Datasets:
AI4M
/

text
stringlengths
0
3.34M
[STATEMENT] lemma path_entry_is_trancl: assumes "path_entry E l v" and "l \<noteq> []" shows "(0,v)\<in>E\<^sup>+" [PROOF STATE] proof (prove) goal (1 subgoal): 1. (0, v) \<in> E\<^sup>+ [PROOF STEP] using assms [PROOF STATE] proof (prove) using this: path_entry E l v l \<noteq> [] goal (1 subgoal): 1. (0, v) \<in> E\<^sup>+ [PROOF STEP] apply induct [PROOF STATE] proof (prove) goal (2 subgoals): 1. [] \<noteq> [] \<Longrightarrow> (0, 0) \<in> E\<^sup>+ 2. \<And>u v l. \<lbrakk>(u, v) \<in> E; path_entry E l u; l \<noteq> [] \<Longrightarrow> (0, u) \<in> E\<^sup>+; u # l \<noteq> []\<rbrakk> \<Longrightarrow> (0, v) \<in> E\<^sup>+ [PROOF STEP] apply auto [] [PROOF STATE] proof (prove) goal (1 subgoal): 1. \<And>u v l. \<lbrakk>(u, v) \<in> E; path_entry E l u; l \<noteq> [] \<Longrightarrow> (0, u) \<in> E\<^sup>+; u # l \<noteq> []\<rbrakk> \<Longrightarrow> (0, v) \<in> E\<^sup>+ [PROOF STEP] apply (case_tac l) [PROOF STATE] proof (prove) goal (2 subgoals): 1. \<And>u v l. \<lbrakk>(u, v) \<in> E; path_entry E l u; l \<noteq> [] \<Longrightarrow> (0, u) \<in> E\<^sup>+; u # l \<noteq> []; l = []\<rbrakk> \<Longrightarrow> (0, v) \<in> E\<^sup>+ 2. \<And>u v l a list. \<lbrakk>(u, v) \<in> E; path_entry E l u; l \<noteq> [] \<Longrightarrow> (0, u) \<in> E\<^sup>+; u # l \<noteq> []; l = a # list\<rbrakk> \<Longrightarrow> (0, v) \<in> E\<^sup>+ [PROOF STEP] apply (auto simp add:path_entry0_empty_conv) [PROOF STATE] proof (prove) goal: No subgoals! [PROOF STEP] done
/- Copyright (c) 2018 Kenny Lau. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Kenny Lau, Chris Hughes, Mario Carneiro ! This file was ported from Lean 3 source module ring_theory.ideal.local_ring ! leanprover-community/mathlib commit ec1c7d810034d4202b0dd239112d1792be9f6fdc ! Please do not edit these lines, except to modify the commit id ! if you have ported upstream changes. -/ import Mathbin.Algebra.Algebra.Basic import Mathbin.RingTheory.Ideal.Operations import Mathbin.RingTheory.JacobsonIdeal import Mathbin.Logic.Equiv.TransferInstance /-! # Local rings Define local rings as commutative rings having a unique maximal ideal. ## Main definitions * `local_ring`: A predicate on commutative semirings, stating that for any pair of elements that adds up to `1`, one of them is a unit. This is shown to be equivalent to the condition that there exists a unique maximal ideal. * `local_ring.maximal_ideal`: The unique maximal ideal for a local rings. Its carrier set is the set of non units. * `is_local_ring_hom`: A predicate on semiring homomorphisms, requiring that it maps nonunits to nonunits. For local rings, this means that the image of the unique maximal ideal is again contained in the unique maximal ideal. * `local_ring.residue_field`: The quotient of a local ring by its maximal ideal. -/ universe u v w u' variable {R : Type u} {S : Type v} {T : Type w} {K : Type u'} /-- A semiring is local if it is nontrivial and `a` or `b` is a unit whenever `a + b = 1`. Note that `local_ring` is a predicate. -/ class LocalRing (R : Type u) [Semiring R] extends Nontrivial R : Prop where of_is_unit_or_is_unit_of_add_one :: isUnit_or_isUnit_of_add_one {a b : R} (h : a + b = 1) : IsUnit a ∨ IsUnit b #align local_ring LocalRing section CommSemiring variable [CommSemiring R] namespace LocalRing theorem of_isUnit_or_isUnit_of_isUnit_add [Nontrivial R] (h : ∀ a b : R, IsUnit (a + b) → IsUnit a ∨ IsUnit b) : LocalRing R := ⟨fun a b hab => h a b <| hab.symm ▸ isUnit_one⟩ #align local_ring.of_is_unit_or_is_unit_of_is_unit_add LocalRing.of_isUnit_or_isUnit_of_isUnit_add /-- A semiring is local if it is nontrivial and the set of nonunits is closed under the addition. -/ theorem of_nonunits_add [Nontrivial R] (h : ∀ a b : R, a ∈ nonunits R → b ∈ nonunits R → a + b ∈ nonunits R) : LocalRing R := ⟨fun a b hab => or_iff_not_and_not.2 fun H => h a b H.1 H.2 <| hab.symm ▸ isUnit_one⟩ #align local_ring.of_nonunits_add LocalRing.of_nonunits_add /-- A semiring is local if it has a unique maximal ideal. -/ theorem of_unique_max_ideal (h : ∃! I : Ideal R, I.IsMaximal) : LocalRing R := @of_nonunits_add _ _ (nontrivial_of_ne (0 : R) 1 <| let ⟨I, Imax, _⟩ := h fun H : 0 = 1 => Imax.1.1 <| I.eq_top_iff_one.2 <| H ▸ I.zero_mem) fun x y hx hy H => let ⟨I, Imax, Iuniq⟩ := h let ⟨Ix, Ixmax, Hx⟩ := exists_max_ideal_of_mem_nonunits hx let ⟨Iy, Iymax, Hy⟩ := exists_max_ideal_of_mem_nonunits hy have xmemI : x ∈ I := Iuniq Ix Ixmax ▸ Hx have ymemI : y ∈ I := Iuniq Iy Iymax ▸ Hy Imax.1.1 <| I.eq_top_of_isUnit_mem (I.add_mem xmemI ymemI) H #align local_ring.of_unique_max_ideal LocalRing.of_unique_max_ideal theorem of_unique_nonzero_prime (h : ∃! P : Ideal R, P ≠ ⊥ ∧ Ideal.IsPrime P) : LocalRing R := of_unique_max_ideal (by rcases h with ⟨P, ⟨hPnonzero, hPnot_top, _⟩, hPunique⟩ refine' ⟨P, ⟨⟨hPnot_top, _⟩⟩, fun M hM => hPunique _ ⟨_, Ideal.IsMaximal.isPrime hM⟩⟩ · refine' Ideal.maximal_of_no_maximal fun M hPM hM => ne_of_lt hPM _ exact (hPunique _ ⟨ne_bot_of_gt hPM, Ideal.IsMaximal.isPrime hM⟩).symm · rintro rfl exact hPnot_top (hM.1.2 P (bot_lt_iff_ne_bot.2 hPnonzero))) #align local_ring.of_unique_nonzero_prime LocalRing.of_unique_nonzero_prime variable [LocalRing R] theorem isUnit_or_isUnit_of_isUnit_add {a b : R} (h : IsUnit (a + b)) : IsUnit a ∨ IsUnit b := by rcases h with ⟨u, hu⟩ rw [← Units.inv_mul_eq_one, mul_add] at hu apply Or.imp _ _ (is_unit_or_is_unit_of_add_one hu) <;> exact isUnit_of_mul_isUnit_right #align local_ring.is_unit_or_is_unit_of_is_unit_add LocalRing.isUnit_or_isUnit_of_isUnit_add theorem nonunits_add {a b : R} (ha : a ∈ nonunits R) (hb : b ∈ nonunits R) : a + b ∈ nonunits R := fun H => not_or_of_not ha hb (isUnit_or_isUnit_of_isUnit_add H) #align local_ring.nonunits_add LocalRing.nonunits_add variable (R) /-- The ideal of elements that are not units. -/ def maximalIdeal : Ideal R where carrier := nonunits R zero_mem' := zero_mem_nonunits.2 <| zero_ne_one add_mem' x y hx hy := nonunits_add hx hy smul_mem' a x := mul_mem_nonunits_right #align local_ring.maximal_ideal LocalRing.maximalIdeal instance maximalIdeal.isMaximal : (maximalIdeal R).IsMaximal := by rw [Ideal.isMaximal_iff] constructor · intro h apply h exact isUnit_one · intro I x hI hx H erw [Classical.not_not] at hx rcases hx with ⟨u, rfl⟩ simpa using I.mul_mem_left (↑u⁻¹) H #align local_ring.maximal_ideal.is_maximal LocalRing.maximalIdeal.isMaximal theorem maximal_ideal_unique : ∃! I : Ideal R, I.IsMaximal := ⟨maximalIdeal R, maximalIdeal.isMaximal R, fun I hI => hI.eq_of_le (maximalIdeal.isMaximal R).1.1 fun x hx => hI.1.1 ∘ I.eq_top_of_isUnit_mem hx⟩ #align local_ring.maximal_ideal_unique LocalRing.maximal_ideal_unique variable {R} theorem eq_maximalIdeal {I : Ideal R} (hI : I.IsMaximal) : I = maximalIdeal R := ExistsUnique.unique (maximal_ideal_unique R) hI <| maximalIdeal.isMaximal R #align local_ring.eq_maximal_ideal LocalRing.eq_maximalIdeal theorem le_maximalIdeal {J : Ideal R} (hJ : J ≠ ⊤) : J ≤ maximalIdeal R := by rcases Ideal.exists_le_maximal J hJ with ⟨M, hM1, hM2⟩ rwa [← eq_maximal_ideal hM1] #align local_ring.le_maximal_ideal LocalRing.le_maximalIdeal @[simp] theorem mem_maximalIdeal (x) : x ∈ maximalIdeal R ↔ x ∈ nonunits R := Iff.rfl #align local_ring.mem_maximal_ideal LocalRing.mem_maximalIdeal theorem isField_iff_maximalIdeal_eq : IsField R ↔ maximalIdeal R = ⊥ := not_iff_not.mp ⟨Ring.ne_bot_of_isMaximal_of_not_isField inferInstance, fun h => Ring.not_isField_iff_exists_prime.mpr ⟨_, h, Ideal.IsMaximal.isPrime' _⟩⟩ #align local_ring.is_field_iff_maximal_ideal_eq LocalRing.isField_iff_maximalIdeal_eq end LocalRing end CommSemiring section CommRing variable [CommRing R] namespace LocalRing theorem of_isUnit_or_isUnit_one_sub_self [Nontrivial R] (h : ∀ a : R, IsUnit a ∨ IsUnit (1 - a)) : LocalRing R := ⟨fun a b hab => add_sub_cancel' a b ▸ hab.symm ▸ h a⟩ #align local_ring.of_is_unit_or_is_unit_one_sub_self LocalRing.of_isUnit_or_isUnit_one_sub_self variable [LocalRing R] theorem isUnit_or_isUnit_one_sub_self (a : R) : IsUnit a ∨ IsUnit (1 - a) := isUnit_or_isUnit_of_isUnit_add <| (add_sub_cancel'_right a 1).symm ▸ isUnit_one #align local_ring.is_unit_or_is_unit_one_sub_self LocalRing.isUnit_or_isUnit_one_sub_self theorem isUnit_of_mem_nonunits_one_sub_self (a : R) (h : 1 - a ∈ nonunits R) : IsUnit a := or_iff_not_imp_right.1 (isUnit_or_isUnit_one_sub_self a) h #align local_ring.is_unit_of_mem_nonunits_one_sub_self LocalRing.isUnit_of_mem_nonunits_one_sub_self theorem isUnit_one_sub_self_of_mem_nonunits (a : R) (h : a ∈ nonunits R) : IsUnit (1 - a) := or_iff_not_imp_left.1 (isUnit_or_isUnit_one_sub_self a) h #align local_ring.is_unit_one_sub_self_of_mem_nonunits LocalRing.isUnit_one_sub_self_of_mem_nonunits theorem of_surjective' [CommRing S] [Nontrivial S] (f : R →+* S) (hf : Function.Surjective f) : LocalRing S := of_isUnit_or_isUnit_one_sub_self (by intro b obtain ⟨a, rfl⟩ := hf b apply (is_unit_or_is_unit_one_sub_self a).imp f.is_unit_map _ rw [← f.map_one, ← f.map_sub] apply f.is_unit_map) #align local_ring.of_surjective' LocalRing.of_surjective' theorem jacobson_eq_maximalIdeal (I : Ideal R) (h : I ≠ ⊤) : I.jacobson = LocalRing.maximalIdeal R := by apply le_antisymm · exact infₛ_le ⟨LocalRing.le_maximalIdeal h, LocalRing.maximalIdeal.isMaximal R⟩ · exact le_infₛ fun J (hJ : I ≤ J ∧ J.IsMaximal) => le_of_eq (LocalRing.eq_maximalIdeal hJ.2).symm #align local_ring.jacobson_eq_maximal_ideal LocalRing.jacobson_eq_maximalIdeal end LocalRing end CommRing /-- A local ring homomorphism is a homomorphism `f` between local rings such that `a` in the domain is a unit if `f a` is a unit for any `a`. See `local_ring.local_hom_tfae` for other equivalent definitions. -/ class IsLocalRingHom [Semiring R] [Semiring S] (f : R →+* S) : Prop where map_nonunit : ∀ a, IsUnit (f a) → IsUnit a #align is_local_ring_hom IsLocalRingHom section variable [Semiring R] [Semiring S] [Semiring T] instance isLocalRingHom_id (R : Type _) [Semiring R] : IsLocalRingHom (RingHom.id R) where map_nonunit a := id #align is_local_ring_hom_id isLocalRingHom_id @[simp] theorem isUnit_map_iff (f : R →+* S) [IsLocalRingHom f] (a) : IsUnit (f a) ↔ IsUnit a := ⟨IsLocalRingHom.map_nonunit a, f.isUnit_map⟩ #align is_unit_map_iff isUnit_map_iff @[simp] theorem map_mem_nonunits_iff (f : R →+* S) [IsLocalRingHom f] (a) : f a ∈ nonunits S ↔ a ∈ nonunits R := ⟨fun h ha => h <| (isUnit_map_iff f a).mpr ha, fun h ha => h <| (isUnit_map_iff f a).mp ha⟩ #align map_mem_nonunits_iff map_mem_nonunits_iff instance isLocalRingHom_comp (g : S →+* T) (f : R →+* S) [IsLocalRingHom g] [IsLocalRingHom f] : IsLocalRingHom (g.comp f) where map_nonunit a := IsLocalRingHom.map_nonunit a ∘ IsLocalRingHom.map_nonunit (f a) #align is_local_ring_hom_comp isLocalRingHom_comp instance isLocalRingHom_equiv (f : R ≃+* S) : IsLocalRingHom (f : R →+* S) where map_nonunit a ha := by convert(f.symm : S →+* R).isUnit_map ha exact (RingEquiv.symm_apply_apply f a).symm #align is_local_ring_hom_equiv isLocalRingHom_equiv @[simp] theorem isUnit_of_map_unit (f : R →+* S) [IsLocalRingHom f] (a) (h : IsUnit (f a)) : IsUnit a := IsLocalRingHom.map_nonunit a h #align is_unit_of_map_unit isUnit_of_map_unit theorem of_irreducible_map (f : R →+* S) [h : IsLocalRingHom f] {x} (hfx : Irreducible (f x)) : Irreducible x := ⟨fun h => hfx.not_unit <| IsUnit.map f h, fun p q hx => let ⟨H⟩ := h Or.imp (H p) (H q) <| hfx.isUnit_or_isUnit <| f.map_mul p q ▸ congr_arg f hx⟩ #align of_irreducible_map of_irreducible_map theorem isLocalRingHom_of_comp (f : R →+* S) (g : S →+* T) [IsLocalRingHom (g.comp f)] : IsLocalRingHom f := ⟨fun a ha => (isUnit_map_iff (g.comp f) _).mp (g.isUnit_map ha)⟩ #align is_local_ring_hom_of_comp isLocalRingHom_of_comp /-- If `f : R →+* S` is a local ring hom, then `R` is a local ring if `S` is. -/ theorem RingHom.domain_localRing {R S : Type _} [CommSemiring R] [CommSemiring S] [H : LocalRing S] (f : R →+* S) [IsLocalRingHom f] : LocalRing R := by haveI : Nontrivial R := pullback_nonzero f f.map_zero f.map_one apply LocalRing.of_nonunits_add intro a b simp_rw [← map_mem_nonunits_iff f, f.map_add] exact LocalRing.nonunits_add #align ring_hom.domain_local_ring RingHom.domain_localRing end section open LocalRing variable [CommSemiring R] [LocalRing R] [CommSemiring S] [LocalRing S] /-- The image of the maximal ideal of the source is contained within the maximal ideal of the target. -/ theorem map_nonunit (f : R →+* S) [IsLocalRingHom f] (a : R) (h : a ∈ maximalIdeal R) : f a ∈ maximalIdeal S := fun H => h <| isUnit_of_map_unit f a H #align map_nonunit map_nonunit end namespace LocalRing section variable [CommSemiring R] [LocalRing R] [CommSemiring S] [LocalRing S] /-- A ring homomorphism between local rings is a local ring hom iff it reflects units, i.e. any preimage of a unit is still a unit. https://stacks.math.columbia.edu/tag/07BJ -/ theorem local_hom_tFAE (f : R →+* S) : TFAE [IsLocalRingHom f, f '' (maximalIdeal R).1 ⊆ maximalIdeal S, (maximalIdeal R).map f ≤ maximalIdeal S, maximalIdeal R ≤ (maximalIdeal S).comap f, (maximalIdeal S).comap f = maximalIdeal R] := by tfae_have 1 → 2; rintro _ _ ⟨a, ha, rfl⟩ skip; exact map_nonunit f a ha tfae_have 2 → 4; exact Set.image_subset_iff.1 tfae_have 3 ↔ 4; exact Ideal.map_le_iff_le_comap tfae_have 4 → 1; intro h; fconstructor; exact fun x => not_imp_not.1 (@h x) tfae_have 1 → 5; intro ; skip; ext exact not_iff_not.2 (isUnit_map_iff f x) tfae_have 5 → 4; exact fun h => le_of_eq h.symm tfae_finish #align local_ring.local_hom_tfae LocalRing.local_hom_tFAE end theorem of_surjective [CommSemiring R] [LocalRing R] [CommSemiring S] [Nontrivial S] (f : R →+* S) [IsLocalRingHom f] (hf : Function.Surjective f) : LocalRing S := of_isUnit_or_isUnit_of_isUnit_add (by intro a b hab obtain ⟨a, rfl⟩ := hf a obtain ⟨b, rfl⟩ := hf b rw [← map_add] at hab exact (is_unit_or_is_unit_of_is_unit_add <| IsLocalRingHom.map_nonunit _ hab).imp f.is_unit_map f.is_unit_map) #align local_ring.of_surjective LocalRing.of_surjective /-- If `f : R →+* S` is a surjective local ring hom, then the induced units map is surjective. -/ theorem surjective_units_map_of_local_ringHom [CommRing R] [CommRing S] (f : R →+* S) (hf : Function.Surjective f) (h : IsLocalRingHom f) : Function.Surjective (Units.map <| f.toMonoidHom) := by intro a obtain ⟨b, hb⟩ := hf (a : S) use (isUnit_of_map_unit f _ (by rw [hb] exact Units.isUnit _)).Unit; ext; exact hb #align local_ring.surjective_units_map_of_local_ring_hom LocalRing.surjective_units_map_of_local_ringHom section variable (R) [CommRing R] [LocalRing R] [CommRing S] [LocalRing S] [CommRing T] [LocalRing T] /-- The residue field of a local ring is the quotient of the ring by its maximal ideal. -/ def ResidueField := R ⧸ maximalIdeal R deriving Ring, CommRing, Inhabited #align local_ring.residue_field LocalRing.ResidueField noncomputable instance ResidueField.field : Field (ResidueField R) := Ideal.Quotient.field (maximalIdeal R) #align local_ring.residue_field.field LocalRing.ResidueField.field /-- The quotient map from a local ring to its residue field. -/ def residue : R →+* ResidueField R := Ideal.Quotient.mk _ #align local_ring.residue LocalRing.residue instance ResidueField.algebra : Algebra R (ResidueField R) := Ideal.Quotient.algebra _ #align local_ring.residue_field.algebra LocalRing.ResidueField.algebra theorem ResidueField.algebraMap_eq : algebraMap R (ResidueField R) = residue R := rfl #align local_ring.residue_field.algebra_map_eq LocalRing.ResidueField.algebraMap_eq instance : IsLocalRingHom (LocalRing.residue R) := ⟨fun a ha => Classical.not_not.mp (Ideal.Quotient.eq_zero_iff_mem.Not.mp (isUnit_iff_ne_zero.mp ha))⟩ variable {R} namespace ResidueField /-- A local ring homomorphism into a field can be descended onto the residue field. -/ def lift {R S : Type _} [CommRing R] [LocalRing R] [Field S] (f : R →+* S) [IsLocalRingHom f] : LocalRing.ResidueField R →+* S := Ideal.Quotient.lift _ f fun a ha => by_contradiction fun h => ha (isUnit_of_map_unit f a (isUnit_iff_ne_zero.mpr h)) #align local_ring.residue_field.lift LocalRing.ResidueField.lift theorem lift_comp_residue {R S : Type _} [CommRing R] [LocalRing R] [Field S] (f : R →+* S) [IsLocalRingHom f] : (lift f).comp (residue R) = f := RingHom.ext fun _ => rfl #align local_ring.residue_field.lift_comp_residue LocalRing.ResidueField.lift_comp_residue @[simp] theorem lift_residue_apply {R S : Type _} [CommRing R] [LocalRing R] [Field S] (f : R →+* S) [IsLocalRingHom f] (x) : lift f (residue R x) = f x := rfl #align local_ring.residue_field.lift_residue_apply LocalRing.ResidueField.lift_residue_apply /-- The map on residue fields induced by a local homomorphism between local rings -/ def map (f : R →+* S) [IsLocalRingHom f] : ResidueField R →+* ResidueField S := Ideal.Quotient.lift (maximalIdeal R) ((Ideal.Quotient.mk _).comp f) fun a ha => by erw [Ideal.Quotient.eq_zero_iff_mem] exact map_nonunit f a ha #align local_ring.residue_field.map LocalRing.ResidueField.map /-- Applying `residue_field.map` to the identity ring homomorphism gives the identity ring homomorphism. -/ @[simp] theorem map_id : LocalRing.ResidueField.map (RingHom.id R) = RingHom.id (LocalRing.ResidueField R) := Ideal.Quotient.ringHom_ext <| RingHom.ext fun x => rfl #align local_ring.residue_field.map_id LocalRing.ResidueField.map_id /-- The composite of two `residue_field.map`s is the `residue_field.map` of the composite. -/ theorem map_comp (f : T →+* R) (g : R →+* S) [IsLocalRingHom f] [IsLocalRingHom g] : LocalRing.ResidueField.map (g.comp f) = (LocalRing.ResidueField.map g).comp (LocalRing.ResidueField.map f) := Ideal.Quotient.ringHom_ext <| RingHom.ext fun x => rfl #align local_ring.residue_field.map_comp LocalRing.ResidueField.map_comp theorem map_comp_residue (f : R →+* S) [IsLocalRingHom f] : (ResidueField.map f).comp (residue R) = (residue S).comp f := rfl #align local_ring.residue_field.map_comp_residue LocalRing.ResidueField.map_comp_residue theorem map_residue (f : R →+* S) [IsLocalRingHom f] (r : R) : ResidueField.map f (residue R r) = residue S (f r) := rfl #align local_ring.residue_field.map_residue LocalRing.ResidueField.map_residue theorem map_id_apply (x : ResidueField R) : map (RingHom.id R) x = x := FunLike.congr_fun map_id x #align local_ring.residue_field.map_id_apply LocalRing.ResidueField.map_id_apply @[simp] theorem map_map (f : R →+* S) (g : S →+* T) (x : ResidueField R) [IsLocalRingHom f] [IsLocalRingHom g] : map g (map f x) = map (g.comp f) x := FunLike.congr_fun (map_comp f g).symm x #align local_ring.residue_field.map_map LocalRing.ResidueField.map_map /-- A ring isomorphism defines an isomorphism of residue fields. -/ @[simps apply] def mapEquiv (f : R ≃+* S) : LocalRing.ResidueField R ≃+* LocalRing.ResidueField S where toFun := map (f : R →+* S) invFun := map (f.symm : S →+* R) left_inv x := by simp only [map_map, RingEquiv.symm_comp, map_id, RingHom.id_apply] right_inv x := by simp only [map_map, RingEquiv.comp_symm, map_id, RingHom.id_apply] map_mul' := RingHom.map_mul _ map_add' := RingHom.map_add _ #align local_ring.residue_field.map_equiv LocalRing.ResidueField.mapEquiv @[simp] theorem mapEquiv.symm (f : R ≃+* S) : (mapEquiv f).symm = mapEquiv f.symm := rfl #align local_ring.residue_field.map_equiv.symm LocalRing.ResidueField.mapEquiv.symm @[simp] theorem mapEquiv_trans (e₁ : R ≃+* S) (e₂ : S ≃+* T) : mapEquiv (e₁.trans e₂) = (mapEquiv e₁).trans (mapEquiv e₂) := RingEquiv.toRingHom_injective <| map_comp (e₁ : R →+* S) (e₂ : S →+* T) #align local_ring.residue_field.map_equiv_trans LocalRing.ResidueField.mapEquiv_trans @[simp] theorem mapEquiv_refl : mapEquiv (RingEquiv.refl R) = RingEquiv.refl _ := RingEquiv.toRingHom_injective map_id #align local_ring.residue_field.map_equiv_refl LocalRing.ResidueField.mapEquiv_refl /-- The group homomorphism from `ring_aut R` to `ring_aut k` where `k` is the residue field of `R`. -/ @[simps] def mapAut : RingAut R →* RingAut (LocalRing.ResidueField R) where toFun := mapEquiv map_mul' e₁ e₂ := mapEquiv_trans e₂ e₁ map_one' := mapEquiv_refl #align local_ring.residue_field.map_aut LocalRing.ResidueField.mapAut section MulSemiringAction variable (G : Type _) [Group G] [MulSemiringAction G R] /-- If `G` acts on `R` as a `mul_semiring_action`, then it also acts on `residue_field R`. -/ instance : MulSemiringAction G (LocalRing.ResidueField R) := MulSemiringAction.compHom _ <| mapAut.comp (MulSemiringAction.toRingAut G R) @[simp] theorem residue_smul (g : G) (r : R) : residue R (g • r) = g • residue R r := rfl #align local_ring.residue_field.residue_smul LocalRing.ResidueField.residue_smul end MulSemiringAction end ResidueField theorem ker_eq_maximalIdeal [Field K] (φ : R →+* K) (hφ : Function.Surjective φ) : φ.ker = maximalIdeal R := LocalRing.eq_maximalIdeal <| (RingHom.ker_isMaximal_of_surjective φ) hφ #align local_ring.ker_eq_maximal_ideal LocalRing.ker_eq_maximalIdeal theorem isLocalRingHom_residue : IsLocalRingHom (LocalRing.residue R) := by constructor intro a ha by_contra erw [ideal.quotient.eq_zero_iff_mem.mpr ((LocalRing.mem_maximalIdeal _).mpr h)] at ha exact ha.ne_zero rfl #align local_ring.is_local_ring_hom_residue LocalRing.isLocalRingHom_residue end end LocalRing namespace Field variable (K) [Field K] open Classical -- see Note [lower instance priority] instance (priority := 100) : LocalRing K := LocalRing.of_isUnit_or_isUnit_one_sub_self fun a => if h : a = 0 then Or.inr (by rw [h, sub_zero] <;> exact isUnit_one) else Or.inl <| IsUnit.mk0 a h end Field theorem LocalRing.maximalIdeal_eq_bot {R : Type _} [Field R] : LocalRing.maximalIdeal R = ⊥ := LocalRing.isField_iff_maximalIdeal_eq.mp (Field.toIsField R) #align local_ring.maximal_ideal_eq_bot LocalRing.maximalIdeal_eq_bot namespace RingEquiv @[reducible] protected theorem localRing {A B : Type _} [CommSemiring A] [LocalRing A] [CommSemiring B] (e : A ≃+* B) : LocalRing B := haveI := e.symm.to_equiv.nontrivial LocalRing.of_surjective (e : A →+* B) e.surjective #align ring_equiv.local_ring RingEquiv.localRing end RingEquiv
{-# OPTIONS_GHC -Wall #-} {-# LANGUAGE QuasiQuotes #-} {-# LANGUAGE TemplateHaskell #-} {-# LANGUAGE MultiWayIf #-} {-# LANGUAGE OverloadedStrings #-} {-# LANGUAGE ScopedTypeVariables #-} ----------------------------------------------------------------------------- -- | -- Module : Numeric.Sundials.CVode.ODE -- Copyright : Dominic Steinitz 2018, -- Novadiscovery 2018 -- License : BSD -- Maintainer : Dominic Steinitz -- Stability : provisional -- -- Solution of ordinary differential equation (ODE) initial value problems. -- -- <https://computation.llnl.gov/projects/sundials/sundials-software> -- -- A simple example: -- -- <<diagrams/brusselator.png#diagram=brusselator&height=400&width=500>> -- -- @ -- import Numeric.Sundials.CVode.ODE -- import Numeric.LinearAlgebra -- -- import Plots as P -- import qualified Diagrams.Prelude as D -- import Diagrams.Backend.Rasterific -- -- brusselator :: Double -> [Double] -> [Double] -- brusselator _t x = [ a - (w + 1) * u + v * u * u -- , w * u - v * u * u -- , (b - w) / eps - w * u -- ] -- where -- a = 1.0 -- b = 3.5 -- eps = 5.0e-6 -- u = x !! 0 -- v = x !! 1 -- w = x !! 2 -- -- lSaxis :: [[Double]] -> P.Axis B D.V2 Double -- lSaxis xs = P.r2Axis &~ do -- let ts = xs!!0 -- us = xs!!1 -- vs = xs!!2 -- ws = xs!!3 -- P.linePlot' $ zip ts us -- P.linePlot' $ zip ts vs -- P.linePlot' $ zip ts ws -- -- main = do -- let res1 = odeSolve brusselator [1.2, 3.1, 3.0] (fromList [0.0, 0.1 .. 10.0]) -- renderRasterific "diagrams/brusselator.png" -- (D.dims2D 500.0 500.0) -- (renderAxis $ lSaxis $ [0.0, 0.1 .. 10.0]:(toLists $ tr res1)) -- @ -- ----------------------------------------------------------------------------- module Numeric.Sundials.CVode.ODE ( odeSolve , odeSolveV , odeSolveVWith , odeSolveVWith' , odeSolveRootVWith' , ODEMethod(..) , StepControl(..) , SolverResult(..) ) where import qualified Language.C.Inline as C import qualified Language.C.Inline.Unsafe as CU import Data.Monoid ((<>)) import Data.Maybe (isJust) import Foreign.C.Types (CDouble, CInt, CLong) import Foreign.Ptr (Ptr) import Foreign.Storable (poke) import qualified Data.Vector.Storable as V import Data.Coerce (coerce) import System.IO.Unsafe (unsafePerformIO) import Numeric.LinearAlgebra.Devel (createVector) import Numeric.LinearAlgebra.HMatrix (Vector, Matrix, toList, rows, cols, toLists, size, reshape) import Numeric.Sundials.Arkode (cV_ADAMS, cV_BDF, getDataFromContents, putDataInContents, vectorToC, cV_SUCCESS, cV_ROOT_RETURN) import qualified Numeric.Sundials.Arkode as T import Numeric.Sundials.ODEOpts (ODEOpts(..), Jacobian, SundialsDiagnostics(..)) C.context (C.baseCtx <> C.vecCtx <> C.funCtx <> T.sunCtx) C.include "<stdlib.h>" C.include "<stdio.h>" C.include "<math.h>" C.include "<cvode/cvode.h>" -- prototypes for CVODE fcts., consts. C.include "<nvector/nvector_serial.h>" -- serial N_Vector types, fcts., macros C.include "<sunmatrix/sunmatrix_dense.h>" -- access to dense SUNMatrix C.include "<sunlinsol/sunlinsol_dense.h>" -- access to dense SUNLinearSolver C.include "<cvode/cvode_direct.h>" -- access to CVDls interface C.include "<sundials/sundials_types.h>" -- definition of type realtype C.include "<sundials/sundials_math.h>" C.include "../../../helpers.h" C.include "Numeric/Sundials/Arkode_hsc.h" -- | Stepping functions data ODEMethod = ADAMS | BDF getMethod :: ODEMethod -> Int getMethod (ADAMS) = cV_ADAMS getMethod (BDF) = cV_BDF getJacobian :: ODEMethod -> Maybe Jacobian getJacobian _ = Nothing -- | A version of 'odeSolveVWith' with reasonable default step control. odeSolveV :: ODEMethod -> Maybe Double -- ^ initial step size - by default, CVode -- estimates the initial step size to be the -- solution \(h\) of the equation -- \(\|\frac{h^2\ddot{y}}{2}\| = 1\), where -- \(\ddot{y}\) is an estimated value of the -- second derivative of the solution at \(t_0\) -> Double -- ^ absolute tolerance for the state vector -> Double -- ^ relative tolerance for the state vector -> (Double -> Vector Double -> Vector Double) -- ^ The RHS of the system \(\dot{y} = f(t,y)\) -> Vector Double -- ^ initial conditions -> Vector Double -- ^ desired solution times -> Matrix Double -- ^ solution odeSolveV meth hi epsAbs epsRel f y0 ts = odeSolveVWith meth (X epsAbs epsRel) hi g y0 ts where g t x0 = coerce $ f t x0 -- | A version of 'odeSolveV' with reasonable default parameters and -- system of equations defined using lists. FIXME: we should say -- something about the fact we could use the Jacobian but don't for -- compatibility with hmatrix-gsl. odeSolve :: (Double -> [Double] -> [Double]) -- ^ The RHS of the system \(\dot{y} = f(t,y)\) -> [Double] -- ^ initial conditions -> Vector Double -- ^ desired solution times -> Matrix Double -- ^ solution odeSolve f y0 ts = -- FIXME: These tolerances are different from the ones in GSL odeSolveVWith BDF (XX' 1.0e-6 1.0e-10 1 1) Nothing g (V.fromList y0) (V.fromList $ toList ts) where g t x0 = V.fromList $ f t (V.toList x0) odeSolveVWith :: ODEMethod -> StepControl -> Maybe Double -- ^ initial step size - by default, CVode -- estimates the initial step size to be the -- solution \(h\) of the equation -- \(\|\frac{h^2\ddot{y}}{2}\| = 1\), where -- \(\ddot{y}\) is an estimated value of the second -- derivative of the solution at \(t_0\) -> (Double -> V.Vector Double -> V.Vector Double) -- ^ The RHS of the system \(\dot{y} = f(t,y)\) -> V.Vector Double -- ^ Initial conditions -> V.Vector Double -- ^ Desired solution times -> Matrix Double -- ^ Error code or solution odeSolveVWith method control initStepSize f y0 tt = case odeSolveVWith' opts method control initStepSize f y0 tt of Left (c, _v) -> error $ show c -- FIXME Right (v, _d) -> v where opts = ODEOpts { maxNumSteps = 10000 , minStep = 1.0e-12 , relTol = error "relTol" , absTols = error "absTol" , initStep = error "initStep" , maxFail = 10 } odeSolveVWith' :: ODEOpts -> ODEMethod -> StepControl -> Maybe Double -- ^ initial step size - by default, CVode -- estimates the initial step size to be the -- solution \(h\) of the equation -- \(\|\frac{h^2\ddot{y}}{2}\| = 1\), where -- \(\ddot{y}\) is an estimated value of the second -- derivative of the solution at \(t_0\) -> (Double -> V.Vector Double -> V.Vector Double) -- ^ The RHS of the system \(\dot{y} = f(t,y)\) -> V.Vector Double -- ^ Initial conditions -> V.Vector Double -- ^ Desired solution times -> Either (Matrix Double, Int) (Matrix Double, SundialsDiagnostics) -- ^ Error code or solution odeSolveVWith' opts method control initStepSize f y0 tt = case solveOdeC (fromIntegral $ maxFail opts) (fromIntegral $ maxNumSteps opts) (coerce $ minStep opts) (fromIntegral $ getMethod method) (coerce initStepSize) jacH (scise control) (coerce f) (coerce y0) (coerce tt) of Left (v, c) -> Left (reshape l (coerce v), fromIntegral c) Right (v, d) -> Right (reshape l (coerce v), d) where l = size y0 scise (X aTol rTol) = coerce (V.replicate l aTol, rTol) scise (X' aTol rTol) = coerce (V.replicate l aTol, rTol) scise (XX' aTol rTol yScale _yDotScale) = coerce (V.replicate l aTol, yScale * rTol) -- FIXME; Should we check that the length of ss is correct? scise (ScXX' aTol rTol yScale _yDotScale ss) = coerce (V.map (* aTol) ss, yScale * rTol) jacH = fmap (\g t v -> matrixToSunMatrix $ g (coerce t) (coerce v)) $ getJacobian method matrixToSunMatrix m = T.SunMatrix { T.rows = nr, T.cols = nc, T.vals = vs } where nr = fromIntegral $ rows m nc = fromIntegral $ cols m -- FIXME: efficiency vs = V.fromList $ map coerce $ concat $ toLists m solveOdeC :: CInt -> CLong -> CDouble -> CInt -> Maybe CDouble -> (Maybe (CDouble -> V.Vector CDouble -> T.SunMatrix)) -> (V.Vector CDouble, CDouble) -> (CDouble -> V.Vector CDouble -> V.Vector CDouble) -- ^ The RHS of the system \(\dot{y} = f(t,y)\) -> V.Vector CDouble -- ^ Initial conditions -> V.Vector CDouble -- ^ Desired solution times -> Either (V.Vector CDouble, CInt) (V.Vector CDouble, SundialsDiagnostics) -- ^ Partial solution and error code or -- solution and diagnostics solveOdeC maxErrTestFails maxNumSteps_ minStep_ method initStepSize jacH (aTols, rTol) fun f0 ts = unsafePerformIO $ do let isInitStepSize :: CInt isInitStepSize = fromIntegral $ fromEnum $ isJust initStepSize ss :: CDouble ss = case initStepSize of -- It would be better to put an error message here but -- inline-c seems to evaluate this even if it is never -- used :( Nothing -> 0.0 Just x -> x let dim = V.length f0 nEq :: CLong nEq = fromIntegral dim nTs :: CInt nTs = fromIntegral $ V.length ts quasiMatrixRes <- createVector ((fromIntegral dim) * (fromIntegral nTs)) qMatMut <- V.thaw quasiMatrixRes diagnostics :: V.Vector CLong <- createVector 10 -- FIXME diagMut <- V.thaw diagnostics -- We need the types that sundials expects. These are tied together -- in 'CLangToHaskellTypes'. FIXME: The Haskell type is currently empty! let funIO :: CDouble -> Ptr T.SunVector -> Ptr T.SunVector -> Ptr () -> IO CInt funIO x y f _ptr = do -- Convert the pointer we get from C (y) to a vector, and then -- apply the user-supplied function. fImm <- fun x <$> getDataFromContents dim y -- Fill in the provided pointer with the resulting vector. putDataInContents fImm dim f -- FIXME: I don't understand what this comment means -- Unsafe since the function will be called many times. [CU.exp| int{ 0 } |] let isJac :: CInt isJac = fromIntegral $ fromEnum $ isJust jacH jacIO :: CDouble -> Ptr T.SunVector -> Ptr T.SunVector -> Ptr T.SunMatrix -> Ptr () -> Ptr T.SunVector -> Ptr T.SunVector -> Ptr T.SunVector -> IO CInt jacIO t y _fy jacS _ptr _tmp1 _tmp2 _tmp3 = do case jacH of Nothing -> error "Numeric.Sundials.CVode.ODE: Jacobian not defined" Just jacI -> do j <- jacI t <$> getDataFromContents dim y poke jacS j -- FIXME: I don't understand what this comment means -- Unsafe since the function will be called many times. [CU.exp| int{ 0 } |] res <- [C.block| int { /* general problem variables */ int flag; /* reusable error-checking flag */ int i, j; /* reusable loop indices */ N_Vector y = NULL; /* empty vector for storing solution */ N_Vector tv = NULL; /* empty vector for storing absolute tolerances */ SUNMatrix A = NULL; /* empty matrix for linear solver */ SUNLinearSolver LS = NULL; /* empty linear solver object */ void *cvode_mem = NULL; /* empty CVODE memory structure */ realtype t; long int nst, nfe, nsetups, nje, nfeLS, nni, ncfn, netf, nge; /* general problem parameters */ realtype T0 = RCONST(($vec-ptr:(double *ts))[0]); /* initial time */ sunindextype NEQ = $(sunindextype nEq); /* number of dependent vars. */ /* Initialize data structures */ y = N_VNew_Serial(NEQ); /* Create serial vector for solution */ if (check_flag((void *)y, "N_VNew_Serial", 0)) return 1; /* Specify initial condition */ for (i = 0; i < NEQ; i++) { NV_Ith_S(y,i) = ($vec-ptr:(double *f0))[i]; }; cvode_mem = CVodeCreate($(int method), CV_NEWTON); if (check_flag((void *)cvode_mem, "CVodeCreate", 0)) return(1); /* Call CVodeInit to initialize the integrator memory and specify the * user's right hand side function in y'=f(t,y), the inital time T0, and * the initial dependent variable vector y. */ flag = CVodeInit(cvode_mem, $fun:(int (* funIO) (double t, SunVector y[], SunVector dydt[], void * params)), T0, y); if (check_flag(&flag, "CVodeInit", 1)) return(1); tv = N_VNew_Serial(NEQ); /* Create serial vector for absolute tolerances */ if (check_flag((void *)tv, "N_VNew_Serial", 0)) return 1; /* Specify tolerances */ for (i = 0; i < NEQ; i++) { NV_Ith_S(tv,i) = ($vec-ptr:(double *aTols))[i]; }; flag = CVodeSetMinStep(cvode_mem, $(double minStep_)); if (check_flag(&flag, "CVodeSetMinStep", 1)) return 1; flag = CVodeSetMaxNumSteps(cvode_mem, $(long int maxNumSteps_)); if (check_flag(&flag, "CVodeSetMaxNumSteps", 1)) return 1; flag = CVodeSetMaxErrTestFails(cvode_mem, $(int maxErrTestFails)); if (check_flag(&flag, "CVodeSetMaxErrTestFails", 1)) return 1; /* Call CVodeSVtolerances to specify the scalar relative tolerance * and vector absolute tolerances */ flag = CVodeSVtolerances(cvode_mem, $(double rTol), tv); if (check_flag(&flag, "CVodeSVtolerances", 1)) return(1); /* Initialize dense matrix data structure and solver */ A = SUNDenseMatrix(NEQ, NEQ); if (check_flag((void *)A, "SUNDenseMatrix", 0)) return 1; LS = SUNDenseLinearSolver(y, A); if (check_flag((void *)LS, "SUNDenseLinearSolver", 0)) return 1; /* Attach matrix and linear solver */ flag = CVDlsSetLinearSolver(cvode_mem, LS, A); if (check_flag(&flag, "CVDlsSetLinearSolver", 1)) return 1; /* Set the initial step size if there is one */ if ($(int isInitStepSize)) { /* FIXME: We could check if the initial step size is 0 */ /* or even NaN and then throw an error */ flag = CVodeSetInitStep(cvode_mem, $(double ss)); if (check_flag(&flag, "CVodeSetInitStep", 1)) return 1; } /* Set the Jacobian if there is one */ if ($(int isJac)) { flag = CVDlsSetJacFn(cvode_mem, $fun:(int (* jacIO) (double t, SunVector y[], SunVector fy[], SunMatrix Jac[], void * params, SunVector tmp1[], SunVector tmp2[], SunVector tmp3[]))); if (check_flag(&flag, "CVDlsSetJacFn", 1)) return 1; } /* Store initial conditions */ for (j = 0; j < NEQ; j++) { ($vec-ptr:(double *qMatMut))[0 * $(int nTs) + j] = NV_Ith_S(y,j); } /* Main time-stepping loop: calls CVode to perform the integration */ /* Stops when the final time has been reached */ for (i = 1; i < $(int nTs); i++) { flag = CVode(cvode_mem, ($vec-ptr:(double *ts))[i], y, &t, CV_NORMAL); /* call integrator */ if (check_flag(&flag, "CVode solver failure, stopping integration", 1)) return 1; /* Store the results for Haskell */ for (j = 0; j < NEQ; j++) { ($vec-ptr:(double *qMatMut))[i * NEQ + j] = NV_Ith_S(y,j); } } /* Get some final statistics on how the solve progressed */ flag = CVodeGetNumSteps(cvode_mem, &nst); check_flag(&flag, "CVodeGetNumSteps", 1); ($vec-ptr:(long int *diagMut))[0] = nst; /* FIXME */ ($vec-ptr:(long int *diagMut))[1] = 0; flag = CVodeGetNumRhsEvals(cvode_mem, &nfe); check_flag(&flag, "CVodeGetNumRhsEvals", 1); ($vec-ptr:(long int *diagMut))[2] = nfe; /* FIXME */ ($vec-ptr:(long int *diagMut))[3] = 0; flag = CVodeGetNumLinSolvSetups(cvode_mem, &nsetups); check_flag(&flag, "CVodeGetNumLinSolvSetups", 1); ($vec-ptr:(long int *diagMut))[4] = nsetups; flag = CVodeGetNumErrTestFails(cvode_mem, &netf); check_flag(&flag, "CVodeGetNumErrTestFails", 1); ($vec-ptr:(long int *diagMut))[5] = netf; flag = CVodeGetNumNonlinSolvIters(cvode_mem, &nni); check_flag(&flag, "CVodeGetNumNonlinSolvIters", 1); ($vec-ptr:(long int *diagMut))[6] = nni; flag = CVodeGetNumNonlinSolvConvFails(cvode_mem, &ncfn); check_flag(&flag, "CVodeGetNumNonlinSolvConvFails", 1); ($vec-ptr:(long int *diagMut))[7] = ncfn; flag = CVDlsGetNumJacEvals(cvode_mem, &nje); check_flag(&flag, "CVDlsGetNumJacEvals", 1); ($vec-ptr:(long int *diagMut))[8] = ncfn; flag = CVDlsGetNumRhsEvals(cvode_mem, &nfeLS); check_flag(&flag, "CVDlsGetNumRhsEvals", 1); ($vec-ptr:(long int *diagMut))[9] = ncfn; /* Clean up and return */ N_VDestroy(y); /* Free y vector */ N_VDestroy(tv); /* Free tv vector */ CVodeFree(&cvode_mem); /* Free integrator memory */ SUNLinSolFree(LS); /* Free linear solver */ SUNMatDestroy(A); /* Free A matrix */ return flag; } |] preD <- V.freeze diagMut let d = SundialsDiagnostics (fromIntegral $ preD V.!0) (fromIntegral $ preD V.!1) (fromIntegral $ preD V.!2) (fromIntegral $ preD V.!3) (fromIntegral $ preD V.!4) (fromIntegral $ preD V.!5) (fromIntegral $ preD V.!6) (fromIntegral $ preD V.!7) (fromIntegral $ preD V.!8) (fromIntegral $ preD V.!9) m <- V.freeze qMatMut if res == 0 then do return $ Right (m, d) else do return $ Left (m, res) solveOdeC' :: CInt -> CLong -> CDouble -> CInt -> Maybe CDouble -> (Maybe (CDouble -> V.Vector CDouble -> T.SunMatrix)) -> (V.Vector CDouble, CDouble) -> (CDouble -> V.Vector CDouble -> V.Vector CDouble) -- ^ The RHS of the system \(\dot{y} = f(t,y)\) -> V.Vector CDouble -- ^ Initial conditions -> CInt -- ^ FIXME -> (CDouble -> V.Vector CDouble -> V.Vector CDouble) -- ^ FIXME -> V.Vector CDouble -- ^ Desired solution times -> SolverResult V.Vector V.Vector CInt CDouble solveOdeC' maxErrTestFails maxNumSteps_ minStep_ method initStepSize jacH (aTols, rTol) fun f0 nr g ts = unsafePerformIO $ do let isInitStepSize :: CInt isInitStepSize = fromIntegral $ fromEnum $ isJust initStepSize ss :: CDouble ss = case initStepSize of -- It would be better to put an error message here but -- inline-c seems to evaluate this even if it is never -- used :( Nothing -> 0.0 Just x -> x let dim = V.length f0 nEq :: CLong nEq = fromIntegral dim nTs :: CInt nTs = fromIntegral $ V.length ts quasiMatrixRes <- createVector ((fromIntegral dim) * (fromIntegral nTs)) qMatMut <- V.thaw quasiMatrixRes diagnostics :: V.Vector CLong <- createVector 10 -- FIXME diagMut <- V.thaw diagnostics -- We need the types that sundials expects. -- FIXME: The Haskell type is currently empty! let funIO :: CDouble -> Ptr T.SunVector -> Ptr T.SunVector -> Ptr () -> IO CInt funIO t y f _ptr = do -- Convert the pointer we get from C (y) to a vector, and then -- apply the user-supplied function. fImm <- fun t <$> getDataFromContents dim y -- Fill in the provided pointer with the resulting vector. putDataInContents fImm dim f -- FIXME: I don't understand what this comment means -- Unsafe since the function will be called many times. [CU.exp| int{ 0 } |] let nrPre = fromIntegral nr gResults :: V.Vector CInt <- createVector nrPre gResMut <- V.thaw gResults tRoot :: V.Vector CDouble <- createVector 1 tRootMut <- V.thaw tRoot let gIO :: CDouble -> Ptr T.SunVector -> Ptr CDouble -> Ptr () -> IO CInt gIO x y f _ptr = do -- Convert the pointer we get from C (y) to a vector, and then -- apply the user-supplied function. gImm <- g x <$> getDataFromContents dim y -- Fill in the provided pointer with the resulting vector. vectorToC gImm nrPre f -- FIXME: I don't understand what this comment means -- Unsafe since the function will be called many times. [CU.exp| int{ 0 } |] let isJac :: CInt isJac = fromIntegral $ fromEnum $ isJust jacH jacIO :: CDouble -> Ptr T.SunVector -> Ptr T.SunVector -> Ptr T.SunMatrix -> Ptr () -> Ptr T.SunVector -> Ptr T.SunVector -> Ptr T.SunVector -> IO CInt jacIO t y _fy jacS _ptr _tmp1 _tmp2 _tmp3 = do case jacH of Nothing -> error "Numeric.Sundials.CVode.ODE: Jacobian not defined" Just jacI -> do j <- jacI t <$> getDataFromContents dim y poke jacS j -- FIXME: I don't understand what this comment means -- Unsafe since the function will be called many times. [CU.exp| int{ 0 } |] res <- [C.block| int { /* general problem variables */ int flag; /* reusable error-checking flag */ int flagr; /* root finding flag */ int i, j; /* reusable loop indices */ N_Vector y = NULL; /* empty vector for storing solution */ N_Vector tv = NULL; /* empty vector for storing absolute tolerances */ SUNMatrix A = NULL; /* empty matrix for linear solver */ SUNLinearSolver LS = NULL; /* empty linear solver object */ void *cvode_mem = NULL; /* empty CVODE memory structure */ realtype t; long int nst, nfe, nsetups, nje, nfeLS, nni, ncfn, netf, nge; realtype tout; /* general problem parameters */ realtype T0 = RCONST(($vec-ptr:(double *ts))[0]); /* initial time */ sunindextype NEQ = $(sunindextype nEq); /* number of dependent vars. */ /* Initialize data structures */ y = N_VNew_Serial(NEQ); /* Create serial vector for solution */ if (check_flag((void *)y, "N_VNew_Serial", 0)) return 1; /* Specify initial condition */ for (i = 0; i < NEQ; i++) { NV_Ith_S(y,i) = ($vec-ptr:(double *f0))[i]; }; cvode_mem = CVodeCreate($(int method), CV_NEWTON); if (check_flag((void *)cvode_mem, "CVodeCreate", 0)) return(1); /* Call CVodeInit to initialize the integrator memory and specify the * user's right hand side function in y'=f(t,y), the inital time T0, and * the initial dependent variable vector y. */ flag = CVodeInit(cvode_mem, $fun:(int (* funIO) (double t, SunVector y[], SunVector dydt[], void * params)), T0, y); if (check_flag(&flag, "CVodeInit", 1)) return(1); tv = N_VNew_Serial(NEQ); /* Create serial vector for absolute tolerances */ if (check_flag((void *)tv, "N_VNew_Serial", 0)) return 1; /* Specify tolerances */ for (i = 0; i < NEQ; i++) { NV_Ith_S(tv,i) = ($vec-ptr:(double *aTols))[i]; }; flag = CVodeSetMinStep(cvode_mem, $(double minStep_)); if (check_flag(&flag, "CVodeSetMinStep", 1)) return 1; flag = CVodeSetMaxNumSteps(cvode_mem, $(long int maxNumSteps_)); if (check_flag(&flag, "CVodeSetMaxNumSteps", 1)) return 1; flag = CVodeSetMaxErrTestFails(cvode_mem, $(int maxErrTestFails)); if (check_flag(&flag, "CVodeSetMaxErrTestFails", 1)) return 1; /* Call CVodeSVtolerances to specify the scalar relative tolerance * and vector absolute tolerances */ flag = CVodeSVtolerances(cvode_mem, $(double rTol), tv); if (check_flag(&flag, "CVodeSVtolerances", 1)) return(1); /* Call CVodeRootInit to specify the root function g with nr components */ flag = CVodeRootInit(cvode_mem, $(int nr), $fun:(int (* gIO) (double t, SunVector y[], double gout[], void * params))); if (check_flag(&flag, "CVodeRootInit", 1)) return(1); /* Initialize dense matrix data structure and solver */ A = SUNDenseMatrix(NEQ, NEQ); if (check_flag((void *)A, "SUNDenseMatrix", 0)) return 1; LS = SUNDenseLinearSolver(y, A); if (check_flag((void *)LS, "SUNDenseLinearSolver", 0)) return 1; /* Attach matrix and linear solver */ flag = CVDlsSetLinearSolver(cvode_mem, LS, A); if (check_flag(&flag, "CVDlsSetLinearSolver", 1)) return 1; /* Set the initial step size if there is one */ if ($(int isInitStepSize)) { /* FIXME: We could check if the initial step size is 0 */ /* or even NaN and then throw an error */ flag = CVodeSetInitStep(cvode_mem, $(double ss)); if (check_flag(&flag, "CVodeSetInitStep", 1)) return 1; } /* Set the Jacobian if there is one */ if ($(int isJac)) { flag = CVDlsSetJacFn(cvode_mem, $fun:(int (* jacIO) (double t, SunVector y[], SunVector fy[], SunMatrix Jac[], void * params, SunVector tmp1[], SunVector tmp2[], SunVector tmp3[]))); if (check_flag(&flag, "CVDlsSetJacFn", 1)) return 1; } /* Store initial conditions */ for (j = 0; j < NEQ; j++) { ($vec-ptr:(double *qMatMut))[0 * $(int nTs) + j] = NV_Ith_S(y,j); } /* Main time-stepping loop: calls CVode to perform the integration */ /* Stops when the final time has been reached */ for (i = 1; i < $(int nTs); i++) { flag = CVode(cvode_mem, ($vec-ptr:(double *ts))[i], y, &t, CV_NORMAL); /* call integrator */ if (check_flag(&flag, "CVode solver failure, stopping integration", 1)) return 1; /* Store the results for Haskell */ for (j = 0; j < NEQ; j++) { ($vec-ptr:(double *qMatMut))[i * NEQ + j] = NV_Ith_S(y,j); } if (flag == CV_ROOT_RETURN) { flagr = CVodeGetRootInfo(cvode_mem, ($vec-ptr:(int *gResMut))); if (check_flag(&flagr, "CVodeGetRootInfo", 1)) return(1); ($vec-ptr:(double *tRootMut))[0] = t; flagr = flag; break; } } /* Get some final statistics on how the solve progressed */ flag = CVodeGetNumSteps(cvode_mem, &nst); check_flag(&flag, "CVodeGetNumSteps", 1); ($vec-ptr:(long int *diagMut))[0] = nst; /* FIXME */ ($vec-ptr:(long int *diagMut))[1] = 0; flag = CVodeGetNumRhsEvals(cvode_mem, &nfe); check_flag(&flag, "CVodeGetNumRhsEvals", 1); ($vec-ptr:(long int *diagMut))[2] = nfe; /* FIXME */ ($vec-ptr:(long int *diagMut))[3] = 0; flag = CVodeGetNumLinSolvSetups(cvode_mem, &nsetups); check_flag(&flag, "CVodeGetNumLinSolvSetups", 1); ($vec-ptr:(long int *diagMut))[4] = nsetups; flag = CVodeGetNumErrTestFails(cvode_mem, &netf); check_flag(&flag, "CVodeGetNumErrTestFails", 1); ($vec-ptr:(long int *diagMut))[5] = netf; flag = CVodeGetNumNonlinSolvIters(cvode_mem, &nni); check_flag(&flag, "CVodeGetNumNonlinSolvIters", 1); ($vec-ptr:(long int *diagMut))[6] = nni; flag = CVodeGetNumNonlinSolvConvFails(cvode_mem, &ncfn); check_flag(&flag, "CVodeGetNumNonlinSolvConvFails", 1); ($vec-ptr:(long int *diagMut))[7] = ncfn; flag = CVDlsGetNumJacEvals(cvode_mem, &nje); check_flag(&flag, "CVDlsGetNumJacEvals", 1); ($vec-ptr:(long int *diagMut))[8] = ncfn; flag = CVDlsGetNumRhsEvals(cvode_mem, &nfeLS); check_flag(&flag, "CVDlsGetNumRhsEvals", 1); ($vec-ptr:(long int *diagMut))[9] = ncfn; /* Clean up and return */ N_VDestroy(y); /* Free y vector */ N_VDestroy(tv); /* Free tv vector */ CVodeFree(&cvode_mem); /* Free integrator memory */ SUNLinSolFree(LS); /* Free linear solver */ SUNMatDestroy(A); /* Free A matrix */ if (flag == CV_SUCCESS && flagr == CV_ROOT_RETURN) { return CV_ROOT_RETURN; } else { return flag; } } |] preD <- V.freeze diagMut let d = SundialsDiagnostics (fromIntegral $ preD V.!0) (fromIntegral $ preD V.!1) (fromIntegral $ preD V.!2) (fromIntegral $ preD V.!3) (fromIntegral $ preD V.!4) (fromIntegral $ preD V.!5) (fromIntegral $ preD V.!6) (fromIntegral $ preD V.!7) (fromIntegral $ preD V.!8) (fromIntegral $ preD V.!9) m <- V.freeze qMatMut t <- V.freeze tRootMut rs <- V.freeze gResMut let f r | r == cV_SUCCESS = SolverSuccess m d | r == cV_ROOT_RETURN = SolverRoot (t V.!0) rs m d | otherwise = SolverError m res return $ f $ fromIntegral res data SolverResult f g a b = SolverError (f b) a -- ^ Partial results and error code | SolverSuccess (f b) SundialsDiagnostics -- ^ Results and diagnostics | SolverRoot b (g a) (f b) SundialsDiagnostics -- ^ Time at which the root was found, the root itself and the -- results and diagnostics. NB the final result will be at the time -- at which the root was found not as specified by the times given -- to the solver. deriving Show odeSolveRootVWith' :: ODEOpts -> ODEMethod -> StepControl -> Maybe Double -- ^ initial step size - by default, CVode -- estimates the initial step size to be the -- solution \(h\) of the equation -- \(\|\frac{h^2\ddot{y}}{2}\| = 1\), where -- \(\ddot{y}\) is an estimated value of the second -- derivative of the solution at \(t_0\) -> (Double -> V.Vector Double -> V.Vector Double) -- ^ The RHS of the system \(\dot{y} = f(t,y)\) -> V.Vector Double -- ^ Initial conditions -> Int -- ^ Dimension of the range of the roots function -> (Double -> V.Vector Double -> V.Vector Double) -- ^ Roots function -> V.Vector Double -- ^ Desired solution times -> SolverResult Matrix Vector Int Double odeSolveRootVWith' opts method control initStepSize f y0 is gg tt = case solveOdeC' (fromIntegral $ maxFail opts) (fromIntegral $ maxNumSteps opts) (coerce $ minStep opts) (fromIntegral $ getMethod method) (coerce initStepSize) jacH (scise control) (coerce f) (coerce y0) (fromIntegral is) (coerce gg) (coerce tt) of SolverError v c -> SolverError (reshape l (coerce v)) (fromIntegral c) SolverSuccess v d -> SolverSuccess (reshape l (coerce v)) d SolverRoot t rs v d -> SolverRoot (coerce t) (V.map fromIntegral rs) (reshape l (coerce v)) d where l = size y0 scise (X aTol rTol) = coerce (V.replicate l aTol, rTol) scise (X' aTol rTol) = coerce (V.replicate l aTol, rTol) scise (XX' aTol rTol yScale _yDotScale) = coerce (V.replicate l aTol, yScale * rTol) -- FIXME; Should we check that the length of ss is correct? scise (ScXX' aTol rTol yScale _yDotScale ss) = coerce (V.map (* aTol) ss, yScale * rTol) jacH = fmap (\g t v -> matrixToSunMatrix $ g (coerce t) (coerce v)) $ getJacobian method matrixToSunMatrix m = T.SunMatrix { T.rows = nr, T.cols = nc, T.vals = vs } where nr = fromIntegral $ rows m nc = fromIntegral $ cols m -- FIXME: efficiency vs = V.fromList $ map coerce $ concat $ toLists m -- | Adaptive step-size control -- functions. -- -- [GSL](https://www.gnu.org/software/gsl/doc/html/ode-initval.html#adaptive-step-size-control) -- allows the user to control the step size adjustment using -- \(D_i = \epsilon^{abs}s_i + \epsilon^{rel}(a_{y} |y_i| + a_{dy/dt} h |\dot{y}_i|)\) where -- \(\epsilon^{abs}\) is the required absolute error, \(\epsilon^{rel}\) -- is the required relative error, \(s_i\) is a vector of scaling -- factors, \(a_{y}\) is a scaling factor for the solution \(y\) and -- \(a_{dydt}\) is a scaling factor for the derivative of the solution \(dy/dt\). -- -- [ARKode](https://computation.llnl.gov/projects/sundials/arkode) -- allows the user to control the step size adjustment using -- \(\eta^{rel}|y_i| + \eta^{abs}_i\). For compatibility with -- [hmatrix-gsl](https://hackage.haskell.org/package/hmatrix-gsl), -- tolerances for \(y\) and \(\dot{y}\) can be specified but the latter have no -- effect. data StepControl = X Double Double -- ^ absolute and relative tolerance for \(y\); in GSL terms, \(a_{y} = 1\) and \(a_{dy/dt} = 0\); in ARKode terms, the \(\eta^{abs}_i\) are identical | X' Double Double -- ^ absolute and relative tolerance for \(\dot{y}\); in GSL terms, \(a_{y} = 0\) and \(a_{dy/dt} = 1\); in ARKode terms, the latter is treated as the relative tolerance for \(y\) so this is the same as specifying 'X' which may be entirely incorrect for the given problem | XX' Double Double Double Double -- ^ include both via relative tolerance -- scaling factors \(a_y\), \(a_{{dy}/{dt}}\); in ARKode terms, the latter is ignored and \(\eta^{rel} = a_{y}\epsilon^{rel}\) | ScXX' Double Double Double Double (Vector Double) -- ^ scale absolute tolerance of \(y_i\); in ARKode terms, \(a_{{dy}/{dt}}\) is ignored, \(\eta^{abs}_i = s_i \epsilon^{abs}\) and \(\eta^{rel} = a_{y}\epsilon^{rel}\)
<?xml version="1.0" encoding="utf-8"?> <serviceModel xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns:xsd="http://www.w3.org/2001/XMLSchema" name="ContosoAdsCloudService" generation="1" functional="0" release="0" Id="1a1b26da-452a-44d6-8a4e-0f1c09994643" dslVersion="1.2.0.0" xmlns="http://schemas.microsoft.com/dsltools/RDSM"> <groups> <group name="ContosoAdsCloudServiceGroup" generation="1" functional="0" release="0"> <componentports> <inPort name="ContosoAdsWeb:Endpoint1" protocol="http"> <inToChannel> <lBChannelMoniker name="/ContosoAdsCloudService/ContosoAdsCloudServiceGroup/LB:ContosoAdsWeb:Endpoint1" /> </inToChannel> </inPort> <inPort name="ContosoAdsWorker:Microsoft.WindowsAzure.Plugins.RemoteForwarder.RdpInput" protocol="tcp"> <inToChannel> <lBChannelMoniker name="/ContosoAdsCloudService/ContosoAdsCloudServiceGroup/LB:ContosoAdsWorker:Microsoft.WindowsAzure.Plugins.RemoteForwarder.RdpInput" /> </inToChannel> </inPort> </componentports> <settings> <aCS name="Certificate|ContosoAdsWeb:Microsoft.WindowsAzure.Plugins.RemoteAccess.PasswordEncryption" defaultValue=""> <maps> <mapMoniker name="/ContosoAdsCloudService/ContosoAdsCloudServiceGroup/MapCertificate|ContosoAdsWeb:Microsoft.WindowsAzure.Plugins.RemoteAccess.PasswordEncryption" /> </maps> </aCS> <aCS name="Certificate|ContosoAdsWorker:Microsoft.WindowsAzure.Plugins.RemoteAccess.PasswordEncryption" defaultValue=""> <maps> <mapMoniker name="/ContosoAdsCloudService/ContosoAdsCloudServiceGroup/MapCertificate|ContosoAdsWorker:Microsoft.WindowsAzure.Plugins.RemoteAccess.PasswordEncryption" /> </maps> </aCS> <aCS name="ContosoAdsWeb:Microsoft.WindowsAzure.Plugins.Diagnostics.ConnectionString" defaultValue=""> <maps> <mapMoniker name="/ContosoAdsCloudService/ContosoAdsCloudServiceGroup/MapContosoAdsWeb:Microsoft.WindowsAzure.Plugins.Diagnostics.ConnectionString" /> </maps> </aCS> <aCS name="ContosoAdsWeb:Microsoft.WindowsAzure.Plugins.RemoteAccess.AccountEncryptedPassword" defaultValue=""> <maps> <mapMoniker name="/ContosoAdsCloudService/ContosoAdsCloudServiceGroup/MapContosoAdsWeb:Microsoft.WindowsAzure.Plugins.RemoteAccess.AccountEncryptedPassword" /> </maps> </aCS> <aCS name="ContosoAdsWeb:Microsoft.WindowsAzure.Plugins.RemoteAccess.AccountExpiration" defaultValue=""> <maps> <mapMoniker name="/ContosoAdsCloudService/ContosoAdsCloudServiceGroup/MapContosoAdsWeb:Microsoft.WindowsAzure.Plugins.RemoteAccess.AccountExpiration" /> </maps> </aCS> <aCS name="ContosoAdsWeb:Microsoft.WindowsAzure.Plugins.RemoteAccess.AccountUsername" defaultValue=""> <maps> <mapMoniker name="/ContosoAdsCloudService/ContosoAdsCloudServiceGroup/MapContosoAdsWeb:Microsoft.WindowsAzure.Plugins.RemoteAccess.AccountUsername" /> </maps> </aCS> <aCS name="ContosoAdsWeb:Microsoft.WindowsAzure.Plugins.RemoteAccess.Enabled" defaultValue=""> <maps> <mapMoniker name="/ContosoAdsCloudService/ContosoAdsCloudServiceGroup/MapContosoAdsWeb:Microsoft.WindowsAzure.Plugins.RemoteAccess.Enabled" /> </maps> </aCS> <aCS name="ContosoAdsWeb:StorageConnectionString" defaultValue=""> <maps> <mapMoniker name="/ContosoAdsCloudService/ContosoAdsCloudServiceGroup/MapContosoAdsWeb:StorageConnectionString" /> </maps> </aCS> <aCS name="ContosoAdsWebInstances" defaultValue="[1,1,1]"> <maps> <mapMoniker name="/ContosoAdsCloudService/ContosoAdsCloudServiceGroup/MapContosoAdsWebInstances" /> </maps> </aCS> <aCS name="ContosoAdsWorker:ContosoAdsDbConnectionString" defaultValue=""> <maps> <mapMoniker name="/ContosoAdsCloudService/ContosoAdsCloudServiceGroup/MapContosoAdsWorker:ContosoAdsDbConnectionString" /> </maps> </aCS> <aCS name="ContosoAdsWorker:Microsoft.WindowsAzure.Plugins.Diagnostics.ConnectionString" defaultValue=""> <maps> <mapMoniker name="/ContosoAdsCloudService/ContosoAdsCloudServiceGroup/MapContosoAdsWorker:Microsoft.WindowsAzure.Plugins.Diagnostics.ConnectionString" /> </maps> </aCS> <aCS name="ContosoAdsWorker:Microsoft.WindowsAzure.Plugins.RemoteAccess.AccountEncryptedPassword" defaultValue=""> <maps> <mapMoniker name="/ContosoAdsCloudService/ContosoAdsCloudServiceGroup/MapContosoAdsWorker:Microsoft.WindowsAzure.Plugins.RemoteAccess.AccountEncryptedPassword" /> </maps> </aCS> <aCS name="ContosoAdsWorker:Microsoft.WindowsAzure.Plugins.RemoteAccess.AccountExpiration" defaultValue=""> <maps> <mapMoniker name="/ContosoAdsCloudService/ContosoAdsCloudServiceGroup/MapContosoAdsWorker:Microsoft.WindowsAzure.Plugins.RemoteAccess.AccountExpiration" /> </maps> </aCS> <aCS name="ContosoAdsWorker:Microsoft.WindowsAzure.Plugins.RemoteAccess.AccountUsername" defaultValue=""> <maps> <mapMoniker name="/ContosoAdsCloudService/ContosoAdsCloudServiceGroup/MapContosoAdsWorker:Microsoft.WindowsAzure.Plugins.RemoteAccess.AccountUsername" /> </maps> </aCS> <aCS name="ContosoAdsWorker:Microsoft.WindowsAzure.Plugins.RemoteAccess.Enabled" defaultValue=""> <maps> <mapMoniker name="/ContosoAdsCloudService/ContosoAdsCloudServiceGroup/MapContosoAdsWorker:Microsoft.WindowsAzure.Plugins.RemoteAccess.Enabled" /> </maps> </aCS> <aCS name="ContosoAdsWorker:Microsoft.WindowsAzure.Plugins.RemoteForwarder.Enabled" defaultValue=""> <maps> <mapMoniker name="/ContosoAdsCloudService/ContosoAdsCloudServiceGroup/MapContosoAdsWorker:Microsoft.WindowsAzure.Plugins.RemoteForwarder.Enabled" /> </maps> </aCS> <aCS name="ContosoAdsWorker:StorageConnectionString" defaultValue=""> <maps> <mapMoniker name="/ContosoAdsCloudService/ContosoAdsCloudServiceGroup/MapContosoAdsWorker:StorageConnectionString" /> </maps> </aCS> <aCS name="ContosoAdsWorkerInstances" defaultValue="[1,1,1]"> <maps> <mapMoniker name="/ContosoAdsCloudService/ContosoAdsCloudServiceGroup/MapContosoAdsWorkerInstances" /> </maps> </aCS> </settings> <channels> <lBChannel name="LB:ContosoAdsWeb:Endpoint1"> <toPorts> <inPortMoniker name="/ContosoAdsCloudService/ContosoAdsCloudServiceGroup/ContosoAdsWeb/Endpoint1" /> </toPorts> </lBChannel> <lBChannel name="LB:ContosoAdsWorker:Microsoft.WindowsAzure.Plugins.RemoteForwarder.RdpInput"> <toPorts> <inPortMoniker name="/ContosoAdsCloudService/ContosoAdsCloudServiceGroup/ContosoAdsWorker/Microsoft.WindowsAzure.Plugins.RemoteForwarder.RdpInput" /> </toPorts> </lBChannel> <sFSwitchChannel name="SW:ContosoAdsWeb:Microsoft.WindowsAzure.Plugins.RemoteAccess.Rdp"> <toPorts> <inPortMoniker name="/ContosoAdsCloudService/ContosoAdsCloudServiceGroup/ContosoAdsWeb/Microsoft.WindowsAzure.Plugins.RemoteAccess.Rdp" /> </toPorts> </sFSwitchChannel> <sFSwitchChannel name="SW:ContosoAdsWorker:Microsoft.WindowsAzure.Plugins.RemoteAccess.Rdp"> <toPorts> <inPortMoniker name="/ContosoAdsCloudService/ContosoAdsCloudServiceGroup/ContosoAdsWorker/Microsoft.WindowsAzure.Plugins.RemoteAccess.Rdp" /> </toPorts> </sFSwitchChannel> </channels> <maps> <map name="MapCertificate|ContosoAdsWeb:Microsoft.WindowsAzure.Plugins.RemoteAccess.PasswordEncryption" kind="Identity"> <certificate> <certificateMoniker name="/ContosoAdsCloudService/ContosoAdsCloudServiceGroup/ContosoAdsWeb/Microsoft.WindowsAzure.Plugins.RemoteAccess.PasswordEncryption" /> </certificate> </map> <map name="MapCertificate|ContosoAdsWorker:Microsoft.WindowsAzure.Plugins.RemoteAccess.PasswordEncryption" kind="Identity"> <certificate> <certificateMoniker name="/ContosoAdsCloudService/ContosoAdsCloudServiceGroup/ContosoAdsWorker/Microsoft.WindowsAzure.Plugins.RemoteAccess.PasswordEncryption" /> </certificate> </map> <map name="MapContosoAdsWeb:Microsoft.WindowsAzure.Plugins.Diagnostics.ConnectionString" kind="Identity"> <setting> <aCSMoniker name="/ContosoAdsCloudService/ContosoAdsCloudServiceGroup/ContosoAdsWeb/Microsoft.WindowsAzure.Plugins.Diagnostics.ConnectionString" /> </setting> </map> <map name="MapContosoAdsWeb:Microsoft.WindowsAzure.Plugins.RemoteAccess.AccountEncryptedPassword" kind="Identity"> <setting> <aCSMoniker name="/ContosoAdsCloudService/ContosoAdsCloudServiceGroup/ContosoAdsWeb/Microsoft.WindowsAzure.Plugins.RemoteAccess.AccountEncryptedPassword" /> </setting> </map> <map name="MapContosoAdsWeb:Microsoft.WindowsAzure.Plugins.RemoteAccess.AccountExpiration" kind="Identity"> <setting> <aCSMoniker name="/ContosoAdsCloudService/ContosoAdsCloudServiceGroup/ContosoAdsWeb/Microsoft.WindowsAzure.Plugins.RemoteAccess.AccountExpiration" /> </setting> </map> <map name="MapContosoAdsWeb:Microsoft.WindowsAzure.Plugins.RemoteAccess.AccountUsername" kind="Identity"> <setting> <aCSMoniker name="/ContosoAdsCloudService/ContosoAdsCloudServiceGroup/ContosoAdsWeb/Microsoft.WindowsAzure.Plugins.RemoteAccess.AccountUsername" /> </setting> </map> <map name="MapContosoAdsWeb:Microsoft.WindowsAzure.Plugins.RemoteAccess.Enabled" kind="Identity"> <setting> <aCSMoniker name="/ContosoAdsCloudService/ContosoAdsCloudServiceGroup/ContosoAdsWeb/Microsoft.WindowsAzure.Plugins.RemoteAccess.Enabled" /> </setting> </map> <map name="MapContosoAdsWeb:StorageConnectionString" kind="Identity"> <setting> <aCSMoniker name="/ContosoAdsCloudService/ContosoAdsCloudServiceGroup/ContosoAdsWeb/StorageConnectionString" /> </setting> </map> <map name="MapContosoAdsWebInstances" kind="Identity"> <setting> <sCSPolicyIDMoniker name="/ContosoAdsCloudService/ContosoAdsCloudServiceGroup/ContosoAdsWebInstances" /> </setting> </map> <map name="MapContosoAdsWorker:ContosoAdsDbConnectionString" kind="Identity"> <setting> <aCSMoniker name="/ContosoAdsCloudService/ContosoAdsCloudServiceGroup/ContosoAdsWorker/ContosoAdsDbConnectionString" /> </setting> </map> <map name="MapContosoAdsWorker:Microsoft.WindowsAzure.Plugins.Diagnostics.ConnectionString" kind="Identity"> <setting> <aCSMoniker name="/ContosoAdsCloudService/ContosoAdsCloudServiceGroup/ContosoAdsWorker/Microsoft.WindowsAzure.Plugins.Diagnostics.ConnectionString" /> </setting> </map> <map name="MapContosoAdsWorker:Microsoft.WindowsAzure.Plugins.RemoteAccess.AccountEncryptedPassword" kind="Identity"> <setting> <aCSMoniker name="/ContosoAdsCloudService/ContosoAdsCloudServiceGroup/ContosoAdsWorker/Microsoft.WindowsAzure.Plugins.RemoteAccess.AccountEncryptedPassword" /> </setting> </map> <map name="MapContosoAdsWorker:Microsoft.WindowsAzure.Plugins.RemoteAccess.AccountExpiration" kind="Identity"> <setting> <aCSMoniker name="/ContosoAdsCloudService/ContosoAdsCloudServiceGroup/ContosoAdsWorker/Microsoft.WindowsAzure.Plugins.RemoteAccess.AccountExpiration" /> </setting> </map> <map name="MapContosoAdsWorker:Microsoft.WindowsAzure.Plugins.RemoteAccess.AccountUsername" kind="Identity"> <setting> <aCSMoniker name="/ContosoAdsCloudService/ContosoAdsCloudServiceGroup/ContosoAdsWorker/Microsoft.WindowsAzure.Plugins.RemoteAccess.AccountUsername" /> </setting> </map> <map name="MapContosoAdsWorker:Microsoft.WindowsAzure.Plugins.RemoteAccess.Enabled" kind="Identity"> <setting> <aCSMoniker name="/ContosoAdsCloudService/ContosoAdsCloudServiceGroup/ContosoAdsWorker/Microsoft.WindowsAzure.Plugins.RemoteAccess.Enabled" /> </setting> </map> <map name="MapContosoAdsWorker:Microsoft.WindowsAzure.Plugins.RemoteForwarder.Enabled" kind="Identity"> <setting> <aCSMoniker name="/ContosoAdsCloudService/ContosoAdsCloudServiceGroup/ContosoAdsWorker/Microsoft.WindowsAzure.Plugins.RemoteForwarder.Enabled" /> </setting> </map> <map name="MapContosoAdsWorker:StorageConnectionString" kind="Identity"> <setting> <aCSMoniker name="/ContosoAdsCloudService/ContosoAdsCloudServiceGroup/ContosoAdsWorker/StorageConnectionString" /> </setting> </map> <map name="MapContosoAdsWorkerInstances" kind="Identity"> <setting> <sCSPolicyIDMoniker name="/ContosoAdsCloudService/ContosoAdsCloudServiceGroup/ContosoAdsWorkerInstances" /> </setting> </map> </maps> <components> <groupHascomponents> <role name="ContosoAdsWeb" generation="1" functional="0" release="0" software="C:\Users\himasing\Downloads\Simple Azure Cloud Service with Web Role and Worker Role-New\C#\ContosoAdsCloudService\csx\Release\roles\ContosoAdsWeb" entryPoint="base\x64\WaHostBootstrapper.exe" parameters="base\x64\WaIISHost.exe " memIndex="-1" hostingEnvironment="frontendadmin" hostingEnvironmentVersion="2"> <componentports> <inPort name="Endpoint1" protocol="http" portRanges="80" /> <inPort name="Microsoft.WindowsAzure.Plugins.RemoteAccess.Rdp" protocol="tcp" portRanges="3389" /> <outPort name="ContosoAdsWeb:Microsoft.WindowsAzure.Plugins.RemoteAccess.Rdp" protocol="tcp"> <outToChannel> <sFSwitchChannelMoniker name="/ContosoAdsCloudService/ContosoAdsCloudServiceGroup/SW:ContosoAdsWeb:Microsoft.WindowsAzure.Plugins.RemoteAccess.Rdp" /> </outToChannel> </outPort> <outPort name="ContosoAdsWorker:Microsoft.WindowsAzure.Plugins.RemoteAccess.Rdp" protocol="tcp"> <outToChannel> <sFSwitchChannelMoniker name="/ContosoAdsCloudService/ContosoAdsCloudServiceGroup/SW:ContosoAdsWorker:Microsoft.WindowsAzure.Plugins.RemoteAccess.Rdp" /> </outToChannel> </outPort> </componentports> <settings> <aCS name="Microsoft.WindowsAzure.Plugins.Diagnostics.ConnectionString" defaultValue="" /> <aCS name="Microsoft.WindowsAzure.Plugins.RemoteAccess.AccountEncryptedPassword" defaultValue="" /> <aCS name="Microsoft.WindowsAzure.Plugins.RemoteAccess.AccountExpiration" defaultValue="" /> <aCS name="Microsoft.WindowsAzure.Plugins.RemoteAccess.AccountUsername" defaultValue="" /> <aCS name="Microsoft.WindowsAzure.Plugins.RemoteAccess.Enabled" defaultValue="" /> <aCS name="StorageConnectionString" defaultValue="" /> <aCS name="__ModelData" defaultValue="&lt;m role=&quot;ContosoAdsWeb&quot; xmlns=&quot;urn:azure:m:v1&quot;&gt;&lt;r name=&quot;ContosoAdsWeb&quot;&gt;&lt;e name=&quot;Endpoint1&quot; /&gt;&lt;e name=&quot;Microsoft.WindowsAzure.Plugins.RemoteAccess.Rdp&quot; /&gt;&lt;/r&gt;&lt;r name=&quot;ContosoAdsWorker&quot;&gt;&lt;e name=&quot;Microsoft.WindowsAzure.Plugins.RemoteAccess.Rdp&quot; /&gt;&lt;e name=&quot;Microsoft.WindowsAzure.Plugins.RemoteForwarder.RdpInput&quot; /&gt;&lt;/r&gt;&lt;/m&gt;" /> </settings> <resourcereferences> <resourceReference name="DiagnosticStore" defaultAmount="[4096,4096,4096]" defaultSticky="true" kind="Directory" /> <resourceReference name="EventStore" defaultAmount="[1000,1000,1000]" defaultSticky="false" kind="LogStore" /> </resourcereferences> <storedcertificates> <storedCertificate name="Stored0Microsoft.WindowsAzure.Plugins.RemoteAccess.PasswordEncryption" certificateStore="My" certificateLocation="System"> <certificate> <certificateMoniker name="/ContosoAdsCloudService/ContosoAdsCloudServiceGroup/ContosoAdsWeb/Microsoft.WindowsAzure.Plugins.RemoteAccess.PasswordEncryption" /> </certificate> </storedCertificate> </storedcertificates> <certificates> <certificate name="Microsoft.WindowsAzure.Plugins.RemoteAccess.PasswordEncryption" /> </certificates> </role> <sCSPolicy> <sCSPolicyIDMoniker name="/ContosoAdsCloudService/ContosoAdsCloudServiceGroup/ContosoAdsWebInstances" /> <sCSPolicyUpdateDomainMoniker name="/ContosoAdsCloudService/ContosoAdsCloudServiceGroup/ContosoAdsWebUpgradeDomains" /> <sCSPolicyFaultDomainMoniker name="/ContosoAdsCloudService/ContosoAdsCloudServiceGroup/ContosoAdsWebFaultDomains" /> </sCSPolicy> </groupHascomponents> <groupHascomponents> <role name="ContosoAdsWorker" generation="1" functional="0" release="0" software="C:\Users\himasing\Downloads\Simple Azure Cloud Service with Web Role and Worker Role-New\C#\ContosoAdsCloudService\csx\Release\roles\ContosoAdsWorker" entryPoint="base\x64\WaHostBootstrapper.exe" parameters="base\x64\WaWorkerHost.exe " memIndex="-1" hostingEnvironment="consoleroleadmin" hostingEnvironmentVersion="2"> <componentports> <inPort name="Microsoft.WindowsAzure.Plugins.RemoteForwarder.RdpInput" protocol="tcp" /> <inPort name="Microsoft.WindowsAzure.Plugins.RemoteAccess.Rdp" protocol="tcp" portRanges="3389" /> <outPort name="ContosoAdsWeb:Microsoft.WindowsAzure.Plugins.RemoteAccess.Rdp" protocol="tcp"> <outToChannel> <sFSwitchChannelMoniker name="/ContosoAdsCloudService/ContosoAdsCloudServiceGroup/SW:ContosoAdsWeb:Microsoft.WindowsAzure.Plugins.RemoteAccess.Rdp" /> </outToChannel> </outPort> <outPort name="ContosoAdsWorker:Microsoft.WindowsAzure.Plugins.RemoteAccess.Rdp" protocol="tcp"> <outToChannel> <sFSwitchChannelMoniker name="/ContosoAdsCloudService/ContosoAdsCloudServiceGroup/SW:ContosoAdsWorker:Microsoft.WindowsAzure.Plugins.RemoteAccess.Rdp" /> </outToChannel> </outPort> </componentports> <settings> <aCS name="ContosoAdsDbConnectionString" defaultValue="" /> <aCS name="Microsoft.WindowsAzure.Plugins.Diagnostics.ConnectionString" defaultValue="" /> <aCS name="Microsoft.WindowsAzure.Plugins.RemoteAccess.AccountEncryptedPassword" defaultValue="" /> <aCS name="Microsoft.WindowsAzure.Plugins.RemoteAccess.AccountExpiration" defaultValue="" /> <aCS name="Microsoft.WindowsAzure.Plugins.RemoteAccess.AccountUsername" defaultValue="" /> <aCS name="Microsoft.WindowsAzure.Plugins.RemoteAccess.Enabled" defaultValue="" /> <aCS name="Microsoft.WindowsAzure.Plugins.RemoteForwarder.Enabled" defaultValue="" /> <aCS name="StorageConnectionString" defaultValue="" /> <aCS name="__ModelData" defaultValue="&lt;m role=&quot;ContosoAdsWorker&quot; xmlns=&quot;urn:azure:m:v1&quot;&gt;&lt;r name=&quot;ContosoAdsWeb&quot;&gt;&lt;e name=&quot;Endpoint1&quot; /&gt;&lt;e name=&quot;Microsoft.WindowsAzure.Plugins.RemoteAccess.Rdp&quot; /&gt;&lt;/r&gt;&lt;r name=&quot;ContosoAdsWorker&quot;&gt;&lt;e name=&quot;Microsoft.WindowsAzure.Plugins.RemoteAccess.Rdp&quot; /&gt;&lt;e name=&quot;Microsoft.WindowsAzure.Plugins.RemoteForwarder.RdpInput&quot; /&gt;&lt;/r&gt;&lt;/m&gt;" /> </settings> <resourcereferences> <resourceReference name="DiagnosticStore" defaultAmount="[4096,4096,4096]" defaultSticky="true" kind="Directory" /> <resourceReference name="EventStore" defaultAmount="[1000,1000,1000]" defaultSticky="false" kind="LogStore" /> </resourcereferences> <storedcertificates> <storedCertificate name="Stored0Microsoft.WindowsAzure.Plugins.RemoteAccess.PasswordEncryption" certificateStore="My" certificateLocation="System"> <certificate> <certificateMoniker name="/ContosoAdsCloudService/ContosoAdsCloudServiceGroup/ContosoAdsWorker/Microsoft.WindowsAzure.Plugins.RemoteAccess.PasswordEncryption" /> </certificate> </storedCertificate> </storedcertificates> <certificates> <certificate name="Microsoft.WindowsAzure.Plugins.RemoteAccess.PasswordEncryption" /> </certificates> </role> <sCSPolicy> <sCSPolicyIDMoniker name="/ContosoAdsCloudService/ContosoAdsCloudServiceGroup/ContosoAdsWorkerInstances" /> <sCSPolicyUpdateDomainMoniker name="/ContosoAdsCloudService/ContosoAdsCloudServiceGroup/ContosoAdsWorkerUpgradeDomains" /> <sCSPolicyFaultDomainMoniker name="/ContosoAdsCloudService/ContosoAdsCloudServiceGroup/ContosoAdsWorkerFaultDomains" /> </sCSPolicy> </groupHascomponents> </components> <sCSPolicy> <sCSPolicyUpdateDomain name="ContosoAdsWebUpgradeDomains" defaultPolicy="[5,5,5]" /> <sCSPolicyUpdateDomain name="ContosoAdsWorkerUpgradeDomains" defaultPolicy="[5,5,5]" /> <sCSPolicyFaultDomain name="ContosoAdsWebFaultDomains" defaultPolicy="[2,2,2]" /> <sCSPolicyFaultDomain name="ContosoAdsWorkerFaultDomains" defaultPolicy="[2,2,2]" /> <sCSPolicyID name="ContosoAdsWebInstances" defaultPolicy="[1,1,1]" /> <sCSPolicyID name="ContosoAdsWorkerInstances" defaultPolicy="[1,1,1]" /> </sCSPolicy> </group> </groups> <implements> <implementation Id="e7d474d0-626c-452a-ad68-cba0fbba9e73" ref="Microsoft.RedDog.Contract\ServiceContract\ContosoAdsCloudServiceContract@ServiceDefinition"> <interfacereferences> <interfaceReference Id="c8ea4707-95b3-439e-8f2a-041b9c6ead50" ref="Microsoft.RedDog.Contract\Interface\ContosoAdsWeb:Endpoint1@ServiceDefinition"> <inPort> <inPortMoniker name="/ContosoAdsCloudService/ContosoAdsCloudServiceGroup/ContosoAdsWeb:Endpoint1" /> </inPort> </interfaceReference> <interfaceReference Id="e1f4d372-0da8-4828-b335-b138dc08f596" ref="Microsoft.RedDog.Contract\Interface\ContosoAdsWorker:Microsoft.WindowsAzure.Plugins.RemoteForwarder.RdpInput@ServiceDefinition"> <inPort> <inPortMoniker name="/ContosoAdsCloudService/ContosoAdsCloudServiceGroup/ContosoAdsWorker:Microsoft.WindowsAzure.Plugins.RemoteForwarder.RdpInput" /> </inPort> </interfaceReference> </interfacereferences> </implementation> </implements> </serviceModel>
%% ****** Start of file apstemplate.tex ****** % %% %% %% This file is part of the APS files in the REVTeX 4 distribution. %% Version 4.1r of REVTeX, August 2010 %% %% %% Copyright (c) 2001, 2009, 2010 The American Physical Society. %% %% See the REVTeX 4 README file for restrictions and more information. %% % % This is a template for producing manuscripts for use with REVTEX 4.0 % Copy this file to another name and then work on that file. % That way, you always have this original template file to use. % % Group addresses by affiliation; use superscriptaddress for long % author lists, or if there are many overlapping affiliations. % For Phys. Rev. appearance, change preprint to twocolumn. % Choose pra, prb, prc, prd, pre, prl, prstab, prstper, or rmp for journal % Add 'draft' option to mark overfull boxes with black boxes % Add 'showpacs' option to make PACS codes appear % Add 'showkeys' option to make keywords appear %\documentclass[aps,prl,preprint,groupedaddress]{revtex4-1} %\documentclass[aps,prl,preprint,superscriptaddress]{revtex4-1} %\documentclass[aps,prl,reprint,groupedaddress]{revtex4-1} \documentclass[% reprint, %superscriptaddress, %groupedaddress, %unsortedaddress, %runinaddress, %frontmatterverbose, %preprint, %showpacs,preprintnumbers, %nofootinbib, %nobibnotes, %bibnotes, amsmath,amssymb, aps, %pra, %prb, %rmp, %prstab, %prstper, %floatfix, ]{revtex4-1} \usepackage{graphicx} \usepackage[space]{grffile} \usepackage{latexsym} \usepackage{textcomp} \usepackage{longtable} \usepackage{tabulary} \usepackage{booktabs,array,multirow} \usepackage{amsfonts,amsmath,amssymb} \usepackage{natbib} \usepackage{url} \usepackage{hyperref} \hypersetup{colorlinks=false,pdfborder={0 0 0}} \usepackage{etoolbox} \makeatletter \patchcmd\@combinedblfloats{\box\@outputbox}{\unvbox\@outputbox}{}{% \errmessage{\noexpand\@combinedblfloats could not be patched}% }% \makeatother % You can conditionalize code for latexml or normal latex using this. \newif\iflatexml\latexmlfalse \providecommand{\tightlist}{\setlength{\itemsep}{0pt}\setlength{\parskip}{0pt}}% \AtBeginDocument{\DeclareGraphicsExtensions{.pdf,.PDF,.eps,.EPS,.png,.PNG,.tif,.TIF,.jpg,.JPG,.jpeg,.JPEG}} \usepackage[utf8]{inputenc} \usepackage[ngerman,english]{babel} %\usepackage{babel} \begin{document} \title{Can we run quantum circuits on ultra-cold atom devices?} \author{Fred Jendrzejewski} \affiliation{Kirchhoff-Institut für Physik} \author{Manuel Rudolph} \affiliation{Kirchhoff-Institut für Physik} \selectlanguage{english} \begin{abstract} In this blog-post, we present our path and thoughts towards using ultra-cold atom experiments for quantum computation. They are the result of a two month internship where we studied the feasibility of such an undertaking in our group. Many associate only universal devices, especially qubit devices, to be valid quantum computers. We show how we think of our ultra-cold atoms in terms of quantum circuits and implement first steps in the software framework~\href{https://pennylane.ai/}{PennyLane}.% \end{abstract}% %\pacs{Valid PACS appear here}% PACS, the Physics and Astronomy % Classification Scheme. %\keywords{Suggested keywords}%Use showkeys class option if keyword %display desired \maketitle \section*{Motivation} {\label{773840}} Over recent years, interest in quantum information processing has increased tremendously. This rise was fueled by activities of massive commercial players like~{\href{https://www.ibm.com/quantum-computing/}{IBM},} \href{https://research.google/teams/applied-science/quantum/}{Google}, \href{https://www.microsoft.com/en-us/quantum}{Microsoft} and large investments in startups like \href{https://www.dwavesys.com/}{D-Wave}, \href{https://rigetti.com/}{Rigetti}, \href{https://www.xanadu.ai/}{Xanadu}, \href{https://www.zapatacomputing.com/}{Zapata}and \href{https://cambridgequantum.com/}{Cambridge Quantum Computing}. The work of these companies typically focuses on \textbf{universal quantum computers}, which hold the premise of exponential speed-up for a variety of NP-hard problems. However, this \textbf{universality usually comes at the price} of algorithmic overhead for a wide range of tasks which generally leads to worse overall fidelity. If we give up the constraint of a universal quantum computer, we can build \textbf{specialized quantum hardware} for the problems of interest. Such systems are called~\textbf{quantum simulators}.~ \textbf{Ultra-cold atoms~have become}~\textbf{a leading platform of such quantum simulators at a large scale}. Most importantly for us, they are the experimental platform our research group is working on. Already demonstrated applications involve an enormous variety of condensed-matter problems like e.g. the Hubbard model \cite{Bloch_2008}, topological systems \cite{Goldman_2014} , superfluidity \cite{Regal_2007} and disorder \cite{Lagendijk_2009} . More recently, cold atoms started to find applications to Ising models \cite{Bernien2017} and high-energy physics \cite{Zohar2016}. ~ However, \textbf{quantum simulators are}~\textbf{currently}~\textbf{limited to an academic environment} because of~ \begin{enumerate} \tightlist \item the \textbf{complexity of constructing the experimental hardware}, which involves substantial technical know-how and funding. \item the \textbf{specificity of knowledge and language required} to understand/communicate the experiment. \item the need to \textbf{formulate the target problem as a Hamiltonian}. \item the~\textbf{manual}~\textbf{compilation of programs} on this hardware class.~ \end{enumerate} A~\textbf{circuit-based approach to ultra-cold atom quantum simulators} would alleviate points 2) and 3) as we could agree on the quantum circuit, given the hardware-specific operations, and run it on the experiment. Integrating the system with a software stack like~\href{https://pennylane.ai/}{PennyLane~}would additionally allow to address and run the experiment on a higher level and~\textbf{substantially lower the barrier of entry for users outside of the cold-atom and quantum physics community}. ~ These points motivated our research group to have a look how our experimental hardware, which is controlled by the~\href{http://labscriptsuite.org/}{Labscript Suite},~can be integrated into PennyLane to run quantum circuits on ultra-cold atom devices.~ Our group is part of \href{http://www.kip.uni-heidelberg.de/synqs/}{SynQS}, working on two ultra-cold atom experiments, the NaLi and SoPa (named after the two atomic species used in the lab). \par\null \subsection*{Why use ultra-cold atoms as a quantum information platform ?} {\label{677154}} For ultra-cold atoms, the~\textbf{processing unit is not a qubit} and as such, the \textbf{natural operations are not} generally \textbf{the~commonly used and widely known qubit operations} such as~\(X,Y,Z\) rotations, Hadamard~\(H\) gates, entangling~\(CNOT \) or~\(XX\) gates with oberservables like~\(\sigma^z\) expectations.~{{Instead, our NaLi experiment implements a~}}\(X(\theta)\){ \textbf{rotation on a long spin} of many bosons on one optical lattice site. Additionally, the system naturally evolves under a many-body Hamiltonian~}\(H_{mb}\), coupling the the atomic species. What is the qubit equivalent of those operations?~{The relation is pretty complex -} and that is the nice thing!~\textbf{Cold atoms are different}. Given their success in the quantum simulation of many-body problems, they could make for an exciting quantum information processor that is~\textbf{complementary to~}{\textbf{universal devices.}} So as a general rule of thumb, it could be argued that cold atom machines often give up some control over individual particles, leading to much bigger systems. Additionally, because we work with a large number of atoms, we can measure obtain rather precise estimates of expectation values~\textbf{{{with a~single state preparation and one measurement}}}.~ \par\null \section*{A concrete example from our group} {\label{216843}} Before we go into more detailed discussion of our implementation, we will present a \textbf{concrete example of our device}, where \textbf{we} \textbf{study lattice gauge theories}. These theories have become a popular benchmark for quantum simulators~\cite{Kokail_2019} and quantum computers~\cite{Martinez_2016,tavernelli2020} in recent years. On our NaLi machine, we recently performed experiments on the building block for certain quantum simulators that would be suited for theories from high-energy physics~\cite{Mil2020}. ~These experiments are performed with two atomic species, sodium and lithium, that can be prepared in two internal spin states.~ \textbf{Re-thinking our analog quantum simulation} for the purpose of quantum circuits, we can \textbf{represent the sodium atoms as a very long spin} state~\(\left|\psi_N\right\rangle\). The observable outcomes are~\(L_z=-\frac{N}{2},\cdots,\frac{N}{2}\), where~\(N\sim10^5\) is the number of sodium atoms. On a quantum computer this should be compared to a qubit, for which we can only measure two outcomes~\(L_z=\pm\frac{1}{2}\). The \textbf{lithium atoms} on the other hand can be \textbf{described by the states on two independent sites~}\(\left|\psi_p\right\rangle\) and~\(|\psi_v\rangle\). For each site we can observe that number of atoms that sit on it. The observable outcomes are then~\(n_{p/v} = 0, \dots, n\) where~\(n\sim 10^4\) is the number of lithium atoms.~ \par\null In this formulation and \textbf{analogous to other circuit-based quantum computing devices}, the NaLi experiment then consists of three main stages: \begin{enumerate} \tightlist \item The atoms are prepared in some initial state\ldots{} \item controlled through a set of operations/gates\ldots{} \item and then measured to evaluate the operators~\(L_z\) and~\(N_{p,v}\) \end{enumerate} Without having to dig through all the physical details to understand the publication~\cite{Mil2020}, the figures in it intuitively open themselves up to \textbf{readers with varying backgrounds} when plotting the \textbf{corresponding circuits} next to them as shown in Fig. {\ref{428832}}.\selectlanguage{english} \begin{figure}[h!] \begin{center} \includegraphics[width=0.70\columnwidth]{figures/AlexAsCircuit/mil-with-circuits} \caption{{Scetched quantum circuits that correspond to selected figures from Mil et al.~\protect\cite{Mil2020}. The results gain a clear intuitive meaning through the quantum circuits even though the system that is being simulated is not known. The color blue signifies the Sodium atoms and the orange color Lithium. {\label{428832}}% }} \end{center} \end{figure} \par\null \textbf{Additional benefits of using the circuit language} include \begin{itemize} \tightlist \item a \textbf{more uniform definition of~}\emph{\textbf{fidelity}} for ultra-cold atom experiments relative to fidelity in qubit devices where each operation and the final result can be quantified. \item \textbf{improved communication} with \textbf{and feedback} of theorists involved in the project by working on the same level of resolution. \item more easily \textbf{generalizing the capabilities of the device} to work on \textbf{other problems.} \item general accessibility and a~\textbf{path towards using ultra-cold atoms experiments in the quantum computing community.} \end{itemize} \section*{}\label{section} \section*{Choice of framework software for our quantum circuits}\label{choice-of-framework-software-for-our-quantum-circuits} The choice of which framework software to use for our circuit-based approach was not a particularly hard one for us. We have our own experiment in the lab which implements a non-standard device for quantum simulation and thus some of our requirements are (roughly in order of importance): \begin{enumerate} \tightlist \item Can we \textbf{integrate our own experimental hardware} into the framework and potentially run it from there? \item How strong of an \textbf{assumption} is made \textbf{about the computational unit} of the hardware? Does it have to be strictly qubits/photons etc.? \item Is the framework \textbf{open-source} and shows \textbf{openness to the academic community}? \item Can also \textbf{integrate classical simulators} that are based on our hardware? \item Does it provide some sort of \textbf{user management and safety measures} to avoid unqualified users from killing the system? \end{enumerate} Lets give a brief overview of how we answered those questions with regard to PennyLane.~\textbf{PennyLane is designed for users to write and use their own~}\emph{\textbf{plugin}}, which is what they call the integration of quantum computing devices into the framework. Officially, it only supports~\emph{qubit~}and~\emph{continuous variable} devices and not more general approaches but we may be able to~\textbf{integrate bosonic and fermionic atoms flexibly} as the code itself is not very restricted. Other big platorms like~\href{https://qiskit.org/}{Qiskit},~\href{http://docs.rigetti.com/en/stable/}{Forest} and~\href{https://strawberryfields.readthedocs.io/en/stable/}{Strawberry Fields} focus exclusively on their own quantum computing hardware or simulator without the possibility to integrate your own. PennyLane is~\textbf{open-source and Python-based,} which is perfect as the \emph{Labscript Suite} controlling our experiment is so, too. Additionally, the company behind PennyLane,~\href{https://www.xanadu.ai/}{Xanadu}, is a partly academic player who is very open in their publications and \textbf{supports a great community} around the software. The framework allows to add simulators to the framework device which mirror the functionality of the hardware. It performs various parameter range checks for the system and the operations used. Not built-in is user a system for management which allows only registered users to run the experiment from a queue. We would have to implement this ourselves. All-in-all,~\textbf{PennyLane seems to be the best and likely only fit} for our endeavors. Let's talk about it in more detail. \section*{Pennylane} {\label{935975}} \begin{quote} \emph{A cross-platform Python library for quantum machine learning, automatic differentiation, and optimization of hybrid quantum-classical computations.} \end{quote}\selectlanguage{english} \begin{figure}[h!] \begin{center} \includegraphics[width=0.63\columnwidth]{figures/PennyLane-puzzle/PennyLane-puzzle} \caption{{PennyLane as the connecting puzzle piece. \href{https://pennylane.readthedocs.io/en/stable/introduction/pennylane.html}{Source} {\label{477211}}% }} \end{center} \end{figure} \href{https://pennylane.ai/}{PennyLane}\protect\hyperlink{killoran2018}{(Bergholm 2018)} is created by \emph{\href{https://www.xanadu.ai/}{Xanadu~}}and~presents itself as the~\textbf{connecting puzzle piece} \textbf{between powerful established python libraries for machine learning, and quantum computing platforms}. It provides readily implemented quantum algorithms for quantum machine learning, quantum chemistry and optimization. A particular algorithm provided in PennyLane is automatic differentiation of quantum circuits which allows to perform shot-efficient application of classical-quantum algorithms such as the~\emph{Variational Quantum Eigensolver} (VQE). ~~ Existing popular quantum computing platforms such as \href{https://qiskit.org/}{Qiskit}for qubits and \href{https://strawberryfields.readthedocs.io/en/stable/\#}{Strawberry Fields} (also created by \emph{Xanadu}) for photons have written plugins for PennyLane which make their \textbf{quantum simulators or quantum hardware accessible through it} and with that PennyLane's quantum algorithms and automatic differentiation feature.~ In fact,~\textbf{any quantum lab can adapt the~}\href{https://github.com/XanaduAI/pennylane-plugin-template}{\textbf{plugin template}} \textbf{for their own experiment and simulators} to assimilate their own specific workflow with PennyLane where users are generally able to use the same workflow accross platforms and know what to expect. Fig.~{\ref{757073}} shows a typical way of using PennyLane in a classical-quantum hybrid algorithm. Here, the default qubit simulator by PennyLane is used. After writing our own plugin, we can call that device, change the quantum circuit to contain the supported operations and the workflow is otherwise the same. All-in-all, \textbf{the interface is very robust towards changing up the quantum backend} (especially when they support the same operations).\selectlanguage{english} \begin{figure}[h!] \begin{center} \includegraphics[width=0.35\columnwidth]{figures/PennyLane-use/PennyLane-use} \caption{{Typical simple way of using PennyLane by instantiating the device, defining the parametrized quantum circuit and the cost, and calculating the gradient for the classical parameters. \href{https://pennylane.readthedocs.io/en/stable/introduction/pennylane.html}{Source} {\label{757073}}% }} \end{center} \end{figure} \section*{}\label{section} \section*{Our workflow and connecting PennyLane to our hardware}\label{our-workflow-and-connecting-pennylane-to-our-hardware} The current state of our \textbf{\emph{pennylane\_ls}}~\textbf{plugin for ultra-cold atom experiments} can be viewed in~\href{https://github.com/synqs/pennylane-ls}{\textbf{this public github repository}}. It provides examples from our labs and can guide you to adapting it to your own experiment and needs. Our group uses \textbf{} the \href{http://labscriptsuite.org/}{\textbf{Labscript suite}} \textbf{to coordinate and execute experimental sequences} with cold atoms. ~ \begin{quote} ~\emph{The labscript suite is a collection of programs, which work together to form a control system for autonomous, hardware timed experiments}. ~ \end{quote} On the deepest level it is very nuts and bolts with plenty of commands in the style of Fig. {\ref{799186}} below.\selectlanguage{english} \begin{figure}[h!] \begin{center} \includegraphics[width=0.98\columnwidth]{figures/Labscript-NaLi-code/Labscript-NaLi-code} \caption{{The Experiment.py (left) defines the experimental sequence of a Labscript-controlled lab experiment, here by calling functions from NaLiFunctions.py at given times. The function UMPUMP (right) shows the exact low level hardware instructions that are to be executed. {\label{799186}}% }} \end{center} \end{figure} The~\emph{\textbf{Experiment.py}} \textbf{file~}(Fig. {\ref{799186}}) \textbf{determines the exact sequence of hardware controls} that is executed during the measurement. It contains Labscript syntax and is fed into the Labscript Python compiler~\emph{\textbf{Runmanager}.~~} Our approach for \textbf{combining Labscript with PennyLane} is sumarized in Fig.~{\ref{547624}}. With the help of the plugin functions~\emph{\textbf{pre\_apply()}, \textbf{apply()}~}and~\emph{\textbf{post\_apply()}}, \textbf{we generate a new~}\emph{\textbf{Experiment.py}} \textbf{on the fly} depending on the quantum circuit programmed through the PennyLane interface.\selectlanguage{english} \begin{figure}[h!] \begin{center} \includegraphics[width=0.56\columnwidth]{figures/pre-post-apply/pre-post-apply} \caption{{The functions~\emph{pre\_apply(), apply()~}and~\emph{post\_apply()} are used to generate a new~\emph{Experiment.py} on the fly for each quantum circuit in PennyLane.~\emph{apply()} loops through the operations in the circuit while the other functions always write the same necessary code for the compilation. {\label{547624}}% }} \end{center} \end{figure} In other words, \textbf{our PennyLane plugin translates a quantum circuit to an} \emph{\textbf{Experiment.py}} which our control system can interpret. The~\emph{\textbf{expval()}}~method from the plugin is then used to \textbf{send the newly generated file to the~}\emph{\textbf{Runmanager}} and engage the sequence. The output shots are then evaluated and the method returns an expectation. A detailled discussion of the technical details can be found in the README.md of the~\href{https://github.com/synqs/pennylane_ls}{public repository}. ~The \textbf{features of our plugin} currently include: \begin{itemize} \tightlist \item \textbf{Proposing a higher-level control of experiments} that are run controlled by the Labscript Suite through PennyLane. \item A \textbf{framework device that provides a template for labs with Labscript} to quickly adapt code for their own setup. \item Including \textbf{two devices of the SynQS group at the Kirchhoff-Institute} \textbf{for Physics} of Prof. Fred Jendrzejewski. \end{itemize} The framework device in~\emph{SynQSDevice.py} is written such that \textbf{a group which uses the Labscript Suite} to run their experiment \textbf{can} \textbf{adapt the module easily to their own setup}. \par\null Finishing up this project,~we have \textbf{succeed in providing first circuit control to our experiments~}through PennyLane and extract the results. However, much \textbf{further automation will be needed} to fully leverage the possibilities of the quantum circuits that we can run on our ultra-cold atom devices. \section*{Future steps}\label{future-steps} To get the project \textbf{towards} \textbf{a full Pennylane plugin}, we have to: \begin{enumerate} \tightlist \item Give \emph{\textbf{wires}} \textbf{} a \textbf{} meaning. \item \textbf{Operations need to be restricted to certain wires}, especially when different atomic species are involved. \item Implement~\textbf{true remote control} of the lab through the \emph{pennylane\_ls} module. \item Implement \textbf{full result post-processing} that is currently used in the lab. \item Implement some kind of \textbf{user management}. \end{enumerate} While it seems quite clear how we can implement points 1 - 4, it seems to be a whole new problem to implement some kind of user management for our systems.~ In any case the \textbf{first steps are remarkably promising} and we will see how the quantum circuits can be efficiently employed in ultra-cold atom experiments. \selectlanguage{english} \FloatBarrier \nocite{*} \bibliographystyle{apsrev4-1} \bibliography{bibliography/converted_to_latex.bib% } \end{document}
Formal statement is: lemma prime_ge_2_nat: "p \<ge> 2" if "prime p" for p :: nat Informal statement is: If $p$ is a prime number, then $p \geq 2$.
mutable struct OrderBook bids::OrderedDict(Float64, Float64) asks::OrderedDict(Float64, Float64) end
Formal statement is: lemma eventually_filtercomap_at_topological: "eventually P (filtercomap f (at A within B)) \<longleftrightarrow> (\<exists>S. open S \<and> A \<in> S \<and> (\<forall>x. f x \<in> S \<inter> B - {A} \<longrightarrow> P x))" (is "?lhs = ?rhs") Informal statement is: The filtercomap of the filter at a point is the filter of the complement of the point.
Formal statement is: lemma norm_cauchy_schwarz_abs_eq: "\<bar>x \<bullet> y\<bar> = norm x * norm y \<longleftrightarrow> norm x *\<^sub>R y = norm y *\<^sub>R x \<or> norm x *\<^sub>R y = - norm y *\<^sub>R x" (is "?lhs \<longleftrightarrow> ?rhs") Informal statement is: $\langle x, y \rangle = \|x\| \|y\|$ if and only if $x = \|x\| \frac{y}{\|y\|}$ or $x = -\|x\| \frac{y}{\|y\|}$.
------------------------------------------------------------------------ -- The Agda standard library -- -- A categorical view of List⁺ ------------------------------------------------------------------------ {-# OPTIONS --without-K --safe #-} module Data.List.NonEmpty.Categorical where open import Agda.Builtin.List import Data.List.Categorical as List open import Data.List.NonEmpty open import Data.Product using (uncurry) open import Category.Functor open import Category.Applicative open import Category.Monad open import Category.Comonad open import Function ------------------------------------------------------------------------ -- List⁺ applicative functor functor : ∀ {f} → RawFunctor {f} List⁺ functor = record { _<$>_ = map } applicative : ∀ {f} → RawApplicative {f} List⁺ applicative = record { pure = [_] ; _⊛_ = λ fs as → concatMap (λ f → map f as) fs } ------------------------------------------------------------------------ -- List⁺ monad monad : ∀ {f} → RawMonad {f} List⁺ monad = record { return = [_] ; _>>=_ = flip concatMap } ------------------------------------------------------------------------ -- List⁺ comonad comonad : ∀ {f} → RawComonad {f} List⁺ comonad = record { extract = head ; extend = λ f → uncurry (extend f) ∘′ uncons } where extend : ∀ {A B} → (List⁺ A → B) → A → List A → List⁺ B extend f x xs@[] = f (x ∷ xs) ∷ [] extend f x xs@(y ∷ ys) = f (x ∷ xs) ∷⁺ extend f y ys ------------------------------------------------------------------------ -- Get access to other monadic functions module _ {f F} (App : RawApplicative {f} F) where open RawApplicative App sequenceA : ∀ {A} → List⁺ (F A) → F (List⁺ A) sequenceA (x ∷ xs) = _∷_ <$> x ⊛ List.sequenceA App xs mapA : ∀ {a} {A : Set a} {B} → (A → F B) → List⁺ A → F (List⁺ B) mapA f = sequenceA ∘ map f forA : ∀ {a} {A : Set a} {B} → List⁺ A → (A → F B) → F (List⁺ B) forA = flip mapA module _ {m M} (Mon : RawMonad {m} M) where private App = RawMonad.rawIApplicative Mon sequenceM = sequenceA App mapM = mapA App forM = forA App ------------------------------------------------------------------------ -- List⁺ monad transformer monadT : ∀ {f} → RawMonadT {f} (_∘′ List⁺) monadT M = record { return = pure ∘′ [_] ; _>>=_ = λ mas f → mas >>= λ as → concat <$> mapM M f as } where open RawMonad M
""" Copyright 2020 The OneFlow Authors. All rights reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. """ import unittest import os from collections import OrderedDict import numpy as np import oneflow as flow import tensorflow as tf import test_global_storage from test_util import GenArgList, type_name_to_flow_type gpus = tf.config.experimental.list_physical_devices("GPU") for gpu in gpus: tf.config.experimental.set_memory_growth(gpu, True) def compare_with_tensorflow( device_type, a_shape, b_shape, transpose_a, transpose_b, data_type, fuse_add_to_output, enable_tf32, alpha, ): assert device_type in ["gpu", "cpu"] flow.clear_default_session() func_config = flow.FunctionConfig() func_config.default_data_type(flow.float) func_config.enable_fuse_add_to_output(fuse_add_to_output) flow.config.enable_tensor_float_32_compute(enable_tf32) if data_type == "float16": dtype = flow.float else: dtype = type_name_to_flow_type[data_type] @flow.global_function(type="train", function_config=func_config) def MatmulJob(): with flow.scope.placement(device_type, "0:0"): a = flow.get_variable( "a", shape=a_shape, dtype=dtype, initializer=flow.random_uniform_initializer(minval=0, maxval=1), trainable=True, ) b = flow.get_variable( "b", shape=b_shape, dtype=dtype, initializer=flow.random_uniform_initializer(minval=0, maxval=1), trainable=True, ) if data_type == "float16": out = flow.matmul( flow.cast(a, dtype=flow.float16), flow.cast(b, dtype=flow.float16), transpose_a, transpose_b, alpha, ) c = flow.get_variable( "c", shape=out.shape, dtype=dtype, initializer=flow.random_uniform_initializer(minval=-1, maxval=1), trainable=True, ) loss = flow.cast( out + flow.cast(c, dtype=flow.float16), dtype=flow.float ) else: out = flow.matmul(a, b, transpose_a, transpose_b, alpha) c = flow.get_variable( "c", shape=out.shape, dtype=dtype, initializer=flow.random_uniform_initializer(minval=-1, maxval=1), trainable=True, ) loss = out + c flow.optimizer.SGD( flow.optimizer.PiecewiseConstantScheduler([], [1e-4]), momentum=0 ).minimize(loss) flow.watch(a, test_global_storage.Setter("a")) flow.watch_diff(a, test_global_storage.Setter("a_diff")) flow.watch(b, test_global_storage.Setter("b")) flow.watch_diff(b, test_global_storage.Setter("b_diff")) flow.watch(c, test_global_storage.Setter("c")) flow.watch_diff(c, test_global_storage.Setter("c_diff")) flow.watch(loss, test_global_storage.Setter("loss")) flow.watch_diff(loss, test_global_storage.Setter("loss_diff")) return loss # OneFlow of_out = MatmulJob().get() # TensorFlow with tf.GradientTape(persistent=True) as tape: a = tf.Variable(test_global_storage.Get("a")) b = tf.Variable(test_global_storage.Get("b")) c = tf.Variable(test_global_storage.Get("c")) if data_type == "float16": a = tf.cast(a, tf.float16) b = tf.cast(b, tf.float16) c = tf.cast(c, tf.float16) tf_out = tf.matmul(a, b, transpose_a, transpose_b) tf_out = tf_out * alpha tf_out = tf_out + c if data_type == "float16": tf_out = tf.cast(tf_out, tf.float32) loss_diff = test_global_storage.Get("loss_diff") tf_a_diff = tape.gradient(tf_out, a, loss_diff) tf_b_diff = tape.gradient(tf_out, b, loss_diff) tf_c_diff = tape.gradient(tf_out, c, loss_diff) if data_type == "float16": tolerance = 2e-3 else: tolerance = 1e-3 assert np.allclose( of_out.numpy(), tf_out.numpy(), rtol=tolerance, atol=tolerance ), np.max(np.abs(of_out.numpy() - tf_out.numpy())) assert np.allclose( test_global_storage.Get("a_diff"), tf_a_diff.numpy(), rtol=tolerance, atol=tolerance, ) assert np.allclose( test_global_storage.Get("b_diff"), tf_b_diff.numpy(), rtol=tolerance, atol=tolerance, ) assert np.allclose( test_global_storage.Get("c_diff"), tf_c_diff.numpy(), rtol=tolerance, atol=tolerance, ) def filter_args(arg_list): def trans_shape(shape): tmp_shape = shape[:-2] tmp_shape += (shape[-1], shape[-2]) return tmp_shape ret = [] for arg in arg_list: a_shape = arg[1] b_shape = arg[2] if arg[3]: # transpose_a a_shape = trans_shape(a_shape) if arg[4]: # transpose_b b_shape = trans_shape(b_shape) if a_shape[-1] == b_shape[-2]: ret.append(tuple(arg)) return ret def gen_arg_list(): arg_dict = OrderedDict() arg_dict["device_type"] = ["gpu", "cpu"] arg_dict["a_shape"] = [(512, 256), (256, 512)] arg_dict["b_shape"] = [(256, 1024), (1024, 256)] arg_dict["transpose_a"] = [True, False] arg_dict["transpose_b"] = [True, False] arg_dict["data_type"] = ["float16", "float32", "double"] arg_dict["fuse_add_to_output"] = [True, False] arg_dict["enable_tf32"] = [True, False] arg_dict["alpha"] = [1.5, 1] matmul_args = filter_args(GenArgList(arg_dict)) arg_dict.clear() arg_dict["device_type"] = ["gpu", "cpu"] arg_dict["a_shape"] = [(10, 10, 64, 32), (10, 10, 32, 64)] arg_dict["b_shape"] = [(10, 10, 32, 128), (10, 10, 128, 32)] arg_dict["transpose_a"] = [True, False] arg_dict["transpose_b"] = [True, False] arg_dict["data_type"] = ["float16", "float32", "double"] arg_dict["fuse_add_to_output"] = [True, False] arg_dict["enable_tf32"] = [True, False] arg_dict["alpha"] = [2.0] batch_matmul_args = filter_args(GenArgList(arg_dict)) return matmul_args + batch_matmul_args @flow.unittest.skip_unless_1n1d() class TestMatmul(flow.unittest.TestCase): def test_matmul(test_case): for arg in gen_arg_list(): if arg[0] == "cpu" and (arg[5] == "float16" or arg[7] == True): continue if arg[5] != "float32" and arg[7] == True: continue compare_with_tensorflow(*arg) if __name__ == "__main__": unittest.main()
From sflib Require Import sflib. From Paco Require Import paco. From PromisingLib Require Import Axioms. From PromisingLib Require Import Basic. From PromisingLib Require Import Loc. From PromisingLib Require Import Language. Require Import Event. Require Import View. Require Import Cell. Require Import Memory. Require Import TView. Require Import Thread. Require Import Configuration. Require Import Behavior. Set Implicit Arguments. Section Simulation. Definition SIM := forall (c1_src c1_tgt: Configuration.t), Prop. Definition _sim (sim: SIM) (c1_src c1_tgt:Configuration.t): Prop := forall (WF_SRC: Configuration.wf c1_src) (WF_TGT: Configuration.wf c1_tgt), <<TERMINAL: forall (TERMINAL_TGT: Threads.is_terminal (Configuration.threads c1_tgt)), exists c2_src, <<STEPS_SRC: rtc Configuration.tau_step c1_src c2_src>> /\ <<TERMINAL_SRC: Threads.is_terminal (Configuration.threads c2_src)>>>> /\ <<STEP: forall e tid c2_tgt (STEP_TGT: Configuration.step e tid c1_tgt c2_tgt), exists c2_src, <<STEP_SRC: Configuration.opt_step e tid c1_src c2_src>> /\ <<SIM: sim c2_src c2_tgt>>>> . Lemma _sim_mon: monotone2 _sim. Proof. ii. exploit IN; eauto. i. des. econs; eauto. ii. exploit STEP; eauto. i. des. eauto. Qed. #[local] Hint Resolve _sim_mon: paco. Definition sim: SIM := paco2 _sim bot2. End Simulation. #[export] Hint Resolve _sim_mon: paco. Lemma sim_adequacy c_src c_tgt (WF_SRC: Configuration.wf c_src) (WF_TGT: Configuration.wf c_tgt) (SIM: sim c_src c_tgt): behaviors Configuration.step c_tgt <1= behaviors Configuration.step c_src. Proof. i. revert c_src WF_SRC WF_TGT SIM. induction PR; i. - punfold SIM0. exploit SIM0; eauto. i. des. hexploit TERMINAL0; eauto. i. des. eapply rtc_tau_step_behavior; eauto. econs 1. eauto. - punfold SIM0. exploit SIM0; eauto. i. des. exploit STEP0; eauto. i. des. exploit Configuration.step_future; try exact STEP; eauto. i. des. exploit Configuration.opt_step_future; try exact STEP_SRC; eauto. i. des. inv SIM1; ss. inv STEP_SRC. econs 2; eauto. - punfold SIM0. exploit SIM0; eauto. i. des. exploit STEP0; eauto. i. des. exploit Configuration.step_future; try exact STEP; eauto. i. des. exploit Configuration.opt_step_future; try exact STEP_SRC; eauto. i. des. inv SIM1; ss. inv STEP_SRC. econs 3; eauto. - punfold SIM0. exploit SIM0; eauto. i. des. exploit STEP0; eauto. i. des. exploit Configuration.step_future; try exact STEP; eauto. i. des. exploit Configuration.opt_step_future; try exact STEP_SRC; eauto. i. des. inv SIM1; ss. inv STEP_SRC; eauto. econs 4; eauto. Qed.
[STATEMENT] lemma diamond_x_top: "|x>top = n(x * L)" [PROOF STATE] proof (prove) goal (1 subgoal): 1. | x > top = n (x * L) [PROOF STEP] by (metis mult_assoc n_top_L ndiamond_def top_mult_top)
State Before: R : Type u M : Type v S : Type u_1 N : Type ?u.185417 inst✝⁵ : Ring R inst✝⁴ : AddCommGroup M inst✝³ : AddCommGroup N inst✝² : Ring S inst✝¹ : Module R M inst✝ : Module R N f : R →+* S hf : Surjective ↑f I : Ideal S hI : IsPrincipal (comap f I) ⊢ I = Submodule.span S {↑f (IsPrincipal.generator (comap f I))} State After: no goals Tactic: rw [Ideal.submodule_span_eq, ← Set.image_singleton, ← Ideal.map_span, Ideal.span_singleton_generator, Ideal.map_comap_of_surjective f hf]
From iris.algebra Require Import auth gmap excl. From aneris.algebra Require Import monotone. From aneris.aneris_lang Require Import network resources proofmode. From aneris.prelude Require Import time. From aneris.aneris_lang.lib Require Import list_proof lock_proof vector_clock_proof. From aneris.aneris_lang.program_logic Require Import lightweight_atomic. From aneris.examples.rcb.spec Require Import base events resources. (** Specifications for read and write operations. *) Section Specification. Context `{!anerisG Mdl Σ, !RCB_params, !RCB_events, !RCB_resources Mdl Σ}. Definition deliver_spec (deliver : val) (i: nat) (z : socket_address) : iProp Σ := ⌜RCB_addresses !! i = Some z⌝ -∗ <<< ∀∀ (s : lstate), OwnLocal i s >>> deliver #() @[ip_of_address z] ↑RCB_InvName <<<▷ ∃∃ s' vo, RET vo; OwnLocal i s' ∗ ((⌜s' = s⌝ ∗ ⌜vo = NONEV⌝) ∨ (∃ a, ⌜s' = s ∪ {[ a ]}⌝ ∗ ⌜a ∉ s⌝ ∗ ⌜a ∈ compute_maximals LE_vc s'⌝ ∗ ⌜(LE_origin a) ≠ i⌝ ∗ OwnGlobalSnapshot {[ erasure a ]} ∗ ∃ v, ⌜vo = SOMEV v⌝ ∗ ⌜is_le v a⌝)) >>>. Definition broadcast_spec (broadcast : val) (i: nat) (z : socket_address) : iProp Σ := ∀ (v : SerializableVal), ⌜RCB_addresses !! i = Some z⌝ -∗ <<< ∀∀ (h : gstate) (s : lstate), OwnGlobal h ∗ OwnLocal i s >>> broadcast v @[ip_of_address z] ↑RCB_InvName <<<▷ ∃∃ w (a : le), RET w; ⌜is_le w a⌝ ∗ ⌜a ∉ s⌝ ∗ ⌜erasure a ∉ h⌝ ∗ ⌜LE_payload a = v⌝ ∗ ⌜LE_origin a = i⌝ ∗ let e := erasure a in let s' := s ∪ {[ a ]} in let h' := h ∪ {[ e ]} in ⌜e ∈ compute_maximals GE_vc h'⌝ ∗ ⌜compute_maximum LE_vc s' = Some a⌝ ∗ OwnGlobal h' ∗ OwnLocal i s' >>>. Definition init_spec (init : val) : iProp Σ := □ ∀ (i : nat) (z : socket_address) (v : val), ⌜is_list RCB_addresses v⌝ → ⌜RCB_addresses !! i = Some z⌝ → {{{ ([∗ list] i ↦ z ∈ RCB_addresses, z ⤇ RCB_socket_proto i) ∗ z ⤳ (∅, ∅) ∗ free_ports (ip_of_address z) {[port_of_address z]} ∗ init_token i}}} init v #i @[ip_of_address z] {{{ deliver broadcast, RET (deliver, broadcast); OwnLocal i ∅ ∗ deliver_spec deliver i z ∗ broadcast_spec broadcast i z}}}. Definition simplified_deliver_spec (deliver : val) (i: nat) (z : socket_address) : iProp Σ := ∀ (s : lstate), ⌜RCB_addresses !! i = Some z⌝ -∗ {{{ OwnLocal i s }}} deliver #() @[ip_of_address z] {{{ vo, RET vo; ((⌜vo = NONEV⌝ ∗ OwnLocal i s) ∨ (∃ (v: val) (e : le), ⌜vo = SOMEV v⌝ ∗ ⌜is_le v e⌝ ∗ OwnLocal i (s ∪ {[ e ]}) ∗ ⌜e ∉ s⌝ ∗ ⌜((LE_origin e) ≠ i)⌝ ∗ OwnGlobalSnapshot ({[ erasure e ]}) ∗ ⌜e ∈ compute_maximals LE_vc (s ∪ {[ e ]})⌝)) }}}. Lemma deliver_spec_implies_simplified_spec deliver i z : deliver_spec deliver i z ⊢ simplified_deliver_spec deliver i z. Proof. iIntros "#Hdeliver". rewrite /simplified_deliver_spec. iIntros (s) "%Haddr". iIntros (Φ) "!> Hloc HΦ". iApply "Hdeliver"; [done |]. iApply fupd_mask_intro; [set_solver |]. iIntros "Hcl". iExists s; iFrame. iIntros "!>" (s' vo) "[Hloc [[-> ->] |Hsome]]"; iMod "Hcl"; iModIntro; iApply "HΦ". - eauto with iFrame. - iDestruct "Hsome" as (a) "(-> & ? & ? & ? & ? & Hv)". iDestruct "Hv" as (v) "[? ?]". eauto with iFrame. Qed. Definition simplified_broadcast_spec (broadcast : val) (i: nat) (z : socket_address) (v : SerializableVal) (h : gstate) (s : lstate) : iProp Σ := ⌜RCB_addresses !! i = Some z⌝ -∗ {{{ OwnGlobal h ∗ OwnLocal i s }}} broadcast v @[ip_of_address z] {{{ (w : val), RET w; ∃ (a : le), ⌜LE_payload a = v⌝ ∗ ⌜LE_origin a = i⌝ ∗ ⌜is_le w a⌝ ∗ ⌜compute_maximum LE_vc (s ∪ {[ a ]}) = Some a⌝ ∗ let e := erasure a in ⌜e ∈ compute_maximals GE_vc (h ∪ {[ e ]})⌝ ∗ OwnLocal i (s ∪ {[ a ]}) ∗ OwnGlobal (h ∪ {[ e ]}) }}}. Lemma broadcast_spec_implies_simplified_spec broadcast i z : broadcast_spec broadcast i z ⊢ ∀ v h s, simplified_broadcast_spec broadcast i z v h s. Proof. iIntros "#Hbr" (v h s). rewrite /simplified_broadcast_spec. iIntros (Hi Φ) "!>". iIntros "[Hglob Hloc] HΦ". iApply "Hbr"; [done |]. iApply fupd_mask_intro; [set_solver |]. iIntros "Hmask". iExists h, s. iFrame. iIntros "!>" (w a) "(? & ? & ? & ? & ? & ? & ? & ? & ?)". iMod "Hmask". iModIntro. iApply "HΦ". eauto with iFrame. Qed. End Specification. (* An example of using the deliver and broadcast specs through invariants (logical atomicity) *) Section DeliverBroadcastInvExample. Context `{!anerisG Mdl Σ, !RCB_params, !RCB_events, !RCB_resources Mdl Σ}. Context (LInv : namespace) (names_disj : LInv ## RCB_InvName). (* TODO: here we'd like to take local snapshots, but we can't. Implement local snapshots. *) Definition deliver_with_inv_example (deliver : val) (i: nat) (z : socket_address) : iProp Σ := (⌜RCB_addresses !! i = Some z⌝ -∗ {{{ inv LInv (∃ s, OwnLocal i s) }}} deliver #() @[ip_of_address z] {{{ (vo : val), RET vo; (⌜vo = NONEV⌝ ∨ (∃ (s : lstate) (v: val) (e : le), ⌜vo = SOMEV v⌝ ∗ ⌜is_le v e⌝ ∗ ⌜e ∉ s⌝ ∗ ⌜(LE_origin e) ≠ i⌝ ∗ OwnGlobalSnapshot ({[ erasure e ]}) ∗ ⌜e ∈ compute_maximals LE_vc (s ∪ {[ e ]})⌝)) }}})%I. Lemma deliver_spec_implies_inv_example deliver i z : deliver_spec deliver i z ⊢ deliver_with_inv_example deliver i z. Proof. iIntros "#Hdel". rewrite /deliver_with_inv_example. iIntros "#Haddr !>" (Φ) "#Hinv HΦ". iApply "Hdel"; [done |]. (* Before we intro the mask as in the sequential case, we have to open the local invariant. *) iInv LInv as "> Hloc" "Hcl". iDestruct "Hloc" as (s) "Hloc". iApply fupd_mask_intro; [set_solver |]. iIntros "Hmask". iExists s; iFrame. iIntros "!>" (s' vo) "[Hloc Hopt]". iMod "Hmask". iMod ("Hcl" with "[Hloc]") as "_". { eauto with iFrame. } iModIntro. iApply "HΦ". iDestruct "Hopt" as "[[? ?] | Hsome]". - eauto with iFrame. - iDestruct "Hsome" as (a) "(-> & ? & ? & ? & ? & Hv)". iDestruct "Hv" as (v) "[-> ?]". eauto 15 with iFrame. Qed. Definition broadcast_with_inv_example (broadcast : val) (i: nat) (z : socket_address) (v : SerializableVal) : iProp Σ := (⌜RCB_addresses !! i = Some z⌝ -∗ {{{ inv LInv (∃ h s, OwnGlobal h ∗ OwnLocal i s) }}} broadcast v @[ip_of_address z] {{{ (w : val), RET w; ∃ (a : le) h s, ⌜LE_payload a = v⌝ ∗ ⌜LE_origin a = i⌝ ∗ ⌜is_le w a⌝ ∗ ⌜compute_maximum LE_vc (s ∪ {[ a ]}) = Some a⌝ ∗ let e := erasure a in ⌜e ∈ compute_maximals GE_vc (h ∪ {[ e ]})⌝ }}})%I. Lemma broadcast_spec_implies_inv_example broadcast i z : broadcast_spec broadcast i z ⊢ ∀ v, broadcast_with_inv_example broadcast i z v. Proof. iIntros "#Hbr" (v). rewrite /broadcast_with_inv_example. iIntros (Hi Φ) "!> #HInv HΦ". iApply "Hbr"; [done |]. iInv LInv as "> Hinv" "Hcl". iDestruct "Hinv" as (h s) "[Hglob Hloc]". iApply fupd_mask_intro; [set_solver|]. iIntros "Hmask". iExists h, s; iFrame. iIntros "!>" (w a) "(? & ? & ? & ? & ? & ? & ? & Hloc & Hglob)". iMod "Hmask". iMod ("Hcl" with "[Hloc Hglob]"). { eauto with iFrame. } iModIntro. iApply "HΦ". eauto with iFrame. Qed. End DeliverBroadcastInvExample. (** Modular specification for causal memory vector-clock based implementation. *) Class RCBG `{!RCB_events} Σ := { RCBG_global_history_excl :> inG Σ (prodR fracR (agreeR (gsetO ge))); RCBG_global_history_pers :> inG Σ (authUR (gsetUR ge)); RCBG_local_history_excl :> inG Σ (prodR fracR (agreeR (gsetO le))); RCBG_lockG :> lockG Σ; }. Definition RCBΣ `{!RCB_events} : gFunctors := #[GFunctor (prodR fracR (agreeR (gsetO ge))); GFunctor (authUR (gsetUR ge)); GFunctor (prodR fracR (agreeR (gsetO le))); lockΣ]. Instance subG_RCBΣ `{!RCB_events} {Σ} : subG RCBΣ Σ → RCBG Σ. Proof. econstructor; solve_inG. Qed. Class RCB_init_function := { init : val }. Section Init. Context `{!anerisG Mdl Σ, !RCB_params, !RCB_events, !RCBG Σ, !RCB_init_function}. Class RCB_init := { RCB_init_events :> RCB_events; RCB_init_setup E : True ⊢ |={E}=> ∃ (RCBRS : RCB_resources Mdl Σ), GlobalInv ∗ ([∗ list] i ↦ _ ∈ RCB_addresses, init_token i) ∗ (OwnGlobal ∅) ∗ init_spec init; }. End Init. Section Helpers. Context `{!anerisG Mdl Σ, !RCB_params, !RCB_events, !RCB_resources Mdl Σ}. (** Definition and specification of a deliver procedure that actively waits until a message is delivered. *) Definition wait_deliver : val := λ: "deliver", rec: "wd" <> := match: "deliver" #() with NONE => "wd" #() | SOME "m" => "m" end. Definition wait_deliver_spec (wait_deliver : val) (i: nat) (z : socket_address) : iProp Σ := ⌜RCB_addresses !! i = Some z⌝ -∗ □ (∀ (Φ : val -> iProp Σ), □ (|={⊤, ↑RCB_InvName}=> ∃ (s : lstate), OwnLocal i s ∗ ((OwnLocal i s ={↑RCB_InvName, ⊤}=∗ emp) ∧ (∀ (a : le) (v : val), let s' := s ∪ {[ a ]} in ⌜a ∉ s⌝ -∗ ⌜a ∈ compute_maximals LE_vc s'⌝ -∗ ⌜is_le v a⌝ -∗ OwnLocal i s' -∗ OwnGlobalSnapshot {[ erasure a ]} ={↑RCB_InvName, ⊤}=∗ Φ v))) -∗ WP wait_deliver #() @[ip_of_address z] {{ Φ }} ). Lemma deliver_spec_implies_wait_deliver_spec (deliver : val) (i : nat) (z : socket_address) : {{{ deliver_spec deliver i z }}} wait_deliver deliver @[ip_of_address z] {{{ wd, RET wd; wait_deliver_spec wd i z }}}. Proof. iIntros (Φ) "#Hdeliver HΦ". unfold wait_deliver. wp_pures. iApply "HΦ". clear Φ. iIntros "#Hi !>" (Φ) "#Hvs". iLöb as "IH". wp_rec. wp_apply "Hdeliver"; [done |]. iMod "Hvs". iModIntro. iDestruct "Hvs" as (s) "[Hloc Hvs]". iExists s; iFrame. iModIntro. iIntros (s' vo) "[Hloc' [[-> ->] | Hsome]]". - iMod ("Hvs" with "Hloc'") as "_". iModIntro. wp_match. iApply "IH". - iDestruct "Hsome" as (a) "(-> & #? & #? & #? & #? & Hv)". iDestruct "Hv" as (v) "[-> #?]". iDestruct "Hvs" as "[_ Hvs]". iMod ("Hvs" with "[] [] [] Hloc' []") as "Hvs"; eauto with iFrame. iModIntro. wp_pures. iFrame. Qed. Definition simplified_wait_deliver_spec (deliver : val) (i: nat) (z : socket_address) : iProp Σ := Eval simpl in ∀ (s : lstate), ⌜RCB_addresses !! i = Some z⌝ -∗ {{{ OwnLocal i s }}} deliver #() @[ip_of_address z] {{{ e v, RET v; let s' := s ∪ {[ e ]} in ⌜is_le v e⌝ ∗ OwnLocal i s' ∗ ⌜e ∉ s⌝ ∗ ⌜(LE_origin e) ≠ i⌝ ∗ OwnGlobalSnapshot ({[ erasure e ]}) ∗ ⌜e ∈ compute_maximals LE_vc s'⌝ }}}. Lemma deliver_spec_implies_simplified_wait_deliver_spec (deliver : val) (i : nat) (z : socket_address) : {{{ deliver_spec deliver i z }}} wait_deliver deliver @[ip_of_address z] {{{ wd, RET wd; simplified_wait_deliver_spec wd i z }}}. Proof. iIntros (Φ) "Hdeliver HΦ". iPoseProof (deliver_spec_implies_simplified_spec with "Hdeliver") as "#Hsimpl". unfold wait_deliver. wp_pures. iApply "HΦ". clear Φ. iIntros (s) "#Hi !>". iIntros (Φ) "HLoc HΦ". iLöb as "IH". wp_rec. wp_apply ("Hsimpl" with "Hi HLoc"). iIntros (vo) "[HNone | HSome]". - iDestruct "HNone" as "[-> HLoc]". wp_match. iApply ("IH" with "HLoc HΦ"). - iDestruct "HSome" as (v e) "(-> & H)". wp_pures. iApply "HΦ". iAssumption. Qed. End Helpers.
