := componentComplMk G vnK
dis : K ∩ ↑C ⊆ ∅ := Iff.mp Set.disjoint_iff (ComponentCompl.disjoint_right C)
h : ∀ (ck : V × V), ck.fst ∈ componentComplMk G vnK → ck.snd ∈ K → ¬Adj G ck.fst ck.snd
⊢ Set.univ = ↑C
[PROOFSTEP]
symm
[GOAL]
V : Type u
G : SimpleGraph V
K L L' M : Set V
Gc : Preconnected G
hK : Set.Nonempty K
v : V
vnK : ¬v ∈ K
C : ComponentCompl G K := componentComplMk G vnK
dis : K ∩ ↑C ⊆ ∅ := Iff.mp Set.disjoint_iff (ComponentCompl.disjoint_right C)
h : ∀ (ck : V × V), ck.fst ∈ componentComplMk G vnK → ck.snd ∈ K → ¬Adj G ck.fst ck.snd
⊢ ↑C = Set.univ
[PROOFSTEP]
rw [Set.eq_univ_iff_forall]
[GOAL]
V : Type u
G : SimpleGraph V
K L L' M : Set V
Gc : Preconnected G
hK : Set.Nonempty K
v : V
vnK : ¬v ∈ K
C : ComponentCompl G K := componentComplMk G vnK
dis : K ∩ ↑C ⊆ ∅ := Iff.mp Set.disjoint_iff (ComponentCompl.disjoint_right C)
h : ∀ (ck : V × V), ck.fst ∈ componentComplMk G vnK → ck.snd ∈ K → ¬Adj G ck.fst ck.snd
⊢ ∀ (x : V), x ∈ ↑C
[PROOFSTEP]
rintro u
[GOAL]
V : Type u
G : SimpleGraph V
K L L' M : Set V
Gc : Preconnected G
hK : Set.Nonempty K
v : V
vnK : ¬v ∈ K
C : ComponentCompl G K := componentComplMk G vnK
dis : K ∩ ↑C ⊆ ∅ := Iff.mp Set.disjoint_iff (ComponentCompl.disjoint_right C)
h : ∀ (ck : V × V), ck.fst ∈ componentComplMk G vnK → ck.snd ∈ K → ¬Adj G ck.fst ck.snd
u : V
⊢ u ∈ ↑C
[PROOFSTEP]
by_contra unC
[GOAL]
V : Type u
G : SimpleGraph V
K L L' M : Set V
Gc : Preconnected G
hK : Set.Nonempty K
v : V
vnK : ¬v ∈ K
C : ComponentCompl G K := componentComplMk G vnK
dis : K ∩ ↑C ⊆ ∅ := Iff.mp Set.disjoint_iff (ComponentCompl.disjoint_right C)
h : ∀ (ck : V × V), ck.fst ∈ componentComplMk G vnK → ck.snd ∈ K → ¬Adj G ck.fst ck.snd
u : V
unC : ¬u ∈ ↑C
⊢ False
[PROOFSTEP]
obtain ⟨p⟩ := Gc v u
[GOAL]
case intro
V : Type u
G : SimpleGraph V
K L L' M : Set V
Gc : Preconnected G
hK : Set.Nonempty K
v : V
vnK : ¬v ∈ K
C : ComponentCompl G K := componentComplMk G vnK
dis : K ∩ ↑C ⊆ ∅ := Iff.mp Set.disjoint_iff (ComponentCompl.disjoint_right C)
h : ∀ (ck : V × V), ck.fst ∈ componentComplMk G vnK → ck.snd ∈ K → ¬Adj G ck.fst ck.snd
u : V
unC : ¬u ∈ ↑C
p : Walk G v u
⊢ False
[PROOFSTEP]
obtain ⟨⟨⟨x, y⟩, xy⟩, -, xC, ynC⟩ := p.exists_boundary_dart (C : Set V) (G.componentComplMk_mem vnK) unC
[GOAL]
case intro.intro.mk.mk.intro.intro
V : Type u
G : SimpleGraph V
K L L' M : Set V
Gc : Preconnected G
hK : Set.Nonempty K
v : V
vnK : ¬v ∈ K
C : ComponentCompl G K := componentComplMk G vnK
dis : K ∩ ↑C ⊆ ∅ := Iff.mp Set.disjoint_iff (ComponentCompl.disjoint_right C)
h : ∀ (ck : V × V), ck.fst ∈ componentComplMk G vnK → ck.snd ∈ K → ¬Adj G ck.fst ck.snd
u : V
unC : ¬u ∈ ↑C
p : Walk G v u
x y : V
xy : Adj G (x, y).fst (x, y).snd
xC : { toProd := (x, y), is_adj := xy }.toProd.fst ∈ ↑C
ynC : ¬{ toProd := (x, y), is_adj := xy }.toProd.snd ∈ ↑C
⊢ False
[PROOFSTEP]
exact ynC (mem_of_adj x y xC (fun yK : y ∈ K => h ⟨x, y⟩ xC yK xy) xy)
[GOAL]
V : Type u
G : SimpleGraph V
K L L' M : Set V
C : ComponentCompl G L
h : K ⊆ L
⊢ ↑C ⊆ ↑(hom h C)
[PROOFSTEP]
rintro c ⟨cL, rfl⟩
[GOAL]
case intro
V : Type u
G : SimpleGraph V
K L L' M : Set V
h : K ⊆ L
c : V
cL : ¬c ∈ L
⊢ c ∈ ↑(hom h (componentComplMk G cL))
[PROOFSTEP]
exact ⟨fun h' => cL (h h'), rfl⟩
[GOAL]
V : Type u
G : SimpleGraph V
K L L' M : Set V
C : ComponentCompl G L
h : K ⊆ L
D : ComponentCompl G K
⊢ hom h C = D ↔ ¬Disjoint ↑C ↑D
[PROOFSTEP]
rw [Set.not_disjoint_iff]
[GOAL]
V : Type u
G : SimpleGraph V
K L L' M : Set V
C : ComponentCompl G L
h : K ⊆ L
D : ComponentCompl G K
⊢ hom h C = D ↔ ∃ x, x ∈ ↑C ∧ x ∈ ↑D
[PROOFSTEP]
constructor
[GOAL]
case mp
V : Type u
G : SimpleGraph V
K L L' M : Set V
C : ComponentCompl G L
h : K ⊆ L
D : ComponentCompl G K
⊢ hom h C = D → ∃ x, x ∈ ↑C ∧ x ∈ ↑D
[PROOFSTEP]
rintro rfl
[GOAL]
case mp
V : Type u
G : SimpleGraph V
K L L' M : Set V
C : ComponentCompl G L
h : K ⊆ L
⊢ ∃ x, x ∈ ↑C ∧ x ∈ ↑(hom h C)
[PROOFSTEP]
refine C.ind fun x xnL => ?_
[GOAL]
case mp
V : Type u
G : SimpleGraph V
K L L' M : Set V
C : ComponentCompl G L
h : K ⊆ L
x : V
xnL : ¬x ∈ L
⊢ ∃ x_1, x_1 ∈ ↑(componentComplMk G xnL) ∧ x_1 ∈ ↑(hom h (componentComplMk G xnL))
[PROOFSTEP]
exact ⟨x, ⟨xnL, rfl⟩, ⟨fun xK => xnL (h xK), rfl⟩⟩
[GOAL]
case mpr
V : Type u
G : SimpleGraph V
K L L' M : Set V
C : ComponentCompl G L
h : K ⊆ L
D : ComponentCompl G K
⊢ (∃ x, x ∈ ↑C ∧ x ∈ ↑D) → hom h C = D
[PROOFSTEP]
refine C.ind fun x xnL => ?_
[GOAL]
case mpr
V : Type u
G : SimpleGraph V
K L L' M : Set V
C : ComponentCompl G L
h : K ⊆ L
D : ComponentCompl G K
x : V
xnL : ¬x ∈ L
⊢ (∃ x_1, x_1 ∈ ↑(componentComplMk G xnL) ∧ x_1 ∈ ↑D) → hom h (componentComplMk G xnL) = D
[PROOFSTEP]
rintro ⟨x, ⟨_, e₁⟩, _, rfl⟩
[GOAL]
case mpr.intro.intro.intro.intro
V : Type u
G : SimpleGraph V
K L L' M : Set V
C : ComponentCompl G L
h : K ⊆ L
x✝ : V
xnL : ¬x✝ ∈ L
x : V
w✝¹ : ¬x ∈ L
e₁ : componentComplMk G w✝¹ = componentComplMk G xnL
w✝ : ¬x ∈ K
⊢ hom h (componentComplMk G xnL) = componentComplMk G w✝
[PROOFSTEP]
rw [← e₁]
[GOAL]
case mpr.intro.intro.intro.intro
V : Type u
G : SimpleGraph V
K L L' M : Set V
C : ComponentCompl G L
h : K ⊆ L
x✝ : V
xnL : ¬x✝ ∈ L
x : V
w✝¹ : ¬x ∈ L
e₁ : componentComplMk G w✝¹ = componentComplMk G xnL
w✝ : ¬x ∈ K
⊢ hom h (componentComplMk G w✝¹) = componentComplMk G w✝
[PROOFSTEP]
rfl
[GOAL]
V : Type u
G : SimpleGraph V
K L L' M : Set V
C : ComponentCompl G L
⊢ hom (_ : L ⊆ L) C = C
[PROOFSTEP]
change C.map _ = C
[GOAL]
V : Type u
G : SimpleGraph V
K L L' M : Set V
C : ComponentCompl G L
⊢ ConnectedComponent.map (induceHom Hom.id (_ : Lᶜ ⊆ Lᶜ)) C = C
[PROOFSTEP]
erw [induceHom_id G Lᶜ, ConnectedComponent.map_id]
[GOAL]
V : Type u
G : SimpleGraph V
K L L' M : Set V
C : ComponentCompl G L
h : K ⊆ L
h' : M ⊆ K
⊢ hom (_ : M ⊆ L) C = hom h' (hom h C)
[PROOFSTEP]
change C.map _ = (C.map _).map _
[GOAL]
V : Type u
G : SimpleGraph V
K L L' M : Set V
C : ComponentCompl G L
h : K ⊆ L
h' : M ⊆ K
⊢ ConnectedComponent.map (induceHom Hom.id (_ : Lᶜ ⊆ Mᶜ)) C =
ConnectedComponent.map (induceHom Hom.id (_ : Kᶜ ⊆ Mᶜ)) (ConnectedComponent.map (induceHom Hom.id (_ : Lᶜ ⊆ Kᶜ)) C)
[PROOFSTEP]
erw [ConnectedComponent.map_comp, induceHom_comp]
[GOAL]
V : Type u
G : SimpleGraph V
K L L' M : Set V
C : ComponentCompl G L
h : K ⊆ L
h' : M ⊆ K
⊢ ConnectedComponent.map (induceHom Hom.id (_ : Lᶜ ⊆ Mᶜ)) C =
ConnectedComponent.map (induceHom (Hom.comp Hom.id Hom.id) (_ : Set.MapsTo (↑Hom.id ∘ fun x => ↑Hom.id x) Lᶜ Mᶜ)) C
[PROOFSTEP]
rfl
[GOAL]
V : Type u
G : SimpleGraph V
K✝ L L' M : Set V
K : Finset V
C : ComponentCompl G ↑K
⊢ Set.Infinite (supp C) ↔ ∀ (L : Finset V) (h : K ⊆ L), ∃ D, hom h D = C
[PROOFSTEP]
classical
constructor
· rintro Cinf L h
obtain ⟨v, ⟨vK, rfl⟩, vL⟩ := Set.Infinite.nonempty (Set.Infinite.diff Cinf L.finite_toSet)
exact ⟨componentComplMk _ vL, rfl⟩
· rintro h Cfin
obtain ⟨D, e⟩ := h (K ∪ Cfin.toFinset) (Finset.subset_union_left K Cfin.toFinset)
obtain ⟨v, vD⟩ := D.nonempty
let Ddis := D.disjoint_right
simp_rw [Finset.coe_union, Set.Finite.coe_toFinset, Set.disjoint_union_left, Set.disjoint_iff] at Ddis
exact Ddis.right ⟨(ComponentCompl.hom_eq_iff_le _ _ _).mp e vD, vD⟩
[GOAL]
V : Type u
G : SimpleGraph V
K✝ L L' M : Set V
K : Finset V
C : ComponentCompl G ↑K
⊢ Set.Infinite (supp C) ↔ ∀ (L : Finset V) (h : K ⊆ L), ∃ D, hom h D = C
[PROOFSTEP]
constructor
[GOAL]
case mp
V : Type u
G : SimpleGraph V
K✝ L L' M : Set V
K : Finset V
C : ComponentCompl G ↑K
⊢ Set.Infinite (supp C) → ∀ (L : Finset V) (h : K ⊆ L), ∃ D, hom h D = C
[PROOFSTEP]
rintro Cinf L h
[GOAL]
case mp
V : Type u
G : SimpleGraph V
K✝ L✝ L' M : Set V
K : Finset V
C : ComponentCompl G ↑K
Cinf : Set.Infinite (supp C)
L : Finset V
h : K ⊆ L
⊢ ∃ D, hom h D = C
[PROOFSTEP]
obtain ⟨v, ⟨vK, rfl⟩, vL⟩ := Set.Infinite.nonempty (Set.Infinite.diff Cinf L.finite_toSet)
[GOAL]
case mp.intro.intro.intro
V : Type u
G : SimpleGraph V
K✝ L✝ L' M : Set V
K L : Finset V
h : K ⊆ L
v : V
vL : ¬v ∈ ↑L
vK : ¬v ∈ ↑K
Cinf : Set.Infinite (supp (componentComplMk G vK))
⊢ ∃ D, hom h D = componentComplMk G vK
[PROOFSTEP]
exact ⟨componentComplMk _ vL, rfl⟩
[GOAL]
case mpr
V : Type u
G : SimpleGraph V
K✝ L L' M : Set V
K : Finset V
C : ComponentCompl G ↑K
⊢ (∀ (L : Finset V) (h : K ⊆ L), ∃ D, hom h D = C) → Set.Infinite (supp C)
[PROOFSTEP]
rintro h Cfin
[GOAL]
case mpr
V : Type u
G : SimpleGraph V
K✝ L L' M : Set V
K : Finset V
C : ComponentCompl G ↑K
h : ∀ (L : Finset V) (h : K ⊆ L), ∃ D, hom h D = C
Cfin : Set.Finite (supp C)
⊢ False
[PROOFSTEP]
obtain ⟨D, e⟩ := h (K ∪ Cfin.toFinset) (Finset.subset_union_left K Cfin.toFinset)
[GOAL]
case mpr.intro
V : Type u
G : SimpleGraph V
K✝ L L' M : Set V
K : Finset V
C : ComponentCompl G ↑K
h : ∀ (L : Finset V) (h : K ⊆ L), ∃ D, hom h D = C
Cfin : Set.Finite (supp C)
D : ComponentCompl G ↑(K ∪ Set.Finite.toFinset Cfin)
e : hom (_ : K ⊆ K ∪ Set.Finite.toFinset Cfin) D = C
⊢ False
[PROOFSTEP]
obtain ⟨v, vD⟩ := D.nonempty
[GOAL]
case mpr.intro.intro
V : Type u
G : SimpleGraph V
K✝ L L' M : Set V
K : Finset V
C : ComponentCompl G ↑K
h : ∀ (L : Finset V) (h : K ⊆ L), ∃ D, hom h D = C
Cfin : Set.Finite (supp C)
D : ComponentCompl G ↑(K ∪ Set.Finite.toFinset Cfin)
e : hom (_ : K ⊆ K ∪ Set.Finite.toFinset Cfin) D = C
v : V
vD : v ∈ ↑D
⊢ False
[PROOFSTEP]
let Ddis := D.disjoint_right
[GOAL]
case mpr.intro.intro
V : Type u
G : SimpleGraph V
K✝ L L' M : Set V
K : Finset V
C : ComponentCompl G ↑K
h : ∀ (L : Finset V) (h : K ⊆ L), ∃ D, hom h D = C
Cfin : Set.Finite (supp C)
D : ComponentCompl G ↑(K ∪ Set.Finite.toFinset Cfin)
e : hom (_ : K ⊆ K ∪ Set.Finite.toFinset Cfin) D = C
v : V
vD : v ∈ ↑D
Ddis : Disjoint ↑(K ∪ Set.Finite.toFinset Cfin) ↑D := ComponentCompl.disjoint_right D
⊢ False
[PROOFSTEP]
simp_rw [Finset.coe_union, Set.Finite.coe_toFinset, Set.disjoint_union_left, Set.disjoint_iff] at Ddis
[GOAL]
case mpr.intro.intro
V : Type u
G : SimpleGraph V
K✝ L L' M : Set V
K : Finset V
C : ComponentCompl G ↑K
h : ∀ (L : Finset V) (h : K ⊆ L), ∃ D, hom h D = C
Cfin : Set.Finite (supp C)
D : ComponentCompl G ↑(K ∪ Set.Finite.toFinset Cfin)
e : hom (_ : K ⊆ K ∪ Set.Finite.toFinset Cfin) D = C
v : V
vD : v ∈ ↑D
Ddis : ↑K ∩ ↑D ⊆ ∅ ∧ supp C ∩ ↑D ⊆ ∅
⊢ False
[PROOFSTEP]
exact Ddis.right ⟨(ComponentCompl.hom_eq_iff_le _ _ _).mp e vD, vD⟩
[GOAL]
V : Type u
G : SimpleGraph V
K✝ L L' M : Set V
inst✝ : LocallyFinite G
Gpc : Fact (Preconnected G)
K : Finset V
⊢ Finite (ComponentCompl G ↑K)
[PROOFSTEP]
classical
rcases K.eq_empty_or_nonempty with rfl | h
· dsimp [ComponentCompl]
rw [Finset.coe_empty, Set.compl_empty]
have := Gpc.out.subsingleton_connectedComponent
exact Finite.of_equiv _ (induceUnivIso G).connectedComponentEquiv.symm
· let touch (C : G.ComponentCompl K) : {v : V | ∃ k : V, k ∈ K ∧ G.Adj k v} :=
let p := C.exists_adj_boundary_pair Gpc.out h
⟨p.choose.1, p.choose.2, p.choose_spec.2.1, p.choose_spec.2.2.symm⟩
-- `touch` is injective
have touch_inj : touch.Injective := fun C D h' =>
ComponentCompl.pairwise_disjoint.eq
(Set.not_disjoint_iff.mpr
⟨touch C, (C.exists_adj_boundary_pair Gpc.out h).choose_spec.1,
h'.symm ▸ (D.exists_adj_boundary_pair Gpc.out h).choose_spec.1⟩)
-- `touch` has finite range
have : Finite (Set.range touch) :=
by
refine @Subtype.finite _ (Set.Finite.to_subtype ?_) _
apply Set.Finite.ofFinset (K.biUnion (fun v => G.neighborFinset v))
simp only [Finset.mem_biUnion, mem_neighborFinset, Set.mem_setOf_eq, implies_true]
-- hence `touch` has a finite domain
apply Finite.of_injective_finite_range touch_inj
[GOAL]
V : Type u
G : SimpleGraph V
K✝ L L' M : Set V
inst✝ : LocallyFinite G
Gpc : Fact (Preconnected G)
K : Finset V
⊢ Finite (ComponentCompl G ↑K)
[PROOFSTEP]
rcases K.eq_empty_or_nonempty with rfl | h
[GOAL]
case inl
V : Type u
G : SimpleGraph V
K L L' M : Set V
inst✝ : LocallyFinite G
Gpc : Fact (Preconnected G)
⊢ Finite (ComponentCompl G ↑∅)
[PROOFSTEP]
dsimp [ComponentCompl]
[GOAL]
case inl
V : Type u
G : SimpleGraph V
K L L' M : Set V
inst✝ : LocallyFinite G
Gpc : Fact (Preconnected G)
⊢ Finite (ConnectedComponent (induce (↑∅)ᶜ G))
[PROOFSTEP]
rw [Finset.coe_empty, Set.compl_empty]
[GOAL]
case inl
V : Type u
G : SimpleGraph V
K L L' M : Set V
inst✝ : LocallyFinite G
Gpc : Fact (Preconnected G)
⊢ Finite (ConnectedComponent (induce Set.univ G))
[PROOFSTEP]
have := Gpc.out.subsingleton_connectedComponent
[GOAL]
case inl
V : Type u
G : SimpleGraph V
K L L' M : Set V
inst✝ : LocallyFinite G
Gpc : Fact (Preconnected G)
this : Subsingleton (ConnectedComponent G)
⊢ Finite (ConnectedComponent (induce Set.univ G))
[PROOFSTEP]
exact Finite.of_equiv _ (induceUnivIso G).connectedComponentEquiv.symm
[GOAL]
case inr
V : Type u
G : SimpleGraph V
K✝ L L' M : Set V
inst✝ : LocallyFinite G
Gpc : Fact (Preconnected G)
K : Finset V
h : Finset.Nonempty K
⊢ Finite (ComponentCompl G ↑K)
[PROOFSTEP]
let touch (C : G.ComponentCompl K) : {v : V | ∃ k : V, k ∈ K ∧ G.Adj k v} :=
let p := C.exists_adj_boundary_pair Gpc.out h
⟨p.choose.1, p.choose.2, p.choose_spec.2.1, p.choose_spec.2.2.symm⟩
-- `touch` is injective
[GOAL]
case inr
V : Type u
G : SimpleGraph V
K✝ L L' M : Set V
inst✝ : LocallyFinite G
Gpc : Fact (Preconnected G)
K : Finset V
h : Finset.Nonempty K
touch : ComponentCompl G ↑K → ↑{v | ∃ k, k ∈ K ∧ Adj G k v} :=
fun C =>
let p := (_ : ∃ ck, ck.fst ∈ C ∧ (ck.snd ∈ fun x => x ∈ K.val) ∧ Adj G ck.fst ck.snd);
{ val := (Exists.choose p).fst, property := (_ : ∃ k, k ∈ K ∧ Adj G k (Exists.choose p).fst) }
⊢ Finite (ComponentCompl G ↑K)
[PROOFSTEP]
have touch_inj : touch.Injective := fun C D h' =>
ComponentCompl.pairwise_disjoint.eq
(Set.not_disjoint_iff.mpr
⟨touch C, (C.exists_adj_boundary_pair Gpc.out h).choose_spec.1,
h'.symm ▸ (D.exists_adj_boundary_pair Gpc.out h).choose_spec.1⟩)
-- `touch` has finite range
[GOAL]
case inr
V : Type u
G : SimpleGraph V
K✝ L L' M : Set V
inst✝ : LocallyFinite G
Gpc : Fact (Preconnected G)
K : Finset V
h : Finset.Nonempty K
touch : ComponentCompl G ↑K → ↑{v | ∃ k, k ∈ K ∧ Adj G k v} :=
fun C =>
let p := (_ : ∃ ck, ck.fst ∈ C ∧ (ck.snd ∈ fun x => x ∈ K.val) ∧ Adj G ck.fst ck.snd);
{ val := (Exists.choose p).fst, property := (_ : ∃ k, k ∈ K ∧ Adj G k (Exists.choose p).fst) }
touch_inj : Function.Injective touch
⊢ Finite (ComponentCompl G ↑K)
[PROOFSTEP]
have : Finite (Set.range touch) :=
by
refine @Subtype.finite _ (Set.Finite.to_subtype ?_) _
apply Set.Finite.ofFinset (K.biUnion (fun v => G.neighborFinset v))
simp only [Finset.mem_biUnion, mem_neighborFinset, Set.mem_setOf_eq, implies_true]
-- hence `touch` has a finite domain
[GOAL]
V : Type u
G : SimpleGraph V
K✝ L L' M : Set V
inst✝ : LocallyFinite G
Gpc : Fact (Preconnected G)
K : Finset V
h : Finset.Nonempty K
touch : ComponentCompl G ↑K → ↑{v | ∃ k, k ∈ K ∧ Adj G k v} :=
fun C =>
let p := (_ : ∃ ck, ck.fst ∈ C ∧ (ck.snd ∈ fun x => x ∈ K.val) ∧ Adj G ck.fst ck.snd);
{ val := (Exists.choose p).fst, property := (_ : ∃ k, k ∈ K ∧ Adj G k (Exists.choose p).fst) }
touch_inj : Function.Injective touch
⊢ Finite ↑(Set.range touch)
[PROOFSTEP]
refine @Subtype.finite _ (Set.Finite.to_subtype ?_) _
[GOAL]
V : Type u
G : SimpleGraph V
K✝ L L' M : Set V
inst✝ : LocallyFinite G
Gpc : Fact (Preconnected G)
K : Finset V
h : Finset.Nonempty K
touch : ComponentCompl G ↑K → ↑{v | ∃ k, k ∈ K ∧ Adj G k v} :=
fun C =>
let p := (_ : ∃ ck, ck.fst ∈ C ∧ (ck.snd ∈ fun x => x ∈ K.val) ∧ Adj G ck.fst ck.snd);
{ val := (Exists.choose p).fst, property := (_ : ∃ k, k ∈ K ∧ Adj G k (Exists.choose p).fst) }
touch_inj : Function.Injective touch
⊢ Set.Finite {v | ∃ k, k ∈ K ∧ Adj G k v}
[PROOFSTEP]
apply Set.Finite.ofFinset (K.biUnion (fun v => G.neighborFinset v))
[GOAL]
V : Type u
G : SimpleGraph V
K✝ L L' M : Set V
inst✝ : LocallyFinite G
Gpc : Fact (Preconnected G)
K : Finset V
h : Finset.Nonempty K
touch : ComponentCompl G ↑K → ↑{v | ∃ k, k ∈ K ∧ Adj G k v} :=
fun C =>
let p := (_ : ∃ ck, ck.fst ∈ C ∧ (ck.snd ∈ fun x => x ∈ K.val) ∧ Adj G ck.fst ck.snd);
{ val := (Exists.choose p).fst, property := (_ : ∃ k, k ∈ K ∧ Adj G k (Exists.choose p).fst) }
touch_inj : Function.Injective touch
⊢ ∀ (x : V), (x ∈ Finset.biUnion K fun v => neighborFinset G v) ↔ x ∈ {v | ∃ k, k ∈ K ∧ Adj G k v}
[PROOFSTEP]
simp only [Finset.mem_biUnion, mem_neighborFinset, Set.mem_setOf_eq, implies_true]
-- hence `touch` has a finite domain
[GOAL]
case inr
V : Type u
G : SimpleGraph V
K✝ L L' M : Set V
inst✝ : LocallyFinite G
Gpc : Fact (Preconnected G)
K : Finset V
h : Finset.Nonempty K
touch : ComponentCompl G ↑K → ↑{v | ∃ k, k ∈ K ∧ Adj G k v} :=
fun C =>
let p := (_ : ∃ ck, ck.fst ∈ C ∧ (ck.snd ∈ fun x => x ∈ K.val) ∧ Adj G ck.fst ck.snd);
{ val := (Exists.choose p).fst, property := (_ : ∃ k, k ∈ K ∧ Adj G k (Exists.choose p).fst) }
touch_inj : Function.Injective touch
this : Finite ↑(Set.range touch)
⊢ Finite (ComponentCompl G ↑K)
[PROOFSTEP]
apply Finite.of_injective_finite_range touch_inj
[GOAL]
V : Type u
G : SimpleGraph V
K✝ L✝ L' M : Set V
s : (j : (Finset V)ᵒᵖ) → (componentComplFunctor G).obj j
sec : s ∈ SimpleGraph.end G
K L : (Finset V)ᵒᵖ
h : L ⟶ K
v : V
vnL : ¬v ∈ L.unop
hs : s L = componentComplMk G vnL
⊢ s K = componentComplMk G (_ : ¬v ∈ fun a => a ∈ K.unop.val)
[PROOFSTEP]
rw [← sec h, hs]
[GOAL]
V : Type u
G : SimpleGraph V
K✝ L✝ L' M : Set V
s : (j : (Finset V)ᵒᵖ) → (componentComplFunctor G).obj j
sec : s ∈ SimpleGraph.end G
K L : (Finset V)ᵒᵖ
h : L ⟶ K
v : V
vnL : ¬v ∈ L.unop
hs : s L = componentComplMk G vnL
⊢ (componentComplFunctor G).map h (componentComplMk G vnL) = componentComplMk G (_ : ¬v ∈ fun a => a ∈ K.unop.val)
[PROOFSTEP]
apply ComponentCompl.hom_mk _ (le_of_op_hom h : _ ⊆ _)
[GOAL]
V : Type u
G : SimpleGraph V
K✝ L L' M : Set V
K : (Finset V)ᵒᵖ
C : (componentComplFunctor G).obj K
⊢ Set.Infinite (ComponentCompl.supp C) ↔ C ∈ Functor.eventualRange (componentComplFunctor G) K
[PROOFSTEP]
simp only [C.infinite_iff_in_all_ranges, CategoryTheory.Functor.eventualRange, Set.mem_iInter, Set.mem_range,
componentComplFunctor_map]
[GOAL]
V : Type u
G : SimpleGraph V
K✝ L L' M : Set V
K : (Finset V)ᵒᵖ
C : (componentComplFunctor G).obj K
⊢ (∀ (L : Finset V) (h : K.unop ⊆ L), ∃ D, ComponentCompl.hom h D = C) ↔
∀ (i : (Finset V)ᵒᵖ) (i_1 : i ⟶ K), ∃ y, ComponentCompl.hom (_ : K.unop ≤ i.unop) y = C
[PROOFSTEP]
exact ⟨fun h Lop KL => h Lop.unop (le_of_op_hom KL), fun h L KL => h (Opposite.op L) (opHomOfLE KL)⟩
|
module Specdris.SpecIOTest
import Specdris.SpecIO
import Specdris.TestUtil
testCase : IO ()
testCase
= do state <- specIOWithState $ do
describe "context 1" $ do
describe "context 1.1" $ do
it "context 1.1.1" $ do
a <- pure 1
pure $ do a === 2
a === 1
it "context 1.2" $ do
pure $ "hello" `shouldSatisfy` (\str => (length str) > 5)
it "context 1.3" $ do
pure $ 1 `shouldBe` 2
it "context 1.4" $ do
pure $ pendingWith "for some reason"
testAndPrint "spec io test" state (MkState 4 3 1 Nothing) (==)
withBeforeAndAfterAll : IO ()
withBeforeAndAfterAll
= do state <- specIOWithState {beforeAll = putStrLn "beforeAll"} {afterAll = putStrLn "afterAll"} $ do
describe "context 1" $ do
it "context 1.1" $ do
pure $ 1 === 1
testAndPrint "spec io test with before and after all" state (MkState 1 0 0 Nothing) (==)
around : IO SpecResult -> IO SpecResult
around spec = do putStrLn "before"
result <- spec
putStrLn "after"
pure result
withAround : IO ()
withAround
= do state <- specIOWithState {around = around} $ do
describe "context 1" $ do
it "context 1.1" $ do
putStrLn " => expectation"
pure $ 1 === 1
testAndPrint "spec io test with around" state (MkState 1 0 0 Nothing) (==)
export
specSuite : IO ()
specSuite = do putStrLn "\n spec-io:"
testCase
withBeforeAndAfterAll
withAround
|
lemma poly_shift_0 [simp]: "poly_shift n 0 = 0" |
myTestRule () {
msiHello(*name, *message);
}
INPUT *name="John"
OUTPUT ruleExecOut, *message
|
import number_theory.sum_two_squares
/-!
