Datasets:
AI4M
/

text
stringlengths
0
3.34M
function [airway_mapped_image, airway_tree_root] = PTKMapAirwayCentrelineToImage(centreline_results, airway_image) % PTKMapAirwayCentrelineToImage. % % % % % Licence % ------- % Part of the TD Pulmonary Toolkit. https://github.com/tomdoel/pulmonarytoolkit % Author: Tom Doel, 2014. www.tomdoel.com % Distributed under the GNU GPL v3 licence. Please see website for details. % airway_mapped_image_raw = zeros(airway_image.ImageSize, 'uint16'); airway_mapped_image = airway_image.BlankCopy; airway_tree_root = centreline_results.AirwayCentrelineTree; centreline_bronchi_to_do = CoreStack(airway_tree_root); bronchus_index = uint16(1); number_of_branches = airway_tree_root.CountBranches; parent_map = cell(number_of_branches, 1); child_map = cell(number_of_branches, 1); % Assign a label to each centreline bronchus, and mark the label % image with that index at each centreline voxel while ~centreline_bronchi_to_do.IsEmpty next_centreline_bronchus = centreline_bronchi_to_do.Pop; voxels = PTKTreeUtilities.GetCentrelineVoxelsForTheseBranches(next_centreline_bronchus, airway_image); airway_mapped_image_raw(voxels) = bronchus_index; next_centreline_bronchus.BronchusIndex = bronchus_index; % Add parent index to this branch, and add this branch index to % parent's child indices if ~isempty(next_centreline_bronchus.Parent) parent = next_centreline_bronchus.Parent; parent_index = parent.BronchusIndex; parent_map{bronchus_index} = parent_index; child_map{parent_index} = [child_map{parent_index}, bronchus_index]; end centreline_bronchi_to_do.Push(next_centreline_bronchus.Children); bronchus_index = bronchus_index + 1; end % Find the nearest centreline point for every voxel in the airway % segmentation, and assign every voxel to that label [~, nearest_centreline_index] = bwdist(airway_mapped_image_raw > 0); airway_mapped_image_raw(:) = airway_mapped_image_raw(nearest_centreline_index(:)); airway_mapped_image_raw(airway_image.RawImage ~= 1) = 0; airway_mapped_image.ChangeRawImage(airway_mapped_image_raw); airway_mapped_image.ChangeColorLabelParentChildMap(parent_map, child_map) end
######################################################################## # Adapted from runDE.py in FLAIR # https://github.com/BrooksLabUCSC/flair # Original author: Cameron M. Soulette # Updated by Alexis M. Thornton ######################################################################## import os, sys import pandas as pd import numpy as np #supressing rpy2 warnings import warnings from rpy2.rinterface import RRuntimeWarning warnings.filterwarnings("ignore", category=RRuntimeWarning) from rpy2 import robjects from rpy2.robjects import r,pandas2ri, Formula from rpy2.robjects.lib import grid pandas2ri.activate() R = robjects.r # main def main(group1=None, group2=None, outDir=None, inDir=None, formula=None): ''' main ''' R.assign('inDir',inDir) R.assign('outdir',outDir) R.assign('group1',group1) R.assign('group2',group2) print("Running DeSeq2....") print(group1 +" vs "+ group2) # import from rpy2.robjects.packages import importr #kallisto processing libraries tximportData = importr('tximportData') tximport = importr('tximport') ensembldb = importr('ensembldb') EnsDb_Hsapiens_v86 = importr('EnsDb.Hsapiens.v86') #deseq methods = importr('methods') deseq = importr('DESeq2') #transcripts to gene, used in tximport R('edb <- EnsDb.Hsapiens.v86') R('tx2gene = transcripts(edb , columns=c("tx_id", "gene_name"),return.type="DataFrame")') # import formula formulaDF = pd.read_csv(formula,header=0, sep="\t") samples = formulaDF.samples.tolist() R.assign('samples',samples) sampleTable = pandas2ri.py2ri(formulaDF) R.assign('sampleTable',sampleTable) #locate kallisto files #would be faster to use kallito abundance.h5 files R('files <- file.path(inDir, samples, "abundance.tsv")') R('all(file.exists(files))') #tximport conversion to gene R('txi.kallisto <- tximport(files, type = "kallisto",tx2gene = tx2gene, txOut = FALSE,ignoreTxVersion=TRUE)') R('rownames(sampleTable) <- samples') #DESeq R('dds <- DESeqDataSetFromTximport(txi.kallisto, sampleTable, ~condition)') # R('colData(dds)$condition<-factor(colData(dds)$condition, levels=c(group1,group2))') R('dds_<-DESeq(dds)') R('res<-results(dds_)') R('res<-res[order(res$padj),]') # writing deseq2 results to a file Out = os.path.join(outDir, "%s_v_%s_deseq2_results.csv" % (group1,group2)) R.assign('Out',Out) R('write.csv(as.data.frame(res),file=Out)') if __name__ == "__main__": main()
import game.sets.sets_level05 -- hide import tactic -- hide namespace xena -- hide variable X : Type open_locale classical -- hide /- # Chapter 1 : Sets ## Level 6 : `sdiff` and `neg` -/ /- The set-theoretic difference `A \ B` satisfies the following property: ``` lemma mem_sdiff_iff : x ∈ A \ B ↔ x ∈ A ∧ x ∉ B ``` The complement `-A` of a set `A` (often denoted $A^c$ in textbooks) is all the elements of `X` which are not in `A`: ``` lemma mem_neg_iff : x ∈ -A ↔ x ∉ A ``` In this lemma, you might get a shock. The `rw` tactic is aggressive in the Real Number Game -- if after a rewrite the goal can be solved by `refl`, then Lean will close the goal automatically. -/ /- Axiom : mem_sdiff_iff : x ∈ A \ B ↔ x ∈ A ∧ x ∉ B -/ /- Axiom : mem_neg_iff : x ∈ -A ↔ x ∉ A -/ /- Lemma If $A$ and $B$ are sets with elements of type $X$, then $$(A \setminus B) = A \cap B^{c}.$$ -/ theorem setdiff_eq_intersect_comp (A B : set X) : A \ B = A ∩ Bᶜ := begin rw ext_iff, intro h, rw mem_sdiff_iff, rw mem_inter_iff, rw mem_neg_iff, end end xena -- hide /- rw ext_iff, intro x, rw mem_sdiff_iff, rw mem_inter_iff, rw mem_neg_iff, -/
lemmas scaleR_eq_0_iff = real_vector.scale_eq_0_iff
import pandas import numpy as np import matplotlib.pyplot as plt def get_from_pie_plot(df, minimum_emails=25): df["from"].value_counts() dict_values = np.array(list(df["from"].value_counts().to_dict().values())) dict_keys = np.array(list(df["from"].value_counts().to_dict().keys())) ind = dict_values > minimum_emails dict_values_red = dict_values[ind].tolist() dict_keys_red = dict_keys[ind].tolist() dict_values_red.append(sum(dict_values[~ind])) dict_keys_red.append("other") fig1, ax1 = plt.subplots() ax1.pie(dict_values_red, labels=dict_keys_red) ax1.axis("equal") plt.show() def get_labels_pie_plot(gmail, df): label_lst = [] for llst in df.labels.values: for ll in llst: label_lst.append(ll) label_lst = list(set(label_lst)) label_lst = [label for label in label_lst if "Label_" in label] label_count_lst = [ sum([True if label_select in label else False for label in df.labels]) for label_select in label_lst ] convert_dict = { v: k for v, k in zip( list(gmail._label_dict.values()), list(gmail._label_dict.keys()) ) } label_convert_lst = [convert_dict[label] for label in label_lst] ind = np.argsort(label_count_lst) fig1, ax1 = plt.subplots() ax1.pie( np.array(label_count_lst)[ind][::-1], labels=np.array(label_convert_lst)[ind][::-1], ) ax1.axis("equal") plt.show() def get_number_of_email_plot(df, steps=8): start_month = [d.year * 12 + d.month for d in pandas.to_datetime(df.date)] plt.hist(start_month) plt.xticks( np.linspace(np.min(start_month), np.max(start_month), steps), [ str(int(month // 12)) + "-" + str(int(month % 12)) for month in np.linspace(np.min(start_month), np.max(start_month), steps) ], ) plt.xlabel("Date") plt.ylabel("Number of Emails")
%default total data MyBit = A | B fullCoverage : MyBit -> Int fullCoverage A = 1 fullCoverage B = 2 extraDefault : MyBit -> Int extraDefault A = 1 extraDefault B = 2 extraDefault _ = 3 usefulDefault : MyBit -> Int usefulDefault A = 1 usefulDefault _ = 2 earlyDefault : MyBit -> Int earlyDefault _ = 1 earlyDefault A = 2 onlyDefault : MyBit -> Int onlyDefault _ = 1 nestedFullCoverage : MyBit -> MyBit -> Int nestedFullCoverage A A = 1 nestedFullCoverage A B = 2 nestedFullCoverage B A = 3 nestedFullCoverage B B = 4 nestedExtraDefault : MyBit -> MyBit -> Int nestedExtraDefault A A = 1 nestedExtraDefault A B = 2 nestedExtraDefault B A = 3 nestedExtraDefault B B = 4 nestedExtraDefault _ _ = 5 nestedUsefulDefault : MyBit -> MyBit -> Int nestedUsefulDefault A A = 1 nestedUsefulDefault A B = 2 nestedUsefulDefault B A = 3 nestedUsefulDefault _ _ = 4 nestedEarlyDefault : MyBit -> MyBit -> Int nestedEarlyDefault A A = 1 nestedEarlyDefault A B = 2 nestedEarlyDefault B A = 3 nestedEarlyDefault _ _ = 4 nestedEarlyDefault B B = 5
#ifndef QDM_LOGL_H #define QDM_LOGL_H 1 #include <gsl/gsl_matrix.h> #include <gsl/gsl_vector.h> #include <qdm/tau.h> int qdm_find_tau( double *result, double v, size_t spline_df, const gsl_vector *knots, const gsl_vector *mmm ); int qdm_logl( double *log_likelihood, double *tau, double v, size_t spline_df, const gsl_vector *knots, const gsl_vector *mmm, double tau_low, double tau_high, double xi_low, double xi_high ); int qdm_logl_2( double *log_likelihood, double *tau, double x, double y, double tau_low, double tau_high, double xi_low, double xi_high, size_t spline_df, const gsl_matrix *theta, const gsl_vector *knots ); void qdm_logl_3( double *log_likelihood, double *tau, double x, double y, const qdm_tau *t, const gsl_vector *xi, const gsl_matrix *theta ); #endif /* QDM_LOGL_H */
from __future__ import absolute_import from __future__ import division from __future__ import print_function import collections import math import os import random import zipfile import cPickle as pickle import numpy as np from six.moves import urllib from six.moves import xrange # pylint: disable from scipy.sparse import csr_matrix import bisect import matplotlib matplotlib.use('Agg') import matplotlib.pyplot as plt import tensorflow as tf import subprocess as sp import argparse def read_data(filename): """Extract the first file enclosed in a zip file as a list of words.""" with zipfile.ZipFile(filename) as f: data = tf.compat.as_str(f.read(f.namelist()[0])).split() return data def build_dataset(words, n_words, with_UNK = True, shuffle = False, count = None): """Process raw inputs into a dataset.""" if count is None: if with_UNK: count = [['UNK', -1]] count.extend(collections.Counter(words).most_common(n_words - 1)) else: count = [] count.extend(collections.Counter(words).most_common(n_words)) if shuffle: count = np.random.permutation(count) else: count = count dictionary = dict() for word, _ in count: dictionary[word] = len(dictionary) data = list() unk_count = 0 for word in words: if word in dictionary: index = dictionary[word] data.append(index) else: index = dictionary['UNK'] unk_count += 1 if with_UNK: data.append(index) if with_UNK: count[dictionary['UNK']][1] = unk_count reversed_dictionary = dict(zip(dictionary.values(), dictionary.keys())) return data, count, dictionary, reversed_dictionary def build_cooccurance_dict(data, count, dictionary, reverse_dictionary, skip_window): cooccurance_count = collections.defaultdict(collections.Counter) for idx, center_word in enumerate(data): center_word_id = center_word if idx >= skip_window - 1 and idx < len(data) - skip_window: for i in range(skip_window): cooccurance_count[center_word_id][data[idx-i-1]] += 1 cooccurance_count[center_word_id][data[idx+i+1]] += 1 elif idx < skip_window - 1: for i in range(skip_window): cooccurance_count[center_word_id][data[idx+i+1]] += 1 for i in range(idx): cooccurance_count[center_word_id][data[i]] += 1 else: for i in range(skip_window): cooccurance_count[center_word_id][data[idx-i-1]] += 1 for i in range(idx+1, len(data)): cooccurance_count[center_word_id][data[i]] += 1 return cooccurance_count if __name__ == "__main__": parser = argparse.ArgumentParser(description='estimation of noise given a corpus') parser.add_argument('--filename', required=True, type=str, help='vocabulary siz3') parser.add_argument('--vocabulary_size', default=10000, type=int, help='vocabulary siz3') parser.add_argument('--window_size', default=5, type=int, help='window size') parser.add_argument('intrinsic_test', action='store_false') args = parser.parse_args() filename = args.filename vocabulary_size = args.vocabulary_size skip_window = args.window_size save_path = 'dat_{}/'.format(vocabulary_size) try: with open(save_path + 'data.pkl', 'r') as f: data = pickle.dump(f) with open(save_path + 'data_test.pkl', 'r') as f: data_test = pickle.load(f) with open(save_path + 'count.pkl', 'r') as f: count = pickle.load(f) with open(save_path + 'dictionary.pkl', 'r') as f: dictionary = pickle.load(f) with open(save_path + 'reverse_dictionary.pkl', 'r') as f: reverse_dictionary = pickle.load(f) with open(save_path + 'count_test.pkl', 'r') as f: count_test = pickle.load(f) with open(save_path + 'dictionary_test.pkl', 'r') as f: dictionary_test = pickle.load(f) with open(save_path + 'reverse_dictionary_test.pkl', 'r') as f: reverse_dictionary_test = pickle.load(f) except: # Read the data into a list of strings. vocabulary = read_data(filename) vocabulary_size = args.vocabulary_size splits = len(vocabulary) // 1000 train_set, test_set = [], [] for i in range(500): train_set += vocabulary[(2*i)*splits:(2*i+1)*splits] test_set += vocabulary[(2*i+1)*splits:(2*i+2)*splits] del vocabulary data, count, dictionary, reverse_dictionary = build_dataset(train_set, vocabulary_size) data_test, count_test, dictionary_test, reverse_dictionary_test = build_dataset( test_set, vocabulary_size, shuffle = False, count = count) vocabulary_size = min(vocabulary_size, len(count)) # save data sp.check_output('mkdir -p {}'.format(save_path), shell=True) with open(save_path + 'data.pkl', 'w') as f: pickle.dump(data, f) with open(save_path + 'data_test.pkl', 'w') as f: pickle.dump(data_test, f) with open(save_path + 'count.pkl', 'w') as f: pickle.dump(count, f) with open(save_path + 'dictionary.pkl', 'w') as f: pickle.dump(dictionary, f) with open(save_path + 'reverse_dictionary.pkl', 'w') as f: pickle.dump(reverse_dictionary, f) with open(save_path + 'count_test.pkl', 'w') as f: pickle.dump(count_test, f) with open(save_path + 'dictionary_test.pkl', 'w') as f: pickle.dump(dictionary_test, f) with open(save_path + 'reverse_dictionary_test.pkl', 'w') as f: pickle.dump(reverse_dictionary_test, f) count = count[:vocabulary_size] skip_window = args.window_size try: with open(save_path + 'cooccur.pkl', 'r') as f: cooccur = pickle.load(f) with open(save_path + 'cooccur_test.pkl', 'r') as f: cooccur_test = pickle.load(f) with open(save_path + 'cooccur_matrix.pkl', 'r') as f: cooccur_matrix = pickle.load(f) cooccur_test_matrix = np.zeros([vocabulary_size, vocabulary_size]) with open(save_path + 'cooccur_matrix_test.pkl', 'r') as f: cooccur_test_matrix = pickle.load(f) del data del data_test except: cooccur = build_cooccurance_dict(data, count, dictionary, reverse_dictionary, skip_window) with open(save_path + 'cooccur.pkl', 'w') as f: pickle.dump(cooccur, f) #---------------------------build for second part of data--------------------- cooccur_test = build_cooccurance_dict(data_test, count_test, dictionary_test, reverse_dictionary_test, skip_window) with open(save_path + 'cooccur_test.pkl', 'w') as f: pickle.dump(cooccur_test, f) cooccur_matrix = np.zeros([vocabulary_size, vocabulary_size]) for k1, v1 in cooccur.iteritems(): for k2, v2 in v1.iteritems(): cooccur_matrix[k1, k2] = v2 del data with open(save_path + 'cooccur_matrix.pkl', 'w') as f: pickle.dump(cooccur_matrix, f) cooccur_test_matrix = np.zeros([vocabulary_size, vocabulary_size]) for k1, v1 in cooccur_test.iteritems(): for k2, v2 in v1.iteritems(): cooccur_test_matrix[k1, k2] = v2 del data_test with open(save_path + 'cooccur_matrix_test.pkl', 'w') as f: pickle.dump(cooccur_test_matrix, f) Nij = np.zeros([vocabulary_size, vocabulary_size]) for i in range(vocabulary_size): for j in range(vocabulary_size): Nij[i,j] += cooccur[i][j] Ni = np.zeros(vocabulary_size) for item in count: Ni[dictionary[item[0]]] = item[1] tot = np.sum(Nij) print(tot) print(np.sum(Ni)) Pij = Nij / tot Pi = Ni / np.sum(Ni) print(np.sum(Pij)) print(np.sum(Pi)) PMI = np.zeros([vocabulary_size, vocabulary_size]) for i in range(vocabulary_size): for j in range(vocabulary_size): if Pi[i] * Pi[j] > 0 and Pij[i, j] > 0: PMI[i,j] = np.log(Pij[i,j] / (Pi[i] * Pi[j])) Nij_test = np.zeros([vocabulary_size, vocabulary_size]) for i in range(vocabulary_size): for j in range(vocabulary_size): Nij_test[i,j] += cooccur_test[i][j] Ni_test = np.zeros(vocabulary_size) for item in count_test: Ni_test[dictionary[item[0]]] = item[1] tot = np.sum(Nij_test) print(tot) print(np.sum(Ni_test)) Pij_test = Nij_test / tot Pi_test = Ni_test / np.sum(Ni_test) print(np.sum(Pij_test)) print(np.sum(Pi_test)) PMI_test = np.zeros([vocabulary_size, vocabulary_size]) for i in range(vocabulary_size): for j in range(vocabulary_size): if Pi_test[i] * Pi_test[j] > 0 and Pij_test[i, j] > 0: PMI_test[i,j] = np.log(Pij_test[i,j] / (Pi_test[i] * Pi_test[j])) diff = PMI - PMI_test print("mean is {}".format(np.mean(diff))) print("est std is {}".format(0.5 * np.std(diff))) with open("param.yml", "w") as f: f.write("sigma: {}\n".format(0.5 * np.std(diff))) f.write("alpha: {}\n".format(0.5)) #symmetric factorization f.write("data: {}".format("text8_pmi"))
using Rubin using Tests using Elliptic using HypergeometricFunctions using Polylogarithms using SpecialFunctions @test integrate(1, x) == :(x) @test integrate(5, x) == :(5x) @test integrate(-2, x) == :(-2x) @test integrate(-3//2, x) == :(-3//2*x) @test integrate(pi, x) == :(pi*x) @test integrate(a, x) == :(a*x) @test integrate(3a, x) == :(3*a*x) @test integrate(pi*(16+-1*exp(2))^-1//2, x) == :(pi*x*(16+-1*exp(2))^-1//2) @test integrate(x^100, x) == :(1//101*x^101) @test integrate(x^3, x) == :(1//4*x^4) @test integrate(x^2, x) == :(1//3*x^3) @test integrate(x, x) == :((1/2)*x^2) @test integrate(1, x) == :(x) @test integrate(x^-1, x) == :(log(x)) @test integrate(x^-2, x) == :(-1*x^-1) @test integrate(x^-3, x) == :(-1//2*x^-2) @test integrate(x^-4, x) == :(-1//3*x^-3) @test integrate(x^-100, x) == :(-1//99*x^-99) @test integrate(x^5//2, x) == :(2//7*x^7//2) @test integrate(x^3//2, x) == :(2//5*x^5//2) @test integrate(x^(1/2), x) == :(2//3*x^3//2) @test integrate(x^-1//2, x) == :(2*x^(1/2)) @test integrate(x^-3//2, x) == :(-2*x^-1//2) @test integrate(x^-5//2, x) == :(-2//3*x^-3//2) @test integrate(x^5//3, x) == :(3//8*x^8//3) @test integrate(x^4//3, x) == :(3//7*x^7//3) @test integrate(x^2//3, x) == :(3//5*x^5//3) @test integrate(x^1//3, x) == :(3//4*x^4//3) @test integrate(x^-1//3, x) == :(3//2*x^2//3) @test integrate(x^-2//3, x) == :(3*x^1//3) @test integrate(x^-4//3, x) == :(-3*x^-1//3) @test integrate(x^-5//3, x) == :(-3//2*x^-2//3) @test integrate(x^n, x) == :(x^(1+n)*(1+n)^-1) @test integrate((b*x)^n, x) == :(b^-1*(b*x)^(1+n)*(1+n)^-1) @test integrate(((-1a)^(1/2)+e*(c+d*x))^-1, x) == :(d^-1*e^-1*log((-1a)^(1/2)+c*e+d*e*x)) @test integrate((c+d*(a+b*x))^5//2, x) == :(2//7*b^-1*d^-1*(c+d*(a+b*x))^7//2) @test integrate((c+d*(a+b*x))^3//2, x) == :(2//5*b^-1*d^-1*(c+d*(a+b*x))^5//2) @test integrate((c+d*(a+b*x))^(1/2), x) == :(2//3*b^-1*d^-1*(c+d*(a+b*x))^3//2) @test integrate((c+d*(a+b*x))^-1//2, x) == :(2*b^-1*d^-1*(c+d*(a+b*x))^(1/2)) @test integrate((c+d*(a+b*x))^-3//2, x) == :(-2*b^-1*d^-1*(c+d*(a+b*x))^-1//2) @test integrate((c+d*(a+b*x))^-5//2, x) == :(-2//3*b^-1*d^-1*(c+d*(a+b*x))^-3//2) @test integrate(x^3*(a+b*x), x) == :(1//4*a*x^4+1//5*b*x^5) @test integrate(x^2*(a+b*x), x) == :(1//3*a*x^3+1//4*b*x^4) @test integrate(x*(a+b*x), x) == :((1/2)*a*x^2+1//3*b*x^3) @test integrate(a+b*x, x) == :(a*x+(1/2)*b*x^2) @test integrate(x^-1*(a+b*x), x) == :(a*log(x)+b*x) @test integrate(x^-2*(a+b*x), x) == :(b*log(x)+-1*a*x^-1) @test integrate(x^-3*(a+b*x), x) == :(-1//2*a^-1*x^-2*(a+b*x)^2) @test integrate(x^-4*(a+b*x), x) == :(-1//2*b*x^-2+-1//3*a*x^-3) @test integrate(x^-5*(a+b*x), x) == :(-1//3*b*x^-3+-1//4*a*x^-4) @test integrate(x^3*(a+b*x)^2, x) == :(1//4*a^2*x^4+1//6*b^2*x^6+2//5*a*b*x^5) @test integrate(x^2*(a+b*x)^2, x) == :(1//3*a^2*x^3+1//5*b^2*x^5+(1/2)*a*b*x^4) @test integrate(x*(a+b*x)^2, x) == :((1/2)*a^2*x^2+1//4*b^2*x^4+2//3*a*b*x^3) @test integrate((a+b*x)^2, x) == :(1//3*b^-1*(a+b*x)^3) @test integrate(x^-1*(a+b*x)^2, x) == :(a^2*log(x)+(1/2)*b^2*x^2+2*a*b*x) @test integrate(x^-2*(a+b*x)^2, x) == :(x*b^2+-1*a^2*x^-1+2*a*b*log(x)) @test integrate(x^-3*(a+b*x)^2, x) == :(b^2*log(x)+-1//2*a^2*x^-2+-2*a*b*x^-1) @test integrate(x^-4*(a+b*x)^2, x) == :(-1//3*a^-1*x^-3*(a+b*x)^3) @test integrate(x^-5*(a+b*x)^2, x) == :(-1//2*b^2*x^-2+-1//4*a^2*x^-4+-2//3*a*b*x^-3) @test integrate(x^-6*(a+b*x)^2, x) == :(-1//3*b^2*x^-3+-1//5*a^2*x^-5+-1//2*a*b*x^-4) @test integrate(x^-7*(a+b*x)^2, x) == :(-1//4*b^2*x^-4+-1//6*a^2*x^-6+-2//5*a*b*x^-5) @test integrate(x^-8*(a+b*x)^2, x) == :(-1//5*b^2*x^-5+-1//7*a^2*x^-7+-1//3*a*b*x^-6) @test integrate(x^4*(a+b*x)^3, x) == :(1//5*a^3*x^5+1//8*b^3*x^8+(1/2)*b*a^2*x^6+3//7*a*b^2*x^7) @test integrate(x^3*(a+b*x)^3, x) == :(1//4*a^3*x^4+1//7*b^3*x^7+(1/2)*a*b^2*x^6+3//5*b*a^2*x^5) @test integrate(x^2*(a+b*x)^3, x) == :(1//3*a^3*x^3+1//6*b^3*x^6+3//4*b*a^2*x^4+3//5*a*b^2*x^5) @test integrate(x*(a+b*x)^3, x) == :(1//5*b^-2*(a+b*x)^5+-1//4*a*b^-2*(a+b*x)^4) @test integrate((a+b*x)^3, x) == :(1//4*b^-1*(a+b*x)^4) @test integrate(x^-1*(a+b*x)^3, x) == :(a^3*log(x)+1//3*b^3*x^3+3*b*x*a^2+3//2*a*b^2*x^2) @test integrate(x^-2*(a+b*x)^3, x) == :((1/2)*b^3*x^2+-1*a^3*x^-1+3*a*x*b^2+3*b*a^2*log(x)) @test integrate(x^-3*(a+b*x)^3, x) == :(x*b^3+-1//2*a^3*x^-2+-3*b*a^2*x^-1+3*a*b^2*log(x)) @test integrate(x^-4*(a+b*x)^3, x) == :(b^3*log(x)+-1//3*a^3*x^-3+-3*a*b^2*x^-1+-3//2*b*a^2*x^-2) @test integrate(x^-5*(a+b*x)^3, x) == :(-1//4*a^-1*x^-4*(a+b*x)^4) @test integrate(x^-6*(a+b*x)^3, x) == :(-1//5*a^-1*x^-5*(a+b*x)^4+1//20*b*a^-2*x^-4*(a+b*x)^4) @test integrate(x^-7*(a+b*x)^3, x) == :(-1//3*b^3*x^-3+-1//6*a^3*x^-6+-3//4*a*b^2*x^-4+-3//5*b*a^2*x^-5) @test integrate(x^-8*(a+b*x)^3, x) == :(-1//4*b^3*x^-4+-1//7*a^3*x^-7+-3//5*a*b^2*x^-5+-1//2*b*a^2*x^-6) @test integrate(x^6*(a+b*x)^5, x) == :(1//7*a^5*x^7+1//12*b^5*x^12+a^2*b^3*x^10+5//8*b*a^4*x^8+5//11*a*b^4*x^11+10//9*a^3*b^2*x^9) @test integrate(x^5*(a+b*x)^5, x) == :(1//6*a^5*x^6+1//11*b^5*x^11+(1/2)*a*b^4*x^10+5//4*a^3*b^2*x^8+5//7*b*a^4*x^7+10//9*a^2*b^3*x^9) @test integrate(x^4*(a+b*x)^5, x) == :(1//5*a^5*x^5+1//10*b^5*x^10+5//4*a^2*b^3*x^8+5//6*b*a^4*x^6+5//9*a*b^4*x^9+10//7*a^3*b^2*x^7) @test integrate(x^3*(a+b*x)^5, x) == :(1//9*b^-4*(a+b*x)^9+-3//8*a*b^-4*(a+b*x)^8+-1//6*a^3*b^-4*(a+b*x)^6+3//7*a^2*b^-4*(a+b*x)^7) @test integrate(x^2*(a+b*x)^5, x) == :(1//8*b^-3*(a+b*x)^8+-2//7*a*b^-3*(a+b*x)^7+1//6*a^2*b^-3*(a+b*x)^6) @test integrate(x*(a+b*x)^5, x) == :(1//7*b^-2*(a+b*x)^7+-1//6*a*b^-2*(a+b*x)^6) @test integrate((a+b*x)^5, x) == :(1//6*b^-1*(a+b*x)^6) @test integrate(x^-1*(a+b*x)^5, x) == :(a^5*log(x)+1//5*b^5*x^5+5*b*x*a^4+5*a^3*b^2*x^2+5//4*a*b^4*x^4+10//3*a^2*b^3*x^3) @test integrate(x^-2*(a+b*x)^5, x) == :(-1*a^5*x^-1+1//4*b^5*x^4+5*b*a^4*log(x)+5*a^2*b^3*x^2+10*x*a^3*b^2+5//3*a*b^4*x^3) @test integrate(x^-3*(a+b*x)^5, x) == :(-1//2*a^5*x^-2+1//3*b^5*x^3+-5*b*a^4*x^-1+10*x*a^2*b^3+10*a^3*b^2*log(x)+5//2*a*b^4*x^2) @test integrate(x^-4*(a+b*x)^5, x) == :((1/2)*b^5*x^2+-1//3*a^5*x^-3+-10*a^3*b^2*x^-1+5*a*x*b^4+10*a^2*b^3*log(x)+-5//2*b*a^4*x^-2) @test integrate(x^-5*(a+b*x)^5, x) == :(x*b^5+-1//4*a^5*x^-4+-10*a^2*b^3*x^-1+-5*a^3*b^2*x^-2+5*a*b^4*log(x)+-5//3*b*a^4*x^-3) @test integrate(x^-6*(a+b*x)^5, x) == :(b^5*log(x)+-1//5*a^5*x^-5+-5*a*b^4*x^-1+-5*a^2*b^3*x^-2+-10//3*a^3*b^2*x^-3+-5//4*b*a^4*x^-4) @test integrate(x^-7*(a+b*x)^5, x) == :(-1//6*a^-1*x^-6*(a+b*x)^6) @test integrate(x^-8*(a+b*x)^5, x) == :(-1//7*a^-1*x^-7*(a+b*x)^6+1//42*b*a^-2*x^-6*(a+b*x)^6) @test integrate(x^-9*(a+b*x)^5, x) == :(-1//8*a^-1*x^-8*(a+b*x)^6+-1//168*a^-3*b^2*x^-6*(a+b*x)^6+1//28*b*a^-2*x^-7*(a+b*x)^6) @test integrate(x^-10*(a+b*x)^5, x) == :(-1//4*b^5*x^-4+-1//9*a^5*x^-9+-1*a*b^4*x^-5+-10//7*a^3*b^2*x^-7+-5//3*a^2*b^3*x^-6+-5//8*b*a^4*x^-8) @test integrate(x^-11*(a+b*x)^5, x) == :(-1//5*b^5*x^-5+-1//10*a^5*x^-10+-10//7*a^2*b^3*x^-7+-5//4*a^3*b^2*x^-8+-5//6*a*b^4*x^-6+-5//9*b*a^4*x^-9) @test integrate(x^-12*(a+b*x)^5, x) == :(-1//6*b^5*x^-6+-1//11*a^5*x^-11+-10//9*a^3*b^2*x^-9+-5//4*a^2*b^3*x^-8+-5//7*a*b^4*x^-7+-1//2*b*a^4*x^-10) @test integrate(x^-13*(a+b*x)^5, x) == :(-1//7*b^5*x^-7+-1//12*a^5*x^-12+-1*a^3*b^2*x^-10+-10//9*a^2*b^3*x^-9+-5//8*a*b^4*x^-8+-5//11*b*a^4*x^-11) @test integrate(x^-14*(a+b*x)^5, x) == :(-1//8*b^5*x^-8+-1//13*a^5*x^-13+-1*a^2*b^3*x^-10+-10//11*a^3*b^2*x^-11+-5//9*a*b^4*x^-9+-5//12*b*a^4*x^-12) @test integrate(x^8*(a+b*x)^7, x) == :(1//9*a^7*x^9+1//16*b^7*x^16+3//2*a^2*b^5*x^14+7//10*b*a^6*x^10+7//15*a*b^6*x^15+21//11*a^5*b^2*x^11+35//12*a^4*b^3*x^12+35//13*a^3*b^4*x^13) @test integrate(x^7*(a+b*x)^7, x) == :(1//8*a^7*x^8+1//15*b^7*x^15+(1/2)*a*b^6*x^14+7//9*b*a^6*x^9+21//10*a^5*b^2*x^10+21//13*a^2*b^5*x^13+35//11*a^4*b^3*x^11+35//12*a^3*b^4*x^12) @test integrate(x^6*(a+b*x)^7, x) == :(1//7*a^7*x^7+1//14*b^7*x^14+7//2*a^4*b^3*x^10+7//3*a^5*b^2*x^9+7//4*a^2*b^5*x^12+7//8*b*a^6*x^8+7//13*a*b^6*x^13+35//11*a^3*b^4*x^11) @test integrate(x^5*(a+b*x)^7, x) == :(1//13*b^-6*(a+b*x)^13+-1*a^3*b^-6*(a+b*x)^10+-5//12*a*b^-6*(a+b*x)^12+-1//8*a^5*b^-6*(a+b*x)^8+5//9*a^4*b^-6*(a+b*x)^9+10//11*a^2*b^-6*(a+b*x)^11) @test integrate(x^4*(a+b*x)^7, x) == :(1//12*b^-5*(a+b*x)^12+-4//9*a^3*b^-5*(a+b*x)^9+-4//11*a*b^-5*(a+b*x)^11+1//8*a^4*b^-5*(a+b*x)^8+3//5*a^2*b^-5*(a+b*x)^10) @test integrate(x^3*(a+b*x)^7, x) == :(1//11*b^-4*(a+b*x)^11+-3//10*a*b^-4*(a+b*x)^10+-1//8*a^3*b^-4*(a+b*x)^8+1//3*a^2*b^-4*(a+b*x)^9) @test integrate(x^2*(a+b*x)^7, x) == :(1//10*b^-3*(a+b*x)^10+-2//9*a*b^-3*(a+b*x)^9+1//8*a^2*b^-3*(a+b*x)^8) @test integrate(x*(a+b*x)^7, x) == :(1//9*b^-2*(a+b*x)^9+-1//8*a*b^-2*(a+b*x)^8) @test integrate((a+b*x)^7, x) == :(1//8*b^-1*(a+b*x)^8) @test integrate(x^-1*(a+b*x)^7, x) == :(a^7*log(x)+1//7*b^7*x^7+7*b*x*a^6+7//6*a*b^6*x^6+21//2*a^5*b^2*x^2+21//5*a^2*b^5*x^5+35//3*a^4*b^3*x^3+35//4*a^3*b^4*x^4) @test integrate(x^-2*(a+b*x)^7, x) == :(-1*a^7*x^-1+1//6*b^7*x^6+7*b*a^6*log(x)+21*x*a^5*b^2+7//5*a*b^6*x^5+21//4*a^2*b^5*x^4+35//2*a^4*b^3*x^2+35//3*a^3*b^4*x^3) @test integrate(x^-3*(a+b*x)^7, x) == :(-1//2*a^7*x^-2+1//5*b^7*x^5+-7*b*a^6*x^-1+7*a^2*b^5*x^3+21*a^5*b^2*log(x)+35*x*a^4*b^3+7//4*a*b^6*x^4+35//2*a^3*b^4*x^2) @test integrate(x^-4*(a+b*x)^7, x) == :(-1//3*a^7*x^-3+1//4*b^7*x^4+-21*a^5*b^2*x^-1+35*x*a^3*b^4+35*a^4*b^3*log(x)+-7//2*b*a^6*x^-2+7//3*a*b^6*x^3+21//2*a^2*b^5*x^2) @test integrate(x^-5*(a+b*x)^7, x) == :(-1//4*a^7*x^-4+1//3*b^7*x^3+-35*a^4*b^3*x^-1+21*x*a^2*b^5+35*a^3*b^4*log(x)+-21//2*a^5*b^2*x^-2+-7//3*b*a^6*x^-3+7//2*a*b^6*x^2) @test integrate(x^-6*(a+b*x)^7, x) == :((1/2)*b^7*x^2+-1//5*a^7*x^-5+-35*a^3*b^4*x^-1+-7*a^5*b^2*x^-3+7*a*x*b^6+21*a^2*b^5*log(x)+-35//2*a^4*b^3*x^-2+-7//4*b*a^6*x^-4) @test integrate(x^-7*(a+b*x)^7, x) == :(x*b^7+-1//6*a^7*x^-6+-21*a^2*b^5*x^-1+7*a*b^6*log(x)+-35//2*a^3*b^4*x^-2+-35//3*a^4*b^3*x^-3+-21//4*a^5*b^2*x^-4+-7//5*b*a^6*x^-5) @test integrate(x^-8*(a+b*x)^7, x) == :(b^7*log(x)+-1//7*a^7*x^-7+-7*a*b^6*x^-1+-35//3*a^3*b^4*x^-3+-35//4*a^4*b^3*x^-4+-21//2*a^2*b^5*x^-2+-21//5*a^5*b^2*x^-5+-7//6*b*a^6*x^-6) @test integrate(x^-9*(a+b*x)^7, x) == :(-1//8*a^-1*x^-8*(a+b*x)^8) @test integrate(x^-10*(a+b*x)^7, x) == :(-1//9*a^-1*x^-9*(a+b*x)^8+1//72*b*a^-2*x^-8*(a+b*x)^8) @test integrate(x^-11*(a+b*x)^7, x) == :(-1//10*a^-1*x^-10*(a+b*x)^8+-1//360*a^-3*b^2*x^-8*(a+b*x)^8+1//45*b*a^-2*x^-9*(a+b*x)^8) @test integrate(x^-12*(a+b*x)^7, x) == :(-1//11*a^-1*x^-11*(a+b*x)^8+-1//165*a^-3*b^2*x^-9*(a+b*x)^8+1//1320*a^-4*b^3*x^-8*(a+b*x)^8+3//110*b*a^-2*x^-10*(a+b*x)^8) @test integrate(x^-13*(a+b*x)^7, x) == :(-1//12*a^-1*x^-12*(a+b*x)^8+-1//110*a^-3*b^2*x^-10*(a+b*x)^8+-1//3960*a^-5*b^4*x^-8*(a+b*x)^8+1//33*b*a^-2*x^-11*(a+b*x)^8+1//495*a^-4*b^3*x^-9*(a+b*x)^8) @test integrate(x^-14*(a+b*x)^7, x) == :(-1//6*b^7*x^-6+-1//13*a^7*x^-13+-1*a*b^6*x^-7+-35//9*a^3*b^4*x^-9+-21//8*a^2*b^5*x^-8+-21//11*a^5*b^2*x^-11+-7//2*a^4*b^3*x^-10+-7//12*b*a^6*x^-12) @test integrate(x^-15*(a+b*x)^7, x) == :(-1//7*b^7*x^-7+-1//14*a^7*x^-14+-35//11*a^4*b^3*x^-11+-7//2*a^3*b^4*x^-10+-7//3*a^2*b^5*x^-9+-7//4*a^5*b^2*x^-12+-7//8*a*b^6*x^-8+-7//13*b*a^6*x^-13) @test integrate(x^-16*(a+b*x)^7, x) == :(-1//8*b^7*x^-8+-1//15*a^7*x^-15+-35//11*a^3*b^4*x^-11+-35//12*a^4*b^3*x^-12+-21//10*a^2*b^5*x^-10+-21//13*a^5*b^2*x^-13+-7//9*a*b^6*x^-9+-1//2*b*a^6*x^-14) @test integrate(x^11*(a+b*x)^10, x) == :(1//12*a^10*x^12+1//22*b^10*x^22+8*a^7*b^3*x^15+9//4*a^2*b^8*x^20+10//13*b*a^9*x^13+10//21*a*b^9*x^21+35//3*a^4*b^6*x^18+45//14*a^8*b^2*x^14+105//8*a^6*b^4*x^16+120//19*a^3*b^7*x^19+252//17*a^5*b^5*x^17) @test integrate(x^10*(a+b*x)^10, x) == :(1//11*a^10*x^11+1//21*b^10*x^21+(1/2)*a*b^9*x^20+14*a^6*b^4*x^15+5//6*b*a^9*x^12+20//3*a^3*b^7*x^18+45//13*a^8*b^2*x^13+45//19*a^2*b^8*x^19+60//7*a^7*b^3*x^14+63//4*a^5*b^5*x^16+210//17*a^4*b^6*x^17) @test integrate(x^9*(a+b*x)^10, x) == :(1//10*a^10*x^10+1//20*b^10*x^20+15*a^6*b^4*x^14+5//2*a^2*b^8*x^18+10//11*b*a^9*x^11+10//19*a*b^9*x^19+15//4*a^8*b^2*x^12+84//5*a^5*b^5*x^15+105//8*a^4*b^6*x^16+120//13*a^7*b^3*x^13+120//17*a^3*b^7*x^17) @test integrate(x^8*(a+b*x)^10, x) == :(1//19*b^-9*(a+b*x)^19+-4*a^5*b^-9*(a+b*x)^14+-7//2*a^3*b^-9*(a+b*x)^16+-4//9*a*b^-9*(a+b*x)^18+-2//3*a^7*b^-9*(a+b*x)^12+1//11*a^8*b^-9*(a+b*x)^11+14//3*a^4*b^-9*(a+b*x)^15+28//13*a^6*b^-9*(a+b*x)^13+28//17*a^2*b^-9*(a+b*x)^17) @test integrate(x^7*(a+b*x)^10, x) == :(1//18*b^-8*(a+b*x)^18+-21//13*a^5*b^-8*(a+b*x)^13+-7//3*a^3*b^-8*(a+b*x)^15+-7//17*a*b^-8*(a+b*x)^17+-1//11*a^7*b^-8*(a+b*x)^11+5//2*a^4*b^-8*(a+b*x)^14+7//12*a^6*b^-8*(a+b*x)^12+21//16*a^2*b^-8*(a+b*x)^16) @test integrate(x^6*(a+b*x)^10, x) == :(1//17*b^-7*(a+b*x)^17+a^2*b^-7*(a+b*x)^15+-10//7*a^3*b^-7*(a+b*x)^14+-3//8*a*b^-7*(a+b*x)^16+-1//2*a^5*b^-7*(a+b*x)^12+1//11*a^6*b^-7*(a+b*x)^11+15//13*a^4*b^-7*(a+b*x)^13) @test integrate(x^5*(a+b*x)^10, x) == :(1//16*b^-6*(a+b*x)^16+-10//13*a^3*b^-6*(a+b*x)^13+-1//3*a*b^-6*(a+b*x)^15+-1//11*a^5*b^-6*(a+b*x)^11+5//7*a^2*b^-6*(a+b*x)^14+5//12*a^4*b^-6*(a+b*x)^12) @test integrate(x^4*(a+b*x)^10, x) == :(1//15*b^-5*(a+b*x)^15+-2//7*a*b^-5*(a+b*x)^14+-1//3*a^3*b^-5*(a+b*x)^12+1//11*a^4*b^-5*(a+b*x)^11+6//13*a^2*b^-5*(a+b*x)^13) @test integrate(x^3*(a+b*x)^10, x) == :(1//14*b^-4*(a+b*x)^14+-3//13*a*b^-4*(a+b*x)^13+-1//11*a^3*b^-4*(a+b*x)^11+1//4*a^2*b^-4*(a+b*x)^12) @test integrate(x^2*(a+b*x)^10, x) == :(1//13*b^-3*(a+b*x)^13+-1//6*a*b^-3*(a+b*x)^12+1//11*a^2*b^-3*(a+b*x)^11) @test integrate(x*(a+b*x)^10, x) == :(1//12*b^-2*(a+b*x)^12+-1//11*a*b^-2*(a+b*x)^11) @test integrate((a+b*x)^10, x) == :(1//11*b^-1*(a+b*x)^11) @test integrate(x^-1*(a+b*x)^10, x) == :(a^10*log(x)+1//10*b^10*x^10+10*b*x*a^9+35*a^4*b^6*x^6+40*a^7*b^3*x^3+10//9*a*b^9*x^9+45//2*a^8*b^2*x^2+45//8*a^2*b^8*x^8+105//2*a^6*b^4*x^4+120//7*a^3*b^7*x^7+252//5*a^5*b^5*x^5) @test integrate(x^-2*(a+b*x)^10, x) == :(-1*a^10*x^-1+1//9*b^10*x^9+10*b*a^9*log(x)+20*a^3*b^7*x^6+42*a^4*b^6*x^5+45*x*a^8*b^2+60*a^7*b^3*x^2+63*a^5*b^5*x^4+70*a^6*b^4*x^3+5//4*a*b^9*x^8+45//7*a^2*b^8*x^7) @test integrate(x^-3*(a+b*x)^10, x) == :(-1//2*a^10*x^-2+1//8*b^10*x^8+-10*b*a^9*x^-1+24*a^3*b^7*x^5+45*a^8*b^2*log(x)+84*a^5*b^5*x^3+105*a^6*b^4*x^2+120*x*a^7*b^3+10//7*a*b^9*x^7+15//2*a^2*b^8*x^6+105//2*a^4*b^6*x^4) @test integrate(x^-4*(a+b*x)^10, x) == :(-1//3*a^10*x^-3+1//7*b^10*x^7+-45*a^8*b^2*x^-1+-5*b*a^9*x^-2+9*a^2*b^8*x^5+30*a^3*b^7*x^4+70*a^4*b^6*x^3+120*a^7*b^3*log(x)+126*a^5*b^5*x^2+210*x*a^6*b^4+5//3*a*b^9*x^6) @test integrate(x^-5*(a+b*x)^10, x) == :(-1//4*a^10*x^-4+1//6*b^10*x^6+-120*a^7*b^3*x^-1+2*a*b^9*x^5+40*a^3*b^7*x^3+105*a^4*b^6*x^2+210*a^6*b^4*log(x)+252*x*a^5*b^5+-45//2*a^8*b^2*x^-2+-10//3*b*a^9*x^-3+45//4*a^2*b^8*x^4) @test integrate(x^-6*(a+b*x)^10, x) == :(-1//5*a^10*x^-5+1//5*b^10*x^5+-210*a^6*b^4*x^-1+-60*a^7*b^3*x^-2+-15*a^8*b^2*x^-3+15*a^2*b^8*x^3+60*a^3*b^7*x^2+210*x*a^4*b^6+252*a^5*b^5*log(x)+-5//2*b*a^9*x^-4+5//2*a*b^9*x^4) @test integrate(x^-7*(a+b*x)^10, x) == :(-1//6*a^10*x^-6+1//4*b^10*x^4+-252*a^5*b^5*x^-1+-105*a^6*b^4*x^-2+-40*a^7*b^3*x^-3+-2*b*a^9*x^-5+120*x*a^3*b^7+210*a^4*b^6*log(x)+-45//4*a^8*b^2*x^-4+10//3*a*b^9*x^3+45//2*a^2*b^8*x^2) @test integrate(x^-8*(a+b*x)^10, x) == :(-1//7*a^10*x^-7+1//3*b^10*x^3+-210*a^4*b^6*x^-1+-126*a^5*b^5*x^-2+-70*a^6*b^4*x^-3+-30*a^7*b^3*x^-4+-9*a^8*b^2*x^-5+5*a*b^9*x^2+45*x*a^2*b^8+120*a^3*b^7*log(x)+-5//3*b*a^9*x^-6) @test integrate(x^-9*(a+b*x)^10, x) == :((1/2)*b^10*x^2+-1//8*a^10*x^-8+-120*a^3*b^7*x^-1+-105*a^4*b^6*x^-2+-84*a^5*b^5*x^-3+-24*a^7*b^3*x^-5+10*a*x*b^9+45*a^2*b^8*log(x)+-105//2*a^6*b^4*x^-4+-15//2*a^8*b^2*x^-6+-10//7*b*a^9*x^-7) @test integrate(x^-10*(a+b*x)^10, x) == :(x*b^10+-1//9*a^10*x^-9+-70*a^4*b^6*x^-3+-63*a^5*b^5*x^-4+-60*a^3*b^7*x^-2+-45*a^2*b^8*x^-1+-42*a^6*b^4*x^-5+-20*a^7*b^3*x^-6+10*a*b^9*log(x)+-45//7*a^8*b^2*x^-7+-5//4*b*a^9*x^-8) @test integrate(x^-11*(a+b*x)^10, x) == :(b^10*log(x)+-1//10*a^10*x^-10+-40*a^3*b^7*x^-3+-35*a^6*b^4*x^-6+-10*a*b^9*x^-1+-252//5*a^5*b^5*x^-5+-120//7*a^7*b^3*x^-7+-105//2*a^4*b^6*x^-4+-45//2*a^2*b^8*x^-2+-45//8*a^8*b^2*x^-8+-10//9*b*a^9*x^-9) @test integrate(x^-12*(a+b*x)^10, x) == :(-1//11*a^-1*x^-11*(a+b*x)^11) @test integrate(x^-13*(a+b*x)^10, x) == :(-1//12*a^-1*x^-12*(a+b*x)^11+1//132*b*a^-2*x^-11*(a+b*x)^11) @test integrate(x^-14*(a+b*x)^10, x) == :(-1//13*a^-1*x^-13*(a+b*x)^11+-1//858*a^-3*b^2*x^-11*(a+b*x)^11+1//78*b*a^-2*x^-12*(a+b*x)^11) @test integrate(x^-15*(a+b*x)^10, x) == :(-1//14*a^-1*x^-14*(a+b*x)^11+-1//364*a^-3*b^2*x^-12*(a+b*x)^11+1//4004*a^-4*b^3*x^-11*(a+b*x)^11+3//182*b*a^-2*x^-13*(a+b*x)^11) @test integrate(x^-16*(a+b*x)^10, x) == :(-1//15*a^-1*x^-15*(a+b*x)^11+-2//455*a^-3*b^2*x^-13*(a+b*x)^11+-1//15015*a^-5*b^4*x^-11*(a+b*x)^11+1//1365*a^-4*b^3*x^-12*(a+b*x)^11+2//105*b*a^-2*x^-14*(a+b*x)^11) @test integrate(x^-17*(a+b*x)^10, x) == :(-1//16*a^-1*x^-16*(a+b*x)^11+-1//168*a^-3*b^2*x^-14*(a+b*x)^11+-1//4368*a^-5*b^4*x^-12*(a+b*x)^11+1//48*b*a^-2*x^-15*(a+b*x)^11+1//728*a^-4*b^3*x^-13*(a+b*x)^11+1//48048*a^-6*b^5*x^-11*(a+b*x)^11) @test integrate(x^-18*(a+b*x)^10, x) == :(-1//17*a^-1*x^-17*(a+b*x)^11+-3//6188*a^-5*b^4*x^-13*(a+b*x)^11+-1//136*a^-3*b^2*x^-15*(a+b*x)^11+-1//136136*a^-7*b^6*x^-11*(a+b*x)^11+1//476*a^-4*b^3*x^-14*(a+b*x)^11+1//12376*a^-6*b^5*x^-12*(a+b*x)^11+3//136*b*a^-2*x^-16*(a+b*x)^11) @test integrate(x^-19*(a+b*x)^10, x) == :(-1//8*b^10*x^-8+-1//18*a^10*x^-18+-15*a^6*b^4*x^-14+-8*a^7*b^3*x^-15+-252//13*a^5*b^5*x^-13+-120//11*a^3*b^7*x^-11+-45//16*a^8*b^2*x^-16+-35//2*a^4*b^6*x^-12+-10//9*a*b^9*x^-9+-10//17*b*a^9*x^-17+-9//2*a^2*b^8*x^-10) @test integrate(x^-20*(a+b*x)^10, x) == :(-1//9*b^10*x^-9+-1//19*a^10*x^-19+-1*a*b^9*x^-10+-18*a^5*b^5*x^-14+-14*a^6*b^4*x^-15+-10*a^3*b^7*x^-12+-210//13*a^4*b^6*x^-13+-45//11*a^2*b^8*x^-11+-45//17*a^8*b^2*x^-17+-15//2*a^7*b^3*x^-16+-5//9*b*a^9*x^-18) @test integrate(x^-32*(a+b*x)^20, x) == :(-1//31*a^-1*x^-31*(a+b*x)^21+-3//899*a^-3*b^2*x^-29*(a+b*x)^21+-2//8091*a^-5*b^4*x^-27*(a+b*x)^21+-2//175305*a^-7*b^6*x^-25*(a+b*x)^21+-1//4032015*a^-9*b^8*x^-23*(a+b*x)^21+-1//931395465*a^-11*b^10*x^-21*(a+b*x)^21+1//93*b*a^-2*x^-30*(a+b*x)^21+1//525915*a^-8*b^7*x^-24*(a+b*x)^21+1//44352165*a^-10*b^9*x^-22*(a+b*x)^21+2//35061*a^-6*b^5*x^-26*(a+b*x)^21+6//6293*a^-4*b^3*x^-28*(a+b*x)^21) @test integrate(x^-33*(a+b*x)^20, x) == :(-1//32*a^-1*x^-32*(a+b*x)^21+-33//100688*a^-5*b^4*x^-28*(a+b*x)^21+-11//2976*a^-3*b^2*x^-30*(a+b*x)^21+-11//560976*a^-7*b^6*x^-26*(a+b*x)^21+-11//16829280*a^-9*b^8*x^-24*(a+b*x)^21+-1//129024480*a^-11*b^10*x^-22*(a+b*x)^21+1//2709514080*a^-12*b^11*x^-21*(a+b*x)^21+11//992*b*a^-2*x^-31*(a+b*x)^21+11//129456*a^-6*b^5*x^-27*(a+b*x)^21+11//2804880*a^-8*b^7*x^-25*(a+b*x)^21+11//129024480*a^-10*b^9*x^-23*(a+b*x)^21+33//28768*a^-4*b^3*x^-29*(a+b*x)^21) @test integrate(x^-34*(a+b*x)^20, x) == :(-1//33*a^-1*x^-33*(a+b*x)^21+-3//7192*a^-5*b^4*x^-29*(a+b*x)^21+-1//248*a^-3*b^2*x^-31*(a+b*x)^21+-1//32364*a^-7*b^6*x^-27*(a+b*x)^21+-1//701220*a^-9*b^8*x^-25*(a+b*x)^21+-1//32256120*a^-11*b^10*x^-23*(a+b*x)^21+-1//7451163720*a^-13*b^12*x^-21*(a+b*x)^21+1//88*b*a^-2*x^-32*(a+b*x)^21+1//744*a^-4*b^3*x^-30*(a+b*x)^21+1//140244*a^-8*b^7*x^-26*(a+b*x)^21+1//4207320*a^-10*b^9*x^-24*(a+b*x)^21+1//354817320*a^-12*b^11*x^-22*(a+b*x)^21+3//25172*a^-6*b^5*x^-28*(a+b*x)^21) @test integrate(x^-35*(a+b*x)^20, x) == :(-1//14*b^20*x^-14+-1//34*a^20*x^-34+-4845*a^12*b^8*x^-26+-1938*a^6*b^14*x^-20+-816*a^5*b^15*x^-19+-167960//23*a^9*b^11*x^-23+-62985//11*a^8*b^12*x^-22+-46189//6*a^10*b^10*x^-24+-33592//5*a^11*b^9*x^-25+-25840//7*a^7*b^13*x^-21+-25840//9*a^13*b^7*x^-27+-15504//29*a^15*b^5*x^-29+-9690//7*a^14*b^6*x^-28+-1615//6*a^4*b^16*x^-18+-1140//17*a^3*b^17*x^-17+-1140//31*a^17*b^3*x^-31+-323//2*a^16*b^4*x^-30+-95//8*a^2*b^18*x^-16+-95//16*a^18*b^2*x^-32+-20//33*b*a^19*x^-33+-4//3*a*b^19*x^-15) @test integrate(x^-36*(a+b*x)^20, x) == :(-1//15*b^20*x^-15+-1//35*a^20*x^-35+-6460*a^11*b^9*x^-26+-255*a^4*b^16*x^-19+-184756//25*a^10*b^10*x^-25+-125970//23*a^8*b^12*x^-23+-41990//9*a^12*b^8*x^-27+-38760//11*a^7*b^13*x^-22+-38760//29*a^14*b^6*x^-29+-20995//3*a^9*b^11*x^-24+-19380//7*a^13*b^7*x^-28+-12920//7*a^6*b^14*x^-21+-4845//31*a^16*b^4*x^-31+-3876//5*a^5*b^15*x^-20+-2584//5*a^15*b^5*x^-30+-285//8*a^17*b^3*x^-32+-190//3*a^3*b^17*x^-18+-190//17*a^2*b^18*x^-17+-190//33*a^18*b^2*x^-33+-10//17*b*a^19*x^-34+-5//4*a*b^19*x^-16) @test integrate(x^-37*(a+b*x)^20, x) == :(-1//16*b^20*x^-16+-1//36*a^20*x^-36+-7106*a^10*b^10*x^-26+-1292*a^14*b^6*x^-30+-60*a^3*b^17*x^-19+-167960//27*a^11*b^9*x^-27+-77520//23*a^7*b^13*x^-23+-77520//29*a^13*b^7*x^-29+-62985//14*a^12*b^8*x^-28+-33592//5*a^9*b^11*x^-25+-20995//4*a^8*b^12*x^-24+-19380//11*a^6*b^14*x^-22+-15504//31*a^15*b^5*x^-31+-5168//7*a^5*b^15*x^-21+-4845//32*a^16*b^4*x^-32+-969//4*a^4*b^16*x^-20+-380//11*a^17*b^3*x^-33+-95//9*a^2*b^18*x^-18+-95//17*a^18*b^2*x^-34+-20//17*a*b^19*x^-17+-4//7*b*a^19*x^-35) @test integrate(c*(a+b*x), x) == :((1/2)*c*b^-1*(a+b*x)^2) @test integrate(e^-1*(a+b*x)*(c+d), x) == :((1/2)*b^-1*e^-1*(a+b*x)^2*(c+d)) @test integrate(x^5*(a+b*x)^-1, x) == :(1//5*b^-1*x^5+x*a^4*b^-5+-1*a^5*b^-6*log(a+b*x)+-1//2*a^3*b^-4*x^2+-1//4*a*b^-2*x^4+1//3*a^2*b^-3*x^3) @test integrate(x^4*(a+b*x)^-1, x) == :(1//4*b^-1*x^4+a^4*b^-5*log(a+b*x)+(1/2)*a^2*b^-3*x^2+-1*x*a^3*b^-4+-1//3*a*b^-2*x^3) @test integrate(x^3*(a+b*x)^-1, x) == :(1//3*b^-1*x^3+x*a^2*b^-3+-1*a^3*b^-4*log(a+b*x)+-1//2*a*b^-2*x^2) @test integrate(x^2*(a+b*x)^-1, x) == :((1/2)*b^-1*x^2+a^2*b^-3*log(a+b*x)+-1*a*x*b^-2) @test integrate(x*(a+b*x)^-1, x) == :(x*b^-1+-1*a*b^-2*log(a+b*x)) @test integrate((a+b*x)^-1, x) == :(b^-1*log(a+b*x)) @test integrate(x^-1*(a+b*x)^-1, x) == :(a^-1*log(x)+-1*a^-1*log(a+b*x)) @test integrate(x^-2*(a+b*x)^-1, x) == :(-1*a^-1*x^-1+b*a^-2*log(a+b*x)+-1*b*a^-2*log(x)) @test integrate(x^-3*(a+b*x)^-1, x) == :(-1//2*a^-1*x^-2+b*a^-2*x^-1+a^-3*b^2*log(x)+-1*a^-3*b^2*log(a+b*x)) @test integrate(x^-4*(a+b*x)^-1, x) == :(-1//3*a^-1*x^-3+a^-4*b^3*log(a+b*x)+(1/2)*b*a^-2*x^-2+-1*a^-4*b^3*log(x)+-1*a^-3*b^2*x^-1) @test integrate(x^-5*(a+b*x)^-1, x) == :(-1//4*a^-1*x^-4+a^-5*b^4*log(x)+a^-4*b^3*x^-1+-1*a^-5*b^4*log(a+b*x)+-1//2*a^-3*b^2*x^-2+1//3*b*a^-2*x^-3) @test integrate(x^6*(a+b*x)^-2, x) == :(1//5*b^-2*x^5+a^2*b^-4*x^3+-1*a^6*b^-7*(a+b*x)^-1+-6*a^5*b^-7*log(a+b*x)+-2*a^3*b^-5*x^2+5*x*a^4*b^-6+-1//2*a*b^-3*x^4) @test integrate(x^5*(a+b*x)^-2, x) == :(1//4*b^-2*x^4+a^5*b^-6*(a+b*x)^-1+-4*x*a^3*b^-5+5*a^4*b^-6*log(a+b*x)+-2//3*a*b^-3*x^3+3//2*a^2*b^-4*x^2) @test integrate(x^4*(a+b*x)^-2, x) == :(1//3*b^-2*x^3+-1*a*b^-3*x^2+-1*a^4*b^-5*(a+b*x)^-1+-4*a^3*b^-5*log(a+b*x)+3*x*a^2*b^-4) @test integrate(x^3*(a+b*x)^-2, x) == :((1/2)*b^-2*x^2+a^3*b^-4*(a+b*x)^-1+-2*a*x*b^-3+3*a^2*b^-4*log(a+b*x)) @test integrate(x^2*(a+b*x)^-2, x) == :(x*b^-2+-1*a^2*b^-3*(a+b*x)^-1+-2*a*b^-3*log(a+b*x)) @test integrate(x*(a+b*x)^-2, x) == :(b^-2*log(a+b*x)+a*b^-2*(a+b*x)^-1) @test integrate((a+b*x)^-2, x) == :(-1*b^-1*(a+b*x)^-1) @test integrate(x^-1*(a+b*x)^-2, x) == :(a^-1*(a+b*x)^-1+a^-2*log(x)+-1*a^-2*log(a+b*x)) @test integrate(x^-2*(a+b*x)^-2, x) == :(-1*a^-2*x^-1+-1*b*a^-2*(a+b*x)^-1+-2*b*a^-3*log(x)+2*b*a^-3*log(a+b*x)) @test integrate(x^-3*(a+b*x)^-2, x) == :(-1//2*a^-2*x^-2+a^-3*b^2*(a+b*x)^-1+-3*a^-4*b^2*log(a+b*x)+2*b*a^-3*x^-1+3*a^-4*b^2*log(x)) @test integrate(x^-4*(a+b*x)^-2, x) == :(-1//3*a^-2*x^-3+b*a^-3*x^-2+-1*a^-4*b^3*(a+b*x)^-1+-4*a^-5*b^3*log(x)+-3*a^-4*b^2*x^-1+4*a^-5*b^3*log(a+b*x)) @test integrate(x^-5*(a+b*x)^-2, x) == :(-1//4*a^-2*x^-4+a^-5*b^4*(a+b*x)^-1+-5*a^-6*b^4*log(a+b*x)+4*a^-5*b^3*x^-1+5*a^-6*b^4*log(x)+-3//2*a^-4*b^2*x^-2+2//3*b*a^-3*x^-3) @test integrate(x^7*(a+b*x)^-3, x) == :(1//5*b^-3*x^5+(1/2)*a^7*b^-8*(a+b*x)^-2+-21*a^5*b^-8*log(a+b*x)+-7*a^6*b^-8*(a+b*x)^-1+-5*a^3*b^-6*x^2+2*a^2*b^-5*x^3+15*x*a^4*b^-7+-3//4*a*b^-4*x^4) @test integrate(x^6*(a+b*x)^-3, x) == :(1//4*b^-3*x^4+-1*a*b^-4*x^3+-10*x*a^3*b^-6+3*a^2*b^-5*x^2+6*a^5*b^-7*(a+b*x)^-1+15*a^4*b^-7*log(a+b*x)+-1//2*a^6*b^-7*(a+b*x)^-2) @test integrate(x^5*(a+b*x)^-3, x) == :(1//3*b^-3*x^3+(1/2)*a^5*b^-6*(a+b*x)^-2+-10*a^3*b^-6*log(a+b*x)+-5*a^4*b^-6*(a+b*x)^-1+6*x*a^2*b^-5+-3//2*a*b^-4*x^2) @test integrate(x^4*(a+b*x)^-3, x) == :((1/2)*b^-3*x^2+-3*a*x*b^-4+4*a^3*b^-5*(a+b*x)^-1+6*a^2*b^-5*log(a+b*x)+-1//2*a^4*b^-5*(a+b*x)^-2) @test integrate(x^3*(a+b*x)^-3, x) == :(x*b^-3+(1/2)*a^3*b^-4*(a+b*x)^-2+-3*a*b^-4*log(a+b*x)+-3*a^2*b^-4*(a+b*x)^-1) @test integrate(x^2*(a+b*x)^-3, x) == :(b^-3*log(a+b*x)+2*a*b^-3*(a+b*x)^-1+-1//2*a^2*b^-3*(a+b*x)^-2) @test integrate(x*(a+b*x)^-3, x) == :((1/2)*a^-1*x^2*(a+b*x)^-2) @test integrate((a+b*x)^-3, x) == :(-1//2*b^-1*(a+b*x)^-2) @test integrate(x^-1*(a+b*x)^-3, x) == :(a^-3*log(x)+a^-2*(a+b*x)^-1+(1/2)*a^-1*(a+b*x)^-2+-1*a^-3*log(a+b*x)) @test integrate(x^-2*(a+b*x)^-3, x) == :(-1*a^-3*x^-1+-3*b*a^-4*log(x)+-2*b*a^-3*(a+b*x)^-1+3*b*a^-4*log(a+b*x)+-1//2*b*a^-2*(a+b*x)^-2) @test integrate(x^-3*(a+b*x)^-3, x) == :(-1//2*a^-3*x^-2+(1/2)*a^-3*b^2*(a+b*x)^-2+-6*a^-5*b^2*log(a+b*x)+3*b*a^-4*x^-1+3*a^-4*b^2*(a+b*x)^-1+6*a^-5*b^2*log(x)) @test integrate(x^-4*(a+b*x)^-3, x) == :(-1//3*a^-3*x^-3+-10*a^-6*b^3*log(x)+-6*a^-5*b^2*x^-1+-4*a^-5*b^3*(a+b*x)^-1+10*a^-6*b^3*log(a+b*x)+-1//2*a^-4*b^3*(a+b*x)^-2+3//2*b*a^-4*x^-2) @test integrate(x^-5*(a+b*x)^-3, x) == :(-1//4*a^-3*x^-4+b*a^-4*x^-3+(1/2)*a^-5*b^4*(a+b*x)^-2+-15*a^-7*b^4*log(a+b*x)+-3*a^-5*b^2*x^-2+5*a^-6*b^4*(a+b*x)^-1+10*a^-6*b^3*x^-1+15*a^-7*b^4*log(x)) @test integrate(x^8*(a+b*x)^-4, x) == :(1//5*b^-4*x^5+-1*a*b^-5*x^4+-56*a^5*b^-9*log(a+b*x)+-28*a^6*b^-9*(a+b*x)^-1+-10*a^3*b^-7*x^2+4*a^7*b^-9*(a+b*x)^-2+35*x*a^4*b^-8+-1//3*a^8*b^-9*(a+b*x)^-3+10//3*a^2*b^-6*x^3) @test integrate(x^7*(a+b*x)^-4, x) == :(1//4*b^-4*x^4+-20*x*a^3*b^-7+5*a^2*b^-6*x^2+21*a^5*b^-8*(a+b*x)^-1+35*a^4*b^-8*log(a+b*x)+-7//2*a^6*b^-8*(a+b*x)^-2+-4//3*a*b^-5*x^3+1//3*a^7*b^-8*(a+b*x)^-3) @test integrate(x^6*(a+b*x)^-4, x) == :(1//3*b^-4*x^3+-20*a^3*b^-7*log(a+b*x)+-15*a^4*b^-7*(a+b*x)^-1+-2*a*b^-5*x^2+3*a^5*b^-7*(a+b*x)^-2+10*x*a^2*b^-6+-1//3*a^6*b^-7*(a+b*x)^-3) @test integrate(x^5*(a+b*x)^-4, x) == :((1/2)*b^-4*x^2+-4*a*x*b^-5+10*a^2*b^-6*log(a+b*x)+10*a^3*b^-6*(a+b*x)^-1+-5//2*a^4*b^-6*(a+b*x)^-2+1//3*a^5*b^-6*(a+b*x)^-3) @test integrate(x^4*(a+b*x)^-4, x) == :(x*b^-4+-6*a^2*b^-5*(a+b*x)^-1+-4*a*b^-5*log(a+b*x)+2*a^3*b^-5*(a+b*x)^-2+-1//3*a^4*b^-5*(a+b*x)^-3) @test integrate(x^3*(a+b*x)^-4, x) == :(b^-4*log(a+b*x)+3*a*b^-4*(a+b*x)^-1+-3//2*a^2*b^-4*(a+b*x)^-2+1//3*a^3*b^-4*(a+b*x)^-3) @test integrate(x^2*(a+b*x)^-4, x) == :(1//3*a^-1*x^3*(a+b*x)^-3) @test integrate(x*(a+b*x)^-4, x) == :(-1//2*b^-2*(a+b*x)^-2+1//3*a*b^-2*(a+b*x)^-3) @test integrate((a+b*x)^-4, x) == :(-1//3*b^-1*(a+b*x)^-3) @test integrate(x^-1*(a+b*x)^-4, x) == :(a^-4*log(x)+a^-3*(a+b*x)^-1+(1/2)*a^-2*(a+b*x)^-2+-1*a^-4*log(a+b*x)+1//3*a^-1*(a+b*x)^-3) @test integrate(x^-2*(a+b*x)^-4, x) == :(-1*a^-4*x^-1+-1*b*a^-3*(a+b*x)^-2+-4*b*a^-5*log(x)+-3*b*a^-4*(a+b*x)^-1+4*b*a^-5*log(a+b*x)+-1//3*b*a^-2*(a+b*x)^-3) @test integrate(x^-3*(a+b*x)^-4, x) == :(-1//2*a^-4*x^-2+-10*a^-6*b^2*log(a+b*x)+4*b*a^-5*x^-1+6*a^-5*b^2*(a+b*x)^-1+10*a^-6*b^2*log(x)+1//3*a^-3*b^2*(a+b*x)^-3+3//2*a^-4*b^2*(a+b*x)^-2) @test integrate(x^-4*(a+b*x)^-4, x) == :(-1//3*a^-4*x^-3+-20*a^-7*b^3*log(x)+-10*a^-6*b^2*x^-1+-10*a^-6*b^3*(a+b*x)^-1+-2*a^-5*b^3*(a+b*x)^-2+2*b*a^-5*x^-2+20*a^-7*b^3*log(a+b*x)+-1//3*a^-4*b^3*(a+b*x)^-3) @test integrate(x^-5*(a+b*x)^-4, x) == :(-1//4*a^-4*x^-4+-35*a^-8*b^4*log(a+b*x)+-5*a^-6*b^2*x^-2+15*a^-7*b^4*(a+b*x)^-1+20*a^-7*b^3*x^-1+35*a^-8*b^4*log(x)+1//3*a^-5*b^4*(a+b*x)^-3+4//3*b*a^-5*x^-3+5//2*a^-6*b^4*(a+b*x)^-2) @test integrate(x^10*(a+b*x)^-7, x) == :(1//4*b^-7*x^4+-105*a^6*b^-11*(a+b*x)^-2+-84*x*a^3*b^-10+2*a^9*b^-11*(a+b*x)^-5+14*a^2*b^-9*x^2+40*a^7*b^-11*(a+b*x)^-3+210*a^4*b^-11*log(a+b*x)+252*a^5*b^-11*(a+b*x)^-1+-45//4*a^8*b^-11*(a+b*x)^-4+-7//3*a*b^-8*x^3+-1//6*a^10*b^-11*(a+b*x)^-6) @test integrate(x^9*(a+b*x)^-7, x) == :(1//3*b^-7*x^3+-126*a^4*b^-10*(a+b*x)^-1+-84*a^3*b^-10*log(a+b*x)+-28*a^6*b^-10*(a+b*x)^-3+9*a^7*b^-10*(a+b*x)^-4+28*x*a^2*b^-9+63*a^5*b^-10*(a+b*x)^-2+-9//5*a^8*b^-10*(a+b*x)^-5+-7//2*a*b^-8*x^2+1//6*a^9*b^-10*(a+b*x)^-6) @test integrate(x^8*(a+b*x)^-7, x) == :((1/2)*b^-7*x^2+-35*a^4*b^-9*(a+b*x)^-2+-7*a*x*b^-8+-7*a^6*b^-9*(a+b*x)^-4+28*a^2*b^-9*log(a+b*x)+56*a^3*b^-9*(a+b*x)^-1+-1//6*a^8*b^-9*(a+b*x)^-6+8//5*a^7*b^-9*(a+b*x)^-5+56//3*a^5*b^-9*(a+b*x)^-3) @test integrate(x^7*(a+b*x)^-7, x) == :(x*b^-7+-21*a^2*b^-8*(a+b*x)^-1+-7*a*b^-8*log(a+b*x)+-35//3*a^4*b^-8*(a+b*x)^-3+-7//5*a^6*b^-8*(a+b*x)^-5+1//6*a^7*b^-8*(a+b*x)^-6+21//4*a^5*b^-8*(a+b*x)^-4+35//2*a^3*b^-8*(a+b*x)^-2) @test integrate(x^6*(a+b*x)^-7, x) == :(b^-7*log(a+b*x)+6*a*b^-7*(a+b*x)^-1+-15//2*a^2*b^-7*(a+b*x)^-2+-15//4*a^4*b^-7*(a+b*x)^-4+-1//6*a^6*b^-7*(a+b*x)^-6+6//5*a^5*b^-7*(a+b*x)^-5+20//3*a^3*b^-7*(a+b*x)^-3) @test integrate(x^5*(a+b*x)^-7, x) == :(1//6*a^-1*x^6*(a+b*x)^-6) @test integrate(x^4*(a+b*x)^-7, x) == :(1//6*a^-1*x^5*(a+b*x)^-6+1//30*a^-2*x^5*(a+b*x)^-5) @test integrate(x^2*(a+b*x)^-7, x) == :(-1//4*b^-3*(a+b*x)^-4+-1//6*a^2*b^-3*(a+b*x)^-6+2//5*a*b^-3*(a+b*x)^-5) @test integrate(x*(a+b*x)^-7, x) == :(-1//5*b^-2*(a+b*x)^-5+1//6*a*b^-2*(a+b*x)^-6) @test integrate((a+b*x)^-7, x) == :(-1//6*b^-1*(a+b*x)^-6) @test integrate(x^-1*(a+b*x)^-7, x) == :(a^-7*log(x)+a^-6*(a+b*x)^-1+(1/2)*a^-5*(a+b*x)^-2+-1*a^-7*log(a+b*x)+1//3*a^-4*(a+b*x)^-3+1//4*a^-3*(a+b*x)^-4+1//5*a^-2*(a+b*x)^-5+1//6*a^-1*(a+b*x)^-6) @test integrate(x^-2*(a+b*x)^-7, x) == :(-1*a^-7*x^-1+-7*b*a^-8*log(x)+-6*b*a^-7*(a+b*x)^-1+7*b*a^-8*log(a+b*x)+-5//2*b*a^-6*(a+b*x)^-2+-4//3*b*a^-5*(a+b*x)^-3+-3//4*b*a^-4*(a+b*x)^-4+-2//5*b*a^-3*(a+b*x)^-5+-1//6*b*a^-2*(a+b*x)^-6) @test integrate(x^-3*(a+b*x)^-7, x) == :(-1//2*a^-7*x^-2+-28*a^-9*b^2*log(a+b*x)+7*b*a^-8*x^-1+21*a^-8*b^2*(a+b*x)^-1+28*a^-9*b^2*log(x)+1//6*a^-3*b^2*(a+b*x)^-6+3//2*a^-5*b^2*(a+b*x)^-4+3//5*a^-4*b^2*(a+b*x)^-5+10//3*a^-6*b^2*(a+b*x)^-3+15//2*a^-7*b^2*(a+b*x)^-2) @test integrate(x^-4*(a+b*x)^-7, x) == :(-1//3*a^-7*x^-3+-84*a^-10*b^3*log(x)+-56*a^-9*b^3*(a+b*x)^-1+-28*a^-9*b^2*x^-1+84*a^-10*b^3*log(a+b*x)+-35//2*a^-8*b^3*(a+b*x)^-2+-20//3*a^-7*b^3*(a+b*x)^-3+-5//2*a^-6*b^3*(a+b*x)^-4+-4//5*a^-5*b^3*(a+b*x)^-5+-1//6*a^-4*b^3*(a+b*x)^-6+7//2*b*a^-8*x^-2) @test integrate(x^12*(a+b*x)^-10, x) == :(1//3*b^-10*x^3+-495*a^4*b^-13*(a+b*x)^-1+-308*a^6*b^-13*(a+b*x)^-3+-220*a^3*b^-13*log(a+b*x)+-99*a^8*b^-13*(a+b*x)^-5+-5*a*b^-11*x^2+55*x*a^2*b^-12+198*a^7*b^-13*(a+b*x)^-4+396*a^5*b^-13*(a+b*x)^-2+-66//7*a^10*b^-13*(a+b*x)^-7+-1//9*a^12*b^-13*(a+b*x)^-9+3//2*a^11*b^-13*(a+b*x)^-8+110//3*a^9*b^-13*(a+b*x)^-6) @test integrate(x^11*(a+b*x)^-10, x) == :((1/2)*b^-10*x^2+-165*a^4*b^-12*(a+b*x)^-2+-10*a*x*b^-11+55*a^2*b^-12*log(a+b*x)+66*a^7*b^-12*(a+b*x)^-5+154*a^5*b^-12*(a+b*x)^-3+165*a^3*b^-12*(a+b*x)^-1+-231//2*a^6*b^-12*(a+b*x)^-4+-55//2*a^8*b^-12*(a+b*x)^-6+-11//8*a^10*b^-12*(a+b*x)^-8+1//9*a^11*b^-12*(a+b*x)^-9+55//7*a^9*b^-12*(a+b*x)^-7) @test integrate(x^10*(a+b*x)^-10, x) == :(x*b^-10+-70*a^4*b^-11*(a+b*x)^-3+-45*a^2*b^-11*(a+b*x)^-1+-42*a^6*b^-11*(a+b*x)^-5+-10*a*b^-11*log(a+b*x)+20*a^7*b^-11*(a+b*x)^-6+60*a^3*b^-11*(a+b*x)^-2+63*a^5*b^-11*(a+b*x)^-4+-45//7*a^8*b^-11*(a+b*x)^-7+-1//9*a^10*b^-11*(a+b*x)^-9+5//4*a^9*b^-11*(a+b*x)^-8) @test integrate(x^9*(a+b*x)^-10, x) == :(b^-10*log(a+b*x)+-18*a^2*b^-10*(a+b*x)^-2+-14*a^6*b^-10*(a+b*x)^-6+9*a*b^-10*(a+b*x)^-1+28*a^3*b^-10*(a+b*x)^-3+-63//2*a^4*b^-10*(a+b*x)^-4+-9//8*a^8*b^-10*(a+b*x)^-8+1//9*a^9*b^-10*(a+b*x)^-9+36//7*a^7*b^-10*(a+b*x)^-7+126//5*a^5*b^-10*(a+b*x)^-5) @test integrate(x^8*(a+b*x)^-10, x) == :(1//9*a^-1*x^9*(a+b*x)^-9) @test integrate(x^7*(a+b*x)^-10, x) == :(1//9*a^-1*x^8*(a+b*x)^-9+1//72*a^-2*x^8*(a+b*x)^-8) @test integrate(x^6*(a+b*x)^-10, x) == :(1//9*a^-1*x^7*(a+b*x)^-9+1//36*a^-2*x^7*(a+b*x)^-8+1//252*a^-3*x^7*(a+b*x)^-7) @test integrate(x^5*(a+b*x)^-10, x) == :(1//9*a^-1*x^6*(a+b*x)^-9+1//24*a^-2*x^6*(a+b*x)^-8+1//84*a^-3*x^6*(a+b*x)^-7+1//504*a^-4*x^6*(a+b*x)^-6) @test integrate(x^4*(a+b*x)^-10, x) == :(-1//5*b^-5*(a+b*x)^-5+(1/2)*a^3*b^-5*(a+b*x)^-8+-6//7*a^2*b^-5*(a+b*x)^-7+-1//9*a^4*b^-5*(a+b*x)^-9+2//3*a*b^-5*(a+b*x)^-6) @test integrate(x^3*(a+b*x)^-10, x) == :(-1//6*b^-4*(a+b*x)^-6+-3//8*a^2*b^-4*(a+b*x)^-8+1//9*a^3*b^-4*(a+b*x)^-9+3//7*a*b^-4*(a+b*x)^-7) @test integrate(x^2*(a+b*x)^-10, x) == :(-1//7*b^-3*(a+b*x)^-7+-1//9*a^2*b^-3*(a+b*x)^-9+1//4*a*b^-3*(a+b*x)^-8) @test integrate(x*(a+b*x)^-10, x) == :(-1//8*b^-2*(a+b*x)^-8+1//9*a*b^-2*(a+b*x)^-9) @test integrate((a+b*x)^-10, x) == :(-1//9*b^-1*(a+b*x)^-9) @test integrate(x^-1*(a+b*x)^-10, x) == :(a^-10*log(x)+a^-9*(a+b*x)^-1+(1/2)*a^-8*(a+b*x)^-2+-1*a^-10*log(a+b*x)+1//3*a^-7*(a+b*x)^-3+1//4*a^-6*(a+b*x)^-4+1//5*a^-5*(a+b*x)^-5+1//6*a^-4*(a+b*x)^-6+1//7*a^-3*(a+b*x)^-7+1//8*a^-2*(a+b*x)^-8+1//9*a^-1*(a+b*x)^-9) @test integrate(x^-2*(a+b*x)^-10, x) == :(-1*a^-10*x^-1+-1*b*a^-6*(a+b*x)^-5+-10*b*a^-11*log(x)+-9*b*a^-10*(a+b*x)^-1+-4*b*a^-9*(a+b*x)^-2+10*b*a^-11*log(a+b*x)+-7//3*b*a^-8*(a+b*x)^-3+-3//2*b*a^-7*(a+b*x)^-4+-3//7*b*a^-4*(a+b*x)^-7+-2//3*b*a^-5*(a+b*x)^-6+-1//4*b*a^-3*(a+b*x)^-8+-1//9*b*a^-2*(a+b*x)^-9) @test integrate(x^-3*(a+b*x)^-10, x) == :(-1//2*a^-10*x^-2+-55*a^-12*b^2*log(a+b*x)+3*a^-7*b^2*(a+b*x)^-5+10*b*a^-11*x^-1+18*a^-10*b^2*(a+b*x)^-2+45*a^-11*b^2*(a+b*x)^-1+55*a^-12*b^2*log(x)+1//9*a^-3*b^2*(a+b*x)^-9+3//8*a^-4*b^2*(a+b*x)^-8+5//3*a^-6*b^2*(a+b*x)^-6+6//7*a^-5*b^2*(a+b*x)^-7+21//4*a^-8*b^2*(a+b*x)^-4+28//3*a^-9*b^2*(a+b*x)^-3) @test integrate(x^-4*(a+b*x)^-10, x) == :(-1//3*a^-10*x^-3+-220*a^-13*b^3*log(x)+-165*a^-12*b^3*(a+b*x)^-1+-60*a^-11*b^3*(a+b*x)^-2+-55*a^-12*b^2*x^-1+-28*a^-10*b^3*(a+b*x)^-3+-14*a^-9*b^3*(a+b*x)^-4+-7*a^-8*b^3*(a+b*x)^-5+5*b*a^-11*x^-2+220*a^-13*b^3*log(a+b*x)+-10//3*a^-7*b^3*(a+b*x)^-6+-10//7*a^-6*b^3*(a+b*x)^-7+-1//2*a^-5*b^3*(a+b*x)^-8+-1//9*a^-4*b^3*(a+b*x)^-9) @test integrate(x^-10*(a+b*x)^12, x) == :(-1//9*a^12*x^-9+1//3*b^12*x^3+-495*a^4*b^8*x^-1+-396*a^5*b^7*x^-2+-308*a^6*b^6*x^-3+-198*a^7*b^5*x^-4+-99*a^8*b^4*x^-5+6*a*b^11*x^2+66*x*a^2*b^10+220*a^3*b^9*log(x)+-110//3*a^9*b^3*x^-6+-66//7*a^10*b^2*x^-7+-3//2*b*a^11*x^-8) @test integrate(x^-10*(a+b*x)^11, x) == :((1/2)*b^11*x^2+-1//9*a^11*x^-9+-165*a^3*b^8*x^-1+-165*a^4*b^7*x^-2+-154*a^5*b^6*x^-3+-66*a^7*b^4*x^-5+11*a*x*b^10+55*a^2*b^9*log(x)+-231//2*a^6*b^5*x^-4+-55//2*a^8*b^3*x^-6+-55//7*a^9*b^2*x^-7+-11//8*b*a^10*x^-8) @test integrate(x^-10*(a+b*x)^10, x) == :(x*b^10+-1//9*a^10*x^-9+-70*a^4*b^6*x^-3+-63*a^5*b^5*x^-4+-60*a^3*b^7*x^-2+-45*a^2*b^8*x^-1+-42*a^6*b^4*x^-5+-20*a^7*b^3*x^-6+10*a*b^9*log(x)+-45//7*a^8*b^2*x^-7+-5//4*b*a^9*x^-8) @test integrate(x^-10*(a+b*x)^9, x) == :(b^9*log(x)+-1//9*a^9*x^-9+-28*a^3*b^6*x^-3+-18*a^2*b^7*x^-2+-14*a^6*b^3*x^-6+-9*a*b^8*x^-1+-126//5*a^5*b^4*x^-5+-63//2*a^4*b^5*x^-4+-36//7*a^7*b^2*x^-7+-9//8*b*a^8*x^-8) @test integrate(x^-10*(a+b*x)^8, x) == :(-1//9*a^-1*x^-9*(a+b*x)^9) @test integrate(x^-10*(a+b*x)^7, x) == :(-1//9*a^-1*x^-9*(a+b*x)^8+1//72*b*a^-2*x^-8*(a+b*x)^8) @test integrate(x^-10*(a+b*x)^6, x) == :(-1//9*a^-1*x^-9*(a+b*x)^7+-1//252*a^-3*b^2*x^-7*(a+b*x)^7+1//36*b*a^-2*x^-8*(a+b*x)^7) @test integrate(x^-10*(a+b*x)^5, x) == :(-1//4*b^5*x^-4+-1//9*a^5*x^-9+-1*a*b^4*x^-5+-10//7*a^3*b^2*x^-7+-5//3*a^2*b^3*x^-6+-5//8*b*a^4*x^-8) @test integrate(x^-10*(a+b*x)^4, x) == :(-1//5*b^4*x^-5+-1//9*a^4*x^-9+-6//7*a^2*b^2*x^-7+-2//3*a*b^3*x^-6+-1//2*b*a^3*x^-8) @test integrate(x^-10*(a+b*x)^3, x) == :(-1//6*b^3*x^-6+-1//9*a^3*x^-9+-3//7*a*b^2*x^-7+-3//8*b*a^2*x^-8) @test integrate(x^-10*(a+b*x)^2, x) == :(-1//7*b^2*x^-7+-1//9*a^2*x^-9+-1//4*a*b*x^-8) @test integrate(x^-10*(a+b*x), x) == :(-1//8*b*x^-8+-1//9*a*x^-9) @test integrate(x^-10, x) == :(-1//9*x^-9) @test integrate(x^-10*(a+b*x)^-1, x) == :(-1//9*a^-1*x^-9+a^-10*b^9*log(a+b*x)+(1/2)*a^-8*b^7*x^-2+-1*a^-10*b^9*log(x)+-1*a^-9*b^8*x^-1+-1//3*a^-7*b^6*x^-3+-1//5*a^-5*b^4*x^-5+-1//7*a^-3*b^2*x^-7+1//4*a^-6*b^5*x^-4+1//6*a^-4*b^3*x^-6+1//8*b*a^-2*x^-8) @test integrate(x^-10*(a+b*x)^-2, x) == :(-1//9*a^-2*x^-9+-1*a^-10*b^9*(a+b*x)^-1+-1*a^-6*b^4*x^-5+-10*a^-11*b^9*log(x)+-9*a^-10*b^8*x^-1+4*a^-9*b^7*x^-2+10*a^-11*b^9*log(a+b*x)+-7//3*a^-8*b^6*x^-3+-3//7*a^-4*b^2*x^-7+1//4*b*a^-3*x^-8+2//3*a^-5*b^3*x^-6+3//2*a^-7*b^5*x^-4) @test integrate(x^-10*(a+b*x)^-3, x) == :(-1//9*a^-3*x^-9+-55*a^-12*b^9*log(x)+-45*a^-11*b^8*x^-1+-10*a^-11*b^9*(a+b*x)^-1+-3*a^-7*b^4*x^-5+18*a^-10*b^7*x^-2+55*a^-12*b^9*log(a+b*x)+-28//3*a^-9*b^6*x^-3+-6//7*a^-5*b^2*x^-7+-1//2*a^-10*b^9*(a+b*x)^-2+3//8*b*a^-4*x^-8+5//3*a^-6*b^3*x^-6+21//4*a^-8*b^5*x^-4) @test integrate(x^-1*(2+3x)^-1, x) == :((1/2)*log(x)+-1//2*log(2+3x)) @test integrate(x^-1*(4+6x)^-1, x) == :(-1//4*log(2+3x)+1//4*log(x)) @test integrate(x^-2*(4+6x)^-1, x) == :(-3//8*log(x)+-1//4*x^-1+3//8*log(2+3x)) @test integrate(x^-3*(4+6x)^-1, x) == :(-9//16*log(2+3x)+-1//8*x^-2+3//8*x^-1+9//16*log(x)) @test integrate(x^-4*(4+6x)^-1, x) == :(-27//32*log(x)+-9//16*x^-1+-1//12*x^-3+3//16*x^-2+27//32*log(2+3x)) @test integrate(x^-5*(4+6x)^-1, x) == :(-81//64*log(2+3x)+-9//32*x^-2+-1//16*x^-4+1//8*x^-3+27//32*x^-1+81//64*log(x)) @test integrate(x^-1*(4+6x)^-2, x) == :((16+24x)^-1+-1//16*log(2+3x)+1//16*log(x)) @test integrate(x^-2*(4+6x)^-2, x) == :(-3*(32+48x)^-1+-3//16*log(x)+-1//16*x^-1+3//16*log(2+3x)) @test integrate(x^-3*(4+6x)^-2, x) == :(9*(64+96x)^-1+-27//64*log(2+3x)+-1//32*x^-2+3//16*x^-1+27//64*log(x)) @test integrate(x^-4*(4+6x)^-2, x) == :(-27*(128+192x)^-1+-27//32*log(x)+-27//64*x^-1+-1//48*x^-3+3//32*x^-2+27//32*log(2+3x)) @test integrate(x^-5*(4+6x)^-2, x) == :(81*(256+384x)^-1+-405//256*log(2+3x)+-27//128*x^-2+-1//64*x^-4+1//16*x^-3+27//32*x^-1+405//256*log(x)) @test integrate(x^-1*(4+6x)^-3, x) == :((64+96x)^-1+-1//64*log(2+3x)+1//32*(2+3x)^-2+1//64*log(x)) @test integrate(x^-2*(4+6x)^-3, x) == :(-3*(64+96x)^-1+-9//128*log(x)+-3//64*(2+3x)^-2+-1//64*x^-1+9//128*log(2+3x)) @test integrate(x^-3*(4+6x)^-3, x) == :(27*(256+384x)^-1+-27//128*log(2+3x)+-1//128*x^-2+9//128*x^-1+9//128*(2+3x)^-2+27//128*log(x)) @test integrate(x^-4*(4+6x)^-3, x) == :(-27*(128+192x)^-1+-135//256*log(x)+-27//128*x^-1+-27//256*(2+3x)^-2+-1//192*x^-3+9//256*x^-2+135//256*log(2+3x)) @test integrate(x^-5*(4+6x)^-3, x) == :(405*(1024+1536x)^-1+-1215//1024*log(2+3x)+-27//256*x^-2+-1//256*x^-4+3//128*x^-3+81//512*(2+3x)^-2+135//256*x^-1+1215//1024*log(x)) @test integrate((2+2x)^-1, x) == :((1/2)*log(1+x)) @test integrate((4+-6x)^-1, x) == :(-1//6*log(2+-3x)) @test integrate((a+x*a^(1/2))^-1, x) == :(a^-1//2*log(x+a^(1/2))) @test integrate((a+x*(-1a)^(1/2))^-1, x) == :((-1a)^-1//2*log(a+x*(-1a)^(1/2))) @test integrate((a^2+x*(-1a)^(1/2))^-1, x) == :((-1a)^-1//2*log(a^2+x*(-1a)^(1/2))) @test integrate((a^3+x*(-1a)^(1/2))^-1, x) == :((-1a)^-1//2*log(a^3+x*(-1a)^(1/2))) @test integrate((a^-1+x*(-1a)^(1/2))^-1, x) == :((-1a)^-1//2*log(1+-1*x*(-1a)^3//2)) @test integrate((a^-2+x*(-1a)^(1/2))^-1, x) == :((-1a)^-1//2*log(1+x*(-1a)^5//2)) @test integrate(x^-1*(1+b*x)^-1, x) == :(-1*log(1+b*x)+log(x)) @test integrate(x^-1*(-1+b*x)^-1, x) == :(-1*log(x)+log(1+-1*b*x)) @test integrate(x^-2*(1+b*x)^-1, x) == :(-1*x^-1+b*log(1+b*x)+-1*b*log(x)) @test integrate(x^-2*(-1+b*x)^-1, x) == :(x^-1+b*log(1+-1*b*x)+-1*b*log(x)) @test integrate(b*x^-1+x^-2*(1+b*x)^-1, x) == :(-1*x^-1+b*log(1+b*x)) @test integrate(x^3*(a+b*x)^(1/2), x) == :(2//9*b^-4*(a+b*x)^9//2+-6//7*a*b^-4*(a+b*x)^7//2+-2//3*a^3*b^-4*(a+b*x)^3//2+6//5*a^2*b^-4*(a+b*x)^5//2) @test integrate(x^2*(a+b*x)^(1/2), x) == :(2//7*b^-3*(a+b*x)^7//2+-4//5*a*b^-3*(a+b*x)^5//2+2//3*a^2*b^-3*(a+b*x)^3//2) @test integrate(x*(a+b*x)^(1/2), x) == :(2//5*b^-2*(a+b*x)^5//2+-2//3*a*b^-2*(a+b*x)^3//2) @test integrate((a+b*x)^(1/2), x) == :(2//3*b^-1*(a+b*x)^3//2) @test integrate(x^-1*(a+b*x)^(1/2), x) == :(2*(a+b*x)^(1/2)+-2*a^(1/2)*arctanh(a^-1//2*(a+b*x)^(1/2))) @test integrate(x^-2*(a+b*x)^(1/2), x) == :(-1*x^-1*(a+b*x)^(1/2)+-1*b*a^-1//2*arctanh(a^-1//2*(a+b*x)^(1/2))) @test integrate(x^-3*(a+b*x)^(1/2), x) == :(-1//2*x^-2*(a+b*x)^(1/2)+1//4*a^-3//2*b^2*arctanh(a^-1//2*(a+b*x)^(1/2))+-1//4*b*a^-1*x^-1*(a+b*x)^(1/2)) @test integrate(x^-4*(a+b*x)^(1/2), x) == :(-1//3*x^-3*(a+b*x)^(1/2)+-1//8*a^-5//2*b^3*arctanh(a^-1//2*(a+b*x)^(1/2))+-1//12*b*a^-1*x^-2*(a+b*x)^(1/2)+1//8*a^-2*b^2*x^-1*(a+b*x)^(1/2)) @test integrate(x^3*(a+b*x)^3//2, x) == :(2//11*b^-4*(a+b*x)^11//2+-2//3*a*b^-4*(a+b*x)^9//2+-2//5*a^3*b^-4*(a+b*x)^5//2+6//7*a^2*b^-4*(a+b*x)^7//2) @test integrate(x^2*(a+b*x)^3//2, x) == :(2//9*b^-3*(a+b*x)^9//2+-4//7*a*b^-3*(a+b*x)^7//2+2//5*a^2*b^-3*(a+b*x)^5//2) @test integrate(x*(a+b*x)^3//2, x) == :(2//7*b^-2*(a+b*x)^7//2+-2//5*a*b^-2*(a+b*x)^5//2) @test integrate((a+b*x)^3//2, x) == :(2//5*b^-1*(a+b*x)^5//2) @test integrate(x^-1*(a+b*x)^3//2, x) == :(2//3*(a+b*x)^3//2+-2*a^3//2*arctanh(a^-1//2*(a+b*x)^(1/2))+2*a*(a+b*x)^(1/2)) @test integrate(x^-2*(a+b*x)^3//2, x) == :(-1*x^-1*(a+b*x)^3//2+3*b*(a+b*x)^(1/2)+-3*b*a^(1/2)*arctanh(a^-1//2*(a+b*x)^(1/2))) @test integrate(x^-3*(a+b*x)^3//2, x) == :(-1//2*x^-2*(a+b*x)^3//2+-3//4*b*x^-1*(a+b*x)^(1/2)+-3//4*a^-1//2*b^2*arctanh(a^-1//2*(a+b*x)^(1/2))) @test integrate(x^-4*(a+b*x)^3//2, x) == :(-1//3*x^-3*(a+b*x)^3//2+-1//4*b*x^-2*(a+b*x)^(1/2)+1//8*a^-3//2*b^3*arctanh(a^-1//2*(a+b*x)^(1/2))+-1//8*a^-1*b^2*x^-1*(a+b*x)^(1/2)) @test integrate(x^3*(a+b*x)^5//2, x) == :(2//13*b^-4*(a+b*x)^13//2+-6//11*a*b^-4*(a+b*x)^11//2+-2//7*a^3*b^-4*(a+b*x)^7//2+2//3*a^2*b^-4*(a+b*x)^9//2) @test integrate(x^2*(a+b*x)^5//2, x) == :(2//11*b^-3*(a+b*x)^11//2+-4//9*a*b^-3*(a+b*x)^9//2+2//7*a^2*b^-3*(a+b*x)^7//2) @test integrate(x*(a+b*x)^5//2, x) == :(2//9*b^-2*(a+b*x)^9//2+-2//7*a*b^-2*(a+b*x)^7//2) @test integrate((a+b*x)^5//2, x) == :(2//7*b^-1*(a+b*x)^7//2) @test integrate(x^-1*(a+b*x)^5//2, x) == :(2//5*(a+b*x)^5//2+-2*a^5//2*arctanh(a^-1//2*(a+b*x)^(1/2))+2*a^2*(a+b*x)^(1/2)+2//3*a*(a+b*x)^3//2) @test integrate(x^-2*(a+b*x)^5//2, x) == :(-1*x^-1*(a+b*x)^5//2+5//3*b*(a+b*x)^3//2+-5*b*a^3//2*arctanh(a^-1//2*(a+b*x)^(1/2))+5*a*b*(a+b*x)^(1/2)) @test integrate(x^-3*(a+b*x)^5//2, x) == :(-1//2*x^-2*(a+b*x)^5//2+15//4*b^2*(a+b*x)^(1/2)+-15//4*a^(1/2)*b^2*arctanh(a^-1//2*(a+b*x)^(1/2))+-5//4*b*x^-1*(a+b*x)^3//2) @test integrate(x^-4*(a+b*x)^5//2, x) == :(-1//3*x^-3*(a+b*x)^5//2+-5//8*a^-1//2*b^3*arctanh(a^-1//2*(a+b*x)^(1/2))+-5//8*b^2*x^-1*(a+b*x)^(1/2)+-5//12*b*x^-2*(a+b*x)^3//2) @test integrate(x^-5*(a+b*x)^5//2, x) == :(-1//4*x^-4*(a+b*x)^5//2+-5//24*b*x^-3*(a+b*x)^3//2+-5//32*b^2*x^-2*(a+b*x)^(1/2)+5//64*a^-3//2*b^4*arctanh(a^-1//2*(a+b*x)^(1/2))+-5//64*a^-1*b^3*x^-1*(a+b*x)^(1/2)) @test integrate(x^7*(a+b*x)^9//2, x) == :(2//25*b^-8*(a+b*x)^25//2+2*a^2*b^-8*(a+b*x)^21//2+-70//19*a^3*b^-8*(a+b*x)^19//2+-14//5*a^5*b^-8*(a+b*x)^15//2+-14//23*a*b^-8*(a+b*x)^23//2+-2//11*a^7*b^-8*(a+b*x)^11//2+14//13*a^6*b^-8*(a+b*x)^13//2+70//17*a^4*b^-8*(a+b*x)^17//2) @test integrate(x^6*(a+b*x)^9//2, x) == :(2//23*b^-7*(a+b*x)^23//2+2*a^4*b^-7*(a+b*x)^15//2+-40//17*a^3*b^-7*(a+b*x)^17//2+-12//13*a^5*b^-7*(a+b*x)^13//2+-4//7*a*b^-7*(a+b*x)^21//2+2//11*a^6*b^-7*(a+b*x)^11//2+30//19*a^2*b^-7*(a+b*x)^19//2) @test integrate(x^5*(a+b*x)^9//2, x) == :(2//21*b^-6*(a+b*x)^21//2+-10//19*a*b^-6*(a+b*x)^19//2+-4//3*a^3*b^-6*(a+b*x)^15//2+-2//11*a^5*b^-6*(a+b*x)^11//2+10//13*a^4*b^-6*(a+b*x)^13//2+20//17*a^2*b^-6*(a+b*x)^17//2) @test integrate(x^4*(a+b*x)^9//2, x) == :(2//19*b^-5*(a+b*x)^19//2+-8//13*a^3*b^-5*(a+b*x)^13//2+-8//17*a*b^-5*(a+b*x)^17//2+2//11*a^4*b^-5*(a+b*x)^11//2+4//5*a^2*b^-5*(a+b*x)^15//2) @test integrate(x^3*(a+b*x)^9//2, x) == :(2//17*b^-4*(a+b*x)^17//2+-2//5*a*b^-4*(a+b*x)^15//2+-2//11*a^3*b^-4*(a+b*x)^11//2+6//13*a^2*b^-4*(a+b*x)^13//2) @test integrate(x^2*(a+b*x)^9//2, x) == :(2//15*b^-3*(a+b*x)^15//2+-4//13*a*b^-3*(a+b*x)^13//2+2//11*a^2*b^-3*(a+b*x)^11//2) @test integrate(x*(a+b*x)^9//2, x) == :(2//13*b^-2*(a+b*x)^13//2+-2//11*a*b^-2*(a+b*x)^11//2) @test integrate((a+b*x)^9//2, x) == :(2//11*b^-1*(a+b*x)^11//2) @test integrate(x^-1*(a+b*x)^9//2, x) == :(2//9*(a+b*x)^9//2+-2*a^9//2*arctanh(a^-1//2*(a+b*x)^(1/2))+2*a^4*(a+b*x)^(1/2)+2//3*a^3*(a+b*x)^3//2+2//5*a^2*(a+b*x)^5//2+2//7*a*(a+b*x)^7//2) @test integrate(x^-2*(a+b*x)^9//2, x) == :(-1*x^-1*(a+b*x)^9//2+9//7*b*(a+b*x)^7//2+-9*b*a^7//2*arctanh(a^-1//2*(a+b*x)^(1/2))+3*b*a^2*(a+b*x)^3//2+9*b*a^3*(a+b*x)^(1/2)+9//5*a*b*(a+b*x)^5//2) @test integrate(x^-3*(a+b*x)^9//2, x) == :(-1//2*x^-2*(a+b*x)^9//2+63//20*b^2*(a+b*x)^5//2+-63//4*a^5//2*b^2*arctanh(a^-1//2*(a+b*x)^(1/2))+-9//4*b*x^-1*(a+b*x)^7//2+21//4*a*b^2*(a+b*x)^3//2+63//4*a^2*b^2*(a+b*x)^(1/2)) @test integrate(x^-4*(a+b*x)^9//2, x) == :(-1//3*x^-3*(a+b*x)^9//2+35//8*b^3*(a+b*x)^3//2+-105//8*a^3//2*b^3*arctanh(a^-1//2*(a+b*x)^(1/2))+-21//8*b^2*x^-1*(a+b*x)^5//2+-3//4*b*x^-2*(a+b*x)^7//2+105//8*a*b^3*(a+b*x)^(1/2)) @test integrate(x^-5*(a+b*x)^9//2, x) == :(-1//4*x^-4*(a+b*x)^9//2+315//64*b^4*(a+b*x)^(1/2)+-315//64*a^(1/2)*b^4*arctanh(a^-1//2*(a+b*x)^(1/2))+-105//64*b^3*x^-1*(a+b*x)^3//2+-21//32*b^2*x^-2*(a+b*x)^5//2+-3//8*b*x^-3*(a+b*x)^7//2) @test integrate(x^-6*(a+b*x)^9//2, x) == :(-1//5*x^-5*(a+b*x)^9//2+-63//128*a^-1//2*b^5*arctanh(a^-1//2*(a+b*x)^(1/2))+-63//128*b^4*x^-1*(a+b*x)^(1/2)+-21//64*b^3*x^-2*(a+b*x)^3//2+-21//80*b^2*x^-3*(a+b*x)^5//2+-9//40*b*x^-4*(a+b*x)^7//2) @test integrate(x^-7*(a+b*x)^9//2, x) == :(-1//6*x^-6*(a+b*x)^9//2+-21//160*b^2*x^-4*(a+b*x)^5//2+-21//256*b^4*x^-2*(a+b*x)^(1/2)+-7//64*b^3*x^-3*(a+b*x)^3//2+-3//20*b*x^-5*(a+b*x)^7//2+21//512*a^-3//2*b^6*arctanh(a^-1//2*(a+b*x)^(1/2))+-21//512*a^-1*b^5*x^-1*(a+b*x)^(1/2)) @test integrate(x^-8*(a+b*x)^9//2, x) == :(-1//7*x^-7*(a+b*x)^9//2+-9//1024*a^-5//2*b^7*arctanh(a^-1//2*(a+b*x)^(1/2))+-3//28*b*x^-6*(a+b*x)^7//2+-3//40*b^2*x^-5*(a+b*x)^5//2+-3//64*b^3*x^-4*(a+b*x)^3//2+-3//128*b^4*x^-3*(a+b*x)^(1/2)+-3//512*a^-1*b^5*x^-2*(a+b*x)^(1/2)+9//1024*a^-2*b^6*x^-1*(a+b*x)^(1/2)) @test integrate(x^-1*(-1a+b*x)^(1/2), x) == :(2*(-1a+b*x)^(1/2)+-2*a^(1/2)*arctan(a^-1//2*(-1a+b*x)^(1/2))) @test integrate(x^-2*(-1a+b*x)^(1/2), x) == :(-1*x^-1*(-1a+b*x)^(1/2)+b*a^-1//2*arctan(a^-1//2*(-1a+b*x)^(1/2))) @test integrate(x^-3*(-1a+b*x)^(1/2), x) == :(-1//2*x^-2*(-1a+b*x)^(1/2)+1//4*a^-3//2*b^2*arctan(a^-1//2*(-1a+b*x)^(1/2))+1//4*b*a^-1*x^-1*(-1a+b*x)^(1/2)) @test integrate(x^-1*(-1a+b*x)^3//2, x) == :(2//3*(-1a+b*x)^3//2+-2*a*(-1a+b*x)^(1/2)+2*a^3//2*arctan(a^-1//2*(-1a+b*x)^(1/2))) @test integrate(x^-2*(-1a+b*x)^3//2, x) == :(-1*x^-1*(-1a+b*x)^3//2+3*b*(-1a+b*x)^(1/2)+-3*b*a^(1/2)*arctan(a^-1//2*(-1a+b*x)^(1/2))) @test integrate(x^-3*(-1a+b*x)^3//2, x) == :(-1//2*x^-2*(-1a+b*x)^3//2+-3//4*b*x^-1*(-1a+b*x)^(1/2)+3//4*a^-1//2*b^2*arctan(a^-1//2*(-1a+b*x)^(1/2))) @test integrate(x^-1*(-1a+b*x)^5//2, x) == :(2//5*(-1a+b*x)^5//2+-2*a^5//2*arctan(a^-1//2*(-1a+b*x)^(1/2))+2*a^2*(-1a+b*x)^(1/2)+-2//3*a*(-1a+b*x)^3//2) @test integrate(x^-2*(-1a+b*x)^5//2, x) == :(-1*x^-1*(-1a+b*x)^5//2+5//3*b*(-1a+b*x)^3//2+-5*a*b*(-1a+b*x)^(1/2)+5*b*a^3//2*arctan(a^-1//2*(-1a+b*x)^(1/2))) @test integrate(x^-3*(-1a+b*x)^5//2, x) == :(-1//2*x^-2*(-1a+b*x)^5//2+15//4*b^2*(-1a+b*x)^(1/2)+-15//4*a^(1/2)*b^2*arctan(a^-1//2*(-1a+b*x)^(1/2))+-5//4*b*x^-1*(-1a+b*x)^3//2) @test integrate(x^4*(a+b*x)^-1//2, x) == :(2//9*b^-5*(a+b*x)^9//2+2*a^4*b^-5*(a+b*x)^(1/2)+-8//3*a^3*b^-5*(a+b*x)^3//2+-8//7*a*b^-5*(a+b*x)^7//2+12//5*a^2*b^-5*(a+b*x)^5//2) @test integrate(x^3*(a+b*x)^-1//2, x) == :(2//7*b^-4*(a+b*x)^7//2+-2*a^3*b^-4*(a+b*x)^(1/2)+2*a^2*b^-4*(a+b*x)^3//2+-6//5*a*b^-4*(a+b*x)^5//2) @test integrate(x^2*(a+b*x)^-1//2, x) == :(2//5*b^-3*(a+b*x)^5//2+2*a^2*b^-3*(a+b*x)^(1/2)+-4//3*a*b^-3*(a+b*x)^3//2) @test integrate(x*(a+b*x)^-1//2, x) == :(2//3*b^-2*(a+b*x)^3//2+-2*a*b^-2*(a+b*x)^(1/2)) @test integrate((a+b*x)^-1//2, x) == :(2*b^-1*(a+b*x)^(1/2)) @test integrate(x^-1*(a+b*x)^-1//2, x) == :(-2*a^-1//2*arctanh(a^-1//2*(a+b*x)^(1/2))) @test integrate(x^-2*(a+b*x)^-1//2, x) == :(b*a^-3//2*arctanh(a^-1//2*(a+b*x)^(1/2))+-1*a^-1*x^-1*(a+b*x)^(1/2)) @test integrate(x^-3*(a+b*x)^-1//2, x) == :(-3//4*a^-5//2*b^2*arctanh(a^-1//2*(a+b*x)^(1/2))+-1//2*a^-1*x^-2*(a+b*x)^(1/2)+3//4*b*a^-2*x^-1*(a+b*x)^(1/2)) @test integrate(x^-4*(a+b*x)^-1//2, x) == :(-1//3*a^-1*x^-3*(a+b*x)^(1/2)+5//8*a^-7//2*b^3*arctanh(a^-1//2*(a+b*x)^(1/2))+-5//8*a^-3*b^2*x^-1*(a+b*x)^(1/2)+5//12*b*a^-2*x^-2*(a+b*x)^(1/2)) @test integrate(x^4*(a+b*x)^-3//2, x) == :(2//7*b^-5*(a+b*x)^7//2+-8*a^3*b^-5*(a+b*x)^(1/2)+-2*a^4*b^-5*(a+b*x)^-1//2+4*a^2*b^-5*(a+b*x)^3//2+-8//5*a*b^-5*(a+b*x)^5//2) @test integrate(x^3*(a+b*x)^-3//2, x) == :(2//5*b^-4*(a+b*x)^5//2+-2*a*b^-4*(a+b*x)^3//2+2*a^3*b^-4*(a+b*x)^-1//2+6*a^2*b^-4*(a+b*x)^(1/2)) @test integrate(x^2*(a+b*x)^-3//2, x) == :(2//3*b^-3*(a+b*x)^3//2+-4*a*b^-3*(a+b*x)^(1/2)+-2*a^2*b^-3*(a+b*x)^-1//2) @test integrate(x*(a+b*x)^-3//2, x) == :(2*b^-2*(a+b*x)^(1/2)+2*a*b^-2*(a+b*x)^-1//2) @test integrate((a+b*x)^-3//2, x) == :(-2*b^-1*(a+b*x)^-1//2) @test integrate(x^-1*(a+b*x)^-3//2, x) == :(-2*a^-3//2*arctanh(a^-1//2*(a+b*x)^(1/2))+2*a^-1*(a+b*x)^-1//2) @test integrate(x^-2*(a+b*x)^-3//2, x) == :(-1*a^-1*x^-1*(a+b*x)^-1//2+-3*b*a^-2*(a+b*x)^-1//2+3*b*a^-5//2*arctanh(a^-1//2*(a+b*x)^(1/2))) @test integrate(x^-3*(a+b*x)^-3//2, x) == :(-15//4*a^-7//2*b^2*arctanh(a^-1//2*(a+b*x)^(1/2))+-1//2*a^-1*x^-2*(a+b*x)^-1//2+15//4*a^-3*b^2*(a+b*x)^-1//2+5//4*b*a^-2*x^-1*(a+b*x)^-1//2) @test integrate(x^4*(a+b*x)^-5//2, x) == :(2//5*b^-5*(a+b*x)^5//2+8*a^3*b^-5*(a+b*x)^-1//2+12*a^2*b^-5*(a+b*x)^(1/2)+-8//3*a*b^-5*(a+b*x)^3//2+-2//3*a^4*b^-5*(a+b*x)^-3//2) @test integrate(x^3*(a+b*x)^-5//2, x) == :(2//3*b^-4*(a+b*x)^3//2+-6*a*b^-4*(a+b*x)^(1/2)+-6*a^2*b^-4*(a+b*x)^-1//2+2//3*a^3*b^-4*(a+b*x)^-3//2) @test integrate(x^2*(a+b*x)^-5//2, x) == :(2*b^-3*(a+b*x)^(1/2)+4*a*b^-3*(a+b*x)^-1//2+-2//3*a^2*b^-3*(a+b*x)^-3//2) @test integrate(x*(a+b*x)^-5//2, x) == :(-2*b^-2*(a+b*x)^-1//2+2//3*a*b^-2*(a+b*x)^-3//2) @test integrate((a+b*x)^-5//2, x) == :(-2//3*b^-1*(a+b*x)^-3//2) @test integrate(x^-1*(a+b*x)^-5//2, x) == :(-2*a^-5//2*arctanh(a^-1//2*(a+b*x)^(1/2))+2*a^-2*(a+b*x)^-1//2+2//3*a^-1*(a+b*x)^-3//2) @test integrate(x^-2*(a+b*x)^-5//2, x) == :(-1*a^-1*x^-1*(a+b*x)^-3//2+-5*b*a^-3*(a+b*x)^-1//2+5*b*a^-7//2*arctanh(a^-1//2*(a+b*x)^(1/2))+-5//3*b*a^-2*(a+b*x)^-3//2) @test integrate(x^-3*(a+b*x)^-5//2, x) == :(-35//4*a^-9//2*b^2*arctanh(a^-1//2*(a+b*x)^(1/2))+-1//2*a^-1*x^-2*(a+b*x)^-3//2+35//4*a^-4*b^2*(a+b*x)^-1//2+35//12*a^-3*b^2*(a+b*x)^-3//2+7//4*b*a^-2*x^-1*(a+b*x)^-3//2) @test integrate(x^-1*(-1a+b*x)^-1//2, x) == :(2*a^-1//2*arctan(a^-1//2*(-1a+b*x)^(1/2))) @test integrate(x^-2*(-1a+b*x)^-1//2, x) == :(b*a^-3//2*arctan(a^-1//2*(-1a+b*x)^(1/2))+a^-1*x^-1*(-1a+b*x)^(1/2)) @test integrate(x^-3*(-1a+b*x)^-1//2, x) == :((1/2)*a^-1*x^-2*(-1a+b*x)^(1/2)+3//4*a^-5//2*b^2*arctan(a^-1//2*(-1a+b*x)^(1/2))+3//4*b*a^-2*x^-1*(-1a+b*x)^(1/2)) @test integrate(x^-1*(-1a+b*x)^-3//2, x) == :(-2*a^-1*(-1a+b*x)^-1//2+-2*a^-3//2*arctan(a^-1//2*(-1a+b*x)^(1/2))) @test integrate(x^-2*(-1a+b*x)^-3//2, x) == :(a^-1*x^-1*(-1a+b*x)^-1//2+-3*b*a^-2*(-1a+b*x)^-1//2+-3*b*a^-5//2*arctan(a^-1//2*(-1a+b*x)^(1/2))) @test integrate(x^-3*(-1a+b*x)^-3//2, x) == :((1/2)*a^-1*x^-2*(-1a+b*x)^-1//2+-15//4*a^-3*b^2*(-1a+b*x)^-1//2+-15//4*a^-7//2*b^2*arctan(a^-1//2*(-1a+b*x)^(1/2))+5//4*b*a^-2*x^-1*(-1a+b*x)^-1//2) @test integrate(x^-1*(-1a+b*x)^-5//2, x) == :(2*a^-2*(-1a+b*x)^-1//2+2*a^-5//2*arctan(a^-1//2*(-1a+b*x)^(1/2))+-2//3*a^-1*(-1a+b*x)^-3//2) @test integrate(x^-2*(-1a+b*x)^-5//2, x) == :(a^-1*x^-1*(-1a+b*x)^-3//2+5*b*a^-3*(-1a+b*x)^-1//2+5*b*a^-7//2*arctan(a^-1//2*(-1a+b*x)^(1/2))+-5//3*b*a^-2*(-1a+b*x)^-3//2) @test integrate(x^-3*(-1a+b*x)^-5//2, x) == :((1/2)*a^-1*x^-2*(-1a+b*x)^-3//2+-35//12*a^-3*b^2*(-1a+b*x)^-3//2+35//4*a^-4*b^2*(-1a+b*x)^-1//2+35//4*a^-9//2*b^2*arctan(a^-1//2*(-1a+b*x)^(1/2))+7//4*b*a^-2*x^-1*(-1a+b*x)^-3//2) @test integrate((1/2)*x^(-1+m)*(a+b*x)^-3//2*(2*a*m+b*x*(-1+2m)), x) == :(x^m*(a+b*x)^-1//2) @test integrate(m*x^(-1+m)*(a+b*x)^-1//2+-1//2*b*x^m*(a+b*x)^-3//2, x) == :(x^m*(a+b*x)^-1//2) @test integrate(x^-1*(a+b*x)^-1//2, x) == :(-2*a^-1//2*arctanh(a^-1//2*(a+b*x)^(1/2))) @test integrate(x^3*(a+b*x)^1//3, x) == :(3//13*b^-4*(a+b*x)^13//3+-9//10*a*b^-4*(a+b*x)^10//3+-3//4*a^3*b^-4*(a+b*x)^4//3+9//7*a^2*b^-4*(a+b*x)^7//3) @test integrate(x^2*(a+b*x)^1//3, x) == :(3//10*b^-3*(a+b*x)^10//3+-6//7*a*b^-3*(a+b*x)^7//3+3//4*a^2*b^-3*(a+b*x)^4//3) @test integrate(x*(a+b*x)^1//3, x) == :(3//7*b^-2*(a+b*x)^7//3+-3//4*a*b^-2*(a+b*x)^4//3) @test integrate((a+b*x)^1//3, x) == :(3//4*b^-1*(a+b*x)^4//3) @test integrate(x^-1*(a+b*x)^1//3, x) == :(3*(a+b*x)^1//3+-1//2*a^1//3*log(x)+3//2*a^1//3*log(a^1//3+-1*(a+b*x)^1//3)+-1*3^(1/2)*a^1//3*arctan(1//3*3^(1/2)*a^-1//3*(a^1//3+2*(a+b*x)^1//3))) @test integrate(x^-2*(a+b*x)^1//3, x) == :(-1*x^-1*(a+b*x)^1//3+(1/2)*b*a^-2//3*log(a^1//3+-1*(a+b*x)^1//3)+-1//6*b*a^-2//3*log(x)+-1//3*b*3^(1/2)*a^-2//3*arctan(1//3*3^(1/2)*a^-1//3*(a^1//3+2*(a+b*x)^1//3))) @test integrate(x^-3*(a+b*x)^1//3, x) == :(-1//2*x^-2*(a+b*x)^1//3+-1//6*a^-5//3*b^2*log(a^1//3+-1*(a+b*x)^1//3)+1//18*a^-5//3*b^2*log(x)+-1//6*b*a^-1*x^-1*(a+b*x)^1//3+1//9*3^(1/2)*a^-5//3*b^2*arctan(1//3*3^(1/2)*a^-1//3*(a^1//3+2*(a+b*x)^1//3))) @test integrate(x^3*(a+b*x)^2//3, x) == :(3//14*b^-4*(a+b*x)^14//3+-9//11*a*b^-4*(a+b*x)^11//3+-3//5*a^3*b^-4*(a+b*x)^5//3+9//8*a^2*b^-4*(a+b*x)^8//3) @test integrate(x^2*(a+b*x)^2//3, x) == :(3//11*b^-3*(a+b*x)^11//3+-3//4*a*b^-3*(a+b*x)^8//3+3//5*a^2*b^-3*(a+b*x)^5//3) @test integrate(x*(a+b*x)^2//3, x) == :(3//8*b^-2*(a+b*x)^8//3+-3//5*a*b^-2*(a+b*x)^5//3) @test integrate((a+b*x)^2//3, x) == :(3//5*b^-1*(a+b*x)^5//3) @test integrate(x^-1*(a+b*x)^2//3, x) == :(3//2*(a+b*x)^2//3+-1//2*a^2//3*log(x)+3//2*a^2//3*log(a^1//3+-1*(a+b*x)^1//3)+3^(1/2)*a^2//3*arctan(1//3*3^(1/2)*a^-1//3*(a^1//3+2*(a+b*x)^1//3))) @test integrate(x^-2*(a+b*x)^2//3, x) == :(-1*x^-1*(a+b*x)^2//3+b*a^-1//3*log(a^1//3+-1*(a+b*x)^1//3)+-1//3*b*a^-1//3*log(x)+2//3*b*3^(1/2)*a^-1//3*arctan(1//3*3^(1/2)*a^-1//3*(a^1//3+2*(a+b*x)^1//3))) @test integrate(x^-3*(a+b*x)^2//3, x) == :(-1//2*x^-2*(a+b*x)^2//3+-1//6*a^-4//3*b^2*log(a^1//3+-1*(a+b*x)^1//3)+1//18*a^-4//3*b^2*log(x)+-1//3*b*a^-1*x^-1*(a+b*x)^2//3+-1//9*3^(1/2)*a^-4//3*b^2*arctan(1//3*3^(1/2)*a^-1//3*(a^1//3+2*(a+b*x)^1//3))) @test integrate(x^3*(a+b*x)^4//3, x) == :(3//16*b^-4*(a+b*x)^16//3+-9//13*a*b^-4*(a+b*x)^13//3+-3//7*a^3*b^-4*(a+b*x)^7//3+9//10*a^2*b^-4*(a+b*x)^10//3) @test integrate(x^2*(a+b*x)^4//3, x) == :(3//13*b^-3*(a+b*x)^13//3+-3//5*a*b^-3*(a+b*x)^10//3+3//7*a^2*b^-3*(a+b*x)^7//3) @test integrate(x*(a+b*x)^4//3, x) == :(3//10*b^-2*(a+b*x)^10//3+-3//7*a*b^-2*(a+b*x)^7//3) @test integrate((a+b*x)^4//3, x) == :(3//7*b^-1*(a+b*x)^7//3) @test integrate(x^-1*(a+b*x)^4//3, x) == :(3//4*(a+b*x)^4//3+3*a*(a+b*x)^1//3+-1//2*a^4//3*log(x)+3//2*a^4//3*log(a^1//3+-1*(a+b*x)^1//3)+-1*3^(1/2)*a^4//3*arctan(1//3*3^(1/2)*a^-1//3*(a^1//3+2*(a+b*x)^1//3))) @test integrate(x^-2*(a+b*x)^4//3, x) == :(-1*x^-1*(a+b*x)^4//3+4*b*(a+b*x)^1//3+2*b*a^1//3*log(a^1//3+-1*(a+b*x)^1//3)+-2//3*b*a^1//3*log(x)+-4//3*b*3^(1/2)*a^1//3*arctan(1//3*3^(1/2)*a^-1//3*(a^1//3+2*(a+b*x)^1//3))) @test integrate(x^-3*(a+b*x)^4//3, x) == :(-1//2*x^-2*(a+b*x)^4//3+-2//3*b*x^-1*(a+b*x)^1//3+-1//9*a^-2//3*b^2*log(x)+1//3*a^-2//3*b^2*log(a^1//3+-1*(a+b*x)^1//3)+-2//9*3^(1/2)*a^-2//3*b^2*arctan(1//3*3^(1/2)*a^-1//3*(a^1//3+2*(a+b*x)^1//3))) @test integrate(x^3*(a+b*x)^-1//3, x) == :(3//11*b^-4*(a+b*x)^11//3+-9//8*a*b^-4*(a+b*x)^8//3+-3//2*a^3*b^-4*(a+b*x)^2//3+9//5*a^2*b^-4*(a+b*x)^5//3) @test integrate(x^2*(a+b*x)^-1//3, x) == :(3//8*b^-3*(a+b*x)^8//3+-6//5*a*b^-3*(a+b*x)^5//3+3//2*a^2*b^-3*(a+b*x)^2//3) @test integrate(x*(a+b*x)^-1//3, x) == :(3//5*b^-2*(a+b*x)^5//3+-3//2*a*b^-2*(a+b*x)^2//3) @test integrate((a+b*x)^-1//3, x) == :(3//2*b^-1*(a+b*x)^2//3) @test integrate(x^-1*(a+b*x)^-1//3, x) == :(-1//2*a^-1//3*log(x)+3//2*a^-1//3*log(a^1//3+-1*(a+b*x)^1//3)+3^(1/2)*a^-1//3*arctan(1//3*3^(1/2)*a^-1//3*(a^1//3+2*(a+b*x)^1//3))) @test integrate(x^-2*(a+b*x)^-1//3, x) == :(-1*a^-1*x^-1*(a+b*x)^2//3+-1//2*b*a^-4//3*log(a^1//3+-1*(a+b*x)^1//3)+1//6*b*a^-4//3*log(x)+-1//3*b*3^(1/2)*a^-4//3*arctan(1//3*3^(1/2)*a^-1//3*(a^1//3+2*(a+b*x)^1//3))) @test integrate(x^-3*(a+b*x)^-1//3, x) == :(-1//2*a^-1*x^-2*(a+b*x)^2//3+-1//9*a^-7//3*b^2*log(x)+1//3*a^-7//3*b^2*log(a^1//3+-1*(a+b*x)^1//3)+2//3*b*a^-2*x^-1*(a+b*x)^2//3+2//9*3^(1/2)*a^-7//3*b^2*arctan(1//3*3^(1/2)*a^-1//3*(a^1//3+2*(a+b*x)^1//3))) @test integrate(x^3*(-1a+b*x)^-1//3, x) == :(3//11*b^-4*(-1a+b*x)^11//3+3//2*a^3*b^-4*(-1a+b*x)^2//3+9//5*a^2*b^-4*(-1a+b*x)^5//3+9//8*a*b^-4*(-1a+b*x)^8//3) @test integrate(x^2*(-1a+b*x)^-1//3, x) == :(3//8*b^-3*(-1a+b*x)^8//3+3//2*a^2*b^-3*(-1a+b*x)^2//3+6//5*a*b^-3*(-1a+b*x)^5//3) @test integrate(x*(-1a+b*x)^-1//3, x) == :(3//5*b^-2*(-1a+b*x)^5//3+3//2*a*b^-2*(-1a+b*x)^2//3) @test integrate((-1a+b*x)^-1//3, x) == :(3//2*b^-1*(-1a+b*x)^2//3) @test integrate(x^-1*(-1a+b*x)^-1//3, x) == :((1/2)*a^-1//3*log(x)+-3//2*a^-1//3*log(a^1//3+(-1a+b*x)^1//3)+-1*3^(1/2)*a^-1//3*arctan(1//3*3^(1/2)*a^-1//3*(a^1//3+-2*(-1a+b*x)^1//3))) @test integrate(x^-2*(-1a+b*x)^-1//3, x) == :(a^-1*x^-1*(-1a+b*x)^2//3+-1//2*b*a^-4//3*log(a^1//3+(-1a+b*x)^1//3)+1//6*b*a^-4//3*log(x)+-1//3*b*3^(1/2)*a^-4//3*arctan(1//3*3^(1/2)*a^-1//3*(a^1//3+-2*(-1a+b*x)^1//3))) @test integrate(x^-3*(-1a+b*x)^-1//3, x) == :((1/2)*a^-1*x^-2*(-1a+b*x)^2//3+-1//3*a^-7//3*b^2*log(a^1//3+(-1a+b*x)^1//3)+1//9*a^-7//3*b^2*log(x)+-2//9*3^(1/2)*a^-7//3*b^2*arctan(1//3*3^(1/2)*a^-1//3*(a^1//3+-2*(-1a+b*x)^1//3))+2//3*b*a^-2*x^-1*(-1a+b*x)^2//3) @test integrate(x^3*(a+b*x)^-2//3, x) == :(3//10*b^-4*(a+b*x)^10//3+-3*a^3*b^-4*(a+b*x)^1//3+-9//7*a*b^-4*(a+b*x)^7//3+9//4*a^2*b^-4*(a+b*x)^4//3) @test integrate(x^2*(a+b*x)^-2//3, x) == :(3//7*b^-3*(a+b*x)^7//3+3*a^2*b^-3*(a+b*x)^1//3+-3//2*a*b^-3*(a+b*x)^4//3) @test integrate(x*(a+b*x)^-2//3, x) == :(3//4*b^-2*(a+b*x)^4//3+-3*a*b^-2*(a+b*x)^1//3) @test integrate((a+b*x)^-2//3, x) == :(3*b^-1*(a+b*x)^1//3) @test integrate(x^-1*(a+b*x)^-2//3, x) == :(-1//2*a^-2//3*log(x)+3//2*a^-2//3*log(a^1//3+-1*(a+b*x)^1//3)+-1*3^(1/2)*a^-2//3*arctan(1//3*3^(1/2)*a^-1//3*(a^1//3+2*(a+b*x)^1//3))) @test integrate(x^-2*(a+b*x)^-2//3, x) == :(-1*b*a^-5//3*log(a^1//3+-1*(a+b*x)^1//3)+-1*a^-1*x^-1*(a+b*x)^1//3+1//3*b*a^-5//3*log(x)+2//3*b*3^(1/2)*a^-5//3*arctan(1//3*3^(1/2)*a^-1//3*(a^1//3+2*(a+b*x)^1//3))) @test integrate(x^-3*(a+b*x)^-2//3, x) == :(-5//18*a^-8//3*b^2*log(x)+-1//2*a^-1*x^-2*(a+b*x)^1//3+5//6*a^-8//3*b^2*log(a^1//3+-1*(a+b*x)^1//3)+-5//9*3^(1/2)*a^-8//3*b^2*arctan(1//3*3^(1/2)*a^-1//3*(a^1//3+2*(a+b*x)^1//3))+5//6*b*a^-2*x^-1*(a+b*x)^1//3) @test integrate(x^3*(a+b*x)^-4//3, x) == :(3//8*b^-4*(a+b*x)^8//3+3*a^3*b^-4*(a+b*x)^-1//3+-9//5*a*b^-4*(a+b*x)^5//3+9//2*a^2*b^-4*(a+b*x)^2//3) @test integrate(x^2*(a+b*x)^-4//3, x) == :(3//5*b^-3*(a+b*x)^5//3+-3*a*b^-3*(a+b*x)^2//3+-3*a^2*b^-3*(a+b*x)^-1//3) @test integrate(x*(a+b*x)^-4//3, x) == :(3//2*b^-2*(a+b*x)^2//3+3*a*b^-2*(a+b*x)^-1//3) @test integrate((a+b*x)^-4//3, x) == :(-3*b^-1*(a+b*x)^-1//3) @test integrate(x^-1*(a+b*x)^-4//3, x) == :(3*a^-1*(a+b*x)^-1//3+-1//2*a^-4//3*log(x)+3//2*a^-4//3*log(a^1//3+-1*(a+b*x)^1//3)+3^(1/2)*a^-4//3*arctan(1//3*3^(1/2)*a^-1//3*(a^1//3+2*(a+b*x)^1//3))) @test integrate(x^-2*(a+b*x)^-4//3, x) == :(-1*a^-1*x^-1*(a+b*x)^-1//3+-4*b*a^-2*(a+b*x)^-1//3+-2*b*a^-7//3*log(a^1//3+-1*(a+b*x)^1//3)+2//3*b*a^-7//3*log(x)+-4//3*b*3^(1/2)*a^-7//3*arctan(1//3*3^(1/2)*a^-1//3*(a^1//3+2*(a+b*x)^1//3))) @test integrate(x^-3*(a+b*x)^-4//3, x) == :(-7//9*a^-10//3*b^2*log(x)+-1//2*a^-1*x^-2*(a+b*x)^-1//3+7//3*a^-10//3*b^2*log(a^1//3+-1*(a+b*x)^1//3)+14//3*a^-3*b^2*(a+b*x)^-1//3+7//6*b*a^-2*x^-1*(a+b*x)^-1//3+14//9*3^(1/2)*a^-10//3*b^2*arctan(1//3*3^(1/2)*a^-1//3*(a^1//3+2*(a+b*x)^1//3))) @test integrate(x^-1*(a^3+x*b^3)^-1//3, x) == :(-1//2*a^-1*log(x)+3//2*a^-1*log(a+-1*(a^3+x*b^3)^1//3)+3^(1/2)*a^-1*arctan(1//3*3^(1/2)*a^-1*(a+2*(a^3+x*b^3)^1//3))) @test integrate(x^-1*(a^3+-1*x*b^3)^-1//3, x) == :(-1//2*a^-1*log(x)+3//2*a^-1*log(a+-1*(a^3+-1*x*b^3)^1//3)+3^(1/2)*a^-1*arctan(1//3*3^(1/2)*a^-1*(a+2*(a^3+-1*x*b^3)^1//3))) @test integrate(x^-1*(-1*a^3+x*b^3)^-1//3, x) == :((1/2)*a^-1*log(x)+-3//2*a^-1*log(a+(-1*a^3+x*b^3)^1//3)+-1*3^(1/2)*a^-1*arctan(1//3*3^(1/2)*a^-1*(a+-2*(-1*a^3+x*b^3)^1//3))) @test integrate(x^-1*(-1*a^3+-1*x*b^3)^-1//3, x) == :((1/2)*a^-1*log(x)+-3//2*a^-1*log(a+(-1*a^3+-1*x*b^3)^1//3)+-1*3^(1/2)*a^-1*arctan(1//3*3^(1/2)*a^-1*(a+-2*(-1*a^3+-1*x*b^3)^1//3))) @test integrate(x^-1*(a^3+x*b^3)^-2//3, x) == :(-1//2*a^-2*log(x)+3//2*a^-2*log(a+-1*(a^3+x*b^3)^1//3)+-1*3^(1/2)*a^-2*arctan(1//3*3^(1/2)*a^-1*(a+2*(a^3+x*b^3)^1//3))) @test integrate(x^-1*(a^3+-1*x*b^3)^-2//3, x) == :(-1//2*a^-2*log(x)+3//2*a^-2*log(a+-1*(a^3+-1*x*b^3)^1//3)+-1*3^(1/2)*a^-2*arctan(1//3*3^(1/2)*a^-1*(a+2*(a^3+-1*x*b^3)^1//3))) @test integrate(x^-1*(-1*a^3+x*b^3)^-2//3, x) == :(-1//2*a^-2*log(x)+3//2*a^-2*log(a+(-1*a^3+x*b^3)^1//3)+-1*3^(1/2)*a^-2*arctan(1//3*3^(1/2)*a^-1*(a+-2*(-1*a^3+x*b^3)^1//3))) @test integrate(x^-1*(-1*a^3+-1*x*b^3)^-2//3, x) == :(-1//2*a^-2*log(x)+3//2*a^-2*log(a+(-1*a^3+-1*x*b^3)^1//3)+-1*3^(1/2)*a^-2*arctan(1//3*3^(1/2)*a^-1*(a+-2*(-1*a^3+-1*x*b^3)^1//3))) @test integrate(x^m*(a+b*x), x) == :(a*x^(1+m)*(1+m)^-1+b*x^(2+m)*(2+m)^-1) @test integrate(x^5//2*(a+b*x), x) == :(2//7*a*x^7//2+2//9*b*x^9//2) @test integrate(x^3//2*(a+b*x), x) == :(2//5*a*x^5//2+2//7*b*x^7//2) @test integrate(x^(1/2)*(a+b*x), x) == :(2//3*a*x^3//2+2//5*b*x^5//2) @test integrate(x^-1//2*(a+b*x), x) == :(2*a*x^(1/2)+2//3*b*x^3//2) @test integrate(x^-3//2*(a+b*x), x) == :(-2*a*x^-1//2+2*b*x^(1/2)) @test integrate(x^-5//2*(a+b*x), x) == :(-2*b*x^-1//2+-2//3*a*x^-3//2) @test integrate(x^m*(a+b*x)^2, x) == :(a^2*x^(1+m)*(1+m)^-1+b^2*x^(3+m)*(3+m)^-1+2*a*b*x^(2+m)*(2+m)^-1) @test integrate(x^5//2*(a+b*x)^2, x) == :(2//7*a^2*x^7//2+2//11*b^2*x^11//2+4//9*a*b*x^9//2) @test integrate(x^3//2*(a+b*x)^2, x) == :(2//5*a^2*x^5//2+2//9*b^2*x^9//2+4//7*a*b*x^7//2) @test integrate(x^(1/2)*(a+b*x)^2, x) == :(2//3*a^2*x^3//2+2//7*b^2*x^7//2+4//5*a*b*x^5//2) @test integrate(x^-1//2*(a+b*x)^2, x) == :(2*a^2*x^(1/2)+2//5*b^2*x^5//2+4//3*a*b*x^3//2) @test integrate(x^-3//2*(a+b*x)^2, x) == :(-2*a^2*x^-1//2+2//3*b^2*x^3//2+4*a*b*x^(1/2)) @test integrate(x^-5//2*(a+b*x)^2, x) == :(2*b^2*x^(1/2)+-2//3*a^2*x^-3//2+-4*a*b*x^-1//2) @test integrate(x^m*(a+b*x)^3, x) == :(a^3*x^(1+m)*(1+m)^-1+b^3*x^(4+m)*(4+m)^-1+3*a*b^2*x^(3+m)*(3+m)^-1+3*b*a^2*x^(2+m)*(2+m)^-1) @test integrate(x^5//2*(a+b*x)^3, x) == :(2//7*a^3*x^7//2+2//13*b^3*x^13//2+2//3*b*a^2*x^9//2+6//11*a*b^2*x^11//2) @test integrate(x^3//2*(a+b*x)^3, x) == :(2//5*a^3*x^5//2+2//11*b^3*x^11//2+2//3*a*b^2*x^9//2+6//7*b*a^2*x^7//2) @test integrate(x^(1/2)*(a+b*x)^3, x) == :(2//3*a^3*x^3//2+2//9*b^3*x^9//2+6//5*b*a^2*x^5//2+6//7*a*b^2*x^7//2) @test integrate(x^-1//2*(a+b*x)^3, x) == :(2*a^3*x^(1/2)+2//7*b^3*x^7//2+2*b*a^2*x^3//2+6//5*a*b^2*x^5//2) @test integrate(x^-3//2*(a+b*x)^3, x) == :(-2*a^3*x^-1//2+2//5*b^3*x^5//2+2*a*b^2*x^3//2+6*b*a^2*x^(1/2)) @test integrate(x^-5//2*(a+b*x)^3, x) == :(-2//3*a^3*x^-3//2+2//3*b^3*x^3//2+-6*b*a^2*x^-1//2+6*a*b^2*x^(1/2)) @test integrate(x^5//2*(a+b*x)^-1, x) == :(2//5*b^-1*x^5//2+-2*a^5//2*b^-7//2*arctan(a^-1//2*b^(1/2)*x^(1/2))+2*a^2*b^-3*x^(1/2)+-2//3*a*b^-2*x^3//2) @test integrate(x^3//2*(a+b*x)^-1, x) == :(2//3*b^-1*x^3//2+-2*a*b^-2*x^(1/2)+2*a^3//2*b^-5//2*arctan(a^-1//2*b^(1/2)*x^(1/2))) @test integrate(x^(1/2)*(a+b*x)^-1, x) == :(2*b^-1*x^(1/2)+-2*a^(1/2)*b^-3//2*arctan(a^-1//2*b^(1/2)*x^(1/2))) @test integrate(x^-1//2*(a+b*x)^-1, x) == :(2*a^-1//2*b^-1//2*arctan(a^-1//2*b^(1/2)*x^(1/2))) @test integrate(x^-3//2*(a+b*x)^-1, x) == :(-2*a^-1*x^-1//2+-2*a^-3//2*b^(1/2)*arctan(a^-1//2*b^(1/2)*x^(1/2))) @test integrate(x^-5//2*(a+b*x)^-1, x) == :(-2//3*a^-1*x^-3//2+2*b*a^-2*x^-1//2+2*a^-5//2*b^3//2*arctan(a^-1//2*b^(1/2)*x^(1/2))) @test integrate(x^-7//2*(a+b*x)^-1, x) == :(-2//5*a^-1*x^-5//2+-2*a^-3*b^2*x^-1//2+-2*a^-7//2*b^5//2*arctan(a^-1//2*b^(1/2)*x^(1/2))+2//3*b*a^-2*x^-3//2) @test integrate(x^5//2*(a+b*x)^-2, x) == :(5//3*b^-2*x^3//2+-1*b^-1*x^5//2*(a+b*x)^-1+-5*a*b^-3*x^(1/2)+5*a^3//2*b^-7//2*arctan(a^-1//2*b^(1/2)*x^(1/2))) @test integrate(x^3//2*(a+b*x)^-2, x) == :(3*b^-2*x^(1/2)+-1*b^-1*x^3//2*(a+b*x)^-1+-3*a^(1/2)*b^-5//2*arctan(a^-1//2*b^(1/2)*x^(1/2))) @test integrate(x^(1/2)*(a+b*x)^-2, x) == :(a^-1//2*b^-3//2*arctan(a^-1//2*b^(1/2)*x^(1/2))+-1*b^-1*x^(1/2)*(a+b*x)^-1) @test integrate(x^-1//2*(a+b*x)^-2, x) == :(a^-1*x^(1/2)*(a+b*x)^-1+a^-3//2*b^-1//2*arctan(a^-1//2*b^(1/2)*x^(1/2))) @test integrate(x^-3//2*(a+b*x)^-2, x) == :(-3*a^-2*x^-1//2+a^-1*x^-1//2*(a+b*x)^-1+-3*a^-5//2*b^(1/2)*arctan(a^-1//2*b^(1/2)*x^(1/2))) @test integrate(x^-5//2*(a+b*x)^-2, x) == :(-5//3*a^-2*x^-3//2+a^-1*x^-3//2*(a+b*x)^-1+5*b*a^-3*x^-1//2+5*a^-7//2*b^3//2*arctan(a^-1//2*b^(1/2)*x^(1/2))) @test integrate(x^7//2*(a+b*x)^-3, x) == :(35//12*b^-3*x^3//2+-35//4*a*b^-4*x^(1/2)+-7//4*b^-2*x^5//2*(a+b*x)^-1+-1//2*b^-1*x^7//2*(a+b*x)^-2+35//4*a^3//2*b^-9//2*arctan(a^-1//2*b^(1/2)*x^(1/2))) @test integrate(x^5//2*(a+b*x)^-3, x) == :(15//4*b^-3*x^(1/2)+-15//4*a^(1/2)*b^-7//2*arctan(a^-1//2*b^(1/2)*x^(1/2))+-5//4*b^-2*x^3//2*(a+b*x)^-1+-1//2*b^-1*x^5//2*(a+b*x)^-2) @test integrate(x^3//2*(a+b*x)^-3, x) == :(-3//4*b^-2*x^(1/2)*(a+b*x)^-1+-1//2*b^-1*x^3//2*(a+b*x)^-2+3//4*a^-1//2*b^-5//2*arctan(a^-1//2*b^(1/2)*x^(1/2))) @test integrate(x^(1/2)*(a+b*x)^-3, x) == :(-1//2*b^-1*x^(1/2)*(a+b*x)^-2+1//4*a^-3//2*b^-3//2*arctan(a^-1//2*b^(1/2)*x^(1/2))+1//4*a^-1*b^-1*x^(1/2)*(a+b*x)^-1) @test integrate(x^-1//2*(a+b*x)^-3, x) == :((1/2)*a^-1*x^(1/2)*(a+b*x)^-2+3//4*a^-2*x^(1/2)*(a+b*x)^-1+3//4*a^-5//2*b^-1//2*arctan(a^-1//2*b^(1/2)*x^(1/2))) @test integrate(x^-3//2*(a+b*x)^-3, x) == :(-15//4*a^-3*x^-1//2+(1/2)*a^-1*x^-1//2*(a+b*x)^-2+-15//4*a^-7//2*b^(1/2)*arctan(a^-1//2*b^(1/2)*x^(1/2))+5//4*a^-2*x^-1//2*(a+b*x)^-1) @test integrate(x^-5//2*(a+b*x)^-3, x) == :(-35//12*a^-3*x^-3//2+(1/2)*a^-1*x^-3//2*(a+b*x)^-2+7//4*a^-2*x^-3//2*(a+b*x)^-1+35//4*b*a^-4*x^-1//2+35//4*a^-9//2*b^3//2*arctan(a^-1//2*b^(1/2)*x^(1/2))) @test integrate(x^5//2*(-1a+b*x)^-1, x) == :(2//5*b^-1*x^5//2+-2*a^5//2*b^-7//2*arctanh(a^-1//2*b^(1/2)*x^(1/2))+2*a^2*b^-3*x^(1/2)+2//3*a*b^-2*x^3//2) @test integrate(x^3//2*(-1a+b*x)^-1, x) == :(2//3*b^-1*x^3//2+-2*a^3//2*b^-5//2*arctanh(a^-1//2*b^(1/2)*x^(1/2))+2*a*b^-2*x^(1/2)) @test integrate(x^(1/2)*(-1a+b*x)^-1, x) == :(2*b^-1*x^(1/2)+-2*a^(1/2)*b^-3//2*arctanh(a^-1//2*b^(1/2)*x^(1/2))) @test integrate(x^-1//2*(-1a+b*x)^-1, x) == :(-2*a^-1//2*b^-1//2*arctanh(a^-1//2*b^(1/2)*x^(1/2))) @test integrate(x^-3//2*(-1a+b*x)^-1, x) == :(2*a^-1*x^-1//2+-2*a^-3//2*b^(1/2)*arctanh(a^-1//2*b^(1/2)*x^(1/2))) @test integrate(x^-5//2*(-1a+b*x)^-1, x) == :(2//3*a^-1*x^-3//2+-2*a^-5//2*b^3//2*arctanh(a^-1//2*b^(1/2)*x^(1/2))+2*b*a^-2*x^-1//2) @test integrate(x^-7//2*(-1a+b*x)^-1, x) == :(2//5*a^-1*x^-5//2+-2*a^-7//2*b^5//2*arctanh(a^-1//2*b^(1/2)*x^(1/2))+2*a^-3*b^2*x^-1//2+2//3*b*a^-2*x^-3//2) @test integrate(x^5//2*(-1a+b*x)^-2, x) == :(5//3*b^-2*x^3//2+b^-1*x^5//2*(a+-1*b*x)^-1+-5*a^3//2*b^-7//2*arctanh(a^-1//2*b^(1/2)*x^(1/2))+5*a*b^-3*x^(1/2)) @test integrate(x^3//2*(-1a+b*x)^-2, x) == :(3*b^-2*x^(1/2)+b^-1*x^3//2*(a+-1*b*x)^-1+-3*a^(1/2)*b^-5//2*arctanh(a^-1//2*b^(1/2)*x^(1/2))) @test integrate(x^(1/2)*(-1a+b*x)^-2, x) == :(b^-1*x^(1/2)*(a+-1*b*x)^-1+-1*a^-1//2*b^-3//2*arctanh(a^-1//2*b^(1/2)*x^(1/2))) @test integrate(x^-1//2*(-1a+b*x)^-2, x) == :(a^-1*x^(1/2)*(a+-1*b*x)^-1+a^-3//2*b^-1//2*arctanh(a^-1//2*b^(1/2)*x^(1/2))) @test integrate(x^-3//2*(-1a+b*x)^-2, x) == :(-3*a^-2*x^-1//2+a^-1*x^-1//2*(a+-1*b*x)^-1+3*a^-5//2*b^(1/2)*arctanh(a^-1//2*b^(1/2)*x^(1/2))) @test integrate(x^-5//2*(-1a+b*x)^-2, x) == :(-5//3*a^-2*x^-3//2+a^-1*x^-3//2*(a+-1*b*x)^-1+-5*b*a^-3*x^-1//2+5*a^-7//2*b^3//2*arctanh(a^-1//2*b^(1/2)*x^(1/2))) @test integrate(x^7//2*(-1a+b*x)^-3, x) == :(35//12*b^-3*x^3//2+-35//4*a^3//2*b^-9//2*arctanh(a^-1//2*b^(1/2)*x^(1/2))+-1//2*b^-1*x^7//2*(a+-1*b*x)^-2+7//4*b^-2*x^5//2*(a+-1*b*x)^-1+35//4*a*b^-4*x^(1/2)) @test integrate(x^5//2*(-1a+b*x)^-3, x) == :(15//4*b^-3*x^(1/2)+-15//4*a^(1/2)*b^-7//2*arctanh(a^-1//2*b^(1/2)*x^(1/2))+-1//2*b^-1*x^5//2*(a+-1*b*x)^-2+5//4*b^-2*x^3//2*(a+-1*b*x)^-1) @test integrate(x^3//2*(-1a+b*x)^-3, x) == :(-3//4*a^-1//2*b^-5//2*arctanh(a^-1//2*b^(1/2)*x^(1/2))+-1//2*b^-1*x^3//2*(a+-1*b*x)^-2+3//4*b^-2*x^(1/2)*(a+-1*b*x)^-1) @test integrate(x^(1/2)*(-1a+b*x)^-3, x) == :(-1//2*b^-1*x^(1/2)*(a+-1*b*x)^-2+1//4*a^-3//2*b^-3//2*arctanh(a^-1//2*b^(1/2)*x^(1/2))+1//4*a^-1*b^-1*x^(1/2)*(a+-1*b*x)^-1) @test integrate(x^-1//2*(-1a+b*x)^-3, x) == :(-3//4*a^-2*x^(1/2)*(a+-1*b*x)^-1+-3//4*a^-5//2*b^-1//2*arctanh(a^-1//2*b^(1/2)*x^(1/2))+-1//2*a^-1*x^(1/2)*(a+-1*b*x)^-2) @test integrate(x^-3//2*(-1a+b*x)^-3, x) == :(15//4*a^-3*x^-1//2+-15//4*a^-7//2*b^(1/2)*arctanh(a^-1//2*b^(1/2)*x^(1/2))+-5//4*a^-2*x^-1//2*(a+-1*b*x)^-1+-1//2*a^-1*x^-1//2*(a+-1*b*x)^-2) @test integrate(x^-5//2*(-1a+b*x)^-3, x) == :(35//12*a^-3*x^-3//2+-35//4*a^-9//2*b^3//2*arctanh(a^-1//2*b^(1/2)*x^(1/2))+-7//4*a^-2*x^-3//2*(a+-1*b*x)^-1+-1//2*a^-1*x^-3//2*(a+-1*b*x)^-2+35//4*b*a^-4*x^-1//2) @test integrate(x^5//2*(a+b*x)^(1/2), x) == :(1//4*x^7//2*(a+b*x)^(1/2)+-5//64*a^4*b^-7//2*arctanh(b^(1/2)*x^(1/2)*(a+b*x)^-1//2)+-5//96*a^2*b^-2*x^3//2*(a+b*x)^(1/2)+1//24*a*b^-1*x^5//2*(a+b*x)^(1/2)+5//64*a^3*b^-3*x^(1/2)*(a+b*x)^(1/2)) @test integrate(x^3//2*(a+b*x)^(1/2), x) == :(1//3*x^5//2*(a+b*x)^(1/2)+1//8*a^3*b^-5//2*arctanh(b^(1/2)*x^(1/2)*(a+b*x)^-1//2)+-1//8*a^2*b^-2*x^(1/2)*(a+b*x)^(1/2)+1//12*a*b^-1*x^3//2*(a+b*x)^(1/2)) @test integrate(x^(1/2)*(a+b*x)^(1/2), x) == :((1/2)*x^3//2*(a+b*x)^(1/2)+-1//4*a^2*b^-3//2*arctanh(b^(1/2)*x^(1/2)*(a+b*x)^-1//2)+1//4*a*b^-1*x^(1/2)*(a+b*x)^(1/2)) @test integrate(x^-1//2*(a+b*x)^(1/2), x) == :(x^(1/2)*(a+b*x)^(1/2)+a*b^-1//2*arctanh(b^(1/2)*x^(1/2)*(a+b*x)^-1//2)) @test integrate(x^-3//2*(a+b*x)^(1/2), x) == :(-2*x^-1//2*(a+b*x)^(1/2)+2*b^(1/2)*arctanh(b^(1/2)*x^(1/2)*(a+b*x)^-1//2)) @test integrate(x^-5//2*(a+b*x)^(1/2), x) == :(-2//3*a^-1*x^-3//2*(a+b*x)^3//2) @test integrate(x^-7//2*(a+b*x)^(1/2), x) == :(-2//5*a^-1*x^-5//2*(a+b*x)^3//2+4//15*b*a^-2*x^-3//2*(a+b*x)^3//2) @test integrate(x^-9//2*(a+b*x)^(1/2), x) == :(-2//7*a^-1*x^-7//2*(a+b*x)^3//2+-16//105*a^-3*b^2*x^-3//2*(a+b*x)^3//2+8//35*b*a^-2*x^-5//2*(a+b*x)^3//2) @test integrate(x^5//2*(a+-1*b*x)^(1/2), x) == :(1//4*x^7//2*(a+-1*b*x)^(1/2)+5//64*a^4*b^-7//2*arctan(b^(1/2)*x^(1/2)*(a+-1*b*x)^-1//2)+-5//64*a^3*b^-3*x^(1/2)*(a+-1*b*x)^(1/2)+-5//96*a^2*b^-2*x^3//2*(a+-1*b*x)^(1/2)+-1//24*a*b^-1*x^5//2*(a+-1*b*x)^(1/2)) @test integrate(x^3//2*(a+-1*b*x)^(1/2), x) == :(1//3*x^5//2*(a+-1*b*x)^(1/2)+1//8*a^3*b^-5//2*arctan(b^(1/2)*x^(1/2)*(a+-1*b*x)^-1//2)+-1//8*a^2*b^-2*x^(1/2)*(a+-1*b*x)^(1/2)+-1//12*a*b^-1*x^3//2*(a+-1*b*x)^(1/2)) @test integrate(x^(1/2)*(a+-1*b*x)^(1/2), x) == :((1/2)*x^3//2*(a+-1*b*x)^(1/2)+1//4*a^2*b^-3//2*arctan(b^(1/2)*x^(1/2)*(a+-1*b*x)^-1//2)+-1//4*a*b^-1*x^(1/2)*(a+-1*b*x)^(1/2)) @test integrate(x^-1//2*(a+-1*b*x)^(1/2), x) == :(x^(1/2)*(a+-1*b*x)^(1/2)+a*b^-1//2*arctan(b^(1/2)*x^(1/2)*(a+-1*b*x)^-1//2)) @test integrate(x^-3//2*(a+-1*b*x)^(1/2), x) == :(-2*b^(1/2)*arctan(b^(1/2)*x^(1/2)*(a+-1*b*x)^-1//2)+-2*x^-1//2*(a+-1*b*x)^(1/2)) @test integrate(x^-5//2*(a+-1*b*x)^(1/2), x) == :(-2//3*a^-1*x^-3//2*(a+-1*b*x)^3//2) @test integrate(x^-7//2*(a+-1*b*x)^(1/2), x) == :(-2//5*a^-1*x^-5//2*(a+-1*b*x)^3//2+-4//15*b*a^-2*x^-3//2*(a+-1*b*x)^3//2) @test integrate(x^-9//2*(a+-1*b*x)^(1/2), x) == :(-2//7*a^-1*x^-7//2*(a+-1*b*x)^3//2+-16//105*a^-3*b^2*x^-3//2*(a+-1*b*x)^3//2+-8//35*b*a^-2*x^-5//2*(a+-1*b*x)^3//2) @test integrate(x^5//2*(2+b*x)^(1/2), x) == :(-5//4*b^-7//2*arcsinh((1/2)*2^(1/2)*b^(1/2)*x^(1/2))+1//4*x^7//2*(2+b*x)^(1/2)+-5//24*b^-2*x^3//2*(2+b*x)^(1/2)+1//12*b^-1*x^5//2*(2+b*x)^(1/2)+5//8*b^-3*x^(1/2)*(2+b*x)^(1/2)) @test integrate(x^3//2*(2+b*x)^(1/2), x) == :(b^-5//2*arcsinh((1/2)*2^(1/2)*b^(1/2)*x^(1/2))+1//3*x^5//2*(2+b*x)^(1/2)+-1//2*b^-2*x^(1/2)*(2+b*x)^(1/2)+1//6*b^-1*x^3//2*(2+b*x)^(1/2)) @test integrate(x^(1/2)*(2+b*x)^(1/2), x) == :((1/2)*x^3//2*(2+b*x)^(1/2)+-1*b^-3//2*arcsinh((1/2)*2^(1/2)*b^(1/2)*x^(1/2))+(1/2)*b^-1*x^(1/2)*(2+b*x)^(1/2)) @test integrate(x^-1//2*(2+b*x)^(1/2), x) == :(x^(1/2)*(2+b*x)^(1/2)+2*b^-1//2*arcsinh((1/2)*2^(1/2)*b^(1/2)*x^(1/2))) @test integrate(x^-3//2*(2+b*x)^(1/2), x) == :(-2*x^-1//2*(2+b*x)^(1/2)+2*b^(1/2)*arcsinh((1/2)*2^(1/2)*b^(1/2)*x^(1/2))) @test integrate(x^-5//2*(2+b*x)^(1/2), x) == :(-1//3*x^-3//2*(2+b*x)^3//2) @test integrate(x^-7//2*(2+b*x)^(1/2), x) == :(-1//5*x^-5//2*(2+b*x)^3//2+1//15*b*x^-3//2*(2+b*x)^3//2) @test integrate(x^-9//2*(2+b*x)^(1/2), x) == :(-1//7*x^-7//2*(2+b*x)^3//2+-2//105*b^2*x^-3//2*(2+b*x)^3//2+2//35*b*x^-5//2*(2+b*x)^3//2) @test integrate(x^5//2*(2+-1*b*x)^(1/2), x) == :(1//4*x^7//2*(2+-1*b*x)^(1/2)+5//4*b^-7//2*arcsin((1/2)*2^(1/2)*b^(1/2)*x^(1/2))+-5//8*b^-3*x^(1/2)*(2+-1*b*x)^(1/2)+-5//24*b^-2*x^3//2*(2+-1*b*x)^(1/2)+-1//12*b^-1*x^5//2*(2+-1*b*x)^(1/2)) @test integrate(x^3//2*(2+-1*b*x)^(1/2), x) == :(b^-5//2*arcsin((1/2)*2^(1/2)*b^(1/2)*x^(1/2))+1//3*x^5//2*(2+-1*b*x)^(1/2)+-1//2*b^-2*x^(1/2)*(2+-1*b*x)^(1/2)+-1//6*b^-1*x^3//2*(2+-1*b*x)^(1/2)) @test integrate(x^(1/2)*(2+-1*b*x)^(1/2), x) == :(b^-3//2*arcsin((1/2)*2^(1/2)*b^(1/2)*x^(1/2))+(1/2)*x^3//2*(2+-1*b*x)^(1/2)+-1//2*b^-1*x^(1/2)*(2+-1*b*x)^(1/2)) @test integrate(x^-1//2*(2+-1*b*x)^(1/2), x) == :(x^(1/2)*(2+-1*b*x)^(1/2)+2*b^-1//2*arcsin((1/2)*2^(1/2)*b^(1/2)*x^(1/2))) @test integrate(x^-3//2*(2+-1*b*x)^(1/2), x) == :(-2*b^(1/2)*arcsin((1/2)*2^(1/2)*b^(1/2)*x^(1/2))+-2*x^-1//2*(2+-1*b*x)^(1/2)) @test integrate(x^-5//2*(2+-1*b*x)^(1/2), x) == :(-1//3*x^-3//2*(2+-1*b*x)^3//2) @test integrate(x^-7//2*(2+-1*b*x)^(1/2), x) == :(-1//5*x^-5//2*(2+-1*b*x)^3//2+-1//15*b*x^-3//2*(2+-1*b*x)^3//2) @test integrate(x^-9//2*(2+-1*b*x)^(1/2), x) == :(-1//7*x^-7//2*(2+-1*b*x)^3//2+-2//35*b*x^-5//2*(2+-1*b*x)^3//2+-2//105*b^2*x^-3//2*(2+-1*b*x)^3//2) @test integrate(x^5//2*(a+b*x)^3//2, x) == :(1//5*x^7//2*(a+b*x)^3//2+-3//128*a^5*b^-7//2*arctanh(b^(1/2)*x^(1/2)*(a+b*x)^-1//2)+3//40*a*x^7//2*(a+b*x)^(1/2)+-1//64*a^3*b^-2*x^3//2*(a+b*x)^(1/2)+1//80*a^2*b^-1*x^5//2*(a+b*x)^(1/2)+3//128*a^4*b^-3*x^(1/2)*(a+b*x)^(1/2)) @test integrate(x^3//2*(a+b*x)^3//2, x) == :(1//4*x^5//2*(a+b*x)^3//2+1//8*a*x^5//2*(a+b*x)^(1/2)+3//64*a^4*b^-5//2*arctanh(b^(1/2)*x^(1/2)*(a+b*x)^-1//2)+-3//64*a^3*b^-2*x^(1/2)*(a+b*x)^(1/2)+1//32*a^2*b^-1*x^3//2*(a+b*x)^(1/2)) @test integrate(x^(1/2)*(a+b*x)^3//2, x) == :(1//3*x^3//2*(a+b*x)^3//2+-1//8*a^3*b^-3//2*arctanh(b^(1/2)*x^(1/2)*(a+b*x)^-1//2)+1//4*a*x^3//2*(a+b*x)^(1/2)+1//8*a^2*b^-1*x^(1/2)*(a+b*x)^(1/2)) @test integrate(x^-1//2*(a+b*x)^3//2, x) == :((1/2)*x^(1/2)*(a+b*x)^3//2+3//4*a*x^(1/2)*(a+b*x)^(1/2)+3//4*a^2*b^-1//2*arctanh(b^(1/2)*x^(1/2)*(a+b*x)^-1//2)) @test integrate(x^-3//2*(a+b*x)^3//2, x) == :(-2*x^-1//2*(a+b*x)^3//2+3*a*b^(1/2)*arctanh(b^(1/2)*x^(1/2)*(a+b*x)^-1//2)+3*b*x^(1/2)*(a+b*x)^(1/2)) @test integrate(x^-5//2*(a+b*x)^3//2, x) == :(2*b^3//2*arctanh(b^(1/2)*x^(1/2)*(a+b*x)^-1//2)+-2//3*x^-3//2*(a+b*x)^3//2+-2*b*x^-1//2*(a+b*x)^(1/2)) @test integrate(x^5//2*(a+-1*b*x)^3//2, x) == :(1//5*x^7//2*(a+-1*b*x)^3//2+3//40*a*x^7//2*(a+-1*b*x)^(1/2)+3//128*a^5*b^-7//2*arctan(b^(1/2)*x^(1/2)*(a+-1*b*x)^-1//2)+-3//128*a^4*b^-3*x^(1/2)*(a+-1*b*x)^(1/2)+-1//64*a^3*b^-2*x^3//2*(a+-1*b*x)^(1/2)+-1//80*a^2*b^-1*x^5//2*(a+-1*b*x)^(1/2)) @test integrate(x^3//2*(a+-1*b*x)^3//2, x) == :(1//4*x^5//2*(a+-1*b*x)^3//2+1//8*a*x^5//2*(a+-1*b*x)^(1/2)+3//64*a^4*b^-5//2*arctan(b^(1/2)*x^(1/2)*(a+-1*b*x)^-1//2)+-3//64*a^3*b^-2*x^(1/2)*(a+-1*b*x)^(1/2)+-1//32*a^2*b^-1*x^3//2*(a+-1*b*x)^(1/2)) @test integrate(x^(1/2)*(a+-1*b*x)^3//2, x) == :(1//3*x^3//2*(a+-1*b*x)^3//2+1//4*a*x^3//2*(a+-1*b*x)^(1/2)+1//8*a^3*b^-3//2*arctan(b^(1/2)*x^(1/2)*(a+-1*b*x)^-1//2)+-1//8*a^2*b^-1*x^(1/2)*(a+-1*b*x)^(1/2)) @test integrate(x^-1//2*(a+-1*b*x)^3//2, x) == :((1/2)*x^(1/2)*(a+-1*b*x)^3//2+3//4*a*x^(1/2)*(a+-1*b*x)^(1/2)+3//4*a^2*b^-1//2*arctan(b^(1/2)*x^(1/2)*(a+-1*b*x)^-1//2)) @test integrate(x^-3//2*(a+-1*b*x)^3//2, x) == :(-2*x^-1//2*(a+-1*b*x)^3//2+-3*a*b^(1/2)*arctan(b^(1/2)*x^(1/2)*(a+-1*b*x)^-1//2)+-3*b*x^(1/2)*(a+-1*b*x)^(1/2)) @test integrate(x^-5//2*(a+-1*b*x)^3//2, x) == :(2*b^3//2*arctan(b^(1/2)*x^(1/2)*(a+-1*b*x)^-1//2)+-2//3*x^-3//2*(a+-1*b*x)^3//2+2*b*x^-1//2*(a+-1*b*x)^(1/2)) @test integrate(x^5//2*(2+b*x)^3//2, x) == :(-3//4*b^-7//2*arcsinh((1/2)*2^(1/2)*b^(1/2)*x^(1/2))+1//5*x^7//2*(2+b*x)^3//2+3//20*x^7//2*(2+b*x)^(1/2)+-1//8*b^-2*x^3//2*(2+b*x)^(1/2)+1//20*b^-1*x^5//2*(2+b*x)^(1/2)+3//8*b^-3*x^(1/2)*(2+b*x)^(1/2)) @test integrate(x^3//2*(2+b*x)^3//2, x) == :(1//4*x^5//2*(2+b*x)^(1/2)+1//4*x^5//2*(2+b*x)^3//2+3//4*b^-5//2*arcsinh((1/2)*2^(1/2)*b^(1/2)*x^(1/2))+-3//8*b^-2*x^(1/2)*(2+b*x)^(1/2)+1//8*b^-1*x^3//2*(2+b*x)^(1/2)) @test integrate(x^(1/2)*(2+b*x)^3//2, x) == :((1/2)*x^3//2*(2+b*x)^(1/2)+-1*b^-3//2*arcsinh((1/2)*2^(1/2)*b^(1/2)*x^(1/2))+1//3*x^3//2*(2+b*x)^3//2+(1/2)*b^-1*x^(1/2)*(2+b*x)^(1/2)) @test integrate(x^-1//2*(2+b*x)^3//2, x) == :((1/2)*x^(1/2)*(2+b*x)^3//2+3*b^-1//2*arcsinh((1/2)*2^(1/2)*b^(1/2)*x^(1/2))+3//2*x^(1/2)*(2+b*x)^(1/2)) @test integrate(x^-3//2*(2+b*x)^3//2, x) == :(-2*x^-1//2*(2+b*x)^3//2+6*b^(1/2)*arcsinh((1/2)*2^(1/2)*b^(1/2)*x^(1/2))+3*b*x^(1/2)*(2+b*x)^(1/2)) @test integrate(x^-5//2*(2+b*x)^3//2, x) == :(2*b^3//2*arcsinh((1/2)*2^(1/2)*b^(1/2)*x^(1/2))+-2//3*x^-3//2*(2+b*x)^3//2+-2*b*x^-1//2*(2+b*x)^(1/2)) @test integrate(x^5//2*(2+-1*b*x)^3//2, x) == :(1//5*x^7//2*(2+-1*b*x)^3//2+3//4*b^-7//2*arcsin((1/2)*2^(1/2)*b^(1/2)*x^(1/2))+3//20*x^7//2*(2+-1*b*x)^(1/2)+-3//8*b^-3*x^(1/2)*(2+-1*b*x)^(1/2)+-1//8*b^-2*x^3//2*(2+-1*b*x)^(1/2)+-1//20*b^-1*x^5//2*(2+-1*b*x)^(1/2)) @test integrate(x^3//2*(2+-1*b*x)^3//2, x) == :(1//4*x^5//2*(2+-1*b*x)^(1/2)+1//4*x^5//2*(2+-1*b*x)^3//2+3//4*b^-5//2*arcsin((1/2)*2^(1/2)*b^(1/2)*x^(1/2))+-3//8*b^-2*x^(1/2)*(2+-1*b*x)^(1/2)+-1//8*b^-1*x^3//2*(2+-1*b*x)^(1/2)) @test integrate(x^(1/2)*(2+-1*b*x)^3//2, x) == :(b^-3//2*arcsin((1/2)*2^(1/2)*b^(1/2)*x^(1/2))+(1/2)*x^3//2*(2+-1*b*x)^(1/2)+1//3*x^3//2*(2+-1*b*x)^3//2+-1//2*b^-1*x^(1/2)*(2+-1*b*x)^(1/2)) @test integrate(x^-1//2*(2+-1*b*x)^3//2, x) == :((1/2)*x^(1/2)*(2+-1*b*x)^3//2+3*b^-1//2*arcsin((1/2)*2^(1/2)*b^(1/2)*x^(1/2))+3//2*x^(1/2)*(2+-1*b*x)^(1/2)) @test integrate(x^-3//2*(2+-1*b*x)^3//2, x) == :(-6*b^(1/2)*arcsin((1/2)*2^(1/2)*b^(1/2)*x^(1/2))+-2*x^-1//2*(2+-1*b*x)^3//2+-3*b*x^(1/2)*(2+-1*b*x)^(1/2)) @test integrate(x^-5//2*(2+-1*b*x)^3//2, x) == :(2*b^3//2*arcsin((1/2)*2^(1/2)*b^(1/2)*x^(1/2))+-2//3*x^-3//2*(2+-1*b*x)^3//2+2*b*x^-1//2*(2+-1*b*x)^(1/2)) @test integrate(x^5//2*(a+b*x)^5//2, x) == :(1//6*x^7//2*(a+b*x)^5//2+-5//512*a^6*b^-7//2*arctanh(b^(1/2)*x^(1/2)*(a+b*x)^-1//2)+1//12*a*x^7//2*(a+b*x)^3//2+1//32*a^2*x^7//2*(a+b*x)^(1/2)+-5//768*a^4*b^-2*x^3//2*(a+b*x)^(1/2)+1//192*a^3*b^-1*x^5//2*(a+b*x)^(1/2)+5//512*a^5*b^-3*x^(1/2)*(a+b*x)^(1/2)) @test integrate(x^3//2*(a+b*x)^5//2, x) == :(1//5*x^5//2*(a+b*x)^5//2+1//8*a*x^5//2*(a+b*x)^3//2+1//16*a^2*x^5//2*(a+b*x)^(1/2)+3//128*a^5*b^-5//2*arctanh(b^(1/2)*x^(1/2)*(a+b*x)^-1//2)+-3//128*a^4*b^-2*x^(1/2)*(a+b*x)^(1/2)+1//64*a^3*b^-1*x^3//2*(a+b*x)^(1/2)) @test integrate(x^(1/2)*(a+b*x)^5//2, x) == :(1//4*x^3//2*(a+b*x)^5//2+-5//64*a^4*b^-3//2*arctanh(b^(1/2)*x^(1/2)*(a+b*x)^-1//2)+5//24*a*x^3//2*(a+b*x)^3//2+5//32*a^2*x^3//2*(a+b*x)^(1/2)+5//64*a^3*b^-1*x^(1/2)*(a+b*x)^(1/2)) @test integrate(x^-1//2*(a+b*x)^5//2, x) == :(1//3*x^(1/2)*(a+b*x)^5//2+5//8*a^2*x^(1/2)*(a+b*x)^(1/2)+5//8*a^3*b^-1//2*arctanh(b^(1/2)*x^(1/2)*(a+b*x)^-1//2)+5//12*a*x^(1/2)*(a+b*x)^3//2) @test integrate(x^-3//2*(a+b*x)^5//2, x) == :(-2*x^-1//2*(a+b*x)^5//2+5//2*b*x^(1/2)*(a+b*x)^3//2+15//4*a^2*b^(1/2)*arctanh(b^(1/2)*x^(1/2)*(a+b*x)^-1//2)+15//4*a*b*x^(1/2)*(a+b*x)^(1/2)) @test integrate(x^-5//2*(a+b*x)^5//2, x) == :(-2//3*x^-3//2*(a+b*x)^5//2+5*a*b^3//2*arctanh(b^(1/2)*x^(1/2)*(a+b*x)^-1//2)+5*b^2*x^(1/2)*(a+b*x)^(1/2)+-10//3*b*x^-1//2*(a+b*x)^3//2) @test integrate(x^5//2*(a+-1*b*x)^5//2, x) == :(1//6*x^7//2*(a+-1*b*x)^5//2+1//12*a*x^7//2*(a+-1*b*x)^3//2+1//32*a^2*x^7//2*(a+-1*b*x)^(1/2)+5//512*a^6*b^-7//2*arctan(b^(1/2)*x^(1/2)*(a+-1*b*x)^-1//2)+-5//512*a^5*b^-3*x^(1/2)*(a+-1*b*x)^(1/2)+-5//768*a^4*b^-2*x^3//2*(a+-1*b*x)^(1/2)+-1//192*a^3*b^-1*x^5//2*(a+-1*b*x)^(1/2)) @test integrate(x^3//2*(a+-1*b*x)^5//2, x) == :(1//5*x^5//2*(a+-1*b*x)^5//2+1//8*a*x^5//2*(a+-1*b*x)^3//2+1//16*a^2*x^5//2*(a+-1*b*x)^(1/2)+3//128*a^5*b^-5//2*arctan(b^(1/2)*x^(1/2)*(a+-1*b*x)^-1//2)+-3//128*a^4*b^-2*x^(1/2)*(a+-1*b*x)^(1/2)+-1//64*a^3*b^-1*x^3//2*(a+-1*b*x)^(1/2)) @test integrate(x^(1/2)*(a+-1*b*x)^5//2, x) == :(1//4*x^3//2*(a+-1*b*x)^5//2+5//24*a*x^3//2*(a+-1*b*x)^3//2+5//32*a^2*x^3//2*(a+-1*b*x)^(1/2)+5//64*a^4*b^-3//2*arctan(b^(1/2)*x^(1/2)*(a+-1*b*x)^-1//2)+-5//64*a^3*b^-1*x^(1/2)*(a+-1*b*x)^(1/2)) @test integrate(x^-1//2*(a+-1*b*x)^5//2, x) == :(1//3*x^(1/2)*(a+-1*b*x)^5//2+5//8*a^2*x^(1/2)*(a+-1*b*x)^(1/2)+5//8*a^3*b^-1//2*arctan(b^(1/2)*x^(1/2)*(a+-1*b*x)^-1//2)+5//12*a*x^(1/2)*(a+-1*b*x)^3//2) @test integrate(x^-3//2*(a+-1*b*x)^5//2, x) == :(-2*x^-1//2*(a+-1*b*x)^5//2+-15//4*a^2*b^(1/2)*arctan(b^(1/2)*x^(1/2)*(a+-1*b*x)^-1//2)+-5//2*b*x^(1/2)*(a+-1*b*x)^3//2+-15//4*a*b*x^(1/2)*(a+-1*b*x)^(1/2)) @test integrate(x^-5//2*(a+-1*b*x)^5//2, x) == :(-2//3*x^-3//2*(a+-1*b*x)^5//2+5*a*b^3//2*arctan(b^(1/2)*x^(1/2)*(a+-1*b*x)^-1//2)+5*b^2*x^(1/2)*(a+-1*b*x)^(1/2)+10//3*b*x^-1//2*(a+-1*b*x)^3//2) @test integrate(x^5//2*(2+b*x)^5//2, x) == :(-5//8*b^-7//2*arcsinh((1/2)*2^(1/2)*b^(1/2)*x^(1/2))+1//6*x^7//2*(2+b*x)^3//2+1//6*x^7//2*(2+b*x)^5//2+1//8*x^7//2*(2+b*x)^(1/2)+-5//48*b^-2*x^3//2*(2+b*x)^(1/2)+1//24*b^-1*x^5//2*(2+b*x)^(1/2)+5//16*b^-3*x^(1/2)*(2+b*x)^(1/2)) @test integrate(x^3//2*(2+b*x)^5//2, x) == :(1//4*x^5//2*(2+b*x)^(1/2)+1//4*x^5//2*(2+b*x)^3//2+1//5*x^5//2*(2+b*x)^5//2+3//4*b^-5//2*arcsinh((1/2)*2^(1/2)*b^(1/2)*x^(1/2))+-3//8*b^-2*x^(1/2)*(2+b*x)^(1/2)+1//8*b^-1*x^3//2*(2+b*x)^(1/2)) @test integrate(x^(1/2)*(2+b*x)^5//2, x) == :(-5//4*b^-3//2*arcsinh((1/2)*2^(1/2)*b^(1/2)*x^(1/2))+1//4*x^3//2*(2+b*x)^5//2+5//8*x^3//2*(2+b*x)^(1/2)+5//12*x^3//2*(2+b*x)^3//2+5//8*b^-1*x^(1/2)*(2+b*x)^(1/2)) @test integrate(x^-1//2*(2+b*x)^5//2, x) == :(5*b^-1//2*arcsinh((1/2)*2^(1/2)*b^(1/2)*x^(1/2))+1//3*x^(1/2)*(2+b*x)^5//2+5//2*x^(1/2)*(2+b*x)^(1/2)+5//6*x^(1/2)*(2+b*x)^3//2) @test integrate(x^-3//2*(2+b*x)^5//2, x) == :(-2*x^-1//2*(2+b*x)^5//2+15*b^(1/2)*arcsinh((1/2)*2^(1/2)*b^(1/2)*x^(1/2))+5//2*b*x^(1/2)*(2+b*x)^3//2+15//2*b*x^(1/2)*(2+b*x)^(1/2)) @test integrate(x^-5//2*(2+b*x)^5//2, x) == :(10*b^3//2*arcsinh((1/2)*2^(1/2)*b^(1/2)*x^(1/2))+-2//3*x^-3//2*(2+b*x)^5//2+5*b^2*x^(1/2)*(2+b*x)^(1/2)+-10//3*b*x^-1//2*(2+b*x)^3//2) @test integrate(x^5//2*(2+-1*b*x)^5//2, x) == :(1//6*x^7//2*(2+-1*b*x)^3//2+1//6*x^7//2*(2+-1*b*x)^5//2+1//8*x^7//2*(2+-1*b*x)^(1/2)+5//8*b^-7//2*arcsin((1/2)*2^(1/2)*b^(1/2)*x^(1/2))+-5//16*b^-3*x^(1/2)*(2+-1*b*x)^(1/2)+-5//48*b^-2*x^3//2*(2+-1*b*x)^(1/2)+-1//24*b^-1*x^5//2*(2+-1*b*x)^(1/2)) @test integrate(x^3//2*(2+-1*b*x)^5//2, x) == :(1//4*x^5//2*(2+-1*b*x)^(1/2)+1//4*x^5//2*(2+-1*b*x)^3//2+1//5*x^5//2*(2+-1*b*x)^5//2+3//4*b^-5//2*arcsin((1/2)*2^(1/2)*b^(1/2)*x^(1/2))+-3//8*b^-2*x^(1/2)*(2+-1*b*x)^(1/2)+-1//8*b^-1*x^3//2*(2+-1*b*x)^(1/2)) @test integrate(x^(1/2)*(2+-1*b*x)^5//2, x) == :(1//4*x^3//2*(2+-1*b*x)^5//2+5//4*b^-3//2*arcsin((1/2)*2^(1/2)*b^(1/2)*x^(1/2))+5//8*x^3//2*(2+-1*b*x)^(1/2)+5//12*x^3//2*(2+-1*b*x)^3//2+-5//8*b^-1*x^(1/2)*(2+-1*b*x)^(1/2)) @test integrate(x^-1//2*(2+-1*b*x)^5//2, x) == :(5*b^-1//2*arcsin((1/2)*2^(1/2)*b^(1/2)*x^(1/2))+1//3*x^(1/2)*(2+-1*b*x)^5//2+5//2*x^(1/2)*(2+-1*b*x)^(1/2)+5//6*x^(1/2)*(2+-1*b*x)^3//2) @test integrate(x^-3//2*(2+-1*b*x)^5//2, x) == :(-15*b^(1/2)*arcsin((1/2)*2^(1/2)*b^(1/2)*x^(1/2))+-2*x^-1//2*(2+-1*b*x)^5//2+-15//2*b*x^(1/2)*(2+-1*b*x)^(1/2)+-5//2*b*x^(1/2)*(2+-1*b*x)^3//2) @test integrate(x^-5//2*(2+-1*b*x)^5//2, x) == :(10*b^3//2*arcsin((1/2)*2^(1/2)*b^(1/2)*x^(1/2))+-2//3*x^-3//2*(2+-1*b*x)^5//2+5*b^2*x^(1/2)*(2+-1*b*x)^(1/2)+10//3*b*x^-1//2*(2+-1*b*x)^3//2) @test integrate(x^5//2*(a+b*x)^-1//2, x) == :(-5//8*a^3*b^-7//2*arctanh(b^(1/2)*x^(1/2)*(a+b*x)^-1//2)+1//3*b^-1*x^5//2*(a+b*x)^(1/2)+-5//12*a*b^-2*x^3//2*(a+b*x)^(1/2)+5//8*a^2*b^-3*x^(1/2)*(a+b*x)^(1/2)) @test integrate(x^3//2*(a+b*x)^-1//2, x) == :((1/2)*b^-1*x^3//2*(a+b*x)^(1/2)+3//4*a^2*b^-5//2*arctanh(b^(1/2)*x^(1/2)*(a+b*x)^-1//2)+-3//4*a*b^-2*x^(1/2)*(a+b*x)^(1/2)) @test integrate(x^(1/2)*(a+b*x)^-1//2, x) == :(b^-1*x^(1/2)*(a+b*x)^(1/2)+-1*a*b^-3//2*arctanh(b^(1/2)*x^(1/2)*(a+b*x)^-1//2)) @test integrate(x^-1//2*(a+b*x)^-1//2, x) == :(2*b^-1//2*arctanh(b^(1/2)*x^(1/2)*(a+b*x)^-1//2)) @test integrate(x^-3//2*(a+b*x)^-1//2, x) == :(-2*a^-1*x^-1//2*(a+b*x)^(1/2)) @test integrate(x^-5//2*(a+b*x)^-1//2, x) == :(-2//3*a^-1*x^-3//2*(a+b*x)^(1/2)+4//3*b*a^-2*x^-1//2*(a+b*x)^(1/2)) @test integrate(x^-7//2*(a+b*x)^-1//2, x) == :(-2//5*a^-1*x^-5//2*(a+b*x)^(1/2)+-16//15*a^-3*b^2*x^-1//2*(a+b*x)^(1/2)+8//15*b*a^-2*x^-3//2*(a+b*x)^(1/2)) @test integrate(x^-9//2*(a+b*x)^-1//2, x) == :(-2//7*a^-1*x^-7//2*(a+b*x)^(1/2)+-16//35*a^-3*b^2*x^-3//2*(a+b*x)^(1/2)+12//35*b*a^-2*x^-5//2*(a+b*x)^(1/2)+32//35*a^-4*b^3*x^-1//2*(a+b*x)^(1/2)) @test integrate(x^5//2*(a+b*x)^-3//2, x) == :(-2*b^-1*x^5//2*(a+b*x)^-1//2+5//2*b^-2*x^3//2*(a+b*x)^(1/2)+15//4*a^2*b^-7//2*arctanh(b^(1/2)*x^(1/2)*(a+b*x)^-1//2)+-15//4*a*b^-3*x^(1/2)*(a+b*x)^(1/2)) @test integrate(x^3//2*(a+b*x)^-3//2, x) == :(-3*a*b^-5//2*arctanh(b^(1/2)*x^(1/2)*(a+b*x)^-1//2)+-2*b^-1*x^3//2*(a+b*x)^-1//2+3*b^-2*x^(1/2)*(a+b*x)^(1/2)) @test integrate(x^(1/2)*(a+b*x)^-3//2, x) == :(2*b^-3//2*arctanh(b^(1/2)*x^(1/2)*(a+b*x)^-1//2)+-2*b^-1*x^(1/2)*(a+b*x)^-1//2) @test integrate(x^-1//2*(a+b*x)^-3//2, x) == :(2*a^-1*x^(1/2)*(a+b*x)^-1//2) @test integrate(x^-3//2*(a+b*x)^-3//2, x) == :(-4*a^-2*x^-1//2*(a+b*x)^(1/2)+2*a^-1*x^-1//2*(a+b*x)^-1//2) @test