Formal statement is: lemma polynomial_function_minus [intro]: assumes f: "polynomial_function f" shows "polynomial_function (\<lambda>x. - f x)" Informal statement is: If $f$ is a polynomial function, then so is $-f$.
-- This file just tests that the options --no-save-metas and -- --save-metas are parsed correctly. {-# OPTIONS --no-save-metas --save-metas #-}
Require Import VST.veric.juicy_base. Require Import VST.veric.juicy_mem VST.veric.juicy_mem_lemmas VST.veric.juicy_mem_ops. Require Import VST.veric.res_predicates. Require Import VST.veric.extend_tc. Require Import VST.veric.Clight_seplog. Require Import VST.veric.Clight_assert_lemmas. Require Import VST.veric.Clight_core. Require Import VST.sepcomp.extspec. Require Import VST.sepcomp.step_lemmas. Require Import VST.veric.tycontext. Require Import VST.veric.expr2. Require Import VST.veric.expr_lemmas. Require Import VST.veric.juicy_extspec. Require Import VST.veric.semax. Require Import VST.veric.Clight_lemmas. Require Import VST.veric.own. Import Ctypes. Local Open Scope pred. #[export] Hint Resolve now_later andp_derives sepcon_derives : core. Lemma no_dups_swap: forall F V a b c, @no_dups F V (a++b) c -> @no_dups F V (b++a) c. Proof. unfold no_dups; intros. rewrite map_app in *. forget (map (@fst _ _) b) as bb. forget (map (@fst _ _) a) as aa. forget (map (var_name V) c) as cc. clear - H. destruct (list_norepet_append_inv _ _ _ H) as [? [? ?]]. apply list_norepet_append; auto. apply list_norepet_append_commut; auto. clear - H2. unfold Coqlib.list_disjoint in *. intros; apply H2; auto. clear - H. rewrite in_app in *. tauto. Qed. Lemma join_sub_share_top: forall sh, join_sub Share.top sh -> sh = Share.top. Proof. intros. generalize (top_correct' sh); intro. apply join_sub_antisym; auto. Qed. Lemma opt2list2opt: forall {A:Type} (l: option A), list2opt (opt2list l) = l. destruct l; auto. Qed. Lemma nat_of_Z_minus_le : forall z a b, b <= a -> (Z.to_nat (z - a) <= Z.to_nat (z - b))%nat. Proof. intros. apply inj_le_rev. do 2 rewrite Z_to_nat_max. rewrite Coqlib.Zmax_spec. destruct (zlt 0 (z-a)). rewrite Coqlib.Zmax_spec. destruct (zlt 0 (z-b)). lia. lia. rewrite Coqlib.Zmax_spec. destruct (zlt 0 (z-b)); lia. Qed. Section SemaxContext. Lemma universal_imp_unfold {A} {agA: ageable A}: forall B (P Q: B -> pred A) w, (ALL psi : B, P psi --> Q psi) w = (forall psi : B, (P psi --> Q psi) w). Proof. intros. apply prop_ext; split; intros. eapply H; eauto. intro b; apply H. Qed. Lemma guard_environ_put_te': forall ge te ve Delta id v k, guard_environ Delta k (mkEnviron ge ve te) -> (forall t, (temp_types Delta) ! id = Some t -> tc_val' t v) -> guard_environ Delta k (mkEnviron ge ve (Map.set id v te)). Proof. intros. destruct H; split. apply typecheck_environ_put_te; auto. destruct k; auto. Qed. Lemma prop_imp_derives {A}{agA: ageable A}: forall (P: Prop) (Q Q': pred A), (P -> Q |-- Q') -> !!P --> Q |-- !!P --> Q'. Proof. intros. repeat intro. apply H; auto. Qed. Lemma prop_imp {A}{agA: ageable A}: forall (P: Prop) (Q Q': pred A), (P -> Q = Q') -> !!P --> Q = !!P --> Q'. Proof. intros. apply pred_ext; apply prop_imp_derives. + intros; rewrite H by auto; auto. + intros; rewrite H by auto; auto. Qed. Lemma age_laterR {A} `{ageable A}: forall {x y}, age x y -> laterR x y. Proof. intros. constructor 1; auto. Qed. Local Hint Resolve age_laterR : core. Lemma typecheck_environ_sub: forall Delta Delta', tycontext_sub Delta Delta' -> forall rho, typecheck_environ Delta' rho -> typecheck_environ Delta rho. Proof. intros ? ? [? [? [? [? Hs]]]] ? [? [? ?]]. split; [ | split]. * clear - H H3. hnf; intros. specialize (H id); rewrite H0 in H. destruct ((temp_types Delta') ! id) eqn:?H; try contradiction. destruct H; subst. specialize (H3 id ty H1). destruct H3 as [v [? ?]]. exists v; split; auto. * clear - H0 H4. red in H4|-*. intros id ty. specialize (H4 id ty). rewrite <- H4. rewrite H0. clear; tauto. * clear - H2 H5. hnf; intros. eapply H5. specialize (H2 id). hnf in H2. rewrite H in H2. eauto. Qed. Lemma funassert_resource: forall Delta rho a a' (Hl: level a = level a') (Hr: resource_at a = resource_at a'), funassert Delta rho a -> funassert Delta rho a'. Proof. intros. destruct H as [H1 H2]; split; repeat intro. (*rename H into H1; repeat intro.*) - destruct (H1 _ _ _ (rt_refl _ _ _) H0) as (b1 & ? & ?). exists b1; split; auto. destruct b0; simpl in *. rewrite Hr in H4. pose proof (necR_level _ _ H). eapply necR_PURE in H; eauto. rewrite H; simpl; f_equal; f_equal. extensionality i a0 a1 a2. match goal with |-context[compcert_rmaps.R.approx ?a (approx ?b ?c)] => change (compcert_rmaps.R.approx a (approx b c)) with ((approx a oo approx b) c) end. rewrite fmap_app, approx_oo_approx', approx'_oo_approx by lia; auto. - specialize (H2 b b0 b1). clear H1. destruct b0; simpl in *. apply (H2 _ (rt_refl _ _ _)). rewrite Hr, Hl. destruct H0 as [p Hp]. pose proof (necR_level _ _ H). rewrite <- resource_at_approx. eapply necR_PURE' in H as [? ->]; simpl; eauto. Qed. Lemma cl_corestep_fun: forall ge m q m1 q1 m2 q2, cl_step ge q m q1 m1 -> cl_step ge q m q2 m2 -> (q1,m1)=(q2,m2). Proof. intros. inv H; inv H0; repeat fun_tac; auto; repeat match goal with H: _ = _ \/ _ = _ |- _ => destruct H; try discriminate end; try contradiction. - inversion2 H1 H16; fun_tac; auto. - rewrite andb_true_iff in H15; destruct H15. pose proof (ef_deterministic_fun _ H0 _ _ _ _ _ _ _ _ _ H3 H17). inv H4; auto. - inv H1. inv H8. fun_tac. pose proof (alloc_variables_fun H3 H7). inv H8. auto. - rewrite andb_true_iff in H1; destruct H1. pose proof (ef_deterministic_fun _ H0 _ _ _ _ _ _ _ _ _ H2 H13). inv H1; auto. Qed. Lemma age1_resource_decay: forall jm jm', age jm jm' -> resource_decay (nextblock (m_dry jm)) (m_phi jm) (m_phi jm'). Proof. intros. split. apply age_level in H. change (level (m_phi jm)) with (level jm). change (level (m_phi jm')) with (level jm'). lia. intro l. split. apply juicy_mem_alloc_cohere. left. symmetry; apply age1_resource_at with (m_phi jm); eauto. destruct (age1_juicy_mem_unpack _ _ H); auto. symmetry; apply resource_at_approx. Qed. Lemma jsafeN_local_step: forall {Espec: OracleKind} ge ora s1 m s2, cl_step ge s1 (m_dry m) s2 (m_dry m) -> (forall m', age m m' -> jsafeN (@OK_spec Espec) ge (level m') ora s2 m') -> jsafeN (@OK_spec Espec) ge (level m) ora s1 m. Proof. intros. rename H into Hstep. remember (level m) as N. destruct N; [constructor|]. case_eq (age1 m); [intros m' H | intro; apply age1_level0 in H; lia]. eapply jsafeN_step with (m'0 := m'). split3. replace (m_dry m') with (m_dry m) by (destruct (age1_juicy_mem_unpack _ _ H); auto). apply Hstep. apply age1_resource_decay; auto. split; [apply age_level; auto|]. apply age_jm_phi in H. erewrite (age1_ghost_of _ _ H) by (symmetry; apply ghost_of_approx). unfold level at 1; simpl. repeat intro; auto. assert (N = level m')%nat. apply age_level in H; lia. apply jm_bupd_intro. subst. apply H0. auto. Qed. Lemma derives_skip: forall {CS: compspecs} {Espec: OracleKind} p Delta (R: ret_assert), (forall rho, p rho |-- proj_ret_assert R EK_normal None rho) -> semax Espec Delta p Clight.Sskip R. Proof. intros ? ? ? ?; intros. intros n. rewrite semax_fold_unfold. intros psi Delta' CS'. apply prop_imp_i; intros [? HGG]. clear H0 Delta. rename Delta' into Delta. intros ?w _ _. clear n. intros k F f. intros ?w _ ?. clear w. rename w0 into n. intros te ve w ?. destruct H0 as [H0' H0]. specialize (H0 EK_normal None te ve w H1). simpl exit_cont in H0. simpl in H0'. clear n H1. remember ((construct_rho (filter_genv psi) ve te)) as rho. revert w H0. apply imp_derives; auto. apply andp_derives; auto. apply andp_derives; auto. repeat intro. simpl. split; auto. specialize (H rho). destruct R; simpl in H. simpl tycontext.RA_normal. rewrite prop_true_andp in H by auto. rewrite sepcon_comm. eapply sepcon_derives; try apply H0; auto. repeat intro. destruct (H0 _ H1) as (b & ? & m' & ? & ? & ? & HP); clear H0. exists b; split; auto; exists m'; repeat split; auto. simpl. intros ? ? ? ? ? ?. specialize (HP ora jm H0 H6 H7 LW). simpl in HP. rewrite <- H7 in HP|-*. change (level (m_phi jm)) with (level jm) in HP|-*. destruct k as [ | s ctl' | | | |]; try contradiction; auto. - inv HP; try contradiction. change (level jm) with (level (m_phi jm)); rewrite <- H9. constructor. change (level jm) with (level (m_phi jm)); rewrite <- H8. eapply jsafeN_step; eauto. destruct H9; split; auto. inv H5. econstructor; eauto. simpl. auto. inv H9. - eapply jsafeN_local_step. constructor. intros. eapply age_safe in HP; try apply H8. auto. - eapply jsafeN_local_step. constructor. intros. eapply age_safe in HP; try apply H8. auto. - inv HP; try contradiction. change (level jm) with (level (m_phi jm)); rewrite <- H9. constructor. change (level jm) with (level (m_phi jm)); rewrite <- H8. eapply jsafeN_step; eauto. destruct H9; split; auto. inv H5. econstructor; eauto. simpl. auto. inv H9. Qed. Lemma semax_unfold {CS: compspecs} {Espec: OracleKind}: semax Espec = fun Delta P c R => forall (psi: Clight.genv) Delta' CS' (w: nat) (TS: tycontext_sub Delta Delta') (HGG: cenv_sub (@cenv_cs CS) (@cenv_cs CS') /\ cenv_sub (@cenv_cs CS') (genv_cenv psi)) (Prog_OK: @believe CS' Espec Delta' psi Delta' w) (k: cont) (F: assert) f, closed_wrt_modvars c F -> rguard Espec psi Delta' f (frame_ret_assert R F) k w -> guard Espec psi Delta' f (fun rho => F rho * P rho) (Kseq c k) w. Proof. unfold semax; rewrite semax_fold_unfold. extensionality Delta P c R. apply prop_ext; split; intros. + eapply (H w); eauto. - split; auto. - split; trivial. + intros psi Delta' CS'. apply prop_imp_i; intros [? HGG]. intros w' ? ? k F f w'' ? [? ?]. apply (H psi Delta' CS' w'' H0 HGG); trivial. eapply pred_nec_hereditary; eauto. Qed. Fixpoint list_drop (A: Type) (n: nat) (l: list A) {struct n} : list A := match n with O => l | S i => match l with nil => nil | _ :: l' => list_drop A i l' end end. Arguments list_drop [A] _ _. Definition straightline (c: Clight.statement) := forall ge f ve te k m f' ve' te' c' k' m', cl_step ge (State f c k ve te) m (State f' c' k' ve' te') m' -> (c'=Sskip /\ k=k'). Lemma straightline_assign: forall e0 e, straightline (Clight.Sassign e0 e). Proof. unfold straightline; intros. inv H; auto. destruct H13; inv H; auto. destruct H13; inv H; auto. Qed. Lemma extract_exists_pre_later {CS: compspecs} {Espec: OracleKind}: forall (A : Type) (Q: assert) (P : A -> assert) c Delta (R: ret_assert), (forall x, semax Espec Delta (fun rho => Q rho && |> P x rho) c R) -> semax Espec Delta (fun rho => Q rho && |> exp (fun x => P x rho)) c R. Proof. rewrite semax_unfold in *. intros. intros. intros te ve ?w ? ?w ? ?. destruct H4. destruct H4. destruct H6 as [w2 [w3 [? [? [HQ ?]]]]]. destruct (age1 w2) as [w2' | ] eqn:?. * destruct (@age1_join _ _ _ _ _ _ _ _ H6 Heqo) as [w3' [w1' [? [? ?]]]]. hnf in H8. specialize (H8 _ (age_laterR H10)). destruct H8 as [x H8]. specialize (H x psi Delta' CS' w TS HGG Prog_OK k F f H0 H1). unfold guard, _guard in H. specialize (H te ve). cbv beta in H. specialize (H w0 H2 w1 H3). apply H. split; auto. split; auto. exists w2, w3. split3; auto. split; auto. intros w3x ?. eapply pred_nec_hereditary; [ | apply H8]. clear - H10 H12. eapply age_later_nec; eauto. * assert (level w1 = O). { clear - H6 Heqo. apply join_level in H6. destruct H6. rewrite <- H. apply age1_level0. auto. } hnf. intros. eexists; split. apply H10. exists w1. split3; auto. split; auto. simpl. hnf; intros. rewrite H9. constructor. Qed. Lemma extract_exists_pre {CS: compspecs} {Espec: OracleKind}: forall (A : Type) (P : A -> assert) c Delta (R: ret_assert), (forall x, semax Espec Delta (P x) c R) -> semax Espec Delta (fun rho => exp (fun x => P x rho)) c R. Proof. rewrite semax_unfold in *. intros. intros. intros te ve ?w ? ?w ? ?. rewrite exp_sepcon2 in H4. destruct H4 as [[TC [x H5]] ?]. specialize (H x). specialize (H psi Delta' CS' w TS HGG Prog_OK k F f H0). spec H. { clear - H1. unfold rguard in *. intros ek vl tx vx. specialize (H1 ek vl tx vx). red in H1. eapply subp_trans'; [| apply H1 ]. apply derives_subp. apply andp_derives; auto. } eapply H; eauto. split; auto. split; auto. Qed. Definition G0: funspecs := nil. Definition empty_genv prog_pub cenv: Clight.genv := Build_genv (Genv.globalenv (AST.mkprogram (F:=Clight.fundef)(V:=type) nil prog_pub (1%positive))) cenv. Lemma empty_program_ok {CS: compspecs} {Espec: OracleKind}: forall Delta ge w, glob_specs Delta = PTree.empty _ -> believe Espec Delta ge Delta w. Proof. intros Delta ge w ?. intro b. intros fsig cc A P Q. intros ?n ? ?. destruct H1 as [id [? [b0 [? ?]]]]. rewrite H in H1. rewrite PTree.gempty in H1. inv H1. Qed. Definition all_assertions_computable := forall (Espec: OracleKind) psi f tx vx (Q: assert), exists k, assert_safe Espec psi f tx vx k = Q. (* This is not generally true, but could be made true by adding an "assert" operator to the programming language *) Lemma ewand_TT_emp {A} {JA: Join A}{PA: Perm_alg A}{SA: Sep_alg A}{CA: Canc_alg A}: ewand TT emp = emp. Proof. intros. apply pred_ext; intros w ?. destruct H as [w1 [w3 [? [? ?]]]]. hnf; eapply split_identity. eapply join_comm; eauto. auto. exists w; exists w; split; auto. change (identity w) in H. apply identity_unit'; auto. Qed. Lemma subp_derives' {A}{agA: ageable A}: forall P Q: pred A, (forall n, (P >=> Q) n) -> P |-- Q. Proof. intros. intros n ?. eapply H; eauto. Qed. Lemma guard_environ_sub: forall {Delta Delta' f rho}, tycontext_sub Delta Delta' -> guard_environ Delta' f rho -> guard_environ Delta f rho. Proof. intros. destruct H0; split; auto. eapply typecheck_environ_sub; eauto. destruct f; auto. destruct H1; split; auto. destruct H as [? [? [? ?]]]. rewrite H4; auto. Qed. Lemma proj_frame_ret_assert: forall (R: ret_assert) (F: assert) ek vl, proj_ret_assert (frame_ret_assert R F) ek vl = seplog.sepcon (proj_ret_assert R ek vl) F. Proof. intros; extensionality rho; destruct R, ek; simpl; rewrite ?sepcon_andp_prop1; auto. Qed. Lemma semax_extensionality0 {CS: compspecs} {Espec: OracleKind}: TT |-- ALL Delta:tycontext, ALL Delta':tycontext, ALL P:assert, ALL P':assert, ALL c: statement, ALL R:ret_assert, ALL R':ret_assert, ((!! tycontext_sub Delta Delta' && (ALL ek: exitkind, ALL vl : option val, ALL rho: environ, (proj_ret_assert R ek vl rho >=> proj_ret_assert R' ek vl rho)) && (ALL rho:environ, P' rho >=> P rho) && semax' Espec Delta P c R) >=> semax' Espec Delta' P' c R'). Proof. apply loeb. intros w ? Delta Delta' P P' c R R'. intros w1 ? w2 ? [[[? ?] ?] ?]. do 3 red in H2. rewrite semax_fold_unfold; rewrite semax_fold_unfold in H5. intros gx Delta'' CS'. apply prop_imp_i. intros [TS HGG]. intros w3 ? ?. specialize (H5 gx Delta'' CS' _ (necR_refl _) (conj (tycontext_sub_trans _ _ _ H2 TS) HGG) _ H6 H7). intros k F f w4 Hw4 [? ?]. specialize (H5 k F f w4 Hw4). assert ((rguard Espec gx Delta'' f (frame_ret_assert R F) k) w4). do 9 intro. apply (H9 b b0 b1 b2 y H10 a' H11). destruct H12; split; auto; clear H13. pose proof I. destruct H12; split; auto. rewrite proj_frame_ret_assert in H14|-*. clear H12 H13. revert a' H11 H14. apply sepcon_subp' with (level w2). apply H3. auto. apply necR_level in H6. apply necR_level in Hw4. eapply le_trans; try eassumption. eapply le_trans; try eassumption. specialize (H5 (conj H8 H10)). clear H8 H9 H10. do 7 intro. apply (H5 b b0 y H8 _ H9). destruct H10; split; auto. destruct H10; split; auto. clear H10 H11. revert a' H9 H12. apply sepcon_subp' with (level w2); auto. apply necR_level in H6. apply necR_level in Hw4. eapply le_trans; try eassumption. eapply le_trans; try eassumption. Qed. Lemma semax_extensionality1 {CS: compspecs} {Espec: OracleKind}: forall Delta Delta' (P P': assert) c (R R': ret_assert) , tycontext_sub Delta Delta' -> ((ALL ek: exitkind, ALL vl : option val, ALL rho: environ, (proj_ret_assert R ek vl rho >=> proj_ret_assert R' ek vl rho)) && (ALL rho:environ, P' rho >=> P rho) && (semax' Espec Delta P c R) |-- semax' Espec Delta' P' c R'). Proof. intros. intros n ?. apply (semax_extensionality0 n I Delta Delta' P P' c R R' _ (le_refl _) _ (necR_refl _)). destruct H0; split; auto. destruct H0; split; auto. split; auto. Qed. Lemma semax_frame {CS: compspecs} {Espec: OracleKind}: forall Delta P s R F, closed_wrt_modvars s F -> semax Espec Delta P s R -> semax Espec Delta (fun rho => P rho * F rho) s (frame_ret_assert R F). Proof. intros until F. intros CL H. rewrite semax_unfold. rewrite semax_unfold in H. intros. pose (F0F := fun rho => F0 rho * F rho). specialize (H psi Delta' CS' w TS HGG Prog_OK k F0F f). spec H. { unfold F0F. clear - H0 CL. hnf in *; intros; simpl in *. rewrite <- CL. rewrite <- H0. auto. tauto. tauto. } replace (fun rho : environ => F0 rho * (P rho * F rho)) with (fun rho : environ => F0F rho * P rho). * apply H. unfold F0F; clear - H1. intros ek vl tx vx; specialize (H1 ek vl tx vx). red in H1. remember ((construct_rho (filter_genv psi) vx tx)) as rho. red. hnf; intros. specialize (H1 _ H). hnf; intros. apply H1; auto. destruct H2; split; auto. destruct H2; split; auto. rewrite proj_frame_ret_assert in H4|-*. rewrite proj_frame_ret_assert. rewrite seplog.sepcon_assoc. eapply sepcon_derives; try apply H4; auto. simpl. rewrite sepcon_comm; auto. * unfold F0F. extensionality rho. rewrite sepcon_assoc. f_equal. apply sepcon_comm. Qed. Lemma assert_safe_last: forall {Espec: OracleKind} f ge ve te c k rho w, (forall w', age w w' -> assert_safe Espec f ge ve te (Cont (Kseq c k)) rho w) -> assert_safe Espec f ge ve te (Cont (Kseq c k)) rho w. Proof. intros. case_eq (age1 w). auto. clear H. intro; apply bupd_intro; repeat intro. apply age1_level0 in H. lia. Qed. Lemma pred_sub_later' {A} `{H: ageable A}: forall (P Q: pred A), (|> P >=> |> Q) |-- (|> (P >=> Q)). Proof. intros. rewrite later_fash; auto. rewrite later_imp. auto. Qed. Lemma later_strengthen_safe1: forall {Espec: OracleKind} (P: pred rmap) f ge ve te k rho, ((|> P) >=> assert_safe Espec f ge ve te k rho) |-- |> (P >=> assert_safe Espec f ge ve te k rho). Proof. intros. intros w ?. apply (@pred_sub_later' _ _ P (assert_safe Espec f ge ve te k rho)); auto. eapply subp_trans'; try apply H. apply derives_subp; clear. apply now_later. Qed. End SemaxContext. #[export] Hint Resolve age_laterR : core. Fixpoint filter_seq (k: cont) : cont := match k with | Kseq s k1 => filter_seq k1 | _ => k end. Fixpoint app_cont (k1 k2: cont) : cont := match k1 with | Kstop => k2 | Kseq c k1' => Kseq c (app_cont k1' k2) | Kloop1 c1 c2 k1' => Kloop1 c1 c2 (app_cont k1' k2) | Kloop2 c1 c2 k1' => Kloop2 c1 c2 (app_cont k1' k2) | Kswitch k1' => Kswitch (app_cont k1' k2) | Kcall i f ve te k1' => Kcall i f ve te (app_cont k1' k2) end. Lemma cons_app: forall x y, Kseq x y = app_cont (Kseq x Kstop) y. Proof. auto. Qed. Lemma cons_app': forall x y z, Kseq x (app_cont y z) = app_cont (Kseq x y) z. Proof. auto. Qed. Fixpoint length_cont (k: cont) := match k with | Kstop => O | Kseq _ k' => S (length_cont k') | Kloop1 _ _ k' => S (length_cont k') | Kloop2 _ _ k' => S (length_cont k') | Kswitch k' => S (length_cont k') | Kcall _ _ _ _ k' => S (length_cont k') end. Lemma app_cont_length: forall k1 k2, length_cont (app_cont k1 k2) = (length_cont k1 + length_cont k2)%nat. Proof. induction k1; simpl; intros; auto. Qed. Lemma cat_prefix_empty: forall prefix ctl, ctl = app_cont prefix ctl -> prefix = Kstop. Proof. intros. pose proof (app_cont_length prefix ctl). rewrite <- H in H0. assert (length_cont prefix = O) by lia. clear - H1. destruct prefix; inv H1; auto. Qed. Definition true_expr : Clight.expr := Clight.Econst_int Int.one (Tint I32 Signed noattr). (* (* BEGIN Lemmas duplicated from Clight_sim. v *) Lemma dec_skip: forall s, {s=Sskip}+{s<>Sskip}. Proof. destruct s; try (left; congruence); right; congruence. Qed. Lemma strip_step: (* This one uses equality, one in Clight_sim uses <-> *) forall ge ve te k m st' m', cl_step ge (State ve te (strip_skip k)) m st' m' = cl_step ge (State ve te k) m st' m'. Proof. intros. apply prop_ext. induction k; intros; split; simpl; intros; try destruct IHk; auto. destruct a; try destruct s; auto. constructor; auto. destruct a; try destruct s; auto. inv H. auto. Qed. (* END lemmas duplicated *) Lemma strip_skip_app: forall k k', strip_skip k = nil -> strip_skip (k++k') = strip_skip k'. Proof. induction k; intros; auto. destruct a; inv H. destruct s; inv H1; auto. simpl. apply IHk. auto. Qed. Lemma strip_strip: forall k, strip_skip (strip_skip k) = strip_skip k. Proof. induction k; simpl. auto. destruct a; simpl; auto. destruct (dec_skip s). subst; auto. destruct s; auto. Qed. Lemma strip_skip_app_cons: forall {k c l}, strip_skip k = c::l -> forall k', strip_skip (k++k') = c::l++k'. Proof. intros. revert k H; induction k; intros. inv H. destruct a; try solve [simpl in *; auto]; try solve [simpl in *; rewrite cons_app'; rewrite H; auto]. destruct (dec_skip s). subst. simpl in *; auto. destruct s; inv H; simpl; auto. Qed. Lemma filter_seq_current_function: forall ctl1 ctl2, filter_seq ctl1 = filter_seq ctl2 -> current_function ctl1 = current_function ctl2. Proof. intros ? ? H0. revert ctl2 H0; induction ctl1; simpl; intros. revert H0; induction ctl2; simpl; intros; try destruct a; try congruence; auto. destruct a; auto; revert H0; induction ctl2; simpl; intros; try destruct a; try congruence; auto. Qed. *) Lemma filter_seq_call_cont: forall ctl1 ctl2, filter_seq ctl1 = filter_seq ctl2 -> call_cont ctl1 = call_cont ctl2. Proof. intros ? ? H0. revert ctl2 H0; induction ctl1; simpl; intros; auto; revert H0; induction ctl2; simpl; intros; try destruct a; try congruence; auto. Qed. Lemma call_cont_app_nil: forall l k, call_cont l = Kstop -> call_cont (app_cont l k) = call_cont k. Proof. intros l k; revert k; induction l; simpl; intros; try destruct a; simpl in *; try congruence; auto. Qed. Lemma call_cont_app_cons: forall l, call_cont l <> Kstop -> forall k, call_cont (app_cont l k) = app_cont (call_cont l) k. Proof. induction l; simpl; intros; try congruence; auto. Qed. Lemma and_FF : forall {A} `{ageable A} (P:pred A), P && FF = FF. Proof. intros. rewrite andp_comm. apply FF_and. Qed. Lemma sepcon_FF : forall {A}{JA: Join A}{PA: Perm_alg A}{AG: ageable A}{XA: Age_alg A} (P:pred A), (P * FF = FF)%pred. Proof. intros. rewrite sepcon_comm. apply FF_sepcon. Qed. Section extensions. Lemma safe_loop_skip: forall {Espec: OracleKind} ge ora f ve te k m, jsafeN (@OK_spec Espec) ge (level m) ora (State f (Sloop Clight.Sskip Clight.Sskip) k ve te ) m. Proof. intros. pose (M := level m). assert (Hge: (M >= level m)%nat) by lia. clearbody M. revert m Hge; induction M; intros. assert (level m = O) by lia. rewrite H. constructor. eapply jsafeN_local_step. constructor. intros. eapply jsafeN_local_step. constructor. auto. intros. eapply jsafeN_local_step. constructor. intros. apply IHM. apply age_level in H. apply age_level in H0. apply age_level in H1. lia. Qed. (* Lemma safe_seq_skip {Espec: OracleKind} ge n ora ve te k m : jsafeN OK_spec ge n ora (State ve te k) m -> jsafeN OK_spec ge n ora (State ve te (Kseq Sskip :: k)) m. Proof. inversion 1; subst. constructor. econstructor; eauto. simpl. destruct H0 as (?&?&?). split3; eauto. eapply step_skip; eauto. simpl in *; congruence. contradiction. Qed. Lemma safe_seq_skip' {Espec: OracleKind} ge n ora ve te k m : jsafeN OK_spec ge n ora (State ve te (Kseq Sskip :: k)) m -> jsafeN OK_spec ge n ora (State ve te k) m. Proof. inversion 1; subst. constructor. econstructor; eauto. simpl. destruct H0 as (?&?&?). split3; eauto. inv H0; auto. simpl in *; congruence. contradiction. Qed. *) Local Open Scope nat_scope. Definition control_as_safex {Espec: OracleKind} ge c1 k1 c2 k2 := forall (ora : OK_ty) f (ve : env) (te : temp_env) (m : juicy_mem), jsafeN (@OK_spec Espec) ge (level m) ora (State f c1 k1 ve te) m -> jsafeN (@OK_spec Espec) ge (level m) ora (State f c2 k2 ve te) m. Definition control_as_safe {Espec: OracleKind} ge ctl1 ctl2 := match ctl1, ctl2 with | Kseq c1 k1, Kseq c2 k2 => control_as_safex ge c1 k1 c2 k2 | Kseq c1 k1, Kloop1 _ _ _ => control_as_safex ge c1 k1 Sskip ctl2 | Kseq c1 k1, Kloop2 body incr k2 => control_as_safex ge c1 k1 (Sloop body incr) k2 | Kseq c1 k1, Kstop => control_as_safex ge c1 k1 (Sreturn None) Kstop | Kseq c1 k1, Kcall _ _ _ _ _ => control_as_safex ge c1 k1 (Sreturn None) ctl2 | Kseq _ _, _ => False | Kloop1 _ _ _, Kseq c2 k2 => control_as_safex ge Sskip ctl1 c2 k2 | Kloop1 _ _ _, Kloop1 _ _ _ => control_as_safex ge Sskip ctl1 Sskip ctl2 | Kloop1 _ _ _, Kloop2 body incr k2 => control_as_safex ge Sskip ctl1 (Sloop body incr) k2 | Kloop1 _ _ _, _ => False | Kloop2 b1 i1 k1, Kseq c2 k2 => control_as_safex ge (Sloop b1 i1) k1 c2 k2 | Kloop2 b1 i1 k1, Kloop1 _ _ _ => control_as_safex ge (Sloop b1 i1) k1 Sskip ctl2 | Kloop2 b1 i1 k1, Kloop2 b2 i2 k2 => control_as_safex ge (Sloop b1 i1) k1 (Sloop b2 i2) k2 | Kloop2 _ _ _, _ => False | Kstop, Kseq c2 k2 => control_as_safex ge (Sreturn None) Kstop c2 k2 | Kcall _ _ _ _ _, Kseq c2 k2=> control_as_safex ge (Sreturn None) ctl1 c2 k2 | _, _ => ctl1 = ctl2 end. Fixpoint prebreak_cont (k: cont) : cont := match k with | Kloop1 s e3 k' => k | Kseq s k' => prebreak_cont k' | Kloop2 s e3 k' => k | Kswitch k' => k | _ => Kstop (* stuck *) end. Lemma prebreak_cont_is: forall k, match (prebreak_cont k) with | Kloop1 _ _ _ => True | Kloop2 _ _ _ => True | Kswitch _ => True | Kstop => True | _ => False end. Proof. induction k; simpl; auto. Qed. Lemma app_cont_ass: forall j k l, app_cont (app_cont j k) l = app_cont j (app_cont k l). Proof. intros. induction j; simpl; f_equal; auto. Qed. Lemma find_label_prefix: forall lbl s ctl s' k, find_label lbl s ctl = Some (s',k) -> exists j, Kseq s' k = app_cont j ctl with find_label_ls_prefix: forall lbl s ctl s' k, find_label_ls lbl s ctl = Some (s',k) -> exists j, Kseq s' k = app_cont j ctl. Proof. - intros. clear find_label_prefix. revert ctl k H; induction s; simpl; intros; try congruence. + revert H; case_eq (find_label lbl s1 (Kseq s2 ctl)); intros; [inv H0 | auto ]. destruct (IHs1 _ _ H) as [j ?]. exists (app_cont j (Kseq s2 Kstop)); rewrite app_cont_ass; auto. + revert H; case_eq (find_label lbl s1 ctl); intros; [inv H0 | auto ]; auto. + destruct (find_label lbl s1 (Kloop1 s1 s2 ctl)) eqn:H0; inv H. apply IHs1 in H0. destruct H0 as [j ?]. exists (app_cont j (Kloop1 s1 s2 Kstop)). rewrite app_cont_ass. auto. apply IHs2 in H2. destruct H2 as [j ?]. exists (app_cont j (Kloop2 s1 s2 Kstop)). rewrite app_cont_ass; auto. + destruct (find_label_ls_prefix _ _ _ _ _ H) as [j ?]. exists (app_cont j (Kswitch Kstop)); rewrite app_cont_ass; auto. + if_tac in H. subst l. inv H. exists (Kseq s' Kstop); auto. apply IHs; auto. - induction s; simpl; intros. inv H. destruct (find_label lbl s (Kseq (seq_of_labeled_statement s0) ctl)) eqn:?H. inv H. destruct (find_label_prefix _ _ _ _ _ H0) as [j ?]. exists (app_cont j (Kseq (seq_of_labeled_statement s0) Kstop)). rewrite app_cont_ass; auto. auto. Qed. Lemma find_label_None: forall lbl s ctl, find_label lbl s ctl = None -> forall ctl', find_label lbl s ctl' = None with find_label_ls_None: forall lbl s ctl, find_label_ls lbl s ctl = None -> forall ctl', find_label_ls lbl s ctl' = None. Proof. clear find_label_None; induction s; simpl; intros; try congruence; try match type of H with match ?A with Some _ => _| None => _ end = _ => revert H; case_eq A; intros; [inv H0 | ] end; try (rewrite (IHs1 _ H); eauto). eauto. destruct (ident_eq lbl l). inv H. eapply IHs; eauto. clear find_label_ls_None; induction s; simpl; intros; try congruence; try match type of H with match ?A with Some _ => _| None => _ end = _ => revert H; case_eq A; intros; [inv H0 | ] end; try (rewrite (IHs1 _ H); eauto). eauto. rewrite (find_label_None _ _ _ H). eauto. Qed. Lemma guard_safe_adj {Espec: OracleKind}: forall psi Delta f P c1 k1 c2 k2, (forall ora m ve te n, jsafeN (@OK_spec Espec) psi n ora (State f c1 k1 ve te) m -> jsafeN (@OK_spec Espec) psi n ora (State f c2 k2 ve te) m) -> guard Espec psi Delta f P (Kseq c1 k1) |-- guard Espec psi Delta f P (Kseq c2 k2). Proof. intros. unfold guard. apply allp_derives. intros tx. apply allp_derives. intros vx. apply subp_derives; auto. apply bupd_mono. intros w ? ? ? ? . simpl in H0. specialize (H0 ora jm H1). simpl. intros. apply H; auto. Qed. Lemma guard_safe_adj' {Espec: OracleKind}: forall psi Delta f P c1 k1 c2 k2, (forall ora m ve te, jsafeN (@OK_spec Espec) psi (level m) ora (State f c1 k1 ve te) m -> jsafeN (@OK_spec Espec) psi (level m) ora (State f c2 k2 ve te) m) -> guard Espec psi Delta f P (Kseq c1 k1) |-- guard Espec psi Delta f P (Kseq c2 k2). Proof. intros. unfold guard. apply allp_derives. intros tx. apply allp_derives. intros vx. apply subp_derives; auto. apply bupd_mono. simpl. intros ? ? ? ? ? ? ? ?. simpl in H0. subst. apply H; auto. Qed. Lemma assert_safe_adj: forall {Espec: OracleKind} ge f ve te k k' rho, control_as_safe ge k k' -> assert_safe Espec ge f ve te (Cont k) rho |-- assert_safe Espec ge f ve te (Cont k') rho. Proof. intros. apply bupd_mono. simpl in *. intros w ?. simpl in H0|-*. intros ? ?. specialize (H0 ora jm). intros. specialize (H0 H1 H2 H3 LW). simpl in H0. subst w. change (level (m_phi jm)) with (level jm). red in H. destruct k as [ | s ctl' | | | |] eqn:Hk; try contradiction; destruct k' as [ | s2 ctl2' | | | |] eqn:Hk'; try contradiction; try discriminate; auto; try solve [apply H; auto]. inv H; auto. Qed. Lemma assert_safe_adj': forall {Espec: OracleKind} ge f ve te k k' rho P w, (control_as_safe ge k k') -> app_pred (P >=> assert_safe Espec ge f ve te (Cont k) rho) w -> app_pred (P >=> assert_safe Espec ge f ve te (Cont k') rho) w. Proof. intros. eapply subp_trans'; [ | apply derives_subp; eapply assert_safe_adj; try eassumption; eauto]. auto. Qed. Lemma assert_safe_last': forall {Espec: OracleKind} ge f ve te c k rho w, (age1 w <> None -> assert_safe Espec ge f ve te (Cont (Kseq c k)) rho w) -> assert_safe Espec ge f ve te (Cont (Kseq c k)) rho w. Proof. intros. apply assert_safe_last; intros. apply H. rewrite H0. congruence. Qed. Lemma pjoinable_emp_None {A}{JA: Join A}{PA: Perm_alg A}{SA: Sep_alg A}: forall w: option (psepalg.lifted JA), identity w -> w=None. Proof. intros. destruct w; auto. elimtype False. specialize (H None (Some l)). spec H. constructor. inversion H. Qed. Lemma pjoinable_None_emp {A}{JA: Join A}{PA: Perm_alg A}{SA: Sep_alg A}: identity (None: option (psepalg.lifted JA)). Proof. intros; intro; intros. inv H; auto. Qed. Lemma unage_mapsto: forall sh t v1 v2 w, age1 w <> None -> (|> mapsto sh t v1 v2) w -> mapsto sh t v1 v2 w. Proof. intros. case_eq (age1 w); intros; try contradiction. clear H. specialize (H0 _ (age_laterR H1)). unfold mapsto in *. revert H0; case_eq (access_mode t); intros; auto. destruct (type_is_volatile t); try contradiction. destruct v1; try contradiction. rename H into Hmode. if_tac; rename H into H_READ. + destruct H0 as [H0|H0]; [left | right]. destruct H0 as [H0' H0]; split; auto. destruct H0 as [bl [[] ?]]; exists bl; split; [split|]; auto. clear - H0 H1. intro loc'; specialize (H0 loc'). hnf in *. if_tac. destruct H0 as [p ?]; exists p. hnf in *. rewrite preds_fmap_NoneP in *. apply (age1_YES w r); auto. unfold noat in *; simpl in *. apply <- (age1_resource_at_identity _ _ loc' H1); auto. eapply age1_ghost_of_identity; eauto. destruct H0 as [? [v2' [bl [[] ?]]]]. hnf in H. subst v2. split; hnf; auto. exists v2', bl; split; [split|]; auto. clear - H2 H1; rename H2 into H0. intro loc'; specialize (H0 loc'). hnf in *. if_tac. destruct H0 as [p ?]; exists p. hnf in *. rewrite preds_fmap_NoneP in *. apply (age1_YES w r); auto. unfold noat in *; simpl in *. apply <- (age1_resource_at_identity _ _ loc' H1); auto. eapply age1_ghost_of_identity; eauto. + split; [exact (proj1 H0) |]. destruct H0 as [_ [? Hg]]. split; [|eapply age1_ghost_of_identity; eauto]. intro loc'; specialize (H loc'). hnf in *. if_tac. - unfold shareat in *; simpl in *. pose proof H1. apply age1_resource_share with (l := loc') in H1. apply age1_nonlock with (l := loc') in H2. rewrite H1; tauto. - unfold noat in *; simpl in *. apply <- (age1_resource_at_identity _ _ loc' H1); auto. Qed. Lemma semax_Delta_subsumption {CS: compspecs} {Espec: OracleKind}: forall Delta Delta' P c R, tycontext_sub Delta Delta' -> semax Espec Delta P c R -> semax Espec Delta' P c R. Proof. intros. unfold semax in *. intros. specialize (H0 n). apply (semax_extensionality1 Delta Delta' P P c R R); auto. split; auto. split; auto. intros ? ? ?; auto. Qed. End extensions. Definition Cnot (e: Clight.expr) : Clight.expr := Clight.Eunop Cop.Onotbool e type_bool. (* Mutually recursive induction scheme for [statement] and [labeled_statements] *) Section statement_rect. Variable P : statement -> Type. Variable Q : labeled_statements -> Type. Variable f : P Sskip. Variable f0 : forall e e0 : expr, P (Sassign e e0). Variable f1 : forall (i : ident) (e : expr), P (Sset i e). Variable f2 : forall (o : option ident) (e : expr) (l : list expr), P (Scall o e l). Variable f3 : forall (o : option ident) (e : external_function) (t : typelist) (l : list expr), P (Sbuiltin o e t l). Variable f4 : forall s : statement, P s -> forall s0 : statement, P s0 -> P (Ssequence s s0). Variable f5 : forall (e : expr) (s : statement), P s -> forall s0 : statement, P s0 -> P (Sifthenelse e s s0). Variable f6 : forall s : statement, P s -> forall s0 : statement, P s0 -> P (Sloop s s0). Variable f7 : P Sbreak. Variable f8 : P Scontinue. Variable f9 : forall o : option expr, P (Sreturn o). Variable f10 : forall (e : expr) (l : labeled_statements), Q l -> P (Sswitch e l). Variable f11 : forall (l : label) (s : statement), P s -> P (Slabel l s). Variable f12 : forall l : label, P (Sgoto l). Variable f13 : Q LSnil. Variable f14 : forall (o : option Z) (s : statement) (l : labeled_statements), P s -> Q l -> Q (LScons o s l). Fixpoint statement_rect (s : statement) : P s := match s as s0 return (P s0) with | Sskip => f | Sassign e e0 => f0 e e0 | Sset i e => f1 i e | Scall o e l => f2 o e l | Sbuiltin o e t l => f3 o e t l | Ssequence s0 s1 => f4 s0 (statement_rect s0) s1 (statement_rect s1) | Sifthenelse e s0 s1 => f5 e s0 (statement_rect s0) s1 (statement_rect s1) | Sloop s0 s1 => f6 s0 (statement_rect s0) s1 (statement_rect s1) | Sbreak => f7 | Scontinue => f8 | Sreturn o => f9 o | Sswitch e l => f10 e l (labeled_statements_rect l) | Slabel l s0 => f11 l s0 (statement_rect s0) | Sgoto l => f12 l end with labeled_statements_rect (l : labeled_statements) : Q l := match l as l0 return (Q l0) with | LSnil => f13 | LScons o s l0 => f14 o s l0 (statement_rect s) (labeled_statements_rect l0) end. End statement_rect. Require Import VST.msl.eq_dec. (* Equality is decidable on statements *) Section eq_dec. Local Ltac t := hnf; decide equality; auto. Let eq_dec_type := type_eq. Let eq_dec_float := Float.eq_dec. Let eq_dec_float32 := Float32.eq_dec. Let eq_dec_int := Int.eq_dec. Let eq_dec_int64 := Int64.eq_dec. Let eq_dec_ident := ident_eq. Let eq_dec_signature := signature_eq. Let eq_dec_attr : EqDec attr. repeat t. Defined. Let eq_dec_signedness : EqDec signedness. t. Defined. Let eq_dec_intsize : EqDec intsize. t. Defined. Let eq_dec_floatsize : EqDec floatsize. t. Defined. Let eq_dec_Z : EqDec Z. repeat t. Defined. Let eq_dec_calling_convention : EqDec calling_convention. repeat t. Defined. Lemma eq_dec_external_function : EqDec external_function. repeat t. Defined. Let eq_dec_option_ident := option_eq (ident_eq). Let eq_dec_option_Z : EqDec (option Z). repeat t. Defined. Let eq_dec_typelist : EqDec typelist. repeat t. Defined. Lemma eq_dec_expr : EqDec expr. Proof. repeat t. Defined. Let eq_dec_expr := eq_dec_expr. Let eq_dec_option_expr : EqDec (option expr). repeat t. Defined. Let eq_dec_list_expr : EqDec (list expr). repeat t. Defined. Local Ltac eq_dec a a' := let H := fresh in assert (H : {a = a'} + {a <> a'}) by (auto; repeat (decide equality ; auto)); destruct H; [subst; auto | try (right; congruence)]. Lemma eq_dec_statement : forall s s' : statement, { s = s' } + { s <> s' }. Proof. apply (statement_rect (fun s => forall s', { s = s' } + { s <> s' }) (fun l => forall l', { l = l' } + { l <> l' })); try (intros until s'; destruct s'); intros; try (destruct l'); try solve [right; congruence | left; reflexivity]; repeat match goal with | |- context [ ?x ?a = ?x ?b ] => eq_dec a b | |- context [ ?x ?y ?a = ?x ?y ?b ] => eq_dec a b | |- context [ ?x ?a _ = ?x ?b _ ] => eq_dec a b | |- context [ ?x ?y ?z ?a = ?x ?y ?z ?b ] => eq_dec a b | |- context [ ?x ?y ?a _ = ?x ?y ?b _ ] => eq_dec a b | |- context [ ?x ?a _ _ = ?x ?b _ _ ] => eq_dec a b | |- context [ ?x ?y ?z ?t ?a = ?x ?y ?z ?t ?b ] => eq_dec a b | |- context [ ?x ?y ?z ?a _ = ?x ?y ?z ?b _ ] => eq_dec a b | |- context [ ?x ?y ?a _ _ = ?x ?y ?b _ _ ] => eq_dec a b | |- context [ ?x ?a _ _ _ = ?x ?b _ _ _ ] => eq_dec a b end. Defined. Lemma eq_dec_labeled_statements : forall l l' : labeled_statements, { l = l' } + { l <> l' }. Proof. decide equality. apply eq_dec_statement. Defined. End eq_dec. Instance EqDec_statement: EqDec statement := eq_dec_statement. Instance EqDec_external_function: EqDec external_function := eq_dec_external_function. Lemma closed_Slabel l c F: closed_wrt_modvars (Slabel l c) F = closed_wrt_modvars c F. Proof. unfold closed_wrt_modvars. rewrite modifiedvars_Slabel. trivial. Qed. Lemma closed_Sifthenelse b c1 c2 F: closed_wrt_modvars (Sifthenelse b c1 c2) F <-> closed_wrt_modvars c1 F /\ closed_wrt_modvars c2 F. Proof. unfold closed_wrt_modvars. pose proof modifiedvars_Sifthenelse b c1 c2. pose proof modifiedvars_computable c1 as TC. forget (modifiedvars (Sifthenelse b c1 c2)) as S. forget (modifiedvars c1) as S1. forget (modifiedvars c2) as S2. clear b c1 c2. unfold closed_wrt_vars. split; [intros; split; intros | intros [? ?]; intros]. + apply H0. intros. specialize (H1 i). specialize (H i). clear - H H1. tauto. + apply H0. intros. specialize (H1 i). specialize (H i). clear - H H1. tauto. + specialize (TC (te_of rho) te'). destruct TC as [te'' [? ?]]. transitivity (F (mkEnviron (ge_of rho) (ve_of rho) te'')). - apply H1. clear H0 H1. intros. specialize (H3 i). specialize (H i). specialize (H2 i). specialize (H4 i). destruct H2; [| rewrite <- H0 in *]; tauto. - change (mkEnviron (ge_of rho) (ve_of rho) te') with (mkEnviron (ge_of (mkEnviron (ge_of rho) (ve_of rho) te'')) (ve_of (mkEnviron (ge_of rho) (ve_of rho) te'')) te'). change te'' with (te_of (mkEnviron (ge_of rho) (ve_of rho) te'')) in H3, H4, H2. forget (mkEnviron (ge_of rho) (ve_of rho) te'') as rho'. apply H0. clear H0 H1 H2 H3 H te''. intros. specialize (H4 i). destruct H4; [auto | right; congruence]. Qed. Lemma closed_Sloop c1 c2 F: closed_wrt_modvars (Sloop c1 c2) F <-> closed_wrt_modvars c1 F /\ closed_wrt_modvars c2 F. Proof. unfold closed_wrt_modvars. pose proof modifiedvars_Sloop c1 c2. pose proof modifiedvars_computable c1 as TC. forget (modifiedvars (Sloop c1 c2)) as S. forget (modifiedvars c1) as S1. forget (modifiedvars c2) as S2. clear c1 c2. unfold closed_wrt_vars. split; [intros; split; intros | intros [? ?]; intros]. + apply H0. intros. specialize (H1 i). specialize (H i). clear - H H1. tauto. + apply H0. intros. specialize (H1 i). specialize (H i). clear - H H1. tauto. + specialize (TC (te_of rho) te'). destruct TC as [te'' [? ?]]. transitivity (F (mkEnviron (ge_of rho) (ve_of rho) te'')). - apply H1. clear H0 H1. intros. specialize (H3 i). specialize (H i). specialize (H2 i). specialize (H4 i). destruct H2; [| rewrite <- H0 in *]; tauto. - change (mkEnviron (ge_of rho) (ve_of rho) te') with (mkEnviron (ge_of (mkEnviron (ge_of rho) (ve_of rho) te'')) (ve_of (mkEnviron (ge_of rho) (ve_of rho) te'')) te'). change te'' with (te_of (mkEnviron (ge_of rho) (ve_of rho) te'')) in H3, H4, H2. forget (mkEnviron (ge_of rho) (ve_of rho) te'') as rho'. apply H0. clear H0 H1 H2 H3 H te''. intros. specialize (H4 i). destruct H4; [auto | right; congruence]. Qed. Lemma closed_Ssequence c1 c2 F: closed_wrt_modvars (Ssequence c1 c2) F <-> closed_wrt_modvars c1 F /\ closed_wrt_modvars c2 F. Proof. unfold closed_wrt_modvars. pose proof modifiedvars_Ssequence c1 c2. pose proof modifiedvars_computable c1 as TC. forget (modifiedvars (Ssequence c1 c2)) as S. forget (modifiedvars c1) as S1. forget (modifiedvars c2) as S2. clear c1 c2. unfold closed_wrt_vars. split; [intros; split; intros | intros [? ?]; intros]. + apply H0. intros. specialize (H1 i). specialize (H i). clear - H H1. tauto. + apply H0. intros. specialize (H1 i). specialize (H i). clear - H H1. tauto. + specialize (TC (te_of rho) te'). destruct TC as [te'' [? ?]]. transitivity (F (mkEnviron (ge_of rho) (ve_of rho) te'')). - apply H1. clear H0 H1. intros. specialize (H3 i). specialize (H i). specialize (H2 i). specialize (H4 i). destruct H2; [| rewrite <- H0 in *]; tauto. - change (mkEnviron (ge_of rho) (ve_of rho) te') with (mkEnviron (ge_of (mkEnviron (ge_of rho) (ve_of rho) te'')) (ve_of (mkEnviron (ge_of rho) (ve_of rho) te'')) te'). change te'' with (te_of (mkEnviron (ge_of rho) (ve_of rho) te'')) in H3, H4, H2. forget (mkEnviron (ge_of rho) (ve_of rho) te'') as rho'. apply H0. clear H0 H1 H2 H3 H te''. intros. specialize (H4 i). destruct H4; [auto | right; congruence]. Qed. Lemma closed_Sswitch e sl F: closed_wrt_modvars (Sswitch e sl) F -> (forall n, closed_wrt_modvars (seq_of_labeled_statement (select_switch (Int.unsigned n) sl)) F). Proof. intros. unfold closed_wrt_modvars, closed_wrt_vars in *. intros. apply H. intros. specialize (H0 i); destruct H0; auto. left. eapply modifiedvars_Sswitch; eauto. Qed. Lemma semax_eq: forall {CS: compspecs} {Espec: OracleKind} Delta P c R, semax Espec Delta P c R = (TT |-- (ALL psi : genv, ALL Delta' : tycontext, ALL CS':compspecs, !! (tycontext_sub Delta Delta' /\ cenv_sub (@cenv_cs CS) (@cenv_cs CS') /\ cenv_sub (@cenv_cs CS') (genv_cenv psi)) --> @believe CS' Espec Delta' psi Delta' --> ALL k : cont , ALL F : assert , ALL f: function, !! closed_wrt_modvars c F && rguard Espec psi Delta' f (frame_ret_assert R F) k --> guard Espec psi Delta' f (fun rho : environ => F rho * P rho) (Kseq c k))). Proof. intros. extensionality w. rewrite semax_fold_unfold. apply prop_ext; intuition. Qed. Lemma semax_Slabel {cs:compspecs} {Espec: OracleKind} (Gamma:tycontext) (P:environ -> mpred) (c:statement) (Q:ret_assert) l: @semax cs Espec Gamma P c Q -> @semax cs Espec Gamma P (Slabel l c) Q. Proof. intros. rewrite semax_eq. rewrite semax_eq in H. eapply derives_trans. eassumption. clear H. apply allp_derives; intros psi. apply allp_derives; intros Delta. apply allp_derives; intros CS'. apply prop_imp_derives; intros TC. apply imp_derives; [ apply derives_refl | ]. apply allp_derives; intros k. apply allp_derives; intros F. apply allp_derives; intros f. apply imp_derives; [ apply derives_refl | ]. apply guard_safe_adj'. intros. clear - H. eapply jsafeN_local_step. constructor. intros. eapply age_safe; eauto. Qed. Lemma denote_tc_resource: forall {cs: compspecs} rho a a' t, resource_at a = resource_at a' -> denote_tc_assert t rho a -> denote_tc_assert t rho a'. Proof. induction t; auto; intros; simpl in *. - destruct H0; auto. - destruct H0; auto. - unfold liftx in *; simpl in *. unfold lift in *; simpl in *. destruct (eval_expr e rho); auto; simpl in *; if_tac; auto. - unfold liftx in *; simpl in *. unfold lift in *; simpl in *. destruct (eval_expr e rho); auto; simpl in *; if_tac; auto. - unfold liftx in *; simpl in *. unfold lift in *; simpl in *. destruct (eval_expr e rho), (eval_expr e0 rho); auto; simpl in *. + simple_if_tac; auto. destruct H0; split; auto. destruct H1; [left | right]; simpl in *; rewrite <- H; auto. + simple_if_tac; auto. destruct H0; split; auto. destruct H1; [left | right]; simpl in *; rewrite <- H; auto. + unfold test_eq_ptrs in *. destruct (sameblock _ _), H0; split; simpl in *; rewrite <- H; auto. - unfold liftx in *; simpl in *. unfold lift in *; simpl in *. destruct (eval_expr e rho), (eval_expr e0 rho); auto; simpl in *. unfold test_order_ptrs in *. destruct (sameblock _ _), H0; split; simpl in *; rewrite <- H; auto. - unfold liftx in *; simpl in *. unfold lift in *; simpl in *. destruct (eval_expr e rho); auto; simpl in *; if_tac; auto. - unfold liftx in *; simpl in *. unfold lift in *; simpl in *. destruct (eval_expr e rho); auto; simpl in *; if_tac; auto. - unfold liftx in *; simpl in *. unfold lift in *; simpl in *. destruct (eval_expr e rho); auto; simpl in *. + destruct (Zoffloat f); auto. + destruct (Zofsingle f); auto. - unfold liftx in *; simpl in *. unfold lift in *; simpl in *. destruct (eval_expr e rho); auto; simpl in *. + destruct (Zoffloat f); auto. + destruct (Zofsingle f); auto. - unfold liftx in *; simpl in *. unfold lift in *; simpl in *. destruct (eval_expr e rho), (eval_expr e0 rho); auto. - unfold liftx in *; simpl in *. unfold lift in *; simpl in *. destruct (eval_expr e rho), (eval_expr e0 rho); auto. Qed. Lemma bupd_denote_tc: forall {cs: compspecs} P t rho a, denote_tc_assert t rho a -> bupd P a -> bupd (denote_tc_assert t rho && P) a. Proof. repeat intro. destruct (H0 _ H1) as (b & ? & m & ? & ? & ? & ?); subst. eexists; split; eauto; exists m; repeat split; eauto. eapply denote_tc_resource; [|eauto]; auto. Qed. Lemma assert_safe_jsafe: forall {Espec: OracleKind} ge f ve te c k ora jm, assert_safe Espec ge f ve te (Cont (Kseq c k)) (construct_rho (filter_genv ge) ve te) (m_phi jm) -> jm_bupd ora (jsafeN OK_spec ge (level jm) ora (State f c k ve te)) jm. Proof. repeat intro. destruct (H _ H1) as (? & ? & ? & Hl & Hr & ? & Hsafe); subst. do 2 red in Hsafe. destruct (juicy_mem_resource _ _ Hr) as (jm' & ? & ?); subst. exists jm'; repeat split; auto. rewrite level_juice_level_phi, <- Hl. destruct (gt_dec (level (m_phi jm')) O). specialize (Hsafe ora jm'). apply Hsafe; auto. eapply joins_comm, join_sub_joins_trans, joins_comm, H2. destruct H0. change (Some (ghost_PCM.ext_ref ora, NoneP) :: nil) with (ghost_approx (m_phi jm) (Some (ghost_PCM.ext_ref ora, NoneP) :: nil)). eexists; apply ghost_fmap_join; eauto. replace (level (m_phi jm')) with O by lia. constructor. Qed. Lemma assert_safe_jsafe': forall {Espec: OracleKind} ge f ve te k ora jm, assert_safe Espec ge f ve te (Cont k) (construct_rho (filter_genv ge) ve te) (m_phi jm) -> jm_bupd ora (jsafeN OK_spec ge (level jm) ora (State f Sskip k ve te)) jm. Proof. intros. repeat intro. destruct (H _ H1) as (? & ? & ? & Hl & Hr & ? & Hsafe); subst. simpl in Hsafe. destruct (juicy_mem_resource _ _ Hr) as (jm' & ? & ?); subst. exists jm'; repeat split; auto. rewrite level_juice_level_phi, <- Hl. specialize (Hsafe ora jm'). spec Hsafe. { eapply joins_comm, join_sub_joins_trans, joins_comm, H2. destruct H0. change (Some (ghost_PCM.ext_ref ora, NoneP) :: nil) with (ghost_approx (m_phi jm) (Some (ghost_PCM.ext_ref ora, NoneP) :: nil)). eexists; apply ghost_fmap_join; eauto. } do 2 (spec Hsafe; [auto|]). destruct (gt_dec (level (m_phi jm')) O). 2: replace (level (m_phi jm')) with O by lia; constructor. spec Hsafe; [auto |]. destruct k; try contradiction; auto. destruct (level (m_phi jm')); try lia. inv Hsafe; try discriminate; try contradiction. eapply jsafeN_step; eauto. destruct H5; split; auto. inv H3; econstructor; simpl; eauto. eapply jsafeN_local_step. constructor. intros. eapply age_safe; eauto. eapply jsafeN_local_step. constructor. intros. eapply age_safe; eauto. destruct (level (m_phi jm')); try lia. inv Hsafe; try discriminate; try contradiction. eapply jsafeN_step; eauto. destruct H5; split; auto. inv H3; econstructor; simpl; eauto. Qed. Lemma jm_bupd_local_step : forall {Espec: OracleKind} (ge : genv) (ora : OK_ty) (s1 : CC_core) (m : juicy_mem) (s2 : CC_core), cl_step ge s1 (m_dry m) s2 (m_dry m) -> (forall m' : juicy_mem, age m m' -> jm_bupd ora (jsafeN (@OK_spec Espec) ge (level m') ora s2) m') -> jm_bupd ora (jsafeN (@OK_spec Espec) ge (level m) ora s1) m. Proof. intros. destruct (age1 m) as [m' | ] eqn:?H. Abort.
\chapter{Making the Bibliography with BiB\TeX{}}\label{c:bib} \index{Making the Bibliography with BiBTeX% @\emph{Making the Bibliography with BiB\TeX{}}}% BiB\TeX{} \index{BiBTeX@BiB\TeX{}}% allows one to generate automatically the bibliography from a database of bibliographic items. You need to do the following: \begin{enumerate} \item Create the bibliographic database, \index{bibliographic database}% which is a file whose name ends in \texttt{.bib}. \index{.bib@\texttt{.bib}}% Let us call it \texttt{diss.bib}. Entries in this file are like this: \begin{verbatim} @BOOK{knuth:tb, author = "Donald K. Knuth", title = "The \TeXbook", publisher = "Addison-Wesley", year = "1984", } @TECHREPORT{poorten:sp, author = "Alf~J.~van der Poorten", title = "Some problems of recurrent interest", institution = "School of Mathematics and Physics, Macquarie University", address = "North Ryde, Australia 2113", number = "81-0037", month = "August", year = "1981", } @ARTICLE{erdos:oap, author = "Paul Erd{\"o}s and Paul Turan", title = "On a problem in the theory of uniform distribution, {I}", journal = "Indag. Math.", volume = "10", year = "1948", pages = "370--378", } \end{verbatim} \item Include a \cn{bibliographystyle} \index{commands!bibliographystyle@\cn{bibliographystyle}}% command in your \LaTeX{} file, say \cn{bibliographystyle\{plain\}} and a \cn{bibliography} \index{commands!bibliography@\cn{bibliography}}% command to load the bibliography, in this case \cn{bibliography\{diss\}}, at the point of your document where the bibliography should be inserted. The document at this point will look like this: \begin{verbatim} \bibliographystyle{plain} \bibliography{diss} \end{verbatim} \item Run \LaTeX{} on your main file, say \texttt{foo.tex}: \texttt{latex foo}. This generates an auxiliary file \texttt{foo.aux} with a list of \cn{cite} \index{commands!cite@\cn{cite}} references. \item Run BiB\TeX{} on your file: \texttt{bibtex foo}. BiB\TeX{} reads the auxiliary file, looks up the bibliographic database (\texttt{diss.bib}), and writes a \texttt{.bbl} \index{.bbl@\texttt{.bbl}}% file with the bibliographic information formated according to the bibliographic style file (\texttt{.bst}, \index{.bst@\texttt{.bst}}% say \texttt{plain.bst}) \index{plain.bst@\texttt{plain.bst}}% specified. Messages about resources used and error messages are written to a \texttt{.blg} \index{.blg@\texttt{.blg}}% file (in the case of this template, disstemplate.blg). \item Run \LaTeX{} again: \texttt{latex foo}, which now reads the \texttt{.bbl} \index{.bbl@\texttt{.bbl}}% reference file. \item Run \LaTeX{} for a third time: \texttt{latex foo}, resolving all references. \end{enumerate} This includes all bibliographic items that have been cited in the document with a \cn{cite} \index{commands!cite@\cn{cite}}% command. In order to include non cited items in the bibliography, use the command \cn{nocite}. For example, \cn{nocite\{knuth:tb\}} anywhere in the document (after \cn{begin\{document\}}) includes in the bibliography the item with label \texttt{knuth:tb}. In order to include \emph{all} items of the bibliographic database, use the command \cn{nocite\{*\}}. \index{commands!nocite@\cn{nocite}}%
{-# OPTIONS --rewriting --without-K #-} open import Prelude open import GSeTT.Syntax open import GSeTT.Rules open import GSeTT.Uniqueness-Derivations open import Sets ℕ eqdecℕ open import GSeTT.Dec-Type-Checking open import CaTT.Ps-contexts open import CaTT.Relation {- PS-contexts -} module CaTT.Uniqueness-Derivations-Ps where Γ⊢psx-dim≤ : ∀ {Γ x A} → Γ ⊢ps x # A → dim A ≤ dimC Γ Γ⊢psx-dim≤ pss = n≤n 0 Γ⊢psx-dim≤ (psd Γ⊢psy) = Sn≤m→n≤m (Γ⊢psx-dim≤ Γ⊢psy) Γ⊢psx-dim≤ {((Γ :: (_ , A)) :: (_ , _))} {_} {_} (pse Γ⊢psx idp idp idp idp idp) with dec-≤ (dimC (Γ :: (length Γ , A))) (S (dim A)) ... | inr res = Sn≤m→n≤m (≰ res) ... | inl res = n≤n (S (dim A)) Γ⊢psx-dim : ∀ {Γ x y A B} → Γ ⊢ps x # A → Γ ⊢ps y # B → dim A == dim B → x == y Γ⊢psx-dim pss pss dimA=dimB = idp Γ⊢psx-dim {x = x} {y = y} {A = A} {B = B} (psd {x = x₁} Γ⊢psx) (psd {x = x₂} Γ⊢psy) dimA=dimB = =Var (tgt= (unique-type (Γ⊢psx:A→Γ⊢x:A Γ⊢psx) (Γ⊢psx:A→Γ⊢x:A Γ⊢psy) (ap Var (Γ⊢psx-dim Γ⊢psx Γ⊢psy (ap S dimA=dimB))))) Γ⊢psx-dim {B = ∗} pss (psd Γ⊢psy) dimA=dimB = ⊥-elim (Sn≰n _ ((Γ⊢psx-dim≤ Γ⊢psy))) Γ⊢psx-dim {A = ∗} (psd Γ⊢psx) pss dimA=dimB = ⊥-elim (Sn≰n _ ((Γ⊢psx-dim≤ Γ⊢psx))) Γ⊢psx-dim (pse _ _ _ _ idp idp) (pse _ _ _ _ idp idp) dimA==dimB = idp Γ⊢psx-dim Γ++⊢psx@(psd Γ++⊢_) Γ++⊢psy@(pse _ idp idp idp idp idp) dimA=dimB with psx-◃-linear→ Γ++⊢psx _ _ (Γ⊢x:A→x∈Γ (psvar Γ++⊢psx)) (Γ⊢x:A→x∈Γ (psvar Γ++⊢psy)) ... | inl (inl x◃Sl) = ⊥-elim (Sn≰n-t (dimA=dimB ^) (⟿dim (psvar Γ++⊢psx) (psvar Γ++⊢psy) (⊢psx-◃→⟿ Γ++⊢psx x◃Sl))) ... | inl (inr Sl◃x) = ⊥-elim (Sn≰n-t (dimA=dimB) (⟿dim (psvar Γ++⊢psy) (psvar Γ++⊢psx) (⊢psx-◃→⟿ Γ++⊢psy Sl◃x))) ... | inr idp = idp Γ⊢psx-dim Γ++⊢psx@(pse _ idp idp idp idp idp) Γ++⊢psy@(psd _) dimA=dimB with psx-◃-linear→ Γ++⊢psx _ _ (Γ⊢x:A→x∈Γ (psvar Γ++⊢psx)) (Γ⊢x:A→x∈Γ (psvar Γ++⊢psy)) ... | inl (inl Sl◃y) = ⊥-elim (Sn≰n-t (dimA=dimB ^) (⟿dim (psvar Γ++⊢psx) (psvar Γ++⊢psy) (⊢psx-◃→⟿ Γ++⊢psx Sl◃y))) ... | inl (inr y◃Sl) = ⊥-elim (Sn≰n-t (dimA=dimB) (⟿dim (psvar Γ++⊢psy) (psvar Γ++⊢psx) (⊢psx-◃→⟿ Γ++⊢psy y◃Sl))) ... | inr idp = idp has-all-paths-⊢psx : ∀ {Γ x A} → has-all-paths (Γ ⊢ps x # A) has-all-paths-⊢psx pss pss = idp has-all-paths-⊢psx (psd a) (psd b) with (Γ⊢psx-dim a b idp) ... | idp with unique-type (psvar a) (psvar b) idp ... | p = psd↓ a b (=Var (snd (fst (=⇒ p)))) (has-all-paths-⊢psx _ _) has-all-paths-⊢psx pss (psd b) with (psvar b) ... | var _ (inl ()) ... | var _ (inr ()) has-all-paths-⊢psx (psd a) pss with (psvar a) ... | var _ (inl ()) ... | var _ (inr ()) has-all-paths-⊢psx (psd a) (pse b idp idp idp idp idp) with (psvar a) ... | var _ (inl (inl contra)) = ⊥-elim (l∉ (psv b) (n≤Sn _) (Γ⊢x:A→x∈Γ (Γ⊢tgt (Γ⊢t:A→Γ⊢A (var (psv b) contra))))) has-all-paths-⊢psx (pse a idp idp idp idp idp) (psd b) with psvar b ... | var _ (inl (inl contra)) = ⊥-elim (l∉ (psv a) (n≤Sn _) (Γ⊢x:A→x∈Γ (Γ⊢tgt (Γ⊢t:A→Γ⊢A (var (psv a) contra))))) has-all-paths-⊢psx (pse a idp idp idp idp idp) (pse b p q r s u) = let eq = =Var (snd (fst (=⇒ r))) in pse↓ a _ _ _ _ _ b _ _ _ _ _ eq (has-all-paths-⊢psx _ _) has-all-paths-⊢ps : ∀ Γ → has-all-paths (Γ ⊢ps) has-all-paths-⊢ps Γ (ps Γ⊢psx₁) (ps Γ⊢psx₂) = ps↓ Γ⊢psx₁ Γ⊢psx₂ (Γ⊢psx-dim Γ⊢psx₁ Γ⊢psx₂ idp) (has-all-paths-⊢psx _ _) is-prop-⊢ps : ∀ Γ → is-prop (Γ ⊢ps) is-prop-⊢ps Γ = has-all-paths-is-prop (has-all-paths-⊢ps Γ) eqdec-ps : eqdec ps-ctx eqdec-ps (Γ , Γ⊢ps) (Δ , Δ⊢ps) with eqdec-PreCtx Γ Δ ... | inl idp = inl (Σ= idp (is-prop-has-all-paths (is-prop-⊢ps Γ) _ _)) ... | inr Γ≠Δ = inr λ{idp → Γ≠Δ idp}
export plot!, plot, scatter!, scatter, fill_between!, hist!, hist, bar!, bar, boxplot, heatmap, heatmap_ticks """ plot_data(x) plot_data(x, ys...) I/ Preprocess data for a 2D plot. """ function plot_data( x::AVM{<:CanMiss{<:Real}} )::NamedTuple isempty(x) && throw( ArgumentError("Cannot display empty vectors.") ) hasmissing = Missing <: eltype(x) || any(isinf, x) || any(isnan, x) return ( data = zip(1:size(x, 1), eachcol(x)...), hasmissing = hasmissing, nobj = size(x, 2) ) end # NOTE: these typechecks within the function body is to avoid clashes/ambiguity with plot_data(x) function plot_data( x, ys... )::NamedTuple isempty(x) && throw( ArgumentError("Cannot display empty vectors.") ) x isa AV{<:CanMiss{<:Real}} || throw( ArgumentError("x has un-handled type $(typeof(x))") ) nobj = 0 hasmissing = Missing <: eltype(x) || any(isinf, x) || any(isnan, x) for y ∈ ys y isa AVM{<:CanMiss{<:Real}} || throw( ArgumentError("y has un-handled type $(typeof(y))") ) size(y, 1) == length(x) || throw( DimensionMismatch("y data must match x") ) nobj += size(y, 2) hasmissing |= Missing <: eltype(y) || any(isinf, y) || any(isnan, y) end return ( data = zip(x, (view(y, :, j) for y ∈ ys for j ∈ axes(y, 2))...), hasmissing = hasmissing, nobj = nobj ) end """ fill_data(x, y1, y2) I/ Preprocess data for a Fill2D. """ function fill_data( x::AVR, y1::Union{Real, AVR}, y2::Union{Real,AVR} )::NamedTuple isempty(x) && throw( ArgumentError("Cannot display empty vectors.") ) y1 isa AV || (y1 = fill(y1, length(x))) y2 isa AV || (y2 = fill(y2, length(x))) length(x) == length(y1) == length(y2) ||throw( DimensionMismatch("vectors x,y1,y2 must have matching lengths")) return ( data = zip(x, y1, y2), ) end """ hist_data(x) I/ Preprocess data for a Hist2D. Missing values are allowed but are not counted as observations. """ function hist_data( x::AV{<:CanMiss{<:Real}} )::NamedTuple isempty(x) && throw( ArgumentError("Cannot have a histogram with an empty vector.") ) sx = skipmissing(x) isempty(sx) && throw( ArgumentError("Cannot have a histogram with only missing values") ) return ( data = zip(x), hasmissing = (Missing <: eltype(x)), nobs = sum(e -> 1, sx), range = Float64.(extrema(sx)) ) end ################################################################################# ################################################################################# """ plot!(...) E/ Add a plot. Keyword arguments can be passed to specify the linestyle(s), label(s) and markerstyle(s). ## Example x = range(-2, 2, length=100) y = @. exp(-abs(x)+sin(x)) plot(x, y, color = "blue", lstyle = "--", marker = "o", lwidth = 0.05, label = "First plot" ) """ function plot!( x, ys...; # axes::Option{Axes2D} = nothing, overwrite::Bool = false, o... )::DrawingHandle{<:Scatter2D} # are current axes empty? # -> if so don't do anything as the user may have pre-specified things # like xlim etc and want the plot to appear with those # -> if it's not empty, reset the axes (will destroy xlim settings etc # as it should) axes = check_axes(axes) if overwrite && !all(isempty, (axes.drawings, axes.objects)) reset!(axes; parent=axes.parent) end # Form the scatter object pd = plot_data(x, ys...) scatter = Scatter2D(pd.data, pd.hasmissing, pd.nobj) # Add properties & add scatter to axes set_properties!(scatter; o...) push!(axes.drawings, scatter) return DrawingHandle(scatter) end function plot!( f::Function, from::Real, to::Real; # length::Int = 100, o... ) x = range(from, stop=to, length=length) plot!(x, f.(x); o...) end plot(a...; o...) = plot!(a...; overwrite=true, o...) scatter!(a...; o...) = plot!(a...; ls="none", marker=".", o...) scatter(a...; o...) = scatter!(a...; overwrite=true, o...) """ fill_between!(...) Add a fill plot between two lines. The arguments must not have missings but `y1` and/or `y2` can be specified as single numbers (= horizontal line). """ function fill_between!( x, y1, y2; # axes::Option{Axes2D} = nothing, overwrite::Bool = false, o... )::DrawingHandle{<:Fill2D} axes = check_axes(axes) if overwrite && !all(isempty, (axes.drawings, axes.objects)) reset!(axes; parent=axes.parent) end # form the fill2d object fd = fill_data(x, y1, y2) fill = Fill2D(fd) set_properties!(fill; o...) push!(axes.drawings, fill) return DrawingHandle(fill) end fill_between(a...; o...) = fill_between!(a...; overwrite=true, o...) """ hist!(...) Add a histogram of `x` on the current axes. """ function hist!( x; # axes::Option{Axes2D} = nothing, overwrite::Bool = false, o... )::DrawingHandle{<:Hist2D} axes = check_axes(axes) if overwrite all(isempty, (axes.drawings, axes.objects)) || reset!(axes; parent=axes.parent) end hd = hist_data(x) hist = Hist2D(hd.data, hd.hasmissing, hd.nobs, hd.range) set_properties!(hist; o...) push!(axes.drawings, hist) return DrawingHandle(hist) end hist(a...; o...) = hist!(a...; overwrite=true, o...) #### #### bar!, bar #### """ bar!(...) Add a bar plot. """ function bar!( x, ys...; # axes::Option{Axes2D} = nothing, overwrite::Bool = false, o... )::DrawingHandle{<:Bar2D} axes = check_axes(axes) if overwrite all(isempty, (axes.drawings, axes.objects)) || reset!(axes; parent=axes.parent) end bd = plot_data(x, ys...) bar = Bar2D(bd.data, bd.hasmissing, bd.nobj) set_properties!(bar; o...) push!(axes.drawings, bar) return DrawingHandle(bar) end bar(a...; o...) = bar!(a...; overwrite=true, o...) ################################################################################# ################################################################################# # # Extra drawings that are not meant to be overlaid with anything # else such as boxplot, heatmap, polarplot, pieplot # """ boxplot(...) Erase previous drawings and add a boxplot. Missing values are allowed but not Infinities or Nans. """ function boxplot( ys...; # axes::Option{Axes2D} = nothing, o... )::DrawingHandle{Boxplot} isempty(first(ys)) && throw( ArgumentError("Cannot display empty vectors.") ) # always on fresh axes axes = check_axes(axes) reset!(axes; parent=axes.parent) # setting an empty struct first so that we can exploit the options # the actual data will be provided after analysis nobj = sum(size(y, 2) for y ∈ ys) bp = Boxplot(Matrix{Float64}(undef,0,0), nobj) set_properties!(bp; o...) # analyse data # 6 -> 1:wlow, 2:q25, 3:q50, 4:q75, 5:whigh, 6:mean stats = Matrix{Float64}(undef, nobj, 6) outliers = Vector{Vector{Float64}}(undef, nobj) boxcounter = 1 axmin = Inf axmax = -Inf for y ∈ ys for k ∈ Base.axes(y, 2) yk = collect(skipmissing(view(y, :, k))) if any(isnan, yk) || any(isinf, yk) throw( ArgumentError("Inf or NaN values not allowed in boxplot.") ) end q00, q25, q50, q75, q100 = quantile(yk, [.0, .25, .5, .75, 1.0]) iqr = q75 - q25 mu = mean(yk) wrlength = bp.boxstyles[k].wrlength wlow = q25 - wrlength * iqr whigh = q75 + wrlength * iqr if isinf(wrlength) wlow, whigh = q00, q100 # min/max values end stats[k, :] = [wlow, q25, q50, q75, whigh, mu] # outliers outliers[k] = filter(e->(e<wlow || whigh<e), yk) # Keep track of extremes to set axis limits afterwards axmin_ = min(q00, wlow) axmin_ -= 0.5abs(axmin_) axmin_ < axmin && (axmin = axmin_) axmax_ = max(q100, whigh) axmax_ += 0.5abs(axmax_) axmax_ > axmax && (axmax = axmax_) boxcounter += 1 end end # bp.stats = stats push!(axes.drawings, bp) if bp.horiz # horizontal boxplot ylim(0, nobj+1) yticks(1:nobj) xlim(axmin, axmax) for k ∈ 1:nobj bp.boxstyles[k].oshow || continue nok = length(outliers[k]) s = bp.boxstyles[k].omstyle # style of outliers if nok > 0 scatter!(outliers[k], fill(k, nok); marker=s.marker, msize=s.msize, mcol=s.color) end end else # vertical boxplot xlim(0, nobj+1) xticks(1:nobj) ylim(axmin, axmax) for k ∈ 1:nobj bp.boxstyles[k].oshow || continue nok = length(outliers[k]) s = bp.boxstyles[k].omstyle # style of outliers if nok > 0 scatter!(fill(k, nok), outliers[k]; marker=s.marker, msize=s.msize, mcol=s.color) end end end return DrawingHandle(bp) end """ heatmap_ticks(ax) Returns ticks position centered appropriately for a heatmap. ### Example heatmap(randn(2, 2)) xticks(heatmap_ticks("x"), ["var1", "var2"]; angle=45) """ function heatmap_ticks( ax::String, axes::Axes2D )::Vector{F64} # it must necessarily be the first object since heatmap resets the axes (isempty(axes.drawings) || !(axes.drawings[1] isa Heatmap)) && throw( ArgumentError("No heatmap found.") ) nrows, ncols = size(axes.drawings[1].data) ax_lc = lowercase(ax) ax_lc ∈ ["x", "x2"] && return (collect(0:(ncols-1)) .+ 0.5) ./ ncols ax_lc ∈ ["y", "y2"] && return (collect((nrows-1):-1:0) .+ 0.5) ./ nrows throw( ArgumentError(""" Unrecognised ax descriptor expected one of [x, x2, y, y2]. """ ) ) end heatmap_ticks(ax::String) = heatmap_ticks(ax, gca()) """ heatmap(X; opts...) Creates a heatmap corresponding to matrix `X`. Doing this with matrices larger than 100x100 with the GLE backend can be slow. As an indication, 500x500 takes about 15-20 seconds on a standard laptop. Time scales with the number of elements with, as a rough order of magnitude, around 10k elements per second. You can provide ticks using `xticks(heatmap_ticks("x"), ["tick1", ...]; o...)`. See also `heatmap_ticks`. Note: handles missing values but not NaN or Inf. """ function heatmap( data::Matrix{<:CanMiss{Real}}; # axes::Option{Axes2D} = nothing, o... )::DrawingHandle{Heatmap} nrows, ncols = size(data) min(nrows, ncols) <= 1000 || throw( ArgumentError( """ The matrix is too large to be displayed as a heatmap. """ ) ) # always on fresh axes axes = check_axes(axes) reset!(axes; parent=axes.parent) zmin, zmax = extrema(skipmissing(data)) h = Heatmap(data=Matrix{Int}(undef, 0, 0), zmin=zmin, zmax=zmax) h.transpose = (nrows < ncols) set_properties!(h; o...) push!(axes.drawings, h) ncolors = length(h.cmap) minv, maxv = extrema(skipmissing(data)) incr = (maxv - minv) / ncolors data2 = Matrix{Int}(undef, nrows, ncols) if iszero(incr) data2 .= ceil(ncols/2) else @inbounds for i=1:nrows, j=1:ncols dij = data[i,j] if ismissing(dij) data2[i,j] = ncolors + 1 # offset doesn't matter, anything ≥ 1 is fine else data2[i,j] = ceil(Integer, (dij - minv) / incr) end end end # NOTE: there may be a few 0 (min values), will be treated as 1 see add_sub_heatmap! # store the color assignments h.data = data2 # set axis xlim(0,1); ylim(0,1) # add labels if provided to the heatmap object xplaces = heatmap_ticks("x") yplaces = heatmap_ticks("y") # used for sparse labelling in case ncols > 20 stepx = (ncols<=50)*10 + (50<ncols<=200)*50 + (200<ncols)*100 lastx = ncols - mod(ncols, stepx) + 1 maskx = collect(1:stepx:lastx) .- 1 maskx[1] = 1 stepy = (nrows<=50)*10 + (50<nrows<=200)*50 + (200<nrows)*100 lasty = nrows - mod(nrows, stepy) + 1 masky = collect(1:stepy:lasty) .- 1 masky[1] = 1 if ncols <= 20 xticks(xplaces, ["$i" for i ∈ 1:ncols]; axes=axes, fontsize=12) else xticks(xplaces[maskx], ["$i" for i ∈ maskx]; axes=axes, fontsize=12) end if nrows <= 20 yticks(yplaces, ["$i" for i ∈ 1:nrows]; axes=axes, fontsize=12) else yticks(yplaces[masky], ["$i" for i ∈ masky]; axes=axes, fontsize=12) end x2ticks("off") y2ticks("off") return DrawingHandle(h) end
subroutine runP_iiii(k,i1,i2,i3,i4,f,Gr,Shat5,N0) implicit none include 'pvDnames.f' include 'pvDv.f' include 'Darraydef.f' include 'Darrays.f' integer ep,N0,k,i1,i2,i3,i4,np parameter(np=3) double precision f(np),Gr(np,np) double complex Shat5(np,z4max,-2:0) do ep=-2,0 Dv(diiii(z4(i1,i2,i3,i4))+N0,ep)= . (Shat5(k,z4(i1,i2,i3,i4),ep) . -2d0*delta(k,i1)*Dv(dzziii(z3(i2,i3,i4))+N0,ep) . -2d0*delta(k,i2)*Dv(dzziii(z3(i1,i3,i4))+N0,ep) . -2d0*delta(k,i3)*Dv(dzziii(z3(i1,i2,i4))+N0,ep) . -2d0*delta(k,i4)*Dv(dzziii(z3(i1,i2,i3))+N0,ep) . -Gr(k,1)*Dv(diiiii(z5(1,i1,i2,i3,i4))+N0,ep) . -Gr(k,2)*Dv(diiiii(z5(2,i1,i2,i3,i4))+N0,ep) . -Gr(k,3)*Dv(diiiii(z5(3,i1,i2,i3,i4))+N0,ep))/f(k) enddo return end
variables {α : Type*} (P : α → Prop) /- Tactics you may consider -intro -exact -apply -by_contra -/ example (h : ¬ ∃ x, P x) : ∀ x, ¬ P x := begin intro x, by_contra h', exact h ⟨x, h'⟩, end example (h : ∀ x, ¬ P x) : ¬ ∃ x, P x := begin intro h, cases h with x p, exact h x p, end example (h : ¬ ∀ x, P x) : ∃ x, ¬ P x := begin by_contra h', apply h, intro x, show P x, by_contra h'', exact h' ⟨x, h''⟩, end example (h : ∃ x, ¬ P x) : ¬ ∀ x, P x := begin intro h', cases h with x np, exact np (h' x), end
example (p q : ℕ → Prop) : (∃ x, p x) → ∃ x, p x ∨ q x := begin intro h, cases h with x hpx, existsi x, left, exact hpx end
theory Presimplified_Semantics_Manual2 imports reassembly_all.Presimplified_Semantics begin (* This file contains instructions for which we unecessarily use manual semantics For each of these instructions, we need to add the learned semantics to the strata_rules_5flags file, and prove two theorems in Presimplified_Semantics.thy: one that is_manual returns False, and one that provides semantics. Keeping it out of a heap for now so it's easy to change. *) context presimplified_semantics begin subsection div lemma is_manual_div_r64[is_manual]: (* TODO: To be merged *) shows \<open>is_manual assembly semantics (Unary (IS_8088 Div) (Storage (Reg (General SixtyFour r64)))) = True\<close> by (auto simp add: is_manual_def Let'_def simp_rules unfold_semantics) schematic_goal get_semantics_div_r64[presimplify]: (* TODO: To be merged *) shows \<open>get_semantics \<alpha> semantics (Unary (IS_8088 Div) (Storage (Reg (General SixtyFour r64)))) si = ?x\<close> apply (rule ext) apply (subst get_semantics_def) apply (subst unfold_semantics) apply (auto simp add: Let'_def simp_rules) done section Mul lemma is_manual_mul_m32[is_manual]: (* TODO: To be merged *) shows \<open>is_manual assembly semantics (Unary (IS_8088 Mul) (Storage (Memory 32 Mem))) = True\<close> by (auto simp add: is_manual_def Let'_def simp_rules unfold_semantics) schematic_goal get_semantics_mul_m32[presimplify]: (* TODO: To be merged *) shows \<open>get_semantics \<alpha> semantics (Unary (IS_8088 Mul) (Storage (Memory 32 Mem))) si = ?x\<close> apply (rule ext) apply (subst get_semantics_def) apply (subst unfold_semantics) apply (auto simp add: Let'_def simp_rules) done subsection add lemma is_manual_add_m32_r32[is_manual]: (* TODO: To be merged *) shows \<open>is_manual assembly semantics (Binary (IS_8088 Add) (Memory 32 Mem) (Storage (Reg (General ThirtyTwo r32)))) = True\<close> by (auto simp add: is_manual_def Let'_def simp_rules unfold_semantics) schematic_goal get_semantics_add_m32_r32[presimplify]: (* TODO: To be merged *) shows \<open>get_semantics \<alpha> semantics (Binary (IS_8088 Add) (Memory 32 Mem) (Storage (Reg (General ThirtyTwo r32)))) si = ?x\<close> apply (rule ext) apply (subst get_semantics_def) apply (subst unfold_semantics) apply (auto simp add: Let'_def simp_rules) done subsection sub lemma is_manual_sub_r16_m16[is_manual]: (* TODO: To be merged *) shows \<open>is_manual assembly semantics (Binary (IS_8088 Sub) (Reg (General Sixteen rx)) (Storage (Memory 16 Mem))) = True\<close> by (auto simp add: is_manual_def Let'_def simp_rules unfold_semantics) schematic_goal get_semantics_sub_r16_m16[presimplify]: (* TODO: To be merged *) shows \<open>get_semantics \<alpha> semantics (Binary (IS_8088 Sub) (Reg (General Sixteen rx)) (Storage (Memory 16 Mem))) si = ?x\<close> apply (rule ext) apply (subst get_semantics_def) apply (subst unfold_semantics) apply (auto simp add: Let'_def simp_rules) done lemma is_manual_sub_r64_m64[is_manual]: (* TODO: To be merged *) shows \<open>is_manual assembly semantics (Binary (IS_8088 Sub) (Reg (General SixtyFour r64)) (Storage (Memory 64 Mem))) = True\<close> by (auto simp add: is_manual_def Let'_def simp_rules unfold_semantics) schematic_goal get_semantics_sub_r64_m64[presimplify]: (* TODO: To be merged *) shows \<open>get_semantics \<alpha> semantics (Binary (IS_8088 Sub) (Reg (General SixtyFour r64)) (Storage (Memory 64 Mem))) si = ?x\<close> apply (rule ext) apply (subst get_semantics_def) apply (subst unfold_semantics) apply (auto simp add: Let'_def simp_rules) done subsection cmp lemma is_manual_cmp_m64_r64[is_manual]: shows "is_manual assembly semantics (Binary (IS_8088 Cmp) (Memory 64 a) (Storage (Reg (General SixtyFour r64)))) = True" by (auto simp add: is_manual_def Let'_def simp_rules unfold_semantics) schematic_goal get_semantics_cmp_m64_r64[presimplify]: shows "get_semantics \<alpha> semantics (Binary (IS_8088 Cmp) (Memory 64 a) (Storage (Reg (General SixtyFour r64)))) si = ?x" apply (rule ext) apply (subst get_semantics_def) apply (subst unfold_semantics) apply (auto simp add: Let'_def simp_rules) done lemma is_manual_cmp_r64_m64[is_manual]: (* TODO: To be merged *) shows \<open>is_manual assembly semantics (Binary (IS_8088 Cmp) (Reg (General SixtyFour r64)) (Storage (Memory 64 a))) = True\<close> by (auto simp add: is_manual_def Let'_def simp_rules unfold_semantics) schematic_goal get_semantics_cmp_r64_m64[presimplify]: (* TODO: To be merged *) shows \<open>get_semantics \<alpha> semantics (Binary (IS_8088 Cmp) (Reg (General SixtyFour r64)) (Storage (Memory 64 a))) si = ?x\<close> apply (rule ext) apply (subst get_semantics_def) apply (subst unfold_semantics) apply (auto simp add: Let'_def simp_rules) done lemma is_manual_cmp_r8_r8[is_manual]: (* TODO: To be merged *) \<open>is_manual assembly semantics (Binary (IS_8088 Cmp) (Reg (General EightLow r1)) (Storage (Reg (General EightLow r2)))) = True\<close> by (auto simp add: is_manual_def Let'_def simp_rules unfold_semantics) schematic_goal get_semantics_cmp_r8_r8[presimplify]: (* TODO: To be merged *) \<open>get_semantics \<alpha> semantics (Binary (IS_8088 Cmp) (Reg (General EightLow r1)) (Storage (Reg (General EightLow r2)))) si = ?x\<close> apply (rule ext) apply (subst get_semantics_def) apply (subst unfold_semantics) apply (auto simp add: Let'_def simp_rules) done lemma is_manual_cmp_r16_r16[is_manual]: (* TODO: To be merged *) \<open>is_manual assembly semantics (Binary (IS_8088 Cmp) (Reg (General Sixteen r1)) (Storage (Reg (General Sixteen r2)))) = True\<close> by (auto simp add: is_manual_def Let'_def simp_rules unfold_semantics) schematic_goal get_semantics_cmp_r16_r16[presimplify]: (* TODO: To be merged *) \<open>get_semantics \<alpha> semantics (Binary (IS_8088 Cmp) (Reg (General Sixteen r1)) (Storage (Reg (General Sixteen r2)))) si = ?x\<close> apply (rule ext) apply (subst get_semantics_def) apply (subst unfold_semantics) apply (auto simp add: Let'_def simp_rules) done lemma is_manual_cmp_r64_r64[is_manual]: (* TODO: To be merged *) \<open>is_manual assembly semantics (Binary (IS_8088 Cmp) (Reg (General SixtyFour r1)) (Storage (Reg (General SixtyFour r2)))) = True\<close> by (auto simp add: is_manual_def Let'_def simp_rules unfold_semantics) schematic_goal get_semantics_cmp_r64_r64[presimplify]: (* TODO: To be merged *) \<open>get_semantics \<alpha> semantics (Binary (IS_8088 Cmp) (Reg (General SixtyFour r1)) (Storage (Reg (General SixtyFour r64)))) si = ?x\<close> apply (rule ext) apply (subst get_semantics_def) apply (subst unfold_semantics) apply (auto simp add: Let'_def simp_rules) done subsection mov lemma is_manual_mov_r32_immLabel[is_manual]: shows "is_manual assembly semantics (Binary (IS_8088 Mov) (Reg (General ThirtyTwo r1_32)) (Immediate (ImmLabel imm))) = True" by (auto simp add: is_manual_def Let'_def simp_rules unfold_semantics) schematic_goal get_semantics_mov_r32_immLabel[presimplify]: shows "get_semantics \<alpha> semantics (Binary (IS_8088 Mov) (Reg (General ThirtyTwo r1_32)) (Immediate (ImmLabel Imm))) si = ?x" apply (rule ext) apply (subst get_semantics_def) apply (subst unfold_semantics) apply (auto simp add: Let'_def simp_rules ) done lemma is_manual_movq_xmm_m64[is_manual]: (* TODO: to be merged (and then replaced once we have presimplified semantics) *) shows \<open>is_manual assembly semantics (Binary (IS_PentiumMMX_MMX Movq) (Reg (SSE a b c d)) (Storage (Memory 64 m))) = True\<close> by (auto simp add: is_manual_def Let'_def simp_rules unfold_semantics) schematic_goal get_semantics_movq_xmm_m64[presimplify]: (* TODO: to be merged (and then replaced once we have presimplified semantics) *) shows \<open>get_semantics \<alpha> semantics (Binary (IS_PentiumMMX_MMX Movq) (Reg (SSE a b c d)) (Storage (Memory 64 m))) si = ?x\<close> apply (rule ext) apply (subst get_semantics_def) apply (subst unfold_semantics) apply (auto simp add: Let'_def simp_rules) done lemma is_manual_movups_m128_xmm[is_manual]: (* TODO: to be merged (and then replaced once we have presimplified semantics) *) shows \<open>is_manual assembly semantics (Binary (IS_SSE_SIMD Movups) (Memory 128 Mem) (Storage (Reg (SSE a b c d)))) = True\<close> by (auto simp add: is_manual_def Let'_def simp_rules unfold_semantics) schematic_goal get_semantics_movups_m128_xmm[presimplify]: (* TODO: to be merged (and then replaced once we have presimplified semantics) *) shows \<open>get_semantics \<alpha> semantics (Binary (IS_SSE_SIMD Movups) (Memory 128 Mem) (Storage (Reg (SSE a b c d)))) si = ?x\<close> apply (rule ext) apply (subst get_semantics_def) apply (subst unfold_semantics) apply (auto simp add: Let'_def simp_rules) done subsection Jumps lemma is_manual_Js[is_manual]: (* TODO: To be merged *) shows \<open>is_manual assembly semantics (Unary (IS_8088 Js) label) = True\<close> by (auto simp add: is_manual_def Let'_def simp_rules unfold_semantics) schematic_goal get_semantics_Js[presimplify]: (* TODO: To be merged *) shows \<open>get_semantics assembly semantics (Unary (IS_8088 Js) label) = ?x\<close> apply (rule ext) apply (subst get_semantics_def) apply (subst unfold_semantics) apply (auto simp add: Let'_def simp_rules) done lemma is_manual_Jns[is_manual]: (* TODO: To be merged *) shows \<open>is_manual assembly semantics (Unary (IS_8088 Jns) label) = True\<close> by (auto simp add: is_manual_def Let'_def simp_rules unfold_semantics) schematic_goal get_semantics_Jns[presimplify]: (* TODO: To be merged *) shows \<open>get_semantics assembly semantics (Unary (IS_8088 Jns) label) = ?x\<close> apply (rule ext) apply (subst get_semantics_def) apply (subst unfold_semantics) apply (auto simp add: Let'_def simp_rules) done lemma is_manual_Jl[is_manual]: (* TODO: To be merged *) shows \<open>is_manual assembly semantics (Unary (IS_8088 Jl) label) = True\<close> by (auto simp add: is_manual_def Let'_def simp_rules unfold_semantics) schematic_goal get_semantics_Jl[presimplify]: (* TODO: To be merged *) shows \<open>get_semantics assembly semantics (Unary (IS_8088 Jl) label) = ?x\<close> apply (rule ext) apply (subst get_semantics_def) apply (subst unfold_semantics) apply (auto simp add: Let'_def simp_rules) done lemma is_manual_Jg[is_manual]: (* TODO: To be merged *) shows \<open>is_manual assembly semantics (Unary (IS_8088 Jg) label) = True\<close> by (auto simp add: is_manual_def Let'_def simp_rules unfold_semantics) schematic_goal get_semantics_Jg[presimplify]: (* TODO: To be merged *) shows \<open>get_semantics assembly semantics (Unary (IS_8088 Jg) label) = ?x\<close> apply (rule ext) apply (subst get_semantics_def) apply (subst unfold_semantics) apply (auto simp add: Let'_def simp_rules) done section Misc lemma is_manual_movsd_m64_xmm[is_manual]: shows "is_manual assembly semantics (Binary (IS_SSE2_SIMD Movsd) (Memory 64 Mem) (Storage (Reg (SSE r0 r1 r2 r3)))) = True" by (auto simp add: is_manual_def Let'_def simp_rules unfold_semantics) schematic_goal get_semantics_movsd_m64_xmm[presimplify]: shows "get_semantics \<alpha> semantics (Binary (IS_SSE2_SIMD Movsd) (Memory 64 Mem) (Storage (Reg (SSE r0 r1 r2 r3)))) si = ?x" apply (rule ext) apply (subst get_semantics_def) apply (subst unfold_semantics) apply (auto simp add: Let'_def simp_rules ) done lemma is_manual_ucomisd_xmm_m64[is_manual]: shows "is_manual assembly semantics (Binary (IS_SSE2_SIMD Ucomisd) (Reg (SSE r0 r1 r2 r3)) (Storage (Memory 64 Mem))) = True" by (auto simp add: is_manual_def Let'_def simp_rules unfold_semantics) schematic_goal get_semantics_ucomisd_xmm_m64[presimplify]: shows "get_semantics \<alpha> semantics (Binary (IS_SSE2_SIMD Ucomisd) (Reg (SSE r0 r1 r2 r3)) (Storage (Memory 64 Mem))) si = ?x" apply (rule ext) apply (subst get_semantics_def) apply (subst unfold_semantics) apply (auto simp add: Let'_def simp_rules ) done lemma is_manual_ucomisd_cvttsd2si_r32_xmm[is_manual]: shows "is_manual assembly semantics (Binary (IS_SSE2_SIMD Cvttsd2si) (Reg (General ThirtyTwo r4)) (Storage (Reg (SSE r0 r1 r2 r3)))) = False" by (auto simp add: is_manual_def Let'_def simp_rules unfold_semantics) lemma get_semantics_cvttsd2si_r32_xmm[presimplify]: shows "get_semantics \<alpha> semantics (Binary (IS_SSE2_SIMD Cvttsd2si) (Reg (General ThirtyTwo r4)) (Storage (Reg (SSE r0 r1 r2 r3)))) si = (\<lambda> \<sigma> . \<sigma>\<lparr> regs := (regs \<sigma>)(r4 := ucast (cvttsd2si (regs \<sigma> r3)))\<rparr>)" apply (rule ext) apply (subst get_semantics_def) apply (rewrite_one_let') apply (rewrite_one_let' add: semantics_def) apply (rewrite_one_let')+ by (simp add: simp_rules) lemma is_manual_pause[is_manual]: (* TODO: To be merged *) shows \<open>is_manual assembly semantics (Nullary (IS_SSE2 Pause)) = True\<close> by (auto simp add: is_manual_def Let'_def simp_rules unfold_semantics) schematic_goal get_semantics_pause[presimplify]: (* TODO: To be merged *) shows \<open>get_semantics assembly semantics (Nullary (IS_SSE2 Pause)) = ?x\<close> apply (rule ext) apply (subst get_semantics_def) apply (subst unfold_semantics) apply (auto simp add: Let'_def simp_rules) done lemma simplify_setcc1[simp]: (* TODO: To be merged *) fixes x :: \<open>'a::len word\<close> assumes \<open>LENGTH('a) \<ge> 8\<close> shows \<open>\<langle>7,0\<rangle>((x << 8) OR 1) = (1::64 word)\<close> using assms by (intro word_eqI) (auto simp: word_size test_bit_of_take_bits word_ao_nth nth_shiftl) lemma simplify_setcc0[simp]: (* TODO: To be merged *) fixes x :: \<open>'a::len word\<close> assumes \<open>LENGTH('a) \<ge> 8\<close> shows \<open>\<langle>7,0\<rangle>(x << 8) = (0::64 word)\<close> using assms by (intro word_eqI) (auto simp: word_size test_bit_of_take_bits nth_shiftl) lemma is_manual_Sar[is_manual]: shows "is_manual assembly semantics (Binary (IS_8088 Sar) op1 op2) = True" by (auto simp add: is_manual_def Let'_def simp_rules unfold_semantics) schematic_goal get_semantics_Sar[presimplify]: shows "get_semantics \<alpha> semantics (Binary (IS_8088 Sar) op1 op2) si = ?x" apply (rule ext) apply (subst get_semantics_def) apply (subst unfold_semantics) apply (auto simp add: Let'_def simp_rules ) done lemma is_manual_test_r8_r8[is_manual]: (* TODO: to be merged (until presimplification for the learned semantics are done) *) shows \<open>is_manual assembly semantics (Binary (IS_8088 Test) (Reg (General EightLow r1)) (Storage (Reg (General EightLow r2)))) = True\<close> by (auto simp add: is_manual_def Let'_def simp_rules unfold_semantics) schematic_goal get_semantics_test_r8_r8[presimplify]: (* TODO: to be merged (until presimplification for the learned semantics are done) *) shows \<open>get_semantics \<alpha> semantics (Binary (IS_8088 Test) (Reg (General EightLow r1)) (Storage (Reg (General EightLow r2)))) si = ?x\<close> apply (rule ext) apply (subst get_semantics_def) apply (subst unfold_semantics) apply (auto simp add: Let'_def simp_rules) done lemma is_manual_punpcklqdq_xmm_xmm[is_manual]: (* TODO: to be merged (until presimplification for the learned semantics are done) *) shows \<open>is_manual assembly semantics (Binary (IS_SSE2_SIMD Punpcklqdq) (Reg (SSE r1_3 r1_2 r1_1 r1_0)) (Storage (Reg (SSE r2_3 r2_2 r2_1 r2_0)))) = True\<close> by (auto simp add: is_manual_def Let'_def simp_rules unfold_semantics) schematic_goal get_semantics_punpcklqdq_xmm_xmm[presimplify]: (* TODO: to be merged (until presimplification for the learned semantics are done) *) \<open>get_semantics \<alpha> semantics (Binary (IS_SSE2_SIMD Punpcklqdq) (Reg (SSE r1_3 r1_2 r1_1 r1_0)) (Storage (Reg (SSE r2_3 r2_2 r2_1 r2_0)))) si = ?x\<close> apply (rule ext) apply (subst get_semantics_def) apply (subst unfold_semantics) apply (auto simp add: Let'_def simp_rules) done end end
{-# language ScopedTypeVariables #-} module Main (main) where import Test.QuickCheck.Classes import Test.QuickCheck (Arbitrary(..)) import Data.Complex (Complex(..)) import GHC.Fingerprint (Fingerprint(..)) import GHC.Real (Ratio(..)) import Data.Proxy (Proxy(..)) import Data.Primitive.Instances () main :: IO () main = lawsCheckMany [ ("Complex Double", [primLaws (Proxy :: Proxy (Complex Double))]) , ("Ratio Double", [primLaws (Proxy :: Proxy (Ratio Int))]) , ("Fingerprint", [primLaws (Proxy :: Proxy Fingerprint)]) ] instance Arbitrary Fingerprint where arbitrary = Fingerprint <$> arbitrary <*> arbitrary
/- Copyright (c) 2019 Kenny Lau. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Kenny Lau -/ import algebra.algebra.basic /-! # Multiplication and division of submodules of an algebra. An interface for multiplication and division of sub-R-modules of an R-algebra A is developed. ## Main definitions Let `R` be a commutative ring (or semiring) and aet `A` be an `R`-algebra. * `1 : submodule R A` : the R-submodule R of the R-algebra A * `has_mul (submodule R A)` : multiplication of two sub-R-modules M and N of A is defined to be the smallest submodule containing all the products `m * n`. * `has_div (submodule R A)` : `I / J` is defined to be the submodule consisting of all `a : A` such that `a • J ⊆ I` It is proved that `submodule R A` is a semiring, and also an algebra over `set A`. ## Tags multiplication of submodules, division of subodules, submodule semiring -/ universes u v open algebra set namespace submodule variables {R : Type u} [comm_semiring R] section ring variables {A : Type v} [semiring A] [algebra R A] variables (S T : set A) {M N P Q : submodule R A} {m n : A} /-- `1 : submodule R A` is the submodule R of A. -/ instance : has_one (submodule R A) := ⟨submodule.map (of_id R A).to_linear_map (⊤ : submodule R R)⟩ theorem one_eq_map_top : (1 : submodule R A) = submodule.map (of_id R A).to_linear_map (⊤ : submodule R R) := rfl theorem one_eq_span : (1 : submodule R A) = R ∙ 1 := begin apply submodule.ext, intro a, erw [mem_map, mem_span_singleton], apply exists_congr, intro r, simpa [smul_def], end theorem one_le : (1 : submodule R A) ≤ P ↔ (1 : A) ∈ P := by simpa only [one_eq_span, span_le, set.singleton_subset_iff] /-- Multiplication of sub-R-modules of an R-algebra A. The submodule `M * N` is the smallest R-submodule of `A` containing the elements `m * n` for `m ∈ M` and `n ∈ N`. -/ instance : has_mul (submodule R A) := ⟨λ M N, ⨆ s : M, N.map $ algebra.lmul R A s.1⟩ theorem mul_mem_mul (hm : m ∈ M) (hn : n ∈ N) : m * n ∈ M * N := (le_supr _ ⟨m, hm⟩ : _ ≤ M * N) ⟨n, hn, rfl⟩ theorem mul_le : M * N ≤ P ↔ ∀ (m ∈ M) (n ∈ N), m * n ∈ P := ⟨λ H m hm n hn, H $ mul_mem_mul hm hn, λ H, supr_le $ λ ⟨m, hm⟩, map_le_iff_le_comap.2 $ λ n hn, H m hm n hn⟩ @[elab_as_eliminator] protected theorem mul_induction_on {C : A → Prop} {r : A} (hr : r ∈ M * N) (hm : ∀ (m ∈ M) (n ∈ N), C (m * n)) (h0 : C 0) (ha : ∀ x y, C x → C y → C (x + y)) (hs : ∀ (r : R) x, C x → C (r • x)) : C r := (@mul_le _ _ _ _ _ _ _ ⟨C, h0, ha, hs⟩).2 hm hr variables R theorem span_mul_span : span R S * span R T = span R (S * T) := begin apply le_antisymm, { rw mul_le, intros a ha b hb, apply span_induction ha, work_on_goal 0 { intros, apply span_induction hb, work_on_goal 0 { intros, exact subset_span ⟨_, _, ‹_›, ‹_›, rfl⟩ } }, all_goals { intros, simp only [mul_zero, zero_mul, zero_mem, left_distrib, right_distrib, mul_smul_comm, smul_mul_assoc], try {apply add_mem _ _ _}, try {apply smul_mem _ _ _} }, assumption' }, { rw span_le, rintros _ ⟨a, b, ha, hb, rfl⟩, exact mul_mem_mul (subset_span ha) (subset_span hb) } end variables {R} variables (M N P Q) protected theorem mul_assoc : (M * N) * P = M * (N * P) := le_antisymm (mul_le.2 $ λ mn hmn p hp, suffices M * N ≤ (M * (N * P)).comap (algebra.lmul_right R p), from this hmn, mul_le.2 $ λ m hm n hn, show m * n * p ∈ M * (N * P), from (mul_assoc m n p).symm ▸ mul_mem_mul hm (mul_mem_mul hn hp)) (mul_le.2 $ λ m hm np hnp, suffices N * P ≤ (M * N * P).comap (algebra.lmul_left R m), from this hnp, mul_le.2 $ λ n hn p hp, show m * (n * p) ∈ M * N * P, from mul_assoc m n p ▸ mul_mem_mul (mul_mem_mul hm hn) hp) @[simp] theorem mul_bot : M * ⊥ = ⊥ := eq_bot_iff.2 $ mul_le.2 $ λ m hm n hn, by rw [submodule.mem_bot] at hn ⊢; rw [hn, mul_zero] @[simp] theorem bot_mul : ⊥ * M = ⊥ := eq_bot_iff.2 $ mul_le.2 $ λ m hm n hn, by rw [submodule.mem_bot] at hm ⊢; rw [hm, zero_mul] @[simp] protected theorem one_mul : (1 : submodule R A) * M = M := by { conv_lhs { rw [one_eq_span, ← span_eq M] }, erw [span_mul_span, one_mul, span_eq] } @[simp] protected theorem mul_one : M * 1 = M := by { conv_lhs { rw [one_eq_span, ← span_eq M] }, erw [span_mul_span, mul_one, span_eq] } variables {M N P Q} @[mono] theorem mul_le_mul (hmp : M ≤ P) (hnq : N ≤ Q) : M * N ≤ P * Q := mul_le.2 $ λ m hm n hn, mul_mem_mul (hmp hm) (hnq hn) theorem mul_le_mul_left (h : M ≤ N) : M * P ≤ N * P := mul_le_mul h (le_refl P) theorem mul_le_mul_right (h : N ≤ P) : M * N ≤ M * P := mul_le_mul (le_refl M) h variables (M N P) theorem sup_mul : (M ⊔ N) * P = M * P ⊔ N * P := le_antisymm (mul_le.2 $ λ mn hmn p hp, let ⟨m, hm, n, hn, hmn⟩ := mem_sup.1 hmn in mem_sup.2 ⟨_, mul_mem_mul hm hp, _, mul_mem_mul hn hp, hmn ▸ (add_mul m n p).symm⟩) (sup_le (mul_le_mul_left le_sup_left) (mul_le_mul_left le_sup_right)) lemma mul_subset_mul : (↑M : set A) * (↑N : set A) ⊆ (↑(M * N) : set A) := by { rintros _ ⟨i, j, hi, hj, rfl⟩, exact mul_mem_mul hi hj } lemma map_mul {A'} [semiring A'] [algebra R A'] (f : A →ₐ[R] A') : map f.to_linear_map (M * N) = map f.to_linear_map M * map f.to_linear_map N := calc map f.to_linear_map (M * N) = ⨆ (i : M), (N.map (lmul R A i)).map f.to_linear_map : map_supr _ _ ... = map f.to_linear_map M * map f.to_linear_map N : begin apply congr_arg Sup, ext S, split; rintros ⟨y, hy⟩, { use [f y, mem_map.mpr ⟨y.1, y.2, rfl⟩], refine trans _ hy, ext, simp }, { obtain ⟨y', hy', fy_eq⟩ := mem_map.mp y.2, use [y', hy'], refine trans _ hy, rw f.to_linear_map_apply at fy_eq, ext, simp [fy_eq] } end section decidable_eq open_locale classical lemma mem_span_mul_finite_of_mem_span_mul {S : set A} {S' : set A} {x : A} (hx : x ∈ span R (S * S')) : ∃ (T T' : finset A), ↑T ⊆ S ∧ ↑T' ⊆ S' ∧ x ∈ span R (T * T' : set A) := begin obtain ⟨U, h, hU⟩ := mem_span_finite_of_mem_span hx, obtain ⟨T, T', hS, hS', h⟩ := finset.subset_mul h, use [T, T', hS, hS'], have h' : (U : set A) ⊆ T * T', { assumption_mod_cast, }, have h'' := span_mono h' hU, assumption, end end decidable_eq lemma mem_span_mul_finite_of_mem_mul {P Q : submodule R A} {x : A} (hx : x ∈ P * Q) : ∃ (T T' : finset A), (T : set A) ⊆ P ∧ (T' : set A) ⊆ Q ∧ x ∈ span R (T * T' : set A) := submodule.mem_span_mul_finite_of_mem_span_mul (by rwa [← submodule.span_eq P, ← submodule.span_eq Q, submodule.span_mul_span] at hx) variables {M N P} /-- Sub-R-modules of an R-algebra form a semiring. -/ instance : semiring (submodule R A) := { one_mul := submodule.one_mul, mul_one := submodule.mul_one, mul_assoc := submodule.mul_assoc, zero_mul := bot_mul, mul_zero := mul_bot, left_distrib := mul_sup, right_distrib := sup_mul, ..submodule.add_comm_monoid_submodule, ..submodule.has_one, ..submodule.has_mul } variables (M) lemma pow_subset_pow {n : ℕ} : (↑M : set A)^n ⊆ ↑(M^n : submodule R A) := begin induction n with n ih, { erw [pow_zero, pow_zero, set.singleton_subset_iff], rw [set_like.mem_coe, ← one_le], exact le_refl _ }, { rw [pow_succ, pow_succ], refine set.subset.trans (set.mul_subset_mul (subset.refl _) ih) _, apply mul_subset_mul } end /-- `span` is a semiring homomorphism (recall multiplication is pointwise multiplication of subsets on either side). -/ def span.ring_hom : set_semiring A →+* submodule R A := { to_fun := submodule.span R, map_zero' := span_empty, map_one' := le_antisymm (span_le.2 $ singleton_subset_iff.2 ⟨1, ⟨⟩, (algebra_map R A).map_one⟩) (map_le_iff_le_comap.2 $ λ r _, mem_span_singleton.2 ⟨r, (algebra_map_eq_smul_one r).symm⟩), map_add' := span_union, map_mul' := λ s t, by erw [span_mul_span, ← image_mul_prod] } end ring section comm_ring variables {A : Type v} [comm_semiring A] [algebra R A] variables {M N : submodule R A} {m n : A} theorem mul_mem_mul_rev (hm : m ∈ M) (hn : n ∈ N) : n * m ∈ M * N := mul_comm m n ▸ mul_mem_mul hm hn variables (M N) protected theorem mul_comm : M * N = N * M := le_antisymm (mul_le.2 $ λ r hrm s hsn, mul_mem_mul_rev hsn hrm) (mul_le.2 $ λ r hrn s hsm, mul_mem_mul_rev hsm hrn) /-- Sub-R-modules of an R-algebra A form a semiring. -/ instance : comm_semiring (submodule R A) := { mul_comm := submodule.mul_comm, .. submodule.semiring } variables (R A) /-- R-submodules of the R-algebra A are a module over `set A`. -/ instance module_set : module (set_semiring A) (submodule R A) := { smul := λ s P, span R s * P, smul_add := λ _ _ _, mul_add _ _ _, add_smul := λ s t P, show span R (s ⊔ t) * P = _, by { erw [span_union, right_distrib] }, mul_smul := λ s t P, show _ = _ * (_ * _), by { rw [← mul_assoc, span_mul_span, ← image_mul_prod] }, one_smul := λ P, show span R {(1 : A)} * P = _, by { conv_lhs {erw ← span_eq P}, erw [span_mul_span, one_mul, span_eq] }, zero_smul := λ P, show span R ∅ * P = ⊥, by erw [span_empty, bot_mul], smul_zero := λ _, mul_bot _ } variables {R A} lemma smul_def {s : set_semiring A} {P : submodule R A} : s • P = span R s * P := rfl lemma smul_le_smul {s t : set_semiring A} {M N : submodule R A} (h₁ : s.down ≤ t.down) (h₂ : M ≤ N) : s • M ≤ t • N := mul_le_mul (span_mono h₁) h₂ lemma smul_singleton (a : A) (M : submodule R A) : ({a} : set A).up • M = M.map (lmul_left _ a) := begin conv_lhs {rw ← span_eq M}, change span _ _ * span _ _ = _, rw [span_mul_span], apply le_antisymm, { rw span_le, rintros _ ⟨b, m, hb, hm, rfl⟩, rw [set_like.mem_coe, mem_map, set.mem_singleton_iff.mp hb], exact ⟨m, hm, rfl⟩ }, { rintros _ ⟨m, hm, rfl⟩, exact subset_span ⟨a, m, set.mem_singleton a, hm, rfl⟩ } end section quotient /-- The elements of `I / J` are the `x` such that `x • J ⊆ I`. In fact, we define `x ∈ I / J` to be `∀ y ∈ J, x * y ∈ I` (see `mem_div_iff_forall_mul_mem`), which is equivalent to `x • J ⊆ I` (see `mem_div_iff_smul_subset`), but nicer to use in proofs. This is the general form of the ideal quotient, traditionally written $I : J$. -/ instance : has_div (submodule R A) := ⟨ λ I J, { carrier := { x | ∀ y ∈ J, x * y ∈ I }, zero_mem' := λ y hy, by { rw zero_mul, apply submodule.zero_mem }, add_mem' := λ a b ha hb y hy, by { rw add_mul, exact submodule.add_mem _ (ha _ hy) (hb _ hy) }, smul_mem' := λ r x hx y hy, by { rw algebra.smul_mul_assoc, exact submodule.smul_mem _ _ (hx _ hy) } } ⟩ lemma mem_div_iff_forall_mul_mem {x : A} {I J : submodule R A} : x ∈ I / J ↔ ∀ y ∈ J, x * y ∈ I := iff.refl _ lemma mem_div_iff_smul_subset {x : A} {I J : submodule R A} : x ∈ I / J ↔ x • (J : set A) ⊆ I := ⟨ λ h y ⟨y', hy', xy'_eq_y⟩, by { rw ← xy'_eq_y, apply h, assumption }, λ h y hy, h (set.smul_mem_smul_set hy) ⟩ lemma le_div_iff {I J K : submodule R A} : I ≤ J / K ↔ ∀ (x ∈ I) (z ∈ K), x * z ∈ J := iff.refl _ lemma le_div_iff_mul_le {I J K : submodule R A} : I ≤ J / K ↔ I * K ≤ J := by rw [le_div_iff, mul_le] @[simp] lemma one_le_one_div {I : submodule R A} : 1 ≤ 1 / I ↔ I ≤ 1 := begin split, all_goals {intro hI}, {rwa [le_div_iff_mul_le, one_mul] at hI}, {rwa [le_div_iff_mul_le, one_mul]}, end lemma le_self_mul_one_div {I : submodule R A} (hI : I ≤ 1) : I ≤ I * (1 / I) := begin rw [← mul_one I] {occs := occurrences.pos [1]}, apply mul_le_mul_right (one_le_one_div.mpr hI), end lemma mul_one_div_le_one {I : submodule R A} : I * (1 / I) ≤ 1 := begin rw submodule.mul_le, intros m hm n hn, rw [submodule.mem_div_iff_forall_mul_mem] at hn, rw mul_comm, exact hn m hm, end @[simp] lemma map_div {B : Type*} [comm_ring B] [algebra R B] (I J : submodule R A) (h : A ≃ₐ[R] B) : (I / J).map h.to_linear_map = I.map h.to_linear_map / J.map h.to_linear_map := begin ext x, simp only [mem_map, mem_div_iff_forall_mul_mem], split, { rintro ⟨x, hx, rfl⟩ _ ⟨y, hy, rfl⟩, exact ⟨x * y, hx _ hy, h.map_mul x y⟩ }, { rintro hx, refine ⟨h.symm x, λ z hz, _, h.apply_symm_apply x⟩, obtain ⟨xz, xz_mem, hxz⟩ := hx (h z) ⟨z, hz, rfl⟩, convert xz_mem, apply h.injective, erw [h.map_mul, h.apply_symm_apply, hxz] } end end quotient end comm_ring end submodule
module Tools.NatUtils %access public export -- Proof of the type that an implication implies its contrapositive impliesContrapositive : (A : Type) -> (B : Type) -> (A -> B) -> (B -> Void) -> (A -> Void) impliesContrapositive typeA typeB proofAimpliesB proofBfalse a = proofBfalse (proofAimpliesB a) -- Proof that S m = S n implies m = n meqnSmeqSn : (m : Nat) -> (n : Nat) -> (S m = S n) -> (m = n) meqnSmeqSn Z Z Refl = Refl meqnSmeqSn (S k) (S k) Refl = Refl -- Proof that m = n implies f(m) = f(n), taken from Lecture.intro (apNat) functionExtendEquality : (f : Nat -> Nat) -> (n : Nat) -> (m : Nat) -> (n = m) -> (f n = f m) functionExtendEquality f m m Refl = Refl -- Proof that m != n implies S m != S n proofSmneqSn : (m : Nat) -> (n : Nat) -> ((m = n) -> Void) -> ((S m = S n) -> Void) proofSmneqSn m n proofmneqn = impliesContrapositive (S m = S n) (m = n) (meqnSmeqSn m n) proofmneqn -- Proof that m<n implies S m = n or S m < n proofLTimplieseqorLT : (m : Nat) -> (n : Nat) -> (LT m n) -> Either (S m = n) (LT (S m) n) proofLTimplieseqorLT Z (S Z) (LTESucc LTEZero) = Left Refl proofLTimplieseqorLT Z (S (S n)) (LTESucc LTEZero) = Right (LTESucc (LTESucc LTEZero)) proofLTimplieseqorLT (S m) (S n) proofSmLTSn = case (proofLTimplieseqorLT m n (fromLteSucc proofSmLTSn)) of (Left proofSmeqn) => Left (functionExtendEquality S (S m) n proofSmeqn) (Right proofSmLTn) => Right (LTESucc proofSmLTn) |||The theorem that (m<=n) and (n<=m) implies n=m lteAndGteImpliesEqual:{m:Nat}-> {n:Nat}->(LTE m n)-> (LTE n m)->(n=m) lteAndGteImpliesEqual LTEZero LTEZero = Refl lteAndGteImpliesEqual (LTESucc x) (LTESucc y) = cong (lteAndGteImpliesEqual x y) |||The theorem (m<=n) implies (m<=(c+n)) plusConstantLeftSide:{m:Nat}->{n:Nat}->(c:Nat)->LTE m n ->LTE m (c+n) plusConstantLeftSide Z x = x plusConstantLeftSide (S k) x = lteSuccRight (plusConstantLeftSide k x) plusConstantLeftPreservesLte:{m:Nat}-> {n:Nat}->(c:Nat)->(LTE m n)->(LTE (c+m) (c+n)) plusConstantLeftPreservesLte Z x = x plusConstantLeftPreservesLte (S k) x = LTESucc (plusConstantLeftPreservesLte k x) plusConstantRightPreservesLte:{m:Nat}-> {n:Nat}->(c:Nat)->(LTE m n)->(LTE (m+c) (n+c)) plusConstantRightPreservesLte {m}{n}c x = rewrite (plusCommutative m c) in (rewrite (plusCommutative n c) in (plusConstantLeftPreservesLte c x)) |||The theorem that for any natural numbers k and m (m<= (S k)*m) natLteMultNatNat: (k:Nat)->(m:Nat)->(LTE m ((S k)*m)) natLteMultNatNat Z m = rewrite (multOneLeftNeutral m) in (lteRefl) natLteMultNatNat (S k) m = plusConstantLeftSide m (natLteMultNatNat k m)
# This function samples k indices from 1:n starting with very dense sampling # (every value) and then getting more and more sparse #' Sampling for qq plots #' #' Returns k indices between 1:max.idx (x) such that -log(x/n) is uniformly #' distributed. This is useful to reduce overplotting when plotting #' log-transformed uniform data (such as p-values in a qq plot). #' #' @examples #' n <- 1e5 #' x <- sort(runif(n)) #' thin.idx <- thin(n, 500) #' par(mfcol=c(1, 2)) #' plot(-log10(1:n/n), -log10(x), ann=FALSE) #' plot(-log10(thin.idx/n), -log10(x[thin.idx]), ann=FALSE) #' #' @export thin <- function(n, k=2000, max.idx=n) { if ( max.idx > n ) max.idx <- n if ( max.idx <= k ) return (1:max.idx) # Generate k samples between 1 and max.idx # such that -log10(x/n) is uniformly distributed x <- round(max.idx*exp(-(k:1)/k*log(n))) # Ensure each x is unique (Equivalently, diff(x) != 0) prev <- 0 offset <- 0 for ( i in 1:k ) { if ( x[i] + offset == prev ) { offset <- offset + 1 } else if ( x[i] + offset > prev + 1 && offset > 0 ) { if ( x[i] > prev ) { offset <- 0 } else { offset <- prev + 1 - x[i] } } prev <- x[i] <- x[i] + offset } x } #' Fast QQ plots #' #' QQ plots with lots of points can be slow. Since most of the points overlap #' we don't actually have to plot all of them (and in most cases the output #' will be identical.) #' #' This function will take a value k (default 2000) and sample that many #' pvalues in an intelligent way such that we don't lose information, then #' plot the log observed vs expected pvals in a nice way. #' #' The optimal value of k depends on the resolution/size of the plot. Very high #' resolution or very large plots may need larger k to look correct. #' #' Additional arguments in ... are passed to plot(). #' #' @export fastqq <- function(pvals, k=2000, ...) { np <- length(pvals) thin.idx <- thin(np, k) thin.cint.95 <- qbeta(0.95, thin.idx, np - thin.idx + 1) thin.cint.05 <- qbeta(0.05, thin.idx, np - thin.idx + 1) thin.logp.exp <- -log10(thin.idx/np) thin.logp.obs <- -log10(pvals[order(pvals)[thin.idx]]) plot(thin.logp.exp, thin.logp.obs, xlab=expression(-log[10](p[expected])), ylab=expression(-log[10](p[observed])), ...) abline(0, 1, col='gray', lty=2) lines(thin.logp.exp, -log10(thin.cint.95), lty=2, col='red') lines(thin.logp.exp, -log10(thin.cint.05), lty=2, col='red') } #' @export thin.qqplot <- function(pvals, thin.idx=NULL, k=2000, ...) { warning('This function is deprecated, use fastqq') fastqq(pvals, k, ...) }
/- Copyright (c) 2022 Jakob von Raumer. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Jakob von Raumer, Kevin Klinge ! This file was ported from Lean 3 source module ring_theory.ore_localization.basic ! leanprover-community/mathlib commit b6da1a0b3e7cd83b1f744c49ce48ef8c6307d2f6 ! Please do not edit these lines, except to modify the commit id ! if you have ported upstream changes. -/ import Mathbin.GroupTheory.MonoidLocalization import Mathbin.RingTheory.NonZeroDivisors import Mathbin.RingTheory.OreLocalization.OreSet import Mathbin.Tactic.NoncommRing /-! # Localization over right Ore sets. > THIS FILE IS SYNCHRONIZED WITH MATHLIB4. > Any changes to this file require a corresponding PR to mathlib4. This file defines the localization of a monoid over a right Ore set and proves its universal mapping property. It then extends the definition and its properties first to semirings and then to rings. We show that in the case of a commutative monoid this definition coincides with the common monoid localization. Finally we show that in a ring without zero divisors, taking the Ore localization at `R - {0}` results in a division ring. ## Notations Introduces the notation `R[S⁻¹]` for the Ore localization of a monoid `R` at a right Ore subset `S`. Also defines a new heterogeneos division notation `r /ₒ s` for a numerator `r : R` and a denominator `s : S`. ## References * <https://ncatlab.org/nlab/show/Ore+localization> * [Zoran Škoda, *Noncommutative localization in noncommutative geometry*][skoda2006] ## Tags localization, Ore, non-commutative -/ universe u open OreLocalization namespace OreLocalization variable (R : Type _) [Monoid R] (S : Submonoid R) [OreSet S] /- warning: ore_localization.ore_eqv -> OreLocalization.oreEqv is a dubious translation: lean 3 declaration is forall (R : Type.{u1}) [_inst_1 : Monoid.{u1} R] (S : Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) [_inst_2 : OreLocalization.OreSet.{u1} R _inst_1 S], Setoid.{succ u1} (Prod.{u1, u1} R (coeSort.{succ u1, succ (succ u1)} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) Type.{u1} (SetLike.hasCoeToSort.{u1, u1} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) R (Submonoid.setLike.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1))) S)) but is expected to have type forall (R : Type.{u1}) [_inst_1 : Monoid.{u1} R] (S : Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) [_inst_2 : OreLocalization.OreSet.{u1} R _inst_1 S], Setoid.{succ u1} (Prod.{u1, u1} R (Subtype.{succ u1} R (fun (x : R) => Membership.mem.{u1, u1} R (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) (SetLike.instMembership.{u1, u1} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) R (Submonoid.instSetLikeSubmonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1))) x S))) Case conversion may be inaccurate. Consider using '#align ore_localization.ore_eqv OreLocalization.oreEqvₓ'. -/ /-- The setoid on `R × S` used for the Ore localization. -/ def oreEqv : Setoid (R × S) where R rs rs' := ∃ (u : S)(v : R), rs'.1 * u = rs.1 * v ∧ (rs'.2 : R) * u = rs.2 * v iseqv := by refine' ⟨_, _, _⟩ · rintro ⟨r, s⟩ use 1 use 1 simp [Submonoid.one_mem] · rintro ⟨r, s⟩ ⟨r', s'⟩ ⟨u, v, hru, hsu⟩ rcases ore_condition (s : R) s' with ⟨r₂, s₂, h₁⟩ rcases ore_condition r₂ u with ⟨r₃, s₃, h₂⟩ have : (s : R) * ((v : R) * r₃) = (s : R) * (s₂ * s₃) := by assoc_rw [h₁, h₂, hsu] symm apply mul_assoc rcases ore_left_cancel (v * r₃) (s₂ * s₃) s this with ⟨w, hw⟩ use s₂ * s₃ * w use u * r₃ * w constructor <;> simp only [Submonoid.coe_mul] · assoc_rw [hru, ← hw] simp [mul_assoc] · assoc_rw [hsu, ← hw] simp [mul_assoc] · rintro ⟨r₁, s₁⟩ ⟨r₂, s₂⟩ ⟨r₃, s₃⟩ ⟨u, v, hur₁, hs₁u⟩ ⟨u', v', hur₂, hs₂u⟩ rcases ore_condition v' u with ⟨r', s', h⟩ use u' * s' use v * r' constructor <;> simp only [Submonoid.coe_mul] · assoc_rw [hur₂, h, hur₁, mul_assoc] · assoc_rw [hs₂u, h, hs₁u, mul_assoc] #align ore_localization.ore_eqv OreLocalization.oreEqv end OreLocalization #print OreLocalization /- /-- The ore localization of a monoid and a submonoid fulfilling the ore condition. -/ def OreLocalization (R : Type _) [Monoid R] (S : Submonoid R) [OreSet S] := Quotient (OreLocalization.oreEqv R S) #align ore_localization OreLocalization -/ namespace OreLocalization section Monoid variable {R : Type _} [Monoid R] {S : Submonoid R} variable (R S) [OreSet S] -- mathport name: «expr [ ⁻¹]» notation:1075 R "[" S "⁻¹]" => OreLocalization R S attribute [local instance] ore_eqv variable {R S} /- warning: ore_localization.ore_div -> OreLocalization.oreDiv is a dubious translation: lean 3 declaration is forall {R : Type.{u1}} [_inst_1 : Monoid.{u1} R] {S : Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)} [_inst_2 : OreLocalization.OreSet.{u1} R _inst_1 S], R -> (coeSort.{succ u1, succ (succ u1)} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) Type.{u1} (SetLike.hasCoeToSort.{u1, u1} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) R (Submonoid.setLike.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1))) S) -> (OreLocalization.{u1} R _inst_1 S _inst_2) but is expected to have type forall {R : Type.{u1}} [_inst_1 : Monoid.{u1} R] {S : Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)} [_inst_2 : OreLocalization.OreSet.{u1} R _inst_1 S], R -> (Subtype.{succ u1} R (fun (x : R) => Membership.mem.{u1, u1} R (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) (SetLike.instMembership.{u1, u1} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) R (Submonoid.instSetLikeSubmonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1))) x S)) -> (OreLocalization.{u1} R _inst_1 S _inst_2) Case conversion may be inaccurate. Consider using '#align ore_localization.ore_div OreLocalization.oreDivₓ'. -/ /-- The division in the ore localization `R[S⁻¹]`, as a fraction of an element of `R` and `S`. -/ def oreDiv (r : R) (s : S) : R[S⁻¹] := Quotient.mk' (r, s) #align ore_localization.ore_div OreLocalization.oreDiv -- mathport name: «expr /ₒ » infixl:70 " /ₒ " => oreDiv /- warning: ore_localization.ind -> OreLocalization.ind is a dubious translation: lean 3 declaration is forall {R : Type.{u1}} [_inst_1 : Monoid.{u1} R] {S : Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)} [_inst_2 : OreLocalization.OreSet.{u1} R _inst_1 S] {β : (OreLocalization.{u1} R _inst_1 S _inst_2) -> Prop}, (forall (r : R) (s : coeSort.{succ u1, succ (succ u1)} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) Type.{u1} (SetLike.hasCoeToSort.{u1, u1} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) R (Submonoid.setLike.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1))) S), β (OreLocalization.oreDiv.{u1} R _inst_1 S _inst_2 r s)) -> (forall (q : OreLocalization.{u1} R _inst_1 S _inst_2), β q) but is expected to have type forall {R : Type.{u1}} [_inst_1 : Monoid.{u1} R] {S : Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)} [_inst_2 : OreLocalization.OreSet.{u1} R _inst_1 S] {β : (OreLocalization.{u1} R _inst_1 S _inst_2) -> Prop}, (forall (r : R) (s : Subtype.{succ u1} R (fun (x : R) => Membership.mem.{u1, u1} R (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) (SetLike.instMembership.{u1, u1} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) R (Submonoid.instSetLikeSubmonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1))) x S)), β (OreLocalization.oreDiv.{u1} R _inst_1 S _inst_2 r s)) -> (forall (q : OreLocalization.{u1} R _inst_1 S _inst_2), β q) Case conversion may be inaccurate. Consider using '#align ore_localization.ind OreLocalization.indₓ'. -/ @[elab_as_elim] protected theorem ind {β : R[S⁻¹] → Prop} (c : ∀ (r : R) (s : S), β (r /ₒ s)) : ∀ q, β q := by apply Quotient.ind rintro ⟨r, s⟩ exact c r s #align ore_localization.ind OreLocalization.ind /- warning: ore_localization.ore_div_eq_iff -> OreLocalization.oreDiv_eq_iff is a dubious translation: lean 3 declaration is forall {R : Type.{u1}} [_inst_1 : Monoid.{u1} R] {S : Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)} [_inst_2 : OreLocalization.OreSet.{u1} R _inst_1 S] {r₁ : R} {r₂ : R} {s₁ : coeSort.{succ u1, succ (succ u1)} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) Type.{u1} (SetLike.hasCoeToSort.{u1, u1} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) R (Submonoid.setLike.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1))) S} {s₂ : coeSort.{succ u1, succ (succ u1)} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) Type.{u1} (SetLike.hasCoeToSort.{u1, u1} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) R (Submonoid.setLike.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1))) S}, Iff (Eq.{succ u1} (OreLocalization.{u1} R _inst_1 S _inst_2) (OreLocalization.oreDiv.{u1} R _inst_1 S _inst_2 r₁ s₁) (OreLocalization.oreDiv.{u1} R _inst_1 S _inst_2 r₂ s₂)) (Exists.{succ u1} (coeSort.{succ u1, succ (succ u1)} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) Type.{u1} (SetLike.hasCoeToSort.{u1, u1} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) R (Submonoid.setLike.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1))) S) (fun (u : coeSort.{succ u1, succ (succ u1)} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) Type.{u1} (SetLike.hasCoeToSort.{u1, u1} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) R (Submonoid.setLike.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1))) S) => Exists.{succ u1} R (fun (v : R) => And (Eq.{succ u1} R (HMul.hMul.{u1, u1, u1} R R R (instHMul.{u1} R (MulOneClass.toHasMul.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1))) r₂ ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) (coeSort.{succ u1, succ (succ u1)} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) Type.{u1} (SetLike.hasCoeToSort.{u1, u1} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) R (Submonoid.setLike.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1))) S) R (HasLiftT.mk.{succ u1, succ u1} (coeSort.{succ u1, succ (succ u1)} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) Type.{u1} (SetLike.hasCoeToSort.{u1, u1} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) R (Submonoid.setLike.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1))) S) R (CoeTCₓ.coe.{succ u1, succ u1} (coeSort.{succ u1, succ (succ u1)} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) Type.{u1} (SetLike.hasCoeToSort.{u1, u1} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) R (Submonoid.setLike.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1))) S) R (coeBase.{succ u1, succ u1} (coeSort.{succ u1, succ (succ u1)} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) Type.{u1} (SetLike.hasCoeToSort.{u1, u1} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) R (Submonoid.setLike.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1))) S) R (coeSubtype.{succ u1} R (fun (x : R) => Membership.Mem.{u1, u1} R (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) (SetLike.hasMem.{u1, u1} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) R (Submonoid.setLike.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1))) x S))))) u)) (HMul.hMul.{u1, u1, u1} R R R (instHMul.{u1} R (MulOneClass.toHasMul.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1))) r₁ v)) (Eq.{succ u1} R (HMul.hMul.{u1, u1, u1} R R R (instHMul.{u1} R (MulOneClass.toHasMul.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1))) ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) (coeSort.{succ u1, succ (succ u1)} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) Type.{u1} (SetLike.hasCoeToSort.{u1, u1} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) R (Submonoid.setLike.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1))) S) R (HasLiftT.mk.{succ u1, succ u1} (coeSort.{succ u1, succ (succ u1)} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) Type.{u1} (SetLike.hasCoeToSort.{u1, u1} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) R (Submonoid.setLike.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1))) S) R (CoeTCₓ.coe.{succ u1, succ u1} (coeSort.{succ u1, succ (succ u1)} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) Type.{u1} (SetLike.hasCoeToSort.{u1, u1} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) R (Submonoid.setLike.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1))) S) R (coeBase.{succ u1, succ u1} (coeSort.{succ u1, succ (succ u1)} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) Type.{u1} (SetLike.hasCoeToSort.{u1, u1} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) R (Submonoid.setLike.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1))) S) R (coeSubtype.{succ u1} R (fun (x : R) => Membership.Mem.{u1, u1} R (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) (SetLike.hasMem.{u1, u1} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) R (Submonoid.setLike.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1))) x S))))) s₂) ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) (coeSort.{succ u1, succ (succ u1)} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) Type.{u1} (SetLike.hasCoeToSort.{u1, u1} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) R (Submonoid.setLike.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1))) S) R (HasLiftT.mk.{succ u1, succ u1} (coeSort.{succ u1, succ (succ u1)} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) Type.{u1} (SetLike.hasCoeToSort.{u1, u1} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) R (Submonoid.setLike.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1))) S) R (CoeTCₓ.coe.{succ u1, succ u1} (coeSort.{succ u1, succ (succ u1)} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) Type.{u1} (SetLike.hasCoeToSort.{u1, u1} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) R (Submonoid.setLike.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1))) S) R (coeBase.{succ u1, succ u1} (coeSort.{succ u1, succ (succ u1)} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) Type.{u1} (SetLike.hasCoeToSort.{u1, u1} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) R (Submonoid.setLike.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1))) S) R (coeSubtype.{succ u1} R (fun (x : R) => Membership.Mem.{u1, u1} R (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) (SetLike.hasMem.{u1, u1} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) R (Submonoid.setLike.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1))) x S))))) u)) (HMul.hMul.{u1, u1, u1} R R R (instHMul.{u1} R (MulOneClass.toHasMul.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1))) ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) (coeSort.{succ u1, succ (succ u1)} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) Type.{u1} (SetLike.hasCoeToSort.{u1, u1} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) R (Submonoid.setLike.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1))) S) R (HasLiftT.mk.{succ u1, succ u1} (coeSort.{succ u1, succ (succ u1)} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) Type.{u1} (SetLike.hasCoeToSort.{u1, u1} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) R (Submonoid.setLike.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1))) S) R (CoeTCₓ.coe.{succ u1, succ u1} (coeSort.{succ u1, succ (succ u1)} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) Type.{u1} (SetLike.hasCoeToSort.{u1, u1} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) R (Submonoid.setLike.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1))) S) R (coeBase.{succ u1, succ u1} (coeSort.{succ u1, succ (succ u1)} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) Type.{u1} (SetLike.hasCoeToSort.{u1, u1} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) R (Submonoid.setLike.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1))) S) R (coeSubtype.{succ u1} R (fun (x : R) => Membership.Mem.{u1, u1} R (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) (SetLike.hasMem.{u1, u1} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) R (Submonoid.setLike.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1))) x S))))) s₁) v))))) but is expected to have type forall {R : Type.{u1}} [_inst_1 : Monoid.{u1} R] {S : Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)} [_inst_2 : OreLocalization.OreSet.{u1} R _inst_1 S] {r₁ : R} {r₂ : R} {s₁ : Subtype.{succ u1} R (fun (x : R) => Membership.mem.{u1, u1} R (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) (SetLike.instMembership.{u1, u1} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) R (Submonoid.instSetLikeSubmonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1))) x S)} {s₂ : Subtype.{succ u1} R (fun (x : R) => Membership.mem.{u1, u1} R (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) (SetLike.instMembership.{u1, u1} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) R (Submonoid.instSetLikeSubmonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1))) x S)}, Iff (Eq.{succ u1} (OreLocalization.{u1} R _inst_1 S _inst_2) (OreLocalization.oreDiv.{u1} R _inst_1 S _inst_2 r₁ s₁) (OreLocalization.oreDiv.{u1} R _inst_1 S _inst_2 r₂ s₂)) (Exists.{succ u1} (Subtype.{succ u1} R (fun (x : R) => Membership.mem.{u1, u1} R (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) (SetLike.instMembership.{u1, u1} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) R (Submonoid.instSetLikeSubmonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1))) x S)) (fun (u : Subtype.{succ u1} R (fun (x : R) => Membership.mem.{u1, u1} R (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) (SetLike.instMembership.{u1, u1} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) R (Submonoid.instSetLikeSubmonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1))) x S)) => Exists.{succ u1} R (fun (v : R) => And (Eq.{succ u1} R (HMul.hMul.{u1, u1, u1} R R R (instHMul.{u1} R (MulOneClass.toMul.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1))) r₂ (Subtype.val.{succ u1} R (fun (x : R) => Membership.mem.{u1, u1} R (Set.{u1} R) (Set.instMembershipSet.{u1} R) x (SetLike.coe.{u1, u1} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) R (Submonoid.instSetLikeSubmonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) S)) u)) (HMul.hMul.{u1, u1, u1} R R R (instHMul.{u1} R (MulOneClass.toMul.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1))) r₁ v)) (Eq.{succ u1} R (HMul.hMul.{u1, u1, u1} R R R (instHMul.{u1} R (MulOneClass.toMul.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1))) (Subtype.val.{succ u1} R (fun (x : R) => Membership.mem.{u1, u1} R (Set.{u1} R) (Set.instMembershipSet.{u1} R) x (SetLike.coe.{u1, u1} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) R (Submonoid.instSetLikeSubmonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) S)) s₂) (Subtype.val.{succ u1} R (fun (x : R) => Membership.mem.{u1, u1} R (Set.{u1} R) (Set.instMembershipSet.{u1} R) x (SetLike.coe.{u1, u1} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) R (Submonoid.instSetLikeSubmonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) S)) u)) (HMul.hMul.{u1, u1, u1} R R R (instHMul.{u1} R (MulOneClass.toMul.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1))) (Subtype.val.{succ u1} R (fun (x : R) => Membership.mem.{u1, u1} R (Set.{u1} R) (Set.instMembershipSet.{u1} R) x (SetLike.coe.{u1, u1} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) R (Submonoid.instSetLikeSubmonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) S)) s₁) v))))) Case conversion may be inaccurate. Consider using '#align ore_localization.ore_div_eq_iff OreLocalization.oreDiv_eq_iffₓ'. -/ theorem oreDiv_eq_iff {r₁ r₂ : R} {s₁ s₂ : S} : r₁ /ₒ s₁ = r₂ /ₒ s₂ ↔ ∃ (u : S)(v : R), r₂ * u = r₁ * v ∧ (s₂ : R) * u = s₁ * v := Quotient.eq'' #align ore_localization.ore_div_eq_iff OreLocalization.oreDiv_eq_iff /- warning: ore_localization.expand -> OreLocalization.expand is a dubious translation: lean 3 declaration is forall {R : Type.{u1}} [_inst_1 : Monoid.{u1} R] {S : Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)} [_inst_2 : OreLocalization.OreSet.{u1} R _inst_1 S] (r : R) (s : coeSort.{succ u1, succ (succ u1)} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) Type.{u1} (SetLike.hasCoeToSort.{u1, u1} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) R (Submonoid.setLike.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1))) S) (t : R) (hst : Membership.Mem.{u1, u1} R (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) (SetLike.hasMem.{u1, u1} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) R (Submonoid.setLike.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1))) (HMul.hMul.{u1, u1, u1} R R R (instHMul.{u1} R (MulOneClass.toHasMul.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1))) ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) (coeSort.{succ u1, succ (succ u1)} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) Type.{u1} (SetLike.hasCoeToSort.{u1, u1} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) R (Submonoid.setLike.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1))) S) R (HasLiftT.mk.{succ u1, succ u1} (coeSort.{succ u1, succ (succ u1)} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) Type.{u1} (SetLike.hasCoeToSort.{u1, u1} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) R (Submonoid.setLike.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1))) S) R (CoeTCₓ.coe.{succ u1, succ u1} (coeSort.{succ u1, succ (succ u1)} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) Type.{u1} (SetLike.hasCoeToSort.{u1, u1} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) R (Submonoid.setLike.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1))) S) R (coeBase.{succ u1, succ u1} (coeSort.{succ u1, succ (succ u1)} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) Type.{u1} (SetLike.hasCoeToSort.{u1, u1} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) R (Submonoid.setLike.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1))) S) R (coeSubtype.{succ u1} R (fun (x : R) => Membership.Mem.{u1, u1} R (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) (SetLike.hasMem.{u1, u1} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) R (Submonoid.setLike.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1))) x S))))) s) t) S), Eq.{succ u1} (OreLocalization.{u1} R _inst_1 S _inst_2) (OreLocalization.oreDiv.{u1} R _inst_1 S _inst_2 r s) (OreLocalization.oreDiv.{u1} R _inst_1 S _inst_2 (HMul.hMul.{u1, u1, u1} R R R (instHMul.{u1} R (MulOneClass.toHasMul.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1))) r t) (Subtype.mk.{succ u1} R (fun (x : R) => Membership.Mem.{u1, u1} R (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) (SetLike.hasMem.{u1, u1} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) R (Submonoid.setLike.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1))) x S) (HMul.hMul.{u1, u1, u1} R R R (instHMul.{u1} R (MulOneClass.toHasMul.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1))) ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) (coeSort.{succ u1, succ (succ u1)} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) Type.{u1} (SetLike.hasCoeToSort.{u1, u1} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) R (Submonoid.setLike.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1))) S) R (HasLiftT.mk.{succ u1, succ u1} (coeSort.{succ u1, succ (succ u1)} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) Type.{u1} (SetLike.hasCoeToSort.{u1, u1} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) R (Submonoid.setLike.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1))) S) R (CoeTCₓ.coe.{succ u1, succ u1} (coeSort.{succ u1, succ (succ u1)} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) Type.{u1} (SetLike.hasCoeToSort.{u1, u1} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) R (Submonoid.setLike.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1))) S) R (coeBase.{succ u1, succ u1} (coeSort.{succ u1, succ (succ u1)} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) Type.{u1} (SetLike.hasCoeToSort.{u1, u1} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) R (Submonoid.setLike.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1))) S) R (coeSubtype.{succ u1} R (fun (x : R) => Membership.Mem.{u1, u1} R (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) (SetLike.hasMem.{u1, u1} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) R (Submonoid.setLike.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1))) x S))))) s) t) hst)) but is expected to have type forall {R : Type.{u1}} [_inst_1 : Monoid.{u1} R] {S : Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)} [_inst_2 : OreLocalization.OreSet.{u1} R _inst_1 S] (r : R) (s : Subtype.{succ u1} R (fun (x : R) => Membership.mem.{u1, u1} R (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) (SetLike.instMembership.{u1, u1} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) R (Submonoid.instSetLikeSubmonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1))) x S)) (t : R) (hst : Membership.mem.{u1, u1} R (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) (SetLike.instMembership.{u1, u1} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) R (Submonoid.instSetLikeSubmonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1))) (HMul.hMul.{u1, u1, u1} R R R (instHMul.{u1} R (MulOneClass.toMul.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1))) (Subtype.val.{succ u1} R (fun (x : R) => Membership.mem.{u1, u1} R (Set.{u1} R) (Set.instMembershipSet.{u1} R) x (SetLike.coe.{u1, u1} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) R (Submonoid.instSetLikeSubmonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) S)) s) t) S), Eq.{succ u1} (OreLocalization.{u1} R _inst_1 S _inst_2) (OreLocalization.oreDiv.{u1} R _inst_1 S _inst_2 r s) (OreLocalization.oreDiv.{u1} R _inst_1 S _inst_2 (HMul.hMul.{u1, u1, u1} R R R (instHMul.{u1} R (MulOneClass.toMul.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1))) r t) (Subtype.mk.{succ u1} R (fun (x : R) => Membership.mem.{u1, u1} R (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) (SetLike.instMembership.{u1, u1} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) R (Submonoid.instSetLikeSubmonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1))) x S) (HMul.hMul.{u1, u1, u1} R R R (instHMul.{u1} R (MulOneClass.toMul.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1))) (Subtype.val.{succ u1} R (fun (x : R) => Membership.mem.{u1, u1} R (Set.{u1} R) (Set.instMembershipSet.{u1} R) x (SetLike.coe.{u1, u1} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) R (Submonoid.instSetLikeSubmonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) S)) s) t) hst)) Case conversion may be inaccurate. Consider using '#align ore_localization.expand OreLocalization.expandₓ'. -/ /-- A fraction `r /ₒ s` is equal to its expansion by an arbitrary factor `t` if `s * t ∈ S`. -/ protected theorem expand (r : R) (s : S) (t : R) (hst : (s : R) * t ∈ S) : r /ₒ s = r * t /ₒ ⟨s * t, hst⟩ := by apply Quotient.sound refine' ⟨s, t * s, _, _⟩ <;> dsimp <;> rw [mul_assoc] <;> rfl #align ore_localization.expand OreLocalization.expand /- warning: ore_localization.expand' -> OreLocalization.expand' is a dubious translation: lean 3 declaration is forall {R : Type.{u1}} [_inst_1 : Monoid.{u1} R] {S : Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)} [_inst_2 : OreLocalization.OreSet.{u1} R _inst_1 S] (r : R) (s : coeSort.{succ u1, succ (succ u1)} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) Type.{u1} (SetLike.hasCoeToSort.{u1, u1} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) R (Submonoid.setLike.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1))) S) (s' : coeSort.{succ u1, succ (succ u1)} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) Type.{u1} (SetLike.hasCoeToSort.{u1, u1} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) R (Submonoid.setLike.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1))) S), Eq.{succ u1} (OreLocalization.{u1} R _inst_1 S _inst_2) (OreLocalization.oreDiv.{u1} R _inst_1 S _inst_2 r s) (OreLocalization.oreDiv.{u1} R _inst_1 S _inst_2 (HMul.hMul.{u1, u1, u1} R R R (instHMul.{u1} R (MulOneClass.toHasMul.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1))) r ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) (coeSort.{succ u1, succ (succ u1)} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) Type.{u1} (SetLike.hasCoeToSort.{u1, u1} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) R (Submonoid.setLike.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1))) S) R (HasLiftT.mk.{succ u1, succ u1} (coeSort.{succ u1, succ (succ u1)} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) Type.{u1} (SetLike.hasCoeToSort.{u1, u1} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) R (Submonoid.setLike.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1))) S) R (CoeTCₓ.coe.{succ u1, succ u1} (coeSort.{succ u1, succ (succ u1)} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) Type.{u1} (SetLike.hasCoeToSort.{u1, u1} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) R (Submonoid.setLike.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1))) S) R (coeBase.{succ u1, succ u1} (coeSort.{succ u1, succ (succ u1)} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) Type.{u1} (SetLike.hasCoeToSort.{u1, u1} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) R (Submonoid.setLike.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1))) S) R (coeSubtype.{succ u1} R (fun (x : R) => Membership.Mem.{u1, u1} R (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) (SetLike.hasMem.{u1, u1} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) R (Submonoid.setLike.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1))) x S))))) s')) (HMul.hMul.{u1, u1, u1} (coeSort.{succ u1, succ (succ u1)} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) Type.{u1} (SetLike.hasCoeToSort.{u1, u1} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) R (Submonoid.setLike.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1))) S) (coeSort.{succ u1, succ (succ u1)} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) Type.{u1} (SetLike.hasCoeToSort.{u1, u1} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) R (Submonoid.setLike.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1))) S) (coeSort.{succ u1, succ (succ u1)} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) Type.{u1} (SetLike.hasCoeToSort.{u1, u1} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) R (Submonoid.setLike.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1))) S) (instHMul.{u1} (coeSort.{succ u1, succ (succ u1)} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) Type.{u1} (SetLike.hasCoeToSort.{u1, u1} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) R (Submonoid.setLike.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1))) S) (Submonoid.mul.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1) S)) s s')) but is expected to have type forall {R : Type.{u1}} [_inst_1 : Monoid.{u1} R] {S : Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)} [_inst_2 : OreLocalization.OreSet.{u1} R _inst_1 S] (r : R) (s : Subtype.{succ u1} R (fun (x : R) => Membership.mem.