# Sums of two squares
The goal of this project is to prove the following statement.
**Theorem.** Let n be a positive natural number. Then n can be written
as n = a² + b² with natural numbers a and b if and only if every prime
q ≡ 3 mod 4 occurs with an even exponent in the prime factorization of n.
mathlib has *Fermat's two-squares theorem* that says that a prime p ≡ 1 mod 4
is a sum of two squares.
theorem nat.prime.sq_add_sq {p : ℕ} [fact (nat.prime p)] (hp : p % 4 = 1) :
∃ (a b : ℕ), a ^ 2 + b ^ 2 = p
From this (and the facts that 2 is a sum of two squares and that the set
of sums of two squares is multiplicative), the "if" direction follows
fairly easily. For the "only if" direction, one has to show the following
**Lemma.** If q ≡ 3 mod 4 is a prime and q divides a² + b², then q
divides a and b (and hence q² divides a² + b²).
There are the following lemmas in mathlib, which might be helpful.
theorem zmod.exists_sq_eq_neg_one_iff {p : ℕ} [fact (nat.prime p)] :
is_square (-1 : zmod p) ↔ p % 4 ≠ 3
theorem zmod.mod_four_ne_three_of_sq_eq_neg_sq' {p : ℕ} [fact (nat.prime p)]
{x y : zmod p} (hy : y ≠ 0) (hxy : x ^ 2 = -y ^ 2) :
p % 4 ≠ 3
-/
|
lemma of_real_of_nat_eq [simp]: "of_real (of_nat n) = of_nat n" |
State Before: α : Type u_1
n : ℕ
l : List α
s : Multiset α
⊢ ∀ (a : List α),
Quotient.mk (isSetoid α) a ∈ powersetLenAux n l ↔
Quotient.mk (isSetoid α) a ≤ ↑l ∧ ↑card (Quotient.mk (isSetoid α) a) = n State After: α : Type u_1
n : ℕ
l : List α
s : Multiset α
⊢ ∀ (a : List α), (∃ a_1, (a_1 <+ l ∧ length a_1 = n) ∧ a_1 ~ a) ↔ (∃ l_1, l_1 ~ a ∧ l_1 <+ l) ∧ length a = n Tactic: simp [powersetLenAux_eq_map_coe, Subperm] State Before: α : Type u_1
n : ℕ
l : List α
s : Multiset α
⊢ ∀ (a : List α), (∃ a_1, (a_1 <+ l ∧ length a_1 = n) ∧ a_1 ~ a) ↔ (∃ l_1, l_1 ~ a ∧ l_1 <+ l) ∧ length a = n State After: no goals Tactic: exact fun l₁ =>
⟨fun ⟨l₂, ⟨s, e⟩, p⟩ => ⟨⟨_, p, s⟩, p.symm.length_eq.trans e⟩,
fun ⟨⟨l₂, p, s⟩, e⟩ => ⟨_, ⟨s, p.length_eq.trans e⟩, p⟩⟩ |
module Issue4954.M (_ : Set₁) where
|
[STATEMENT]
lemma order_apply_power [simp]:
"order f ((f ^ n) \<langle>$\<rangle> a) = order f a"
[PROOF STATE]
proof (prove)
goal (1 subgoal):
1. order f ((f ^ n) \<langle>$\<rangle> a) = order f a
[PROOF STEP]
by (simp only: order_def comp_def orbit_apply_power) |
State Before: α : Type u
t : TopologicalSpace α
inst✝ : SecondCountableTopology α
S : Set (Set α)
H : ∀ (s : Set α), s ∈ S → IsOpen s
T : Set ↑S
cT : Set.Countable T
hT : (⋃ (i : ↑S) (_ : i ∈ T), ↑i) = ⋃ (i : ↑S), ↑i
⊢ ⋃₀ (Subtype.val '' T) = ⋃₀ S State After: no goals Tactic: rwa [sUnion_image, sUnion_eq_iUnion] |
!
! Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
! See https://llvm.org/LICENSE.txt for license information.
! SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
!
program p
integer :: retval = -42
stop retval
end program
|
constant g (x y : Nat) : Nat
constant f (x y : Nat) : Nat
axiom f_def (x y : Nat) : f x y = g x y
axiom f_ax (x : Nat) : f x x = x
theorem ex1 (x : Nat) : g x x = x := by
simp [← f_def, f_ax]
constant p (x y : Nat) : Prop
constant q (x y : Nat) : Prop
axiom p_def (x y : Nat) : p x y ↔ q x y
axiom p_ax (x : Nat) : p x x
theorem ex2 (x : Nat) : q x x := by
simp [← p_def, p_ax]
|
[GOAL]
R : Type u
L : Type v
inst✝² : CommRing R
inst✝¹ : LieRing L
inst✝ : LieAlgebra R L
χ : LieCharacter R L
x y : L
⊢ ↑χ ⁅x, y⁆ = 0
[PROOFSTEP]
rw [LieHom.map_lie, LieRing.of_associative_ring_bracket, mul_comm, sub_self]
[GOAL]
R : Type u
L : Type v
inst✝² : CommRing R
inst✝¹ : LieRing L
inst✝ : LieAlgebra R L
χ : LieCharacter R L
x y : L
⊢ ⁅↑χ x, ↑χ y⁆ = 0
[PROOFSTEP]
rw [LieRing.of_associative_ring_bracket, mul_comm, sub_self]
[GOAL]
R : Type u
L : Type v
inst✝² : CommRing R
inst✝¹ : LieRing L
inst✝ : LieAlgebra R L
χ : LieCharacter R L
x : L
h : x ∈ derivedSeries R L 1
⊢ ↑χ x = 0
[PROOFSTEP]
rw [derivedSeries_def, derivedSeriesOfIdeal_succ, derivedSeriesOfIdeal_zero, ← LieSubmodule.mem_coeSubmodule,
LieSubmodule.lieIdeal_oper_eq_linear_span] at h
[GOAL]
R : Type u
L : Type v
inst✝² : CommRing R
inst✝¹ : LieRing L
inst✝ : LieAlgebra R L
χ : LieCharacter R L
x : L
h : x ∈ Submodule.span R {m | ∃ x n, ⁅↑x, ↑n⁆ = m}
⊢ ↑χ x = 0
[PROOFSTEP]
refine' Submodule.span_induction h _ _ _ _
[GOAL]
case refine'_1
R : Type u
L : Type v
inst✝² : CommRing R
inst✝¹ : LieRing L
inst✝ : LieAlgebra R L
χ : LieCharacter R L
x : L
h : x ∈ Submodule.span R {m | ∃ x n, ⁅↑x, ↑n⁆ = m}
⊢ ∀ (x : L), x ∈ {m | ∃ x n, ⁅↑x, ↑n⁆ = m} → ↑χ x = 0
[PROOFSTEP]
rintro y ⟨⟨z, hz⟩, ⟨⟨w, hw⟩, rfl⟩⟩
[GOAL]
case refine'_1.intro.mk.intro.mk
R : Type u
L : Type v
inst✝² : CommRing R
inst✝¹ : LieRing L
inst✝ : LieAlgebra R L
χ : LieCharacter R L
x : L
h : x ∈ Submodule.span R {m | ∃ x n, ⁅↑x, ↑n⁆ = m}
z : L
hz : z ∈ ⊤
w : L
hw : w ∈ ⊤
⊢ ↑χ ⁅↑{ val := z, property := hz }, ↑{ val := w, property := hw }⁆ = 0
[PROOFSTEP]
apply lieCharacter_apply_lie
[GOAL]
case refine'_2
R : Type u
L : Type v
inst✝² : CommRing R
inst✝¹ : LieRing L
inst✝ : LieAlgebra R L
χ : LieCharacter R L
x : L
h : x ∈ Submodule.span R {m | ∃ x n, ⁅↑x, ↑n⁆ = m}
⊢ ↑χ 0 = 0
[PROOFSTEP]
exact χ.map_zero
[GOAL]
case refine'_3
R : Type u
L : Type v
inst✝² : CommRing R
inst✝¹ : LieRing L
inst✝ : LieAlgebra R L
χ : LieCharacter R L
x : L
h : x ∈ Submodule.span R {m | ∃ x n, ⁅↑x, ↑n⁆ = m}
⊢ ∀ (x y : L), ↑χ x = 0 → ↑χ y = 0 → ↑χ (x + y) = 0
[PROOFSTEP]
intro y z hy hz
[GOAL]
case refine'_3
R : Type u
L : Type v
inst✝² : CommRing R
inst✝¹ : LieRing L
inst✝ : LieAlgebra R L
χ : LieCharacter R L
x : L
h : x ∈ Submodule.span R {m | ∃ x n, ⁅↑x, ↑n⁆ = m}
y z : L
hy : ↑χ y = 0
hz : ↑χ z = 0
⊢ ↑χ (y + z) = 0
[PROOFSTEP]
rw [LieHom.map_add, hy, hz, add_zero]
[GOAL]
case refine'_4
R : Type u
L : Type v
inst✝² : CommRing R
inst✝¹ : LieRing L
inst✝ : LieAlgebra R L
χ : LieCharacter R L
x : L
h : x ∈ Submodule.span R {m | ∃ x n, ⁅↑x, ↑n⁆ = m}
⊢ ∀ (a : R) (x : L), ↑χ x = 0 → ↑χ (a • x) = 0
[PROOFSTEP]
intro t y hy
[GOAL]
case refine'_4
R : Type u
L : Type v
inst✝² : CommRing R
inst✝¹ : LieRing L
inst✝ : LieAlgebra R L
χ : LieCharacter R L
x : L
h : x ∈ Submodule.span R {m | ∃ x n, ⁅↑x, ↑n⁆ = m}
t : R
y : L
hy : ↑χ y = 0
⊢ ↑χ (t • y) = 0
[PROOFSTEP]
rw [LieHom.map_smul, hy, smul_zero]
[GOAL]
R : Type u
L : Type v
inst✝³ : CommRing R
inst✝² : LieRing L
inst✝¹ : LieAlgebra R L
inst✝ : IsLieAbelian L
ψ : Module.Dual R L
x y : L
⊢ AddHom.toFun
{ toAddHom := ψ.toAddHom,
map_smul' :=
(_ :
∀ (r : R) (x : L),
AddHom.toFun ψ.toAddHom (r • x) = ↑(RingHom.id R) r • AddHom.toFun ψ.toAddHom x) }.toAddHom
⁅x, y⁆ =
⁅AddHom.toFun
{ toAddHom := ψ.toAddHom,
map_smul' :=
(_ :
∀ (r : R) (x : L),
AddHom.toFun ψ.toAddHom (r • x) = ↑(RingHom.id R) r • AddHom.toFun ψ.toAddHom x) }.toAddHom
x,
AddHom.toFun
{ toAddHom := ψ.toAddHom,
map_smul' :=
(_ :
∀ (r : R) (x : L),
AddHom.toFun ψ.toAddHom (r • x) = ↑(RingHom.id R) r • AddHom.toFun ψ.toAddHom x) }.toAddHom
y⁆
[PROOFSTEP]
rw [LieModule.IsTrivial.trivial, LieRing.of_associative_ring_bracket, mul_comm, sub_self, LinearMap.toFun_eq_coe,
LinearMap.map_zero]
[GOAL]
R : Type u
L : Type v
inst✝³ : CommRing R
inst✝² : LieRing L
inst✝¹ : LieAlgebra R L
inst✝ : IsLieAbelian L
χ : LieCharacter R L
⊢ (fun ψ =>
{
toLinearMap :=
{ toAddHom := ψ.toAddHom,
map_smul' :=
(_ :
∀ (r : R) (x : L), AddHom.toFun ψ.toAddHom (r • x) = ↑(RingHom.id R) r • AddHom.toFun ψ.toAddHom x) },
map_lie' :=
(_ :
∀ {x y : L},
AddHom.toFun
{ toAddHom := ψ.toAddHom,
map_smul' :=
(_ :
∀ (r : R) (x : L),
AddHom.toFun ψ.toAddHom (r • x) =
↑(RingHom.id R) r • AddHom.toFun ψ.toAddHom x) }.toAddHom
⁅x, y⁆ =
⁅AddHom.toFun
{ toAddHom := ψ.toAddHom,
map_smul' :=
(_ :
∀ (r : R) (x : L),
AddHom.toFun ψ.toAddHom (r • x) =
↑(RingHom.id R) r • AddHom.toFun ψ.toAddHom x) }.toAddHom
x,
AddHom.toFun
{ toAddHom := ψ.toAddHom,
map_smul' :=
(_ :
∀ (r : R) (x : L),
AddHom.toFun ψ.toAddHom (r • x) =
↑(RingHom.id R) r • AddHom.toFun ψ.toAddHom x) }.toAddHom
y⁆) })
((fun χ => ↑χ) χ) =
χ
[PROOFSTEP]
ext
[GOAL]
case h
R : Type u
L : Type v
inst✝³ : CommRing R
inst✝² : LieRing L
inst✝¹ : LieAlgebra R L
inst✝ : IsLieAbelian L
χ : LieCharacter R L
x✝ : L
⊢ ↑((fun ψ =>
{
toLinearMap :=
{ toAddHom := ψ.toAddHom,
map_smul' :=
(_ :
∀ (r : R) (x : L),
AddHom.toFun ψ.toAddHom (r • x) = ↑(RingHom.id R) r • AddHom.toFun ψ.toAddHom x) },
map_lie' :=
(_ :
∀ {x y : L},
AddHom.toFun
{ toAddHom := ψ.toAddHom,
map_smul' :=
(_ :
∀ (r : R) (x : L),
AddHom.toFun ψ.toAddHom (r • x) =
↑(RingHom.id R) r • AddHom.toFun ψ.toAddHom x) }.toAddHom
⁅x, y⁆ =
⁅AddHom.toFun
{ toAddHom := ψ.toAddHom,
map_smul' :=
(_ :
∀ (r : R) (x : L),
AddHom.toFun ψ.toAddHom (r • x) =
↑(RingHom.id R) r • AddHom.toFun ψ.toAddHom x) }.toAddHom
x,
AddHom.toFun
{ toAddHom := ψ.toAddHom,
map_smul' :=
(_ :
∀ (r : R) (x : L),
AddHom.toFun ψ.toAddHom (r • x) =
↑(RingHom.id R) r • AddHom.toFun ψ.toAddHom x) }.toAddHom
y⁆) })
((fun χ => ↑χ) χ))
x✝ =
↑χ x✝
[PROOFSTEP]
rfl
[GOAL]
R : Type u
L : Type v
inst✝³ : CommRing R
inst✝² : LieRing L
inst✝¹ : LieAlgebra R L
inst✝ : IsLieAbelian L
ψ : Module.Dual R L
⊢ (fun χ => ↑χ)
((fun ψ =>
{
toLinearMap :=
{ toAddHom := ψ.toAddHom,
map_smul' :=
(_ :
∀ (r : R) (x : L),
AddHom.toFun ψ.toAddHom (r • x) = ↑(RingHom.id R) r • AddHom.toFun ψ.toAddHom x) },
map_lie' :=
(_ :
∀ {x y : L},
AddHom.toFun
{ toAddHom := ψ.toAddHom,
map_smul' :=
(_ :
∀ (r : R) (x : L),
AddHom.toFun ψ.toAddHom (r • x) =
↑(RingHom.id R) r • AddHom.toFun ψ.toAddHom x) }.toAddHom
⁅x, y⁆ =
⁅AddHom.toFun
{ toAddHom := ψ.toAddHom,
map_smul' :=
(_ :
∀ (r : R) (x : L),
AddHom.toFun ψ.toAddHom (r • x) =
↑(RingHom.id R) r • AddHom.toFun ψ.toAddHom x) }.toAddHom
x,
AddHom.toFun
{ toAddHom := ψ.toAddHom,
map_smul' :=
(_ :
∀ (r : R) (x : L),
AddHom.toFun ψ.toAddHom (r • x) =
↑(RingHom.id R) r • AddHom.toFun ψ.toAddHom x) }.toAddHom
y⁆) })
ψ) =
ψ
[PROOFSTEP]
ext
[GOAL]
case h
R : Type u
L : Type v
inst✝³ : CommRing R
inst✝² : LieRing L
inst✝¹ : LieAlgebra R L
inst✝ : IsLieAbelian L
ψ : Module.Dual R L
x✝ : L
⊢ ↑((fun χ => ↑χ)
((fun ψ =>
{
toLinearMap :=
{ toAddHom := ψ.toAddHom,
map_smul' :=
(_ :
∀ (r : R) (x : L),
AddHom.toFun ψ.toAddHom (r • x) = ↑(RingHom.id R) r • AddHom.toFun ψ.toAddHom x) },
map_lie' :=
(_ :
∀ {x y : L},
AddHom.toFun
{ toAddHom := ψ.toAddHom,
map_smul' :=
(_ :
∀ (r : R) (x : L),
AddHom.toFun ψ.toAddHom (r • x) =
↑(RingHom.id R) r • AddHom.toFun ψ.toAddHom x) }.toAddHom
⁅x, y⁆ =
⁅AddHom.toFun
{ toAddHom := ψ.toAddHom,
map_smul' :=
(_ :
∀ (r : R) (x : L),
AddHom.toFun ψ.toAddHom (r • x) =
↑(RingHom.id R) r • AddHom.toFun ψ.toAddHom x) }.toAddHom
x,
AddHom.toFun
{ toAddHom := ψ.toAddHom,
map_smul' :=
(_ :
∀ (r : R) (x : L),
AddHom.toFun ψ.toAddHom (r • x) =
↑(RingHom.id R) r • AddHom.toFun ψ.toAddHom x) }.toAddHom
y⁆) })
ψ))
x✝ =
↑ψ x✝
[PROOFSTEP]
rfl
|
lemma of_real_of_int_eq [simp]: "of_real (of_int z) = of_int z" |
import game.max.level04 -- hide
open_locale classical -- hide
noncomputable theory -- hide
namespace xena -- hide
/-
# Chapter 4 : Max and abs
## Level 5
`max_le` is really useful; it says that if `a ≤ c` and `b ≤ c`
then `max a b ≤ c`.
Note that in the Lean formulation, the variables are *implicit*,
meaning that Lean will guess them.
-/
/- Lemma
If $a$, $b$, $c$ are real numbers with $a\leq c$ and $b\leq c$,
then $\max(a,b)\leq c.$
-/
theorem max_le {a b c : ℝ} (hac : a ≤ c) (hbc : b ≤ c) : max a b ≤ c :=
begin
cases max_choice a b with ha hb,
rw ha,
exact hac,
rw hb,
exact hbc,
end
end xena --hide
|
Performance
|
module Data.Time.Clock.Internal.SystemTime
-- ( SystemTime(..)
-- , getSystemTime
-- , getTime_resolution
-- , getTAISystemTime
-- ) where
--import Data.Bits32
--import Data.Data
--import Control.DeepSeq
--import Data.Int (Int64)
import Data.Time.Clock.Internal.DiffTime
--import Data.Word
--#include "HsTimeConfig.h"
import Internal.CTimespec
import Data.Time.Clock.Internal.Fixed
--------------------------------------------------------------------------------
-- | 'SystemTime' is time returned by system clock functions.
-- Its semantics depends on the clock function, but the epoch is typically the beginning of 1970.
-- Note that 'systemNanoseconds' of 1E9 to 2E9-1 can be used to represent leap seconds.
public export
record SystemTime where
constructor MkSystemTime
systemSeconds: Integer
systemNanoseconds: Integer
-- | Get the system time, epoch start of 1970 UTC, leap-seconds ignored.
-- 'getSystemTime' is typically much faster than 'getCurrentTime'.
export
getSystemTime: IO SystemTime
getSystemTime = do
(MkCTimeSpec x y) <- clock_gettime
pure $ MkSystemTime x y
-- | The resolution of 'getSystemTime', 'getCurrentTime', 'getPOSIXTime'
-- | TODO: Fix this.