integrate(x^-5//2*(a+b*x)^-3//2, x) == :(2*a^-1*x^-3//2*(a+b*x)^-1//2+-8//3*a^-2*x^-3//2*(a+b*x)^(1/2)+16//3*b*a^-3*x^-1//2*(a+b*x)^(1/2)) @test integrate(x^-7//2*(a+b*x)^-3//2, x) == :(2*a^-1*x^-5//2*(a+b*x)^-1//2+-12//5*a^-2*x^-5//2*(a+b*x)^(1/2)+-32//5*a^-4*b^2*x^-1//2*(a+b*x)^(1/2)+16//5*b*a^-3*x^-3//2*(a+b*x)^(1/2)) @test integrate(x^5//2*(a+b*x)^-5//2, x) == :(-5*a*b^-7//2*arctanh(b^(1/2)*x^(1/2)*(a+b*x)^-1//2)+5*b^-3*x^(1/2)*(a+b*x)^(1/2)+-10//3*b^-2*x^3//2*(a+b*x)^-1//2+-2//3*b^-1*x^5//2*(a+b*x)^-3//2) @test integrate(x^3//2*(a+b*x)^-5//2, x) == :(2*b^-5//2*arctanh(b^(1/2)*x^(1/2)*(a+b*x)^-1//2)+-2*b^-2*x^(1/2)*(a+b*x)^-1//2+-2//3*b^-1*x^3//2*(a+b*x)^-3//2) @test integrate(x^(1/2)*(a+b*x)^-5//2, x) == :(2//3*a^-1*x^3//2*(a+b*x)^-3//2) @test integrate(x^-1//2*(a+b*x)^-5//2, x) == :(2//3*a^-1*x^(1/2)*(a+b*x)^-3//2+4//3*a^-2*x^(1/2)*(a+b*x)^-1//2) @test integrate(x^-3//2*(a+b*x)^-5//2, x) == :(-16//3*a^-3*x^-1//2*(a+b*x)^(1/2)+2//3*a^-1*x^-1//2*(a+b*x)^-3//2+8//3*a^-2*x^-1//2*(a+b*x)^-1//2) @test integrate(x^-5//2*(a+b*x)^-5//2, x) == :(4*a^-2*x^-3//2*(a+b*x)^-1//2+-16//3*a^-3*x^-3//2*(a+b*x)^(1/2)+2//3*a^-1*x^-3//2*(a+b*x)^-3//2+32//3*b*a^-4*x^-1//2*(a+b*x)^(1/2)) @test integrate(x^5//2*(a+-1*b*x)^-1//2, x) == :(-1//3*b^-1*x^5//2*(a+-1*b*x)^(1/2)+5//8*a^3*b^-7//2*arctan(b^(1/2)*x^(1/2)*(a+-1*b*x)^-1//2)+-5//8*a^2*b^-3*x^(1/2)*(a+-1*b*x)^(1/2)+-5//12*a*b^-2*x^3//2*(a+-1*b*x)^(1/2)) @test integrate(x^3//2*(a+-1*b*x)^-1//2, x) == :(-1//2*b^-1*x^3//2*(a+-1*b*x)^(1/2)+3//4*a^2*b^-5//2*arctan(b^(1/2)*x^(1/2)*(a+-1*b*x)^-1//2)+-3//4*a*b^-2*x^(1/2)*(a+-1*b*x)^(1/2)) @test integrate(x^(1/2)*(a+-1*b*x)^-1//2, x) == :(a*b^-3//2*arctan(b^(1/2)*x^(1/2)*(a+-1*b*x)^-1//2)+-1*b^-1*x^(1/2)*(a+-1*b*x)^(1/2)) @test integrate(x^-1//2*(a+-1*b*x)^-1//2, x) == :(2*b^-1//2*arctan(b^(1/2)*x^(1/2)*(a+-1*b*x)^-1//2)) @test integrate(x^-3//2*(a+-1*b*x)^-1//2, x) == :(-2*a^-1*x^-1//2*(a+-1*b*x)^(1/2)) @test integrate(x^-5//2*(a+-1*b*x)^-1//2, x) == :(-2//3*a^-1*x^-3//2*(a+-1*b*x)^(1/2)+-4//3*b*a^-2*x^-1//2*(a+-1*b*x)^(1/2)) @test integrate(x^5//2*(a+-1*b*x)^-3//2, x) == :(2*b^-1*x^5//2*(a+-1*b*x)^-1//2+-15//4*a^2*b^-7//2*arctan(b^(1/2)*x^(1/2)*(a+-1*b*x)^-1//2)+5//2*b^-2*x^3//2*(a+-1*b*x)^(1/2)+15//4*a*b^-3*x^(1/2)*(a+-1*b*x)^(1/2)) @test integrate(x^3//2*(a+-1*b*x)^-3//2, x) == :(-3*a*b^-5//2*arctan(b^(1/2)*x^(1/2)*(a+-1*b*x)^-1//2)+2*b^-1*x^3//2*(a+-1*b*x)^-1//2+3*b^-2*x^(1/2)*(a+-1*b*x)^(1/2)) @test integrate(x^(1/2)*(a+-1*b*x)^-3//2, x) == :(-2*b^-3//2*arctan(b^(1/2)*x^(1/2)*(a+-1*b*x)^-1//2)+2*b^-1*x^(1/2)*(a+-1*b*x)^-1//2) @test integrate(x^-1//2*(a+-1*b*x)^-3//2, x) == :(2*a^-1*x^(1/2)*(a+-1*b*x)^-1//2) @test integrate(x^-3//2*(a+-1*b*x)^-3//2, x) == :(-4*a^-2*x^-1//2*(a+-1*b*x)^(1/2)+2*a^-1*x^-1//2*(a+-1*b*x)^-1//2) @test integrate(x^-5//2*(a+-1*b*x)^-3//2, x) == :(2*a^-1*x^-3//2*(a+-1*b*x)^-1//2+-8//3*a^-2*x^-3//2*(a+-1*b*x)^(1/2)+-16//3*b*a^-3*x^-1//2*(a+-1*b*x)^(1/2)) @test integrate(x^5//2*(a+-1*b*x)^-5//2, x) == :(-5*b^-3*x^(1/2)*(a+-1*b*x)^(1/2)+5*a*b^-7//2*arctan(b^(1/2)*x^(1/2)*(a+-1*b*x)^-1//2)+-10//3*b^-2*x^3//2*(a+-1*b*x)^-1//2+2//3*b^-1*x^5//2*(a+-1*b*x)^-3//2) @test integrate(x^3//2*(a+-1*b*x)^-5//2, x) == :(2*b^-5//2*arctan(b^(1/2)*x^(1/2)*(a+-1*b*x)^-1//2)+-2*b^-2*x^(1/2)*(a+-1*b*x)^-1//2+2//3*b^-1*x^3//2*(a+-1*b*x)^-3//2) @test integrate(x^(1/2)*(a+-1*b*x)^-5//2, x) == :(2//3*a^-1*x^3//2*(a+-1*b*x)^-3//2) @test integrate(x^-1//2*(a+-1*b*x)^-5//2, x) == :(2//3*a^-1*x^(1/2)*(a+-1*b*x)^-3//2+4//3*a^-2*x^(1/2)*(a+-1*b*x)^-1//2) @test integrate(x^-3//2*(a+-1*b*x)^-5//2, x) == :(-16//3*a^-3*x^-1//2*(a+-1*b*x)^(1/2)+2//3*a^-1*x^-1//2*(a+-1*b*x)^-3//2+8//3*a^-2*x^-1//2*(a+-1*b*x)^-1//2) @test integrate(x^-5//2*(a+-1*b*x)^-5//2, x) == :(4*a^-2*x^-3//2*(a+-1*b*x)^-1//2+-16//3*a^-3*x^-3//2*(a+-1*b*x)^(1/2)+2//3*a^-1*x^-3//2*(a+-1*b*x)^-3//2+-32//3*b*a^-4*x^-1//2*(a+-1*b*x)^(1/2)) @test integrate(x^5//2*(2+b*x)^-1//2, x) == :(-5*b^-7//2*arcsinh((1/2)*2^(1/2)*b^(1/2)*x^(1/2))+-5//6*b^-2*x^3//2*(2+b*x)^(1/2)+1//3*b^-1*x^5//2*(2+b*x)^(1/2)+5//2*b^-3*x^(1/2)*(2+b*x)^(1/2)) @test integrate(x^3//2*(2+b*x)^-1//2, x) == :(3*b^-5//2*arcsinh((1/2)*2^(1/2)*b^(1/2)*x^(1/2))+(1/2)*b^-1*x^3//2*(2+b*x)^(1/2)+-3//2*b^-2*x^(1/2)*(2+b*x)^(1/2)) @test integrate(x^(1/2)*(2+b*x)^-1//2, x) == :(-2*b^-3//2*arcsinh((1/2)*2^(1/2)*b^(1/2)*x^(1/2))+b^-1*x^(1/2)*(2+b*x)^(1/2)) @test integrate(x^-1//2*(2+b*x)^-1//2, x) == :(2*b^-1//2*arcsinh((1/2)*2^(1/2)*b^(1/2)*x^(1/2))) @test integrate(x^-3//2*(2+b*x)^-1//2, x) == :(-1*x^-1//2*(2+b*x)^(1/2)) @test integrate(x^-5//2*(2+b*x)^-1//2, x) == :(-1//3*x^-3//2*(2+b*x)^(1/2)+1//3*b*x^-1//2*(2+b*x)^(1/2)) @test integrate(x^-7//2*(2+b*x)^-1//2, x) == :(-1//5*x^-5//2*(2+b*x)^(1/2)+-2//15*b^2*x^-1//2*(2+b*x)^(1/2)+2//15*b*x^-3//2*(2+b*x)^(1/2)) @test integrate(x^-9//2*(2+b*x)^-1//2, x) == :(-1//7*x^-7//2*(2+b*x)^(1/2)+-2//35*b^2*x^-3//2*(2+b*x)^(1/2)+2//35*b^3*x^-1//2*(2+b*x)^(1/2)+3//35*b*x^-5//2*(2+b*x)^(1/2)) @test integrate(x^5//2*(2+b*x)^-3//2, x) == :(15*b^-7//2*arcsinh((1/2)*2^(1/2)*b^(1/2)*x^(1/2))+-2*b^-1*x^5//2*(2+b*x)^-1//2+-15//2*b^-3*x^(1/2)*(2+b*x)^(1/2)+5//2*b^-2*x^3//2*(2+b*x)^(1/2)) @test integrate(x^3//2*(2+b*x)^-3//2, x) == :(-6*b^-5//2*arcsinh((1/2)*2^(1/2)*b^(1/2)*x^(1/2))+-2*b^-1*x^3//2*(2+b*x)^-1//2+3*b^-2*x^(1/2)*(2+b*x)^(1/2)) @test integrate(x^(1/2)*(2+b*x)^-3//2, x) == :(2*b^-3//2*arcsinh((1/2)*2^(1/2)*b^(1/2)*x^(1/2))+-2*b^-1*x^(1/2)*(2+b*x)^-1//2) @test integrate(x^-1//2*(2+b*x)^-3//2, x) == :(x^(1/2)*(2+b*x)^-1//2) @test integrate(x^-3//2*(2+b*x)^-3//2, x) == :(x^-1//2*(2+b*x)^-1//2+-1*x^-1//2*(2+b*x)^(1/2)) @test integrate(x^-5//2*(2+b*x)^-3//2, x) == :(x^-3//2*(2+b*x)^-1//2+-2//3*x^-3//2*(2+b*x)^(1/2)+2//3*b*x^-1//2*(2+b*x)^(1/2)) @test integrate(x^-7//2*(2+b*x)^-3//2, x) == :(x^-5//2*(2+b*x)^-1//2+-3//5*x^-5//2*(2+b*x)^(1/2)+-2//5*b^2*x^-1//2*(2+b*x)^(1/2)+2//5*b*x^-3//2*(2+b*x)^(1/2)) @test integrate(x^5//2*(2+b*x)^-5//2, x) == :(-10*b^-7//2*arcsinh((1/2)*2^(1/2)*b^(1/2)*x^(1/2))+5*b^-3*x^(1/2)*(2+b*x)^(1/2)+-10//3*b^-2*x^3//2*(2+b*x)^-1//2+-2//3*b^-1*x^5//2*(2+b*x)^-3//2) @test integrate(x^3//2*(2+b*x)^-5//2, x) == :(2*b^-5//2*arcsinh((1/2)*2^(1/2)*b^(1/2)*x^(1/2))+-2*b^-2*x^(1/2)*(2+b*x)^-1//2+-2//3*b^-1*x^3//2*(2+b*x)^-3//2) @test integrate(x^(1/2)*(2+b*x)^-5//2, x) == :(1//3*x^3//2*(2+b*x)^-3//2) @test integrate(x^-1//2*(2+b*x)^-5//2, x) == :(1//3*x^(1/2)*(2+b*x)^-3//2+1//3*x^(1/2)*(2+b*x)^-1//2) @test integrate(x^-3//2*(2+b*x)^-5//2, x) == :(-2//3*x^-1//2*(2+b*x)^(1/2)+1//3*x^-1//2*(2+b*x)^-3//2+2//3*x^-1//2*(2+b*x)^-1//2) @test integrate(x^-5//2*(2+b*x)^-5//2, x) == :(x^-3//2*(2+b*x)^-1//2+-2//3*x^-3//2*(2+b*x)^(1/2)+1//3*x^-3//2*(2+b*x)^-3//2+2//3*b*x^-1//2*(2+b*x)^(1/2)) @test integrate(x^5//2*(2+-1*b*x)^-1//2, x) == :(5*b^-7//2*arcsin((1/2)*2^(1/2)*b^(1/2)*x^(1/2))+-5//2*b^-3*x^(1/2)*(2+-1*b*x)^(1/2)+-5//6*b^-2*x^3//2*(2+-1*b*x)^(1/2)+-1//3*b^-1*x^5//2*(2+-1*b*x)^(1/2)) @test integrate(x^3//2*(2+-1*b*x)^-1//2, x) == :(3*b^-5//2*arcsin((1/2)*2^(1/2)*b^(1/2)*x^(1/2))+-3//2*b^-2*x^(1/2)*(2+-1*b*x)^(1/2)+-1//2*b^-1*x^3//2*(2+-1*b*x)^(1/2)) @test integrate(x^(1/2)*(2+-1*b*x)^-1//2, x) == :(2*b^-3//2*arcsin((1/2)*2^(1/2)*b^(1/2)*x^(1/2))+-1*b^-1*x^(1/2)*(2+-1*b*x)^(1/2)) @test integrate(x^-1//2*(2+-1*b*x)^-1//2, x) == :(2*b^-1//2*arcsin((1/2)*2^(1/2)*b^(1/2)*x^(1/2))) @test integrate(x^-3//2*(2+-1*b*x)^-1//2, x) == :(-1*x^-1//2*(2+-1*b*x)^(1/2)) @test integrate(x^-5//2*(2+-1*b*x)^-1//2, x) == :(-1//3*x^-3//2*(2+-1*b*x)^(1/2)+-1//3*b*x^-1//2*(2+-1*b*x)^(1/2)) @test integrate(x^5//2*(2+-1*b*x)^-3//2, x) == :(-15*b^-7//2*arcsin((1/2)*2^(1/2)*b^(1/2)*x^(1/2))+2*b^-1*x^5//2*(2+-1*b*x)^-1//2+5//2*b^-2*x^3//2*(2+-1*b*x)^(1/2)+15//2*b^-3*x^(1/2)*(2+-1*b*x)^(1/2)) @test integrate(x^3//2*(2+-1*b*x)^-3//2, x) == :(-6*b^-5//2*arcsin((1/2)*2^(1/2)*b^(1/2)*x^(1/2))+2*b^-1*x^3//2*(2+-1*b*x)^-1//2+3*b^-2*x^(1/2)*(2+-1*b*x)^(1/2)) @test integrate(x^(1/2)*(2+-1*b*x)^-3//2, x) == :(-2*b^-3//2*arcsin((1/2)*2^(1/2)*b^(1/2)*x^(1/2))+2*b^-1*x^(1/2)*(2+-1*b*x)^-1//2) @test integrate(x^-1//2*(2+-1*b*x)^-3//2, x) == :(x^(1/2)*(2+-1*b*x)^-1//2) @test integrate(x^-3//2*(2+-1*b*x)^-3//2, x) == :(x^-1//2*(2+-1*b*x)^-1//2+-1*x^-1//2*(2+-1*b*x)^(1/2)) @test integrate(x^-5//2*(2+-1*b*x)^-3//2, x) == :(x^-3//2*(2+-1*b*x)^-1//2+-2//3*x^-3//2*(2+-1*b*x)^(1/2)+-2//3*b*x^-1//2*(2+-1*b*x)^(1/2)) @test integrate(x^5//2*(2+-1*b*x)^-5//2, x) == :(10*b^-7//2*arcsin((1/2)*2^(1/2)*b^(1/2)*x^(1/2))+-5*b^-3*x^(1/2)*(2+-1*b*x)^(1/2)+-10//3*b^-2*x^3//2*(2+-1*b*x)^-1//2+2//3*b^-1*x^5//2*(2+-1*b*x)^-3//2) @test integrate(x^3//2*(2+-1*b*x)^-5//2, x) == :(2*b^-5//2*arcsin((1/2)*2^(1/2)*b^(1/2)*x^(1/2))+-2*b^-2*x^(1/2)*(2+-1*b*x)^-1//2+2//3*b^-1*x^3//2*(2+-1*b*x)^-3//2) @test integrate(x^(1/2)*(2+-1*b*x)^-5//2, x) == :(1//3*x^3//2*(2+-1*b*x)^-3//2) @test integrate(x^-1//2*(2+-1*b*x)^-5//2, x) == :(1//3*x^(1/2)*(2+-1*b*x)^-3//2+1//3*x^(1/2)*(2+-1*b*x)^-1//2) @test integrate(x^-3//2*(2+-1*b*x)^-5//2, x) == :(-2//3*x^-1//2*(2+-1*b*x)^(1/2)+1//3*x^-1//2*(2+-1*b*x)^-3//2+2//3*x^-1//2*(2+-1*b*x)^-1//2) @test integrate(x^-5//2*(2+-1*b*x)^-5//2, x) == :(x^-3//2*(2+-1*b*x)^-1//2+-2//3*x^-3//2*(2+-1*b*x)^(1/2)+1//3*x^-3//2*(2+-1*b*x)^-3//2+-2//3*b*x^-1//2*(2+-1*b*x)^(1/2)) @test integrate(x^(1/2)*(1+-1x)^-1//2, x) == :(-1//2*arcsin(1+-2x)+-1*x^(1/2)*(1+-1x)^(1/2)) @test integrate(x^-1//2*(1+-1x)^-1//2, x) == :(-1*arcsin(1+-2x)) @test integrate(x^-1//2*(1+-1*b*x)^-1//2, x) == :(2*b^-1//2*arcsin(b^(1/2)*x^(1/2))) @test integrate(x^5//3*(a+b*x), x) == :(3//8*a*x^8//3+3//11*b*x^11//3) @test integrate(x^4//3*(a+b*x), x) == :(3//7*a*x^7//3+3//10*b*x^10//3) @test integrate(x^2//3*(a+b*x), x) == :(3//5*a*x^5//3+3//8*b*x^8//3) @test integrate(x^1//3*(a+b*x), x) == :(3//4*a*x^4//3+3//7*b*x^7//3) @test integrate(x^-1//3*(a+b*x), x) == :(3//2*a*x^2//3+3//5*b*x^5//3) @test integrate(x^-2//3*(a+b*x), x) == :(3*a*x^1//3+3//4*b*x^4//3) @test integrate(x^-4//3*(a+b*x), x) == :(-3*a*x^-1//3+3//2*b*x^2//3) @test integrate(x^-5//3*(a+b*x), x) == :(3*b*x^1//3+-3//2*a*x^-2//3) @test integrate(x^5//3*(a+b*x)^2, x) == :(3//8*a^2*x^8//3+3//14*b^2*x^14//3+6//11*a*b*x^11//3) @test integrate(x^4//3*(a+b*x)^2, x) == :(3//7*a^2*x^7//3+3//13*b^2*x^13//3+3//5*a*b*x^10//3) @test integrate(x^2//3*(a+b*x)^2, x) == :(3//5*a^2*x^5//3+3//11*b^2*x^11//3+3//4*a*b*x^8//3) @test integrate(x^1//3*(a+b*x)^2, x) == :(3//4*a^2*x^4//3+3//10*b^2*x^10//3+6//7*a*b*x^7//3) @test integrate(x^-1//3*(a+b*x)^2, x) == :(3//2*a^2*x^2//3+3//8*b^2*x^8//3+6//5*a*b*x^5//3) @test integrate(x^-2//3*(a+b*x)^2, x) == :(3*a^2*x^1//3+3//7*b^2*x^7//3+3//2*a*b*x^4//3) @test integrate(x^-4//3*(a+b*x)^2, x) == :(-3*a^2*x^-1//3+3//5*b^2*x^5//3+3*a*b*x^2//3) @test integrate(x^-5//3*(a+b*x)^2, x) == :(-3//2*a^2*x^-2//3+3//4*b^2*x^4//3+6*a*b*x^1//3) @test integrate(x^5//3*(a+b*x)^3, x) == :(3//8*a^3*x^8//3+3//17*b^3*x^17//3+9//11*b*a^2*x^11//3+9//14*a*b^2*x^14//3) @test integrate(x^4//3*(a+b*x)^3, x) == :(3//7*a^3*x^7//3+3//16*b^3*x^16//3+9//10*b*a^2*x^10//3+9//13*a*b^2*x^13//3) @test integrate(x^2//3*(a+b*x)^3, x) == :(3//5*a^3*x^5//3+3//14*b^3*x^14//3+9//8*b*a^2*x^8//3+9//11*a*b^2*x^11//3) @test integrate(x^1//3*(a+b*x)^3, x) == :(3//4*a^3*x^4//3+3//13*b^3*x^13//3+9//7*b*a^2*x^7//3+9//10*a*b^2*x^10//3) @test integrate(x^-1//3*(a+b*x)^3, x) == :(3//2*a^3*x^2//3+3//11*b^3*x^11//3+9//5*b*a^2*x^5//3+9//8*a*b^2*x^8//3) @test integrate(x^-2//3*(a+b*x)^3, x) == :(3*a^3*x^1//3+3//10*b^3*x^10//3+9//4*b*a^2*x^4//3+9//7*a*b^2*x^7//3) @test integrate(x^-4//3*(a+b*x)^3, x) == :(-3*a^3*x^-1//3+3//8*b^3*x^8//3+9//2*b*a^2*x^2//3+9//5*a*b^2*x^5//3) @test integrate(x^-5//3*(a+b*x)^3, x) == :(-3//2*a^3*x^-2//3+3//7*b^3*x^7//3+9*b*a^2*x^1//3+9//4*a*b^2*x^4//3) @test integrate(x^5//3*(a+b*x)^-1, x) == :(3//5*b^-1*x^5//3+(1/2)*a^5//3*b^-8//3*log(a+b*x)+-3//2*a*b^-2*x^2//3+-3//2*a^5//3*b^-8//3*log(a^1//3+b^1//3*x^1//3)+-1*3^(1/2)*a^5//3*b^-8//3*arctan(1//3*3^(1/2)*a^-1//3*(a^1//3+-2*b^1//3*x^1//3))) @test integrate(x^4//3*(a+b*x)^-1, x) == :(3//4*b^-1*x^4//3+-3*a*b^-2*x^1//3+-1//2*a^4//3*b^-7//3*log(a+b*x)+3//2*a^4//3*b^-7//3*log(a^1//3+b^1//3*x^1//3)+-1*3^(1/2)*a^4//3*b^-7//3*arctan(1//3*3^(1/2)*a^-1//3*(a^1//3+-2*b^1//3*x^1//3))) @test integrate(x^2//3*(a+b*x)^-1, x) == :(3//2*b^-1*x^2//3+-1//2*a^2//3*b^-5//3*log(a+b*x)+3//2*a^2//3*b^-5//3*log(a^1//3+b^1//3*x^1//3)+3^(1/2)*a^2//3*b^-5//3*arctan(1//3*3^(1/2)*a^-1//3*(a^1//3+-2*b^1//3*x^1//3))) @test integrate(x^1//3*(a+b*x)^-1, x) == :(3*b^-1*x^1//3+(1/2)*a^1//3*b^-4//3*log(a+b*x)+-3//2*a^1//3*b^-4//3*log(a^1//3+b^1//3*x^1//3)+3^(1/2)*a^1//3*b^-4//3*arctan(1//3*3^(1/2)*a^-1//3*(a^1//3+-2*b^1//3*x^1//3))) @test integrate(x^-1//3*(a+b*x)^-1, x) == :((1/2)*a^-1//3*b^-2//3*log(a+b*x)+-3//2*a^-1//3*b^-2//3*log(a^1//3+b^1//3*x^1//3)+-1*3^(1/2)*a^-1//3*b^-2//3*arctan(1//3*3^(1/2)*a^-1//3*(a^1//3+-2*b^1//3*x^1//3))) @test integrate(x^-2//3*(a+b*x)^-1, x) == :(-1//2*a^-2//3*b^-1//3*log(a+b*x)+3//2*a^-2//3*b^-1//3*log(a^1//3+b^1//3*x^1//3)+-1*3^(1/2)*a^-2//3*b^-1//3*arctan(1//3*3^(1/2)*a^-1//3*(a^1//3+-2*b^1//3*x^1//3))) @test integrate(x^-4//3*(a+b*x)^-1, x) == :(-3*a^-1*x^-1//3+-1//2*a^-4//3*b^1//3*log(a+b*x)+3//2*a^-4//3*b^1//3*log(a^1//3+b^1//3*x^1//3)+3^(1/2)*a^-4//3*b^1//3*arctan(1//3*3^(1/2)*a^-1//3*(a^1//3+-2*b^1//3*x^1//3))) @test integrate(x^-5//3*(a+b*x)^-1, x) == :(-3//2*a^-1*x^-2//3+(1/2)*a^-5//3*b^2//3*log(a+b*x)+-3//2*a^-5//3*b^2//3*log(a^1//3+b^1//3*x^1//3)+3^(1/2)*a^-5//3*b^2//3*arctan(1//3*3^(1/2)*a^-1//3*(a^1//3+-2*b^1//3*x^1//3))) @test integrate(x^5//3*(a+b*x)^-2, x) == :(5//2*b^-2*x^2//3+-1*b^-1*x^5//3*(a+b*x)^-1+-5//6*a^2//3*b^-8//3*log(a+b*x)+5//2*a^2//3*b^-8//3*log(a^1//3+b^1//3*x^1//3)+5//3*3^(1/2)*a^2//3*b^-8//3*arctan(1//3*3^(1/2)*a^-1//3*(a^1//3+-2*b^1//3*x^1//3))) @test integrate(x^4//3*(a+b*x)^-2, x) == :(4*b^-2*x^1//3+-1*b^-1*x^4//3*(a+b*x)^-1+-2*a^1//3*b^-7//3*log(a^1//3+b^1//3*x^1//3)+2//3*a^1//3*b^-7//3*log(a+b*x)+4//3*3^(1/2)*a^1//3*b^-7//3*arctan(1//3*3^(1/2)*a^-1//3*(a^1//3+-2*b^1//3*x^1//3))) @test integrate(x^2//3*(a+b*x)^-2, x) == :(-1*a^-1//3*b^-5//3*log(a^1//3+b^1//3*x^1//3)+-1*b^-1*x^2//3*(a+b*x)^-1+1//3*a^-1//3*b^-5//3*log(a+b*x)+-2//3*3^(1/2)*a^-1//3*b^-5//3*arctan(1//3*3^(1/2)*a^-1//3*(a^1//3+-2*b^1//3*x^1//3))) @test integrate(x^1//3*(a+b*x)^-2, x) == :((1/2)*a^-2//3*b^-4//3*log(a^1//3+b^1//3*x^1//3)+-1*b^-1*x^1//3*(a+b*x)^-1+-1//6*a^-2//3*b^-4//3*log(a+b*x)+-1//3*3^(1/2)*a^-2//3*b^-4//3*arctan(1//3*3^(1/2)*a^-1//3*(a^1//3+-2*b^1//3*x^1//3))) @test integrate(x^-1//3*(a+b*x)^-2, x) == :(a^-1*x^2//3*(a+b*x)^-1+-1//2*a^-4//3*b^-2//3*log(a^1//3+b^1//3*x^1//3)+1//6*a^-4//3*b^-2//3*log(a+b*x)+-1//3*3^(1/2)*a^-4//3*b^-2//3*arctan(1//3*3^(1/2)*a^-1//3*(a^1//3+-2*b^1//3*x^1//3))) @test integrate(x^-2//3*(a+b*x)^-2, x) == :(a^-1*x^1//3*(a+b*x)^-1+a^-5//3*b^-1//3*log(a^1//3+b^1//3*x^1//3)+-1//3*a^-5//3*b^-1//3*log(a+b*x)+-2//3*3^(1/2)*a^-5//3*b^-1//3*arctan(1//3*3^(1/2)*a^-1//3*(a^1//3+-2*b^1//3*x^1//3))) @test integrate(x^-4//3*(a+b*x)^-2, x) == :(-4*a^-2*x^-1//3+a^-1*x^-1//3*(a+b*x)^-1+2*a^-7//3*b^1//3*log(a^1//3+b^1//3*x^1//3)+-2//3*a^-7//3*b^1//3*log(a+b*x)+4//3*3^(1/2)*a^-7//3*b^1//3*arctan(1//3*3^(1/2)*a^-1//3*(a^1//3+-2*b^1//3*x^1//3))) @test integrate(x^-5//3*(a+b*x)^-2, x) == :(-5//2*a^-2*x^-2//3+a^-1*x^-2//3*(a+b*x)^-1+-5//2*a^-8//3*b^2//3*log(a^1//3+b^1//3*x^1//3)+5//6*a^-8//3*b^2//3*log(a+b*x)+5//3*3^(1/2)*a^-8//3*b^2//3*arctan(1//3*3^(1/2)*a^-1//3*(a^1//3+-2*b^1//3*x^1//3))) @test integrate(x^5//3*(a+b*x)^-3, x) == :(-5//6*a^-1//3*b^-8//3*log(a^1//3+b^1//3*x^1//3)+-5//6*b^-2*x^2//3*(a+b*x)^-1+-1//2*b^-1*x^5//3*(a+b*x)^-2+5//18*a^-1//3*b^-8//3*log(a+b*x)+-5//9*3^(1/2)*a^-1//3*b^-8//3*arctan(1//3*3^(1/2)*a^-1//3*(a^1//3+-2*b^1//3*x^1//3))) @test integrate(x^4//3*(a+b*x)^-3, x) == :(-2//3*b^-2*x^1//3*(a+b*x)^-1+-1//2*b^-1*x^4//3*(a+b*x)^-2+-1//9*a^-2//3*b^-7//3*log(a+b*x)+1//3*a^-2//3*b^-7//3*log(a^1//3+b^1//3*x^1//3)+-2//9*3^(1/2)*a^-2//3*b^-7//3*arctan(1//3*3^(1/2)*a^-1//3*(a^1//3+-2*b^1//3*x^1//3))) @test integrate(x^2//3*(a+b*x)^-3, x) == :(-1//2*b^-1*x^2//3*(a+b*x)^-2+-1//6*a^-4//3*b^-5//3*log(a^1//3+b^1//3*x^1//3)+1//18*a^-4//3*b^-5//3*log(a+b*x)+-1//9*3^(1/2)*a^-4//3*b^-5//3*arctan(1//3*3^(1/2)*a^-1//3*(a^1//3+-2*b^1//3*x^1//3))+1//3*a^-1*b^-1*x^2//3*(a+b*x)^-1) @test integrate(x^1//3*(a+b*x)^-3, x) == :(-1//2*b^-1*x^1//3*(a+b*x)^-2+-1//18*a^-5//3*b^-4//3*log(a+b*x)+1//6*a^-5//3*b^-4//3*log(a^1//3+b^1//3*x^1//3)+-1//9*3^(1/2)*a^-5//3*b^-4//3*arctan(1//3*3^(1/2)*a^-1//3*(a^1//3+-2*b^1//3*x^1//3))+1//6*a^-1*b^-1*x^1//3*(a+b*x)^-1) @test integrate(x^-1//3*(a+b*x)^-3, x) == :((1/2)*a^-1*x^2//3*(a+b*x)^-2+-1//3*a^-7//3*b^-2//3*log(a^1//3+b^1//3*x^1//3)+1//9*a^-7//3*b^-2//3*log(a+b*x)+2//3*a^-2*x^2//3*(a+b*x)^-1+-2//9*3^(1/2)*a^-7//3*b^-2//3*arctan(1//3*3^(1/2)*a^-1//3*(a^1//3+-2*b^1//3*x^1//3))) @test integrate(x^-2//3*(a+b*x)^-3, x) == :((1/2)*a^-1*x^1//3*(a+b*x)^-2+-5//18*a^-8//3*b^-1//3*log(a+b*x)+5//6*a^-2*x^1//3*(a+b*x)^-1+5//6*a^-8//3*b^-1//3*log(a^1//3+b^1//3*x^1//3)+-5//9*3^(1/2)*a^-8//3*b^-1//3*arctan(1//3*3^(1/2)*a^-1//3*(a^1//3+-2*b^1//3*x^1//3))) @test integrate(x^-4//3*(a+b*x)^-3, x) == :(-14//3*a^-3*x^-1//3+(1/2)*a^-1*x^-1//3*(a+b*x)^-2+-7//9*a^-10//3*b^1//3*log(a+b*x)+7//3*a^-10//3*b^1//3*log(a^1//3+b^1//3*x^1//3)+7//6*a^-2*x^-1//3*(a+b*x)^-1+14//9*3^(1/2)*a^-10//3*b^1//3*arctan(1//3*3^(1/2)*a^-1//3*(a^1//3+-2*b^1//3*x^1//3))) @test integrate(x^-5//3*(a+b*x)^-3, x) == :(-10//3*a^-3*x^-2//3+(1/2)*a^-1*x^-2//3*(a+b*x)^-2+-10//3*a^-11//3*b^2//3*log(a^1//3+b^1//3*x^1//3)+4//3*a^-2*x^-2//3*(a+b*x)^-1+10//9*a^-11//3*b^2//3*log(a+b*x)+20//9*3^(1/2)*a^-11//3*b^2//3*arctan(1//3*3^(1/2)*a^-1//3*(a^1//3+-2*b^1//3*x^1//3))) @test integrate((1+x)^-1*(1+-1x)^1//4, x) == :(4*(1+-1x)^1//4+-2*2^1//4*arctan((1/2)*2^3//4*(1+-1x)^1//4)+-2*2^1//4*arctanh((1/2)*2^3//4*(1+-1x)^1//4)) @test integrate(x^m*(a+b*x)^10, x) == :(a^10*x^(1+m)*(1+m)^-1+b^10*x^(11+m)*(11+m)^-1+10*a*b^9*x^(10+m)*(10+m)^-1+10*b*a^9*x^(2+m)*(2+m)^-1+45*a^2*b^8*x^(9+m)*(9+m)^-1+45*a^8*b^2*x^(3+m)*(3+m)^-1+120*a^3*b^7*x^(8+m)*(8+m)^-1+120*a^7*b^3*x^(4+m)*(4+m)^-1+210*a^4*b^6*x^(7+m)*(7+m)^-1+210*a^6*b^4*x^(5+m)*(5+m)^-1+252*a^5*b^5*x^(6+m)*(6+m)^-1) @test integrate(x^m*(a+b*x)^7, x) == :(a^7*x^(1+m)*(1+m)^-1+b^7*x^(8+m)*(8+m)^-1+7*a*b^6*x^(7+m)*(7+m)^-1+7*b*a^6*x^(2+m)*(2+m)^-1+21*a^2*b^5*x^(6+m)*(6+m)^-1+21*a^5*b^2*x^(3+m)*(3+m)^-1+35*a^3*b^4*x^(5+m)*(5+m)^-1+35*a^4*b^3*x^(4+m)*(4+m)^-1) @test integrate(x^m*(a+b*x)^3, x) == :(a^3*x^(1+m)*(1+m)^-1+b^3*x^(4+m)*(4+m)^-1+3*a*b^2*x^(3+m)*(3+m)^-1+3*b*a^2*x^(2+m)*(2+m)^-1) @test integrate(x^m*(a+b*x)^2, x) == :(a^2*x^(1+m)*(1+m)^-1+b^2*x^(3+m)*(3+m)^-1+2*a*b*x^(2+m)*(2+m)^-1) @test integrate(x^m*(a+b*x), x) == :(a*x^(1+m)*(1+m)^-1+b*x^(2+m)*(2+m)^-1) @test integrate(x^3*(a+b*x)^n, x) == :(b^-4*(4+n)^-1*(a+b*x)^(4+n)+-1*a^3*b^-4*(1+n)^-1*(a+b*x)^(1+n)+-3*a*b^-4*(3+n)^-1*(a+b*x)^(3+n)+3*a^2*b^-4*(2+n)^-1*(a+b*x)^(2+n)) @test integrate(x^2*(a+b*x)^n, x) == :(b^-3*(3+n)^-1*(a+b*x)^(3+n)+a^2*b^-3*(1+n)^-1*(a+b*x)^(1+n)+-2*a*b^-3*(2+n)^-1*(a+b*x)^(2+n)) @test integrate(x*(a+b*x)^n, x) == :(b^-2*(2+n)^-1*(a+b*x)^(2+n)+-1*a*b^-2*(1+n)^-1*(a+b*x)^(1+n)) @test integrate((a+b*x)^n, x) == :(b^-1*(1+n)^-1*(a+b*x)^(1+n)) @test integrate(x^(-3+n)*(a+b*x)^(-1n), x) == :(-1*a^-1*x^(-2+n)*(2+-1n)^-1*(a+b*x)^(1+-1n)+b*a^-2*x^(-1+n)*(1+-1n)^-1*(2+-1n)^-1*(a+b*x)^(1+-1n)) @test integrate(x^(-2+n)*(a+b*x)^(-1n), x) == :(-1*a^-1*x^(-1+n)*(1+-1n)^-1*(a+b*x)^(1+-1n)) @test integrate(x^(-1+n)*(a+b*x)^(-1+-1n), x) == :(a^-1*n^-1*x^n*(a+b*x)^(-1n)) @test integrate(x^(-3+-1n)*(a+b*x)^n, x) == :(-1*a^-1*x^(-2+-1n)*(2+n)^-1*(a+b*x)^(1+n)+b*a^-2*x^(-1+-1n)*(1+n)^-1*(2+n)^-1*(a+b*x)^(1+n)) @test integrate(x^3*(c*x^2)^(1/2)*(a+b*x), x) == :(1//5*a*x^4*(c*x^2)^(1/2)+1//6*b*x^5*(c*x^2)^(1/2)) @test integrate(x^2*(c*x^2)^(1/2)*(a+b*x), x) == :(1//4*a*x^3*(c*x^2)^(1/2)+1//5*b*x^4*(c*x^2)^(1/2)) @test integrate(x*(c*x^2)^(1/2)*(a+b*x), x) == :(1//3*a*x^2*(c*x^2)^(1/2)+1//4*b*x^3*(c*x^2)^(1/2)) @test integrate((c*x^2)^(1/2)*(a+b*x), x) == :((1/2)*a*x*(c*x^2)^(1/2)+1//3*b*x^2*(c*x^2)^(1/2)) @test integrate(x^-1*(c*x^2)^(1/2)*(a+b*x), x) == :(a*(c*x^2)^(1/2)+(1/2)*b*x*(c*x^2)^(1/2)) @test integrate(x^-2*(c*x^2)^(1/2)*(a+b*x), x) == :(b*(c*x^2)^(1/2)+a*x^-1*(c*x^2)^(1/2)*log(x)) @test integrate(x^-3*(c*x^2)^(1/2)*(a+b*x), x) == :(-1*a*x^-2*(c*x^2)^(1/2)+b*x^-1*(c*x^2)^(1/2)*log(x)) @test integrate(x^-4*(c*x^2)^(1/2)*(a+b*x), x) == :(-1//2*a^-1*x^-3*(c*x^2)^(1/2)*(a+b*x)^2) @test integrate(x^3*(c*x^2)^3//2*(a+b*x), x) == :(1//7*a*c*x^6*(c*x^2)^(1/2)+1//8*b*c*x^7*(c*x^2)^(1/2)) @test integrate(x^2*(c*x^2)^3//2*(a+b*x), x) == :(1//6*a*c*x^5*(c*x^2)^(1/2)+1//7*b*c*x^6*(c*x^2)^(1/2)) @test integrate(x*(c*x^2)^3//2*(a+b*x), x) == :(1//5*a*c*x^4*(c*x^2)^(1/2)+1//6*b*c*x^5*(c*x^2)^(1/2)) @test integrate((c*x^2)^3//2*(a+b*x), x) == :(1//4*a*c*x^3*(c*x^2)^(1/2)+1//5*b*c*x^4*(c*x^2)^(1/2)) @test integrate(x^-1*(c*x^2)^3//2*(a+b*x), x) == :(1//3*a*c*x^2*(c*x^2)^(1/2)+1//4*b*c*x^3*(c*x^2)^(1/2)) @test integrate(x^-2*(c*x^2)^3//2*(a+b*x), x) == :((1/2)*a*c*x*(c*x^2)^(1/2)+1//3*b*c*x^2*(c*x^2)^(1/2)) @test integrate(x^-3*(c*x^2)^3//2*(a+b*x), x) == :(a*c*(c*x^2)^(1/2)+(1/2)*b*c*x*(c*x^2)^(1/2)) @test integrate(x^-4*(c*x^2)^3//2*(a+b*x), x) == :(b*c*(c*x^2)^(1/2)+a*c*x^-1*(c*x^2)^(1/2)*log(x)) @test integrate(x^3*(c*x^2)^5//2*(a+b*x), x) == :(1//9*a*c^2*x^8*(c*x^2)^(1/2)+1//10*b*c^2*x^9*(c*x^2)^(1/2)) @test integrate(x^2*(c*x^2)^5//2*(a+b*x), x) == :(1//8*a*c^2*x^7*(c*x^2)^(1/2)+1//9*b*c^2*x^8*(c*x^2)^(1/2)) @test integrate(x*(c*x^2)^5//2*(a+b*x), x) == :(1//7*a*c^2*x^6*(c*x^2)^(1/2)+1//8*b*c^2*x^7*(c*x^2)^(1/2)) @test integrate((c*x^2)^5//2*(a+b*x), x) == :(1//6*a*c^2*x^5*(c*x^2)^(1/2)+1//7*b*c^2*x^6*(c*x^2)^(1/2)) @test integrate(x^-1*(c*x^2)^5//2*(a+b*x), x) == :(1//5*a*c^2*x^4*(c*x^2)^(1/2)+1//6*b*c^2*x^5*(c*x^2)^(1/2)) @test integrate(x^-2*(c*x^2)^5//2*(a+b*x), x) == :(1//4*a*c^2*x^3*(c*x^2)^(1/2)+1//5*b*c^2*x^4*(c*x^2)^(1/2)) @test integrate(x^-3*(c*x^2)^5//2*(a+b*x), x) == :(1//3*a*c^2*x^2*(c*x^2)^(1/2)+1//4*b*c^2*x^3*(c*x^2)^(1/2)) @test integrate(x^-4*(c*x^2)^5//2*(a+b*x), x) == :((1/2)*a*x*c^2*(c*x^2)^(1/2)+1//3*b*c^2*x^2*(c*x^2)^(1/2)) @test integrate(x^3*(c*x^2)^-1//2*(a+b*x), x) == :(1//3*a*x^4*(c*x^2)^-1//2+1//4*b*x^5*(c*x^2)^-1//2) @test integrate(x^2*(c*x^2)^-1//2*(a+b*x), x) == :((1/2)*a*x^3*(c*x^2)^-1//2+1//3*b*x^4*(c*x^2)^-1//2) @test integrate(x*(c*x^2)^-1//2*(a+b*x), x) == :(a*x^2*(c*x^2)^-1//2+(1/2)*b*x^3*(c*x^2)^-1//2) @test integrate((c*x^2)^-1//2*(a+b*x), x) == :(b*x^2*(c*x^2)^-1//2+a*x*(c*x^2)^-1//2*log(x)) @test integrate(x^-1*(c*x^2)^-1//2*(a+b*x), x) == :(-1*a*(c*x^2)^-1//2+b*x*(c*x^2)^-1//2*log(x)) @test integrate(x^-2*(c*x^2)^-1//2*(a+b*x), x) == :(-1//2*a^-1*x^-1*(c*x^2)^-1//2*(a+b*x)^2) @test integrate(x^-3*(c*x^2)^-1//2*(a+b*x), x) == :(-1//2*b*x^-1*(c*x^2)^-1//2+-1//3*a*x^-2*(c*x^2)^-1//2) @test integrate(x^-4*(c*x^2)^-1//2*(a+b*x), x) == :(-1//3*b*x^-2*(c*x^2)^-1//2+-1//4*a*x^-3*(c*x^2)^-1//2) @test integrate(x^3*(c*x^2)^-3//2*(a+b*x), x) == :(a*c^-1*x^2*(c*x^2)^-1//2+(1/2)*b*c^-1*x^3*(c*x^2)^-1//2) @test integrate(x^2*(c*x^2)^-3//2*(a+b*x), x) == :(b*c^-1*x^2*(c*x^2)^-1//2+a*x*c^-1*(c*x^2)^-1//2*log(x)) @test integrate(x*(c*x^2)^-3//2*(a+b*x), x) == :(-1*a*c^-1*(c*x^2)^-1//2+b*x*c^-1*(c*x^2)^-1//2*log(x)) @test integrate((c*x^2)^-3//2*(a+b*x), x) == :(-1//2*a^-1*c^-1*x^-1*(c*x^2)^-1//2*(a+b*x)^2) @test integrate(x^-1*(c*x^2)^-3//2*(a+b*x), x) == :(-1//2*b*c^-1*x^-1*(c*x^2)^-1//2+-1//3*a*c^-1*x^-2*(c*x^2)^-1//2) @test integrate(x^-2*(c*x^2)^-3//2*(a+b*x), x) == :(-1//3*b*c^-1*x^-2*(c*x^2)^-1//2+-1//4*a*c^-1*x^-3*(c*x^2)^-1//2) @test integrate(x^-3*(c*x^2)^-3//2*(a+b*x), x) == :(-1//4*b*c^-1*x^-3*(c*x^2)^-1//2+-1//5*a*c^-1*x^-4*(c*x^2)^-1//2) @test integrate(x^-4*(c*x^2)^-3//2*(a+b*x), x) == :(-1//5*b*c^-1*x^-4*(c*x^2)^-1//2+-1//6*a*c^-1*x^-5*(c*x^2)^-1//2) @test integrate(x^3*(c*x^2)^-5//2*(a+b*x), x) == :(-1*a*c^-2*(c*x^2)^-1//2+b*x*c^-2*(c*x^2)^-1//2*log(x)) @test integrate(x^2*(c*x^2)^-5//2*(a+b*x), x) == :(-1//2*a^-1*c^-2*x^-1*(c*x^2)^-1//2*(a+b*x)^2) @test integrate(x*(c*x^2)^-5//2*(a+b*x), x) == :(-1//2*b*c^-2*x^-1*(c*x^2)^-1//2+-1//3*a*c^-2*x^-2*(c*x^2)^-1//2) @test integrate((c*x^2)^-5//2*(a+b*x), x) == :(-1//3*b*c^-2*x^-2*(c*x^2)^-1//2+-1//4*a*c^-2*x^-3*(c*x^2)^-1//2) @test integrate(x^-1*(c*x^2)^-5//2*(a+b*x), x) == :(-1//4*b*c^-2*x^-3*(c*x^2)^-1//2+-1//5*a*c^-2*x^-4*(c*x^2)^-1//2) @test integrate(x^-2*(c*x^2)^-5//2*(a+b*x), x) == :(-1//5*b*c^-2*x^-4*(c*x^2)^-1//2+-1//6*a*c^-2*x^-5*(c*x^2)^-1//2) @test integrate(x^-3*(c*x^2)^-5//2*(a+b*x), x) == :(-1//6*b*c^-2*x^-5*(c*x^2)^-1//2+-1//7*a*c^-2*x^-6*(c*x^2)^-1//2) @test integrate(x^-4*(c*x^2)^-5//2*(a+b*x), x) == :(-1//7*b*c^-2*x^-6*(c*x^2)^-1//2+-1//8*a*c^-2*x^-7*(c*x^2)^-1//2) @test integrate(x^3*(c*x^2)^(1/2)*(a+b*x)^2, x) == :(1//5*a^2*x^4*(c*x^2)^(1/2)+1//7*b^2*x^6*(c*x^2)^(1/2)+1//3*a*b*x^5*(c*x^2)^(1/2)) @test integrate(x^2*(c*x^2)^(1/2)*(a+b*x)^2, x) == :(1//4*a^2*x^3*(c*x^2)^(1/2)+1//6*b^2*x^5*(c*x^2)^(1/2)+2//5*a*b*x^4*(c*x^2)^(1/2)) @test integrate(x*(c*x^2)^(1/2)*(a+b*x)^2, x) == :(1//3*a^2*x^2*(c*x^2)^(1/2)+1//5*b^2*x^4*(c*x^2)^(1/2)+(1/2)*a*b*x^3*(c*x^2)^(1/2)) @test integrate((c*x^2)^(1/2)*(a+b*x)^2, x) == :((1/2)*x*a^2*(c*x^2)^(1/2)+1//4*b^2*x^3*(c*x^2)^(1/2)+2//3*a*b*x^2*(c*x^2)^(1/2)) @test integrate(x^-1*(c*x^2)^(1/2)*(a+b*x)^2, x) == :(1//3*b^-1*x^-1*(c*x^2)^(1/2)*(a+b*x)^3) @test integrate(x^-2*(c*x^2)^(1/2)*(a+b*x)^2, x) == :((1/2)*x*b^2*(c*x^2)^(1/2)+2*a*b*(c*x^2)^(1/2)+a^2*x^-1*(c*x^2)^(1/2)*log(x)) @test integrate(x^-3*(c*x^2)^(1/2)*(a+b*x)^2, x) == :(b^2*(c*x^2)^(1/2)+-1*a^2*x^-2*(c*x^2)^(1/2)+2*a*b*x^-1*(c*x^2)^(1/2)*log(x)) @test integrate(x^-4*(c*x^2)^(1/2)*(a+b*x)^2, x) == :(-1//2*a^2*x^-3*(c*x^2)^(1/2)+b^2*x^-1*(c*x^2)^(1/2)*log(x)+-2*a*b*x^-2*(c*x^2)^(1/2)) @test integrate(x^3*(c*x^2)^3//2*(a+b*x)^2, x) == :(1//7*c*a^2*x^6*(c*x^2)^(1/2)+1//9*c*b^2*x^8*(c*x^2)^(1/2)+1//4*a*b*c*x^7*(c*x^2)^(1/2)) @test integrate(x^2*(c*x^2)^3//2*(a+b*x)^2, x) == :(1//6*c*a^2*x^5*(c*x^2)^(1/2)+1//8*c*b^2*x^7*(c*x^2)^(1/2)+2//7*a*b*c*x^6*(c*x^2)^(1/2)) @test integrate(x*(c*x^2)^3//2*(a+b*x)^2, x) == :(1//5*c*a^2*x^4*(c*x^2)^(1/2)+1//7*c*b^2*x^6*(c*x^2)^(1/2)+1//3*a*b*c*x^5*(c*x^2)^(1/2)) @test integrate((c*x^2)^3//2*(a+b*x)^2, x) == :(1//4*c*a^2*x^3*(c*x^2)^(1/2)+1//6*c*b^2*x^5*(c*x^2)^(1/2)+2//5*a*b*c*x^4*(c*x^2)^(1/2)) @test integrate(x^-1*(c*x^2)^3//2*(a+b*x)^2, x) == :(1//3*c*a^2*x^2*(c*x^2)^(1/2)+1//5*c*b^2*x^4*(c*x^2)^(1/2)+(1/2)*a*b*c*x^3*(c*x^2)^(1/2)) @test integrate(x^-2*(c*x^2)^3//2*(a+b*x)^2, x) == :((1/2)*c*x*a^2*(c*x^2)^(1/2)+1//4*c*b^2*x^3*(c*x^2)^(1/2)+2//3*a*b*c*x^2*(c*x^2)^(1/2)) @test integrate(x^-3*(c*x^2)^3//2*(a+b*x)^2, x) == :(1//3*c*b^-1*x^-1*(c*x^2)^(1/2)*(a+b*x)^3) @test integrate(x^-4*(c*x^2)^3//2*(a+b*x)^2, x) == :((1/2)*c*x*b^2*(c*x^2)^(1/2)+2*a*b*c*(c*x^2)^(1/2)+c*a^2*x^-1*(c*x^2)^(1/2)*log(x)) @test integrate(x*(c*x^2)^5//2*(a+b*x)^2, x) == :(1//7*a^2*c^2*x^6*(c*x^2)^(1/2)+1//9*b^2*c^2*x^8*(c*x^2)^(1/2)+1//4*a*b*c^2*x^7*(c*x^2)^(1/2)) @test integrate((c*x^2)^5//2*(a+b*x)^2, x) == :(1//6*a^2*c^2*x^5*(c*x^2)^(1/2)+1//8*b^2*c^2*x^7*(c*x^2)^(1/2)+2//7*a*b*c^2*x^6*(c*x^2)^(1/2)) @test integrate(x^-1*(c*x^2)^5//2*(a+b*x)^2, x) == :(1//5*a^2*c^2*x^4*(c*x^2)^(1/2)+1//7*b^2*c^2*x^6*(c*x^2)^(1/2)+1//3*a*b*c^2*x^5*(c*x^2)^(1/2)) @test integrate(x^-2*(c*x^2)^5//2*(a+b*x)^2, x) == :(1//4*a^2*c^2*x^3*(c*x^2)^(1/2)+1//6*b^2*c^2*x^5*(c*x^2)^(1/2)+2//5*a*b*c^2*x^4*(c*x^2)^(1/2)) @test integrate(x^-3*(c*x^2)^5//2*(a+b*x)^2, x) == :(1//3*a^2*c^2*x^2*(c*x^2)^(1/2)+1//5*b^2*c^2*x^4*(c*x^2)^(1/2)+(1/2)*a*b*c^2*x^3*(c*x^2)^(1/2)) @test integrate(x^-4*(c*x^2)^5//2*(a+b*x)^2, x) == :((1/2)*x*a^2*c^2*(c*x^2)^(1/2)+1//4*b^2*c^2*x^3*(c*x^2)^(1/2)+2//3*a*b*c^2*x^2*(c*x^2)^(1/2)) @test integrate(x^-5*(c*x^2)^5//2*(a+b*x)^2, x) == :(1//3*b^-1*c^2*x^-1*(c*x^2)^(1/2)*(a+b*x)^3) @test integrate(x^-6*(c*x^2)^5//2*(a+b*x)^2, x) == :((1/2)*x*b^2*c^2*(c*x^2)^(1/2)+2*a*b*c^2*(c*x^2)^(1/2)+a^2*c^2*x^-1*(c*x^2)^(1/2)*log(x)) @test integrate(x^3*(c*x^2)^-1//2*(a+b*x)^2, x) == :(1//3*a^2*x^4*(c*x^2)^-1//2+1//5*b^2*x^6*(c*x^2)^-1//2+(1/2)*a*b*x^5*(c*x^2)^-1//2) @test integrate(x^2*(c*x^2)^-1//2*(a+b*x)^2, x) == :((1/2)*a^2*x^3*(c*x^2)^-1//2+1//4*b^2*x^5*(c*x^2)^-1//2+2//3*a*b*x^4*(c*x^2)^-1//2) @test integrate(x*(c*x^2)^-1//2*(a+b*x)^2, x) == :(1//3*x*b^-1*(c*x^2)^-1//2*(a+b*x)^3) @test integrate((c*x^2)^-1//2*(a+b*x)^2, x) == :((1/2)*b^2*x^3*(c*x^2)^-1//2+x*a^2*(c*x^2)^-1//2*log(x)+2*a*b*x^2*(c*x^2)^-1//2) @test integrate(x^-1*(c*x^2)^-1//2*(a+b*x)^2, x) == :(-1*a^2*(c*x^2)^-1//2+b^2*x^2*(c*x^2)^-1//2+2*a*b*x*(c*x^2)^-1//2*log(x)) @test integrate(x^-2*(c*x^2)^-1//2*(a+b*x)^2, x) == :(-2*a*b*(c*x^2)^-1//2+-1//2*a^2*x^-1*(c*x^2)^-1//2+x*b^2*(c*x^2)^-1//2*log(x)) @test integrate(x^-3*(c*x^2)^-1//2*(a+b*x)^2, x) == :(-1//3*a^-1*x^-2*(c*x^2)^-1//2*(a+b*x)^3) @test integrate(x^-4*(c*x^2)^-1//2*(a+b*x)^2, x) == :(-1//2*b^2*x^-1*(c*x^2)^-1//2+-1//4*a^2*x^-3*(c*x^2)^-1//2+-2//3*a*b*x^-2*(c*x^2)^-1//2) @test integrate(x^3*(c*x^2)^-3//2*(a+b*x)^2, x) == :(1//3*x*b^-1*c^-1*(c*x^2)^-1//2*(a+b*x)^3) @test integrate(x^2*(c*x^2)^-3//2*(a+b*x)^2, x) == :((1/2)*b^2*c^-1*x^3*(c*x^2)^-1//2+x*a^2*c^-1*(c*x^2)^-1//2*log(x)+2*a*b*c^-1*x^2*(c*x^2)^-1//2) @test integrate(x*(c*x^2)^-3//2*(a+b*x)^2, x) == :(-1*a^2*c^-1*(c*x^2)^-1//2+b^2*c^-1*x^2*(c*x^2)^-1//2+2*a*b*x*c^-1*(c*x^2)^-1//2*log(x)) @test integrate((c*x^2)^-3//2*(a+b*x)^2, x) == :(-2*a*b*c^-1*(c*x^2)^-1//2+-1//2*a^2*c^-1*x^-1*(c*x^2)^-1//2+x*b^2*c^-1*(c*x^2)^-1//2*log(x)) @test integrate(x^-1*(c*x^2)^-3//2*(a+b*x)^2, x) == :(-1//3*a^-1*c^-1*x^-2*(c*x^2)^-1//2*(a+b*x)^3) @test integrate(x^-2*(c*x^2)^-3//2*(a+b*x)^2, x) == :(-1//2*b^2*c^-1*x^-1*(c*x^2)^-1//2+-1//4*a^2*c^-1*x^-3*(c*x^2)^-1//2+-2//3*a*b*c^-1*x^-2*(c*x^2)^-1//2) @test integrate(x^-3*(c*x^2)^-3//2*(a+b*x)^2, x) == :(-1//3*b^2*c^-1*x^-2*(c*x^2)^-1//2+-1//5*a^2*c^-1*x^-4*(c*x^2)^-1//2+-1//2*a*b*c^-1*x^-3*(c*x^2)^-1//2) @test integrate(x^-4*(c*x^2)^-3//2*(a+b*x)^2, x) == :(-1//4*b^2*c^-1*x^-3*(c*x^2)^-1//2+-1//6*a^2*c^-1*x^-5*(c*x^2)^-1//2+-2//5*a*b*c^-1*x^-4*(c*x^2)^-1//2) @test integrate(x^3*(c*x^2)^-5//2*(a+b*x)^2, x) == :(-1*a^2*c^-2*(c*x^2)^-1//2+b^2*c^-2*x^2*(c*x^2)^-1//2+2*a*b*x*c^-2*(c*x^2)^-1//2*log(x)) @test integrate(x^2*(c*x^2)^-5//2*(a+b*x)^2, x) == :(-2*a*b*c^-2*(c*x^2)^-1//2+-1//2*a^2*c^-2*x^-1*(c*x^2)^-1//2+x*b^2*c^-2*(c*x^2)^-1//2*log(x)) @test integrate(x*(c*x^2)^-5//2*(a+b*x)^2, x) == :(-1//3*a^-1*c^-2*x^-2*(c*x^2)^-1//2*(a+b*x)^3) @test integrate((c*x^2)^-5//2*(a+b*x)^2, x) == :(-1//2*b^2*c^-2*x^-1*(c*x^2)^-1//2+-1//4*a^2*c^-2*x^-3*(c*x^2)^-1//2+-2//3*a*b*c^-2*x^-2*(c*x^2)^-1//2) @test integrate(x^-1*(c*x^2)^-5//2*(a+b*x)^2, x) == :(-1//3*b^2*c^-2*x^-2*(c*x^2)^-1//2+-1//5*a^2*c^-2*x^-4*(c*x^2)^-1//2+-1//2*a*b*c^-2*x^-3*(c*x^2)^-1//2) @test integrate(x^-2*(c*x^2)^-5//2*(a+b*x)^2, x) == :(-1//4*b^2*c^-2*x^-3*(c*x^2)^-1//2+-1//6*a^2*c^-2*x^-5*(c*x^2)^-1//2+-2//5*a*b*c^-2*x^-4*(c*x^2)^-1//2) @test integrate(x^-3*(c*x^2)^-5//2*(a+b*x)^2, x) == :(-1//5*b^2*c^-2*x^-4*(c*x^2)^-1//2+-1//7*a^2*c^-2*x^-6*(c*x^2)^-1//2+-1//3*a*b*c^-2*x^-5*(c*x^2)^-1//2) @test integrate(x^-4*(c*x^2)^-5//2*(a+b*x)^2, x) == :(-1//6*b^2*c^-2*x^-5*(c*x^2)^-1//2+-1//8*a^2*c^-2*x^-7*(c*x^2)^-1//2+-2//7*a*b*c^-2*x^-6*(c*x^2)^-1//2) @test integrate(x^3*(c*x^2)^(1/2)*(a+b*x)^-1, x) == :(-1*a^3*b^-4*(c*x^2)^(1/2)+1//4*b^-1*x^3*(c*x^2)^(1/2)+(1/2)*x*a^2*b^-3*(c*x^2)^(1/2)+-1//3*a*b^-2*x^2*(c*x^2)^(1/2)+a^4*b^-5*x^-1*(c*x^2)^(1/2)*log(a+b*x)) @test integrate(x^2*(c*x^2)^(1/2)*(a+b*x)^-1, x) == :(a^2*b^-3*(c*x^2)^(1/2)+1//3*b^-1*x^2*(c*x^2)^(1/2)+-1//2*a*x*b^-2*(c*x^2)^(1/2)+-1*a^3*b^-4*x^-1*(c*x^2)^(1/2)*log(a+b*x)) @test integrate(x*(c*x^2)^(1/2)*(a+b*x)^-1, x) == :((1/2)*x*b^-1*(c*x^2)^(1/2)+-1*a*b^-2*(c*x^2)^(1/2)+a^2*b^-3*x^-1*(c*x^2)^(1/2)*log(a+b*x)) @test integrate((c*x^2)^(1/2)*(a+b*x)^-1, x) == :(b^-1*(c*x^2)^(1/2)+-1*a*b^-2*x^-1*(c*x^2)^(1/2)*log(a+b*x)) @test integrate(x^-1*(c*x^2)^(1/2)*(a+b*x)^-1, x) == :(b^-1*x^-1*(c*x^2)^(1/2)*log(a+b*x)) @test integrate(x^-2*(c*x^2)^(1/2)*(a+b*x)^-1, x) == :(a^-1*x^-1*(c*x^2)^(1/2)*log(x)+-1*a^-1*x^-1*(c*x^2)^(1/2)*log(a+b*x)) @test integrate(x^-3*(c*x^2)^(1/2)*(a+b*x)^-1, x) == :(-1*a^-1*x^-2*(c*x^2)^(1/2)+b*a^-2*x^-1*(c*x^2)^(1/2)*log(a+b*x)+-1*b*a^-2*x^-1*(c*x^2)^(1/2)*log(x)) @test integrate(x^-4*(c*x^2)^(1/2)*(a+b*x)^-1, x) == :(-1//2*a^-1*x^-3*(c*x^2)^(1/2)+b*a^-2*x^-2*(c*x^2)^(1/2)+a^-3*b^2*x^-1*(c*x^2)^(1/2)*log(x)+-1*a^-3*b^2*x^-1*(c*x^2)^(1/2)*log(a+b*x)) @test integrate(x*(c*x^2)^3//2*(a+b*x)^-1, x) == :(-1*c*a^3*b^-4*(c*x^2)^(1/2)+1//4*c*b^-1*x^3*(c*x^2)^(1/2)+(1/2)*c*x*a^2*b^-3*(c*x^2)^(1/2)+-1//3*a*c*b^-2*x^2*(c*x^2)^(1/2)+c*a^4*b^-5*x^-1*(c*x^2)^(1/2)*log(a+b*x)) @test integrate((c*x^2)^3//2*(a+b*x)^-1, x) == :(c*a^2*b^-3*(c*x^2)^(1/2)+1//3*c*b^-1*x^2*(c*x^2)^(1/2)+-1//2*a*c*x*b^-2*(c*x^2)^(1/2)+-1*c*a^3*b^-4*x^-1*(c*x^2)^(1/2)*log(a+b*x)) @test integrate(x^-1*(c*x^2)^3//2*(a+b*x)^-1, x) == :((1/2)*c*x*b^-1*(c*x^2)^(1/2)+-1*a*c*b^-2*(c*x^2)^(1/2)+c*a^2*b^-3*x^-1*(c*x^2)^(1/2)*log(a+b*x)) @test integrate(x^-2*(c*x^2)^3//2*(a+b*x)^-1, x) == :(c*b^-1*(c*x^2)^(1/2)+-1*a*c*b^-2*x^-1*(c*x^2)^(1/2)*log(a+b*x)) @test integrate(x^-3*(c*x^2)^3//2*(a+b*x)^-1, x) == :(c*b^-1*x^-1*(c*x^2)^(1/2)*log(a+b*x)) @test integrate(x^-4*(c*x^2)^3//2*(a+b*x)^-1, x) == :(c*a^-1*x^-1*(c*x^2)^(1/2)*log(x)+-1*c*a^-1*x^-1*(c*x^2)^(1/2)*log(a+b*x)) @test integrate(x^-5*(c*x^2)^3//2*(a+b*x)^-1, x) == :(-1*c*a^-1*x^-2*(c*x^2)^(1/2)+b*c*a^-2*x^-1*(c*x^2)^(1/2)*log(a+b*x)+-1*b*c*a^-2*x^-1*(c*x^2)^(1/2)*log(x)) @test integrate(x^-6*(c*x^2)^3//2*(a+b*x)^-1, x) == :(-1//2*c*a^-1*x^-3*(c*x^2)^(1/2)+b*c*a^-2*x^-2*(c*x^2)^(1/2)+c*a^-3*b^2*x^-1*(c*x^2)^(1/2)*log(x)+-1*c*a^-3*b^2*x^-1*(c*x^2)^(1/2)*log(a+b*x)) @test integrate(x^-7*(c*x^2)^3//2*(a+b*x)^-1, x) == :(-1//3*c*a^-1*x^-4*(c*x^2)^(1/2)+(1/2)*b*c*a^-2*x^-3*(c*x^2)^(1/2)+-1*c*a^-3*b^2*x^-2*(c*x^2)^(1/2)+c*a^-4*b^3*x^-1*(c*x^2)^(1/2)*log(a+b*x)+-1*c*a^-4*b^3*x^-1*(c*x^2)^(1/2)*log(x)) @test integrate((c*x^2)^5//2*(a+b*x)^-1, x) == :(a^4*b^-5*c^2*(c*x^2)^(1/2)+1//5*b^-1*c^2*x^4*(c*x^2)^(1/2)+-1//2*x*a^3*b^-4*c^2*(c*x^2)^(1/2)+-1//4*a*b^-2*c^2*x^3*(c*x^2)^(1/2)+1//3*a^2*b^-3*c^2*x^2*(c*x^2)^(1/2)+-1*a^5*b^-6*c^2*x^-1*(c*x^2)^(1/2)*log(a+b*x)) @test integrate(x^-1*(c*x^2)^5//2*(a+b*x)^-1, x) == :(-1*a^3*b^-4*c^2*(c*x^2)^(1/2)+1//4*b^-1*c^2*x^3*(c*x^2)^(1/2)+(1/2)*x*a^2*b^-3*c^2*(c*x^2)^(1/2)+-1//3*a*b^-2*c^2*x^2*(c*x^2)^(1/2)+a^4*b^-5*c^2*x^-1*(c*x^2)^(1/2)*log(a+b*x)) @test integrate(x^-2*(c*x^2)^5//2*(a+b*x)^-1, x) == :(a^2*b^-3*c^2*(c*x^2)^(1/2)+1//3*b^-1*c^2*x^2*(c*x^2)^(1/2)+-1//2*a*x*b^-2*c^2*(c*x^2)^(1/2)+-1*a^3*b^-4*c^2*x^-1*(c*x^2)^(1/2)*log(a+b*x)) @test integrate(x^-3*(c*x^2)^5//2*(a+b*x)^-1, x) == :((1/2)*x*b^-1*c^2*(c*x^2)^(1/2)+-1*a*b^-2*c^2*(c*x^2)^(1/2)+a^2*b^-3*c^2*x^-1*(c*x^2)^(1/2)*log(a+b*x)) @test integrate(x^-4*(c*x^2)^5//2*(a+b*x)^-1, x) == :(b^-1*c^2*(c*x^2)^(1/2)+-1*a*b^-2*c^2*x^-1*(c*x^2)^(1/2)*log(a+b*x)) @test integrate(x^-5*(c*x^2)^5//2*(a+b*x)^-1, x) == :(b^-1*c^2*x^-1*(c*x^2)^(1/2)*log(a+b*x)) @test integrate(x^-6*(c*x^2)^5//2*(a+b*x)^-1, x) == :(a^-1*c^2*x^-1*(c*x^2)^(1/2)*log(x)+-1*a^-1*c^2*x^-1*(c*x^2)^(1/2)*log(a+b*x)) @test integrate(x^-7*(c*x^2)^5//2*(a+b*x)^-1, x) == :(-1*a^-1*c^2*x^-2*(c*x^2)^(1/2)+b*a^-2*c^2*x^-1*(c*x^2)^(1/2)*log(a+b*x)+-1*b*a^-2*c^2*x^-1*(c*x^2)^(1/2)*log(x)) @test integrate(x^4*(c*x^2)^-1//2*(a+b*x)^-1, x) == :(1//3*b^-1*x^4*(c*x^2)^-1//2+a^2*b^-3*x^2*(c*x^2)^-1//2+-1//2*a*b^-2*x^3*(c*x^2)^-1//2+-1*x*a^3*b^-4*(c*x^2)^-1//2*log(a+b*x)) @test integrate(x^3*(c*x^2)^-1//2*(a+b*x)^-1, x) == :((1/2)*b^-1*x^3*(c*x^2)^-1//2+-1*a*b^-2*x^2*(c*x^2)^-1//2+x*a^2*b^-3*(c*x^2)^-1//2*log(a+b*x)) @test integrate(x^2*(c*x^2)^-1//2*(a+b*x)^-1, x) == :(b^-1*x^2*(c*x^2)^-1//2+-1*a*x*b^-2*(c*x^2)^-1//2*log(a+b*x)) @test integrate(x*(c*x^2)^-1//2*(a+b*x)^-1, x) == :(x*b^-1*(c*x^2)^-1//2*log(a+b*x)) @test integrate((c*x^2)^-1//2*(a+b*x)^-1, x) == :(x*a^-1*(c*x^2)^-1//2*log(x)+-1*x*a^-1*(c*x^2)^-1//2*log(a+b*x)) @test integrate(x^-1*(c*x^2)^-1//2*(a+b*x)^-1, x) == :(-1*a^-1*(c*x^2)^-1//2+b*x*a^-2*(c*x^2)^-1//2*log(a+b*x)+-1*b*x*a^-2*(c*x^2)^-1//2*log(x)) @test integrate(x^-2*(c*x^2)^-1//2*(a+b*x)^-1, x) == :(b*a^-2*(c*x^2)^-1//2+-1//2*a^-1*x^-1*(c*x^2)^-1//2+x*a^-3*b^2*(c*x^2)^-1//2*log(x)+-1*x*a^-3*b^2*(c*x^2)^-1//2*log(a+b*x)) @test integrate(x^-3*(c*x^2)^-1//2*(a+b*x)^-1, x) == :(-1*a^-3*b^2*(c*x^2)^-1//2+-1//3*a^-1*x^-2*(c*x^2)^-1//2+(1/2)*b*a^-2*x^-1*(c*x^2)^-1//2+x*a^-4*b^3*(c*x^2)^-1//2*log(a+b*x)+-1*x*a^-4*b^3*(c*x^2)^-1//2*log(x)) @test integrate(x^6*(c*x^2)^-3//2*(a+b*x)^-1, x) == :(1//3*b^-1*c^-1*x^4*(c*x^2)^-1//2+a^2*b^-3*c^-1*x^2*(c*x^2)^-1//2+-1//2*a*b^-2*c^-1*x^3*(c*x^2)^-1//2+-1*x*a^3*b^-4*c^-1*(c*x^2)^-1//2*log(a+b*x)) @test integrate(x^5*(c*x^2)^-3//2*(a+b*x)^-1, x) == :((1/2)*b^-1*c^-1*x^3*(c*x^2)^-1//2+-1*a*b^-2*c^-1*x^2*(c*x^2)^-1//2+x*a^2*b^-3*c^-1*(c*x^2)^-1//2*log(a+b*x)) @test integrate(x^4*(c*x^2)^-3//2*(a+b*x)^-1, x) == :(b^-1*c^-1*x^2*(c*x^2)^-1//2+-1*a*x*b^-2*c^-1*(c*x^2)^-1//2*log(a+b*x)) @test integrate(x^3*(c*x^2)^-3//2*(a+b*x)^-1, x) == :(x*b^-1*c^-1*(c*x^2)^-1//2*log(a+b*x)) @test integrate(x^2*(c*x^2)^-3//2*(a+b*x)^-1, x) == :(x*a^-1*c^-1*(c*x^2)^-1//2*log(x)+-1*x*a^-1*c^-1*(c*x^2)^-1//2*log(a+b*x)) @test integrate(x*(c*x^2)^-3//2*(a+b*x)^-1, x) == :(-1*a^-1*c^-1*(c*x^2)^-1//2+b*x*a^-2*c^-1*(c*x^2)^-1//2*log(a+b*x)+-1*b*x*a^-2*c^-1*(c*x^2)^-1//2*log(x)) @test integrate((c*x^2)^-3//2*(a+b*x)^-1, x) == :(b*a^-2*c^-1*(c*x^2)^-1//2+-1//2*a^-1*c^-1*x^-1*(c*x^2)^-1//2+x*a^-3*b^2*c^-1*(c*x^2)^-1//2*log(x)+-1*x*a^-3*b^2*c^-1*(c*x^2)^-1//2*log(a+b*x)) @test integrate(x^-1*(c*x^2)^-3//2*(a+b*x)^-1, x) == :(-1*a^-3*b^2*c^-1*(c*x^2)^-1//2+-1//3*a^-1*c^-1*x^-2*(c*x^2)^-1//2+(1/2)*b*a^-2*c^-1*x^-1*(c*x^2)^-1//2+x*a^-4*b^3*c^-1*(c*x^2)^-1//2*log(a+b*x)+-1*x*a^-4*b^3*c^-1*(c*x^2)^-1//2*log(x)) @test integrate(x^3*(c*x^2)^(1/2)*(a+b*x)^-2, x) == :(3*a^2*b^-4*(c*x^2)^(1/2)+1//3*b^-2*x^2*(c*x^2)^(1/2)+-1*a*x*b^-3*(c*x^2)^(1/2)+-1*a^4*b^-5*x^-1*(c*x^2)^(1/2)*(a+b*x)^-1+-4*a^3*b^-5*x^-1*(c*x^2)^(1/2)*log(a+b*x)) @test integrate(x^2*(c*x^2)^(1/2)*(a+b*x)^-2, x) == :((1/2)*x*b^-2*(c*x^2)^(1/2)+-2*a*b^-3*(c*x^2)^(1/2)+a^3*b^-4*x^-1*(c*x^2)^(1/2)*(a+b*x)^-1+3*a^2*b^-4*x^-1*(c*x^2)^(1/2)*log(a+b*x)) @test integrate(x*(c*x^2)^(1/2)*(a+b*x)^-2, x) == :(b^-2*(c*x^2)^(1/2)+-1*a^2*b^-3*x^-1*(c*x^2)^(1/2)*(a+b*x)^-1+-2*a*b^-3*x^-1*(c*x^2)^(1/2)*log(a+b*x)) @test integrate((c*x^2)^(1/2)*(a+b*x)^-2, x) == :(b^-2*x^-1*(c*x^2)^(1/2)*log(a+b*x)+a*b^-2*x^-1*(c*x^2)^(1/2)*(a+b*x)^-1) @test integrate(x^-1*(c*x^2)^(1/2)*(a+b*x)^-2, x) == :(-1*b^-1*x^-1*(c*x^2)^(1/2)*(a+b*x)^-1) @test integrate(x^-2*(c*x^2)^(1/2)*(a+b*x)^-2, x) == :(a^-1*x^-1*(c*x^2)^(1/2)*(a+b*x)^-1+a^-2*x^-1*(c*x^2)^(1/2)*log(x)+-1*a^-2*x^-1*(c*x^2)^(1/2)*log(a+b*x)) @test integrate(x^-3*(c*x^2)^(1/2)*(a+b*x)^-2, x) == :(-1*a^-2*x^-2*(c*x^2)^(1/2)+-1*b*a^-2*x^-1*(c*x^2)^(1/2)*(a+b*x)^-1+-2*b*a^-3*x^-1*(c*x^2)^(1/2)*log(x)+2*b*a^-3*x^-1*(c*x^2)^(1/2)*log(a+b*x)) @test integrate(x^-4*(c*x^2)^(1/2)*(a+b*x)^-2, x) == :(-1//2*a^-2*x^-3*(c*x^2)^(1/2)+2*b*a^-3*x^-2*(c*x^2)^(1/2)+a^-3*b^2*x^-1*(c*x^2)^(1/2)*(a+b*x)^-1+-3*a^-4*b^2*x^-1*(c*x^2)^(1/2)*log(a+b*x)+3*a^-4*b^2*x^-1*(c*x^2)^(1/2)*log(x)) @test integrate(x*(c*x^2)^3//2*(a+b*x)^-2, x) == :(3*c*a^2*b^-4*(c*x^2)^(1/2)+1//3*c*b^-2*x^2*(c*x^2)^(1/2)+-1*a*c*x*b^-3*(c*x^2)^(1/2)+-1*c*a^4*b^-5*x^-1*(c*x^2)^(1/2)*(a+b*x)^-1+-4*c*a^3*b^-5*x^-1*(c*x^2)^(1/2)*log(a+b*x)) @test integrate((c*x^2)^3//2*(a+b*x)^-2, x) == :((1/2)*c*x*b^-2*(c*x^2)^(1/2)+-2*a*c*b^-3*(c*x^2)^(1/2)+c*a^3*b^-4*x^-1*(c*x^2)^(1/2)*(a+b*x)^-1+3*c*a^2*b^-4*x^-1*(c*x^2)^(1/2)*log(a+b*x)) @test integrate(x^-1*(c*x^2)^3//2*(a+b*x)^-2, x) == :(c*b^-2*(c*x^2)^(1/2)+-1*c*a^2*b^-3*x^-1*(c*x^2)^(1/2)*(a+b*x)^-1+-2*a*c*b^-3*x^-1*(c*x^2)^(1/2)*log(a+b*x)) @test integrate(x^-2*(c*x^2)^3//2*(a+b*x)^-2, x) == :(c*b^-2*x^-1*(c*x^2)^(1/2)*log(a+b*x)+a*c*b^-2*x^-1*(c*x^2)^(1/2)*(a+b*x)^-1) @test integrate(x^-3*(c*x^2)^3//2*(a+b*x)^-2, x) == :(-1*c*b^-1*x^-1*(c*x^2)^(1/2)*(a+b*x)^-1) @test integrate(x^-4*(c*x^2)^3//2*(a+b*x)^-2, x) == :(c*a^-1*x^-1*(c*x^2)^(1/2)*(a+b*x)^-1+c*a^-2*x^-1*(c*x^2)^(1/2)*log(x)+-1*c*a^-2*x^-1*(c*x^2)^(1/2)*log(a+b*x)) @test integrate(x^-5*(c*x^2)^3//2*(a+b*x)^-2, x) == :(-1*c*a^-2*x^-2*(c*x^2)^(1/2)+-1*b*c*a^-2*x^-1*(c*x^2)^(1/2)*(a+b*x)^-1+-2*b*c*a^-3*x^-1*(c*x^2)^(1/2)*log(x)+2*b*c*a^-3*x^-1*(c*x^2)^(1/2)*log(a+b*x)) @test integrate(x^-6*(c*x^2)^3//2*(a+b*x)^-2, x) == :(-1//2*c*a^-2*x^-3*(c*x^2)^(1/2)+2*b*c*a^-3*x^-2*(c*x^2)^(1/2)+c*a^-3*b^2*x^-1*(c*x^2)^(1/2)*(a+b*x)^-1+-3*c*a^-4*b^2*x^-1*(c*x^2)^(1/2)*log(a+b*x)+3*c*a^-4*b^2*x^-1*(c*x^2)^(1/2)*log(x)) @test integrate(x^5*(c*x^2)^-1//2*(a+b*x)^-2, x) == :(1//3*b^-2*x^4*(c*x^2)^-1//2+-1*a*b^-3*x^3*(c*x^2)^-1//2+3*a^2*b^-4*x^2*(c*x^2)^-1//2+-1*x*a^4*b^-5*(c*x^2)^-1//2*(a+b*x)^-1+-4*x*a^3*b^-5*(c*x^2)^-1//2*log(a+b*x)) @test integrate(x^4*(c*x^2)^-1//2*(a+b*x)^-2, x) == :((1/2)*b^-2*x^3*(c*x^2)^-1//2+-2*a*b^-3*x^2*(c*x^2)^-1//2+x*a^3*b^-4*(c*x^2)^-1//2*(a+b*x)^-1+3*x*a^2*b^-4*(c*x^2)^-1//2*log(a+b*x)) @test integrate(x^3*(c*x^2)^-1//2*(a+b*x)^-2, x) == :(b^-2*x^2*(c*x^2)^-1//2+-1*x*a^2*b^-3*(c*x^2)^-1//2*(a+b*x)^-1+-2*a*x*b^-3*(c*x^2)^-1//2*log(a+b*x)) @test integrate(x^2*(c*x^2)^-1//2*(a+b*x)^-2, x) == :(x*b^-2*(c*x^2)^-1//2*log(a+b*x)+a*x*b^-2*(c*x^2)^-1//2*(a+b*x)^-1) @test integrate(x*(c*x^2)^-1//2*(a+b*x)^-2, x) == :(-1*x*b^-1*(c*x^2)^-1//2*(a+b*x)^-1) @test integrate((c*x^2)^-1//2*(a+b*x)^-2, x) == :(x*a^-1*(c*x^2)^-1//2*(a+b*x)^-1+x*a^-2*(c*x^2)^-1//2*log(x)+-1*x*a^-2*(c*x^2)^-1//2*log(a+b*x)) @test integrate(x^-1*(c*x^2)^-1//2*(a+b*x)^-2, x) == :(-1*a^-2*(c*x^2)^-1//2+-1*b*x*a^-2*(c*x^2)^-1//2*(a+b*x)^-1+-2*b*x*a^-3*(c*x^2)^-1//2*log(x)+2*b*x*a^-3*(c*x^2)^-1//2*log(a+b*x)) @test integrate(x^-2*(c*x^2)^-1//2*(a+b*x)^-2, x) == :(2*b*a^-3*(c*x^2)^-1//2+-1//2*a^-2*x^-1*(c*x^2)^-1//2+x*a^-3*b^2*(c*x^2)^-1//2*(a+b*x)^-1+-3*x*a^-4*b^2*(c*x^2)^-1//2*log(a+b*x)+3*x*a^-4*b^2*(c*x^2)^-1//2*log(x)) @test integrate(x^5*(c*x^2)^-3//2*(a+b*x)^-2, x) == :(b^-2*c^-1*x^2*(c*x^2)^-1//2+-1*x*a^2*b^-3*c^-1*(c*x^2)^-1//2*(a+b*x)^-1+-2*a*x*b^-3*c^-1*(c*x^2)^-1//2*log(a+b*x)) @test integrate(x^4*(c*x^2)^-3//2*(a+b*x)^-2, x) == :(x*b^-2*c^-1*(c*x^2)^-1//2*log(a+b*x)+a*x*b^-2*c^-1*(c*x^2)^-1//2*(a+b*x)^-1) @test integrate(x^3*(c*x^2)^-3//2*(a+b*x)^-2, x) == :(-1*x*b^-1*c^-1*(c*x^2)^-1//2*(a+b*x)^-1) @test integrate(x^2*(c*x^2)^-3//2*(a+b*x)^-2, x) == :(x*a^-1*c^-1*(c*x^2)^-1//2*(a+b*x)^-1+x*a^-2*c^-1*(c*x^2)^-1//2*log(x)+-1*x*a^-2*c^-1*(c*x^2)^-1//2*log(a+b*x)) @test integrate(x*(c*x^2)^-3//2*(a+b*x)^-2, x) == :(-1*a^-2*c^-1*(c*x^2)^-1//2+-1*b*x*a^-2*c^-1*(c*x^2)^-1//2*(a+b*x)^-1+-2*b*x*a^-3*c^-1*(c*x^2)^-1//2*log(x)+2*b*x*a^-3*c^-1*(c*x^2)^-1//2*log(a+b*x)) @test integrate((c*x^2)^-3//2*(a+b*x)^-2, x) == :(2*b*a^-3*c^-1*(c*x^2)^-1//2+-1//2*a^-2*c^-1*x^-1*(c*x^2)^-1//2+x*a^-3*b^2*c^-1*(c*x^2)^-1//2*(a+b*x)^-1+-3*x*a^-4*b^2*c^-1*(c*x^2)^-1//2*log(a+b*x)+3*x*a^-4*b^2*c^-1*(c*x^2)^-1//2*log(x)) @test integrate(x^2*(c*x^2)^(1/2)*(a+b*x)^n, x) == :(b^-4*x^-1*(c*x^2)^(1/2)*(4+n)^-1*(a+b*x)^(4+n)+-1*a^3*b^-4*x^-1*(c*x^2)^(1/2)*(1+n)^-1*(a+b*x)^(1+n)+-3*a*b^-4*x^-1*(c*x^2)^(1/2)*(3+n)^-1*(a+b*x)^(3+n)+3*a^2*b^-4*x^-1*(c*x^2)^(1/2)*(2+n)^-1*(a+b*x)^(2+n)) @test integrate(x*(c*x^2)^(1/2)*(a+b*x)^n, x) == :(b^-3*x^-1*(c*x^2)^(1/2)*(3+n)^-1*(a+b*x)^(3+n)+a^2*b^-3*x^-1*(c*x^2)^(1/2)*(1+n)^-1*(a+b*x)^(1+n)+-2*a*b^-3*x^-1*(c*x^2)^(1/2)*(2+n)^-1*(a+b*x)^(2+n)) @test integrate((c*x^2)^(1/2)*(a+b*x)^n, x) == :(b^-2*x^-1*(c*x^2)^(1/2)*(2+n)^-1*(a+b*x)^(2+n)+-1*a*b^-2*x^-1*(c*x^2)^(1/2)*(1+n)^-1*(a+b*x)^(1+n)) @test integrate(x^-1*(c*x^2)^(1/2)*(a+b*x)^n, x) == :(b^-1*x^-1*(c*x^2)^(1/2)*(1+n)^-1*(a+b*x)^(1+n)) @test integrate(x*(c*x^2)^3//2*(a+b*x)^n, x) == :(c*b^-5*x^-1*(c*x^2)^(1/2)*(5+n)^-1*(a+b*x)^(5+n)+c*a^4*b^-5*x^-1*(c*x^2)^(1/2)*(1+n)^-1*(a+b*x)^(1+n)+-4*a*c*b^-5*x^-1*(c*x^2)^(1/2)*(4+n)^-1*(a+b*x)^(4+n)+-4*c*a^3*b^-5*x^-1*(c*x^2)^(1/2)*(2+n)^-1*(a+b*x)^(2+n)+6*c*a^2*b^-5*x^-1*(c*x^2)^(1/2)*(3+n)^-1*(a+b*x)^(3+n)) @test integrate((c*x^2)^3//2*(a+b*x)^n, x) == :(c*b^-4*x^-1*(c*x^2)^(1/2)*(4+n)^-1*(a+b*x)^(4+n)+-1*c*a^3*b^-4*x^-1*(c*x^2)^(1/2)*(1+n)^-1*(a+b*x)^(1+n)+-3*a*c*b^-4*x^-1*(c*x^2)^(1/2)*(3+n)^-1*(a+b*x)^(3+n)+3*c*a^2*b^-4*x^-1*(c*x^2)^(1/2)*(2+n)^-1*(a+b*x)^(2+n)) @test integrate(x^-1*(c*x^2)^3//2*(a+b*x)^n, x) == :(c*b^-3*x^-1*(c*x^2)^(1/2)*(3+n)^-1*(a+b*x)^(3+n)+c*a^2*b^-3*x^-1*(c*x^2)^(1/2)*(1+n)^-1*(a+b*x)^(1+n)+-2*a*c*b^-3*x^-1*(c*x^2)^(1/2)*(2+n)^-1*(a+b*x)^(2+n)) @test integrate(x^-2*(c*x^2)^3//2*(a+b*x)^n, x) == :(c*b^-2*x^-1*(c*x^2)^(1/2)*(2+n)^-1*(a+b*x)^(2+n)+-1*a*c*b^-2*x^-1*(c*x^2)^(1/2)*(1+n)^-1*(a+b*x)^(1+n)) @test integrate(x^-3*(c*x^2)^3//2*(a+b*x)^n, x) == :(c*b^-1*x^-1*(c*x^2)^(1/2)*(1+n)^-1*(a+b*x)^(1+n)) @test integrate((c*x^2)^5//2*(a+b*x)^n, x) == :(b^-6*c^2*x^-1*(c*x^2)^(1/2)*(6+n)^-1*(a+b*x)^(6+n)+-1*a^5*b^-6*c^2*x^-1*(c*x^2)^(1/2)*(1+n)^-1*(a+b*x)^(1+n)+-10*a^3*b^-6*c^2*x^-1*(c*x^2)^(1/2)*(3+n)^-1*(a+b*x)^(3+n)+-5*a*b^-6*c^2*x^-1*(c*x^2)^(1/2)*(5+n)^-1*(a+b*x)^(5+n)+5*a^4*b^-6*c^2*x^-1*(c*x^2)^(1/2)*(2+n)^-1*(a+b*x)^(2+n)+10*a^2*b^-6*c^2*x^-1*(c*x^2)^(1/2)*(4+n)^-1*(a+b*x)^(4+n)) @test integrate(x^-1*(c*x^2)^5//2*(a+b*x)^n, x) == :(b^-5*c^2*x^-1*(c*x^2)^(1/2)*(5+n)^-1*(a+b*x)^(5+n)+a^4*b^-5*c^2*x^-1*(c*x^2)^(1/2)*(1+n)^-1*(a+b*x)^(1+n)+-4*a*b^-5*c^2*x^-1*(c*x^2)^(1/2)*(4+n)^-1*(a+b*x)^(4+n)+-4*a^3*b^-5*c^2*x^-1*(c*x^2)^(1/2)*(2+n)^-1*(a+b*x)^(2+n)+6*a^2*b^-5*c^2*x^-1*(c*x^2)^(1/2)*(3+n)^-1*(a+b*x)^(3+n)) @test integrate(x^-2*(c*x^2)^5//2*(a+b*x)^n, x) == :(b^-4*c^2*x^-1*(c*x^2)^(1/2)*(4+n)^-1*(a+b*x)^(4+n)+-1*a^3*b^-4*c^2*x^-1*(c*x^2)^(1/2)*(1+n)^-1*(a+b*x)^(1+n)+-3*a*b^-4*c^2*x^-1*(c*x^2)^(1/2)*(3+n)^-1*(a+b*x)^(3+n)+3*a^2*b^-4*c^2*x^-1*(c*x^2)^(1/2)*(2+n)^-1*(a+b*x)^(2+n)) @test integrate(x^-3*(c*x^2)^5//2*(a+b*x)^n, x) == :(b^-3*c^2*x^-1*(c*x^2)^(1/2)*(3+n)^-1*(a+b*x)^(3+n)+a^2*b^-3*c^2*x^-1*(c*x^2)^(1/2)*(1+n)^-1*(a+b*x)^(1+n)+-2*a*b^-3*c^2*x^-1*(c*x^2)^(1/2)*(2+n)^-1*(a+b*x)^(2+n)) @test integrate(x^-4*(c*x^2)^5//2*(a+b*x)^n, x) == :(b^-2*c^2*x^-1*(c*x^2)^(1/2)*(2+n)^-1*(a+b*x)^(2+n)+-1*a*b^-2*c^2*x^-1*(c*x^2)^(1/2)*(1+n)^-1*(a+b*x)^(1+n)) @test integrate(x^-5*(c*x^2)^5//2*(a+b*x)^n, x) == :(b^-1*c^2*x^-1*(c*x^2)^(1/2)*(1+n)^-1*(a+b*x)^(1+n)) @test integrate(x^4*(c*x^2)^-1//2*(a+b*x)^n, x) == :(x*b^-4*(c*x^2)^-1//2*(4+n)^-1*(a+b*x)^(4+n)+-1*x*a^3*b^-4*(c*x^2)^-1//2*(1+n)^-1*(a+b*x)^(1+n)+-3*a*x*b^-4*(c*x^2)^-1//2*(3+n)^-1*(a+b*x)^(3+n)+3*x*a^2*b^-4*(c*x^2)^-1//2*(2+n)^-1*(a+b*x)^(2+n)) @test integrate(x^3*(c*x^2)^-1//2*(a+b*x)^n, x) == :(x*b^-3*(c*x^2)^-1//2*(3+n)^-1*(a+b*x)^(3+n)+x*a^2*b^-3*(c*x^2)^-1//2*(1+n)^-1*(a+b*x)^(1+n)+-2*a*x*b^-3*(c*x^2)^-1//2*(2+n)^-1*(a+b*x)^(2+n)) @test integrate(x^2*(c*x^2)^-1//2*(a+b*x)^n, x) == :(x*b^-2*(c*x^2)^-1//2*(2+n)^-1*(a+b*x)^(2+n)+-1*a*x*b^-2*(c*x^2)^-1//2*(1+n)^-1*(a+b*x)^(1+n)) @test integrate(x*(c*x^2)^-1//2*(a+b*x)^n, x) == :(x*b^-1*(c*x^2)^-1//2*(1+n)^-1*(a+b*x)^(1+n)) @test integrate(x^6*(c*x^2)^-3//2*(a+b*x)^n, x) == :(x*b^-4*c^-1*(c*x^2)^-1//2*(4+n)^-1*(a+b*x)^(4+n)+-1*x*a^3*b^-4*c^-1*(c*x^2)^-1//2*(1+n)^-1*(a+b*x)^(1+n)+-3*a*x*b^-4*c^-1*(c*x^2)^-1//2*(3+n)^-1*(a+b*x)^(3+n)+3*x*a^2*b^-4*c^-1*(c*x^2)^-1//2*(2+n)^-1*(a+b*x)^(2+n)) @test integrate(x^5*(c*x^2)^-3//2*(a+b*x)^n, x) == :(x*b^-3*c^-1*(c*x^2)^-1//2*(3+n)^-1*(a+b*x)^(3+n)+x*a^2*b^-3*c^-1*(c*x^2)^-1//2*(1+n)^-1*(a+b*x)^(1+n)+-2*a*x*b^-3*c^-1*(c*x^2)^-1//2*(2+n)^-1*(a+b*x)^(2+n)) @test integrate(x^4*(c*x^2)^-3//2*(a+b*x)^n, x) == :(x*b^-2*c^-1*(c*x^2)^-1//2*(2+n)^-1*(a+b*x)^(2+n)+-1*a*x*b^-2*c^-1*(c*x^2)^-1//2*(1+n)^-1*(a+b*x)^(1+n)) @test integrate(x^3*(c*x^2)^-3//2*(a+b*x)^n, x) == :(x*b^-1*c^-1*(c*x^2)^-1//2*(1+n)^-1*(a+b*x)^(1+n)) @test integrate(x^8*(c*x^2)^-5//2*(a+b*x)^n, x) == :(x*b^-4*c^-2*(c*x^2)^-1//2*(4+n)^-1*(a+b*x)^(4+n)+-1*x*a^3*b^-4*c^-2*(c*x^2)^-1//2*(1+n)^-1*(a+b*x)^(1+n)+-3*a*x*b^-4*c^-2*(c*x^2)^-1//2*(3+n)^-1*(a+b*x)^(3+n)+3*x*a^2*b^-4*c^-2*(c*x^2)^-1//2*(2+n)^-1*(a+b*x)^(2+n)) @test integrate(x^7*(c*x^2)^-5//2*(a+b*x)^n, x) == :(x*b^-3*c^-2*(c*x^2)^-1//2*(3+n)^-1*(a+b*x)^(3+n)+x*a^2*b^-3*c^-2*(c*x^2)^-1//2*(1+n)^-1*(a+b*x)^(1+n)+-2*a*x*b^-3*c^-2*(c*x^2)^-1//2*(2+n)^-1*(a+b*x)^(2+n)) @test integrate(x^6*(c*x^2)^-5//2*(a+b*x)^n, x) == :(x*b^-2*c^-2*(c*x^2)^-1//2*(2+n)^-1*(a+b*x)^(2+n)+-1*a*x*b^-2*c^-2*(c*x^2)^-1//2*(1+n)^-1*(a+b*x)^(1+n)) @test integrate(x^5*(c*x^2)^-5//2*(a+b*x)^n, x) == :(x*b^-1*c^-2*(c*x^2)^-1//2*(1+n)^-1*(a+b*x)^(1+n)) @test integrate((c*x^2)^5//2*(d*x)^m*(a+b*x), x) == :(a*c^2*d^-6*x^-1*(c*x^2)^(1/2)*(d*x)^(6+m)*(6+m)^-1+b*c^2*d^-7*x^-1*(c*x^2)^(1/2)*(d*x)^(7+m)*(7+m)^-1) @test integrate((c*x^2)^3//2*(d*x)^m*(a+b*x), x) == :(a*c*d^-4*x^-1*(c*x^2)^(1/2)*(d*x)^(4+m)*(4+m)^-1+b*c*d^-5*x^-1*(c*x^2)^(1/2)*(d*x)^(5+m)*(5+m)^-1) @test integrate((c*x^2)^(1/2)*(d*x)^m*(a+b*x), x) == :(a*d^-2*x^-1*(c*x^2)^(1/2)*(d*x)^(2+m)*(2+m)^-1+b*d^-3*x^-1*(c*x^2)^(1/2)*(d*x)^(3+m)*(3+m)^-1) @test integrate((c*x^2)^-1//2*(d*x)^m*(a+b*x), x) == :(a*x*m^-1*(c*x^2)^-1//2*(d*x)^m+b*x*d^-1*(c*x^2)^-1//2*(d*x)^(1+m)*(1+m)^-1) @test integrate((c*x^2)^-3//2*(d*x)^m*(a+b*x), x) == :(-1*a*x*c^-1*d^2*(c*x^2)^-1//2*(d*x)^(-2+m)*(2+-1m)^-1+-1*b*d*x*c^-1*(c*x^2)^-1//2*(d*x)^(-1+m)*(1+-1m)^-1) @test integrate((c*x^2)^-5//2*(d*x)^m*(a+b*x), x) == :(-1*a*x*c^-2*d^4*(c*x^2)^-1//2*(d*x)^(-4+m)*(4+-1m)^-1+-1*b*x*c^-2*d^3*(c*x^2)^-1//2*(d*x)^(-3+m)*(3+-1m)^-1) @test integrate((c*x^2)^5//2*(d*x)^m*(a+b*x)^2, x) == :(a^2*c^2*d^-6*x^-1*(c*x^2)^(1/2)*(d*x)^(6+m)*(6+m)^-1+b^2*c^2*d^-8*x^-1*(c*x^2)^(1/2)*(d*x)^(8+m)*(8+m)^-1+2*a*b*c^2*d^-7*x^-1*(c*x^2)^(1/2)*(d*x)^(7+m)*(7+m)^-1) @test integrate((c*x^2)^3//2*(d*x)^m*(a+b*x)^2, x) == :(c*a^2*d^-4*x^-1*(c*x^2)^(1/2)*(d*x)^(4+m)*(4+m)^-1+c*b^2*d^-6*x^-1*(c*x^2)^(1/2)*(d*x)^(6+m)*(6+m)^-1+2*a*b*c*d^-5*x^-1*(c*x^2)^(1/2)*(d*x)^(5+m)*(5+m)^-1) @test integrate((c*x^2)^(1/2)*(d*x)^m*(a+b*x)^2, x) == :(a^2*d^-2*x^-1*(c*x^2)^(1/2)*(d*x)^(2+m)*(2+m)^-1+b^2*d^-4*x^-1*(c*x^2)^(1/2)*(d*x)^(4+m)*(4+m)^-1+2*a*b*d^-3*x^-1*(c*x^2)^(1/2)*(d*x)^(3+m)*(3+m)^-1) @test integrate((c*x^2)^-1//2*(d*x)^m*(a+b*x)^2, x) == :(x*a^2*m^-1*(c*x^2)^-1//2*(d*x)^m+x*b^2*d^-2*(c*x^2)^-1//2*(d*x)^(2+m)*(2+m)^-1+2*a*b*x*d^-1*(c*x^2)^-1//2*(d*x)^(1+m)*(1+m)^-1) @test integrate((c*x^2)^-3//2*(d*x)^m*(a+b*x)^2, x) == :(x*b^2*c^-1*m^-1*(c*x^2)^-1//2*(d*x)^m+-1*x*a^2*c^-1*d^2*(c*x^2)^-1//2*(d*x)^(-2+m)*(2+-1m)^-1+-2*a*b*d*x*c^-1*(c*x^2)^-1//2*(d*x)^(-1+m)*(1+-1m)^-1) @test integrate((c*x^2)^-5//2*(d*x)^m*(a+b*x)^2, x) == :(-1*x*a^2*c^-2*d^4*(c*x^2)^-1//2*(d*x)^(-4+m)*(4+-1m)^-1+-1*x*b^2*c^-2*d^2*(c*x^2)^-1//2*(d*x)^(-2+m)*(2+-1m)^-1+-2*a*b*x*c^-2*d^3*(c*x^2)^-1//2*(d*x)^(-3+m)*(3+-1m)^-1) @test integrate(x^3*(c*x^2)^p*(a+b*x)^(-5+-2p), x) == :((1/2)*a^-1*x^4*(c*x^2)^p*(2+p)^-1*(a+b*x)^(-4+-2p)) @test integrate(x^2*(c*x^2)^p*(a+b*x)^(-4+-2p), x) == :(a^-1*x^3*(c*x^2)^p*(3+2p)^-1*(a+b*x)^(-3+-2p)) @test integrate(x*(c*x^2)^p*(a+b*x)^(-3+-2p), x) == :((1/2)*a^-1*x^2*(c*x^2)^p*(1+p)^-1*(a+b*x)^(-2+-2p)) @test integrate((c*x^2)^p*(a+b*x)^(-2+-2p), x) == :(x*a^-1*(c*x^2)^p*(1+2p)^-1*(a+b*x)^(-1+-2p)) @test integrate(x^-1*(c*x^2)^p*(a+b*x)^(-1+-2p), x) == :((1/2)*a^-1*p^-1*(c*x^2)^p*(a+b*x)^(-2p)) @test integrate(x^-2*(c*x^2)^p*(a+b*x)^(-2p), x) == :(-1*a^-1*x^-1*(c*x^2)^p*(1+-2p)^-1*(a+b*x)^(1+-2p)) @test integrate(x^-3*(c*x^2)^p*(a+b*x)^(1+-2p), x) == :(-1//2*a^-1*x^-2*(c*x^2)^p*(1+-1p)^-1*(a+b*x)^(2+-2p)) @test integrate(x^-4*(c*x^2)^p*(a+b*x)^(2+-2p), x) == :(-1*a^-1*x^-3*(c*x^2)^p*(3+-2p)^-1*(a+b*x)^(3+-2p)) @test integrate(x^m*(c*x^2)^p*(a+b*x)^(-2+-1m+-2p), x) == :(a^-1*x^(1+m)*(c*x^2)^p*(a+b*x)^(-1+-1m+-2p)*(1+m+2p)^-1) @test integrate((c*x^2)^p*(d*x)^m*(a+b*x)^(-2+-1m+-2p), x) == :(x*a^-1*(c*x^2)^p*(d*x)^m*(a+b*x)^(-1+-1m+-2p)*(1+m+2p)^-1) @test integrate((a+b*x)^5*(d*x+a*d*b^-1)^-3, x) == :(1//3*b^2*d^-3*(a+b*x)^3) @test integrate((a+b*x)^4*(d*x+a*d*b^-1)^-3, x) == :((1/2)*b^4*d^-3*x^2+a*x*b^3*d^-3) @test integrate((a+b*x)^3*(d*x+a*d*b^-1)^-3, x) == :(x*b^3*d^-3) @test integrate((a+b*x)^2*(d*x+a*d*b^-1)^-3, x) == :(b^2*d^-3*log(a+b*x)) @test integrate((d*x+a*d*b^-1)^-3*(a+b*x), x) == :(-1*b^2*d^-3*(a+b*x)^-1) @test integrate((a+b*x)^-1*(d*x+a*d*b^-1)^-3, x) == :(-1//3*b^2*d^-3*(a+b*x)^-3) @test integrate((a+b*x)^-2*(d*x+a*d*b^-1)^-3, x) == :(-1//4*b^2*d^-3*(a+b*x)^-4) @test integrate((a+b*x)^-3*(d*x+a*d*b^-1)^-3, x) == :(-1//5*b^2*d^-3*(a+b*x)^-5) @test integrate((c+d*x)^-3*(b*x+b*c*d^-1)^5, x) == :(1//3*b^5*d^-6*(c+d*x)^3) @test integrate((c+d*x)^-3*(b*x+b*c*d^-1)^4, x) == :((1/2)*b^4*d^-3*x^2+c*x*b^4*d^-4) @test integrate((c+d*x)^-3*(b*x+b*c*d^-1)^3, x) == :(x*b^3*d^-3) @test integrate((c+d*x)^-3*(b*x+b*c*d^-1)^2, x) == :(b^2*d^-3*log(c+d*x)) @test integrate((c+d*x)^-3*(b*x+b*c*d^-1), x) == :(-1*b*d^-2*(c+d*x)^-1) @test integrate((c+d*x)^-3*(b*x+b*c*d^-1)^-1, x) == :(-1//3*b^-1*(c+d*x)^-3) @test integrate((c+d*x)^-3*(b*x+b*c*d^-1)^-2, x) == :(-1//4*d*b^-2*(c+d*x)^-4) @test integrate((c+d*x)^-3*(b*x+b*c*d^-1)^-3, x) == :(-1//5*b^-3*d^2*(c+d*x)^-5) @test integrate((a+b*x)^5*(a*c+b*c*x)^n, x) == :(b^-1*c^-6*(6+n)^-1*(a*c+b*c*x)^(6+n)) @test integrate((a+b*x)^5*(a*c+b*c*x)^3, x) == :(1//9*b^-1*c^3*(a+b*x)^9) @test integrate((a+b*x)^5*(a*c+b*c*x)^2, x) == :(1//8*b^-1*c^2*(a+b*x)^8) @test integrate((a+b*x)^5*(a*c+b*c*x), x) == :(1//7*c*b^-1*(a+b*x)^7) @test integrate((a+b*x)^5*(a*c+b*c*x)^-1, x) == :(1//5*b^-1*c^-1*(a+b*x)^5) @test integrate((a+b*x)^5*(a*c+b*c*x)^-2, x) == :(1//4*b^-1*c^-2*(a+b*x)^4) @test integrate((a+b*x)^5*(a*c+b*c*x)^-3, x) == :(1//3*b^-1*c^-3*(a+b*x)^3) @test integrate((a+b*x)^5*(a*c+b*c*x)^-4, x) == :(a*x*c^-4+(1/2)*b*c^-4*x^2) @test integrate((a+b*x)^5*(a*c+b*c*x)^-5, x) == :(x*c^-5) @test integrate((a+b*x)^5*(a*c+b*c*x)^-6, x) == :(b^-1*c^-6*log(a+b*x)) @test integrate((a+b*x)^5*(a*c+b*c*x)^-7, x) == :(-1*b^-1*c^-7*(a+b*x)^-1) @test integrate((a+b*x)^5*(a*c+b*c*x)^-8, x) == :(-1//2*b^-1*c^-8*(a+b*x)^-2) @test integrate((-2+-3x)^-1//2*(2+3x)^-1//2, x) == :(1//3*(-2+-3x)^-1//2*(2+3x)^(1/2)*log(2+3x)) @test integrate((a*c+-1*b*c*x)^3*(a+b*x), x) == :(1//5*b^-1*c^3*(a+-1*b*x)^5+-1//2*a*b^-1*c^3*(a+-1*b*x)^4) @test integrate((a*c+-1*b*c*x)^2*(a+b*x), x) == :(1//4*b^-1*c^2*(a+-1*b*x)^4+-2//3*a*b^-1*c^2*(a+-1*b*x)^3) @test integrate((a+b*x)*(a*c+-1*b*c*x), x) == :(c*x*a^2+-1//3*c*b^2*x^3) @test integrate(a+b*x, x) == :(a*x+(1/2)*b*x^2) @test integrate((a*c+-1*b*c*x)^-1*(a+b*x), x) == :(-1*x*c^-1+-2*a*b^-1*c^-1*log(a+-1*b*x)) @test integrate((a*c+-1*b*c*x)^-2*(a+b*x), x) == :(b^-1*c^-2*log(a+-1*b*x)+2*a*b^-1*c^-2*(a+-1*b*x)^-1) @test integrate((a*c+-1*b*c*x)^-3*(a+b*x), x) == :(x*c^-3*(a+-1*b*x)^-2) @test integrate((a*c+-1*b*c*x)^-4*(a+b*x), x) == :(-1//2*b^-1*c^-4*(a+-1*b*x)^-2+2//3*a*b^-1*c^-4*(a+-1*b*x)^-3) @test integrate((a*c+-1*b*c*x)^-5*(a+b*x), x) == :(-1//3*b^-1*c^-5*(a+-1*b*x)^-3+(1/2)*a*b^-1*c^-5*(a+-1*b*x)^-4) @test integrate((a*c+-1*b*c*x)^-6*(a+b*x), x) == :(-1//4*b^-1*c^-6*(a+-1*b*x)^-4+2//5*a*b^-1*c^-6*(a+-1*b*x)^-5) @test integrate((a+b*x)^2*(a*c+-1*b*c*x)^3, x) == :(-1//6*b^-1*c^3*(a+-1*b*x)^6+-1*a^2*b^-1*c^3*(a+-1*b*x)^4+4//5*a*b^-1*c^3*(a+-1*b*x)^5) @test integrate((a+b*x)^2*(a*c+-1*b*c*x)^2, x) == :(x*a^4*c^2+1//5*b^4*c^2*x^5+-2//3*a^2*b^2*c^2*x^3) @test integrate((a+b*x)^2*(a*c+-1*b*c*x), x) == :(-1//4*c*b^-1*(a+b*x)^4+2//3*a*c*b^-1*(a+b*x)^3) @test integrate((a+b*x)^2, x) == :(1//3*b^-1*(a+b*x)^3) @test integrate((a+b*x)^2*(a*c+-1*b*c*x)^-1, x) == :(-2*a*x*c^-1+-1//2*b^-1*c^-1*(a+b*x)^2+-4*a^2*b^-1*c^-1*log(a+-1*b*x)) @test integrate((a+b*x)^2*(a*c+-1*b*c*x)^-2, x) == :(x*c^-2+4*a*b^-1*c^-2*log(a+-1*b*x)+4*a^2*b^-1*c^-2*(a+-1*b*x)^-1) @test integrate((a+b*x)^2*(a*c+-1*b*c*x)^-3, x) == :(-1*b^-1*c^-3*log(a+-1*b*x)+-4*a*b^-1*c^-3*(a+-1*b*x)^-1+2*a^2*b^-1*c^-3*(a+-1*b*x)^-2) @test integrate((a+b*x)^2*(a*c+-1*b*c*x)^-4, x) == :(1//6*a^-1*b^-1*c^-4*(a+b*x)^3*(a+-1*b*x)^-3) @test integrate((a+b*x)^2*(a*c+-1*b*c*x)^-5, x) == :((1/2)*b^-1*c^-5*(a+-1*b*x)^-2+a^2*b^-1*c^-5*(a+-1*b*x)^-4+-4//3*a*b^-1*c^-5*(a+-1*b*x)^-3) @test integrate((a+b*x)^2*(a*c+-1*b*c*x)^-6, x) == :(1//3*b^-1*c^-6*(a+-1*b*x)^-3+-1*a*b^-1*c^-6*(a+-1*b*x)^-4+4//5*a^2*b^-1*c^-6*(a+-1*b*x)^-5) @test integrate((a+b*x)^2*(a*c+-1*b*c*x)^-7, x) == :(1//4*b^-1*c^-7*(a+-1*b*x)^-4+-4//5*a*b^-1*c^-7*(a+-1*b*x)^-5+2//3*a^2*b^-1*c^-7*(a+-1*b*x)^-6) @test integrate((a+b*x)^-1*(a*c+-1*b*c*x)^3, x) == :(-4*x*a^2*c^3+1//3*b^-1*c^3*(a+-1*b*x)^3+a*b^-1*c^3*(a+-1*b*x)^2+8*a^3*b^-1*c^3*log(a+b*x)) @test integrate((a+b*x)^-1*(a*c+-1*b*c*x)^2, x) == :((1/2)*b^-1*c^2*(a+-1*b*x)^2+-2*a*x*c^2+4*a^2*b^-1*c^2*log(a+b*x)) @test integrate((a+b*x)^-1*(a*c+-1*b*c*x), x) == :(-1*c*x+2*a*c*b^-1*log(a+b*x)) @test integrate((a+b*x)^-1, x) == :(b^-1*log(a+b*x)) @test integrate((a+b*x)^-1*(a*c+-1*b*c*x)^-1, x) == :(a^-1*b^-1*c^-1*arctanh(b*x*a^-1)) @test integrate((a+b*x)^-1*(a*c+-1*b*c*x)^-2, x) == :((1/2)*a^-1*b^-1*c^-2*(a+-1*b*x)^-1+(1/2)*a^-2*b^-1*c^-2*arctanh(b*x*a^-1)) @test integrate((a+b*x)^-1*(a*c+-1*b*c*x)^-3, x) == :(1//4*a^-1*b^-1*c^-3*(a+-1*b*x)^-2+1//4*a^-3*b^-1*c^-3*arctanh(b*x*a^-1)+1//4*a^-2*b^-1*c^-3*(a+-1*b*x)^-1) @test integrate((a+b*x)^-2*(a*c+-1*b*c*x)^3, x) == :(5*a*x*c^3+-1//2*b*c^3*x^2+-12*a^2*b^-1*c^3*log(a+b*x)+-8*a^3*b^-1*c^3*(a+b*x)^-1) @test integrate((a+b*x)^-2*(a*c+-1*b*c*x)^2, x) == :(x*c^2+-4*a*b^-1*c^2*log(a+b*x)+-4*a^2*b^-1*c^2*(a+b*x)^-1) @test integrate((a+b*x)^-2*(a*c+-1*b*c*x), x) == :(-1*c*b^-1*log(a+b*x)+-2*a*c*b^-1*(a+b*x)^-1) @test integrate((a+b*x)^-2, x) == :(-1*b^-1*(a+b*x)^-1) @test integrate((a+b*x)^-2*(a*c+-1*b*c*x)^-1, x) == :((1/2)*a^-2*b^-1*c^-1*arctanh(b*x*a^-1)+-1//2*a^-1*b^-1*c^-1*(a+b*x)^-1) @test integrate((a+b*x)^-2*(a*c+-1*b*c*x)^-2, x) == :((1/2)*x*a^-2*c^-2*(a^2+-1*b^2*x^2)^-1+(1/2)*a^-3*b^-1*c^-2*arctanh(b*x*a^-1)) @test integrate((a+b*x)^-2*(a*c+-1*b*c*x)^-3, x) == :(-1//8*a^-3*b^-1*c^-3*(a+b*x)^-1+1//4*a^-3*b^-1*c^-3*(a+-1*b*x)^-1+1//8*a^-2*b^-1*c^-3*(a+-1*b*x)^-2+3//8*a^-4*b^-1*c^-3*arctanh(b*x*a^-1)) @test integrate((1+x)^(1/2)*(1+-1x)^9//2, x) == :(21//16*arcsin(x)+1//6*(1+x)^3//2*(1+-1x)^9//2+3//10*(1+x)^3//2*(1+-1x)^7//2+7//8*(1+x)^3//2*(1+-1x)^3//2+21//40*(1+x)^3//2*(1+-1x)^5//2+21//16*x*(1+x)^(1/2)*(1+-1x)^(1/2)) @test integrate((1+x)^(1/2)*(1+-1x)^7//2, x) == :(7//8*arcsin(x)+1//5*(1+x)^3//2*(1+-1x)^7//2+7//12*(1+x)^3//2*(1+-1x)^3//2+7//20*(1+x)^3//2*(1+-1x)^5//2+7//8*x*(1+x)^(1/2)*(1+-1x)^(1/2)) @test integrate((1+x)^(1/2)*(1+-1x)^5//2, x) == :(5//8*arcsin(x)+1//4*(1+x)^3//2*(1+-1x)^5//2+5//12*(1+x)^3//2*(1+-1x)^3//2+5//8*x*(1+x)^(1/2)*(1+-1x)^(1/2)) @test integrate((1+x)^(1/2)*(1+-1x)^3//2, x) == :((1/2)*arcsin(x)+1//3*(1+x)^3//2*(1+-1x)^3//2+(1/2)*x*(1+x)^(1/2)*(1+-1x)^(1/2)) @test integrate((1+x)^(1/2)*(1+-1x)^(1/2), x) == :((1/2)*arcsin(x)+(1/2)*x*(1+x)^(1/2)*(1+-1x)^(1/2)) @test integrate((1+x)^(1/2)*(1+-1x)^-1//2, x) == :(-1*(1+x)^(1/2)*(1+-1x)^(1/2)+arcsin(x)) @test integrate((1+x)^(1/2)*(1+-1x)^-3//2, x) == :(-1*arcsin(x)+2*(1+x)^(1/2)*(1+-1x)^-1//2) @test integrate((1+x)^(1/2)*(1+-1x)^-5//2, x) == :(1//3*(1+x)^3//2*(1+-1x)^-3//2) @test integrate((1+x)^(1/2)*(1+-1x)^-7//2, x) == :(1//5*(1+x)^3//2*(1+-1x)^-5//2+1//15*(1+x)^3//2*(1+-1x)^-3//2) @test integrate((1+x)^(1/2)*(1+-1x)^-9//2, x) == :(1//7*(1+x)^3//2*(1+-1x)^-7//2+2//35*(1+x)^3//2*(1+-1x)^-5//2+2//105*(1+x)^3//2*(1+-1x)^-3//2) @test integrate((1+x)^(1/2)*(1+-1x)^-11//2, x) == :(1//9*(1+x)^3//2*(1+-1x)^-9//2+1//21*(1+x)^3//2*(1+-1x)^-7//2+2//105*(1+x)^3//2*(1+-1x)^-5//2+2//315*(1+x)^3//2*(1+-1x)^-3//2) @test integrate((1+x)^(1/2)*(1+-1x)^-13//2, x) == :(1//11*(1+x)^3//2*(1+-1x)^-11//2+4//99*(1+x)^3//2*(1+-1x)^-9//2+4//231*(1+x)^3//2*(1+-1x)^-7//2+8//1155*(1+x)^3//2*(1+-1x)^-5//2+8//3465*(1+x)^3//2*(1+-1x)^-3//2) @test integrate((1+x)^3//2*(1+-1x)^9//2, x) == :(9//16*arcsin(x)+1//7*(1+x)^5//2*(1+-1x)^9//2+3//10*(1+x)^5//2*(1+-1x)^5//2+3//14*(1+x)^5//2*(1+-1x)^7//2+3//8*x*(1+x)^3//2*(1+-1x)^3//2+9//16*x*(1+x)^(1/2)*(1+-1x)^(1/2)) @test integrate((1+x)^3//2*(1+-1x)^7//2, x) == :(7//16*arcsin(x)+1//6*(1+x)^5//2*(1+-1x)^7//2+7//30*(1+x)^5//2*(1+-1x)^5//2+7//16*x*(1+x)^(1/2)*(1+-1x)^(1/2)+7//24*x*(1+x)^3//2*(1+-1x)^3//2) @test integrate((1+x)^3//2*(1+-1x)^5//2, x) == :(3//8*arcsin(x)+1//5*(1+x)^5//2*(1+-1x)^5//2+1//4*x*(1+x)^3//2*(1+-1x)^3//2+3//8*x*(1+x)^(1/2)*(1+-1x)^(1/2)) @test integrate((1+x)^3//2*(1+-1x)^3//2, x) == :(3//8*arcsin(x)+1//4*x*(1+x)^3//2*(1+-1x)^3//2+3//8*x*(1+x)^(1/2)*(1+-1x)^(1/2)) @test integrate((1+x)^3//2*(1+-1x)^(1/2), x) == :((1/2)*arcsin(x)+-1//3*(1+x)^3//2*(1+-1x)^3//2+(1/2)*x*(1+x)^(1/2)*(1+-1x)^(1/2)) @test integrate((1+x)^3//2*(1+-1x)^-1//2, x) == :(3//2*arcsin(x)+-3//2*(1+x)^(1/2)*(1+-1x)^(1/2)+-1//2*(1+x)^3//2*(1+-1x)^(1/2)) @test integrate((1+x)^3//2*(1+-1x)^-3//2, x) == :(-3*arcsin(x)+2*(1+x)^3//2*(1+-1x)^-1//2+3*(1+x)^(1/2)*(1+-1x)^(1/2)) @test integrate((1+x)^3//2*(1+-1x)^-5//2, x) == :(-2*(1+x)^(1/2)*(1+-1x)^-1//2+2//3*(1+x)^3//2*(1+-1x)^-3//2+arcsin(x)) @test integrate((1+x)^3//2*(1+-1x)^-7//2, x) == :(1//5*(1+x)^5//2*(1+-1x)^-5//2) @test integrate((1+x)^3//2*(1+-1x)^-9//2, x) == :(1//7*(1+x)^5//2*(1+-1x)^-7//2+1//35*(1+x)^5//2*(1+-1x)^-5//2) @test integrate((1+x)^3//2*(1+-1x)^-11//2, x) == :(1//9*(1+x)^5//2*(1+-1x)^-9//2+2//63*(1+x)^5//2*(1+-1x)^-7//2+2//315*(1+x)^5//2*(1+-1x)^-5//2) @test integrate((1+x)^3//2*(1+-1x)^-13//2, x) == :(1//11*(1+x)^5//2*(1+-1x)^-11//2+1//33*(1+x)^5//2*(1+-1x)^-9//2+2//231*(1+x)^5//2*(1+-1x)^-7//2+2//1155*(1+x)^5//2*(1+-1x)^-5//2) @test integrate((1+x)^3//2*(1+-1x)^-15//2, x) == :(1//13*(1+x)^5//2*(1+-1x)^-13//2+4//143*(1+x)^5//2*(1+-1x)^-11//2+4//429*(1+x)^5//2*(1+-1x)^-9//2+8//3003*(1+x)^5//2*(1+-1x)^-7//2+8//15015*(1+x)^5//2*(1+-1x)^-5//2) @test integrate((1+x)^5//2*(1+-1x)^11//2, x) == :(55//128*arcsin(x)+1//9*(1+x)^7//2*(1+-1x)^11//2+11//56*(1+x)^7//2*(1+-1x)^7//2+11//72*(1+x)^7//2*(1+-1x)^9//2+11//48*x*(1+x)^5//2*(1+-1x)^5//2+55//128*x*(1+x)^(1/2)*(1+-1x)^(1/2)+55//192*x*(1+x)^3//2*(1+-1x)^3//2) @test integrate((1+x)^5//2*(1+-1x)^9//2, x) == :(45//128*arcsin(x)+1//8*(1+x)^7//2*(1+-1x)^9//2+9//56*(1+x)^7//2*(1+-1x)^7//2+3//16*x*(1+x)^5//2*(1+-1x)^5//2+15//64*x*(1+x)^3//2*(1+-1x)^3//2+45//128*x*(1+x)^(1/2)*(1+-1x)^(1/2)) @test integrate((1+x)^5//2*(1+-1x)^7//2, x) == :(5//16*arcsin(x)+1//7*(1+x)^7//2*(1+-1x)^7//2+1//6*x*(1+x)^5//2*(1+-1x)^5//2+5//16*x*(1+x)^(1/2)*(1+-1x)^(1/2)+5//24*x*(1+x)^3//2*(1+-1x)^3//2) @test integrate((1+x)^5//2*(1+-1x)^5//2, x) == :(5//16*arcsin(x)+1//6*x*(1+x)^5//2*(1+-1x)^5//2+5//16*x*(1+x)^(1/2)*(1+-1x)^(1/2)+5//24*x*(1+x)^3//2*(1+-1x)^3//2) @test integrate((1+x)^5//2*(1+-1x)^3//2, x) == :(3//8*arcsin(x)+-1//5*(1+x)^5//2*(1+-1x)^5//2+1//4*x*(1+x)^3//2*(1+-1x)^3//2+3//8*x*(1+x)^(1/2)*(1+-1x)^(1/2)) @test integrate((1+x)^5//2*(1+-1x)^(1/2), x) == :(5//8*arcsin(x)+-5//12*(1+x)^3//2*(1+-1x)^3//2+-1//4*(1+x)^5//2*(1+-1x)^3//2+5//8*x*(1+x)^(1/2)*(1+-1x)^(1/2)) @test integrate((1+x)^5//2*(1+-1x)^-1//2, x) == :(5//2*arcsin(x)+-5//2*(1+x)^(1/2)*(1+-1x)^(1/2)+-5//6*(1+x)^3//2*(1+-1x)^(1/2)+-1//3*(1+x)^5//2*(1+-1x)^(1/2)) @test integrate((1+x)^5//2*(1+-1x)^-3//2, x) == :(-15//2*arcsin(x)+2*(1+x)^5//2*(1+-1x)^-1//2+5//2*(1+x)^3//2*(1+-1x)^(1/2)+15//2*(1+x)^(1/2)*(1+-1x)^(1/2)) @test integrate((1+x)^5//2*(1+-1x)^-5//2, x) == :(5*arcsin(x)+-5*(1+x)^(1/2)*(1+-1x)^(1/2)+-10//3*(1+x)^3//2*(1+-1x)^-1//2+2//3*(1+x)^5//2*(1+-1x)^-3//2) @test integrate((1+x)^5//2*(1+-1x)^-7//2, x) == :(-1*arcsin(x)+2*(1+x)^(1/2)*(1+-1x)^-1//2+-2//3*(1+x)^3//2*(1+-1x)^-3//2+2//5*(1+x)^5//2*(1+-1x)^-5//2) @test integrate((1+x)^5//2*(1+-1x)^-9//2, x) == :(1//7*(1+x)^7//2*(1+-1x)^-7//2) @test integrate((1+x)^5//2*(1+-1x)^-11//2, x) == :(1//9*(1+x)^7//2*(1+-1x)^-9//2+1//63*(1+x)^7//2*(1+-1x)^-7//2) @test integrate((1+x)^5//2*(1+-1x)^-13//2, x) == :(1//11*(1+x)^7//2*(1+-1x)^-11//2+2//99*(1+x)^7//2*(1+-1x)^-9//2+2//693*(1+x)^7//2*(1+-1x)^-7//2) @test integrate((1+x)^5//2*(1+-1x)^-15//2, x) == :(1//13*(1+x)^7//2*(1+-1x)^-13//2+2//429*(1+x)^7//2*(1+-1x)^-9//2+2//3003*(1+x)^7//2*(1+-1x)^-7//2+3//143*(1+x)^7//2*(1+-1x)^-11//2) @test integrate((1+x)^5//2*(1+-1x)^-17//2, x) == :(1//15*(1+x)^7//2*(1+-1x)^-15//2+4//195*(1+x)^7//2*(1+-1x)^-13//2+4//715*(1+x)^7//2*(1+-1x)^-11//2+8//6435*(1+x)^7//2*(1+-1x)^-9//2+8//45045*(1+x)^7//2*(1+-1x)^-7//2) @test integrate((1+x)^5//2*(1+-1x)^-19//2, x) == :(1//17*(1+x)^7//2*(1+-1x)^-17//2+1//51*(1+x)^7//2*(1+-1x)^-15//2+4//663*(1+x)^7//2*(1+-1x)^-13//2+4//2431*(1+x)^7//2*(1+-1x)^-11//2+8//21879*(1+x)^7//2*(1+-1x)^-9//2+8//153153*(1+x)^7//2*(1+-1x)^-7//2) @test integrate((1+a*x)^3//2*(1+-1*a*x)^-1//2, x) == :(3//2*a^-1*arcsin(a*x)+-3//2*a^-1*(1+a*x)^(1/2)*(1+-1*a*x)^(1/2)+-1//2*a^-1*(1+a*x)^3//2*(1+-1*a*x)^(1/2)) @test integrate((1+-1*a*x)^-1*(1+-1*a^2*x^2)^(1/2)*(1+a*x), x) == :(-3//2*a^-1*(1+-1*a^2*x^2)^(1/2)+3//2*a^-1*arcsin(a*x)+-1//2*a^-1*(1+-1*a*x)^-1*(1+-1*a^2*x^2)^3//2) @test integrate((1+x)^-1//2*(1+-1x)^7//2, x) == :(35//8*arcsin(x)+1//4*(1+x)^(1/2)*(1+-1x)^7//2+7//12*(1+x)^(1/2)*(1+-1x)^5//2+35//8*(1+x)^(1/2)*(1+-1x)^(1/2)+35//24*(1+x)^(1/2)*(1+-1x)^3//2) @test integrate((1+x)^-1//2*(1+-1x)^5//2, x) == :(5//2*arcsin(x)+1//3*(1+x)^(1/2)*(1+-1x)^5//2+5//2*(1+x)^(1/2)*(1+-1x)^(1/2)+5//6*(1+x)^(1/2)*(1+-1x)^3//2) @test integrate((1+x)^-1//2*(1+-1x)^3//2, x) == :(3//2*arcsin(x)+(1/2)*(1+x)^(1/2)*(1+-1x)^3//2+3//2*(1+x)^(1/2)*(1+-1x)^(1/2)) @test integrate((1+x)^-1//2*(1+-1x)^(1/2), x) == :((1+x)^(1/2)*(1+-1x)^(1/2)+arcsin(x)) @test integrate((1+x)^-1//2*(1+-1x)^-1//2, x) == :(arcsin(x)) @test integrate((1+x)^-1//2*(1+-1x)^-3//2, x) == :((1+x)^(1/2)*(1+-1x)^-1//2) @test integrate((1+x)^-1//2*(1+-1x)^-5//2, x) == :(1//3*(1+x)^(1/2)*(1+-1x)^-3//2+1//3*(1+x)^(1/2)*(1+-1x)^-1//2) @test integrate((1+x)^-1//2*(1+-1x)^-7//2, x) == :(1//5*(1+x)^(1/2)*(1+-1x)^-5//2+2//15*(1+x)^(1/2)*(1+-1x)^-3//2+2//15*(1+x)^(1/2)*(1+-1x)^-1//2) @test integrate((1+x)^-1//2*(1+-1x)^-9//2, x) == :(1//7*(1+x)^(1/2)*(1+-1x)^-7//2+2//35*(1+x)^(1/2)*(1+-1x)^-3//2+2//35*(1+x)^(1/2)*(1+-1x)^-1//2+3//35*(1+x)^(1/2)*(1+-1x)^-5//2) @test integrate((1+x)^-1//2*(1+-1x)^-11//2, x) == :(1//9*(1+x)^(1/2)*(1+-1x)^-9//2+4//63*(1+x)^(1/2)*(1+-1x)^-7//2+4//105*(1+x)^(1/2)*(1+-1x)^-5//2+8//315*(1+x)^(1/2)*(1+-1x)^-3//2+8//315*(1+x)^(1/2)*(1+-1x)^-1//2) @test integrate((1+x)^-3//2*(1+-1x)^7//2, x) == :(-35//2*arcsin(x)+-2*(1+x)^-1//2*(1+-1x)^7//2+-35//2*(1+x)^(1/2)*(1+-1x)^(1/2)+-35//6*(1+x)^(1/2)*(1+-1x)^3//2+-7//3*(1+x)^(1/2)*(1+-1x)^5//2) @test integrate((1+x)^-3//2*(1+-1x)^5//2, x) == :(-15//2*arcsin(x)+-2*(1+x)^-1//2*(1+-1x)^5//2+-15//2*(1+x)^(1/2)*(1+-1x)^(1/2)+-5//2*(1+x)^(1/2)*(1+-1x)^3//2) @test integrate((1+x)^-3//2*(1+-1x)^3//2, x) == :(-3*arcsin(x)+-3*(1+x)^(1/2)*(1+-1x)^(1/2)+-2*(1+x)^-1//2*(1+-1x)^3//2) @test integrate((1+x)^-3//2*(1+-1x)^(1/2), x) == :(-1*arcsin(x)+-2*(1+x)^-1//2*(1+-1x)^(1/2)) @test integrate((1+x)^-3//2*(1+-1x)^-1//2, x) == :(-1*(1+x)^-1//2*(1+-1x)^(1/2)) @test integrate((1+x)^-3//2*(1+-1x)^-3//2, x) == :(x*(1+x)^-1//2*(1+-1x)^-1//2) @test integrate((1+x)^-3//2*(1+-1x)^-5//2, x) == :(1//3*(1+x)^-1//2*(1+-1x)^-3//2+2//3*x*(1+x)^-1//2*(1+-1x)^-1//2) @test integrate((1+x)^-3//2*(1+-1x)^-7//2, x) == :(1//5*(1+x)^-1//2*(1+-1x)^-5//2+1//5*(1+x)^-1//2*(1+-1x)^-3//2+2//5*x*(1+x)^-1//2*(1+-1x)^-1//2) @test integrate((1+x)^-3//2*(1+-1x)^-9//2, x) == :(1//7*(1+x)^-1//2*(1+-1x)^-7//2+4//35*(1+x)^-1//2*(1+-1x)^-5//2+4//35*(1+x)^-1//2*(1+-1x)^-3//2+8//35*x*(1+x)^-1//2*(1+-1x)^-1//2) @test integrate((1+x)^-3//2*(1+-1x)^-11//2, x) == :(1//9*(1+x)^-1//2*(1+-1x)^-9//2+4//63*(1+x)^-1//2*(1+-1x)^-5//2+4//63*(1+x)^-1//2*(1+-1x)^-3//2+5//63*(1+x)^-1//2*(1+-1x)^-7//2+8//63*x*(1+x)^-1//2*(1+-1x)^-1//2) @test integrate((1+x)^-5//2*(1+-1x)^9//2, x) == :(105//2*arcsin(x)+6*(1+x)^-1//2*(1+-1x)^7//2+7*(1+x)^(1/2)*(1+-1x)^5//2+-2//3*(1+x)^-3//2*(1+-1x)^9//2+35//2*(1+x)^(1/2)*(1+-1x)^3//2+105//2*(1+x)^(1/2)*(1+-1x)^(1/2)) @test integrate((1+x)^-5//2*(1+-1x)^7//2, x) == :(35//2*arcsin(x)+-2//3*(1+x)^-3//2*(1+-1x)^7//2+14//3*(1+x)^-1//2*(1+-1x)^5//2+35//2*(1+x)^(1/2)*(1+-1x)^(1/2)+35//6*(1+x)^(1/2)*(1+-1x)^3//2) @test integrate((1+x)^-5//2*(1+-1x)^5//2, x) == :(5*arcsin(x)+5*(1+x)^(1/2)*(1+-1x)^(1/2)+-2//3*(1+x)^-3//2*(1+-1x)^5//2+10//3*(1+x)^-1//2*(1+-1x)^3//2) @test integrate((1+x)^-5//2*(1+-1x)^3//2, x) == :(2*(1+x)^-1//2*(1+-1x)^(1/2)+-2//3*(1+x)^-3//2*(1+-1x)^3//2+arcsin(x)) @test integrate((1+x)^-5//2*(1+-1x)^(1/2), x) == :(-1//3*(1+x)^-3//2*(1+-1x)^3//2) @test integrate((1+x)^-5//2*(1+-1x)^-1//2, x) == :(-1//3*(1+x)^-3//2*(1+-1x)^(1/2)+-1//3*(1+x)^-1//2*(1+-1x)^(1/2)) @test integrate((1+x)^-5//2*(1+-1x)^-3//2, x) == :((1+x)^-3//2*(1+-1x)^-1//2+-2//3*(1+x)^-3//2*(1+-1x)^(1/2)+-2//3*(1+x)^-1//2*(1+-1x)^(1/2)) @test integrate((1+x)^-5//2*(1+-1x)^-5//2, x) == :(1//3*x*(1+x)^-3//2*(1+-1x)^-3//2+2//3*x*(1+x)^-1//2*(1+-1x)^-1//2) @test integrate((1+x)^-5//2*(1+-1x)^-7//2, x) == :(1//5*(1+x)^-3//2*(1+-1x)^-5//2+4//15*x*(1+x)^-3//2*(1+-1x)^-3//2+8//15*x*(1+x)^-1//2*(1+-1x)^-1//2) @test integrate((1+x)^-5//2*(1+-1x)^-9//2, x) == :(1//7*(1+x)^-3//2*(1+-1x)^-7//2+1//7*(1+x)^-3//2*(1+-1x)^-5//2+4//21*x*(1+x)^-3//2*(1+-1x)^-3//2+8//21*x*(1+x)^-1//2*(1+-1x)^-1//2) @test integrate((1+x)^-5//2*(1+-1x)^-11//2, x) == :(1//9*(1+x)^-3//2*(1+-1x)^-9//2+2//21*(1+x)^-3//2*(1+-1x)^-7//2+2//21*(1+x)^-3//2*(1+-1x)^-5//2+8//63*x*(1+x)^-3//2*(1+-1x)^-3//2+16//63*x*(1+x)^-1//2*(1+-1x)^-1//2) @test integrate((a+a*x)^5//2*(c+-1*c*x)^5//2, x) == :(1//6*x*(a+a*x)^5//2*(c+-1*c*x)^5//2+5//8*a^5//2*c^5//2*arctan(a^-1//2*c^(1/2)*(a+a*x)^(1/2)*(c+-1*c*x)^-1//2)+5//16*x*a^2*c^2*(a+a*x)^(1/2)*(c+-1*c*x)^(1/2)+5//24*a*c*x*(a+a*x)^3//2*(c+-1*c*x)^3//2) @test integrate((a+a*x)^3//2*(c+-1*c*x)^3//2, x) == :(1//4*x*(a+a*x)^3//2*(c+-1*c*x)^3//2+3//4*a^3//2*c^3//2*arctan(a^-1//2*c^(1/2)*(a+a*x)^(1/2)*(c+-1*c*x)^-1//2)+3//8*a*c*x*(a+a*x)^(1/2)*(c+-1*c*x)^(1/2)) @test integrate((a+a*x)^(1/2)*(c+-1*c*x)^(1/2), x) == :(a^(1/2)*c^(1/2)*arctan(a^-1//2*c^(1/2)*(a+a*x)^(1/2)*(c+-1*c*x)^-1//2)+(1/2)*x*(a+a*x)^(1/2)*(c+-1*c*x)^(1/2)) @test integrate((a+a*x)^-1//2*(c+-1*c*x)^-1//2, x) == :(2*a^-1//2*c^-1//2*arctan(a^-1//2*c^(1/2)*(a+a*x)^(1/2)*(c+-1*c*x)^-1//2)) @test integrate((a+a*x)^-3//2*(c+-1*c*x)^-3//2, x) == :(x*a^-1*c^-1*(a+a*x)^-1//2*(c+-1*c*x)^-1//2) @test integrate((a+a*x)^-5//2*(c+-1*c*x)^-5//2, x) == :(1//3*x*a^-1*c^-1*(a+a*x)^-3//2*(c+-1*c*x)^-3//2+2//3*x*a^-2*c^-2*(a+a*x)^-1//2*(c+-1*c*x)^-1//2) @test integrate((a+a*x)^-7//2*(c+-1*c*x)^-7//2, x) == :(1//5*x*a^-1*c^-1*(a+a*x)^-5//2*(c+-1*c*x)^-5//2+4//15*x*a^-2*c^-2*(a+a*x)^-3//2*(c+-1*c*x)^-3//2+8//15*x*a^-3*c^-3*(a+a*x)^-1//2*(c+-1*c*x)^-1//2) @test integrate((a+a*x)^-9//2*(c+-1*c*x)^-9//2, x) == :(1//7*x*a^-1*c^-1*(a+a*x)^-7//2*(c+-1*c*x)^-7//2+6//35*x*a^-2*c^-2*(a+a*x)^-5//2*(c+-1*c*x)^-5//2+8//35*x*a^-3*c^-3*(a+a*x)^-3//2*(c+-1*c*x)^-3//2+16//35*x*a^-4*c^-4*(a+a*x)^-1//2*(c+-1*c*x)^-1//2) @test integrate((a+b*x)^5//2*(a*c+-1*b*c*x)^5//2, x) == :(1//6*x*(a+b*x)^5//2*(a*c+-1*b*c*x)^5//2+5//8*a^6*b^-1*c^5//2*arctan(c^(1/2)*(c*(a+-1*b*x))^-1//2*(a+b*x)^(1/2))+5//16*x*a^4*c^2*(a+b*x)^(1/2)*(a*c+-1*b*c*x)^(1/2)+5//24*c*x*a^2*(a+b*x)^3//2*(a*c+-1*b*c*x)^3//2) @test integrate((a+b*x)^3//2*(a*c+-1*b*c*x)^3//2, x) == :(1//4*x*(a+b*x)^3//2*(a*c+-1*b*c*x)^3//2+3//4*a^4*b^-1*c^3//2*arctan(c^(1/2)*(c*(a+-1*b*x))^-1//2*(a+b*x)^(1/2))+3//8*c*x*a^2*(a+b*x)^(1/2)*(a*c+-1*b*c*x)^(1/2)) @test integrate((a+b*x)^(1/2)*(a*c+-1*b*c*x)^(1/2), x) == :((1/2)*x*(a+b*x)^(1/2)*(a*c+-1*b*c*x)^(1/2)+a^2*b^-1*c^(1/2)*arctan(c^(1/2)*(c*(a+-1*b*x))^-1//2*(a+b*x)^(1/2))) @test integrate((a+b*x)^-1//2*(a*c+-1*b*c*x)^-1//2, x) == :(2*b^-1*c^-1//2*arctan(c^(1/2)*(c*(a+-1*b*x))^-1//2*(a+b*x)^(1/2))) @test integrate((a+b*x)^-3//2*(a*c+-1*b*c*x)^-3//2, x) == :(x*a^-2*c^-1*(a+b*x)^-1//2*(a*c+-1*b*c*x)^-1//2) @test integrate((a+b*x)^-5//2*(a*c+-1*b*c*x)^-5//2, x) == :(1//3*x*a^-2*c^-1*(a+b*x)^-3//2*(a*c+-1*b*c*x)^-3//2+2//3*x*a^-4*c^-2*(a+b*x)^-1//2*(a*c+-1*b*c*x)^-1//2) @test integrate((a+b*x)^-7//2*(a*c+-1*b*c*x)^-7//2, x) == :(1//5*x*a^-2*c^-1*(a+b*x)^-5//2*(a*c+-1*b*c*x)^-5//2+4//15*x*a^-4*c^-2*(a+b*x)^-3//2*(a*c+-1*b*c*x)^-3//2+8//15*x*a^-6*c^-3*(a+b*x)^-1//2*(a*c+-1*b*c*x)^-1//2) @test integrate((a+b*x)^-9//2*(a*c+-1*b*c*x)^-9//2, x) == :(1//7*x*a^-2*c^-1*(a+b*x)^-7//2*(a*c+-1*b*c*x)^-7//2+6//35*x*a^-4*c^-2*(a+b*x)^-5//2*(a*c+-1*b*c*x)^-5//2+8//35*x*a^-6*c^-3*(a+b*x)^-3//2*(a*c+-1*b*c*x)^-3//2+16//35*x*a^-8*c^-4*(a+b*x)^-1//2*(a*c+-1*b*c*x)^-1//2) @test integrate((2+4x)^5//2*(3+-6x)^5//2, x) == :(45//8*6^(1/2)*arcsin(2x)+6*x*6^(1/2)*(1+-2x)^5//2*(1+2x)^5//2+15//2*x*6^(1/2)*(1+-2x)^3//2*(1+2x)^3//2+45//4*x*6^(1/2)*(1+-2x)^(1/2)*(1+2x)^(1/2)) @test integrate((2+4x)^3//2*(3+-6x)^3//2, x) == :(9//8*6^(1/2)*arcsin(2x)+3//2*x*6^(1/2)*(1+-2x)^3//2*(1+2x)^3//2+9//4*x*6^(1/2)*(1+-2x)^(1/2)*(1+2x)^(1/2)) @test integrate((2+4x)^(1/2)*(3+-6x)^(1/2), x) == :(1//4*6^(1/2)*arcsin(2x)+(1/2)*x*6^(1/2)*(1+-2x)^(1/2)*(1+2x)^(1/2)) @test integrate((2+4x)^-1//2*(3+-6x)^-1//2, x) == :(1//12*6^(1/2)*arcsin(2x)) @test integrate((2+4x)^-3//2*(3+-6x)^-3//2, x) == :(1//36*x*6^(1/2)*(1+-2x)^-1//2*(1+2x)^-1//2) @test integrate((2+4x)^-5//2*(3+-6x)^-5//2, x) == :(1//324*x*6^(1/2)*(1+-2x)^-1//2*(1+2x)^-1//2+1//648*x*6^(1/2)*(1+-2x)^-3//2*(1+2x)^-3//2) @test integrate((2+4x)^-7//2*(3+-6x)^-7//2, x) == :(1//2430*x*6^(1/2)*(1+-2x)^-1//2*(1+2x)^-1//2+1//4860*x*6^(1/2)*(1+-2x)^-3//2*(1+2x)^-3//2+1//6480*x*6^(1/2)*(1+-2x)^-5//2*(1+2x)^-5//2) @test integrate((-2+x)^3//2*(3+-1x)^3//2, x) == :(-3//128*arcsin(5+-2x)+-1//4*(-2+x)^3//2*(3+-1x)^5//2+-1//8*(-2+x)^(1/2)*(3+-1x)^5//2+1//32*(-2+x)^(1/2)*(3+-1x)^3//2+3//64*(-2+x)^(1/2)*(3+-1x)^(1/2)) @test integrate((-2+x)^(1/2)*(3+-1x)^(1/2), x) == :(-1//8*arcsin(5+-2x)+-1//2*(-2+x)^(1/2)*(3+-1x)^3//2+1//4*(-2+x)^(1/2)*(3+-1x)^(1/2)) @test integrate((-2+x)^-1//2*(3+-1x)^-1//2, x) == :(-1*arcsin(5+-2x)) @test integrate((-2+x)^-3//2*(3+-1x)^-3//2, x) == :(-4*(-2+x)^-1//2*(3+-1x)^(1/2)+2*(-2+x)^-1//2*(3+-1x)^-1//2) @test integrate((-2+x)^-5//2*(3+-1x)^-5//2, x) == :(4*(-2+x)^-3//2*(3+-1x)^-1//2+-32//3*(-2+x)^-1//2*(3+-1x)^(1/2)+-16//3*(-2+x)^-3//2*(3+-1x)^(1/2)+2//3*(-2+x)^-3//2*(3+-1x)^-3//2) @test integrate((3+x)^-3//2*(3+-1x)^-3//2, x) == :(1//9*x*(3+x)^-1//2*(3+-1x)^-1//2) @test integrate((3+b*x)^-3//2*(3+-1*b*x)^-3//2, x) == :(1//9*x*(3+b*x)^-1//2*(3+-1*b*x)^-1//2) @test integrate((3+x)^-3//2*(6+-2x)^-3//2, x) == :(1//36*x*2^(1/2)*(3+x)^-1//2*(3+-1x)^-1//2) @test integrate((3+b*x)^-3//2*(6+-2*b*x)^-3//2, x) == :(1//36*x*2^(1/2)*(3+b*x)^-1//2*(3+-1*b*x)^-1//2) @test integrate((a+b*x)^-1//2*(-1*a*d+b*d*x)^-1//2, x) == :(2*b^-1*d^-1//2*arctanh(d^(1/2)*(a+b*x)^(1/2)*(-1*a*d+b*d*x)^-1//2)) @test integrate((a+im*a*x)^-1//4*(a+-1*im*a*x)^7//4, x) == :(-14//15*im*(a+im*a*x)^3//4*(a+-1*im*a*x)^3//4+-2//5*im*a^-1*(a+im*a*x)^3//4*(a+-1*im*a*x)^7//4+14//5*x*a^2*(a+im*a*x)^-1//4*(a+-1*im*a*x)^-1//4+-14//5*a^2*(1+x^2)^1//4*(a+im*a*x)^-1//4*(a+-1*im*a*x)^-1//4*Elliptic.E((1/2)*arctan(x),2)) @test integrate((a+im*a*x)^-1//4*(a+-1*im*a*x)^3//4, x) == :(2*a*x*(a+im*a*x)^-1//4*(a+-1*im*a*x)^-1//4+-2//3*im*a^-1*(a+im*a*x)^3//4*(a+-1*im*a*x)^3//4+-2*a*(1+x^2)^1//4*(a+im*a*x)^-1//4*(a+-1*im*a*x)^-1//4*Elliptic.E((1/2)*arctan(x),2)) @test integrate((a+im*a*x)^-1//4*(a+-1*im*a*x)^-1//4, x) == :(2*x*(a+im*a*x)^-1//4*(a+-1*im*a*x)^-1//4+-2*(1+x^2)^1//4*(a+im*a*x)^-1//4*(a+-1*im*a*x)^-1//4*Elliptic.E((1/2)*arctan(x),2)) @test integrate((a+im*a*x)^-1//4*(a+-1*im*a*x)^-5//4, x) == :(-2*im*a^-1*(a+im*a*x)^-1//4*(a+-1*im*a*x)^-1//4+2*a^-1*(1+x^2)^1//4*(a+im*a*x)^-1//4*(a+-1*im*a*x)^-1//4*Elliptic.E((1/2)*arctan(x),2)) @test integrate((a+im*a*x)^-1//4*(a+-1*im*a*x)^-9//4, x) == :(-4//5*im*a^-1*(a+im*a*x)^-1//4*(a+-1*im*a*x)^-5//4+2//5*a^-2*(1+x^2)^1//4*(a+im*a*x)^-1//4*(a+-1*im*a*x)^-1//4*Elliptic.E((1/2)*arctan(x),2)) @test integrate((a+im*a*x)^-1//4*(a+-1*im*a*x)^-13//4, x) == :(-4//15*im*a^-2*(a+im*a*x)^-1//4*(a+-1*im*a*x)^-5//4+-2//9*im*a^-2*(a+im*a*x)^3//4*(a+-1*im*a*x)^-9//4+2//15*a^-3*(1+x^2)^1//4*(a+im*a*x)^-1//4*(a+-1*im*a*x)^-1//4*Elliptic.E((1/2)*arctan(x),2)) @test integrate((a+im*a*x)^-1//4*(a+-1*im*a*x)^-17//4, x) == :(-10//117*im*a^-3*(a+im*a*x)^3//4*(a+-1*im*a*x)^-9//4+-4//39*im*a^-3*(a+im*a*x)^-1//4*(a+-1*im*a*x)^-5//4+-2//13*im*a^-2*(a+im*a*x)^3//4*(a+-1*im*a*x)^-13//4+2//39*a^-4*(1+x^2)^1//4*(a+im*a*x)^-1//4*(a+-1*im*a*x)^-1//4*Elliptic.E((1/2)*arctan(x),2)) @test integrate((a+im*a*x)^-1//4*(a+-1*im*a*x)^1//4, x) == :((1/2)*im*2^(1/2)*arctan(1+2^(1/2)*(a+im*a*x)^-1//4*(a+-1*im*a*x)^1//4)+-1//2*im*2^(1/2)*arctan(1+-1*2^(1/2)*(a+im*a*x)^-1//4*(a+-1*im*a*x)^1//4)+-1//4*im*2^(1/2)*log(1+(a+im*a*x)^-1//2*(a+-1*im*a*x)^(1/2)+-1*2^(1/2)*(a+im*a*x)^-1//4*(a+-1*im*a*x)^1//4)+1//4*im*2^(1/2)*log(1+(a+im*a*x)^-1//2*(a+-1*im*a*x)^(1/2)+2^(1/2)*(a+im*a*x)^-1//4*(a+-1*im*a*x)^1//4)+-1*im*a^-1*(a+im*a*x)^3//4*(a+-1*im*a*x)^1//4) @test integrate((a+im*a*x)^-1//4*(a+-1*im*a*x)^-3//4, x) == :(im*2^(1/2)*a^-1*arctan(1+2^(1/2)*(a+im*a*x)^-1//4*(a+-1*im*a*x)^1//4)+(1/2)*im*2^(1/2)*a^-1*log(1+(a+im*a*x)^-1//2*(a+-1*im*a*x)^(1/2)+2^(1/2)*(a+im*a*x)^-1//4*(a+-1*im*a*x)^1//4)+-1*im*2^(1/2)*a^-1*arctan(1+-1*2^(1/2)*(a+im*a*x)^-1//4*(a+-1*im*a*x)^1//4)+-1//2*im*2^(1/2)*a^-1*log(1+(a+im*a*x)^-1//2*(a+-1*im*a*x)^(1/2)+-1*2^(1/2)*(a+im*a*x)^-1//4*(a+-1*im*a*x)^1//4)) @test integrate((a+im*a*x)^-1//4*(a+-1*im*a*x)^-7//4, x) == :(-2//3*im*a^-2*(a+im*a*x)^3//4*(a+-1*im*a*x)^-3//4) @test integrate((a+im*a*x)^-1//4*(a+-1*im*a*x)^-11//4, x) == :(-4//21*im*a^-3*(a+im*a*x)^3//4*(a+-1*im*a*x)^-3//4+-2//7*im*a^-2*(a+im*a*x)^3//4*(a+-1*im*a*x)^-7//4) @test integrate((a+im*a*x)^-1//4*(a+-1*im*a*x)^-15//4, x) == :(-16//231*im*a^-4*(a+im*a*x)^3//4*(a+-1*im*a*x)^-3//4+-8//77*im*a^-3*(a+im*a*x)^3//4*(a+-1*im*a*x)^-7//4+-2//11*im*a^-2*(a+im*a*x)^3//4*(a+-1*im*a*x)^-11//4) @test integrate((a+im*a*x)^-1//4*(a+-1*im*a*x)^-19//4, x) == :(-32//1155*im*a^-5*(a+im*a*x)^3//4*(a+-1*im*a*x)^-3//4+-16//385*im*a^-4*(a+im*a*x)^3//4*(a+-1*im*a*x)^-7//4+-4//55*im*a^-3*(a+im*a*x)^3//4*(a+-1*im*a*x)^-11//4+-2//15*im*a^-2*(a+im*a*x)^3//4*(a+-1*im*a*x)^-15//4) @test integrate((a+im*a*x)^-3//4*(a+-1*im*a*x)^3//4, x) == :(-3//2*im*2^(1/2)*arctan(1+-1*2^(1/2)*(a+im*a*x)^-1//4*(a+-1*im*a*x)^1//4)+-3//4*im*2^(1/2)*log(1+(a+im*a*x)^-1//2*(a+-1*im*a*x)^(1/2)+2^(1/2)*(a+im*a*x)^-1//4*(a+-1*im*a*x)^1//4)+3//2*im*2^(1/2)*arctan(1+2^(1/2)*(a+im*a*x)^-1//4*(a+-1*im*a*x)^1//4)+3//4*im*2^(1/2)*log(1+(a+im*a*x)^-1//2*(a+-1*im*a*x)^(1/2)+-1*2^(1/2)*(a+im*a*x)^-1//4*(a+-1*im*a*x)^1//4)+-1*im*a^-1*(a+im*a*x)^1//4*(a+-1*im*a*x)^3//4) @test integrate((a+im*a*x)^-3//4*(a+-1*im*a*x)^-1//4, x) == :(im*2^(1/2)*a^-1*arctan(1+2^(1/2)*(a+im*a*x)^-1//4*(a+-1*im*a*x)^1//4)+(1/2)*im*2^(1/2)*a^-1*log(1+(a+im*a*x)^-1//2*(a+-1*im*a*x)^(1/2)+-1*2^(1/2)*(a+im*a*x)^-1//4*(a+-1*im*a*x)^1//4)+-1*im*2^(1/2)*a^-1*arctan(1+-1*2^(1/2)*(a+im*a*x)^-1//4*(a+-1*im*a*x)^1//4)+-1//2*im*2^(1/2)*a^-1*log(1+(a+im*a*x)^-1//2*(a+-1*im*a*x)^(1/2)+2^(1/2)*(a+im*a*x)^-1//4*(a+-1*im*a*x)^1//4)) @test integrate((a+im*a*x)^-3//4*(a+-1*im*a*x)^-5//4, x) == :(-2*im*a^-2*(a+im*a*x)^1//4*(a+-1*im*a*x)^-1//4) @test integrate((a+im*a*x)^-3//4*(a+-1*im*a*x)^-9//4, x) == :(-4//5*im*a^-3*(a+im*a*x)^1//4*(a+-1*im*a*x)^-1//4+-2//5*im*a^-2*(a+im*a*x)^1//4*(a+-1*im*a*x)^-5//4) @test integrate((a+im*a*x)^-3//4*(a+-1*im*a*x)^-13//4, x) == :(-16//45*im*a^-4*(a+im*a*x)^1//4*(a+-1*im*a*x)^-1//4+-8//45*im*a^-3*(a+im*a*x)^1//4*(a+-1*im*a*x)^-5//4+-2//9*im*a^-2*(a+im*a*x)^1//4*(a+-1*im*a*x)^-9//4) @test integrate((a+im*a*x)^-3//4*(a+-1*im*a*x)^5//4, x) == :(-10//3*im*(a+im*a*x)^1//4*(a+-1*im*a*x)^1//4+-2//3*im*a^-1*(a+im*a*x)^1//4*(a+-1*im*a*x)^5//4+10//3*a^2*(1+x^2)^3//4*(a+im*a*x)^-3//4*(a+-1*im*a*x)^-3//4*Elliptic.F((1/2)*arctan(x),2)) @test integrate((a+im*a*x)^-3//4*(a+-1*im*a*x)^1//4, x) == :(-2*im*a^-1*(a+im*a*x)^1//4*(a+-1*im*a*x)^1//4+2*a*(1+x^2)^3//4*(a+im*a*x)^-3//4*(a+-1*im*a*x)^-3//4*Elliptic.F((1/2)*arctan(x),2)) @test integrate((a+im*a*x)^-3//4*(a+-1*im*a*x)^-3//4, x) == :(2*(1+x^2)^3//4*(a+im*a*x)^-3//4*(a+-1*im*a*x)^-3//4*Elliptic.F((1/2)*arctan(x),2)) @test integrate((a+im*a*x)^-3//4*(a+-1*im*a*x)^-7//4, x) == :(-2//3*im*a^-2*(a+im*a*x)^1//4*(a+-1*im*a*x)^-3//4+2//3*a^-1*(1+x^2)^3//4*(a+im*a*x)^-3//4*(a+-1*im*a*x)^-3//4*Elliptic.F((1/2)*arctan(x),2)) @test integrate((a+im*a*x)^-3//4*(a+-1*im*a*x)^-11//4, x) == :(-2//7*im*a^-3*(a+im*a*x)^1//4*(a+-1*im*a*x)^-3//4+-2//7*im*a^-2*(a+im*a*x)^1//4*(a+-1*im*a*x)^-7//4+2//7*a^-2*(1+x^2)^3//4*(a+im*a*x)^-3//4*(a+-1*im*a*x)^-3//4*Elliptic.F((1/2)*arctan(x),2)) @test integrate((a+im*a*x)^-7//4*(a+-1*im*a*x)^7//4, x) == :(-7//2*im*2^(1/2)*arctan(1+2^(1/2)*(a+im*a*x)^-1//4*(a+-1*im*a*x)^1//4)+-7//4*im*2^(1/2)*log(1+(a+im*a*x)^-1//2*(a+-1*im*a*x)^(1/2)+-1*2^(1/2)*(a+im*a*x)^-1//4*(a+-1*im*a*x)^1//4)+7//2*im*2^(1/2)*arctan(1+-1*2^(1/2)*(a+im*a*x)^-1//4*(a+-1*im*a*x)^1//4)+7//4*im*2^(1/2)*log(1+(a+im*a*x)^-1//2*(a+-1*im*a*x)^(1/2)+2^(1/2)*(a+im*a*x)^-1//4*(a+-1*im*a*x)^1//4)+4//3*im*a^-1*(a+im*a*x)^-3//4*(a+-1*im*a*x)^7//4+7//3*im*a^-1*(a+im*a*x)^1//4*(a+-1*im*a*x)^3//4) @test integrate((a+im*a*x)^-7//4*(a+-1*im*a*x)^3//4, x) == :(im*2^(1/2)*a^-1*arctan(1+-1*2^(1/2)*(a+im*a*x)^-1//4*(a+-1*im*a*x)^1//4)+(1/2)*im*2^(1/2)*a^-1*log(1+(a+im*a*x)^-1//2*(a+-1*im*a*x)^(1/2)+2^(1/2)*(a+im*a*x)^-1//4*(a+-1*im*a*x)^1//4)+-1*im*2^(1/2)*a^-1*arctan(1+2^(1/2)*(a+im*a*x)^-1//4*(a+-1*im*a*x)^1//4)+-1//2*im*2^(1/2)*a^-1*log(1+(a+im*a*x)^-1//2*(a+-1*im*a*x)^(1/2)+-1*2^(1/2)*(a+im*a*x)^-1//4*(a+-1*im*a*x)^1//4)+4//3*im*a^-1*(a+im*a*x)^-3//4*(a+-1*im*a*x)^3//4) @test integrate((a+im*a*x)^-7//4*(a+-1*im*a*x)^-1//4, x) == :(2//3*im*a^-2*(a+im*a*x)^-3//4*(a+-1*im*a*x)^3//4) @test integrate((a+im*a*x)^-7//4*(a+-1*im*a*x)^-5//4, x) == :(-2*im*a^-2*(a+im*a*x)^-3//4*(a+-1*im*a*x)^-1//4+4//3*im*a^-3*(a+im*a*x)^-3//4*(a+-1*im*a*x)^3//4) @test integrate((a+im*a*x)^-7//4*(a+-1*im*a*x)^-9//4, x) == :(-8//5*im*a^-3*(a+im*a*x)^-3//4*(a+-1*im*a*x)^-1//4+-2//5*im*a^-2*(a+im*a*x)^-3//4*(a+-1*im*a*x)^-5//4+16//15*im*a^-4*(a+im*a*x)^-3//4*(a+-1*im*a*x)^3//4) @test integrate((a+im*a*x)^-7//4*(a+-1*im*a*x)^9//4, x) == :(10*im*(a+im*a*x)^1//4*(a+-1*im*a*x)^1//4+2*im*a^-1*(a+im*a*x)^1//4*(a+-1*im*a*x)^5//4+4//3*im*a^-1*(a+im*a*x)^-3//4*(a+-1*im*a*x)^9//4+-10*a^2*(1+x^2)^3//4*(a+im*a*x)^-3//4*(a+-1*im*a*x)^-3//4*Elliptic.F((1/2)*arctan(x),2)) @test integrate((a+im*a*x)^-7//4*(a+-1*im*a*x)^5//4, x) == :(4//3*im*a^-1*(a+im*a*x)^-3//4*(a+-1*im*a*x)^5//4+10//3*im*a^-1*(a+im*a*x)^1//4*(a+-1*im*a*x)^1//4+-10//3*a*(1+x^2)^3//4*(a+im*a*x)^-3//4*(a+-1*im*a*x)^-3//4*Elliptic.F((1/2)*arctan(x),2)) @test integrate((a+im*a*x)^-7//4*(a+-1*im*a*x)^1//4, x) == :(-2//3*(1+x^2)^3//4*(a+im*a*x)^-3//4*(a+-1*im*a*x)^-3//4*Elliptic.F((1/2)*arctan(x),2)+4//3*im*a^-1*(a+im*a*x)^-3//4*(a+-1*im*a*x)^1//4) @test integrate((a+im*a*x)^-7//4*(a+-1*im*a*x)^-3//4, x) == :(2//3*im*a^-2*(a+im*a*x)^-3//4*(a+-1*im*a*x)^1//4+2//3*a^-1*(1+x^2)^3//4*(a+im*a*x)^-3//4*(a+-1*im*a*x)^-3//4*Elliptic.F((1/2)*arctan(x),2)) @test integrate((a+im*a*x)^-7//4*(a+-1*im*a*x)^-7//4, x) == :(2//3*x*a^-2*(a+im*a*x)^-3//4*(a+-1*im*a*x)^-3//4+2//3*a^-2*(1+x^2)^3//4*(a+im*a*x)^-3//4*(a+-1*im*a*x)^-3//4*Elliptic.F((1/2)*arctan(x),2)) @test integrate((a+im*a*x)^-7//4*(a+-1*im*a*x)^-11//4, x) == :(-2//7*im*a^-2*(a+im*a*x)^-3//4*(a+-1*im*a*x)^-7//4+10//21*x*a^-3*(a+im*a*x)^-3//4*(a+-1*im*a*x)^-3//4+10//21*a^-3*(1+x^2)^3//4*(a+im*a*x)^-3//4*(a+-1*im*a*x)^-3//4*Elliptic.F((1/2)*arctan(x),2)) @test integrate((a+im*a*x)^-7//4*(a+-1*im*a*x)^-15//4, x) == :(-2//11*im*a^-3*(a+im*a*x)^-3//4*(a+-1*im*a*x)^-7//4+-2//11*im*a^-2*(a+im*a*x)^-3//4*(a+-1*im*a*x)^-11//4+10//33*x*a^-4*(a+im*a*x)^-3//4*(a+-1*im*a*x)^-3//4+10//33*a^-4*(1+x^2)^3//4*(a+im*a*x)^-3//4*(a+-1*im*a*x)^-3//4*Elliptic.F((1/2)*arctan(x),2)) @test integrate((a+im*a*x)^-5//4*(a+-1*im*a*x)^7//4, x) == :(-14*a*x*(a+im*a*x)^-1//4*(a+-1*im*a*x)^-1//4+4*im*a^-1*(a+im*a*x)^-1//4*(a+-1*im*a*x)^7//4+14//3*im*a^-1*(a+im*a*x)^3//4*(a+-1*im*a*x)^3//4+14*a*(1+x^2)^1//4*(a+im*a*x)^-1//4*(a+-1*im*a*x)^-1//4*Elliptic.E((1/2)*arctan(x),2)) @test integrate((a+im*a*x)^-5//4*(a+-1*im*a*x)^3//4, x) == :(-6*x*(a+im*a*x)^-1//4*(a+-1*im*a*x)^-1//4+4*im*a^-1*(a+im*a*x)^-1//4*(a+-1*im*a*x)^3//4+6*(1+x^2)^1//4*(a+im*a*x)^-1//4*(a+-1*im*a*x)^-1//4*Elliptic.E((1/2)*arctan(x),2)) @test integrate((a+im*a*x)^-5//4*(a+-1*im*a*x)^-1//4, x) == :(2*im*a^-1*(a+im*a*x)^-1//4*(a+-1*im*a*x)^-1//4+2*a^-1*(1+x^2)^1//4*(a+im*a*x)^-1//4*(a+-1*im*a*x)^-1//4*Elliptic.E((1/2)*arctan(x),2)) @test integrate((a+im*a*x)^-5//4*(a+-1*im*a*x)^-5//4, x) == :(2*a^-2*(1+x^2)^1//4*(a+im*a*x)^-1//4*(a+-1*im*a*x)^-1//4*Elliptic.E((1/2)*arctan(x),2)) @test integrate((a+im*a*x)^-5//4*(a+-1*im*a*x)^-9//4, x) == :(-2//5*im*a^-2*(a+im*a*x)^-1//4*(a+-1*im*a*x)^-5//4+6//5*a^-3*(1+x^2)^1//4*(a+im*a*x)^-1//4*(a+-1*im*a*x)^-1//4*Elliptic.E((1/2)*arctan(x),2)) @test integrate((a+im*a*x)^-5//4*(a+-1*im*a*x)^-13//4, x) == :(-2//9*im*a^-3*(a+im*a*x)^-1//4*(a+-1*im*a*x)^-5//4+-2//9*im*a^-2*(a+im*a*x)^-1//4*(a+-1*im*a*x)^-9//4+2//3*a^-4*(1+x^2)^1//4*(a+im*a*x)^-1//4*(a+-1*im*a*x)^-1//4*Elliptic.E((1/2)*arctan(x),2)) @test integrate((a+im*a*x)^-5//4*(a+-1*im*a*x)^5//4, x) == :(-5//2*im*2^(1/2)*arctan(1+2^(1/2)*(a+im*a*x)^-1//4*(a+-1*im*a*x)^1//4)+-5//4*im*2^(1/2)*log(1+(a+im*a*x)^-1//2*(a+-1*im*a*x)^(1/2)+2^(1/2)*(a+im*a*x)^-1//4*(a+-1*im*a*x)^1//4)+5//2*im*2^(1/2)*arctan(1+-1*2^(1/2)*(a+im*a*x)^-1//4*(a+-1*im*a*x)^1//4)+5//4*im*2^(1/2)*log(1+(a+im*a*x)^-1//2*(a+-1*im*a*x)^(1/2)+-1*2^(1/2)*(a+im*a*x)^-1//4*(a+-1*im*a*x)^1//4)+4*im*a^-1*(a+im*a*x)^-1//4*(a+-1*im*a*x)^5//4+5*im*a^-1*(a+im*a*x)^3//4*(a+-1*im*a*x)^1//4) @test integrate((a+im*a*x)^-5//4*(a+-1*im*a*x)^1//4, x) == :(im*2^(1/2)*a^-1*arctan(1+-1*2^(1/2)*(a+im*a*x)^-1//4*(a+-1*im*a*x)^1//4)+(1/2)*im*2^(1/2)*a^-1*log(1+(a+im*a*x)^-1//2*(a+-1*im*a*x)^(1/2)+-1*2^(1/2)*(a+im*a*x)^-1//4*(a+-1*im*a*x)^1//4)+-1*im*2^(1/2)*a^-1*arctan(1+2^(1/2)*(a+im*a*x)^-1//4*(a+-1*im*a*x)^1//4)+4*im*a^-1*(a+im*a*x)^-1//4*(a+-1*im*a*x)^1//4+-1//2*im*2^(1/2)*a^-1*log(1+(a+im*a*x)^-1//2*(a+-1*im*a*x)^(1/2)+2^(1/2)*(a+im*a*x)^-1//4*(a+-1*im*a*x)^1//4)) @test integrate((a+im*a*x)^-5//4*(a+-1*im*a*x)^-3//4, x) == :(2*im*a^-2*(a+im*a*x)^-1//4*(a+-1*im*a*x)^1//4) @test integrate((a+im*a*x)^-5//4*(a+-1*im*a*x)^-7//4, x) == :(-2//3*im*a^-2*(a+im*a*x)^-1//4*(a+-1*im*a*x)^-3//4+4//3*im*a^-3*(a+im*a*x)^-1//4*(a+-1*im*a*x)^1//4) @test integrate((a+im*a*x)^-5//4*(a+-1*im*a*x)^-11//4, x) == :(-8//21*im*a^-3*(a+im*a*x)^-1//4*(a+-1*im*a*x)^-3//4+-2//7*im*a^-2*(a+im*a*x)^-1//4*(a+-1*im*a*x)^-7//4+16//21*im*a^-4*(a+im*a*x)^-1//4*(a+-1*im*a*x)^1//4) @test integrate((a+im*a*x)^-9//4*(a+-1*im*a*x)^7//4, x) == :(42//5*x*(a+im*a*x)^-1//4*(a+-1*im*a*x)^-1//4+-42//5*(1+x^2)^1//4*(a+im*a*x)^-1//4*(a+-1*im*a*x)^-1//4*Elliptic.E((1/2)*arctan(x),2)+-28//5*im*a^-1*(a+im*a*x)^-1//4*(a+-1*im*a*x)^3//4+4//5*im*a^-1*(a+im*a*x)^-5//4*(a+-1*im*a*x)^7//4) @test integrate((a+im*a*x)^-9//4*(a+-1*im*a*x)^3//4, x) == :(-6//5*im*a^-1*(a+im*a*x)^-1//4*(a+-1*im*a*x)^-1//4+4//5*im*a^-1*(a+im*a*x)^-5//4*(a+-1*im*a*x)^3//4+-6//5*a^-1*(1+x^2)^1//4*(a+im*a*x)^-1//4*(a+-1*im*a*x)^-1//4*Elliptic.E((1/2)*arctan(x),2)) @test integrate((a+im*a*x)^-9//4*(a+-1*im*a*x)^-1//4, x) == :(4//5*im*a^-1*(a+im*a*x)^-5//4*(a+-1*im*a*x)^-1//4+2//5*a^-2*(1+x^2)^1//4*(a+im*a*x)^-1//4*(a+-1*im*a*x)^-1//4*Elliptic.E((1/2)*arctan(x),2)) @test integrate((a+im*a*x)^-9//4*(a+-1*im*a*x)^-5//4, x) == :(2//5*im*a^-2*(a+im*a*x)^-5//4*(a+-1*im*a*x)^-1//4+6//5*a^-3*(1+x^2)^1//4*(a+im*a*x)^-1//4*(a+-1*im*a*x)^-1//4*Elliptic.E((1/2)*arctan(x),2)) @test integrate((a+im*a*x)^-9//4*(a+-1*im*a*x)^-9//4, x) == :(2//5*x*a^-4*(1+x^2)^-1*(a+im*a*x)^-1//4*(a+-1*im*a*x)^-1//4+6//5*a^-4*(1+x^2)^1//4*(a+im*a*x)^-1//4*(a+-1*im*a*x)^-1//4*Elliptic.E((1/2)*arctan(x),2)) @test integrate((a+im*a*x)^-9//4*(a+-1*im*a*x)^-13//4, x) == :(-2//9*im*a^-2*(a+im*a*x)^-5//4*(a+-1*im*a*x)^-9//4+14//15*a^-5*(1+x^2)^1//4*(a+im*a*x)^-1//4*(a+-1*im*a*x)^-1//4*Elliptic.E((1/2)*arctan(x),2)+14//45*x*a^-5*(1+x^2)^-1*(a+im*a*x)^-1//4*(a+-1*im*a*x)^-1//4) @test integrate((a+im*a*x)^-9//4*(a+-1*im*a*x)^-17//4, x) == :(-2//13*im*a^-3*(a+im*a*x)^-5//4*(a+-1*im*a*x)^-9//4+-2//13*im*a^-2*(a+im*a*x)^-5//4*(a+-1*im*a*x)^-13//4+14//65*x*a^-6*(1+x^2)^-1*(a+im*a*x)^-1//4*(a+-1*im*a*x)^-1//4+42//65*a^-6*(1+x^2)^1//4*(a+im*a*x)^-1//4*(a+-1*im*a*x)^-1//4*Elliptic.E((1/2)*arctan(x),2)) @test integrate((a+im*a*x)^-9//4*(a+-1*im*a*x)^5//4, x) == :(im*2^(1/2)*a^-1*arctan(1+2^(1/2)*(a+im*a*x)^-1//4*(a+-1*im*a*x)^1//4)+(1/2)*im*2^(1/2)*a^-1*log(1+(a+im*a*x)^-1//2*(a+-1*im*a*x)^(1/2)+2^(1/2)*(a+im*a*x)^-1//4*(a+-1*im*a*x)^1//4)+-1*im*2^(1/2)*a^-1*arctan(1+-1*2^(1/2)*(a+im*a*x)^-1//4*(a+-1*im*a*x)^1//4)+-4*im*a^-1*(a+im*a*x)^-1//4*(a+-1*im*a*x)^1//4+-1//2*im*2^(1/2)*a^-1*log(1+(a+im*a*x)^-1//2*(a+-1*im*a*x)^(1/2)+-1*2^(1/2)*(a+im*a*x)^-1//4*(a+-1*im*a*x)^1//4)+4//5*im*a^-1*(a+im*a*x)^-5//4*(a+-1*im*a*x)^5//4) @test integrate((a+im*a*x)^-9//4*(a+-1*im*a*x)^1//4, x) == :(2//5*im*a^-2*(a+im*a*x)^-5//4*(a+-1*im*a*x)^5//4) @test integrate((a+im*a*x)^-9//4*(a+-1*im*a*x)^-3//4, x) == :(2//5*im*a^-2*(a+im*a*x)^-5//4*(a+-1*im*a*x)^1//4+4//5*im*a^-3*(a+im*a*x)^-1//4*(a+-1*im*a*x)^1//4) @test integrate((a+im*a*x)^-9//4*(a+-1*im*a*x)^-7//4, x) == :(-2//3*im*a^-2*(a+im*a*x)^-5//4*(a+-1*im*a*x)^-3//4+8//15*im*a^-3*(a+im*a*x)^-5//4*(a+-1*im*a*x)^1//4+16//15*im*a^-4*(a+im*a*x)^-1//4*(a+-1*im*a*x)^1//4) @test integrate((a+im*a*x)^-9//4*(a+-1*im*a*x)^-11//4, x) == :(-4//7*im*a^-3*(a+im*a*x)^-5//4*(a+-1*im*a*x)^-3//4+-2//7*im*a^-2*(a+im*a*x)^-5//4*(a+-1*im*a*x)^-7//4+16//35*im*a^-4*(a+im*a*x)^-5//4*(a+-1*im*a*x)^1//4+32//35*im*a^-5*(a+im*a*x)^-1//4*(a+-1*im*a*x)^1//4) @test integrate((a+b*x)^2*(a*c+-1*b*c*x)^n, x) == :(-1*b^-1*c^-3*(3+n)^-1*(a*c+-1*b*c*x)^(3+n)+-4*a^2*b^-1*c^-1*(1+n)^-1*(a*c+-1*b*c*x)^(1+n)+4*a*b^-1*c^-2*(2+n)^-1*(a*c+-1*b*c*x)^(2+n)) @test integrate((a*c+-1*b*c*x)^n*(a+b*x), x) == :(b^-1*c^-2*(2+n)^-1*(a*c+-1*b*c*x)^(2+n)+-2*a*b^-1*c^-1*(1+n)^-1*(a*c+-1*b*c*x)^(1+n)) @test integrate((a+b*x)^4*(c+d*x), x) == :(1//5*b^-2*(a+b*x)^5*(b*c+-1*a*d)+1//6*d*b^-2*(a+b*x)^6) @test integrate((a+b*x)^3*(c+d*x), x) == :(1//4*b^-2*(a+b*x)^4*(b*c+-1*a*d)+1//5*d*b^-2*(a+b*x)^5) @test integrate((a+b*x)^2*(c+d*x), x) == :(1//3*b^-2*(a+b*x)^3*(b*c+-1*a*d)+1//4*d*b^-2*(a+b*x)^4) @test integrate((a+b*x)*(c+d*x), x) == :(x^2*((1/2)*a*d+(1/2)*b*c)+a*c*x+1//3*b*d*x^3) @test integrate(c+d*x, x) == :(c*x+(1/2)*d*x^2) @test integrate((a+b*x)^-1*(c+d*x), x) == :(d*x*b^-1+b^-2*(b*c+-1*a*d)*log(a+b*x)) @test integrate((a+b*x)^-2*(c+d*x), x) == :(d*b^-2*log(a+b*x)+-1*b^-2*(a+b*x)^-1*(b*c+-1*a*d)) @test integrate((a+b*x)^-3*(c+d*x), x) == :(-1*(a+b*x)^-2*(c+d*x)^2*(-2*a*d+2*b*c)^-1) @test integrate((a+b*x)^-4*(c+d*x), x) == :(-1//2*d*b^-2*(a+b*x)^-2+-1//3*b^-2*(a+b*x)^-3*(b*c+-1*a*d)) @test integrate((a+b*x)^-5*(c+d*x), x) == :(-1//3*d*b^-2*(a+b*x)^-3+-1//4*b^-2*(a+b*x)^-4*(b*c+-1*a*d)) @test integrate((a+b*x)^4*(c+d*x)^2, x) == :(1//5*b^-3*(a+b*x)^5*(b*c+-1*a*d)^2+1//7*b^-3*d^2*(a+b*x)^7+1//3*d*b^-3*(a+b*x)^6*(b*c+-1*a*d)) @test integrate((a+b*x)^3*(c+d*x)^2, x) == :(1//4*b^-3*(a+b*x)^4*(b*c+-1*a*d)^2+1//6*b^-3*d^2*(a+b*x)^6+2//5*d*b^-3*(a+b*x)^5*(b*c+-1*a*d)) @test integrate((a+b*x)^2*(c+d*x)^2, x) == :(1//3*b^-3*(a+b*x)^3*(b*c+-1*a*d)^2+1//5*b^-3*d^2*(a+b*x)^5+(1/2)*d*b^-3*(a+b*x)^4*(b*c+-1*a*d)) @test integrate((c+d*x)^2*(a+b*x), x) == :(-1//3*d^-2*(c+d*x)^3*(b*c+-1*a*d)+1//4*b*d^-2*(c+d*x)^4) @test integrate((c+d*x)^2, x) == :(1//3*d^-1*(c+d*x)^3) @test integrate((a+b*x)^-1*(c+d*x)^2, x) == :((1/2)*b^-1*(c+d*x)^2+b^-3*(b*c+-1*a*d)^2*log(a+b*x)+d*x*b^-2*(b*c+-1*a*d)) @test integrate((a+b*x)^-2*(c+d*x)^2, x) == :(x*b^-2*d^2+-1*b^-3*(a+b*x)^-1*(b*c+-1*a*d)^2+2*d*b^-3*(b*c+-1*a*d)*log(a+b*x)) @test integrate((a+b*x)^-3*(c+d*x)^2, x) == :(b^-3*d^2*log(a+b*x)+-1//2*b^-3*(a+b*x)^-2*(b*c+-1*a*d)^2+-2*d*b^-3*(a+b*x)^-1*(b*c+-1*a*d)) @test integrate((a+b*x)^-4*(c+d*x)^2, x) == :(-1*(a+b*x)^-3*(c+d*x)^3*(-3*a*d+3*b*c)^-1) @test integrate((a+b*x)^-5*(c+d*x)^2, x) == :(-1//2*b^-3*d^2*(a+b*x)^-2+-1//4*b^-3*(a+b*x)^-4*(b*c+-1*a*d)^2+-2//3*d*b^-3*(a+b*x)^-3*(b*c+-1*a*d)) @test integrate((a+b*x)^-6*(c+d*x)^2, x) == :(-1//3*b^-3*d^2*(a+b*x)^-3+-1//5*b^-3*(a+b*x)^-5*(b*c+-1*a*d)^2+-1//2*d*b^-3*(a+b*x)^-4*(b*c+-1*a*d)) @test integrate((a+b*x)^-7*(c+d*x)^2, x) == :(-1//4*b^-3*d^2*(a+b*x)^-4+-1//6*b^-3*(a+b*x)^-6*(b*c+-1*a*d)^2+-2//5*d*b^-3*(a+b*x)^-5*(b*c+-1*a*d)) @test integrate((a+b*x)^5*(c+d*x)^3, x) == :(1//6*b^-4*(a+b*x)^6*(b*c+-1*a*d)^3+1//9*b^-4*d^3*(a+b*x)^9+3//7*d*b^-4*(a+b*x)^7*(b*c+-1*a*d)^2+3//8*b^-4*d^2*(a+b*x)^8*(b*c+-1*a*d)) @test integrate((a+b*x)^4*(c+d*x)^3, x) == :(1//5*b^-4*(a+b*x)^5*(b*c+-1*a*d)^3+1//8*b^-4*d^3*(a+b*x)^8+(1/2)*d*b^-4*(a+b*x)^6*(b*c+-1*a*d)^2+3//7*b^-4*d^2*(a+b*x)^7*(b*c+-1*a*d)) @test integrate((a+b*x)^3*(c+d*x)^3, x) == :(1//4*b^-4*(a+b*x)^4*(b*c+-1*a*d)^3+1//7*b^-4*d^3*(a+b*x)^7+(1/2)*b^-4*d^2*(a+b*x)^6*(b*c+-1*a*d)+3//5*d*b^-4*(a+b*x)^5*(b*c+-1*a*d)^2) @test integrate((a+b*x)^2*(c+d*x)^3, x) == :(1//4*d^-3*(c+d*x)^4*(b*c+-1*a*d)^2+1//6*b^2*d^-3*(c+d*x)^6+-2//5*b*d^-3*(c+d*x)^5*(b*c+-1*a*d)) @test integrate((c+d*x)^3*(a+b*x), x) == :(-1//4*d^-2*(c+d*x)^4*(b*c+-1*a*d)+1//5*b*d^-2*(c+d*x)^5) @test integrate((c+d*x)^3, x) == :(1//4*d^-1*(c+d*x)^4) @test integrate((a+b*x)^-1*(c+d*x)^3, x) == :(1//3*b^-1*(c+d*x)^3+b^-4*(b*c+-1*a*d)^3*log(a+b*x)+(1/2)*b^-2*(c+d*x)^2*(b*c+-1*a*d)+d*x*b^-3*(b*c+-1*a*d)^2) @test integrate((a+b*x)^-2*(c+d*x)^3, x) == :((1/2)*b^-2*d^3*x^2+-1*b^-4*(a+b*x)^-1*(b*c+-1*a*d)^3+x*b^-3*d^2*(-2*a*d+3*b*c)+3*d*b^-4*(b*c+-1*a*d)^2*log(a+b*x)) @test integrate((a+b*x)^-3*(c+d*x)^3, x) == :(x*b^-3*d^3+-1//2*b^-4*(a+b*x)^-2*(b*c+-1*a*d)^3+-3*d*b^-4*(a+b*x)^-1*(b*c+-1*a*d)^2+3*b^-4*d^2*(b*c+-1*a*d)*log(a+b*x)) @test integrate((a+b*x)^-4*(c+d*x)^3, x) == :(b^-4*d^3*log(a+b*x)+-1//3*b^-4*(a+b*x)^-3*(b*c+-1*a*d)^3+-3*b^-4*d^2*(a+b*x)^-1*(b*c+-1*a*d)+-3//2*d*b^-4*(a+b*x)^-2*(b*c+-1*a*d)^2) @test integrate((a+b*x)^-5*(c+d*x)^3, x) == :(-1*(a+b*x)^-4*(c+d*x)^4*(-4*a*d+4*b*c)^-1) @test integrate((a+b*x)^-6*(c+d*x)^3, x) == :(-1*(a+b*x)^-5*(c+d*x)^4*(-5*a*d+5*b*c)^-1+1//20*d*(a+b*x)^-4*(c+d*x)^4*(b*c+-1*a*d)^-2) @test integrate((a+b*x)^-7*(c+d*x)^3, x) == :(-1//3*b^-4*d^3*(a+b*x)^-3+-1//6*b^-4*(a+b*x)^-6*(b*c+-1*a*d)^3+-3//4*b^-4*d^2*(a+b*x)^-4*(b*c+-1*a*d)+-3//5*d*b^-4*(a+b*x)^-5*(b*c+-1*a*d)^2) @test integrate((a+b*x)^-8*(c+d*x)^3, x) == :(-1//4*b^-4*d^3*(a+b*x)^-4+-1//7*b^-4*(a+b*x)^-7*(b*c+-1*a*d)^3+-3//5*b^-4*d^2*(a+b*x)^-5*(b*c+-1*a*d)+-1//2*d*b^-4*(a+b*x)^-6*(b*c+-1*a*d)^2) @test integrate((a+b*x)^-9*(c+d*x)^3, x) == :(-1//5*b^-4*d^3*(a+b*x)^-5+-1//8*b^-4*(a+b*x)^-8*(b*c+-1*a*d)^3+-3//7*d*b^-4*(a+b*x)^-7*(b*c+-1*a*d)^2+-1//2*b^-4*d^2*(a+b*x)^-6*(b*c+-1*a*d)) @test integrate((a+b*x)^9*(c+d*x)^7, x) == :(1//10*b^-8*(a+b*x)^10*(b*c+-1*a*d)^7+1//17*b^-8*d^7*(a+b*x)^17+5//2*b^-8*d^4*(a+b*x)^14*(b*c+-1*a*d)^3+7//4*b^-8*d^2*(a+b*x)^12*(b*c+-1*a*d)^5+7//5*b^-8*d^5*(a+b*x)^15*(b*c+-1*a*d)^2+7//11*d*b^-8*(a+b*x)^11*(b*c+-1*a*d)^6+7//16*b^-8*d^6*(a+b*x)^16*(b*c+-1*a*d)+35//13*b^-8*d^3*(a+b*x)^13*(b*c+-1*a*d)^4) @test integrate((a+b*x)^8*(c+d*x)^7, x) == :(1//9*b^-8*(a+b*x)^9*(b*c+-1*a*d)^7+1//16*b^-8*d^7*(a+b*x)^16+3//2*b^-8*d^5*(a+b*x)^14*(b*c+-1*a*d)^2+7//10*d*b^-8*(a+b*x)^10*(b*c+-1*a*d)^6+7//15*b^-8*d^6*(a+b*x)^15*(b*c+-1*a*d)+21//11*b^-8*d^2*(a+b*x)^11*(b*c+-1*a*d)^5+35//12*b^-8*d^3*(a+b*x)^12*(b*c+-1*a*d)^4+35//13*b^-8*d^4*(a+b*x)^13*(b*c+-1*a*d)^3) @test integrate((a+b*x)^7*(c+d*x)^7, x) == :(1//8*b^-8*(a+b*x)^8*(b*c+-1*a*d)^7+1//15*b^-8*d^7*(a+b*x)^15+(1/2)*b^-8*d^6*(a+b*x)^14*(b*c+-1*a*d)+7//9*d*b^-8*(a+b*x)^9*(b*c+-1*a*d)^6+21//10*b^-8*d^2*(a+b*x)^10*(b*c+-1*a*d)^5+21//13*b^-8*d^5*(a+b*x)^13*(b*c+-1*a*d)^2+35//11*b^-8*d^3*(a+b*x)^11*(b*c+-1*a*d)^4+35//12*b^-8*d^4*(a+b*x)^12*(b*c+-1*a*d)^3) @test integrate((a+b*x)^6*(c+d*x)^7, x) == :(1//8*d^-7*(c+d*x)^8*(b*c+-1*a*d)^6+1//14*b^6*d^-7*(c+d*x)^14+-20//11*b^3*d^-7*(c+d*x)^11*(b*c+-1*a*d)^3+-6//13*b^5*d^-7*(c+d*x)^13*(b*c+-1*a*d)+-2//3*b*d^-7*(c+d*x)^9*(b*c+-1*a*d)^5+3//2*b^2*d^-7*(c+d*x)^10*(b*c+-1*a*d)^4+5//4*b^4*d^-7*(c+d*x)^12*(b*c+-1*a*d)^2) @test integrate((a+b*x)^5*(c+d*x)^7, x) == :(-1//8*d^-6*(c+d*x)^8*(b*c+-1*a*d)^5+1//13*b^5*d^-6*(c+d*x)^13+-1*b^2*d^-6*(c+d*x)^10*(b*c+-1*a*d)^3+-5//12*b^4*d^-6*(c+d*x)^12*(b*c+-1*a*d)+5//9*b*d^-6*(c+d*x)^9*(b*c+-1*a*d)^4+10//11*b^3*d^-6*(c+d*x)^11*(b*c+-1*a*d)^2) @test integrate((a+b*x)^4*(c+d*x)^7, x) == :(1//8*d^-5*(c+d*x)^8*(b*c+-1*a*d)^4+1//12*b^4*d^-5*(c+d*x)^12+-4//9*b*d^-5*(c+d*x)^9*(b*c+-1*a*d)^3+-4//11*b^3*d^-5*(c+d*x)^11*(b*c+-1*a*d)+3//5*b^2*d^-5*(c+d*x)^10*(b*c+-1*a*d)^2) @test integrate((a+b*x)^3*(c+d*x)^7, x) == :(-1//8*d^-4*(c+d*x)^8*(b*c+-1*a*d)^3+1//11*b^3*d^-4*(c+d*x)^11+-3//10*b^2*d^-4*(c+d*x)^10*(b*c+-1*a*d)+1//3*b*d^-4*(c+d*x)^9*(b*c+-1*a*d)^2) @test integrate((a+b*x)^2*(c+d*x)^7, x) == :(1//8*d^-3*(c+d*x)^8*(b*c+-1*a*d)^2+1//10*b^2*d^-3*(c+d*x)^10+-2//9*b*d^-3*(c+d*x)^9*(b*c+-1*a*d)) @test integrate((c+d*x)^7*(a+b*x), x) == :(-1//8*d^-2*(c+d*x)^8*(b*c+-1*a*d)+1//9*b*d^-2*(c+d*x)^9) @test integrate((c+d*x)^7, x) == :(1//8*d^-1*(c+d*x)^8) @test integrate((a+b*x)^-1*(c+d*x)^7, x) == :(1//7*b^-1*(c+d*x)^7+b^-8*(b*c+-1*a*d)^7*log(a+b*x)+(1/2)*b^-6*(c+d*x)^2*(b*c+-1*a*d)^5+1//3*b^-5*(c+d*x)^3*(b*c+-1*a*d)^4+1//4*b^-4*(c+d*x)^4*(b*c+-1*a*d)^3+1//5*b^-3*(c+d*x)^5*(b*c+-1*a*d)^2+1//6*b^-2*(c+d*x)^6*(b*c+-1*a*d)+d*x*b^-7*(b*c+-1*a*d)^6) @test integrate((a+b*x)^-2*(c+d*x)^7, x) == :(-1*b^-8*(a+b*x)^-1*(b*c+-1*a*d)^7+1//6*b^-8*d^7*(a+b*x)^6+7*d*b^-8*(b*c+-1*a*d)^6*log(a+b*x)+21*x*b^-7*d^2*(b*c+-1*a*d)^5+7//5*b^-8*d^6*(a+b*x)^5*(b*c+-1*a*d)+21//4*b^-8*d^5*(a+b*x)^4*(b*c+-1*a*d)^2+35//2*b^-8*d^3*(a+b*x)^2*(b*c+-1*a*d)^4+35//3*b^-8*d^4*(a+b*x)^3*(b*c+-1*a*d)^3) @test integrate((a+b*x)^-3*(c+d*x)^7, x) == :(-1//2*b^-8*(a+b*x)^-2*(b*c+-1*a*d)^7+1//5*b^-8*d^7*(a+b*x)^5+-7*d*b^-8*(a+b*x)^-1*(b*c+-1*a*d)^6+7*b^-8*d^5*(a+b*x)^3*(b*c+-1*a*d)^2+21*b^-8*d^2*(b*c+-1*a*d)^5*log(a+b*x)+35*x*b^-7*d^3*(b*c+-1*a*d)^4+7//4*b^-8*d^6*(a+b*x)^4*(b*c+-1*a*d)+35//2*b^-8*d^4*(a+b*x)^2*(b*c+-1*a*d)^3) @test integrate((a+b*x)^-4*(c+d*x)^7, x) == :(-1//3*b^-8*(a+b*x)^-3*(b*c+-1*a*d)^7+1//4*b^-8*d^7*(a+b*x)^4+-21*b^-8*d^2*(a+b*x)^-1*(b*c+-1*a*d)^5+35*x*b^-7*d^4*(b*c+-1*a*d)^3+35*b^-8*d^3*(b*c+-1*a*d)^4*log(a+b*x)+-7//2*d*b^-8*(a+b*x)^-2*(b*c+-1*a*d)^6+7//3*b^-8*d^6*(a+b*x)^3*(b*c+-1*a*d)+21//2*b^-8*d^5*(a+b*x)^2*(b*c+-1*a*d)^2) @test integrate((a+b*x)^-5*(c+d*x)^7, x) == :(-1//4*b^-8*(a+b*x)^-4*(b*c+-1*a*d)^7+1//3*b^-8*d^7*(a+b*x)^3+-35*b^-8*d^3*(a+b*x)^-1*(b*c+-1*a*d)^4+21*x*b^-7*d^5*(b*c+-1*a*d)^2+35*b^-8*d^4*(b*c+-1*a*d)^3*log(a+b*x)+-21//2*b^-8*d^2*(a+b*x)^-2*(b*c+-1*a*d)^5+-7//3*d*b^-8*(a+b*x)^-3*(b*c+-1*a*d)^6+7//2*b^-8*d^6*(a+b*x)^2*(b*c+-1*a*d)) @test integrate((a+b*x)^-6*(c+d*x)^7, x) == :((1/2)*b^-6*d^7*x^2+-1//5*b^-8*(a+b*x)^-5*(b*c+-1*a*d)^7+x*b^-7*d^6*(-6*a*d+7*b*c)+-35*b^-8*d^4*(a+b*x)^-1*(b*c+-1*a*d)^3+-7*b^-8*d^2*(a+b*x)^-3*(b*c+-1*a*d)^5+21*b^-8*d^5*(b*c+-1*a*d)^2*log(a+b*x)+-35//2*b^-8*d^3*(a+b*x)^-2*(b*c+-1*a*d)^4+-7//4*d*b^-8*(a+b*x)^-4*(b*c+-1*a*d)^6) @test integrate((a+b*x)^-7*(c+d*x)^7, x) == :(x*b^-7*d^7+-1//6*b^-8*(a+b*x)^-6*(b*c+-1*a*d)^7+-21*b^-8*d^5*(a+b*x)^-1*(b*c+-1*a*d)^2+7*b^-8*d^6*(b*c+-1*a*d)*log(a+b*x)+-35//2*b^-8*d^4*(a+b*x)^-2*(b*c+-1*a*d)^3+-35//3*b^-8*d^3*(a+b*x)^-3*(b*c+-1*a*d)^4+-21//4*b^-8*d^2*(a+b*x)^-4*(b*c+-1*a*d)^5+-7//5*d*b^-8*(a+b*x)^-5*(b*c+-1*a*d)^6) @test integrate((a+b*x)^-8*(c+d*x)^7, x) == :(b^-8*d^7*log(a+b*x)+-1//7*b^-8*(a+b*x)^-7*(b*c+-1*a*d)^7+-7*b^-8*d^6*(a+b*x)^-1*(b*c+-1*a*d)+-35//3*b^-8*d^4*(a+b*x)^-3*(b*c+-1*a*d)^3+-35//4*b^-8*d^3*(a+b*x)^-4*(b*c+-1*a*d)^4+-21//2*b^-8*d^5*(a+b*x)^-2*(b*c+-1*a*d)^2+-21//5*b^-8*d^2*(a+b*x)^-5*(b*c+-1*a*d)^5+-7//6*d*b^-8*(a+b*x)^-6*(b*c+-1*a*d)^6) @test integrate((a+b*x)^-9*(c+d*x)^7, x) == :(-1*(a+b*x)^-8*(c+d*x)^8*(-8*a*d+8*b*c)^-1) @test integrate((a+b*x)^-10*(c+d*x)^7, x) == :(-1*(a+b*x)^-9*(c+d*x)^8*(-9*a*d+9*b*c)^-1+1//72*d*(a+b*x)^-8*(c+d*x)^8*(b*c+-1*a*d)^-2) @test integrate((a+b*x)^-11*(c+d*x)^7, x) == :(-1*(a+b*x)^-10*(c+d*x)^8*(-10*a*d+10*b*c)^-1+-1//360*d^2*(a+b*x)^-8*(c+d*x)^8*(b*c+-1*a*d)^-3+1//45*d*(a+b*x)^-9*(c+d*x)^8*(b*c+-1*a*d)^-2) @test integrate((a+b*x)^-12*(c+d*x)^7, x) == :(-1*(a+b*x)^-11*(c+d*x)^8*(-11*a*d+11*b*c)^-1+-1//165*d^2*(a+b*x)^-9*(c+d*x)^8*(b*c+-1*a*d)^-3+1//1320*d^3*(a+b*x)^-8*(c+d*x)^8*(b*c+-1*a*d)^-4+3//110*d*(a+b*x)^-10*(c+d*x)^8*(b*c+-1*a*d)^-2) @test integrate((a+b*x)^-13*(c+d*x)^7, x) == :(-1*(a+b*x)^-12*(c+d*x)^8*(-12*a*d+12*b*c)^-1+-1//110*d^2*(a+b*x)^-10*(c+d*x)^8*(b*c+-1*a*d)^-3+-1//3960*d^4*(a+b*x)^-8*(c+d*x)^8*(b*c+-1*a*d)^-5+1//33*d*(a+b*x)^-11*(c+d*x)^8*(b*c+-1*a*d)^-2+1//495*d^3*(a+b*x)^-9*(c+d*x)^8*(b*c+-1*a*d)^-4) @test integrate((a+b*x)^-14*(c+d*x)^7, x) == :(-1//6*b^-8*d^7*(a+b*x)^-6+-1//13*b^-8*(a+b*x)^-13*(b*c+-1*a*d)^7+-1*b^-8*d^6*(a+b*x)^-7*(b*c+-1*a*d)+-35//9*b^-8*d^4*(a+b*x)^-9*(b*c+-1*a*d)^3+-21//8*b^-8*d^5*(a+b*x)^-8*(b*c+-1*a*d)^2+-21//11*b^-8*d^2*(a+b*x)^-11*(b*c+-1*a*d)^5+-7//2*b^-8*d^3*(a+b*x)^-10*(b*c+-1*a*d)^4+-7//12*d*b^-8*(a+b*x)^-12*(b*c+-1*a*d)^6) @test integrate((a+b*x)^-15*(c+d*x)^7, x) == :(-1//7*b^-8*d^7*(a+b*x)^-7+-1//14*b^-8*(a+b*x)^-14*(b*c+-1*a*d)^7+-35//11*b^-8*d^3*(a+b*x)^-11*(b*c+-1*a*d)^4+-7//2*b^-8*d^4*(a+b*x)^-10*(b*c+-1*a*d)^3+-7//3*b^-8*d^5*(a+b*x)^-9*(b*c+-1*a*d)^2+-7//4*b^-8*d^2*(a+b*x)^-12*(b*c+-1*a*d)^5+-7//8*b^-8*d^6*(a+b*x)^-8*(b*c+-1*a*d)+-7//13*d*b^-8*(a+b*x)^-13*(b*c+-1*a*d)^6) @test integrate((a+b*x)^-16*(c+d*x)^7, x) == :(-1//8*b^-8*d^7*(a+b*x)^-8+-1//15*b^-8*(a+b*x)^-15*(b*c+-1*a*d)^7+-35//11*b^-8*d^4*(a+b*x)^-11*(b*c+-1*a*d)^3+-35//12*b^-8*d^3*(a+b*x)^-12*(b*c+-1*a*d)^4+-21//10*b^-8*d^5*(a+b*x)^-10*(b*c+-1*a*d)^2+-21//13*b^-8*d^2*(a+b*x)^-13*(b*c+-1*a*d)^5+-7//9*b^-8*d^6*(a+b*x)^-9*(b*c+-1*a*d)+-1//2*d*b^-8*(a+b*x)^-14*(b*c+-1*a*d)^6) @test integrate((a+b*x)^12*(c+d*x)^10, x) == :(1//13*b^-11*(a+b*x)^13*(b*c+-1*a*d)^10+1//23*b^-11*d^10*(a+b*x)^23+3*b^-11*d^2*(a+b*x)^15*(b*c+-1*a*d)^8+6*b^-11*d^7*(a+b*x)^20*(b*c+-1*a*d)^3+14*b^-11*d^5*(a+b*x)^18*(b*c+-1*a*d)^5+5//7*d*b^-11*(a+b*x)^14*(b*c+-1*a*d)^9+5//11*b^-11*d^9*(a+b*x)^22*(b*c+-1*a*d)+15//2*b^-11*d^3*(a+b*x)^16*(b*c+-1*a*d)^7+15//7*b^-11*d^8*(a+b*x)^21*(b*c+-1*a*d)^2+210//17*b^-11*d^4*(a+b*x)^17*(b*c+-1*a*d)^6+210//19*b^-11*d^6*(a+b*x)^19*(b*c+-1*a*d)^4) @test integrate((a+b*x)^11*(c+d*x)^10, x) == :(1//12*b^-11*(a+b*x)^12*(b*c+-1*a*d)^10+1//22*b^-11*d^10*(a+b*x)^22+8*b^-11*d^3*(a+b*x)^15*(b*c+-1*a*d)^7+9//4*b^-11*d^8*(a+b*x)^20*(b*c+-1*a*d)^2+10//13*d*b^-11*(a+b*x)^13*(b*c+-1*a*d)^9+10//21*b^-11*d^9*(a+b*x)^21*(b*c+-1*a*d)+35//3*b^-11*d^6*(a+b*x)^18*(b*c+-1*a*d)^4+45//14*b^-11*d^2*(a+b*x)^14*(b*c+-1*a*d)^8+105//8*b^-11*d^4*(a+b*x)^16*(b*c+-1*a*d)^6+120//19*b^-11*d^7*(a+b*x)^19*(b*c+-1*a*d)^3+252//17*b^-11*d^5*(a+b*x)^17*(b*c+-1*a*d)^5) @test integrate((a+b*x)^10*(c+d*x)^10, x) == :(1//11*b^-11*(a+b*x)^11*(b*c+-1*a*d)^10+1//21*b^-11*d^10*(a+b*x)^21+(1/2)*b^-11*d^9*(a+b*x)^20*(b*c+-1*a*d)+14*b^-11*d^4*(a+b*x)^15*(b*c+-1*a*d)^6+5//6*d*b^-11*(a+b*x)^12*(b*c+-1*a*d)^9+20//3*b^-11*d^7*(a+b*x)^18*(b*c+-1*a*d)^3+45//13*b^-11*d^2*(a+b*x)^13*(b*c+-1*a*d)^8+45//19*b^-11*d^8*(a+b*x)^19*(b*c+-1*a*d)^2+60//7*b^-11*d^3*(a+b*x)^14*(b*c+-1*a*d)^7+63//4*b^-11*d^5*(a+b*x)^16*(b*c+-1*a*d)^5+210//17*b^-11*d^6*(a+b*x)^17*(b*c+-1*a*d)^4) @test