{u1, u1} R (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) (SetLike.instMembership.{u1, u1} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) R (Submonoid.instSetLikeSubmonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1))) x S)) (s' : Subtype.{succ u1} R (fun (x : R) => Membership.mem.{u1, u1} R (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) (SetLike.instMembership.{u1, u1} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) R (Submonoid.instSetLikeSubmonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1))) x S)), Eq.{succ u1} (OreLocalization.{u1} R _inst_1 S _inst_2) (OreLocalization.oreDiv.{u1} R _inst_1 S _inst_2 r s) (OreLocalization.oreDiv.{u1} R _inst_1 S _inst_2 (HMul.hMul.{u1, u1, u1} R R R (instHMul.{u1} R (MulOneClass.toMul.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1))) r (Subtype.val.{succ u1} R (fun (x : R) => Membership.mem.{u1, u1} R (Set.{u1} R) (Set.instMembershipSet.{u1} R) x (SetLike.coe.{u1, u1} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) R (Submonoid.instSetLikeSubmonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) S)) s')) (HMul.hMul.{u1, u1, u1} (Subtype.{succ u1} R (fun (x : R) => Membership.mem.{u1, u1} R (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) (SetLike.instMembership.{u1, u1} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) R (Submonoid.instSetLikeSubmonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1))) x S)) (Subtype.{succ u1} R (fun (x : R) => Membership.mem.{u1, u1} R (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) (SetLike.instMembership.{u1, u1} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) R (Submonoid.instSetLikeSubmonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1))) x S)) (Subtype.{succ u1} R (fun (x : R) => Membership.mem.{u1, u1} R (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) (SetLike.instMembership.{u1, u1} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) R (Submonoid.instSetLikeSubmonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1))) x S)) (instHMul.{u1} (Subtype.{succ u1} R (fun (x : R) => Membership.mem.{u1, u1} R (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) (SetLike.instMembership.{u1, u1} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) R (Submonoid.instSetLikeSubmonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1))) x S)) (Submonoid.mul.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1) S)) s s')) Case conversion may be inaccurate. Consider using '#align ore_localization.expand' OreLocalization.expand'ₓ'. -/ /-- A fraction is equal to its expansion by an factor from s. -/ protected theorem expand' (r : R) (s s' : S) : r /ₒ s = r * s' /ₒ (s * s') := OreLocalization.expand r s s' (by norm_cast <;> apply SetLike.coe_mem) #align ore_localization.expand' OreLocalization.expand' /- warning: ore_localization.eq_of_num_factor_eq -> OreLocalization.eq_of_num_factor_eq is a dubious translation: lean 3 declaration is forall {R : Type.{u1}} [_inst_1 : Monoid.{u1} R] {S : Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)} [_inst_2 : OreLocalization.OreSet.{u1} R _inst_1 S] {r : R} {r' : R} {r₁ : R} {r₂ : R} {s : coeSort.{succ u1, succ (succ u1)} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) Type.{u1} (SetLike.hasCoeToSort.{u1, u1} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) R (Submonoid.setLike.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1))) S} {t : coeSort.{succ u1, succ (succ u1)} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) Type.{u1} (SetLike.hasCoeToSort.{u1, u1} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) R (Submonoid.setLike.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1))) S}, (Eq.{succ u1} R (HMul.hMul.{u1, u1, u1} R R R (instHMul.{u1} R (MulOneClass.toHasMul.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1))) r ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) (coeSort.{succ u1, succ (succ u1)} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) Type.{u1} (SetLike.hasCoeToSort.{u1, u1} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) R (Submonoid.setLike.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1))) S) R (HasLiftT.mk.{succ u1, succ u1} (coeSort.{succ u1, succ (succ u1)} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) Type.{u1} (SetLike.hasCoeToSort.{u1, u1} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) R (Submonoid.setLike.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1))) S) R (CoeTCₓ.coe.{succ u1, succ u1} (coeSort.{succ u1, succ (succ u1)} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) Type.{u1} (SetLike.hasCoeToSort.{u1, u1} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) R (Submonoid.setLike.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1))) S) R (coeBase.{succ u1, succ u1} (coeSort.{succ u1, succ (succ u1)} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) Type.{u1} (SetLike.hasCoeToSort.{u1, u1} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) R (Submonoid.setLike.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1))) S) R (coeSubtype.{succ u1} R (fun (x : R) => Membership.Mem.{u1, u1} R (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) (SetLike.hasMem.{u1, u1} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) R (Submonoid.setLike.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1))) x S))))) t)) (HMul.hMul.{u1, u1, u1} R R R (instHMul.{u1} R (MulOneClass.toHasMul.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1))) r' ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) (coeSort.{succ u1, succ (succ u1)} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) Type.{u1} (SetLike.hasCoeToSort.{u1, u1} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) R (Submonoid.setLike.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1))) S) R (HasLiftT.mk.{succ u1, succ u1} (coeSort.{succ u1, succ (succ u1)} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) Type.{u1} (SetLike.hasCoeToSort.{u1, u1} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) R (Submonoid.setLike.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1))) S) R (CoeTCₓ.coe.{succ u1, succ u1} (coeSort.{succ u1, succ (succ u1)} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) Type.{u1} (SetLike.hasCoeToSort.{u1, u1} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) R (Submonoid.setLike.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1))) S) R (coeBase.{succ u1, succ u1} (coeSort.{succ u1, succ (succ u1)} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) Type.{u1} (SetLike.hasCoeToSort.{u1, u1} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) R (Submonoid.setLike.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1))) S) R (coeSubtype.{succ u1} R (fun (x : R) => Membership.Mem.{u1, u1} R (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) (SetLike.hasMem.{u1, u1} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) R (Submonoid.setLike.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1))) x S))))) t))) -> (Eq.{succ u1} (OreLocalization.{u1} R _inst_1 S _inst_2) (OreLocalization.oreDiv.{u1} R _inst_1 S _inst_2 (HMul.hMul.{u1, u1, u1} R R R (instHMul.{u1} R (MulOneClass.toHasMul.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1))) (HMul.hMul.{u1, u1, u1} R R R (instHMul.{u1} R (MulOneClass.toHasMul.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1))) r₁ r) r₂) s) (OreLocalization.oreDiv.{u1} R _inst_1 S _inst_2 (HMul.hMul.{u1, u1, u1} R R R (instHMul.{u1} R (MulOneClass.toHasMul.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1))) (HMul.hMul.{u1, u1, u1} R R R (instHMul.{u1} R (MulOneClass.toHasMul.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1))) r₁ r') r₂) s)) but is expected to have type forall {R : Type.{u1}} [_inst_1 : Monoid.{u1} R] {S : Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)} [_inst_2 : OreLocalization.OreSet.{u1} R _inst_1 S] {r : R} {r' : R} {r₁ : R} {r₂ : R} {s : Subtype.{succ u1} R (fun (x : R) => Membership.mem.{u1, u1} R (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) (SetLike.instMembership.{u1, u1} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) R (Submonoid.instSetLikeSubmonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1))) x S)} {t : Subtype.{succ u1} R (fun (x : R) => Membership.mem.{u1, u1} R (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) (SetLike.instMembership.{u1, u1} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) R (Submonoid.instSetLikeSubmonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1))) x S)}, (Eq.{succ u1} R (HMul.hMul.{u1, u1, u1} R R R (instHMul.{u1} R (MulOneClass.toMul.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1))) r (Subtype.val.{succ u1} R (fun (x : R) => Membership.mem.{u1, u1} R (Set.{u1} R) (Set.instMembershipSet.{u1} R) x (SetLike.coe.{u1, u1} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) R (Submonoid.instSetLikeSubmonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) S)) t)) (HMul.hMul.{u1, u1, u1} R R R (instHMul.{u1} R (MulOneClass.toMul.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1))) r' (Subtype.val.{succ u1} R (fun (x : R) => Membership.mem.{u1, u1} R (Set.{u1} R) (Set.instMembershipSet.{u1} R) x (SetLike.coe.{u1, u1} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) R (Submonoid.instSetLikeSubmonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) S)) t))) -> (Eq.{succ u1} (OreLocalization.{u1} R _inst_1 S _inst_2) (OreLocalization.oreDiv.{u1} R _inst_1 S _inst_2 (HMul.hMul.{u1, u1, u1} R R R (instHMul.{u1} R (MulOneClass.toMul.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1))) (HMul.hMul.{u1, u1, u1} R R R (instHMul.{u1} R (MulOneClass.toMul.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1))) r₁ r) r₂) s) (OreLocalization.oreDiv.{u1} R _inst_1 S _inst_2 (HMul.hMul.{u1, u1, u1} R R R (instHMul.{u1} R (MulOneClass.toMul.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1))) (HMul.hMul.{u1, u1, u1} R R R (instHMul.{u1} R (MulOneClass.toMul.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1))) r₁ r') r₂) s)) Case conversion may be inaccurate. Consider using '#align ore_localization.eq_of_num_factor_eq OreLocalization.eq_of_num_factor_eqₓ'. -/ /-- Fractions which differ by a factor of the numerator can be proven equal if those factors expand to equal elements of `R`. -/ protected theorem eq_of_num_factor_eq {r r' r₁ r₂ : R} {s t : S} (h : r * t = r' * t) : r₁ * r * r₂ /ₒ s = r₁ * r' * r₂ /ₒ s := by rcases ore_condition r₂ t with ⟨r₂', t', hr₂⟩ calc r₁ * r * r₂ /ₒ s = r₁ * r * r₂ * t' /ₒ (s * t') := OreLocalization.expand _ _ t' _ _ = r₁ * r * (r₂ * t') /ₒ (s * t') := by simp [← mul_assoc] _ = r₁ * r * (t * r₂') /ₒ (s * t') := by rw [hr₂] _ = r₁ * (r * t) * r₂' /ₒ (s * t') := by simp [← mul_assoc] _ = r₁ * (r' * t) * r₂' /ₒ (s * t') := by rw [h] _ = r₁ * r' * (t * r₂') /ₒ (s * t') := by simp [← mul_assoc] _ = r₁ * r' * (r₂ * t') /ₒ (s * t') := by rw [hr₂] _ = r₁ * r' * r₂ * t' /ₒ (s * t') := by simp [← mul_assoc] _ = r₁ * r' * r₂ /ₒ s := by symm <;> apply OreLocalization.expand #align ore_localization.eq_of_num_factor_eq OreLocalization.eq_of_num_factor_eq /- warning: ore_localization.lift_expand -> OreLocalization.liftExpand is a dubious translation: lean 3 declaration is forall {R : Type.{u1}} [_inst_1 : Monoid.{u1} R] {S : Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)} [_inst_2 : OreLocalization.OreSet.{u1} R _inst_1 S] {C : Sort.{u2}} (P : R -> (coeSort.{succ u1, succ (succ u1)} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) Type.{u1} (SetLike.hasCoeToSort.{u1, u1} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) R (Submonoid.setLike.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1))) S) -> C), (forall (r : R) (t : R) (s : coeSort.{succ u1, succ (succ u1)} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) Type.{u1} (SetLike.hasCoeToSort.{u1, u1} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) R (Submonoid.setLike.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1))) S) (ht : Membership.Mem.{u1, u1} R (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) (SetLike.hasMem.{u1, u1} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) R (Submonoid.setLike.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1))) (HMul.hMul.{u1, u1, u1} R R R (instHMul.{u1} R (MulOneClass.toHasMul.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1))) ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) (coeSort.{succ u1, succ (succ u1)} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) Type.{u1} (SetLike.hasCoeToSort.{u1, u1} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) R (Submonoid.setLike.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1))) S) R (HasLiftT.mk.{succ u1, succ u1} (coeSort.{succ u1, succ (succ u1)} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) Type.{u1} (SetLike.hasCoeToSort.{u1, u1} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) R (Submonoid.setLike.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1))) S) R (CoeTCₓ.coe.{succ u1, succ u1} (coeSort.{succ u1, succ (succ u1)} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) Type.{u1} (SetLike.hasCoeToSort.{u1, u1} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) R (Submonoid.setLike.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1))) S) R (coeBase.{succ u1, succ u1} (coeSort.{succ u1, succ (succ u1)} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) Type.{u1} (SetLike.hasCoeToSort.{u1, u1} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) R (Submonoid.setLike.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1))) S) R (coeSubtype.{succ u1} R (fun (x : R) => Membership.Mem.{u1, u1} R (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) (SetLike.hasMem.{u1, u1} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) R (Submonoid.setLike.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1))) x S))))) s) t) S), Eq.{u2} C (P r s) (P (HMul.hMul.{u1, u1, u1} R R R (instHMul.{u1} R (MulOneClass.toHasMul.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1))) r t) (Subtype.mk.{succ u1} R (fun (x : R) => Membership.Mem.{u1, u1} R (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) (SetLike.hasMem.{u1, u1} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) R (Submonoid.setLike.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1))) x S) (HMul.hMul.{u1, u1, u1} R R R (instHMul.{u1} R (MulOneClass.toHasMul.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1))) ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) (coeSort.{succ u1, succ (succ u1)} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) Type.{u1} (SetLike.hasCoeToSort.{u1, u1} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) R (Submonoid.setLike.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1))) S) R (HasLiftT.mk.{succ u1, succ u1} (coeSort.{succ u1, succ (succ u1)} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) Type.{u1} (SetLike.hasCoeToSort.{u1, u1} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) R (Submonoid.setLike.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1))) S) R (CoeTCₓ.coe.{succ u1, succ u1} (coeSort.{succ u1, succ (succ u1)} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) Type.{u1} (SetLike.hasCoeToSort.{u1, u1} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) R (Submonoid.setLike.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1))) S) R (coeBase.{succ u1, succ u1} (coeSort.{succ u1, succ (succ u1)} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) Type.{u1} (SetLike.hasCoeToSort.{u1, u1} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) R (Submonoid.setLike.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1))) S) R (coeSubtype.{succ u1} R (fun (x : R) => Membership.Mem.{u1, u1} R (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) (SetLike.hasMem.{u1, u1} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) R (Submonoid.setLike.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1))) x S))))) s) t) ht))) -> (OreLocalization.{u1} R _inst_1 S _inst_2) -> C but is expected to have type forall {R : Type.{u1}} [_inst_1 : Monoid.{u1} R] {S : Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)} [_inst_2 : OreLocalization.OreSet.{u1} R _inst_1 S] {C : Sort.{u2}} (P : R -> (Subtype.{succ u1} R (fun (x : R) => Membership.mem.{u1, u1} R (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) (SetLike.instMembership.{u1, u1} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) R (Submonoid.instSetLikeSubmonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1))) x S)) -> C), (forall (r : R) (t : R) (s : Subtype.{succ u1} R (fun (x : R) => Membership.mem.{u1, u1} R (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) (SetLike.instMembership.{u1, u1} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) R (Submonoid.instSetLikeSubmonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1))) x S)) (ht : Membership.mem.{u1, u1} R (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) (SetLike.instMembership.{u1, u1} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) R (Submonoid.instSetLikeSubmonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1))) (HMul.hMul.{u1, u1, u1} R R R (instHMul.{u1} R (MulOneClass.toMul.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1))) (Subtype.val.{succ u1} R (fun (x : R) => Membership.mem.{u1, u1} R (Set.{u1} R) (Set.instMembershipSet.{u1} R) x (SetLike.coe.{u1, u1} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) R (Submonoid.instSetLikeSubmonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) S)) s) t) S), Eq.{u2} C (P r s) (P (HMul.hMul.{u1, u1, u1} R R R (instHMul.{u1} R (MulOneClass.toMul.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1))) r t) (Subtype.mk.{succ u1} R (fun (x : R) => Membership.mem.{u1, u1} R (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) (SetLike.instMembership.{u1, u1} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) R (Submonoid.instSetLikeSubmonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1))) x S) (HMul.hMul.{u1, u1, u1} R R R (instHMul.{u1} R (MulOneClass.toMul.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1))) (Subtype.val.{succ u1} R (fun (x : R) => Membership.mem.{u1, u1} R (Set.{u1} R) (Set.instMembershipSet.{u1} R) x (SetLike.coe.{u1, u1} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) R (Submonoid.instSetLikeSubmonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) S)) s) t) ht))) -> (OreLocalization.{u1} R _inst_1 S _inst_2) -> C Case conversion may be inaccurate. Consider using '#align ore_localization.lift_expand OreLocalization.liftExpandₓ'. -/ /-- A function or predicate over `R` and `S` can be lifted to `R[S⁻¹]` if it is invariant under expansion on the right. -/ def liftExpand {C : Sort _} (P : R → S → C) (hP : ∀ (r t : R) (s : S) (ht : (s : R) * t ∈ S), P r s = P (r * t) ⟨s * t, ht⟩) : R[S⁻¹] → C := Quotient.lift (fun p : R × S => P p.1 p.2) fun p q pq => by cases' p with r₁ s₁ cases' q with r₂ s₂ rcases pq with ⟨u, v, hr₂, hs₂⟩ dsimp at * have s₁vS : (s₁ : R) * v ∈ S := by rw [← hs₂, ← S.coe_mul] exact SetLike.coe_mem (s₂ * u) replace hs₂ : s₂ * u = ⟨(s₁ : R) * v, s₁vS⟩ · ext simp [hs₂] rw [hP r₁ v s₁ s₁vS, hP r₂ u s₂ (by norm_cast rw [hs₂] assumption), hr₂] simpa [← hs₂] #align ore_localization.lift_expand OreLocalization.liftExpand /- warning: ore_localization.lift_expand_of -> OreLocalization.liftExpand_of is a dubious translation: lean 3 declaration is forall {R : Type.{u1}} [_inst_1 : Monoid.{u1} R] {S : Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)} [_inst_2 : OreLocalization.OreSet.{u1} R _inst_1 S] {C : Sort.{u2}} {P : R -> (coeSort.{succ u1, succ (succ u1)} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) Type.{u1} (SetLike.hasCoeToSort.{u1, u1} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) R (Submonoid.setLike.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1))) S) -> C} {hP : forall (r : R) (t : R) (s : coeSort.{succ u1, succ (succ u1)} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) Type.{u1} (SetLike.hasCoeToSort.{u1, u1} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) R (Submonoid.setLike.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1))) S) (ht : Membership.Mem.{u1, u1} R (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) (SetLike.hasMem.{u1, u1} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) R (Submonoid.setLike.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1))) (HMul.hMul.{u1, u1, u1} R R R (instHMul.{u1} R (MulOneClass.toHasMul.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1))) ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) (coeSort.{succ u1, succ (succ u1)} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) Type.{u1} (SetLike.hasCoeToSort.{u1, u1} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) R (Submonoid.setLike.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1))) S) R (HasLiftT.mk.{succ u1, succ u1} (coeSort.{succ u1, succ (succ u1)} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) Type.{u1} (SetLike.hasCoeToSort.{u1, u1} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) R (Submonoid.setLike.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1))) S) R (CoeTCₓ.coe.{succ u1, succ u1} (coeSort.{succ u1, succ (succ u1)} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) Type.{u1} (SetLike.hasCoeToSort.{u1, u1} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) R (Submonoid.setLike.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1))) S) R (coeBase.{succ u1, succ u1} (coeSort.{succ u1, succ (succ u1)} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) Type.{u1} (SetLike.hasCoeToSort.{u1, u1} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) R (Submonoid.setLike.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1))) S) R (coeSubtype.{succ u1} R (fun (x : R) => Membership.Mem.{u1, u1} R (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) (SetLike.hasMem.{u1, u1} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) R (Submonoid.setLike.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1))) x S))))) s) t) S), Eq.{u2} C (P r s) (P (HMul.hMul.{u1, u1, u1} R R R (instHMul.{u1} R (MulOneClass.toHasMul.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1))) r t) (Subtype.mk.{succ u1} R (fun (x : R) => Membership.Mem.{u1, u1} R (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) (SetLike.hasMem.{u1, u1} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) R (Submonoid.setLike.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1))) x S) (HMul.hMul.{u1, u1, u1} R R R (instHMul.{u1} R (MulOneClass.toHasMul.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1))) ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) (coeSort.{succ u1, succ (succ u1)} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) Type.{u1} (SetLike.hasCoeToSort.{u1, u1} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) R (Submonoid.setLike.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1))) S) R (HasLiftT.mk.{succ u1, succ u1} (coeSort.{succ u1, succ (succ u1)} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) Type.{u1} (SetLike.hasCoeToSort.{u1, u1} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) R (Submonoid.setLike.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1))) S) R (CoeTCₓ.coe.{succ u1, succ u1} (coeSort.{succ u1, succ (succ u1)} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) Type.{u1} (SetLike.hasCoeToSort.{u1, u1} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) R (Submonoid.setLike.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1))) S) R (coeBase.{succ u1, succ u1} (coeSort.{succ u1, succ (succ u1)} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) Type.{u1} (SetLike.hasCoeToSort.{u1, u1} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) R (Submonoid.setLike.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1))) S) R (coeSubtype.{succ u1} R (fun (x : R) => Membership.Mem.{u1, u1} R (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) (SetLike.hasMem.{u1, u1} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) R (Submonoid.setLike.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1))) x S))))) s) t) ht))} (r : R) (s : coeSort.{succ u1, succ (succ u1)} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) Type.{u1} (SetLike.hasCoeToSort.{u1, u1} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) R (Submonoid.setLike.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1))) S), Eq.{u2} C (OreLocalization.liftExpand.{u1, u2} R _inst_1 S _inst_2 C P hP (OreLocalization.oreDiv.{u1} R _inst_1 S _inst_2 r s)) (P r s) but is expected to have type forall {R : Type.{u1}} [_inst_1 : Monoid.{u1} R] {S : Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)} [_inst_2 : OreLocalization.OreSet.{u1} R _inst_1 S] {C : Sort.{u2}} {P : R -> (Subtype.{succ u1} R (fun (x : R) => Membership.mem.{u1, u1} R (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) (SetLike.instMembership.{u1, u1} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) R (Submonoid.instSetLikeSubmonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1))) x S)) -> C} {hP : forall (r : R) (t : R) (s : Subtype.{succ u1} R (fun (x : R) => Membership.mem.{u1, u1} R (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) (SetLike.instMembership.{u1, u1} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) R (Submonoid.instSetLikeSubmonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1))) x S)) (ht : Membership.mem.{u1, u1} R (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) (SetLike.instMembership.{u1, u1} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) R (Submonoid.instSetLikeSubmonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1))) (HMul.hMul.{u1, u1, u1} R R R (instHMul.{u1} R (MulOneClass.toMul.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1))) (Subtype.val.{succ u1} R (fun (x : R) => Membership.mem.{u1, u1} R (Set.{u1} R) (Set.instMembershipSet.{u1} R) x (SetLike.coe.{u1, u1} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) R (Submonoid.instSetLikeSubmonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) S)) s) t) S), Eq.{u2} C (P r s) (P (HMul.hMul.{u1, u1, u1} R R R (instHMul.{u1} R (MulOneClass.toMul.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1))) r t) (Subtype.mk.{succ u1} R (fun (x : R) => Membership.mem.{u1, u1} R (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) (SetLike.instMembership.{u1, u1} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) R (Submonoid.instSetLikeSubmonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1))) x S) (HMul.hMul.{u1, u1, u1} R R R (instHMul.{u1} R (MulOneClass.toMul.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1))) (Subtype.val.{succ u1} R (fun (x : R) => Membership.mem.{u1, u1} R (Set.{u1} R) (Set.instMembershipSet.{u1} R) x (SetLike.coe.{u1, u1} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) R (Submonoid.instSetLikeSubmonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) S)) s) t) ht))} (r : R) (s : Subtype.{succ u1} R (fun (x : R) => Membership.mem.{u1, u1} R (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) (SetLike.instMembership.{u1, u1} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) R (Submonoid.instSetLikeSubmonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1))) x S)), Eq.{u2} C (OreLocalization.liftExpand.{u1, u2} R _inst_1 S _inst_2 C P hP (OreLocalization.oreDiv.{u1} R _inst_1 S _inst_2 r s)) (P r s) Case conversion may be inaccurate. Consider using '#align ore_localization.lift_expand_of OreLocalization.liftExpand_ofₓ'. -/ @[simp] theorem liftExpand_of {C : Sort _} {P : R → S → C} {hP : ∀ (r t : R) (s : S) (ht : (s : R) * t ∈ S), P r s = P (r * t) ⟨s * t, ht⟩} (r : R) (s : S) : liftExpand P hP (r /ₒ s) = P r s := rfl #align ore_localization.lift_expand_of OreLocalization.liftExpand_of /- warning: ore_localization.lift₂_expand -> OreLocalization.lift₂Expand is a dubious translation: lean 3 declaration is forall {R : Type.{u1}} [_inst_1 : Monoid.{u1} R] {S : Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)} [_inst_2 : OreLocalization.OreSet.{u1} R _inst_1 S] {C : Sort.{u2}} (P : R -> (coeSort.{succ u1, succ (succ u1)} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) Type.{u1} (SetLike.hasCoeToSort.{u1, u1} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) R (Submonoid.setLike.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1))) S) -> R -> (coeSort.{succ u1, succ (succ u1)} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) Type.{u1} (SetLike.hasCoeToSort.{u1, u1} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) R (Submonoid.setLike.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1))) S) -> C), (forall (r₁ : R) (t₁ : R) (s₁ : coeSort.{succ u1, succ (succ u1)} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) Type.{u1} (SetLike.hasCoeToSort.{u1, u1} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) R (Submonoid.setLike.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1))) S) (ht₁ : Membership.Mem.{u1, u1} R (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) (SetLike.hasMem.{u1, u1} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) R (Submonoid.setLike.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1))) (HMul.hMul.{u1, u1, u1} R R R (instHMul.{u1} R (MulOneClass.toHasMul.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1))) ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) (coeSort.{succ u1, succ (succ u1)} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) Type.{u1} (SetLike.hasCoeToSort.{u1, u1} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) R (Submonoid.setLike.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1))) S) R (HasLiftT.mk.{succ u1, succ u1} (coeSort.{succ u1, succ (succ u1)} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) Type.{u1} (SetLike.hasCoeToSort.{u1, u1} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) R (Submonoid.setLike.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1))) S) R (CoeTCₓ.coe.{succ u1, succ u1} (coeSort.{succ u1, succ (succ u1)} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) Type.{u1} (SetLike.hasCoeToSort.{u1, u1} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) R (Submonoid.setLike.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1))) S) R (coeBase.{succ u1, succ u1} (coeSort.{succ u1, succ (succ u1)} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) Type.{u1} (SetLike.hasCoeToSort.{u1, u1} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) R (Submonoid.setLike.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1))) S) R (coeSubtype.{succ u1} R (fun (x : R) => Membership.Mem.{u1, u1} R (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) (SetLike.hasMem.{u1, u1} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) R (Submonoid.setLike.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1))) x S))))) s₁) t₁) S) (r₂ : R) (t₂ : R) (s₂ : coeSort.{succ u1, succ (succ u1)} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) Type.{u1} (SetLike.hasCoeToSort.{u1, u1} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) R (Submonoid.setLike.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1))) S) (ht₂ : Membership.Mem.{u1, u1} R (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) (SetLike.hasMem.{u1, u1} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) R (Submonoid.setLike.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1))) (HMul.hMul.{u1, u1, u1} R R R (instHMul.{u1} R (MulOneClass.toHasMul.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1))) ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) (coeSort.{succ u1, succ (succ u1)} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) Type.{u1} (SetLike.hasCoeToSort.{u1, u1} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) R (Submonoid.setLike.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1))) S) R (HasLiftT.mk.{succ u1, succ u1} (coeSort.{succ u1, succ (succ u1)} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) Type.{u1} (SetLike.hasCoeToSort.{u1, u1} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) R (Submonoid.setLike.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1))) S) R (CoeTCₓ.coe.{succ u1, succ u1} (coeSort.{succ u1, succ (succ u1)} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) Type.{u1} (SetLike.hasCoeToSort.{u1, u1} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) R (Submonoid.setLike.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1))) S) R (coeBase.{succ u1, succ u1} (coeSort.{succ u1, succ (succ u1)} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) Type.{u1} (SetLike.hasCoeToSort.{u1, u1} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) R (Submonoid.setLike.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1))) S) R (coeSubtype.{succ u1} R (fun (x : R) => Membership.Mem.{u1, u1} R (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) (SetLike.hasMem.{u1, u1} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) R (Submonoid.setLike.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1))) x S))))) s₂) t₂) S), Eq.{u2} C (P r₁ s₁ r₂ s₂) (P (HMul.hMul.{u1, u1, u1} R R R (instHMul.{u1} R (MulOneClass.toHasMul.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1))) r₁ t₁) (Subtype.mk.{succ u1} R (fun (x : R) => Membership.Mem.{u1, u1} R (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) (SetLike.hasMem.{u1, u1} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) R (Submonoid.setLike.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1))) x S) (HMul.hMul.{u1, u1, u1} R R R (instHMul.{u1} R (MulOneClass.toHasMul.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1))) ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) (coeSort.{succ u1, succ (succ u1)} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) Type.{u1} (SetLike.hasCoeToSort.{u1, u1} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) R (Submonoid.setLike.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1))) S) R (HasLiftT.mk.{succ u1, succ u1} (coeSort.{succ u1, succ (succ u1)} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) Type.{u1} (SetLike.hasCoeToSort.{u1, u1} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) R (Submonoid.setLike.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1))) S) R (CoeTCₓ.coe.{succ u1, succ u1} (coeSort.{succ u1, succ (succ u1)} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) Type.{u1} (SetLike.hasCoeToSort.{u1, u1} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) R (Submonoid.setLike.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1))) S) R (coeBase.{succ u1, succ u1} (coeSort.{succ u1, succ (succ u1)} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) Type.{u1} (SetLike.hasCoeToSort.{u1, u1} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) R (Submonoid.setLike.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1))) S) R (coeSubtype.{succ u1} R (fun (x : R) => Membership.Mem.{u1, u1} R (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) (SetLike.hasMem.{u1, u1} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) R (Submonoid.setLike.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1))) x S))))) s₁) t₁) ht₁) (HMul.hMul.{u1, u1, u1} R R R (instHMul.{u1} R (MulOneClass.toHasMul.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1))) r₂ t₂) (Subtype.mk.{succ u1} R (fun (x : R) => Membership.Mem.{u1, u1} R (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) (SetLike.hasMem.{u1, u1} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) R (Submonoid.setLike.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1))) x S) (HMul.hMul.{u1, u1, u1} R R R (instHMul.{u1} R (MulOneClass.toHasMul.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1))) ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) (coeSort.{succ u1, succ (succ u1)} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) Type.{u1} (SetLike.hasCoeToSort.{u1, u1} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) R (Submonoid.setLike.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1))) S) R (HasLiftT.mk.{succ u1, succ u1} (coeSort.{succ u1, succ (succ u1)} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) Type.{u1} (SetLike.hasCoeToSort.{u1, u1} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) R (Submonoid.setLike.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1))) S) R (CoeTCₓ.coe.{succ u1, succ u1} (coeSort.{succ u1, succ (succ u1)} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) Type.{u1} (SetLike.hasCoeToSort.{u1, u1} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) R (Submonoid.setLike.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1))) S) R (coeBase.{succ u1, succ u1} (coeSort.{succ u1, succ (succ u1)} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) Type.{u1} (SetLike.hasCoeToSort.{u1, u1} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) R (Submonoid.setLike.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1))) S) R (coeSubtype.{succ u1} R (fun (x : R) => Membership.Mem.{u1, u1} R (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) (SetLike.hasMem.{u1, u1} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) R (Submonoid.setLike.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1))) x S))))) s₂) t₂) ht₂))) -> (OreLocalization.{u1} R _inst_1 S _inst_2) -> (OreLocalization.{u1} R _inst_1 S _inst_2) -> C but is expected to have type forall {R : Type.{u1}} [_inst_1 : Monoid.{u1} R] {S : Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)} [_inst_2 : OreLocalization.OreSet.{u1} R _inst_1 S] {C : Sort.{u2}} (P : R -> (Subtype.{succ u1} R (fun (x : R) => Membership.mem.{u1, u1} R (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) (SetLike.instMembership.{u1, u1} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) R (Submonoid.instSetLikeSubmonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1))) x S)) -> R -> (Subtype.{succ u1} R (fun (x : R) => Membership.mem.{u1, u1} R (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) (SetLike.instMembership.{u1, u1} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) R (Submonoid.instSetLikeSubmonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1))) x S)) -> C), (forall (r₁ : R) (t₁ : R) (s₁ : Subtype.{succ u1} R (fun (x : R) => Membership.mem.{u1, u1} R (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) (SetLike.instMembership.{u1, u1} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) R (Submonoid.instSetLikeSubmonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1))) x S)) (ht₁ : Membership.mem.{u1, u1} R (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) (SetLike.instMembership.{u1, u1} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) R (Submonoid.instSetLikeSubmonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1))) (HMul.hMul.{u1, u1, u1} R R R (instHMul.{u1} R (MulOneClass.toMul.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1))) (Subtype.val.{succ u1} R (fun (x : R) => Membership.mem.{u1, u1} R (Set.{u1} R) (Set.instMembershipSet.{u1} R) x (SetLike.coe.{u1, u1} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) R (Submonoid.instSetLikeSubmonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) S)) s₁) t₁) S) (r₂ : R) (t₂ : R) (s₂ : Subtype.{succ u1} R (fun (x : R) => Membership.mem.{u1, u1} R (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) (SetLike.instMembership.{u1, u1} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) R (Submonoid.instSetLikeSubmonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1))) x S)) (ht₂ : Membership.mem.{u1, u1} R (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) (SetLike.instMembership.{u1, u1} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) R (Submonoid.instSetLikeSubmonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1))) (HMul.hMul.{u1, u1, u1} R R R (instHMul.{u1} R (MulOneClass.toMul.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1))) (Subtype.val.{succ u1} R (fun (x : R) => Membership.mem.{u1, u1} R (Set.{u1} R) (Set.instMembershipSet.{u1} R) x (SetLike.coe.{u1, u1} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) R (Submonoid.instSetLikeSubmonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) S)) s₂) t₂) S), Eq.{u2} C (P r₁ s₁ r₂ s₂) (P (HMul.hMul.{u1, u1, u1} R R R (instHMul.{u1} R (MulOneClass.toMul.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1))) r₁ t₁) (Subtype.mk.{succ u1} R (fun (x : R) => Membership.mem.{u1, u1} R (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) (SetLike.instMembership.{u1, u1} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) R (Submonoid.instSetLikeSubmonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1))) x S) (HMul.hMul.{u1, u1, u1} R R R (instHMul.{u1} R (MulOneClass.toMul.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1))) (Subtype.val.{succ u1} R (fun (x : R) => Membership.mem.{u1, u1} R (Set.{u1} R) (Set.instMembershipSet.{u1} R) x (SetLike.coe.{u1, u1} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) R (Submonoid.instSetLikeSubmonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) S)) s₁) t₁) ht₁) (HMul.hMul.{u1, u1, u1} R R R (instHMul.{u1} R (MulOneClass.toMul.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1))) r₂ t₂) (Subtype.mk.{succ u1} R (fun (x : R) => Membership.mem.{u1, u1} R (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) (SetLike.instMembership.{u1, u1} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) R (Submonoid.instSetLikeSubmonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1))) x S) (HMul.hMul.{u1, u1, u1} R R R (instHMul.{u1} R (MulOneClass.toMul.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1))) (Subtype.val.{succ u1} R (fun (x : R) => Membership.mem.{u1, u1} R (Set.{u1} R) (Set.instMembershipSet.{u1} R) x (SetLike.coe.{u1, u1} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) R (Submonoid.instSetLikeSubmonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) S)) s₂) t₂) ht₂))) -> (OreLocalization.{u1} R _inst_1 S _inst_2) -> (OreLocalization.{u1} R _inst_1 S _inst_2) -> C Case conversion may be inaccurate. Consider using '#align ore_localization.lift₂_expand OreLocalization.lift₂Expandₓ'. -/ /-- A version of `lift_expand` used to simultaneously lift functions with two arguments in ``R[S⁻¹]`.-/ def lift₂Expand {C : Sort _} (P : R → S → R → S → C) (hP : ∀ (r₁ t₁ : R) (s₁ : S) (ht₁ : (s₁ : R) * t₁ ∈ S) (r₂ t₂ : R) (s₂ : S) (ht₂ : (s₂ : R) * t₂ ∈ S), P r₁ s₁ r₂ s₂ = P (r₁ * t₁) ⟨s₁ * t₁, ht₁⟩ (r₂ * t₂) ⟨s₂ * t₂, ht₂⟩) : R[S⁻¹] → R[S⁻¹] → C := liftExpand (fun r₁ s₁ => liftExpand (P r₁ s₁) fun r₂ t₂ s₂ ht₂ => by simp [hP r₁ 1 s₁ (by simp) r₂ t₂ s₂ ht₂]) fun r₁ t₁ s₁ ht₁ => by ext x; induction' x using OreLocalization.ind with r₂ s₂ rw [lift_expand_of, lift_expand_of, hP r₁ t₁ s₁ ht₁ r₂ 1 s₂ (by simp)]; simp #align ore_localization.lift₂_expand OreLocalization.lift₂Expand /- warning: ore_localization.lift₂_expand_of -> OreLocalization.lift₂Expand_of is a dubious translation: lean 3 declaration is forall {R : Type.{u1}} [_inst_1 : Monoid.{u1} R] {S : Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)} [_inst_2 : OreLocalization.OreSet.{u1} R _inst_1 S] {C : Sort.{u2}} {P : R -> (coeSort.{succ u1, succ (succ u1)} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) Type.{u1} (SetLike.hasCoeToSort.{u1, u1} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) R (Submonoid.setLike.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1))) S) -> R -> (coeSort.{succ u1, succ (succ u1)} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) Type.{u1} (SetLike.hasCoeToSort.{u1, u1} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) R (Submonoid.setLike.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1))) S) -> C} {hP : forall (r₁ : R) (t₁ : R) (s₁ : coeSort.{succ u1, succ (succ u1)} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) Type.{u1} (SetLike.hasCoeToSort.{u1, u1} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) R (Submonoid.setLike.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1))) S) (ht₁ : Membership.Mem.{u1, u1} R (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) (SetLike.hasMem.{u1, u1} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) R (Submonoid.setLike.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1))) (HMul.hMul.{u1, u1, u1} R R R (instHMul.{u1} R (MulOneClass.toHasMul.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1))) ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) (coeSort.{succ u1, succ (succ u1)} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) Type.{u1} (SetLike.hasCoeToSort.{u1, u1} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) R (Submonoid.setLike.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1))) S) R (HasLiftT.mk.{succ u1, succ u1} (coeSort.{succ u1, succ (succ u1)} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) Type.{u1} (SetLike.hasCoeToSort.{u1, u1} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) R (Submonoid.setLike.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1))) S) R (CoeTCₓ.coe.{succ u1, succ u1} (coeSort.{succ u1, succ (succ u1)} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) Type.{u1} (SetLike.hasCoeToSort.{u1, u1} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) R (Submonoid.setLike.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1))) S) R (coeBase.{succ u1, succ u1} (coeSort.{succ u1, succ (succ u1)} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) Type.{u1} (SetLike.hasCoeToSort.{u1, u1} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) R (Submonoid.setLike.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1))) S) R (coeSubtype.{succ u1} R (fun (x : R) => Membership.Mem.{u1, u1} R (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) (SetLike.hasMem.{u1, u1} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) R (Submonoid.setLike.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1))) x S))))) s₁) t₁) S) (r₂ : R) (t₂ : R) (s₂ : coeSort.{succ u1, succ (succ u1)} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) Type.{u1} (SetLike.hasCoeToSort.{u1, u1} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) R (Submonoid.setLike.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1))) S) (ht₂ : Membership.Mem.{u1, u1} R (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) (SetLike.hasMem.{u1, u1} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) R (Submonoid.setLike.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1))) (HMul.hMul.{u1, u1, u1} R R R (instHMul.{u1} R (MulOneClass.toHasMul.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1))) ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) (coeSort.{succ u1, succ (succ u1)} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) Type.{u1} (SetLike.hasCoeToSort.{u1, u1} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) R (Submonoid.setLike.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1))) S) R (HasLiftT.mk.{succ u1, succ u1} (coeSort.{succ u1, succ (succ u1)} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) Type.{u1} (SetLike.hasCoeToSort.{u1, u1} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) R (Submonoid.setLike.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1))) S) R (CoeTCₓ.coe.{succ u1, succ u1} (coeSort.{succ u1, succ (succ u1)} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) Type.{u1} (SetLike.hasCoeToSort.{u1, u1} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) R (Submonoid.setLike.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1))) S) R (coeBase.{succ u1, succ u1} (coeSort.{succ u1, succ (succ u1)} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) Type.{u1} (SetLike.hasCoeToSort.{u1, u1} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) R (Submonoid.setLike.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1))) S) R (coeSubtype.{succ u1} R (fun (x : R) => Membership.Mem.{u1, u1} R (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) (SetLike.hasMem.{u1, u1} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) R (Submonoid.setLike.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1))) x S))))) s₂) t₂) S), Eq.{u2} C (P r₁ s₁ r₂ s₂) (P (HMul.hMul.{u1, u1, u1} R R R (instHMul.{u1} R (MulOneClass.toHasMul.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1))) r₁ t₁) (Subtype.mk.{succ u1} R (fun (x : R) => Membership.Mem.{u1, u1} R (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) (SetLike.hasMem.{u1, u1} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) R (Submonoid.setLike.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1))) x S) (HMul.hMul.{u1, u1, u1} R R R (instHMul.{u1} R (MulOneClass.toHasMul.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1))) ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) (coeSort.{succ u1, succ (succ u1)} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) Type.{u1} (SetLike.hasCoeToSort.{u1, u1} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) R (Submonoid.setLike.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1))) S) R (HasLiftT.mk.{succ u1, succ u1} (coeSort.{succ u1, succ (succ u1)} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) Type.{u1} (SetLike.hasCoeToSort.{u1, u1} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) R (Submonoid.setLike.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1))) S) R (CoeTCₓ.coe.{succ u1, succ u1} (coeSort.{succ u1, succ (succ u1)} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) Type.{u1} (SetLike.hasCoeToSort.{u1, u1} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) R (Submonoid.setLike.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1))) S) R (coeBase.{succ u1, succ u1} (coeSort.{succ u1, succ (succ u1)} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) Type.{u1} (SetLike.hasCoeToSort.{u1, u1} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) R (Submonoid.setLike.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1))) S) R (coeSubtype.{succ u1} R (fun (x : R) => Membership.Mem.{u1, u1} R (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) (SetLike.hasMem.{u1, u1} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) R (Submonoid.setLike.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1))) x S))))) s₁) t₁) ht₁) (HMul.hMul.{u1, u1, u1} R R R (instHMul.{u1} R (MulOneClass.toHasMul.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1))) r₂ t₂) (Subtype.mk.{succ u1} R (fun (x : R) => Membership.Mem.{u1, u1} R (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) (SetLike.hasMem.{u1, u1} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) R (Submonoid.setLike.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1))) x S) (HMul.hMul.{u1, u1, u1} R R R (instHMul.{u1} R (MulOneClass.toHasMul.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1))) ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) (coeSort.{succ u1, succ (succ u1)} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) Type.{u1} (SetLike.hasCoeToSort.{u1, u1} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) R (Submonoid.setLike.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1))) S) R (HasLiftT.mk.{succ u1, succ u1} (coeSort.{succ u1, succ (succ u1)} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) Type.{u1} (SetLike.hasCoeToSort.{u1, u1} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) R (Submonoid.setLike.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1))) S) R (CoeTCₓ.coe.{succ u1, succ u1} (coeSort.{succ u1, succ (succ u1)} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) Type.{u1} (SetLike.hasCoeToSort.{u1, u1} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) R (Submonoid.setLike.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1))) S) R (coeBase.{succ u1, succ u1} (coeSort.{succ u1, succ (succ u1)} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) Type.{u1} (SetLike.hasCoeToSort.{u1, u1} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) R (Submonoid.setLike.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1))) S) R (coeSubtype.{succ u1} R (fun (x : R) => Membership.Mem.{u1, u1} R (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) (SetLike.hasMem.{u1, u1} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) R (Submonoid.setLike.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1))) x S))))) s₂) t₂) ht₂))} (r₁ : R) (s₁ : coeSort.{succ u1, succ (succ u1)} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) Type.{u1} (SetLike.hasCoeToSort.{u1, u1} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) R (Submonoid.setLike.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1))) S) (r₂ : R) (s₂ : coeSort.{succ u1, succ (succ u1)} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) Type.{u1} (SetLike.hasCoeToSort.{u1, u1} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) R (Submonoid.setLike.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1))) S), Eq.{u2} C (OreLocalization.lift₂Expand.{u1, u2} R _inst_1 S _inst_2 C P hP (OreLocalization.oreDiv.{u1} R _inst_1 S _inst_2 r₁ s₁) (OreLocalization.oreDiv.{u1} R _inst_1 S _inst_2 r₂ s₂)) (P r₁ s₁ r₂ s₂) but is expected to have type forall {R : Type.{u1}} [_inst_1 : Monoid.{u1} R] {S : Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)} [_inst_2 : OreLocalization.OreSet.{u1} R _inst_1 S] {C : Sort.{u2}} {P : R -> (Subtype.{succ u1} R (fun (x : R) => Membership.mem.{u1, u1} R (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) (SetLike.instMembership.{u1, u1} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) R (Submonoid.instSetLikeSubmonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1))) x S)) -> R -> (Subtype.{succ u1} R (fun (x : R) => Membership.mem.{u1, u1} R (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) (SetLike.instMembership.{u1, u1} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) R (Submonoid.instSetLikeSubmonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1))) x S)) -> C} {hP : forall (r₁ : R) (t₁ : R) (s₁ : Subtype.{succ u1} R (fun (x : R) => Membership.mem.{u1, u1} R (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) (SetLike.instMembership.{u1, u1} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) R (Submonoid.instSetLikeSubmonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1))) x S)) (ht₁ : Membership.mem.{u1, u1} R (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) (SetLike.instMembership.{u1, u1} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) R (Submonoid.instSetLikeSubmonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1))) (HMul.hMul.{u1, u1, u1} R R R (instHMul.{u1} R (MulOneClass.toMul.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1))) (Subtype.val.{succ u1} R (fun (x : R) => Membership.mem.{u1, u1} R (Set.{u1} R) (Set.instMembershipSet.{u1} R) x (SetLike.coe.{u1, u1} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) R (Submonoid.instSetLikeSubmonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) S)) s₁) t₁) S) (r₂ : R) (t₂ : R) (s₂ : Subtype.{succ u1} R (fun (x : R) => Membership.mem.{u1, u1} R (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) (SetLike.instMembership.{u1, u1} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) R (Submonoid.instSetLikeSubmonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1))) x S)) (ht₂ : Membership.mem.{u1, u1} R (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) (SetLike.instMembership.{u1, u1} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) R (Submonoid.instSetLikeSubmonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1))) (HMul.hMul.{u1, u1, u1} R R R (instHMul.{u1} R (MulOneClass.toMul.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1))) (Subtype.val.{succ u1} R (fun (x : R) => Membership.mem.{u1, u1} R (Set.{u1} R) (Set.instMembershipSet.{u1} R) x (SetLike.coe.{u1, u1} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) R (Submonoid.instSetLikeSubmonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) S)) s₂) t₂) S), Eq.{u2} C (P r₁ s₁ r₂ s₂) (P (HMul.hMul.{u1, u1, u1} R R R (instHMul.{u1} R (MulOneClass.toMul.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1))) r₁ t₁) (Subtype.mk.{succ u1} R (fun (x : R) => Membership.mem.{u1, u1} R (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) (SetLike.instMembership.{u1, u1} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) R (Submonoid.instSetLikeSubmonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1))) x S) (HMul.hMul.{u1, u1, u1} R R R (instHMul.{u1} R (MulOneClass.toMul.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1))) (Subtype.val.{succ u1} R (fun (x : R) => Membership.mem.{u1, u1} R (Set.{u1} R) (Set.instMembershipSet.{u1} R) x (SetLike.coe.{u1, u1} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) R (Submonoid.instSetLikeSubmonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) S)) s₁) t₁) ht₁) (HMul.hMul.{u1, u1, u1} R R R (instHMul.{u1} R (MulOneClass.toMul.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1))) r₂ t₂) (Subtype.mk.{succ u1} R (fun (x : R) => Membership.mem.{u1, u1} R (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) (SetLike.instMembership.{u1, u1} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) R (Submonoid.instSetLikeSubmonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1))) x S) (HMul.hMul.{u1, u1, u1} R R R (instHMul.{u1} R (MulOneClass.toMul.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1))) (Subtype.val.{succ u1} R (fun (x : R) => Membership.mem.{u1, u1} R (Set.{u1} R) (Set.instMembershipSet.{u1} R) x (SetLike.coe.{u1, u1} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) R (Submonoid.instSetLikeSubmonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) S)) s₂) t₂) ht₂))} (r₁ : R) (s₁ : Subtype.{succ u1} R (fun (x : R) => Membership.mem.{u1, u1} R (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) (SetLike.instMembership.{u1, u1} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) R (Submonoid.instSetLikeSubmonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1))) x S)) (r₂ : R) (s₂ : Subtype.{succ u1} R (fun (x : R) => Membership.mem.{u1, u1} R (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) (SetLike.instMembership.{u1, u1} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) R (Submonoid.instSetLikeSubmonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1))) x S)), Eq.{u2} C (OreLocalization.lift₂Expand.{u1, u2} R _inst_1 S _inst_2 C P hP (OreLocalization.oreDiv.{u1} R _inst_1 S _inst_2 r₁ s₁) (OreLocalization.oreDiv.{u1} R _inst_1 S _inst_2 r₂ s₂)) (P r₁ s₁ r₂ s₂) Case conversion may be inaccurate. Consider using '#align ore_localization.lift₂_expand_of OreLocalization.lift₂Expand_ofₓ'. -/ @[simp] theorem lift₂Expand_of {C : Sort _} {P : R → S → R → S → C} {hP : ∀ (r₁ t₁ : R) (s₁ : S) (ht₁ : (s₁ : R) * t₁ ∈ S) (r₂ t₂ : R) (s₂ : S) (ht₂ : (s₂ : R) * t₂ ∈ S), P r₁ s₁ r₂ s₂ = P (r₁ * t₁) ⟨s₁ * t₁, ht₁⟩ (r₂ * t₂) ⟨s₂ * t₂, ht₂⟩} (r₁ : R) (s₁ : S) (r₂ : R) (s₂ : S) : lift₂Expand P hP (r₁ /ₒ s₁) (r₂ /ₒ s₂) = P r₁ s₁ r₂ s₂ := rfl #align ore_localization.lift₂_expand_of OreLocalization.lift₂Expand_of private def mul' (r₁ : R) (s₁ : S) (r₂ : R) (s₂ : S) : R[S⁻¹] := r₁ * oreNum r₂ s₁ /ₒ (s₂ * oreDenom r₂ s₁) #align ore_localization.mul' ore_localization.mul' private theorem mul'_char (r₁ r₂ : R) (s₁ s₂ : S) (u : S) (v : R) (huv : r₂ * (u : R) = s₁ * v) : mul' r₁ s₁ r₂ s₂ = r₁ * v /ₒ (s₂ * u) := by simp only [mul'] have h₀ := ore_eq r₂ s₁; set v₀ := ore_num r₂ s₁; set u₀ := ore_denom r₂ s₁ rcases ore_condition (u₀ : R) u with ⟨r₃, s₃, h₃⟩ have := calc (s₁ : R) * (v * r₃) = r₂ * u * r₃ := by assoc_rw [← huv] <;> symm <;> apply mul_assoc _ = r₂ * u₀ * s₃ := by assoc_rw [← h₃] <;> rfl _ = s₁ * (v₀ * s₃) := by assoc_rw [h₀] <;> apply mul_assoc rcases ore_left_cancel _ _ _ this with ⟨s₄, hs₄⟩ symm; rw [ore_div_eq_iff] use s₃ * s₄; use r₃ * s₄; simp only [Submonoid.coe_mul]; constructor · assoc_rw [← hs₄] simp only [mul_assoc] · assoc_rw [h₃] simp only [mul_assoc] #align ore_localization.mul'_char ore_localization.mul'_char #print OreLocalization.mul /- /-- The multiplication on the Ore localization of monoids. -/ protected def mul : R[S⁻¹] → R[S⁻¹] → R[S⁻¹] := lift₂Expand mul' fun r₂ p s₂ hp r₁ r s₁ hr => by have h₁ := ore_eq r₁ s₂ set r₁' := ore_num r₁ s₂ set s₂' := ore_denom r₁ s₂ rcases ore_condition (↑s₂ * r₁') ⟨s₂ * p, hp⟩ with ⟨p', s_star, h₂⟩ dsimp at h₂ rcases ore_condition r (s₂' * s_star) with ⟨p_flat, s_flat, h₃⟩ simp only [S.coe_mul] at h₃ have : r₁ * r * s_flat = s₂ * p * (p' * p_flat) := by rw [← mul_assoc, ← h₂, ← h₁, mul_assoc, h₃] simp only [mul_assoc] rw [mul'_char (r₂ * p) (r₁ * r) ⟨↑s₂ * p, hp⟩ ⟨↑s₁ * r, hr⟩ _ _ this] clear this have hsssp : ↑s₁ * ↑s₂' * ↑s_star * p_flat ∈ S := by rw [mul_assoc, mul_assoc, ← mul_assoc ↑s₂', ← h₃, ← mul_assoc] exact S.mul_mem hr (SetLike.coe_mem s_flat) have : (⟨↑s₁ * r, hr⟩ : S) * s_flat = ⟨s₁ * s₂' * s_star * p_flat, hsssp⟩ := by ext simp only [[anonymous], Submonoid.coe_mul] rw [mul_assoc, h₃, ← mul_assoc, ← mul_assoc] rw [this] clear this rcases ore_left_cancel (p * p') (r₁' * ↑s_star) s₂ (by simp [← mul_assoc, h₂]) with ⟨s₂'', h₂''⟩ rw [← mul_assoc, mul_assoc r₂, OreLocalization.eq_of_num_factor_eq h₂''] norm_cast at hsssp⊢ rw [← OreLocalization.expand _ _ _ hsssp, ← mul_assoc] apply OreLocalization.expand #align ore_localization.mul OreLocalization.mul -/ instance : Mul R[S⁻¹] := ⟨OreLocalization.mul⟩ /- warning: ore_localization.ore_div_mul_ore_div -> OreLocalization.oreDiv_mul_oreDiv is a dubious translation: lean 3 declaration is forall {R : Type.{u1}} [_inst_1 : Monoid.{u1} R] {S : Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)} [_inst_2 : OreLocalization.OreSet.{u1} R _inst_1 S] {r₁ : R} {r₂ : R} {s₁ : coeSort.{succ u1, succ (succ u1)} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) Type.{u1} (SetLike.hasCoeToSort.{u1, u1} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) R (Submonoid.setLike.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1))) S} {s₂ : coeSort.{succ u1, succ (succ u1)} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) Type.{u1} (SetLike.hasCoeToSort.{u1, u1} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) R (Submonoid.setLike.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1))) S}, Eq.{succ u1} (OreLocalization.{u1} R _inst_1 S _inst_2) (HMul.hMul.{u1, u1, u1} (OreLocalization.{u1} R _inst_1 S _inst_2) (OreLocalization.{u1} R _inst_1 S _inst_2) (OreLocalization.{u1} R _inst_1 S _inst_2) (instHMul.{u1} (OreLocalization.{u1} R _inst_1 S _inst_2) (OreLocalization.hasMul.{u1} R _inst_1 S _inst_2)) (OreLocalization.oreDiv.{u1} R _inst_1 S _inst_2 r₁ s₁) (OreLocalization.oreDiv.{u1} R _inst_1 S _inst_2 r₂ s₂)) (OreLocalization.oreDiv.{u1} R _inst_1 S _inst_2 (HMul.hMul.{u1, u1, u1} R R R (instHMul.{u1} R (MulOneClass.toHasMul.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1))) r₁ (OreLocalization.oreNum.{u1} R _inst_1 S _inst_2 r₂ s₁)) (HMul.hMul.{u1, u1, u1} (coeSort.{succ u1, succ (succ u1)} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) Type.{u1} (SetLike.hasCoeToSort.{u1, u1} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) R (Submonoid.setLike.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1))) S) (coeSort.{succ u1, succ (succ u1)} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) Type.{u1} (SetLike.hasCoeToSort.{u1, u1} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) R (Submonoid.setLike.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1))) S) (coeSort.{succ u1, succ (succ u1)} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) Type.{u1} (SetLike.hasCoeToSort.{u1, u1} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) R (Submonoid.setLike.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1))) S) (instHMul.{u1} (coeSort.{succ u1, succ (succ u1)} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) Type.{u1} (SetLike.hasCoeToSort.{u1, u1} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) R (Submonoid.setLike.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1))) S) (Submonoid.mul.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1) S)) s₂ (OreLocalization.oreDenom.{u1} R _inst_1 S _inst_2 r₂ s₁))) but is expected to have type forall {R : Type.{u1}} [_inst_1 : Monoid.{u1} R] {S : Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)} [_inst_2 : OreLocalization.OreSet.{u1} R _inst_1 S] {r₁ : R} {r₂ : R} {s₁ : Subtype.{succ u1} R (fun (x : R) => Membership.mem.{u1, u1} R (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) (SetLike.instMembership.{u1, u1} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) R (Submonoid.instSetLikeSubmonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1))) x S)} {s₂ : Subtype.{succ u1} R (fun (x : R) => Membership.mem.{u1, u1} R (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) (SetLike.instMembership.{u1, u1} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) R (Submonoid.instSetLikeSubmonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1))) x S)}, Eq.{succ u1} (OreLocalization.{u1} R _inst_1 S _inst_2) (HMul.hMul.{u1, u1, u1} (OreLocalization.{u1} R _inst_1 S _inst_2) (OreLocalization.{u1} R _inst_1 S _inst_2) (OreLocalization.{u1} R _inst_1 S _inst_2) (instHMul.{u1} (OreLocalization.{u1} R _inst_1 S _inst_2) (OreLocalization.instMulOreLocalization.{u1} R _inst_1 S _inst_2)) (OreLocalization.oreDiv.{u1} R _inst_1 S _inst_2 r₁ s₁) (OreLocalization.oreDiv.{u1} R _inst_1 S _inst_2 r₂ s₂)) (OreLocalization.oreDiv.{u1} R _inst_1 S _inst_2 (HMul.hMul.{u1, u1, u1} R R R (instHMul.{u1} R (MulOneClass.toMul.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1))) r₁ (OreLocalization.oreNum.{u1} R _inst_1 S _inst_2 r₂ s₁)) (HMul.hMul.{u1, u1, u1} (Subtype.{succ u1} R (fun (x : R) => Membership.mem.{u1, u1} R (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) (SetLike.instMembership.{u1, u1} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) R (Submonoid.instSetLikeSubmonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1))) x S)) (Subtype.{succ u1} R (fun (x : R) => Membership.mem.{u1, u1} R (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) (SetLike.instMembership.{u1, u1} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) R (Submonoid.instSetLikeSubmonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1))) x S)) (Subtype.{succ u1} R (fun (x : R) => Membership.mem.{u1, u1} R (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) (SetLike.instMembership.{u1, u1} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) R (Submonoid.instSetLikeSubmonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1))) x S)) (instHMul.{u1} (Subtype.{succ u1} R (fun (x : R) => Membership.mem.{u1, u1} R (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) (SetLike.instMembership.{u1, u1} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) R (Submonoid.instSetLikeSubmonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1))) x S)) (Submonoid.mul.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1) S)) s₂ (OreLocalization.oreDenom.{u1} R _inst_1 S _inst_2 r₂ s₁))) Case conversion may be inaccurate. Consider using '#align ore_localization.ore_div_mul_ore_div OreLocalization.oreDiv_mul_oreDivₓ'. -/ theorem oreDiv_mul_oreDiv {r₁ r₂ : R} {s₁ s₂ : S} : r₁ /ₒ s₁ * (r₂ /ₒ s₂) = r₁ * oreNum r₂ s₁ /ₒ (s₂ * oreDenom r₂ s₁) := rfl #align ore_localization.ore_div_mul_ore_div OreLocalization.oreDiv_mul_oreDiv /- warning: ore_localization.ore_div_mul_char -> OreLocalization.oreDiv_mul_char is a dubious translation: lean 3 declaration is forall {R : Type.{u1}} [_inst_1 : Monoid.{u1} R] {S : Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)} [_inst_2 : OreLocalization.OreSet.{u1} R _inst_1 S] (r₁ : R) (r₂ : R) (s₁ : coeSort.{succ u1, succ (succ u1)} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) Type.{u1} (SetLike.hasCoeToSort.{u1, u1} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) R (Submonoid.setLike.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1))) S) (s₂ : coeSort.{succ u1, succ (succ u1)} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) Type.{u1} (SetLike.hasCoeToSort.{u1, u1} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) R (Submonoid.setLike.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1))) S) (r' : R) (s' : coeSort.{succ u1, succ (succ u1)} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) Type.{u1} (SetLike.hasCoeToSort.{u1, u1} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) R (Submonoid.setLike.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1))) S), (Eq.{succ u1} R (HMul.hMul.{u1, u1, u1} R R R (instHMul.{u1} R (MulOneClass.toHasMul.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1))) r₂ ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) (coeSort.{succ u1, succ (succ u1)} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) Type.{u1} (SetLike.hasCoeToSort.{u1, u1} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) R (Submonoid.setLike.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1))) S) R (HasLiftT.mk.{succ u1, succ u1} (coeSort.{succ u1, succ (succ u1)} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) Type.{u1} (SetLike.hasCoeToSort.{u1, u1} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) R (Submonoid.setLike.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1))) S) R (CoeTCₓ.coe.{succ u1, succ u1} (coeSort.{succ u1, succ (succ u1)} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) Type.{u1} (SetLike.hasCoeToSort.{u1, u1} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) R (Submonoid.setLike.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1))) S) R (coeBase.{succ u1, succ u1} (coeSort.{succ u1, succ (succ u1)} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) Type.{u1} (SetLike.hasCoeToSort.{u1, u1} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) R (Submonoid.setLike.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1))) S) R (coeSubtype.{succ u1} R (fun (x : R) => Membership.Mem.{u1, u1} R (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) (SetLike.hasMem.{u1, u1} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) R (Submonoid.setLike.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1))) x S))))) s')) (HMul.hMul.{u1, u1, u1} R R R (instHMul.{u1} R (MulOneClass.toHasMul.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1))) ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) (coeSort.{succ u1, succ (succ u1)} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) Type.{u1} (SetLike.hasCoeToSort.{u1, u1} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) R (Submonoid.setLike.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1))) S) R (HasLiftT.mk.{succ u1, succ u1} (coeSort.{succ u1, succ (succ u1)} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) Type.{u1} (SetLike.hasCoeToSort.{u1, u1} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) R (Submonoid.setLike.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1))) S) R (CoeTCₓ.coe.{succ u1, succ u1} (coeSort.{succ u1, succ (succ u1)} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) Type.{u1} (SetLike.hasCoeToSort.{u1, u1} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) R (Submonoid.setLike.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1))) S) R (coeBase.{succ u1, succ u1} (coeSort.{succ u1, succ (succ u1)} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) Type.{u1} (SetLike.hasCoeToSort.{u1, u1} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) R (Submonoid.setLike.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1))) S) R (coeSubtype.{succ u1} R (fun (x : R) => Membership.Mem.{u1, u1} R (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) (SetLike.hasMem.{u1, u1} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) R (Submonoid.setLike.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1))) x S))))) s₁) r')) -> (Eq.{succ u1} (OreLocalization.{u1} R _inst_1 S _inst_2) (HMul.hMul.{u1, u1, u1} (OreLocalization.{u1} R _inst_1 S _inst_2) (OreLocalization.{u1} R _inst_1 S _inst_2) (OreLocalization.{u1} R _inst_1 S _inst_2) (instHMul.{u1} (OreLocalization.{u1} R _inst_1 S _inst_2) (OreLocalization.hasMul.{u1} R _inst_1 S _inst_2)) (OreLocalization.oreDiv.{u1} R _inst_1 S _inst_2 r₁ s₁) (OreLocalization.oreDiv.{u1} R _inst_1 S _inst_2 r₂ s₂)) (OreLocalization.oreDiv.{u1} R _inst_1 S _inst_2 (HMul.hMul.{u1, u1, u1} R R R (instHMul.{u1} R (MulOneClass.toHasMul.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1))) r₁ r') (HMul.hMul.{u1, u1, u1} (coeSort.{succ u1, succ (succ u1)} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) Type.{u1} (SetLike.hasCoeToSort.{u1, u1} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) R (Submonoid.setLike.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1))) S) (coeSort.{succ u1, succ (succ u1)} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) Type.{u1} (SetLike.hasCoeToSort.{u1, u1} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) R (Submonoid.setLike.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1))) S) (coeSort.{succ u1, succ (succ u1)} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) Type.{u1} (SetLike.hasCoeToSort.{u1, u1} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) R (Submonoid.setLike.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1))) S) (instHMul.{u1} (coeSort.{succ u1, succ (succ u1)} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) Type.{u1} (SetLike.hasCoeToSort.{u1, u1} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) R (Submonoid.setLike.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1))) S) (Submonoid.mul.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1) S)) s₂ s'))) but is expected to have type forall {R : Type.{u1}} [_inst_1 : Monoid.{u1} R] {S : Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)} [_inst_2 : OreLocalization.OreSet.{u1} R _inst_1 S] (r₁ : R) (r₂ : R) (s₁ : Subtype.{succ u1} R (fun (x : R) => Membership.mem.{u1, u1} R (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) (SetLike.instMembership.{u1, u1} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) R (Submonoid.instSetLikeSubmonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1))) x S)) (s₂ : Subtype.{succ u1} R (fun (x : R) => Membership.mem.{u1, u1} R (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) (SetLike.instMembership.{u1, u1} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) R (Submonoid.instSetLikeSubmonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1))) x S)) (r' : R) (s' : Subtype.{succ u1} R (fun (x : R) => Membership.mem.{u1, u1} R (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) (SetLike.instMembership.{u1, u1} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) R (Submonoid.instSetLikeSubmonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1))) x S)), (Eq.{succ u1} R (HMul.hMul.{u1, u1, u1} R R R (instHMul.{u1} R (MulOneClass.toMul.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1))) r₂ (Subtype.val.{succ u1} R (fun (x : R) => Membership.mem.{u1, u1} R (Set.{u1} R) (Set.instMembershipSet.{u1} R) x (SetLike.coe.{u1, u1} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) R (Submonoid.instSetLikeSubmonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) S)) s')) (HMul.hMul.{u1, u1, u1} R R R (instHMul.{u1} R (MulOneClass.toMul.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1))) (Subtype.val.{succ u1} R (fun (x : R) => Membership.mem.{u1, u1} R (Set.{u1} R) (Set.instMembershipSet.{u1} R) x (SetLike.coe.{u1, u1} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) R (Submonoid.instSetLikeSubmonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) S)) s₁) r')) -> (Eq.{succ u1} (OreLocalization.{u1} R _inst_1 S _inst_2) (HMul.hMul.{u1, u1, u1} (OreLocalization.{u1} R _inst_1 S _inst_2) (OreLocalization.{u1} R _inst_1 S _inst_2) (OreLocalization.{u1} R _inst_1 S _inst_2) (instHMul.{u1} (OreLocalization.{u1} R _inst_1 S _inst_2) (OreLocalization.instMulOreLocalization.{u1} R _inst_1 S _inst_2)) (OreLocalization.oreDiv.{u1} R _inst_1 S _inst_2 r₁ s₁) (OreLocalization.oreDiv.{u1} R _inst_1 S _inst_2 r₂ s₂)) (OreLocalization.oreDiv.{u1} R _inst_1 S _inst_2 (HMul.hMul.{u1, u1, u1} R R R (instHMul.{u1} R (MulOneClass.toMul.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1))) r₁ r') (HMul.hMul.{u1, u1, u1} (Subtype.{succ u1} R (fun (x : R) => Membership.mem.{u1, u1} R (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) (SetLike.instMembership.{u1, u1} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) R (Submonoid.instSetLikeSubmonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1))) x S)) (Subtype.{succ u1} R (fun (x : R) => Membership.mem.{u1, u1} R (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) (SetLike.instMembership.{u1, u1} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) R (Submonoid.instSetLikeSubmonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1))) x S)) (Subtype.{succ u1} R (fun (x : R) => Membership.mem.{u1, u1} R (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) (SetLike.instMembership.{u1, u1} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) R (Submonoid.instSetLikeSubmonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1))) x S)) (instHMul.{u1} (Subtype.{succ u1} R (fun (x : R) => Membership.mem.{u1, u1} R (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) (SetLike.instMembership.{u1, u1} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) R (Submonoid.instSetLikeSubmonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1))) x S)) (Submonoid.mul.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1) S)) s₂ s'))) Case conversion may be inaccurate. Consider using '#align ore_localization.ore_div_mul_char OreLocalization.oreDiv_mul_charₓ'. -/ /-- A characterization lemma for the multiplication on the Ore localization, allowing for a choice of Ore numerator and Ore denominator. -/ theorem oreDiv_mul_char (r₁ r₂ : R) (s₁ s₂ : S) (r' : R) (s' : S) (huv : r₂ * (s' : R) = s₁ * r') : r₁ /ₒ s₁ * (r₂ /ₒ s₂) = r₁ * r' /ₒ (s₂ * s') := mul'_char r₁ r₂ s₁ s₂ s' r' huv #align ore_localization.ore_div_mul_char OreLocalization.oreDiv_mul_char /- warning: ore_localization.ore_div_mul_char' -> OreLocalization.oreDivMulChar' is a dubious translation: lean 3 declaration is forall {R : Type.{u1}} [_inst_1 : Monoid.{u1} R] {S : Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)} [_inst_2 : OreLocalization.OreSet.{u1} R _inst_1 S] (r₁ : R) (r₂ : R) (s₁ : coeSort.{succ u1, succ (succ u1)} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) Type.{u1} (SetLike.hasCoeToSort.{u1, u1} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) R (Submonoid.setLike.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1))) S) (s₂ : coeSort.{succ u1, succ (succ u1)} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) Type.{u1} (SetLike.hasCoeToSort.{u1, u1} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) R (Submonoid.setLike.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1))) S), PSigma.{succ u1, succ u1} R (fun (r' : R) => PSigma.{succ u1, 0} (coeSort.{succ u1, succ (succ u1)} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) Type.{u1} (SetLike.hasCoeToSort.{u1, u1} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) R (Submonoid.setLike.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1))) S) (fun (s' : coeSort.{succ u1, succ (succ u1)} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) Type.{u1} (SetLike.hasCoeToSort.{u1, u1} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) R (Submonoid.setLike.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1))) S) => And (Eq.{succ u1} R (HMul.hMul.{u1, u1, u1} R R R (instHMul.{u1} R (MulOneClass.toHasMul.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1))) r₂ ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) (coeSort.{succ u1, succ (succ u1)} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) Type.{u1} (SetLike.hasCoeToSort.{u1, u1} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) R (Submonoid.setLike.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1))) S) R (HasLiftT.mk.{succ u1, succ u1} (coeSort.{succ u1, succ (succ u1)} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) Type.{u1} (SetLike.hasCoeToSort.{u1, u1} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) R (Submonoid.setLike.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1))) S) R (CoeTCₓ.coe.{succ u1, succ u1} (coeSort.{succ u1, succ (succ u1)} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) Type.{u1} (SetLike.hasCoeToSort.{u1, u1} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) R (Submonoid.setLike.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1))) S) R (coeBase.{succ u1, succ u1} (coeSort.{succ u1, succ (succ u1)} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) Type.{u1} (SetLike.hasCoeToSort.{u1, u1} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) R (Submonoid.setLike.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1))) S) R (coeSubtype.{succ u1} R (fun (x : R) => Membership.Mem.{u1, u1} R (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) (SetLike.hasMem.{u1, u1} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) R (Submonoid.setLike.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1))) x S))))) s')) (HMul.hMul.{u1, u1, u1} R R R (instHMul.{u1} R (MulOneClass.toHasMul.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1))) ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) (coeSort.{succ u1, succ (succ u1)} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) Type.{u1} (SetLike.hasCoeToSort.{u1, u1} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) R (Submonoid.setLike.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1))) S) R (HasLiftT.mk.{succ u1, succ u1} (coeSort.{succ u1, succ (succ u1)} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) Type.{u1} (SetLike.hasCoeToSort.{u1, u1} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) R (Submonoid.setLike.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1))) S) R (CoeTCₓ.coe.{succ u1, succ u1} (coeSort.{succ u1, succ (succ u1)} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) Type.{u1} (SetLike.hasCoeToSort.{u1, u1} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) R (Submonoid.setLike.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1))) S) R (coeBase.{succ u1, succ u1} (coeSort.{succ u1, succ (succ u1)} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) Type.{u1} (SetLike.hasCoeToSort.{u1, u1} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) R (Submonoid.setLike.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1))) S) R (coeSubtype.{succ u1} R (fun (x : R) => Membership.Mem.{u1, u1} R (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) (SetLike.hasMem.{u1, u1} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) R (Submonoid.setLike.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1))) x S))))) s₁) r')) (Eq.{succ u1} (OreLocalization.{u1} R _inst_1 S _inst_2) (HMul.hMul.{u1, u1, u1} (OreLocalization.{u1} R _inst_1 S _inst_2) (OreLocalization.{u1} R _inst_1 S _inst_2) (OreLocalization.{u1} R _inst_1 S _inst_2) (instHMul.{u1} (OreLocalization.{u1} R _inst_1 S _inst_2) (OreLocalization.hasMul.{u1} R _inst_1 S _inst_2)) (OreLocalization.oreDiv.{u1} R _inst_1 S _inst_2 r₁ s₁) (OreLocalization.oreDiv.{u1} R _inst_1 S _inst_2 r₂ s₂)) (OreLocalization.oreDiv.{u1} R _inst_1 S _inst_2 (HMul.hMul.{u1, u1, u1} R R R (instHMul.{u1} R (MulOneClass.toHasMul.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1))) r₁ r') (HMul.hMul.{u1, u1, u1} (coeSort.{succ u1, succ (succ u1)} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) Type.{u1} (SetLike.hasCoeToSort.{u1, u1} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) R (Submonoid.setLike.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1))) S) (coeSort.{succ u1, succ (succ u1)} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) Type.{u1} (SetLike.hasCoeToSort.{u1, u1} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) R (Submonoid.setLike.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1))) S) (coeSort.{succ u1, succ (succ u1)} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) Type.{u1} (SetLike.hasCoeToSort.{u1, u1} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) R (Submonoid.setLike.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1))) S) (instHMul.{u1} (coeSort.{succ u1, succ (succ u1)} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) Type.{u1} (SetLike.hasCoeToSort.{u1, u1} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) R (Submonoid.setLike.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1))) S) (Submonoid.mul.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1) S)) s₂ s'))))) but is expected to have type forall {R : Type.{u1}} [_inst_1 : Monoid.{u1} R] {S : Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)} [_inst_2 : OreLocalization.OreSet.{u1} R _inst_1 S] (r₁ : R) (r₂ : R) (s₁ : Subtype.{succ u1} R (fun (x : R) => Membership.mem.{u1, u1} R (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) (SetLike.instMembership.{u1, u1} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) R (Submonoid.instSetLikeSubmonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1))) x S)) (s₂ : Subtype.{succ u1} R (fun (x : R) => Membership.mem.{u1, u1} R (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) (SetLike.instMembership.{u1, u1} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) R (Submonoid.instSetLikeSubmonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1))) x S)), PSigma.{succ u1, succ u1} R (fun (r' : R) => PSigma.{succ u1, 0} (Subtype.{succ u1} R (fun (x : R) => Membership.mem.{u1, u1} R (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) (SetLike.instMembership.{u1, u1} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) R (Submonoid.instSetLikeSubmonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1))) x S)) (fun (s' : Subtype.{succ u1} R (fun (x : R) => Membership.mem.{u1, u1} R (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) (SetLike.instMembership.{u1, u1} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) R (Submonoid.instSetLikeSubmonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1))) x S)) => And (Eq.{succ u1} R (HMul.hMul.{u1, u1, u1} R R R (instHMul.{u1} R (MulOneClass.toMul.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1))) r₂ (Subtype.val.{succ u1} R (fun (x : R) => Membership.mem.{u1, u1} R (Set.{u1} R) (Set.instMembershipSet.{u1} R) x (SetLike.coe.{u1, u1} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) R (Submonoid.instSetLikeSubmonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) S)) s')) (HMul.hMul.{u1, u1, u1} R R R (instHMul.{u1} R (MulOneClass.toMul.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1))) (Subtype.val.{succ u1} R (fun (x : R) => Membership.mem.{u1, u1} R (Set.{u1} R) (Set.instMembershipSet.{u1} R) x (SetLike.coe.{u1, u1} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) R (Submonoid.instSetLikeSubmonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) S)) s₁) r')) (Eq.{succ u1} (OreLocalization.{u1} R _inst_1 S _inst_2) (HMul.hMul.{u1, u1, u1} (OreLocalization.{u1} R _inst_1 S _inst_2) (OreLocalization.{u1} R _inst_1 S _inst_2) (OreLocalization.{u1} R _inst_1 S _inst_2) (instHMul.{u1} (OreLocalization.{u1} R _inst_1 S _inst_2) (OreLocalization.instMulOreLocalization.{u1} R _inst_1 S _inst_2)) (OreLocalization.oreDiv.{u1} R _inst_1 S _inst_2 r₁ s₁) (OreLocalization.oreDiv.{u1} R _inst_1 S _inst_2 r₂ s₂)) (OreLocalization.oreDiv.{u1} R _inst_1 S _inst_2 (HMul.hMul.{u1, u1, u1} R R R (instHMul.{u1} R (MulOneClass.toMul.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1))) r₁ r') (HMul.hMul.{u1, u1, u1} (Subtype.{succ u1} R (fun (x : R) => Membership.mem.{u1, u1} R (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) (SetLike.instMembership.{u1, u1} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) R (Submonoid.instSetLikeSubmonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1))) x S)) (Subtype.{succ u1} R (fun (x : R) => Membership.mem.{u1, u1} R (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) (SetLike.instMembership.{u1, u1} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) R (Submonoid.instSetLikeSubmonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1))) x S)) (Subtype.{succ u1} R (fun (x : R) => Membership.mem.{u1, u1} R (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) (SetLike.instMembership.{u1, u1} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) R (Submonoid.instSetLikeSubmonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1))) x S)) (instHMul.{u1} (Subtype.{succ u1} R (fun (x : R) => Membership.mem.{u1, u1} R (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) (SetLike.instMembership.{u1, u1} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) R (Submonoid.instSetLikeSubmonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1))) x S)) (Submonoid.mul.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1) S)) s₂ s'))))) Case conversion may be inaccurate. Consider using '#align ore_localization.ore_div_mul_char' OreLocalization.oreDivMulChar'ₓ'. -/ /-- Another characterization lemma for the multiplication on the Ore localizaion delivering Ore witnesses and conditions bundled in a sigma type. -/ def oreDivMulChar' (r₁ r₂ : R) (s₁ s₂ : S) : Σ'r' : R, Σ's' : S, r₂ * (s' : R) = s₁ * r' ∧ r₁ /ₒ s₁ * (r₂ /ₒ s₂) = r₁ * r' /ₒ (s₂ * s') := ⟨oreNum r₂ s₁, oreDenom r₂ s₁, ore_eq r₂ s₁, oreDiv_mul_oreDiv⟩ #align ore_localization.ore_div_mul_char' OreLocalization.oreDivMulChar' instance : One R[S⁻¹] := ⟨1 /ₒ 1⟩ /- warning: ore_localization.one_def -> OreLocalization.one_def is a dubious translation: lean 3 declaration is forall {R : Type.{u1}} [_inst_1 : Monoid.{u1} R] {S : Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)} [_inst_2 : OreLocalization.OreSet.{u1} R _inst_1 S], Eq.{succ u1} (OreLocalization.{u1} R _inst_1 S _inst_2) (OfNat.ofNat.{u1} (OreLocalization.{u1} R _inst_1 S _inst_2) 1 (OfNat.mk.{u1} (OreLocalization.{u1} R _inst_1 S _inst_2) 1 (One.one.{u1} (OreLocalization.{u1} R _inst_1 S _inst_2) (OreLocalization.hasOne.{u1} R _inst_1 S _inst_2)))) (OreLocalization.oreDiv.{u1} R _inst_1 S _inst_2 (OfNat.ofNat.{u1} R 1 (OfNat.mk.{u1} R 1 (One.one.{u1} R (MulOneClass.toHasOne.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1))))) (OfNat.ofNat.{u1} (coeSort.{succ u1, succ (succ u1)} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) Type.{u1} (SetLike.hasCoeToSort.{u1, u1} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) R (Submonoid.setLike.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1))) S) 1 (OfNat.mk.{u1} (coeSort.{succ u1, succ (succ u1)} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) Type.{u1} (SetLike.hasCoeToSort.{u1, u1} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) R (Submonoid.setLike.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1))) S) 1 (One.one.{u1} (coeSort.{succ u1, succ (succ u1)} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) Type.{u1} (SetLike.hasCoeToSort.{u1, u1} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) R (Submonoid.setLike.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1))) S) (Submonoid.one.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1) S))))) but is expected to have type forall {R : Type.{u1}} [_inst_1 : Monoid.{u1} R] {S : Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)} [_inst_2 : OreLocalization.OreSet.{u1} R _inst_1 S], Eq.{succ u1} (OreLocalization.{u1} R _inst_1 S _inst_2) (OfNat.ofNat.{u1} (OreLocalization.{u1} R _inst_1 S _inst_2) 1 (One.toOfNat1.{u1} (OreLocalization.{u1} R _inst_1 S _inst_2) (OreLocalization.instOneOreLocalization.{u1} R _inst_1 S _inst_2))) (OreLocalization.oreDiv.{u1} R _inst_1 S _inst_2 (OfNat.ofNat.{u1} R 1 (One.toOfNat1.{u1} R (Monoid.toOne.{u1} R _inst_1))) (OfNat.ofNat.{u1} (Subtype.{succ u1} R (fun (x : R) => Membership.mem.{u1, u1} R (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) (SetLike.instMembership.{u1, u1} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) R (Submonoid.instSetLikeSubmonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1))) x S)) 1 (One.toOfNat1.{u1} (Subtype.{succ u1} R (fun (x : R) => Membership.mem.{u1, u1} R (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) (SetLike.instMembership.{u1, u1} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) R (Submonoid.instSetLikeSubmonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1))) x S)) (Submonoid.one.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1) S)))) Case conversion may be inaccurate. Consider using '#align ore_localization.one_def OreLocalization.one_defₓ'. -/ protected theorem one_def : (1 : R[S⁻¹]) = 1 /ₒ 1 := rfl #align ore_localization.one_def OreLocalization.one_def instance : Inhabited R[S⁻¹] := ⟨1⟩ /- warning: ore_localization.div_eq_one' -> OreLocalization.div_eq_one' is a dubious translation: lean 3 declaration is forall {R : Type.{u1}} [_inst_1 : Monoid.{u1} R] {S : Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)} [_inst_2 : OreLocalization.OreSet.{u1} R _inst_1 S] {r : R} (hr : Membership.Mem.{u1, u1} R (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) (SetLike.hasMem.{u1, u1} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) R (Submonoid.setLike.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1))) r S), Eq.{succ u1} (OreLocalization.{u1} R _inst_1 S _inst_2) (OreLocalization.oreDiv.{u1} R _inst_1 S _inst_2 r (Subtype.mk.{succ u1} R (fun (x : R) => Membership.Mem.{u1, u1} R (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) (SetLike.hasMem.{u1, u1} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) R (Submonoid.setLike.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1))) x S) r hr)) (OfNat.ofNat.{u1} (OreLocalization.{u1} R _inst_1 S _inst_2) 1 (OfNat.mk.{u1} (OreLocalization.{u1} R _inst_1 S _inst_2) 1 (One.one.{u1} (OreLocalization.{u1} R _inst_1 S _inst_2) (OreLocalization.hasOne.{u1} R _inst_1 S _inst_2)))) but is expected to have type forall {R : Type.{u1}} [_inst_1 : Monoid.{u1} R] {S : Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)} [_inst_2 : OreLocalization.OreSet.{u1} R _inst_1 S] {r : R} (hr : Membership.mem.{u1, u1} R (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) (SetLike.instMembership.{u1, u1} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) R (Submonoid.instSetLikeSubmonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1))) r S), Eq.{succ u1} (OreLocalization.{u1} R _inst_1 S _inst_2) (OreLocalization.oreDiv.{u1} R _inst_1 S _inst_2 r (Subtype.mk.{succ u1} R (fun (x : R) => Membership.mem.{u1, u1} R (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) (SetLike.instMembership.{u1, u1} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) R (Submonoid.instSetLikeSubmonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1))) x S) r hr)) (OfNat.ofNat.{u1} (OreLocalization.{u1} R _inst_1 S _inst_2) 1 (One.toOfNat1.{u1} (OreLocalization.{u1} R _inst_1 S _inst_2) (OreLocalization.instOneOreLocalization.{u1} R _inst_1 S _inst_2))) Case conversion may be inaccurate. Consider using '#align ore_localization.div_eq_one' OreLocalization.div_eq_one'ₓ'. -/ @[simp] protected theorem div_eq_one' {r : R} (hr : r ∈ S) : r /ₒ ⟨r, hr⟩ = 1 := by rw [OreLocalization.one_def, ore_div_eq_iff] exact ⟨⟨r, hr⟩, 1, by simp, by simp⟩ #align ore_localization.div_eq_one' OreLocalization.div_eq_one' /- warning: ore_localization.div_eq_one -> OreLocalization.div_eq_one is a dubious translation: lean 3 declaration is forall {R : Type.{u1}} [_inst_1 : Monoid.{u1} R] {S : Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)} [_inst_2 : OreLocalization.OreSet.{u1} R _inst_1 S] {s : coeSort.{succ u1, succ (succ u1)} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) Type.{u1} (SetLike.hasCoeToSort.{u1, u1} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) R (Submonoid.setLike.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1))) S}, Eq.{succ u1} (OreLocalization.{u1} R _inst_1 S _inst_2) (OreLocalization.oreDiv.{u1} R _inst_1 S _inst_2 ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) (coeSort.{succ u1, succ (succ u1)} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) Type.{u1} (SetLike.hasCoeToSort.{u1, u1} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) R (Submonoid.setLike.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1))) S) R (HasLiftT.mk.{succ u1, succ u1} (coeSort.{succ u1, succ (succ u1)} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) Type.{u1} (SetLike.hasCoeToSort.{u1, u1} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) R (Submonoid.setLike.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1))) S) R (CoeTCₓ.coe.{succ u1, succ u1} (coeSort.{succ u1, succ (succ u1)} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) Type.{u1} (SetLike.hasCoeToSort.{u1, u1} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) R (Submonoid.setLike.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1))) S) R (coeBase.{succ u1, succ u1} (coeSort.{succ u1, succ (succ u1)} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) Type.{u1} (SetLike.hasCoeToSort.{u1, u1} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) R (Submonoid.setLike.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1))) S) R (coeSubtype.{succ u1} R (fun (x : R) => Membership.Mem.{u1, u1} R (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) (SetLike.hasMem.{u1, u1} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) R (Submonoid.setLike.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1))) x S))))) s) s) (OfNat.ofNat.{u1} (OreLocalization.{u1} R _inst_1 S _inst_2) 1 (OfNat.mk.{u1} (OreLocalization.{u1} R _inst_1 S _inst_2) 1 (One.one.{u1} (OreLocalization.{u1} R _inst_1 S _inst_2) (OreLocalization.hasOne.{u1} R _inst_1 S _inst_2)))) but is expected to have type forall {R : Type.{u1}} [_inst_1 : Monoid.{u1} R] {S : Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)} [_inst_2 : OreLocalization.OreSet.{u1} R _inst_1 S] {s : Subtype.{succ u1} R (fun (x : R) => Membership.mem.{u1, u1} R (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) (SetLike.instMembership.{u1, u1} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) R (Submonoid.instSetLikeSubmonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1))) x S)}, Eq.{succ u1} (OreLocalization.{u1} R _inst_1 S _inst_2) (OreLocalization.oreDiv.{u1} R _inst_1 S _inst_2 (Subtype.val.{succ u1} R (fun (x : R) => Membership.mem.{u1, u1} R (Set.{u1} R) (Set.instMembershipSet.{u1} R) x (SetLike.coe.{u1, u1} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) R (Submonoid.instSetLikeSubmonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) S)) s) s) (OfNat.ofNat.{u1} (OreLocalization.{u1} R _inst_1 S _inst_2) 1 (One.toOfNat1.{u1} (OreLocalization.{u1} R _inst_1 S _inst_2) (OreLocalization.instOneOreLocalization.{u1} R _inst_1 S _inst_2))) Case conversion may be inaccurate. Consider using '#align ore_localization.div_eq_one OreLocalization.div_eq_oneₓ'. -/ @[simp] protected theorem div_eq_one {s : S} : (s : R) /ₒ s = 1 := by cases s <;> apply OreLocalization.div_eq_one' #align ore_localization.div_eq_one OreLocalization.div_eq_one /- warning: ore_localization.one_mul -> OreLocalization.one_mul is a dubious translation: lean 3 declaration is forall {R : Type.{u1}} [_inst_1 : Monoid.{u1} R] {S : Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)} [_inst_2 : OreLocalization.OreSet.{u1} R _inst_1 S] (x : OreLocalization.{u1} R _inst_1 S _inst_2), Eq.{succ u1} (OreLocalization.{u1} R _inst_1 S _inst_2) (HMul.hMul.{u1, u1, u1} (OreLocalization.{u1} R _inst_1 S _inst_2) (OreLocalization.{u1} R _inst_1 S _inst_2) (OreLocalization.{u1} R _inst_1 S _inst_2) (instHMul.{u1} (OreLocalization.{u1} R _inst_1 S _inst_2) (OreLocalization.hasMul.{u1} R _inst_1 S _inst_2)) (OfNat.ofNat.{u1} (OreLocalization.{u1} R _inst_1 S _inst_2) 1 (OfNat.mk.{u1} (OreLocalization.{u1} R _inst_1 S _inst_2) 1 (One.one.{u1} (OreLocalization.{u1} R _inst_1 S _inst_2) (OreLocalization.hasOne.{u1} R _inst_1 S _inst_2)))) x) x but is expected to have type forall {R : Type.{u1}} [_inst_1 : Monoid.{u1} R] {S : Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)} [_inst_2 : OreLocalization.OreSet.{u1} R _inst_1 S] (x : OreLocalization.{u1} R _inst_1 S _inst_2), Eq.{succ u1} (OreLocalization.{u1} R _inst_1 S _inst_2) (HMul.hMul.{u1, u1, u1} (OreLocalization.{u1} R _inst_1 S _inst_2) (OreLocalization.{u1} R _inst_1 S _inst_2) (OreLocalization.{u1} R _inst_1 S _inst_2) (instHMul.{u1} (OreLocalization.{u1} R _inst_1 S _inst_2) (OreLocalization.instMulOreLocalization.{u1} R _inst_1 S _inst_2)) (OfNat.ofNat.{u1} (OreLocalization.{u1} R _inst_1 S _inst_2) 1 (One.toOfNat1.{u1} (OreLocalization.{u1} R _inst_1 S _inst_2) (OreLocalization.instOneOreLocalization.{u1} R _inst_1 S _inst_2))) x) x Case conversion may be inaccurate. Consider using '#align ore_localization.one_mul OreLocalization.one_mulₓ'. -/ protected theorem one_mul (x : R[S⁻¹]) : 1 * x = x := by induction' x using OreLocalization.ind with r s simp [OreLocalization.one_def, ore_div_mul_char (1 : R) r (1 : S) s r 1 (by simp)] #align ore_localization.one_mul OreLocalization.one_mul /- warning: ore_localization.mul_one -> OreLocalization.mul_one is a dubious translation: lean 3 declaration is forall {R : Type.{u1}} [_inst_1 : Monoid.{u1} R] {S : Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)} [_inst_2 : OreLocalization.OreSet.{u1} R _inst_1 S] (x : OreLocalization.{u1} R _inst_1 S _inst_2), Eq.{succ u1} (OreLocalization.{u1} R _inst_1 S _inst_2) (HMul.hMul.{u1, u1, u1} (OreLocalization.{u1} R _inst_1 S _inst_2) (OreLocalization.{u1} R _inst_1 S _inst_2) (OreLocalization.{u1} R _inst_1 S _inst_2) (instHMul.{u1} (OreLocalization.{u1} R _inst_1 S _inst_2) (OreLocalization.hasMul.{u1} R _inst_1 S _inst_2)) x (OfNat.ofNat.{u1} (OreLocalization.{u1} R _inst_1 S _inst_2) 1 (OfNat.mk.{u1} (OreLocalization.{u1} R _inst_1 S _inst_2) 1 (One.one.{u1} (OreLocalization.{u1} R _inst_1 S _inst_2) (OreLocalization.hasOne.{u1} R _inst_1 S _inst_2))))) x but is expected to have type forall {R : Type.{u1}} [_inst_1 : Monoid.{u1} R] {S : Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)} [_inst_2 : OreLocalization.OreSet.{u1} R _inst_1 S] (x : OreLocalization.{u1} R _inst_1 S _inst_2), Eq.{succ u1} (OreLocalization.{u1} R _inst_1 S _inst_2) (HMul.hMul.{u1, u1, u1} (OreLocalization.{u1} R _inst_1 S _inst_2) (OreLocalization.{u1} R _inst_1 S _inst_2) (OreLocalization.{u1} R _inst_1 S _inst_2) (instHMul.{u1} (OreLocalization.{u1} R _inst_1 S _inst_2) (OreLocalization.instMulOreLocalization.{u1} R _inst_1 S _inst_2)) x (OfNat.ofNat.{u1} (OreLocalization.{u1} R _inst_1 S _inst_2) 1 (One.toOfNat1.{u1} (OreLocalization.{u1} R _inst_1 S _inst_2) (OreLocalization.instOneOreLocalization.{u1} R _inst_1 S _inst_2)))) x Case conversion may be inaccurate. Consider using '#align ore_localization.mul_one OreLocalization.mul_oneₓ'. -/ protected theorem mul_one (x : R[S⁻¹]) : x * 1 = x := by induction' x using OreLocalization.ind with r s simp [OreLocalization.one_def, ore_div_mul_char r 1 s 1 1 s (by simp)] #align ore_localization.mul_one OreLocalization.mul_one #print OreLocalization.mul_assoc /- protected theorem mul_assoc (x y z : R[S⁻¹]) : x * y * z = x * (y * z) := by induction' x using OreLocalization.ind with r₁ s₁ induction' y using OreLocalization.ind with r₂ s₂ induction' z using OreLocalization.ind with r₃ s₃ rcases ore_div_mul_char' r₁ r₂ s₁ s₂ with ⟨ra, sa, ha, ha'⟩; rw [ha']; clear ha' rcases ore_div_mul_char' r₂ r₃ s₂ s₃ with ⟨rb, sb, hb, hb'⟩; rw [hb']; clear hb' rcases ore_condition rb sa with ⟨rc, sc, hc⟩ rw [ore_div_mul_char (r₁ * ra) r₃ (s₂ * sa) s₃ rc (sb * sc) (by simp only [Submonoid.coe_mul] assoc_rw [hb, hc])] rw [mul_assoc, ← mul_assoc s₃] symm; apply ore_div_mul_char assoc_rw [hc, ← ha]; apply mul_assoc #align ore_localization.mul_assoc OreLocalization.mul_assoc -/ instance : Monoid R[S⁻¹] := { OreLocalization.hasMul, OreLocalization.hasOne with one_mul := OreLocalization.one_mul mul_one := OreLocalization.mul_one mul_assoc := OreLocalization.mul_assoc } /- warning: ore_localization.mul_inv -> OreLocalization.mul_inv is a dubious translation: lean 3 declaration is forall {R : Type.{u1}} [_inst_1 : Monoid.{u1} R] {S : Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)} [_inst_2 : OreLocalization.OreSet.{u1} R _inst_1 S] (s : coeSort.{succ u1, succ (succ u1)} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) Type.{u1} (SetLike.hasCoeToSort.{u1, u1} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) R (Submonoid.setLike.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1))) S) (s' : coeSort.{succ u1, succ (succ u1)} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) Type.{u1} (SetLike.hasCoeToSort.{u1, u1} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) R (Submonoid.setLike.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1))) S), Eq.{succ u1} (OreLocalization.{u1} R _inst_1 S _inst_2) (HMul.hMul.{u1, u1, u1} (OreLocalization.{u1} R _inst_1 S _inst_2) (OreLocalization.{u1} R _inst_1 S _inst_2) (OreLocalization.{u1} R _inst_1 S _inst_2) (instHMul.{u1} (OreLocalization.{u1} R _inst_1 S _inst_2) (OreLocalization.hasMul.{u1} R _inst_1 S _inst_2)) (OreLocalization.oreDiv.{u1} R _inst_1 S _inst_2 ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) (coeSort.{succ u1, succ (succ u1)} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) Type.{u1} (SetLike.hasCoeToSort.{u1, u1} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) R (Submonoid.setLike.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1))) S) R (HasLiftT.mk.{succ u1, succ u1} (coeSort.{succ u1, succ (succ u1)} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) Type.{u1} (SetLike.hasCoeToSort.{u1, u1} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) R (Submonoid.setLike.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1))) S) R (CoeTCₓ.coe.{succ u1, succ u1} (coeSort.{succ u1, succ (succ u1)} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) Type.{u1} (SetLike.hasCoeToSort.{u1, u1} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) R (Submonoid.setLike.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1))) S) R (coeBase.{succ u1, succ u1} (coeSort.{succ u1, succ (succ u1)} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) Type.{u1} (SetLike.hasCoeToSort.{u1, u1} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) R (Submonoid.setLike.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1))) S) R (coeSubtype.{succ u1} R (fun (x : R) => Membership.Mem.{u1, u1} R (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) (SetLike.hasMem.{u1, u1} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) R (Submonoid.setLike.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1))) x S))))) s) s') (OreLocalization.oreDiv.{u1} R _inst_1 S _inst_2 ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) (coeSort.{succ u1, succ (succ u1)} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) Type.{u1} (SetLike.hasCoeToSort.{u1, u1} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) R (Submonoid.setLike.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1))) S) R (HasLiftT.mk.{succ u1, succ u1} (coeSort.{succ u1, succ (succ u1)} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) Type.{u1} (SetLike.hasCoeToSort.{u1, u1} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) R (Submonoid.setLike.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1))) S) R (CoeTCₓ.coe.{succ u1, succ u1} (coeSort.{succ u1, succ (succ u1)} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) Type.{u1} (SetLike.hasCoeToSort.{u1, u1} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) R (Submonoid.setLike.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1))) S) R (coeBase.{succ u1, succ u1} (coeSort.{succ u1, succ (succ u1)} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) Type.{u1} (SetLike.hasCoeToSort.{u1, u1} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) R (Submonoid.setLike.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1))) S) R (coeSubtype.{succ u1} R (fun (x : R) => Membership.Mem.{u1, u1} R (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) (SetLike.hasMem.{u1, u1} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) R (Submonoid.setLike.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1))) x S))))) s') s)) (OfNat.ofNat.{u1} (OreLocalization.{u1} R _inst_1 S _inst_2) 1 (OfNat.mk.{u1} (OreLocalization.{u1} R _inst_1 S _inst_2) 1 (One.one.{u1} (OreLocalization.{u1} R _inst_1 S _inst_2) (OreLocalization.hasOne.{u1} R _inst_1 S _inst_2)))) but is expected to have type forall {R : Type.{u1}} [_inst_1 : Monoid.{u1} R] {S : Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)} [_inst_2 : OreLocalization.OreSet.{u1} R _inst_1 S] (s : Subtype.{succ u1} R (fun (x : R) => Membership.mem.{u1, u1} R (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) (SetLike.instMembership.{u1, u1} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) R (Submonoid.instSetLikeSubmonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1))) x S)) (s' : Subtype.{succ u1} R (fun (x : R) => Membership.mem.{u1, u1} R (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) (SetLike.instMembership.{u1, u1} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) R (Submonoid.instSetLikeSubmonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1))) x S)), Eq.{succ u1} (OreLocalization.{u1} R _inst_1 S _inst_2) (HMul.hMul.{u1, u1, u1} (OreLocalization.{u1} R _inst_1 S _inst_2) (OreLocalization.{u1} R _inst_1 S _inst_2) (OreLocalization.{u1} R _inst_1 S _inst_2) (instHMul.{u1} (OreLocalization.{u1} R _inst_1 S _inst_2) (OreLocalization.instMulOreLocalization.{u1} R _inst_1 S _inst_2)) (OreLocalization.oreDiv.{u1} R _inst_1 S _inst_2 (Subtype.val.{succ u1} R (fun (x : R) => Membership.mem.{u1, u1} R (Set.{u1} R) (Set.instMembershipSet.{u1} R) x (SetLike.coe.{u1, u1} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) R (Submonoid.instSetLikeSubmonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) S)) s) s') (OreLocalization.oreDiv.{u1} R _inst_1 S _inst_2 (Subtype.val.{succ u1} R (fun (x : R) => Membership.mem.{u1, u1} R (Set.{u1} R) (Set.instMembershipSet.{u1} R) x (SetLike.coe.{u1, u1} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) R (Submonoid.instSetLikeSubmonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) S)) s') s)) (OfNat.ofNat.{u1} (OreLocalization.{u1} R _inst_1 S _inst_2) 1 (One.toOfNat1.{u1} (OreLocalization.{u1} R _inst_1 S _inst_2) (OreLocalization.instOneOreLocalization.{u1} R _inst_1 S _inst_2))) Case conversion may be inaccurate. Consider using '#align ore_localization.mul_inv OreLocalization.mul_invₓ'. -/ protected theorem mul_inv (s s' : S) : (s : R) /ₒ s' * (s' /ₒ s) = 1 := by simp [ore_div_mul_char (s : R) s' s' s 1 1 (by simp)] #align ore_localization.mul_inv OreLocalization.mul_inv /- warning: ore_localization.mul_one_div -> OreLocalization.mul_one_div is a dubious translation: lean 3 declaration is forall {R : Type.{u1}} [_inst_1 : Monoid.{u1} R] {S : Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)} [_inst_2 : OreLocalization.OreSet.{u1} R _inst_1 S] {r : R} {s : coeSort.{succ u1, succ (succ u1)} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) Type.{u1} (SetLike.hasCoeToSort.{u1, u1} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) R (Submonoid.setLike.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1))) S} {t : coeSort.{succ u1, succ (succ u1)} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) Type.{u1} (SetLike.hasCoeToSort.{u1, u1} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) R (Submonoid.setLike.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1))) S}, Eq.{succ u1} (OreLocalization.{u1} R _inst_1 S _inst_2) (HMul.hMul.{u1, u1, u1} (OreLocalization.{u1} R _inst_1 S _inst_2) (OreLocalization.{u1} R _inst_1 S _inst_2) (OreLocalization.{u1} R _inst_1 S _inst_2) (instHMul.{u1} (OreLocalization.{u1} R _inst_1 S _inst_2) (OreLocalization.hasMul.{u1} R _inst_1 S _inst_2)) (OreLocalization.oreDiv.{u1} R _inst_1 S _inst_2 r s) (OreLocalization.oreDiv.{u1} R _inst_1 S _inst_2 (OfNat.ofNat.{u1} R 1 (OfNat.mk.{u1} R 1 (One.one.{u1} R (MulOneClass.toHasOne.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1))))) t)) (OreLocalization.oreDiv.{u1} R _inst_1 S _inst_2 r (HMul.hMul.{u1, u1, u1} (coeSort.{succ u1, succ (succ u1)} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) Type.{u1} (SetLike.hasCoeToSort.{u1, u1} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) R (Submonoid.setLike.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1))) S) (coeSort.{succ u1, succ (succ u1)} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) Type.{u1} (SetLike.hasCoeToSort.{u1, u1} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) R (Submonoid.setLike.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1))) S) (coeSort.{succ u1, succ (succ u1)} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) Type.{u1} (SetLike.hasCoeToSort.{u1, u1} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) R (Submonoid.setLike.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1))) S) (instHMul.{u1} (coeSort.{succ u1, succ (succ u1)} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) Type.{u1} (SetLike.hasCoeToSort.{u1, u1} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) R (Submonoid.setLike.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1))) S) (Submonoid.mul.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1) S)) t s)) but is expected to have type forall {R : Type.{u1}} [_inst_1 : Monoid.{u1} R] {S : Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)} [_inst_2 : OreLocalization.OreSet.{u1} R _inst_1 S] {r : R} {s : Subtype.{succ u1} R (fun (x : R) => Membership.mem.{u1, u1} R (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) (SetLike.instMembership.{u1, u1} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) R (Submonoid.instSetLikeSubmonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1))) x S)} {t : Subtype.{succ u1} R (fun (x : R) => Membership.mem.{u1, u1} R (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) (SetLike.instMembership.{u1, u1} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) R (Submonoid.instSetLikeSubmonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1))) x S)}, Eq.{succ u1} (OreLocalization.{u1} R _inst_1 S _inst_2) (HMul.hMul.{u1, u1, u1} (OreLocalization.{u1} R _inst_1 S _inst_2) (OreLocalization.{u1} R _inst_1 S _inst_2) (OreLocalization.{u1} R _inst_1 S _inst_2) (instHMul.{u1} (OreLocalization.{u1} R _inst_1 S _inst_2) (OreLocalization.instMulOreLocalization.{u1} R _inst_1 S _inst_2)) (OreLocalization.oreDiv.{u1} R _inst_1 S _inst_2 r s) (OreLocalization.oreDiv.{u1} R _inst_1 S _inst_2 (OfNat.ofNat.{u1} R 1 (One.toOfNat1.{u1} R (Monoid.toOne.{u1} R _inst_1))) t)) (OreLocalization.oreDiv.{u1} R _inst_1 S _inst_2 r (HMul.hMul.{u1, u1, u1} (Subtype.{succ u1} R (fun (x : R) => Membership.mem.{u1, u1} R (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) (SetLike.instMembership.{u1, u1} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) R (Submonoid.instSetLikeSubmonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1))) x S)) (Subtype.{succ u1} R (fun (x : R) => Membership.mem.{u1, u1} R (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) (SetLike.instMembership.{u1, u1} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) R (Submonoid.instSetLikeSubmonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1))) x S)) (Subtype.{succ u1} R (fun (x : R) => Membership.mem.{u1, u1} R (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) (SetLike.instMembership.{u1, u1} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) R (Submonoid.instSetLikeSubmonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1))) x S)) (instHMul.{u1} (Subtype.{succ u1} R (fun (x : R) => Membership.mem.{u1, u1} R (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) (SetLike.instMembership.{u1, u1} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) R (Submonoid.instSetLikeSubmonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1))) x S)) (Submonoid.mul.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1) S)) t s)) Case conversion may be inaccurate. Consider using '#align ore_localization.mul_one_div OreLocalization.mul_one_divₓ'. -/ @[simp] protected theorem mul_one_div {r : R} {s t : S} : r /ₒ s * (1 /ₒ t) = r /ₒ (t * s) := by simp [ore_div_mul_char r 1 s t 1 s (by simp)] #align ore_localization.mul_one_div OreLocalization.mul_one_div /- warning: ore_localization.mul_cancel -> OreLocalization.mul_cancel is a dubious translation: lean 3 declaration is forall {R : Type.{u1}} [_inst_1 : Monoid.{u1} R] {S : Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)} [_inst_2 : OreLocalization.OreSet.{u1} R _inst_1 S] {r : R} {s : coeSort.{succ u1, succ (succ u1)} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) Type.{u1} (SetLike.hasCoeToSort.{u1, u1} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) R (Submonoid.setLike.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1))) S} {t : coeSort.{succ u1, succ (succ u1)} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) Type.{u1} (SetLike.hasCoeToSort.{u1, u1} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) R (Submonoid.setLike.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1))) S}, Eq.{succ u1} (OreLocalization.{u1} R _inst_1 S _inst_2) (HMul.hMul.{u1, u1, u1} (OreLocalization.{u1} R _inst_1 S _inst_2) (OreLocalization.{u1} R _inst_1 S _inst_2) (OreLocalization.{u1} R _inst_1 S _inst_2) (instHMul.{u1} (OreLocalization.{u1} R _inst_1 S _inst_2) (OreLocalization.hasMul.{u1} R _inst_1 S _inst_2)) (OreLocalization.oreDiv.{u1} R _inst_1 S _inst_2 r s) (OreLocalization.oreDiv.{u1} R _inst_1 S _inst_2 ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) (coeSort.{succ u1, succ (succ u1)} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) Type.{u1} (SetLike.hasCoeToSort.{u1, u1} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) R (Submonoid.setLike.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1))) S) R (HasLiftT.mk.{succ u1, succ u1} (coeSort.{succ u1, succ (succ u1)} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) Type.{u1} (SetLike.hasCoeToSort.{u1, u1} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) R (Submonoid.setLike.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1))) S) R (CoeTCₓ.coe.{succ u1, succ u1} (coeSort.{succ u1, succ (succ u1)} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) Type.{u1} (SetLike.hasCoeToSort.{u1, u1} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) R (Submonoid.setLike.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1))) S) R (coeBase.{succ u1, succ u1} (coeSort.{succ u1, succ (succ u1)} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) Type.{u1} (SetLike.hasCoeToSort.{u1, u1} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) R (Submonoid.setLike.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1))) S) R (coeSubtype.{succ u1} R (fun (x : R) => Membership.Mem.{u1, u1} R (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) (SetLike.hasMem.{u1, u1} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) R (Submonoid.setLike.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1))) x S))))) s) t)) (OreLocalization.oreDiv.{u1} R _inst_1 S _inst_2 r t) but is expected to have type forall {R : Type.{u1}} [_inst_1 : Monoid.{u1} R] {S : Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)} [_inst_2 : OreLocalization.OreSet.{u1} R _inst_1 S] {r : R} {s : Subtype.{succ u1} R (fun (x : R) => Membership.mem.{u1, u1} R (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) (SetLike.instMembership.{u1, u1} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) R (Submonoid.instSetLikeSubmonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1))) x S)} {t : Subtype.{succ u1} R (fun (x : R) => Membership.mem.{u1, u1} R (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) (SetLike.instMembership.{u1, u1} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) R (Submonoid.instSetLikeSubmonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1))) x S)}, Eq.{succ u1} (OreLocalization.{u1} R _inst_1 S _inst_2) (HMul.hMul.{u1, u1, u1} (OreLocalization.{u1} R _inst_1 S _inst_2) (OreLocalization.{u1} R _inst_1 S _inst_2) (OreLocalization.{u1} R _inst_1 S _inst_2) (instHMul.{u1} (OreLocalization.{u1} R _inst_1 S _inst_2) (OreLocalization.instMulOreLocalization.{u1} R _inst_1 S _inst_2)) (OreLocalization.oreDiv.{u1} R _inst_1 S _inst_2 r s) (OreLocalization.oreDiv.{u1} R _inst_1 S _inst_2 (Subtype.val.{succ u1} R (fun (x : R) => Membership.mem.{u1, u1} R (Set.{u1} R) (Set.instMembershipSet.{u1} R) x (SetLike.coe.{u1, u1} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) R (Submonoid.instSetLikeSubmonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) S)) s) t)) (OreLocalization.oreDiv.{u1} R _inst_1 S _inst_2 r t) Case conversion may be inaccurate. Consider using '#align ore_localization.mul_cancel OreLocalization.mul_cancelₓ'. -/ @[simp] protected theorem mul_cancel {r : R} {s t : S} : r /ₒ s * (s /ₒ t) = r /ₒ t := by simp [ore_div_mul_char r s s t 1 1 (by simp)] #align ore_localization.mul_cancel OreLocalization.mul_cancel /- warning: ore_localization.mul_cancel' -> OreLocalization.mul_cancel' is a dubious translation: lean 3 declaration is forall {R : Type.{u1}} [_inst_1 : Monoid.{u1} R] {S : Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)} [_inst_2 : OreLocalization.OreSet.{u1} R _inst_1 S] {r₁ : R} {r₂ : R} {s : coeSort.{succ u1, succ (succ u1)} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) Type.{u1} (SetLike.hasCoeToSort.{u1, u1} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) R (Submonoid.setLike.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1))) S} {t : coeSort.{succ u1, succ (succ u1)} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) Type.{u1} (SetLike.hasCoeToSort.{u1, u1} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) R (Submonoid.setLike.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1))) S}, Eq.{succ u1} (OreLocalization.{u1} R _inst_1 S _inst_2) (HMul.hMul.{u1, u1, u1} (OreLocalization.{u1} R _inst_1 S _inst_2) (OreLocalization.{u1} R _inst_1 S _inst_2) (OreLocalization.{u1} R _inst_1 S _inst_2) (instHMul.{u1} (OreLocalization.{u1} R _inst_1 S _inst_2) (OreLocalization.hasMul.{u1} R _inst_1 S _inst_2)) (OreLocalization.oreDiv.{u1} R _inst_1 S _inst_2 r₁ s) (OreLocalization.oreDiv.{u1} R _inst_1 S _inst_2 (HMul.hMul.{u1, u1, u1} R R R (instHMul.{u1} R (MulOneClass.toHasMul.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1))) ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) (coeSort.{succ u1, succ (succ u1)} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) Type.{u1} (SetLike.hasCoeToSort.{u1, u1} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) R (Submonoid.setLike.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1))) S) R (HasLiftT.mk.{succ u1, succ u1} (coeSort.{succ u1, succ (succ u1)} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) Type.{u1} (SetLike.hasCoeToSort.{u1, u1} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) R (Submonoid.setLike.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1))) S) R (CoeTCₓ.coe.{succ u1, succ u1} (coeSort.{succ u1, succ (succ u1)} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) Type.{u1} (SetLike.hasCoeToSort.{u1, u1} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) R (Submonoid.setLike.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1))) S) R (coeBase.{succ u1, succ u1} (coeSort.{succ u1, succ (succ u1)} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) Type.{u1} (SetLike.hasCoeToSort.{u1, u1} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) R (Submonoid.setLike.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1))) S) R (coeSubtype.{succ u1} R (fun (x : R) => Membership.Mem.{u1, u1} R (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) (SetLike.hasMem.{u1, u1} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) R (Submonoid.setLike.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1))) x S))))) s) r₂) t)) (OreLocalization.oreDiv.{u1} R _inst_1 S _inst_2 (HMul.hMul.{u1, u1, u1} R R R (instHMul.{u1} R (MulOneClass.toHasMul.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1))) r₁ r₂) t) but is expected to have type forall {R : Type.{u1}} [_inst_1 : Monoid.{u1} R] {S : Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)} [_inst_2 : OreLocalization.OreSet.{u1} R _inst_1 S] {r₁ : R} {r₂ : R} {s : Subtype.{succ u1} R (fun (x : R) => Membership.mem.{u1, u1} R (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) (SetLike.instMembership.{u1, u1} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) R (Submonoid.instSetLikeSubmonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1))) x S)} {t : Subtype.{succ u1} R (fun (x : R) => Membership.mem.{u1, u1} R (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) (SetLike.instMembership.{u1, u1} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) R (Submonoid.instSetLikeSubmonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1))) x S)}, Eq.{succ u1} (OreLocalization.{u1} R _inst_1 S _inst_2) (HMul.hMul.{u1, u1, u1} (OreLocalization.{u1} R _inst_1 S _inst_2) (OreLocalization.{u1} R _inst_1 S _inst_2) (OreLocalization.{u1} R _inst_1 S _inst_2) (instHMul.{u1} (OreLocalization.{u1} R _inst_1 S _inst_2) (OreLocalization.instMulOreLocalization.{u1} R _inst_1 S _inst_2)) (OreLocalization.oreDiv.{u1} R _inst_1 S _inst_2 r₁ s) (OreLocalization.oreDiv.{u1} R _inst_1 S _inst_2 (HMul.hMul.{u1, u1, u1} R R R (instHMul.{u1} R (MulOneClass.toMul.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1))) (Subtype.val.{succ u1} R (fun (x : R) => Membership.mem.{u1, u1} R (Set.{u1} R) (Set.instMembershipSet.{u1} R) x (SetLike.coe.{u1, u1} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) R (Submonoid.instSetLikeSubmonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) S)) s) r₂) t)) (OreLocalization.oreDiv.{u1} R _inst_1 S _inst_2 (HMul.hMul.{u1, u1, u1} R R R (instHMul.{u1} R (MulOneClass.toMul.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1))) r₁ r₂) t) Case conversion may be inaccurate. Consider using '#align ore_localization.mul_cancel' OreLocalization.mul_cancel'ₓ'. -/ @[simp] protected theorem mul_cancel' {r₁ r₂ : R} {s t : S} : r₁ /ₒ s * (s * r₂ /ₒ t) = r₁ * r₂ /ₒ t := by simp [ore_div_mul_char r₁ (s * r₂) s t r₂ 1 (by simp)] #align ore_localization.mul_cancel' OreLocalization.mul_cancel' /- warning: ore_localization.div_one_mul -> OreLocalization.div_one_mul is a dubious translation: lean 3 declaration is forall {R : Type.{u1}} [_inst_1 : Monoid.{u1} R] {S : Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)} [_inst_2 : OreLocalization.OreSet.{u1} R _inst_1 S] {p : R} {r : R} {s : coeSort.{succ u1, succ (succ u1)} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) Type.{u1} (SetLike.hasCoeToSort.{u1, u1} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) R (Submonoid.setLike.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1))) S}, Eq.{succ u1} (OreLocalization.{u1} R _inst_1 S _inst_2) (HMul.hMul.{u1, u1, u1} (OreLocalization.{u1} R _inst_1 S _inst_2) (OreLocalization.{u1} R _inst_1 S _inst_2) (OreLocalization.{u1} R _inst_1 S _inst_2) (instHMul.{u1} (OreLocalization.{u1} R _inst_1 S _inst_2) (OreLocalization.hasMul.{u1} R _inst_1 S _inst_2)) (OreLocalization.oreDiv.{u1} R _inst_1 S _inst_2 r (OfNat.ofNat.{u1} (coeSort.{succ u1, succ (succ u1)} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) Type.{u1} (SetLike.hasCoeToSort.{u1, u1} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) R (Submonoid.setLike.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1))) S) 1 (OfNat.mk.{u1} (coeSort.{succ u1, succ (succ u1)} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) Type.{u1} (SetLike.hasCoeToSort.{u1, u1} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) R (Submonoid.setLike.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1))) S) 1 (One.one.{u1} (coeSort.{succ u1, succ (succ u1)} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) Type.{u1} (SetLike.hasCoeToSort.{u1, u1} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) R (Submonoid.setLike.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1))) S) (Submonoid.one.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1) S))))) (OreLocalization.oreDiv.{u1} R _inst_1 S _inst_2 p s)) (OreLocalization.oreDiv.{u1} R _inst_1 S _inst_2 (HMul.hMul.{u1, u1, u1} R R R (instHMul.{u1} R (MulOneClass.toHasMul.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1))) r p) s) but is expected to have type forall {R : Type.{u1}} [_inst_1 : Monoid.{u1} R] {S : Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)} [_inst_2 : OreLocalization.OreSet.{u1} R _inst_1 S] {p : R} {r : R} {s : Subtype.{succ u1} R (fun (x : R) => Membership.mem.{u1, u1} R (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) (SetLike.instMembership.{u1, u1} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) R (Submonoid.instSetLikeSubmonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1))) x S)}, Eq.{succ u1} (OreLocalization.{u1} R _inst_1 S _inst_2) (HMul.hMul.{u1, u1, u1} (OreLocalization.{u1} R _inst_1 S _inst_2) (OreLocalization.{u1} R _inst_1 S _inst_2) (OreLocalization.{u1} R _inst_1 S _inst_2) (instHMul.{u1} (OreLocalization.{u1} R _inst_1 S _inst_2) (OreLocalization.instMulOreLocalization.{u1} R _inst_1 S _inst_2)) (OreLocalization.oreDiv.{u1} R _inst_1 S _inst_2 r (OfNat.ofNat.{u1} (Subtype.{succ u1} R (fun (x : R) => Membership.mem.{u1, u1} R (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) (SetLike.instMembership.{u1, u1} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) R (Submonoid.instSetLikeSubmonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1))) x S)) 1 (One.toOfNat1.{u1} (Subtype.{succ u1} R (fun (x : R) => Membership.mem.{u1, u1} R (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) (SetLike.instMembership.{u1, u1} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) R (Submonoid.instSetLikeSubmonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1))) x S)) (Submonoid.one.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1) S)))) (OreLocalization.oreDiv.{u1} R _inst_1 S _inst_2 p s)) (OreLocalization.oreDiv.{u1} R _inst_1 S _inst_2 (HMul.hMul.{u1, u1, u1} R R R (instHMul.{u1} R (MulOneClass.toMul.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1))) r p) s) Case conversion may be inaccurate. Consider using '#align ore_localization.div_one_mul OreLocalization.div_one_mulₓ'. -/ @[simp] theorem div_one_mul {p r : R} {s : S} : r /ₒ 1 * (p /ₒ s) = r * p /ₒ s := by--TODO use coercion r ↦ r /ₒ 1 simp [ore_div_mul_char r p 1 s p 1 (by simp)] #align ore_localization.div_one_mul OreLocalization.div_one_mul /- warning: ore_localization.numerator_unit -> OreLocalization.numeratorUnit is a dubious translation: lean 3 declaration is forall {R : Type.{u1}} [_inst_1 : Monoid.{u1} R] {S : Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)} [_inst_2 : OreLocalization.OreSet.{u1} R _inst_1 S], (coeSort.{succ u1, succ (succ u1)} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) Type.{u1} (SetLike.hasCoeToSort.