--getTime_resolution: DiffTime
-- getTime_resolution = 100E-9 -- 100ns
timespecToSystemTime: CTimeSpec -> SystemTime
timespecToSystemTime (MkCTimeSpec s ns) = (MkSystemTime s ns)
-- TODO: Currently nano second resolution does not work
timespecToDiffTime: CTimeSpec -> DiffTime
timespecToDiffTime (MkCTimeSpec s ns) = MkDiffTime (MkFixed (s)) -- + (ns * 1E-9)))
--clockGetSystemTime :: ClockID -> IO SystemTime
--clockGetSystemTime clock = fmap timespecToSystemTime $ clockGetTime clock
--getSystemTime = clockGetSystemTime clock_REALTIME
--getTime_resolution = timespecToDiffTime realtimeRes
-- Use gettimeofday
-- getTime_resolution = 1E-6 -- microsecond
|
[STATEMENT]
theorem C10: "\<lfloor>\<^bold>\<exists>\<^sup>Ax. Godlike x\<rfloor>"
[PROOF STATE]
proof (prove)
goal (1 subgoal):
1. \<lfloor>\<lambda>w. \<exists>x. ((actualizedAt) x \<^bold>\<and> Godlike x) w\<rfloor>
[PROOF STEP]
using Existence_def Necessary_def
abstractness_essential concrete_exist P2 C1 B_axiom
[PROOF STATE]
proof (prove)
using this:
E! ?x \<equiv> \<lambda>w. \<exists>x. x actualizedAt w \<and> x = ?x
Necessary ?x \<equiv> \<^bold>\<box>E! ?x
\<lfloor>\<lambda>w. \<forall>x. (Abstract x \<^bold>\<rightarrow> \<^bold>\<box>Abstract x) w\<rfloor>
\<lfloor>\<lambda>w. \<forall>x. (Concrete x \<^bold>\<rightarrow> E! x) w\<rfloor>
\<lfloor>\<lambda>w. \<exists>x. ((actualizedAt) x \<^bold>\<and> Necessary x \<^bold>\<and> Abstract x) w\<rfloor>
\<lfloor>\<lambda>w. \<forall>x. x actualizedAt w \<longrightarrow> Abstract x w \<longrightarrow> (\<exists>xa. (Concrete xa \<^bold>\<and> x dependsOn xa) w)\<rfloor>
universal (\<lambda>x y. x r y \<longrightarrow> y r x)
goal (1 subgoal):
1. \<lfloor>\<lambda>w. \<exists>x. ((actualizedAt) x \<^bold>\<and> Godlike x) w\<rfloor>
[PROOF STEP]
by meson |
[STATEMENT]
lemma lim_set [simp]:
"lim (set r v h) = lim h"
[PROOF STATE]
proof (prove)
goal (1 subgoal):
1. lim (Ref_Time.set r v h) = lim h
[PROOF STEP]
by (simp add: set_def) |
{-# OPTIONS --safe --no-qualified-instances #-}
{- Noop removal transformation on bytecode -}
module JVM.Transform.Noooops where
open import Data.Product
open import Data.Sum
open import Function using (case_of_)
open import Data.List
open import Relation.Unary hiding (Empty)
open import Relation.Binary.Structures
open import Relation.Binary.PropositionalEquality using (refl; _≡_)
open import Relation.Ternary.Core
open import Relation.Ternary.Structures
open import Relation.Ternary.Structures.Syntax hiding (_∣_)
open import JVM.Types
open import JVM.Model StackTy
open import JVM.Syntax.Instructions
open import Relation.Ternary.Data.ReflexiveTransitive {{intf-rel}}
open IsEquivalence {{...}} using (sym)
open import Data.Maybe using (just; nothing; Maybe)
is-noop : ∀[ ⟨ 𝑭 ∣ ψ₁ ↝ ψ₂ ⟩ ⇒ (Empty (ψ₁ ≡ ψ₂) ∪ U) ]
is-noop noop = inj₁ (emp refl)
is-noop _ = inj₂ _
noooop : ∀[ ⟪ 𝑭 ∣ ψ₁ ↝ ψ₂ ⟫ ⇒ ⟪ 𝑭 ∣ ψ₁ ↝ ψ₂ ⟫ ]
noooop nil = nil
-- (1) not labeled
noooop (cons (instr (↓ i) ∙⟨ σ ⟩ is)) =
case (is-noop i) of λ where
(inj₂ _) → instr (↓ i) ▹⟨ σ ⟩ noooop is
(inj₁ (emp refl)) → coe (∙-id⁻ˡ σ) (noooop is)
-- (2) is labeled
noooop (cons (li@(labeled (l ∙⟨ σ₀ ⟩ ↓ i)) ∙⟨ σ ⟩ is)) =
case (is-noop i) of λ where
(inj₂ _) → cons (li ∙⟨ σ ⟩ noooop is)
(inj₁ (emp refl)) → label-start noop l ⟨ coe {{∙-respects-≈ˡ}} (≈-sym (∙-id⁻ʳ σ₀)) σ ⟩ (noooop is)
|
import order.filter.basic
lemma filter.eventually_eq.eventually_eq_ite {X Y : Type*} {l : filter X} {f g : X → Y}
{P : X → Prop} [decidable_pred P] (h : f =ᶠ[l] g) :
(λ x, if P x then f x else g x) =ᶠ[l] f :=
begin
apply h.mono (λ x hx, _),
dsimp only,
split_ifs ; tauto
end
|
informal statement Let $X$ be completely regular. Show that $X$ is connected if and only if the Stone-Čech compactification of $X$ is connected.formal statement theorem exercise_1_3 {F V : Type*} [add_comm_group V] [field F]
[module F V] {v : V} : -(-v) = v := |
{-# OPTIONS --without-K --safe --no-sized-types --no-guardedness #-}
module Agda.Builtin.IO where
postulate IO : ∀ {a} → Set a → Set a
{-# BUILTIN IO IO #-}
{-# FOREIGN GHC type AgdaIO a b = IO b #-}
{-# COMPILE GHC IO = type AgdaIO #-}
|
lemma contour_integral_0 [simp]: "contour_integral g (\<lambda>x. 0) = 0" |
import cv2
import numpy as np
cap= cv2.VideoCapture(0)
labels = list()
example_contour = list()
images= list()
imname= 0
while (cap.isOpened()):
ret, img= cap.read()
img= cv2.flip(img, 1)
cv2.rectangle(img,(300,300),(0,0),(0,255,0),0)
roi= img[0:300, 0:300]
gray= cv2.cvtColor(roi, cv2.COLOR_BGR2GRAY)
blurred = cv2.GaussianBlur(gray, (35,35), 0)
_, edges= cv2.threshold(blurred, 127, 255, cv2.THRESH_BINARY_INV+cv2.THRESH_OTSU)
_, contours, hierarchy = cv2.findContours(edges.copy(),cv2.RETR_TREE,cv2.CHAIN_APPROX_SIMPLE)
y=len(contours)
area= np.zeros(y)
for i in range(0, y):
area[i] = cv2.contourArea(contours[i])
index= area.argmax()
hand = contours[index]
x,y,w,h = cv2.boundingRect(hand)
cv2.rectangle(roi,(x,y),(x+w,y+h),(0,0,255),0)
temp = np.zeros(roi.shape, np.uint8)
M = cv2.moments(hand)
cv2.drawContours(img, [hand], -1, (0, 255,0), -1)
cv2.drawContours(temp, [hand], -1, (0, 255,0), -1)
key = cv2.waitKey(1)
if key & 0xFF== ord('q'):
c = np.asarray(example_contour)
print c.shape
print labels
np.save('gestures/composite_list.npy', c)
np.save('gestures/composite_list_labels.npy', labels)
for img in images:
i = str(imname)
cv2.imwrite('gestures/'+i.zfill(4)+'.jpg', img)
imname+=1
break
elif key & 0xFF == ord('0'):
example_contour.append(hand)
images.append(temp)
labels.append(0)
print len(example_contour)
elif key & 0xFF == ord('1'):
example_contour.append(hand)
images.append(temp)
labels.append(1)
print len(example_contour)
elif key & 0xFF == ord('2'):
example_contour.append(hand)
images.append(temp)
labels.append(2)
print len(example_contour)
elif key & 0xFF == ord('3'):
example_contour.append(hand)
images.append(temp)
labels.append(3)
print len(example_contour)
elif key & 0xFF == ord('4'):
example_contour.append(hand)
images.append(temp)
labels.append(4)
print len(example_contour)
elif key & 0xFF == ord('5'):
example_contour.append(hand)
images.append(temp)
labels.append(5)
print len(example_contour)
cv2.imshow('Place your hand in the rectangle', img)
cv2.imshow('Contour', temp)
cv2.moveWindow('Contour', 600, 0)
|
universes u v
inductive Imf {α : Type u} {β : Type v} (f : α → β) : β → Type (max u v)
| mk : (a : α) → Imf f (f a)
def h {α β} {f : α → β} : {b : β} → Imf f b → α
| _, Imf.mk a => a
#print h
theorem ex : ∀ {α β : Sort u} (h : α = β) (a : α), cast h a ≅ a
| α, _, rfl, a => HEq.refl a
#print ex
|
Section MinimalPropositionalLogic.
Axiom P : Prop.
Axiom Q : Prop.
Axiom R : Prop.
Axiom T : Prop.
Theorem ImplicationsAreTransitive : (P -> Q) -> (Q -> R) -> P -> R.
Proof.
intro H0.
intro H1.
intro p.
apply H1.
apply H0.
assumption.
Qed.
Section AssumptionExample.
Hypothesis H : P -> Q -> R.
Lemma L1 : P -> Q -> R.
Proof.
assumption.
Qed.
End AssumptionExample.
Theorem ApplyExample : (Q -> R -> T) -> (P -> Q) -> P -> R -> T.
Proof.
intros H1 H2 p.
apply H1.
exact (H2 p).
Qed.
(*
Theorem ImplicationIsDistributive : (forall A B C : Prop, (A -> (A -> B -> C) -> (A -> B) -> (B -> C))).
Proof.
intro A.
intro B.
intro C.
intro a.
intro H1.
intro H2.
intro H3.
apply H1.
assumption.
apply H3.
Qed.
*)
Theorem ImplicationIsDistributive : ((P -> Q -> R) -> (P -> Q) -> (P -> R)).
Proof.
intros H1 H2 p.
apply H1.
assumption.
exact (H2 p).
Qed.
Section ExamplesCh3Section3.
Lemma Identity : (P -> P).
Proof.
intro p.
exact p.
Qed.
Lemma IdentityImplication : ((P -> P) -> (P -> P)).
Proof.
intro H0.
exact H0.
Qed.
Lemma ImplicationIsTransitive : ((P -> Q) -> (Q -> R) -> P -> R).
Proof.
intro H1.
intro H2.
intro p.
apply H2.
exact (H1 p).
Qed.
Lemma ImplicationPer : ((P -> Q -> R) -> (Q -> P -> R)).
Proof.
intro H1.
intro H2.
intro p.
apply H1.
- assumption.
- apply H2.
Qed.
Lemma IgnoreQ : ((P -> R) -> P -> Q -> R).
Proof.
intro H1.
intro H2.
intro H3.
apply H1.
apply H2.
Qed.
Lemma DeltaImplication : ((P -> Q) -> (P -> P -> Q)).
Proof.
intro H1.
intro H2.
intro H3.
apply H1.
apply H2.
Qed.
Lemma DeltaImplicationReverse : ((P -> P -> Q) -> P -> Q).
Proof.
intro H1.
intro H2.
apply H1.
assumption.
assumption.
Qed.
Lemma Diamond : ((P -> Q) -> (P -> R) -> (Q -> R -> T) -> P -> T).
Proof.
intro H1.
intro H2.
intro H3.
intro H4.
apply H3.
apply H1.
apply H4.
apply H2.
assumption.
Qed.
Lemma WeakPeirce : (((((P -> Q) -> P) -> P) -> Q) -> Q).
Proof.
intro H1.
apply H1.
intro H2.
apply H2.
intro H3.
apply H1.
intro H4.
assumption.
Qed.
End ExamplesCh3Section3.
Theorem ModusPonens : ((P -> Q) -> P -> Q).
Proof.
intros.
rename H into H1.
apply H1.
assumption.
Qed.
(* TODO: Complete
Theorem ModusTollens : ((P -> Q) -> ~Q -> ~P).
Proof.
intros.
*)
Section ProofOfTripleImplication.
Hypothesis H : (((P -> Q) -> Q) -> Q).
Hypothesis p : P.
Lemma Rem : ((P -> Q) -> Q).
Proof (fun H0: (P -> Q) => H0 p).
Theorem TripleImplication : Q.
Proof (H Rem).
End ProofOfTripleImplication.
Print TripleImplication.
Print Rem.
Theorem ThenExample : (P -> Q -> (P -> Q -> R) -> R).
Proof.
intros p q H1.
apply H1; assumption.
Qed.
Theorem TripleImplicationOneShot : ((((P -> Q) -> Q) -> Q) -> P -> Q).
Proof.
intros H p; apply H; intro H0; apply H0; assumption.
Qed.
Theorem ComposeExample : ((P -> Q -> R) -> (P -> Q) -> (P -> R)).
Proof.
intros H1 H2 p.
apply H1; [assumption | apply H2; assumption].
Qed.
Lemma L3 : ((P -> Q) -> (P -> R) -> (P -> Q -> R -> T) -> P -> T).
Proof.
intros H1 H2 H3 p.
apply H3; [idtac | apply H1 | apply H2]; assumption.
Qed.
Theorem ThenFailExample : ((P -> Q) -> (P -> Q)).
Proof.
intro H; apply H; fail.
Qed.
Section SectionForCutExample.
Hypothesis (H1 : P -> Q)
(H2 : Q -> R)
(H3 : (P -> R) -> T -> Q)
(H4 : (P -> R) -> T).
Theorem CutExample : Q.
Proof.
cut (P -> R).
intro H5.
apply H3.
assumption.
apply H4; assumption.
intro H6.
apply H2.
apply H1.
assumption.
Qed.
Print CutExample.
Theorem CutWithoutCutExample : Q.
Proof.
apply H3.
intro H5.
apply H2.
apply H1.
assumption.
apply H4.
intro H5.
apply H2.
apply H1.
assumption.
Qed.
End SectionForCutExample.
End MinimalPropositionalLogic.
Print ImplicationIsDistributive.
Section UsingImplicationIsDistributive.
Variables (P1 P2 P3 : Prop).
(* Not working
Check (ImplicationIsDistributive P1 P2 P3).
*)
Theorem Exercise5P5 : (forall A B C D : Set, A = C \/ B = C \/ C = C \/ D = C).
Proof.
intro A.
intro B.
intro C.
intro D.
right.
right.
left.
reflexivity.
Qed.
Theorem ModusTollens : (forall P Q : Prop, (P -> Q) -> ~Q -> ~P).
Proof.
intro P.
intro Q.
intro H.
unfold not.
apply (ImplicationTransitivity).
exact (H).
Qed.
|
||| Additional functions about vectors
module Data.Vect.Extra
import Data.Vect
import Data.Fin
import Data.Vect.Elem
||| Version of `map` with access to the current position
public export
mapWithPos : (f : Fin n -> a -> b) -> Vect n a -> Vect n b
mapWithPos f [] = []
mapWithPos f (x :: xs) = f 0 x :: mapWithPos (f . FS) xs
||| Version of `map` with runtime-irrelevant information that the
||| argument is an element of the vector
public export
mapWithElem : (xs : Vect n a)
-> (f : (x : a) -> (0 pos : x `Elem` xs) -> b)
-> Vect n b
mapWithElem [] f = []
mapWithElem (x :: xs) f
= f x Here :: mapWithElem xs
(\x,pos => f x (There pos))
|
[STATEMENT]
lemma vifintersection_vintersection_single:
assumes "I \<noteq> 0"
shows "B \<union>\<^sub>\<circ> (\<Inter>\<^sub>\<circ>i\<in>\<^sub>\<circ>I. A i) = (\<Inter>\<^sub>\<circ>i\<in>\<^sub>\<circ>I. B \<union>\<^sub>\<circ> A i)"
[PROOF STATE]
proof (prove)
goal (1 subgoal):
1. B \<union>\<^sub>\<circ> \<Inter>\<^sub>\<circ> (VLambda I A `\<^sub>\<circ> I) = \<Inter>\<^sub>\<circ> ((\<lambda>a\<in>\<^sub>\<circ>I. B \<union>\<^sub>\<circ> A a) `\<^sub>\<circ> I)
[PROOF STEP]
by (insert assms, intro vsubset_antisym vsubsetI vifintersectionI)
blast+ |
! { dg-do run }
! { dg-add-options ieee }
! { dg-skip-if "NaN not supported" { spu-*-* } { "*" } { "" } }
! PR37077 Implement Internal Unit I/O for character KIND=4
! Test case prepared by Jerry DeLisle <[email protected]>
program char4_iunit_1
implicit none
character(kind=4,len=42) :: string
integer(kind=4) :: i,j
real(kind=4) :: inf, nan, large
large = huge(large)
inf = 2 * large
nan = 0
nan = nan / nan
string = 4_"123456789x"
write(string,'(a11)') 4_"abcdefg"
if (string .ne. 4_" abcdefg ") call abort
write(string,*) 12345
if (string .ne. 4_" 12345 ") call abort
write(string, '(i6,5x,i8,a5)') 78932, 123456, "abc"
if (string .ne. 4_" 78932 123456 abc ") call abort
write(string, *) .true., .false. , .true.
if (string .ne. 4_" T F T ") call abort
write(string, *) 1.2345e-06, 4.2846e+10_8
if (string .ne. 4_" 1.23450002E-06 42846000000.000000 ") call abort
write(string, *) nan, inf
if (string .ne. 4_" NaN +Infinity ") call abort
write(string, '(10x,f3.1,3x,f9.1)') nan, inf
if (string .ne. 4_" NaN +Infinity ") call abort
write(string, *) (1.2, 3.4 )
if (string .ne. 4_" ( 1.2000000 , 3.4000001 ) ") call abort
end program char4_iunit_1
|
Require Import List.
Require Import ZArith.
Require Import String.
Import ListNotations.
Require Import lang.
(* for expression *)
Definition exp_var_constr := constr_def (constr_name "var") [type_name "string"].
Definition exp_num_constr := constr_def (constr_name "num") [type_name "num"].
Definition exp_plus_constr := constr_def (constr_name "plus") [type_name "num"; type_name "num"].
(*
Not yet cover exp...
Inductive exp : Set :=
| var : vname -> exp
| con : cname -> exp
| boolean : bool -> exp
| num : Z -> exp
| str : string -> exp
| binary : binop -> exp -> exp -> exp
| application : exp -> exp -> exp.
*)
Definition syntax_exp_decl := type_decl (type_name "exp") [exp_var_constr; exp_num_constr; exp_plus_constr].
Inductive exp_meta_base : val -> exp -> Prop :=
| exp_mb_var : forall v,
exp_meta_base
([[ C # "var" #$ S # v ]])
(V @ v)
| exp_mb_num : forall z : Z,
exp_meta_base
([[ C # "num" #$ z ]])
z
| exp_mb_plus : forall e1 e2 v1 v2,
exp_meta_base e1 v1 -> exp_meta_base e2 v2 ->
exp_meta_base
([[ C # "plus" #$ e1 #$ e2 ]])
(v1 +' v2)
.
Notation "x 'Me' #~> y" := (exp_meta_base x y) (at level 20).
(* for procedure *)
Definition proc_assign_constr :=
constr_def (constr_name "assign") [type_name "string"; type_name "exp"].
Definition proc_seq_constr :=
constr_def (constr_name "seq") [type_name "proc"; type_name "proc"].
(*
Inductive proc : Set :=
| Pseq : proc -> proc -> proc
| Pwhile : exp -> proc -> proc
| Pmatch : exp -> list proc -> proc
| Passign : vname -> exp -> proc
| Pcall : pname -> proc
.
*)
Definition syntax_proc_decl :=
type_decl (type_name "proc") [proc_assign_constr; proc_seq_constr].
Inductive proc_meta_base : val -> proc -> Prop :=
| proc_mb_assign : forall vn v e, exp_meta_base v e ->
proc_meta_base
([[ C # "assign" #$ S # vn #$ v ]])
(vn :== e)
| proc_mb_seq : forall v1 v2 p1 p2,
proc_meta_base v1 p1 ->
proc_meta_base v2 p2 ->
proc_meta_base
([[ C # "seq" #$ v1 #$ v2 ]])
(p1 ;; p2)
.
Notation "x 'Mp' #~> y" := (proc_meta_base x y) (at level 25).
(*
Variable syntax_type_decl : declaration.
Definition meta_module := ("meta_syntax", [syntax_proc_decl; syntax_func_decl; syntax_type_decl]).
*)
Definition test_program_data :=
(C @ "assign" $ S @ "a" $ (C @ "num" $ 10)).
(* a := 10 という文vを作るプログラム *)
Definition test_program := "v" :== test_program_data.
Goal [] ||- {- True -} test_program {- (forall v p, V @ "v" #~> v -> (v Mp #~> p) -> ([] ||- {- True -} p {-V @ "a" #~> 10 -})) -}.
unfold test_program.
apply Vweaken with
(P := forall (v : val) (p : proc), test_program_data #~> v -> v Mp #~> p -> [] ||- {- True -} p {- V @ "a" #~> 10%Z -}); unfold test_program_data.
apply Vassign with (P := fun e => forall (v : val) (p : proc), e #~> v -> v Mp #~> p -> [] ||- {- True -} p {- V @ "a" #~> 10 -}).
intro.
intros.
inversion H0; clear H0; subst.
inversion H2; clear H2; subst.
inversion H4; clear H4; subst.
inversion H3; clear H3; subst.
inversion H6; clear H6; subst.
inversion H7; clear H7; subst.
inversion H2.
inversion H0; clear H0; subst.
inversion H4; clear H4; subst.
inversion H6; clear H6; subst.
inversion H0.
inversion H1; clear H1; subst.
inversion H4; clear H4; subst.
eapply Vweaken.
eapply Vassign with (P := fun v => v #~> 10).
intro.
constructor.
Qed.
(* "a := 10; a := a + 10" *)
Definition test_program2_data :=
C @ "seq" $ (C @ "assign" $ S @ "a" $ (C @ "num" $ 10))
$ (C @ "assign" $ S @ "a" $ (C @ "plus" $ (C @ "var" $ S @ "a") $ (C @ "num" $ 10))).
Definition test_program2 :=
"v" :== test_program2_data.
Goal verify [] test_program2 True (forall v p, exp_val (var (var_name "v")) v -> proc_meta_base v p -> verify [] p True (exp_val (var (var_name "a")) (num_val 20%Z))).
unfold test_program2.
apply Vweaken with
(P := forall (v : val) (p : proc), test_program2_data #~> v -> v Mp #~> p -> [] ||- {- True -} p {- V @ "a" #~> 20 -}).
apply Vassign with (P := fun e => forall (v : val) (p : proc), e #~> v -> v Mp #~> p -> [] ||- {- True -} p {- V @ "a" #~> 20 -}).
intro H; clear H.
intros.
unfold test_program2_data in H.
(* evaluation of expression *)
inversion H; clear H; subst.
inversion H1; clear H1; subst.
inversion H3; clear H3; subst.
inversion H2; clear H2; subst.
inversion H5; clear H5; subst.
inversion H; clear H; subst.
inversion H3; clear H3; subst.
inversion H2; clear H2; subst.
inversion H5; clear H5; subst.
inversion H; clear H; subst.
inversion H3; clear H3; subst.
inversion H2; clear H2; subst.
inversion H5; clear H5; subst.
inversion H; clear H; subst.
inversion H3; clear H3; subst.
inversion H5; clear H5; subst.
inversion H.
inversion H6; clear H6; subst.
inversion H7; clear H7; subst.
inversion H1.
inversion H; clear H; subst.
inversion H3; clear H3; subst.
inversion H2; clear H2; subst.
inversion H5; clear H5; subst.
inversion H; clear H; subst.
inversion H3; clear H3; subst.
inversion H5; clear H5; subst.
inversion H.
inversion H6; clear H6; subst.
inversion H.
inversion H8; clear H8; subst.
inversion H; clear H; subst.
inversion H3; clear H3; subst.
inversion H5; clear H5; subst.
inversion H.
(* meta-to-base *)
inversion H0; clear H0; subst.
inversion H2; clear H2; subst.
inversion H3; clear H3; subst.
inversion H4; clear H4; subst.
inversion H2; clear H2; subst.
inversion H1; clear H1; subst.
inversion H4; clear H4; subst.
(* generated program verification *)
apply Vweaken with (P := 10 +' 10 #~> 20%Z).
eapply Vseq.
apply Vassign with (P := fun e => e +' 10 #~> 20).
apply Vassign with (P := fun e => e #~> 20). (* なんでapplyだけじゃうまく行かないのかよく分からない *)
intro H; clear H.
eapply val_binop.
apply val_num.
apply val_num.
constructor.
Qed.
|
theory prop_07
imports Main
"../../TestTheories/Listi"
"../../TestTheories/Naturals"
"$HIPSTER_HOME/IsaHipster"
begin
theorem lemma_aa : "len (maps x2 y2) = len y2"
by hipster_induct_schemes
end
|
function results = vl_test_ikmeans(varargin)
% VL_TEST_IKMEANS
vl_test_init ;
function s = setup()
rand('state',0) ;
s.data = uint8(rand(2,1000) * 255) ;
function test_basic(s)
[centers, assign] = vl_ikmeans(s.data,100) ;
assign_ = vl_ikmeanspush(s.data, centers) ;
vl_assert_equal(assign,assign_) ;
function test_elkan(s)
[centers, assign] = vl_ikmeans(s.data,100,'method','elkan') ;
assign_ = vl_ikmeanspush(s.data, centers) ;
vl_assert_equal(assign,assign_) ;
|
import tactic.basic
import tactic.ext
import data.set.basic
meta def my_tactic : tactic unit := `[exact 7, refl]
example : ∃ (n : ℕ), n = 7 :=
begin
split,
swap,
my_tactic,
end
meta def my_tactic_5 : tactic unit :=
do `[induction a],
tactic.reflexivity,
`[simpa]
|
/-
Copyright (c) 2022 María Inés de Frutos-Fernández. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: María Inés de Frutos-Fernández
-/
import algebraic_geometry.prime_spectrum.basic
import ring_theory.dedekind_domain.ideal
import topology.algebra.valued_field
/-!
# Adic valuations on Dedekind domains
Given a Dedekind domain `R` of Krull dimension 1 and a maximal ideal `v` of `R`, we define the
`v`-adic valuation on `R` and its extension to the field of fractions `K` of `R`.
We prove several properties of this valuation, including the existence of uniformizers.
## Main definitions
- `maximal_spectrum` defines the set of nonzero prime ideals of `R`. When `R` is a Dedekind domain
of Krull dimension 1, this is the set of maximal ideals of `R`.
- `maximal_spectrum.int_valuation v` is the `v`-adic valuation on `R`.
- `maximal_spectrum.valuation v` is the `v`-adic valuation on `K`.
## Main results
- `int_valuation_le_one` : The `v`-adic valuation on `R` is bounded above by 1.
- `int_valuation_lt_one_iff_dvd` : The `v`-adic valuation of `r ∈ R` is less than 1 if and only if
`v` divides the ideal `(r)`.
- `int_valuation_le_pow_iff_dvd` : The `v`-adic valuation of `r ∈ R` is less than or equal to
`multiplicative.of_add (-n)` if and only if `vⁿ` divides the ideal `(r)`.
- `int_valuation_exists_uniformizer` : There exists `π ∈ R` with `v`-adic valuation
`multiplicative.of_add (-1)`.
- `valuation_well_defined` : The valuation of `k ∈ K` is independent on how we express `k`
as a fraction.
- `valuation_of_mk'` : The `v`-adic valuation of `r/s ∈ K` is the valuation of `r` divided by
the valuation of `s`.
- `valuation_of_algebra_map` : The `v`-adic valuation on `K` extends the `v`-adic valuation on `R`.
- `valuation_exists_uniformizer` : There exists `π ∈ K` with `v`-adic valuation
`multiplicative.of_add (-1)`.
## Implementation notes
We are only interested in Dedekind domains with Krull dimension 1. Dedekind domains of Krull
dimension 0 are fields, and for them `maximal_spectrum` is the empty set, which does not agree with
the set of maximal ideals (which is {(0)}).
Most of the code in this file has already been incorporated to mathlib and can be found in the files
`ring_theory/dedekind_domain/ideal.lean` and `ring_theory/dedekind_domain/adic_valuation.lean`. Note
that `maximal_spectrum` is called `height_one_spectrum` there, and that some of the names of
definitions and lemmas have been modified. We keep this version of the code here so that this branch
contains all of the code referred to in the article "Formalizing the Rings of Adèles of a Global
Field".
## References
* [G. J. Janusz, *Algebraic Number Fields*][janusz1996]
* [J.W.S. Cassels, A. Frölich, *Algebraic Number Theory*][cassels1967algebraic]
* [J. Neukirch, *Algebraic Number Theory*][Neukirch1992]
## Tags
dedekind domain, dedekind ring, adic valuation
-/
noncomputable theory
open_locale classical
variables (R : Type*) [comm_ring R] [is_domain R] [is_dedekind_domain R] {K : Type*} [field K]
[algebra R K] [is_fraction_ring R K]
/-!
### Maximal spectrum of a Dedekind domain
If `R` is a Dedekind domain of Krull dimension 1, the maximal ideals of `R` are exactly its nonzero
prime ideals.
We define `maximal_spectrum` and provide lemmas to recover the facts that maximal ideals are prime
and irreducible. -/
/-- The maximal spectrum of a Dedekind domain `R` of Krull dimension 1 is its set of nonzero prime
ideals. Note that this is not the maximal spectrum if `R` has Krull dimension 0. -/
@[ext, nolint has_inhabited_instance unused_arguments]
structure maximal_spectrum :=
(as_ideal : ideal R)
(is_prime : as_ideal.is_prime)
(ne_bot : as_ideal ≠ ⊥)
variables (v : maximal_spectrum R) {R}
--Maximal spectrum lemmas
lemma maximal_spectrum.prime (v : maximal_spectrum R) : prime v.as_ideal :=
ideal.prime_of_is_prime v.ne_bot v.is_prime
lemma maximal_spectrum.irreducible (v : maximal_spectrum R) :
irreducible v.as_ideal :=
begin
rw [unique_factorization_monoid.irreducible_iff_prime],
apply v.prime,
end
lemma maximal_spectrum.associates_irreducible (v : maximal_spectrum R) :
irreducible (associates.mk v.as_ideal) :=
begin
rw [associates.irreducible_mk _],
apply v.irreducible,
end
/-!