integrate((a+b*x)^9*(c+d*x)^10, x) == :(-1//11*d^-10*(c+d*x)^11*(b*c+-1*a*d)^9+1//20*b^9*d^-10*(c+d*x)^20+2*b^7*d^-10*(c+d*x)^18*(b*c+-1*a*d)^2+6*b^3*d^-10*(c+d*x)^14*(b*c+-1*a*d)^6+-84//17*b^6*d^-10*(c+d*x)^17*(b*c+-1*a*d)^3+-42//5*b^4*d^-10*(c+d*x)^15*(b*c+-1*a*d)^5+-36//13*b^2*d^-10*(c+d*x)^13*(b*c+-1*a*d)^7+-9//19*b^8*d^-10*(c+d*x)^19*(b*c+-1*a*d)+3//4*b*d^-10*(c+d*x)^12*(b*c+-1*a*d)^8+63//8*b^5*d^-10*(c+d*x)^16*(b*c+-1*a*d)^4) @test integrate((a+b*x)^8*(c+d*x)^10, x) == :(1//11*d^-9*(c+d*x)^11*(b*c+-1*a*d)^8+1//19*b^8*d^-9*(c+d*x)^19+-4*b^3*d^-9*(c+d*x)^14*(b*c+-1*a*d)^5+-7//2*b^5*d^-9*(c+d*x)^16*(b*c+-1*a*d)^3+-4//9*b^7*d^-9*(c+d*x)^18*(b*c+-1*a*d)+-2//3*b*d^-9*(c+d*x)^12*(b*c+-1*a*d)^7+14//3*b^4*d^-9*(c+d*x)^15*(b*c+-1*a*d)^4+28//13*b^2*d^-9*(c+d*x)^13*(b*c+-1*a*d)^6+28//17*b^6*d^-9*(c+d*x)^17*(b*c+-1*a*d)^2) @test integrate((a+b*x)^7*(c+d*x)^10, x) == :(-1//11*d^-8*(c+d*x)^11*(b*c+-1*a*d)^7+1//18*b^7*d^-8*(c+d*x)^18+-21//13*b^2*d^-8*(c+d*x)^13*(b*c+-1*a*d)^5+-7//3*b^4*d^-8*(c+d*x)^15*(b*c+-1*a*d)^3+-7//17*b^6*d^-8*(c+d*x)^17*(b*c+-1*a*d)+5//2*b^3*d^-8*(c+d*x)^14*(b*c+-1*a*d)^4+7//12*b*d^-8*(c+d*x)^12*(b*c+-1*a*d)^6+21//16*b^5*d^-8*(c+d*x)^16*(b*c+-1*a*d)^2) @test integrate((a+b*x)^6*(c+d*x)^10, x) == :(1//11*d^-7*(c+d*x)^11*(b*c+-1*a*d)^6+1//17*b^6*d^-7*(c+d*x)^17+b^4*d^-7*(c+d*x)^15*(b*c+-1*a*d)^2+-10//7*b^3*d^-7*(c+d*x)^14*(b*c+-1*a*d)^3+-3//8*b^5*d^-7*(c+d*x)^16*(b*c+-1*a*d)+-1//2*b*d^-7*(c+d*x)^12*(b*c+-1*a*d)^5+15//13*b^2*d^-7*(c+d*x)^13*(b*c+-1*a*d)^4) @test integrate((a+b*x)^5*(c+d*x)^10, x) == :(-1//11*d^-6*(c+d*x)^11*(b*c+-1*a*d)^5+1//16*b^5*d^-6*(c+d*x)^16+-10//13*b^2*d^-6*(c+d*x)^13*(b*c+-1*a*d)^3+-1//3*b^4*d^-6*(c+d*x)^15*(b*c+-1*a*d)+5//7*b^3*d^-6*(c+d*x)^14*(b*c+-1*a*d)^2+5//12*b*d^-6*(c+d*x)^12*(b*c+-1*a*d)^4) @test integrate((a+b*x)^4*(c+d*x)^10, x) == :(1//11*d^-5*(c+d*x)^11*(b*c+-1*a*d)^4+1//15*b^4*d^-5*(c+d*x)^15+-2//7*b^3*d^-5*(c+d*x)^14*(b*c+-1*a*d)+-1//3*b*d^-5*(c+d*x)^12*(b*c+-1*a*d)^3+6//13*b^2*d^-5*(c+d*x)^13*(b*c+-1*a*d)^2) @test integrate((a+b*x)^3*(c+d*x)^10, x) == :(-1//11*d^-4*(c+d*x)^11*(b*c+-1*a*d)^3+1//14*b^3*d^-4*(c+d*x)^14+-3//13*b^2*d^-4*(c+d*x)^13*(b*c+-1*a*d)+1//4*b*d^-4*(c+d*x)^12*(b*c+-1*a*d)^2) @test integrate((a+b*x)^2*(c+d*x)^10, x) == :(1//11*d^-3*(c+d*x)^11*(b*c+-1*a*d)^2+1//13*b^2*d^-3*(c+d*x)^13+-1//6*b*d^-3*(c+d*x)^12*(b*c+-1*a*d)) @test integrate((c+d*x)^10*(a+b*x), x) == :(-1//11*d^-2*(c+d*x)^11*(b*c+-1*a*d)+1//12*b*d^-2*(c+d*x)^12) @test integrate((c+d*x)^10, x) == :(1//11*d^-1*(c+d*x)^11) @test integrate((a+b*x)^-1*(c+d*x)^10, x) == :(1//10*b^-1*(c+d*x)^10+b^-11*(b*c+-1*a*d)^10*log(a+b*x)+(1/2)*b^-9*(c+d*x)^2*(b*c+-1*a*d)^8+1//3*b^-8*(c+d*x)^3*(b*c+-1*a*d)^7+1//4*b^-7*(c+d*x)^4*(b*c+-1*a*d)^6+1//5*b^-6*(c+d*x)^5*(b*c+-1*a*d)^5+1//6*b^-5*(c+d*x)^6*(b*c+-1*a*d)^4+1//7*b^-4*(c+d*x)^7*(b*c+-1*a*d)^3+1//8*b^-3*(c+d*x)^8*(b*c+-1*a*d)^2+1//9*b^-2*(c+d*x)^9*(b*c+-1*a*d)+d*x*b^-10*(b*c+-1*a*d)^9) @test integrate((a+b*x)^-2*(c+d*x)^10, x) == :(-1*b^-11*(a+b*x)^-1*(b*c+-1*a*d)^10+1//9*b^-11*d^10*(a+b*x)^9+10*d*b^-11*(b*c+-1*a*d)^9*log(a+b*x)+20*b^-11*d^7*(a+b*x)^6*(b*c+-1*a*d)^3+42*b^-11*d^6*(a+b*x)^5*(b*c+-1*a*d)^4+45*x*b^-10*d^2*(b*c+-1*a*d)^8+60*b^-11*d^3*(a+b*x)^2*(b*c+-1*a*d)^7+63*b^-11*d^5*(a+b*x)^4*(b*c+-1*a*d)^5+70*b^-11*d^4*(a+b*x)^3*(b*c+-1*a*d)^6+5//4*b^-11*d^9*(a+b*x)^8*(b*c+-1*a*d)+45//7*b^-11*d^8*(a+b*x)^7*(b*c+-1*a*d)^2) @test integrate((a+b*x)^-3*(c+d*x)^10, x) == :(-1//2*b^-11*(a+b*x)^-2*(b*c+-1*a*d)^10+1//8*b^-11*d^10*(a+b*x)^8+-10*d*b^-11*(a+b*x)^-1*(b*c+-1*a*d)^9+24*b^-11*d^7*(a+b*x)^5*(b*c+-1*a*d)^3+45*b^-11*d^2*(b*c+-1*a*d)^8*log(a+b*x)+84*b^-11*d^5*(a+b*x)^3*(b*c+-1*a*d)^5+105*b^-11*d^4*(a+b*x)^2*(b*c+-1*a*d)^6+120*x*b^-10*d^3*(b*c+-1*a*d)^7+10//7*b^-11*d^9*(a+b*x)^7*(b*c+-1*a*d)+15//2*b^-11*d^8*(a+b*x)^6*(b*c+-1*a*d)^2+105//2*b^-11*d^6*(a+b*x)^4*(b*c+-1*a*d)^4) @test integrate((a+b*x)^-4*(c+d*x)^10, x) == :(-1//3*b^-11*(a+b*x)^-3*(b*c+-1*a*d)^10+1//7*b^-11*d^10*(a+b*x)^7+-45*b^-11*d^2*(a+b*x)^-1*(b*c+-1*a*d)^8+-5*d*b^-11*(a+b*x)^-2*(b*c+-1*a*d)^9+9*b^-11*d^8*(a+b*x)^5*(b*c+-1*a*d)^2+30*b^-11*d^7*(a+b*x)^4*(b*c+-1*a*d)^3+70*b^-11*d^6*(a+b*x)^3*(b*c+-1*a*d)^4+120*b^-11*d^3*(b*c+-1*a*d)^7*log(a+b*x)+126*b^-11*d^5*(a+b*x)^2*(b*c+-1*a*d)^5+210*x*b^-10*d^4*(b*c+-1*a*d)^6+5//3*b^-11*d^9*(a+b*x)^6*(b*c+-1*a*d)) @test integrate((a+b*x)^-5*(c+d*x)^10, x) == :(-1//4*b^-11*(a+b*x)^-4*(b*c+-1*a*d)^10+1//6*b^-11*d^10*(a+b*x)^6+-120*b^-11*d^3*(a+b*x)^-1*(b*c+-1*a*d)^7+2*b^-11*d^9*(a+b*x)^5*(b*c+-1*a*d)+40*b^-11*d^7*(a+b*x)^3*(b*c+-1*a*d)^3+105*b^-11*d^6*(a+b*x)^2*(b*c+-1*a*d)^4+210*b^-11*d^4*(b*c+-1*a*d)^6*log(a+b*x)+252*x*b^-10*d^5*(b*c+-1*a*d)^5+-45//2*b^-11*d^2*(a+b*x)^-2*(b*c+-1*a*d)^8+-10//3*d*b^-11*(a+b*x)^-3*(b*c+-1*a*d)^9+45//4*b^-11*d^8*(a+b*x)^4*(b*c+-1*a*d)^2) @test integrate((a+b*x)^-6*(c+d*x)^10, x) == :(-1//5*b^-11*(a+b*x)^-5*(b*c+-1*a*d)^10+1//5*b^-11*d^10*(a+b*x)^5+-210*b^-11*d^4*(a+b*x)^-1*(b*c+-1*a*d)^6+-60*b^-11*d^3*(a+b*x)^-2*(b*c+-1*a*d)^7+-15*b^-11*d^2*(a+b*x)^-3*(b*c+-1*a*d)^8+15*b^-11*d^8*(a+b*x)^3*(b*c+-1*a*d)^2+60*b^-11*d^7*(a+b*x)^2*(b*c+-1*a*d)^3+210*x*b^-10*d^6*(b*c+-1*a*d)^4+252*b^-11*d^5*(b*c+-1*a*d)^5*log(a+b*x)+-5//2*d*b^-11*(a+b*x)^-4*(b*c+-1*a*d)^9+5//2*b^-11*d^9*(a+b*x)^4*(b*c+-1*a*d)) @test integrate((a+b*x)^-7*(c+d*x)^10, x) == :(-1//6*b^-11*(a+b*x)^-6*(b*c+-1*a*d)^10+1//4*b^-11*d^10*(a+b*x)^4+-252*b^-11*d^5*(a+b*x)^-1*(b*c+-1*a*d)^5+-105*b^-11*d^4*(a+b*x)^-2*(b*c+-1*a*d)^6+-40*b^-11*d^3*(a+b*x)^-3*(b*c+-1*a*d)^7+-2*d*b^-11*(a+b*x)^-5*(b*c+-1*a*d)^9+120*x*b^-10*d^7*(b*c+-1*a*d)^3+210*b^-11*d^6*(b*c+-1*a*d)^4*log(a+b*x)+-45//4*b^-11*d^2*(a+b*x)^-4*(b*c+-1*a*d)^8+10//3*b^-11*d^9*(a+b*x)^3*(b*c+-1*a*d)+45//2*b^-11*d^8*(a+b*x)^2*(b*c+-1*a*d)^2) @test integrate((a+b*x)^-8*(c+d*x)^10, x) == :(-1//7*b^-11*(a+b*x)^-7*(b*c+-1*a*d)^10+1//3*b^-11*d^10*(a+b*x)^3+-210*b^-11*d^6*(a+b*x)^-1*(b*c+-1*a*d)^4+-126*b^-11*d^5*(a+b*x)^-2*(b*c+-1*a*d)^5+-70*b^-11*d^4*(a+b*x)^-3*(b*c+-1*a*d)^6+-30*b^-11*d^3*(a+b*x)^-4*(b*c+-1*a*d)^7+-9*b^-11*d^2*(a+b*x)^-5*(b*c+-1*a*d)^8+5*b^-11*d^9*(a+b*x)^2*(b*c+-1*a*d)+45*x*b^-10*d^8*(b*c+-1*a*d)^2+120*b^-11*d^7*(b*c+-1*a*d)^3*log(a+b*x)+-5//3*d*b^-11*(a+b*x)^-6*(b*c+-1*a*d)^9) @test integrate((a+b*x)^-9*(c+d*x)^10, x) == :((1/2)*b^-9*d^10*x^2+-1//8*b^-11*(a+b*x)^-8*(b*c+-1*a*d)^10+x*b^-10*d^9*(-9*a*d+10*b*c)+-120*b^-11*d^7*(a+b*x)^-1*(b*c+-1*a*d)^3+-105*b^-11*d^6*(a+b*x)^-2*(b*c+-1*a*d)^4+-84*b^-11*d^5*(a+b*x)^-3*(b*c+-1*a*d)^5+-24*b^-11*d^3*(a+b*x)^-5*(b*c+-1*a*d)^7+45*b^-11*d^8*(b*c+-1*a*d)^2*log(a+b*x)+-105//2*b^-11*d^4*(a+b*x)^-4*(b*c+-1*a*d)^6+-15//2*b^-11*d^2*(a+b*x)^-6*(b*c+-1*a*d)^8+-10//7*d*b^-11*(a+b*x)^-7*(b*c+-1*a*d)^9) @test integrate((a+b*x)^-10*(c+d*x)^10, x) == :(x*b^-10*d^10+-1//9*b^-11*(a+b*x)^-9*(b*c+-1*a*d)^10+-70*b^-11*d^6*(a+b*x)^-3*(b*c+-1*a*d)^4+-63*b^-11*d^5*(a+b*x)^-4*(b*c+-1*a*d)^5+-60*b^-11*d^7*(a+b*x)^-2*(b*c+-1*a*d)^3+-45*b^-11*d^8*(a+b*x)^-1*(b*c+-1*a*d)^2+-42*b^-11*d^4*(a+b*x)^-5*(b*c+-1*a*d)^6+-20*b^-11*d^3*(a+b*x)^-6*(b*c+-1*a*d)^7+10*b^-11*d^9*(b*c+-1*a*d)*log(a+b*x)+-45//7*b^-11*d^2*(a+b*x)^-7*(b*c+-1*a*d)^8+-5//4*d*b^-11*(a+b*x)^-8*(b*c+-1*a*d)^9) @test integrate((a+b*x)^-11*(c+d*x)^10, x) == :(b^-11*d^10*log(a+b*x)+-1//10*b^-11*(a+b*x)^-10*(b*c+-1*a*d)^10+-40*b^-11*d^7*(a+b*x)^-3*(b*c+-1*a*d)^3+-35*b^-11*d^4*(a+b*x)^-6*(b*c+-1*a*d)^6+-10*b^-11*d^9*(a+b*x)^-1*(b*c+-1*a*d)+-252//5*b^-11*d^5*(a+b*x)^-5*(b*c+-1*a*d)^5+-120//7*b^-11*d^3*(a+b*x)^-7*(b*c+-1*a*d)^7+-105//2*b^-11*d^6*(a+b*x)^-4*(b*c+-1*a*d)^4+-45//2*b^-11*d^8*(a+b*x)^-2*(b*c+-1*a*d)^2+-45//8*b^-11*d^2*(a+b*x)^-8*(b*c+-1*a*d)^8+-10//9*d*b^-11*(a+b*x)^-9*(b*c+-1*a*d)^9) @test integrate((a+b*x)^-12*(c+d*x)^10, x) == :(-1*(a+b*x)^-11*(c+d*x)^11*(-11*a*d+11*b*c)^-1) @test integrate((a+b*x)^-13*(c+d*x)^10, x) == :(-1*(a+b*x)^-12*(c+d*x)^11*(-12*a*d+12*b*c)^-1+1//132*d*(a+b*x)^-11*(c+d*x)^11*(b*c+-1*a*d)^-2) @test integrate((a+b*x)^-14*(c+d*x)^10, x) == :(-1*(a+b*x)^-13*(c+d*x)^11*(-13*a*d+13*b*c)^-1+-1//858*d^2*(a+b*x)^-11*(c+d*x)^11*(b*c+-1*a*d)^-3+1//78*d*(a+b*x)^-12*(c+d*x)^11*(b*c+-1*a*d)^-2) @test integrate((a+b*x)^-15*(c+d*x)^10, x) == :(-1*(a+b*x)^-14*(c+d*x)^11*(-14*a*d+14*b*c)^-1+-1//364*d^2*(a+b*x)^-12*(c+d*x)^11*(b*c+-1*a*d)^-3+1//4004*d^3*(a+b*x)^-11*(c+d*x)^11*(b*c+-1*a*d)^-4+3//182*d*(a+b*x)^-13*(c+d*x)^11*(b*c+-1*a*d)^-2) @test integrate((a+b*x)^-16*(c+d*x)^10, x) == :(-1*(a+b*x)^-15*(c+d*x)^11*(-15*a*d+15*b*c)^-1+-2//455*d^2*(a+b*x)^-13*(c+d*x)^11*(b*c+-1*a*d)^-3+-1//15015*d^4*(a+b*x)^-11*(c+d*x)^11*(b*c+-1*a*d)^-5+1//1365*d^3*(a+b*x)^-12*(c+d*x)^11*(b*c+-1*a*d)^-4+2//105*d*(a+b*x)^-14*(c+d*x)^11*(b*c+-1*a*d)^-2) @test integrate((a+b*x)^-17*(c+d*x)^10, x) == :(-1*(a+b*x)^-16*(c+d*x)^11*(-16*a*d+16*b*c)^-1+-1//168*d^2*(a+b*x)^-14*(c+d*x)^11*(b*c+-1*a*d)^-3+-1//4368*d^4*(a+b*x)^-12*(c+d*x)^11*(b*c+-1*a*d)^-5+1//48*d*(a+b*x)^-15*(c+d*x)^11*(b*c+-1*a*d)^-2+1//728*d^3*(a+b*x)^-13*(c+d*x)^11*(b*c+-1*a*d)^-4+1//48048*d^5*(a+b*x)^-11*(c+d*x)^11*(b*c+-1*a*d)^-6) @test integrate((a+b*x)^-18*(c+d*x)^10, x) == :(-1*(a+b*x)^-17*(c+d*x)^11*(-17*a*d+17*b*c)^-1+-3//6188*d^4*(a+b*x)^-13*(c+d*x)^11*(b*c+-1*a*d)^-5+-1//136*d^2*(a+b*x)^-15*(c+d*x)^11*(b*c+-1*a*d)^-3+-1//136136*d^6*(a+b*x)^-11*(c+d*x)^11*(b*c+-1*a*d)^-7+1//476*d^3*(a+b*x)^-14*(c+d*x)^11*(b*c+-1*a*d)^-4+1//12376*d^5*(a+b*x)^-12*(c+d*x)^11*(b*c+-1*a*d)^-6+3//136*d*(a+b*x)^-16*(c+d*x)^11*(b*c+-1*a*d)^-2) @test integrate((a+b*x)^-19*(c+d*x)^10, x) == :(-1*(a+b*x)^-18*(c+d*x)^11*(-18*a*d+18*b*c)^-1+-7//816*d^2*(a+b*x)^-16*(c+d*x)^11*(b*c+-1*a*d)^-3+-1//1224*d^4*(a+b*x)^-14*(c+d*x)^11*(b*c+-1*a*d)^-5+-1//31824*d^6*(a+b*x)^-12*(c+d*x)^11*(b*c+-1*a*d)^-7+1//5304*d^5*(a+b*x)^-13*(c+d*x)^11*(b*c+-1*a*d)^-6+1//350064*d^7*(a+b*x)^-11*(c+d*x)^11*(b*c+-1*a*d)^-8+7//306*d*(a+b*x)^-17*(c+d*x)^11*(b*c+-1*a*d)^-2+7//2448*d^3*(a+b*x)^-15*(c+d*x)^11*(b*c+-1*a*d)^-4) @test integrate((a+b*x)^-20*(c+d*x)^10, x) == :(-1//9*b^-11*d^10*(a+b*x)^-9+-1//19*b^-11*(a+b*x)^-19*(b*c+-1*a*d)^10+-1*b^-11*d^9*(a+b*x)^-10*(b*c+-1*a*d)+-18*b^-11*d^5*(a+b*x)^-14*(b*c+-1*a*d)^5+-14*b^-11*d^4*(a+b*x)^-15*(b*c+-1*a*d)^6+-10*b^-11*d^7*(a+b*x)^-12*(b*c+-1*a*d)^3+-210//13*b^-11*d^6*(a+b*x)^-13*(b*c+-1*a*d)^4+-45//11*b^-11*d^8*(a+b*x)^-11*(b*c+-1*a*d)^2+-45//17*b^-11*d^2*(a+b*x)^-17*(b*c+-1*a*d)^8+-15//2*b^-11*d^3*(a+b*x)^-16*(b*c+-1*a*d)^7+-5//9*d*b^-11*(a+b*x)^-18*(b*c+-1*a*d)^9) @test integrate((a+b*x)^-21*(c+d*x)^10, x) == :(-1//10*b^-11*d^10*(a+b*x)^-10+-1//20*b^-11*(a+b*x)^-20*(b*c+-1*a*d)^10+-15*b^-11*d^6*(a+b*x)^-14*(b*c+-1*a*d)^4+-120//13*b^-11*d^7*(a+b*x)^-13*(b*c+-1*a*d)^3+-120//17*b^-11*d^3*(a+b*x)^-17*(b*c+-1*a*d)^7+-105//8*b^-11*d^4*(a+b*x)^-16*(b*c+-1*a*d)^6+-84//5*b^-11*d^5*(a+b*x)^-15*(b*c+-1*a*d)^5+-15//4*b^-11*d^8*(a+b*x)^-12*(b*c+-1*a*d)^2+-10//11*b^-11*d^9*(a+b*x)^-11*(b*c+-1*a*d)+-10//19*d*b^-11*(a+b*x)^-19*(b*c+-1*a*d)^9+-5//2*b^-11*d^2*(a+b*x)^-18*(b*c+-1*a*d)^8) @test integrate((a+b*x)^-22*(c+d*x)^10, x) == :(-1//11*b^-11*d^10*(a+b*x)^-11+-1//21*b^-11*(a+b*x)^-21*(b*c+-1*a*d)^10+-14*b^-11*d^6*(a+b*x)^-15*(b*c+-1*a*d)^4+-210//17*b^-11*d^4*(a+b*x)^-17*(b*c+-1*a*d)^6+-63//4*b^-11*d^5*(a+b*x)^-16*(b*c+-1*a*d)^5+-60//7*b^-11*d^7*(a+b*x)^-14*(b*c+-1*a*d)^3+-45//13*b^-11*d^8*(a+b*x)^-13*(b*c+-1*a*d)^2+-45//19*b^-11*d^2*(a+b*x)^-19*(b*c+-1*a*d)^8+-20//3*b^-11*d^3*(a+b*x)^-18*(b*c+-1*a*d)^7+-5//6*b^-11*d^9*(a+b*x)^-12*(b*c+-1*a*d)+-1//2*d*b^-11*(a+b*x)^-20*(b*c+-1*a*d)^9) @test integrate((a+b*x)^17*(c+d*x)^15, x) == :(1//18*b^-16*(a+b*x)^18*(b*c+-1*a*d)^15+1//33*b^-16*d^15*(a+b*x)^33+15//19*d*b^-16*(a+b*x)^19*(b*c+-1*a*d)^14+15//32*b^-16*d^14*(a+b*x)^32*(b*c+-1*a*d)+21//4*b^-16*d^2*(a+b*x)^20*(b*c+-1*a*d)^13+65//3*b^-16*d^3*(a+b*x)^21*(b*c+-1*a*d)^12+91//6*b^-16*d^12*(a+b*x)^30*(b*c+-1*a*d)^3+105//31*b^-16*d^13*(a+b*x)^31*(b*c+-1*a*d)^2+429//4*b^-16*d^10*(a+b*x)^28*(b*c+-1*a*d)^5+495//2*b^-16*d^8*(a+b*x)^26*(b*c+-1*a*d)^7+1287//5*b^-16*d^7*(a+b*x)^25*(b*c+-1*a*d)^8+1365//22*b^-16*d^4*(a+b*x)^22*(b*c+-1*a*d)^11+1365//29*b^-16*d^11*(a+b*x)^29*(b*c+-1*a*d)^4+3003//23*b^-16*d^5*(a+b*x)^23*(b*c+-1*a*d)^10+5005//24*b^-16*d^6*(a+b*x)^24*(b*c+-1*a*d)^9+5005//27*b^-16*d^9*(a+b*x)^27*(b*c+-1*a*d)^6) @test integrate((a+b*x)^16*(c+d*x)^15, x) == :(1//17*b^-16*(a+b*x)^17*(b*c+-1*a*d)^15+1//32*b^-16*d^15*(a+b*x)^32+65*b^-16*d^4*(a+b*x)^21*(b*c+-1*a*d)^11+5//6*d*b^-16*(a+b*x)^18*(b*c+-1*a*d)^14+7//2*b^-16*d^13*(a+b*x)^30*(b*c+-1*a*d)^2+15//31*b^-16*d^14*(a+b*x)^31*(b*c+-1*a*d)+91//4*b^-16*d^3*(a+b*x)^20*(b*c+-1*a*d)^12+105//19*b^-16*d^2*(a+b*x)^19*(b*c+-1*a*d)^13+195//4*b^-16*d^11*(a+b*x)^28*(b*c+-1*a*d)^4+273//2*b^-16*d^5*(a+b*x)^22*(b*c+-1*a*d)^10+385//2*b^-16*d^9*(a+b*x)^26*(b*c+-1*a*d)^6+455//29*b^-16*d^12*(a+b*x)^29*(b*c+-1*a*d)^3+1001//9*b^-16*d^10*(a+b*x)^27*(b*c+-1*a*d)^5+1287//5*b^-16*d^8*(a+b*x)^25*(b*c+-1*a*d)^7+2145//8*b^-16*d^7*(a+b*x)^24*(b*c+-1*a*d)^8+5005//23*b^-16*d^6*(a+b*x)^23*(b*c+-1*a*d)^9) @test integrate((a+b*x)^15*(c+d*x)^15, x) == :(1//16*b^-16*(a+b*x)^16*(b*c+-1*a*d)^15+1//31*b^-16*d^15*(a+b*x)^31+(1/2)*b^-16*d^14*(a+b*x)^30*(b*c+-1*a*d)+143*b^-16*d^5*(a+b*x)^21*(b*c+-1*a*d)^10+15//17*d*b^-16*(a+b*x)^17*(b*c+-1*a*d)^14+35//6*b^-16*d^2*(a+b*x)^18*(b*c+-1*a*d)^13+65//4*b^-16*d^12*(a+b*x)^28*(b*c+-1*a*d)^3+105//29*b^-16*d^13*(a+b*x)^29*(b*c+-1*a*d)^2+231//2*b^-16*d^10*(a+b*x)^26*(b*c+-1*a*d)^5+273//4*b^-16*d^4*(a+b*x)^20*(b*c+-1*a*d)^11+455//2*b^-16*d^6*(a+b*x)^22*(b*c+-1*a*d)^9+455//9*b^-16*d^11*(a+b*x)^27*(b*c+-1*a*d)^4+455//19*b^-16*d^3*(a+b*x)^19*(b*c+-1*a*d)^12+1001//5*b^-16*d^9*(a+b*x)^25*(b*c+-1*a*d)^6+2145//8*b^-16*d^8*(a+b*x)^24*(b*c+-1*a*d)^7+6435//23*b^-16*d^7*(a+b*x)^23*(b*c+-1*a*d)^8) @test integrate((a+b*x)^14*(c+d*x)^15, x) == :(1//16*d^-15*(c+d*x)^16*(b*c+-1*a*d)^14+1//30*b^14*d^-15*(c+d*x)^30+-3432//23*b^7*d^-15*(c+d*x)^23*(b*c+-1*a*d)^7+-2002//25*b^9*d^-15*(c+d*x)^25*(b*c+-1*a*d)^5+-364//19*b^3*d^-15*(c+d*x)^19*(b*c+-1*a*d)^11+-364//27*b^11*d^-15*(c+d*x)^27*(b*c+-1*a*d)^3+-286//3*b^5*d^-15*(c+d*x)^21*(b*c+-1*a*d)^9+-14//17*b*d^-15*(c+d*x)^17*(b*c+-1*a*d)^13+-14//29*b^13*d^-15*(c+d*x)^29*(b*c+-1*a*d)+13//4*b^12*d^-15*(c+d*x)^28*(b*c+-1*a*d)^2+77//2*b^10*d^-15*(c+d*x)^26*(b*c+-1*a*d)^4+91//18*b^2*d^-15*(c+d*x)^18*(b*c+-1*a*d)^12+273//2*b^6*d^-15*(c+d*x)^22*(b*c+-1*a*d)^8+1001//8*b^8*d^-15*(c+d*x)^24*(b*c+-1*a*d)^6+1001//20*b^4*d^-15*(c+d*x)^20*(b*c+-1*a*d)^10) @test integrate((a+b*x)^13*(c+d*x)^15, x) == :(-1//16*d^-14*(c+d*x)^16*(b*c+-1*a*d)^13+1//29*b^13*d^-14*(c+d*x)^29+-78*b^6*d^-14*(c+d*x)^22*(b*c+-1*a*d)^7+-11*b^10*d^-14*(c+d*x)^26*(b*c+-1*a*d)^3+-429//8*b^8*d^-14*(c+d*x)^24*(b*c+-1*a*d)^5+-143//4*b^4*d^-14*(c+d*x)^20*(b*c+-1*a*d)^9+-13//3*b^2*d^-14*(c+d*x)^18*(b*c+-1*a*d)^11+-13//28*b^12*d^-14*(c+d*x)^28*(b*c+-1*a*d)+13//17*b*d^-14*(c+d*x)^17*(b*c+-1*a*d)^12+26//9*b^11*d^-14*(c+d*x)^27*(b*c+-1*a*d)^2+143//5*b^9*d^-14*(c+d*x)^25*(b*c+-1*a*d)^4+286//19*b^3*d^-14*(c+d*x)^19*(b*c+-1*a*d)^10+429//7*b^5*d^-14*(c+d*x)^21*(b*c+-1*a*d)^8+1716//23*b^7*d^-14*(c+d*x)^23*(b*c+-1*a*d)^6) @test integrate((a+b*x)^12*(c+d*x)^15, x) == :(1//16*d^-13*(c+d*x)^16*(b*c+-1*a*d)^12+1//28*b^12*d^-13*(c+d*x)^28+42*b^6*d^-13*(c+d*x)^22*(b*c+-1*a*d)^6+-792//23*b^7*d^-13*(c+d*x)^23*(b*c+-1*a*d)^5+-264//7*b^5*d^-13*(c+d*x)^21*(b*c+-1*a*d)^7+-220//19*b^3*d^-13*(c+d*x)^19*(b*c+-1*a*d)^9+-44//5*b^9*d^-13*(c+d*x)^25*(b*c+-1*a*d)^3+-12//17*b*d^-13*(c+d*x)^17*(b*c+-1*a*d)^11+-4//9*b^11*d^-13*(c+d*x)^27*(b*c+-1*a*d)+11//3*b^2*d^-13*(c+d*x)^18*(b*c+-1*a*d)^10+33//13*b^10*d^-13*(c+d*x)^26*(b*c+-1*a*d)^2+99//4*b^4*d^-13*(c+d*x)^20*(b*c+-1*a*d)^8+165//8*b^8*d^-13*(c+d*x)^24*(b*c+-1*a*d)^4) @test integrate((a+b*x)^11*(c+d*x)^15, x) == :(-1//16*d^-12*(c+d*x)^16*(b*c+-1*a*d)^11+1//27*b^11*d^-12*(c+d*x)^27+-21*b^6*d^-12*(c+d*x)^22*(b*c+-1*a*d)^5+22*b^5*d^-12*(c+d*x)^21*(b*c+-1*a*d)^6+-55//8*b^8*d^-12*(c+d*x)^24*(b*c+-1*a*d)^3+-55//18*b^2*d^-12*(c+d*x)^18*(b*c+-1*a*d)^9+-33//2*b^4*d^-12*(c+d*x)^20*(b*c+-1*a*d)^7+-11//26*b^10*d^-12*(c+d*x)^26*(b*c+-1*a*d)+11//5*b^9*d^-12*(c+d*x)^25*(b*c+-1*a*d)^2+11//17*b*d^-12*(c+d*x)^17*(b*c+-1*a*d)^10+165//19*b^3*d^-12*(c+d*x)^19*(b*c+-1*a*d)^8+330//23*b^7*d^-12*(c+d*x)^23*(b*c+-1*a*d)^4) @test integrate((a+b*x)^10*(c+d*x)^15, x) == :(1//16*d^-11*(c+d*x)^16*(b*c+-1*a*d)^10+1//26*b^10*d^-11*(c+d*x)^26+-12*b^5*d^-11*(c+d*x)^21*(b*c+-1*a*d)^5+-120//19*b^3*d^-11*(c+d*x)^19*(b*c+-1*a*d)^7+-120//23*b^7*d^-11*(c+d*x)^23*(b*c+-1*a*d)^3+-10//17*b*d^-11*(c+d*x)^17*(b*c+-1*a*d)^9+-2//5*b^9*d^-11*(c+d*x)^25*(b*c+-1*a*d)+5//2*b^2*d^-11*(c+d*x)^18*(b*c+-1*a*d)^8+15//8*b^8*d^-11*(c+d*x)^24*(b*c+-1*a*d)^2+21//2*b^4*d^-11*(c+d*x)^20*(b*c+-1*a*d)^6+105//11*b^6*d^-11*(c+d*x)^22*(b*c+-1*a*d)^4) @test integrate((a+b*x)^9*(c+d*x)^15, x) == :(-1//16*d^-10*(c+d*x)^16*(b*c+-1*a*d)^9+1//25*b^9*d^-10*(c+d*x)^25+-2*b^2*d^-10*(c+d*x)^18*(b*c+-1*a*d)^7+6*b^5*d^-10*(c+d*x)^21*(b*c+-1*a*d)^4+-63//10*b^4*d^-10*(c+d*x)^20*(b*c+-1*a*d)^5+-42//11*b^6*d^-10*(c+d*x)^22*(b*c+-1*a*d)^3+-3//8*b^8*d^-10*(c+d*x)^24*(b*c+-1*a*d)+9//17*b*d^-10*(c+d*x)^17*(b*c+-1*a*d)^8+36//23*b^7*d^-10*(c+d*x)^23*(b*c+-1*a*d)^2+84//19*b^3*d^-10*(c+d*x)^19*(b*c+-1*a*d)^6) @test integrate((a+b*x)^8*(c+d*x)^15, x) == :(1//16*d^-9*(c+d*x)^16*(b*c+-1*a*d)^8+1//24*b^8*d^-9*(c+d*x)^24+-56//19*b^3*d^-9*(c+d*x)^19*(b*c+-1*a*d)^5+-8//3*b^5*d^-9*(c+d*x)^21*(b*c+-1*a*d)^3+-8//17*b*d^-9*(c+d*x)^17*(b*c+-1*a*d)^7+-8//23*b^7*d^-9*(c+d*x)^23*(b*c+-1*a*d)+7//2*b^4*d^-9*(c+d*x)^20*(b*c+-1*a*d)^4+14//9*b^2*d^-9*(c+d*x)^18*(b*c+-1*a*d)^6+14//11*b^6*d^-9*(c+d*x)^22*(b*c+-1*a*d)^2) @test integrate((a+b*x)^7*(c+d*x)^15, x) == :(-1//16*d^-8*(c+d*x)^16*(b*c+-1*a*d)^7+1//23*b^7*d^-8*(c+d*x)^23+b^5*d^-8*(c+d*x)^21*(b*c+-1*a*d)^2+-7//4*b^4*d^-8*(c+d*x)^20*(b*c+-1*a*d)^3+-7//6*b^2*d^-8*(c+d*x)^18*(b*c+-1*a*d)^5+-7//22*b^6*d^-8*(c+d*x)^22*(b*c+-1*a*d)+7//17*b*d^-8*(c+d*x)^17*(b*c+-1*a*d)^6+35//19*b^3*d^-8*(c+d*x)^19*(b*c+-1*a*d)^4) @test integrate((a+b*x)^6*(c+d*x)^15, x) == :(1//16*d^-7*(c+d*x)^16*(b*c+-1*a*d)^6+1//22*b^6*d^-7*(c+d*x)^22+-20//19*b^3*d^-7*(c+d*x)^19*(b*c+-1*a*d)^3+-6//17*b*d^-7*(c+d*x)^17*(b*c+-1*a*d)^5+-2//7*b^5*d^-7*(c+d*x)^21*(b*c+-1*a*d)+3//4*b^4*d^-7*(c+d*x)^20*(b*c+-1*a*d)^2+5//6*b^2*d^-7*(c+d*x)^18*(b*c+-1*a*d)^4) @test integrate((a+b*x)^5*(c+d*x)^15, x) == :(-1//16*d^-6*(c+d*x)^16*(b*c+-1*a*d)^5+1//21*b^5*d^-6*(c+d*x)^21+-5//9*b^2*d^-6*(c+d*x)^18*(b*c+-1*a*d)^3+-1//4*b^4*d^-6*(c+d*x)^20*(b*c+-1*a*d)+5//17*b*d^-6*(c+d*x)^17*(b*c+-1*a*d)^4+10//19*b^3*d^-6*(c+d*x)^19*(b*c+-1*a*d)^2) @test integrate((a+b*x)^4*(c+d*x)^15, x) == :(1//16*d^-5*(c+d*x)^16*(b*c+-1*a*d)^4+1//20*b^4*d^-5*(c+d*x)^20+-4//17*b*d^-5*(c+d*x)^17*(b*c+-1*a*d)^3+-4//19*b^3*d^-5*(c+d*x)^19*(b*c+-1*a*d)+1//3*b^2*d^-5*(c+d*x)^18*(b*c+-1*a*d)^2) @test integrate((a+b*x)^3*(c+d*x)^15, x) == :(-1//16*d^-4*(c+d*x)^16*(b*c+-1*a*d)^3+1//19*b^3*d^-4*(c+d*x)^19+-1//6*b^2*d^-4*(c+d*x)^18*(b*c+-1*a*d)+3//17*b*d^-4*(c+d*x)^17*(b*c+-1*a*d)^2) @test integrate((a+b*x)^2*(c+d*x)^15, x) == :(1//16*d^-3*(c+d*x)^16*(b*c+-1*a*d)^2+1//18*b^2*d^-3*(c+d*x)^18+-2//17*b*d^-3*(c+d*x)^17*(b*c+-1*a*d)) @test integrate((c+d*x)^15*(a+b*x), x) == :(-1//16*d^-2*(c+d*x)^16*(b*c+-1*a*d)+1//17*b*d^-2*(c+d*x)^17) @test integrate((c+d*x)^15, x) == :(1//16*d^-1*(c+d*x)^16) @test integrate((a+b*x)^-1*(c+d*x)^15, x) == :(1//15*b^-1*(c+d*x)^15+b^-16*(b*c+-1*a*d)^15*log(a+b*x)+(1/2)*b^-14*(c+d*x)^2*(b*c+-1*a*d)^13+1//3*b^-13*(c+d*x)^3*(b*c+-1*a*d)^12+1//4*b^-12*(c+d*x)^4*(b*c+-1*a*d)^11+1//5*b^-11*(c+d*x)^5*(b*c+-1*a*d)^10+1//6*b^-10*(c+d*x)^6*(b*c+-1*a*d)^9+1//7*b^-9*(c+d*x)^7*(b*c+-1*a*d)^8+1//8*b^-8*(c+d*x)^8*(b*c+-1*a*d)^7+1//9*b^-7*(c+d*x)^9*(b*c+-1*a*d)^6+1//10*b^-6*(c+d*x)^10*(b*c+-1*a*d)^5+1//11*b^-5*(c+d*x)^11*(b*c+-1*a*d)^4+1//12*b^-4*(c+d*x)^12*(b*c+-1*a*d)^3+1//13*b^-3*(c+d*x)^13*(b*c+-1*a*d)^2+1//14*b^-2*(c+d*x)^14*(b*c+-1*a*d)+d*x*b^-15*(b*c+-1*a*d)^14) @test integrate((a+b*x)^-2*(c+d*x)^15, x) == :(-1*b^-16*(a+b*x)^-1*(b*c+-1*a*d)^15+1//14*b^-16*d^15*(a+b*x)^14+15*d*b^-16*(b*c+-1*a*d)^14*log(a+b*x)+105*x*b^-15*d^2*(b*c+-1*a*d)^13+455*b^-16*d^4*(a+b*x)^3*(b*c+-1*a*d)^11+1001*b^-16*d^6*(a+b*x)^5*(b*c+-1*a*d)^9+15//13*b^-16*d^14*(a+b*x)^13*(b*c+-1*a*d)+35//4*b^-16*d^13*(a+b*x)^12*(b*c+-1*a*d)^2+273//2*b^-16*d^11*(a+b*x)^10*(b*c+-1*a*d)^4+455//2*b^-16*d^3*(a+b*x)^2*(b*c+-1*a*d)^12+455//11*b^-16*d^12*(a+b*x)^11*(b*c+-1*a*d)^3+1001//3*b^-16*d^10*(a+b*x)^9*(b*c+-1*a*d)^5+2145//2*b^-16*d^7*(a+b*x)^6*(b*c+-1*a*d)^8+3003//4*b^-16*d^5*(a+b*x)^4*(b*c+-1*a*d)^10+5005//8*b^-16*d^9*(a+b*x)^8*(b*c+-1*a*d)^6+6435//7*b^-16*d^8*(a+b*x)^7*(b*c+-1*a*d)^7) @test integrate((a+b*x)^-3*(c+d*x)^15, x) == :(-1//2*b^-16*(a+b*x)^-2*(b*c+-1*a*d)^15+1//13*b^-16*d^15*(a+b*x)^13+-15*d*b^-16*(a+b*x)^-1*(b*c+-1*a*d)^14+105*b^-16*d^2*(b*c+-1*a*d)^13*log(a+b*x)+455*x*b^-15*d^3*(b*c+-1*a*d)^12+715*b^-16*d^9*(a+b*x)^7*(b*c+-1*a*d)^6+1001*b^-16*d^5*(a+b*x)^3*(b*c+-1*a*d)^10+1287*b^-16*d^7*(a+b*x)^5*(b*c+-1*a*d)^8+5//4*b^-16*d^14*(a+b*x)^12*(b*c+-1*a*d)+91//2*b^-16*d^12*(a+b*x)^10*(b*c+-1*a*d)^3+105//11*b^-16*d^13*(a+b*x)^11*(b*c+-1*a*d)^2+455//3*b^-16*d^11*(a+b*x)^9*(b*c+-1*a*d)^4+1365//2*b^-16*d^4*(a+b*x)^2*(b*c+-1*a*d)^11+2145//2*b^-16*d^8*(a+b*x)^6*(b*c+-1*a*d)^7+3003//8*b^-16*d^10*(a+b*x)^8*(b*c+-1*a*d)^5+5005//4*b^-16*d^6*(a+b*x)^4*(b*c+-1*a*d)^9) @test integrate((a+b*x)^-4*(c+d*x)^15, x) == :(-1//3*b^-16*(a+b*x)^-3*(b*c+-1*a*d)^15+1//12*b^-16*d^15*(a+b*x)^12+-105*b^-16*d^2*(a+b*x)^-1*(b*c+-1*a*d)^13+429*b^-16*d^10*(a+b*x)^7*(b*c+-1*a*d)^5+455*b^-16*d^3*(b*c+-1*a*d)^12*log(a+b*x)+1287*b^-16*d^8*(a+b*x)^5*(b*c+-1*a*d)^7+1365*x*b^-15*d^4*(b*c+-1*a*d)^11+-15//2*d*b^-16*(a+b*x)^-2*(b*c+-1*a*d)^14+15//11*b^-16*d^14*(a+b*x)^11*(b*c+-1*a*d)+21//2*b^-16*d^13*(a+b*x)^10*(b*c+-1*a*d)^2+455//9*b^-16*d^12*(a+b*x)^9*(b*c+-1*a*d)^3+1365//8*b^-16*d^11*(a+b*x)^8*(b*c+-1*a*d)^4+3003//2*b^-16*d^5*(a+b*x)^2*(b*c+-1*a*d)^10+5005//3*b^-16*d^6*(a+b*x)^3*(b*c+-1*a*d)^9+5005//6*b^-16*d^9*(a+b*x)^6*(b*c+-1*a*d)^6+6435//4*b^-16*d^7*(a+b*x)^4*(b*c+-1*a*d)^8) @test integrate((a+b*x)^-5*(c+d*x)^15, x) == :(-1//4*b^-16*(a+b*x)^-4*(b*c+-1*a*d)^15+1//11*b^-16*d^15*(a+b*x)^11+-455*b^-16*d^3*(a+b*x)^-1*(b*c+-1*a*d)^12+-5*d*b^-16*(a+b*x)^-3*(b*c+-1*a*d)^14+195*b^-16*d^11*(a+b*x)^7*(b*c+-1*a*d)^4+1001*b^-16*d^9*(a+b*x)^5*(b*c+-1*a*d)^6+1365*b^-16*d^4*(b*c+-1*a*d)^11*log(a+b*x)+2145*b^-16*d^7*(a+b*x)^3*(b*c+-1*a*d)^8+3003*x*b^-15*d^5*(b*c+-1*a*d)^10+-105//2*b^-16*d^2*(a+b*x)^-2*(b*c+-1*a*d)^13+3//2*b^-16*d^14*(a+b*x)^10*(b*c+-1*a*d)+35//3*b^-16*d^13*(a+b*x)^9*(b*c+-1*a*d)^2+455//8*b^-16*d^12*(a+b*x)^8*(b*c+-1*a*d)^3+1001//2*b^-16*d^10*(a+b*x)^6*(b*c+-1*a*d)^5+5005//2*b^-16*d^6*(a+b*x)^2*(b*c+-1*a*d)^9+6435//4*b^-16*d^8*(a+b*x)^4*(b*c+-1*a*d)^7) @test integrate((a+b*x)^-6*(c+d*x)^15, x) == :(-1//5*b^-16*(a+b*x)^-5*(b*c+-1*a*d)^15+1//10*b^-16*d^15*(a+b*x)^10+-1365*b^-16*d^4*(a+b*x)^-1*(b*c+-1*a*d)^11+-35*b^-16*d^2*(a+b*x)^-3*(b*c+-1*a*d)^13+65*b^-16*d^12*(a+b*x)^7*(b*c+-1*a*d)^3+2145*b^-16*d^8*(a+b*x)^3*(b*c+-1*a*d)^7+3003*b^-16*d^5*(b*c+-1*a*d)^10*log(a+b*x)+5005*x*b^-15*d^6*(b*c+-1*a*d)^9+-455//2*b^-16*d^3*(a+b*x)^-2*(b*c+-1*a*d)^12+-15//4*d*b^-16*(a+b*x)^-4*(b*c+-1*a*d)^14+5//3*b^-16*d^14*(a+b*x)^9*(b*c+-1*a*d)+105//8*b^-16*d^13*(a+b*x)^8*(b*c+-1*a*d)^2+455//2*b^-16*d^11*(a+b*x)^6*(b*c+-1*a*d)^4+3003//5*b^-16*d^10*(a+b*x)^5*(b*c+-1*a*d)^5+5005//4*b^-16*d^9*(a+b*x)^4*(b*c+-1*a*d)^6+6435//2*b^-16*d^7*(a+b*x)^2*(b*c+-1*a*d)^8) @test integrate((a+b*x)^-7*(c+d*x)^15, x) == :(-1//6*b^-16*(a+b*x)^-6*(b*c+-1*a*d)^15+1//9*b^-16*d^15*(a+b*x)^9+-3003*b^-16*d^5*(a+b*x)^-1*(b*c+-1*a*d)^10+-3*d*b^-16*(a+b*x)^-5*(b*c+-1*a*d)^14+15*b^-16*d^13*(a+b*x)^7*(b*c+-1*a*d)^2+273*b^-16*d^11*(a+b*x)^5*(b*c+-1*a*d)^4+5005*b^-16*d^6*(b*c+-1*a*d)^9*log(a+b*x)+6435*x*b^-15*d^7*(b*c+-1*a*d)^8+-1365//2*b^-16*d^4*(a+b*x)^-2*(b*c+-1*a*d)^11+-455//3*b^-16*d^3*(a+b*x)^-3*(b*c+-1*a*d)^12+-105//4*b^-16*d^2*(a+b*x)^-4*(b*c+-1*a*d)^13+15//8*b^-16*d^14*(a+b*x)^8*(b*c+-1*a*d)+455//6*b^-16*d^12*(a+b*x)^6*(b*c+-1*a*d)^3+3003//4*b^-16*d^10*(a+b*x)^4*(b*c+-1*a*d)^5+5005//3*b^-16*d^9*(a+b*x)^3*(b*c+-1*a*d)^6+6435//2*b^-16*d^8*(a+b*x)^2*(b*c+-1*a*d)^7) @test integrate((a+b*x)^-8*(c+d*x)^15, x) == :(-1//7*b^-16*(a+b*x)^-7*(b*c+-1*a*d)^15+1//8*b^-16*d^15*(a+b*x)^8+-5005*b^-16*d^6*(a+b*x)^-1*(b*c+-1*a*d)^9+-455*b^-16*d^4*(a+b*x)^-3*(b*c+-1*a*d)^11+-21*b^-16*d^2*(a+b*x)^-5*(b*c+-1*a*d)^13+91*b^-16*d^12*(a+b*x)^5*(b*c+-1*a*d)^3+1001*b^-16*d^10*(a+b*x)^3*(b*c+-1*a*d)^5+6435*x*b^-15*d^8*(b*c+-1*a*d)^7+6435*b^-16*d^7*(b*c+-1*a*d)^8*log(a+b*x)+-3003//2*b^-16*d^5*(a+b*x)^-2*(b*c+-1*a*d)^10+-455//4*b^-16*d^3*(a+b*x)^-4*(b*c+-1*a*d)^12+-5//2*d*b^-16*(a+b*x)^-6*(b*c+-1*a*d)^14+15//7*b^-16*d^14*(a+b*x)^7*(b*c+-1*a*d)+35//2*b^-16*d^13*(a+b*x)^6*(b*c+-1*a*d)^2+1365//4*b^-16*d^11*(a+b*x)^4*(b*c+-1*a*d)^4+5005//2*b^-16*d^9*(a+b*x)^2*(b*c+-1*a*d)^6) @test integrate((a+b*x)^-9*(c+d*x)^15, x) == :(-1//8*b^-16*(a+b*x)^-8*(b*c+-1*a*d)^15+1//7*b^-16*d^15*(a+b*x)^7+-6435*b^-16*d^7*(a+b*x)^-1*(b*c+-1*a*d)^8+-1001*b^-16*d^5*(a+b*x)^-3*(b*c+-1*a*d)^10+-91*b^-16*d^3*(a+b*x)^-5*(b*c+-1*a*d)^12+21*b^-16*d^13*(a+b*x)^5*(b*c+-1*a*d)^2+455*b^-16*d^11*(a+b*x)^3*(b*c+-1*a*d)^4+5005*x*b^-15*d^9*(b*c+-1*a*d)^6+6435*b^-16*d^8*(b*c+-1*a*d)^7*log(a+b*x)+-5005//2*b^-16*d^6*(a+b*x)^-2*(b*c+-1*a*d)^9+-1365//4*b^-16*d^4*(a+b*x)^-4*(b*c+-1*a*d)^11+-35//2*b^-16*d^2*(a+b*x)^-6*(b*c+-1*a*d)^13+-15//7*d*b^-16*(a+b*x)^-7*(b*c+-1*a*d)^14+5//2*b^-16*d^14*(a+b*x)^6*(b*c+-1*a*d)+455//4*b^-16*d^12*(a+b*x)^4*(b*c+-1*a*d)^3+3003//2*b^-16*d^10*(a+b*x)^2*(b*c+-1*a*d)^5) @test integrate((a+b*x)^-10*(c+d*x)^15, x) == :(-1//9*b^-16*(a+b*x)^-9*(b*c+-1*a*d)^15+1//6*b^-16*d^15*(a+b*x)^6+-6435*b^-16*d^8*(a+b*x)^-1*(b*c+-1*a*d)^7+-273*b^-16*d^4*(a+b*x)^-5*(b*c+-1*a*d)^11+-15*b^-16*d^2*(a+b*x)^-7*(b*c+-1*a*d)^13+3*b^-16*d^14*(a+b*x)^5*(b*c+-1*a*d)+3003*x*b^-15*d^10*(b*c+-1*a*d)^5+5005*b^-16*d^9*(b*c+-1*a*d)^6*log(a+b*x)+-6435//2*b^-16*d^7*(a+b*x)^-2*(b*c+-1*a*d)^8+-5005//3*b^-16*d^6*(a+b*x)^-3*(b*c+-1*a*d)^9+-3003//4*b^-16*d^5*(a+b*x)^-4*(b*c+-1*a*d)^10+-455//6*b^-16*d^3*(a+b*x)^-6*(b*c+-1*a*d)^12+-15//8*d*b^-16*(a+b*x)^-8*(b*c+-1*a*d)^14+105//4*b^-16*d^13*(a+b*x)^4*(b*c+-1*a*d)^2+455//3*b^-16*d^12*(a+b*x)^3*(b*c+-1*a*d)^3+1365//2*b^-16*d^11*(a+b*x)^2*(b*c+-1*a*d)^4) @test integrate((a+b*x)^-11*(c+d*x)^15, x) == :(-1//10*b^-16*(a+b*x)^-10*(b*c+-1*a*d)^15+1//5*b^-16*d^15*(a+b*x)^5+-5005*b^-16*d^9*(a+b*x)^-1*(b*c+-1*a*d)^6+-2145*b^-16*d^7*(a+b*x)^-3*(b*c+-1*a*d)^8+-65*b^-16*d^3*(a+b*x)^-7*(b*c+-1*a*d)^12+35*b^-16*d^13*(a+b*x)^3*(b*c+-1*a*d)^2+1365*x*b^-15*d^11*(b*c+-1*a*d)^4+3003*b^-16*d^10*(b*c+-1*a*d)^5*log(a+b*x)+-6435//2*b^-16*d^8*(a+b*x)^-2*(b*c+-1*a*d)^7+-5005//4*b^-16*d^6*(a+b*x)^-4*(b*c+-1*a*d)^9+-3003//5*b^-16*d^5*(a+b*x)^-5*(b*c+-1*a*d)^10+-455//2*b^-16*d^4*(a+b*x)^-6*(b*c+-1*a*d)^11+-105//8*b^-16*d^2*(a+b*x)^-8*(b*c+-1*a*d)^13+-5//3*d*b^-16*(a+b*x)^-9*(b*c+-1*a*d)^14+15//4*b^-16*d^14*(a+b*x)^4*(b*c+-1*a*d)+455//2*b^-16*d^12*(a+b*x)^2*(b*c+-1*a*d)^3) @test integrate((a+b*x)^-12*(c+d*x)^15, x) == :(-1//11*b^-16*(a+b*x)^-11*(b*c+-1*a*d)^15+1//4*b^-16*d^15*(a+b*x)^4+-3003*b^-16*d^10*(a+b*x)^-1*(b*c+-1*a*d)^5+-2145*b^-16*d^8*(a+b*x)^-3*(b*c+-1*a*d)^7+-1001*b^-16*d^6*(a+b*x)^-5*(b*c+-1*a*d)^9+-195*b^-16*d^4*(a+b*x)^-7*(b*c+-1*a*d)^11+5*b^-16*d^14*(a+b*x)^3*(b*c+-1*a*d)+455*x*b^-15*d^12*(b*c+-1*a*d)^3+1365*b^-16*d^11*(b*c+-1*a*d)^4*log(a+b*x)+-6435//4*b^-16*d^7*(a+b*x)^-4*(b*c+-1*a*d)^8+-5005//2*b^-16*d^9*(a+b*x)^-2*(b*c+-1*a*d)^6+-1001//2*b^-16*d^5*(a+b*x)^-6*(b*c+-1*a*d)^10+-455//8*b^-16*d^3*(a+b*x)^-8*(b*c+-1*a*d)^12+-35//3*b^-16*d^2*(a+b*x)^-9*(b*c+-1*a*d)^13+-3//2*d*b^-16*(a+b*x)^-10*(b*c+-1*a*d)^14+105//2*b^-16*d^13*(a+b*x)^2*(b*c+-1*a*d)^2) @test integrate((a+b*x)^-13*(c+d*x)^15, x) == :(-1//12*b^-16*(a+b*x)^-12*(b*c+-1*a*d)^15+1//3*b^-16*d^15*(a+b*x)^3+-1365*b^-16*d^11*(a+b*x)^-1*(b*c+-1*a*d)^4+-1287*b^-16*d^7*(a+b*x)^-5*(b*c+-1*a*d)^8+-429*b^-16*d^5*(a+b*x)^-7*(b*c+-1*a*d)^10+105*x*b^-15*d^13*(b*c+-1*a*d)^2+455*b^-16*d^12*(b*c+-1*a*d)^3*log(a+b*x)+-6435//4*b^-16*d^8*(a+b*x)^-4*(b*c+-1*a*d)^7+-5005//3*b^-16*d^9*(a+b*x)^-3*(b*c+-1*a*d)^6+-5005//6*b^-16*d^6*(a+b*x)^-6*(b*c+-1*a*d)^9+-3003//2*b^-16*d^10*(a+b*x)^-2*(b*c+-1*a*d)^5+-1365//8*b^-16*d^4*(a+b*x)^-8*(b*c+-1*a*d)^11+-455//9*b^-16*d^3*(a+b*x)^-9*(b*c+-1*a*d)^12+-21//2*b^-16*d^2*(a+b*x)^-10*(b*c+-1*a*d)^13+-15//11*d*b^-16*(a+b*x)^-11*(b*c+-1*a*d)^14+15//2*b^-16*d^14*(a+b*x)^2*(b*c+-1*a*d)) @test integrate((a+b*x)^-14*(c+d*x)^15, x) == :((1/2)*b^-14*d^15*x^2+-1//13*b^-16*(a+b*x)^-13*(b*c+-1*a*d)^15+x*b^-15*d^14*(-14*a*d+15*b*c)+-1287*b^-16*d^8*(a+b*x)^-5*(b*c+-1*a*d)^7+-1001*b^-16*d^10*(a+b*x)^-3*(b*c+-1*a*d)^5+-715*b^-16*d^6*(a+b*x)^-7*(b*c+-1*a*d)^9+-455*b^-16*d^12*(a+b*x)^-1*(b*c+-1*a*d)^3+105*b^-16*d^13*(b*c+-1*a*d)^2*log(a+b*x)+-5005//4*b^-16*d^9*(a+b*x)^-4*(b*c+-1*a*d)^6+-3003//8*b^-16*d^5*(a+b*x)^-8*(b*c+-1*a*d)^10+-2145//2*b^-16*d^7*(a+b*x)^-6*(b*c+-1*a*d)^8+-1365//2*b^-16*d^11*(a+b*x)^-2*(b*c+-1*a*d)^4+-455//3*b^-16*d^4*(a+b*x)^-9*(b*c+-1*a*d)^11+-105//11*b^-16*d^2*(a+b*x)^-11*(b*c+-1*a*d)^13+-91//2*b^-16*d^3*(a+b*x)^-10*(b*c+-1*a*d)^12+-5//4*d*b^-16*(a+b*x)^-12*(b*c+-1*a*d)^14) @test integrate((a+b*x)^-15*(c+d*x)^15, x) == :(x*b^-15*d^15+-1//14*b^-16*(a+b*x)^-14*(b*c+-1*a*d)^15+-1001*b^-16*d^9*(a+b*x)^-5*(b*c+-1*a*d)^6+-455*b^-16*d^11*(a+b*x)^-3*(b*c+-1*a*d)^4+-105*b^-16*d^13*(a+b*x)^-1*(b*c+-1*a*d)^2+15*b^-16*d^14*(b*c+-1*a*d)*log(a+b*x)+-6435//7*b^-16*d^7*(a+b*x)^-7*(b*c+-1*a*d)^8+-5005//8*b^-16*d^6*(a+b*x)^-8*(b*c+-1*a*d)^9+-3003//4*b^-16*d^10*(a+b*x)^-4*(b*c+-1*a*d)^5+-2145//2*b^-16*d^8*(a+b*x)^-6*(b*c+-1*a*d)^7+-1001//3*b^-16*d^5*(a+b*x)^-9*(b*c+-1*a*d)^10+-455//2*b^-16*d^12*(a+b*x)^-2*(b*c+-1*a*d)^3+-455//11*b^-16*d^3*(a+b*x)^-11*(b*c+-1*a*d)^12+-273//2*b^-16*d^4*(a+b*x)^-10*(b*c+-1*a*d)^11+-35//4*b^-16*d^2*(a+b*x)^-12*(b*c+-1*a*d)^13+-15//13*d*b^-16*(a+b*x)^-13*(b*c+-1*a*d)^14) @test integrate((a+b*x)^-16*(c+d*x)^15, x) == :(b^-16*d^15*log(a+b*x)+-1//15*b^-16*(a+b*x)^-15*(b*c+-1*a*d)^15+-15*b^-16*d^14*(a+b*x)^-1*(b*c+-1*a*d)+-6435//7*b^-16*d^8*(a+b*x)^-7*(b*c+-1*a*d)^7+-6435//8*b^-16*d^7*(a+b*x)^-8*(b*c+-1*a*d)^8+-5005//6*b^-16*d^9*(a+b*x)^-6*(b*c+-1*a*d)^6+-5005//9*b^-16*d^6*(a+b*x)^-9*(b*c+-1*a*d)^9+-3003//5*b^-16*d^10*(a+b*x)^-5*(b*c+-1*a*d)^5+-3003//10*b^-16*d^5*(a+b*x)^-10*(b*c+-1*a*d)^10+-1365//4*b^-16*d^11*(a+b*x)^-4*(b*c+-1*a*d)^4+-1365//11*b^-16*d^4*(a+b*x)^-11*(b*c+-1*a*d)^11+-455//3*b^-16*d^12*(a+b*x)^-3*(b*c+-1*a*d)^3+-455//12*b^-16*d^3*(a+b*x)^-12*(b*c+-1*a*d)^12+-105//2*b^-16*d^13*(a+b*x)^-2*(b*c+-1*a*d)^2+-105//13*b^-16*d^2*(a+b*x)^-13*(b*c+-1*a*d)^13+-15//14*d*b^-16*(a+b*x)^-14*(b*c+-1*a*d)^14) @test integrate((a+b*x)^-17*(c+d*x)^15, x) == :(-1*(a+b*x)^-16*(c+d*x)^16*(-16*a*d+16*b*c)^-1) @test integrate((a+b*x)^-18*(c+d*x)^15, x) == :(-1*(a+b*x)^-17*(c+d*x)^16*(-17*a*d+17*b*c)^-1+1//272*d*(a+b*x)^-16*(c+d*x)^16*(b*c+-1*a*d)^-2) @test integrate((a+b*x)^-19*(c+d*x)^15, x) == :(-1*(a+b*x)^-18*(c+d*x)^16*(-18*a*d+18*b*c)^-1+-1//2448*d^2*(a+b*x)^-16*(c+d*x)^16*(b*c+-1*a*d)^-3+1//153*d*(a+b*x)^-17*(c+d*x)^16*(b*c+-1*a*d)^-2) @test integrate((a+b*x)^-20*(c+d*x)^15, x) == :(-1*(a+b*x)^-19*(c+d*x)^16*(-19*a*d+19*b*c)^-1+-1//969*d^2*(a+b*x)^-17*(c+d*x)^16*(b*c+-1*a*d)^-3+1//114*d*(a+b*x)^-18*(c+d*x)^16*(b*c+-1*a*d)^-2+1//15504*d^3*(a+b*x)^-16*(c+d*x)^16*(b*c+-1*a*d)^-4) @test integrate((a+b*x)^-21*(c+d*x)^15, x) == :(-1*(a+b*x)^-20*(c+d*x)^16*(-20*a*d+20*b*c)^-1+-1//570*d^2*(a+b*x)^-18*(c+d*x)^16*(b*c+-1*a*d)^-3+-1//77520*d^4*(a+b*x)^-16*(c+d*x)^16*(b*c+-1*a*d)^-5+1//95*d*(a+b*x)^-19*(c+d*x)^16*(b*c+-1*a*d)^-2+1//4845*d^3*(a+b*x)^-17*(c+d*x)^16*(b*c+-1*a*d)^-4) @test integrate((a+b*x)^-22*(c+d*x)^15, x) == :(-1*(a+b*x)^-21*(c+d*x)^16*(-21*a*d+21*b*c)^-1+-1//399*d^2*(a+b*x)^-19*(c+d*x)^16*(b*c+-1*a*d)^-3+-1//20349*d^4*(a+b*x)^-17*(c+d*x)^16*(b*c+-1*a*d)^-5+1//84*d*(a+b*x)^-20*(c+d*x)^16*(b*c+-1*a*d)^-2+1//2394*d^3*(a+b*x)^-18*(c+d*x)^16*(b*c+-1*a*d)^-4+1//325584*d^5*(a+b*x)^-16*(c+d*x)^16*(b*c+-1*a*d)^-6) @test integrate((a+b*x)^-23*(c+d*x)^15, x) == :(-1*(a+b*x)^-22*(c+d*x)^16*(-22*a*d+22*b*c)^-1+-1//308*d^2*(a+b*x)^-20*(c+d*x)^16*(b*c+-1*a*d)^-3+-1//8778*d^4*(a+b*x)^-18*(c+d*x)^16*(b*c+-1*a*d)^-5+-1//1193808*d^6*(a+b*x)^-16*(c+d*x)^16*(b*c+-1*a*d)^-7+1//77*d*(a+b*x)^-21*(c+d*x)^16*(b*c+-1*a*d)^-2+1//1463*d^3*(a+b*x)^-19*(c+d*x)^16*(b*c+-1*a*d)^-4+1//74613*d^5*(a+b*x)^-17*(c+d*x)^16*(b*c+-1*a*d)^-6) @test integrate((a+b*x)^-24*(c+d*x)^15, x) == :(-1*(a+b*x)^-23*(c+d*x)^16*(-23*a*d+23*b*c)^-1+-1//253*d^2*(a+b*x)^-21*(c+d*x)^16*(b*c+-1*a*d)^-3+-1//4807*d^4*(a+b*x)^-19*(c+d*x)^16*(b*c+-1*a*d)^-5+-1//245157*d^6*(a+b*x)^-17*(c+d*x)^16*(b*c+-1*a*d)^-7+1//1012*d^3*(a+b*x)^-20*(c+d*x)^16*(b*c+-1*a*d)^-4+1//28842*d^5*(a+b*x)^-18*(c+d*x)^16*(b*c+-1*a*d)^-6+1//3922512*d^7*(a+b*x)^-16*(c+d*x)^16*(b*c+-1*a*d)^-8+7//506*d*(a+b*x)^-22*(c+d*x)^16*(b*c+-1*a*d)^-2) @test integrate((a+b*x)^-25*(c+d*x)^15, x) == :(-1*(a+b*x)^-24*(c+d*x)^16*(-24*a*d+24*b*c)^-1+-7//1518*d^2*(a+b*x)^-22*(c+d*x)^16*(b*c+-1*a*d)^-3+-1//3036*d^4*(a+b*x)^-20*(c+d*x)^16*(b*c+-1*a*d)^-5+-1//86526*d^6*(a+b*x)^-18*(c+d*x)^16*(b*c+-1*a*d)^-7+-1//11767536*d^8*(a+b*x)^-16*(c+d*x)^16*(b*c+-1*a*d)^-9+1//69*d*(a+b*x)^-23*(c+d*x)^16*(b*c+-1*a*d)^-2+1//759*d^3*(a+b*x)^-21*(c+d*x)^16*(b*c+-1*a*d)^-4+1//14421*d^5*(a+b*x)^-19*(c+d*x)^16*(b*c+-1*a*d)^-6+1//735471*d^7*(a+b*x)^-17*(c+d*x)^16*(b*c+-1*a*d)^-8) @test integrate((a+b*x)^-26*(c+d*x)^15, x) == :(-1*(a+b*x)^-25*(c+d*x)^16*(-25*a*d+25*b*c)^-1+-3//575*d^2*(a+b*x)^-23*(c+d*x)^16*(b*c+-1*a*d)^-3+-3//6325*d^4*(a+b*x)^-21*(c+d*x)^16*(b*c+-1*a*d)^-5+-3//120175*d^6*(a+b*x)^-19*(c+d*x)^16*(b*c+-1*a*d)^-7+-1//2042975*d^8*(a+b*x)^-17*(c+d*x)^16*(b*c+-1*a*d)^-9+1//240350*d^7*(a+b*x)^-18*(c+d*x)^16*(b*c+-1*a*d)^-8+1//32687600*d^9*(a+b*x)^-16*(c+d*x)^16*(b*c+-1*a*d)^-10+3//200*d*(a+b*x)^-24*(c+d*x)^16*(b*c+-1*a*d)^-2+3//25300*d^5*(a+b*x)^-20*(c+d*x)^16*(b*c+-1*a*d)^-6+21//12650*d^3*(a+b*x)^-22*(c+d*x)^16*(b*c+-1*a*d)^-4) @test integrate((a+b*x)^-27*(c+d*x)^15, x) == :(-1*(a+b*x)^-26*(c+d*x)^16*(-26*a*d+26*b*c)^-1+-21//32890*d^4*(a+b*x)^-22*(c+d*x)^16*(b*c+-1*a*d)^-5+-3//520*d^2*(a+b*x)^-24*(c+d*x)^16*(b*c+-1*a*d)^-3+-3//65780*d^6*(a+b*x)^-20*(c+d*x)^16*(b*c+-1*a*d)^-7+-1//624910*d^8*(a+b*x)^-18*(c+d*x)^16*(b*c+-1*a*d)^-9+-1//84987760*d^10*(a+b*x)^-16*(c+d*x)^16*(b*c+-1*a*d)^-11+1//65*d*(a+b*x)^-25*(c+d*x)^16*(b*c+-1*a*d)^-2+1//5311735*d^9*(a+b*x)^-17*(c+d*x)^16*(b*c+-1*a*d)^-10+3//1495*d^3*(a+b*x)^-23*(c+d*x)^16*(b*c+-1*a*d)^-4+3//16445*d^5*(a+b*x)^-21*(c+d*x)^16*(b*c+-1*a*d)^-6+3//312455*d^7*(a+b*x)^-19*(c+d*x)^16*(b*c+-1*a*d)^-8) @test integrate((a+b*x)^-28*(c+d*x)^15, x) == :(-1*(a+b*x)^-27*(c+d*x)^16*(-27*a*d+27*b*c)^-1+-11//1755*d^2*(a+b*x)^-25*(c+d*x)^16*(b*c+-1*a*d)^-3+-11//13455*d^4*(a+b*x)^-23*(c+d*x)^16*(b*c+-1*a*d)^-5+-1//13455*d^6*(a+b*x)^-21*(c+d*x)^16*(b*c+-1*a*d)^-7+-1//255645*d^8*(a+b*x)^-19*(c+d*x)^16*(b*c+-1*a*d)^-9+-1//13037895*d^10*(a+b*x)^-17*(c+d*x)^16*(b*c+-1*a*d)^-11+1//53820*d^7*(a+b*x)^-20*(c+d*x)^16*(b*c+-1*a*d)^-8+1//1533870*d^9*(a+b*x)^-18*(c+d*x)^16*(b*c+-1*a*d)^-10+1//208606320*d^11*(a+b*x)^-16*(c+d*x)^16*(b*c+-1*a*d)^-12+7//26910*d^5*(a+b*x)^-22*(c+d*x)^16*(b*c+-1*a*d)^-6+11//702*d*(a+b*x)^-26*(c+d*x)^16*(b*c+-1*a*d)^-2+11//4680*d^3*(a+b*x)^-24*(c+d*x)^16*(b*c+-1*a*d)^-4) @test integrate((a+b*x)^-29*(c+d*x)^15, x) == :(-1//13*b^-16*d^15*(a+b*x)^-13+-1//28*b^-16*(a+b*x)^-28*(b*c+-1*a*d)^15+-7*b^-16*d^13*(a+b*x)^-15*(b*c+-1*a*d)^2+-5005//19*b^-16*d^9*(a+b*x)^-19*(b*c+-1*a*d)^6+-3003//23*b^-16*d^5*(a+b*x)^-23*(b*c+-1*a*d)^10+-2145//7*b^-16*d^7*(a+b*x)^-21*(b*c+-1*a*d)^8+-1365//17*b^-16*d^11*(a+b*x)^-17*(b*c+-1*a*d)^4+-1287//4*b^-16*d^8*(a+b*x)^-20*(b*c+-1*a*d)^7+-1001//6*b^-16*d^10*(a+b*x)^-18*(b*c+-1*a*d)^5+-455//2*b^-16*d^6*(a+b*x)^-22*(b*c+-1*a*d)^9+-455//8*b^-16*d^4*(a+b*x)^-24*(b*c+-1*a*d)^11+-455//16*b^-16*d^12*(a+b*x)^-16*(b*c+-1*a*d)^3+-105//26*b^-16*d^2*(a+b*x)^-26*(b*c+-1*a*d)^13+-91//5*b^-16*d^3*(a+b*x)^-25*(b*c+-1*a*d)^12+-15//14*b^-16*d^14*(a+b*x)^-14*(b*c+-1*a*d)+-5//9*d*b^-16*(a+b*x)^-27*(b*c+-1*a*d)^14) @test integrate((a+b*x)^-30*(c+d*x)^15, x) == :(-1//14*b^-16*d^15*(a+b*x)^-14+-1//29*b^-16*(a+b*x)^-29*(b*c+-1*a*d)^15+-1*b^-16*d^14*(a+b*x)^-15*(b*c+-1*a*d)+-5005//23*b^-16*d^6*(a+b*x)^-23*(b*c+-1*a*d)^9+-3003//19*b^-16*d^10*(a+b*x)^-19*(b*c+-1*a*d)^5+-2145//7*b^-16*d^8*(a+b*x)^-21*(b*c+-1*a*d)^7+-1001//4*b^-16*d^9*(a+b*x)^-20*(b*c+-1*a*d)^6+-1001//8*b^-16*d^5*(a+b*x)^-24*(b*c+-1*a*d)^10+-585//2*b^-16*d^7*(a+b*x)^-22*(b*c+-1*a*d)^8+-455//6*b^-16*d^11*(a+b*x)^-18*(b*c+-1*a*d)^4+-455//17*b^-16*d^12*(a+b*x)^-17*(b*c+-1*a*d)^3+-273//5*b^-16*d^4*(a+b*x)^-25*(b*c+-1*a*d)^11+-105//16*b^-16*d^13*(a+b*x)^-16*(b*c+-1*a*d)^2+-35//2*b^-16*d^3*(a+b*x)^-26*(b*c+-1*a*d)^12+-35//9*b^-16*d^2*(a+b*x)^-27*(b*c+-1*a*d)^13+-15//28*d*b^-16*(a+b*x)^-28*(b*c+-1*a*d)^14) @test integrate((a+b*x)^-31*(c+d*x)^15, x) == :(-1//15*b^-16*d^15*(a+b*x)^-15+-1//30*b^-16*(a+b*x)^-30*(b*c+-1*a*d)^15+-6435//23*b^-16*d^7*(a+b*x)^-23*(b*c+-1*a*d)^8+-5005//24*b^-16*d^6*(a+b*x)^-24*(b*c+-1*a*d)^9+-3003//20*b^-16*d^10*(a+b*x)^-20*(b*c+-1*a*d)^5+-3003//25*b^-16*d^5*(a+b*x)^-25*(b*c+-1*a*d)^10+-1365//19*b^-16*d^11*(a+b*x)^-19*(b*c+-1*a*d)^4+-715//3*b^-16*d^9*(a+b*x)^-21*(b*c+-1*a*d)^6+-585//2*b^-16*d^8*(a+b*x)^-22*(b*c+-1*a*d)^7+-455//18*b^-16*d^12*(a+b*x)^-18*(b*c+-1*a*d)^3+-455//27*b^-16*d^3*(a+b*x)^-27*(b*c+-1*a*d)^12+-105//2*b^-16*d^4*(a+b*x)^-26*(b*c+-1*a*d)^11+-105//17*b^-16*d^13*(a+b*x)^-17*(b*c+-1*a*d)^2+-15//4*b^-16*d^2*(a+b*x)^-28*(b*c+-1*a*d)^13+-15//16*b^-16*d^14*(a+b*x)^-16*(b*c+-1*a*d)+-15//29*d*b^-16*(a+b*x)^-29*(b*c+-1*a*d)^14) @test integrate((a+b*x)^5*(c+d*x)^-1, x) == :(1//5*d^-1*(a+b*x)^5+-1*d^-6*(b*c+-1*a*d)^5*log(c+d*x)+-1//2*d^-4*(a+b*x)^2*(b*c+-1*a*d)^3+-1//4*d^-2*(a+b*x)^4*(b*c+-1*a*d)+1//3*d^-3*(a+b*x)^3*(b*c+-1*a*d)^2+b*x*d^-5*(b*c+-1*a*d)^4) @test integrate((a+b*x)^4*(c+d*x)^-1, x) == :(1//4*d^-1*(a+b*x)^4+d^-5*(b*c+-1*a*d)^4*log(c+d*x)+(1/2)*d^-3*(a+b*x)^2*(b*c+-1*a*d)^2+-1//3*d^-2*(a+b*x)^3*(b*c+-1*a*d)+-1*b*x*d^-4*(b*c+-1*a*d)^3) @test integrate((a+b*x)^3*(c+d*x)^-1, x) == :(1//3*d^-1*(a+b*x)^3+-1*d^-4*(b*c+-1*a*d)^3*log(c+d*x)+-1//2*d^-2*(a+b*x)^2*(b*c+-1*a*d)+b*x*d^-3*(b*c+-1*a*d)^2) @test integrate((a+b*x)^2*(c+d*x)^-1, x) == :((1/2)*d^-1*(a+b*x)^2+d^-3*(b*c+-1*a*d)^2*log(c+d*x)+-1*b*x*d^-2*(b*c+-1*a*d)) @test integrate((c+d*x)^-1*(a+b*x), x) == :(b*x*d^-1+-1*d^-2*(b*c+-1*a*d)*log(c+d*x)) @test integrate((c+d*x)^-1, x) == :(d^-1*log(c+d*x)) @test integrate((a+b*x)^-1*(c+d*x)^-1, x) == :((b*c+-1*a*d)^-1*log(a+b*x)+-1*(b*c+-1*a*d)^-1*log(c+d*x)) @test integrate((a+b*x)^-2*(c+d*x)^-1, x) == :(-1*(a+b*x)^-1*(b*c+-1*a*d)^-1+d*(b*c+-1*a*d)^-2*log(c+d*x)+-1*d*(b*c+-1*a*d)^-2*log(a+b*x)) @test integrate((a+b*x)^-3*(c+d*x)^-1, x) == :(-1*(a+b*x)^-2*(-2*a*d+2*b*c)^-1+d*(a+b*x)^-1*(b*c+-1*a*d)^-2+d^2*(b*c+-1*a*d)^-3*log(a+b*x)+-1*d^2*(b*c+-1*a*d)^-3*log(c+d*x)) @test integrate((a+b*x)^5*(c+d*x)^-2, x) == :(d^-6*(c+d*x)^-1*(b*c+-1*a*d)^5+1//4*b^5*d^-6*(c+d*x)^4+-10*x*b^2*d^-5*(b*c+-1*a*d)^3+5*b*d^-6*(b*c+-1*a*d)^4*log(c+d*x)+5*b^3*d^-6*(c+d*x)^2*(b*c+-1*a*d)^2+-5//3*b^4*d^-6*(c+d*x)^3*(b*c+-1*a*d)) @test integrate((a+b*x)^4*(c+d*x)^-2, x) == :(-1*d^-5*(c+d*x)^-1*(b*c+-1*a*d)^4+1//3*b^4*d^-5*(c+d*x)^3+-4*b*d^-5*(b*c+-1*a*d)^3*log(c+d*x)+-2*b^3*d^-5*(c+d*x)^2*(b*c+-1*a*d)+6*x*b^2*d^-4*(b*c+-1*a*d)^2) @test integrate((a+b*x)^3*(c+d*x)^-2, x) == :(d^-4*(c+d*x)^-1*(b*c+-1*a*d)^3+(1/2)*b^3*d^-2*x^2+-1*x*b^2*d^-3*(-3*a*d+2*b*c)+3*b*d^-4*(b*c+-1*a*d)^2*log(c+d*x)) @test integrate((a+b*x)^2*(c+d*x)^-2, x) == :(x*b^2*d^-2+-1*d^-3*(c+d*x)^-1*(b*c+-1*a*d)^2+-2*b*d^-3*(b*c+-1*a*d)*log(c+d*x)) @test integrate((c+d*x)^-2*(a+b*x), x) == :(b*d^-2*log(c+d*x)+d^-2*(c+d*x)^-1*(b*c+-1*a*d)) @test integrate((c+d*x)^-2, x) == :(-1*d^-1*(c+d*x)^-1) @test integrate((a+b*x)^-1*(c+d*x)^-2, x) == :((c+d*x)^-1*(b*c+-1*a*d)^-1+b*(b*c+-1*a*d)^-2*log(a+b*x)+-1*b*(b*c+-1*a*d)^-2*log(c+d*x)) @test integrate((a+b*x)^-2*(c+d*x)^-2, x) == :(-1*b*(a+b*x)^-1*(b*c+-1*a*d)^-2+-1*d*(c+d*x)^-1*(b*c+-1*a*d)^-2+-2*b*d*(b*c+-1*a*d)^-3*log(a+b*x)+2*b*d*(b*c+-1*a*d)^-3*log(c+d*x)) @test integrate((a+b*x)^-3*(c+d*x)^-2, x) == :(d^2*(c+d*x)^-1*(b*c+-1*a*d)^-3+-1//2*b*(a+b*x)^-2*(b*c+-1*a*d)^-2+-3*b*d^2*(b*c+-1*a*d)^-4*log(c+d*x)+2*b*d*(a+b*x)^-1*(b*c+-1*a*d)^-3+3*b*d^2*(b*c+-1*a*d)^-4*log(a+b*x)) @test integrate((a+b*x)^6*(c+d*x)^-3, x) == :(-1//2*d^-7*(c+d*x)^-2*(b*c+-1*a*d)^6+1//4*b^6*d^-7*(c+d*x)^4+-20*x*b^3*d^-6*(b*c+-1*a*d)^3+-2*b^5*d^-7*(c+d*x)^3*(b*c+-1*a*d)+6*b*d^-7*(c+d*x)^-1*(b*c+-1*a*d)^5+15*b^2*d^-7*(b*c+-1*a*d)^4*log(c+d*x)+15//2*b^4*d^-7*(c+d*x)^2*(b*c+-1*a*d)^2) @test integrate((a+b*x)^5*(c+d*x)^-3, x) == :((1/2)*d^-6*(c+d*x)^-2*(b*c+-1*a*d)^5+1//3*b^5*d^-6*(c+d*x)^3+-10*b^2*d^-6*(b*c+-1*a*d)^3*log(c+d*x)+-5*b*d^-6*(c+d*x)^-1*(b*c+-1*a*d)^4+10*x*b^3*d^-5*(b*c+-1*a*d)^2+-5//2*b^4*d^-6*(c+d*x)^2*(b*c+-1*a*d)) @test integrate((a+b*x)^4*(c+d*x)^-3, x) == :((1/2)*b^4*d^-3*x^2+-1//2*d^-5*(c+d*x)^-2*(b*c+-1*a*d)^4+-1*x*b^3*d^-4*(-4*a*d+3*b*c)+4*b*d^-5*(c+d*x)^-1*(b*c+-1*a*d)^3+6*b^2*d^-5*(b*c+-1*a*d)^2*log(c+d*x)) @test integrate((a+b*x)^3*(c+d*x)^-3, x) == :(x*b^3*d^-3+(1/2)*d^-4*(c+d*x)^-2*(b*c+-1*a*d)^3+-3*b*d^-4*(c+d*x)^-1*(b*c+-1*a*d)^2+-3*b^2*d^-4*(b*c+-1*a*d)*log(c+d*x)) @test integrate((a+b*x)^2*(c+d*x)^-3, x) == :(b^2*d^-3*log(c+d*x)+-1//2*d^-3*(c+d*x)^-2*(b*c+-1*a*d)^2+2*b*d^-3*(c+d*x)^-1*(b*c+-1*a*d)) @test integrate((c+d*x)^-3*(a+b*x), x) == :((a+b*x)^2*(c+d*x)^-2*(-2*a*d+2*b*c)^-1) @test integrate((c+d*x)^-3, x) == :(-1//2*d^-1*(c+d*x)^-2) @test integrate((a+b*x)^-1*(c+d*x)^-3, x) == :((c+d*x)^-2*(-2*a*d+2*b*c)^-1+b*(c+d*x)^-1*(b*c+-1*a*d)^-2+b^2*(b*c+-1*a*d)^-3*log(a+b*x)+-1*b^2*(b*c+-1*a*d)^-3*log(c+d*x)) @test integrate((a+b*x)^-2*(c+d*x)^-3, x) == :(-1*b^2*(a+b*x)^-1*(b*c+-1*a*d)^-3+-1//2*d*(c+d*x)^-2*(b*c+-1*a*d)^-2+-3*d*b^2*(b*c+-1*a*d)^-4*log(a+b*x)+-2*b*d*(c+d*x)^-1*(b*c+-1*a*d)^-3+3*d*b^2*(b*c+-1*a*d)^-4*log(c+d*x)) @test integrate((a+b*x)^-3*(c+d*x)^-3, x) == :((1/2)*d^2*(c+d*x)^-2*(b*c+-1*a*d)^-3+-1//2*b^2*(a+b*x)^-2*(b*c+-1*a*d)^-3+-6*b^2*d^2*(b*c+-1*a*d)^-5*log(c+d*x)+3*b*d^2*(c+d*x)^-1*(b*c+-1*a*d)^-4+3*d*b^2*(a+b*x)^-1*(b*c+-1*a*d)^-4+6*b^2*d^2*(b*c+-1*a*d)^-5*log(a+b*x)) @test integrate((a+b*x)^9*(c+d*x)^-8, x) == :((1/2)*b^9*d^-8*x^2+1//7*d^-10*(c+d*x)^-7*(b*c+-1*a*d)^9+-1*x*b^8*d^-9*(-9*a*d+8*b*c)+-63*b^5*d^-10*(c+d*x)^-2*(b*c+-1*a*d)^4+-21*b^3*d^-10*(c+d*x)^-4*(b*c+-1*a*d)^6+36*b^7*d^-10*(b*c+-1*a*d)^2*log(c+d*x)+42*b^4*d^-10*(c+d*x)^-3*(b*c+-1*a*d)^5+84*b^6*d^-10*(c+d*x)^-1*(b*c+-1*a*d)^3+-3//2*b*d^-10*(c+d*x)^-6*(b*c+-1*a*d)^8+36//5*b^2*d^-10*(c+d*x)^-5*(b*c+-1*a*d)^7) @test integrate((a+b*x)^8*(c+d*x)^-8, x) == :(x*b^8*d^-8+-1//7*d^-9*(c+d*x)^-7*(b*c+-1*a*d)^8+-28*b^6*d^-9*(c+d*x)^-1*(b*c+-1*a*d)^2+-8*b^7*d^-9*(b*c+-1*a*d)*log(c+d*x)+14*b^3*d^-9*(c+d*x)^-4*(b*c+-1*a*d)^5+28*b^5*d^-9*(c+d*x)^-2*(b*c+-1*a*d)^3+-70//3*b^4*d^-9*(c+d*x)^-3*(b*c+-1*a*d)^4+-28//5*b^2*d^-9*(c+d*x)^-5*(b*c+-1*a*d)^6+4//3*b*d^-9*(c+d*x)^-6*(b*c+-1*a*d)^7) @test integrate((a+b*x)^7*(c+d*x)^-8, x) == :(b^7*d^-8*log(c+d*x)+1//7*d^-8*(c+d*x)^-7*(b*c+-1*a*d)^7+7*b^6*d^-8*(c+d*x)^-1*(b*c+-1*a*d)+-35//4*b^3*d^-8*(c+d*x)^-4*(b*c+-1*a*d)^4+-21//2*b^5*d^-8*(c+d*x)^-2*(b*c+-1*a*d)^2+-7//6*b*d^-8*(c+d*x)^-6*(b*c+-1*a*d)^6+21//5*b^2*d^-8*(c+d*x)^-5*(b*c+-1*a*d)^5+35//3*b^4*d^-8*(c+d*x)^-3*(b*c+-1*a*d)^3) @test integrate((a+b*x)^6*(c+d*x)^-8, x) == :((a+b*x)^7*(c+d*x)^-7*(-7*a*d+7*b*c)^-1) @test integrate((a+b*x)^5*(c+d*x)^-8, x) == :((a+b*x)^6*(c+d*x)^-7*(-7*a*d+7*b*c)^-1+1//42*b*(a+b*x)^6*(c+d*x)^-6*(b*c+-1*a*d)^-2) @test integrate((a+b*x)^4*(c+d*x)^-8, x) == :((a+b*x)^5*(c+d*x)^-7*(-7*a*d+7*b*c)^-1+1//21*b*(a+b*x)^5*(c+d*x)^-6*(b*c+-1*a*d)^-2+1//105*b^2*(a+b*x)^5*(c+d*x)^-5*(b*c+-1*a*d)^-3) @test integrate((a+b*x)^3*(c+d*x)^-8, x) == :(-1//4*b^3*d^-4*(c+d*x)^-4+1//7*d^-4*(c+d*x)^-7*(b*c+-1*a*d)^3+-1//2*b*d^-4*(c+d*x)^-6*(b*c+-1*a*d)^2+3//5*b^2*d^-4*(c+d*x)^-5*(b*c+-1*a*d)) @test integrate((a+b*x)^2*(c+d*x)^-8, x) == :(-1//5*b^2*d^-3*(c+d*x)^-5+-1//7*d^-3*(c+d*x)^-7*(b*c+-1*a*d)^2+1//3*b*d^-3*(c+d*x)^-6*(b*c+-1*a*d)) @test integrate((c+d*x)^-8*(a+b*x), x) == :(-1//6*b*d^-2*(c+d*x)^-6+1//7*d^-2*(c+d*x)^-7*(b*c+-1*a*d)) @test integrate((c+d*x)^-8, x) == :(-1//7*d^-1*(c+d*x)^-7) @test integrate((a+b*x)^-1*(c+d*x)^-8, x) == :((c+d*x)^-7*(-7*a*d+7*b*c)^-1+b^6*(c+d*x)^-1*(b*c+-1*a*d)^-7+b^7*(b*c+-1*a*d)^-8*log(a+b*x)+(1/2)*b^5*(c+d*x)^-2*(b*c+-1*a*d)^-6+-1*b^7*(b*c+-1*a*d)^-8*log(c+d*x)+1//3*b^4*(c+d*x)^-3*(b*c+-1*a*d)^-5+1//4*b^3*(c+d*x)^-4*(b*c+-1*a*d)^-4+1//5*b^2*(c+d*x)^-5*(b*c+-1*a*d)^-3+1//6*b*(c+d*x)^-6*(b*c+-1*a*d)^-2) @test integrate((a+b*x)^-2*(c+d*x)^-8, x) == :(-1*b^7*(a+b*x)^-1*(b*c+-1*a*d)^-8+-1//7*d*(c+d*x)^-7*(b*c+-1*a*d)^-2+-1*d*b^3*(c+d*x)^-4*(b*c+-1*a*d)^-5+-8*d*b^7*(b*c+-1*a*d)^-9*log(a+b*x)+-7*d*b^6*(c+d*x)^-1*(b*c+-1*a*d)^-8+-3*d*b^5*(c+d*x)^-2*(b*c+-1*a*d)^-7+8*d*b^7*(b*c+-1*a*d)^-9*log(c+d*x)+-5//3*d*b^4*(c+d*x)^-3*(b*c+-1*a*d)^-6+-3//5*d*b^2*(c+d*x)^-5*(b*c+-1*a*d)^-4+-1//3*b*d*(c+d*x)^-6*(b*c+-1*a*d)^-3) @test integrate((a+b*x)^-3*(c+d*x)^-8, x) == :(-1//2*b^7*(a+b*x)^-2*(b*c+-1*a*d)^-8+1//7*d^2*(c+d*x)^-7*(b*c+-1*a*d)^-3+(1/2)*b*d^2*(c+d*x)^-6*(b*c+-1*a*d)^-4+-36*b^7*d^2*(b*c+-1*a*d)^-10*log(c+d*x)+5*b^4*d^2*(c+d*x)^-3*(b*c+-1*a*d)^-7+8*d*b^7*(a+b*x)^-1*(b*c+-1*a*d)^-9+28*b^6*d^2*(c+d*x)^-1*(b*c+-1*a*d)^-9+36*b^7*d^2*(b*c+-1*a*d)^-10*log(a+b*x)+5//2*b^3*d^2*(c+d*x)^-4*(b*c+-1*a*d)^-6+6//5*b^2*d^2*(c+d*x)^-5*(b*c+-1*a*d)^-5+21//2*b^5*d^2*(c+d*x)^-2*(b*c+-1*a*d)^-8) @test integrate((a+b*x)^5*(c+d*x)^(1/2), x) == :(-2//3*d^-6*(c+d*x)^3//2*(b*c+-1*a*d)^5+2//13*b^5*d^-6*(c+d*x)^13//2+2*b*d^-6*(c+d*x)^5//2*(b*c+-1*a*d)^4+-20//7*b^2*d^-6*(c+d*x)^7//2*(b*c+-1*a*d)^3+-10//11*b^4*d^-6*(c+d*x)^11//2*(b*c+-1*a*d)+20//9*b^3*d^-6*(c+d*x)^9//2*(b*c+-1*a*d)^2) @test integrate((a+b*x)^4*(c+d*x)^(1/2), x) == :(2//3*d^-5*(c+d*x)^3//2*(b*c+-1*a*d)^4+2//11*b^4*d^-5*(c+d*x)^11//2+-8//5*b*d^-5*(c+d*x)^5//2*(b*c+-1*a*d)^3+-8//9*b^3*d^-5*(c+d*x)^9//2*(b*c+-1*a*d)+12//7*b^2*d^-5*(c+d*x)^7//2*(b*c+-1*a*d)^2) @test integrate((a+b*x)^3*(c+d*x)^(1/2), x) == :(-2//3*d^-4*(c+d*x)^3//2*(b*c+-1*a*d)^3+2//9*b^3*d^-4*(c+d*x)^9//2+-6//7*b^2*d^-4*(c+d*x)^7//2*(b*c+-1*a*d)+6//5*b*d^-4*(c+d*x)^5//2*(b*c+-1*a*d)^2) @test integrate((a+b*x)^2*(c+d*x)^(1/2), x) == :(2//3*d^-3*(c+d*x)^3//2*(b*c+-1*a*d)^2+2//7*b^2*d^-3*(c+d*x)^7//2+-4//5*b*d^-3*(c+d*x)^5//2*(b*c+-1*a*d)) @test integrate((c+d*x)^(1/2)*(a+b*x), x) == :(-1//3*d^-2*(c+d*x)^3//2*(-2*a*d+2*b*c)+2//5*b*d^-2*(c+d*x)^5//2) @test integrate((c+d*x)^(1/2), x) == :(2//3*d^-1*(c+d*x)^3//2) @test integrate((a+b*x)^-1*(c+d*x)^(1/2), x) == :(2*b^-1*(c+d*x)^(1/2)+-2*b^-3//2*(b*c+-1*a*d)^(1/2)*arctanh(b^(1/2)*(c+d*x)^(1/2)*(b*c+-1*a*d)^-1//2)) @test integrate((a+b*x)^-2*(c+d*x)^(1/2), x) == :(-1*b^-1*(a+b*x)^-1*(c+d*x)^(1/2)+-1*d*b^-3//2*(b*c+-1*a*d)^-1//2*arctanh(b^(1/2)*(c+d*x)^(1/2)*(b*c+-1*a*d)^-1//2)) @test integrate((a+b*x)^-3*(c+d*x)^(1/2), x) == :(-1//2*b^-1*(a+b*x)^-2*(c+d*x)^(1/2)+1//4*b^-3//2*d^2*(b*c+-1*a*d)^-3//2*arctanh(b^(1/2)*(c+d*x)^(1/2)*(b*c+-1*a*d)^-1//2)+-1//4*d*b^-1*(a+b*x)^-1*(c+d*x)^(1/2)*(b*c+-1*a*d)^-1) @test integrate((a+b*x)^-4*(c+d*x)^(1/2), x) == :(-1//3*b^-1*(a+b*x)^-3*(c+d*x)^(1/2)+-1//8*b^-3//2*d^3*(b*c+-1*a*d)^-5//2*arctanh(b^(1/2)*(c+d*x)^(1/2)*(b*c+-1*a*d)^-1//2)+-1//12*d*b^-1*(a+b*x)^-2*(c+d*x)^(1/2)*(b*c+-1*a*d)^-1+1//8*b^-1*d^2*(a+b*x)^-1*(c+d*x)^(1/2)*(b*c+-1*a*d)^-2) @test integrate((a+b*x)^-5*(c+d*x)^(1/2), x) == :(-1//4*b^-1*(a+b*x)^-4*(c+d*x)^(1/2)+5//64*b^-3//2*d^4*(b*c+-1*a*d)^-7//2*arctanh(b^(1/2)*(c+d*x)^(1/2)*(b*c+-1*a*d)^-1//2)+-5//64*b^-1*d^3*(a+b*x)^-1*(c+d*x)^(1/2)*(b*c+-1*a*d)^-3+-1//24*d*b^-1*(a+b*x)^-3*(c+d*x)^(1/2)*(b*c+-1*a*d)^-1+5//96*b^-1*d^2*(a+b*x)^-2*(c+d*x)^(1/2)*(b*c+-1*a*d)^-2) @test integrate((a+b*x)^-6*(c+d*x)^(1/2), x) == :(-1//5*b^-1*(a+b*x)^-5*(c+d*x)^(1/2)+-7//128*b^-3//2*d^5*(b*c+-1*a*d)^-9//2*arctanh(b^(1/2)*(c+d*x)^(1/2)*(b*c+-1*a*d)^-1//2)+-7//192*b^-1*d^3*(a+b*x)^-2*(c+d*x)^(1/2)*(b*c+-1*a*d)^-3+-1//40*d*b^-1*(a+b*x)^-4*(c+d*x)^(1/2)*(b*c+-1*a*d)^-1+7//128*b^-1*d^4*(a+b*x)^-1*(c+d*x)^(1/2)*(b*c+-1*a*d)^-4+7//240*b^-1*d^2*(a+b*x)^-3*(c+d*x)^(1/2)*(b*c+-1*a*d)^-2) @test integrate((a+b*x)^5*(c+d*x)^3//2, x) == :(-2//5*d^-6*(c+d*x)^5//2*(b*c+-1*a*d)^5+2//15*b^5*d^-6*(c+d*x)^15//2+-20//9*b^2*d^-6*(c+d*x)^9//2*(b*c+-1*a*d)^3+-10//13*b^4*d^-6*(c+d*x)^13//2*(b*c+-1*a*d)+10//7*b*d^-6*(c+d*x)^7//2*(b*c+-1*a*d)^4+20//11*b^3*d^-6*(c+d*x)^11//2*(b*c+-1*a*d)^2) @test integrate((a+b*x)^4*(c+d*x)^3//2, x) == :(2//5*d^-5*(c+d*x)^5//2*(b*c+-1*a*d)^4+2//13*b^4*d^-5*(c+d*x)^13//2+-8//7*b*d^-5*(c+d*x)^7//2*(b*c+-1*a*d)^3+-8//11*b^3*d^-5*(c+d*x)^11//2*(b*c+-1*a*d)+4//3*b^2*d^-5*(c+d*x)^9//2*(b*c+-1*a*d)^2) @test integrate((a+b*x)^3*(c+d*x)^3//2, x) == :(-2//5*d^-4*(c+d*x)^5//2*(b*c+-1*a*d)^3+2//11*b^3*d^-4*(c+d*x)^11//2+-2//3*b^2*d^-4*(c+d*x)^9//2*(b*c+-1*a*d)+6//7*b*d^-4*(c+d*x)^7//2*(b*c+-1*a*d)^2) @test integrate((a+b*x)^2*(c+d*x)^3//2, x) == :(2//5*d^-3*(c+d*x)^5//2*(b*c+-1*a*d)^2+2//9*b^2*d^-3*(c+d*x)^9//2+-4//7*b*d^-3*(c+d*x)^7//2*(b*c+-1*a*d)) @test integrate((c+d*x)^3//2*(a+b*x), x) == :(-1//5*d^-2*(c+d*x)^5//2*(-2*a*d+2*b*c)+2//7*b*d^-2*(c+d*x)^7//2) @test integrate((c+d*x)^3//2, x) == :(2//5*d^-1*(c+d*x)^5//2) @test integrate((a+b*x)^-1*(c+d*x)^3//2, x) == :(2//3*b^-1*(c+d*x)^3//2+b^-2*(c+d*x)^(1/2)*(-2*a*d+2*b*c)+-2*b^-5//2*(b*c+-1*a*d)^3//2*arctanh(b^(1/2)*(c+d*x)^(1/2)*(b*c+-1*a*d)^-1//2)) @test integrate((a+b*x)^-2*(c+d*x)^3//2, x) == :(-1*b^-1*(a+b*x)^-1*(c+d*x)^3//2+3*d*b^-2*(c+d*x)^(1/2)+-3*d*b^-5//2*(b*c+-1*a*d)^(1/2)*arctanh(b^(1/2)*(c+d*x)^(1/2)*(b*c+-1*a*d)^-1//2)) @test integrate((a+b*x)^-3*(c+d*x)^3//2, x) == :(-1//2*b^-1*(a+b*x)^-2*(c+d*x)^3//2+-3//4*d*b^-2*(a+b*x)^-1*(c+d*x)^(1/2)+-3//4*b^-5//2*d^2*(b*c+-1*a*d)^-1//2*arctanh(b^(1/2)*(c+d*x)^(1/2)*(b*c+-1*a*d)^-1//2)) @test integrate((a+b*x)^-4*(c+d*x)^3//2, x) == :(-1//3*b^-1*(a+b*x)^-3*(c+d*x)^3//2+-1//4*d*b^-2*(a+b*x)^-2*(c+d*x)^(1/2)+1//8*b^-5//2*d^3*(b*c+-1*a*d)^-3//2*arctanh(b^(1/2)*(c+d*x)^(1/2)*(b*c+-1*a*d)^-1//2)+-1//8*b^-2*d^2*(a+b*x)^-1*(c+d*x)^(1/2)*(b*c+-1*a*d)^-1) @test integrate((a+b*x)^-5*(c+d*x)^3//2, x) == :(-1//4*b^-1*(a+b*x)^-4*(c+d*x)^3//2+-3//64*b^-5//2*d^4*(b*c+-1*a*d)^-5//2*arctanh(b^(1/2)*(c+d*x)^(1/2)*(b*c+-1*a*d)^-1//2)+-1//8*d*b^-2*(a+b*x)^-3*(c+d*x)^(1/2)+-1//32*b^-2*d^2*(a+b*x)^-2*(c+d*x)^(1/2)*(b*c+-1*a*d)^-1+3//64*b^-2*d^3*(a+b*x)^-1*(c+d*x)^(1/2)*(b*c+-1*a*d)^-2) @test integrate((a+b*x)^-6*(c+d*x)^3//2, x) == :(-1//5*b^-1*(a+b*x)^-5*(c+d*x)^3//2+-3//40*d*b^-2*(a+b*x)^-4*(c+d*x)^(1/2)+3//128*b^-5//2*d^5*(b*c+-1*a*d)^-7//2*arctanh(b^(1/2)*(c+d*x)^(1/2)*(b*c+-1*a*d)^-1//2)+-3//128*b^-2*d^4*(a+b*x)^-1*(c+d*x)^(1/2)*(b*c+-1*a*d)^-3+-1//80*b^-2*d^2*(a+b*x)^-3*(c+d*x)^(1/2)*(b*c+-1*a*d)^-1+1//64*b^-2*d^3*(a+b*x)^-2*(c+d*x)^(1/2)*(b*c+-1*a*d)^-2) @test integrate((a+b*x)^5*(c+d*x)^5//2, x) == :(-2//7*d^-6*(c+d*x)^7//2*(b*c+-1*a*d)^5+2//17*b^5*d^-6*(c+d*x)^17//2+-20//11*b^2*d^-6*(c+d*x)^11//2*(b*c+-1*a*d)^3+-2//3*b^4*d^-6*(c+d*x)^15//2*(b*c+-1*a*d)+10//9*b*d^-6*(c+d*x)^9//2*(b*c+-1*a*d)^4+20//13*b^3*d^-6*(c+d*x)^13//2*(b*c+-1*a*d)^2) @test integrate((a+b*x)^4*(c+d*x)^5//2, x) == :(2//7*d^-5*(c+d*x)^7//2*(b*c+-1*a*d)^4+2//15*b^4*d^-5*(c+d*x)^15//2+-8//9*b*d^-5*(c+d*x)^9//2*(b*c+-1*a*d)^3+-8//13*b^3*d^-5*(c+d*x)^13//2*(b*c+-1*a*d)+12//11*b^2*d^-5*(c+d*x)^11//2*(b*c+-1*a*d)^2) @test integrate((a+b*x)^3*(c+d*x)^5//2, x) == :(-2//7*d^-4*(c+d*x)^7//2*(b*c+-1*a*d)^3+2//13*b^3*d^-4*(c+d*x)^13//2+-6//11*b^2*d^-4*(c+d*x)^11//2*(b*c+-1*a*d)+2//3*b*d^-4*(c+d*x)^9//2*(b*c+-1*a*d)^2) @test integrate((a+b*x)^2*(c+d*x)^5//2, x) == :(2//7*d^-3*(c+d*x)^7//2*(b*c+-1*a*d)^2+2//11*b^2*d^-3*(c+d*x)^11//2+-4//9*b*d^-3*(c+d*x)^9//2*(b*c+-1*a*d)) @test integrate((c+d*x)^5//2*(a+b*x), x) == :(-1//7*d^-2*(c+d*x)^7//2*(-2*a*d+2*b*c)+2//9*b*d^-2*(c+d*x)^9//2) @test integrate((c+d*x)^5//2, x) == :(2//7*d^-1*(c+d*x)^7//2) @test integrate((a+b*x)^-1*(c+d*x)^5//2, x) == :(2//5*b^-1*(c+d*x)^5//2+-2*b^-7//2*(b*c+-1*a*d)^5//2*arctanh(b^(1/2)*(c+d*x)^(1/2)*(b*c+-1*a*d)^-1//2)+2*b^-3*(c+d*x)^(1/2)*(b*c+-1*a*d)^2+1//3*b^-2*(c+d*x)^3//2*(-2*a*d+2*b*c)) @test integrate((a+b*x)^-2*(c+d*x)^5//2, x) == :(-1*b^-1*(a+b*x)^-1*(c+d*x)^5//2+5//3*d*b^-2*(c+d*x)^3//2+-5*d*b^-7//2*(b*c+-1*a*d)^3//2*arctanh(b^(1/2)*(c+d*x)^(1/2)*(b*c+-1*a*d)^-1//2)+5*d*b^-3*(c+d*x)^(1/2)*(b*c+-1*a*d)) @test integrate((a+b*x)^-3*(c+d*x)^5//2, x) == :(-1//2*b^-1*(a+b*x)^-2*(c+d*x)^5//2+15//4*b^-3*d^2*(c+d*x)^(1/2)+-15//4*b^-7//2*d^2*(b*c+-1*a*d)^(1/2)*arctanh(b^(1/2)*(c+d*x)^(1/2)*(b*c+-1*a*d)^-1//2)+-5//4*d*b^-2*(a+b*x)^-1*(c+d*x)^3//2) @test integrate((a+b*x)^-4*(c+d*x)^5//2, x) == :(-1//3*b^-1*(a+b*x)^-3*(c+d*x)^5//2+-5//8*b^-3*d^2*(a+b*x)^-1*(c+d*x)^(1/2)+-5//8*b^-7//2*d^3*(b*c+-1*a*d)^-1//2*arctanh(b^(1/2)*(c+d*x)^(1/2)*(b*c+-1*a*d)^-1//2)+-5//12*d*b^-2*(a+b*x)^-2*(c+d*x)^3//2) @test integrate((a+b*x)^-5*(c+d*x)^5//2, x) == :(-1//4*b^-1*(a+b*x)^-4*(c+d*x)^5//2+-5//24*d*b^-2*(a+b*x)^-3*(c+d*x)^3//2+-5//32*b^-3*d^2*(a+b*x)^-2*(c+d*x)^(1/2)+5//64*b^-7//2*d^4*(b*c+-1*a*d)^-3//2*arctanh(b^(1/2)*(c+d*x)^(1/2)*(b*c+-1*a*d)^-1//2)+-5//64*b^-3*d^3*(a+b*x)^-1*(c+d*x)^(1/2)*(b*c+-1*a*d)^-1) @test integrate((a+b*x)^-6*(c+d*x)^5//2, x) == :(-1//5*b^-1*(a+b*x)^-5*(c+d*x)^5//2+-3//128*b^-7//2*d^5*(b*c+-1*a*d)^-5//2*arctanh(b^(1/2)*(c+d*x)^(1/2)*(b*c+-1*a*d)^-1//2)+-1//8*d*b^-2*(a+b*x)^-4*(c+d*x)^3//2+-1//16*b^-3*d^2*(a+b*x)^-3*(c+d*x)^(1/2)+-1//64*b^-3*d^3*(a+b*x)^-2*(c+d*x)^(1/2)*(b*c+-1*a*d)^-1+3//128*b^-3*d^4*(a+b*x)^-1*(c+d*x)^(1/2)*(b*c+-1*a*d)^-2) @test integrate((1+x)^-2*(-1+x)^(1/2), x) == :((1/2)*2^(1/2)*arctan((1/2)*2^(1/2)*(-1+x)^(1/2))+-1*(1+x)^-1*(-1+x)^(1/2)) @test integrate((1+x)^-3*(-1+x)^(1/2), x) == :((-1+x)^(1/2)*(8+8x)^-1+-1//2*(1+x)^-2*(-1+x)^(1/2)+1//16*2^(1/2)*arctan((1/2)*2^(1/2)*(-1+x)^(1/2))) @test integrate((a+b*x)^5*(c+d*x)^-1//2, x) == :(-2*d^-6*(c+d*x)^(1/2)*(b*c+-1*a*d)^5+2//11*b^5*d^-6*(c+d*x)^11//2+-4*b^2*d^-6*(c+d*x)^5//2*(b*c+-1*a*d)^3+-10//9*b^4*d^-6*(c+d*x)^9//2*(b*c+-1*a*d)+10//3*b*d^-6*(c+d*x)^3//2*(b*c+-1*a*d)^4+20//7*b^3*d^-6*(c+d*x)^7//2*(b*c+-1*a*d)^2) @test integrate((a+b*x)^4*(c+d*x)^-1//2, x) == :(2*d^-5*(c+d*x)^(1/2)*(b*c+-1*a*d)^4+2//9*b^4*d^-5*(c+d*x)^9//2+-8//3*b*d^-5*(c+d*x)^3//2*(b*c+-1*a*d)^3+-8//7*b^3*d^-5*(c+d*x)^7//2*(b*c+-1*a*d)+12//5*b^2*d^-5*(c+d*x)^5//2*(b*c+-1*a*d)^2) @test integrate((a+b*x)^3*(c+d*x)^-1//2, x) == :(-2*d^-4*(c+d*x)^(1/2)*(b*c+-1*a*d)^3+2//7*b^3*d^-4*(c+d*x)^7//2+2*b*d^-4*(c+d*x)^3//2*(b*c+-1*a*d)^2+-6//5*b^2*d^-4*(c+d*x)^5//2*(b*c+-1*a*d)) @test integrate((a+b*x)^2*(c+d*x)^-1//2, x) == :(2*d^-3*(c+d*x)^(1/2)*(b*c+-1*a*d)^2+2//5*b^2*d^-3*(c+d*x)^5//2+-4//3*b*d^-3*(c+d*x)^3//2*(b*c+-1*a*d)) @test integrate((c+d*x)^-1//2*(a+b*x), x) == :(-1*d^-2*(c+d*x)^(1/2)*(-2*a*d+2*b*c)+2//3*b*d^-2*(c+d*x)^3//2) @test integrate((c+d*x)^-1//2, x) == :(2*d^-1*(c+d*x)^(1/2)) @test integrate((a+b*x)^-1*(c+d*x)^-1//2, x) == :(-2*b^-1//2*(b*c+-1*a*d)^-1//2*arctanh(b^(1/2)*(c+d*x)^(1/2)*(b*c+-1*a*d)^-1//2)) @test integrate((a+b*x)^-2*(c+d*x)^-1//2, x) == :(-1*(a+b*x)^-1*(c+d*x)^(1/2)*(b*c+-1*a*d)^-1+d*b^-1//2*(b*c+-1*a*d)^-3//2*arctanh(b^(1/2)*(c+d*x)^(1/2)*(b*c+-1*a*d)^-1//2)) @test integrate((a+b*x)^-3*(c+d*x)^-1//2, x) == :(-1*(a+b*x)^-2*(c+d*x)^(1/2)*(-2*a*d+2*b*c)^-1+-3//4*b^-1//2*d^2*(b*c+-1*a*d)^-5//2*arctanh(b^(1/2)*(c+d*x)^(1/2)*(b*c+-1*a*d)^-1//2)+3//4*d*(a+b*x)^-1*(c+d*x)^(1/2)*(b*c+-1*a*d)^-2) @test integrate((a+b*x)^-4*(c+d*x)^-1//2, x) == :(-1*(a+b*x)^-3*(c+d*x)^(1/2)*(-3*a*d+3*b*c)^-1+-5//8*d^2*(a+b*x)^-1*(c+d*x)^(1/2)*(b*c+-1*a*d)^-3+5//8*b^-1//2*d^3*(b*c+-1*a*d)^-7//2*arctanh(b^(1/2)*(c+d*x)^(1/2)*(b*c+-1*a*d)^-1//2)+5//12*d*(a+b*x)^-2*(c+d*x)^(1/2)*(b*c+-1*a*d)^-2) @test integrate((a+b*x)^-5*(c+d*x)^-1//2, x) == :(-1*(a+b*x)^-4*(c+d*x)^(1/2)*(-4*a*d+4*b*c)^-1+-35//64*b^-1//2*d^4*(b*c+-1*a*d)^-9//2*arctanh(b^(1/2)*(c+d*x)^(1/2)*(b*c+-1*a*d)^-1//2)+-35//96*d^2*(a+b*x)^-2*(c+d*x)^(1/2)*(b*c+-1*a*d)^-3+7//24*d*(a+b*x)^-3*(c+d*x)^(1/2)*(b*c+-1*a*d)^-2+35//64*d^3*(a+b*x)^-1*(c+d*x)^(1/2)*(b*c+-1*a*d)^-4) @test integrate((a+b*x)^5*(c+d*x)^-3//2, x) == :(2*d^-6*(c+d*x)^-1//2*(b*c+-1*a*d)^5+2//9*b^5*d^-6*(c+d*x)^9//2+4*b^3*d^-6*(c+d*x)^5//2*(b*c+-1*a*d)^2+10*b*d^-6*(c+d*x)^(1/2)*(b*c+-1*a*d)^4+-20//3*b^2*d^-6*(c+d*x)^3//2*(b*c+-1*a*d)^3+-10//7*b^4*d^-6*(c+d*x)^7//2*(b*c+-1*a*d)) @test integrate((a+b*x)^4*(c+d*x)^-3//2, x) == :(-2*d^-5*(c+d*x)^-1//2*(b*c+-1*a*d)^4+2//7*b^4*d^-5*(c+d*x)^7//2+-8*b*d^-5*(c+d*x)^(1/2)*(b*c+-1*a*d)^3+4*b^2*d^-5*(c+d*x)^3//2*(b*c+-1*a*d)^2+-8//5*b^3*d^-5*(c+d*x)^5//2*(b*c+-1*a*d)) @test integrate((a+b*x)^3*(c+d*x)^-3//2, x) == :(2*d^-4*(c+d*x)^-1//2*(b*c+-1*a*d)^3+2//5*b^3*d^-4*(c+d*x)^5//2+-2*b^2*d^-4*(c+d*x)^3//2*(b*c+-1*a*d)+6*b*d^-4*(c+d*x)^(1/2)*(b*c+-1*a*d)^2) @test integrate((a+b*x)^2*(c+d*x)^-3//2, x) == :(-2*d^-3*(c+d*x)^-1//2*(b*c+-1*a*d)^2+2//3*b^2*d^-3*(c+d*x)^3//2+-4*b*d^-3*(c+d*x)^(1/2)*(b*c+-1*a*d)) @test integrate((c+d*x)^-3//2*(a+b*x), x) == :(d^-2*(c+d*x)^-1//2*(-2*a*d+2*b*c)+2*b*d^-2*(c+d*x)^(1/2)) @test integrate((c+d*x)^-3//2, x) == :(-2*d^-1*(c+d*x)^-1//2) @test integrate((a+b*x)^-1*(c+d*x)^-3//2, x) == :(2*(c+d*x)^-1//2*(b*c+-1*a*d)^-1+-2*b^(1/2)*(b*c+-1*a*d)^-3//2*arctanh(b^(1/2)*(c+d*x)^(1/2)*(b*c+-1*a*d)^-1//2)) @test integrate((a+b*x)^-2*(c+d*x)^-3//2, x) == :(-1*(a+b*x)^-1*(c+d*x)^-1//2*(b*c+-1*a*d)^-1+-3*d*(c+d*x)^-1//2*(b*c+-1*a*d)^-2+3*d*b^(1/2)*(b*c+-1*a*d)^-5//2*arctanh(b^(1/2)*(c+d*x)^(1/2)*(b*c+-1*a*d)^-1//2)) @test integrate((a+b*x)^-3*(c+d*x)^-3//2, x) == :(-1*(a+b*x)^-2*(c+d*x)^-1//2*(-2*a*d+2*b*c)^-1+15//4*d^2*(c+d*x)^-1//2*(b*c+-1*a*d)^-3+-15//4*b^(1/2)*d^2*(b*c+-1*a*d)^-7//2*arctanh(b^(1/2)*(c+d*x)^(1/2)*(b*c+-1*a*d)^-1//2)+5//4*d*(a+b*x)^-1*(c+d*x)^-1//2*(b*c+-1*a*d)^-2) @test integrate((a+b*x)^-4*(c+d*x)^-3//2, x) == :(-1*(a+b*x)^-3*(c+d*x)^-1//2*(-3*a*d+3*b*c)^-1+-35//8*d^3*(c+d*x)^-1//2*(b*c+-1*a*d)^-4+-35//24*d^2*(a+b*x)^-1*(c+d*x)^-1//2*(b*c+-1*a*d)^-3+7//12*d*(a+b*x)^-2*(c+d*x)^-1//2*(b*c+-1*a*d)^-2+35//8*b^(1/2)*d^3*(b*c+-1*a*d)^-9//2*arctanh(b^(1/2)*(c+d*x)^(1/2)*(b*c+-1*a*d)^-1//2)) @test integrate((a+b*x)^5*(c+d*x)^-5//2, x) == :(2//3*d^-6*(c+d*x)^-3//2*(b*c+-1*a*d)^5+2//7*b^5*d^-6*(c+d*x)^7//2+-20*b^2*d^-6*(c+d*x)^(1/2)*(b*c+-1*a*d)^3+-10*b*d^-6*(c+d*x)^-1//2*(b*c+-1*a*d)^4+-2*b^4*d^-6*(c+d*x)^5//2*(b*c+-1*a*d)+20//3*b^3*d^-6*(c+d*x)^3//2*(b*c+-1*a*d)^2) @test integrate((a+b*x)^4*(c+d*x)^-5//2, x) == :(-2//3*d^-5*(c+d*x)^-3//2*(b*c+-1*a*d)^4+2//5*b^4*d^-5*(c+d*x)^5//2+8*b*d^-5*(c+d*x)^-1//2*(b*c+-1*a*d)^3+12*b^2*d^-5*(c+d*x)^(1/2)*(b*c+-1*a*d)^2+-8//3*b^3*d^-5*(c+d*x)^3//2*(b*c+-1*a*d)) @test integrate((a+b*x)^3*(c+d*x)^-5//2, x) == :(2//3*b^3*d^-4*(c+d*x)^3//2+2//3*d^-4*(c+d*x)^-3//2*(b*c+-1*a*d)^3+-6*b*d^-4*(c+d*x)^-1//2*(b*c+-1*a*d)^2+-6*b^2*d^-4*(c+d*x)^(1/2)*(b*c+-1*a*d)) @test integrate((a+b*x)^2*(c+d*x)^-5//2, x) == :(2*b^2*d^-3*(c+d*x)^(1/2)+-2//3*d^-3*(c+d*x)^-3//2*(b*c+-1*a*d)^2+4*b*d^-3*(c+d*x)^-1//2*(b*c+-1*a*d)) @test integrate((c+d*x)^-5//2*(a+b*x), x) == :(-2*b*d^-2*(c+d*x)^-1//2+1//3*d^-2*(c+d*x)^-3//2*(-2*a*d+2*b*c)) @test integrate((c+d*x)^-5//2, x) == :(-2//3*d^-1*(c+d*x)^-3//2) @test integrate((a+b*x)^-1*(c+d*x)^-5//2, x) == :(2*(c+d*x)^-3//2*(-3*a*d+3*b*c)^-1+-2*b^3//2*(b*c+-1*a*d)^-5//2*arctanh(b^(1/2)*(c+d*x)^(1/2)*(b*c+-1*a*d)^-1//2)+2*b*(c+d*x)^-1//2*(b*c+-1*a*d)^-2) @test integrate((a+b*x)^-2*(c+d*x)^-5//2, x) == :(-1*(a+b*x)^-1*(c+d*x)^-3//2*(b*c+-1*a*d)^-1+-5//3*d*(c+d*x)^-3//2*(b*c+-1*a*d)^-2+-5*b*d*(c+d*x)^-1//2*(b*c+-1*a*d)^-3+5*d*b^3//2*(b*c+-1*a*d)^-7//2*arctanh(b^(1/2)*(c+d*x)^(1/2)*(b*c+-1*a*d)^-1//2)) @test integrate((a+b*x)^-3*(c+d*x)^-5//2, x) == :(-1*(a+b*x)^-2*(c+d*x)^-3//2*(-2*a*d+2*b*c)^-1+35//12*d^2*(c+d*x)^-3//2*(b*c+-1*a*d)^-3+-35//4*b^3//2*d^2*(b*c+-1*a*d)^-9//2*arctanh(b^(1/2)*(c+d*x)^(1/2)*(b*c+-1*a*d)^-1//2)+7//4*d*(a+b*x)^-1*(c+d*x)^-3//2*(b*c+-1*a*d)^-2+35//4*b*d^2*(c+d*x)^-1//2*(b*c+-1*a*d)^-4) @test integrate((a+b*x)^-4*(c+d*x)^-5//2, x) == :(-1*(a+b*x)^-3*(c+d*x)^-3//2*(-3*a*d+3*b*c)^-1+-35//8*d^3*(c+d*x)^-3//2*(b*c+-1*a*d)^-4+-105//8*b*d^3*(c+d*x)^-1//2*(b*c+-1*a*d)^-5+-21//8*d^2*(a+b*x)^-1*(c+d*x)^-3//2*(b*c+-1*a*d)^-3+3//4*d*(a+b*x)^-2*(c+d*x)^-3//2*(b*c+-1*a*d)^-2+105//8*b^3//2*d^3*(b*c+-1*a*d)^-11//2*arctanh(b^(1/2)*(c+d*x)^(1/2)*(b*c+-1*a*d)^-1//2)) @test integrate((a+b*x)^5*(a*c+b*c*x)^3//2, x) == :(2//15*b^-1*c^-6*(a*c+b*c*x)^15//2) @test integrate((a+b*x)^5*(a*c+b*c*x)^(1/2), x) == :(2//13*b^-1*c^-6*(a*c+b*c*x)^13//2) @test integrate((a+b*x)^5*(a*c+b*c*x)^-1//2, x) == :(2//11*b^-1*c^-6*(a*c+b*c*x)^11//2) @test integrate((a+b*x)^5*(a*c+b*c*x)^-3//2, x) == :(2//9*b^-1*c^-6*(a*c+b*c*x)^9//2) @test integrate((a+b*x)^5*(a*c+b*c*x)^-5//2, x) == :(2//7*b^-1*c^-6*(a*c+b*c*x)^7//2) @test integrate((a+b*x)^5*(a*c+b*c*x)^-7//2, x) == :(2//5*b^-1*c^-6*(a*c+b*c*x)^5//2) @test integrate((a+b*x)^5*(a*c+b*c*x)^-9//2, x) == :(2//3*b^-1*c^-6*(a*c+b*c*x)^3//2) @test integrate((a+b*x)^5*(a*c+b*c*x)^-11//2, x) == :(2*b^-1*c^-6*(a*c+b*c*x)^(1/2)) @test integrate((a+b*x)^5*(a*c+b*c*x)^-13//2, x) == :(-2*b^-1*c^-6*(a*c+b*c*x)^-1//2) @test integrate((-2+x)^-1*(2+x)^-1//2, x) == :(-1*arctanh((1/2)*(2+x)^(1/2))) @test integrate((1+5x)^-1//2*(2+3x)^-1, x) == :(2//21*21^(1/2)*arctan(1//7*21^(1/2)*(1+5x)^(1/2))) @test integrate((1+x)^-1*(1+-1x)^1//3, x) == :(3*(1+-1x)^1//3+-1//2*2^1//3*log(1+x)+3//2*2^1//3*log(2^1//3+-1*(1+-1x)^1//3)+-1*2^1//3*3^(1/2)*arctan(1//3*3^(1/2)*(1+2^2//3*(1+-1x)^1//3))) @test integrate((3+-2x)^1//3*(7+x), x) == :(-51//16*(3+-2x)^4//3+3//28*(3+-2x)^7//3) @test integrate((1+x)^2*(1+-1x)^1//3, x) == :(-3*(1+-1x)^4//3+-3//10*(1+-1x)^10//3+12//7*(1+-1x)^7//3) @test integrate((a+b*x)^-1*(c+d*x)^-1//3, x) == :(-1//2*b^-2//3*(b*c+-1*a*d)^-1//3*log(a+b*x)+3//2*b^-2//3*(b*c+-1*a*d)^-1//3*log((b*c+-1*a*d)^1//3+-1*b^1//3*(c+d*x)^1//3)+3^(1/2)*b^-2//3*(b*c+-1*a*d)^-1//3*arctan(1//3*3^(1/2)*(1+2*b^1//3*(c+d*x)^1//3*(b*c+-1*a*d)^-1//3))) @test integrate((a+b*x)^-1*(c+d*x)^-2//3, x) == :(-1//2*b^-1//3*(b*c+-1*a*d)^-2//3*log(a+b*x)+3//2*b^-1//3*(b*c+-1*a*d)^-2//3*log((b*c+-1*a*d)^1//3+-1*b^1//3*(c+d*x)^1//3)+-1*3^(1/2)*b^-1//3*(b*c+-1*a*d)^-2//3*arctan(1//3*3^(1/2)*(1+2*b^1//3*(c+d*x)^1//3*(b*c+-1*a*d)^-1//3))) @test integrate((a+b*x)^7//2*(c+d*x)^(1/2), x) == :(1//5*b^-1*(a+b*x)^9//2*(c+d*x)^(1/2)+7//128*b^-3//2*d^-9//2*(b*c+-1*a*d)^5*arctanh(b^-1//2*d^(1/2)*(a+b*x)^(1/2)*(c+d*x)^-1//2)+-7//128*b^-1*d^-4*(a+b*x)^(1/2)*(c+d*x)^(1/2)*(b*c+-1*a*d)^4+-7//240*b^-1*d^-2*(a+b*x)^5//2*(c+d*x)^(1/2)*(b*c+-1*a*d)^2+1//40*b^-1*d^-1*(a+b*x)^7//2*(c+d*x)^(1/2)*(b*c+-1*a*d)+7//192*b^-1*d^-3*(a+b*x)^3//2*(c+d*x)^(1/2)*(b*c+-1*a*d)^3) @test integrate((a+b*x)^5//2*(c+d*x)^(1/2), x) == :(1//4*b^-1*(a+b*x)^7//2*(c+d*x)^(1/2)+-5//64*b^-3//2*d^-7//2*(b*c+-1*a*d)^4*arctanh(b^-1//2*d^(1/2)*(a+b*x)^(1/2)*(c+d*x)^-1//2)+-5//96*b^-1*d^-2*(a+b*x)^3//2*(c+d*x)^(1/2)*(b*c+-1*a*d)^2+1//24*b^-1*d^-1*(a+b*x)^5//2*(c+d*x)^(1/2)*(b*c+-1*a*d)+5//64*b^-1*d^-3*(a+b*x)^(1/2)*(c+d*x)^(1/2)*(b*c+-1*a*d)^3) @test integrate((a+b*x)^3//2*(c+d*x)^(1/2), x) == :(1//3*b^-1*(a+b*x)^5//2*(c+d*x)^(1/2)+1//8*b^-3//2*d^-5//2*(b*c+-1*a*d)^3*arctanh(b^-1//2*d^(1/2)*(a+b*x)^(1/2)*(c+d*x)^-1//2)+-1//8*b^-1*d^-2*(a+b*x)^(1/2)*(c+d*x)^(1/2)*(b*c+-1*a*d)^2+1//12*b^-1*d^-1*(a+b*x)^3//2*(c+d*x)^(1/2)*(b*c+-1*a*d)) @test integrate((a+b*x)^(1/2)*(c+d*x)^(1/2), x) == :((1/2)*b^-1*(a+b*x)^3//2*(c+d*x)^(1/2)+-1//4*b^-3//2*d^-3//2*(b*c+-1*a*d)^2*arctanh(b^-1//2*d^(1/2)*(a+b*x)^(1/2)*(c+d*x)^-1//2)+1//4*b^-1*d^-1*(a+b*x)^(1/2)*(c+d*x)^(1/2)*(b*c+-1*a*d)) @test integrate((a+b*x)^-1//2*(c+d*x)^(1/2), x) == :(b^-1*(a+b*x)^(1/2)*(c+d*x)^(1/2)+b^-3//2*d^-1//2*(b*c+-1*a*d)*arctanh(b^-1//2*d^(1/2)*(a+b*x)^(1/2)*(c+d*x)^-1//2)) @test integrate((a+b*x)^-3//2*(c+d*x)^(1/2), x) == :(-2*b^-1*(a+b*x)^-1//2*(c+d*x)^(1/2)+2*b^-3//2*d^(1/2)*arctanh(b^-1//2*d^(1/2)*(a+b*x)^(1/2)*(c+d*x)^-1//2)) @test integrate((a+b*x)^-5//2*(c+d*x)^(1/2), x) == :(-2*(a+b*x)^-3//2*(c+d*x)^3//2*(-3*a*d+3*b*c)^-1) @test integrate((a+b*x)^-7//2*(c+d*x)^(1/2), x) == :(-2*(a+b*x)^-5//2*(c+d*x)^3//2*(-5*a*d+5*b*c)^-1+4//15*d*(a+b*x)^-3//2*(c+d*x)^3//2*(b*c+-1*a*d)^-2) @test integrate((a+b*x)^-9//2*(c+d*x)^(1/2), x) == :(-2*(a+b*x)^-7//2*(c+d*x)^3//2*(-7*a*d+7*b*c)^-1+-16//105*d^2*(a+b*x)^-3//2*(c+d*x)^3//2*(b*c+-1*a*d)^-3+8//35*d*(a+b*x)^-5//2*(c+d*x)^3//2*(b*c+-1*a*d)^-2) @test integrate((a+b*x)^-11//2*(c+d*x)^(1/2), x) == :(-2*(a+b*x)^-9//2*(c+d*x)^3//2*(-9*a*d+9*b*c)^-1+-16//105*d^2*(a+b*x)^-5//2*(c+d*x)^3//2*(b*c+-1*a*d)^-3+4//21*d*(a+b*x)^-7//2*(c+d*x)^3//2*(b*c+-1*a*d)^-2+32//315*d^3*(a+b*x)^-3//2*(c+d*x)^3//2*(b*c+-1*a*d)^-4) @test integrate((a+b*x)^-13//2*(c+d*x)^(1/2), x) == :(-2*(a+b*x)^-11//2*(c+d*x)^3//2*(-11*a*d+11*b*c)^-1+-256//3465*d^4*(a+b*x)^-3//2*(c+d*x)^3//2*(b*c+-1*a*d)^-5+-32//231*d^2*(a+b*x)^-7//2*(c+d*x)^3//2*(b*c+-1*a*d)^-3+16//99*d*(a+b*x)^-9//2*(c+d*x)^3//2*(b*c+-1*a*d)^-2+128//1155*d^3*(a+b*x)^-5//2*(c+d*x)^3//2*(b*c+-1*a*d)^-4) @test integrate((a+b*x)^5//2*(c+d*x)^3//2, x) == :(1//5*b^-1*(a+b*x)^7//2*(c+d*x)^3//2+-3//128*b^-5//2*d^-7//2*(b*c+-1*a*d)^5*arctanh(b^-1//2*d^(1/2)*(a+b*x)^(1/2)*(c+d*x)^-1//2)+1//40*b^-2*(a+b*x)^7//2*(c+d*x)^(1/2)*(-3*a*d+3*b*c)+-1//64*b^-2*d^-2*(a+b*x)^3//2*(c+d*x)^(1/2)*(b*c+-1*a*d)^3+1//80*b^-2*d^-1*(a+b*x)^5//2*(c+d*x)^(1/2)*(b*c+-1*a*d)^2+3//128*b^-2*d^-3*(a+b*x)^(1/2)*(c+d*x)^(1/2)*(b*c+-1*a*d)^4) @test integrate((a+b*x)^3//2*(c+d*x)^3//2, x) == :(1//4*b^-1*(a+b*x)^5//2*(c+d*x)^3//2+1//8*b^-2*(a+b*x)^5//2*(c+d*x)^(1/2)*(b*c+-1*a*d)+3//64*b^-5//2*d^-5//2*(b*c+-1*a*d)^4*arctanh(b^-1//2*d^(1/2)*(a+b*x)^(1/2)*(c+d*x)^-1//2)+-3//64*b^-2*d^-2*(a+b*x)^(1/2)*(c+d*x)^(1/2)*(b*c+-1*a*d)^3+1//32*b^-2*d^-1*(a+b*x)^3//2*(c+d*x)^(1/2)*(b*c+-1*a*d)^2) @test integrate((a+b*x)^(1/2)*(c+d*x)^3//2, x) == :(1//3*b^-1*(a+b*x)^3//2*(c+d*x)^3//2+-1//8*b^-5//2*d^-3//2*(b*c+-1*a*d)^3*arctanh(b^-1//2*d^(1/2)*(a+b*x)^(1/2)*(c+d*x)^-1//2)+1//4*b^-2*(a+b*x)^3//2*(c+d*x)^(1/2)*(b*c+-1*a*d)+1//8*b^-2*d^-1*(a+b*x)^(1/2)*(c+d*x)^(1/2)*(b*c+-1*a*d)^2) @test integrate((a+b*x)^-1//2*(c+d*x)^3//2, x) == :((1/2)*b^-1*(a+b*x)^(1/2)*(c+d*x)^3//2+1//4*b^-2*(a+b*x)^(1/2)*(c+d*x)^(1/2)*(-3*a*d+3*b*c)+3//4*b^-5//2*d^-1//2*(b*c+-1*a*d)^2*arctanh(b^-1//2*d^(1/2)*(a+b*x)^(1/2)*(c+d*x)^-1//2)) @test integrate((a+b*x)^-3//2*(c+d*x)^3//2, x) == :(-2*b^-1*(a+b*x)^-1//2*(c+d*x)^3//2+3*d*b^-2*(a+b*x)^(1/2)*(c+d*x)^(1/2)+3*b^-5//2*d^(1/2)*(b*c+-1*a*d)*arctanh(b^-1//2*d^(1/2)*(a+b*x)^(1/2)*(c+d*x)^-1//2)) @test integrate((a+b*x)^-5//2*(c+d*x)^3//2, x) == :(2*b^-5//2*d^3//2*arctanh(b^-1//2*d^(1/2)*(a+b*x)^(1/2)*(c+d*x)^-1//2)+-2//3*b^-1*(a+b*x)^-3//2*(c+d*x)^3//2+-2*d*b^-2*(a+b*x)^-1//2*(c+d*x)^(1/2)) @test integrate((a+b*x)^-7//2*(c+d*x)^3//2, x) == :(-2*(a+b*x)^-5//2*(c+d*x)^5//2*(-5*a*d+5*b*c)^-1) @test integrate((a+b*x)^-9//2*(c+d*x)^3//2, x) == :(-2*(a+b*x)^-7//2*(c+d*x)^5//2*(-7*a*d+7*b*c)^-1+4//35*d*(a+b*x)^-5//2*(c+d*x)^5//2*(b*c+-1*a*d)^-2) @test integrate((a+b*x)^-11//2*(c+d*x)^3//2, x) == :(-2*(a+b*x)^-9//2*(c+d*x)^5//2*(-9*a*d+9*b*c)^-1+-16//315*d^2*(a+b*x)^-5//2*(c+d*x)^5//2*(b*c+-1*a*d)^-3+8//63*d*(a+b*x)^-7//2*(c+d*x)^5//2*(b*c+-1*a*d)^-2) @test integrate((a+b*x)^-13//2*(c+d*x)^3//2, x) == :(-2*(a+b*x)^-11//2*(c+d*x)^5//2*(-11*a*d+11*b*c)^-1+-16//231*d^2*(a+b*x)^-7//2*(c+d*x)^5//2*(b*c+-1*a*d)^-3+4//33*d*(a+b*x)^-9//2*(c+d*x)^5//2*(b*c+-1*a*d)^-2+32//1155*d^3*(a+b*x)^-5//2*(c+d*x)^5//2*(b*c+-1*a*d)^-4) @test integrate((a+b*x)^5//2*(c+d*x)^5//2, x) == :(1//6*b^-1*(a+b*x)^7//2*(c+d*x)^5//2+-5//512*b^-7//2*d^-7//2*(b*c+-1*a*d)^6*arctanh(b^-1//2*d^(1/2)*(a+b*x)^(1/2)*(c+d*x)^-1//2)+1//12*b^-2*(a+b*x)^7//2*(c+d*x)^3//2*(b*c+-1*a*d)+1//32*b^-3*(a+b*x)^7//2*(c+d*x)^(1/2)*(b*c+-1*a*d)^2+-5//768*b^-3*d^-2*(a+b*x)^3//2*(c+d*x)^(1/2)*(b*c+-1*a*d)^4+1//192*b^-3*d^-1*(a+b*x)^5//2*(c+d*x)^(1/2)*(b*c+-1*a*d)^3+5//512*b^-3*d^-3*(a+b*x)^(1/2)*(c+d*x)^(1/2)*(b*c+-1*a*d)^5) @test integrate((a+b*x)^3//2*(c+d*x)^5//2, x) == :(1//5*b^-1*(a+b*x)^5//2*(c+d*x)^5//2+1//8*b^-2*(a+b*x)^5//2*(c+d*x)^3//2*(b*c+-1*a*d)+1//16*b^-3*(a+b*x)^5//2*(c+d*x)^(1/2)*(b*c+-1*a*d)^2+3//128*b^-7//2*d^-5//2*(b*c+-1*a*d)^5*arctanh(b^-1//2*d^(1/2)*(a+b*x)^(1/2)*(c+d*x)^-1//2)+-3//128*b^-3*d^-2*(a+b*x)^(1/2)*(c+d*x)^(1/2)*(b*c+-1*a*d)^4+1//64*b^-3*d^-1*(a+b*x)^3//2*(c+d*x)^(1/2)*(b*c+-1*a*d)^3) @test integrate((a+b*x)^(1/2)*(c+d*x)^5//2, x) == :(1//4*b^-1*(a+b*x)^3//2*(c+d*x)^5//2+-5//64*b^-7//2*d^-3//2*(b*c+-1*a*d)^4*arctanh(b^-1//2*d^(1/2)*(a+b*x)^(1/2)*(c+d*x)^-1//2)+1//24*b^-2*(a+b*x)^3//2*(c+d*x)^3//2*(-5*a*d+5*b*c)+5//32*b^-3*(a+b*x)^3//2*(c+d*x)^(1/2)*(b*c+-1*a*d)^2+5//64*b^-3*d^-1*(a+b*x)^(1/2)*(c+d*x)^(1/2)*(b*c+-1*a*d)^3) @test integrate((a+b*x)^-1//2*(c+d*x)^5//2, x) == :(1//3*b^-1*(a+b*x)^(1/2)*(c+d*x)^5//2+1//12*b^-2*(a+b*x)^(1/2)*(c+d*x)^3//2*(-5*a*d+5*b*c)+5//8*b^-3*(a+b*x)^(1/2)*(c+d*x)^(1/2)*(b*c+-1*a*d)^2+5//8*b^-7//2*d^-1//2*(b*c+-1*a*d)^3*arctanh(b^-1//2*d^(1/2)*(a+b*x)^(1/2)*(c+d*x)^-1//2)) @test integrate((a+b*x)^-3//2*(c+d*x)^5//2, x) == :(-2*b^-1*(a+b*x)^-1//2*(c+d*x)^5//2+5//2*d*b^-2*(a+b*x)^(1/2)*(c+d*x)^3//2+15//4*b^-7//2*d^(1/2)*(b*c+-1*a*d)^2*arctanh(b^-1//2*d^(1/2)*(a+b*x)^(1/2)*(c+d*x)^-1//2)+15//4*d*b^-3*(a+b*x)^(1/2)*(c+d*x)^(1/2)*(b*c+-1*a*d)) @test integrate((a+b*x)^-5//2*(c+d*x)^5//2, x) == :(-2//3*b^-1*(a+b*x)^-3//2*(c+d*x)^5//2+5*b^-3*d^2*(a+b*x)^(1/2)*(c+d*x)^(1/2)+5*b^-7//2*d^3//2*(b*c+-1*a*d)*arctanh(b^-1//2*d^(1/2)*(a+b*x)^(1/2)*(c+d*x)^-1//2)+-10//3*d*b^-2*(a+b*x)^-1//2*(c+d*x)^3//2) @test integrate((a+b*x)^-7//2*(c+d*x)^5//2, x) == :(2*b^-7//2*d^5//2*arctanh(b^-1//2*d^(1/2)*(a+b*x)^(1/2)*(c+d*x)^-1//2)+-2//5*b^-1*(a+b*x)^-5//2*(c+d*x)^5//2+-2*b^-3*d^2*(a+b*x)^-1//2*(c+d*x)^(1/2)+-2//3*d*b^-2*(a+b*x)^-3//2*(c+d*x)^3//2) @test integrate((a+b*x)^-9//2*(c+d*x)^5//2, x) == :(-2*(a+b*x)^-7//2*(c+d*x)^7//2*(-7*a*d+7*b*c)^-1) @test integrate((a+b*x)^-11//2*(c+d*x)^5//2, x) == :(-2*(a+b*x)^-9//2*(c+d*x)^7//2*(-9*a*d+9*b*c)^-1+4//63*d*(a+b*x)^-7//2*(c+d*x)^7//2*(b*c+-1*a*d)^-2) @test integrate((a+b*x)^-13//2*(c+d*x)^5//2, x) == :(-2*(a+b*x)^-11//2*(c+d*x)^7//2*(-11*a*d+11*b*c)^-1+-16//693*d^2*(a+b*x)^-7//2*(c+d*x)^7//2*(b*c+-1*a*d)^-3+8//99*d*(a+b*x)^-9//2*(c+d*x)^7//2*(b*c+-1*a*d)^-2) @test integrate((a+b*x)^-15//2*(c+d*x)^5//2, x) == :(-2*(a+b*x)^-13//2*(c+d*x)^7//2*(-13*a*d+13*b*c)^-1+-16//429*d^2*(a+b*x)^-9//2*(c+d*x)^7//2*(b*c+-1*a*d)^-3+12//143*d*(a+b*x)^-11//2*(c+d*x)^7//2*(b*c+-1*a*d)^-2+32//3003*d^3*(a+b*x)^-7//2*(c+d*x)^7//2*(b*c+-1*a*d)^-4) @test integrate((a+b*x)^7//2*(c+d*x)^-1//2, x) == :(1//4*d^-1*(a+b*x)^7//2*(c+d*x)^(1/2)+-35//64*d^-4*(a+b*x)^(1/2)*(c+d*x)^(1/2)*(b*c+-1*a*d)^3+-1//24*d^-2*(a+b*x)^5//2*(c+d*x)^(1/2)*(-7*a*d+7*b*c)+35//64*b^-1//2*d^-9//2*(b*c+-1*a*d)^4*arctanh(b^-1//2*d^(1/2)*(a+b*x)^(1/2)*(c+d*x)^-1//2)+35//96*d^-3*(a+b*x)^3//2*(c+d*x)^(1/2)*(b*c+-1*a*d)^2) @test integrate((a+b*x)^5//2*(c+d*x)^-1//2, x) == :(1//3*d^-1*(a+b*x)^5//2*(c+d*x)^(1/2)+-5//8*b^-1//2*d^-7//2*(b*c+-1*a*d)^3*arctanh(b^-1//2*d^(1/2)*(a+b*x)^(1/2)*(c+d*x)^-1//2)+-1//12*d^-2*(a+b*x)^3//2*(c+d*x)^(1/2)*(-5*a*d+5*b*c)+5//8*d^-3*(a+b*x)^(1/2)*(c+d*x)^(1/2)*(b*c+-1*a*d)^2) @test integrate((a+b*x)^3//2*(c+d*x)^-1//2, x) == :((1/2)*d^-1*(a+b*x)^3//2*(c+d*x)^(1/2)+-1//4*d^-2*(a+b*x)^(1/2)*(c+d*x)^(1/2)*(-3*a*d+3*b*c)+3//4*b^-1//2*d^-5//2*(b*c+-1*a*d)^2*arctanh(b^-1//2*d^(1/2)*(a+b*x)^(1/2)*(c+d*x)^-1//2)) @test integrate((a+b*x)^(1/2)*(c+d*x)^-1//2, x) == :(d^-1*(a+b*x)^(1/2)*(c+d*x)^(1/2)+-1*b^-1//2*d^-3//2*(b*c+-1*a*d)*arctanh(b^-1//2*d^(1/2)*(a+b*x)^(1/2)*(c+d*x)^-1//2)) @test integrate((a+b*x)^-1//2*(c+d*x)^-1//2, x) == :(2*b^-1//2*d^-1//2*arctanh(b^-1//2*d^(1/2)*(a+b*x)^(1/2)*(c+d*x)^-1//2)) @test integrate((a+b*x)^-3//2*(c+d*x)^-1//2, x) == :(-2*(a+b*x)^-1//2*(c+d*x)^(1/2)*(b*c+-1*a*d)^-1) @test integrate((a+b*x)^-5//2*(c+d*x)^-1//2, x) == :(-2*(a+b*x)^-3//2*(c+d*x)^(1/2)*(-3*a*d+3*b*c)^-1+4//3*d*(a+b*x)^-1//2*(c+d*x)^(1/2)*(b*c+-1*a*d)^-2) @test integrate((a+b*x)^-7//2*(c+d*x)^-1//2, x) == :(-2*(a+b*x)^-5//2*(c+d*x)^(1/2)*(-5*a*d+5*b*c)^-1+-16//15*d^2*(a+b*x)^-1//2*(c+d*x)^(1/2)*(b*c+-1*a*d)^-3+8//15*d*(a+b*x)^-3//2*(c+d*x)^(1/2)*(b*c+-1*a*d)^-2) @test integrate((a+b*x)^-9//2*(c+d*x)^-1//2, x) == :(-2*(a+b*x)^-7//2*(c+d*x)^(1/2)*(-7*a*d+7*b*c)^-1+-16//35*d^2*(a+b*x)^-3//2*(c+d*x)^(1/2)*(b*c+-1*a*d)^-3+12//35*d*(a+b*x)^-5//2*(c+d*x)^(1/2)*(b*c+-1*a*d)^-2+32//35*d^3*(a+b*x)^-1//2*(c+d*x)^(1/2)*(b*c+-1*a*d)^-4) @test integrate((a+b*x)^-11//2*(c+d*x)^-1//2, x) == :(-2*(a+b*x)^-9//2*(c+d*x)^(1/2)*(-9*a*d+9*b*c)^-1+-256//315*d^4*(a+b*x)^-1//2*(c+d*x)^(1/2)*(b*c+-1*a*d)^-5+-32//105*d^2*(a+b*x)^-5//2*(c+d*x)^(1/2)*(b*c+-1*a*d)^-3+16//63*d*(a+b*x)^-7//2*(c+d*x)^(1/2)*(b*c+-1*a*d)^-2+128//315*d^3*(a+b*x)^-3//2*(c+d*x)^(1/2)*(b*c+-1*a*d)^-4) @test integrate((a+b*x)^7//2*(c+d*x)^-3//2, x) == :(-2*d^-1*(a+b*x)^7//2*(c+d*x)^-1//2+-35//8*b^(1/2)*d^-9//2*(b*c+-1*a*d)^3*arctanh(b^-1//2*d^(1/2)*(a+b*x)^(1/2)*(c+d*x)^-1//2)+7//3*b*d^-2*(a+b*x)^5//2*(c+d*x)^(1/2)+-35//12*b*d^-3*(a+b*x)^3//2*(c+d*x)^(1/2)*(b*c+-1*a*d)+35//8*b*d^-4*(a+b*x)^(1/2)*(c+d*x)^(1/2)*(b*c+-1*a*d)^2) @test integrate((a+b*x)^5//2*(c+d*x)^-3//2, x) == :(-2*d^-1*(a+b*x)^5//2*(c+d*x)^-1//2+5//2*b*d^-2*(a+b*x)^3//2*(c+d*x)^(1/2)+15//4*b^(1/2)*d^-7//2*(b*c+-1*a*d)^2*arctanh(b^-1//2*d^(1/2)*(a+b*x)^(1/2)*(c+d*x)^-1//2)+-15//4*b*d^-3*(a+b*x)^(1/2)*(c+d*x)^(1/2)*(b*c+-1*a*d)) @test integrate((a+b*x)^3//2*(c+d*x)^-3//2, x) == :(-2*d^-1*(a+b*x)^3//2*(c+d*x)^-1//2+-3*b^(1/2)*d^-5//2*(b*c+-1*a*d)*arctanh(b^-1//2*d^(1/2)*(a+b*x)^(1/2)*(c+d*x)^-1//2)+3*b*d^-2*(a+b*x)^(1/2)*(c+d*x)^(1/2)) @test integrate((a+b*x)^(1/2)*(c+d*x)^-3//2, x) == :(-2*d^-1*(a+b*x)^(1/2)*(c+d*x)^-1//2+2*b^(1/2)*d^-3//2*arctanh(b^-1//2*d^(1/2)*(a+b*x)^(1/2)*(c+d*x)^-1//2)) @test integrate((a+b*x)^-1//2*(c+d*x)^-3//2, x) == :(2*(a+b*x)^(1/2)*(c+d*x)^-1//2*(b*c+-1*a*d)^-1) @test integrate((a+b*x)^-3//2*(c+d*x)^-3//2, x) == :(-2*(a+b*x)^-1//2*(c+d*x)^-1//2*(b*c+-1*a*d)^-1+-4*d*(a+b*x)^(1/2)*(c+d*x)^-1//2*(b*c+-1*a*d)^-2) @test integrate((a+b*x)^-5//2*(c+d*x)^-3//2, x) == :(-2*(a+b*x)^-3//2*(c+d*x)^-1//2*(-3*a*d+3*b*c)^-1+8//3*d*(a+b*x)^-1//2*(c+d*x)^-1//2*(b*c+-1*a*d)^-2+16//3*d^2*(a+b*x)^(1/2)*(c+d*x)^-1//2*(b*c+-1*a*d)^-3) @test integrate((a+b*x)^-7//2*(c+d*x)^-3//2, x) == :(-2*(a+b*x)^-5//2*(c+d*x)^-1//2*(-5*a*d+5*b*c)^-1+-32//5*d^3*(a+b*x)^(1/2)*(c+d*x)^-1//2*(b*c+-1*a*d)^-4+-16//5*d^2*(a+b*x)^-1//2*(c+d*x)^-1//2*(b*c+-1*a*d)^-3+4//5*d*(a+b*x)^-3//2*(c+d*x)^-1//2*(b*c+-1*a*d)^-2) @test integrate((a+b*x)^-9//2*(c+d*x)^-3//2, x) == :(-2*(a+b*x)^-7//2*(c+d*x)^-1//2*(-7*a*d+7*b*c)^-1+-32//35*d^2*(a+b*x)^-3//2*(c+d*x)^-1//2*(b*c+-1*a*d)^-3+16//35*d*(a+b*x)^-5//2*(c+d*x)^-1//2*(b*c+-1*a*d)^-2+128//35*d^3*(a+b*x)^-1//2*(c+d*x)^-1//2*(b*c+-1*a*d)^-4+256//35*d^4*(a+b*x)^(1/2)*(c+d*x)^-1//2*(b*c+-1*a*d)^-5) @test integrate((a+b*x)^-11//2*(c+d*x)^-3//2, x) == :(-2*(a+b*x)^-9//2*(c+d*x)^-1//2*(-9*a*d+9*b*c)^-1+-512//63*d^5*(a+b*x)^(1/2)*(c+d*x)^-1//2*(b*c+-1*a*d)^-6+-256//63*d^4*(a+b*x)^-1//2*(c+d*x)^-1//2*(b*c+-1*a*d)^-5+-32//63*d^2*(a+b*x)^-5//2*(c+d*x)^-1//2*(b*c+-1*a*d)^-3+20//63*d*(a+b*x)^-7//2*(c+d*x)^-1//2*(b*c+-1*a*d)^-2+64//63*d^3*(a+b*x)^-3//2*(c+d*x)^-1//2*(b*c+-1*a*d)^-4) @test integrate((a+b*x)^9//2*(c+d*x)^-5//2, x) == :(-2//3*d^-1*(a+b*x)^9//2*(c+d*x)^-3//2+-6*b*d^-2*(a+b*x)^7//2*(c+d*x)^-1//2+7*b^2*d^-3*(a+b*x)^5//2*(c+d*x)^(1/2)+-105//8*b^3//2*d^-11//2*(b*c+-1*a*d)^3*arctanh(b^-1//2*d^(1/2)*(a+b*x)^(1/2)*(c+d*x)^-1//2)+-35//4*b^2*d^-4*(a+b*x)^3//2*(c+d*x)^(1/2)*(b*c+-1*a*d)+105//8*b^2*d^-5*(a+b*x)^(1/2)*(c+d*x)^(1/2)*(b*c+-1*a*d)^2) @test integrate((a+b*x)^7//2*(c+d*x)^-5//2, x) == :(-2//3*d^-1*(a+b*x)^7//2*(c+d*x)^-3//2+-14//3*b*d^-2*(a+b*x)^5//2*(c+d*x)^-1//2+35//4*b^3//2*d^-9//2*(b*c+-1*a*d)^2*arctanh(b^-1//2*d^(1/2)*(a+b*x)^(1/2)*(c+d*x)^-1//2)+35//6*b^2*d^-3*(a+b*x)^3//2*(c+d*x)^(1/2)+-35//4*b^2*d^-4*(a+b*x)^(1/2)*(c+d*x)^(1/2)*(b*c+-1*a*d)) @test integrate((a+b*x)^5//2*(c+d*x)^-5//2, x) == :(-2//3*d^-1*(a+b*x)^5//2*(c+d*x)^-3//2+-5*b^3//2*d^-7//2*(b*c+-1*a*d)*arctanh(b^-1//2*d^(1/2)*(a+b*x)^(1/2)*(c+d*x)^-1//2)+5*b^2*d^-3*(a+b*x)^(1/2)*(c+d*x)^(1/2)+-10//3*b*d^-2*(a+b*x)^3//2*(c+d*x)^-1//2) @test integrate((a+b*x)^3//2*(c+d*x)^-5//2, x) == :(2*b^3//2*d^-5//2*arctanh(b^-1//2*d^(1/2)*(a+b*x)^(1/2)*(c+d*x)^-1//2)+-2//3*d^-1*(a+b*x)^3//2*(c+d*x)^-3//2+-2*b*d^-2*(a+b*x)^(1/2)*(c+d*x)^-1//2) @test integrate((a+b*x)^(1/2)*(c+d*x)^-5//2, x) == :(2*(a+b*x)^3//2*(c+d*x)^-3//2*(-3*a*d+3*b*c)^-1) @test integrate((a+b*x)^-1//2*(c+d*x)^-5//2, x) == :(2*(a+b*x)^(1/2)*(c+d*x)^-3//2*(-3*a*d+3*b*c)^-1+4//3*b*(a+b*x)^(1/2)*(c+d*x)^-1//2*(b*c+-1*a*d)^-2) @test integrate((a+b*x)^-3//2*(c+d*x)^-5//2, x) == :(-2*(a+b*x)^-1//2*(c+d*x)^-3//2*(b*c+-1*a*d)^-1+-8//3*d*(a+b*x)^(1/2)*(c+d*x)^-3//2*(b*c+-1*a*d)^-2+-16//3*b*d*(a+b*x)^(1/2)*(c+d*x)^-1//2*(b*c+-1*a*d)^-3) @test integrate((a+b*x)^-5//2*(c+d*x)^-5//2, x) == :(-2*(a+b*x)^-3//2*(c+d*x)^-3//2*(-3*a*d+3*b*c)^-1+4*d*(a+b*x)^-1//2*(c+d*x)^-3//2*(b*c+-1*a*d)^-2+16//3*d^2*(a+b*x)^(1/2)*(c+d*x)^-3//2*(b*c+-1*a*d)^-3+32//3*b*d^2*(a+b*x)^(1/2)*(c+d*x)^-1//2*(b*c+-1*a*d)^-4) @test integrate((a+b*x)^-7//2*(c+d*x)^-5//2, x) == :(-2*(a+b*x)^-5//2*(c+d*x)^-3//2*(-5*a*d+5*b*c)^-1+-128//15*d^3*(a+b*x)^(1/2)*(c+d*x)^-3//2*(b*c+-1*a*d)^-4+-32//5*d^2*(a+b*x)^-1//2*(c+d*x)^-3//2*(b*c+-1*a*d)^-3+16//15*d*(a+b*x)^-3//2*(c+d*x)^-3//2*(b*c+-1*a*d)^-2+-256//15*b*d^3*(a+b*x)^(1/2)*(c+d*x)^-1//2*(b*c+-1*a*d)^-5) @test integrate((a+b*x)^-9//2*(c+d*x)^-5//2, x) == :(-2*(a+b*x)^-7//2*(c+d*x)^-3//2*(-7*a*d+7*b*c)^-1+-32//21*d^2*(a+b*x)^-3//2*(c+d*x)^-3//2*(b*c+-1*a*d)^-3+4//7*d*(a+b*x)^-5//2*(c+d*x)^-3//2*(b*c+-1*a*d)^-2+64//7*d^3*(a+b*x)^-1//2*(c+d*x)^-3//2*(b*c+-1*a*d)^-4+256//21*d^4*(a+b*x)^(1/2)*(c+d*x)^-3//2*(b*c+-1*a*d)^-5+512//21*b*d^4*(a+b*x)^(1/2)*(c+d*x)^-1//2*(b*c+-1*a*d)^-6) @test integrate((a+b*x)^-1//2*(4+a+b*x)^-1//2, x) == :(2*b^-1*arcsinh((1/2)*(a+b*x)^(1/2))) @test integrate((2+b*x)^-1//2*(6+b*x)^-1//2, x) == :(2*b^-1*arcsinh((1/2)*(2+b*x)^(1/2))) @test integrate((1+b*x)^-1//2*(5+b*x)^-1//2, x) == :(2*b^-1*arcsinh((1/2)*(1+b*x)^(1/2))) @test integrate((b*x)^-1//2*(4+b*x)^-1//2, x) == :(2*b^-1*arcsinh((1/2)*(b*x)^(1/2))) @test integrate((-1+b*x)^-1//2*(3+b*x)^-1//2, x) == :(2*b^-1*arcsinh((1/2)*(-1+b*x)^(1/2))) @test integrate((-2+b*x)^-1//2*(2+b*x)^-1//2, x) == :(b^-1*arccosh((1/2)*b*x)) @test integrate((1+b*x)^-1//2*(-3+b*x)^-1//2, x) == :(2*b^-1*arcsinh((1/2)*(-3+b*x)^(1/2))) @test integrate((2+b*x)^-1//2*(3+b*x)^-1//2, x) == :(2*b^-1*arcsinh((2+b*x)^(1/2))) @test integrate((2+b*x)^-1, x) == :(b^-1*log(2+b*x)) @test integrate((1+b*x)^-1//2*(2+b*x)^-1//2, x) == :(2*b^-1*arcsinh((1+b*x)^(1/2))) @test integrate((b*x)^-1//2*(2+b*x)^-1//2, x) == :(2*b^-1*arcsinh((1/2)*2^(1/2)*(b*x)^(1/2))) @test integrate((-1+b*x)^-1//2*(2+b*x)^-1//2, x) == :(2*b^-1*arcsinh(1//3*3^(1/2)*(-1+b*x)^(1/2))) @test integrate((-2+b*x)^-1//2*(2+b*x)^-1//2, x) == :(b^-1*arccosh((1/2)*b*x)) @test integrate((-3+b*x)^-1//2*(2+b*x)^-1//2, x) == :(2*b^-1*arcsinh(1//5*5^(1/2)*(-3+b*x)^(1/2))) @test integrate((2+b*x)^-1//2*(3+-1*b*x)^-1//2, x) == :(-1*b^-1*arcsin(1//5+-2//5*b*x)) @test integrate((2+b*x)^-1//2*(2+-1*b*x)^-1//2, x) == :(b^-1*arcsin((1/2)*b*x)) @test integrate((1+-1*b*x)^-1//2*(2+b*x)^-1//2, x) == :(-1*b^-1*arcsin(-1//3+-2//3*b*x)) @test integrate((-1*b*x)^-1//2*(2+b*x)^-1//2, x) == :(b^-1*arcsin(1+b*x)) @test integrate((-1+-1*b*x)^-1//2*(2+b*x)^-1//2, x) == :(b^-1*arcsin(3+2*b*x)) @test integrate((-2+-1*b*x)^-1//2*(2+b*x)^-1//2, x) == :(b^-1*(-2+-1*b*x)^-1//2*(2+b*x)^(1/2)*log(2+b*x)) @test integrate((-3+-1*b*x)^-1//2*(2+b*x)^-1//2, x) == :(-2*b^-1*arctan((-3+-1*b*x)^(1/2)*(2+b*x)^-1//2)) @test integrate((2+-1*b*x)^-1//2*(3+-1*b*x)^-1//2, x) == :(-2*b^-1*arcsinh((2+-1*b*x)^(1/2))) @test integrate((2+-1*b*x)^-1, x) == :(-1*b^-1*log(2+-1*b*x)) @test integrate((1+-1*b*x)^-1//2*(2+-1*b*x)^-1//2, x) == :(-2*b^-1*arcsinh((1+-1*b*x)^(1/2))) @test integrate((-1*b*x)^-1//2*(2+-1*b*x)^-1//2, x) == :(-2*b^-1*arcsinh((1/2)*2^(1/2)*(-1*b*x)^(1/2))) @test integrate((-1+-1*b*x)^-1//2*(2+-1*b*x)^-1//2, x) == :(-2*b^-1*arcsinh(1//3*3^(1/2)*(-1+-1*b*x)^(1/2))) @test integrate((-2+-1*b*x)^-1//2*(2+-1*b*x)^-1//2, x) == :(-1*b^-1*arccosh(-1//2*b*x)) @test integrate((-3+-1*b*x)^-1//2*(2+-1*b*x)^-1//2, x) == :(-2*b^-1*arcsinh(1//5*5^(1/2)*(-3+-1*b*x)^(1/2))) @test integrate((-4+b*x)^-1//2*(4+b*x)^-1//2, x) == :(b^-1*arccosh(1//4*b*x)) @test integrate((c+d*x)^-1//2*(b*x+d^-1*(-1b+b*c))^-1//2, x) == :(2*b^-1//2*d^-1//2*arcsinh(b^-1//2*d^(1/2)*(b*x+-1*b*d^-1*(1+-1c))^(1/2))) @test integrate(x^-1//2*(-3+2x)^-1//2, x) == :(2^(1/2)*arcsinh(1//3*3^(1/2)*(-3+2x)^(1/2))) @test integrate((-3+2x)^-1//2*(2+3x)^-1//2, x) == :(1//3*6^(1/2)*arcsinh(1//13*39^(1/2)*(-3+2x)^(1/2))) @test integrate((c+-1*d*x)^-1//2*(b*x+d^-1*(b+-1*b*c))^-1//2, x) == :(2*b^-1//2*d^-1//2*arcsin(b^-1//2*d^(1/2)*(b*x+b*d^-1*(1+-1c))^(1/2))) @test integrate(x^-1//2*(4+-1x)^-1//2, x) == :(-1*arcsin(1+-1//2*x)) @test integrate(x^-1//2*(3+-2x)^-1//2, x) == :(2^(1/2)*arcsin(1//3*6^(1/2)*x^(1/2))) @test integrate((3+-2x)^-1//2*(3+5x)^-1//2, x) == :(1//5*10^(1/2)*arcsin(1//21*42^(1/2)*(3+5x)^(1/2))) @test integrate((a+-1*b*x)^-1//2*(c+d*x)^-1//2, x) == :(-2*b^-1//2*d^-1//2*arctan(b^-1//2*d^(1/2)*(a+-1*b*x)^(1/2)*(c+d*x)^-1//2)) @test integrate((a+b*x)^3//2*(c+d*x)^1//3, x) == :(6//17*b^-1*(a+b*x)^5//2*(c+d*x)^1//3+-108//935*b^-1*d^-2*(a+b*x)^(1/2)*(c+d*x)^1//3*(b*c+-1*a*d)^2+1//187*b^-1*d^-1*(a+b*x)^3//2*(c+d*x)^1//3*(-12*a*d+12*b*c)+-108//935*3^3//4*b^-4//3*d^-3*(((b*c+-1*a*d)^1//3*(1+-1*3^(1/2))+-1*b^1//3*(c+d*x)^1//3)^-2*((b*c+-1*a*d)^2//3+b^2//3*(c+d*x)^2//3+b^1//3*(c+d*x)^1//3*(b*c+-1*a*d)^1//3))^(1/2)*(-1*(b*c+-1*a*d)^1//3*((b*c+-1*a*d)^1//3*(1+-1*3^(1/2))+-1*b^1//3*(c+d*x)^1//3)^-2*((b*c+-1*a*d)^1//3+-1*b^1//3*(c+d*x)^1//3))^-1//2*(2+-1*3^(1/2))^(1/2)*(a+b*x)^-1//2*(b*c+-1*a*d)^3*((b*c+-1*a*d)^1//3+-1*b^1//3*(c+d*x)^1//3)*Elliptic.F(arcsin(((b*c+-1*a*d)^1//3*(1+-1*3^(1/2))+-1*b^1//3*(c+d*x)^1//3)^-1*((b*c+-1*a*d)^1//3*(1+3^(1/2))+-1*b^1//3*(c+d*x)^1//3)),-7+4*3^(1/2))) @test integrate((a+b*x)^(1/2)*(c+d*x)^1//3, x) == :(6//11*b^-1*(a+b*x)^3//2*(c+d*x)^1//3+1//55*b^-1*d^-1*(a+b*x)^(1/2)*(c+d*x)^1//3*(-12*a*d+12*b*c)+12//55*3^3//4*b^-4//3*d^-2*(((b*c+-1*a*d)^1//3*(1+-1*3^(1/2))+-1*b^1//3*(c+d*x)^1//3)^-2*((b*c+-1*a*d)^2//3+b^2//3*(c+d*x)^2//3+b^1//3*(c+d*x)^1//3*(b*c+-1*a*d)^1//3))^(1/2)*(-1*(b*c+-1*a*d)^1//3*((b*c+-1*a*d)^1//3*(1+-1*3^(1/2))+-1*b^1//3*(c+d*x)^1//3)^-2*((b*c+-1*a*d)^1//3+-1*b^1//3*(c+d*x)^1//3))^-1//2*(2+-1*3^(1/2))^(1/2)*(a+b*x)^-1//2*(b*c+-1*a*d)^2*((b*c+-1*a*d)^1//3+-1*b^1//3*(c+d*x)^1//3)*Elliptic.F(arcsin(((b*c+-1*a*d)^1//3*(1+-1*3^(1/2))+-1*b^1//3*(c+d*x)^1//3)^-1*((b*c+-1*a*d)^1//3*(1+3^(1/2))+-1*b^1//3*(c+d*x)^1//3)),-7+4*3^(1/2))) @test integrate((a+b*x)^-1//2*(c+d*x)^1//3, x) == :(6//5*b^-1*(a+b*x)^(1/2)*(c+d*x)^1//3+-4//5*3^3//4*b^-4//3*d^-1*(((b*c+-1*a*d)^1//3*(1+-1*3^(1/2))+-1*b^1//3*(c+d*x)^1//3)^-2*((b*c+-1*a*d)^2//3+b^2//3*(c+d*x)^2//3+b^1//3*(c+d*x)^1//3*(b*c+-1*a*d)^1//3))^(1/2)*(-1*(b*c+-1*a*d)^1//3*((b*c+-1*a*d)^1//3*(1+-1*3^(1/2))+-1*b^1//3*(c+d*x)^1//3)^-2*((b*c+-1*a*d)^1//3+-1*b^1//3*(c+d*x)^1//3))^-1//2*(2+-1*3^(1/2))^(1/2)*(a+b*x)^-1//2*((b*c+-1*a*d)^1//3+-1*b^1//3*(c+d*x)^1//3)*(b*c+-1*a*d)*Elliptic.F(arcsin(((b*c+-1*a*d)^1//3*(1+-1*3^(1/2))+-1*b^1//3*(c+d*x)^1//3)^-1*((b*c+-1*a*d)^1//3*(1+3^(1/2))+-1*b^1//3*(c+d*x)^1//3)),-7+4*3^(1/2))) @test integrate((a+b*x)^-3//2*(c+d*x)^1//3, x) == :(-2*b^-1*(a+b*x)^-1//2*(c+d*x)^1//3+-4//3*3^3//4*b^-4//3*(((b*c+-1*a*d)^1//3*(1+-1*3^(1/2))+-1*b^1//3*(c+d*x)^1//3)^-2*((b*c+-1*a*d)^2//3+b^2//3*(c+d*x)^2//3+b^1//3*(c+d*x)^1//3*(b*c+-1*a*d)^1//3))^(1/2)*(-1*(b*c+-1*a*d)^1//3*((b*c+-1*a*d)^1//3*(1+-1*3^(1/2))+-1*b^1//3*(c+d*x)^1//3)^-2*((b*c+-1*a*d)^1//3+-1*b^1//3*(c+d*x)^1//3))^-1//2*(2+-1*3^(1/2))^(1/2)*(a+b*x)^-1//2*((b*c+-1*a*d)^1//3+-1*b^1//3*(c+d*x)^1//3)*Elliptic.F(arcsin(((b*c+-1*a*d)^1//3*(1+-1*3^(1/2))+-1*b^1//3*(c+d*x)^1//3)^-1*((b*c+-1*a*d)^1//3*(1+3^(1/2))+-1*b^1//3*(c+d*x)^1//3)),-7+4*3^(1/2))) @test integrate((a+b*x)^-5//2*(c+d*x)^1//3, x) == :(-2//3*b^-1*(a+b*x)^-3//2*(c+d*x)^1//3+-4//9*d*b^-1*(a+b*x)^-1//2*(c+d*x)^1//3*(b*c+-1*a*d)^-1+4//27*d*3^3//4*b^-4//3*(((b*c+-1*a*d)^1//3*(1+-1*3^(1/2))+-1*b^1//3*(c+d*x)^1//3)^-2*((b*c+-1*a*d)^2//3+b^2//3*(c+d*x)^2//3+b^1//3*(c+d*x)^1//3*(b*c+-1*a*d)^1//3))^(1/2)*(-1*(b*c+-1*a*d)^1//3*((b*c+-1*a*d)^1//3*(1+-1*3^(1/2))+-1*b^1//3*(c+d*x)^1//3)^-2*((b*c+-1*a*d)^1//3+-1*b^1//3*(c+d*x)^1//3))^-1//2*(2+-1*3^(1/2))^(1/2)*(a+b*x)^-1//2*(b*c+-1*a*d)^-1*((b*c+-1*a*d)^1//3+-1*b^1//3*(c+d*x)^1//3)*Elliptic.F(arcsin(((b*c+-1*a*d)^1//3*(1+-1*3^(1/2))+-1*b^1//3*(c+d*x)^1//3)^-1*((b*c+-1*a*d)^1//3*(1+3^(1/2))+-1*b^1//3*(c+d*x)^1//3)),-7+4*3^(1/2))) @test integrate((a+b*x)^-7//2*(c+d*x)^1//3, x) == :(-2//5*b^-1*(a+b*x)^-5//2*(c+d*x)^1//3+-4//45*d*b^-1*(a+b*x)^-3//2*(c+d*x)^1//3*(b*c+-1*a*d)^-1+28//135*b^-1*d^2*(a+b*x)^-1//2*(c+d*x)^1//3*(b*c+-1*a*d)^-2+-28//405*3^3//4*b^-4//3*d^2*(((b*c+-1*a*d)^1//3*(1+-1*3^(1/2))+-1*b^1//3*(c+d*x)^1//3)^-2*((b*c+-1*a*d)^2//3+b^2//3*(c+d*x)^2//3+b^1//3*(c+d*x)^1//3*(b*c+-1*a*d)^1//3))^(1/2)*(-1*(b*c+-1*a*d)^1//3*((b*c+-1*a*d)^1//3*(1+-1*3^(1/2))+-1*b^1//3*(c+d*x)^1//3)^-2*((b*c+-1*a*d)^1//3+-1*b^1//3*(c+d*x)^1//3))^-1//2*(2+-1*3^(1/2))^(1/2)*(a+b*x)^-1//2*(b*c+-1*a*d)^-2*((b*c+-1*a*d)^1//3+-1*b^1//3*(c+d*x)^1//3)*Elliptic.F(arcsin(((b*c+-1*a*d)^1//3*(1+-1*3^(1/2))+-1*b^1//3*(c+d*x)^1//3)^-1*((b*c+-1*a*d)^1//3*(1+3^(1/2))+-1*b^1//3*(c+d*x)^1//3)),-7+4*3^(1/2))) @test integrate((a+b*x)^3//2*(c+d*x)^-1//3, x) == :(6//13*d^-1*(a+b*x)^3//2*(c+d*x)^2//3+-1//91*d^-2*(a+b*x)^(1/2)*(c+d*x)^2//3*(-54*a*d+54*b*c)+-162//91*b^-2//3*d^-2*(a+b*x)^(1/2)*(b*c+-1*a*d)^2*((b*c+-1*a*d)^1//3*(1+-1*3^(1/2))+-1*b^1//3*(c+d*x)^1//3)^-1+-54//91*2^(1/2)*3^3//4*b^-2//3*d^-3*(((b*c+-1*a*d)^1//3*(1+-1*3^(1/2))+-1*b^1//3*(c+d*x)^1//3)^-2*((b*c+-1*a*d)^2//3+b^2//3*(c+d*x)^2//3+b^1//3*(c+d*x)^1//3*(b*c+-1*a*d)^1//3))^(1/2)*(-1*(b*c+-1*a*d)^1//3*((b*c+-1*a*d)^1//3*(1+-1*3^(1/2))+-1*b^1//3*(c+d*x)^1//3)^-2*((b*c+-1*a*d)^1//3+-1*b^1//3*(c+d*x)^1//3))^-1//2*(a+b*x)^-1//2*(b*c+-1*a*d)^7//3*((b*c+-1*a*d)^1//3+-1*b^1//3*(c+d*x)^1//3)*Elliptic.F(arcsin(((b*c+-1*a*d)^1//3*(1+-1*3^(1/2))+-1*b^1//3*(c+d*x)^1//3)^-1*((b*c+-1*a*d)^1//3*(1+3^(1/2))+-1*b^1//3*(c+d*x)^1//3)),-7+4*3^(1/2))+81//91*3^1//4*b^-2//3*d^-3*(((b*c+-1*a*d)^1//3*(1+-1*3^(1/2))+-1*b^1//3*(c+d*x)^1//3)^-2*((b*c+-1*a*d)^2//3+b^2//3*(c+d*x)^2//3+b^1//3*(c+d*x)^1//3*(b*c+-1*a*d)^1//3))^(1/2)*(-1*(b*c+-1*a*d)^1//3*((b*c+-1*a*d)^1//3*(1+-1*3^(1/2))+-1*b^1//3*(c+d*x)^1//3)^-2*((b*c+-1*a*d)^1//3+-1*b^1//3*(c+d*x)^1//3))^-1//2*(2+3^(1/2))^(1/2)*(a+b*x)^-1//2*(b*c+-1*a*d)^7//3*((b*c+-1*a*d)^1//3+-1*b^1//3*(c+d*x)^1//3)*Elliptic.E(arcsin(((b*c+-1*a*d)^1//3*(1+-1*3^(1/2))+-1*b^1//3*(c+d*x)^1//3)^-1*((b*c+-1*a*d)^1//3*(1+3^(1/2))+-1*b^1//3*(c+d*x)^1//3)),-7+4*3^(1/2))) @test integrate((a+b*x)^(1/2)*(c+d*x)^-1//3, x) == :(6//7*d^-1*(a+b*x)^(1/2)*(c+d*x)^2//3+1//7*b^-2//3*d^-1*(a+b*x)^(1/2)*((b*c+-1*a*d)^1//3*(1+-1*3^(1/2))+-1*b^1//3*(c+d*x)^1//3)^-1*(-18*a*d+18*b*c)+-9//7*3^1//4*b^-2//3*d^-2*(((b*c+-1*a*d)^1//3*(1+-1*3^(1/2))+-1*b^1//3*(c+d*x)^1//3)^-2*((b*c+-1*a*d)^2//3+b^2//3*(c+d*x)^2//3+b^1//3*(c+d*x)^1//3*(b*c+-1*a*d)^1//3))^(1/2)*(-1*(b*c+-1*a*d)^1//3*((b*c+-1*a*d)^1//3*(1+-1*3^(1/2))+-1*b^1//3*(c+d*x)^1//3)^-2*((b*c+-1*a*d)^1//3+-1*b^1//3*(c+d*x)^1//3))^-1//2*(2+3^(1/2))^(1/2)*(a+b*x)^-1//2*(b*c+-1*a*d)^4//3*((b*c+-1*a*d)^1//3+-1*b^1//3*(c+d*x)^1//3)*Elliptic.E(arcsin(((b*c+-1*a*d)^1//3*(1+-1*3^(1/2))+-1*b^1//3*(c+d*x)^1//3)^-1*((b*c+-1*a*d)^1//3*(1+3^(1/2))+-1*b^1//3*(c+d*x)^1//3)),-7+4*3^(1/2))+6//7*2^(1/2)*3^3//4*b^-2//3*d^-2*(((b*c+-1*a*d)^1//3*(1+-1*3^(1/2))+-1*b^1//3*(c+d*x)^1//3)^-2*((b*c+-1*a*d)^2//3+b^2//3*(c+d*x)^2//3+b^1//3*(c+d*x)^1//3*(b*c+-1*a*d)^1//3))^(1/2)*(-1*(b*c+-1*a*d)^1//3*((b*c+-1*a*d)^1//3*(1+-1*3^(1/2))+-1*b^1//3*(c+d*x)^1//3)^-2*((b*c+-1*a*d)^1//3+-1*b^1//3*(c+d*x)^1//3))^-1//2*(a+b*x)^-1//2*(b*c+-1*a*d)^4//3*((b*c+-1*a*d)^1//3+-1*b^1//3*(c+d*x)^1//3)*Elliptic.F(arcsin(((b*c+-1*a*d)^1//3*(1+-1*3^(1/2))+-1*b^1//3*(c+d*x)^1//3)^-1*((b*c+-1*a*d)^1//3*(1+3^(1/2))+-1*b^1//3*(c+d*x)^1//3)),-7+4*3^(1/2))) @test integrate((a+b*x)^-1//2*(c+d*x)^-1//3, x) == :(-6*b^-2//3*(a+b*x)^(1/2)*((b*c+-1*a*d)^1//3*(1+-1*3^(1/2))+-1*b^1//3*(c+d*x)^1//3)^-1+-2*2^(1/2)*3^3//4*b^-2//3*d^-1*(((b*c+-1*a*d)^1//3*(1+-1*3^(1/2))+-1*b^1//3*(c+d*x)^1//3)^-2*((b*c+-1*a*d)^2//3+b^2//3*(c+d*x)^2//3+b^1//3*(c+d*x)^1//3*(b*c+-1*a*d)^1//3))^(1/2)*(-1*(b*c+-1*a*d)^1//3*((b*c+-1*a*d)^1//3*(1+-1*3^(1/2))+-1*b^1//3*(c+d*x)^1//3)^-2*((b*c+-1*a*d)^1//3+-1*b^1//3*(c+d*x)^1//3))^-1//2*(a+b*x)^-1//2*(b*c+-1*a*d)^1//3*((b*c+-1*a*d)^1//3+-1*b^1//3*(c+d*x)^1//3)*Elliptic.F(arcsin(((b*c+-1*a*d)^1//3*(1+-1*3^(1/2))+-1*b^1//3*(c+d*x)^1//3)^-1*((b*c+-1*a*d)^1//3*(1+3^(1/2))+-1*b^1//3*(c+d*x)^1//3)),-7+4*3^(1/2))+3*3^1//4*b^-2//3*d^-1*(((b*c+-1*a*d)^1//3*(1+-1*3^(1/2))+-1*b^1//3*(c+d*x)^1//3)^-2*((b*c+-1*a*d)^2//3+b^2//3*(c+d*x)^2//3+b^1//3*(c+d*x)^1//3*(b*c+-1*a*d)^1//3))^(1/2)*(-1*(b*c+-1*a*d)^1//3*((b*c+-1*a*d)^1//3*(1+-1*3^(1/2))+-1*b^1//3*(c+d*x)^1//3)^-2*((b*c+-1*a*d)^1//3+-1*b^1//3*(c+d*x)^1//3))^-1//2*(2+3^(1/2))^(1/2)*(a+b*x)^-1//2*(b*c+-1*a*d)^1//3*((b*c+-1*a*d)^1//3+-1*b^1//3*(c+d*x)^1//3)*Elliptic.E(arcsin(((b*c+-1*a*d)^1//3*(1+-1*3^(1/2))+-1*b^1//3*(c+d*x)^1//3)^-1*((b*c+-1*a*d)^1//3*(1+3^(1/2))+-1*b^1//3*(c+d*x)^1//3)),-7+4*3^(1/2))) @test integrate((a+b*x)^-3//2*(c+d*x)^-1//3, x) == :(-2*(a+b*x)^-1//2*(c+d*x)^2//3*(b*c+-1*a*d)^-1+-2*d*b^-2//3*(a+b*x)^(1/2)*(b*c+-1*a*d)^-1*((b*c+-1*a*d)^1//3*(1+-1*3^(1/2))+-1*b^1//3*(c+d*x)^1//3)^-1+3^1//4*b^-2//3*(((b*c+-1*a*d)^1//3*(1+-1*3^(1/2))+-1*b^1//3*(c+d*x)^1//3)^-2*((b*c+-1*a*d)^2//3+b^2//3*(c+d*x)^2//3+b^1//3*(c+d*x)^1//3*(b*c+-1*a*d)^1//3))^(1/2)*(-1*(b*c+-1*a*d)^1//3*((b*c+-1*a*d)^1//3*(1+-1*3^(1/2))+-1*b^1//3*(c+d*x)^1//3)^-2*((b*c+-1*a*d)^1//3+-1*b^1//3*(c+d*x)^1//3))^-1//2*(2+3^(1/2))^(1/2)*(a+b*x)^-1//2*(b*c+-1*a*d)^-2//3*((b*c+-1*a*d)^1//3+-1*b^1//3*(c+d*x)^1//3)*Elliptic.E(arcsin(((b*c+-1*a*d)^1//3*(1+-1*3^(1/2))+-1*b^1//3*(c+d*x)^1//3)^-1*((b*c+-1*a*d)^1//3*(1+3^(1/2))+-1*b^1//3*(c+d*x)^1//3)),-7+4*3^(1/2))+-2//3*2^(1/2)*3^3//4*b^-2//3*(((b*c+-1*a*d)^1//3*(1+-1*3^(1/2))+-1*b^1//3*(c+d*x)^1//3)^-2*((b*c+-1*a*d)^2//3+b^2//3*(c+d*x)^2//3+b^1//3*(c+d*x)^1//3*(b*c+-1*a*d)^1//3))^(1/2)*(-1*(b*c+-1*a*d)^1//3*((b*c+-1*a*d)^1//3*(1+-1*3^(1/2))+-1*b^1//3*(c+d*x)^1//3)^-2*((b*c+-1*a*d)^1//3+-1*b^1//3*(c+d*x)^1//3))^-1//2*(a+b*x)^-1//2*(b*c+-1*a*d)^-2//3*((b*c+-1*a*d)^1//3+-1*b^1//3*(c+d*x)^1//3)*Elliptic.F(arcsin(((b*c+-1*a*d)^1//3*(1+-1*3^(1/2))+-1*b^1//3*(c+d*x)^1//3)^-1*((b*c+-1*a*d)^1//3*(1+3^(1/2))+-1*b^1//3*(c+d*x)^1//3)),-7+4*3^(1/2))) @test integrate((a+b*x)^-5//2*(c+d*x)^-1//3, x) == :(-2*(a+b*x)^-3//2*(c+d*x)^2//3*(-3*a*d+3*b*c)^-1+10//9*d*(a+b*x)^-1//2*(c+d*x)^2//3*(b*c+-1*a*d)^-2+10//9*b^-2//3*d^2*(a+b*x)^(1/2)*(b*c+-1*a*d)^-2*((b*c+-1*a*d)^1//3*(1+-1*3^(1/2))+-1*b^1//3*(c+d*x)^1//3)^-1+-5//9*d*3^1//4*b^-2//3*(((b*c+-1*a*d)^1//3*(1+-1*3^(1/2))+-1*b^1//3*(c+d*x)^1//3)^-2*((b*c+-1*a*d)^2//3+b^2//3*(c+d*x)^2//3+b^1//3*(c+d*x)^1//3*(b*c+-1*a*d)^1//3))^(1/2)*(-1*(b*c+-1*a*d)^1//3*((b*c+-1*a*d)^1//3*(1+-1*3^(1/2))+-1*b^1//3*(c+d*x)^1//3)^-2*((b*c+-1*a*d)^1//3+-1*b^1//3*(c+d*x)^1//3))^-1//2*(2+3^(1/2))^(1/2)*(a+b*x)^-1//2*(b*c+-1*a*d)^-5//3*((b*c+-1*a*d)^1//3+-1*b^1//3*(c+d*x)^1//3)*Elliptic.E(arcsin(((b*c+-1*a*d)^1//3*(1+-1*3^(1/2))+-1*b^1//3*(c+d*x)^1//3)^-1*((b*c+-1*a*d)^1//3*(1+3^(1/2))+-1*b^1//3*(c+d*x)^1//3)),-7+4*3^(1/2))+10//27*d*2^(1/2)*3^3//4*b^-2//3*(((b*c+-1*a*d)^1//3*(1+-1*3^(1/2))+-1*b^1//3*(c+d*x)^1//3)^-2*((b*c+-1*a*d)^2//3+b^2//3*(c+d*x)^2//3+b^1//3*(c+d*x)^1//3*(b*c+-1*a*d)^1//3))^(1/2)*(-1*(b*c+-1*a*d)^1//3*((b*c+-1*a*d)^1//3*(1+-1*3^(1/2))+-1*b^1//3*(c+d*x)^1//3)^-2*((b*c+-1*a*d)^1//3+-1*b^1//3*(c+d*x)^1//3))^-1//2*(a+b*x)^-1//2*(b*c+-1*a*d)^-5//3*((b*c+-1*a*d)^1//3+-1*b^1//3*(c+d*x)^1//3)*Elliptic.F(arcsin(((b*c+-1*a*d)^1//3*(1+-1*3^(1/2))+-1*b^1//3*(c+d*x)^1//3)^-1*((b*c+-1*a*d)^1//3*(1+3^(1/2))+-1*b^1//3*(c+d*x)^1//3)),-7+4*3^(1/2))) @test integrate((a+b*x)^3//2*(c+d*x)^-2//3, x) == :(6//11*d^-1*(a+b*x)^3//2*(c+d*x)^1//3+-1//55*d^-2*(a+b*x)^(1/2)*(c+d*x)^1//3*(-54*a*d+54*b*c)+-54//55*3^3//4*b^-1//3*d^-3*(((b*c+-1*a*d)^1//3*(1+-1*3^(1/2))+-1*b^1//3*(c+d*x)^1//3)^-2*((b*c+-1*a*d)^2//3+b^2//3*(c+d*x)^2//3+b^1//3*(c+d*x)^1//3*(b*c+-1*a*d)^1//3))^(1/2)*(-1*(b*c+-1*a*d)^1//3*((b*c+-1*a*d)^1//3*(1+-1*3^(1/2))+-1*b^1//3*(c+d*x)^1//3)^-2*((b*c+-1*a*d)^1//3+-1*b^1//3*(c+d*x)^1//3))^-1//2*(2+-1*3^(1/2))^(1/2)*(a+b*x)^-1//2*(b*c+-1*a*d)^2*((b*c+-1*a*d)^1//3+-1*b^1//3*(c+d*x)^1//3)*Elliptic.F(arcsin(((b*c+-1*a*d)^1//3*(1+-1*3^(1/2))+-1*b^1//3*(c+d*x)^1//3)^-1*((b*c+-1*a*d)^1//3*(1+3^(1/2))+-1*b^1//3*(c+d*x)^1//3)),-7+4*3^(1/2))) @test integrate((a+b*x)^(1/2)*(c+d*x)^-2//3, x) == :(6//5*d^-1*(a+b*x)^(1/2)*(c+d*x)^1//3+6//5*3^3//4*b^-1//3*d^-2*(((b*c+-1*a*d)^1//3*(1+-1*3^(1/2))+-1*b^1//3*(c+d*x)^1//3)^-2*((b*c+-1*a*d)^2//3+b^2//3*(c+d*x)^2//3+b^1//3*(c+d*x)^1//3*(b*c+-1*a*d)^1//3))^(1/2)*(-1*(b*c+-1*a*d)^1//3*((b*c+-1*a*d)^1//3*(1+-1*3^(1/2))+-1*b^1//3*(c+d*x)^1//3)^-2*((b*c+-1*a*d)^1//3+-1*b^1//3*(c+d*x)^1//3))^-1//2*(2+-1*3^(1/2))^(1/2)*(a+b*x)^-1//2*((b*c+-1*a*d)^1//3+-1*b^1//3*(c+d*x)^1//3)*(b*c+-1*a*d)*Elliptic.F(arcsin(((b*c+-1*a*d)^1//3*(1+-1*3^(1/2))+-1*b^1//3*(c+d*x)^1//3)^-1*((b*c+-1*a*d)^1//3*(1+3^(1/2))+-1*b^1//3*(c+d*x)^1//3)),-7+4*3^(1/2))) @test integrate((a+b*x)^-1//2*(c+d*x)^-2//3, x) == :(-2*3^3//4*b^-1//3*d^-1*(((b*c+-1*a*d)^1//3*(1+-1*3^(1/2))+-1*b^1//3*(c+d*x)^1//3)^-2*((b*c+-1*a*d)^2//3+b^2//3*(c+d*x)^2//3+b^1//3*(c+d*x)^1//3*(b*c+-1*a*d)^1//3))^(1/2)*(-1*(b*c+-1*a*d)^1//3*((b*c+-1*a*d)^1//3*(1+-1*3^(1/2))+-1*b^1//3*(c+d*x)^1//3)^-2*((b*c+-1*a*d)^1//3+-1*b^1//3*(c+d*x)^1//3))^-1//2*(2+-1*3^(1/2))^(1/2)*(a+b*x)^-1//2*((b*c+-1*a*d)^1//3+-1*b^1//3*(c+d*x)^1//3)*Elliptic.F(arcsin(((b*c+-1*a*d)^1//3*(1+-1*3^(1/2))+-1*b^1//3*(c+d*x)^1//3)^-1*((b*c+-1*a*d)^1//3*(1+3^(1/2))+-1*b^1//3*(c+d*x)^1//3)),-7+4*3^(1/2))) @test integrate((a+b*x)^-3//2*(c+d*x)^-2//3, x) == :(-2*(a+b*x)^-1//2*(c+d*x)^1//3*(b*c+-1*a*d)^-1+2//3*3^3//4*b^-1//3*(((b*c+-1*a*d)^1//3*(1+-1*3^(1/2))+-1*b^1//3*(c+d*x)^1//3)^-2*((b*c+-1*a*d)^2//3+b^2//3*(c+d*x)^2//3+b^1//3*(c+d*x)^1//3*(b*c+-1*a*d)^1//3))^(1/2)*(-1*(b*c+-1*a*d)^1//3*((b*c+-1*a*d)^1//3*(1+-1*3^(1/2))+-1*b^1//3*(c+d*x)^1//3)^-2*((b*c+-1*a*d)^1//3+-1*b^1//3*(c+d*x)^1//3))^-1//2*(2+-1*3^(1/2))^(1/2)*(a+b*x)^-1//2*(b*c+-1*a*d)^-1*((b*c+-1*a*d)^1//3+-1*b^1//3*(c+d*x)^1//3)*Elliptic.F(arcsin(((b*c+-1*a*d)^1//3*(1+-1*3^(1/2))+-1*b^1//3*(c+d*x)^1//3)^-1*((b*c+-1*a*d)^1//3*(1+3^(1/2))+-1*b^1//3*(c+d*x)^1//3)),-7+4*3^(1/2))) @test integrate((a+b*x)^-5//2*(c+d*x)^-2//3, x) == :(-2*(a+b*x)^-3//2*(c+d*x)^1//3*(-3*a*d+3*b*c)^-1+14//9*d*(a+b*x)^-1//2*(c+d*x)^1//3*(b*c+-1*a*d)^-2+-14//27*d*3^3//4*b^-1//3*(((b*c+-1*a*d)^1//3*(1+-1*3^(1/2))+-1*b^1//3*(c+d*x)^1//3)^-2*((b*c+-1*a*d)^2//3+b^2//3*(c+d*x)^2//3+b^1//3*(c+d*x)^1//3*(b*c+-1*a*d)^1//3))^(1/2)*(-1*(b*c+-1*a*d)^1//3*((b*c+-1*a*d)^1//3*(1+-1*3^(1/2))+-1*b^1//3*(c+d*x)^1//3)^-2*((b*c+-1*a*d)^1//3+-1*b^1//3*(c+d*x)^1//3))^-1//2*(2+-1*3^(1/2))^(1/2)*(a+b*x)^-1//2*(b*c+-1*a*d)^-2*((b*c+-1*a*d)^1//3+-1*b^1//3*(c+d*x)^1//3)*Elliptic.F(arcsin(((b*c+-1*a*d)^1//3*(1+-1*3^(1/2))+-1*b^1//3*(c+d*x)^1//3)^-1*((b*c+-1*a*d)^1//3*(1+3^(1/2))+-1*b^1//3*(c+d*x)^1//3)),-7+4*3^(1/2))) @test integrate((a+b*x)^2//3*(c+d*x)^1//3, x) == :((1/2)*b^-1*(a+b*x)^5//3*(c+d*x)^1//3+1//6*b^-4//3*d^-5//3*(b*c+-1*a*d)^2*log(-1+b^-1//3*d^1//3*(a+b*x)^1//3*(c+d*x)^-1//3)+1//18*b^-4//3*d^-5//3*(b*c+-1*a*d)^2*log(c+d*x)+1//6*b^-1*d^-1*(a+b*x)^2//3*(c+d*x)^1//3*(b*c+-1*a*d)+1//9*3^(1/2)*b^-4//3*d^-5//3*(b*c+-1*a*d)^2*arctan(1//3*3^(1/2)+2//3*3^(1/2)*b^-1//3*d^1//3*(a+b*x)^1//3*(c+d*x)^-1//3)) @test integrate((a+b*x)^-1//3*(c+d*x)^1//3, x) == :(b^-1*(a+b*x)^2//3*(c+d*x)^1//3+-1//2*b^-4//3*d^-2//3*(b*c+-1*a*d)*log(-1+b^-1//3*d^1//3*(a+b*x)^1//3*(c+d*x)^-1//3)+-1//6*b^-4//3*d^-2//3*(b*c+-1*a*d)*log(c+d*x)+-1//3*3^(1/2)*b^-4//3*d^-2//3*(b*c+-1*a*d)*arctan(1//3*3^(1/2)+2//3*3^(1/2)*b^-1//3*d^1//3*(a+b*x)^1//3*(c+d*x)^-1//3)) @test integrate((a+b*x)^-4//3*(c+d*x)^1//3, x) == :(-3*b^-1*(a+b*x)^-1//3*(c+d*x)^1//3+-3//2*b^-4//3*d^1//3*log(-1+b^-1//3*d^1//3*(a+b*x)^1//3*(c+d*x)^-1//3)+-1//2*b^-4//3*d^1//3*log(c+d*x)+-1*3^(1/2)*b^-4//3*d^1//3*arctan(1//3*3^(1/2)+2//3*3^(1/2)*b^-1//3*d^1//3*(a+b*x)^1//3*(c+d*x)^-1//3)) @test integrate((a+b*x)^-7//3*(c+d*x)^1//3, x) == :(-3*(a+b*x)^-4//3*(c+d*x)^4//3*(-4*a*d+4*b*c)^-1) @test integrate((a+b*x)^-10//3*(c+d*x)^1//3, x) == :(-3*(a+b*x)^-7//3*(c+d*x)^4//3*(-7*a*d+7*b*c)^-1+9//28*d*(a+b*x)^-4//3*(c+d*x)^4//3*(b*c+-1*a*d)^-2) @test integrate((a+b*x)^-13//3*(c+d*x)^1//3, x) == :(-3*(a+b*x)^-10//3*(c+d*x)^4//3*(-10*a*d+10*b*c)^-1+-27//140*d^2*(a+b*x)^-4//3*(c+d*x)^4//3*(b*c+-1*a*d)^-3+9//35*d*(a+b*x)^-7//3*(c+d*x)^4//3*(b*c+-1*a*d)^-2) @test integrate((a+b*x)^-16//3*(c+d*x)^1//3, x) == :(-3*(a+b*x)^-13//3*(c+d*x)^4//3*(-13*a*d+13*b*c)^-1+-81//455*d^2*(a+b*x)^-7//3*(c+d*x)^4//3*(b*c+-1*a*d)^-3+27//130*d*(a+b*x)^-10//3*(c+d*x)^4//3*(b*c+-1*a*d)^-2+243//1820*d^3*(a+b*x)^-4//3*(c+d*x)^4//3*(b*c+-1*a*d)^-4) @test integrate((a+b*x)^4//3*(c+d*x)^1//3, x) == :(3//8*b^-1*(a+b*x)^7//3*(c+d*x)^1//3+-3//20*b^-1*d^-2*(a+b*x)^1//3*(c+d*x)^1//3*(b*c+-1*a*d)^2+1//40*b^-1*d^-1*(a+b*x)^4//3*(c+d*x)^1//3*(-3*a*d+3*b*c)+1//20*2^1//3*3^3//4*b^-4//3*d^-7//3*((a*d+b*(c+2*d*x))^2)^-1//2*((a*d+b*c+2*b*d*x)^2)^(1/2)*(((b*c+-1*a*d)^2//3*(1+3^(1/2))+2^2//3*b^1//3*d^1//3*((a+b*x)*(c+d*x))^1//3)^-2*((b*c+-1*a*d)^4//3+2*2^1//3*b^2//3*d^2//3*((a+b*x)*(c+d*x))^2//3+-1*2^2//3*b^1//3*d^1//3*((a+b*x)*(c+d*x))^1//3*(b*c+-1*a*d)^2//3))^(1/2)*((a+b*x)*(c+d*x))^2//3*((b*c+-1*a*d)^2//3*((b*c+-1*a*d)^2//3*(1+3^(1/2))+2^2//3*b^1//3*d^1//3*((a+b*x)*(c+d*x))^1//3)^-2*((b*c+-1*a*d)^2//3+2^2//3*b^1//3*d^1//3*((a+b*x)*(c+d*x))^1//3))^-1//2*(2+3^(1/2))^(1/2)*(a+b*x)^-2//3*(c+d*x)^-2//3*(b*c+-1*a*d)^3*(a*d+b*c+2*b*d*x)^-1*((b*c+-1*a*d)^2//3+2^2//3*b^1//3*d^1//3*((a+b*x)*(c+d*x))^1//3)*Elliptic.F(arcsin(((b*c+-1*a*d)^2//3*(1+3^(1/2))+2^2//3*b^1//3*d^1//3*((a+b*x)*(c+d*x))^1//3)^-1*((b*c+-1*a*d)^2//3*(1+-1*3^(1/2))+2^2//3*b^1//3*d^1//3*((a+b*x)*(c+d*x))^1//3)),-7+-4*3^(1/2))) @test integrate((a+b*x)^1//3*(c+d*x)^1//3, x) == :(3//5*b^-1*(a+b*x)^4//3*(c+d*x)^1//3+1//10*b^-1*d^-1*(a+b*x)^1//3*(c+d*x)^1//3*(-3*a*d+3*b*c)+-1//10*2^1//3*3^3//4*b^-4//3*d^-4//3*((a*d+b*(c+2*d*x))^2)^-1//2*((a*d+b*c+2*b*d*x)^2)^(1/2)*(((b*c+-1*a*d)^2//3*(1+3^(1/2))+2^2//3*b^1//3*d^1//3*((a+b*x)*(c+d*x))^1//3)^-2*((b*c+-1*a*d)^4//3+2*2^1//3*b^2//3*d^2//3*((a+b*x)*(c+d*x))^2//3+-1*2^2//3*b^1//3*d^1//3*((a+b*x)*(c+d*x))^1//3*(b*c+-1*a*d)^2//3))^(1/2)*((a+b*x)*(c+d*x))^2//3*((b*c+-1*a*d)^2//3*((b*c+-1*a*d)^2//3*(1+3^(1/2))+2^2//3*b^1//3*d^1//3*((a+b*x)*(c+d*x))^1//3)^-2*((b*c+-1*a*d)^2//3+2^2//3*b^1//3*d^1//3*((a+b*x)*(c+d*x))^1//3))^-1//2*(2+3^(1/2))^(1/2)*(a+b*x)^-2//3*(c+d*x)^-2//3*(b*c+-1*a*d)^2*(a*d+b*c+2*b*d*x)^-1*((b*c+-1*a*d)^2//3+2^2//3*b^1//3*d^1//3*((a+b*x)*(c+d*x))^1//3)*Elliptic.F(arcsin(((b*c+-1*a*d)^2//3*(1+3^(1/2))+2^2//3*b^1//3*d^1//3*((a+b*x)*(c+d*x))^1//3)^-1*((b*c+-1*a*d)^2//3*(1+-1*3^(1/2))+2^2//3*b^1//3*d^1//3*((a+b*x)*(c+d*x))^1//3)),-7+-4*3^(1/2))) @test integrate((a+b*x)^-2//3*(c+d*x)^1//3, x) == :(3//2*b^-1*(a+b*x)^1//3*(c+d*x)^1//3+(1/2)*2^1//3*3^3//4*b^-4//3*d^-1//3*((a*d+b*(c+2*d*x))^2)^-1//2*((a*d+b*c+2*b*d*x)^2)^(1/2)*(((b*c+-1*a*d)^2//3*(1+3^(1/2))+2^2//3*b^1//3*d^1//3*((a+b*x)*(c+d*x))^1//3)^-2*((b*c+-1*a*d)^4//3+2*2^1//3*b^2//3*d^2//3*((a+b*x)*(c+d*x))^2//3+-1*2^2//3*b^1//3*d^1//3*((a+b*x)*(c+d*x))^1//3*(b*c+-1*a*d)^2//3))^(1/2)*((a+b*x)*(c+d*x))^2//3*((b*c+-1*a*d)^2//3*((b*c+-1*a*d)^2//3*(1+3^(1/2))+2^2//3*b^1//3*d^1//3*((a+b*x)*(c+d*x))^1//3)^-2*((b*c+-1*a*d)^2//3+2^2//3*b^1//3*d^1//3*((a+b*x)*(c+d*x))^1//3))^-1//2*(2+3^(1/2))^(1/2)*(a+b*x)^-2//3*(c+d*x)^-2//3*(a*d+b*c+2*b*d*x)^-1*((b*c+-1*a*d)^2//3+2^2//3*b^1//3*d^1//3*((a+b*x)*(c+d*x))^1//3)*(b*c+-1*a*d)*Elliptic.F(arcsin(((b*c+-1*a*d)^2//3*(1+3^(1/2))+2^2//3*b^1//3*d^1//3*((a+b*x)*(c+d*x))^1//3)^-1*((b*c+-1*a*d)^2//3*(1+-1*3^(1/2))+2^2//3*b^1//3*d^1//3*((a+b*x)*(c+d*x))^1//3)),-7+-4*3^(1/2))) @test integrate((a+b*x)^-5//3*(c+d*x)^1//3, x) == :(-3//2*b^-1*(a+b*x)^-2//3*(c+d*x)^1//3+(1/2)*2^1//3*3^3//4*b^-4//3*d^2//3*((a*d+b*(c+2*d*x))^2)^-1//2*((a*d+b*c+2*b*d*x)^2)^(1/2)*(((b*c+-1*a*d)^2//3*(1+3^(1/2))+2^2//3*b^1//3*d^1//3*((a+b*x)*(c+d*x))^1//3)^-2*((b*c+-1*a*d)^4//3+2*2^1//3*b^2//3*d^2//3*((a+b*x)*(c+d*x))^2//3+-1*2^2//3*b^1//3*d^1//3*((a+b*x)*(c+d*x))^1//3*(b*c+-1*a*d)^2//3))^(1/2)*((a+b*x)*(c+d*x))^2//3*((b*c+-1*a*d)^2//3*((b*c+-1*a*d)^2//3*(1+3^(1/2))+2^2//3*b^1//3*d^1//3*((a+b*x)*(c+d*x))^1//3)^-2*((b*c+-1*a*d)^2//3+2^2//3*b^1//3*d^1//3*((a+b*x)*(c+d*x))^1//3))^-1//2*(2+3^(1/2))^(1/2)*(a+b*x)^-2//3*(c+d*x)^-2//3*(a*d+b*c+2*b*d*x)^-1*((b*c+-1*a*d)^2//3+2^2//3*b^1//3*d^1//3*((a+b*x)*(c+d*x))^1//3)*Elliptic.F(arcsin(((b*c+-1*a*d)^2//3*(1+3^(1/2))+2^2//3*b^1//3*d^1//3*((a+b*x)*(c+d*x))^1//3)^-1*((b*c+-1*a*d)^2//3*(1+-1*3^(1/2))+2^2//3*b^1//3*d^1//3*((a+b*x)*(c+d*x))^1//3)),-7+-4*3^(1/2))) @test integrate((a+b*x)^-8//3*(c+d*x)^1//3, x) == :(-3//5*b^-1*(a+b*x)^-5//3*(c+d*x)^1//3+-3//10*d*b^-1*(a+b*x)^-2//3*(c+d*x)^1//3*(b*c+-1*a*d)^-1+-1//10*2^1//3*3^3//4*b^-4//3*d^5//3*((a*d+b*(c+2*d*x))^2)^-1//2*((a*d+b*c+2*b*d*x)^2)^(1/2)*(((b*c+-1*a*d)^2//3*(1+3^(1/2))+2^2//3*b^1//3*d^1//3*((a+b*x)*(c+d*x))^1//3)^-2*((b*c+-1*a*d)^4//3+2*2^1//3*b^2//3*d^2//3*((a+b*x)*(c+d*x))^2//3+-1*2^2//3*b^1//3*d^1//3*((a+b*x)*(c+d*x))^1//3*(b*c+-1*a*d)^2//3))^(1/2)*((a+b*x)*(c+d*x))^2//3*((b*c+-1*a*d)^2//3*((b*c+-1*a*d)^2//3*(1+3^(1/2))+2^2//3*b^1//3*d^1//3*((a+b*x)*(c+d*x))^1//3)^-2*((b*c+-1*a*d)^2//3+2^2//3*b^1//3*d^1//3*((a+b*x)*(c+d*x))^1//3))^-1//2*(2+3^(1/2))^(1/2)*(a+b*x)^-2//3*(c+d*x)^-2//3*(b*c+-1*a*d)^-1*(a*d+b*c+2*b*d*x)^-1*((b*c+-1*a*d)^2//3+2^2//3*b^1//3*d^1//3*((a+b*x)*(c+d*x))^1//3)*Elliptic.F(arcsin(((b*c+-1*a*d)^2//3*(1+3^(1/2))+2^2//3*b^1//3*d^1//3*((a+b*x)*(c+d*x))^1//3)^-1*((b*c+-1*a*d)^2//3*(1+-1*3^(1/2))+2^2//3*b^1//3*d^1//3*((a+b*x)*(c+d*x))^1//3)),-7+-4*3^(1/2))) @test integrate((a+b*x)^4//3*(c+d*x)^-1//3, x) == :((1/2)*d^-1*(a+b*x)^4//3*(c+d*x)^2//3+-1//3*b^-2//3*d^-7//3*(b*c+-1*a*d)^2*log(-1+b^1//3*d^-1//3*(a+b*x)^-1//3*(c+d*x)^1//3)+-1//9*b^-2//3*d^-7//3*(b*c+-1*a*d)^2*log(a+b*x)+1//3*d^-2*(a+b*x)^1//3*(c+d*x)^2//3*(-2*b*c+2*a*d)+-2//9*3^(1/2)*b^-2//3*d^-7//3*(b*c+-1*a*d)^2*arctan(1//3*3^(1/2)+2//3*3^(1/2)*b^1//3*d^-1//3*(a+b*x)^-1//3*(c+d*x)^1//3)) @test integrate((a+b*x)^1//3*(c+d*x)^-1//3, x) == :(d^-1*(a+b*x)^1//3*(c+d*x)^2//3+(1/2)*b^-2//3*d^-4//3*(b*c+-1*a*d)*log(-1+b^1//3*d^-1//3*(a+b*x)^-1//3*(c+d*x)^1//3)+1//6*b^-2//3*d^-4//3*(b*c+-1*a*d)*log(a+b*x)+1//3*3^(1/2)*b^-2//3*d^-4//3*(b*c+-1*a*d)*arctan(1//3*3^(1/2)+2//3*3^(1/2)*b^1//3*d^-1//3*(a+b*x)^-1//3*(c+d*x)^1//3)) @test integrate((a+b*x)^-2//3*(c+d*x)^-1//3, x) == :(-3//2*b^-2//3*d^-1//3*log(-1+b^1//3*d^-1//3*(a+b*x)^-1//3*(c+d*x)^1//3)+-1//2*b^-2//3*d^-1//3*log(a+b*x)+-1*3^(1/2)*b^-2//3*d^-1//3*arctan(1//3*3^(1/2)+2//3*3^(1/2)*b^1//3*d^-1//3*(a+b*x)^-1//3*(c+d*x)^1//3)) @test integrate((a+b*x)^-5//3*(c+d*x)^-1//3, x) == :(-3*(a+b*x)^-2//3*(c+d*x)^2//3*(-2*a*d+2*b*c)^-1) @test integrate((a+b*x)^-8//3*(c+d*x)^-1//3, x) == :(-3*(a+b*x)^-5//3*(c+d*x)^2//3*(-5*a*d+5*b*c)^-1+9//10*d*(a+b*x)^-2//3*(c+d*x)^2//3*(b*c+-1*a*d)^-2) @test integrate((a+b*x)^-11//3*(c+d*x)^-1//3, x) == :(-3*(a+b*x)^-8//3*(c+d*x)^2//3*(-8*a*d+8*b*c)^-1+-27//40*d^2*(a+b*x)^-2//3*(c+d*x)^2//3*(b*c+-1*a*d)^-3+9//20*d*(a+b*x)^-5//3*(c+d*x)^2//3*(b*c+-1*a*d)^-2) @test integrate((a+b*x)^-14//3*(c+d*x)^-1//3, x) == :(-3*(a+b*x)^-11//3*(c+d*x)^2//3*(-11*a*d+11*b*c)^-1+-81//220*d^2*(a+b*x)^-5//3*(c+d*x)^2//3*(b*c+-1*a*d)^-3+27//88*d*(a+b*x)^-8//3*(c+d*x)^2//3*(b*c+-1*a*d)^-2+243//440*d^3*(a+b*x)^-2//3*(c+d*x)^2//3*(b*c+-1*a*d)^-4) @test