{u1, u1} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) R (Submonoid.setLike.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1))) S) -> (Units.{u1} (OreLocalization.{u1} R _inst_1 S _inst_2) (OreLocalization.monoid.{u1} R _inst_1 S _inst_2)) but is expected to have type forall {R : Type.{u1}} [_inst_1 : Monoid.{u1} R] {S : Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)} [_inst_2 : OreLocalization.OreSet.{u1} R _inst_1 S], (Subtype.{succ u1} R (fun (x : R) => Membership.mem.{u1, u1} R (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) (SetLike.instMembership.{u1, u1} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) R (Submonoid.instSetLikeSubmonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1))) x S)) -> (Units.{u1} (OreLocalization.{u1} R _inst_1 S _inst_2) (OreLocalization.instMonoidOreLocalization.{u1} R _inst_1 S _inst_2)) Case conversion may be inaccurate. Consider using '#align ore_localization.numerator_unit OreLocalization.numeratorUnitₓ'. -/ /-- The fraction `s /ₒ 1` as a unit in `R[S⁻¹]`, where `s : S`. -/ def numeratorUnit (s : S) : Units R[S⁻¹] where val := (s : R) /ₒ 1 inv := (1 : R) /ₒ s val_inv := OreLocalization.mul_inv s 1 inv_val := OreLocalization.mul_inv 1 s #align ore_localization.numerator_unit OreLocalization.numeratorUnit /- warning: ore_localization.numerator_hom -> OreLocalization.numeratorHom is a dubious translation: lean 3 declaration is forall {R : Type.{u1}} [_inst_1 : Monoid.{u1} R] {S : Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)} [_inst_2 : OreLocalization.OreSet.{u1} R _inst_1 S], MonoidHom.{u1, u1} R (OreLocalization.{u1} R _inst_1 S _inst_2) (Monoid.toMulOneClass.{u1} R _inst_1) (Monoid.toMulOneClass.{u1} (OreLocalization.{u1} R _inst_1 S _inst_2) (OreLocalization.monoid.{u1} R _inst_1 S _inst_2)) but is expected to have type forall {R : Type.{u1}} [_inst_1 : Monoid.{u1} R] {S : Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)} [_inst_2 : OreLocalization.OreSet.{u1} R _inst_1 S], MonoidHom.{u1, u1} R (OreLocalization.{u1} R _inst_1 S _inst_2) (Monoid.toMulOneClass.{u1} R _inst_1) (Monoid.toMulOneClass.{u1} (OreLocalization.{u1} R _inst_1 S _inst_2) (OreLocalization.instMonoidOreLocalization.{u1} R _inst_1 S _inst_2)) Case conversion may be inaccurate. Consider using '#align ore_localization.numerator_hom OreLocalization.numeratorHomₓ'. -/ /-- The multiplicative homomorphism from `R` to `R[S⁻¹]`, mapping `r : R` to the fraction `r /ₒ 1`. -/ def numeratorHom : R →* R[S⁻¹] where toFun r := r /ₒ 1 map_one' := rfl map_mul' r₁ r₂ := div_one_mul.symm #align ore_localization.numerator_hom OreLocalization.numeratorHom /- warning: ore_localization.numerator_hom_apply -> OreLocalization.numeratorHom_apply is a dubious translation: lean 3 declaration is forall {R : Type.{u1}} [_inst_1 : Monoid.{u1} R] {S : Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)} [_inst_2 : OreLocalization.OreSet.{u1} R _inst_1 S] {r : R}, Eq.{succ u1} (OreLocalization.{u1} R _inst_1 S _inst_2) (coeFn.{succ u1, succ u1} (MonoidHom.{u1, u1} R (OreLocalization.{u1} R _inst_1 S _inst_2) (Monoid.toMulOneClass.{u1} R _inst_1) (Monoid.toMulOneClass.{u1} (OreLocalization.{u1} R _inst_1 S _inst_2) (OreLocalization.monoid.{u1} R _inst_1 S _inst_2))) (fun (_x : MonoidHom.{u1, u1} R (OreLocalization.{u1} R _inst_1 S _inst_2) (Monoid.toMulOneClass.{u1} R _inst_1) (Monoid.toMulOneClass.{u1} (OreLocalization.{u1} R _inst_1 S _inst_2) (OreLocalization.monoid.{u1} R _inst_1 S _inst_2))) => R -> (OreLocalization.{u1} R _inst_1 S _inst_2)) (MonoidHom.hasCoeToFun.{u1, u1} R (OreLocalization.{u1} R _inst_1 S _inst_2) (Monoid.toMulOneClass.{u1} R _inst_1) (Monoid.toMulOneClass.{u1} (OreLocalization.{u1} R _inst_1 S _inst_2) (OreLocalization.monoid.{u1} R _inst_1 S _inst_2))) (OreLocalization.numeratorHom.{u1} R _inst_1 S _inst_2) r) (OreLocalization.oreDiv.{u1} R _inst_1 S _inst_2 r (OfNat.ofNat.{u1} (coeSort.{succ u1, succ (succ u1)} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) Type.{u1} (SetLike.hasCoeToSort.{u1, u1} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) R (Submonoid.setLike.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1))) S) 1 (OfNat.mk.{u1} (coeSort.{succ u1, succ (succ u1)} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) Type.{u1} (SetLike.hasCoeToSort.{u1, u1} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) R (Submonoid.setLike.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1))) S) 1 (One.one.{u1} (coeSort.{succ u1, succ (succ u1)} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) Type.{u1} (SetLike.hasCoeToSort.{u1, u1} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) R (Submonoid.setLike.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1))) S) (Submonoid.one.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1) S))))) but is expected to have type forall {R : Type.{u1}} [_inst_1 : Monoid.{u1} R] {S : Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)} [_inst_2 : OreLocalization.OreSet.{u1} R _inst_1 S] {r : R}, Eq.{succ u1} ((fun ([email protected]._hyg.2391 : R) => OreLocalization.{u1} R _inst_1 S _inst_2) r) (FunLike.coe.{succ u1, succ u1, succ u1} (MonoidHom.{u1, u1} R (OreLocalization.{u1} R _inst_1 S _inst_2) (Monoid.toMulOneClass.{u1} R _inst_1) (Monoid.toMulOneClass.{u1} (OreLocalization.{u1} R _inst_1 S _inst_2) (OreLocalization.instMonoidOreLocalization.{u1} R _inst_1 S _inst_2))) R (fun (_x : R) => (fun ([email protected]._hyg.2391 : R) => OreLocalization.{u1} R _inst_1 S _inst_2) _x) (MulHomClass.toFunLike.{u1, u1, u1} (MonoidHom.{u1, u1} R (OreLocalization.{u1} R _inst_1 S _inst_2) (Monoid.toMulOneClass.{u1} R _inst_1) (Monoid.toMulOneClass.{u1} (OreLocalization.{u1} R _inst_1 S _inst_2) (OreLocalization.instMonoidOreLocalization.{u1} R _inst_1 S _inst_2))) R (OreLocalization.{u1} R _inst_1 S _inst_2) (MulOneClass.toMul.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) (MulOneClass.toMul.{u1} (OreLocalization.{u1} R _inst_1 S _inst_2) (Monoid.toMulOneClass.{u1} (OreLocalization.{u1} R _inst_1 S _inst_2) (OreLocalization.instMonoidOreLocalization.{u1} R _inst_1 S _inst_2))) (MonoidHomClass.toMulHomClass.{u1, u1, u1} (MonoidHom.{u1, u1} R (OreLocalization.{u1} R _inst_1 S _inst_2) (Monoid.toMulOneClass.{u1} R _inst_1) (Monoid.toMulOneClass.{u1} (OreLocalization.{u1} R _inst_1 S _inst_2) (OreLocalization.instMonoidOreLocalization.{u1} R _inst_1 S _inst_2))) R (OreLocalization.{u1} R _inst_1 S _inst_2) (Monoid.toMulOneClass.{u1} R _inst_1) (Monoid.toMulOneClass.{u1} (OreLocalization.{u1} R _inst_1 S _inst_2) (OreLocalization.instMonoidOreLocalization.{u1} R _inst_1 S _inst_2)) (MonoidHom.monoidHomClass.{u1, u1} R (OreLocalization.{u1} R _inst_1 S _inst_2) (Monoid.toMulOneClass.{u1} R _inst_1) (Monoid.toMulOneClass.{u1} (OreLocalization.{u1} R _inst_1 S _inst_2) (OreLocalization.instMonoidOreLocalization.{u1} R _inst_1 S _inst_2))))) (OreLocalization.numeratorHom.{u1} R _inst_1 S _inst_2) r) (OreLocalization.oreDiv.{u1} R _inst_1 S _inst_2 r (OfNat.ofNat.{u1} (Subtype.{succ u1} R (fun (x : R) => Membership.mem.{u1, u1} R (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) (SetLike.instMembership.{u1, u1} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) R (Submonoid.instSetLikeSubmonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1))) x S)) 1 (One.toOfNat1.{u1} (Subtype.{succ u1} R (fun (x : R) => Membership.mem.{u1, u1} R (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) (SetLike.instMembership.{u1, u1} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) R (Submonoid.instSetLikeSubmonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1))) x S)) (Submonoid.one.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1) S)))) Case conversion may be inaccurate. Consider using '#align ore_localization.numerator_hom_apply OreLocalization.numeratorHom_applyₓ'. -/ theorem numeratorHom_apply {r : R} : numeratorHom r = r /ₒ (1 : S) := rfl #align ore_localization.numerator_hom_apply OreLocalization.numeratorHom_apply /- warning: ore_localization.numerator_is_unit -> OreLocalization.numerator_isUnit is a dubious translation: lean 3 declaration is forall {R : Type.{u1}} [_inst_1 : Monoid.{u1} R] {S : Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)} [_inst_2 : OreLocalization.OreSet.{u1} R _inst_1 S] (s : coeSort.{succ u1, succ (succ u1)} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) Type.{u1} (SetLike.hasCoeToSort.{u1, u1} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) R (Submonoid.setLike.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1))) S), IsUnit.{u1} (OreLocalization.{u1} R _inst_1 S _inst_2) (OreLocalization.monoid.{u1} R _inst_1 S _inst_2) (coeFn.{succ u1, succ u1} (MonoidHom.{u1, u1} R (OreLocalization.{u1} R _inst_1 S _inst_2) (Monoid.toMulOneClass.{u1} R _inst_1) (Monoid.toMulOneClass.{u1} (OreLocalization.{u1} R _inst_1 S _inst_2) (OreLocalization.monoid.{u1} R _inst_1 S _inst_2))) (fun (_x : MonoidHom.{u1, u1} R (OreLocalization.{u1} R _inst_1 S _inst_2) (Monoid.toMulOneClass.{u1} R _inst_1) (Monoid.toMulOneClass.{u1} (OreLocalization.{u1} R _inst_1 S _inst_2) (OreLocalization.monoid.{u1} R _inst_1 S _inst_2))) => R -> (OreLocalization.{u1} R _inst_1 S _inst_2)) (MonoidHom.hasCoeToFun.{u1, u1} R (OreLocalization.{u1} R _inst_1 S _inst_2) (Monoid.toMulOneClass.{u1} R _inst_1) (Monoid.toMulOneClass.{u1} (OreLocalization.{u1} R _inst_1 S _inst_2) (OreLocalization.monoid.{u1} R _inst_1 S _inst_2))) (OreLocalization.numeratorHom.{u1} R _inst_1 S _inst_2) ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) (coeSort.{succ u1, succ (succ u1)} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) Type.{u1} (SetLike.hasCoeToSort.{u1, u1} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) R (Submonoid.setLike.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1))) S) R (HasLiftT.mk.{succ u1, succ u1} (coeSort.{succ u1, succ (succ u1)} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) Type.{u1} (SetLike.hasCoeToSort.{u1, u1} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) R (Submonoid.setLike.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1))) S) R (CoeTCₓ.coe.{succ u1, succ u1} (coeSort.{succ u1, succ (succ u1)} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) Type.{u1} (SetLike.hasCoeToSort.{u1, u1} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) R (Submonoid.setLike.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1))) S) R (coeBase.{succ u1, succ u1} (coeSort.{succ u1, succ (succ u1)} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) Type.{u1} (SetLike.hasCoeToSort.{u1, u1} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) R (Submonoid.setLike.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1))) S) R (coeSubtype.{succ u1} R (fun (x : R) => Membership.Mem.{u1, u1} R (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) (SetLike.hasMem.{u1, u1} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) R (Submonoid.setLike.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1))) x S))))) s)) but is expected to have type forall {R : Type.{u1}} [_inst_1 : Monoid.{u1} R] {S : Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)} [_inst_2 : OreLocalization.OreSet.{u1} R _inst_1 S] (s : Subtype.{succ u1} R (fun (x : R) => Membership.mem.{u1, u1} R (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) (SetLike.instMembership.{u1, u1} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) R (Submonoid.instSetLikeSubmonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1))) x S)), IsUnit.{u1} ((fun ([email protected]._hyg.2391 : R) => OreLocalization.{u1} R _inst_1 S _inst_2) (Subtype.val.{succ u1} R (fun (x : R) => Membership.mem.{u1, u1} R (Set.{u1} R) (Set.instMembershipSet.{u1} R) x (SetLike.coe.{u1, u1} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) R (Submonoid.instSetLikeSubmonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) S)) s)) (OreLocalization.instMonoidOreLocalization.{u1} R _inst_1 S _inst_2) (FunLike.coe.{succ u1, succ u1, succ u1} (MonoidHom.{u1, u1} R (OreLocalization.{u1} R _inst_1 S _inst_2) (Monoid.toMulOneClass.{u1} R _inst_1) (Monoid.toMulOneClass.{u1} (OreLocalization.{u1} R _inst_1 S _inst_2) (OreLocalization.instMonoidOreLocalization.{u1} R _inst_1 S _inst_2))) R (fun (_x : R) => (fun ([email protected]._hyg.2391 : R) => OreLocalization.{u1} R _inst_1 S _inst_2) _x) (MulHomClass.toFunLike.{u1, u1, u1} (MonoidHom.{u1, u1} R (OreLocalization.{u1} R _inst_1 S _inst_2) (Monoid.toMulOneClass.{u1} R _inst_1) (Monoid.toMulOneClass.{u1} (OreLocalization.{u1} R _inst_1 S _inst_2) (OreLocalization.instMonoidOreLocalization.{u1} R _inst_1 S _inst_2))) R (OreLocalization.{u1} R _inst_1 S _inst_2) (MulOneClass.toMul.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) (MulOneClass.toMul.{u1} (OreLocalization.{u1} R _inst_1 S _inst_2) (Monoid.toMulOneClass.{u1} (OreLocalization.{u1} R _inst_1 S _inst_2) (OreLocalization.instMonoidOreLocalization.{u1} R _inst_1 S _inst_2))) (MonoidHomClass.toMulHomClass.{u1, u1, u1} (MonoidHom.{u1, u1} R (OreLocalization.{u1} R _inst_1 S _inst_2) (Monoid.toMulOneClass.{u1} R _inst_1) (Monoid.toMulOneClass.{u1} (OreLocalization.{u1} R _inst_1 S _inst_2) (OreLocalization.instMonoidOreLocalization.{u1} R _inst_1 S _inst_2))) R (OreLocalization.{u1} R _inst_1 S _inst_2) (Monoid.toMulOneClass.{u1} R _inst_1) (Monoid.toMulOneClass.{u1} (OreLocalization.{u1} R _inst_1 S _inst_2) (OreLocalization.instMonoidOreLocalization.{u1} R _inst_1 S _inst_2)) (MonoidHom.monoidHomClass.{u1, u1} R (OreLocalization.{u1} R _inst_1 S _inst_2) (Monoid.toMulOneClass.{u1} R _inst_1) (Monoid.toMulOneClass.{u1} (OreLocalization.{u1} R _inst_1 S _inst_2) (OreLocalization.instMonoidOreLocalization.{u1} R _inst_1 S _inst_2))))) (OreLocalization.numeratorHom.{u1} R _inst_1 S _inst_2) (Subtype.val.{succ u1} R (fun (x : R) => Membership.mem.{u1, u1} R (Set.{u1} R) (Set.instMembershipSet.{u1} R) x (SetLike.coe.{u1, u1} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) R (Submonoid.instSetLikeSubmonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) S)) s)) Case conversion may be inaccurate. Consider using '#align ore_localization.numerator_is_unit OreLocalization.numerator_isUnitₓ'. -/ theorem numerator_isUnit (s : S) : IsUnit (numeratorHom (s : R) : R[S⁻¹]) := ⟨numeratorUnit s, rfl⟩ #align ore_localization.numerator_is_unit OreLocalization.numerator_isUnit section UMP variable {T : Type _} [Monoid T] variable (f : R →* T) (fS : S →* Units T) variable (hf : ∀ s : S, f s = fS s) include f fS hf /- warning: ore_localization.universal_mul_hom -> OreLocalization.universalMulHom is a dubious translation: lean 3 declaration is forall {R : Type.{u1}} [_inst_1 : Monoid.{u1} R] {S : Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)} [_inst_2 : OreLocalization.OreSet.{u1} R _inst_1 S] {T : Type.{u2}} [_inst_3 : Monoid.{u2} T] (f : MonoidHom.{u1, u2} R T (Monoid.toMulOneClass.{u1} R _inst_1) (Monoid.toMulOneClass.{u2} T _inst_3)) (fS : MonoidHom.{u1, u2} (coeSort.{succ u1, succ (succ u1)} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) Type.{u1} (SetLike.hasCoeToSort.{u1, u1} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) R (Submonoid.setLike.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1))) S) (Units.{u2} T _inst_3) (Submonoid.toMulOneClass.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1) S) (Units.mulOneClass.{u2} T _inst_3)), (forall (s : coeSort.{succ u1, succ (succ u1)} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) Type.{u1} (SetLike.hasCoeToSort.{u1, u1} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) R (Submonoid.setLike.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1))) S), Eq.{succ u2} T (coeFn.{max (succ u2) (succ u1), max (succ u1) (succ u2)} (MonoidHom.{u1, u2} R T (Monoid.toMulOneClass.{u1} R _inst_1) (Monoid.toMulOneClass.{u2} T _inst_3)) (fun (_x : MonoidHom.{u1, u2} R T (Monoid.toMulOneClass.{u1} R _inst_1) (Monoid.toMulOneClass.{u2} T _inst_3)) => R -> T) (MonoidHom.hasCoeToFun.{u1, u2} R T (Monoid.toMulOneClass.{u1} R _inst_1) (Monoid.toMulOneClass.{u2} T _inst_3)) f ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) (coeSort.{succ u1, succ (succ u1)} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) Type.{u1} (SetLike.hasCoeToSort.{u1, u1} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) R (Submonoid.setLike.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1))) S) R (HasLiftT.mk.{succ u1, succ u1} (coeSort.{succ u1, succ (succ u1)} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) Type.{u1} (SetLike.hasCoeToSort.{u1, u1} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) R (Submonoid.setLike.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1))) S) R (CoeTCₓ.coe.{succ u1, succ u1} (coeSort.{succ u1, succ (succ u1)} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) Type.{u1} (SetLike.hasCoeToSort.{u1, u1} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) R (Submonoid.setLike.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1))) S) R (coeBase.{succ u1, succ u1} (coeSort.{succ u1, succ (succ u1)} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) Type.{u1} (SetLike.hasCoeToSort.{u1, u1} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) R (Submonoid.setLike.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1))) S) R (coeSubtype.{succ u1} R (fun (x : R) => Membership.Mem.{u1, u1} R (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) (SetLike.hasMem.{u1, u1} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) R (Submonoid.setLike.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1))) x S))))) s)) ((fun (a : Type.{u2}) (b : Type.{u2}) [self : HasLiftT.{succ u2, succ u2} a b] => self.0) (Units.{u2} T _inst_3) T (HasLiftT.mk.{succ u2, succ u2} (Units.{u2} T _inst_3) T (CoeTCₓ.coe.{succ u2, succ u2} (Units.{u2} T _inst_3) T (coeBase.{succ u2, succ u2} (Units.{u2} T _inst_3) T (Units.hasCoe.{u2} T _inst_3)))) (coeFn.{max (succ u2) (succ u1), max (succ u1) (succ u2)} (MonoidHom.{u1, u2} (coeSort.{succ u1, succ (succ u1)} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) Type.{u1} (SetLike.hasCoeToSort.{u1, u1} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) R (Submonoid.setLike.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1))) S) (Units.{u2} T _inst_3) (Submonoid.toMulOneClass.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1) S) (Units.mulOneClass.{u2} T _inst_3)) (fun (_x : MonoidHom.{u1, u2} (coeSort.{succ u1, succ (succ u1)} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) Type.{u1} (SetLike.hasCoeToSort.{u1, u1} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) R (Submonoid.setLike.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1))) S) (Units.{u2} T _inst_3) (Submonoid.toMulOneClass.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1) S) (Units.mulOneClass.{u2} T _inst_3)) => (coeSort.{succ u1, succ (succ u1)} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) Type.{u1} (SetLike.hasCoeToSort.{u1, u1} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) R (Submonoid.setLike.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1))) S) -> (Units.{u2} T _inst_3)) (MonoidHom.hasCoeToFun.{u1, u2} (coeSort.{succ u1, succ (succ u1)} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) Type.{u1} (SetLike.hasCoeToSort.{u1, u1} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) R (Submonoid.setLike.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1))) S) (Units.{u2} T _inst_3) (Submonoid.toMulOneClass.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1) S) (Units.mulOneClass.{u2} T _inst_3)) fS s))) -> (MonoidHom.{u1, u2} (OreLocalization.{u1} R _inst_1 S _inst_2) T (Monoid.toMulOneClass.{u1} (OreLocalization.{u1} R _inst_1 S _inst_2) (OreLocalization.monoid.{u1} R _inst_1 S _inst_2)) (Monoid.toMulOneClass.{u2} T _inst_3)) but is expected to have type forall {R : Type.{u1}} [_inst_1 : Monoid.{u1} R] {S : Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)} [_inst_2 : OreLocalization.OreSet.{u1} R _inst_1 S] {T : Type.{u2}} [_inst_3 : Monoid.{u2} T] (f : MonoidHom.{u1, u2} R T (Monoid.toMulOneClass.{u1} R _inst_1) (Monoid.toMulOneClass.{u2} T _inst_3)) (fS : MonoidHom.{u1, u2} (Subtype.{succ u1} R (fun (x : R) => Membership.mem.{u1, u1} R (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) (SetLike.instMembership.{u1, u1} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) R (Submonoid.instSetLikeSubmonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1))) x S)) (Units.{u2} T _inst_3) (Submonoid.toMulOneClass.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1) S) (Units.instMulOneClassUnits.{u2} T _inst_3)), (forall (s : Subtype.{succ u1} R (fun (x : R) => Membership.mem.{u1, u1} R (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) (SetLike.instMembership.{u1, u1} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) R (Submonoid.instSetLikeSubmonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1))) x S)), Eq.{succ u2} ((fun ([email protected]._hyg.2391 : R) => T) (Subtype.val.{succ u1} R (fun (x : R) => Membership.mem.{u1, u1} R (Set.{u1} R) (Set.instMembershipSet.{u1} R) x (SetLike.coe.{u1, u1} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) R (Submonoid.instSetLikeSubmonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) S)) s)) (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (MonoidHom.{u1, u2} R T (Monoid.toMulOneClass.{u1} R _inst_1) (Monoid.toMulOneClass.{u2} T _inst_3)) R (fun (_x : R) => (fun ([email protected]._hyg.2391 : R) => T) _x) (MulHomClass.toFunLike.{max u1 u2, u1, u2} (MonoidHom.{u1, u2} R T (Monoid.toMulOneClass.{u1} R _inst_1) (Monoid.toMulOneClass.{u2} T _inst_3)) R T (MulOneClass.toMul.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) (MulOneClass.toMul.{u2} T (Monoid.toMulOneClass.{u2} T _inst_3)) (MonoidHomClass.toMulHomClass.{max u1 u2, u1, u2} (MonoidHom.{u1, u2} R T (Monoid.toMulOneClass.{u1} R _inst_1) (Monoid.toMulOneClass.{u2} T _inst_3)) R T (Monoid.toMulOneClass.{u1} R _inst_1) (Monoid.toMulOneClass.{u2} T _inst_3) (MonoidHom.monoidHomClass.{u1, u2} R T (Monoid.toMulOneClass.{u1} R _inst_1) (Monoid.toMulOneClass.{u2} T _inst_3)))) f (Subtype.val.{succ u1} R (fun (x : R) => Membership.mem.{u1, u1} R (Set.{u1} R) (Set.instMembershipSet.{u1} R) x (SetLike.coe.{u1, u1} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) R (Submonoid.instSetLikeSubmonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) S)) s)) (Units.val.{u2} T _inst_3 (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (MonoidHom.{u1, u2} (Subtype.{succ u1} R (fun (x : R) => Membership.mem.{u1, u1} R (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) (SetLike.instMembership.{u1, u1} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) R (Submonoid.instSetLikeSubmonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1))) x S)) (Units.{u2} T _inst_3) (Submonoid.toMulOneClass.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1) S) (Units.instMulOneClassUnits.{u2} T _inst_3)) (Subtype.{succ u1} R (fun (x : R) => Membership.mem.{u1, u1} R (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) (SetLike.instMembership.{u1, u1} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) R (Submonoid.instSetLikeSubmonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1))) x S)) (fun (_x : Subtype.{succ u1} R (fun (x : R) => Membership.mem.{u1, u1} R (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) (SetLike.instMembership.{u1, u1} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) R (Submonoid.instSetLikeSubmonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1))) x S)) => (fun ([email protected]._hyg.2391 : Subtype.{succ u1} R (fun (x : R) => Membership.mem.{u1, u1} R (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) (SetLike.instMembership.{u1, u1} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) R (Submonoid.instSetLikeSubmonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1))) x S)) => Units.{u2} T _inst_3) _x) (MulHomClass.toFunLike.{max u1 u2, u1, u2} (MonoidHom.{u1, u2} (Subtype.{succ u1} R (fun (x : R) => Membership.mem.{u1, u1} R (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) (SetLike.instMembership.{u1, u1} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) R (Submonoid.instSetLikeSubmonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1))) x S)) (Units.{u2} T _inst_3) (Submonoid.toMulOneClass.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1) S) (Units.instMulOneClassUnits.{u2} T _inst_3)) (Subtype.{succ u1} R (fun (x : R) => Membership.mem.{u1, u1} R (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) (SetLike.instMembership.{u1, u1} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) R (Submonoid.instSetLikeSubmonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1))) x S)) (Units.{u2} T _inst_3) (MulOneClass.toMul.{u1} (Subtype.{succ u1} R (fun (x : R) => Membership.mem.{u1, u1} R (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) (SetLike.instMembership.{u1, u1} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) R (Submonoid.instSetLikeSubmonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1))) x S)) (Submonoid.toMulOneClass.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1) S)) (MulOneClass.toMul.{u2} (Units.{u2} T _inst_3) (Units.instMulOneClassUnits.{u2} T _inst_3)) (MonoidHomClass.toMulHomClass.{max u1 u2, u1, u2} (MonoidHom.{u1, u2} (Subtype.{succ u1} R (fun (x : R) => Membership.mem.{u1, u1} R (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) (SetLike.instMembership.{u1, u1} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) R (Submonoid.instSetLikeSubmonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1))) x S)) (Units.{u2} T _inst_3) (Submonoid.toMulOneClass.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1) S) (Units.instMulOneClassUnits.{u2} T _inst_3)) (Subtype.{succ u1} R (fun (x : R) => Membership.mem.{u1, u1} R (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) (SetLike.instMembership.{u1, u1} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) R (Submonoid.instSetLikeSubmonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1))) x S)) (Units.{u2} T _inst_3) (Submonoid.toMulOneClass.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1) S) (Units.instMulOneClassUnits.{u2} T _inst_3) (MonoidHom.monoidHomClass.{u1, u2} (Subtype.{succ u1} R (fun (x : R) => Membership.mem.{u1, u1} R (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) (SetLike.instMembership.{u1, u1} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) R (Submonoid.instSetLikeSubmonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1))) x S)) (Units.{u2} T _inst_3) (Submonoid.toMulOneClass.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1) S) (Units.instMulOneClassUnits.{u2} T _inst_3)))) fS s))) -> (MonoidHom.{u1, u2} (OreLocalization.{u1} R _inst_1 S _inst_2) T (Monoid.toMulOneClass.{u1} (OreLocalization.{u1} R _inst_1 S _inst_2) (OreLocalization.instMonoidOreLocalization.{u1} R _inst_1 S _inst_2)) (Monoid.toMulOneClass.{u2} T _inst_3)) Case conversion may be inaccurate. Consider using '#align ore_localization.universal_mul_hom OreLocalization.universalMulHomₓ'. -/ /-- The universal lift from a morphism `R →* T`, which maps elements of `S` to units of `T`, to a morphism `R[S⁻¹] →* T`. -/ def universalMulHom : R[S⁻¹] →* T where toFun x := x.liftExpand (fun r s => f r * ((fS s)⁻¹ : Units T)) fun r t s ht => by have : (fS ⟨s * t, ht⟩ : T) = fS s * f t := by simp only [← hf, [anonymous], MonoidHom.map_mul] conv_rhs => rw [MonoidHom.map_mul, ← mul_one (f r), ← Units.val_one, ← mul_left_inv (fS s)] rw [Units.val_mul, ← mul_assoc, mul_assoc _ ↑(fS s), ← this, mul_assoc] simp only [mul_one, Units.mul_inv] map_one' := by rw [OreLocalization.one_def, lift_expand_of] <;> simp map_mul' x y := by induction' x using OreLocalization.ind with r₁ s₁ induction' y using OreLocalization.ind with r₂ s₂ rcases ore_div_mul_char' r₁ r₂ s₁ s₂ with ⟨ra, sa, ha, ha'⟩; rw [ha']; clear ha' rw [lift_expand_of, lift_expand_of, lift_expand_of] conv_rhs => congr skip congr rw [← mul_one (f r₂), ← (fS sa).mul_inv, ← mul_assoc, ← hf, ← f.map_mul, ha, f.map_mul] rw [mul_assoc, mul_assoc, mul_assoc, ← mul_assoc _ (f s₁), hf s₁, (fS s₁).inv_mul, one_mul, f.map_mul, mul_assoc, fS.map_mul, ← Units.val_mul] rfl #align ore_localization.universal_mul_hom OreLocalization.universalMulHom /- warning: ore_localization.universal_mul_hom_apply -> OreLocalization.universalMulHom_apply is a dubious translation: lean 3 declaration is forall {R : Type.{u1}} [_inst_1 : Monoid.{u1} R] {S : Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)} [_inst_2 : OreLocalization.OreSet.{u1} R _inst_1 S] {T : Type.{u2}} [_inst_3 : Monoid.{u2} T] (f : MonoidHom.{u1, u2} R T (Monoid.toMulOneClass.{u1} R _inst_1) (Monoid.toMulOneClass.{u2} T _inst_3)) (fS : MonoidHom.{u1, u2} (coeSort.{succ u1, succ (succ u1)} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) Type.{u1} (SetLike.hasCoeToSort.{u1, u1} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) R (Submonoid.setLike.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1))) S) (Units.{u2} T _inst_3) (Submonoid.toMulOneClass.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1) S) (Units.mulOneClass.{u2} T _inst_3)) (hf : forall (s : coeSort.{succ u1, succ (succ u1)} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) Type.{u1} (SetLike.hasCoeToSort.{u1, u1} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) R (Submonoid.setLike.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1))) S), Eq.{succ u2} T (coeFn.{max (succ u2) (succ u1), max (succ u1) (succ u2)} (MonoidHom.{u1, u2} R T (Monoid.toMulOneClass.{u1} R _inst_1) (Monoid.toMulOneClass.{u2} T _inst_3)) (fun (_x : MonoidHom.{u1, u2} R T (Monoid.toMulOneClass.{u1} R _inst_1) (Monoid.toMulOneClass.{u2} T _inst_3)) => R -> T) (MonoidHom.hasCoeToFun.{u1, u2} R T (Monoid.toMulOneClass.{u1} R _inst_1) (Monoid.toMulOneClass.{u2} T _inst_3)) f ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) (coeSort.{succ u1, succ (succ u1)} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) Type.{u1} (SetLike.hasCoeToSort.{u1, u1} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) R (Submonoid.setLike.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1))) S) R (HasLiftT.mk.{succ u1, succ u1} (coeSort.{succ u1, succ (succ u1)} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) Type.{u1} (SetLike.hasCoeToSort.{u1, u1} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) R (Submonoid.setLike.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1))) S) R (CoeTCₓ.coe.{succ u1, succ u1} (coeSort.{succ u1, succ (succ u1)} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) Type.{u1} (SetLike.hasCoeToSort.{u1, u1} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) R (Submonoid.setLike.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1))) S) R (coeBase.{succ u1, succ u1} (coeSort.{succ u1, succ (succ u1)} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) Type.{u1} (SetLike.hasCoeToSort.{u1, u1} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) R (Submonoid.setLike.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1))) S) R (coeSubtype.{succ u1} R (fun (x : R) => Membership.Mem.{u1, u1} R (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) (SetLike.hasMem.{u1, u1} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) R (Submonoid.setLike.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1))) x S))))) s)) ((fun (a : Type.{u2}) (b : Type.{u2}) [self : HasLiftT.{succ u2, succ u2} a b] => self.0) (Units.{u2} T _inst_3) T (HasLiftT.mk.{succ u2, succ u2} (Units.{u2} T _inst_3) T (CoeTCₓ.coe.{succ u2, succ u2} (Units.{u2} T _inst_3) T (coeBase.{succ u2, succ u2} (Units.{u2} T _inst_3) T (Units.hasCoe.{u2} T _inst_3)))) (coeFn.{max (succ u2) (succ u1), max (succ u1) (succ u2)} (MonoidHom.{u1, u2} (coeSort.{succ u1, succ (succ u1)} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) Type.{u1} (SetLike.hasCoeToSort.{u1, u1} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) R (Submonoid.setLike.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1))) S) (Units.{u2} T _inst_3) (Submonoid.toMulOneClass.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1) S) (Units.mulOneClass.{u2} T _inst_3)) (fun (_x : MonoidHom.{u1, u2} (coeSort.{succ u1, succ (succ u1)} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) Type.{u1} (SetLike.hasCoeToSort.{u1, u1} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) R (Submonoid.setLike.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1))) S) (Units.{u2} T _inst_3) (Submonoid.toMulOneClass.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1) S) (Units.mulOneClass.{u2} T _inst_3)) => (coeSort.{succ u1, succ (succ u1)} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) Type.{u1} (SetLike.hasCoeToSort.{u1, u1} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) R (Submonoid.setLike.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1))) S) -> (Units.{u2} T _inst_3)) (MonoidHom.hasCoeToFun.{u1, u2} (coeSort.{succ u1, succ (succ u1)} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) Type.{u1} (SetLike.hasCoeToSort.{u1, u1} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) R (Submonoid.setLike.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1))) S) (Units.{u2} T _inst_3) (Submonoid.toMulOneClass.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1) S) (Units.mulOneClass.{u2} T _inst_3)) fS s))) {r : R} {s : coeSort.{succ u1, succ (succ u1)} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) Type.{u1} (SetLike.hasCoeToSort.{u1, u1} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) R (Submonoid.setLike.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1))) S}, Eq.{succ u2} T (coeFn.{max (succ u2) (succ u1), max (succ u1) (succ u2)} (MonoidHom.{u1, u2} (OreLocalization.{u1} R _inst_1 S _inst_2) T (Monoid.toMulOneClass.{u1} (OreLocalization.{u1} R _inst_1 S _inst_2) (OreLocalization.monoid.{u1} R _inst_1 S _inst_2)) (Monoid.toMulOneClass.{u2} T _inst_3)) (fun (_x : MonoidHom.{u1, u2} (OreLocalization.{u1} R _inst_1 S _inst_2) T (Monoid.toMulOneClass.{u1} (OreLocalization.{u1} R _inst_1 S _inst_2) (OreLocalization.monoid.{u1} R _inst_1 S _inst_2)) (Monoid.toMulOneClass.{u2} T _inst_3)) => (OreLocalization.{u1} R _inst_1 S _inst_2) -> T) (MonoidHom.hasCoeToFun.{u1, u2} (OreLocalization.{u1} R _inst_1 S _inst_2) T (Monoid.toMulOneClass.{u1} (OreLocalization.{u1} R _inst_1 S _inst_2) (OreLocalization.monoid.{u1} R _inst_1 S _inst_2)) (Monoid.toMulOneClass.{u2} T _inst_3)) (OreLocalization.universalMulHom.{u1, u2} R _inst_1 S _inst_2 T _inst_3 f fS hf) (OreLocalization.oreDiv.{u1} R _inst_1 S _inst_2 r s)) (HMul.hMul.{u2, u2, u2} T T T (instHMul.{u2} T (MulOneClass.toHasMul.{u2} T (Monoid.toMulOneClass.{u2} T _inst_3))) (coeFn.{max (succ u2) (succ u1), max (succ u1) (succ u2)} (MonoidHom.{u1, u2} R T (Monoid.toMulOneClass.{u1} R _inst_1) (Monoid.toMulOneClass.{u2} T _inst_3)) (fun (_x : MonoidHom.{u1, u2} R T (Monoid.toMulOneClass.{u1} R _inst_1) (Monoid.toMulOneClass.{u2} T _inst_3)) => R -> T) (MonoidHom.hasCoeToFun.{u1, u2} R T (Monoid.toMulOneClass.{u1} R _inst_1) (Monoid.toMulOneClass.{u2} T _inst_3)) f r) ((fun (a : Type.{u2}) (b : Type.{u2}) [self : HasLiftT.{succ u2, succ u2} a b] => self.0) (Units.{u2} T _inst_3) T (HasLiftT.mk.{succ u2, succ u2} (Units.{u2} T _inst_3) T (CoeTCₓ.coe.{succ u2, succ u2} (Units.{u2} T _inst_3) T (coeBase.{succ u2, succ u2} (Units.{u2} T _inst_3) T (Units.hasCoe.{u2} T _inst_3)))) (Inv.inv.{u2} (Units.{u2} T _inst_3) (Units.hasInv.{u2} T _inst_3) (coeFn.{max (succ u2) (succ u1), max (succ u1) (succ u2)} (MonoidHom.{u1, u2} (coeSort.{succ u1, succ (succ u1)} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) Type.{u1} (SetLike.hasCoeToSort.{u1, u1} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) R (Submonoid.setLike.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1))) S) (Units.{u2} T _inst_3) (Submonoid.toMulOneClass.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1) S) (Units.mulOneClass.{u2} T _inst_3)) (fun (_x : MonoidHom.{u1, u2} (coeSort.{succ u1, succ (succ u1)} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) Type.{u1} (SetLike.hasCoeToSort.{u1, u1} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) R (Submonoid.setLike.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1))) S) (Units.{u2} T _inst_3) (Submonoid.toMulOneClass.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1) S) (Units.mulOneClass.{u2} T _inst_3)) => (coeSort.{succ u1, succ (succ u1)} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) Type.{u1} (SetLike.hasCoeToSort.{u1, u1} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) R (Submonoid.setLike.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1))) S) -> (Units.{u2} T _inst_3)) (MonoidHom.hasCoeToFun.{u1, u2} (coeSort.{succ u1, succ (succ u1)} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) Type.{u1} (SetLike.hasCoeToSort.{u1, u1} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) R (Submonoid.setLike.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1))) S) (Units.{u2} T _inst_3) (Submonoid.toMulOneClass.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1) S) (Units.mulOneClass.{u2} T _inst_3)) fS s)))) but is expected to have type forall {R : Type.{u2}} [_inst_1 : Monoid.{u2} R] {S : Submonoid.{u2} R (Monoid.toMulOneClass.{u2} R _inst_1)} [_inst_2 : OreLocalization.OreSet.{u2} R _inst_1 S] {T : Type.{u1}} [_inst_3 : Monoid.{u1} T] (f : MonoidHom.{u2, u1} R T (Monoid.toMulOneClass.{u2} R _inst_1) (Monoid.toMulOneClass.{u1} T _inst_3)) (fS : MonoidHom.{u2, u1} (Subtype.{succ u2} R (fun (x : R) => Membership.mem.{u2, u2} R (Submonoid.{u2} R (Monoid.toMulOneClass.{u2} R _inst_1)) (SetLike.instMembership.{u2, u2} (Submonoid.{u2} R (Monoid.toMulOneClass.{u2} R _inst_1)) R (Submonoid.instSetLikeSubmonoid.{u2} R (Monoid.toMulOneClass.{u2} R _inst_1))) x S)) (Units.{u1} T _inst_3) (Submonoid.toMulOneClass.{u2} R (Monoid.toMulOneClass.{u2} R _inst_1) S) (Units.instMulOneClassUnits.{u1} T _inst_3)) (hf : forall (s : Subtype.{succ u2} R (fun (x : R) => Membership.mem.{u2, u2} R (Submonoid.{u2} R (Monoid.toMulOneClass.{u2} R _inst_1)) (SetLike.instMembership.{u2, u2} (Submonoid.{u2} R (Monoid.toMulOneClass.{u2} R _inst_1)) R (Submonoid.instSetLikeSubmonoid.{u2} R (Monoid.toMulOneClass.{u2} R _inst_1))) x S)), Eq.{succ u1} ((fun ([email protected]._hyg.2391 : R) => T) (Subtype.val.{succ u2} R (fun (x : R) => Membership.mem.{u2, u2} R (Set.{u2} R) (Set.instMembershipSet.{u2} R) x (SetLike.coe.{u2, u2} (Submonoid.{u2} R (Monoid.toMulOneClass.{u2} R _inst_1)) R (Submonoid.instSetLikeSubmonoid.{u2} R (Monoid.toMulOneClass.{u2} R _inst_1)) S)) s)) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (MonoidHom.{u2, u1} R T (Monoid.toMulOneClass.{u2} R _inst_1) (Monoid.toMulOneClass.{u1} T _inst_3)) R (fun (_x : R) => (fun ([email protected]._hyg.2391 : R) => T) _x) (MulHomClass.toFunLike.{max u2 u1, u2, u1} (MonoidHom.{u2, u1} R T (Monoid.toMulOneClass.{u2} R _inst_1) (Monoid.toMulOneClass.{u1} T _inst_3)) R T (MulOneClass.toMul.{u2} R (Monoid.toMulOneClass.{u2} R _inst_1)) (MulOneClass.toMul.{u1} T (Monoid.toMulOneClass.{u1} T _inst_3)) (MonoidHomClass.toMulHomClass.{max u2 u1, u2, u1} (MonoidHom.{u2, u1} R T (Monoid.toMulOneClass.{u2} R _inst_1) (Monoid.toMulOneClass.{u1} T _inst_3)) R T (Monoid.toMulOneClass.{u2} R _inst_1) (Monoid.toMulOneClass.{u1} T _inst_3) (MonoidHom.monoidHomClass.{u2, u1} R T (Monoid.toMulOneClass.{u2} R _inst_1) (Monoid.toMulOneClass.{u1} T _inst_3)))) f (Subtype.val.{succ u2} R (fun (x : R) => Membership.mem.{u2, u2} R (Set.{u2} R) (Set.instMembershipSet.{u2} R) x (SetLike.coe.{u2, u2} (Submonoid.{u2} R (Monoid.toMulOneClass.{u2} R _inst_1)) R (Submonoid.instSetLikeSubmonoid.{u2} R (Monoid.toMulOneClass.{u2} R _inst_1)) S)) s)) (Units.val.{u1} T _inst_3 (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (MonoidHom.{u2, u1} (Subtype.{succ u2} R (fun (x : R) => Membership.mem.{u2, u2} R (Submonoid.{u2} R (Monoid.toMulOneClass.{u2} R _inst_1)) (SetLike.instMembership.{u2, u2} (Submonoid.{u2} R (Monoid.toMulOneClass.{u2} R _inst_1)) R (Submonoid.instSetLikeSubmonoid.{u2} R (Monoid.toMulOneClass.{u2} R _inst_1))) x S)) (Units.{u1} T _inst_3) (Submonoid.toMulOneClass.{u2} R (Monoid.toMulOneClass.{u2} R _inst_1) S) (Units.instMulOneClassUnits.{u1} T _inst_3)) (Subtype.{succ u2} R (fun (x : R) => Membership.mem.{u2, u2} R (Submonoid.{u2} R (Monoid.toMulOneClass.{u2} R _inst_1)) (SetLike.instMembership.{u2, u2} (Submonoid.{u2} R (Monoid.toMulOneClass.{u2} R _inst_1)) R (Submonoid.instSetLikeSubmonoid.{u2} R (Monoid.toMulOneClass.{u2} R _inst_1))) x S)) (fun (_x : Subtype.{succ u2} R (fun (x : R) => Membership.mem.{u2, u2} R (Submonoid.{u2} R (Monoid.toMulOneClass.{u2} R _inst_1)) (SetLike.instMembership.{u2, u2} (Submonoid.{u2} R (Monoid.toMulOneClass.{u2} R _inst_1)) R (Submonoid.instSetLikeSubmonoid.{u2} R (Monoid.toMulOneClass.{u2} R _inst_1))) x S)) => (fun ([email protected]._hyg.2391 : Subtype.{succ u2} R (fun (x : R) => Membership.mem.{u2, u2} R (Submonoid.{u2} R (Monoid.toMulOneClass.{u2} R _inst_1)) (SetLike.instMembership.{u2, u2} (Submonoid.{u2} R (Monoid.toMulOneClass.{u2} R _inst_1)) R (Submonoid.instSetLikeSubmonoid.{u2} R (Monoid.toMulOneClass.{u2} R _inst_1))) x S)) => Units.{u1} T _inst_3) _x) (MulHomClass.toFunLike.{max u2 u1, u2, u1} (MonoidHom.{u2, u1} (Subtype.{succ u2} R (fun (x : R) => Membership.mem.{u2, u2} R (Submonoid.{u2} R (Monoid.toMulOneClass.{u2} R _inst_1)) (SetLike.instMembership.{u2, u2} (Submonoid.{u2} R (Monoid.toMulOneClass.{u2} R _inst_1)) R (Submonoid.instSetLikeSubmonoid.{u2} R (Monoid.toMulOneClass.{u2} R _inst_1))) x S)) (Units.{u1} T _inst_3) (Submonoid.toMulOneClass.{u2} R (Monoid.toMulOneClass.{u2} R _inst_1) S) (Units.instMulOneClassUnits.{u1} T _inst_3)) (Subtype.{succ u2} R (fun (x : R) => Membership.mem.{u2, u2} R (Submonoid.{u2} R (Monoid.toMulOneClass.{u2} R _inst_1)) (SetLike.instMembership.{u2, u2} (Submonoid.{u2} R (Monoid.toMulOneClass.{u2} R _inst_1)) R (Submonoid.instSetLikeSubmonoid.{u2} R (Monoid.toMulOneClass.{u2} R _inst_1))) x S)) (Units.{u1} T _inst_3) (MulOneClass.toMul.{u2} (Subtype.{succ u2} R (fun (x : R) => Membership.mem.{u2, u2} R (Submonoid.{u2} R (Monoid.toMulOneClass.{u2} R _inst_1)) (SetLike.instMembership.{u2, u2} (Submonoid.{u2} R (Monoid.toMulOneClass.{u2} R _inst_1)) R (Submonoid.instSetLikeSubmonoid.{u2} R (Monoid.toMulOneClass.{u2} R _inst_1))) x S)) (Submonoid.toMulOneClass.{u2} R (Monoid.toMulOneClass.{u2} R _inst_1) S)) (MulOneClass.toMul.{u1} (Units.{u1} T _inst_3) (Units.instMulOneClassUnits.{u1} T _inst_3)) (MonoidHomClass.toMulHomClass.{max u2 u1, u2, u1} (MonoidHom.{u2, u1} (Subtype.{succ u2} R (fun (x : R) => Membership.mem.{u2, u2} R (Submonoid.{u2} R (Monoid.toMulOneClass.{u2} R _inst_1)) (SetLike.instMembership.{u2, u2} (Submonoid.{u2} R (Monoid.toMulOneClass.{u2} R _inst_1)) R (Submonoid.instSetLikeSubmonoid.{u2} R (Monoid.toMulOneClass.{u2} R _inst_1))) x S)) (Units.{u1} T _inst_3) (Submonoid.toMulOneClass.{u2} R (Monoid.toMulOneClass.{u2} R _inst_1) S) (Units.instMulOneClassUnits.{u1} T _inst_3)) (Subtype.{succ u2} R (fun (x : R) => Membership.mem.{u2, u2} R (Submonoid.{u2} R (Monoid.toMulOneClass.{u2} R _inst_1)) (SetLike.instMembership.{u2, u2} (Submonoid.{u2} R (Monoid.toMulOneClass.{u2} R _inst_1)) R (Submonoid.instSetLikeSubmonoid.{u2} R (Monoid.toMulOneClass.{u2} R _inst_1))) x S)) (Units.{u1} T _inst_3) (Submonoid.toMulOneClass.{u2} R (Monoid.toMulOneClass.{u2} R _inst_1) S) (Units.instMulOneClassUnits.{u1} T _inst_3) (MonoidHom.monoidHomClass.{u2, u1} (Subtype.{succ u2} R (fun (x : R) => Membership.mem.{u2, u2} R (Submonoid.{u2} R (Monoid.toMulOneClass.{u2} R _inst_1)) (SetLike.instMembership.{u2, u2} (Submonoid.{u2} R (Monoid.toMulOneClass.{u2} R _inst_1)) R (Submonoid.instSetLikeSubmonoid.{u2} R (Monoid.toMulOneClass.{u2} R _inst_1))) x S)) (Units.{u1} T _inst_3) (Submonoid.toMulOneClass.{u2} R (Monoid.toMulOneClass.{u2} R _inst_1) S) (Units.instMulOneClassUnits.{u1} T _inst_3)))) fS s))) {r : R} {s : Subtype.{succ u2} R (fun (x : R) => Membership.mem.{u2, u2} R (Submonoid.{u2} R (Monoid.toMulOneClass.{u2} R _inst_1)) (SetLike.instMembership.{u2, u2} (Submonoid.{u2} R (Monoid.toMulOneClass.{u2} R _inst_1)) R (Submonoid.instSetLikeSubmonoid.{u2} R (Monoid.toMulOneClass.{u2} R _inst_1))) x S)}, Eq.{succ u1} ((fun ([email protected]._hyg.2391 : OreLocalization.{u2} R _inst_1 S _inst_2) => T) (OreLocalization.oreDiv.{u2} R _inst_1 S _inst_2 r s)) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (MonoidHom.{u2, u1} (OreLocalization.{u2} R _inst_1 S _inst_2) T (Monoid.toMulOneClass.{u2} (OreLocalization.{u2} R _inst_1 S _inst_2) (OreLocalization.instMonoidOreLocalization.{u2} R _inst_1 S _inst_2)) (Monoid.toMulOneClass.{u1} T _inst_3)) (OreLocalization.{u2} R _inst_1 S _inst_2) (fun (_x : OreLocalization.{u2} R _inst_1 S _inst_2) => (fun ([email protected]._hyg.2391 : OreLocalization.{u2} R _inst_1 S _inst_2) => T) _x) (MulHomClass.toFunLike.{max u2 u1, u2, u1} (MonoidHom.{u2, u1} (OreLocalization.{u2} R _inst_1 S _inst_2) T (Monoid.toMulOneClass.{u2} (OreLocalization.{u2} R _inst_1 S _inst_2) (OreLocalization.instMonoidOreLocalization.{u2} R _inst_1 S _inst_2)) (Monoid.toMulOneClass.{u1} T _inst_3)) (OreLocalization.{u2} R _inst_1 S _inst_2) T (MulOneClass.toMul.{u2} (OreLocalization.{u2} R _inst_1 S _inst_2) (Monoid.toMulOneClass.{u2} (OreLocalization.{u2} R _inst_1 S _inst_2) (OreLocalization.instMonoidOreLocalization.{u2} R _inst_1 S _inst_2))) (MulOneClass.toMul.{u1} T (Monoid.toMulOneClass.{u1} T _inst_3)) (MonoidHomClass.toMulHomClass.{max u2 u1, u2, u1} (MonoidHom.{u2, u1} (OreLocalization.{u2} R _inst_1 S _inst_2) T (Monoid.toMulOneClass.{u2} (OreLocalization.{u2} R _inst_1 S _inst_2) (OreLocalization.instMonoidOreLocalization.{u2} R _inst_1 S _inst_2)) (Monoid.toMulOneClass.{u1} T _inst_3)) (OreLocalization.{u2} R _inst_1 S _inst_2) T (Monoid.toMulOneClass.{u2} (OreLocalization.{u2} R _inst_1 S _inst_2) (OreLocalization.instMonoidOreLocalization.{u2} R _inst_1 S _inst_2)) (Monoid.toMulOneClass.{u1} T _inst_3) (MonoidHom.monoidHomClass.{u2, u1} (OreLocalization.{u2} R _inst_1 S _inst_2) T (Monoid.toMulOneClass.{u2} (OreLocalization.{u2} R _inst_1 S _inst_2) (OreLocalization.instMonoidOreLocalization.{u2} R _inst_1 S _inst_2)) (Monoid.toMulOneClass.{u1} T _inst_3)))) (OreLocalization.universalMulHom.{u2, u1} R _inst_1 S _inst_2 T _inst_3 f fS hf) (OreLocalization.oreDiv.{u2} R _inst_1 S _inst_2 r s)) (HMul.hMul.{u1, u1, u1} ((fun ([email protected]._hyg.2391 : R) => T) r) T ((fun ([email protected]._hyg.2391 : R) => T) r) (instHMul.{u1} ((fun ([email protected]._hyg.2391 : R) => T) r) (MulOneClass.toMul.{u1} ((fun ([email protected]._hyg.2391 : R) => T) r) (Monoid.toMulOneClass.{u1} ((fun ([email protected]._hyg.2391 : R) => T) r) _inst_3))) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (MonoidHom.{u2, u1} R T (Monoid.toMulOneClass.{u2} R _inst_1) (Monoid.toMulOneClass.{u1} T _inst_3)) R (fun (_x : R) => (fun ([email protected]._hyg.2391 : R) => T) _x) (MulHomClass.toFunLike.{max u2 u1, u2, u1} (MonoidHom.{u2, u1} R T (Monoid.toMulOneClass.{u2} R _inst_1) (Monoid.toMulOneClass.{u1} T _inst_3)) R T (MulOneClass.toMul.{u2} R (Monoid.toMulOneClass.{u2} R _inst_1)) (MulOneClass.toMul.{u1} T (Monoid.toMulOneClass.{u1} T _inst_3)) (MonoidHomClass.toMulHomClass.{max u2 u1, u2, u1} (MonoidHom.{u2, u1} R T (Monoid.toMulOneClass.{u2} R _inst_1) (Monoid.toMulOneClass.{u1} T _inst_3)) R T (Monoid.toMulOneClass.{u2} R _inst_1) (Monoid.toMulOneClass.{u1} T _inst_3) (MonoidHom.monoidHomClass.{u2, u1} R T (Monoid.toMulOneClass.{u2} R _inst_1) (Monoid.toMulOneClass.{u1} T _inst_3)))) f r) (Units.val.{u1} T _inst_3 (Inv.inv.{u1} (Units.{u1} T _inst_3) (Units.instInvUnits.{u1} T _inst_3) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (MonoidHom.{u2, u1} (Subtype.{succ u2} R (fun (x : R) => Membership.mem.{u2, u2} R (Submonoid.{u2} R (Monoid.toMulOneClass.{u2} R _inst_1)) (SetLike.instMembership.{u2, u2} (Submonoid.{u2} R (Monoid.toMulOneClass.{u2} R _inst_1)) R (Submonoid.instSetLikeSubmonoid.{u2} R (Monoid.toMulOneClass.{u2} R _inst_1))) x S)) (Units.{u1} T _inst_3) (Submonoid.toMulOneClass.{u2} R (Monoid.toMulOneClass.{u2} R _inst_1) S) (Units.instMulOneClassUnits.{u1} T _inst_3)) (Subtype.{succ u2} R (fun (x : R) => Membership.mem.{u2, u2} R (Submonoid.{u2} R (Monoid.toMulOneClass.{u2} R _inst_1)) (SetLike.instMembership.{u2, u2} (Submonoid.{u2} R (Monoid.toMulOneClass.{u2} R _inst_1)) R (Submonoid.instSetLikeSubmonoid.{u2} R (Monoid.toMulOneClass.{u2} R _inst_1))) x S)) (fun (_x : Subtype.{succ u2} R (fun (x : R) => Membership.mem.{u2, u2} R (Submonoid.{u2} R (Monoid.toMulOneClass.{u2} R _inst_1)) (SetLike.instMembership.{u2, u2} (Submonoid.{u2} R (Monoid.toMulOneClass.{u2} R _inst_1)) R (Submonoid.instSetLikeSubmonoid.{u2} R (Monoid.toMulOneClass.{u2} R _inst_1))) x S)) => (fun ([email protected]._hyg.2391 : Subtype.{succ u2} R (fun (x : R) => Membership.mem.{u2, u2} R (Submonoid.{u2} R (Monoid.toMulOneClass.{u2} R _inst_1)) (SetLike.instMembership.{u2, u2} (Submonoid.{u2} R (Monoid.toMulOneClass.{u2} R _inst_1)) R (Submonoid.instSetLikeSubmonoid.{u2} R (Monoid.toMulOneClass.{u2} R _inst_1))) x S)) => Units.{u1} T _inst_3) _x) (MulHomClass.toFunLike.{max u2 u1, u2, u1} (MonoidHom.{u2, u1} (Subtype.{succ u2} R (fun (x : R) => Membership.mem.{u2, u2} R (Submonoid.{u2} R (Monoid.toMulOneClass.{u2} R _inst_1)) (SetLike.instMembership.{u2, u2} (Submonoid.{u2} R (Monoid.toMulOneClass.{u2} R _inst_1)) R (Submonoid.instSetLikeSubmonoid.{u2} R (Monoid.toMulOneClass.{u2} R _inst_1))) x S)) (Units.{u1} T _inst_3) (Submonoid.toMulOneClass.{u2} R (Monoid.toMulOneClass.{u2} R _inst_1) S) (Units.instMulOneClassUnits.{u1} T _inst_3)) (Subtype.{succ u2} R (fun (x : R) => Membership.mem.{u2, u2} R (Submonoid.{u2} R (Monoid.toMulOneClass.{u2} R _inst_1)) (SetLike.instMembership.{u2, u2} (Submonoid.{u2} R (Monoid.toMulOneClass.{u2} R _inst_1)) R (Submonoid.instSetLikeSubmonoid.{u2} R (Monoid.toMulOneClass.{u2} R _inst_1))) x S)) (Units.{u1} T _inst_3) (MulOneClass.toMul.{u2} (Subtype.{succ u2} R (fun (x : R) => Membership.mem.{u2, u2} R (Submonoid.{u2} R (Monoid.toMulOneClass.{u2} R _inst_1)) (SetLike.instMembership.{u2, u2} (Submonoid.{u2} R (Monoid.toMulOneClass.{u2} R _inst_1)) R (Submonoid.instSetLikeSubmonoid.{u2} R (Monoid.toMulOneClass.{u2} R _inst_1))) x S)) (Submonoid.toMulOneClass.{u2} R (Monoid.toMulOneClass.{u2} R _inst_1) S)) (MulOneClass.toMul.{u1} (Units.{u1} T _inst_3) (Units.instMulOneClassUnits.{u1} T _inst_3)) (MonoidHomClass.toMulHomClass.{max u2 u1, u2, u1} (MonoidHom.{u2, u1} (Subtype.{succ u2} R (fun (x : R) => Membership.mem.{u2, u2} R (Submonoid.{u2} R (Monoid.toMulOneClass.{u2} R _inst_1)) (SetLike.instMembership.{u2, u2} (Submonoid.{u2} R (Monoid.toMulOneClass.{u2} R _inst_1)) R (Submonoid.instSetLikeSubmonoid.{u2} R (Monoid.toMulOneClass.{u2} R _inst_1))) x S)) (Units.{u1} T _inst_3) (Submonoid.toMulOneClass.{u2} R (Monoid.toMulOneClass.{u2} R _inst_1) S) (Units.instMulOneClassUnits.{u1} T _inst_3)) (Subtype.{succ u2} R (fun (x : R) => Membership.mem.{u2, u2} R (Submonoid.{u2} R (Monoid.toMulOneClass.{u2} R _inst_1)) (SetLike.instMembership.{u2, u2} (Submonoid.{u2} R (Monoid.toMulOneClass.{u2} R _inst_1)) R (Submonoid.instSetLikeSubmonoid.{u2} R (Monoid.toMulOneClass.{u2} R _inst_1))) x S)) (Units.{u1} T _inst_3) (Submonoid.toMulOneClass.{u2} R (Monoid.toMulOneClass.{u2} R _inst_1) S) (Units.instMulOneClassUnits.{u1} T _inst_3) (MonoidHom.monoidHomClass.{u2, u1} (Subtype.{succ u2} R (fun (x : R) => Membership.mem.{u2, u2} R (Submonoid.{u2} R (Monoid.toMulOneClass.{u2} R _inst_1)) (SetLike.instMembership.{u2, u2} (Submonoid.{u2} R (Monoid.toMulOneClass.{u2} R _inst_1)) R (Submonoid.instSetLikeSubmonoid.{u2} R (Monoid.toMulOneClass.{u2} R _inst_1))) x S)) (Units.{u1} T _inst_3) (Submonoid.toMulOneClass.{u2} R (Monoid.toMulOneClass.{u2} R _inst_1) S) (Units.instMulOneClassUnits.{u1} T _inst_3)))) fS s)))) Case conversion may be inaccurate. Consider using '#align ore_localization.universal_mul_hom_apply OreLocalization.universalMulHom_applyₓ'. -/ theorem universalMulHom_apply {r : R} {s : S} : universalMulHom f fS hf (r /ₒ s) = f r * ((fS s)⁻¹ : Units T) := rfl #align ore_localization.universal_mul_hom_apply OreLocalization.universalMulHom_apply /- warning: ore_localization.universal_mul_hom_commutes -> OreLocalization.universalMulHom_commutes is a dubious translation: lean 3 declaration is forall {R : Type.{u1}} [_inst_1 : Monoid.{u1} R] {S : Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)} [_inst_2 : OreLocalization.OreSet.{u1} R _inst_1 S] {T : Type.{u2}} [_inst_3 : Monoid.{u2} T] (f : MonoidHom.{u1, u2} R T (Monoid.toMulOneClass.{u1} R _inst_1) (Monoid.toMulOneClass.{u2} T _inst_3)) (fS : MonoidHom.{u1, u2} (coeSort.{succ u1, succ (succ u1)} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) Type.{u1} (SetLike.hasCoeToSort.{u1, u1} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) R (Submonoid.setLike.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1))) S) (Units.{u2} T _inst_3) (Submonoid.toMulOneClass.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1) S) (Units.mulOneClass.{u2} T _inst_3)) (hf : forall (s : coeSort.{succ u1, succ (succ u1)} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) Type.{u1} (SetLike.hasCoeToSort.{u1, u1} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) R (Submonoid.setLike.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1))) S), Eq.{succ u2} T (coeFn.{max (succ u2) (succ u1), max (succ u1) (succ u2)} (MonoidHom.{u1, u2} R T (Monoid.toMulOneClass.{u1} R _inst_1) (Monoid.toMulOneClass.{u2} T _inst_3)) (fun (_x : MonoidHom.{u1, u2} R T (Monoid.toMulOneClass.{u1} R _inst_1) (Monoid.toMulOneClass.{u2} T _inst_3)) => R -> T) (MonoidHom.hasCoeToFun.{u1, u2} R T (Monoid.toMulOneClass.{u1} R _inst_1) (Monoid.toMulOneClass.{u2} T _inst_3)) f ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) (coeSort.{succ u1, succ (succ u1)} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) Type.{u1} (SetLike.hasCoeToSort.{u1, u1} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) R (Submonoid.setLike.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1))) S) R (HasLiftT.mk.{succ u1, succ u1} (coeSort.{succ u1, succ (succ u1)} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) Type.{u1} (SetLike.hasCoeToSort.{u1, u1} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) R (Submonoid.setLike.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1))) S) R (CoeTCₓ.coe.{succ u1, succ u1} (coeSort.{succ u1, succ (succ u1)} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) Type.{u1} (SetLike.hasCoeToSort.{u1, u1} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) R (Submonoid.setLike.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1))) S) R (coeBase.{succ u1, succ u1} (coeSort.{succ u1, succ (succ u1)} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) Type.{u1} (SetLike.hasCoeToSort.{u1, u1} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) R (Submonoid.setLike.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1))) S) R (coeSubtype.{succ u1} R (fun (x : R) => Membership.Mem.{u1, u1} R (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) (SetLike.hasMem.{u1, u1} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) R (Submonoid.setLike.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1))) x S))))) s)) ((fun (a : Type.{u2}) (b : Type.{u2}) [self : HasLiftT.{succ u2, succ u2} a b] => self.0) (Units.{u2} T _inst_3) T (HasLiftT.mk.{succ u2, succ u2} (Units.{u2} T _inst_3) T (CoeTCₓ.coe.{succ u2, succ u2} (Units.{u2} T _inst_3) T (coeBase.{succ u2, succ u2} (Units.{u2} T _inst_3) T (Units.hasCoe.{u2} T _inst_3)))) (coeFn.{max (succ u2) (succ u1), max (succ u1) (succ u2)} (MonoidHom.{u1, u2} (coeSort.{succ u1, succ (succ u1)} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) Type.{u1} (SetLike.hasCoeToSort.{u1, u1} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) R (Submonoid.setLike.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1))) S) (Units.{u2} T _inst_3) (Submonoid.toMulOneClass.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1) S) (Units.mulOneClass.{u2} T _inst_3)) (fun (_x : MonoidHom.{u1, u2} (coeSort.{succ u1, succ (succ u1)} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) Type.{u1} (SetLike.hasCoeToSort.{u1, u1} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) R (Submonoid.setLike.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1))) S) (Units.{u2} T _inst_3) (Submonoid.toMulOneClass.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1) S) (Units.mulOneClass.{u2} T _inst_3)) => (coeSort.{succ u1, succ (succ u1)} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) Type.{u1} (SetLike.hasCoeToSort.{u1, u1} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) R (Submonoid.setLike.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1))) S) -> (Units.{u2} T _inst_3)) (MonoidHom.hasCoeToFun.{u1, u2} (coeSort.{succ u1, succ (succ u1)} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) Type.{u1} (SetLike.hasCoeToSort.{u1, u1} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) R (Submonoid.setLike.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1))) S) (Units.{u2} T _inst_3) (Submonoid.toMulOneClass.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1) S) (Units.mulOneClass.{u2} T _inst_3)) fS s))) {r : R}, Eq.{succ u2} T (coeFn.{max (succ u2) (succ u1), max (succ u1) (succ u2)} (MonoidHom.{u1, u2} (OreLocalization.{u1} R _inst_1 S _inst_2) T (Monoid.toMulOneClass.{u1} (OreLocalization.{u1} R _inst_1 S _inst_2) (OreLocalization.monoid.{u1} R _inst_1 S _inst_2)) (Monoid.toMulOneClass.{u2} T _inst_3)) (fun (_x : MonoidHom.{u1, u2} (OreLocalization.{u1} R _inst_1 S _inst_2) T (Monoid.toMulOneClass.{u1} (OreLocalization.{u1} R _inst_1 S _inst_2) (OreLocalization.monoid.{u1} R _inst_1 S _inst_2)) (Monoid.toMulOneClass.{u2} T _inst_3)) => (OreLocalization.{u1} R _inst_1 S _inst_2) -> T) (MonoidHom.hasCoeToFun.{u1, u2} (OreLocalization.{u1} R _inst_1 S _inst_2) T (Monoid.toMulOneClass.{u1} (OreLocalization.{u1} R _inst_1 S _inst_2) (OreLocalization.monoid.{u1} R _inst_1 S _inst_2)) (Monoid.toMulOneClass.{u2} T _inst_3)) (OreLocalization.universalMulHom.{u1, u2} R _inst_1 S _inst_2 T _inst_3 f fS hf) (coeFn.{succ u1, succ u1} (MonoidHom.{u1, u1} R (OreLocalization.{u1} R _inst_1 S _inst_2) (Monoid.toMulOneClass.{u1} R _inst_1) (Monoid.toMulOneClass.{u1} (OreLocalization.{u1} R _inst_1 S _inst_2) (OreLocalization.monoid.{u1} R _inst_1 S _inst_2))) (fun (_x : MonoidHom.{u1, u1} R (OreLocalization.{u1} R _inst_1 S _inst_2) (Monoid.toMulOneClass.{u1} R _inst_1) (Monoid.toMulOneClass.{u1} (OreLocalization.{u1} R _inst_1 S _inst_2) (OreLocalization.monoid.{u1} R _inst_1 S _inst_2))) => R -> (OreLocalization.{u1} R _inst_1 S _inst_2)) (MonoidHom.hasCoeToFun.{u1, u1} R (OreLocalization.{u1} R _inst_1 S _inst_2) (Monoid.toMulOneClass.{u1} R _inst_1) (Monoid.toMulOneClass.{u1} (OreLocalization.{u1} R _inst_1 S _inst_2) (OreLocalization.monoid.{u1} R _inst_1 S _inst_2))) (OreLocalization.numeratorHom.{u1} R _inst_1 S _inst_2) r)) (coeFn.{max (succ u2) (succ u1), max (succ u1) (succ u2)} (MonoidHom.{u1, u2} R T (Monoid.toMulOneClass.{u1} R _inst_1) (Monoid.toMulOneClass.{u2} T _inst_3)) (fun (_x : MonoidHom.{u1, u2} R T (Monoid.toMulOneClass.{u1} R _inst_1) (Monoid.toMulOneClass.{u2} T _inst_3)) => R -> T) (MonoidHom.hasCoeToFun.{u1, u2} R T (Monoid.toMulOneClass.{u1} R _inst_1) (Monoid.toMulOneClass.{u2} T _inst_3)) f r) but is expected to have type forall {R : Type.{u1}} [_inst_1 : Monoid.{u1} R] {S : Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)} [_inst_2 : OreLocalization.OreSet.{u1} R _inst_1 S] {T : Type.{u2}} [_inst_3 : Monoid.{u2} T] (f : MonoidHom.{u1, u2} R T (Monoid.toMulOneClass.{u1} R _inst_1) (Monoid.toMulOneClass.{u2} T _inst_3)) (fS : MonoidHom.{u1, u2} (Subtype.{succ u1} R (fun (x : R) => Membership.mem.{u1, u1} R (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) (SetLike.instMembership.{u1, u1} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) R (Submonoid.instSetLikeSubmonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1))) x S)) (Units.{u2} T _inst_3) (Submonoid.toMulOneClass.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1) S) (Units.instMulOneClassUnits.{u2} T _inst_3)) (hf : forall (s : Subtype.{succ u1} R (fun (x : R) => Membership.mem.{u1, u1} R (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) (SetLike.instMembership.{u1, u1} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) R (Submonoid.instSetLikeSubmonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1))) x S)), Eq.{succ u2} ((fun ([email protected]._hyg.2391 : R) => T) (Subtype.val.{succ u1} R (fun (x : R) => Membership.mem.{u1, u1} R (Set.{u1} R) (Set.instMembershipSet.{u1} R) x (SetLike.coe.{u1, u1} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) R (Submonoid.instSetLikeSubmonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) S)) s)) (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (MonoidHom.{u1, u2} R T (Monoid.toMulOneClass.{u1} R _inst_1) (Monoid.toMulOneClass.{u2} T _inst_3)) R (fun (_x : R) => (fun ([email protected]._hyg.2391 : R) => T) _x) (MulHomClass.toFunLike.{max u1 u2, u1, u2} (MonoidHom.{u1, u2} R T (Monoid.toMulOneClass.{u1} R _inst_1) (Monoid.toMulOneClass.{u2} T _inst_3)) R T (MulOneClass.toMul.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) (MulOneClass.toMul.{u2} T (Monoid.toMulOneClass.{u2} T _inst_3)) (MonoidHomClass.toMulHomClass.{max u1 u2, u1, u2} (MonoidHom.{u1, u2} R T (Monoid.toMulOneClass.{u1} R _inst_1) (Monoid.toMulOneClass.{u2} T _inst_3)) R T (Monoid.toMulOneClass.{u1} R _inst_1) (Monoid.toMulOneClass.{u2} T _inst_3) (MonoidHom.monoidHomClass.{u1, u2} R T (Monoid.toMulOneClass.{u1} R _inst_1) (Monoid.toMulOneClass.{u2} T _inst_3)))) f (Subtype.val.{succ u1} R (fun (x : R) => Membership.mem.{u1, u1} R (Set.{u1} R) (Set.instMembershipSet.{u1} R) x (SetLike.coe.{u1, u1} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) R (Submonoid.instSetLikeSubmonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) S)) s)) (Units.val.{u2} T _inst_3 (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (MonoidHom.{u1, u2} (Subtype.{succ u1} R (fun (x : R) => Membership.mem.{u1, u1} R (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) (SetLike.instMembership.{u1, u1} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) R (Submonoid.instSetLikeSubmonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1))) x S)) (Units.{u2} T _inst_3) (Submonoid.toMulOneClass.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1) S) (Units.instMulOneClassUnits.{u2} T _inst_3)) (Subtype.{succ u1} R (fun (x : R) => Membership.mem.{u1, u1} R (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) (SetLike.instMembership.{u1, u1} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) R (Submonoid.instSetLikeSubmonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1))) x S)) (fun (_x : Subtype.{succ u1} R (fun (x : R) => Membership.mem.{u1, u1} R (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) (SetLike.instMembership.{u1, u1} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) R (Submonoid.instSetLikeSubmonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1))) x S)) => (fun ([email protected]._hyg.2391 : Subtype.{succ u1} R (fun (x : R) => Membership.mem.{u1, u1} R (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) (SetLike.instMembership.{u1, u1} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) R (Submonoid.instSetLikeSubmonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1))) x S)) => Units.{u2} T _inst_3) _x) (MulHomClass.toFunLike.{max u1 u2, u1, u2} (MonoidHom.{u1, u2} (Subtype.{succ u1} R (fun (x : R) => Membership.mem.{u1, u1} R (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) (SetLike.instMembership.{u1, u1} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) R (Submonoid.instSetLikeSubmonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1))) x S)) (Units.{u2} T _inst_3) (Submonoid.toMulOneClass.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1) S) (Units.instMulOneClassUnits.{u2} T _inst_3)) (Subtype.{succ u1} R (fun (x : R) => Membership.mem.{u1, u1} R (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) (SetLike.instMembership.{u1, u1} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) R (Submonoid.instSetLikeSubmonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1))) x S)) (Units.{u2} T _inst_3) (MulOneClass.toMul.{u1} (Subtype.{succ u1} R (fun (x : R) => Membership.mem.{u1, u1} R (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) (SetLike.instMembership.{u1, u1} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) R (Submonoid.instSetLikeSubmonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1))) x S)) (Submonoid.toMulOneClass.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1) S)) (MulOneClass.toMul.{u2} (Units.{u2} T _inst_3) (Units.instMulOneClassUnits.{u2} T _inst_3)) (MonoidHomClass.toMulHomClass.{max u1 u2, u1, u2} (MonoidHom.{u1, u2} (Subtype.{succ u1} R (fun (x : R) => Membership.mem.{u1, u1} R (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) (SetLike.instMembership.{u1, u1} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) R (Submonoid.instSetLikeSubmonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1))) x S)) (Units.{u2} T _inst_3) (Submonoid.toMulOneClass.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1) S) (Units.instMulOneClassUnits.{u2} T _inst_3)) (Subtype.{succ u1} R (fun (x : R) => Membership.mem.{u1, u1} R (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) (SetLike.instMembership.{u1, u1} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) R (Submonoid.instSetLikeSubmonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1))) x S)) (Units.{u2} T _inst_3) (Submonoid.toMulOneClass.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1) S) (Units.instMulOneClassUnits.{u2} T _inst_3) (MonoidHom.monoidHomClass.{u1, u2} (Subtype.{succ u1} R (fun (x : R) => Membership.mem.{u1, u1} R (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) (SetLike.instMembership.{u1, u1} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) R (Submonoid.instSetLikeSubmonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1))) x S)) (Units.{u2} T _inst_3) (Submonoid.toMulOneClass.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1) S) (Units.instMulOneClassUnits.{u2} T _inst_3)))) fS s))) {r : R}, Eq.{succ u2} ((fun ([email protected]._hyg.2391 : OreLocalization.{u1} R _inst_1 S _inst_2) => T) (FunLike.coe.{succ u1, succ u1, succ u1} (MonoidHom.{u1, u1} R (OreLocalization.{u1} R _inst_1 S _inst_2) (Monoid.toMulOneClass.{u1} R _inst_1) (Monoid.toMulOneClass.{u1} (OreLocalization.{u1} R _inst_1 S _inst_2) (OreLocalization.instMonoidOreLocalization.{u1} R _inst_1 S _inst_2))) R (fun (a : R) => (fun ([email protected]._hyg.2391 : R) => OreLocalization.{u1} R _inst_1 S _inst_2) a) (MulHomClass.toFunLike.{u1, u1, u1} (MonoidHom.{u1, u1} R (OreLocalization.{u1} R _inst_1 S _inst_2) (Monoid.toMulOneClass.{u1} R _inst_1) (Monoid.toMulOneClass.{u1} (OreLocalization.{u1} R _inst_1 S _inst_2) (OreLocalization.instMonoidOreLocalization.{u1} R _inst_1 S _inst_2))) R (OreLocalization.{u1} R _inst_1 S _inst_2) (MulOneClass.toMul.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) (MulOneClass.toMul.{u1} (OreLocalization.{u1} R _inst_1 S _inst_2) (Monoid.toMulOneClass.{u1} (OreLocalization.{u1} R _inst_1 S _inst_2) (OreLocalization.instMonoidOreLocalization.{u1} R _inst_1 S _inst_2))) (MonoidHomClass.toMulHomClass.{u1, u1, u1} (MonoidHom.{u1, u1} R (OreLocalization.{u1} R _inst_1 S _inst_2) (Monoid.toMulOneClass.{u1} R _inst_1) (Monoid.toMulOneClass.{u1} (OreLocalization.{u1} R _inst_1 S _inst_2) (OreLocalization.instMonoidOreLocalization.{u1} R _inst_1 S _inst_2))) R (OreLocalization.{u1} R _inst_1 S _inst_2) (Monoid.toMulOneClass.{u1} R _inst_1) (Monoid.toMulOneClass.{u1} (OreLocalization.{u1} R _inst_1 S _inst_2) (OreLocalization.instMonoidOreLocalization.{u1} R _inst_1 S _inst_2)) (MonoidHom.monoidHomClass.{u1, u1} R (OreLocalization.{u1} R _inst_1 S _inst_2) (Monoid.toMulOneClass.{u1} R _inst_1) (Monoid.toMulOneClass.{u1} (OreLocalization.{u1} R _inst_1 S _inst_2) (OreLocalization.instMonoidOreLocalization.{u1} R _inst_1 S _inst_2))))) (OreLocalization.numeratorHom.{u1} R _inst_1 S _inst_2) r)) (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (MonoidHom.{u1, u2} (OreLocalization.{u1} R _inst_1 S _inst_2) T (Monoid.toMulOneClass.{u1} (OreLocalization.{u1} R _inst_1 S _inst_2) (OreLocalization.instMonoidOreLocalization.{u1} R _inst_1 S _inst_2)) (Monoid.toMulOneClass.{u2} T _inst_3)) (OreLocalization.{u1} R _inst_1 S _inst_2) (fun (_x : OreLocalization.{u1} R _inst_1 S _inst_2) => (fun ([email protected]._hyg.2391 : OreLocalization.{u1} R _inst_1 S _inst_2) => T) _x) (MulHomClass.toFunLike.{max u1 u2, u1, u2} (MonoidHom.{u1, u2} (OreLocalization.{u1} R _inst_1 S _inst_2) T (Monoid.toMulOneClass.{u1} (OreLocalization.{u1} R _inst_1 S _inst_2) (OreLocalization.instMonoidOreLocalization.{u1} R _inst_1 S _inst_2)) (Monoid.toMulOneClass.{u2} T _inst_3)) (OreLocalization.{u1} R _inst_1 S _inst_2) T (MulOneClass.toMul.{u1} (OreLocalization.{u1} R _inst_1 S _inst_2) (Monoid.toMulOneClass.{u1} (OreLocalization.{u1} R _inst_1 S _inst_2) (OreLocalization.instMonoidOreLocalization.{u1} R _inst_1 S _inst_2))) (MulOneClass.toMul.{u2} T (Monoid.toMulOneClass.{u2} T _inst_3)) (MonoidHomClass.toMulHomClass.{max u1 u2, u1, u2} (MonoidHom.{u1, u2} (OreLocalization.{u1} R _inst_1 S _inst_2) T (Monoid.toMulOneClass.{u1} (OreLocalization.{u1} R _inst_1 S _inst_2) (OreLocalization.instMonoidOreLocalization.{u1} R _inst_1 S _inst_2)) (Monoid.toMulOneClass.{u2} T _inst_3)) (OreLocalization.{u1} R _inst_1 S _inst_2) T (Monoid.toMulOneClass.{u1} (OreLocalization.{u1} R _inst_1 S _inst_2) (OreLocalization.instMonoidOreLocalization.{u1} R _inst_1 S _inst_2)) (Monoid.toMulOneClass.{u2} T _inst_3) (MonoidHom.monoidHomClass.{u1, u2} (OreLocalization.{u1} R _inst_1 S _inst_2) T (Monoid.toMulOneClass.{u1} (OreLocalization.{u1} R _inst_1 S _inst_2) (OreLocalization.instMonoidOreLocalization.{u1} R _inst_1 S _inst_2)) (Monoid.toMulOneClass.{u2} T _inst_3)))) (OreLocalization.universalMulHom.{u1, u2} R _inst_1 S _inst_2 T _inst_3 f fS hf) (FunLike.coe.{succ u1, succ u1, succ u1} (MonoidHom.{u1, u1} R (OreLocalization.{u1} R _inst_1 S _inst_2) (Monoid.toMulOneClass.{u1} R _inst_1) (Monoid.toMulOneClass.{u1} (OreLocalization.{u1} R _inst_1 S _inst_2) (OreLocalization.instMonoidOreLocalization.{u1} R _inst_1 S _inst_2))) R (fun (_x : R) => (fun ([email protected]._hyg.2391 : R) => OreLocalization.{u1} R _inst_1 S _inst_2) _x) (MulHomClass.toFunLike.{u1, u1, u1} (MonoidHom.{u1, u1} R (OreLocalization.{u1} R _inst_1 S _inst_2) (Monoid.toMulOneClass.{u1} R _inst_1) (Monoid.toMulOneClass.{u1} (OreLocalization.{u1} R _inst_1 S _inst_2) (OreLocalization.instMonoidOreLocalization.{u1} R _inst_1 S _inst_2))) R (OreLocalization.{u1} R _inst_1 S _inst_2) (MulOneClass.toMul.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) (MulOneClass.toMul.{u1} (OreLocalization.{u1} R _inst_1 S _inst_2) (Monoid.toMulOneClass.{u1} (OreLocalization.{u1} R _inst_1 S _inst_2) (OreLocalization.instMonoidOreLocalization.{u1} R _inst_1 S _inst_2))) (MonoidHomClass.toMulHomClass.{u1, u1, u1} (MonoidHom.{u1, u1} R (OreLocalization.{u1} R _inst_1 S _inst_2) (Monoid.toMulOneClass.{u1} R _inst_1) (Monoid.toMulOneClass.{u1} (OreLocalization.{u1} R _inst_1 S _inst_2) (OreLocalization.instMonoidOreLocalization.{u1} R _inst_1 S _inst_2))) R (OreLocalization.{u1} R _inst_1 S _inst_2) (Monoid.toMulOneClass.{u1} R _inst_1) (Monoid.toMulOneClass.{u1} (OreLocalization.{u1} R _inst_1 S _inst_2) (OreLocalization.instMonoidOreLocalization.{u1} R _inst_1 S _inst_2)) (MonoidHom.monoidHomClass.{u1, u1} R (OreLocalization.{u1} R _inst_1 S _inst_2) (Monoid.toMulOneClass.{u1} R _inst_1) (Monoid.toMulOneClass.{u1} (OreLocalization.{u1} R _inst_1 S _inst_2) (OreLocalization.instMonoidOreLocalization.{u1} R _inst_1 S _inst_2))))) (OreLocalization.numeratorHom.{u1} R _inst_1 S _inst_2) r)) (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (MonoidHom.{u1, u2} R T (Monoid.toMulOneClass.{u1} R _inst_1) (Monoid.toMulOneClass.{u2} T _inst_3)) R (fun (_x : R) => (fun ([email protected]._hyg.2391 : R) => T) _x) (MulHomClass.toFunLike.{max u1 u2, u1, u2} (MonoidHom.{u1, u2} R T (Monoid.toMulOneClass.{u1} R _inst_1) (Monoid.toMulOneClass.{u2} T _inst_3)) R T (MulOneClass.toMul.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) (MulOneClass.toMul.{u2} T (Monoid.toMulOneClass.{u2} T _inst_3)) (MonoidHomClass.toMulHomClass.{max u1 u2, u1, u2} (MonoidHom.{u1, u2} R T (Monoid.toMulOneClass.{u1} R _inst_1) (Monoid.toMulOneClass.{u2} T _inst_3)) R T (Monoid.toMulOneClass.{u1} R _inst_1) (Monoid.toMulOneClass.{u2} T _inst_3) (MonoidHom.monoidHomClass.{u1, u2} R T (Monoid.toMulOneClass.{u1} R _inst_1) (Monoid.toMulOneClass.{u2} T _inst_3)))) f r) Case conversion may be inaccurate. Consider using '#align ore_localization.universal_mul_hom_commutes OreLocalization.universalMulHom_commutesₓ'. -/ theorem universalMulHom_commutes {r : R} : universalMulHom f fS hf (numeratorHom r) = f r := by simp [numerator_hom_apply, universal_mul_hom_apply] #align ore_localization.universal_mul_hom_commutes OreLocalization.universalMulHom_commutes /- warning: ore_localization.universal_mul_hom_unique -> OreLocalization.universalMulHom_unique is a dubious translation: lean 3 declaration is forall {R : Type.{u1}} [_inst_1 : Monoid.{u1} R] {S : Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)} [_inst_2 : OreLocalization.OreSet.{u1} R _inst_1 S] {T : Type.{u2}} [_inst_3 : Monoid.{u2} T] (f : MonoidHom.{u1, u2} R T (Monoid.toMulOneClass.{u1} R _inst_1) (Monoid.toMulOneClass.{u2} T _inst_3)) (fS : MonoidHom.{u1, u2} (coeSort.{succ u1, succ (succ u1)} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) Type.{u1} (SetLike.hasCoeToSort.{u1, u1} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) R (Submonoid.setLike.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1))) S) (Units.{u2} T _inst_3) (Submonoid.toMulOneClass.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1) S) (Units.mulOneClass.{u2} T _inst_3)) (hf : forall (s : coeSort.{succ u1, succ (succ u1)} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) Type.{u1} (SetLike.hasCoeToSort.{u1, u1} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) R (Submonoid.setLike.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1))) S), Eq.{succ u2} T (coeFn.{max (succ u2) (succ u1), max (succ u1) (succ u2)} (MonoidHom.{u1, u2} R T (Monoid.toMulOneClass.{u1} R _inst_1) (Monoid.toMulOneClass.{u2} T _inst_3)) (fun (_x : MonoidHom.{u1, u2} R T (Monoid.toMulOneClass.{u1} R _inst_1) (Monoid.toMulOneClass.{u2} T _inst_3)) => R -> T) (MonoidHom.hasCoeToFun.{u1, u2} R T (Monoid.toMulOneClass.{u1} R _inst_1) (Monoid.toMulOneClass.{u2} T _inst_3)) f ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) (coeSort.{succ u1, succ (succ u1)} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) Type.{u1} (SetLike.hasCoeToSort.{u1, u1} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) R (Submonoid.setLike.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1))) S) R (HasLiftT.mk.{succ u1, succ u1} (coeSort.{succ u1, succ (succ u1)} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) Type.{u1} (SetLike.hasCoeToSort.{u1, u1} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) R (Submonoid.setLike.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1))) S) R (CoeTCₓ.coe.{succ u1, succ u1} (coeSort.{succ u1, succ (succ u1)} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) Type.{u1} (SetLike.hasCoeToSort.{u1, u1} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) R (Submonoid.setLike.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1))) S) R (coeBase.{succ u1, succ u1} (coeSort.{succ u1, succ (succ u1)} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) Type.{u1} (SetLike.hasCoeToSort.{u1, u1} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) R (Submonoid.setLike.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1))) S) R (coeSubtype.{succ u1} R (fun (x : R) => Membership.Mem.{u1, u1} R (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) (SetLike.hasMem.{u1, u1} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) R (Submonoid.setLike.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1))) x S))))) s)) ((fun (a : Type.{u2}) (b : Type.{u2}) [self : HasLiftT.{succ u2, succ u2} a b] => self.0) (Units.{u2} T _inst_3) T (HasLiftT.mk.{succ u2, succ u2} (Units.{u2} T _inst_3) T (CoeTCₓ.coe.{succ u2, succ u2} (Units.{u2} T _inst_3) T (coeBase.{succ u2, succ u2} (Units.{u2} T _inst_3) T (Units.hasCoe.{u2} T _inst_3)))) (coeFn.{max (succ u2) (succ u1), max (succ u1) (succ u2)} (MonoidHom.{u1, u2} (coeSort.{succ u1, succ (succ u1)} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) Type.{u1} (SetLike.hasCoeToSort.{u1, u1} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) R (Submonoid.setLike.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1))) S) (Units.{u2} T _inst_3) (Submonoid.toMulOneClass.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1) S) (Units.mulOneClass.{u2} T _inst_3)) (fun (_x : MonoidHom.{u1, u2} (coeSort.{succ u1, succ (succ u1)} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) Type.{u1} (SetLike.hasCoeToSort.{u1, u1} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) R (Submonoid.setLike.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1))) S) (Units.{u2} T _inst_3) (Submonoid.toMulOneClass.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1) S) (Units.mulOneClass.{u2} T _inst_3)) => (coeSort.{succ u1, succ (succ u1)} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) Type.{u1} (SetLike.hasCoeToSort.{u1, u1} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) R (Submonoid.setLike.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1))) S) -> (Units.{u2} T _inst_3)) (MonoidHom.hasCoeToFun.{u1, u2} (coeSort.{succ u1, succ (succ u1)} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) Type.{u1} (SetLike.hasCoeToSort.{u1, u1} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1)) R (Submonoid.setLike.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1))) S) (Units.{u2} T _inst_3) (Submonoid.toMulOneClass.{u1} R (Monoid.toMulOneClass.{u1} R _inst_1) S) (Units.mulOneClass.{u2} T _inst_3)) fS s))) (φ : MonoidHom.{u1, u2} (OreLocalization.{u1} R _inst_1 S _inst_2) T (Monoid.toMulOneClass.{u1} (OreLocalization.{u1} R _inst_1 S _inst_2) (OreLocalization.monoid.{u1} R _inst_1 S _inst_2)) (Monoid.toMulOneClass.{u2} T _inst_3)), (forall (r : R), Eq.{succ u2} T (coeFn.{max (succ u2) (succ u1), max (succ u1) (succ u2)} (MonoidHom.{u1, u2} (OreLocalization.{u1} R _inst_1 S _inst_2) T (Monoid.toMulOneClass.{u1} (OreLocalization.{u1} R _inst_1 S _inst_2) (OreLocalization.monoid.{u1} R _inst_1 S _inst_2)) (Monoid.toMulOneClass.{u2} T _inst_3)) (fun (_x : MonoidHom.{u1, u2} (OreLocalization.{u1} R _inst_1 S _inst_2) T (Monoid.toMulOneClass.{u1} (OreLocalization.{u1} R _inst_1 S _inst_2) (OreLocalization.monoid.{u1} R _inst_1 S _inst_2)) (Monoid.toMulOneClass.{u2} T _inst_3)) => (OreLocalization.{u1} R _inst_1 S _inst_2) -> T) (MonoidHom.hasCoeToFun.{u1, u2} (OreLocalization.{u1} R _inst_1 S _inst_2) T (Monoid.toMulOneClass.{u1} (OreLocalization.{u1} R _inst_1 S _inst_2) (OreLocalization.monoid.{u1} R _inst_1 S _inst_2)) (Monoid.toMulOneClass.{u2} T _inst_3)) φ (coeFn.{succ u1, succ u1} (MonoidHom.{u1, u1} R (OreLocalization.{u1} R _inst_1 S _inst_2) (Monoid.toMulOneClass.{u1} R _inst_1) (Monoid.toMulOneClass.{u1} (OreLocalization.{u1} R _inst_1 S _inst_2) (OreLocalization.monoid.{u1} R _inst_1 S _inst_2))) (fun (_x : MonoidHom.{u1, u1} R (OreLocalization.{u1} R _inst_1 S _inst_2) (Monoid.toMulOneClass.{u1} R _inst_1) (Monoid.toMulOneClass.{u1} (OreLocalization.{u1} R _inst_1 S _inst_2) (OreLocalization.monoid.{u1} R _inst_1 S _inst_2))) => R -> (OreLocalization.{u1} R _inst_1 S _inst_2)) (MonoidHom.hasCoeToFun.{u1, u1} R (OreLocalization.{u1} R _inst_1 S _inst_2) (Monoid.toMulOneClass.{u1} R _inst_1) (Monoid.toMulOneClass.{u1} (OreLocalization.{u1} R _inst_1 S _inst_2) (OreLocalization.monoid.{u1} R _inst_1 S _inst_2))) (OreLocalization.numeratorHom.{u1} R _inst_1 S _inst_2) r)) (coeFn.{max (succ u2) (succ u1), max (succ u1) (succ u2)} (MonoidHom.{u1, u2} R T (Monoid.toMulOneClass.{u1} R _inst_1) (Monoid.toMulOneClass.{u2} T _inst_3)) (fun (_x : MonoidHom.{u1, u2} R T (Monoid.toMulOneClass.{u1} R _inst_1) (Monoid.toMulOneClass.{u2} T _inst_3)) => R -> T) (MonoidHom.hasCoeToFun.{u1, u2} R T (Monoid.toMulOneClass.{u1} R _inst_1) (Monoid.toMulOneClass.{u2} T _inst_3)) f r)) -> (Eq.{max (succ u2) (succ u1)} (MonoidHom.{u1, u2} (OreLocalization.{u1} R _inst_1 S _inst_2) T (Monoid.toMulOneClass.{u1} (OreLocalization.{u1} R _inst_1 S _inst_2) (OreLocalization.monoid.{u1} R _inst_1 S _inst_2)) (Monoid.toMulOneClass.{u2} T _inst_3)) φ (OreLocalization.universalMulHom.{u1, u2} R _inst_1 S _inst_2 T _inst_3 f fS hf)) but is expected to have type forall {R : Type.{u2}} [_inst_1 : Monoid.{u2} R] {S : Submonoid.{u2} R (Monoid.toMulOneClass.{u2} R _inst_1)} [_inst_2 : OreLocalization.OreSet.{u2} R _inst_1 S] {T : Type.{u1}} [_inst_3 : Monoid.{u1} T] (f : MonoidHom.{u2, u1} R T (Monoid.toMulOneClass.{u2} R _inst_1) (Monoid.toMulOneClass.{u1} T _inst_3)) (fS : MonoidHom.{u2, u1} (Subtype.{succ u2} R (fun (x : R) => Membership.mem.{u2, u2} R (Submonoid.{u2} R (Monoid.toMulOneClass.{u2} R _inst_1)) (SetLike.instMembership.{u2, u2} (Submonoid.{u2} R (Monoid.toMulOneClass.{u2} R _inst_1)) R (Submonoid.instSetLikeSubmonoid.{u2} R (Monoid.toMulOneClass.{u2} R _inst_1))) x S)) (Units.{u1} T _inst_3) (Submonoid.toMulOneClass.{u2} R (Monoid.toMulOneClass.{u2} R _inst_1) S) (Units.instMulOneClassUnits.{u1} T _inst_3)) (hf : forall (s : Subtype.{succ u2} R (fun (x : R) => Membership.mem.{u2, u2} R (Submonoid.{u2} R (Monoid.toMulOneClass.{u2} R _inst_1)) (SetLike.instMembership.{u2, u2} (Submonoid.{u2} R (Monoid.toMulOneClass.{u2} R _inst_1)) R (Submonoid.instSetLikeSubmonoid.{u2} R (Monoid.toMulOneClass.{u2} R _inst_1))) x S)), Eq.{succ u1} ((fun ([email protected]._hyg.2391 : R) => T) (Subtype.val.{succ u2} R (fun (x : R) => Membership.mem.{u2, u2} R (Set.{u2} R) (Set.instMembershipSet.{u2} R) x (SetLike.coe.{u2, u2} (Submonoid.{u2} R (Monoid.toMulOneClass.{u2} R _inst_1)) R (Submonoid.instSetLikeSubmonoid.{u2} R (Monoid.toMulOneClass.{u2} R _inst_1)) S)) s)) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (MonoidHom.{u2, u1} R T (Monoid.toMulOneClass.{u2} R _inst_1) (Monoid.toMulOneClass.{u1} T _inst_3)) R (fun (_x : R) => (fun ([email protected]._hyg.2391 : R) => T) _x) (MulHomClass.toFunLike.{max u2 u1, u2, u1} (MonoidHom.{u2, u1} R T (Monoid.toMulOneClass.{u2} R _inst_1) (Monoid.toMulOneClass.{u1} T _inst_3)) R T (MulOneClass.toMul.{u2} R (Monoid.toMulOneClass.{u2} R _inst_1)) (MulOneClass.toMul.{u1} T (Monoid.toMulOneClass.{u1} T _inst_3)) (MonoidHomClass.toMulHomClass.{max u2 u1, u2, u1} (MonoidHom.{u2, u1} R T (Monoid.toMulOneClass.{u2} R _inst_1) (Monoid.toMulOneClass.{u1} T _inst_3)) R T (Monoid.toMulOneClass.{u2} R _inst_1) (Monoid.toMulOneClass.{u1} T _inst_3) (MonoidHom.monoidHomClass.{u2, u1} R T (Monoid.toMulOneClass.{u2} R _inst_1) (Monoid.toMulOneClass.{u1} T _inst_3)))) f (Subtype.val.{succ u2} R (fun (x : R) => Membership.mem.{u2, u2} R (Set.{u2} R) (Set.instMembershipSet.{u2} R) x (SetLike.coe.{u2, u2} (Submonoid.{u2} R (Monoid.toMulOneClass.{u2} R _inst_1)) R (Submonoid.instSetLikeSubmonoid.{u2} R (Monoid.toMulOneClass.{u2} R _inst_1)) S)) s)) (Units.val.{u1} T _inst_3 (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (MonoidHom.{u2, u1} (Subtype.{succ u2} R (fun (x : R) => Membership.mem.{u2, u2} R (Submonoid.{u2} R (Monoid.toMulOneClass.{u2} R _inst_1)) (SetLike.instMembership.{u2, u2} (Submonoid.{u2} R (Monoid.toMulOneClass.{u2} R _inst_1)) R (Submonoid.instSetLikeSubmonoid.{u2} R (Monoid.toMulOneClass.{u2} R _inst_1))) x S)) (Units.{u1} T _inst_3) (Submonoid.toMulOneClass.{u2} R (Monoid.toMulOneClass.{u2} R _inst_1) S) (Units.instMulOneClassUnits.{u1} T _inst_3)) (Subtype.{succ u2} R (fun (x : R) => Membership.mem.{u2, u2} R (Submonoid.{u2} R (Monoid.toMulOneClass.{u2} R _inst_1)) (SetLike.instMembership.{u2, u2} (Submonoid.{u2} R (Monoid.toMulOneClass.{u2} R _inst_1)) R (Submonoid.instSetLikeSubmonoid.{u2} R (Monoid.toMulOneClass.{u2} R _inst_1))) x S)) (fun (_x : Subtype.{succ u2} R (fun (x : R) => Membership.mem.{u2, u2} R (Submonoid.{u2} R (Monoid.toMulOneClass.{u2} R _inst_1)) (SetLike.instMembership.{u2, u2} (Submonoid.{u2} R (Monoid.toMulOneClass.{u2} R _inst_1)) R (Submonoid.instSetLikeSubmonoid.{u2} R (Monoid.toMulOneClass.{u2} R _inst_1))) x S)) => (fun ([email protected]._hyg.2391 : Subtype.{succ u2} R (fun (x : R) => Membership.mem.{u2, u2} R (Submonoid.{u2} R (Monoid.toMulOneClass.{u2} R _inst_1)) (SetLike.instMembership.{u2, u2} (Submonoid.{u2} R (Monoid.toMulOneClass.{u2} R _inst_1)) R (Submonoid.instSetLikeSubmonoid.{u2} R (Monoid.toMulOneClass.{u2} R _inst_1))) x S)) => Units.{u1} T _inst_3) _x) (MulHomClass.toFunLike.{max u2 u1, u2, u1} (MonoidHom.{u2, u1} (Subtype.{succ u2} R (fun (x : R) => Membership.mem.{u2, u2} R (Submonoid.{u2} R (Monoid.toMulOneClass.{u2} R _inst_1)) (SetLike.instMembership.{u2, u2} (Submonoid.{u2} R (Monoid.toMulOneClass.{u2} R _inst_1)) R (Submonoid.instSetLikeSubmonoid.{u2} R (Monoid.toMulOneClass.{u2} R _inst_1))) x S)) (Units.{u1} T _inst_3) (Submonoid.toMulOneClass.{u2} R (Monoid.toMulOneClass.{u2} R _inst_1) S) (Units.instMulOneClassUnits.{u1} T _inst_3)) (Subtype.{succ u2} R (fun (x : R) => Membership.mem.{u2, u2} R (Submonoid.{u2} R (Monoid.toMulOneClass.{u2} R _inst_1)) (SetLike.instMembership.{u2, u2} (Submonoid.{u2} R (Monoid.toMulOneClass.{u2} R _inst_1)) R (Submonoid.instSetLikeSubmonoid.{u2} R (Monoid.toMulOneClass.{u2} R _inst_1))) x S)) (Units.{u1} T _inst_3) (MulOneClass.toMul.{u2} (Subtype.{succ u2} R (fun (x : R) => Membership.mem.{u2, u2} R (Submonoid.{u2} R (Monoid.toMulOneClass.{u2} R _inst_1)) (SetLike.instMembership.{u2, u2} (Submonoid.{u2} R (Monoid.toMulOneClass.{u2} R _inst_1)) R (Submonoid.instSetLikeSubmonoid.{u2} R (Monoid.toMulOneClass.{u2} R _inst_1))) x S)) (Submonoid.toMulOneClass.{u2} R (Monoid.toMulOneClass.{u2} R _inst_1) S)) (MulOneClass.toMul.{u1} (Units.{u1} T _inst_3) (Units.instMulOneClassUnits.{u1} T _inst_3)) (MonoidHomClass.toMulHomClass.{max u2 u1, u2, u1} (MonoidHom.{u2, u1} (Subtype.{succ u2} R (fun (x : R) => Membership.mem.{u2, u2} R (Submonoid.{u2} R (Monoid.toMulOneClass.{u2} R _inst_1)) (SetLike.instMembership.{u2, u2} (Submonoid.{u2} R (Monoid.toMulOneClass.{u2} R _inst_1)) R (Submonoid.instSetLikeSubmonoid.{u2} R (Monoid.toMulOneClass.{u2} R _inst_1))) x S)) (Units.{u1} T _inst_3) (Submonoid.toMulOneClass.{u2} R (Monoid.toMulOneClass.{u2} R _inst_1) S) (Units.instMulOneClassUnits.{u1} T _inst_3)) (Subtype.{succ u2} R (fun (x : R) => Membership.mem.{u2, u2} R (Submonoid.{u2} R (Monoid.toMulOneClass.{u2} R _inst_1)) (SetLike.instMembership.{u2, u2} (Submonoid.{u2} R (Monoid.toMulOneClass.{u2} R _inst_1)) R (Submonoid.instSetLikeSubmonoid.{u2} R (Monoid.toMulOneClass.{u2} R _inst_1))) x S)) (Units.{u1} T _inst_3) (Submonoid.toMulOneClass.{u2} R (Monoid.toMulOneClass.{u2} R _inst_1) S) (Units.instMulOneClassUnits.{u1} T _inst_3) (MonoidHom.monoidHomClass.{u2, u1} (Subtype.{succ u2} R (fun (x : R) => Membership.mem.{u2, u2} R (Submonoid.{u2} R (Monoid.toMulOneClass.{u2} R _inst_1)) (SetLike.instMembership.{u2, u2} (Submonoid.{u2} R (Monoid.toMulOneClass.{u2} R _inst_1)) R (Submonoid.instSetLikeSubmonoid.{u2} R (Monoid.toMulOneClass.{u2} R _inst_1))) x S)) (Units.{u1} T _inst_3) (Submonoid.toMulOneClass.{u2} R (Monoid.toMulOneClass.{u2} R _inst_1) S) (Units.instMulOneClassUnits.{u1} T _inst_3)))) fS s))) (φ : MonoidHom.{u2, u1} (OreLocalization.{u2} R _inst_1 S _inst_2) T (Monoid.toMulOneClass.{u2} (OreLocalization.{u2} R _inst_1 S _inst_2) (OreLocalization.instMonoidOreLocalization.{u2} R _inst_1 S _inst_2)) (Monoid.toMulOneClass.{u1} T _inst_3)), (forall (r : R), Eq.{succ u1} ((fun ([email protected]._hyg.2391 : OreLocalization.{u2} R _inst_1 S _inst_2) => T) (FunLike.coe.{succ u2, succ u2, succ u2} (MonoidHom.{u2, u2} R (OreLocalization.{u2} R _inst_1 S _inst_2) (Monoid.toMulOneClass.{u2} R _inst_1) (Monoid.toMulOneClass.{u2} (OreLocalization.{u2} R _inst_1 S _inst_2) (OreLocalization.instMonoidOreLocalization.{u2} R _inst_1 S _inst_2))) R (fun (a : R) => (fun ([email protected]._hyg.2391 : R) => OreLocalization.{u2} R _inst_1 S _inst_2) a) (MulHomClass.toFunLike.{u2, u2, u2} (MonoidHom.{u2, u2} R (OreLocalization.{u2} R _inst_1 S _inst_2) (Monoid.toMulOneClass.{u2} R _inst_1) (Monoid.toMulOneClass.{u2} (OreLocalization.{u2} R _inst_1 S _inst_2) (OreLocalization.instMonoidOreLocalization.{u2} R _inst_1 S _inst_2))) R (OreLocalization.{u2} R _inst_1 S _inst_2) (MulOneClass.toMul.{u2} R (Monoid.toMulOneClass.{u2} R _inst_1)) (MulOneClass.toMul.{u2} (OreLocalization.{u2} R _inst_1 S _inst_2) (Monoid.toMulOneClass.{u2} (OreLocalization.{u2} R _inst_1 S _inst_2) (OreLocalization.instMonoidOreLocalization.{u2} R _inst_1 S _inst_2))) (MonoidHomClass.toMulHomClass.{u2, u2, u2} (MonoidHom.{u2, u2} R (OreLocalization.{u2} R _inst_1 S _inst_2) (Monoid.toMulOneClass.{u2} R _inst_1) (Monoid.toMulOneClass.{u2} (OreLocalization.{u2} R _inst_1 S _inst_2) (OreLocalization.instMonoidOreLocalization.{u2} R _inst_1 S _inst_2))) R (OreLocalization.{u2} R _inst_1 S _inst_2) (Monoid.toMulOneClass.{u2} R _inst_1) (Monoid.toMulOneClass.{u2} (OreLocalization.{u2} R _inst_1 S _inst_2) (OreLocalization.instMonoidOreLocalization.{u2} R _inst_1 S _inst_2)) (MonoidHom.monoidHomClass.{u2, u2} R (OreLocalization.{u2} R _inst_1 S _inst_2) (Monoid.toMulOneClass.{u2} R _inst_1) (Monoid.toMulOneClass.{u2} (OreLocalization.{u2} R _inst_1 S _inst_2) (OreLocalization.instMonoidOreLocalization.{u2} R _inst_1 S _inst_2))))) (OreLocalization.numeratorHom.{u2} R _inst_1 S _inst_2) r)) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (MonoidHom.{u2, u1} (OreLocalization.{u2} R _inst_1 S _inst_2) T (Monoid.toMulOneClass.{u2} (OreLocalization.{u2} R _inst_1 S _inst_2) (OreLocalization.instMonoidOreLocalization.{u2} R _inst_1 S _inst_2)) (Monoid.toMulOneClass.{u1} T _inst_3)) (OreLocalization.{u2} R _inst_1 S _inst_2) (fun (_x : OreLocalization.{u2} R _inst_1 S _inst_2) => (fun ([email protected]._hyg.2391 : OreLocalization.{u2} R _inst_1 S _inst_2) => T) _x) (MulHomClass.toFunLike.{max u2 u1, u2, u1} (MonoidHom.{u2, u1} (OreLocalization.{u2} R _inst_1 S _inst_2) T (Monoid.toMulOneClass.{u2} (OreLocalization.{u2} R _inst_1 S _inst_2) (OreLocalization.instMonoidOreLocalization.{u2} R _inst_1 S _inst_2)) (Monoid.toMulOneClass.{u1} T _inst_3)) (OreLocalization.{u2} R _inst_1 S _inst_2) T (MulOneClass.toMul.{u2} (OreLocalization.{u2} R _inst_1 S _inst_2) (Monoid.toMulOneClass.{u2} (OreLocalization.{u2} R _inst_1 S _inst_2) (OreLocalization.instMonoidOreLocalization.{u2} R _inst_1 S _inst_2))) (MulOneClass.toMul.{u1} T (Monoid.toMulOneClass.{u1} T _inst_3)) (MonoidHomClass.toMulHomClass.{max u2 u1, u2, u1} (MonoidHom.{u2, u1} (OreLocalization.{u2} R _inst_1 S _inst_2) T (Monoid.toMulOneClass.{u2} (OreLocalization.{u2} R _inst_1 S _inst_2) (OreLocalization.instMonoidOreLocalization.{u2} R _inst_1 S _inst_2)) (Monoid.toMulOneClass.{u1} T _inst_3)) (OreLocalization.{u2} R _inst_1 S _inst_2) T (Monoid.toMulOneClass.{u2} (OreLocalization.{u2} R _inst_1 S _inst_2) (OreLocalization.instMonoidOreLocalization.{u2} R _inst_1 S _inst_2)) (Monoid.toMulOneClass.{u1} T _inst_3) (MonoidHom.monoidHomClass.{u2, u1} (OreLocalization.{u2} R _inst_1 S _inst_2) T (Monoid.toMulOneClass.{u2} (OreLocalization.{u2} R _inst_1 S _inst_2) (OreLocalization.instMonoidOreLocalization.{u2} R _inst_1 S _inst_2)) (Monoid.toMulOneClass.{u1} T _inst_3)))) φ (FunLike.coe.{succ u2, succ u2, succ u2} (MonoidHom.{u2, u2} R (OreLocalization.{u2} R _inst_1 S _inst_2) (Monoid.toMulOneClass.{u2} R _inst_1) (Monoid.toMulOneClass.{u2} (OreLocalization.{u2} R _inst_1 S _inst_2) (OreLocalization.instMonoidOreLocalization.{u2} R _inst_1 S _inst_2))) R (fun (_x : R) => (fun ([email protected]._hyg.2391 : R) => OreLocalization.{u2} R _inst_1 S _inst_2) _x) (MulHomClass.toFunLike.{u2, u2, u2} (MonoidHom.{u2, u2} R (OreLocalization.{u2} R _inst_1 S _inst_2) (Monoid.toMulOneClass.{u2} R _inst_1) (Monoid.toMulOneClass.{u2} (OreLocalization.{u2} R _inst_1 S _inst_2) (OreLocalization.instMonoidOreLocalization.{u2} R _inst_1 S _inst_2))) R (OreLocalization.{u2} R _inst_1 S _inst_2) (MulOneClass.toMul.{u2} R (Monoid.toMulOneClass.{u2} R _inst_1)) (MulOneClass.toMul.{u2} (OreLocalization.{u2} R _inst_1 S _inst_2) (Monoid.toMulOneClass.{u2} (OreLocalization.{u2} R _inst_1 S _inst_2) (OreLocalization.instMonoidOreLocalization.{u2} R _inst_1 S _inst_2))) (MonoidHomClass.toMulHomClass.{u2, u2, u2} (MonoidHom.{u2, u2} R (OreLocalization.{u2} R _inst_1 S _inst_2) (Monoid.toMulOneClass.{u2} R _inst_1) (Monoid.toMulOneClass.{u2} (OreLocalization.{u2} R _inst_1 S _inst_2) (OreLocalization.instMonoidOreLocalization.{u2} R _inst_1 S _inst_2))) R (OreLocalization.{u2} R _inst_1 S _inst_2) (Monoid.toMulOneClass.{u2} R _inst_1) (Monoid.toMulOneClass.{u2} (OreLocalization.{u2} R _inst_1 S _inst_2) (OreLocalization.instMonoidOreLocalization.{u2} R _inst_1 S _inst_2)) (MonoidHom.monoidHomClass.{u2, u2} R (OreLocalization.{u2} R _inst_1 S _inst_2) (Monoid.toMulOneClass.{u2} R _inst_1) (Monoid.toMulOneClass.{u2} (OreLocalization.{u2} R _inst_1 S _inst_2) (OreLocalization.instMonoidOreLocalization.{u2} R _inst_1 S _inst_2))))) (OreLocalization.numeratorHom.{u2} R _inst_1 S _inst_2) r)) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (MonoidHom.{u2, u1} R T (Monoid.toMulOneClass.{u2} R _inst_1) (Monoid.toMulOneClass.{u1} T _inst_3)) R (fun (_x : R) => (fun ([email protected]._hyg.2391 : R) => T) _x) (MulHomClass.toFunLike.{max u2 u1, u2, u1} (MonoidHom.{u2, u1} R T (Monoid.toMulOneClass.{u2} R _inst_1) (Monoid.toMulOneClass.{u1} T _inst_3)) R T (MulOneClass.toMul.{u2} R (Monoid.toMulOneClass.{u2} R _inst_1)) (MulOneClass.toMul.{u1} T (Monoid.toMulOneClass.{u1} T _inst_3)) (MonoidHomClass.toMulHomClass.{max u2 u1, u2, u1} (MonoidHom.{u2, u1} R T (Monoid.toMulOneClass.{u2} R _inst_1) (Monoid.toMulOneClass.{u1} T _inst_3)) R T (Monoid.toMulOneClass.{u2} R _inst_1) (Monoid.toMulOneClass.{u1} T _inst_3) (MonoidHom.monoidHomClass.{u2, u1} R T (Monoid.toMulOneClass.{u2} R _inst_1) (Monoid.toMulOneClass.{u1} T _inst_3)))) f r)) -> (Eq.{max (succ u2) (succ u1)} (MonoidHom.{u2, u1} (OreLocalization.{u2} R _inst_1 S _inst_2) T (Monoid.toMulOneClass.{u2} (OreLocalization.{u2} R _inst_1 S _inst_2) (OreLocalization.instMonoidOreLocalization.{u2} R _inst_1 S _inst_2)) (Monoid.toMulOneClass.{u1} T _inst_3)) φ (OreLocalization.universalMulHom.{u2, u1} R _inst_1 S _inst_2 T _inst_3 f fS hf)) Case conversion may be inaccurate. Consider using '#align ore_localization.universal_mul_hom_unique OreLocalization.universalMulHom_uniqueₓ'. -/ /-- The universal morphism `universal_mul_hom` is unique. -/ theorem universalMulHom_unique (φ : R[S⁻¹] →* T) (huniv : ∀ r : R, φ (numeratorHom r) = f r) : φ = universalMulHom f fS hf := by ext; induction' x using OreLocalization.ind with r s rw [universal_mul_hom_apply, ← huniv r, numerator_hom_apply, ← mul_one (φ (r /ₒ s)), ← Units.val_one, ← mul_right_inv (fS s), Units.val_mul, ← mul_assoc, ← hf, ← huniv, ← φ.map_mul, numerator_hom_apply, OreLocalization.mul_cancel] #align ore_localization.universal_mul_hom_unique OreLocalization.universalMulHom_unique end UMP end Monoid section CommMonoid variable {R : Type _} [CommMonoid R] {S : Submonoid R} [OreSet S] /- warning: ore_localization.ore_div_mul_ore_div_comm -> OreLocalization.oreDiv_mul_oreDiv_comm is a dubious translation: lean 3 declaration is forall {R : Type.{u1}} [_inst_1 : CommMonoid.{u1} R] {S : Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R (CommMonoid.toMonoid.{u1} R _inst_1))} [_inst_2 : OreLocalization.OreSet.{u1} R (CommMonoid.toMonoid.{u1} R _inst_1) S] {r₁ : R} {r₂ : R} {s₁ : coeSort.{succ u1, succ (succ u1)} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R (CommMonoid.toMonoid.{u1} R _inst_1))) Type.{u1} (SetLike.hasCoeToSort.{u1, u1} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R (CommMonoid.toMonoid.{u1} R _inst_1))) R (Submonoid.setLike.{u1} R (Monoid.toMulOneClass.{u1} R (CommMonoid.toMonoid.{u1} R _inst_1)))) S} {s₂ : coeSort.{succ u1, succ (succ u1)} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R (CommMonoid.toMonoid.{u1} R _inst_1))) Type.{u1} (SetLike.hasCoeToSort.{u1, u1} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R (CommMonoid.toMonoid.{u1} R _inst_1))) R (Submonoid.setLike.{u1} R (Monoid.toMulOneClass.{u1} R (CommMonoid.toMonoid.{u1} R _inst_1)))) S}, Eq.{succ u1} (OreLocalization.{u1} R (CommMonoid.toMonoid.{u1} R _inst_1) S _inst_2) (HMul.hMul.{u1, u1, u1} (OreLocalization.{u1} R (CommMonoid.toMonoid.{u1} R _inst_1) S _inst_2) (OreLocalization.{u1} R (CommMonoid.toMonoid.{u1} R _inst_1) S _inst_2) (OreLocalization.{u1} R (CommMonoid.toMonoid.{u1} R _inst_1) S _inst_2) (instHMul.{u1} (OreLocalization.{u1} R (CommMonoid.toMonoid.{u1} R _inst_1) S _inst_2) (OreLocalization.hasMul.{u1} R (CommMonoid.toMonoid.{u1} R _inst_1) S _inst_2)) (OreLocalization.oreDiv.{u1} R (CommMonoid.toMonoid.{u1} R _inst_1) S _inst_2 r₁ s₁) (OreLocalization.oreDiv.{u1} R (CommMonoid.toMonoid.{u1} R _inst_1) S _inst_2 r₂ s₂)) (OreLocalization.oreDiv.{u1} R (CommMonoid.toMonoid.{u1} R _inst_1) S _inst_2 (HMul.hMul.{u1, u1, u1} R R R (instHMul.{u1} R (MulOneClass.toHasMul.{u1} R (Monoid.toMulOneClass.{u1} R (CommMonoid.toMonoid.{u1} R _inst_1)))) r₁ r₂) (HMul.hMul.{u1, u1, u1} (coeSort.{succ u1, succ (succ u1)} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R (CommMonoid.toMonoid.{u1} R _inst_1))) Type.{u1} (SetLike.hasCoeToSort.{u1, u1} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R (CommMonoid.toMonoid.{u1} R _inst_1))) R (Submonoid.setLike.{u1} R (Monoid.toMulOneClass.{u1} R (CommMonoid.toMonoid.{u1} R _inst_1)))) S) (coeSort.{succ u1, succ (succ u1)} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R (CommMonoid.toMonoid.{u1} R _inst_1))) Type.{u1} (SetLike.hasCoeToSort.{u1, u1} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R (CommMonoid.toMonoid.{u1} R _inst_1))) R (Submonoid.setLike.{u1} R (Monoid.toMulOneClass.{u1} R (CommMonoid.toMonoid.{u1} R _inst_1)))) S) (coeSort.{succ u1, succ (succ u1)} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R (CommMonoid.toMonoid.{u1} R _inst_1))) Type.{u1} (SetLike.hasCoeToSort.{u1, u1} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R (CommMonoid.toMonoid.{u1} R _inst_1))) R (Submonoid.setLike.{u1} R (Monoid.toMulOneClass.{u1} R (CommMonoid.toMonoid.{u1} R _inst_1)))) S) (instHMul.{u1} (coeSort.{succ u1, succ (succ u1)} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R (CommMonoid.toMonoid.{u1} R _inst_1))) Type.{u1} (SetLike.hasCoeToSort.{u1, u1} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R (CommMonoid.toMonoid.{u1} R _inst_1))) R (Submonoid.setLike.{u1} R (Monoid.toMulOneClass.{u1} R (CommMonoid.toMonoid.{u1} R _inst_1)))) S) (Submonoid.mul.{u1} R (Monoid.toMulOneClass.{u1} R (CommMonoid.toMonoid.{u1} R _inst_1)) S)) s₁ s₂)) but is expected to have type forall {R : Type.{u1}} [_inst_1 : CommMonoid.{u1} R] {S : Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R (CommMonoid.toMonoid.{u1} R _inst_1))} [_inst_2 : OreLocalization.OreSet.{u1} R (CommMonoid.toMonoid.{u1} R _inst_1) S] {r₁ : R} {r₂ : R} {s₁ : Subtype.{succ u1} R (fun (x : R) => Membership.mem.{u1, u1} R (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R (CommMonoid.toMonoid.{u1} R _inst_1))) (SetLike.instMembership.{u1, u1} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R (CommMonoid.toMonoid.{u1} R _inst_1))) R (Submonoid.instSetLikeSubmonoid.{u1} R (Monoid.toMulOneClass.{u1} R (CommMonoid.toMonoid.{u1} R _inst_1)))) x S)} {s₂ : Subtype.{succ u1} R (fun (x : R) => Membership.mem.{u1, u1} R (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R (CommMonoid.toMonoid.{u1} R _inst_1))) (SetLike.instMembership.{u1, u1} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R (CommMonoid.toMonoid.{u1} R _inst_1))) R (Submonoid.instSetLikeSubmonoid.{u1} R (Monoid.toMulOneClass.{u1} R (CommMonoid.toMonoid.{u1} R _inst_1)))) x S)}, Eq.{succ u1} (OreLocalization.{u1} R (CommMonoid.toMonoid.{u1} R _inst_1) S _inst_2) (HMul.hMul.{u1, u1, u1} (OreLocalization.{u1} R (CommMonoid.toMonoid.{u1} R _inst_1) S _inst_2) (OreLocalization.{u1} R (CommMonoid.toMonoid.{u1} R _inst_1) S _inst_2) (OreLocalization.{u1} R (CommMonoid.toMonoid.{u1} R _inst_1) S _inst_2) (instHMul.{u1} (OreLocalization.{u1} R (CommMonoid.toMonoid.{u1} R _inst_1) S _inst_2) (OreLocalization.instMulOreLocalization.{u1} R (CommMonoid.toMonoid.{u1} R _inst_1) S _inst_2)) (OreLocalization.oreDiv.{u1} R (CommMonoid.toMonoid.{u1} R _inst_1) S _inst_2 r₁ s₁) (OreLocalization.oreDiv.{u1} R (CommMonoid.toMonoid.{u1} R _inst_1) S _inst_2 r₂ s₂)) (OreLocalization.oreDiv.{u1} R (CommMonoid.toMonoid.{u1} R _inst_1) S _inst_2 (HMul.hMul.{u1, u1, u1} R R R (instHMul.{u1} R (MulOneClass.toMul.{u1} R (Monoid.toMulOneClass.{u1} R (CommMonoid.toMonoid.{u1} R _inst_1)))) r₁ r₂) (HMul.hMul.{u1, u1, u1} (Subtype.{succ u1} R (fun (x : R) => Membership.mem.{u1, u1} R (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R (CommMonoid.toMonoid.{u1} R _inst_1))) (SetLike.instMembership.{u1, u1} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R (CommMonoid.toMonoid.{u1} R _inst_1))) R (Submonoid.instSetLikeSubmonoid.{u1} R (Monoid.toMulOneClass.{u1} R (CommMonoid.toMonoid.{u1} R _inst_1)))) x S)) (Subtype.{succ u1} R (fun (x : R) => Membership.mem.{u1, u1} R (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R (CommMonoid.toMonoid.{u1} R _inst_1))) (SetLike.instMembership.{u1, u1} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R (CommMonoid.toMonoid.{u1} R _inst_1))) R (Submonoid.instSetLikeSubmonoid.{u1} R (Monoid.toMulOneClass.{u1} R (CommMonoid.toMonoid.{u1} R _inst_1)))) x S)) (Subtype.{succ u1} R (fun (x : R) => Membership.mem.{u1, u1} R (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R (CommMonoid.toMonoid.{u1} R _inst_1))) (SetLike.instMembership.{u1, u1} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R (CommMonoid.toMonoid.{u1} R _inst_1))) R (Submonoid.instSetLikeSubmonoid.{u1} R (Monoid.toMulOneClass.{u1} R (CommMonoid.toMonoid.{u1} R _inst_1)))) x S)) (instHMul.{u1} (Subtype.{succ u1} R (fun (x : R) => Membership.mem.{u1, u1} R (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R (CommMonoid.toMonoid.{u1} R _inst_1))) (SetLike.instMembership.{u1, u1} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R (CommMonoid.toMonoid.{u1} R _inst_1))) R (Submonoid.instSetLikeSubmonoid.{u1} R (Monoid.toMulOneClass.{u1} R (CommMonoid.toMonoid.{u1} R _inst_1)))) x S)) (Submonoid.mul.{u1} R (Monoid.toMulOneClass.{u1} R (CommMonoid.toMonoid.{u1} R _inst_1)) S)) s₁ s₂)) Case conversion may be inaccurate. Consider using '#align ore_localization.ore_div_mul_ore_div_comm OreLocalization.oreDiv_mul_oreDiv_commₓ'. -/ theorem oreDiv_mul_oreDiv_comm {r₁ r₂ : R} {s₁ s₂ : S} : r₁ /ₒ s₁ * (r₂ /ₒ s₂) = r₁ * r₂ /ₒ (s₁ * s₂) := by rw [ore_div_mul_char r₁ r₂ s₁ s₂ r₂ s₁ (by simp [mul_comm]), mul_comm s₂] #align ore_localization.ore_div_mul_ore_div_comm OreLocalization.oreDiv_mul_oreDiv_comm instance : CommMonoid R[S⁻¹] := { OreLocalization.monoid with mul_comm := fun x y => by induction' x using OreLocalization.ind with r₁ s₁ induction' y using OreLocalization.ind with r₂ s₂ rw [ore_div_mul_ore_div_comm, ore_div_mul_ore_div_comm, mul_comm r₁, mul_comm s₁] } variable (R S) /- warning: ore_localization.localization_map -> OreLocalization.localizationMap is a dubious translation: lean 3 declaration is forall (R : Type.{u1}) [_inst_1 : CommMonoid.{u1} R] (S : Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R (CommMonoid.toMonoid.{u1} R _inst_1))) [_inst_2 : OreLocalization.OreSet.{u1} R (CommMonoid.toMonoid.{u1} R _inst_1) S], Submonoid.LocalizationMap.{u1, u1} R _inst_1 S (OreLocalization.{u1} R (CommMonoid.toMonoid.{u1} R _inst_1) S _inst_2) (OreLocalization.commMonoid.{u1} R _inst_1 S _inst_2) but is expected to have type forall (R : Type.{u1}) [_inst_1 : CommMonoid.{u1} R] (S : Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R (CommMonoid.toMonoid.{u1} R _inst_1))) [_inst_2 : OreLocalization.OreSet.{u1} R (CommMonoid.toMonoid.{u1} R _inst_1) S], Submonoid.LocalizationMap.{u1, u1} R _inst_1 S (OreLocalization.{u1} R (CommMonoid.toMonoid.{u1} R _inst_1) S _inst_2) (OreLocalization.instCommMonoidOreLocalizationToMonoid.{u1} R _inst_1 S _inst_2) Case conversion may be inaccurate. Consider using '#align ore_localization.localization_map OreLocalization.localizationMapₓ'. -/ /-- The morphism `numerator_hom` is a monoid localization map in the case of commutative `R`. -/ protected def localizationMap : S.LocalizationMap R[S⁻¹] where toFun := numeratorHom map_one' := rfl map_mul' r₁ r₂ := by simp map_units' := numerator_isUnit surj' z := by induction' z using OreLocalization.ind with r s use (r, s); dsimp rw [numerator_hom_apply, numerator_hom_apply]; simp eq_iff_exists' r₁ r₂ := by dsimp; constructor · intro h rw [numerator_hom_apply, numerator_hom_apply, ore_div_eq_iff] at h rcases h with ⟨u, v, h₁, h₂⟩ dsimp at h₂ rw [one_mul, one_mul] at h₂ subst h₂ use u simpa only [mul_comm] using h₁.symm · rintro ⟨s, h⟩ rw [numerator_hom_apply, numerator_hom_apply, ore_div_eq_iff] refine' ⟨s, s, _, _⟩ · simpa [mul_comm] using h.symm · simp [one_mul] #align ore_localization.localization_map OreLocalization.localizationMap #print OreLocalization.equivMonoidLocalization /- /-- If `R` is commutative, Ore localization and monoid localization are isomorphic. -/ protected noncomputable def equivMonoidLocalization : Localization S ≃* R[S⁻¹] := Localization.mulEquivOfQuotient (OreLocalization.localizationMap R S) #align ore_localization.equiv_monoid_localization OreLocalization.equivMonoidLocalization -/ end CommMonoid section Semiring variable {R : Type _} [Semiring R] {S : Submonoid R} [OreSet S] private def add'' (r₁ : R) (s₁ : S) (r₂ : R) (s₂ : S) : R[S⁻¹] := (r₁ * oreDenom (s₁ : R) s₂ + r₂ * oreNum s₁ s₂) /ₒ (s₁ * oreDenom s₁ s₂) #align ore_localization.add'' ore_localization.add'' private theorem add''_char (r₁ : R) (s₁ : S) (r₂ : R) (s₂ : S) (rb : R) (sb : S) (hb : (s₁ : R) * sb = (s₂ : R) * rb) : add'' r₁ s₁ r₂ s₂ = (r₁ * sb + r₂ * rb) /ₒ (s₁ * sb) := by simp only [add''] have ha := ore_eq (s₁ : R) s₂ set! ra := ore_num (s₁ : R) s₂ with h rw [← h] at * clear h -- r tilde set! sa := ore_denom (s₁ : R) s₂ with h rw [← h] at * clear h -- s tilde rcases ore_condition (sa : R) sb with ⟨rc, sc, hc⟩ -- s*, r* have : (s₂ : R) * (rb * rc) = s₂ * (ra * sc) := by rw [← mul_assoc, ← hb, mul_assoc, ← hc, ← mul_assoc, ← mul_assoc, ha] rcases ore_left_cancel _ _ s₂ this with ⟨sd, hd⟩ -- s# symm rw [ore_div_eq_iff] use sc * sd use rc * sd constructor <;> simp only [Submonoid.coe_mul] · noncomm_ring assoc_rw [hd, hc] noncomm_ring · assoc_rw [hc] noncomm_ring #align ore_localization.add''_char ore_localization.add''_char attribute [local instance] OreLocalization.oreEqv private def add' (r₂ : R) (s₂ : S) : R[S⁻¹] → R[S⁻¹] := (--plus tilde Quotient.lift fun r₁s₁ : R × S => add'' r₁s₁.1 r₁s₁.2 r₂ s₂) <| by rintro ⟨r₁', s₁'⟩ ⟨r₁, s₁⟩ ⟨sb, rb, hb, hb'⟩ -- s*, r* rcases ore_condition (s₁' : R) s₂ with ⟨rc, sc, hc⟩ --s~~, r~~ rcases ore_condition rb sc with ⟨rd, sd, hd⟩ -- s#, r# dsimp at * rw [add''_char _ _ _ _ rc sc hc] have : ↑s₁ * ↑(sb * sd) = ↑s₂ * (rc * rd) := by simp only [Submonoid.coe_mul] assoc_rw [hb', hd, hc] noncomm_ring rw [add''_char _ _ _ _ (rc * rd : R) (sb * sd : S) this] simp only [Submonoid.coe_mul] assoc_rw [hb, hd] rw [← mul_assoc, ← add_mul, ore_div_eq_iff] use 1 use rd constructor · simp · simp only [mul_one, Submonoid.coe_one, Submonoid.coe_mul] at this⊢ assoc_rw [hc, this] #align ore_localization.add' ore_localization.add' private theorem add'_comm (r₁ r₂ : R) (s₁ s₂ : S) : add' r₁ s₁ (r₂ /ₒ s₂) = add' r₂ s₂ (r₁ /ₒ s₁) := by simp only [add', ore_div, add'', Quotient.lift_mk, Quotient.eq'] have hb := ore_eq (↑s₂) s₁ set rb := ore_num (↑s₂) s₁ with h -- r~~ rw [← h] clear h set sb := ore_denom (↑s₂) s₁ with h rw [← h] clear h -- s~~ have ha := ore_eq (↑s₁) s₂ set ra := ore_num (↑s₁) s₂ with h -- r~ rw [← h] clear h set sa := ore_denom (↑s₁) s₂ with h rw [← h] clear h -- s~ rcases ore_condition ra sb with ⟨rc, sc, hc⟩ -- r#, s# have : (s₁ : R) * (rb * rc) = s₁ * (sa * sc) := by rw [← mul_assoc, ← hb, mul_assoc, ← hc, ← mul_assoc, ← ha, mul_assoc] rcases ore_left_cancel _ _ s₁ this with ⟨sd, hd⟩ -- s+ use sc * sd use rc * sd dsimp constructor · rw [add_mul, add_mul, add_comm] assoc_rw [← hd, hc] noncomm_ring · rw [mul_assoc, ← mul_assoc ↑sa, ← hd, hb] noncomm_ring #align ore_localization.add'_comm ore_localization.add'_comm /-- The addition on the Ore localization. -/ private def add : R[S⁻¹] → R[S⁻¹] → R[S⁻¹] := fun x => Quotient.lift (fun rs : R × S => add' rs.1 rs.2 x) (by rintro ⟨r₁, s₁⟩ ⟨r₂, s₂⟩ hyz induction' x using OreLocalization.ind with r₃ s₃ dsimp; rw [add'_comm, add'_comm r₂] simp [(· /ₒ ·), Quotient.sound hyz]) #align ore_localization.add ore_localization.add instance : Add R[S⁻¹] := ⟨add⟩ /- warning: ore_localization.ore_div_add_ore_div -> OreLocalization.oreDiv_add_oreDiv is a dubious translation: lean 3 declaration is forall {R : Type.{u1}} [_inst_1 : Semiring.{u1} R] {S : Submonoid.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1)))} [_inst_2 : OreLocalization.OreSet.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1)) S] {r : R} {r' : R} {s : coeSort.{succ u1, succ (succ u1)} (Submonoid.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1)))) Type.{u1} (SetLike.hasCoeToSort.{u1, u1} (Submonoid.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1)))) R (Submonoid.setLike.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1))))) S} {s' : coeSort.{succ u1, succ (succ u1)} (Submonoid.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1)))) Type.{u1} (SetLike.hasCoeToSort.{u1, u1} (Submonoid.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1)))) R (Submonoid.setLike.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1))))) S}, Eq.{succ u1} (OreLocalization.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1)) S _inst_2) (HAdd.hAdd.{u1, u1, u1} (OreLocalization.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1)) S _inst_2) (OreLocalization.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1)) S _inst_2) (OreLocalization.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1)) S _inst_2) (instHAdd.{u1} (OreLocalization.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1)) S _inst_2) (OreLocalization.hasAdd.{u1} R _inst_1 S _inst_2)) (OreLocalization.oreDiv.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1)) S _inst_2 r s) (OreLocalization.oreDiv.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1)) S _inst_2 r' s')) (OreLocalization.oreDiv.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1)) S _inst_2 (HAdd.hAdd.{u1, u1, u1} R R R (instHAdd.{u1} R (Distrib.toHasAdd.{u1} R (NonUnitalNonAssocSemiring.toDistrib.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1))))) (HMul.hMul.{u1, u1, u1} R R R (instHMul.{u1} R (Distrib.toHasMul.{u1} R (NonUnitalNonAssocSemiring.toDistrib.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1))))) r ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) (coeSort.{succ u1, succ (succ u1)} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1)))) Type.{u1} (SetLike.hasCoeToSort.{u1, u1} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1)))) R (Submonoid.setLike.{u1} R (Monoid.toMulOneClass.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1))))) S) R (HasLiftT.mk.{succ u1, succ u1} (coeSort.{succ u1, succ (succ u1)} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1)))) Type.{u1} (SetLike.hasCoeToSort.{u1, u1} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1)))) R (Submonoid.setLike.{u1} R (Monoid.toMulOneClass.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1))))) S) R (CoeTCₓ.coe.{succ u1, succ u1} (coeSort.{succ u1, succ (succ u1)} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1)))) Type.{u1} (SetLike.hasCoeToSort.{u1, u1} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1)))) R (Submonoid.setLike.{u1} R (Monoid.toMulOneClass.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1))))) S) R (coeBase.{succ u1, succ u1} (coeSort.{succ u1, succ (succ u1)} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1)))) Type.{u1} (SetLike.hasCoeToSort.{u1, u1} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1)))) R (Submonoid.setLike.{u1} R (Monoid.toMulOneClass.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1))))) S) R (coeSubtype.{succ u1} R (fun (x : R) => Membership.Mem.{u1, u1} R (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1)))) (SetLike.hasMem.{u1, u1} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1)))) R (Submonoid.setLike.{u1} R (Monoid.toMulOneClass.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1))))) x S))))) (OreLocalization.oreDenom.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1)) S _inst_2 ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) (coeSort.{succ u1, succ (succ u1)} (Submonoid.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1)))) Type.{u1} (SetLike.hasCoeToSort.{u1, u1} (Submonoid.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1)))) R (Submonoid.setLike.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1))))) S) R (HasLiftT.mk.{succ u1, succ u1} (coeSort.{succ u1, succ (succ u1)} (Submonoid.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1)))) Type.{u1} (SetLike.hasCoeToSort.{u1, u1} (Submonoid.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1)))) R (Submonoid.setLike.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1))))) S) R (CoeTCₓ.coe.{succ u1, succ u1} (coeSort.{succ u1, succ (succ u1)} (Submonoid.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1)))) Type.{u1} (SetLike.hasCoeToSort.{u1, u1} (Submonoid.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1)))) R (Submonoid.setLike.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1))))) S) R (coeBase.{succ u1, succ u1} (coeSort.{succ u1, succ (succ u1)} (Submonoid.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1)))) Type.{u1} (SetLike.hasCoeToSort.{u1, u1} (Submonoid.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1)))) R (Submonoid.setLike.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1))))) S) R (coeSubtype.{succ u1} R (fun (x : R) => Membership.Mem.{u1, u1} R (Submonoid.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1)))) (SetLike.hasMem.{u1, u1} (Submonoid.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1)))) R (Submonoid.setLike.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1))))) x S))))) s) s'))) (HMul.hMul.{u1, u1, u1} R R R (instHMul.{u1} R (Distrib.toHasMul.{u1} R (NonUnitalNonAssocSemiring.toDistrib.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1))))) r' (OreLocalization.oreNum.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1)) S _inst_2 ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) (coeSort.{succ u1, succ (succ u1)} (Submonoid.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1)))) Type.{u1} (SetLike.hasCoeToSort.{u1, u1} (Submonoid.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1)))) R (Submonoid.setLike.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1))))) S) R (HasLiftT.mk.{succ u1, succ u1} (coeSort.{succ u1, succ (succ u1)} (Submonoid.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1)))) Type.{u1} (SetLike.hasCoeToSort.{u1, u1} (Submonoid.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1)))) R (Submonoid.setLike.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1))))) S) R (CoeTCₓ.coe.{succ u1, succ u1} (coeSort.{succ u1, succ (succ u1)} (Submonoid.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1)))) Type.{u1} (SetLike.hasCoeToSort.{u1, u1} (Submonoid.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1)))) R (Submonoid.setLike.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1))))) S) R (coeBase.{succ u1, succ u1} (coeSort.{succ u1, succ (succ u1)} (Submonoid.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1)))) Type.{u1} (SetLike.hasCoeToSort.{u1, u1} (Submonoid.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1)))) R (Submonoid.setLike.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1))))) S) R (coeSubtype.{succ u1} R (fun (x : R) => Membership.Mem.{u1, u1} R (Submonoid.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1)))) (SetLike.hasMem.{u1, u1} (Submonoid.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1)))) R (Submonoid.setLike.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1))))) x S))))) s) s'))) (HMul.hMul.{u1, u1, u1} (coeSort.{succ u1, succ (succ u1)} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1)))) Type.{u1} (SetLike.hasCoeToSort.{u1, u1} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1)))) R (Submonoid.setLike.{u1} R (Monoid.toMulOneClass.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1))))) S) (coeSort.{succ u1, succ (succ u1)} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1)))) Type.{u1} (SetLike.hasCoeToSort.{u1, u1} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1)))) R (Submonoid.setLike.{u1} R (Monoid.toMulOneClass.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1))))) S) (coeSort.{succ u1, succ (succ u1)} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1)))) Type.{u1} (SetLike.hasCoeToSort.{u1, u1} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1)))) R (Submonoid.setLike.{u1} R (Monoid.toMulOneClass.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1))))) S) (instHMul.{u1} (coeSort.{succ u1, succ (succ u1)} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1)))) Type.{u1} (SetLike.hasCoeToSort.{u1, u1} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1)))) R (Submonoid.setLike.{u1} R (Monoid.toMulOneClass.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1))))) S) (Submonoid.mul.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1))) S)) s (OreLocalization.oreDenom.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1)) S _inst_2 ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) (coeSort.{succ u1, succ (succ u1)} (Submonoid.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1)))) Type.{u1} (SetLike.hasCoeToSort.{u1, u1} (Submonoid.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1)))) R (Submonoid.setLike.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1))))) S) R (HasLiftT.mk.{succ u1, succ u1} (coeSort.{succ u1, succ (succ u1)} (Submonoid.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1)))) Type.{u1} (SetLike.hasCoeToSort.{u1, u1} (Submonoid.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1)))) R (Submonoid.setLike.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1))))) S) R (CoeTCₓ.coe.{succ u1, succ u1} (coeSort.{succ u1, succ (succ u1)} (Submonoid.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1)))) Type.{u1} (SetLike.hasCoeToSort.{u1, u1} (Submonoid.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1)))) R (Submonoid.setLike.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1))))) S) R (coeBase.{succ u1, succ u1} (coeSort.{succ u1, succ (succ u1)} (Submonoid.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1)))) Type.{u1} (SetLike.hasCoeToSort.{u1, u1} (Submonoid.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1)))) R (Submonoid.setLike.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1))))) S) R (coeSubtype.{succ u1} R (fun (x : R) => Membership.Mem.{u1, u1} R (Submonoid.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1)))) (SetLike.hasMem.{u1, u1} (Submonoid.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1)))) R (Submonoid.setLike.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1))))) x S))))) s) s'))) but is expected to have type forall {R : Type.{u1}} [_inst_1 : Semiring.{u1} R] {S : Submonoid.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1)))} [_inst_2 : OreLocalization.OreSet.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1)) S] {r : R} {r' : R} {s : Subtype.{succ u1} R (fun (x : R) => Membership.mem.{u1, u1} R (Submonoid.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1)))) (SetLike.instMembership.{u1, u1} (Submonoid.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1)))) R (Submonoid.instSetLikeSubmonoid.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1))))) x S)} {s' : Subtype.{succ u1} R (fun (x : R) => Membership.mem.{u1, u1} R (Submonoid.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1)))) (SetLike.instMembership.{u1, u1} (Submonoid.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1)))) R (Submonoid.instSetLikeSubmonoid.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1))))) x S)}, Eq.{succ u1} (OreLocalization.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1)) S _inst_2) (HAdd.hAdd.{u1, u1, u1} (OreLocalization.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1)) S _inst_2) (OreLocalization.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1)) S _inst_2) (OreLocalization.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1)) S _inst_2) (instHAdd.{u1} (OreLocalization.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1)) S _inst_2) (OreLocalization.instAddOreLocalizationToMonoidToMonoidWithZero.{u1} R _inst_1 S _inst_2)) (OreLocalization.oreDiv.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1)) S _inst_2 r s) (OreLocalization.oreDiv.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1)) S _inst_2 r' s')) (OreLocalization.oreDiv.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1)) S _inst_2 (HAdd.hAdd.{u1, u1, u1} R R R (instHAdd.{u1} R (Distrib.toAdd.{u1} R (NonUnitalNonAssocSemiring.toDistrib.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1))))) (HMul.hMul.{u1, u1, u1} R R R (instHMul.{u1} R (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1)))) r (Subtype.val.{succ u1} R (fun (x : R) => Membership.mem.{u1, u1} R (Set.{u1} R) (Set.instMembershipSet.{u1} R) x (SetLike.coe.{u1, u1} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1)))) R (Submonoid.instSetLikeSubmonoid.{u1} R (Monoid.toMulOneClass.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1)))) S)) (OreLocalization.oreDenom.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1)) S _inst_2 (Subtype.val.{succ u1} R (fun (x : R) => Membership.mem.{u1, u1} R (Set.{u1} R) (Set.instMembershipSet.{u1} R) x (SetLike.coe.{u1, u1} (Submonoid.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1)))) R (Submonoid.instSetLikeSubmonoid.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1)))) S)) s) s'))) (HMul.hMul.{u1, u1, u1} R R R (instHMul.{u1} R (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1)))) r' (OreLocalization.oreNum.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1)) S _inst_2 (Subtype.val.{succ u1} R (fun (x : R) => Membership.mem.{u1, u1} R (Set.{u1} R) (Set.instMembershipSet.{u1} R) x (SetLike.coe.{u1, u1} (Submonoid.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1)))) R (Submonoid.instSetLikeSubmonoid.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1)))) S)) s) s'))) (HMul.hMul.{u1, u1, u1} (Subtype.{succ u1} R (fun (x : R) => Membership.mem.{u1, u1} R (Submonoid.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1)))) (SetLike.instMembership.{u1, u1} (Submonoid.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1)))) R (Submonoid.instSetLikeSubmonoid.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1))))) x S)) (Subtype.{succ u1} R (fun (x : R) => Membership.mem.{u1, u1} R (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1)))) (SetLike.instMembership.{u1, u1} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1)))) R (Submonoid.instSetLikeSubmonoid.{u1} R (Monoid.toMulOneClass.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1))))) x S)) (Subtype.{succ u1} R (fun (x : R) => Membership.mem.{u1, u1} R (Submonoid.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1)))) (SetLike.instMembership.{u1, u1} (Submonoid.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1)))) R (Submonoid.instSetLikeSubmonoid.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1))))) x S)) (instHMul.{u1} (Subtype.{succ u1} R (fun (x : R) => Membership.mem.{u1, u1} R (Submonoid.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1)))) (SetLike.instMembership.{u1, u1} (Submonoid.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1)))) R (Submonoid.instSetLikeSubmonoid.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1))))) x S)) (Submonoid.mul.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1))) S)) s (OreLocalization.oreDenom.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1)) S _inst_2 (Subtype.val.{succ u1} R (fun (x : R) => Membership.mem.{u1, u1} R (Set.{u1} R) (Set.instMembershipSet.{u1} R) x (SetLike.coe.{u1, u1} (Submonoid.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1)))) R (Submonoid.instSetLikeSubmonoid.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1)))) S)) s) s'))) Case conversion may be inaccurate. Consider using '#align ore_localization.ore_div_add_ore_div OreLocalization.oreDiv_add_oreDivₓ'. -/ theorem oreDiv_add_oreDiv {r r' : R} {s s' : S} : r /ₒ s + r' /ₒ s' = (r * oreDenom (s : R) s' + r' * oreNum s s') /ₒ (s * oreDenom s s') := rfl #align ore_localization.ore_div_add_ore_div OreLocalization.oreDiv_add_oreDiv /- warning: ore_localization.ore_div_add_char -> OreLocalization.oreDiv_add_char is a dubious translation: lean 3 declaration is forall {R : Type.{u1}} [_inst_1 : Semiring.{u1} R] {S : Submonoid.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1)))} [_inst_2 : OreLocalization.OreSet.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1)) S] {r : R} {r' : R} (s : coeSort.{succ u1, succ (succ u1)} (Submonoid.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1)))) Type.{u1} (SetLike.hasCoeToSort.{u1, u1} (Submonoid.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1)))) R (Submonoid.setLike.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1))))) S) (s' : coeSort.{succ u1, succ (succ u1)} (Submonoid.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1)))) Type.{u1} (SetLike.hasCoeToSort.{u1, u1} (Submonoid.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1)))) R (Submonoid.setLike.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1))))) S) (rb : R) (sb : coeSort.{succ u1, succ (succ u1)} (Submonoid.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1)))) Type.{u1} (SetLike.hasCoeToSort.{u1, u1} (Submonoid.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1)))) R (Submonoid.setLike.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1))))) S), (Eq.{succ u1} R (HMul.hMul.{u1, u1, u1} R R R (instHMul.{u1} R (Distrib.toHasMul.{u1} R (NonUnitalNonAssocSemiring.toDistrib.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1))))) ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) (coeSort.{succ u1, succ (succ u1)} (Submonoid.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1)))) Type.{u1} (SetLike.hasCoeToSort.{u1, u1} (Submonoid.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1)))) R (Submonoid.setLike.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1))))) S) R (HasLiftT.mk.{succ u1, succ u1} (coeSort.{succ u1, succ (succ u1)} (Submonoid.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1)))) Type.{u1} (SetLike.hasCoeToSort.{u1, u1} (Submonoid.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1)))) R (Submonoid.setLike.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1))))) S) R (CoeTCₓ.coe.{succ u1, succ u1} (coeSort.{succ u1, succ (succ u1)} (Submonoid.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1)))) Type.{u1} (SetLike.hasCoeToSort.{u1, u1} (Submonoid.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1)))) R (Submonoid.setLike.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1))))) S) R (coeBase.{succ u1, succ u1} (coeSort.{succ u1, succ (succ u1)} (Submonoid.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1)))) Type.{u1} (SetLike.hasCoeToSort.{u1, u1} (Submonoid.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1)))) R (Submonoid.setLike.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1))))) S) R (coeSubtype.{succ u1} R (fun (x : R) => Membership.Mem.{u1, u1} R (Submonoid.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1)))) (SetLike.hasMem.{u1, u1} (Submonoid.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1)))) R (Submonoid.setLike.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1))))) x S))))) s) ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) (coeSort.{succ u1, succ (succ u1)} (Submonoid.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1)))) Type.{u1} (SetLike.hasCoeToSort.{u1, u1} (Submonoid.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1)))) R (Submonoid.setLike.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1))))) S) R (HasLiftT.mk.{succ u1, succ u1} (coeSort.{succ u1, succ (succ u1)} (Submonoid.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1)))) Type.{u1} (SetLike.hasCoeToSort.{u1, u1} (Submonoid.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1)))) R (Submonoid.setLike.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1))))) S) R (CoeTCₓ.coe.{succ u1, succ u1} (coeSort.{succ u1, succ (succ u1)} (Submonoid.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1)))) Type.{u1} (SetLike.hasCoeToSort.{u1, u1} (Submonoid.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1)))) R (Submonoid.setLike.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1))))) S) R (coeBase.{succ u1, succ u1} (coeSort.{succ u1, succ (succ u1)} (Submonoid.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1)))) Type.{u1} (SetLike.hasCoeToSort.{u1, u1} (Submonoid.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1)))) R (Submonoid.setLike.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1))))) S) R (coeSubtype.{succ u1} R (fun (x : R) => Membership.Mem.{u1, u1} R (Submonoid.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1)))) (SetLike.hasMem.{u1, u1} (Submonoid.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1)))) R (Submonoid.setLike.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1))))) x S))))) sb)) (HMul.hMul.{u1, u1, u1} R R R (instHMul.{u1} R (Distrib.toHasMul.{u1} R (NonUnitalNonAssocSemiring.toDistrib.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1))))) ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) (coeSort.{succ u1, succ (succ u1)} (Submonoid.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1)))) Type.