### Auxiliary lemmas
We provide auxiliary lemmas about `multiplicative.of_add`, `is_localization`, `associates` and
`ideal`. They will be moved to the appropriate files when the code is integrated in `mathlib`. -/
-- of_add lemmas
lemma of_add_le (α : Type*) [partial_order α] (x y : α) :
multiplicative.of_add x ≤ multiplicative.of_add y ↔ x ≤ y := by refl
lemma of_add_lt (α : Type*) [partial_order α] (x y : α) :
multiplicative.of_add x < multiplicative.of_add y ↔ x < y := by refl
lemma of_add_inj (α : Type*) (x y : α)
(hxy : multiplicative.of_add x = multiplicative.of_add y) : x = y :=
by rw [← to_add_of_add x, ← to_add_of_add y, hxy]
variables {A : Type*} [comm_ring A] [is_domain A] {S : Type*} [field S] [algebra A S]
[is_fraction_ring A S]
lemma is_localization.mk'_eq_zero {r : A} {s : non_zero_divisors A}
(h : is_localization.mk' S r s = 0) : r = 0 :=
begin
rw [is_fraction_ring.mk'_eq_div, div_eq_zero_iff] at h,
apply is_fraction_ring.injective A S,
rw (algebra_map A S).map_zero,
exact or.resolve_right h (is_fraction_ring.to_map_ne_zero_of_mem_non_zero_divisors s.property)
end
variable (S)
lemma is_localization.mk'_eq_one {r : A} {s : non_zero_divisors A}
(h : is_localization.mk' S r s = 1) : r = s :=
begin
rw [is_fraction_ring.mk'_eq_div, div_eq_one_iff_eq] at h,
{ exact is_fraction_ring.injective A S h },
{ exact is_fraction_ring.to_map_ne_zero_of_mem_non_zero_divisors s.property }
end
-- Ideal lemmas
lemma ideal.mem_pow_count {x : R} (hx : x ≠ 0) {I : ideal R} (hI : irreducible I) :
x ∈ I^((associates.mk I).count (associates.mk (ideal.span {x})).factors) :=
begin
have hx' := associates.mk_ne_zero'.mpr hx,
rw [← associates.le_singleton_iff,
associates.prime_pow_dvd_iff_le hx' ((associates.irreducible_mk I).mpr hI)],
end
namespace maximal_spectrum
/-! ### Adic valuations on the Dedekind domain R -/
/-- The additive `v`-adic valuation of `r ∈ R` is the exponent of `v` in the factorization of the
ideal `(r)`, if `r` is nonzero, or infinity, if `r = 0`. `int_valuation_def` is the corresponding
multiplicative valuation. -/
def int_valuation_def (r : R) : with_zero (multiplicative ℤ) :=
if r = 0 then 0 else multiplicative.of_add
(-(associates.mk v.as_ideal).count (associates.mk (ideal.span {r} : ideal R)).factors : ℤ)
lemma int_valuation_def_if_pos {r : R} (hr : r = 0) : v.int_valuation_def r = 0 := if_pos hr
lemma int_valuation_def_if_neg {r : R} (hr : r ≠ 0) : v.int_valuation_def r = (multiplicative.of_add
(-(associates.mk v.as_ideal).count (associates.mk (ideal.span {r} : ideal R)).factors : ℤ)) :=
if_neg hr
/-- Nonzero elements have nonzero adic valuation. -/
lemma int_valuation_ne_zero (x : R) (hx : x ≠ 0) : v.int_valuation_def x ≠ 0 :=
begin
rw [int_valuation_def, if_neg hx],
exact with_zero.coe_ne_zero,
end
/-- Nonzero divisors have nonzero valuation. -/
lemma int_valuation_ne_zero' (x : non_zero_divisors R) : v.int_valuation_def x ≠ 0 :=
v.int_valuation_ne_zero x (non_zero_divisors.coe_ne_zero x)
/-- Nonzero divisors have valuation greater than zero. -/
lemma int_valuation_zero_le (x : non_zero_divisors R) : 0 < v.int_valuation_def x :=
begin
rw [v.int_valuation_def_if_neg (non_zero_divisors.coe_ne_zero x)],
exact with_zero.zero_lt_coe _,
end
/-- The `v`-adic valuation on `R` is bounded above by 1. -/
lemma int_valuation_le_one (x : R) : v.int_valuation_def x ≤ 1 :=
begin
rw int_valuation_def,
by_cases hx : x = 0,
{ rw if_pos hx, exact with_zero.zero_le 1 },
{ rw [if_neg hx, ← with_zero.coe_one, ← of_add_zero, with_zero.coe_le_coe, of_add_le,
right.neg_nonpos_iff],
exact int.coe_nat_nonneg _ }
end
/-- The `v`-adic valuation of `r ∈ R` is less than 1 if and only if `v` divides the ideal `(r)`. -/
lemma int_valuation_lt_one_iff_dvd (r : R) :
v.int_valuation_def r < 1 ↔ v.as_ideal ∣ ideal.span {r} :=
begin
rw int_valuation_def,
split_ifs with hr,
{ simpa [hr] using (with_zero.zero_lt_coe _) },
{ rw [← with_zero.coe_one, ← of_add_zero, with_zero.coe_lt_coe, of_add_lt, neg_lt_zero,
← int.coe_nat_zero, int.coe_nat_lt, zero_lt_iff],
have h : (ideal.span {r} : ideal R) ≠ 0,
{ rw [ne.def, ideal.zero_eq_bot, ideal.span_singleton_eq_bot],
exact hr },
apply associates.count_ne_zero_iff_dvd h (by apply v.irreducible) }
end
/-- The `v`-adic valuation of `r ∈ R` is less than `multiplicative.of_add (-n)` if and only if
`vⁿ` divides the ideal `(r)`. -/
lemma int_valuation_le_pow_iff_dvd (r : R) (n : ℕ) :
v.int_valuation_def r ≤ multiplicative.of_add (-(n : ℤ)) ↔ v.as_ideal^n ∣ ideal.span {r} :=
begin
rw int_valuation_def,
split_ifs with hr,
{ simp_rw [hr, ideal.dvd_span_singleton, zero_le', submodule.zero_mem], },
{ rw [with_zero.coe_le_coe, of_add_le, neg_le_neg_iff, int.coe_nat_le, ideal.dvd_span_singleton,
← associates.le_singleton_iff, associates.prime_pow_dvd_iff_le (associates.mk_ne_zero'.mpr hr)
(by apply v.associates_irreducible)] }
end
/-- The `v`-adic valuation of `0 : R` equals 0. -/
lemma int_valuation.map_zero' : v.int_valuation_def 0 = 0 := v.int_valuation_def_if_pos (eq.refl 0)
/-- The `v`-adic valuation of `1 : R` equals 1. -/
lemma int_valuation.map_one' : v.int_valuation_def 1 = 1 :=
by rw [v.int_valuation_def_if_neg (zero_ne_one.symm : (1 : R) ≠ 0), ideal.span_singleton_one,
← ideal.one_eq_top, associates.mk_one, associates.factors_one, associates.count_zero
(by apply v.associates_irreducible), int.coe_nat_zero, neg_zero, of_add_zero, with_zero.coe_one]
/-- The `v`-adic valuation of a product equals the product of the valuations. -/
lemma int_valuation.map_mul' (x y : R) :
v.int_valuation_def (x * y) = v.int_valuation_def x * v.int_valuation_def y :=
begin
simp only [int_valuation_def],
by_cases hx : x = 0,
{ rw [hx, zero_mul, if_pos (eq.refl _), zero_mul] },
{ by_cases hy : y = 0,
{ rw [hy, mul_zero, if_pos (eq.refl _), mul_zero] },
{ rw [if_neg hx, if_neg hy, if_neg (mul_ne_zero hx hy), ← with_zero.coe_mul, with_zero.coe_inj,
← of_add_add, ← ideal.span_singleton_mul_span_singleton, ← associates.mk_mul_mk, ← neg_add,
associates.count_mul (by apply associates.mk_ne_zero'.mpr hx)
(by apply associates.mk_ne_zero'.mpr hy) (by apply v.associates_irreducible)],
refl }}
end
lemma int_valuation.le_max_iff_min_le {a b c : ℕ} : multiplicative.of_add(-c : ℤ) ≤
max (multiplicative.of_add(-a : ℤ)) (multiplicative.of_add(-b : ℤ)) ↔ min a b ≤ c :=
by rw [le_max_iff, of_add_le, of_add_le, neg_le_neg_iff, neg_le_neg_iff, int.coe_nat_le,
int.coe_nat_le, ← min_le_iff]
/- @[simp] lemma with_zero.le_max_iff {M : Type} [linear_ordered_comm_monoid M] {a b c : M} :
(a : with_zero M) ≤ max b c ↔ a ≤ max b c :=
by simp only [with_zero.coe_le_coe, le_max_iff] -/
/-- The `v`-adic valuation of a sum is bounded above by the maximum of the valuations. -/
lemma int_valuation.map_add_le_max' (x y : R) : v.int_valuation_def (x + y) ≤
max (v.int_valuation_def x) (v.int_valuation_def y) :=
begin
by_cases hx : x = 0,
{ rw [hx, zero_add],
conv_rhs {rw [int_valuation_def, if_pos (eq.refl _)]},
rw max_eq_right (with_zero.zero_le (v.int_valuation_def y)),
exact le_refl _, },
{ by_cases hy : y = 0,
{ rw [hy, add_zero],
conv_rhs {rw [max_comm, int_valuation_def, if_pos (eq.refl _)]},
rw max_eq_right (with_zero.zero_le (v.int_valuation_def x)),
exact le_refl _ },
{ by_cases hxy : x + y = 0,
{ rw [int_valuation_def, if_pos hxy], exact zero_le',},
{ rw [v.int_valuation_def_if_neg hxy, v.int_valuation_def_if_neg hx,
v.int_valuation_def_if_neg hy, with_zero.le_max_iff, int_valuation.le_max_iff_min_le],
set nmin := min
((associates.mk v.as_ideal).count (associates.mk (ideal.span {x})).factors)
((associates.mk v.as_ideal).count (associates.mk (ideal.span {y})).factors),
have h_dvd_x : x ∈ v.as_ideal ^ (nmin),
{ rw [← associates.le_singleton_iff x nmin _,
associates.prime_pow_dvd_iff_le (associates.mk_ne_zero'.mpr hx) _],
exact min_le_left _ _,
apply v.associates_irreducible },
have h_dvd_y : y ∈ v.as_ideal ^ nmin,
{ rw [← associates.le_singleton_iff y nmin _,
associates.prime_pow_dvd_iff_le (associates.mk_ne_zero'.mpr hy) _],
exact min_le_right _ _,
apply v.associates_irreducible },
have h_dvd_xy : associates.mk v.as_ideal^nmin ≤ associates.mk (ideal.span {x + y}),
{ rw associates.le_singleton_iff,
exact ideal.add_mem (v.as_ideal^nmin) h_dvd_x h_dvd_y, },
rw (associates.prime_pow_dvd_iff_le (associates.mk_ne_zero'.mpr hxy) _) at h_dvd_xy,
exact h_dvd_xy,
apply v.associates_irreducible, }}}
end
/-- The `v`-adic valuation on `R`. -/
def int_valuation : valuation R (with_zero (multiplicative ℤ)) :=
{ to_fun := v.int_valuation_def,
map_zero' := int_valuation.map_zero' v,
map_one' := int_valuation.map_one' v,
map_mul' := int_valuation.map_mul' v,
map_add_le_max' := int_valuation.map_add_le_max' v }
lemma int_valuation_apply (r : R) : v.int_valuation r = v.int_valuation_def r := rfl
/-- There exists `π ∈ R` with `v`-adic valuation `multiplicative.of_add (-1)`. -/
lemma int_valuation_exists_uniformizer :
∃ (π : R), v.int_valuation_def π = multiplicative.of_add (-1 : ℤ) :=
begin
have hv : _root_.irreducible (associates.mk v.as_ideal) := v.associates_irreducible,
have hlt : v.as_ideal^2 < v.as_ideal,
{ rw ← ideal.dvd_not_unit_iff_lt,
exact ⟨v.ne_bot, v.as_ideal,
(not_congr ideal.is_unit_iff).mpr (ideal.is_prime.ne_top v.is_prime), sq v.as_ideal⟩ } ,
obtain ⟨π, mem, nmem⟩ := set_like.exists_of_lt hlt,
have hπ : associates.mk (ideal.span {π}) ≠ 0,
{ rw associates.mk_ne_zero',
intro h,
rw h at nmem,
exact nmem (submodule.zero_mem (v.as_ideal^2)), },
use π,
rw [int_valuation_def, if_neg (associates.mk_ne_zero'.mp hπ), with_zero.coe_inj],
apply congr_arg,
rw [neg_inj, ← int.coe_nat_one, int.coe_nat_inj'],
rw [← ideal.dvd_span_singleton, ← associates.mk_le_mk_iff_dvd_iff] at mem nmem,
rw [← pow_one ( associates.mk v.as_ideal),
associates.prime_pow_dvd_iff_le hπ hv] at mem,
rw [associates.mk_pow, associates.prime_pow_dvd_iff_le hπ hv, not_le] at nmem,
exact nat.eq_of_le_of_lt_succ mem nmem,
end
/-! ### Adic valuations on the field of fractions `K` -/
/-- The `v`-adic valuation of `x ∈ K` is the valuation of `r` divided by the valuation of `s`,
where `r` and `s` are chosen so that `x = r/s`. -/
def valuation_def (x : K) : (with_zero (multiplicative ℤ)) :=
let s := classical.some (classical.some_spec (is_localization.mk'_surjective
(non_zero_divisors R) x)) in (v.int_valuation_def (classical.some
(is_localization.mk'_surjective (non_zero_divisors R) x)))/(v.int_valuation_def s)
variable (K)
/-- The valuation of `k ∈ K` is independent on how we express `k` as a fraction. -/
lemma valuation_well_defined {r r' : R} {s s' : non_zero_divisors R}
(h_mk : is_localization.mk' K r s = is_localization.mk' K r' s') :
(v.int_valuation_def r)/(v.int_valuation_def s) =
(v.int_valuation_def r')/(v.int_valuation_def s') :=
begin
rw [div_eq_div_iff (int_valuation_ne_zero' v s) (int_valuation_ne_zero' v s'),
← int_valuation.map_mul', ← int_valuation.map_mul',
is_fraction_ring.injective R K (is_localization.mk'_eq_iff_eq.mp h_mk)],
end
/-- The `v`-adic valuation of `r/s ∈ K` is the valuation of `r` divided by the valuation of `s`. -/
lemma valuation_of_mk' {r : R} {s : non_zero_divisors R} :
v.valuation_def (is_localization.mk' K r s) =
(v.int_valuation_def r)/(v.int_valuation_def s) :=
begin
rw valuation_def,
exact valuation_well_defined K v
(classical.some_spec (classical.some_spec (is_localization.mk'_surjective (non_zero_divisors R)
(is_localization.mk' K r s)))),
end
variable {K}
/-- The `v`-adic valuation on `K` extends the `v`-adic valuation on `R`. -/
lemma valuation_of_algebra_map {r : R} :
v.valuation_def (algebra_map R K r) = v.int_valuation_def r :=
by rw [← is_localization.mk'_one K r, valuation_of_mk', submonoid.coe_one,
int_valuation.map_one', div_one _]
/-- The `v`-adic valuation on `R` is bounded above by 1. -/
lemma valuation_le_one (r : R) : v.valuation_def (algebra_map R K r) ≤ 1 :=
by { rw valuation_of_algebra_map, exact v.int_valuation_le_one r }
/-- The `v`-adic valuation of `r ∈ R` is less than 1 if and only if `v` divides the ideal `(r)`. -/
lemma valuation_lt_one_iff_dvd (r : R) :
v.valuation_def (algebra_map R K r) < 1 ↔ v.as_ideal ∣ ideal.span {r} :=
by { rw valuation_of_algebra_map, exact v.int_valuation_lt_one_iff_dvd r }
/-- The `v`-adic valuation of `0 : K` equals 0. -/
lemma valuation.map_zero' (v : maximal_spectrum R) :
v.valuation_def (0 : K) = 0 :=
begin
rw [← (algebra_map R K).map_zero, valuation_of_algebra_map v],
exact v.int_valuation.map_zero',
end
/-- The `v`-adic valuation of `1 : K` equals 1. -/
lemma valuation.map_one' (v : maximal_spectrum R) :
v.valuation_def (1 : K) = 1 :=
begin
rw [← (algebra_map R K).map_one, valuation_of_algebra_map v],
exact v.int_valuation.map_one',
end
/-- The `v`-adic valuation of a product is the product of the valuations. -/
lemma valuation.map_mul' (v : maximal_spectrum R) (x y : K) :
v.valuation_def (x * y) = v.valuation_def x * v.valuation_def y :=
begin
rw [valuation_def, valuation_def, valuation_def, div_mul_div_comm₀, ← int_valuation.map_mul',
← int_valuation.map_mul', ← submonoid.coe_mul],
apply valuation_well_defined K v,
rw [(classical.some_spec (valuation_def._proof_2 (x * y))), is_fraction_ring.mk'_eq_div,
(algebra_map R K).map_mul, submonoid.coe_mul, (algebra_map R K).map_mul, ← div_mul_div_comm₀,
← is_fraction_ring.mk'_eq_div, ← is_fraction_ring.mk'_eq_div,
(classical.some_spec (valuation_def._proof_2 x)),
(classical.some_spec (valuation_def._proof_2 y))],
end
/-- The `v`-adic valuation of a sum is bounded above by the maximum of the valuations. -/
lemma valuation.map_add_le_max' (v : maximal_spectrum R) (x y : K) :
v.valuation_def (x + y) ≤ max (v.valuation_def x) (v.valuation_def y) :=
begin
obtain ⟨rx, sx, hx⟩ := is_localization.mk'_surjective (non_zero_divisors R) x,
obtain ⟨rxy, sxy, hxy⟩ := is_localization.mk'_surjective (non_zero_divisors R) (x + y),
obtain ⟨ry, sy, hy⟩ := is_localization.mk'_surjective (non_zero_divisors R) y,
rw [← hxy, ← hx, ← hy, valuation_of_mk', valuation_of_mk', valuation_of_mk'],
have h_frac_xy : is_localization.mk' K rxy sxy =
is_localization.mk' K (rx*(sy : R) + ry*(sx : R)) (sx*sy),
{ rw [is_localization.mk'_add, hx, hy, hxy], },
have h_frac_x : is_localization.mk' K rx sx = is_localization.mk' K (rx*(sy : R)) (sx*sy),
{ rw [is_localization.mk'_eq_iff_eq, submonoid.coe_mul, mul_assoc, mul_comm (sy : R) _], },
have h_frac_y : is_localization.mk' K ry sy = is_localization.mk' K (ry*(sx : R)) (sx*sy),
{ rw [is_localization.mk'_eq_iff_eq, submonoid.coe_mul, mul_assoc], },
have h_denom : 0 < v.int_valuation_def ↑(sx * sy),
{ rw [int_valuation_def, if_neg _],
{ exact with_zero.zero_lt_coe _ },
{ exact non_zero_divisors.ne_zero
(submonoid.mul_mem (non_zero_divisors R) sx.property sy.property), }},
rw [valuation_well_defined K v h_frac_x, valuation_well_defined K v h_frac_y,
valuation_well_defined K v h_frac_xy, le_max_iff, div_le_div_right₀ (ne_of_gt h_denom),
div_le_div_right₀ (ne_of_gt h_denom), ← le_max_iff],
exact v.int_valuation.map_add_le_max' _ _,
end
/-- The `v`-adic valuation on `K`. -/
def valuation (v : maximal_spectrum R) : valuation K (with_zero (multiplicative ℤ)) := {
to_fun := v.valuation_def,
map_zero' := valuation.map_zero' v,
map_one' := valuation.map_one' v,
map_mul' := valuation.map_mul' v,
map_add_le_max' := valuation.map_add_le_max' v }
lemma valuation_apply (k : K) : v.valuation k = v.valuation_def k := rfl
variable (K)
/-- There exists `π ∈ K` with `v`-adic valuation `multiplicative.of_add (-1)`. -/
lemma valuation_exists_uniformizer :
∃ (π : K), v.valuation_def π = multiplicative.of_add (-1 : ℤ) :=
begin
obtain ⟨r, hr⟩ := v.int_valuation_exists_uniformizer,
use algebra_map R K r,
rw valuation_of_algebra_map v,
exact hr,
end
/-- Uniformizers are nonzero. -/
lemma valuation_uniformizer_ne_zero :
(classical.some (v.valuation_exists_uniformizer K)) ≠ 0 :=
begin
have hu := (classical.some_spec (v.valuation_exists_uniformizer K)),
have h : v.valuation_def (classical.some _) = valuation v (classical.some _) := rfl,
rw h at hu,
exact (valuation.ne_zero_iff _).mp (ne_of_eq_of_ne hu with_zero.coe_ne_zero),
end
end maximal_spectrum |
sucesses = @parallel (+) for i in 1:10^8
Int(any(bitrand(3)))
end
|
using Optim
export CFADistributionEM, CFADistributionEMRidge
"Confirmatory factor analysis distribution object with a Sigma formulation."
type CFADistributionEM
Sigma_X::SparseMatrixCSC
A::SparseMatrixCSC
Sigma_L::AbstractMatrix
end
Base.length(d::CFADistributionEM) = Int(size(d.A)[1] + nnz(d.A) + (size(d.A)[2]-1)*size(d.A)[2]/2)
function Base.rand(d::CFADistributionEM, N::Int)
P,K = size(d.A)
distL = MvNormal(zeros(K), d.Sigma_L)
L = rand(distL, N)
X = d.A*L
for i in 1:P
X[i,:] .+= transpose(rand(Normal(0, d.Sigma_X.nzval[i]), N))
end
X
end
Base.rand(d::CFADistributionEM) = rand(d::CFADistributionEM, 1)
"Likelihood of model given the data represented by the covariance S from N samples"
function Distributions.loglikelihood(d::CFADistributionEM, S::AbstractMatrix, N::Int64)
#@assert minimum(d.Sigma_X.nzval) > 0.0 "Invalid CFADistributionEM! (Theta_X has elements <= 0)"
#@assert minimum(eig(d.Sigma_L)[1]) > 0.0 "Invalid CFADistributionEM! (Theta_L has eigen value <= 0)"
Theta_X = deepcopy(d.Sigma_X)
Theta_X.nzval[:] = 1 ./ d.Sigma_X.nzval
Theta_L = inv(d.Sigma_L)
# Woodbury transformation of original form allows us to only compute a KxK inversion
Theta = Theta_X - Theta_X*d.A*inv(Theta_L + d.A'*Theta_X*d.A)*d.A'*Theta_X
@assert minimum(eig(Theta)[1]) > 0.0 "Invalid CFADistributionEM! (Theta has eigen value <= 0)"
logdet(Theta) - trace(S*Theta)
end
function normalize_Sigma_L!(d::CFADistributionEM)
scaling = sqrt(diag(d.Sigma_L))
Base.cov2cor!(d.Sigma_L, scaling)
vals = nonzeros(d.A)
K = size(d.A)[2]
for col = 1:K
for j in nzrange(d.A, col)
vals[j] *= scaling[col]
end
end
end
" Run the EM algorithm to find the MLE fit."
function Distributions.fit_mle(::Type{CFADistributionEM}, maskSigma_L::AbstractMatrix, A::SparseMatrixCSC, S::AbstractMatrix, N::Int64; iterations=1000, show_trace=true, ftol=1e-10)
P,K = size(A)
@assert size(maskSigma_L) == (K,K) "Sigma_L mask must be of size K x K (where K = size(A)[2])"
#@assert size(maskL) == (K,K) "Sigma_L mask must be of size K x K (where K = size(A)[2])"
# just to make sure it is a nice float data type inside our loop
maskL = zeros(Float64, K, K)
copy!(maskL, maskSigma_L)
# init our parameters
d = CFADistributionEM(speye(P), deepcopy(A), eye(K))
# find the latent vars each observed is attached to
latentInds = Array{Int64}[find(d.A[i,:]) for i in 1:P]
Theta_X = deepcopy(d.Sigma_X)
lastScore = -Inf
timeFindT = 0.0
timeFindW = 0.0
timeFindQ = 0.0
timeUpdateSigma_X = 0.0
timeUpdateA = 0.0
timeUpdateSigma_L = 0.0
stopCount = 0
for count in 1:iterations
## E-step
t = time()
for i in 1:P
Theta_X.nzval[i] = 1/d.Sigma_X.nzval[i]
end
Theta_L = inv(d.Sigma_L)
Theta = Theta_X - Theta_X*d.A*inv(Theta_L + d.A'*Theta_X*d.A)*d.A'*Theta_X
#@assert maximum(abs(Theta .- inv(d.Sigma_X + d.A*d.Sigma_L*d.A'))) < 1e-6
T = Theta*d.A*d.Sigma_L
timeFindT += time() - t
# find W
t = time()
W = d.Sigma_L - d.Sigma_L*d.A'*Theta*d.A*d.Sigma_L
timeFindW += time() - t
# find Q (the expected covariance of the hidden variables)
t = time()
Q = T'*S*T + W
#Base.cov2cor!(Q, sqrt(diag(Q)))
timeFindQ += time() - t
## M-step
# update A and Sigma_X
t = time()
tmpTS = T'*S
# for i in 1:P
# gi = grouping[i]
# d.A[i,gi] = tmpTS[gi,i]/Q[gi,gi]
# d.Sigma_X[i,i] = S[i,i] - (tmpTS[gi,i]^2)/Q[gi,gi]
# end
#At = d.A'
#rows = rowvals(At)
#vals = nonzeros(At)
for row = 1:P
# update Sigma_X
inds = latentInds[row]
tmp = tmpTS[inds,row]
#println(inds, " ", collect(nzrange(At, col)))
newLoadings = inv(Q[inds,inds])*tmp
#println(S[col,col] - tmpTS[inds,col]'*newLoadings)
d.Sigma_X.nzval[row] = (S[row,row] - tmp'*newLoadings)[1]
# Update A
for (i,ind) in enumerate(inds)
d.A[row,ind] = newLoadings[i]
end
end
#d.A = At'
timeUpdateA += time() - t
# update Sigma_L
t = time()
d.Sigma_L[:,:] = Q .* maskL # note we enforce the Sigma_L mask here
timeUpdateSigma_L += time() - t
# print our progress
if count % 1000 == 0 && show_trace
s = loglikelihood(d, S, N)
println("likelihood $count = ", s, " ", s - lastScore)
println("timeFindT = $timeFindT")
println("timeFindW = $timeFindW")
println("timeFindQ = $timeFindQ")
println("timeUpdateSigma_X = $timeUpdateSigma_X")
println("timeUpdateA = $timeUpdateA")
println("timeUpdateSigma_L = $timeUpdateSigma_L")
println(d.Sigma_L[1,1], " ", d.Sigma_L[1,2])
println()
if s - lastScore < ftol
stopCount += 1
end
if stopCount > 5
break
end
lastScore = s
end
end
normalize_Sigma_L!(d)
d
end
type CFADistributionEMRidge
rho::Float64
end
" Run the EM algorithm to find the MAP fit."
function fit_map(prior::CFADistributionEMRidge, ::Type{CFADistributionEM}, A::SparseMatrixCSC, S::AbstractMatrix, N::Int64; iterations=1000, show_trace=true, ftol=1e-10)
P,K = size(A)
# init our parameters
d = CFADistributionEM(speye(P), deepcopy(A), eye(K))
Theta_X = deepcopy(d.Sigma_X)
lastScore = -Inf
timeFindT = 0.0
timeFindW = 0.0
timeFindQ = 0.0
timeUpdateSigma_X = 0.0
timeUpdateA = 0.0
timeUpdateSigma_L = 0.0
stopCount = 0
for count in 1:iterations
## E-step
t = time()
for i in 1:P
Theta_X.nzval[i] = 1/d.Sigma_X.nzval[i]
end
Theta_L = inv(d.Sigma_L)
Theta = Theta_X - Theta_X*d.A*inv(Theta_L + d.A'*Theta_X*d.A)*d.A'*Theta_X
#Theta = inv(Sigma_X + A*Sigma_L*A')
T = Theta*d.A*d.Sigma_L
timeFindT += time() - t
# find W
t = time()
W = d.Sigma_L - d.Sigma_L*d.A'*Theta*d.A*d.Sigma_L
timeFindW += time() - t
# find Q (the expected covariance of the hidden variables)
t = time()
Q = T'*S*T + W
timeFindQ += time() - t
## M-step
# update A and Sigma_X
t = time()
tmpTS = T'*S
rows = rowvals(d.A)
vals = nonzeros(d.A)
for col = 1:K
for j in nzrange(d.A, col)
row = rows[j]
d.Sigma_X.nzval[row] = S[row,row] - (tmpTS[col,row]^2)/Q[col,col]
vals[j] = tmpTS[col,row]/Q[col,col]
end
end
timeUpdateA += time() - t
# update Sigma_L
t = time()
Base.cov2cor!(Q, sqrt(diag(Q)))
d.Sigma_L[:,:] = Q + prior.rho*eye(K)
Base.cov2cor!(d.Sigma_L, sqrt(diag(d.Sigma_L)))
#Base.cov2cor!(d.Sigma_L, sqrt(prior.rho ./ (diag(Q) + prior.rho)))
timeUpdateSigma_L += time() - t
# print our progress
if count % 1000 == 0 && show_trace
s = loglikelihood(d, S, N)
println("likelihood $count = ", s, " ", s - lastScore)
println("timeFindT = $timeFindT")
println("timeFindW = $timeFindW")
println("timeFindQ = $timeFindQ")
println("timeUpdateSigma_X = $timeUpdateSigma_X")
println("timeUpdateA = $timeUpdateA")
println("timeUpdateSigma_L = $timeUpdateSigma_L")
println(d.Sigma_L[1,1], " ", d.Sigma_L[1,2])
println()
if abs(s - lastScore) < ftol
stopCount += 1
end
if stopCount > 5
break
end
lastScore = s
end
end
normalize_Sigma_L!(d)
d
end
|
Require Import Classes.Joinable.