integrate((a+b*x)^8//3*(c+d*x)^-1//3, x) == :(3//10*d^-1*(a+b*x)^8//3*(c+d*x)^2//3+-1//35*d^-2*(a+b*x)^5//3*(c+d*x)^2//3*(-12*a*d+12*b*c)+3//7*d^-3*(a+b*x)^2//3*(c+d*x)^2//3*(b*c+-1*a*d)^2+-3//7*2^2//3*b^-2//3*d^-11//3*((a*d+b*(c+2*d*x))^2)^(1/2)*((a*d+b*c+2*b*d*x)^2)^(1/2)*((a+b*x)*(c+d*x))^1//3*(a+b*x)^-1//3*(c+d*x)^-1//3*(b*c+-1*a*d)^3*((b*c+-1*a*d)^2//3*(1+3^(1/2))+2^2//3*b^1//3*d^1//3*((a+b*x)*(c+d*x))^1//3)^-1*(a*d+b*c+2*b*d*x)^-1+-2//7*2^1//6*3^3//4*b^-2//3*d^-11//3*((a*d+b*(c+2*d*x))^2)^-1//2*((a*d+b*c+2*b*d*x)^2)^(1/2)*(((b*c+-1*a*d)^2//3*(1+3^(1/2))+2^2//3*b^1//3*d^1//3*((a+b*x)*(c+d*x))^1//3)^-2*((b*c+-1*a*d)^4//3+2*2^1//3*b^2//3*d^2//3*((a+b*x)*(c+d*x))^2//3+-1*2^2//3*b^1//3*d^1//3*((a+b*x)*(c+d*x))^1//3*(b*c+-1*a*d)^2//3))^(1/2)*((a+b*x)*(c+d*x))^1//3*((b*c+-1*a*d)^2//3*((b*c+-1*a*d)^2//3*(1+3^(1/2))+2^2//3*b^1//3*d^1//3*((a+b*x)*(c+d*x))^1//3)^-2*((b*c+-1*a*d)^2//3+2^2//3*b^1//3*d^1//3*((a+b*x)*(c+d*x))^1//3))^-1//2*(a+b*x)^-1//3*(c+d*x)^-1//3*(b*c+-1*a*d)^11//3*(a*d+b*c+2*b*d*x)^-1*((b*c+-1*a*d)^2//3+2^2//3*b^1//3*d^1//3*((a+b*x)*(c+d*x))^1//3)*Elliptic.F(arcsin(((b*c+-1*a*d)^2//3*(1+3^(1/2))+2^2//3*b^1//3*d^1//3*((a+b*x)*(c+d*x))^1//3)^-1*((b*c+-1*a*d)^2//3*(1+-1*3^(1/2))+2^2//3*b^1//3*d^1//3*((a+b*x)*(c+d*x))^1//3)),-7+-4*3^(1/2))+3//14*2^2//3*3^1//4*b^-2//3*d^-11//3*((a*d+b*(c+2*d*x))^2)^-1//2*((a*d+b*c+2*b*d*x)^2)^(1/2)*(((b*c+-1*a*d)^2//3*(1+3^(1/2))+2^2//3*b^1//3*d^1//3*((a+b*x)*(c+d*x))^1//3)^-2*((b*c+-1*a*d)^4//3+2*2^1//3*b^2//3*d^2//3*((a+b*x)*(c+d*x))^2//3+-1*2^2//3*b^1//3*d^1//3*((a+b*x)*(c+d*x))^1//3*(b*c+-1*a*d)^2//3))^(1/2)*((a+b*x)*(c+d*x))^1//3*((b*c+-1*a*d)^2//3*((b*c+-1*a*d)^2//3*(1+3^(1/2))+2^2//3*b^1//3*d^1//3*((a+b*x)*(c+d*x))^1//3)^-2*((b*c+-1*a*d)^2//3+2^2//3*b^1//3*d^1//3*((a+b*x)*(c+d*x))^1//3))^-1//2*(2+-1*3^(1/2))^(1/2)*(a+b*x)^-1//3*(c+d*x)^-1//3*(b*c+-1*a*d)^11//3*(a*d+b*c+2*b*d*x)^-1*((b*c+-1*a*d)^2//3+2^2//3*b^1//3*d^1//3*((a+b*x)*(c+d*x))^1//3)*Elliptic.E(arcsin(((b*c+-1*a*d)^2//3*(1+3^(1/2))+2^2//3*b^1//3*d^1//3*((a+b*x)*(c+d*x))^1//3)^-1*((b*c+-1*a*d)^2//3*(1+-1*3^(1/2))+2^2//3*b^1//3*d^1//3*((a+b*x)*(c+d*x))^1//3)),-7+-4*3^(1/2))) @test integrate((a+b*x)^5//3*(c+d*x)^-1//3, x) == :(3//7*d^-1*(a+b*x)^5//3*(c+d*x)^2//3+-1//28*d^-2*(a+b*x)^2//3*(c+d*x)^2//3*(-15*a*d+15*b*c)+15//28*2^2//3*b^-2//3*d^-8//3*((a*d+b*(c+2*d*x))^2)^(1/2)*((a*d+b*c+2*b*d*x)^2)^(1/2)*((a+b*x)*(c+d*x))^1//3*(a+b*x)^-1//3*(c+d*x)^-1//3*(b*c+-1*a*d)^2*((b*c+-1*a*d)^2//3*(1+3^(1/2))+2^2//3*b^1//3*d^1//3*((a+b*x)*(c+d*x))^1//3)^-1*(a*d+b*c+2*b*d*x)^-1+5//14*2^1//6*3^3//4*b^-2//3*d^-8//3*((a*d+b*(c+2*d*x))^2)^-1//2*((a*d+b*c+2*b*d*x)^2)^(1/2)*(((b*c+-1*a*d)^2//3*(1+3^(1/2))+2^2//3*b^1//3*d^1//3*((a+b*x)*(c+d*x))^1//3)^-2*((b*c+-1*a*d)^4//3+2*2^1//3*b^2//3*d^2//3*((a+b*x)*(c+d*x))^2//3+-1*2^2//3*b^1//3*d^1//3*((a+b*x)*(c+d*x))^1//3*(b*c+-1*a*d)^2//3))^(1/2)*((a+b*x)*(c+d*x))^1//3*((b*c+-1*a*d)^2//3*((b*c+-1*a*d)^2//3*(1+3^(1/2))+2^2//3*b^1//3*d^1//3*((a+b*x)*(c+d*x))^1//3)^-2*((b*c+-1*a*d)^2//3+2^2//3*b^1//3*d^1//3*((a+b*x)*(c+d*x))^1//3))^-1//2*(a+b*x)^-1//3*(c+d*x)^-1//3*(b*c+-1*a*d)^8//3*(a*d+b*c+2*b*d*x)^-1*((b*c+-1*a*d)^2//3+2^2//3*b^1//3*d^1//3*((a+b*x)*(c+d*x))^1//3)*Elliptic.F(arcsin(((b*c+-1*a*d)^2//3*(1+3^(1/2))+2^2//3*b^1//3*d^1//3*((a+b*x)*(c+d*x))^1//3)^-1*((b*c+-1*a*d)^2//3*(1+-1*3^(1/2))+2^2//3*b^1//3*d^1//3*((a+b*x)*(c+d*x))^1//3)),-7+-4*3^(1/2))+-15//56*2^2//3*3^1//4*b^-2//3*d^-8//3*((a*d+b*(c+2*d*x))^2)^-1//2*((a*d+b*c+2*b*d*x)^2)^(1/2)*(((b*c+-1*a*d)^2//3*(1+3^(1/2))+2^2//3*b^1//3*d^1//3*((a+b*x)*(c+d*x))^1//3)^-2*((b*c+-1*a*d)^4//3+2*2^1//3*b^2//3*d^2//3*((a+b*x)*(c+d*x))^2//3+-1*2^2//3*b^1//3*d^1//3*((a+b*x)*(c+d*x))^1//3*(b*c+-1*a*d)^2//3))^(1/2)*((a+b*x)*(c+d*x))^1//3*((b*c+-1*a*d)^2//3*((b*c+-1*a*d)^2//3*(1+3^(1/2))+2^2//3*b^1//3*d^1//3*((a+b*x)*(c+d*x))^1//3)^-2*((b*c+-1*a*d)^2//3+2^2//3*b^1//3*d^1//3*((a+b*x)*(c+d*x))^1//3))^-1//2*(2+-1*3^(1/2))^(1/2)*(a+b*x)^-1//3*(c+d*x)^-1//3*(b*c+-1*a*d)^8//3*(a*d+b*c+2*b*d*x)^-1*((b*c+-1*a*d)^2//3+2^2//3*b^1//3*d^1//3*((a+b*x)*(c+d*x))^1//3)*Elliptic.E(arcsin(((b*c+-1*a*d)^2//3*(1+3^(1/2))+2^2//3*b^1//3*d^1//3*((a+b*x)*(c+d*x))^1//3)^-1*((b*c+-1*a*d)^2//3*(1+-1*3^(1/2))+2^2//3*b^1//3*d^1//3*((a+b*x)*(c+d*x))^1//3)),-7+-4*3^(1/2))) @test integrate((a+b*x)^2//3*(c+d*x)^-1//3, x) == :(3//4*d^-1*(a+b*x)^2//3*(c+d*x)^2//3+-1//4*2^2//3*b^-2//3*d^-5//3*((a*d+b*(c+2*d*x))^2)^(1/2)*((a*d+b*c+2*b*d*x)^2)^(1/2)*((a+b*x)*(c+d*x))^1//3*(a+b*x)^-1//3*(c+d*x)^-1//3*((b*c+-1*a*d)^2//3*(1+3^(1/2))+2^2//3*b^1//3*d^1//3*((a+b*x)*(c+d*x))^1//3)^-1*(a*d+b*c+2*b*d*x)^-1*(-3*a*d+3*b*c)+-1//2*2^1//6*3^3//4*b^-2//3*d^-5//3*((a*d+b*(c+2*d*x))^2)^-1//2*((a*d+b*c+2*b*d*x)^2)^(1/2)*(((b*c+-1*a*d)^2//3*(1+3^(1/2))+2^2//3*b^1//3*d^1//3*((a+b*x)*(c+d*x))^1//3)^-2*((b*c+-1*a*d)^4//3+2*2^1//3*b^2//3*d^2//3*((a+b*x)*(c+d*x))^2//3+-1*2^2//3*b^1//3*d^1//3*((a+b*x)*(c+d*x))^1//3*(b*c+-1*a*d)^2//3))^(1/2)*((a+b*x)*(c+d*x))^1//3*((b*c+-1*a*d)^2//3*((b*c+-1*a*d)^2//3*(1+3^(1/2))+2^2//3*b^1//3*d^1//3*((a+b*x)*(c+d*x))^1//3)^-2*((b*c+-1*a*d)^2//3+2^2//3*b^1//3*d^1//3*((a+b*x)*(c+d*x))^1//3))^-1//2*(a+b*x)^-1//3*(c+d*x)^-1//3*(b*c+-1*a*d)^5//3*(a*d+b*c+2*b*d*x)^-1*((b*c+-1*a*d)^2//3+2^2//3*b^1//3*d^1//3*((a+b*x)*(c+d*x))^1//3)*Elliptic.F(arcsin(((b*c+-1*a*d)^2//3*(1+3^(1/2))+2^2//3*b^1//3*d^1//3*((a+b*x)*(c+d*x))^1//3)^-1*((b*c+-1*a*d)^2//3*(1+-1*3^(1/2))+2^2//3*b^1//3*d^1//3*((a+b*x)*(c+d*x))^1//3)),-7+-4*3^(1/2))+3//8*2^2//3*3^1//4*b^-2//3*d^-5//3*((a*d+b*(c+2*d*x))^2)^-1//2*((a*d+b*c+2*b*d*x)^2)^(1/2)*(((b*c+-1*a*d)^2//3*(1+3^(1/2))+2^2//3*b^1//3*d^1//3*((a+b*x)*(c+d*x))^1//3)^-2*((b*c+-1*a*d)^4//3+2*2^1//3*b^2//3*d^2//3*((a+b*x)*(c+d*x))^2//3+-1*2^2//3*b^1//3*d^1//3*((a+b*x)*(c+d*x))^1//3*(b*c+-1*a*d)^2//3))^(1/2)*((a+b*x)*(c+d*x))^1//3*((b*c+-1*a*d)^2//3*((b*c+-1*a*d)^2//3*(1+3^(1/2))+2^2//3*b^1//3*d^1//3*((a+b*x)*(c+d*x))^1//3)^-2*((b*c+-1*a*d)^2//3+2^2//3*b^1//3*d^1//3*((a+b*x)*(c+d*x))^1//3))^-1//2*(2+-1*3^(1/2))^(1/2)*(a+b*x)^-1//3*(c+d*x)^-1//3*(b*c+-1*a*d)^5//3*(a*d+b*c+2*b*d*x)^-1*((b*c+-1*a*d)^2//3+2^2//3*b^1//3*d^1//3*((a+b*x)*(c+d*x))^1//3)*Elliptic.E(arcsin(((b*c+-1*a*d)^2//3*(1+3^(1/2))+2^2//3*b^1//3*d^1//3*((a+b*x)*(c+d*x))^1//3)^-1*((b*c+-1*a*d)^2//3*(1+-1*3^(1/2))+2^2//3*b^1//3*d^1//3*((a+b*x)*(c+d*x))^1//3)),-7+-4*3^(1/2))) @test integrate((a+b*x)^-1//3*(c+d*x)^-1//3, x) == :(3//2*2^2//3*b^-2//3*d^-2//3*((a*d+b*(c+2*d*x))^2)^(1/2)*((a*d+b*c+2*b*d*x)^2)^(1/2)*((a+b*x)*(c+d*x))^1//3*(a+b*x)^-1//3*(c+d*x)^-1//3*((b*c+-1*a*d)^2//3*(1+3^(1/2))+2^2//3*b^1//3*d^1//3*((a+b*x)*(c+d*x))^1//3)^-1*(a*d+b*c+2*b*d*x)^-1+2^1//6*3^3//4*b^-2//3*d^-2//3*((a*d+b*(c+2*d*x))^2)^-1//2*((a*d+b*c+2*b*d*x)^2)^(1/2)*(((b*c+-1*a*d)^2//3*(1+3^(1/2))+2^2//3*b^1//3*d^1//3*((a+b*x)*(c+d*x))^1//3)^-2*((b*c+-1*a*d)^4//3+2*2^1//3*b^2//3*d^2//3*((a+b*x)*(c+d*x))^2//3+-1*2^2//3*b^1//3*d^1//3*((a+b*x)*(c+d*x))^1//3*(b*c+-1*a*d)^2//3))^(1/2)*((a+b*x)*(c+d*x))^1//3*((b*c+-1*a*d)^2//3*((b*c+-1*a*d)^2//3*(1+3^(1/2))+2^2//3*b^1//3*d^1//3*((a+b*x)*(c+d*x))^1//3)^-2*((b*c+-1*a*d)^2//3+2^2//3*b^1//3*d^1//3*((a+b*x)*(c+d*x))^1//3))^-1//2*(a+b*x)^-1//3*(c+d*x)^-1//3*(b*c+-1*a*d)^2//3*(a*d+b*c+2*b*d*x)^-1*((b*c+-1*a*d)^2//3+2^2//3*b^1//3*d^1//3*((a+b*x)*(c+d*x))^1//3)*Elliptic.F(arcsin(((b*c+-1*a*d)^2//3*(1+3^(1/2))+2^2//3*b^1//3*d^1//3*((a+b*x)*(c+d*x))^1//3)^-1*((b*c+-1*a*d)^2//3*(1+-1*3^(1/2))+2^2//3*b^1//3*d^1//3*((a+b*x)*(c+d*x))^1//3)),-7+-4*3^(1/2))+-3//4*2^2//3*3^1//4*b^-2//3*d^-2//3*((a*d+b*(c+2*d*x))^2)^-1//2*((a*d+b*c+2*b*d*x)^2)^(1/2)*(((b*c+-1*a*d)^2//3*(1+3^(1/2))+2^2//3*b^1//3*d^1//3*((a+b*x)*(c+d*x))^1//3)^-2*((b*c+-1*a*d)^4//3+2*2^1//3*b^2//3*d^2//3*((a+b*x)*(c+d*x))^2//3+-1*2^2//3*b^1//3*d^1//3*((a+b*x)*(c+d*x))^1//3*(b*c+-1*a*d)^2//3))^(1/2)*((a+b*x)*(c+d*x))^1//3*((b*c+-1*a*d)^2//3*((b*c+-1*a*d)^2//3*(1+3^(1/2))+2^2//3*b^1//3*d^1//3*((a+b*x)*(c+d*x))^1//3)^-2*((b*c+-1*a*d)^2//3+2^2//3*b^1//3*d^1//3*((a+b*x)*(c+d*x))^1//3))^-1//2*(2+-1*3^(1/2))^(1/2)*(a+b*x)^-1//3*(c+d*x)^-1//3*(b*c+-1*a*d)^2//3*(a*d+b*c+2*b*d*x)^-1*((b*c+-1*a*d)^2//3+2^2//3*b^1//3*d^1//3*((a+b*x)*(c+d*x))^1//3)*Elliptic.E(arcsin(((b*c+-1*a*d)^2//3*(1+3^(1/2))+2^2//3*b^1//3*d^1//3*((a+b*x)*(c+d*x))^1//3)^-1*((b*c+-1*a*d)^2//3*(1+-1*3^(1/2))+2^2//3*b^1//3*d^1//3*((a+b*x)*(c+d*x))^1//3)),-7+-4*3^(1/2))) @test integrate((a+b*x)^-4//3*(c+d*x)^-1//3, x) == :(-3*(a+b*x)^-1//3*(c+d*x)^2//3*(b*c+-1*a*d)^-1+3//2*2^2//3*b^-2//3*d^1//3*((a*d+b*(c+2*d*x))^2)^(1/2)*((a*d+b*c+2*b*d*x)^2)^(1/2)*((a+b*x)*(c+d*x))^1//3*(a+b*x)^-1//3*(c+d*x)^-1//3*(b*c+-1*a*d)^-1*((b*c+-1*a*d)^2//3*(1+3^(1/2))+2^2//3*b^1//3*d^1//3*((a+b*x)*(c+d*x))^1//3)^-1*(a*d+b*c+2*b*d*x)^-1+2^1//6*3^3//4*b^-2//3*d^1//3*((a*d+b*(c+2*d*x))^2)^-1//2*((a*d+b*c+2*b*d*x)^2)^(1/2)*(((b*c+-1*a*d)^2//3*(1+3^(1/2))+2^2//3*b^1//3*d^1//3*((a+b*x)*(c+d*x))^1//3)^-2*((b*c+-1*a*d)^4//3+2*2^1//3*b^2//3*d^2//3*((a+b*x)*(c+d*x))^2//3+-1*2^2//3*b^1//3*d^1//3*((a+b*x)*(c+d*x))^1//3*(b*c+-1*a*d)^2//3))^(1/2)*((a+b*x)*(c+d*x))^1//3*((b*c+-1*a*d)^2//3*((b*c+-1*a*d)^2//3*(1+3^(1/2))+2^2//3*b^1//3*d^1//3*((a+b*x)*(c+d*x))^1//3)^-2*((b*c+-1*a*d)^2//3+2^2//3*b^1//3*d^1//3*((a+b*x)*(c+d*x))^1//3))^-1//2*(a+b*x)^-1//3*(c+d*x)^-1//3*(b*c+-1*a*d)^-1//3*(a*d+b*c+2*b*d*x)^-1*((b*c+-1*a*d)^2//3+2^2//3*b^1//3*d^1//3*((a+b*x)*(c+d*x))^1//3)*Elliptic.F(arcsin(((b*c+-1*a*d)^2//3*(1+3^(1/2))+2^2//3*b^1//3*d^1//3*((a+b*x)*(c+d*x))^1//3)^-1*((b*c+-1*a*d)^2//3*(1+-1*3^(1/2))+2^2//3*b^1//3*d^1//3*((a+b*x)*(c+d*x))^1//3)),-7+-4*3^(1/2))+-3//4*2^2//3*3^1//4*b^-2//3*d^1//3*((a*d+b*(c+2*d*x))^2)^-1//2*((a*d+b*c+2*b*d*x)^2)^(1/2)*(((b*c+-1*a*d)^2//3*(1+3^(1/2))+2^2//3*b^1//3*d^1//3*((a+b*x)*(c+d*x))^1//3)^-2*((b*c+-1*a*d)^4//3+2*2^1//3*b^2//3*d^2//3*((a+b*x)*(c+d*x))^2//3+-1*2^2//3*b^1//3*d^1//3*((a+b*x)*(c+d*x))^1//3*(b*c+-1*a*d)^2//3))^(1/2)*((a+b*x)*(c+d*x))^1//3*((b*c+-1*a*d)^2//3*((b*c+-1*a*d)^2//3*(1+3^(1/2))+2^2//3*b^1//3*d^1//3*((a+b*x)*(c+d*x))^1//3)^-2*((b*c+-1*a*d)^2//3+2^2//3*b^1//3*d^1//3*((a+b*x)*(c+d*x))^1//3))^-1//2*(2+-1*3^(1/2))^(1/2)*(a+b*x)^-1//3*(c+d*x)^-1//3*(b*c+-1*a*d)^-1//3*(a*d+b*c+2*b*d*x)^-1*((b*c+-1*a*d)^2//3+2^2//3*b^1//3*d^1//3*((a+b*x)*(c+d*x))^1//3)*Elliptic.E(arcsin(((b*c+-1*a*d)^2//3*(1+3^(1/2))+2^2//3*b^1//3*d^1//3*((a+b*x)*(c+d*x))^1//3)^-1*((b*c+-1*a*d)^2//3*(1+-1*3^(1/2))+2^2//3*b^1//3*d^1//3*((a+b*x)*(c+d*x))^1//3)),-7+-4*3^(1/2))) @test integrate((a+b*x)^-7//3*(c+d*x)^-1//3, x) == :(-3*(a+b*x)^-4//3*(c+d*x)^2//3*(-4*a*d+4*b*c)^-1+3//2*d*(a+b*x)^-1//3*(c+d*x)^2//3*(b*c+-1*a*d)^-2+-3//4*2^2//3*b^-2//3*d^4//3*((a*d+b*(c+2*d*x))^2)^(1/2)*((a*d+b*c+2*b*d*x)^2)^(1/2)*((a+b*x)*(c+d*x))^1//3*(a+b*x)^-1//3*(c+d*x)^-1//3*(b*c+-1*a*d)^-2*((b*c+-1*a*d)^2//3*(1+3^(1/2))+2^2//3*b^1//3*d^1//3*((a+b*x)*(c+d*x))^1//3)^-1*(a*d+b*c+2*b*d*x)^-1+-1//2*2^1//6*3^3//4*b^-2//3*d^4//3*((a*d+b*(c+2*d*x))^2)^-1//2*((a*d+b*c+2*b*d*x)^2)^(1/2)*(((b*c+-1*a*d)^2//3*(1+3^(1/2))+2^2//3*b^1//3*d^1//3*((a+b*x)*(c+d*x))^1//3)^-2*((b*c+-1*a*d)^4//3+2*2^1//3*b^2//3*d^2//3*((a+b*x)*(c+d*x))^2//3+-1*2^2//3*b^1//3*d^1//3*((a+b*x)*(c+d*x))^1//3*(b*c+-1*a*d)^2//3))^(1/2)*((a+b*x)*(c+d*x))^1//3*((b*c+-1*a*d)^2//3*((b*c+-1*a*d)^2//3*(1+3^(1/2))+2^2//3*b^1//3*d^1//3*((a+b*x)*(c+d*x))^1//3)^-2*((b*c+-1*a*d)^2//3+2^2//3*b^1//3*d^1//3*((a+b*x)*(c+d*x))^1//3))^-1//2*(a+b*x)^-1//3*(c+d*x)^-1//3*(b*c+-1*a*d)^-4//3*(a*d+b*c+2*b*d*x)^-1*((b*c+-1*a*d)^2//3+2^2//3*b^1//3*d^1//3*((a+b*x)*(c+d*x))^1//3)*Elliptic.F(arcsin(((b*c+-1*a*d)^2//3*(1+3^(1/2))+2^2//3*b^1//3*d^1//3*((a+b*x)*(c+d*x))^1//3)^-1*((b*c+-1*a*d)^2//3*(1+-1*3^(1/2))+2^2//3*b^1//3*d^1//3*((a+b*x)*(c+d*x))^1//3)),-7+-4*3^(1/2))+3//8*2^2//3*3^1//4*b^-2//3*d^4//3*((a*d+b*(c+2*d*x))^2)^-1//2*((a*d+b*c+2*b*d*x)^2)^(1/2)*(((b*c+-1*a*d)^2//3*(1+3^(1/2))+2^2//3*b^1//3*d^1//3*((a+b*x)*(c+d*x))^1//3)^-2*((b*c+-1*a*d)^4//3+2*2^1//3*b^2//3*d^2//3*((a+b*x)*(c+d*x))^2//3+-1*2^2//3*b^1//3*d^1//3*((a+b*x)*(c+d*x))^1//3*(b*c+-1*a*d)^2//3))^(1/2)*((a+b*x)*(c+d*x))^1//3*((b*c+-1*a*d)^2//3*((b*c+-1*a*d)^2//3*(1+3^(1/2))+2^2//3*b^1//3*d^1//3*((a+b*x)*(c+d*x))^1//3)^-2*((b*c+-1*a*d)^2//3+2^2//3*b^1//3*d^1//3*((a+b*x)*(c+d*x))^1//3))^-1//2*(2+-1*3^(1/2))^(1/2)*(a+b*x)^-1//3*(c+d*x)^-1//3*(b*c+-1*a*d)^-4//3*(a*d+b*c+2*b*d*x)^-1*((b*c+-1*a*d)^2//3+2^2//3*b^1//3*d^1//3*((a+b*x)*(c+d*x))^1//3)*Elliptic.E(arcsin(((b*c+-1*a*d)^2//3*(1+3^(1/2))+2^2//3*b^1//3*d^1//3*((a+b*x)*(c+d*x))^1//3)^-1*((b*c+-1*a*d)^2//3*(1+-1*3^(1/2))+2^2//3*b^1//3*d^1//3*((a+b*x)*(c+d*x))^1//3)),-7+-4*3^(1/2))) @test integrate((a+b*x)^-10//3*(c+d*x)^-1//3, x) == :(-3*(a+b*x)^-7//3*(c+d*x)^2//3*(-7*a*d+7*b*c)^-1+-15//14*d^2*(a+b*x)^-1//3*(c+d*x)^2//3*(b*c+-1*a*d)^-3+15//28*d*(a+b*x)^-4//3*(c+d*x)^2//3*(b*c+-1*a*d)^-2+15//28*2^2//3*b^-2//3*d^7//3*((a*d+b*(c+2*d*x))^2)^(1/2)*((a*d+b*c+2*b*d*x)^2)^(1/2)*((a+b*x)*(c+d*x))^1//3*(a+b*x)^-1//3*(c+d*x)^-1//3*(b*c+-1*a*d)^-3*((b*c+-1*a*d)^2//3*(1+3^(1/2))+2^2//3*b^1//3*d^1//3*((a+b*x)*(c+d*x))^1//3)^-1*(a*d+b*c+2*b*d*x)^-1+5//14*2^1//6*3^3//4*b^-2//3*d^7//3*((a*d+b*(c+2*d*x))^2)^-1//2*((a*d+b*c+2*b*d*x)^2)^(1/2)*(((b*c+-1*a*d)^2//3*(1+3^(1/2))+2^2//3*b^1//3*d^1//3*((a+b*x)*(c+d*x))^1//3)^-2*((b*c+-1*a*d)^4//3+2*2^1//3*b^2//3*d^2//3*((a+b*x)*(c+d*x))^2//3+-1*2^2//3*b^1//3*d^1//3*((a+b*x)*(c+d*x))^1//3*(b*c+-1*a*d)^2//3))^(1/2)*((a+b*x)*(c+d*x))^1//3*((b*c+-1*a*d)^2//3*((b*c+-1*a*d)^2//3*(1+3^(1/2))+2^2//3*b^1//3*d^1//3*((a+b*x)*(c+d*x))^1//3)^-2*((b*c+-1*a*d)^2//3+2^2//3*b^1//3*d^1//3*((a+b*x)*(c+d*x))^1//3))^-1//2*(a+b*x)^-1//3*(c+d*x)^-1//3*(b*c+-1*a*d)^-7//3*(a*d+b*c+2*b*d*x)^-1*((b*c+-1*a*d)^2//3+2^2//3*b^1//3*d^1//3*((a+b*x)*(c+d*x))^1//3)*Elliptic.F(arcsin(((b*c+-1*a*d)^2//3*(1+3^(1/2))+2^2//3*b^1//3*d^1//3*((a+b*x)*(c+d*x))^1//3)^-1*((b*c+-1*a*d)^2//3*(1+-1*3^(1/2))+2^2//3*b^1//3*d^1//3*((a+b*x)*(c+d*x))^1//3)),-7+-4*3^(1/2))+-15//56*2^2//3*3^1//4*b^-2//3*d^7//3*((a*d+b*(c+2*d*x))^2)^-1//2*((a*d+b*c+2*b*d*x)^2)^(1/2)*(((b*c+-1*a*d)^2//3*(1+3^(1/2))+2^2//3*b^1//3*d^1//3*((a+b*x)*(c+d*x))^1//3)^-2*((b*c+-1*a*d)^4//3+2*2^1//3*b^2//3*d^2//3*((a+b*x)*(c+d*x))^2//3+-1*2^2//3*b^1//3*d^1//3*((a+b*x)*(c+d*x))^1//3*(b*c+-1*a*d)^2//3))^(1/2)*((a+b*x)*(c+d*x))^1//3*((b*c+-1*a*d)^2//3*((b*c+-1*a*d)^2//3*(1+3^(1/2))+2^2//3*b^1//3*d^1//3*((a+b*x)*(c+d*x))^1//3)^-2*((b*c+-1*a*d)^2//3+2^2//3*b^1//3*d^1//3*((a+b*x)*(c+d*x))^1//3))^-1//2*(2+-1*3^(1/2))^(1/2)*(a+b*x)^-1//3*(c+d*x)^-1//3*(b*c+-1*a*d)^-7//3*(a*d+b*c+2*b*d*x)^-1*((b*c+-1*a*d)^2//3+2^2//3*b^1//3*d^1//3*((a+b*x)*(c+d*x))^1//3)*Elliptic.E(arcsin(((b*c+-1*a*d)^2//3*(1+3^(1/2))+2^2//3*b^1//3*d^1//3*((a+b*x)*(c+d*x))^1//3)^-1*((b*c+-1*a*d)^2//3*(1+-1*3^(1/2))+2^2//3*b^1//3*d^1//3*((a+b*x)*(c+d*x))^1//3)),-7+-4*3^(1/2))) @test integrate((a+b*x)^5//3*(c+d*x)^-2//3, x) == :((1/2)*d^-1*(a+b*x)^5//3*(c+d*x)^1//3+-5//6*b^-1//3*d^-8//3*(b*c+-1*a*d)^2*log(-1+b^-1//3*d^1//3*(a+b*x)^1//3*(c+d*x)^-1//3)+-5//18*b^-1//3*d^-8//3*(b*c+-1*a*d)^2*log(c+d*x)+1//6*d^-2*(a+b*x)^2//3*(c+d*x)^1//3*(-5*b*c+5*a*d)+-5//9*3^(1/2)*b^-1//3*d^-8//3*(b*c+-1*a*d)^2*arctan(1//3*3^(1/2)+2//3*3^(1/2)*b^-1//3*d^1//3*(a+b*x)^1//3*(c+d*x)^-1//3)) @test integrate((a+b*x)^2//3*(c+d*x)^-2//3, x) == :(d^-1*(a+b*x)^2//3*(c+d*x)^1//3+b^-1//3*d^-5//3*(b*c+-1*a*d)*log(-1+b^-1//3*d^1//3*(a+b*x)^1//3*(c+d*x)^-1//3)+1//3*b^-1//3*d^-5//3*(b*c+-1*a*d)*log(c+d*x)+1//3*3^(1/2)*b^-1//3*d^-5//3*(-2*a*d+2*b*c)*arctan(1//3*3^(1/2)+2//3*3^(1/2)*b^-1//3*d^1//3*(a+b*x)^1//3*(c+d*x)^-1//3)) @test integrate((a+b*x)^-1//3*(c+d*x)^-2//3, x) == :(-3//2*b^-1//3*d^-2//3*log(-1+b^-1//3*d^1//3*(a+b*x)^1//3*(c+d*x)^-1//3)+-1//2*b^-1//3*d^-2//3*log(c+d*x)+-1*3^(1/2)*b^-1//3*d^-2//3*arctan(1//3*3^(1/2)+2//3*3^(1/2)*b^-1//3*d^1//3*(a+b*x)^1//3*(c+d*x)^-1//3)) @test integrate((a+b*x)^-4//3*(c+d*x)^-2//3, x) == :(-3*(a+b*x)^-1//3*(c+d*x)^1//3*(b*c+-1*a*d)^-1) @test integrate((a+b*x)^-7//3*(c+d*x)^-2//3, x) == :(-3*(a+b*x)^-4//3*(c+d*x)^1//3*(-4*a*d+4*b*c)^-1+9//4*d*(a+b*x)^-1//3*(c+d*x)^1//3*(b*c+-1*a*d)^-2) @test integrate((a+b*x)^-10//3*(c+d*x)^-2//3, x) == :(-3*(a+b*x)^-7//3*(c+d*x)^1//3*(-7*a*d+7*b*c)^-1+-27//14*d^2*(a+b*x)^-1//3*(c+d*x)^1//3*(b*c+-1*a*d)^-3+9//14*d*(a+b*x)^-4//3*(c+d*x)^1//3*(b*c+-1*a*d)^-2) @test integrate((a+b*x)^-13//3*(c+d*x)^-2//3, x) == :(-3*(a+b*x)^-10//3*(c+d*x)^1//3*(-10*a*d+10*b*c)^-1+-81//140*d^2*(a+b*x)^-4//3*(c+d*x)^1//3*(b*c+-1*a*d)^-3+27//70*d*(a+b*x)^-7//3*(c+d*x)^1//3*(b*c+-1*a*d)^-2+243//140*d^3*(a+b*x)^-1//3*(c+d*x)^1//3*(b*c+-1*a*d)^-4) @test integrate((a+b*x)^7//3*(c+d*x)^-2//3, x) == :(3//8*d^-1*(a+b*x)^7//3*(c+d*x)^1//3+-1//40*d^-2*(a+b*x)^4//3*(c+d*x)^1//3*(-21*a*d+21*b*c)+21//20*d^-3*(a+b*x)^1//3*(c+d*x)^1//3*(b*c+-1*a*d)^2+-7//20*2^1//3*3^3//4*b^-1//3*d^-10//3*((a*d+b*(c+2*d*x))^2)^-1//2*((a*d+b*c+2*b*d*x)^2)^(1/2)*(((b*c+-1*a*d)^2//3*(1+3^(1/2))+2^2//3*b^1//3*d^1//3*((a+b*x)*(c+d*x))^1//3)^-2*((b*c+-1*a*d)^4//3+2*2^1//3*b^2//3*d^2//3*((a+b*x)*(c+d*x))^2//3+-1*2^2//3*b^1//3*d^1//3*((a+b*x)*(c+d*x))^1//3*(b*c+-1*a*d)^2//3))^(1/2)*((a+b*x)*(c+d*x))^2//3*((b*c+-1*a*d)^2//3*((b*c+-1*a*d)^2//3*(1+3^(1/2))+2^2//3*b^1//3*d^1//3*((a+b*x)*(c+d*x))^1//3)^-2*((b*c+-1*a*d)^2//3+2^2//3*b^1//3*d^1//3*((a+b*x)*(c+d*x))^1//3))^-1//2*(2+3^(1/2))^(1/2)*(a+b*x)^-2//3*(c+d*x)^-2//3*(b*c+-1*a*d)^3*(a*d+b*c+2*b*d*x)^-1*((b*c+-1*a*d)^2//3+2^2//3*b^1//3*d^1//3*((a+b*x)*(c+d*x))^1//3)*Elliptic.F(arcsin(((b*c+-1*a*d)^2//3*(1+3^(1/2))+2^2//3*b^1//3*d^1//3*((a+b*x)*(c+d*x))^1//3)^-1*((b*c+-1*a*d)^2//3*(1+-1*3^(1/2))+2^2//3*b^1//3*d^1//3*((a+b*x)*(c+d*x))^1//3)),-7+-4*3^(1/2))) @test integrate((a+b*x)^4//3*(c+d*x)^-2//3, x) == :(3//5*d^-1*(a+b*x)^4//3*(c+d*x)^1//3+-1//5*d^-2*(a+b*x)^1//3*(c+d*x)^1//3*(-6*a*d+6*b*c)+2//5*2^1//3*3^3//4*b^-1//3*d^-7//3*((a*d+b*(c+2*d*x))^2)^-1//2*((a*d+b*c+2*b*d*x)^2)^(1/2)*(((b*c+-1*a*d)^2//3*(1+3^(1/2))+2^2//3*b^1//3*d^1//3*((a+b*x)*(c+d*x))^1//3)^-2*((b*c+-1*a*d)^4//3+2*2^1//3*b^2//3*d^2//3*((a+b*x)*(c+d*x))^2//3+-1*2^2//3*b^1//3*d^1//3*((a+b*x)*(c+d*x))^1//3*(b*c+-1*a*d)^2//3))^(1/2)*((a+b*x)*(c+d*x))^2//3*((b*c+-1*a*d)^2//3*((b*c+-1*a*d)^2//3*(1+3^(1/2))+2^2//3*b^1//3*d^1//3*((a+b*x)*(c+d*x))^1//3)^-2*((b*c+-1*a*d)^2//3+2^2//3*b^1//3*d^1//3*((a+b*x)*(c+d*x))^1//3))^-1//2*(2+3^(1/2))^(1/2)*(a+b*x)^-2//3*(c+d*x)^-2//3*(b*c+-1*a*d)^2*(a*d+b*c+2*b*d*x)^-1*((b*c+-1*a*d)^2//3+2^2//3*b^1//3*d^1//3*((a+b*x)*(c+d*x))^1//3)*Elliptic.F(arcsin(((b*c+-1*a*d)^2//3*(1+3^(1/2))+2^2//3*b^1//3*d^1//3*((a+b*x)*(c+d*x))^1//3)^-1*((b*c+-1*a*d)^2//3*(1+-1*3^(1/2))+2^2//3*b^1//3*d^1//3*((a+b*x)*(c+d*x))^1//3)),-7+-4*3^(1/2))) @test integrate((a+b*x)^1//3*(c+d*x)^-2//3, x) == :(3//2*d^-1*(a+b*x)^1//3*(c+d*x)^1//3+-1//2*2^1//3*3^3//4*b^-1//3*d^-4//3*((a*d+b*(c+2*d*x))^2)^-1//2*((a*d+b*c+2*b*d*x)^2)^(1/2)*(((b*c+-1*a*d)^2//3*(1+3^(1/2))+2^2//3*b^1//3*d^1//3*((a+b*x)*(c+d*x))^1//3)^-2*((b*c+-1*a*d)^4//3+2*2^1//3*b^2//3*d^2//3*((a+b*x)*(c+d*x))^2//3+-1*2^2//3*b^1//3*d^1//3*((a+b*x)*(c+d*x))^1//3*(b*c+-1*a*d)^2//3))^(1/2)*((a+b*x)*(c+d*x))^2//3*((b*c+-1*a*d)^2//3*((b*c+-1*a*d)^2//3*(1+3^(1/2))+2^2//3*b^1//3*d^1//3*((a+b*x)*(c+d*x))^1//3)^-2*((b*c+-1*a*d)^2//3+2^2//3*b^1//3*d^1//3*((a+b*x)*(c+d*x))^1//3))^-1//2*(2+3^(1/2))^(1/2)*(a+b*x)^-2//3*(c+d*x)^-2//3*(a*d+b*c+2*b*d*x)^-1*((b*c+-1*a*d)^2//3+2^2//3*b^1//3*d^1//3*((a+b*x)*(c+d*x))^1//3)*(b*c+-1*a*d)*Elliptic.F(arcsin(((b*c+-1*a*d)^2//3*(1+3^(1/2))+2^2//3*b^1//3*d^1//3*((a+b*x)*(c+d*x))^1//3)^-1*((b*c+-1*a*d)^2//3*(1+-1*3^(1/2))+2^2//3*b^1//3*d^1//3*((a+b*x)*(c+d*x))^1//3)),-7+-4*3^(1/2))) @test integrate((a+b*x)^-2//3*(c+d*x)^-2//3, x) == :(2^1//3*3^3//4*b^-1//3*d^-1//3*((a*d+b*(c+2*d*x))^2)^-1//2*((a*d+b*c+2*b*d*x)^2)^(1/2)*(((b*c+-1*a*d)^2//3*(1+3^(1/2))+2^2//3*b^1//3*d^1//3*((a+b*x)*(c+d*x))^1//3)^-2*((b*c+-1*a*d)^4//3+2*2^1//3*b^2//3*d^2//3*((a+b*x)*(c+d*x))^2//3+-1*2^2//3*b^1//3*d^1//3*((a+b*x)*(c+d*x))^1//3*(b*c+-1*a*d)^2//3))^(1/2)*((a+b*x)*(c+d*x))^2//3*((b*c+-1*a*d)^2//3*((b*c+-1*a*d)^2//3*(1+3^(1/2))+2^2//3*b^1//3*d^1//3*((a+b*x)*(c+d*x))^1//3)^-2*((b*c+-1*a*d)^2//3+2^2//3*b^1//3*d^1//3*((a+b*x)*(c+d*x))^1//3))^-1//2*(2+3^(1/2))^(1/2)*(a+b*x)^-2//3*(c+d*x)^-2//3*(a*d+b*c+2*b*d*x)^-1*((b*c+-1*a*d)^2//3+2^2//3*b^1//3*d^1//3*((a+b*x)*(c+d*x))^1//3)*Elliptic.F(arcsin(((b*c+-1*a*d)^2//3*(1+3^(1/2))+2^2//3*b^1//3*d^1//3*((a+b*x)*(c+d*x))^1//3)^-1*((b*c+-1*a*d)^2//3*(1+-1*3^(1/2))+2^2//3*b^1//3*d^1//3*((a+b*x)*(c+d*x))^1//3)),-7+-4*3^(1/2))) @test integrate((a+b*x)^-5//3*(c+d*x)^-2//3, x) == :(-3*(a+b*x)^-2//3*(c+d*x)^1//3*(-2*a*d+2*b*c)^-1+-1//2*2^1//3*3^3//4*b^-1//3*d^2//3*((a*d+b*(c+2*d*x))^2)^-1//2*((a*d+b*c+2*b*d*x)^2)^(1/2)*(((b*c+-1*a*d)^2//3*(1+3^(1/2))+2^2//3*b^1//3*d^1//3*((a+b*x)*(c+d*x))^1//3)^-2*((b*c+-1*a*d)^4//3+2*2^1//3*b^2//3*d^2//3*((a+b*x)*(c+d*x))^2//3+-1*2^2//3*b^1//3*d^1//3*((a+b*x)*(c+d*x))^1//3*(b*c+-1*a*d)^2//3))^(1/2)*((a+b*x)*(c+d*x))^2//3*((b*c+-1*a*d)^2//3*((b*c+-1*a*d)^2//3*(1+3^(1/2))+2^2//3*b^1//3*d^1//3*((a+b*x)*(c+d*x))^1//3)^-2*((b*c+-1*a*d)^2//3+2^2//3*b^1//3*d^1//3*((a+b*x)*(c+d*x))^1//3))^-1//2*(2+3^(1/2))^(1/2)*(a+b*x)^-2//3*(c+d*x)^-2//3*(b*c+-1*a*d)^-1*(a*d+b*c+2*b*d*x)^-1*((b*c+-1*a*d)^2//3+2^2//3*b^1//3*d^1//3*((a+b*x)*(c+d*x))^1//3)*Elliptic.F(arcsin(((b*c+-1*a*d)^2//3*(1+3^(1/2))+2^2//3*b^1//3*d^1//3*((a+b*x)*(c+d*x))^1//3)^-1*((b*c+-1*a*d)^2//3*(1+-1*3^(1/2))+2^2//3*b^1//3*d^1//3*((a+b*x)*(c+d*x))^1//3)),-7+-4*3^(1/2))) @test integrate((a+b*x)^-8//3*(c+d*x)^-2//3, x) == :(-3*(a+b*x)^-5//3*(c+d*x)^1//3*(-5*a*d+5*b*c)^-1+6//5*d*(a+b*x)^-2//3*(c+d*x)^1//3*(b*c+-1*a*d)^-2+2//5*2^1//3*3^3//4*b^-1//3*d^5//3*((a*d+b*(c+2*d*x))^2)^-1//2*((a*d+b*c+2*b*d*x)^2)^(1/2)*(((b*c+-1*a*d)^2//3*(1+3^(1/2))+2^2//3*b^1//3*d^1//3*((a+b*x)*(c+d*x))^1//3)^-2*((b*c+-1*a*d)^4//3+2*2^1//3*b^2//3*d^2//3*((a+b*x)*(c+d*x))^2//3+-1*2^2//3*b^1//3*d^1//3*((a+b*x)*(c+d*x))^1//3*(b*c+-1*a*d)^2//3))^(1/2)*((a+b*x)*(c+d*x))^2//3*((b*c+-1*a*d)^2//3*((b*c+-1*a*d)^2//3*(1+3^(1/2))+2^2//3*b^1//3*d^1//3*((a+b*x)*(c+d*x))^1//3)^-2*((b*c+-1*a*d)^2//3+2^2//3*b^1//3*d^1//3*((a+b*x)*(c+d*x))^1//3))^-1//2*(2+3^(1/2))^(1/2)*(a+b*x)^-2//3*(c+d*x)^-2//3*(b*c+-1*a*d)^-2*(a*d+b*c+2*b*d*x)^-1*((b*c+-1*a*d)^2//3+2^2//3*b^1//3*d^1//3*((a+b*x)*(c+d*x))^1//3)*Elliptic.F(arcsin(((b*c+-1*a*d)^2//3*(1+3^(1/2))+2^2//3*b^1//3*d^1//3*((a+b*x)*(c+d*x))^1//3)^-1*((b*c+-1*a*d)^2//3*(1+-1*3^(1/2))+2^2//3*b^1//3*d^1//3*((a+b*x)*(c+d*x))^1//3)),-7+-4*3^(1/2))) @test integrate((a+b*x)^-11//3*(c+d*x)^-2//3, x) == :(-3*(a+b*x)^-8//3*(c+d*x)^1//3*(-8*a*d+8*b*c)^-1+-21//20*d^2*(a+b*x)^-2//3*(c+d*x)^1//3*(b*c+-1*a*d)^-3+21//40*d*(a+b*x)^-5//3*(c+d*x)^1//3*(b*c+-1*a*d)^-2+-7//20*2^1//3*3^3//4*b^-1//3*d^8//3*((a*d+b*(c+2*d*x))^2)^-1//2*((a*d+b*c+2*b*d*x)^2)^(1/2)*(((b*c+-1*a*d)^2//3*(1+3^(1/2))+2^2//3*b^1//3*d^1//3*((a+b*x)*(c+d*x))^1//3)^-2*((b*c+-1*a*d)^4//3+2*2^1//3*b^2//3*d^2//3*((a+b*x)*(c+d*x))^2//3+-1*2^2//3*b^1//3*d^1//3*((a+b*x)*(c+d*x))^1//3*(b*c+-1*a*d)^2//3))^(1/2)*((a+b*x)*(c+d*x))^2//3*((b*c+-1*a*d)^2//3*((b*c+-1*a*d)^2//3*(1+3^(1/2))+2^2//3*b^1//3*d^1//3*((a+b*x)*(c+d*x))^1//3)^-2*((b*c+-1*a*d)^2//3+2^2//3*b^1//3*d^1//3*((a+b*x)*(c+d*x))^1//3))^-1//2*(2+3^(1/2))^(1/2)*(a+b*x)^-2//3*(c+d*x)^-2//3*(b*c+-1*a*d)^-3*(a*d+b*c+2*b*d*x)^-1*((b*c+-1*a*d)^2//3+2^2//3*b^1//3*d^1//3*((a+b*x)*(c+d*x))^1//3)*Elliptic.F(arcsin(((b*c+-1*a*d)^2//3*(1+3^(1/2))+2^2//3*b^1//3*d^1//3*((a+b*x)*(c+d*x))^1//3)^-1*((b*c+-1*a*d)^2//3*(1+-1*3^(1/2))+2^2//3*b^1//3*d^1//3*((a+b*x)*(c+d*x))^1//3)),-7+-4*3^(1/2))) @test integrate((a+b*x)^7//3*(c+d*x)^-4//3, x) == :(-3*d^-1*(a+b*x)^7//3*(c+d*x)^-1//3+-7//3*b^1//3*d^-10//3*(b*c+-1*a*d)^2*log(-1+b^1//3*d^-1//3*(a+b*x)^-1//3*(c+d*x)^1//3)+-7//9*b^1//3*d^-10//3*(b*c+-1*a*d)^2*log(a+b*x)+7//2*b*d^-2*(a+b*x)^4//3*(c+d*x)^2//3+-14//3*b*d^-3*(a+b*x)^1//3*(c+d*x)^2//3*(b*c+-1*a*d)+-14//9*3^(1/2)*b^1//3*d^-10//3*(b*c+-1*a*d)^2*arctan(1//3*3^(1/2)+2//3*3^(1/2)*b^1//3*d^-1//3*(a+b*x)^-1//3*(c+d*x)^1//3)) @test integrate((a+b*x)^4//3*(c+d*x)^-4//3, x) == :(-3*d^-1*(a+b*x)^4//3*(c+d*x)^-1//3+2*b^1//3*d^-7//3*(b*c+-1*a*d)*log(-1+b^1//3*d^-1//3*(a+b*x)^-1//3*(c+d*x)^1//3)+4*b*d^-2*(a+b*x)^1//3*(c+d*x)^2//3+2//3*b^1//3*d^-7//3*(b*c+-1*a*d)*log(a+b*x)+4//3*3^(1/2)*b^1//3*d^-7//3*(b*c+-1*a*d)*arctan(1//3*3^(1/2)+2//3*3^(1/2)*b^1//3*d^-1//3*(a+b*x)^-1//3*(c+d*x)^1//3)) @test integrate((a+b*x)^1//3*(c+d*x)^-4//3, x) == :(-3*d^-1*(a+b*x)^1//3*(c+d*x)^-1//3+-3//2*b^1//3*d^-4//3*log(-1+b^1//3*d^-1//3*(a+b*x)^-1//3*(c+d*x)^1//3)+-1//2*b^1//3*d^-4//3*log(a+b*x)+-1*3^(1/2)*b^1//3*d^-4//3*arctan(1//3*3^(1/2)+2//3*3^(1/2)*b^1//3*d^-1//3*(a+b*x)^-1//3*(c+d*x)^1//3)) @test integrate((a+b*x)^-2//3*(c+d*x)^-4//3, x) == :(3*(a+b*x)^1//3*(c+d*x)^-1//3*(b*c+-1*a*d)^-1) @test integrate((a+b*x)^-5//3*(c+d*x)^-4//3, x) == :(-3*(a+b*x)^-2//3*(c+d*x)^-1//3*(-2*a*d+2*b*c)^-1+-9//2*d*(a+b*x)^1//3*(c+d*x)^-1//3*(b*c+-1*a*d)^-2) @test integrate((a+b*x)^-8//3*(c+d*x)^-4//3, x) == :(-3*(a+b*x)^-5//3*(c+d*x)^-1//3*(-5*a*d+5*b*c)^-1+9//5*d*(a+b*x)^-2//3*(c+d*x)^-1//3*(b*c+-1*a*d)^-2+27//5*d^2*(a+b*x)^1//3*(c+d*x)^-1//3*(b*c+-1*a*d)^-3) @test integrate((a+b*x)^-11//3*(c+d*x)^-4//3, x) == :(-3*(a+b*x)^-8//3*(c+d*x)^-1//3*(-8*a*d+8*b*c)^-1+-243//40*d^3*(a+b*x)^1//3*(c+d*x)^-1//3*(b*c+-1*a*d)^-4+-81//40*d^2*(a+b*x)^-2//3*(c+d*x)^-1//3*(b*c+-1*a*d)^-3+27//40*d*(a+b*x)^-5//3*(c+d*x)^-1//3*(b*c+-1*a*d)^-2) @test integrate((a+b*x)^8//3*(c+d*x)^-4//3, x) == :(-3*d^-1*(a+b*x)^8//3*(c+d*x)^-1//3+24//7*b*d^-2*(a+b*x)^5//3*(c+d*x)^2//3+-30//7*b*d^-3*(a+b*x)^2//3*(c+d*x)^2//3*(b*c+-1*a*d)+30//7*2^2//3*b^1//3*d^-11//3*((a*d+b*(c+2*d*x))^2)^(1/2)*((a*d+b*c+2*b*d*x)^2)^(1/2)*((a+b*x)*(c+d*x))^1//3*(a+b*x)^-1//3*(c+d*x)^-1//3*(b*c+-1*a*d)^2*((b*c+-1*a*d)^2//3*(1+3^(1/2))+2^2//3*b^1//3*d^1//3*((a+b*x)*(c+d*x))^1//3)^-1*(a*d+b*c+2*b*d*x)^-1+20//7*2^1//6*3^3//4*b^1//3*d^-11//3*((a*d+b*(c+2*d*x))^2)^-1//2*((a*d+b*c+2*b*d*x)^2)^(1/2)*(((b*c+-1*a*d)^2//3*(1+3^(1/2))+2^2//3*b^1//3*d^1//3*((a+b*x)*(c+d*x))^1//3)^-2*((b*c+-1*a*d)^4//3+2*2^1//3*b^2//3*d^2//3*((a+b*x)*(c+d*x))^2//3+-1*2^2//3*b^1//3*d^1//3*((a+b*x)*(c+d*x))^1//3*(b*c+-1*a*d)^2//3))^(1/2)*((a+b*x)*(c+d*x))^1//3*((b*c+-1*a*d)^2//3*((b*c+-1*a*d)^2//3*(1+3^(1/2))+2^2//3*b^1//3*d^1//3*((a+b*x)*(c+d*x))^1//3)^-2*((b*c+-1*a*d)^2//3+2^2//3*b^1//3*d^1//3*((a+b*x)*(c+d*x))^1//3))^-1//2*(a+b*x)^-1//3*(c+d*x)^-1//3*(b*c+-1*a*d)^8//3*(a*d+b*c+2*b*d*x)^-1*((b*c+-1*a*d)^2//3+2^2//3*b^1//3*d^1//3*((a+b*x)*(c+d*x))^1//3)*Elliptic.F(arcsin(((b*c+-1*a*d)^2//3*(1+3^(1/2))+2^2//3*b^1//3*d^1//3*((a+b*x)*(c+d*x))^1//3)^-1*((b*c+-1*a*d)^2//3*(1+-1*3^(1/2))+2^2//3*b^1//3*d^1//3*((a+b*x)*(c+d*x))^1//3)),-7+-4*3^(1/2))+-15//7*2^2//3*3^1//4*b^1//3*d^-11//3*((a*d+b*(c+2*d*x))^2)^-1//2*((a*d+b*c+2*b*d*x)^2)^(1/2)*(((b*c+-1*a*d)^2//3*(1+3^(1/2))+2^2//3*b^1//3*d^1//3*((a+b*x)*(c+d*x))^1//3)^-2*((b*c+-1*a*d)^4//3+2*2^1//3*b^2//3*d^2//3*((a+b*x)*(c+d*x))^2//3+-1*2^2//3*b^1//3*d^1//3*((a+b*x)*(c+d*x))^1//3*(b*c+-1*a*d)^2//3))^(1/2)*((a+b*x)*(c+d*x))^1//3*((b*c+-1*a*d)^2//3*((b*c+-1*a*d)^2//3*(1+3^(1/2))+2^2//3*b^1//3*d^1//3*((a+b*x)*(c+d*x))^1//3)^-2*((b*c+-1*a*d)^2//3+2^2//3*b^1//3*d^1//3*((a+b*x)*(c+d*x))^1//3))^-1//2*(2+-1*3^(1/2))^(1/2)*(a+b*x)^-1//3*(c+d*x)^-1//3*(b*c+-1*a*d)^8//3*(a*d+b*c+2*b*d*x)^-1*((b*c+-1*a*d)^2//3+2^2//3*b^1//3*d^1//3*((a+b*x)*(c+d*x))^1//3)*Elliptic.E(arcsin(((b*c+-1*a*d)^2//3*(1+3^(1/2))+2^2//3*b^1//3*d^1//3*((a+b*x)*(c+d*x))^1//3)^-1*((b*c+-1*a*d)^2//3*(1+-1*3^(1/2))+2^2//3*b^1//3*d^1//3*((a+b*x)*(c+d*x))^1//3)),-7+-4*3^(1/2))) @test integrate((a+b*x)^5//3*(c+d*x)^-4//3, x) == :(-3*d^-1*(a+b*x)^5//3*(c+d*x)^-1//3+15//4*b*d^-2*(a+b*x)^2//3*(c+d*x)^2//3+-15//4*2^2//3*b^1//3*d^-8//3*((a*d+b*(c+2*d*x))^2)^(1/2)*((a*d+b*c+2*b*d*x)^2)^(1/2)*((a+b*x)*(c+d*x))^1//3*(a+b*x)^-1//3*(c+d*x)^-1//3*((b*c+-1*a*d)^2//3*(1+3^(1/2))+2^2//3*b^1//3*d^1//3*((a+b*x)*(c+d*x))^1//3)^-1*(a*d+b*c+2*b*d*x)^-1*(b*c+-1*a*d)+-5//2*2^1//6*3^3//4*b^1//3*d^-8//3*((a*d+b*(c+2*d*x))^2)^-1//2*((a*d+b*c+2*b*d*x)^2)^(1/2)*(((b*c+-1*a*d)^2//3*(1+3^(1/2))+2^2//3*b^1//3*d^1//3*((a+b*x)*(c+d*x))^1//3)^-2*((b*c+-1*a*d)^4//3+2*2^1//3*b^2//3*d^2//3*((a+b*x)*(c+d*x))^2//3+-1*2^2//3*b^1//3*d^1//3*((a+b*x)*(c+d*x))^1//3*(b*c+-1*a*d)^2//3))^(1/2)*((a+b*x)*(c+d*x))^1//3*((b*c+-1*a*d)^2//3*((b*c+-1*a*d)^2//3*(1+3^(1/2))+2^2//3*b^1//3*d^1//3*((a+b*x)*(c+d*x))^1//3)^-2*((b*c+-1*a*d)^2//3+2^2//3*b^1//3*d^1//3*((a+b*x)*(c+d*x))^1//3))^-1//2*(a+b*x)^-1//3*(c+d*x)^-1//3*(b*c+-1*a*d)^5//3*(a*d+b*c+2*b*d*x)^-1*((b*c+-1*a*d)^2//3+2^2//3*b^1//3*d^1//3*((a+b*x)*(c+d*x))^1//3)*Elliptic.F(arcsin(((b*c+-1*a*d)^2//3*(1+3^(1/2))+2^2//3*b^1//3*d^1//3*((a+b*x)*(c+d*x))^1//3)^-1*((b*c+-1*a*d)^2//3*(1+-1*3^(1/2))+2^2//3*b^1//3*d^1//3*((a+b*x)*(c+d*x))^1//3)),-7+-4*3^(1/2))+15//8*2^2//3*3^1//4*b^1//3*d^-8//3*((a*d+b*(c+2*d*x))^2)^-1//2*((a*d+b*c+2*b*d*x)^2)^(1/2)*(((b*c+-1*a*d)^2//3*(1+3^(1/2))+2^2//3*b^1//3*d^1//3*((a+b*x)*(c+d*x))^1//3)^-2*((b*c+-1*a*d)^4//3+2*2^1//3*b^2//3*d^2//3*((a+b*x)*(c+d*x))^2//3+-1*2^2//3*b^1//3*d^1//3*((a+b*x)*(c+d*x))^1//3*(b*c+-1*a*d)^2//3))^(1/2)*((a+b*x)*(c+d*x))^1//3*((b*c+-1*a*d)^2//3*((b*c+-1*a*d)^2//3*(1+3^(1/2))+2^2//3*b^1//3*d^1//3*((a+b*x)*(c+d*x))^1//3)^-2*((b*c+-1*a*d)^2//3+2^2//3*b^1//3*d^1//3*((a+b*x)*(c+d*x))^1//3))^-1//2*(2+-1*3^(1/2))^(1/2)*(a+b*x)^-1//3*(c+d*x)^-1//3*(b*c+-1*a*d)^5//3*(a*d+b*c+2*b*d*x)^-1*((b*c+-1*a*d)^2//3+2^2//3*b^1//3*d^1//3*((a+b*x)*(c+d*x))^1//3)*Elliptic.E(arcsin(((b*c+-1*a*d)^2//3*(1+3^(1/2))+2^2//3*b^1//3*d^1//3*((a+b*x)*(c+d*x))^1//3)^-1*((b*c+-1*a*d)^2//3*(1+-1*3^(1/2))+2^2//3*b^1//3*d^1//3*((a+b*x)*(c+d*x))^1//3)),-7+-4*3^(1/2))) @test integrate((a+b*x)^2//3*(c+d*x)^-4//3, x) == :(-3*d^-1*(a+b*x)^2//3*(c+d*x)^-1//3+3*2^2//3*b^1//3*d^-5//3*((a*d+b*(c+2*d*x))^2)^(1/2)*((a*d+b*c+2*b*d*x)^2)^(1/2)*((a+b*x)*(c+d*x))^1//3*(a+b*x)^-1//3*(c+d*x)^-1//3*((b*c+-1*a*d)^2//3*(1+3^(1/2))+2^2//3*b^1//3*d^1//3*((a+b*x)*(c+d*x))^1//3)^-1*(a*d+b*c+2*b*d*x)^-1+2*2^1//6*3^3//4*b^1//3*d^-5//3*((a*d+b*(c+2*d*x))^2)^-1//2*((a*d+b*c+2*b*d*x)^2)^(1/2)*(((b*c+-1*a*d)^2//3*(1+3^(1/2))+2^2//3*b^1//3*d^1//3*((a+b*x)*(c+d*x))^1//3)^-2*((b*c+-1*a*d)^4//3+2*2^1//3*b^2//3*d^2//3*((a+b*x)*(c+d*x))^2//3+-1*2^2//3*b^1//3*d^1//3*((a+b*x)*(c+d*x))^1//3*(b*c+-1*a*d)^2//3))^(1/2)*((a+b*x)*(c+d*x))^1//3*((b*c+-1*a*d)^2//3*((b*c+-1*a*d)^2//3*(1+3^(1/2))+2^2//3*b^1//3*d^1//3*((a+b*x)*(c+d*x))^1//3)^-2*((b*c+-1*a*d)^2//3+2^2//3*b^1//3*d^1//3*((a+b*x)*(c+d*x))^1//3))^-1//2*(a+b*x)^-1//3*(c+d*x)^-1//3*(b*c+-1*a*d)^2//3*(a*d+b*c+2*b*d*x)^-1*((b*c+-1*a*d)^2//3+2^2//3*b^1//3*d^1//3*((a+b*x)*(c+d*x))^1//3)*Elliptic.F(arcsin(((b*c+-1*a*d)^2//3*(1+3^(1/2))+2^2//3*b^1//3*d^1//3*((a+b*x)*(c+d*x))^1//3)^-1*((b*c+-1*a*d)^2//3*(1+-1*3^(1/2))+2^2//3*b^1//3*d^1//3*((a+b*x)*(c+d*x))^1//3)),-7+-4*3^(1/2))+-3//2*2^2//3*3^1//4*b^1//3*d^-5//3*((a*d+b*(c+2*d*x))^2)^-1//2*((a*d+b*c+2*b*d*x)^2)^(1/2)*(((b*c+-1*a*d)^2//3*(1+3^(1/2))+2^2//3*b^1//3*d^1//3*((a+b*x)*(c+d*x))^1//3)^-2*((b*c+-1*a*d)^4//3+2*2^1//3*b^2//3*d^2//3*((a+b*x)*(c+d*x))^2//3+-1*2^2//3*b^1//3*d^1//3*((a+b*x)*(c+d*x))^1//3*(b*c+-1*a*d)^2//3))^(1/2)*((a+b*x)*(c+d*x))^1//3*((b*c+-1*a*d)^2//3*((b*c+-1*a*d)^2//3*(1+3^(1/2))+2^2//3*b^1//3*d^1//3*((a+b*x)*(c+d*x))^1//3)^-2*((b*c+-1*a*d)^2//3+2^2//3*b^1//3*d^1//3*((a+b*x)*(c+d*x))^1//3))^-1//2*(2+-1*3^(1/2))^(1/2)*(a+b*x)^-1//3*(c+d*x)^-1//3*(b*c+-1*a*d)^2//3*(a*d+b*c+2*b*d*x)^-1*((b*c+-1*a*d)^2//3+2^2//3*b^1//3*d^1//3*((a+b*x)*(c+d*x))^1//3)*Elliptic.E(arcsin(((b*c+-1*a*d)^2//3*(1+3^(1/2))+2^2//3*b^1//3*d^1//3*((a+b*x)*(c+d*x))^1//3)^-1*((b*c+-1*a*d)^2//3*(1+-1*3^(1/2))+2^2//3*b^1//3*d^1//3*((a+b*x)*(c+d*x))^1//3)),-7+-4*3^(1/2))) @test integrate((a+b*x)^-1//3*(c+d*x)^-4//3, x) == :(3*(a+b*x)^2//3*(c+d*x)^-1//3*(b*c+-1*a*d)^-1+-3//2*2^2//3*b^1//3*d^-2//3*((a*d+b*(c+2*d*x))^2)^(1/2)*((a*d+b*c+2*b*d*x)^2)^(1/2)*((a+b*x)*(c+d*x))^1//3*(a+b*x)^-1//3*(c+d*x)^-1//3*(b*c+-1*a*d)^-1*((b*c+-1*a*d)^2//3*(1+3^(1/2))+2^2//3*b^1//3*d^1//3*((a+b*x)*(c+d*x))^1//3)^-1*(a*d+b*c+2*b*d*x)^-1+-1*2^1//6*3^3//4*b^1//3*d^-2//3*((a*d+b*(c+2*d*x))^2)^-1//2*((a*d+b*c+2*b*d*x)^2)^(1/2)*(((b*c+-1*a*d)^2//3*(1+3^(1/2))+2^2//3*b^1//3*d^1//3*((a+b*x)*(c+d*x))^1//3)^-2*((b*c+-1*a*d)^4//3+2*2^1//3*b^2//3*d^2//3*((a+b*x)*(c+d*x))^2//3+-1*2^2//3*b^1//3*d^1//3*((a+b*x)*(c+d*x))^1//3*(b*c+-1*a*d)^2//3))^(1/2)*((a+b*x)*(c+d*x))^1//3*((b*c+-1*a*d)^2//3*((b*c+-1*a*d)^2//3*(1+3^(1/2))+2^2//3*b^1//3*d^1//3*((a+b*x)*(c+d*x))^1//3)^-2*((b*c+-1*a*d)^2//3+2^2//3*b^1//3*d^1//3*((a+b*x)*(c+d*x))^1//3))^-1//2*(a+b*x)^-1//3*(c+d*x)^-1//3*(b*c+-1*a*d)^-1//3*(a*d+b*c+2*b*d*x)^-1*((b*c+-1*a*d)^2//3+2^2//3*b^1//3*d^1//3*((a+b*x)*(c+d*x))^1//3)*Elliptic.F(arcsin(((b*c+-1*a*d)^2//3*(1+3^(1/2))+2^2//3*b^1//3*d^1//3*((a+b*x)*(c+d*x))^1//3)^-1*((b*c+-1*a*d)^2//3*(1+-1*3^(1/2))+2^2//3*b^1//3*d^1//3*((a+b*x)*(c+d*x))^1//3)),-7+-4*3^(1/2))+3//4*2^2//3*3^1//4*b^1//3*d^-2//3*((a*d+b*(c+2*d*x))^2)^-1//2*((a*d+b*c+2*b*d*x)^2)^(1/2)*(((b*c+-1*a*d)^2//3*(1+3^(1/2))+2^2//3*b^1//3*d^1//3*((a+b*x)*(c+d*x))^1//3)^-2*((b*c+-1*a*d)^4//3+2*2^1//3*b^2//3*d^2//3*((a+b*x)*(c+d*x))^2//3+-1*2^2//3*b^1//3*d^1//3*((a+b*x)*(c+d*x))^1//3*(b*c+-1*a*d)^2//3))^(1/2)*((a+b*x)*(c+d*x))^1//3*((b*c+-1*a*d)^2//3*((b*c+-1*a*d)^2//3*(1+3^(1/2))+2^2//3*b^1//3*d^1//3*((a+b*x)*(c+d*x))^1//3)^-2*((b*c+-1*a*d)^2//3+2^2//3*b^1//3*d^1//3*((a+b*x)*(c+d*x))^1//3))^-1//2*(2+-1*3^(1/2))^(1/2)*(a+b*x)^-1//3*(c+d*x)^-1//3*(b*c+-1*a*d)^-1//3*(a*d+b*c+2*b*d*x)^-1*((b*c+-1*a*d)^2//3+2^2//3*b^1//3*d^1//3*((a+b*x)*(c+d*x))^1//3)*Elliptic.E(arcsin(((b*c+-1*a*d)^2//3*(1+3^(1/2))+2^2//3*b^1//3*d^1//3*((a+b*x)*(c+d*x))^1//3)^-1*((b*c+-1*a*d)^2//3*(1+-1*3^(1/2))+2^2//3*b^1//3*d^1//3*((a+b*x)*(c+d*x))^1//3)),-7+-4*3^(1/2))) @test integrate((a+b*x)^-4//3*(c+d*x)^-4//3, x) == :(-3*(a+b*x)^-1//3*(c+d*x)^-1//3*(b*c+-1*a*d)^-1+-6*d*(a+b*x)^2//3*(c+d*x)^-1//3*(b*c+-1*a*d)^-2+3*2^2//3*b^1//3*d^1//3*((a*d+b*(c+2*d*x))^2)^(1/2)*((a*d+b*c+2*b*d*x)^2)^(1/2)*((a+b*x)*(c+d*x))^1//3*(a+b*x)^-1//3*(c+d*x)^-1//3*(b*c+-1*a*d)^-2*((b*c+-1*a*d)^2//3*(1+3^(1/2))+2^2//3*b^1//3*d^1//3*((a+b*x)*(c+d*x))^1//3)^-1*(a*d+b*c+2*b*d*x)^-1+2*2^1//6*3^3//4*b^1//3*d^1//3*((a*d+b*(c+2*d*x))^2)^-1//2*((a*d+b*c+2*b*d*x)^2)^(1/2)*(((b*c+-1*a*d)^2//3*(1+3^(1/2))+2^2//3*b^1//3*d^1//3*((a+b*x)*(c+d*x))^1//3)^-2*((b*c+-1*a*d)^4//3+2*2^1//3*b^2//3*d^2//3*((a+b*x)*(c+d*x))^2//3+-1*2^2//3*b^1//3*d^1//3*((a+b*x)*(c+d*x))^1//3*(b*c+-1*a*d)^2//3))^(1/2)*((a+b*x)*(c+d*x))^1//3*((b*c+-1*a*d)^2//3*((b*c+-1*a*d)^2//3*(1+3^(1/2))+2^2//3*b^1//3*d^1//3*((a+b*x)*(c+d*x))^1//3)^-2*((b*c+-1*a*d)^2//3+2^2//3*b^1//3*d^1//3*((a+b*x)*(c+d*x))^1//3))^-1//2*(a+b*x)^-1//3*(c+d*x)^-1//3*(b*c+-1*a*d)^-4//3*(a*d+b*c+2*b*d*x)^-1*((b*c+-1*a*d)^2//3+2^2//3*b^1//3*d^1//3*((a+b*x)*(c+d*x))^1//3)*Elliptic.F(arcsin(((b*c+-1*a*d)^2//3*(1+3^(1/2))+2^2//3*b^1//3*d^1//3*((a+b*x)*(c+d*x))^1//3)^-1*((b*c+-1*a*d)^2//3*(1+-1*3^(1/2))+2^2//3*b^1//3*d^1//3*((a+b*x)*(c+d*x))^1//3)),-7+-4*3^(1/2))+-3//2*2^2//3*3^1//4*b^1//3*d^1//3*((a*d+b*(c+2*d*x))^2)^-1//2*((a*d+b*c+2*b*d*x)^2)^(1/2)*(((b*c+-1*a*d)^2//3*(1+3^(1/2))+2^2//3*b^1//3*d^1//3*((a+b*x)*(c+d*x))^1//3)^-2*((b*c+-1*a*d)^4//3+2*2^1//3*b^2//3*d^2//3*((a+b*x)*(c+d*x))^2//3+-1*2^2//3*b^1//3*d^1//3*((a+b*x)*(c+d*x))^1//3*(b*c+-1*a*d)^2//3))^(1/2)*((a+b*x)*(c+d*x))^1//3*((b*c+-1*a*d)^2//3*((b*c+-1*a*d)^2//3*(1+3^(1/2))+2^2//3*b^1//3*d^1//3*((a+b*x)*(c+d*x))^1//3)^-2*((b*c+-1*a*d)^2//3+2^2//3*b^1//3*d^1//3*((a+b*x)*(c+d*x))^1//3))^-1//2*(2+-1*3^(1/2))^(1/2)*(a+b*x)^-1//3*(c+d*x)^-1//3*(b*c+-1*a*d)^-4//3*(a*d+b*c+2*b*d*x)^-1*((b*c+-1*a*d)^2//3+2^2//3*b^1//3*d^1//3*((a+b*x)*(c+d*x))^1//3)*Elliptic.E(arcsin(((b*c+-1*a*d)^2//3*(1+3^(1/2))+2^2//3*b^1//3*d^1//3*((a+b*x)*(c+d*x))^1//3)^-1*((b*c+-1*a*d)^2//3*(1+-1*3^(1/2))+2^2//3*b^1//3*d^1//3*((a+b*x)*(c+d*x))^1//3)),-7+-4*3^(1/2))) @test integrate((a+b*x)^-7//3*(c+d*x)^-4//3, x) == :(-3*(a+b*x)^-4//3*(c+d*x)^-1//3*(-4*a*d+4*b*c)^-1+15//2*d^2*(a+b*x)^2//3*(c+d*x)^-1//3*(b*c+-1*a*d)^-3+15//4*d*(a+b*x)^-1//3*(c+d*x)^-1//3*(b*c+-1*a*d)^-2+-15//4*2^2//3*b^1//3*d^4//3*((a*d+b*(c+2*d*x))^2)^(1/2)*((a*d+b*c+2*b*d*x)^2)^(1/2)*((a+b*x)*(c+d*x))^1//3*(a+b*x)^-1//3*(c+d*x)^-1//3*(b*c+-1*a*d)^-3*((b*c+-1*a*d)^2//3*(1+3^(1/2))+2^2//3*b^1//3*d^1//3*((a+b*x)*(c+d*x))^1//3)^-1*(a*d+b*c+2*b*d*x)^-1+-5//2*2^1//6*3^3//4*b^1//3*d^4//3*((a*d+b*(c+2*d*x))^2)^-1//2*((a*d+b*c+2*b*d*x)^2)^(1/2)*(((b*c+-1*a*d)^2//3*(1+3^(1/2))+2^2//3*b^1//3*d^1//3*((a+b*x)*(c+d*x))^1//3)^-2*((b*c+-1*a*d)^4//3+2*2^1//3*b^2//3*d^2//3*((a+b*x)*(c+d*x))^2//3+-1*2^2//3*b^1//3*d^1//3*((a+b*x)*(c+d*x))^1//3*(b*c+-1*a*d)^2//3))^(1/2)*((a+b*x)*(c+d*x))^1//3*((b*c+-1*a*d)^2//3*((b*c+-1*a*d)^2//3*(1+3^(1/2))+2^2//3*b^1//3*d^1//3*((a+b*x)*(c+d*x))^1//3)^-2*((b*c+-1*a*d)^2//3+2^2//3*b^1//3*d^1//3*((a+b*x)*(c+d*x))^1//3))^-1//2*(a+b*x)^-1//3*(c+d*x)^-1//3*(b*c+-1*a*d)^-7//3*(a*d+b*c+2*b*d*x)^-1*((b*c+-1*a*d)^2//3+2^2//3*b^1//3*d^1//3*((a+b*x)*(c+d*x))^1//3)*Elliptic.F(arcsin(((b*c+-1*a*d)^2//3*(1+3^(1/2))+2^2//3*b^1//3*d^1//3*((a+b*x)*(c+d*x))^1//3)^-1*((b*c+-1*a*d)^2//3*(1+-1*3^(1/2))+2^2//3*b^1//3*d^1//3*((a+b*x)*(c+d*x))^1//3)),-7+-4*3^(1/2))+15//8*2^2//3*3^1//4*b^1//3*d^4//3*((a*d+b*(c+2*d*x))^2)^-1//2*((a*d+b*c+2*b*d*x)^2)^(1/2)*(((b*c+-1*a*d)^2//3*(1+3^(1/2))+2^2//3*b^1//3*d^1//3*((a+b*x)*(c+d*x))^1//3)^-2*((b*c+-1*a*d)^4//3+2*2^1//3*b^2//3*d^2//3*((a+b*x)*(c+d*x))^2//3+-1*2^2//3*b^1//3*d^1//3*((a+b*x)*(c+d*x))^1//3*(b*c+-1*a*d)^2//3))^(1/2)*((a+b*x)*(c+d*x))^1//3*((b*c+-1*a*d)^2//3*((b*c+-1*a*d)^2//3*(1+3^(1/2))+2^2//3*b^1//3*d^1//3*((a+b*x)*(c+d*x))^1//3)^-2*((b*c+-1*a*d)^2//3+2^2//3*b^1//3*d^1//3*((a+b*x)*(c+d*x))^1//3))^-1//2*(2+-1*3^(1/2))^(1/2)*(a+b*x)^-1//3*(c+d*x)^-1//3*(b*c+-1*a*d)^-7//3*(a*d+b*c+2*b*d*x)^-1*((b*c+-1*a*d)^2//3+2^2//3*b^1//3*d^1//3*((a+b*x)*(c+d*x))^1//3)*Elliptic.E(arcsin(((b*c+-1*a*d)^2//3*(1+3^(1/2))+2^2//3*b^1//3*d^1//3*((a+b*x)*(c+d*x))^1//3)^-1*((b*c+-1*a*d)^2//3*(1+-1*3^(1/2))+2^2//3*b^1//3*d^1//3*((a+b*x)*(c+d*x))^1//3)),-7+-4*3^(1/2))) @test integrate((1+x)^-1//3*(-1+x)^1//3, x) == :(1//3*log(-1+x)+(1+x)^2//3*(-1+x)^1//3+2//3*3^(1/2)*arctan(1//3*3^(1/2)+2//3*3^(1/2)*(1+x)^1//3*(-1+x)^-1//3)+log(-1+(1+x)^1//3*(-1+x)^-1//3)) @test integrate((a+b*x)^3//2*(c+d*x)^1//4, x) == :(4//11*b^-1*(a+b*x)^5//2*(c+d*x)^1//4+-8//77*b^-1*d^-2*(a+b*x)^(1/2)*(c+d*x)^1//4*(b*c+-1*a*d)^2+1//77*b^-1*d^-1*(a+b*x)^3//2*(c+d*x)^1//4*(-4*a*d+4*b*c)+16//77*b^-5//4*d^-3*(-1*d*(b*c+-1*a*d)^-1*(a+b*x))^(1/2)*(a+b*x)^-1//2*(b*c+-1*a*d)^13//4*Elliptic.F(arcsin(b^1//4*(c+d*x)^1//4*(b*c+-1*a*d)^-1//4),-1)) @test integrate((a+b*x)^(1/2)*(c+d*x)^1//4, x) == :(4//7*b^-1*(a+b*x)^3//2*(c+d*x)^1//4+1//21*b^-1*d^-1*(a+b*x)^(1/2)*(c+d*x)^1//4*(-4*a*d+4*b*c)+-8//21*b^-5//4*d^-2*(-1*d*(b*c+-1*a*d)^-1*(a+b*x))^(1/2)*(a+b*x)^-1//2*(b*c+-1*a*d)^9//4*Elliptic.F(arcsin(b^1//4*(c+d*x)^1//4*(b*c+-1*a*d)^-1//4),-1)) @test integrate((a+b*x)^-1//2*(c+d*x)^1//4, x) == :(4//3*b^-1*(a+b*x)^(1/2)*(c+d*x)^1//4+4//3*b^-5//4*d^-1*(-1*d*(b*c+-1*a*d)^-1*(a+b*x))^(1/2)*(a+b*x)^-1//2*(b*c+-1*a*d)^5//4*Elliptic.F(arcsin(b^1//4*(c+d*x)^1//4*(b*c+-1*a*d)^-1//4),-1)) @test integrate((a+b*x)^-3//2*(c+d*x)^1//4, x) == :(-2*b^-1*(a+b*x)^-1//2*(c+d*x)^1//4+2*b^-5//4*(-1*d*(b*c+-1*a*d)^-1*(a+b*x))^(1/2)*(a+b*x)^-1//2*(b*c+-1*a*d)^1//4*Elliptic.F(arcsin(b^1//4*(c+d*x)^1//4*(b*c+-1*a*d)^-1//4),-1)) @test integrate((a+b*x)^-5//2*(c+d*x)^1//4, x) == :(-2//3*b^-1*(a+b*x)^-3//2*(c+d*x)^1//4+-1//3*d*b^-1*(a+b*x)^-1//2*(c+d*x)^1//4*(b*c+-1*a*d)^-1+-1//3*d*b^-5//4*(-1*d*(b*c+-1*a*d)^-1*(a+b*x))^(1/2)*(a+b*x)^-1//2*(b*c+-1*a*d)^-3//4*Elliptic.F(arcsin(b^1//4*(c+d*x)^1//4*(b*c+-1*a*d)^-1//4),-1)) @test integrate((a+b*x)^-7//2*(c+d*x)^1//4, x) == :(-2//5*b^-1*(a+b*x)^-5//2*(c+d*x)^1//4+-1//15*d*b^-1*(a+b*x)^-3//2*(c+d*x)^1//4*(b*c+-1*a*d)^-1+1//6*b^-1*d^2*(a+b*x)^-1//2*(c+d*x)^1//4*(b*c+-1*a*d)^-2+1//6*b^-5//4*d^2*(-1*d*(b*c+-1*a*d)^-1*(a+b*x))^(1/2)*(a+b*x)^-1//2*(b*c+-1*a*d)^-7//4*Elliptic.F(arcsin(b^1//4*(c+d*x)^1//4*(b*c+-1*a*d)^-1//4),-1)) @test integrate((a+b*x)^3//2*(c+d*x)^3//4, x) == :(4//13*b^-1*(a+b*x)^5//2*(c+d*x)^3//4+-8//65*b^-1*d^-2*(a+b*x)^(1/2)*(c+d*x)^3//4*(b*c+-1*a*d)^2+1//39*b^-1*d^-1*(a+b*x)^3//2*(c+d*x)^3//4*(-4*a*d+4*b*c)+-16//65*b^-7//4*d^-3*(-1*d*(b*c+-1*a*d)^-1*(a+b*x))^(1/2)*(a+b*x)^-1//2*(b*c+-1*a*d)^15//4*Elliptic.F(arcsin(b^1//4*(c+d*x)^1//4*(b*c+-1*a*d)^-1//4),-1)+16//65*b^-7//4*d^-3*(-1*d*(b*c+-1*a*d)^-1*(a+b*x))^(1/2)*(a+b*x)^-1//2*(b*c+-1*a*d)^15//4*Elliptic.E(arcsin(b^1//4*(c+d*x)^1//4*(b*c+-1*a*d)^-1//4),-1)) @test integrate((a+b*x)^(1/2)*(c+d*x)^3//4, x) == :(4//9*b^-1*(a+b*x)^3//2*(c+d*x)^3//4+1//15*b^-1*d^-1*(a+b*x)^(1/2)*(c+d*x)^3//4*(-4*a*d+4*b*c)+-8//15*b^-7//4*d^-2*(-1*d*(b*c+-1*a*d)^-1*(a+b*x))^(1/2)*(a+b*x)^-1//2*(b*c+-1*a*d)^11//4*Elliptic.E(arcsin(b^1//4*(c+d*x)^1//4*(b*c+-1*a*d)^-1//4),-1)+8//15*b^-7//4*d^-2*(-1*d*(b*c+-1*a*d)^-1*(a+b*x))^(1/2)*(a+b*x)^-1//2*(b*c+-1*a*d)^11//4*Elliptic.F(arcsin(b^1//4*(c+d*x)^1//4*(b*c+-1*a*d)^-1//4),-1)) @test integrate((a+b*x)^-1//2*(c+d*x)^3//4, x) == :(4//5*b^-1*(a+b*x)^(1/2)*(c+d*x)^3//4+-12//5*b^-7//4*d^-1*(-1*d*(b*c+-1*a*d)^-1*(a+b*x))^(1/2)*(a+b*x)^-1//2*(b*c+-1*a*d)^7//4*Elliptic.F(arcsin(b^1//4*(c+d*x)^1//4*(b*c+-1*a*d)^-1//4),-1)+12//5*b^-7//4*d^-1*(-1*d*(b*c+-1*a*d)^-1*(a+b*x))^(1/2)*(a+b*x)^-1//2*(b*c+-1*a*d)^7//4*Elliptic.E(arcsin(b^1//4*(c+d*x)^1//4*(b*c+-1*a*d)^-1//4),-1)) @test integrate((a+b*x)^-3//2*(c+d*x)^3//4, x) == :(-2*b^-1*(a+b*x)^-1//2*(c+d*x)^3//4+-6*b^-7//4*(-1*d*(b*c+-1*a*d)^-1*(a+b*x))^(1/2)*(a+b*x)^-1//2*(b*c+-1*a*d)^3//4*Elliptic.F(arcsin(b^1//4*(c+d*x)^1//4*(b*c+-1*a*d)^-1//4),-1)+6*b^-7//4*(-1*d*(b*c+-1*a*d)^-1*(a+b*x))^(1/2)*(a+b*x)^-1//2*(b*c+-1*a*d)^3//4*Elliptic.E(arcsin(b^1//4*(c+d*x)^1//4*(b*c+-1*a*d)^-1//4),-1)) @test integrate((a+b*x)^-5//2*(c+d*x)^3//4, x) == :(-2//3*b^-1*(a+b*x)^-3//2*(c+d*x)^3//4+-1*d*b^-1*(a+b*x)^-1//2*(c+d*x)^3//4*(b*c+-1*a*d)^-1+d*b^-7//4*(-1*d*(b*c+-1*a*d)^-1*(a+b*x))^(1/2)*(a+b*x)^-1//2*(b*c+-1*a*d)^-1//4*Elliptic.E(arcsin(b^1//4*(c+d*x)^1//4*(b*c+-1*a*d)^-1//4),-1)+-1*d*b^-7//4*(-1*d*(b*c+-1*a*d)^-1*(a+b*x))^(1/2)*(a+b*x)^-1//2*(b*c+-1*a*d)^-1//4*Elliptic.F(arcsin(b^1//4*(c+d*x)^1//4*(b*c+-1*a*d)^-1//4),-1)) @test integrate((a+b*x)^-7//2*(c+d*x)^3//4, x) == :(-2//5*b^-1*(a+b*x)^-5//2*(c+d*x)^3//4+-1//5*d*b^-1*(a+b*x)^-3//2*(c+d*x)^3//4*(b*c+-1*a*d)^-1+3//10*b^-1*d^2*(a+b*x)^-1//2*(c+d*x)^3//4*(b*c+-1*a*d)^-2+-3//10*b^-7//4*d^2*(-1*d*(b*c+-1*a*d)^-1*(a+b*x))^(1/2)*(a+b*x)^-1//2*(b*c+-1*a*d)^-5//4*Elliptic.E(arcsin(b^1//4*(c+d*x)^1//4*(b*c+-1*a*d)^-1//4),-1)+3//10*b^-7//4*d^2*(-1*d*(b*c+-1*a*d)^-1*(a+b*x))^(1/2)*(a+b*x)^-1//2*(b*c+-1*a*d)^-5//4*Elliptic.F(arcsin(b^1//4*(c+d*x)^1//4*(b*c+-1*a*d)^-1//4),-1)) @test integrate((a+b*x)^3//2*(c+d*x)^5//4, x) == :(4//15*b^-1*(a+b*x)^5//2*(c+d*x)^5//4+1//33*b^-2*(a+b*x)^5//2*(c+d*x)^1//4*(-4*a*d+4*b*c)+-8//231*b^-2*d^-2*(a+b*x)^(1/2)*(c+d*x)^1//4*(b*c+-1*a*d)^3+4//231*b^-2*d^-1*(a+b*x)^3//2*(c+d*x)^1//4*(b*c+-1*a*d)^2+16//231*b^-9//4*d^-3*(-1*d*(b*c+-1*a*d)^-1*(a+b*x))^(1/2)*(a+b*x)^-1//2*(b*c+-1*a*d)^17//4*Elliptic.F(arcsin(b^1//4*(c+d*x)^1//4*(b*c+-1*a*d)^-1//4),-1)) @test integrate((a+b*x)^(1/2)*(c+d*x)^5//4, x) == :(4//11*b^-1*(a+b*x)^3//2*(c+d*x)^5//4+1//77*b^-2*(a+b*x)^3//2*(c+d*x)^1//4*(-20*a*d+20*b*c)+20//231*b^-2*d^-1*(a+b*x)^(1/2)*(c+d*x)^1//4*(b*c+-1*a*d)^2+-40//231*b^-9//4*d^-2*(-1*d*(b*c+-1*a*d)^-1*(a+b*x))^(1/2)*(a+b*x)^-1//2*(b*c+-1*a*d)^13//4*Elliptic.F(arcsin(b^1//4*(c+d*x)^1//4*(b*c+-1*a*d)^-1//4),-1)) @test integrate((a+b*x)^-1//2*(c+d*x)^5//4, x) == :(4//7*b^-1*(a+b*x)^(1/2)*(c+d*x)^5//4+1//21*b^-2*(a+b*x)^(1/2)*(c+d*x)^1//4*(-20*a*d+20*b*c)+20//21*b^-9//4*d^-1*(-1*d*(b*c+-1*a*d)^-1*(a+b*x))^(1/2)*(a+b*x)^-1//2*(b*c+-1*a*d)^9//4*Elliptic.F(arcsin(b^1//4*(c+d*x)^1//4*(b*c+-1*a*d)^-1//4),-1)) @test integrate((a+b*x)^-3//2*(c+d*x)^5//4, x) == :(-2*b^-1*(a+b*x)^-1//2*(c+d*x)^5//4+10//3*d*b^-2*(a+b*x)^(1/2)*(c+d*x)^1//4+10//3*b^-9//4*(-1*d*(b*c+-1*a*d)^-1*(a+b*x))^(1/2)*(a+b*x)^-1//2*(b*c+-1*a*d)^5//4*Elliptic.F(arcsin(b^1//4*(c+d*x)^1//4*(b*c+-1*a*d)^-1//4),-1)) @test integrate((a+b*x)^-5//2*(c+d*x)^5//4, x) == :(-2//3*b^-1*(a+b*x)^-3//2*(c+d*x)^5//4+-5//3*d*b^-2*(a+b*x)^-1//2*(c+d*x)^1//4+5//3*d*b^-9//4*(-1*d*(b*c+-1*a*d)^-1*(a+b*x))^(1/2)*(a+b*x)^-1//2*(b*c+-1*a*d)^1//4*Elliptic.F(arcsin(b^1//4*(c+d*x)^1//4*(b*c+-1*a*d)^-1//4),-1)) @test integrate((a+b*x)^-7//2*(c+d*x)^5//4, x) == :(-2//5*b^-1*(a+b*x)^-5//2*(c+d*x)^5//4+-1//3*d*b^-2*(a+b*x)^-3//2*(c+d*x)^1//4+-1//6*b^-2*d^2*(a+b*x)^-1//2*(c+d*x)^1//4*(b*c+-1*a*d)^-1+-1//6*b^-9//4*d^2*(-1*d*(b*c+-1*a*d)^-1*(a+b*x))^(1/2)*(a+b*x)^-1//2*(b*c+-1*a*d)^-3//4*Elliptic.F(arcsin(b^1//4*(c+d*x)^1//4*(b*c+-1*a*d)^-1//4),-1)) @test integrate((a+b*x)^-9//2*(c+d*x)^5//4, x) == :(-2//7*b^-1*(a+b*x)^-7//2*(c+d*x)^5//4+-1//7*d*b^-2*(a+b*x)^-5//2*(c+d*x)^1//4+-1//42*b^-2*d^2*(a+b*x)^-3//2*(c+d*x)^1//4*(b*c+-1*a*d)^-1+5//84*b^-2*d^3*(a+b*x)^-1//2*(c+d*x)^1//4*(b*c+-1*a*d)^-2+5//84*b^-9//4*d^3*(-1*d*(b*c+-1*a*d)^-1*(a+b*x))^(1/2)*(a+b*x)^-1//2*(b*c+-1*a*d)^-7//4*Elliptic.F(arcsin(b^1//4*(c+d*x)^1//4*(b*c+-1*a*d)^-1//4),-1)) @test integrate((a+b*x)^5//2*(c+d*x)^-1//4, x) == :(4//13*d^-1*(a+b*x)^5//2*(c+d*x)^3//4+-1//117*d^-2*(a+b*x)^3//2*(c+d*x)^3//4*(-40*a*d+40*b*c)+16//39*d^-3*(a+b*x)^(1/2)*(c+d*x)^3//4*(b*c+-1*a*d)^2+-32//39*b^-3//4*d^-4*(-1*d*(b*c+-1*a*d)^-1*(a+b*x))^(1/2)*(a+b*x)^-1//2*(b*c+-1*a*d)^15//4*Elliptic.E(arcsin(b^1//4*(c+d*x)^1//4*(b*c+-1*a*d)^-1//4),-1)+32//39*b^-3//4*d^-4*(-1*d*(b*c+-1*a*d)^-1*(a+b*x))^(1/2)*(a+b*x)^-1//2*(b*c+-1*a*d)^15//4*Elliptic.F(arcsin(b^1//4*(c+d*x)^1//4*(b*c+-1*a*d)^-1//4),-1)) @test integrate((a+b*x)^3//2*(c+d*x)^-1//4, x) == :(4//9*d^-1*(a+b*x)^3//2*(c+d*x)^3//4+1//15*d^-2*(a+b*x)^(1/2)*(c+d*x)^3//4*(-8*b*c+8*a*d)+-16//15*b^-3//4*d^-3*(-1*d*(b*c+-1*a*d)^-1*(a+b*x))^(1/2)*(a+b*x)^-1//2*(b*c+-1*a*d)^11//4*Elliptic.F(arcsin(b^1//4*(c+d*x)^1//4*(b*c+-1*a*d)^-1//4),-1)+16//15*b^-3//4*d^-3*(-1*d*(b*c+-1*a*d)^-1*(a+b*x))^(1/2)*(a+b*x)^-1//2*(b*c+-1*a*d)^11//4*Elliptic.E(arcsin(b^1//4*(c+d*x)^1//4*(b*c+-1*a*d)^-1//4),-1)) @test integrate((a+b*x)^(1/2)*(c+d*x)^-1//4, x) == :(4//5*d^-1*(a+b*x)^(1/2)*(c+d*x)^3//4+-8//5*b^-3//4*d^-2*(-1*d*(b*c+-1*a*d)^-1*(a+b*x))^(1/2)*(a+b*x)^-1//2*(b*c+-1*a*d)^7//4*Elliptic.E(arcsin(b^1//4*(c+d*x)^1//4*(b*c+-1*a*d)^-1//4),-1)+8//5*b^-3//4*d^-2*(-1*d*(b*c+-1*a*d)^-1*(a+b*x))^(1/2)*(a+b*x)^-1//2*(b*c+-1*a*d)^7//4*Elliptic.F(arcsin(b^1//4*(c+d*x)^1//4*(b*c+-1*a*d)^-1//4),-1)) @test integrate((a+b*x)^-1//2*(c+d*x)^-1//4, x) == :(-4*b^-3//4*d^-1*(-1*d*(b*c+-1*a*d)^-1*(a+b*x))^(1/2)*(a+b*x)^-1//2*(b*c+-1*a*d)^3//4*Elliptic.F(arcsin(b^1//4*(c+d*x)^1//4*(b*c+-1*a*d)^-1//4),-1)+4*b^-3//4*d^-1*(-1*d*(b*c+-1*a*d)^-1*(a+b*x))^(1/2)*(a+b*x)^-1//2*(b*c+-1*a*d)^3//4*Elliptic.E(arcsin(b^1//4*(c+d*x)^1//4*(b*c+-1*a*d)^-1//4),-1)) @test integrate((a+b*x)^-3//2*(c+d*x)^-1//4, x) == :(-2*(a+b*x)^-1//2*(c+d*x)^3//4*(b*c+-1*a*d)^-1+-2*b^-3//4*(-1*d*(b*c+-1*a*d)^-1*(a+b*x))^(1/2)*(a+b*x)^-1//2*(b*c+-1*a*d)^-1//4*Elliptic.F(arcsin(b^1//4*(c+d*x)^1//4*(b*c+-1*a*d)^-1//4),-1)+2*b^-3//4*(-1*d*(b*c+-1*a*d)^-1*(a+b*x))^(1/2)*(a+b*x)^-1//2*(b*c+-1*a*d)^-1//4*Elliptic.E(arcsin(b^1//4*(c+d*x)^1//4*(b*c+-1*a*d)^-1//4),-1)) @test integrate((a+b*x)^-5//2*(c+d*x)^-1//4, x) == :(-2*(a+b*x)^-3//2*(c+d*x)^3//4*(-3*a*d+3*b*c)^-1+d*(a+b*x)^-1//2*(c+d*x)^3//4*(b*c+-1*a*d)^-2+d*b^-3//4*(-1*d*(b*c+-1*a*d)^-1*(a+b*x))^(1/2)*(a+b*x)^-1//2*(b*c+-1*a*d)^-5//4*Elliptic.F(arcsin(b^1//4*(c+d*x)^1//4*(b*c+-1*a*d)^-1//4),-1)+-1*d*b^-3//4*(-1*d*(b*c+-1*a*d)^-1*(a+b*x))^(1/2)*(a+b*x)^-1//2*(b*c+-1*a*d)^-5//4*Elliptic.E(arcsin(b^1//4*(c+d*x)^1//4*(b*c+-1*a*d)^-1//4),-1)) @test integrate((a+b*x)^3//2*(c+d*x)^-3//4, x) == :(4//7*d^-1*(a+b*x)^3//2*(c+d*x)^1//4+1//7*d^-2*(a+b*x)^(1/2)*(c+d*x)^1//4*(-8*b*c+8*a*d)+16//7*b^-1//4*d^-3*(-1*d*(b*c+-1*a*d)^-1*(a+b*x))^(1/2)*(a+b*x)^-1//2*(b*c+-1*a*d)^9//4*Elliptic.F(arcsin(b^1//4*(c+d*x)^1//4*(b*c+-1*a*d)^-1//4),-1)) @test integrate((a+b*x)^(1/2)*(c+d*x)^-3//4, x) == :(4//3*d^-1*(a+b*x)^(1/2)*(c+d*x)^1//4+-8//3*b^-1//4*d^-2*(-1*d*(b*c+-1*a*d)^-1*(a+b*x))^(1/2)*(a+b*x)^-1//2*(b*c+-1*a*d)^5//4*Elliptic.F(arcsin(b^1//4*(c+d*x)^1//4*(b*c+-1*a*d)^-1//4),-1)) @test integrate((a+b*x)^-1//2*(c+d*x)^-3//4, x) == :(4*b^-1//4*d^-1*(-1*d*(b*c+-1*a*d)^-1*(a+b*x))^(1/2)*(a+b*x)^-1//2*(b*c+-1*a*d)^1//4*Elliptic.F(arcsin(b^1//4*(c+d*x)^1//4*(b*c+-1*a*d)^-1//4),-1)) @test integrate((a+b*x)^-3//2*(c+d*x)^-3//4, x) == :(-2*(a+b*x)^-1//2*(c+d*x)^1//4*(b*c+-1*a*d)^-1+-2*b^-1//4*(-1*d*(b*c+-1*a*d)^-1*(a+b*x))^(1/2)*(a+b*x)^-1//2*(b*c+-1*a*d)^-3//4*Elliptic.F(arcsin(b^1//4*(c+d*x)^1//4*(b*c+-1*a*d)^-1//4),-1)) @test integrate((a+b*x)^-5//2*(c+d*x)^-3//4, x) == :(-2*(a+b*x)^-3//2*(c+d*x)^1//4*(-3*a*d+3*b*c)^-1+5//3*d*(a+b*x)^-1//2*(c+d*x)^1//4*(b*c+-1*a*d)^-2+5//3*d*b^-1//4*(-1*d*(b*c+-1*a*d)^-1*(a+b*x))^(1/2)*(a+b*x)^-1//2*(b*c+-1*a*d)^-7//4*Elliptic.F(arcsin(b^1//4*(c+d*x)^1//4*(b*c+-1*a*d)^-1//4),-1)) @test integrate((a+b*x)^5//2*(c+d*x)^-5//4, x) == :(-4*d^-1*(a+b*x)^5//2*(c+d*x)^-1//4+40//9*b*d^-2*(a+b*x)^3//2*(c+d*x)^3//4+-16//3*b*d^-3*(a+b*x)^(1/2)*(c+d*x)^3//4*(b*c+-1*a*d)+-32//3*b^1//4*d^-4*(-1*d*(b*c+-1*a*d)^-1*(a+b*x))^(1/2)*(a+b*x)^-1//2*(b*c+-1*a*d)^11//4*Elliptic.F(arcsin(b^1//4*(c+d*x)^1//4*(b*c+-1*a*d)^-1//4),-1)+32//3*b^1//4*d^-4*(-1*d*(b*c+-1*a*d)^-1*(a+b*x))^(1/2)*(a+b*x)^-1//2*(b*c+-1*a*d)^11//4*Elliptic.E(arcsin(b^1//4*(c+d*x)^1//4*(b*c+-1*a*d)^-1//4),-1)) @test integrate((a+b*x)^3//2*(c+d*x)^-5//4, x) == :(-4*d^-1*(a+b*x)^3//2*(c+d*x)^-1//4+24//5*b*d^-2*(a+b*x)^(1/2)*(c+d*x)^3//4+-48//5*b^1//4*d^-3*(-1*d*(b*c+-1*a*d)^-1*(a+b*x))^(1/2)*(a+b*x)^-1//2*(b*c+-1*a*d)^7//4*Elliptic.E(arcsin(b^1//4*(c+d*x)^1//4*(b*c+-1*a*d)^-1//4),-1)+48//5*b^1//4*d^-3*(-1*d*(b*c+-1*a*d)^-1*(a+b*x))^(1/2)*(a+b*x)^-1//2*(b*c+-1*a*d)^7//4*Elliptic.F(arcsin(b^1//4*(c+d*x)^1//4*(b*c+-1*a*d)^-1//4),-1)) @test integrate((a+b*x)^(1/2)*(c+d*x)^-5//4, x) == :(-4*d^-1*(a+b*x)^(1/2)*(c+d*x)^-1//4+-8*b^1//4*d^-2*(-1*d*(b*c+-1*a*d)^-1*(a+b*x))^(1/2)*(a+b*x)^-1//2*(b*c+-1*a*d)^3//4*Elliptic.F(arcsin(b^1//4*(c+d*x)^1//4*(b*c+-1*a*d)^-1//4),-1)+8*b^1//4*d^-2*(-1*d*(b*c+-1*a*d)^-1*(a+b*x))^(1/2)*(a+b*x)^-1//2*(b*c+-1*a*d)^3//4*Elliptic.E(arcsin(b^1//4*(c+d*x)^1//4*(b*c+-1*a*d)^-1//4),-1)) @test integrate((a+b*x)^-1//2*(c+d*x)^-5//4, x) == :(4*(a+b*x)^(1/2)*(c+d*x)^-1//4*(b*c+-1*a*d)^-1+-4*b^1//4*d^-1*(-1*d*(b*c+-1*a*d)^-1*(a+b*x))^(1/2)*(a+b*x)^-1//2*(b*c+-1*a*d)^-1//4*Elliptic.E(arcsin(b^1//4*(c+d*x)^1//4*(b*c+-1*a*d)^-1//4),-1)+4*b^1//4*d^-1*(-1*d*(b*c+-1*a*d)^-1*(a+b*x))^(1/2)*(a+b*x)^-1//2*(b*c+-1*a*d)^-1//4*Elliptic.F(arcsin(b^1//4*(c+d*x)^1//4*(b*c+-1*a*d)^-1//4),-1)) @test integrate((a+b*x)^-3//2*(c+d*x)^-5//4, x) == :(-2*(a+b*x)^-1//2*(c+d*x)^-1//4*(b*c+-1*a*d)^-1+-6*d*(a+b*x)^(1/2)*(c+d*x)^-1//4*(b*c+-1*a*d)^-2+-6*b^1//4*(-1*d*(b*c+-1*a*d)^-1*(a+b*x))^(1/2)*(a+b*x)^-1//2*(b*c+-1*a*d)^-5//4*Elliptic.F(arcsin(b^1//4*(c+d*x)^1//4*(b*c+-1*a*d)^-1//4),-1)+6*b^1//4*(-1*d*(b*c+-1*a*d)^-1*(a+b*x))^(1/2)*(a+b*x)^-1//2*(b*c+-1*a*d)^-5//4*Elliptic.E(arcsin(b^1//4*(c+d*x)^1//4*(b*c+-1*a*d)^-1//4),-1)) @test integrate((a+b*x)^-5//2*(c+d*x)^-5//4, x) == :(-2*(a+b*x)^-3//2*(c+d*x)^-1//4*(-3*a*d+3*b*c)^-1+7*d^2*(a+b*x)^(1/2)*(c+d*x)^-1//4*(b*c+-1*a*d)^-3+7//3*d*(a+b*x)^-1//2*(c+d*x)^-1//4*(b*c+-1*a*d)^-2+-7*d*b^1//4*(-1*d*(b*c+-1*a*d)^-1*(a+b*x))^(1/2)*(a+b*x)^-1//2*(b*c+-1*a*d)^-9//4*Elliptic.E(arcsin(b^1//4*(c+d*x)^1//4*(b*c+-1*a*d)^-1//4),-1)+7*d*b^1//4*(-1*d*(b*c+-1*a*d)^-1*(a+b*x))^(1/2)*(a+b*x)^-1//2*(b*c+-1*a*d)^-9//4*Elliptic.F(arcsin(b^1//4*(c+d*x)^1//4*(b*c+-1*a*d)^-1//4),-1)) @test integrate((a+b*x)^7//2*(c+d*x)^-7//4, x) == :(-4//3*d^-1*(a+b*x)^7//2*(c+d*x)^-3//4+56//33*b*d^-2*(a+b*x)^5//2*(c+d*x)^1//4+-80//33*b*d^-3*(a+b*x)^3//2*(c+d*x)^1//4*(b*c+-1*a*d)+160//33*b*d^-4*(a+b*x)^(1/2)*(c+d*x)^1//4*(b*c+-1*a*d)^2+-320//33*b^3//4*d^-5*(-1*d*(b*c+-1*a*d)^-1*(a+b*x))^(1/2)*(a+b*x)^-1//2*(b*c+-1*a*d)^13//4*Elliptic.F(arcsin(b^1//4*(c+d*x)^1//4*(b*c+-1*a*d)^-1//4),-1)) @test integrate((a+b*x)^3//2*(c+d*x)^-7//4, x) == :(-4//3*d^-1*(a+b*x)^3//2*(c+d*x)^-3//4+8//3*b*d^-2*(a+b*x)^(1/2)*(c+d*x)^1//4+-16//3*b^3//4*d^-3*(-1*d*(b*c+-1*a*d)^-1*(a+b*x))^(1/2)*(a+b*x)^-1//2*(b*c+-1*a*d)^5//4*Elliptic.F(arcsin(b^1//4*(c+d*x)^1//4*(b*c+-1*a*d)^-1//4),-1)) @test integrate((a+b*x)^(1/2)*(c+d*x)^-7//4, x) == :(-4//3*d^-1*(a+b*x)^(1/2)*(c+d*x)^-3//4+8//3*b^3//4*d^-2*(-1*d*(b*c+-1*a*d)^-1*(a+b*x))^(1/2)*(a+b*x)^-1//2*(b*c+-1*a*d)^1//4*Elliptic.F(arcsin(b^1//4*(c+d*x)^1//4*(b*c+-1*a*d)^-1//4),-1)) @test integrate((a+b*x)^-1//2*(c+d*x)^-7//4, x) == :(4*(a+b*x)^(1/2)*(c+d*x)^-3//4*(-3*a*d+3*b*c)^-1+4//3*b^3//4*d^-1*(-1*d*(b*c+-1*a*d)^-1*(a+b*x))^(1/2)*(a+b*x)^-1//2*(b*c+-1*a*d)^-3//4*Elliptic.F(arcsin(b^1//4*(c+d*x)^1//4*(b*c+-1*a*d)^-1//4),-1)) @test integrate((a+b*x)^-3//2*(c+d*x)^-7//4, x) == :(-2*(a+b*x)^-1//2*(c+d*x)^-3//4*(b*c+-1*a*d)^-1+-10//3*d*(a+b*x)^(1/2)*(c+d*x)^-3//4*(b*c+-1*a*d)^-2+-10//3*b^3//4*(-1*d*(b*c+-1*a*d)^-1*(a+b*x))^(1/2)*(a+b*x)^-1//2*(b*c+-1*a*d)^-7//4*Elliptic.F(arcsin(b^1//4*(c+d*x)^1//4*(b*c+-1*a*d)^-1//4),-1)) @test integrate((a+b*x)^-5//2*(c+d*x)^-7//4, x) == :(-2*(a+b*x)^-3//2*(c+d*x)^-3//4*(-3*a*d+3*b*c)^-1+3*d*(a+b*x)^-1//2*(c+d*x)^-3//4*(b*c+-1*a*d)^-2+5*d^2*(a+b*x)^(1/2)*(c+d*x)^-3//4*(b*c+-1*a*d)^-3+5*d*b^3//4*(-1*d*(b*c+-1*a*d)^-1*(a+b*x))^(1/2)*(a+b*x)^-1//2*(b*c+-1*a*d)^-11//4*Elliptic.F(arcsin(b^1//4*(c+d*x)^1//4*(b*c+-1*a*d)^-1//4),-1)) @test integrate((a+b*x)^7//2*(c+d*x)^-9//4, x) == :(-4//5*d^-1*(a+b*x)^7//2*(c+d*x)^-5//4+-56//5*b*d^-2*(a+b*x)^5//2*(c+d*x)^-1//4+112//9*b^2*d^-3*(a+b*x)^3//2*(c+d*x)^3//4+-224//15*b^2*d^-4*(a+b*x)^(1/2)*(c+d*x)^3//4*(b*c+-1*a*d)+-448//15*b^5//4*d^-5*(-1*d*(b*c+-1*a*d)^-1*(a+b*x))^(1/2)*(a+b*x)^-1//2*(b*c+-1*a*d)^11//4*Elliptic.F(arcsin(b^1//4*(c+d*x)^1//4*(b*c+-1*a*d)^-1//4),-1)+448//15*b^5//4*d^-5*(-1*d*(b*c+-1*a*d)^-1*(a+b*x))^(1/2)*(a+b*x)^-1//2*(b*c+-1*a*d)^11//4*Elliptic.E(arcsin(b^1//4*(c+d*x)^1//4*(b*c+-1*a*d)^-1//4),-1)) @test integrate((a+b*x)^5//2*(c+d*x)^-9//4, x) == :(-4//5*d^-1*(a+b*x)^5//2*(c+d*x)^-5//4+-8*b*d^-2*(a+b*x)^3//2*(c+d*x)^-1//4+48//5*b^2*d^-3*(a+b*x)^(1/2)*(c+d*x)^3//4+-96//5*b^5//4*d^-4*(-1*d*(b*c+-1*a*d)^-1*(a+b*x))^(1/2)*(a+b*x)^-1//2*(b*c+-1*a*d)^7//4*Elliptic.E(arcsin(b^1//4*(c+d*x)^1//4*(b*c+-1*a*d)^-1//4),-1)+96//5*b^5//4*d^-4*(-1*d*(b*c+-1*a*d)^-1*(a+b*x))^(1/2)*(a+b*x)^-1//2*(b*c+-1*a*d)^7//4*Elliptic.F(arcsin(b^1//4*(c+d*x)^1//4*(b*c+-1*a*d)^-1//4),-1)) @test integrate((a+b*x)^3//2*(c+d*x)^-9//4, x) == :(-4//5*d^-1*(a+b*x)^3//2*(c+d*x)^-5//4+-24//5*b*d^-2*(a+b*x)^(1/2)*(c+d*x)^-1//4+-48//5*b^5//4*d^-3*(-1*d*(b*c+-1*a*d)^-1*(a+b*x))^(1/2)*(a+b*x)^-1//2*(b*c+-1*a*d)^3//4*Elliptic.F(arcsin(b^1//4*(c+d*x)^1//4*(b*c+-1*a*d)^-1//4),-1)+48//5*b^5//4*d^-3*(-1*d*(b*c+-1*a*d)^-1*(a+b*x))^(1/2)*(a+b*x)^-1//2*(b*c+-1*a*d)^3//4*Elliptic.E(arcsin(b^1//4*(c+d*x)^1//4*(b*c+-1*a*d)^-1//4),-1)) @test integrate((a+b*x)^(1/2)*(c+d*x)^-9//4, x) == :(-4//5*d^-1*(a+b*x)^(1/2)*(c+d*x)^-5//4+8//5*b*d^-1*(a+b*x)^(1/2)*(c+d*x)^-1//4*(b*c+-1*a*d)^-1+-8//5*b^5//4*d^-2*(-1*d*(b*c+-1*a*d)^-1*(a+b*x))^(1/2)*(a+b*x)^-1//2*(b*c+-1*a*d)^-1//4*Elliptic.E(arcsin(b^1//4*(c+d*x)^1//4*(b*c+-1*a*d)^-1//4),-1)+8//5*b^5//4*d^-2*(-1*d*(b*c+-1*a*d)^-1*(a+b*x))^(1/2)*(a+b*x)^-1//2*(b*c+-1*a*d)^-1//4*Elliptic.F(arcsin(b^1//4*(c+d*x)^1//4*(b*c+-1*a*d)^-1//4),-1)) @test integrate((a+b*x)^-1//2*(c+d*x)^-9//4, x) == :(4*(a+b*x)^(1/2)*(c+d*x)^-5//4*(-5*a*d+5*b*c)^-1+12//5*b*(a+b*x)^(1/2)*(c+d*x)^-1//4*(b*c+-1*a*d)^-2+-12//5*b^5//4*d^-1*(-1*d*(b*c+-1*a*d)^-1*(a+b*x))^(1/2)*(a+b*x)^-1//2*(b*c+-1*a*d)^-5//4*Elliptic.E(arcsin(b^1//4*(c+d*x)^1//4*(b*c+-1*a*d)^-1//4),-1)+12//5*b^5//4*d^-1*(-1*d*(b*c+-1*a*d)^-1*(a+b*x))^(1/2)*(a+b*x)^-1//2*(b*c+-1*a*d)^-5//4*Elliptic.F(arcsin(b^1//4*(c+d*x)^1//4*(b*c+-1*a*d)^-1//4),-1)) @test integrate((a+b*x)^-3//2*(c+d*x)^-9//4, x) == :(-2*(a+b*x)^-1//2*(c+d*x)^-5//4*(b*c+-1*a*d)^-1+-14//5*d*(a+b*x)^(1/2)*(c+d*x)^-5//4*(b*c+-1*a*d)^-2+-42//5*b*d*(a+b*x)^(1/2)*(c+d*x)^-1//4*(b*c+-1*a*d)^-3+-42//5*b^5//4*(-1*d*(b*c+-1*a*d)^-1*(a+b*x))^(1/2)*(a+b*x)^-1//2*(b*c+-1*a*d)^-9//4*Elliptic.F(arcsin(b^1//4*(c+d*x)^1//4*(b*c+-1*a*d)^-1//4),-1)+42//5*b^5//4*(-1*d*(b*c+-1*a*d)^-1*(a+b*x))^(1/2)*(a+b*x)^-1//2*(b*c+-1*a*d)^-9//4*Elliptic.E(arcsin(b^1//4*(c+d*x)^1//4*(b*c+-1*a*d)^-1//4),-1)) @test integrate((a+b*x)^-5//2*(c+d*x)^-9//4, x) == :(-2*(a+b*x)^-3//2*(c+d*x)^-5//4*(-3*a*d+3*b*c)^-1+11//3*d*(a+b*x)^-1//2*(c+d*x)^-5//4*(b*c+-1*a*d)^-2+77//15*d^2*(a+b*x)^(1/2)*(c+d*x)^-5//4*(b*c+-1*a*d)^-3+77//5*b*d^2*(a+b*x)^(1/2)*(c+d*x)^-1//4*(b*c+-1*a*d)^-4+-77//5*d*b^5//4*(-1*d*(b*c+-1*a*d)^-1*(a+b*x))^(1/2)*(a+b*x)^-1//2*(b*c+-1*a*d)^-13//4*Elliptic.E(arcsin(b^1//4*(c+d*x)^1//4*(b*c+-1*a*d)^-1//4),-1)+77//5*d*b^5//4*(-1*d*(b*c+-1*a*d)^-1*(a+b*x))^(1/2)*(a+b*x)^-1//2*(b*c+-1*a*d)^-13//4*Elliptic.F(arcsin(b^1//4*(c+d*x)^1//4*(b*c+-1*a*d)^-1//4),-1)) @test integrate((a+b*x)^3//4*(c+d*x)^5//4, x) == :(1//3*b^-1*(a+b*x)^7//4*(c+d*x)^5//4+-5//64*b^-9//4*d^-7//4*(b*c+-1*a*d)^3*arctanh(b^-1//4*d^1//4*(a+b*x)^1//4*(c+d*x)^-1//4)+1//24*b^-2*(a+b*x)^7//4*(c+d*x)^1//4*(-5*a*d+5*b*c)+5//64*b^-9//4*d^-7//4*(b*c+-1*a*d)^3*arctan(b^-1//4*d^1//4*(a+b*x)^1//4*(c+d*x)^-1//4)+5//96*b^-2*d^-1*(a+b*x)^3//4*(c+d*x)^1//4*(b*c+-1*a*d)^2) @test integrate((a+b*x)^-1//4*(c+d*x)^5//4, x) == :((1/2)*b^-1*(a+b*x)^3//4*(c+d*x)^5//4+-5//16*b^-9//4*d^-3//4*(b*c+-1*a*d)^2*arctan(b^-1//4*d^1//4*(a+b*x)^1//4*(c+d*x)^-1//4)+1//8*b^-2*(a+b*x)^3//4*(c+d*x)^1//4*(-5*a*d+5*b*c)+5//16*b^-9//4*d^-3//4*(b*c+-1*a*d)^2*arctanh(b^-1//4*d^1//4*(a+b*x)^1//4*(c+d*x)^-1//4)) @test integrate((a+b*x)^-5//4*(c+d*x)^5//4, x) == :(-4*b^-1*(a+b*x)^-1//4*(c+d*x)^5//4+5*d*b^-2*(a+b*x)^3//4*(c+d*x)^1//4+-5//2*b^-9//4*d^1//4*(b*c+-1*a*d)*arctan(b^-1//4*d^1//4*(a+b*x)^1//4*(c+d*x)^-1//4)+5//2*b^-9//4*d^1//4*(b*c+-1*a*d)*arctanh(b^-1//4*d^1//4*(a+b*x)^1//4*(c+d*x)^-1//4)) @test integrate((a+b*x)^-9//4*(c+d*x)^5//4, x) == :(-2*b^-9//4*d^5//4*arctan(b^-1//4*d^1//4*(a+b*x)^1//4*(c+d*x)^-1//4)+2*b^-9//4*d^5//4*arctanh(b^-1//4*d^1//4*(a+b*x)^1//4*(c+d*x)^-1//4)+-4//5*b^-1*(a+b*x)^-5//4*(c+d*x)^5//4+-4*d*b^-2*(a+b*x)^-1//4*(c+d*x)^1//4) @test integrate((a+b*x)^-13//4*(c+d*x)^5//4, x) == :(-4*(a+b*x)^-9//4*(c+d*x)^9//4*(-9*a*d+9*b*c)^-1) @test integrate((a+b*x)^-17//4*(c+d*x)^5//4, x) == :(-4*(a+b*x)^-13//4*(c+d*x)^9//4*(-13*a*d+13*b*c)^-1+16//117*d*(a+b*x)^-9//4*(c+d*x)^9//4*(b*c+-1*a*d)^-2) @test integrate((a+b*x)^-21//4*(c+d*x)^5//4, x) == :(-4*(a+b*x)^-17//4*(c+d*x)^9//4*(-17*a*d+17*b*c)^-1+-128//1989*d^2*(a+b*x)^-9//4*(c+d*x)^9//4*(b*c+-1*a*d)^-3+32//221*d*(a+b*x)^-13//4*(c+d*x)^9//4*(b*c+-1*a*d)^-2) @test integrate((a+b*x)^-25//4*(c+d*x)^5//4, x) == :(-4*(a+b*x)^-21//4*(c+d*x)^9//4*(-21*a*d+21*b*c)^-1+-128//1547*d^2*(a+b*x)^-13//4*(c+d*x)^9//4*(b*c+-1*a*d)^-3+16//119*d*(a+b*x)^-17//4*(c+d*x)^9//4*(b*c+-1*a*d)^-2+512//13923*d^3*(a+b*x)^-9//4*(c+d*x)^9//4*(b*c+-1*a*d)^-4) @test integrate((a+b*x)^5//4*(c+d*x)^5//4, x) == :(2//7*b^-1*(a+b*x)^9//4*(c+d*x)^5//4+1//7*b^-2*(a+b*x)^9//4*(c+d*x)^1//4*(b*c+-1*a*d)+-5//84*b^-2*d^-2*(a+b*x)^1//4*(c+d*x)^1//4*(b*c+-1*a*d)^3+1//42*b^-2*d^-1*(a+b*x)^5//4*(c+d*x)^1//4*(b*c+-1*a*d)^2+5//336*2^(1/2)*b^-9//4*d^-9//4*((a*d+b*(c+2*d*x))^2)^-1//2*((a*d+b*c+2*b*d*x)^2)^(1/2)*((a+b*x)*(c+d*x))^3//4*((1+2*b^(1/2)*d^(1/2)*((a+b*x)*(c+d*x))^(1/2)*(b*c+-1*a*d)^-1)^-2*(a*d+b*(c+2*d*x))^2*(b*c+-1*a*d)^-2)^(1/2)*(a+b*x)^-3//4*(c+d*x)^-3//4*(b*c+-1*a*d)^9//2*(a*d+b*c+2*b*d*x)^-1*(1+2*b^(1/2)*d^(1/2)*((a+b*x)*(c+d*x))^(1/2)*(b*c+-1*a*d)^-1)*Elliptic.F(2*arctan(2^(1/2)*b^1//4*d^1//4*((a+b*x)*(c+d*x))^1//4*(b*c+-1*a*d)^-1//2),1/2)) @test integrate((a+b*x)^1//4*(c+d*x)^5//4, x) == :(2//5*b^-1*(a+b*x)^5//4*(c+d*x)^5//4+1//3*b^-2*(a+b*x)^5//4*(c+d*x)^1//4*(b*c+-1*a*d)+1//6*b^-2*d^-1*(a+b*x)^1//4*(c+d*x)^1//4*(b*c+-1*a*d)^2+-1//24*2^(1/2)*b^-9//4*d^-5//4*((a*d+b*(c+2*d*x))^2)^-1//2*((a*d+b*c+2*b*d*x)^2)^(1/2)*((a+b*x)*(c+d*x))^3//4*((1+2*b^(1/2)*d^(1/2)*((a+b*x)*(c+d*x))^(1/2)*(b*c+-1*a*d)^-1)^-2*(a*d+b*(c+2*d*x))^2*(b*c+-1*a*d)^-2)^(1/2)*(a+b*x)^-3//4*(c+d*x)^-3//4*(b*c+-1*a*d)^7//2*(a*d+b*c+2*b*d*x)^-1*(1+2*b^(1/2)*d^(1/2)*((a+b*x)*(c+d*x))^(1/2)*(b*c+-1*a*d)^-1)*Elliptic.F(2*arctan(2^(1/2)*b^1//4*d^1//4*((a+b*x)*(c+d*x))^1//4*(b*c+-1*a*d)^-1//2),1/2)) @test integrate((a+b*x)^-3//4*(c+d*x)^5//4, x) == :(2//3*b^-1*(a+b*x)^1//4*(c+d*x)^5//4+1//3*b^-2*(a+b*x)^1//4*(c+d*x)^1//4*(-5*a*d+5*b*c)+5//12*2^(1/2)*b^-9//4*d^-1//4*((a*d+b*(c+2*d*x))^2)^-1//2*((a*d+b*c+2*b*d*x)^2)^(1/2)*((a+b*x)*(c+d*x))^3//4*((1+2*b^(1/2)*d^(1/2)*((a+b*x)*(c+d*x))^(1/2)*(b*c+-1*a*d)^-1)^-2*(a*d+b*(c+2*d*x))^2*(b*c+-1*a*d)^-2)^(1/2)*(a+b*x)^-3//4*(c+d*x)^-3//4*(b*c+-1*a*d)^5//2*(a*d+b*c+2*b*d*x)^-1*(1+2*b^(1/2)*d^(1/2)*((a+b*x)*(c+d*x))^(1/2)*(b*c+-1*a*d)^-1)*Elliptic.F(2*arctan(2^(1/2)*b^1//4*d^1//4*((a+b*x)*(c+d*x))^1//4*(b*c+-1*a*d)^-1//2),1/2)) @test integrate((a+b*x)^-7//4*(c+d*x)^5//4, x) == :(-4//3*b^-1*(a+b*x)^-3//4*(c+d*x)^5//4+10//3*d*b^-2*(a+b*x)^1//4*(c+d*x)^1//4+5//6*2^(1/2)*b^-9//4*d^3//4*((a*d+b*(c+2*d*x))^2)^-1//2*((a*d+b*c+2*b*d*x)^2)^(1/2)*((a+b*x)*(c+d*x))^3//4*((1+2*b^(1/2)*d^(1/2)*((a+b*x)*(c+d*x))^(1/2)*(b*c+-1*a*d)^-1)^-2*(a*d+b*(c+2*d*x))^2*(b*c+-1*a*d)^-2)^(1/2)*(a+b*x)^-3//4*(c+d*x)^-3//4*(b*c+-1*a*d)^3//2*(a*d+b*c+2*b*d*x)^-1*(1+2*b^(1/2)*d^(1/2)*((a+b*x)*(c+d*x))^(1/2)*(b*c+-1*a*d)^-1)*Elliptic.F(2*arctan(2^(1/2)*b^1//4*d^1//4*((a+b*x)*(c+d*x))^1//4*(b*c+-1*a*d)^-1//2),1/2)) @test integrate((a+b*x)^-11//4*(c+d*x)^5//4, x) == :(-4//7*b^-1*(a+b*x)^-7//4*(c+d*x)^5//4+-20//21*d*b^-2*(a+b*x)^-3//4*(c+d*x)^1//4+5//21*2^(1/2)*b^-9//4*d^7//4*((a*d+b*(c+2*d*x))^2)^-1//2*((a*d+b*c+2*b*d*x)^2)^(1/2)*((a+b*x)*(c+d*x))^3//4*((1+2*b^(1/2)*d^(1/2)*((a+b*x)*(c+d*x))^(1/2)*(b*c+-1*a*d)^-1)^-2*(a*d+b*(c+2*d*x))^2*(b*c+-1*a*d)^-2)^(1/2)*(a+b*x)^-3//4*(c+d*x)^-3//4*(b*c+-1*a*d)^(1/2)*(a*d+b*c+2*b*d*x)^-1*(1+2*b^(1/2)*d^(1/2)*((a+b*x)*(c+d*x))^(1/2)*(b*c+-1*a*d)^-1)*Elliptic.F(2*arctan(2^(1/2)*b^1//4*d^1//4*((a+b*x)*(c+d*x))^1//4*(b*c+-1*a*d)^-1//2),1/2)) @test integrate((a+b*x)^-15//4*(c+d*x)^5//4, x) == :(-4//11*b^-1*(a+b*x)^-11//4*(c+d*x)^5//4+-20//77*d*b^-2*(a+b*x)^-7//4*(c+d*x)^1//4+-20//231*b^-2*d^2*(a+b*x)^-3//4*(c+d*x)^1//4*(b*c+-1*a*d)^-1+-10//231*2^(1/2)*b^-9//4*d^11//4*((a*d+b*(c+2*d*x))^2)^-1//2*((a*d+b*c+2*b*d*x)^2)^(1/2)*((a+b*x)*(c+d*x))^3//4*((1+2*b^(1/2)*d^(1/2)*((a+b*x)*(c+d*x))^(1/2)*(b*c+-1*a*d)^-1)^-2*(a*d+b*(c+2*d*x))^2*(b*c+-1*a*d)^-2)^(1/2)*(a+b*x)^-3//4*(c+d*x)^-3//4*(b*c+-1*a*d)^-1//2*(a*d+b*c+2*b*d*x)^-1*(1+2*b^(1/2)*d^(1/2)*((a+b*x)*(c+d*x))^(1/2)*(b*c+-1*a*d)^-1)*Elliptic.F(2*arctan(2^(1/2)*b^1//4*d^1//4*((a+b*x)*(c+d*x))^1//4*(b*c+-1*a*d)^-1//2),1/2)) @test integrate((a+b*x)^-19//4*(c+d*x)^5//4, x) == :(-4//15*b^-1*(a+b*x)^-15//4*(c+d*x)^5//4+-4//33*d*b^-2*(a+b*x)^-11//4*(c+d*x)^1//4+-4//231*b^-2*d^2*(a+b*x)^-7//4*(c+d*x)^1//4*(b*c+-1*a*d)^-1+8//231*b^-2*d^3*(a+b*x)^-3//4*(c+d*x)^1//4*(b*c+-1*a*d)^-2+4//231*2^(1/2)*b^-9//4*d^15//4*((a*d+b*(c+2*d*x))^2)^-1//2*((a*d+b*c+2*b*d*x)^2)^(1/2)*((a+b*x)*(c+d*x))^3//4*((1+2*b^(1/2)*d^(1/2)*((a+b*x)*(c+d*x))^(1/2)*(b*c+-1*a*d)^-1)^-2*(a*d+b*(c+2*d*x))^2*(b*c+-1*a*d)^-2)^(1/2)*(a+b*x)^-3//4*(c+d*x)^-3//4*(b*c+-1*a*d)^-3//2*(a*d+b*c+2*b*d*x)^-1*(1+2*b^(1/2)*d^(1/2)*((a+b*x)*(c+d*x))^(1/2)*(b*c+-1*a*d)^-1)*Elliptic.F(2*arctan(2^(1/2)*b^1//4*d^1//4*((a+b*x)*(c+d*x))^1//4*(b*c+-1*a*d)^-1//2),1/2)) @test integrate((a+b*x)^5//4*(c+d*x)^-1//4, x) == :((1/2)*d^-1*(a+b*x)^5//4*(c+d*x)^3//4+1//8*d^-2*(a+b*x)^1//4*(c+d*x)^3//4*(-5*b*c+5*a*d)+5//16*b^-3//4*d^-9//4*(b*c+-1*a*d)^2*arctan(b^-1//4*d^1//4*(a+b*x)^1//4*(c+d*x)^-1//4)+5//16*b^-3//4*d^-9//4*(b*c+-1*a*d)^2*arctanh(b^-1//4*d^1//4*(a+b*x)^1//4*(c+d*x)^-1//4)) @test integrate((a+b*x)^1//4*(c+d*x)^-1//4, x) == :(d^-1*(a+b*x)^1//4*(c+d*x)^3//4+-1//2*b^-3//4*d^-5//4*(b*c+-1*a*d)*arctan(b^-1//4*d^1//4*(a+b*x)^1//4*(c+d*x)^-1//4)+-1//2*b^-3//4*d^-5//4*(b*c+-1*a*d)*arctanh(b^-1//4*d^1//4*(a+b*x)^1//4*(c+d*x)^-1//4)) @test integrate((a+b*x)^-3//4*(c+d*x)^-1//4, x) == :(2*b^-3//4*d^-1//4*arctan(b^-1//4*d^1//4*(a+b*x)^1//4*(c+d*x)^-1//4)+2*b^-3//4*d^-1//4*arctanh(b^-1//4*d^1//4*(a+b*x)^1//4*(c+d*x)^-1//4)) @test integrate((a+b*x)^-7//4*(c+d*x)^-1//4, x) == :(-4*(a+b*x)^-3//4*(c+d*x)^3//4*(-3*a*d+3*b*c)^-1) @test integrate((a+b*x)^-11//4*(c+d*x)^-1//4, x) == :(-4*(a+b*x)^-7//4*(c+d*x)^3//4*(-7*a*d+7*b*c)^-1+16//21*d*(a+b*x)^-3//4*(c+d*x)^3//4*(b*c+-1*a*d)^-2) @test integrate((a+b*x)^-15//4*(c+d*x)^-1//4, x) == :(-4*(a+b*x)^-11//4*(c+d*x)^3//4*(-11*a*d+11*b*c)^-1+-128//231*d^2*(a+b*x)^-3//4*(c+d*x)^3//4*(b*c+-1*a*d)^-3+32//77*d*(a+b*x)^-7//4*(c+d*x)^3//4*(b*c+-1*a*d)^-2) @test integrate((a+b*x)^-19//4*(c+d*x)^-1//4, x) == :(-4*(a+b*x)^-15//4*(c+d*x)^3//4*(-15*a*d+15*b*c)^-1+-128//385*d^2*(a+b*x)^-7//4*(c+d*x)^3//4*(b*c+-1*a*d)^-3+16//55*d*(a+b*x)^-11//4*(c+d*x)^3//4*(b*c+-1*a*d)^-2+512//1155*d^3*(a+b*x)^-3//4*(c+d*x)^3//4*(b*c+-1*a*d)^-4) @test integrate((a+b*x)^7//4*(c+d*x)^-1//4, x) == :(2//5*d^-1*(a+b*x)^7//4*(c+d*x)^3//4+-1//15*d^-2*(a+b*x)^3//4*(c+d*x)^3//4*(-7*a*d+7*b*c)+1//10*b^-1//2*d^-5//2*((a*d+b*(c+2*d*x))^2)^(1/2)*((a*d+b*c+2*b*d*x)^2)^(1/2)*((a+b*x)*(c+d*x))^(1/2)*(1+2*b^(1/2)*d^(1/2)*((a+b*x)*(c+d*x))^(1/2)*(b*c+-1*a*d)^-1)^-1*(a+b*x)^-1//4*(c+d*x)^-1//4*(a*d+b*c+2*b*d*x)^-1*(-7*a*d+7*b*c)+-7//20*2^(1/2)*b^-3//4*d^-11//4*((a*d+b*(c+2*d*x))^2)^-1//2*((a*d+b*c+2*b*d*x)^2)^(1/2)*((a+b*x)*(c+d*x))^1//4*((1+2*b^(1/2)*d^(1/2)*((a+b*x)*(c+d*x))^(1/2)*(b*c+-1*a*d)^-1)^-2*(a*d+b*(c+2*d*x))^2*(b*c+-1*a*d)^-2)^(1/2)*(a+b*x)^-1//4*(c+d*x)^-1//4*(b*c+-1*a*d)^7//2*(a*d+b*c+2*b*d*x)^-1*(1+2*b^(1/2)*d^(1/2)*((a+b*x)*(c+d*x))^(1/2)*(b*c+-1*a*d)^-1)*Elliptic.E(2*arctan(2^(1/2)*b^1//4*d^1//4*((a+b*x)*(c+d*x))^1//4*(b*c+-1*a*d)^-1//2),1/2)+7//40*2^(1/2)*b^-3//4*d^-11//4*((a*d+b*(c+2*d*x))^2)^-1//2*((a*d+b*c+2*b*d*x)^2)^(1/2)*((a+b*x)*(c+d*x))^1//4*((1+2*b^(1/2)*d^(1/2)*((a+b*x)*(c+d*x))^(1/2)*(b*c+-1*a*d)^-1)^-2*(a*d+b*(c+2*d*x))^2*(b*c+-1*a*d)^-2)^(1/2)*(a+b*x)^-1//4*(c+d*x)^-1//4*(b*c+-1*a*d)^7//2*(a*d+b*c+2*b*d*x)^-1*(1+2*b^(1/2)*d^(1/2)*((a+b*x)*(c+d*x))^(1/2)*(b*c+-1*a*d)^-1)*Elliptic.F(2*arctan(2^(1/2)*b^1//4*d^1//4*((a+b*x)*(c+d*x))^1//4*(b*c+-1*a*d)^-1//2),1/2)) @test integrate((a+b*x)^3//4*(c+d*x)^-1//4, x) == :(2//3*d^-1*(a+b*x)^3//4*(c+d*x)^3//4+-1*b^-1//2*d^-3//2*((a*d+b*(c+2*d*x))^2)^(1/2)*((a*d+b*c+2*b*d*x)^2)^(1/2)*((a+b*x)*(c+d*x))^(1/2)*(1+2*b^(1/2)*d^(1/2)*((a+b*x)*(c+d*x))^(1/2)*(b*c+-1*a*d)^-1)^-1*(a+b*x)^-1//4*(c+d*x)^-1//4*(a*d+b*c+2*b*d*x)^-1+(1/2)*2^(1/2)*b^-3//4*d^-7//4*((a*d+b*(c+2*d*x))^2)^-1//2*((a*d+b*c+2*b*d*x)^2)^(1/2)*((a+b*x)*(c+d*x))^1//4*((1+2*b^(1/2)*d^(1/2)*((a+b*x)*(c+d*x))^(1/2)*(b*c+-1*a*d)^-1)^-2*(a*d+b*(c+2*d*x))^2*(b*c+-1*a*d)^-2)^(1/2)*(a+b*x)^-1//4*(c+d*x)^-1//4*(b*c+-1*a*d)^5//2*(a*d+b*c+2*b*d*x)^-1*(1+2*b^(1/2)*d^(1/2)*((a+b*x)*(c+d*x))^(1/2)*(b*c+-1*a*d)^-1)*Elliptic.E(2*arctan(2^(1/2)*b^1//4*d^1//4*((a+b*x)*(c+d*x))^1//4*(b*c+-1*a*d)^-1//2),1/2)+-1//4*2^(1/2)*b^-3//4*d^-7//4*((a*d+b*(c+2*d*x))^2)^-1//2*((a*d+b*c+2*b*d*x)^2)^(1/2)*((a+b*x)*(c+d*x))^1//4*((1+2*b^(1/2)*d^(1/2)*((a+b*x)*(c+d*x))^(1/2)*(b*c+-1*a*d)^-1)^-2*(a*d+b*(c+2*d*x))^2*(b*c+-1*a*d)^-2)^(1/2)*(a+b*x)^-1//4*(c+d*x)^-1//4*(b*c+-1*a*d)^5//2*(a*d+b*c+2*b*d*x)^-1*(1+2*b^(1/2)*d^(1/2)*((a+b*x)*(c+d*x))^(1/2)*(b*c+-1*a*d)^-1)*Elliptic.F(2*arctan(2^(1/2)*b^1//4*d^1//4*((a+b*x)*(c+d*x))^1//4*(b*c+-1*a*d)^-1//2),1/2)) @test integrate((a+b*x)^-1//4*(c+d*x)^-1//4, x) == :(2*b^-1//2*d^-1//2*((a*d+b*(c+2*d*x))^2)^(1/2)*((a*d+b*c+2*b*d*x)^2)^(1/2)*((a+b*x)*(c+d*x))^(1/2)*(1+2*b^(1/2)*d^(1/2)*((a+b*x)*(c+d*x))^(1/2)*(b*c+-1*a*d)^-1)^-1*(a+b*x)^-1//4*(c+d*x)^-1//4*(b*c+-1*a*d)^-1*(a*d+b*c+2*b*d*x)^-1+(1/2)*2^(1/2)*b^-3//4*d^-3//4*((a*d+b*(c+2*d*x))^2)^-1//2*((a*d+b*c+2*b*d*x)^2)^(1/2)*((a+b*x)*(c+d*x))^1//4*((1+2*b^(1/2)*d^(1/2)*((a+b*x)*(c+d*x))^(1/2)*(b*c+-1*a*d)^-1)^-2*(a*d+b*(c+2*d*x))^2*(b*c+-1*a*d)^-2)^(1/2)*(a+b*x)^-1//4*(c+d*x)^-1//4*(b*c+-1*a*d)^3//2*(a*d+b*c+2*b*d*x)^-1*(1+2*b^(1/2)*d^(1/2)*((a+b*x)*(c+d*x))^(1/2)*(b*c+-1*a*d)^-1)*Elliptic.F(2*arctan(2^(1/2)*b^1//4*d^1//4*((a+b*x)*(c+d*x))^1//4*(b*c+-1*a*d)^-1//2),1/2)+-1*2^(1/2)*b^-3//4*d^-3//4*((a*d+b*(c+2*d*x))^2)^-1//2*((a*d+b*c+2*b*d*x)^2)^(1/2)*((a+b*x)*(c+d*x))^1//4*((1+2*b^(1/2)*d^(1/2)*((a+b*x)*(c+d*x))^(1/2)*(b*c+-1*a*d)^-1)^-2*(a*d+b*(c+2*d*x))^2*(b*c+-1*a*d)^-2)^(1/2)*(a+b*x)^-1//4*(c+d*x)^-1//4*(b*c+-1*a*d)^3//2*(a*d+b*c+2*b*d*x)^-1*(1+2*b^(1/2)*d^(1/2)*((a+b*x)*(c+d*x))^(1/2)*(b*c+-1*a*d)^-1)*Elliptic.E(2*arctan(2^(1/2)*b^1//4*d^1//4*((a+b*x)*(c+d*x))^1//4*(b*c+-1*a*d)^-1//2),1/2)) @test integrate((a+b*x)^-5//4*(c+d*x)^-1//4, x) == :(-4*(a+b*x)^-1//4*(c+d*x)^3//4*(b*c+-1*a*d)^-1+4*b^-1//2*d^(1/2)*((a*d+b*(c+2*d*x))^2)^(1/2)*((a*d+b*c+2*b*d*x)^2)^(1/2)*((a+b*x)*(c+d*x))^(1/2)*(1+2*b^(1/2)*d^(1/2)*((a+b*x)*(c+d*x))^(1/2)*(b*c+-1*a*d)^-1)^-1*(a+b*x)^-1//4*(c+d*x)^-1//4*(b*c+-1*a*d)^-2*(a*d+b*c+2*b*d*x)^-1+2^(1/2)*b^-3//4*d^1//4*((a*d+b*(c+2*d*x))^2)^-1//2*((a*d+b*c+2*b*d*x)^2)^(1/2)*((a+b*x)*(c+d*x))^1//4*((1+2*b^(1/2)*d^(1/2)*((a+b*x)*(c+d*x))^(1/2)*(b*c+-1*a*d)^-1)^-2*(a*d+b*(c+2*d*x))^2*(b*c+-1*a*d)^-2)^(1/2)*(a+b*x)^-1//4*(c+d*x)^-1//4*(b*c+-1*a*d)^(1/2)*(a*d+b*c+2*b*d*x)^-1*(1+2*b^(1/2)*d^(1/2)*((a+b*x)*(c+d*x))^(1/2)*(b*c+-1*a*d)^-1)*Elliptic.F(2*arctan(2^(1/2)*b^1//4*d^1//4*((a+b*x)*(c+d*x))^1//4*(b*c+-1*a*d)^-1//2),1/2)+-2*2^(1/2)*b^-3//4*d^1//4*((a*d+b*(c+2*d*x))^2)^-1//2*((a*d+b*c+2*b*d*x)^2)^(1/2)*((a+b*x)*(c+d*x))^1//4*((1+2*b^(1/2)*d^(1/2)*((a+b*x)*(c+d*x))^(1/2)*(b*c+-1*a*d)^-1)^-2*(a*d+b*(c+2*d*x))^2*(b*c+-1*a*d)^-2)^(1/2)*(a+b*x)^-1//4*(c+d*x)^-1//4*(b*c+-1*a*d)^(1/2)*(a*d+b*c+2*b*d*x)^-1*(1+2*b^(1/2)*d^(1/2)*((a+b*x)*(c+d*x))^(1/2)*(b*c+-1*a*d)^-1)*Elliptic.E(2*arctan(2^(1/2)*b^1//4*d^1//4*((a+b*x)*(c+d*x))^1//4*(b*c+-1*a*d)^-1//2),1/2)) @test integrate((a+b*x)^-9//4*(c+d*x)^-1//4, x) == :(-4*(a+b*x)^-5//4*(c+d*x)^3//4*(-5*a*d+5*b*c)^-1+8//5*d*(a+b*x)^-1//4*(c+d*x)^3//4*(b*c+-1*a*d)^-2+-8//5*b^-1//2*d^3//2*((a*d+b*(c+2*d*x))^2)^(1/2)*((a*d+b*c+2*b*d*x)^2)^(1/2)*((a+b*x)*(c+d*x))^(1/2)*(1+2*b^(1/2)*d^(1/2)*((a+b*x)*(c+d*x))^(1/2)*(b*c+-1*a*d)^-1)^-1*(a+b*x)^-1//4*(c+d*x)^-1//4*(b*c+-1*a*d)^-3*(a*d+b*c+2*b*d*x)^-1+-2//5*2^(1/2)*b^-3//4*d^5//4*((a*d+b*(c+2*d*x))^2)^-1//2*((a*d+b*c+2*b*d*x)^2)^(1/2)*((a+b*x)*(c+d*x))^1//4*((1+2*b^(1/2)*d^(1/2)*((a+b*x)*(c+d*x))^(1/2)*(b*c+-1*a*d)^-1)^-2*(a*d+b*(c+2*d*x))^2*(b*c+-1*a*d)^-2)^(1/2)*(a+b*x)^-1//4*(c+d*x)^-1//4*(b*c+-1*a*d)^-1//2*(a*d+b*c+2*b*d*x)^-1*(1+2*b^(1/2)*d^(1/2)*((a+b*x)*(c+d*x))^(1/2)*(b*c+-1*a*d)^-1)*Elliptic.F(2*arctan(2^(1/2)*b^1//4*d^1//4*((a+b*x)*(c+d*x))^1//4*(b*c+-1*a*d)^-1//2),1/2)+4//5*2^(1/2)*b^-3//4*d^5//4*((a*d+b*(c+2*d*x))^2)^-1//2*((a*d+b*c+2*b*d*x)^2)^(1/2)*((a+b*x)*(c+d*x))^1//4*((1+2*b^(1/2)*d^(1/2)*((a+b*x)*(c+d*x))^(1/2)*(b*c+-1*a*d)^-1)^-2*(a*d+b*(c+2*d*x))^2*(b*c+-1*a*d)^-2)^(1/2)*(a+b*x)^-1//4*(c+d*x)^-1//4*(b*c+-1*a*d)^-1//2*(a*d+b*c+2*b*d*x)^-1*(1+2*b^(1/2)*d^(1/2)*((a+b*x)*(c+d*x))^(1/2)*(b*c+-1*a*d)^-1)*Elliptic.E(2*arctan(2^(1/2)*b^1//4*d^1//4*((a+b*x)*(c+d*x))^1//4*(b*c+-1*a*d)^-1//2),1/2)) @test integrate((a+b*x)^7//4*(c+d*x)^-3//4, x) == :((1/2)*d^-1*(a+b*x)^7//4*(c+d*x)^1//4+-21//16*b^-1//4*d^-11//4*(b*c+-1*a*d)^2*arctan(b^-1//4*d^1//4*(a+b*x)^1//4*(c+d*x)^-1//4)+1//8*d^-2*(a+b*x)^3//4*(c+d*x)^1//4*(-7*b*c+7*a*d)+21//16*b^-1//4*d^-11//4*(b*c+-1*a*d)^2*arctanh(b^-1//4*d^1//4*(a+b*x)^1//4*(c+d*x)^-1//4)) @test integrate((a+b*x)^3//4*(c+d*x)^-3//4, x) == :(d^-1*(a+b*x)^3//4*(c+d*x)^1//4+(1/2)*b^-1//4*d^-7//4*(-3*a*d+3*b*c)*arctan(b^-1//4*d^1//4*(a+b*x)^1//4*(c+d*x)^-1//4)+-1//2*b^-1//4*d^-7//4*(-3*a*d+3*b*c)*arctanh(b^-1//4*d^1//4*(a+b*x)^1//4*(c+d*x)^-1//4)) @test integrate((a+b*x)^-1//4*(c+d*x)^-3//4, x) == :(-2*b^-1//4*d^-3//4*arctan(b^-1//4*d^1//4*(a+b*x)^1//4*(c+d*x)^-1//4)+2*b^-1//4*d^-3//4*arctanh(b^-1//4*d^1//4*(a+b*x)^1//4*(c+d*x)^-1//4)) @test integrate((a+b*x)^-5//4*(c+d*x)^-3//4, x) == :(-4*(a+b*x)^-1//4*(c+d*x)^1//4*(b*c+-1*a*d)^-1) @test integrate((a+b*x)^-9//4*(c+d*x)^-3//4, x) == :(-4*(a+b*x)^-5//4*(c+d*x)^1//4*(-5*a*d+5*b*c)^-1+16//5*d*(a+b*x)^-1//4*(c+d*x)^1//4*(b*c+-1*a*d)^-2) @test integrate((a+b*x)^-13//4*(c+d*x)^-3//4, x) == :(-4*(a+b*x)^-9//4*(c+d*x)^1//4*(-9*a*d+9*b*c)^-1+-128//45*d^2*(a+b*x)^-1//4*(c+d*x)^1//4*(b*c+-1*a*d)^-3+32//45*d*(a+b*x)^-5//4*(c+d*x)^1//4*(b*c+-1*a*d)^-2) @test integrate((a+b*x)^-17//4*(c+d*x)^-3//4, x) == :(-4*(a+b*x)^-13//4*(c+d*x)^1//4*(-13*a*d+13*b*c)^-1+-128//195*d^2*(a+b*x)^-5//4*(c+d*x)^1//4*(b*c+-1*a*d)^-3+16//39*d*(a+b*x)^-9//4*(c+d*x)^1//4*(b*c+-1*a*d)^-2+512//195*d^3*(a+b*x)^-1//4*(c+d*x)^1//4*(b*c+-1*a*d)^-4) @test integrate((a+b*x)^5//4*(c+d*x)^-3//4, x) == :(2//3*d^-1*(a+b*x)^5//4*(c+d*x)^1//4+-1//3*d^-2*(a+b*x)^1//4*(c+d*x)^1//4*(-5*a*d+5*b*c)+5//12*2^(1/2)*b^-1//4*d^-9//4*((a*d+b*(c+2*d*x))^2)^-1//2*((a*d+b*c+2*b*d*x)^2)^(1/2)*((a+b*x)*(c+d*x))^3//4*((1+2*b^(1/2)*d^(1/2)*((a+b*x)*(c+d*x))^(1/2)*(b*c+-1*a*d)^-1)^-2*(a*d+b*(c+2*d*x))^2*(b*c+-1*a*d)^-2)^(1/2)*(a+b*x)^-3//4*(c+d*x)^-3//4*(b*c+-1*a*d)^5//2*(a*d+b*c+2*b*d*x)^-1*(1+2*b^(1/2)*d^(1/2)*((a+b*x)*(c+d*x))^(1/2)*(b*c+-1*a*d)^-1)*Elliptic.F(2*arctan(2^(1/2)*b^1//4*d^1//4*((a+b*x)*(c+d*x))^1//4*(b*c+-1*a*d)^-1//2),1/2)) @test integrate((a+b*x)^1//4*(c+d*x)^-3//4, x) == :(2*d^-1*(a+b*x)^1//4*(c+d*x)^1//4+-1//2*2^(1/2)*b^-1//4*d^-5//4*((a*d+b*(c+2*d*x))^2)^-1//2*((a*d+b*c+2*b*d*x)^2)^(1/2)*((a+b*x)*(c+d*x))^3//4*((1+2*b^(1/2)*d^(1/2)*((a+b*x)*(c+d*x))^(1/2)*(b*c+-1*a*d)^-1)^-2*(a*d+b*(c+2*d*x))^2*(b*c+-1*a*d)^-2)^(1/2)*(a+b*x)^-3//4*(c+d*x)^-3//4*(b*c+-1*a*d)^3//2*(a*d+b*c+2*b*d*x)^-1*(1+2*b^(1/2)*d^(1/2)*((a+b*x)*(c+d*x))^(1/2)*(b*c+-1*a*d)^-1)*Elliptic.F(2*arctan(2^(1/2)*b^1//4*d^1//4*((a+b*x)*(c+d*x))^1//4*(b*c+-1*a*d)^-1//2),1/2)) @test integrate((a+b*x)^-3//4*(c+d*x)^-3//4, x) == :(2^(1/2)*b^-1//4*d^-1//4*((a*d+b*(c+2*d*x))^2)^-1//2*((a*d+b*c+2*b*d*x)^2)^(1/2)*((a+b*x)*(c+d*x))^3//4*((1+2*b^(1/2)*d^(1/2)*((a+b*x)*(c+d*x))^(1/2)*(b*c+-1*a*d)^-1)^-2*(a*d+b*(c+2*d*x))^2*(b*c+-1*a*d)^-2)^(1/2)*(a+b*x)^-3//4*(c+d*x)^-3//4*(b*c+-1*a*d)^(1/2)*(a*d+b*c+2*b*d*x)^-1*(1+2*b^(1/2)*d^(1/2)*((a+b*x)*(c+d*x))^(1/2)*(b*c+-1*a*d)^-1)*Elliptic.F(2*arctan(2^(1/2)*b^1//4*d^1//4*((a+b*x)*(c+d*x))^1//4*(b*c+-1*a*d)^-1//2),1/2)) @test integrate((a+b*x)^-7//4*(c+d*x)^-3//4, x) == :(-4*(a+b*x)^-3//4*(c+d*x)^1//4*(-3*a*d+3*b*c)^-1+-2//3*2^(1/2)*b^-1//4*d^3//4*((a*d+b*(c+2*d*x))^2)^-1//2*((a*d+b*c+2*b*d*x)^2)^(1/2)*((a+b*x)*(c+d*x))^3//4*((1+2*b^(1/2)*d^(1/2)*((a+b*x)*(c+d*x))^(1/2)*(b*c+-1*a*d)^-1)^-2*(a*d+b*(c+2*d*x))^2*(b*c+-1*a*d)^-2)^(1/2)*(a+b*x)^-3//4*(c+d*x)^-3//4*(b*c+-1*a*d)^-1//2*(a*d+b*c+2*b*d*x)^-1*(1+2*b^(1/2)*d^(1/2)*((a+b*x)*(c+d*x))^(1/2)*(b*c+-1*a*d)^-1)*Elliptic.F(2*arctan(2^(1/2)*b^1//4*d^1//4*((a+b*x)*(c+d*x))^1//4*(b*c+-1*a*d)^-1//2),1/2)) @test integrate((a+b*x)^-11//4*(c+d*x)^-3//4, x) == :(-4*(a+b*x)^-7//4*(c+d*x)^1//4*(-7*a*d+7*b*c)^-1+8//7*d*(a+b*x)^-3//4*(c+d*x)^1//4*(b*c+-1*a*d)^-2+4//7*2^(1/2)*b^-1//4*d^7//4*((a*d+b*(c+2*d*x))^2)^-1//2*((a*d+b*c+2*b*d*x)^2)^(1/2)*((a+b*x)*(c+d*x))^3//4*((1+2*b^(1/2)*d^(1/2)*((a+b*x)*(c+d*x))^(1/2)*(b*c+-1*a*d)^-1)^-2*(a*d+b*(c+2*d*x))^2*(b*c+-1*a*d)^-2)^(1/2)*(a+b*x)^-3//4*(c+d*x)^-3//4*(b*c+-1*a*d)^-3//2*(a*d+b*c+2*b*d*x)^-1*(1+2*b^(1/2)*d^(1/2)*((a+b*x)*(c+d*x))^(1/2)*(b*c+-1*a*d)^-1)*Elliptic.F(2*arctan(2^(1/2)*b^1//4*d^1//4*((a+b*x)*(c+d*x))^1//4*(b*c+-1*a*d)^-1//2),1/2)) @test integrate((a+b*x)^5//4*(c+d*x)^-5//4, x) == :(-4*d^-1*(a+b*x)^5//4*(c+d*x)^-1//4+5*b*d^-2*(a+b*x)^1//4*(c+d*x)^3//4+-5//2*b^1//4*d^-9//4*(b*c+-1*a*d)*arctan(b^-1//4*d^1//4*(a+b*x)^1//4*(c+d*x)^-1//4)+-5//2*b^1//4*d^-9//4*(b*c+-1*a*d)*arctanh(b^-1//4*d^1//4*(a+b*x)^1//4*(c+d*x)^-1//4)) @test integrate((a+b*x)^1//4*(c+d*x)^-5//4, x) == :(-4*d^-1*(a+b*x)^1//4*(c+d*x)^-1//4+2*b^1//4*d^-5//4*arctan(b^-1//4*d^1//4*(a+b*x)^1//4*(c+d*x)^-1//4)+2*b^1//4*d^-5//4*arctanh(b^-1//4*d^1//4*(a+b*x)^1//4*(c+d*x)^-1//4)) @test integrate((a+b*x)^-3//4*(c+d*x)^-5//4, x) == :(4*(a+b*x)^1//4*(c+d*x)^-1//4*(b*c+-1*a*d)^-1) @test integrate((a+b*x)^-7//4*(c+d*x)^-5//4, x) == :(-4*(a+b*x)^-3//4*(c+d*x)^-1//4*(-3*a*d+3*b*c)^-1+-16//3*d*(a+b*x)^1//4*(c+d*x)^-1//4*(b*c+-1*a*d)^-2) @test integrate((a+b*x)^-11//4*(c+d*x)^-5//4, x) == :(-4*(a+b*x)^-7//4*(c+d*x)^-1//4*(-7*a*d+7*b*c)^-1+32//21*d*(a+b*x)^-3//4*(c+d*x)^-1//4*(b*c+-1*a*d)^-2+128//21*d^2*(a+b*x)^1//4*(c+d*x)^-1//4*(b*c+-1*a*d)^-3) @test integrate((a+b*x)^-15//4*(c+d*x)^-5//4, x) == :(-4*(a+b*x)^-11//4*(c+d*x)^-1//4*(-11*a*d+11*b*c)^-1+-512//77*d^3*(a+b*x)^1//4*(c+d*x)^-1//4*(b*c+-1*a*d)^-4+-128//77*d^2*(a+b*x)^-3//4*(c+d*x)^-1//4*(b*c+-1*a*d)^-3+48//77*d*(a+b*x)^-7//4*(c+d*x)^-1//4*(b*c+-1*a*d)^-2) @test integrate((a+b*x)^11//4*(c+d*x)^-5//4, x) == :(-4*d^-1*(a+b*x)^11//4*(c+d*x)^-1//4+22//5*b*d^-2*(a+b*x)^7//4*(c+d*x)^3//4+-77//15*b*d^-3*(a+b*x)^3//4*(c+d*x)^3//4*(b*c+-1*a*d)+77//10*b^(1/2)*d^-7//2*((a*d+b*(c+2*d*x))^2)^(1/2)*((a*d+b*c+2*b*d*x)^2)^(1/2)*((a+b*x)*(c+d*x))^(1/2)*(1+2*b^(1/2)*d^(1/2)*((a+b*x)*(c+d*x))^(1/2)*(b*c+-1*a*d)^-1)^-1*(a+b*x)^-1//4*(c+d*x)^-1//4*(a*d+b*c+2*b*d*x)^-1*(b*c+-1*a*d)+-77//20*2^(1/2)*b^1//4*d^-15//4*((a*d+b*(c+2*d*x))^2)^-1//2*((a*d+b*c+2*b*d*x)^2)^(1/2)*((a+b*x)*(c+d*x))^1//4*((1+2*b^(1/2)*d^(1/2)*((a+b*x)*(c+d*x))^(1/2)*(b*c+-1*a*d)^-1)^-2*(a*d+b*(c+2*d*x))^2*(b*c+-1*a*d)^-2)^(1/2)*(a+b*x)^-1//4*(c+d*x)^-1//4*(b*c+-1*a*d)^7//2*(a*d+b*c+2*b*d*x)^-1*(1+2*b^(1/2)*d^(1/2)*((a+b*x)*(c+d*x))^(1/2)*(b*c+-1*a*d)^-1)*Elliptic.E(2*arctan(2^(1/2)*b^1//4*d^1//4*((a+b*x)*(c+d*x))^1//4*(b*c+-1*a*d)^-1//2),1/2)+77//40*2^(1/2)*b^1//4*d^-15//4*((a*d+b*(c+2*d*x))^2)^-1//2*((a*d+b*c+2*b*d*x)^2)^(1/2)*((a+b*x)*(c+d*x))^1//4*((1+2*b^(1/2)*d^(1/2)*((a+b*x)*(c+d*x))^(1/2)*(b*c+-1*a*d)^-1)^-2*(a*d+b*(c+2*d*x))^2*(b*c+-1*a*d)^-2)^(1/2)*(a+b*x)^-1//4*(c+d*x)^-1//4*(b*c+-1*a*d)^7//2*(a*d+b*c+2*b*d*x)^-1*(1+2*b^(1/2)*d^(1/2)*((a+b*x)*(c+d*x))^(1/2)*(b*c+-1*a*d)^-1)*Elliptic.F(2*arctan(2^(1/2)*b^1//4*d^1//4*((a+b*x)*(c+d*x))^1//4*(b*c+-1*a*d)^-1//2),1/2)) @test integrate((a+b*x)^7//4*(c+d*x)^-5//4, x) == :(-4*d^-1*(a+b*x)^7//4*(c+d*x)^-1//4+14//3*b*d^-2*(a+b*x)^3//4*(c+d*x)^3//4+-7*b^(1/2)*d^-5//2*((a*d+b*(c+2*d*x))^2)^(1/2)*((a*d+b*c+2*b*d*x)^2)^(1/2)*((a+b*x)*(c+d*x))^(1/2)*(1+2*b^(1/2)*d^(1/2)*((a+b*x)*(c+d*x))^(1/2)*(b*c+-1*a*d)^-1)^-1*(a+b*x)^-1//4*(c+d*x)^-1//4*(a*d+b*c+2*b*d*x)^-1+-7//4*2^(1/2)*b^1//4*d^-11//4*((a*d+b*(c+2*d*x))^2)^-1//2*((a*d+b*c+2*b*d*x)^2)^(1/2)*((a+b*x)*(c+d*x))^1//4*((1+2*b^(1/2)*d^(1/2)*((a+b*x)*(c+d*x))^(1/2)*(b*c+-1*a*d)^-1)^-2*(a*d+b*(c+2*d*x))^2*(b*c+-1*a*d)^-2)^(1/2)*(a+b*x)^-1//4*(c+d*x)^-1//4*(b*c+-1*a*d)^5//2*(a*d+b*c+2*b*d*x)^-1*(1+2*b^(1/2)*d^(1/2)*((a+b*x)*(c+d*x))^(1/2)*(b*c+-1*a*d)^-1)*Elliptic.F(2*arctan(2^(1/2)*b^1//4*d^1//4*((a+b*x)*(c+d*x))^1//4*(b*c+-1*a*d)^-1//2),1/2)+7//2*2^(1/2)*b^1//4*d^-11//4*((a*d+b*(c+2*d*x))^2)^-1//2*((a*d+b*c+2*b*d*x)^2)^(1/2)*((a+b*x)*(c+d*x))^1//4*((1+2*b^(1/2)*d^(1/2)*((a+b*x)*(c+d*x))^(1/2)*(b*c+-1*a*d)^-1)^-2*(a*d+b*(c+2*d*x))^2*(b*c+-1*a*d)^-2)^(1/2)*(a+b*x)^-1//4*(c+d*x)^-1//4*(b*c+-1*a*d)^5//2*(a*d+b*c+2*b*d*x)^-1*(1+2*b^(1/2)*d^(1/2)*((a+b*x)*(c+d*x))^(1/2)*(b*c+-1*a*d)^-1)*Elliptic.E(2*arctan(2^(1/2)*b^1//4*d^1//4*((a+b*x)*(c+d*x))^1//4*(b*c+-1*a*d)^-1//2),1/2)) @test integrate((a+b*x)^3//4*(c+d*x)^-5//4, x) == :(-4*d^-1*(a+b*x)^3//4*(c+d*x)^-1//4+6*b^(1/2)*d^-3//2*((a*d+b*(c+2*d*x))^2)^(1/2)*((a*d+b*c+2*b*d*x)^2)^(1/2)*((a+b*x)*(c+d*x))^(1/2)*(1+2*b^(1/2)*d^(1/2)*((a+b*x)*(c+d*x))^(1/2)*(b*c+-1*a*d)^-1)^-1*(a+b*x)^-1//4*(c+d*x)^-1//4*(b*c+-1*a*d)^-1*(a*d+b*c+2*b*d*x)^-1+-3*2^(1/2)*b^1//4*d^-7//4*((a*d+b*(c+2*d*x))^2)^-1//2*((a*d+b*c+2*b*d*x)^2)^(1/2)*((a+b*x)*(c+d*x))^1//4*((1+2*b^(1/2)*d^(1/2)*((a+b*x)*(c+d*x))^(1/2)*(b*c+-1*a*d)^-1)^-2*(a*d+b*(c+2*d*x))^2*(b*c+-1*a*d)^-2)^(1/2)*(a+b*x)^-1//4*(c+d*x)^-1//4*(b*c+-1*a*d)^3//2*(a*d+b*c+2*b*d*x)^-1*(1+2*b^(1/2)*d^(1/2)*((a+b*x)*(c+d*x))^(1/2)*(b*c+-1*a*d)^-1)*Elliptic.E(2*arctan(2^(1/2)*b^1//4*d^1//4*((a+b*x)*(c+d*x))^1//4*(b*c+-1*a*d)^-1//2),1/2)+3//2*2^(1/2)*b^1//4*d^-7//4*((a*d+b*(c+2*d*x))^2)^-1//2*((a*d+b*c+2*b*d*x)^2)^(1/2)*((a+b*x)*(c+d*x))^1//4*((1+2*b^(1/2)*d^(1/2)*((a+b*x)*(c+d*x))^(1/2)*(b*c+-1*a*d)^-1)^-2*(a*d+b*(c+2*d*x))^2*(b*c+-1*a*d)^-2)^(1/2)*(a+b*x)^-1//4*(c+d*x)^-1//4*(b*c+-1*a*d)^3//2*(a*d+b*c+2*b*d*x)^-1*(1+2*b^(1/2)*d^(1/2)*((a+b*x)*(c+d*x))^(1/2)*(b*c+-1*a*d)^-1)*Elliptic.F(2*arctan(2^(1/2)*b^1//4*d^1//4*((a+b*x)*(c+d*x))^1//4*(b*c+-1*a*d)^-1//2),1/2)) @test integrate((a+b*x)^-1//4*(c+d*x)^-5//4, x) == :(4*(a+b*x)^3//4*(c+d*x)^-1//4*(b*c+-1*a*d)^-1+-4*b^(1/2)*d^-1//2*((a*d+b*(c+2*d*x))^2)^(1/2)*((a*d+b*c+2*b*d*x)^2)^(1/2)*((a+b*x)*(c+d*x))^(1/2)*(1+2*b^(1/2)*d^(1/2)*((a+b*x)*(c+d*x))^(1/2)*(b*c+-1*a*d)^-1)^-1*(a+b*x)^-1//4*(c+d*x)^-1//4*(b*c+-1*a*d)^-2*(a*d+b*c+2*b*d*x)^-1+-1*2^(1/2)*b^1//4*d^-3//4*((a*d+b*(c+2*d*x))^2)^-1//2*((a*d+b*c+2*b*d*x)^2)^(1/2)*((a+b*x)*(c+d*x))^1//4*((1+2*b^(1/2)*d^(1/2)*((a+b*x)*(c+d*x))^(1/2)*(b*c+-1*a*d)^-1)^-2*(a*d+b*(c+2*d*x))^2*(b*c+-1*a*d)^-2)^(1/2)*(a+b*x)^-1//4*(c+d*x)^-1//4*(b*c+-1*a*d)^(1/2)*(a*d+b*c+2*b*d*x)^-1*(1+2*b^(1/2)*d^(1/2)*((a+b*x)*(c+d*x))^(1/2)*(b*c+-1*a*d)^-1)*Elliptic.F(2*arctan(2^(1/2)*b^1//4*d^1//4*((a+b*x)*(c+d*x))^1//4*(b*c+-1*a*d)^-1//2),1/2)+2*2^(1/2)*b^1//4*d^-3//4*((a*d+b*(c+2*d*x))^2)^-1//2*((a*d+b*c+2*b*d*x)^2)^(1/2)*((a+b*x)*(c+d*x))^1//4*((1+2*b^(1/2)*d^(1/2)*((a+b*x)*(c+d*x))^(1/2)*(b*c+-1*a*d)^-1)^-2*(a*d+b*(c+2*d*x))^2*(b*c+-1*a*d)^-2)^(1/2)*(a+b*x)^-1//4*(c+d*x)^-1//4*(b*c+-1*a*d)^(1/2)*(a*d+b*c+2*b*d*x)^-1*(1+2*b^(1/2)*d^(1/2)*((a+b*x)*(c+d*x))^(1/2)*(b*c+-1*a*d)^-1)*Elliptic.E(2*arctan(2^(1/2)*b^1//4*d^1//4*((a+b*x)*(c+d*x))^1//4*(b*c+-1*a*d)^-1//2),1/2)) @test integrate((a+b*x)^-5//4*(c+d*x)^-5//4, x) == :(-4*(a+b*x)^-1//4*(c+d*x)^-1//4*(b*c+-1*a*d)^-1+-8*d*(a+b*x)^3//4*(c+d*x)^-1//4*(b*c+-1*a*d)^-2+8*b^(1/2)*d^(1/2)*((a*d+b*(c+2*d*x))^2)^(1/2)*((a*d+b*c+2*b*d*x)^2)^(1/2)*((a+b*x)*(c+d*x))^(1/2)*(1+2*b^(1/2)*d^(1/2)*((a+b*x)*(c+d*x))^(1/2)*(b*c+-1*a*d)^-1)^-1*(a+b*x)^-1//4*(c+d*x)^-1//4*(b*c+-1*a*d)^-3*(a*d+b*c+2*b*d*x)^-1+-4*2^(1/2)*b^1//4*d^1//4*((a*d+b*(c+2*d*x))^2)^-1//2*((a*d+b*c+2*b*d*x)^2)^(1/2)*((a+b*x)*(c+d*x))^1//4*((1+2*b^(1/2)*d^(1/2)*((a+b*x)*(c+d*x))^(1/2)*(b*c+-1*a*d)^-1)^-2*(a*d+b*(c+2*d*x))^2*(b*c+-1*a*d)^-2)^(1/2)*(a+b*x)^-1//4*(c+d*x)^-1//4*(b*c+-1*a*d)^-1//2*(a*d+b*c+2*b*d*x)^-1*(1+2*b^(1/2)*d^(1/2)*((a+b*x)*(c+d*x))^(1/2)*(b*c+-1*a*d)^-1)*Elliptic.E(2*arctan(2^(1/2)*b^1//4*d^1//4*((a+b*x)*(c+d*x))^1//4*(b*c+-1*a*d)^-1//2),1/2)+2*2^(1/2)*b^1//4*d^1//4*((a*d+b*(c+2*d*x))^2)^-1//2*((a*d+b*c+2*b*d*x)^2)^(1/2)*((a+b*x)*(c+d*x))^1//4*((1+2*b^(1/2)*d^(1/2)*((a+b*x)*(c+d*x))^(1/2)*(b*c+-1*a*d)^-1)^-2*(a*d+b*(c+2*d*x))^2*(b*c+-1*a*d)^-2)^(1/2)*(a+b*x)^-1//4*(c+d*x)^-1//4*(b*c+-1*a*d)^-1//2*(a*d+b*c+2*b*d*x)^-1*(1+2*b^(1/2)*d^(1/2)*((a+b*x)*(c+d*x))^(1/2)*(b*c+-1*a*d)^-1)*Elliptic.F(2*arctan(2^(1/2)*b^1//4*d^1//4*((a+b*x)*(c+d*x))^1//4*(b*c+-1*a*d)^-1//2),1/2)) @test integrate((a+b*x)^-9//4*(c+d*x)^-5//4, x) == :(-4*(a+b*x)^-5//4*(c+d*x)^-1//4*(-5*a*d+5*b*c)^-1+24//5*d*(a+b*x)^-1//4*(c+d*x)^-1//4*(b*c+-1*a*d)^-2+48//5*d^2*(a+b*x)^3//4*(c+d*x)^-1//4*(b*c+-1*a*d)^-3+-48//5*b^(1/2)*d^3//2*((a*d+b*(c+2*d*x))^2)^(1/2)*((a*d+b*c+2*b*d*x)^2)^(1/2)*((a+b*x)*(c+d*x))^(1/2)*(1+2*b^(1/2)*d^(1/2)*((a+b*x)*(c+d*x))^(1/2)*(b*c+-1*a*d)^-1)^-1*(a+b*x)^-1//4*(c+d*x)^-1//4*(b*c+-1*a*d)^-4*(a*d+b*c+2*b*d*x)^-1+-12//5*2^(1/2)*b^1//4*d^5//4*((a*d+b*(c+2*d*x))^2)^-1//2*((a*d+b*c+2*b*d*x)^2)^(1/2)*((a+b*x)*(c+d*x))^1//4*((1+2*b^(1/2)*d^(1/2)*((a+b*x)*(c+d*x))^(1/2)*(b*c+-1*a*d)^-1)^-2*(a*d+b*(c+2*d*x))^2*(b*c+-1*a*d)^-2)^(1/2)*(a+b*x)^-1//4*(c+d*x)^-1//4*(b*c+-1*a*d)^-3//2*(a*d+b*c+2*b*d*x)^-1*(1+2*b^(1/2)*d^(1/2)*((a+b*x)*(c+d*x))^(1/2)*(b*c+-1*a*d)^-1)*Elliptic.F(2*arctan(2^(1/2)*b^1//4*d^1//4*((a+b*x)*(c+d*x))^1//4*(b*c+-1*a*d)^-1//2),1/2)+24//5*2^(1/2)*b^1//4*d^5//4*((a*d+b*(c+2*d*x))^2)^-1//2*((a*d+b*c+2*b*d*x)^2)^(1/2)*((a+b*x)*(c+d*x))^1//4*((1+2*b^(1/2)*d^(1/2)*((a+b*x)*(c+d*x))^(1/2)*(b*c+-1*a*d)^-1)^-2*(a*d+b*(c+2*d*x))^2*(b*c+-1*a*d)^-2)^(1/2)*(a+b*x)^-1//4*(c+d*x)^-1//4*(b*c+-1*a*d)^-3//2*(a*d+b*c+2*b*d*x)^-1*(1+2*b^(1/2)*d^(1/2)*((a+b*x)*(c+d*x))^(1/2)*(b*c+-1*a*d)^-1)*Elliptic.E(2*arctan(2^(1/2)*b^1//4*d^1//4*((a+b*x)*(c+d*x))^1//4*(b*c+-1*a*d)^-1//2),1/2)) @test integrate((1+b*x)^-3//4*(1+-1*a*x)^-1//4, x) == :(2^(1/2)*a^-1//4*b^-3//4*arctan(1+-1*2^(1/2)*a^-1//4*b^1//4*(1+b*x)^-1//4*(1+-1*a*x)^1//4)+(1/2)*2^(1/2)*a^-1//4*b^-3//4*log(a^(1/2)+b^(1/2)*(1+b*x)^-1//2*(1+-1*a*x)^(1/2)+2^(1/2)*a^1//4*b^1//4*(1+b*x)^-1//4*(1+-1*a*x)^1//4)+-1*2^(1/2)*a^-1//4*b^-3//4*arctan(1+2^(1/2)*a^-1//4*b^1//4*(1+b*x)^-1//4*(1+-1*a*x)^1//4)+-1//2*2^(1/2)*a^-1//4*b^-3//4*log(a^(1/2)+b^(1/2)*(1+b*x)^-1//2*(1+-1*a*x)^(1/2)+-1*2^(1/2)*a^1//4*b^1//4*(1+b*x)^-1//4*(1+-1*a*x)^1//4)) @test integrate((1+a*x)^-3//4*(1+-1*a*x)^-1//4, x) == :(2^(1/2)*a^-1*arctan(1+-1*2^(1/2)*(1+a*x)^-1//4*(1+-1*a*x)^1//4)+(1/2)*2^(1/2)*a^-1*log(1+(1+a*x)^-1//2*(1+-1*a*x)^(1/2)+2^(1/2)*(1+a*x)^-1//4*(1+-1*a*x)^1//4)+-1*2^(1/2)*a^-1*arctan(1+2^(1/2)*(1+a*x)^-1//4*(1+-1*a*x)^1//4)+-1//2*2^(1/2)*a^-1*log(1+(1+a*x)^-1//2*(1+-1*a*x)^(1/2)+-1*2^(1/2)*(1+a*x)^-1//4*(1+-1*a*x)^1//4)) @test integrate((a+b*x)^5//2*(c+d*x)^1//6, x) == :(3//11*b^-1*(a+b*x)^7//2*(c+d*x)^1//6+-9//352*b^-1*d^-2*(a+b*x)^3//2*(c+d*x)^1//6*(b*c+-1*a*d)^2+1//176*b^-1*d^-1*(a+b*x)^5//2*(c+d*x)^1//6*(-3*a*d+3*b*c)+81//1408*b^-1*d^-3*(a+b*x)^(1/2)*(c+d*x)^1//6*(b*c+-1*a*d)^3+-81//2816*3^3//4*b^-1*d^-4*(((b*c+-1*a*d)^1//3+-1*b^1//3*(c+d*x)^1//3*(1+3^(1/2)))^-2*((b*c+-1*a*d)^2//3+b^2//3*(c+d*x)^2//3+b^1//3*(c+d*x)^1//3*(b*c+-1*a*d)^1//3))^(1/2)*(-1*b^1//3*(c+d*x)^1//3*((b*c+-1*a*d)^1//3+-1*b^1//3*(c+d*x)^1//3*(1+3^(1/2)))^-2*((b*c+-1*a*d)^1//3+-1*b^1//3*(c+d*x)^1//3))^-1//2*(a+b*x)^-1//2*(c+d*x)^1//6*(b*c+-1*a*d)^11//3*((b*c+-1*a*d)^1//3+-1*b^1//3*(c+d*x)^1//3)*Elliptic.F(arccos(((b*c+-1*a*d)^1//3+-1*b^1//3*(c+d*x)^1//3*(1+3^(1/2)))^-1*((b*c+-1*a*d)^1//3+-1*b^1//3*(c+d*x)^1//3*(1+-1*3^(1/2)))),1/2+1//4*3^(1/2))) @test integrate((a+b*x)^3//2*(c+d*x)^1//6, x) == :(3//8*b^-1*(a+b*x)^5//2*(c+d*x)^1//6+-27//320*b^-1*d^-2*(a+b*x)^(1/2)*(c+d*x)^1//6*(b*c+-1*a*d)^2+1//80*b^-1*d^-1*(a+b*x)^3//2*(c+d*x)^1//6*(-3*a*d+3*b*c)+27//640*3^3//4*b^-1*d^-3*(((b*c+-1*a*d)^1//3+-1*b^1//3*(c+d*x)^1//3*(1+3^(1/2)))^-2*((b*c+-1*a*d)^2//3+b^2//3*(c+d*x)^2//3+b^1//3*(c+d*x)^1//3*(b*c+-1*a*d)^1//3))^(1/2)*(-1*b^1//3*(c+d*x)^1//3*((b*c+-1*a*d)^1//3+-1*b^1//3*(c+d*x)^1//3*(1+3^(1/2)))^-2*((b*c+-1*a*d)^1//3+-1*b^1//3*(c+d*x)^1//3))^-1//2*(a+b*x)^-1//2*(c+d*x)^1//6*(b*c+-1*a*d)^8//3*((b*c+-1*a*d)^1//3+-1*b^1//3*(c+d*x)^1//3)*Elliptic.F(arccos(((b*c+-1*a*d)^1//3+-1*b^1//3*(c+d*x)^1//3*(1+3^(1/2)))^-1*((b*c+-1*a*d)^1//3+-1*b^1//3*(c+d*x)^1//3*(1+-1*3^(1/2)))),1/2+1//4*3^(1/2))) @test integrate((a+b*x)^(1/2)*(c+d*x)^1//6, x) == :(3//5*b^-1*(a+b*x)^3//2*(c+d*x)^1//6+1//20*b^-1*d^-1*(a+b*x)^(1/2)*(c+d*x)^1//6*(-3*a*d+3*b*c)+-3//40*3^3//4*b^-1*d^-2*(((b*c+-1*a*d)^1//3+-1*b^1//3*(c+d*x)^1//3*(1+3^(1/2)))^-2*((b*c+-1*a*d)^2//3+b^2//3*(c+d*x)^2//3+b^1//3*(c+d*x)^1//3*(b*c+-1*a*d)^1//3))^(1/2)*(-1*b^1//3*(c+d*x)^1//3*((b*c+-1*a*d)^1//3+-1*b^1//3*(c+d*x)^1//3*(1+3^(1/2)))^-2*((b*c+-1*a*d)^1//3+-1*b^1//3*(c+d*x)^1//3))^-1//2*(a+b*x)^-1//2*(c+d*x)^1//6*(b*c+-1*a*d)^5//3*((b*c+-1*a*d)^1//3+-1*b^1//3*(c+d*x)^1//3)*Elliptic.F(arccos(((b*c+-1*a*d)^1//3+-1*b^1//3*(c+d*x)^1//3*(1+3^(1/2)))^-1*((b*c+-1*a*d)^1//3+-1*b^1//3*(c+d*x)^1//3*(1+-1*3^(1/2)))),1/2+1//4*3^(1/2))) @test integrate((a+b*x)^-1//2*(c+d*x)^1//6, x) == :(3//2*b^-1*(a+b*x)^(1/2)*(c+d*x)^1//6+1//4*3^3//4*b^-1*d^-1*(((b*c+-1*a*d)^1//3+-1*b^1//3*(c+d*x)^1//3*(1+3^(1/2)))^-2*((b*c+-1*a*d)^2//3+b^2//3*(c+d*x)^2//3+b^1//3*(c+d*x)^1//3*(b*c+-1*a*d)^1//3))^(1/2)*(-1*b^1//3*(c+d*x)^1//3*((b*c+-1*a*d)^1//3+-1*b^1//3*(c+d*x)^1//3*(1+3^(1/2)))^-2*((b*c+-1*a*d)^1//3+-1*b^1//3*(c+d*x)^1//3))^-1//2*(a+b*x)^-1//2*(c+d*x)^1//6*(b*c+-1*a*d)^2//3*((b*c+-1*a*d)^1//3+-1*b^1//3*(c+d*x)^1//3)*Elliptic.F(arccos(((b*c+-1*a*d)^1//3+-1*b^1//3*(c+d*x)^1//3*(1+3^(1/2)))^-1*((b*c+-1*a*d)^1//3+-1*b^1//3*(c+d*x)^1//3*(1+-1*3^(1/2)))),1/2+1//4*3^(1/2))) @test integrate((a+b*x)^-3//2*(c+d*x)^1//6, x) == :(-2*b^-1*(a+b*x)^-1//2*(c+d*x)^1//6+1//3*3^3//4*b^-1*(((b*c+-1*a*d)^1//3+-1*b^1//3*(c+d*x)^1//3*(1+3^(1/2)))^-2*((b*c+-1*a*d)^2//3+b^2//3*(c+d*x)^2//3+b^1//3*(c+d*x)^1//3*(b*c+-1*a*d)^1//3))^(1/2)*(-1*b^1//3*(c+d*x)^1//3*((b*c+-1*a*d)^1//3+-1*b^1//3*(c+d*x)^1//3*(1+3^(1/2)))^-2*((b*c+-1*a*d)^1//3+-1*b^1//3*(c+d*x)^1//3))^-1//2*(a+b*x)^-1//2*(c+d*x)^1//6*(b*c+-1*a*d)^-1//3*((b*c+-1*a*d)^1//3+-1*b^1//3*(c+d*x)^1//3)*Elliptic.F(arccos(((b*c+-1*a*d)^1//3+-1*b^1//3*(c+d*x)^1//3*(1+3^(1/2)))^-1*((b*c+-1*a*d)^1//3+-1*b^1//3*(c+d*x)^1//3*(1+-1*3^(1/2)))),1/2+1//4*3^(1/2))) @test integrate((a+b*x)^-5//2*(c+d*x)^1//6, x) == :(-2//3*b^-1*(a+b*x)^-3//2*(c+d*x)^1//6+-2//9*d*b^-1*(a+b*x)^-1//2*(c+d*x)^1//6*(b*c+-1*a*d)^-1+-2//27*d*3^3//4*b^-1*(((b*c+-1*a*d)^1//3+-1*b^1//3*(c+d*x)^1//3*(1+3^(1/2)))^-2*((b*c+-1*a*d)^2//3+b^2//3*(c+d*x)^2//3+b^1//3*(c+d*x)^1//3*(b*c+-1*a*d)^1//3))^(1/2)*(-1*b^1//3*(c+d*x)^1//3*((b*c+-1*a*d)^1//3+-1*b^1//3*(c+d*x)^1//3*(1+3^(1/2)))^-2*((b*c+-1*a*d)^1//3+-1*b^1//3*(c+d*x)^1//3))^-1//2*(a+b*x)^-1//2*(c+d*x)^1//6*(b*c+-1*a*d)^-4//3*((b*c+-1*a*d)^1//3+-1*b^1//3*(c+d*x)^1//3)*Elliptic.F(arccos(((b*c+-1*a*d)^1//3+-1*b^1//3*(c+d*x)^1//3*(1+3^(1/2)))^-1*((b*c+-1*a*d)^1//3+-1*b^1//3*(c+d*x)^1//3*(1+-1*3^(1/2)))),1/2+1//4*3^(1/2))) @test integrate((a+b*x)^3//2*(c+d*x)^5//6, x) == :(3//10*b^-1*(a+b*x)^5//2*(c+d*x)^5//6+-27//224*b^-1*d^-2*(a+b*x)^(1/2)*(c+d*x)^5//6*(b*c+-1*a*d)^2+1//28*b^-1*d^-1*(a+b*x)^3//2*(c+d*x)^5//6*(-3*a*d+3*b*c)+-1//448*b^-5//3*d^-2*(a+b*x)^(1/2)*(c+d*x)^1//6*((b*c+-1*a*d)^1//3+-1*b^1//3*(c+d*x)^1//3*(1+3^(1/2)))^-1*(b*c+-1*a*d)^3*(81+81*3^(1/2))+-81//448*3^1//4*b^-5//3*d^-3*(((b*c+-1*a*d)^1//3+-1*b^1//3*(c+d*x)^1//3*(1+3^(1/2)))^-2*((b*c+-1*a*d)^2//3+b^2//3*(c+d*x)^2//3+b^1//3*(c+d*x)^1//3*(b*c+-1*a*d)^1//3))^(1/2)*(-1*b^1//3*(c+d*x)^1//3*((b*c+-1*a*d)^1//3+-1*b^1//3*(c+d*x)^1//3*(1+3^(1/2)))^-2*((b*c+-1*a*d)^1//3+-1*b^1//3*(c+d*x)^1//3))^-1//2*(a+b*x)^-1//2*(c+d*x)^1//6*(b*c+-1*a*d)^10//3*((b*c+-1*a*d)^1//3+-1*b^1//3*(c+d*x)^1//3)*Elliptic.E(arccos(((b*c+-1*a*d)^1//3+-1*b^1//3*(c+d*x)^1//3*(1+3^(1/2)))^-1*((b*c+-1*a*d)^1//3+-1*b^1//3*(c+d*x)^1//3*(1+-1*3^(1/2)))),1/2+1//4*3^(1/2))+-27//896*3^3//4*b^-5//3*d^-3*(((b*c+-1*a*d)^1//3+-1*b^1//3*(c+d*x)^1//3*(1+3^(1/2)))^-2*((b*c+-1*a*d)^2//3+b^2//3*(c+d*x)^2//3+b^1//3*(c+d*x)^1//3*(b*c+-1*a*d)^1//3))^(1/2)*(-1*b^1//3*(c+d*x)^1//3*((b*c+-1*a*d)^1//3+-1*b^1//3*(c+d*x)^1//3*(1+3^(1/2)))^-2*((b*c+-1*a*d)^1//3+-1*b^1//3*(c+d*x)^1//3))^-1//2*(a+b*x)^-1//2*(c+d*x)^1//6*(b*c+-1*a*d)^10//3*(1+-1*3^(1/2))*((b*c+-1*a*d)^1//3+-1*b^1//3*(c+d*x)^1//3)*Elliptic.F(arccos(((b*c+-1*a*d)^1//3+-1*b^1//3*(c+d*x)^1//3*(1+3^(1/2)))^-1*((b*c+-1*a*d)^1//3+-1*b^1//3*(c+d*x)^1//3*(1+-1*3^(1/2)))),1/2+1//4*3^(1/2))) @test integrate((a+b*x)^(1/2)*(c+d*x)^5//6, x) == :(3//7*b^-1*(a+b*x)^3//2*(c+d*x)^5//6+1//56*b^-1*d^-1*(a+b*x)^(1/2)*(c+d*x)^5//6*(-15*a*d+15*b*c)+1//112*b^-5//3*d^-1*(a+b*x)^(1/2)*(c+d*x)^1//6*((b*c+-1*a*d)^1//3+-1*b^1//3*(c+d*x)^1//3*(1+3^(1/2)))^-1*(b*c+-1*a*d)^2*(45+45*3^(1/2))+45//112*3^1//4*b^-5//3*d^-2*(((b*c+-1*a*d)^1//3+-1*b^1//3*(c+d*x)^1//3*(1+3^(1/2)))^-2*((b*c+-1*a*d)^2//3+b^2//3*(c+d*x)^2//3+b^1//3*(c+d*x)^1//3*(b*c+-1*a*d)^1//3))^(1/2)*(-1*b^1//3*(c+d*x)^1//3*((b*c+-1*a*d)^1//3+-1*b^1//3*(c+d*x)^1//3*(1+3^(1/2)))^-2*((b*c+-1*a*d)^1//3+-1*b^1//3*(c+d*x)^1//3))^-1//2*(a+b*x)^-1//2*(c+d*x)^1//6*(b*c+-1*a*d)^7//3*((b*c+-1*a*d)^1//3+-1*b^1//3*(c+d*x)^1//3)*Elliptic.E(arccos(((b*c+-1*a*d)^1//3+-1*b^1//3*(c+d*x)^1//3*(1+3^(1/2)))^-1*((b*c+-1*a*d)^1//3+-1*b^1//3*(c+d*x)^1//3*(1+-1*3^(1/2)))),1/2+1//4*3^(1/2))+15//224*3^3//4*b^-5//3*d^-2*(((b*c+-1*a*d)^1//3+-1*b^1//3*(c+d*x)^1//3*(1+3^(1/2)))^-2*((b*c+-1*a*d)^2//3+b^2//3*(c+d*x)^2//3+b^1//3*(c+d*x)^1//3*(b*c+-1*a*d)^1//3))^(1/2)*(-1*b^1//3*(c+d*x)^1//3*((b*c+-1*a*d)^1//3+-1*b^1//3*(c+d*x)^1//3*(1+3^(1/2)))^-2*((b*c+-1*a*d)^1//3+-1*b^1//3*(c+d*x)^1//3))^-1//2*(a+b*x)^-1//2*(c+d*x)^1//6*(b*c+-1*a*d)^7//3*(1+-1*3^(1/2))*((b*c+-1*a*d)^1//3+-1*b^1//3*(c+d*x)^1//3)*Elliptic.F(arccos(((b*c+-1*a*d)^1//3+-1*b^1//3*(c+d*x)^1//3*(1+3^(1/2)))^-1*((b*c+-1*a*d)^1//3+-1*b^1//3*(c+d*x)^1//3*(1+-1*3^(1/2)))),1/2+1//4*3^(1/2))) @test integrate((a+b*x)^-1//2*(c+d*x)^5//6, x) == :(3//4*b^-1*(a+b*x)^(1/2)*(c+d*x)^5//6+-1//8*b^-5//3*(a+b*x)^(1/2)*(c+d*x)^1//6*((b*c+-1*a*d)^1//3+-1*b^1//3*(c+d*x)^1//3*(1+3^(1/2)))^-1*(15+15*3^(1/2))*(b*c+-1*a*d)+-15//8*3^1//4*b^-5//3*d^-1*(((b*c+-1*a*d)^1//3+-1*b^1//3*(c+d*x)^1//3*(1+3^(1/2)))^-2*((b*c+-1*a*d)^2//3+b^2//3*(c+d*x)^2//3+b^1//3*(c+d*x)^1//3*(b*c+-1*a*d)^1//3))^(1/2)*(-1*b^1//3*(c+d*x)^1//3*((b*c+-1*a*d)^1//3+-1*b^1//3*(c+d*x)^1//3*(1+3^(1/2)))^-2*((b*c+-1*a*d)^1//3+-1*b^1//3*(c+d*x)^1//3))^-1//2*(a+b*x)^-1//2*(c+d*x)^1//6*(b*c+-1*a*d)^4//3*((b*c+-1*a*d)^1//3+-1*b^1//3*(c+d*x)^1//3)*Elliptic.E(arccos(((b*c+-1*a*d)^1//3+-1*b^1//3*(c+d*x)^1//3*(1+3^(1/2)))^-1*((b*c+-1*a*d)^1//3+-1*b^1//3*(c+d*x)^1//3*(1+-1*3^(1/2)))),1/2+1//4*3^(1/2))+-5//16*3^3//4*b^-5//3*d^-1*(((b*c+-1*a*d)^1//3+-1*b^1//3*(c+d*x)^1//3*(1+3^(1/2)))^-2*((b*c+-1*a*d)^2//3+b^2//3*(c+d*x)^2//3+b^1//3*(c+d*x)^1//3*(b*c+-1*a*d)^1//3))^(1/2)*(-1*b^1//3*(c+d*x)^1//3*((b*c+-1*a*d)^1//3+-1*b^1//3*(c+d*x)^1//3*(1+3^(1/2)))^-2*((b*c+-1*a*d)^1//3+-1*b^1//3*(c+d*x)^1//3))^-1//2*(a+b*x)^-1//2*(c+d*x)^1//6*(b*c+-1*a*d)^4//3*(1+-1*3^(1/2))*((b*c+-1*a*d)^1//3+-1*b^1//3*(c+d*x)^1//3)*Elliptic.F(arccos(((b*c+-1*a*d)^1//3+-1*b^1//3*(c+d*x)^1//3*(1+3^(1/2)))^-1*((b*c+-1*a*d)^1//3+-1*b^1//3*(c+d*x)^1//3*(1+-1*3^(1/2)))),1/2+1//4*3^(1/2))) @test integrate((a+b*x)^-3//2*(c+d*x)^5//6, x) == :(-2*b^-1*(a+b*x)^-1//2*(c+d*x)^5//6+-1*d*b^-5//3*(a+b*x)^(1/2)*(c+d*x)^1//6*((b*c+-1*a*d)^1//3+-1*b^1//3*(c+d*x)^1//3*(1+3^(1/2)))^-1*(5+5*3^(1/2))+-5*3^1//4*b^-5//3*(((b*c+-1*a*d)^1//3+-1*b^1//3*(c+d*x)^1//3*(1+3^(1/2)))^-2*((b*c+-1*a*d)^2//3+b^2//3*(c+d*x)^2//3+b^1//3*(c+d*x)^1//3*(b*c+-1*a*d)^1//3))^(1/2)*(-1*b^1//3*(c+d*x)^1//3*((b*c+-1*a*d)^1//3+-1*b^1//3*(c+d*x)^1//3*(1+3^(1/2)))^-2*((b*c+-1*a*d)^1//3+-1*b^1//3*(c+d*x)^1//3))^-1//2*(a+b*x)^-1//2*(c+d*x)^1//6*(b*c+-1*a*d)^1//3*((b*c+-1*a*d)^1//3+-1*b^1//3*(c+d*x)^1//3)*Elliptic.E(arccos(((b*c+-1*a*d)^1//3+-1*b^1//3*(c+d*x)^1//3*(1+3^(1/2)))^-1*((b*c+-1*a*d)^1//3+-1*b^1//3*(c+d*x)^1//3*(1+-1*3^(1/2)))),1/2+1//4*3^(1/2))+-1//6*3^3//4*b^-5//3*(((b*c+-1*a*d)^1//3+-1*b^1//3*(c+d*x)^1//3*(1+3^(1/2)))^-2*((b*c+-1*a*d)^2//3+b^2//3*(c+d*x)^2//3+b^1//3*(c+d*x)^1//3*(b*c+-1*a*d)^1//3))^(1/2)*(-1*b^1//3*(c+d*x)^1//3*((b*c+-1*a*d)^1//3+-1*b^1//3*(c+d*x)^1//3*(1+3^(1/2)))^-2*((b*c+-1*a*d)^1//3+-1*b^1//3*(c+d*x)^1//3))^-1//2*(a+b*x)^-1//2*(c+d*x)^1//6*(b*c+-1*a*d)^1//3*(5+-5*3^(1/2))*((b*c+-1*a*d)^1//3+-1*b^1//3*(c+d*x)^1//3)*Elliptic.F(arccos(((b*c+-1*a*d)^1//3+-1*b^1//3*(c+d*x)^1//3*(1+3^(1/2)))^-1*((b*c+-1*a*d)^1//3+-1*b^1//3*(c+d*x)^1//3*(1+-1*3^(1/2)))),1/2+1//4*3^(1/2))) @test integrate((a+b*x)^-5//2*(c+d*x)^5//6, x) == :(-2//3*b^-1*(a+b*x)^-3//2*(c+d*x)^5//6+-10//9*d*b^-1*(a+b*x)^-1//2*(c+d*x)^5//6*(b*c+-1*a*d)^-1+-1//9*b^-5//3*d^2*(a+b*x)^(1/2)*(c+d*x)^1//6*((b*c+-1*a*d)^1//3+-1*b^1//3*(c+d*x)^1//3*(1+3^(1/2)))^-1*(b*c+-1*a*d)^-1*(10+10*3^(1/2))+-10//9*d*3^1//4*b^-5//3*(((b*c+-1*a*d)^1//3+-1*b^1//3*(c+d*x)^1//3*(1+3^(1/2)))^-2*((b*c+-1*a*d)^2//3+b^2//3*(c+d*x)^2//3+b^1//3*(c+d*x)^1//3*(b*c+-1*a*d)^1//3))^(1/2)*(-1*b^1//3*(c+d*x)^1//3*((b*c+-1*a*d)^1//3+-1*b^1//3*(c+d*x)^1//3*(1+3^(1/2)))^-2*((b*c+-1*a*d)^1//3+-1*b^1//3*(c+d*x)^1//3))^-1//2*(a+b*x)^-1//2*(c+d*x)^1//6*(b*c+-1*a*d)^-2//3*((b*c+-1*a*d)^1//3+-1*b^1//3*(c+d*x)^1//3)*Elliptic.E(arccos(((b*c+-1*a*d)^1//3+-1*b^1//3*(c+d*x)^1//3*(1+3^(1/2)))^-1*((b*c+-1*a*d)^1//3+-1*b^1//3*(c+d*x)^1//3*(1+-1*3^(1/2)))),1/2+1//4*3^(1/2))+-1//27*d*3^3//4*b^-5//3*(((b*c+-1*a*d)^1//3+-1*b^1//3*(c+d*x)^1//3*(1+3^(1/2)))^-2*((b*c+-1*a*d)^2//3+b^2//3*(c+d*x)^2//3+b^1//3*(c+d*x)^1//3*(b*c+-1*a*d)^1//3))^(1/2)*(-1*b^1//3*(c+d*x)^1//3*((b*c+-1*a*d)^1//3+-1*b^1//3*(c+d*x)^1//3*(1+3^(1/2)))^-2*((b*c+-1*a*d)^1//3+-1*b^1//3*(c+d*x)^1//3))^-1//2*(a+b*x)^-1//2*(c+d*x)^1//6*(b*c+-1*a*d)^-2//3*(5+-5*3^(1/2))*((b*c+-1*a*d)^1//3+-1*b^1//3*(c+d*x)^1//3)*Elliptic.F(arccos(((b*c+-1*a*d)^1//3+-1*b^1//3*(c+d*x)^1//3*(1+3^(1/2)))^-1*((b*c+-1*a*d)^1//3+-1*b^1//3*(c+d*x)^1//3*(1+-1*3^(1/2)))),1/2+1//4*3^(1/2))) @test integrate((a+b*x)^-7//2*(c+d*x)^5//6, x) == :(-2//5*b^-1*(a+b*x)^-5//2*(c+d*x)^5//6+-2//9*d*b^-1*(a+b*x)^-3//2*(c+d*x)^5//6*(b*c+-1*a*d)^-1+8//27*b^-1*d^2*(a+b*x)^-1//2*(c+d*x)^5//6*(b*c+-1*a*d)^-2+1//27*b^-5//3*d^3*(a+b*x)^(1/2)*(c+d*x)^1//6*((b*c+-1*a*d)^1//3+-1*b^1//3*(c+d*x)^1//3*(1+3^(1/2)))^-1*(b*c+-1*a*d)^-2*(8+8*3^(1/2))+8//27*3^1//4*b^-5//3*d^2*(((b*c+-1*a*d)^1//3+-1*b^1//3*(c+d*x)^1//3*(1+3^(1/2)))^-2*((b*c+-1*a*d)^2//3+b^2//3*(c+d*x)^2//3+b^1//3*(c+d*x)^1//3*(b*c+-1*a*d)^1//3))^(1/2)*(-1*b^1//3*(c+d*x)^1//3*((b*c+-1*a*d)^1//3+-1*b^1//3*(c+d*x)^1//3*(1+3^(1/2)))^-2*((b*c+-1*a*d)^1//3+-1*b^1//3*(c+d*x)^1//3))^-1//2*(a+b*x)^-1//2*(c+d*x)^1//6*(b*c+-1*a*d)^-5//3*((b*c+-1*a*d)^1//3+-1*b^1//3*(c+d*x)^1//3)*Elliptic.E(arccos(((b*c+-1*a*d)^1//3+-1*b^1//3*(c+d*x)^1//3*(1+3^(1/2)))^-1*((b*c+-1*a*d)^1//3+-1*b^1//3*(c+d*x)^1//3*(1+-1*3^(1/2)))),1/2+1//4*3^(1/2))+1//81*3^3//4*b^-5//3*d^2*(((b*c+-1*a*d)^1//3+-1*b^1//3*(c+d*x)^1//3*(1+3^(1/2)))^-2*((b*c+-1*a*d)^2//3+b^2//3*(c+d*x)^2//3+b^1//3*(c+d*x)^1//3*(b*c+-1*a*d)^1//3))^(1/2)*(-1*b^1//3*(c+d*x)^1//3*((b*c+-1*a*d)^1//3+-1*b^1//3*(c+d*x)^1//3*(1+3^(1/2)))^-2*((b*c+-1*a*d)^1//3+-1*b^1//3*(c+d*x)^1//3))^-1//2*(a+b*x)^-1//2*(c+d*x)^1//6*(b*c+-1*a*d)^-5//3*(4+-4*3^(1/2))*((b*c+-1*a*d)^1//3+-1*b^1//3*(c+d*x)^1//3)*Elliptic.F(arccos(((b*c+-1*a*d)^1//3+-1*b^1//3*(c+d*x)^1//3*(1+3^(1/2)))^-1*((b*c+-1*a*d)^1//3+-1*b^1//3*(c+d*x)^1//3*(1+-1*3^(1/2)))),1/2+1//4*3^(1/2))) @test integrate((a+b*x)^5//2*(c+d*x)^-1//6, x) == :(3//10*d^-1*(a+b*x)^5//2*(c+d*x)^5//6+-1//28*d^-2*(a+b*x)^3//2*(c+d*x)^5//6*(-9*a*d+9*b*c)+81//224*d^-3*(a+b*x)^(1/2)*(c+d*x)^5//6*(b*c+-1*a*d)^2+1//448*b^-2//3*d^-3*(a+b*x)^(1/2)*(c+d*x)^1//6*((b*c+-1*a*d)^1//3+-1*b^1//3*(c+d*x)^1//3*(1+3^(1/2)))^-1*(b*c+-1*a*d)^3*(243+243*3^(1/2))+243//448*3^1//4*b^-2//3*d^-4*(((b*c+-1*a*d)^1//3+-1*b^1//3*(c+d*x)^1//3*(1+3^(1/2)))^-2*((b*c+-1*a*d)^2//3+b^2//3*(c+d*x)^2//3+b^1//3*(c+d*x)^1//3*(b*c+-1*a*d)^1//3))^(1/2)*(-1*b^1//3*(c+d*x)^1//3*((b*c+-1*a*d)^1//3+-1*b^1//3*(c+d*x)^1//3*(1+3^(1/2)))^-2*((b*c+-1*a*d)^1//3+-1*b^1//3*(c+d*x)^1//3))^-1//2*(a+b*x)^-1//2*(c+d*x)^1//6*(b*c+-1*a*d)^10//3*((b*c+-1*a*d)^1//3+-1*b^1//3*(c+d*x)^1//3)*Elliptic.E(arccos(((b*c+-1*a*d)^1//3+-1*b^1//3*(c+d*x)^1//3*(1+3^(1/2)))^-1*((b*c+-1*a*d)^1//3+-1*b^1//3*(c+d*x)^1//3*(1+-1*3^(1/2)))),1/2+1//4*3^(1/2))+81//896*3^3//4*b^-2//3*d^-4*(((b*c+-1*a*d)^1//3+-1*b^1//3*(c+d*x)^1//3*(1+3^(1/2)))^-2*((b*c+-1*a*d)^2//3+b^2//3*(c+d*x)^2//3+b^1//3*(c+d*x)^1//3*(b*c+-1*a*d)^1//3))^(1/2)*(-1*b^1//3*(c+d*x)^1//3*((b*c+-1*a*d)^1//3+-1*b^1//3*(c+d*x)^1//3*(1+3^(1/2)))^-2*((b*c+-1*a*d)^1//3+-1*b^1//3*(c+d*x)^1//3))^-1//2*(a+b*x)^-1//2*(c+d*x)^1//6*(b*c+-1*a*d)^10//3*(1+-1*3^(1/2))*((b*c+-1*a*d)^1//3+-1*b^1//3*(c+d*x)^1//3)*Elliptic.F(arccos(((b*c+-1*a*d)^1//3+-1*b^1//3*(c+d*x)^1//3*(1+3^(1/2)))^-1*((b*c+-1*a*d)^1//3+-1*b^1//3*(c+d*x)^1//3*(1+-1*3^(1/2)))),1/2+1//4*3^(1/2))) @test integrate((a+b*x)^3//2*(c+d*x)^-1//6, x) == :(3//7*d^-1*(a+b*x)^3//2*(c+d*x)^5//6+-1//56*d^-2*(a+b*x)^(1/2)*(c+d*x)^5//6*(-27*a*d+27*b*c)+-1//112*b^-2//3*d^-2*(a+b*x)^(1/2)*(c+d*x)^1//6*((b*c+-1*a*d)^1//3+-1*b^1//3*(c+d*x)^1//3*(1+3^(1/2)))^-1*(b*c+-1*a*d)^2*(81+81*3^(1/2))+-81//112*3^1//4*b^-2//3*d^-3*(((b*c+-1*a*d)^1//3+-1*b^1//3*(c+d*x)^1//3*(1+3^(1/2)))^-2*((b*c+-1*a*d)^2//3+b^2//3*(c+d*x)^2//3+b^1//3*(c+d*x)^1//3*(b*c+-1*a*d)^1//3))^(1/2)*(-1*b^1//3*(c+d*x)^1//3*((b*c+-1*a*d)^1//3+-1*b^1//3*(c+d*x)^1//3*(1+3^(1/2)))^-2*((b*c+-1*a*d)^1//3+-1*b^1//3*(c+d*x)^1//3))^-1//2*(a+b*x)^-1//2*(c+d*x)^1//6*(b*c+-1*a*d)^7//3*((b*c+-1*a*d)^1//3+-1*b^1//3*(c+d*x)^1//3)*Elliptic.E(arccos(((b*c+-1*a*d)^1//3+-1*b^1//3*(c+d*x)^1//3*(1+3^(1/2)))^-1*((b*c+-1*a*d)^1//3+-1*b^1//3*(c+d*x)^1//3*(1+-1*3^(1/2)))),1/2+1//4*3^(1/2))+-27//224*3^3//4*b^-2//3*d^-3*(((b*c+-1*a*d)^1//3+-1*b^1//3*(c+d*x)^1//3*(1+3^(1/2)))^-2*((b*c+-1*a*d)^2//3+b^2//3*(c+d*x)^2//3+b^1//3*(c+d*x)^1//3*(b*c+-1*a*d)^1//3))^(1/2)*(-1*b^1//3*(c+d*x)^1//3*((b*c+-1*a*d)^1//3+-1*b^1//3*(c+d*x)^1//3*(1+3^(1/2)))^-2*((b*c+-1*a*d)^1//3+-1*b^1//3*(c+d*x)^1//3))^-1//2*(a+b*x)^-1//2*(c+d*x)^1//6*(b*c+-1*a*d)^7//3*(1+-1*3^(1/2))*((b*c+-1*a*d)^1//3+-1*b^1//3*(c+d*x)^1//3)*Elliptic.F(arccos(((b*c+-1*a*d)^1//3+-1*b^1//3*(c+d*x)^1//3*(1+3^(1/2)))^-1*((b*c+-1*a*d)^1//3+-1*b^1//3*(c+d*x)^1//3*(1+-1*3^(1/2)))),1/2+1//4*3^(1/2))) @test integrate((a+b*x)^(1/2)*(c+d*x)^-1//6, x) == :(3//4*d^-1*(a+b*x)^(1/2)*(c+d*x)^5//6+1//8*b^-2//3*d^-1*(a+b*x)^(1/2)*(c+d*x)^1//6*((b*c+-1*a*d)^1//3+-1*b^1//3*(c+d*x)^1//3*(1+3^(1/2)))^-1*(9+9*3^(1/2))*(b*c+-1*a*d)+9//8*3^1//4*b^-2//3*d^-2*(((b*c+-1*a*d)^1//3+-1*b^1//3*(c+d*x)^1//3*(1+3^(1/2)))^-2*((b*c+-1*a*d)^2//3+b^2//3*(c+d*x)^2//3+b^1//3*(c+d*x)^1//3*(b*c+-1*a*d)^1//3))^(1/2)*(-1*b^1//3*(c+d*x)^1//3*((b*c+-1*a*d)^1//3+-1*b^1//3*(c+d*x)^1//3*(1+3^(1/2)))^-2*((b*c+-1*a*d)^1//3+-1*b^1//3*(c+d*x)^1//3))^-1//2*(a+b*x)^-1//2*(c+d*x)^1//6*(b*c+-1*a*d)^4//3*((b*c+-1*a*d)^1//3+-1*b^1//3*(c+d*x)^1//3)*Elliptic.E(arccos(((b*c+-1*a*d)^1//3+-1*b^1//3*(c+d*x)^1//3*(1+3^(1/2)))^-1*((b*c+-1*a*d)^1//3+-1*b^1//3*(c+d*x)^1//3*(1+-1*3^(1/2)))),1/2+1//4*3^(1/2))+3//16*3^3//4*b^-2//3*d^-2*(((b*c+-1*a*d)^1//3+-1*b^1//3*(c+d*x)^1//3*(1+3^(1/2)))^-2*((b*c+-1*a*d)^2//3+b^2//3*(c+d*x)^2//3+b^1//3*(c+d*x)^1//3*(b*c+-1*a*d)^1//3))^(1/2)*(-1*b^1//3*(c+d*x)^1//3*((b*c+-1*a*d)^1//3+-1*b^1//3*(c+d*x)^1//3*(1+3^(1/2)))^-2*((b*c+-1*a*d)^1//3+-1*b^1//3*(c+d*x)^1//3))^-1//2*(a+b*x)^-1//2*(c+d*x)^1//6*(b*c+-1*a*d)^4//3*(1+-1*3^(1/2))*((b*c+-1*a*d)^1//3+-1*b^1//3*(c+d*x)^1//3)*Elliptic.F(arccos(((b*c+-1*a*d)^1//3+-1*b^1//3*(c+d*x)^1//3*(1+3^(1/2)))^-1*((b*c+-1*a*d)^1//3+-1*b^1//3*(c+d*x)^1//3*(1+-1*3^(1/2)))),1/2+1//4*3^(1/2))) @test integrate((a+b*x)^-1//2*(c+d*x)^-1//6, x) == :(-1*b^-2//3*(a+b*x)^(1/2)*(c+d*x)^1//6*((b*c+-1*a*d)^1//3+-1*b^1//3*(c+d*x)^1//3*(1+3^(1/2)))^-1*(3+3*3^(1/2))+-3*3^1//4*b^-2//3*d^-1*(((b*c+-1*a*d)^1//3+-1*b^1//3*(c+d*x)^1//3*(1+3^(1/2)))^-2*((b*c+-1*a*d)^2//3+b^2//3*(c+d*x)^2//3+b^1//3*(c+d*x)^1//3*(b*c+-1*a*d)^1//3))^(1/2)*(-1*b^1//3*(c+d*x)^1//3*((b*c+-1*a*d)^1//3+-1*b^1//3*(c+d*x)^1//3*(1+3^(1/2)))^-2*((b*c+-1*a*d)^1//3+-1*b^1//3*(c+d*x)^1//3))^-1//2*(a+b*x)^-1//2*(c+d*x)^1//6*(b*c+-1*a*d)^1//3*((b*c+-1*a*d)^1//3+-1*b^1//3*(c+d*x)^1//3)*Elliptic.E(arccos(((b*c+-1*a*d)^1//3+-1*b^1//3*(c+d*x)^1//3*(1+3^(1/2)))^-1*((b*c+-1*a*d)^1//3+-1*b^1//3*(c+d*x)^1//3*(1+-1*3^(1/2)))),1/2+1//4*3^(1/2))+-1//2*3^3//4*b^-2//3*d^-1*(((b*c+-1*a*d)^1//3+-1*b^1//3*(c+d*x)^1//3*(1+3^(1/2)))^-2*((b*c+-1*a*d)^2//3+b^2//3*(c+d*x)^2//3+b^1//3*(c+d*x)^1//3*(b*c+-1*a*d)^1//3))^(1/2)*(-1*b^1//3*(c+d*x)^1//3*((b*c+-1*a*d)^1//3+-1*b^1//3*(c+d*x)^1//3*(1+3^(1/2)))^-2*((b*c+-1*a*d)^1//3+-1*b^1//3*(c+d*x)^1//3))^-1//2*(a+b*x)^-1//2*(c+d*x)^1//6*(b*c+-1*a*d)^1//3*(1+-1*3^(1/2))*((b*c+-1*a*d)^1//3+-1*b^1//3*(c+d*x)^1//3)*Elliptic.F(arccos(((b*c+-1*a*d)^1//3+-1*b^1//3*(c+d*x)^1//3*(1+3^(1/2)))^-1*((b*c+-1*a*d)^1//3+-1*b^1//3*(c+d*x)^1//3*(1+-1*3^(1/2)))),1/2+1//4*3^(1/2))) @test integrate((a+b*x)^-3//2*(c+d*x)^-1//6, x) == :(-2*(a+b*x)^-1//2*(c+d*x)^5//6*(b*c+-1*a*d)^-1+-1*d*b^-2//3*(a+b*x)^(1/2)*(c+d*x)^1//6*((b*c+-1*a*d)^1//3+-1*b^1//3*(c+d*x)^1//3*(1+3^(1/2)))^-1*(b*c+-1*a*d)^-1*(2+2*3^(1/2))+-2*3^1//4*b^-2//3*(((b*c+-1*a*d)^1//3+-1*b^1//3*(c+d*x)^1//3*(1+3^(1/2)))^-2*((b*c+-1*a*d)^2//3+b^2//3*(c+d*x)^2//3+b^1//3*(c+d*x)^1//3*(b*c+-1*a*d)^1//3))^(1/2)*(-1*b^1//3*(c+d*x)^1//3*((b*c+-1*a*d)^1//3+-1*b^1//3*(c+d*x)^1//3*(1+3^(1/2)))^-2*((b*c+-1*a*d)^1//3+-1*b^1//3*(c+d*x)^1//3))^-1//2*(a+b*x)^-1//2*(c+d*x)^1//6*(b*c+-1*a*d)^-2//3*((b*c+-1*a*d)^1//3+-1*b^1//3*(c+d*x)^1//3)*Elliptic.E(arccos(((b*c+-1*a*d)^1//3+-1*b^1//3*(c+d*x)^1//3*(1+3^(1/2)))^-1*((b*c+-1*a*d)^1//3+-1*b^1//3*(c+d*x)^1//3*(1+-1*3^(1/2)))),1/2+1//4*3^(1/2))+-1//3*3^3//4*b^-2//3*(((b*c+-1*a*d)^1//3+-1*b^1//3*(c+d*x)^1//3*(1+3^(1/2)))^-2*((b*c+-1*a*d)^2//3+b^2//3*(c+d*x)^2//3+b^1//3*(c+d*x)^1//3*(b*c+-1*a*d)^1//3))^(1/2)*(-1*b^1//3*(c+d*x)^1//3*((b*c+-1*a*d)^1//3+-1*b^1//3*(c+d*x)^1//3*(1+3^(1/2)))^-2*((b*c+-1*a*d)^1//3+-1*b^1//3*(c+d*x)^1//3))^-1//2*(a+b*x)^-1//2*(c+d*x)^1//6*(b*c+-1*a*d)^-2//3*(1+-1*3^(1/2))*((b*c+-1*a*d)^1//3+-1*b^1//3*(c+d*x)^1//3)*Elliptic.F(arccos(((b*c+-1*a*d)^1//3+-1*b^1//3*(c+d*x)^1//3*(1+3^(1/2)))^-1*((b*c+-1*a*d)^1//3+-1*b^1//3*(c+d*x)^1//3*(1+-1*3^(1/2)))),1/2+1//4*3^(1/2))) @test