{u1} (SetLike.hasCoeToSort.{u1, u1} (Submonoid.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1)))) R (Submonoid.setLike.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1))))) S) R (HasLiftT.mk.{succ u1, succ u1} (coeSort.{succ u1, succ (succ u1)} (Submonoid.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1)))) Type.{u1} (SetLike.hasCoeToSort.{u1, u1} (Submonoid.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1)))) R (Submonoid.setLike.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1))))) S) R (CoeTCₓ.coe.{succ u1, succ u1} (coeSort.{succ u1, succ (succ u1)} (Submonoid.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1)))) Type.{u1} (SetLike.hasCoeToSort.{u1, u1} (Submonoid.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1)))) R (Submonoid.setLike.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1))))) S) R (coeBase.{succ u1, succ u1} (coeSort.{succ u1, succ (succ u1)} (Submonoid.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1)))) Type.{u1} (SetLike.hasCoeToSort.{u1, u1} (Submonoid.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1)))) R (Submonoid.setLike.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1))))) S) R (coeSubtype.{succ u1} R (fun (x : R) => Membership.Mem.{u1, u1} R (Submonoid.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1)))) (SetLike.hasMem.{u1, u1} (Submonoid.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1)))) R (Submonoid.setLike.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1))))) x S))))) s') rb)) -> (Eq.{succ u1} (OreLocalization.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1)) S _inst_2) (HAdd.hAdd.{u1, u1, u1} (OreLocalization.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1)) S _inst_2) (OreLocalization.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1)) S _inst_2) (OreLocalization.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1)) S _inst_2) (instHAdd.{u1} (OreLocalization.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1)) S _inst_2) (OreLocalization.hasAdd.{u1} R _inst_1 S _inst_2)) (OreLocalization.oreDiv.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1)) S _inst_2 r s) (OreLocalization.oreDiv.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1)) S _inst_2 r' s')) (OreLocalization.oreDiv.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1)) S _inst_2 (HAdd.hAdd.{u1, u1, u1} R R R (instHAdd.{u1} R (Distrib.toHasAdd.{u1} R (NonUnitalNonAssocSemiring.toDistrib.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1))))) (HMul.hMul.{u1, u1, u1} R R R (instHMul.{u1} R (Distrib.toHasMul.{u1} R (NonUnitalNonAssocSemiring.toDistrib.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1))))) r ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) (coeSort.{succ u1, succ (succ u1)} (Submonoid.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1)))) Type.{u1} (SetLike.hasCoeToSort.{u1, u1} (Submonoid.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1)))) R (Submonoid.setLike.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1))))) S) R (HasLiftT.mk.{succ u1, succ u1} (coeSort.{succ u1, succ (succ u1)} (Submonoid.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1)))) Type.{u1} (SetLike.hasCoeToSort.{u1, u1} (Submonoid.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1)))) R (Submonoid.setLike.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1))))) S) R (CoeTCₓ.coe.{succ u1, succ u1} (coeSort.{succ u1, succ (succ u1)} (Submonoid.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1)))) Type.{u1} (SetLike.hasCoeToSort.{u1, u1} (Submonoid.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1)))) R (Submonoid.setLike.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1))))) S) R (coeBase.{succ u1, succ u1} (coeSort.{succ u1, succ (succ u1)} (Submonoid.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1)))) Type.{u1} (SetLike.hasCoeToSort.{u1, u1} (Submonoid.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1)))) R (Submonoid.setLike.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1))))) S) R (coeSubtype.{succ u1} R (fun (x : R) => Membership.Mem.{u1, u1} R (Submonoid.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1)))) (SetLike.hasMem.{u1, u1} (Submonoid.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1)))) R (Submonoid.setLike.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1))))) x S))))) sb)) (HMul.hMul.{u1, u1, u1} R R R (instHMul.{u1} R (Distrib.toHasMul.{u1} R (NonUnitalNonAssocSemiring.toDistrib.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1))))) r' rb)) (HMul.hMul.{u1, u1, u1} (coeSort.{succ u1, succ (succ u1)} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1)))) Type.{u1} (SetLike.hasCoeToSort.{u1, u1} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1)))) R (Submonoid.setLike.{u1} R (Monoid.toMulOneClass.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1))))) S) (coeSort.{succ u1, succ (succ u1)} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1)))) Type.{u1} (SetLike.hasCoeToSort.{u1, u1} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1)))) R (Submonoid.setLike.{u1} R (Monoid.toMulOneClass.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1))))) S) (coeSort.{succ u1, succ (succ u1)} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1)))) Type.{u1} (SetLike.hasCoeToSort.{u1, u1} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1)))) R (Submonoid.setLike.{u1} R (Monoid.toMulOneClass.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1))))) S) (instHMul.{u1} (coeSort.{succ u1, succ (succ u1)} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1)))) Type.{u1} (SetLike.hasCoeToSort.{u1, u1} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1)))) R (Submonoid.setLike.{u1} R (Monoid.toMulOneClass.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1))))) S) (Submonoid.mul.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1))) S)) s sb))) but is expected to have type forall {R : Type.{u1}} [_inst_1 : Semiring.{u1} R] {S : Submonoid.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1)))} [_inst_2 : OreLocalization.OreSet.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1)) S] {r : R} {r' : R} (s : Subtype.{succ u1} R (fun (x : R) => Membership.mem.{u1, u1} R (Submonoid.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1)))) (SetLike.instMembership.{u1, u1} (Submonoid.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1)))) R (Submonoid.instSetLikeSubmonoid.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1))))) x S)) (s' : Subtype.{succ u1} R (fun (x : R) => Membership.mem.{u1, u1} R (Submonoid.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1)))) (SetLike.instMembership.{u1, u1} (Submonoid.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1)))) R (Submonoid.instSetLikeSubmonoid.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1))))) x S)) (rb : R) (sb : Subtype.{succ u1} R (fun (x : R) => Membership.mem.{u1, u1} R (Submonoid.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1)))) (SetLike.instMembership.{u1, u1} (Submonoid.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1)))) R (Submonoid.instSetLikeSubmonoid.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1))))) x S)), (Eq.{succ u1} R (HMul.hMul.{u1, u1, u1} R R R (instHMul.{u1} R (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1)))) (Subtype.val.{succ u1} R (fun (x : R) => Membership.mem.{u1, u1} R (Set.{u1} R) (Set.instMembershipSet.{u1} R) x (SetLike.coe.{u1, u1} (Submonoid.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1)))) R (Submonoid.instSetLikeSubmonoid.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1)))) S)) s) (Subtype.val.{succ u1} R (fun (x : R) => Membership.mem.{u1, u1} R (Set.{u1} R) (Set.instMembershipSet.{u1} R) x (SetLike.coe.{u1, u1} (Submonoid.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1)))) R (Submonoid.instSetLikeSubmonoid.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1)))) S)) sb)) (HMul.hMul.{u1, u1, u1} R R R (instHMul.{u1} R (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1)))) (Subtype.val.{succ u1} R (fun (x : R) => Membership.mem.{u1, u1} R (Set.{u1} R) (Set.instMembershipSet.{u1} R) x (SetLike.coe.{u1, u1} (Submonoid.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1)))) R (Submonoid.instSetLikeSubmonoid.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1)))) S)) s') rb)) -> (Eq.{succ u1} (OreLocalization.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1)) S _inst_2) (HAdd.hAdd.{u1, u1, u1} (OreLocalization.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1)) S _inst_2) (OreLocalization.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1)) S _inst_2) (OreLocalization.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1)) S _inst_2) (instHAdd.{u1} (OreLocalization.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1)) S _inst_2) (OreLocalization.instAddOreLocalizationToMonoidToMonoidWithZero.{u1} R _inst_1 S _inst_2)) (OreLocalization.oreDiv.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1)) S _inst_2 r s) (OreLocalization.oreDiv.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1)) S _inst_2 r' s')) (OreLocalization.oreDiv.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1)) S _inst_2 (HAdd.hAdd.{u1, u1, u1} R R R (instHAdd.{u1} R (Distrib.toAdd.{u1} R (NonUnitalNonAssocSemiring.toDistrib.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1))))) (HMul.hMul.{u1, u1, u1} R R R (instHMul.{u1} R (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1)))) r (Subtype.val.{succ u1} R (fun (x : R) => Membership.mem.{u1, u1} R (Set.{u1} R) (Set.instMembershipSet.{u1} R) x (SetLike.coe.{u1, u1} (Submonoid.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1)))) R (Submonoid.instSetLikeSubmonoid.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1)))) S)) sb)) (HMul.hMul.{u1, u1, u1} R R R (instHMul.{u1} R (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1)))) r' rb)) (HMul.hMul.{u1, u1, u1} (Subtype.{succ u1} R (fun (x : R) => Membership.mem.{u1, u1} R (Submonoid.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1)))) (SetLike.instMembership.{u1, u1} (Submonoid.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1)))) R (Submonoid.instSetLikeSubmonoid.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1))))) x S)) (Subtype.{succ u1} R (fun (x : R) => Membership.mem.{u1, u1} R (Submonoid.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1)))) (SetLike.instMembership.{u1, u1} (Submonoid.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1)))) R (Submonoid.instSetLikeSubmonoid.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1))))) x S)) (Subtype.{succ u1} R (fun (x : R) => Membership.mem.{u1, u1} R (Submonoid.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1)))) (SetLike.instMembership.{u1, u1} (Submonoid.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1)))) R (Submonoid.instSetLikeSubmonoid.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1))))) x S)) (instHMul.{u1} (Subtype.{succ u1} R (fun (x : R) => Membership.mem.{u1, u1} R (Submonoid.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1)))) (SetLike.instMembership.{u1, u1} (Submonoid.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1)))) R (Submonoid.instSetLikeSubmonoid.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1))))) x S)) (Submonoid.mul.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1))) S)) s sb))) Case conversion may be inaccurate. Consider using '#align ore_localization.ore_div_add_char OreLocalization.oreDiv_add_charₓ'. -/ /-- A characterization of the addition on the Ore localizaion, allowing for arbitrary Ore numerator and Ore denominator. -/ theorem oreDiv_add_char {r r' : R} (s s' : S) (rb : R) (sb : S) (h : (s : R) * sb = s' * rb) : r /ₒ s + r' /ₒ s' = (r * sb + r' * rb) /ₒ (s * sb) := add''_char r s r' s' rb sb h #align ore_localization.ore_div_add_char OreLocalization.oreDiv_add_char /- warning: ore_localization.ore_div_add_char' -> OreLocalization.oreDivAddChar' is a dubious translation: lean 3 declaration is forall {R : Type.{u1}} [_inst_1 : Semiring.{u1} R] {S : Submonoid.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1)))} [_inst_2 : OreLocalization.OreSet.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1)) S] (r : R) (r' : R) (s : coeSort.{succ u1, succ (succ u1)} (Submonoid.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1)))) Type.{u1} (SetLike.hasCoeToSort.{u1, u1} (Submonoid.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1)))) R (Submonoid.setLike.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1))))) S) (s' : coeSort.{succ u1, succ (succ u1)} (Submonoid.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1)))) Type.{u1} (SetLike.hasCoeToSort.{u1, u1} (Submonoid.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1)))) R (Submonoid.setLike.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1))))) S), PSigma.{succ u1, succ u1} R (fun (r'' : R) => PSigma.{succ u1, 0} (coeSort.{succ u1, succ (succ u1)} (Submonoid.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1)))) Type.{u1} (SetLike.hasCoeToSort.{u1, u1} (Submonoid.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1)))) R (Submonoid.setLike.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1))))) S) (fun (s'' : coeSort.{succ u1, succ (succ u1)} (Submonoid.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1)))) Type.{u1} (SetLike.hasCoeToSort.{u1, u1} (Submonoid.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1)))) R (Submonoid.setLike.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1))))) S) => And (Eq.{succ u1} R (HMul.hMul.{u1, u1, u1} R R R (instHMul.{u1} R (Distrib.toHasMul.{u1} R (NonUnitalNonAssocSemiring.toDistrib.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1))))) ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) (coeSort.{succ u1, succ (succ u1)} (Submonoid.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1)))) Type.{u1} (SetLike.hasCoeToSort.{u1, u1} (Submonoid.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1)))) R (Submonoid.setLike.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1))))) S) R (HasLiftT.mk.{succ u1, succ u1} (coeSort.{succ u1, succ (succ u1)} (Submonoid.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1)))) Type.{u1} (SetLike.hasCoeToSort.{u1, u1} (Submonoid.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1)))) R (Submonoid.setLike.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1))))) S) R (CoeTCₓ.coe.{succ u1, succ u1} (coeSort.{succ u1, succ (succ u1)} (Submonoid.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1)))) Type.{u1} (SetLike.hasCoeToSort.{u1, u1} (Submonoid.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1)))) R (Submonoid.setLike.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1))))) S) R (coeBase.{succ u1, succ u1} (coeSort.{succ u1, succ (succ u1)} (Submonoid.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1)))) Type.{u1} (SetLike.hasCoeToSort.{u1, u1} (Submonoid.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1)))) R (Submonoid.setLike.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1))))) S) R (coeSubtype.{succ u1} R (fun (x : R) => Membership.Mem.{u1, u1} R (Submonoid.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1)))) (SetLike.hasMem.{u1, u1} (Submonoid.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1)))) R (Submonoid.setLike.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1))))) x S))))) s) ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) (coeSort.{succ u1, succ (succ u1)} (Submonoid.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1)))) Type.{u1} (SetLike.hasCoeToSort.{u1, u1} (Submonoid.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1)))) R (Submonoid.setLike.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1))))) S) R (HasLiftT.mk.{succ u1, succ u1} (coeSort.{succ u1, succ (succ u1)} (Submonoid.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1)))) Type.{u1} (SetLike.hasCoeToSort.{u1, u1} (Submonoid.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1)))) R (Submonoid.setLike.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1))))) S) R (CoeTCₓ.coe.{succ u1, succ u1} (coeSort.{succ u1, succ (succ u1)} (Submonoid.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1)))) Type.{u1} (SetLike.hasCoeToSort.{u1, u1} (Submonoid.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1)))) R (Submonoid.setLike.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1))))) S) R (coeBase.{succ u1, succ u1} (coeSort.{succ u1, succ (succ u1)} (Submonoid.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1)))) Type.{u1} (SetLike.hasCoeToSort.{u1, u1} (Submonoid.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1)))) R (Submonoid.setLike.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1))))) S) R (coeSubtype.{succ u1} R (fun (x : R) => Membership.Mem.{u1, u1} R (Submonoid.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1)))) (SetLike.hasMem.{u1, u1} (Submonoid.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1)))) R (Submonoid.setLike.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1))))) x S))))) s'')) (HMul.hMul.{u1, u1, u1} R R R (instHMul.{u1} R (Distrib.toHasMul.{u1} R (NonUnitalNonAssocSemiring.toDistrib.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1))))) ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) (coeSort.{succ u1, succ (succ u1)} (Submonoid.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1)))) Type.{u1} (SetLike.hasCoeToSort.{u1, u1} (Submonoid.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1)))) R (Submonoid.setLike.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1))))) S) R (HasLiftT.mk.{succ u1, succ u1} (coeSort.{succ u1, succ (succ u1)} (Submonoid.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1)))) Type.{u1} (SetLike.hasCoeToSort.{u1, u1} (Submonoid.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1)))) R (Submonoid.setLike.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1))))) S) R (CoeTCₓ.coe.{succ u1, succ u1} (coeSort.{succ u1, succ (succ u1)} (Submonoid.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1)))) Type.{u1} (SetLike.hasCoeToSort.{u1, u1} (Submonoid.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1)))) R (Submonoid.setLike.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1))))) S) R (coeBase.{succ u1, succ u1} (coeSort.{succ u1, succ (succ u1)} (Submonoid.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1)))) Type.{u1} (SetLike.hasCoeToSort.{u1, u1} (Submonoid.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1)))) R (Submonoid.setLike.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1))))) S) R (coeSubtype.{succ u1} R (fun (x : R) => Membership.Mem.{u1, u1} R (Submonoid.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1)))) (SetLike.hasMem.{u1, u1} (Submonoid.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1)))) R (Submonoid.setLike.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1))))) x S))))) s') r'')) (Eq.{succ u1} (OreLocalization.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1)) S _inst_2) (HAdd.hAdd.{u1, u1, u1} (OreLocalization.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1)) S _inst_2) (OreLocalization.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1)) S _inst_2) (OreLocalization.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1)) S _inst_2) (instHAdd.{u1} (OreLocalization.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1)) S _inst_2) (OreLocalization.hasAdd.{u1} R _inst_1 S _inst_2)) (OreLocalization.oreDiv.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1)) S _inst_2 r s) (OreLocalization.oreDiv.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1)) S _inst_2 r' s')) (OreLocalization.oreDiv.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1)) S _inst_2 (HAdd.hAdd.{u1, u1, u1} R R R (instHAdd.{u1} R (Distrib.toHasAdd.{u1} R (NonUnitalNonAssocSemiring.toDistrib.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1))))) (HMul.hMul.{u1, u1, u1} R R R (instHMul.{u1} R (Distrib.toHasMul.{u1} R (NonUnitalNonAssocSemiring.toDistrib.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1))))) r ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) (coeSort.{succ u1, succ (succ u1)} (Submonoid.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1)))) Type.{u1} (SetLike.hasCoeToSort.{u1, u1} (Submonoid.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1)))) R (Submonoid.setLike.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1))))) S) R (HasLiftT.mk.{succ u1, succ u1} (coeSort.{succ u1, succ (succ u1)} (Submonoid.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1)))) Type.{u1} (SetLike.hasCoeToSort.{u1, u1} (Submonoid.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1)))) R (Submonoid.setLike.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1))))) S) R (CoeTCₓ.coe.{succ u1, succ u1} (coeSort.{succ u1, succ (succ u1)} (Submonoid.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1)))) Type.{u1} (SetLike.hasCoeToSort.{u1, u1} (Submonoid.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1)))) R (Submonoid.setLike.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1))))) S) R (coeBase.{succ u1, succ u1} (coeSort.{succ u1, succ (succ u1)} (Submonoid.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1)))) Type.{u1} (SetLike.hasCoeToSort.{u1, u1} (Submonoid.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1)))) R (Submonoid.setLike.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1))))) S) R (coeSubtype.{succ u1} R (fun (x : R) => Membership.Mem.{u1, u1} R (Submonoid.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1)))) (SetLike.hasMem.{u1, u1} (Submonoid.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1)))) R (Submonoid.setLike.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1))))) x S))))) s'')) (HMul.hMul.{u1, u1, u1} R R R (instHMul.{u1} R (Distrib.toHasMul.{u1} R (NonUnitalNonAssocSemiring.toDistrib.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1))))) r' r'')) (HMul.hMul.{u1, u1, u1} (coeSort.{succ u1, succ (succ u1)} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1)))) Type.{u1} (SetLike.hasCoeToSort.{u1, u1} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1)))) R (Submonoid.setLike.{u1} R (Monoid.toMulOneClass.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1))))) S) (coeSort.{succ u1, succ (succ u1)} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1)))) Type.{u1} (SetLike.hasCoeToSort.{u1, u1} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1)))) R (Submonoid.setLike.{u1} R (Monoid.toMulOneClass.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1))))) S) (coeSort.{succ u1, succ (succ u1)} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1)))) Type.{u1} (SetLike.hasCoeToSort.{u1, u1} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1)))) R (Submonoid.setLike.{u1} R (Monoid.toMulOneClass.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1))))) S) (instHMul.{u1} (coeSort.{succ u1, succ (succ u1)} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1)))) Type.{u1} (SetLike.hasCoeToSort.{u1, u1} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1)))) R (Submonoid.setLike.{u1} R (Monoid.toMulOneClass.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1))))) S) (Submonoid.mul.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1))) S)) s s''))))) but is expected to have type forall {R : Type.{u1}} [_inst_1 : Semiring.{u1} R] {S : Submonoid.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1)))} [_inst_2 : OreLocalization.OreSet.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1)) S] (r : R) (r' : R) (s : Subtype.{succ u1} R (fun (x : R) => Membership.mem.{u1, u1} R (Submonoid.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1)))) (SetLike.instMembership.{u1, u1} (Submonoid.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1)))) R (Submonoid.instSetLikeSubmonoid.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1))))) x S)) (s' : Subtype.{succ u1} R (fun (x : R) => Membership.mem.{u1, u1} R (Submonoid.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1)))) (SetLike.instMembership.{u1, u1} (Submonoid.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1)))) R (Submonoid.instSetLikeSubmonoid.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1))))) x S)), PSigma.{succ u1, succ u1} R (fun (r'' : R) => PSigma.{succ u1, 0} (Subtype.{succ u1} R (fun (x : R) => Membership.mem.{u1, u1} R (Submonoid.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1)))) (SetLike.instMembership.{u1, u1} (Submonoid.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1)))) R (Submonoid.instSetLikeSubmonoid.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1))))) x S)) (fun (s'' : Subtype.{succ u1} R (fun (x : R) => Membership.mem.{u1, u1} R (Submonoid.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1)))) (SetLike.instMembership.{u1, u1} (Submonoid.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1)))) R (Submonoid.instSetLikeSubmonoid.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1))))) x S)) => And (Eq.{succ u1} R (HMul.hMul.{u1, u1, u1} R R R (instHMul.{u1} R (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1)))) (Subtype.val.{succ u1} R (fun (x : R) => Membership.mem.{u1, u1} R (Set.{u1} R) (Set.instMembershipSet.{u1} R) x (SetLike.coe.{u1, u1} (Submonoid.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1)))) R (Submonoid.instSetLikeSubmonoid.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1)))) S)) s) (Subtype.val.{succ u1} R (fun (x : R) => Membership.mem.{u1, u1} R (Set.{u1} R) (Set.instMembershipSet.{u1} R) x (SetLike.coe.{u1, u1} (Submonoid.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1)))) R (Submonoid.instSetLikeSubmonoid.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1)))) S)) s'')) (HMul.hMul.{u1, u1, u1} R R R (instHMul.{u1} R (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1)))) (Subtype.val.{succ u1} R (fun (x : R) => Membership.mem.{u1, u1} R (Set.{u1} R) (Set.instMembershipSet.{u1} R) x (SetLike.coe.{u1, u1} (Submonoid.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1)))) R (Submonoid.instSetLikeSubmonoid.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1)))) S)) s') r'')) (Eq.{succ u1} (OreLocalization.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1)) S _inst_2) (HAdd.hAdd.{u1, u1, u1} (OreLocalization.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1)) S _inst_2) (OreLocalization.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1)) S _inst_2) (OreLocalization.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1)) S _inst_2) (instHAdd.{u1} (OreLocalization.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1)) S _inst_2) (OreLocalization.instAddOreLocalizationToMonoidToMonoidWithZero.{u1} R _inst_1 S _inst_2)) (OreLocalization.oreDiv.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1)) S _inst_2 r s) (OreLocalization.oreDiv.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1)) S _inst_2 r' s')) (OreLocalization.oreDiv.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1)) S _inst_2 (HAdd.hAdd.{u1, u1, u1} R R R (instHAdd.{u1} R (Distrib.toAdd.{u1} R (NonUnitalNonAssocSemiring.toDistrib.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1))))) (HMul.hMul.{u1, u1, u1} R R R (instHMul.{u1} R (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1)))) r (Subtype.val.{succ u1} R (fun (x : R) => Membership.mem.{u1, u1} R (Set.{u1} R) (Set.instMembershipSet.{u1} R) x (SetLike.coe.{u1, u1} (Submonoid.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1)))) R (Submonoid.instSetLikeSubmonoid.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1)))) S)) s'')) (HMul.hMul.{u1, u1, u1} R R R (instHMul.{u1} R (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1)))) r' r'')) (HMul.hMul.{u1, u1, u1} (Subtype.{succ u1} R (fun (x : R) => Membership.mem.{u1, u1} R (Submonoid.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1)))) (SetLike.instMembership.{u1, u1} (Submonoid.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1)))) R (Submonoid.instSetLikeSubmonoid.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1))))) x S)) (Subtype.{succ u1} R (fun (x : R) => Membership.mem.{u1, u1} R (Submonoid.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1)))) (SetLike.instMembership.{u1, u1} (Submonoid.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1)))) R (Submonoid.instSetLikeSubmonoid.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1))))) x S)) (Subtype.{succ u1} R (fun (x : R) => Membership.mem.{u1, u1} R (Submonoid.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1)))) (SetLike.instMembership.{u1, u1} (Submonoid.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1)))) R (Submonoid.instSetLikeSubmonoid.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1))))) x S)) (instHMul.{u1} (Subtype.{succ u1} R (fun (x : R) => Membership.mem.{u1, u1} R (Submonoid.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1)))) (SetLike.instMembership.{u1, u1} (Submonoid.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1)))) R (Submonoid.instSetLikeSubmonoid.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1))))) x S)) (Submonoid.mul.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1))) S)) s s''))))) Case conversion may be inaccurate. Consider using '#align ore_localization.ore_div_add_char' OreLocalization.oreDivAddChar'ₓ'. -/ /-- Another characterization of the addition on the Ore localization, bundling up all witnesses and conditions into a sigma type. -/ def oreDivAddChar' (r r' : R) (s s' : S) : Σ'r'' : R, Σ's'' : S, (s : R) * s'' = s' * r'' ∧ r /ₒ s + r' /ₒ s' = (r * s'' + r' * r'') /ₒ (s * s'') := ⟨oreNum s s', oreDenom s s', ore_eq s s', oreDiv_add_oreDiv⟩ #align ore_localization.ore_div_add_char' OreLocalization.oreDivAddChar' /- warning: ore_localization.add_ore_div -> OreLocalization.add_oreDiv is a dubious translation: lean 3 declaration is forall {R : Type.{u1}} [_inst_1 : Semiring.{u1} R] {S : Submonoid.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1)))} [_inst_2 : OreLocalization.OreSet.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1)) S] {r : R} {r' : R} {s : coeSort.{succ u1, succ (succ u1)} (Submonoid.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1)))) Type.{u1} (SetLike.hasCoeToSort.{u1, u1} (Submonoid.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1)))) R (Submonoid.setLike.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1))))) S}, Eq.{succ u1} (OreLocalization.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1)) S _inst_2) (HAdd.hAdd.{u1, u1, u1} (OreLocalization.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1)) S _inst_2) (OreLocalization.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1)) S _inst_2) (OreLocalization.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1)) S _inst_2) (instHAdd.{u1} (OreLocalization.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1)) S _inst_2) (OreLocalization.hasAdd.{u1} R _inst_1 S _inst_2)) (OreLocalization.oreDiv.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1)) S _inst_2 r s) (OreLocalization.oreDiv.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1)) S _inst_2 r' s)) (OreLocalization.oreDiv.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1)) S _inst_2 (HAdd.hAdd.{u1, u1, u1} R R R (instHAdd.{u1} R (Distrib.toHasAdd.{u1} R (NonUnitalNonAssocSemiring.toDistrib.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1))))) r r') s) but is expected to have type forall {R : Type.{u1}} [_inst_1 : Semiring.{u1} R] {S : Submonoid.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1)))} [_inst_2 : OreLocalization.OreSet.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1)) S] {r : R} {r' : R} {s : Subtype.{succ u1} R (fun (x : R) => Membership.mem.{u1, u1} R (Submonoid.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1)))) (SetLike.instMembership.{u1, u1} (Submonoid.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1)))) R (Submonoid.instSetLikeSubmonoid.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1))))) x S)}, Eq.{succ u1} (OreLocalization.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1)) S _inst_2) (HAdd.hAdd.{u1, u1, u1} (OreLocalization.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1)) S _inst_2) (OreLocalization.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1)) S _inst_2) (OreLocalization.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1)) S _inst_2) (instHAdd.{u1} (OreLocalization.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1)) S _inst_2) (OreLocalization.instAddOreLocalizationToMonoidToMonoidWithZero.{u1} R _inst_1 S _inst_2)) (OreLocalization.oreDiv.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1)) S _inst_2 r s) (OreLocalization.oreDiv.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1)) S _inst_2 r' s)) (OreLocalization.oreDiv.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1)) S _inst_2 (HAdd.hAdd.{u1, u1, u1} R R R (instHAdd.{u1} R (Distrib.toAdd.{u1} R (NonUnitalNonAssocSemiring.toDistrib.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1))))) r r') s) Case conversion may be inaccurate. Consider using '#align ore_localization.add_ore_div OreLocalization.add_oreDivₓ'. -/ @[simp] theorem add_oreDiv {r r' : R} {s : S} : r /ₒ s + r' /ₒ s = (r + r') /ₒ s := by simp [ore_div_add_char s s 1 1 (by simp)] #align ore_localization.add_ore_div OreLocalization.add_oreDiv /- warning: ore_localization.add_assoc -> OreLocalization.add_assoc is a dubious translation: lean 3 declaration is forall {R : Type.{u1}} [_inst_1 : Semiring.{u1} R] {S : Submonoid.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1)))} [_inst_2 : OreLocalization.OreSet.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1)) S] (x : OreLocalization.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1)) S _inst_2) (y : OreLocalization.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1)) S _inst_2) (z : OreLocalization.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1)) S _inst_2), Eq.{succ u1} (OreLocalization.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1)) S _inst_2) (HAdd.hAdd.{u1, u1, u1} (OreLocalization.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1)) S _inst_2) (OreLocalization.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1)) S _inst_2) (OreLocalization.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1)) S _inst_2) (instHAdd.{u1} (OreLocalization.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1)) S _inst_2) (OreLocalization.hasAdd.{u1} R _inst_1 S _inst_2)) (HAdd.hAdd.{u1, u1, u1} (OreLocalization.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1)) S _inst_2) (OreLocalization.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1)) S _inst_2) (OreLocalization.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1)) S _inst_2) (instHAdd.{u1} (OreLocalization.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1)) S _inst_2) (OreLocalization.hasAdd.{u1} R _inst_1 S _inst_2)) x y) z) (HAdd.hAdd.{u1, u1, u1} (OreLocalization.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1)) S _inst_2) (OreLocalization.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1)) S _inst_2) (OreLocalization.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1)) S _inst_2) (instHAdd.{u1} (OreLocalization.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1)) S _inst_2) (OreLocalization.hasAdd.{u1} R _inst_1 S _inst_2)) x (HAdd.hAdd.{u1, u1, u1} (OreLocalization.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1)) S _inst_2) (OreLocalization.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1)) S _inst_2) (OreLocalization.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1)) S _inst_2) (instHAdd.{u1} (OreLocalization.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1)) S _inst_2) (OreLocalization.hasAdd.{u1} R _inst_1 S _inst_2)) y z)) but is expected to have type forall {R : Type.{u1}} [_inst_1 : Semiring.{u1} R] {S : Submonoid.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1)))} [_inst_2 : OreLocalization.OreSet.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1)) S] (x : OreLocalization.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1)) S _inst_2) (y : OreLocalization.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1)) S _inst_2) (z : OreLocalization.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1)) S _inst_2), Eq.{succ u1} (OreLocalization.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1)) S _inst_2) (HAdd.hAdd.{u1, u1, u1} (OreLocalization.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1)) S _inst_2) (OreLocalization.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1)) S _inst_2) (OreLocalization.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1)) S _inst_2) (instHAdd.{u1} (OreLocalization.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1)) S _inst_2) (OreLocalization.instAddOreLocalizationToMonoidToMonoidWithZero.{u1} R _inst_1 S _inst_2)) (HAdd.hAdd.{u1, u1, u1} (OreLocalization.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1)) S _inst_2) (OreLocalization.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1)) S _inst_2) (OreLocalization.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1)) S _inst_2) (instHAdd.{u1} (OreLocalization.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1)) S _inst_2) (OreLocalization.instAddOreLocalizationToMonoidToMonoidWithZero.{u1} R _inst_1 S _inst_2)) x y) z) (HAdd.hAdd.{u1, u1, u1} (OreLocalization.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1)) S _inst_2) (OreLocalization.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1)) S _inst_2) (OreLocalization.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1)) S _inst_2) (instHAdd.{u1} (OreLocalization.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1)) S _inst_2) (OreLocalization.instAddOreLocalizationToMonoidToMonoidWithZero.{u1} R _inst_1 S _inst_2)) x (HAdd.hAdd.{u1, u1, u1} (OreLocalization.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1)) S _inst_2) (OreLocalization.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1)) S _inst_2) (OreLocalization.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1)) S _inst_2) (instHAdd.{u1} (OreLocalization.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1)) S _inst_2) (OreLocalization.instAddOreLocalizationToMonoidToMonoidWithZero.{u1} R _inst_1 S _inst_2)) y z)) Case conversion may be inaccurate. Consider using '#align ore_localization.add_assoc OreLocalization.add_assocₓ'. -/ protected theorem add_assoc (x y z : R[S⁻¹]) : x + y + z = x + (y + z) := by induction' x using OreLocalization.ind with r₁ s₁ induction' y using OreLocalization.ind with r₂ s₂ induction' z using OreLocalization.ind with r₃ s₃ rcases ore_div_add_char' r₁ r₂ s₁ s₂ with ⟨ra, sa, ha, ha'⟩; rw [ha']; clear ha' rcases ore_div_add_char' r₂ r₃ s₂ s₃ with ⟨rb, sb, hb, hb'⟩; rw [hb']; clear hb' rcases ore_div_add_char' (r₁ * sa + r₂ * ra) r₃ (s₁ * sa) s₃ with ⟨rc, sc, hc, q⟩; rw [q]; clear q rcases ore_div_add_char' r₁ (r₂ * sb + r₃ * rb) s₁ (s₂ * sb) with ⟨rd, sd, hd, q⟩; rw [q]; clear q noncomm_ring; rw [add_comm (r₂ * _)] repeat' rw [← add_ore_div] congr 1 · rcases ore_condition (sd : R) (sa * sc) with ⟨re, se, he⟩ · simp_rw [← Submonoid.coe_mul] at hb hc hd assoc_rw [Subtype.coe_eq_of_eq_mk hc] rw [← OreLocalization.expand, Subtype.coe_eq_of_eq_mk hd, ← mul_assoc, ← OreLocalization.expand, Subtype.coe_eq_of_eq_mk hb] apply OreLocalization.expand congr 1 · rw [← OreLocalization.expand', ← mul_assoc, ← mul_assoc, ← OreLocalization.expand', ← OreLocalization.expand'] · simp_rw [← Submonoid.coe_mul] at ha hd rw [Subtype.coe_eq_of_eq_mk hd, ← mul_assoc, ← mul_assoc, ← mul_assoc, ← OreLocalization.expand, ← OreLocalization.expand', Subtype.coe_eq_of_eq_mk ha, ← OreLocalization.expand] apply OreLocalization.expand' #align ore_localization.add_assoc OreLocalization.add_assoc private def zero : R[S⁻¹] := 0 /ₒ 1 #align ore_localization.zero ore_localization.zero instance : Zero R[S⁻¹] := ⟨zero⟩ /- warning: ore_localization.zero_def -> OreLocalization.zero_def is a dubious translation: lean 3 declaration is forall {R : Type.{u1}} [_inst_1 : Semiring.{u1} R] {S : Submonoid.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1)))} [_inst_2 : OreLocalization.OreSet.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1)) S], Eq.{succ u1} (OreLocalization.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1)) S _inst_2) (OfNat.ofNat.{u1} (OreLocalization.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1)) S _inst_2) 0 (OfNat.mk.{u1} (OreLocalization.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1)) S _inst_2) 0 (Zero.zero.{u1} (OreLocalization.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1)) S _inst_2) (OreLocalization.hasZero.{u1} R _inst_1 S _inst_2)))) (OreLocalization.oreDiv.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1)) S _inst_2 (OfNat.ofNat.{u1} R 0 (OfNat.mk.{u1} R 0 (Zero.zero.{u1} R (MulZeroClass.toHasZero.{u1} R (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1))))))) (OfNat.ofNat.{u1} (coeSort.{succ u1, succ (succ u1)} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1)))) Type.{u1} (SetLike.hasCoeToSort.{u1, u1} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1)))) R (Submonoid.setLike.{u1} R (Monoid.toMulOneClass.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1))))) S) 1 (OfNat.mk.{u1} (coeSort.{succ u1, succ (succ u1)} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1)))) Type.{u1} (SetLike.hasCoeToSort.{u1, u1} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1)))) R (Submonoid.setLike.{u1} R (Monoid.toMulOneClass.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1))))) S) 1 (One.one.{u1} (coeSort.{succ u1, succ (succ u1)} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1)))) Type.{u1} (SetLike.hasCoeToSort.{u1, u1} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1)))) R (Submonoid.setLike.{u1} R (Monoid.toMulOneClass.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1))))) S) (Submonoid.one.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1))) S))))) but is expected to have type forall {R : Type.{u1}} [_inst_1 : Semiring.{u1} R] {S : Submonoid.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1)))} [_inst_2 : OreLocalization.OreSet.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1)) S], Eq.{succ u1} (OreLocalization.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1)) S _inst_2) (OfNat.ofNat.{u1} (OreLocalization.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1)) S _inst_2) 0 (Zero.toOfNat0.{u1} (OreLocalization.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1)) S _inst_2) (OreLocalization.instZeroOreLocalizationToMonoidToMonoidWithZero.{u1} R _inst_1 S _inst_2))) (OreLocalization.oreDiv.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1)) S _inst_2 (OfNat.ofNat.{u1} R 0 (Zero.toOfNat0.{u1} R (MonoidWithZero.toZero.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1)))) (OfNat.ofNat.{u1} (Subtype.{succ u1} R (fun (x : R) => Membership.mem.{u1, u1} R (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1)))) (SetLike.instMembership.{u1, u1} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1)))) R (Submonoid.instSetLikeSubmonoid.{u1} R (Monoid.toMulOneClass.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1))))) x S)) 1 (One.toOfNat1.{u1} (Subtype.{succ u1} R (fun (x : R) => Membership.mem.{u1, u1} R (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1)))) (SetLike.instMembership.{u1, u1} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1)))) R (Submonoid.instSetLikeSubmonoid.{u1} R (Monoid.toMulOneClass.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1))))) x S)) (Submonoid.one.{u1} R (Monoid.toMulOneClass.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1))) S)))) Case conversion may be inaccurate. Consider using '#align ore_localization.zero_def OreLocalization.zero_defₓ'. -/ protected theorem zero_def : (0 : R[S⁻¹]) = 0 /ₒ 1 := rfl #align ore_localization.zero_def OreLocalization.zero_def /- warning: ore_localization.zero_div_eq_zero -> OreLocalization.zero_div_eq_zero is a dubious translation: lean 3 declaration is forall {R : Type.{u1}} [_inst_1 : Semiring.{u1} R] {S : Submonoid.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1)))} [_inst_2 : OreLocalization.OreSet.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1)) S] (s : coeSort.{succ u1, succ (succ u1)} (Submonoid.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1)))) Type.{u1} (SetLike.hasCoeToSort.{u1, u1} (Submonoid.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1)))) R (Submonoid.setLike.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1))))) S), Eq.{succ u1} (OreLocalization.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1)) S _inst_2) (OreLocalization.oreDiv.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1)) S _inst_2 (OfNat.ofNat.{u1} R 0 (OfNat.mk.{u1} R 0 (Zero.zero.{u1} R (MulZeroClass.toHasZero.{u1} R (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1))))))) s) (OfNat.ofNat.{u1} (OreLocalization.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1)) S _inst_2) 0 (OfNat.mk.{u1} (OreLocalization.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1)) S _inst_2) 0 (Zero.zero.{u1} (OreLocalization.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1)) S _inst_2) (OreLocalization.hasZero.{u1} R _inst_1 S _inst_2)))) but is expected to have type forall {R : Type.{u1}} [_inst_1 : Semiring.{u1} R] {S : Submonoid.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1)))} [_inst_2 : OreLocalization.OreSet.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1)) S] (s : Subtype.{succ u1} R (fun (x : R) => Membership.mem.{u1, u1} R (Submonoid.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1)))) (SetLike.instMembership.{u1, u1} (Submonoid.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1)))) R (Submonoid.instSetLikeSubmonoid.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1))))) x S)), Eq.{succ u1} (OreLocalization.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1)) S _inst_2) (OreLocalization.oreDiv.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1)) S _inst_2 (OfNat.ofNat.{u1} R 0 (Zero.toOfNat0.{u1} R (MonoidWithZero.toZero.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1)))) s) (OfNat.ofNat.{u1} (OreLocalization.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1)) S _inst_2) 0 (Zero.toOfNat0.{u1} (OreLocalization.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1)) S _inst_2) (OreLocalization.instZeroOreLocalizationToMonoidToMonoidWithZero.{u1} R _inst_1 S _inst_2))) Case conversion may be inaccurate. Consider using '#align ore_localization.zero_div_eq_zero OreLocalization.zero_div_eq_zeroₓ'. -/ @[simp] theorem zero_div_eq_zero (s : S) : 0 /ₒ s = 0 := by rw [OreLocalization.zero_def, ore_div_eq_iff] exact ⟨s, 1, by simp⟩ #align ore_localization.zero_div_eq_zero OreLocalization.zero_div_eq_zero /- warning: ore_localization.zero_add -> OreLocalization.zero_add is a dubious translation: lean 3 declaration is forall {R : Type.{u1}} [_inst_1 : Semiring.{u1} R] {S : Submonoid.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1)))} [_inst_2 : OreLocalization.OreSet.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1)) S] (x : OreLocalization.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1)) S _inst_2), Eq.{succ u1} (OreLocalization.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1)) S _inst_2) (HAdd.hAdd.{u1, u1, u1} (OreLocalization.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1)) S _inst_2) (OreLocalization.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1)) S _inst_2) (OreLocalization.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1)) S _inst_2) (instHAdd.{u1} (OreLocalization.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1)) S _inst_2) (OreLocalization.hasAdd.{u1} R _inst_1 S _inst_2)) (OfNat.ofNat.{u1} (OreLocalization.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1)) S _inst_2) 0 (OfNat.mk.{u1} (OreLocalization.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1)) S _inst_2) 0 (Zero.zero.{u1} (OreLocalization.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1)) S _inst_2) (OreLocalization.hasZero.{u1} R _inst_1 S _inst_2)))) x) x but is expected to have type forall {R : Type.{u1}} [_inst_1 : Semiring.{u1} R] {S : Submonoid.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1)))} [_inst_2 : OreLocalization.OreSet.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1)) S] (x : OreLocalization.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1)) S _inst_2), Eq.{succ u1} (OreLocalization.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1)) S _inst_2) (HAdd.hAdd.{u1, u1, u1} (OreLocalization.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1)) S _inst_2) (OreLocalization.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1)) S _inst_2) (OreLocalization.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1)) S _inst_2) (instHAdd.{u1} (OreLocalization.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1)) S _inst_2) (OreLocalization.instAddOreLocalizationToMonoidToMonoidWithZero.{u1} R _inst_1 S _inst_2)) (OfNat.ofNat.{u1} (OreLocalization.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1)) S _inst_2) 0 (Zero.toOfNat0.{u1} (OreLocalization.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1)) S _inst_2) (OreLocalization.instZeroOreLocalizationToMonoidToMonoidWithZero.{u1} R _inst_1 S _inst_2))) x) x Case conversion may be inaccurate. Consider using '#align ore_localization.zero_add OreLocalization.zero_addₓ'. -/ protected theorem zero_add (x : R[S⁻¹]) : 0 + x = x := by induction x using OreLocalization.ind rw [← zero_div_eq_zero, add_ore_div]; simp #align ore_localization.zero_add OreLocalization.zero_add /- warning: ore_localization.add_comm -> OreLocalization.add_comm is a dubious translation: lean 3 declaration is forall {R : Type.{u1}} [_inst_1 : Semiring.{u1} R] {S : Submonoid.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1)))} [_inst_2 : OreLocalization.OreSet.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1)) S] (x : OreLocalization.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1)) S _inst_2) (y : OreLocalization.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1)) S _inst_2), Eq.{succ u1} (OreLocalization.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1)) S _inst_2) (HAdd.hAdd.{u1, u1, u1} (OreLocalization.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1)) S _inst_2) (OreLocalization.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1)) S _inst_2) (OreLocalization.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1)) S _inst_2) (instHAdd.{u1} (OreLocalization.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1)) S _inst_2) (OreLocalization.hasAdd.{u1} R _inst_1 S _inst_2)) x y) (HAdd.hAdd.{u1, u1, u1} (OreLocalization.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1)) S _inst_2) (OreLocalization.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1)) S _inst_2) (OreLocalization.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1)) S _inst_2) (instHAdd.{u1} (OreLocalization.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1)) S _inst_2) (OreLocalization.hasAdd.{u1} R _inst_1 S _inst_2)) y x) but is expected to have type forall {R : Type.{u1}} [_inst_1 : Semiring.{u1} R] {S : Submonoid.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1)))} [_inst_2 : OreLocalization.OreSet.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1)) S] (x : OreLocalization.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1)) S _inst_2) (y : OreLocalization.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1)) S _inst_2), Eq.{succ u1} (OreLocalization.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1)) S _inst_2) (HAdd.hAdd.{u1, u1, u1} (OreLocalization.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1)) S _inst_2) (OreLocalization.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1)) S _inst_2) (OreLocalization.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1)) S _inst_2) (instHAdd.{u1} (OreLocalization.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1)) S _inst_2) (OreLocalization.instAddOreLocalizationToMonoidToMonoidWithZero.{u1} R _inst_1 S _inst_2)) x y) (HAdd.hAdd.{u1, u1, u1} (OreLocalization.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1)) S _inst_2) (OreLocalization.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1)) S _inst_2) (OreLocalization.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1)) S _inst_2) (instHAdd.{u1} (OreLocalization.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1)) S _inst_2) (OreLocalization.instAddOreLocalizationToMonoidToMonoidWithZero.{u1} R _inst_1 S _inst_2)) y x) Case conversion may be inaccurate. Consider using '#align ore_localization.add_comm OreLocalization.add_commₓ'. -/ protected theorem add_comm (x y : R[S⁻¹]) : x + y = y + x := by induction x using OreLocalization.ind induction y using OreLocalization.ind change add' _ _ (_ /ₒ _) = _; apply add'_comm #align ore_localization.add_comm OreLocalization.add_comm instance : AddCommMonoid R[S⁻¹] := { OreLocalization.hasAdd with add_comm := OreLocalization.add_comm add_assoc := OreLocalization.add_assoc zero := zero zero_add := OreLocalization.zero_add add_zero := fun x => by rw [OreLocalization.add_comm, OreLocalization.zero_add] } /- warning: ore_localization.zero_mul -> OreLocalization.zero_mul is a dubious translation: lean 3 declaration is forall {R : Type.{u1}} [_inst_1 : Semiring.{u1} R] {S : Submonoid.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1)))} [_inst_2 : OreLocalization.OreSet.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1)) S] (x : OreLocalization.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1)) S _inst_2), Eq.{succ u1} (OreLocalization.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1)) S _inst_2) (HMul.hMul.{u1, u1, u1} (OreLocalization.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1)) S _inst_2) (OreLocalization.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1)) S _inst_2) (OreLocalization.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1)) S _inst_2) (instHMul.{u1} (OreLocalization.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1)) S _inst_2) (OreLocalization.hasMul.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1)) S _inst_2)) (OfNat.ofNat.{u1} (OreLocalization.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1)) S _inst_2) 0 (OfNat.mk.{u1} (OreLocalization.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1)) S _inst_2) 0 (Zero.zero.{u1} (OreLocalization.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1)) S _inst_2) (OreLocalization.hasZero.{u1} R _inst_1 S _inst_2)))) x) (OfNat.ofNat.{u1} (OreLocalization.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1)) S _inst_2) 0 (OfNat.mk.{u1} (OreLocalization.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1)) S _inst_2) 0 (Zero.zero.{u1} (OreLocalization.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1)) S _inst_2) (OreLocalization.hasZero.{u1} R _inst_1 S _inst_2)))) but is expected to have type forall {R : Type.{u1}} [_inst_1 : Semiring.{u1} R] {S : Submonoid.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1)))} [_inst_2 : OreLocalization.OreSet.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1)) S] (x : OreLocalization.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1)) S _inst_2), Eq.{succ u1} (OreLocalization.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1)) S _inst_2) (HMul.hMul.{u1, u1, u1} (OreLocalization.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1)) S _inst_2) (OreLocalization.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1)) S _inst_2) (OreLocalization.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1)) S _inst_2) (instHMul.{u1} (OreLocalization.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1)) S _inst_2) (OreLocalization.instMulOreLocalization.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1)) S _inst_2)) (OfNat.ofNat.{u1} (OreLocalization.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1)) S _inst_2) 0 (Zero.toOfNat0.{u1} (OreLocalization.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1)) S _inst_2) (OreLocalization.instZeroOreLocalizationToMonoidToMonoidWithZero.{u1} R _inst_1 S _inst_2))) x) (OfNat.ofNat.{u1} (OreLocalization.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1)) S _inst_2) 0 (Zero.toOfNat0.{u1} (OreLocalization.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1)) S _inst_2) (OreLocalization.instZeroOreLocalizationToMonoidToMonoidWithZero.{u1} R _inst_1 S _inst_2))) Case conversion may be inaccurate. Consider using '#align ore_localization.zero_mul OreLocalization.zero_mulₓ'. -/ protected theorem zero_mul (x : R[S⁻¹]) : 0 * x = 0 := by induction' x using OreLocalization.ind with r s rw [OreLocalization.zero_def, ore_div_mul_char 0 r 1 s r 1 (by simp)]; simp #align ore_localization.zero_mul OreLocalization.zero_mul /- warning: ore_localization.mul_zero -> OreLocalization.mul_zero is a dubious translation: lean 3 declaration is forall {R : Type.{u1}} [_inst_1 : Semiring.{u1} R] {S : Submonoid.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1)))} [_inst_2 : OreLocalization.OreSet.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1)) S] (x : OreLocalization.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1)) S _inst_2), Eq.{succ u1} (OreLocalization.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1)) S _inst_2) (HMul.hMul.{u1, u1, u1} (OreLocalization.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1)) S _inst_2) (OreLocalization.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1)) S _inst_2) (OreLocalization.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1)) S _inst_2) (instHMul.{u1} (OreLocalization.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1)) S _inst_2) (OreLocalization.hasMul.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1)) S _inst_2)) x (OfNat.ofNat.{u1} (OreLocalization.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1)) S _inst_2) 0 (OfNat.mk.{u1} (OreLocalization.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1)) S _inst_2) 0 (Zero.zero.{u1} (OreLocalization.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1)) S _inst_2) (OreLocalization.hasZero.{u1} R _inst_1 S _inst_2))))) (OfNat.ofNat.{u1} (OreLocalization.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1)) S _inst_2) 0 (OfNat.mk.{u1} (OreLocalization.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1)) S _inst_2) 0 (Zero.zero.{u1} (OreLocalization.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1)) S _inst_2) (OreLocalization.hasZero.{u1} R _inst_1 S _inst_2)))) but is expected to have type forall {R : Type.{u1}} [_inst_1 : Semiring.{u1} R] {S : Submonoid.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1)))} [_inst_2 : OreLocalization.OreSet.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1)) S] (x : OreLocalization.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1)) S _inst_2), Eq.{succ u1} (OreLocalization.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1)) S _inst_2) (HMul.hMul.{u1, u1, u1} (OreLocalization.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1)) S _inst_2) (OreLocalization.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1)) S _inst_2) (OreLocalization.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1)) S _inst_2) (instHMul.{u1} (OreLocalization.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1)) S _inst_2) (OreLocalization.instMulOreLocalization.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1)) S _inst_2)) x (OfNat.ofNat.{u1} (OreLocalization.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1)) S _inst_2) 0 (Zero.toOfNat0.{u1} (OreLocalization.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1)) S _inst_2) (OreLocalization.instZeroOreLocalizationToMonoidToMonoidWithZero.{u1} R _inst_1 S _inst_2)))) (OfNat.ofNat.{u1} (OreLocalization.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1)) S _inst_2) 0 (Zero.toOfNat0.{u1} (OreLocalization.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1)) S _inst_2) (OreLocalization.instZeroOreLocalizationToMonoidToMonoidWithZero.{u1} R _inst_1 S _inst_2))) Case conversion may be inaccurate. Consider using '#align ore_localization.mul_zero OreLocalization.mul_zeroₓ'. -/ protected theorem mul_zero (x : R[S⁻¹]) : x * 0 = 0 := by induction' x using OreLocalization.ind with r s rw [OreLocalization.zero_def, ore_div_mul_char r 0 s 1 0 1 (by simp)]; simp #align ore_localization.mul_zero OreLocalization.mul_zero /- warning: ore_localization.left_distrib -> OreLocalization.left_distrib is a dubious translation: lean 3 declaration is forall {R : Type.{u1}} [_inst_1 : Semiring.{u1} R] {S : Submonoid.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1)))} [_inst_2 : OreLocalization.OreSet.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1)) S] (x : OreLocalization.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1)) S _inst_2) (y : OreLocalization.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1)) S _inst_2) (z : OreLocalization.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1)) S _inst_2), Eq.{succ u1} (OreLocalization.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1)) S _inst_2) (HMul.hMul.{u1, u1, u1} (OreLocalization.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1)) S _inst_2) (OreLocalization.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1)) S _inst_2) (OreLocalization.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1)) S _inst_2) (instHMul.{u1} (OreLocalization.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1)) S _inst_2) (OreLocalization.hasMul.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1)) S _inst_2)) x (HAdd.hAdd.{u1, u1, u1} (OreLocalization.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1)) S _inst_2) (OreLocalization.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1)) S _inst_2) (OreLocalization.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1)) S _inst_2) (instHAdd.{u1} (OreLocalization.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1)) S _inst_2) (OreLocalization.hasAdd.{u1} R _inst_1 S _inst_2)) y z)) (HAdd.hAdd.{u1, u1, u1} (OreLocalization.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1)) S _inst_2) (OreLocalization.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1)) S _inst_2) (OreLocalization.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1)) S _inst_2) (instHAdd.{u1} (OreLocalization.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1)) S _inst_2) (OreLocalization.hasAdd.{u1} R _inst_1 S _inst_2)) (HMul.hMul.{u1, u1, u1} (OreLocalization.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1)) S _inst_2) (OreLocalization.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1)) S _inst_2) (OreLocalization.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1)) S _inst_2) (instHMul.{u1} (OreLocalization.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1)) S _inst_2) (OreLocalization.hasMul.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1)) S _inst_2)) x y) (HMul.hMul.{u1, u1, u1} (OreLocalization.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1)) S _inst_2) (OreLocalization.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1)) S _inst_2) (OreLocalization.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1)) S _inst_2) (instHMul.{u1} (OreLocalization.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1)) S _inst_2) (OreLocalization.hasMul.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1)) S _inst_2)) x z)) but is expected to have type forall {R : Type.{u1}} [_inst_1 : Semiring.{u1} R] {S : Submonoid.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1)))} [_inst_2 : OreLocalization.OreSet.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1)) S] (x : OreLocalization.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1)) S _inst_2) (y : OreLocalization.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1)) S _inst_2) (z : OreLocalization.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1)) S _inst_2), Eq.{succ u1} (OreLocalization.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1)) S _inst_2) (HMul.hMul.{u1, u1, u1} (OreLocalization.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1)) S _inst_2) (OreLocalization.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1)) S _inst_2) (OreLocalization.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1)) S _inst_2) (instHMul.{u1} (OreLocalization.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1)) S _inst_2) (OreLocalization.instMulOreLocalization.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1)) S _inst_2)) x (HAdd.hAdd.{u1, u1, u1} (OreLocalization.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1)) S _inst_2) (OreLocalization.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1)) S _inst_2) (OreLocalization.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1)) S _inst_2) (instHAdd.{u1} (OreLocalization.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1)) S _inst_2) (OreLocalization.instAddOreLocalizationToMonoidToMonoidWithZero.{u1} R _inst_1 S _inst_2)) y z)) (HAdd.hAdd.{u1, u1, u1} (OreLocalization.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1)) S _inst_2) (OreLocalization.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1)) S _inst_2) (OreLocalization.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1)) S _inst_2) (instHAdd.{u1} (OreLocalization.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1)) S _inst_2) (OreLocalization.instAddOreLocalizationToMonoidToMonoidWithZero.{u1} R _inst_1 S _inst_2)) (HMul.hMul.{u1, u1, u1} (OreLocalization.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1)) S _inst_2) (OreLocalization.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1)) S _inst_2) (OreLocalization.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1)) S _inst_2) (instHMul.{u1} (OreLocalization.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1)) S _inst_2) (OreLocalization.instMulOreLocalization.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1)) S _inst_2)) x y) (HMul.hMul.{u1, u1, u1} (OreLocalization.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1)) S _inst_2) (OreLocalization.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1)) S _inst_2) (OreLocalization.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1)) S _inst_2) (instHMul.{u1} (OreLocalization.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1)) S _inst_2) (OreLocalization.instMulOreLocalization.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1)) S _inst_2)) x z)) Case conversion may be inaccurate. Consider using '#align ore_localization.left_distrib OreLocalization.left_distribₓ'. -/ protected theorem left_distrib (x y z : R[S⁻¹]) : x * (y + z) = x * y + x * z := by induction' x using OreLocalization.ind with r₁ s₁ induction' y using OreLocalization.ind with r₂ s₂ induction' z using OreLocalization.ind with r₃ s₃ rcases ore_div_add_char' r₂ r₃ s₂ s₃ with ⟨ra, sa, ha, q⟩ rw [q] clear q rw [OreLocalization.expand' r₂ s₂ sa] rcases ore_div_mul_char' r₁ (r₂ * sa) s₁ (s₂ * sa) with ⟨rb, sb, hb, q⟩ rw [q] clear q have hs₃rasb : ↑s₃ * (ra * sb) ∈ S := by rw [← mul_assoc, ← ha] norm_cast apply SetLike.coe_mem rw [OreLocalization.expand _ _ _ hs₃rasb] have ha' : ↑(s₂ * sa * sb) = ↑s₃ * (ra * sb) := by simp [ha, ← mul_assoc] rw [← Subtype.coe_eq_of_eq_mk ha'] rcases ore_div_mul_char' r₁ (r₃ * (ra * sb)) s₁ (s₂ * sa * sb) with ⟨rc, sc, hc, hc'⟩ rw [hc'] rw [ore_div_add_char (s₂ * sa * sb) (s₂ * sa * sb * sc) 1 sc (by simp)] rw [OreLocalization.expand' (r₂ * ↑sa + r₃ * ra) (s₂ * sa) (sb * sc)] conv_lhs => congr skip congr rw [add_mul, S.coe_mul, ← mul_assoc, hb, ← mul_assoc, mul_assoc r₃, hc, mul_assoc, ← mul_add] rw [OreLocalization.mul_cancel'] simp only [mul_one, Submonoid.coe_mul, mul_add, ← mul_assoc] #align ore_localization.left_distrib OreLocalization.left_distrib /- warning: ore_localization.right_distrib -> OreLocalization.right_distrib is a dubious translation: lean 3 declaration is forall {R : Type.{u1}} [_inst_1 : Semiring.{u1} R] {S : Submonoid.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1)))} [_inst_2 : OreLocalization.OreSet.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1)) S] (x : OreLocalization.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1)) S _inst_2) (y : OreLocalization.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1)) S _inst_2) (z : OreLocalization.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1)) S _inst_2), Eq.{succ u1} (OreLocalization.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1)) S _inst_2) (HMul.hMul.{u1, u1, u1} (OreLocalization.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1)) S _inst_2) (OreLocalization.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1)) S _inst_2) (OreLocalization.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1)) S _inst_2) (instHMul.{u1} (OreLocalization.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1)) S _inst_2) (OreLocalization.hasMul.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1)) S _inst_2)) (HAdd.hAdd.{u1, u1, u1} (OreLocalization.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1)) S _inst_2) (OreLocalization.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1)) S _inst_2) (OreLocalization.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1)) S _inst_2) (instHAdd.{u1} (OreLocalization.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1)) S _inst_2) (OreLocalization.hasAdd.{u1} R _inst_1 S _inst_2)) x y) z) (HAdd.hAdd.{u1, u1, u1} (OreLocalization.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1)) S _inst_2) (OreLocalization.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1)) S _inst_2) (OreLocalization.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1)) S _inst_2) (instHAdd.{u1} (OreLocalization.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1)) S _inst_2) (OreLocalization.hasAdd.{u1} R _inst_1 S _inst_2)) (HMul.hMul.{u1, u1, u1} (OreLocalization.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1)) S _inst_2) (OreLocalization.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1)) S _inst_2) (OreLocalization.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1)) S _inst_2) (instHMul.{u1} (OreLocalization.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1)) S _inst_2) (OreLocalization.hasMul.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1)) S _inst_2)) x z) (HMul.hMul.{u1, u1, u1} (OreLocalization.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1)) S _inst_2) (OreLocalization.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1)) S _inst_2) (OreLocalization.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1)) S _inst_2) (instHMul.{u1} (OreLocalization.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1)) S _inst_2) (OreLocalization.hasMul.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1)) S _inst_2)) y z)) but is expected to have type forall {R : Type.{u1}} [_inst_1 : Semiring.{u1} R] {S : Submonoid.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1)))} [_inst_2 : OreLocalization.OreSet.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1)) S] (x : OreLocalization.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1)) S _inst_2) (y : OreLocalization.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1)) S _inst_2) (z : OreLocalization.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1)) S _inst_2), Eq.{succ u1} (OreLocalization.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1)) S _inst_2) (HMul.hMul.{u1, u1, u1} (OreLocalization.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1)) S _inst_2) (OreLocalization.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1)) S _inst_2) (OreLocalization.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1)) S _inst_2) (instHMul.{u1} (OreLocalization.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1)) S _inst_2) (OreLocalization.instMulOreLocalization.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1)) S _inst_2)) (HAdd.hAdd.{u1, u1, u1} (OreLocalization.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1)) S _inst_2) (OreLocalization.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1)) S _inst_2) (OreLocalization.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1)) S _inst_2) (instHAdd.{u1} (OreLocalization.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1)) S _inst_2) (OreLocalization.instAddOreLocalizationToMonoidToMonoidWithZero.{u1} R _inst_1 S _inst_2)) x y) z) (HAdd.hAdd.{u1, u1, u1} (OreLocalization.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1)) S _inst_2) (OreLocalization.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1)) S _inst_2) (OreLocalization.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1)) S _inst_2) (instHAdd.{u1} (OreLocalization.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1)) S _inst_2) (OreLocalization.instAddOreLocalizationToMonoidToMonoidWithZero.{u1} R _inst_1 S _inst_2)) (HMul.hMul.{u1, u1, u1} (OreLocalization.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1)) S _inst_2) (OreLocalization.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1)) S _inst_2) (OreLocalization.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1)) S _inst_2) (instHMul.{u1} (OreLocalization.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1)) S _inst_2) (OreLocalization.instMulOreLocalization.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1)) S _inst_2)) x z) (HMul.hMul.{u1, u1, u1} (OreLocalization.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1)) S _inst_2) (OreLocalization.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1)) S _inst_2) (OreLocalization.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1)) S _inst_2) (instHMul.{u1} (OreLocalization.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1)) S _inst_2) (OreLocalization.instMulOreLocalization.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1)) S _inst_2)) y z)) Case conversion may be inaccurate. Consider using '#align ore_localization.right_distrib OreLocalization.right_distribₓ'. -/ theorem right_distrib (x y z : R[S⁻¹]) : (x + y) * z = x * z + y * z := by induction' x using OreLocalization.ind with r₁ s₁ induction' y using OreLocalization.ind with r₂ s₂ induction' z using OreLocalization.ind with r₃ s₃ rcases ore_div_add_char' r₁ r₂ s₁ s₂ with ⟨ra, sa, ha, ha'⟩; rw [ha']; clear ha'; norm_cast at ha rw [OreLocalization.expand' r₁ s₁ sa] rw [OreLocalization.expand r₂ s₂ ra (by rw [← ha] <;> apply SetLike.coe_mem)] rw [← Subtype.coe_eq_of_eq_mk ha] repeat' rw [ore_div_mul_ore_div]; simp only [add_mul, add_ore_div] #align ore_localization.right_distrib OreLocalization.right_distrib instance : Semiring R[S⁻¹] := { OreLocalization.addCommMonoid, OreLocalization.monoid with zero_mul := OreLocalization.zero_mul mul_zero := OreLocalization.mul_zero left_distrib := OreLocalization.left_distrib right_distrib := right_distrib } section UMP variable {T : Type _} [Semiring T] variable (f : R →+* T) (fS : S →* Units T) variable (hf : ∀ s : S, f s = fS s) include f fS hf /- warning: ore_localization.universal_hom -> OreLocalization.universalHom is a dubious translation: lean 3 declaration is forall {R : Type.{u1}} [_inst_1 : Semiring.{u1} R] {S : Submonoid.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1)))} [_inst_2 : OreLocalization.OreSet.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1)) S] {T : Type.{u2}} [_inst_3 : Semiring.{u2} T] (f : RingHom.{u1, u2} R T (Semiring.toNonAssocSemiring.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u2} T _inst_3)) (fS : MonoidHom.{u1, u2} (coeSort.{succ u1, succ (succ u1)} (Submonoid.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1)))) Type.{u1} (SetLike.hasCoeToSort.{u1, u1} (Submonoid.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1)))) R (Submonoid.setLike.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1))))) S) (Units.{u2} T (MonoidWithZero.toMonoid.{u2} T (Semiring.toMonoidWithZero.{u2} T _inst_3))) (Submonoid.toMulOneClass.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1))) S) (Units.mulOneClass.{u2} T (MonoidWithZero.toMonoid.{u2} T (Semiring.toMonoidWithZero.{u2} T _inst_3)))), (forall (s : coeSort.{succ u1, succ (succ u1)} (Submonoid.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1)))) Type.{u1} (SetLike.hasCoeToSort.{u1, u1} (Submonoid.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1)))) R (Submonoid.setLike.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1))))) S), Eq.{succ u2} T (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (RingHom.{u1, u2} R T (Semiring.toNonAssocSemiring.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u2} T _inst_3)) (fun (_x : RingHom.{u1, u2} R T (Semiring.toNonAssocSemiring.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u2} T _inst_3)) => R -> T) (RingHom.hasCoeToFun.{u1, u2} R T (Semiring.toNonAssocSemiring.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u2} T _inst_3)) f ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) (coeSort.{succ u1, succ (succ u1)} (Submonoid.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1)))) Type.{u1} (SetLike.hasCoeToSort.{u1, u1} (Submonoid.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1)))) R (Submonoid.setLike.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1))))) S) R (HasLiftT.mk.{succ u1, succ u1} (coeSort.{succ u1, succ (succ u1)} (Submonoid.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1)))) Type.{u1} (SetLike.hasCoeToSort.{u1, u1} (Submonoid.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1)))) R (Submonoid.setLike.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1))))) S) R (CoeTCₓ.coe.{succ u1, succ u1} (coeSort.{succ u1, succ (succ u1)} (Submonoid.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1)))) Type.{u1} (SetLike.hasCoeToSort.{u1, u1} (Submonoid.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1)))) R (Submonoid.setLike.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1))))) S) R (coeBase.{succ u1, succ u1} (coeSort.{succ u1, succ (succ u1)} (Submonoid.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1)))) Type.{u1} (SetLike.hasCoeToSort.{u1, u1} (Submonoid.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1)))) R (Submonoid.setLike.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1))))) S) R (coeSubtype.{succ u1} R (fun (x : R) => Membership.Mem.{u1, u1} R (Submonoid.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1)))) (SetLike.hasMem.{u1, u1} (Submonoid.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1)))) R (Submonoid.setLike.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1))))) x S))))) s)) ((fun (a : Type.{u2}) (b : Type.{u2}) [self : HasLiftT.{succ u2, succ u2} a b] => self.0) (Units.{u2} T (MonoidWithZero.toMonoid.{u2} T (Semiring.toMonoidWithZero.{u2} T _inst_3))) T (HasLiftT.mk.{succ u2, succ u2} (Units.{u2} T (MonoidWithZero.toMonoid.{u2} T (Semiring.toMonoidWithZero.{u2} T _inst_3))) T (CoeTCₓ.coe.{succ u2, succ u2} (Units.{u2} T (MonoidWithZero.toMonoid.{u2} T (Semiring.toMonoidWithZero.{u2} T _inst_3))) T (coeBase.{succ u2, succ u2} (Units.{u2} T (MonoidWithZero.toMonoid.{u2} T (Semiring.toMonoidWithZero.{u2} T _inst_3))) T (Units.hasCoe.{u2} T (MonoidWithZero.toMonoid.{u2} T (Semiring.toMonoidWithZero.{u2} T _inst_3)))))) (coeFn.{max (succ u2) (succ u1), max (succ u1) (succ u2)} (MonoidHom.{u1, u2} (coeSort.{succ u1, succ (succ u1)} (Submonoid.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1)))) Type.{u1} (SetLike.hasCoeToSort.{u1, u1} (Submonoid.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1)))) R (Submonoid.setLike.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1))))) S) (Units.{u2} T (MonoidWithZero.toMonoid.{u2} T (Semiring.toMonoidWithZero.{u2} T _inst_3))) (Submonoid.toMulOneClass.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1))) S) (Units.mulOneClass.{u2} T (MonoidWithZero.toMonoid.{u2} T (Semiring.toMonoidWithZero.{u2} T _inst_3)))) (fun (_x : MonoidHom.{u1, u2} (coeSort.{succ u1, succ (succ u1)} (Submonoid.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1)))) Type.{u1} (SetLike.hasCoeToSort.{u1, u1} (Submonoid.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1)))) R (Submonoid.setLike.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1))))) S) (Units.{u2} T (MonoidWithZero.toMonoid.{u2} T (Semiring.toMonoidWithZero.{u2} T _inst_3))) (Submonoid.toMulOneClass.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1))) S) (Units.mulOneClass.{u2} T (MonoidWithZero.toMonoid.{u2} T (Semiring.toMonoidWithZero.{u2} T _inst_3)))) => (coeSort.{succ u1, succ (succ u1)} (Submonoid.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1)))) Type.{u1} (SetLike.hasCoeToSort.{u1, u1} (Submonoid.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1)))) R (Submonoid.setLike.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1))))) S) -> (Units.{u2} T (MonoidWithZero.toMonoid.{u2} T (Semiring.toMonoidWithZero.{u2} T _inst_3)))) (MonoidHom.hasCoeToFun.{u1, u2} (coeSort.{succ u1, succ (succ u1)} (Submonoid.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1)))) Type.{u1} (SetLike.hasCoeToSort.{u1, u1} (Submonoid.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1)))) R (Submonoid.setLike.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1))))) S) (Units.{u2} T (MonoidWithZero.toMonoid.{u2} T (Semiring.toMonoidWithZero.{u2} T _inst_3))) (Submonoid.toMulOneClass.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1))) S) (Units.mulOneClass.{u2} T (MonoidWithZero.toMonoid.{u2} T (Semiring.toMonoidWithZero.{u2} T _inst_3)))) fS s))) -> (RingHom.{u1, u2} (OreLocalization.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1)) S _inst_2) T (Semiring.toNonAssocSemiring.{u1} (OreLocalization.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1)) S _inst_2) (OreLocalization.semiring.{u1} R _inst_1 S _inst_2)) (Semiring.toNonAssocSemiring.{u2} T _inst_3)) but is expected to have type forall {R : Type.{u1}} [_inst_1 : Semiring.{u1} R] {S : Submonoid.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1)))} [_inst_2 : OreLocalization.OreSet.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1)) S] {T : Type.{u2}} [_inst_3 : Semiring.{u2} T] (f : RingHom.{u1, u2} R T (Semiring.toNonAssocSemiring.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u2} T _inst_3)) (fS : MonoidHom.{u1, u2} (Subtype.{succ u1} R (fun (x : R) => Membership.mem.{u1, u1} R (Submonoid.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1)))) (SetLike.instMembership.{u1, u1} (Submonoid.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1)))) R (Submonoid.instSetLikeSubmonoid.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1))))) x S)) (Units.{u2} T (MonoidWithZero.toMonoid.{u2} T (Semiring.toMonoidWithZero.{u2} T _inst_3))) (Submonoid.toMulOneClass.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1))) S) (Units.instMulOneClassUnits.{u2} T (MonoidWithZero.toMonoid.{u2} T (Semiring.toMonoidWithZero.{u2} T _inst_3)))), (forall (s : Subtype.{succ u1} R (fun (x : R) => Membership.mem.{u1, u1} R (Submonoid.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1)))) (SetLike.instMembership.{u1, u1} (Submonoid.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1)))) R (Submonoid.instSetLikeSubmonoid.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1))))) x S)), Eq.{succ u2} ((fun ([email protected]._hyg.2391 : R) => T) (Subtype.val.{succ u1} R (fun (x : R) => Membership.mem.{u1, u1} R (Set.{u1} R) (Set.instMembershipSet.{u1} R) x (SetLike.coe.{u1, u1} (Submonoid.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1)))) R (Submonoid.instSetLikeSubmonoid.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1)))) S)) s)) (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (RingHom.{u1, u2} R T (Semiring.toNonAssocSemiring.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u2} T _inst_3)) R (fun (_x : R) => (fun ([email protected]._hyg.2391 : R) => T) _x) (MulHomClass.toFunLike.{max u1 u2, u1, u2} (RingHom.{u1, u2} R T (Semiring.toNonAssocSemiring.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u2} T _inst_3)) R T (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1))) (NonUnitalNonAssocSemiring.toMul.{u2} T (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u2} T (Semiring.toNonAssocSemiring.{u2} T _inst_3))) (NonUnitalRingHomClass.toMulHomClass.{max u1 u2, u1, u2} (RingHom.{u1, u2} R T (Semiring.toNonAssocSemiring.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u2} T _inst_3)) R T (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1)) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u2} T (Semiring.toNonAssocSemiring.{u2} T _inst_3)) (RingHomClass.toNonUnitalRingHomClass.{max u1 u2, u1, u2} (RingHom.{u1, u2} R T (Semiring.toNonAssocSemiring.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u2} T _inst_3)) R T (Semiring.toNonAssocSemiring.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u2} T _inst_3) (RingHom.instRingHomClassRingHom.{u1, u2} R T (Semiring.toNonAssocSemiring.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u2} T _inst_3))))) f (Subtype.val.{succ u1} R (fun (x : R) => Membership.mem.{u1, u1} R (Set.{u1} R) (Set.instMembershipSet.{u1} R) x (SetLike.coe.{u1, u1} (Submonoid.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1)))) R (Submonoid.instSetLikeSubmonoid.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1)))) S)) s)) (Units.val.{u2} T (MonoidWithZero.toMonoid.{u2} T (Semiring.toMonoidWithZero.{u2} T _inst_3)) (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (MonoidHom.{u1, u2} (Subtype.{succ u1} R (fun (x : R) => Membership.mem.{u1, u1} R (Submonoid.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1)))) (SetLike.instMembership.{u1, u1} (Submonoid.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1)))) R (Submonoid.instSetLikeSubmonoid.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1))))) x S)) (Units.{u2} T (MonoidWithZero.toMonoid.{u2} T (Semiring.toMonoidWithZero.{u2} T _inst_3))) (Submonoid.toMulOneClass.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1))) S) (Units.instMulOneClassUnits.{u2} T (MonoidWithZero.toMonoid.{u2} T (Semiring.toMonoidWithZero.{u2} T _inst_3)))) (Subtype.{succ u1} R (fun (x : R) => Membership.mem.{u1, u1} R (Submonoid.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1)))) (SetLike.instMembership.{u1, u1} (Submonoid.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1)))) R (Submonoid.instSetLikeSubmonoid.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1))))) x S)) (fun (_x : Subtype.{succ u1} R (fun (x : R) => Membership.mem.{u1, u1} R (Submonoid.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1)))) (SetLike.instMembership.{u1, u1} (Submonoid.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1)))) R (Submonoid.instSetLikeSubmonoid.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1))))) x S)) => (fun ([email protected]._hyg.2391 : Subtype.{succ u1} R (fun (x : R) => Membership.mem.{u1, u1} R (Submonoid.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1)))) (SetLike.instMembership.{u1, u1} (Submonoid.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1)))) R (Submonoid.instSetLikeSubmonoid.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1))))) x S)) => Units.{u2} T (MonoidWithZero.toMonoid.{u2} T (Semiring.toMonoidWithZero.{u2} T _inst_3))) _x) (MulHomClass.toFunLike.{max u1 u2, u1, u2} (MonoidHom.{u1, u2} (Subtype.{succ u1} R (fun (x : R) => Membership.mem.{u1, u1} R (Submonoid.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1)))) (SetLike.instMembership.{u1, u1} (Submonoid.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1)))) R (Submonoid.instSetLikeSubmonoid.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1))))) x S)) (Units.{u2} T (MonoidWithZero.toMonoid.{u2} T (Semiring.toMonoidWithZero.{u2} T _inst_3))) (Submonoid.toMulOneClass.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1))) S) (Units.instMulOneClassUnits.{u2} T (MonoidWithZero.toMonoid.{u2} T (Semiring.toMonoidWithZero.{u2} T _inst_3)))) (Subtype.{succ u1} R (fun (x : R) => Membership.mem.{u1, u1} R (Submonoid.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1)))) (SetLike.instMembership.{u1, u1} (Submonoid.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1)))) R (Submonoid.instSetLikeSubmonoid.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1))))) x S)) (Units.{u2} T (MonoidWithZero.toMonoid.{u2} T (Semiring.toMonoidWithZero.{u2} T _inst_3))) (MulOneClass.toMul.{u1} (Subtype.{succ u1} R (fun (x : R) => Membership.mem.{u1, u1} R (Submonoid.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1)))) (SetLike.instMembership.{u1, u1} (Submonoid.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1)))) R (Submonoid.instSetLikeSubmonoid.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1))))) x S)) (Submonoid.toMulOneClass.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1))) S)) (MulOneClass.toMul.{u2} (Units.{u2} T (MonoidWithZero.toMonoid.{u2} T (Semiring.toMonoidWithZero.{u2} T _inst_3))) (Units.instMulOneClassUnits.{u2} T (MonoidWithZero.toMonoid.{u2} T (Semiring.toMonoidWithZero.{u2} T _inst_3)))) (MonoidHomClass.toMulHomClass.{max u1 u2, u1, u2} (MonoidHom.{u1, u2} (Subtype.{succ u1} R (fun (x : R) => Membership.mem.{u1, u1} R (Submonoid.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1)))) (SetLike.instMembership.{u1, u1} (Submonoid.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1)))) R (Submonoid.instSetLikeSubmonoid.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1))))) x S)) (Units.{u2} T (MonoidWithZero.toMonoid.{u2} T (Semiring.toMonoidWithZero.{u2} T _inst_3))) (Submonoid.toMulOneClass.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1))) S) (Units.instMulOneClassUnits.{u2} T (MonoidWithZero.toMonoid.{u2} T (Semiring.toMonoidWithZero.{u2} T _inst_3)))) (Subtype.{succ u1} R (fun (x : R) => Membership.mem.{u1, u1} R (Submonoid.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1)))) (SetLike.instMembership.{u1, u1} (Submonoid.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1)))) R (Submonoid.instSetLikeSubmonoid.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1))))) x S)) (Units.{u2} T (MonoidWithZero.toMonoid.{u2} T (Semiring.toMonoidWithZero.{u2} T _inst_3))) (Submonoid.toMulOneClass.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1))) S) (Units.instMulOneClassUnits.{u2} T (MonoidWithZero.toMonoid.{u2} T (Semiring.toMonoidWithZero.{u2} T _inst_3))) (MonoidHom.monoidHomClass.{u1, u2} (Subtype.{succ u1} R (fun (x : R) => Membership.mem.{u1, u1} R (Submonoid.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1)))) (SetLike.instMembership.{u1, u1} (Submonoid.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1)))) R (Submonoid.instSetLikeSubmonoid.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1))))) x S)) (Units.{u2} T (MonoidWithZero.toMonoid.{u2} T (Semiring.toMonoidWithZero.{u2} T _inst_3))) (Submonoid.toMulOneClass.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1))) S) (Units.instMulOneClassUnits.{u2} T (MonoidWithZero.toMonoid.{u2} T (Semiring.toMonoidWithZero.{u2} T _inst_3)))))) fS s))) -> (RingHom.{u1, u2} (OreLocalization.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1)) S _inst_2) T (Semiring.toNonAssocSemiring.{u1} (OreLocalization.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1)) S _inst_2) (OreLocalization.instSemiringOreLocalizationToMonoidToMonoidWithZero.{u1} R _inst_1 S _inst_2)) (Semiring.toNonAssocSemiring.{u2} T _inst_3)) Case conversion may be inaccurate. Consider using '#align ore_localization.universal_hom OreLocalization.universalHomₓ'. -/ /-- The universal lift from a ring homomorphism `f : R →+* T`, which maps elements in `S` to units of `T`, to a ring homomorphism `R[S⁻¹] →+* T`. This extends the construction on monoids. -/ def universalHom : R[S⁻¹] →+* T := { universalMulHom f.toMonoidHom fS hf with map_zero' := by rw [MonoidHom.toFun_eq_coe, OreLocalization.zero_def, universal_mul_hom_apply] simp map_add' := fun x y => by induction' x using OreLocalization.ind with r₁ s₁ induction' y using OreLocalization.ind with r₂ s₂ rcases ore_div_add_char' r₁ r₂ s₁ s₂ with ⟨r₃, s₃, h₃, h₃'⟩ rw [h₃'] clear h₃' simp only [universal_mul_hom_apply, [anonymous], RingHom.toMonoidHom_eq_coe, MonoidHom.toFun_eq_coe] simp only [mul_inv_rev, MonoidHom.map_mul, RingHom.map_add, RingHom.map_mul, Units.val_mul] rw [add_mul, ← mul_assoc, mul_assoc (f r₁), hf, ← Units.val_mul] simp only [mul_one, mul_right_inv, Units.val_one] congr 1 rw [mul_assoc] congr 1 norm_cast at h₃ have h₃' := Subtype.coe_eq_of_eq_mk h₃ rw [← Units.val_mul, ← mul_inv_rev, ← fS.map_mul, h₃'] have hs₂r₃ : ↑s₂ * r₃ ∈ S := by rw [← h₃] exact SetLike.coe_mem (s₁ * s₃) apply (Units.inv_mul_cancel_left (fS s₂) _).symm.trans conv_lhs => congr skip rw [← Units.mul_inv_cancel_left (fS ⟨s₂ * r₃, hs₂r₃⟩) (fS s₂), mul_assoc, mul_assoc] congr skip rw [← hf, ← mul_assoc (f s₂), ← f.map_mul] conv => congr skip congr rw [← h₃] rw [hf, ← mul_assoc, ← h₃', Units.inv_mul] rw [one_mul, ← h₃', Units.mul_inv, mul_one] } #align ore_localization.universal_hom OreLocalization.universalHom /- warning: ore_localization.universal_hom_apply -> OreLocalization.universalHom_apply is a dubious translation: lean 3 declaration is forall {R : Type.{u1}} [_inst_1 : Semiring.{u1} R] {S : Submonoid.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1)))} [_inst_2 : OreLocalization.OreSet.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1)) S] {T : Type.{u2}} [_inst_3 : Semiring.{u2} T] (f : RingHom.{u1, u2} R T (Semiring.toNonAssocSemiring.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u2} T _inst_3)) (fS : MonoidHom.{u1, u2} (coeSort.{succ u1, succ (succ u1)} (Submonoid.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1)))) Type.{u1} (SetLike.hasCoeToSort.{u1, u1} (Submonoid.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1)))) R (Submonoid.setLike.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1))))) S) (Units.{u2} T (MonoidWithZero.toMonoid.{u2} T (Semiring.toMonoidWithZero.{u2} T _inst_3))) (Submonoid.toMulOneClass.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1))) S) (Units.mulOneClass.{u2} T (MonoidWithZero.toMonoid.{u2} T (Semiring.toMonoidWithZero.{u2} T _inst_3)))) (hf : forall (s : coeSort.{succ u1, succ (succ u1)} (Submonoid.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1)))) Type.{u1} (SetLike.hasCoeToSort.{u1, u1} (Submonoid.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1)))) R (Submonoid.setLike.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1))))) S), Eq.{succ u2} T (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (RingHom.{u1, u2} R T (Semiring.toNonAssocSemiring.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u2} T _inst_3)) (fun (_x : RingHom.{u1, u2} R T (Semiring.toNonAssocSemiring.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u2} T _inst_3)) => R -> T) (RingHom.hasCoeToFun.{u1, u2} R T (Semiring.toNonAssocSemiring.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u2} T _inst_3)) f ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) (coeSort.{succ u1, succ (succ u1)} (Submonoid.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1)))) Type.{u1} (SetLike.hasCoeToSort.{u1, u1} (Submonoid.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1)))) R (Submonoid.setLike.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1))))) S) R (HasLiftT.mk.{succ u1, succ u1} (coeSort.{succ u1, succ (succ u1)} (Submonoid.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1)))) Type.{u1} (SetLike.hasCoeToSort.{u1, u1} (Submonoid.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1)))) R (Submonoid.setLike.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1))))) S) R (CoeTCₓ.coe.{succ u1, succ u1} (coeSort.{succ u1, succ (succ u1)} (Submonoid.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1)))) Type.{u1} (SetLike.hasCoeToSort.{u1, u1} (Submonoid.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1)))) R (Submonoid.setLike.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1))))) S) R (coeBase.{succ u1, succ u1} (coeSort.{succ u1, succ (succ u1)} (Submonoid.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1)))) Type.{u1} (SetLike.hasCoeToSort.{u1, u1} (Submonoid.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1)))) R (Submonoid.setLike.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1))))) S) R (coeSubtype.{succ u1} R (fun (x : R) => Membership.Mem.{u1, u1} R (Submonoid.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1)))) (SetLike.hasMem.{u1, u1} (Submonoid.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1)))) R (Submonoid.setLike.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1))))) x S))))) s)) ((fun (a : Type.{u2}) (b : Type.{u2}) [self : HasLiftT.{succ u2, succ u2} a b] => self.0) (Units.{u2} T (MonoidWithZero.toMonoid.{u2} T (Semiring.toMonoidWithZero.{u2} T _inst_3))) T (HasLiftT.mk.{succ u2, succ u2} (Units.{u2} T (MonoidWithZero.toMonoid.{u2} T (Semiring.toMonoidWithZero.{u2} T _inst_3))) T (CoeTCₓ.coe.{succ u2, succ u2} (Units.{u2} T (MonoidWithZero.toMonoid.{u2} T (Semiring.toMonoidWithZero.{u2} T _inst_3))) T (coeBase.{succ u2, succ u2} (Units.{u2} T (MonoidWithZero.toMonoid.{u2} T (Semiring.toMonoidWithZero.{u2} T _inst_3))) T (Units.hasCoe.{u2} T (MonoidWithZero.toMonoid.{u2} T (Semiring.toMonoidWithZero.{u2} T _inst_3)))))) (coeFn.{max (succ u2) (succ u1), max (succ u1) (succ u2)} (MonoidHom.{u1, u2} (coeSort.{succ u1, succ (succ u1)} (Submonoid.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1)))) Type.{u1} (SetLike.hasCoeToSort.{u1, u1} (Submonoid.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1)))) R (Submonoid.setLike.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1))))) S) (Units.{u2} T (MonoidWithZero.toMonoid.{u2} T (Semiring.toMonoidWithZero.{u2} T _inst_3))) (Submonoid.toMulOneClass.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1))) S) (Units.mulOneClass.{u2} T (MonoidWithZero.toMonoid.{u2} T (Semiring.toMonoidWithZero.{u2} T _inst_3)))) (fun (_x : MonoidHom.{u1, u2} (coeSort.{succ u1, succ (succ u1)} (Submonoid.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1)))) Type.{u1} (SetLike.hasCoeToSort.{u1, u1} (Submonoid.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1)))) R (Submonoid.setLike.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1))))) S) (Units.{u2} T (MonoidWithZero.toMonoid.{u2} T (Semiring.toMonoidWithZero.{u2} T _inst_3))) (Submonoid.toMulOneClass.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1))) S) (Units.mulOneClass.{u2} T (MonoidWithZero.toMonoid.{u2} T (Semiring.toMonoidWithZero.{u2} T _inst_3)))) => (coeSort.{succ u1, succ (succ u1)} (Submonoid.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1)))) Type.{u1} (SetLike.hasCoeToSort.{u1, u1} (Submonoid.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1)))) R (Submonoid.setLike.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1))))) S) -> (Units.{u2} T (MonoidWithZero.toMonoid.{u2} T (Semiring.toMonoidWithZero.{u2} T _inst_3)))) (MonoidHom.hasCoeToFun.{u1, u2} (coeSort.{succ u1, succ (succ u1)} (Submonoid.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1)))) Type.{u1} (SetLike.hasCoeToSort.{u1, u1} (Submonoid.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1)))) R (Submonoid.setLike.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1))))) S) (Units.{u2} T (MonoidWithZero.toMonoid.{u2} T (Semiring.toMonoidWithZero.{u2} T _inst_3))) (Submonoid.toMulOneClass.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1))) S) (Units.mulOneClass.{u2} T (MonoidWithZero.toMonoid.{u2} T (Semiring.toMonoidWithZero.{u2} T _inst_3)))) fS s))) {r : R} {s : coeSort.{succ u1, succ (succ u1)} (Submonoid.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1)))) Type.{u1} (SetLike.hasCoeToSort.{u1, u1} (Submonoid.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1)))) R (Submonoid.setLike.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1))))) S}, Eq.{succ u2} T (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (RingHom.{u1, u2} (OreLocalization.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1)) S _inst_2) T (Semiring.toNonAssocSemiring.{u1} (OreLocalization.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1)) S _inst_2) (OreLocalization.semiring.{u1} R _inst_1 S _inst_2)) (Semiring.toNonAssocSemiring.{u2} T _inst_3)) (fun (_x : RingHom.{u1, u2} (OreLocalization.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1)) S _inst_2) T (Semiring.toNonAssocSemiring.{u1} (OreLocalization.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1)) S _inst_2) (OreLocalization.semiring.{u1} R _inst_1 S _inst_2)) (Semiring.toNonAssocSemiring.{u2} T _inst_3)) => (OreLocalization.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1)) S _inst_2) -> T) (RingHom.hasCoeToFun.{u1, u2} (OreLocalization.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1)) S _inst_2) T (Semiring.toNonAssocSemiring.{u1} (OreLocalization.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1)) S _inst_2) (OreLocalization.semiring.{u1} R _inst_1 S _inst_2)) (Semiring.toNonAssocSemiring.{u2} T _inst_3)) (OreLocalization.universalHom.{u1, u2} R _inst_1 S _inst_2 T _inst_3 f fS hf) (OreLocalization.oreDiv.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1)) S _inst_2 r s)) (HMul.hMul.{u2, u2, u2} T T T (instHMul.{u2} T (Distrib.toHasMul.{u2} T (NonUnitalNonAssocSemiring.toDistrib.{u2} T (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u2} T (Semiring.toNonAssocSemiring.{u2} T _inst_3))))) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (RingHom.{u1, u2} R T (Semiring.toNonAssocSemiring.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u2} T _inst_3)) (fun (_x : RingHom.{u1, u2} R T (Semiring.toNonAssocSemiring.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u2} T _inst_3)) => R -> T) (RingHom.hasCoeToFun.{u1, u2} R T (Semiring.toNonAssocSemiring.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u2} T _inst_3)) f r) ((fun (a : Type.{u2}) (b : Type.{u2}) [self : HasLiftT.{succ u2, succ u2} a b] => self.0) (Units.{u2} T (MonoidWithZero.toMonoid.{u2} T (Semiring.toMonoidWithZero.{u2} T _inst_3))) T (HasLiftT.mk.{succ u2, succ u2} (Units.{u2} T (MonoidWithZero.toMonoid.{u2} T (Semiring.toMonoidWithZero.{u2} T _inst_3))) T (CoeTCₓ.coe.{succ u2, succ u2} (Units.{u2} T (MonoidWithZero.toMonoid.{u2} T (Semiring.toMonoidWithZero.{u2} T _inst_3))) T (coeBase.{succ u2, succ u2} (Units.{u2} T (MonoidWithZero.toMonoid.{u2} T (Semiring.toMonoidWithZero.{u2} T _inst_3))) T (Units.hasCoe.{u2} T (MonoidWithZero.toMonoid.{u2} T (Semiring.toMonoidWithZero.{u2} T _inst_3)))))) (Inv.inv.{u2} (Units.{u2} T (MonoidWithZero.toMonoid.{u2} T (Semiring.toMonoidWithZero.{u2} T _inst_3))) (Units.hasInv.{u2} T (MonoidWithZero.toMonoid.{u2} T (Semiring.toMonoidWithZero.{u2} T _inst_3))) (coeFn.{max (succ u2) (succ u1), max (succ u1) (succ u2)} (MonoidHom.{u1, u2} (coeSort.{succ u1, succ (succ u1)} (Submonoid.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1)))) Type.{u1} (SetLike.hasCoeToSort.{u1, u1} (Submonoid.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1)))) R (Submonoid.setLike.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1))))) S) (Units.{u2} T (MonoidWithZero.toMonoid.{u2} T (Semiring.toMonoidWithZero.{u2} T _inst_3))) (Submonoid.toMulOneClass.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1))) S) (Units.mulOneClass.{u2} T (MonoidWithZero.toMonoid.{u2} T (Semiring.toMonoidWithZero.{u2} T _inst_3)))) (fun (_x : MonoidHom.{u1, u2} (coeSort.{succ u1, succ (succ u1)} (Submonoid.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1)))) Type.{u1} (SetLike.hasCoeToSort.{u1, u1} (Submonoid.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1)))) R (Submonoid.setLike.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1))))) S) (Units.{u2} T (MonoidWithZero.toMonoid.{u2} T (Semiring.toMonoidWithZero.{u2} T _inst_3))) (Submonoid.toMulOneClass.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1))) S) (Units.mulOneClass.{u2} T (MonoidWithZero.toMonoid.{u2} T (Semiring.toMonoidWithZero.{u2} T _inst_3)))) => (coeSort.{succ u1, succ (succ u1)} (Submonoid.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1)))) Type.{u1} (SetLike.hasCoeToSort.{u1, u1} (Submonoid.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1)))) R (Submonoid.setLike.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1))))) S) -> (Units.{u2} T (MonoidWithZero.toMonoid.{u2} T (Semiring.toMonoidWithZero.{u2} T _inst_3)))) (MonoidHom.hasCoeToFun.{u1, u2} (coeSort.{succ u1, succ (succ u1)} (Submonoid.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1)))) Type.{u1} (SetLike.hasCoeToSort.{u1, u1} (Submonoid.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1)))) R (Submonoid.setLike.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1))))) S) (Units.{u2} T (MonoidWithZero.toMonoid.{u2} T (Semiring.toMonoidWithZero.{u2} T _inst_3))) (Submonoid.toMulOneClass.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1))) S) (Units.mulOneClass.{u2} T (MonoidWithZero.toMonoid.{u2} T (Semiring.toMonoidWithZero.{u2} T _inst_3)))) fS s)))) but is expected to have type forall {R : Type.{u2}} [_inst_1 : Semiring.{u2} R] {S : Submonoid.{u2} R (MulZeroOneClass.toMulOneClass.{u2} R (NonAssocSemiring.toMulZeroOneClass.{u2} R (Semiring.toNonAssocSemiring.{u2} R _inst_1)))} [_inst_2 : OreLocalization.OreSet.{u2} R (MonoidWithZero.toMonoid.{u2} R (Semiring.toMonoidWithZero.{u2} R _inst_1)) S] {T : Type.{u1}} [_inst_3 : Semiring.{u1} T] (f : RingHom.{u2, u1} R T (Semiring.toNonAssocSemiring.{u2} R _inst_1) (Semiring.toNonAssocSemiring.{u1} T _inst_3)) (fS : MonoidHom.{u2, u1} (Subtype.{succ u2} R (fun (x : R) => Membership.mem.{u2, u2} R (Submonoid.{u2} R (MulZeroOneClass.toMulOneClass.{u2} R (NonAssocSemiring.toMulZeroOneClass.{u2} R (Semiring.toNonAssocSemiring.{u2} R _inst_1)))) (SetLike.instMembership.{u2, u2} (Submonoid.{u2} R (MulZeroOneClass.toMulOneClass.{u2} R (NonAssocSemiring.toMulZeroOneClass.{u2} R (Semiring.toNonAssocSemiring.{u2} R _inst_1)))) R (Submonoid.instSetLikeSubmonoid.{u2} R (MulZeroOneClass.toMulOneClass.{u2} R (NonAssocSemiring.toMulZeroOneClass.{u2} R (Semiring.toNonAssocSemiring.{u2} R _inst_1))))) x S)) (Units.{u1} T (MonoidWithZero.toMonoid.{u1} T (Semiring.toMonoidWithZero.{u1} T _inst_3))) (Submonoid.toMulOneClass.{u2} R (MulZeroOneClass.toMulOneClass.{u2} R (NonAssocSemiring.toMulZeroOneClass.{u2} R (Semiring.toNonAssocSemiring.{u2} R _inst_1))) S) (Units.instMulOneClassUnits.{u1} T (MonoidWithZero.toMonoid.{u1} T (Semiring.toMonoidWithZero.{u1} T _inst_3)))) (hf : forall (s : Subtype.{succ u2} R (fun (x : R) => Membership.mem.{u2, u2} R (Submonoid.{u2} R (MulZeroOneClass.toMulOneClass.{u2} R (NonAssocSemiring.toMulZeroOneClass.{u2} R (Semiring.toNonAssocSemiring.{u2} R _inst_1)))) (SetLike.instMembership.{u2, u2} (Submonoid.{u2} R (MulZeroOneClass.toMulOneClass.{u2} R (NonAssocSemiring.toMulZeroOneClass.{u2} R (Semiring.toNonAssocSemiring.{u2} R _inst_1)))) R (Submonoid.instSetLikeSubmonoid.{u2} R (MulZeroOneClass.toMulOneClass.{u2} R (NonAssocSemiring.toMulZeroOneClass.{u2} R (Semiring.toNonAssocSemiring.{u2} R _inst_1))))) x S)), Eq.{succ u1} ((fun ([email protected]._hyg.2391 : R) => T) (Subtype.val.{succ u2} R (fun (x : R) => Membership.mem.{u2, u2} R (Set.{u2} R) (Set.instMembershipSet.{u2} R) x (SetLike.coe.{u2, u2} (Submonoid.{u2} R (MulZeroOneClass.toMulOneClass.{u2} R (NonAssocSemiring.toMulZeroOneClass.{u2} R (Semiring.toNonAssocSemiring.{u2} R _inst_1)))) R (Submonoid.instSetLikeSubmonoid.{u2} R (MulZeroOneClass.toMulOneClass.{u2} R (NonAssocSemiring.toMulZeroOneClass.{u2} R (Semiring.toNonAssocSemiring.{u2} R _inst_1)))) S)) s)) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (RingHom.{u2, u1} R T (Semiring.toNonAssocSemiring.{u2} R _inst_1) (Semiring.toNonAssocSemiring.{u1} T _inst_3)) R (fun (_x : R) => (fun ([email protected]._hyg.2391 : R) => T) _x) (MulHomClass.toFunLike.{max u2 u1, u2, u1} (RingHom.{u2, u1} R T (Semiring.toNonAssocSemiring.{u2} R _inst_1) (Semiring.toNonAssocSemiring.{u1} T _inst_3)) R T (NonUnitalNonAssocSemiring.toMul.{u2} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u2} R (Semiring.toNonAssocSemiring.{u2} R _inst_1))) (NonUnitalNonAssocSemiring.toMul.{u1} T (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} T (Semiring.toNonAssocSemiring.{u1} T _inst_3))) (NonUnitalRingHomClass.toMulHomClass.{max u2 u1, u2, u1} (RingHom.{u2, u1} R T (Semiring.toNonAssocSemiring.{u2} R _inst_1) (Semiring.toNonAssocSemiring.{u1} T _inst_3)) R T (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u2} R (Semiring.toNonAssocSemiring.{u2} R _inst_1)) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} T (Semiring.toNonAssocSemiring.{u1} T _inst_3)) (RingHomClass.toNonUnitalRingHomClass.{max u2 u1, u2, u1} (RingHom.{u2, u1} R T (Semiring.toNonAssocSemiring.{u2} R _inst_1) (Semiring.toNonAssocSemiring.{u1} T _inst_3)) R T (Semiring.toNonAssocSemiring.{u2} R _inst_1) (Semiring.toNonAssocSemiring.{u1} T _inst_3) (RingHom.instRingHomClassRingHom.{u2, u1} R T (Semiring.toNonAssocSemiring.{u2} R _inst_1) (Semiring.toNonAssocSemiring.{u1} T _inst_3))))) f (Subtype.val.{succ u2} R (fun (x : R) => Membership.mem.{u2, u2} R (Set.{u2} R) (Set.instMembershipSet.{u2} R) x (SetLike.coe.{u2, u2} (Submonoid.{u2} R (MulZeroOneClass.toMulOneClass.{u2} R (NonAssocSemiring.toMulZeroOneClass.{u2} R (Semiring.toNonAssocSemiring.{u2} R _inst_1)))) R (Submonoid.instSetLikeSubmonoid.{u2} R (MulZeroOneClass.toMulOneClass.{u2} R (NonAssocSemiring.toMulZeroOneClass.{u2} R (Semiring.toNonAssocSemiring.{u2} R _inst_1)))) S)) s)) (Units.val.{u1} T (MonoidWithZero.toMonoid.{u1} T (Semiring.toMonoidWithZero.{u1} T _inst_3)) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (MonoidHom.{u2, u1} (Subtype.{succ u2} R (fun (x : R) => Membership.mem.{u2, u2} R (Submonoid.{u2} R (MulZeroOneClass.toMulOneClass.{u2} R (NonAssocSemiring.toMulZeroOneClass.{u2} R (Semiring.toNonAssocSemiring.{u2} R _inst_1)))) (SetLike.instMembership.{u2, u2} (Submonoid.{u2} R (MulZeroOneClass.toMulOneClass.{u2} R (NonAssocSemiring.toMulZeroOneClass.{u2} R (Semiring.toNonAssocSemiring.{u2} R _inst_1)))) R (Submonoid.instSetLikeSubmonoid.{u2} R (MulZeroOneClass.toMulOneClass.{u2} R (NonAssocSemiring.toMulZeroOneClass.{u2} R (Semiring.toNonAssocSemiring.{u2} R _inst_1))))) x S)) (Units.{u1} T (MonoidWithZero.toMonoid.{u1} T (Semiring.toMonoidWithZero.{u1} T _inst_3))) (Submonoid.toMulOneClass.{u2} R (MulZeroOneClass.toMulOneClass.{u2} R (NonAssocSemiring.toMulZeroOneClass.{u2} R (Semiring.toNonAssocSemiring.{u2} R _inst_1))) S) (Units.instMulOneClassUnits.{u1} T (MonoidWithZero.toMonoid.{u1} T (Semiring.toMonoidWithZero.{u1} T _inst_3)))) (Subtype.{succ u2} R (fun (x : R) => Membership.mem.{u2, u2} R (Submonoid.{u2} R (MulZeroOneClass.toMulOneClass.{u2} R (NonAssocSemiring.toMulZeroOneClass.{u2} R (Semiring.toNonAssocSemiring.{u2} R _inst_1)))) (SetLike.instMembership.{u2, u2} (Submonoid.{u2} R (MulZeroOneClass.toMulOneClass.{u2} R (NonAssocSemiring.toMulZeroOneClass.{u2} R (Semiring.toNonAssocSemiring.{u2} R _inst_1)))) R (Submonoid.instSetLikeSubmonoid.{u2} R (MulZeroOneClass.toMulOneClass.{u2} R (NonAssocSemiring.toMulZeroOneClass.{u2} R (Semiring.toNonAssocSemiring.{u2} R _inst_1))))) x S)) (fun (_x : Subtype.{succ u2} R (fun (x : R) => Membership.mem.{u2, u2} R (Submonoid.{u2} R (MulZeroOneClass.toMulOneClass.{u2} R (NonAssocSemiring.toMulZeroOneClass.{u2} R (Semiring.toNonAssocSemiring.{u2} R _inst_1)))) (SetLike.instMembership.{u2, u2} (Submonoid.{u2} R (MulZeroOneClass.toMulOneClass.{u2} R (NonAssocSemiring.toMulZeroOneClass.{u2} R (Semiring.toNonAssocSemiring.{u2} R _inst_1)))) R (Submonoid.instSetLikeSubmonoid.{u2} R (MulZeroOneClass.toMulOneClass.{u2} R (NonAssocSemiring.toMulZeroOneClass.{u2} R (Semiring.toNonAssocSemiring.{u2} R _inst_1))))) x S)) => (fun ([email protected]._hyg.2391 : Subtype.{succ u2} R (fun (x : R) => Membership.mem.{u2, u2} R (Submonoid.{u2} R (MulZeroOneClass.toMulOneClass.{u2} R (NonAssocSemiring.toMulZeroOneClass.{u2} R (Semiring.toNonAssocSemiring.{u2} R _inst_1)))) (SetLike.instMembership.{u2, u2} (Submonoid.{u2} R (MulZeroOneClass.toMulOneClass.{u2} R (NonAssocSemiring.toMulZeroOneClass.{u2} R (Semiring.toNonAssocSemiring.{u2} R _inst_1)))) R (Submonoid.instSetLikeSubmonoid.{u2} R (MulZeroOneClass.toMulOneClass.{u2} R (NonAssocSemiring.toMulZeroOneClass.{u2} R (Semiring.toNonAssocSemiring.{u2} R _inst_1))))) x S)) => Units.{u1} T (MonoidWithZero.toMonoid.{u1} T (Semiring.toMonoidWithZero.{u1} T _inst_3))) _x) (MulHomClass.toFunLike.{max u2 u1, u2, u1} (MonoidHom.{u2, u1} (Subtype.{succ u2} R (fun (x : R) => Membership.mem.{u2, u2} R (Submonoid.{u2} R (MulZeroOneClass.toMulOneClass.{u2} R (NonAssocSemiring.toMulZeroOneClass.{u2} R (Semiring.toNonAssocSemiring.{u2} R _inst_1)))) (SetLike.instMembership.{u2, u2} (Submonoid.{u2} R (MulZeroOneClass.toMulOneClass.{u2} R (NonAssocSemiring.toMulZeroOneClass.{u2} R (Semiring.toNonAssocSemiring.{u2} R _inst_1)))) R (Submonoid.instSetLikeSubmonoid.{u2} R (MulZeroOneClass.toMulOneClass.{u2} R (NonAssocSemiring.toMulZeroOneClass.{u2} R (Semiring.toNonAssocSemiring.{u2} R _inst_1))))) x S)) (Units.{u1} T (MonoidWithZero.toMonoid.{u1} T (Semiring.toMonoidWithZero.{u1} T _inst_3))) (Submonoid.toMulOneClass.{u2} R (MulZeroOneClass.toMulOneClass.{u2} R (NonAssocSemiring.toMulZeroOneClass.{u2} R (Semiring.toNonAssocSemiring.{u2} R _inst_1))) S) (Units.instMulOneClassUnits.{u1} T (MonoidWithZero.toMonoid.{u1} T (Semiring.toMonoidWithZero.{u1} T _inst_3)))) (Subtype.{succ u2} R (fun (x : R) => Membership.mem.{u2, u2} R (Submonoid.{u2} R (MulZeroOneClass.toMulOneClass.{u2} R (NonAssocSemiring.toMulZeroOneClass.{u2} R (Semiring.toNonAssocSemiring.{u2} R _inst_1)))) (SetLike.instMembership.{u2, u2} (Submonoid.{u2} R (MulZeroOneClass.toMulOneClass.{u2} R (NonAssocSemiring.toMulZeroOneClass.{u2} R (Semiring.toNonAssocSemiring.{u2} R _inst_1)))) R (Submonoid.instSetLikeSubmonoid.{u2} R (MulZeroOneClass.toMulOneClass.{u2} R (NonAssocSemiring.toMulZeroOneClass.{u2} R (Semiring.toNonAssocSemiring.{u2} R _inst_1))))) x S)) (Units.{u1} T (MonoidWithZero.toMonoid.{u1} T (Semiring.toMonoidWithZero.{u1} T _inst_3))) (MulOneClass.toMul.{u2} (Subtype.{succ u2} R (fun (x : R) => Membership.mem.{u2, u2} R (Submonoid.{u2} R (MulZeroOneClass.toMulOneClass.{u2} R (NonAssocSemiring.toMulZeroOneClass.{u2} R (Semiring.toNonAssocSemiring.{u2} R _inst_1)))) (SetLike.instMembership.{u2, u2} (Submonoid.{u2} R (MulZeroOneClass.toMulOneClass.{u2} R (NonAssocSemiring.toMulZeroOneClass.{u2} R (Semiring.toNonAssocSemiring.{u2} R _inst_1)))) R (Submonoid.instSetLikeSubmonoid.{u2} R (MulZeroOneClass.toMulOneClass.{u2} R (NonAssocSemiring.toMulZeroOneClass.{u2} R (Semiring.toNonAssocSemiring.{u2} R _inst_1))))) x S)) (Submonoid.toMulOneClass.{u2} R (MulZeroOneClass.toMulOneClass.{u2} R (NonAssocSemiring.toMulZeroOneClass.{u2} R (Semiring.toNonAssocSemiring.{u2} R _inst_1))) S)) (MulOneClass.toMul.{u1} (Units.{u1} T (MonoidWithZero.toMonoid.{u1} T (Semiring.toMonoidWithZero.{u1} T _inst_3))) (Units.instMulOneClassUnits.{u1} T (MonoidWithZero.toMonoid.{u1} T (Semiring.toMonoidWithZero.{u1} T _inst_3)))) (MonoidHomClass.toMulHomClass.{max u2 u1, u2, u1} (MonoidHom.{u2, u1} (Subtype.{succ u2} R (fun (x : R) => Membership.mem.{u2, u2} R (Submonoid.{u2} R (MulZeroOneClass.toMulOneClass.{u2} R (NonAssocSemiring.toMulZeroOneClass.{u2} R (Semiring.toNonAssocSemiring.{u2} R _inst_1)))) (SetLike.instMembership.{u2, u2} (Submonoid.{u2} R (MulZeroOneClass.toMulOneClass.{u2} R (NonAssocSemiring.toMulZeroOneClass.{u2} R (Semiring.toNonAssocSemiring.{u2} R _inst_1)))) R (Submonoid.instSetLikeSubmonoid.{u2} R (MulZeroOneClass.toMulOneClass.{u2} R (NonAssocSemiring.toMulZeroOneClass.{u2} R (Semiring.toNonAssocSemiring.{u2} R _inst_1))))) x S)) (Units.{u1} T (MonoidWithZero.toMonoid.{u1} T (Semiring.toMonoidWithZero.{u1} T _inst_3))) (Submonoid.toMulOneClass.{u2} R (MulZeroOneClass.toMulOneClass.{u2} R (NonAssocSemiring.toMulZeroOneClass.{u2} R (Semiring.toNonAssocSemiring.{u2} R _inst_1))) S) (Units.instMulOneClassUnits.{u1} T (MonoidWithZero.toMonoid.{u1} T (Semiring.toMonoidWithZero.{u1} T _inst_3)))) (Subtype.{succ u2} R (fun (x : R) => Membership.mem.{u2, u2} R (Submonoid.{u2} R (MulZeroOneClass.toMulOneClass.{u2} R (NonAssocSemiring.toMulZeroOneClass.{u2} R (Semiring.toNonAssocSemiring.{u2} R _inst_1)))) (SetLike.instMembership.{u2, u2} (Submonoid.{u2} R (MulZeroOneClass.toMulOneClass.{u2} R (NonAssocSemiring.toMulZeroOneClass.{u2} R (Semiring.toNonAssocSemiring.{u2} R _inst_1)))) R (Submonoid.instSetLikeSubmonoid.{u2} R (MulZeroOneClass.toMulOneClass.{u2} R (NonAssocSemiring.toMulZeroOneClass.{u2} R (Semiring.toNonAssocSemiring.{u2} R _inst_1))))) x S)) (Units.{u1} T (MonoidWithZero.toMonoid.{u1} T (Semiring.toMonoidWithZero.{u1} T _inst_3))) (Submonoid.toMulOneClass.{u2} R (MulZeroOneClass.toMulOneClass.{u2} R (NonAssocSemiring.toMulZeroOneClass.{u2} R (Semiring.toNonAssocSemiring.{u2} R _inst_1))) S) (Units.instMulOneClassUnits.{u1} T (MonoidWithZero.toMonoid.{u1} T (Semiring.toMonoidWithZero.{u1} T _inst_3))) (MonoidHom.monoidHomClass.{u2, u1} (Subtype.{succ u2} R (fun (x : R) => Membership.mem.{u2, u2} R (Submonoid.{u2} R (MulZeroOneClass.toMulOneClass.{u2} R (NonAssocSemiring.toMulZeroOneClass.{u2} R (Semiring.toNonAssocSemiring.{u2} R _inst_1)))) (SetLike.instMembership.{u2, u2} (Submonoid.{u2} R (MulZeroOneClass.toMulOneClass.{u2} R (NonAssocSemiring.toMulZeroOneClass.{u2} R (Semiring.toNonAssocSemiring.{u2} R _inst_1)))) R (Submonoid.instSetLikeSubmonoid.{u2} R (MulZeroOneClass.toMulOneClass.{u2} R (NonAssocSemiring.toMulZeroOneClass.{u2} R (Semiring.toNonAssocSemiring.{u2} R _inst_1))))) x S)) (Units.{u1} T (MonoidWithZero.toMonoid.{u1} T (Semiring.toMonoidWithZero.{u1} T _inst_3))) (Submonoid.toMulOneClass.{u2} R (MulZeroOneClass.toMulOneClass.{u2} R (NonAssocSemiring.toMulZeroOneClass.{u2} R (Semiring.toNonAssocSemiring.{u2} R _inst_1))) S) (Units.instMulOneClassUnits.{u1} T (MonoidWithZero.toMonoid.{u1} T (Semiring.toMonoidWithZero.{u1} T _inst_3)))))) fS s))) {r : R} {s : Subtype.{succ u2} R (fun (x : R) => Membership.mem.{u2, u2} R (Submonoid.{u2} R (MulZeroOneClass.toMulOneClass.{u2} R (NonAssocSemiring.toMulZeroOneClass.{u2} R (Semiring.toNonAssocSemiring.{u2} R _inst_1)))) (SetLike.instMembership.{u2, u2} (Submonoid.{u2} R (MulZeroOneClass.toMulOneClass.{u2} R (NonAssocSemiring.toMulZeroOneClass.{u2} R (Semiring.toNonAssocSemiring.{u2} R _inst_1)))) R (Submonoid.instSetLikeSubmonoid.{u2} R (MulZeroOneClass.toMulOneClass.{u2} R (NonAssocSemiring.toMulZeroOneClass.{u2} R (Semiring.toNonAssocSemiring.{u2} R _inst_1))))) x S)}, Eq.{succ u1} ((fun ([email protected]._hyg.2391 : OreLocalization.{u2} R (MonoidWithZero.toMonoid.{u2} R (Semiring.toMonoidWithZero.{u2} R _inst_1)) S _inst_2) => T) (OreLocalization.oreDiv.{u2} R (MonoidWithZero.toMonoid.{u2} R (Semiring.toMonoidWithZero.{u2} R _inst_1)) S _inst_2 r s)) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (RingHom.{u2, u1} (OreLocalization.{u2} R (MonoidWithZero.toMonoid.{u2} R (Semiring.toMonoidWithZero.{u2} R _inst_1)) S _inst_2) T (Semiring.toNonAssocSemiring.{u2} (OreLocalization.{u2} R (MonoidWithZero.toMonoid.{u2} R (Semiring.toMonoidWithZero.{u2} R _inst_1)) S _inst_2) (OreLocalization.instSemiringOreLocalizationToMonoidToMonoidWithZero.{u2} R _inst_1 S _inst_2)) (Semiring.toNonAssocSemiring.{u1} T _inst_3)) (OreLocalization.{u2} R (MonoidWithZero.toMonoid.{u2} R (Semiring.toMonoidWithZero.{u2} R _inst_1)) S _inst_2) (fun (_x : OreLocalization.{u2} R (MonoidWithZero.toMonoid.{u2} R (Semiring.toMonoidWithZero.{u2} R _inst_1)) S _inst_2) => (fun ([email protected]._hyg.2391 : OreLocalization.{u2} R (MonoidWithZero.toMonoid.{u2} R (Semiring.toMonoidWithZero.{u2} R _inst_1)) S _inst_2) => T) _x) (MulHomClass.toFunLike.{max u2 u1, u2, u1} (RingHom.{u2, u1} (OreLocalization.{u2} R (MonoidWithZero.toMonoid.{u2} R (Semiring.toMonoidWithZero.{u2} R _inst_1)) S _inst_2) T (Semiring.toNonAssocSemiring.{u2} (OreLocalization.{u2} R (MonoidWithZero.toMonoid.{u2} R (Semiring.toMonoidWithZero.{u2} R _inst_1)) S _inst_2) (OreLocalization.instSemiringOreLocalizationToMonoidToMonoidWithZero.{u2} R _inst_1 S _inst_2)) (Semiring.toNonAssocSemiring.{u1} T _inst_3)) (OreLocalization.{u2} R (MonoidWithZero.toMonoid.{u2} R (Semiring.toMonoidWithZero.{u2} R _inst_1)) S _inst_2) T (NonUnitalNonAssocSemiring.toMul.{u2} (OreLocalization.{u2} R (MonoidWithZero.toMonoid.{u2} R (Semiring.toMonoidWithZero.{u2} R _inst_1)) S _inst_2) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u2} (OreLocalization.{u2} R (MonoidWithZero.toMonoid.{u2} R (Semiring.toMonoidWithZero.{u2} R _inst_1)) S _inst_2) (Semiring.toNonAssocSemiring.{u2} (OreLocalization.{u2} R (MonoidWithZero.toMonoid.{u2} R (Semiring.toMonoidWithZero.{u2} R _inst_1)) S _inst_2) (OreLocalization.instSemiringOreLocalizationToMonoidToMonoidWithZero.{u2} R _inst_1 S _inst_2)))) (NonUnitalNonAssocSemiring.toMul.{u1} T (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} T (Semiring.toNonAssocSemiring.{u1} T _inst_3))) (NonUnitalRingHomClass.toMulHomClass.{max u2 u1, u2, u1} (RingHom.{u2, u1} (OreLocalization.{u2} R (MonoidWithZero.toMonoid.{u2} R (Semiring.toMonoidWithZero.{u2} R _inst_1)) S _inst_2) T (Semiring.toNonAssocSemiring.{u2} (OreLocalization.{u2} R (MonoidWithZero.toMonoid.{u2} R (Semiring.toMonoidWithZero.{u2} R _inst_1)) S _inst_2) (OreLocalization.instSemiringOreLocalizationToMonoidToMonoidWithZero.{u2} R _inst_1 S _inst_2)) (Semiring.toNonAssocSemiring.{u1} T _inst_3)) (OreLocalization.{u2} R (MonoidWithZero.toMonoid.{u2} R (Semiring.toMonoidWithZero.{u2} R _inst_1)) S _inst_2) T (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u2} (OreLocalization.{u2} R (MonoidWithZero.toMonoid.{u2} R (Semiring.toMonoidWithZero.{u2} R _inst_1)) S _inst_2) (Semiring.toNonAssocSemiring.{u2} (OreLocalization.{u2} R (MonoidWithZero.toMonoid.{u2} R (Semiring.toMonoidWithZero.{u2} R _inst_1)) S _inst_2) (OreLocalization.instSemiringOreLocalizationToMonoidToMonoidWithZero.{u2} R _inst_1 S _inst_2))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} T (Semiring.toNonAssocSemiring.{u1} T _inst_3)) (RingHomClass.toNonUnitalRingHomClass.{max u2 u1, u2, u1} (RingHom.{u2, u1} (OreLocalization.{u2} R (MonoidWithZero.toMonoid.{u2} R (Semiring.toMonoidWithZero.{u2} R _inst_1)) S _inst_2) T (Semiring.toNonAssocSemiring.{u2} (OreLocalization.{u2} R (MonoidWithZero.toMonoid.{u2} R (Semiring.toMonoidWithZero.{u2} R _inst_1)) S _inst_2) (OreLocalization.instSemiringOreLocalizationToMonoidToMonoidWithZero.{u2} R _inst_1 S _inst_2)) (Semiring.toNonAssocSemiring.{u1} T _inst_3)) (OreLocalization.{u2} R (MonoidWithZero.toMonoid.{u2} R (Semiring.toMonoidWithZero.{u2} R _inst_1)) S _inst_2) T (Semiring.toNonAssocSemiring.{u2} (OreLocalization.{u2} R (MonoidWithZero.toMonoid.{u2} R (Semiring.toMonoidWithZero.{u2} R _inst_1)) S _inst_2) (OreLocalization.instSemiringOreLocalizationToMonoidToMonoidWithZero.{u2} R _inst_1 S _inst_2)) (Semiring.toNonAssocSemiring.{u1} T _inst_3) (RingHom.instRingHomClassRingHom.{u2, u1} (OreLocalization.{u2} R (MonoidWithZero.toMonoid.{u2} R (Semiring.toMonoidWithZero.{u2} R _inst_1)) S _inst_2) T (Semiring.toNonAssocSemiring.{u2} (OreLocalization.{u2} R (MonoidWithZero.toMonoid.{u2} R (Semiring.toMonoidWithZero.{u2} R _inst_1)) S _inst_2) (OreLocalization.instSemiringOreLocalizationToMonoidToMonoidWithZero.{u2} R _inst_1 S _inst_2)) (Semiring.toNonAssocSemiring.{u1} T _inst_3))))) (OreLocalization.universalHom.{u2, u1} R _inst_1 S _inst_2 T _inst_3 f fS hf) (OreLocalization.oreDiv.{u2} R (MonoidWithZero.toMonoid.{u2} R (Semiring.toMonoidWithZero.{u2} R _inst_1)) S _inst_2 r s)) (HMul.hMul.{u1, u1, u1} ((fun ([email protected]._hyg.2391 : R) => T) r) T ((fun ([email protected]._hyg.2391 : R) => T) r) (instHMul.{u1} ((fun ([email protected]._hyg.2391 : R) => T) r) (NonUnitalNonAssocSemiring.toMul.{u1} ((fun ([email protected]._hyg.2391 : R) => T) r) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} ((fun ([email protected]._hyg.2391 : R) => T) r) (Semiring.toNonAssocSemiring.{u1} ((fun ([email protected]._hyg.2391 : R) => T) r) _inst_3)))) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (RingHom.{u2, u1} R T (Semiring.toNonAssocSemiring.{u2} R _inst_1) (Semiring.toNonAssocSemiring.{u1} T _inst_3)) R (fun (_x : R) => (fun ([email protected]._hyg.2391 : R) => T) _x) (MulHomClass.toFunLike.{max u2 u1, u2, u1} (RingHom.{u2, u1} R T (Semiring.toNonAssocSemiring.{u2} R _inst_1) (Semiring.toNonAssocSemiring.{u1} T _inst_3)) R T (NonUnitalNonAssocSemiring.toMul.{u2} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u2} R (Semiring.toNonAssocSemiring.{u2} R _inst_1))) (NonUnitalNonAssocSemiring.toMul.{u1} T (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} T (Semiring.toNonAssocSemiring.{u1} T _inst_3))) (NonUnitalRingHomClass.toMulHomClass.{max u2 u1, u2, u1} (RingHom.{u2, u1} R T (Semiring.toNonAssocSemiring.{u2} R _inst_1) (Semiring.toNonAssocSemiring.{u1} T _inst_3)) R T (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u2} R (Semiring.toNonAssocSemiring.{u2} R _inst_1)) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} T (Semiring.toNonAssocSemiring.{u1} T _inst_3)) (RingHomClass.toNonUnitalRingHomClass.{max u2 u1, u2, u1} (RingHom.{u2, u1} R T (Semiring.toNonAssocSemiring.{u2} R _inst_1) (Semiring.toNonAssocSemiring.{u1} T _inst_3)) R T (Semiring.toNonAssocSemiring.{u2} R _inst_1) (Semiring.toNonAssocSemiring.{u1} T _inst_3) (RingHom.instRingHomClassRingHom.{u2, u1} R T (Semiring.toNonAssocSemiring.{u2} R _inst_1) (Semiring.toNonAssocSemiring.{u1} T _inst_3))))) f r) (Units.val.{u1} T (MonoidWithZero.toMonoid.{u1} T (Semiring.toMonoidWithZero.{u1} T _inst_3)) (Inv.inv.{u1} (Units.{u1} T (MonoidWithZero.toMonoid.{u1} T (Semiring.toMonoidWithZero.{u1} T _inst_3))) (Units.instInvUnits.{u1} T (MonoidWithZero.toMonoid.{u1} T (Semiring.toMonoidWithZero.{u1} T _inst_3))) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (MonoidHom.{u2, u1} (Subtype.{succ u2} R (fun (x : R) => Membership.mem.{u2, u2} R (Submonoid.{u2} R (MulZeroOneClass.toMulOneClass.{u2} R (NonAssocSemiring.toMulZeroOneClass.{u2} R (Semiring.toNonAssocSemiring.{u2} R _inst_1)))) (SetLike.instMembership.{u2, u2} (Submonoid.{u2} R (MulZeroOneClass.toMulOneClass.{u2} R (NonAssocSemiring.toMulZeroOneClass.{u2} R (Semiring.toNonAssocSemiring.{u2} R _inst_1)))) R (Submonoid.instSetLikeSubmonoid.{u2} R (MulZeroOneClass.toMulOneClass.{u2} R (NonAssocSemiring.toMulZeroOneClass.{u2} R (Semiring.toNonAssocSemiring.{u2} R _inst_1))))) x S)) (Units.{u1} T (MonoidWithZero.toMonoid.{u1} T (Semiring.toMonoidWithZero.{u1} T _inst_3))) (Submonoid.toMulOneClass.{u2} R (MulZeroOneClass.toMulOneClass.{u2} R (NonAssocSemiring.toMulZeroOneClass.{u2} R (Semiring.toNonAssocSemiring.{u2} R _inst_1))) S) (Units.instMulOneClassUnits.{u1} T (MonoidWithZero.toMonoid.{u1} T (Semiring.toMonoidWithZero.{u1} T _inst_3)))) (Subtype.{succ u2} R (fun (x : R) => Membership.mem.{u2, u2} R (Submonoid.{u2} R (MulZeroOneClass.toMulOneClass.{u2} R (NonAssocSemiring.toMulZeroOneClass.{u2} R (Semiring.toNonAssocSemiring.{u2} R _inst_1)))) (SetLike.instMembership.{u2, u2} (Submonoid.{u2} R (MulZeroOneClass.toMulOneClass.{u2} R (NonAssocSemiring.toMulZeroOneClass.{u2} R (Semiring.toNonAssocSemiring.{u2} R _inst_1)))) R (Submonoid.instSetLikeSubmonoid.{u2} R (MulZeroOneClass.toMulOneClass.{u2} R (NonAssocSemiring.toMulZeroOneClass.{u2} R (Semiring.toNonAssocSemiring.{u2} R _inst_1))))) x S)) (fun (_x : Subtype.{succ u2} R (fun (x : R) => Membership.mem.{u2, u2} R (Submonoid.{u2} R (MulZeroOneClass.toMulOneClass.{u2} R (NonAssocSemiring.toMulZeroOneClass.{u2} R (Semiring.toNonAssocSemiring.{u2} R _inst_1)))) (SetLike.instMembership.{u2, u2} (Submonoid.{u2} R (MulZeroOneClass.toMulOneClass.{u2} R (NonAssocSemiring.toMulZeroOneClass.{u2} R (Semiring.toNonAssocSemiring.{u2} R _inst_1)))) R (Submonoid.instSetLikeSubmonoid.{u2} R (MulZeroOneClass.toMulOneClass.{u2} R (NonAssocSemiring.toMulZeroOneClass.{u2} R (Semiring.toNonAssocSemiring.{u2} R _inst_1))))) x S)) => (fun ([email protected]._hyg.2391 : Subtype.{succ u2} R (fun (x : R) => Membership.mem.{u2, u2} R (Submonoid.{u2} R (MulZeroOneClass.toMulOneClass.{u2} R (NonAssocSemiring.toMulZeroOneClass.{u2} R (Semiring.toNonAssocSemiring.{u2} R _inst_1)))) (SetLike.instMembership.{u2, u2} (Submonoid.{u2} R (MulZeroOneClass.toMulOneClass.{u2} R (NonAssocSemiring.toMulZeroOneClass.{u2} R (Semiring.toNonAssocSemiring.{u2} R _inst_1)))) R (Submonoid.instSetLikeSubmonoid.{u2} R (MulZeroOneClass.toMulOneClass.{u2} R (NonAssocSemiring.toMulZeroOneClass.{u2} R (Semiring.toNonAssocSemiring.{u2} R _inst_1))))) x S)) => Units.{u1} T (MonoidWithZero.toMonoid.{u1} T (Semiring.toMonoidWithZero.{u1} T _inst_3))) _x) (MulHomClass.toFunLike.{max u2 u1, u2, u1} (MonoidHom.{u2, u1} (Subtype.{succ u2} R (fun (x : R) => Membership.mem.{u2, u2} R (Submonoid.{u2} R (MulZeroOneClass.toMulOneClass.{u2} R (NonAssocSemiring.toMulZeroOneClass.{u2} R (Semiring.toNonAssocSemiring.{u2} R _inst_1)))) (SetLike.instMembership.{u2, u2} (Submonoid.{u2} R (MulZeroOneClass.toMulOneClass.{u2} R (NonAssocSemiring.toMulZeroOneClass.{u2} R (Semiring.toNonAssocSemiring.{u2} R _inst_1)))) R (Submonoid.instSetLikeSubmonoid.{u2} R (MulZeroOneClass.toMulOneClass.{u2} R (NonAssocSemiring.toMulZeroOneClass.{u2} R (Semiring.toNonAssocSemiring.{u2} R _inst_1))))) x S)) (Units.{u1} T (MonoidWithZero.toMonoid.{u1} T (Semiring.toMonoidWithZero.{u1} T _inst_3))) (Submonoid.toMulOneClass.{u2} R (MulZeroOneClass.toMulOneClass.{u2} R (NonAssocSemiring.toMulZeroOneClass.{u2} R (Semiring.toNonAssocSemiring.{u2} R _inst_1))) S) (Units.instMulOneClassUnits.{u1} T (MonoidWithZero.toMonoid.{u1} T (Semiring.toMonoidWithZero.{u1} T _inst_3)))) (Subtype.{succ u2} R (fun (x : R) => Membership.mem.{u2, u2} R (Submonoid.{u2} R (MulZeroOneClass.toMulOneClass.{u2} R (NonAssocSemiring.toMulZeroOneClass.{u2} R (Semiring.toNonAssocSemiring.{u2} R _inst_1)))) (SetLike.instMembership.{u2, u2} (Submonoid.{u2} R (MulZeroOneClass.toMulOneClass.{u2} R (NonAssocSemiring.toMulZeroOneClass.{u2} R (Semiring.toNonAssocSemiring.{u2} R _inst_1)))) R (Submonoid.instSetLikeSubmonoid.{u2} R (MulZeroOneClass.toMulOneClass.{u2} R (NonAssocSemiring.toMulZeroOneClass.{u2} R (Semiring.toNonAssocSemiring.{u2} R _inst_1))))) x S)) (Units.{u1} T (MonoidWithZero.toMonoid.{u1} T (Semiring.toMonoidWithZero.{u1} T _inst_3))) (MulOneClass.toMul.{u2} (Subtype.{succ u2} R (fun (x : R) => Membership.mem.{u2, u2} R (Submonoid.{u2} R (MulZeroOneClass.toMulOneClass.{u2} R (NonAssocSemiring.toMulZeroOneClass.{u2} R (Semiring.toNonAssocSemiring.{u2} R _inst_1)))) (SetLike.instMembership.{u2, u2} (Submonoid.{u2} R (MulZeroOneClass.toMulOneClass.{u2} R (NonAssocSemiring.toMulZeroOneClass.{u2} R (Semiring.toNonAssocSemiring.{u2} R _inst_1)))) R (Submonoid.instSetLikeSubmonoid.{u2} R (MulZeroOneClass.toMulOneClass.{u2} R (NonAssocSemiring.toMulZeroOneClass.