Require Export Base.
Require Import Classes.Monad Classes.Monad.MonadState
Types.State Classes.Galois Types.Option.
Implicit Type S : Type.
Implicit Type M : Type → Type.
Instance store_stateT {S} {M} `{MM : Monad M} : MonadState S (StateT S M) := {
get := λ st, returnM (st, st);
put := λ st, λ _, returnM (tt, st);
}.
Instance get_store_stateT_sound {ST ST' : Type} {GS : Galois ST ST'}
{M M' : Type → Type} `{MM : Monad M} `{MM' : Monad M'}
{GM : ∀ A A', Galois A A' → Galois (M A) (M' A')} :
return_sound M M' →
get_state_sound (StateT ST M) (StateT ST' M').
Proof.
intros RS. intros a a' Ha. apply returnM_sound. eauto with soundness.
Qed.
Hint Resolve get_store_stateT_sound : soundness.
Instance put_store_stateT_sound {ST ST' : Type} {GS : Galois ST ST'}
{M M' : Type → Type} `{MM : Monad M} `{MM' : Monad M'}
{GM : ∀ A A', Galois A A' → Galois (M A) (M' A')} :
return_sound M M' →
put_state_sound (StateT ST M) (StateT ST' M').
Proof.
intros RS s s' Hs. cbn. intros ???. apply RS. constructor; cbn.
constructor. assumption.
Qed.
Hint Resolve put_store_stateT_sound : soundness.
Instance store_optionT {ST} {M} `{MM : Monad M} {MS : MonadState ST M} :
MonadState ST (optionT M) := {
get := get >>= λ a, returnM (Some a);
put := λ st, put st ;; returnM (Some tt);
}.
Instance get_store_optionT_sound {ST ST' : Type} {GST : Galois ST ST'}
{M M' : Type → Type} `{MM : Monad M} `{MM' : Monad M'}
{GM : ∀ A A', Galois A A' → Galois (M A) (M' A')}
{MS : MonadState ST M} {MS' : MonadState ST' M'} :
bind_sound M M' →
return_sound M M' →
get_state_sound M M' →
get_state_sound (optionT M) (optionT M').
Proof.
intros BS RS GS.
unfold get_state_sound. unfold get; simpl.
eapply BS; auto.
intros a a' Ha. eauto with soundness.
Qed.
Hint Resolve get_store_optionT_sound : soundness.
Instance store_optionAT {S} {JS: Joinable S S} {JI : JoinableIdem JS} :
MonadState S (optionAT (StateT S option)) := {
get := get >>= λ a, returnM (SomeA a);
put := λ st, put st ;; returnM (SomeA tt);
}.
Instance get_store_optionAT_sound {S S' : Type} {GS : Galois S S'}
{JS : Joinable S S} {JSI : JoinableIdem JS} :
get_state_sound (optionAT (StateT S option)) (optionT (StateT S' option)).
Proof.
unfold get_state_sound, get; simpl.
eauto with soundness.
constructor; constructor; simpl; [constructor | ]; assumption.
Qed.
Hint Resolve get_store_optionAT_sound : soundness.
Instance put_store_optionAT_sound {S S' : Type} {GS : Galois S S'}
{JS : Joinable S S} {JI : JoinableIdem JS} :
put_state_sound (optionAT (StateT S option)) (optionT (StateT S' option)).
Proof.
intros s s' Hs; cbn.
unfold bindM; simpl; unfold bind_stateT.
intros s2 s2' Hs2.
unfold bindM; simpl; unfold bind_option.
constructor. constructor; eauto with soundness.
Qed.
Hint Resolve put_store_optionAT_sound : soundness.
|
module Issue373 where
data Nat : Set where
zero : Nat
suc : (n : Nat) → Nat
{-# BUILTIN NATURAL Nat #-}
{-# FOREIGN GHC data Nat = Zero | Suc Nat #-}
{-# COMPILE GHC Nat = data Nat (Zero | Suc) #-} -- should fail when compiling
|
{-# OPTIONS --verbose=10 #-}
module inorder where
open import Data.Nat
open import Data.Vec
open import Agda.Builtin.Sigma
open import Data.Product
open import Data.Fin using (fromℕ)
open import trees
open import optics
open import lemmas
inorderTree : {A : Set} -> Tree A -> Σ[ n ∈ ℕ ] Vec A n × (Vec A n -> Tree A)
inorderTree empty = (0 , ([] , λ _ -> empty))
inorderTree {A} (node t x t₁) with inorderTree t | inorderTree t₁
... | (n₁ , (g₁ , p₁)) | (n₂ , (g₂ , p₂)) =
(n₁ + (1 + n₂) , (g₁ ++ (x ∷ g₂) ,
λ v -> node (p₁ (take n₁ v)) (head (drop n₁ v)) (righttree v)))
where
righttree : Vec A (n₁ + (1 + n₂)) -> Tree A
-- righttree v = p₂ (drop 1 (drop n₁ v))
righttree v rewrite +-suc n₁ n₂ = p₂ (drop (1 + n₁) v)
inorder : {A : Set} -> Traversal (Tree A) (Tree A) A A
inorder = record{ extract = inorderTree }
module tests where
tree1 : Tree ℕ
tree1 = node (node empty 1 empty) 3 empty
open Traversal
inorder1 : Vec ℕ 2
inorder1 = get inorder tree1
updatedinorder1 : Tree ℕ
updatedinorder1 = put inorder tree1 (2 ∷ 3 ∷ [])
|
lemma closure_cbox [simp]: "closure (cbox a b) = cbox a b" |
(* Title: HOL/ex/LocaleTest2.thy
Author: Clemens Ballarin
Copyright (c) 2007 by Clemens Ballarin
More regression tests for locales.
Definitions are less natural in FOL, since there is no selection operator.
Hence we do them here in HOL, not in the main test suite for locales,
which is FOL/ex/LocaleTest.thy
*)
section \<open>Test of Locale Interpretation\<close>
theory LocaleTest2
imports MainRLT
begin
section \<open>Interpretation of Defined Concepts\<close>
text \<open>Naming convention for global objects: prefixes D and d\<close>
subsection \<open>Lattices\<close>
text \<open>Much of the lattice proofs are from HOL/Lattice.\<close>
subsubsection \<open>Definitions\<close>
locale dpo =
fixes le :: "['a, 'a] => bool" (infixl "\<sqsubseteq>" 50)
assumes refl [intro, simp]: "x \<sqsubseteq> x"
and antisym [intro]: "[| x \<sqsubseteq> y; y \<sqsubseteq> x |] ==> x = y"
and trans [trans]: "[| x \<sqsubseteq> y; y \<sqsubseteq> z |] ==> x \<sqsubseteq> z"
begin
theorem circular:
"[| x \<sqsubseteq> y; y \<sqsubseteq> z; z \<sqsubseteq> x |] ==> x = y & y = z"
by (blast intro: trans)
definition
less :: "['a, 'a] => bool" (infixl "\<sqsubset>" 50)
where "(x \<sqsubset> y) = (x \<sqsubseteq> y & x ~= y)"
theorem abs_test:
"(\<sqsubset>) = (\<lambda>x y. x \<sqsubset> y)"
by simp
definition
is_inf :: "['a, 'a, 'a] => bool"
where "is_inf x y i = (i \<sqsubseteq> x \<and> i \<sqsubseteq> y \<and> (\<forall>z. z \<sqsubseteq> x \<and> z \<sqsubseteq> y \<longrightarrow> z \<sqsubseteq> i))"
definition
is_sup :: "['a, 'a, 'a] => bool"
where "is_sup x y s = (x \<sqsubseteq> s \<and> y \<sqsubseteq> s \<and> (\<forall>z. x \<sqsubseteq> z \<and> y \<sqsubseteq> z \<longrightarrow> s \<sqsubseteq> z))"
end
locale dlat = dpo +
assumes ex_inf: "\<exists>inf. dpo.is_inf le x y inf"
and ex_sup: "\<exists>sup. dpo.is_sup le x y sup"
begin
definition
meet :: "['a, 'a] => 'a" (infixl "\<sqinter>" 70)
where "x \<sqinter> y = (THE inf. is_inf x y inf)"
definition
join :: "['a, 'a] => 'a" (infixl "\<squnion>" 65)
where "x \<squnion> y = (THE sup. is_sup x y sup)"
lemma is_infI [intro?]: "i \<sqsubseteq> x \<Longrightarrow> i \<sqsubseteq> y \<Longrightarrow>
(\<And>z. z \<sqsubseteq> x \<Longrightarrow> z \<sqsubseteq> y \<Longrightarrow> z \<sqsubseteq> i) \<Longrightarrow> is_inf x y i"
by (unfold is_inf_def) blast
lemma is_inf_lower [elim?]:
"is_inf x y i \<Longrightarrow> (i \<sqsubseteq> x \<Longrightarrow> i \<sqsubseteq> y \<Longrightarrow> C) \<Longrightarrow> C"
by (unfold is_inf_def) blast
lemma is_inf_greatest [elim?]:
"is_inf x y i \<Longrightarrow> z \<sqsubseteq> x \<Longrightarrow> z \<sqsubseteq> y \<Longrightarrow> z \<sqsubseteq> i"
by (unfold is_inf_def) blast
theorem is_inf_uniq: "is_inf x y i \<Longrightarrow> is_inf x y i' \<Longrightarrow> i = i'"
proof -
assume inf: "is_inf x y i"
assume inf': "is_inf x y i'"
show ?thesis
proof (rule antisym)
from inf' show "i \<sqsubseteq> i'"
proof (rule is_inf_greatest)
from inf show "i \<sqsubseteq> x" ..
from inf show "i \<sqsubseteq> y" ..
qed
from inf show "i' \<sqsubseteq> i"
proof (rule is_inf_greatest)
from inf' show "i' \<sqsubseteq> x" ..
from inf' show "i' \<sqsubseteq> y" ..
qed
qed
qed
theorem is_inf_related [elim?]: "x \<sqsubseteq> y \<Longrightarrow> is_inf x y x"
proof -
assume "x \<sqsubseteq> y"
show ?thesis
proof
show "x \<sqsubseteq> x" ..
show "x \<sqsubseteq> y" by fact
fix z assume "z \<sqsubseteq> x" and "z \<sqsubseteq> y" show "z \<sqsubseteq> x" by fact
qed
qed
lemma meet_equality [elim?]: "is_inf x y i \<Longrightarrow> x \<sqinter> y = i"
proof (unfold meet_def)
assume "is_inf x y i"
then show "(THE i. is_inf x y i) = i"
by (rule the_equality) (rule is_inf_uniq [OF _ \<open>is_inf x y i\<close>])
qed
lemma meetI [intro?]:
"i \<sqsubseteq> x \<Longrightarrow> i \<sqsubseteq> y \<Longrightarrow> (\<And>z. z \<sqsubseteq> x \<Longrightarrow> z \<sqsubseteq> y \<Longrightarrow> z \<sqsubseteq> i) \<Longrightarrow> x \<sqinter> y = i"
by (rule meet_equality, rule is_infI) blast+
lemma is_inf_meet [intro?]: "is_inf x y (x \<sqinter> y)"
proof (unfold meet_def)
from ex_inf obtain i where "is_inf x y i" ..
then show "is_inf x y (THE i. is_inf x y i)"
by (rule theI) (rule is_inf_uniq [OF _ \<open>is_inf x y i\<close>])
qed
lemma meet_left [intro?]:
"x \<sqinter> y \<sqsubseteq> x"
by (rule is_inf_lower) (rule is_inf_meet)
lemma meet_right [intro?]:
"x \<sqinter> y \<sqsubseteq> y"
by (rule is_inf_lower) (rule is_inf_meet)
lemma meet_le [intro?]:
"[| z \<sqsubseteq> x; z \<sqsubseteq> y |] ==> z \<sqsubseteq> x \<sqinter> y"
by (rule is_inf_greatest) (rule is_inf_meet)
lemma is_supI [intro?]: "x \<sqsubseteq> s \<Longrightarrow> y \<sqsubseteq> s \<Longrightarrow>
(\<And>z. x \<sqsubseteq> z \<Longrightarrow> y \<sqsubseteq> z \<Longrightarrow> s \<sqsubseteq> z) \<Longrightarrow> is_sup x y s"
by (unfold is_sup_def) blast
lemma is_sup_least [elim?]:
"is_sup x y s \<Longrightarrow> x \<sqsubseteq> z \<Longrightarrow> y \<sqsubseteq> z \<Longrightarrow> s \<sqsubseteq> z"
by (unfold is_sup_def) blast
lemma is_sup_upper [elim?]:
"is_sup x y s \<Longrightarrow> (x \<sqsubseteq> s \<Longrightarrow> y \<sqsubseteq> s \<Longrightarrow> C) \<Longrightarrow> C"
by (unfold is_sup_def) blast
theorem is_sup_uniq: "is_sup x y s \<Longrightarrow> is_sup x y s' \<Longrightarrow> s = s'"
proof -
assume sup: "is_sup x y s"
assume sup': "is_sup x y s'"
show ?thesis
proof (rule antisym)
from sup show "s \<sqsubseteq> s'"
proof (rule is_sup_least)
from sup' show "x \<sqsubseteq> s'" ..
from sup' show "y \<sqsubseteq> s'" ..
qed
from sup' show "s' \<sqsubseteq> s"
proof (rule is_sup_least)
from sup show "x \<sqsubseteq> s" ..
from sup show "y \<sqsubseteq> s" ..
qed
qed
qed
theorem is_sup_related [elim?]: "x \<sqsubseteq> y \<Longrightarrow> is_sup x y y"
proof -
assume "x \<sqsubseteq> y"
show ?thesis
proof
show "x \<sqsubseteq> y" by fact
show "y \<sqsubseteq> y" ..
fix z assume "x \<sqsubseteq> z" and "y \<sqsubseteq> z"
show "y \<sqsubseteq> z" by fact
qed
qed
lemma join_equality [elim?]: "is_sup x y s \<Longrightarrow> x \<squnion> y = s"
proof (unfold join_def)
assume "is_sup x y s"
then show "(THE s. is_sup x y s) = s"
by (rule the_equality) (rule is_sup_uniq [OF _ \<open>is_sup x y s\<close>])
qed
lemma joinI [intro?]: "x \<sqsubseteq> s \<Longrightarrow> y \<sqsubseteq> s \<Longrightarrow>
(\<And>z. x \<sqsubseteq> z \<Longrightarrow> y \<sqsubseteq> z \<Longrightarrow> s \<sqsubseteq> z) \<Longrightarrow> x \<squnion> y = s"
by (rule join_equality, rule is_supI) blast+
lemma is_sup_join [intro?]: "is_sup x y (x \<squnion> y)"
proof (unfold join_def)
from ex_sup obtain s where "is_sup x y s" ..
then show "is_sup x y (THE s. is_sup x y s)"
by (rule theI) (rule is_sup_uniq [OF _ \<open>is_sup x y s\<close>])
qed
lemma join_left [intro?]:
"x \<sqsubseteq> x \<squnion> y"
by (rule is_sup_upper) (rule is_sup_join)
lemma join_right [intro?]:
"y \<sqsubseteq> x \<squnion> y"
by (rule is_sup_upper) (rule is_sup_join)
lemma join_le [intro?]:
"[| x \<sqsubseteq> z; y \<sqsubseteq> z |] ==> x \<squnion> y \<sqsubseteq> z"
by (rule is_sup_least) (rule is_sup_join)
theorem meet_assoc: "(x \<sqinter> y) \<sqinter> z = x \<sqinter> (y \<sqinter> z)"
proof (rule meetI)
show "x \<sqinter> (y \<sqinter> z) \<sqsubseteq> x \<sqinter> y"
proof
show "x \<sqinter> (y \<sqinter> z) \<sqsubseteq> x" ..
show "x \<sqinter> (y \<sqinter> z) \<sqsubseteq> y"
proof -
have "x \<sqinter> (y \<sqinter> z) \<sqsubseteq> y \<sqinter> z" ..
also have "\<dots> \<sqsubseteq> y" ..
finally show ?thesis .
qed
qed
show "x \<sqinter> (y \<sqinter> z) \<sqsubseteq> z"
proof -
have "x \<sqinter> (y \<sqinter> z) \<sqsubseteq> y \<sqinter> z" ..
also have "\<dots> \<sqsubseteq> z" ..
finally show ?thesis .
qed
fix w assume "w \<sqsubseteq> x \<sqinter> y" and "w \<sqsubseteq> z"
show "w \<sqsubseteq> x \<sqinter> (y \<sqinter> z)"
proof
show "w \<sqsubseteq> x"
proof -
have "w \<sqsubseteq> x \<sqinter> y" by fact
also have "\<dots> \<sqsubseteq> x" ..
finally show ?thesis .
qed
show "w \<sqsubseteq> y \<sqinter> z"
proof
show "w \<sqsubseteq> y"
proof -
have "w \<sqsubseteq> x \<sqinter> y" by fact
also have "\<dots> \<sqsubseteq> y" ..
finally show ?thesis .
qed
show "w \<sqsubseteq> z" by fact
qed
qed
qed
theorem meet_commute: "x \<sqinter> y = y \<sqinter> x"
proof (rule meetI)
show "y \<sqinter> x \<sqsubseteq> x" ..
show "y \<sqinter> x \<sqsubseteq> y" ..
fix z assume "z \<sqsubseteq> y" and "z \<sqsubseteq> x"
then show "z \<sqsubseteq> y \<sqinter> x" ..
qed
theorem meet_join_absorb: "x \<sqinter> (x \<squnion> y) = x"
proof (rule meetI)
show "x \<sqsubseteq> x" ..
show "x \<sqsubseteq> x \<squnion> y" ..
fix z assume "z \<sqsubseteq> x" and "z \<sqsubseteq> x \<squnion> y"
show "z \<sqsubseteq> x" by fact
qed
theorem join_assoc: "(x \<squnion> y) \<squnion> z = x \<squnion> (y \<squnion> z)"
proof (rule joinI)
show "x \<squnion> y \<sqsubseteq> x \<squnion> (y \<squnion> z)"
proof
show "x \<sqsubseteq> x \<squnion> (y \<squnion> z)" ..
show "y \<sqsubseteq> x \<squnion> (y \<squnion> z)"
proof -
have "y \<sqsubseteq> y \<squnion> z" ..
also have "... \<sqsubseteq> x \<squnion> (y \<squnion> z)" ..
finally show ?thesis .
qed
qed
show "z \<sqsubseteq> x \<squnion> (y \<squnion> z)"
proof -
have "z \<sqsubseteq> y \<squnion> z" ..
also have "... \<sqsubseteq> x \<squnion> (y \<squnion> z)" ..
finally show ?thesis .
qed
fix w assume "x \<squnion> y \<sqsubseteq> w" and "z \<sqsubseteq> w"
show "x \<squnion> (y \<squnion> z) \<sqsubseteq> w"
proof
show "x \<sqsubseteq> w"
proof -
have "x \<sqsubseteq> x \<squnion> y" ..
also have "\<dots> \<sqsubseteq> w" by fact
finally show ?thesis .
qed
show "y \<squnion> z \<sqsubseteq> w"
proof
show "y \<sqsubseteq> w"
proof -
have "y \<sqsubseteq> x \<squnion> y" ..
also have "... \<sqsubseteq> w" by fact
finally show ?thesis .
qed
show "z \<sqsubseteq> w" by fact
qed
qed
qed
theorem join_commute: "x \<squnion> y = y \<squnion> x"
proof (rule joinI)
show "x \<sqsubseteq> y \<squnion> x" ..
show "y \<sqsubseteq> y \<squnion> x" ..
fix z assume "y \<sqsubseteq> z" and "x \<sqsubseteq> z"
then show "y \<squnion> x \<sqsubseteq> z" ..
qed
theorem join_meet_absorb: "x \<squnion> (x \<sqinter> y) = x"
proof (rule joinI)
show "x \<sqsubseteq> x" ..
show "x \<sqinter> y \<sqsubseteq> x" ..
fix z assume "x \<sqsubseteq> z" and "x \<sqinter> y \<sqsubseteq> z"
show "x \<sqsubseteq> z" by fact
qed
theorem meet_idem: "x \<sqinter> x = x"
proof -
have "x \<sqinter> (x \<squnion> (x \<sqinter> x)) = x" by (rule meet_join_absorb)
also have "x \<squnion> (x \<sqinter> x) = x" by (rule join_meet_absorb)
finally show ?thesis .
qed
theorem meet_related [elim?]: "x \<sqsubseteq> y \<Longrightarrow> x \<sqinter> y = x"
proof (rule meetI)
assume "x \<sqsubseteq> y"
show "x \<sqsubseteq> x" ..
show "x \<sqsubseteq> y" by fact
fix z assume "z \<sqsubseteq> x" and "z \<sqsubseteq> y"
show "z \<sqsubseteq> x" by fact
qed
theorem meet_related2 [elim?]: "y \<sqsubseteq> x \<Longrightarrow> x \<sqinter> y = y"
by (drule meet_related) (simp add: meet_commute)
theorem join_related [elim?]: "x \<sqsubseteq> y \<Longrightarrow> x \<squnion> y = y"
proof (rule joinI)
assume "x \<sqsubseteq> y"
show "y \<sqsubseteq> y" ..
show "x \<sqsubseteq> y" by fact
fix z assume "x \<sqsubseteq> z" and "y \<sqsubseteq> z"
show "y \<sqsubseteq> z" by fact
qed
theorem join_related2 [elim?]: "y \<sqsubseteq> x \<Longrightarrow> x \<squnion> y = x"
by (drule join_related) (simp add: join_commute)
text \<open>Additional theorems\<close>
theorem meet_connection: "(x \<sqsubseteq> y) = (x \<sqinter> y = x)"
proof
assume "x \<sqsubseteq> y"
then have "is_inf x y x" ..
then show "x \<sqinter> y = x" ..
next
have "x \<sqinter> y \<sqsubseteq> y" ..
also assume "x \<sqinter> y = x"
finally show "x \<sqsubseteq> y" .
qed
theorem meet_connection2: "(x \<sqsubseteq> y) = (y \<sqinter> x = x)"
using meet_commute meet_connection by simp
theorem join_connection: "(x \<sqsubseteq> y) = (x \<squnion> y = y)"
proof
assume "x \<sqsubseteq> y"
then have "is_sup x y y" ..
then show "x \<squnion> y = y" ..
next
have "x \<sqsubseteq> x \<squnion> y" ..
also assume "x \<squnion> y = y"
finally show "x \<sqsubseteq> y" .
qed
theorem join_connection2: "(x \<sqsubseteq> y) = (x \<squnion> y = y)"
using join_commute join_connection by simp
text \<open>Naming according to Jacobson I, p.\ 459.\<close>
lemmas L1 = join_commute meet_commute
lemmas L2 = join_assoc meet_assoc
(*lemmas L3 = join_idem meet_idem*)
lemmas L4 = join_meet_absorb meet_join_absorb
end
locale ddlat = dlat +
assumes meet_distr:
"dlat.meet le x (dlat.join le y z) =
dlat.join le (dlat.meet le x y) (dlat.meet le x z)"
begin
lemma join_distr:
"x \<squnion> (y \<sqinter> z) = (x \<squnion> y) \<sqinter> (x \<squnion> z)"
txt \<open>Jacobson I, p.\ 462\<close>
proof -
have "x \<squnion> (y \<sqinter> z) = (x \<squnion> (x \<sqinter> z)) \<squnion> (y \<sqinter> z)" by (simp add: L4)
also have "... = x \<squnion> ((x \<sqinter> z) \<squnion> (y \<sqinter> z))" by (simp add: L2)
also have "... = x \<squnion> ((x \<squnion> y) \<sqinter> z)" by (simp add: L1 meet_distr)
also have "... = ((x \<squnion> y) \<sqinter> x) \<squnion> ((x \<squnion> y) \<sqinter> z)" by (simp add: L1 L4)
also have "... = (x \<squnion> y) \<sqinter> (x \<squnion> z)" by (simp add: meet_distr)
finally show ?thesis .