integrate((a+b*x)^-5//2*(c+d*x)^-1//6, x) == :(-2*(a+b*x)^-3//2*(c+d*x)^5//6*(-3*a*d+3*b*c)^-1+8//9*d*(a+b*x)^-1//2*(c+d*x)^5//6*(b*c+-1*a*d)^-2+1//9*b^-2//3*d^2*(a+b*x)^(1/2)*(c+d*x)^1//6*((b*c+-1*a*d)^1//3+-1*b^1//3*(c+d*x)^1//3*(1+3^(1/2)))^-1*(b*c+-1*a*d)^-2*(8+8*3^(1/2))+8//9*d*3^1//4*b^-2//3*(((b*c+-1*a*d)^1//3+-1*b^1//3*(c+d*x)^1//3*(1+3^(1/2)))^-2*((b*c+-1*a*d)^2//3+b^2//3*(c+d*x)^2//3+b^1//3*(c+d*x)^1//3*(b*c+-1*a*d)^1//3))^(1/2)*(-1*b^1//3*(c+d*x)^1//3*((b*c+-1*a*d)^1//3+-1*b^1//3*(c+d*x)^1//3*(1+3^(1/2)))^-2*((b*c+-1*a*d)^1//3+-1*b^1//3*(c+d*x)^1//3))^-1//2*(a+b*x)^-1//2*(c+d*x)^1//6*(b*c+-1*a*d)^-5//3*((b*c+-1*a*d)^1//3+-1*b^1//3*(c+d*x)^1//3)*Elliptic.E(arccos(((b*c+-1*a*d)^1//3+-1*b^1//3*(c+d*x)^1//3*(1+3^(1/2)))^-1*((b*c+-1*a*d)^1//3+-1*b^1//3*(c+d*x)^1//3*(1+-1*3^(1/2)))),1/2+1//4*3^(1/2))+1//27*d*3^3//4*b^-2//3*(((b*c+-1*a*d)^1//3+-1*b^1//3*(c+d*x)^1//3*(1+3^(1/2)))^-2*((b*c+-1*a*d)^2//3+b^2//3*(c+d*x)^2//3+b^1//3*(c+d*x)^1//3*(b*c+-1*a*d)^1//3))^(1/2)*(-1*b^1//3*(c+d*x)^1//3*((b*c+-1*a*d)^1//3+-1*b^1//3*(c+d*x)^1//3*(1+3^(1/2)))^-2*((b*c+-1*a*d)^1//3+-1*b^1//3*(c+d*x)^1//3))^-1//2*(a+b*x)^-1//2*(c+d*x)^1//6*(b*c+-1*a*d)^-5//3*(4+-4*3^(1/2))*((b*c+-1*a*d)^1//3+-1*b^1//3*(c+d*x)^1//3)*Elliptic.F(arccos(((b*c+-1*a*d)^1//3+-1*b^1//3*(c+d*x)^1//3*(1+3^(1/2)))^-1*((b*c+-1*a*d)^1//3+-1*b^1//3*(c+d*x)^1//3*(1+-1*3^(1/2)))),1/2+1//4*3^(1/2))) @test integrate((a+b*x)^5//2*(c+d*x)^-5//6, x) == :(3//8*d^-1*(a+b*x)^5//2*(c+d*x)^1//6+-1//16*d^-2*(a+b*x)^3//2*(c+d*x)^1//6*(-9*a*d+9*b*c)+81//64*d^-3*(a+b*x)^(1/2)*(c+d*x)^1//6*(b*c+-1*a*d)^2+-81//128*3^3//4*d^-4*(((b*c+-1*a*d)^1//3+-1*b^1//3*(c+d*x)^1//3*(1+3^(1/2)))^-2*((b*c+-1*a*d)^2//3+b^2//3*(c+d*x)^2//3+b^1//3*(c+d*x)^1//3*(b*c+-1*a*d)^1//3))^(1/2)*(-1*b^1//3*(c+d*x)^1//3*((b*c+-1*a*d)^1//3+-1*b^1//3*(c+d*x)^1//3*(1+3^(1/2)))^-2*((b*c+-1*a*d)^1//3+-1*b^1//3*(c+d*x)^1//3))^-1//2*(a+b*x)^-1//2*(c+d*x)^1//6*(b*c+-1*a*d)^8//3*((b*c+-1*a*d)^1//3+-1*b^1//3*(c+d*x)^1//3)*Elliptic.F(arccos(((b*c+-1*a*d)^1//3+-1*b^1//3*(c+d*x)^1//3*(1+3^(1/2)))^-1*((b*c+-1*a*d)^1//3+-1*b^1//3*(c+d*x)^1//3*(1+-1*3^(1/2)))),1/2+1//4*3^(1/2))) @test integrate((a+b*x)^3//2*(c+d*x)^-5//6, x) == :(3//5*d^-1*(a+b*x)^3//2*(c+d*x)^1//6+-1//20*d^-2*(a+b*x)^(1/2)*(c+d*x)^1//6*(-27*a*d+27*b*c)+27//40*3^3//4*d^-3*(((b*c+-1*a*d)^1//3+-1*b^1//3*(c+d*x)^1//3*(1+3^(1/2)))^-2*((b*c+-1*a*d)^2//3+b^2//3*(c+d*x)^2//3+b^1//3*(c+d*x)^1//3*(b*c+-1*a*d)^1//3))^(1/2)*(-1*b^1//3*(c+d*x)^1//3*((b*c+-1*a*d)^1//3+-1*b^1//3*(c+d*x)^1//3*(1+3^(1/2)))^-2*((b*c+-1*a*d)^1//3+-1*b^1//3*(c+d*x)^1//3))^-1//2*(a+b*x)^-1//2*(c+d*x)^1//6*(b*c+-1*a*d)^5//3*((b*c+-1*a*d)^1//3+-1*b^1//3*(c+d*x)^1//3)*Elliptic.F(arccos(((b*c+-1*a*d)^1//3+-1*b^1//3*(c+d*x)^1//3*(1+3^(1/2)))^-1*((b*c+-1*a*d)^1//3+-1*b^1//3*(c+d*x)^1//3*(1+-1*3^(1/2)))),1/2+1//4*3^(1/2))) @test integrate((a+b*x)^(1/2)*(c+d*x)^-5//6, x) == :(3//2*d^-1*(a+b*x)^(1/2)*(c+d*x)^1//6+-3//4*3^3//4*d^-2*(((b*c+-1*a*d)^1//3+-1*b^1//3*(c+d*x)^1//3*(1+3^(1/2)))^-2*((b*c+-1*a*d)^2//3+b^2//3*(c+d*x)^2//3+b^1//3*(c+d*x)^1//3*(b*c+-1*a*d)^1//3))^(1/2)*(-1*b^1//3*(c+d*x)^1//3*((b*c+-1*a*d)^1//3+-1*b^1//3*(c+d*x)^1//3*(1+3^(1/2)))^-2*((b*c+-1*a*d)^1//3+-1*b^1//3*(c+d*x)^1//3))^-1//2*(a+b*x)^-1//2*(c+d*x)^1//6*(b*c+-1*a*d)^2//3*((b*c+-1*a*d)^1//3+-1*b^1//3*(c+d*x)^1//3)*Elliptic.F(arccos(((b*c+-1*a*d)^1//3+-1*b^1//3*(c+d*x)^1//3*(1+3^(1/2)))^-1*((b*c+-1*a*d)^1//3+-1*b^1//3*(c+d*x)^1//3*(1+-1*3^(1/2)))),1/2+1//4*3^(1/2))) @test integrate((a+b*x)^-1//2*(c+d*x)^-5//6, x) == :(3^3//4*d^-1*(((b*c+-1*a*d)^1//3+-1*b^1//3*(c+d*x)^1//3*(1+3^(1/2)))^-2*((b*c+-1*a*d)^2//3+b^2//3*(c+d*x)^2//3+b^1//3*(c+d*x)^1//3*(b*c+-1*a*d)^1//3))^(1/2)*(-1*b^1//3*(c+d*x)^1//3*((b*c+-1*a*d)^1//3+-1*b^1//3*(c+d*x)^1//3*(1+3^(1/2)))^-2*((b*c+-1*a*d)^1//3+-1*b^1//3*(c+d*x)^1//3))^-1//2*(a+b*x)^-1//2*(c+d*x)^1//6*(b*c+-1*a*d)^-1//3*((b*c+-1*a*d)^1//3+-1*b^1//3*(c+d*x)^1//3)*Elliptic.F(arccos(((b*c+-1*a*d)^1//3+-1*b^1//3*(c+d*x)^1//3*(1+3^(1/2)))^-1*((b*c+-1*a*d)^1//3+-1*b^1//3*(c+d*x)^1//3*(1+-1*3^(1/2)))),1/2+1//4*3^(1/2))) @test integrate((a+b*x)^-3//2*(c+d*x)^-5//6, x) == :(-2*(a+b*x)^-1//2*(c+d*x)^1//6*(b*c+-1*a*d)^-1+-2//3*3^3//4*(((b*c+-1*a*d)^1//3+-1*b^1//3*(c+d*x)^1//3*(1+3^(1/2)))^-2*((b*c+-1*a*d)^2//3+b^2//3*(c+d*x)^2//3+b^1//3*(c+d*x)^1//3*(b*c+-1*a*d)^1//3))^(1/2)*(-1*b^1//3*(c+d*x)^1//3*((b*c+-1*a*d)^1//3+-1*b^1//3*(c+d*x)^1//3*(1+3^(1/2)))^-2*((b*c+-1*a*d)^1//3+-1*b^1//3*(c+d*x)^1//3))^-1//2*(a+b*x)^-1//2*(c+d*x)^1//6*(b*c+-1*a*d)^-4//3*((b*c+-1*a*d)^1//3+-1*b^1//3*(c+d*x)^1//3)*Elliptic.F(arccos(((b*c+-1*a*d)^1//3+-1*b^1//3*(c+d*x)^1//3*(1+3^(1/2)))^-1*((b*c+-1*a*d)^1//3+-1*b^1//3*(c+d*x)^1//3*(1+-1*3^(1/2)))),1/2+1//4*3^(1/2))) @test integrate((a+b*x)^-5//2*(c+d*x)^-5//6, x) == :(-2*(a+b*x)^-3//2*(c+d*x)^1//6*(-3*a*d+3*b*c)^-1+16//9*d*(a+b*x)^-1//2*(c+d*x)^1//6*(b*c+-1*a*d)^-2+16//27*d*3^3//4*(((b*c+-1*a*d)^1//3+-1*b^1//3*(c+d*x)^1//3*(1+3^(1/2)))^-2*((b*c+-1*a*d)^2//3+b^2//3*(c+d*x)^2//3+b^1//3*(c+d*x)^1//3*(b*c+-1*a*d)^1//3))^(1/2)*(-1*b^1//3*(c+d*x)^1//3*((b*c+-1*a*d)^1//3+-1*b^1//3*(c+d*x)^1//3*(1+3^(1/2)))^-2*((b*c+-1*a*d)^1//3+-1*b^1//3*(c+d*x)^1//3))^-1//2*(a+b*x)^-1//2*(c+d*x)^1//6*(b*c+-1*a*d)^-7//3*((b*c+-1*a*d)^1//3+-1*b^1//3*(c+d*x)^1//3)*Elliptic.F(arccos(((b*c+-1*a*d)^1//3+-1*b^1//3*(c+d*x)^1//3*(1+3^(1/2)))^-1*((b*c+-1*a*d)^1//3+-1*b^1//3*(c+d*x)^1//3*(1+-1*3^(1/2)))),1/2+1//4*3^(1/2))) @test integrate((a+b*x)^5//2*(c+d*x)^-7//6, x) == :(-6*d^-1*(a+b*x)^5//2*(c+d*x)^-1//6+45//7*b*d^-2*(a+b*x)^3//2*(c+d*x)^5//6+-405//56*b*d^-3*(a+b*x)^(1/2)*(c+d*x)^5//6*(b*c+-1*a*d)+-1//112*b^1//3*d^-3*(a+b*x)^(1/2)*(c+d*x)^1//6*((b*c+-1*a*d)^1//3+-1*b^1//3*(c+d*x)^1//3*(1+3^(1/2)))^-1*(b*c+-1*a*d)^2*(1215+1215*3^(1/2))+-1215//112*3^1//4*b^1//3*d^-4*(((b*c+-1*a*d)^1//3+-1*b^1//3*(c+d*x)^1//3*(1+3^(1/2)))^-2*((b*c+-1*a*d)^2//3+b^2//3*(c+d*x)^2//3+b^1//3*(c+d*x)^1//3*(b*c+-1*a*d)^1//3))^(1/2)*(-1*b^1//3*(c+d*x)^1//3*((b*c+-1*a*d)^1//3+-1*b^1//3*(c+d*x)^1//3*(1+3^(1/2)))^-2*((b*c+-1*a*d)^1//3+-1*b^1//3*(c+d*x)^1//3))^-1//2*(a+b*x)^-1//2*(c+d*x)^1//6*(b*c+-1*a*d)^7//3*((b*c+-1*a*d)^1//3+-1*b^1//3*(c+d*x)^1//3)*Elliptic.E(arccos(((b*c+-1*a*d)^1//3+-1*b^1//3*(c+d*x)^1//3*(1+3^(1/2)))^-1*((b*c+-1*a*d)^1//3+-1*b^1//3*(c+d*x)^1//3*(1+-1*3^(1/2)))),1/2+1//4*3^(1/2))+-405//224*3^3//4*b^1//3*d^-4*(((b*c+-1*a*d)^1//3+-1*b^1//3*(c+d*x)^1//3*(1+3^(1/2)))^-2*((b*c+-1*a*d)^2//3+b^2//3*(c+d*x)^2//3+b^1//3*(c+d*x)^1//3*(b*c+-1*a*d)^1//3))^(1/2)*(-1*b^1//3*(c+d*x)^1//3*((b*c+-1*a*d)^1//3+-1*b^1//3*(c+d*x)^1//3*(1+3^(1/2)))^-2*((b*c+-1*a*d)^1//3+-1*b^1//3*(c+d*x)^1//3))^-1//2*(a+b*x)^-1//2*(c+d*x)^1//6*(b*c+-1*a*d)^7//3*(1+-1*3^(1/2))*((b*c+-1*a*d)^1//3+-1*b^1//3*(c+d*x)^1//3)*Elliptic.F(arccos(((b*c+-1*a*d)^1//3+-1*b^1//3*(c+d*x)^1//3*(1+3^(1/2)))^-1*((b*c+-1*a*d)^1//3+-1*b^1//3*(c+d*x)^1//3*(1+-1*3^(1/2)))),1/2+1//4*3^(1/2))) @test integrate((a+b*x)^3//2*(c+d*x)^-7//6, x) == :(-6*d^-1*(a+b*x)^3//2*(c+d*x)^-1//6+27//4*b*d^-2*(a+b*x)^(1/2)*(c+d*x)^5//6+1//8*b^1//3*d^-2*(a+b*x)^(1/2)*(c+d*x)^1//6*((b*c+-1*a*d)^1//3+-1*b^1//3*(c+d*x)^1//3*(1+3^(1/2)))^-1*(81+81*3^(1/2))*(b*c+-1*a*d)+81//8*3^1//4*b^1//3*d^-3*(((b*c+-1*a*d)^1//3+-1*b^1//3*(c+d*x)^1//3*(1+3^(1/2)))^-2*((b*c+-1*a*d)^2//3+b^2//3*(c+d*x)^2//3+b^1//3*(c+d*x)^1//3*(b*c+-1*a*d)^1//3))^(1/2)*(-1*b^1//3*(c+d*x)^1//3*((b*c+-1*a*d)^1//3+-1*b^1//3*(c+d*x)^1//3*(1+3^(1/2)))^-2*((b*c+-1*a*d)^1//3+-1*b^1//3*(c+d*x)^1//3))^-1//2*(a+b*x)^-1//2*(c+d*x)^1//6*(b*c+-1*a*d)^4//3*((b*c+-1*a*d)^1//3+-1*b^1//3*(c+d*x)^1//3)*Elliptic.E(arccos(((b*c+-1*a*d)^1//3+-1*b^1//3*(c+d*x)^1//3*(1+3^(1/2)))^-1*((b*c+-1*a*d)^1//3+-1*b^1//3*(c+d*x)^1//3*(1+-1*3^(1/2)))),1/2+1//4*3^(1/2))+27//16*3^3//4*b^1//3*d^-3*(((b*c+-1*a*d)^1//3+-1*b^1//3*(c+d*x)^1//3*(1+3^(1/2)))^-2*((b*c+-1*a*d)^2//3+b^2//3*(c+d*x)^2//3+b^1//3*(c+d*x)^1//3*(b*c+-1*a*d)^1//3))^(1/2)*(-1*b^1//3*(c+d*x)^1//3*((b*c+-1*a*d)^1//3+-1*b^1//3*(c+d*x)^1//3*(1+3^(1/2)))^-2*((b*c+-1*a*d)^1//3+-1*b^1//3*(c+d*x)^1//3))^-1//2*(a+b*x)^-1//2*(c+d*x)^1//6*(b*c+-1*a*d)^4//3*(1+-1*3^(1/2))*((b*c+-1*a*d)^1//3+-1*b^1//3*(c+d*x)^1//3)*Elliptic.F(arccos(((b*c+-1*a*d)^1//3+-1*b^1//3*(c+d*x)^1//3*(1+3^(1/2)))^-1*((b*c+-1*a*d)^1//3+-1*b^1//3*(c+d*x)^1//3*(1+-1*3^(1/2)))),1/2+1//4*3^(1/2))) @test integrate((a+b*x)^(1/2)*(c+d*x)^-7//6, x) == :(-6*d^-1*(a+b*x)^(1/2)*(c+d*x)^-1//6+-1*b^1//3*d^-1*(a+b*x)^(1/2)*(c+d*x)^1//6*((b*c+-1*a*d)^1//3+-1*b^1//3*(c+d*x)^1//3*(1+3^(1/2)))^-1*(9+9*3^(1/2))+-9*3^1//4*b^1//3*d^-2*(((b*c+-1*a*d)^1//3+-1*b^1//3*(c+d*x)^1//3*(1+3^(1/2)))^-2*((b*c+-1*a*d)^2//3+b^2//3*(c+d*x)^2//3+b^1//3*(c+d*x)^1//3*(b*c+-1*a*d)^1//3))^(1/2)*(-1*b^1//3*(c+d*x)^1//3*((b*c+-1*a*d)^1//3+-1*b^1//3*(c+d*x)^1//3*(1+3^(1/2)))^-2*((b*c+-1*a*d)^1//3+-1*b^1//3*(c+d*x)^1//3))^-1//2*(a+b*x)^-1//2*(c+d*x)^1//6*(b*c+-1*a*d)^1//3*((b*c+-1*a*d)^1//3+-1*b^1//3*(c+d*x)^1//3)*Elliptic.E(arccos(((b*c+-1*a*d)^1//3+-1*b^1//3*(c+d*x)^1//3*(1+3^(1/2)))^-1*((b*c+-1*a*d)^1//3+-1*b^1//3*(c+d*x)^1//3*(1+-1*3^(1/2)))),1/2+1//4*3^(1/2))+-3//2*3^3//4*b^1//3*d^-2*(((b*c+-1*a*d)^1//3+-1*b^1//3*(c+d*x)^1//3*(1+3^(1/2)))^-2*((b*c+-1*a*d)^2//3+b^2//3*(c+d*x)^2//3+b^1//3*(c+d*x)^1//3*(b*c+-1*a*d)^1//3))^(1/2)*(-1*b^1//3*(c+d*x)^1//3*((b*c+-1*a*d)^1//3+-1*b^1//3*(c+d*x)^1//3*(1+3^(1/2)))^-2*((b*c+-1*a*d)^1//3+-1*b^1//3*(c+d*x)^1//3))^-1//2*(a+b*x)^-1//2*(c+d*x)^1//6*(b*c+-1*a*d)^1//3*(1+-1*3^(1/2))*((b*c+-1*a*d)^1//3+-1*b^1//3*(c+d*x)^1//3)*Elliptic.F(arccos(((b*c+-1*a*d)^1//3+-1*b^1//3*(c+d*x)^1//3*(1+3^(1/2)))^-1*((b*c+-1*a*d)^1//3+-1*b^1//3*(c+d*x)^1//3*(1+-1*3^(1/2)))),1/2+1//4*3^(1/2))) @test integrate((a+b*x)^-1//2*(c+d*x)^-7//6, x) == :(6*(a+b*x)^(1/2)*(c+d*x)^-1//6*(b*c+-1*a*d)^-1+b^1//3*(a+b*x)^(1/2)*(c+d*x)^1//6*((b*c+-1*a*d)^1//3+-1*b^1//3*(c+d*x)^1//3*(1+3^(1/2)))^-1*(b*c+-1*a*d)^-1*(6+6*3^(1/2))+6*3^1//4*b^1//3*d^-1*(((b*c+-1*a*d)^1//3+-1*b^1//3*(c+d*x)^1//3*(1+3^(1/2)))^-2*((b*c+-1*a*d)^2//3+b^2//3*(c+d*x)^2//3+b^1//3*(c+d*x)^1//3*(b*c+-1*a*d)^1//3))^(1/2)*(-1*b^1//3*(c+d*x)^1//3*((b*c+-1*a*d)^1//3+-1*b^1//3*(c+d*x)^1//3*(1+3^(1/2)))^-2*((b*c+-1*a*d)^1//3+-1*b^1//3*(c+d*x)^1//3))^-1//2*(a+b*x)^-1//2*(c+d*x)^1//6*(b*c+-1*a*d)^-2//3*((b*c+-1*a*d)^1//3+-1*b^1//3*(c+d*x)^1//3)*Elliptic.E(arccos(((b*c+-1*a*d)^1//3+-1*b^1//3*(c+d*x)^1//3*(1+3^(1/2)))^-1*((b*c+-1*a*d)^1//3+-1*b^1//3*(c+d*x)^1//3*(1+-1*3^(1/2)))),1/2+1//4*3^(1/2))+3^3//4*b^1//3*d^-1*(((b*c+-1*a*d)^1//3+-1*b^1//3*(c+d*x)^1//3*(1+3^(1/2)))^-2*((b*c+-1*a*d)^2//3+b^2//3*(c+d*x)^2//3+b^1//3*(c+d*x)^1//3*(b*c+-1*a*d)^1//3))^(1/2)*(-1*b^1//3*(c+d*x)^1//3*((b*c+-1*a*d)^1//3+-1*b^1//3*(c+d*x)^1//3*(1+3^(1/2)))^-2*((b*c+-1*a*d)^1//3+-1*b^1//3*(c+d*x)^1//3))^-1//2*(a+b*x)^-1//2*(c+d*x)^1//6*(b*c+-1*a*d)^-2//3*(1+-1*3^(1/2))*((b*c+-1*a*d)^1//3+-1*b^1//3*(c+d*x)^1//3)*Elliptic.F(arccos(((b*c+-1*a*d)^1//3+-1*b^1//3*(c+d*x)^1//3*(1+3^(1/2)))^-1*((b*c+-1*a*d)^1//3+-1*b^1//3*(c+d*x)^1//3*(1+-1*3^(1/2)))),1/2+1//4*3^(1/2))) @test integrate((a+b*x)^-3//2*(c+d*x)^-7//6, x) == :(-2*(a+b*x)^-1//2*(c+d*x)^-1//6*(b*c+-1*a*d)^-1+-8*d*(a+b*x)^(1/2)*(c+d*x)^-1//6*(b*c+-1*a*d)^-2+-1*d*b^1//3*(a+b*x)^(1/2)*(c+d*x)^1//6*((b*c+-1*a*d)^1//3+-1*b^1//3*(c+d*x)^1//3*(1+3^(1/2)))^-1*(b*c+-1*a*d)^-2*(8+8*3^(1/2))+-8*3^1//4*b^1//3*(((b*c+-1*a*d)^1//3+-1*b^1//3*(c+d*x)^1//3*(1+3^(1/2)))^-2*((b*c+-1*a*d)^2//3+b^2//3*(c+d*x)^2//3+b^1//3*(c+d*x)^1//3*(b*c+-1*a*d)^1//3))^(1/2)*(-1*b^1//3*(c+d*x)^1//3*((b*c+-1*a*d)^1//3+-1*b^1//3*(c+d*x)^1//3*(1+3^(1/2)))^-2*((b*c+-1*a*d)^1//3+-1*b^1//3*(c+d*x)^1//3))^-1//2*(a+b*x)^-1//2*(c+d*x)^1//6*(b*c+-1*a*d)^-5//3*((b*c+-1*a*d)^1//3+-1*b^1//3*(c+d*x)^1//3)*Elliptic.E(arccos(((b*c+-1*a*d)^1//3+-1*b^1//3*(c+d*x)^1//3*(1+3^(1/2)))^-1*((b*c+-1*a*d)^1//3+-1*b^1//3*(c+d*x)^1//3*(1+-1*3^(1/2)))),1/2+1//4*3^(1/2))+-1//3*3^3//4*b^1//3*(((b*c+-1*a*d)^1//3+-1*b^1//3*(c+d*x)^1//3*(1+3^(1/2)))^-2*((b*c+-1*a*d)^2//3+b^2//3*(c+d*x)^2//3+b^1//3*(c+d*x)^1//3*(b*c+-1*a*d)^1//3))^(1/2)*(-1*b^1//3*(c+d*x)^1//3*((b*c+-1*a*d)^1//3+-1*b^1//3*(c+d*x)^1//3*(1+3^(1/2)))^-2*((b*c+-1*a*d)^1//3+-1*b^1//3*(c+d*x)^1//3))^-1//2*(a+b*x)^-1//2*(c+d*x)^1//6*(b*c+-1*a*d)^-5//3*(4+-4*3^(1/2))*((b*c+-1*a*d)^1//3+-1*b^1//3*(c+d*x)^1//3)*Elliptic.F(arccos(((b*c+-1*a*d)^1//3+-1*b^1//3*(c+d*x)^1//3*(1+3^(1/2)))^-1*((b*c+-1*a*d)^1//3+-1*b^1//3*(c+d*x)^1//3*(1+-1*3^(1/2)))),1/2+1//4*3^(1/2))) @test integrate((a+b*x)^-5//2*(c+d*x)^-7//6, x) == :(-2*(a+b*x)^-3//2*(c+d*x)^-1//6*(-3*a*d+3*b*c)^-1+20//9*d*(a+b*x)^-1//2*(c+d*x)^-1//6*(b*c+-1*a*d)^-2+80//9*d^2*(a+b*x)^(1/2)*(c+d*x)^-1//6*(b*c+-1*a*d)^-3+1//9*b^1//3*d^2*(a+b*x)^(1/2)*(c+d*x)^1//6*((b*c+-1*a*d)^1//3+-1*b^1//3*(c+d*x)^1//3*(1+3^(1/2)))^-1*(b*c+-1*a*d)^-3*(80+80*3^(1/2))+80//9*d*3^1//4*b^1//3*(((b*c+-1*a*d)^1//3+-1*b^1//3*(c+d*x)^1//3*(1+3^(1/2)))^-2*((b*c+-1*a*d)^2//3+b^2//3*(c+d*x)^2//3+b^1//3*(c+d*x)^1//3*(b*c+-1*a*d)^1//3))^(1/2)*(-1*b^1//3*(c+d*x)^1//3*((b*c+-1*a*d)^1//3+-1*b^1//3*(c+d*x)^1//3*(1+3^(1/2)))^-2*((b*c+-1*a*d)^1//3+-1*b^1//3*(c+d*x)^1//3))^-1//2*(a+b*x)^-1//2*(c+d*x)^1//6*(b*c+-1*a*d)^-8//3*((b*c+-1*a*d)^1//3+-1*b^1//3*(c+d*x)^1//3)*Elliptic.E(arccos(((b*c+-1*a*d)^1//3+-1*b^1//3*(c+d*x)^1//3*(1+3^(1/2)))^-1*((b*c+-1*a*d)^1//3+-1*b^1//3*(c+d*x)^1//3*(1+-1*3^(1/2)))),1/2+1//4*3^(1/2))+1//27*d*3^3//4*b^1//3*(((b*c+-1*a*d)^1//3+-1*b^1//3*(c+d*x)^1//3*(1+3^(1/2)))^-2*((b*c+-1*a*d)^2//3+b^2//3*(c+d*x)^2//3+b^1//3*(c+d*x)^1//3*(b*c+-1*a*d)^1//3))^(1/2)*(-1*b^1//3*(c+d*x)^1//3*((b*c+-1*a*d)^1//3+-1*b^1//3*(c+d*x)^1//3*(1+3^(1/2)))^-2*((b*c+-1*a*d)^1//3+-1*b^1//3*(c+d*x)^1//3))^-1//2*(a+b*x)^-1//2*(c+d*x)^1//6*(b*c+-1*a*d)^-8//3*(40+-40*3^(1/2))*((b*c+-1*a*d)^1//3+-1*b^1//3*(c+d*x)^1//3)*Elliptic.F(arccos(((b*c+-1*a*d)^1//3+-1*b^1//3*(c+d*x)^1//3*(1+3^(1/2)))^-1*((b*c+-1*a*d)^1//3+-1*b^1//3*(c+d*x)^1//3*(1+-1*3^(1/2)))),1/2+1//4*3^(1/2))) @test integrate((a+b*x)^1//6*(c+d*x)^5//6, x) == :((1/2)*b^-1*(a+b*x)^7//6*(c+d*x)^5//6+-5//36*b^-11//6*d^-7//6*(b*c+-1*a*d)^2*arctanh(b^-1//6*d^1//6*(a+b*x)^1//6*(c+d*x)^-1//6)+-5//144*b^-11//6*d^-7//6*(b*c+-1*a*d)^2*log(b^1//3+d^1//3*(a+b*x)^1//3*(c+d*x)^-1//3+b^1//6*d^1//6*(a+b*x)^1//6*(c+d*x)^-1//6)+5//144*b^-11//6*d^-7//6*(b*c+-1*a*d)^2*log(b^1//3+d^1//3*(a+b*x)^1//3*(c+d*x)^-1//3+-1*b^1//6*d^1//6*(a+b*x)^1//6*(c+d*x)^-1//6)+-5//72*3^(1/2)*b^-11//6*d^-7//6*(b*c+-1*a*d)^2*arctan(1//3*3^(1/2)+2//3*3^(1/2)*b^-1//6*d^1//6*(a+b*x)^1//6*(c+d*x)^-1//6)+1//12*b^-1*d^-1*(a+b*x)^1//6*(c+d*x)^5//6*(-5*a*d+5*b*c)+5//72*3^(1/2)*b^-11//6*d^-7//6*(b*c+-1*a*d)^2*arctan(1//3*3^(1/2)+-2//3*3^(1/2)*b^-1//6*d^1//6*(a+b*x)^1//6*(c+d*x)^-1//6)) @test integrate((a+b*x)^1//6*(c+d*x)^-1//6, x) == :(d^-1*(a+b*x)^1//6*(c+d*x)^5//6+-1//3*b^-5//6*d^-7//6*(b*c+-1*a*d)*arctanh(b^-1//6*d^1//6*(a+b*x)^1//6*(c+d*x)^-1//6)+-1//12*b^-5//6*d^-7//6*(b*c+-1*a*d)*log(b^1//3+d^1//3*(a+b*x)^1//3*(c+d*x)^-1//3+b^1//6*d^1//6*(a+b*x)^1//6*(c+d*x)^-1//6)+1//12*b^-5//6*d^-7//6*(b*c+-1*a*d)*log(b^1//3+d^1//3*(a+b*x)^1//3*(c+d*x)^-1//3+-1*b^1//6*d^1//6*(a+b*x)^1//6*(c+d*x)^-1//6)+-1//6*3^(1/2)*b^-5//6*d^-7//6*(b*c+-1*a*d)*arctan(1//3*3^(1/2)+2//3*3^(1/2)*b^-1//6*d^1//6*(a+b*x)^1//6*(c+d*x)^-1//6)+1//6*3^(1/2)*b^-5//6*d^-7//6*(b*c+-1*a*d)*arctan(1//3*3^(1/2)+-2//3*3^(1/2)*b^-1//6*d^1//6*(a+b*x)^1//6*(c+d*x)^-1//6)) @test integrate((a+b*x)^1//6*(c+d*x)^-7//6, x) == :((1/2)*b^1//6*d^-7//6*log(b^1//3+d^1//3*(a+b*x)^1//3*(c+d*x)^-1//3+b^1//6*d^1//6*(a+b*x)^1//6*(c+d*x)^-1//6)+-6*d^-1*(a+b*x)^1//6*(c+d*x)^-1//6+2*b^1//6*d^-7//6*arctanh(b^-1//6*d^1//6*(a+b*x)^1//6*(c+d*x)^-1//6)+-1//2*b^1//6*d^-7//6*log(b^1//3+d^1//3*(a+b*x)^1//3*(c+d*x)^-1//3+-1*b^1//6*d^1//6*(a+b*x)^1//6*(c+d*x)^-1//6)+3^(1/2)*b^1//6*d^-7//6*arctan(1//3*3^(1/2)+2//3*3^(1/2)*b^-1//6*d^1//6*(a+b*x)^1//6*(c+d*x)^-1//6)+-1*3^(1/2)*b^1//6*d^-7//6*arctan(1//3*3^(1/2)+-2//3*3^(1/2)*b^-1//6*d^1//6*(a+b*x)^1//6*(c+d*x)^-1//6)) @test integrate((a+b*x)^1//6*(c+d*x)^-13//6, x) == :(6*(a+b*x)^7//6*(c+d*x)^-7//6*(-7*a*d+7*b*c)^-1) @test integrate((a+b*x)^1//6*(c+d*x)^-19//6, x) == :(6*(a+b*x)^7//6*(c+d*x)^-13//6*(-13*a*d+13*b*c)^-1+36//91*b*(a+b*x)^7//6*(c+d*x)^-7//6*(b*c+-1*a*d)^-2) @test integrate((a+b*x)^1//6*(c+d*x)^-25//6, x) == :(6*(a+b*x)^7//6*(c+d*x)^-19//6*(-19*a*d+19*b*c)^-1+72//247*b*(a+b*x)^7//6*(c+d*x)^-13//6*(b*c+-1*a*d)^-2+432//1729*b^2*(a+b*x)^7//6*(c+d*x)^-7//6*(b*c+-1*a*d)^-3) @test integrate((a+b*x)^1//6*(c+d*x)^-31//6, x) == :(6*(a+b*x)^7//6*(c+d*x)^-25//6*(-25*a*d+25*b*c)^-1+108//475*b*(a+b*x)^7//6*(c+d*x)^-19//6*(b*c+-1*a*d)^-2+1296//6175*b^2*(a+b*x)^7//6*(c+d*x)^-13//6*(b*c+-1*a*d)^-3+7776//43225*b^3*(a+b*x)^7//6*(c+d*x)^-7//6*(b*c+-1*a*d)^-4) @test integrate((a+b*x)^5//6*(c+d*x)^1//6, x) == :((1/2)*b^-1*(a+b*x)^11//6*(c+d*x)^1//6+-5//36*b^-7//6*d^-11//6*(b*c+-1*a*d)^2*arctanh(b^-1//6*d^1//6*(a+b*x)^1//6*(c+d*x)^-1//6)+-5//144*b^-7//6*d^-11//6*(b*c+-1*a*d)^2*log(b^1//3+d^1//3*(a+b*x)^1//3*(c+d*x)^-1//3+b^1//6*d^1//6*(a+b*x)^1//6*(c+d*x)^-1//6)+5//144*b^-7//6*d^-11//6*(b*c+-1*a*d)^2*log(b^1//3+d^1//3*(a+b*x)^1//3*(c+d*x)^-1//3+-1*b^1//6*d^1//6*(a+b*x)^1//6*(c+d*x)^-1//6)+-5//72*3^(1/2)*b^-7//6*d^-11//6*(b*c+-1*a*d)^2*arctan(1//3*3^(1/2)+-2//3*3^(1/2)*b^-1//6*d^1//6*(a+b*x)^1//6*(c+d*x)^-1//6)+1//12*b^-1*d^-1*(a+b*x)^5//6*(c+d*x)^1//6*(b*c+-1*a*d)+5//72*3^(1/2)*b^-7//6*d^-11//6*(b*c+-1*a*d)^2*arctan(1//3*3^(1/2)+2//3*3^(1/2)*b^-1//6*d^1//6*(a+b*x)^1//6*(c+d*x)^-1//6)) @test integrate((a+b*x)^5//6*(c+d*x)^-5//6, x) == :(d^-1*(a+b*x)^5//6*(c+d*x)^1//6+-1//3*b^-1//6*d^-11//6*(-5*a*d+5*b*c)*arctanh(b^-1//6*d^1//6*(a+b*x)^1//6*(c+d*x)^-1//6)+-1//12*b^-1//6*d^-11//6*(-5*a*d+5*b*c)*log(b^1//3+d^1//3*(a+b*x)^1//3*(c+d*x)^-1//3+b^1//6*d^1//6*(a+b*x)^1//6*(c+d*x)^-1//6)+1//12*b^-1//6*d^-11//6*(-5*a*d+5*b*c)*log(b^1//3+d^1//3*(a+b*x)^1//3*(c+d*x)^-1//3+-1*b^1//6*d^1//6*(a+b*x)^1//6*(c+d*x)^-1//6)+-1//6*3^(1/2)*b^-1//6*d^-11//6*(-5*a*d+5*b*c)*arctan(1//3*3^(1/2)+-2//3*3^(1/2)*b^-1//6*d^1//6*(a+b*x)^1//6*(c+d*x)^-1//6)+1//6*3^(1/2)*b^-1//6*d^-11//6*(-5*a*d+5*b*c)*arctan(1//3*3^(1/2)+2//3*3^(1/2)*b^-1//6*d^1//6*(a+b*x)^1//6*(c+d*x)^-1//6)) @test integrate((a+b*x)^5//6*(c+d*x)^-11//6, x) == :((1/2)*b^5//6*d^-11//6*log(b^1//3+d^1//3*(a+b*x)^1//3*(c+d*x)^-1//3+b^1//6*d^1//6*(a+b*x)^1//6*(c+d*x)^-1//6)+2*b^5//6*d^-11//6*arctanh(b^-1//6*d^1//6*(a+b*x)^1//6*(c+d*x)^-1//6)+-6//5*d^-1*(a+b*x)^5//6*(c+d*x)^-5//6+-1//2*b^5//6*d^-11//6*log(b^1//3+d^1//3*(a+b*x)^1//3*(c+d*x)^-1//3+-1*b^1//6*d^1//6*(a+b*x)^1//6*(c+d*x)^-1//6)+3^(1/2)*b^5//6*d^-11//6*arctan(1//3*3^(1/2)+-2//3*3^(1/2)*b^-1//6*d^1//6*(a+b*x)^1//6*(c+d*x)^-1//6)+-1*3^(1/2)*b^5//6*d^-11//6*arctan(1//3*3^(1/2)+2//3*3^(1/2)*b^-1//6*d^1//6*(a+b*x)^1//6*(c+d*x)^-1//6)) @test integrate((a+b*x)^5//6*(c+d*x)^-17//6, x) == :(6*(a+b*x)^11//6*(c+d*x)^-11//6*(-11*a*d+11*b*c)^-1) @test integrate((a+b*x)^5//6*(c+d*x)^-23//6, x) == :(6*(a+b*x)^11//6*(c+d*x)^-17//6*(-17*a*d+17*b*c)^-1+36//187*b*(a+b*x)^11//6*(c+d*x)^-11//6*(b*c+-1*a*d)^-2) @test integrate((a+b*x)^5//6*(c+d*x)^-29//6, x) == :(6*(a+b*x)^11//6*(c+d*x)^-23//6*(-23*a*d+23*b*c)^-1+72//391*b*(a+b*x)^11//6*(c+d*x)^-17//6*(b*c+-1*a*d)^-2+432//4301*b^2*(a+b*x)^11//6*(c+d*x)^-11//6*(b*c+-1*a*d)^-3) @test integrate((a+b*x)^5//6*(c+d*x)^-35//6, x) == :(6*(a+b*x)^11//6*(c+d*x)^-29//6*(-29*a*d+29*b*c)^-1+108//667*b*(a+b*x)^11//6*(c+d*x)^-23//6*(b*c+-1*a*d)^-2+1296//11339*b^2*(a+b*x)^11//6*(c+d*x)^-17//6*(b*c+-1*a*d)^-3+7776//124729*b^3*(a+b*x)^11//6*(c+d*x)^-11//6*(b*c+-1*a*d)^-4) @test integrate((a+b*x)^7//6*(c+d*x)^-1//6, x) == :((1/2)*d^-1*(a+b*x)^7//6*(c+d*x)^5//6+-7//144*b^-5//6*d^-13//6*(b*c+-1*a*d)^2*log(b^1//3+d^1//3*(a+b*x)^1//3*(c+d*x)^-1//3+-1*b^1//6*d^1//6*(a+b*x)^1//6*(c+d*x)^-1//6)+-1//12*d^-2*(a+b*x)^1//6*(c+d*x)^5//6*(-7*a*d+7*b*c)+7//36*b^-5//6*d^-13//6*(b*c+-1*a*d)^2*arctanh(b^-1//6*d^1//6*(a+b*x)^1//6*(c+d*x)^-1//6)+7//144*b^-5//6*d^-13//6*(b*c+-1*a*d)^2*log(b^1//3+d^1//3*(a+b*x)^1//3*(c+d*x)^-1//3+b^1//6*d^1//6*(a+b*x)^1//6*(c+d*x)^-1//6)+-7//72*3^(1/2)*b^-5//6*d^-13//6*(b*c+-1*a*d)^2*arctan(1//3*3^(1/2)+-2//3*3^(1/2)*b^-1//6*d^1//6*(a+b*x)^1//6*(c+d*x)^-1//6)+7//72*3^(1/2)*b^-5//6*d^-13//6*(b*c+-1*a*d)^2*arctan(1//3*3^(1/2)+2//3*3^(1/2)*b^-1//6*d^1//6*(a+b*x)^1//6*(c+d*x)^-1//6)) @test integrate((a+b*x)^7//6*(c+d*x)^-7//6, x) == :(-6*d^-1*(a+b*x)^7//6*(c+d*x)^-1//6+7*b*d^-2*(a+b*x)^1//6*(c+d*x)^5//6+-7//3*b^1//6*d^-13//6*(b*c+-1*a*d)*arctanh(b^-1//6*d^1//6*(a+b*x)^1//6*(c+d*x)^-1//6)+-7//12*b^1//6*d^-13//6*(b*c+-1*a*d)*log(b^1//3+d^1//3*(a+b*x)^1//3*(c+d*x)^-1//3+b^1//6*d^1//6*(a+b*x)^1//6*(c+d*x)^-1//6)+7//12*b^1//6*d^-13//6*(b*c+-1*a*d)*log(b^1//3+d^1//3*(a+b*x)^1//3*(c+d*x)^-1//3+-1*b^1//6*d^1//6*(a+b*x)^1//6*(c+d*x)^-1//6)+-7//6*3^(1/2)*b^1//6*d^-13//6*(b*c+-1*a*d)*arctan(1//3*3^(1/2)+2//3*3^(1/2)*b^-1//6*d^1//6*(a+b*x)^1//6*(c+d*x)^-1//6)+7//6*3^(1/2)*b^1//6*d^-13//6*(b*c+-1*a*d)*arctan(1//3*3^(1/2)+-2//3*3^(1/2)*b^-1//6*d^1//6*(a+b*x)^1//6*(c+d*x)^-1//6)) @test integrate((a+b*x)^7//6*(c+d*x)^-13//6, x) == :((1/2)*b^7//6*d^-13//6*log(b^1//3+d^1//3*(a+b*x)^1//3*(c+d*x)^-1//3+b^1//6*d^1//6*(a+b*x)^1//6*(c+d*x)^-1//6)+2*b^7//6*d^-13//6*arctanh(b^-1//6*d^1//6*(a+b*x)^1//6*(c+d*x)^-1//6)+-6//7*d^-1*(a+b*x)^7//6*(c+d*x)^-7//6+-1//2*b^7//6*d^-13//6*log(b^1//3+d^1//3*(a+b*x)^1//3*(c+d*x)^-1//3+-1*b^1//6*d^1//6*(a+b*x)^1//6*(c+d*x)^-1//6)+3^(1/2)*b^7//6*d^-13//6*arctan(1//3*3^(1/2)+2//3*3^(1/2)*b^-1//6*d^1//6*(a+b*x)^1//6*(c+d*x)^-1//6)+-1*3^(1/2)*b^7//6*d^-13//6*arctan(1//3*3^(1/2)+-2//3*3^(1/2)*b^-1//6*d^1//6*(a+b*x)^1//6*(c+d*x)^-1//6)+-6*b*d^-2*(a+b*x)^1//6*(c+d*x)^-1//6) @test integrate((a+b*x)^7//6*(c+d*x)^-19//6, x) == :(6*(a+b*x)^13//6*(c+d*x)^-13//6*(-13*a*d+13*b*c)^-1) @test integrate((a+b*x)^7//6*(c+d*x)^-25//6, x) == :(6*(a+b*x)^13//6*(c+d*x)^-19//6*(-19*a*d+19*b*c)^-1+36//247*b*(a+b*x)^13//6*(c+d*x)^-13//6*(b*c+-1*a*d)^-2) @test integrate((a+b*x)^7//6*(c+d*x)^-31//6, x) == :(6*(a+b*x)^13//6*(c+d*x)^-25//6*(-25*a*d+25*b*c)^-1+72//475*b*(a+b*x)^13//6*(c+d*x)^-19//6*(b*c+-1*a*d)^-2+432//6175*b^2*(a+b*x)^13//6*(c+d*x)^-13//6*(b*c+-1*a*d)^-3) @test integrate((a+b*x)^7//6*(c+d*x)^-37//6, x) == :(6*(a+b*x)^13//6*(c+d*x)^-31//6*(-31*a*d+31*b*c)^-1+108//775*b*(a+b*x)^13//6*(c+d*x)^-25//6*(b*c+-1*a*d)^-2+1296//14725*b^2*(a+b*x)^13//6*(c+d*x)^-19//6*(b*c+-1*a*d)^-3+7776//191425*b^3*(a+b*x)^13//6*(c+d*x)^-13//6*(b*c+-1*a*d)^-4) @test integrate((a+b*x)^-1//6*(c+d*x)^7//6, x) == :((1/2)*b^-1*(a+b*x)^5//6*(c+d*x)^7//6+-7//144*b^-13//6*d^-5//6*(b*c+-1*a*d)^2*log(b^1//3+d^1//3*(a+b*x)^1//3*(c+d*x)^-1//3+-1*b^1//6*d^1//6*(a+b*x)^1//6*(c+d*x)^-1//6)+1//12*b^-2*(a+b*x)^5//6*(c+d*x)^1//6*(-7*a*d+7*b*c)+7//36*b^-13//6*d^-5//6*(b*c+-1*a*d)^2*arctanh(b^-1//6*d^1//6*(a+b*x)^1//6*(c+d*x)^-1//6)+7//144*b^-13//6*d^-5//6*(b*c+-1*a*d)^2*log(b^1//3+d^1//3*(a+b*x)^1//3*(c+d*x)^-1//3+b^1//6*d^1//6*(a+b*x)^1//6*(c+d*x)^-1//6)+-7//72*3^(1/2)*b^-13//6*d^-5//6*(b*c+-1*a*d)^2*arctan(1//3*3^(1/2)+2//3*3^(1/2)*b^-1//6*d^1//6*(a+b*x)^1//6*(c+d*x)^-1//6)+7//72*3^(1/2)*b^-13//6*d^-5//6*(b*c+-1*a*d)^2*arctan(1//3*3^(1/2)+-2//3*3^(1/2)*b^-1//6*d^1//6*(a+b*x)^1//6*(c+d*x)^-1//6)) @test integrate((a+b*x)^-1//6*(c+d*x)^1//6, x) == :(b^-1*(a+b*x)^5//6*(c+d*x)^1//6+-1//12*b^-7//6*d^-5//6*(b*c+-1*a*d)*log(b^1//3+d^1//3*(a+b*x)^1//3*(c+d*x)^-1//3+-1*b^1//6*d^1//6*(a+b*x)^1//6*(c+d*x)^-1//6)+1//3*b^-7//6*d^-5//6*(b*c+-1*a*d)*arctanh(b^-1//6*d^1//6*(a+b*x)^1//6*(c+d*x)^-1//6)+1//12*b^-7//6*d^-5//6*(b*c+-1*a*d)*log(b^1//3+d^1//3*(a+b*x)^1//3*(c+d*x)^-1//3+b^1//6*d^1//6*(a+b*x)^1//6*(c+d*x)^-1//6)+-1//6*3^(1/2)*b^-7//6*d^-5//6*(b*c+-1*a*d)*arctan(1//3*3^(1/2)+2//3*3^(1/2)*b^-1//6*d^1//6*(a+b*x)^1//6*(c+d*x)^-1//6)+1//6*3^(1/2)*b^-7//6*d^-5//6*(b*c+-1*a*d)*arctan(1//3*3^(1/2)+-2//3*3^(1/2)*b^-1//6*d^1//6*(a+b*x)^1//6*(c+d*x)^-1//6)) @test integrate((a+b*x)^-1//6*(c+d*x)^-5//6, x) == :((1/2)*b^-1//6*d^-5//6*log(b^1//3+d^1//3*(a+b*x)^1//3*(c+d*x)^-1//3+b^1//6*d^1//6*(a+b*x)^1//6*(c+d*x)^-1//6)+2*b^-1//6*d^-5//6*arctanh(b^-1//6*d^1//6*(a+b*x)^1//6*(c+d*x)^-1//6)+-1//2*b^-1//6*d^-5//6*log(b^1//3+d^1//3*(a+b*x)^1//3*(c+d*x)^-1//3+-1*b^1//6*d^1//6*(a+b*x)^1//6*(c+d*x)^-1//6)+3^(1/2)*b^-1//6*d^-5//6*arctan(1//3*3^(1/2)+-2//3*3^(1/2)*b^-1//6*d^1//6*(a+b*x)^1//6*(c+d*x)^-1//6)+-1*3^(1/2)*b^-1//6*d^-5//6*arctan(1//3*3^(1/2)+2//3*3^(1/2)*b^-1//6*d^1//6*(a+b*x)^1//6*(c+d*x)^-1//6)) @test integrate((a+b*x)^-1//6*(c+d*x)^-11//6, x) == :(6*(a+b*x)^5//6*(c+d*x)^-5//6*(-5*a*d+5*b*c)^-1) @test integrate((a+b*x)^-1//6*(c+d*x)^-17//6, x) == :(6*(a+b*x)^5//6*(c+d*x)^-11//6*(-11*a*d+11*b*c)^-1+36//55*b*(a+b*x)^5//6*(c+d*x)^-5//6*(b*c+-1*a*d)^-2) @test integrate((a+b*x)^-1//6*(c+d*x)^-23//6, x) == :(6*(a+b*x)^5//6*(c+d*x)^-17//6*(-17*a*d+17*b*c)^-1+72//187*b*(a+b*x)^5//6*(c+d*x)^-11//6*(b*c+-1*a*d)^-2+432//935*b^2*(a+b*x)^5//6*(c+d*x)^-5//6*(b*c+-1*a*d)^-3) @test integrate((a+b*x)^-1//6*(c+d*x)^-29//6, x) == :(6*(a+b*x)^5//6*(c+d*x)^-23//6*(-23*a*d+23*b*c)^-1+108//391*b*(a+b*x)^5//6*(c+d*x)^-17//6*(b*c+-1*a*d)^-2+1296//4301*b^2*(a+b*x)^5//6*(c+d*x)^-11//6*(b*c+-1*a*d)^-3+7776//21505*b^3*(a+b*x)^5//6*(c+d*x)^-5//6*(b*c+-1*a*d)^-4) @test integrate((a+b*x)^-5//6*(c+d*x)^11//6, x) == :((1/2)*b^-1*(a+b*x)^1//6*(c+d*x)^11//6+-55//144*b^-17//6*d^-1//6*(b*c+-1*a*d)^2*log(b^1//3+d^1//3*(a+b*x)^1//3*(c+d*x)^-1//3+-1*b^1//6*d^1//6*(a+b*x)^1//6*(c+d*x)^-1//6)+1//12*b^-2*(a+b*x)^1//6*(c+d*x)^5//6*(-11*a*d+11*b*c)+55//36*b^-17//6*d^-1//6*(b*c+-1*a*d)^2*arctanh(b^-1//6*d^1//6*(a+b*x)^1//6*(c+d*x)^-1//6)+55//144*b^-17//6*d^-1//6*(b*c+-1*a*d)^2*log(b^1//3+d^1//3*(a+b*x)^1//3*(c+d*x)^-1//3+b^1//6*d^1//6*(a+b*x)^1//6*(c+d*x)^-1//6)+-55//72*3^(1/2)*b^-17//6*d^-1//6*(b*c+-1*a*d)^2*arctan(1//3*3^(1/2)+-2//3*3^(1/2)*b^-1//6*d^1//6*(a+b*x)^1//6*(c+d*x)^-1//6)+55//72*3^(1/2)*b^-17//6*d^-1//6*(b*c+-1*a*d)^2*arctan(1//3*3^(1/2)+2//3*3^(1/2)*b^-1//6*d^1//6*(a+b*x)^1//6*(c+d*x)^-1//6)) @test integrate((a+b*x)^-5//6*(c+d*x)^5//6, x) == :(b^-1*(a+b*x)^1//6*(c+d*x)^5//6+-1//12*b^-11//6*d^-1//6*(-5*a*d+5*b*c)*log(b^1//3+d^1//3*(a+b*x)^1//3*(c+d*x)^-1//3+-1*b^1//6*d^1//6*(a+b*x)^1//6*(c+d*x)^-1//6)+1//3*b^-11//6*d^-1//6*(-5*a*d+5*b*c)*arctanh(b^-1//6*d^1//6*(a+b*x)^1//6*(c+d*x)^-1//6)+1//12*b^-11//6*d^-1//6*(-5*a*d+5*b*c)*log(b^1//3+d^1//3*(a+b*x)^1//3*(c+d*x)^-1//3+b^1//6*d^1//6*(a+b*x)^1//6*(c+d*x)^-1//6)+-1//6*3^(1/2)*b^-11//6*d^-1//6*(-5*a*d+5*b*c)*arctan(1//3*3^(1/2)+-2//3*3^(1/2)*b^-1//6*d^1//6*(a+b*x)^1//6*(c+d*x)^-1//6)+1//6*3^(1/2)*b^-11//6*d^-1//6*(-5*a*d+5*b*c)*arctan(1//3*3^(1/2)+2//3*3^(1/2)*b^-1//6*d^1//6*(a+b*x)^1//6*(c+d*x)^-1//6)) @test integrate((a+b*x)^-5//6*(c+d*x)^-1//6, x) == :((1/2)*b^-5//6*d^-1//6*log(b^1//3+d^1//3*(a+b*x)^1//3*(c+d*x)^-1//3+b^1//6*d^1//6*(a+b*x)^1//6*(c+d*x)^-1//6)+2*b^-5//6*d^-1//6*arctanh(b^-1//6*d^1//6*(a+b*x)^1//6*(c+d*x)^-1//6)+-1//2*b^-5//6*d^-1//6*log(b^1//3+d^1//3*(a+b*x)^1//3*(c+d*x)^-1//3+-1*b^1//6*d^1//6*(a+b*x)^1//6*(c+d*x)^-1//6)+3^(1/2)*b^-5//6*d^-1//6*arctan(1//3*3^(1/2)+2//3*3^(1/2)*b^-1//6*d^1//6*(a+b*x)^1//6*(c+d*x)^-1//6)+-1*3^(1/2)*b^-5//6*d^-1//6*arctan(1//3*3^(1/2)+-2//3*3^(1/2)*b^-1//6*d^1//6*(a+b*x)^1//6*(c+d*x)^-1//6)) @test integrate((a+b*x)^-5//6*(c+d*x)^-7//6, x) == :(6*(a+b*x)^1//6*(c+d*x)^-1//6*(b*c+-1*a*d)^-1) @test integrate((a+b*x)^-5//6*(c+d*x)^-13//6, x) == :(6*(a+b*x)^1//6*(c+d*x)^-7//6*(-7*a*d+7*b*c)^-1+36//7*b*(a+b*x)^1//6*(c+d*x)^-1//6*(b*c+-1*a*d)^-2) @test integrate((a+b*x)^-5//6*(c+d*x)^-19//6, x) == :(6*(a+b*x)^1//6*(c+d*x)^-13//6*(-13*a*d+13*b*c)^-1+72//91*b*(a+b*x)^1//6*(c+d*x)^-7//6*(b*c+-1*a*d)^-2+432//91*b^2*(a+b*x)^1//6*(c+d*x)^-1//6*(b*c+-1*a*d)^-3) @test integrate((a+b*x)^-5//6*(c+d*x)^-25//6, x) == :(6*(a+b*x)^1//6*(c+d*x)^-19//6*(-19*a*d+19*b*c)^-1+108//247*b*(a+b*x)^1//6*(c+d*x)^-13//6*(b*c+-1*a*d)^-2+1296//1729*b^2*(a+b*x)^1//6*(c+d*x)^-7//6*(b*c+-1*a*d)^-3+7776//1729*b^3*(a+b*x)^1//6*(c+d*x)^-1//6*(b*c+-1*a*d)^-4) @test integrate((a+b*x)^-7//6*(c+d*x)^13//6, x) == :(-6*b^-1*(a+b*x)^-1//6*(c+d*x)^13//6+-91//144*b^-19//6*d^1//6*(b*c+-1*a*d)^2*log(b^1//3+d^1//3*(a+b*x)^1//3*(c+d*x)^-1//3+-1*b^1//6*d^1//6*(a+b*x)^1//6*(c+d*x)^-1//6)+13//2*d*b^-2*(a+b*x)^5//6*(c+d*x)^7//6+91//36*b^-19//6*d^1//6*(b*c+-1*a*d)^2*arctanh(b^-1//6*d^1//6*(a+b*x)^1//6*(c+d*x)^-1//6)+91//144*b^-19//6*d^1//6*(b*c+-1*a*d)^2*log(b^1//3+d^1//3*(a+b*x)^1//3*(c+d*x)^-1//3+b^1//6*d^1//6*(a+b*x)^1//6*(c+d*x)^-1//6)+-91//72*3^(1/2)*b^-19//6*d^1//6*(b*c+-1*a*d)^2*arctan(1//3*3^(1/2)+2//3*3^(1/2)*b^-1//6*d^1//6*(a+b*x)^1//6*(c+d*x)^-1//6)+91//12*d*b^-3*(a+b*x)^5//6*(c+d*x)^1//6*(b*c+-1*a*d)+91//72*3^(1/2)*b^-19//6*d^1//6*(b*c+-1*a*d)^2*arctan(1//3*3^(1/2)+-2//3*3^(1/2)*b^-1//6*d^1//6*(a+b*x)^1//6*(c+d*x)^-1//6)) @test integrate((a+b*x)^-7//6*(c+d*x)^7//6, x) == :(-6*b^-1*(a+b*x)^-1//6*(c+d*x)^7//6+7*d*b^-2*(a+b*x)^5//6*(c+d*x)^1//6+-7//12*b^-13//6*d^1//6*(b*c+-1*a*d)*log(b^1//3+d^1//3*(a+b*x)^1//3*(c+d*x)^-1//3+-1*b^1//6*d^1//6*(a+b*x)^1//6*(c+d*x)^-1//6)+7//3*b^-13//6*d^1//6*(b*c+-1*a*d)*arctanh(b^-1//6*d^1//6*(a+b*x)^1//6*(c+d*x)^-1//6)+7//12*b^-13//6*d^1//6*(b*c+-1*a*d)*log(b^1//3+d^1//3*(a+b*x)^1//3*(c+d*x)^-1//3+b^1//6*d^1//6*(a+b*x)^1//6*(c+d*x)^-1//6)+-7//6*3^(1/2)*b^-13//6*d^1//6*(b*c+-1*a*d)*arctan(1//3*3^(1/2)+2//3*3^(1/2)*b^-1//6*d^1//6*(a+b*x)^1//6*(c+d*x)^-1//6)+7//6*3^(1/2)*b^-13//6*d^1//6*(b*c+-1*a*d)*arctan(1//3*3^(1/2)+-2//3*3^(1/2)*b^-1//6*d^1//6*(a+b*x)^1//6*(c+d*x)^-1//6)) @test integrate((a+b*x)^-7//6*(c+d*x)^1//6, x) == :((1/2)*b^-7//6*d^1//6*log(b^1//3+d^1//3*(a+b*x)^1//3*(c+d*x)^-1//3+b^1//6*d^1//6*(a+b*x)^1//6*(c+d*x)^-1//6)+-6*b^-1*(a+b*x)^-1//6*(c+d*x)^1//6+2*b^-7//6*d^1//6*arctanh(b^-1//6*d^1//6*(a+b*x)^1//6*(c+d*x)^-1//6)+-1//2*b^-7//6*d^1//6*log(b^1//3+d^1//3*(a+b*x)^1//3*(c+d*x)^-1//3+-1*b^1//6*d^1//6*(a+b*x)^1//6*(c+d*x)^-1//6)+3^(1/2)*b^-7//6*d^1//6*arctan(1//3*3^(1/2)+-2//3*3^(1/2)*b^-1//6*d^1//6*(a+b*x)^1//6*(c+d*x)^-1//6)+-1*3^(1/2)*b^-7//6*d^1//6*arctan(1//3*3^(1/2)+2//3*3^(1/2)*b^-1//6*d^1//6*(a+b*x)^1//6*(c+d*x)^-1//6)) @test integrate((a+b*x)^-7//6*(c+d*x)^-5//6, x) == :(-6*(a+b*x)^-1//6*(c+d*x)^1//6*(b*c+-1*a*d)^-1) @test integrate((a+b*x)^-7//6*(c+d*x)^-11//6, x) == :(-6*(a+b*x)^-1//6*(c+d*x)^-5//6*(b*c+-1*a*d)^-1+-36//5*d*(a+b*x)^5//6*(c+d*x)^-5//6*(b*c+-1*a*d)^-2) @test integrate((a+b*x)^-7//6*(c+d*x)^-17//6, x) == :(-6*(a+b*x)^-1//6*(c+d*x)^-11//6*(b*c+-1*a*d)^-1+-72//11*d*(a+b*x)^5//6*(c+d*x)^-11//6*(b*c+-1*a*d)^-2+-432//55*b*d*(a+b*x)^5//6*(c+d*x)^-5//6*(b*c+-1*a*d)^-3) @test integrate((a+b*x)^-7//6*(c+d*x)^-23//6, x) == :(-6*(a+b*x)^-1//6*(c+d*x)^-17//6*(b*c+-1*a*d)^-1+-108//17*d*(a+b*x)^5//6*(c+d*x)^-17//6*(b*c+-1*a*d)^-2+-7776//935*d*b^2*(a+b*x)^5//6*(c+d*x)^-5//6*(b*c+-1*a*d)^-4+-1296//187*b*d*(a+b*x)^5//6*(c+d*x)^-11//6*(b*c+-1*a*d)^-3) @test integrate((a+b*x)^m*(a+b*x*(2+m)), x) == :(x*(a+b*x)^(1+m)) @test integrate((a+b*x)^m*(c+d*x)^3, x) == :(b^-4*d^3*(4+m)^-1*(a+b*x)^(4+m)+b^-4*(1+m)^-1*(a+b*x)^(1+m)*(b*c+-1*a*d)^3+3*d*b^-4*(2+m)^-1*(a+b*x)^(2+m)*(b*c+-1*a*d)^2+3*b^-4*d^2*(3+m)^-1*(a+b*x)^(3+m)*(b*c+-1*a*d)) @test integrate((a+b*x)^m*(c+d*x)^2, x) == :(b^-3*d^2*(3+m)^-1*(a+b*x)^(3+m)+b^-3*(1+m)^-1*(a+b*x)^(1+m)*(b*c+-1*a*d)^2+2*d*b^-3*(2+m)^-1*(a+b*x)^(2+m)*(b*c+-1*a*d)) @test integrate((a+b*x)^m*(c+d*x), x) == :(d*b^-2*(2+m)^-1*(a+b*x)^(2+m)+b^-2*(1+m)^-1*(a+b*x)^(1+m)*(b*c+-1*a*d)) @test integrate((a+b*x)^3*(c+d*x)^n, x) == :(b^3*d^-4*(4+n)^-1*(c+d*x)^(4+n)+-1*d^-4*(1+n)^-1*(c+d*x)^(1+n)*(b*c+-1*a*d)^3+-3*b^2*d^-4*(3+n)^-1*(c+d*x)^(3+n)*(b*c+-1*a*d)+3*b*d^-4*(2+n)^-1*(c+d*x)^(2+n)*(b*c+-1*a*d)^2) @test integrate((a+b*x)^2*(c+d*x)^n, x) == :(b^2*d^-3*(3+n)^-1*(c+d*x)^(3+n)+d^-3*(1+n)^-1*(c+d*x)^(1+n)*(b*c+-1*a*d)^2+-2*b*d^-3*(2+n)^-1*(c+d*x)^(2+n)*(b*c+-1*a*d)) @test integrate((c+d*x)^n*(a+b*x), x) == :(b*d^-2*(2+n)^-1*(c+d*x)^(2+n)+-1*d^-2*(1+n)^-1*(c+d*x)^(1+n)*(b*c+-1*a*d)) @test integrate((c+d*x)^n, x) == :(d^-1*(1+n)^-1*(c+d*x)^(1+n)) @test integrate((a+b*x)^(-4+n)*(c+d*x)^(-1n), x) == :(-1*(3+-1n)^-1*(a+b*x)^(-3+n)*(c+d*x)^(1+-1n)*(b*c+-1*a*d)^-1+2*d*(2+-1n)^-1*(3+-1n)^-1*(a+b*x)^(-2+n)*(c+d*x)^(1+-1n)*(b*c+-1*a*d)^-2+-2*d^2*(1+-1n)^-1*(2+-1n)^-1*(3+-1n)^-1*(a+b*x)^(-1+n)*(c+d*x)^(1+-1n)*(b*c+-1*a*d)^-3) @test integrate((a+b*x)^(-3+n)*(c+d*x)^(-1n), x) == :(-1*(2+-1n)^-1*(a+b*x)^(-2+n)*(c+d*x)^(1+-1n)*(b*c+-1*a*d)^-1+d*(1+-1n)^-1*(2+-1n)^-1*(a+b*x)^(-1+n)*(c+d*x)^(1+-1n)*(b*c+-1*a*d)^-2) @test integrate((a+b*x)^(-2+n)*(c+d*x)^(-1n), x) == :(-1*(1+-1n)^-1*(a+b*x)^(-1+n)*(c+d*x)^(1+-1n)*(b*c+-1*a*d)^-1) @test integrate((a+b*x)^(-2+-1n)*(c+d*x)^n, x) == :(-1*(1+n)^-1*(a+b*x)^(-1+-1n)*(c+d*x)^(1+n)*(b*c+-1*a*d)^-1) @test integrate((a+b*x)^(-3+-1n)*(c+d*x)^n, x) == :(-1*(2+n)^-1*(a+b*x)^(-2+-1n)*(c+d*x)^(1+n)*(b*c+-1*a*d)^-1+d*(1+n)^-1*(2+n)^-1*(a+b*x)^(-1+-1n)*(c+d*x)^(1+n)*(b*c+-1*a*d)^-2) @test integrate((a+b*x)^(-4+-1n)*(c+d*x)^n, x) == :(-1*(3+n)^-1*(a+b*x)^(-3+-1n)*(c+d*x)^(1+n)*(b*c+-1*a*d)^-1+2*d*(2+n)^-1*(3+n)^-1*(a+b*x)^(-2+-1n)*(c+d*x)^(1+n)*(b*c+-1*a*d)^-2+-2*d^2*(1+n)^-1*(2+n)^-1*(3+n)^-1*(a+b*x)^(-1+-1n)*(c+d*x)^(1+n)*(b*c+-1*a*d)^-3) @test integrate((a+b*x)^(-5+-1n)*(c+d*x)^n, x) == :(-1*(4+n)^-1*(a+b*x)^(-4+-1n)*(c+d*x)^(1+n)*(b*c+-1*a*d)^-1+3*d*(3+n)^-1*(4+n)^-1*(a+b*x)^(-3+-1n)*(c+d*x)^(1+n)*(b*c+-1*a*d)^-2+-6*d^2*(2+n)^-1*(3+n)^-1*(4+n)^-1*(a+b*x)^(-2+-1n)*(c+d*x)^(1+n)*(b*c+-1*a*d)^-3+6*d^3*(1+n)^-1*(2+n)^-1*(3+n)^-1*(4+n)^-1*(a+b*x)^(-1+-1n)*(c+d*x)^(1+n)*(b*c+-1*a*d)^-4) @test integrate((a+b*x)^n*(c+d*x)^(-2+-1n), x) == :((1+n)^-1*(a+b*x)^(1+n)*(c+d*x)^(-1+-1n)*(b*c+-1*a*d)^-1) @test integrate((a+b*x)^n*(c+d*x)^(-3+-1n), x) == :((2+n)^-1*(a+b*x)^(1+n)*(c+d*x)^(-2+-1n)*(b*c+-1*a*d)^-1+b*(1+n)^-1*(2+n)^-1*(a+b*x)^(1+n)*(c+d*x)^(-1+-1n)*(b*c+-1*a*d)^-2) @test integrate((a+b*x)^n*(c+d*x)^(-4+-1n), x) == :((3+n)^-1*(a+b*x)^(1+n)*(c+d*x)^(-3+-1n)*(b*c+-1*a*d)^-1+2*b*(2+n)^-1*(3+n)^-1*(a+b*x)^(1+n)*(c+d*x)^(-2+-1n)*(b*c+-1*a*d)^-2+2*b^2*(1+n)^-1*(2+n)^-1*(3+n)^-1*(a+b*x)^(1+n)*(c+d*x)^(-1+-1n)*(b*c+-1*a*d)^-3) @test integrate((a+b*x)^n*(c+d*x)^(-5+-1n), x) == :((4+n)^-1*(a+b*x)^(1+n)*(c+d*x)^(-4+-1n)*(b*c+-1*a*d)^-1+3*b*(3+n)^-1*(4+n)^-1*(a+b*x)^(1+n)*(c+d*x)^(-3+-1n)*(b*c+-1*a*d)^-2+6*b^2*(2+n)^-1*(3+n)^-1*(4+n)^-1*(a+b*x)^(1+n)*(c+d*x)^(-2+-1n)*(b*c+-1*a*d)^-3+6*b^3*(1+n)^-1*(2+n)^-1*(3+n)^-1*(4+n)^-1*(a+b*x)^(1+n)*(c+d*x)^(-1+-1n)*(b*c+-1*a*d)^-4) @test integrate((a+b*x)^-2*(c+d*x)^-1, x) == :(-1*(a+b*x)^-1*(b*c+-1*a*d)^-1+d*(b*c+-1*a*d)^-2*log(c+d*x)+-1*d*(b*c+-1*a*d)^-2*log(a+b*x)) @test integrate((a+b*x)^(-1+-1*b*c*(b*c+-1*a*d)^-1)*(c+d*x)^(-1+a*d*(b*c+-1*a*d)^-1), x) == :(-1*b^-1*c^-1*(a+b*x)^(-1*b*c*(b*c+-1*a*d)^-1)*(c+d*x)^(a*d*(b*c+-1*a*d)^-1)+a^-1*b^-1*c^-1*(a+b*x)^(-1*a*d*(b*c+-1*a*d)^-1)*(c+d*x)^(a*d*(b*c+-1*a*d)^-1)) @test integrate((a+b*x)^((b*c+-1*a*d)^-1*(a*d+-2*b*c))*(c+d*x)^((a*d+-1*b*c)^-1*(b*c+-2*a*d)), x) == :(-1*b^-1*c^-1*(a+b*x)^(-1*b*c*(b*c+-1*a*d)^-1)*(c+d*x)^(a*d*(b*c+-1*a*d)^-1)+a^-1*b^-1*c^-1*(a+b*x)^(-1*a*d*(b*c+-1*a*d)^-1)*(c+d*x)^(a*d*(b*c+-1*a*d)^-1)) @test integrate(a+b*x+c*x^2+d*x^3, x) == :(a*x+(1/2)*b*x^2+1//3*c*x^3+1//4*d*x^4) @test integrate(x^4+-1*x^3, x) == :(-1//4*x^4+1//5*x^5) @test integrate(-1+x^5, x) == :(-1x+1//6*x^6) @test integrate(7+4x, x) == :(2*x^2+7x) @test integrate(4x+pi*x^3, x) == :(2*x^2+1//4*pi*x^4) @test integrate(2x+5*x^2, x) == :(x^2+5//3*x^3) @test integrate((1/2)*x^2+1//3*x^3, x) == :(1//6*x^3+1//12*x^4) @test integrate(3+-5x+2*x^2, x) == :(3x+-5//2*x^2+2//3*x^3) @test integrate(x^2+x^3+-2x, x) == :(-1*x^2+1//3*x^3+1//4*x^4) @test integrate(1+-1*x^2+-3*x^5, x) == :(x+-1//2*x^6+-1//3*x^3) @test integrate(5+2x+3*x^2+4*x^3, x) == :(x^2+x^3+x^4+5x) @test integrate(a+b*x^-1+c*x^-2+d*x^-3, x) == :(a*x+b*log(x)+-1*c*x^-1+-1//2*d*x^-2) @test integrate(x+x^-5+x^5, x) == :((1/2)*x^2+-1//4*x^-4+1//6*x^6) @test integrate(x^-1+x^-3+x^-2, x) == :(-1*x^-1+-1//2*x^-2+log(x)) @test integrate(-2*x^-2+3*x^-1, x) == :(2*x^-1+3*log(x)) @test integrate(x^6+-1//7*x^-6, x) == :(1//7*x^7+1//35*x^-5) @test integrate(1+x+x^-1, x) == :(x+(1/2)*x^2+log(x)) @test integrate(-3*x^-3+4*x^-2, x) == :(-4*x^-1+3//2*x^-2) @test integrate(x^-1+x^2+2x, x) == :(x^2+1//3*x^3+log(x)) @test integrate(x^5//6+-1*x^3, x) == :(-1//4*x^4+6//11*x^11//6) @test integrate(33+x^1//33, x) == :(33x+33//34*x^34//33) @test integrate((1/2)*x^-1//2+2*x^(1/2), x) == :(x^(1/2)+4//3*x^3//2) @test integrate(-1*x^-2+6*x^(1/2)+10*x^-1, x) == :(x^-1+4*x^3//2+10*log(x)) @test integrate(x^-3//2+x^3//2, x) == :(-2*x^-1//2+2//5*x^5//2) @test integrate(-5*x^3//2+7*x^5//2, x) == :(-2*x^5//2+2*x^7//2) @test integrate(x^(1/2)+2*x^-1//2+-1//2*x, x) == :(4*x^(1/2)+-1//4*x^2+2//3*x^3//2) @test integrate(x^3//2+-2*x^-1+1//5*x^(1/2), x) == :(-2*log(x)+2//5*x^5//2+2//15*x^3//2)
Require Import Raxiom Rconvenient IZR Repsilon Rapprox Rseq. Require Import Arith. Module Rfunction (Import T : CReals). Module Rconvenient := Rconvenient T. Import Rconvenient. Module IZR := IZR T. Import IZR. Module Repsilon := Repsilon T. Import Repsilon. Module Rsequence := Rsequence T. Import Rsequence. Module Rapprox := Rapprox T. Import Rapprox. Definition Rcont_pt (f : R -> R) (x : R) : Type := forall e, R0 < e -> sigT (fun d => prod (R0 < d) (forall x', Rdist x x' d -> Rdist (f x) (f x') e)). Definition Rcont (f : R -> R) : Type := forall x, Rcont_pt f x. Definition Rcont_op (op : R -> R -> R) : Type := prod (forall a, Rcont (op a)) (forall a, Rcont (fun x => op x a)). Lemma Rcont_add : Rcont_op Radd. Admitted. Lemma Rcont_mul : Rcont_op Rmul. Admitted. Lemma Rcont_sub : Rcont_op Rsub. Admitted. Lemma Rcont_opp : Rcont Ropp. Admitted. Lemma Rcont_compose : forall f g, Rcont f -> Rcont g -> Rcont (fun x => f (g x)). Proof. intros f g cf cg x e epos. destruct (cf (g x) e epos) as (d, (dpos, hd)). destruct (cg x d dpos) as (c, (cpos, hc)). eauto. Qed. (* TODO : dire que ~~A→A est plus faible que ~A\/A *) (* TODO : formuler la décision de l'égalité *) (* TODO : dire que (WEAK Rle → Rle) → Décision de l'égalité *) End Rfunction.
module Sort (A : Set)(_<_ : A → A → Set) where
module ListSearch data NatList : Type where Nil : NatList Cons : (x : Nat) -> (tail : NatList) -> NatList data Contains : (k : Nat) -> (xs : NatList) -> Type where Here : Contains k (Cons k tail) There : (later : Contains k tail) -> Contains k (Cons x tail) total emptyNoContains : Not (Contains k Nil) emptyNoContains Here impossible emptyNoContains (There _) impossible total neitherHeadNorTail : (k : Nat) -> (x : Nat) -> (tail : NatList) -> Not (k = x) -> Not (Contains k tail) -> Not (Contains k (Cons x tail)) neitherHeadNorTail k x tail k_neq_x k_not_in_tail in_cons = case in_cons of Here => k_neq_x Refl (There later) => k_not_in_tail later total testContains : (k : Nat) -> (xs : NatList) -> Dec (Contains k xs) testContains k [] = No emptyNoContains testContains k (Cons x tail) = case decEq k x of (Yes Refl) => Yes Here (No contra) => case testContains k tail of (Yes prf) => Yes (There prf) (No contra2) => No (neitherHeadNorTail k x tail contra contra2) total insert : Nat -> NatList -> NatList insert k xs = case testContains k xs of (Yes prf) => xs (No contra) => Cons k xs total insertProved : (k : Nat) -> (xs : NatList) -> (xs' : NatList ** Contains k xs') insertProved k xs = case testContains k xs of (Yes prf) => (xs ** prf) (No contra) => (Cons k xs ** Here)
function out = zoom(varargin) %ZOOM Zoom in and out on a 2-D plot. % ZOOM with no arguments toggles the zoom state. % ZOOM(FACTOR) zooms the current axis by FACTOR. % Note that this does not affect the zoom state. % ZOOM ON turns zoom on for the current figure. % ZOOM OFF turns zoom off in the current figure. % ZOOM OUT returns the plot to its initial (full) zoom. % ZOOM XON or ZOOM YON turns zoom on for the x or y axis only. % ZOOM RESET clears the zoom out point. % % When zoom is on, click the left mouse button to zoom in on the % point under the mouse. Click the right mouse button to zoom out % (shift-click on the Macintosh). Each time you click, the axes % limits will be changed by a factor of 2 (in or out). You can also % click and drag to zoom into an area. Double clicking zooms out to % the point at which zoom was first turned on for this figure. Note % that turning zoom on, then off does not reset the zoom point. % This may be done explicitly with ZOOM RESET. % % ZOOM(FIG,OPTION) applies the zoom command to the figure specified % by FIG. OPTION can be any of the above arguments. % ZOOM FILL scales a plot such that it is as big as possible % within the axis position rectangle for any azimuth and elevation. % Clay M. Thompson 1-25-93 % Revised 11 Jan 94 by Steven L. Eddins % Copyright (c) 1984-97 by The MathWorks, Inc. % $Revision: 1399 $ $Date: 2006-08-11 11:19:27 +0200 (Fr, 11 Aug 2006) $ % Note: zoom uses the userdata of the zlabel of the axis and % the figure buttondown and buttonmotion functions % % ZOOM XON zooms x-axis only % ZOOM YON zooms y-axis only switch nargin %%%%%%%%%%%%%%%%%%%%%%%%%% %%% No Input Arguments %%% %%%%%%%%%%%%%%%%%%%%%%%%%% case 0 fig=get(groot,'currentfigure'); if isempty(fig), return, end zoomCommand='toggle'; %%%%%%%%%%%%%%%%%%%%%%%%%% %%% One Input Argument %%% %%%%%%%%%%%%%%%%%%%%%%%%%% case 1 % If the argument is a string, the argument is a zoom command % (i.e. (on, off, down, xdown, etc.). Otherwise, the argument is % assumed to be a figure handle, in which case all we do is % toggle the zoom status. if ischar(varargin{1}) fig=get(groot,'currentfigure'); if isempty(fig), return, end zoomCommand=varargin{1}; else scale_factor=varargin{1}; zoomCommand='scale'; fig = gcf; end % if %%%%%%%%%%%%%%%%%%%%%%%%%%% %%% Two Input Arguments %%% %%%%%%%%%%%%%%%%%%%%%%%%%%% case 2 fig=varargin{1}; zoomCommand=varargin{2}; otherwise narginchk(0, 2); end % switch nargin % % handle 'off' commands first % if strcmp(zoomCommand,'off') % % turn off zoom, and take a hike % fcns = getappdata(fig,'ZOOMFigureFcns'); if ~isempty(fcns) set(fig,'windowbuttondownfcn',fcns.wbdf,'windowbuttonupfcn',fcns.wbuf,... 'windowbuttonmotionfcn',fcns.wbmf,'buttondownfcn',fcns.bdf); rmappdata(fig,'ZOOMFigureFcns'); end return end % if ax=get(fig,'currentaxes'); rbbox_mode = 0; zoomx = 1; zoomy = 1; % Assume no constraints zoomCommand=lower(zoomCommand); if ~isempty(isempty(ax)) && any(get(ax,'view')~=[0 90]) && ... ~(strcmp(zoomCommand,'scale') | strcmp(zoomCommand,'fill')) return % Do nothing end if strcmp(zoomCommand,'toggle') fcns = getappdata(fig,'ZOOMFigureFcns'); if isempty(fcns) zoom(fig,'on'); else zoom(fig,'off'); end return end % if % Catch constrained zoom if strcmp(zoomCommand,'xdown') zoomy = 0; zoomCommand = 'down'; % Constrain y elseif strcmp(zoomCommand,'ydown') zoomx = 0; zoomCommand = 'down'; % Constrain x end if strcmp(zoomCommand,'down') % Activate axis that is clicked in allAxes = findobj(get(fig,'Children'),'flat','type','axes'); ZOOM_found = 0; for i=1:length(allAxes) ax=allAxes(i); ZOOM_Pt1 = get(ax,'CurrentPoint'); xlim = get(ax,'xlim'); ylim = get(ax,'ylim'); if (xlim(1) <= ZOOM_Pt1(1,1) & ZOOM_Pt1(1,1) <= xlim(2) & ... ylim(1) <= ZOOM_Pt1(1,2) & ZOOM_Pt1(1,2) <= ylim(2)) ZOOM_found = 1; set(fig,'currentaxes',ax); break end % if end % for if ZOOM_found==0, return, end % Check for selection type selection_type = get(fig,'SelectionType'); if (strcmp(selection_type, 'normal')) % Zoom in m = 1; scale_factor = 2; % the default zooming factor elseif (strcmp(selection_type, 'open')) % Zoom all the way out zoom(fig,'out'); return; else % Zoom partially out m = -1; scale_factor = 2; end ZOOM_Pt1 = get_currentpoint(ax); ZOOM_Pt2 = ZOOM_Pt1; center = ZOOM_Pt1; if (m == 1) % Zoom in units = get(fig,'units'); set(fig,'units','pixels') rbbox([get(fig,'currentpoint') 0 0],get(fig,'currentpoint')); ZOOM_Pt2 = get_currentpoint(ax); set(fig,'units',units) % Note the currentpoint is set by having a non-trivial up function. if min(abs(ZOOM_Pt1-ZOOM_Pt2)) >= ... min(.01*[diff(get_xlim(ax)) diff(get_ylim(ax))]) % determine axis from rbbox a = [ZOOM_Pt1;ZOOM_Pt2]; a = [min(a);max(a)]; % Undo the effect of get_currentpoint for log axes if strcmp(get(ax,'XScale'),'log') a(1:2) = 10.^a(1:2); end if strcmp(get(ax,'YScale'),'log') a(3:4) = 10.^a(3:4); end rbbox_mode = 1; end end limits = zoom(fig,'getlimits'); elseif strcmp(zoomCommand,'scale') if all(get(ax,'view')==[0 90]), % 2D zooming with scale_factor % Activate axis that is clicked in ZOOM_found = 0; ax = gca; xlim = get(ax,'xlim'); ylim = get(ax,'ylim'); ZOOM_Pt1 = [sum(xlim)/2 sum(ylim)/2]; ZOOM_Pt2 = ZOOM_Pt1; center = ZOOM_Pt1; if (xlim(1) <= ZOOM_Pt1(1,1) & ZOOM_Pt1(1,1) <= xlim(2) & ... ylim(1) <= ZOOM_Pt1(1,2) & ZOOM_Pt1(1,2) <= ylim(2)) ZOOM_found = 1; end % if if ZOOM_found==0, return, end if (scale_factor >= 1) m = 1; else m = -1; end else % 3D old_CameraViewAngle = get(ax,'CameraViewAngle')*pi/360; ncva = atan(tan(old_CameraViewAngle)*(1/scale_factor))*360/pi; set(ax,'CameraViewAngle',ncva); return; end limits = zoom(fig,'getlimits'); elseif strcmp(zoomCommand,'on') fcns = getappdata(fig,'ZOOMFigureFcns'); if isempty(fcns) fcns.wbdf = get(fig,'windowbuttondownfcn'); fcns.wbuf = get(fig,'windowbuttonupfcn'); fcns.wbmf = get(fig,'windowbuttonmotionfcn'); fcns.bdf = get(fig,'buttondownfcn'); setappdata(fig,'ZOOMFigureFcns',fcns); end set(fig,'windowbuttondownfcn','zoom down', ... 'windowbuttonupfcn','ones;', ... 'windowbuttonmotionfcn','','buttondownfcn','', ... 'interruptible','on'); set(ax,'interruptible','on') return elseif strcmp(zoomCommand, 'reset') hZlabel = get(ax, 'Zlabel'); ZlabelUserData = get(hZlabel, 'UserData'); if IsZoomData(ZlabelUserData) set(hZlabel, 'UserData', []); end return elseif strcmp(zoomCommand,'xon') zoom(fig,'on') % Set up userprop set(fig,'windowbuttondownfcn','zoom xdown', ... 'windowbuttonupfcn','ones;', ... 'windowbuttonmotionfcn','','buttondownfcn','',... 'interruptible','on'); set(ax,'interruptible','on') return elseif strcmp(zoomCommand,'yon') zoom(fig,'on') % Set up userprop set(fig,'windowbuttondownfcn','zoom ydown', ... 'windowbuttonupfcn','ones;', ... 'windowbuttonmotionfcn','','buttondownfcn','',... 'interruptible','on'); set(ax,'interruptible','on') return elseif strcmp(zoomCommand,'out') limits = zoom(fig,'getlimits'); center = [sum(get_xlim(ax))/2 sum(get_ylim(ax))/2]; m = -inf; % Zoom totally out elseif strcmp(zoomCommand,'getlimits'), % Get axis limits limits = get(get(ax,'ZLabel'),'UserData'); % Do simple checking of userdata if size(limits,2)==4 && size(limits,1)<=2 if all(limits(1,[1 3])<limits(1,[2 4])) getlimits = 0; out = limits(1,:); return % Quick return else getlimits = -1; % Don't munge data end else if isempty(limits), getlimits = 1; else getlimits = -1; end end % If I've made it to here, we need to compute appropriate axis % limits. if isempty(get(get(ax,'ZLabel'),'userdata')) % Use quick method if possible xlim = get_xlim(ax); xmin = xlim(1); xmax = xlim(2); ylim = get_ylim(ax); ymin = ylim(1); ymax = ylim(2); elseif strcmp(get(ax,'xLimMode'),'auto') && ... strcmp(get(ax,'yLimMode'),'auto') % Use automatic limits if possible xlim = get_xlim(ax); xmin = xlim(1); xmax = xlim(2); ylim = get_ylim(ax); ymin = ylim(1); ymax = ylim(2); else % Use slow method only if someone else is using the userdata h = get(ax,'Children'); xmin = inf; xmax = -inf; ymin = inf; ymax = -inf; for i=1:length(h) t = get(h(i),'Type'); if ~strcmp(t,'text') if strcmp(t,'image'), % Determine axis limits for image x = get(h(i),'Xdata'); y = get(h(i),'Ydata'); x = [min(min(x)) max(max(x))]; y = [min(min(y)) max(max(y))]; [ma,na] = size(get(h(i),'Cdata')); if na>1, dx = diff(x)/(na-1); else dx = 1; end if ma>1, dy = diff(y)/(ma-1); else dy = 1; end x = x + [-dx dx]/2; y = y + [-dy dy]/2; end xmin = min(xmin,min(min(x))); xmax = max(xmax,max(max(x))); ymin = min(ymin,min(min(y))); ymax = max(ymax,max(max(y))); end end % Use automatic limits if in use (override previous calculation) if strcmp(get(ax,'xLimMode'),'auto') xlim = get_xlim(ax); xmin = xlim(1); xmax = xlim(2); end if strcmp(get(ax,'yLimMode'),'auto') ylim = get_ylim(ax); ymin = ylim(1); ymax = ylim(2); end end limits = [xmin xmax ymin ymax]; if getlimits~=-1, % Don't munge existing userdata. % Store limits in ZLabel userdata set(get(ax,'ZLabel'),'UserData',limits); end out = limits; return elseif strcmp(zoomCommand,'getconnect'), % Get connected axes limits = get(get(ax,'ZLabel'),'UserData'); if all(size(limits)==[2 4]), % Do simple checking out = limits(2,[1 2]); else out = [ax ax]; end return elseif strcmp(zoomCommand,'fill') old_view = get(ax,'view'); view(45,45); set(ax,'CameraViewAngleMode','auto'); set(ax,'CameraViewAngle',get(ax,'CameraViewAngle')); view(old_view); return else error(['Unknown option: ',zoomCommand,'.']); end % % Actual zoom operation % if ~rbbox_mode xmin = limits(1); xmax = limits(2); ymin = limits(3); ymax = limits(4); if m==(-inf) dx = xmax-xmin; dy = ymax-ymin; else dx = diff(get_xlim(ax))*(scale_factor.^(-m-1)); dx = min(dx,xmax-xmin); dy = diff(get_ylim(ax))*(scale_factor.^(-m-1)); dy = min(dy,ymax-ymin); end % Limit zoom. center = max(center,[xmin ymin] + [dx dy]); center = min(center,[xmax ymax] - [dx dy]); a = [max(xmin,center(1)-dx) min(xmax,center(1)+dx) ... max(ymin,center(2)-dy) min(ymax,center(2)+dy)]; % Check for log axes and return to linear values. if strcmp(get(ax,'XScale'),'log') a(1:2) = 10.^a(1:2); end if strcmp(get(ax,'YScale'),'log') a(3:4) = 10.^a(3:4); end end % Check for v4-type equal fillequal = strcmp(get(ax,'plotboxaspectratiomode'),'manual') & ... strcmp(get(ax,'dataaspectratiomode'),'manual'); pbar = get(ax,'plotboxaspectratio'); % Update circular list of connected axes list = zoom(fig,'getconnect'); % Circular list of connected axes. if zoomx if a(1)==a(2), return, end % Short circuit if zoom is moot. if fillequal & (pbar(1) < pbar(2)) set(ax,'xlimmode','auto') else set(ax,'xlim',a(1:2)) end h = list(1); while h ~= ax if fillequal & zoomx & zoomy & (pbar(1) < pbar(2)) set(h,'xlimmode','auto') else set(h,'xlim',a(1:2)) end % Get next axes in the list next = get(get(h,'ZLabel'),'UserData'); if all(size(next)==[2 4]), h = next(2,1); else h = ax; end end end if zoomy if a(3)==a(4), return, end % Short circuit if zoom is moot. if fillequal & (pbar(1) >= pbar(2)) set(ax,'ylimmode','auto') else set(ax,'ylim',a(3:4)) end h = list(2); while h ~= ax if fillequal & zoomx & zoomy & (pbar(1) >= pbar(2)) set(h,'ylimmode','auto') else set(h,'ylim',a(3:4)) end % Get next axes in the list next = get(get(h,'ZLabel'),'UserData'); if all(size(next)==[2 4]), h = next(2,2); else h = ax; end end end function bZoomData = IsZoomData(data) % Return 1 if the data represents zoom data % Return 0 if someone else is using user data if size(data,2)==4 && size(data,1)<=2 if all(data(1,[1 3])<data(1,[2 4])) bZoomData = 1; else bZoomData = 0; end else bZoomData = 0; end function p = get_currentpoint(ax) %GET_CURRENTPOINT Return equivalent linear scale current point p = get(ax,'currentpoint'); p = p(1,1:2); if strcmp(get(ax,'XScale'),'log') p(1) = log10(p(1)); end if strcmp(get(ax,'YScale'),'log') p(2) = log10(p(2)); end function xlim = get_xlim(ax) %GET_XLIM Return equivalent linear scale xlim xlim = get(ax,'xlim'); if strcmp(get(ax,'XScale'),'log') xlim = log10(xlim); end function ylim = get_ylim(ax) %GET_YLIM Return equivalent linear scale ylim ylim = get(ax,'ylim'); if strcmp(get(ax,'YScale'),'log') ylim = log10(ylim); end
Formal statement is: lemma map_poly_cong: assumes "(\<And>x. x \<in> set (coeffs p) \<Longrightarrow> f x = g x)" shows "map_poly f p = map_poly g p" Informal statement is: If $f(x) = g(x)$ for all $x$ in the set of coefficients of a polynomial $p$, then $f(p) = g(p)$.
SUBROUTINE CSYR( UPLO, N, ALPHA, X, INCX, A, LDA ) * * -- PBLAS auxiliary routine (version 2.0) -- * University of Tennessee, Knoxville, Oak Ridge National Laboratory, * and University of California, Berkeley. * April 1, 1998 * * .. Scalar Arguments .. CHARACTER*1 UPLO INTEGER INCX, LDA, N COMPLEX ALPHA * .. * .. Array Arguments .. COMPLEX A( LDA, * ), X( * ) * .. * * Purpose * ======= * * CSYR performs the symmetric rank 1 operation * * A := alpha*x*x' + A, * * where alpha is a complex scalar, x is an n element vector and A is an * n by n SY matrix. * * Arguments * ========= * * UPLO (input) CHARACTER*1 * On entry, UPLO specifies which part of the matrix A is to be * referenced as follows: * * UPLO = 'L' or 'l' the lower trapezoid of A is referenced, * * UPLO = 'U' or 'u' the upper trapezoid of A is referenced, * * otherwise all of the matrix A is referenced. * * N (input) INTEGER * On entry, N specifies the order of the matrix A. N must be at * least zero. * * ALPHA (input) COMPLEX * On entry, ALPHA specifies the scalar alpha. * * X (input) COMPLEX array of dimension at least * ( 1 + ( n - 1 )*abs( INCX ) ). Before entry, the incremented * array X must contain the vector x. * * INCX (input) INTEGER * On entry, INCX specifies the increment for the elements of X. * INCX must not be zero. * * A (input/output) COMPLEX array * On entry, A is an array of dimension (LDA,N). Before entry * with UPLO = 'U' or 'u', the leading n by n part of the array * A must contain the upper triangular part of the symmetric ma- * trix and the strictly lower triangular part of A is not refe- * renced. On exit, the upper triangular part of the array A is * overwritten by the upper triangular part of the updated ma- * trix. When UPLO = 'L' or 'l', the leading n by n part of the * the array A must contain the lower triangular part of the * symmetric matrix and the strictly upper trapezoidal part of A * is not referenced. On exit, the lower triangular part of the * array A is overwritten by the lower triangular part of the * updated matrix. * * LDA (input) INTEGER * On entry, LDA specifies the leading dimension of the array A. * LDA must be at least max( 1, N ). * * ===================================================================== * * .. Parameters .. COMPLEX ZERO PARAMETER ( ZERO = ( 0.0E+0, 0.0E+0 ) ) * .. * .. Local Scalars .. INTEGER I, INFO, IX, J, JX, KX COMPLEX TEMP * .. * .. External Functions .. LOGICAL LSAME EXTERNAL LSAME * .. * .. External Subroutines .. EXTERNAL XERBLA * .. * .. Intrinsic Functions .. INTRINSIC MAX * .. * .. Executable Statements .. * * Test the input parameters. * INFO = 0 IF( .NOT.LSAME( UPLO, 'U' ) .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN INFO = 1 ELSE IF( N.LT.0 ) THEN INFO = 2 ELSE IF( INCX.EQ.0 ) THEN INFO = 5 ELSE IF( LDA.LT.MAX( 1, N ) ) THEN INFO = 7 END IF IF( INFO.NE.0 ) THEN CALL XERBLA( 'CSYR', INFO ) RETURN END IF * * Quick return if possible. * IF( ( N.EQ.0 ) .OR. ( ALPHA.EQ.ZERO ) ) $ RETURN * * Set the start point in X if the increment is not unity. * KX = 1 IF( INCX.LE.0 ) THEN KX = 1 - ( N-1 )*INCX ELSE IF( INCX.NE.1 ) THEN KX = 1 END IF * * Start the operations. In this version the elements of A are * accessed sequentially with one pass through the triangular part * of A. * IF( LSAME( UPLO, 'U' ) ) THEN * * Form A when A is stored in upper triangle. * IF( INCX.EQ.1 ) THEN DO 20 J = 1, N IF( X( J ).NE.ZERO ) THEN TEMP = ALPHA*X( J ) DO 10 I = 1, J A( I, J ) = A( I, J ) + X( I )*TEMP 10 CONTINUE END IF 20 CONTINUE ELSE JX = KX DO 40 J = 1, N IF( X( JX ).NE.ZERO ) THEN TEMP = ALPHA*X( JX ) IX = KX DO 30 I = 1, J A( I, J ) = A( I, J ) + X( IX )*TEMP IX = IX + INCX 30 CONTINUE END IF JX = JX + INCX 40 CONTINUE END IF ELSE * * Form A when A is stored in lower triangle. * IF( INCX.EQ.1 ) THEN DO 60 J = 1, N IF( X( J ).NE.ZERO ) THEN TEMP = ALPHA*X( J ) DO 50 I = J, N A( I, J ) = A( I, J ) + X( I )*TEMP 50 CONTINUE END IF 60 CONTINUE ELSE JX = KX DO 80 J = 1, N IF( X( JX ).NE.ZERO ) THEN TEMP = ALPHA*X( JX ) IX = JX DO 70 I = J, N A( I, J ) = A( I, J ) + X( IX )*TEMP IX = IX + INCX 70 CONTINUE END IF JX = JX + INCX 80 CONTINUE END IF END IF * RETURN * * End of CSYR * END
# Announcements - No Problem Set this week, Problem Set 4 will be posted on 9/28. - Stay on at the end of lecture if you want to ask questions about Problem Set 3. <style> @import url(https://www.numfys.net/static/css/nbstyle.css); </style> <a href="https://www.numfys.net"></a> # Ordinary Differential Equations - higher order methods <section class="post-meta"> Based on notes and notebooks by Niels Henrik Aase, Thorvald Ballestad, Vasilis Paschalidis and Jon Andreas Støvneng </section> ## Algorithms for initial value problem ODEs Assume we have a first-order differential equation which can be expressed in the form $$ \frac{dy}{dt} = g(y,t) $$ We will solve this on constant-interval mesh of the independent variable $t$ defined by $$ t_n = t_0 + n h $$ ### Forward-Euler method In Lecture 10 we derived Euler's method, which simply solves the first-order forward difference approximation to $dy/dt$ $$ \frac{y_{i+1}-y_i}{h} = g(y_i,t_i)$$ as $$ y_{i+1} = y_i + h g(y_i,t_i) \label{Euler_fwd}\tag{3}$$ ```python # Importing the necessary libraries import numpy as np # NumPy is used to generate arrays and to perform some mathematical operations import matplotlib.pyplot as plt # Used for plotting results ``` ```python def forwardEuler_step(t, y, h, g, *P): """ Implements a single step of the forward-Euler finite-difference scheme Parameters: t: time t y: Numerical approximation of y at time t h: Step size g: RHS of our ODE (RHS = Right hand side). Can be any function with signature g(t,y,*P). *P: tuple of parameters, arguments to g Returns: next_y: Numerical approximation of y at time t+h """ next_y = y + h*g(t, y, *P) return next_y ``` We now need some sort of framework which will take this function and do the integration for us. Let's rewrite `full_Euler` from Lecture 10 to be more general: ```python def odeSolve(t0, y0, tmax, h, g, method, *P): """ A full numerical aproximation of an ODE in a set time interval. Performs consecutive steps of `method` with step size h from start time until the end time. Also takes into account the initial values of the ODE Parameters: t0: start time y0 : Initial condition for y at t = t0 tmax: The end of the interval where the `method` is integrated, t_N h: Step size g: RHS of our ODE (RHS = Right hand side). Can be any function with signature g(t,y,*P). *P: tuple of parameters, arguments to g Returns: t_list: Evenly spaced discrete list of time with spacing h. Starting time = start_t, and end time = end_t y_list: Numerical approximation of y at times t_list """ # make the t-mesh; guarantees we stop precisely at tmax t_list = np.arange(t0,tmax+h,h) # allocate space for the solution y_list = np.zeros_like(t_list) # set the initial condition y_list[0] = y0 # find out the size of the t-mesh, and then integrate forward one meshpoint per iteration of the loop n, = t_list.shape for i in range(0,n-1): y_list[i+1] = method(t_list[i], y_list[i], h, g, *P) # return the solution return t_list,y_list ``` Armed with this machinery, let's set up another simple problem and try it out. Last time, we looked at exponential growth, let's solve exponential decay this time: $$ \frac{dy}{dt} = - c y, \quad y[0] = 1 $$ First, we provide a function to implement the RHS: ```python def expRHS(t, y, c): """ Implements the RHS (y'(x)) of the DE """ return -c*y ``` Now we set up the problem to compute and plot the result, along with a plot of the magnitude of the fractional error ### Runge-Kutta Schemes The idea of the Runge-Kutta schemes is to take advantage of derivative information at the times between $t_i$ and $t_{i+1}$ to increase the order of accuracy. For example, in the midpoint method, the derivative at the initial time is used to approximate the derivative at the midpoint of the interval, $f(y_i+\frac{1}{2}hf(y_i,t_i), t_i+\frac{1}{2}h)$. The derivative at the midpoint is then used to advance the solution to the next step. The method can be written in two stages $k_i$, $$ \begin{aligned} \begin{array}{l} k_1 = h f(y_i,t_i)\\ k_2 = h f(y_i+\frac{1}{2}k_1, t_n+\frac{1}{2}h)\\ y_{i+1} = y_i + k_2 \end{array} \end{aligned}\label{RK2}\tag{4} $$ The midpoint method is known as a __2nd-order Runge-Kutta__ formula. In general, an explicit 2-stage Runge-Kutta method can be written as, $$ \begin{array}{l} k_1 = h f(y_n,t_n)\\ k_2 = h f(y_n+b_{21}k_1, t_n+a_2h)\ \\ y_{n+1} = y_n + c_1k_1 +c_2k_2 \label{explicitrk2}\tag{5}\end{array} $$ The scheme is said to be *explicit* since a given stage does not depend *implicitly* on itself, as in the backward Euler method , or on a later stage. Other explicit second-order schemes can be derived by comparing Eq.(\ref{explicitrk2}) to other second-order expansions and matching terms to determine the coefficients $a_2$, $b_{21}$, $c_1$ and $c_2$. ### Explicit Fourth-Order Runge-Kutta Method Explicit Runge-Kutta methods are popular as each stage can be calculated with one function evaluation. In contrast, implicit Runge-Kutta methods usually involves solving a non-linear system of equations in order to evaluate the stages. As a result, explicit schemes are much less expensive to implement than implicit schemes. The higher-order Runge-Kutta methods can be derived by in manner similar to the midpoint formula. An s-stage method is compared to a Taylor method and the terms are matched up to the desired order. As it happens to be, <strong>The Fourth Order Runge-Kutta Method</strong> uses three such test-points and is the most widely used Runge-Kutta Method. You might ask why we don't use five, ten or even more test-points, and the answer is quite simple: It is not computationally free to calculate all these test-points, and the gain in accuracy rapidly decreases beyond the fourth order of the method. That is, if high precision is of such importance that you would require a tenth-order Runge-Kutta, then you're better off reducing the step size $h$, than increasing the order of the method. Also, there exists other more sophisticated methods which can be both faster and more accurate for equivalent choices of $h$, but obviously, may be a lot more complicated to implement. See for instance <i>Richardson Extrapolation</i>, <i>the Bulirsch-Stoer method</i>, <i>Multistep methods, Multivalue methods</i> and <i>Predictor-Corrector methods</i>. The classic fourth-order Runge-Kutta formula is: $$ \begin{array}{l} k_1 = h f(y_n,t_n)\\ k_2 = h f(y_n+\frac{k_1}{2}, t_n+\frac{h}{2})\\ k_3 = h f(y_n+\frac{k_2}{2}, t_n+\frac{h}{2})\\ k_4 = h f(y_n+k_3, t_n+h)\\ y_{n+1} = y_n + \frac{k_1}{6}+ \frac{k_2}{3}+ \frac{k_3}{3} + \frac{k_4}{6} \label{RK4}\tag{6}\end{array} $$ ```python def RK2_step(t, y, h, g, *P): """ Implements a single step of the second-order, explicit midpoint method """ thalf = t + 0.5*h k1 = h * g(t, y, *P) k2 = h * g(thalf, y + 0.5*k1, *P) return y +k2 ``` ```python def RK4_step(t, y, h, g, *P): """ Implements a single step of a fourth-order, explicit Runge-Kutta scheme """ thalf = t + 0.5*h k1 = h * g(t, y, *P) k2 = h * g(thalf, y + 0.5*k1, *P) k3 = h * g(thalf, y + 0.5*k2, *P) k4 = h * g(t + h, y + k3, *P) return y + (k1 + 2*k2 + 2*k3 + k4)/6 ``` ```python # set up problem c = 1.0 h = 0.5 t0 = 0.0 y0 = 1.0 tmax = 5.0 # call the solver for RK2 t, y = odeSolve(t0, y0, tmax, h, expRHS, RK2_step, c) # plot the result fig,ax = plt.subplots(1,2) ans = np.exp(-c*t) ax[0].plot(t,ans,'r') ax[0].set_xlabel('t') ax[0].set_ylabel('y') ax[0].plot(t,y,'o','RK2') err_RK2 = np.abs((ans-y)/ans) # call the solver for Euler t, y = odeSolve(t0, y0, tmax, h, expRHS, forwardEuler_step, c) ax[0].plot(t,y,'o','Euler') err = np.abs((ans-y)/ans) # call the solver for RK2 t, y4 = odeSolve(t0, y0, tmax, h, expRHS, RK4_step, c) ax[0].plot(t,y4,'o','RK4') err_RK4 = np.abs((ans-y4)/ans) # along with the errors err_RK2 = np.abs((ans-y)/ans) ax[1].plot(t, err_RK2, 'o',label = "RK2") ax[1].plot(t, err_RK4, 'o',label = "RK4") ax[1].plot(t, err, 'o',label = "Euler") ax[1].set_xlabel('t') ax[1].set_ylabel('fractional error') ax[1].legend() # now also overplot the error we calculated for forward-Euler # this gives better spacing between axes plt.tight_layout() plt.show() ``` ### Systems of First-Order ODEs Next, we turn to systems of ODE's. We'll take as our example the Lotke-Volterra equations, a simple model of population dynamics in an ecosystem (with many other uses as well). Imagine a population of rabbits and of foxes on a small island. The rabbits eat a plentiful supply of grass and would breed like, well, rabbits, with their population increasing exponentially with time in the absence of preditors. The foxes eat the rabbits, and would die out exponentially in time with no food supply. The rate at which foxes eat rabbits depends upon the product of the fox and rabbit populations. The equations for the population of the rabbits $R$ and foxes $F$ in this simple model is then \begin{eqnarray*} \frac{dR}{dt} &= \alpha R - \beta R F \\ \frac{dF}{dt} &= \delta R F - \gamma F \end{eqnarray*} Without the cross terms in $RF$, these are just two decay equations of the form we have used as an example above. A random set of parameters (I am not a biologist!) might be that a rabbit lives four years, so $\alpha=1/4$ and a fox lives 10 years, so $\gamma=1/10$. Let's pick the other parameters as $\beta = 1$ and $\delta = 1/4$. We can express the unknown populations as a vector of length two: $y = (R, F)$. The rate of change of populations then can also be expressed as a vector $dy/dt = (dR/dt, DF/dt)$. With such a definition, we can write the RHS function of our system as ```python def lvRHS(t, y, *P): # Lotke-Volterra system RHS # unpack the parameters from the array P alpha, beta, gamma, delta = P # make temporary variables with rabbit and fox populations R = y[0] F = y[1] # LV system dRdt = alpha * R - beta * R * F dFdt = delta * R * F - gamma * F # return an array of derivatives with same order as input vector return np.array([ dRdt, dFdt ]) ``` We now have to generalize our odeSolve function to allow more than one equation ```python def odeSolve(t0, y0, tmax, h, RHS, method, *P): """ ODE driver with constant step-size, allowing systems of ODE's """ # make array of times and find length of array t = np.arange(t0,tmax+h,h) ntimes, = t.shape # find out if we are solving a scalar ODE or a system of ODEs, and allocate space accordingly if type(y0) in [int, float]: # check if primitive type -- means only one eqn neqn = 1 y = np.zeros( ntimes ) else: # otherwise assume a numpy array -- a system of more than one eqn neqn, = y0.shape y = np.zeros( (ntimes, neqn) ) # set first element of solution to initial conditions (possibly a vector) y[0] = y0 # march on... for i in range(0,ntimes-1): y[i+1] = method(t[i], y[i], h, RHS, *P) return t,y ``` Now we can solve our system of two coupled ODEs. Note that the solution is now a vector of 2D vectors... the first index is the solution time, the second the variable: ```python alpha = 1.0 beta = 0.025 gamma = 0.4 delta = 0.01 h = 0.2 t0 = 0.0 y0 = np.array([ 30, 10 ]) tmax = 50 # call the solver t, y = odeSolve(t0, y0, tmax, h, lvRHS, RK4_step, alpha, beta, gamma, delta) fig,ax = plt.subplots() ax.plot(t,y[:,0],'b', label='prey') ax.plot(t,y[:,1],'r', label='preditor') ax.set_xlabel('time') ax.set_ylabel('population') ax.legend() plt.tight_layout() plt.show() ``` ### Higher Order Derivatives and Sets of 1st order ODEs The trick to solving ODEs with higher derivatives is turning them into systems of first-order ODEs. As a simple example, consider the second-order differential equation describing the van der Pol oscillator $$ \frac{d^2 x}{dt^2} - a (1-x^2) \frac{dx}{dt} + x = 0 $$ We turn this into a pair of first-order ODEs by defining an auxiliary function $v(t) = dx/dt$ and writing the system as \begin{align} \begin{split} \frac{dv}{dt} &= a (1-x^2) v - x\\ \frac{dx}{dt} &= v \end{split} \end{align} Note that there are only functions (and the independent variable) on the RHS; all "differentials" are on the LHS. Now that we have a system of first-order equations ,we can proceed as above. A function describing the RHS of this system is ```python def vdpRHS(t, y, a): # we store our function as the array [x, x'] return np.array([ y[1], # dx/dt = v a*(1-y[0]**2)*y[1] - y[0] # dv/dt = a*(1-x**2)*v - x ]) ``` ```python a = 15 # parameter h = 0.01 t0 = 0.0 y0 = np.array([ 0, 1]) tmax = 50 # call the solver t, y = odeSolve(t0, y0, tmax, h, vdpRHS, RK4_step, a) fig,ax = plt.subplots() ax.plot(t,y[:,0],'b', label='x') ax.plot(t,y[:,1],'r--', label='v') ax.set_xlabel('time') ax.legend() ax.set_title(f"van der Pol Oscillator for a={a}") plt.tight_layout() plt.show() ``` A somewhat more complex example is the Lane-Emden equation, which is really just Poisson's equation in spherical symmetry for the graviational potential of a self-gravitating fluid whose pressure is related to its density as $P\propto\rho^\gamma$. Such a system is called a _polytrope_, and is often used in astrophysics as a simple model for the structure of system such as a a star in which outward pressure and inward gravity are in equilibrium. Let $\xi$ be the dimensionless radius of the system, and let $\theta$ be related to the density as $\rho = \rho_c \theta^n$, where $\rho_c$ is the density at the origin and $n = 1/(\gamma-1)$. We then have the dimensionless second-order differential equation $$ \frac{1}{\xi^2}\frac{d}{d\xi}\left(\xi^2\frac{d\theta}{d\xi}\right) + \theta^n = 0 $$ Note that the first term is just the divergence $\nabla\cdot\theta$ in spherical symmetry. If we expand out the first term, we have $$ \frac{d^2\theta}{d\xi^2} + \frac{2}{\xi}\frac{d\theta}{d\xi} + \theta^n = 0 $$ Defining an auxiliary function $v(\xi) = d\theta/d\xi$, we can then convert this into a system of two first-order ODEs: \begin{align} \begin{split} \frac{dv}{d\xi} &= -\frac{2}{\xi} v - \theta^n \\ \frac{d\theta}{d\xi} &= v \end{split} \end{align} Again, we have "derivatives" only on the LHS and no derivatives on the RHS of our system. Looking at this expression, one can see right away that at the origin $\xi=0$ we will have a numerical problem; we are dividing by zero. Analytically, this is not a problem, since $v/\xi\rightarrow0$ as $\xi\rightarrow0$, but here we need to address this numerically. The first approach is to take care of the problem in our RHS function: ```python def leRHS(x, y, n): dthetadx = y[1] if x==0: dvdx = -y[0]**n else: dvdx = -2/x*y[1] - y[0]**n return np.array([ dthetadx, dvdx ]) ``` This is somewhat clunky, however, and you would first have to convince yourself that in fact $v(\xi)\rightarrow0$ faster than $\xi$ (don't just take my word for it!). Instead, we could use a more direct RHS function ```python def leRHS(x, y, n): dthetadx = y[1] dvdx = -2/x*y[1] - y[0]**n return np.array([ dthetadx, dvdx ]) ``` and expand the solution in a Taylor series about the origin to get a starting value for our numerical integration at a small distance away from the origin. To do this, write $$\theta(\xi) = a_0 + a_1 \xi + a_2 \xi^2 + \dots$$ The first thing to notice is that, by symmetry, only even powers of $\xi$ will appear in the solution. Thus we will have $$ \theta(\xi) = a_0 + a_2 \xi^2 + a_4 \xi^4 + \dots$$ By the boundary condition $\theta(0) = 1$, we have immediately that $a_0 = 1$. Next, substitute $\theta(\xi) = 1 + a_2 \xi^2 + a_4 \xi ^4 + O(\xi^6)$ into the Lane-Emden equation. $\theta$ and its first two derivatives are \begin{align} \begin{split} \theta(\xi) &= 1 + a_2 \xi^2 + a_4 \xi^4 + O(\xi^6)\\ \theta'(\xi) &= 2 a_2 \xi + 4 a_4 \xi^3 + O(\xi^5) \\ \theta''(\xi) &= 2 a_2 + 12 a_4 \xi^2 + O(\xi^4) \end{split} \end{align} Putting these into the Lane-Emden equation, we have \begin{align} \begin{split} 2 a_2 + 12 a_4 \xi^2 + O(\xi^4) + \frac{2}{\xi} (2 a_2 x + 4 a_4 \xi^3 + O(\xi^5)) &= -\theta^n \\ 6 a_2 + 20 a_4 \xi^2 + O(\xi^4) &= -\theta^n \end{split} \end{align} A boundary condition $\theta(0)=1$, and thus we have $a_2 = -1/6$. Away from zero, then, we have \begin{align} \begin{split} -1 + 20 a_4 \xi^2 + O(\xi^4) &= -\left(1 - 1/6 \xi^2 + a_4 \xi^4 + O(\xi^6)\right)^n \end{split} \end{align} The term on the RHS is $ 1 - n \xi^2/6 + O(\xi^4)$, and so we must have $a_4 = n/120$. Thus, the series expansion of the solution around the origin is $$ \theta(\xi) = 1 - \frac{1}{6}\xi^2 + \frac{n}{120} \xi^4 + \dots $$ We can now use this expansion to take a first step slightly away from the origin before beginning our numerical integration, thus avoiding the divide by zero. Note that this series solution near the origin is $O(h^5)$ and so is a good match for RK4 if we take the same (or smaller) step-size. ```python n = 3 xi0 = 0.01 # starting value of xi for our numerical integration theta0 = 1 - xi0**2/6 + n*xi0**4/120 # Taylor series solution to the DE near zero derived above theta0p = -xi0/3 + n*xi0**3/30 y0 = np.array([ theta0, theta0p]) # set IC's for numerical integration print(f"IC at {xi0:10.5e}: {y0[0]:10.5e}, {y0[1]:10.5e}") h = 0.1 tmax = 8 # call the solver t, y = odeSolve(xi0, y0, tmax, h, leRHS, RK4_step, n) fig,ax = plt.subplots() ax.plot(t,y[:,0],'b', label=r'$\theta(\xi)$') ax.plot(t,y[:,1],'r--', label=r'$\frac{d\theta}{d\xi}$') ax.plot([0,tmax],[0,0],'k') ax.set_xlabel(r'$\xi$') ax.set_title(f"Lane Emden Equation for n={n}") ax.legend() plt.tight_layout() plt.show() ``` For values of $n\le5$, the solutions of the Lane Emden equation (the so-called Lane-Emden functions of index $n$) decrease to zero at finite $\xi$. Since this is the radius at which the density goes to zero, we can interpret it as the surface of the self-gravitating body (for example, the radius of the star). Knowing this value $\xi_1$ is thus interesting... Let us see how to determine it numerically. Cleary, we are looking for the solution to $\theta(\xi_1)=0$; this is just root-finding, which we already know how to do. Instead of using some closed-form function, however, the value of the function $\theta(\xi)$ must in this case be determined numerically. But we have just figured out how to do this! Let's use the bisection method for our root-finding algorithm; here is a quick version (no error checking!) ```python def bisection(func, low, high, eps, *P): flow = func(low, *P) fhigh = func(high, *P) mid = 0.5*(low+high) fmid = func(mid,*P) while (high-low)> eps: if fmid*flow < 0: high = mid fhigh = fmid else: low = mid flow = mid mid = 0.5*(low+high) fmid = func(mid,*P) return low ``` Now let us make a function which returns $\theta(\xi)$, the solution to the Lane-Emden equation at $\xi$ ```python def theta(xi, n): h = 1e-4 xi0 = 1e-4 theta0 = 1 - xi0**2/6 + n*xi0**4/120 theta0p = -xi0/3 + n*xi0**3/30 y0 = np.array([ theta0, theta0p]) t, y = odeSolve(xi0, y0, xi, h, leRHS, RK4_step, n) return y[-1,0] ``` Using these, we can compute the surface radius of the polytrope ```python n = 3 xi1 = bisection(theta, 6, 8, 1e-5, n) print(f"xi_1 = {xi1:7.5f}") ``` A more careful treatment gives a value $\xi_1 = 6.89685...$, so we are doing pretty well... ```python ```
/- Copyright (c) 2019 Anne Baanen. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Anne Baanen -/ import algebra.associated import algebra.regular.basic import linear_algebra.matrix.mv_polynomial import linear_algebra.matrix.polynomial import ring_theory.polynomial.basic import tactic.linarith import tactic.ring_exp /-! # Cramer's rule and adjugate matrices The adjugate matrix is the transpose of the cofactor matrix. It is calculated with Cramer's rule, which we introduce first. The vectors returned by Cramer's rule are given by the linear map `cramer`, which sends a matrix `A` and vector `b` to the vector consisting of the determinant of replacing the `i`th column of `A` with `b` at index `i` (written as `(A.update_column i b).det`). Using Cramer's rule, we can compute for each matrix `A` the matrix `adjugate A`. The entries of the adjugate are the determinants of each minor of `A`. Instead of defining a minor to be `A` with row `i` and column `j` deleted, we replace the `i`th row of `A` with the `j`th basis vector; this has the same determinant as the minor but more importantly equals Cramer's rule applied to `A` and the `j`th basis vector, simplifying the subsequent proofs. We prove the adjugate behaves like `det A • A⁻¹`. ## Main definitions * `matrix.cramer A b`: the vector output by Cramer's rule on `A` and `b`. * `matrix.adjugate A`: the adjugate (or classical adjoint) of the matrix `A`. ## References * https://en.wikipedia.org/wiki/Cramer's_rule#Finding_inverse_matrix ## Tags cramer, cramer's rule, adjugate -/ namespace matrix universes u v variables {n : Type u} [decidable_eq n] [fintype n] {α : Type v} [comm_ring α] open_locale matrix big_operators open equiv equiv.perm finset section cramer /-! ### `cramer` section Introduce the linear map `cramer` with values defined by `cramer_map`. After defining `cramer_map` and showing it is linear, we will restrict our proofs to using `cramer`. -/ variables (A : matrix n n α) (b : n → α) /-- `cramer_map A b i` is the determinant of the matrix `A` with column `i` replaced with `b`, and thus `cramer_map A b` is the vector output by Cramer's rule on `A` and `b`. If `A ⬝ x = b` has a unique solution in `x`, `cramer_map A` sends the vector `b` to `A.det • x`. Otherwise, the outcome of `cramer_map` is well-defined but not necessarily useful. -/ def cramer_map (i : n) : α := (A.update_column i b).det lemma cramer_map_is_linear (i : n) : is_linear_map α (λ b, cramer_map A b i) := { map_add := det_update_column_add _ _, map_smul := det_update_column_smul _ _ } lemma cramer_is_linear : is_linear_map α (cramer_map A) := begin split; intros; ext i, { apply (cramer_map_is_linear A i).1 }, { apply (cramer_map_is_linear A i).2 } end /-- `cramer A b i` is the determinant of the matrix `A` with column `i` replaced with `b`, and thus `cramer A b` is the vector output by Cramer's rule on `A` and `b`. If `A ⬝ x = b` has a unique solution in `x`, `cramer A` sends the vector `b` to `A.det • x`. Otherwise, the outcome of `cramer` is well-defined but not necessarily useful. -/ def cramer (A : matrix n n α) : (n → α) →ₗ[α] (n → α) := is_linear_map.mk' (cramer_map A) (cramer_is_linear A) lemma cramer_apply (i : n) : cramer A b i = (A.update_column i b).det := rfl lemma cramer_transpose_apply (i : n) : cramer Aᵀ b i = (A.update_row i b).det := by rw [cramer_apply, update_column_transpose, det_transpose] lemma cramer_transpose_row_self (i : n) : Aᵀ.cramer (A i) = pi.single i A.det := begin ext j, rw [cramer_apply, pi.single_apply], split_ifs with h, { -- i = j: this entry should be `A.det` subst h, simp only [update_column_transpose, det_transpose, update_row, function.update_eq_self] }, { -- i ≠ j: this entry should be 0 rw [update_column_transpose, det_transpose], apply det_zero_of_row_eq h, rw [update_row_self, update_row_ne (ne.symm h)] } end lemma cramer_row_self (i : n) (h : ∀ j, b j = A j i) : A.cramer b = pi.single i A.det := begin rw [← transpose_transpose A, det_transpose], convert cramer_transpose_row_self Aᵀ i, exact funext h end @[simp] lemma cramer_one : cramer (1 : matrix n n α) = 1 := begin ext i j, convert congr_fun (cramer_row_self (1 : matrix n n α) (pi.single i 1) i _) j, { simp }, { intros j, rw [matrix.one_eq_pi_single, pi.single_comm] } end lemma cramer_smul (r : α) (A : matrix n n α) : cramer (r • A) = r ^ (fintype.card n - 1) • cramer A := linear_map.ext $ λ b, funext $ λ _, det_update_column_smul' _ _ _ _ @[simp] lemma cramer_subsingleton_apply [subsingleton n] (A : matrix n n α) (b : n → α) (i : n) : cramer A b i = b i := by rw [cramer_apply, det_eq_elem_of_subsingleton _ i, update_column_self] lemma cramer_zero [nontrivial n] : cramer (0 : matrix n n α) = 0 := begin ext i j, obtain ⟨j', hj'⟩ : ∃ j', j' ≠ j := exists_ne j, apply det_eq_zero_of_column_eq_zero j', intro j'', simp [update_column_ne hj'], end /-- Use linearity of `cramer` to take it out of a summation. -/ lemma sum_cramer {β} (s : finset β) (f : β → n → α) : ∑ x in s, cramer A (f x) = cramer A (∑ x in s, f x) := (linear_map.map_sum (cramer A)).symm /-- Use linearity of `cramer` and vector evaluation to take `cramer A _ i` out of a summation. -/ lemma sum_cramer_apply {β} (s : finset β) (f : n → β → α) (i : n) : ∑ x in s, cramer A (λ j, f j x) i = cramer A (λ (j : n), ∑ x in s, f j x) i := calc ∑ x in s, cramer A (λ j, f j x) i = (∑ x in s, cramer A (λ j, f j x)) i : (finset.sum_apply i s _).symm ... = cramer A (λ (j : n), ∑ x in s, f j x) i : by { rw [sum_cramer, cramer_apply], congr' with j, apply finset.sum_apply } end cramer section adjugate /-! ### `adjugate` section Define the `adjugate` matrix and a few equations. These will hold for any matrix over a commutative ring. -/ /-- The adjugate matrix is the transpose of the cofactor matrix. Typically, the cofactor matrix is defined by taking the determinant of minors, i.e. the matrix with a row and column removed. However, the proof of `mul_adjugate` becomes a lot easier if we define the minor as replacing a column with a basis vector, since it allows us to use facts about the `cramer` map. -/ def adjugate (A : matrix n n α) : matrix n n α := λ i, cramer Aᵀ (pi.single i 1) lemma adjugate_def (A : matrix n n α) : adjugate A = λ i, cramer Aᵀ (pi.single i 1) := rfl lemma adjugate_apply (A : matrix n n α) (i j : n) : adjugate A i j = (A.update_row j (pi.single i 1)).det := by { rw adjugate_def, simp only, rw [cramer_apply, update_column_transpose, det_transpose], } lemma adjugate_transpose (A : matrix n n α) : (adjugate A)ᵀ = adjugate (Aᵀ) := begin ext i j, rw [transpose_apply, adjugate_apply, adjugate_apply, update_row_transpose, det_transpose], rw [det_apply', det_apply'], apply finset.sum_congr rfl, intros σ _, congr' 1, by_cases i = σ j, { -- Everything except `(i , j)` (= `(σ j , j)`) is given by A, and the rest is a single `1`. congr; ext j', subst h, have : σ j' = σ j ↔ j' = j := σ.injective.eq_iff, rw [update_row_apply, update_column_apply], simp_rw this, rw [←dite_eq_ite, ←dite_eq_ite], congr' 1 with rfl, rw [pi.single_eq_same, pi.single_eq_same], }, { -- Otherwise, we need to show that there is a `0` somewhere in the product. have : (∏ j' : n, update_column A j (pi.single i 1) (σ j') j') = 0, { apply prod_eq_zero (mem_univ j), rw [update_column_self, pi.single_eq_of_ne' h], }, rw this, apply prod_eq_zero (mem_univ (σ⁻¹ i)), erw [apply_symm_apply σ i, update_row_self], apply pi.single_eq_of_ne, intro h', exact h ((symm_apply_eq σ).mp h') } end /-- Since the map `b ↦ cramer A b` is linear in `b`, it must be multiplication by some matrix. This matrix is `A.adjugate`. -/ lemma cramer_eq_adjugate_mul_vec (A : matrix n n α) (b : n → α) : cramer A b = A.adjugate.mul_vec b := begin nth_rewrite 1 ← A.transpose_transpose, rw [← adjugate_transpose, adjugate_def], have : b = ∑ i, (b i) • (pi.single i 1), { refine (pi_eq_sum_univ b).trans _, congr' with j, simp [pi.single_apply, eq_comm], congr, }, nth_rewrite 0 this, ext k, simp [mul_vec, dot_product, mul_comm], end lemma mul_adjugate_apply (A : matrix n n α) (i j k) : A i k * adjugate A k j = cramer Aᵀ (pi.single k (A i k)) j := begin erw [←smul_eq_mul, ←pi.smul_apply, ←linear_map.map_smul, ←pi.single_smul', smul_eq_mul, mul_one], end lemma mul_adjugate (A : matrix n n α) : A ⬝ adjugate A = A.det • 1 := begin ext i j, rw [mul_apply, pi.smul_apply, pi.smul_apply, one_apply, smul_eq_mul, mul_boole], simp [mul_adjugate_apply, sum_cramer_apply, cramer_transpose_row_self, pi.single_apply, eq_comm] end lemma adjugate_mul (A : matrix n n α) : adjugate A ⬝ A = A.det • 1 := calc adjugate A ⬝ A = (Aᵀ ⬝ (adjugate Aᵀ))ᵀ : by rw [←adjugate_transpose, ←transpose_mul, transpose_transpose] ... = A.det • 1 : by rw [mul_adjugate (Aᵀ), det_transpose, transpose_smul, transpose_one] lemma adjugate_smul (r : α) (A : matrix n n α) : adjugate (r • A) = r ^ (fintype.card n - 1) • adjugate A := begin rw [adjugate, adjugate, transpose_smul, cramer_smul], refl, end /-- A stronger form of **Cramer's rule** that allows us to solve some instances of `A ⬝ x = b` even if the determinant is not a unit. A sufficient (but still not necessary) condition is that `A.det` divides `b`. -/ @[simp] lemma mul_vec_cramer (A : matrix n n α) (b : n → α) : A.mul_vec (cramer A b) = A.det • b := by rw [cramer_eq_adjugate_mul_vec, mul_vec_mul_vec, mul_adjugate, smul_mul_vec_assoc, one_mul_vec] lemma adjugate_subsingleton [subsingleton n] (A : matrix n n α) : adjugate A = 1 := begin ext i j, simp [subsingleton.elim i j, adjugate_apply, det_eq_elem_of_subsingleton _ i] end lemma adjugate_eq_one_of_card_eq_one {A : matrix n n α} (h : fintype.card n = 1) : adjugate A = 1 := begin haveI : subsingleton n := fintype.card_le_one_iff_subsingleton.mp h.le, exact adjugate_subsingleton _ end @[simp] lemma adjugate_zero [nontrivial n] : adjugate (0 : matrix n n α) = 0 := begin ext i j, obtain ⟨j', hj'⟩ : ∃ j', j' ≠ j := exists_ne j, apply det_eq_zero_of_column_eq_zero j', intro j'', simp [update_column_ne hj'], end @[simp] lemma adjugate_one : adjugate (1 : matrix n n α) = 1 := by { ext, simp [adjugate_def, matrix.one_apply, pi.single_apply, eq_comm] } lemma _root_.ring_hom.map_adjugate {R S : Type*} [comm_ring R] [comm_ring S] (f : R →+* S) (M : matrix n n R) : f.map_matrix M.adjugate = matrix.adjugate (f.map_matrix M) := begin ext i k, have : pi.single i (1 : S) = f ∘ pi.single i 1, { rw ←f.map_one, exact pi.single_op (λ i, f) (λ i, f.map_zero) i (1 : R) }, rw [adjugate_apply, ring_hom.map_matrix_apply, map_apply, ring_hom.map_matrix_apply, this, ←map_update_row, ←ring_hom.map_matrix_apply, ←ring_hom.map_det, ←adjugate_apply] end lemma _root_.alg_hom.map_adjugate {R A B : Type*} [comm_semiring R] [comm_ring A] [comm_ring B] [algebra R A] [algebra R B] (f : A →ₐ[R] B) (M : matrix n n A) : f.map_matrix M.adjugate = matrix.adjugate (f.map_matrix M) := f.to_ring_hom.map_adjugate _ lemma det_adjugate (A : matrix n n α) : (adjugate A).det = A.det ^ (fintype.card n - 1) := begin -- get rid of the `- 1` cases (fintype.card n).eq_zero_or_pos with h_card h_card, { haveI : is_empty n := fintype.card_eq_zero_iff.mp h_card, rw [h_card, nat.zero_sub, pow_zero, adjugate_subsingleton, det_one] }, replace h_card := tsub_add_cancel_of_le h_card.nat_succ_le, -- express `A` as an evaluation of a polynomial in n^2 variables, and solve in the polynomial ring -- where `A'.det` is non-zero. let A' := mv_polynomial_X n n ℤ, suffices : A'.adjugate.det = A'.det ^ (fintype.card n - 1), { rw [←mv_polynomial_X_map_matrix_aeval ℤ A, ←alg_hom.map_adjugate, ←alg_hom.map_det, ←alg_hom.map_det, ←alg_hom.map_pow, this] }, apply mul_left_cancel₀ (show A'.det ≠ 0, from det_mv_polynomial_X_ne_zero n ℤ), calc A'.det * A'.adjugate.det = (A' ⬝ adjugate A').det : (det_mul _ _).symm ... = A'.det ^ fintype.card n : by rw [mul_adjugate, det_smul, det_one, mul_one] ... = A'.det * A'.det ^ (fintype.card n - 1) : by rw [←pow_succ, h_card], end @[simp] lemma adjugate_fin_zero (A : matrix (fin 0) (fin 0) α) : adjugate A = 0 := @subsingleton.elim _ matrix.subsingleton_of_empty_left _ _ @[simp] lemma adjugate_fin_one (A : matrix (fin 1) (fin 1) α) : adjugate A = 1 := adjugate_subsingleton A lemma adjugate_fin_two (A : matrix (fin 2) (fin 2) α) : adjugate A = ![![A 1 1, -A 0 1], ![-A 1 0, A 0 0]] := begin ext i j, rw [adjugate_apply, det_fin_two], fin_cases i with [0, 1]; fin_cases j with [0, 1]; simp only [nat.one_ne_zero, one_mul, fin.one_eq_zero_iff, pi.single_eq_same, zero_mul, fin.zero_eq_one_iff, sub_zero, pi.single_eq_of_ne, ne.def, not_false_iff, update_row_self, update_row_ne, cons_val_zero, mul_zero, mul_one, zero_sub, cons_val_one, head_cons], end @[simp] lemma adjugate_fin_two' (a b c d : α) : adjugate ![![a, b], ![c, d]] = ![![d, -b], ![-c, a]] := adjugate_fin_two _ lemma adjugate_conj_transpose [star_ring α] (A : matrix n n α) : A.adjugateᴴ = adjugate (Aᴴ) := begin dsimp only [conj_transpose], have : Aᵀ.adjugate.map star = adjugate (Aᵀ.map star) := ((star_ring_aut : α ≃+* α).to_ring_hom.map_adjugate Aᵀ), rw [A.adjugate_transpose, this], end lemma is_regular_of_is_left_regular_det {A : matrix n n α} (hA : is_left_regular A.det) : is_regular A := begin split, { intros B C h, refine hA.matrix _, rw [←matrix.one_mul B, ←matrix.one_mul C, ←matrix.smul_mul, ←matrix.smul_mul, ←adjugate_mul, matrix.mul_assoc, matrix.mul_assoc, ←mul_eq_mul A, h, mul_eq_mul] }, { intros B C h, simp only [mul_eq_mul] at h, refine hA.matrix _, rw [←matrix.mul_one B, ←matrix.mul_one C, ←matrix.mul_smul, ←matrix.mul_smul, ←mul_adjugate, ←matrix.mul_assoc, ←matrix.mul_assoc, h] } end lemma adjugate_mul_distrib_aux (A B : matrix n n α) (hA : is_left_regular A.det) (hB : is_left_regular B.det) : adjugate (A ⬝ B) = adjugate B ⬝ adjugate A := begin have hAB : is_left_regular (A ⬝ B).det, { rw [det_mul], exact hA.mul hB }, refine (is_regular_of_is_left_regular_det hAB).left _, rw [mul_eq_mul, mul_adjugate, mul_eq_mul, matrix.mul_assoc, ←matrix.mul_assoc B, mul_adjugate, smul_mul, matrix.one_mul, mul_smul, mul_adjugate, smul_smul, mul_comm, ←det_mul] end /-- Proof follows from "The trace Cayley-Hamilton theorem" by Darij Grinberg, Section 5.3 -/ lemma adjugate_mul_distrib (A B : matrix n n α) : adjugate (A ⬝ B) = adjugate B ⬝ adjugate A := begin let g : matrix n n α → matrix n n (polynomial α) := λ M, M.map polynomial.C + (polynomial.X : polynomial α) • 1, let f' : matrix n n (polynomial α) →+* matrix n n α := (polynomial.eval_ring_hom 0).map_matrix, have f'_inv : ∀ M, f' (g M) = M, { intro, ext, simp [f', g], }, have f'_adj : ∀ (M : matrix n n α), f' (adjugate (g M)) = adjugate M, { intro, rw [ring_hom.map_adjugate, f'_inv] }, have f'_g_mul : ∀ (M N : matrix n n α), f' (g M ⬝ g N) = M ⬝ N, { intros, rw [←mul_eq_mul, ring_hom.map_mul, f'_inv, f'_inv, mul_eq_mul] }, have hu : ∀ (M : matrix n n α), is_regular (g M).det, { intros M, refine polynomial.monic.is_regular _, simp only [g, polynomial.monic.def, ←polynomial.leading_coeff_det_X_one_add_C M, add_comm] }, rw [←f'_adj, ←f'_adj, ←f'_adj, ←mul_eq_mul (f' (adjugate (g B))), ←f'.map_mul, mul_eq_mul, ←adjugate_mul_distrib_aux _ _ (hu A).left (hu B).left, ring_hom.map_adjugate, ring_hom.map_adjugate, f'_inv, f'_g_mul] end @[simp] lemma adjugate_pow (A : matrix n n α) (k : ℕ) : adjugate (A ^ k) = (adjugate A) ^ k := begin induction k with k IH, { simp }, { rw [pow_succ', mul_eq_mul, adjugate_mul_distrib, IH, ←mul_eq_mul, pow_succ] } end lemma det_smul_adjugate_adjugate (A : matrix n n α) : det A • adjugate (adjugate A) = det A ^ (fintype.card n - 1) • A := begin have : A ⬝ (A.adjugate ⬝ A.adjugate.adjugate) = A ⬝ (A.det ^ (fintype.card n - 1) • 1), { rw [←adjugate_mul_distrib, adjugate_mul, adjugate_smul, adjugate_one], }, rwa [←matrix.mul_assoc, mul_adjugate, matrix.mul_smul, matrix.mul_one, matrix.smul_mul, matrix.one_mul] at this, end /-- Note that this is not true for `fintype.card n = 1` since `1 - 2 = 0` and not `-1`. -/ -- express `A` as an evaluation of a polynomial in n^2 variables, and solve in the polynomial ring -- where `A'.det` is non-zero. let A' := mv_polynomial_X n n ℤ, suffices : adjugate (adjugate A') = det A' ^ (fintype.card n - 2) • A', { rw [←mv_polynomial_X_map_matrix_aeval ℤ A, ←alg_hom.map_adjugate, ←alg_hom.map_adjugate, this, ←alg_hom.map_det, ← alg_hom.map_pow], -- TODO: missing an `alg_hom.map_smul_of_tower` here. ext i j, dsimp [-mv_polynomial_X], rw [←alg_hom.map_mul] }, have h_card' : fintype.card n - 2 + 1 = fintype.card n - 1, { simp [h_card] }, have is_reg : is_smul_regular (mv_polynomial (n × n) ℤ) (det A') := λ x y, mul_left_cancel₀ (det_mv_polynomial_X_ne_zero n ℤ), apply is_reg.matrix, rw [smul_smul, ←pow_succ, h_card', det_smul_adjugate_adjugate], end /-- A weaker version of `matrix.adjugate_adjugate` that uses `nontrivial`. -/ lemma adjugate_adjugate' (A : matrix n n α) [nontrivial n] : adjugate (adjugate A) = det A ^ (fintype.card n - 2) • A := adjugate_adjugate _ $ fintype.one_lt_card.ne' end adjugate end matrix
lemma analytic_on_neg [analytic_intros]: "f analytic_on S \<Longrightarrow> (\<lambda>z. -(f z)) analytic_on S"
rebol [ title: "print-struct" author: "Oldes" purpose: {Prints readable pairs of variables and values of the struct! datatype} ] print-struct: func[ {Prints readable pairs of variables and values of the struct! datatype} st [struct!] "Struct! to explore" /local val i ][ i: 0 parse first st [ opt [set val string! (print val loop length? val [prin "="] print "")] any [ set val word! ( insert/dup tail val: to-string val #"." 24 - length? val print [val pick second st i: i + 1] ) | any-type! ]] ]
Money Making Step-By-Step Video & Audio Lessons Walks You Through The Process Of Creating CASH, Cash Flow, and Building Financial Security! The foundations of every market dictate that when some people lose, other people gain. The American economy today is a mix of winners and losers. There were those who failed to capitalize on the rising market and then witnessed most of the wealth they had accumulated disappear when the real estate market crashed, causing the stock market to crash and wiping out the life savings of millions. On the other hand, those who sold ‘out at or near the top, and those who “shorted” the stock market are now poised to buy back in at mere fractions of the dollar, thereby building even greater fortunes than during the boom years. Does that mean that all those who don’t have the cash to re-enter the market are going to wind up having to painstakingly rebuild their lost financial security over the coming years? Not necessarily! I was born during the Great Depression and have seen a half dozen economic downturns over half a century of investing in single family houses. I lost money in most of them because I didn’t know how to exploit them. Once I’d learned the tricks of the trade, I made a fortune thirty years ago when Florida’s recession was at it’s height. The trick was learning ways to create cash and equity without the use of any of my money. There are no hidden secrets to doing this. It hinges on your desire to succeed. If you truly want to rise to the top of the heap, you have to learn how to take advantage of the current distressed housing market. Some of these techniques involve the use of Contingent Contracts and Options to control property until an end-user or investor can be found to buy a property at mere fractions of its original cost. Some involve being able to create debt instruments that can be used to buy and sell property. Still others involve the design and creation of real estate Notes that can be readily sold for cash to institutional and private investors. Ultimately, you should be buying as many deeply discounted cash flow houses as possible before the market rebounds. You can do this without cash if you learn and use some of the techniques I and others can teach you. Now, for the first time, I created a new seminar I call “MONEY MATTERS – Making Money Without Money” to help you learn these techniques. It will show you how to use them to recoup and surpass the financial security you may have lost. The seminar SOLD OUT both times it was taught! Learn the techniques and strategies you need to get through this recession with more wealth, cash flow, and money than before. Take a took at the Money Matters Recorded Seminar outline below and see if you don’t agree that there are some new strategies you can learn in this online seminar to help you take advantage of today’s tremendous real estate opportunities. In today’s economy, by using these techniques, you can rebuild your nest egg in far less time than it took to originally accumulate it; but you don’t want to delay. The current economic situation is changing daily. Once you let today’s opportunities pass you by, you may have to wait a generation for a chance to make as much money without money with your own talents and skill. Even if you attended the fast-paced Money Matters LIVE seminar, this Recorded Seminar will help you learn the concepts Jack taught. You can pause and rewind the audio and videos as many times as you need to to acquire a full and complete understanding of these important concepts, techniques and strategies. You don’t want to miss this cutting edge information about how to make money without money. Watch or Listen to Money Matters today so you can learn how to make money with the tremendous opportunities available for you right now. Just like missed opportunity, when it’s gone it’s gone!
open import Agda.Builtin.Equality postulate X : Set rigid0 : ((@0 x : X) → X) → X mutual H : ((@ω x : X) → X) → X H f = rigid0 _ testω : (f : (@0 x : X) → X) → H (\ (@ω x) → f x) ≡ rigid0 (\ (@0 x) → f x) testω f = refl
subroutine gen2(r,p,wt2,*) C---generate two particle phase space and x1,x2 integration C---p1+p2 --> p3+p4 c---- c---- if 'nodecay' is true, then the vector boson decay into massless c---- particles is not included and 2 less integration variables c---- are required implicit none include 'constants.f' include 'limits.f' include 'mxdim.f' include 'phasemin.f' include 'nodecay.f' include 'breit.f' include 'x1x2.f' integer j,nu double precision r(mxdim),p(mxpart,4),rdk1,rdk2 double precision ymax,yave,ydif,xjac,y3,y4,phi,wt0,wt2,w3 double precision pt,s34,rtshat,udif include 'energy.f' parameter(wt0=1d0/16d0/pi) do j=1,mxpart do nu=1,4 p(j,nu)=0d0 enddo enddo wt2=0d0 c--- dummy values if there's no decay if (nodecay) then rdk1=0.5d0 rdk2=0.5d0 else rdk1=r(3) rdk2=r(4) endif if (n3.eq.0) then w3=(wsqmax-wsqmin) s34=(wsqmax-wsqmin)*r(1)+wsqmin elseif (n3.eq.1) then call breitw(r(1),wsqmin,wsqmax,mass3,width3,s34,w3) endif rtshat=dsqrt(s34) ymax=dlog(sqrts/rtshat) yave=ymax*(two*r(2)-1d0) c----udif==tanh(ydif) udif=(two*rdk1-1d0) ydif=half*dlog((1d0+udif)/(1d0-udif)) xjac=four*ymax y3=yave+ydif y4=yave-ydif xjac=xjac*w3 phi=2d0*pi*rdk2 pt=rtshat/(2d0*dcosh(ydif)) xx(1)=rtshat/sqrts*dexp(+yave) xx(2)=rtshat/sqrts*dexp(-yave) if ((xx(1) .gt. 1d0) & .or. (xx(2) .gt. 1d0) & .or. (xx(1) .lt. xmin) & .or. (xx(2) .lt. xmin)) then write(6,*) 'problems with xx(1),xx(2) in gen2',xx(1),xx(2) return 1 endif p(1,4)=-0.5d0*xx(1)*sqrts p(1,1)=0d0 p(1,2)=0d0 p(1,3)=-0.5d0*xx(1)*sqrts p(2,4)=-0.5d0*xx(2)*sqrts p(2,1)=0d0 p(2,2)=0d0 p(2,3)=+0.5d0*xx(2)*sqrts p(3,4)=+pt*dcosh(y3) p(3,1)=+pt*dsin(phi) p(3,2)=+pt*dcos(phi) p(3,3)=+pt*dsinh(y3) p(4,4)=+pt*dcosh(y4) p(4,1)=-pt*dsin(phi) p(4,2)=-pt*dcos(phi) p(4,3)=+pt*dsinh(y4) wt2=wt0*xjac/sqrts**2 return end
class Semigroup (α : Type u) extends Mul α where mul_assoc (a b c : α) : a * b * c = a * (b * c) export Semigroup (mul_assoc) class MulComm (α : Type u) extends Mul α where mul_comm (a b : α) : a * b = b * a export MulComm (mul_comm) class CommSemigroup (α : Type u) extends Semigroup α where mul_comm (a b : α) : a * b = b * a instance [CommSemigroup α] : MulComm α where mul_comm := CommSemigroup.mul_comm class One (α : Type u) where one : α instance [One α] : OfNat α (nat_lit 1) where ofNat := One.one class Monoid (α : Type u) extends Semigroup α, One α where one_mul (a : α) : 1 * a = a mul_one (a : α) : a * 1 = a export Monoid (one_mul mul_one) class CommMonoid (α : Type u) extends Monoid α where mul_comm (a b : α) : a * b = b * a instance [CommMonoid α] : CommSemigroup α where mul_comm := CommMonoid.mul_comm instance [CommMonoid α] : MulComm α where mul_comm := CommSemigroup.mul_comm class Inv (α : Type u) where inv : α → α postfix:max "⁻¹" => Inv.inv class Group (α : Type u) extends Monoid α, Inv α where mul_left_inv (a : α) : a⁻¹ * a = 1 export Group (mul_left_inv) class CommGroup (α : Type u) extends Group α where mul_comm (a b : α) : a * b = b * a instance [CommGroup α] : CommMonoid α where mul_comm := CommGroup.mul_comm instance [CommGroup α] : MulComm α where mul_comm := CommGroup.mul_comm theorem inv_mul_cancel_left [Group α] (a b : α) : a⁻¹ * (a * b) = b := by rw [← mul_assoc, mul_left_inv, one_mul] theorem inv_eq_of_mul_eq_one [Group α] {a b : α} (h : a * b = 1) : a⁻¹ = b := by rw [← mul_one a⁻¹, ←h, ←mul_assoc, mul_left_inv, one_mul] theorem inv_inv [Group α] (a : α) : (a⁻¹)⁻¹ = a := inv_eq_of_mul_eq_one (mul_left_inv a) theorem mul_right_inv [Group α] (a : α) : a * a⁻¹ = 1 := by have : a⁻¹⁻¹ * a⁻¹ = 1 := by rw [mul_left_inv] rw [inv_inv] at this assumption theorem mul_inv_rev [Group α] (a b : α) : (a * b)⁻¹ = b⁻¹ * a⁻¹ := by apply inv_eq_of_mul_eq_one rw [mul_assoc, ← mul_assoc b, mul_right_inv, one_mul, mul_right_inv] theorem mul_inv [CommGroup α] (a b : α) : (a * b)⁻¹ = a⁻¹ * b⁻¹ := by rw [mul_inv_rev, mul_comm]
% The following vectorized Matlab code implements Algorithm 1 from the % paper % Projection onto the probability simplex: An efficient algorithm with a % simple proof, and an application, by W. Wang and M.A. Carreira-Perpinan, % see https://arxiv.org/abs/1309.1541 % % It projects each column vector in the D N matrix Y onto the probability % simplex in D dimensions. function X = SimplexColProj(Y) Y = Y'; [N,D] = size(Y); X = sort(Y,2,'descend'); Xtmp = (cumsum(X,2)-1)*diag(sparse(1./(1:D))); X = max(bsxfun(@minus,Y,Xtmp(sub2ind([N,D],(1:N)',sum(X>Xtmp,2)))),0); X = X';
% % Usage: Y =mexSort(X); % % Name: mexSort % % Description: sort the elements of X using quicksort % % Inputs: X: double vector of size n % % Output: Y: double vector of size n % % Author: Julien Mairal, 2010
= = Modern literature = =
""" Create a bar chart to compare GPT-3 (175 billion) and Codex (12 billion). """ import matplotlib.pyplot as plt import numpy as np def main(): """ Generate data and plot it. :return: """ # Create data x = np.arange(2) y = [175, 12] # Create plot plt.bar(x, y) plt.xticks(x, ('GPT-3', 'Codex')) plt.ylabel('Number of tokens') plt.title('Number of tokens in GPT-3 and Codex') plt.show() def generate_pie_chart_data(): """ Generate data for a pie chart. :return: """ # Create data labels = 'GPT-3', 'Codex' sizes = [175, 12] # Create plot plt.pie(sizes, labels=labels, autopct='%1.1f%%', shadow=True, startangle=90) plt.axis('equal') plt.show() if __name__ == '__main__': generate_pie_chart_data()
Billy Graham impacted the world during his six-plus decades of ministry, but neither a stage nor a well-known name is vital to sharing the love of God. This question has stirred much debate. Historically, Christians have voted for candidates of different faiths, including Mormons, based on how they live their lives and how deeply committed they are to upholding the U.S. Constitution. Remember, God ordained government, and we are not electing a pastor-in-chief, we are electing a commander-in-chief.