{u2} R (Semiring.toNonAssocSemiring.{u2} R _inst_1))))) x S)) (Submonoid.toMulOneClass.{u2} R (MulZeroOneClass.toMulOneClass.{u2} R (NonAssocSemiring.toMulZeroOneClass.{u2} R (Semiring.toNonAssocSemiring.{u2} R _inst_1))) S)) (MulOneClass.toMul.{u1} (Units.{u1} T (MonoidWithZero.toMonoid.{u1} T (Semiring.toMonoidWithZero.{u1} T _inst_3))) (Units.instMulOneClassUnits.{u1} T (MonoidWithZero.toMonoid.{u1} T (Semiring.toMonoidWithZero.{u1} T _inst_3)))) (MonoidHomClass.toMulHomClass.{max u2 u1, u2, u1} (MonoidHom.{u2, u1} (Subtype.{succ u2} R (fun (x : R) => Membership.mem.{u2, u2} R (Submonoid.{u2} R (MulZeroOneClass.toMulOneClass.{u2} R (NonAssocSemiring.toMulZeroOneClass.{u2} R (Semiring.toNonAssocSemiring.{u2} R _inst_1)))) (SetLike.instMembership.{u2, u2} (Submonoid.{u2} R (MulZeroOneClass.toMulOneClass.{u2} R (NonAssocSemiring.toMulZeroOneClass.{u2} R (Semiring.toNonAssocSemiring.{u2} R _inst_1)))) R (Submonoid.instSetLikeSubmonoid.{u2} R (MulZeroOneClass.toMulOneClass.{u2} R (NonAssocSemiring.toMulZeroOneClass.{u2} R (Semiring.toNonAssocSemiring.{u2} R _inst_1))))) x S)) (Units.{u1} T (MonoidWithZero.toMonoid.{u1} T (Semiring.toMonoidWithZero.{u1} T _inst_3))) (Submonoid.toMulOneClass.{u2} R (MulZeroOneClass.toMulOneClass.{u2} R (NonAssocSemiring.toMulZeroOneClass.{u2} R (Semiring.toNonAssocSemiring.{u2} R _inst_1))) S) (Units.instMulOneClassUnits.{u1} T (MonoidWithZero.toMonoid.{u1} T (Semiring.toMonoidWithZero.{u1} T _inst_3)))) (Subtype.{succ u2} R (fun (x : R) => Membership.mem.{u2, u2} R (Submonoid.{u2} R (MulZeroOneClass.toMulOneClass.{u2} R (NonAssocSemiring.toMulZeroOneClass.{u2} R (Semiring.toNonAssocSemiring.{u2} R _inst_1)))) (SetLike.instMembership.{u2, u2} (Submonoid.{u2} R (MulZeroOneClass.toMulOneClass.{u2} R (NonAssocSemiring.toMulZeroOneClass.{u2} R (Semiring.toNonAssocSemiring.{u2} R _inst_1)))) R (Submonoid.instSetLikeSubmonoid.{u2} R (MulZeroOneClass.toMulOneClass.{u2} R (NonAssocSemiring.toMulZeroOneClass.{u2} R (Semiring.toNonAssocSemiring.{u2} R _inst_1))))) x S)) (Units.{u1} T (MonoidWithZero.toMonoid.{u1} T (Semiring.toMonoidWithZero.{u1} T _inst_3))) (Submonoid.toMulOneClass.{u2} R (MulZeroOneClass.toMulOneClass.{u2} R (NonAssocSemiring.toMulZeroOneClass.{u2} R (Semiring.toNonAssocSemiring.{u2} R _inst_1))) S) (Units.instMulOneClassUnits.{u1} T (MonoidWithZero.toMonoid.{u1} T (Semiring.toMonoidWithZero.{u1} T _inst_3))) (MonoidHom.monoidHomClass.{u2, u1} (Subtype.{succ u2} R (fun (x : R) => Membership.mem.{u2, u2} R (Submonoid.{u2} R (MulZeroOneClass.toMulOneClass.{u2} R (NonAssocSemiring.toMulZeroOneClass.{u2} R (Semiring.toNonAssocSemiring.{u2} R _inst_1)))) (SetLike.instMembership.{u2, u2} (Submonoid.{u2} R (MulZeroOneClass.toMulOneClass.{u2} R (NonAssocSemiring.toMulZeroOneClass.{u2} R (Semiring.toNonAssocSemiring.{u2} R _inst_1)))) R (Submonoid.instSetLikeSubmonoid.{u2} R (MulZeroOneClass.toMulOneClass.{u2} R (NonAssocSemiring.toMulZeroOneClass.{u2} R (Semiring.toNonAssocSemiring.{u2} R _inst_1))))) x S)) (Units.{u1} T (MonoidWithZero.toMonoid.{u1} T (Semiring.toMonoidWithZero.{u1} T _inst_3))) (Submonoid.toMulOneClass.{u2} R (MulZeroOneClass.toMulOneClass.{u2} R (NonAssocSemiring.toMulZeroOneClass.{u2} R (Semiring.toNonAssocSemiring.{u2} R _inst_1))) S) (Units.instMulOneClassUnits.{u1} T (MonoidWithZero.toMonoid.{u1} T (Semiring.toMonoidWithZero.{u1} T _inst_3)))))) fS s)))) Case conversion may be inaccurate. Consider using '#align ore_localization.universal_hom_apply OreLocalization.universalHom_applyₓ'. -/ theorem universalHom_apply {r : R} {s : S} : universalHom f fS hf (r /ₒ s) = f r * ((fS s)⁻¹ : Units T) := rfl #align ore_localization.universal_hom_apply OreLocalization.universalHom_apply /- warning: ore_localization.universal_hom_commutes -> OreLocalization.universalHom_commutes is a dubious translation: lean 3 declaration is forall {R : Type.{u1}} [_inst_1 : Semiring.{u1} R] {S : Submonoid.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1)))} [_inst_2 : OreLocalization.OreSet.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1)) S] {T : Type.{u2}} [_inst_3 : Semiring.{u2} T] (f : RingHom.{u1, u2} R T (Semiring.toNonAssocSemiring.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u2} T _inst_3)) (fS : MonoidHom.{u1, u2} (coeSort.{succ u1, succ (succ u1)} (Submonoid.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1)))) Type.{u1} (SetLike.hasCoeToSort.{u1, u1} (Submonoid.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1)))) R (Submonoid.setLike.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1))))) S) (Units.{u2} T (MonoidWithZero.toMonoid.{u2} T (Semiring.toMonoidWithZero.{u2} T _inst_3))) (Submonoid.toMulOneClass.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1))) S) (Units.mulOneClass.{u2} T (MonoidWithZero.toMonoid.{u2} T (Semiring.toMonoidWithZero.{u2} T _inst_3)))) (hf : forall (s : coeSort.{succ u1, succ (succ u1)} (Submonoid.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1)))) Type.{u1} (SetLike.hasCoeToSort.{u1, u1} (Submonoid.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1)))) R (Submonoid.setLike.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1))))) S), Eq.{succ u2} T (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (RingHom.{u1, u2} R T (Semiring.toNonAssocSemiring.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u2} T _inst_3)) (fun (_x : RingHom.{u1, u2} R T (Semiring.toNonAssocSemiring.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u2} T _inst_3)) => R -> T) (RingHom.hasCoeToFun.{u1, u2} R T (Semiring.toNonAssocSemiring.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u2} T _inst_3)) f ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) (coeSort.{succ u1, succ (succ u1)} (Submonoid.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1)))) Type.{u1} (SetLike.hasCoeToSort.{u1, u1} (Submonoid.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1)))) R (Submonoid.setLike.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1))))) S) R (HasLiftT.mk.{succ u1, succ u1} (coeSort.{succ u1, succ (succ u1)} (Submonoid.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1)))) Type.{u1} (SetLike.hasCoeToSort.{u1, u1} (Submonoid.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1)))) R (Submonoid.setLike.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1))))) S) R (CoeTCₓ.coe.{succ u1, succ u1} (coeSort.{succ u1, succ (succ u1)} (Submonoid.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1)))) Type.{u1} (SetLike.hasCoeToSort.{u1, u1} (Submonoid.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1)))) R (Submonoid.setLike.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1))))) S) R (coeBase.{succ u1, succ u1} (coeSort.{succ u1, succ (succ u1)} (Submonoid.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1)))) Type.{u1} (SetLike.hasCoeToSort.{u1, u1} (Submonoid.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1)))) R (Submonoid.setLike.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1))))) S) R (coeSubtype.{succ u1} R (fun (x : R) => Membership.Mem.{u1, u1} R (Submonoid.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1)))) (SetLike.hasMem.{u1, u1} (Submonoid.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1)))) R (Submonoid.setLike.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1))))) x S))))) s)) ((fun (a : Type.{u2}) (b : Type.{u2}) [self : HasLiftT.{succ u2, succ u2} a b] => self.0) (Units.{u2} T (MonoidWithZero.toMonoid.{u2} T (Semiring.toMonoidWithZero.{u2} T _inst_3))) T (HasLiftT.mk.{succ u2, succ u2} (Units.{u2} T (MonoidWithZero.toMonoid.{u2} T (Semiring.toMonoidWithZero.{u2} T _inst_3))) T (CoeTCₓ.coe.{succ u2, succ u2} (Units.{u2} T (MonoidWithZero.toMonoid.{u2} T (Semiring.toMonoidWithZero.{u2} T _inst_3))) T (coeBase.{succ u2, succ u2} (Units.{u2} T (MonoidWithZero.toMonoid.{u2} T (Semiring.toMonoidWithZero.{u2} T _inst_3))) T (Units.hasCoe.{u2} T (MonoidWithZero.toMonoid.{u2} T (Semiring.toMonoidWithZero.{u2} T _inst_3)))))) (coeFn.{max (succ u2) (succ u1), max (succ u1) (succ u2)} (MonoidHom.{u1, u2} (coeSort.{succ u1, succ (succ u1)} (Submonoid.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1)))) Type.{u1} (SetLike.hasCoeToSort.{u1, u1} (Submonoid.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1)))) R (Submonoid.setLike.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1))))) S) (Units.{u2} T (MonoidWithZero.toMonoid.{u2} T (Semiring.toMonoidWithZero.{u2} T _inst_3))) (Submonoid.toMulOneClass.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1))) S) (Units.mulOneClass.{u2} T (MonoidWithZero.toMonoid.{u2} T (Semiring.toMonoidWithZero.{u2} T _inst_3)))) (fun (_x : MonoidHom.{u1, u2} (coeSort.{succ u1, succ (succ u1)} (Submonoid.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1)))) Type.{u1} (SetLike.hasCoeToSort.{u1, u1} (Submonoid.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1)))) R (Submonoid.setLike.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1))))) S) (Units.{u2} T (MonoidWithZero.toMonoid.{u2} T (Semiring.toMonoidWithZero.{u2} T _inst_3))) (Submonoid.toMulOneClass.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1))) S) (Units.mulOneClass.{u2} T (MonoidWithZero.toMonoid.{u2} T (Semiring.toMonoidWithZero.{u2} T _inst_3)))) => (coeSort.{succ u1, succ (succ u1)} (Submonoid.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1)))) Type.{u1} (SetLike.hasCoeToSort.{u1, u1} (Submonoid.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1)))) R (Submonoid.setLike.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1))))) S) -> (Units.{u2} T (MonoidWithZero.toMonoid.{u2} T (Semiring.toMonoidWithZero.{u2} T _inst_3)))) (MonoidHom.hasCoeToFun.{u1, u2} (coeSort.{succ u1, succ (succ u1)} (Submonoid.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1)))) Type.{u1} (SetLike.hasCoeToSort.{u1, u1} (Submonoid.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1)))) R (Submonoid.setLike.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1))))) S) (Units.{u2} T (MonoidWithZero.toMonoid.{u2} T (Semiring.toMonoidWithZero.{u2} T _inst_3))) (Submonoid.toMulOneClass.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1))) S) (Units.mulOneClass.{u2} T (MonoidWithZero.toMonoid.{u2} T (Semiring.toMonoidWithZero.{u2} T _inst_3)))) fS s))) {r : R}, Eq.{succ u2} T (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (RingHom.{u1, u2} (OreLocalization.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1)) S _inst_2) T (Semiring.toNonAssocSemiring.{u1} (OreLocalization.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1)) S _inst_2) (OreLocalization.semiring.{u1} R _inst_1 S _inst_2)) (Semiring.toNonAssocSemiring.{u2} T _inst_3)) (fun (_x : RingHom.{u1, u2} (OreLocalization.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1)) S _inst_2) T (Semiring.toNonAssocSemiring.{u1} (OreLocalization.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1)) S _inst_2) (OreLocalization.semiring.{u1} R _inst_1 S _inst_2)) (Semiring.toNonAssocSemiring.{u2} T _inst_3)) => (OreLocalization.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1)) S _inst_2) -> T) (RingHom.hasCoeToFun.{u1, u2} (OreLocalization.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1)) S _inst_2) T (Semiring.toNonAssocSemiring.{u1} (OreLocalization.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1)) S _inst_2) (OreLocalization.semiring.{u1} R _inst_1 S _inst_2)) (Semiring.toNonAssocSemiring.{u2} T _inst_3)) (OreLocalization.universalHom.{u1, u2} R _inst_1 S _inst_2 T _inst_3 f fS hf) (coeFn.{succ u1, succ u1} (MonoidHom.{u1, u1} R (OreLocalization.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1)) S _inst_2) (Monoid.toMulOneClass.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1))) (Monoid.toMulOneClass.{u1} (OreLocalization.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1)) S _inst_2) (OreLocalization.monoid.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1)) S _inst_2))) (fun (_x : MonoidHom.{u1, u1} R (OreLocalization.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1)) S _inst_2) (Monoid.toMulOneClass.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1))) (Monoid.toMulOneClass.{u1} (OreLocalization.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1)) S _inst_2) (OreLocalization.monoid.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1)) S _inst_2))) => R -> (OreLocalization.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1)) S _inst_2)) (MonoidHom.hasCoeToFun.{u1, u1} R (OreLocalization.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1)) S _inst_2) (Monoid.toMulOneClass.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1))) (Monoid.toMulOneClass.{u1} (OreLocalization.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1)) S _inst_2) (OreLocalization.monoid.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1)) S _inst_2))) (OreLocalization.numeratorHom.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1)) S _inst_2) r)) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (RingHom.{u1, u2} R T (Semiring.toNonAssocSemiring.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u2} T _inst_3)) (fun (_x : RingHom.{u1, u2} R T (Semiring.toNonAssocSemiring.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u2} T _inst_3)) => R -> T) (RingHom.hasCoeToFun.{u1, u2} R T (Semiring.toNonAssocSemiring.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u2} T _inst_3)) f r) but is expected to have type forall {R : Type.{u1}} [_inst_1 : Semiring.{u1} R] {S : Submonoid.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1)))} [_inst_2 : OreLocalization.OreSet.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1)) S] {T : Type.{u2}} [_inst_3 : Semiring.{u2} T] (f : RingHom.{u1, u2} R T (Semiring.toNonAssocSemiring.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u2} T _inst_3)) (fS : MonoidHom.{u1, u2} (Subtype.{succ u1} R (fun (x : R) => Membership.mem.{u1, u1} R (Submonoid.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1)))) (SetLike.instMembership.{u1, u1} (Submonoid.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1)))) R (Submonoid.instSetLikeSubmonoid.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1))))) x S)) (Units.{u2} T (MonoidWithZero.toMonoid.{u2} T (Semiring.toMonoidWithZero.{u2} T _inst_3))) (Submonoid.toMulOneClass.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1))) S) (Units.instMulOneClassUnits.{u2} T (MonoidWithZero.toMonoid.{u2} T (Semiring.toMonoidWithZero.{u2} T _inst_3)))) (hf : forall (s : Subtype.{succ u1} R (fun (x : R) => Membership.mem.{u1, u1} R (Submonoid.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1)))) (SetLike.instMembership.{u1, u1} (Submonoid.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1)))) R (Submonoid.instSetLikeSubmonoid.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1))))) x S)), Eq.{succ u2} ((fun ([email protected]._hyg.2391 : R) => T) (Subtype.val.{succ u1} R (fun (x : R) => Membership.mem.{u1, u1} R (Set.{u1} R) (Set.instMembershipSet.{u1} R) x (SetLike.coe.{u1, u1} (Submonoid.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1)))) R (Submonoid.instSetLikeSubmonoid.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1)))) S)) s)) (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (RingHom.{u1, u2} R T (Semiring.toNonAssocSemiring.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u2} T _inst_3)) R (fun (_x : R) => (fun ([email protected]._hyg.2391 : R) => T) _x) (MulHomClass.toFunLike.{max u1 u2, u1, u2} (RingHom.{u1, u2} R T (Semiring.toNonAssocSemiring.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u2} T _inst_3)) R T (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1))) (NonUnitalNonAssocSemiring.toMul.{u2} T (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u2} T (Semiring.toNonAssocSemiring.{u2} T _inst_3))) (NonUnitalRingHomClass.toMulHomClass.{max u1 u2, u1, u2} (RingHom.{u1, u2} R T (Semiring.toNonAssocSemiring.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u2} T _inst_3)) R T (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1)) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u2} T (Semiring.toNonAssocSemiring.{u2} T _inst_3)) (RingHomClass.toNonUnitalRingHomClass.{max u1 u2, u1, u2} (RingHom.{u1, u2} R T (Semiring.toNonAssocSemiring.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u2} T _inst_3)) R T (Semiring.toNonAssocSemiring.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u2} T _inst_3) (RingHom.instRingHomClassRingHom.{u1, u2} R T (Semiring.toNonAssocSemiring.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u2} T _inst_3))))) f (Subtype.val.{succ u1} R (fun (x : R) => Membership.mem.{u1, u1} R (Set.{u1} R) (Set.instMembershipSet.{u1} R) x (SetLike.coe.{u1, u1} (Submonoid.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1)))) R (Submonoid.instSetLikeSubmonoid.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1)))) S)) s)) (Units.val.{u2} T (MonoidWithZero.toMonoid.{u2} T (Semiring.toMonoidWithZero.{u2} T _inst_3)) (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (MonoidHom.{u1, u2} (Subtype.{succ u1} R (fun (x : R) => Membership.mem.{u1, u1} R (Submonoid.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1)))) (SetLike.instMembership.{u1, u1} (Submonoid.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1)))) R (Submonoid.instSetLikeSubmonoid.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1))))) x S)) (Units.{u2} T (MonoidWithZero.toMonoid.{u2} T (Semiring.toMonoidWithZero.{u2} T _inst_3))) (Submonoid.toMulOneClass.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1))) S) (Units.instMulOneClassUnits.{u2} T (MonoidWithZero.toMonoid.{u2} T (Semiring.toMonoidWithZero.{u2} T _inst_3)))) (Subtype.{succ u1} R (fun (x : R) => Membership.mem.{u1, u1} R (Submonoid.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1)))) (SetLike.instMembership.{u1, u1} (Submonoid.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1)))) R (Submonoid.instSetLikeSubmonoid.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1))))) x S)) (fun (_x : Subtype.{succ u1} R (fun (x : R) => Membership.mem.{u1, u1} R (Submonoid.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1)))) (SetLike.instMembership.{u1, u1} (Submonoid.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1)))) R (Submonoid.instSetLikeSubmonoid.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1))))) x S)) => (fun ([email protected]._hyg.2391 : Subtype.{succ u1} R (fun (x : R) => Membership.mem.{u1, u1} R (Submonoid.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1)))) (SetLike.instMembership.{u1, u1} (Submonoid.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1)))) R (Submonoid.instSetLikeSubmonoid.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1))))) x S)) => Units.{u2} T (MonoidWithZero.toMonoid.{u2} T (Semiring.toMonoidWithZero.{u2} T _inst_3))) _x) (MulHomClass.toFunLike.{max u1 u2, u1, u2} (MonoidHom.{u1, u2} (Subtype.{succ u1} R (fun (x : R) => Membership.mem.{u1, u1} R (Submonoid.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1)))) (SetLike.instMembership.{u1, u1} (Submonoid.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1)))) R (Submonoid.instSetLikeSubmonoid.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1))))) x S)) (Units.{u2} T (MonoidWithZero.toMonoid.{u2} T (Semiring.toMonoidWithZero.{u2} T _inst_3))) (Submonoid.toMulOneClass.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1))) S) (Units.instMulOneClassUnits.{u2} T (MonoidWithZero.toMonoid.{u2} T (Semiring.toMonoidWithZero.{u2} T _inst_3)))) (Subtype.{succ u1} R (fun (x : R) => Membership.mem.{u1, u1} R (Submonoid.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1)))) (SetLike.instMembership.{u1, u1} (Submonoid.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1)))) R (Submonoid.instSetLikeSubmonoid.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1))))) x S)) (Units.{u2} T (MonoidWithZero.toMonoid.{u2} T (Semiring.toMonoidWithZero.{u2} T _inst_3))) (MulOneClass.toMul.{u1} (Subtype.{succ u1} R (fun (x : R) => Membership.mem.{u1, u1} R (Submonoid.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1)))) (SetLike.instMembership.{u1, u1} (Submonoid.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1)))) R (Submonoid.instSetLikeSubmonoid.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1))))) x S)) (Submonoid.toMulOneClass.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1))) S)) (MulOneClass.toMul.{u2} (Units.{u2} T (MonoidWithZero.toMonoid.{u2} T (Semiring.toMonoidWithZero.{u2} T _inst_3))) (Units.instMulOneClassUnits.{u2} T (MonoidWithZero.toMonoid.{u2} T (Semiring.toMonoidWithZero.{u2} T _inst_3)))) (MonoidHomClass.toMulHomClass.{max u1 u2, u1, u2} (MonoidHom.{u1, u2} (Subtype.{succ u1} R (fun (x : R) => Membership.mem.{u1, u1} R (Submonoid.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1)))) (SetLike.instMembership.{u1, u1} (Submonoid.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1)))) R (Submonoid.instSetLikeSubmonoid.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1))))) x S)) (Units.{u2} T (MonoidWithZero.toMonoid.{u2} T (Semiring.toMonoidWithZero.{u2} T _inst_3))) (Submonoid.toMulOneClass.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1))) S) (Units.instMulOneClassUnits.{u2} T (MonoidWithZero.toMonoid.{u2} T (Semiring.toMonoidWithZero.{u2} T _inst_3)))) (Subtype.{succ u1} R (fun (x : R) => Membership.mem.{u1, u1} R (Submonoid.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1)))) (SetLike.instMembership.{u1, u1} (Submonoid.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1)))) R (Submonoid.instSetLikeSubmonoid.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1))))) x S)) (Units.{u2} T (MonoidWithZero.toMonoid.{u2} T (Semiring.toMonoidWithZero.{u2} T _inst_3))) (Submonoid.toMulOneClass.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1))) S) (Units.instMulOneClassUnits.{u2} T (MonoidWithZero.toMonoid.{u2} T (Semiring.toMonoidWithZero.{u2} T _inst_3))) (MonoidHom.monoidHomClass.{u1, u2} (Subtype.{succ u1} R (fun (x : R) => Membership.mem.{u1, u1} R (Submonoid.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1)))) (SetLike.instMembership.{u1, u1} (Submonoid.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1)))) R (Submonoid.instSetLikeSubmonoid.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1))))) x S)) (Units.{u2} T (MonoidWithZero.toMonoid.{u2} T (Semiring.toMonoidWithZero.{u2} T _inst_3))) (Submonoid.toMulOneClass.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1))) S) (Units.instMulOneClassUnits.{u2} T (MonoidWithZero.toMonoid.{u2} T (Semiring.toMonoidWithZero.{u2} T _inst_3)))))) fS s))) {r : R}, Eq.{succ u2} ((fun ([email protected]._hyg.2391 : OreLocalization.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1)) S _inst_2) => T) (FunLike.coe.{succ u1, succ u1, succ u1} (MonoidHom.{u1, u1} R (OreLocalization.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1)) S _inst_2) (Monoid.toMulOneClass.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1))) (Monoid.toMulOneClass.{u1} (OreLocalization.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1)) S _inst_2) (OreLocalization.instMonoidOreLocalization.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1)) S _inst_2))) R (fun (a : R) => (fun ([email protected]._hyg.2391 : R) => OreLocalization.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1)) S _inst_2) a) (MulHomClass.toFunLike.{u1, u1, u1} (MonoidHom.{u1, u1} R (OreLocalization.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1)) S _inst_2) (Monoid.toMulOneClass.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1))) (Monoid.toMulOneClass.{u1} (OreLocalization.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1)) S _inst_2) (OreLocalization.instMonoidOreLocalization.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1)) S _inst_2))) R (OreLocalization.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1)) S _inst_2) (MulOneClass.toMul.{u1} R (Monoid.toMulOneClass.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1)))) (MulOneClass.toMul.{u1} (OreLocalization.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1)) S _inst_2) (Monoid.toMulOneClass.{u1} (OreLocalization.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1)) S _inst_2) (OreLocalization.instMonoidOreLocalization.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1)) S _inst_2))) (MonoidHomClass.toMulHomClass.{u1, u1, u1} (MonoidHom.{u1, u1} R (OreLocalization.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1)) S _inst_2) (Monoid.toMulOneClass.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1))) (Monoid.toMulOneClass.{u1} (OreLocalization.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1)) S _inst_2) (OreLocalization.instMonoidOreLocalization.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1)) S _inst_2))) R (OreLocalization.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1)) S _inst_2) (Monoid.toMulOneClass.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1))) (Monoid.toMulOneClass.{u1} (OreLocalization.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1)) S _inst_2) (OreLocalization.instMonoidOreLocalization.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1)) S _inst_2)) (MonoidHom.monoidHomClass.{u1, u1} R (OreLocalization.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1)) S _inst_2) (Monoid.toMulOneClass.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1))) (Monoid.toMulOneClass.{u1} (OreLocalization.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1)) S _inst_2) (OreLocalization.instMonoidOreLocalization.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1)) S _inst_2))))) (OreLocalization.numeratorHom.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1)) S _inst_2) r)) (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (RingHom.{u1, u2} (OreLocalization.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1)) S _inst_2) T (Semiring.toNonAssocSemiring.{u1} (OreLocalization.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1)) S _inst_2) (OreLocalization.instSemiringOreLocalizationToMonoidToMonoidWithZero.{u1} R _inst_1 S _inst_2)) (Semiring.toNonAssocSemiring.{u2} T _inst_3)) (OreLocalization.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1)) S _inst_2) (fun (_x : OreLocalization.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1)) S _inst_2) => (fun ([email protected]._hyg.2391 : OreLocalization.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1)) S _inst_2) => T) _x) (MulHomClass.toFunLike.{max u1 u2, u1, u2} (RingHom.{u1, u2} (OreLocalization.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1)) S _inst_2) T (Semiring.toNonAssocSemiring.{u1} (OreLocalization.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1)) S _inst_2) (OreLocalization.instSemiringOreLocalizationToMonoidToMonoidWithZero.{u1} R _inst_1 S _inst_2)) (Semiring.toNonAssocSemiring.{u2} T _inst_3)) (OreLocalization.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1)) S _inst_2) T (NonUnitalNonAssocSemiring.toMul.{u1} (OreLocalization.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1)) S _inst_2) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} (OreLocalization.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1)) S _inst_2) (Semiring.toNonAssocSemiring.{u1} (OreLocalization.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1)) S _inst_2) (OreLocalization.instSemiringOreLocalizationToMonoidToMonoidWithZero.{u1} R _inst_1 S _inst_2)))) (NonUnitalNonAssocSemiring.toMul.{u2} T (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u2} T (Semiring.toNonAssocSemiring.{u2} T _inst_3))) (NonUnitalRingHomClass.toMulHomClass.{max u1 u2, u1, u2} (RingHom.{u1, u2} (OreLocalization.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1)) S _inst_2) T (Semiring.toNonAssocSemiring.{u1} (OreLocalization.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1)) S _inst_2) (OreLocalization.instSemiringOreLocalizationToMonoidToMonoidWithZero.{u1} R _inst_1 S _inst_2)) (Semiring.toNonAssocSemiring.{u2} T _inst_3)) (OreLocalization.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1)) S _inst_2) T (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} (OreLocalization.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1)) S _inst_2) (Semiring.toNonAssocSemiring.{u1} (OreLocalization.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1)) S _inst_2) (OreLocalization.instSemiringOreLocalizationToMonoidToMonoidWithZero.{u1} R _inst_1 S _inst_2))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u2} T (Semiring.toNonAssocSemiring.{u2} T _inst_3)) (RingHomClass.toNonUnitalRingHomClass.{max u1 u2, u1, u2} (RingHom.{u1, u2} (OreLocalization.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1)) S _inst_2) T (Semiring.toNonAssocSemiring.{u1} (OreLocalization.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1)) S _inst_2) (OreLocalization.instSemiringOreLocalizationToMonoidToMonoidWithZero.{u1} R _inst_1 S _inst_2)) (Semiring.toNonAssocSemiring.{u2} T _inst_3)) (OreLocalization.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1)) S _inst_2) T (Semiring.toNonAssocSemiring.{u1} (OreLocalization.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1)) S _inst_2) (OreLocalization.instSemiringOreLocalizationToMonoidToMonoidWithZero.{u1} R _inst_1 S _inst_2)) (Semiring.toNonAssocSemiring.{u2} T _inst_3) (RingHom.instRingHomClassRingHom.{u1, u2} (OreLocalization.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1)) S _inst_2) T (Semiring.toNonAssocSemiring.{u1} (OreLocalization.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1)) S _inst_2) (OreLocalization.instSemiringOreLocalizationToMonoidToMonoidWithZero.{u1} R _inst_1 S _inst_2)) (Semiring.toNonAssocSemiring.{u2} T _inst_3))))) (OreLocalization.universalHom.{u1, u2} R _inst_1 S _inst_2 T _inst_3 f fS hf) (FunLike.coe.{succ u1, succ u1, succ u1} (MonoidHom.{u1, u1} R (OreLocalization.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1)) S _inst_2) (Monoid.toMulOneClass.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1))) (Monoid.toMulOneClass.{u1} (OreLocalization.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1)) S _inst_2) (OreLocalization.instMonoidOreLocalization.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1)) S _inst_2))) R (fun (_x : R) => (fun ([email protected]._hyg.2391 : R) => OreLocalization.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1)) S _inst_2) _x) (MulHomClass.toFunLike.{u1, u1, u1} (MonoidHom.{u1, u1} R (OreLocalization.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1)) S _inst_2) (Monoid.toMulOneClass.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1))) (Monoid.toMulOneClass.{u1} (OreLocalization.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1)) S _inst_2) (OreLocalization.instMonoidOreLocalization.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1)) S _inst_2))) R (OreLocalization.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1)) S _inst_2) (MulOneClass.toMul.{u1} R (Monoid.toMulOneClass.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1)))) (MulOneClass.toMul.{u1} (OreLocalization.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1)) S _inst_2) (Monoid.toMulOneClass.{u1} (OreLocalization.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1)) S _inst_2) (OreLocalization.instMonoidOreLocalization.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1)) S _inst_2))) (MonoidHomClass.toMulHomClass.{u1, u1, u1} (MonoidHom.{u1, u1} R (OreLocalization.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1)) S _inst_2) (Monoid.toMulOneClass.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1))) (Monoid.toMulOneClass.{u1} (OreLocalization.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1)) S _inst_2) (OreLocalization.instMonoidOreLocalization.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1)) S _inst_2))) R (OreLocalization.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1)) S _inst_2) (Monoid.toMulOneClass.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1))) (Monoid.toMulOneClass.{u1} (OreLocalization.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1)) S _inst_2) (OreLocalization.instMonoidOreLocalization.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1)) S _inst_2)) (MonoidHom.monoidHomClass.{u1, u1} R (OreLocalization.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1)) S _inst_2) (Monoid.toMulOneClass.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1))) (Monoid.toMulOneClass.{u1} (OreLocalization.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1)) S _inst_2) (OreLocalization.instMonoidOreLocalization.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1)) S _inst_2))))) (OreLocalization.numeratorHom.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1)) S _inst_2) r)) (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (RingHom.{u1, u2} R T (Semiring.toNonAssocSemiring.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u2} T _inst_3)) R (fun (_x : R) => (fun ([email protected]._hyg.2391 : R) => T) _x) (MulHomClass.toFunLike.{max u1 u2, u1, u2} (RingHom.{u1, u2} R T (Semiring.toNonAssocSemiring.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u2} T _inst_3)) R T (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1))) (NonUnitalNonAssocSemiring.toMul.{u2} T (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u2} T (Semiring.toNonAssocSemiring.{u2} T _inst_3))) (NonUnitalRingHomClass.toMulHomClass.{max u1 u2, u1, u2} (RingHom.{u1, u2} R T (Semiring.toNonAssocSemiring.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u2} T _inst_3)) R T (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1)) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u2} T (Semiring.toNonAssocSemiring.{u2} T _inst_3)) (RingHomClass.toNonUnitalRingHomClass.{max u1 u2, u1, u2} (RingHom.{u1, u2} R T (Semiring.toNonAssocSemiring.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u2} T _inst_3)) R T (Semiring.toNonAssocSemiring.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u2} T _inst_3) (RingHom.instRingHomClassRingHom.{u1, u2} R T (Semiring.toNonAssocSemiring.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u2} T _inst_3))))) f r) Case conversion may be inaccurate. Consider using '#align ore_localization.universal_hom_commutes OreLocalization.universalHom_commutesₓ'. -/ theorem universalHom_commutes {r : R} : universalHom f fS hf (numeratorHom r) = f r := by simp [numerator_hom_apply, universal_hom_apply] #align ore_localization.universal_hom_commutes OreLocalization.universalHom_commutes /- warning: ore_localization.universal_hom_unique -> OreLocalization.universalHom_unique is a dubious translation: lean 3 declaration is forall {R : Type.{u1}} [_inst_1 : Semiring.{u1} R] {S : Submonoid.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1)))} [_inst_2 : OreLocalization.OreSet.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1)) S] {T : Type.{u2}} [_inst_3 : Semiring.{u2} T] (f : RingHom.{u1, u2} R T (Semiring.toNonAssocSemiring.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u2} T _inst_3)) (fS : MonoidHom.{u1, u2} (coeSort.{succ u1, succ (succ u1)} (Submonoid.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1)))) Type.{u1} (SetLike.hasCoeToSort.{u1, u1} (Submonoid.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1)))) R (Submonoid.setLike.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1))))) S) (Units.{u2} T (MonoidWithZero.toMonoid.{u2} T (Semiring.toMonoidWithZero.{u2} T _inst_3))) (Submonoid.toMulOneClass.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1))) S) (Units.mulOneClass.{u2} T (MonoidWithZero.toMonoid.{u2} T (Semiring.toMonoidWithZero.{u2} T _inst_3)))) (hf : forall (s : coeSort.{succ u1, succ (succ u1)} (Submonoid.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1)))) Type.{u1} (SetLike.hasCoeToSort.{u1, u1} (Submonoid.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1)))) R (Submonoid.setLike.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1))))) S), Eq.{succ u2} T (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (RingHom.{u1, u2} R T (Semiring.toNonAssocSemiring.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u2} T _inst_3)) (fun (_x : RingHom.{u1, u2} R T (Semiring.toNonAssocSemiring.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u2} T _inst_3)) => R -> T) (RingHom.hasCoeToFun.{u1, u2} R T (Semiring.toNonAssocSemiring.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u2} T _inst_3)) f ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) (coeSort.{succ u1, succ (succ u1)} (Submonoid.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1)))) Type.{u1} (SetLike.hasCoeToSort.{u1, u1} (Submonoid.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1)))) R (Submonoid.setLike.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1))))) S) R (HasLiftT.mk.{succ u1, succ u1} (coeSort.{succ u1, succ (succ u1)} (Submonoid.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1)))) Type.{u1} (SetLike.hasCoeToSort.{u1, u1} (Submonoid.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1)))) R (Submonoid.setLike.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1))))) S) R (CoeTCₓ.coe.{succ u1, succ u1} (coeSort.{succ u1, succ (succ u1)} (Submonoid.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1)))) Type.{u1} (SetLike.hasCoeToSort.{u1, u1} (Submonoid.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1)))) R (Submonoid.setLike.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1))))) S) R (coeBase.{succ u1, succ u1} (coeSort.{succ u1, succ (succ u1)} (Submonoid.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1)))) Type.{u1} (SetLike.hasCoeToSort.{u1, u1} (Submonoid.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1)))) R (Submonoid.setLike.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1))))) S) R (coeSubtype.{succ u1} R (fun (x : R) => Membership.Mem.{u1, u1} R (Submonoid.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1)))) (SetLike.hasMem.{u1, u1} (Submonoid.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1)))) R (Submonoid.setLike.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1))))) x S))))) s)) ((fun (a : Type.{u2}) (b : Type.{u2}) [self : HasLiftT.{succ u2, succ u2} a b] => self.0) (Units.{u2} T (MonoidWithZero.toMonoid.{u2} T (Semiring.toMonoidWithZero.{u2} T _inst_3))) T (HasLiftT.mk.{succ u2, succ u2} (Units.{u2} T (MonoidWithZero.toMonoid.{u2} T (Semiring.toMonoidWithZero.{u2} T _inst_3))) T (CoeTCₓ.coe.{succ u2, succ u2} (Units.{u2} T (MonoidWithZero.toMonoid.{u2} T (Semiring.toMonoidWithZero.{u2} T _inst_3))) T (coeBase.{succ u2, succ u2} (Units.{u2} T (MonoidWithZero.toMonoid.{u2} T (Semiring.toMonoidWithZero.{u2} T _inst_3))) T (Units.hasCoe.{u2} T (MonoidWithZero.toMonoid.{u2} T (Semiring.toMonoidWithZero.{u2} T _inst_3)))))) (coeFn.{max (succ u2) (succ u1), max (succ u1) (succ u2)} (MonoidHom.{u1, u2} (coeSort.{succ u1, succ (succ u1)} (Submonoid.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1)))) Type.{u1} (SetLike.hasCoeToSort.{u1, u1} (Submonoid.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1)))) R (Submonoid.setLike.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1))))) S) (Units.{u2} T (MonoidWithZero.toMonoid.{u2} T (Semiring.toMonoidWithZero.{u2} T _inst_3))) (Submonoid.toMulOneClass.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1))) S) (Units.mulOneClass.{u2} T (MonoidWithZero.toMonoid.{u2} T (Semiring.toMonoidWithZero.{u2} T _inst_3)))) (fun (_x : MonoidHom.{u1, u2} (coeSort.{succ u1, succ (succ u1)} (Submonoid.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1)))) Type.{u1} (SetLike.hasCoeToSort.{u1, u1} (Submonoid.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1)))) R (Submonoid.setLike.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1))))) S) (Units.{u2} T (MonoidWithZero.toMonoid.{u2} T (Semiring.toMonoidWithZero.{u2} T _inst_3))) (Submonoid.toMulOneClass.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1))) S) (Units.mulOneClass.{u2} T (MonoidWithZero.toMonoid.{u2} T (Semiring.toMonoidWithZero.{u2} T _inst_3)))) => (coeSort.{succ u1, succ (succ u1)} (Submonoid.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1)))) Type.{u1} (SetLike.hasCoeToSort.{u1, u1} (Submonoid.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1)))) R (Submonoid.setLike.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1))))) S) -> (Units.{u2} T (MonoidWithZero.toMonoid.{u2} T (Semiring.toMonoidWithZero.{u2} T _inst_3)))) (MonoidHom.hasCoeToFun.{u1, u2} (coeSort.{succ u1, succ (succ u1)} (Submonoid.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1)))) Type.{u1} (SetLike.hasCoeToSort.{u1, u1} (Submonoid.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1)))) R (Submonoid.setLike.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1))))) S) (Units.{u2} T (MonoidWithZero.toMonoid.{u2} T (Semiring.toMonoidWithZero.{u2} T _inst_3))) (Submonoid.toMulOneClass.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1))) S) (Units.mulOneClass.{u2} T (MonoidWithZero.toMonoid.{u2} T (Semiring.toMonoidWithZero.{u2} T _inst_3)))) fS s))) (φ : RingHom.{u1, u2} (OreLocalization.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1)) S _inst_2) T (Semiring.toNonAssocSemiring.{u1} (OreLocalization.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1)) S _inst_2) (OreLocalization.semiring.{u1} R _inst_1 S _inst_2)) (Semiring.toNonAssocSemiring.{u2} T _inst_3)), (forall (r : R), Eq.{succ u2} T (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (RingHom.{u1, u2} (OreLocalization.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1)) S _inst_2) T (Semiring.toNonAssocSemiring.{u1} (OreLocalization.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1)) S _inst_2) (OreLocalization.semiring.{u1} R _inst_1 S _inst_2)) (Semiring.toNonAssocSemiring.{u2} T _inst_3)) (fun (_x : RingHom.{u1, u2} (OreLocalization.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1)) S _inst_2) T (Semiring.toNonAssocSemiring.{u1} (OreLocalization.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1)) S _inst_2) (OreLocalization.semiring.{u1} R _inst_1 S _inst_2)) (Semiring.toNonAssocSemiring.{u2} T _inst_3)) => (OreLocalization.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1)) S _inst_2) -> T) (RingHom.hasCoeToFun.{u1, u2} (OreLocalization.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1)) S _inst_2) T (Semiring.toNonAssocSemiring.{u1} (OreLocalization.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1)) S _inst_2) (OreLocalization.semiring.{u1} R _inst_1 S _inst_2)) (Semiring.toNonAssocSemiring.{u2} T _inst_3)) φ (coeFn.{succ u1, succ u1} (MonoidHom.{u1, u1} R (OreLocalization.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1)) S _inst_2) (Monoid.toMulOneClass.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1))) (Monoid.toMulOneClass.{u1} (OreLocalization.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1)) S _inst_2) (OreLocalization.monoid.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1)) S _inst_2))) (fun (_x : MonoidHom.{u1, u1} R (OreLocalization.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1)) S _inst_2) (Monoid.toMulOneClass.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1))) (Monoid.toMulOneClass.{u1} (OreLocalization.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1)) S _inst_2) (OreLocalization.monoid.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1)) S _inst_2))) => R -> (OreLocalization.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1)) S _inst_2)) (MonoidHom.hasCoeToFun.{u1, u1} R (OreLocalization.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1)) S _inst_2) (Monoid.toMulOneClass.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1))) (Monoid.toMulOneClass.{u1} (OreLocalization.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1)) S _inst_2) (OreLocalization.monoid.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1)) S _inst_2))) (OreLocalization.numeratorHom.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1)) S _inst_2) r)) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (RingHom.{u1, u2} R T (Semiring.toNonAssocSemiring.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u2} T _inst_3)) (fun (_x : RingHom.{u1, u2} R T (Semiring.toNonAssocSemiring.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u2} T _inst_3)) => R -> T) (RingHom.hasCoeToFun.{u1, u2} R T (Semiring.toNonAssocSemiring.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u2} T _inst_3)) f r)) -> (Eq.{max (succ u1) (succ u2)} (RingHom.{u1, u2} (OreLocalization.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1)) S _inst_2) T (Semiring.toNonAssocSemiring.{u1} (OreLocalization.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1)) S _inst_2) (OreLocalization.semiring.{u1} R _inst_1 S _inst_2)) (Semiring.toNonAssocSemiring.{u2} T _inst_3)) φ (OreLocalization.universalHom.{u1, u2} R _inst_1 S _inst_2 T _inst_3 f fS hf)) but is expected to have type forall {R : Type.{u2}} [_inst_1 : Semiring.{u2} R] {S : Submonoid.{u2} R (MulZeroOneClass.toMulOneClass.{u2} R (NonAssocSemiring.toMulZeroOneClass.{u2} R (Semiring.toNonAssocSemiring.{u2} R _inst_1)))} [_inst_2 : OreLocalization.OreSet.{u2} R (MonoidWithZero.toMonoid.{u2} R (Semiring.toMonoidWithZero.{u2} R _inst_1)) S] {T : Type.{u1}} [_inst_3 : Semiring.{u1} T] (f : RingHom.{u2, u1} R T (Semiring.toNonAssocSemiring.{u2} R _inst_1) (Semiring.toNonAssocSemiring.{u1} T _inst_3)) (fS : MonoidHom.{u2, u1} (Subtype.{succ u2} R (fun (x : R) => Membership.mem.{u2, u2} R (Submonoid.{u2} R (MulZeroOneClass.toMulOneClass.{u2} R (NonAssocSemiring.toMulZeroOneClass.{u2} R (Semiring.toNonAssocSemiring.{u2} R _inst_1)))) (SetLike.instMembership.{u2, u2} (Submonoid.{u2} R (MulZeroOneClass.toMulOneClass.{u2} R (NonAssocSemiring.toMulZeroOneClass.{u2} R (Semiring.toNonAssocSemiring.{u2} R _inst_1)))) R (Submonoid.instSetLikeSubmonoid.{u2} R (MulZeroOneClass.toMulOneClass.{u2} R (NonAssocSemiring.toMulZeroOneClass.{u2} R (Semiring.toNonAssocSemiring.{u2} R _inst_1))))) x S)) (Units.{u1} T (MonoidWithZero.toMonoid.{u1} T (Semiring.toMonoidWithZero.{u1} T _inst_3))) (Submonoid.toMulOneClass.{u2} R (MulZeroOneClass.toMulOneClass.{u2} R (NonAssocSemiring.toMulZeroOneClass.{u2} R (Semiring.toNonAssocSemiring.{u2} R _inst_1))) S) (Units.instMulOneClassUnits.{u1} T (MonoidWithZero.toMonoid.{u1} T (Semiring.toMonoidWithZero.{u1} T _inst_3)))) (hf : forall (s : Subtype.{succ u2} R (fun (x : R) => Membership.mem.{u2, u2} R (Submonoid.{u2} R (MulZeroOneClass.toMulOneClass.{u2} R (NonAssocSemiring.toMulZeroOneClass.{u2} R (Semiring.toNonAssocSemiring.{u2} R _inst_1)))) (SetLike.instMembership.{u2, u2} (Submonoid.{u2} R (MulZeroOneClass.toMulOneClass.{u2} R (NonAssocSemiring.toMulZeroOneClass.{u2} R (Semiring.toNonAssocSemiring.{u2} R _inst_1)))) R (Submonoid.instSetLikeSubmonoid.{u2} R (MulZeroOneClass.toMulOneClass.{u2} R (NonAssocSemiring.toMulZeroOneClass.{u2} R (Semiring.toNonAssocSemiring.{u2} R _inst_1))))) x S)), Eq.{succ u1} ((fun ([email protected]._hyg.2391 : R) => T) (Subtype.val.{succ u2} R (fun (x : R) => Membership.mem.{u2, u2} R (Set.{u2} R) (Set.instMembershipSet.{u2} R) x (SetLike.coe.{u2, u2} (Submonoid.{u2} R (MulZeroOneClass.toMulOneClass.{u2} R (NonAssocSemiring.toMulZeroOneClass.{u2} R (Semiring.toNonAssocSemiring.{u2} R _inst_1)))) R (Submonoid.instSetLikeSubmonoid.{u2} R (MulZeroOneClass.toMulOneClass.{u2} R (NonAssocSemiring.toMulZeroOneClass.{u2} R (Semiring.toNonAssocSemiring.{u2} R _inst_1)))) S)) s)) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (RingHom.{u2, u1} R T (Semiring.toNonAssocSemiring.{u2} R _inst_1) (Semiring.toNonAssocSemiring.{u1} T _inst_3)) R (fun (_x : R) => (fun ([email protected]._hyg.2391 : R) => T) _x) (MulHomClass.toFunLike.{max u2 u1, u2, u1} (RingHom.{u2, u1} R T (Semiring.toNonAssocSemiring.{u2} R _inst_1) (Semiring.toNonAssocSemiring.{u1} T _inst_3)) R T (NonUnitalNonAssocSemiring.toMul.{u2} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u2} R (Semiring.toNonAssocSemiring.{u2} R _inst_1))) (NonUnitalNonAssocSemiring.toMul.{u1} T (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} T (Semiring.toNonAssocSemiring.{u1} T _inst_3))) (NonUnitalRingHomClass.toMulHomClass.{max u2 u1, u2, u1} (RingHom.{u2, u1} R T (Semiring.toNonAssocSemiring.{u2} R _inst_1) (Semiring.toNonAssocSemiring.{u1} T _inst_3)) R T (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u2} R (Semiring.toNonAssocSemiring.{u2} R _inst_1)) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} T (Semiring.toNonAssocSemiring.{u1} T _inst_3)) (RingHomClass.toNonUnitalRingHomClass.{max u2 u1, u2, u1} (RingHom.{u2, u1} R T (Semiring.toNonAssocSemiring.{u2} R _inst_1) (Semiring.toNonAssocSemiring.{u1} T _inst_3)) R T (Semiring.toNonAssocSemiring.{u2} R _inst_1) (Semiring.toNonAssocSemiring.{u1} T _inst_3) (RingHom.instRingHomClassRingHom.{u2, u1} R T (Semiring.toNonAssocSemiring.{u2} R _inst_1) (Semiring.toNonAssocSemiring.{u1} T _inst_3))))) f (Subtype.val.{succ u2} R (fun (x : R) => Membership.mem.{u2, u2} R (Set.{u2} R) (Set.instMembershipSet.{u2} R) x (SetLike.coe.{u2, u2} (Submonoid.{u2} R (MulZeroOneClass.toMulOneClass.{u2} R (NonAssocSemiring.toMulZeroOneClass.{u2} R (Semiring.toNonAssocSemiring.{u2} R _inst_1)))) R (Submonoid.instSetLikeSubmonoid.{u2} R (MulZeroOneClass.toMulOneClass.{u2} R (NonAssocSemiring.toMulZeroOneClass.{u2} R (Semiring.toNonAssocSemiring.{u2} R _inst_1)))) S)) s)) (Units.val.{u1} T (MonoidWithZero.toMonoid.{u1} T (Semiring.toMonoidWithZero.{u1} T _inst_3)) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (MonoidHom.{u2, u1} (Subtype.{succ u2} R (fun (x : R) => Membership.mem.{u2, u2} R (Submonoid.{u2} R (MulZeroOneClass.toMulOneClass.{u2} R (NonAssocSemiring.toMulZeroOneClass.{u2} R (Semiring.toNonAssocSemiring.{u2} R _inst_1)))) (SetLike.instMembership.{u2, u2} (Submonoid.{u2} R (MulZeroOneClass.toMulOneClass.{u2} R (NonAssocSemiring.toMulZeroOneClass.{u2} R (Semiring.toNonAssocSemiring.{u2} R _inst_1)))) R (Submonoid.instSetLikeSubmonoid.{u2} R (MulZeroOneClass.toMulOneClass.{u2} R (NonAssocSemiring.toMulZeroOneClass.{u2} R (Semiring.toNonAssocSemiring.{u2} R _inst_1))))) x S)) (Units.{u1} T (MonoidWithZero.toMonoid.{u1} T (Semiring.toMonoidWithZero.{u1} T _inst_3))) (Submonoid.toMulOneClass.{u2} R (MulZeroOneClass.toMulOneClass.{u2} R (NonAssocSemiring.toMulZeroOneClass.{u2} R (Semiring.toNonAssocSemiring.{u2} R _inst_1))) S) (Units.instMulOneClassUnits.{u1} T (MonoidWithZero.toMonoid.{u1} T (Semiring.toMonoidWithZero.{u1} T _inst_3)))) (Subtype.{succ u2} R (fun (x : R) => Membership.mem.{u2, u2} R (Submonoid.{u2} R (MulZeroOneClass.toMulOneClass.{u2} R (NonAssocSemiring.toMulZeroOneClass.{u2} R (Semiring.toNonAssocSemiring.{u2} R _inst_1)))) (SetLike.instMembership.{u2, u2} (Submonoid.{u2} R (MulZeroOneClass.toMulOneClass.{u2} R (NonAssocSemiring.toMulZeroOneClass.{u2} R (Semiring.toNonAssocSemiring.{u2} R _inst_1)))) R (Submonoid.instSetLikeSubmonoid.{u2} R (MulZeroOneClass.toMulOneClass.{u2} R (NonAssocSemiring.toMulZeroOneClass.{u2} R (Semiring.toNonAssocSemiring.{u2} R _inst_1))))) x S)) (fun (_x : Subtype.{succ u2} R (fun (x : R) => Membership.mem.{u2, u2} R (Submonoid.{u2} R (MulZeroOneClass.toMulOneClass.{u2} R (NonAssocSemiring.toMulZeroOneClass.{u2} R (Semiring.toNonAssocSemiring.{u2} R _inst_1)))) (SetLike.instMembership.{u2, u2} (Submonoid.{u2} R (MulZeroOneClass.toMulOneClass.{u2} R (NonAssocSemiring.toMulZeroOneClass.{u2} R (Semiring.toNonAssocSemiring.{u2} R _inst_1)))) R (Submonoid.instSetLikeSubmonoid.{u2} R (MulZeroOneClass.toMulOneClass.{u2} R (NonAssocSemiring.toMulZeroOneClass.{u2} R (Semiring.toNonAssocSemiring.{u2} R _inst_1))))) x S)) => (fun ([email protected]._hyg.2391 : Subtype.{succ u2} R (fun (x : R) => Membership.mem.{u2, u2} R (Submonoid.{u2} R (MulZeroOneClass.toMulOneClass.{u2} R (NonAssocSemiring.toMulZeroOneClass.{u2} R (Semiring.toNonAssocSemiring.{u2} R _inst_1)))) (SetLike.instMembership.{u2, u2} (Submonoid.{u2} R (MulZeroOneClass.toMulOneClass.{u2} R (NonAssocSemiring.toMulZeroOneClass.{u2} R (Semiring.toNonAssocSemiring.{u2} R _inst_1)))) R (Submonoid.instSetLikeSubmonoid.{u2} R (MulZeroOneClass.toMulOneClass.{u2} R (NonAssocSemiring.toMulZeroOneClass.{u2} R (Semiring.toNonAssocSemiring.{u2} R _inst_1))))) x S)) => Units.{u1} T (MonoidWithZero.toMonoid.{u1} T (Semiring.toMonoidWithZero.{u1} T _inst_3))) _x) (MulHomClass.toFunLike.{max u2 u1, u2, u1} (MonoidHom.{u2, u1} (Subtype.{succ u2} R (fun (x : R) => Membership.mem.{u2, u2} R (Submonoid.{u2} R (MulZeroOneClass.toMulOneClass.{u2} R (NonAssocSemiring.toMulZeroOneClass.{u2} R (Semiring.toNonAssocSemiring.{u2} R _inst_1)))) (SetLike.instMembership.{u2, u2} (Submonoid.{u2} R (MulZeroOneClass.toMulOneClass.{u2} R (NonAssocSemiring.toMulZeroOneClass.{u2} R (Semiring.toNonAssocSemiring.{u2} R _inst_1)))) R (Submonoid.instSetLikeSubmonoid.{u2} R (MulZeroOneClass.toMulOneClass.{u2} R (NonAssocSemiring.toMulZeroOneClass.{u2} R (Semiring.toNonAssocSemiring.{u2} R _inst_1))))) x S)) (Units.{u1} T (MonoidWithZero.toMonoid.{u1} T (Semiring.toMonoidWithZero.{u1} T _inst_3))) (Submonoid.toMulOneClass.{u2} R (MulZeroOneClass.toMulOneClass.{u2} R (NonAssocSemiring.toMulZeroOneClass.{u2} R (Semiring.toNonAssocSemiring.{u2} R _inst_1))) S) (Units.instMulOneClassUnits.{u1} T (MonoidWithZero.toMonoid.{u1} T (Semiring.toMonoidWithZero.{u1} T _inst_3)))) (Subtype.{succ u2} R (fun (x : R) => Membership.mem.{u2, u2} R (Submonoid.{u2} R (MulZeroOneClass.toMulOneClass.{u2} R (NonAssocSemiring.toMulZeroOneClass.{u2} R (Semiring.toNonAssocSemiring.{u2} R _inst_1)))) (SetLike.instMembership.{u2, u2} (Submonoid.{u2} R (MulZeroOneClass.toMulOneClass.{u2} R (NonAssocSemiring.toMulZeroOneClass.{u2} R (Semiring.toNonAssocSemiring.{u2} R _inst_1)))) R (Submonoid.instSetLikeSubmonoid.{u2} R (MulZeroOneClass.toMulOneClass.{u2} R (NonAssocSemiring.toMulZeroOneClass.{u2} R (Semiring.toNonAssocSemiring.{u2} R _inst_1))))) x S)) (Units.{u1} T (MonoidWithZero.toMonoid.{u1} T (Semiring.toMonoidWithZero.{u1} T _inst_3))) (MulOneClass.toMul.{u2} (Subtype.{succ u2} R (fun (x : R) => Membership.mem.{u2, u2} R (Submonoid.{u2} R (MulZeroOneClass.toMulOneClass.{u2} R (NonAssocSemiring.toMulZeroOneClass.{u2} R (Semiring.toNonAssocSemiring.{u2} R _inst_1)))) (SetLike.instMembership.{u2, u2} (Submonoid.{u2} R (MulZeroOneClass.toMulOneClass.{u2} R (NonAssocSemiring.toMulZeroOneClass.{u2} R (Semiring.toNonAssocSemiring.{u2} R _inst_1)))) R (Submonoid.instSetLikeSubmonoid.{u2} R (MulZeroOneClass.toMulOneClass.{u2} R (NonAssocSemiring.toMulZeroOneClass.{u2} R (Semiring.toNonAssocSemiring.{u2} R _inst_1))))) x S)) (Submonoid.toMulOneClass.{u2} R (MulZeroOneClass.toMulOneClass.{u2} R (NonAssocSemiring.toMulZeroOneClass.{u2} R (Semiring.toNonAssocSemiring.{u2} R _inst_1))) S)) (MulOneClass.toMul.{u1} (Units.{u1} T (MonoidWithZero.toMonoid.{u1} T (Semiring.toMonoidWithZero.{u1} T _inst_3))) (Units.instMulOneClassUnits.{u1} T (MonoidWithZero.toMonoid.{u1} T (Semiring.toMonoidWithZero.{u1} T _inst_3)))) (MonoidHomClass.toMulHomClass.{max u2 u1, u2, u1} (MonoidHom.{u2, u1} (Subtype.{succ u2} R (fun (x : R) => Membership.mem.{u2, u2} R (Submonoid.{u2} R (MulZeroOneClass.toMulOneClass.{u2} R (NonAssocSemiring.toMulZeroOneClass.{u2} R (Semiring.toNonAssocSemiring.{u2} R _inst_1)))) (SetLike.instMembership.{u2, u2} (Submonoid.{u2} R (MulZeroOneClass.toMulOneClass.{u2} R (NonAssocSemiring.toMulZeroOneClass.{u2} R (Semiring.toNonAssocSemiring.{u2} R _inst_1)))) R (Submonoid.instSetLikeSubmonoid.{u2} R (MulZeroOneClass.toMulOneClass.{u2} R (NonAssocSemiring.toMulZeroOneClass.{u2} R (Semiring.toNonAssocSemiring.{u2} R _inst_1))))) x S)) (Units.{u1} T (MonoidWithZero.toMonoid.{u1} T (Semiring.toMonoidWithZero.{u1} T _inst_3))) (Submonoid.toMulOneClass.{u2} R (MulZeroOneClass.toMulOneClass.{u2} R (NonAssocSemiring.toMulZeroOneClass.{u2} R (Semiring.toNonAssocSemiring.{u2} R _inst_1))) S) (Units.instMulOneClassUnits.{u1} T (MonoidWithZero.toMonoid.{u1} T (Semiring.toMonoidWithZero.{u1} T _inst_3)))) (Subtype.{succ u2} R (fun (x : R) => Membership.mem.{u2, u2} R (Submonoid.{u2} R (MulZeroOneClass.toMulOneClass.{u2} R (NonAssocSemiring.toMulZeroOneClass.{u2} R (Semiring.toNonAssocSemiring.{u2} R _inst_1)))) (SetLike.instMembership.{u2, u2} (Submonoid.{u2} R (MulZeroOneClass.toMulOneClass.{u2} R (NonAssocSemiring.toMulZeroOneClass.{u2} R (Semiring.toNonAssocSemiring.{u2} R _inst_1)))) R (Submonoid.instSetLikeSubmonoid.{u2} R (MulZeroOneClass.toMulOneClass.{u2} R (NonAssocSemiring.toMulZeroOneClass.{u2} R (Semiring.toNonAssocSemiring.{u2} R _inst_1))))) x S)) (Units.{u1} T (MonoidWithZero.toMonoid.{u1} T (Semiring.toMonoidWithZero.{u1} T _inst_3))) (Submonoid.toMulOneClass.{u2} R (MulZeroOneClass.toMulOneClass.{u2} R (NonAssocSemiring.toMulZeroOneClass.{u2} R (Semiring.toNonAssocSemiring.{u2} R _inst_1))) S) (Units.instMulOneClassUnits.{u1} T (MonoidWithZero.toMonoid.{u1} T (Semiring.toMonoidWithZero.{u1} T _inst_3))) (MonoidHom.monoidHomClass.{u2, u1} (Subtype.{succ u2} R (fun (x : R) => Membership.mem.{u2, u2} R (Submonoid.{u2} R (MulZeroOneClass.toMulOneClass.{u2} R (NonAssocSemiring.toMulZeroOneClass.{u2} R (Semiring.toNonAssocSemiring.{u2} R _inst_1)))) (SetLike.instMembership.{u2, u2} (Submonoid.{u2} R (MulZeroOneClass.toMulOneClass.{u2} R (NonAssocSemiring.toMulZeroOneClass.{u2} R (Semiring.toNonAssocSemiring.{u2} R _inst_1)))) R (Submonoid.instSetLikeSubmonoid.{u2} R (MulZeroOneClass.toMulOneClass.{u2} R (NonAssocSemiring.toMulZeroOneClass.{u2} R (Semiring.toNonAssocSemiring.{u2} R _inst_1))))) x S)) (Units.{u1} T (MonoidWithZero.toMonoid.{u1} T (Semiring.toMonoidWithZero.{u1} T _inst_3))) (Submonoid.toMulOneClass.{u2} R (MulZeroOneClass.toMulOneClass.{u2} R (NonAssocSemiring.toMulZeroOneClass.{u2} R (Semiring.toNonAssocSemiring.{u2} R _inst_1))) S) (Units.instMulOneClassUnits.{u1} T (MonoidWithZero.toMonoid.{u1} T (Semiring.toMonoidWithZero.{u1} T _inst_3)))))) fS s))) (φ : RingHom.{u2, u1} (OreLocalization.{u2} R (MonoidWithZero.toMonoid.{u2} R (Semiring.toMonoidWithZero.{u2} R _inst_1)) S _inst_2) T (Semiring.toNonAssocSemiring.{u2} (OreLocalization.{u2} R (MonoidWithZero.toMonoid.{u2} R (Semiring.toMonoidWithZero.{u2} R _inst_1)) S _inst_2) (OreLocalization.instSemiringOreLocalizationToMonoidToMonoidWithZero.{u2} R _inst_1 S _inst_2)) (Semiring.toNonAssocSemiring.{u1} T _inst_3)), (forall (r : R), Eq.{succ u1} ((fun ([email protected]._hyg.2391 : OreLocalization.{u2} R (MonoidWithZero.toMonoid.{u2} R (Semiring.toMonoidWithZero.{u2} R _inst_1)) S _inst_2) => T) (FunLike.coe.{succ u2, succ u2, succ u2} (MonoidHom.{u2, u2} R (OreLocalization.{u2} R (MonoidWithZero.toMonoid.{u2} R (Semiring.toMonoidWithZero.{u2} R _inst_1)) S _inst_2) (Monoid.toMulOneClass.{u2} R (MonoidWithZero.toMonoid.{u2} R (Semiring.toMonoidWithZero.{u2} R _inst_1))) (Monoid.toMulOneClass.{u2} (OreLocalization.{u2} R (MonoidWithZero.toMonoid.{u2} R (Semiring.toMonoidWithZero.{u2} R _inst_1)) S _inst_2) (OreLocalization.instMonoidOreLocalization.{u2} R (MonoidWithZero.toMonoid.{u2} R (Semiring.toMonoidWithZero.{u2} R _inst_1)) S _inst_2))) R (fun (a : R) => (fun ([email protected]._hyg.2391 : R) => OreLocalization.{u2} R (MonoidWithZero.toMonoid.{u2} R (Semiring.toMonoidWithZero.{u2} R _inst_1)) S _inst_2) a) (MulHomClass.toFunLike.{u2, u2, u2} (MonoidHom.{u2, u2} R (OreLocalization.{u2} R (MonoidWithZero.toMonoid.{u2} R (Semiring.toMonoidWithZero.{u2} R _inst_1)) S _inst_2) (Monoid.toMulOneClass.{u2} R (MonoidWithZero.toMonoid.{u2} R (Semiring.toMonoidWithZero.{u2} R _inst_1))) (Monoid.toMulOneClass.{u2} (OreLocalization.{u2} R (MonoidWithZero.toMonoid.{u2} R (Semiring.toMonoidWithZero.{u2} R _inst_1)) S _inst_2) (OreLocalization.instMonoidOreLocalization.{u2} R (MonoidWithZero.toMonoid.{u2} R (Semiring.toMonoidWithZero.{u2} R _inst_1)) S _inst_2))) R (OreLocalization.{u2} R (MonoidWithZero.toMonoid.{u2} R (Semiring.toMonoidWithZero.{u2} R _inst_1)) S _inst_2) (MulOneClass.toMul.{u2} R (Monoid.toMulOneClass.{u2} R (MonoidWithZero.toMonoid.{u2} R (Semiring.toMonoidWithZero.{u2} R _inst_1)))) (MulOneClass.toMul.{u2} (OreLocalization.{u2} R (MonoidWithZero.toMonoid.{u2} R (Semiring.toMonoidWithZero.{u2} R _inst_1)) S _inst_2) (Monoid.toMulOneClass.{u2} (OreLocalization.{u2} R (MonoidWithZero.toMonoid.{u2} R (Semiring.toMonoidWithZero.{u2} R _inst_1)) S _inst_2) (OreLocalization.instMonoidOreLocalization.{u2} R (MonoidWithZero.toMonoid.{u2} R (Semiring.toMonoidWithZero.{u2} R _inst_1)) S _inst_2))) (MonoidHomClass.toMulHomClass.{u2, u2, u2} (MonoidHom.{u2, u2} R (OreLocalization.{u2} R (MonoidWithZero.toMonoid.{u2} R (Semiring.toMonoidWithZero.{u2} R _inst_1)) S _inst_2) (Monoid.toMulOneClass.{u2} R (MonoidWithZero.toMonoid.{u2} R (Semiring.toMonoidWithZero.{u2} R _inst_1))) (Monoid.toMulOneClass.{u2} (OreLocalization.{u2} R (MonoidWithZero.toMonoid.{u2} R (Semiring.toMonoidWithZero.{u2} R _inst_1)) S _inst_2) (OreLocalization.instMonoidOreLocalization.{u2} R (MonoidWithZero.toMonoid.{u2} R (Semiring.toMonoidWithZero.{u2} R _inst_1)) S _inst_2))) R (OreLocalization.{u2} R (MonoidWithZero.toMonoid.{u2} R (Semiring.toMonoidWithZero.{u2} R _inst_1)) S _inst_2) (Monoid.toMulOneClass.{u2} R (MonoidWithZero.toMonoid.{u2} R (Semiring.toMonoidWithZero.{u2} R _inst_1))) (Monoid.toMulOneClass.{u2} (OreLocalization.{u2} R (MonoidWithZero.toMonoid.{u2} R (Semiring.toMonoidWithZero.{u2} R _inst_1)) S _inst_2) (OreLocalization.instMonoidOreLocalization.{u2} R (MonoidWithZero.toMonoid.{u2} R (Semiring.toMonoidWithZero.{u2} R _inst_1)) S _inst_2)) (MonoidHom.monoidHomClass.{u2, u2} R (OreLocalization.{u2} R (MonoidWithZero.toMonoid.{u2} R (Semiring.toMonoidWithZero.{u2} R _inst_1)) S _inst_2) (Monoid.toMulOneClass.{u2} R (MonoidWithZero.toMonoid.{u2} R (Semiring.toMonoidWithZero.{u2} R _inst_1))) (Monoid.toMulOneClass.{u2} (OreLocalization.{u2} R (MonoidWithZero.toMonoid.{u2} R (Semiring.toMonoidWithZero.{u2} R _inst_1)) S _inst_2) (OreLocalization.instMonoidOreLocalization.{u2} R (MonoidWithZero.toMonoid.{u2} R (Semiring.toMonoidWithZero.{u2} R _inst_1)) S _inst_2))))) (OreLocalization.numeratorHom.{u2} R (MonoidWithZero.toMonoid.{u2} R (Semiring.toMonoidWithZero.{u2} R _inst_1)) S _inst_2) r)) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (RingHom.{u2, u1} (OreLocalization.{u2} R (MonoidWithZero.toMonoid.{u2} R (Semiring.toMonoidWithZero.{u2} R _inst_1)) S _inst_2) T (Semiring.toNonAssocSemiring.{u2} (OreLocalization.{u2} R (MonoidWithZero.toMonoid.{u2} R (Semiring.toMonoidWithZero.{u2} R _inst_1)) S _inst_2) (OreLocalization.instSemiringOreLocalizationToMonoidToMonoidWithZero.{u2} R _inst_1 S _inst_2)) (Semiring.toNonAssocSemiring.{u1} T _inst_3)) (OreLocalization.{u2} R (MonoidWithZero.toMonoid.{u2} R (Semiring.toMonoidWithZero.{u2} R _inst_1)) S _inst_2) (fun (_x : OreLocalization.{u2} R (MonoidWithZero.toMonoid.{u2} R (Semiring.toMonoidWithZero.{u2} R _inst_1)) S _inst_2) => (fun ([email protected]._hyg.2391 : OreLocalization.{u2} R (MonoidWithZero.toMonoid.{u2} R (Semiring.toMonoidWithZero.{u2} R _inst_1)) S _inst_2) => T) _x) (MulHomClass.toFunLike.{max u2 u1, u2, u1} (RingHom.{u2, u1} (OreLocalization.{u2} R (MonoidWithZero.toMonoid.{u2} R (Semiring.toMonoidWithZero.{u2} R _inst_1)) S _inst_2) T (Semiring.toNonAssocSemiring.{u2} (OreLocalization.{u2} R (MonoidWithZero.toMonoid.{u2} R (Semiring.toMonoidWithZero.{u2} R _inst_1)) S _inst_2) (OreLocalization.instSemiringOreLocalizationToMonoidToMonoidWithZero.{u2} R _inst_1 S _inst_2)) (Semiring.toNonAssocSemiring.{u1} T _inst_3)) (OreLocalization.{u2} R (MonoidWithZero.toMonoid.{u2} R (Semiring.toMonoidWithZero.{u2} R _inst_1)) S _inst_2) T (NonUnitalNonAssocSemiring.toMul.{u2} (OreLocalization.{u2} R (MonoidWithZero.toMonoid.{u2} R (Semiring.toMonoidWithZero.{u2} R _inst_1)) S _inst_2) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u2} (OreLocalization.{u2} R (MonoidWithZero.toMonoid.{u2} R (Semiring.toMonoidWithZero.{u2} R _inst_1)) S _inst_2) (Semiring.toNonAssocSemiring.{u2} (OreLocalization.{u2} R (MonoidWithZero.toMonoid.{u2} R (Semiring.toMonoidWithZero.{u2} R _inst_1)) S _inst_2) (OreLocalization.instSemiringOreLocalizationToMonoidToMonoidWithZero.{u2} R _inst_1 S _inst_2)))) (NonUnitalNonAssocSemiring.toMul.{u1} T (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} T (Semiring.toNonAssocSemiring.{u1} T _inst_3))) (NonUnitalRingHomClass.toMulHomClass.{max u2 u1, u2, u1} (RingHom.{u2, u1} (OreLocalization.{u2} R (MonoidWithZero.toMonoid.{u2} R (Semiring.toMonoidWithZero.{u2} R _inst_1)) S _inst_2) T (Semiring.toNonAssocSemiring.{u2} (OreLocalization.{u2} R (MonoidWithZero.toMonoid.{u2} R (Semiring.toMonoidWithZero.{u2} R _inst_1)) S _inst_2) (OreLocalization.instSemiringOreLocalizationToMonoidToMonoidWithZero.{u2} R _inst_1 S _inst_2)) (Semiring.toNonAssocSemiring.{u1} T _inst_3)) (OreLocalization.{u2} R (MonoidWithZero.toMonoid.{u2} R (Semiring.toMonoidWithZero.{u2} R _inst_1)) S _inst_2) T (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u2} (OreLocalization.{u2} R (MonoidWithZero.toMonoid.{u2} R (Semiring.toMonoidWithZero.{u2} R _inst_1)) S _inst_2) (Semiring.toNonAssocSemiring.{u2} (OreLocalization.{u2} R (MonoidWithZero.toMonoid.{u2} R (Semiring.toMonoidWithZero.{u2} R _inst_1)) S _inst_2) (OreLocalization.instSemiringOreLocalizationToMonoidToMonoidWithZero.{u2} R _inst_1 S _inst_2))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} T (Semiring.toNonAssocSemiring.{u1} T _inst_3)) (RingHomClass.toNonUnitalRingHomClass.{max u2 u1, u2, u1} (RingHom.{u2, u1} (OreLocalization.{u2} R (MonoidWithZero.toMonoid.{u2} R (Semiring.toMonoidWithZero.{u2} R _inst_1)) S _inst_2) T (Semiring.toNonAssocSemiring.{u2} (OreLocalization.{u2} R (MonoidWithZero.toMonoid.{u2} R (Semiring.toMonoidWithZero.{u2} R _inst_1)) S _inst_2) (OreLocalization.instSemiringOreLocalizationToMonoidToMonoidWithZero.{u2} R _inst_1 S _inst_2)) (Semiring.toNonAssocSemiring.{u1} T _inst_3)) (OreLocalization.{u2} R (MonoidWithZero.toMonoid.{u2} R (Semiring.toMonoidWithZero.{u2} R _inst_1)) S _inst_2) T (Semiring.toNonAssocSemiring.{u2} (OreLocalization.{u2} R (MonoidWithZero.toMonoid.{u2} R (Semiring.toMonoidWithZero.{u2} R _inst_1)) S _inst_2) (OreLocalization.instSemiringOreLocalizationToMonoidToMonoidWithZero.{u2} R _inst_1 S _inst_2)) (Semiring.toNonAssocSemiring.{u1} T _inst_3) (RingHom.instRingHomClassRingHom.{u2, u1} (OreLocalization.{u2} R (MonoidWithZero.toMonoid.{u2} R (Semiring.toMonoidWithZero.{u2} R _inst_1)) S _inst_2) T (Semiring.toNonAssocSemiring.{u2} (OreLocalization.{u2} R (MonoidWithZero.toMonoid.{u2} R (Semiring.toMonoidWithZero.{u2} R _inst_1)) S _inst_2) (OreLocalization.instSemiringOreLocalizationToMonoidToMonoidWithZero.{u2} R _inst_1 S _inst_2)) (Semiring.toNonAssocSemiring.{u1} T _inst_3))))) φ (FunLike.coe.{succ u2, succ u2, succ u2} (MonoidHom.{u2, u2} R (OreLocalization.{u2} R (MonoidWithZero.toMonoid.{u2} R (Semiring.toMonoidWithZero.{u2} R _inst_1)) S _inst_2) (Monoid.toMulOneClass.{u2} R (MonoidWithZero.toMonoid.{u2} R (Semiring.toMonoidWithZero.{u2} R _inst_1))) (Monoid.toMulOneClass.{u2} (OreLocalization.{u2} R (MonoidWithZero.toMonoid.{u2} R (Semiring.toMonoidWithZero.{u2} R _inst_1)) S _inst_2) (OreLocalization.instMonoidOreLocalization.{u2} R (MonoidWithZero.toMonoid.{u2} R (Semiring.toMonoidWithZero.{u2} R _inst_1)) S _inst_2))) R (fun (_x : R) => (fun ([email protected]._hyg.2391 : R) => OreLocalization.{u2} R (MonoidWithZero.toMonoid.{u2} R (Semiring.toMonoidWithZero.{u2} R _inst_1)) S _inst_2) _x) (MulHomClass.toFunLike.{u2, u2, u2} (MonoidHom.{u2, u2} R (OreLocalization.{u2} R (MonoidWithZero.toMonoid.{u2} R (Semiring.toMonoidWithZero.{u2} R _inst_1)) S _inst_2) (Monoid.toMulOneClass.{u2} R (MonoidWithZero.toMonoid.{u2} R (Semiring.toMonoidWithZero.{u2} R _inst_1))) (Monoid.toMulOneClass.{u2} (OreLocalization.{u2} R (MonoidWithZero.toMonoid.{u2} R (Semiring.toMonoidWithZero.{u2} R _inst_1)) S _inst_2) (OreLocalization.instMonoidOreLocalization.{u2} R (MonoidWithZero.toMonoid.{u2} R (Semiring.toMonoidWithZero.{u2} R _inst_1)) S _inst_2))) R (OreLocalization.{u2} R (MonoidWithZero.toMonoid.{u2} R (Semiring.toMonoidWithZero.{u2} R _inst_1)) S _inst_2) (MulOneClass.toMul.{u2} R (Monoid.toMulOneClass.{u2} R (MonoidWithZero.toMonoid.{u2} R (Semiring.toMonoidWithZero.{u2} R _inst_1)))) (MulOneClass.toMul.{u2} (OreLocalization.{u2} R (MonoidWithZero.toMonoid.{u2} R (Semiring.toMonoidWithZero.{u2} R _inst_1)) S _inst_2) (Monoid.toMulOneClass.{u2} (OreLocalization.{u2} R (MonoidWithZero.toMonoid.{u2} R (Semiring.toMonoidWithZero.{u2} R _inst_1)) S _inst_2) (OreLocalization.instMonoidOreLocalization.{u2} R (MonoidWithZero.toMonoid.{u2} R (Semiring.toMonoidWithZero.{u2} R _inst_1)) S _inst_2))) (MonoidHomClass.toMulHomClass.{u2, u2, u2} (MonoidHom.{u2, u2} R (OreLocalization.{u2} R (MonoidWithZero.toMonoid.{u2} R (Semiring.toMonoidWithZero.{u2} R _inst_1)) S _inst_2) (Monoid.toMulOneClass.{u2} R (MonoidWithZero.toMonoid.{u2} R (Semiring.toMonoidWithZero.{u2} R _inst_1))) (Monoid.toMulOneClass.{u2} (OreLocalization.{u2} R (MonoidWithZero.toMonoid.{u2} R (Semiring.toMonoidWithZero.{u2} R _inst_1)) S _inst_2) (OreLocalization.instMonoidOreLocalization.{u2} R (MonoidWithZero.toMonoid.{u2} R (Semiring.toMonoidWithZero.{u2} R _inst_1)) S _inst_2))) R (OreLocalization.{u2} R (MonoidWithZero.toMonoid.{u2} R (Semiring.toMonoidWithZero.{u2} R _inst_1)) S _inst_2) (Monoid.toMulOneClass.{u2} R (MonoidWithZero.toMonoid.{u2} R (Semiring.toMonoidWithZero.{u2} R _inst_1))) (Monoid.toMulOneClass.{u2} (OreLocalization.{u2} R (MonoidWithZero.toMonoid.{u2} R (Semiring.toMonoidWithZero.{u2} R _inst_1)) S _inst_2) (OreLocalization.instMonoidOreLocalization.{u2} R (MonoidWithZero.toMonoid.{u2} R (Semiring.toMonoidWithZero.{u2} R _inst_1)) S _inst_2)) (MonoidHom.monoidHomClass.{u2, u2} R (OreLocalization.{u2} R (MonoidWithZero.toMonoid.{u2} R (Semiring.toMonoidWithZero.{u2} R _inst_1)) S _inst_2) (Monoid.toMulOneClass.{u2} R (MonoidWithZero.toMonoid.{u2} R (Semiring.toMonoidWithZero.{u2} R _inst_1))) (Monoid.toMulOneClass.{u2} (OreLocalization.{u2} R (MonoidWithZero.toMonoid.{u2} R (Semiring.toMonoidWithZero.{u2} R _inst_1)) S _inst_2) (OreLocalization.instMonoidOreLocalization.{u2} R (MonoidWithZero.toMonoid.{u2} R (Semiring.toMonoidWithZero.{u2} R _inst_1)) S _inst_2))))) (OreLocalization.numeratorHom.{u2} R (MonoidWithZero.toMonoid.{u2} R (Semiring.toMonoidWithZero.{u2} R _inst_1)) S _inst_2) r)) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (RingHom.{u2, u1} R T (Semiring.toNonAssocSemiring.{u2} R _inst_1) (Semiring.toNonAssocSemiring.{u1} T _inst_3)) R (fun (_x : R) => (fun ([email protected]._hyg.2391 : R) => T) _x) (MulHomClass.toFunLike.{max u2 u1, u2, u1} (RingHom.{u2, u1} R T (Semiring.toNonAssocSemiring.{u2} R _inst_1) (Semiring.toNonAssocSemiring.{u1} T _inst_3)) R T (NonUnitalNonAssocSemiring.toMul.{u2} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u2} R (Semiring.toNonAssocSemiring.{u2} R _inst_1))) (NonUnitalNonAssocSemiring.toMul.{u1} T (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} T (Semiring.toNonAssocSemiring.{u1} T _inst_3))) (NonUnitalRingHomClass.toMulHomClass.{max u2 u1, u2, u1} (RingHom.{u2, u1} R T (Semiring.toNonAssocSemiring.{u2} R _inst_1) (Semiring.toNonAssocSemiring.{u1} T _inst_3)) R T (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u2} R (Semiring.toNonAssocSemiring.{u2} R _inst_1)) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} T (Semiring.toNonAssocSemiring.{u1} T _inst_3)) (RingHomClass.toNonUnitalRingHomClass.{max u2 u1, u2, u1} (RingHom.{u2, u1} R T (Semiring.toNonAssocSemiring.{u2} R _inst_1) (Semiring.toNonAssocSemiring.{u1} T _inst_3)) R T (Semiring.toNonAssocSemiring.{u2} R _inst_1) (Semiring.toNonAssocSemiring.{u1} T _inst_3) (RingHom.instRingHomClassRingHom.{u2, u1} R T (Semiring.toNonAssocSemiring.{u2} R _inst_1) (Semiring.toNonAssocSemiring.{u1} T _inst_3))))) f r)) -> (Eq.{max (succ u2) (succ u1)} (RingHom.{u2, u1} (OreLocalization.{u2} R (MonoidWithZero.toMonoid.{u2} R (Semiring.toMonoidWithZero.{u2} R _inst_1)) S _inst_2) T (Semiring.toNonAssocSemiring.{u2} (OreLocalization.{u2} R (MonoidWithZero.toMonoid.{u2} R (Semiring.toMonoidWithZero.{u2} R _inst_1)) S _inst_2) (OreLocalization.instSemiringOreLocalizationToMonoidToMonoidWithZero.{u2} R _inst_1 S _inst_2)) (Semiring.toNonAssocSemiring.{u1} T _inst_3)) φ (OreLocalization.universalHom.{u2, u1} R _inst_1 S _inst_2 T _inst_3 f fS hf)) Case conversion may be inaccurate. Consider using '#align ore_localization.universal_hom_unique OreLocalization.universalHom_uniqueₓ'. -/ theorem universalHom_unique (φ : R[S⁻¹] →+* T) (huniv : ∀ r : R, φ (numeratorHom r) = f r) : φ = universalHom f fS hf := RingHom.coe_monoidHom_injective <| universalMulHom_unique (RingHom.toMonoidHom f) fS hf (↑φ) huniv #align ore_localization.universal_hom_unique OreLocalization.universalHom_unique end UMP end Semiring section Ring variable {R : Type _} [Ring R] {S : Submonoid R} [OreSet S] /- warning: ore_localization.neg -> OreLocalization.neg is a dubious translation: lean 3 declaration is forall {R : Type.{u1}} [_inst_1 : Ring.{u1} R] {S : Submonoid.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (NonAssocRing.toNonAssocSemiring.{u1} R (Ring.toNonAssocRing.{u1} R _inst_1))))} [_inst_2 : OreLocalization.OreSet.{u1} R (Ring.toMonoid.{u1} R _inst_1) S], (OreLocalization.{u1} R (Ring.toMonoid.{u1} R _inst_1) S _inst_2) -> (OreLocalization.{u1} R (Ring.toMonoid.{u1} R _inst_1) S _inst_2) but is expected to have type forall {R : Type.{u1}} [_inst_1 : Ring.{u1} R] {S : Submonoid.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (NonAssocRing.toNonAssocSemiring.{u1} R (Ring.toNonAssocRing.{u1} R _inst_1))))} [_inst_2 : OreLocalization.OreSet.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R (Ring.toSemiring.{u1} R _inst_1))) S], (OreLocalization.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R (Ring.toSemiring.{u1} R _inst_1))) S _inst_2) -> (OreLocalization.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R (Ring.toSemiring.{u1} R _inst_1))) S _inst_2) Case conversion may be inaccurate. Consider using '#align ore_localization.neg OreLocalization.negₓ'. -/ /-- Negation on the Ore localization is defined via negation on the numerator. -/ protected def neg : R[S⁻¹] → R[S⁻¹] := liftExpand (fun (r : R) (s : S) => -r /ₒ s) fun r t s ht => by rw [neg_mul_eq_neg_mul, ← OreLocalization.expand] #align ore_localization.neg OreLocalization.neg instance : Neg R[S⁻¹] := ⟨OreLocalization.neg⟩ /- warning: ore_localization.neg_def -> OreLocalization.neg_def is a dubious translation: lean 3 declaration is forall {R : Type.{u1}} [_inst_1 : Ring.{u1} R] {S : Submonoid.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (NonAssocRing.toNonAssocSemiring.{u1} R (Ring.toNonAssocRing.{u1} R _inst_1))))} [_inst_2 : OreLocalization.OreSet.{u1} R (Ring.toMonoid.{u1} R _inst_1) S] (r : R) (s : coeSort.{succ u1, succ (succ u1)} (Submonoid.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (NonAssocRing.toNonAssocSemiring.{u1} R (Ring.toNonAssocRing.{u1} R _inst_1))))) Type.{u1} (SetLike.hasCoeToSort.{u1, u1} (Submonoid.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (NonAssocRing.toNonAssocSemiring.{u1} R (Ring.toNonAssocRing.{u1} R _inst_1))))) R (Submonoid.setLike.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (NonAssocRing.toNonAssocSemiring.{u1} R (Ring.toNonAssocRing.{u1} R _inst_1)))))) S), Eq.{succ u1} (OreLocalization.{u1} R (Ring.toMonoid.{u1} R _inst_1) S _inst_2) (Neg.neg.{u1} (OreLocalization.{u1} R (Ring.toMonoid.{u1} R _inst_1) S _inst_2) (OreLocalization.hasNeg.{u1} R _inst_1 S _inst_2) (OreLocalization.oreDiv.{u1} R (Ring.toMonoid.{u1} R _inst_1) S _inst_2 r s)) (OreLocalization.oreDiv.{u1} R (Ring.toMonoid.{u1} R _inst_1) S _inst_2 (Neg.neg.{u1} R (SubNegMonoid.toHasNeg.{u1} R (AddGroup.toSubNegMonoid.{u1} R (AddGroupWithOne.toAddGroup.{u1} R (AddCommGroupWithOne.toAddGroupWithOne.{u1} R (Ring.toAddCommGroupWithOne.{u1} R _inst_1))))) r) s) but is expected to have type forall {R : Type.{u1}} [_inst_1 : Ring.{u1} R] {S : Submonoid.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (NonAssocRing.toNonAssocSemiring.{u1} R (Ring.toNonAssocRing.{u1} R _inst_1))))} [_inst_2 : OreLocalization.OreSet.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R (Ring.toSemiring.{u1} R _inst_1))) S] (r : R) (s : Subtype.{succ u1} R (fun (x : R) => Membership.mem.{u1, u1} R (Submonoid.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (NonAssocRing.toNonAssocSemiring.{u1} R (Ring.toNonAssocRing.{u1} R _inst_1))))) (SetLike.instMembership.{u1, u1} (Submonoid.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (NonAssocRing.toNonAssocSemiring.{u1} R (Ring.toNonAssocRing.{u1} R _inst_1))))) R (Submonoid.instSetLikeSubmonoid.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (NonAssocRing.toNonAssocSemiring.{u1} R (Ring.toNonAssocRing.{u1} R _inst_1)))))) x S)), Eq.{succ u1} (OreLocalization.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R (Ring.toSemiring.{u1} R _inst_1))) S _inst_2) (Neg.neg.{u1} (OreLocalization.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R (Ring.toSemiring.{u1} R _inst_1))) S _inst_2) (OreLocalization.instNegOreLocalizationToMonoidToMonoidWithZeroToSemiring.{u1} R _inst_1 S _inst_2) (OreLocalization.oreDiv.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R (Ring.toSemiring.{u1} R _inst_1))) S _inst_2 r s)) (OreLocalization.oreDiv.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R (Ring.toSemiring.{u1} R _inst_1))) S _inst_2 (Neg.neg.{u1} R (Ring.toNeg.{u1} R _inst_1) r) s) Case conversion may be inaccurate. Consider using '#align ore_localization.neg_def OreLocalization.neg_defₓ'. -/ @[simp] protected theorem neg_def (r : R) (s : S) : -(r /ₒ s) = -r /ₒ s := rfl #align ore_localization.neg_def OreLocalization.neg_def /- warning: ore_localization.add_left_neg -> OreLocalization.add_left_neg is a dubious translation: lean 3 declaration is forall {R : Type.{u1}} [_inst_1 : Ring.{u1} R] {S : Submonoid.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (NonAssocRing.toNonAssocSemiring.{u1} R (Ring.toNonAssocRing.{u1} R _inst_1))))} [_inst_2 : OreLocalization.OreSet.{u1} R (Ring.toMonoid.{u1} R _inst_1) S] (x : OreLocalization.{u1} R (Ring.toMonoid.{u1} R _inst_1) S _inst_2), Eq.{succ u1} (OreLocalization.{u1} R (Ring.toMonoid.{u1} R _inst_1) S _inst_2) (HAdd.hAdd.{u1, u1, u1} (OreLocalization.{u1} R (Ring.toMonoid.{u1} R _inst_1) S _inst_2) (OreLocalization.{u1} R (Ring.toMonoid.{u1} R _inst_1) S _inst_2) (OreLocalization.{u1} R (Ring.toMonoid.{u1} R _inst_1) S _inst_2) (instHAdd.{u1} (OreLocalization.{u1} R (Ring.toMonoid.{u1} R _inst_1) S _inst_2) (OreLocalization.hasAdd.{u1} R (Ring.toSemiring.{u1} R _inst_1) S _inst_2)) (Neg.neg.{u1} (OreLocalization.{u1} R (Ring.toMonoid.{u1} R _inst_1) S _inst_2) (OreLocalization.hasNeg.{u1} R _inst_1 S _inst_2) x) x) (OfNat.ofNat.{u1} (OreLocalization.{u1} R (Ring.toMonoid.{u1} R _inst_1) S _inst_2) 0 (OfNat.mk.{u1} (OreLocalization.{u1} R (Ring.toMonoid.{u1} R _inst_1) S _inst_2) 0 (Zero.zero.{u1} (OreLocalization.{u1} R (Ring.toMonoid.{u1} R _inst_1) S _inst_2) (OreLocalization.hasZero.{u1} R (Ring.toSemiring.{u1} R _inst_1) S _inst_2)))) but is expected to have type forall {R : Type.{u1}} [_inst_1 : Ring.{u1} R] {S : Submonoid.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (NonAssocRing.toNonAssocSemiring.{u1} R (Ring.toNonAssocRing.{u1} R _inst_1))))} [_inst_2 : OreLocalization.OreSet.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R (Ring.toSemiring.{u1} R _inst_1))) S] (x : OreLocalization.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R (Ring.toSemiring.{u1} R _inst_1))) S _inst_2), Eq.{succ u1} (OreLocalization.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R (Ring.toSemiring.{u1} R _inst_1))) S _inst_2) (HAdd.hAdd.{u1, u1, u1} (OreLocalization.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R (Ring.toSemiring.{u1} R _inst_1))) S _inst_2) (OreLocalization.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R (Ring.toSemiring.{u1} R _inst_1))) S _inst_2) (OreLocalization.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R (Ring.toSemiring.{u1} R _inst_1))) S _inst_2) (instHAdd.{u1} (OreLocalization.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R (Ring.toSemiring.{u1} R _inst_1))) S _inst_2) (OreLocalization.instAddOreLocalizationToMonoidToMonoidWithZero.{u1} R (Ring.toSemiring.{u1} R _inst_1) S _inst_2)) (Neg.neg.{u1} (OreLocalization.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R (Ring.toSemiring.{u1} R _inst_1))) S _inst_2) (OreLocalization.instNegOreLocalizationToMonoidToMonoidWithZeroToSemiring.{u1} R _inst_1 S _inst_2) x) x) (OfNat.ofNat.{u1} (OreLocalization.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R (Ring.toSemiring.{u1} R _inst_1))) S _inst_2) 0 (Zero.toOfNat0.{u1} (OreLocalization.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R (Ring.toSemiring.{u1} R _inst_1))) S _inst_2) (OreLocalization.instZeroOreLocalizationToMonoidToMonoidWithZero.{u1} R (Ring.toSemiring.{u1} R _inst_1) S _inst_2))) Case conversion may be inaccurate. Consider using '#align ore_localization.add_left_neg OreLocalization.add_left_negₓ'. -/ protected theorem add_left_neg (x : R[S⁻¹]) : -x + x = 0 := by induction' x using OreLocalization.ind with r s <;> simp #align ore_localization.add_left_neg OreLocalization.add_left_neg instance : Ring R[S⁻¹] := { OreLocalization.semiring, OreLocalization.hasNeg with add_left_neg := OreLocalization.add_left_neg } open nonZeroDivisors /- warning: ore_localization.numerator_hom_inj -> OreLocalization.numeratorHom_inj is a dubious translation: lean 3 declaration is forall {R : Type.{u1}} [_inst_1 : Ring.{u1} R] {S : Submonoid.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (NonAssocRing.toNonAssocSemiring.{u1} R (Ring.toNonAssocRing.{u1} R _inst_1))))} [_inst_2 : OreLocalization.OreSet.{u1} R (Ring.toMonoid.{u1} R _inst_1) S], (LE.le.{u1} (Submonoid.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (NonAssocRing.toNonAssocSemiring.{u1} R (Ring.toNonAssocRing.{u1} R _inst_1))))) (Preorder.toLE.{u1} (Submonoid.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (NonAssocRing.toNonAssocSemiring.{u1} R (Ring.toNonAssocRing.{u1} R _inst_1))))) (PartialOrder.toPreorder.{u1} (Submonoid.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (NonAssocRing.toNonAssocSemiring.{u1} R (Ring.toNonAssocRing.{u1} R _inst_1))))) (SetLike.partialOrder.{u1, u1} (Submonoid.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (NonAssocRing.toNonAssocSemiring.{u1} R (Ring.toNonAssocRing.{u1} R _inst_1))))) R (Submonoid.setLike.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (NonAssocRing.toNonAssocSemiring.{u1} R (Ring.toNonAssocRing.{u1} R _inst_1)))))))) S (nonZeroDivisors.{u1} R (Semiring.toMonoidWithZero.{u1} R (Ring.toSemiring.{u1} R _inst_1)))) -> (Function.Injective.{succ u1, succ u1} R (OreLocalization.{u1} R (Ring.toMonoid.{u1} R _inst_1) S _inst_2) (coeFn.{succ u1, succ u1} (MonoidHom.{u1, u1} R (OreLocalization.{u1} R (Ring.toMonoid.{u1} R _inst_1) S _inst_2) (Monoid.toMulOneClass.{u1} R (Ring.toMonoid.{u1} R _inst_1)) (Monoid.toMulOneClass.{u1} (OreLocalization.{u1} R (Ring.toMonoid.{u1} R _inst_1) S _inst_2) (OreLocalization.monoid.{u1} R (Ring.toMonoid.{u1} R _inst_1) S _inst_2))) (fun (_x : MonoidHom.{u1, u1} R (OreLocalization.{u1} R (Ring.toMonoid.{u1} R _inst_1) S _inst_2) (Monoid.toMulOneClass.{u1} R (Ring.toMonoid.{u1} R _inst_1)) (Monoid.toMulOneClass.{u1} (OreLocalization.{u1} R (Ring.toMonoid.{u1} R _inst_1) S _inst_2) (OreLocalization.monoid.{u1} R (Ring.toMonoid.{u1} R _inst_1) S _inst_2))) => R -> (OreLocalization.{u1} R (Ring.toMonoid.{u1} R _inst_1) S _inst_2)) (MonoidHom.hasCoeToFun.{u1, u1} R (OreLocalization.{u1} R (Ring.toMonoid.{u1} R _inst_1) S _inst_2) (Monoid.toMulOneClass.{u1} R (Ring.toMonoid.{u1} R _inst_1)) (Monoid.toMulOneClass.{u1} (OreLocalization.{u1} R (Ring.toMonoid.{u1} R _inst_1) S _inst_2) (OreLocalization.monoid.{u1} R (Ring.toMonoid.{u1} R _inst_1) S _inst_2))) (OreLocalization.numeratorHom.{u1} R (Ring.toMonoid.{u1} R _inst_1) S _inst_2))) but is expected to have type forall {R : Type.{u1}} [_inst_1 : Ring.{u1} R] {S : Submonoid.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (NonAssocRing.toNonAssocSemiring.{u1} R (Ring.toNonAssocRing.{u1} R _inst_1))))} [_inst_2 : OreLocalization.OreSet.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R (Ring.toSemiring.{u1} R _inst_1))) S], (LE.le.{u1} (Submonoid.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (NonAssocRing.toNonAssocSemiring.{u1} R (Ring.toNonAssocRing.{u1} R _inst_1))))) (Preorder.toLE.{u1} (Submonoid.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (NonAssocRing.toNonAssocSemiring.{u1} R (Ring.toNonAssocRing.{u1} R _inst_1))))) (PartialOrder.toPreorder.{u1} (Submonoid.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (NonAssocRing.toNonAssocSemiring.{u1} R (Ring.toNonAssocRing.{u1} R _inst_1))))) (CompleteSemilatticeInf.toPartialOrder.{u1} (Submonoid.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (NonAssocRing.toNonAssocSemiring.{u1} R (Ring.toNonAssocRing.{u1} R _inst_1))))) (CompleteLattice.toCompleteSemilatticeInf.{u1} (Submonoid.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (NonAssocRing.toNonAssocSemiring.{u1} R (Ring.toNonAssocRing.{u1} R _inst_1))))) (Submonoid.instCompleteLatticeSubmonoid.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (NonAssocRing.toNonAssocSemiring.{u1} R (Ring.toNonAssocRing.{u1} R _inst_1))))))))) S (nonZeroDivisors.{u1} R (Semiring.toMonoidWithZero.{u1} R (Ring.toSemiring.{u1} R _inst_1)))) -> (Function.Injective.{succ u1, succ u1} R (OreLocalization.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R (Ring.toSemiring.{u1} R _inst_1))) S _inst_2) (FunLike.coe.{succ u1, succ u1, succ u1} (MonoidHom.{u1, u1} R (OreLocalization.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R (Ring.toSemiring.{u1} R _inst_1))) S _inst_2) (Monoid.toMulOneClass.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R (Ring.toSemiring.{u1} R _inst_1)))) (Monoid.toMulOneClass.{u1} (OreLocalization.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R (Ring.toSemiring.{u1} R _inst_1))) S _inst_2) (OreLocalization.instMonoidOreLocalization.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R (Ring.toSemiring.{u1} R _inst_1))) S _inst_2))) R (fun (_x : R) => (fun ([email protected]._hyg.2391 : R) => OreLocalization.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R (Ring.toSemiring.{u1} R _inst_1))) S _inst_2) _x) (MulHomClass.toFunLike.{u1, u1, u1} (MonoidHom.{u1, u1} R (OreLocalization.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R (Ring.toSemiring.{u1} R _inst_1))) S _inst_2) (Monoid.toMulOneClass.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R (Ring.toSemiring.{u1} R _inst_1)))) (Monoid.toMulOneClass.{u1} (OreLocalization.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R (Ring.toSemiring.{u1} R _inst_1))) S _inst_2) (OreLocalization.instMonoidOreLocalization.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R (Ring.toSemiring.{u1} R _inst_1))) S _inst_2))) R (OreLocalization.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R (Ring.toSemiring.{u1} R _inst_1))) S _inst_2) (MulOneClass.toMul.{u1} R (Monoid.toMulOneClass.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R (Ring.toSemiring.{u1} R _inst_1))))) (MulOneClass.toMul.{u1} (OreLocalization.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R (Ring.toSemiring.{u1} R _inst_1))) S _inst_2) (Monoid.toMulOneClass.{u1} (OreLocalization.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R (Ring.toSemiring.{u1} R _inst_1))) S _inst_2) (OreLocalization.instMonoidOreLocalization.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R (Ring.toSemiring.{u1} R _inst_1))) S _inst_2))) (MonoidHomClass.toMulHomClass.{u1, u1, u1} (MonoidHom.{u1, u1} R (OreLocalization.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R (Ring.toSemiring.{u1} R _inst_1))) S _inst_2) (Monoid.toMulOneClass.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R (Ring.toSemiring.{u1} R _inst_1)))) (Monoid.toMulOneClass.{u1} (OreLocalization.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R (Ring.toSemiring.{u1} R _inst_1))) S _inst_2) (OreLocalization.instMonoidOreLocalization.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R (Ring.toSemiring.{u1} R _inst_1))) S _inst_2))) R (OreLocalization.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R (Ring.toSemiring.{u1} R _inst_1))) S _inst_2) (Monoid.toMulOneClass.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R (Ring.toSemiring.{u1} R _inst_1)))) (Monoid.toMulOneClass.{u1} (OreLocalization.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R (Ring.toSemiring.{u1} R _inst_1))) S _inst_2) (OreLocalization.instMonoidOreLocalization.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R (Ring.toSemiring.{u1} R _inst_1))) S _inst_2)) (MonoidHom.monoidHomClass.{u1, u1} R (OreLocalization.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R (Ring.toSemiring.{u1} R _inst_1))) S _inst_2) (Monoid.toMulOneClass.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R (Ring.toSemiring.{u1} R _inst_1)))) (Monoid.toMulOneClass.{u1} (OreLocalization.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R (Ring.toSemiring.{u1} R _inst_1))) S _inst_2) (OreLocalization.instMonoidOreLocalization.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R (Ring.toSemiring.{u1} R _inst_1))) S _inst_2))))) (OreLocalization.numeratorHom.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R (Ring.toSemiring.{u1} R _inst_1))) S _inst_2))) Case conversion may be inaccurate. Consider using '#align ore_localization.numerator_hom_inj OreLocalization.numeratorHom_injₓ'. -/ theorem numeratorHom_inj (hS : S ≤ R⁰) : Function.Injective (numeratorHom : R → R[S⁻¹]) := fun r₁ r₂ h => by rw [numerator_hom_apply, numerator_hom_apply, ore_div_eq_iff] at h rcases h with ⟨u, v, h₁, h₂⟩ simp only [S.coe_one, one_mul] at h₂ rwa [← h₂, mul_cancel_right_mem_nonZeroDivisors (hS (SetLike.coe_mem u)), eq_comm] at h₁ #align ore_localization.numerator_hom_inj OreLocalization.numeratorHom_inj /- warning: ore_localization.nontrivial_of_non_zero_divisors -> OreLocalization.nontrivial_of_nonZeroDivisors is a dubious translation: lean 3 declaration is forall {R : Type.{u1}} [_inst_1 : Ring.{u1} R] {S : Submonoid.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (NonAssocRing.toNonAssocSemiring.{u1} R (Ring.toNonAssocRing.{u1} R _inst_1))))} [_inst_2 : OreLocalization.OreSet.{u1} R (Ring.toMonoid.{u1} R _inst_1) S] [_inst_3 : Nontrivial.{u1} R], (LE.le.{u1} (Submonoid.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (NonAssocRing.toNonAssocSemiring.{u1} R (Ring.toNonAssocRing.{u1} R _inst_1))))) (Preorder.toLE.{u1} (Submonoid.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (NonAssocRing.toNonAssocSemiring.{u1} R (Ring.toNonAssocRing.{u1} R _inst_1))))) (PartialOrder.toPreorder.{u1} (Submonoid.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (NonAssocRing.toNonAssocSemiring.{u1} R (Ring.toNonAssocRing.{u1} R _inst_1))))) (SetLike.partialOrder.{u1, u1} (Submonoid.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (NonAssocRing.toNonAssocSemiring.{u1} R (Ring.toNonAssocRing.{u1} R _inst_1))))) R (Submonoid.setLike.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (NonAssocRing.toNonAssocSemiring.{u1} R (Ring.toNonAssocRing.{u1} R _inst_1)))))))) S (nonZeroDivisors.{u1} R (Semiring.toMonoidWithZero.{u1} R (Ring.toSemiring.{u1} R _inst_1)))) -> (Nontrivial.{u1} (OreLocalization.{u1} R (Ring.toMonoid.{u1} R _inst_1) S _inst_2)) but is expected to have type forall {R : Type.{u1}} [_inst_1 : Ring.{u1} R] {S : Submonoid.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (NonAssocRing.toNonAssocSemiring.{u1} R (Ring.toNonAssocRing.{u1} R _inst_1))))} [_inst_2 : OreLocalization.OreSet.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R (Ring.toSemiring.{u1} R _inst_1))) S] [_inst_3 : Nontrivial.{u1} R], (LE.le.{u1} (Submonoid.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (NonAssocRing.toNonAssocSemiring.{u1} R (Ring.toNonAssocRing.{u1} R _inst_1))))) (Preorder.toLE.{u1} (Submonoid.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (NonAssocRing.toNonAssocSemiring.{u1} R (Ring.toNonAssocRing.{u1} R _inst_1))))) (PartialOrder.toPreorder.{u1} (Submonoid.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (NonAssocRing.toNonAssocSemiring.{u1} R (Ring.toNonAssocRing.{u1} R _inst_1))))) (CompleteSemilatticeInf.toPartialOrder.{u1} (Submonoid.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (NonAssocRing.toNonAssocSemiring.{u1} R (Ring.toNonAssocRing.{u1} R _inst_1))))) (CompleteLattice.toCompleteSemilatticeInf.{u1} (Submonoid.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (NonAssocRing.toNonAssocSemiring.{u1} R (Ring.toNonAssocRing.{u1} R _inst_1))))) (Submonoid.instCompleteLatticeSubmonoid.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (NonAssocRing.toNonAssocSemiring.{u1} R (Ring.toNonAssocRing.{u1} R _inst_1))))))))) S (nonZeroDivisors.{u1} R (Semiring.toMonoidWithZero.{u1} R (Ring.toSemiring.{u1} R _inst_1)))) -> (Nontrivial.{u1} (OreLocalization.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R (Ring.toSemiring.{u1} R _inst_1))) S _inst_2)) Case conversion may be inaccurate. Consider using '#align ore_localization.nontrivial_of_non_zero_divisors OreLocalization.nontrivial_of_nonZeroDivisorsₓ'. -/ theorem nontrivial_of_nonZeroDivisors [Nontrivial R] (hS : S ≤ R⁰) : Nontrivial R[S⁻¹] := ⟨⟨0, 1, fun h => by rw [OreLocalization.one_def, OreLocalization.zero_def] at h apply nonZeroDivisors.coe_ne_zero 1 (numerator_hom_inj hS h).symm⟩⟩ #align ore_localization.nontrivial_of_non_zero_divisors OreLocalization.nontrivial_of_nonZeroDivisors end Ring section DivisionRing open nonZeroDivisors open Classical variable {R : Type _} [Ring R] [Nontrivial R] [OreSet R⁰] instance : Nontrivial R[R⁰⁻¹] := nontrivial_of_nonZeroDivisors (refl R⁰) variable [NoZeroDivisors R] noncomputable section /- warning: ore_localization.inv -> OreLocalization.inv is a dubious translation: lean 3 declaration is forall {R : Type.{u1}} [_inst_1 : Ring.{u1} R] [_inst_2 : Nontrivial.{u1} R] [_inst_3 : OreLocalization.OreSet.{u1} R (Ring.toMonoid.{u1} R _inst_1) (nonZeroDivisors.{u1} R (Semiring.toMonoidWithZero.{u1} R (Ring.toSemiring.{u1} R _inst_1)))] [_inst_4 : NoZeroDivisors.{u1} R (Distrib.toHasMul.{u1} R (Ring.toDistrib.{u1} R _inst_1)) (MulZeroClass.toHasZero.{u1} R (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} R (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} R (NonAssocRing.toNonUnitalNonAssocRing.{u1} R (Ring.toNonAssocRing.{u1} R _inst_1)))))], (OreLocalization.{u1} R (Ring.toMonoid.{u1} R _inst_1) (nonZeroDivisors.{u1} R (Semiring.toMonoidWithZero.{u1} R (Ring.toSemiring.{u1} R _inst_1))) _inst_3) -> (OreLocalization.{u1} R (Ring.toMonoid.{u1} R _inst_1) (nonZeroDivisors.{u1} R (Semiring.toMonoidWithZero.{u1} R (Ring.toSemiring.{u1} R _inst_1))) _inst_3) but is expected to have type forall {R : Type.{u1}} [_inst_1 : Ring.{u1} R] [_inst_2 : Nontrivial.{u1} R] [_inst_3 : OreLocalization.OreSet.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R (Ring.toSemiring.{u1} R _inst_1))) (nonZeroDivisors.{u1} R (Semiring.toMonoidWithZero.{u1} R (Ring.toSemiring.{u1} R _inst_1)))] [_inst_4 : NoZeroDivisors.{u1} R (NonUnitalNonAssocRing.toMul.{u1} R (NonAssocRing.toNonUnitalNonAssocRing.{u1} R (Ring.toNonAssocRing.{u1} R _inst_1))) (MonoidWithZero.toZero.{u1} R (Semiring.toMonoidWithZero.{u1} R (Ring.toSemiring.{u1} R _inst_1)))], (OreLocalization.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R (Ring.toSemiring.{u1} R _inst_1))) (nonZeroDivisors.{u1} R (Semiring.toMonoidWithZero.{u1} R (Ring.toSemiring.{u1} R _inst_1))) _inst_3) -> (OreLocalization.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R (Ring.toSemiring.{u1} R _inst_1))) (nonZeroDivisors.{u1} R (Semiring.toMonoidWithZero.{u1} R (Ring.toSemiring.{u1} R _inst_1))) _inst_3) Case conversion may be inaccurate. Consider using '#align ore_localization.inv OreLocalization.invₓ'. -/ /-- The inversion of Ore fractions for a ring without zero divisors, satisying `0⁻¹ = 0` and `(r /ₒ r')⁻¹ = r' /ₒ r` for `r ≠ 0`. -/ protected def inv : R[R⁰⁻¹] → R[R⁰⁻¹] := liftExpand (fun r s => if hr : r = (0 : R) then (0 : R[R⁰⁻¹]) else s /ₒ ⟨r, fun _ => eq_zero_of_ne_zero_of_mul_right_eq_zero hr⟩) (by intro r t s hst by_cases hr : r = 0 · simp [hr] · by_cases ht : t = 0 · exfalso apply nonZeroDivisors.coe_ne_zero ⟨_, hst⟩ simp [ht, MulZeroClass.mul_zero] · simp only [hr, ht, [anonymous], dif_neg, not_false_iff, or_self_iff, mul_eq_zero] apply OreLocalization.expand) #align ore_localization.inv OreLocalization.inv instance : Inv R[R⁰⁻¹] := ⟨OreLocalization.inv⟩ /- warning: ore_localization.inv_def -> OreLocalization.inv_def is a dubious translation: lean 3 declaration is forall {R : Type.{u1}} [_inst_1 : Ring.{u1} R] [_inst_2 : Nontrivial.{u1} R] [_inst_3 : OreLocalization.OreSet.{u1} R (Ring.toMonoid.{u1} R _inst_1) (nonZeroDivisors.{u1} R (Semiring.toMonoidWithZero.{u1} R (Ring.toSemiring.{u1} R _inst_1)))] [_inst_4 : NoZeroDivisors.{u1} R (Distrib.toHasMul.{u1} R (Ring.toDistrib.{u1} R _inst_1)) (MulZeroClass.toHasZero.{u1} R (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} R (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} R (NonAssocRing.toNonUnitalNonAssocRing.{u1} R (Ring.toNonAssocRing.{u1} R _inst_1)))))] {r : R} {s : coeSort.{succ u1, succ (succ u1)} (Submonoid.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (MonoidWithZero.toMulZeroOneClass.{u1} R (Semiring.toMonoidWithZero.{u1} R (Ring.toSemiring.{u1} R _inst_1))))) Type.{u1} (SetLike.hasCoeToSort.{u1, u1} (Submonoid.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (MonoidWithZero.toMulZeroOneClass.{u1} R (Semiring.toMonoidWithZero.{u1} R (Ring.toSemiring.{u1} R _inst_1))))) R (Submonoid.setLike.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (MonoidWithZero.toMulZeroOneClass.{u1} R (Semiring.toMonoidWithZero.{u1} R (Ring.toSemiring.{u1} R _inst_1)))))) (nonZeroDivisors.{u1} R (Semiring.toMonoidWithZero.{u1} R (Ring.toSemiring.{u1} R _inst_1)))}, Eq.{succ u1} (OreLocalization.{u1} R (Ring.toMonoid.{u1} R _inst_1) (nonZeroDivisors.{u1} R (Semiring.toMonoidWithZero.{u1} R (Ring.toSemiring.{u1} R _inst_1))) _inst_3) (Inv.inv.{u1} (OreLocalization.{u1} R (Ring.toMonoid.{u1} R _inst_1) (nonZeroDivisors.{u1} R (Semiring.toMonoidWithZero.{u1} R (Ring.toSemiring.{u1} R _inst_1))) _inst_3) (OreLocalization.hasInv.{u1} R _inst_1 _inst_2 _inst_3 _inst_4) (OreLocalization.oreDiv.{u1} R (Ring.toMonoid.{u1} R _inst_1) (nonZeroDivisors.{u1} R (Semiring.toMonoidWithZero.{u1} R (Ring.toSemiring.{u1} R _inst_1))) _inst_3 r s)) (dite.{succ u1} (OreLocalization.{u1} R (Ring.toMonoid.{u1} R _inst_1) (nonZeroDivisors.{u1} R (Semiring.toMonoidWithZero.{u1} R (Ring.toSemiring.{u1} R _inst_1))) _inst_3) (Eq.{succ u1} R r (OfNat.ofNat.{u1} R 0 (OfNat.mk.{u1} R 0 (Zero.zero.{u1} R (MulZeroClass.toHasZero.{u1} R (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} R (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} R (NonAssocRing.toNonUnitalNonAssocRing.{u1} R (Ring.toNonAssocRing.{u1} R _inst_1))))))))) (Classical.propDecidable (Eq.{succ u1} R r (OfNat.ofNat.{u1} R 0 (OfNat.mk.{u1} R 0 (Zero.zero.{u1} R (MulZeroClass.toHasZero.{u1} R (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} R (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} R (NonAssocRing.toNonUnitalNonAssocRing.{u1} R (Ring.toNonAssocRing.{u1} R _inst_1)))))))))) (fun (hr : Eq.{succ u1} R r (OfNat.ofNat.{u1} R 0 (OfNat.mk.{u1} R 0 (Zero.zero.{u1} R (MulZeroClass.toHasZero.{u1} R (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} R (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} R (NonAssocRing.toNonUnitalNonAssocRing.{u1} R (Ring.toNonAssocRing.{u1} R _inst_1))))))))) => OfNat.ofNat.{u1} (OreLocalization.{u1} R (Ring.toMonoid.{u1} R _inst_1) (nonZeroDivisors.{u1} R (Semiring.toMonoidWithZero.{u1} R (Ring.toSemiring.{u1} R _inst_1))) _inst_3) 0 (OfNat.mk.{u1} (OreLocalization.{u1} R (Ring.toMonoid.{u1} R _inst_1) (nonZeroDivisors.{u1} R (Semiring.toMonoidWithZero.{u1} R (Ring.toSemiring.{u1} R _inst_1))) _inst_3) 0 (Zero.zero.{u1} (OreLocalization.{u1} R (Ring.toMonoid.{u1} R _inst_1) (nonZeroDivisors.{u1} R (Semiring.toMonoidWithZero.{u1} R (Ring.toSemiring.{u1} R _inst_1))) _inst_3) (OreLocalization.hasZero.{u1} R (Ring.toSemiring.{u1} R _inst_1) (nonZeroDivisors.{u1} R (Semiring.toMonoidWithZero.{u1} R (Ring.toSemiring.{u1} R _inst_1))) _inst_3)))) (fun (hr : Not (Eq.{succ u1} R r (OfNat.ofNat.{u1} R 0 (OfNat.mk.{u1} R 0 (Zero.zero.{u1} R (MulZeroClass.toHasZero.{u1} R (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} R (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} R (NonAssocRing.toNonUnitalNonAssocRing.{u1} R (Ring.toNonAssocRing.{u1} R _inst_1)))))))))) => OreLocalization.oreDiv.{u1} R (Ring.toMonoid.{u1} R _inst_1) (nonZeroDivisors.{u1} R (Semiring.toMonoidWithZero.{u1} R (Ring.toSemiring.{u1} R _inst_1))) _inst_3 ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) (coeSort.{succ u1, succ (succ u1)} (Submonoid.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (MonoidWithZero.toMulZeroOneClass.{u1} R (Semiring.toMonoidWithZero.{u1} R (Ring.toSemiring.{u1} R _inst_1))))) Type.{u1} (SetLike.hasCoeToSort.{u1, u1} (Submonoid.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (MonoidWithZero.toMulZeroOneClass.{u1} R (Semiring.toMonoidWithZero.{u1} R (Ring.toSemiring.{u1} R _inst_1))))) R (Submonoid.setLike.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (MonoidWithZero.toMulZeroOneClass.{u1} R (Semiring.toMonoidWithZero.{u1} R (Ring.toSemiring.{u1} R _inst_1)))))) (nonZeroDivisors.{u1} R (Semiring.toMonoidWithZero.{u1} R (Ring.toSemiring.{u1} R _inst_1)))) R (HasLiftT.mk.{succ u1, succ u1} (coeSort.{succ u1, succ (succ u1)} (Submonoid.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (MonoidWithZero.toMulZeroOneClass.{u1} R (Semiring.toMonoidWithZero.{u1} R (Ring.toSemiring.{u1} R _inst_1))))) Type.{u1} (SetLike.hasCoeToSort.{u1, u1} (Submonoid.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (MonoidWithZero.toMulZeroOneClass.{u1} R (Semiring.toMonoidWithZero.{u1} R (Ring.toSemiring.{u1} R _inst_1))))) R (Submonoid.setLike.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (MonoidWithZero.toMulZeroOneClass.{u1} R (Semiring.toMonoidWithZero.{u1} R (Ring.toSemiring.{u1} R _inst_1)))))) (nonZeroDivisors.{u1} R (Semiring.toMonoidWithZero.{u1} R (Ring.toSemiring.{u1} R _inst_1)))) R (CoeTCₓ.coe.{succ u1, succ u1} (coeSort.{succ u1, succ (succ u1)} (Submonoid.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (MonoidWithZero.toMulZeroOneClass.{u1} R (Semiring.toMonoidWithZero.{u1} R (Ring.toSemiring.{u1} R _inst_1))))) Type.{u1} (SetLike.hasCoeToSort.{u1, u1} (Submonoid.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (MonoidWithZero.toMulZeroOneClass.{u1} R (Semiring.toMonoidWithZero.{u1} R (Ring.toSemiring.{u1} R _inst_1))))) R (Submonoid.setLike.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (MonoidWithZero.toMulZeroOneClass.{u1} R (Semiring.toMonoidWithZero.{u1} R (Ring.toSemiring.{u1} R _inst_1)))))) (nonZeroDivisors.{u1} R (Semiring.toMonoidWithZero.{u1} R (Ring.toSemiring.{u1} R _inst_1)))) R (coeBase.{succ u1, succ u1} (coeSort.{succ u1, succ (succ u1)} (Submonoid.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (MonoidWithZero.toMulZeroOneClass.{u1} R (Semiring.toMonoidWithZero.{u1} R (Ring.toSemiring.{u1} R _inst_1))))) Type.{u1} (SetLike.hasCoeToSort.{u1, u1} (Submonoid.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (MonoidWithZero.toMulZeroOneClass.{u1} R (Semiring.toMonoidWithZero.{u1} R (Ring.toSemiring.{u1} R _inst_1))))) R (Submonoid.setLike.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (MonoidWithZero.toMulZeroOneClass.{u1} R (Semiring.toMonoidWithZero.{u1} R (Ring.toSemiring.{u1} R _inst_1)))))) (nonZeroDivisors.{u1} R (Semiring.toMonoidWithZero.{u1} R (Ring.toSemiring.{u1} R _inst_1)))) R (coeSubtype.{succ u1} R (fun (x : R) => Membership.Mem.{u1, u1} R (Submonoid.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (MonoidWithZero.toMulZeroOneClass.{u1} R (Semiring.toMonoidWithZero.{u1} R (Ring.toSemiring.{u1} R _inst_1))))) (SetLike.hasMem.{u1, u1} (Submonoid.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (MonoidWithZero.toMulZeroOneClass.{u1} R (Semiring.toMonoidWithZero.{u1} R (Ring.toSemiring.{u1} R _inst_1))))) R (Submonoid.setLike.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (MonoidWithZero.toMulZeroOneClass.{u1} R (Semiring.toMonoidWithZero.{u1} R (Ring.toSemiring.{u1} R _inst_1)))))) x (nonZeroDivisors.{u1} R (Semiring.toMonoidWithZero.{u1} R (Ring.toSemiring.{u1} R _inst_1)))))))) s) (Subtype.mk.{succ u1} R (fun (x : R) => Membership.Mem.{u1, u1} R (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R (Ring.toMonoid.{u1} R _inst_1))) (SetLike.hasMem.{u1, u1} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R (Ring.toMonoid.{u1} R _inst_1))) R (Submonoid.setLike.{u1} R (Monoid.toMulOneClass.{u1} R (Ring.toMonoid.{u1} R _inst_1)))) x (nonZeroDivisors.{u1} R (Semiring.toMonoidWithZero.{u1} R (Ring.toSemiring.{u1} R _inst_1)))) r (fun (_x : R) => eq_zero_of_ne_zero_of_mul_right_eq_zero.{u1} R (Semiring.toMonoidWithZero.{u1} R (Ring.toSemiring.{u1} R _inst_1)) _inst_4 r _x hr)))) but is expected to have type forall {R : Type.{u1}} [_inst_1 : Ring.{u1} R] [_inst_2 : Nontrivial.{u1} R] [_inst_3 : OreLocalization.OreSet.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R (Ring.toSemiring.{u1} R _inst_1))) (nonZeroDivisors.{u1} R (Semiring.toMonoidWithZero.{u1} R (Ring.toSemiring.{u1} R _inst_1)))] [_inst_4 : NoZeroDivisors.{u1} R (NonUnitalNonAssocRing.toMul.{u1} R (NonAssocRing.toNonUnitalNonAssocRing.{u1} R (Ring.toNonAssocRing.{u1} R _inst_1))) (MonoidWithZero.toZero.{u1} R (Semiring.toMonoidWithZero.{u1} R (Ring.toSemiring.{u1} R _inst_1)))] {r : R} {s : Subtype.{succ u1} R (fun (x : R) => Membership.mem.{u1, u1} R (Submonoid.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (MonoidWithZero.toMulZeroOneClass.{u1} R (Semiring.toMonoidWithZero.{u1} R (Ring.toSemiring.{u1} R _inst_1))))) (SetLike.instMembership.{u1, u1} (Submonoid.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (MonoidWithZero.toMulZeroOneClass.{u1} R (Semiring.toMonoidWithZero.{u1} R (Ring.toSemiring.{u1} R _inst_1))))) R (Submonoid.instSetLikeSubmonoid.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (MonoidWithZero.toMulZeroOneClass.{u1} R (Semiring.toMonoidWithZero.{u1} R (Ring.toSemiring.{u1} R _inst_1)))))) x (nonZeroDivisors.{u1} R (Semiring.toMonoidWithZero.{u1} R (Ring.toSemiring.{u1} R _inst_1))))}, Eq.{succ u1} (OreLocalization.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R (Ring.toSemiring.{u1} R _inst_1))) (nonZeroDivisors.{u1} R (Semiring.toMonoidWithZero.{u1} R (Ring.toSemiring.{u1} R _inst_1))) _inst_3) (Inv.inv.{u1} (OreLocalization.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R (Ring.toSemiring.{u1} R _inst_1))) (nonZeroDivisors.{u1} R (Semiring.toMonoidWithZero.{u1} R (Ring.toSemiring.{u1} R _inst_1))) _inst_3) (OreLocalization.inv'.{u1} R _inst_1 _inst_2 _inst_3 _inst_4) (OreLocalization.oreDiv.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R (Ring.toSemiring.{u1} R _inst_1))) (nonZeroDivisors.{u1} R (Semiring.toMonoidWithZero.{u1} R (Ring.toSemiring.{u1} R _inst_1))) _inst_3 r s)) (dite.{succ u1} (OreLocalization.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R (Ring.toSemiring.{u1} R _inst_1))) (nonZeroDivisors.{u1} R (Semiring.toMonoidWithZero.{u1} R (Ring.toSemiring.{u1} R _inst_1))) _inst_3) (Eq.{succ u1} R r (OfNat.ofNat.{u1} R 0 (Zero.toOfNat0.{u1} R (MonoidWithZero.toZero.{u1} R (Semiring.toMonoidWithZero.{u1} R (Ring.toSemiring.{u1} R _inst_1)))))) (Classical.propDecidable (Eq.{succ u1} R r (OfNat.ofNat.{u1} R 0 (Zero.toOfNat0.{u1} R (MonoidWithZero.toZero.{u1} R (Semiring.toMonoidWithZero.{u1} R (Ring.toSemiring.{u1} R _inst_1))))))) (fun (hr : Eq.{succ u1} R r (OfNat.ofNat.{u1} R 0 (Zero.toOfNat0.{u1} R (MonoidWithZero.toZero.{u1} R (Semiring.toMonoidWithZero.{u1} R (Ring.toSemiring.{u1} R _inst_1)))))) => OfNat.ofNat.{u1} (OreLocalization.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R (Ring.toSemiring.{u1} R _inst_1))) (nonZeroDivisors.{u1} R (Semiring.toMonoidWithZero.{u1} R (Ring.toSemiring.{u1} R _inst_1))) _inst_3) 0 (Zero.toOfNat0.{u1} (OreLocalization.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R (Ring.toSemiring.{u1} R _inst_1))) (nonZeroDivisors.{u1} R (Semiring.toMonoidWithZero.{u1} R (Ring.toSemiring.{u1} R _inst_1))) _inst_3) (OreLocalization.instZeroOreLocalizationToMonoidToMonoidWithZero.{u1} R (Ring.toSemiring.{u1} R _inst_1) (nonZeroDivisors.{u1} R (Semiring.toMonoidWithZero.{u1} R (Ring.toSemiring.{u1} R _inst_1))) _inst_3))) (fun (hr : Not (Eq.{succ u1} R r (OfNat.ofNat.{u1} R 0 (Zero.toOfNat0.{u1} R (MonoidWithZero.toZero.{u1} R (Semiring.toMonoidWithZero.{u1} R (Ring.toSemiring.{u1} R _inst_1))))))) => OreLocalization.oreDiv.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R (Ring.toSemiring.{u1} R _inst_1))) (nonZeroDivisors.{u1} R (Semiring.toMonoidWithZero.{u1} R (Ring.toSemiring.{u1} R _inst_1))) _inst_3 (Subtype.val.{succ u1} R (fun (x : R) => Membership.mem.{u1, u1} R (Set.{u1} R) (Set.instMembershipSet.{u1} R) x (SetLike.coe.{u1, u1} (Submonoid.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (MonoidWithZero.toMulZeroOneClass.{u1} R (Semiring.toMonoidWithZero.{u1} R (Ring.toSemiring.{u1} R _inst_1))))) R (Submonoid.instSetLikeSubmonoid.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (MonoidWithZero.toMulZeroOneClass.{u1} R (Semiring.toMonoidWithZero.{u1} R (Ring.toSemiring.{u1} R _inst_1))))) (nonZeroDivisors.{u1} R (Semiring.toMonoidWithZero.{u1} R (Ring.toSemiring.{u1} R _inst_1))))) s) (Subtype.mk.{succ u1} R (fun (x : R) => Membership.mem.{u1, u1} R (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R (Ring.toSemiring.{u1} R _inst_1))))) (SetLike.instMembership.{u1, u1} (Submonoid.{u1} R (Monoid.toMulOneClass.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R (Ring.toSemiring.{u1} R _inst_1))))) R (Submonoid.instSetLikeSubmonoid.{u1} R (Monoid.toMulOneClass.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R (Ring.toSemiring.{u1} R _inst_1)))))) x (nonZeroDivisors.{u1} R (Semiring.toMonoidWithZero.{u1} R (Ring.toSemiring.{u1} R _inst_1)))) r (fun (_x : R) => eq_zero_of_ne_zero_of_mul_right_eq_zero.{u1} R (Semiring.toMonoidWithZero.{u1} R (Ring.toSemiring.{u1} R _inst_1)) _inst_4 r _x hr)))) Case conversion may be inaccurate. Consider using '#align ore_localization.inv_def OreLocalization.inv_defₓ'. -/ protected theorem inv_def {r : R} {s : R⁰} : (r /ₒ s)⁻¹ = if hr : r = (0 : R) then (0 : R[R⁰⁻¹]) else s /ₒ ⟨r, fun _ => eq_zero_of_ne_zero_of_mul_right_eq_zero hr⟩ := rfl #align ore_localization.inv_def OreLocalization.inv_def /- warning: ore_localization.mul_inv_cancel -> OreLocalization.mul_inv_cancel is a dubious translation: lean 3 declaration is forall {R : Type.{u1}} [_inst_1 : Ring.{u1} R] [_inst_2 : Nontrivial.{u1} R] [_inst_3 : OreLocalization.OreSet.{u1} R (Ring.toMonoid.{u1} R _inst_1) (nonZeroDivisors.{u1} R (Semiring.toMonoidWithZero.{u1} R (Ring.toSemiring.{u1} R _inst_1)))] [_inst_4 : NoZeroDivisors.{u1} R (Distrib.toHasMul.{u1} R (Ring.toDistrib.{u1} R _inst_1)) (MulZeroClass.toHasZero.{u1} R (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} R (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} R (NonAssocRing.toNonUnitalNonAssocRing.{u1} R (Ring.toNonAssocRing.{u1} R _inst_1)))))] (x : OreLocalization.{u1} R (Ring.toMonoid.{u1} R _inst_1) (nonZeroDivisors.{u1} R (Semiring.toMonoidWithZero.{u1} R (Ring.toSemiring.{u1} R _inst_1))) _inst_3), (Ne.{succ u1} (OreLocalization.{u1} R (Ring.toMonoid.{u1} R _inst_1) (nonZeroDivisors.{u1} R (Semiring.toMonoidWithZero.{u1} R (Ring.toSemiring.{u1} R _inst_1))) _inst_3) x (OfNat.ofNat.{u1} (OreLocalization.{u1} R (Ring.toMonoid.{u1} R _inst_1) (nonZeroDivisors.{u1} R (Semiring.toMonoidWithZero.{u1} R (Ring.toSemiring.{u1} R _inst_1))) _inst_3) 0 (OfNat.mk.{u1} (OreLocalization.{u1} R (Ring.toMonoid.{u1} R _inst_1) (nonZeroDivisors.{u1} R (Semiring.toMonoidWithZero.{u1} R (Ring.toSemiring.{u1} R _inst_1))) _inst_3) 0 (Zero.zero.{u1} (OreLocalization.{u1} R (Ring.toMonoid.{u1} R _inst_1) (nonZeroDivisors.{u1} R (Semiring.toMonoidWithZero.{u1} R (Ring.toSemiring.{u1} R _inst_1))) _inst_3) (OreLocalization.hasZero.{u1} R (Ring.toSemiring.{u1} R _inst_1) (nonZeroDivisors.{u1} R (Semiring.toMonoidWithZero.{u1} R (Ring.toSemiring.{u1} R _inst_1))) _inst_3))))) -> (Eq.{succ u1} (OreLocalization.{u1} R (Ring.toMonoid.{u1} R _inst_1) (nonZeroDivisors.{u1} R (Semiring.toMonoidWithZero.{u1} R (Ring.toSemiring.{u1} R _inst_1))) _inst_3) (HMul.hMul.{u1, u1, u1} (OreLocalization.{u1} R (Ring.toMonoid.{u1} R _inst_1) (nonZeroDivisors.{u1} R (Semiring.toMonoidWithZero.{u1} R (Ring.toSemiring.{u1} R _inst_1))) _inst_3) (OreLocalization.{u1} R (Ring.toMonoid.{u1} R _inst_1) (nonZeroDivisors.{u1} R (Semiring.toMonoidWithZero.{u1} R (Ring.toSemiring.{u1} R _inst_1))) _inst_3) (OreLocalization.{u1} R (Ring.toMonoid.{u1} R _inst_1) (nonZeroDivisors.{u1} R (Semiring.toMonoidWithZero.{u1} R (Ring.toSemiring.{u1} R _inst_1))) _inst_3) (instHMul.{u1} (OreLocalization.{u1} R (Ring.toMonoid.{u1} R _inst_1) (nonZeroDivisors.{u1} R (Semiring.toMonoidWithZero.{u1} R (Ring.toSemiring.{u1} R _inst_1))) _inst_3) (OreLocalization.hasMul.{u1} R (Ring.toMonoid.{u1} R _inst_1) (nonZeroDivisors.{u1} R (Semiring.toMonoidWithZero.{u1} R (Ring.toSemiring.{u1} R _inst_1))) _inst_3)) x (Inv.inv.{u1} (OreLocalization.{u1} R (Ring.toMonoid.{u1} R _inst_1) (nonZeroDivisors.{u1} R (Semiring.toMonoidWithZero.{u1} R (Ring.toSemiring.{u1} R _inst_1))) _inst_3) (OreLocalization.hasInv.{u1} R _inst_1 _inst_2 _inst_3 _inst_4) x)) (OfNat.ofNat.{u1} (OreLocalization.{u1} R (Ring.toMonoid.{u1} R _inst_1) (nonZeroDivisors.{u1} R (Semiring.toMonoidWithZero.{u1} R (Ring.toSemiring.{u1} R _inst_1))) _inst_3) 1 (OfNat.mk.{u1} (OreLocalization.{u1} R (Ring.toMonoid.{u1} R _inst_1) (nonZeroDivisors.{u1} R (Semiring.toMonoidWithZero.{u1} R (Ring.toSemiring.{u1} R _inst_1))) _inst_3) 1 (One.one.{u1} (OreLocalization.{u1} R (Ring.toMonoid.{u1} R _inst_1) (nonZeroDivisors.{u1} R (Semiring.toMonoidWithZero.{u1} R (Ring.toSemiring.{u1} R _inst_1))) _inst_3) (OreLocalization.hasOne.{u1} R (Ring.toMonoid.{u1} R _inst_1) (nonZeroDivisors.{u1} R (Semiring.toMonoidWithZero.{u1} R (Ring.toSemiring.{u1} R _inst_1))) _inst_3))))) but is expected to have type forall {R : Type.{u1}} [_inst_1 : Ring.{u1} R] [_inst_2 : Nontrivial.{u1} R] [_inst_3 : OreLocalization.OreSet.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R (Ring.toSemiring.{u1} R _inst_1))) (nonZeroDivisors.{u1} R (Semiring.toMonoidWithZero.{u1} R (Ring.toSemiring.{u1} R _inst_1)))] [_inst_4 : NoZeroDivisors.{u1} R (NonUnitalNonAssocRing.toMul.{u1} R (NonAssocRing.toNonUnitalNonAssocRing.{u1} R (Ring.toNonAssocRing.{u1} R _inst_1))) (MonoidWithZero.toZero.{u1} R (Semiring.toMonoidWithZero.{u1} R (Ring.toSemiring.{u1} R _inst_1)))] (x : OreLocalization.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R (Ring.toSemiring.{u1} R _inst_1))) (nonZeroDivisors.{u1} R (Semiring.toMonoidWithZero.{u1} R (Ring.toSemiring.{u1} R _inst_1))) _inst_3), (Ne.{succ u1} (OreLocalization.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R (Ring.toSemiring.{u1} R _inst_1))) (nonZeroDivisors.{u1} R (Semiring.toMonoidWithZero.{u1} R (Ring.toSemiring.{u1} R _inst_1))) _inst_3) x (OfNat.ofNat.{u1} (OreLocalization.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R (Ring.toSemiring.{u1} R _inst_1))) (nonZeroDivisors.{u1} R (Semiring.toMonoidWithZero.{u1} R (Ring.toSemiring.{u1} R _inst_1))) _inst_3) 0 (Zero.toOfNat0.{u1} (OreLocalization.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R (Ring.toSemiring.{u1} R _inst_1))) (nonZeroDivisors.{u1} R (Semiring.toMonoidWithZero.{u1} R (Ring.toSemiring.{u1} R _inst_1))) _inst_3) (OreLocalization.instZeroOreLocalizationToMonoidToMonoidWithZero.{u1} R (Ring.toSemiring.{u1} R _inst_1) (nonZeroDivisors.{u1} R (Semiring.toMonoidWithZero.{u1} R (Ring.toSemiring.{u1} R _inst_1))) _inst_3)))) -> (Eq.{succ u1} (OreLocalization.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R (Ring.toSemiring.{u1} R _inst_1))) (nonZeroDivisors.{u1} R (Semiring.toMonoidWithZero.{u1} R (Ring.toSemiring.{u1} R _inst_1))) _inst_3) (HMul.hMul.{u1, u1, u1} (OreLocalization.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R (Ring.toSemiring.{u1} R _inst_1))) (nonZeroDivisors.{u1} R (Semiring.toMonoidWithZero.{u1} R (Ring.toSemiring.{u1} R _inst_1))) _inst_3) (OreLocalization.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R (Ring.toSemiring.{u1} R _inst_1))) (nonZeroDivisors.{u1} R (Semiring.toMonoidWithZero.{u1} R (Ring.toSemiring.{u1} R _inst_1))) _inst_3) (OreLocalization.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R (Ring.toSemiring.{u1} R _inst_1))) (nonZeroDivisors.{u1} R (Semiring.toMonoidWithZero.{u1} R (Ring.toSemiring.{u1} R _inst_1))) _inst_3) (instHMul.{u1} (OreLocalization.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R (Ring.toSemiring.{u1} R _inst_1))) (nonZeroDivisors.{u1} R (Semiring.toMonoidWithZero.{u1} R (Ring.toSemiring.{u1} R _inst_1))) _inst_3) (OreLocalization.instMulOreLocalization.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R (Ring.toSemiring.{u1} R _inst_1))) (nonZeroDivisors.{u1} R (Semiring.toMonoidWithZero.{u1} R (Ring.toSemiring.{u1} R _inst_1))) _inst_3)) x (Inv.inv.{u1} (OreLocalization.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R (Ring.toSemiring.{u1} R _inst_1))) (nonZeroDivisors.{u1} R (Semiring.toMonoidWithZero.{u1} R (Ring.toSemiring.{u1} R _inst_1))) _inst_3) (OreLocalization.inv'.{u1} R _inst_1 _inst_2 _inst_3 _inst_4) x)) (OfNat.ofNat.{u1} (OreLocalization.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R (Ring.toSemiring.{u1} R _inst_1))) (nonZeroDivisors.{u1} R (Semiring.toMonoidWithZero.{u1} R (Ring.toSemiring.{u1} R _inst_1))) _inst_3) 1 (One.toOfNat1.{u1} (OreLocalization.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R (Ring.toSemiring.{u1} R _inst_1))) (nonZeroDivisors.{u1} R (Semiring.toMonoidWithZero.{u1} R (Ring.toSemiring.{u1} R _inst_1))) _inst_3) (OreLocalization.instOneOreLocalization.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R (Ring.toSemiring.{u1} R _inst_1))) (nonZeroDivisors.{u1} R (Semiring.toMonoidWithZero.{u1} R (Ring.toSemiring.{u1} R _inst_1))) _inst_3)))) Case conversion may be inaccurate. Consider using '#align ore_localization.mul_inv_cancel OreLocalization.mul_inv_cancelₓ'. -/ protected theorem mul_inv_cancel (x : R[R⁰⁻¹]) (h : x ≠ 0) : x * x⁻¹ = 1 := by induction' x using OreLocalization.ind with r s rw [OreLocalization.inv_def, OreLocalization.one_def] by_cases hr : r = 0 · exfalso apply h simp [hr] · simp [hr] apply OreLocalization.div_eq_one' #align ore_localization.mul_inv_cancel OreLocalization.mul_inv_cancel /- warning: ore_localization.inv_zero -> OreLocalization.inv_zero is a dubious translation: lean 3 declaration is forall {R : Type.{u1}} [_inst_1 : Ring.{u1} R] [_inst_2 : Nontrivial.{u1} R] [_inst_3 : OreLocalization.OreSet.{u1} R (Ring.toMonoid.{u1} R _inst_1) (nonZeroDivisors.{u1} R (Semiring.toMonoidWithZero.{u1} R (Ring.toSemiring.{u1} R _inst_1)))] [_inst_4 : NoZeroDivisors.{u1} R (Distrib.toHasMul.{u1} R (Ring.toDistrib.{u1} R _inst_1)) (MulZeroClass.toHasZero.{u1} R (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} R (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} R (NonAssocRing.toNonUnitalNonAssocRing.{u1} R (Ring.toNonAssocRing.{u1} R _inst_1)))))], Eq.{succ u1} (OreLocalization.{u1} R (Ring.toMonoid.{u1} R _inst_1) (nonZeroDivisors.{u1} R (Semiring.toMonoidWithZero.{u1} R (Ring.toSemiring.{u1} R _inst_1))) _inst_3) (Inv.inv.{u1} (OreLocalization.{u1} R (Ring.toMonoid.{u1} R _inst_1) (nonZeroDivisors.{u1} R (Semiring.toMonoidWithZero.{u1} R (Ring.toSemiring.{u1} R _inst_1))) _inst_3) (OreLocalization.hasInv.{u1} R _inst_1 _inst_2 _inst_3 _inst_4) (OfNat.ofNat.{u1} (OreLocalization.{u1} R (Ring.toMonoid.{u1} R _inst_1) (nonZeroDivisors.{u1} R (Semiring.toMonoidWithZero.{u1} R (Ring.toSemiring.{u1} R _inst_1))) _inst_3) 0 (OfNat.mk.{u1} (OreLocalization.{u1} R (Ring.toMonoid.{u1} R _inst_1) (nonZeroDivisors.{u1} R (Semiring.toMonoidWithZero.{u1} R (Ring.toSemiring.{u1} R _inst_1))) _inst_3) 0 (Zero.zero.{u1} (OreLocalization.{u1} R (Ring.toMonoid.{u1} R _inst_1) (nonZeroDivisors.{u1} R (Semiring.toMonoidWithZero.{u1} R (Ring.toSemiring.{u1} R _inst_1))) _inst_3) (OreLocalization.hasZero.{u1} R (Ring.toSemiring.{u1} R _inst_1) (nonZeroDivisors.{u1} R (Semiring.toMonoidWithZero.{u1} R (Ring.toSemiring.{u1} R _inst_1))) _inst_3))))) (OfNat.ofNat.{u1} (OreLocalization.{u1} R (Ring.toMonoid.{u1} R _inst_1) (nonZeroDivisors.{u1} R (Semiring.toMonoidWithZero.{u1} R (Ring.toSemiring.{u1} R _inst_1))) _inst_3) 0 (OfNat.mk.{u1} (OreLocalization.{u1} R (Ring.toMonoid.{u1} R _inst_1) (nonZeroDivisors.{u1} R (Semiring.toMonoidWithZero.{u1} R (Ring.toSemiring.{u1} R _inst_1))) _inst_3) 0 (Zero.zero.{u1} (OreLocalization.{u1} R (Ring.toMonoid.{u1} R _inst_1) (nonZeroDivisors.{u1} R (Semiring.toMonoidWithZero.{u1} R (Ring.toSemiring.{u1} R _inst_1))) _inst_3) (OreLocalization.hasZero.{u1} R (Ring.toSemiring.{u1} R _inst_1) (nonZeroDivisors.{u1} R (Semiring.toMonoidWithZero.{u1} R (Ring.toSemiring.{u1} R _inst_1))) _inst_3)))) but is expected to have type forall {R : Type.{u1}} [_inst_1 : Ring.{u1} R] [_inst_2 : Nontrivial.{u1} R] [_inst_3 : OreLocalization.OreSet.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R (Ring.toSemiring.{u1} R _inst_1))) (nonZeroDivisors.{u1} R (Semiring.toMonoidWithZero.{u1} R (Ring.toSemiring.{u1} R _inst_1)))] [_inst_4 : NoZeroDivisors.{u1} R (NonUnitalNonAssocRing.toMul.{u1} R (NonAssocRing.toNonUnitalNonAssocRing.{u1} R (Ring.toNonAssocRing.{u1} R _inst_1))) (MonoidWithZero.toZero.{u1} R (Semiring.toMonoidWithZero.{u1} R (Ring.toSemiring.{u1} R _inst_1)))], Eq.{succ u1} (OreLocalization.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R (Ring.toSemiring.{u1} R _inst_1))) (nonZeroDivisors.{u1} R (Semiring.toMonoidWithZero.{u1} R (Ring.toSemiring.{u1} R _inst_1))) _inst_3) (Inv.inv.{u1} (OreLocalization.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R (Ring.toSemiring.{u1} R _inst_1))) (nonZeroDivisors.{u1} R (Semiring.toMonoidWithZero.{u1} R (Ring.toSemiring.{u1} R _inst_1))) _inst_3) (OreLocalization.inv'.{u1} R _inst_1 _inst_2 _inst_3 _inst_4) (OfNat.ofNat.{u1} (OreLocalization.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R (Ring.toSemiring.{u1} R _inst_1))) (nonZeroDivisors.{u1} R (Semiring.toMonoidWithZero.{u1} R (Ring.toSemiring.{u1} R _inst_1))) _inst_3) 0 (Zero.toOfNat0.{u1} (OreLocalization.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R (Ring.toSemiring.{u1} R _inst_1))) (nonZeroDivisors.{u1} R (Semiring.toMonoidWithZero.{u1} R (Ring.toSemiring.{u1} R _inst_1))) _inst_3) (OreLocalization.instZeroOreLocalizationToMonoidToMonoidWithZero.{u1} R (Ring.toSemiring.{u1} R _inst_1) (nonZeroDivisors.{u1} R (Semiring.toMonoidWithZero.{u1} R (Ring.toSemiring.{u1} R _inst_1))) _inst_3)))) (OfNat.ofNat.{u1} (OreLocalization.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R (Ring.toSemiring.{u1} R _inst_1))) (nonZeroDivisors.{u1} R (Semiring.toMonoidWithZero.{u1} R (Ring.toSemiring.{u1} R _inst_1))) _inst_3) 0 (Zero.toOfNat0.{u1} (OreLocalization.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R (Ring.toSemiring.{u1} R _inst_1))) (nonZeroDivisors.{u1} R (Semiring.toMonoidWithZero.{u1} R (Ring.toSemiring.{u1} R _inst_1))) _inst_3) (OreLocalization.instZeroOreLocalizationToMonoidToMonoidWithZero.{u1} R (Ring.toSemiring.{u1} R _inst_1) (nonZeroDivisors.{u1} R (Semiring.toMonoidWithZero.{u1} R (Ring.toSemiring.{u1} R _inst_1))) _inst_3))) Case conversion may be inaccurate. Consider using '#align ore_localization.inv_zero OreLocalization.inv_zeroₓ'. -/ protected theorem inv_zero : (0 : R[R⁰⁻¹])⁻¹ = 0 := by rw [OreLocalization.zero_def, OreLocalization.inv_def] simp #align ore_localization.inv_zero OreLocalization.inv_zero instance : DivisionRing R[R⁰⁻¹] := { OreLocalization.nontrivial, OreLocalization.hasInv, OreLocalization.ring with mul_inv_cancel := OreLocalization.mul_inv_cancel inv_zero := OreLocalization.inv_zero } end DivisionRing end OreLocalization
[GOAL] X Y : MonCat ⊢ FunLike (↑X →* ↑Y) ↑X fun x => ↑Y [PROOFSTEP] infer_instance -- porting note: added [GOAL] G : Type u_1 inst✝ : Group G ⊢ Group ↑(of G) [PROOFSTEP] assumption [GOAL] ⊢ ConcreteCategory CommMonCat [PROOFSTEP] dsimp only [CommMonCat] [GOAL] ⊢ ConcreteCategory (Bundled CommMonoid) [PROOFSTEP] infer_instance [GOAL] X Y : CommMonCat ⊢ FunLike (↑X →* ↑Y) ↑X fun x => ↑Y [PROOFSTEP] infer_instance -- porting note: added [GOAL] R S : MonCat i : R ⟶ S r : ↑R h : r = 1 ⊢ ↑i r = 1 [PROOFSTEP] simp [h] [GOAL] R S : CommMonCat i : R ⟶ S r : ↑R h : r = 1 ⊢ ↑i r = 1 [PROOFSTEP] simp [h] -- We verify that when constructing a morphism in `CommMonCat`, -- when we construct the `toFun` field, the types are presented as `↑R`. [GOAL] R : CommMonCat x : ↑R ⊢ ↑R [PROOFSTEP] match_target (R : Type u) [GOAL] R : CommMonCat x : ↑R ⊢ ↑R [PROOFSTEP] guard_hyp x : (R : Type u) [GOAL] R : CommMonCat x : ↑R ⊢ ↑R [PROOFSTEP] exact x * x [GOAL] R : CommMonCat ⊢ (fun x => x * x) 1 = 1 [PROOFSTEP] simp [GOAL] R : CommMonCat x y : ↑R ⊢ OneHom.toFun { toFun := fun x => x * x, map_one' := (_ : 1 * 1 = 1) } (x * y) = OneHom.toFun { toFun := fun x => x * x, map_one' := (_ : 1 * 1 = 1) } x * OneHom.toFun { toFun := fun x => x * x, map_one' := (_ : 1 * 1 = 1) } y [PROOFSTEP] dsimp [GOAL] R : CommMonCat x y : ↑R ⊢ x * y * (x * y) = x * x * (y * y) [PROOFSTEP] rw [mul_assoc x y (x * y), ← mul_assoc y x y, mul_comm y x, mul_assoc, mul_assoc] [GOAL] X✝ Y✝ : Type u X Y : MonCat f : X ⟶ Y x✝ : IsIso ((forget MonCat).map f) ⊢ IsIso f [PROOFSTEP] let i := asIso ((forget MonCat).map f) [GOAL] X✝ Y✝ : Type u X Y : MonCat f : X ⟶ Y x✝ : IsIso ((forget MonCat).map f) i : (forget MonCat).obj X ≅ (forget MonCat).obj Y := asIso ((forget MonCat).map f) ⊢ IsIso f [PROOFSTEP] let e : X ≃* Y := MulEquiv.mk i.toEquiv (by aesop) [GOAL] X✝ Y✝ : Type u X Y : MonCat f : X ⟶ Y x✝ : IsIso ((forget MonCat).map f) i : (forget MonCat).obj X ≅ (forget MonCat).obj Y := asIso ((forget MonCat).map f) ⊢ ∀ (x y : ↑X), Equiv.toFun i.toEquiv (x * y) = Equiv.toFun i.toEquiv x * Equiv.toFun i.toEquiv y [PROOFSTEP] aesop [GOAL] X✝ Y✝ : Type u X Y : MonCat f : X ⟶ Y x✝ : IsIso ((forget MonCat).map f) i : (forget MonCat).obj X ≅ (forget MonCat).obj Y := asIso ((forget MonCat).map f) e : ↑X ≃* ↑Y := { toEquiv := i.toEquiv, map_mul' := (_ : ∀ (x_1 y : ↑X), ↑f (x_1 * y) = ↑f x_1 * ↑f y) } ⊢ IsIso f [PROOFSTEP] exact IsIso.of_iso e.toMonCatIso [GOAL] X✝ Y✝ : Type u X Y : CommMonCat f : X ⟶ Y x✝ : IsIso ((forget CommMonCat).map f) ⊢ IsIso f [PROOFSTEP] let i := asIso ((forget CommMonCat).map f) [GOAL] X✝ Y✝ : Type u X Y : CommMonCat f : X ⟶ Y x✝ : IsIso ((forget CommMonCat).map f) i : (forget CommMonCat).obj X ≅ (forget CommMonCat).obj Y := asIso ((forget CommMonCat).map f) ⊢ IsIso f [PROOFSTEP] let e : X ≃* Y := MulEquiv.mk i.toEquiv (MonoidHom.map_mul (show MonoidHom X Y from f)) [GOAL] X✝ Y✝ : Type u X Y : CommMonCat f : X ⟶ Y x✝ : IsIso ((forget CommMonCat).map f) i : (forget CommMonCat).obj X ≅ (forget CommMonCat).obj Y := asIso ((forget CommMonCat).map f) e : ↑X ≃* ↑Y := { toEquiv := i.toEquiv, map_mul' := (_ : ∀ (a b : ↑X), ↑(let_fun this := f; this) (a * b) = ↑(let_fun this := f; this) a * ↑(let_fun this := f; this) b) } ⊢ IsIso f [PROOFSTEP] exact IsIso.of_iso e.toCommMonCatIso
// // @author [email protected] // #include <iostream> #include <hot/singlethreaded/MemoryPool.hpp> #include <boost/test/unit_test.hpp> namespace hot { namespace singlethreaded { struct DummyElement { uint64_t mMember; static size_t sNumberContructorCalls; static size_t sNumberDestructorCalls; DummyElement() : mMember(0u) { ++sNumberContructorCalls; } ~DummyElement() { ++sNumberDestructorCalls; } static void reset() { sNumberContructorCalls = 0; sNumberDestructorCalls = 0; } }; class MemoryPoolTestFixture { public: //before test MemoryPoolTestFixture() { DummyElement::reset(); } //after test ~MemoryPoolTestFixture() { DummyElement::reset(); } }; size_t DummyElement::sNumberContructorCalls = 0u; size_t DummyElement::sNumberDestructorCalls = 0u; BOOST_FIXTURE_TEST_SUITE(MemoryPoolTest, MemoryPoolTestFixture) BOOST_AUTO_TEST_CASE(testAllocAndDestruction) { MemoryPool<DummyElement, 10>* pool = new MemoryPool<DummyElement, 10>(); size_t numberConstructorCalls = 0u; for(size_t i=1u; i < 10u; ++i) { void* rawMemory = pool->alloc(i); numberConstructorCalls+=i; BOOST_REQUIRE_EQUAL(pool->getNumberAllocations(), i); pool->returnToPool(i, rawMemory); void* rawMemory2 = pool->alloc(i); pool->returnToPool(i, rawMemory2); BOOST_REQUIRE_EQUAL(pool->getNumberAllocations(), i); } BOOST_REQUIRE_EQUAL(pool->getNumberFrees(), 0u); delete pool; BOOST_REQUIRE_EQUAL(pool->getNumberFrees(), pool->getNumberAllocations()); BOOST_REQUIRE_EQUAL(pool->getNumberFrees(), 9u); } BOOST_AUTO_TEST_CASE(testEviction) { MemoryPool<DummyElement, 10, 20, 8>* pool = new MemoryPool<DummyElement, 10, 20, 8>(); size_t numberConstructorCalls = 0u; for(size_t i=1u; i < 10u; ++i) { void* rawMemory = pool->alloc(i); BOOST_REQUIRE_EQUAL(pool->getNumberAllocations(), i); pool->returnToPool(i, rawMemory); void* rawMemory2 = pool->alloc(i); pool->returnToPool(i, rawMemory2); BOOST_REQUIRE_EQUAL(rawMemory2, rawMemory); BOOST_REQUIRE_EQUAL(pool->getNumberAllocations(), i); } std::array<void*, 20> intermediateMemory; intermediateMemory[0] = pool->alloc(4); for(size_t i=1u; i < 20u; ++i) { intermediateMemory[i] = pool->alloc(4); numberConstructorCalls += 4; } BOOST_REQUIRE_EQUAL(pool->getNumberAllocations(), 28u); BOOST_REQUIRE_EQUAL(pool->getNumberFrees(), 0u); for(size_t i=0u; i < 19u; ++i) { pool->returnToPool(4, intermediateMemory[i]); } BOOST_REQUIRE_EQUAL(pool->getNumberAllocations(), 28u); BOOST_REQUIRE_EQUAL(pool->getNumberFrees(), 0u); pool->returnToPool(4, intermediateMemory[19]); BOOST_REQUIRE_EQUAL(pool->getNumberAllocations(), 28u); BOOST_REQUIRE_EQUAL(pool->getNumberFrees(), 12u); delete pool; BOOST_REQUIRE_EQUAL(pool->getNumberAllocations(), 28u); BOOST_REQUIRE_EQUAL(pool->getNumberFrees(), 28u); } BOOST_AUTO_TEST_SUITE_END() }}
#' rancovr: Cluster detection in R with RAndom Neighbourhood COVeRing #' #' rancovr detects statio-temporal clusters against a baseline of #' sparse Poisson point events using #' the random neighbourhood covering algorithm. #' #' @section Foo functions: #' The foo functions ... #' #' @docType package #' @name foo NULL #> NULL
Formal statement is: lemma complex_Im_fact [simp]: "Im (fact n) = 0" Informal statement is: The imaginary part of the factorial of any natural number is zero.