qed
end
locale dlo = dpo +
assumes total: "x \<sqsubseteq> y | y \<sqsubseteq> x"
begin
lemma less_total: "x \<sqsubset> y | x = y | y \<sqsubset> x"
using total
by (unfold less_def) blast
end
sublocale dlo < dlat
proof
fix x y
from total have "is_inf x y (if x \<sqsubseteq> y then x else y)" by (auto simp: is_inf_def)
then show "\<exists>inf. is_inf x y inf" by blast
next
fix x y
from total have "is_sup x y (if x \<sqsubseteq> y then y else x)" by (auto simp: is_sup_def)
then show "\<exists>sup. is_sup x y sup" by blast
qed
sublocale dlo < ddlat
proof
fix x y z
show "x \<sqinter> (y \<squnion> z) = x \<sqinter> y \<squnion> x \<sqinter> z" (is "?l = ?r")
txt \<open>Jacobson I, p.\ 462\<close>
proof -
{ assume c: "y \<sqsubseteq> x" "z \<sqsubseteq> x"
from c have "?l = y \<squnion> z"
by (metis c (*join_commute*) join_connection2 join_related2 (*meet_commute*) meet_connection meet_related2 total)
also from c have "... = ?r" by (metis (*c*) (*join_commute*) meet_related2)
finally have "?l = ?r" . }
moreover
{ assume c: "x \<sqsubseteq> y | x \<sqsubseteq> z"
from c have "?l = x"
by (metis (*antisym*) (*c*) (*circular*) (*join_assoc*)(* join_commute *) join_connection2 (*join_left*) join_related2 meet_connection(* meet_related2*) total trans)
also from c have "... = ?r"
by (metis join_commute join_related2 meet_connection meet_related2 total)
finally have "?l = ?r" . }
moreover note total
ultimately show ?thesis by blast
qed
qed
subsubsection \<open>Total order \<open><=\<close> on \<^typ>\<open>int\<close>\<close>
interpretation int: dpo "(<=) :: [int, int] => bool"
rewrites "(dpo.less (<=) (x::int) y) = (x < y)"
txt \<open>We give interpretation for less, but not \<open>is_inf\<close> and \<open>is_sub\<close>.\<close>
proof -
show "dpo ((<=) :: [int, int] => bool)"
proof qed auto
then interpret int: dpo "(<=) :: [int, int] => bool" .
txt \<open>Gives interpreted version of \<open>less_def\<close> (without condition).\<close>
show "(dpo.less (<=) (x::int) y) = (x < y)"
by (unfold int.less_def) auto
qed
thm int.circular
lemma "\<lbrakk> (x::int) \<le> y; y \<le> z; z \<le> x\<rbrakk> \<Longrightarrow> x = y \<and> y = z"
apply (rule int.circular) apply assumption apply assumption apply assumption done
thm int.abs_test
lemma "((<) :: [int, int] => bool) = (<)"
apply (rule int.abs_test) done
interpretation int: dlat "(<=) :: [int, int] => bool"
rewrites meet_eq: "dlat.meet (<=) (x::int) y = min x y"
and join_eq: "dlat.join (<=) (x::int) y = max x y"
proof -
show "dlat ((<=) :: [int, int] => bool)"
apply unfold_locales
apply (unfold int.is_inf_def int.is_sup_def)
apply arith+
done
then interpret int: dlat "(<=) :: [int, int] => bool" .
txt \<open>Interpretation to ease use of definitions, which are
conditional in general but unconditional after interpretation.\<close>
show "dlat.meet (<=) (x::int) y = min x y"
apply (unfold int.meet_def)
apply (rule the_equality)
apply (unfold int.is_inf_def)
by auto
show "dlat.join (<=) (x::int) y = max x y"
apply (unfold int.join_def)
apply (rule the_equality)
apply (unfold int.is_sup_def)
by auto
qed
interpretation int: dlo "(<=) :: [int, int] => bool"
proof qed arith
text \<open>Interpreted theorems from the locales, involving defined terms.\<close>
thm int.less_def text \<open>from dpo\<close>
thm int.meet_left text \<open>from dlat\<close>
thm int.meet_distr text \<open>from ddlat\<close>
thm int.less_total text \<open>from dlo\<close>
subsubsection \<open>Total order \<open><=\<close> on \<^typ>\<open>nat\<close>\<close>
interpretation nat: dpo "(<=) :: [nat, nat] => bool"
rewrites "dpo.less (<=) (x::nat) y = (x < y)"
txt \<open>We give interpretation for less, but not \<open>is_inf\<close> and \<open>is_sub\<close>.\<close>
proof -
show "dpo ((<=) :: [nat, nat] => bool)"
proof qed auto
then interpret nat: dpo "(<=) :: [nat, nat] => bool" .
txt \<open>Gives interpreted version of \<open>less_def\<close> (without condition).\<close>
show "dpo.less (<=) (x::nat) y = (x < y)"
apply (unfold nat.less_def)
apply auto
done
qed
interpretation nat: dlat "(<=) :: [nat, nat] => bool"
rewrites "dlat.meet (<=) (x::nat) y = min x y"
and "dlat.join (<=) (x::nat) y = max x y"
proof -
show "dlat ((<=) :: [nat, nat] => bool)"
apply unfold_locales
apply (unfold nat.is_inf_def nat.is_sup_def)
apply arith+
done
then interpret nat: dlat "(<=) :: [nat, nat] => bool" .
txt \<open>Interpretation to ease use of definitions, which are
conditional in general but unconditional after interpretation.\<close>
show "dlat.meet (<=) (x::nat) y = min x y"
apply (unfold nat.meet_def)
apply (rule the_equality)
apply (unfold nat.is_inf_def)
by auto
show "dlat.join (<=) (x::nat) y = max x y"
apply (unfold nat.join_def)
apply (rule the_equality)
apply (unfold nat.is_sup_def)
by auto
qed
interpretation nat: dlo "(<=) :: [nat, nat] => bool"
proof qed arith
text \<open>Interpreted theorems from the locales, involving defined terms.\<close>
thm nat.less_def text \<open>from dpo\<close>
thm nat.meet_left text \<open>from dlat\<close>
thm nat.meet_distr text \<open>from ddlat\<close>
thm nat.less_total text \<open>from ldo\<close>
subsubsection \<open>Lattice \<open>dvd\<close> on \<^typ>\<open>nat\<close>\<close>
interpretation nat_dvd: dpo "(dvd) :: [nat, nat] => bool"
rewrites "dpo.less (dvd) (x::nat) y = (x dvd y & x ~= y)"
txt \<open>We give interpretation for less, but not \<open>is_inf\<close> and \<open>is_sub\<close>.\<close>
proof -
show "dpo ((dvd) :: [nat, nat] => bool)"
proof qed (auto simp: dvd_def)
then interpret nat_dvd: dpo "(dvd) :: [nat, nat] => bool" .
txt \<open>Gives interpreted version of \<open>less_def\<close> (without condition).\<close>
show "dpo.less (dvd) (x::nat) y = (x dvd y & x ~= y)"
apply (unfold nat_dvd.less_def)
apply auto
done
qed
interpretation nat_dvd: dlat "(dvd) :: [nat, nat] => bool"
rewrites "dlat.meet (dvd) (x::nat) y = gcd x y"
and "dlat.join (dvd) (x::nat) y = lcm x y"
proof -
show "dlat ((dvd) :: [nat, nat] => bool)"
apply unfold_locales
apply (unfold nat_dvd.is_inf_def nat_dvd.is_sup_def)
apply (rule_tac x = "gcd x y" in exI)
apply auto [1]
apply (rule_tac x = "lcm x y" in exI)
apply (auto intro: dvd_lcm1 dvd_lcm2 lcm_least)
done
then interpret nat_dvd: dlat "(dvd) :: [nat, nat] => bool" .
txt \<open>Interpretation to ease use of definitions, which are
conditional in general but unconditional after interpretation.\<close>
show "dlat.meet (dvd) (x::nat) y = gcd x y"
apply (unfold nat_dvd.meet_def)
apply (rule the_equality)
apply (unfold nat_dvd.is_inf_def)
by auto
show "dlat.join (dvd) (x::nat) y = lcm x y"
apply (unfold nat_dvd.join_def)
apply (rule the_equality)
apply (unfold nat_dvd.is_sup_def)
by (auto intro: dvd_lcm1 dvd_lcm2 lcm_least)
qed
text \<open>Interpreted theorems from the locales, involving defined terms.\<close>
thm nat_dvd.less_def text \<open>from dpo\<close>
lemma "((x::nat) dvd y & x ~= y) = (x dvd y & x ~= y)"
apply (rule nat_dvd.less_def) done
thm nat_dvd.meet_left text \<open>from dlat\<close>
lemma "gcd x y dvd (x::nat)"
apply (rule nat_dvd.meet_left) done
subsection \<open>Group example with defined operations \<open>inv\<close> and \<open>unit\<close>\<close>
subsubsection \<open>Locale declarations and lemmas\<close>
locale Dsemi =
fixes prod (infixl "**" 65)
assumes assoc: "(x ** y) ** z = x ** (y ** z)"
locale Dmonoid = Dsemi +
fixes one
assumes l_one [simp]: "one ** x = x"
and r_one [simp]: "x ** one = x"
begin
definition
inv where "inv x = (THE y. x ** y = one & y ** x = one)"
definition
unit where "unit x = (\<exists>y. x ** y = one & y ** x = one)"
lemma inv_unique:
assumes eq: "y ** x = one" "x ** y' = one"
shows "y = y'"
proof -
from eq have "y = y ** (x ** y')" by (simp add: r_one)
also have "... = (y ** x) ** y'" by (simp add: assoc)
also from eq have "... = y'" by (simp add: l_one)
finally show ?thesis .
qed
lemma unit_one [intro, simp]:
"unit one"
by (unfold unit_def) auto
lemma unit_l_inv_ex:
"unit x ==> \<exists>y. y ** x = one"
by (unfold unit_def) auto
lemma unit_r_inv_ex:
"unit x ==> \<exists>y. x ** y = one"
by (unfold unit_def) auto
lemma unit_l_inv:
"unit x ==> inv x ** x = one"
apply (simp add: unit_def inv_def) apply (erule exE)
apply (rule theI2, fast)
apply (rule inv_unique)
apply fast+
done
lemma unit_r_inv:
"unit x ==> x ** inv x = one"
apply (simp add: unit_def inv_def) apply (erule exE)
apply (rule theI2, fast)
apply (rule inv_unique)
apply fast+
done
lemma unit_inv_unit [intro, simp]:
"unit x ==> unit (inv x)"
proof -
assume x: "unit x"
show "unit (inv x)"
by (auto simp add: unit_def
intro: unit_l_inv unit_r_inv x)
qed
lemma unit_l_cancel [simp]:
"unit x ==> (x ** y = x ** z) = (y = z)"
proof
assume eq: "x ** y = x ** z"
and G: "unit x"
then have "(inv x ** x) ** y = (inv x ** x) ** z"
by (simp add: assoc)
with G show "y = z" by (simp add: unit_l_inv)
next
assume eq: "y = z"
and G: "unit x"
then show "x ** y = x ** z" by simp
qed
lemma unit_inv_inv [simp]:
"unit x ==> inv (inv x) = x"
proof -
assume x: "unit x"
then have "inv x ** inv (inv x) = inv x ** x"
by (simp add: unit_l_inv unit_r_inv)
with x show ?thesis by simp
qed
lemma inv_inj_on_unit:
"inj_on inv {x. unit x}"
proof (rule inj_onI, simp)
fix x y
assume G: "unit x" "unit y" and eq: "inv x = inv y"
then have "inv (inv x) = inv (inv y)" by simp
with G show "x = y" by simp
qed
lemma unit_inv_comm:
assumes inv: "x ** y = one"
and G: "unit x" "unit y"
shows "y ** x = one"
proof -
from G have "x ** y ** x = x ** one" by (auto simp add: inv)
with G show ?thesis by (simp del: r_one add: assoc)
qed
end
locale Dgrp = Dmonoid +
assumes unit [intro, simp]: "Dmonoid.unit ((**)) one x"
begin
lemma l_inv_ex [simp]:
"\<exists>y. y ** x = one"
using unit_l_inv_ex by simp
lemma r_inv_ex [simp]:
"\<exists>y. x ** y = one"
using unit_r_inv_ex by simp
lemma l_inv [simp]:
"inv x ** x = one"
using unit_l_inv by simp
lemma l_cancel [simp]:
"(x ** y = x ** z) = (y = z)"
using unit_l_inv by simp
lemma r_inv [simp]:
"x ** inv x = one"
proof -
have "inv x ** (x ** inv x) = inv x ** one"
by (simp add: assoc [symmetric] l_inv)
then show ?thesis by (simp del: r_one)
qed
lemma r_cancel [simp]:
"(y ** x = z ** x) = (y = z)"
proof
assume eq: "y ** x = z ** x"
then have "y ** (x ** inv x) = z ** (x ** inv x)"
by (simp add: assoc [symmetric] del: r_inv)
then show "y = z" by simp
qed simp
lemma inv_one [simp]:
"inv one = one"
proof -
have "inv one = one ** (inv one)" by (simp del: r_inv)
moreover have "... = one" by simp
finally show ?thesis .
qed
lemma inv_inv [simp]:
"inv (inv x) = x"
using unit_inv_inv by simp
lemma inv_inj:
"inj_on inv UNIV"
using inv_inj_on_unit by simp
lemma inv_mult_group:
"inv (x ** y) = inv y ** inv x"
proof -
have "inv (x ** y) ** (x ** y) = (inv y ** inv x) ** (x ** y)"
by (simp add: assoc l_inv) (simp add: assoc [symmetric])
then show ?thesis by (simp del: l_inv)
qed
lemma inv_comm:
"x ** y = one ==> y ** x = one"
by (rule unit_inv_comm) auto
lemma inv_equality:
"y ** x = one ==> inv x = y"
apply (simp add: inv_def)
apply (rule the_equality)
apply (simp add: inv_comm [of y x])
apply (rule r_cancel [THEN iffD1], auto)
done
end
locale Dhom = prod: Dgrp prod one + sum: Dgrp sum zero
for prod (infixl "**" 65) and one and sum (infixl "+++" 60) and zero +
fixes hom
assumes hom_mult [simp]: "hom (x ** y) = hom x +++ hom y"
begin
lemma hom_one [simp]:
"hom one = zero"
proof -
have "hom one +++ zero = hom one +++ hom one"
by (simp add: hom_mult [symmetric] del: hom_mult)
then show ?thesis by (simp del: sum.r_one)
qed
end
subsubsection \<open>Interpretation of Functions\<close>
interpretation Dfun: Dmonoid "(o)" "id :: 'a => 'a"
rewrites "Dmonoid.unit (o) id f = bij (f::'a => 'a)"
(* and "Dmonoid.inv (o) id" = "inv :: ('a => 'a) => ('a => 'a)" *)
proof -
show "Dmonoid (o) (id :: 'a => 'a)" proof qed (simp_all add: o_assoc)
note Dmonoid = this
(*
from this interpret Dmonoid "(o)" "id :: 'a => 'a" .
*)
show "Dmonoid.unit (o) (id :: 'a => 'a) f = bij f"
apply (unfold Dmonoid.unit_def [OF Dmonoid])
apply rule apply clarify
proof -
fix f g
assume id1: "f o g = id" and id2: "g o f = id"
show "bij f"
proof (rule bijI)
show "inj f"
proof (rule inj_onI)
fix x y
assume "f x = f y"
then have "(g o f) x = (g o f) y" by simp
with id2 show "x = y" by simp
qed
next
show "surj f"
proof (rule surjI)
fix x
from id1 have "(f o g) x = x" by simp
then show "f (g x) = x" by simp
qed
qed
next
fix f
assume bij: "bij f"
then
have inv: "f o Hilbert_Choice.inv f = id & Hilbert_Choice.inv f o f = id"
by (simp add: bij_def surj_iff inj_iff)
show "\<exists>g. f \<circ> g = id \<and> g \<circ> f = id" by rule (rule inv)
qed
qed
thm Dmonoid.unit_def Dfun.unit_def
thm Dmonoid.inv_inj_on_unit Dfun.inv_inj_on_unit
lemma unit_id:
"(f :: unit => unit) = id"
by rule simp
interpretation Dfun: Dgrp "(o)" "id :: unit => unit"
rewrites "Dmonoid.inv (o) id f = inv (f :: unit => unit)"
proof -
have "Dmonoid (o) (id :: 'a => 'a)" ..
note Dmonoid = this
show "Dgrp (o) (id :: unit => unit)"
apply unfold_locales
apply (unfold Dmonoid.unit_def [OF Dmonoid])
apply (insert unit_id)
apply simp
done
show "Dmonoid.inv (o) id f = inv (f :: unit \<Rightarrow> unit)"
apply (unfold Dmonoid.inv_def [OF Dmonoid])
apply (insert unit_id)
apply simp
apply (rule the_equality)
apply rule
apply rule
apply simp
done
qed
thm Dfun.unit_l_inv Dfun.l_inv
thm Dfun.inv_equality
thm Dfun.inv_equality
end
|
** Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
** See https://llvm.org/LICENSE.txt for license information.
** SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
* Constant prop. - call in path problems
program p
parameter (N=1)
common iresult(N)
dimension iexpect(N)
data iexpect /
+ 9 ! t0
+ /
iresult(1) = 0
call t0(iresult(1), 5)
call check(iresult, iexpect, N)
end
subroutine t0(ii, n)
jj = 1 !jj cannot be copied
do i = 1, n
ii = jj + ii
call set(jj) !jj potentially modified
enddo
end
subroutine set(jj)
jj = 2
end
|
import tactic
import data.real.basic
import data.pnat.basic
local notation `|` x `|` := abs x
def is_limit (a : ℕ → ℝ) (l : ℝ) : Prop :=
∀ ε > 0, ∃ N, ∀ n ≥ N, | a n - l | < ε
def tends_to_plus_infinity (a : ℕ → ℝ) : Prop :=
∀ B, ∃ N, ∀ n ≥ N, B < a n
def is_convergent (a : ℕ → ℝ) : Prop :=
∃ l : ℝ, is_limit a l
namespace sheet_five
theorem Q1a (x : ℝ) (hx : 0 < x) (n : ℕ) : (1 : ℝ) + n * x ≤ (1 + x)^n :=
begin
sorry
end
theorem Q1b (x : ℝ) (hx : 0 < x) : is_limit (λ n, (1 + x) ^ (-(n : ℤ))) 0 :=
begin
sorry
end
theorem Q1c (r : ℝ) (hr : r ∈ set.Ioo (0 : ℝ) 1) : is_limit (λ n, r ^ n) 0 :=
begin
sorry
end
theorem Q1d (r : ℝ) (hr : 1 < r) : tends_to_plus_infinity (λ n, r ^ n) :=
begin
sorry
end
|
section "Setup of Environment for CAVA Model Checker"
theory CAVA_Base
imports
Collections.CollectionsV1 (*-- {* Compatibility with ICF 1.0 *}*)
Collections.Refine_Dflt
Statistics (*-- {* Collecting statistics by instrumenting the formalization *}*)
CAVA_Code_Target (*-- {* Code Generator Setup *}*)
begin
hide_const (open) CollectionsV1.ahs_rel
(*
(* Select-function that selects element from set *)
(* TODO: Move! Is select properly integrated into autoref? *)
definition select where
"select S \<equiv> if S={} then RETURN None else RES {Some s | s. s\<in>S}"
lemma select_correct:
"select X \<le> SPEC (\<lambda>r. case r of None \<Rightarrow> X={} | Some x \<Rightarrow> x\<in>X)"
unfolding select_def
apply (refine_rcg refine_vcg)
by auto
*)
text \<open>Cleaning up the namespace a bit\<close>
hide_type (open) Word.word
text \<open>Some custom setup in cava, that does not match HOL defaults:\<close>
declare Let_def[simp add]
end
|
function Model = buildRxnEquations(Model)
% Takes a COBRA model and creates reaction equations based
% on the metabolites list, `S` matrix and bound information. Returns the
% model with the additinal field `rxnEquations`. Is called by `cleanTmodel`, `compareCbModels`, `readCbTmodel`, `verifyModel`, `addSEEDInfo`.
%
% USAGE:
%
% Model = buildRxnEquations(Model)
%
% INPUTS:
% Model: COBRA format model or `Tmodel`
%
% OUTPUTS:
% Model: Model with corrected `rxnEquations` field.
%
% Please cite:
% `Sauls, J. T., & Buescher, J. M. (2014). Assimilating genome-scale
% metabolic reconstructions with modelBorgifier. Bioinformatics
% (Oxford, England), 30(7), 1036?8`. http://doi.org/10.1093/bioinformatics/btt747
%
% ..
% Edit the above text to modify the response to help addMetInfo
% Last Modified by GUIDE v2.5 06-Dec-2013 14:19:28
% This file is published under Creative Commons BY-NC-SA.
%
% Correspondance:
% [email protected]
%
% Developed at:
% BRAIN Aktiengesellschaft
% Microbial Production Technologies Unit
% Quantitative Biology and Sequencing Platform
% Darmstaeter Str. 34-36
% 64673 Zwingenberg, Germany
% www.brain-biotech.de
if isstruct(Model.lb) % If the function is fed Tmodel, use reaction bounds from first model.
modelNames = fieldnames(Model.Models) ;
firstModel = modelNames{1} ;
lb = Model.lb.(firstModel) ;
ub = Model.ub.(firstModel) ;
else
lb = Model.lb ;
ub = Model.ub ;
end
%% Make the equations.
for iRxn = 1:length(Model.rxns)
rxnCode = [] ;
educts = find(Model.S(:,iRxn) < 0) ;
products = find(Model.S(:,iRxn) > 0) ;
if lb(iRxn) < 0 && ub(iRxn) > 0
arrow = '<==>' ;
elseif lb(iRxn) >= 0 && ub(iRxn) > 0
arrow = '-->' ;
elseif lb(iRxn) < 0 && ub(iRxn) <= 0
arrow = '<--' ;
elseif lb(iRxn) == 0 && ub(iRxn) == 0
arrow = '|||' ;
else
disp(['Do not understand directionality of ' Model.rxns{iRxn}])
end
if ~isempty(educts)
for ie = 1:length(educts)
if Model.S(educts(ie), iRxn) ~= -1
rxnCode = [rxnCode '(' num2str(-Model.S(educts(ie),iRxn)) ...
') ' Model.mets{educts(ie)} ] ;
else
rxnCode = [rxnCode Model.mets{educts(ie)}] ;
end
rxnCode = [rxnCode ' + '] ;
end
% Note how just 2 positions are substracted from the end, leaving a
% space.
rxnCode = [rxnCode(1:end - 2) arrow] ;
end
if ~isempty(products)
rxnCode = [rxnCode ' '] ;
for ip = 1:length(products)
if Model.S(products(ip), iRxn) ~= 1
rxnCode = [rxnCode '(' num2str(Model.S(products(ip), iRxn))...
') ' Model.mets{products(ip)}] ;
else
rxnCode = [rxnCode Model.mets{products(ip)}] ;
end
rxnCode = [rxnCode ' + '] ;
end
rxnCode = rxnCode(1:end - 3) ;
end
Model.rxnEquations{iRxn, 1} = rxnCode ;
clear educts ; clear products; clear ie ; clear ip ; clear rxcode ;
end
|
c-----------------------------------------------------------------------------
c Find total grid points in all blocks for allocating memory
c-----------------------------------------------------------------------------
integer function total_pts(nblks, idim, jdim)
implicit none
integer nblks, idim(*), jdim(*)
integer id, jd, fid, i
total_pts = 0
fid = 10
open(fid, file='grid.0')
read(fid,*) nblks
do i=1,nblks
read(fid,*) id, jd
total_pts = total_pts + id*jd
idim(i) = id
jdim(i) = jd
enddo
close(fid)
return
end
|
structure S :=
(x := true)
def f (s : S) : Bool :=
s.x
#eval f {}
theorem ex : f {} = true :=
rfl
|
Require Import Coq.Lists.List.
Require Import Coq.Classes.Morphisms.
Require Import Coq.Setoids.Setoid.
Global Instance list_rect_Proper_dep_gen {A P} (RP : forall x : list A, P x -> P x -> Prop)
: Proper (RP nil ==> forall_relation (fun x => forall_relation (fun xs => RP xs ==> RP (cons x xs))) ==> forall_relation RP) (@list_rect A P) | 10.
Proof.
cbv [forall_relation respectful]; intros N N' HN C C' HC ls.
induction ls as [|l ls IHls]; cbn [list_rect];
repeat first [ apply IHls | apply HC | apply HN | progress intros | reflexivity ].
Qed.
Global Instance list_rect_Proper_dep {A P} : Proper (eq ==> forall_relation (fun _ => forall_relation (fun _ => forall_relation (fun _ => eq))) ==> forall_relation (fun _ => eq)) (@list_rect A P) | 1.
Proof.
cbv [forall_relation respectful Proper]; intros; eapply (@list_rect_Proper_dep_gen A P (fun _ => eq)); cbv [forall_relation respectful]; intros; subst; eauto.
Qed.
Global Instance list_rect_Proper_gen {A P} R
: Proper (R ==> (eq ==> eq ==> R ==> R) ==> eq ==> R) (@list_rect A (fun _ => P)) | 10.
Proof. repeat intro; subst; apply (@list_rect_Proper_dep_gen A (fun _ => P) (fun _ => R)); cbv [forall_relation respectful] in *; eauto. Qed.
Global Instance list_rect_Proper {A P} : Proper (eq ==> pointwise_relation _ (pointwise_relation _ (pointwise_relation _ eq)) ==> eq ==> eq) (@list_rect A (fun _ => P)).
Proof. repeat intro; subst; apply (@list_rect_Proper_dep A (fun _ => P)); eauto. Qed.
|
Formal statement is: lemma space_interval_measure [simp]: "space (interval_measure F) = UNIV" Informal statement is: The space of an interval measure is the entire universe. |
= = Solving chess = =
|
f(a,b) = 333.75*b^6+a^2*(11*a^2*b^2 - b^6 - 121*b^4 - 2) + 5.5*b^8 + a/(2*b)
a=77617.0
b=33096.0
println("Float64: ", f(a, b))
println("BigFloat: ", f(BigFloat(a), BigFloat(b))) |
!*****************************************************************************************
!> author: nescirem
! date: 5/05/2019
!
! Module parse base boundary information.
!
module jc_boundary_mod
use json_module, CK => json_CK, IK => json_IK
use, intrinsic :: iso_fortran_env, only: error_unit
use output_mod
implicit none
private
public :: jc_boundary
contains
!====================================================================
!-------------------------------------------------------------------+
subroutine jc_boundary !