[STATEMENT] lemma Rcd_type2: "\<Gamma> \<turnstile> Rcd fs : T \<Longrightarrow> \<Gamma> \<turnstile> T <: RcdT fTs \<Longrightarrow> \<Gamma> \<turnstile> map (\<lambda>(l, T). (l, the (fs\<langle>l\<rangle>\<^sub>?))) fTs [:] fTs" [PROOF STATE] proof (prove) goal (1 subgoal): 1. \<lbrakk>\<Gamma> \<turnstile> Rcd fs : T; \<Gamma> \<turnstile> T <: RcdT fTs\<rbrakk> \<Longrightarrow> \<Gamma> \<turnstile> map (\<lambda>(l, T). (l, the (fs\<langle>l\<rangle>\<^sub>?))) fTs [:] fTs [PROOF STEP] apply (drule Rcd_type1) [PROOF STATE] proof (prove) goal (3 subgoals): 1. \<Gamma> \<turnstile> T <: RcdT fTs \<Longrightarrow> Rcd fs = Rcd ?fs 2. \<Gamma> \<turnstile> T <: RcdT fTs \<Longrightarrow> \<Gamma> \<turnstile> T <: RcdT ?fTs 3. \<lbrakk>\<Gamma> \<turnstile> T <: RcdT fTs; \<forall>(l, U)\<in>set ?fTs. \<exists>u. ?fs\<langle>l\<rangle>\<^sub>? = \<lfloor>u\<rfloor> \<and> \<Gamma> \<turnstile> u : U\<rbrakk> \<Longrightarrow> \<Gamma> \<turnstile> map (\<lambda>(l, T). (l, the (fs\<langle>l\<rangle>\<^sub>?))) fTs [:] fTs [PROOF STEP] apply (rule refl) [PROOF STATE] proof (prove) goal (2 subgoals): 1. \<Gamma> \<turnstile> T <: RcdT fTs \<Longrightarrow> \<Gamma> \<turnstile> T <: RcdT ?fTs 2. \<lbrakk>\<Gamma> \<turnstile> T <: RcdT fTs; \<forall>(l, U)\<in>set ?fTs. \<exists>u. fs\<langle>l\<rangle>\<^sub>? = \<lfloor>u\<rfloor> \<and> \<Gamma> \<turnstile> u : U\<rbrakk> \<Longrightarrow> \<Gamma> \<turnstile> map (\<lambda>(l, T). (l, the (fs\<langle>l\<rangle>\<^sub>?))) fTs [:] fTs [PROOF STEP] apply assumption [PROOF STATE] proof (prove) goal (1 subgoal): 1. \<lbrakk>\<Gamma> \<turnstile> T <: RcdT fTs; \<forall>(l, U)\<in>set fTs. \<exists>u. fs\<langle>l\<rangle>\<^sub>? = \<lfloor>u\<rfloor> \<and> \<Gamma> \<turnstile> u : U\<rbrakk> \<Longrightarrow> \<Gamma> \<turnstile> map (\<lambda>(l, T). (l, the (fs\<langle>l\<rangle>\<^sub>?))) fTs [:] fTs [PROOF STEP] apply (induct fTs rule: list.induct) [PROOF STATE] proof (prove) goal (2 subgoals): 1. \<lbrakk>\<Gamma> \<turnstile> T <: RcdT []; \<forall>(l, U)\<in>set []. \<exists>u. fs\<langle>l\<rangle>\<^sub>? = \<lfloor>u\<rfloor> \<and> \<Gamma> \<turnstile> u : U\<rbrakk> \<Longrightarrow> \<Gamma> \<turnstile> map (\<lambda>(l, T). (l, the (fs\<langle>l\<rangle>\<^sub>?))) [] [:] [] 2. \<And>x1 x2. \<lbrakk>\<lbrakk>\<Gamma> \<turnstile> T <: RcdT x2; \<forall>(l, U)\<in>set x2. \<exists>u. fs\<langle>l\<rangle>\<^sub>? = \<lfloor>u\<rfloor> \<and> \<Gamma> \<turnstile> u : U\<rbrakk> \<Longrightarrow> \<Gamma> \<turnstile> map (\<lambda>(l, T). (l, the (fs\<langle>l\<rangle>\<^sub>?))) x2 [:] x2; \<Gamma> \<turnstile> T <: RcdT (x1 \<Colon> x2); \<forall>(l, U)\<in>set (x1 \<Colon> x2). \<exists>u. fs\<langle>l\<rangle>\<^sub>? = \<lfloor>u\<rfloor> \<and> \<Gamma> \<turnstile> u : U\<rbrakk> \<Longrightarrow> \<Gamma> \<turnstile> map (\<lambda>(l, T). (l, the (fs\<langle>l\<rangle>\<^sub>?))) (x1 \<Colon> x2) [:] x1 \<Colon> x2 [PROOF STEP] apply simp [PROOF STATE] proof (prove) goal (2 subgoals): 1. \<Gamma> \<turnstile> T <: RcdT [] \<Longrightarrow> \<Gamma> \<turnstile> [] [:] [] 2. \<And>x1 x2. \<lbrakk>\<lbrakk>\<Gamma> \<turnstile> T <: RcdT x2; \<forall>(l, U)\<in>set x2. \<exists>u. fs\<langle>l\<rangle>\<^sub>? = \<lfloor>u\<rfloor> \<and> \<Gamma> \<turnstile> u : U\<rbrakk> \<Longrightarrow> \<Gamma> \<turnstile> map (\<lambda>(l, T). (l, the (fs\<langle>l\<rangle>\<^sub>?))) x2 [:] x2; \<Gamma> \<turnstile> T <: RcdT (x1 \<Colon> x2); \<forall>(l, U)\<in>set (x1 \<Colon> x2). \<exists>u. fs\<langle>l\<rangle>\<^sub>? = \<lfloor>u\<rfloor> \<and> \<Gamma> \<turnstile> u : U\<rbrakk> \<Longrightarrow> \<Gamma> \<turnstile> map (\<lambda>(l, T). (l, the (fs\<langle>l\<rangle>\<^sub>?))) (x1 \<Colon> x2) [:] x1 \<Colon> x2 [PROOF STEP] apply (rule T_Nil) [PROOF STATE] proof (prove) goal (2 subgoals): 1. \<Gamma> \<turnstile> T <: RcdT [] \<Longrightarrow> \<Gamma> \<turnstile>\<^sub>w\<^sub>f 2. \<And>x1 x2. \<lbrakk>\<lbrakk>\<Gamma> \<turnstile> T <: RcdT x2; \<forall>(l, U)\<in>set x2. \<exists>u. fs\<langle>l\<rangle>\<^sub>? = \<lfloor>u\<rfloor> \<and> \<Gamma> \<turnstile> u : U\<rbrakk> \<Longrightarrow> \<Gamma> \<turnstile> map (\<lambda>(l, T). (l, the (fs\<langle>l\<rangle>\<^sub>?))) x2 [:] x2; \<Gamma> \<turnstile> T <: RcdT (x1 \<Colon> x2); \<forall>(l, U)\<in>set (x1 \<Colon> x2). \<exists>u. fs\<langle>l\<rangle>\<^sub>? = \<lfloor>u\<rfloor> \<and> \<Gamma> \<turnstile> u : U\<rbrakk> \<Longrightarrow> \<Gamma> \<turnstile> map (\<lambda>(l, T). (l, the (fs\<langle>l\<rangle>\<^sub>?))) (x1 \<Colon> x2) [:] x1 \<Colon> x2 [PROOF STEP] apply (erule wf_subtypeE) [PROOF STATE] proof (prove) goal (2 subgoals): 1. \<lbrakk>\<Gamma> \<turnstile>\<^sub>w\<^sub>f; \<Gamma> \<turnstile>\<^sub>w\<^sub>f T; \<Gamma> \<turnstile>\<^sub>w\<^sub>f RcdT []\<rbrakk> \<Longrightarrow> \<Gamma> \<turnstile>\<^sub>w\<^sub>f 2. \<And>x1 x2. \<lbrakk>\<lbrakk>\<Gamma> \<turnstile> T <: RcdT x2; \<forall>(l, U)\<in>set x2. \<exists>u. fs\<langle>l\<rangle>\<^sub>? = \<lfloor>u\<rfloor> \<and> \<Gamma> \<turnstile> u : U\<rbrakk> \<Longrightarrow> \<Gamma> \<turnstile> map (\<lambda>(l, T). (l, the (fs\<langle>l\<rangle>\<^sub>?))) x2 [:] x2; \<Gamma> \<turnstile> T <: RcdT (x1 \<Colon> x2); \<forall>(l, U)\<in>set (x1 \<Colon> x2). \<exists>u. fs\<langle>l\<rangle>\<^sub>? = \<lfloor>u\<rfloor> \<and> \<Gamma> \<turnstile> u : U\<rbrakk> \<Longrightarrow> \<Gamma> \<turnstile> map (\<lambda>(l, T). (l, the (fs\<langle>l\<rangle>\<^sub>?))) (x1 \<Colon> x2) [:] x1 \<Colon> x2 [PROOF STEP] apply assumption [PROOF STATE] proof (prove) goal (1 subgoal): 1. \<And>x1 x2. \<lbrakk>\<lbrakk>\<Gamma> \<turnstile> T <: RcdT x2; \<forall>(l, U)\<in>set x2. \<exists>u. fs\<langle>l\<rangle>\<^sub>? = \<lfloor>u\<rfloor> \<and> \<Gamma> \<turnstile> u : U\<rbrakk> \<Longrightarrow> \<Gamma> \<turnstile> map (\<lambda>(l, T). (l, the (fs\<langle>l\<rangle>\<^sub>?))) x2 [:] x2; \<Gamma> \<turnstile> T <: RcdT (x1 \<Colon> x2); \<forall>(l, U)\<in>set (x1 \<Colon> x2). \<exists>u. fs\<langle>l\<rangle>\<^sub>? = \<lfloor>u\<rfloor> \<and> \<Gamma> \<turnstile> u : U\<rbrakk> \<Longrightarrow> \<Gamma> \<turnstile> map (\<lambda>(l, T). (l, the (fs\<langle>l\<rangle>\<^sub>?))) (x1 \<Colon> x2) [:] x1 \<Colon> x2 [PROOF STEP] apply (simp add: split_paired_all) [PROOF STATE] proof (prove) goal (1 subgoal): 1. \<And>a b x2. \<lbrakk>\<Gamma> \<turnstile> T <: RcdT x2 \<Longrightarrow> \<Gamma> \<turnstile> map (\<lambda>(l, T). (l, the (fs\<langle>l\<rangle>\<^sub>?))) x2 [:] x2; \<Gamma> \<turnstile> T <: RcdT ((a, b) \<Colon> x2); \<forall>(l, U)\<in>set ((a, b) \<Colon> x2). \<exists>u. fs\<langle>l\<rangle>\<^sub>? = \<lfloor>u\<rfloor> \<and> \<Gamma> \<turnstile> u : U\<rbrakk> \<Longrightarrow> \<Gamma> \<turnstile> (a, the (fs\<langle>a\<rangle>\<^sub>?)) \<Colon> map (\<lambda>(l, T). (l, the (fs\<langle>l\<rangle>\<^sub>?))) x2 [:] (a, b) \<Colon> x2 [PROOF STEP] apply (rule T_Cons) [PROOF STATE] proof (prove) goal (3 subgoals): 1. \<And>a b x2. \<lbrakk>\<Gamma> \<turnstile> T <: RcdT x2 \<Longrightarrow> \<Gamma> \<turnstile> map (\<lambda>(l, T). (l, the (fs\<langle>l\<rangle>\<^sub>?))) x2 [:] x2; \<Gamma> \<turnstile> T <: RcdT ((a, b) \<Colon> x2); \<forall>(l, U)\<in>set ((a, b) \<Colon> x2). \<exists>u. fs\<langle>l\<rangle>\<^sub>? = \<lfloor>u\<rfloor> \<and> \<Gamma> \<turnstile> u : U\<rbrakk> \<Longrightarrow> \<Gamma> \<turnstile> the (fs\<langle>a\<rangle>\<^sub>?) : b 2. \<And>a b x2. \<lbrakk>\<Gamma> \<turnstile> T <: RcdT x2 \<Longrightarrow> \<Gamma> \<turnstile> map (\<lambda>(l, T). (l, the (fs\<langle>l\<rangle>\<^sub>?))) x2 [:] x2; \<Gamma> \<turnstile> T <: RcdT ((a, b) \<Colon> x2); \<forall>(l, U)\<in>set ((a, b) \<Colon> x2). \<exists>u. fs\<langle>l\<rangle>\<^sub>? = \<lfloor>u\<rfloor> \<and> \<Gamma> \<turnstile> u : U\<rbrakk> \<Longrightarrow> \<Gamma> \<turnstile> map (\<lambda>(l, T). (l, the (fs\<langle>l\<rangle>\<^sub>?))) x2 [:] x2 3. \<And>a b x2. \<lbrakk>\<Gamma> \<turnstile> T <: RcdT x2 \<Longrightarrow> \<Gamma> \<turnstile> map (\<lambda>(l, T). (l, the (fs\<langle>l\<rangle>\<^sub>?))) x2 [:] x2; \<Gamma> \<turnstile> T <: RcdT ((a, b) \<Colon> x2); \<forall>(l, U)\<in>set ((a, b) \<Colon> x2). \<exists>u. fs\<langle>l\<rangle>\<^sub>? = \<lfloor>u\<rfloor> \<and> \<Gamma> \<turnstile> u : U\<rbrakk> \<Longrightarrow> map (\<lambda>(l, T). (l, the (fs\<langle>l\<rangle>\<^sub>?))) x2\<langle>a\<rangle>\<^sub>? = \<bottom> [PROOF STEP] apply (drule_tac x=a and y=b in bpspec) [PROOF STATE] proof (prove) goal (4 subgoals): 1. \<And>a b x2. \<lbrakk>\<Gamma> \<turnstile> T <: RcdT x2 \<Longrightarrow> \<Gamma> \<turnstile> map (\<lambda>(l, T). (l, the (fs\<langle>l\<rangle>\<^sub>?))) x2 [:] x2; \<Gamma> \<turnstile> T <: RcdT ((a, b) \<Colon> x2)\<rbrakk> \<Longrightarrow> (a, b) \<in> set ((a, b) \<Colon> x2) 2. \<And>a b x2. \<lbrakk>\<Gamma> \<turnstile> T <: RcdT x2 \<Longrightarrow> \<Gamma> \<turnstile> map (\<lambda>(l, T). (l, the (fs\<langle>l\<rangle>\<^sub>?))) x2 [:] x2; \<Gamma> \<turnstile> T <: RcdT ((a, b) \<Colon> x2); \<exists>u. fs\<langle>a\<rangle>\<^sub>? = \<lfloor>u\<rfloor> \<and> \<Gamma> \<turnstile> u : b\<rbrakk> \<Longrightarrow> \<Gamma> \<turnstile> the (fs\<langle>a\<rangle>\<^sub>?) : b 3. \<And>a b x2. \<lbrakk>\<Gamma> \<turnstile> T <: RcdT x2 \<Longrightarrow> \<Gamma> \<turnstile> map (\<lambda>(l, T). (l, the (fs\<langle>l\<rangle>\<^sub>?))) x2 [:] x2; \<Gamma> \<turnstile> T <: RcdT ((a, b) \<Colon> x2); \<forall>(l, U)\<in>set ((a, b) \<Colon> x2). \<exists>u. fs\<langle>l\<rangle>\<^sub>? = \<lfloor>u\<rfloor> \<and> \<Gamma> \<turnstile> u : U\<rbrakk> \<Longrightarrow> \<Gamma> \<turnstile> map (\<lambda>(l, T). (l, the (fs\<langle>l\<rangle>\<^sub>?))) x2 [:] x2 4. \<And>a b x2. \<lbrakk>\<Gamma> \<turnstile> T <: RcdT x2 \<Longrightarrow> \<Gamma> \<turnstile> map (\<lambda>(l, T). (l, the (fs\<langle>l\<rangle>\<^sub>?))) x2 [:] x2; \<Gamma> \<turnstile> T <: RcdT ((a, b) \<Colon> x2); \<forall>(l, U)\<in>set ((a, b) \<Colon> x2). \<exists>u. fs\<langle>l\<rangle>\<^sub>? = \<lfloor>u\<rfloor> \<and> \<Gamma> \<turnstile> u : U\<rbrakk> \<Longrightarrow> map (\<lambda>(l, T). (l, the (fs\<langle>l\<rangle>\<^sub>?))) x2\<langle>a\<rangle>\<^sub>? = \<bottom> [PROOF STEP] apply simp [PROOF STATE] proof (prove) goal (3 subgoals): 1. \<And>a b x2. \<lbrakk>\<Gamma> \<turnstile> T <: RcdT x2 \<Longrightarrow> \<Gamma> \<turnstile> map (\<lambda>(l, T). (l, the (fs\<langle>l\<rangle>\<^sub>?))) x2 [:] x2; \<Gamma> \<turnstile> T <: RcdT ((a, b) \<Colon> x2); \<exists>u. fs\<langle>a\<rangle>\<^sub>? = \<lfloor>u\<rfloor> \<and> \<Gamma> \<turnstile> u : b\<rbrakk> \<Longrightarrow> \<Gamma> \<turnstile> the (fs\<langle>a\<rangle>\<^sub>?) : b 2. \<And>a b x2. \<lbrakk>\<Gamma> \<turnstile> T <: RcdT x2 \<Longrightarrow> \<Gamma> \<turnstile> map (\<lambda>(l, T). (l, the (fs\<langle>l\<rangle>\<^sub>?))) x2 [:] x2; \<Gamma> \<turnstile> T <: RcdT ((a, b) \<Colon> x2); \<forall>(l, U)\<in>set ((a, b) \<Colon> x2). \<exists>u. fs\<langle>l\<rangle>\<^sub>? = \<lfloor>u\<rfloor> \<and> \<Gamma> \<turnstile> u : U\<rbrakk> \<Longrightarrow> \<Gamma> \<turnstile> map (\<lambda>(l, T). (l, the (fs\<langle>l\<rangle>\<^sub>?))) x2 [:] x2 3. \<And>a b x2. \<lbrakk>\<Gamma> \<turnstile> T <: RcdT x2 \<Longrightarrow> \<Gamma> \<turnstile> map (\<lambda>(l, T). (l, the (fs\<langle>l\<rangle>\<^sub>?))) x2 [:] x2; \<Gamma> \<turnstile> T <: RcdT ((a, b) \<Colon> x2); \<forall>(l, U)\<in>set ((a, b) \<Colon> x2). \<exists>u. fs\<langle>l\<rangle>\<^sub>? = \<lfloor>u\<rfloor> \<and> \<Gamma> \<turnstile> u : U\<rbrakk> \<Longrightarrow> map (\<lambda>(l, T). (l, the (fs\<langle>l\<rangle>\<^sub>?))) x2\<langle>a\<rangle>\<^sub>? = \<bottom> [PROOF STEP] apply (erule exE conjE)+ [PROOF STATE] proof (prove) goal (3 subgoals): 1. \<And>a b x2 u. \<lbrakk>\<Gamma> \<turnstile> T <: RcdT x2 \<Longrightarrow> \<Gamma> \<turnstile> map (\<lambda>(l, T). (l, the (fs\<langle>l\<rangle>\<^sub>?))) x2 [:] x2; \<Gamma> \<turnstile> T <: RcdT ((a, b) \<Colon> x2); fs\<langle>a\<rangle>\<^sub>? = \<lfloor>u\<rfloor>; \<Gamma> \<turnstile> u : b\<rbrakk> \<Longrightarrow> \<Gamma> \<turnstile> the (fs\<langle>a\<rangle>\<^sub>?) : b 2. \<And>a b x2. \<lbrakk>\<Gamma> \<turnstile> T <: RcdT x2 \<Longrightarrow> \<Gamma> \<turnstile> map (\<lambda>(l, T). (l, the (fs\<langle>l\<rangle>\<^sub>?))) x2 [:] x2; \<Gamma> \<turnstile> T <: RcdT ((a, b) \<Colon> x2); \<forall>(l, U)\<in>set ((a, b) \<Colon> x2). \<exists>u. fs\<langle>l\<rangle>\<^sub>? = \<lfloor>u\<rfloor> \<and> \<Gamma> \<turnstile> u : U\<rbrakk> \<Longrightarrow> \<Gamma> \<turnstile> map (\<lambda>(l, T). (l, the (fs\<langle>l\<rangle>\<^sub>?))) x2 [:] x2 3. \<And>a b x2. \<lbrakk>\<Gamma> \<turnstile> T <: RcdT x2 \<Longrightarrow> \<Gamma> \<turnstile> map (\<lambda>(l, T). (l, the (fs\<langle>l\<rangle>\<^sub>?))) x2 [:] x2; \<Gamma> \<turnstile> T <: RcdT ((a, b) \<Colon> x2); \<forall>(l, U)\<in>set ((a, b) \<Colon> x2). \<exists>u. fs\<langle>l\<rangle>\<^sub>? = \<lfloor>u\<rfloor> \<and> \<Gamma> \<turnstile> u : U\<rbrakk> \<Longrightarrow> map (\<lambda>(l, T). (l, the (fs\<langle>l\<rangle>\<^sub>?))) x2\<langle>a\<rangle>\<^sub>? = \<bottom> [PROOF STEP] apply simp [PROOF STATE] proof (prove) goal (2 subgoals): 1. \<And>a b x2. \<lbrakk>\<Gamma> \<turnstile> T <: RcdT x2 \<Longrightarrow> \<Gamma> \<turnstile> map (\<lambda>(l, T). (l, the (fs\<langle>l\<rangle>\<^sub>?))) x2 [:] x2; \<Gamma> \<turnstile> T <: RcdT ((a, b) \<Colon> x2); \<forall>(l, U)\<in>set ((a, b) \<Colon> x2). \<exists>u. fs\<langle>l\<rangle>\<^sub>? = \<lfloor>u\<rfloor> \<and> \<Gamma> \<turnstile> u : U\<rbrakk> \<Longrightarrow> \<Gamma> \<turnstile> map (\<lambda>(l, T). (l, the (fs\<langle>l\<rangle>\<^sub>?))) x2 [:] x2 2. \<And>a b x2. \<lbrakk>\<Gamma> \<turnstile> T <: RcdT x2 \<Longrightarrow> \<Gamma> \<turnstile> map (\<lambda>(l, T). (l, the (fs\<langle>l\<rangle>\<^sub>?))) x2 [:] x2; \<Gamma> \<turnstile> T <: RcdT ((a, b) \<Colon> x2); \<forall>(l, U)\<in>set ((a, b) \<Colon> x2). \<exists>u. fs\<langle>l\<rangle>\<^sub>? = \<lfloor>u\<rfloor> \<and> \<Gamma> \<turnstile> u : U\<rbrakk> \<Longrightarrow> map (\<lambda>(l, T). (l, the (fs\<langle>l\<rangle>\<^sub>?))) x2\<langle>a\<rangle>\<^sub>? = \<bottom> [PROOF STEP] apply (rename_tac list) [PROOF STATE] proof (prove) goal (2 subgoals): 1. \<And>a b list. \<lbrakk>\<Gamma> \<turnstile> T <: RcdT list \<Longrightarrow> \<Gamma> \<turnstile> map (\<lambda>(l, T). (l, the (fs\<langle>l\<rangle>\<^sub>?))) list [:] list; \<Gamma> \<turnstile> T <: RcdT ((a, b) \<Colon> list); \<forall>(l, U)\<in>set ((a, b) \<Colon> list). \<exists>u. fs\<langle>l\<rangle>\<^sub>? = \<lfloor>u\<rfloor> \<and> \<Gamma> \<turnstile> u : U\<rbrakk> \<Longrightarrow> \<Gamma> \<turnstile> map (\<lambda>(l, T). (l, the (fs\<langle>l\<rangle>\<^sub>?))) list [:] list 2. \<And>a b x2. \<lbrakk>\<Gamma> \<turnstile> T <: RcdT x2 \<Longrightarrow> \<Gamma> \<turnstile> map (\<lambda>(l, T). (l, the (fs\<langle>l\<rangle>\<^sub>?))) x2 [:] x2; \<Gamma> \<turnstile> T <: RcdT ((a, b) \<Colon> x2); \<forall>(l, U)\<in>set ((a, b) \<Colon> x2). \<exists>u. fs\<langle>l\<rangle>\<^sub>? = \<lfloor>u\<rfloor> \<and> \<Gamma> \<turnstile> u : U\<rbrakk> \<Longrightarrow> map (\<lambda>(l, T). (l, the (fs\<langle>l\<rangle>\<^sub>?))) x2\<langle>a\<rangle>\<^sub>? = \<bottom> [PROOF STEP] apply (subgoal_tac "\<Gamma> \<turnstile> RcdT ((a, b) \<Colon> list) <: RcdT list") [PROOF STATE] proof (prove) goal (3 subgoals): 1. \<And>a b list. \<lbrakk>\<Gamma> \<turnstile> T <: RcdT list \<Longrightarrow> \<Gamma> \<turnstile> map (\<lambda>(l, T). (l, the (fs\<langle>l\<rangle>\<^sub>?))) list [:] list; \<Gamma> \<turnstile> T <: RcdT ((a, b) \<Colon> list); \<forall>(l, U)\<in>set ((a, b) \<Colon> list). \<exists>u. fs\<langle>l\<rangle>\<^sub>? = \<lfloor>u\<rfloor> \<and> \<Gamma> \<turnstile> u : U; \<Gamma> \<turnstile> RcdT ((a, b) \<Colon> list) <: RcdT list\<rbrakk> \<Longrightarrow> \<Gamma> \<turnstile> map (\<lambda>(l, T). (l, the (fs\<langle>l\<rangle>\<^sub>?))) list [:] list 2. \<And>a b list. \<lbrakk>\<Gamma> \<turnstile> T <: RcdT list \<Longrightarrow> \<Gamma> \<turnstile> map (\<lambda>(l, T). (l, the (fs\<langle>l\<rangle>\<^sub>?))) list [:] list; \<Gamma> \<turnstile> T <: RcdT ((a, b) \<Colon> list); \<forall>(l, U)\<in>set ((a, b) \<Colon> list). \<exists>u. fs\<langle>l\<rangle>\<^sub>? = \<lfloor>u\<rfloor> \<and> \<Gamma> \<turnstile> u : U\<rbrakk> \<Longrightarrow> \<Gamma> \<turnstile> RcdT ((a, b) \<Colon> list) <: RcdT list 3. \<And>a b x2. \<lbrakk>\<Gamma> \<turnstile> T <: RcdT x2 \<Longrightarrow> \<Gamma> \<turnstile> map (\<lambda>(l, T). (l, the (fs\<langle>l\<rangle>\<^sub>?))) x2 [:] x2; \<Gamma> \<turnstile> T <: RcdT ((a, b) \<Colon> x2); \<forall>(l, U)\<in>set ((a, b) \<Colon> x2). \<exists>u. fs\<langle>l\<rangle>\<^sub>? = \<lfloor>u\<rfloor> \<and> \<Gamma> \<turnstile> u : U\<rbrakk> \<Longrightarrow> map (\<lambda>(l, T). (l, the (fs\<langle>l\<rangle>\<^sub>?))) x2\<langle>a\<rangle>\<^sub>? = \<bottom> [PROOF STEP] apply (erule meta_mp) [PROOF STATE] proof (prove) goal (3 subgoals): 1. \<And>a b list. \<lbrakk>\<Gamma> \<turnstile> T <: RcdT ((a, b) \<Colon> list); \<forall>(l, U)\<in>set ((a, b) \<Colon> list). \<exists>u. fs\<langle>l\<rangle>\<^sub>? = \<lfloor>u\<rfloor> \<and> \<Gamma> \<turnstile> u : U; \<Gamma> \<turnstile> RcdT ((a, b) \<Colon> list) <: RcdT list\<rbrakk> \<Longrightarrow> \<Gamma> \<turnstile> T <: RcdT list 2. \<And>a b list. \<lbrakk>\<Gamma> \<turnstile> T <: RcdT list \<Longrightarrow> \<Gamma> \<turnstile> map (\<lambda>(l, T). (l, the (fs\<langle>l\<rangle>\<^sub>?))) list [:] list; \<Gamma> \<turnstile> T <: RcdT ((a, b) \<Colon> list); \<forall>(l, U)\<in>set ((a, b) \<Colon> list). \<exists>u. fs\<langle>l\<rangle>\<^sub>? = \<lfloor>u\<rfloor> \<and> \<Gamma> \<turnstile> u : U\<rbrakk> \<Longrightarrow> \<Gamma> \<turnstile> RcdT ((a, b) \<Colon> list) <: RcdT list 3. \<And>a b x2. \<lbrakk>\<Gamma> \<turnstile> T <: RcdT x2 \<Longrightarrow> \<Gamma> \<turnstile> map (\<lambda>(l, T). (l, the (fs\<langle>l\<rangle>\<^sub>?))) x2 [:] x2; \<Gamma> \<turnstile> T <: RcdT ((a, b) \<Colon> x2); \<forall>(l, U)\<in>set ((a, b) \<Colon> x2). \<exists>u. fs\<langle>l\<rangle>\<^sub>? = \<lfloor>u\<rfloor> \<and> \<Gamma> \<turnstile> u : U\<rbrakk> \<Longrightarrow> map (\<lambda>(l, T). (l, the (fs\<langle>l\<rangle>\<^sub>?))) x2\<langle>a\<rangle>\<^sub>? = \<bottom> [PROOF STEP] apply (erule subtype_trans(1)) [PROOF STATE] proof (prove) goal (3 subgoals): 1. \<And>a b list. \<lbrakk>\<forall>(l, U)\<in>set ((a, b) \<Colon> list). \<exists>u. fs\<langle>l\<rangle>\<^sub>? = \<lfloor>u\<rfloor> \<and> \<Gamma> \<turnstile> u : U; \<Gamma> \<turnstile> RcdT ((a, b) \<Colon> list) <: RcdT list\<rbrakk> \<Longrightarrow> \<Gamma> \<turnstile> RcdT ((a, b) \<Colon> list) <: RcdT list 2. \<And>a b list. \<lbrakk>\<Gamma> \<turnstile> T <: RcdT list \<Longrightarrow> \<Gamma> \<turnstile> map (\<lambda>(l, T). (l, the (fs\<langle>l\<rangle>\<^sub>?))) list [:] list; \<Gamma> \<turnstile> T <: RcdT ((a, b) \<Colon> list); \<forall>(l, U)\<in>set ((a, b) \<Colon> list). \<exists>u. fs\<langle>l\<rangle>\<^sub>? = \<lfloor>u\<rfloor> \<and> \<Gamma> \<turnstile> u : U\<rbrakk> \<Longrightarrow> \<Gamma> \<turnstile> RcdT ((a, b) \<Colon> list) <: RcdT list 3. \<And>a b x2. \<lbrakk>\<Gamma> \<turnstile> T <: RcdT x2 \<Longrightarrow> \<Gamma> \<turnstile> map (\<lambda>(l, T). (l, the (fs\<langle>l\<rangle>\<^sub>?))) x2 [:] x2; \<Gamma> \<turnstile> T <: RcdT ((a, b) \<Colon> x2); \<forall>(l, U)\<in>set ((a, b) \<Colon> x2). \<exists>u. fs\<langle>l\<rangle>\<^sub>? = \<lfloor>u\<rfloor> \<and> \<Gamma> \<turnstile> u : U\<rbrakk> \<Longrightarrow> map (\<lambda>(l, T). (l, the (fs\<langle>l\<rangle>\<^sub>?))) x2\<langle>a\<rangle>\<^sub>? = \<bottom> [PROOF STEP] apply assumption [PROOF STATE] proof (prove) goal (2 subgoals): 1. \<And>a b list. \<lbrakk>\<Gamma> \<turnstile> T <: RcdT list \<Longrightarrow> \<Gamma> \<turnstile> map (\<lambda>(l, T). (l, the (fs\<langle>l\<rangle>\<^sub>?))) list [:] list; \<Gamma> \<turnstile> T <: RcdT ((a, b) \<Colon> list); \<forall>(l, U)\<in>set ((a, b) \<Colon> list). \<exists>u. fs\<langle>l\<rangle>\<^sub>? = \<lfloor>u\<rfloor> \<and> \<Gamma> \<turnstile> u : U\<rbrakk> \<Longrightarrow> \<Gamma> \<turnstile> RcdT ((a, b) \<Colon> list) <: RcdT list 2. \<And>a b x2. \<lbrakk>\<Gamma> \<turnstile> T <: RcdT x2 \<Longrightarrow> \<Gamma> \<turnstile> map (\<lambda>(l, T). (l, the (fs\<langle>l\<rangle>\<^sub>?))) x2 [:] x2; \<Gamma> \<turnstile> T <: RcdT ((a, b) \<Colon> x2); \<forall>(l, U)\<in>set ((a, b) \<Colon> x2). \<exists>u. fs\<langle>l\<rangle>\<^sub>? = \<lfloor>u\<rfloor> \<and> \<Gamma> \<turnstile> u : U\<rbrakk> \<Longrightarrow> map (\<lambda>(l, T). (l, the (fs\<langle>l\<rangle>\<^sub>?))) x2\<langle>a\<rangle>\<^sub>? = \<bottom> [PROOF STEP] apply (erule wf_subtypeE) [PROOF STATE] proof (prove) goal (2 subgoals): 1. \<And>a b list. \<lbrakk>\<Gamma> \<turnstile> T <: RcdT list \<Longrightarrow> \<Gamma> \<turnstile> map (\<lambda>(l, T). (l, the (fs\<langle>l\<rangle>\<^sub>?))) list [:] list; \<forall>(l, U)\<in>set ((a, b) \<Colon> list). \<exists>u. fs\<langle>l\<rangle>\<^sub>? = \<lfloor>u\<rfloor> \<and> \<Gamma> \<turnstile> u : U; \<Gamma> \<turnstile>\<^sub>w\<^sub>f; \<Gamma> \<turnstile>\<^sub>w\<^sub>f T; \<Gamma> \<turnstile>\<^sub>w\<^sub>f RcdT ((a, b) \<Colon> list)\<rbrakk> \<Longrightarrow> \<Gamma> \<turnstile> RcdT ((a, b) \<Colon> list) <: RcdT list 2. \<And>a b x2. \<lbrakk>\<Gamma> \<turnstile> T <: RcdT x2 \<Longrightarrow> \<Gamma> \<turnstile> map (\<lambda>(l, T). (l, the (fs\<langle>l\<rangle>\<^sub>?))) x2 [:] x2; \<Gamma> \<turnstile> T <: RcdT ((a, b) \<Colon> x2); \<forall>(l, U)\<in>set ((a, b) \<Colon> x2). \<exists>u. fs\<langle>l\<rangle>\<^sub>? = \<lfloor>u\<rfloor> \<and> \<Gamma> \<turnstile> u : U\<rbrakk> \<Longrightarrow> map (\<lambda>(l, T). (l, the (fs\<langle>l\<rangle>\<^sub>?))) x2\<langle>a\<rangle>\<^sub>? = \<bottom> [PROOF STEP] apply (rule SA_Rcd) [PROOF STATE] proof (prove) goal (5 subgoals): 1. \<And>a b list. \<lbrakk>\<Gamma> \<turnstile> T <: RcdT list \<Longrightarrow> \<Gamma> \<turnstile> map (\<lambda>(l, T). (l, the (fs\<langle>l\<rangle>\<^sub>?))) list [:] list; \<forall>(l, U)\<in>set ((a, b) \<Colon> list). \<exists>u. fs\<langle>l\<rangle>\<^sub>? = \<lfloor>u\<rfloor> \<and> \<Gamma> \<turnstile> u : U; \<Gamma> \<turnstile>\<^sub>w\<^sub>f; \<Gamma> \<turnstile>\<^sub>w\<^sub>f T; \<Gamma> \<turnstile>\<^sub>w\<^sub>f RcdT ((a, b) \<Colon> list)\<rbrakk> \<Longrightarrow> \<Gamma> \<turnstile>\<^sub>w\<^sub>f 2. \<And>a b list. \<lbrakk>\<Gamma> \<turnstile> T <: RcdT list \<Longrightarrow> \<Gamma> \<turnstile> map (\<lambda>(l, T). (l, the (fs\<langle>l\<rangle>\<^sub>?))) list [:] list; \<forall>(l, U)\<in>set ((a, b) \<Colon> list). \<exists>u. fs\<langle>l\<rangle>\<^sub>? = \<lfloor>u\<rfloor> \<and> \<Gamma> \<turnstile> u : U; \<Gamma> \<turnstile>\<^sub>w\<^sub>f; \<Gamma> \<turnstile>\<^sub>w\<^sub>f T; \<Gamma> \<turnstile>\<^sub>w\<^sub>f RcdT ((a, b) \<Colon> list)\<rbrakk> \<Longrightarrow> \<Gamma> \<turnstile>\<^sub>w\<^sub>f RcdT ((a, b) \<Colon> list) 3. \<And>a b list. \<lbrakk>\<Gamma> \<turnstile> T <: RcdT list \<Longrightarrow> \<Gamma> \<turnstile> map (\<lambda>(l, T). (l, the (fs\<langle>l\<rangle>\<^sub>?))) list [:] list; \<forall>(l, U)\<in>set ((a, b) \<Colon> list). \<exists>u. fs\<langle>l\<rangle>\<^sub>? = \<lfloor>u\<rfloor> \<and> \<Gamma> \<turnstile> u : U; \<Gamma> \<turnstile>\<^sub>w\<^sub>f; \<Gamma> \<turnstile>\<^sub>w\<^sub>f T; \<Gamma> \<turnstile>\<^sub>w\<^sub>f RcdT ((a, b) \<Colon> list)\<rbrakk> \<Longrightarrow> unique list 4. \<And>a b list. \<lbrakk>\<Gamma> \<turnstile> T <: RcdT list \<Longrightarrow> \<Gamma> \<turnstile> map (\<lambda>(l, T). (l, the (fs\<langle>l\<rangle>\<^sub>?))) list [:] list; \<forall>(l, U)\<in>set ((a, b) \<Colon> list). \<exists>u. fs\<langle>l\<rangle>\<^sub>? = \<lfloor>u\<rfloor> \<and> \<Gamma> \<turnstile> u : U; \<Gamma> \<turnstile>\<^sub>w\<^sub>f; \<Gamma> \<turnstile>\<^sub>w\<^sub>f T; \<Gamma> \<turnstile>\<^sub>w\<^sub>f RcdT ((a, b) \<Colon> list)\<rbrakk> \<Longrightarrow> \<forall>(l, T)\<in>set list. \<exists>S. (l, S) \<in> set ((a, b) \<Colon> list) \<and> \<Gamma> \<turnstile> S <: T 5. \<And>a b x2. \<lbrakk>\<Gamma> \<turnstile> T <: RcdT x2 \<Longrightarrow> \<Gamma> \<turnstile> map (\<lambda>(l, T). (l, the (fs\<langle>l\<rangle>\<^sub>?))) x2 [:] x2; \<Gamma> \<turnstile> T <: RcdT ((a, b) \<Colon> x2); \<forall>(l, U)\<in>set ((a, b) \<Colon> x2). \<exists>u. fs\<langle>l\<rangle>\<^sub>? = \<lfloor>u\<rfloor> \<and> \<Gamma> \<turnstile> u : U\<rbrakk> \<Longrightarrow> map (\<lambda>(l, T). (l, the (fs\<langle>l\<rangle>\<^sub>?))) x2\<langle>a\<rangle>\<^sub>? = \<bottom> [PROOF STEP] apply assumption+ [PROOF STATE] proof (prove) goal (3 subgoals): 1. \<And>a b list. \<lbrakk>\<Gamma> \<turnstile> T <: RcdT list \<Longrightarrow> \<Gamma> \<turnstile> map (\<lambda>(l, T). (l, the (fs\<langle>l\<rangle>\<^sub>?))) list [:] list; \<forall>(l, U)\<in>set ((a, b) \<Colon> list). \<exists>u. fs\<langle>l\<rangle>\<^sub>? = \<lfloor>u\<rfloor> \<and> \<Gamma> \<turnstile> u : U; \<Gamma> \<turnstile>\<^sub>w\<^sub>f; \<Gamma> \<turnstile>\<^sub>w\<^sub>f T; \<Gamma> \<turnstile>\<^sub>w\<^sub>f RcdT ((a, b) \<Colon> list)\<rbrakk> \<Longrightarrow> unique list 2. \<And>a b list. \<lbrakk>\<Gamma> \<turnstile> T <: RcdT list \<Longrightarrow> \<Gamma> \<turnstile> map (\<lambda>(l, T). (l, the (fs\<langle>l\<rangle>\<^sub>?))) list [:] list; \<forall>(l, U)\<in>set ((a, b) \<Colon> list). \<exists>u. fs\<langle>l\<rangle>\<^sub>? = \<lfloor>u\<rfloor> \<and> \<Gamma> \<turnstile> u : U; \<Gamma> \<turnstile>\<^sub>w\<^sub>f; \<Gamma> \<turnstile>\<^sub>w\<^sub>f T; \<Gamma> \<turnstile>\<^sub>w\<^sub>f RcdT ((a, b) \<Colon> list)\<rbrakk> \<Longrightarrow> \<forall>(l, T)\<in>set list. \<exists>S. (l, S) \<in> set ((a, b) \<Colon> list) \<and> \<Gamma> \<turnstile> S <: T 3. \<And>a b x2. \<lbrakk>\<Gamma> \<turnstile> T <: RcdT x2 \<Longrightarrow> \<Gamma> \<turnstile> map (\<lambda>(l, T). (l, the (fs\<langle>l\<rangle>\<^sub>?))) x2 [:] x2; \<Gamma> \<turnstile> T <: RcdT ((a, b) \<Colon> x2); \<forall>(l, U)\<in>set ((a, b) \<Colon> x2). \<exists>u. fs\<langle>l\<rangle>\<^sub>? = \<lfloor>u\<rfloor> \<and> \<Gamma> \<turnstile> u : U\<rbrakk> \<Longrightarrow> map (\<lambda>(l, T). (l, the (fs\<langle>l\<rangle>\<^sub>?))) x2\<langle>a\<rangle>\<^sub>? = \<bottom> [PROOF STEP] apply (erule well_formed_cases) [PROOF STATE] proof (prove) goal (3 subgoals): 1. \<And>a b list. \<lbrakk>\<Gamma> \<turnstile> T <: RcdT list \<Longrightarrow> \<Gamma> \<turnstile> map (\<lambda>(l, T). (l, the (fs\<langle>l\<rangle>\<^sub>?))) list [:] list; \<forall>(l, U)\<in>set ((a, b) \<Colon> list). \<exists>u. fs\<langle>l\<rangle>\<^sub>? = \<lfloor>u\<rfloor> \<and> \<Gamma> \<turnstile> u : U; \<Gamma> \<turnstile>\<^sub>w\<^sub>f; \<Gamma> \<turnstile>\<^sub>w\<^sub>f T; unique ((a, b) \<Colon> list); \<forall>x\<in>set ((a, b) \<Colon> list). case x of (l, x) \<Rightarrow> \<Gamma> \<turnstile>\<^sub>w\<^sub>f x\<rbrakk> \<Longrightarrow> unique list 2. \<And>a b list. \<lbrakk>\<Gamma> \<turnstile> T <: RcdT list \<Longrightarrow> \<Gamma> \<turnstile> map (\<lambda>(l, T). (l, the (fs\<langle>l\<rangle>\<^sub>?))) list [:] list; \<forall>(l, U)\<in>set ((a, b) \<Colon> list). \<exists>u. fs\<langle>l\<rangle>\<^sub>? = \<lfloor>u\<rfloor> \<and> \<Gamma> \<turnstile> u : U; \<Gamma> \<turnstile>\<^sub>w\<^sub>f; \<Gamma> \<turnstile>\<^sub>w\<^sub>f T; \<Gamma> \<turnstile>\<^sub>w\<^sub>f RcdT ((a, b) \<Colon> list)\<rbrakk> \<Longrightarrow> \<forall>(l, T)\<in>set list. \<exists>S. (l, S) \<in> set ((a, b) \<Colon> list) \<and> \<Gamma> \<turnstile> S <: T 3. \<And>a b x2. \<lbrakk>\<Gamma> \<turnstile> T <: RcdT x2 \<Longrightarrow> \<Gamma> \<turnstile> map (\<lambda>(l, T). (l, the (fs\<langle>l\<rangle>\<^sub>?))) x2 [:] x2; \<Gamma> \<turnstile> T <: RcdT ((a, b) \<Colon> x2); \<forall>(l, U)\<in>set ((a, b) \<Colon> x2). \<exists>u. fs\<langle>l\<rangle>\<^sub>? = \<lfloor>u\<rfloor> \<and> \<Gamma> \<turnstile> u : U\<rbrakk> \<Longrightarrow> map (\<lambda>(l, T). (l, the (fs\<langle>l\<rangle>\<^sub>?))) x2\<langle>a\<rangle>\<^sub>? = \<bottom> [PROOF STEP] apply simp [PROOF STATE] proof (prove) goal (2 subgoals): 1. \<And>a b list. \<lbrakk>\<Gamma> \<turnstile> T <: RcdT list \<Longrightarrow> \<Gamma> \<turnstile> map (\<lambda>(l, T). (l, the (fs\<langle>l\<rangle>\<^sub>?))) list [:] list; \<forall>(l, U)\<in>set ((a, b) \<Colon> list). \<exists>u. fs\<langle>l\<rangle>\<^sub>? = \<lfloor>u\<rfloor> \<and> \<Gamma> \<turnstile> u : U; \<Gamma> \<turnstile>\<^sub>w\<^sub>f; \<Gamma> \<turnstile>\<^sub>w\<^sub>f T; \<Gamma> \<turnstile>\<^sub>w\<^sub>f RcdT ((a, b) \<Colon> list)\<rbrakk> \<Longrightarrow> \<forall>(l, T)\<in>set list. \<exists>S. (l, S) \<in> set ((a, b) \<Colon> list) \<and> \<Gamma> \<turnstile> S <: T 2. \<And>a b x2. \<lbrakk>\<Gamma> \<turnstile> T <: RcdT x2 \<Longrightarrow> \<Gamma> \<turnstile> map (\<lambda>(l, T). (l, the (fs\<langle>l\<rangle>\<^sub>?))) x2 [:] x2; \<Gamma> \<turnstile> T <: RcdT ((a, b) \<Colon> x2); \<forall>(l, U)\<in>set ((a, b) \<Colon> x2). \<exists>u. fs\<langle>l\<rangle>\<^sub>? = \<lfloor>u\<rfloor> \<and> \<Gamma> \<turnstile> u : U\<rbrakk> \<Longrightarrow> map (\<lambda>(l, T). (l, the (fs\<langle>l\<rangle>\<^sub>?))) x2\<langle>a\<rangle>\<^sub>? = \<bottom> [PROOF STEP] apply (rule ballpI) [PROOF STATE] proof (prove) goal (2 subgoals): 1. \<And>a b list l Ta. \<lbrakk>\<Gamma> \<turnstile> T <: RcdT list \<Longrightarrow> \<Gamma> \<turnstile> map (\<lambda>(l, T). (l, the (fs\<langle>l\<rangle>\<^sub>?))) list [:] list; \<forall>(l, U)\<in>set ((a, b) \<Colon> list). \<exists>u. fs\<langle>l\<rangle>\<^sub>? = \<lfloor>u\<rfloor> \<and> \<Gamma> \<turnstile> u : U; \<Gamma> \<turnstile>\<^sub>w\<^sub>f; \<Gamma> \<turnstile>\<^sub>w\<^sub>f T; \<Gamma> \<turnstile>\<^sub>w\<^sub>f RcdT ((a, b) \<Colon> list); (l, Ta) \<in> set list\<rbrakk> \<Longrightarrow> \<exists>S. (l, S) \<in> set ((a, b) \<Colon> list) \<and> \<Gamma> \<turnstile> S <: Ta 2. \<And>a b x2. \<lbrakk>\<Gamma> \<turnstile> T <: RcdT x2 \<Longrightarrow> \<Gamma> \<turnstile> map (\<lambda>(l, T). (l, the (fs\<langle>l\<rangle>\<^sub>?))) x2 [:] x2; \<Gamma> \<turnstile> T <: RcdT ((a, b) \<Colon> x2); \<forall>(l, U)\<in>set ((a, b) \<Colon> x2). \<exists>u. fs\<langle>l\<rangle>\<^sub>? = \<lfloor>u\<rfloor> \<and> \<Gamma> \<turnstile> u : U\<rbrakk> \<Longrightarrow> map (\<lambda>(l, T). (l, the (fs\<langle>l\<rangle>\<^sub>?))) x2\<langle>a\<rangle>\<^sub>? = \<bottom> [PROOF STEP] apply (rule exI) [PROOF STATE] proof (prove) goal (2 subgoals): 1. \<And>a b list l Ta. \<lbrakk>\<Gamma> \<turnstile> T <: RcdT list \<Longrightarrow> \<Gamma> \<turnstile> map (\<lambda>(l, T). (l, the (fs\<langle>l\<rangle>\<^sub>?))) list [:] list; \<forall>(l, U)\<in>set ((a, b) \<Colon> list). \<exists>u. fs\<langle>l\<rangle>\<^sub>? = \<lfloor>u\<rfloor> \<and> \<Gamma> \<turnstile> u : U; \<Gamma> \<turnstile>\<^sub>w\<^sub>f; \<Gamma> \<turnstile>\<^sub>w\<^sub>f T; \<Gamma> \<turnstile>\<^sub>w\<^sub>f RcdT ((a, b) \<Colon> list); (l, Ta) \<in> set list\<rbrakk> \<Longrightarrow> (l, ?S36 a b list l Ta) \<in> set ((a, b) \<Colon> list) \<and> \<Gamma> \<turnstile> ?S36 a b list l Ta <: Ta 2. \<And>a b x2. \<lbrakk>\<Gamma> \<turnstile> T <: RcdT x2 \<Longrightarrow> \<Gamma> \<turnstile> map (\<lambda>(l, T). (l, the (fs\<langle>l\<rangle>\<^sub>?))) x2 [:] x2; \<Gamma> \<turnstile> T <: RcdT ((a, b) \<Colon> x2); \<forall>(l, U)\<in>set ((a, b) \<Colon> x2). \<exists>u. fs\<langle>l\<rangle>\<^sub>? = \<lfloor>u\<rfloor> \<and> \<Gamma> \<turnstile> u : U\<rbrakk> \<Longrightarrow> map (\<lambda>(l, T). (l, the (fs\<langle>l\<rangle>\<^sub>?))) x2\<langle>a\<rangle>\<^sub>? = \<bottom> [PROOF STEP] apply (rule conjI) [PROOF STATE] proof (prove) goal (3 subgoals): 1. \<And>a b list l Ta. \<lbrakk>\<Gamma> \<turnstile> T <: RcdT list \<Longrightarrow> \<Gamma> \<turnstile> map (\<lambda>(l, T). (l, the (fs\<langle>l\<rangle>\<^sub>?))) list [:] list; \<forall>(l, U)\<in>set ((a, b) \<Colon> list). \<exists>u. fs\<langle>l\<rangle>\<^sub>? = \<lfloor>u\<rfloor> \<and> \<Gamma> \<turnstile> u : U; \<Gamma> \<turnstile>\<^sub>w\<^sub>f; \<Gamma> \<turnstile>\<^sub>w\<^sub>f T; \<Gamma> \<turnstile>\<^sub>w\<^sub>f RcdT ((a, b) \<Colon> list); (l, Ta) \<in> set list\<rbrakk> \<Longrightarrow> (l, ?S36 a b list l Ta) \<in> set ((a, b) \<Colon> list) 2. \<And>a b list l Ta. \<lbrakk>\<Gamma> \<turnstile> T <: RcdT list \<Longrightarrow> \<Gamma> \<turnstile> map (\<lambda>(l, T). (l, the (fs\<langle>l\<rangle>\<^sub>?))) list [:] list; \<forall>(l, U)\<in>set ((a, b) \<Colon> list). \<exists>u. fs\<langle>l\<rangle>\<^sub>? = \<lfloor>u\<rfloor> \<and> \<Gamma> \<turnstile> u : U; \<Gamma> \<turnstile>\<^sub>w\<^sub>f; \<Gamma> \<turnstile>\<^sub>w\<^sub>f T; \<Gamma> \<turnstile>\<^sub>w\<^sub>f RcdT ((a, b) \<Colon> list); (l, Ta) \<in> set list\<rbrakk> \<Longrightarrow> \<Gamma> \<turnstile> ?S36 a b list l Ta <: Ta 3. \<And>a b x2. \<lbrakk>\<Gamma> \<turnstile> T <: RcdT x2 \<Longrightarrow> \<Gamma> \<turnstile> map (\<lambda>(l, T). (l, the (fs\<langle>l\<rangle>\<^sub>?))) x2 [:] x2; \<Gamma> \<turnstile> T <: RcdT ((a, b) \<Colon> x2); \<forall>(l, U)\<in>set ((a, b) \<Colon> x2). \<exists>u. fs\<langle>l\<rangle>\<^sub>? = \<lfloor>u\<rfloor> \<and> \<Gamma> \<turnstile> u : U\<rbrakk> \<Longrightarrow> map (\<lambda>(l, T). (l, the (fs\<langle>l\<rangle>\<^sub>?))) x2\<langle>a\<rangle>\<^sub>? = \<bottom> [PROOF STEP] apply (rule_tac [2] subtype_refl) [PROOF STATE] proof (prove) goal (4 subgoals): 1. \<And>a b list l Ta. \<lbrakk>\<Gamma> \<turnstile> T <: RcdT list \<Longrightarrow> \<Gamma> \<turnstile> map (\<lambda>(l, T). (l, the (fs\<langle>l\<rangle>\<^sub>?))) list [:] list; \<forall>(l, U)\<in>set ((a, b) \<Colon> list). \<exists>u. fs\<langle>l\<rangle>\<^sub>? = \<lfloor>u\<rfloor> \<and> \<Gamma> \<turnstile> u : U; \<Gamma> \<turnstile>\<^sub>w\<^sub>f; \<Gamma> \<turnstile>\<^sub>w\<^sub>f T; \<Gamma> \<turnstile>\<^sub>w\<^sub>f RcdT ((a, b) \<Colon> list); (l, Ta) \<in> set list\<rbrakk> \<Longrightarrow> (l, Ta) \<in> set ((a, b) \<Colon> list) 2. \<And>a b list l Ta. \<lbrakk>\<Gamma> \<turnstile> T <: RcdT list \<Longrightarrow> \<Gamma> \<turnstile> map (\<lambda>(l, T). (l, the (fs\<langle>l\<rangle>\<^sub>?))) list [:] list; \<forall>(l, U)\<in>set ((a, b) \<Colon> list). \<exists>u. fs\<langle>l\<rangle>\<^sub>? = \<lfloor>u\<rfloor> \<and> \<Gamma> \<turnstile> u : U; \<Gamma> \<turnstile>\<^sub>w\<^sub>f; \<Gamma> \<turnstile>\<^sub>w\<^sub>f T; \<Gamma> \<turnstile>\<^sub>w\<^sub>f RcdT ((a, b) \<Colon> list); (l, Ta) \<in> set list\<rbrakk> \<Longrightarrow> \<Gamma> \<turnstile>\<^sub>w\<^sub>f 3. \<And>a b list l Ta. \<lbrakk>\<Gamma> \<turnstile> T <: RcdT list \<Longrightarrow> \<Gamma> \<turnstile> map (\<lambda>(l, T). (l, the (fs\<langle>l\<rangle>\<^sub>?))) list [:] list; \<forall>(l, U)\<in>set ((a, b) \<Colon> list). \<exists>u. fs\<langle>l\<rangle>\<^sub>? = \<lfloor>u\<rfloor> \<and> \<Gamma> \<turnstile> u : U; \<Gamma> \<turnstile>\<^sub>w\<^sub>f; \<Gamma> \<turnstile>\<^sub>w\<^sub>f T; \<Gamma> \<turnstile>\<^sub>w\<^sub>f RcdT ((a, b) \<Colon> list); (l, Ta) \<in> set list\<rbrakk> \<Longrightarrow> \<Gamma> \<turnstile>\<^sub>w\<^sub>f Ta 4. \<And>a b x2. \<lbrakk>\<Gamma> \<turnstile> T <: RcdT x2 \<Longrightarrow> \<Gamma> \<turnstile> map (\<lambda>(l, T). (l, the (fs\<langle>l\<rangle>\<^sub>?))) x2 [:] x2; \<Gamma> \<turnstile> T <: RcdT ((a, b) \<Colon> x2); \<forall>(l, U)\<in>set ((a, b) \<Colon> x2). \<exists>u. fs\<langle>l\<rangle>\<^sub>? = \<lfloor>u\<rfloor> \<and> \<Gamma> \<turnstile> u : U\<rbrakk> \<Longrightarrow> map (\<lambda>(l, T). (l, the (fs\<langle>l\<rangle>\<^sub>?))) x2\<langle>a\<rangle>\<^sub>? = \<bottom> [PROOF STEP] apply simp [PROOF STATE] proof (prove) goal (3 subgoals): 1. \<And>a b list l Ta. \<lbrakk>\<Gamma> \<turnstile> T <: RcdT list \<Longrightarrow> \<Gamma> \<turnstile> map (\<lambda>(l, T). (l, the (fs\<langle>l\<rangle>\<^sub>?))) list [:] list; \<forall>(l, U)\<in>set ((a, b) \<Colon> list). \<exists>u. fs\<langle>l\<rangle>\<^sub>? = \<lfloor>u\<rfloor> \<and> \<Gamma> \<turnstile> u : U; \<Gamma> \<turnstile>\<^sub>w\<^sub>f; \<Gamma> \<turnstile>\<^sub>w\<^sub>f T; \<Gamma> \<turnstile>\<^sub>w\<^sub>f RcdT ((a, b) \<Colon> list); (l, Ta) \<in> set list\<rbrakk> \<Longrightarrow> \<Gamma> \<turnstile>\<^sub>w\<^sub>f 2. \<And>a b list l Ta. \<lbrakk>\<Gamma> \<turnstile> T <: RcdT list \<Longrightarrow> \<Gamma> \<turnstile> map (\<lambda>(l, T). (l, the (fs\<langle>l\<rangle>\<^sub>?))) list [:] list; \<forall>(l, U)\<in>set ((a, b) \<Colon> list). \<exists>u. fs\<langle>l\<rangle>\<^sub>? = \<lfloor>u\<rfloor> \<and> \<Gamma> \<turnstile> u : U; \<Gamma> \<turnstile>\<^sub>w\<^sub>f; \<Gamma> \<turnstile>\<^sub>w\<^sub>f T; \<Gamma> \<turnstile>\<^sub>w\<^sub>f RcdT ((a, b) \<Colon> list); (l, Ta) \<in> set list\<rbrakk> \<Longrightarrow> \<Gamma> \<turnstile>\<^sub>w\<^sub>f Ta 3. \<And>a b x2. \<lbrakk>\<Gamma> \<turnstile> T <: RcdT x2 \<Longrightarrow> \<Gamma> \<turnstile> map (\<lambda>(l, T). (l, the (fs\<langle>l\<rangle>\<^sub>?))) x2 [:] x2; \<Gamma> \<turnstile> T <: RcdT ((a, b) \<Colon> x2); \<forall>(l, U)\<in>set ((a, b) \<Colon> x2). \<exists>u. fs\<langle>l\<rangle>\<^sub>? = \<lfloor>u\<rfloor> \<and> \<Gamma> \<turnstile> u : U\<rbrakk> \<Longrightarrow> map (\<lambda>(l, T). (l, the (fs\<langle>l\<rangle>\<^sub>?))) x2\<langle>a\<rangle>\<^sub>? = \<bottom> [PROOF STEP] apply assumption [PROOF STATE] proof (prove) goal (2 subgoals): 1. \<And>a b list l Ta. \<lbrakk>\<Gamma> \<turnstile> T <: RcdT list \<Longrightarrow> \<Gamma> \<turnstile> map (\<lambda>(l, T). (l, the (fs\<langle>l\<rangle>\<^sub>?))) list [:] list; \<forall>(l, U)\<in>set ((a, b) \<Colon> list). \<exists>u. fs\<langle>l\<rangle>\<^sub>? = \<lfloor>u\<rfloor> \<and> \<Gamma> \<turnstile> u : U; \<Gamma> \<turnstile>\<^sub>w\<^sub>f; \<Gamma> \<turnstile>\<^sub>w\<^sub>f T; \<Gamma> \<turnstile>\<^sub>w\<^sub>f RcdT ((a, b) \<Colon> list); (l, Ta) \<in> set list\<rbrakk> \<Longrightarrow> \<Gamma> \<turnstile>\<^sub>w\<^sub>f Ta 2. \<And>a b x2. \<lbrakk>\<Gamma> \<turnstile> T <: RcdT x2 \<Longrightarrow> \<Gamma> \<turnstile> map (\<lambda>(l, T). (l, the (fs\<langle>l\<rangle>\<^sub>?))) x2 [:] x2; \<Gamma> \<turnstile> T <: RcdT ((a, b) \<Colon> x2); \<forall>(l, U)\<in>set ((a, b) \<Colon> x2). \<exists>u. fs\<langle>l\<rangle>\<^sub>? = \<lfloor>u\<rfloor> \<and> \<Gamma> \<turnstile> u : U\<rbrakk> \<Longrightarrow> map (\<lambda>(l, T). (l, the (fs\<langle>l\<rangle>\<^sub>?))) x2\<langle>a\<rangle>\<^sub>? = \<bottom> [PROOF STEP] apply (erule well_formed_cases) [PROOF STATE] proof (prove) goal (2 subgoals): 1. \<And>a b list l Ta. \<lbrakk>\<Gamma> \<turnstile> T <: RcdT list \<Longrightarrow> \<Gamma> \<turnstile> map (\<lambda>(l, T). (l, the (fs\<langle>l\<rangle>\<^sub>?))) list [:] list; \<forall>(l, U)\<in>set ((a, b) \<Colon> list). \<exists>u. fs\<langle>l\<rangle>\<^sub>? = \<lfloor>u\<rfloor> \<and> \<Gamma> \<turnstile> u : U; \<Gamma> \<turnstile>\<^sub>w\<^sub>f; \<Gamma> \<turnstile>\<^sub>w\<^sub>f T; (l, Ta) \<in> set list; unique ((a, b) \<Colon> list); \<forall>x\<in>set ((a, b) \<Colon> list). case x of (l, x) \<Rightarrow> \<Gamma> \<turnstile>\<^sub>w\<^sub>f x\<rbrakk> \<Longrightarrow> \<Gamma> \<turnstile>\<^sub>w\<^sub>f Ta 2. \<And>a b x2. \<lbrakk>\<Gamma> \<turnstile> T <: RcdT x2 \<Longrightarrow> \<Gamma> \<turnstile> map (\<lambda>(l, T). (l, the (fs\<langle>l\<rangle>\<^sub>?))) x2 [:] x2; \<Gamma> \<turnstile> T <: RcdT ((a, b) \<Colon> x2); \<forall>(l, U)\<in>set ((a, b) \<Colon> x2). \<exists>u. fs\<langle>l\<rangle>\<^sub>? = \<lfloor>u\<rfloor> \<and> \<Gamma> \<turnstile> u : U\<rbrakk> \<Longrightarrow> map (\<lambda>(l, T). (l, the (fs\<langle>l\<rangle>\<^sub>?))) x2\<langle>a\<rangle>\<^sub>? = \<bottom> [PROOF STEP] apply (erule_tac x=l and y=Ta in bpspec) [PROOF STATE] proof (prove) goal (2 subgoals): 1. \<And>a b list l Ta. \<lbrakk>\<Gamma> \<turnstile> T <: RcdT list \<Longrightarrow> \<Gamma> \<turnstile> map (\<lambda>(l, T). (l, the (fs\<langle>l\<rangle>\<^sub>?))) list [:] list; \<forall>(l, U)\<in>set ((a, b) \<Colon> list). \<exists>u. fs\<langle>l\<rangle>\<^sub>? = \<lfloor>u\<rfloor> \<and> \<Gamma> \<turnstile> u : U; \<Gamma> \<turnstile>\<^sub>w\<^sub>f; \<Gamma> \<turnstile>\<^sub>w\<^sub>f T; (l, Ta) \<in> set list; unique ((a, b) \<Colon> list)\<rbrakk> \<Longrightarrow> (l, Ta) \<in> set ((a, b) \<Colon> list) 2. \<And>a b x2. \<lbrakk>\<Gamma> \<turnstile> T <: RcdT x2 \<Longrightarrow> \<Gamma> \<turnstile> map (\<lambda>(l, T). (l, the (fs\<langle>l\<rangle>\<^sub>?))) x2 [:] x2; \<Gamma> \<turnstile> T <: RcdT ((a, b) \<Colon> x2); \<forall>(l, U)\<in>set ((a, b) \<Colon> x2). \<exists>u. fs\<langle>l\<rangle>\<^sub>? = \<lfloor>u\<rfloor> \<and> \<Gamma> \<turnstile> u : U\<rbrakk> \<Longrightarrow> map (\<lambda>(l, T). (l, the (fs\<langle>l\<rangle>\<^sub>?))) x2\<langle>a\<rangle>\<^sub>? = \<bottom> [PROOF STEP] apply simp [PROOF STATE] proof (prove) goal (1 subgoal): 1. \<And>a b x2. \<lbrakk>\<Gamma> \<turnstile> T <: RcdT x2 \<Longrightarrow> \<Gamma> \<turnstile> map (\<lambda>(l, T). (l, the (fs\<langle>l\<rangle>\<^sub>?))) x2 [:] x2; \<Gamma> \<turnstile> T <: RcdT ((a, b) \<Colon> x2); \<forall>(l, U)\<in>set ((a, b) \<Colon> x2). \<exists>u. fs\<langle>l\<rangle>\<^sub>? = \<lfloor>u\<rfloor> \<and> \<Gamma> \<turnstile> u : U\<rbrakk> \<Longrightarrow> map (\<lambda>(l, T). (l, the (fs\<langle>l\<rangle>\<^sub>?))) x2\<langle>a\<rangle>\<^sub>? = \<bottom> [PROOF STEP] apply (erule wf_subtypeE) [PROOF STATE] proof (prove) goal (1 subgoal): 1. \<And>a b x2. \<lbrakk>\<Gamma> \<turnstile> T <: RcdT x2 \<Longrightarrow> \<Gamma> \<turnstile> map (\<lambda>(l, T). (l, the (fs\<langle>l\<rangle>\<^sub>?))) x2 [:] x2; \<forall>(l, U)\<in>set ((a, b) \<Colon> x2). \<exists>u. fs\<langle>l\<rangle>\<^sub>? = \<lfloor>u\<rfloor> \<and> \<Gamma> \<turnstile> u : U; \<Gamma> \<turnstile>\<^sub>w\<^sub>f; \<Gamma> \<turnstile>\<^sub>w\<^sub>f T; \<Gamma> \<turnstile>\<^sub>w\<^sub>f RcdT ((a, b) \<Colon> x2)\<rbrakk> \<Longrightarrow> map (\<lambda>(l, T). (l, the (fs\<langle>l\<rangle>\<^sub>?))) x2\<langle>a\<rangle>\<^sub>? = \<bottom> [PROOF STEP] apply (erule well_formed_cases) [PROOF STATE] proof (prove) goal (1 subgoal): 1. \<And>a b x2. \<lbrakk>\<Gamma> \<turnstile> T <: RcdT x2 \<Longrightarrow> \<Gamma> \<turnstile> map (\<lambda>(l, T). (l, the (fs\<langle>l\<rangle>\<^sub>?))) x2 [:] x2; \<forall>(l, U)\<in>set ((a, b) \<Colon> x2). \<exists>u. fs\<langle>l\<rangle>\<^sub>? = \<lfloor>u\<rfloor> \<and> \<Gamma> \<turnstile> u : U; \<Gamma> \<turnstile>\<^sub>w\<^sub>f; \<Gamma> \<turnstile>\<^sub>w\<^sub>f T; unique ((a, b) \<Colon> x2); \<forall>x\<in>set ((a, b) \<Colon> x2). case x of (l, x) \<Rightarrow> \<Gamma> \<turnstile>\<^sub>w\<^sub>f x\<rbrakk> \<Longrightarrow> map (\<lambda>(l, T). (l, the (fs\<langle>l\<rangle>\<^sub>?))) x2\<langle>a\<rangle>\<^sub>? = \<bottom> [PROOF STEP] apply simp [PROOF STATE] proof (prove) goal: No subgoals! [PROOF STEP] done
/** * testReachset.cpp * * Test the reachable set computation of a two-link scara manipulator. * * Created by Yinan Li on July 05, 2020. * Hybrid Systems Group, University of Waterloo. */ #include <iostream> #include <cmath> #include <array> #include <boost/numeric/odeint.hpp> #include "src/system.hpp" #include "src/csolver.h" #include "scara.h" typedef std::array<double, 4> state_type; struct scara_vf { rocs::Rn _u; scara_vf(rocs::Rn u) : _u(u) {} void operator()(state_type &x, state_type &dxdt, double t) const { double z1 = I1+I2+m1*r1*r1+m2*(l1*l1+r2*r2); double z2 = m2*l1*r2; double z3 = I2+m2*r2*r2; double detM = z3*(z1-z3) - z2*z2*std::cos(x[1])*std::cos(x[1]); double a = z2*std::sin(x[1])*(2*x[2]+x[3])*x[3]; double b = z2*std::cos(x[1]); double c = z2*x[2]*std::sin(x[1])-_u[1]; dxdt[0] = x[2]; dxdt[1] = x[3]; dxdt[2] = (z3*_u[0] + z3*a + (z3+b)*c) / detM; dxdt[3] = ((z1+2*b)*(-c) - (z3+b)*(_u[0]+a)) / detM; } }; int main() { /* set the state space */ double xlb[4] = {0, -M_PI, -0.5, -0.5}; double xub[4] = {M_PI, M_PI, 0.5, 0.5}; /* set the control values */ double ulb[2] = {-0.001, -0.001}; double uub[2] = {0.001, 0.001}; double mu[2] = {0.0002, 0.0002}; /* set the sampling time and disturbance */ double t = 0.05; double delta = 0.01; /* parameters for computing the flow */ int kmax = 5; double tol = 0.01; double alpha = 0.5; double beta = 2; rocs::params controlparams(kmax, tol, alpha, beta); /* define the control system */ rocs::CTCntlSys<scaraode> scara("inverted pendulum", t, scaraode::n, scaraode::nu, delta, &controlparams); scara.init_workspace(xlb, xub); scara.init_inputset(mu, ulb, uub); scara.allocate_flows(); /* test if reachable set covers the nominal trajectory */ /* compute reachable set */ // rocs::ivec x0 = {rocs::interval(0.09, 0.11), // rocs::interval(-0.01, 0.01), // rocs::interval(-0.01, 0.01), // rocs::interval(-0.01, 0.01)}; rocs::ivec x0 = {rocs::interval(0.6172, 0.63), rocs::interval(1.61, 1.63), rocs::interval(-0.005, 0.005), rocs::interval(-0.005, 0.005)}; std::vector<rocs::ivec> x(scara._ugrid._nv, rocs::ivec(4)); std::cout << "The initial interval: " << x0 << '\n'; std::cout << "The integrating time: " << t << '\n'; scara.get_reach_set(x, x0); // double dt{0.001}; // for (size_t i = 0; i < x.size(); ++i) { // /* integrate the nominal trajectory */ // state_type y{0.1, 0, 0, 0}; // rocs::Rn u(scara._ugrid._data[i]); // boost::numeric::odeint::runge_kutta_cash_karp54<state_type> rk45; // boost::numeric::odeint::integrate_const(rk45, scara_vf(u), // y, 0.0, t, dt); // std::cout << "x(t)= [" << y[0] << ','<< y[1] << ',' << y[2] << ',' << y[3] << "]\n"; // std::cout << "R(t, x0, [" << scara._ugrid._data[i][0] << ',' // << scara._ugrid._data[i][1] << "])= "; // std::cout << x[i] <<'\n'; // std::cout << "Check: "; // for (int j = 0; j < 4; ++j) { // if (y[j] > x[i][j].getinf() && y[j] < x[i][j].getsup()) // std::cout << true << ' '; // else // std::cout << false << ' '; // } // std::cout << '\n'; // } scara.release_flows(); return 0; }
module Data.Lawful.Eqv %default total ||| `Eq` enriched with reflexivity, commutativity and transitivity. public export interface Eq a => Eqv a where 0 eqvReflexive : (x : a) -> x == x = True 0 eqvCommutative : (x, y : a) -> x == y = y == x 0 eqvTransitive : (x, y, z : a) -> x == y = True -> y == z = True -> x == z = True export Eqv () where eqvReflexive () = Refl eqvCommutative () () = Refl eqvTransitive () () () Refl Refl = Refl export Eqv Bool where eqvReflexive True = Refl eqvReflexive False = Refl eqvCommutative True True = Refl eqvCommutative True False = Refl eqvCommutative False True = Refl eqvCommutative False False = Refl eqvTransitive True True True Refl Refl = Refl eqvTransitive False False False Refl Refl = Refl export Eqv Nat where eqvReflexive 0 = Refl eqvReflexive (S n) = rewrite eqvReflexive n in Refl eqvCommutative 0 0 = Refl eqvCommutative 0 (S m) = Refl eqvCommutative (S n) 0 = Refl eqvCommutative (S n) (S m) = rewrite eqvCommutative n m in Refl eqvTransitive Z Z Z Refl Refl = Refl eqvTransitive (S n) (S m) (S k) nm mk = eqvTransitive n m k nm mk split_and : {a, b : Bool} -> a && b = True -> (a = True, b = True) split_and {a=True} {b=True} Refl = (Refl, Refl) export Eqv a => Eqv (List a) where eqvReflexive [] = Refl eqvReflexive (x::xs) = rewrite eqvReflexive x in eqvReflexive xs eqvCommutative [] [] = Refl eqvCommutative [] (x::xs) = Refl eqvCommutative (x::xs) [] = Refl eqvCommutative (x::xs) (y::ys) = rewrite eqvCommutative x y in rewrite eqvCommutative xs ys in Refl eqvTransitive [] [] [] Refl Refl = Refl eqvTransitive (x::xs) (y::ys) (z::zs) xy yz = rewrite eqvTransitive x y z (fst $ split_and xy) (fst $ split_and yz) in rewrite eqvTransitive xs ys zs (snd $ split_and xy) (snd $ split_and yz) in Refl export (Eqv a, Eqv b) => Eqv (a, b) where eqvReflexive (a, b) = rewrite eqvReflexive a in rewrite eqvReflexive b in Refl eqvCommutative (a, b) (c, d) = rewrite eqvCommutative a c in rewrite eqvCommutative b d in Refl eqvTransitive (a, b) (c, d) (e, f) ac ce = rewrite eqvTransitive a c e (fst $ split_and ac) (fst $ split_and ce) in rewrite eqvTransitive b d f (snd $ split_and ac) (snd $ split_and ce) in Refl export (Eqv a, Eqv b) => Eqv (Either a b) where eqvReflexive (Left x) = rewrite eqvReflexive x in Refl eqvReflexive (Right y) = rewrite eqvReflexive y in Refl eqvCommutative (Left x) (Left y) = rewrite eqvCommutative x y in Refl eqvCommutative (Right x) (Right y) = rewrite eqvCommutative x y in Refl eqvCommutative (Left x) (Right y) = Refl eqvCommutative (Right x) (Left y) = Refl eqvTransitive (Left x) (Left y) (Left z ) xy yz = eqvTransitive x y z xy yz eqvTransitive (Right x) (Right y) (Right z) xy yz = eqvTransitive x y z xy yz
{-# OPTIONS --without-K --rewriting #-} open import lib.Basics open import lib.NType open import lib.types.Cospan open import lib.types.Pointed open import lib.types.Sigma module lib.types.Pullback where module _ {i j k} (D : Cospan {i} {j} {k}) where open Cospan D record Pullback : Type (lmax i (lmax j k)) where constructor pullback field a : A b : B h : f a == g b pullback= : {a a' : A} (p : a == a') {b b' : B} (q : b == b') {h : f a == g b} {h' : f a' == g b'} (r : h ∙ ap g q == ap f p ∙ h') → pullback a b h == pullback a' b' h' pullback= idp idp r = ap (pullback _ _) (! (∙-unit-r _) ∙ r) pullback-aβ : {a a' : A} (p : a == a') {b b' : B} (q : b == b') {h : f a == g b} {h' : f a' == g b'} (r : h ∙ ap g q == ap f p ∙ h') → ap Pullback.a (pullback= p q {h = h} {h' = h'} r) == p pullback-aβ idp idp r = ap Pullback.a (ap (pullback _ _) (! (∙-unit-r _) ∙ r)) =⟨ ∘-ap Pullback.a (pullback _ _) _ ⟩ ap (λ _ → _) (! (∙-unit-r _) ∙ r) =⟨ ap-cst _ _ ⟩ idp =∎ pullback-bβ : {a a' : A} (p : a == a') {b b' : B} (q : b == b') {h : f a == g b} {h' : f a' == g b'} (r : h ∙ ap g q == ap f p ∙ h') → ap Pullback.b (pullback= p q {h = h} {h' = h'} r) == q pullback-bβ idp idp r = ap Pullback.b (ap (pullback _ _) (! (∙-unit-r _) ∙ r)) =⟨ ∘-ap Pullback.b (pullback _ _) _ ⟩ ap (λ _ → _) (! (∙-unit-r _) ∙ r) =⟨ ap-cst _ _ ⟩ idp =∎ module _ {i j k} (D : ⊙Cospan {i} {j} {k}) where ⊙Pullback : Ptd (lmax i (lmax j k)) ⊙Pullback = ⊙[ Pullback (⊙cospan-out D) , pullback (pt X) (pt Y) (snd f ∙ ! (snd g)) ] where open ⊙Cospan D module _ {i j k} (D : Cospan {i} {j} {k}) where open Cospan D pullback-decomp-equiv : Pullback D ≃ Σ (A × B) (λ {(a , b) → f a == g b}) pullback-decomp-equiv = equiv (λ {(pullback a b h) → ((a , b) , h)}) (λ {((a , b) , h) → pullback a b h}) (λ _ → idp) (λ _ → idp) module _ {i j k} (n : ℕ₋₂) {D : Cospan {i} {j} {k}} where open Cospan D pullback-level : has-level n A → has-level n B → has-level n C → has-level n (Pullback D) pullback-level pA pB pC = equiv-preserves-level ((pullback-decomp-equiv D)⁻¹) $ Σ-level (×-level pA pB) (λ _ → =-preserves-level pC)
%SWIVELDATA Create look-up tables of swivel angle median and range % % Will save the file SwivelData.mat to the same location as this % function. The median and range look-up tables are called phi_med and % phi_range respectively. Angles are in radians, and non-reachable % points are NaN. They are made with 1deg resolution, and are nxnxn in % size, where n may be set, but default 101. % % Copyright (C) Bryan Moutrie, 2013-2014 % Licensed under the GNU Lesser General Public License % see full file for full statement % % Known issues: % - The model for the shoulder range of motion seems to give some % outlier results, which causes in a large swivel angle range % - When interpolating to find a value, when near the surface of the % arm's reacahble workspace, a NaN may be returned though it is % reachable % LICENSE STATEMENT: % % This file is part of pHRIWARE. % % pHRIWARE is free software: you can redistribute it and/or modify % it under the terms of the GNU Lesser General Public License as % published by the Free Software Foundation, either version 3 of % the License, or (at your option) any later version. % % pHRIWARE is distributed in the hope that it will be useful, % but WITHOUT ANY WARRANTY; without even the implied warranty of % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the % GNU General Public License for more details. % % You should have received a copy of the GNU Lesser General Public % License along with pHRIWARE. If not, see <http://www.gnu.org/licenses/>. w = which('wrapToPi'); if isempty(w) error(pHRIWARE('error', ... ['The MATLAB wrapToPi function could not be detected.', ... 'Replace it with your own version'])); end n = 101; hal = HAL(); AP = hal.AP; reach = sum([AP{2} AP{3}]); X = linspace(-reach,reach,n); Y = linspace(-reach,reach,n); Z = linspace(-reach,reach,n); PHI = d2r*(-180:179); phi_med = zeros(n,n,n,'single'); phi_range = zeros(n,n,n,'single'); Q1 = zeros(length(PHI), 7); Q2 = zeros(length(PHI), 7); for x = 1:n for y = 1:n for z = 1:n [~,~,Tu] = h2fsu(AP,[X(x),Y(y),Z(z)]',PHI); [Q1(:,1:3), Q2(:,1:3)] = gikine(AP{1},Tu); [~, u] = hal.reachable(Q1, Q2); valid = logical(~u'); % v = find(valid); % if ~isempty(v) % d = diff([v, v(end)+v(1)]); % if ~all(d==1) % longest = [0 0 0]; % count = 0; % for i=1:length(d) % if d(i) == 1 % count = count+1; % else % if count > longest(3) % longest = [i-count i-1 count]; % end % count = 0; % end % end % if ~isequal(longest,[0 0 0]) % valid = v(longest(1):longest(2)); % else % valid = false(size(PHI)); % end % else % valid = v; % end % end reachablePhi = PHI(valid); if ~isempty(reachablePhi) phiM = max(reachablePhi); phim = min(reachablePhi); if phim == PHI(1) && phiM == PHI(end) unreachablePhi = PHI(logical(~valid)); phiM = min(unreachablePhi) + 1*d2r + 2*pi; phim = max(unreachablePhi) - 1*d2r; end else phiM = NaN; phim = NaN; end phi_med(x,y,z) = (phiM+phim)/2; phi_range(x,y,z) = (phiM-phim)/2; end end fprintf('.'); if ~mod(x,10), fprintf('\n'); end end phi_med = wrapToPi(phi_med); dir = fileparts(which('swivelData.m')); save([dir,'\SwivelData.mat'],'phi_med','phi_range'); fprintf('saved!\n');
text\<open> 12 November 2021: Exercises for Homework 10 in CS 511 \<close> text\<open> Your task to remove the invocations of the pre-defined method 'blast' by an equivalent sequence of 'apply' steps \<close> theory HW10 imports Main begin text\<open> 'blast' is invoked four times, once in the proof of each of lemmas E1, F1, G1, and H1 below \<close> (* lemma E1 is the same in Exercise 2.3.9 (e), page 161, in [LCS] *) lemma E1 : "\<forall> x. (P x \<or> Q x) \<Longrightarrow> (\<forall> x. P x) \<or> (\<exists> x. Q x)" apply (rule disjCI) apply (rule allI) apply (erule_tac x="x" in allE) apply (erule disjE) apply assumption apply (erule notE) apply (rule exI) apply assumption done (* lemma F1 is the same in Exercise 2.3.9 (f), page 161, in [LCS] *) lemma F1 : "\<forall> x. \<exists> y. (P x \<or> Q y) \<Longrightarrow> \<exists> y. \<forall> x. (P x \<or> Q y)" apply (rule exCI, rule allI) apply (erule_tac x="x" in allE) apply (rotate_tac 1, erule exE) apply (erule_tac x="y" in allE) apply (erule disjE, rule disjI1, assumption) apply (rule disjI2, erule notE, rule allI) apply (rule disjI2, assumption) done (* lemma G1 is the same in Exercise 2.3.9 (g), page 161, in [LCS] *) lemma G1 : "\<forall> x. (\<not> P x \<and> Q x) \<Longrightarrow> (\<forall> x. P x \<longrightarrow> Q x)" apply (rule allI) apply (rule impI) apply (erule_tac x="x" in allE) apply (erule conjE) apply assumption done (* lemma H1 is the same in Exercise 2.3.9 (h), page 161, in [LCS] *) lemma H1 : "\<forall> x. (P x \<and> Q x) \<Longrightarrow> (\<forall> x. P x \<longrightarrow> Q x)" apply (rule allI) apply (rule impI) apply (erule_tac x="x" in allE) apply (erule conjE) apply assumption done end
module Rec1 where import Rec2 y : ℕ y = x
import analysis.inner_product_space.pi_L2 import topology.paracompact --OUTPUT 1 theorem ℝn_paracompact (n : ℕ) : paracompact_space (euclidean_space ℝ (fin n)) := begin -- Let $\mathcal{A}$ be an open covering of $\mathbb{R}^n$. assume (A : set (euclidean_space ℝ (fin n))) (hA : is_open_cover A), -- We now construct a locally finite open refinement $\mathcal{C}$ of $\mathcal{A}$ that covers $\mathbb{R}^n$. have h1 : ∃ C : set (euclidean_space ℝ (fin n)), is_open_cover C ∧ is_locally_finite C ∧ is_refinement A C, from by { -- First, we define a collection of pen balls. -- Let $B_0 = \phi$, and for each $n \in \mathbb{N}$, let $B_m$ denote the ball of radius $m$ centered at 0. let B : ℕ → set (euclidean_space ℝ (fin n)) := λ m, {x : euclidean_space ℝ (fin n) | ∃ (y : euclidean_space ℝ (fin n)), y ∈ (ball (0 : euclidean_space ℝ (fin n)) m) ∧ x = y}, have hB : ∀ m : ℕ, B m ⊆ (euclidean_space ℝ (fin n)), from by { assume m : ℕ, assume x : euclidean_space ℝ (fin n), assume hx : x ∈ B m, show x ∈ (euclidean_space ℝ (fin n)), from by { cases hx with y hy, cases hy with hy1 hy2, show x ∈ (euclidean_space ℝ (fin n)), from by { rw ← hy2, apply set.mem_of_mem_ball, exact hy1, }, }, }, have hB0 : B 0 = ∅, from by { apply set.eq_empty_iff_forall_not_mem.mpr, assume x : euclidean_space ℝ (fin n), assume hx : x ∈ B 0, cases hx with y hy, cases hy with hy1 hy2, have h3 : y ∈ (ball (0 : euclidean_space ℝ (fin n)) 0), from by { rw ← hy2, exact hx, }, have h4 : y = (0 : euclidean_space ℝ (fin n)), from by { apply ball_eq_zero, exact h3, }, have h5 : x = (0 : euclidean_space ℝ (fin n)), from by { rw ← hy2, exact h4, }, have h6 : x ∉ (euclidean_space ℝ (fin n) \ {0}), from by { apply set.not_mem_of_mem_diff, split, exact hx, apply set.not_mem_singleton, exact h5, }, show false, from by { apply h6, apply set.mem_univ, }, }, have hB1 : ∀ m : ℕ, B (m+1) = (euclidean_space ℝ (fin n)) \ (B m), from by { assume m : ℕ, apply set.eq_of_subset_of_subset, assume x : euclidean_space ℝ (fin n), assume hx : x ∈ B (m+1), cases hx with y hy, cases hy with hy1 hy2, have h3 : y ∈ (ball (0 : euclidean_space ℝ (fin n)) (m+1)), from by { rw ← hy2, exact hx, }, have h4 : y ∉ (ball (0 : euclidean_space ℝ (fin n)) m), from by { apply ball_not_mem_of_ball_lt, exact h3, }, have h5 : y ∉ B m, from by { assume h6 : y ∈ B m, cases h6 with z hz, cases hz with hz1 hz2, have h7 : z ∈ (ball (0 : euclidean_space ℝ (fin n)) m), from by { rw ← hz2, exact hz1, }, show false, from by { apply h4, exact h7, }, }, have h6 : y ∈ (euclidean_space ℝ (fin n)) \ (B m), from by { apply set.mem_diff, split, exact hy1, exact h5, }, have h7 : x ∈ (euclidean_space ℝ (fin n)) \ (B m), from by { rw ← hy2, exact h6, }, show x ∈ (euclidean_space ℝ (fin n)) \ (B m), from by { apply set.mem_diff, split, exact hx, exact h7, }, assume x : euclidean_space ℝ (fin n), assume hx : x ∈ (euclidean_space ℝ (fin n)) \ (B m), cases hx with hx1 hx2, have h3 : x ∈ (euclidean_space ℝ (fin n)), from by { apply set.mem_diff, split, exact hx1, exact hx2, }, have h4 : ∃ (y : euclidean_space ℝ (fin n)), y ∈ (ball (0 : euclidean_space ℝ (fin n)) (m+1)) ∧ x = y, from by { use x, split, exact h3, refl, }, show x ∈ B (m+1), from by { apply set.mem_of_mem_ball, exact h4, }, }, have hB2 : ∀ m : ℕ, B m = (euclidean_space ℝ (fin n)) \ (B (m-1)), from by { assume m : ℕ, induction m with m hm, show B 0 = (euclidean_space ℝ (fin n)) \ (B (-1)), from by { rw hB0, rw set.diff_empty, refl, }, show B (m+1) = (euclidean_space ℝ (fin n)) \ (B m), from by { rw hB1, rw hm, refl, }, }, have hB3 : ∀ m : ℕ, B m = (euclidean_space ℝ (fin n)) \ (B (m-1)), from by { assume m : ℕ, induction m with m hm, show B 0 = (euclidean_space ℝ (fin n)) \ (B (-1)), from by { rw hB0, rw set.diff_empty, refl, }, show B (m+1) = (euclidean_space ℝ (fin n)) \ (B m), from by { rw hB1, rw hm, refl, }, }, have hB4 : ∀ m : ℕ, B m = (euclidean_space ℝ (fin n)) \ (B (m-1)), from by { assume m : ℕ, induction m with m hm, show B 0 = (euclidean_space ℝ (fin n)) \ ( end --Needs more than 2000 tokens! /- FEW SHOT PROMPTS TO CODEX(START) /--`theorem` Power Set is Closed under Intersection Let $S$ be a set. Let $\powerset S$ be the power set of $S$. Then: :$\forall A, B \in \powerset S: A \cap B \in \powerset S$ `proof` Let $A, B \in \powerset S$. Then by the definition of power set, $A \subseteq S$ and $B \subseteq S$. From Intersection is Subset we have that $A \cap B \subseteq A$. It follows from Subset Relation is Transitive that $A \cap B \subseteq S$. Thus $A \cap B \in \powerset S$ and closure is proved. {{qed}} -/ theorem power_set_intersection_closed {α : Type*} (S : set α) : ∀ A B ∈ 𝒫 S, (A ∩ B) ∈ 𝒫 S := begin -- $A$ and $B$ are sets. $A$ and $B$ belong to power set of $S$ assume (A : set α) (hA : A ∈ 𝒫 S) (B : set α) (hB : B ∈ 𝒫 S), -- Then $A ⊆ S$ and $B ⊆ S$, by power set definition have h1 : (A ⊆ S) ∧ (B ⊆ S), from by {split,apply set.subset_of_mem_powerset,exact hA,apply set.subset_of_mem_powerset,exact hB}, -- Then $(A ∩ B) ⊆ A$, by intersection of set is a subset have h2 : (A ∩ B) ⊆ A, from by apply set.inter_subset_left, -- Then $(A ∩ B) ⊆ S$, by subset relation is transitive have h3 : (A ∩ B) ⊆ S, from by {apply set.subset.trans h2 h1.left}, -- Hence $(A ∩ B) ∈ 𝒫 S$, by power set definition show (A ∩ B) ∈ 𝒫 S, from by {apply set.mem_powerset h3}, end /--`theorem` Square of Sum :$\forall x, y \in \R: \paren {x + y}^2 = x^2 + 2 x y + y^2$ `proof` Follows from the distribution of multiplication over addition: {{begin-eqn}} {{eqn | l = \left({x + y}\right)^2 | r = \left({x + y}\right) \cdot \left({x + y}\right) }} {{eqn | r = x \cdot \left({x + y}\right) + y \cdot \left({x + y}\right) | c = Real Multiplication Distributes over Addition }} {{eqn | r = x \cdot x + x \cdot y + y \cdot x + y \cdot y | c = Real Multiplication Distributes over Addition }} {{eqn | r = x^2 + 2xy + y^2 | c = }} {{end-eqn}} {{qed}} -/ theorem square_of_sum (x y : ℝ) : (x + y)^2 = (x^2 + 2*x*y + y^2) := begin -- expand the power calc (x + y)^2 = (x+y)*(x+y) : by rw sq -- distributive property of multiplication over addition gives: ... = x*(x+y) + y*(x+y) : by rw add_mul -- applying the above property further gives: ... = x*x + x*y + y*x + y*y : by {rw [mul_comm x (x+y),mul_comm y (x+y)], rw [add_mul,add_mul], ring} -- rearranging the terms using commutativity and adding gives: ... = x^2 + 2*x*y + y^2 : by {repeat {rw ← sq}, rw mul_comm y x, ring} end /--`theorem` Identity of Group is Unique Let $\struct {G, \circ}$ be a group. Then there is a unique identity element $e \in G$. `proof` From Group has Latin Square Property, there exists a unique $x \in G$ such that: :$a x = b$ and there exists a unique $y \in G$ such that: :$y a = b$ Setting $b = a$, this becomes: There exists a unique $x \in G$ such that: :$a x = a$ and there exists a unique $y \in G$ such that: :$y a = a$ These $x$ and $y$ are both $e$, by definition of identity element. {{qed}} -/ theorem group_identity_unique {G : Type*} [group G] : ∃! e : G, ∀ a : G, e * a = a ∧ a * e = a := begin -- Group has Latin Square Property have h1 : ∀ a b : G, ∃! x : G, a * x = b, from by { assume a b : G, use a⁻¹ * b, obviously, }, have h2 : ∀ a b : G, ∃! y : G, y * a = b, from by { assume a b : G, use b * a⁻¹, obviously, }, -- Setting $b = a$, this becomes: have h3 : ∀ a : G, ∃! x : G, a * x = a, from assume a : G, h1 a a, have h4 : ∀ a : G, ∃! y : G, y * a = a, from assume a : G, h2 a a, -- These $x$ and $y$ are both $(1 : G)$, by definition of identity element have h5 : ∀ a : G, classical.some (h3 a).exists = (1 : G), from assume a :G, exists_unique.unique (h3 a) (classical.some_spec (exists_unique.exists (h3 a))) (mul_one a), have h6 : ∀ a : G, classical.some (h4 a).exists = (1 : G), from assume a : G, exists_unique.unique (h4 a) (classical.some_spec (exists_unique.exists (h4 a))) (one_mul a), show ∃! e : G, ∀ a : G, e * a = a ∧ a * e = a, from by { use (1 : G), have h7 : ∀ e : G, (∀ a : G, e * a = a ∧ a * e = a) → e = 1, from by { assume (e : G) (hident : ∀ a : G, e * a = a ∧ a * e = a), have h8 : ∀ a : G, e = classical.some (h3 a).exists, from assume (a : G), exists_unique.unique (h3 a) (hident a).right (classical.some_spec (exists_unique.exists (h3 a))), have h9 : ∀ a : G, e = classical.some (h4 a).exists, from assume (a : G), exists_unique.unique (h4 a) (hident a).left (classical.some_spec (exists_unique.exists (h4 a))), show e = (1 : G), from eq.trans (h9 e) (h6 _), }, exact ⟨by obviously, h7⟩, } end /--`theorem` \mathbb{R}^n is paracompact $\mathbb{R}^n$ is paracompact for all $n$. `proof` Let $\mathcal{A}$ be an open covering of $\mathbb{R}^n$. We now construct a locally finite open refinement $\mathcal{C}$ of $\mathcal{A}$ that covers $\mathbb{R}^n$. First, we define a collection of pen balls. Let $B_0 = \phi$, and for each $n \in \mathbb{N}$, let $B_m$ denote the ball of radius $m$ centered at 0. Given $m$, set $\Bar{B_m}$ is compact in $\mathbb{R}^n$ by the Heine-Borel theorem, so choose finitely many elements of $\mathcal{A}$ that cover $\Bar{B_m}$ and intersect each one with the open set $\mathbb{R}^n \setminus \Bar{B_{m - 1}}$, and let $\mathcal{C}_{m}$ denote this collection of open sets (each an open subset of an element of $\mathcal{A}$). So $\mathcal{C} = \bigcup_{m = 0}^{\infty} \mathcal{C}_m$ is an open refinement of $\mathcal{A}$. Note that $\mathcal{C}$ covers $\mathbb{R}^n$ since for any $x \in \mathbb{R}^n$, there is a smallest $m \in \mathbb{N}$ such that $x \in \Bar{B_{m}}$ (namely, some $m$ where $\rVert x \lVert \leq m \leq \rVert x \lVert + 1$), and so $x$ is an element of $\mathcal{C}_m$. Now collection $\mathcal{C}$ is locally finite since for given $x \in \mathbb{R}^n$, neighborhood $B_m$ intersects only finitely many elements of $\mathcal{C}$, namely those elements in collection $\mathcal{C}_1 \cup \mathcal{C}_2 \cup \cdots \mathcal{C}_m$. So $\mathcal{C}$ is a locally finite open refinement of $\mathcal{A}$ that covers $\mathbb{R}^n$, hence $\mathbb{R}^n$ is paracompact. QED -/ theorem ℝn_paracompact (n : ℕ) : paracompact_space (euclidean_space ℝ (fin n)) := FEW SHOT PROMPTS TO CODEX(END)-/
%File: AAAI-inst.tex % WARNING: If you are not an experienced LaTeX user, AAAI does % NOT recommend that you use LaTeX to format your paper. No % support for LaTeX is provided by AAAI, and these instructions % and the accompanying style files are NOT guaranteed to work. % If the results you obtain are not in accordance with the % specifications you received in your packet (or online), you % must correct the style files or macro to achieve the correct % result. % % AAAI CANNOT HELP YOU WITH THIS TASK. % % The instructions herein are provided as a general guide for % experienced LaTeX users who would like to use that software % to format their paper for an AAAI Press proceedings or technical % report or AAAI working notes. These instructions are generic. % Consequently, they do not include specific dates, page charges, and so forth. % Please consult your specific written conference instructions for % details regarding your submission. % % Acknowledgments % The preparation of the \LaTeX{} and Bib\TeX{} files that % implement these instructions was supported by % Schlumberger Palo Alto Research, AT\&T Bell % Laboratories, Morgan Kaufmann Publishers, and AAAI Press. \documentclass[letterpaper]{article} \usepackage{aaai} \usepackage{times} \usepackage{helvet} \usepackage{courier} \begin{document} % The file aaai.sty is the style file for AAAI Press % proceedings, working notes, and technical reports. % \title{Formatting Your AAAI Paper Using the \LaTeX\ Style Files} \author{AAAI Press\\ American Association for Artificial Intelligence\\ 445 Burgess Drive\\ Menlo Park, California 94025--3496\\ [email protected]} \maketitle \begin{abstract} \begin{quote} This document provides a very brief overview of the AAAI style file for \LaTeX2e, as well as some general instructions on using the Times Roman font set. To use this style file, you must already be familiar with \LaTeX\ and must read the general formatting instructions supplied in your author kit. This document just gives you some brief instructions on using the aaai.sty file. Most common formatting commands are included in this document. \end{quote} \end{abstract} \section{About These Instructions} In the past, this instruction file has contained general formatting instructions for persons preparing their papers for an AAAI proceedings. Those instructions are now available on AAAI's website in PDF format only, and are part of the general author kit distributed to all authors whose papers have been accepted by AAAI for publication in an AAAI conference proceedings. This document only contains specific information of interest to \LaTeX\ users. {\bf Warning:} If you are not an experienced \LaTeX\ user, AAAI does {\bf not} recommend that you use \LaTeX\ to format your paper. No support for LaTeX is provided by AAAI, and these instructions and the accompanying style files are {\bf not} guaranteed to work. If the results you obtain are not in accordance with the specifications you received in your packet (or online), you must correct the style files or macro to achieve the correct result. AAAI {\bf cannot} help you with this task. The instructions herein are provided as a general guide for experienced \LaTeX\ users who would like to use that software to format their paper for an AAAI Press proceedings or technical report or AAAI working notes. These instructions are generic. Consequently, they do not include specific dates, page charges, and so forth. Please consult your specific written conference instructions for details regarding your submission. \section{Output} To ready your paper for publication, please read the ``Instructions for Authors'' paper. This document is available on AAAI's website, and is supplied in your author kit. \subsection{Paper Size} If you are outside the US, the \LaTeX\ default paper size has most likely been changed from ``letterpaper" to ``a4." Because we require that your electronic paper be formatted in US letter size, you will need to change the default back to US letter size. Assuming you are using the 2e version of \LaTeX\, you can do this by including the [letterpaper] option at the beginning of your file: \begin{footnotesize} \begin{verbatim} \documentclass[letterpaper]{article}. \end{verbatim} \end{footnotesize} This command is usually sufficient to change the format for LaTeX. However, it is also usually necessary to configure dvips. Try passing the -tletter option to dvips. Those using RedHat Linux 8.0 and LaTeX should also check the paper size setting in "/usr/share/texmf/dvips/config/config.ps" --- it may be that ``A4" is the default, rather than ``letter." This can result in incorrect top and bottom margins in documents you prepare with LaTeX. You will need to edit the config file to correct the problem. (Once you've edited to config file for US letter, it may not be possible for you to print your papers locally). \section{The AAAI Style File} The latest version of the AAAI style file is available on AAAI's website. You should download this file and place it in a file named ``aaai.sty" in the \TeX\ search path. Placing it in the same directory as the paper should also work. (We recommend that you download the complete author kit so that you will have the latest bug list and instruction set. \subsection{Using the Style File} In the \LaTeX\ source for your paper, place the following lines as follows: \begin{footnotesize} \begin{verbatim} \documentclass[letterpaper]{article} \usepackage{aaai} \usepackage{times} \usepackage{helvet} \usepackage{courier}\title{Title} \author{Author 1 \and Author 2 \\ Address line \\ Address line \And Author 3 \\ Address line \\ Address line} \begin{document} \maketitle ... \end{document} \end{verbatim} \end{footnotesize} This command set-up is for three authors. Add or subtract author and address lines as necessary. In most instances, this is all you need to do to format your paper in the Times font. The helvet package will cause Helvetica to be used for sans serif, and the courier package will cause Courier to be used for the typewriter font. These files are part of the PSNFSS2e package, which is freely available from many Internet sites (and is often part of a standard installation. If using these commands does not work for you (and you are using \LaTeX2e), you will need to refer to the fonts information found later on in this document. \subsubsection{Including a Reference List} At the end of your paper, you can include your reference list by using the following commands: \begin{footnotesize} \begin{verbatim} \bibliography{Bibliography-File} \bibliographystyle{aaai} \end{document} \end{verbatim} \end{footnotesize} \subsubsection{Formatting Author Information} Author information can be set in a number of different styles, depending on the number of authors and the number of affiliations you need to display. For several authors from the same institution, use \verb+\+and: \begin{footnotesize} \begin{verbatim} \author{Author 1 \and ... \and Author n \\ Address line \\ ... \\ Address line} \end{verbatim} \end{footnotesize} \noindent If the names do not fit well on one line use: \begin{footnotesize} \begin{verbatim} \author{Author 1 \\ {\bf Author 2} \\ ... \\ {\bf Author n} \\ Address line \\ ... \\ Address line} \end{verbatim} \end{footnotesize} \noindent For authors from different institutions, use \verb+\+And: \begin{footnotesize} \begin{verbatim} \author{Author 1 \\ Address line \\ ... \\ Address line \And ... \And Author n \\ Address line \\ ... \\ Address line} \end{verbatim} \end{footnotesize} \noindent To start a separate ``row" of authors, use \verb+\+AND: \begin{footnotesize} \begin{verbatim} \author{Author 1 \\ Address line \\ ... \\ Address line \AND Author 2 \\ Address line \\ ... \\ Address line \And Author 3 \\ Address line \\ ... \\ Address line} \end{verbatim} \end{footnotesize} \noindent If the title and author information does not fit in the area allocated, place \begin{footnotesize} \begin{verbatim} \setlength\titlebox{\emph{height}} \end{verbatim} \end{footnotesize} after the \verb+\+documentclass line where \emph{height} is something like 2.5in. \subsubsection{Adding Acknowledgements} To acknowledge other contributors, grant support, or whatever, use \verb+\+thanks in either the \verb+\+author or \verb+\+title commands. For example: \begin{footnotesize} \begin{verbatim} \title{Very Important Results in AI\thanks{This work is supported by everybody.}} \end{verbatim} \end{footnotesize} Multiple \verb+\+thanks commands can be given. Each will result in a separate footnote indication in the author or title with the corresponding text at the bottom of the first column of the document. For example: \begin{footnotesize} \begin{verbatim} \author{A. Researcher\thanks{Now at Microsoft.} \andB. Researcher\thanks{Not at Microsoft.}} \end{verbatim} \end{footnotesize} One common error with \verb+\+thanks is forgetting to use \verb+\+protect on what \LaTeX\ calls ``fragile'' commands. \subsubsection{Adding a Publication Note} To add a comment to the header of document, use \verb+\+pubnote, as in \verb+\+pubnote\{\verb+\+emph\{To appear, AI Journal\}\} This should be placed after the title and author information but before \verb+\+maketitle. Note that \verb+\+pubnote is for printing the paper yourself, and should not be used in submitted versions! \subsubsection{Copyright information} By default, the AAAI copyright slug will be printed at the bottom of the first column of your document. To suppress the copyright slug, use \verb+\+nocopyright somewhere before \verb+\+maketitle. To change the year in the copyright slug from the current year, use \verb+\+copyrightyear\{\emph{year}\} To change the entire text of the copyright slug, use \verb+\+copyrighttext\{\emph{text}\} Either of these must appear before \verb+\+maketitle. \section{Bibliography Style and References} The aaai.sty file includes a set of definitions for use in formatting references with BibTeX. These definitions make the bibliography style closer to the one specified in the ``Instructions to Authors'' for AAAI papers. To use these definitions, you also need the BibTeX style file aaai.bst, available from the AAAI web site. Then, at the end of your paper but before \verb+\+end{document}, you need to put the following lines: \begin{footnotesize} \begin{verbatim} \bibliographystyle{aaai} \bibliography{bibfile1,bibfile2,...} \end{verbatim} \end{footnotesize} The list of files in the bibliography command should be the names of your BibTeX source files (that is, the .bib files referenced in your paper). The following commands are available for your use in citing references: \begin{description} \item \verb+\+cite: Cites the given reference(s) with a full citation. This appears as ``(Author Year)'' for one reference, or ``(Author Year; Author Year)'' for multiple references. \item \verb+\+shortcite: Cites the given reference(s) with just the year. This appears as ``(Year)'' for one reference, or ``(Year; Year)'' for multiple references. \item \verb+\+citeauthor: Cites the given reference(s) with just the author name(s) and no parentheses. \item \verb+\+citeyear: Cites the given reference(s) with just the fate(s) and no parentheses. \end{description} \section{Copyright} If you were required to transfer copyright of your paper to AAAI, you must include the AAAI copyright notice and web site address on all copies of your paper, whether electronic or paper (including the camera copy you provide to AAAI.) If you use the latest AAAI style file, the copyright line will be inserted for you automatically. (If your paper doesn't include the copyright slug and it should, the paper will be returned to you for reformatting.) If we did not require you to transfer copyright, you may disable the copyright line using the \verb+\+nocopyrightcommand. \section{Fonts} Papers published in AAAI publicatons must now be formatted using the Times family of fonts, so that all papers in the proceedings have a uniform appearance. If you've been using Computer Modern, the first advantage you will see to using Times is that the character count is smaller --- that means you can put more words on a page! \subsection{Type 3 Fonts} You've probably seen PDF files containing type 3 bitmapped fonts on the web (there are files like that on AAAI's web site too). They're often the huge files that open slowly, scroll very slowly, and aren't readable unless they're enlarged many times. Aside from these problems, these files usually contain fonts designed for 300 dpi printers, so they print at 300 dpi even if the printer resolution is 1200 dpi or higher. They also often cause high resolution imagesetter devices to crash and sometimes the PDF indexing software we use can't read them. Because of these and other problems, as well as for purposes of uniformity, {\bf AAAI will not longer accept electronic files where the text and headings are formatted using obsolete type 3 fonts.} Documents with Type 3 bitmap fonts are not acceptable and will be returned to the authors. Fortunately, there are effective workarounds that will prevent your file from embedding type 3 bitmapped fonts. The easiest workaround is to use the times, helvet, and courier packages with \LaTeX\ 2e. (Note that papers formatted in this way will still use Computer Modern for the mathematics. To make the math look good, you'll either have to use Symbol or Lucida, or you will need to install type 1 Computer Modern fonts---for more on these fonts, see the section ``Obtaining Type 1 Computer Modern.") \subsection{Making dvips Behave} If your PostScript output still includes type 3 fonts, you should run dvips with option ``dvips -Ppdf -G0 -o papername.ps papername.dvi" (If your machine or site has type 1 fonts, they will probably be loaded.) Note that it is a zero folloing the ``-G." This tells dvips to use the config.pdf file (and this file refers to a better font mapping). If that doesn't work, you'll have to download the fonts and create a font substitution list. \subsubsection{dvipdf Script} Scripts such as dvipdf which ostensibly bypass the Postscript intermediary should not be used since they generally do not instruct dvips to use the config.pdf file. \subsection{Pdflatex} Pdflatex is a good alternative solution to the \LaTeX font problem. By using the pdftex program instead of straight \LaTeX or \TeX, you will avoid the type 3 font problem altogether. However, there is a problem with Pdflatex that you might need to overcome. The program often won't embed all fonts. To solve this potential disaster, you must ensure that all of the fonts are embedded (use pdffonts). If they are not, you need to configure pdftex to use a font map file that specifies that the fonts be embedded. Also you should ensure that images are not downsampled or otherwise compressed in a lossy way. If fonts aren't getting embedded, users should look at the pdftex mailing list for hints on how to configure pdftex or pdflatex to properly embed the typefaces: http://tug.org/pipermail/pdftex/2002-July/002803.html \subsection{Ghostscript} LatTeX users using GhsotScript should make sure that they are using v7.04 or newer. The older versions do not create acceptable PDF files on most platforms. \subsection{Graphics} If you are still finding Type 3 fonts in your PDF file, look at your graphics! LaTeX users should check all their imported graphics files as well for font problems! \subsection{Obtaining Type 1 Computer Modern} If you {\it must} use Computer Modern for the mathematics in your paper (you can't use it for the text anymore) you will need to download the type 1 Computer fonts. They are available without charge from the American Mathematical Society. Point your browser to the following url to find them: http://www.ams.org/tex/type1-fonts.html Type 1 versions of Computer Modern are also available (for free) from the BaKoMa collection at http://xxx.lanl.gov/ftp/pub/fonts/x-windows/ \subsubsection{Making A Font Substitution List} Once you've installed the type 1 Computer Modern fonts, you'll need to get dvips to refrain from embedding the bitmap fonts. To do this, you'll need to create a font substitution list for use by dvips. Each line of this file should start with the name of the font that TeX uses, as shown below: \begin{footnotesize} \begin{flushleft} cmb10 $<$/usr/local/lib/tex/fonts/type1/cmb10.pfb \\ cmbsy10 $<$/usr/local/lib/tex/fonts/type1/cmbsy10.pfb \\ cmbsy6 $<$/usr/local/lib/tex/fonts/type1/cmbsy6.pfb \\ cmbsy7 $<$/usr/local/lib/tex/fonts/type1/cmbsy7.pfb \\ cmbsy8 $<$/usr/local/lib/tex/fonts/type1/cmbsy8.pfb \\ cmbsy9 $<$/usr/local/lib/tex/fonts/type1/cmbsy9.pfb \\ cmbx10 $<$/usr/local/lib/tex/fonts/type1/cmbx10.pfb \\ cmbx12 $<$/usr/local/lib/tex/fonts/type1/cmbx12.pfb \\ \end{flushleft} \end{footnotesize} In this example, the assumption is that you have PFB versions of the Computer Modern fonts located in the directory /urs/local/lib/tex/fonts/type1/. The file name should be the type 1 encoding of the Postscript font in PFB or PFA format. If your home directory contains a file called .dvipsrc containing the line: ``* p +fontMapFileName" that font map will be used by dvips for all the jobs you run. You can also created a file, like "config.embed" that contains that line. If you do that, when you invoke dvips with the command ``dvips -P embed ...," dvips will look for config embed in the current directory (and perhaps your home directory). You may need to change how dvips looks for config files. To do this, read the ``environment variables" section of the dvips documentation. If you need more information, or a better and more technical explanation of how to make this all work, Kendall Whitehouse has written detailed instructions on "Creating Quality Adobe PDF FIles from TeX with DVIPS." It is available from Adobe's Web Site, and other sites on the Internet (you'll need to do a quick search for it). \subsection{Checking For Improper Fonts} Once a PDF has been made, authors should check to ensure that the file contains no Type 3 fonts and further that all fonts have been embedded. This step is hardly ever used by authors, and it would save significant time (and money!) if they would simply take 45 seconds and do this. This can be done with the pdffonts utility that is included in the Xpdf package (http://www.foolabs.com/xpdf/). Alternatively, you can use the File--Document Properties--Fonts option in Acrobat Reader; if you chose the latter, you should be sure that no other PDF documents are open at the time. \section{Citations and References} Be sure to read the ``Formatting Instructions for Authors" paper that was included in your author kit (and is available on the AAAi website. \LaTeX\ will handle your citations improperly unless you change its configuration and use the correct commands. The AAAI style file and the BibTeX files will help you in this regard. George Ferguson's paper shows you the proper commands necessary to implement AAAI citation and reference style. \section{Illustrations and Figures} Figures, drawings, tables, and photographs should be placed throughout the paper near the place where they are first discussed. Do not group them together at the end of the paper. \LaTeX\ will sometimes put portions of the figure or table in the margin. If this happens, you need to scale the figure or table down, because {\bf nothing} (even a line!) is allowed to intrude into the margins. \section{Electronic Submissions} To aid in the creation of a permanent electronic archive of all its publications and for creation of its publications, AAAI requires electronic submission of your paper in PDF format, as well as its abstract, and author--title information. Please see the Author Formatting Instructions document for additional information. As a \LaTeX\ user, you need to pay attention to the special requirements imposed on you. In particular, although you are required to submit a PDF version of your paper, we may also require that you submit, in a tar, zipped, or stuffed archive, all the source files (including any figures) you used to create your paper. If we do request this material, please provide us with a {\bf single} source file containing your entire paper, including the bibliography. Also please remove all commented out portions of your paper. We may also request that you send us the figures that accompany your document. Please do not send us material that is not actually used in the paper. If we ask for this material, it is because nearly all the problems we have with electronic submissions come from persons using \LaTeX\ . Many of the problems would be easy to fix if we had all the source files, which is why we may ask you to send them to us. Even if we can't take the time to fix the file, we can usually tell quite quickly what is wrong if we have your source, and give you directions on how you might fix it yourself. \section{Possible Bugs in the AAAI Style File} Some users have found that the aaai.sty does not work properly at their site. They have submitted suggestions for improvement of the macro. You will find those suggestions in the buglist file that is part of complete set, and also as a separate file on the AAAI website. Some of these suggestions have already been implemented, while others seem to be dependent on individual site conditions. If you're having problems with aaai.sty, we suggest you look at the ``bug list." The AAAI style is {\bf not} guaranteed to work. It is provided in the hope that it will make the preparation of papers easier. There are undoubtably bugs in this style. If you make bug fixes, improvements, etc. please let us know so that we might include them in the buglist. \section{Inquiries} If you have any general questions about the preparation or submission of your paper, please contact AAAI Press. If you have technical questions about implementation of the macros, please contact an expert at your site. We do not provide technical support for \LaTeX\ or any other software package. If you are new to \LaTeX\, your paper is fairly straightforward, and doesn't include multilevel equations, you will probably find that you can format it much faster using a word-processing program like Microsoft Word. This is especialy true if your paper includes a number of pictures or graphics. \section{A Note on Printing} Some laser printers have a serious problem printing \TeX\ output. These printing devices, commonly known as ``write-white'' laser printers, tend to make characters too light. To get around this problem, a darker set of fonts must be created for these devices. \section{ Acknowledgments} AAAI is especially grateful to Peter Patel Schneider for his work in implementing the aaai.sty file, liberally using the ideas of other style hackers, including Barbara Beeton. We also acknowledge with thanks the work of George Ferguson for his guide to using the style and BibTeX files --- which has been incorporated into this document and comprises almost all the subsection entitled ``Using the AAAI Style File," as well as the many others who have, from time to time, send in suggestions on improvements to the AAAI styles. The preparation of the \LaTeX{} and Bib\TeX{} files that implement these instructions was supported by Schlumberger Palo Alto Research, AT\&T Bell Laboratories, Morgan Kaufmann Publishers, and AAAI Press. Bibliography style changes were added by Sunil Issar. \verb+\+pubnote was added by J. Scott Penberthy. George Ferguson added support for printing the AAAI copyright slug. \bigskip \noindent Thank you for reading these instructions carefully. We look forward to receiving your camera-ready copy! \end{document}
# setup enviroment library(tidyverse) # load data ds <- diamonds # scatterplot of price vs x ggplot(data = ds, aes(y = price, x = x)) + geom_point() # correlations between price and x/y/z cor.test(ds$price, ds$x) cor.test(ds$price, ds$y) cor.test(ds$price, ds$z) # scatterplot of price vs depth ggplot(data = ds, aes(y = price, x = depth)) + geom_point(alpha = 1/100) + scale_x_continuous(breaks = 2) # correlation between price and depth cor.test(ds$price, ds$depth) # scatterpolt between price and carat without top 1% ggplot(data = ds, aes(y = price, x = carat)) + geom_point() + scale_x_continuous(limits = c(0, quantile(ds$carat, 0.99))) + scale_y_continuous(limits = c(0, quantile(ds$price, 0.99))) + labs(title = "Price vs Carat", x = "Carat", y = "Price") # create volume variable ds$volume <- (ds$x * ds$y * ds$z) # scatterplot of price vs volume ggplot(data = ds, aes(y = price, x = volume)) + geom_point() # correlation between price and volume without diamonds with volume = 0 or >= 800 ds_subset <- subset(ds, volume > 0 & volume < 800) cor.test(ds_subset$price, ds_subset$volume) # scatterplot of price vs volume on ds subset ggplot(data = ds_subset, aes(y = price, x = volume)) + geom_point(alpha = 1/100) + geom_smooth(method = "lm") # create new data frame with summary statistics of ds diamondsByClarity <- ds %>% group_by(clarity) %>% summarise(mean_price = mean(price), median_price = median(price), min_price = min(price), max_price = max(price), n = n()) # create new dataframe by clarity diamonds_by_clarity <- group_by(ds, clarity) diamonds_mp_by_clarity <- summarise(diamonds_by_clarity, mean_price = mean(price)) # create new dataframe by color diamonds_by_color <- group_by(ds, color) diamonds_mp_by_color <- summarise(diamonds_by_color, mean_price = mean(price)) # barplots of mean diamond prices by clarity and color bp_by_clarity <- ggplot(data = diamonds_mp_by_clarity, aes(x = clarity, y = mean_price)) + geom_boxplot() bp_by_color <- ggplot(data = diamonds_mp_by_color, aes(x = color, y = mean_price)) + geom_boxplot() # display barplots on single canvas library(gridExtra) grid.arrange(bp_by_clarity, bp_by_color) # work with gapminder data gm <- readxl::read_excel("./lesson3/gapminder.xlsx")
import numpy as np import math N, M = map(int, input().split()) A = list(map(int, input().split())) A = np.array(A) A_ix = A.argsort()[::-1] for i in range(M): if(A[A_ix[0]] > A[A_ix[1]]): A[A_ix[0]] = math.floor(A[A_ix[0]] / 2) else: A_ix = A.argsort()[::-1] A[A_ix[0]] = math.floor(A[A_ix[0]] / 2) print(A.sum())
------------------------------------------------------------------------------ -- Fair properties ------------------------------------------------------------------------------ {-# OPTIONS --exact-split #-} {-# OPTIONS --no-sized-types #-} {-# OPTIONS --no-universe-polymorphism #-} {-# OPTIONS --without-K #-} module FOTC.Program.ABP.Fair.PropertiesATP where open import FOTC.Base open import FOTC.Base.List open import FOTC.Data.List open import FOTC.Program.ABP.Fair.Type open import FOTC.Program.ABP.Terms ------------------------------------------------------------------------------ -- Because a greatest post-fixed point is a fixed-point, then the Fair -- predicate is also a pre-fixed point of the functional FairF, i.e. -- -- FairF Fair ≤ Fair (see FOTC.Program.ABP.Fair). -- See Issue https://github.com/asr/apia/issues/81 . Fair-inA : D → Set Fair-inA os = ∃[ ft ] ∃[ os' ] F*T ft ∧ os ≡ ft ++ os' ∧ Fair os' {-# ATP definition Fair-inA #-} Fair-in : ∀ {os} → ∃[ ft ] ∃[ os' ] F*T ft ∧ os ≡ ft ++ os' ∧ Fair os' → Fair os Fair-in h = Fair-coind Fair-inA h' h where postulate h' : ∀ {os} → Fair-inA os → ∃[ ft ] ∃[ os' ] F*T ft ∧ os ≡ ft ++ os' ∧ Fair-inA os' {-# ATP prove h' #-} head-tail-Fair : ∀ {os} → Fair os → os ≡ T ∷ tail₁ os ∨ os ≡ F ∷ tail₁ os head-tail-Fair {os} Fos with Fair-out Fos ... | (.(T ∷ []) , os' , f*tnil , h , Fos') = prf where postulate prf : os ≡ T ∷ tail₁ os ∨ os ≡ F ∷ tail₁ os {-# ATP prove prf #-} ... | (.(F ∷ ft) , os' , f*tcons {ft} FTft , h , Fos') = prf where postulate prf : os ≡ T ∷ tail₁ os ∨ os ≡ F ∷ tail₁ os {-# ATP prove prf #-} tail-Fair : ∀ {os} → Fair os → Fair (tail₁ os) tail-Fair {os} Fos with Fair-out Fos ... | .(T ∷ []) , os' , f*tnil , h , Fos' = prf where postulate prf : Fair (tail₁ os) {-# ATP prove prf #-} ... | .(F ∷ ft) , os' , f*tcons {ft} FTft , h , Fos' = prf where postulate prf : Fair (tail₁ os) {-# ATP prove prf Fair-in #-}
{-# OPTIONS --guardedness-preserving-type-constructors #-} module Issue602 where infixl 6 _⊔_ postulate Level : Set zero : Level suc : Level → Level _⊔_ : Level → Level → Level {-# BUILTIN LEVEL Level #-} {-# BUILTIN LEVELZERO zero #-} {-# BUILTIN LEVELSUC suc #-} {-# BUILTIN LEVELMAX _⊔_ #-} infix 1000 ♯_ postulate ∞ : ∀ {a} (A : Set a) → Set a ♯_ : ∀ {a} {A : Set a} → A → ∞ A ♭ : ∀ {a} {A : Set a} → ∞ A → A {-# BUILTIN INFINITY ∞ #-} {-# BUILTIN SHARP ♯_ #-} {-# BUILTIN FLAT ♭ #-} data CoNat : Set0 where z : CoNat s : ∞ CoNat → CoNat record A : Set2 where field f : Set1 record B (a : ∞ A) : Set1 where field f : A.f (♭ a) postulate a : A e : CoNat → A e z = a e (s n) = record { f = B (♯ e (♭ n)) }
/** * copyright (C) 2004 * the icecube collaboration * $Id: I3GSLRandomService.h 161127 2018-02-20 14:27:18Z kjmeagher $ * * @brief An implementation of the I3RandomService interface. * * Uses the gsl library for the random numbers * * @version $Revision: 161127 $ * @date $Date: 2018-02-20 07:27:18 -0700 (Tue, 20 Feb 2018) $ * @author pretz */ #ifndef I3GSLRANDOMSERVICE_H #define I3GSLRANDOMSERVICE_H #include "phys-services/I3RandomService.h" #include <gsl/gsl_randist.h> #include <gsl/gsl_rng.h> #include <gsl/gsl_test.h> /** * This is (the state for) a shim which allows us to count the calls to the * RNG, but otherwise hands all work off to the real GSL implmentations. */ typedef struct { unsigned long int seed; uint64_t icalls; uint64_t dcalls; gsl_rng* rng; } gsl_rng_wrapper_state; extern const gsl_rng_type gsl_rng_counting_wrapper; class I3GSLRandomService : public I3RandomService{ public: /** * default constructor */ I3GSLRandomService(); /** * constructor */ explicit I3GSLRandomService(unsigned long int seed, bool track_state=true); /** * destructor */ virtual ~I3GSLRandomService(); /** * a number drawn from a binomial distribution */ virtual int Binomial(int ntot, double prob); /** * A number from an Exponential distribution */ virtual double Exp(double tau); /** * An integer drawn uniformly from [0,imax) */ virtual unsigned int Integer(unsigned int imax); /** * An integer drawn from a Poisson distribution */ virtual int Poisson(double mean); /** * A number drawn from a Poisson distribution, as a double */ virtual double PoissonD(double mean); /** * a double drawn from a uniform distribution (0,x1) */ virtual double Uniform(double x1 = 1); /** * a double drawn from a uniform distribution (x1,x2) */ virtual double Uniform(double x1, double x2); /** * a double drawn from a Gaussian distribution with given * mean and standard deviation */ virtual double Gaus(double mean, double stddev); /** * get all information necessary to restore the internal * state of the generator */ virtual I3FrameObjectPtr GetState() const; /** * restore the internal state of the generator */ virtual void RestoreState(I3FrameObjectConstPtr state); private: // private copy constructors and assignment I3GSLRandomService(const I3GSLRandomService& ); I3GSLRandomService operator=(const I3GSLRandomService& ); /** * Helper function which constructs our preferred GSL RNG. */ static void construct(gsl_rng*& r); /** * Helper function which constructs a GSL RNG wrapped with the counting shim */ static void construct_counted(gsl_rng*& r); gsl_rng* r; bool track_state; SET_LOGGER("I3GSLRandomService"); //let gsl_wrapper_set use construct() friend void gsl_wrapper_set(void* vstate, unsigned long int s); }; I3_POINTER_TYPEDEFS(I3GSLRandomService); #endif //I3GSLRANDOMSERVICE_H
Yai, yai, omae no atama wa doko dai? Atama wa doko dai? Medama to kuchibashi wa? Come, come, come, shall we dance? Hey, hey, you, where's your head? Where's your head? Your eyes and your beak? Hey, hey, you, where are your feelings? Show me you can cry, show me you can laugh!
%default total data Tag = A | B | C | Unknown | Unchecked data Doutput : Tag -> Type where Ca : Doutput A Cb : Doutput B Cc : Doutput C Cu : Doutput Unknown Cs : String -> Doutput Unchecked {- Based on output from database you construct type -} typelevel : (a : Doutput Unchecked) -> Type typelevel (Cs "A") = Doutput A typelevel (Cs "B") = Doutput B typelevel (Cs "C") = Doutput C typelevel (Cs s) = Doutput Unknown {- Check value takes a type of Doutput Unchecked and transforms into one the known or unknown file format -} checkValue : (a : Doutput Unchecked) -> typelevel a checkValue (Cs "A") = Ca checkValue (Cs "B") = Cb checkValue (Cs "C") = Cc checkValue (Cs s) = ?Cu {- I am leaving it as meta variable beacause Idris is refusing to simplify it -} {- *Typefromdatabase> :r Type checking ./Typefromdatabase.idr Holes: Main.Cu1 *Typefromdatabase> ch changeDir check checkValue choice choiceMap chr *Typefromdatabase> checkValue (Cs "A") Ca : Doutput A Holes: Main.Cu1 *Typefromdatabase> checkValue (Cs "B") Cb : Doutput B Holes: Main.Cu1 *Typefromdatabase> checkValue (Cs "C") Cc : Doutput C Holes: Main.Cu1 *Typefromdatabase> checkValue (Cs "Hello Wrold") ?Cu1 : Doutput Unknown Holes: Main.Cu1 *Typefromdatabase> -}
function [varargout] = ft_selectdata(cfg, varargin) % FT_SELECTDATA makes a selection in the input data along specific data % dimensions, such as channels, time, frequency, trials, etc. It can also % be used to average the data along each of the specific dimensions. % % Use as % [data] = ft_selectdata(cfg, data, ...) % % The cfg argument is a configuration structure which can contain % cfg.tolerance = scalar, tolerance value to determine equality of time/frequency bins (default = 1e-5) % % For data with trials or subjects as repetitions, you can specify % cfg.trials = 1xN, trial indices to keep, can be 'all'. You can use logical indexing, where false(1,N) removes all the trials % cfg.avgoverrpt = string, can be 'yes' or 'no' (default = 'no') % % For data with a channel dimension you can specify % cfg.channel = Nx1 cell-array with selection of channels (default = 'all'), see FT_CHANNELSELECTION % cfg.avgoverchan = string, can be 'yes' or 'no' (default = 'no') % cfg.nanmean = string, can be 'yes' or 'no' (default = 'no') % % For data with channel combinations you can specify % cfg.channelcmb = Nx2 cell-array with selection of channels (default = 'all'), see FT_CHANNELCOMBINATION % cfg.avgoverchancmb = string, can be 'yes' or 'no' (default = 'no') % % For data with a time dimension you can specify % cfg.latency = scalar or string, can be 'all', 'minperiod', 'maxperiod', 'prestim', 'poststim', or [beg end], specify time range in seconds % cfg.avgovertime = string, can be 'yes' or 'no' (default = 'no') % cfg.nanmean = string, can be 'yes' or 'no' (default = 'no') % % For data with a frequency dimension you can specify % cfg.frequency = scalar or string, can be 'all', or [beg end], specify frequency range in Hz % cfg.avgoverfreq = string, can be 'yes' or 'no' (default = 'no') % cfg.nanmean = string, can be 'yes' or 'no' (default = 'no') % % When you average over a dimension, you can choose whether to keep that dimension in % the data representation or remove it alltogether. % cfg.keeprptdim = 'yes' or 'no' (default is automatic) % cfg.keepchandim = 'yes' or 'no' (default = 'yes') % cfg.keepchancmbdim = 'yes' or 'no' (default = 'yes') % cfg.keeptimedim = 'yes' or 'no' (default = 'yes') % cfg.keepfreqdim = 'yes' or 'no' (default = 'yes') % % If multiple input arguments are provided, FT_SELECTDATA will adjust the individual % inputs such that either the INTERSECTION across inputs is retained (i.e. only the % channel, time, and frequency points that are shared across all input arguments), or % that the UNION across inputs is retained (replacing missing data with nans). In % either case, the order of the channels is made consistent across inputs. The % behavior can be specified with % cfg.select = string, can be 'intersect' or 'union' (default = 'intersect') % For raw data structures you cannot make the union. % % See also FT_DATATYPE, FT_CHANNELSELECTION, FT_CHANNELCOMBINATION % Undocumented options % cfg.avgoverpos % cfg.keepposdim = 'yes' or 'no' (default = 'yes') % Copyright (C) 2012-2022, Robert Oostenveld & Jan-Mathijs Schoffelen % % This file is part of FieldTrip, see http://www.fieldtriptoolbox.org % for the documentation and details. % % FieldTrip is free software: you can redistribute it and/or modify % it under the terms of the GNU General Public License as published by % the Free Software Foundation, either version 3 of the License, or % (at your option) any later version. % % FieldTrip is distributed in the hope that it will be useful, % but WITHOUT ANY WARRANTY; without even the implied warranty of % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the % GNU General Public License for more details. % % You should have received a copy of the GNU General Public License % along with FieldTrip. If not, see <http://www.gnu.org/licenses/>. % % $Id$ % these are used by the ft_preamble/ft_postamble function and scripts ft_revision = '$Id$'; ft_nargin = nargin; ft_nargout = nargout; ft_defaults ft_preamble init ft_preamble debug ft_preamble loadvar varargin ft_preamble provenance varargin % determine the characteristics of the input data dtype = ft_datatype(varargin{1}); for i=2:length(varargin) % ensure that all subsequent inputs are of the same type ok = ft_datatype(varargin{i}, dtype); if ~ok, ft_error('input data should be of the same datatype'); end end % this only works with certain data types, it is not meant for descriptive fields such as elec, grad, opto, layout, etc. assert(~ismember(dtype, {'elec', 'grad', 'opto', 'layout'}), 'invalid input data type "%s"', dtype); % ensure that the user does not give invalid selection options cfg = ft_checkconfig(cfg, 'forbidden', {'foi', 'toi'}); cfg = ft_checkconfig(cfg, 'renamed', {'selmode', 'select'}); cfg = ft_checkconfig(cfg, 'renamed', {'toilim', 'latency'}); cfg = ft_checkconfig(cfg, 'renamed', {'foilim', 'frequency'}); cfg = ft_checkconfig(cfg, 'renamed', {'avgoverroi', 'avgoverpos'}); cfg = ft_checkconfig(cfg, 'renamedval', {'parameter', 'avg.pow', 'pow'}); cfg = ft_checkconfig(cfg, 'renamedval', {'parameter', 'avg.mom', 'mom'}); cfg = ft_checkconfig(cfg, 'renamedval', {'parameter', 'avg.nai', 'nai'}); cfg = ft_checkconfig(cfg, 'renamedval', {'parameter', 'trial.pow', 'pow'}); cfg = ft_checkconfig(cfg, 'renamedval', {'parameter', 'trial.mom', 'mom'}); cfg = ft_checkconfig(cfg, 'renamedval', {'parameter', 'trial.nai', 'nai'}); cfg.tolerance = ft_getopt(cfg, 'tolerance', 1e-5); % default tolerance for checking equality of time/freq axes cfg.select = ft_getopt(cfg, 'select', 'intersect'); % default is to take intersection, alternative 'union' if isequal(dtype, 'raw') && isequal(cfg.select, 'union') ft_error('using cfg.select=''union'' in combination with ''raw'' datatype is not supported'); end if strcmp(dtype, 'volume') || strcmp(dtype, 'segmentation') % it must be a source representation, not a volume representation for i=1:length(varargin) varargin{i} = ft_checkdata(varargin{i}, 'datatype', 'source'); end dtype = 'source'; else % check that the data is according to the latest FieldTrip representation for i=1:length(varargin) varargin{i} = ft_checkdata(varargin{i}); end end % this function only works for the upcoming (not yet standard) source representation without sub-structures % update the old-style beamformer source reconstruction to the upcoming representation if strcmp(dtype, 'source') if isfield(varargin{1}, 'avg') && isstruct(varargin{1}.avg) restoreavg = fieldnames(varargin{1}.avg); else restoreavg = {}; end for i=1:length(varargin) varargin{i} = ft_datatype_source(varargin{i}, 'version', 'upcoming'); end end cfg.latency = ft_getopt(cfg, 'latency', 'all', 1); if isnumeric(cfg.latency) && numel(cfg.latency)==2 && cfg.latency(1)==cfg.latency(2) % this is better specified by a single number cfg.latency = cfg.latency(1); end cfg.channel = ft_getopt(cfg, 'channel', 'all', 1); cfg.trials = ft_getopt(cfg, 'trials', 'all', 1); if length(varargin)>1 && ~isequal(cfg.trials, 'all') ft_error('it is ambiguous to make a subselection of trials while at the same time concatenating multiple data structures') end cfg.frequency = ft_getopt(cfg, 'frequency', 'all', 1); if isnumeric(cfg.frequency) && numel(cfg.frequency)==2 && cfg.frequency(1)==cfg.frequency(2) % this is better specified by a single number cfg.frequency = cfg.frequency(1); end datfield = fieldnames(varargin{1}); for i=2:length(varargin) % only consider fields that are present in all inputs datfield = intersect(datfield, fieldnames(varargin{i})); end datfield = setdiff(datfield, {'label' 'labelcmb'}); % these fields will be used for selection, but are not treated as data fields datfield = setdiff(datfield, {'dim'}); % not used for selection, also not treated as data field datfield = setdiff(datfield, ignorefields('selectdata')); orgdim1 = datfield(~cellfun(@isempty, regexp(datfield, 'label$')) & cellfun(@isempty, regexp(datfield, '^csd'))); % xxxlabel, with the exception of csdlabel datfield = setdiff(datfield, orgdim1); datfield = datfield(:)'; orgdim1 = datfield(~cellfun(@isempty, regexp(datfield, 'dimord$'))); % xxxdimord datfield = setdiff(datfield, orgdim1); datfield = datfield(:)'; sel = strcmp(datfield, 'cumtapcnt'); if any(sel) % move this field to the end, as it is needed to make the selections in the other fields datfield(sel) = []; datfield = [datfield {'cumtapcnt'}]; end orgdim2 = cell(size(orgdim1)); for i=1:length(orgdim1) orgdim2{i} = varargin{1}.(orgdim1{i}); end dimord = cell(size(datfield)); for i=1:length(datfield) dimord{i} = getdimord(varargin{1}, datfield{i}); end % do not consider fields of which the dimensions are unknown % sel = cellfun(@isempty, regexp(dimord, 'unknown')); % for i=find(~sel) % fprintf('not including "%s" in selection\n', datfield{i}); % end % datfield = datfield(sel); % dimord = dimord(sel); % determine all dimensions that are present in all data fields dimtok = {}; for i=1:length(datfield) dimtok = cat(2, dimtok, tokenize(dimord{i}, '_')); end dimtok = unique(dimtok); hasspike = any(ismember(dimtok, 'spike')); haspos = any(ismember(dimtok, {'pos' '{pos}'})); haschan = any(ismember(dimtok, {'chan' '{chan}'})); haschancmb = any(ismember(dimtok, 'chancmb')); hasfreq = any(ismember(dimtok, 'freq')); hastime = any(ismember(dimtok, 'time')); hasrpt = any(ismember(dimtok, {'rpt' 'subj' '{rpt}'})); hasrpttap = any(ismember(dimtok, 'rpttap')); if hasspike % cfg.latency is used to select individual spikes, not to select from a continuously sampled time axis hastime = false; end clear dimtok haspos = haspos && isfield(varargin{1}, 'pos'); haschan = haschan && isfield(varargin{1}, 'label'); haschancmb = haschancmb && isfield(varargin{1}, 'labelcmb'); hasfreq = hasfreq && isfield(varargin{1}, 'freq'); hastime = hastime && isfield(varargin{1}, 'time'); % do a sanity check on all input arguments if haspos, assert(all(cellfun(@isfield, varargin, repmat({'pos'}, size(varargin)))), 'not all input arguments have a "pos" field'); end if haschan, assert(all(cellfun(@isfield, varargin, repmat({'label'}, size(varargin)))), 'not all input arguments have a "label" field'); end if haschancmb, assert(all(cellfun(@isfield, varargin, repmat({'labelcmb'}, size(varargin)))), 'not all input arguments have a "labelcmb" field'); end if hasfreq, assert(all(cellfun(@isfield, varargin, repmat({'freq'}, size(varargin)))), 'not all input arguments have a "freq" field'); end if hastime, assert(all(cellfun(@isfield, varargin, repmat({'time'}, size(varargin)))), 'not all input arguments have a "time" field'); end avgoverpos = istrue(ft_getopt(cfg, 'avgoverpos', false)); % at some places it is also referred to as roi (region-of-interest) avgoverchan = istrue(ft_getopt(cfg, 'avgoverchan', false)); avgoverchancmb = istrue(ft_getopt(cfg, 'avgoverchancmb', false)); avgoverfreq = istrue(ft_getopt(cfg, 'avgoverfreq', false)); avgovertime = istrue(ft_getopt(cfg, 'avgovertime', false)); avgoverrpt = istrue(ft_getopt(cfg, 'avgoverrpt', false)); % do a sanity check for the averaging options if avgoverpos, assert(haspos, 'there are no source positions, so averaging is not possible'); end if avgoverchan, assert(haschan, 'there is no channel dimension, so averaging is not possible'); end if avgoverchancmb, assert(haschancmb, 'there are no channel combinations, so averaging is not possible'); end if avgoverfreq, assert(hasfreq, 'there is no frequency dimension, so averaging is not possible'); end if avgovertime, assert(hastime, 'there is no time dimension, so averaging over time is not possible'); end if avgoverrpt, assert(hasrpt||hasrpttap, 'there are no repetitions, so averaging is not possible'); end % set averaging function cfg.nanmean = ft_getopt(cfg, 'nanmean', 'no'); if strcmp(cfg.nanmean, 'yes') average = @nanmean; else average = @mean; end % by default we keep most of the dimensions in the data structure when averaging over them keepposdim = istrue(ft_getopt(cfg, 'keepposdim', true)); keepchandim = istrue(ft_getopt(cfg, 'keepchandim', true)); keepchancmbdim = istrue(ft_getopt(cfg, 'keepchancmbdim', true)); keepfreqdim = istrue(ft_getopt(cfg, 'keepfreqdim', true)); keeptimedim = istrue(ft_getopt(cfg, 'keeptimedim', true)); keeprptdim = istrue(ft_getopt(cfg, 'keeprptdim', ~avgoverrpt)); if ~keepposdim, assert(avgoverpos, 'removing a dimension is only possible when averaging'); end if ~keepchandim, assert(avgoverchan, 'removing a dimension is only possible when averaging'); end if ~keepchancmbdim, assert(avgoverchancmb, 'removing a dimension is only possible when averaging'); end if ~keepfreqdim, assert(avgoverfreq, 'removing a dimension is only possible when averaging'); end if ~keeptimedim, assert(avgovertime, 'removing a dimension is only possible when averaging'); end if ~keeprptdim, assert(avgoverrpt, 'removing a dimension is only possible when averaging'); end % trim the selection to all inputs, rpt and rpttap are dealt with later if hasspike, [selspike, cfg] = getselection_spike (cfg, varargin{:}); end if haspos, [selpos, cfg] = getselection_pos (cfg, varargin{:}, cfg.tolerance, cfg.select); end if haschan, [selchan, cfg] = getselection_chan (cfg, varargin{:}, cfg.select); end if haschancmb, [selchancmb, cfg] = getselection_chancmb(cfg, varargin{:}, cfg.select); end if hasfreq, [selfreq, cfg] = getselection_freq (cfg, varargin{:}, cfg.tolerance, cfg.select); end if hastime, [seltime, cfg] = getselection_time (cfg, varargin{:}, cfg.tolerance, cfg.select); end % this is to keep track of all fields that should be retained in the output keepfield = datfield; for i=1:numel(varargin) for j=1:numel(datfield) dimtok = tokenize(dimord{j}, '_'); % the rpt selection should only work with a single data argument % in case tapers were kept, selrpt~=selrpttap, otherwise selrpt==selrpttap [selrpt{i}, dum, rptdim{i}, selrpttap{i}] = getselection_rpt(cfg, varargin{i}, dimord{j}); % check for the presence of each dimension in each datafield fieldhasspike = ismember('spike', dimtok); fieldhaspos = ismember('pos', dimtok) || ismember('{pos}', dimtok); fieldhaschan = (ismember('chan', dimtok) || ismember('{chan}', dimtok)) && isfield(varargin{1}, 'label'); fieldhaschancmb = ismember('chancmb', dimtok); fieldhastime = ismember('time', dimtok) && ~hasspike; fieldhasfreq = ismember('freq', dimtok); fieldhasrpt = ismember('rpt', dimtok) | ismember('subj', dimtok) | ismember('{rpt}', dimtok); fieldhasrpttap = ismember('rpttap', dimtok); % cfg.latency is used to select individual spikes, not to select from a continuously sampled time axis if fieldhasspike, varargin{i} = makeselection(varargin{i}, datfield{j}, dimtok, find(strcmp(dimtok,'spike')), selspike{i}, false, 'intersect', average); end if fieldhaspos, varargin{i} = makeselection(varargin{i}, datfield{j}, dimtok, find(ismember(dimtok, {'pos', '{pos}'})), selpos{i}, avgoverpos, cfg.select, average); end if fieldhaschan, varargin{i} = makeselection(varargin{i}, datfield{j}, dimtok, find(ismember(dimtok,{'chan' '{chan}'})), selchan{i}, avgoverchan, cfg.select, average); end if fieldhaschancmb, varargin{i} = makeselection(varargin{i}, datfield{j}, dimtok, find(strcmp(dimtok,'chancmb')), selchancmb{i}, avgoverchancmb, cfg.select, average); end if fieldhastime, varargin{i} = makeselection(varargin{i}, datfield{j}, dimtok, find(strcmp(dimtok,'time')), seltime{i}, avgovertime, cfg.select, average); end if fieldhasfreq, varargin{i} = makeselection(varargin{i}, datfield{j}, dimtok, find(strcmp(dimtok,'freq')), selfreq{i}, avgoverfreq, cfg.select, average); end if fieldhasrpt, varargin{i} = makeselection(varargin{i}, datfield{j}, dimtok, rptdim{i}, selrpt{i}, avgoverrpt, 'intersect', average); end if fieldhasrpttap, varargin{i} = makeselection(varargin{i}, datfield{j}, dimtok, rptdim{i}, selrpttap{i}, avgoverrpt, 'intersect', average); end % update the fields that should be kept in the structure as a whole % and update the dimord for this specific datfield keepdim = true(size(dimtok)); if avgoverchan && ~keepchandim keepdim(strcmp(dimtok, 'chan')) = false; keepfield = setdiff(keepfield, 'label'); else keepfield = [keepfield 'label']; end if avgoverchancmb && ~keepchancmbdim keepdim(strcmp(dimtok, 'chancmb')) = false; keepfield = setdiff(keepfield, 'labelcmb'); else keepfield = [keepfield 'labelcmb']; end if avgoverfreq && ~keepfreqdim keepdim(strcmp(dimtok, 'freq')) = false; keepfield = setdiff(keepfield, 'freq'); else keepfield = [keepfield 'freq']; end if avgovertime && ~keeptimedim keepdim(strcmp(dimtok, 'time')) = false; keepfield = setdiff(keepfield, 'time'); else keepfield = [keepfield 'time']; end if avgoverpos && ~keepposdim keepdim(strcmp(dimtok, 'pos')) = false; keepdim(strcmp(dimtok, '{pos}')) = false; keepdim(strcmp(dimtok, 'dim')) = false; keepfield = setdiff(keepfield, {'pos' '{pos}' 'dim'}); elseif avgoverpos && keepposdim keepfield = setdiff(keepfield, {'dim'}); % this should be removed anyway else keepfield = [keepfield {'pos' '{pos}' 'dim'}]; end if avgoverrpt && ~keeprptdim keepdim(strcmp(dimtok, 'rpt')) = false; keepdim(strcmp(dimtok, 'rpttap')) = false; keepdim(strcmp(dimtok, 'subj')) = false; end % update the sampleinfo, if possible, and needed if strcmp(datfield{j}, 'sampleinfo') && ~isequal(cfg.latency, 'all') if iscell(seltime{i}) && numel(seltime{i})==size(varargin{i}.sampleinfo,1) for k = 1:numel(seltime{i}) varargin{i}.sampleinfo(k,:) = varargin{i}.sampleinfo(k,1) - 1 + seltime{i}{k}([1 end]); end elseif ~iscell(seltime{i}) && ~isempty(seltime{i}) && ~all(isnan(seltime{i})) nrpt = size(varargin{i}.sampleinfo,1); seltime{i} = seltime{i}(:)'; varargin{i}.sampleinfo = varargin{i}.sampleinfo(:,[1 1]) - 1 + repmat(seltime{i}([1 end]),nrpt,1); end end varargin{i}.(datfield{j}) = squeezedim(varargin{i}.(datfield{j}), ~keepdim); end % for datfield % also update the fields that describe the dimensions, time/freq/pos have been dealt with as data if haschan, varargin{i} = makeselection_chan (varargin{i}, selchan{i}, avgoverchan); end % update the label field if haschancmb, varargin{i} = makeselection_chancmb(varargin{i}, selchancmb{i}, avgoverchancmb); end % update the labelcmb field end % for varargin if strcmp(cfg.select, 'union') % create the union of the descriptive axes if haspos, varargin = makeunion(varargin, 'pos'); end if haschan, varargin = makeunion(varargin, 'label'); end if haschancmb, varargin = makeunion(varargin, 'labelcmb'); end if hastime, varargin = makeunion(varargin, 'time'); end if hasfreq, varargin = makeunion(varargin, 'freq'); end end % remove all fields from the data structure that do not pertain to the selection sel = strcmp(keepfield, '{pos}'); if any(sel), keepfield(sel) = {'pos'}; end sel = strcmp(keepfield, 'chan'); if any(sel), keepfield(sel) = {'label'}; end sel = strcmp(keepfield, 'chancmb'); if any(sel), keepfield(sel) = {'labelcmb'}; end if avgoverrpt % these are invalid after averaging keepfield = setdiff(keepfield, {'cumsumcnt' 'cumtapcnt' 'trialinfo' 'sampleinfo'}); end if avgovertime % these are invalid after averaging or making a latency selection keepfield = setdiff(keepfield, {'sampleinfo'}); end for i=1:numel(varargin) varargin{i} = keepfields(varargin{i}, [keepfield ignorefields('selectdata')']); end % restore the original dimord fields in the data for i=1:length(orgdim1) dimtok = tokenize(orgdim2{i}, '_'); % using a setdiff may result in double occurrences of chan and pos to % disappear, so this causes problems as per bug 2962 % if ~keeprptdim, dimtok = setdiff(dimtok, {'rpt' 'rpttap' 'subj'}); end % if ~keepposdim, dimtok = setdiff(dimtok, {'pos' '{pos}'}); end % if ~keepchandim, dimtok = setdiff(dimtok, {'chan'}); end % if ~keepfreqdim, dimtok = setdiff(dimtok, {'freq'}); end % if ~keeptimedim, dimtok = setdiff(dimtok, {'time'}); end if ~keeprptdim, dimtok = dimtok(~ismember(dimtok, {'rpt' 'rpttap' 'subj'})); end if ~keepposdim, dimtok = dimtok(~ismember(dimtok, {'pos' '{pos}'})); end if ~keepchandim, dimtok = dimtok(~ismember(dimtok, {'chan'})); end if ~keepfreqdim, dimtok = dimtok(~ismember(dimtok, {'freq'})); end if ~keeptimedim, dimtok = dimtok(~ismember(dimtok, {'time'})); end dimord = sprintf('%s_', dimtok{:}); dimord = dimord(1:end-1); % remove the trailing _ for j=1:length(varargin) varargin{j}.(orgdim1{i}) = dimord; end end % restore the source.avg field, this keeps the output reasonably consistent with the % old-style source representation of the input if strcmp(dtype, 'source') && ~isempty(restoreavg) for i=1:length(varargin) varargin{i}.avg = keepfields(varargin{i}, restoreavg); varargin{i} = removefields(varargin{i}, restoreavg); end end varargout = varargin; ft_postamble debug ft_postamble previous varargin ft_postamble provenance varargout ft_postamble history varargout ft_postamble savevar varargout % the varargout variable can be cleared when written to outputfile if exist('varargout', 'var') && ft_nargout>numel(varargout) % also return the input cfg with the combined selection over all input data structures varargout{end+1} = cfg; end end % function ft_selectdata %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % SUBFUNCTIONS %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function data = makeselection(data, datfield, dimtok, seldim, selindx, avgoverdim, selmode, average) if numel(seldim) > 1 for k = 1:numel(seldim) data = makeselection(data, datfield, dimtok, seldim(k), selindx, avgoverdim, selmode, average); end return; end if isnumeric(data.(datfield)) if isrow(data.(datfield)) && seldim==1 if length(dimtok)==1 seldim = 2; % switch row and column end elseif iscolumn(data.(datfield)) && seldim==2 if length(dimtok)==1 seldim = 1; % switch row and column end end elseif iscell(data.(datfield)) if isrow(data.(datfield){1}) && seldim==2 if length(dimtok)==2 seldim = 3; % switch row and column end elseif iscolumn(data.(datfield){1}) && seldim==3 if length(dimtok)==2 seldim = 2; % switch row and column end end end % an empty selindx means that nothing(!) should be selected and hence everything should be removed, which is different than keeping everything % the selindx value of NaN indicates that it is not needed to make a selection switch selmode case 'intersect' if iscell(selindx) % there are multiple selections in multipe vectors, the selection is in the matrices contained within the cell-array for j=1:numel(selindx) if ~isempty(selindx{j}) && all(isnan(selindx{j})) % no selection needs to be made else data.(datfield){j} = cellmatselect(data.(datfield){j}, seldim-1, selindx{j}, numel(dimtok)==1); end end else % there is a single selection in a single vector if ~isempty(selindx) && all(isnan(selindx)) % no selection needs to be made else data.(datfield) = cellmatselect(data.(datfield), seldim, selindx, numel(dimtok)==1); end end if avgoverdim data.(datfield) = cellmatmean(data.(datfield), seldim, average); end case 'union' if ~isempty(selindx) && all(isnan(selindx)) % no selection needs to be made elseif isequal(seldim,1) && any(strcmp({'time' 'freq'}, datfield)) % treat this as an exception, because these fields should only be % unionized along the second dimension, so here also no selection % needs to be made else tmp = data.(datfield); siz = size(tmp); siz(seldim) = numel(selindx); data.(datfield) = nan(siz); sel = isfinite(selindx); switch seldim case 1 data.(datfield)(sel,:,:,:,:,:) = tmp(selindx(sel),:,:,:,:,:); case 2 data.(datfield)(:,sel,:,:,:,:) = tmp(:,selindx(sel),:,:,:,:); case 3 data.(datfield)(:,:,sel,:,:,:) = tmp(:,:,selindx(sel),:,:,:); case 4 data.(datfield)(:,:,:,sel,:,:) = tmp(:,:,:,selindx(sel),:,:); case 5 data.(datfield)(:,:,:,:,sel,:) = tmp(:,:,:,:,selindx(sel),:); case 6 data.(datfield)(:,:,:,:,:,sel) = tmp(:,:,:,:,:,selindx(sel)); otherwise ft_error('unsupported dimension (%d) for making a selection for %s', seldim, datfield); end end if avgoverdim data.(datfield) = average(data.(datfield), seldim); end end % switch end % function makeselection %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function data = makeselection_chan(data, selchan, avgoverchan) if isempty(selchan) %error('no channels were selected'); data.label = {}; elseif avgoverchan && all(isnan(selchan)) str = sprintf('%s, ', data.label{:}); str = str(1:end-2); str = sprintf('mean(%s)', str); data.label = {str}; elseif avgoverchan && ~any(isnan(selchan)) str = sprintf('%s, ', data.label{selchan}); str = str(1:end-2); str = sprintf('mean(%s)', str); data.label = {str}; % remove the last '+' elseif all(isfinite(selchan)) data.label = data.label(selchan); data.label = data.label(:); elseif numel(selchan)==1 && any(~isfinite(selchan)) % do nothing elseif numel(selchan)>1 && any(~isfinite(selchan)) tmp = cell(numel(selchan),1); for k = 1:numel(tmp) if isfinite(selchan(k)) tmp{k} = data.label{selchan(k)}; end end data.label = tmp; else % this should never happen ft_error('cannot figure out how to select channels'); end end % function makeselection_chan %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function data = makeselection_chancmb(data, selchancmb, avgoverchancmb) if isempty(selchancmb) ft_error('no channel combinations were selected'); elseif avgoverchancmb && all(isnan(selchancmb)) % naming the channel combinations becomes ambiguous, but should not % suggest that the mean was computed prior to combining str1 = sprintf('%s, ', data.labelcmb{:,1}); str1 = str1(1:end-2); % str1 = sprintf('mean(%s)', str1); str2 = sprintf('%s, ', data.labelcmb{:,2}); str2 = str2(1:end-2); % str2 = sprintf('mean(%s)', str2); data.label = {str1, str2}; elseif avgoverchancmb && ~any(isnan(selchancmb)) % naming the channel combinations becomes ambiguous, but should not % suggest that the mean was computed prior to combining str1 = sprintf('%s, ', data.labelcmb{selchancmb,1}); str1 = str1(1:end-2); % str1 = sprintf('mean(%s)', str1); str2 = sprintf('%s, ', data.labelcmb{selchancmb,2}); str2 = str2(1:end-2); % str2 = sprintf('mean(%s)', str2); data.label = {str1, str2}; elseif all(isfinite(selchancmb)) data.labelcmb = data.labelcmb(selchancmb,:); elseif numel(selchancmb)==1 && any(~isfinite(selchancmb)) % do nothing elseif numel(selchancmb)>1 && any(~isfinite(selchancmb)) tmp = cell(numel(selchancmb),2); for k = 1:size(tmp,1) if isfinite(selchan(k)) tmp{k,1} = data.labelcmb{selchan(k),1}; tmp{k,2} = data.labelcmb{selchan(k),2}; end end data.labelcmb = tmp; else % this should never happen ft_error('cannot figure out how to select channelcombinations'); end end % function makeselection_chancmb %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function [chanindx, cfg] = getselection_chan(cfg, varargin) selmode = varargin{end}; ndata = numel(varargin)-1; varargin = varargin(1:ndata); % loop over data once to initialize chanindx = cell(ndata,1); label = cell(1,0); if ndata==1 && (isequal(cfg.channel, 'all') || isequal(cfg.channel, varargin{1}.label)) % the loop across data arguments, as well as the expensive calls to % FT_CHANNELSELECTION can be avoided if there is only a single data % argument and if 'all' channels are to be returned in the output label = varargin{1}.label(:); else for k = 1:ndata selchannel = cell(0,1); selgrad = []; selelec = []; selopto = []; if isfield(varargin{k}, 'grad') && isfield(varargin{k}.grad, 'type') % this makes channel selection more robust, e.g. when using wildcards in cfg.channel [selgrad, dum] = match_str(varargin{k}.label, varargin{k}.grad.label); selchannel = cat(1, selchannel, ft_channelselection(cfg.channel, varargin{k}.label(selgrad), varargin{k}.grad.type)); end if isfield(varargin{k}, 'elec') && isfield(varargin{k}.elec, 'type') % this makes channel selection more robust, e.g. when using wildcards in cfg.channel [selelec, dum] = match_str(varargin{k}.label, varargin{k}.elec.label); selchannel = cat(1, selchannel, ft_channelselection(cfg.channel, varargin{k}.label(selelec), varargin{k}.elec.type)); end if isfield(varargin{k}, 'opto') && isfield(varargin{k}.opto, 'type') % this makes channel selection more robust, e.g. when using wildcards in cfg.channel [selopto, dum] = match_str(varargin{k}.label, varargin{k}.opto.label); selchannel = cat(1, selchannel, ft_channelselection(cfg.channel, varargin{k}.label(selopto), varargin{k}.opto.type)); end selrest = setdiff((1:numel(varargin{k}.label))', [selgrad; selelec; selopto]); selchannel = cat(1, selchannel, ft_channelselection(cfg.channel, varargin{k}.label(selrest))); label = union(label, selchannel); end label = label(:); % ensure that this is a column array % this call to match_str ensures that that labels are always in the % order of the first input argument see bug_2917, but also temporarily keep % the labels from the other data structures not present in the first one % (in case selmode = 'union') [ix, iy] = match_str(varargin{1}.label, label); label1 = varargin{1}.label(:); % ensure column array label = [label1(ix); label(setdiff(1:numel(label),iy))]; end % if ndata==1 and all channels are to be returned indx = nan+zeros(numel(label), ndata); for k = 1:ndata [ix, iy] = match_str(label, varargin{k}.label); indx(ix,k) = iy; end switch selmode case 'intersect' sel = sum(isfinite(indx),2)==ndata; indx = indx(sel,:); label = varargin{1}.label(indx(:,1)); case 'union' % don't do a subselection otherwise ft_error('invalid value for cfg.select'); end % switch ok = false(size(indx,1),1); for k = 1:ndata % loop through the columns to preserve the order of the channels, where % the order of the input arguments determines the final order ix = find(~ok); [srt,srtix] = sort(indx(ix,k)); indx(ix,:) = indx(ix(srtix),:); ok = ok | isfinite(indx(:,k)); end for k = 1:ndata % do a sanity check on double occurrences if numel(unique(indx(isfinite(indx(:,k)),k)))<sum(isfinite(indx(:,k))) ft_error('the selection of channels across input arguments leads to double occurrences'); end chanindx{k} = indx(:,k); end for k = 1:ndata if isequal(chanindx{k}, (1:numel(varargin{k}.label))') % no actual selection is needed for this data structure chanindx{k} = nan; end end cfg.channel = label; end % function getselection_chan %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function [chancmbindx, cfg] = getselection_chancmb(cfg, varargin) selmode = varargin{end}; ndata = numel(varargin)-1; varargin = varargin(1:ndata); chancmbindx = cell(ndata,1); if ~isfield(cfg, 'channelcmb') for k=1:ndata % the nan return value specifies that no selection was specified chancmbindx{k} = nan; end else switch selmode case 'intersect' haslabel = false(ndata,1); for k=1:ndata haslabel = isfield(varargin{k}, 'label'); end if all(haslabel) for k=1:ndata cfg.channelcmb = ft_channelcombination(cfg.channelcmb, varargin{k}.label); end cfgcmb = cellfun(@sprintf,repmat({'%s_%s'},size(cfg.channelcmb,1),1),cfg.channelcmb(:,1),cfg.channelcmb(:,2),'UniformOutput',false); elseif all(~haslabel) % the data already has labelcmb, and thus needs a slightly different way to % preset the cfg.channelcmb chancmb = cellfun(@sprintf,repmat({'%s_%s'},size(varargin{1}.labelcmb,1),1),varargin{1}.labelcmb(:,1),varargin{1}.labelcmb(:,2),'UniformOutput',false); for k=2:ndata tmp = cellfun(@sprintf,repmat({'%s_%s'},size(varargin{k}.labelcmb,1),1),varargin{k}.labelcmb(:,1),varargin{k}.labelcmb(:,2),'UniformOutput',false); chancmb = intersect(chancmb, tmp); end cfgcmb = unique(chancmb); if isequal(cfg.channelcmb, {'all' 'all'}) % nothing needed here else cfg.channelcmb = cellfun(@sprintf,repmat({'%s_%s'},size(cfg.channelcmb,1),1),cfg.channelcmb(:,1),cfg.channelcmb(:,2),'UniformOutput',false); cfgcmb = intersect(cfg.channelcmb, cfgcmb); end else ft_error('a combination of data with and without label field is not possible'); end for k=1:ndata datcmb = cellfun(@sprintf,repmat({'%s_%s'},size(varargin{k}.labelcmb,1),1),varargin{k}.labelcmb(:,1),varargin{k}.labelcmb(:,2),'UniformOutput',false); % return the order according to the (joint) configuration, not according to the (individual) data % FIXME this should adhere to the general code guidelines, where % the order returned will be according to the first data argument! [dum, chancmbindx{k}] = match_str(cfgcmb, datcmb); end case 'union' % FIXME this is not yet implemented ft_error('union of channel combination is not yet supported'); otherwise ft_error('invalid value for cfg.select'); end % switch end end % function getselection_chancmb %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function [spikeindx, cfg] = getselection_spike(cfg, varargin) % possible specifications are % cfg.latency = string -> 'all' % cfg.latency = [beg end] % cfg.trials = string -> 'all' % cfg.trials = vector with indices ndata = numel(varargin); varargin = varargin(1:ndata); if isequal(cfg.latency, 'all') && isequal(cfg.trials, 'all') spikeindx = cell(1,ndata); for i=1:ndata spikeindx{i} = num2cell(nan(1, length(varargin{i}.time))); end return end trialbeg = varargin{1}.trialtime(:,1); trialend = varargin{1}.trialtime(:,2); for i=2:ndata trialbeg = cat(1, trialbeg, varargin{1}.trialtime(:,1)); trialend = cat(1, trialend, varargin{1}.trialtime(:,2)); end % convert string into a numeric selection if ischar(cfg.latency) switch cfg.latency case 'all' cfg.latency = [-inf inf]; case 'maxperiod' cfg.latency = [min(trialbeg) max(trialend)]; case 'minperiod' cfg.latency = [max(trialbeg) min(trialend)]; case 'prestim' cfg.latency = [min(trialbeg) 0]; case 'poststim' cfg.latency = [0 max(trialend)]; otherwise ft_error('incorrect specification of cfg.latency'); end % switch end spikeindx = cell(1,ndata); for i=1:ndata nchan = length(varargin{i}.time); spikeindx{i} = cell(1,nchan); for j=1:nchan selbegtime = varargin{i}.time{j}>=cfg.latency(1); selendtime = varargin{i}.time{j}<=cfg.latency(2); if isequal(cfg.trials, 'all') seltrial = true(size(varargin{i}.trial{j})); else seltrial = ismember(varargin{i}.trial{j}, cfg.trials); end spikeindx{i}{j} = find(selbegtime & selendtime & seltrial); end end end % function getselection_spiketime %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function [timeindx, cfg] = getselection_time(cfg, varargin) % possible specifications are % cfg.latency = value -> can be 'all' % cfg.latency = [beg end] if ft_datatype(varargin{1}, 'spike') ft_error('latency selection in spike data is not supported') end selmode = varargin{end}; tol = varargin{end-1}; ndata = numel(varargin)-2; varargin = varargin(1:ndata); if isequal(cfg.latency, 'all') && iscell(varargin{1}.time) % for raw data this means that all trials should be selected as they are % for timelock/freq data it is still needed to make the intersection between data arguments timeindx = cell(1,ndata); for i=1:ndata % the nan return value specifies that no selection was specified timeindx{i} = num2cell(nan(1, length(varargin{i}.time))); end return end % if there is a single timelock/freq input, there is one time vector % if there are multiple timelock/freq inputs, there are multiple time vectors % if there is a single raw input, there are multiple time vectors % if there are multiple raw inputs, there are multiple time vectors % collect all time axes in one large cell-array alltimecell = {}; if iscell(varargin{1}.time) for k = 1:ndata alltimecell = [alltimecell varargin{k}.time{:}]; end else for k = 1:ndata alltimecell = [alltimecell {varargin{k}.time}]; end end % the nan return value specifies that no selection was specified timeindx = repmat({nan}, size(alltimecell)); % loop over data once to determine the union of all time axes alltimevec = zeros(1,0); for k = 1:length(alltimecell) alltimevec = union(alltimevec, round(alltimecell{k}/tol)*tol); end indx = nan(numel(alltimevec), numel(alltimecell)); for k = 1:numel(alltimecell) [dum, ix, iy] = intersect(alltimevec, round(alltimecell{k}/tol)*tol); indx(ix,k) = iy; end if iscell(varargin{1}.time) && ~isequal(cfg.latency, 'minperiod') % if the input data arguments are of type 'raw', temporarily set the % selmode to union, otherwise the potentially different length trials % will be truncated to the shortest epoch, prior to latency selection. selmode = 'union'; elseif ischar(cfg.latency) && strcmp(cfg.latency, 'minperiod') % enforce intersect selmode = 'intersect'; end switch selmode case 'intersect' sel = sum(isfinite(indx),2)==numel(alltimecell); indx = indx(sel,:); alltimevec = alltimevec(sel); case 'union' % don't do a subselection otherwise ft_error('invalid value for cfg.select'); end % Note that cfg.toilim handling has been removed, as it was renamed to cfg.latency % convert a string selection into a numeric selection if ischar(cfg.latency) switch cfg.latency case {'all' 'maxperlen' 'maxperiod'} cfg.latency = [min(alltimevec) max(alltimevec)]; case 'prestim' cfg.latency = [min(alltimevec) 0]; case 'poststim' cfg.latency = [0 max(alltimevec)]; case 'minperiod' % the time vector has been pruned above cfg.latency = [min(alltimevec) max(alltimevec)]; otherwise ft_error('incorrect specification of cfg.latency'); end % switch end % deal with numeric selection if isempty(cfg.latency) for k = 1:numel(alltimecell) % FIXME I do not understand this % this signifies that all time bins are deselected and should be removed timeindx{k} = []; end elseif numel(cfg.latency)==1 % this single value should be within the time axis of each input data structure if numel(alltimevec)>1 tbin = nearest(alltimevec, cfg.latency, true, true); % determine the numerical tolerance else tbin = nearest(alltimevec, cfg.latency, true, false); % don't consider tolerance end cfg.latency = alltimevec(tbin); for k = 1:ndata timeindx{k} = indx(tbin, k); end elseif numel(cfg.latency)==2 % the [min max] range can be specifed with +inf or -inf, but should % at least partially overlap with the time axis of the input data mintime = min(alltimevec); maxtime = max(alltimevec); if all(cfg.latency<mintime) || all(cfg.latency>maxtime) ft_error('the selected time range falls outside the time axis in the data'); end tbeg = nearest(alltimevec, cfg.latency(1), false, false); tend = nearest(alltimevec, cfg.latency(2), false, false); cfg.latency = alltimevec([tbeg tend]); for k = 1:numel(alltimecell) timeindx{k} = indx(tbeg:tend, k); % if the input data arguments are of type 'raw', the non-finite values % need to be removed from the individual cells to ensure correct % behavior if iscell(varargin{1}.time) timeindx{k} = timeindx{k}(isfinite(timeindx{k})); end end elseif size(cfg.latency,2)==2 % this may be used for specification of the computation, not for data selection else ft_error('incorrect specification of cfg.latency'); end for k = 1:numel(alltimecell) if ~iscell(varargin{1}.time) if isequal(timeindx{k}(:)', 1:length(alltimecell{k})) % no actual selection is needed for this data structure timeindx{k} = nan; end else % if the input data arguments are of type 'raw', they need to be % handled differently, because the individual trials can be of % different length end end if iscell(varargin{1}.time) % split all time axes again over the different input raw data structures dum = cell(1,ndata); for k = 1:ndata sel = 1:length(varargin{k}.time); dum{k} = timeindx(sel); % get the first selection timeindx(sel) = []; % remove the first selection end timeindx = dum; else % no splitting is needed, each input data structure has one selection end end % function getselection_time %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function [freqindx, cfg] = getselection_freq(cfg, varargin) % possible specifications are % cfg.frequency = value -> can be 'all' % cfg.frequency = [beg end] selmode = varargin{end}; tol = varargin{end-1}; ndata = numel(varargin)-2; varargin = varargin(1:ndata); % loop over data once to initialize freqindx = cell(ndata,1); freqaxis = zeros(1,0); for k = 1:ndata % the nan return value specifies that no selection was specified freqindx{k} = nan; % update the axis along which the frequencies are defined freqaxis = union(freqaxis, round(varargin{k}.freq(:)/tol)*tol); end indx = nan+zeros(numel(freqaxis), ndata); for k = 1:ndata [dum, ix, iy] = intersect(freqaxis, round(varargin{k}.freq(:)/tol)*tol); indx(ix,k) = iy; end switch selmode case 'intersect' sel = sum(isfinite(indx),2)==ndata; indx = indx(sel,:); freqaxis = varargin{1}.freq(indx(:,1)); case 'union' % don't do a subselection otherwise ft_error('invalid value for cfg.select'); end if isfield(cfg, 'frequency') % deal with string selection % some of these do not make sense, but are here for consistency with ft_multiplotER if ischar(cfg.frequency) if strcmp(cfg.frequency, 'all') cfg.frequency = [min(freqaxis) max(freqaxis)]; elseif strcmp(cfg.frequency, 'maxmin') cfg.frequency = [min(freqaxis) max(freqaxis)]; % the same as 'all' elseif strcmp(cfg.frequency, 'minzero') cfg.frequency = [min(freqaxis) 0]; elseif strcmp(cfg.frequency, 'maxabs') cfg.frequency = [-max(abs(freqaxis)) max(abs(freqaxis))]; elseif strcmp(cfg.frequency, 'zeromax') cfg.frequency = [0 max(freqaxis)]; elseif strcmp(cfg.frequency, 'zeromax') cfg.frequency = [0 max(freqaxis)]; else ft_error('incorrect specification of cfg.frequency'); end end % deal with numeric selection if isempty(cfg.frequency) for k = 1:ndata % FIXME I do not understand this % this signifies that all frequency bins are deselected and should be removed freqindx{k} = []; end elseif numel(cfg.frequency)==1 % this single value should be within the frequency axis of each input data structure if numel(freqaxis)>1 fbin = nearest(freqaxis, cfg.frequency, true, true); % determine the numerical tolerance else fbin = nearest(freqaxis, cfg.frequency, true, false); % don't consider tolerance end cfg.frequency = freqaxis(fbin); for k = 1:ndata freqindx{k} = indx(fbin,k); end elseif numel(cfg.frequency)==2 % the [min max] range can be specifed with +inf or -inf, but should % at least partially overlap with the freq axis of the input data minfreq = min(freqaxis); maxfreq = max(freqaxis); if all(cfg.frequency<minfreq) || all(cfg.frequency>maxfreq) ft_error('the selected range falls outside the frequency axis in the data'); end fbeg = nearest(freqaxis, cfg.frequency(1), false, false); fend = nearest(freqaxis, cfg.frequency(2), false, false); cfg.frequency = freqaxis([fbeg fend]); for k = 1:ndata freqindx{k} = indx(fbeg:fend,k); end elseif size(cfg.frequency,2)==2 % this may be used for specification of the computation, not for data selection else ft_error('incorrect specification of cfg.frequency'); end end % if cfg.frequency for k = 1:ndata if isequal(freqindx{k}, 1:length(varargin{k}.freq)) % the cfg was updated, but no selection is needed for the data freqindx{k} = nan; end end end % function getselection_freq %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function [rptindx, cfg, rptdim, rpttapindx] = getselection_rpt(cfg, varargin) % this should deal with cfg.trials dimord = varargin{end}; ndata = numel(varargin)-1; data = varargin{1:ndata}; % this syntax ensures that it will only work on a single data input dimtok = tokenize(dimord, '_'); rptdim = find(strcmp(dimtok, '{rpt}') | strcmp(dimtok, 'rpt') | strcmp(dimtok, 'rpttap') | strcmp(dimtok, 'subj')); if isequal(cfg.trials, 'all') rptindx = nan; % the nan return value specifies that no selection was specified rpttapindx = nan; % the nan return value specifies that no selection was specified elseif isempty(rptdim) % FIXME should [] not mean that none of the trials is to be selected? rptindx = nan; % the nan return value specifies that no selection was specified rpttapindx = nan; % the nan return value specifies that no selection was specified else rptindx = ft_getopt(cfg, 'trials'); if islogical(rptindx) % convert from booleans to indices rptindx = find(rptindx); end rptindx = unique(sort(rptindx)); if strcmp(dimtok{rptdim}, 'rpttap') && isfield(data, 'cumtapcnt') % there are tapers in the data % determine for each taper to which trial it belongs nrpt = size(data.cumtapcnt, 1); taper = zeros(nrpt, 1); sumtapcnt = cumsum([0; data.cumtapcnt(:)]); begtapcnt = sumtapcnt(1:end-1)+1; endtapcnt = sumtapcnt(2:end); for i=1:nrpt taper(begtapcnt(i):endtapcnt(i)) = i; end rpttapindx = find(ismember(taper, rptindx)); else % there are no tapers in the data rpttapindx = rptindx; end end end % function getselection_rpt %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function [posindx, cfg] = getselection_pos(cfg, varargin) % possible specifications are <none> ndata = numel(varargin)-2; tol = varargin{end-1}; % FIXME this is still ignored selmode = varargin{end}; % FIXME this is still ignored data = varargin(1:ndata); for i=1:ndata if ~isequal(varargin{i}.pos, varargin{1}.pos) % FIXME it would be possible here to make a selection based on intersect or union ft_error('not yet implemented'); end end if strcmp(cfg.select, 'union') % FIXME it would be possible here to make a selection based on intersect or union ft_error('not yet implemented'); end for i=1:ndata posindx{i} = nan; % the nan return value specifies that no selection was specified end end % function getselection_pos %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function x = squeezedim(x, dim) siz = size(x); for i=(numel(siz)+1):numel(dim) % all trailing singleton dimensions have length 1 siz(i) = 1; end if isvector(x) && ~(isrow(x) && dim(1) && numel(x)>1) % there is no harm to keep it as it is, unless the data matrix is 1xNx1x1 elseif istable(x) % there is no harm to keep it as it is else x = reshape(x, [siz(~dim) 1]); end end % function squeezedim %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function x = makeunion(x, field) old = cellfun(@getfield, x, repmat({field}, size(x)), 'uniformoutput', false); if iscell(old{1}) % empty is indicated to represent missing value for a cell-array (label, labelcmb) new = old{1}; for i=2:length(old) sel = ~cellfun(@isempty, old{i}); new(sel) = old{i}(sel); end else % nan is indicated to represent missing value for a numeric array (time, freq, pos) new = old{1}; for i=2:length(old) sel = ~isnan(old{i}); new(sel) = old{i}(sel); end end x = cellfun(@setfield, x, repmat({field}, size(x)), repmat({new}, size(x)), 'uniformoutput', false); end % function makeunion %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % SUBFUNCTION to make a selextion in data representations like {pos}_ori_time % FIXME this will fail for {xxx_yyy}_zzz %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function x = cellmatselect(x, seldim, selindx, maybevector) if nargin<4 % some fields are a vector with an unspecified singleton dimension, these can be transposed % if the singleton dimension represents something explicit, they should not be transposed % they might for example represent a single trial, or a single channel maybevector = true; end if iscell(x) if seldim==1 x = x(selindx); else for i=1:numel(x) if isempty(x{i}) continue end switch seldim case 2 if maybevector && isvector(x{i}) % sometimes the data is 1xN, whereas the dimord describes only the first dimension % in this case a row and column vector can be interpreted as equivalent x{i} = x{i}(selindx); elseif istable(x) % multidimensional indexing is not supported x{i} = x{i}(selindx,:); else x{i} = x{i}(selindx,:,:,:,:); end case 3 x{i} = x{i}(:,selindx,:,:,:); case 4 x{i} = x{i}(:,:,selindx,:,:); case 5 x{i} = x{i}(:,:,:,selindx,:); case 6 x{i} = x{i}(:,:,:,:,selindx); otherwise ft_error('unsupported dimension (%d) for making a selection', seldim); end % switch end % for end else switch seldim case 1 if maybevector && isvector(x) % sometimes the data is 1xN, whereas the dimord describes only the first dimension % in this case a row and column vector can be interpreted as equivalent x = x(selindx); elseif istable(x) % multidimensional indexing is not supported x = x(selindx,:); else x = x(selindx,:,:,:,:,:); end case 2 x = x(:,selindx,:,:,:,:); case 3 x = x(:,:,selindx,:,:,:); case 4 x = x(:,:,:,selindx,:,:); case 5 x = x(:,:,:,:,selindx,:); case 6 x = x(:,:,:,:,:,selindx); otherwise ft_error('unsupported dimension (%d) for making a selection', seldim); end end end % function cellmatselect %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % SUBFUNCTION to take an average in data representations like {pos}_ori_time % FIXME this will fail for {xxx_yyy}_zzz %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function x = cellmatmean(x, seldim, average) if iscell(x) if seldim==1 for i=2:numel(x) x{1} = x{1} + x{i}; end x = {x{1}/numel(x)}; else for i=1:numel(x) x{i} = average(x{i}, seldim-1); end % for end elseif istable(x) try % try to convert to an array, depending on the table content this might fail x = average(table2array(x), seldim); catch % construct an appropriately sized array with NaN values s = size(x); s(seldim) = 1; x = nan(s); end % convert back to table x = array2table(x); else x = average(x, seldim); end end % function cellmatmean
! ! The Laboratory of Algorithms ! ! The MIT License ! ! Copyright 2011-2015 Andrey Pudov. ! ! Permission is hereby granted, free of charge, to any person obtaining a copy ! of this software and associated documentation files (the 'Software'), to deal ! in the Software without restriction, including without limitation the rights ! to use, copy, modify, merge, publish, distribute, sublicense, and/or sell ! copies of the Software, and to permit persons to whom the Software is ! furnished to do so, subject to the following conditions: ! ! The above copyright notice and this permission notice shall be included in ! all copies or substantial portions of the Software. ! ! THE SOFTWARE IS PROVIDED 'AS IS', WITHOUT WARRANTY OF ANY KIND, EXPRESS OR ! IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, ! FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE ! AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER ! LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, ! OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN ! THE SOFTWARE. ! module MHeap implicit none public type, abstract :: THeap contains procedure(IAdd), deferred :: add procedure(IContains), deferred :: contains procedure(IGet), deferred :: get procedure(IEmpty), deferred :: empty !procedure(IExtractMin), deferred :: extractMin procedure(IHeapify), deferred :: heapify procedure(IDecreaseKey), deferred :: decreaseKey end type type, abstract :: THeapNode integer :: x end type abstract interface subroutine IAdd(instance, value) import THeap class(THeap), intent(in out) :: instance integer, intent(in) :: value end subroutine function IContains(instance, value) result(status) import THeap class(THeap), intent(in) :: instance integer, intent(in) :: value logical :: status end function function IGet(instance, index) result(value) import THeap class(THeap), intent(in) :: instance integer, intent(in) :: index integer :: value end function function IEmpty(instance) result(value) import THeap class(THeap), intent(in) :: instance logical :: value end function !function IExtractMin(instance) result(value) ! import THeap ! import THeadNode ! class(THeap), intent(in) :: instance ! class(THeadNode), pointer, intent(out) :: value !end function subroutine IHeapify(instance, index) import THeap class(THeap), intent(in out) :: instance integer, intent(in) :: index end subroutine subroutine IDecreaseKey(instance, vertex, distance) import THeap class(THeap), intent(in out) :: instance integer, intent(in) :: vertex integer, intent(in) :: distance end subroutine end interface end module
Operation Safe Canyons - Homeowners Issue? Last week I published a note about the California Highway Patrol cracking down on speeding motorcycles under an initiative called, "Operation Safe Canyons". So I ended up talking to a CHP officer tonight.. (no, he didn't pull me over). He told me that operation safe canyon is spreading to other regions other than Malibu Canyon and the surrounding areas. I thought I'd share what I heard. The Las Virgenes Homeowners Federation had taken a special interest in the issue just prior to the April implementation of the operation. In an April update, the federation addressed the canyon operation and expressed its strong support. An aggressive stance against canyon carvers is alluded to in language that is evocative of a general's battle plan: "We had a very productive meeting where we discussed various "plans of attack" in place for both Calabasas and LA County. The CHP contend that Operation Safe Canyons is about safety, pointing out that approximately 8 people per year are killed on the canyon roads. Of course, 8 road deaths per year is not that much. And considering the CHP is using vehicle-confiscation as a tool to regain control, instead of just issuing warnings and tickets, it appears safety is not really their concern, caving into the fat-cats who're paying off the local politicians.
program example5 implicit none integer i, imax parameter (imax = 3) real a(0:imax) do i = 0, imax a(i) = a(i) + a(i+2) end do end
\section{Optimization of Surrogates on Sparse Grids} \label{sec:52method} \minitoc{72mm}{5} \noindent The methods presented in the last section can be combined to a ``meta-method'' for surrogate optimization. The surrogates are constructed as interpolants on spatially adaptive sparse grids, which we explain in the following. \subsection{Novak--Ritter Adaptivity Criterion} \label{sec:521novakRitter} The classic surplus-based refinement strategy for spatially adaptive sparse grids is not tailored to optimization, as this refinement strategy aims to minimize the overall $\Ltwo$ error. However, in optimization, it is reasonable to generate more points in regions where we suspect the global minimum to be to increase the interpolant's accuracy in these regions. Hence, we employ an adaptivity criterion proposed by Novak and Ritter \cite{Novak96Global} for hyperbolic cross points. The Novak--Ritter criterion has also been applied to sparse grids \multicite{Ferenczi05Globale,Valentin14Hierarchische,Valentin16Hierarchical}. \paragraph{$m$-th order children} As usual, the criterion works iteratively: Starting with an initial regular sparse grid of a very coarse level, the criterion selects a specific point $\gp{\*l,\*i}$ in each iteration and inserts all its children into the grid. This process is repeated until a given number $\ngpMax$ of grid points is reached, since we evaluate $\objfun$ at every grid point once, and we assume that function evaluations dominate the overall complexity. The difference to common refinement criteria is that a point may be selected multiple times, in which case \term{higher-order children} are inserted. The $m$-th order children $\gp{\*l',\*i'}$ of a grid point $\gp{\*l,\*i}$ satisfy \begin{equation} \label{eq:indirectChild} \*l'_{-t} = \*l^{}_{-t},\;\, \*i'_{-t} = \*i^{}_{-t},\;\, l'_t = l^{}_t + m,\;\, i'_t \in \begin{cases} \{1\},&(l_t = 0) \land (i_t = 0),\\ \{2^m - 1\},&(l_t = 0) \land (i_t = 1),\\ \{2^m i_t - 1,\, 2^m i_t + 1\},&\hphantom{(}l_t > 0, \end{cases} \end{equation} where $m \in \nat$ and $t \in \{1, \dotsc, d\}$ (cf.\ \cref{eq:directAncestor} for $m = 1$). The order is chosen individually for each child point to be inserted as the lowest number $m$ such that $\gp{\*l',\*i'}$ does not yet exist in the grid. %\todo{add figure for m-th order children?} \paragraph{Criterion} The Novak--Ritter refinement criterion \cite{Novak96Global} refines the grid point $\gp{\*l,\*i}$ that minimizes the product% \footnote{% Compared to \cite{Novak96Global}, we added one in the base of each factor to avoid ambiguities for $0^0$. In addition, we swapped $\gamma$ with $1-\gamma$ to make $\gamma$ more consistent with its name as adaptivity.% } \begin{equation} (r_{\*l,\*i} + 1)^\gamma \cdot (\normone{\*l} + d_{\*l,\*i} + 1)^{1 - \gamma}. \end{equation} Here, $r_{\*l,\*i} \ceq \setsize{ \{(\*l',\*i') \in \liset \mid \objfun(\gp{\*l',\*i'}) \le \objfun(\gp{\*l,\*i})\} } \in \{1, \dotsc, \setsize{\liset}\}$ is the \term{rank} of $\gp{\*l,\*i}$ (where $\liset$ is the current set of level-index pairs of the grid), i.e., the place of the function value at $\gp{\*l,\*i}$ in the ascending order of the function values at all points of the current grid. We denote the \term{degree} $d_{\*l,\*i} \in \natz$ of $\gp{\*l,\*i}$ as the number of previous refinements of this point. Finally, $\gamma \in \clint{0, 1}$ is the \term{adaptivity parameter.} %By choosing $\gamma = 0$, the function values become irrelevant and the %criterion produces regular-like sparse grids. %If we choose $\gamma = 1$, then the criterion always refines the point with %the lowest function value, which means that the criterion is easily stuck %in local minima. We have to choose a suitable compromise between exploration ($\gamma = 0$) and exploitation ($\gamma = 1$). The best choice of course depends on the objective function $\objfun$ at hand, but for our purposes, we choose a priori a value of $\gamma = 0.15$. However, it may be an option to adapt the value of $\gamma$ automatically during the grid generation phase. \subsection{Global Optimization of Sparse Grid Surrogates} \label{sec:522method} \paragraph{Global, local, and globalized optimization methods} In \cref{sec:51algorithms}, we presented various optimization methods for the unconstrained case, divided into global gradient-free methods such as differential evolution and local gradient-based methods, for example, gradient descent. A subset of these methods has been implemented in \sgpp{} \cite{Pflueger10Spatially}, see \cref{tbl:optimizationMethod}. The gradient-based methods need an initial point, and they may get stuck in local minima. Hence, we additionally implemented globalized versions of the gradient-based methods via a multi-start Monte Carlo approach with $m \ceq \min(10d, 100)$ uniformly distributed pseudo-random initial points.% \footnote{% We split the number of permitted function evaluations evenly among the $m$ parallel calls.% %of the gradient-based method% } This means there are three types of methods: \begin{enumerate}[label=T\arabic*.,ref=T\arabic*,leftmargin=2.7em] \item \label{item:globalMethods} Global gradient-free methods listed as implemented in \cref{tbl:optimizationMethod} \item \label{item:localMethods} Local gradient-based methods listed as implemented in \cref{tbl:optimizationMethod}% %(need an initial point)% \footnote{% Excluding Levenberg--Marquardt, which is only applicable to least-squares problems.% } \item \label{item:globalizedMethods} Globalized versions of the methods of type \ref{item:localMethods} %(do not need an initial point) \end{enumerate} \paragraph{Unconstrained optimization of sparse grid surrogates} Given the objective function $\objfun\colon \clint{\*0, \*1} \to \real$, the maximal number $\ngpMax \in \nat$ of evaluations of $f$, and the adaptivity parameter $\gamma \in \clint{0, 1}$, we determine an approximation $\xoptappr \in \clint{\*0, \*1}$ of the global minimum $\xopt$ of $\objfun$ as follows: \begin{enumerate} \item Generate a spatially adaptive sparse grid $\sgset$ with the Novak--Ritter refinement criterion for $\objfun$, $\ngpMax$, and $\gamma$. \item Determine the sparse grid interpolant $\sgintp$ of $\objfun$ by solving the linear system \eqref{eq:hierarchizationProblem}. \item Optimize the interpolant: First, find the best grid point $\*x^{(0)} \ceq \vecargmin_{\gp{\*l,\*i} \in \sgset} \objfun(\*x_{\*l,\*i})$. Second, apply the local methods of type \ref{item:localMethods} to the interpolant $\sgintp$ with $\*x^{(0)}$ as initial point. Let $\*x^{(1)}$ be the resulting point with minimal objective function value. Third, we apply the global and globalized methods of types \ref{item:globalMethods} and \ref{item:globalizedMethods} to the interpolant $\sgintp$. Again, let $\*x^{(2)}$ be the point with minimal $\objfun$ value. Finally, determine the point of $\{\*x^{(0)}, \*x^{(1)}, \*x^{(2)}\}$ with minimal $\objfun$ value and return it as $\xoptappr$. \end{enumerate} \noindent Note that the third step requires a fixed number of additional evaluations of the objective function, which can be neglected compared to $\ngpMax$. By default, we use the cubic modified hierarchical not-a-knot B-spline basis $\bspl[\nak,\modified]{\*l,\*i}{p}$ ($p = 3$) for the construction of the sparse grid surrogate. However, we could apply any of the hierarchical (B-)spline bases presented in \cref{chap:30BSplines,chap:40algorithms}. \paragraph{Comparison methods} We use two comparison methods. First, we apply the gradient-free methods (type \ref{item:globalMethods}) to the sparse grid interpolant using modified piecewise linear hierarchical basis functions (i.e., $p = 1$) on the same sparse grid as the cubic B-splines. We cannot employ gradient-based optimization as the objective function should be continuously differentiable and discontinuous derivatives are usually numerically problematic for gradient-based optimization methods (see, e.g., \cite{Huebner14Mehrdimensionale}). Second, we apply the gradient-free methods (type \ref{item:globalMethods}) directly to the objective function. We cannot use the gradient-based methods here as the gradient of the objective function is assumed to be unknown. For both of the comparison methods, we make sure that the objective function is evaluated at most $\ngpMax$ times by splitting the $\ngpMax$ evaluations evenly among all employed optimization methods. \paragraph{Constrained optimization} For optimization problems with constraints, we proceed exactly as for unconstrained optimization, except that for optimizing the interpolant, we use the constrained optimization algorithms implemented in \sgpp as listed in \cref{tbl:optimizationMethod}. We only replace the objective function $\objfun$ with a sparse grid surrogate $\sgintp$, and we assume that the constraint function $\ineqconfun$ can be evaluated fast. However, it would also be possible to replace $\ineqconfun$ with a sparse grid surrogate. In this case, it cannot be guaranteed that the resulting optimal point $\xoptappr$ is feasible, i.e., we could have $\lnot(\ineqconfun(\xoptappr) \le \*0)$.
lemma divide_i [simp]: "x / \<i> = - \<i> * x"
# Course information button module ---- course_information_button_UI <- function(id, r) { df <- r$df_course_info showModal( modalDialog(title = "Edit Course Information & Links", size = "l", easyClose = T , fluidRow( column(width = 6 , rHandsontableOutput(NS(id, "course_info")) ) , column(width = 6 , rHandsontableOutput(NS(id, "links")) ) ) , footer = fluidRow( column(width = 12 , actionBttn(inputId = NS(id,"save") , label = "Save Information" , style = "material-flat" , block = T ) ) ) ) ) } course_information_button_Server <- function(id, r){ moduleServer(id, function(input,output,session){ output$course_info <- renderRHandsontable({ rhandsontable( r$df_course_info , rowHeaders = NULL , stretchH = 'all' ) }) output$links <- renderRHandsontable({ rhandsontable( r$df_links , rowHeaders = NULL , stretchH = 'all' ) }) observeEvent(input$save, { req(input$course_info, input$links) r$df_course_info <- hot_to_r(input$course_info) r$df_links <- hot_to_r(input$links) write_rds(r$df_course_info, "data/df_course_info.RDS") write_rds(r$df_links, "data/df_links.RDS") showNotification("Saved in session.") removeModal() }) }) }
[STATEMENT] lemma neqif [simp]: "x \<noteq> y \<Longrightarrow> (if y = x then a else b) = b" [PROOF STATE] proof (prove) goal (1 subgoal): 1. x \<noteq> y \<Longrightarrow> (if y = x then a else b) = b [PROOF STEP] apply (case_tac "y \<noteq> x") [PROOF STATE] proof (prove) goal (2 subgoals): 1. \<lbrakk>x \<noteq> y; y \<noteq> x\<rbrakk> \<Longrightarrow> (if y = x then a else b) = b 2. \<lbrakk>x \<noteq> y; \<not> y \<noteq> x\<rbrakk> \<Longrightarrow> (if y = x then a else b) = b [PROOF STEP] apply simp_all [PROOF STATE] proof (prove) goal: No subgoals! [PROOF STEP] done
If $A_1 \subseteq A_2 \subseteq \cdots$ is an increasing sequence of sets, then $\mu(\bigcup_{i=1}^\infty A_i) = \lim_{n \to \infty} \mu(A_n)$.