! ################################################################################################################################## ! Begin MIT license text. ! _______________________________________________________________________________________________________ ! Copyright 2019 Dr William R Case, Jr ([email protected]) ! Permission is hereby granted, free of charge, to any person obtaining a copy of this software and ! associated documentation files (the "Software"), to deal in the Software without restriction, including ! without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell ! copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to ! the following conditions: ! The above copyright notice and this permission notice shall be included in all copies or substantial ! portions of the Software and documentation. ! THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS ! OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, ! FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE ! AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER ! LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, ! OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN ! THE SOFTWARE. ! _______________________________________________________________________________________________________ ! End MIT license text. SUBROUTINE CALC_PHI_SQ ( IERROR ) ! Calculates the PHI_SQ shear correction factor used in the MIN3 and MIN4 elements (TRIA3, QUAD4 Mindlin elements) in subrs ! TRPLT2, QPLT2. PHI_SQ is used as a multiplier of the shear stiffness and the element stresses ! PHI_SQ = CBMIN*PSI_HAT/(1 + CBMIN*PSI_HAT) where ! PSI_HAT = BENSUM/SHRSUM ! (1) CBMIN is a constant from the published papers by Alexander TEssler (see refs in the MYSTRAN User's Manual) for the MIN3 ! triangular element (TRIA3) and MIN4 quadrilateral element (QUAD4) ! (2) BENSUM is the sum of the diagonal terms for rotation DOF's from the bending portion of the element stiffness matrix ! (3) SHRSUM is the sum of the diagonal terms from the transverse shear portion of the element stiffness matrix ! BENSUM and SHRSUM are determined in subrs TPLT2 (for the MIN3 TRIA3 elem) and QPLT2 (for the MIN4 QUAD4 elem) prior to calling ! this subr. ! For composite elements (PCOMP properties), a correction to PHI_SQ has to be made when PHI_SQ is calculated during stress recovery ! of individual plies. In these cases, the PHI_SQ calculated when the stiffness and stress recovery matrices is based on the ! individual ply thicknesses (bending and transverse shear) but should really be based on the whole element - i.e. the integrated ! effect of all plies. It is known that BENSUM is proportional to the bending inertia of the element and SHRSUM is proportional to ! the transverse shear thickness of the element. Thus, for composite elements, the BENSUM and SHRSUM calculated for 1 ply are ! adjusted by the ratio of these quantities between 1 ply and the composite layup USE PENTIUM_II_KIND, ONLY : BYTE, LONG, DOUBLE USE SCONTR, ONLY : BLNK_SUB_NAM, FATAL_ERR, MEFE USE IOUNT1, ONLY : ERR, F04, F06, WRT_ERR, WRT_LOG USE TIMDAT, ONLY : TSEC USE SUBR_BEGEND_LEVELS, ONLY : CALC_PHI_SQ_BEGEND USE CONSTANTS_1, ONLY : ZERO, ONE, TWELVE USE PARAMS, ONLY : CBMIN3, CBMIN4, CBMIN4T, EPSIL, PCMPTSTM, QUAD4TYP USE MODEL_STUF, ONLY : BENSUM, EID, EMG_IFE, EMG_RFE, ERR_SUB_NAM, NUM_EMG_FATAL_ERRS, INTL_MID, PHI_SQ, & PCOMP_PROPS, PLY_NUM, PSI_HAT, SHRSUM, TPLY, TYPE USE CALC_PHI_SQ_USE_IFs IMPLICIT NONE CHARACTER(LEN=LEN(BLNK_SUB_NAM)):: SUBR_NAME = 'CALC_PHI_SQ' INTEGER(LONG), INTENT(OUT) :: IERROR ! Local error indicator INTEGER(LONG), PARAMETER :: SUBR_BEGEND = CALC_PHI_SQ_BEGEND REAL(DOUBLE) :: CBMIN = ZERO ! Either CBMIN3 or CBMIN4 REAL(DOUBLE) :: DEN ! Denominator term in calculating PHI_SQ REAL(DOUBLE) :: EPS1 ! A small number to compare to real zero REAL(DOUBLE) :: PCOMP_TM ! Membrane thick of PCOMP for equiv PSHELL (see subr SHELL_ABD_MATRICES) REAL(DOUBLE) :: PCOMP_IB ! Bending MOI of PCOMP for equiv PSHELL (see subr SHELL_ABD_MATRICES) REAL(DOUBLE) :: PCOMP_TS ! Transv shear thick of PCOMP for equiv PSHELL (subr SHELL_ABD_MATRICES) REAL(DOUBLE) :: PLY_IB ! Bending MOI of a ply REAL(DOUBLE) :: PLY_TS ! Transv shear thick of a ply ! ********************************************************************************************************************************** IF (WRT_LOG >= SUBR_BEGEND) THEN CALL OURTIM WRITE(F04,9001) SUBR_NAME,TSEC 9001 FORMAT(1X,A,' BEGN ',F10.3) ENDIF ! ********************************************************************************************************************************** IERROR = 0 EPS1 = EPSIL(1) ! For composite elements, adjust BENSUM and SHRSUM to be based on the whole composite element properties since they were calculated ! based on only 1 ply IF (PCOMP_PROPS == 'Y') THEN IF (PLY_NUM /= 0) THEN CALL GET_PCOMP_SECT_PROPS ( PCOMP_TM, PCOMP_IB, PCOMP_TS ) PLY_IB = TPLY*TPLY*TPLY/TWELVE PLY_TS = TPLY*PCMPTSTM BENSUM = (PCOMP_IB/PLY_IB)*BENSUM SHRSUM = (PCOMP_TS/PLY_TS)*SHRSUM ENDIF ENDIF ! Now calculate PHI_SQ (but only if the element has transverse shear flexibility) IF (TYPE(1:5) == 'QUAD4') THEN ! Regardless of who calls this subr, TYPE will det which CBMIN to use IF (QUAD4TYP == 'MIN4T') THEN ! quad TYPE's will use either CBMIN4 or CBMIN4T CBMIN = CBMIN4T ELSE CBMIN = CBMIN4 ENDIF ELSE IF (TYPE(1:5) == 'TRIA3') THEN ! tria TYPE's will use CBMIN3 (NOTE: MIN4T quads will use CBMIN4T, above) CBMIN = CBMIN3 ELSE NUM_EMG_FATAL_ERRS = NUM_EMG_FATAL_ERRS + 1 FATAL_ERR = FATAL_ERR + 1 IERROR = IERROR + 1 IF (WRT_ERR > 0) THEN WRITE(ERR,1943) TYPE, EID WRITE(F06,1943) TYPE, EID ELSE IF (NUM_EMG_FATAL_ERRS <= MEFE) THEN ERR_SUB_NAM(NUM_EMG_FATAL_ERRS) = SUBR_NAME EMG_IFE(NUM_EMG_FATAL_ERRS,1) = 1943 ENDIF ENDIF ENDIF IERROR = 0 PSI_HAT = ZERO IF (DABS(SHRSUM) > EPS1) THEN PSI_HAT = BENSUM/SHRSUM ELSE NUM_EMG_FATAL_ERRS = NUM_EMG_FATAL_ERRS + 1 FATAL_ERR = FATAL_ERR + 1 IERROR = IERROR + 1 IF (WRT_ERR > 0) THEN WRITE(ERR,1923) SHRSUM, TYPE, EID WRITE(F06,1923) SHRSUM, TYPE, EID ELSE IF (NUM_EMG_FATAL_ERRS <= MEFE) THEN ERR_SUB_NAM(NUM_EMG_FATAL_ERRS) = SUBR_NAME EMG_IFE(NUM_EMG_FATAL_ERRS,1) = 1923 EMG_RFE(NUM_EMG_FATAL_ERRS,1) = SHRSUM ENDIF ENDIF ENDIF DEN = ONE + CBMIN*PSI_HAT IF (DABS(DEN) > EPS1) THEN PHI_SQ = CBMIN*PSI_HAT/DEN ELSE NUM_EMG_FATAL_ERRS = NUM_EMG_FATAL_ERRS + 1 FATAL_ERR = FATAL_ERR + 1 IERROR = IERROR + 1 IF (WRT_ERR > 0) THEN WRITE(ERR,1942) DEN, TYPE, EID WRITE(F06,1942) DEN, TYPE, EID ELSE IF (NUM_EMG_FATAL_ERRS <= MEFE) THEN ERR_SUB_NAM(NUM_EMG_FATAL_ERRS) = SUBR_NAME EMG_IFE(NUM_EMG_FATAL_ERRS,1) = 1942 EMG_RFE(NUM_EMG_FATAL_ERRS,1) = DEN ENDIF ENDIF ENDIF ! ********************************************************************************************************************************** IF (WRT_LOG >= SUBR_BEGEND) THEN CALL OURTIM WRITE(F04,9002) SUBR_NAME,TSEC 9002 FORMAT(1X,A,' END ',F10.3) ENDIF RETURN ! ********************************************************************************************************************************** 1923 FORMAT(' *ERROR 1923: SHRSUM PARAMETER = ',1ES9.2,' IS TOO CLOSE TO ZERO FOR ',A,' ELEMENT ',I8 & ,/,14X,' CANNOT CALCULATE PSI_HAT FACTOR NEEDED FOR TRANSVERSE SHEAR STIFFNESS CALCULATION') 1942 FORMAT(' *ERROR 1942: 1 + CBMIN*PSI_HAT = ',1ES9.2,' IS TOO CLOSE TO ZERO FOR ',A,' ELEMENT ',I8 & ,/,14X,' CANNOT CALCULATE PHI_SQ FACTOR NEEDED FOR TRANSVERSE SHEAR STIFFNESS CALCULATION') 1943 FORMAT(' *ERROR 1943: PROGRAMMING ERROR IN SUBROUTINE ',A & ,/,15X, A, 'ELEMENT ',I8,' IS NOT A VALID ELEMENT FOR THIS SUBR') ! ********************************************************************************************************************************** END SUBROUTINE CALC_PHI_SQ
(* Title: CartesianMonoidalCategory Author: Eugene W. Stark <[email protected]>, 2020 Maintainer: Eugene W. Stark <[email protected]> *) chapter "Cartesian Monoidal Category" theory CartesianMonoidalCategory imports MonoidalCategory Category3.CartesianCategory begin locale symmetric_monoidal_category = monoidal_category C T \<alpha> \<iota> + S: symmetry_functor C C + ToS: composite_functor CC.comp CC.comp C S.map T + \<sigma>: natural_isomorphism CC.comp C T ToS.map \<sigma> for C :: "'a comp" (infixr "\<cdot>" 55) and T :: "'a * 'a \<Rightarrow> 'a" and \<alpha> :: "'a * 'a * 'a \<Rightarrow> 'a" and \<iota> :: 'a and \<sigma> :: "'a * 'a \<Rightarrow> 'a" + assumes sym_inverse: "\<lbrakk> ide a; ide b \<rbrakk> \<Longrightarrow> inverse_arrows (\<sigma> (a, b)) (\<sigma> (b, a))" and unitor_coherence: "ide a \<Longrightarrow> \<l>[a] \<cdot> \<sigma> (a, \<I>) = \<r>[a]" and assoc_coherence: "\<lbrakk> ide a; ide b; ide c \<rbrakk> \<Longrightarrow> \<alpha> (b, c, a) \<cdot> \<sigma> (a, b \<otimes> c) \<cdot> \<alpha> (a, b, c) = (b \<otimes> \<sigma> (a, c)) \<cdot> \<alpha> (b, a, c) \<cdot> (\<sigma> (a, b) \<otimes> c)" begin abbreviation sym ("\<s>[_, _]") where "sym a b \<equiv> \<sigma> (a, b)" end locale elementary_symmetric_monoidal_category = elementary_monoidal_category C tensor unity lunit runit assoc for C :: "'a comp" (infixr "\<cdot>" 55) and tensor :: "'a \<Rightarrow> 'a \<Rightarrow> 'a" (infixr "\<otimes>" 53) and unity :: 'a ("\<I>") and lunit :: "'a \<Rightarrow> 'a" ("\<l>[_]") and runit :: "'a \<Rightarrow> 'a" ("\<r>[_]") and assoc :: "'a \<Rightarrow> 'a \<Rightarrow> 'a \<Rightarrow> 'a" ("\<a>[_, _, _]") and sym :: "'a \<Rightarrow> 'a \<Rightarrow> 'a" ("\<s>[_, _]") + assumes sym_in_hom: "\<lbrakk> ide a; ide b \<rbrakk> \<Longrightarrow> \<guillemotleft>\<s>[a, b] : a \<otimes> b \<rightarrow> b \<otimes> a\<guillemotright>" and sym_naturality: "\<lbrakk> arr f; arr g \<rbrakk> \<Longrightarrow> \<s>[cod f, cod g] \<cdot> (f \<otimes> g) = (g \<otimes> f) \<cdot> \<s>[dom f, dom g]" and sym_inverse: "\<lbrakk> ide a; ide b \<rbrakk> \<Longrightarrow> inverse_arrows \<s>[a, b] \<s>[b, a]" and unitor_coherence: "ide a \<Longrightarrow> \<l>[a] \<cdot> \<s>[a, \<I>] = \<r>[a]" and assoc_coherence: "\<lbrakk> ide a; ide b; ide c \<rbrakk> \<Longrightarrow> \<a>[b, c, a] \<cdot> \<s>[a, b \<otimes> c] \<cdot> \<a>[a, b, c] = (b \<otimes> \<s>[a, c]) \<cdot> \<a>[b, a, c] \<cdot> (\<s>[a, b] \<otimes> c)" begin lemma sym_simps [simp]: assumes "ide a" and "ide b" shows "arr \<s>[a, b]" and "dom \<s>[a, b] = a \<otimes> b" and "cod \<s>[a, b] = b \<otimes> a" using assms sym_in_hom by auto interpretation monoidal_category C T \<alpha> \<iota> using induces_monoidal_category by simp interpretation CC: product_category C C .. interpretation S: symmetry_functor C C .. interpretation ToS: composite_functor CC.comp CC.comp C S.map T .. definition \<sigma> :: "'a * 'a \<Rightarrow> 'a" where "\<sigma> f \<equiv> if CC.arr f then \<s>[cod (fst f), cod (snd f)] \<cdot> (fst f \<otimes> snd f) else null" interpretation \<sigma>: natural_isomorphism CC.comp C T ToS.map \<sigma> proof - interpret \<sigma>: transformation_by_components CC.comp C T ToS.map "\<lambda>a. \<s>[fst a, snd a]" apply unfold_locales using sym_in_hom sym_naturality by auto interpret \<sigma>: natural_isomorphism CC.comp C T ToS.map \<sigma>.map apply unfold_locales using sym_inverse \<sigma>.map_simp_ide by auto have "\<sigma> = \<sigma>.map" using \<sigma>_def \<sigma>.map_def sym_naturality by fastforce thus "natural_isomorphism CC.comp C T ToS.map \<sigma>" using \<sigma>.natural_isomorphism_axioms by presburger qed interpretation symmetric_monoidal_category C T \<alpha> \<iota> \<sigma> proof show "\<And>a b. \<lbrakk> ide a; ide b \<rbrakk> \<Longrightarrow> inverse_arrows (\<sigma> (a, b)) (\<sigma> (b, a))" proof - fix a b assume a: "ide a" and b: "ide b" show "inverse_arrows (\<sigma> (a, b)) (\<sigma> (b, a))" using a b sym_inverse comp_arr_dom \<sigma>_def by auto qed (* * TODO: Here just using "lunit" refers to the locale parameter, rather than * the constant introduced by the interpretation above of monoidal_category. * This is slightly mysterious. *) show "\<And>a. ide a \<Longrightarrow> local.lunit a \<cdot> \<sigma> (a, local.unity) = local.runit a" proof - fix a assume a: "ide a" show "local.lunit a \<cdot> \<sigma> (a, local.unity) = local.runit a" using a lunit_agreement \<I>_agreement sym_in_hom comp_arr_dom [of "\<s>[a, \<I>]"] unitor_coherence runit_agreement \<sigma>_def by simp qed show "\<And>a b c. \<lbrakk> ide a; ide b; ide c \<rbrakk> \<Longrightarrow> local.assoc b c a \<cdot> \<sigma> (a, local.tensor b c) \<cdot> local.assoc a b c = local.tensor b (\<sigma> (a, c)) \<cdot> local.assoc b a c \<cdot> local.tensor (\<sigma> (a, b)) c" proof - fix a b c assume a: "ide a" and b: "ide b" and c: "ide c" show "local.assoc b c a \<cdot> \<sigma> (a, local.tensor b c) \<cdot> local.assoc a b c = local.tensor b (\<sigma> (a, c)) \<cdot> local.assoc b a c \<cdot> local.tensor (\<sigma> (a, b)) c" using a b c sym_in_hom tensor_preserves_ide \<sigma>_def assoc_coherence comp_arr_dom comp_cod_arr by simp qed qed lemma induces_symmetric_monoidal_category: shows "symmetric_monoidal_category C T \<alpha> \<iota> \<sigma>" .. end context symmetric_monoidal_category begin interpretation elementary_monoidal_category C tensor unity lunit runit assoc using induces_elementary_monoidal_category by auto lemma induces_elementary_symmetric_monoidal_category: shows "elementary_symmetric_monoidal_category C tensor unity lunit runit assoc (\<lambda>a b. \<sigma> (a, b))" using \<sigma>.naturality unitor_coherence assoc_coherence sym_inverse by unfold_locales auto end (* TODO: This definition of "diagonal_functor" conflicts with the one in Category3.Limit. *) locale diagonal_functor = C: category C + CC: product_category C C for C :: "'a comp" begin abbreviation map where "map f \<equiv> if C.arr f then (f, f) else CC.null" lemma is_functor: shows "functor C CC.comp map" using map_def by unfold_locales auto sublocale "functor" C CC.comp map using is_functor by simp end locale cartesian_monoidal_category = monoidal_category C T \<alpha> \<iota> + \<Omega>: constant_functor C C \<I> + \<Delta>: diagonal_functor C + \<tau>: natural_transformation C C map \<Omega>.map \<tau> + \<delta>: natural_transformation C C map \<open>T o \<Delta>.map\<close> \<delta> for C :: "'a comp" (infixr "\<cdot>" 55) and T :: "'a * 'a \<Rightarrow> 'a" and \<alpha> :: "'a * 'a * 'a \<Rightarrow> 'a" and \<iota> :: 'a and \<delta> :: "'a \<Rightarrow> 'a" ("\<d>[_]") and \<tau> :: "'a \<Rightarrow> 'a" ("\<t>[_]") + assumes trm_unity: "\<t>[\<I>] = \<I>" and pr0_dup: "ide a \<Longrightarrow> \<r>[a] \<cdot> (a \<otimes> \<t>[a]) \<cdot> \<delta> a = a" and pr1_dup: "ide a \<Longrightarrow> \<l>[a] \<cdot> (\<t>[a] \<otimes> a) \<cdot> \<delta> a = a" and tuple_pr: "\<lbrakk> ide a; ide b \<rbrakk> \<Longrightarrow> (\<r>[a] \<cdot> (a \<otimes> \<t>[b]) \<otimes> \<l>[b] \<cdot> (\<t>[a] \<otimes> b)) \<cdot> \<d>[a \<otimes> b] = a \<otimes> b" locale elementary_cartesian_monoidal_category = elementary_monoidal_category C tensor unity lunit runit assoc for C :: "'a comp" (infixr "\<cdot>" 55) and tensor :: "'a \<Rightarrow> 'a \<Rightarrow> 'a" (infixr "\<otimes>" 53) and unity :: 'a ("\<I>") and lunit :: "'a \<Rightarrow> 'a" ("\<l>[_]") and runit :: "'a \<Rightarrow> 'a" ("\<r>[_]") and assoc :: "'a \<Rightarrow> 'a \<Rightarrow> 'a \<Rightarrow> 'a" ("\<a>[_, _, _]") and trm :: "'a \<Rightarrow> 'a" ("\<t>[_]") and dup :: "'a \<Rightarrow> 'a" ("\<d>[_]") + assumes trm_in_hom [intro]: "ide a \<Longrightarrow> \<guillemotleft>\<t>[a] : a \<rightarrow> \<I>\<guillemotright>" and trm_unity: "\<t>[\<I>] = \<I>" and trm_naturality: "arr f \<Longrightarrow> \<t>[cod f] \<cdot> f = \<t>[dom f]" and dup_in_hom [intro]: "ide a \<Longrightarrow> \<guillemotleft>\<d>[a] : a \<rightarrow> a \<otimes> a\<guillemotright>" and dup_naturality: "arr f \<Longrightarrow> \<d>[cod f] \<cdot> f = (f \<otimes> f) \<cdot> \<d>[dom f]" and prj0_dup: "ide a \<Longrightarrow> \<r>[a] \<cdot> (a \<otimes> \<t>[a]) \<cdot> \<d>[a] = a" and prj1_dup: "ide a \<Longrightarrow> \<l>[a] \<cdot> (\<t>[a] \<otimes> a) \<cdot> \<d>[a] = a" and tuple_prj: "\<lbrakk> ide a; ide b \<rbrakk> \<Longrightarrow> (\<r>[a] \<cdot> (a \<otimes> \<t>[b]) \<otimes> \<l>[b] \<cdot> (\<t>[a] \<otimes> b)) \<cdot> \<d>[a \<otimes> b] = a \<otimes> b" context cartesian_monoidal_category begin lemma terminal_unity: shows "terminal \<I>" proof show "ide \<I>" by simp show "\<And>a. ide a \<Longrightarrow> \<exists>!f. \<guillemotleft>f : a \<rightarrow> \<I>\<guillemotright>" proof fix a assume a: "ide a" show "\<guillemotleft>\<tau> a : a \<rightarrow> \<I>\<guillemotright>" using a by auto show "\<And>f. \<guillemotleft>f : a \<rightarrow> \<I>\<guillemotright> \<Longrightarrow> f = \<tau> a" using trm_unity \<tau>.naturality comp_cod_arr by fastforce qed qed lemma trm_is_terminal_arr: assumes "ide a" shows "terminal_arr \<t>[a]" using assms terminal_unity by simp interpretation elementary_monoidal_category C tensor unity lunit runit assoc using induces_elementary_monoidal_category by simp interpretation elementary_cartesian_monoidal_category C tensor unity lunit runit assoc \<tau> \<delta> proof show "\<And>a. ide a \<Longrightarrow> \<guillemotleft>\<t>[a] : a \<rightarrow> \<I>\<guillemotright>" using \<iota>_in_hom by force show "\<t>[\<I>] = \<I>" using \<tau>.preserves_hom \<iota>_in_hom ide_unity trm_is_terminal_arr terminal_unity by (intro terminal_arr_unique) auto show "\<And>f. arr f \<Longrightarrow> \<t>[cod f] \<cdot> f = \<t>[dom f]" using \<tau>.naturality comp_cod_arr by simp show "\<And>a. ide a \<Longrightarrow> \<guillemotleft>\<d>[a] : a \<rightarrow> a \<otimes> a\<guillemotright>" by auto show "\<And>f. arr f \<Longrightarrow> \<d>[cod f] \<cdot> f = (f \<otimes> f) \<cdot> \<d>[dom f]" using \<delta>.naturality by simp show "\<And>a. ide a \<Longrightarrow> \<l>[a] \<cdot> (\<t>[a] \<otimes> a) \<cdot> \<d>[a] = a" using pr1_dup lunit_in_hom by simp show "\<And>a. ide a \<Longrightarrow> \<r>[a] \<cdot> (a \<otimes> \<t>[a]) \<cdot> \<d>[a] = a" using pr0_dup runit_in_hom by simp show "\<And>a0 a1. \<lbrakk> ide a0; ide a1 \<rbrakk> \<Longrightarrow> (\<r>[a0] \<cdot> (a0 \<otimes> \<t>[a1]) \<otimes> \<l>[a1] \<cdot> (\<t>[a0] \<otimes> a1)) \<cdot> \<d>[a0 \<otimes> a1] = a0 \<otimes> a1" using tuple_pr by simp qed lemma induces_elementary_cartesian_monoidal_category: shows "elementary_cartesian_monoidal_category C tensor \<I> lunit runit assoc \<tau> \<delta>" .. end context elementary_cartesian_monoidal_category begin lemma trm_simps [simp]: assumes "ide a" shows "arr \<t>[a]" and "dom \<t>[a] = a" and "cod \<t>[a] = \<I>" using assms trm_in_hom by auto lemma dup_simps [simp]: assumes "ide a" shows "arr \<d>[a]" and "dom \<d>[a] = a" and "cod \<d>[a] = a \<otimes> a" using assms dup_in_hom by auto definition \<tau> :: "'a \<Rightarrow> 'a" where "\<tau> f \<equiv> if arr f then \<t>[dom f] else null" definition \<delta> :: "'a \<Rightarrow> 'a" where "\<delta> f \<equiv> if arr f then \<d>[cod f] \<cdot> f else null" interpretation CC: product_category C C .. interpretation MC: monoidal_category C T \<alpha> \<iota> using induces_monoidal_category by auto interpretation I: constant_functor C C MC.unity by unfold_locales auto interpretation \<Delta>: diagonal_functor C .. interpretation D: composite_functor C CC.comp C \<Delta>.map T .. interpretation \<tau>: natural_transformation C C map I.map \<tau> using trm_naturality I.map_def \<tau>_def \<I>_agreement comp_cod_arr by unfold_locales auto interpretation \<delta>: natural_transformation C C map D.map \<delta> using dup_naturality \<delta>_def comp_arr_dom by unfold_locales auto interpretation MC: cartesian_monoidal_category C T \<alpha> \<iota> \<delta> \<tau> proof show "\<tau> MC.unity = MC.unity" using \<I>_agreement trm_unity \<tau>_def by simp show "\<And>a. ide a \<Longrightarrow> MC.runit a \<cdot> MC.tensor a (\<tau> a) \<cdot> \<delta> a = a" using runit_agreement \<tau>_def \<delta>_def prj0_dup comp_arr_dom by auto show "\<And>a. ide a \<Longrightarrow> MC.lunit a \<cdot> MC.tensor (\<tau> a) a \<cdot> \<delta> a = a" using lunit_agreement \<tau>_def \<delta>_def prj1_dup comp_arr_dom by auto show "\<And>a b. \<lbrakk> ide a; ide b \<rbrakk> \<Longrightarrow> MC.tensor (MC.runit a \<cdot> MC.tensor a (\<tau> b)) (MC.lunit b \<cdot> MC.tensor (\<tau> a) b) \<cdot> \<delta> (MC.tensor a b) = MC.tensor a b" proof - fix a b assume a: "ide a" and b: "ide b" have "seq \<r>[a] (a \<otimes> \<t>[b])" by (metis a b arr_tensor cod_tensor ide_char in_homE runit_in_hom seqI trm_simps(1,3)) moreover have "seq \<l>[b] (\<t>[a] \<otimes> b)" by (metis a b arr_tensor cod_tensor ide_char in_homE lunit_in_hom seqI trm_simps(1,3)) ultimately show "MC.tensor (MC.runit a \<cdot> MC.tensor a (\<tau> b)) (MC.lunit b \<cdot> MC.tensor (\<tau> a) b) \<cdot> \<delta> (MC.tensor a b) = MC.tensor a b" using a b lunit_agreement runit_agreement unitor_coincidence \<tau>_def \<delta>_def comp_arr_dom tensor_preserves_ide tuple_prj T_def by auto qed qed lemma induces_cartesian_monoidal_category: shows "cartesian_monoidal_category C T \<alpha> \<iota> \<delta> \<tau>" .. end text \<open> A cartesian category extends to a a cartesian monoidal category by using the product structure to obtain the various canonical maps. \<close> context cartesian_category begin interpretation C: elementary_cartesian_category C pr0 pr1 \<one> trm using extends_to_elementary_cartesian_category by simp interpretation CC: product_category C C .. interpretation CCC: product_category C CC.comp .. interpretation T: binary_functor C C C Prod using binary_functor_Prod by simp interpretation T: binary_endofunctor C Prod .. interpretation ToTC: "functor" CCC.comp C T.ToTC using T.functor_ToTC by auto interpretation ToCT: "functor" CCC.comp C T.ToCT using T.functor_ToCT by auto interpretation \<alpha>: transformation_by_components CCC.comp C T.ToTC T.ToCT \<open>\<lambda>abc. assoc (fst abc) (fst (snd abc)) (snd (snd abc))\<close> proof show "\<And>abc. CCC.ide abc \<Longrightarrow> \<guillemotleft>assoc (fst abc) (fst (snd abc)) (snd (snd abc)) : T.ToTC abc \<rightarrow> T.ToCT abc\<guillemotright>" using CCC.ide_char CC.ide_char CCC.arr_char CC.arr_char T.ToTC_def T.ToCT_def by auto show "\<And>f. CCC.arr f \<Longrightarrow> assoc (fst (CCC.cod f)) (fst (snd (CCC.cod f))) (snd (snd (CCC.cod f))) \<cdot> T.ToTC f = T.ToCT f \<cdot> assoc (fst (CCC.dom f)) (fst (snd (CCC.dom f))) (snd (snd (CCC.dom f)))" using CCC.arr_char CC.arr_char CCC.dom_char CCC.cod_char T.ToTC_def T.ToCT_def assoc_naturality by simp blast qed abbreviation \<alpha> where "\<alpha> \<equiv> \<alpha>.map" interpretation \<alpha>: natural_isomorphism CCC.comp C T.ToTC T.ToCT \<alpha>.map proof show "\<And>a. CCC.ide a \<Longrightarrow> iso (\<alpha>.map a)" using CCC.ide_char CC.ide_char \<alpha>.map_simp_ide inverse_arrows_assoc by auto qed interpretation L: "functor" C C \<open>\<lambda>f. Prod (cod \<iota>, f)\<close> using \<iota>_is_terminal_arr T.fixing_ide_gives_functor_1 by simp interpretation L: endofunctor C \<open>\<lambda>f. Prod (cod \<iota>, f)\<close> .. interpretation \<l>: transformation_by_components C C \<open>\<lambda>f. Prod (cod \<iota>, f)\<close> map \<open>\<lambda>a. pr0 (cod \<iota>) a\<close> using \<iota>_is_terminal_arr by unfold_locales auto interpretation \<l>: natural_isomorphism C C \<open>\<lambda>f. Prod (cod \<iota>, f)\<close> map \<l>.map using \<l>.map_simp_ide inverse_arrows_lunit ide_some_terminal by unfold_locales auto interpretation L: equivalence_functor C C \<open>\<lambda>f. Prod (cod \<iota>, f)\<close> using \<l>.natural_isomorphism_axioms naturally_isomorphic_def L.isomorphic_to_identity_is_equivalence by blast interpretation R: "functor" C C \<open>\<lambda>f. Prod (f, cod \<iota>)\<close> using \<iota>_is_terminal_arr T.fixing_ide_gives_functor_2 by simp interpretation R: endofunctor C\<open>\<lambda>f. Prod (f, cod \<iota>)\<close> .. interpretation \<rho>: transformation_by_components C C \<open>\<lambda>f. Prod (f, cod \<iota>)\<close> map \<open>\<lambda>a. pr1 a (cod \<iota>)\<close> using \<iota>_is_terminal_arr by unfold_locales auto interpretation \<rho>: natural_isomorphism C C \<open>\<lambda>f. Prod (f, cod \<iota>)\<close> map \<rho>.map using \<rho>.map_simp_ide inverse_arrows_runit ide_some_terminal by unfold_locales auto interpretation R: equivalence_functor C C \<open>\<lambda>f. Prod (f, cod \<iota>)\<close> using \<rho>.natural_isomorphism_axioms naturally_isomorphic_def R.isomorphic_to_identity_is_equivalence by blast interpretation C: monoidal_category C Prod \<alpha>.map \<iota> using ide_some_terminal \<iota>_is_iso pentagon comp_assoc by unfold_locales auto interpretation \<Omega>: constant_functor C C C.unity using C.ide_unity by unfold_locales auto interpretation \<tau>: natural_transformation C C map \<Omega>.map trm using C.unity_def \<Omega>.map_def ide_some_terminal trm_naturality comp_cod_arr trm_in_hom apply unfold_locales using trm_def apply auto[1] apply fastforce apply fastforce apply (metis in_homE trm_eqI trm_in_hom cod_pr0 dom_dom) by (metis trm_eqI trm_in_hom dom_dom map_simp) interpretation \<Delta>: "functor" C CC.comp Diag using functor_Diag by simp interpretation \<Pi>o\<Delta>: composite_functor C CC.comp C Diag Prod .. interpretation natural_transformation C C map \<open>Prod o Diag\<close> dup using dup_is_natural_transformation by simp lemma unity_agreement: shows "C.unity = \<one>" using C.unity_def ide_some_terminal by simp lemma assoc_agreement: assumes "ide a" and "ide b" and "ide c" shows "C.assoc a b c = assoc a b c" using assms assoc_def \<alpha>.map_simp_ide by simp lemma assoc'_agreement: assumes "ide a" and "ide b" and "ide c" shows "C.assoc' a b c = assoc' a b c" using assms inverse_arrows_assoc inverse_unique by auto lemma runit_char_eqn: assumes "ide a" shows "prod (runit a) \<one> = prod a \<iota> \<cdot> assoc a \<one> \<one>" using assms ide_one assoc_def comp_assoc prod_tuple comp_cod_arr by (intro pr_joint_monic [of a \<one> "prod (runit a) \<one>" "prod a \<iota> \<cdot> assoc a \<one> \<one>"]) auto lemma runit_agreement: assumes "ide a" shows "runit a = C.runit a" using assms unity_agreement assoc_agreement C.runit_char(2) runit_char_eqn ide_some_terminal by (intro C.runit_eqI) auto lemma lunit_char_eqn: assumes "ide a" shows "prod \<one> (lunit a) = prod \<iota> a \<cdot> assoc' \<one> \<one> a" proof (intro pr_joint_monic [of \<one> a "prod \<one> (lunit a)" "prod \<iota> a \<cdot> assoc' \<one> \<one> a"]) show "seq (lunit a) (local.prod \<one> (lunit a))" using assms ide_one by simp show "lunit a \<cdot> prod \<one> (lunit a) = lunit a \<cdot> prod \<iota> a \<cdot> assoc' \<one> \<one> a" using assms ide_one assoc'_def comp_assoc prod_tuple comp_cod_arr by simp show "pr1 \<one> a \<cdot> prod \<one> (lunit a) = pr1 \<one> a \<cdot> prod \<iota> a \<cdot> assoc' \<one> \<one> a" using assms ide_one assoc'_def comp_cod_arr prod_tuple pr_naturality apply simp by (metis trm_eqI cod_pr0 cod_pr1 comp_in_homI' ide_prod pr_simps(1,3-6) pr1_in_hom') qed lemma lunit_agreement: assumes "ide a" shows "lunit a = C.lunit a" using assms unity_agreement assoc'_agreement C.lunit_char(2) lunit_char_eqn ide_some_terminal by (intro C.lunit_eqI) auto interpretation C: cartesian_monoidal_category C Prod \<alpha>.map \<iota> dup trm proof show "trm C.unity = C.unity" by (simp add: C.unity_def ide_some_terminal trm_one) show "\<And>a. ide a \<Longrightarrow> C.runit a \<cdot> C.tensor a \<t>[a] \<cdot> dup a = a" using comp_runit_term_dup runit_agreement by simp show "\<And>a. ide a \<Longrightarrow> C.lunit a \<cdot> C.tensor \<t>[a] a \<cdot> dup a = a" using comp_lunit_term_dup lunit_agreement by auto show "\<And>a b. \<lbrakk>ide a; ide b\<rbrakk> \<Longrightarrow> C.tensor (C.runit a \<cdot> C.tensor a \<t>[b]) (C.lunit b \<cdot> C.tensor \<t>[a] b) \<cdot> dup (C.tensor a b) = C.tensor a b" proof - fix a b assume a: "ide a" and b: "ide b" have "C.tensor (C.runit a \<cdot> C.tensor a \<t>[b]) (C.lunit b \<cdot> C.tensor \<t>[a] b) \<cdot> dup (C.tensor a b) = prod (C.runit a \<cdot> prod a \<t>[b]) (C.lunit b \<cdot> prod \<t>[a] b) \<cdot> dup (prod a b)" using a b by simp also have "... = tuple ((C.runit a \<cdot> prod a \<t>[b]) \<cdot> prod a b) ((C.lunit b \<cdot> prod \<t>[a] b) \<cdot> prod a b)" using a b ide_one trm_in_hom [of a] trm_in_hom [of b] unity_agreement prod_tuple by fastforce also have "... = tuple (C.runit a \<cdot> prod a \<t>[b] \<cdot> prod a b) (C.lunit b \<cdot> prod \<t>[a] b \<cdot> prod a b)" using comp_assoc by simp also have "... = tuple (C.runit a \<cdot> prod a \<t>[b]) (C.lunit b \<cdot> prod \<t>[a] b)" using a b comp_arr_dom by simp also have "... = tuple (runit a \<cdot> prod a \<t>[b]) (lunit b \<cdot> prod \<t>[a] b)" using a b lunit_agreement runit_agreement by simp also have "... = tuple (pr1 a b) (pr0 a b)" proof - have "runit a \<cdot> prod a \<t>[b] = pr1 a b" using a b pr_naturality(2) trm_in_hom [of b] by (metis cod_pr1 comp_ide_arr ide_char in_homE pr_simps(4,6) seqI) moreover have "lunit b \<cdot> prod \<t>[a] b = pr0 a b" using a b pr_naturality(1) [of b b b "\<t>[a]" a \<one>] trm_in_hom [of a] comp_cod_arr by (metis cod_pr0 ide_char in_homE pr_simps(1)) ultimately show ?thesis by simp qed also have "... = prod a b" using a b by simp finally show "C.tensor (C.runit a \<cdot> C.tensor a \<t>[b]) (C.lunit b \<cdot> C.tensor \<t>[a] b) \<cdot> dup (C.tensor a b) = C.tensor a b" by auto qed qed lemma extends_to_cartesian_monoidal_category: shows "cartesian_monoidal_category C Prod \<alpha>.map \<iota> dup trm" .. end text \<open> In a \<open>cartesian_monoidal_category\<close>, the monoidal structure is given by a categorical product and terminal object, so that the underlying category is cartesian. \<close> context cartesian_monoidal_category begin definition pr0 ("\<p>\<^sub>0[_, _]") where "\<p>\<^sub>0[a, b] \<equiv> if ide a \<and> ide b then \<r>[a] \<cdot> (a \<otimes> \<t>[b]) else null" definition pr1 ("\<p>\<^sub>1[_, _]") where "\<p>\<^sub>1[a, b] \<equiv> if ide a \<and> ide b then \<l>[b] \<cdot> (\<t>[a] \<otimes> b) else null" lemma pr_in_hom [intro]: assumes "ide a0" and "ide a1" shows "\<guillemotleft>\<p>\<^sub>0[a0, a1] : a0 \<otimes> a1 \<rightarrow> a0\<guillemotright>" and "\<guillemotleft>\<p>\<^sub>1[a0, a1] : a0 \<otimes> a1 \<rightarrow> a1\<guillemotright>" proof - show "\<guillemotleft>\<p>\<^sub>0[a0, a1] : a0 \<otimes> a1 \<rightarrow> a0\<guillemotright>" unfolding pr0_def using assms runit_in_hom by fastforce show "\<guillemotleft>\<p>\<^sub>1[a0, a1] : a0 \<otimes> a1 \<rightarrow> a1\<guillemotright>" unfolding pr1_def using assms lunit_in_hom by fastforce qed lemma pr_simps [simp]: assumes "ide a0" and "ide a1" shows "arr \<p>\<^sub>0[a0, a1]" and "dom \<p>\<^sub>0[a0, a1] = a0 \<otimes> a1" and "cod \<p>\<^sub>0[a0, a1] = a0" and "arr \<p>\<^sub>1[a0, a1]" and "dom \<p>\<^sub>1[a0, a1] = a0 \<otimes> a1" and "cod \<p>\<^sub>1[a0, a1] = a1" using assms pr_in_hom(1-2) by blast+ interpretation P: composite_functor CC.comp C CC.comp T \<Delta>.map .. interpretation ECC: elementary_cartesian_category C pr1 pr0 \<I> \<tau> proof show "\<And>a b. \<lbrakk>ide a; ide b\<rbrakk> \<Longrightarrow> span \<p>\<^sub>0[a, b] \<p>\<^sub>1[a, b]" by simp show "\<And>a b. \<lbrakk>ide a; ide b\<rbrakk> \<Longrightarrow> cod \<p>\<^sub>1[a, b] = b" by simp show "\<And>a b. \<lbrakk>ide a; ide b\<rbrakk> \<Longrightarrow> cod \<p>\<^sub>0[a, b] = a" by simp show "ide \<I>" by simp show "\<And>a. ide a \<Longrightarrow> \<guillemotleft>\<tau> a : a \<rightarrow> \<I>\<guillemotright>" by auto show "\<And>a f. \<lbrakk>ide a; \<guillemotleft>f : a \<rightarrow> \<I>\<guillemotright>\<rbrakk> \<Longrightarrow> f = \<t>[a]" using \<open>\<And>a. ide a \<Longrightarrow> \<guillemotleft>\<t>[a] : a \<rightarrow> \<I>\<guillemotright>\<close> terminalE terminal_unity by blast show "\<And>a b. \<not> (ide a \<and> ide b) \<Longrightarrow> \<p>\<^sub>1[a, b] = null" using pr1_def by auto show "\<And>a b. \<not> (ide a \<and> ide b) \<Longrightarrow> \<p>\<^sub>0[a, b] = null" using pr0_def by auto show "\<And>f g. span f g \<Longrightarrow> \<exists>!l. \<p>\<^sub>0[cod f, cod g] \<cdot> l = f \<and> \<p>\<^sub>1[cod f, cod g] \<cdot> l = g" proof - fix f g assume fg: "span f g" let ?l = "(f \<otimes> g) \<cdot> \<d>[dom f]" have "\<p>\<^sub>0[cod f, cod g] \<cdot> ?l = f" proof - have "\<p>\<^sub>0[cod f, cod g] \<cdot> ?l = (\<r>[cod f] \<cdot> (cod f \<otimes> \<t>[cod g])) \<cdot> (f \<otimes> g) \<cdot> \<d>[dom f]" using fg pr0_def by simp also have "... = \<r>[cod f] \<cdot> ((cod f \<otimes> \<t>[cod g]) \<cdot> (f \<otimes> g)) \<cdot> \<d>[dom f]" using comp_assoc by simp also have "... = \<r>[cod f] \<cdot> (f \<otimes> \<t>[dom f]) \<cdot> \<d>[dom f]" using fg interchange comp_cod_arr \<tau>.naturality by simp also have "... = \<r>[cod f] \<cdot> ((cod f \<otimes> \<t>[cod f]) \<cdot> (f \<otimes> f)) \<cdot> \<d>[dom f]" using fg interchange comp_cod_arr \<tau>.naturality by simp also have "... = \<r>[cod f] \<cdot> (cod f \<otimes> \<t>[cod f]) \<cdot> (f \<otimes> f) \<cdot> \<d>[dom f]" using comp_assoc by simp also have "... = (\<r>[cod f] \<cdot> (cod f \<otimes> \<t>[cod f]) \<cdot> \<d>[cod f]) \<cdot> f" using fg \<delta>.naturality comp_assoc by simp also have "... = f" using fg pr0_dup comp_cod_arr by simp finally show ?thesis by blast qed moreover have "\<p>\<^sub>1[cod f, cod g] \<cdot> ?l = g" proof - have "\<p>\<^sub>1[cod f, cod g] \<cdot> ?l = \<l>[cod g] \<cdot> ((\<t>[cod f] \<otimes> cod g) \<cdot> (f \<otimes> g)) \<cdot> \<d>[dom g]" using fg pr1_def comp_assoc by simp also have "... = \<l>[cod g] \<cdot> (\<t>[dom f] \<otimes> g) \<cdot> \<d>[dom g]" using fg interchange comp_cod_arr \<tau>.naturality by simp also have "... = \<l>[cod g] \<cdot> ((\<t>[cod g] \<otimes> cod g) \<cdot> (g \<otimes> g)) \<cdot> \<d>[dom g]" using fg interchange comp_cod_arr \<tau>.naturality by simp also have "... = \<l>[cod g] \<cdot> (\<t>[cod g] \<otimes> cod g) \<cdot> (g \<otimes> g) \<cdot> \<d>[dom g]" using comp_assoc by simp also have "... = (\<l>[cod g] \<cdot> (\<t>[cod g] \<otimes> cod g) \<cdot> \<d>[cod g]) \<cdot> g" using fg \<delta>.naturality comp_assoc by simp also have "... = g" using fg pr1_dup comp_cod_arr by simp finally show ?thesis by blast qed moreover have "\<And>l. \<lbrakk> \<p>\<^sub>0[cod f, cod g] \<cdot> l = f; \<p>\<^sub>1[cod f, cod g] \<cdot> l = g \<rbrakk> \<Longrightarrow> l = ?l" proof - fix l assume f: "\<p>\<^sub>0[cod f, cod g] \<cdot> l = f" and g: "\<p>\<^sub>1[cod f, cod g] \<cdot> l = g" have l: "\<guillemotleft>l : dom f \<rightarrow> cod f \<otimes> cod g\<guillemotright>" using f g fg by (metis arr_iff_in_hom dom_comp ide_cod pr_simps(5) seqE) have "?l = (\<p>\<^sub>0[cod f, cod g] \<cdot> l \<otimes> \<p>\<^sub>1[cod f, cod g] \<cdot> l) \<cdot> \<d>[dom f]" using f g by simp also have "... = ((\<p>\<^sub>0[cod f, cod g] \<otimes> \<p>\<^sub>1[cod f, cod g]) \<cdot> (l \<otimes> l)) \<cdot> \<d>[dom f]" using fg f g interchange by simp also have "... = (\<p>\<^sub>0[cod f, cod g] \<otimes> \<p>\<^sub>1[cod f, cod g]) \<cdot> (l \<otimes> l) \<cdot> \<d>[dom f]" using comp_assoc by simp also have "... = ((\<p>\<^sub>0[cod f, cod g] \<otimes> \<p>\<^sub>1[cod f, cod g]) \<cdot> \<d>[cod f \<otimes> cod g]) \<cdot> l" using l \<delta>.naturality [of l] comp_assoc by auto also have "... = (cod f \<otimes> cod g) \<cdot> l" using f g fg tuple_pr pr0_def pr1_def by auto also have "... = l" using l comp_cod_arr by auto finally show "l = ?l" by simp qed ultimately show "\<exists>!l. \<p>\<^sub>0[cod f, cod g] \<cdot> l = f \<and> \<p>\<^sub>1[cod f, cod g] \<cdot> l = g" by auto qed qed lemma extends_to_elementary_cartesian_category: shows "elementary_cartesian_category C pr1 pr0 \<I> \<tau>" .. lemma is_cartesian_category: shows "cartesian_category C" using ECC.is_cartesian_category by simp end (* * TODO: I would like to have coherence theorems for symmetric monoidal and cartesian * monoidal categories here, but I haven't yet figured out a suitably economical way * to extend the existing result. *) end
(* File: Ring.thy Author: Bohua Zhan Rings. *) theory Ring imports Nat begin section \<open>Rings\<close> definition is_ring :: "i \<Rightarrow> o" where [rewrite]: "is_ring(R) \<longleftrightarrow> (is_ring_raw(R) \<and> is_abgroup(R) \<and> is_monoid(R) \<and> is_left_distrib(R) \<and> is_right_distrib(R) \<and> \<zero>\<^sub>R \<noteq> \<one>\<^sub>R)" lemma is_ringD [forward]: "is_ring(R) \<Longrightarrow> is_ring_raw(R)" "is_ring(R) \<Longrightarrow> is_abgroup(R)" "is_ring(R) \<Longrightarrow> is_monoid(R)" "is_ring(R) \<Longrightarrow> is_left_distrib(R)" "is_ring(R) \<Longrightarrow> is_right_distrib(R)" by auto2+ lemma is_ringD' [resolve]: "is_ring(R) \<Longrightarrow> \<zero>\<^sub>R \<noteq> \<one>\<^sub>R" by auto2 setup {* del_prfstep_thm_eqforward @{thm is_ring_def} *} lemma is_ring_ring_prop [forward]: "is_ring_raw(H) \<Longrightarrow> is_ring(G) \<Longrightarrow> eq_str_ring(G,H) \<Longrightarrow> is_ring(H)" by auto2 setup {* fold add_rewrite_rule [ @{thm times_commD}, @{thm left_distribD}, @{thm right_distribD}, @{thm left_distribD_back}, @{thm right_distribD_back}] *} lemma comm_distribs [forward]: "is_ring_raw(R) \<Longrightarrow> is_left_distrib(R) \<Longrightarrow> is_times_comm(R) \<Longrightarrow> is_right_distrib(R)" by auto2 lemma ring_mult0_left [rewrite]: "is_ring(R) \<Longrightarrow> x \<in>. R \<Longrightarrow> \<zero>\<^sub>R *\<^sub>R x = \<zero>\<^sub>R" @proof @have "\<zero>\<^sub>R *\<^sub>R x +\<^sub>R \<zero>\<^sub>R *\<^sub>R x = (\<zero>\<^sub>R +\<^sub>R \<zero>\<^sub>R) *\<^sub>R x +\<^sub>R \<zero>\<^sub>R" @qed lemma ring_mult0_right [rewrite]: "is_ring(R) \<Longrightarrow> x \<in>. R \<Longrightarrow> x *\<^sub>R \<zero>\<^sub>R = \<zero>\<^sub>R" @proof @have "x *\<^sub>R \<zero>\<^sub>R +\<^sub>R x *\<^sub>R \<zero>\<^sub>R = x *\<^sub>R (\<zero>\<^sub>R +\<^sub>R \<zero>\<^sub>R) +\<^sub>R \<zero>\<^sub>R" @qed lemma units_non_zero [forward]: "is_ring(R) \<Longrightarrow> x \<in> units(R) \<Longrightarrow> x \<noteq> \<zero>\<^sub>R" @proof @obtain "y\<in>.R" where "y *\<^sub>R x = \<one>\<^sub>R" @qed lemma ring_mult_sign_l [rewrite]: "is_ring(R) \<Longrightarrow> x \<in>. R \<Longrightarrow> y \<in>. R \<Longrightarrow> (-\<^sub>R x) *\<^sub>R y = -\<^sub>R (x *\<^sub>R y) \<and> x *\<^sub>R y \<in>. R" @proof @have "(-\<^sub>R x) *\<^sub>R y +\<^sub>R x *\<^sub>R y = \<zero>\<^sub>R" @qed lemma ring_mult_sign_r [rewrite]: "is_ring(R) \<Longrightarrow> x \<in>. R \<Longrightarrow> y \<in>. R \<Longrightarrow> x *\<^sub>R (-\<^sub>R y) = -\<^sub>R (x *\<^sub>R y) \<and> x *\<^sub>R y \<in>. R" @proof @have "x *\<^sub>R (-\<^sub>R y) +\<^sub>R x *\<^sub>R y = \<zero>\<^sub>R" @qed lemma ring_mult_sign_both [rewrite]: "is_ring(R) \<Longrightarrow> x \<in>. R \<Longrightarrow> y \<in>. R \<Longrightarrow> (-\<^sub>R x) *\<^sub>R (-\<^sub>R y) = x *\<^sub>R y" by auto2 section \<open>Commutative rings\<close> definition is_comm_ring :: "i \<Rightarrow> o" where [rewrite]: "is_comm_ring(R) \<longleftrightarrow> (is_ring(R) \<and> is_times_comm(R))" lemma is_comm_ringD [forward]: "is_comm_ring(R) \<Longrightarrow> is_ring(R)" "is_comm_ring(R) \<Longrightarrow> is_times_comm(R)" by auto2+ setup {* del_prfstep_thm_eqforward @{thm is_comm_ring_def} *} lemma is_comm_ring_ring_prop [forward]: "is_ring_raw(H) \<Longrightarrow> is_comm_ring(G) \<Longrightarrow> eq_str_ring(G,H) \<Longrightarrow> is_comm_ring(H)" by auto2 lemma comm_ring_is_unit [forward]: "is_comm_ring(R) \<Longrightarrow> x \<in>. R \<Longrightarrow> y \<in>. R \<Longrightarrow> y *\<^sub>R x = \<one>\<^sub>R \<Longrightarrow> x \<in> units(R)" by auto2 lemma comm_ring_is_unit2 [forward]: "is_comm_ring(R) \<Longrightarrow> x \<in>. R \<Longrightarrow> y \<in>. R \<Longrightarrow> x *\<^sub>R y = \<one>\<^sub>R \<Longrightarrow> x \<in> units(R)" by auto2 lemma comm_ring_prod_unit [forward]: "is_comm_ring(R) \<Longrightarrow> x \<in>. R \<Longrightarrow> y \<in>. R \<Longrightarrow> x *\<^sub>R y \<in> units(R) \<Longrightarrow> x \<in> units(R) \<and> y \<in> units(R)" @proof @obtain "z\<in>.R" where "z *\<^sub>R (x *\<^sub>R y) = \<one>\<^sub>R" "(x *\<^sub>R y) *\<^sub>R z = \<one>\<^sub>R" @have "(y *\<^sub>R z) *\<^sub>R x = \<one>\<^sub>R" @have "y *\<^sub>R (x *\<^sub>R z) = (y *\<^sub>R x) *\<^sub>R z" @qed lemma inv_distrib_comm_ring [rewrite]: "is_comm_ring(R) \<Longrightarrow> x \<in>. R \<Longrightarrow> y \<in>. R \<Longrightarrow> x *\<^sub>R y \<in> units(R) \<Longrightarrow> inv(R, x *\<^sub>R y) = inv(R,y) *\<^sub>R inv(R,x) \<and> x \<in> units(R) \<and> y \<in> units(R) \<and> inv(R,y) \<in>. R \<and> inv(R,x) \<in>. R" @proof @have "inv(R,y) *\<^sub>R inv(R,x) *\<^sub>R (x *\<^sub>R y) = inv(R,y) *\<^sub>R (inv(R,x) *\<^sub>R x) *\<^sub>R y" @qed lemma comm_ring_prod_is_unit [backward1, backward2]: "is_comm_ring(R) \<Longrightarrow> x \<in> units(R) \<Longrightarrow> y \<in> units(R) \<Longrightarrow> x *\<^sub>R y \<in> units(R)" @proof @have "inv(R,y) *\<^sub>R inv(R,x) *\<^sub>R (x *\<^sub>R y) = inv(R,y) *\<^sub>R (inv(R,x) *\<^sub>R x) *\<^sub>R y" @qed section \<open>of\_nat on rings\<close> (* Recursion on x: of_nat(0) = 0 | of_nat(n + 1) = of_nat(n) + 1 *) definition of_nat :: "i \<Rightarrow> i \<Rightarrow> i" where [rewrite_bidir]: "of_nat(R,x) = nat_act(R,x,\<one>\<^sub>R)" setup {* register_wellform_data ("of_nat(R,x)", ["x \<in> nat"]) *} lemma of_nat_zero [rewrite_bidir]: "is_ring(R) \<Longrightarrow> of_nat(R,0) = \<zero>\<^sub>R" by auto2 lemma of_nat_one [rewrite_bidir]: "is_ring(R) \<Longrightarrow> of_nat(R,1) = \<one>\<^sub>R" by auto2 lemma of_nat_type [typing]: "is_ring(R) \<Longrightarrow> n \<in> nat \<Longrightarrow> of_nat(R,n) \<in>. R" by auto2 abbreviation ZeroR ("0\<^sub>_" [91] 90) where "0\<^sub>R \<equiv> of_nat(R,0)" abbreviation OneR ("1\<^sub>_" [91] 90) where "1\<^sub>R \<equiv> of_nat(R,1)" abbreviation TwoR ("2\<^sub>_" [91] 90) where "2\<^sub>R \<equiv> of_nat(R,2)" abbreviation ThreeR ("3\<^sub>_" [91] 90) where "3\<^sub>R \<equiv> of_nat(R,3)" abbreviation FourR ("4\<^sub>_" [91] 90) where "4\<^sub>R \<equiv> of_nat(R,4)" abbreviation FiveR ("5\<^sub>_" [91] 90) where "5\<^sub>R \<equiv> of_nat(R,5)" abbreviation NegOneR ("-1\<^sub>_" [91] 90) where "-1\<^sub>R \<equiv> -\<^sub>R of_nat(R,1)" lemma of_nat_add: "is_comm_ring(R) \<Longrightarrow> x \<in> nat \<Longrightarrow> y \<in> nat \<Longrightarrow> of_nat(R,x) +\<^sub>R of_nat(R,y) = of_nat(R, x +\<^sub>\<nat> y) \<and> x +\<^sub>\<nat> y \<in> nat" by auto2 setup {* add_rewrite_rule_cond @{thm of_nat_add} (with_conds ["?x \<noteq> 0", "?x \<noteq> Suc(?z)", "?y \<noteq> 0", "?y \<noteq> Suc(?z)"]) *} lemma add_monomial_same: "is_ring(R) \<Longrightarrow> p \<in>. R \<Longrightarrow> p +\<^sub>R p = p *\<^sub>R 2\<^sub>R \<and> 2 \<in> nat \<and> 2\<^sub>R \<in>. R" @proof @have "2 = 1 +\<^sub>\<nat> 1" @qed setup {* del_prfstep_thm_str "" @{thm of_nat_def} *} lemma of_nat_add_back [rewrite]: "is_comm_ring(R) \<Longrightarrow> x \<in>. \<nat> \<Longrightarrow> y \<in>. \<nat> \<Longrightarrow> of_nat(R, x +\<^sub>\<nat> y) = of_nat(R,x) +\<^sub>R of_nat(R,y)" by auto2 lemma of_nat_mult: "is_comm_ring(R) \<Longrightarrow> x \<in> nat \<Longrightarrow> y \<in> nat \<Longrightarrow> of_nat(R,x) *\<^sub>R of_nat(R,y) = of_nat(R, x *\<^sub>\<nat> y) \<and> x *\<^sub>\<nat> y \<in> nat" @proof @var_induct "x \<in> nat" @qed setup {* add_rewrite_rule_cond @{thm of_nat_mult} (with_conds ["?x \<noteq> 0", "?x \<noteq> Suc(?z)", "?y \<noteq> 0", "?y \<noteq> Suc(?z)"]) *} lemma of_nat_mult_back [rewrite]: "is_comm_ring(R) \<Longrightarrow> x \<in>. \<nat> \<Longrightarrow> y \<in>. \<nat> \<Longrightarrow> of_nat(R, x *\<^sub>\<nat> y) = of_nat(R,x) *\<^sub>R of_nat(R,y)" by auto2 lemma of_nat_sub1 [rewrite]: "is_comm_ring(R) \<Longrightarrow> x \<ge>\<^sub>\<nat> y \<Longrightarrow> of_nat(R,x) +\<^sub>R -\<^sub>R of_nat(R,y) = of_nat(R,x -\<^sub>\<nat> y) \<and> x -\<^sub>\<nat> y \<in> nat" @proof @have "(of_nat(R,x) -\<^sub>R of_nat(R,y)) +\<^sub>R of_nat(R,y) = of_nat(R, x -\<^sub>\<nat> y) +\<^sub>R of_nat(R,y)" @qed lemma of_nat_sub2: "is_comm_ring(R) \<Longrightarrow> x \<le>\<^sub>\<nat> y \<Longrightarrow> of_nat(R,x) +\<^sub>R -\<^sub>R of_nat(R,y) = -\<^sub>R of_nat(R,y -\<^sub>\<nat> x) \<and> y -\<^sub>\<nat> x \<in> nat \<and> of_nat(R,y -\<^sub>\<nat> x) \<in>. R" @proof @have "of_nat(R,x) +\<^sub>R -\<^sub>R of_nat(R,y) = -\<^sub>R (of_nat(R,y) +\<^sub>R -\<^sub>R of_nat(R,x))" @qed lemma of_nat_sub_back [rewrite]: "is_comm_ring(R) \<Longrightarrow> x \<ge>\<^sub>\<nat> y \<Longrightarrow> of_nat(R,x -\<^sub>\<nat> y) = of_nat(R,x) -\<^sub>R of_nat(R,y)" @proof @have "of_nat(R,x) -\<^sub>R of_nat(R,y) = of_nat(R,x) +\<^sub>R -\<^sub>R of_nat(R,y)" @qed lemma add_monomial_l [rewrite]: "is_ring(R) \<Longrightarrow> p \<in>. R \<Longrightarrow> r \<in>. R \<Longrightarrow> p +\<^sub>R p *\<^sub>R r = p *\<^sub>R (1\<^sub>R +\<^sub>R r) \<and> 1 \<in> nat \<and> 1\<^sub>R \<in>. R \<and> 1\<^sub>R +\<^sub>R r \<in>. R" by auto2 lemma neg_is_minus_1: "is_ring(R) \<Longrightarrow> p \<in>. R \<Longrightarrow> -\<^sub>R p = p *\<^sub>R -1\<^sub>R \<and> 1 \<in> nat \<and> 1\<^sub>R \<in>. R \<and> -1\<^sub>R \<in>. R" by auto2 setup {* fold del_prfstep_thm [@{thm of_nat_sub1}, @{thm add_monomial_l}] *} section \<open>Division in commutative rings\<close> definition divide :: "i \<Rightarrow> i \<Rightarrow> i \<Rightarrow> i" where [rewrite]: "divide(G,x,y) = (THE z. z \<in>. G \<and> z *\<^sub>G y = x)" abbreviation divide_notation ("(_/ '/\<^sub>_ _)" [70,70,71] 70) where "x /\<^sub>G y \<equiv> divide(G,x,y)" setup {* register_wellform_data ("x /\<^sub>G y", ["x \<in>. G", "y \<in> units(G)"]) *} setup {* add_gen_prfstep ("ring_inv_case", [WithProperty @{term_pat "is_ring(?R)"}, WithTerm @{term_pat "inv(?R,?x)"}, CreateConcl @{term_pat "?x \<in> units(?R)"}]) *} setup {* add_gen_prfstep ("ring_div_case", [WithProperty @{term_pat "is_ring(?R)"}, WithTerm @{term_pat "?x /\<^sub>?R ?y"}, CreateConcl @{term_pat "?y \<in> units(?R)"}]) *} lemma divide_exist [resolve]: "is_comm_ring(G) \<Longrightarrow> x \<in>. G \<Longrightarrow> y \<in> units(G) \<Longrightarrow> (x *\<^sub>G inv(G,y)) *\<^sub>G y = x" @proof @have "(x *\<^sub>G inv(G,y)) *\<^sub>G y = x *\<^sub>G (inv(G,y) *\<^sub>G y)" @qed lemma divide_type [typing]: "is_comm_ring(G) \<Longrightarrow> x \<in>. G \<Longrightarrow> y \<in> units(G) \<Longrightarrow> x /\<^sub>G y \<in>. G" @proof @have "(x *\<^sub>G inv(G,y)) *\<^sub>G y = x" @qed lemma divideD [rewrite]: "is_comm_ring(G) \<Longrightarrow> x \<in>. G \<Longrightarrow> y \<in> units(G) \<Longrightarrow> x /\<^sub>G y = x *\<^sub>G inv(G,y) \<and> inv(G,y) \<in>. G" @proof @have "(x *\<^sub>G inv(G,y)) *\<^sub>G y = x" @qed setup {* del_prfstep_thm @{thm divide_def} *} lemma comm_ring_divide_1: "is_comm_ring(G) \<Longrightarrow> n \<in> nat \<Longrightarrow> of_nat(G,n) = of_nat(G,n) /\<^sub>G 1\<^sub>G \<and> of_nat(G,n) \<in>. G \<and> 1 \<in> nat \<and> 1\<^sub>G \<in> units(G)" by auto2 lemma comm_ring_neg_divide_1: "is_comm_ring(G) \<Longrightarrow> n \<in> nat \<Longrightarrow> -\<^sub>G of_nat(G,n) = -\<^sub>G of_nat(G,n) /\<^sub>G 1\<^sub>G \<and> of_nat(G,n) \<in>. G \<and> -\<^sub>G of_nat(G,n) \<in>. G \<and> 1 \<in> nat \<and> 1\<^sub>G \<in> units(G)" by auto2 lemma comm_ring_divide_1_back [rewrite]: "is_comm_ring(G) \<Longrightarrow> p \<in>. G \<Longrightarrow> p /\<^sub>G 1\<^sub>G = p" by auto2 lemma comm_ring_zero_divide [rewrite]: "is_comm_ring(R) \<Longrightarrow> a \<in> units(R) \<Longrightarrow> 0\<^sub>R /\<^sub>R a = 0\<^sub>R" by auto2 lemma comm_ring_zero_divide' [forward]: "is_comm_ring(R) \<Longrightarrow> a \<in>. R \<Longrightarrow> b \<in> units(R) \<Longrightarrow> a /\<^sub>R b = 0\<^sub>R \<Longrightarrow> a = 0\<^sub>R" @proof @have "a /\<^sub>R b *\<^sub>R b = a" @qed lemma divide_cancel_right [rewrite]: "is_comm_ring(G) \<Longrightarrow> x \<in>. G \<Longrightarrow> y \<in>. G \<Longrightarrow> z \<in>. G \<Longrightarrow> y *\<^sub>G z \<in> units(G) \<Longrightarrow> (x *\<^sub>G z) /\<^sub>G (y *\<^sub>G z) = x /\<^sub>G y \<and> y \<in> units(G)" @proof @have "(x *\<^sub>G z) *\<^sub>G (inv(G,z) *\<^sub>G inv(G,y)) = x *\<^sub>G (z *\<^sub>G inv(G,z)) *\<^sub>G inv(G,y)" @qed lemma divide_cancel_left [rewrite]: "is_comm_ring(G) \<Longrightarrow> x \<in>. G \<Longrightarrow> y \<in>. G \<Longrightarrow> z \<in>. G \<Longrightarrow> z *\<^sub>G y \<in> units(G) \<Longrightarrow> (z *\<^sub>G x) /\<^sub>G (z *\<^sub>G y) = x /\<^sub>G y \<and> y \<in> units(G)" @proof @have "z *\<^sub>G x = x *\<^sub>G z" @have "z *\<^sub>G y = y *\<^sub>G z" @qed lemma divide_cross: "is_comm_ring(G) \<Longrightarrow> p \<in>. G \<Longrightarrow> q \<in> units(G) \<Longrightarrow> r \<in>. G \<Longrightarrow> s \<in> units(G) \<Longrightarrow> p /\<^sub>G q +\<^sub>G r /\<^sub>G s = (p *\<^sub>G s +\<^sub>G q *\<^sub>G r) /\<^sub>G (q *\<^sub>G s) \<and> q \<in>. G \<and> s \<in>. G \<and> p *\<^sub>G s \<in>. G \<and> q *\<^sub>G r \<in>. G \<and> p *\<^sub>G s +\<^sub>G q *\<^sub>G r \<in>. G \<and> q *\<^sub>G s \<in> units(G)" @proof @have "(p *\<^sub>G s +\<^sub>G q *\<^sub>G r) /\<^sub>G (q *\<^sub>G s) = (p *\<^sub>G s) /\<^sub>G (q *\<^sub>G s) +\<^sub>G (q *\<^sub>G r) /\<^sub>G (q *\<^sub>G s)" @qed lemma divide_mult: "is_comm_ring(G) \<Longrightarrow> p \<in>. G \<Longrightarrow> q \<in> units(G) \<Longrightarrow> r \<in>. G \<Longrightarrow> s \<in> units(G) \<Longrightarrow> (p /\<^sub>G q) *\<^sub>G (r /\<^sub>G s) = (p *\<^sub>G r) /\<^sub>G (q *\<^sub>G s) \<and> q \<in>. G \<and> s \<in>. G \<and> p *\<^sub>G r \<in>. G \<and> q *\<^sub>G s \<in> units(G)" @proof @have "(p *\<^sub>G inv(G,q)) *\<^sub>G (r *\<^sub>G inv(G,s)) = p *\<^sub>G (inv(G,q) *\<^sub>G r) *\<^sub>G inv(G,s)" @have "p *\<^sub>G (r *\<^sub>G inv(G,q)) *\<^sub>G inv(G,s) = (p *\<^sub>G r) *\<^sub>G (inv(G,q) *\<^sub>G inv(G,s))" @qed lemma comm_ring_units_minus [typing]: "is_comm_ring(G) \<Longrightarrow> p \<in> units(G) \<Longrightarrow> -\<^sub>G p \<in> units(G)" @proof @obtain "q\<in>.G" where "p *\<^sub>G q = \<one>\<^sub>G" @have "(-\<^sub>G p) *\<^sub>G (-\<^sub>G q) = p *\<^sub>G q" @qed lemma comm_ring_units_minus_back [typing]: "is_comm_ring(G) \<Longrightarrow> p \<in>. G \<Longrightarrow> -\<^sub>G p \<in> units(G) \<Longrightarrow> p \<in> units(G)" @proof @obtain "q\<in>.G" where "(-\<^sub>G p) *\<^sub>G q = \<one>\<^sub>G" @have "p *\<^sub>G (-\<^sub>G q) = -\<^sub>G p *\<^sub>G q" @qed lemma inv_neg [rewrite]: "is_comm_ring(G) \<Longrightarrow> p \<in>. G \<Longrightarrow> -\<^sub>G p \<in> units(G) \<Longrightarrow> inv(G, -\<^sub>G p) = -\<^sub>G (inv(G,p)) \<and> p \<in> units(G) \<and> inv(G,p) \<in>. G" @proof @have "-\<^sub>G p *\<^sub>G (-\<^sub>G inv(G,p)) = \<one>\<^sub>G" @qed lemma divide_inv [rewrite]: "is_comm_ring(G) \<Longrightarrow> p \<in>. G \<Longrightarrow> q \<in> units(G) \<Longrightarrow> p /\<^sub>G q \<in> units(G) \<Longrightarrow> inv(G,p /\<^sub>G q) = q /\<^sub>G p \<and> p \<in> units(G) \<and> q \<in>. G" by auto2 lemma divide_inv2: "is_comm_ring(G) \<Longrightarrow> p \<in>. G \<Longrightarrow> q \<in> units(G) \<Longrightarrow> (-\<^sub>G p) /\<^sub>G q \<in> units(G) \<Longrightarrow> inv(G,(-\<^sub>G p) /\<^sub>G q) = (-\<^sub>G q) /\<^sub>G p \<and> p \<in> units(G) \<and> q \<in>. G \<and> -\<^sub>G q \<in>. G" @proof @have "(-\<^sub>G p) /\<^sub>G q = -\<^sub>G (p /\<^sub>G q)" @have "p = -\<^sub>G (-\<^sub>G p)" @have "(-\<^sub>G q) /\<^sub>G p = -\<^sub>G (q /\<^sub>G p)" @qed lemma uminus_zero: "is_comm_ring(G) \<Longrightarrow> -\<^sub>G 0\<^sub>G = 0\<^sub>G \<and> 0 \<in> nat" by auto2 lemma uminus_inv1: "is_comm_ring(G) \<Longrightarrow> p \<in>. G \<Longrightarrow> q \<in> units(G) \<Longrightarrow> -\<^sub>G (p /\<^sub>G q) = (-\<^sub>G p) /\<^sub>G q \<and> -\<^sub>G p \<in>. G" by auto2 lemma uminus_inv2: "is_comm_ring(G) \<Longrightarrow> p \<in>. G \<Longrightarrow> q \<in> units(G) \<Longrightarrow> -\<^sub>G (-\<^sub>G p /\<^sub>G q) = p /\<^sub>G q" by auto2 setup {* fold del_prfstep_thm [@{thm times_commD}, @{thm left_distribD}, @{thm right_distribD}, @{thm left_distribD_back}, @{thm right_distribD_back}] *} setup {* fold del_prfstep_thm [@{thm ring_mult_sign_both}, @{thm divide_exist}, @{thm divideD}, @{thm divide_cancel_left}, @{thm divide_cancel_right}, @{thm divide_inv}] *} lemma zero_l': "is_ring(R) \<Longrightarrow> x \<in>. R \<Longrightarrow> 0\<^sub>R +\<^sub>R x = x" by auto2 lemma unit_l': "is_ring(R) \<Longrightarrow> x \<in>. R \<Longrightarrow> 1\<^sub>R *\<^sub>R x = x" by auto2 lemma mult_zero_l': "is_ring(R) \<Longrightarrow> x \<in>. R \<Longrightarrow> 0\<^sub>R *\<^sub>R x = 0\<^sub>R" by auto2 lemma inv_l': "is_ring(R) \<Longrightarrow> x \<in> units(R) \<Longrightarrow> inv(R,x) *\<^sub>R x = 1\<^sub>R \<and> 1 \<in> nat" by auto2 lemma of_nat_zero': "is_ring(R) \<Longrightarrow> \<zero>\<^sub>R = of_nat(R,0) \<and> 0 \<in> nat" by auto2 lemma of_nat_one': "is_ring(R) \<Longrightarrow> \<one>\<^sub>R = of_nat(R,1) \<and> 1 \<in> nat" by auto2 ML_file "rat_arith.ML" ML_file "alg_ring.ML" ML_file "alg_ring_test.ML" section \<open>Integral domain\<close> definition integral_domain :: "i \<Rightarrow> o" where [rewrite]: "integral_domain(R) \<longleftrightarrow> (is_comm_ring(R) \<and> (\<forall>x\<in>.R. \<forall>y\<in>.R. x *\<^sub>R y = \<zero>\<^sub>R \<longrightarrow> x = \<zero>\<^sub>R \<or> y = \<zero>\<^sub>R))" lemma integral_domainD [forward]: "integral_domain(R) \<Longrightarrow> is_comm_ring(R)" "integral_domain(R) \<Longrightarrow> x \<in>. R \<Longrightarrow> y \<in>. R \<Longrightarrow> x *\<^sub>R y = \<zero>\<^sub>R \<Longrightarrow> x \<noteq> \<zero>\<^sub>R \<Longrightarrow> y = \<zero>\<^sub>R" "integral_domain(R) \<Longrightarrow> x \<in>. R \<Longrightarrow> y \<in>. R \<Longrightarrow> x *\<^sub>R y = \<zero>\<^sub>R \<Longrightarrow> y \<noteq> \<zero>\<^sub>R \<Longrightarrow> x = \<zero>\<^sub>R" by auto2+ setup {* del_prfstep_thm_eqforward @{thm integral_domain_def} *} lemma integral_domain_cancel_right [forward]: "integral_domain(R) \<Longrightarrow> x \<in>. R \<Longrightarrow> y \<in>. R \<Longrightarrow> z \<in>. R \<Longrightarrow> z \<noteq> \<zero>\<^sub>R \<Longrightarrow> x *\<^sub>R z = y *\<^sub>R z \<Longrightarrow> x = y" @proof @have "x *\<^sub>R z -\<^sub>R y *\<^sub>R z = (x -\<^sub>R y) *\<^sub>R z" @qed lemma integral_domain_cancel_left [forward]: "integral_domain(R) \<Longrightarrow> x \<in>. R \<Longrightarrow> y \<in>. R \<Longrightarrow> z \<in>. R \<Longrightarrow> z \<noteq> \<zero>\<^sub>R \<Longrightarrow> z *\<^sub>R x = z *\<^sub>R y \<Longrightarrow> x = y" @proof @have "z *\<^sub>R x -\<^sub>R z *\<^sub>R y = z *\<^sub>R (x -\<^sub>R y)" @qed section \<open>Ordered rings\<close> definition is_ord_ring :: "i \<Rightarrow> o" where [rewrite]: "is_ord_ring(R) \<longleftrightarrow> (is_ord_ring_raw(R) \<and> is_comm_ring(R) \<and> linorder(R) \<and> ord_ring_add_left(R) \<and> ord_ring_mult_pos(R))" lemma is_ord_ringD [forward]: "is_ord_ring(R) \<Longrightarrow> is_ord_ring_raw(R)" "is_ord_ring(R) \<Longrightarrow> is_comm_ring(R)" "is_ord_ring(R) \<Longrightarrow> linorder(R)" "is_ord_ring(R) \<Longrightarrow> ord_ring_add_left(R)" "is_ord_ring(R) \<Longrightarrow> ord_ring_mult_pos(R)" by auto2+ setup {* del_prfstep_thm_eqforward @{thm is_ord_ring_def} *} lemma is_ord_ring_prop [forward]: "is_ord_ring(R) \<Longrightarrow> is_ord_ring_raw(S) \<Longrightarrow> eq_str_ord_ring(R,S) \<Longrightarrow> is_ord_ring(S)" by auto2 (* Usually we don't convert > to \<noteq>, but this case is especially frequent. *) lemma ord_ring_nonzero [forward]: "is_ord_ring(R) \<Longrightarrow> x >\<^sub>R \<zero>\<^sub>R \<Longrightarrow> x \<noteq> \<zero>\<^sub>R" "is_ord_ring(R) \<Longrightarrow> x <\<^sub>R \<zero>\<^sub>R \<Longrightarrow> x \<noteq> \<zero>\<^sub>R" by auto2+ lemma ord_ring_ordered_left_iff [rewrite]: "is_ord_ring(R) \<Longrightarrow> x \<in>. R \<Longrightarrow> y \<in>. R \<Longrightarrow> z \<in>. R \<Longrightarrow> z +\<^sub>R x \<le>\<^sub>R z +\<^sub>R y \<longleftrightarrow> x \<le>\<^sub>R y" @proof @have "x = (-\<^sub>R z) +\<^sub>R (x +\<^sub>R z)" @have "y = (-\<^sub>R z) +\<^sub>R (y +\<^sub>R z)" @qed lemma ord_ring_ordered_right_iff [rewrite]: "is_ord_ring(R) \<Longrightarrow> x \<in>. R \<Longrightarrow> y \<in>. R \<Longrightarrow> z \<in>. R \<Longrightarrow> x +\<^sub>R z \<le>\<^sub>R y +\<^sub>R z \<longleftrightarrow> x \<le>\<^sub>R y" @proof @have "x +\<^sub>R z = z +\<^sub>R x" @have "y +\<^sub>R z = z +\<^sub>R y" @qed (* The main results for automatic simplification *) lemma ord_ring_le_switch_left: "is_ord_ring(R) \<Longrightarrow> x \<in>. R \<Longrightarrow> y \<in>. R \<Longrightarrow> (x \<le>\<^sub>R y \<longleftrightarrow> 0\<^sub>R \<le>\<^sub>R y -\<^sub>R x) \<and> y -\<^sub>R x \<in>. R \<and> 0\<^sub>R \<in>. R \<and> 0 \<in> nat" @proof @contradiction @have "0\<^sub>R +\<^sub>R x = y -\<^sub>R x +\<^sub>R x" @qed lemma ord_ring_less_switch_left: "is_ord_ring(R) \<Longrightarrow> x \<in>. R \<Longrightarrow> y \<in>. R \<Longrightarrow> (x <\<^sub>R y \<longleftrightarrow> 0\<^sub>R <\<^sub>R y -\<^sub>R x) \<and> y -\<^sub>R x \<in>. R \<and> 0\<^sub>R \<in>. R \<and> 0 \<in> nat" @proof @contradiction @have "0\<^sub>R +\<^sub>R x = y -\<^sub>R x +\<^sub>R x" @qed ML_file "ord_ring_steps.ML" lemma ord_ring_single_less_add [backward]: "is_ord_ring(R) \<Longrightarrow> x \<in>. R \<Longrightarrow> \<zero>\<^sub>R <\<^sub>R y \<Longrightarrow> x <\<^sub>R x +\<^sub>R y" by auto2 lemma ord_ring_single_less_sub [backward]: "is_ord_ring(R) \<Longrightarrow> x \<in>. R \<Longrightarrow> \<zero>\<^sub>R <\<^sub>R y \<Longrightarrow> x >\<^sub>R x -\<^sub>R y" by auto2 lemma ord_ring_single_le_add [backward]: "is_ord_ring(R) \<Longrightarrow> x \<in>. R \<Longrightarrow> \<zero>\<^sub>R \<le>\<^sub>R y \<Longrightarrow> x \<le>\<^sub>R x +\<^sub>R y" by auto2 lemma ord_ring_mix1 [backward1, backward2]: "is_ord_ring(R) \<Longrightarrow> p \<le>\<^sub>R q \<Longrightarrow> r \<le>\<^sub>R s \<Longrightarrow> p +\<^sub>R r \<le>\<^sub>R q +\<^sub>R s" @proof @have "p +\<^sub>R r \<le>\<^sub>R p +\<^sub>R s" @qed lemma ord_ring_mix2 [backward1, backward2]: "is_ord_ring(R) \<Longrightarrow> p \<le>\<^sub>R q \<Longrightarrow> r <\<^sub>R s \<Longrightarrow> p +\<^sub>R r <\<^sub>R q +\<^sub>R s" @proof @have "p +\<^sub>R r <\<^sub>R p +\<^sub>R s" @qed lemma ord_ring_mix3 [backward1, backward2]: "is_ord_ring(R) \<Longrightarrow> p <\<^sub>R q \<Longrightarrow> r \<le>\<^sub>R s \<Longrightarrow> p +\<^sub>R r <\<^sub>R q +\<^sub>R s" @proof @have "p +\<^sub>R r <\<^sub>R q +\<^sub>R r" @qed lemma ord_ring_strict_ordered_left_iff [rewrite]: "is_ord_ring(R) \<Longrightarrow> x \<in>. R \<Longrightarrow> y \<in>. R \<Longrightarrow> z \<in>. R \<Longrightarrow> z +\<^sub>R x <\<^sub>R z +\<^sub>R y \<longleftrightarrow> x <\<^sub>R y" by auto2 lemma ord_ring_strict_ordered_right_iff [rewrite]: "is_ord_ring(R) \<Longrightarrow> x \<in>. R \<Longrightarrow> y \<in>. R \<Longrightarrow> z \<in>. R \<Longrightarrow> x +\<^sub>R z <\<^sub>R y +\<^sub>R z \<longleftrightarrow> x <\<^sub>R y" by auto2 lemma ord_ring_ge_equiv [rewrite]: "is_ord_ring(R) \<Longrightarrow> p \<in>. R \<Longrightarrow> q \<in>. R \<Longrightarrow> p -\<^sub>R q \<ge>\<^sub>R \<zero>\<^sub>R \<longleftrightarrow> p \<ge>\<^sub>R q" by auto2 lemma ord_ring_gt_equiv [rewrite]: "is_ord_ring(R) \<Longrightarrow> p \<in>. R \<Longrightarrow> q \<in>. R \<Longrightarrow> p -\<^sub>R q >\<^sub>R \<zero>\<^sub>R \<longleftrightarrow> p >\<^sub>R q" by auto2 lemma ord_ring_mult_le_right [backward1, backward2]: "is_ord_ring(R) \<Longrightarrow> x \<ge>\<^sub>R y \<Longrightarrow> z \<ge>\<^sub>R \<zero>\<^sub>R \<Longrightarrow> x *\<^sub>R z \<ge>\<^sub>R y *\<^sub>R z" @proof @have "x -\<^sub>R y \<ge>\<^sub>R \<zero>\<^sub>R" @have "x *\<^sub>R z -\<^sub>R y *\<^sub>R z = (x -\<^sub>R y) *\<^sub>R z" @have "x *\<^sub>R z -\<^sub>R y *\<^sub>R z \<ge>\<^sub>R \<zero>\<^sub>R" @qed lemma ord_ring_mult_le_left [backward1, backward2]: "is_ord_ring(R) \<Longrightarrow> x \<ge>\<^sub>R y \<Longrightarrow> z \<ge>\<^sub>R \<zero>\<^sub>R \<Longrightarrow> z *\<^sub>R x \<ge>\<^sub>R z *\<^sub>R y" @proof @have "x *\<^sub>R z \<ge>\<^sub>R y *\<^sub>R z" @qed lemma ord_ring_mult_lt_right [backward1, backward2]: "is_ord_ring(R) \<Longrightarrow> integral_domain(R) \<Longrightarrow> x >\<^sub>R y \<Longrightarrow> z >\<^sub>R \<zero>\<^sub>R \<Longrightarrow> x *\<^sub>R z >\<^sub>R y *\<^sub>R z" @proof @have "x \<noteq> y" @have "x *\<^sub>R z \<noteq> y *\<^sub>R z" @qed lemma ord_ring_mult_lt_left [backward1, backward2]: "is_ord_ring(R) \<Longrightarrow> integral_domain(R) \<Longrightarrow> x >\<^sub>R y \<Longrightarrow> z >\<^sub>R \<zero>\<^sub>R \<Longrightarrow> z *\<^sub>R x >\<^sub>R z *\<^sub>R y" @proof @have "x *\<^sub>R z >\<^sub>R y *\<^sub>R z" @qed lemma ord_ring_mult_mix [backward1, backward2]: "is_ord_ring(R) \<Longrightarrow> p \<ge>\<^sub>R q \<Longrightarrow> q \<ge>\<^sub>R \<zero>\<^sub>R \<Longrightarrow> s \<ge>\<^sub>R \<zero>\<^sub>R \<Longrightarrow> r \<ge>\<^sub>R s \<Longrightarrow> p *\<^sub>R r \<ge>\<^sub>R q *\<^sub>R s" @proof @have "p *\<^sub>R r \<ge>\<^sub>R q *\<^sub>R r" @qed lemma ord_ring_mult_mix2 [backward1, backward2]: "is_ord_ring(R) \<Longrightarrow> integral_domain(R) \<Longrightarrow> p >\<^sub>R q \<Longrightarrow> q >\<^sub>R \<zero>\<^sub>R \<Longrightarrow> s >\<^sub>R \<zero>\<^sub>R \<Longrightarrow> r \<ge>\<^sub>R s \<Longrightarrow> p *\<^sub>R r >\<^sub>R q *\<^sub>R s" @proof @have "p *\<^sub>R r >\<^sub>R q *\<^sub>R r" @qed lemma ord_ring_mult_mix3 [backward1, backward2]: "is_ord_ring(R) \<Longrightarrow> integral_domain(R) \<Longrightarrow> p \<ge>\<^sub>R q \<Longrightarrow> q >\<^sub>R \<zero>\<^sub>R \<Longrightarrow> s >\<^sub>R \<zero>\<^sub>R \<Longrightarrow> r >\<^sub>R s \<Longrightarrow> p *\<^sub>R r >\<^sub>R q *\<^sub>R s" by auto2 lemma ord_ring_neg_ge_zero [backward]: "is_ord_ring(R) \<Longrightarrow> a \<in>. R \<Longrightarrow> a \<ge>\<^sub>R \<zero>\<^sub>R \<Longrightarrow> -\<^sub>R a \<le>\<^sub>R \<zero>\<^sub>R" by auto2 setup {* add_forward_prfstep_cond @{thm ord_ring_neg_ge_zero} [with_term "-\<^sub>?R ?a"] *} lemma ord_ring_neg_gt_zero [backward]: "is_ord_ring(R) \<Longrightarrow> a \<in>. R \<Longrightarrow> a >\<^sub>R \<zero>\<^sub>R \<Longrightarrow> -\<^sub>R a <\<^sub>R \<zero>\<^sub>R" by auto2 setup {* add_forward_prfstep_cond @{thm ord_ring_neg_gt_zero} [with_term "-\<^sub>?R ?a"] *} lemma ord_ring_neg_le_zero [backward]: "is_ord_ring(R) \<Longrightarrow> a \<in>. R \<Longrightarrow> a \<le>\<^sub>R \<zero>\<^sub>R \<Longrightarrow> -\<^sub>R a \<ge>\<^sub>R \<zero>\<^sub>R" by auto2 setup {* add_forward_prfstep_cond @{thm ord_ring_neg_le_zero} [with_term "-\<^sub>?R ?a"] *} lemma ord_ring_neg_lt_zero [backward]: "is_ord_ring(R) \<Longrightarrow> a \<in>. R \<Longrightarrow> a <\<^sub>R \<zero>\<^sub>R \<Longrightarrow> -\<^sub>R a >\<^sub>R \<zero>\<^sub>R" by auto2 setup {* add_forward_prfstep_cond @{thm ord_ring_neg_lt_zero} [with_term "-\<^sub>?R ?a"] *} lemma ord_ring_mult_pos_neg [backward1, backward2]: "is_ord_ring(R) \<Longrightarrow> a \<ge>\<^sub>R \<zero>\<^sub>R \<Longrightarrow> b \<le>\<^sub>R \<zero>\<^sub>R \<Longrightarrow> a *\<^sub>R b \<le>\<^sub>R \<zero>\<^sub>R" @proof @have "a *\<^sub>R (-\<^sub>R b) \<ge>\<^sub>R \<zero>\<^sub>R" @qed setup {* add_forward_prfstep_cond @{thm ord_ring_mult_pos_neg} [with_term "?a *\<^sub>?R ?b"] *} lemma ord_ring_mult_neg_pos [backward1, backward2]: "is_ord_ring(R) \<Longrightarrow> a \<le>\<^sub>R \<zero>\<^sub>R \<Longrightarrow> b \<ge>\<^sub>R \<zero>\<^sub>R \<Longrightarrow> a *\<^sub>R b \<le>\<^sub>R \<zero>\<^sub>R" @proof @contradiction @have "b *\<^sub>R a \<ge>\<^sub>R \<zero>\<^sub>R" @qed setup {* add_forward_prfstep_cond @{thm ord_ring_mult_neg_pos} [with_term "?a *\<^sub>?R ?b"] *} lemma ord_field_mult_le_cancel_right [forward]: "is_ord_ring(R) \<Longrightarrow> integral_domain(R) \<Longrightarrow> x \<in>. R \<Longrightarrow> y \<in>. R \<Longrightarrow> z >\<^sub>R \<zero>\<^sub>R \<Longrightarrow> x *\<^sub>R z \<ge>\<^sub>R y *\<^sub>R z \<Longrightarrow> x \<ge>\<^sub>R y" by auto2 lemma ord_ring_mult_neg [backward1, backward2]: "is_ord_ring(R) \<Longrightarrow> a \<le>\<^sub>R \<zero>\<^sub>R \<Longrightarrow> b \<le>\<^sub>R \<zero>\<^sub>R \<Longrightarrow> a *\<^sub>R b \<ge>\<^sub>R \<zero>\<^sub>R" @proof @have "(-\<^sub>R a) *\<^sub>R (-\<^sub>R b) \<ge>\<^sub>R \<zero>\<^sub>R" @qed setup {* add_forward_prfstep_cond @{thm ord_ring_mult_neg} [with_term "?a *\<^sub>?R ?b"] *} lemma ord_ring_square_ge_zero [resolve]: "is_ord_ring(R) \<Longrightarrow> a \<in>. R \<Longrightarrow> a *\<^sub>R a \<ge>\<^sub>R \<zero>\<^sub>R" @proof @case "a \<ge>\<^sub>R \<zero>\<^sub>R" @qed lemma ord_ring_square_gt_zero [backward]: "is_ord_ring(R) \<Longrightarrow> integral_domain(R) \<Longrightarrow> a \<in>. R \<Longrightarrow> a \<noteq> \<zero>\<^sub>R \<Longrightarrow> a *\<^sub>R a >\<^sub>R \<zero>\<^sub>R" @proof @have "a *\<^sub>R a \<noteq> \<zero>\<^sub>R" @qed lemma ord_ring_one_ge_zero [resolve]: "is_ord_ring(R) \<Longrightarrow> \<one>\<^sub>R >\<^sub>R \<zero>\<^sub>R" @proof @have "\<one>\<^sub>R = \<one>\<^sub>R *\<^sub>R \<one>\<^sub>R" @qed lemma ord_ring_mult_pos_strict [backward1]: "is_ord_ring(R) \<Longrightarrow> integral_domain(R) \<Longrightarrow> a >\<^sub>R \<zero>\<^sub>R \<Longrightarrow> b >\<^sub>R \<zero>\<^sub>R \<Longrightarrow> a *\<^sub>R b >\<^sub>R \<zero>\<^sub>R" by auto2 setup {* add_forward_prfstep_cond @{thm ord_ring_mult_pos_strict} [with_term "?a *\<^sub>?R ?b"] *} lemma ord_ring_mult_pos_neg_strict [backward1]: "is_ord_ring(R) \<Longrightarrow> integral_domain(R) \<Longrightarrow> a >\<^sub>R \<zero>\<^sub>R \<Longrightarrow> b <\<^sub>R \<zero>\<^sub>R \<Longrightarrow> a *\<^sub>R b <\<^sub>R \<zero>\<^sub>R" by auto2 lemma ord_ring_nonneg_add [backward1, backward2]: "is_ord_ring(R) \<Longrightarrow> a \<ge>\<^sub>R \<zero>\<^sub>R \<Longrightarrow> b \<ge>\<^sub>R \<zero>\<^sub>R \<Longrightarrow> a +\<^sub>R b \<ge>\<^sub>R \<zero>\<^sub>R" by auto2 lemma ord_ring_pos_add1 [backward1, backward2]: "is_ord_ring(R) \<Longrightarrow> a >\<^sub>R \<zero>\<^sub>R \<Longrightarrow> b \<ge>\<^sub>R \<zero>\<^sub>R \<Longrightarrow> a +\<^sub>R b >\<^sub>R \<zero>\<^sub>R" by auto2 lemma ord_ring_pos_add2 [backward1, backward2]: "is_ord_ring(R) \<Longrightarrow> a \<ge>\<^sub>R \<zero>\<^sub>R \<Longrightarrow> b >\<^sub>R \<zero>\<^sub>R \<Longrightarrow> a +\<^sub>R b >\<^sub>R \<zero>\<^sub>R" by auto2 lemma ord_ring_le_to_lt_plus_one [backward]: "is_ord_ring(R) \<Longrightarrow> x \<le>\<^sub>R y \<Longrightarrow> x <\<^sub>R y +\<^sub>R \<one>\<^sub>R" @proof @have "x +\<^sub>R \<zero>\<^sub>R <\<^sub>R y +\<^sub>R \<one>\<^sub>R" @qed lemma ord_ring_le_minus_switch [rewrite]: "is_ord_ring(R) \<Longrightarrow> a \<in>. R \<Longrightarrow> b \<in>. R \<Longrightarrow> -\<^sub>R a \<le>\<^sub>R -\<^sub>R b \<longleftrightarrow> a \<ge>\<^sub>R b" by auto2 lemma ord_ring_le_minus_switch2 [resolve]: "is_ord_ring(R) \<Longrightarrow> a \<in>. R \<Longrightarrow> -\<^sub>R a \<le>\<^sub>R b \<Longrightarrow> a \<ge>\<^sub>R -\<^sub>R b" by auto2 lemma ord_ring_le_minus_switch3 [resolve]: "is_ord_ring(R) \<Longrightarrow> a \<in>. R \<Longrightarrow> -\<^sub>R a \<ge>\<^sub>R b \<Longrightarrow> a \<le>\<^sub>R -\<^sub>R b" by auto2 lemma ord_ring_of_nat_Suc: "is_ord_ring(R) \<Longrightarrow> n \<in>. \<nat> \<Longrightarrow> of_nat(R,n) <\<^sub>R of_nat(R, n +\<^sub>\<nat> 1)" by auto2 setup {* add_forward_prfstep_cond @{thm ord_ring_of_nat_Suc} [with_term "of_nat(?R, ?n +\<^sub>\<nat> 1)"] *} lemma ord_ring_of_nat_ge_zero [backward]: "is_ord_ring(R) \<Longrightarrow> n \<in> nat \<Longrightarrow> of_nat(R,n) \<ge>\<^sub>R \<zero>\<^sub>R" @proof @var_induct "n \<in> nat" @qed setup {* del_prfstep_thm @{thm ord_ring_of_nat_Suc} *} lemma ord_field_char_zero' [backward]: "is_ord_ring(R) \<Longrightarrow> n \<in> nat \<Longrightarrow> n \<noteq> 0 \<Longrightarrow> of_nat(R,n) >\<^sub>R \<zero>\<^sub>R" @proof @obtain "m\<in>.\<nat>" where "n = m +\<^sub>\<nat> 1" @have "of_nat(R,m) \<ge>\<^sub>R \<zero>\<^sub>R" @qed lemma ord_ring_of_nat_le [backward]: "is_ord_ring(R) \<Longrightarrow> m \<le>\<^sub>\<nat> n \<Longrightarrow> of_nat(R,m) \<le>\<^sub>R of_nat(R,n)" @proof @obtain "p\<in>.\<nat>" where "n = m +\<^sub>\<nat> p" @qed lemma ord_ring_of_nat_less [backward]: "is_ord_ring(R) \<Longrightarrow> m <\<^sub>\<nat> n \<Longrightarrow> of_nat(R,m) <\<^sub>R of_nat(R,n)" @proof @obtain "p\<in>nat" where "p\<noteq>0" "n = m +\<^sub>\<nat> p" @qed lemma ord_ring_of_nat_le_back [forward]: "is_ord_ring(R) \<Longrightarrow> m \<in> nat \<Longrightarrow> n \<in> nat \<Longrightarrow> of_nat(R,m) \<le>\<^sub>R of_nat(R,n) \<Longrightarrow> m \<le>\<^sub>\<nat> n" @proof @have "\<not>of_nat(R,n) <\<^sub>R of_nat(R,m)" @qed lemma ord_ring_of_nat_eq [forward]: "is_ord_ring(R) \<Longrightarrow> m \<in> nat \<Longrightarrow> n \<in> nat \<Longrightarrow> of_nat(R,m) = of_nat(R,n) \<Longrightarrow> m = n" @proof @case "m <\<^sub>\<nat> n" @with @have "of_nat(R,m) <\<^sub>R of_nat(R,n)" @end @case "m >\<^sub>\<nat> n" @with @have "of_nat(R,m) >\<^sub>R of_nat(R,n)" @end @qed lemma ord_ring_of_nat_ge_one [backward]: "is_ord_ring(R) \<Longrightarrow> a \<in> nat \<Longrightarrow> b \<in> nat \<Longrightarrow> of_nat(R,a) >\<^sub>R of_nat(R,b) \<Longrightarrow> of_nat(R,a) \<ge>\<^sub>R of_nat(R,b) +\<^sub>R 1\<^sub>R" @proof @have "of_nat(R,b) +\<^sub>R 1\<^sub>R = of_nat(R, b +\<^sub>\<nat> 1)" @qed lemma ord_ring_has_pos_greater [backward]: "is_ord_ring(R) \<Longrightarrow> x \<in>. R \<Longrightarrow> \<exists>y\<in>.R. y >\<^sub>R \<zero>\<^sub>R \<and> y \<ge>\<^sub>R x" @proof @let "m = max(R,\<one>\<^sub>R,x)" @have "\<one>\<^sub>R >\<^sub>R \<zero>\<^sub>R" @qed lemma ord_ring_is_unbounded [forward]: "is_ord_ring(R) \<Longrightarrow> order_unbounded(R)" @proof @have (@rule) "\<forall>x\<in>.R. \<exists>y. y <\<^sub>R x" @with @have "x <\<^sub>R x +\<^sub>R 1\<^sub>R" @have "x -\<^sub>R 1\<^sub>R <\<^sub>R x" @end @have (@rule) "\<forall>x\<in>.R. \<exists>y. y >\<^sub>R x" @with @have "x +\<^sub>R 1\<^sub>R >\<^sub>R x" @end @qed lemma power_gt_0 [backward]: "is_ord_ring(R) \<Longrightarrow> integral_domain(R) \<Longrightarrow> e \<in> nat \<Longrightarrow> b >\<^sub>R \<zero>\<^sub>R \<Longrightarrow> b ^\<^sub>R e >\<^sub>R \<zero>\<^sub>R" @proof @var_induct "e \<in> nat" @qed lemma power_gt_n [resolve]: "is_ord_ring(R) \<Longrightarrow> n \<in> nat \<Longrightarrow> of_nat(R,n) <\<^sub>R 2\<^sub>R ^\<^sub>R n" @proof @var_induct "n \<in> nat" @with @subgoal "n = n' +\<^sub>\<nat> 1" @have "2\<^sub>R ^\<^sub>R (n' +\<^sub>\<nat> 1) = 2\<^sub>R ^\<^sub>R n' +\<^sub>R 2\<^sub>R ^\<^sub>R n'" @endgoal @end @qed section \<open>Subsets of an ordered ring\<close> definition pos_elts :: "i \<Rightarrow> i" where [rewrite]: "pos_elts(R) = {x\<in>.R. x >\<^sub>R \<zero>\<^sub>R}" lemma pos_eltsD [forward]: "x \<in> pos_elts(R) \<Longrightarrow> x \<in>. R \<and> x >\<^sub>R \<zero>\<^sub>R" by auto2 lemma pos_eltsI [backward2]: "x \<in>. R \<Longrightarrow> x >\<^sub>R \<zero>\<^sub>R \<Longrightarrow> x \<in> pos_elts(R)" by auto2 lemma pos_elts_one [resolve]: "is_ord_ring(R) \<Longrightarrow> \<one>\<^sub>R \<in> pos_elts(R)" by auto2 lemma pos_elts_mult [typing]: "is_ord_ring(R) \<Longrightarrow> integral_domain(R) \<Longrightarrow> x \<in> pos_elts(R) \<Longrightarrow> y \<in> pos_elts(R) \<Longrightarrow> x *\<^sub>R y \<in> pos_elts(R)" by auto2 lemma pos_elts_add [typing]: "is_ord_ring(R) \<Longrightarrow> x \<in> pos_elts(R) \<Longrightarrow> y \<in> pos_elts(R) \<Longrightarrow> x +\<^sub>R y \<in> pos_elts(R)" by auto2 section \<open>Construction of ordered ring from non-negative elements\<close> (* See Bourbaki, Algebra VI.2.1 *) definition subset_add_closed :: "i \<Rightarrow> i \<Rightarrow> o" where [rewrite]: "subset_add_closed(R,S) \<longleftrightarrow> (\<forall>x\<in>S. \<forall>y\<in>S. x +\<^sub>R y \<in> S)" lemma subset_add_closedD [typing]: "subset_add_closed(R,S) \<Longrightarrow> x \<in> S \<Longrightarrow> y \<in> S \<Longrightarrow> x +\<^sub>R y \<in> S" by auto2 setup {* del_prfstep_thm_eqforward @{thm subset_add_closed_def} *} definition subset_mult_closed :: "i \<Rightarrow> i \<Rightarrow> o" where [rewrite]: "subset_mult_closed(R,S) \<longleftrightarrow> (\<forall>x\<in>S. \<forall>y\<in>S. x *\<^sub>R y \<in> S)" lemma subset_mult_closedD [typing]: "subset_mult_closed(R,S) \<Longrightarrow> x \<in> S \<Longrightarrow> y \<in> S \<Longrightarrow> x *\<^sub>R y \<in> S" by auto2 setup {* del_prfstep_thm_eqforward @{thm subset_mult_closed_def} *} definition nonneg_compat_inter :: "i \<Rightarrow> i \<Rightarrow> o" where [rewrite]: "nonneg_compat_inter(R,S) \<longleftrightarrow> (\<forall>x\<in>S. -\<^sub>R x \<in> S \<longrightarrow> x = \<zero>\<^sub>R)" lemma nonneg_compat_interD [forward]: "nonneg_compat_inter(R,S) \<Longrightarrow> -\<^sub>R x \<in> S \<Longrightarrow> x \<in> S \<Longrightarrow> x = \<zero>\<^sub>R" by auto2 setup {* del_prfstep_thm_eqforward @{thm nonneg_compat_inter_def} *} definition nonneg_compat_union :: "i \<Rightarrow> i \<Rightarrow> o" where [rewrite]: "nonneg_compat_union(R,S) \<longleftrightarrow> (\<forall>x\<in>.R. x \<in> S \<or> -\<^sub>R x \<in> S)" lemma nonneg_compat_unionD [forward]: "x \<in>. R \<Longrightarrow> nonneg_compat_union(R,S) \<Longrightarrow> -\<^sub>R x \<notin> S \<Longrightarrow> x \<in> S" by auto2 setup {* del_prfstep_thm_eqforward @{thm nonneg_compat_union_def} *} definition ord_ring_from_nonneg :: "i \<Rightarrow> i \<Rightarrow> i" where [rewrite]: "ord_ring_from_nonneg(R,S) = OrdRing(carrier(R), \<zero>\<^sub>R, \<lambda>x y. x +\<^sub>R y, \<one>\<^sub>R, \<lambda>x y. x *\<^sub>R y, \<lambda>x y. y -\<^sub>R x \<in> S)" definition nonneg_compat :: "i \<Rightarrow> i \<Rightarrow> o" where [rewrite]: "nonneg_compat(R,S) \<longleftrightarrow> (\<zero>\<^sub>R \<in> S \<and> subset_add_closed(R,S) \<and> subset_mult_closed(R,S) \<and> nonneg_compat_inter(R,S) \<and> nonneg_compat_union(R,S))" lemma ord_ring_from_nonneg_is_ord_ring_raw [forward]: "is_ring_raw(R) \<Longrightarrow> ord_ring_form(ord_ring_from_nonneg(R,S))" by auto2 lemma ord_ring_from_nonneg_eq_str: "is_ring_raw(R) \<Longrightarrow> eq_str_ring(R,ord_ring_from_nonneg(R,S))" by auto2 setup {* add_forward_prfstep_cond @{thm ord_ring_from_nonneg_eq_str} [with_term "ord_ring_from_nonneg(?R,?S)"] *} lemma ord_ring_from_nonneg_eval [rewrite]: "is_ring_raw(R) \<Longrightarrow> A = ord_ring_from_nonneg(R,S) \<Longrightarrow> is_abgroup(A) \<Longrightarrow> x \<in>. A \<Longrightarrow> y \<in>. A \<Longrightarrow> x \<le>\<^sub>A y \<longleftrightarrow> y -\<^sub>A x \<in> S" by auto2 setup {* del_prfstep_thm @{thm ord_ring_from_nonneg_def} *} lemma ord_ring_from_nonneg_is_linorder [forward]: "is_ring_raw(R) \<Longrightarrow> A = ord_ring_from_nonneg(R,S) \<Longrightarrow> is_comm_ring(A) \<Longrightarrow> nonneg_compat(A,S) \<Longrightarrow> linorder(A)" @proof @have "\<forall>x y z. x \<le>\<^sub>A y \<longrightarrow> y \<le>\<^sub>A z \<longrightarrow> x \<le>\<^sub>A z" @with @have "z -\<^sub>A x = (z -\<^sub>A y) +\<^sub>A (y -\<^sub>A x)" @end @have "\<forall>x y. x \<le>\<^sub>A y \<longrightarrow> y \<le>\<^sub>A x \<longrightarrow> x = y" @with @have "-\<^sub>A (y -\<^sub>A x) = x -\<^sub>A y" @end @have "\<forall>x\<in>.A. \<forall>y\<in>.A. x \<le>\<^sub>A y \<or> x \<ge>\<^sub>A y" @with @have "-\<^sub>A (y -\<^sub>A x) = x -\<^sub>A y" @end @qed lemma ord_ring_from_nonneg_compat_plus [forward]: "is_ring_raw(R) \<Longrightarrow> A = ord_ring_from_nonneg(R,S) \<Longrightarrow> is_comm_ring(A) \<Longrightarrow> nonneg_compat(A,S) \<Longrightarrow> ord_ring_add_left(A)" @proof @have "\<forall>a\<in>.A. \<forall>b c. b \<le>\<^sub>A c \<longrightarrow> a +\<^sub>A b \<le>\<^sub>A a +\<^sub>A c" @with @have "(a +\<^sub>R c) -\<^sub>R (a +\<^sub>R b) = c -\<^sub>R b" @end @qed lemma ord_ring_from_nonneg_is_ord_ring [forward]: "is_ring_raw(R) \<Longrightarrow> A = ord_ring_from_nonneg(R,S) \<Longrightarrow> is_comm_ring(A) \<Longrightarrow> nonneg_compat(A,S) \<Longrightarrow> is_ord_ring(ord_ring_from_nonneg(R,S))" by auto2 end
function centroid( verts::AbstractVector{<:AbstractPoint{3,T1}}, ) where {T1 <: Real} centroid_point = reduce(+, verts) / length(verts) return centroid_point end function centroid(mesh) verts = coordinates(mesh) centroid_point = centroid(verts) end function decompose_vertex_and_face(mesh::Mesh) verts = coordinates(mesh) triangles = faces(mesh) return verts, triangles end function angle_between_vector(v1, v2) v1 = v1 / norm(v1) v2 = v2 / norm(v2) cos_theta = dot(v1, v2) if cos_theta >= 1.0 return 0.0 end theta = acos(cos_theta) return theta end function calculate_area_bins(verts::AbstractVector{<:AbstractPoint{3,T1}}, triangles::AbstractVector{<:TriangleFace}, ) where T1 <: AbstractFloat areas_array = area.(Ref(verts), triangles) cumsum_area = similar(areas_array) cumsum_area = cumsum!(cumsum_area, areas_array) total_area = cumsum_area[end] bins = cumsum_area / total_area return bins end function triangle_area(p1::T, p2::T, p3::T) where {T <: AbstractVector} p1p2 = p2 - p1 p1p3 = p3 - p1 area = 0.5 * norm(cross(p1p2, p1p3)) return area end function tetrahedron_volume(v1::T, v2::T, v3::T, v4::T) where {T <: AbstractVector} a = v1 - v4 b = v2 - v4 c = v3 - v4 vol = norm(a ⋅ cross(b, c)) / 6 return vol end
/- Copyright (c) 2020 Kevin Buzzard. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Kevin Buzzard -/ import Mathlib.PrePort import Mathlib.Lean3Lib.init.default import Mathlib.ring_theory.principal_ideal_domain import Mathlib.order.conditionally_complete_lattice import Mathlib.ring_theory.multiplicity import Mathlib.ring_theory.valuation.basic import Mathlib.PostPort universes u l u_1 namespace Mathlib /-! # Discrete valuation rings This file defines discrete valuation rings (DVRs) and develops a basic interface for them. ## Important definitions There are various definitions of a DVR in the literature; we define a DVR to be a local PID which is not a field (the first definition in Wikipedia) and prove that this is equivalent to being a PID with a unique non-zero prime ideal (the definition in Serre's book "Local Fields"). Let R be an integral domain, assumed to be a principal ideal ring and a local ring. * `discrete_valuation_ring R` : a predicate expressing that R is a DVR ### Definitions * `add_val R : R → ℕ` : the additive valuation on a DVR (sending 0 to 0 rather than the mathematically correct +∞). TODO -- the multiplicative valuation, taking values in something like `with_zero (multiplicative ℤ)`? ## Implementation notes It's a theorem that an element of a DVR is a uniformizer if and only if it's irreducible. We do not hence define `uniformizer` at all, because we can use `irreducible` instead. ## Tags discrete valuation ring -/ /-- An integral domain is a *discrete valuation ring* (DVR) if it's a local PID which is not a field. -/ class discrete_valuation_ring (R : Type u) [integral_domain R] extends is_principal_ideal_ring R, local_ring R where not_a_field' : local_ring.maximal_ideal R ≠ ⊥ namespace discrete_valuation_ring theorem not_a_field (R : Type u) [integral_domain R] [discrete_valuation_ring R] : local_ring.maximal_ideal R ≠ ⊥ := not_a_field' /-- An element of a DVR is irreducible iff it is a uniformizer, that is, generates the maximal ideal of R -/ theorem irreducible_iff_uniformizer {R : Type u} [integral_domain R] [discrete_valuation_ring R] (ϖ : R) : irreducible ϖ ↔ local_ring.maximal_ideal R = ideal.span (singleton ϖ) := sorry /-- Uniformisers exist in a DVR -/ theorem exists_irreducible (R : Type u) [integral_domain R] [discrete_valuation_ring R] : ∃ (ϖ : R), irreducible ϖ := sorry /-- an integral domain is a DVR iff it's a PID with a unique non-zero prime ideal -/ theorem iff_pid_with_one_nonzero_prime (R : Type u) [integral_domain R] : discrete_valuation_ring R ↔ is_principal_ideal_ring R ∧ exists_unique fun (P : ideal R) => P ≠ ⊥ ∧ ideal.is_prime P := sorry theorem associated_of_irreducible (R : Type u) [integral_domain R] [discrete_valuation_ring R] {a : R} {b : R} (ha : irreducible a) (hb : irreducible b) : associated a b := sorry end discrete_valuation_ring namespace discrete_valuation_ring /-- Alternative characterisation of discrete valuation rings. -/ def has_unit_mul_pow_irreducible_factorization (R : Type u_1) [integral_domain R] := ∃ (p : R), irreducible p ∧ ∀ {x : R}, x ≠ 0 → ∃ (n : ℕ), associated (p ^ n) x namespace has_unit_mul_pow_irreducible_factorization theorem unique_irreducible {R : Type u_1} [integral_domain R] (hR : has_unit_mul_pow_irreducible_factorization R) {p : R} {q : R} (hp : irreducible p) (hq : irreducible q) : associated p q := sorry /-- An integral domain in which there is an irreducible element `p` such that every nonzero element is associated to a power of `p` is a unique factorization domain. See `discrete_valuation_ring.of_has_unit_mul_pow_irreducible_factorization`. -/ theorem to_unique_factorization_monoid {R : Type u_1} [integral_domain R] (hR : has_unit_mul_pow_irreducible_factorization R) : unique_factorization_monoid R := sorry theorem of_ufd_of_unique_irreducible {R : Type u_1} [integral_domain R] [unique_factorization_monoid R] (h₁ : ∃ (p : R), irreducible p) (h₂ : ∀ {p q : R}, irreducible p → irreducible q → associated p q) : has_unit_mul_pow_irreducible_factorization R := sorry end has_unit_mul_pow_irreducible_factorization theorem aux_pid_of_ufd_of_unique_irreducible (R : Type u) [integral_domain R] [unique_factorization_monoid R] (h₁ : ∃ (p : R), irreducible p) (h₂ : ∀ {p q : R}, irreducible p → irreducible q → associated p q) : is_principal_ideal_ring R := sorry /-- A unique factorization domain with at least one irreducible element in which all irreducible elements are associated is a discrete valuation ring. -/ theorem of_ufd_of_unique_irreducible {R : Type u} [integral_domain R] [unique_factorization_monoid R] (h₁ : ∃ (p : R), irreducible p) (h₂ : ∀ {p q : R}, irreducible p → irreducible q → associated p q) : discrete_valuation_ring R := sorry /-- An integral domain in which there is an irreducible element `p` such that every nonzero element is associated to a power of `p` is a discrete valuation ring. -/ theorem of_has_unit_mul_pow_irreducible_factorization {R : Type u} [integral_domain R] (hR : has_unit_mul_pow_irreducible_factorization R) : discrete_valuation_ring R := sorry theorem associated_pow_irreducible {R : Type u_1} [integral_domain R] [discrete_valuation_ring R] {x : R} (hx : x ≠ 0) {ϖ : R} (hirr : irreducible ϖ) : ∃ (n : ℕ), associated x (ϖ ^ n) := sorry theorem eq_unit_mul_pow_irreducible {R : Type u_1} [integral_domain R] [discrete_valuation_ring R] {x : R} (hx : x ≠ 0) {ϖ : R} (hirr : irreducible ϖ) : ∃ (n : ℕ), ∃ (u : units R), x = ↑u * ϖ ^ n := sorry theorem ideal_eq_span_pow_irreducible {R : Type u_1} [integral_domain R] [discrete_valuation_ring R] {s : ideal R} (hs : s ≠ ⊥) {ϖ : R} (hirr : irreducible ϖ) : ∃ (n : ℕ), s = ideal.span (singleton (ϖ ^ n)) := sorry theorem unit_mul_pow_congr_pow {R : Type u_1} [integral_domain R] [discrete_valuation_ring R] {p : R} {q : R} (hp : irreducible p) (hq : irreducible q) (u : units R) (v : units R) (m : ℕ) (n : ℕ) (h : ↑u * p ^ m = ↑v * q ^ n) : m = n := sorry theorem unit_mul_pow_congr_unit {R : Type u_1} [integral_domain R] [discrete_valuation_ring R] {ϖ : R} (hirr : irreducible ϖ) (u : units R) (v : units R) (m : ℕ) (n : ℕ) (h : ↑u * ϖ ^ m = ↑v * ϖ ^ n) : u = v := sorry /-! ## The additive valuation on a DVR -/ /-- The `ℕ`-valued additive valuation on a DVR (returns junk at `0` rather than `+∞`) -/ def add_val (R : Type u) [integral_domain R] [discrete_valuation_ring R] : R → ℕ := fun (r : R) => dite (r = 0) (fun (hr : r = 0) => 0) fun (hr : ¬r = 0) => classical.some sorry theorem add_val_spec {R : Type u_1} [integral_domain R] [discrete_valuation_ring R] {r : R} (hr : r ≠ 0) : let ϖ : R := classical.some (exists_irreducible R); let n : ℕ := classical.some (associated_pow_irreducible hr (classical.some_spec (exists_irreducible R))); associated r (ϖ ^ n) := classical.some_spec (associated_pow_irreducible hr (classical.some_spec (exists_irreducible R))) theorem add_val_def {R : Type u_1} [integral_domain R] [discrete_valuation_ring R] (r : R) (u : units R) {ϖ : R} (hϖ : irreducible ϖ) (n : ℕ) (hr : r = ↑u * ϖ ^ n) : add_val R r = n := sorry theorem add_val_def' {R : Type u_1} [integral_domain R] [discrete_valuation_ring R] (u : units R) {ϖ : R} (hϖ : irreducible ϖ) (n : ℕ) : add_val R (↑u * ϖ ^ n) = n := add_val_def (↑u * ϖ ^ n) u hϖ n rfl @[simp] theorem add_val_zero {R : Type u_1} [integral_domain R] [discrete_valuation_ring R] : add_val R 0 = 0 := dif_pos rfl @[simp] theorem add_val_one {R : Type u_1} [integral_domain R] [discrete_valuation_ring R] : add_val R 1 = 0 := sorry @[simp] theorem add_val_uniformizer {R : Type u_1} [integral_domain R] [discrete_valuation_ring R] {ϖ : R} (hϖ : irreducible ϖ) : add_val R ϖ = 1 := sorry @[simp] theorem add_val_mul {R : Type u_1} [integral_domain R] [discrete_valuation_ring R] {a : R} {b : R} (ha : a ≠ 0) (hb : b ≠ 0) : add_val R (a * b) = add_val R a + add_val R b := sorry theorem add_val_pow {R : Type u_1} [integral_domain R] [discrete_valuation_ring R] (a : R) (n : ℕ) : add_val R (a ^ n) = n * add_val R a := sorry theorem add_val_le_iff_dvd {R : Type u_1} [integral_domain R] [discrete_valuation_ring R] {a : R} {b : R} (ha : a ≠ 0) (hb : b ≠ 0) : add_val R a ≤ add_val R b ↔ a ∣ b := sorry theorem add_val_add {R : Type u_1} [integral_domain R] [discrete_valuation_ring R] {a : R} {b : R} (ha : a ≠ 0) (hb : b ≠ 0) (hab : a + b ≠ 0) : min (add_val R a) (add_val R b) ≤ add_val R (a + b) := sorry end Mathlib
We’ve already started the conversation about security— now, let’s focus on loss prevention for businesses. Part of a good risk management strategy is to reduce threats from both outside and inside the organization. This is where video surveillance comes in. Since their launch in June of 2013, the UCM series has become one of the most popular on-premise IP PBXs in the world. It offers small to medium sized businesses an almost unprecedented unified communications manager (hence the UCM acronym) that gives them access to enterprise-grade voice, video, data and mobility features in an easy-to-setup, easy-to-manage fashion with no licensing or recurring fees. Back in 2002 when Grandstream was founded, we were one of the first companies in the world to manufacture SIP products – and one of the very first products we made were analog telephone adapters (ATAs). We now have over 15 years of expertise building SIP devices, and we have more experience building VoIP gateways and ATAs than almost any one in the world. Thanks to close relationships with service providers and partners, all of our ATAs and Gateways are not only thoroughly tested within Grandstream, but they are stringently tested with the help from some of the largest service providers in the world. Our devices provide a variety of high-end features and functionalities that allow analog phones not only to be integrated with VoIP networks, but provide VoIP functions for analog devices as well. Let’s take a look at some of the features and functionalities of Grandstream’s gateways and ATAs that you may have missed. TCP versus UDP for IP Phones: How do you choose? The internet is like a very crowded Los Angeles highway, but instead of being full of cars, it’s full of information. Due to crowding, this information needs guidance to ensure that it gets where it’s going. This is why transmission protocols exist to make sure the information gets transported as intended.