!-------------------------------------------------------------------+
implicit none
end subroutine jc_boundary
!====================================================================
end module jc_boundary_mod
|
clear all;
close all;
clc;
spx.cluster.ssc.util.simulate_subspace_preservation(@ssc_omp, 'ssc_omp');
spx.cluster.ssc.util.print_subspace_preservation_results('ssc_omp');
|
[GOAL]
P : PartENat → Prop
⊢ ∀ (a : PartENat), P ⊤ → (∀ (n : ℕ), P ↑n) → P a
[PROOFSTEP]
exact PartENat.casesOn'
[GOAL]
x : PartENat
⊢ x + ⊤ = ⊤
[PROOFSTEP]
rw [add_comm, top_add]
[GOAL]
x : PartENat
h : x.Dom
⊢ ↑(Part.get x h) = x
[PROOFSTEP]
exact Part.ext' (iff_of_true trivial h) fun _ _ => rfl
[GOAL]
x : ℕ
h : (↑x).Dom
⊢ Part.get (↑x) h = x
[PROOFSTEP]
rw [← natCast_inj, natCast_get]
[GOAL]
x : ℕ
y : PartENat
h : (↑x + y).Dom
⊢ Part.get (↑x + y) h = x + Part.get y (_ : y.Dom)
[PROOFSTEP]
rfl
[GOAL]
a : PartENat
ha : a.Dom
b : ℕ
⊢ Part.get a ha = b ↔ a = ↑b
[PROOFSTEP]
rw [get_eq_iff_eq_some]
[GOAL]
a : PartENat
ha : a.Dom
b : ℕ
⊢ a = ↑b ↔ a = ↑b
[PROOFSTEP]
rfl
[GOAL]
x : PartENat
y : ℕ
h : x ≤ ↑y
⊢ x.Dom
[PROOFSTEP]
exact dom_of_le_some h
[GOAL]
x y : PartENat
inst✝¹ : Decidable x.Dom
inst✝ : Decidable y.Dom
hx : x.Dom
⊢ ?m.35650 x y hx ↔ x ≤ y
[PROOFSTEP]
rw [le_def]
[GOAL]
x y : PartENat
⊢ x < y ↔ ∃ hx, ∀ (hy : y.Dom), Part.get x hx < Part.get y hy
[PROOFSTEP]
rw [lt_iff_le_not_le, le_def, le_def, not_exists]
[GOAL]
x y : PartENat
⊢ ((∃ h, ∀ (hy : y.Dom), Part.get x (_ : x.Dom) ≤ Part.get y hy) ∧
∀ (x_1 : x.Dom → y.Dom), ¬∀ (hy : x.Dom), Part.get y (_ : y.Dom) ≤ Part.get x hy) ↔
∃ hx, ∀ (hy : y.Dom), Part.get x hx < Part.get y hy
[PROOFSTEP]
constructor
[GOAL]
case mp
x y : PartENat
⊢ ((∃ h, ∀ (hy : y.Dom), Part.get x (_ : x.Dom) ≤ Part.get y hy) ∧
∀ (x_1 : x.Dom → y.Dom), ¬∀ (hy : x.Dom), Part.get y (_ : y.Dom) ≤ Part.get x hy) →
∃ hx, ∀ (hy : y.Dom), Part.get x hx < Part.get y hy
[PROOFSTEP]
rintro ⟨⟨hyx, H⟩, h⟩
[GOAL]
case mp.intro.intro
x y : PartENat
h : ∀ (x_1 : x.Dom → y.Dom), ¬∀ (hy : x.Dom), Part.get y (_ : y.Dom) ≤ Part.get x hy
hyx : y.Dom → x.Dom
H : ∀ (hy : y.Dom), Part.get x (_ : x.Dom) ≤ Part.get y hy
⊢ ∃ hx, ∀ (hy : y.Dom), Part.get x hx < Part.get y hy
[PROOFSTEP]
by_cases hx : x.Dom
[GOAL]
case pos
x y : PartENat
h : ∀ (x_1 : x.Dom → y.Dom), ¬∀ (hy : x.Dom), Part.get y (_ : y.Dom) ≤ Part.get x hy
hyx : y.Dom → x.Dom
H : ∀ (hy : y.Dom), Part.get x (_ : x.Dom) ≤ Part.get y hy
hx : x.Dom
⊢ ∃ hx, ∀ (hy : y.Dom), Part.get x hx < Part.get y hy
[PROOFSTEP]
use hx
[GOAL]
case h
x y : PartENat
h : ∀ (x_1 : x.Dom → y.Dom), ¬∀ (hy : x.Dom), Part.get y (_ : y.Dom) ≤ Part.get x hy
hyx : y.Dom → x.Dom
H : ∀ (hy : y.Dom), Part.get x (_ : x.Dom) ≤ Part.get y hy
hx : x.Dom
⊢ ∀ (hy : y.Dom), Part.get x hx < Part.get y hy
[PROOFSTEP]
intro hy
[GOAL]
case h
x y : PartENat
h : ∀ (x_1 : x.Dom → y.Dom), ¬∀ (hy : x.Dom), Part.get y (_ : y.Dom) ≤ Part.get x hy
hyx : y.Dom → x.Dom
H : ∀ (hy : y.Dom), Part.get x (_ : x.Dom) ≤ Part.get y hy
hx : x.Dom
hy : y.Dom
⊢ Part.get x hx < Part.get y hy
[PROOFSTEP]
specialize H hy
[GOAL]
case h
x y : PartENat
h : ∀ (x_1 : x.Dom → y.Dom), ¬∀ (hy : x.Dom), Part.get y (_ : y.Dom) ≤ Part.get x hy
hyx : y.Dom → x.Dom
hx : x.Dom
hy : y.Dom
H : Part.get x (_ : x.Dom) ≤ Part.get y hy
⊢ Part.get x hx < Part.get y hy
[PROOFSTEP]
specialize h fun _ => hy
[GOAL]
case h
x y : PartENat
hyx : y.Dom → x.Dom
hx : x.Dom
hy : y.Dom
H : Part.get x (_ : x.Dom) ≤ Part.get y hy
h : ¬∀ (hy_1 : x.Dom), Part.get y hy ≤ Part.get x hy_1
⊢ Part.get x hx < Part.get y hy
[PROOFSTEP]
rw [not_forall] at h
[GOAL]
case h
x y : PartENat
hyx : y.Dom → x.Dom
hx : x.Dom
hy : y.Dom
H : Part.get x (_ : x.Dom) ≤ Part.get y hy
h : ∃ x_1, ¬Part.get y hy ≤ Part.get x x_1
⊢ Part.get x hx < Part.get y hy
[PROOFSTEP]
cases' h with hx' h
[GOAL]
case h.intro
x y : PartENat
hyx : y.Dom → x.Dom
hx : x.Dom
hy : y.Dom
H : Part.get x (_ : x.Dom) ≤ Part.get y hy
hx' : x.Dom
h : ¬Part.get y hy ≤ Part.get x hx'
⊢ Part.get x hx < Part.get y hy
[PROOFSTEP]
rw [not_le] at h
[GOAL]
case h.intro
x y : PartENat
hyx : y.Dom → x.Dom
hx : x.Dom
hy : y.Dom
H : Part.get x (_ : x.Dom) ≤ Part.get y hy
hx' : x.Dom
h : Part.get x hx' < Part.get y hy
⊢ Part.get x hx < Part.get y hy
[PROOFSTEP]
exact h
[GOAL]
case neg
x y : PartENat
h : ∀ (x_1 : x.Dom → y.Dom), ¬∀ (hy : x.Dom), Part.get y (_ : y.Dom) ≤ Part.get x hy
hyx : y.Dom → x.Dom
H : ∀ (hy : y.Dom), Part.get x (_ : x.Dom) ≤ Part.get y hy
hx : ¬x.Dom
⊢ ∃ hx, ∀ (hy : y.Dom), Part.get x hx < Part.get y hy
[PROOFSTEP]
specialize h fun hx' => (hx hx').elim
[GOAL]
case neg
x y : PartENat
hyx : y.Dom → x.Dom
H : ∀ (hy : y.Dom), Part.get x (_ : x.Dom) ≤ Part.get y hy
hx : ¬x.Dom
h : ¬∀ (hy : x.Dom), Part.get y (_ : y.Dom) ≤ Part.get x hy
⊢ ∃ hx, ∀ (hy : y.Dom), Part.get x hx < Part.get y hy
[PROOFSTEP]
rw [not_forall] at h
[GOAL]
case neg
x y : PartENat
hyx : y.Dom → x.Dom
H : ∀ (hy : y.Dom), Part.get x (_ : x.Dom) ≤ Part.get y hy
hx : ¬x.Dom
h : ∃ x_1, ¬Part.get y (_ : y.Dom) ≤ Part.get x x_1
⊢ ∃ hx, ∀ (hy : y.Dom), Part.get x hx < Part.get y hy
[PROOFSTEP]
cases' h with hx' h
[GOAL]
case neg.intro
x y : PartENat
hyx : y.Dom → x.Dom
H : ∀ (hy : y.Dom), Part.get x (_ : x.Dom) ≤ Part.get y hy
hx : ¬x.Dom
hx' : x.Dom
h : ¬Part.get y (_ : y.Dom) ≤ Part.get x hx'
⊢ ∃ hx, ∀ (hy : y.Dom), Part.get x hx < Part.get y hy
[PROOFSTEP]
exact (hx hx').elim
[GOAL]
case mpr
x y : PartENat
⊢ (∃ hx, ∀ (hy : y.Dom), Part.get x hx < Part.get y hy) →
(∃ h, ∀ (hy : y.Dom), Part.get x (_ : x.Dom) ≤ Part.get y hy) ∧
∀ (x_1 : x.Dom → y.Dom), ¬∀ (hy : x.Dom), Part.get y (_ : y.Dom) ≤ Part.get x hy
[PROOFSTEP]
rintro ⟨hx, H⟩
[GOAL]
case mpr.intro
x y : PartENat
hx : x.Dom
H : ∀ (hy : y.Dom), Part.get x hx < Part.get y hy
⊢ (∃ h, ∀ (hy : y.Dom), Part.get x (_ : x.Dom) ≤ Part.get y hy) ∧
∀ (x_1 : x.Dom → y.Dom), ¬∀ (hy : x.Dom), Part.get y (_ : y.Dom) ≤ Part.get x hy
[PROOFSTEP]
exact ⟨⟨fun _ => hx, fun hy => (H hy).le⟩, fun hxy h => not_lt_of_le (h _) (H _)⟩
[GOAL]
x y : ℕ
⊢ ↑x ≤ ↑y ↔ x ≤ y
[PROOFSTEP]
exact ⟨fun ⟨_, h⟩ => h trivial, fun h => ⟨fun _ => trivial, fun _ => h⟩⟩
[GOAL]
x y : ℕ
⊢ ↑x < ↑y ↔ x < y
[PROOFSTEP]
rw [lt_iff_le_not_le, lt_iff_le_not_le, coe_le_coe, coe_le_coe]
[GOAL]
x y : PartENat
hx : x.Dom
hy : y.Dom
⊢ Part.get x hx ≤ Part.get y hy ↔ x ≤ y
[PROOFSTEP]
conv =>
lhs
rw [← coe_le_coe, natCast_get, natCast_get]
[GOAL]
x y : PartENat
hx : x.Dom
hy : y.Dom
| Part.get x hx ≤ Part.get y hy ↔ x ≤ y
[PROOFSTEP]
lhs
rw [← coe_le_coe, natCast_get, natCast_get]
[GOAL]
x y : PartENat
hx : x.Dom
hy : y.Dom
| Part.get x hx ≤ Part.get y hy ↔ x ≤ y
[PROOFSTEP]
lhs
rw [← coe_le_coe, natCast_get, natCast_get]
[GOAL]
x y : PartENat
hx : x.Dom
hy : y.Dom
| Part.get x hx ≤ Part.get y hy ↔ x ≤ y
[PROOFSTEP]
lhs
[GOAL]
x y : PartENat
hx : x.Dom
hy : y.Dom
| Part.get x hx ≤ Part.get y hy
[PROOFSTEP]
rw [← coe_le_coe, natCast_get, natCast_get]
[GOAL]
x : PartENat
n : ℕ
⊢ x ≤ ↑n ↔ ∃ h, Part.get x h ≤ n
[PROOFSTEP]
show (∃ h : True → x.Dom, _) ↔ ∃ h : x.Dom, x.get h ≤ n
[GOAL]
x : PartENat
n : ℕ
⊢ (∃ h, ∀ (hy : (↑n).Dom), Part.get x (_ : x.Dom) ≤ Part.get (↑n) hy) ↔ ∃ h, Part.get x h ≤ n
[PROOFSTEP]
simp only [forall_prop_of_true, dom_natCast, get_natCast']
[GOAL]
x : PartENat
n : ℕ
⊢ x < ↑n ↔ ∃ h, Part.get x h < n
[PROOFSTEP]
simp only [lt_def, forall_prop_of_true, get_natCast', dom_natCast]
[GOAL]
n : ℕ
x : PartENat
⊢ ↑n ≤ x ↔ ∀ (h : x.Dom), n ≤ Part.get x h
[PROOFSTEP]
rw [← some_eq_natCast]
[GOAL]
n : ℕ
x : PartENat
⊢ ↑n ≤ x ↔ ∀ (h : x.Dom), n ≤ Part.get x h
[PROOFSTEP]
simp only [le_def, exists_prop_of_true, dom_some, forall_true_iff]
[GOAL]
n : ℕ
x : PartENat
⊢ (∀ (hy : x.Dom), Part.get ↑n (_ : (↑n).Dom) ≤ Part.get x hy) ↔ ∀ (h : x.Dom), n ≤ Part.get x h
[PROOFSTEP]
rfl
[GOAL]
n : ℕ
x : PartENat
⊢ ↑n < x ↔ ∀ (h : x.Dom), n < Part.get x h
[PROOFSTEP]
rw [← some_eq_natCast]
[GOAL]
n : ℕ
x : PartENat
⊢ ↑n < x ↔ ∀ (h : x.Dom), n < Part.get x h
[PROOFSTEP]
simp only [lt_def, exists_prop_of_true, dom_some, forall_true_iff]
[GOAL]
n : ℕ
x : PartENat
⊢ (∀ (hy : x.Dom), Part.get ↑n (_ : (↑n).Dom) < Part.get x hy) ↔ ∀ (h : x.Dom), n < Part.get x h
[PROOFSTEP]
rfl
[GOAL]
⊢ ¬1 = 0
[PROOFSTEP]
decide
[GOAL]
x : ℕ
h : ↑x = ⊤
⊢ ¬(↑x).Dom = ⊤.Dom
[PROOFSTEP]
simp only [dom_natCast]
[GOAL]
x : ℕ
h : ↑x = ⊤
⊢ ¬True = ⊤.Dom
[PROOFSTEP]
exact true_ne_false
[GOAL]
x : PartENat
⊢ x ≠ ⊤ ↔ ∃ n, x = ↑n
[PROOFSTEP]
simpa only [← some_eq_natCast] using Part.ne_none_iff
[GOAL]
x : PartENat
⊢ x ≠ ⊤ ↔ x.Dom
[PROOFSTEP]
classical exact not_iff_comm.1 Part.eq_none_iff'.symm
[GOAL]
x : PartENat
⊢ x ≠ ⊤ ↔ x.Dom
[PROOFSTEP]
exact not_iff_comm.1 Part.eq_none_iff'.symm
[GOAL]
x : PartENat
⊢ x = ⊤ ↔ ∀ (n : ℕ), ↑n < x
[PROOFSTEP]
constructor
[GOAL]
case mp
x : PartENat
⊢ x = ⊤ → ∀ (n : ℕ), ↑n < x
[PROOFSTEP]
rintro rfl n
[GOAL]
case mp
n : ℕ
⊢ ↑n < ⊤
[PROOFSTEP]
exact natCast_lt_top _
[GOAL]
case mpr
x : PartENat
⊢ (∀ (n : ℕ), ↑n < x) → x = ⊤
[PROOFSTEP]
contrapose!
[GOAL]
case mpr
x : PartENat
⊢ x ≠ ⊤ → ∃ n, ¬↑n < x
[PROOFSTEP]
rw [ne_top_iff]
[GOAL]
case mpr
x : PartENat
⊢ (∃ n, x = ↑n) → ∃ n, ¬↑n < x
[PROOFSTEP]
rintro ⟨n, rfl⟩
[GOAL]
case mpr.intro
n : ℕ
⊢ ∃ n_1, ¬↑n_1 < ↑n
[PROOFSTEP]
exact ⟨n, irrefl _⟩
[GOAL]
x : PartENat
⊢ 0 < ⊤ ↔ 1 ≤ ⊤
[PROOFSTEP]
simp only [iff_true_iff, le_top, natCast_lt_top, ← @Nat.cast_zero PartENat]
[GOAL]
x : PartENat
n : ℕ
⊢ 0 < ↑n ↔ 1 ≤ ↑n
[PROOFSTEP]
rw [← Nat.cast_zero, ← Nat.cast_one, PartENat.coe_lt_coe, PartENat.coe_le_coe]
[GOAL]
x : PartENat
n : ℕ
⊢ 0 < n ↔ 1 ≤ n
[PROOFSTEP]
rfl
[GOAL]
src✝ : PartialOrder PartENat := partialOrder
a b : PartENat
⊢ max a b = if a ≤ b then b else a
[PROOFSTEP]
change (fun a b => a ⊔ b) a b = _
[GOAL]
src✝ : PartialOrder PartENat := partialOrder
a b : PartENat
⊢ (fun a b => a ⊔ b) a b = if a ≤ b then b else a
[PROOFSTEP]
rw [@sup_eq_maxDefault PartENat _ (id _) _]
[GOAL]
src✝ : PartialOrder PartENat := partialOrder
a b : PartENat
⊢ maxDefault a b = if a ≤ b then b else a
src✝ : PartialOrder PartENat := partialOrder a b : PartENat ⊢ DecidableRel fun x x_1 => x ≤ x_1
[PROOFSTEP]
rfl
[GOAL]
src✝¹ : LinearOrder PartENat := linearOrder
src✝ : AddCommMonoid PartENat := addCommMonoid
a b : PartENat
x✝ : a ≤ b
c : PartENat
h₁ : b.Dom → a.Dom
h₂ : ∀ (hy : b.Dom), Part.get a (_ : a.Dom) ≤ Part.get b hy
⊢ ⊤ + a ≤ ⊤ + b
[PROOFSTEP]
simp
[GOAL]
src✝¹ : LinearOrder PartENat := linearOrder
src✝ : AddCommMonoid PartENat := addCommMonoid
a b : PartENat
x✝ : a ≤ b
c✝ : PartENat
h₁ : b.Dom → a.Dom
h₂ : ∀ (hy : b.Dom), Part.get a (_ : a.Dom) ≤ Part.get b hy
c : ℕ
h : (↑c + b).Dom
⊢ Part.get (↑c + a) (_ : (↑c).Dom ∧ a.Dom) ≤ Part.get (↑c + b) h
[PROOFSTEP]
simpa only [coe_add_get] using add_le_add_left (h₂ _) c
[GOAL]
src✝² : SemilatticeSup PartENat := semilatticeSup
src✝¹ : OrderBot PartENat := orderBot
src✝ : OrderedAddCommMonoid PartENat := orderedAddCommMonoid
a✝ b✝ : PartENat
b a : ℕ
h : ↑a ≤ ↑b
⊢ ↑b = ↑a + ↑(b - a)
[PROOFSTEP]
rw [← Nat.cast_add, natCast_inj, add_comm, tsub_add_cancel_of_le (coe_le_coe.1 h)]
[GOAL]
x y : PartENat
n : ℕ
h : x + y = ↑n
⊢ x = ↑(n - Part.get y (_ : y.Dom))
[PROOFSTEP]
lift x to ℕ using dom_of_le_natCast ((le_add_right le_rfl).trans_eq h)
[GOAL]
case intro
y : PartENat
n x : ℕ
h : ↑x + y = ↑n
⊢ ↑x = ↑(n - Part.get y (_ : y.Dom))
[PROOFSTEP]
lift y to ℕ using dom_of_le_natCast ((le_add_left le_rfl).trans_eq h)
[GOAL]
case intro.intro
n x y : ℕ
h : ↑x + ↑y = ↑n
⊢ ↑x = ↑(n - Part.get ↑y (_ : (↑y).Dom))
[PROOFSTEP]
rw [← Nat.cast_add, natCast_inj] at h
[GOAL]
case intro.intro
n x y : ℕ
h✝ : ↑x + ↑y = ↑n
h : x + y = n
⊢ ↑x = ↑(n - Part.get ↑y (_ : (↑y).Dom))
[PROOFSTEP]
rw [get_natCast, natCast_inj, eq_tsub_of_add_eq h]
[GOAL]
x y z : PartENat
h : x < y
hz : z ≠ ⊤
⊢ x + z < y + z
[PROOFSTEP]
rcases ne_top_iff.mp (ne_top_of_lt h) with ⟨m, rfl⟩
[GOAL]
case intro
y z : PartENat
hz : z ≠ ⊤
m : ℕ
h : ↑m < y
⊢ ↑m + z < y + z
[PROOFSTEP]
rcases ne_top_iff.mp hz with ⟨k, rfl⟩
[GOAL]
case intro.intro
y : PartENat
m : ℕ
h : ↑m < y
k : ℕ
hz : ↑k ≠ ⊤
⊢ ↑m + ↑k < y + ↑k
[PROOFSTEP]
induction' y using PartENat.casesOn with n
[GOAL]
case intro.intro.a
y : PartENat
m : ℕ
h✝ : ↑m < y
k : ℕ
hz : ↑k ≠ ⊤
h : ↑m < ⊤
⊢ ↑m + ↑k < ⊤ + ↑k
[PROOFSTEP]
rw [top_add]
-- Porting note: was apply_mod_cast natCast_lt_top
[GOAL]
case intro.intro.a
y : PartENat
m : ℕ
h✝ : ↑m < y
k : ℕ
hz : ↑k ≠ ⊤
h : ↑m < ⊤
⊢ ↑m + ↑k < ⊤
[PROOFSTEP]
norm_cast
[GOAL]
case intro.intro.a
y : PartENat
m : ℕ
h✝ : ↑m < y
k : ℕ
hz : ↑k ≠ ⊤
h : ↑m < ⊤
⊢ ↑(m + k) < ⊤
[PROOFSTEP]
apply natCast_lt_top
[GOAL]
case intro.intro.a
y : PartENat
m : ℕ
h✝ : ↑m < y
k : ℕ
hz : ↑k ≠ ⊤
n : ℕ
h : ↑m < ↑n
⊢ ↑m + ↑k < ↑n + ↑k
[PROOFSTEP]
norm_cast at h
[GOAL]
case intro.intro.a
y : PartENat
m : ℕ
h✝ : ↑m < y
k : ℕ
hz : ↑k ≠ ⊤
n : ℕ
h : m < n
⊢ ↑m + ↑k < ↑n + ↑k
[PROOFSTEP]
norm_cast
[GOAL]
case intro.intro.a
y : PartENat
m : ℕ
h✝ : ↑m < y
k : ℕ
hz : ↑k ≠ ⊤
n : ℕ
h : m < n
⊢ m + k < n + k
[PROOFSTEP]
apply add_lt_add_right h
[GOAL]
x y z : PartENat
hz : z ≠ ⊤
⊢ z + x < z + y ↔ x < y
[PROOFSTEP]
rw [add_comm z, add_comm z, PartENat.add_lt_add_iff_right hz]
[GOAL]
x y : PartENat
hx : x ≠ ⊤
⊢ x < x + y ↔ 0 < y
[PROOFSTEP]
conv_rhs => rw [← PartENat.add_lt_add_iff_left hx]
[GOAL]
x y : PartENat
hx : x ≠ ⊤
| 0 < y
[PROOFSTEP]
rw [← PartENat.add_lt_add_iff_left hx]
[GOAL]
x y : PartENat
hx : x ≠ ⊤
| 0 < y
[PROOFSTEP]
rw [← PartENat.add_lt_add_iff_left hx]
[GOAL]
x y : PartENat
hx : x ≠ ⊤
| 0 < y
[PROOFSTEP]
rw [← PartENat.add_lt_add_iff_left hx]
[GOAL]
x y : PartENat
hx : x ≠ ⊤
⊢ x < x + y ↔ x + 0 < x + y
[PROOFSTEP]
rw [add_zero]
[GOAL]
x : PartENat
hx : x ≠ ⊤
⊢ x < x + 1
[PROOFSTEP]
rw [PartENat.lt_add_iff_pos_right hx]
[GOAL]
x : PartENat
hx : x ≠ ⊤
⊢ 0 < 1
[PROOFSTEP]
norm_cast
[GOAL]
x y : PartENat
h : x < y + 1
⊢ x ≤ y
[PROOFSTEP]
induction' y using PartENat.casesOn with n
[GOAL]
case a
x y : PartENat
h✝ : x < y + 1
h : x < ⊤ + 1
⊢ x ≤ ⊤
[PROOFSTEP]
apply le_top
[GOAL]
case a
x y : PartENat
h✝ : x < y + 1
n : ℕ
h : x < ↑n + 1
⊢ x ≤ ↑n
[PROOFSTEP]
rcases ne_top_iff.mp (ne_top_of_lt h) with
⟨m, rfl⟩
-- Porting note: was `apply_mod_cast Nat.le_of_lt_succ; apply_mod_cast h`
[GOAL]
case a.intro
y : PartENat
n m : ℕ
h✝ : ↑m < y + 1
h : ↑m < ↑n + 1
⊢ ↑m ≤ ↑n
[PROOFSTEP]
norm_cast
[GOAL]
case a.intro
y : PartENat
n m : ℕ
h✝ : ↑m < y + 1
h : ↑m < ↑n + 1
⊢ m ≤ n
[PROOFSTEP]
apply Nat.le_of_lt_succ
[GOAL]
case a.intro.a
y : PartENat
n m : ℕ
h✝ : ↑m < y + 1
h : ↑m < ↑n + 1
⊢ m < Nat.succ n
[PROOFSTEP]
norm_cast at h
[GOAL]
x y : PartENat
h : x < y
⊢ x + 1 ≤ y
[PROOFSTEP]
induction' y using PartENat.casesOn with n
[GOAL]
case a
x y : PartENat
h✝ : x < y
h : x < ⊤
⊢ x + 1 ≤ ⊤
[PROOFSTEP]
apply le_top
[GOAL]
case a
x y : PartENat
h✝ : x < y
n : ℕ
h : x < ↑n
⊢ x + 1 ≤ ↑n
[PROOFSTEP]
rcases ne_top_iff.mp (ne_top_of_lt h) with
⟨m, rfl⟩
-- Porting note: was `apply_mod_cast Nat.succ_le_of_lt; apply_mod_cast h`
[GOAL]
case a.intro
y : PartENat
n m : ℕ
h✝ : ↑m < y
h : ↑m < ↑n
⊢ ↑m + 1 ≤ ↑n
[PROOFSTEP]
norm_cast
[GOAL]
case a.intro
y : PartENat
n m : ℕ
h✝ : ↑m < y
h : ↑m < ↑n
⊢ m + 1 ≤ n
[PROOFSTEP]
apply Nat.succ_le_of_lt
[GOAL]
case a.intro.h
y : PartENat
n m : ℕ
h✝ : ↑m < y
h : ↑m < ↑n
⊢ m < n
[PROOFSTEP]
norm_cast at h
[GOAL]
x y : PartENat
hx : x ≠ ⊤
⊢ x + 1 ≤ y ↔ x < y
[PROOFSTEP]
refine ⟨fun h => ?_, add_one_le_of_lt⟩
[GOAL]
x y : PartENat
hx : x ≠ ⊤
h : x + 1 ≤ y
⊢ x < y
[PROOFSTEP]
rcases ne_top_iff.mp hx with ⟨m, rfl⟩
[GOAL]
case intro
y : PartENat
m : ℕ
hx : ↑m ≠ ⊤
h : ↑m + 1 ≤ y
⊢ ↑m < y
[PROOFSTEP]
induction' y using PartENat.casesOn with n
[GOAL]
case intro.a
y : PartENat
m : ℕ
hx : ↑m ≠ ⊤
h✝ : ↑m + 1 ≤ y
h : ↑m + 1 ≤ ⊤
⊢ ↑m < ⊤
[PROOFSTEP]
apply natCast_lt_top
[GOAL]
case intro.a
y : PartENat
m : ℕ
hx : ↑m ≠ ⊤
h✝ : ↑m + 1 ≤ y
n : ℕ
h : ↑m + 1 ≤ ↑n
⊢ ↑m < ↑n
[PROOFSTEP]
norm_cast
[GOAL]
case intro.a
y : PartENat
m : ℕ
hx : ↑m ≠ ⊤