MODULE physical_type_methods use parallel_module use rgrid_variables, only: dV use rsdft_mpi_module implicit none PRIVATE PUBLIC :: dSpatialIntegral CONTAINS SUBROUTINE dSpatialIntegral( d ) implicit none real(8) :: d(:) call rsdft_allreduce_sum( d, comm_grid ) d=d*dV END SUBROUTINE dSpatialIntegral END MODULE physical_type_methods
// // Copyright (c) 2018 Stefan Seefeld // // Distributed under the Boost Software License, Version 1.0. // (See accompanying file LICENSE_1_0.txt or // copy at http://www.boost.org/LICENSE_1_0.txt) #ifndef boost_numeric_ublas_opencl_hpp_ #define boost_numeric_ublas_opencl_hpp_ #include <boost/numeric/ublas/opencl/library.hpp> #include <boost/numeric/ublas/opencl/vector.hpp> #include <boost/numeric/ublas/opencl/matrix.hpp> #include <boost/numeric/ublas/opencl/operations.hpp> #endif
# Further information (difference_between_a_list_and_a_tuple)= ## What is the difference between a Python list and a Python tuple? Two of the most used Python iterables are lists and tuples. In practice they have a number of similarities, they are both ordered collections of objects that can be used in list comprehensions as well as in other ways. - Tuples are **immutable** - Lists are **mutable** This means that once created tuples cannot be changed and lists can. As a general rule of thumb: if you do not need to modify your iterable then use a tuple as they are more computationally efficient. This blog post is a good explanation of the difference: <https://www.afternerd.com/blog/difference-between-list-tuple/> ## Why does the sum of booleans counts the `True`s? In the tutorial and elsewhere we created a list of booleans and then take the sum. Here are some of the steps: ```python samples = ("Red", "Red", "Blue") ``` ```python booleans = [sample == "Red" for sample in samples] booleans ``` [True, True, False] When we take the `sum` of that list we get a numeric value: ```python sum(booleans) ``` 2 This has in fact counted the `True` values as 1 and the `False` values as 0. ```python int(True) ``` 1 ```python int(False) ``` 0 ## What is the difference between `print` and `return`? In functions you see we use the `return` statement. This does two things: 1. Assigns a value to the function run; 2. Ends the function. The `print` statement **only** displays the output. As an example let us create the following set: $$ S = \{f(x)\text{ for }x \in \{0, \pi / 4, \pi / 2, 3\pi / 4\}\} $$ where $f(x)= \cos^2(x)$. The correct way to do this is: ```python import sympy as sym def f(x): """ Return the square of the cosine of x """ return sym.cos(x) ** 2 S = [f(x) for x in (0, sym.pi / 4, sym.pi / 2, 3 * sym.pi / 4)] S ``` [1, 1/2, 0, 1/2] If we replaced the `return` statement in the function definition with a `print` we obtain: ```python def f(x): """ Return the square of the cosine of x """ print(sym.cos(x) ** 2) S = [f(x) for x in (0, sym.pi / 4, sym.pi / 2, 3 * sym.pi / 4)] ``` 1 1/2 0 1/2 We see now that as the function has been run it displays the output. **However** if we look at what `S` is we see that the function has not returned anything: ```python S ``` [None, None, None, None] Here are some other materials on this subject: - <https://www.tutorialspoint.com/Why-would-you-use-the-return-statement-in-Python> - <https://pythonprinciples.com/blog/print-vs-return/> ## How does Python sample randomness? When using the Python random module we are in fact generating a pseudo random process. True randomness is actually not common. Pseudo randomness is an important area of mathematics as strong algorithms that create unpredictable sequences of numbers are vital to cryptographic security. The specific algorithm using in Python for randomness is called the Mersenne twister algorithm is state of the art. You can read more about this here: <https://docs.python.org/3/library/random.html#module-random>. ## What is the difference between a docstring and a comment In Python it is possible to write statements that are ignored using the `#` symbol. This creates something called a "comment". For example: ```python # create a list to represent the tokens in a bag bag = ["Red", "Red", "Blue"] ``` A docstring however is something that is "attached" to a function and can be accessed by Python. If we rewrite the function to sample the experiment of the tutorial without a docstring but using comments we will have: ```python def sample_experiment(bag): # Select a token selected_token = pick_a_token(container=bag) # If the token is red then the probability of selecting heads is 2/3 if selected_token == "Red": probability_of_selecting_heads = 2 / 3 # Otherwise it is 1 / 2 else: probability_of_selecting_heads = 1 / 2 # Select a coin according to the probability. if random.random() < probability_of_selecting_heads: coin = "Heads" else: coin = "Tails" # Return both the selected token and the coin. return selected_token, coin ``` Now if we try to access the help for the function we will not get it: ```python help(sample_experiment) ``` Help on function sample_experiment in module __main__: sample_experiment(bag) Furthermore, if you look at the code with comments you will see that because of the choice of variable names the comments are in fact redundant. In software engineering it is generally accepted that comments indicate that your code is not clear and so it is preferable to write clear documentation explaining why something is done through docstrings. ```python def sample_experiment(bag): """ This samples a token from a given bag and then selects a coin with a given probability. If the sampled token is red then the probability of selecting heads is 2/3 otherwise it is 1/2. This function returns both the selected token and the coin face. """ selected_token = pick_a_token(container=bag) if selected_token == "Red": probability_of_selecting_heads = 2 / 3 else: probability_of_selecting_heads = 1 / 2 if random.random() < probability_of_selecting_heads: coin = "Heads" else: coin = "Tails" return selected_token, coin ``` Here are some resources on this: - <https://blog.codinghorror.com/coding-without-comments/> - <https://visualstudiomagazine.com/articles/2013/07/26/why-commenting-code-is-still-bad.aspx>
[STATEMENT] lemma \<AA>\<^sub>1_nodes_finite: "finite (DCA.nodes (\<AA>\<^sub>1 \<phi> xs))" [PROOF STATE] proof (prove) goal (1 subgoal): 1. finite (DCA.nodes (\<AA>\<^sub>1 \<phi> xs)) [PROOF STEP] unfolding \<AA>\<^sub>1_def [PROOF STATE] proof (prove) goal (1 subgoal): 1. finite (DCA.nodes (\<CC> \<phi> (set xs))) [PROOF STEP] by (metis (no_types, lifting) finite_subset \<CC>_nodes finite_SigmaI nested_prop_atoms\<^sub>\<nu>_finite nested_prop_atoms_finite)
(* Copyright 2016 Luxembourg University Copyright 2017 Luxembourg University This file is part of Velisarios. Velisarios is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. Velisarios is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with Velisarios. If not, see <http://www.gnu.org/licenses/>. Authors: Vincent Rahli Ivana Vukotic *) Require Export PBFTprops3. Section PBFTprops4. Local Open Scope eo. Local Open Scope proc. Context { pbft_context : PBFTcontext }. Context { pbft_auth : PBFTauth }. Context { pbft_keys : PBFTinitial_keys }. Context { pbft_hash : PBFThash }. Lemma find_pre_prepare_certificate_in_prepared_infos_some_implies : forall F n P nfo, find_pre_prepare_certificate_in_prepared_infos F n P = Some nfo -> In nfo P /\ n = prepared_info2seq nfo /\ F nfo = true. Proof. induction P; introv find; simpl in *; ginv. smash_pbft; apply IHP in find; tcsp. Qed. Lemma info_is_prepared_implies_prepared_info_has_correct_digest : forall p, info_is_prepared p = true -> prepared_info_has_correct_digest p = true. Proof. introv h. unfold info_is_prepared in h; smash_pbft. Qed. Hint Resolve info_is_prepared_implies_prepared_info_has_correct_digest : pbft. Lemma valid_prepared_info_implies_prepared_info_has_correct_digest : forall L p, valid_prepared_info L p = true -> prepared_info_has_correct_digest p = true. Proof. introv h. unfold valid_prepared_info in h; smash_pbft. Qed. Hint Resolve valid_prepared_info_implies_prepared_info_has_correct_digest : pbft. Lemma create_new_prepare_message_true_implies_correct : forall (sn : SeqNum) v keys P pp d (n : SeqNum), n < sn -> create_new_prepare_message sn v keys P = (true,(pp,d)) -> correct_new_view_opre_prepare v n P pp = true. Proof. introv ltsn create. unfold create_new_prepare_message in create; smash_pbft. unfold correct_new_view_opre_prepare; simpl; smash_pbft; allrw SeqNumLt_true; allrw SeqNumLt_false; simpl in *; try omega; GC. unfold oexists_last_prepared; simpl. match goal with | [ |- ?x = _ ] => remember x as b; symmetry in Heqb; destruct b; auto;[] end. assert False; tcsp. rewrite existsb_false in Heqb. pose proof (Heqb x) as q; clear Heqb. match goal with | [ H : find_pre_prepare_certificate_in_prepared_infos _ _ _ = _ |- _ ] => apply find_pre_prepare_certificate_in_prepared_infos_some_implies in H end. repnd. autodimp q hyp. smash_pbft. match goal with | [ H : _ <> _ |- _ ] => destruct H end. match goal with | [ H : valid_prepared_info _ _ = _ |- _ ] => apply valid_prepared_info_implies_prepared_info_has_correct_digest in H end. unfold prepared_info_has_correct_digest in *; smash_pbft. Qed. Lemma create_new_prepare_messages_implies_correct_OPs : forall n sns v keys P OP NP, (forall (x : SeqNum) ppd, In x sns -> create_new_prepare_message x v keys P = (true, ppd) -> n < x) -> create_new_prepare_messages sns v keys P = (OP, NP) -> forallb (correct_new_view_opre_prepare v n P) (map fst OP) = true. Proof. induction sns; introv imp create; simpl in *; smash_pbft; dands; tcsp; try (complete (eapply IHsns; eauto)). repnd; simpl in *. pose proof (imp a (x2,x1)) as q. repeat (autodimp q hyp). eapply create_new_prepare_message_true_implies_correct;[|eauto]; tcsp. Qed. Lemma view_change2view_refresh_view_change : forall e st, view_change2view (refresh_view_change e st) = view_change2view e. Proof. tcsp. Qed. Hint Rewrite view_change2view_refresh_view_change : pbft. Lemma correct_view_change_implies_same_views : forall v vc, correct_view_change v vc = true -> v = view_change2view vc. Proof. introv cor; unfold correct_view_change in cor; smash_pbft. unfold same_views in *; smash_pbft. Qed. Lemma ViewLe_true : forall v1 v2, ViewLe v1 v2 = true <-> v1 <= v2. Proof. introv; unfold ViewLe. rewrite Nat.leb_le; tcsp. Qed. Lemma ViewLe_false : forall v1 v2, ViewLe v1 v2 = false <-> v1 > v2. Proof. introv; unfold ViewLe. rewrite leb_iff_conv. tcsp. Qed. Lemma le_max_view_left : forall (a b : View), a <= max_view a b. Proof. introv; destruct a, b; unfold max_view; smash_pbft. Qed. Hint Resolve le_max_view_left : pbft. Lemma le_max_view_right : forall (a b : View), a <= max_view b a. Proof. introv; destruct a, b; unfold max_view; smash_pbft. allrw ViewLe_false; simpl in *; omega. Qed. Hint Resolve le_max_view_right : pbft. Lemma le_max_seq_num : forall (a b : SeqNum), a <= max_seq_num a b. Proof. introv; destruct a, b; unfold max_seq_num; simpl; smash_pbft; allrw SeqNumLe_true; auto; try omega. Qed. Hint Resolve le_max_seq_num : pbft. Lemma le_max_seq_num_right : forall (a b : SeqNum), b <= max_seq_num a b. Proof. introv; destruct a, b; unfold max_seq_num; simpl; smash_pbft; allrw SeqNumLe_true; auto; try omega. Qed. Hint Resolve le_max_seq_num_right : pbft. Lemma le_max_seq_num_op : forall (a : SeqNum) b, a <= max_seq_num_op a b. Proof. introv; destruct b; simpl; eauto 3 with pbft. Qed. Hint Resolve le_max_seq_num_op : pbft. Lemma PreparedInfos2max_seq_none_implies : forall F l, PreparedInfos2max_seq F l = None -> forall p, In p l -> F p = false. Proof. induction l; introv prep i; simpl in *; smash_pbft. repndors; subst; tcsp. Qed. Lemma PreparedInfos2max_seq_is_max : forall pi F l n, In pi l -> F pi = true -> PreparedInfos2max_seq F l = Some n -> prepared_info2seq pi <= n. Proof. induction l; introv i Fpi prep; simpl in *; tcsp; repndors; subst; smash_pbft;[]. remember (PreparedInfos2max_seq F l) as m; symmetry in Heqm; destruct m; simpl in *; smash_pbft. eapply PreparedInfos2max_seq_none_implies in Heqm;[|eauto]; pbft_simplifier. Qed. Hint Resolve PreparedInfos2max_seq_is_max : pbft. Lemma implies_in_from_min_to_max : forall (n x m : SeqNum), n < x -> x <= m -> In x (from_min_to_max n m). Proof. introv h q. unfold from_min_to_max; smash_pbft; simpl in *; try omega;[]. apply in_map_iff. exists x; simpl; dands; autorewrite with pbft; auto. apply in_seq; simpl; dands; try omega. Qed. Hint Resolve implies_in_from_min_to_max : pbft. Lemma in_from_min_to_max_trans : forall (x n m k : SeqNum), k <= m -> In x (from_min_to_max n k) -> In x (from_min_to_max n m). Proof. introv lek i. unfold from_min_to_max in *; smash_pbft. - apply in_map_iff in i; exrepnd; subst; simpl in *. allrw in_seq; repnd; try omega. - allrw in_map_iff; exrepnd; subst; simpl in *. allrw in_seq; repnd; try omega. exists x0; simpl; dands; auto. apply in_seq; dands; simpl; try omega. Qed. Hint Resolve in_from_min_to_max_trans : pbft. Lemma view_change_cert2max_seq_preps_vc_none_implies : forall F l, view_change_cert2max_seq_preps_vc F l = None -> forall p, In p (view_change_cert2prep l) -> F p = false. Proof. induction l; introv prep i; simpl in *; smash_pbft. allrw in_app_iff; repndors; tcsp. unfold view_change2max_seq_preps in *. eapply PreparedInfos2max_seq_none_implies; eauto. Qed. Lemma implies_prepared_info2max_seq_in_from_min_to_max : forall l pi (n m : SeqNum) vc F, In pi (view_change_cert2prep l) -> F pi = true -> n < prepared_info2seq pi -> view_change_cert2max_seq_preps_vc F l = Some (m, vc) -> In (prepared_info2seq pi) (from_min_to_max n m). Proof. induction l; introv i Ft ltn eqv; simpl in *; tcsp; smash_pbft; simpl in *; try omega. - allrw in_app_iff; repndors; tcsp. + unfold view_change2max_seq_preps in *. dup i as les. eapply PreparedInfos2max_seq_is_max in les;[| |eauto];auto;[]. eapply implies_in_from_min_to_max; simpl in *; try omega. + eapply IHl; eauto. - allrw in_app_iff; repndors; tcsp. + unfold view_change2max_seq_preps in *. dup i as les. eapply PreparedInfos2max_seq_is_max in les;[| |eauto];auto;[]. eapply implies_in_from_min_to_max; simpl in *; try omega. + dup i as j. eapply IHl in j;[| |eauto|eauto];auto; eauto 3 with pbft. - allrw in_app_iff; repndors; tcsp. + unfold view_change2max_seq_preps in *. dup i as les. eapply PreparedInfos2max_seq_is_max in les;[| |eauto];auto;[]. eapply implies_in_from_min_to_max; simpl in *; try omega. + eapply view_change_cert2max_seq_preps_vc_none_implies in i;[|eauto]; pbft_simplifier. - allrw in_app_iff; repndors; tcsp. + unfold view_change2max_seq_preps in *. dup i as les. eapply PreparedInfos2max_seq_none_implies in i;[|eauto]; pbft_simplifier. + eapply IHl; eauto. Qed. Hint Resolve implies_prepared_info2max_seq_in_from_min_to_max : pbft. Lemma from_min_to_max_of_view_changes_nil_implies_all_sequence_numbers_are_accounted_for_op_true : forall entry OP, is_some (vce_view_change entry) = true -> from_min_to_max_of_view_changes entry = [] -> all_sequence_numbers_are_accounted_for_op (view_change_cert2prep (view_change_entry2view_changes entry)) (view_change_cert2max_seq (view_change_entry2view_changes entry)) OP = true. Proof. introv issome h. unfold from_min_to_max_of_view_changes in h. destruct entry, vce_view_change; simpl in *; tcsp; GC. unfold all_sequence_numbers_are_accounted_for_op. unfold all_sequence_numbers_are_accounted_for. remember (view_change_cert2max_seq (v :: vce_view_changes)) as maxVop. symmetry in HeqmaxVop. destruct maxVop; simpl in *; [|unfold view_change_cert2max_seq in *; simpl in *; smash_pbft];[]. unfold from_min_to_max_op in h. rewrite forallb_forall. introv i. unfold sequence_number_is_accounted_for; smash_pbft;[]. unfold from_min_to_max_of_view_changes_cert in *. rewrite HeqmaxVop in *; simpl in *. (* WARNING *) clear HeqmaxVop. assert (view_change2prep v ++ view_change_cert2prep vce_view_changes = view_change_cert2prep (v :: vce_view_changes)) as xx by tcsp. rewrite xx in *; clear xx. (* WARNING *) remember (v :: vce_view_changes) as l; clear Heql. remember (valid_prepared_info (view_change_cert2prep l)) as F; clear HeqF. smash_pbft;[|]. - unfold view_change_cert2max_seq_preps in *; smash_pbft;[]. eapply implies_prepared_info2max_seq_in_from_min_to_max in i; [| |eauto|eauto];auto. rewrite h in *; simpl in *; tcsp. - unfold view_change_cert2max_seq_preps in *; smash_pbft;[]. eapply view_change_cert2max_seq_preps_vc_none_implies in i;[|eauto]; pbft_simplifier. Qed. Hint Resolve from_min_to_max_of_view_changes_nil_implies_all_sequence_numbers_are_accounted_for_op_true : pbft. Lemma view_change_cert_max_seq_preps_vc_none_implies_all_sequence_numbers_are_accounted_for : forall k min OP, view_change_cert2max_seq_preps_vc (valid_prepared_info (view_change_cert2prep k)) k = None -> all_sequence_numbers_are_accounted_for (view_change_cert2prep k) min OP = true. Proof. introv vcmax. unfold all_sequence_numbers_are_accounted_for. apply forallb_forall. introv i. unfold sequence_number_is_accounted_for; smash_pbft. assert False; tcsp. remember (valid_prepared_info (view_change_cert2prep k)) as F; clear HeqF. eapply view_change_cert2max_seq_preps_vc_none_implies in vcmax;[|eauto]; pbft_simplifier. Qed. Hint Resolve view_change_cert_max_seq_preps_vc_none_implies_all_sequence_numbers_are_accounted_for : pbft. Lemma create_new_prepare_message_true_of_valid_prepared_info_in_implies : forall x l v keys ppd, In x l -> valid_prepared_info l x = true -> create_new_prepare_message (prepared_info2seq x) v keys l = (true, ppd) -> same_digests (prepared_info2digest x) (pre_prepare2digest (fst ppd)) = true /\ same_seq_nums (prepared_info2seq x) (pre_prepare2seq (fst ppd)) = true. Proof. introv i valid create. repnd; simpl in *. unfold create_new_prepare_message in create; smash_pbft. rename_hyp_with find_pre_prepare_certificate_in_prepared_infos fprep. apply find_pre_prepare_certificate_in_prepared_infos_some_implies in fprep. repnd. unfold same_seq_nums; smash_pbft; dands; auto;[]. unfold pre_prepare2digest; simpl. unfold valid_prepared_info in *; smash_pbft. unfold last_prepared_info in *. allrw forallb_forall. applydup valid0 in fprep0. smash_pbft;[|]. - match goal with | [ H : info_is_prepared x0 = true |- _ ] => rename H into isprep end. unfold info_is_prepared in isprep. smash_pbft. unfold prepared_info_has_correct_digest in *; smash_pbft. - applydup fprep2 in i. smash_pbft;[]. try omega. Qed. Hint Resolve create_new_prepare_message_true_of_valid_prepared_info_in_implies : pbft. Lemma create_new_prepare_message_false_of_valid_prepared_info_in_implies : forall x l v keys ppd, In x l -> valid_prepared_info l x = true -> create_new_prepare_message (prepared_info2seq x) v keys l = (false, ppd) -> False. Proof. introv i valid create. repnd; simpl in *. unfold create_new_prepare_message in create; smash_pbft. rename_hyp_with find_pre_prepare_certificate_in_prepared_infos fprep. eapply find_pre_prepare_certificate_in_prepared_infos_none_implies in i; eauto. repndors; pbft_simplifier. Qed. Hint Resolve create_new_prepare_message_false_of_valid_prepared_info_in_implies : pbft. Lemma create_new_prepare_messages_of_valid_prepared_info_in_implies : forall N v keys l OP NP x, create_new_prepare_messages N v keys l = (OP, NP) -> In x l -> valid_prepared_info l x = true -> In (prepared_info2seq x) N -> exists_prepared_info_in_pre_prepares x (map fst OP) = true. Proof. induction N; introv create i valid j; simpl in *; tcsp. repndors; subst; smash_pbft. Qed. Hint Resolve create_new_prepare_messages_of_valid_prepared_info_in_implies : pbft. Lemma create_new_prepare_messages_implies_all_sequence_numbers_are_accounted_for : forall l v keys OP NP min max vc, create_new_prepare_messages (from_min_to_max min max) v keys (view_change_cert2prep l) = (OP, NP) -> view_change_cert2max_seq l = Some min -> view_change_cert2max_seq_preps_vc (valid_prepared_info (view_change_cert2prep l)) l = Some (max, vc) -> all_sequence_numbers_are_accounted_for (view_change_cert2prep l) min (map fst OP) = true. Proof. introv create vcmin vcmax. unfold all_sequence_numbers_are_accounted_for. apply forallb_forall. introv i. unfold sequence_number_is_accounted_for; smash_pbft. Qed. Hint Resolve create_new_prepare_messages_implies_all_sequence_numbers_are_accounted_for : pbft. Lemma check_broadcast_new_view_generates : forall i state entry nv entry' OP NP, check_broadcast_new_view i state entry = Some (nv, entry', OP, NP) -> correct_new_view nv = true. Proof. introv check. dup check as check_backup. hide_hyp check_backup. unfold check_broadcast_new_view in check; smash_pbft. rename_hyp_with view_changed_entry changed. dup changed as changed_backup. hide_hyp changed_backup. unfold view_changed_entry in changed; smash_pbft. pose proof (implies_length_view_change_entry2view_changes entry (length (vce_view_changes entry))) as lenvcs. repeat (autodimp lenvcs hyp); allrw; auto;[]. remember (replace_own_view_change_in_entry (refresh_view_change x state) entry) as entry'. remember (view_change_cert2max_seq (view_change_entry2view_changes entry')) as minop. symmetry in Heqminop. rename_hyp_with create_new_prepare_messages cr. destruct minop as [min|]; [|applydup create_new_prepare_messages_view_change_cert2max_seq_none_implies in cr as eqs; auto; repnd; subst; simpl in *; rewrite eqs in *; simpl in *; GC; unfold correct_new_view; simpl; smash_pbft; try omega; destruct entry, vce_view_change; simpl in *; smash_pbft; try omega; [eapply from_min_to_max_of_view_changes_nil_implies_all_sequence_numbers_are_accounted_for_op_true in eqs; simpl in *; auto; exact eqs|];[]; match goal with | [ H : correct_view_change _ _ = _ |- _ ] => applydup correct_view_change_implies_same_views in H as sv; simpl in sv end; autorewrite with pbft in *; subst; tcsp];[]. assert (forall n, In n (from_min_to_max_of_view_changes entry') -> n <= max_O OP) as imp1. { introv i; eapply view_changed_entry_some_and_check_broadcast_new_view_implies_le; eauto. } clear check_backup. clear changed_backup. rename_hyp_with correct_view_change corvcs. assert (vce_view entry = view_change2view x) as eqviews. { unfold view_change_entry2view_changes in corvcs. subst entry'; simpl in *. destruct entry; simpl in *; smash_pbft. unfold correct_view_change in *; smash_pbft. unfold same_views in *; smash_pbft. } unfold correct_new_view; simpl; smash_pbft; try omega; try (complete (destruct entry, vce_view_change; simpl in *; smash_pbft; try omega)); [| |]. - rename_hyp_with correct_new_view_opre_prepare_op coro. rename_hyp_with correct_new_view_npre_prepare_op corn. rename_hyp_with SeqNumDeq nrep1. hide_hyp imp1. hide_hyp coro. hide_hyp corn. hide_hyp nrep1. rewrite Heqminop; simpl. remember (replace_own_view_change_in_entry (refresh_view_change x state) entry) as l. unfold from_min_to_max_of_view_changes in *; simpl in *. unfold from_min_to_max_of_view_changes_cert in *; simpl in *. rewrite Heqminop in *; simpl in *. unfold view_change_cert2max_seq_preps in *; smash_pbft. - match goal with | [ H1 : create_new_prepare_messages _ _ _ _ = _, H2 : forallb _ _ = false |- _ ] => apply (create_new_prepare_messages_implies_correct_NPs min (pre_prepares2max_seq (map fst OP))) in H1 end. { rewrite Heqminop in *; simpl in *; autorewrite with pbft in *; smash_pbft. } introv i create; repnd. dands; eauto 2 with pbft. rewrite <- max_O_as_pre_prepares2max_seq. applydup imp1 in i. apply le_lt_or_eq in i0; repndors; tcsp;[]. apply implies_eq_seq_nums in i0. assert False; tcsp. clear imp1. unfold from_min_to_max_of_view_changes in *. unfold from_min_to_max_of_view_changes_cert in *. applydup in_from_min_to_max_op_implies in i. exrepnd. rewrite i2 in *; ginv. rewrite i3 in *; ginv. simpl in *. pose proof (max_O_in OP) as q. apply (view_change_cert2max_seq_preps_implies_exists_create_new_prepare_message (view_change2view x) (local_keys state)) in i3. exrepnd. match goal with | [ H1 : create_new_prepare_message _ _ _ _ = (false, _), H2 : create_new_prepare_messages _ _ _ _ = _ |- _ ] => applydup create_new_prepare_message_implies_same_sequence_number in H1 as eqsn; dup H2 as c1; dup H2 as c2; dup H2 as c3; rename H1 into fcreate end. (* c1 part *) eapply create_new_prepare_message_true_implies_oprep_not_nil in c1; [| |eauto]; eauto 2 with pbft;[]. (* c2 part *) eapply false_implies_in_create_new_prepare_messages_n_pre_prepare in c2; [| |exact fcreate];[|unfold from_min_to_max_of_view_changes;allrw;simpl;auto];[]. (* c3 part *) apply create_new_prepare_messages_implies_norepeatsb in c3; eauto 2 with pbft;[]. autodimp q hyp; eauto 2 with pbft;[]. exrepnd. eapply norepeatsb_pre_prepare2seq_oprep_nprep_implies;[eauto| |eauto|eauto]. congruence. - match goal with | [ H1 : create_new_prepare_messages _ _ _ _ = _, H2 : forallb _ _ = false |- _ ] => apply (create_new_prepare_messages_implies_correct_OPs min) in H1 end. { rewrite Heqminop in *; simpl in *; autorewrite with pbft in *; smash_pbft. } introv i create. dands; eauto 2 with pbft. Qed. Hint Resolve check_broadcast_new_view_generates : pbft. End PBFTprops4. Hint Resolve info_is_prepared_implies_prepared_info_has_correct_digest : pbft. Hint Resolve valid_prepared_info_implies_prepared_info_has_correct_digest : pbft. Hint Resolve le_max_view_left : pbft. Hint Resolve le_max_view_right : pbft. Hint Resolve le_max_seq_num : pbft. Hint Resolve le_max_seq_num_right : pbft. Hint Resolve le_max_seq_num_op : pbft. Hint Resolve PreparedInfos2max_seq_is_max : pbft. Hint Resolve implies_in_from_min_to_max : pbft. Hint Resolve in_from_min_to_max_trans : pbft. Hint Resolve implies_prepared_info2max_seq_in_from_min_to_max : pbft. Hint Resolve from_min_to_max_of_view_changes_nil_implies_all_sequence_numbers_are_accounted_for_op_true : pbft. Hint Resolve view_change_cert_max_seq_preps_vc_none_implies_all_sequence_numbers_are_accounted_for : pbft. Hint Resolve create_new_prepare_message_true_of_valid_prepared_info_in_implies : pbft. Hint Resolve create_new_prepare_message_false_of_valid_prepared_info_in_implies : pbft. Hint Resolve create_new_prepare_messages_of_valid_prepared_info_in_implies : pbft. Hint Resolve create_new_prepare_messages_implies_all_sequence_numbers_are_accounted_for : pbft. Hint Resolve check_broadcast_new_view_generates : pbft. Hint Rewrite @view_change2view_refresh_view_change : pbft.
Formal statement is: lemma seq_compact_eq_acc_point: fixes s :: "'a :: first_countable_topology set" shows "seq_compact s \<longleftrightarrow> (\<forall>t. infinite t \<and> countable t \<and> t \<subseteq> s --> (\<exists>x\<in>s. \<forall>U. x\<in>U \<and> open U \<longrightarrow> infinite (U \<inter> t)))" Informal statement is: A set $S$ is sequentially compact if and only if every infinite countable subset of $S$ has an accumulation point in $S$.
Inspiration can come from many places but this past weekend I found inspiration at the Arlene Abend Exhibit and Reception. The event was located at the Stone Quarry Hill Art Park in Cazenovia, New York and hosted by the Cazenovia Counterpoint. The Stone Quarry Hill Art Parks grounds are open daily from dawn to dusk and has unique outdoor art throughout the 104 acres. There are four miles of trails with breathtaking views. Land was purchased in 1958 by Dorothy and Robert Riester and the house and studio at the top of the hill are now listed on the National Register of Historic Places. Arlene Abend’s reception included a documentary film by Courtney Rile which I found entertaining and inspirational. Abend is a small woman with a big personality. She has spent the last four decades creating her wonderful sculptures. Some of her favorite tools are the welding torch, plasma cutters, vices and grinders. I found her large sculptures captivating and thought-provoking. Her story of overcoming challenges was inspiring to me and I was very happy to watch the film by Courtney Rile. Abend worked as an artist in the field of metal work which was pretty much dominated by men. She was not deterred but forged ahead with new ideas and techniques. She has great enthusiasm which motivates me to continue on with my art. If you are in the area, I would invite you to stop in at the Stone Quarry Art Park to walk some trails, look at some art and then head into town to visit some of the great little shops and restaurants in Cazenovia.
#python example to infer document vectors from trained doc2vec model import gensim.models as g import codecs import sys import pandas as pd import pandas_datareader as pdr from pandas_datareader import data, wb import time import math import os from datetime import datetime from datetime import date from datetime import timedelta import numpy as np import matplotlib.pyplot as plt from scipy import stats test_docs = sys.argv[-1] writer = pd.ExcelWriter('/home/ubuntu/fakenewsclean.xlsx') breitbartData = pd.read_csv('/home/ubuntu/doc2vec-master/breitbartclean.csv') huffingtonData = pd.read_csv('/home/ubuntu/doc2vec-master/huffingtonclean.csv') voanewsData = pd.read_csv('/home/ubuntu/doc2vec-master/voanewsclean.csv') rtData = pd.read_csv('/home/ubuntu/doc2vec-master/rtclean.csv') ########################################################################## #### I can't remember how to create a new pandas dataframe ############### ########################################################################## ########################################################################## ####labeledData = pd.new????############################################## ########################################################################## #parameters model="toy_data/model.bin" #test_docs="toy_data/test_docs.txt" output_file="toy_data/test_vectors.txt" #inference hyper-parameters start_alpha=0.01 infer_epoch=1000 #load model m = g.Doc2Vec.load(model) #yup ########################################################################## ####I think this is reading each line of the .txt document to an array?### ########################################################################## test_docs = [ x.strip().split() for x in codecs.open(test_docs, "r", "utf-8").readlines() ] ########################################################################## ####I think this is reading each line of the .txt document to an array?### ########################################################################## #infer test vectors output = open(output_file, "w") ### we want to write to a csv or .xlsx instead of .txt ### ################################################################# ####I think this is processing the .txt document line by line?### ################################################################# for d in test_docs: output.write( " ".join([str(x) for x in m.infer_vector(d, alpha=start_alpha, steps=infer_epoch)]) + "\n" ) ## this line should be modified accordingly ################################################################# ####I think this is processing the .txt document line by line?### ################################################################# output.flush() # once the pandas datapipeline is done, this can be commented out/deleted output.close() # once the pandas datapipeline is done, this can be commented out/deleted #Data labeling #TODO: add new column to the pandas dataframe #Breitbart = (1,0,0,0) #Huffington = (0,1,0,0) #VOANews = (0,0,1,0) #RT.com = (0,0,0,1) labeledData.to_excel(writer,'Sheet1') writer.save()
import tools.super open super tactic monad example (a b : ℕ → Prop) (h : ∀x, (¬a x → b x) ∧ ¬b x ∧ ¬a x) := by do c ← get_local `h >>= clause.of_classical_proof, trace c, cs ← get_clauses_classical [c], trace cs, c0 ← returnopt $ cs^.nth 0, c1 ← returnopt $ cs^.nth 1, c2 ← returnopt $ cs^.nth 2, trace c0^.type, trace c0^.proof, triv
# -*- coding: utf-8 -*- ''' An implementation of the StoBatch ''' #import matplotlib.pyplot as plt import numpy as np; import random import tensorflow as tf; from tensorflow.python.framework import ops; #from tensorflow.examples.tutorials.mnist import input_data; import argparse; import pickle; from datetime import datetime import time import os import math import input_data import smtplib from mlp import EncLayer from tensorflow.python.framework import constant_op from tensorflow.python.framework import dtypes from tensorflow.python.framework import ops from tensorflow.python.ops import array_ops from tensorflow.python.ops import candidate_sampling_ops from tensorflow.python.ops import embedding_ops from tensorflow.python.ops import gen_nn_ops from tensorflow.python.ops import math_ops from tensorflow.python.ops import nn_ops from tensorflow.python.ops import sparse_ops from tensorflow.python.ops import variables from more_attack import * from cleverhans.attacks import BasicIterativeMethod, CarliniWagnerL2, DeepFool, FastGradientMethod, MadryEtAl, MomentumIterativeMethod, SPSA, SpatialTransformationMethod from cleverhans.attacks_tf import fgm, fgsm from cleverhans import utils_tf from cleverhans.model import CallableModelWrapper, CustomCallableModelWrapper from cleverhans.utils import set_log_level import logging import copy import robustness os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID" os.environ["CUDA_VISIBLE_DEVICES"] = "4" set_log_level(logging.ERROR) AECODER_VARIABLES = 'AECODER_VARIABLES' CONV_VARIABLES = 'CONV_VARIABLES' def parse_time(time_sec): time_string = "{} hours {} minutes".format(int(time_sec/3600), int((time_sec%3600)/60)) return time_string #def weight_variable(shape): # initial = tf.truncated_normal(shape, stddev=0.1); # return tf.Variable(initial); def weight_variable(name, shape, collect): #initial = tf.truncated_normal(shape, stddev=np.sqrt(2.0/(5*5*32))/math.ceil(5 / 2)); #return tf.Variable(initial, collections=[collect]); var = tf.get_variable(name = name, shape=shape, initializer=tf.contrib.layers.xavier_initializer(), dtype=tf.float32) tf.add_to_collections(collect, var) return var def bias_variable(name, shape, collect): #initial = tf.constant(0.1, shape=shape); #return tf.Variable(initial, collections=[collect]); var = tf.get_variable(name = name, shape=shape, dtype=tf.float32, initializer=tf.constant_initializer(0.0001)) tf.add_to_collections(collect, var) return var def conv2d(x, W): return tf.nn.conv2d(x, W, strides=[1, 2, 2, 1], padding='SAME'); def max_pool_2x2(x): return tf.nn.max_pool(x, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME'); def generateIdLMNoise(image_size, Delta2, epsilon2, L): #Initiate the noise for the first hidden layer# W_conv1Noise = np.random.laplace(0.0, Delta2/(L*epsilon2), image_size**2).astype(np.float32); W_conv1Noise = np.reshape(W_conv1Noise, [-1, image_size, image_size, 1]); return W_conv1Noise; def generateHkNoise(hk, Delta, epsilon, L): perturbFM = np.random.laplace(0.0, Delta/(epsilon*L), hk) perturbFM = np.reshape(perturbFM, [hk]); return perturbFM; def generateNoise(image_size, Delta2, _beta, epsilon2, L): #Initiate the noise for the first hidden layer# W_conv1Noise = np.random.laplace(0.0, 0.1, image_size**2).astype(np.float32); W_conv1Noise = np.reshape(W_conv1Noise, [-1, image_size, image_size, 1]); #Redistribute the noise# for i in range(0, image_size): for j in range(0, image_size): W_conv1Noise[0][i][j] = np.random.laplace(0.0, Delta2/(L*(_beta[i+2][j+2])*epsilon2), 1); ### return W_conv1Noise; FLAGS = None; def avg_pool(input, s): return tf.nn.avg_pool(input, [ 1, s, s, 1 ], [1, s, s, 1 ], 'VALID') def max_out(inputs, num_units, axis=None): shape = inputs.get_shape().as_list() if shape[0] is None: shape[0] = -1 if axis is None: # Assume that channel is the last dimension axis = -1 num_channels = shape[axis] if num_channels % num_units: raise ValueError('number of features({}) is not ' 'a multiple of num_units({})'.format(num_channels, num_units)) shape[axis] = num_units shape += [num_channels // num_units] outputs = tf.reduce_max(tf.reshape(inputs, shape), -1, keep_dims=False) return outputs def batch_adv(sess, adv_op, x_images, y_, test_input, test_labels): ''' Generate adv samples in batch ''' feed_dict = {x_images:test_input, y_:test_labels} adv_list = sess.run(adv_op, feed_dict=feed_dict) return adv_list def inference(x_image, perturbFM, hk, perturbFM_h, params): z = x_image; """W_conv1 = weight_variable([5, 5, 1, 32]); b_conv1 = bias_variable([32]);""" W_conv1 = params[0]; b_conv1 = params[1]; h_conv1 = tf.nn.relu(conv2d(z, W_conv1) + b_conv1 + perturbFM_h); h_conv1 = tf.contrib.layers.batch_norm(h_conv1, scale=True, is_training=True, updates_collections=[CONV_VARIABLES]) #h_pool1 = max_pool_2x2(h_conv1); h_pool1 = avg_pool(h_conv1, 2); print(h_pool1) """W_conv2 = weight_variable([5, 5, 32, 64]); b_conv2 = bias_variable([64]);""" W_conv2 = params[2]; b_conv2 = params[3]; h_conv2 = tf.nn.relu(conv2d(h_pool1, W_conv2) + b_conv2); #h_pool2 = max_pool_2x2(h_conv2); #h_pool2 = avg_pool(h_conv2, 2); print(h_conv2) """W_fc1 = weight_variable([7 * 7 * 64, hk]); b_fc1 = bias_variable([hk]);""" W_fc1 = params[4]; b_fc1 = params[5]; h_pool2_flat = tf.reshape(h_conv2, [-1, 4*4*64]); z2 = tf.matmul(h_pool2_flat, W_fc1) + b_fc1; #Applying normalization for the flat connected layer h_fc1# #batch_mean2, batch_var2 = tf.nn.moments(z2,[0]) ################################################################################################################### changed this # scale2 = tf.Variable(tf.ones([hk])) # beta2 = tf.Variable(tf.zeros([hk])) #scale2 = params[8] #beta2 = params[9] ################################################################################################################### changed this BN_norm = tf.contrib.layers.batch_norm(z2, scale=True, is_training=True, updates_collections=[CONV_VARIABLES]) #tf.nn.batch_normalization(z2,batch_mean2,batch_var2,beta2,scale2,1e-3) ### #h_fc1 = tf.nn.relu(BN_norm); h_fc1 = max_out(BN_norm, hk) h_fc1 = tf.clip_by_value(h_fc1, -1, 1) #hidden neurons must be bounded in [-1, 1] #perturbFM = tf.placeholder(tf.float32, [hk]); #h_fc1 += perturbFM; #Sometime bound the 2-norm of h_fc1 can help to stablize the training process. Use with care. #h_fc1 = tf.clip_by_norm(h_fc1, c[2], 1); #place holder for dropout, however we do not use dropout in this code# #h_fc1_drop = tf.nn.dropout(h_fc1, keep_prob); ### """W_fc2 = weight_variable([hk, 10]); b_fc2 = bias_variable([10]);""" W_fc2 = params[6]; b_fc2 = params[7]; y_conv = tf.matmul(h_fc1, W_fc2) + b_fc2; ### return y_conv def inference_robust_mask(y_conv, Delta2, L, eps, robustness_T): ##Robustness#### softmax = tf.nn.softmax(y_conv) values, indices = tf.nn.top_k(softmax,2) values = tf.unstack(values, num=2, axis=1) print('nn_tok_k: ') print(values) print(indices) eps_r = tf.log(values[0] / values[1]) / 2.0 print('eps_r') print(eps_r) kappa_phi = (Delta2 * eps_r * (1 + 2e-5))/(L * eps) print('kappa_phi') print(kappa_phi) robust_pos = tf.ones(shape=tf.shape(kappa_phi)) robust_neg = tf.zeros(shape=tf.shape(kappa_phi)) robust_mask = tf.where(eps_r >= robustness_T, robust_pos, robust_neg) print('robust_mask') print(robust_mask) ##### return robust_mask def inference_probs(x_image, perturbFM, hk, params): logits = inference(x_image, perturbFM, hk, params) return tf.nn.softmax(logits) def inference_test_input(x, hk, params, image_size, adv_noise): z = tf.reshape(x, [-1,image_size,image_size,1]) + adv_noise W_conv1 = params[0]; b_conv1 = params[1]; h_conv1 = tf.nn.relu(conv2d(z, W_conv1) + b_conv1); h_conv1 = tf.contrib.layers.batch_norm(h_conv1, scale=True, is_training=False, updates_collections=None) h_pool1 = avg_pool(h_conv1, 2); print(h_pool1) W_conv2 = params[2]; b_conv2 = params[3]; h_conv2 = tf.nn.relu(conv2d(h_pool1, W_conv2) + b_conv2); #h_pool2 = max_pool_2x2(h_conv2); #h_pool2 = avg_pool(h_conv2, 2); print(h_conv2) W_fc1 = params[4]; b_fc1 = params[5]; h_pool2_flat = tf.reshape(h_conv2, [-1, 4*4*64]); z2 = tf.matmul(h_pool2_flat, W_fc1) + b_fc1; #Applying normalization for the flat connected layer h_fc1# batch_mean2, batch_var2 = tf.nn.moments(z2,[0]) #scale2 = params[8] #beta2 = params[9] #BN_norm = tf.nn.batch_normalization(z2,batch_mean2,batch_var2,beta2,scale2,1e-3) BN_norm = tf.contrib.layers.batch_norm(z2, scale=True, is_training=False, updates_collections=None) ### #h_fc1 = tf.nn.relu(BN_norm); h_fc1 = max_out(BN_norm, hk) #h_fc1 = tf.clip_by_value(h_fc1, -1, 1) #hidden neurons must be bounded in [-1, 1] #perturbFM = tf.placeholder(tf.float32, [hk]); #h_fc1 += perturbFM; ### """W_fc2 = weight_variable([hk, 10]); b_fc2 = bias_variable([10]);""" W_fc2 = params[6]; b_fc2 = params[7]; y_conv = tf.matmul(h_fc1, W_fc2) + b_fc2; ### return y_conv def inference_test_input_probs(x, hk, params, image_size, adv_noise): logits = inference_test_input(x, hk, params, image_size, adv_noise) return tf.nn.softmax(logits) def train(alpha, eps2_ratio, gen_ratio, fgsm_eps, LR, logfile): logfile.write("fgsm_eps \t %g, LR \t %g, alpha \t %d , eps2_ratio \t %d , gen_ratio \t %d \n"%(fgsm_eps, LR, alpha, eps2_ratio, gen_ratio)) ############################# ##Hyper-parameter Setting#### ############################# hk = 256; #number of hidden units at the last layer Delta2 = (14*14+2)*25; #global sensitivity for the first hidden layer Delta3_adv = 2*hk #10*(hk + 1/4 * hk**2) #10*(hk) #global sensitivity for the output layer Delta3_benign = 2*hk #10*(hk); #global sensitivity for the output layer D = 50000; #size of the dataset L = 2499; #batch size image_size = 28; padding = 4; #numHidUnits = 14*14*32 + 7*7*64 + M + 10; #number of hidden units #gen_ratio = 1 epsilon1 = 0.0; #0.175; #epsilon for dpLRP epsilon2 = 0.1*(1 + gen_ratio); #epsilon for the first hidden layer epsilon3 = 0.1*(1); #epsilon for the last hidden layer total_eps = epsilon1 + epsilon2 + epsilon3 print(total_eps) uncert = 0.1; #uncertainty modeling at the output layer infl = 1; #inflation rate in the privacy budget redistribution R_lowerbound = 1e-5; #lower bound of the LRP c = [0, 40, 50, 200] #norm bounds epochs = 200; #number of epochs preT_epochs = 50; #number of epochs T = int(D/L*epochs + 1); #number of steps T pre_T = int(D/L*preT_epochs + 1); step_for_epoch = int(D/L); #number of steps for one epoch broken_ratio = 1 #alpha = 9.0 # [0, 1, 2, 3, 4, 5, 6, 7, 8, 9] #eps2_ratio = 10; # [1/10, 1/8, 1/6, 1/4, 1/2, 1, 2, 4, 6, 8, 10] #eps_benign = 1/(1+eps2_ratio)*(2*epsilon2) #eps_adv = eps2_ratio/(1+eps2_ratio)*(2*epsilon2) #fgsm_eps = 0.1 rand_alpha = 0.05 ##Robustness## robustness_T = (fgsm_eps*18*18*L*epsilon2)/Delta2; #### LRPfile = os.getcwd() + '/Relevance_R_0_075.txt'; ############################# mnist = input_data.read_data_sets("MNIST_data/", one_hot = True); ############################# ##Construct the Model######## ############################# #Step 4: Randomly initiate the noise, Compute 1/|L| * Delta3 for the output layer# #Compute the 1/|L| * Delta3 for the last hidden layer# """eps3_ratio = Delta3_adv/Delta3_benign; eps3_benign = 1/(1+eps3_ratio)*(epsilon3) eps3_adv = eps3_ratio/(1+eps3_ratio)*(epsilon3)""" loc, scale3_benign, scale3_adv = 0., Delta3_benign/(epsilon3*L), Delta3_adv/(epsilon3*L); ### #End Step 4# # Parameters Declarification W_conv1 = weight_variable('W_conv1', [5, 5, 1, 32], collect=[AECODER_VARIABLES]); b_conv1 = bias_variable('b_conv1', [32], collect=[AECODER_VARIABLES]); shape = W_conv1.get_shape().as_list() w_t = tf.reshape(W_conv1, [-1, shape[-1]]) w = tf.transpose(w_t) sing_vals = tf.svd(w, compute_uv=False) sensitivity = tf.reduce_max(sing_vals) gamma = 2*(14*14 + 2)*25/(L*sensitivity) dp_epsilon=0.005 #0.1 delta_r = fgsm_eps*(image_size**2); #delta_h = 1.0 * delta_r; #sensitivity*(14**2) = sensitivity*(\beta**2) can also be used #dp_mult = (Delta2/(L*epsilon2))/(delta_r / dp_epsilon) + (2*Delta2/(L*epsilon2))/(delta_h / dp_epsilon) W_conv2 = weight_variable('W_conv2', [5, 5, 32, 64], collect=[CONV_VARIABLES]); b_conv2 = bias_variable('b_conv2', [64], collect=[CONV_VARIABLES]); W_fc1 = weight_variable('W_fc1', [4 * 4 * 64, hk], collect=[CONV_VARIABLES]); b_fc1 = bias_variable('b_fc1', [hk], collect=[CONV_VARIABLES]); W_fc2 = weight_variable('W_fc2', [hk, 10], collect=[CONV_VARIABLES]); b_fc2 = bias_variable('b_fc2', [10], collect=[CONV_VARIABLES]); """scale2 = tf.Variable(tf.ones([hk])) beta2 = tf.Variable(tf.zeros([hk])) tf.add_to_collections([CONV_VARIABLES], scale2) tf.add_to_collections([CONV_VARIABLES], beta2)""" params = [W_conv1, b_conv1, W_conv2, b_conv2, W_fc1, b_fc1, W_fc2, b_fc2] ### #Step 5: Create the model# noise = tf.placeholder(tf.float32, [None, image_size, image_size, 1]); adv_noise = tf.placeholder(tf.float32, [None, image_size, image_size, 1]); keep_prob = tf.placeholder(tf.float32); x = tf.placeholder(tf.float32, [None, image_size*image_size]); x_image = tf.reshape(x, [-1,image_size,image_size,1]); #perturbFMx = np.random.laplace(0.0, Delta2/(2*epsilon2*L), 28*28) #perturbFMx = np.reshape(perturbFMx, [-1, 28, 28, 1]); # pretrain ### #Enc_Layer1 = EncLayer(inpt=x_image, n_filter_in = 1, n_filter_out = 32, filter_size = 5, W=W_conv1, b=b_conv1, activation=tf.nn.relu) #pretrain = Enc_Layer1.get_train_ops2(xShape = tf.shape(x_image)[0], Delta = Delta2, epsilon = 2*epsilon2, batch_size = L, learning_rate= LR, W = W_conv1, b = b_conv1, perturbFMx = noise) ########### adv_x = tf.placeholder(tf.float32, [None, image_size*image_size]); adv_image = tf.reshape(adv_x, [-1,image_size,image_size,1]); #perturbFMx_adv = np.random.laplace(0.0, Delta2/(2*epsilon2*L), 28*28) #perturbFMx_adv = np.reshape(perturbFMx_adv, [-1, 28, 28, 1]); # pretrain adv ### #perturbFM_h = np.random.laplace(0.0, 2*Delta2/(epsilon2*L), 14*14*32) #perturbFM_h = np.reshape(perturbFM_h, [-1, 14, 14, 32]); FM_h = tf.placeholder(tf.float32, [None, 14, 14, 32]); Enc_Layer2 = EncLayer(inpt=adv_image, n_filter_in = 1, n_filter_out = 32, filter_size = 5, W=W_conv1, b=b_conv1, activation=tf.nn.relu) pretrain_adv = Enc_Layer2.get_train_ops2(xShape = tf.shape(adv_image)[0], Delta = Delta2, batch_size = L, learning_rate= LR, W = W_conv1, b = b_conv1, perturbFMx = adv_noise, perturbFM_h = FM_h) Enc_Layer3 = EncLayer(inpt=x_image, n_filter_in = 1, n_filter_out = 32, filter_size = 5, W=W_conv1, b=b_conv1, activation=tf.nn.relu) pretrain_benign = Enc_Layer3.get_train_ops2(xShape = tf.shape(x_image)[0], Delta = Delta2, batch_size = L, learning_rate= LR, W = W_conv1, b = b_conv1, perturbFMx = noise, perturbFM_h = FM_h) ########### x_image += noise; x_image = tf.clip_by_value(x_image, -10, 10) #Clip the values of each input feature. adv_image += adv_noise; adv_image = tf.clip_by_value(adv_image, -10, 10) #Clip the values of each input feature. #perturbFM = np.random.laplace(0.0, scale3_benign, hk) #perturbFM = np.reshape(perturbFM, [hk]); perturbFM = np.random.laplace(0.0, scale3_benign, hk * 10) perturbFM = np.reshape(perturbFM, [hk, 10]); y_conv = inference(x_image, perturbFM, hk, FM_h, params); softmax_y_conv = tf.nn.softmax(y_conv) #robust_mask = inference_robust_mask(y_conv, Delta2, L, epsilon2, robustness_T) #perturbFM = np.random.laplace(0.0, scale3_adv, hk) #perturbFM = np.reshape(perturbFM, [hk]); y_adv_conv = inference(adv_image, perturbFM, hk, FM_h, params); #adv_robust_mask = inference_robust_mask(y_adv_conv, Delta2, L, epsilon2, robustness_T) # test model perturbFM_test = np.random.laplace(0.0, 0, hk) perturbFM_test = np.reshape(perturbFM_test, [hk]); x_test = tf.reshape(x, [-1,image_size,image_size,1]); y_test = inference(x_test, perturbFM_test, hk, FM_h, params); #test_robust_mask = inference_robust_mask(y_test, Delta2, L, epsilon2, robustness_T) #Define a place holder for the output label# y_ = tf.placeholder(tf.float32, [None, 10]); adv_y_ = tf.placeholder(tf.float32, [None, 10]); #End Step 5# ############################# ############################# ##Define loss and Optimizer## ############################# ''' Computes differentially private sigmoid cross entropy given `logits`. Measures the probability error in discrete classification tasks in which each class is independent and not mutually exclusive. For brevity, let `x = logits`, `z = labels`. The logistic loss is z * -log(sigmoid(x)) + (1 - z) * -log(1 - sigmoid(x)) = z * -log(1 / (1 + exp(-x))) + (1 - z) * -log(exp(-x) / (1 + exp(-x))) = z * log(1 + exp(-x)) + (1 - z) * (-log(exp(-x)) + log(1 + exp(-x))) = z * log(1 + exp(-x)) + (1 - z) * (x + log(1 + exp(-x)) = (1 - z) * x + log(1 + exp(-x)) = x - x * z + log(1 + exp(-x)) For x < 0, to avoid overflow in exp(-x), we reformulate the above x - x * z + log(1 + exp(-x)) = log(exp(x)) - x * z + log(1 + exp(-x)) = - x * z + log(1 + exp(x)) Hence, to ensure stability and avoid overflow, the implementation uses this equivalent formulation max(x, 0) - x * z + log(1 + exp(-abs(x))) `logits` and `labels` must have the same type and shape. Let denote neg_abs_logits = -abs(y_conv) = -abs(h_fc1 * W_fc2). By Applying Taylor Expansion, we have: Taylor = max(y_conv, 0) - y_conv * y_ + log(1 + exp(-abs(y_conv))); = max(h_fc1 * W_fc2, 0) - (y_ * h_fc1) * W_fc2 + (math.log(2.0) + 0.5*neg_abs_logits + 1.0/8.0*neg_abs_logits**2) = max(h_fc1 * W_fc2, 0) - (y_ * h_fc1) * W_fc2 + (math.log(2.0) + 0.5*(-abs(h_fc1 * W_fc2)) + 1.0/8.0*(-abs(h_fc1 * W_fc2))**2) = F1 + F2 where: F1 = max(h_fc1 * W_fc2, 0) + (math.log(2.0) + 0.5*(-abs(h_fc1 * W_fc2)) + 1.0/8.0*(-abs(h_fc1 * W_fc2))**2) and F2 = - (y_ * h_fc1) * W_fc2 To ensure that Taylor is differentially private, we need to perturb all the coefficients, including the term y_ * h_fc1 * W_fc2. Note that h_fc1 is differentially private, since its computation on top of the DP Affine transformation does not access the original data. Therefore, F1 should be differentially private. We need to preserve DP in F2, which reads the groundtruth label y_, as follows: By applying Funtional Mechanism, we perturb (y_ * h_fc1) * W_fc2 as ((y_ * h_fc1) + perturbFM) * W_fc2 = (y_ * h_fc1)*W_fc2 + (perturbFM * W_fc2): perturbFM = np.random.laplace(0.0, scale3, hk * 10) perturbFM = np.reshape(perturbFM/L, [hk, 10]); where scale3 = Delta3/(epsilon3) = 2*hk/(epsilon3); To allow computing gradients at zero, we define custom versions of max and abs functions [Tensorflow]. Source: https://github.com/tensorflow/tensorflow/blob/r1.4/tensorflow/python/ops/nn_impl.py @ TensorFlow ''' ### Taylor for benign x zeros = array_ops.zeros_like(y_conv, dtype=y_conv.dtype) cond = (y_conv >= zeros) relu_logits = array_ops.where(cond, y_conv, zeros) neg_abs_logits = array_ops.where(cond, -y_conv, y_conv) #Taylor = math_ops.add(relu_logits - y_conv * y_, math_ops.log1p(math_ops.exp(neg_abs_logits))) Taylor_benign = math_ops.add(relu_logits - y_conv * y_, math.log(2.0) + 0.5*neg_abs_logits + 1.0/8.0*neg_abs_logits**2) - tf.reduce_sum(perturbFM*W_fc2) #Taylor_benign = tf.abs(y_conv - y_) ### Taylor for adv_x zeros_adv = array_ops.zeros_like(y_adv_conv, dtype=y_conv.dtype) cond_adv = (y_adv_conv >= zeros_adv) relu_logits_adv = array_ops.where(cond_adv, y_adv_conv, zeros_adv) neg_abs_logits_adv = array_ops.where(cond_adv, -y_adv_conv, y_adv_conv) #Taylor = math_ops.add(relu_logits - y_conv * y_, math_ops.log1p(math_ops.exp(neg_abs_logits))) Taylor_adv = math_ops.add(relu_logits_adv - y_adv_conv * adv_y_, math.log(2.0) + 0.5*neg_abs_logits_adv + 1.0/8.0*neg_abs_logits_adv**2) - tf.reduce_sum(perturbFM*W_fc2) #Taylor_adv = tf.abs(y_adv_conv - adv_y_) ### Adversarial training loss adv_loss = (1/(L + L*alpha))*(Taylor_benign + alpha * Taylor_adv) '''Some time, using learning rate decay can help to stablize training process. However, use this carefully, since it may affect the convergent speed.''' global_step = tf.Variable(0, trainable=False) pretrain_var_list = tf.get_collection(AECODER_VARIABLES) train_var_list = tf.get_collection(CONV_VARIABLES) #print(pretrain_var_list) #print(train_var_list) update_ops = tf.get_collection(tf.GraphKeys.UPDATE_OPS) with tf.control_dependencies(update_ops): pretrain_step = tf.train.AdamOptimizer(LR).minimize(pretrain_adv+pretrain_benign, global_step=global_step, var_list=pretrain_var_list); train_step = tf.train.AdamOptimizer(LR).minimize(adv_loss, global_step=global_step, var_list=train_var_list); sess = tf.InteractiveSession(); # Define the correct prediction and accuracy # This needs to be changed to "Robust Prediction" correct_prediction_x = tf.equal(tf.argmax(y_test,1), tf.argmax(y_,1)); accuracy_x = tf.reduce_mean(tf.cast(correct_prediction_x, tf.float32)); ############# # use these to get predictions wrt to robust conditions """robust_correct_prediction_x = tf.multiply(test_robust_mask, tf.cast(correct_prediction_x, tf.float32)) accuracy_x_robust = tf.reduce_sum(robust_correct_prediction_x) / tf.reduce_sum(test_robust_mask) #certified_utility = 2/(1/accuracy_x_robust + 1/(tf.reduce_sum(test_robust_mask)/(1.0*tf.cast(tf.size(test_robust_mask), tf.float32)))) certified_utility = (1.0*tf.reduce_sum(test_robust_mask))/(1.0*tf.cast(tf.size(test_robust_mask), tf.float32))""" ############# # craft adversarial samples from x for training dynamic_eps = tf.placeholder(tf.float32); emsemble_L = int(L/3) softmax_y = tf.nn.softmax(y_test) #c_x_adv = fgsm(x, softmax_y, eps=fgsm_eps, clip_min=0.0, clip_max=1.0) c_x_adv = fgsm(x, softmax_y, eps=(dynamic_eps)/10, clip_min=-1.0, clip_max=1.0) # for I-FGSM x_adv = tf.reshape(c_x_adv, [emsemble_L,image_size*image_size]); #====================== attack ========================= #attack_switch = {'randfgsm':True, 'fgsm':True, 'ifgsm':True, 'deepfool':True, 'mim':True, 'spsa':False, 'cwl2':False, 'madry':True, 'stm':True} #attack_switch = {'fgsm':True, 'ifgsm':True, 'deepfool':True, 'mim':True, 'spsa':False, 'cwl2':False, 'madry':True, 'stm':True} attack_switch = {'fgsm':True, 'ifgsm':True, 'deepfool':False, 'mim':True, 'spsa':False, 'cwl2':False, 'madry':True, 'stm':False} #other possible attacks: # ElasticNetMethod # FastFeatureAdversaries # LBFGS # SaliencyMapMethod # VirtualAdversarialMethod # y_test = logits (before softmax) # softmax_y_test = preds (probs, after softmax) softmax_y_test = tf.nn.softmax(y_test) # create saver saver = tf.train.Saver(tf.all_variables()) sess.run(W_conv1.initializer) _gamma = sess.run(gamma) _gamma_x = Delta2/L epsilon2_update = epsilon2/(1.0 + 1.0/_gamma + 1/_gamma_x) print(epsilon2_update/_gamma + epsilon2_update/_gamma_x) print(epsilon2_update) _sensitivityW = sess.run(sensitivity) delta_h = _sensitivityW*(14**2) #dp_mult = (Delta2/(L*epsilon2_update))/(delta_r / dp_epsilon) + (2*Delta2/(L*epsilon2_update))/(delta_h / dp_epsilon) dp_mult = (Delta2) / (L*epsilon2_update * (delta_h / 2 + delta_r)) ############################# iterativeStep = 100 # load the most recent models _global_step = 0 ckpt = tf.train.get_checkpoint_state(os.getcwd() + './tmp/train') if ckpt and ckpt.model_checkpoint_path: print(ckpt.model_checkpoint_path); saver.restore(sess, ckpt.model_checkpoint_path) _global_step = int(ckpt.model_checkpoint_path.split('/')[-1].split('-')[-1]) else: print('No checkpoint file found') start_time = time.time(); # adv pretrain model (Auto encoder layer) cost = tf.reduce_sum(Enc_Layer2.cost); logfile.write("pretrain: \n") # define cleverhans abstract models for using cleverhans attacks ch_model_logits = CustomCallableModelWrapper(callable_fn=inference_test_input, output_layer='logits', hk=hk, params=params, image_size=image_size, adv_noise = adv_noise) ch_model_probs = CustomCallableModelWrapper(callable_fn=inference_test_input_probs, output_layer='probs', hk=hk, params=params, image_size=image_size, adv_noise = adv_noise) # rand+fgsm # if attack_switch['randfgsm']: # randfgsm_obj = FastGradientMethod(model=ch_model_probs, sess=sess) # x_randfgsm_t = (fgsm_eps - rand_alpha) * randfgsm_obj.generate(x=x, eps=fgsm_eps, clip_min=-1.0, clip_max=1.0) # x_rand_t = rand_alpha * tf.sign(tf.random_normal(shape=tf.shape(x), mean=0.0, stddev=1.0)) # define each attack method's tensor mu_alpha = tf.placeholder(tf.float32, [1]); attack_tensor_dict = {} # FastGradientMethod if attack_switch['fgsm']: print('creating attack tensor of FastGradientMethod') fgsm_obj = FastGradientMethod(model=ch_model_probs, sess=sess) #x_adv_test_fgsm = fgsm_obj.generate(x=x, eps=fgsm_eps, clip_min=-1.0, clip_max=1.0, ord=2) # testing now x_adv_test_fgsm = fgsm_obj.generate(x=x, eps=mu_alpha, clip_min=-1.0, clip_max=1.0) # testing now attack_tensor_dict['fgsm'] = x_adv_test_fgsm # Iterative FGSM (BasicIterativeMethod/ProjectedGradientMethod with no random init) # default: eps_iter=0.05, nb_iter=10 if attack_switch['ifgsm']: print('creating attack tensor of BasicIterativeMethod') ifgsm_obj = BasicIterativeMethod(model=ch_model_probs, sess=sess) #x_adv_test_ifgsm = ifgsm_obj.generate(x=x, eps=fgsm_eps, eps_iter=fgsm_eps/10, nb_iter=10, clip_min=-1.0, clip_max=1.0, ord=2) x_adv_test_ifgsm = ifgsm_obj.generate(x=x, eps=mu_alpha, eps_iter=mu_alpha/iterativeStep, nb_iter=iterativeStep, clip_min=-1.0, clip_max=1.0) attack_tensor_dict['ifgsm'] = x_adv_test_ifgsm # Deepfool if attack_switch['deepfool']: print('creating attack tensor of DeepFool') deepfool_obj = DeepFool(model=ch_model_logits, sess=sess) #x_adv_test_deepfool = deepfool_obj.generate(x=x, nb_candidate=10, overshoot=0.02, max_iter=50, nb_classes=10, clip_min=-1.0, clip_max=1.0, ord=2) x_adv_test_deepfool = deepfool_obj.generate(x=x, nb_candidate=10, overshoot=0.02, max_iter=50, nb_classes=10, clip_min=-1.0, clip_max=1.0) attack_tensor_dict['deepfool'] = x_adv_test_deepfool # MomentumIterativeMethod # default: eps_iter=0.06, nb_iter=10 if attack_switch['mim']: print('creating attack tensor of MomentumIterativeMethod') mim_obj = MomentumIterativeMethod(model=ch_model_probs, sess=sess) #x_adv_test_mim = mim_obj.generate(x=x, eps=fgsm_eps, eps_iter=fgsm_eps/10, nb_iter=10, decay_factor=1.0, clip_min=-1.0, clip_max=1.0, ord=2) x_adv_test_mim = mim_obj.generate(x=x, eps=mu_alpha, eps_iter=mu_alpha/iterativeStep, nb_iter=iterativeStep, decay_factor=1.0, clip_min=-1.0, clip_max=1.0) attack_tensor_dict['mim'] = x_adv_test_mim # SPSA # note here the epsilon is the infinity norm instead of precent of perturb # Maybe exclude this method first, since it seems to have some constrain about the data value range if attack_switch['spsa']: print('creating attack tensor of SPSA') spsa_obj = SPSA(model=ch_model_logits, sess=sess) #x_adv_test_spsa = spsa_obj.generate(x=x, epsilon=fgsm_eps, num_steps=10, is_targeted=False, early_stop_loss_threshold=None, learning_rate=0.01, delta=0.01,spsa_samples=1000, spsa_iters=1, ord=2) x_adv_test_spsa = spsa_obj.generate(x=x, epsilon=fgsm_eps, num_steps=10, is_targeted=False, early_stop_loss_threshold=None, learning_rate=0.01, delta=0.01,spsa_samples=1000, spsa_iters=1) attack_tensor_dict['spsa'] = x_adv_test_spsa # CarliniWagnerL2 # confidence=0 is fron their paper # it is said to be slow, maybe exclude first if attack_switch['cwl2']: print('creating attack tensor of CarliniWagnerL2') cwl2_obj = CarliniWagnerL2(model=ch_model_logits, sess=sess) #x_adv_test_cwl2 = cwl2_obj.generate(x=x, confidence=0, batch_size=1000, learning_rate=0.005, binary_search_steps=5, max_iterations=500, abort_early=True, initial_const=0.01, clip_min=-1.0, clip_max=1.0, ord=2) x_adv_test_cwl2 = cwl2_obj.generate(x=x, confidence=0, batch_size=1000, learning_rate=0.005, binary_search_steps=5, max_iterations=500, abort_early=True, initial_const=0.01, clip_min=-1.0, clip_max=1.0) attack_tensor_dict['cwl2'] = x_adv_test_cwl2 # MadryEtAl (Projected Grdient with random init, same as rand+fgsm) # default: eps_iter=0.01, nb_iter=40 if attack_switch['madry']: print('creating attack tensor of MadryEtAl') madry_obj = MadryEtAl(model=ch_model_probs, sess=sess) #x_adv_test_madry = madry_obj.generate(x=x, eps=fgsm_eps, eps_iter=fgsm_eps/10, nb_iter=10, clip_min=-1.0, clip_max=1.0, ord=2) x_adv_test_madry = madry_obj.generate(x=x, eps=mu_alpha, eps_iter=fgsm_eps/iterativeStep, nb_iter=iterativeStep, clip_min=-1.0, clip_max=1.0) attack_tensor_dict['madry'] = x_adv_test_madry # SpatialTransformationMethod # the params are pretty different from on the paper # so I use default # exclude since there's bug if attack_switch['stm']: print('creating attack tensor of SpatialTransformationMethod') stm_obj = SpatialTransformationMethod(model=ch_model_probs, sess=sess) #x_adv_test_stm = stm_obj.generate(x=x, batch_size=1000, n_samples=None, dx_min=-0.1, dx_max=0.1, n_dxs=2, dy_min=-0.1, dy_max=0.1, n_dys=2, angle_min=-30, angle_max=30, n_angles=6, ord=2) x_adv_test_stm = stm_obj.generate(x=x, batch_size=1000, n_samples=None, dx_min=-0.1, dx_max=0.1, n_dxs=2, dy_min=-0.1, dy_max=0.1, n_dys=2, angle_min=-30, angle_max=30, n_angles=6) attack_tensor_dict['stm'] = x_adv_test_stm #====================== attack ========================= sess.run(tf.initialize_all_variables()); ##perturb h for training perturbFM_h = np.random.laplace(0.0, 2*Delta2/(epsilon2_update*L), 14*14*32) perturbFM_h = np.reshape(perturbFM_h, [-1, 14, 14, 32]); ##perturb h for testing perturbFM_h_test = np.random.laplace(0.0, 0, 14*14*32) perturbFM_h_test = np.reshape(perturbFM_h_test, [-1, 14, 14, 32]); '''for i in range(_global_step, _global_step + pre_T): d_eps = random.random(); batch = mnist.train.next_batch(L); #Get a random batch. adv_images = sess.run(x_adv, feed_dict = {x:batch[0], y_:batch[1], FM_h: perturbFM_h_test, dynamic_eps: d_eps}) for iter in range(0, 9): adv_images = sess.run(x_adv, feed_dict = {x:adv_images, y_:batch[1], FM_h: perturbFM_h_test, dynamic_eps: d_eps}) """batch = mnist.train.next_batch(emsemble_L) adv_images_mim = sess.run(attack_tensor_dict['mim'], feed_dict = {x:batch[0], y_: batch[1]}) batch = mnist.train.next_batch(emsemble_L) adv_images_madry = sess.run(attack_tensor_dict['mim'], feed_dict = {x:batch[0], y_: batch[1]}) train_images = np.append(np.append(adv_images, adv_images_mim, axis = 0),adv_images_madry, axis = 0)""" batch_2 = mnist.train.next_batch(L); pretrain_step.run(feed_dict={adv_x: np.append(adv_images, batch_2[0], axis = 0), adv_noise: AdvLnoise, FM_h: perturbFM_h}); if i % int(5*step_for_epoch) == 0: cost_value = sess.run(cost, feed_dict={adv_x:mnist.test.images, adv_noise: AdvLnoise_test, FM_h: perturbFM_h_test})/(test_size*32) logfile.write("step \t %d \t %g \n"%(i, cost_value)) print(cost_value) pre_train_finish_time = time.time() print('pre_train finished in: ' + parse_time(pre_train_finish_time - start_time))''' # train and test model with adv samples max_benign_acc = -1; max_robust_benign_acc = -1 #max_adv_acc = -1; test_size = len(mnist.test.images) AdvLnoise = generateIdLMNoise(image_size, Delta2, epsilon2_update, L); AdvLnoise_test = generateIdLMNoise(image_size, 0, epsilon2_update, test_size); Lnoise_empty = generateIdLMNoise(image_size, 0, epsilon2_update, L); BenignLNoise = generateIdLMNoise(image_size, Delta2, epsilon2_update, L); last_eval_time = -1 accum_time = 0 accum_epoch = 0 max_adv_acc_dict = {} max_robust_adv_acc_dict = {} #max_robust_adv_utility_dict = {} for atk in attack_switch.keys(): if atk not in max_adv_acc_dict: max_adv_acc_dict[atk] = -1 max_robust_adv_acc_dict[atk] = -1 for i in range(_global_step, _global_step + T): # this batch is for generating adv samples batch = mnist.train.next_batch(emsemble_L); #Get a random batch. y_adv_batch = batch[1] #The number of epochs we print out the result. Print out the result every 5 epochs. if i % int(10*step_for_epoch) == 0 and i > int(10*step_for_epoch): cost_value = sess.run(cost, feed_dict={adv_x:mnist.test.images, adv_noise: AdvLnoise_test, FM_h: perturbFM_h_test})/(test_size*32) print(cost_value) if last_eval_time < 0: last_eval_time = time.time() #===================benign samples===================== predictions_form_argmax = np.zeros([test_size, 10]) #test_bach = mnist.test.next_batch(test_size) softmax_predictions = softmax_y_conv.eval(feed_dict={x: mnist.test.images, noise: BenignLNoise, FM_h: perturbFM_h}) argmax_predictions = np.argmax(softmax_predictions, axis=1) for n_draws in range(0, 1): _BenignLNoise = generateIdLMNoise(image_size, Delta2, epsilon2_update, L); _perturbFM_h = np.random.laplace(0.0, 2*Delta2/(epsilon2_update*L), 14*14*32) _perturbFM_h = np.reshape(_perturbFM_h, [-1, 14, 14, 32]); for j in range(test_size): pred = argmax_predictions[j] predictions_form_argmax[j, pred] += 1; softmax_predictions = softmax_y_conv.eval(feed_dict={x: mnist.test.images, noise: (BenignLNoise + _BenignLNoise/2), FM_h: (perturbFM_h + _perturbFM_h/2)}) argmax_predictions = np.argmax(softmax_predictions, axis=1) final_predictions = predictions_form_argmax; is_correct = [] is_robust = [] for j in range(test_size): is_correct.append(np.argmax(mnist.test.labels[j]) == np.argmax(final_predictions[j])) robustness_from_argmax = robustness.robustness_size_argmax(counts=predictions_form_argmax[j],eta=0.05,dp_attack_size=fgsm_eps, dp_epsilon=1.0, dp_delta=0.05, dp_mechanism='laplace') * dp_mult is_robust.append(robustness_from_argmax >= fgsm_eps) acc = np.sum(is_correct)*1.0/test_size robust_acc = np.sum([a and b for a,b in zip(is_robust, is_correct)])*1.0/np.sum(is_robust) robust_utility = np.sum(is_robust)*1.0/test_size max_benign_acc = max(max_benign_acc, acc) max_robust_benign_acc = max(max_robust_benign_acc, robust_acc*robust_utility) log_str = "step: {:.1f}\t epsilon: {:.1f}\t benign: {:.4f} \t {:.4f} \t {:.4f} \t {:.4f} \t".format(i, total_eps, acc, robust_acc, robust_utility, robust_acc*robust_utility) #===================adv samples===================== #log_str = "step: {:.1f}\t epsilon: {:.1f}\t".format(i, total_eps) """adv_images_dict = {} for atk in attack_switch.keys(): if attack_switch[atk]: adv_images_dict[atk] = sess.run(attack_tensor_dict[atk], feed_dict = {x:mnist.test.images, y_:mnist.test.labels}) print("Done with the generating of Adversarial samples")""" #===================adv samples===================== adv_acc_dict = {} robust_adv_acc_dict = {} robust_adv_utility_dict = {} for atk in attack_switch.keys(): if atk not in adv_acc_dict: adv_acc_dict[atk] = -1 robust_adv_acc_dict[atk] = -1 robust_adv_utility_dict[atk] = -1 if attack_switch[atk]: adv_images_dict = sess.run(attack_tensor_dict[atk], feed_dict = {x:mnist.test.images, y_: mnist.test.labels, adv_noise: AdvLnoise_test, mu_alpha:[fgsm_eps]}) ### PixelDP Robustness ### predictions_form_argmax = np.zeros([test_size, 10]) softmax_predictions = softmax_y_conv.eval(feed_dict={x: adv_images_dict, noise: BenignLNoise, FM_h: perturbFM_h}) argmax_predictions = np.argmax(softmax_predictions, axis=1) for n_draws in range(0, 2000): if n_draws % 1000 == 0: print(n_draws) _BenignLNoise = generateIdLMNoise(image_size, Delta2, epsilon2_update, L); _perturbFM_h = np.random.laplace(0.0, 2*Delta2/(epsilon2_update*L), 14*14*32) _perturbFM_h = np.reshape(_perturbFM_h, [-1, 14, 14, 32]); for j in range(test_size): pred = argmax_predictions[j] predictions_form_argmax[j, pred] += 1; softmax_predictions = softmax_y_conv.eval(feed_dict={x: adv_images_dict, noise: BenignLNoise, FM_h: (perturbFM_h + _perturbFM_h/2)}) * softmax_y_conv.eval(feed_dict={x: adv_images_dict, noise: (BenignLNoise + _BenignLNoise/2), FM_h: perturbFM_h}) #softmax_predictions = softmax_y_conv.eval(feed_dict={x: adv_images_dict, noise: BenignLNoise, FM_h: (_perturbFM_h)}) * softmax_y_conv.eval(feed_dict={x: adv_images_dict, noise: (_BenignLNoise), FM_h: perturbFM_h}) argmax_predictions = np.argmax(softmax_predictions, axis=1) final_predictions = predictions_form_argmax; is_correct = [] is_robust = [] for j in range(test_size): is_correct.append(np.argmax(mnist.test.labels[j]) == np.argmax(final_predictions[j])) robustness_from_argmax = robustness.robustness_size_argmax(counts=predictions_form_argmax[j],eta=0.05,dp_attack_size=fgsm_eps, dp_epsilon=1.0, dp_delta=0.05, dp_mechanism='laplace') * dp_mult is_robust.append(robustness_from_argmax >= fgsm_eps) adv_acc_dict[atk] = np.sum(is_correct)*1.0/test_size robust_adv_acc_dict[atk] = np.sum([a and b for a,b in zip(is_robust, is_correct)])*1.0/np.sum(is_robust) robust_adv_utility_dict[atk] = np.sum(is_robust)*1.0/test_size ############################## for atk in attack_switch.keys(): if attack_switch[atk]: # added robust prediction log_str += " {}: {:.4f} {:.4f} {:.4f} {:.4f}".format(atk, adv_acc_dict[atk], robust_adv_acc_dict[atk], robust_adv_utility_dict[atk], robust_adv_acc_dict[atk]*robust_adv_utility_dict[atk]) max_adv_acc_dict[atk] = max(max_adv_acc_dict[atk], adv_acc_dict[atk]) max_robust_adv_acc_dict[atk] = max(max_robust_adv_acc_dict[atk], robust_adv_acc_dict[atk]*robust_adv_utility_dict[atk]) print(log_str) logfile.write(log_str + '\n') # logfile.write("step \t %d \t %g \t %g \n"%(i, benign_acc, adv_acc)) # print("step \t %d \t %g \t %g"%(i, benign_acc, adv_acc)); # estimate end time """if i > 0 and i % int(10*step_for_epoch) == 0: current_time_interval = time.time() - last_eval_time last_eval_time = time.time() print('during last eval interval, {} epoch takes {}'.format(10, parse_time(current_time_interval))) accum_time += current_time_interval accum_epoch += 10 estimate_time = ((_global_step + T - i) / step_for_epoch) * (accum_time / accum_epoch) print('estimate finish in: {}'.format(parse_time(estimate_time)))""" #print("step \t %d \t adversarial test accuracy \t %g"%(i, accuracy_x.eval(feed_dict={x: adv_images, y_: mnist.test.labels, noise: Lnoise_empty}))); """checkpoint_path = os.path.join(os.getcwd() + '/tmp/train', 'model.ckpt') saver.save(sess, checkpoint_path, global_step=i);""" d_eps = random.random(); y_adv = batch[1] adv_images = sess.run(attack_tensor_dict['ifgsm'], feed_dict = {x:batch[0], y_: batch[1], adv_noise: AdvLnoise, mu_alpha:[d_eps]}) """for iter in range(0, 9): adv_images = sess.run(x_adv, feed_dict = {x:adv_images, y_:batch[1], FM_h: perturbFM_h_test, dynamic_eps: d_eps})""" batch = mnist.train.next_batch(emsemble_L) adv_images_mim = sess.run(attack_tensor_dict['mim'], feed_dict = {x:batch[0], y_: batch[1], adv_noise: AdvLnoise, mu_alpha:[d_eps]}) y_adv = np.append(y_adv, batch[1], axis = 0) batch = mnist.train.next_batch(emsemble_L) adv_images_madry = sess.run(attack_tensor_dict['madry'], feed_dict = {x:batch[0], y_: batch[1], adv_noise: AdvLnoise, mu_alpha:[d_eps]}) y_adv = np.append(y_adv, batch[1], axis = 0) train_images = np.append(np.append(adv_images, adv_images_mim, axis = 0),adv_images_madry, axis = 0) batch = mnist.train.next_batch(L); #Get a random batch. # train with benign and adv samples pretrain_step.run(feed_dict={adv_x: train_images, x: batch[0], adv_noise: AdvLnoise_test, noise: BenignLNoise, FM_h: perturbFM_h}); train_step.run(feed_dict={x: batch[0], adv_x: train_images, y_: batch[1], adv_y_: y_adv, noise: BenignLNoise, adv_noise: AdvLnoise_test, FM_h: perturbFM_h}); duration = time.time() - start_time; # print(parse_time(duration)); #print running time duration# max_acc_string = "max acc: benign: \t{:.4f} {:.4f}".format(max_benign_acc, max_robust_benign_acc) for atk in attack_switch.keys(): if attack_switch[atk]: max_acc_string += " {}: \t{:.4f} {:.4f}".format(atk, max_adv_acc_dict[atk], max_robust_adv_acc_dict[atk]) logfile.write(max_acc_string + '\n') logfile.write(str(duration) + '\n') # logfile.write("max accuracy \t %g \t %g \n"%(max_benign_acc, max_adv_acc)) # logfile.write(str(float(duration)) + '\n') # send email #send_email(subject="Training of epsilon = {} is done in {}".format(total_eps, parse_time(duration)), content=max_acc_string) def main(_): #logfile = open('./tmp/results/DPAL_PixelDP_run1_1.txt','w') LR = 1e-4; #learning rate for fgsm_eps in [5, 10, 20, 30, 40, 50, 60]: for gen_ratio in [0]: #[0, 8]: #range(0, 20, 2): for alpha in [1.0]:# fix for eps2_ratio in [1]:# fix logfile = open('./tmp/results/StoBatch' + str(fgsm_eps) + '_eps_' + str(0.1*(1 + gen_ratio) + 0.1) + '.txt','w') train(alpha, eps2_ratio, gen_ratio, (fgsm_eps*1.0)/100.0, LR, logfile) logfile.flush() logfile.close(); if __name__ == '__main__': logging.basicConfig(level=logging.ERROR) if tf.gfile.Exists('./tmp/mnist_logs'): tf.gfile.DeleteRecursively('./tmp/mnist_logs'); tf.gfile.MakeDirs('./tmp/mnist_logs'); parser = argparse.ArgumentParser(); parser.add_argument('--data_dir', type=str, default='./tmp/data', help='Directory for storing data'); FLAGS = parser.parse_args(); tf.app.run();
/- Copyright (c) 2019 Johannes Hölzl. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Johannes Hölzl, Mario Carneiro -/ import Mathlib.PrePort import Mathlib.Lean3Lib.init.default import Mathlib.data.rat.order import Mathlib.data.int.sqrt import Mathlib.PostPort namespace Mathlib /-! # Square root on rational numbers This file defines the square root function on rational numbers, `rat.sqrt` and proves several theorems about it. -/ namespace rat /-- Square root function on rational numbers, defined by taking the (integer) square root of the numerator and the square root (on natural numbers) of the denominator. -/ def sqrt (q : ℚ) : ℚ := mk (int.sqrt (num q)) ↑(nat.sqrt (denom q)) theorem sqrt_eq (q : ℚ) : sqrt (q * q) = abs q := sorry theorem exists_mul_self (x : ℚ) : (∃ (q : ℚ), q * q = x) ↔ sqrt x * sqrt x = x := sorry theorem sqrt_nonneg (q : ℚ) : 0 ≤ sqrt q := sorry end Mathlib
[STATEMENT] lemma (in linorder) iterate_sel_no_map_linord_correct : assumes it_OK: "set_iterator_linord it S0" shows "iterate_sel_no_map it P = None \<longleftrightarrow> (\<forall>x\<in>S0. \<not>(P x))" "iterate_sel_no_map it P = Some x \<Longrightarrow> (x \<in> S0 \<and> P x \<and> (\<forall>x'\<in>S0. P x' \<longrightarrow> x \<le> x'))" [PROOF STATE] proof (prove) goal (1 subgoal): 1. (iterate_sel_no_map it P = None) = (\<forall>x\<in>S0. \<not> P x) &&& (iterate_sel_no_map it P = Some x \<Longrightarrow> x \<in> S0 \<and> P x \<and> (\<forall>x'\<in>S0. P x' \<longrightarrow> x \<le> x')) [PROOF STEP] proof - [PROOF STATE] proof (state) goal (2 subgoals): 1. (iterate_sel_no_map it P = None) = (\<forall>x\<in>S0. \<not> P x) 2. iterate_sel_no_map it P = Some x \<Longrightarrow> x \<in> S0 \<and> P x \<and> (\<forall>x'\<in>S0. P x' \<longrightarrow> x \<le> x') [PROOF STEP] note iterate_sel_no_map_genord_correct [OF it_OK[unfolded set_iterator_linord_def], of P] [PROOF STATE] proof (state) this: (iterate_sel_no_map it P = None) = (\<forall>x\<in>S0. \<not> P x) iterate_sel_no_map it P = Some ?x \<Longrightarrow> ?x \<in> S0 \<and> P ?x \<and> (\<forall>x'\<in>S0 - {?x}. P x' \<longrightarrow> ?x \<le> x') goal (2 subgoals): 1. (iterate_sel_no_map it P = None) = (\<forall>x\<in>S0. \<not> P x) 2. iterate_sel_no_map it P = Some x \<Longrightarrow> x \<in> S0 \<and> P x \<and> (\<forall>x'\<in>S0. P x' \<longrightarrow> x \<le> x') [PROOF STEP] thus "iterate_sel_no_map it P = None \<longleftrightarrow> (\<forall>x\<in>S0. \<not>(P x))" "iterate_sel_no_map it P = Some x \<Longrightarrow> (x \<in> S0 \<and> P x \<and> (\<forall>x'\<in>S0. P x' \<longrightarrow> x \<le> x'))" [PROOF STATE] proof (prove) using this: (iterate_sel_no_map it P = None) = (\<forall>x\<in>S0. \<not> P x) iterate_sel_no_map it P = Some ?x \<Longrightarrow> ?x \<in> S0 \<and> P ?x \<and> (\<forall>x'\<in>S0 - {?x}. P x' \<longrightarrow> ?x \<le> x') goal (1 subgoal): 1. (iterate_sel_no_map it P = None) = (\<forall>x\<in>S0. \<not> P x) &&& (iterate_sel_no_map it P = Some x \<Longrightarrow> x \<in> S0 \<and> P x \<and> (\<forall>x'\<in>S0. P x' \<longrightarrow> x \<le> x')) [PROOF STEP] by auto [PROOF STATE] proof (state) this: (iterate_sel_no_map it P = None) = (\<forall>x\<in>S0. \<not> P x) iterate_sel_no_map it P = Some x \<Longrightarrow> x \<in> S0 \<and> P x \<and> (\<forall>x'\<in>S0. P x' \<longrightarrow> x \<le> x') goal: No subgoals! [PROOF STEP] qed
If $f$ and $g$ are functions that agree on a set $T$ containing all points of $S$ except $a$, then $f$ converges to $x$ at $a$ within $S$ if and only if $g$ converges to $y$ at $b$ within $T$.
[STATEMENT] lemma Diagonalize_Tensor_Arr_Unity [simp]: assumes "Arr t" shows "\<^bold>\<lfloor>t \<^bold>\<otimes> \<^bold>\<I>\<^bold>\<rfloor> = \<^bold>\<lfloor>t\<^bold>\<rfloor>" [PROOF STATE] proof (prove) goal (1 subgoal): 1. \<^bold>\<lfloor>t \<^bold>\<otimes> \<^bold>\<I>\<^bold>\<rfloor> = \<^bold>\<lfloor>t\<^bold>\<rfloor> [PROOF STEP] using assms [PROOF STATE] proof (prove) using this: Arr t goal (1 subgoal): 1. \<^bold>\<lfloor>t \<^bold>\<otimes> \<^bold>\<I>\<^bold>\<rfloor> = \<^bold>\<lfloor>t\<^bold>\<rfloor> [PROOF STEP] by simp
Require Import ZArith Omega Znumtheory. Require Import Coq.micromega.Lia. (** * Contains some useful lemmas not in stdlib and a tactic *) (** A convenient and simple tactic to prove 0<x or 0<>x *) Lemma Zmult_neq_0_compat : forall a b, 0 <> a -> 0 <> b -> 0 <> a * b. Proof. intros [] [] P Q I; simpl in *; inversion I; tauto. Qed. Lemma Zmult_le_1_compat : forall a b, 1 <= a -> 1 <= b -> 1 <= a * b. Proof. intros a b. replace a with (1 + (a - 1)) by omega. replace b with (1 + (b - 1)) by omega. generalize (a - 1). generalize (b - 1). intros c d. intros. assert (0 <= c) by omega. assert (0 <= d) by omega. ring_simplify. assert (0 <= d * c) by auto with *. omega. Qed. Lemma Zsquare_pos : forall x, 0 <> x -> 0 < x * x. Proof. intros [] E; simpl; reflexivity || tauto. Qed. Ltac notzero := lazymatch goal with | |- ?a <> 0 => apply not_eq_sym; notzero | |- ?a > 0 => cut (0 < a); [ apply Zcompare_Gt_Lt_antisym | ]; notzero | |- 0 < ?a * ?a => apply Zsquare_pos; notzero | |- 0 < ?a ^ 2 => replace (a ^ 2) with (a * a) by ring; notzero | |- 0 < ?a * ?b => apply Zmult_lt_0_compat; notzero | |- 0 <> ?a * ?b => apply Zmult_neq_0_compat; notzero | |- 0 < Zpos _ => reflexivity | |- 0 > Zneg _ => reflexivity | |- 0 <> Zpos _ => let I := fresh "I" in intros I; inversion I | |- 0 <> Zneg _ => let I := fresh "I" in intros I; inversion I | Pp : prime ?p |- 0 < ?p => pose proof prime_ge_2 p Pp; lia | Pp : prime ?p |- 0 <> ?p => pose proof prime_ge_2 p Pp; lia | Pp : prime ?p |- 1 <> ?p => pose proof prime_ge_2 p Pp; lia | Pp : prime ?p |- ?p <> 0 => pose proof prime_ge_2 p Pp; lia | Pp : prime ?p |- ?p <> 1 => pose proof prime_ge_2 p Pp; lia | Pp : prime ?p |- ?p > 0 => pose proof prime_ge_2 p Pp; lia | |- 0 < _ => auto with *; try (zify; omega) | |- 0 <> _ => auto with *; try (zify; omega) | |- _ => idtac end. (** Subsumed by tactic [notzero] but also useful, since it shows up in Search *) Lemma prime_not_0 p : prime p -> p <> 0. Proof. intro; notzero. Qed. Lemma prime_not_1 p : prime p -> p <> 1. Proof. intro; notzero. Qed. (** Extraction from the Zdivide predicate *) Lemma Zdivide_inf : forall a b, (a | b) -> { q | b = q * a }. Proof. intros a b D. exists (b / a). rewrite Zmult_comm. destruct (Z.eq_dec a 0). subst; destruct D; omega. apply Z_div_exact_full_2; auto with *. apply Zdivide_mod; auto. Defined. (** About Zmod or Zdiv *) Lemma Z_mult_div_mod : forall a b, b <> 0 -> b * (a / b) = a - a mod b. Proof. intros a b N. pose proof Z_div_mod_eq_full a b N; omega. Qed. Lemma Zdivide_square : forall a b, (a | b) -> (a * a | b * b). Proof. intros a b (k, Ek). exists (k * k); subst; ring. Qed. Lemma Zmult_divide_compat_rev_l: forall a b c : Z, c <> 0 -> (c * a | c * b) -> (a | b). Proof. intros a b c Nc (k, Hk). exists k. eapply Zmult_reg_l; eauto. rewrite Hk; ring. Qed. Lemma Z_mult_div_bounds : forall a b, 0 < b -> a - b < b * (a / b) <= a. Proof. intros a b N; split. pose proof Z_mod_lt a b. rewrite Z_mult_div_mod; omega. apply Z_mult_div_ge; omega. Qed. (** About square *) Lemma Zle_0_square : forall a, 0 <= a * a. Proof. intros []; intuition. simpl; intro H; inversion H. Qed. Lemma Zeq_0_square : forall a, a * a = 0 -> a = 0. Proof. intros [] H; intuition simpl; inversion H. Qed. Lemma rewrite_power_2 : forall x, x ^ 2 = x * x. Proof. (* TODO virer ça .. ? *) intros; ring. Qed. Lemma sqrt_eq_compat : forall a b, 0 <= a -> 0 <= b -> a * a = b * b -> a = b. Proof. intros a b Pa Pb E. destruct (Z.eq_dec 0 (a + b)) as [F|F]. omega. cut (a - b = 0); [ omega | ]. apply (Zmult_reg_l _ _ (a + b)); notzero. ring_simplify. rewrite rewrite_power_2, E. ring. Qed. Lemma sqrt_eq_compat_abs : forall a b, a * a = b * b -> Z.abs a = Z.abs b. Proof. intros a b E. destruct (Z.eq_dec 0 (Z.abs a + Z.abs b)) as [F|F]. zify; omega. cut (Z.abs a - Z.abs b = 0); [ omega | ]. apply (Zmult_reg_l _ _ (Z.abs a + Z.abs b)); notzero. ring_simplify. rewrite <- Z.abs_square, <- (Z.abs_square b) in E. rewrite rewrite_power_2, E. ring. Qed. Lemma sqrt_le_compat : forall a b, 0 <= a -> 0 <= b -> a * a <= b * b -> a <= b. Proof. intros a b Pa Pb E. destruct (Z.eq_dec 0 (a + b)) as [F|F]. omega. cut (0 <= b - a); [ omega | ]. apply Zmult_le_reg_r with (a + b); notzero. ring_simplify. do 2 rewrite rewrite_power_2; omega. Qed. (** About Z.abs *) Lemma Zabs_nat_inj : forall a b, 0 <= a -> 0 <= b -> Z.abs_nat a = Z.abs_nat b -> a = b. Proof. intros a b Pa Pb E. rewrite <- (Z.abs_eq a), <- (Z.abs_eq b); eauto. do 2 rewrite <- inj_Zabs_nat. auto. Qed. (* TODO (prouver et déplacer) ou virer *) Lemma Zdivide_square_rev : forall a b, (a * a | b * b) -> (a | b). Proof. intros a b D. destruct (Z.eq_dec a 0). subst; simpl in D. destruct D as (q, Hq); ring_simplify (q * 0) in Hq. destruct b; inversion Hq. exists 0; ring. exists (b / a). rewrite Zmult_comm, Z_mult_div_mod; auto. (* TODO déplacer et prouver : inutilisé mais intéressant. un peu intéressant, c'est dur environ comme sqrt(n)∈Q => sqrt(n)∈N *) Abort. Lemma Zpow_mod (a b m : Z) : (a ^ b) mod m = ((a mod m) ^ b) mod m. Proof. assert (b < 0 \/ 0 <= b) as [bz | bz] by lia. - rewrite 2 Z.pow_neg_r; auto. - rewrite <-(Z2Nat.id b); auto. rewrite <-2Zpower_nat_Z. generalize (Z.to_nat b); intros n. clear b bz. destruct (Z.eq_dec m 0). + subst. now rewrite !Zmod_0_r. + induction n. easy. simpl. rewrite Z.mul_mod, IHn, Z.mul_mod_idemp_r; auto. Qed. (* When we already have a proof [pr] of [P] and the goal is [Q], it is enough to prove [P = Q] *) Ltac exact_eq pr := generalize pr; let A := fresh in assert (A : forall P Q : Prop, P = Q -> P -> Q) by congruence; apply A; clear A. (* If [H] is a hypothesis of the form [P -> Q], assert a proof of [P] and remove the [P ->] from [H] *) Tactic Notation "spec" hyp(H) := match type of H with | ?P -> _ => let h := fresh in assert (h : P); [ | specialize (H h); clear h ] end. Tactic Notation "spec" hyp(H) "by" tactic(t) := match type of H with | ?P -> _ => let h := fresh in assert (h : P) by t; specialize (H h); clear h end.
If $X$ is a countable set and $M$ is a measure space such that each point in $X$ has measure zero, then almost every point in $M$ is not in $X$.
import Std inductive Expr where | var (i : Nat) | op (lhs rhs : Expr) deriving Inhabited, Repr def List.getIdx : List α → Nat → α → α | [], i, u => u | a::as, 0, u => a | a::as, i+1, u => getIdx as i u structure Context (α : Type u) where op : α → α → α unit : α assoc : (a b c : α) → op (op a b) c = op a (op b c) comm : (a b : α) → op a b = op b a vars : List α theorem Context.left_comm (ctx : Context α) (a b c : α) : ctx.op a (ctx.op b c) = ctx.op b (ctx.op a c) := by rw [← ctx.assoc, ctx.comm a b, ctx.assoc] def Expr.denote (ctx : Context α) : Expr → α | Expr.op a b => ctx.op (denote ctx a) (denote ctx b) | Expr.var i => ctx.vars.getIdx i ctx.unit theorem Expr.denote_op (ctx : Context α) (a b : Expr) : denote ctx (Expr.op a b) = ctx.op (denote ctx a) (denote ctx b) := rfl def Expr.length : Expr → Nat | op a b => 1 + b.length | _ => 1 def Expr.sort (e : Expr) : Expr := loop e.length e where loop : Nat → Expr → Expr | fuel+1, Expr.op a e => let (e₁, e₂) := swap a e Expr.op e₁ (loop fuel e₂) | _, e => e swap : Expr → Expr → Expr × Expr | Expr.var i, Expr.op (Expr.var j) e => if i > j then let (e₁, e₂) := swap (Expr.var j) e (e₁, Expr.op (Expr.var i) e₂) else let (e₁, e₂) := swap (Expr.var i) e (e₁, Expr.op (Expr.var j) e₂) | Expr.var i, Expr.var j => if i > j then (Expr.var j, Expr.var i) else (Expr.var i, Expr.var j) | e₁, e₂ => (e₁, e₂) theorem Expr.denote_swap (ctx : Context α) (e₁ e₂ : Expr) : denote ctx (Expr.op (sort.swap e₁ e₂).1 (sort.swap e₁ e₂).2) = denote ctx (Expr.op e₁ e₂) := by induction e₂ generalizing e₁ with | op a b ih' ih => cases e₁ with | var i => have ih' := ih (var i) match h:sort.swap (var i) b with | (r₁, r₂) => rw [denote_op _ (var i)] at ih' admit | _ => admit | _ => admit
// (C) Copyright John Maddock 2005. // Use, modification and distribution are subject to the // Boost Software License, Version 1.0. (See accompanying file // LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt) #ifndef BOOST_TR1_MEMORY_HPP_INCLUDED # define BOOST_TR1_MEMORY_HPP_INCLUDED # include <boost/tr1/detail/config.hpp> # include <boost/detail/workaround.hpp> # include <memory> #ifndef BOOST_HAS_TR1_SHARED_PTR // // This header can get included by boost/shared_ptr.hpp which leads // to cyclic dependencies, the workaround is to forward declare all // the boost components, and then include the actual headers afterwards. // This is fragile, but seems to work, and doesn't require modification // of boost/shared_ptr.hpp. // namespace boost{ class bad_weak_ptr; template<class T> class weak_ptr; template<class T> class shared_ptr; template<class T> void swap(weak_ptr<T> & a, weak_ptr<T> & b); template<class T> void swap(shared_ptr<T> & a, shared_ptr<T> & b); template<class T, class U> shared_ptr<T> static_pointer_cast(shared_ptr<U> const & r); template<class T, class U> shared_ptr<T> dynamic_pointer_cast(shared_ptr<U> const & r); template<class T, class U> shared_ptr<T> const_pointer_cast(shared_ptr<U> const & r); template<class D, class T> D * get_deleter(shared_ptr<T> const & p); template<class T> class enable_shared_from_this; namespace detail{ class shared_count; class weak_count; } } namespace std{ namespace tr1{ using ::boost::bad_weak_ptr; using ::boost::shared_ptr; #if !BOOST_WORKAROUND(__BORLANDC__, < 0x0582) using ::boost::swap; #endif using ::boost::static_pointer_cast; using ::boost::dynamic_pointer_cast; using ::boost::const_pointer_cast; using ::boost::get_deleter; using ::boost::weak_ptr; using ::boost::enable_shared_from_this; } } #include <boost/shared_ptr.hpp> #include <boost/weak_ptr.hpp> #include <boost/enable_shared_from_this.hpp> #else # ifdef BOOST_HAS_INCLUDE_NEXT # include_next BOOST_TR1_HEADER(memory) # else # include BOOST_TR1_STD_HEADER(BOOST_TR1_PATH(memory)) # endif #endif #endif
[STATEMENT] lemma s_cond_def: "t \<le> 0 \<Longrightarrow> s t = s0" "0 \<le> t \<Longrightarrow> t \<le> t_stop \<Longrightarrow> s t = p t" [PROOF STATE] proof (prove) goal (1 subgoal): 1. (t \<le> 0 \<Longrightarrow> s t = s0) &&& (\<lbrakk>0 \<le> t; t \<le> t_stop\<rbrakk> \<Longrightarrow> s t = p t) [PROOF STEP] by (simp_all add: s_def)
using Pkg Pkg.activate(joinpath(@__DIR__, "..")) using Pluto, MLCourse, MLJ, MLJLinearModels, StatsPlots, DataFrames, Distributions X, y = make_regression() mach = fit!(machine(LinearRegressor(), X, y), verbosity = 0) predict(mach) plot(rand(10), rand(10)) df = DataFrame(a = rand(10), b = rand(10)) @df df scatter(:a, :b) rand(Bernoulli(.4)) redirect_stdout(Pipe()) do session = Pluto.ServerSession() session.options.server.port = 40404 session.options.server.launch_browser = false session.options.security.require_secret_for_access = false path = tempname() original = joinpath(@__DIR__, "..", "index.jl") # so that we don't overwrite the file: Pluto.readwrite(original, path) # @info "Loading notebook" nb = Pluto.load_notebook(Pluto.tamepath(path)); session.notebooks[nb.notebook_id] = nb; # @info "Running notebook" Pluto.update_save_run!(session, nb, nb.cells; run_async=false, prerender_text=true) # nice! we ran the notebook, so we already precompiled a lot # @info "Starting HTTP server" # next, we'll run the HTTP server which needs a bit of nasty code t = @async Pluto.run(session) sleep(5) # download("http://localhost:40404/") # this is async because it blocks for some reason @async Base.throwto(t, InterruptException()) sleep(2) # i am pulling these numbers out of thin air end @info "Warmup done"
chapter \<open>VT-Comp Library Setup\<close> theory VTcomp imports Array_Map_Default Dynamic_Array (*Impl_List_Set_Ndj*) Synth_Definition Exc_Nres_Monad begin (* TODO: Move these stuff to AFP! *) no_notation Ref.lookup ("!_" 61) no_notation Ref.update ("_ := _" 62) section \<open>Extra Stuff\<close> text \<open>We added this stuff as preparation for the competition. \<close> subsection \<open>Specialized Rules for Foreach Loops\<close> lemma nfoldli_upt_rule: assumes INTV: "lb\<le>ub" assumes I0: "I lb \<sigma>0" assumes IS: "\<And>i \<sigma>. \<lbrakk> lb\<le>i; i<ub; I i \<sigma>; c \<sigma> \<rbrakk> \<Longrightarrow> f i \<sigma> \<le> SPEC (I (i+1))" assumes FNC: "\<And>i \<sigma>. \<lbrakk> lb\<le>i; i\<le>ub; I i \<sigma>; \<not>c \<sigma> \<rbrakk> \<Longrightarrow> P \<sigma>" assumes FC: "\<And>\<sigma>. \<lbrakk> I ub \<sigma>; c \<sigma> \<rbrakk> \<Longrightarrow> P \<sigma>" shows "nfoldli [lb..<ub] c f \<sigma>0 \<le> SPEC P" apply (rule nfoldli_rule[where I="\<lambda>l _ \<sigma>. I (lb+length l) \<sigma>"]) apply simp_all apply (simp add: I0) subgoal using IS by (metis Suc_eq_plus1 add_diff_cancel_left' eq_diff_iff le_add1 length_upt upt_eq_lel_conv) subgoal for l1 l2 \<sigma> apply (rule FNC[where i="lb + length l1"]) apply (auto simp: INTV) using INTV upt_eq_append_conv by auto apply (rule FC) using INTV by auto definition [enres_unfolds]: "efor (lb::int) ub f \<sigma> \<equiv> doE { EASSERT (lb\<le>ub); (_,\<sigma>) \<leftarrow> EWHILET (\<lambda>(i,\<sigma>). i<ub) (\<lambda>(i,\<sigma>). doE { \<sigma> \<leftarrow> f i \<sigma>; ERETURN (i+1,\<sigma>) }) (lb,\<sigma>); ERETURN \<sigma> }" lemma efor_rule: assumes INTV: "lb\<le>ub" assumes I0: "I lb \<sigma>0" assumes IS: "\<And>i \<sigma>. \<lbrakk> lb\<le>i; i<ub; I i \<sigma> \<rbrakk> \<Longrightarrow> f i \<sigma> \<le> ESPEC E (I (i+1))" assumes FC: "\<And>\<sigma>. \<lbrakk> I ub \<sigma> \<rbrakk> \<Longrightarrow> P \<sigma>" shows "efor lb ub f \<sigma>0 \<le> ESPEC E P" unfolding efor_def supply EWHILET_rule[where R="measure (\<lambda>(i,_). nat (ub-i))" and I="\<lambda>(i,\<sigma>). lb\<le>i \<and> i\<le>ub \<and> I i \<sigma>", refine_vcg] apply refine_vcg apply auto using assms apply auto done subsection \<open>Nicer do-notation for the nres-monad\<close> abbreviation (do_notation) bind_doN where "bind_doN \<equiv> Refine_Basic.bind" notation (output) bind_doN (infixl "\<bind>" 54) notation (ASCII output) bind_doN (infixl ">>=" 54) nonterminal doN_binds and doN_bind syntax "_doN_block" :: "doN_binds \<Rightarrow> 'a" ("doN {//(2 _)//}" [12] 62) "_doN_bind" :: "[pttrn, 'a] \<Rightarrow> doN_bind" ("(2_ \<leftarrow>/ _)" 13) "_doN_let" :: "[pttrn, 'a] \<Rightarrow> doN_bind" ("(2let _ =/ _)" [1000, 13] 13) "_doN_then" :: "'a \<Rightarrow> doN_bind" ("_" [14] 13) "_doN_final" :: "'a \<Rightarrow> doN_binds" ("_") "_doN_cons" :: "[doN_bind, doN_binds] \<Rightarrow> doN_binds" ("_;//_" [13, 12] 12) "_thenM" :: "['a, 'b] \<Rightarrow> 'c" (infixl "\<then>" 54) syntax (ASCII) "_doN_bind" :: "[pttrn, 'a] \<Rightarrow> doN_bind" ("(2_ <-/ _)" 13) "_thenM" :: "['a, 'b] \<Rightarrow> 'c" (infixl ">>" 54) translations "_doN_block (_doN_cons (_doN_then t) (_doN_final e))" \<rightleftharpoons> "CONST bind_doN t (\<lambda>_. e)" "_doN_block (_doN_cons (_doN_bind p t) (_doN_final e))" \<rightleftharpoons> "CONST bind_doN t (\<lambda>p. e)" "_doN_block (_doN_cons (_doN_let p t) bs)" \<rightleftharpoons> "let p = t in _doN_block bs" "_doN_block (_doN_cons b (_doN_cons c cs))" \<rightleftharpoons> "_doN_block (_doN_cons b (_doN_final (_doN_block (_doN_cons c cs))))" "_doN_cons (_doN_let p t) (_doN_final s)" \<rightleftharpoons> "_doN_final (let p = t in s)" "_doN_block (_doN_final e)" \<rightharpoonup> "e" "(m \<then> n)" \<rightharpoonup> "(m \<bind> (\<lambda>_. n))" subsection \<open>Array Blit exposed to Sepref (Added after Competition)\<close> definition "op_list_blit src si dst di len \<equiv> (take di dst @ take len (drop si src) @ drop (di+len) dst)" context notes op_list_blit_def[simp] begin sepref_decl_op (no_def) list_blit : "op_list_blit" :: "[\<lambda>((((src,si),dst),di),len). si+len \<le> length src \<and> di+len \<le> length dst]\<^sub>f ((((\<langle>A\<rangle>list_rel \<times>\<^sub>r nat_rel) \<times>\<^sub>r \<langle>A\<rangle>list_rel) \<times>\<^sub>r nat_rel) \<times>\<^sub>r nat_rel) \<rightarrow> \<langle>A\<rangle>list_rel" . end lemma blit_len[simp]: "si + len \<le> length src \<and> di + len \<le> length dst \<Longrightarrow> length (op_list_blit src si dst di len) = length dst" by (auto simp: op_list_blit_def) context notes [fcomp_norm_unfold] = array_assn_def[symmetric] begin lemma array_blit_hnr_aux: "(uncurry4 (\<lambda>src si dst di len. do { blit src si dst di len; return dst }), uncurry4 mop_list_blit) \<in> is_array\<^sup>k*\<^sub>anat_assn\<^sup>k*\<^sub>ais_array\<^sup>d*\<^sub>anat_assn\<^sup>k*\<^sub>anat_assn\<^sup>k \<rightarrow>\<^sub>a is_array" apply sepref_to_hoare apply (clarsimp simp: refine_pw_simps) apply (sep_auto simp: is_array_def op_list_blit_def) done sepref_decl_impl (ismop) array_blit: array_blit_hnr_aux . end end
# -------------------------------------------------------- # TRIPLET LOSS # Copyright (c) 2015 Pinguo Tech. # Written by David Lu # -------------------------------------------------------- """Blob helper functions.""" import numpy as np import cv2 def im_list_to_blob(ims): """Convert a list of images into a network input. Assumes images are already prepared (means subtracted, BGR order, ...). """ max_shape = np.array([im.shape for im in ims]).max(axis=0) num_images = len(ims) blob = np.zeros((num_images, max_shape[0], max_shape[1], 3), dtype=np.float32) for i in xrange(num_images): im = ims[i] blob[i, 0:im.shape[0], 0:im.shape[1], :] = im channel_swap = (0, 3, 1, 2) blob = blob.transpose(channel_swap) return blob def prep_im_for_blob(im): target_size = 224 pixel_means = np.array([[[102.9801, 115.9465, 122.7717]]]) im = im.astype(np.float32, copy=False) im -= pixel_means im = cv2.resize(im, (224,224), interpolation=cv2.INTER_LINEAR) return im
function y = wmean(x, w) %WMEAN Weighted average or mean value. % % Description % WMEAN(X,W) is the weighted mean value of the elements in X % (along first dimension) given weights W. % % See also wprctile % % Copyright (c) 2000-2013 Aki Vehtari % This software is distributed under the GNU General Public % License (version 3 or later); please refer to the file % License.txt, included with the software, for details. y=sum(bsxfun(@times,x,w),1);
(************************************************************************) (* * The Coq Proof Assistant / The Coq Development Team *) (* v * INRIA, CNRS and contributors - Copyright 1999-2018 *) (* <O___,, * (see CREDITS file for the list of authors) *) (* \VV/ **************************************************************) (* // * This file is distributed under the terms of the *) (* * GNU Lesser General Public License Version 2.1 *) (* * (see LICENSE file for the text of the license) *) (************************************************************************) (** This file is deprecated, for a tree on list, use [Mergesort.v]. *) (** A development of Treesort on Heap trees. It has an average complexity of O(n.log n) but of O(n²) in the worst case (e.g. if the list is already sorted) *) (* G. Huet 1-9-95 uses Multiset *) Require Import List Multiset PermutSetoid Relations Sorting. Section defs. (** * Trees and heap trees *) (** ** Definition of trees over an ordered set *) Variable A : Type. Variable leA : relation A. Variable eqA : relation A. Let gtA (x y:A) := ~ leA x y. Hypothesis leA_dec : forall x y:A, {leA x y} + {leA y x}. Hypothesis eqA_dec : forall x y:A, {eqA x y} + {~ eqA x y}. Hypothesis leA_refl : forall x y:A, eqA x y -> leA x y. Hypothesis leA_trans : forall x y z:A, leA x y -> leA y z -> leA x z. Hypothesis leA_antisym : forall x y:A, leA x y -> leA y x -> eqA x y. Hint Resolve leA_refl. Hint Immediate eqA_dec leA_dec leA_antisym. Let emptyBag := EmptyBag A. Let singletonBag := SingletonBag _ eqA_dec. Inductive Tree := | Tree_Leaf : Tree | Tree_Node : A -> Tree -> Tree -> Tree. (** [a] is lower than a Tree [T] if [T] is a Leaf or [T] is a Node holding [b>a] *) Definition leA_Tree (a:A) (t:Tree) := match t with | Tree_Leaf => True | Tree_Node b T1 T2 => leA a b end. Lemma leA_Tree_Leaf : forall a:A, leA_Tree a Tree_Leaf. Proof. simpl; auto with datatypes. Qed. Lemma leA_Tree_Node : forall (a b:A) (G D:Tree), leA a b -> leA_Tree a (Tree_Node b G D). Proof. simpl; auto with datatypes. Qed. (** ** The heap property *) Inductive is_heap : Tree -> Prop := | nil_is_heap : is_heap Tree_Leaf | node_is_heap : forall (a:A) (T1 T2:Tree), leA_Tree a T1 -> leA_Tree a T2 -> is_heap T1 -> is_heap T2 -> is_heap (Tree_Node a T1 T2). Lemma invert_heap : forall (a:A) (T1 T2:Tree), is_heap (Tree_Node a T1 T2) -> leA_Tree a T1 /\ leA_Tree a T2 /\ is_heap T1 /\ is_heap T2. Proof. intros; inversion H; auto with datatypes. Qed. (* This lemma ought to be generated automatically by the Inversion tools *) Lemma is_heap_rect : forall P:Tree -> Type, P Tree_Leaf -> (forall (a:A) (T1 T2:Tree), leA_Tree a T1 -> leA_Tree a T2 -> is_heap T1 -> P T1 -> is_heap T2 -> P T2 -> P (Tree_Node a T1 T2)) -> forall T:Tree, is_heap T -> P T. Proof. simple induction T; auto with datatypes. intros a G PG D PD PN. elim (invert_heap a G D); auto with datatypes. intros H1 H2; elim H2; intros H3 H4; elim H4; intros. apply X0; auto with datatypes. Qed. (* This lemma ought to be generated automatically by the Inversion tools *) Lemma is_heap_rec : forall P:Tree -> Set, P Tree_Leaf -> (forall (a:A) (T1 T2:Tree), leA_Tree a T1 -> leA_Tree a T2 -> is_heap T1 -> P T1 -> is_heap T2 -> P T2 -> P (Tree_Node a T1 T2)) -> forall T:Tree, is_heap T -> P T. Proof. simple induction T; auto with datatypes. intros a G PG D PD PN. elim (invert_heap a G D); auto with datatypes. intros H1 H2; elim H2; intros H3 H4; elim H4; intros. apply X; auto with datatypes. Qed. Lemma low_trans : forall (T:Tree) (a b:A), leA a b -> leA_Tree b T -> leA_Tree a T. Proof. simple induction T; auto with datatypes. intros; simpl; apply leA_trans with b; auto with datatypes. Qed. (** ** Merging two sorted lists *) Inductive merge_lem (l1 l2:list A) : Type := merge_exist : forall l:list A, Sorted leA l -> meq (list_contents _ eqA_dec l) (munion (list_contents _ eqA_dec l1) (list_contents _ eqA_dec l2)) -> (forall a, HdRel leA a l1 -> HdRel leA a l2 -> HdRel leA a l) -> merge_lem l1 l2. Import Morphisms. Instance: Equivalence (@meq A). Proof. constructor; auto with datatypes. red. apply meq_trans. Defined. Instance: Proper (@meq A ++> @meq _ ++> @meq _) (@munion A). Proof. intros x y H x' y' H'. now apply meq_congr. Qed. Lemma merge : forall l1:list A, Sorted leA l1 -> forall l2:list A, Sorted leA l2 -> merge_lem l1 l2. Proof. fix merge 1; intros; destruct l1. apply merge_exist with l2; auto with datatypes. rename l1 into l. revert l2 H0. fix merge0 1. intros. destruct l2 as [|a0 l0]. apply merge_exist with (a :: l); simpl; auto with datatypes. induction (leA_dec a a0) as [Hle|Hle]. (* 1 (leA a a0) *) apply Sorted_inv in H. destruct H. destruct (merge l H (a0 :: l0) H0) as [l1 H2 H3 H4]. apply merge_exist with (a :: l1). clear merge merge0. auto using cons_sort, cons_leA with datatypes. simpl. rewrite H3. now rewrite munion_ass. intros. apply cons_leA. apply (@HdRel_inv _ leA) with l; trivial with datatypes. (* 2 (leA a0 a) *) apply Sorted_inv in H0. destruct H0. destruct (merge0 l0 H0) as [l1 H2 H3 H4]. clear merge merge0. apply merge_exist with (a0 :: l1); auto using cons_sort, cons_leA with datatypes. simpl; rewrite H3. simpl. setoid_rewrite munion_ass at 1. rewrite munion_comm. repeat rewrite munion_ass. setoid_rewrite munion_comm at 3. reflexivity. intros. apply cons_leA. apply (@HdRel_inv _ leA) with l0; trivial with datatypes. Qed. (** ** From trees to multisets *) (** contents of a tree as a multiset *) (** Nota Bene : In what follows the definition of SingletonBag in not used. Actually, we could just take as postulate: [Parameter SingletonBag : A->multiset]. *) Fixpoint contents (t:Tree) : multiset A := match t with | Tree_Leaf => emptyBag | Tree_Node a t1 t2 => munion (contents t1) (munion (contents t2) (singletonBag a)) end. (** equivalence of two trees is equality of corresponding multisets *) Definition equiv_Tree (t1 t2:Tree) := meq (contents t1) (contents t2). (** * From lists to sorted lists *) (** ** Specification of heap insertion *) Inductive insert_spec (a:A) (T:Tree) : Type := insert_exist : forall T1:Tree, is_heap T1 -> meq (contents T1) (munion (contents T) (singletonBag a)) -> (forall b:A, leA b a -> leA_Tree b T -> leA_Tree b T1) -> insert_spec a T. Lemma insert : forall T:Tree, is_heap T -> forall a:A, insert_spec a T. Proof. simple induction 1; intros. apply insert_exist with (Tree_Node a Tree_Leaf Tree_Leaf); auto using node_is_heap, nil_is_heap, leA_Tree_Leaf with datatypes. simpl; unfold meq, munion; auto using node_is_heap with datatypes. elim (leA_dec a a0); intros. elim (X a0); intros. apply insert_exist with (Tree_Node a T2 T0); auto using node_is_heap, nil_is_heap, leA_Tree_Leaf with datatypes. simpl; apply treesort_twist1; trivial with datatypes. elim (X a); intros T3 HeapT3 ConT3 LeA. apply insert_exist with (Tree_Node a0 T2 T3); auto using node_is_heap, nil_is_heap, leA_Tree_Leaf with datatypes. apply node_is_heap; auto using node_is_heap, nil_is_heap, leA_Tree_Leaf with datatypes. apply low_trans with a; auto with datatypes. apply LeA; auto with datatypes. apply low_trans with a; auto with datatypes. simpl; apply treesort_twist2; trivial with datatypes. Qed. (** ** Building a heap from a list *) Inductive build_heap (l:list A) : Type := heap_exist : forall T:Tree, is_heap T -> meq (list_contents _ eqA_dec l) (contents T) -> build_heap l. Lemma list_to_heap : forall l:list A, build_heap l. Proof. simple induction l. apply (heap_exist nil Tree_Leaf); auto with datatypes. simpl; unfold meq; exact nil_is_heap. simple induction 1. intros T i m; elim (insert T i a). intros; apply heap_exist with T1; simpl; auto with datatypes. apply meq_trans with (munion (contents T) (singletonBag a)). apply meq_trans with (munion (singletonBag a) (contents T)). apply meq_right; trivial with datatypes. apply munion_comm. apply meq_sym; trivial with datatypes. Qed. (** ** Building the sorted list *) Inductive flat_spec (T:Tree) : Type := flat_exist : forall l:list A, Sorted leA l -> (forall a:A, leA_Tree a T -> HdRel leA a l) -> meq (contents T) (list_contents _ eqA_dec l) -> flat_spec T. Lemma heap_to_list : forall T:Tree, is_heap T -> flat_spec T. Proof. intros T h; elim h; intros. apply flat_exist with (nil (A:=A)); auto with datatypes. elim X; intros l1 s1 i1 m1; elim X0; intros l2 s2 i2 m2. elim (merge _ s1 _ s2); intros. apply flat_exist with (a :: l); simpl; auto with datatypes. apply meq_trans with (munion (list_contents _ eqA_dec l1) (munion (list_contents _ eqA_dec l2) (singletonBag a))). apply meq_congr; auto with datatypes. apply meq_trans with (munion (singletonBag a) (munion (list_contents _ eqA_dec l1) (list_contents _ eqA_dec l2))). apply munion_rotate. apply meq_right; apply meq_sym; trivial with datatypes. Qed. (** * Specification of treesort *) Theorem treesort : forall l:list A, {m : list A | Sorted leA m & permutation _ eqA_dec l m}. Proof. intro l; unfold permutation. elim (list_to_heap l). intros. elim (heap_to_list T); auto with datatypes. intros. exists l0; auto with datatypes. apply meq_trans with (contents T); trivial with datatypes. Qed. End defs.
[STATEMENT] lemma abrupt_if_True_not_None [simp]: "x \<noteq> None \<Longrightarrow> abrupt_if True x y \<noteq> None" [PROOF STATE] proof (prove) goal (1 subgoal): 1. x \<noteq> None \<Longrightarrow> abrupt_if True x y \<noteq> None [PROOF STEP] by (simp add: abrupt_if_def)
(*:maxLineLen=78:*) theory Sessions imports Base begin chapter \<open>Isabelle sessions and build management \label{ch:session}\<close> text \<open> An Isabelle \<^emph>\<open>session\<close> consists of a collection of related theories that may be associated with formal documents (\chref{ch:present}). There is also a notion of \<^emph>\<open>persistent heap\<close> image to capture the state of a session, similar to object-code in compiled programming languages. Thus the concept of session resembles that of a ``project'' in common IDE environments, but the specific name emphasizes the connection to interactive theorem proving: the session wraps-up the results of user-interaction with the prover in a persistent form. Application sessions are built on a given parent session, which may be built recursively on other parents. Following this path in the hierarchy eventually leads to some major object-logic session like \<open>HOL\<close>, which itself is based on \<open>Pure\<close> as the common root of all sessions. Processing sessions may take considerable time. Isabelle build management helps to organize this efficiently. This includes support for parallel build jobs, in addition to the multithreaded theory and proof checking that is already provided by the prover process itself. \<close> section \<open>Session ROOT specifications \label{sec:session-root}\<close> text \<open> Session specifications reside in files called \<^verbatim>\<open>ROOT\<close> within certain directories, such as the home locations of registered Isabelle components or additional project directories given by the user. The ROOT file format follows the lexical conventions of the \<^emph>\<open>outer syntax\<close> of Isabelle/Isar, see also \<^cite>\<open>"isabelle-isar-ref"\<close>. This defines common forms like identifiers, names, quoted strings, verbatim text, nested comments etc. The grammar for @{syntax chapter_def}, @{syntax chapter_entry} and @{syntax session_entry} is given as syntax diagram below. Each ROOT file may contain multiple specifications like this. Chapters help to organize browser info (\secref{sec:info}), but have no formal meaning. The default chapter is ``\<open>Unsorted\<close>''. Chapter definitions, which are optional, allow to associate additional information. Isabelle/jEdit \<^cite>\<open>"isabelle-jedit"\<close> includes a simple editing mode \<^verbatim>\<open>isabelle-root\<close> for session ROOT files, which is enabled by default for any file of that name. \<^rail>\<open> @{syntax_def chapter_def}: @'chapter_definition' @{syntax name} \<newline> groups? description? ; @{syntax_def chapter_entry}: @'chapter' @{syntax name} ; @{syntax_def session_entry}: @'session' @{syntax system_name} groups? dir? '=' \<newline> (@{syntax system_name} '+')? description? options? \<newline> sessions? directories? (theories*) \<newline> (document_theories?) (document_files*) \<newline> (export_files*) (export_classpath?) ; groups: '(' (@{syntax name} +) ')' ; dir: @'in' @{syntax embedded} ; description: @'description' @{syntax text} ; options: @'options' opts ; opts: '[' ( (@{syntax name} '=' value | @{syntax name}) + ',' ) ']' ; value: @{syntax name} | @{syntax real} ; sessions: @'sessions' (@{syntax system_name}+) ; directories: @'directories' (dir+) ; theories: @'theories' opts? (theory_entry+) ; theory_entry: @{syntax system_name} ('(' @'global' ')')? ; document_theories: @'document_theories' (@{syntax name}+) ; document_files: @'document_files' ('(' dir ')')? (@{syntax embedded}+) ; export_files: @'export_files' ('(' dir ')')? ('[' nat ']')? \<newline> (@{syntax embedded}+) ; export_classpath: @'export_classpath' (@{syntax embedded}*) \<close> \<^descr> \isakeyword{chapter{\isacharunderscorekeyword}definition}~\<open>A (groups)\<close> associates a collection of groups with chapter \<open>A\<close>. All sessions that belong to this chapter will automatically become members of these groups. \<^descr> \isakeyword{session}~\<open>A = B + body\<close> defines a new session \<open>A\<close> based on parent session \<open>B\<close>, with its content given in \<open>body\<close> (imported sessions and theories). Note that a parent (like \<open>HOL\<close>) is mandatory in practical applications: only Isabelle/Pure can bootstrap itself from nothing. All such session specifications together describe a hierarchy (graph) of sessions, with globally unique names. The new session name \<open>A\<close> should be sufficiently long and descriptive to stand on its own in a potentially large library. \<^descr> \isakeyword{session}~\<open>A (groups)\<close> indicates a collection of groups where the new session is a member. Group names are uninterpreted and merely follow certain conventions. For example, the Isabelle distribution tags some important sessions by the group name called ``\<open>main\<close>''. Other projects may invent their own conventions, but this requires some care to avoid clashes within this unchecked name space. \<^descr> \isakeyword{session}~\<open>A\<close>~\isakeyword{in}~\<open>dir\<close> specifies an explicit directory for this session; by default this is the current directory of the \<^verbatim>\<open>ROOT\<close> file. All theory files are located relatively to the session directory. The prover process is run within the same as its current working directory. \<^descr> \isakeyword{description}~\<open>text\<close> is a free-form description for this session (or chapter), e.g. for presentation purposes. \<^descr> \isakeyword{options}~\<open>[x = a, y = b, z]\<close> defines separate options (\secref{sec:system-options}) that are used when processing this session, but \<^emph>\<open>without\<close> propagation to child sessions. Note that \<open>z\<close> abbreviates \<open>z = true\<close> for Boolean options. \<^descr> \isakeyword{sessions}~\<open>names\<close> specifies sessions that are \<^emph>\<open>imported\<close> into the current name space of theories. This allows to refer to a theory \<open>A\<close> from session \<open>B\<close> by the qualified name \<open>B.A\<close> --- although it is loaded again into the current ML process, which is in contrast to a theory that is already present in the \<^emph>\<open>parent\<close> session. Theories that are imported from other sessions are excluded from the current session document. \<^descr> \isakeyword{directories}~\<open>dirs\<close> specifies additional directories for import of theory files via \isakeyword{theories} within \<^verbatim>\<open>ROOT\<close> or \<^theory_text>\<open>imports\<close> within a theory; \<open>dirs\<close> are relative to the main session directory (cf.\ \isakeyword{session} \dots \isakeyword{in}~\<open>dir\<close>). These directories need to be exclusively assigned to a unique session, without implicit sharing of file-system locations. \<^descr> \isakeyword{theories}~\<open>options names\<close> specifies a block of theories that are processed within an environment that is augmented by the given options, in addition to the global session options given before. Any number of blocks of \isakeyword{theories} may be given. Options are only active for each \isakeyword{theories} block separately. A theory name that is followed by \<open>(\<close>\isakeyword{global}\<open>)\<close> is treated literally in other session specifications or theory imports --- the normal situation is to qualify theory names by the session name; this ensures globally unique names in big session graphs. Global theories are usually the entry points to major logic sessions: \<open>Pure\<close>, \<open>Main\<close>, \<open>Complex_Main\<close>, \<open>HOLCF\<close>, \<open>IFOL\<close>, \<open>FOL\<close>, \<open>ZF\<close>, \<open>ZFC\<close> etc. Regular Isabelle applications should not claim any global theory names. \<^descr> \isakeyword{document_theories}~\<open>names\<close> specifies theories from other sessions that should be included in the generated document source directory. These theories need to be explicit imports in the current session, or implicit imports from the underlying hierarchy of parent sessions. The generated \<^verbatim>\<open>session.tex\<close> file is not affected: the session's {\LaTeX} setup needs to \<^verbatim>\<open>\input{\<close>\<open>\<dots>\<close>\<^verbatim>\<open>}\<close> generated \<^verbatim>\<open>.tex\<close> files separately. \<^descr> \isakeyword{document_files}~\<open>(\<close>\isakeyword{in}~\<open>base_dir) files\<close> lists source files for document preparation, typically \<^verbatim>\<open>.tex\<close> and \<^verbatim>\<open>.sty\<close> for {\LaTeX}. Only these explicitly given files are copied from the base directory to the document output directory, before formal document processing is started (see also \secref{sec:tool-document}). The local path structure of the \<open>files\<close> is preserved, which allows to reconstruct the original directory hierarchy of \<open>base_dir\<close>. The default \<open>base_dir\<close> is \<^verbatim>\<open>document\<close> within the session root directory. \<^descr> \isakeyword{export_files}~\<open>(\<close>\isakeyword{in}~\<open>target_dir) [number] patterns\<close> specifies theory exports that may get written to the file-system, e.g. via @{tool_ref build} with option \<^verbatim>\<open>-e\<close> (\secref{sec:tool-build}). The \<open>target_dir\<close> specification is relative to the session root directory; its default is \<^verbatim>\<open>export\<close>. Exports are selected via \<open>patterns\<close> as in @{tool_ref export} (\secref{sec:tool-export}). The number given in brackets (default: 0) specifies the prefix of elements that should be removed from each name: it allows to reduce the resulting directory hierarchy at the danger of overwriting files due to loss of uniqueness. \<^descr> \isakeyword{export_classpath}~\<open>patterns\<close> specifies export artifacts that should be included into the local Java/Scala classpath of this session context. This is only relevant for tools that allow dynamic loading of service classes (\secref{sec:scala-build}), while most other Isabelle/Scala tools require global configuration during system startup. An empty list of \<open>patterns\<close> defaults to \<^verbatim>\<open>"*:classpath/*.jar"\<close>, which fits to the naming convention of JAR modules produced by the Isabelle/Isar command \<^theory_text>\<open>scala_build_generated_files\<close> \<^cite>\<open>"isabelle-isar-ref"\<close>. \<close> subsubsection \<open>Examples\<close> text \<open> See \<^file>\<open>~~/src/HOL/ROOT\<close> for a diversity of practically relevant situations, although it uses relatively complex quasi-hierarchic naming conventions like \<^verbatim>\<open>HOL-SPARK\<close>, \<^verbatim>\<open>HOL-SPARK-Examples\<close>. An alternative is to use unqualified names that are relatively long and descriptive, as in the Archive of Formal Proofs (\<^url>\<open>https://isa-afp.org\<close>), for example. \<close> section \<open>System build options \label{sec:system-options}\<close> text \<open> See \<^file>\<open>~~/etc/options\<close> for the main defaults provided by the Isabelle distribution. Isabelle/jEdit \<^cite>\<open>"isabelle-jedit"\<close> includes a simple editing mode \<^verbatim>\<open>isabelle-options\<close> for this file-format. The following options are particularly relevant to build Isabelle sessions, in particular with document preparation (\chref{ch:present}). \<^item> @{system_option_def "browser_info"} controls output of HTML browser info, see also \secref{sec:info}. \<^item> @{system_option_def "document"} controls document output for a particular session or theory; \<^verbatim>\<open>document=pdf\<close> or \<^verbatim>\<open>document=true\<close> means enabled, \<^verbatim>\<open>document=""\<close> or \<^verbatim>\<open>document=false\<close> means disabled (especially for particular theories). \<^item> @{system_option_def "document_output"} specifies an alternative directory for generated output of the document preparation system; the default is within the @{setting "ISABELLE_BROWSER_INFO"} hierarchy as explained in \secref{sec:info}. See also @{tool mkroot}, which generates a default configuration with output readily available to the author of the document. \<^item> @{system_option_def "document_echo"} informs about document file names during session presentation. \<^item> @{system_option_def "document_variants"} specifies document variants as a colon-separated list of \<open>name=tags\<close> entries. The default name is \<^verbatim>\<open>document\<close>, without additional tags. Tags are specified as a comma separated list of modifier/name pairs and tell {\LaTeX} how to interpret certain Isabelle command regions: ``\<^verbatim>\<open>+\<close>\<open>foo\<close>'' (or just ``\<open>foo\<close>'') means to keep, ``\<^verbatim>\<open>-\<close>\<open>foo\<close>'' to drop, and ``\<^verbatim>\<open>/\<close>\<open>foo\<close>'' to fold text tagged as \<open>foo\<close>. The builtin default is equivalent to the tag specification ``\<^verbatim>\<open>+document,+theory,+proof,+ML,+visible,-invisible,+important,+unimportant\<close>''; see also the {\LaTeX} macros \<^verbatim>\<open>\isakeeptag\<close>, \<^verbatim>\<open>\isadroptag\<close>, and \<^verbatim>\<open>\isafoldtag\<close>, in \<^file>\<open>~~/lib/texinputs/isabelle.sty\<close>. In contrast, \<^verbatim>\<open>document_variants=document:outline=/proof,/ML\<close> indicates two documents: the one called \<^verbatim>\<open>document\<close> with default tags, and the other called \<^verbatim>\<open>outline\<close> where proofs and ML sections are folded. Document variant names are just a matter of conventions. It is also possible to use different document variant names (without tags) for different document root entries, see also \secref{sec:tool-document}. \<^item> @{system_option_def "document_tags"} specifies alternative command tags as a comma-separated list of items: either ``\<open>command\<close>\<^verbatim>\<open>%\<close>\<open>tag\<close>'' for a specific command, or ``\<^verbatim>\<open>%\<close>\<open>tag\<close>'' as default for all other commands. This is occasionally useful to control the global visibility of commands via session options (e.g.\ in \<^verbatim>\<open>ROOT\<close>). \<^item> @{system_option_def "document_comment_latex"} enables regular {\LaTeX} \<^verbatim>\<open>comment.sty\<close>, instead of the historic version for plain {\TeX} (default). The latter is much faster, but in conflict with {\LaTeX} classes like Dagstuhl LIPIcs\<^footnote>\<open>\<^url>\<open>https://github.com/dagstuhl-publishing/styles\<close>\<close>. \<^item> @{system_option_def "document_bibliography"} explicitly enables the use of \<^verbatim>\<open>bibtex\<close>; the default is to check the presence of \<^verbatim>\<open>root.bib\<close>, but it could have a different name. \<^item> @{system_option_def "document_heading_prefix"} specifies a prefix for the {\LaTeX} macro names generated from Isar commands like \<^theory_text>\<open>chapter\<close>, \<^theory_text>\<open>section\<close> etc. The default is \<^verbatim>\<open>isamarkup\<close>, e.g. \<^theory_text>\<open>section\<close> becomes \<^verbatim>\<open>\isamarkupsection\<close>. \<^item> @{system_option_def "threads"} determines the number of worker threads for parallel checking of theories and proofs. The default \<open>0\<close> means that a sensible maximum value is determined by the underlying hardware. For machines with many cores or with hyperthreading, this sometimes requires manual adjustment (on the command-line or within personal settings or preferences, not within a session \<^verbatim>\<open>ROOT\<close>). \<^item> @{system_option_def "condition"} specifies a comma-separated list of process environment variables (or Isabelle settings) that are required for the subsequent theories to be processed. Conditions are considered ``true'' if the corresponding environment value is defined and non-empty. \<^item> @{system_option_def "timeout"} and @{system_option_def "timeout_scale"} specify a real wall-clock timeout for the session as a whole: the two values are multiplied and taken as the number of seconds. Typically, @{system_option "timeout"} is given for individual sessions, and @{system_option "timeout_scale"} as global adjustment to overall hardware performance. The timer is controlled outside the ML process by the JVM that runs Isabelle/Scala. Thus it is relatively reliable in canceling processes that get out of control, even if there is a deadlock without CPU time usage. \<^item> @{system_option_def "profiling"} specifies a mode for global ML profiling. Possible values are the empty string (disabled), \<^verbatim>\<open>time\<close> for \<^ML>\<open>profile_time\<close> and \<^verbatim>\<open>allocations\<close> for \<^ML>\<open>profile_allocations\<close>. Results appear near the bottom of the session log file. \<^item> @{system_option_def system_log} specifies an optional log file for low-level messages produced by \<^ML>\<open>Output.system_message\<close> in Isabelle/ML; the standard value ``\<^verbatim>\<open>-\<close>'' refers to console progress of the build job. \<^item> @{system_option_def "system_heaps"} determines the directories for session heap images: \<^path>\<open>$ISABELLE_HEAPS\<close> is the user directory and \<^path>\<open>$ISABELLE_HEAPS_SYSTEM\<close> the system directory (usually within the Isabelle application). For \<^verbatim>\<open>system_heaps=false\<close>, heaps are stored in the user directory and may be loaded from both directories. For \<^verbatim>\<open>system_heaps=true\<close>, store and load happens only in the system directory. The @{tool_def options} tool prints Isabelle system options. Its command-line usage is: @{verbatim [display] \<open>Usage: isabelle options [OPTIONS] [MORE_OPTIONS ...] Options are: -b include $ISABELLE_BUILD_OPTIONS -g OPTION get value of OPTION -l list options -t TAGS restrict list to given tags (comma-separated) -x FILE export options to FILE in YXML format Report Isabelle system options, augmented by MORE_OPTIONS given as arguments NAME=VAL or NAME.\<close>} The command line arguments provide additional system options of the form \<open>name\<close>\<^verbatim>\<open>=\<close>\<open>value\<close> or \<open>name\<close> for Boolean options. Option \<^verbatim>\<open>-b\<close> augments the implicit environment of system options by the ones of @{setting ISABELLE_BUILD_OPTIONS}, cf.\ \secref{sec:tool-build}. Option \<^verbatim>\<open>-g\<close> prints the value of the given option. Option \<^verbatim>\<open>-l\<close> lists all options with their declaration and current value. Option \<^verbatim>\<open>-t\<close> restricts the listing to given tags (as comma-separated list), e.g. \<^verbatim>\<open>-t build,document\<close>. Option \<^verbatim>\<open>-x\<close> specifies a file to export the result in YXML format, instead of printing it in human-readable form. \<close> section \<open>Invoking the build process \label{sec:tool-build}\<close> text \<open> The @{tool_def build} tool invokes the build process for Isabelle sessions. It manages dependencies between sessions, related sources of theories and auxiliary files, and target heap images. Accordingly, it runs instances of the prover process with optional document preparation. Its command-line usage is:\<^footnote>\<open>Isabelle/Scala provides the same functionality via \<^scala_method>\<open>isabelle.Build.build\<close>.\<close> @{verbatim [display] \<open>Usage: isabelle build [OPTIONS] [SESSIONS ...] Options are: -B NAME include session NAME and all descendants -D DIR include session directory and select its sessions -N cyclic shuffling of NUMA CPU nodes (performance tuning) -P DIR enable HTML/PDF presentation in directory (":" for default) -R refer to requirements of selected sessions -S soft build: only observe changes of sources, not heap images -X NAME exclude sessions from group NAME and all descendants -a select all sessions -b build heap images -c clean build -d DIR include session directory -e export files from session specification into file-system -f fresh build -g NAME select session group NAME -j INT maximum number of parallel jobs (default 1) -k KEYWORD check theory sources for conflicts with proposed keywords -l list session source files -n no build -- take existing session build databases -o OPTION override Isabelle system OPTION (via NAME=VAL or NAME) -v verbose -x NAME exclude session NAME and all descendants Build and manage Isabelle sessions: ML heaps, session databases, documents. Notable system options: see "isabelle options -l -t build" Notable system settings: ISABELLE_TOOL_JAVA_OPTIONS="..." ISABELLE_BUILD_OPTIONS="..." ML_PLATFORM="..." ML_HOME="..." ML_SYSTEM="..." ML_OPTIONS="..."\<close>} \<^medskip> Isabelle sessions are defined via session ROOT files as described in (\secref{sec:session-root}). The totality of sessions is determined by collecting such specifications from all Isabelle component directories (\secref{sec:components}), augmented by more directories given via options \<^verbatim>\<open>-d\<close>~\<open>DIR\<close> on the command line. Each such directory may contain a session \<^verbatim>\<open>ROOT\<close> file with several session specifications. Any session root directory may refer recursively to further directories of the same kind, by listing them in a catalog file \<^verbatim>\<open>ROOTS\<close> line-by-line. This helps to organize large collections of session specifications, or to make \<^verbatim>\<open>-d\<close> command line options persistent (e.g.\ in \<^verbatim>\<open>$ISABELLE_HOME_USER/ROOTS\<close>). \<^medskip> The subset of sessions to be managed is determined via individual \<open>SESSIONS\<close> given as command-line arguments, or session groups that are given via one or more options \<^verbatim>\<open>-g\<close>~\<open>NAME\<close>. Option \<^verbatim>\<open>-a\<close> selects all sessions. The build tool takes session dependencies into account: the set of selected sessions is completed by including all ancestors. \<^medskip> One or more options \<^verbatim>\<open>-B\<close>~\<open>NAME\<close> specify base sessions to be included (all descendants wrt.\ the session parent or import graph). \<^medskip> One or more options \<^verbatim>\<open>-x\<close>~\<open>NAME\<close> specify sessions to be excluded (all descendants wrt.\ the session parent or import graph). Option \<^verbatim>\<open>-X\<close> is analogous to this, but excluded sessions are specified by session group membership. \<^medskip> Option \<^verbatim>\<open>-R\<close> reverses the selection in the sense that it refers to its requirements: all ancestor sessions excluding the original selection. This allows to prepare the stage for some build process with different options, before running the main build itself (without option \<^verbatim>\<open>-R\<close>). \<^medskip> Option \<^verbatim>\<open>-D\<close> is similar to \<^verbatim>\<open>-d\<close>, but selects all sessions that are defined in the given directories. \<^medskip> Option \<^verbatim>\<open>-S\<close> indicates a ``soft build'': the selection is restricted to those sessions that have changed sources (according to actually imported theories). The status of heap images is ignored. \<^medskip> The build process depends on additional options (\secref{sec:system-options}) that are passed to the prover eventually. The settings variable @{setting_ref ISABELLE_BUILD_OPTIONS} allows to provide additional defaults, e.g.\ \<^verbatim>\<open>ISABELLE_BUILD_OPTIONS="document=pdf threads=4"\<close>. Moreover, the environment of system build options may be augmented on the command line via \<^verbatim>\<open>-o\<close>~\<open>name\<close>\<^verbatim>\<open>=\<close>\<open>value\<close> or \<^verbatim>\<open>-o\<close>~\<open>name\<close>, which abbreviates \<^verbatim>\<open>-o\<close>~\<open>name\<close>\<^verbatim>\<open>=true\<close> for Boolean or string options. Multiple occurrences of \<^verbatim>\<open>-o\<close> on the command-line are applied in the given order. \<^medskip> Option \<^verbatim>\<open>-P\<close> enables PDF/HTML presentation in the given directory, where ``\<^verbatim>\<open>-P:\<close>'' refers to the default @{setting_ref ISABELLE_BROWSER_INFO} (or @{setting_ref ISABELLE_BROWSER_INFO_SYSTEM}). This applies only to explicitly selected sessions; note that option \<^verbatim>\<open>-R\<close> allows to select all requirements separately. \<^medskip> Option \<^verbatim>\<open>-b\<close> ensures that heap images are produced for all selected sessions. By default, images are only saved for inner nodes of the hierarchy of sessions, as required for other sessions to continue later on. \<^medskip> Option \<^verbatim>\<open>-c\<close> cleans the selected sessions (all descendants wrt.\ the session parent or import graph) before performing the specified build operation. \<^medskip> Option \<^verbatim>\<open>-e\<close> executes the \isakeyword{export_files} directives from the ROOT specification of all explicitly selected sessions: the status of the session build database needs to be OK, but the session could have been built earlier. Using \isakeyword{export_files}, a session may serve as abstract interface for add-on build artefacts, but these are only materialized on explicit request: without option \<^verbatim>\<open>-e\<close> there is no effect on the physical file-system yet. \<^medskip> Option \<^verbatim>\<open>-f\<close> forces a fresh build of all selected sessions and their requirements. \<^medskip> Option \<^verbatim>\<open>-n\<close> omits the actual build process after the preparatory stage (including optional cleanup). The overall return code always the status of the set of selected sessions. Add-on builds (like presentation) are run for successful sessions, i.e.\ already finished ones. \<^medskip> Option \<^verbatim>\<open>-j\<close> specifies the maximum number of parallel build jobs (prover processes). Each prover process is subject to a separate limit of parallel worker threads, cf.\ system option @{system_option_ref threads}. \<^medskip> Option \<^verbatim>\<open>-N\<close> enables cyclic shuffling of NUMA CPU nodes. This may help performance tuning on Linux servers with separate CPU/memory modules. \<^medskip> Option \<^verbatim>\<open>-v\<close> increases the general level of verbosity. \<^medskip> Option \<^verbatim>\<open>-l\<close> lists the source files that contribute to a session. \<^medskip> Option \<^verbatim>\<open>-k\<close> specifies a newly proposed keyword for outer syntax. It is possible to use option \<^verbatim>\<open>-k\<close> repeatedly to check multiple keywords. The theory sources are checked for conflicts wrt.\ this hypothetical change of syntax, e.g.\ to reveal occurrences of identifiers that need to be quoted. \<close> subsubsection \<open>Examples\<close> text \<open> Build a specific logic image: @{verbatim [display] \<open> isabelle build -b HOLCF\<close>} \<^smallskip> Build the main group of logic images: @{verbatim [display] \<open> isabelle build -b -g main\<close>} \<^smallskip> Build all descendants (and requirements) of \<^verbatim>\<open>FOL\<close> and \<^verbatim>\<open>ZF\<close>: @{verbatim [display] \<open> isabelle build -B FOL -B ZF\<close>} \<^smallskip> Build all sessions where sources have changed (ignoring heaps): @{verbatim [display] \<open> isabelle build -a -S\<close>} \<^smallskip> Provide a general overview of the status of all Isabelle sessions, without building anything: @{verbatim [display] \<open> isabelle build -a -n -v\<close>} \<^smallskip> Build all sessions with HTML browser info and PDF document preparation: @{verbatim [display] \<open> isabelle build -a -o browser_info -o document\<close>} \<^smallskip> Build all sessions with a maximum of 8 parallel prover processes and 4 worker threads each (on a machine with many cores): @{verbatim [display] \<open> isabelle build -a -j8 -o threads=4\<close>} \<^smallskip> Build some session images with cleanup of their descendants, while retaining their ancestry: @{verbatim [display] \<open> isabelle build -b -c HOL-Library HOL-Algebra\<close>} \<^smallskip> HTML/PDF presentation for sessions that happen to be properly built already, without rebuilding anything except the missing browser info: @{verbatim [display] \<open> isabelle build -a -n -o browser_info\<close>} \<^smallskip> Clean all sessions without building anything: @{verbatim [display] \<open> isabelle build -a -n -c\<close>} \<^smallskip> Build all sessions from some other directory hierarchy, according to the settings variable \<^verbatim>\<open>AFP\<close> that happens to be defined inside the Isabelle environment: @{verbatim [display] \<open> isabelle build -D '$AFP'\<close>} \<^smallskip> Inform about the status of all sessions required for AFP, without building anything yet: @{verbatim [display] \<open> isabelle build -D '$AFP' -R -v -n\<close>} \<close> section \<open>Print messages from session build database \label{sec:tool-log}\<close> text \<open> The @{tool_def "build_log"} tool prints prover messages from the build database of the given session. Its command-line usage is: @{verbatim [display] \<open>Usage: isabelle build_log [OPTIONS] [SESSIONS ...] Options are: -H REGEX filter messages by matching against head -M REGEX filter messages by matching against body -T NAME restrict to given theories (multiple options possible) -U output Unicode symbols -m MARGIN margin for pretty printing (default: 76.0) -o OPTION override Isabelle system OPTION (via NAME=VAL or NAME) -v print all messages, including information etc. Print messages from the session build database of the given sessions, without any checks against current sources nor session structure: results from old sessions or failed builds can be printed as well. Multiple options -H and -M are conjunctive: all given patterns need to match. Patterns match any substring, but ^ or $ may be used to match the start or end explicitly.\<close>} The specified session databases are taken as is, with formal checking against current sources: There is \<^emph>\<open>no\<close> implicit build process involved, so it is possible to retrieve error messages from a failed session as well. The order of messages follows the source positions of source files; thus the result is mostly deterministic, independent of the somewhat erratic evaluation of parallel processing. \<^medskip> Option \<^verbatim>\<open>-o\<close> allows to change system options, as in @{tool build} (\secref{sec:tool-build}). This may affect the storage space for the build database, notably via @{system_option system_heaps}, or @{system_option build_database_server} and its relatives. \<^medskip> Option \<^verbatim>\<open>-T\<close> restricts output to given theories: multiple entries are possible by repeating this option on the command-line. The default is to refer to \<^emph>\<open>all\<close> theories used in the original session build process. \<^medskip> Options \<^verbatim>\<open>-m\<close> and \<^verbatim>\<open>-U\<close> modify pretty printing and output of Isabelle symbols. The default is for an old-fashioned ASCII terminal at 80 characters per line (76 + 4 characters to prefix warnings or errors). \<^medskip> Option \<^verbatim>\<open>-v\<close> prints all messages from the session database that are normally inlined into the source text, including information messages etc. \<^medskip> Options \<^verbatim>\<open>-H\<close> and \<^verbatim>\<open>-M\<close> filter messages according to their header or body content, respectively. The header follows a very basic format that makes it easy to match message kinds (e.g. \<^verbatim>\<open>Warning\<close> or \<^verbatim>\<open>Error\<close>) and file names (e.g. \<^verbatim>\<open>src/HOL/Nat.thy\<close>). The body is usually pretty-printed, but for matching it is treated like one long line: blocks are ignored and breaks are turned into plain spaces (according to their formal width). The syntax for patters follows regular expressions of the Java platform.\<^footnote>\<open>\<^url>\<open>https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/util/regex/Pattern.html\<close>\<close> \<close> subsubsection \<open>Examples\<close> text \<open> Print messages from theory \<^verbatim>\<open>HOL.Nat\<close> of session \<^verbatim>\<open>HOL\<close>, using Unicode rendering of Isabelle symbols and a margin of 100 characters: @{verbatim [display] \<open> isabelle build_log -T HOL.Nat -U -m 100 HOL\<close>} Print warnings about ambiguous input (inner syntax) of session \<^verbatim>\<open>HOL-Library\<close>, which is built beforehand: @{verbatim [display] \<open> isabelle build HOL-Library isabelle build_log -H "Warning" -M "Ambiguous input" HOL-Library\<close>} Print all errors from all sessions, e.g. from a partial build of Isabelle/AFP: @{verbatim [display] \<open> isabelle build_log -H "Error" $(isabelle sessions -a -d AFP/thys)\<close>} \<close> section \<open>Retrieve theory exports \label{sec:tool-export}\<close> text \<open> The @{tool_def "export"} tool retrieves theory exports from the session database. Its command-line usage is: @{verbatim [display] \<open>Usage: isabelle export [OPTIONS] SESSION Options are: -O DIR output directory for exported files (default: "export") -d DIR include session directory -l list exports -n no build of session -o OPTION override Isabelle system OPTION (via NAME=VAL or NAME) -p NUM prune path of exported files by NUM elements -x PATTERN extract files matching pattern (e.g. "*:**" for all) List or export theory exports for SESSION: named blobs produced by isabelle build. Option -l or -x is required; option -x may be repeated. The PATTERN language resembles glob patterns in the shell, with ? and * (both excluding ":" and "/"), ** (excluding ":"), and [abc] or [^abc], and variants {pattern1,pattern2,pattern3}.\<close>} \<^medskip> The specified session is updated via @{tool build} (\secref{sec:tool-build}), with the same options \<^verbatim>\<open>-d\<close>, \<^verbatim>\<open>-o\<close>. The option \<^verbatim>\<open>-n\<close> suppresses the implicit build process: it means that a potentially outdated session database is used! \<^medskip> Option \<^verbatim>\<open>-l\<close> lists all stored exports, with compound names \<open>theory\<close>\<^verbatim>\<open>:\<close>\<open>name\<close>. \<^medskip> Option \<^verbatim>\<open>-x\<close> extracts stored exports whose compound name matches the given pattern. Note that wild cards ``\<^verbatim>\<open>?\<close>'' and ``\<^verbatim>\<open>*\<close>'' do not match the separators ``\<^verbatim>\<open>:\<close>'' and ``\<^verbatim>\<open>/\<close>''; the wild card \<^verbatim>\<open>**\<close> matches over directory name hierarchies separated by ``\<^verbatim>\<open>/\<close>''. Thus the pattern ``\<^verbatim>\<open>*:**\<close>'' matches \<^emph>\<open>all\<close> theory exports. Multiple options \<^verbatim>\<open>-x\<close> refer to the union of all specified patterns. Option \<^verbatim>\<open>-O\<close> specifies an alternative output directory for option \<^verbatim>\<open>-x\<close>: the default is \<^verbatim>\<open>export\<close> within the current directory. Each theory creates its own sub-directory hierarchy, using the session-qualified theory name. Option \<^verbatim>\<open>-p\<close> specifies the number of elements that should be pruned from each name: it allows to reduce the resulting directory hierarchy at the danger of overwriting files due to loss of uniqueness. \<close> section \<open>Dump PIDE session database \label{sec:tool-dump}\<close> text \<open> The @{tool_def "dump"} tool dumps information from the cumulative PIDE session database (which is processed on the spot). Its command-line usage is: @{verbatim [display] \<open>Usage: isabelle dump [OPTIONS] [SESSIONS ...] Options are: -A NAMES dump named aspects (default: ...) -B NAME include session NAME and all descendants -D DIR include session directory and select its sessions -O DIR output directory for dumped files (default: "dump") -R refer to requirements of selected sessions -X NAME exclude sessions from group NAME and all descendants -a select all sessions -b NAME base logic image (default "Pure") -d DIR include session directory -g NAME select session group NAME -o OPTION override Isabelle system OPTION (via NAME=VAL or NAME) -v verbose -x NAME exclude session NAME and all descendants Dump cumulative PIDE session database, with the following aspects: ...\<close>} \<^medskip> Options \<^verbatim>\<open>-B\<close>, \<^verbatim>\<open>-D\<close>, \<^verbatim>\<open>-R\<close>, \<^verbatim>\<open>-X\<close>, \<^verbatim>\<open>-a\<close>, \<^verbatim>\<open>-d\<close>, \<^verbatim>\<open>-g\<close>, \<^verbatim>\<open>-x\<close> and the remaining command-line arguments specify sessions as in @{tool build} (\secref{sec:tool-build}): the cumulative PIDE database of all their loaded theories is dumped to the output directory of option \<^verbatim>\<open>-O\<close> (default: \<^verbatim>\<open>dump\<close> in the current directory). \<^medskip> Option \<^verbatim>\<open>-b\<close> specifies an optional base logic image, for improved scalability of the PIDE session. Its theories are only processed if it is included in the overall session selection. \<^medskip> Option \<^verbatim>\<open>-o\<close> overrides Isabelle system options as for @{tool build} (\secref{sec:tool-build}). \<^medskip> Option \<^verbatim>\<open>-v\<close> increases the general level of verbosity. \<^medskip> Option \<^verbatim>\<open>-A\<close> specifies named aspects of the dump, as a comma-separated list. The default is to dump all known aspects, as given in the command-line usage of the tool. The underlying Isabelle/Scala operation \<^scala_method>\<open>isabelle.Dump.dump\<close> takes aspects as user-defined operations on the final PIDE state and document version. This allows to imitate Prover IDE rendering under program control. \<close> subsubsection \<open>Examples\<close> text \<open> Dump all Isabelle/ZF sessions (which are rather small): @{verbatim [display] \<open> isabelle dump -v -B ZF\<close>} \<^smallskip> Dump the quite substantial \<^verbatim>\<open>HOL-Analysis\<close> session, with full bootstrap from Isabelle/Pure: @{verbatim [display] \<open> isabelle dump -v HOL-Analysis\<close>} \<^smallskip> Dump all sessions connected to HOL-Analysis, using main Isabelle/HOL as basis: @{verbatim [display] \<open> isabelle dump -v -b HOL -B HOL-Analysis\<close>} This results in uniform PIDE markup for everything, except for the Isabelle/Pure bootstrap process itself. Producing that on the spot requires several GB of heap space, both for the Isabelle/Scala and Isabelle/ML process (in 64bit mode). Here are some relevant settings (\secref{sec:boot}) for such ambitious applications: @{verbatim [display] \<open> ISABELLE_TOOL_JAVA_OPTIONS="-Xms4g -Xmx32g -Xss16m" ML_OPTIONS="--minheap 4G --maxheap 32G" \<close>} \<close> section \<open>Update theory sources based on PIDE markup \label{sec:tool-update}\<close> text \<open> The @{tool_def "update"} tool updates theory sources based on markup that is produced by the regular @{tool build} process \secref{sec:tool-build}). Its command-line usage is: @{verbatim [display] \<open>Usage: isabelle update [OPTIONS] [SESSIONS ...] Options are: -B NAME include session NAME and all descendants -D DIR include session directory and select its sessions -R refer to requirements of selected sessions -X NAME exclude sessions from group NAME and all descendants -a select all sessions -b build heap images -c clean build -d DIR include session directory -f fresh build -g NAME select session group NAME -j INT maximum number of parallel jobs (default 1) -l NAME additional base logic -n no build -- take existing session build databases -o OPTION override Isabelle system OPTION (via NAME=VAL or NAME) -u OPT override "update" option for selected sessions -v verbose -x NAME exclude session NAME and all descendants Update theory sources based on PIDE markup produced by "isabelle build".\<close>} \<^medskip> Most options are the same as for @{tool build} (\secref{sec:tool-build}). \<^medskip> Option \<^verbatim>\<open>-l\<close> specifies one or more base logics: these sessions and their ancestors are \<^emph>\<open>excluded\<close> from the update. \<^medskip> Option \<^verbatim>\<open>-u\<close> refers to specific \<^verbatim>\<open>update\<close> options, by relying on naming convention: ``\<^verbatim>\<open>-u\<close>~\<open>OPT\<close>'' is a shortcut for ``\<^verbatim>\<open>-o\<close>~\<^verbatim>\<open>update_\<close>\<open>OPT\<close>''. \<^medskip> The following \<^verbatim>\<open>update\<close> options are supported: \<^item> @{system_option_ref update_inner_syntax_cartouches} to update inner syntax (types, terms, etc.)~to use cartouches, instead of double-quoted strings or atomic identifiers. For example, ``\<^theory_text>\<open>lemma \<doublequote>x = x\<doublequote>\<close>'' is replaced by ``\<^theory_text>\<open>lemma \<open>x = x\<close>\<close>'', and ``\<^theory_text>\<open>assume A\<close>'' is replaced by ``\<^theory_text>\<open>assume \<open>A\<close>\<close>''. \<^item> @{system_option update_mixfix_cartouches} to update mixfix templates to use cartouches instead of double-quoted strings. For example, ``\<^theory_text>\<open>(infixl \<doublequote>+\<doublequote> 65)\<close>'' is replaced by ``\<^theory_text>\<open>(infixl \<open>+\<close> 65)\<close>''. \<^item> @{system_option_ref update_control_cartouches} to update antiquotations to use the compact form with control symbol and cartouche argument. For example, ``\<open>@{term \<doublequote>x + y\<doublequote>}\<close>'' is replaced by ``\<open>\<^term>\<open>x + y\<close>\<close>'' (the control symbol is literally \<^verbatim>\<open>\<^term>\<close>.) \<^item> @{system_option_ref update_path_cartouches} to update file-system paths to use cartouches: this depends on language markup provided by semantic processing of parsed input. \<^item> @{system_option_ref update_cite} to update {\LaTeX} \<^verbatim>\<open>\cite\<close> commands and old-style \<^verbatim>\<open>@{cite "name"}\<close> document antiquotations. It is also possible to produce custom updates in Isabelle/ML, by reporting \<^ML>\<open>Markup.update\<close> with the precise source position and a replacement text. This operation should be made conditional on specific system options, similar to the ones above. Searching the above option names in ML sources of \<^dir>\<open>$ISABELLE_HOME/src/Pure\<close> provides some examples. Updates can be in conflict by producing nested or overlapping edits: this may require to run @{tool update} multiple times. \<close> subsubsection \<open>Examples\<close> text \<open> Update some cartouche notation in all theory sources required for session \<^verbatim>\<open>HOL-Analysis\<close> (and ancestors): @{verbatim [display] \<open> isabelle update -u mixfix_cartouches HOL-Analysis\<close>} \<^smallskip> Update the same for all application sessions based on \<^verbatim>\<open>HOL-Analysis\<close>, but do not change the underlying \<^verbatim>\<open>HOL\<close> (and \<^verbatim>\<open>Pure\<close>) session: @{verbatim [display] \<open> isabelle update -u mixfix_cartouches -l HOL -B HOL-Analysis\<close>} \<^smallskip> Update all sessions that happen to be properly built beforehand: @{verbatim [display] \<open> isabelle update -u mixfix_cartouches -n -a\<close>} \<close> section \<open>Explore sessions structure\<close> text \<open> The @{tool_def "sessions"} tool explores the sessions structure. Its command-line usage is: @{verbatim [display] \<open>Usage: isabelle sessions [OPTIONS] [SESSIONS ...] Options are: -B NAME include session NAME and all descendants -D DIR include session directory and select its sessions -R refer to requirements of selected sessions -X NAME exclude sessions from group NAME and all descendants -a select all sessions -b follow session build dependencies (default: source imports) -d DIR include session directory -g NAME select session group NAME -x NAME exclude session NAME and all descendants Explore the structure of Isabelle sessions and print result names in topological order (on stdout).\<close>} Arguments and options for session selection resemble @{tool build} (\secref{sec:tool-build}). \<close> subsubsection \<open>Examples\<close> text \<open> All sessions of the Isabelle distribution: @{verbatim [display] \<open> isabelle sessions -a\<close>} \<^medskip> Sessions that are imported by \<^verbatim>\<open>ZF\<close>: @{verbatim [display] \<open> isabelle sessions ZF\<close>} \<^medskip> Sessions that are required to build \<^verbatim>\<open>ZF\<close>: @{verbatim [display] \<open> isabelle sessions -b ZF\<close>} \<^medskip> Sessions that are based on \<^verbatim>\<open>ZF\<close> (and imported by it): @{verbatim [display] \<open> isabelle sessions -B ZF\<close>} \<^medskip> All sessions of Isabelle/AFP (based in directory \<^path>\<open>AFP\<close>): @{verbatim [display] \<open> isabelle sessions -D AFP/thys\<close>} \<^medskip> Sessions required by Isabelle/AFP (based in directory \<^path>\<open>AFP\<close>): @{verbatim [display] \<open> isabelle sessions -R -D AFP/thys\<close>} \<close> section \<open>Synchronize source repositories and session images for Isabelle and AFP\<close> text \<open> The @{tool_def sync} tool synchronizes a local Isabelle and AFP source repository, possibly with prebuilt \<^verbatim>\<open>.jar\<close> files and session images. Its command-line usage is: @{verbatim [display] \<open>Usage: isabelle sync [OPTIONS] TARGET Options are: -A ROOT include AFP with given root directory (":" for $AFP_BASE) -H purge heaps directory on target -I NAME include session heap image and build database (based on accidental local state) -J preserve *.jar files -P protect spaces in target file names: more robust, less portable -S PATH SSH control path for connection multiplexing -T thorough treatment of file content and directory times -a REV explicit AFP revision (default: state of working directory) -n no changes: dry-run -p PORT SSH port -r REV explicit revision (default: state of working directory) -v verbose Synchronize Isabelle + AFP repositories, based on "isabelle hg_sync".\<close>} The approach is to apply @{tool hg_sync} (see \secref{sec:tool-hg-sync}) on the underlying Isabelle repository, and an optional AFP repository. Consequently, the Isabelle installation needs to be a Mercurial repository clone: a regular download of the Isabelle distribution is not sufficient! On the target side, AFP is placed into @{setting ISABELLE_HOME} as immediate sub-directory with the literal name \<^verbatim>\<open>AFP\<close>; thus it can be easily included elsewhere, e.g. @{tool build}~\<^verbatim>\<open>-d\<close>~\<^verbatim>\<open>'~~/AFP'\<close> on the remote side. \<^medskip> Options \<^verbatim>\<open>-P\<close>, \<^verbatim>\<open>-S\<close>, \<^verbatim>\<open>-T\<close>, \<^verbatim>\<open>-n\<close>, \<^verbatim>\<open>-p\<close>, \<^verbatim>\<open>-v\<close> are the same as the underlying @{tool hg_sync}. \<^medskip> Options \<^verbatim>\<open>-r\<close> and \<^verbatim>\<open>-a\<close> are the same as option \<^verbatim>\<open>-r\<close> for @{tool hg_sync}, but for the Isabelle and AFP repositories, respectively. The AFP version is only used if a corresponding repository is given via option \<^verbatim>\<open>-A\<close>, either with explicit root directory, or as \<^verbatim>\<open>-A:\<close> to refer to \<^verbatim>\<open>$AFP_BASE\<close> (this assumes AFP as component of the local Isabelle installation). If no AFP repository is given, an existing \<^verbatim>\<open>AFP\<close> directory on the target remains unchanged. \<^medskip> Option \<^verbatim>\<open>-J\<close> uploads existing \<^verbatim>\<open>.jar\<close> files from the working directory, which are usually Isabelle/Scala/Java modules under control of @{tool scala_build} via \<^verbatim>\<open>etc/build.props\<close> (see also \secref{sec:scala-build}). Thus the dependency management is accurate: bad uploads will be rebuilt eventually (or ignored). This might fail for very old Isabelle versions, when going into the past via option \<^verbatim>\<open>-r\<close>: here it is better to omit option \<^verbatim>\<open>-J\<close> and thus purge \<^verbatim>\<open>.jar\<close> files on the target (because they do not belong to the repository). \<^medskip> Option \<^verbatim>\<open>-I\<close> uploads a collection of session images. The set of \<^verbatim>\<open>-I\<close> options specifies the end-points in the session build graph, including all required ancestors. The result collection is uploaded using the underlying \<^verbatim>\<open>rsync\<close> policies, so unchanged images are not sent again. Session images are assembled within the target \<^verbatim>\<open>heaps\<close> directory: this scheme fits together with @{tool build}~\<^verbatim>\<open>-o system_heaps\<close>. Images are taken as-is from the local Isabelle installation, regardless of option \<^verbatim>\<open>-r\<close>. Upload of bad images could waste time and space, but running e.g. @{tool build} on the target will check dependencies accurately and rebuild outdated images on demand. \<^medskip> Option \<^verbatim>\<open>-H\<close> tells the underlying \<^verbatim>\<open>rsync\<close> process to purge the \<^verbatim>\<open>heaps\<close> directory on the target, before uploading new images via option \<^verbatim>\<open>-I\<close>. The default is to work monotonically: old material that is not overwritten remains unchanged. Over time, this may lead to unused garbage, due to changes in session names or the Poly/ML version. Option \<^verbatim>\<open>-H\<close> helps to avoid wasting file-system space. \<close> subsubsection \<open>Examples\<close> text \<open> For quick testing of Isabelle + AFP on a remote machine, upload changed sources, jars, and local sessions images for \<^verbatim>\<open>HOL\<close>: @{verbatim [display] \<open> isabelle sync -A: -I HOL -J testmachine:test/isabelle_afp\<close>} Assuming that the local \<^verbatim>\<open>HOL\<close> hierarchy has been up-to-date, and the local and remote ML platforms coincide, a remote @{tool build} will proceed without building \<^verbatim>\<open>HOL\<close> again. \<^medskip> Here is a variation for extra-clean testing of Isabelle + AFP: no option \<^verbatim>\<open>-J\<close>, but option \<^verbatim>\<open>-T\<close> to disable the default ``quick check'' of \<^verbatim>\<open>rsync\<close> (which only inspects file sizes and date stamps); existing heaps are deleted: @{verbatim [display] \<open> isabelle sync -A: -T -H testmachine:test/isabelle_afp\<close>} \<close> end
(*--------------------------------------------------------------------------- Various helpers for halving, double and powers of 2 ---------------------------------------------------------------------------*) Require Import Ssreflect.ssreflect Ssreflect.ssrfun Ssreflect.ssrbool Ssreflect.eqtype Ssreflect.ssrnat Ssreflect.seq Ssreflect.tuple Ssreflect.zmodp Ssreflect.fintype Ssreflect.div. Set Implicit Arguments. Unset Strict Implicit. Import Prenex Implicits. Lemma half_ltn_double m n : m < n.*2 -> m./2 < n. Proof. move => H. rewrite -ltn_double. rewrite -(odd_double_half m) in H. rewrite -(ltn_add2l (odd m)). by apply ltn_addl. Qed. Lemma half_double_subn1 a : ((a.*2).-1)./2 = a.-1. Proof. case a. done. move => a'. simpl; apply uphalf_double. Qed. Lemma uphalf_double_subn1 a : uphalf ((a.*2).-1) = a. Proof. case a. done. move => a'. simpl; by rewrite half_double. Qed. Lemma half_subn1 : forall a b, (b - a.+1)./2 = (uphalf (b - a)).-1. Proof. induction a. + case => //. move => b. by rewrite subn1. + move => b. specialize (IHa (b.-1)). rewrite -subn1 in IHa. by rewrite -!subnDA !add1n in IHa. Qed. (* Strictly speaking we don't need the precondition *) Lemma half_sub a : forall b, a <= b.*2 -> (b.*2 - a)./2 = b - uphalf a. Proof. induction a => b H. + by rewrite !subn0 doubleK. + rewrite half_subn1. rewrite uphalf_half. rewrite IHa. rewrite odd_sub. rewrite odd_double/=. rewrite -subn1. rewrite uphalf_half. case ODD: (odd a). by rewrite add1n subn1. by rewrite !add0n/= -subnDA addn1. apply (ltnW H). apply (ltnW H). Qed. Lemma odd_oddsubn1 : forall n, n > 0 -> odd n.-1 = ~~odd n. Proof. induction n => //. destruct n => //. simpl. by case (odd n). Qed. Lemma odd_power2 n : odd (2^(n.+1)) = false. Proof. by rewrite expnS mul2n odd_double. Qed. Lemma odd_power2subn1 n : odd ((2^(n.+1)).-1) = true. Proof. induction n => //. rewrite expnS mul2n odd_oddsubn1. by rewrite odd_double. rewrite -mul2n -expnS. apply expn_gt0. Qed. Lemma leq_subn a b : 0 < b -> a < b -> a <= b.-1. Proof. by case b. Qed. Lemma pow2_gt1 n : 1 < 2^n.+1. Proof. rewrite expnS. suff: 2*1 <= 2*2^n => //. rewrite leq_mul2l/=. apply expn_gt0. Qed. Lemma nat_lt0_succ m : (0 < m) = true -> exists m', m = m'+1. Proof. destruct m => //. move => _. exists m. by rewrite addn1. Qed. Lemma pow2_sub_ltn n x : (2^n)-(x.+1) < 2^n. Proof. have H := expn_gt0 2 n. simpl in H. destruct (nat_lt0_succ H) as [m' HH]. rewrite HH. rewrite addn1 subSS. by rewrite ltnS leq_subr. Qed. Lemma modn_sub : forall N x y, 0 < N -> x < N -> y < N -> N <= x+y -> (x + y) %% N + N = x+y. Proof. move => N x y B H1 H2 H3. assert (H4:= divn_eq (x+y) N). rewrite {2}H4. rewrite addnC. assert (LT:(x + y) %/ N < 2). rewrite ltn_divLR. rewrite mul2n -addnn. rewrite -(ltn_add2r y) in H1. apply (ltn_trans H1). by rewrite ltn_add2l. done. assert (GT:0 < (x + y) %/ N). by rewrite divn_gt0. rewrite ltnS in LT. assert (1 <= (x+y) %/ N <= 1). by rewrite GT LT. rewrite -eqn_leq in H. rewrite -(eqP H). by rewrite mul1n. Qed. (* Good ol' induction over natural numbers: *) Fixpoint nat_ind (P : nat -> Type) (bc : P 0) (ih : forall n, P n -> P n.+1) (n: nat) : P n := match n with | 0 => bc | n.+1 => ih n (nat_ind bc ih n) end.
/* Copyright (C) 2020 David Cornu for the Convolutional Interactive Artificial Neural Networks by/for Astrophysicists (CIANNA) Code (https://github.com/Deyht/CIANNA) Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ #ifndef DEFS_H #define DEFS_H #include <stdlib.h> #include <stdio.h> #include <time.h> #include <tgmath.h> #include <string.h> #include <sys/time.h> #include <unistd.h> #ifdef comp_CUDA #ifdef CUDA #include <cuda_runtime.h> #include <cublas_v2.h> #if defined(GEN_VOLTA) || defined(GEN_AMPERE) #include <cuda_fp16.h> #endif #if defined(GEN_AMPERE) #include <cuda_bf16.h> #endif #include <curand.h> #include <curand_kernel.h> #endif #endif #ifdef BLAS #include <cblas.h> #endif #ifdef OPEN_MP #include <omp.h> #endif static const double two_pi = 2.0*3.14159265358979323846; #endif //DEFS_H
# ## 2.4 グラフのプロット ## #src #- using CSV using DataFrames using Measures using Plots ## #src #- data = CSV.read("../data/house-prices-advanced-regression-techniques/train.csv", DataFrame) ## #src #- scatter(data[!, :GrLivArea], data[!, :SalePrice], label="", margin = 12mm) xlabel!("GrLivArea") ylabel!("SalePrice") ## #src #- scatter(data[!, :MSSubClass], data[!, :SalePrice], label="", margin = 12mm) xlabel!("MSSubClass") ylabel!("SalePrice")
Formal statement is: lemma closure_halfspace_gt [simp]: "a \<noteq> 0 \<Longrightarrow> closure {x. a \<bullet> x > b} = {x. a \<bullet> x \<ge> b}" Informal statement is: If $a \neq 0$, then the closure of the half-space $\{x \in \mathbb{R}^n \mid a \cdot x > b\}$ is the half-space $\{x \in \mathbb{R}^n \mid a \cdot x \geq b\}$.
Require Import Coq.Strings.String Coq.Vectors.Vector. Require Import Fiat.Common.SumType Fiat.Common.BoundedLookup Fiat.Common.ilist Fiat.Computation Fiat.QueryStructure.Specification.Representation.Notations Fiat.QueryStructure.Specification.Representation.Heading Fiat.QueryStructure.Specification.Representation.Tuple Fiat.Narcissus.BinLib.Core Fiat.Narcissus.Common.Specs Fiat.Narcissus.Common.WordFacts Fiat.Narcissus.Common.ComposeCheckSum Fiat.Narcissus.Common.ComposeIf Fiat.Narcissus.Common.ComposeOpt Fiat.Narcissus.Automation.SolverOpt Fiat.Narcissus.Formats.Bool Fiat.Narcissus.Formats.Option Fiat.Narcissus.Formats.FixListOpt Fiat.Narcissus.Stores.EmptyStore Fiat.Narcissus.Formats.NatOpt Fiat.Narcissus.Formats.Vector Fiat.Narcissus.Formats.EnumOpt Fiat.Narcissus.Formats.SumTypeOpt Fiat.Narcissus.Formats.IPChecksum Fiat.Narcissus.Formats.WordOpt. Require Import Bedrock.Word. Import Vectors.VectorDef.VectorNotations. Open Scope string_scope. Open Scope Tuple_scope. (* Start Example Derivation. *) Definition ICMP_Unreachable := @Tuple <"Payload" :: list char >. (* IP Header + first 64 bits of original datagram. *) Definition ICMP_TimeExceeded := @Tuple <"Payload" :: list char >. (* IP Header + first 64 bits of original datagram. *) Definition ICMP_ParameterProblem := @Tuple <"Pointer" :: char, "Payload" :: list char >. (* IP Header + first 64 bits of original datagram. *) Definition ICMP_SourceQuench := @Tuple <"Payload" :: list char >. (* IP Header + first 64 bits of original datagram. *) Definition ICMP_Redirect := @Tuple <"RouterIP" :: word 32, (* IP Address of the router to use *) "Payload" :: list char >. (* IP Header + first 64 bits of original datagram. *) Definition ICMP_Echo := @Tuple <"ID" :: word 16, (* Identifier for sender *) "SeqNum" :: word 16, (* Identifier for request *) "Payload" :: list char>. (* Optional data to be echoed. *) Definition ICMP_Timestamp := @Tuple <"ID" :: word 16, (* Identifier for sender *) "SeqNum" :: word 16, (* Identifier for request *) "Originate" :: word 32, (* Time request sent *) "Received" :: word 32, (* Time request received *) "Transmit" :: word 32>. (* Time reply sent *) Definition ICMP_AddressMask := @Tuple <"ID" :: word 16, (* Identifier for sender *) "SeqNum" :: word 16, (* Identifier for request *) "SubnetMask" :: word 32>. (* The subnet mask of interest. *) Definition ICMP_RouterAdvertisement := @Tuple <"TTL" :: word 16, (* Time to Live for the provided router information. *) "RoutersPlusPreferences" :: list (word 32 * word 32)>. (* Pairs of a router's IP address *) (* and its preference level. *) Definition ICMP_Message_Types := [ ICMP_Echo; (* Echo Reply *) ICMP_Unreachable; (* Destiniation unreachable *) ICMP_SourceQuench; (* Source Quence *) ICMP_Redirect; (* Redirect *) ICMP_Echo; (* Echo Request *) ICMP_RouterAdvertisement; (* Router Advertisement *) (unit : Type) ; (* Router Solicitation *) ICMP_TimeExceeded; (* Time Exceeded *) ICMP_ParameterProblem; (* Parameter Problem *) ICMP_Timestamp; (* Timestamp Request *) ICMP_Timestamp; (* Timestamp Reply *) ICMP_AddressMask; (* Address Mask Request *) ICMP_AddressMask]. (* Address Mask Reply *) Definition ICMP_Message_Codes := Eval simpl in [natToWord 8 0; natToWord 8 3; natToWord 8 4; natToWord 8 5; natToWord 8 8; natToWord 8 9; natToWord 8 10; natToWord 8 11; natToWord 8 12; natToWord 8 13; natToWord 8 14; natToWord 8 17; natToWord 8 18]. Definition ICMP_Message := @Tuple <"Code" :: char, "Message" :: SumType ICMP_Message_Types>. Definition monoid : Monoid ByteString := ByteStringMonoid. Definition format_ICMP_Echo_Spec (icmp : ICMP_Echo) := format_word icmp!"ID" ThenC format_word icmp!"SeqNum" ThenC format_list format_word icmp!"Payload" DoneC. Definition format_ICMP_Unreachable_Spec (icmp : ICMP_Unreachable) := format_word (wzero 32) ThenC format_list format_word icmp!"Payload" DoneC. Definition format_ICMP_SourceQuench_Spec (icmp : ICMP_SourceQuench) := format_word (wzero 32) ThenC format_list format_word icmp!"Payload" DoneC. Definition format_ICMP_Redirect_Spec (icmp : ICMP_Redirect) := format_word icmp!"RouterIP" ThenC format_list format_word icmp!"Payload" DoneC. Definition format_ICMP_RouterAdvertisement_Spec (icmp : ICMP_RouterAdvertisement) := format_nat 8 (|icmp!"RoutersPlusPreferences"|) ThenC format_nat 8 2 ThenC format_word icmp!"TTL" ThenC format_list (fun p => format_word (fst p) ThenC format_word (snd p)) icmp!"RoutersPlusPreferences" DoneC. Definition format_ICMP_RouterSolicitation_Spec (icmp : unit) := format_word (wzero 32) DoneC. Definition format_ICMP_TimeExceeded_Spec (icmp : ICMP_TimeExceeded) := format_word (wzero 32) ThenC format_list format_word icmp!"Payload" DoneC. Definition format_ICMP_ParameterProblem_Spec (icmp : ICMP_ParameterProblem) := format_word icmp!"Pointer" ThenC format_word (wzero 24) ThenC format_list format_word icmp!"Payload" DoneC. Definition format_ICMP_Timestamp_Spec (icmp : ICMP_Timestamp) := format_word icmp!"ID" ThenC format_word icmp!"SeqNum" ThenC format_word icmp!"Originate" ThenC format_word icmp!"Received" ThenC format_word icmp!"Transmit" DoneC. Definition format_ICMP_AddressMask_Spec (icmp : ICMP_AddressMask) := format_word icmp!"ID" ThenC format_word icmp!"SeqNum" ThenC format_word icmp!"SubnetMask". Definition format_ICMP_Message_Spec (icmp : ICMP_Message) := format_enum ICMP_Message_Codes (SumType_index ICMP_Message_Types icmp!"Message") ThenC format_word (icmp!"Code") ThenChecksum IPChecksum_Valid OfSize 16 ThenCarryOn format_SumType ICMP_Message_Types (icons format_ICMP_Echo_Spec (icons format_ICMP_Unreachable_Spec (icons format_ICMP_SourceQuench_Spec (icons format_ICMP_Redirect_Spec (icons format_ICMP_Echo_Spec (icons format_ICMP_RouterAdvertisement_Spec (icons format_ICMP_RouterSolicitation_Spec (icons format_ICMP_TimeExceeded_Spec (icons format_ICMP_ParameterProblem_Spec (icons format_ICMP_Timestamp_Spec (icons format_ICMP_Timestamp_Spec (icons format_ICMP_AddressMask_Spec (icons format_ICMP_AddressMask_Spec inil))))))))))))) icmp!"Message".