h✝ : ↑m + 1 ≤ y
n : ℕ
h : ↑m + 1 ≤ ↑n
⊢ m < n
[PROOFSTEP]
apply Nat.lt_of_succ_le
[GOAL]
case intro.a.h
y : PartENat
m : ℕ
hx : ↑m ≠ ⊤
h✝ : ↑m + 1 ≤ y
n : ℕ
h : ↑m + 1 ≤ ↑n
⊢ Nat.succ m ≤ n
[PROOFSTEP]
norm_cast at h
[GOAL]
n : ℕ
e : PartENat
⊢ ↑(Nat.succ n) ≤ e ↔ ↑n < e
[PROOFSTEP]
rw [Nat.succ_eq_add_one n, Nat.cast_add, Nat.cast_one, add_one_le_iff_lt (natCast_ne_top n)]
[GOAL]
x y : PartENat
hx : x ≠ ⊤
⊢ x < y + 1 ↔ x ≤ y
[PROOFSTEP]
refine ⟨le_of_lt_add_one, fun h => ?_⟩
[GOAL]
x y : PartENat
hx : x ≠ ⊤
h : x ≤ y
⊢ x < y + 1
[PROOFSTEP]
rcases ne_top_iff.mp hx with ⟨m, rfl⟩
[GOAL]
case intro
y : PartENat
m : ℕ
hx : ↑m ≠ ⊤
h : ↑m ≤ y
⊢ ↑m < y + 1
[PROOFSTEP]
induction' y using PartENat.casesOn with n
[GOAL]
case intro.a
y : PartENat
m : ℕ
hx : ↑m ≠ ⊤
h✝ : ↑m ≤ y
h : ↑m ≤ ⊤
⊢ ↑m < ⊤ + 1
[PROOFSTEP]
rw [top_add]
[GOAL]
case intro.a
y : PartENat
m : ℕ
hx : ↑m ≠ ⊤
h✝ : ↑m ≤ y
h : ↑m ≤ ⊤
⊢ ↑m < ⊤
[PROOFSTEP]
apply natCast_lt_top
[GOAL]
case intro.a
y : PartENat
m : ℕ
hx : ↑m ≠ ⊤
h✝ : ↑m ≤ y
n : ℕ
h : ↑m ≤ ↑n
⊢ ↑m < ↑n + 1
[PROOFSTEP]
norm_cast
[GOAL]
case intro.a
y : PartENat
m : ℕ
hx : ↑m ≠ ⊤
h✝ : ↑m ≤ y
n : ℕ
h : ↑m ≤ ↑n
⊢ m < n + 1
[PROOFSTEP]
apply Nat.lt_succ_of_le
[GOAL]
case intro.a.a
y : PartENat
m : ℕ
hx : ↑m ≠ ⊤
h✝ : ↑m ≤ y
n : ℕ
h : ↑m ≤ ↑n
⊢ m ≤ n
[PROOFSTEP]
norm_cast at h
[GOAL]
x : PartENat
n : ℕ
hx : x ≠ ⊤
⊢ x < ↑(Nat.succ n) ↔ x ≤ ↑n
[PROOFSTEP]
rw [Nat.succ_eq_add_one n, Nat.cast_add, Nat.cast_one, lt_add_one_iff_lt hx]
[GOAL]
a b : PartENat
⊢ a + b = ⊤ ↔ a = ⊤ ∨ b = ⊤
[PROOFSTEP]
refine PartENat.casesOn a ?_ ?_
[GOAL]
case refine_1
a b : PartENat
⊢ ⊤ + b = ⊤ ↔ ⊤ = ⊤ ∨ b = ⊤
[PROOFSTEP]
refine PartENat.casesOn b ?_ ?_
[GOAL]
case refine_2
a b : PartENat
⊢ ∀ (n : ℕ), ↑n + b = ⊤ ↔ ↑n = ⊤ ∨ b = ⊤
[PROOFSTEP]
refine PartENat.casesOn b ?_ ?_
[GOAL]
case refine_1.refine_1
a b : PartENat
⊢ ⊤ + ⊤ = ⊤ ↔ ⊤ = ⊤ ∨ ⊤ = ⊤
[PROOFSTEP]
simp
[GOAL]
case refine_1.refine_2
a b : PartENat
⊢ ∀ (n : ℕ), ⊤ + ↑n = ⊤ ↔ ⊤ = ⊤ ∨ ↑n = ⊤
[PROOFSTEP]
simp
[GOAL]
case refine_2.refine_1
a b : PartENat
⊢ ∀ (n : ℕ), ↑n + ⊤ = ⊤ ↔ ↑n = ⊤ ∨ ⊤ = ⊤
[PROOFSTEP]
simp
[GOAL]
case refine_2.refine_2
a b : PartENat
⊢ ∀ (n n_1 : ℕ), ↑n_1 + ↑n = ⊤ ↔ ↑n_1 = ⊤ ∨ ↑n = ⊤
[PROOFSTEP]
simp
[GOAL]
case refine_2.refine_2
a b : PartENat
⊢ ∀ (n n_1 : ℕ), ¬↑n_1 + ↑n = ⊤
[PROOFSTEP]
simp only [← Nat.cast_add, PartENat.natCast_ne_top, forall_const]
[GOAL]
a b c : PartENat
hc : c ≠ ⊤
⊢ a + c = b + c ↔ a = b
[PROOFSTEP]
rcases ne_top_iff.1 hc with ⟨c, rfl⟩
[GOAL]
case intro
a b : PartENat
c : ℕ
hc : ↑c ≠ ⊤
⊢ a + ↑c = b + ↑c ↔ a = b
[PROOFSTEP]
refine PartENat.casesOn a ?_ ?_
[GOAL]
case intro.refine_1
a b : PartENat
c : ℕ
hc : ↑c ≠ ⊤
⊢ ⊤ + ↑c = b + ↑c ↔ ⊤ = b
[PROOFSTEP]
refine PartENat.casesOn b ?_ ?_
[GOAL]
case intro.refine_2
a b : PartENat
c : ℕ
hc : ↑c ≠ ⊤
⊢ ∀ (n : ℕ), ↑n + ↑c = b + ↑c ↔ ↑n = b
[PROOFSTEP]
refine PartENat.casesOn b ?_ ?_
[GOAL]
case intro.refine_1.refine_1
a b : PartENat
c : ℕ
hc : ↑c ≠ ⊤
⊢ ⊤ + ↑c = ⊤ + ↑c ↔ ⊤ = ⊤
[PROOFSTEP]
simp [add_eq_top_iff, natCast_ne_top, @eq_comm _ (⊤ : PartENat)]
[GOAL]
case intro.refine_1.refine_2
a b : PartENat
c : ℕ
hc : ↑c ≠ ⊤
⊢ ∀ (n : ℕ), ⊤ + ↑c = ↑n + ↑c ↔ ⊤ = ↑n
[PROOFSTEP]
simp [add_eq_top_iff, natCast_ne_top, @eq_comm _ (⊤ : PartENat)]
[GOAL]
case intro.refine_2.refine_1
a b : PartENat
c : ℕ
hc : ↑c ≠ ⊤
⊢ ∀ (n : ℕ), ↑n + ↑c = ⊤ + ↑c ↔ ↑n = ⊤
[PROOFSTEP]
simp [add_eq_top_iff, natCast_ne_top, @eq_comm _ (⊤ : PartENat)]
[GOAL]
case intro.refine_2.refine_2
a b : PartENat
c : ℕ
hc : ↑c ≠ ⊤
⊢ ∀ (n n_1 : ℕ), ↑n_1 + ↑c = ↑n + ↑c ↔ ↑n_1 = ↑n
[PROOFSTEP]
simp [add_eq_top_iff, natCast_ne_top, @eq_comm _ (⊤ : PartENat)]
[GOAL]
case intro.refine_2.refine_2
a b : PartENat
c : ℕ
hc : ↑c ≠ ⊤
⊢ ∀ (n n_1 : ℕ), ↑n_1 + ↑c = ↑n + ↑c ↔ n_1 = n
[PROOFSTEP]
simp only [← Nat.cast_add, add_left_cancel_iff, PartENat.natCast_inj, add_comm, forall_const]
[GOAL]
a b c : PartENat
ha : a ≠ ⊤
⊢ a + b = a + c ↔ b = c
[PROOFSTEP]
rw [add_comm a, add_comm a, PartENat.add_right_cancel_iff ha]
[GOAL]
h : Decidable ⊤.Dom
⊢ toWithTop ⊤ = ⊤
[PROOFSTEP]
convert toWithTop_top
[GOAL]
h : Decidable 0.Dom
⊢ toWithTop 0 = 0
[PROOFSTEP]
convert toWithTop_zero
[GOAL]
n : ℕ
x✝ : Decidable (↑n).Dom
⊢ toWithTop ↑n = ↑n
[PROOFSTEP]
simp only [← toWithTop_some]
[GOAL]
n : ℕ
x✝ : Decidable (↑n).Dom
⊢ toWithTop ↑n = toWithTop ↑n
[PROOFSTEP]
congr
[GOAL]
n : ℕ
h : Decidable (↑n).Dom
⊢ toWithTop ↑n = ↑n
[PROOFSTEP]
rw [toWithTop_natCast n]
[GOAL]
x y : PartENat
hx : Decidable x.Dom
hy : Decidable y.Dom
⊢ toWithTop x ≤ toWithTop y ↔ x ≤ y
[PROOFSTEP]
induction y using PartENat.casesOn generalizing hy
[GOAL]
case a
x : PartENat
hx : Decidable x.Dom
hy : Decidable ⊤.Dom
⊢ toWithTop x ≤ toWithTop ⊤ ↔ x ≤ ⊤
[PROOFSTEP]
simp
[GOAL]
case a
x : PartENat
hx : Decidable x.Dom
n✝ : ℕ
hy : Decidable (↑n✝).Dom
⊢ toWithTop x ≤ toWithTop ↑n✝ ↔ x ≤ ↑n✝
[PROOFSTEP]
induction x using PartENat.casesOn generalizing hx
[GOAL]
case a.a
n✝ : ℕ
hy : Decidable (↑n✝).Dom
hx : Decidable ⊤.Dom
⊢ toWithTop ⊤ ≤ toWithTop ↑n✝ ↔ ⊤ ≤ ↑n✝
[PROOFSTEP]
simp
[GOAL]
case a.a
n✝¹ : ℕ
hy : Decidable (↑n✝¹).Dom
n✝ : ℕ
hx : Decidable (↑n✝).Dom
⊢ toWithTop ↑n✝ ≤ toWithTop ↑n✝¹ ↔ ↑n✝ ≤ ↑n✝¹
[PROOFSTEP]
simp
-- Porting note: this takes too long.
[GOAL]
⊢ ↑Option.none = ⊤
[PROOFSTEP]
rfl
-- Porting note : new
[GOAL]
n : ℕ
⊢ ↑(Option.some n) = ↑n
[PROOFSTEP]
rfl
-- Porting note : new
[GOAL]
n : ℕ∞
x✝ : Decidable (↑n).Dom
⊢ toWithTop ↑n = n
[PROOFSTEP]
induction n with
| none => simp
| some n =>
simp only [toWithTop_natCast', ofENat_some]
rfl
[GOAL]
n : ℕ∞
x✝ : Decidable (↑n).Dom
⊢ toWithTop ↑n = n
[PROOFSTEP]
induction n with
| none => simp
| some n =>
simp only [toWithTop_natCast', ofENat_some]
rfl
[GOAL]
case none
x✝ : Decidable (↑Option.none).Dom
⊢ toWithTop ↑Option.none = Option.none
[PROOFSTEP]
| none => simp
[GOAL]
case none
x✝ : Decidable (↑Option.none).Dom
⊢ toWithTop ↑Option.none = Option.none
[PROOFSTEP]
simp
[GOAL]
case some
n : ℕ
x✝ : Decidable (↑(Option.some n)).Dom
⊢ toWithTop ↑(Option.some n) = Option.some n
[PROOFSTEP]
| some n =>
simp only [toWithTop_natCast', ofENat_some]
rfl
[GOAL]
case some
n : ℕ
x✝ : Decidable (↑(Option.some n)).Dom
⊢ toWithTop ↑(Option.some n) = Option.some n
[PROOFSTEP]
simp only [toWithTop_natCast', ofENat_some]
[GOAL]
case some
n : ℕ
x✝ : Decidable (↑(Option.some n)).Dom
⊢ ↑n = Option.some n
[PROOFSTEP]
rfl
[GOAL]
x y : PartENat
⊢ toWithTop (x + y) = toWithTop x + toWithTop y
[PROOFSTEP]
refine PartENat.casesOn y ?_ ?_
[GOAL]
case refine_1
x y : PartENat
⊢ toWithTop (x + ⊤) = toWithTop x + toWithTop ⊤
[PROOFSTEP]
refine
PartENat.casesOn x ?_
?_
--Porting note: was `simp [← Nat.cast_add, ← ENat.coe_add]`
[GOAL]
case refine_2
x y : PartENat
⊢ ∀ (n : ℕ), toWithTop (x + ↑n) = toWithTop x + toWithTop ↑n
[PROOFSTEP]
refine
PartENat.casesOn x ?_
?_
--Porting note: was `simp [← Nat.cast_add, ← ENat.coe_add]`
[GOAL]
case refine_1.refine_1
x y : PartENat
⊢ toWithTop (⊤ + ⊤) = toWithTop ⊤ + toWithTop ⊤
[PROOFSTEP]
simp only [add_top, toWithTop_top', _root_.add_top]
[GOAL]
case refine_1.refine_2
x y : PartENat
⊢ ∀ (n : ℕ), toWithTop (↑n + ⊤) = toWithTop ↑n + toWithTop ⊤
[PROOFSTEP]
simp only [add_top, toWithTop_top', toWithTop_natCast', _root_.add_top, forall_const]
[GOAL]
case refine_2.refine_1
x y : PartENat
⊢ ∀ (n : ℕ), toWithTop (⊤ + ↑n) = toWithTop ⊤ + toWithTop ↑n
[PROOFSTEP]
simp only [top_add, toWithTop_top', toWithTop_natCast', _root_.top_add, forall_const]
[GOAL]
case refine_2.refine_2
x y : PartENat
⊢ ∀ (n n_1 : ℕ), toWithTop (↑n + ↑n_1) = toWithTop ↑n + toWithTop ↑n_1
[PROOFSTEP]
simp_rw [toWithTop_natCast', ← Nat.cast_add, toWithTop_natCast', forall_const]
[GOAL]
x : PartENat
⊢ (fun x => ↑x) ((fun x => toWithTop x) x) = x
[PROOFSTEP]
induction x using PartENat.casesOn
[GOAL]
case a
⊢ (fun x => ↑x) ((fun x => toWithTop x) ⊤) = ⊤
[PROOFSTEP]
intros
[GOAL]
case a
n✝ : ℕ
⊢ (fun x => ↑x) ((fun x => toWithTop x) ↑n✝) = ↑n✝
[PROOFSTEP]
intros
[GOAL]
case a
⊢ (fun x => ↑x) ((fun x => toWithTop x) ⊤) = ⊤
[PROOFSTEP]
simp
[GOAL]
case a
n✝ : ℕ
⊢ (fun x => ↑x) ((fun x => toWithTop x) ↑n✝) = ↑n✝
[PROOFSTEP]
simp
[GOAL]
case a
⊢ ↑⊤ = ⊤
[PROOFSTEP]
rfl
[GOAL]
case a
n✝ : ℕ
⊢ ↑↑n✝ = ↑n✝
[PROOFSTEP]
rfl
[GOAL]
x : ℕ∞
⊢ (fun x => toWithTop x) ((fun x => ↑x) x) = x
[PROOFSTEP]
simp [toWithTop_ofENat]
[GOAL]
⊢ ↑withTopEquiv 0 = 0
[PROOFSTEP]
simpa only [Nat.cast_zero] using withTopEquiv_natCast 0
[GOAL]
x y : ℕ∞
⊢ ↑withTopEquiv.symm x ≤ ↑withTopEquiv.symm y ↔ x ≤ y
[PROOFSTEP]
rw [← withTopEquiv_le]
[GOAL]
x y : ℕ∞
⊢ ↑withTopEquiv (↑withTopEquiv.symm x) ≤ ↑withTopEquiv (↑withTopEquiv.symm y) ↔ x ≤ y
[PROOFSTEP]
simp
[GOAL]
x y : ℕ∞
⊢ ↑withTopEquiv.symm x < ↑withTopEquiv.symm y ↔ x < y
[PROOFSTEP]
rw [← withTopEquiv_lt]
[GOAL]
x y : ℕ∞
⊢ ↑withTopEquiv (↑withTopEquiv.symm x) < ↑withTopEquiv (↑withTopEquiv.symm y) ↔ x < y
[PROOFSTEP]
simp
[GOAL]
src✝ : PartENat ≃ ℕ∞ := withTopEquiv
x y : PartENat
⊢ Equiv.toFun
{ toFun := src✝.toFun, invFun := src✝.invFun, left_inv := (_ : Function.LeftInverse src✝.invFun src✝.toFun),
right_inv := (_ : Function.RightInverse src✝.invFun src✝.toFun) }
(x + y) =
Equiv.toFun
{ toFun := src✝.toFun, invFun := src✝.invFun, left_inv := (_ : Function.LeftInverse src✝.invFun src✝.toFun),
right_inv := (_ : Function.RightInverse src✝.invFun src✝.toFun) }
x +
Equiv.toFun
{ toFun := src✝.toFun, invFun := src✝.invFun, left_inv := (_ : Function.LeftInverse src✝.invFun src✝.toFun),
right_inv := (_ : Function.RightInverse src✝.invFun src✝.toFun) }
y
[PROOFSTEP]
simp only [withTopEquiv]
[GOAL]
src✝ : PartENat ≃ ℕ∞ := withTopEquiv
x y : PartENat
⊢ toWithTop (x + y) = toWithTop x + toWithTop y
[PROOFSTEP]
exact toWithTop_add
[GOAL]
⊢ WellFounded fun x x_1 => x < x_1
[PROOFSTEP]
classical
change WellFounded fun a b : PartENat => a < b
simp_rw [← withTopEquiv_lt]
exact InvImage.wf _ (WithTop.wellFounded_lt Nat.lt_wfRel.wf)
[GOAL]
⊢ WellFounded fun x x_1 => x < x_1
[PROOFSTEP]
change WellFounded fun a b : PartENat => a < b
[GOAL]
⊢ WellFounded fun a b => a < b
[PROOFSTEP]
simp_rw [← withTopEquiv_lt]
[GOAL]
⊢ WellFounded fun a b => ↑withTopEquiv a < ↑withTopEquiv b
[PROOFSTEP]
exact InvImage.wf _ (WithTop.wellFounded_lt Nat.lt_wfRel.wf)
[GOAL]
P : ℕ → Prop
inst✝ : DecidablePred P
n : ℕ
h : ∀ (m : ℕ), m ≤ n → ¬P m
⊢ ↑n < find P
[PROOFSTEP]
rw [coe_lt_iff]
[GOAL]
P : ℕ → Prop
inst✝ : DecidablePred P
n : ℕ
h : ∀ (m : ℕ), m ≤ n → ¬P m
⊢ ∀ (h : (find P).Dom), n < Part.get (find P) h
[PROOFSTEP]
intro h₁
[GOAL]
P : ℕ → Prop
inst✝ : DecidablePred P
n : ℕ
h : ∀ (m : ℕ), m ≤ n → ¬P m
h₁ : (find P).Dom
⊢ n < Part.get (find P) h₁
[PROOFSTEP]
rw [find_get]
[GOAL]
P : ℕ → Prop
inst✝ : DecidablePred P
n : ℕ
h : ∀ (m : ℕ), m ≤ n → ¬P m
h₁ : (find P).Dom
⊢ n < Nat.find h₁
[PROOFSTEP]
have h₂ := @Nat.find_spec P _ h₁
[GOAL]
P : ℕ → Prop
inst✝ : DecidablePred P
n : ℕ
h : ∀ (m : ℕ), m ≤ n → ¬P m
h₁ : (find P).Dom
h₂ : P (Nat.find h₁)
⊢ n < Nat.find h₁
[PROOFSTEP]
revert h₂
[GOAL]
P : ℕ → Prop
inst✝ : DecidablePred P
n : ℕ
h : ∀ (m : ℕ), m ≤ n → ¬P m
h₁ : (find P).Dom
⊢ P (Nat.find h₁) → n < Nat.find h₁
[PROOFSTEP]
contrapose!
[GOAL]
P : ℕ → Prop
inst✝ : DecidablePred P
n : ℕ
h : ∀ (m : ℕ), m ≤ n → ¬P m
h₁ : (find P).Dom
⊢ Nat.find h₁ ≤ n → ¬P (Nat.find h₁)
[PROOFSTEP]
exact h _
[GOAL]
P : ℕ → Prop
inst✝ : DecidablePred P
n : ℕ
⊢ ↑n < find P ↔ ∀ (m : ℕ), m ≤ n → ¬P m
[PROOFSTEP]
refine' ⟨_, lt_find P n⟩
[GOAL]
P : ℕ → Prop
inst✝ : DecidablePred P
n : ℕ
⊢ ↑n < find P → ∀ (m : ℕ), m ≤ n → ¬P m
[PROOFSTEP]
intro h m hm
[GOAL]
P : ℕ → Prop
inst✝ : DecidablePred P
n : ℕ
h : ↑n < find P
m : ℕ
hm : m ≤ n
⊢ ¬P m
[PROOFSTEP]
by_cases H : (find P).Dom
[GOAL]
case pos
P : ℕ → Prop
inst✝ : DecidablePred P
n : ℕ
h : ↑n < find P
m : ℕ
hm : m ≤ n
H : (find P).Dom
⊢ ¬P m
[PROOFSTEP]
apply Nat.find_min H
[GOAL]
case pos
P : ℕ → Prop
inst✝ : DecidablePred P
n : ℕ
h : ↑n < find P
m : ℕ
hm : m ≤ n
H : (find P).Dom
⊢ m < Nat.find H
[PROOFSTEP]
rw [coe_lt_iff] at h
[GOAL]
case pos
P : ℕ → Prop
inst✝ : DecidablePred P
n : ℕ
h : ∀ (h : (find P).Dom), n < Part.get (find P) h
m : ℕ
hm : m ≤ n
H : (find P).Dom
⊢ m < Nat.find H
[PROOFSTEP]
specialize h H
[GOAL]
case pos
P : ℕ → Prop
inst✝ : DecidablePred P
n m : ℕ
hm : m ≤ n
H : (find P).Dom
h : n < Part.get (find P) H
⊢ m < Nat.find H
[PROOFSTEP]
exact lt_of_le_of_lt hm h
[GOAL]
case neg
P : ℕ → Prop
inst✝ : DecidablePred P
n : ℕ
h : ↑n < find P
m : ℕ
hm : m ≤ n
H : ¬(find P).Dom
⊢ ¬P m
[PROOFSTEP]
exact not_exists.mp H m
[GOAL]
P : ℕ → Prop
inst✝ : DecidablePred P
n : ℕ
h : P n
⊢ find P ≤ ↑n
[PROOFSTEP]
rw [le_coe_iff]
[GOAL]
P : ℕ → Prop
inst✝ : DecidablePred P
n : ℕ
h : P n
⊢ ∃ h, Part.get (find P) h ≤ n
[PROOFSTEP]
refine' ⟨⟨_, h⟩, @Nat.find_min' P _ _ _ h⟩
|
lemma cball_eq_empty [simp]: "cball x e = {} \<longleftrightarrow> e < 0" |
*----------------------------------------------------------------------*
subroutine set_interface_targets(tgt_info,name_infile,
& name_orbinfo)
*----------------------------------------------------------------------*
*
* Set targets from script interfaces: python iterface
* name_infile is the input file name and name_orbinfo
* is the name of the file with orbital informations, generated
* by interfaces/put_orbinfo
*
* yuri, oct, 2014
*----------------------------------------------------------------------*
implicit none
include 'mdef_target_info.h'
include 'ifc_input.h'
type(target_info), intent(inout) ::
& tgt_info
character(*), intent(in) ::
& name_infile, name_orbinfo
integer ::
& nkey, ikey, narg, iarg
character(len=256) ::
& file_name
nkey = is_keyword_set('calculate.interfaces')
do ikey = 1, nkey
narg = is_argument_set('calculate.interfaces','file',
& keycount=ikey)
do iarg = 1, narg
file_name = ""
call get_argument_value('calculate.interfaces','file',
& keycount=ikey,argcount=iarg,str=file_name)
call set_python_targets(tgt_info,file_name,name_infile,
& name_orbinfo)
end do
end do
return
end
|
import logic.basic --hide
/-
## Exact
Sometimes after rewriting the hypotheses and goal enough we reach a point where the goal is
exactly the same as one of the hypothesis.
In this case we want to tell Lean that we are finished, one of our hypotheses now matches
the conclusion we needed to get to.
The tactic to do this is called `exact`, and to use it we just need to supply the name of
the hypothesis we want to use.
For example if we were trying to prove that 3 divides some natural number `n` and we
ended up with the goal state:
```
n : ℕ
h : 3 ∣ n
⊢ 3 ∣ n
```
then `exact h,` would complete the proof.
-/
/- Tactic : exact
## Summary
If the goal is `⊢ X` then `exact x` will close the goal if
and only if `x` is a term of type `X`.
## Details
Say $P$, $Q$ and $R$ are types (i.e., what a mathematician
might think of as either sets or propositions),
and the local context looks like this:
```
p : P,
h : P → Q,
j : Q → R
⊢ R
```
If you can spot how to make a term of type `R`, then you
can just make it and say you're done using the `exact` tactic
together with the formula you have spotted. For example the
above goal could be solved with
`exact j(h(p)),`
because $j(h(p))$ is easily checked to be a term of type $R$
(i.e., an element of the set $R$, or a proof of the proposition $R$).
-/
/- Axiom :
or_and_distrib_right : ∀ {a b c : Prop}, (a ∨ b) ∧ c ↔ a ∧ c ∨ b ∧ c
-/
/- Axiom :
not_and_self (a : Prop) : (¬a ∧ a) ↔ false
-/
/- Axiom :
or_false (a : Prop) : (a ∨ false) ↔ a
-/
/- Axiom :
and_comm : ∀ (a b : Prop), a ∧ b ↔ b ∧ a
-/
/- Axiom :
and_assoc : ∀ {c : Prop} (a b : Prop), (a ∧ b) ∧ c ↔ a ∧ b ∧ c
-/
/- Axiom :
and_self : ∀ (a : Prop), a ∧ a ↔ a
-/
/- Lemma : no-side-bar
-/
lemma prop_prop (P Q : Prop) (h : Q ∧ P ∧ Q) :
(P ∨ ¬ Q) ∧ Q :=
begin
rw or_and_distrib_right,
rw not_and_self,
rw or_false,
rw and_comm at h,
rw and_assoc at h,
rw and_self at h,
exact h,
end
|
Subsets and Splits