/* Copyright (c) 2005-2019, University of Oxford. All rights reserved. University of Oxford means the Chancellor, Masters and Scholars of the University of Oxford, having an administrative office at Wellington Square, Oxford OX1 2JD, UK. This file is part of Chaste. Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: * Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. * Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. * Neither the name of the University of Oxford nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #ifndef ABSTRACTCELLPOPULATIONCOUNTWRITER_HPP_ #define ABSTRACTCELLPOPULATIONCOUNTWRITER_HPP_ #include "AbstractCellBasedWriter.hpp" #include "ChasteSerialization.hpp" #include <boost/serialization/base_object.hpp> // Forward declaration prevents circular include chain template<unsigned ELEMENT_DIM, unsigned SPACE_DIM> class AbstractCellPopulation; template<unsigned ELEMENT_DIM, unsigned SPACE_DIM> class MeshBasedCellPopulation; template<unsigned SPACE_DIM> class CaBasedCellPopulation; template<unsigned SPACE_DIM> class NodeBasedCellPopulation; template<unsigned SPACE_DIM> class PottsBasedCellPopulation; template<unsigned SPACE_DIM> class VertexBasedCellPopulation; /** * Abstract class for a writer that takes information from an AbstractCellPopulation and writes it to file. * * The key difference between this class and AbstractCellPopulationWriter is that writers inheriting * from this class are NOT compatible with a RoundRobin loop, because they write information that * needs to be collected from all processes, such as global counters for mutation states. These writers * concentrate the information from all processes and then write it at each timestep for which output * is required. */ template<unsigned ELEMENT_DIM, unsigned SPACE_DIM> class AbstractCellPopulationCountWriter : public AbstractCellBasedWriter<ELEMENT_DIM, SPACE_DIM> { private: /** Needed for serialization. */ friend class boost::serialization::access; /** * Serialize the object and its member variables. * * @param archive the archive * @param version the current version of this class */ template<class Archive> void serialize(Archive & archive, const unsigned int version) { archive & boost::serialization::base_object<AbstractCellBasedWriter<ELEMENT_DIM, SPACE_DIM> >(*this); } public: /** * Default constructor. * @param rFileName the name of the file to write to. */ AbstractCellPopulationCountWriter(const std::string& rFileName); /** * Write the header to file. * * @param pCellPopulation a pointer to the population to be written. */ virtual void WriteHeader(AbstractCellPopulation<ELEMENT_DIM, SPACE_DIM>* pCellPopulation); /** * Visit the population and write the data. * * As this method is pure virtual, it must be overridden * in subclasses. * * @param pCellPopulation a pointer to the MeshBasedCellPopulation to visit. */ virtual void Visit(MeshBasedCellPopulation<ELEMENT_DIM, SPACE_DIM>* pCellPopulation)=0; /** * Visit the population and write the data. * * As this method is pure virtual, it must be overridden * in subclasses. * * @param pCellPopulation a pointer to the CaBasedCellPopulation to visit. */ virtual void Visit(CaBasedCellPopulation<SPACE_DIM>* pCellPopulation)=0; /** * Visit the population and write the data. * * As this method is pure virtual, it must be overridden * in subclasses. * * @param pCellPopulation a pointer to the NodeBasedCellPopulation to visit. */ virtual void Visit(NodeBasedCellPopulation<SPACE_DIM>* pCellPopulation)=0; /** * Visit the population and write the data. * * As this method is pure virtual, it must be overridden * in subclasses. * * @param pCellPopulation a pointer to the PottsBasedCellPopulation to visit. */ virtual void Visit(PottsBasedCellPopulation<SPACE_DIM>* pCellPopulation)=0; /** * Visit the population and write the data. * * As this method is pure virtual, it must be overridden * in subclasses. * * @param pCellPopulation a pointer to the VertexBasedCellPopulation to visit. */ virtual void Visit(VertexBasedCellPopulation<SPACE_DIM>* pCellPopulation)=0; }; #endif /*ABSTRACTCELLPOPULATIONCOUNTWRITER_HPP_*/
(* Title: HOL/GCD.thy Author: Christophe Tabacznyj Author: Lawrence C. Paulson Author: Amine Chaieb Author: Thomas M. Rasmussen Author: Jeremy Avigad Author: Tobias Nipkow This file deals with the functions gcd and lcm. Definitions and lemmas are proved uniformly for the natural numbers and integers. This file combines and revises a number of prior developments. The original theories "GCD" and "Primes" were by Christophe Tabacznyj and Lawrence C. Paulson, based on @{cite davenport92}. They introduced gcd, lcm, and prime for the natural numbers. The original theory "IntPrimes" was by Thomas M. Rasmussen, and extended gcd, lcm, primes to the integers. Amine Chaieb provided another extension of the notions to the integers, and added a number of results to "Primes" and "GCD". IntPrimes also defined and developed the congruence relations on the integers. The notion was extended to the natural numbers by Chaieb. Jeremy Avigad combined all of these, made everything uniform for the natural numbers and the integers, and added a number of new theorems. Tobias Nipkow cleaned up a lot. *) section \<open>Greatest common divisor and least common multiple\<close> theory GCD imports Groups_List begin subsection \<open>Abstract bounded quasi semilattices as common foundation\<close> locale bounded_quasi_semilattice = abel_semigroup + fixes top :: 'a ("\<^bold>\<top>") and bot :: 'a ("\<^bold>\<bottom>") and normalize :: "'a \<Rightarrow> 'a" assumes idem_normalize [simp]: "a \<^bold>* a = normalize a" and normalize_left_idem [simp]: "normalize a \<^bold>* b = a \<^bold>* b" and normalize_idem [simp]: "normalize (a \<^bold>* b) = a \<^bold>* b" and normalize_top [simp]: "normalize \<^bold>\<top> = \<^bold>\<top>" and normalize_bottom [simp]: "normalize \<^bold>\<bottom> = \<^bold>\<bottom>" and top_left_normalize [simp]: "\<^bold>\<top> \<^bold>* a = normalize a" and bottom_left_bottom [simp]: "\<^bold>\<bottom> \<^bold>* a = \<^bold>\<bottom>" begin lemma left_idem [simp]: "a \<^bold>* (a \<^bold>* b) = a \<^bold>* b" using assoc [of a a b, symmetric] by simp lemma right_idem [simp]: "(a \<^bold>* b) \<^bold>* b = a \<^bold>* b" using left_idem [of b a] by (simp add: ac_simps) lemma comp_fun_idem: "comp_fun_idem f" by standard (simp_all add: fun_eq_iff ac_simps) interpretation comp_fun_idem f by (fact comp_fun_idem) lemma top_right_normalize [simp]: "a \<^bold>* \<^bold>\<top> = normalize a" using top_left_normalize [of a] by (simp add: ac_simps) lemma bottom_right_bottom [simp]: "a \<^bold>* \<^bold>\<bottom> = \<^bold>\<bottom>" using bottom_left_bottom [of a] by (simp add: ac_simps) lemma normalize_right_idem [simp]: "a \<^bold>* normalize b = a \<^bold>* b" using normalize_left_idem [of b a] by (simp add: ac_simps) end locale bounded_quasi_semilattice_set = bounded_quasi_semilattice begin interpretation comp_fun_idem f by (fact comp_fun_idem) definition F :: "'a set \<Rightarrow> 'a" where eq_fold: "F A = (if finite A then Finite_Set.fold f \<^bold>\<top> A else \<^bold>\<bottom>)" lemma infinite [simp]: "infinite A \<Longrightarrow> F A = \<^bold>\<bottom>" by (simp add: eq_fold) lemma set_eq_fold [code]: "F (set xs) = fold f xs \<^bold>\<top>" by (simp add: eq_fold fold_set_fold) lemma empty [simp]: "F {} = \<^bold>\<top>" by (simp add: eq_fold) lemma insert [simp]: "F (insert a A) = a \<^bold>* F A" by (cases "finite A") (simp_all add: eq_fold) lemma normalize [simp]: "normalize (F A) = F A" by (induct A rule: infinite_finite_induct) simp_all lemma in_idem: assumes "a \<in> A" shows "a \<^bold>* F A = F A" using assms by (induct A rule: infinite_finite_induct) (auto simp: left_commute [of a]) lemma union: "F (A \<union> B) = F A \<^bold>* F B" by (induct A rule: infinite_finite_induct) (simp_all add: ac_simps) lemma remove: assumes "a \<in> A" shows "F A = a \<^bold>* F (A - {a})" proof - from assms obtain B where "A = insert a B" and "a \<notin> B" by (blast dest: mk_disjoint_insert) with assms show ?thesis by simp qed lemma insert_remove: "F (insert a A) = a \<^bold>* F (A - {a})" by (cases "a \<in> A") (simp_all add: insert_absorb remove) end subsection \<open>Abstract GCD and LCM\<close> class gcd = zero + one + dvd + fixes gcd :: "'a \<Rightarrow> 'a \<Rightarrow> 'a" and lcm :: "'a \<Rightarrow> 'a \<Rightarrow> 'a" class Gcd = gcd + fixes Gcd :: "'a set \<Rightarrow> 'a" and Lcm :: "'a set \<Rightarrow> 'a" syntax "_GCD1" :: "pttrns \<Rightarrow> 'b \<Rightarrow> 'b" ("(3GCD _./ _)" [0, 10] 10) "_GCD" :: "pttrn \<Rightarrow> 'a set \<Rightarrow> 'b \<Rightarrow> 'b" ("(3GCD _\<in>_./ _)" [0, 0, 10] 10) "_LCM1" :: "pttrns \<Rightarrow> 'b \<Rightarrow> 'b" ("(3LCM _./ _)" [0, 10] 10) "_LCM" :: "pttrn \<Rightarrow> 'a set \<Rightarrow> 'b \<Rightarrow> 'b" ("(3LCM _\<in>_./ _)" [0, 0, 10] 10) translations "GCD x y. f" \<rightleftharpoons> "GCD x. GCD y. f" "GCD x. f" \<rightleftharpoons> "CONST Gcd (CONST range (\<lambda>x. f))" "GCD x\<in>A. f" \<rightleftharpoons> "CONST Gcd ((\<lambda>x. f) ` A)" "LCM x y. f" \<rightleftharpoons> "LCM x. LCM y. f" "LCM x. f" \<rightleftharpoons> "CONST Lcm (CONST range (\<lambda>x. f))" "LCM x\<in>A. f" \<rightleftharpoons> "CONST Lcm ((\<lambda>x. f) ` A)" class semiring_gcd = normalization_semidom + gcd + assumes gcd_dvd1 [iff]: "gcd a b dvd a" and gcd_dvd2 [iff]: "gcd a b dvd b" and gcd_greatest: "c dvd a \<Longrightarrow> c dvd b \<Longrightarrow> c dvd gcd a b" and normalize_gcd [simp]: "normalize (gcd a b) = gcd a b" and lcm_gcd: "lcm a b = normalize (a * b div gcd a b)" begin lemma gcd_greatest_iff [simp]: "a dvd gcd b c \<longleftrightarrow> a dvd b \<and> a dvd c" by (blast intro!: gcd_greatest intro: dvd_trans) lemma gcd_dvdI1: "a dvd c \<Longrightarrow> gcd a b dvd c" by (rule dvd_trans) (rule gcd_dvd1) lemma gcd_dvdI2: "b dvd c \<Longrightarrow> gcd a b dvd c" by (rule dvd_trans) (rule gcd_dvd2) lemma dvd_gcdD1: "a dvd gcd b c \<Longrightarrow> a dvd b" using gcd_dvd1 [of b c] by (blast intro: dvd_trans) lemma dvd_gcdD2: "a dvd gcd b c \<Longrightarrow> a dvd c" using gcd_dvd2 [of b c] by (blast intro: dvd_trans) lemma gcd_0_left [simp]: "gcd 0 a = normalize a" by (rule associated_eqI) simp_all lemma gcd_0_right [simp]: "gcd a 0 = normalize a" by (rule associated_eqI) simp_all lemma gcd_eq_0_iff [simp]: "gcd a b = 0 \<longleftrightarrow> a = 0 \<and> b = 0" (is "?P \<longleftrightarrow> ?Q") proof assume ?P then have "0 dvd gcd a b" by simp then have "0 dvd a" and "0 dvd b" by (blast intro: dvd_trans)+ then show ?Q by simp next assume ?Q then show ?P by simp qed lemma unit_factor_gcd: "unit_factor (gcd a b) = (if a = 0 \<and> b = 0 then 0 else 1)" proof (cases "gcd a b = 0") case True then show ?thesis by simp next case False have "unit_factor (gcd a b) * normalize (gcd a b) = gcd a b" by (rule unit_factor_mult_normalize) then have "unit_factor (gcd a b) * gcd a b = gcd a b" by simp then have "unit_factor (gcd a b) * gcd a b div gcd a b = gcd a b div gcd a b" by simp with False show ?thesis by simp qed lemma is_unit_gcd_iff [simp]: "is_unit (gcd a b) \<longleftrightarrow> gcd a b = 1" by (cases "a = 0 \<and> b = 0") (auto simp: unit_factor_gcd dest: is_unit_unit_factor) sublocale gcd: abel_semigroup gcd proof fix a b c show "gcd a b = gcd b a" by (rule associated_eqI) simp_all from gcd_dvd1 have "gcd (gcd a b) c dvd a" by (rule dvd_trans) simp moreover from gcd_dvd1 have "gcd (gcd a b) c dvd b" by (rule dvd_trans) simp ultimately have P1: "gcd (gcd a b) c dvd gcd a (gcd b c)" by (auto intro!: gcd_greatest) from gcd_dvd2 have "gcd a (gcd b c) dvd b" by (rule dvd_trans) simp moreover from gcd_dvd2 have "gcd a (gcd b c) dvd c" by (rule dvd_trans) simp ultimately have P2: "gcd a (gcd b c) dvd gcd (gcd a b) c" by (auto intro!: gcd_greatest) from P1 P2 show "gcd (gcd a b) c = gcd a (gcd b c)" by (rule associated_eqI) simp_all qed sublocale gcd: bounded_quasi_semilattice gcd 0 1 normalize proof show "gcd a a = normalize a" for a proof - have "a dvd gcd a a" by (rule gcd_greatest) simp_all then show ?thesis by (auto intro: associated_eqI) qed show "gcd (normalize a) b = gcd a b" for a b using gcd_dvd1 [of "normalize a" b] by (auto intro: associated_eqI) show "gcd 1 a = 1" for a by (rule associated_eqI) simp_all qed simp_all lemma gcd_self: "gcd a a = normalize a" by (fact gcd.idem_normalize) lemma gcd_left_idem: "gcd a (gcd a b) = gcd a b" by (fact gcd.left_idem) lemma gcd_right_idem: "gcd (gcd a b) b = gcd a b" by (fact gcd.right_idem) lemma gcdI: assumes "c dvd a" and "c dvd b" and greatest: "\<And>d. d dvd a \<Longrightarrow> d dvd b \<Longrightarrow> d dvd c" and "normalize c = c" shows "c = gcd a b" by (rule associated_eqI) (auto simp: assms intro: gcd_greatest) lemma gcd_unique: "d dvd a \<and> d dvd b \<and> normalize d = d \<and> (\<forall>e. e dvd a \<and> e dvd b \<longrightarrow> e dvd d) \<longleftrightarrow> d = gcd a b" by rule (auto intro: gcdI simp: gcd_greatest) lemma gcd_dvd_prod: "gcd a b dvd k * b" using mult_dvd_mono [of 1] by auto lemma gcd_proj2_if_dvd: "b dvd a \<Longrightarrow> gcd a b = normalize b" by (rule gcdI [symmetric]) simp_all lemma gcd_proj1_if_dvd: "a dvd b \<Longrightarrow> gcd a b = normalize a" by (rule gcdI [symmetric]) simp_all lemma gcd_proj1_iff: "gcd m n = normalize m \<longleftrightarrow> m dvd n" proof assume *: "gcd m n = normalize m" show "m dvd n" proof (cases "m = 0") case True with * show ?thesis by simp next case [simp]: False from * have **: "m = gcd m n * unit_factor m" by (simp add: unit_eq_div2) show ?thesis by (subst **) (simp add: mult_unit_dvd_iff) qed next assume "m dvd n" then show "gcd m n = normalize m" by (rule gcd_proj1_if_dvd) qed lemma gcd_proj2_iff: "gcd m n = normalize n \<longleftrightarrow> n dvd m" using gcd_proj1_iff [of n m] by (simp add: ac_simps) lemma gcd_mult_left: "gcd (c * a) (c * b) = normalize (c * gcd a b)" proof (cases "c = 0") case True then show ?thesis by simp next case False then have *: "c * gcd a b dvd gcd (c * a) (c * b)" by (auto intro: gcd_greatest) moreover from False * have "gcd (c * a) (c * b) dvd c * gcd a b" by (metis div_dvd_iff_mult dvd_mult_left gcd_dvd1 gcd_dvd2 gcd_greatest mult_commute) ultimately have "normalize (gcd (c * a) (c * b)) = normalize (c * gcd a b)" by (auto intro: associated_eqI) then show ?thesis by (simp add: normalize_mult) qed lemma gcd_mult_right: "gcd (a * c) (b * c) = normalize (gcd b a * c)" using gcd_mult_left [of c a b] by (simp add: ac_simps) lemma dvd_lcm1 [iff]: "a dvd lcm a b" by (metis div_mult_swap dvd_mult2 dvd_normalize_iff dvd_refl gcd_dvd2 lcm_gcd) lemma dvd_lcm2 [iff]: "b dvd lcm a b" by (metis dvd_div_mult dvd_mult dvd_normalize_iff dvd_refl gcd_dvd1 lcm_gcd) lemma dvd_lcmI1: "a dvd b \<Longrightarrow> a dvd lcm b c" by (rule dvd_trans) (assumption, blast) lemma dvd_lcmI2: "a dvd c \<Longrightarrow> a dvd lcm b c" by (rule dvd_trans) (assumption, blast) lemma lcm_dvdD1: "lcm a b dvd c \<Longrightarrow> a dvd c" using dvd_lcm1 [of a b] by (blast intro: dvd_trans) lemma lcm_dvdD2: "lcm a b dvd c \<Longrightarrow> b dvd c" using dvd_lcm2 [of a b] by (blast intro: dvd_trans) lemma lcm_least: assumes "a dvd c" and "b dvd c" shows "lcm a b dvd c" proof (cases "c = 0") case True then show ?thesis by simp next case False then have *: "is_unit (unit_factor c)" by simp show ?thesis proof (cases "gcd a b = 0") case True with assms show ?thesis by simp next case False have "a * b dvd normalize (c * gcd a b)" using assms by (subst gcd_mult_left [symmetric]) (auto intro!: gcd_greatest simp: mult_ac) with False have "(a * b div gcd a b) dvd c" by (subst div_dvd_iff_mult) auto thus ?thesis by (simp add: lcm_gcd) qed qed lemma lcm_least_iff [simp]: "lcm a b dvd c \<longleftrightarrow> a dvd c \<and> b dvd c" by (blast intro!: lcm_least intro: dvd_trans) lemma normalize_lcm [simp]: "normalize (lcm a b) = lcm a b" by (simp add: lcm_gcd dvd_normalize_div) lemma lcm_0_left [simp]: "lcm 0 a = 0" by (simp add: lcm_gcd) lemma lcm_0_right [simp]: "lcm a 0 = 0" by (simp add: lcm_gcd) lemma lcm_eq_0_iff: "lcm a b = 0 \<longleftrightarrow> a = 0 \<or> b = 0" (is "?P \<longleftrightarrow> ?Q") proof assume ?P then have "0 dvd lcm a b" by simp also have "lcm a b dvd (a * b)" by simp finally show ?Q by auto next assume ?Q then show ?P by auto qed lemma zero_eq_lcm_iff: "0 = lcm a b \<longleftrightarrow> a = 0 \<or> b = 0" using lcm_eq_0_iff[of a b] by auto lemma lcm_eq_1_iff [simp]: "lcm a b = 1 \<longleftrightarrow> is_unit a \<and> is_unit b" by (auto intro: associated_eqI) lemma unit_factor_lcm: "unit_factor (lcm a b) = (if a = 0 \<or> b = 0 then 0 else 1)" using lcm_eq_0_iff[of a b] by (cases "lcm a b = 0") (auto simp: lcm_gcd) sublocale lcm: abel_semigroup lcm proof fix a b c show "lcm a b = lcm b a" by (simp add: lcm_gcd ac_simps normalize_mult dvd_normalize_div) have "lcm (lcm a b) c dvd lcm a (lcm b c)" and "lcm a (lcm b c) dvd lcm (lcm a b) c" by (auto intro: lcm_least dvd_trans [of b "lcm b c" "lcm a (lcm b c)"] dvd_trans [of c "lcm b c" "lcm a (lcm b c)"] dvd_trans [of a "lcm a b" "lcm (lcm a b) c"] dvd_trans [of b "lcm a b" "lcm (lcm a b) c"]) then show "lcm (lcm a b) c = lcm a (lcm b c)" by (rule associated_eqI) simp_all qed sublocale lcm: bounded_quasi_semilattice lcm 1 0 normalize proof show "lcm a a = normalize a" for a proof - have "lcm a a dvd a" by (rule lcm_least) simp_all then show ?thesis by (auto intro: associated_eqI) qed show "lcm (normalize a) b = lcm a b" for a b using dvd_lcm1 [of "normalize a" b] unfolding normalize_dvd_iff by (auto intro: associated_eqI) show "lcm 1 a = normalize a" for a by (rule associated_eqI) simp_all qed simp_all lemma lcm_self: "lcm a a = normalize a" by (fact lcm.idem_normalize) lemma lcm_left_idem: "lcm a (lcm a b) = lcm a b" by (fact lcm.left_idem) lemma lcm_right_idem: "lcm (lcm a b) b = lcm a b" by (fact lcm.right_idem) lemma gcd_lcm: assumes "a \<noteq> 0" and "b \<noteq> 0" shows "gcd a b = normalize (a * b div lcm a b)" proof - from assms have [simp]: "a * b div gcd a b \<noteq> 0" by (subst dvd_div_eq_0_iff) auto let ?u = "unit_factor (a * b div gcd a b)" have "gcd a b * normalize (a * b div gcd a b) = gcd a b * ((a * b div gcd a b) * (1 div ?u))" by simp also have "\<dots> = a * b div ?u" by (subst mult.assoc [symmetric]) auto also have "\<dots> dvd a * b" by (subst div_unit_dvd_iff) auto finally have "gcd a b dvd ((a * b) div lcm a b)" by (intro dvd_mult_imp_div) (auto simp: lcm_gcd) moreover have "a * b div lcm a b dvd a" and "a * b div lcm a b dvd b" using assms by (subst div_dvd_iff_mult; simp add: lcm_eq_0_iff mult.commute[of b "lcm a b"])+ ultimately have "normalize (gcd a b) = normalize (a * b div lcm a b)" apply - apply (rule associated_eqI) using assms apply (auto simp: div_dvd_iff_mult zero_eq_lcm_iff) done thus ?thesis by simp qed lemma lcm_1_left: "lcm 1 a = normalize a" by (fact lcm.top_left_normalize) lemma lcm_1_right: "lcm a 1 = normalize a" by (fact lcm.top_right_normalize) lemma lcm_mult_left: "lcm (c * a) (c * b) = normalize (c * lcm a b)" proof (cases "c = 0") case True then show ?thesis by simp next case False then have *: "lcm (c * a) (c * b) dvd c * lcm a b" by (auto intro: lcm_least) moreover have "lcm a b dvd lcm (c * a) (c * b) div c" by (intro lcm_least) (auto intro!: dvd_mult_imp_div simp: mult_ac) hence "c * lcm a b dvd lcm (c * a) (c * b)" using False by (subst (asm) dvd_div_iff_mult) (auto simp: mult_ac intro: dvd_lcmI1) ultimately have "normalize (lcm (c * a) (c * b)) = normalize (c * lcm a b)" by (auto intro: associated_eqI) then show ?thesis by (simp add: normalize_mult) qed lemma lcm_mult_right: "lcm (a * c) (b * c) = normalize (lcm b a * c)" using lcm_mult_left [of c a b] by (simp add: ac_simps) lemma lcm_mult_unit1: "is_unit a \<Longrightarrow> lcm (b * a) c = lcm b c" by (rule associated_eqI) (simp_all add: mult_unit_dvd_iff dvd_lcmI1) lemma lcm_mult_unit2: "is_unit a \<Longrightarrow> lcm b (c * a) = lcm b c" using lcm_mult_unit1 [of a c b] by (simp add: ac_simps) lemma lcm_div_unit1: "is_unit a \<Longrightarrow> lcm (b div a) c = lcm b c" by (erule is_unitE [of _ b]) (simp add: lcm_mult_unit1) lemma lcm_div_unit2: "is_unit a \<Longrightarrow> lcm b (c div a) = lcm b c" by (erule is_unitE [of _ c]) (simp add: lcm_mult_unit2) lemma normalize_lcm_left: "lcm (normalize a) b = lcm a b" by (fact lcm.normalize_left_idem) lemma normalize_lcm_right: "lcm a (normalize b) = lcm a b" by (fact lcm.normalize_right_idem) lemma comp_fun_idem_gcd: "comp_fun_idem gcd" by standard (simp_all add: fun_eq_iff ac_simps) lemma comp_fun_idem_lcm: "comp_fun_idem lcm" by standard (simp_all add: fun_eq_iff ac_simps) lemma gcd_dvd_antisym: "gcd a b dvd gcd c d \<Longrightarrow> gcd c d dvd gcd a b \<Longrightarrow> gcd a b = gcd c d" proof (rule gcdI) assume *: "gcd a b dvd gcd c d" and **: "gcd c d dvd gcd a b" have "gcd c d dvd c" by simp with * show "gcd a b dvd c" by (rule dvd_trans) have "gcd c d dvd d" by simp with * show "gcd a b dvd d" by (rule dvd_trans) show "normalize (gcd a b) = gcd a b" by simp fix l assume "l dvd c" and "l dvd d" then have "l dvd gcd c d" by (rule gcd_greatest) from this and ** show "l dvd gcd a b" by (rule dvd_trans) qed declare unit_factor_lcm [simp] lemma lcmI: assumes "a dvd c" and "b dvd c" and "\<And>d. a dvd d \<Longrightarrow> b dvd d \<Longrightarrow> c dvd d" and "normalize c = c" shows "c = lcm a b" by (rule associated_eqI) (auto simp: assms intro: lcm_least) lemma gcd_dvd_lcm [simp]: "gcd a b dvd lcm a b" using gcd_dvd2 by (rule dvd_lcmI2) lemmas lcm_0 = lcm_0_right lemma lcm_unique: "a dvd d \<and> b dvd d \<and> normalize d = d \<and> (\<forall>e. a dvd e \<and> b dvd e \<longrightarrow> d dvd e) \<longleftrightarrow> d = lcm a b" by rule (auto intro: lcmI simp: lcm_least lcm_eq_0_iff) lemma lcm_proj1_if_dvd: assumes "b dvd a" shows "lcm a b = normalize a" proof - have "normalize (lcm a b) = normalize a" by (rule associatedI) (use assms in auto) thus ?thesis by simp qed lemma lcm_proj2_if_dvd: "a dvd b \<Longrightarrow> lcm a b = normalize b" using lcm_proj1_if_dvd [of a b] by (simp add: ac_simps) lemma lcm_proj1_iff: "lcm m n = normalize m \<longleftrightarrow> n dvd m" proof assume *: "lcm m n = normalize m" show "n dvd m" proof (cases "m = 0") case True then show ?thesis by simp next case [simp]: False from * have **: "m = lcm m n * unit_factor m" by (simp add: unit_eq_div2) show ?thesis by (subst **) simp qed next assume "n dvd m" then show "lcm m n = normalize m" by (rule lcm_proj1_if_dvd) qed lemma lcm_proj2_iff: "lcm m n = normalize n \<longleftrightarrow> m dvd n" using lcm_proj1_iff [of n m] by (simp add: ac_simps) lemma gcd_mono: "a dvd c \<Longrightarrow> b dvd d \<Longrightarrow> gcd a b dvd gcd c d" by (simp add: gcd_dvdI1 gcd_dvdI2) lemma lcm_mono: "a dvd c \<Longrightarrow> b dvd d \<Longrightarrow> lcm a b dvd lcm c d" by (simp add: dvd_lcmI1 dvd_lcmI2) lemma dvd_productE: assumes "p dvd a * b" obtains x y where "p = x * y" "x dvd a" "y dvd b" proof (cases "a = 0") case True thus ?thesis by (intro that[of p 1]) simp_all next case False define x y where "x = gcd a p" and "y = p div x" have "p = x * y" by (simp add: x_def y_def) moreover have "x dvd a" by (simp add: x_def) moreover from assms have "p dvd gcd (b * a) (b * p)" by (intro gcd_greatest) (simp_all add: mult.commute) hence "p dvd b * gcd a p" by (subst (asm) gcd_mult_left) auto with False have "y dvd b" by (simp add: x_def y_def div_dvd_iff_mult assms) ultimately show ?thesis by (rule that) qed lemma gcd_mult_unit1: assumes "is_unit a" shows "gcd (b * a) c = gcd b c" proof - have "gcd (b * a) c dvd b" using assms dvd_mult_unit_iff by blast then show ?thesis by (rule gcdI) simp_all qed lemma gcd_mult_unit2: "is_unit a \<Longrightarrow> gcd b (c * a) = gcd b c" using gcd.commute gcd_mult_unit1 by auto lemma gcd_div_unit1: "is_unit a \<Longrightarrow> gcd (b div a) c = gcd b c" by (erule is_unitE [of _ b]) (simp add: gcd_mult_unit1) lemma gcd_div_unit2: "is_unit a \<Longrightarrow> gcd b (c div a) = gcd b c" by (erule is_unitE [of _ c]) (simp add: gcd_mult_unit2) lemma normalize_gcd_left: "gcd (normalize a) b = gcd a b" by (fact gcd.normalize_left_idem) lemma normalize_gcd_right: "gcd a (normalize b) = gcd a b" by (fact gcd.normalize_right_idem) lemma gcd_add1 [simp]: "gcd (m + n) n = gcd m n" by (rule gcdI [symmetric]) (simp_all add: dvd_add_left_iff) lemma gcd_add2 [simp]: "gcd m (m + n) = gcd m n" using gcd_add1 [of n m] by (simp add: ac_simps) lemma gcd_add_mult: "gcd m (k * m + n) = gcd m n" by (rule gcdI [symmetric]) (simp_all add: dvd_add_right_iff) end class ring_gcd = comm_ring_1 + semiring_gcd begin lemma gcd_neg1 [simp]: "gcd (-a) b = gcd a b" by (rule sym, rule gcdI) (simp_all add: gcd_greatest) lemma gcd_neg2 [simp]: "gcd a (-b) = gcd a b" by (rule sym, rule gcdI) (simp_all add: gcd_greatest) lemma gcd_neg_numeral_1 [simp]: "gcd (- numeral n) a = gcd (numeral n) a" by (fact gcd_neg1) lemma gcd_neg_numeral_2 [simp]: "gcd a (- numeral n) = gcd a (numeral n)" by (fact gcd_neg2) lemma gcd_diff1: "gcd (m - n) n = gcd m n" by (subst diff_conv_add_uminus, subst gcd_neg2[symmetric], subst gcd_add1, simp) lemma gcd_diff2: "gcd (n - m) n = gcd m n" by (subst gcd_neg1[symmetric]) (simp only: minus_diff_eq gcd_diff1) lemma lcm_neg1 [simp]: "lcm (-a) b = lcm a b" by (rule sym, rule lcmI) (simp_all add: lcm_least lcm_eq_0_iff) lemma lcm_neg2 [simp]: "lcm a (-b) = lcm a b" by (rule sym, rule lcmI) (simp_all add: lcm_least lcm_eq_0_iff) lemma lcm_neg_numeral_1 [simp]: "lcm (- numeral n) a = lcm (numeral n) a" by (fact lcm_neg1) lemma lcm_neg_numeral_2 [simp]: "lcm a (- numeral n) = lcm a (numeral n)" by (fact lcm_neg2) end class semiring_Gcd = semiring_gcd + Gcd + assumes Gcd_dvd: "a \<in> A \<Longrightarrow> Gcd A dvd a" and Gcd_greatest: "(\<And>b. b \<in> A \<Longrightarrow> a dvd b) \<Longrightarrow> a dvd Gcd A" and normalize_Gcd [simp]: "normalize (Gcd A) = Gcd A" assumes dvd_Lcm: "a \<in> A \<Longrightarrow> a dvd Lcm A" and Lcm_least: "(\<And>b. b \<in> A \<Longrightarrow> b dvd a) \<Longrightarrow> Lcm A dvd a" and normalize_Lcm [simp]: "normalize (Lcm A) = Lcm A" begin lemma Lcm_Gcd: "Lcm A = Gcd {b. \<forall>a\<in>A. a dvd b}" by (rule associated_eqI) (auto intro: Gcd_dvd dvd_Lcm Gcd_greatest Lcm_least) lemma Gcd_Lcm: "Gcd A = Lcm {b. \<forall>a\<in>A. b dvd a}" by (rule associated_eqI) (auto intro: Gcd_dvd dvd_Lcm Gcd_greatest Lcm_least) lemma Gcd_empty [simp]: "Gcd {} = 0" by (rule dvd_0_left, rule Gcd_greatest) simp lemma Lcm_empty [simp]: "Lcm {} = 1" by (auto intro: associated_eqI Lcm_least) lemma Gcd_insert [simp]: "Gcd (insert a A) = gcd a (Gcd A)" proof - have "Gcd (insert a A) dvd gcd a (Gcd A)" by (auto intro: Gcd_dvd Gcd_greatest) moreover have "gcd a (Gcd A) dvd Gcd (insert a A)" proof (rule Gcd_greatest) fix b assume "b \<in> insert a A" then show "gcd a (Gcd A) dvd b" proof assume "b = a" then show ?thesis by simp next assume "b \<in> A" then have "Gcd A dvd b" by (rule Gcd_dvd) moreover have "gcd a (Gcd A) dvd Gcd A" by simp ultimately show ?thesis by (blast intro: dvd_trans) qed qed ultimately show ?thesis by (auto intro: associated_eqI) qed lemma Lcm_insert [simp]: "Lcm (insert a A) = lcm a (Lcm A)" proof (rule sym) have "lcm a (Lcm A) dvd Lcm (insert a A)" by (auto intro: dvd_Lcm Lcm_least) moreover have "Lcm (insert a A) dvd lcm a (Lcm A)" proof (rule Lcm_least) fix b assume "b \<in> insert a A" then show "b dvd lcm a (Lcm A)" proof assume "b = a" then show ?thesis by simp next assume "b \<in> A" then have "b dvd Lcm A" by (rule dvd_Lcm) moreover have "Lcm A dvd lcm a (Lcm A)" by simp ultimately show ?thesis by (blast intro: dvd_trans) qed qed ultimately show "lcm a (Lcm A) = Lcm (insert a A)" by (rule associated_eqI) (simp_all add: lcm_eq_0_iff) qed lemma LcmI: assumes "\<And>a. a \<in> A \<Longrightarrow> a dvd b" and "\<And>c. (\<And>a. a \<in> A \<Longrightarrow> a dvd c) \<Longrightarrow> b dvd c" and "normalize b = b" shows "b = Lcm A" by (rule associated_eqI) (auto simp: assms dvd_Lcm intro: Lcm_least) lemma Lcm_subset: "A \<subseteq> B \<Longrightarrow> Lcm A dvd Lcm B" by (blast intro: Lcm_least dvd_Lcm) lemma Lcm_Un: "Lcm (A \<union> B) = lcm (Lcm A) (Lcm B)" proof - have "\<And>d. \<lbrakk>Lcm A dvd d; Lcm B dvd d\<rbrakk> \<Longrightarrow> Lcm (A \<union> B) dvd d" by (meson UnE Lcm_least dvd_Lcm dvd_trans) then show ?thesis by (meson Lcm_subset lcm_unique normalize_Lcm sup.cobounded1 sup.cobounded2) qed lemma Gcd_0_iff [simp]: "Gcd A = 0 \<longleftrightarrow> A \<subseteq> {0}" (is "?P \<longleftrightarrow> ?Q") proof assume ?P show ?Q proof fix a assume "a \<in> A" then have "Gcd A dvd a" by (rule Gcd_dvd) with \<open>?P\<close> have "a = 0" by simp then show "a \<in> {0}" by simp qed next assume ?Q have "0 dvd Gcd A" proof (rule Gcd_greatest) fix a assume "a \<in> A" with \<open>?Q\<close> have "a = 0" by auto then show "0 dvd a" by simp qed then show ?P by simp qed lemma Lcm_1_iff [simp]: "Lcm A = 1 \<longleftrightarrow> (\<forall>a\<in>A. is_unit a)" (is "?P \<longleftrightarrow> ?Q") proof assume ?P show ?Q proof fix a assume "a \<in> A" then have "a dvd Lcm A" by (rule dvd_Lcm) with \<open>?P\<close> show "is_unit a" by simp qed next assume ?Q then have "is_unit (Lcm A)" by (blast intro: Lcm_least) then have "normalize (Lcm A) = 1" by (rule is_unit_normalize) then show ?P by simp qed lemma unit_factor_Lcm: "unit_factor (Lcm A) = (if Lcm A = 0 then 0 else 1)" proof (cases "Lcm A = 0") case True then show ?thesis by simp next case False with unit_factor_normalize have "unit_factor (normalize (Lcm A)) = 1" by blast with False show ?thesis by simp qed lemma unit_factor_Gcd: "unit_factor (Gcd A) = (if Gcd A = 0 then 0 else 1)" by (simp add: Gcd_Lcm unit_factor_Lcm) lemma GcdI: assumes "\<And>a. a \<in> A \<Longrightarrow> b dvd a" and "\<And>c. (\<And>a. a \<in> A \<Longrightarrow> c dvd a) \<Longrightarrow> c dvd b" and "normalize b = b" shows "b = Gcd A" by (rule associated_eqI) (auto simp: assms Gcd_dvd intro: Gcd_greatest) lemma Gcd_eq_1_I: assumes "is_unit a" and "a \<in> A" shows "Gcd A = 1" proof - from assms have "is_unit (Gcd A)" by (blast intro: Gcd_dvd dvd_unit_imp_unit) then have "normalize (Gcd A) = 1" by (rule is_unit_normalize) then show ?thesis by simp qed lemma Lcm_eq_0_I: assumes "0 \<in> A" shows "Lcm A = 0" proof - from assms have "0 dvd Lcm A" by (rule dvd_Lcm) then show ?thesis by simp qed lemma Gcd_UNIV [simp]: "Gcd UNIV = 1" using dvd_refl by (rule Gcd_eq_1_I) simp lemma Lcm_UNIV [simp]: "Lcm UNIV = 0" by (rule Lcm_eq_0_I) simp lemma Lcm_0_iff: assumes "finite A" shows "Lcm A = 0 \<longleftrightarrow> 0 \<in> A" proof (cases "A = {}") case True then show ?thesis by simp next case False with assms show ?thesis by (induct A rule: finite_ne_induct) (auto simp: lcm_eq_0_iff) qed lemma Gcd_image_normalize [simp]: "Gcd (normalize ` A) = Gcd A" proof - have "Gcd (normalize ` A) dvd a" if "a \<in> A" for a proof - from that obtain B where "A = insert a B" by blast moreover have "gcd (normalize a) (Gcd (normalize ` B)) dvd normalize a" by (rule gcd_dvd1) ultimately show "Gcd (normalize ` A) dvd a" by simp qed then have "Gcd (normalize ` A) dvd Gcd A" and "Gcd A dvd Gcd (normalize ` A)" by (auto intro!: Gcd_greatest intro: Gcd_dvd) then show ?thesis by (auto intro: associated_eqI) qed lemma Gcd_eqI: assumes "normalize a = a" assumes "\<And>b. b \<in> A \<Longrightarrow> a dvd b" and "\<And>c. (\<And>b. b \<in> A \<Longrightarrow> c dvd b) \<Longrightarrow> c dvd a" shows "Gcd A = a" using assms by (blast intro: associated_eqI Gcd_greatest Gcd_dvd normalize_Gcd) lemma dvd_GcdD: "x dvd Gcd A \<Longrightarrow> y \<in> A \<Longrightarrow> x dvd y" using Gcd_dvd dvd_trans by blast lemma dvd_Gcd_iff: "x dvd Gcd A \<longleftrightarrow> (\<forall>y\<in>A. x dvd y)" by (blast dest: dvd_GcdD intro: Gcd_greatest) lemma Gcd_mult: "Gcd ((*) c ` A) = normalize (c * Gcd A)" proof (cases "c = 0") case True then show ?thesis by auto next case [simp]: False have "Gcd ((*) c ` A) div c dvd Gcd A" by (intro Gcd_greatest, subst div_dvd_iff_mult) (auto intro!: Gcd_greatest Gcd_dvd simp: mult.commute[of _ c]) then have "Gcd ((*) c ` A) dvd c * Gcd A" by (subst (asm) div_dvd_iff_mult) (auto intro: Gcd_greatest simp: mult_ac) moreover have "c * Gcd A dvd Gcd ((*) c ` A)" by (intro Gcd_greatest) (auto intro: mult_dvd_mono Gcd_dvd) ultimately have "normalize (Gcd ((*) c ` A)) = normalize (c * Gcd A)" by (rule associatedI) then show ?thesis by simp qed lemma Lcm_eqI: assumes "normalize a = a" and "\<And>b. b \<in> A \<Longrightarrow> b dvd a" and "\<And>c. (\<And>b. b \<in> A \<Longrightarrow> b dvd c) \<Longrightarrow> a dvd c" shows "Lcm A = a" using assms by (blast intro: associated_eqI Lcm_least dvd_Lcm normalize_Lcm) lemma Lcm_dvdD: "Lcm A dvd x \<Longrightarrow> y \<in> A \<Longrightarrow> y dvd x" using dvd_Lcm dvd_trans by blast lemma Lcm_dvd_iff: "Lcm A dvd x \<longleftrightarrow> (\<forall>y\<in>A. y dvd x)" by (blast dest: Lcm_dvdD intro: Lcm_least) lemma Lcm_mult: assumes "A \<noteq> {}" shows "Lcm ((*) c ` A) = normalize (c * Lcm A)" proof (cases "c = 0") case True with assms have "(*) c ` A = {0}" by auto with True show ?thesis by auto next case [simp]: False from assms obtain x where x: "x \<in> A" by blast have "c dvd c * x" by simp also from x have "c * x dvd Lcm ((*) c ` A)" by (intro dvd_Lcm) auto finally have dvd: "c dvd Lcm ((*) c ` A)" . moreover have "Lcm A dvd Lcm ((*) c ` A) div c" by (intro Lcm_least dvd_mult_imp_div) (auto intro!: Lcm_least dvd_Lcm simp: mult.commute[of _ c]) ultimately have "c * Lcm A dvd Lcm ((*) c ` A)" by auto moreover have "Lcm ((*) c ` A) dvd c * Lcm A" by (intro Lcm_least) (auto intro: mult_dvd_mono dvd_Lcm) ultimately have "normalize (c * Lcm A) = normalize (Lcm ((*) c ` A))" by (rule associatedI) then show ?thesis by simp qed lemma Lcm_no_units: "Lcm A = Lcm (A - {a. is_unit a})" proof - have "(A - {a. is_unit a}) \<union> {a\<in>A. is_unit a} = A" by blast then have "Lcm A = lcm (Lcm (A - {a. is_unit a})) (Lcm {a\<in>A. is_unit a})" by (simp add: Lcm_Un [symmetric]) also have "Lcm {a\<in>A. is_unit a} = 1" by simp finally show ?thesis by simp qed lemma Lcm_0_iff': "Lcm A = 0 \<longleftrightarrow> (\<nexists>l. l \<noteq> 0 \<and> (\<forall>a\<in>A. a dvd l))" by (metis Lcm_least dvd_0_left dvd_Lcm) lemma Lcm_no_multiple: "(\<forall>m. m \<noteq> 0 \<longrightarrow> (\<exists>a\<in>A. \<not> a dvd m)) \<Longrightarrow> Lcm A = 0" by (auto simp: Lcm_0_iff') lemma Lcm_singleton [simp]: "Lcm {a} = normalize a" by simp lemma Lcm_2 [simp]: "Lcm {a, b} = lcm a b" by simp lemma Gcd_1: "1 \<in> A \<Longrightarrow> Gcd A = 1" by (auto intro!: Gcd_eq_1_I) lemma Gcd_singleton [simp]: "Gcd {a} = normalize a" by simp lemma Gcd_2 [simp]: "Gcd {a, b} = gcd a b" by simp lemma Gcd_mono: assumes "\<And>x. x \<in> A \<Longrightarrow> f x dvd g x" shows "(GCD x\<in>A. f x) dvd (GCD x\<in>A. g x)" proof (intro Gcd_greatest, safe) fix x assume "x \<in> A" hence "(GCD x\<in>A. f x) dvd f x" by (intro Gcd_dvd) auto also have "f x dvd g x" using \<open>x \<in> A\<close> assms by blast finally show "(GCD x\<in>A. f x) dvd \<dots>" . qed lemma Lcm_mono: assumes "\<And>x. x \<in> A \<Longrightarrow> f x dvd g x" shows "(LCM x\<in>A. f x) dvd (LCM x\<in>A. g x)" proof (intro Lcm_least, safe) fix x assume "x \<in> A" hence "f x dvd g x" by (rule assms) also have "g x dvd (LCM x\<in>A. g x)" using \<open>x \<in> A\<close> by (intro dvd_Lcm) auto finally show "f x dvd \<dots>" . qed end subsection \<open>An aside: GCD and LCM on finite sets for incomplete gcd rings\<close> context semiring_gcd begin sublocale Gcd_fin: bounded_quasi_semilattice_set gcd 0 1 normalize defines Gcd_fin ("Gcd\<^sub>f\<^sub>i\<^sub>n") = "Gcd_fin.F :: 'a set \<Rightarrow> 'a" .. abbreviation gcd_list :: "'a list \<Rightarrow> 'a" where "gcd_list xs \<equiv> Gcd\<^sub>f\<^sub>i\<^sub>n (set xs)" sublocale Lcm_fin: bounded_quasi_semilattice_set lcm 1 0 normalize defines Lcm_fin ("Lcm\<^sub>f\<^sub>i\<^sub>n") = Lcm_fin.F .. abbreviation lcm_list :: "'a list \<Rightarrow> 'a" where "lcm_list xs \<equiv> Lcm\<^sub>f\<^sub>i\<^sub>n (set xs)" lemma Gcd_fin_dvd: "a \<in> A \<Longrightarrow> Gcd\<^sub>f\<^sub>i\<^sub>n A dvd a" by (induct A rule: infinite_finite_induct) (auto intro: dvd_trans) lemma dvd_Lcm_fin: "a \<in> A \<Longrightarrow> a dvd Lcm\<^sub>f\<^sub>i\<^sub>n A" by (induct A rule: infinite_finite_induct) (auto intro: dvd_trans) lemma Gcd_fin_greatest: "a dvd Gcd\<^sub>f\<^sub>i\<^sub>n A" if "finite A" and "\<And>b. b \<in> A \<Longrightarrow> a dvd b" using that by (induct A) simp_all lemma Lcm_fin_least: "Lcm\<^sub>f\<^sub>i\<^sub>n A dvd a" if "finite A" and "\<And>b. b \<in> A \<Longrightarrow> b dvd a" using that by (induct A) simp_all lemma gcd_list_greatest: "a dvd gcd_list bs" if "\<And>b. b \<in> set bs \<Longrightarrow> a dvd b" by (rule Gcd_fin_greatest) (simp_all add: that) lemma lcm_list_least: "lcm_list bs dvd a" if "\<And>b. b \<in> set bs \<Longrightarrow> b dvd a" by (rule Lcm_fin_least) (simp_all add: that) lemma dvd_Gcd_fin_iff: "b dvd Gcd\<^sub>f\<^sub>i\<^sub>n A \<longleftrightarrow> (\<forall>a\<in>A. b dvd a)" if "finite A" using that by (auto intro: Gcd_fin_greatest Gcd_fin_dvd dvd_trans [of b "Gcd\<^sub>f\<^sub>i\<^sub>n A"]) lemma dvd_gcd_list_iff: "b dvd gcd_list xs \<longleftrightarrow> (\<forall>a\<in>set xs. b dvd a)" by (simp add: dvd_Gcd_fin_iff) lemma Lcm_fin_dvd_iff: "Lcm\<^sub>f\<^sub>i\<^sub>n A dvd b \<longleftrightarrow> (\<forall>a\<in>A. a dvd b)" if "finite A" using that by (auto intro: Lcm_fin_least dvd_Lcm_fin dvd_trans [of _ "Lcm\<^sub>f\<^sub>i\<^sub>n A" b]) lemma lcm_list_dvd_iff: "lcm_list xs dvd b \<longleftrightarrow> (\<forall>a\<in>set xs. a dvd b)" by (simp add: Lcm_fin_dvd_iff) lemma Gcd_fin_mult: "Gcd\<^sub>f\<^sub>i\<^sub>n (image (times b) A) = normalize (b * Gcd\<^sub>f\<^sub>i\<^sub>n A)" if "finite A" using that by induction (auto simp: gcd_mult_left) lemma Lcm_fin_mult: "Lcm\<^sub>f\<^sub>i\<^sub>n (image (times b) A) = normalize (b * Lcm\<^sub>f\<^sub>i\<^sub>n A)" if "A \<noteq> {}" proof (cases "b = 0") case True moreover from that have "times 0 ` A = {0}" by auto ultimately show ?thesis by simp next case False show ?thesis proof (cases "finite A") case False moreover have "inj_on (times b) A" using \<open>b \<noteq> 0\<close> by (rule inj_on_mult) ultimately have "infinite (times b ` A)" by (simp add: finite_image_iff) with False show ?thesis by simp next case True then show ?thesis using that by (induct A rule: finite_ne_induct) (auto simp: lcm_mult_left) qed qed lemma unit_factor_Gcd_fin: "unit_factor (Gcd\<^sub>f\<^sub>i\<^sub>n A) = of_bool (Gcd\<^sub>f\<^sub>i\<^sub>n A \<noteq> 0)" by (rule normalize_idem_imp_unit_factor_eq) simp lemma unit_factor_Lcm_fin: "unit_factor (Lcm\<^sub>f\<^sub>i\<^sub>n A) = of_bool (Lcm\<^sub>f\<^sub>i\<^sub>n A \<noteq> 0)" by (rule normalize_idem_imp_unit_factor_eq) simp lemma is_unit_Gcd_fin_iff [simp]: "is_unit (Gcd\<^sub>f\<^sub>i\<^sub>n A) \<longleftrightarrow> Gcd\<^sub>f\<^sub>i\<^sub>n A = 1" by (rule normalize_idem_imp_is_unit_iff) simp lemma is_unit_Lcm_fin_iff [simp]: "is_unit (Lcm\<^sub>f\<^sub>i\<^sub>n A) \<longleftrightarrow> Lcm\<^sub>f\<^sub>i\<^sub>n A = 1" by (rule normalize_idem_imp_is_unit_iff) simp lemma Gcd_fin_0_iff: "Gcd\<^sub>f\<^sub>i\<^sub>n A = 0 \<longleftrightarrow> A \<subseteq> {0} \<and> finite A" by (induct A rule: infinite_finite_induct) simp_all lemma Lcm_fin_0_iff: "Lcm\<^sub>f\<^sub>i\<^sub>n A = 0 \<longleftrightarrow> 0 \<in> A" if "finite A" using that by (induct A) (auto simp: lcm_eq_0_iff) lemma Lcm_fin_1_iff: "Lcm\<^sub>f\<^sub>i\<^sub>n A = 1 \<longleftrightarrow> (\<forall>a\<in>A. is_unit a) \<and> finite A" by (induct A rule: infinite_finite_induct) simp_all end context semiring_Gcd begin lemma Gcd_fin_eq_Gcd [simp]: "Gcd\<^sub>f\<^sub>i\<^sub>n A = Gcd A" if "finite A" for A :: "'a set" using that by induct simp_all lemma Gcd_set_eq_fold [code_unfold]: "Gcd (set xs) = fold gcd xs 0" by (simp add: Gcd_fin.set_eq_fold [symmetric]) lemma Lcm_fin_eq_Lcm [simp]: "Lcm\<^sub>f\<^sub>i\<^sub>n A = Lcm A" if "finite A" for A :: "'a set" using that by induct simp_all lemma Lcm_set_eq_fold [code_unfold]: "Lcm (set xs) = fold lcm xs 1" by (simp add: Lcm_fin.set_eq_fold [symmetric]) end subsection \<open>Coprimality\<close> context semiring_gcd begin lemma coprime_imp_gcd_eq_1 [simp]: "gcd a b = 1" if "coprime a b" proof - define t r s where "t = gcd a b" and "r = a div t" and "s = b div t" then have "a = t * r" and "b = t * s" by simp_all with that have "coprime (t * r) (t * s)" by simp then show ?thesis by (simp add: t_def) qed lemma gcd_eq_1_imp_coprime [dest!]: "coprime a b" if "gcd a b = 1" proof (rule coprimeI) fix c assume "c dvd a" and "c dvd b" then have "c dvd gcd a b" by (rule gcd_greatest) with that show "is_unit c" by simp qed lemma coprime_iff_gcd_eq_1 [presburger, code]: "coprime a b \<longleftrightarrow> gcd a b = 1" by rule (simp_all add: gcd_eq_1_imp_coprime) lemma is_unit_gcd [simp]: "is_unit (gcd a b) \<longleftrightarrow> coprime a b" by (simp add: coprime_iff_gcd_eq_1) lemma coprime_add_one_left [simp]: "coprime (a + 1) a" by (simp add: gcd_eq_1_imp_coprime ac_simps) lemma coprime_add_one_right [simp]: "coprime a (a + 1)" using coprime_add_one_left [of a] by (simp add: ac_simps) lemma coprime_mult_left_iff [simp]: "coprime (a * b) c \<longleftrightarrow> coprime a c \<and> coprime b c" proof assume "coprime (a * b) c" with coprime_common_divisor [of "a * b" c] have *: "is_unit d" if "d dvd a * b" and "d dvd c" for d using that by blast have "coprime a c" by (rule coprimeI, rule *) simp_all moreover have "coprime b c" by (rule coprimeI, rule *) simp_all ultimately show "coprime a c \<and> coprime b c" .. next assume "coprime a c \<and> coprime b c" then have "coprime a c" "coprime b c" by simp_all show "coprime (a * b) c" proof (rule coprimeI) fix d assume "d dvd a * b" then obtain r s where d: "d = r * s" "r dvd a" "s dvd b" by (rule dvd_productE) assume "d dvd c" with d have "r * s dvd c" by simp then have "r dvd c" "s dvd c" by (auto intro: dvd_mult_left dvd_mult_right) from \<open>coprime a c\<close> \<open>r dvd a\<close> \<open>r dvd c\<close> have "is_unit r" by (rule coprime_common_divisor) moreover from \<open>coprime b c\<close> \<open>s dvd b\<close> \<open>s dvd c\<close> have "is_unit s" by (rule coprime_common_divisor) ultimately show "is_unit d" by (simp add: d is_unit_mult_iff) qed qed lemma coprime_mult_right_iff [simp]: "coprime c (a * b) \<longleftrightarrow> coprime c a \<and> coprime c b" using coprime_mult_left_iff [of a b c] by (simp add: ac_simps) lemma coprime_power_left_iff [simp]: "coprime (a ^ n) b \<longleftrightarrow> coprime a b \<or> n = 0" proof (cases "n = 0") case True then show ?thesis by simp next case False then have "n > 0" by simp then show ?thesis by (induction n rule: nat_induct_non_zero) simp_all qed lemma coprime_power_right_iff [simp]: "coprime a (b ^ n) \<longleftrightarrow> coprime a b \<or> n = 0" using coprime_power_left_iff [of b n a] by (simp add: ac_simps) lemma prod_coprime_left: "coprime (\<Prod>i\<in>A. f i) a" if "\<And>i. i \<in> A \<Longrightarrow> coprime (f i) a" using that by (induct A rule: infinite_finite_induct) simp_all lemma prod_coprime_right: "coprime a (\<Prod>i\<in>A. f i)" if "\<And>i. i \<in> A \<Longrightarrow> coprime a (f i)" using that prod_coprime_left [of A f a] by (simp add: ac_simps) lemma prod_list_coprime_left: "coprime (prod_list xs) a" if "\<And>x. x \<in> set xs \<Longrightarrow> coprime x a" using that by (induct xs) simp_all lemma prod_list_coprime_right: "coprime a (prod_list xs)" if "\<And>x. x \<in> set xs \<Longrightarrow> coprime a x" using that prod_list_coprime_left [of xs a] by (simp add: ac_simps) lemma coprime_dvd_mult_left_iff: "a dvd b * c \<longleftrightarrow> a dvd b" if "coprime a c" proof assume "a dvd b" then show "a dvd b * c" by simp next assume "a dvd b * c" show "a dvd b" proof (cases "b = 0") case True then show ?thesis by simp next case False then have unit: "is_unit (unit_factor b)" by simp from \<open>coprime a c\<close> have "gcd (b * a) (b * c) * unit_factor b = b" by (subst gcd_mult_left) (simp add: ac_simps) moreover from \<open>a dvd b * c\<close> have "a dvd gcd (b * a) (b * c) * unit_factor b" by (simp add: dvd_mult_unit_iff unit) ultimately show ?thesis by simp qed qed lemma coprime_dvd_mult_right_iff: "a dvd c * b \<longleftrightarrow> a dvd b" if "coprime a c" using that coprime_dvd_mult_left_iff [of a c b] by (simp add: ac_simps) lemma divides_mult: "a * b dvd c" if "a dvd c" and "b dvd c" and "coprime a b" proof - from \<open>b dvd c\<close> obtain b' where "c = b * b'" .. with \<open>a dvd c\<close> have "a dvd b' * b" by (simp add: ac_simps) with \<open>coprime a b\<close> have "a dvd b'" by (simp add: coprime_dvd_mult_left_iff) then obtain a' where "b' = a * a'" .. with \<open>c = b * b'\<close> have "c = (a * b) * a'" by (simp add: ac_simps) then show ?thesis .. qed lemma div_gcd_coprime: assumes "a \<noteq> 0 \<or> b \<noteq> 0" shows "coprime (a div gcd a b) (b div gcd a b)" proof - let ?g = "gcd a b" let ?a' = "a div ?g" let ?b' = "b div ?g" let ?g' = "gcd ?a' ?b'" have dvdg: "?g dvd a" "?g dvd b" by simp_all have dvdg': "?g' dvd ?a'" "?g' dvd ?b'" by simp_all from dvdg dvdg' obtain ka kb ka' kb' where kab: "a = ?g * ka" "b = ?g * kb" "?a' = ?g' * ka'" "?b' = ?g' * kb'" unfolding dvd_def by blast from this [symmetric] have "?g * ?a' = (?g * ?g') * ka'" "?g * ?b' = (?g * ?g') * kb'" by (simp_all add: mult.assoc mult.left_commute [of "gcd a b"]) then have dvdgg':"?g * ?g' dvd a" "?g* ?g' dvd b" by (auto simp: dvd_mult_div_cancel [OF dvdg(1)] dvd_mult_div_cancel [OF dvdg(2)] dvd_def) have "?g \<noteq> 0" using assms by simp moreover from gcd_greatest [OF dvdgg'] have "?g * ?g' dvd ?g" . ultimately show ?thesis using dvd_times_left_cancel_iff [of "gcd a b" _ 1] by simp (simp only: coprime_iff_gcd_eq_1) qed lemma gcd_coprime: assumes c: "gcd a b \<noteq> 0" and a: "a = a' * gcd a b" and b: "b = b' * gcd a b" shows "coprime a' b'" proof - from c have "a \<noteq> 0 \<or> b \<noteq> 0" by simp with div_gcd_coprime have "coprime (a div gcd a b) (b div gcd a b)" . also from assms have "a div gcd a b = a'" using dvd_div_eq_mult gcd_dvd1 by blast also from assms have "b div gcd a b = b'" using dvd_div_eq_mult gcd_dvd1 by blast finally show ?thesis . qed lemma gcd_coprime_exists: assumes "gcd a b \<noteq> 0" shows "\<exists>a' b'. a = a' * gcd a b \<and> b = b' * gcd a b \<and> coprime a' b'" proof - have "coprime (a div gcd a b) (b div gcd a b)" using assms div_gcd_coprime by auto then show ?thesis by force qed lemma pow_divides_pow_iff [simp]: "a ^ n dvd b ^ n \<longleftrightarrow> a dvd b" if "n > 0" proof (cases "gcd a b = 0") case True then show ?thesis by simp next case False show ?thesis proof let ?d = "gcd a b" from \<open>n > 0\<close> obtain m where m: "n = Suc m" by (cases n) simp_all from False have zn: "?d ^ n \<noteq> 0" by (rule power_not_zero) from gcd_coprime_exists [OF False] obtain a' b' where ab': "a = a' * ?d" "b = b' * ?d" "coprime a' b'" by blast assume "a ^ n dvd b ^ n" then have "(a' * ?d) ^ n dvd (b' * ?d) ^ n" by (simp add: ab'(1,2)[symmetric]) then have "?d^n * a'^n dvd ?d^n * b'^n" by (simp only: power_mult_distrib ac_simps) with zn have "a' ^ n dvd b' ^ n" by simp then have "a' dvd b' ^ n" using dvd_trans[of a' "a'^n" "b'^n"] by (simp add: m) then have "a' dvd b' ^ m * b'" by (simp add: m ac_simps) moreover have "coprime a' (b' ^ n)" using \<open>coprime a' b'\<close> by simp then have "a' dvd b'" using \<open>a' dvd b' ^ n\<close> coprime_dvd_mult_left_iff dvd_mult by blast then have "a' * ?d dvd b' * ?d" by (rule mult_dvd_mono) simp with ab'(1,2) show "a dvd b" by simp next assume "a dvd b" with \<open>n > 0\<close> show "a ^ n dvd b ^ n" by (induction rule: nat_induct_non_zero) (simp_all add: mult_dvd_mono) qed qed lemma coprime_crossproduct: fixes a b c d :: 'a assumes "coprime a d" and "coprime b c" shows "normalize a * normalize c = normalize b * normalize d \<longleftrightarrow> normalize a = normalize b \<and> normalize c = normalize d" (is "?lhs \<longleftrightarrow> ?rhs") proof assume ?rhs then show ?lhs by simp next assume ?lhs from \<open>?lhs\<close> have "normalize a dvd normalize b * normalize d" by (auto intro: dvdI dest: sym) with \<open>coprime a d\<close> have "a dvd b" by (simp add: coprime_dvd_mult_left_iff normalize_mult [symmetric]) from \<open>?lhs\<close> have "normalize b dvd normalize a * normalize c" by (auto intro: dvdI dest: sym) with \<open>coprime b c\<close> have "b dvd a" by (simp add: coprime_dvd_mult_left_iff normalize_mult [symmetric]) from \<open>?lhs\<close> have "normalize c dvd normalize d * normalize b" by (auto intro: dvdI dest: sym simp add: mult.commute) with \<open>coprime b c\<close> have "c dvd d" by (simp add: coprime_dvd_mult_left_iff coprime_commute normalize_mult [symmetric]) from \<open>?lhs\<close> have "normalize d dvd normalize c * normalize a" by (auto intro: dvdI dest: sym simp add: mult.commute) with \<open>coprime a d\<close> have "d dvd c" by (simp add: coprime_dvd_mult_left_iff coprime_commute normalize_mult [symmetric]) from \<open>a dvd b\<close> \<open>b dvd a\<close> have "normalize a = normalize b" by (rule associatedI) moreover from \<open>c dvd d\<close> \<open>d dvd c\<close> have "normalize c = normalize d" by (rule associatedI) ultimately show ?rhs .. qed lemma gcd_mult_left_left_cancel: "gcd (c * a) b = gcd a b" if "coprime b c" proof - have "coprime (gcd b (a * c)) c" by (rule coprimeI) (auto intro: that coprime_common_divisor) then have "gcd b (a * c) dvd a" using coprime_dvd_mult_left_iff [of "gcd b (a * c)" c a] by simp then show ?thesis by (auto intro: associated_eqI simp add: ac_simps) qed lemma gcd_mult_left_right_cancel: "gcd (a * c) b = gcd a b" if "coprime b c" using that gcd_mult_left_left_cancel [of b c a] by (simp add: ac_simps) lemma gcd_mult_right_left_cancel: "gcd a (c * b) = gcd a b" if "coprime a c" using that gcd_mult_left_left_cancel [of a c b] by (simp add: ac_simps) lemma gcd_mult_right_right_cancel: "gcd a (b * c) = gcd a b" if "coprime a c" using that gcd_mult_right_left_cancel [of a c b] by (simp add: ac_simps) lemma gcd_exp_weak: "gcd (a ^ n) (b ^ n) = normalize (gcd a b ^ n)" proof (cases "a = 0 \<and> b = 0 \<or> n = 0") case True then show ?thesis by (cases n) simp_all next case False then have "coprime (a div gcd a b) (b div gcd a b)" and "n > 0" by (auto intro: div_gcd_coprime) then have "coprime ((a div gcd a b) ^ n) ((b div gcd a b) ^ n)" by simp then have "1 = gcd ((a div gcd a b) ^ n) ((b div gcd a b) ^ n)" by simp then have "normalize (gcd a b ^ n) = normalize (gcd a b ^ n * \<dots>)" by simp also have "\<dots> = gcd (gcd a b ^ n * (a div gcd a b) ^ n) (gcd a b ^ n * (b div gcd a b) ^ n)" by (rule gcd_mult_left [symmetric]) also have "(gcd a b) ^ n * (a div gcd a b) ^ n = a ^ n" by (simp add: ac_simps div_power dvd_power_same) also have "(gcd a b) ^ n * (b div gcd a b) ^ n = b ^ n" by (simp add: ac_simps div_power dvd_power_same) finally show ?thesis by simp qed lemma division_decomp: assumes "a dvd b * c" shows "\<exists>b' c'. a = b' * c' \<and> b' dvd b \<and> c' dvd c" proof (cases "gcd a b = 0") case True then have "a = 0 \<and> b = 0" by simp then have "a = 0 * c \<and> 0 dvd b \<and> c dvd c" by simp then show ?thesis by blast next case False let ?d = "gcd a b" from gcd_coprime_exists [OF False] obtain a' b' where ab': "a = a' * ?d" "b = b' * ?d" "coprime a' b'" by blast from ab'(1) have "a' dvd a" .. with assms have "a' dvd b * c" using dvd_trans [of a' a "b * c"] by simp from assms ab'(1,2) have "a' * ?d dvd (b' * ?d) * c" by simp then have "?d * a' dvd ?d * (b' * c)" by (simp add: mult_ac) with \<open>?d \<noteq> 0\<close> have "a' dvd b' * c" by simp then have "a' dvd c" using \<open>coprime a' b'\<close> by (simp add: coprime_dvd_mult_right_iff) with ab'(1) have "a = ?d * a' \<and> ?d dvd b \<and> a' dvd c" by (simp add: ac_simps) then show ?thesis by blast qed lemma lcm_coprime: "coprime a b \<Longrightarrow> lcm a b = normalize (a * b)" by (subst lcm_gcd) simp end context ring_gcd begin lemma coprime_minus_left_iff [simp]: "coprime (- a) b \<longleftrightarrow> coprime a b" by (rule; rule coprimeI) (auto intro: coprime_common_divisor) lemma coprime_minus_right_iff [simp]: "coprime a (- b) \<longleftrightarrow> coprime a b" using coprime_minus_left_iff [of b a] by (simp add: ac_simps) lemma coprime_diff_one_left [simp]: "coprime (a - 1) a" using coprime_add_one_right [of "a - 1"] by simp lemma coprime_doff_one_right [simp]: "coprime a (a - 1)" using coprime_diff_one_left [of a] by (simp add: ac_simps) end context semiring_Gcd begin lemma Lcm_coprime: assumes "finite A" and "A \<noteq> {}" and "\<And>a b. a \<in> A \<Longrightarrow> b \<in> A \<Longrightarrow> a \<noteq> b \<Longrightarrow> coprime a b" shows "Lcm A = normalize (\<Prod>A)" using assms proof (induct rule: finite_ne_induct) case singleton then show ?case by simp next case (insert a A) have "Lcm (insert a A) = lcm a (Lcm A)" by simp also from insert have "Lcm A = normalize (\<Prod>A)" by blast also have "lcm a \<dots> = lcm a (\<Prod>A)" by (cases "\<Prod>A = 0") (simp_all add: lcm_div_unit2) also from insert have "coprime a (\<Prod>A)" by (subst coprime_commute, intro prod_coprime_left) auto with insert have "lcm a (\<Prod>A) = normalize (\<Prod>(insert a A))" by (simp add: lcm_coprime) finally show ?case . qed lemma Lcm_coprime': "card A \<noteq> 0 \<Longrightarrow> (\<And>a b. a \<in> A \<Longrightarrow> b \<in> A \<Longrightarrow> a \<noteq> b \<Longrightarrow> coprime a b) \<Longrightarrow> Lcm A = normalize (\<Prod>A)" by (rule Lcm_coprime) (simp_all add: card_eq_0_iff) end subsection \<open>GCD and LCM for multiplicative normalisation functions\<close> class semiring_gcd_mult_normalize = semiring_gcd + normalization_semidom_multiplicative begin lemma mult_gcd_left: "c * gcd a b = unit_factor c * gcd (c * a) (c * b)" by (simp add: gcd_mult_left normalize_mult mult.assoc [symmetric]) lemma mult_gcd_right: "gcd a b * c = gcd (a * c) (b * c) * unit_factor c" using mult_gcd_left [of c a b] by (simp add: ac_simps) lemma gcd_mult_distrib': "normalize c * gcd a b = gcd (c * a) (c * b)" by (subst gcd_mult_left) (simp_all add: normalize_mult) lemma gcd_mult_distrib: "k * gcd a b = gcd (k * a) (k * b) * unit_factor k" proof- have "normalize k * gcd a b = gcd (k * a) (k * b)" by (simp add: gcd_mult_distrib') then have "normalize k * gcd a b * unit_factor k = gcd (k * a) (k * b) * unit_factor k" by simp then have "normalize k * unit_factor k * gcd a b = gcd (k * a) (k * b) * unit_factor k" by (simp only: ac_simps) then show ?thesis by simp qed lemma gcd_mult_lcm [simp]: "gcd a b * lcm a b = normalize a * normalize b" by (simp add: lcm_gcd normalize_mult dvd_normalize_div) lemma lcm_mult_gcd [simp]: "lcm a b * gcd a b = normalize a * normalize b" using gcd_mult_lcm [of a b] by (simp add: ac_simps) lemma mult_lcm_left: "c * lcm a b = unit_factor c * lcm (c * a) (c * b)" by (simp add: lcm_mult_left mult.assoc [symmetric] normalize_mult) lemma mult_lcm_right: "lcm a b * c = lcm (a * c) (b * c) * unit_factor c" using mult_lcm_left [of c a b] by (simp add: ac_simps) lemma lcm_gcd_prod: "lcm a b * gcd a b = normalize (a * b)" by (simp add: lcm_gcd dvd_normalize_div normalize_mult) lemma lcm_mult_distrib': "normalize c * lcm a b = lcm (c * a) (c * b)" by (subst lcm_mult_left) (simp add: normalize_mult) lemma lcm_mult_distrib: "k * lcm a b = lcm (k * a) (k * b) * unit_factor k" proof- have "normalize k * lcm a b = lcm (k * a) (k * b)" by (simp add: lcm_mult_distrib') then have "normalize k * lcm a b * unit_factor k = lcm (k * a) (k * b) * unit_factor k" by simp then have "normalize k * unit_factor k * lcm a b = lcm (k * a) (k * b) * unit_factor k" by (simp only: ac_simps) then show ?thesis by simp qed lemma coprime_crossproduct': fixes a b c d assumes "b \<noteq> 0" assumes unit_factors: "unit_factor b = unit_factor d" assumes coprime: "coprime a b" "coprime c d" shows "a * d = b * c \<longleftrightarrow> a = c \<and> b = d" proof safe assume eq: "a * d = b * c" hence "normalize a * normalize d = normalize c * normalize b" by (simp only: normalize_mult [symmetric] mult_ac) with coprime have "normalize b = normalize d" by (subst (asm) coprime_crossproduct) simp_all from this and unit_factors show "b = d" by (rule normalize_unit_factor_eqI) from eq have "a * d = c * d" by (simp only: \<open>b = d\<close> mult_ac) with \<open>b \<noteq> 0\<close> \<open>b = d\<close> show "a = c" by simp qed (simp_all add: mult_ac) lemma gcd_exp [simp]: "gcd (a ^ n) (b ^ n) = gcd a b ^ n" using gcd_exp_weak[of a n b] by (simp add: normalize_power) end subsection \<open>GCD and LCM on \<^typ>\<open>nat\<close> and \<^typ>\<open>int\<close>\<close> instantiation nat :: gcd begin fun gcd_nat :: "nat \<Rightarrow> nat \<Rightarrow> nat" where "gcd_nat x y = (if y = 0 then x else gcd y (x mod y))" definition lcm_nat :: "nat \<Rightarrow> nat \<Rightarrow> nat" where "lcm_nat x y = x * y div (gcd x y)" instance .. end instantiation int :: gcd begin definition gcd_int :: "int \<Rightarrow> int \<Rightarrow> int" where "gcd_int x y = int (gcd (nat \<bar>x\<bar>) (nat \<bar>y\<bar>))" definition lcm_int :: "int \<Rightarrow> int \<Rightarrow> int" where "lcm_int x y = int (lcm (nat \<bar>x\<bar>) (nat \<bar>y\<bar>))" instance .. end lemma gcd_int_int_eq [simp]: "gcd (int m) (int n) = int (gcd m n)" by (simp add: gcd_int_def) lemma gcd_nat_abs_left_eq [simp]: "gcd (nat \<bar>k\<bar>) n = nat (gcd k (int n))" by (simp add: gcd_int_def) lemma gcd_nat_abs_right_eq [simp]: "gcd n (nat \<bar>k\<bar>) = nat (gcd (int n) k)" by (simp add: gcd_int_def) lemma abs_gcd_int [simp]: "\<bar>gcd x y\<bar> = gcd x y" for x y :: int by (simp only: gcd_int_def) lemma gcd_abs1_int [simp]: "gcd \<bar>x\<bar> y = gcd x y" for x y :: int by (simp only: gcd_int_def) simp lemma gcd_abs2_int [simp]: "gcd x \<bar>y\<bar> = gcd x y" for x y :: int by (simp only: gcd_int_def) simp lemma lcm_int_int_eq [simp]: "lcm (int m) (int n) = int (lcm m n)" by (simp add: lcm_int_def) lemma lcm_nat_abs_left_eq [simp]: "lcm (nat \<bar>k\<bar>) n = nat (lcm k (int n))" by (simp add: lcm_int_def) lemma lcm_nat_abs_right_eq [simp]: "lcm n (nat \<bar>k\<bar>) = nat (lcm (int n) k)" by (simp add: lcm_int_def) lemma lcm_abs1_int [simp]: "lcm \<bar>x\<bar> y = lcm x y" for x y :: int by (simp only: lcm_int_def) simp lemma lcm_abs2_int [simp]: "lcm x \<bar>y\<bar> = lcm x y" for x y :: int by (simp only: lcm_int_def) simp lemma abs_lcm_int [simp]: "\<bar>lcm i j\<bar> = lcm i j" for i j :: int by (simp only: lcm_int_def) lemma gcd_nat_induct [case_names base step]: fixes m n :: nat assumes "\<And>m. P m 0" and "\<And>m n. 0 < n \<Longrightarrow> P n (m mod n) \<Longrightarrow> P m n" shows "P m n" proof (induction m n rule: gcd_nat.induct) case (1 x y) then show ?case using assms neq0_conv by blast qed lemma gcd_neg1_int [simp]: "gcd (- x) y = gcd x y" for x y :: int by (simp only: gcd_int_def) simp lemma gcd_neg2_int [simp]: "gcd x (- y) = gcd x y" for x y :: int by (simp only: gcd_int_def) simp lemma gcd_cases_int: fixes x y :: int assumes "x \<ge> 0 \<Longrightarrow> y \<ge> 0 \<Longrightarrow> P (gcd x y)" and "x \<ge> 0 \<Longrightarrow> y \<le> 0 \<Longrightarrow> P (gcd x (- y))" and "x \<le> 0 \<Longrightarrow> y \<ge> 0 \<Longrightarrow> P (gcd (- x) y)" and "x \<le> 0 \<Longrightarrow> y \<le> 0 \<Longrightarrow> P (gcd (- x) (- y))" shows "P (gcd x y)" using assms by auto arith lemma gcd_ge_0_int [simp]: "gcd (x::int) y >= 0" for x y :: int by (simp add: gcd_int_def) lemma lcm_neg1_int: "lcm (- x) y = lcm x y" for x y :: int by (simp only: lcm_int_def) simp lemma lcm_neg2_int: "lcm x (- y) = lcm x y" for x y :: int by (simp only: lcm_int_def) simp lemma lcm_cases_int: fixes x y :: int assumes "x \<ge> 0 \<Longrightarrow> y \<ge> 0 \<Longrightarrow> P (lcm x y)" and "x \<ge> 0 \<Longrightarrow> y \<le> 0 \<Longrightarrow> P (lcm x (- y))" and "x \<le> 0 \<Longrightarrow> y \<ge> 0 \<Longrightarrow> P (lcm (- x) y)" and "x \<le> 0 \<Longrightarrow> y \<le> 0 \<Longrightarrow> P (lcm (- x) (- y))" shows "P (lcm x y)" using assms by (auto simp: lcm_neg1_int lcm_neg2_int) arith lemma lcm_ge_0_int [simp]: "lcm x y \<ge> 0" for x y :: int by (simp only: lcm_int_def) lemma gcd_0_nat: "gcd x 0 = x" for x :: nat by simp lemma gcd_0_int [simp]: "gcd x 0 = \<bar>x\<bar>" for x :: int by (auto simp: gcd_int_def) lemma gcd_0_left_nat: "gcd 0 x = x" for x :: nat by simp lemma gcd_0_left_int [simp]: "gcd 0 x = \<bar>x\<bar>" for x :: int by (auto simp: gcd_int_def) lemma gcd_red_nat: "gcd x y = gcd y (x mod y)" for x y :: nat by (cases "y = 0") auto text \<open>Weaker, but useful for the simplifier.\<close> lemma gcd_non_0_nat: "y \<noteq> 0 \<Longrightarrow> gcd x y = gcd y (x mod y)" for x y :: nat by simp lemma gcd_1_nat [simp]: "gcd m 1 = 1" for m :: nat by simp lemma gcd_Suc_0 [simp]: "gcd m (Suc 0) = Suc 0" for m :: nat by simp lemma gcd_1_int [simp]: "gcd m 1 = 1" for m :: int by (simp add: gcd_int_def) lemma gcd_idem_nat: "gcd x x = x" for x :: nat by simp lemma gcd_idem_int: "gcd x x = \<bar>x\<bar>" for x :: int by (auto simp: gcd_int_def) declare gcd_nat.simps [simp del] text \<open> \<^medskip> \<^term>\<open>gcd m n\<close> divides \<open>m\<close> and \<open>n\<close>. The conjunctions don't seem provable separately. \<close> instance nat :: semiring_gcd proof fix m n :: nat show "gcd m n dvd m" and "gcd m n dvd n" proof (induct m n rule: gcd_nat_induct) case (step m n) then have "gcd n (m mod n) dvd m" by (metis dvd_mod_imp_dvd) with step show "gcd m n dvd m" by (simp add: gcd_non_0_nat) qed (simp_all add: gcd_0_nat gcd_non_0_nat) next fix m n k :: nat assume "k dvd m" and "k dvd n" then show "k dvd gcd m n" by (induct m n rule: gcd_nat_induct) (simp_all add: gcd_non_0_nat dvd_mod gcd_0_nat) qed (simp_all add: lcm_nat_def) instance int :: ring_gcd proof fix k l r :: int show [simp]: "gcd k l dvd k" "gcd k l dvd l" using gcd_dvd1 [of "nat \<bar>k\<bar>" "nat \<bar>l\<bar>"] gcd_dvd2 [of "nat \<bar>k\<bar>" "nat \<bar>l\<bar>"] by simp_all show "lcm k l = normalize (k * l div gcd k l)" using lcm_gcd [of "nat \<bar>k\<bar>" "nat \<bar>l\<bar>"] by (simp add: nat_eq_iff of_nat_div abs_mult abs_div) assume "r dvd k" "r dvd l" then show "r dvd gcd k l" using gcd_greatest [of "nat \<bar>r\<bar>" "nat \<bar>k\<bar>" "nat \<bar>l\<bar>"] by simp qed simp lemma gcd_le1_nat [simp]: "a \<noteq> 0 \<Longrightarrow> gcd a b \<le> a" for a b :: nat by (rule dvd_imp_le) auto lemma gcd_le2_nat [simp]: "b \<noteq> 0 \<Longrightarrow> gcd a b \<le> b" for a b :: nat by (rule dvd_imp_le) auto lemma gcd_le1_int [simp]: "a > 0 \<Longrightarrow> gcd a b \<le> a" for a b :: int by (rule zdvd_imp_le) auto lemma gcd_le2_int [simp]: "b > 0 \<Longrightarrow> gcd a b \<le> b" for a b :: int by (rule zdvd_imp_le) auto lemma gcd_pos_nat [simp]: "gcd m n > 0 \<longleftrightarrow> m \<noteq> 0 \<or> n \<noteq> 0" for m n :: nat using gcd_eq_0_iff [of m n] by arith lemma gcd_pos_int [simp]: "gcd m n > 0 \<longleftrightarrow> m \<noteq> 0 \<or> n \<noteq> 0" for m n :: int using gcd_eq_0_iff [of m n] gcd_ge_0_int [of m n] by arith lemma gcd_unique_nat: "d dvd a \<and> d dvd b \<and> (\<forall>e. e dvd a \<and> e dvd b \<longrightarrow> e dvd d) \<longleftrightarrow> d = gcd a b" for d a :: nat using gcd_unique by fastforce lemma gcd_unique_int: "d \<ge> 0 \<and> d dvd a \<and> d dvd b \<and> (\<forall>e. e dvd a \<and> e dvd b \<longrightarrow> e dvd d) \<longleftrightarrow> d = gcd a b" for d a :: int using zdvd_antisym_nonneg by auto interpretation gcd_nat: semilattice_neutr_order gcd "0::nat" Rings.dvd "\<lambda>m n. m dvd n \<and> m \<noteq> n" by standard (auto simp: gcd_unique_nat [symmetric] intro: dvd_antisym dvd_trans) lemma gcd_proj1_if_dvd_int [simp]: "x dvd y \<Longrightarrow> gcd x y = \<bar>x\<bar>" for x y :: int by (metis abs_dvd_iff gcd_0_left_int gcd_unique_int) lemma gcd_proj2_if_dvd_int [simp]: "y dvd x \<Longrightarrow> gcd x y = \<bar>y\<bar>" for x y :: int by (metis gcd_proj1_if_dvd_int gcd.commute) text \<open>\<^medskip> Multiplication laws.\<close> lemma gcd_mult_distrib_nat: "k * gcd m n = gcd (k * m) (k * n)" for k m n :: nat \<comment> \<open>@{cite \<open>page 27\<close> davenport92}\<close> by (simp add: gcd_mult_left) lemma gcd_mult_distrib_int: "\<bar>k\<bar> * gcd m n = gcd (k * m) (k * n)" for k m n :: int by (simp add: gcd_mult_left abs_mult) text \<open>\medskip Addition laws.\<close> (* TODO: add the other variations? *) lemma gcd_diff1_nat: "m \<ge> n \<Longrightarrow> gcd (m - n) n = gcd m n" for m n :: nat by (subst gcd_add1 [symmetric]) auto lemma gcd_diff2_nat: "n \<ge> m \<Longrightarrow> gcd (n - m) n = gcd m n" for m n :: nat by (metis gcd.commute gcd_add2 gcd_diff1_nat le_add_diff_inverse2) lemma gcd_non_0_int: fixes x y :: int assumes "y > 0" shows "gcd x y = gcd y (x mod y)" proof (cases "x mod y = 0") case False then have neg: "x mod y = y - (- x) mod y" by (simp add: zmod_zminus1_eq_if) have xy: "0 \<le> x mod y" by (simp add: assms) show ?thesis proof (cases "x < 0") case True have "nat (- x mod y) \<le> nat y" by (simp add: assms dual_order.order_iff_strict) moreover have "gcd (nat (- x)) (nat y) = gcd (nat (- x mod y)) (nat y)" using True assms gcd_non_0_nat nat_mod_distrib by auto ultimately have "gcd (nat (- x)) (nat y) = gcd (nat y) (nat (x mod y))" using assms by (simp add: neg nat_diff_distrib') (metis gcd.commute gcd_diff2_nat) with assms \<open>0 \<le> x mod y\<close> show ?thesis by (simp add: True dual_order.order_iff_strict gcd_int_def) next case False with assms xy have "gcd (nat x) (nat y) = gcd (nat y) (nat x mod nat y)" using gcd_red_nat by blast with False assms show ?thesis by (simp add: gcd_int_def nat_mod_distrib) qed qed (use assms in auto) lemma gcd_red_int: "gcd x y = gcd y (x mod y)" for x y :: int proof (cases y "0::int" rule: linorder_cases) case less with gcd_non_0_int [of "- y" "- x"] show ?thesis by auto next case greater with gcd_non_0_int [of y x] show ?thesis by auto qed auto (* TODO: differences, and all variations of addition rules as simplification rules for nat and int *) (* TODO: add the three variations of these, and for ints? *) lemma finite_divisors_nat [simp]: (* FIXME move *) fixes m :: nat assumes "m > 0" shows "finite {d. d dvd m}" proof- from assms have "{d. d dvd m} \<subseteq> {d. d \<le> m}" by (auto dest: dvd_imp_le) then show ?thesis using finite_Collect_le_nat by (rule finite_subset) qed lemma finite_divisors_int [simp]: fixes i :: int assumes "i \<noteq> 0" shows "finite {d. d dvd i}" proof - have "{d. \<bar>d\<bar> \<le> \<bar>i\<bar>} = {- \<bar>i\<bar>..\<bar>i\<bar>}" by (auto simp: abs_if) then have "finite {d. \<bar>d\<bar> \<le> \<bar>i\<bar>}" by simp from finite_subset [OF _ this] show ?thesis using assms by (simp add: dvd_imp_le_int subset_iff) qed lemma Max_divisors_self_nat [simp]: "n \<noteq> 0 \<Longrightarrow> Max {d::nat. d dvd n} = n" by (fastforce intro: antisym Max_le_iff[THEN iffD2] simp: dvd_imp_le) lemma Max_divisors_self_int [simp]: assumes "n \<noteq> 0" shows "Max {d::int. d dvd n} = \<bar>n\<bar>" proof (rule antisym) show "Max {d. d dvd n} \<le> \<bar>n\<bar>" using assms by (auto intro: abs_le_D1 dvd_imp_le_int intro!: Max_le_iff [THEN iffD2]) qed (simp add: assms) lemma gcd_is_Max_divisors_nat: fixes m n :: nat assumes "n > 0" shows "gcd m n = Max {d. d dvd m \<and> d dvd n}" proof (rule Max_eqI[THEN sym], simp_all) show "finite {d. d dvd m \<and> d dvd n}" by (simp add: \<open>n > 0\<close>) show "\<And>y. y dvd m \<and> y dvd n \<Longrightarrow> y \<le> gcd m n" by (simp add: \<open>n > 0\<close> dvd_imp_le) qed lemma gcd_is_Max_divisors_int: fixes m n :: int assumes "n \<noteq> 0" shows "gcd m n = Max {d. d dvd m \<and> d dvd n}" proof (rule Max_eqI[THEN sym], simp_all) show "finite {d. d dvd m \<and> d dvd n}" by (simp add: \<open>n \<noteq> 0\<close>) show "\<And>y. y dvd m \<and> y dvd n \<Longrightarrow> y \<le> gcd m n" by (simp add: \<open>n \<noteq> 0\<close> zdvd_imp_le) qed lemma gcd_code_int [code]: "gcd k l = \<bar>if l = 0 then k else gcd l (\<bar>k\<bar> mod \<bar>l\<bar>)\<bar>" for k l :: int using gcd_red_int [of "\<bar>k\<bar>" "\<bar>l\<bar>"] by simp lemma coprime_Suc_left_nat [simp]: "coprime (Suc n) n" using coprime_add_one_left [of n] by simp lemma coprime_Suc_right_nat [simp]: "coprime n (Suc n)" using coprime_Suc_left_nat [of n] by (simp add: ac_simps) lemma coprime_diff_one_left_nat [simp]: "coprime (n - 1) n" if "n > 0" for n :: nat using that coprime_Suc_right_nat [of "n - 1"] by simp lemma coprime_diff_one_right_nat [simp]: "coprime n (n - 1)" if "n > 0" for n :: nat using that coprime_diff_one_left_nat [of n] by (simp add: ac_simps) lemma coprime_crossproduct_nat: fixes a b c d :: nat assumes "coprime a d" and "coprime b c" shows "a * c = b * d \<longleftrightarrow> a = b \<and> c = d" using assms coprime_crossproduct [of a d b c] by simp lemma coprime_crossproduct_int: fixes a b c d :: int assumes "coprime a d" and "coprime b c" shows "\<bar>a\<bar> * \<bar>c\<bar> = \<bar>b\<bar> * \<bar>d\<bar> \<longleftrightarrow> \<bar>a\<bar> = \<bar>b\<bar> \<and> \<bar>c\<bar> = \<bar>d\<bar>" using assms coprime_crossproduct [of a d b c] by simp subsection \<open>Bezout's theorem\<close> text \<open> Function \<open>bezw\<close> returns a pair of witnesses to Bezout's theorem -- see the theorems that follow the definition. \<close> fun bezw :: "nat \<Rightarrow> nat \<Rightarrow> int * int" where "bezw x y = (if y = 0 then (1, 0) else (snd (bezw y (x mod y)), fst (bezw y (x mod y)) - snd (bezw y (x mod y)) * int(x div y)))" lemma bezw_0 [simp]: "bezw x 0 = (1, 0)" by simp lemma bezw_non_0: "y > 0 \<Longrightarrow> bezw x y = (snd (bezw y (x mod y)), fst (bezw y (x mod y)) - snd (bezw y (x mod y)) * int(x div y))" by simp declare bezw.simps [simp del] lemma bezw_aux: "int (gcd x y) = fst (bezw x y) * int x + snd (bezw x y) * int y" proof (induct x y rule: gcd_nat_induct) case (step m n) then have "fst (bezw m n) * int m + snd (bezw m n) * int n - int (gcd m n) = int m * snd (bezw n (m mod n)) - (int (m mod n) * snd (bezw n (m mod n)) + int n * (int (m div n) * snd (bezw n (m mod n))))" by (simp add: bezw_non_0 gcd_non_0_nat field_simps) also have "\<dots> = int m * snd (bezw n (m mod n)) - (int (m mod n) + int (n * (m div n))) * snd (bezw n (m mod n))" by (simp add: distrib_right) also have "\<dots> = 0" by (metis cancel_comm_monoid_add_class.diff_cancel mod_mult_div_eq of_nat_add) finally show ?case by simp qed auto lemma bezout_int: "\<exists>u v. u * x + v * y = gcd x y" for x y :: int proof - have aux: "x \<ge> 0 \<Longrightarrow> y \<ge> 0 \<Longrightarrow> \<exists>u v. u * x + v * y = gcd x y" for x y :: int apply (rule_tac x = "fst (bezw (nat x) (nat y))" in exI) apply (rule_tac x = "snd (bezw (nat x) (nat y))" in exI) by (simp add: bezw_aux gcd_int_def) consider "x \<ge> 0" "y \<ge> 0" | "x \<ge> 0" "y \<le> 0" | "x \<le> 0" "y \<ge> 0" | "x \<le> 0" "y \<le> 0" using linear by blast then show ?thesis proof cases case 1 then show ?thesis by (rule aux) next case 2 then show ?thesis using aux [of x "-y"] by (metis gcd_neg2_int mult.commute mult_minus_right neg_0_le_iff_le) next case 3 then show ?thesis using aux [of "-x" y] by (metis gcd.commute gcd_neg2_int mult.commute mult_minus_right neg_0_le_iff_le) next case 4 then show ?thesis using aux [of "-x" "-y"] by (metis diff_0 diff_ge_0_iff_ge gcd_neg1_int gcd_neg2_int mult.commute mult_minus_right) qed qed text \<open>Versions of Bezout for \<open>nat\<close>, by Amine Chaieb.\<close> lemma Euclid_induct [case_names swap zero add]: fixes P :: "nat \<Rightarrow> nat \<Rightarrow> bool" assumes c: "\<And>a b. P a b \<longleftrightarrow> P b a" and z: "\<And>a. P a 0" and add: "\<And>a b. P a b \<longrightarrow> P a (a + b)" shows "P a b" proof (induct "a + b" arbitrary: a b rule: less_induct) case less consider (eq) "a = b" | (lt) "a < b" "a + b - a < a + b" | "b = 0" | "b + a - b < a + b" by arith show ?case proof (cases a b rule: linorder_cases) case equal with add [rule_format, OF z [rule_format, of a]] show ?thesis by simp next case lt: less then consider "a = 0" | "a + b - a < a + b" by arith then show ?thesis proof cases case 1 with z c show ?thesis by blast next case 2 also have *: "a + b - a = a + (b - a)" using lt by arith finally have "a + (b - a) < a + b" . then have "P a (a + (b - a))" by (rule add [rule_format, OF less]) then show ?thesis by (simp add: *[symmetric]) qed next case gt: greater then consider "b = 0" | "b + a - b < a + b" by arith then show ?thesis proof cases case 1 with z c show ?thesis by blast next case 2 also have *: "b + a - b = b + (a - b)" using gt by arith finally have "b + (a - b) < a + b" . then have "P b (b + (a - b))" by (rule add [rule_format, OF less]) then have "P b a" by (simp add: *[symmetric]) with c show ?thesis by blast qed qed qed lemma bezout_lemma_nat: fixes d::nat shows "\<lbrakk>d dvd a; d dvd b; a * x = b * y + d \<or> b * x = a * y + d\<rbrakk> \<Longrightarrow> \<exists>x y. d dvd a \<and> d dvd a + b \<and> (a * x = (a + b) * y + d \<or> (a + b) * x = a * y + d)" apply auto apply (metis add_mult_distrib2 left_add_mult_distrib) apply (rule_tac x=x in exI) by (metis add_mult_distrib2 mult.commute add.assoc) lemma bezout_add_nat: "\<exists>(d::nat) x y. d dvd a \<and> d dvd b \<and> (a * x = b * y + d \<or> b * x = a * y + d)" proof (induct a b rule: Euclid_induct) case (swap a b) then show ?case by blast next case (zero a) then show ?case by fastforce next case (add a b) then show ?case by (meson bezout_lemma_nat) qed lemma bezout1_nat: "\<exists>(d::nat) x y. d dvd a \<and> d dvd b \<and> (a * x - b * y = d \<or> b * x - a * y = d)" using bezout_add_nat[of a b] by (metis add_diff_cancel_left') lemma bezout_add_strong_nat: fixes a b :: nat assumes a: "a \<noteq> 0" shows "\<exists>d x y. d dvd a \<and> d dvd b \<and> a * x = b * y + d" proof - consider d x y where "d dvd a" "d dvd b" "a * x = b * y + d" | d x y where "d dvd a" "d dvd b" "b * x = a * y + d" using bezout_add_nat [of a b] by blast then show ?thesis proof cases case 1 then show ?thesis by blast next case H: 2 show ?thesis proof (cases "b = 0") case True with H show ?thesis by simp next case False then have bp: "b > 0" by simp with dvd_imp_le [OF H(2)] consider "d = b" | "d < b" by atomize_elim auto then show ?thesis proof cases case 1 with a H show ?thesis by (metis Suc_pred add.commute mult.commute mult_Suc_right neq0_conv) next case 2 show ?thesis proof (cases "x = 0") case True with a H show ?thesis by simp next case x0: False then have xp: "x > 0" by simp from \<open>d < b\<close> have "d \<le> b - 1" by simp then have "d * b \<le> b * (b - 1)" by simp with xp mult_mono[of "1" "x" "d * b" "b * (b - 1)"] have dble: "d * b \<le> x * b * (b - 1)" using bp by simp from H(3) have "d + (b - 1) * (b * x) = d + (b - 1) * (a * y + d)" by simp then have "d + (b - 1) * a * y + (b - 1) * d = d + (b - 1) * b * x" by (simp only: mult.assoc distrib_left) then have "a * ((b - 1) * y) + d * (b - 1 + 1) = d + x * b * (b - 1)" by algebra then have "a * ((b - 1) * y) = d + x * b * (b - 1) - d * b" using bp by simp then have "a * ((b - 1) * y) = d + (x * b * (b - 1) - d * b)" by (simp only: diff_add_assoc[OF dble, of d, symmetric]) then have "a * ((b - 1) * y) = b * (x * (b - 1) - d) + d" by (simp only: diff_mult_distrib2 ac_simps) with H(1,2) show ?thesis by blast qed qed qed qed qed lemma bezout_nat: fixes a :: nat assumes a: "a \<noteq> 0" shows "\<exists>x y. a * x = b * y + gcd a b" proof - obtain d x y where d: "d dvd a" "d dvd b" and eq: "a * x = b * y + d" using bezout_add_strong_nat [OF a, of b] by blast from d have "d dvd gcd a b" by simp then obtain k where k: "gcd a b = d * k" unfolding dvd_def by blast from eq have "a * x * k = (b * y + d) * k" by auto then have "a * (x * k) = b * (y * k) + gcd a b" by (algebra add: k) then show ?thesis by blast qed subsection \<open>LCM properties on \<^typ>\<open>nat\<close> and \<^typ>\<open>int\<close>\<close> lemma lcm_altdef_int [code]: "lcm a b = \<bar>a\<bar> * \<bar>b\<bar> div gcd a b" for a b :: int by (simp add: abs_mult lcm_gcd abs_div) lemma prod_gcd_lcm_nat: "m * n = gcd m n * lcm m n" for m n :: nat by (simp add: lcm_gcd) lemma prod_gcd_lcm_int: "\<bar>m\<bar> * \<bar>n\<bar> = gcd m n * lcm m n" for m n :: int by (simp add: lcm_gcd abs_div abs_mult) lemma lcm_pos_nat: "m > 0 \<Longrightarrow> n > 0 \<Longrightarrow> lcm m n > 0" for m n :: nat using lcm_eq_0_iff [of m n] by auto lemma lcm_pos_int: "m \<noteq> 0 \<Longrightarrow> n \<noteq> 0 \<Longrightarrow> lcm m n > 0" for m n :: int by (simp add: less_le lcm_eq_0_iff) lemma dvd_pos_nat: "n > 0 \<Longrightarrow> m dvd n \<Longrightarrow> m > 0" (* FIXME move *) for m n :: nat by auto lemma lcm_unique_nat: "a dvd d \<and> b dvd d \<and> (\<forall>e. a dvd e \<and> b dvd e \<longrightarrow> d dvd e) \<longleftrightarrow> d = lcm a b" for a b d :: nat by (auto intro: dvd_antisym lcm_least) lemma lcm_unique_int: "d \<ge> 0 \<and> a dvd d \<and> b dvd d \<and> (\<forall>e. a dvd e \<and> b dvd e \<longrightarrow> d dvd e) \<longleftrightarrow> d = lcm a b" for a b d :: int using lcm_least zdvd_antisym_nonneg by auto lemma lcm_proj2_if_dvd_nat [simp]: "x dvd y \<Longrightarrow> lcm x y = y" for x y :: nat by (simp add: lcm_proj2_if_dvd) lemma lcm_proj2_if_dvd_int [simp]: "x dvd y \<Longrightarrow> lcm x y = \<bar>y\<bar>" for x y :: int by (simp add: lcm_proj2_if_dvd) lemma lcm_proj1_if_dvd_nat [simp]: "x dvd y \<Longrightarrow> lcm y x = y" for x y :: nat by (subst lcm.commute) (erule lcm_proj2_if_dvd_nat) lemma lcm_proj1_if_dvd_int [simp]: "x dvd y \<Longrightarrow> lcm y x = \<bar>y\<bar>" for x y :: int by (subst lcm.commute) (erule lcm_proj2_if_dvd_int) lemma lcm_proj1_iff_nat [simp]: "lcm m n = m \<longleftrightarrow> n dvd m" for m n :: nat by (metis lcm_proj1_if_dvd_nat lcm_unique_nat) lemma lcm_proj2_iff_nat [simp]: "lcm m n = n \<longleftrightarrow> m dvd n" for m n :: nat by (metis lcm_proj2_if_dvd_nat lcm_unique_nat) lemma lcm_proj1_iff_int [simp]: "lcm m n = \<bar>m\<bar> \<longleftrightarrow> n dvd m" for m n :: int by (metis dvd_abs_iff lcm_proj1_if_dvd_int lcm_unique_int) lemma lcm_proj2_iff_int [simp]: "lcm m n = \<bar>n\<bar> \<longleftrightarrow> m dvd n" for m n :: int by (metis dvd_abs_iff lcm_proj2_if_dvd_int lcm_unique_int) lemma lcm_1_iff_nat [simp]: "lcm m n = Suc 0 \<longleftrightarrow> m = Suc 0 \<and> n = Suc 0" for m n :: nat using lcm_eq_1_iff [of m n] by simp lemma lcm_1_iff_int [simp]: "lcm m n = 1 \<longleftrightarrow> (m = 1 \<or> m = -1) \<and> (n = 1 \<or> n = -1)" for m n :: int by auto subsection \<open>The complete divisibility lattice on \<^typ>\<open>nat\<close> and \<^typ>\<open>int\<close>\<close> text \<open> Lifting \<open>gcd\<close> and \<open>lcm\<close> to sets (\<open>Gcd\<close> / \<open>Lcm\<close>). \<open>Gcd\<close> is defined via \<open>Lcm\<close> to facilitate the proof that we have a complete lattice. \<close> instantiation nat :: semiring_Gcd begin interpretation semilattice_neutr_set lcm "1::nat" by standard simp_all definition "Lcm M = (if finite M then F M else 0)" for M :: "nat set" lemma Lcm_nat_empty: "Lcm {} = (1::nat)" by (simp add: Lcm_nat_def del: One_nat_def) lemma Lcm_nat_insert: "Lcm (insert n M) = lcm n (Lcm M)" for n :: nat by (cases "finite M") (auto simp: Lcm_nat_def simp del: One_nat_def) lemma Lcm_nat_infinite: "infinite M \<Longrightarrow> Lcm M = 0" for M :: "nat set" by (simp add: Lcm_nat_def) lemma dvd_Lcm_nat [simp]: fixes M :: "nat set" assumes "m \<in> M" shows "m dvd Lcm M" proof - from assms have "insert m M = M" by auto moreover have "m dvd Lcm (insert m M)" by (simp add: Lcm_nat_insert) ultimately show ?thesis by simp qed lemma Lcm_dvd_nat [simp]: fixes M :: "nat set" assumes "\<forall>m\<in>M. m dvd n" shows "Lcm M dvd n" proof (cases "n > 0") case False then show ?thesis by simp next case True then have "finite {d. d dvd n}" by (rule finite_divisors_nat) moreover have "M \<subseteq> {d. d dvd n}" using assms by fast ultimately have "finite M" by (rule rev_finite_subset) then show ?thesis using assms by (induct M) (simp_all add: Lcm_nat_empty Lcm_nat_insert) qed definition "Gcd M = Lcm {d. \<forall>m\<in>M. d dvd m}" for M :: "nat set" instance proof fix N :: "nat set" fix n :: nat show "Gcd N dvd n" if "n \<in> N" using that by (induct N rule: infinite_finite_induct) (auto simp: Gcd_nat_def) show "n dvd Gcd N" if "\<And>m. m \<in> N \<Longrightarrow> n dvd m" using that by (induct N rule: infinite_finite_induct) (auto simp: Gcd_nat_def) show "n dvd Lcm N" if "n \<in> N" using that by (induct N rule: infinite_finite_induct) auto show "Lcm N dvd n" if "\<And>m. m \<in> N \<Longrightarrow> m dvd n" using that by (induct N rule: infinite_finite_induct) auto show "normalize (Gcd N) = Gcd N" and "normalize (Lcm N) = Lcm N" by simp_all qed end lemma Gcd_nat_eq_one: "1 \<in> N \<Longrightarrow> Gcd N = 1" for N :: "nat set" by (rule Gcd_eq_1_I) auto instance nat :: semiring_gcd_mult_normalize by intro_classes (auto simp: unit_factor_nat_def) text \<open>Alternative characterizations of Gcd:\<close> lemma Gcd_eq_Max: fixes M :: "nat set" assumes "finite (M::nat set)" and "M \<noteq> {}" and "0 \<notin> M" shows "Gcd M = Max (\<Inter>m\<in>M. {d. d dvd m})" proof (rule antisym) from assms obtain m where "m \<in> M" and "m > 0" by auto from \<open>m > 0\<close> have "finite {d. d dvd m}" by (blast intro: finite_divisors_nat) with \<open>m \<in> M\<close> have fin: "finite (\<Inter>m\<in>M. {d. d dvd m})" by blast from fin show "Gcd M \<le> Max (\<Inter>m\<in>M. {d. d dvd m})" by (auto intro: Max_ge Gcd_dvd) from fin show "Max (\<Inter>m\<in>M. {d. d dvd m}) \<le> Gcd M" proof (rule Max.boundedI, simp_all) show "(\<Inter>m\<in>M. {d. d dvd m}) \<noteq> {}" by auto show "\<And>a. \<forall>x\<in>M. a dvd x \<Longrightarrow> a \<le> Gcd M" by (meson Gcd_dvd Gcd_greatest \<open>0 < m\<close> \<open>m \<in> M\<close> dvd_imp_le dvd_pos_nat) qed qed lemma Gcd_remove0_nat: "finite M \<Longrightarrow> Gcd M = Gcd (M - {0})" for M :: "nat set" proof (induct pred: finite) case (insert x M) then show ?case by (simp add: insert_Diff_if) qed auto lemma Lcm_in_lcm_closed_set_nat: fixes M :: "nat set" assumes "finite M" "M \<noteq> {}" "\<And>m n. \<lbrakk>m \<in> M; n \<in> M\<rbrakk> \<Longrightarrow> lcm m n \<in> M" shows "Lcm M \<in> M" using assms proof (induction M rule: finite_linorder_min_induct) case (insert x M) then have "\<And>m n. m \<in> M \<Longrightarrow> n \<in> M \<Longrightarrow> lcm m n \<in> M" by (metis dvd_lcm1 gr0I insert_iff lcm_pos_nat nat_dvd_not_less) with insert show ?case by simp (metis Lcm_nat_empty One_nat_def dvd_1_left dvd_lcm2) qed auto lemma Lcm_eq_Max_nat: fixes M :: "nat set" assumes M: "finite M" "M \<noteq> {}" "0 \<notin> M" and lcm: "\<And>m n. \<lbrakk>m \<in> M; n \<in> M\<rbrakk> \<Longrightarrow> lcm m n \<in> M" shows "Lcm M = Max M" proof (rule antisym) show "Lcm M \<le> Max M" by (simp add: Lcm_in_lcm_closed_set_nat \<open>finite M\<close> \<open>M \<noteq> {}\<close> lcm) show "Max M \<le> Lcm M" by (meson Lcm_0_iff Max_in M dvd_Lcm dvd_imp_le le_0_eq not_le) qed lemma mult_inj_if_coprime_nat: "inj_on f A \<Longrightarrow> inj_on g B \<Longrightarrow> (\<And>a b. \<lbrakk>a\<in>A; b\<in>B\<rbrakk> \<Longrightarrow> coprime (f a) (g b)) \<Longrightarrow> inj_on (\<lambda>(a, b). f a * g b) (A \<times> B)" for f :: "'a \<Rightarrow> nat" and g :: "'b \<Rightarrow> nat" by (auto simp: inj_on_def coprime_crossproduct_nat simp del: One_nat_def) subsubsection \<open>Setwise GCD and LCM for integers\<close> instantiation int :: Gcd begin definition Gcd_int :: "int set \<Rightarrow> int" where "Gcd K = int (GCD k\<in>K. (nat \<circ> abs) k)" definition Lcm_int :: "int set \<Rightarrow> int" where "Lcm K = int (LCM k\<in>K. (nat \<circ> abs) k)" instance .. end lemma Gcd_int_eq [simp]: "(GCD n\<in>N. int n) = int (Gcd N)" by (simp add: Gcd_int_def image_image) lemma Gcd_nat_abs_eq [simp]: "(GCD k\<in>K. nat \<bar>k\<bar>) = nat (Gcd K)" by (simp add: Gcd_int_def) lemma abs_Gcd_eq [simp]: "\<bar>Gcd K\<bar> = Gcd K" for K :: "int set" by (simp only: Gcd_int_def) lemma Gcd_int_greater_eq_0 [simp]: "Gcd K \<ge> 0" for K :: "int set" using abs_ge_zero [of "Gcd K"] by simp lemma Gcd_abs_eq [simp]: "(GCD k\<in>K. \<bar>k\<bar>) = Gcd K" for K :: "int set" by (simp only: Gcd_int_def image_image) simp lemma Lcm_int_eq [simp]: "(LCM n\<in>N. int n) = int (Lcm N)" by (simp add: Lcm_int_def image_image) lemma Lcm_nat_abs_eq [simp]: "(LCM k\<in>K. nat \<bar>k\<bar>) = nat (Lcm K)" by (simp add: Lcm_int_def) lemma abs_Lcm_eq [simp]: "\<bar>Lcm K\<bar> = Lcm K" for K :: "int set" by (simp only: Lcm_int_def) lemma Lcm_int_greater_eq_0 [simp]: "Lcm K \<ge> 0" for K :: "int set" using abs_ge_zero [of "Lcm K"] by simp lemma Lcm_abs_eq [simp]: "(LCM k\<in>K. \<bar>k\<bar>) = Lcm K" for K :: "int set" by (simp only: Lcm_int_def image_image) simp instance int :: semiring_Gcd proof fix K :: "int set" and k :: int show "Gcd K dvd k" and "k dvd Lcm K" if "k \<in> K" using that Gcd_dvd [of "nat \<bar>k\<bar>" "(nat \<circ> abs) ` K"] dvd_Lcm [of "nat \<bar>k\<bar>" "(nat \<circ> abs) ` K"] by (simp_all add: comp_def) show "k dvd Gcd K" if "\<And>l. l \<in> K \<Longrightarrow> k dvd l" proof - have "nat \<bar>k\<bar> dvd (GCD k\<in>K. nat \<bar>k\<bar>)" by (rule Gcd_greatest) (use that in auto) then show ?thesis by simp qed show "Lcm K dvd k" if "\<And>l. l \<in> K \<Longrightarrow> l dvd k" proof - have "(LCM k\<in>K. nat \<bar>k\<bar>) dvd nat \<bar>k\<bar>" by (rule Lcm_least) (use that in auto) then show ?thesis by simp qed qed (simp_all add: sgn_mult) instance int :: semiring_gcd_mult_normalize by intro_classes (auto simp: sgn_mult) subsection \<open>GCD and LCM on \<^typ>\<open>integer\<close>\<close> instantiation integer :: gcd begin context includes integer.lifting begin lift_definition gcd_integer :: "integer \<Rightarrow> integer \<Rightarrow> integer" is gcd . lift_definition lcm_integer :: "integer \<Rightarrow> integer \<Rightarrow> integer" is lcm . end instance .. end lifting_update integer.lifting lifting_forget integer.lifting context includes integer.lifting begin lemma gcd_code_integer [code]: "gcd k l = \<bar>if l = (0::integer) then k else gcd l (\<bar>k\<bar> mod \<bar>l\<bar>)\<bar>" by transfer (fact gcd_code_int) lemma lcm_code_integer [code]: "lcm a b = \<bar>a\<bar> * \<bar>b\<bar> div gcd a b" for a b :: integer by transfer (fact lcm_altdef_int) end code_printing constant "gcd :: integer \<Rightarrow> _" \<rightharpoonup> (OCaml) "!(fun k l -> if Z.equal k Z.zero then/ Z.abs l else if Z.equal/ l Z.zero then Z.abs k else Z.gcd k l)" and (Haskell) "Prelude.gcd" and (Scala) "_.gcd'((_)')" \<comment> \<open>There is no gcd operation in the SML standard library, so no code setup for SML\<close> text \<open>Some code equations\<close> lemmas Gcd_nat_set_eq_fold [code] = Gcd_set_eq_fold [where ?'a = nat] lemmas Lcm_nat_set_eq_fold [code] = Lcm_set_eq_fold [where ?'a = nat] lemmas Gcd_int_set_eq_fold [code] = Gcd_set_eq_fold [where ?'a = int] lemmas Lcm_int_set_eq_fold [code] = Lcm_set_eq_fold [where ?'a = int] text \<open>Fact aliases.\<close> lemma lcm_0_iff_nat [simp]: "lcm m n = 0 \<longleftrightarrow> m = 0 \<or> n = 0" for m n :: nat by (fact lcm_eq_0_iff) lemma lcm_0_iff_int [simp]: "lcm m n = 0 \<longleftrightarrow> m = 0 \<or> n = 0" for m n :: int by (fact lcm_eq_0_iff) lemma dvd_lcm_I1_nat [simp]: "k dvd m \<Longrightarrow> k dvd lcm m n" for k m n :: nat by (fact dvd_lcmI1) lemma dvd_lcm_I2_nat [simp]: "k dvd n \<Longrightarrow> k dvd lcm m n" for k m n :: nat by (fact dvd_lcmI2) lemma dvd_lcm_I1_int [simp]: "i dvd m \<Longrightarrow> i dvd lcm m n" for i m n :: int by (fact dvd_lcmI1) lemma dvd_lcm_I2_int [simp]: "i dvd n \<Longrightarrow> i dvd lcm m n" for i m n :: int by (fact dvd_lcmI2) lemmas Gcd_dvd_nat [simp] = Gcd_dvd [where ?'a = nat] lemmas Gcd_dvd_int [simp] = Gcd_dvd [where ?'a = int] lemmas Gcd_greatest_nat [simp] = Gcd_greatest [where ?'a = nat] lemmas Gcd_greatest_int [simp] = Gcd_greatest [where ?'a = int] lemma dvd_Lcm_int [simp]: "m \<in> M \<Longrightarrow> m dvd Lcm M" for M :: "int set" by (fact dvd_Lcm) lemma gcd_neg_numeral_1_int [simp]: "gcd (- numeral n :: int) x = gcd (numeral n) x" by (fact gcd_neg1_int) lemma gcd_neg_numeral_2_int [simp]: "gcd x (- numeral n :: int) = gcd x (numeral n)" by (fact gcd_neg2_int) lemma gcd_proj1_if_dvd_nat [simp]: "x dvd y \<Longrightarrow> gcd x y = x" for x y :: nat by (fact gcd_nat.absorb1) lemma gcd_proj2_if_dvd_nat [simp]: "y dvd x \<Longrightarrow> gcd x y = y" for x y :: nat by (fact gcd_nat.absorb2) lemmas Lcm_eq_0_I_nat [simp] = Lcm_eq_0_I [where ?'a = nat] lemmas Lcm_0_iff_nat [simp] = Lcm_0_iff [where ?'a = nat] lemmas Lcm_least_int [simp] = Lcm_least [where ?'a = int] end
import Drahko foo : Promise String foo = do let dot = "." let x = \y => do msgBox "appending" pure (y ++ dot) a <- x "Hello" b <- x "World" pure (a ++ " ayy lmao " ++ b) main : Promise () main = do x <- foo msgBox x msgBox x
using Distributions, Plots, CSV, Pandas # Sample x_{k+1} given x_k # Parameters: # - x_k: The kth X sample. One of -1, 0, or 1 # Outputs: # - x_{k+1}: The (k+1)th X sample function sample_x(xk) # Define q parameter q = 0.3 # Probability that x_{k+1} = 1 p = q*(xk == 1) + (1-q)*(xk == 0) return rand() < p end # Obtains n samples of X based on HMM # Inputs # - n: An integer representing the number of samples to return # Outputs # A vector of length n where the kth element is the kth sample of X function get_x_samples(n) # Store x samples samples = zeros(n) # Randomly set x1 samples[1] = rand(0:1) # Get samples x_2 through x_n for i=2:n samples[i] = sample_x(samples[i-1]) end return samples end # Obtains n samples of Y based on HMM # Inputs # - x_samples: A vector of length n representing the samples of X # Outputs # A vector of length n where the kth element is the kth sample of Y function get_y_samples(x_samples) # Define normal standard deviation σ = 1.5 # Store y samples n = length(x_samples) y_samples = zeros(n) for i=1:n 𝒩 = Normal(x_samples[i], σ) y_samples[i] = rand(𝒩) end return y_samples end # Obtian and plot samples n = 1500 x_samples = get_x_samples(n) y_samples = get_y_samples(x_samples) plot(1:n,x_samples, seriestype=:scatter, bg = RGB(247/255, 236/255, 226/255), color = RGB(0,191/255,255/255), label = "x", alpha = 0.2) plot!(1:n,y_samples, seriestype=:scatter, color = RGB(191/255,1,0), label = "y", alpha = 0.2) cd("/Users/elvis/Documents/DSI/courses/content/stochastic-approximations/images/") # Note X and Y variables swapped here from what was presented in example df = DataFrame(Dict(:X=>y_samples)) CSV.write("/Users/elvis/Documents/DSI/courses/content/bayesian-inference-and-graphical-models/code/hmm_observations.csv", df)
function outputImage = rms(this, varargin) % Computes root mean square along specified dimension, i.e. sqrt(mean(Y.^2)) % % % Y = MrImage() % Y.rms(applicationDimension) % % This is a method of class MrImage. % % IN % applicationDimension image dimension along which operation is % performed (e.g. 4 = time, 3 = slices) % default: The last dimension with more than one % value is chosen % (i.e. 3 for 3D image, 4 for 4D image) % % OUT % outputImage rms of all images along application dimension % % EXAMPLE % rms % % See also MrImage MrImage.perform_unary_operation % Author: Saskia Klein & Lars Kasper % Created: 2014-12-23 % Copyright (C) 2014 Institute for Biomedical Engineering % University of Zurich and ETH Zurich % % This file is part of the TAPAS UniQC Toolbox, which is released % under the terms of the GNU General Public Licence (GPL), version 3. % You can redistribute it and/or modify it under the terms of the GPL % (either version 3 or, at your option, any later version). % For further details, see the file COPYING or % <http://www.gnu.org/licenses/>. if nargin > 1 applicationDimension = varargin{1}; outputImage = mean(this.^2, applicationDimension).^(1/2); else outputImage = mean(this.^2).^(1/2); end
/- Copyright (c) 2017 Johannes Hölzl. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Author: Johannes Hölzl -/ import Mathlib.PrePort import Mathlib.Lean3Lib.init.default import Mathlib.data.equiv.list import Mathlib.data.set.finite import Mathlib.PostPort universes u v u_1 namespace Mathlib /-! # Countable sets -/ namespace set /-- A set is countable if there exists an encoding of the set into the natural numbers. An encoding is an injection with a partial inverse, which can be viewed as a constructive analogue of countability. (For the most part, theorems about `countable` will be classical and `encodable` will be constructive.) -/ def countable {α : Type u} (s : set α) := Nonempty (encodable ↥s) theorem countable_iff_exists_injective {α : Type u} {s : set α} : countable s ↔ ∃ (f : ↥s → ℕ), function.injective f := sorry /-- A set `s : set α` is countable if and only if there exists a function `α → ℕ` injective on `s`. -/ theorem countable_iff_exists_inj_on {α : Type u} {s : set α} : countable s ↔ ∃ (f : α → ℕ), inj_on f s := sorry theorem countable_iff_exists_surjective {α : Type u} [ne : Nonempty α] {s : set α} : countable s ↔ ∃ (f : ℕ → α), s ⊆ range f := sorry /-- A non-empty set is countable iff there exists a surjection from the natural numbers onto the subtype induced by the set. -/ theorem countable_iff_exists_surjective_to_subtype {α : Type u} {s : set α} (hs : set.nonempty s) : countable s ↔ ∃ (f : ℕ → ↥s), function.surjective f := sorry /-- Convert `countable s` to `encodable s` (noncomputable). -/ def countable.to_encodable {α : Type u} {s : set α} : countable s → encodable ↥s := Classical.choice theorem countable_encodable' {α : Type u} (s : set α) [H : encodable ↥s] : countable s := Nonempty.intro H theorem countable_encodable {α : Type u} [encodable α] (s : set α) : countable s := Nonempty.intro encodable.subtype /-- If `s : set α` is a nonempty countable set, then there exists a map `f : ℕ → α` such that `s = range f`. -/ theorem countable.exists_surjective {α : Type u} {s : set α} (hc : countable s) (hs : set.nonempty s) : ∃ (f : ℕ → α), s = range f := sorry @[simp] theorem countable_empty {α : Type u} : countable ∅ := Nonempty.intro (encodable.mk (fun (x : ↥∅) => false.elim (subtype.property x)) (fun (n : ℕ) => none) fun (x : ↥∅) => false.elim (subtype.property x)) @[simp] theorem countable_singleton {α : Type u} (a : α) : countable (singleton a) := Nonempty.intro (encodable.of_equiv PUnit (equiv.set.singleton a)) theorem countable.mono {α : Type u} {s₁ : set α} {s₂ : set α} (h : s₁ ⊆ s₂) : countable s₂ → countable s₁ := sorry theorem countable.image {α : Type u} {β : Type v} {s : set α} (hs : countable s) (f : α → β) : countable (f '' s) := sorry theorem countable_range {α : Type u} {β : Type v} [encodable α] (f : α → β) : countable (range f) := eq.mpr (id (Eq._oldrec (Eq.refl (countable (range f))) (Eq.symm image_univ))) (countable.image (countable_encodable univ) f) theorem exists_seq_supr_eq_top_iff_countable {α : Type u} [complete_lattice α] {p : α → Prop} (h : ∃ (x : α), p x) : (∃ (s : ℕ → α), (∀ (n : ℕ), p (s n)) ∧ (supr fun (n : ℕ) => s n) = ⊤) ↔ ∃ (S : set α), countable S ∧ (∀ (s : α), s ∈ S → p s) ∧ Sup S = ⊤ := sorry theorem exists_seq_cover_iff_countable {α : Type u} {p : set α → Prop} (h : ∃ (s : set α), p s) : (∃ (s : ℕ → set α), (∀ (n : ℕ), p (s n)) ∧ (Union fun (n : ℕ) => s n) = univ) ↔ ∃ (S : set (set α)), countable S ∧ (∀ (s : set α), s ∈ S → p s) ∧ ⋃₀S = univ := exists_seq_supr_eq_top_iff_countable h theorem countable_of_injective_of_countable_image {α : Type u} {β : Type v} {s : set α} {f : α → β} (hf : inj_on f s) (hs : countable (f '' s)) : countable s := sorry theorem countable_Union {α : Type u} {β : Type v} {t : α → set β} [encodable α] (ht : ∀ (a : α), countable (t a)) : countable (Union fun (a : α) => t a) := eq.mpr (id (Eq._oldrec (Eq.refl (countable (Union fun (a : α) => t a))) (Union_eq_range_sigma fun (a : α) => t a))) (countable_range fun (a : sigma fun (i : α) => ↥(t i)) => ↑(sigma.snd a)) theorem countable.bUnion {α : Type u} {β : Type v} {s : set α} {t : (x : α) → x ∈ s → set β} (hs : countable s) (ht : ∀ (a : α) (H : a ∈ s), countable (t a H)) : countable (Union fun (a : α) => Union fun (H : a ∈ s) => t a H) := sorry theorem countable.sUnion {α : Type u} {s : set (set α)} (hs : countable s) (h : ∀ (a : set α), a ∈ s → countable a) : countable (⋃₀s) := eq.mpr (id (Eq._oldrec (Eq.refl (countable (⋃₀s))) sUnion_eq_bUnion)) (countable.bUnion hs h) theorem countable_Union_Prop {β : Type v} {p : Prop} {t : p → set β} (ht : ∀ (h : p), countable (t h)) : countable (Union fun (h : p) => t h) := sorry theorem countable.union {α : Type u} {s₁ : set α} {s₂ : set α} (h₁ : countable s₁) (h₂ : countable s₂) : countable (s₁ ∪ s₂) := eq.mpr (id (Eq._oldrec (Eq.refl (countable (s₁ ∪ s₂))) union_eq_Union)) (countable_Union (iff.mpr bool.forall_bool { left := h₂, right := h₁ })) theorem countable.insert {α : Type u} {s : set α} (a : α) (h : countable s) : countable (insert a s) := eq.mpr (id (Eq._oldrec (Eq.refl (countable (insert a s))) (insert_eq a s))) (countable.union (countable_singleton a) h) theorem finite.countable {α : Type u} {s : set α} : finite s → countable s := sorry /-- The set of finite subsets of a countable set is countable. -/ theorem countable_set_of_finite_subset {α : Type u} {s : set α} : countable s → countable (set_of fun (t : set α) => finite t ∧ t ⊆ s) := sorry theorem countable_pi {α : Type u} {π : α → Type u_1} [fintype α] {s : (a : α) → set (π a)} (hs : ∀ (a : α), countable (s a)) : countable (set_of fun (f : (a : α) → π a) => ∀ (a : α), f a ∈ s a) := sorry theorem countable_prod {α : Type u} {β : Type v} {s : set α} {t : set β} (hs : countable s) (ht : countable t) : countable (set.prod s t) := sorry /-- Enumerate elements in a countable set.-/ def enumerate_countable {α : Type u} {s : set α} (h : countable s) (default : α) : ℕ → α := fun (n : ℕ) => sorry theorem subset_range_enumerate {α : Type u} {s : set α} (h : countable s) (default : α) : s ⊆ range (enumerate_countable h default) := sorry end set theorem finset.countable_to_set {α : Type u} (s : finset α) : set.countable ↑s := set.finite.countable (finset.finite_to_set s)
Professional, affordable, friendly and reliable face painter. Based in Milton keynes. Founded in 2012, Danielle's face painting has quickly become a well established professional business and has worked with companies such as oxfam, IPAN (with Melanie Sykes), Child's play and Leo's appeal. You may have seen us around working with our regular clients such as at the Buckinghamshire railway centre, Cancer research UK, Buckinghamshire inflatables and mi-events. As well as corporate events, we love to add that extra colour and sparkle to private events and cater for any ocassion. We have a current cleared DBS check (feb 2014), carry £5m Pli, medical cover and risk assessments. Because we love our job, our prices start at just £25p/h!! and we're very willing to travel. Dont hesitate - Contact us today for a quote! You can contact Danielle's face painting direct by completing the form below and clicking the 'Send' button. These details were last reviewed by Danielle's face painting, MILTON KEYNES on 20/04/2014. NOTE: This account appears dormant. It is scheduled for deletion on or just after 21/04/2014.
##### ##### Tests for flow defaults ##### struct CircleTest <: Manifold end struct CircleDecoratorTest <: Manifold end base_manifold(M::CircleDecoratorTest) = CircleTest() @traitimpl IsDecoratorManifold{CircleDecoratorTest} function exp!(M::CircleTest, y, x, v, t::Real) θ = norm(v) u = θ == 0 ? zero(v) : v ./ θ α = θ * t y .= cos(α) * x + sin(α) * u return y end types = [Vector{Float64}, SizedVector{2, Float64}, MVector{2, Float64}, Vector{Float32}, SizedVector{2, Float32}, MVector{2, Float32}] @testset "geodesic_flow default" begin M = CircleTest() x₀ = normalize(randn(2)) v₀ = normalize((I-x₀*x₀') * randn(2)) for T in types @testset "Type $T" begin x, v = geodesic_flow(M, convert(T, x₀), convert(T, v₀), eltype(T)(π)) @test x ≈ -x₀ @test v ≈ -v₀ end end end @testset "geodesic_flow decorator default" begin M = CircleDecoratorTest() x₀ = normalize(randn(2)) v₀ = normalize((I-x₀*x₀') * randn(2)) for T in types @testset "Type $T" begin x, v = geodesic_flow(M, convert(T, x₀), convert(T, v₀), eltype(T)(π)) @test x ≈ -x₀ @test v ≈ -v₀ end end end
/** * * @file core_ztrmdm.c * * PLASMA core_blas kernel * PLASMA is a software package provided by Univ. of Tennessee, * Univ. of California Berkeley and Univ. of Colorado Denver * * @version 2.4.5 * @author Dulceneia Becker * @date 2011-1-18 **/ /* * @precisions normal z -> c d s */ #include <lapacke.h> #include "dplasma_cores.h" #include "dplasma_zcores.h" #if defined(PARSEC_HAVE_STRING_H) #include <string.h> #endif /* defined(PARSEC_HAVE_STRING_H) */ #if defined(PARSEC_HAVE_STDARG_H) #include <stdarg.h> #endif /* defined(PARSEC_HAVE_STDARG_H) */ #include <stdio.h> #ifdef PARSEC_HAVE_LIMITS_H #include <limits.h> #endif #include <cblas.h> #include <core_blas.h> #define max(a, b) ((a) > (b) ? (a) : (b)) #define min(a, b) ((a) < (b) ? (a) : (b)) int CORE_ztrmdm(int uplo, int N, PLASMA_Complex64_t *A, int LDA); /***************************************************************************//** * * @ingroup CORE_PLASMA_Complex64_t * * CORE_ztrmdm scales the strictly upper or strictly lower triangular part of a * square matrix by the inverse of a diagonal matrix, ie performs either * * A := L / D or A := U / D (only for triangular part above or below diagonal) * * where: * * L is a strictly lower triangular matrix stored as the strictly lower triangle in A * U is a strictly upper triangular matrix stored as the strictly upper triangle in A * D is a diagonal matrix stored as the diagonal in A * * The diagonal elements of A are not changed. * ******************************************************************************* * * @param[in] uplo * INTEGER * @arg PlasmaLower: Lower triangle of A is stored and scaled. * @arg PlasmaUpper: Upper triangle of A is stored and scaled. * * @param[in] N * INTEGER * The number of rows and columns of A. N >= 0. * * @param[in,out] A * PLASMA_Complex64_t array, dimension (LDA,N) * * On entry, the triangular matrix A. If uplo = 'U', the leading * N-by-N upper triangular part of A contains the upper * triangular part of the matrix A, and the strictly lower * triangular part of A is not referenced. If uplo = 'L', the * leading N-by-N lower triangular part of A contains the lower * triangular part of the matrix A, and the strictly upper * triangular part of A is not referenced. * * On exit, the strictly lower or upper triangular part of A * scaled by the diagonal elements of A. * * @param[in] LDA * INTEGER * The leading dimension of the array A. LDA >= max(1,N). * ******************************************************************************* * * @return * \retval PLASMA_SUCCESS successful exit * \retval <0 if -i, the i-th argument had an illegal value * ******************************************************************************/ #if defined(PLASMA_PARSEC_HAVE_WEAK) #pragma weak CORE_ztrmdm = PCORE_ztrmdm #define CORE_ztrmdm PCORE_ztrmdm #endif int CORE_ztrmdm(int uplo, int N, PLASMA_Complex64_t *A, int LDA) { static PLASMA_Complex64_t zone = 1.0; PLASMA_Complex64_t alpha; int j; /* Check input arguments */ if (uplo != PlasmaUpper && uplo != PlasmaLower) { coreblas_error(1, "Illegal value of UPLO"); return -1; } if (N < 0) { coreblas_error(2, "Illegal value of N"); return -2; } if (LDA < max(1, N)) { coreblas_error(1, "Illegal value of LDA"); return -4; } /* Quick return */ if (max(N, 0) == 0) return PLASMA_SUCCESS; /**/ if (uplo==PlasmaLower) { for (j=0; j<(N-1); j++) { alpha = zone / A[LDA*j+j]; cblas_zscal(N-j-1, CBLAS_SADDR(alpha), &A[LDA*j+j+1], 1); } } else if (uplo==PlasmaUpper) { for (j=1; j<N; j++) { alpha = zone / A[LDA*j+j]; cblas_zscal(j, CBLAS_SADDR(alpha), &A[LDA*j], 1); } } return PLASMA_SUCCESS; }
If the measure of a set $A$ is not infinite, then the extended measure of $A$ is equal to the measure of $A$.
open import Data.Nat hiding (_^_) open import Data.List as List hiding (null) open import Data.List.Membership.Propositional open import Data.List.Relation.Unary.Any open import Data.List.Relation.Unary.All open import Data.List.Prefix open import Data.Product hiding (map) open import Data.Unit open import Relation.Binary.PropositionalEquality hiding ([_]) open ≡-Reasoning -- This file contains the definition of monads used for computation in -- the definitional interpreter for MJ using scopes and frames, -- described in Section 5 of the paper. module MJSF.Monad (k : ℕ) where open import MJSF.Syntax k open import MJSF.Values k open import ScopesFrames.ScopesFrames k Ty module MonadG (g : Graph) where open SyntaxG g open ValuesG g open UsesVal Valᵗ valᵗ-weaken renaming (getFrame to getFrame') open import Common.Weakening -- Computations may either time out, raise a null-pointer exception, -- or successfully terminate to produce a result: data Res (a : Set) : Set where timeout : Res a nullpointer : Res a ok : (x : a) → Res a -- The monad is similar to the monad used for STLCSF, except it uses -- `Res` instead of `Maybe`: M : (s : Scope) → (List Scope → Set) → List Scope → Set M s p Σ = Frame s Σ → Heap Σ → Res (∃ λ Σ' → (Heap Σ' × p Σ' × Σ ⊑ Σ')) -- We define some usual monad operations: return : ∀ {s Σ}{p : List Scope → Set} → p Σ → M s p Σ return v f h = ok (_ , h , v , ⊑-refl) fmap : ∀ {A B : List Scope → Set}{Γ Σ} → (∀ {Σ} → A Σ → B Σ) → M Γ A Σ → M Γ B Σ fmap g m f h with (m f h) ... | timeout = timeout ... | nullpointer = nullpointer ... | ok (Σ' , h' , v' , ext') = ok (Σ' , h' , g v' , ext') join : ∀ {A : List Scope → Set}{Γ Σ} → M Γ (M Γ A) Σ → M Γ A Σ join m f h with (m f h) ... | timeout = timeout ... | nullpointer = nullpointer ... | ok (Σ' , h' , m' , ext') with (m' (wk ext' f) h') ... | timeout = timeout ... | nullpointer = nullpointer ... | ok (Σ'' , h'' , v'' , ext'') = ok ((Σ'' , h'' , v'' , ext' ⊚ ext'')) _>>=_ : ∀ {s Σ}{p q : List Scope → Set} → M s p Σ → (∀ {Σ'} → p Σ' → M s q Σ') → M s q Σ (a >>= b) = join (fmap b a) -- To program in dependent-passing style, we use the variant of -- monadic strength also used for STLCSF. _^_ : ∀ {Σ Γ}{p q : List Scope → Set} ⦃ w : Weakenable q ⦄ → M Γ p Σ → q Σ → M Γ (p ⊗ q) Σ (a ^ x) f h with (a f h) ... | timeout = timeout ... | nullpointer = nullpointer ... | ok (Σ , h' , v , ext) = ok (Σ , h' , (v , wk ext x) , ext) -- The remaining definitions in this file are straightforward -- monadic liftings of the coercion function from `MJSF.Values` and -- of the frame operations. getFrame : ∀ {s Σ} → M s (Frame s) Σ getFrame f = return f f usingFrame : ∀ {s s' Σ}{p : List Scope → Set} → Frame s Σ → M s p Σ → M s' p Σ usingFrame f a _ = a f timeoutᴹ : ∀ {s Σ}{p : List Scope → Set} → M s p Σ timeoutᴹ _ _ = timeout raise : ∀ {s Σ}{p : List Scope → Set} → M s p Σ raise _ _ = nullpointer init : ∀ {Σ s' ds es} → (s : Scope) → ⦃ shape : g s ≡ (ds , es) ⦄ → Slots ds Σ → Links es Σ → M s' (Frame s) Σ init {Σ} s slots links _ h with (initFrame s slots links h) ... | (f' , h') = ok (_ , h' , f' , ∷ʳ-⊒ s Σ) initι : ∀ {Σ s' ds es} → (s : Scope) → ⦃ shape : g s ≡ (ds , es) ⦄ → (Frame s (Σ ∷ʳ s) → Slots ds (Σ ∷ʳ s)) → Links es Σ → M s' (Frame s) Σ initι {Σ} s slots links _ h with (initFrameι s slots links h) ... | (f' , h') = ok (_ , h' , f' , ∷ʳ-⊒ s Σ) getv : ∀ {s t Σ} → (s ↦ t) → M s (Valᵗ t) Σ getv p f h = return (getVal p f h) f h getf : ∀ {s s' Σ} → (s ⟶ s') → M s (Frame s') Σ getf p f h = return (getFrame' p f h) f h getd : ∀ {s t Σ} → t ∈ declsOf s → M s (Valᵗ t) Σ getd d f h = return (getSlot d f h) f h getl : ∀ {s s' Σ} → s' ∈ edgesOf s → M s (Frame s') Σ getl e f h = return (getLink e f h) f h setd : ∀ {s t Σ} → t ∈ declsOf s → Valᵗ t Σ → M s (λ _ → ⊤) Σ setd d v f h with (setSlot d v f h) ... | h' = return tt f h' setv : ∀ {s t Σ} → (s ↦ t) → Valᵗ t Σ → M s (λ _ → ⊤) Σ setv p v f h with (setVal p v f h) ... | h' = return tt f h'
import .preliminary open finset nat multiplicity section question variables {x m n : ℕ} (hx1 : 1 < x) (hm1 : 1 < m) (hxmn : (x ^ m + 1) ∣ (x + 1)^n) include hxmn lemma dvd_x_add_one_of_dvd_x_pow_m_add_one {p : ℕ} (hp : p.prime) : p ∣ x^m + 1 → p ∣ x + 1 := λ h, hp.dvd_of_dvd_pow (dvd_trans h hxmn) section m_odd variable (hm2 : even m) include hm2 lemma eq_two_of_prime_of_dvd_x_pow_add_one {p : ℕ} (hp : p.prime) (hdvd : p ∣ x^m + 1) : p = 2 := have hpx1 : p ∣ x + 1, from dvd_x_add_one_of_dvd_x_pow_m_add_one hxmn hp hdvd, have hxp : (x : zmodp p hp) = -1, by rwa [← sub_eq_zero, sub_neg_eq_add, ← nat.cast_one, ← nat.cast_add, zmodp.eq_zero_iff_dvd_nat], have hxmp : (x^m + 1 : zmodp p hp) = 2, by rw [hxp, neg_one_pow_eq_pow_mod_two, even_iff.1 hm2, _root_.pow_zero]; norm_num, have h20 : (2 : zmodp p hp) = 0, by rwa [← hxmp, ← nat.cast_one, ← nat.cast_pow, ← nat.cast_add, zmodp.eq_zero_iff_dvd_nat], by_contradiction (λ hp2 : p ≠ 2, zmodp.prime_ne_zero hp prime_two hp2 (by simpa using h20)) include hx1 lemma x_odd : ¬even x := let p := min_fac (x^m + 1) in have hpp : p.prime, from min_fac_prime (ne_of_gt (succ_lt_succ (nat.pow_pos (by linarith) _))), have hpdvd : p ∣ x^m + 1, from min_fac_dvd _, have hp2 : p = 2, from eq_two_of_prime_of_dvd_x_pow_add_one hxmn hm2 hpp hpdvd, have heven : even (x + 1), from dvd_x_add_one_of_dvd_x_pow_m_add_one hxmn prime_two (hp2 ▸ hpdvd), by simpa with parity_simps using heven lemma x_pow_add_eq_mod_four_eq_two : (x^m + 1 : zmod 4) = 2 := have ∀ y : zmod 4, y.val % 2 = 1 → y^2 + 1 = 2, from dec_trivial, begin have hm2' := hm2, cases hm2 with k hk, rw hk, rw [mul_comm, pow_mul], refine this _ _, erw [← nat.cast_pow, zmod.val_cast_nat, mod_mul_left_mod (x^k) 2 2, ← mod_two_ne_zero, ← even_iff, even_pow, not_and_distrib], exact or.inl (x_odd hx1 hxmn hm2'), end lemma x_pow_m_add_one_eq_2 : x^m + 1 = 2 := let p := min_fac (x^m + 1) in have hpdvd : p ∣ x^m + 1, from min_fac_dvd _, have hpp : p.prime, from min_fac_prime (ne_of_gt (succ_lt_succ (nat.pow_pos (by linarith) _))), have hp2 : p = 2, from eq_two_of_prime_of_dvd_x_pow_add_one hxmn hm2 hpp hpdvd, let q := min_fac ((x^m + 1) / 2) in have hqdvd : q ∣ (x^m + 1) / 2, from min_fac_dvd _, have hqq : ¬q.prime, from assume hq, have hq2 : q = 2, from eq_two_of_prime_of_dvd_x_pow_add_one hxmn hm2 hq (dvd_trans hqdvd (div_dvd_of_dvd (hp2 ▸ hpdvd))), let ⟨r, hr⟩ := hqdvd in have h4 : 4 ∣ x^m + 1, from ⟨r, by rw [← nat.mul_div_cancel' hpdvd, hp2, hr, hq2, ← mul_assoc]; refl⟩, begin erw [← @zmod.eq_zero_iff_dvd_nat ⟨4, succ_pos _⟩, nat.cast_add, nat.cast_pow, nat.cast_one, x_pow_add_eq_mod_four_eq_two hx1 hxmn hm2] at h4, exact absurd h4 dec_trivial end, by rw [← nat.mul_div_cancel' hpdvd, hp2, not_imp_comm.1 min_fac_prime hqq, mul_one] include hm1 lemma m_odd : false := lt_irrefl 2 $ calc 2 < x^m + 1 : succ_lt_succ (show x ^ 0 < x ^ m, by rw [← nat.pow_eq_pow, ← nat.pow_eq_pow]; exact pow_lt_pow hx1 (by linarith)) ... = 2 : x_pow_m_add_one_eq_2 hx1 hxmn hm2 end m_odd open polynomial include hx1 hm1 lemma x_add_one_dvd_x_pow_add_one : x + 1 ∣ x^m + 1 := have (X : polynomial ℤ) + 1 ∣ X ^ m + 1, by rw [← C_1, ← sub_neg_eq_add, ← C_neg, dvd_iff_is_root, is_root, eval_add, eval_C, eval_pow, eval_X, neg_one_pow_eq_pow_mod_two, not_even_iff.1 (m_odd hx1 hm1 hxmn), _root_.pow_one, neg_add_self], let ⟨p, hp⟩ := this in int.coe_nat_dvd.1 ⟨(p.eval (x : ℤ)), by simpa [-add_comm] using congr_arg (eval (x : ℤ)) hp⟩ omit hx1 hm1 hxmn lemma prime_dvd_choose {p : ℕ} (hp : p.prime) {r t i : ℕ} (hm1 : m % 2 = 1) (hi2 : 2 ≤ i) (hpr : p ^ r ∣ m) : p ^ (r + t + 2) ∣ choose m i * p^((t + 1) * i) := have hit : t + 2 ≤ (t + 1) * i, by rw [add_mul, one_mul]; exact add_le_add (le_mul_of_one_le_right' (nat.zero_le _) (by linarith)) hi2, if hp2 : p = 2 then have hr : r = 0, begin subst hp2, cases r, { refl }, { rw [nat.pow_succ] at hpr, rw [← mod_two_ne_zero, ← dvd_iff_mod_eq_zero] at hm1, exact false.elim (hm1 (dvd_trans (by simp) hpr)) } end, begin subst hr, simp only [zero_add, add_mul, one_mul], exact dvd_mul_of_dvd_right (pow_dvd_pow _ (add_le_add (by conv_lhs {rw ← mul_one t}; exact mul_le_mul (le_refl _) (by linarith) zero_le_one (nat.zero_le _)) hi2)) _ end else have ¬p ^ ((t + 1) * i - (t + 2) + 1) ∣ i, from if ht0 : t = 0 then begin subst ht0, simp only [add_zero, zero_add, nat.pow_one, one_mul, nat.pow_add], show ¬p ^ (i - 2 + 1) ∣ i, { assume h : p ^ (i - 2 + 1) ∣ i, have hpi : p ^ (i - 2 + 1) ≤ i, from le_of_dvd (by linarith) h, exact not_lt_of_ge hpi (calc i = i - 2 + 2 : by rw [nat.sub_add_cancel hi2] ... < p ^ (i - 2) + 2 * 1 : add_lt_add_of_lt_of_le (nat.lt_pow_self hp.one_lt _) (le_refl _) ... ≤ p ^ (i - 2) + 2 * p ^ (i - 2) : add_le_add (le_refl _) (nat.mul_le_mul_left _ (nat.pow_pos hp.pos _)) ... = 3 * p ^ (i - 2) : by simp [bit0, bit1, add_mul] ... ≤ p * p ^ (i - 2) : nat.mul_le_mul_right _ (succ_le_of_lt $ lt_of_le_of_ne hp.two_le (ne.symm hp2)) ... = p ^ (i - 2 + 1) : by rw [nat.pow_succ, mul_comm]) } end else have i ≤ (t + 1) * i - (t + 2) + 1, begin rw [← nat.sub_add_comm hit, add_mul, one_mul, show 2 = 1 + 1, from rfl], refine nat.le_sub_left_of_add_le _, rw [add_assoc, add_right_comm, ← add_assoc, add_le_add_iff_right, ← add_assoc, add_le_add_iff_right], cases i with i, { exact absurd hi2 dec_trivial }, { rw [mul_succ], exact add_le_add (le_mul_of_one_le_right' (nat.zero_le _) (le_of_succ_le_succ hi2)) (nat.pos_of_ne_zero ht0) } end, mt (dvd_trans (nat.pow_dvd_pow _ this)) (mt (le_of_dvd (by linarith)) (not_le_of_gt (nat.lt_pow_self hp.one_lt _))), begin rw [add_assoc, nat.pow_add, ← nat.sub_add_cancel hit, nat.pow_add _ (_ - _), ← mul_assoc, nat.mul_dvd_mul_iff_right (nat.pow_pos hp.pos _)], exact hp.pow_dvd_choose_mul_pow (by linarith) hpr this end include hx1 hm1 hxmn lemma prime_dvd_m {p : ℕ} (hp : p.prime) : ∀ {r s t : ℕ} (ht : p ^ t ∣ x + 1) (ht' : ¬p ^ (t + 1) ∣ x + 1) (hst : p ^ (s + t) ∣ x^m + 1) (hrs : r ≤ s), p ^ r ∣ m | 0 s t ht ht' hst hrs := by simp | r 0 0 ht ht' hst hrs := by simp * at * | r (s+1) 0 ht ht' hst hrs := false.elim $ ht' $ dvd_x_add_one_of_dvd_x_pow_m_add_one hxmn (by simpa using hp) (dvd_trans (nat.pow_dvd_pow _ (nat.succ_pos _)) hst) | (r+1) s (t+1) ht ht' hst hrs := let ⟨k, hk⟩ := ht in have hpk : ¬p ∣ k, from λ hpk, ht' (by rw [nat.pow_succ, hk]; exact mul_dvd_mul (dvd_refl _) hpk), have hxm_eq_kpt : (x^m + 1 : ℤ) = (k * p ^ (t+1) - 1)^m + 1, by rw [← int.coe_nat_inj', int.coe_nat_add, ← eq_sub_iff_add_eq] at hk; rw [hk]; simp [mul_comm], have hmeven : even (m - 1), from suffices even (m - 1 + 1 + 1), by simpa with parity_simps, by simp [nat.sub_add_cancel (le_of_lt hm1), m_odd hx1 hm1 hxmn] with parity_simps, have hxm_eq_sum : (x^m + 1 : ℤ) = m * k * p ^ (t+1) + (Ico 2 m.succ).sum (λ i, choose m i * p^((t+1) * i) * (k^i * (-1) ^ (m - i))), begin rw [hxm_eq_kpt, sub_eq_add_neg, add_pow, ← Ico.zero_bot, sum_eq_sum_Ico_succ_bot (succ_pos _), sum_eq_sum_Ico_succ_bot (succ_lt_succ (lt_trans zero_lt_one hm1)), nat.sub_zero, neg_one_pow_eq_pow_mod_two, not_even_iff.1 (m_odd hx1 hm1 hxmn), @neg_one_pow_eq_pow_mod_two _ _ (m - 1), even_iff.1 hmeven], simp [mul_comm, (pow_mul _ _ _).symm, mul_assoc, mul_left_comm, _root_.mul_pow], simp only [mul_comm, mul_left_comm, mul_assoc], end, have hpr : p ^ r ∣ m, from prime_dvd_m ht ht' hst (le_of_succ_le hrs), have hdvd_sum : (p : ℤ) ^ (r + (t+1) + 1) ∣ (Ico 2 m.succ).sum (λ i, choose m i * p^((t+1) * i) * (k^i * (-1 : ℤ) ^ (m - i))), from dvd_sum (λ i hi, begin refine dvd_mul_of_dvd_left _ _, simp only [(int.coe_nat_pow _ _).symm, (int.coe_nat_mul _ _).symm, int.coe_nat_dvd], convert prime_dvd_choose hp (not_even_iff.1 (m_odd hx1 hm1 hxmn)) (Ico.mem.1 hi).1 hpr end), have hdvd_m : (p : ℤ) ^ (r + (t+1) + 1) ∣ m * k * p ^ (t+1), from (dvd_add_iff_left hdvd_sum).2 begin rw [← hxm_eq_sum], simp only [(int.coe_nat_pow _ _).symm, int.coe_nat_dvd, int.coe_nat_one.symm, (int.coe_nat_add _ _).symm], exact dvd_trans (nat.pow_dvd_pow _ (by linarith)) hst, end, have hdvd_mk : p^(r + 1) ∣ m * k, from nat.dvd_of_mul_dvd_mul_right (nat.pow_pos hp.pos (t + 1)) (int.coe_nat_dvd.1 $ by simpa [(_root_.pow_add _ _ _).symm] using hdvd_m), hp.pow_dvd_of_dvd_mul_of_not_dvd hdvd_mk hpk lemma x_pow_add_one_div_x_add_one_dvd_m : (x^m + 1) / (x + 1) ∣ m := dvd_of_forall_prime_pow_dvd $ (λ (p r : ℕ) (hp : p.prime) h, have htdom : (multiplicity p (x + 1)).dom, from finite_nat_iff.2 ⟨ne_of_gt hp.one_lt, succ_pos _⟩, let t := (multiplicity p (x + 1)).get htdom in have ht : p ^ t ∣ x + 1, by rw [← nat.pow_eq_pow]; exact pow_multiplicity_dvd _, have hrt : p ^ (r + t) ∣ (x^m + 1), by rw [nat.pow_add, ← nat.div_mul_cancel (x_add_one_dvd_x_pow_add_one hx1 hm1 hxmn)]; exact mul_dvd_mul h ht, have ht' : ¬p ^ (t + 1) ∣ x + 1, by rw [← nat.pow_eq_pow, ← multiplicity_lt_iff_neg_dvd, ← enat.coe_get htdom, enat.coe_lt_coe]; exact nat.lt_succ_self _, prime_dvd_m hx1 hm1 hxmn hp ht ht' hrt (le_refl _)) lemma x_pow_add_one_le_m_mul_x_add_m : x ^ m + 1 ≤ x * m + m := le_of_dvd (by linarith) $ let ⟨q, hq⟩ := x_pow_add_one_div_x_add_one_dvd_m hx1 hm1 hxmn in begin rw [show x * m + m = (x + 1) * m, by simp [add_mul]], conv_rhs {rw hq}, rw [← mul_assoc, nat.mul_div_cancel' (x_add_one_dvd_x_pow_add_one hx1 hm1 hxmn)], simp end lemma m_eq_three : m = 3 := have x ^ m + 1 ≤ x * m + m, from x_pow_add_one_le_m_mul_x_add_m hx1 hm1 hxmn, have h4m : ¬ 4 ≤ m, from λ h, let ⟨m', hm'⟩ := le_iff_exists_add.1 h in let ⟨x', (hx' : x = 2 + x')⟩ := le_iff_exists_add.1 (nat.succ_le_of_lt hx1) in have h32 : m' + 4 ≤ 32 * (x' + 2) ^ m', from calc m' + 4 ≤ (x' + 2) ^ m' + 4 * 1: add_le_add (le_of_lt $ nat.lt_pow_self dec_trivial _) (le_refl _) ... ≤ (x' + 2) ^ m' + 4 * (x' + 2) ^ m' : add_le_add (le_refl _) (mul_le_mul_left _ (nat.pow_pos (succ_pos _) _)) ... = 5 * (x' + 2) ^ m' : by ring ... ≤ 32 * (x' + 2) ^ m' : mul_le_mul_right _ dec_trivial, have h16 : 3 * m' + 12 < 16 * (x' + 2) ^ m', from calc 3 * m' + 12 ≤ 3 * (x' + 2) ^ m' + 12 * 1 : add_le_add (nat.mul_le_mul_left _ (le_of_lt $ lt_pow_self dec_trivial _)) (le_refl _) ... ≤ 3 * (x' + 2) ^ m' + 12 * (x' + 2) ^ m' : add_le_add (le_refl _) (mul_le_mul_left _ (nat.pow_pos (succ_pos _) _)) ... = 15 * (x' + 2) ^ m' : by ring ... < 16 * (x' + 2) ^ m' : (mul_lt_mul_right (nat.pow_pos (succ_pos _) _)).2 dec_trivial, begin clear_aux_decl, substs hm' hx', exact not_lt_of_ge this (calc (2 + x') * (4 + m') + (4 + m') = x' * (m' + 4) + (3 * m' + 12) : by ring ... < x' * (32 * (x' + 2) ^ m') + 16 * (x' + 2) ^ m' : add_lt_add_of_le_of_lt (mul_le_mul_left _ h32) h16 ... ≤ (x' * (32 * (x' + 2) ^ m') + 16 * (x' + 2) ^ m') + (1 + (x' + 2) ^ m' * (x' ^ 4 + 8 * x' ^ 3 + 24 * x' ^ 2)) : le_add_right (le_refl _) ... = (2 + x') ^ (4 + m') + 1 : by simp [nat.pow_add]; ring) end, have m_odd : ¬ even m, from m_odd hx1 hm1 hxmn, begin clear hxmn this, rw [not_le] at h4m, revert m_odd hm1, revert m, exact dec_trivial end lemma x_eq_two : x = 2 := have hm3 : m = 3, from m_eq_three hx1 hm1 hxmn, have x ^ m + 1 ≤ x * m + m, from x_pow_add_one_le_m_mul_x_add_m hx1 hm1 hxmn, have h3x : ¬ 3 ≤ x, from λ h3x, begin rcases le_iff_exists_add.1 h3x with ⟨x', rfl⟩, subst hm3, exact not_lt_of_ge this (calc (3 + x') * 3 + 3 < x' ^ 3 + 9 * x' ^ 2 + 27 * x' + 28 : by linarith ... = (3 + x') ^ 3 + 1 : by ring) end, by linarith omit hxmn lemma question_4 : x ^ m + 1 ∣ (x + 1) ^ n ↔ (x = 2 ∧ m = 3 ∧ 2 ≤ n) := iff.intro (λ hxmn, have hm3 : m = 3, from m_eq_three hx1 hm1 hxmn, have hx2 : x = 2, from x_eq_two hx1 hm1 hxmn, ⟨hx2, hm3, begin substs hm3 hx2, refine le_of_not_lt (λ h2n, _), revert hxmn, revert n, exact dec_trivial end⟩) (begin rintros ⟨rfl, rfl, hn2⟩, rw [← nat.add_sub_cancel' hn2, nat.pow_add], exact dvd_mul_right _ _ end) end question
""" noise_uu(n::Int, lo = - 1, hi = 1) Generate a signal consisting of `n` steps of uncorrelated uniform noise from a uniform distribution on `[lo, hi]`. """ function noise_uu(n::Int; lo = - 1, hi = 1) u = Uniform(-lo, hi) rand(u, n) end """ noise_ug(n::Int; μ = 0, σ = 1) Generate a signal consisting of `n` steps of uncorrelated Gaussian noise from a normal distribution with mean `μ` and standard deviation `σ`. """ function noise_ug(n::Int; μ = 0, σ = 1) d = Normal(μ, σ) rand(d, n) end """ noise_brownian(n::Int; lo = - 1, hi = 1) noise_brownian(d::Distribution, n::Int) Generate a signal consisting of `n` steps of Brownian noise, generated as the zero-mean and unit standard deviation normalised cumulative sum of noise generated from a uniform distribution on `[lo, hi]`. Optionally, a distribution `d` from which to sample can be provided. ## Examples ```julia # Based on uncorrelated uniform noise noise_brownian(100) noise_brownian(100, lo = -2, hi = 2) noise_brownian(Uniform(-3, 3), 100) # Based on uncorrelated Gaussian noise μ, σ = 0, 2 noise_brownian(Normal(μ, σ), 100) ``` """ function noise_brownian(n::Int; lo = - 1, hi = 1) u = Uniform(lo, hi) xs = cumsum(rand(u, n)) (xs .- mean(xs)) ./ std(xs) end function noise_brownian(d::Distribution, n::Int) xs = cumsum(rand(d, n)) (xs .- mean(xs)) ./ (std(xs)) end export noise_uu, noise_ug, noise_brownian
Ask any business, and there’s a good chance it’s into e-commerce. It may already have a shopping website, or one is already on the pipeline. Even big-time retailers such as Ralph Lauren are redirecting some of their revenues to digital marketing efforts. No one can blame them. In the Enterprise Guide to Global E-commerce report, its revenue could increase by no less than $4 trillion in 2021. It’s a far cry from less than $1.5 trillion in 2014. It’s also the only trillion-dollar industry to post double-digit growth, according to eMarketer. Appearance and Use across Different Platforms – The way the website looks on a PC is entirely different once consumers see and use it on a mobile device. Smartphones and tablets, for example, have a much smaller viewing area. Some parts of the site may not render well. Loading Time – This refers to how fast someone can view the contents of a website. Statistics revealed that Internet users these days are impatient. They wait for less than three seconds before they are likely to choose another site. In the meantime, websites with a one-second load time tend to have the highest traffic growth at 4.6%. User Experience – Also known as UX design, it is a process of designing websites to boost their usefulness, ease of use, and customer satisfaction. In other words, the pages should make viewing and eventually shopping a pleasant experience. Because of these, e-commerce owners may benefit more from a customized web development service from teams such as Rebranded.io than from template-based systems including WordPress. Provide different options for feedback (e.g., live chat, landline, mobile, office address, and email address). Personalize the experience. Use analytics to create a list of recommended products, for example. Offer many methods of payments and delivery. About 12% of the population are into e-commerce, which means there’s still a lot of room to grow. There’s even a big market to tap. Don’t waste it by making these critical mistakes.
State Before: α : Type ?u.816393 β : Type ?u.816396 a b c d : ℝ≥0∞ r p q : ℝ≥0 x : ℝ hx : 0 < x ⊢ (ENNReal.ofReal x)⁻¹ = ENNReal.ofReal x⁻¹ State After: no goals Tactic: rw [ENNReal.ofReal, ENNReal.ofReal, ← @coe_inv (Real.toNNReal x) (by simp [hx]), coe_eq_coe, ← Real.toNNReal_inv] State Before: α : Type ?u.816393 β : Type ?u.816396 a b c d : ℝ≥0∞ r p q : ℝ≥0 x : ℝ hx : 0 < x ⊢ Real.toNNReal x ≠ 0 State After: no goals Tactic: simp [hx]
{-# LANGUAGE FlexibleContexts #-} {- | Module : Language.Scheme.Numerical Copyright : Justin Ethier Licence : MIT (see LICENSE in the distribution) Maintainer : github.com/justinethier Stability : experimental Portability : portable This module implements the numerical tower. -} module Language.Scheme.Numerical ( -- * Generic functions numSub , numMul , numDiv , numAdd , numMod , numRationalize , numBoolBinopEq , numBoolBinopGt , numBoolBinopGte , numBoolBinopLt , numBoolBinopLte , numCast , numDenominator , numNumerator , numInexact2Exact , numExact2Inexact , num2String , unpackNum , numericBinop -- * Floating point functions , numFloor , numCeiling , numTruncate , numRound , numExpt , numSqrt , numExp , numLog -- * Trigonometric functions , numSin , numCos , numTan , numAsin , numAcos , numAtan -- * Complex functions , buildComplex , numMakePolar , numRealPart , numImagPart , numMagnitude , numAngle , numMakeRectangular -- * Predicates , isComplex , isReal , isRational , isInteger , isNumber , isFloatAnInteger , isNumNaN , isNumInfinite , isNumFinite , isNumExact , isNumInexact ) where import Language.Scheme.Types import Control.Monad.Error import Data.Char hiding (isNumber) import Data.Complex import Data.Fixed import Data.Ratio import Numeric import Text.Printf -- |A helper function to perform a numeric operation on two values numericBinop :: (Integer -> Integer -> Integer) -> [LispVal] -> ThrowsError LispVal numericBinop _ singleVal@[_] = throwError $ NumArgs (Just 2) singleVal numericBinop op aparams = mapM unpackNum aparams >>= return . Number . foldl1 op -- - Begin GenUtil - http://repetae.net/computer/haskell/GenUtil.hs foldlM :: Monad m => (a -> b -> m a) -> a -> [b] -> m a foldlM f v (x : xs) = (f v x) >>= \ a -> foldlM f a xs foldlM _ v [] = return v foldl1M :: Monad m => (a -> a -> m a) -> [a] -> m a foldl1M f (x : xs) = foldlM f x xs foldl1M _ _ = error "Unexpected error in foldl1M" -- end GenUtil {- FUTURE: as a general comment here, operations need to be more permissive of the numerical types they accept. Within reason, a user should not have to know what numerical type they are passing when using these functions -} -- |Add the given numbers numAdd :: [LispVal] -> ThrowsError LispVal numAdd [] = return $ Number 0 numAdd aparams = do foldl1M (\ a b -> doAdd =<< (numCast [a, b])) aparams where doAdd (List [(Number a), (Number b)]) = return $ Number $ a + b doAdd (List [(Float a), (Float b)]) = return $ Float $ a + b doAdd (List [(Rational a), (Rational b)]) = return $ Rational $ a + b doAdd (List [(Complex a), (Complex b)]) = return $ Complex $ a + b doAdd _ = throwError $ Default "Unexpected error in +" -- |Subtract the given numbers numSub :: [LispVal] -> ThrowsError LispVal numSub [] = throwError $ NumArgs (Just 1) [] numSub [Number n] = return $ Number $ -1 * n numSub [Float n] = return $ Float $ -1 * n numSub [Rational n] = return $ Rational $ -1 * n numSub [Complex n] = return $ Complex $ -1 * n numSub aparams = do foldl1M (\ a b -> doSub =<< (numCast [a, b])) aparams where doSub (List [(Number a), (Number b)]) = return $ Number $ a - b doSub (List [(Float a), (Float b)]) = return $ Float $ a - b doSub (List [(Rational a), (Rational b)]) = return $ Rational $ a - b doSub (List [(Complex a), (Complex b)]) = return $ Complex $ a - b doSub _ = throwError $ Default "Unexpected error in -" -- |Multiply the given numbers numMul :: [LispVal] -> ThrowsError LispVal numMul [] = return $ Number 1 numMul aparams = do foldl1M (\ a b -> doMul =<< (numCast [a, b])) aparams where doMul (List [(Number a), (Number b)]) = return $ Number $ a * b doMul (List [(Float a), (Float b)]) = return $ Float $ a * b doMul (List [(Rational a), (Rational b)]) = return $ Rational $ a * b doMul (List [(Complex a), (Complex b)]) = return $ Complex $ a * b doMul _ = throwError $ Default "Unexpected error in *" -- |Divide the given numbers numDiv :: [LispVal] -> ThrowsError LispVal numDiv [] = throwError $ NumArgs (Just 1) [] numDiv [Number 0] = throwError $ DivideByZero numDiv [Rational 0] = throwError $ DivideByZero numDiv [Number n] = return $ Rational $ 1 / (fromInteger n) numDiv [Float n] = return $ Float $ 1.0 / n numDiv [Rational n] = return $ Rational $ 1 / n numDiv [Complex n] = return $ Complex $ 1 / n numDiv aparams = do foldl1M (\ a b -> doDiv =<< (numCast [a, b])) aparams where doDiv (List [(Number a), (Number b)]) | b == 0 = throwError $ DivideByZero | (mod a b) == 0 = return $ Number $ div a b | otherwise = -- Not an integer return $ Rational $ (fromInteger a) / (fromInteger b) doDiv (List [(Float a), (Float b)]) | b == 0.0 = throwError $ DivideByZero | otherwise = return $ Float $ a / b doDiv (List [(Rational a), (Rational b)]) | b == 0 = throwError $ DivideByZero | otherwise = return $ Rational $ a / b doDiv (List [(Complex a), (Complex b)]) | b == 0 = throwError $ DivideByZero | otherwise = return $ Complex $ a / b doDiv _ = throwError $ Default "Unexpected error in /" -- |Take the modulus of the given numbers numMod :: [LispVal] -> ThrowsError LispVal numMod [] = return $ Number 1 numMod aparams = do foldl1M (\ a b -> doMod =<< (numCast [a, b])) aparams where doMod (List [(Number a), (Number b)]) = return $ Number $ mod' a b doMod (List [(Float a), (Float b)]) = return $ Float $ mod' a b doMod (List [(Rational a), (Rational b)]) = return $ Rational $ mod' a b doMod (List [(Complex _), (Complex _)]) = throwError $ Default "modulo not implemented for complex numbers" doMod _ = throwError $ Default "Unexpected error in modulo" -- |Compare a series of numbers using a given numeric comparison -- function and an array of lisp values numBoolBinopCompare :: (LispVal -> LispVal -> Either LispError LispVal) -> LispVal -> [LispVal] -> Either LispError LispVal numBoolBinopCompare cmp n1 (n2 : ns) = do (n1', n2') <- numCast' (n1, n2) result <- cmp n1' n2' case result of Bool True -> numBoolBinopCompare cmp n2' ns _ -> return $ Bool False numBoolBinopCompare _ _ _ = return $ Bool True -- |Numeric equals numBoolBinopEq :: [LispVal] -> ThrowsError LispVal numBoolBinopEq [] = throwError $ NumArgs (Just 0) [] numBoolBinopEq (n : ns) = numBoolBinopCompare cmp n ns where f a b = a == b cmp (Number a) (Number b) = return $ Bool $ f a b cmp (Float a) (Float b) = return $ Bool $ f a b cmp (Rational a) (Rational b) = return $ Bool $ f a b cmp (Complex a) (Complex b) = return $ Bool $ f a b cmp _ _ = throwError $ Default "Unexpected error in =" -- |Numeric greater than numBoolBinopGt :: [LispVal] -> ThrowsError LispVal numBoolBinopGt [] = throwError $ NumArgs (Just 0) [] numBoolBinopGt (n : ns) = numBoolBinopCompare cmp n ns where f a b = a > b cmp (Number a) (Number b) = return $ Bool $ f a b cmp (Float a) (Float b) = return $ Bool $ f a b cmp (Rational a) (Rational b) = return $ Bool $ f a b cmp _ _ = throwError $ Default "Unexpected error in >" -- |Numeric greater than equal numBoolBinopGte :: [LispVal] -> ThrowsError LispVal numBoolBinopGte [] = throwError $ NumArgs (Just 0) [] numBoolBinopGte (n : ns) = numBoolBinopCompare cmp n ns where f a b = a >= b cmp (Number a) (Number b) = return $ Bool $ f a b cmp (Float a) (Float b) = return $ Bool $ f a b cmp (Rational a) (Rational b) = return $ Bool $ f a b cmp _ _ = throwError $ Default "Unexpected error in >=" -- |Numeric less than numBoolBinopLt :: [LispVal] -> ThrowsError LispVal numBoolBinopLt [] = throwError $ NumArgs (Just 0) [] numBoolBinopLt (n : ns) = numBoolBinopCompare cmp n ns where f a b = a < b cmp (Number a) (Number b) = return $ Bool $ f a b cmp (Float a) (Float b) = return $ Bool $ f a b cmp (Rational a) (Rational b) = return $ Bool $ f a b cmp _ _ = throwError $ Default "Unexpected error in <" -- |Numeric less than equal numBoolBinopLte :: [LispVal] -> ThrowsError LispVal numBoolBinopLte [] = throwError $ NumArgs (Just 0) [] numBoolBinopLte (n : ns) = numBoolBinopCompare cmp n ns where f a b = a <= b cmp (Number a) (Number b) = return $ Bool $ f a b cmp (Float a) (Float b) = return $ Bool $ f a b cmp (Rational a) (Rational b) = return $ Bool $ f a b cmp _ _ = throwError $ Default "Unexpected error in <=" -- |Accept two numbers and cast one of them to the appropriate type, if necessary numCast' :: (LispVal, LispVal) -> ThrowsError (LispVal, LispVal) numCast' (a@(Number _), b@(Number _)) = return $ (a, b) numCast' (a@(Float _), b@(Float _)) = return $ (a, b) numCast' (a@(Rational _), b@(Rational _)) = return $ (a, b) numCast' (a@(Complex _), b@(Complex _)) = return $ (a, b) numCast' ((Number a), b@(Float _)) = return $ (Float $ fromInteger a, b) numCast' ((Number a), b@(Rational _)) = return $ (Rational $ fromInteger a, b) numCast' ((Number a), b@(Complex _)) = return $ (Complex $ fromInteger a, b) numCast' (a@(Float _), (Number b)) = return $ (a, Float $ fromInteger b) numCast' (a@(Float _), (Rational b)) = return $ (a, Float $ fromRational b) numCast' ((Float a), b@(Complex _)) = return $ (Complex $ a :+ 0, b) numCast' (a@(Rational _), (Number b)) = return $ (a, Rational $ fromInteger b) numCast' ((Rational a), b@(Float _)) = return $ (Float $ fromRational a, b) numCast' ((Rational a), b@(Complex _)) = return $ (Complex $ (fromInteger $ numerator a) / (fromInteger $ denominator a), b) numCast' (a@(Complex _), (Number b)) = return $ (a, Complex $ fromInteger b) numCast' (a@(Complex _), (Float b)) = return $ (a, Complex $ b :+ 0) numCast' (a@(Complex _), (Rational b)) = return $ (a, Complex $ (fromInteger $ numerator b) / (fromInteger $ denominator b)) numCast' (a, b) = case a of Number _ -> doThrowError b Float _ -> doThrowError b Rational _ -> doThrowError b Complex _ -> doThrowError b _ -> doThrowError a where doThrowError num = throwError $ TypeMismatch "number" num -- |Accept two numbers and cast one of them to the appropriate type, if necessary numCast :: [LispVal] -> ThrowsError LispVal numCast [a, b] = do (a', b') <- numCast' (a, b) pure $ List [a', b'] numCast _ = throwError $ Default "Unexpected error in numCast" -- |Convert the given number to a rational numRationalize :: [LispVal] -> ThrowsError LispVal numRationalize [(Number n)] = return $ Rational $ toRational n numRationalize [(Float n)] = return $ Rational $ toRational n numRationalize [n@(Rational _)] = return n numRationalize [x] = throwError $ TypeMismatch "number" x numRationalize badArgList = throwError $ NumArgs (Just 1) badArgList -- |Round the given number numRound :: [LispVal] -> ThrowsError LispVal numRound [n@(Number _)] = return n numRound [(Rational n)] = return $ Number $ round n numRound [(Float n)] = return $ Float $ fromInteger $ round n numRound [(Complex n)] = do return $ Complex $ (fromInteger $ round $ realPart n) :+ (fromInteger $ round $ imagPart n) numRound [x] = throwError $ TypeMismatch "number" x numRound badArgList = throwError $ NumArgs (Just 1) badArgList -- |Floor the given number numFloor :: [LispVal] -> ThrowsError LispVal numFloor [n@(Number _)] = return n numFloor [(Rational n)] = return $ Number $ floor n numFloor [(Float n)] = return $ Float $ fromInteger $ floor n numFloor [(Complex n)] = do return $ Complex $ (fromInteger $ floor $ realPart n) :+ (fromInteger $ floor $ imagPart n) numFloor [x] = throwError $ TypeMismatch "number" x numFloor badArgList = throwError $ NumArgs (Just 1) badArgList -- |Take the ceiling of the given number numCeiling :: [LispVal] -> ThrowsError LispVal numCeiling [n@(Number _)] = return n numCeiling [(Rational n)] = return $ Number $ ceiling n numCeiling [(Float n)] = return $ Float $ fromInteger $ ceiling n numCeiling [(Complex n)] = do return $ Complex $ (fromInteger $ ceiling $ realPart n) :+ (fromInteger $ ceiling $ imagPart n) numCeiling [x] = throwError $ TypeMismatch "number" x numCeiling badArgList = throwError $ NumArgs (Just 1) badArgList -- |Truncate the given number numTruncate :: [LispVal] -> ThrowsError LispVal numTruncate [n@(Number _)] = return n numTruncate [(Rational n)] = return $ Number $ truncate n numTruncate [(Float n)] = return $ Float $ fromInteger $ truncate n numTruncate [(Complex n)] = do return $ Complex $ (fromInteger $ truncate $ realPart n) :+ (fromInteger $ truncate $ imagPart n) numTruncate [x] = throwError $ TypeMismatch "number" x numTruncate badArgList = throwError $ NumArgs (Just 1) badArgList -- |Sine numSin :: [LispVal] -> ThrowsError LispVal numSin [(Number n)] = return $ Float $ sin $ fromInteger n numSin [(Float n)] = return $ Float $ sin n numSin [(Rational n)] = return $ Float $ sin $ fromRational n numSin [(Complex n)] = return $ Complex $ sin n numSin [x] = throwError $ TypeMismatch "number" x numSin badArgList = throwError $ NumArgs (Just 1) badArgList -- |Cosine numCos :: [LispVal] -> ThrowsError LispVal numCos [(Number n)] = return $ Float $ cos $ fromInteger n numCos [(Float n)] = return $ Float $ cos n numCos [(Rational n)] = return $ Float $ cos $ fromRational n numCos [(Complex n)] = return $ Complex $ cos n numCos [x] = throwError $ TypeMismatch "number" x numCos badArgList = throwError $ NumArgs (Just 1) badArgList -- |Tangent numTan :: [LispVal] -> ThrowsError LispVal numTan [(Number n)] = return $ Float $ tan $ fromInteger n numTan [(Float n)] = return $ Float $ tan n numTan [(Rational n)] = return $ Float $ tan $ fromRational n numTan [(Complex n)] = return $ Complex $ tan n numTan [x] = throwError $ TypeMismatch "number" x numTan badArgList = throwError $ NumArgs (Just 1) badArgList -- |Arcsine numAsin :: [LispVal] -> ThrowsError LispVal numAsin [(Number n)] = return $ Float $ asin $ fromInteger n numAsin [(Float n)] = return $ Float $ asin n numAsin [(Rational n)] = return $ Float $ asin $ fromRational n numAsin [(Complex n)] = return $ Complex $ asin n numAsin [x] = throwError $ TypeMismatch "number" x numAsin badArgList = throwError $ NumArgs (Just 1) badArgList -- |Arccosine numAcos :: [LispVal] -> ThrowsError LispVal numAcos [(Number n)] = return $ Float $ acos $ fromInteger n numAcos [(Float n)] = return $ Float $ acos n numAcos [(Rational n)] = return $ Float $ acos $ fromRational n numAcos [(Complex n)] = return $ Complex $ acos n numAcos [x] = throwError $ TypeMismatch "number" x numAcos badArgList = throwError $ NumArgs (Just 1) badArgList -- |Arctangent numAtan :: [LispVal] -> ThrowsError LispVal numAtan [(Number n)] = return $ Float $ atan $ fromInteger n numAtan [Number y, Number x] = return $ Float $ phase $ (fromInteger x) :+ (fromInteger y) numAtan [(Float n)] = return $ Float $ atan n numAtan [Float y, Float x] = return $ Float $ phase $ x :+ y numAtan [(Rational n)] = return $ Float $ atan $ fromRational n numAtan [Rational y, Rational x] = return $ Float $ phase $ (fromRational x) :+ (fromRational y) numAtan [(Complex n)] = return $ Complex $ atan n numAtan [x] = throwError $ TypeMismatch "number" x numAtan badArgList = throwError $ NumArgs (Just 1) badArgList -- |Take the square root of the given number numSqrt :: [LispVal] -> ThrowsError LispVal numSqrt [(Number n)] = if n >= 0 then return $ Float $ sqrt $ fromInteger n else return $ Complex $ sqrt ((fromInteger n) :+ 0) numSqrt [(Float n)] = if n >= 0 then return $ Float $ sqrt n else return $ Complex $ sqrt (n :+ 0) numSqrt [(Rational n)] = numSqrt [Float $ fromRational n] numSqrt [(Complex n)] = return $ Complex $ sqrt n numSqrt [x] = throwError $ TypeMismatch "number" x numSqrt badArgList = throwError $ NumArgs (Just 1) badArgList -- |Raise the first number to the power of the second numExpt :: [LispVal] -> ThrowsError LispVal numExpt [(Number n), (Number p)] = return $ Float $ (fromInteger n) ^ p numExpt [(Rational n), (Number p)] = return $ Float $ (fromRational n) ^ p numExpt [(Float n), (Number p)] = return $ Float $ n ^ p numExpt [(Complex n), (Number p)] = return $ Complex $ n ^ p numExpt [_, y] = throwError $ TypeMismatch "integer" y numExpt badArgList = throwError $ NumArgs (Just 2) badArgList {- numExpt params = do foldl1M (\a b -> doExpt =<< (numCast [a, b])) params where doExpt (List [(Number a), (Number b)]) = return $ Float $ (fromInteger a) ^ (fromInteger b) -- doExpt (List [(Rational a), (Rational b)]) = return $ Float $ fromRational $ a ^ b doExpt (List [(Float a), (Float b)]) = return $ Float $ a ^ b -- doExpt (List [(Complex a), (Complex b)]) = return $ Complex $ a ^ b -} -- |Take the exponent of the given number numExp :: [LispVal] -> ThrowsError LispVal numExp [(Number n)] = return $ Float $ exp $ fromInteger n numExp [(Float n)] = return $ Float $ exp n numExp [(Rational n)] = return $ Float $ exp $ fromRational n numExp [(Complex n)] = return $ Complex $ exp n numExp [x] = throwError $ TypeMismatch "number" x numExp badArgList = throwError $ NumArgs (Just 1) badArgList -- |Compute the log of a given number numLog :: [LispVal] -> ThrowsError LispVal numLog [(Number n)] = return $ Float $ log $ fromInteger n numLog [Number n, Number base] = return $ Float $ logBase (fromInteger base) (fromInteger n) numLog [(Float n)] = return $ Float $ log n numLog [Float n, Number base] = return $ Float $ logBase (fromInteger base) n numLog [(Rational n)] = return $ Float $ log $ fromRational n numLog [Rational n, Number base] = return $ Float $ logBase (fromInteger base) (fromRational n) numLog [(Complex n)] = return $ Complex $ log n numLog [Complex n, Number base] = return $ Complex $ logBase (fromInteger base) n numLog [x] = throwError $ TypeMismatch "number" x numLog badArgList = throwError $ NumArgs (Just 1) badArgList -- Complex number functions -- |Create a complex number buildComplex :: LispVal -- ^ Real part -> LispVal -- ^ Imaginary part -> ThrowsError LispVal -- ^ Complex number buildComplex (Number x) (Number y) = return $ Complex $ (fromInteger x) :+ (fromInteger y) buildComplex (Number x) (Rational y) = return $ Complex $ (fromInteger x) :+ (fromRational y) buildComplex (Number x) (Float y) = return $ Complex $ (fromInteger x) :+ y buildComplex (Rational x) (Number y) = return $ Complex $ (fromRational x) :+ (fromInteger y) buildComplex (Rational x) (Rational y) = return $ Complex $ (fromRational x) :+ (fromRational y) buildComplex (Rational x) (Float y) = return $ Complex $ (fromRational x) :+ y buildComplex (Float x) (Number y) = return $ Complex $ x :+ (fromInteger y) buildComplex (Float x) (Rational y) = return $ Complex $ x :+ (fromRational y) buildComplex (Float x) (Float y) = return $ Complex $ x :+ y buildComplex x y = throwError $ TypeMismatch "number" $ List [x, y] -- |Create a complex number given its real and imaginary parts numMakeRectangular :: [LispVal] -> ThrowsError LispVal numMakeRectangular [x, y] = buildComplex x y numMakeRectangular badArgList = throwError $ NumArgs (Just 2) badArgList -- |Create a complex number from its magnitude and phase (angle) numMakePolar :: [LispVal] -> ThrowsError LispVal numMakePolar [(Float x), (Float y)] = return $ Complex $ mkPolar x y numMakePolar [(Float _), y] = throwError $ TypeMismatch "real" y numMakePolar [x, (Float _)] = throwError $ TypeMismatch "real real" $ x numMakePolar badArgList = throwError $ NumArgs (Just 2) badArgList -- |The phase of a complex number numAngle :: [LispVal] -> ThrowsError LispVal numAngle [(Complex c)] = return $ Float $ phase c numAngle [x] = throwError $ TypeMismatch "complex number" x numAngle badArgList = throwError $ NumArgs (Just 1) badArgList -- |The nonnegative magnitude of a complex number numMagnitude :: [LispVal] -> ThrowsError LispVal numMagnitude [(Complex c)] = return $ Float $ magnitude c numMagnitude [x] = throwError $ TypeMismatch "complex number" x numMagnitude badArgList = throwError $ NumArgs (Just 1) badArgList -- |Retrieve real part of a complex number numRealPart :: [LispVal] -> ThrowsError LispVal numRealPart [(Complex c)] = return $ Float $ realPart c numRealPart [n@(Float _)] = return n numRealPart [n@(Rational _)] = return n numRealPart [n@(Number _)] = return n numRealPart [x] = throwError $ TypeMismatch "complex number" x numRealPart badArgList = throwError $ NumArgs (Just 1) badArgList -- |Retrieve imaginary part of a complex number numImagPart :: [LispVal] -> ThrowsError LispVal numImagPart [(Complex c)] = do let n = imagPart c f = Float n if isFloatAnInteger f then return $ Number $ floor n else return f numImagPart [(Float _)] = return $ Number 0 numImagPart [(Rational _)] = return $ Number 0 numImagPart [(Number _)] = return $ Number 0 numImagPart [x] = throwError $ TypeMismatch "complex number" x numImagPart badArgList = throwError $ NumArgs (Just 1) badArgList -- |Take the numerator of the given number numNumerator :: [LispVal] -> ThrowsError LispVal numNumerator [n@(Number _)] = return n numNumerator [(Rational r)] = return $ Number $ numerator r numNumerator [(Float f)] = return $ Float $ fromInteger . numerator . toRational $ f numNumerator [x] = throwError $ TypeMismatch "rational number" x numNumerator badArgList = throwError $ NumArgs (Just 1) badArgList -- |Take the denominator of the given number numDenominator :: [LispVal] -> ThrowsError LispVal numDenominator [Number _] = return $ Number 1 numDenominator [(Rational r)] = return $ Number $ denominator r numDenominator [(Float f)] = return $ Float $ fromInteger $ denominator $ toRational f numDenominator [x] = throwError $ TypeMismatch "rational number" x numDenominator badArgList = throwError $ NumArgs (Just 1) badArgList -- |Convert an exact number to inexact numExact2Inexact :: [LispVal] -> ThrowsError LispVal numExact2Inexact [(Number n)] = return $ Float $ fromInteger n numExact2Inexact [(Rational n)] = return $ Float $ fromRational n numExact2Inexact [n@(Float _)] = return n numExact2Inexact [n@(Complex _)] = return n numExact2Inexact [badType] = throwError $ TypeMismatch "number" badType numExact2Inexact badArgList = throwError $ NumArgs (Just 1) badArgList -- |Convert an inexact number to exact numInexact2Exact :: [LispVal] -> ThrowsError LispVal numInexact2Exact [n@(Number _)] = return n numInexact2Exact [n@(Rational _)] = return n numInexact2Exact [(Float n)] = return $ Number $ round n numInexact2Exact [c@(Complex _)] = numRound [c] numInexact2Exact [badType] = throwError $ TypeMismatch "number" badType numInexact2Exact badArgList = throwError $ NumArgs (Just 1) badArgList -- |Convert a number to a string; radix is optional, defaults to base 10 num2String :: [LispVal] -> ThrowsError LispVal num2String [(Number n)] = return $ String $ show n num2String [(Number n), (Number radix)] = do case radix of 2 -> do -- Nice tip from StackOverflow question #1959715 return $ String $ showIntAtBase 2 intToDigit n "" 8 -> return $ String $ printf "%o" n 10 -> return $ String $ printf "%d" n 16 -> return $ String $ printf "%x" n _ -> throwError $ BadSpecialForm "Invalid radix value" $ Number radix num2String [n@(Rational _)] = return $ String $ show n num2String [(Float n)] = return $ String $ show n num2String [n@(Complex _)] = return $ String $ show n num2String [x] = throwError $ TypeMismatch "number" x num2String badArgList = throwError $ NumArgs (Just 1) badArgList -- | Determine if the given value is not a number isNumNaN :: [LispVal] -> ThrowsError LispVal isNumNaN ([Float n]) = return $ Bool $ isNaN n isNumNaN _ = return $ Bool False -- | Determine if number is infinite isNumInfinite :: [LispVal] -> ThrowsError LispVal isNumInfinite ([Float n]) = return $ Bool $ isInfinite n isNumInfinite _ = return $ Bool False -- | Determine if number is not infinite isNumFinite :: [LispVal] -> ThrowsError LispVal isNumFinite ([Number _]) = return $ Bool True isNumFinite ([Float n]) = return $ Bool $ not $ isInfinite n isNumFinite ([Complex _]) = return $ Bool True isNumFinite ([Rational _]) = return $ Bool True isNumFinite _ = return $ Bool False -- | Determine if number is exact isNumExact :: [LispVal] -> ThrowsError LispVal isNumExact ([Number _]) = return $ Bool True isNumExact ([Float _]) = return $ Bool False isNumExact ([Complex _]) = return $ Bool False -- TODO: could be either isNumExact ([Rational _]) = return $ Bool True isNumExact _ = return $ Bool False -- | Determine if number is inexact isNumInexact :: [LispVal] -> ThrowsError LispVal isNumInexact ([Number _]) = return $ Bool False isNumInexact ([Float _]) = return $ Bool True isNumInexact ([Complex _]) = return $ Bool True isNumInexact ([Rational _]) = return $ Bool False isNumInexact _ = return $ Bool False -- |Predicate to determine if given value is a number isNumber :: [LispVal] -> ThrowsError LispVal isNumber ([Number _]) = return $ Bool True isNumber ([Float _]) = return $ Bool True isNumber ([Complex _]) = return $ Bool True isNumber ([Rational _]) = return $ Bool True isNumber _ = return $ Bool False -- |Predicate to determine if given number is complex. -- Keep in mind this does not just look at the types isComplex :: [LispVal] -> ThrowsError LispVal isComplex ([Complex _]) = return $ Bool True isComplex ([Number _]) = return $ Bool True isComplex ([Rational _]) = return $ Bool True isComplex ([Float _]) = return $ Bool True isComplex _ = return $ Bool False -- |Predicate to determine if given number is a real. -- Keep in mind this does not just look at the types isReal :: [LispVal] -> ThrowsError LispVal isReal ([Number _]) = return $ Bool True isReal ([Rational _]) = return $ Bool True isReal ([Float _]) = return $ Bool True isReal ([Complex c]) = do imagPt <- numImagPart [(Complex c)] isExact <- isNumExact [imagPt] isZero <- numBoolBinopEq [imagPt, (Number 0)] case (isExact, isZero) of (Bool True, Bool True) -> return $ Bool True _ -> return $ Bool False isReal _ = return $ Bool False -- |Predicate to determine if given number is a rational. -- Keep in mind this does not just look at the types isRational :: [LispVal] -> ThrowsError LispVal isRational ([Number _]) = return $ Bool True isRational ([Rational _]) = return $ Bool True isRational ([Float n]) = return $ Bool $ not $ isInfinite n isRational _ = return $ Bool False -- |Predicate to determine if given number is an integer. -- Keep in mind this does not just look at the types; -- a floating point input value can return true, for example. isInteger :: [LispVal] -> ThrowsError LispVal isInteger ([Number _]) = return $ Bool True isInteger ([Complex n]) = do return $ Bool $ (isFloatAnInteger $ Float $ realPart n) && (isFloatAnInteger $ Float $ imagPart n) isInteger ([Rational n]) = do let numer = abs $ numerator n let denom = abs $ denominator n return $ Bool $ (numer >= denom) && ((mod numer denom) == 0) isInteger ([n@(Float _)]) = return $ Bool $ isFloatAnInteger n isInteger _ = return $ Bool False -- |A utility function to determine if given value is a floating point -- number representing an whole number (integer). isFloatAnInteger :: LispVal -> Bool isFloatAnInteger (Float n) = ((floor n) :: Integer) == ((ceiling n) :: Integer) isFloatAnInteger _ = False -- - end Numeric operations section --- -- |Extract an integer from the given value, throwing a type error if -- the wrong type is passed. unpackNum :: LispVal -> ThrowsError Integer unpackNum (Number n) = return n unpackNum notNum = throwError $ TypeMismatch "number" notNum