% lyapunov_equation solves the equation V=T*V*T'+Q % % :: % % [V,retcode]=lyapunov_equation(T,Q) % [V,retcode]=lyapunov_equation(T,Q,options) % % Args: % - T : % - Q : % - options : % % Returns: % : % - V : % - retcode : % % Note: % % Example: % % See also: %
import sys import os.path import datetime import urllib from PIL import Image, ImageChops, ImageFilter import numpy global root root = '/home/site/data/' imarray = numpy.random.rand(256,256,3) * 255 img = Image.fromarray(imarray.astype('uint8')).convert('RGBA') img.save(root + 'images/gradient/color10.png')# + str(i) + '.png') #for i in range(1,256): # print i # imarray = numpy.random.rand(256,256,3) * 255 #for j in range(0,256): # for k in range(0,256): # imarray[j][k] = imarray[j / i * i][k / i * i] # img = Image.fromarray(imarray.astype('uint8')).convert('RGBA') # img.save(root + 'images/gradient/textures/' + str(i) + '.png')
export TR_step_computation function TR_step_computation(h :: Float64, g :: Float64, dN :: Float64, Δ :: Float64) if h > 0.0 if g > 0.0 d = max(-Δ, dN) else d = min(dN, Δ) end else if g > 0.0 d = -Δ else d = Δ end end return d end
library(knitr) source.rmd <- function(x, ...) { source(purl(x, output = tempfile()), ...) } download.url <- function(url, dir) { destfile <- file.path(dir, basename(url)) if (!file.exists(destfile)) download.file(url, destfile=desfile) } dir.create(output.dir <- "output") full.dir <- file.path(output.dir, "data-full") data.dir <- file.path(output.dir, "data") ## download the dataset from GEO if (!file.exists(full.dir)) { dir.create(full.dir) data.url <- "ftp://ftp.ncbi.nlm.nih.gov/geo/series/GSE53nnn/GSE53261/matrix/" download.url(file.path(data.url, "GSE53261-GPL11154_series_matrix.txt.gz"), full.dir) download.url(file.path(data.url, "GSE53261-GPL13534_series_matrix.txt.gz"), full.dir) download.url(file.path(data.url, "GSE53261-GPL6883_series_matrix.txt.gz"), full.dir) download.url(file.path(data.url, "GSE53261-GPL6984_series_matrix.txt.gz"), full.dir) } if (!file.exists(data.dir)) { dir.create(data.dir) ## reformat and subset data so that it is easy to analyze source.rmd("retrieve-dataset.rmd") ## calculate EAF and create simulated associations with BMI ## (ended up deciding not to use this ...) source.rmd("prepare-dataset.rmd") }
{-# OPTIONS --warning=error #-} module Issue329 where mutual infixl 0 D Undeclared data D : Set where
State Before: E : Type u_1 X : Type u_2 inst✝¹ : TopologicalSpace E inst✝ : TopologicalSpace X f : E → X s : Set X hf : IsCoveringMapOn f s ⊢ IsLocallyHomeomorphOn f (f ⁻¹' s) State After: E : Type u_1 X : Type u_2 inst✝¹ : TopologicalSpace E inst✝ : TopologicalSpace X f : E → X s : Set X hf : IsCoveringMapOn f s x : E hx : x ∈ f ⁻¹' s ⊢ ∃ e, x ∈ e.source ∧ ∀ (y : E), y ∈ e.source → f y = ↑e y Tactic: refine' IsLocallyHomeomorphOn.mk f (f ⁻¹' s) fun x hx => _ State Before: E : Type u_1 X : Type u_2 inst✝¹ : TopologicalSpace E inst✝ : TopologicalSpace X f : E → X s : Set X hf : IsCoveringMapOn f s x : E hx : x ∈ f ⁻¹' s ⊢ ∃ e, x ∈ e.source ∧ ∀ (y : E), y ∈ e.source → f y = ↑e y State After: E : Type u_1 X : Type u_2 inst✝¹ : TopologicalSpace E inst✝ : TopologicalSpace X f : E → X s : Set X hf : IsCoveringMapOn f s x : E hx : x ∈ f ⁻¹' s e : Trivialization (↑(f ⁻¹' {f x})) f := IsEvenlyCovered.toTrivialization (_ : IsEvenlyCovered f (f x) ↑(f ⁻¹' {f x})) ⊢ ∃ e, x ∈ e.source ∧ ∀ (y : E), y ∈ e.source → f y = ↑e y Tactic: let e := (hf (f x) hx).toTrivialization State Before: E : Type u_1 X : Type u_2 inst✝¹ : TopologicalSpace E inst✝ : TopologicalSpace X f : E → X s : Set X hf : IsCoveringMapOn f s x : E hx : x ∈ f ⁻¹' s e : Trivialization (↑(f ⁻¹' {f x})) f := IsEvenlyCovered.toTrivialization (_ : IsEvenlyCovered f (f x) ↑(f ⁻¹' {f x})) ⊢ ∃ e, x ∈ e.source ∧ ∀ (y : E), y ∈ e.source → f y = ↑e y State After: E : Type u_1 X : Type u_2 inst✝¹ : TopologicalSpace E inst✝ : TopologicalSpace X f : E → X s : Set X hf : IsCoveringMapOn f s x : E hx : x ∈ f ⁻¹' s e : Trivialization (↑(f ⁻¹' {f x})) f := IsEvenlyCovered.toTrivialization (_ : IsEvenlyCovered f (f x) ↑(f ⁻¹' {f x})) h : f x ∈ (IsEvenlyCovered.toTrivialization (_ : IsEvenlyCovered f (f x) ↑(f ⁻¹' {f x}))).baseSet ⊢ ∃ e, x ∈ e.source ∧ ∀ (y : E), y ∈ e.source → f y = ↑e y Tactic: have h := (hf (f x) hx).mem_toTrivialization_baseSet State Before: E : Type u_1 X : Type u_2 inst✝¹ : TopologicalSpace E inst✝ : TopologicalSpace X f : E → X s : Set X hf : IsCoveringMapOn f s x : E hx : x ∈ f ⁻¹' s e : Trivialization (↑(f ⁻¹' {f x})) f := IsEvenlyCovered.toTrivialization (_ : IsEvenlyCovered f (f x) ↑(f ⁻¹' {f x})) h : f x ∈ (IsEvenlyCovered.toTrivialization (_ : IsEvenlyCovered f (f x) ↑(f ⁻¹' {f x}))).baseSet ⊢ ∃ e, x ∈ e.source ∧ ∀ (y : E), y ∈ e.source → f y = ↑e y State After: E : Type u_1 X : Type u_2 inst✝¹ : TopologicalSpace E inst✝ : TopologicalSpace X f : E → X s : Set X hf : IsCoveringMapOn f s x : E hx : x ∈ f ⁻¹' s e : Trivialization (↑(f ⁻¹' {f x})) f := IsEvenlyCovered.toTrivialization (_ : IsEvenlyCovered f (f x) ↑(f ⁻¹' {f x})) h : f x ∈ (IsEvenlyCovered.toTrivialization (_ : IsEvenlyCovered f (f x) ↑(f ⁻¹' {f x}))).baseSet he : x ∈ e.source := Iff.mpr (Trivialization.mem_source e) h ⊢ ∃ e, x ∈ e.source ∧ ∀ (y : E), y ∈ e.source → f y = ↑e y Tactic: let he := e.mem_source.2 h State Before: E : Type u_1 X : Type u_2 inst✝¹ : TopologicalSpace E inst✝ : TopologicalSpace X f : E → X s : Set X hf : IsCoveringMapOn f s x : E hx : x ∈ f ⁻¹' s e : Trivialization (↑(f ⁻¹' {f x})) f := IsEvenlyCovered.toTrivialization (_ : IsEvenlyCovered f (f x) ↑(f ⁻¹' {f x})) h : f x ∈ (IsEvenlyCovered.toTrivialization (_ : IsEvenlyCovered f (f x) ↑(f ⁻¹' {f x}))).baseSet he : x ∈ e.source := Iff.mpr (Trivialization.mem_source e) h ⊢ ∃ e, x ∈ e.source ∧ ∀ (y : E), y ∈ e.source → f y = ↑e y State After: no goals Tactic: refine' ⟨e.toLocalHomeomorph.trans { toFun := fun p => p.1 invFun := fun p => ⟨p, x, rfl⟩ source := e.baseSet ×ˢ ({⟨x, rfl⟩} : Set (f ⁻¹' {f x})) target := e.baseSet open_source := e.open_baseSet.prod (singletons_open_iff_discrete.2 (hf (f x) hx).1 ⟨x, rfl⟩) open_target := e.open_baseSet map_source' := fun p => And.left map_target' := fun p hp => ⟨hp, rfl⟩ left_inv' := fun p hp => Prod.ext rfl hp.2.symm right_inv' := fun p _ => rfl continuous_toFun := continuous_fst.continuousOn continuous_invFun := (continuous_id'.prod_mk continuous_const).continuousOn }, ⟨he, by rwa [e.toLocalHomeomorph.symm_symm, e.proj_toFun x he], (hf (f x) hx).toTrivialization_apply⟩, fun p h => (e.proj_toFun p h.1).symm⟩ State Before: E : Type u_1 X : Type u_2 inst✝¹ : TopologicalSpace E inst✝ : TopologicalSpace X f : E → X s : Set X hf : IsCoveringMapOn f s x : E hx : x ∈ f ⁻¹' s e : Trivialization (↑(f ⁻¹' {f x})) f := IsEvenlyCovered.toTrivialization (_ : IsEvenlyCovered f (f x) ↑(f ⁻¹' {f x})) h : f x ∈ (IsEvenlyCovered.toTrivialization (_ : IsEvenlyCovered f (f x) ↑(f ⁻¹' {f x}))).baseSet he : x ∈ e.source := Iff.mpr (Trivialization.mem_source e) h ⊢ (↑(LocalHomeomorph.symm (LocalHomeomorph.symm e.toLocalHomeomorph)) x).fst ∈ e.baseSet State After: no goals Tactic: rwa [e.toLocalHomeomorph.symm_symm, e.proj_toFun x he]
// Copyright 2016 Bogumił Chojnowski // bogumil DOT chojnowski AT gmail DOT com // This is extended version of the state machine available in the boost::mpl library // Distributed under the same license as the original. // Copyright for the original version: // Copyright 2010 Christophe Henry // henry UNDERSCORE christophe AT hotmail DOT com // This is an extended version of the state machine available in the boost::mpl library // Distributed under the same license as the original. // Copyright for the original version: // Copyright 2005 David Abrahams and Aleksey Gurtovoy. Distributed // under the Boost Software License, Version 1.0. (See accompanying // file LICENSE_1_0.txt or copy at // http://www.boost.org/LICENSE_1_0.txt) #include <iostream> #include <memory> // back-end #include <boost/msm/back/state_machine.hpp> //front-end #include <boost/msm/front/state_machine_def.hpp> #ifndef BOOST_MSM_NONSTANDALONE_TEST #define BOOST_TEST_MODULE MyTest #endif #include <boost/test/unit_test.hpp> namespace msm = boost::msm; namespace mpl = boost::mpl; namespace { struct Lightbulp { Lightbulp(int c) : current(c) {} int current; }; // events struct ev_toggle {}; // front-end: define the FSM structure struct bistable_switch_ : public msm::front::state_machine_def<bistable_switch_> { bistable_switch_(std::unique_ptr<Lightbulp> bulp, int load) : bulp_(std::move(bulp)) { BOOST_CHECK_MESSAGE(bulp_->current == 3, "Wrong current value"); BOOST_CHECK_MESSAGE(load == 5, "Wrong load value"); bulp_->current = 10; } std::unique_ptr<Lightbulp> bulp_; // The list of FSM states struct Off : public msm::front::state<> { template <typename Event, typename FSM> void on_entry(Event const&, FSM& ) { } template <typename Event, typename FSM> void on_exit(Event const&, FSM&) { } }; struct On : public msm::front::state<> { template <typename Event, typename FSM> void on_entry(Event const&, FSM& ) { } template <typename Event, typename FSM> void on_exit(Event const&, FSM&) { } }; // the initial state of the player SM. Must be defined typedef Off initial_state; void turn_on(ev_toggle const&) { bulp_->current = 11; } void turn_off(ev_toggle const&) { bulp_->current = 9; } typedef bistable_switch_ bs_; // makes transition table cleaner // Transition table for player struct transition_table : mpl::vector< // Start Event Next Action Guard // +---------+-------------+---------+---------------------+----------------------+ a_row < Off , ev_toggle , On , &bs_::turn_on >, a_row < On , ev_toggle , Off , &bs_::turn_off > // +---------+-------------+---------+---------------------+----------------------+ > {}; // Replaces the default no-transition response. template <typename Event, typename FSM> void no_transition(Event const&, FSM&, int) { BOOST_FAIL("no_transition called!"); } }; // Pick a back-end typedef msm::back::state_machine<bistable_switch_> bistable_switch; BOOST_AUTO_TEST_CASE(my_test) { auto bulp = std::make_unique<Lightbulp>(3); bistable_switch bs(std::move(bulp), 5); BOOST_CHECK_MESSAGE(bs.bulp_->current == 10, "Wrong returned current value"); bs.start(); bs.process_event(ev_toggle()); BOOST_CHECK_MESSAGE(bs.bulp_->current == 11, "Wrong returned current value"); bs.process_event(ev_toggle()); BOOST_CHECK_MESSAGE(bs.bulp_->current == 9, "Wrong returned current value"); bs.stop(); } }
# -*- coding:utf-8 -*- import numpy as np from .utils import get_sample_indices import torch def unnormalize(state, output): device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') # mean=torch.tensor(state['mean']).to(device) # std=torch.tensor(state['std']).to(device) f_mean=torch.tensor(state['f_mean']).to(device) f_std=torch.tensor(state['f_std']).to(device) o_mean = torch.tensor(state['o_mean']).to(device) o_std = torch.tensor(state['o_std']).to(device) s_mean = torch.tensor(state['s_mean']).to(device) s_std = torch.tensor(state['s_std']).to(device) f_out=output[:,:,0,:]*f_std+f_mean o_out = output[:, :, 1, :] * o_std + o_mean s_out = output[:, :, 2, :] * s_std + s_mean out=torch.stack([f_out,o_out,s_out],dim=0).permute((1,3,2,0)) # output=output.to(device) # return output*std+mean return out def normalization(train, val, test, stats): """ Parameters ---------- train, val, test: np.ndarray Returns ---------- stats: dict, two keys: mean and std train_norm, val_norm, test_norm: np.ndarray, shape is the same as original,形状与原稿相同 """ assert train.shape[1:] == val.shape[1:] and val.shape[1:] == test.shape[1:] #mean = train.mean(axis=0, keepdims=True)#keepdims=True保持矩阵维数不变,.mean用来求均值 mean = train.mean(axis=0, keepdims=True) std = train.std(axis=0, keepdims=True)#.std用来计算标准差 # # def normalize(x): # return (x - mean) / std # # train_norm = normalize(train) # wd: ?? # val_norm = normalize(val) # test_norm = normalize(test) f_mean=stats['f_mean'] f_std=stats['f_std'] o_mean=stats['o_mean'] o_std=stats['o_std'] s_mean=stats['s_mean'] s_std=stats['s_std'] def normalize(x,mmean,sstd): # s_mean=np.ones(x.shape) # s_mean=s_mean*mmean return (x - mmean) / sstd train_f_norm=normalize(train[:,:,0,:],f_mean,f_std) train_o_norm = normalize(train[:, :, 1, :],o_mean,o_std) train_s_norm=normalize(train[:,:,2,:],s_mean,s_std) val_f_norm = normalize(val[:, :, 0, :], f_mean, f_std) val_o_norm = normalize(val[:, :, 1, :], o_mean, o_std) val_s_norm = normalize(val[:, :, 2, :], s_mean, s_std) test_f_norm = normalize(test[:, :, 0, :], f_mean, f_std) test_o_norm = normalize(test[:, :, 1, :], o_mean, o_std) test_s_norm = normalize(test[:, :, 2, :], s_mean, s_std) # train_norm=[] # val_norm=[] # test_norm=[] # train_norm.append(train_f_norm) # train_norm.append(train_o_norm) # train_norm.append(train_s_norm) # val_norm.append(val_f_norm) # val_norm.append(val_o_norm) # val_norm.append(val_s_norm) # test_norm.append(test_f_norm) # test_norm.append(test_o_norm) # test_norm.append(test_s_norm) train_norm=np.array([train_f_norm,train_o_norm,train_s_norm]).transpose((1,2,0,3)) val_norm = np.array([val_f_norm, val_o_norm, val_s_norm]).transpose((1,2,0,3)) test_norm = np.array([test_f_norm, test_o_norm, test_s_norm]).transpose((1,2,0,3)) train_norm=train_norm.astype(np.float32) val_norm = val_norm.astype(np.float32) test_norm=test_norm.astype(np.float32) return {'mean': mean, 'std': std}, train_norm, val_norm, test_norm def read_and_generate_dataset(graph_signal_matrix_filename, num_of_weeks, num_of_days, num_of_hours, num_for_predict, points_per_hour=12, merge=False): """ Parameters ---------- graph_signal_matrix_filename: str, path of graph signal matrix file num_of_weeks, num_of_days, num_of_hours: int num_for_predict: int points_per_hour: int, default 12, depends on data,默认值12 merge: boolean, default False, whether to merge training set and validation set to train model Returns ---------- feature: np.ndarray, shape is (num_of_samples, num_of_batches * points_per_hour, num_of_vertices, num_of_features) wd: shape is (num_of_samples, num_of_vertices, num_of_features, num_of_weeks/days/hours * points_per_hour)?? target: np.ndarray, shape is (num_of_samples, num_of_vertices, num_for_predict) """ # wd: if there are 60 days, then 60 * 24 * 12 = 17280, which is close to 16992如果有60天,那么60*24*12=17280,接近16992 data_seq = np.load(graph_signal_matrix_filename)['data'] # wd: (16992, 307, 3) data_seq = np.float32(data_seq) # wd: to reduce computation,减少计算 #stats={'f_mean':[],'f_std':[],'o_mean':[],'o_std':[],'s_mean':[],'s_std':[]} #stats['f_mean']=np.mean(data_seq[:,:,0]) data_seq[:,:,1]=data_seq[:,:,1]*100 f_mean=np.mean(data_seq[:,:,0]) f_std=np.std(data_seq[:,:,0]) o_mean = np.mean(data_seq[:, :, 1]) o_std = np.std(data_seq[:, :, 1]) s_mean = np.mean(data_seq[:, :, 2]) s_std = np.std(data_seq[:, :, 2]) stats = {'f_mean': f_mean, 'f_std': f_std, 'o_mean': o_mean, 'o_std': o_std, 's_mean': s_mean, 's_std': s_std} all_samples = [] for idx in range(data_seq.shape[0]):#shape[0]输出为矩阵的行数,shape[1]输出列数 sample = get_sample_indices(data_seq, num_of_weeks, num_of_days, num_of_hours, idx, num_for_predict, points_per_hour) if not sample: continue week_sample, day_sample, hour_sample, target = sample all_samples.append(( np.expand_dims(week_sample, axis=0).transpose((0, 2, 3, 1)),#np.expand_dims:用于扩展数组的形状 np.expand_dims(day_sample, axis=0).transpose((0, 2, 3, 1)), np.expand_dims(hour_sample, axis=0).transpose((0, 2, 3, 1)), np.expand_dims(target, axis=0).transpose((0, 2, 3, 1)) # wd: first feature is the traffic flow,第一个特点是交通流,将最后的[:, :, 0, :] 去掉 )) split_line1 = int(len(all_samples) * 0.6) split_line2 = int(len(all_samples) * 0.8) if not merge: #取出前60%的数据作为训练集的数据 training_set = [np.concatenate(i, axis=0)#np.concatenate()能够一次完成多个数组的拼接。 for i in zip(*all_samples[:split_line1])]#zip是将对象中对应的元素打包成一个个tuple(元组),然后返回由这些 tuples组成的list(列表) else: print('Merge training set and validation set!')#合并训练集和验证集 training_set = [np.concatenate(i, axis=0) for i in zip(*all_samples[:split_line2])] validation_set = [np.concatenate(i, axis=0)#获得验证集数据,数据范围是60%到80%之间的20%的数据 for i in zip(*all_samples[split_line1: split_line2])] testing_set = [np.concatenate(i, axis=0) for i in zip(*all_samples[split_line2:])]#获得测试集,测试集是最后20%,即80%到100% train_week, train_day, train_hour, train_target = training_set val_week, val_day, val_hour, val_target = validation_set test_week, test_day, test_hour, test_target = testing_set # wd: week: (8979, 307, 3, 12), day: (8979, 307, 3, 12), recent: (8979, 307, 3, 36), target: (8979, 307, 12) # wd: week/day/recent: num_samples, num_vertices, num_features, num_of_weeks/days/hours * points_per_hour # wd: target: num_samples, num_vertices, num_predict print('training data: week: {}, day: {}, recent: {}, target: {}'.format( train_week.shape, train_day.shape, train_hour.shape, train_target.shape)) print('validation data: week: {}, day: {}, recent: {}, target: {}'.format( val_week.shape, val_day.shape, val_hour.shape, val_target.shape)) print('testing data: week: {}, day: {}, recent: {}, target: {}'.format( test_week.shape, test_day.shape, test_hour.shape, test_target.shape)) (week_stats, train_week_norm, val_week_norm, test_week_norm) = normalization(train_week, val_week, test_week, stats) (day_stats, train_day_norm, val_day_norm, test_day_norm) = normalization(train_day, val_day, test_day, stats) (recent_stats, train_recent_norm, val_recent_norm, test_recent_norm) = normalization(train_hour, val_hour, test_hour, stats) #增加的计算target标准化 (target_stats,train_target_norm, val_target_norm,test_target_norm) = normalization(train_target, val_target, test_target, stats) all_data = { 'train': { 'week': train_week_norm, 'day': train_day_norm, 'recent': train_recent_norm, 'target': train_target, # wd: target does not need to be normalized? }, 'val': { 'week': val_week_norm, 'day': val_day_norm, 'recent': val_recent_norm, 'target': val_target }, 'test': { 'week': test_week_norm, 'day': test_day_norm, 'recent': test_recent_norm, 'target': test_target }, 'stats': { 'week': week_stats, 'day': day_stats, 'recent': recent_stats, 'target': target_stats, 'stats':stats } } return all_data
State Before: a b : ℝ f : C(↑(Set.Icc a b), ℝ) ⊢ f ∈ Subalgebra.topologicalClosure (polynomialFunctions (Set.Icc a b)) State After: a b : ℝ f : C(↑(Set.Icc a b), ℝ) ⊢ f ∈ ⊤ Tactic: rw [polynomialFunctions_closure_eq_top _ _] State Before: a b : ℝ f : C(↑(Set.Icc a b), ℝ) ⊢ f ∈ ⊤ State After: no goals Tactic: simp
= = = White has an enduring advantage = = =
lemma map_poly_id' [simp]: "map_poly (\<lambda>x. x) p = p"
library(quantreg) library(Rfit) # plot function plot_df <- function(df, rankscale = FALSE, ylim = NULL, stripcol = c("#21A883CC", "#4591CCCC", "#673AB7CC"), COL = c("#21A883", "#4591CC", "#673AB7") ) { path <- rownames(df$tau) tau <- df$tau df <- df$df; df$x <- df$x + 1 if(rankscale == TRUE) { range_y <- range(df$y) rank_y <- rank(df$y) rank_y_sc <- (rank_y - min(rank_y))/(max(rank_y)-min(rank_y) ) df$y <- (rank_y_sc)*(max(range_y)-min(range_y)) + min(range_y) } q0 = round(tau$tau, 3) ptau = round(tau$p, 5) X0 <- seq(1, 3, 0.1) mm <- model.matrix( ~ X0) m1 <- rfit(y ~ x, df) pred.m1 <- coef(m1)[[1]] + X0*coef(m1)[[2]] pred.se <- apply(mm, 1, function(Xrow) t(Xrow) %*% vcov(m1) %*% Xrow) upp <- pred.m1 + 1.96*sqrt(pred.se) lwr <- pred.m1 - 1.96*sqrt(pred.se) upp_sd <- aggregate(y ~ x, data=df, function(x) mean(x) + sd(x))$y lwr_sd <- aggregate(y ~ x, data=df, function(x) mean(x) - sd(x))$y if(is.null(ylim)) { ylim <- range(c(df$y, upp, lwr, upp_sd, lwr_sd)) } stripchart(df$y ~ I(df$x-1), vertical=T, method="jitter", pch=c(15,16, 17), col=stripcol, add=F, cex=2, ylab = colnames(H1N1_noise_paths)[H1N1_idx], ylim = ylim, las=1) polygon(c(X0, rev(X0)), c(lwr, rev(upp)), col="#00000033", border = NA); lines(X0, pred.m1, col=1, lty=2, lwd=3); segments(c(1:3), upp_sd, c(1:3), lwr_sd, col = COL, lwd=3 ) points(c(1:3), aggregate(y ~ x, data=df, function(x) mean(x))$y, pch=21, col = COL, bg = "white", cex=3, lwd=3 ) legend("topleft", legend = paste0("H1N1: tau = ", q0, ", p = ", ptau)) } ################################################################################ setwd("/media/yuri/Data/home1/GNI_data/infection/ResultsSciRep") load("CAP_Sepsis_Ensemble_noise_sig.RDat") load("H1N1_Ensemble_noise_sig.RDat") pheno_CAP$mort_num[pheno_CAP$mort == "NA"] <- -1 pheno_CAP$mort_num <- pheno_CAP$mort_num + 1 pheno_SPS$mort_num[pheno_SPS$mort == "NA"] <- -1 pheno_SPS$mort_num <- pheno_SPS$mort_num + 1 ALL_UP <- Reduce(intersect, list( H1N1 = rownames(padjR_H1N1_stage_sig_UP), CAP = rownames(padjR_CAP_stage_sig_UP), sepsis = rownames(padjR_SPS_stage_sig_UP))) CAP_H1N1_UP <- Reduce(intersect, list( H1N1 = rownames(padjR_H1N1_stage_sig_UP), CAP = rownames(padjR_CAP_stage_sig_UP) ) ) CAP_H1N1_UP <- CAP_H1N1_UP[!(CAP_H1N1_UP %in% ALL_UP)] CAP_SPS_UP <- Reduce(intersect, list( SPS = rownames(padjR_SPS_stage_sig_UP), CAP = rownames(padjR_CAP_stage_sig_UP) ) ) CAP_SPS_UP <- CAP_SPS_UP[!(CAP_SPS_UP %in% ALL_UP)] ################################################################################ setwd("/media/yuri/Data/home1/GNI_data/infection/ResultsSciRep/Figures") pdf("Figure2B.pdf", paper="a4r", width=8, height=5) for(k in seq(ALL_UP)) { idx <- ALL_UP[k] H1N1_idx <- which(colnames(H1N1_noise_paths) == idx) df0 <- data.frame(y=H1N1_noise_paths[,H1N1_idx] , x = as.numeric(factor(H1N1_stage))-1) cap_idx <- which(colnames(affyDat_noise_paths_CAP) == idx) df1 <- data.frame(y = affyDat_noise_paths_CAP[,cap_idx] , x = pheno_CAP$mort_num, age=pheno_CAP$age) m00 <- lm(y ~ age, data=df1) df1$y <-coefficients(m00)[[1]] + resid(m00) df1$age <- NULL sps_idx <- which(colnames(affyDat_noise_paths_SPS) == idx) df2 <- data.frame(y = affyDat_noise_paths_SPS[,cap_idx] , x = pheno_SPS$mort_num, age=pheno_SPS$age) m00 <- lm(y ~ age, data=df2) df2$y <- coefficients(m00)[[1]] + resid(m00) df2$age <- NULL ylim = range(c(df1$y, df2$y)) par(mfrow = c(1,3)) plot_df(list(df = df0, tau = padjR_H1N1_stage[H1N1_idx,]), ylim = NULL, stripcol = c("#21A883CC", "#4591CCCC", "#673AB7CC"), COL=1) plot_df(list(df = df1, tau = padjR_CAP_stage[cap_idx,]), ylim = ylim, stripcol = c("#21A88388", "#4591CC88", "#673AB788"), COL=1) plot_df(list(df = df2, tau = padjR_SPS_stage[sps_idx,]), ylim = ylim, stripcol = c("#21A88388", "#4591CC88", "#673AB788"), COL=1) } dev.off() ################################################################################ pdf("Figure2C.pdf", paper="a4r", width=8, height=5) for(k in seq(CAP_H1N1_UP)) { idx <- CAP_H1N1_UP[k] H1N1_idx <- which(colnames(H1N1_noise_paths) == idx) df0 <- data.frame(y=H1N1_noise_paths[,H1N1_idx] , x = as.numeric(factor(H1N1_stage))-1) cap_idx <- which(colnames(affyDat_noise_paths_CAP) == idx) df1 <- data.frame(y = affyDat_noise_paths_CAP[,cap_idx] , x = pheno_CAP$mort_num, age=pheno_CAP$age) m00 <- lm(y ~ age, data=df1) df1$y <-coefficients(m00)[[1]] + resid(m00) df1$age <- NULL sps_idx <- which(colnames(affyDat_noise_paths_SPS) == idx) df2 <- data.frame(y = affyDat_noise_paths_SPS[,cap_idx] , x = pheno_SPS$mort_num, age=pheno_SPS$age) m00 <- lm(y ~ age, data=df2) df2$y <- coefficients(m00)[[1]] + resid(m00) df2$age <- NULL ylim = range(c(df1$y, df2$y)) par(mfrow = c(1,3)) plot_df(list(df = df0, tau = padjR_H1N1_stage[H1N1_idx,]), ylim = NULL, stripcol = c("#21A883CC", "#4591CCCC", "#673AB7CC"), COL=1) plot_df(list(df = df1, tau = padjR_CAP_stage[cap_idx,]), ylim = ylim, stripcol = c("#21A88388", "#4591CC88", "#673AB788"), COL=1) plot_df(list(df = df2, tau = padjR_SPS_stage[sps_idx,]), ylim = ylim, stripcol = c("#21A88388", "#4591CC88", "#673AB788"), COL=1) } dev.off() ################################################################################ # Supplementary tables # ALL_UP_table <- lapply(seq(ALL_UP), function(k) { # idx <- ALL_UP[k] # H1N1_idx <- which(colnames(H1N1_noise_paths) == idx) # cap_idx <- which(colnames(affyDat_noise_paths_CAP) == idx) # sps_idx <- which(colnames(affyDat_noise_paths_SPS) == idx) # # path <- names(core_paths_subset)[grep(ALL_UP[k], names(core_paths_subset), fixed=T)] # genes <- sort(core_paths_subset[grep(ALL_UP[k], names(core_paths_subset), fixed=T)][[1]]) # tau_h1n <- round(as.numeric(padjR_H1N1_stage[H1N1_idx,1]),3) # tau_cap <- round(as.numeric(padjR_CAP_stage[cap_idx,1]),3) # tau_sps <- round(as.numeric(padjR_SPS_stage[sps_idx,1]),3) # # p_h1n <- round(as.numeric(padjR_H1N1_stage[H1N1_idx,2]),6) # p_cap <- round(as.numeric(padjR_CAP_stage[cap_idx,2]),6) # p_sps <- round(as.numeric(padjR_SPS_stage[sps_idx,2]),6) # # res <- data.frame(path = path, # H1N1 = paste(tau_h1n, p_h1n, sep="; "), # CAP = paste(tau_cap, p_cap, sep="; "), # SPS = paste(tau_sps, p_sps, sep="; "), # genes = paste(genes, collapse = "; ") ) # res # }) # ALL_UP_table <- do.call(rbind, ALL_UP_table) # # # CAP_H1N1_UP_table <- lapply(seq(CAP_H1N1_UP), function(k) { # idx <- CAP_H1N1_UP[k] # H1N1_idx <- which(colnames(H1N1_noise_paths) == idx) # cap_idx <- which(colnames(affyDat_noise_paths_CAP) == idx) # sps_idx <- which(colnames(affyDat_noise_paths_SPS) == idx) # # path <- names(core_paths_subset)[grep(CAP_H1N1_UP[k], names(core_paths_subset), fixed=T)] # genes <- sort(core_paths_subset[grep(CAP_H1N1_UP[k], names(core_paths_subset), fixed=T)][[1]]) # tau_h1n <- round(as.numeric(padjR_H1N1_stage[H1N1_idx,1]),3) # tau_cap <- round(as.numeric(padjR_CAP_stage[cap_idx,1]),3) # tau_sps <- round(as.numeric(padjR_SPS_stage[sps_idx,1]),3) # # p_h1n <- round(as.numeric(padjR_H1N1_stage[H1N1_idx,2]),6) # p_cap <- round(as.numeric(padjR_CAP_stage[cap_idx,2]),6) # p_sps <- round(as.numeric(padjR_SPS_stage[sps_idx,2]),6) # # res <- data.frame(path = path, # H1N1 = paste(tau_h1n, p_h1n, sep="; "), # CAP = paste(tau_cap, p_cap, sep="; "), # SPS = paste(tau_sps, p_sps, sep="; "), # genes = paste(genes, collapse = "; ") ) # res # }) # CAP_H1N1_UP_table <- do.call(rbind, CAP_H1N1_UP_table) # # write.table(ALL_UP_table, "ALL_UP_table.txt", row.names=F, col.names=T, quote=F, sep="\t") # write.table(CAP_H1N1_UP_table, "CAP_H1N1_UP_table.txt", row.names=F, col.names=T, quote=F, sep="\t")
import itertools import numpy as np import torch import torch.nn.functional as F import torch.optim as optim from .util import atomic_save class PPO: """ A base implementation of Proximal Policy Optimization. See: https://arxiv.org/abs/1707.06347. """ def __init__(self, model, epsilon=0.2, gamma=0.99, lam=0.95, lr=1e-4, ent_reg=0.001): self.model = model self.epsilon = epsilon self.gamma = gamma self.lam = lam self.optimizer = optim.Adam(model.parameters(), lr=lr) self.ent_reg = ent_reg def outer_loop(self, roller, save_path='save.pkl', **kwargs): """ Run training indefinitely, saving periodically. """ for i in itertools.count(): terms, last_terms = self.inner_loop(roller.rollout(), **kwargs) self.print_outer_loop(i, terms, last_terms) atomic_save(self.model.state_dict(), save_path) def print_outer_loop(self, i, terms, last_terms): print('step %d: clipped=%f entropy=%f explained=%f' % (i, last_terms['clip_frac'], terms['entropy'], terms['explained'])) def inner_loop(self, rollout, num_steps=12, batch_size=None): if batch_size is None: batch_size = rollout.num_steps * rollout.batch_size advs = rollout.advantages(self.gamma, self.lam) targets = advs + rollout.value_predictions()[:-1] advs = (advs - np.mean(advs)) / (1e-8 + np.std(advs)) actions = rollout.actions() log_probs = rollout.log_probs() firstterms = None lastterms = None for entries in rollout.batches(batch_size, num_steps): def choose(values): return self.model.tensor(np.array([values[t, b] for t, b in entries])) terms = self.terms(choose(rollout.states), choose(rollout.obses), choose(advs), choose(targets), choose(actions), choose(log_probs)) self.optimizer.zero_grad() terms['loss'].backward() self.optimizer.step() lastterms = {k: v.item() for k, v in terms.items() if k != 'model_outs'} if firstterms is None: firstterms = lastterms del terms return firstterms, lastterms def terms(self, states, obses, advs, targets, actions, log_probs): model_outs = self.model(states, obses) vf_loss = torch.mean(torch.pow(model_outs['critic'] - targets, 2)) variance = torch.var(targets) explained = 1 - vf_loss / variance new_log_probs = -F.cross_entropy(model_outs['actor'], actions.long(), reduction='none') ratio = torch.exp(new_log_probs - log_probs) clip_ratio = torch.clamp(ratio, 1 - self.epsilon, 1 + self.epsilon) pi_loss = -torch.mean(torch.min(ratio * advs, clip_ratio * advs)) clip_frac = torch.mean(torch.gt(ratio * advs, clip_ratio * advs).float()) all_probs = torch.log_softmax(model_outs['actor'], dim=-1) neg_entropy = torch.mean(torch.sum(torch.exp(all_probs) * all_probs, dim=-1)) ent_loss = self.ent_reg * neg_entropy return { 'explained': explained, 'clip_frac': clip_frac, 'entropy': -neg_entropy, 'vf_loss': vf_loss, 'pi_loss': pi_loss, 'ent_loss': ent_loss, 'loss': vf_loss + pi_loss + ent_loss, 'model_outs': model_outs, }
module Statistics.GModeling.Models.HMM ( ) where import Statistics.GModeling.DSL import Statistics.GModeling.Gibbs import qualified Data.Vector as V import qualified Data.Vector.Unboxed as U import qualified Data.Vector.Generic as G import qualified Data.Vector.Unboxed.Mutable as MU data HMM = Alpha | Beta | Transition | Topic | Symbols | Symbol hmm :: Network HMM hmm = [ Only Alpha :-> Transition , Only Beta :-> Symbols , (Transition :@ Topic) :-> Topic , (Symbols :@ Topic) :-> Symbol ] type D = V.Vector (U.Vector (Int,Int)) reader :: D -> Reader HMM Int reader v = Reader { size = G.sum (G.map G.length v) , readn = \idx k -> let (i,j) = indices G.! idx (topic,symbol) = v G.! i G.! j (prev_topic,_) = v G.! i G.! (j-1) in case k of Topic -> topic Symbol -> symbol Symbols -> topic Transition -> if j==0 -- reserve Topic 0 for initial distribution then 0 else prev_topic , copy = do m <- G.mapM U.thaw v return Writer { writen = \idx k v -> do let (i,j) = indices G.! idx case k of Topic -> do (_,s) <- MU.unsafeRead (m G.! i) j MU.unsafeWrite (m G.! i) j (v,s) , readOnly = G.mapM U.freeze m >>= return . reader } } where indices = U.fromList $ do i <- [0..G.length v-1] j <- [0..G.length (v G.! i)-1] return (i,j)
/- Copyright (c) 2021 Ashvni Narayanan. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Ashvni Narayanan -/ import padic_int.clopen_properties import padic_integral import bernoulli_measure.eventually_constant_sequence import bernoulli_measure.bernoulli_distribution import nat_properties /-! # Equivalence class on ℤ/(d * p^n)ℤ This file defines `equi_class` and its properties on `zmod (d * p^n)`. We also use `zmod'`, which is the universal (sub)set of `zmod`, to make computations on sums easier. ## Main definitions and theorems * `equi_class` * `zmod'` * `equi_class.zmod'_succ_eq_bUnion` * `bernoulli_distribution_sum` ## Implementation notes * Changed bernoulli_measure_one to bernoulli_measure_def and bernoulli_measure_two to equi_class ## References Introduction to Cyclotomic Fields, Washington (Chapter 12, Section 2) ## Tags p-adic, L-function, Bernoulli measure -/ local attribute [instance] zmod.topological_space variables {p : ℕ} {d : ℕ} (R : Type*) [normed_comm_ring R] {c : ℕ} open eventually_constant_seq open_locale big_operators /-- A variant of `zmod` which has type `finset _`. -/ def zmod' (n : ℕ) (h : 0 < n) : finset (zmod n) := @finset.univ _ (@zmod.fintype n (fact_iff.2 h)) open nat padic_int zmod discrete_quotient_of_to_zmod_pow /-- Given `a ∈ zmod (d * p^n)`, the set of all `b ∈ zmod (d * p^m)` such that `b = a mod (d * p^n)`. -/ def equi_class {n : ℕ} (m : ℕ) (a : zmod (d * p^n)) := {b : zmod (d * p^m) | (b : zmod (d * p^n)) = a} -- change def to a + k*dp^m -- need h to be n ≤ m, not n < m for g_char_fn variable [fact p.prime] namespace int lemma fract_eq_self' {a : ℚ} (h : 0 ≤ a) (ha : a < 1) : int.fract a = a := int.fract_eq_iff.2 ⟨h, ha, ⟨0, by simp⟩⟩ end int namespace finset lemma sum_equiv {α β γ : Type*} {s : finset α} {s' : finset β} {φ : s ≃ s'} {f : α → γ} [add_comm_monoid γ] : ∑ x : s, f x = ∑ y : s', f(φ.inv_fun y) := begin apply finset.sum_bij', swap 4, { rintros, exact φ.to_fun a, }, swap 5, { rintros, exact φ.inv_fun a, }, all_goals { simp }, end end finset lemma sum_rat_fin (n : ℕ) : (((∑ (x : fin n), (x : ℤ)) : ℤ) : ℚ) = (n - 1) * (n : ℚ) / 2 := begin have : ∀ (x : fin n), (x : ℤ) = ((x : ℕ) : ℤ), { simp only [_root_.coe_coe, eq_self_iff_true, implies_true_iff], }, conv_lhs { congr, congr, skip, funext, rw this x, }, rw ←finset.sum_range, induction n with d hd, { simp only [finset.range_zero, finset.sum_empty, int.cast_zero, nat.cast_zero, mul_zero, zero_div], }, { rw [finset.sum_range_succ, int.cast_add, hd _], { simp only [int.cast_coe_nat, cast_succ, add_tsub_cancel_right], rw div_add', { rw [mul_comm _ (d : ℚ), ←mul_add], ring, }, { simp only [ne.def, bit0_eq_zero, one_ne_zero, not_false_iff], }, }, { simp only [_root_.coe_coe, eq_self_iff_true, implies_true_iff], }, }, end namespace equi_class lemma mem {n m : ℕ} (a : zmod (d * p^n)) (b : zmod (d * p^m)) : b ∈ equi_class m a ↔ (b : zmod (d * p^n)) = a := ⟨λ hb, hb, λ hb, hb⟩ variable [fact (0 < d)] lemma some {n : ℕ} (x : zmod (d * p^n)) (y : equi_class n.succ x) : ∃ k : ℕ, k < p ∧ (y : zmod (d * p^n.succ)).val = x.val + k * d * p^n := begin conv { congr, funext, conv { congr, skip, to_rhs, rw ←((@mem p d _ n n.succ x y).1 (y.prop)), }, }, rw [← zmod.nat_cast_val (y : zmod (d * p^n.succ)), zmod.val_nat_cast], refine ⟨(y : zmod (d * p^n.succ)).val / (d * p^n), nat.div_lt_of_lt_mul _, _⟩, { rw [nat.mul_assoc, ←pow_succ'], apply zmod.val_lt (y : zmod (d * p^n.succ)), }, { rw [mul_assoc, nat.mod_add_div' (y : zmod (d * p^n.succ)).val (d * p^n)], }, end /-- Giving an equivalence between `equi_class` and `fin p`. -/ def equi_iso_fin (m : ℕ) (a : zmod (d * p^m)) : equi_class m.succ a ≃ fin p := { to_fun := λ y, ⟨((y.val).val - a.val) / (d * p^m), nat.div_lt_of_lt_mul begin rw [mul_assoc, ←pow_succ'], exact lt_of_le_of_lt (nat.sub_le (y.val).val a.val) (zmod.val_lt y.val), end⟩, inv_fun := λ k, ⟨(a.val + k * d * p^m : ℕ), begin have g : (d * (p^m)) ∣ (d * p^(m.succ)) := mul_dvd_mul dvd_rfl (pow_dvd_pow p (nat.le_succ _)), rw [mem, zmod.cast_nat_cast g _, nat.cast_add, zmod.nat_cast_zmod_val, mul_assoc, nat.cast_mul, zmod.nat_cast_self, mul_zero, add_zero], refine zmod.char_p _, end⟩, left_inv := λ x, begin rw subtype.ext_iff_val, simp only [fin.coe_mk, subtype.val_eq_coe, _root_.coe_coe], rw mul_assoc, obtain ⟨k, hk, h⟩ := some a x, rw nat.div_mul_cancel, { rw [← nat.add_sub_assoc _ _, nat.add_sub_cancel_left], { rw zmod.nat_cast_val _, norm_cast, apply_instance, }, { rw h, apply nat.le_add_right, }, }, { rw [h, nat.add_sub_cancel_left, mul_assoc], simp, }, end, right_inv := λ x, begin simp only [nat.cast_pow], rw subtype.ext_iff_val, simp only [fin.coe_mk, subtype.val_eq_coe, _root_.coe_coe], apply nat.div_eq_of_eq_mul_left (fact.out _) (tsub_eq_of_eq_add _), { apply_instance, }, rw [mul_assoc, zmod.val_nat_cast, nat.mod_eq_of_lt], rw add_comm, have h2 : ↑x * (d * p ^ m) ≤ (d * p ^ m) * (p - 1), { rw mul_comm, apply nat.mul_le_mul_left, rw [←nat.lt_succ_iff, nat.succ_eq_add_one, nat.sub_add_cancel], apply x.2, { apply le_of_lt (fact_iff.1 (nat.prime.one_lt' p)), }, }, convert add_lt_add_of_lt_of_le (zmod.val_lt a) h2, ring_nf, rw nat.sub_add_cancel, { rw ←pow_succ, }, { apply le_of_lt (fact_iff.1 (nat.prime.one_lt' p)), }, end} noncomputable instance {n m : ℕ} (a : zmod (d * p^n)) : fintype (equi_class m a) := set.finite.fintype (set.finite.subset (set.univ_finite_iff_nonempty_fintype.2 (nonempty.intro infer_instance)) (set.subset_univ _)) open padic_int zmod nat lemma zmod'_succ_eq_bUnion [fact (0 < d)] (m : ℕ) : zmod' (d * (p^m.succ)) (mul_prime_pow_pos m.succ) = (zmod' (d*p^m) (mul_prime_pow_pos m)).bUnion (λ a : zmod (d * p ^ m), set.to_finset ((equi_class m.succ) a)) := finset.ext (λ y, iff.trans begin simp only [exists_prop, set.mem_to_finset], refine ⟨λ h, ⟨(y : zmod (d * p^m)), finset.mem_univ y, (equi_class.mem _ _).2 rfl⟩, λ h, finset.mem_univ y⟩, end (iff.symm finset.mem_bUnion)) lemma eq [fact (0 < d)] {m : ℕ} (hd : d.coprime p) {f : locally_constant (zmod d × ℤ_[p]) R} (h : classical.some (le hd f) ≤ m) (x : zmod (d * p^m)) (y : zmod (d * p^m.succ)) (hy : y ∈ set.to_finset ((equi_class m.succ) x)) : f y = f x := begin -- note that y ≠ ↑x ! rw [set.mem_to_finset, equi_class.mem] at hy, rw [←locally_constant.factors, function.comp_apply], apply congr_arg, have h' := classical.some_spec (le hd f), rw [←discrete_quotient.of_le_proj (le_trans (le_of_ge p d h) h'), function.comp_apply], refine congr_arg _ _, change ↑y ∈ ((discrete_quotient_of_to_zmod_pow p d m).proj)⁻¹' {(discrete_quotient_of_to_zmod_pow p d m).proj x}, simp_rw [discrete_quotient.fiber_eq, set.mem_set_of_eq, discrete_quotient_of_to_zmod_pow.rel, prod.fst_zmod_cast, prod.snd_zmod_cast, ←hy], have val_le_val : (y.val : zmod (d * p^m)).val ≤ y.val := val_coe_val_le_val _, have dvds : (d * p^m) ∣ y.val - (y.val : zmod (d * p^m)).val, { rw [←zmod.nat_coe_zmod_eq_zero_iff_dvd, nat.cast_sub val_le_val], simp only [zmod.cast_id', id.def, sub_self, zmod.nat_cast_val], }, split, { rw [←sub_eq_zero, ←ring_hom.map_sub, ←ring_hom.mem_ker, ker_to_zmod_pow, ideal.mem_span_singleton], repeat { rw ←zmod.nat_cast_val, }, rw [←dvd_neg, neg_sub, ←nat.cast_pow, ←nat.cast_sub val_le_val], apply nat.coe_nat_dvd (dvd_trans (dvd_mul_left _ _) dvds), }, { repeat { rw ←zmod.nat_cast_val, }, rw [zmod.nat_coe_eq_nat_coe_iff, nat.modeq_iff_dvd' val_le_val], apply dvd_trans (dvd_mul_right _ _) dvds, }, end -- This lemma has a lot of mini lemmas that can be generalized. lemma card [fact (0 < d)] {m : ℕ} (x : zmod (d * p^m)) : finset.card (@finset.univ (equi_class m.succ x) _) = p := begin rw [finset.card_univ, ←fintype.of_equiv_card (equi_iso_fin m x)], convert fintype.card_fin p, end lemma equi_iso_fun_inv_val [fact (0 < d)] {m : ℕ} (x : zmod (d * p^m)) (k : fin p) : ((equi_iso_fin m x).inv_fun k).val = x.val + ↑k * (d * p^m) := by { unfold equi_iso_fin, dsimp, norm_cast, rw mul_assoc, } variables (p d) lemma helper_2 [fact (0 < d)] (m : ℕ) (y : fin p) : ((y * (d * p ^ m) : zmod (d * p^m.succ)) : ℤ) = ↑y * (↑(d : zmod (d * p^m.succ)) * ↑(p : zmod (d * p^m.succ))^m) := begin have prime_gt_one : 1 < p := prime.one_lt (fact.out _), have le_mul_p : p ≤ d * p^m.succ, { rw mul_comm, apply le_mul_of_le_of_one_le (le_pow (le_of_lt prime_gt_one) (nat.succ_le_iff.2 (succ_pos _))) (nat.succ_le_iff.2 (fact.out _)), { assumption, }, }, rw [←zmod.nat_cast_val, zmod.val_mul, nat.mod_eq_of_lt _, nat.cast_mul], { apply congr_arg2, { rw [cast_val_eq_of_le _ le_mul_p, int.nat_cast_eq_coe_nat, _root_.coe_coe], }, { rw [zmod.val_mul, nat.mod_eq_of_lt _], { rw [nat.cast_mul, zmod.nat_cast_val, zmod.nat_cast_val, ←nat.cast_pow], apply congr_arg2 _ rfl _, by_cases m = 0, { rw [h, pow_zero, pow_zero, nat.cast_one], haveI : fact (1 < d * p^1), { apply fact_iff.2 (one_lt_mul (nat.succ_le_iff.2 (fact.out _)) _), { assumption, }, { rw pow_one p, assumption, }, }, apply cast_int_one, }, { rw [nat_cast_zmod_cast_int (lt_mul_pow_right (fact.out _) prime_gt_one (nat.succ_lt_succ (nat.pos_of_ne_zero h))), nat_cast_zmod_cast_int (pow_lt_mul_pow_succ_right _), int.coe_nat_pow], any_goals { assumption, }, }, }, { rw [←nat.cast_pow, zmod.val_cast_of_lt _, zmod.val_cast_of_lt (pow_lt_mul_pow_succ_right _)], apply mul_pow_lt_mul_pow_succ, any_goals { assumption, }, { apply lt_mul_of_one_lt_right (fact.out _) (nat.one_lt_pow _ _ (nat.succ_pos _) (nat.prime.one_lt (fact.out _))), any_goals { assumption }, }, }, }, }, { rw [←nat.cast_pow, ←nat.cast_mul, zmod.val_cast_of_lt (mul_pow_lt_mul_pow_succ _), cast_val_eq_of_le _ le_mul_p], { apply fin_prime_mul_prime_pow_lt_mul_prime_pow_succ, }, any_goals { assumption, }, }, end -- should p be implicit or explicit? variables {p d} theorem sum_fract [fact (0 < d)] {m : ℕ} (x : zmod (d * p^m)) : ∑ (x_1 : (equi_class m.succ x)), int.fract (((x_1 : zmod (d * p^m.succ)).val : ℚ) / ((d : ℚ) * (p : ℚ)^m.succ)) = (x.val : ℚ) / (d * p^m) + (p - 1) / 2 := begin conv_lhs { congr, skip, funext, rw [← nat.cast_pow, ← nat.cast_mul, int.fract_eq_self' ((zero_le_div_and_div_lt_one (x_1 : zmod (d * p ^ m.succ))).1) ((zero_le_div_and_div_lt_one (x_1 : zmod (d * p ^ m.succ))).2), nat.cast_mul, nat.cast_pow], }, rw fintype.sum_equiv (equi_iso_fin m x) (λ y, _) (λ k, (((equi_iso_fin m x).inv_fun k).val : ℚ) / (d * p ^ m.succ)), { rw ←finset.sum_div, have h1 : ∀ y : fin p, ((x.val : zmod (d * p^m.succ)) : ℤ) + ↑((y : zmod (d * p^m.succ)) * (d * p ^ m : zmod (d * p^m.succ))) < ↑(d * p ^ m.succ : ℕ), { intro y, rw [zmod.nat_cast_val, ←zmod.nat_cast_val, ←zmod.nat_cast_val (↑y * (_ * _)), ←nat.cast_add], { convert (int.coe_nat_lt).2 (val_add_fin_mul_lt x y) using 1, apply congr (funext int.nat_cast_eq_coe_nat) (congr_arg2 _ _ _), { rw [←zmod.nat_cast_val, coe_val_eq_val_of_lt (mul_pow_lt_mul_pow_succ _) _], any_goals { apply_instance, }, }, { rw [←nat.cast_pow, ←nat.cast_mul, fin_prime_coe_coe, ←nat.cast_mul, zmod.val_cast_of_lt], apply fin_prime_mul_prime_pow_lt_mul_prime_pow_succ, }, }, { apply_instance, }, }, conv_lhs { congr, congr, skip, funext, rw [equi_iso_fun_inv_val, ←zmod.int_cast_cast, coe_add_eq_pos' (h1 _), int.cast_add, helper_2 p d m _], }, { rw [finset.sum_add_distrib, finset.sum_const, finset.card_univ, fintype.card_fin _], norm_cast, rw [←finset.sum_mul, _root_.add_div], apply congr_arg2 _ ((div_eq_iff _).2 _) _, { norm_cast, apply ne_of_gt (fact_iff.1 _), apply_instance, apply_instance, }, { rw [div_mul_comm, _root_.nsmul_eq_mul], apply congr_arg2 _ _ _, { norm_num, rw [mul_div_mul_left _, pow_succ, mul_div_cancel _], { norm_cast, apply pow_ne_zero m (nat.prime.ne_zero (fact_iff.1 _)), assumption, }, { norm_num, apply ne_of_gt (fact_iff.1 infer_instance), apply_instance, assumption, }, }, { rw [zmod.int_cast_cast, zmod.nat_cast_val, ←zmod.nat_cast_val (x : zmod (d * p^m.succ))], refine congr_arg _ _, rw [←zmod.nat_cast_val x, coe_val_eq_val_of_lt _ _], { apply_instance, }, { rw [mul_comm d (p^m), mul_comm d (p^m.succ)], apply mul_lt_mul (pow_lt_pow (nat.prime.one_lt (fact_iff.1 _)) (nat.lt_succ_self m)) le_rfl (fact.out _) (nat.zero_le _), any_goals { assumption, }, }, }, }, { rw [int.cast_mul, mul_div_assoc, sum_rat_fin, nat.cast_mul, int.cast_mul], have one : ((p : ℚ) - 1) * (p : ℚ) / 2 * (1 / (p : ℚ)) = ((p : ℚ) - 1) / 2, { rw [_root_.div_mul_div_comm, mul_one, mul_div_mul_right], norm_cast, apply ne_of_gt (nat.prime.pos (fact_iff.1 _)), assumption, }, convert one using 2, rw div_eq_div_iff _ _, { rw [one_mul, zmod.int_cast_cast, int.cast_pow, zmod.int_cast_cast, pow_succ', nat.cast_mul, nat.cast_pow, mul_assoc], apply congr_arg2 _ _ _, { rw ←zmod.nat_cast_val _, { rw zmod.val_nat_cast, apply congr_arg _ (nat.mod_eq_of_lt ((lt_mul_iff_one_lt_right (fact_iff.1 _)).2 _)), { assumption, }, { rw ←pow_succ', apply _root_.one_lt_pow (nat.prime.one_lt (fact_iff.1 _)) (succ_ne_zero _), { assumption, }, }, }, { rw ←pow_succ', apply_instance, } }, { apply congr_arg2 _ _ rfl, { by_cases m = 0, { rw [h, pow_zero, pow_zero], }, apply congr_arg2 _ _ rfl, { rw ←zmod.nat_cast_val _, { rw zmod.val_nat_cast, apply congr_arg _ (nat.mod_eq_of_lt _), rw [←mul_assoc, lt_mul_iff_one_lt_left (prime.pos (fact_iff.1 _))], { apply one_lt_mul (nat.succ_le_iff.2 (fact_iff.1 _)) _, { assumption, }, { apply _root_.one_lt_pow (nat.prime.one_lt (fact_iff.1 _)) h, assumption, }, }, { assumption, }, }, { rw ←pow_succ', apply_instance, }, }, }, }, }, { rw ←nat.cast_mul, norm_cast, apply ne_of_gt (fact_iff.1 _), apply_instance, apply_instance, }, { norm_cast, apply ne_of_gt (nat.prime.pos (fact_iff.1 _)), assumption, }, }, }, }, { rintros y, simp only [equiv.symm_apply_apply, subtype.val_eq_coe, equiv.inv_fun_as_coe, zmod.nat_cast_val], }, end -- break up into smaller pieces variable {m : ℕ} lemma helper_bernoulli_distribution_sum' (hc' : c.coprime d) (hc : c.coprime p) (x : zmod (d * p^m)) : ∑ (x_1 : (equi_class m.succ x)), int.fract (((c : zmod (d * p^(2 * m.succ)))⁻¹.val : ℚ) * ↑(x_1 : zmod (d * p^m.succ)) / (↑d * ↑p ^ m.succ)) = ∑ (x_1 : (equi_class m.succ (↑((c : zmod (d * p^(2 * m.succ)))⁻¹.val) * x))), int.fract (↑((x_1 : zmod (d * p^m.succ)).val) / (↑d * ↑p ^ m.succ)) := begin have h1 : d * p ^ m ∣ d * p ^ m.succ, { apply mul_dvd_mul_left, rw pow_succ', apply dvd_mul_right, }, have h2 : ∀ z : ℕ, d * p ^ z ∣ d * p ^ (2 * z), { intro z, apply mul_dvd_mul_left _ (pow_dvd_pow p _), linarith, }, have h3 : d * p ^ m ∣ d * p ^ (2 * m.succ), { apply mul_dvd_mul_left _ (pow_dvd_pow p _), rw [nat.succ_eq_add_one, mul_add], linarith, }, have h4 : (((c : zmod (d * p^(2 * m.succ)))⁻¹ : zmod (d * p^(2 * m.succ))) : zmod (d * p^m.succ)).val ≤ (c : zmod (d * p^(2 * m.succ)))⁻¹.val := val_coe_val_le_val' _, apply finset.sum_bij (λ a ha, _) (λ a ha, finset.mem_univ _) (λ a ha, _) (λ a1 a2 ha1 ha2 h, _) _, { refine ⟨(((c : zmod (d * p^(2*m.succ)))⁻¹).val : zmod (d * p^m.succ)) * a, (equi_class.mem _ _).2 _⟩, rw [zmod.cast_mul h1, cast_nat_cast h1 _], conv_rhs { congr, skip, rw ←((@equi_class.mem p d _ _ m.succ x a).1 a.prop), }, any_goals { refine zmod.char_p _, }, }, { rw [int.fract_eq_fract, subtype.coe_mk, div_sub_div_same, ← nat_cast_val (a : zmod (d * p^m.succ)), zmod.val_mul, ← nat.cast_mul, ← nat.cast_sub (le_trans (mod_le _ _) _), nat_cast_val, nat.cast_sub (le_trans (mod_le _ _) _), ← sub_add_sub_cancel _ ((((c : zmod (d * p^(2 * m.succ)))⁻¹ : zmod (d * p^(2 * m.succ))) : zmod (d * p^m.succ)).val * (a : zmod (d * p^m.succ)).val : ℚ) _, ← nat.cast_mul], obtain ⟨z₁, hz₁⟩ := @dvd_sub_mod (d * p^m.succ) ((((c : zmod (d * p^(2 * m.succ)))⁻¹ : zmod (d * p^(2 * m.succ))) : zmod (d * p^m.succ)).val * (a : zmod (d * p^m.succ)).val), obtain ⟨z₂, hz₂⟩ := dvd_val_sub_cast_val (d * p^m.succ) (c : zmod (d * p^(2 * m.succ)))⁻¹, rw [← nat.cast_sub (mod_le _ _), hz₁, ← nat.cast_sub, ← nat.mul_sub_right_distrib, hz₂, mul_assoc (d * p^(m.succ)) _ _, nat.cast_mul, nat.cast_mul _ z₁, ← mul_add, ← nat.cast_pow, ← nat.cast_mul d _, mul_comm, mul_div_cancel _ ((@cast_ne_zero ℚ _ _ _ _).2 (ne_of_gt (fact_iff.1 _)))], refine ⟨((z₂ * (a : zmod (d * p ^ m.succ)).val + z₁ : ℕ) : ℤ), by { norm_cast } ⟩, any_goals { refine mul_le_mul_right' h4 _, }, { apply_instance, }, { rw nat_cast_val, refine mul_le_mul_right' h4 _, }, }, { simp only [subtype.mk_eq_mk, nat_cast_val] at h, rw subtype.ext ((is_unit.mul_right_inj (is_unit_iff_exists_inv'.2 ⟨((c : zmod (d * p^(2 * (m.succ)))) : zmod (d * p^(m.succ))), _⟩)).1 h), rw [cast_inv (nat.coprime.mul_pow _ hc' hc) (h2 _), cast_nat_cast (h2 m.succ)], apply zmod.mul_inv_of_unit _ (is_unit_mul m.succ hc' hc), { refine zmod.char_p _, }, }, { simp only [cast_nat_cast, nat_cast_val, subtype.coe_mk, finset.mem_univ, exists_true_left, set_coe.exists, forall_true_left, set_coe.forall, subtype.mk_eq_mk, exists_prop], rintros a ha, rw equi_class.mem at ha, refine ⟨((c : zmod (d * p^(2 * m.succ))) : zmod (d * p^m.succ)) * a, _, _⟩, { rw [equi_class.mem, zmod.cast_mul h1], { rw [ha, ←mul_assoc, cast_inv (nat.coprime.mul_pow _ hc' hc) h3, cast_nat_cast (h2 m.succ) _, cast_nat_cast h1 _, cast_nat_cast h3 _, zmod.mul_inv_of_unit _ (is_unit_mul m hc' hc), one_mul], any_goals { refine zmod.char_p _ }, }, { refine zmod.char_p _, }, }, { rw [←mul_assoc, zmod.cast_inv (nat.coprime.mul_pow _ hc' hc) (h2 _), zmod.inv_mul_of_unit _ _, one_mul a, true_and], rw cast_nat_cast (h2 m.succ) c, apply is_unit_mul _ hc' hc, { refine zmod.char_p _, }, }, }, end open equi_class lemma bernoulli_distribution_sum' (x : zmod (d * p^m)) (hc : c.coprime p) (hc' : c.coprime d) : ∑ (y : equi_class m.succ x), (bernoulli_distribution p d c m.succ y) = (bernoulli_distribution p d c m x) := begin rw [bernoulli_distribution, ← ring_hom.map_sum], apply congr_arg, rw [finset.sum_add_distrib, finset.sum_sub_distrib, equi_class.sum_fract, ←finset.mul_sum], have h2 : ∀ z : ℕ, d * p ^ z ∣ d * p ^ (2 * z), { intro z, apply mul_dvd_mul_left _ (pow_dvd_pow p _), linarith, }, have h3 : d * p ^ m ∣ d * p ^ (2 * m.succ), { apply mul_dvd_mul_left _ (pow_dvd_pow p _), rw [nat.succ_eq_add_one, mul_add], linarith, }, convert_to ((x.val : ℚ) / (d * p ^ m) + (p - 1) / 2) - (c : ℚ) * ∑ (x_1 : (equi_class m.succ ( ((c : zmod (d * p^(2*m.succ)))⁻¹.val) * x))), int.fract (((x_1 : zmod (d * p^m.succ)).val : ℚ) / ((d : ℚ) * (p : ℚ)^m.succ)) + (∑ (x : (equi_class m.succ x)), ((c : ℚ) - 1) / 2) = _ - _ + _, { rw [add_right_cancel_iff, sub_right_inj], refine congr_arg _ (helper_bernoulli_distribution_sum' hc' hc _), }, rw [sum_fract, ←nat.cast_pow, ←nat.cast_mul, int.fract_eq_self' (zero_le_div_and_div_lt_one x).1 (zero_le_div_and_div_lt_one x).2, mul_add, finset.sum_const, equi_class.card, _root_.nsmul_eq_mul, sub_add_eq_add_sub, sub_add_eq_add_sub, sub_add_eq_sub_sub, sub_right_comm], apply congr_arg2 _ _ (congr_arg _ _), { rw [add_assoc, add_sub_assoc], congr, linarith, }, { rw [←fract_eq_val _, ← zmod.nat_cast_val, ← zmod.nat_cast_val, ← nat.cast_mul], apply fract_eq_of_zmod_eq, rw [nat.cast_mul, zmod.nat_cast_val, zmod.nat_cast_val, zmod.nat_cast_val, zmod.cast_mul', zmod.nat_cast_val, zmod.cast_id], apply congr_arg2 _ _ rfl, rw [cast_inv (nat.coprime.mul_pow _ hc' hc) h3, cast_inv (nat.coprime.mul_pow _ hc' hc) (h2 _), cast_nat_cast h3, cast_nat_cast (h2 _)], any_goals { refine zmod.char_p _, }, { apply_instance, }, }, end variable [algebra ℚ_[p] R] --`E_c_sum_equi_class` replaced with `bernoulli_distribution_sum` lemma bernoulli_distribution_sum (x : zmod (d * p^m)) (hc : c.gcd p = 1) (hc' : c.gcd d = 1) : ∑ (y : zmod (d * p ^ m.succ)) in (λ a : zmod (d * p ^ m), ((equi_class m.succ) a).to_finset) x, ((algebra_map ℚ_[p] R) (bernoulli_distribution p d c m.succ y)) = (algebra_map ℚ_[p] R) (bernoulli_distribution p d c m x) := begin rw ←bernoulli_distribution_sum', { rw ring_hom.map_sum, apply finset.sum_bij (λ a ha, subtype.mk a _) (λ a ha, finset.mem_univ _) (λ a ha, _) (λ a b ha hb h, _) (λ b hb, _), { refine set.mem_to_finset.1 ha, }, { simp only [subtype.coe_mk], }, { simp only [subtype.mk_eq_mk, subtype.ext_iff, subtype.coe_mk] at h, rw h, }, { simp only [set.mem_to_finset], refine ⟨b.val, b.prop, by { rw subtype.ext_iff_val, }⟩, }, }, any_goals { assumption, }, end open clopen_from -- does not require [fact (0 < d)] lemma clopen {n : ℕ} (a : zmod (d * p^n)) (hm : n ≤ m) (b : (equi_class m a)) : (b.val : zmod d × ℤ_[p]) ∈ (clopen_from a) := begin simp_rw [subtype.val_eq_coe, mem_clopen_from, ←(mem _ _).1 b.prop], refine ⟨_, _⟩, { conv_rhs { congr, rw ←nat_cast_val, }, rw [prod.fst_zmod_cast, cast_nat_cast (dvd_mul_right d _) _, nat_cast_val], refine zmod.char_p _, }, { rw [prod.snd_zmod_cast], convert_to _ = ((b: zmod (d * p^m)) : zmod (p^n)), { rw ←zmod.int_cast_cast (b: zmod (d * p^m)), conv_rhs { rw ←zmod.int_cast_cast (b: zmod (d * p^m)), }, change (ring_hom.comp (to_zmod_pow n) (int.cast_ring_hom ℤ_[p])) ((b : zmod (d * p^m)) : ℤ) = (int.cast_ring_hom (zmod (p^n))) ((b : zmod (d * p^m)) : ℤ), apply _root_.congr_fun _ _, congr, convert @ring_hom.ext_zmod 0 _ _ _ _, }, { rw [←cast_hom_apply' (zmod (p^n)) (dvd_mul_left (p^n) d) _, ←cast_hom_apply' (zmod (d * p^n)) (mul_dvd_mul_left d (pow_dvd_pow p hm)) _, ←cast_hom_apply' (zmod (p^n)) (dvd_mul_of_dvd_right (pow_dvd_pow p hm) d) _, ←ring_hom.comp_apply], apply _root_.congr_fun _, congr, convert ring_hom.ext_zmod _ _, }, }, end end equi_class
Formal statement is: lemma of_real_add [simp]: "of_real (x + y) = of_real x + of_real y" Informal statement is: The real number $x + y$ is equal to the complex number $x + y$.
import sys, os sys.path.append(os.path.dirname(__file__)) import torch from torch import nn import numpy as np from nets import Conv2dBlock, Conv3dBlock class IdentityEncoder(nn.Module): def __init__(self, in_channels = 3, out_channels = 256, init_inner_channels = 64, nlayers = 3): super(IdentityEncoder, self).__init__() channels = init_inner_channels layers = [Conv2dBlock(in_channels, channels, kernel = 7, stride = 2, padding = 3)] for _ in range(nlayers - 1): conv_block = Conv2dBlock( channels, out_channels, kernel = 3, stride = 2, padding = 1, ) channels = out_channels layers.append(conv_block) self.layers = nn.Sequential(*layers) def forward(self, x): return self.layers(x) class StreamEncoder(nn.Module): def __init__(self, in_channels = 3, out_channels = 256, init_inner_channels = 64, nlayers = 4): super(StreamEncoder, self).__init__() layers = [ Conv3dBlock(in_channels, init_inner_channels, kernel = 4, stride = 2, padding = 1), Conv3dBlock(init_inner_channels, out_channels, kernel = 4, stride = 2, padding = 1), Conv3dBlock(out_channels, out_channels, kernel = 4, stride = 2, padding = 1), Conv3dBlock(out_channels, out_channels, kernel = 4, stride = 2, padding = 1), ] self.layers = nn.Sequential(*layers) def forward(self, x): return self.layers(x).squeeze(2) class FlowEncoder(nn.Module): def __init__(self, in_channels = 2, out_channels = 128, init_inner_channels = 32, nlayers = 3): super(FlowEncoder, self).__init__() channels = init_inner_channels layers = [Conv3dBlock(in_channels, channels, kernel = (3, 7, 7), stride = (2, 4, 4), padding = (1, 3, 3))] for _ in range(nlayers - 1): cout = channels * 2 conv_block = Conv3dBlock( channels, cout if cout < out_channels else out_channels, kernel = (3, 7, 7), stride = (2, 4, 4), padding = (1, 3, 3), ) if cout < out_channels: channels = cout layers.append(conv_block) self.layers = nn.Sequential(*layers) self.fc = nn.Linear(out_channels * 2, out_channels) self.__out_channels = out_channels def forward(self, x): ''' batch video shape is: (batch, frames, channels, h, w) ''' batch_size = x.shape[0] x = x.transpose(1, 2) x = self.layers(x) x = x.reshape(batch_size, -1) x = self.fc(x) return x if __name__ == "__main__": import pickle v_enc = IdentityEncoder() print(v_enc) s_enc = StreamEncoder() print(s_enc) with open("./../grid-dataset/sample/s1/bbaf2n.pkl", 'rb') as fd: data = pickle.load(fd) video = data['video'] print(video.shape) video = torch.tensor(video) processed_video = v_enc(video.float()) print(processed_video.shape) print("---------------------------------------------") sample = torch.ones(59, 3, 16, 64, 64) output = s_enc(sample.float()) print(output.shape)
ELEMENTAL FUNCTION func_radians(x) RESULT(ans) ! This function returns the passed angle converted from degrees to radians. USE ISO_FORTRAN_ENV IMPLICIT NONE ! Declare input variables ... REAL(kind = REAL64), INTENT(in) :: x ! The input angle in degrees. ! Declare output variables ... REAL(kind = REAL64) :: ans ! The output angle in radians. ! Set value ... ans = const_pi * x / 180.0e0_REAL64 ! [rad] END FUNCTION func_radians
selectOutput <- function(ensembles, item = 1) lapply(ensembles, function(j) layer.apply(j, function(i) i[[item]]))
[STATEMENT] lemma succ_pred_no [simp]: "word_succ (numeral w) = numeral w + 1" "word_pred (numeral w) = numeral w - 1" "word_succ (- numeral w) = - numeral w + 1" "word_pred (- numeral w) = - numeral w - 1" [PROOF STATE] proof (prove) goal (1 subgoal): 1. (word_succ (numeral w) = numeral w + 1 &&& word_pred (numeral w) = numeral w - 1) &&& word_succ (- numeral w) = - numeral w + 1 &&& word_pred (- numeral w) = - numeral w - 1 [PROOF STEP] by (simp_all add: word_succ_p1 word_pred_m1)
(* Title: HOL/Limits.thy Author: Brian Huffman Author: Jacques D. Fleuriot, University of Cambridge Author: Lawrence C Paulson Author: Jeremy Avigad *) section \<open>Limits on Real Vector Spaces\<close> theory Limits imports Real_Vector_Spaces begin text \<open>Lemmas related to shifting/scaling\<close> lemma range_add [simp]: fixes a::"'a::group_add" shows "range ((+) a) = UNIV" by (metis add_minus_cancel surjI) lemma range_diff [simp]: fixes a::"'a::group_add" shows "range ((-) a) = UNIV" by (metis (full_types) add_minus_cancel diff_minus_eq_add surj_def) lemma range_mult [simp]: fixes a::"real" shows "range ((*) a) = (if a=0 then {0} else UNIV)" by (simp add: surj_def) (meson dvdE dvd_field_iff) subsection \<open>Filter going to infinity norm\<close> definition at_infinity :: "'a::real_normed_vector filter" where "at_infinity = (INF r. principal {x. r \<le> norm x})" lemma eventually_at_infinity: "eventually P at_infinity \<longleftrightarrow> (\<exists>b. \<forall>x. b \<le> norm x \<longrightarrow> P x)" unfolding at_infinity_def by (subst eventually_INF_base) (auto simp: subset_eq eventually_principal intro!: exI[of _ "max a b" for a b]) corollary eventually_at_infinity_pos: "eventually p at_infinity \<longleftrightarrow> (\<exists>b. 0 < b \<and> (\<forall>x. norm x \<ge> b \<longrightarrow> p x))" unfolding eventually_at_infinity by (meson le_less_trans norm_ge_zero not_le zero_less_one) lemma at_infinity_eq_at_top_bot: "(at_infinity :: real filter) = sup at_top at_bot" proof - have 1: "\<lbrakk>\<forall>n\<ge>u. A n; \<forall>n\<le>v. A n\<rbrakk> \<Longrightarrow> \<exists>b. \<forall>x. b \<le> \<bar>x\<bar> \<longrightarrow> A x" for A and u v::real by (rule_tac x="max (- v) u" in exI) (auto simp: abs_real_def) have 2: "\<forall>x. u \<le> \<bar>x\<bar> \<longrightarrow> A x \<Longrightarrow> \<exists>N. \<forall>n\<ge>N. A n" for A and u::real by (meson abs_less_iff le_cases less_le_not_le) have 3: "\<forall>x. u \<le> \<bar>x\<bar> \<longrightarrow> A x \<Longrightarrow> \<exists>N. \<forall>n\<le>N. A n" for A and u::real by (metis (full_types) abs_ge_self abs_minus_cancel le_minus_iff order_trans) show ?thesis by (auto simp: filter_eq_iff eventually_sup eventually_at_infinity eventually_at_top_linorder eventually_at_bot_linorder intro: 1 2 3) qed lemma at_top_le_at_infinity: "at_top \<le> (at_infinity :: real filter)" unfolding at_infinity_eq_at_top_bot by simp lemma at_bot_le_at_infinity: "at_bot \<le> (at_infinity :: real filter)" unfolding at_infinity_eq_at_top_bot by simp lemma filterlim_at_top_imp_at_infinity: "filterlim f at_top F \<Longrightarrow> filterlim f at_infinity F" for f :: "_ \<Rightarrow> real" by (rule filterlim_mono[OF _ at_top_le_at_infinity order_refl]) lemma filterlim_real_at_infinity_sequentially: "filterlim real at_infinity sequentially" by (simp add: filterlim_at_top_imp_at_infinity filterlim_real_sequentially) lemma lim_infinity_imp_sequentially: "(f \<longlongrightarrow> l) at_infinity \<Longrightarrow> ((\<lambda>n. f(n)) \<longlongrightarrow> l) sequentially" by (simp add: filterlim_at_top_imp_at_infinity filterlim_compose filterlim_real_sequentially) subsubsection \<open>Boundedness\<close> definition Bfun :: "('a \<Rightarrow> 'b::metric_space) \<Rightarrow> 'a filter \<Rightarrow> bool" where Bfun_metric_def: "Bfun f F = (\<exists>y. \<exists>K>0. eventually (\<lambda>x. dist (f x) y \<le> K) F)" abbreviation Bseq :: "(nat \<Rightarrow> 'a::metric_space) \<Rightarrow> bool" where "Bseq X \<equiv> Bfun X sequentially" lemma Bseq_conv_Bfun: "Bseq X \<longleftrightarrow> Bfun X sequentially" .. lemma Bseq_ignore_initial_segment: "Bseq X \<Longrightarrow> Bseq (\<lambda>n. X (n + k))" unfolding Bfun_metric_def by (subst eventually_sequentially_seg) lemma Bseq_offset: "Bseq (\<lambda>n. X (n + k)) \<Longrightarrow> Bseq X" unfolding Bfun_metric_def by (subst (asm) eventually_sequentially_seg) lemma Bfun_def: "Bfun f F \<longleftrightarrow> (\<exists>K>0. eventually (\<lambda>x. norm (f x) \<le> K) F)" unfolding Bfun_metric_def norm_conv_dist proof safe fix y K assume K: "0 < K" and *: "eventually (\<lambda>x. dist (f x) y \<le> K) F" moreover have "eventually (\<lambda>x. dist (f x) 0 \<le> dist (f x) y + dist 0 y) F" by (intro always_eventually) (metis dist_commute dist_triangle) with * have "eventually (\<lambda>x. dist (f x) 0 \<le> K + dist 0 y) F" by eventually_elim auto with \<open>0 < K\<close> show "\<exists>K>0. eventually (\<lambda>x. dist (f x) 0 \<le> K) F" by (intro exI[of _ "K + dist 0 y"] add_pos_nonneg conjI zero_le_dist) auto qed (force simp del: norm_conv_dist [symmetric]) lemma BfunI: assumes K: "eventually (\<lambda>x. norm (f x) \<le> K) F" shows "Bfun f F" unfolding Bfun_def proof (intro exI conjI allI) show "0 < max K 1" by simp show "eventually (\<lambda>x. norm (f x) \<le> max K 1) F" using K by (rule eventually_mono) simp qed lemma BfunE: assumes "Bfun f F" obtains B where "0 < B" and "eventually (\<lambda>x. norm (f x) \<le> B) F" using assms unfolding Bfun_def by blast lemma Cauchy_Bseq: assumes "Cauchy X" shows "Bseq X" proof - have "\<exists>y K. 0 < K \<and> (\<exists>N. \<forall>n\<ge>N. dist (X n) y \<le> K)" if "\<And>m n. \<lbrakk>m \<ge> M; n \<ge> M\<rbrakk> \<Longrightarrow> dist (X m) (X n) < 1" for M by (meson order.order_iff_strict that zero_less_one) with assms show ?thesis by (force simp: Cauchy_def Bfun_metric_def eventually_sequentially) qed subsubsection \<open>Bounded Sequences\<close> lemma BseqI': "(\<And>n. norm (X n) \<le> K) \<Longrightarrow> Bseq X" by (intro BfunI) (auto simp: eventually_sequentially) lemma Bseq_def: "Bseq X \<longleftrightarrow> (\<exists>K>0. \<forall>n. norm (X n) \<le> K)" unfolding Bfun_def eventually_sequentially proof safe fix N K assume "0 < K" "\<forall>n\<ge>N. norm (X n) \<le> K" then show "\<exists>K>0. \<forall>n. norm (X n) \<le> K" by (intro exI[of _ "max (Max (norm ` X ` {..N})) K"] max.strict_coboundedI2) (auto intro!: imageI not_less[where 'a=nat, THEN iffD1] Max_ge simp: le_max_iff_disj) qed auto lemma BseqE: "Bseq X \<Longrightarrow> (\<And>K. 0 < K \<Longrightarrow> \<forall>n. norm (X n) \<le> K \<Longrightarrow> Q) \<Longrightarrow> Q" unfolding Bseq_def by auto lemma BseqD: "Bseq X \<Longrightarrow> \<exists>K. 0 < K \<and> (\<forall>n. norm (X n) \<le> K)" by (simp add: Bseq_def) lemma BseqI: "0 < K \<Longrightarrow> \<forall>n. norm (X n) \<le> K \<Longrightarrow> Bseq X" by (auto simp: Bseq_def) lemma Bseq_bdd_above: "Bseq X \<Longrightarrow> bdd_above (range X)" for X :: "nat \<Rightarrow> real" proof (elim BseqE, intro bdd_aboveI2) fix K n assume "0 < K" "\<forall>n. norm (X n) \<le> K" then show "X n \<le> K" by (auto elim!: allE[of _ n]) qed lemma Bseq_bdd_above': "Bseq X \<Longrightarrow> bdd_above (range (\<lambda>n. norm (X n)))" for X :: "nat \<Rightarrow> 'a :: real_normed_vector" proof (elim BseqE, intro bdd_aboveI2) fix K n assume "0 < K" "\<forall>n. norm (X n) \<le> K" then show "norm (X n) \<le> K" by (auto elim!: allE[of _ n]) qed lemma Bseq_bdd_below: "Bseq X \<Longrightarrow> bdd_below (range X)" for X :: "nat \<Rightarrow> real" proof (elim BseqE, intro bdd_belowI2) fix K n assume "0 < K" "\<forall>n. norm (X n) \<le> K" then show "- K \<le> X n" by (auto elim!: allE[of _ n]) qed lemma Bseq_eventually_mono: assumes "eventually (\<lambda>n. norm (f n) \<le> norm (g n)) sequentially" "Bseq g" shows "Bseq f" proof - from assms(2) obtain K where "0 < K" and "eventually (\<lambda>n. norm (g n) \<le> K) sequentially" unfolding Bfun_def by fast with assms(1) have "eventually (\<lambda>n. norm (f n) \<le> K) sequentially" by (fast elim: eventually_elim2 order_trans) with \<open>0 < K\<close> show "Bseq f" unfolding Bfun_def by fast qed lemma lemma_NBseq_def: "(\<exists>K > 0. \<forall>n. norm (X n) \<le> K) \<longleftrightarrow> (\<exists>N. \<forall>n. norm (X n) \<le> real(Suc N))" proof safe fix K :: real from reals_Archimedean2 obtain n :: nat where "K < real n" .. then have "K \<le> real (Suc n)" by auto moreover assume "\<forall>m. norm (X m) \<le> K" ultimately have "\<forall>m. norm (X m) \<le> real (Suc n)" by (blast intro: order_trans) then show "\<exists>N. \<forall>n. norm (X n) \<le> real (Suc N)" .. next show "\<And>N. \<forall>n. norm (X n) \<le> real (Suc N) \<Longrightarrow> \<exists>K>0. \<forall>n. norm (X n) \<le> K" using of_nat_0_less_iff by blast qed text \<open>Alternative definition for \<open>Bseq\<close>.\<close> lemma Bseq_iff: "Bseq X \<longleftrightarrow> (\<exists>N. \<forall>n. norm (X n) \<le> real(Suc N))" by (simp add: Bseq_def) (simp add: lemma_NBseq_def) lemma lemma_NBseq_def2: "(\<exists>K > 0. \<forall>n. norm (X n) \<le> K) = (\<exists>N. \<forall>n. norm (X n) < real(Suc N))" proof - have *: "\<And>N. \<forall>n. norm (X n) \<le> 1 + real N \<Longrightarrow> \<exists>N. \<forall>n. norm (X n) < 1 + real N" by (metis add.commute le_less_trans less_add_one of_nat_Suc) then show ?thesis unfolding lemma_NBseq_def by (metis less_le_not_le not_less_iff_gr_or_eq of_nat_Suc) qed text \<open>Yet another definition for Bseq.\<close> lemma Bseq_iff1a: "Bseq X \<longleftrightarrow> (\<exists>N. \<forall>n. norm (X n) < real (Suc N))" by (simp add: Bseq_def lemma_NBseq_def2) subsubsection \<open>A Few More Equivalence Theorems for Boundedness\<close> text \<open>Alternative formulation for boundedness.\<close> lemma Bseq_iff2: "Bseq X \<longleftrightarrow> (\<exists>k > 0. \<exists>x. \<forall>n. norm (X n + - x) \<le> k)" by (metis BseqE BseqI' add.commute add_cancel_right_left add_uminus_conv_diff norm_add_leD norm_minus_cancel norm_minus_commute) text \<open>Alternative formulation for boundedness.\<close> lemma Bseq_iff3: "Bseq X \<longleftrightarrow> (\<exists>k>0. \<exists>N. \<forall>n. norm (X n + - X N) \<le> k)" (is "?P \<longleftrightarrow> ?Q") proof assume ?P then obtain K where *: "0 < K" and **: "\<And>n. norm (X n) \<le> K" by (auto simp: Bseq_def) from * have "0 < K + norm (X 0)" by (rule order_less_le_trans) simp from ** have "\<forall>n. norm (X n - X 0) \<le> K + norm (X 0)" by (auto intro: order_trans norm_triangle_ineq4) then have "\<forall>n. norm (X n + - X 0) \<le> K + norm (X 0)" by simp with \<open>0 < K + norm (X 0)\<close> show ?Q by blast next assume ?Q then show ?P by (auto simp: Bseq_iff2) qed subsubsection \<open>Upper Bounds and Lubs of Bounded Sequences\<close> lemma Bseq_minus_iff: "Bseq (\<lambda>n. - (X n) :: 'a::real_normed_vector) \<longleftrightarrow> Bseq X" by (simp add: Bseq_def) lemma Bseq_add: fixes f :: "nat \<Rightarrow> 'a::real_normed_vector" assumes "Bseq f" shows "Bseq (\<lambda>x. f x + c)" proof - from assms obtain K where K: "\<And>x. norm (f x) \<le> K" unfolding Bseq_def by blast { fix x :: nat have "norm (f x + c) \<le> norm (f x) + norm c" by (rule norm_triangle_ineq) also have "norm (f x) \<le> K" by (rule K) finally have "norm (f x + c) \<le> K + norm c" by simp } then show ?thesis by (rule BseqI') qed lemma Bseq_add_iff: "Bseq (\<lambda>x. f x + c) \<longleftrightarrow> Bseq f" for f :: "nat \<Rightarrow> 'a::real_normed_vector" using Bseq_add[of f c] Bseq_add[of "\<lambda>x. f x + c" "-c"] by auto lemma Bseq_mult: fixes f g :: "nat \<Rightarrow> 'a::real_normed_field" assumes "Bseq f" and "Bseq g" shows "Bseq (\<lambda>x. f x * g x)" proof - from assms obtain K1 K2 where K: "norm (f x) \<le> K1" "K1 > 0" "norm (g x) \<le> K2" "K2 > 0" for x unfolding Bseq_def by blast then have "norm (f x * g x) \<le> K1 * K2" for x by (auto simp: norm_mult intro!: mult_mono) then show ?thesis by (rule BseqI') qed lemma Bfun_const [simp]: "Bfun (\<lambda>_. c) F" unfolding Bfun_metric_def by (auto intro!: exI[of _ c] exI[of _ "1::real"]) lemma Bseq_cmult_iff: fixes c :: "'a::real_normed_field" assumes "c \<noteq> 0" shows "Bseq (\<lambda>x. c * f x) \<longleftrightarrow> Bseq f" proof assume "Bseq (\<lambda>x. c * f x)" with Bfun_const have "Bseq (\<lambda>x. inverse c * (c * f x))" by (rule Bseq_mult) with \<open>c \<noteq> 0\<close> show "Bseq f" by (simp add: field_split_simps) qed (intro Bseq_mult Bfun_const) lemma Bseq_subseq: "Bseq f \<Longrightarrow> Bseq (\<lambda>x. f (g x))" for f :: "nat \<Rightarrow> 'a::real_normed_vector" unfolding Bseq_def by auto lemma Bseq_Suc_iff: "Bseq (\<lambda>n. f (Suc n)) \<longleftrightarrow> Bseq f" for f :: "nat \<Rightarrow> 'a::real_normed_vector" using Bseq_offset[of f 1] by (auto intro: Bseq_subseq) lemma increasing_Bseq_subseq_iff: assumes "\<And>x y. x \<le> y \<Longrightarrow> norm (f x :: 'a::real_normed_vector) \<le> norm (f y)" "strict_mono g" shows "Bseq (\<lambda>x. f (g x)) \<longleftrightarrow> Bseq f" proof assume "Bseq (\<lambda>x. f (g x))" then obtain K where K: "\<And>x. norm (f (g x)) \<le> K" unfolding Bseq_def by auto { fix x :: nat from filterlim_subseq[OF assms(2)] obtain y where "g y \<ge> x" by (auto simp: filterlim_at_top eventually_at_top_linorder) then have "norm (f x) \<le> norm (f (g y))" using assms(1) by blast also have "norm (f (g y)) \<le> K" by (rule K) finally have "norm (f x) \<le> K" . } then show "Bseq f" by (rule BseqI') qed (use Bseq_subseq[of f g] in simp_all) lemma nonneg_incseq_Bseq_subseq_iff: fixes f :: "nat \<Rightarrow> real" and g :: "nat \<Rightarrow> nat" assumes "\<And>x. f x \<ge> 0" "incseq f" "strict_mono g" shows "Bseq (\<lambda>x. f (g x)) \<longleftrightarrow> Bseq f" using assms by (intro increasing_Bseq_subseq_iff) (auto simp: incseq_def) lemma Bseq_eq_bounded: "range f \<subseteq> {a..b} \<Longrightarrow> Bseq f" for a b :: real proof (rule BseqI'[where K="max (norm a) (norm b)"]) fix n assume "range f \<subseteq> {a..b}" then have "f n \<in> {a..b}" by blast then show "norm (f n) \<le> max (norm a) (norm b)" by auto qed lemma incseq_bounded: "incseq X \<Longrightarrow> \<forall>i. X i \<le> B \<Longrightarrow> Bseq X" for B :: real by (intro Bseq_eq_bounded[of X "X 0" B]) (auto simp: incseq_def) lemma decseq_bounded: "decseq X \<Longrightarrow> \<forall>i. B \<le> X i \<Longrightarrow> Bseq X" for B :: real by (intro Bseq_eq_bounded[of X B "X 0"]) (auto simp: decseq_def) subsubsection\<^marker>\<open>tag unimportant\<close> \<open>Polynomal function extremal theorem, from HOL Light\<close> lemma polyfun_extremal_lemma: fixes c :: "nat \<Rightarrow> 'a::real_normed_div_algebra" assumes "0 < e" shows "\<exists>M. \<forall>z. M \<le> norm(z) \<longrightarrow> norm (\<Sum>i\<le>n. c(i) * z^i) \<le> e * norm(z) ^ (Suc n)" proof (induct n) case 0 with assms show ?case apply (rule_tac x="norm (c 0) / e" in exI) apply (auto simp: field_simps) done next case (Suc n) obtain M where M: "\<And>z. M \<le> norm z \<Longrightarrow> norm (\<Sum>i\<le>n. c i * z^i) \<le> e * norm z ^ Suc n" using Suc assms by blast show ?case proof (rule exI [where x= "max M (1 + norm(c(Suc n)) / e)"], clarsimp simp del: power_Suc) fix z::'a assume z1: "M \<le> norm z" and "1 + norm (c (Suc n)) / e \<le> norm z" then have z2: "e + norm (c (Suc n)) \<le> e * norm z" using assms by (simp add: field_simps) have "norm (\<Sum>i\<le>n. c i * z^i) \<le> e * norm z ^ Suc n" using M [OF z1] by simp then have "norm (\<Sum>i\<le>n. c i * z^i) + norm (c (Suc n) * z ^ Suc n) \<le> e * norm z ^ Suc n + norm (c (Suc n) * z ^ Suc n)" by simp then have "norm ((\<Sum>i\<le>n. c i * z^i) + c (Suc n) * z ^ Suc n) \<le> e * norm z ^ Suc n + norm (c (Suc n) * z ^ Suc n)" by (blast intro: norm_triangle_le elim: ) also have "... \<le> (e + norm (c (Suc n))) * norm z ^ Suc n" by (simp add: norm_power norm_mult algebra_simps) also have "... \<le> (e * norm z) * norm z ^ Suc n" by (metis z2 mult.commute mult_left_mono norm_ge_zero norm_power) finally show "norm ((\<Sum>i\<le>n. c i * z^i) + c (Suc n) * z ^ Suc n) \<le> e * norm z ^ Suc (Suc n)" by simp qed qed lemma polyfun_extremal: (*COMPLEX_POLYFUN_EXTREMAL in HOL Light*) fixes c :: "nat \<Rightarrow> 'a::real_normed_div_algebra" assumes k: "c k \<noteq> 0" "1\<le>k" and kn: "k\<le>n" shows "eventually (\<lambda>z. norm (\<Sum>i\<le>n. c(i) * z^i) \<ge> B) at_infinity" using kn proof (induction n) case 0 then show ?case using k by simp next case (Suc m) show ?case proof (cases "c (Suc m) = 0") case True then show ?thesis using Suc k by auto (metis antisym_conv less_eq_Suc_le not_le) next case False then obtain M where M: "\<And>z. M \<le> norm z \<Longrightarrow> norm (\<Sum>i\<le>m. c i * z^i) \<le> norm (c (Suc m)) / 2 * norm z ^ Suc m" using polyfun_extremal_lemma [of "norm(c (Suc m)) / 2" c m] Suc by auto have "\<exists>b. \<forall>z. b \<le> norm z \<longrightarrow> B \<le> norm (\<Sum>i\<le>Suc m. c i * z^i)" proof (rule exI [where x="max M (max 1 (\<bar>B\<bar> / (norm(c (Suc m)) / 2)))"], clarsimp simp del: power_Suc) fix z::'a assume z1: "M \<le> norm z" "1 \<le> norm z" and "\<bar>B\<bar> * 2 / norm (c (Suc m)) \<le> norm z" then have z2: "\<bar>B\<bar> \<le> norm (c (Suc m)) * norm z / 2" using False by (simp add: field_simps) have nz: "norm z \<le> norm z ^ Suc m" by (metis \<open>1 \<le> norm z\<close> One_nat_def less_eq_Suc_le power_increasing power_one_right zero_less_Suc) have *: "\<And>y x. norm (c (Suc m)) * norm z / 2 \<le> norm y - norm x \<Longrightarrow> B \<le> norm (x + y)" by (metis abs_le_iff add.commute norm_diff_ineq order_trans z2) have "norm z * norm (c (Suc m)) + 2 * norm (\<Sum>i\<le>m. c i * z^i) \<le> norm (c (Suc m)) * norm z + norm (c (Suc m)) * norm z ^ Suc m" using M [of z] Suc z1 by auto also have "... \<le> 2 * (norm (c (Suc m)) * norm z ^ Suc m)" using nz by (simp add: mult_mono del: power_Suc) finally show "B \<le> norm ((\<Sum>i\<le>m. c i * z^i) + c (Suc m) * z ^ Suc m)" using Suc.IH apply (auto simp: eventually_at_infinity) apply (rule *) apply (simp add: field_simps norm_mult norm_power) done qed then show ?thesis by (simp add: eventually_at_infinity) qed qed subsection \<open>Convergence to Zero\<close> definition Zfun :: "('a \<Rightarrow> 'b::real_normed_vector) \<Rightarrow> 'a filter \<Rightarrow> bool" where "Zfun f F = (\<forall>r>0. eventually (\<lambda>x. norm (f x) < r) F)" lemma ZfunI: "(\<And>r. 0 < r \<Longrightarrow> eventually (\<lambda>x. norm (f x) < r) F) \<Longrightarrow> Zfun f F" by (simp add: Zfun_def) lemma ZfunD: "Zfun f F \<Longrightarrow> 0 < r \<Longrightarrow> eventually (\<lambda>x. norm (f x) < r) F" by (simp add: Zfun_def) lemma Zfun_ssubst: "eventually (\<lambda>x. f x = g x) F \<Longrightarrow> Zfun g F \<Longrightarrow> Zfun f F" unfolding Zfun_def by (auto elim!: eventually_rev_mp) lemma Zfun_zero: "Zfun (\<lambda>x. 0) F" unfolding Zfun_def by simp lemma Zfun_norm_iff: "Zfun (\<lambda>x. norm (f x)) F = Zfun (\<lambda>x. f x) F" unfolding Zfun_def by simp lemma Zfun_imp_Zfun: assumes f: "Zfun f F" and g: "eventually (\<lambda>x. norm (g x) \<le> norm (f x) * K) F" shows "Zfun (\<lambda>x. g x) F" proof (cases "0 < K") case K: True show ?thesis proof (rule ZfunI) fix r :: real assume "0 < r" then have "0 < r / K" using K by simp then have "eventually (\<lambda>x. norm (f x) < r / K) F" using ZfunD [OF f] by blast with g show "eventually (\<lambda>x. norm (g x) < r) F" proof eventually_elim case (elim x) then have "norm (f x) * K < r" by (simp add: pos_less_divide_eq K) then show ?case by (simp add: order_le_less_trans [OF elim(1)]) qed qed next case False then have K: "K \<le> 0" by (simp only: not_less) show ?thesis proof (rule ZfunI) fix r :: real assume "0 < r" from g show "eventually (\<lambda>x. norm (g x) < r) F" proof eventually_elim case (elim x) also have "norm (f x) * K \<le> norm (f x) * 0" using K norm_ge_zero by (rule mult_left_mono) finally show ?case using \<open>0 < r\<close> by simp qed qed qed lemma Zfun_le: "Zfun g F \<Longrightarrow> \<forall>x. norm (f x) \<le> norm (g x) \<Longrightarrow> Zfun f F" by (erule Zfun_imp_Zfun [where K = 1]) simp lemma Zfun_add: assumes f: "Zfun f F" and g: "Zfun g F" shows "Zfun (\<lambda>x. f x + g x) F" proof (rule ZfunI) fix r :: real assume "0 < r" then have r: "0 < r / 2" by simp have "eventually (\<lambda>x. norm (f x) < r/2) F" using f r by (rule ZfunD) moreover have "eventually (\<lambda>x. norm (g x) < r/2) F" using g r by (rule ZfunD) ultimately show "eventually (\<lambda>x. norm (f x + g x) < r) F" proof eventually_elim case (elim x) have "norm (f x + g x) \<le> norm (f x) + norm (g x)" by (rule norm_triangle_ineq) also have "\<dots> < r/2 + r/2" using elim by (rule add_strict_mono) finally show ?case by simp qed qed lemma Zfun_minus: "Zfun f F \<Longrightarrow> Zfun (\<lambda>x. - f x) F" unfolding Zfun_def by simp lemma Zfun_diff: "Zfun f F \<Longrightarrow> Zfun g F \<Longrightarrow> Zfun (\<lambda>x. f x - g x) F" using Zfun_add [of f F "\<lambda>x. - g x"] by (simp add: Zfun_minus) lemma (in bounded_linear) Zfun: assumes g: "Zfun g F" shows "Zfun (\<lambda>x. f (g x)) F" proof - obtain K where "norm (f x) \<le> norm x * K" for x using bounded by blast then have "eventually (\<lambda>x. norm (f (g x)) \<le> norm (g x) * K) F" by simp with g show ?thesis by (rule Zfun_imp_Zfun) qed lemma (in bounded_bilinear) Zfun: assumes f: "Zfun f F" and g: "Zfun g F" shows "Zfun (\<lambda>x. f x ** g x) F" proof (rule ZfunI) fix r :: real assume r: "0 < r" obtain K where K: "0 < K" and norm_le: "norm (x ** y) \<le> norm x * norm y * K" for x y using pos_bounded by blast from K have K': "0 < inverse K" by (rule positive_imp_inverse_positive) have "eventually (\<lambda>x. norm (f x) < r) F" using f r by (rule ZfunD) moreover have "eventually (\<lambda>x. norm (g x) < inverse K) F" using g K' by (rule ZfunD) ultimately show "eventually (\<lambda>x. norm (f x ** g x) < r) F" proof eventually_elim case (elim x) have "norm (f x ** g x) \<le> norm (f x) * norm (g x) * K" by (rule norm_le) also have "norm (f x) * norm (g x) * K < r * inverse K * K" by (intro mult_strict_right_mono mult_strict_mono' norm_ge_zero elim K) also from K have "r * inverse K * K = r" by simp finally show ?case . qed qed lemma (in bounded_bilinear) Zfun_left: "Zfun f F \<Longrightarrow> Zfun (\<lambda>x. f x ** a) F" by (rule bounded_linear_left [THEN bounded_linear.Zfun]) lemma (in bounded_bilinear) Zfun_right: "Zfun f F \<Longrightarrow> Zfun (\<lambda>x. a ** f x) F" by (rule bounded_linear_right [THEN bounded_linear.Zfun]) lemmas Zfun_mult = bounded_bilinear.Zfun [OF bounded_bilinear_mult] lemmas Zfun_mult_right = bounded_bilinear.Zfun_right [OF bounded_bilinear_mult] lemmas Zfun_mult_left = bounded_bilinear.Zfun_left [OF bounded_bilinear_mult] lemma tendsto_Zfun_iff: "(f \<longlongrightarrow> a) F = Zfun (\<lambda>x. f x - a) F" by (simp only: tendsto_iff Zfun_def dist_norm) lemma tendsto_0_le: "(f \<longlongrightarrow> 0) F \<Longrightarrow> eventually (\<lambda>x. norm (g x) \<le> norm (f x) * K) F \<Longrightarrow> (g \<longlongrightarrow> 0) F" by (simp add: Zfun_imp_Zfun tendsto_Zfun_iff) subsubsection \<open>Distance and norms\<close> lemma tendsto_dist [tendsto_intros]: fixes l m :: "'a::metric_space" assumes f: "(f \<longlongrightarrow> l) F" and g: "(g \<longlongrightarrow> m) F" shows "((\<lambda>x. dist (f x) (g x)) \<longlongrightarrow> dist l m) F" proof (rule tendstoI) fix e :: real assume "0 < e" then have e2: "0 < e/2" by simp from tendstoD [OF f e2] tendstoD [OF g e2] show "eventually (\<lambda>x. dist (dist (f x) (g x)) (dist l m) < e) F" proof (eventually_elim) case (elim x) then show "dist (dist (f x) (g x)) (dist l m) < e" unfolding dist_real_def using dist_triangle2 [of "f x" "g x" "l"] and dist_triangle2 [of "g x" "l" "m"] and dist_triangle3 [of "l" "m" "f x"] and dist_triangle [of "f x" "m" "g x"] by arith qed qed lemma continuous_dist[continuous_intros]: fixes f g :: "_ \<Rightarrow> 'a :: metric_space" shows "continuous F f \<Longrightarrow> continuous F g \<Longrightarrow> continuous F (\<lambda>x. dist (f x) (g x))" unfolding continuous_def by (rule tendsto_dist) lemma continuous_on_dist[continuous_intros]: fixes f g :: "_ \<Rightarrow> 'a :: metric_space" shows "continuous_on s f \<Longrightarrow> continuous_on s g \<Longrightarrow> continuous_on s (\<lambda>x. dist (f x) (g x))" unfolding continuous_on_def by (auto intro: tendsto_dist) lemma continuous_at_dist: "isCont (dist a) b" using continuous_on_dist [OF continuous_on_const continuous_on_id] continuous_on_eq_continuous_within by blast lemma tendsto_norm [tendsto_intros]: "(f \<longlongrightarrow> a) F \<Longrightarrow> ((\<lambda>x. norm (f x)) \<longlongrightarrow> norm a) F" unfolding norm_conv_dist by (intro tendsto_intros) lemma continuous_norm [continuous_intros]: "continuous F f \<Longrightarrow> continuous F (\<lambda>x. norm (f x))" unfolding continuous_def by (rule tendsto_norm) lemma continuous_on_norm [continuous_intros]: "continuous_on s f \<Longrightarrow> continuous_on s (\<lambda>x. norm (f x))" unfolding continuous_on_def by (auto intro: tendsto_norm) lemma continuous_on_norm_id [continuous_intros]: "continuous_on S norm" by (intro continuous_on_id continuous_on_norm) lemma tendsto_norm_zero: "(f \<longlongrightarrow> 0) F \<Longrightarrow> ((\<lambda>x. norm (f x)) \<longlongrightarrow> 0) F" by (drule tendsto_norm) simp lemma tendsto_norm_zero_cancel: "((\<lambda>x. norm (f x)) \<longlongrightarrow> 0) F \<Longrightarrow> (f \<longlongrightarrow> 0) F" unfolding tendsto_iff dist_norm by simp lemma tendsto_norm_zero_iff: "((\<lambda>x. norm (f x)) \<longlongrightarrow> 0) F \<longleftrightarrow> (f \<longlongrightarrow> 0) F" unfolding tendsto_iff dist_norm by simp lemma tendsto_rabs [tendsto_intros]: "(f \<longlongrightarrow> l) F \<Longrightarrow> ((\<lambda>x. \<bar>f x\<bar>) \<longlongrightarrow> \<bar>l\<bar>) F" for l :: real by (fold real_norm_def) (rule tendsto_norm) lemma continuous_rabs [continuous_intros]: "continuous F f \<Longrightarrow> continuous F (\<lambda>x. \<bar>f x :: real\<bar>)" unfolding real_norm_def[symmetric] by (rule continuous_norm) lemma continuous_on_rabs [continuous_intros]: "continuous_on s f \<Longrightarrow> continuous_on s (\<lambda>x. \<bar>f x :: real\<bar>)" unfolding real_norm_def[symmetric] by (rule continuous_on_norm) lemma tendsto_rabs_zero: "(f \<longlongrightarrow> (0::real)) F \<Longrightarrow> ((\<lambda>x. \<bar>f x\<bar>) \<longlongrightarrow> 0) F" by (fold real_norm_def) (rule tendsto_norm_zero) lemma tendsto_rabs_zero_cancel: "((\<lambda>x. \<bar>f x\<bar>) \<longlongrightarrow> (0::real)) F \<Longrightarrow> (f \<longlongrightarrow> 0) F" by (fold real_norm_def) (rule tendsto_norm_zero_cancel) lemma tendsto_rabs_zero_iff: "((\<lambda>x. \<bar>f x\<bar>) \<longlongrightarrow> (0::real)) F \<longleftrightarrow> (f \<longlongrightarrow> 0) F" by (fold real_norm_def) (rule tendsto_norm_zero_iff) subsection \<open>Topological Monoid\<close> class topological_monoid_add = topological_space + monoid_add + assumes tendsto_add_Pair: "LIM x (nhds a \<times>\<^sub>F nhds b). fst x + snd x :> nhds (a + b)" class topological_comm_monoid_add = topological_monoid_add + comm_monoid_add lemma tendsto_add [tendsto_intros]: fixes a b :: "'a::topological_monoid_add" shows "(f \<longlongrightarrow> a) F \<Longrightarrow> (g \<longlongrightarrow> b) F \<Longrightarrow> ((\<lambda>x. f x + g x) \<longlongrightarrow> a + b) F" using filterlim_compose[OF tendsto_add_Pair, of "\<lambda>x. (f x, g x)" a b F] by (simp add: nhds_prod[symmetric] tendsto_Pair) lemma continuous_add [continuous_intros]: fixes f g :: "_ \<Rightarrow> 'b::topological_monoid_add" shows "continuous F f \<Longrightarrow> continuous F g \<Longrightarrow> continuous F (\<lambda>x. f x + g x)" unfolding continuous_def by (rule tendsto_add) lemma continuous_on_add [continuous_intros]: fixes f g :: "_ \<Rightarrow> 'b::topological_monoid_add" shows "continuous_on s f \<Longrightarrow> continuous_on s g \<Longrightarrow> continuous_on s (\<lambda>x. f x + g x)" unfolding continuous_on_def by (auto intro: tendsto_add) lemma tendsto_add_zero: fixes f g :: "_ \<Rightarrow> 'b::topological_monoid_add" shows "(f \<longlongrightarrow> 0) F \<Longrightarrow> (g \<longlongrightarrow> 0) F \<Longrightarrow> ((\<lambda>x. f x + g x) \<longlongrightarrow> 0) F" by (drule (1) tendsto_add) simp lemma tendsto_sum [tendsto_intros]: fixes f :: "'a \<Rightarrow> 'b \<Rightarrow> 'c::topological_comm_monoid_add" shows "(\<And>i. i \<in> I \<Longrightarrow> (f i \<longlongrightarrow> a i) F) \<Longrightarrow> ((\<lambda>x. \<Sum>i\<in>I. f i x) \<longlongrightarrow> (\<Sum>i\<in>I. a i)) F" by (induct I rule: infinite_finite_induct) (simp_all add: tendsto_add) lemma tendsto_null_sum: fixes f :: "'a \<Rightarrow> 'b \<Rightarrow> 'c::topological_comm_monoid_add" assumes "\<And>i. i \<in> I \<Longrightarrow> ((\<lambda>x. f x i) \<longlongrightarrow> 0) F" shows "((\<lambda>i. sum (f i) I) \<longlongrightarrow> 0) F" using tendsto_sum [of I "\<lambda>x y. f y x" "\<lambda>x. 0"] assms by simp lemma continuous_sum [continuous_intros]: fixes f :: "'a \<Rightarrow> 'b::t2_space \<Rightarrow> 'c::topological_comm_monoid_add" shows "(\<And>i. i \<in> I \<Longrightarrow> continuous F (f i)) \<Longrightarrow> continuous F (\<lambda>x. \<Sum>i\<in>I. f i x)" unfolding continuous_def by (rule tendsto_sum) lemma continuous_on_sum [continuous_intros]: fixes f :: "'a \<Rightarrow> 'b::topological_space \<Rightarrow> 'c::topological_comm_monoid_add" shows "(\<And>i. i \<in> I \<Longrightarrow> continuous_on S (f i)) \<Longrightarrow> continuous_on S (\<lambda>x. \<Sum>i\<in>I. f i x)" unfolding continuous_on_def by (auto intro: tendsto_sum) instance nat :: topological_comm_monoid_add by standard (simp add: nhds_discrete principal_prod_principal filterlim_principal eventually_principal) instance int :: topological_comm_monoid_add by standard (simp add: nhds_discrete principal_prod_principal filterlim_principal eventually_principal) subsubsection \<open>Topological group\<close> class topological_group_add = topological_monoid_add + group_add + assumes tendsto_uminus_nhds: "(uminus \<longlongrightarrow> - a) (nhds a)" begin lemma tendsto_minus [tendsto_intros]: "(f \<longlongrightarrow> a) F \<Longrightarrow> ((\<lambda>x. - f x) \<longlongrightarrow> - a) F" by (rule filterlim_compose[OF tendsto_uminus_nhds]) end class topological_ab_group_add = topological_group_add + ab_group_add instance topological_ab_group_add < topological_comm_monoid_add .. lemma continuous_minus [continuous_intros]: "continuous F f \<Longrightarrow> continuous F (\<lambda>x. - f x)" for f :: "'a::t2_space \<Rightarrow> 'b::topological_group_add" unfolding continuous_def by (rule tendsto_minus) lemma continuous_on_minus [continuous_intros]: "continuous_on s f \<Longrightarrow> continuous_on s (\<lambda>x. - f x)" for f :: "_ \<Rightarrow> 'b::topological_group_add" unfolding continuous_on_def by (auto intro: tendsto_minus) lemma tendsto_minus_cancel: "((\<lambda>x. - f x) \<longlongrightarrow> - a) F \<Longrightarrow> (f \<longlongrightarrow> a) F" for a :: "'a::topological_group_add" by (drule tendsto_minus) simp lemma tendsto_minus_cancel_left: "(f \<longlongrightarrow> - (y::_::topological_group_add)) F \<longleftrightarrow> ((\<lambda>x. - f x) \<longlongrightarrow> y) F" using tendsto_minus_cancel[of f "- y" F] tendsto_minus[of f "- y" F] by auto lemma tendsto_diff [tendsto_intros]: fixes a b :: "'a::topological_group_add" shows "(f \<longlongrightarrow> a) F \<Longrightarrow> (g \<longlongrightarrow> b) F \<Longrightarrow> ((\<lambda>x. f x - g x) \<longlongrightarrow> a - b) F" using tendsto_add [of f a F "\<lambda>x. - g x" "- b"] by (simp add: tendsto_minus) lemma continuous_diff [continuous_intros]: fixes f g :: "'a::t2_space \<Rightarrow> 'b::topological_group_add" shows "continuous F f \<Longrightarrow> continuous F g \<Longrightarrow> continuous F (\<lambda>x. f x - g x)" unfolding continuous_def by (rule tendsto_diff) lemma continuous_on_diff [continuous_intros]: fixes f g :: "_ \<Rightarrow> 'b::topological_group_add" shows "continuous_on s f \<Longrightarrow> continuous_on s g \<Longrightarrow> continuous_on s (\<lambda>x. f x - g x)" unfolding continuous_on_def by (auto intro: tendsto_diff) lemma continuous_on_op_minus: "continuous_on (s::'a::topological_group_add set) ((-) x)" by (rule continuous_intros | simp)+ instance real_normed_vector < topological_ab_group_add proof fix a b :: 'a show "((\<lambda>x. fst x + snd x) \<longlongrightarrow> a + b) (nhds a \<times>\<^sub>F nhds b)" unfolding tendsto_Zfun_iff add_diff_add using tendsto_fst[OF filterlim_ident, of "(a,b)"] tendsto_snd[OF filterlim_ident, of "(a,b)"] by (intro Zfun_add) (auto simp: tendsto_Zfun_iff[symmetric] nhds_prod[symmetric] intro!: tendsto_fst) show "(uminus \<longlongrightarrow> - a) (nhds a)" unfolding tendsto_Zfun_iff minus_diff_minus using filterlim_ident[of "nhds a"] by (intro Zfun_minus) (simp add: tendsto_Zfun_iff) qed lemmas real_tendsto_sandwich = tendsto_sandwich[where 'a=real] subsubsection \<open>Linear operators and multiplication\<close> lemma linear_times [simp]: "linear (\<lambda>x. c * x)" for c :: "'a::real_algebra" by (auto simp: linearI distrib_left) lemma (in bounded_linear) tendsto: "(g \<longlongrightarrow> a) F \<Longrightarrow> ((\<lambda>x. f (g x)) \<longlongrightarrow> f a) F" by (simp only: tendsto_Zfun_iff diff [symmetric] Zfun) lemma (in bounded_linear) continuous: "continuous F g \<Longrightarrow> continuous F (\<lambda>x. f (g x))" using tendsto[of g _ F] by (auto simp: continuous_def) lemma (in bounded_linear) continuous_on: "continuous_on s g \<Longrightarrow> continuous_on s (\<lambda>x. f (g x))" using tendsto[of g] by (auto simp: continuous_on_def) lemma (in bounded_linear) tendsto_zero: "(g \<longlongrightarrow> 0) F \<Longrightarrow> ((\<lambda>x. f (g x)) \<longlongrightarrow> 0) F" by (drule tendsto) (simp only: zero) lemma (in bounded_bilinear) tendsto: "(f \<longlongrightarrow> a) F \<Longrightarrow> (g \<longlongrightarrow> b) F \<Longrightarrow> ((\<lambda>x. f x ** g x) \<longlongrightarrow> a ** b) F" by (simp only: tendsto_Zfun_iff prod_diff_prod Zfun_add Zfun Zfun_left Zfun_right) lemma (in bounded_bilinear) continuous: "continuous F f \<Longrightarrow> continuous F g \<Longrightarrow> continuous F (\<lambda>x. f x ** g x)" using tendsto[of f _ F g] by (auto simp: continuous_def) lemma (in bounded_bilinear) continuous_on: "continuous_on s f \<Longrightarrow> continuous_on s g \<Longrightarrow> continuous_on s (\<lambda>x. f x ** g x)" using tendsto[of f _ _ g] by (auto simp: continuous_on_def) lemma (in bounded_bilinear) tendsto_zero: assumes f: "(f \<longlongrightarrow> 0) F" and g: "(g \<longlongrightarrow> 0) F" shows "((\<lambda>x. f x ** g x) \<longlongrightarrow> 0) F" using tendsto [OF f g] by (simp add: zero_left) lemma (in bounded_bilinear) tendsto_left_zero: "(f \<longlongrightarrow> 0) F \<Longrightarrow> ((\<lambda>x. f x ** c) \<longlongrightarrow> 0) F" by (rule bounded_linear.tendsto_zero [OF bounded_linear_left]) lemma (in bounded_bilinear) tendsto_right_zero: "(f \<longlongrightarrow> 0) F \<Longrightarrow> ((\<lambda>x. c ** f x) \<longlongrightarrow> 0) F" by (rule bounded_linear.tendsto_zero [OF bounded_linear_right]) lemmas tendsto_of_real [tendsto_intros] = bounded_linear.tendsto [OF bounded_linear_of_real] lemmas tendsto_scaleR [tendsto_intros] = bounded_bilinear.tendsto [OF bounded_bilinear_scaleR] text\<open>Analogous type class for multiplication\<close> class topological_semigroup_mult = topological_space + semigroup_mult + assumes tendsto_mult_Pair: "LIM x (nhds a \<times>\<^sub>F nhds b). fst x * snd x :> nhds (a * b)" instance real_normed_algebra < topological_semigroup_mult proof fix a b :: 'a show "((\<lambda>x. fst x * snd x) \<longlongrightarrow> a * b) (nhds a \<times>\<^sub>F nhds b)" unfolding nhds_prod[symmetric] using tendsto_fst[OF filterlim_ident, of "(a,b)"] tendsto_snd[OF filterlim_ident, of "(a,b)"] by (simp add: bounded_bilinear.tendsto [OF bounded_bilinear_mult]) qed lemma tendsto_mult [tendsto_intros]: fixes a b :: "'a::topological_semigroup_mult" shows "(f \<longlongrightarrow> a) F \<Longrightarrow> (g \<longlongrightarrow> b) F \<Longrightarrow> ((\<lambda>x. f x * g x) \<longlongrightarrow> a * b) F" using filterlim_compose[OF tendsto_mult_Pair, of "\<lambda>x. (f x, g x)" a b F] by (simp add: nhds_prod[symmetric] tendsto_Pair) lemma tendsto_mult_left: "(f \<longlongrightarrow> l) F \<Longrightarrow> ((\<lambda>x. c * (f x)) \<longlongrightarrow> c * l) F" for c :: "'a::topological_semigroup_mult" by (rule tendsto_mult [OF tendsto_const]) lemma tendsto_mult_right: "(f \<longlongrightarrow> l) F \<Longrightarrow> ((\<lambda>x. (f x) * c) \<longlongrightarrow> l * c) F" for c :: "'a::topological_semigroup_mult" by (rule tendsto_mult [OF _ tendsto_const]) lemma tendsto_mult_left_iff [simp]: "c \<noteq> 0 \<Longrightarrow> tendsto(\<lambda>x. c * f x) (c * l) F \<longleftrightarrow> tendsto f l F" for c :: "'a::{topological_semigroup_mult,field}" by (auto simp: tendsto_mult_left dest: tendsto_mult_left [where c = "1/c"]) lemma tendsto_mult_right_iff [simp]: "c \<noteq> 0 \<Longrightarrow> tendsto(\<lambda>x. f x * c) (l * c) F \<longleftrightarrow> tendsto f l F" for c :: "'a::{topological_semigroup_mult,field}" by (auto simp: tendsto_mult_right dest: tendsto_mult_left [where c = "1/c"]) lemma tendsto_zero_mult_left_iff [simp]: fixes c::"'a::{topological_semigroup_mult,field}" assumes "c \<noteq> 0" shows "(\<lambda>n. c * a n)\<longlonglongrightarrow> 0 \<longleftrightarrow> a \<longlonglongrightarrow> 0" using assms tendsto_mult_left tendsto_mult_left_iff by fastforce lemma tendsto_zero_mult_right_iff [simp]: fixes c::"'a::{topological_semigroup_mult,field}" assumes "c \<noteq> 0" shows "(\<lambda>n. a n * c)\<longlonglongrightarrow> 0 \<longleftrightarrow> a \<longlonglongrightarrow> 0" using assms tendsto_mult_right tendsto_mult_right_iff by fastforce lemma tendsto_zero_divide_iff [simp]: fixes c::"'a::{topological_semigroup_mult,field}" assumes "c \<noteq> 0" shows "(\<lambda>n. a n / c)\<longlonglongrightarrow> 0 \<longleftrightarrow> a \<longlonglongrightarrow> 0" using tendsto_zero_mult_right_iff [of "1/c" a] assms by (simp add: field_simps) lemma lim_const_over_n [tendsto_intros]: fixes a :: "'a::real_normed_field" shows "(\<lambda>n. a / of_nat n) \<longlonglongrightarrow> 0" using tendsto_mult [OF tendsto_const [of a] lim_1_over_n] by simp lemmas continuous_of_real [continuous_intros] = bounded_linear.continuous [OF bounded_linear_of_real] lemmas continuous_scaleR [continuous_intros] = bounded_bilinear.continuous [OF bounded_bilinear_scaleR] lemmas continuous_mult [continuous_intros] = bounded_bilinear.continuous [OF bounded_bilinear_mult] lemmas continuous_on_of_real [continuous_intros] = bounded_linear.continuous_on [OF bounded_linear_of_real] lemmas continuous_on_scaleR [continuous_intros] = bounded_bilinear.continuous_on [OF bounded_bilinear_scaleR] lemmas continuous_on_mult [continuous_intros] = bounded_bilinear.continuous_on [OF bounded_bilinear_mult] lemmas tendsto_mult_zero = bounded_bilinear.tendsto_zero [OF bounded_bilinear_mult] lemmas tendsto_mult_left_zero = bounded_bilinear.tendsto_left_zero [OF bounded_bilinear_mult] lemmas tendsto_mult_right_zero = bounded_bilinear.tendsto_right_zero [OF bounded_bilinear_mult] lemma continuous_mult_left: fixes c::"'a::real_normed_algebra" shows "continuous F f \<Longrightarrow> continuous F (\<lambda>x. c * f x)" by (rule continuous_mult [OF continuous_const]) lemma continuous_mult_right: fixes c::"'a::real_normed_algebra" shows "continuous F f \<Longrightarrow> continuous F (\<lambda>x. f x * c)" by (rule continuous_mult [OF _ continuous_const]) lemma continuous_on_mult_left: fixes c::"'a::real_normed_algebra" shows "continuous_on s f \<Longrightarrow> continuous_on s (\<lambda>x. c * f x)" by (rule continuous_on_mult [OF continuous_on_const]) lemma continuous_on_mult_right: fixes c::"'a::real_normed_algebra" shows "continuous_on s f \<Longrightarrow> continuous_on s (\<lambda>x. f x * c)" by (rule continuous_on_mult [OF _ continuous_on_const]) lemma continuous_on_mult_const [simp]: fixes c::"'a::real_normed_algebra" shows "continuous_on s ((*) c)" by (intro continuous_on_mult_left continuous_on_id) lemma tendsto_divide_zero: fixes c :: "'a::real_normed_field" shows "(f \<longlongrightarrow> 0) F \<Longrightarrow> ((\<lambda>x. f x / c) \<longlongrightarrow> 0) F" by (cases "c=0") (simp_all add: divide_inverse tendsto_mult_left_zero) lemma tendsto_power [tendsto_intros]: "(f \<longlongrightarrow> a) F \<Longrightarrow> ((\<lambda>x. f x ^ n) \<longlongrightarrow> a ^ n) F" for f :: "'a \<Rightarrow> 'b::{power,real_normed_algebra}" by (induct n) (simp_all add: tendsto_mult) lemma tendsto_null_power: "\<lbrakk>(f \<longlongrightarrow> 0) F; 0 < n\<rbrakk> \<Longrightarrow> ((\<lambda>x. f x ^ n) \<longlongrightarrow> 0) F" for f :: "'a \<Rightarrow> 'b::{power,real_normed_algebra_1}" using tendsto_power [of f 0 F n] by (simp add: power_0_left) lemma continuous_power [continuous_intros]: "continuous F f \<Longrightarrow> continuous F (\<lambda>x. (f x)^n)" for f :: "'a::t2_space \<Rightarrow> 'b::{power,real_normed_algebra}" unfolding continuous_def by (rule tendsto_power) lemma continuous_on_power [continuous_intros]: fixes f :: "_ \<Rightarrow> 'b::{power,real_normed_algebra}" shows "continuous_on s f \<Longrightarrow> continuous_on s (\<lambda>x. (f x)^n)" unfolding continuous_on_def by (auto intro: tendsto_power) lemma tendsto_prod [tendsto_intros]: fixes f :: "'a \<Rightarrow> 'b \<Rightarrow> 'c::{real_normed_algebra,comm_ring_1}" shows "(\<And>i. i \<in> S \<Longrightarrow> (f i \<longlongrightarrow> L i) F) \<Longrightarrow> ((\<lambda>x. \<Prod>i\<in>S. f i x) \<longlongrightarrow> (\<Prod>i\<in>S. L i)) F" by (induct S rule: infinite_finite_induct) (simp_all add: tendsto_mult) lemma continuous_prod [continuous_intros]: fixes f :: "'a \<Rightarrow> 'b::t2_space \<Rightarrow> 'c::{real_normed_algebra,comm_ring_1}" shows "(\<And>i. i \<in> S \<Longrightarrow> continuous F (f i)) \<Longrightarrow> continuous F (\<lambda>x. \<Prod>i\<in>S. f i x)" unfolding continuous_def by (rule tendsto_prod) lemma continuous_on_prod [continuous_intros]: fixes f :: "'a \<Rightarrow> _ \<Rightarrow> 'c::{real_normed_algebra,comm_ring_1}" shows "(\<And>i. i \<in> S \<Longrightarrow> continuous_on s (f i)) \<Longrightarrow> continuous_on s (\<lambda>x. \<Prod>i\<in>S. f i x)" unfolding continuous_on_def by (auto intro: tendsto_prod) lemma tendsto_of_real_iff: "((\<lambda>x. of_real (f x) :: 'a::real_normed_div_algebra) \<longlongrightarrow> of_real c) F \<longleftrightarrow> (f \<longlongrightarrow> c) F" unfolding tendsto_iff by simp lemma tendsto_add_const_iff: "((\<lambda>x. c + f x :: 'a::topological_group_add) \<longlongrightarrow> c + d) F \<longleftrightarrow> (f \<longlongrightarrow> d) F" using tendsto_add[OF tendsto_const[of c], of f d] and tendsto_add[OF tendsto_const[of "-c"], of "\<lambda>x. c + f x" "c + d"] by auto class topological_monoid_mult = topological_semigroup_mult + monoid_mult class topological_comm_monoid_mult = topological_monoid_mult + comm_monoid_mult lemma tendsto_power_strong [tendsto_intros]: fixes f :: "_ \<Rightarrow> 'b :: topological_monoid_mult" assumes "(f \<longlongrightarrow> a) F" "(g \<longlongrightarrow> b) F" shows "((\<lambda>x. f x ^ g x) \<longlongrightarrow> a ^ b) F" proof - have "((\<lambda>x. f x ^ b) \<longlongrightarrow> a ^ b) F" by (induction b) (auto intro: tendsto_intros assms) also from assms(2) have "eventually (\<lambda>x. g x = b) F" by (simp add: nhds_discrete filterlim_principal) hence "eventually (\<lambda>x. f x ^ b = f x ^ g x) F" by eventually_elim simp hence "((\<lambda>x. f x ^ b) \<longlongrightarrow> a ^ b) F \<longleftrightarrow> ((\<lambda>x. f x ^ g x) \<longlongrightarrow> a ^ b) F" by (intro filterlim_cong refl) finally show ?thesis . qed lemma continuous_mult' [continuous_intros]: fixes f g :: "_ \<Rightarrow> 'b::topological_semigroup_mult" shows "continuous F f \<Longrightarrow> continuous F g \<Longrightarrow> continuous F (\<lambda>x. f x * g x)" unfolding continuous_def by (rule tendsto_mult) lemma continuous_power' [continuous_intros]: fixes f :: "_ \<Rightarrow> 'b::topological_monoid_mult" shows "continuous F f \<Longrightarrow> continuous F g \<Longrightarrow> continuous F (\<lambda>x. f x ^ g x)" unfolding continuous_def by (rule tendsto_power_strong) auto lemma continuous_on_mult' [continuous_intros]: fixes f g :: "_ \<Rightarrow> 'b::topological_semigroup_mult" shows "continuous_on A f \<Longrightarrow> continuous_on A g \<Longrightarrow> continuous_on A (\<lambda>x. f x * g x)" unfolding continuous_on_def by (auto intro: tendsto_mult) lemma continuous_on_power' [continuous_intros]: fixes f :: "_ \<Rightarrow> 'b::topological_monoid_mult" shows "continuous_on A f \<Longrightarrow> continuous_on A g \<Longrightarrow> continuous_on A (\<lambda>x. f x ^ g x)" unfolding continuous_on_def by (auto intro: tendsto_power_strong) lemma tendsto_mult_one: fixes f g :: "_ \<Rightarrow> 'b::topological_monoid_mult" shows "(f \<longlongrightarrow> 1) F \<Longrightarrow> (g \<longlongrightarrow> 1) F \<Longrightarrow> ((\<lambda>x. f x * g x) \<longlongrightarrow> 1) F" by (drule (1) tendsto_mult) simp lemma tendsto_prod' [tendsto_intros]: fixes f :: "'a \<Rightarrow> 'b \<Rightarrow> 'c::topological_comm_monoid_mult" shows "(\<And>i. i \<in> I \<Longrightarrow> (f i \<longlongrightarrow> a i) F) \<Longrightarrow> ((\<lambda>x. \<Prod>i\<in>I. f i x) \<longlongrightarrow> (\<Prod>i\<in>I. a i)) F" by (induct I rule: infinite_finite_induct) (simp_all add: tendsto_mult) lemma tendsto_one_prod': fixes f :: "'a \<Rightarrow> 'b \<Rightarrow> 'c::topological_comm_monoid_mult" assumes "\<And>i. i \<in> I \<Longrightarrow> ((\<lambda>x. f x i) \<longlongrightarrow> 1) F" shows "((\<lambda>i. prod (f i) I) \<longlongrightarrow> 1) F" using tendsto_prod' [of I "\<lambda>x y. f y x" "\<lambda>x. 1"] assms by simp lemma continuous_prod' [continuous_intros]: fixes f :: "'a \<Rightarrow> 'b::t2_space \<Rightarrow> 'c::topological_comm_monoid_mult" shows "(\<And>i. i \<in> I \<Longrightarrow> continuous F (f i)) \<Longrightarrow> continuous F (\<lambda>x. \<Prod>i\<in>I. f i x)" unfolding continuous_def by (rule tendsto_prod') lemma continuous_on_prod' [continuous_intros]: fixes f :: "'a \<Rightarrow> 'b::topological_space \<Rightarrow> 'c::topological_comm_monoid_mult" shows "(\<And>i. i \<in> I \<Longrightarrow> continuous_on S (f i)) \<Longrightarrow> continuous_on S (\<lambda>x. \<Prod>i\<in>I. f i x)" unfolding continuous_on_def by (auto intro: tendsto_prod') instance nat :: topological_comm_monoid_mult by standard (simp add: nhds_discrete principal_prod_principal filterlim_principal eventually_principal) instance int :: topological_comm_monoid_mult by standard (simp add: nhds_discrete principal_prod_principal filterlim_principal eventually_principal) class comm_real_normed_algebra_1 = real_normed_algebra_1 + comm_monoid_mult context real_normed_field begin subclass comm_real_normed_algebra_1 proof from norm_mult[of "1 :: 'a" 1] show "norm 1 = 1" by simp qed (simp_all add: norm_mult) end subsubsection \<open>Inverse and division\<close> lemma (in bounded_bilinear) Zfun_prod_Bfun: assumes f: "Zfun f F" and g: "Bfun g F" shows "Zfun (\<lambda>x. f x ** g x) F" proof - obtain K where K: "0 \<le> K" and norm_le: "\<And>x y. norm (x ** y) \<le> norm x * norm y * K" using nonneg_bounded by blast obtain B where B: "0 < B" and norm_g: "eventually (\<lambda>x. norm (g x) \<le> B) F" using g by (rule BfunE) have "eventually (\<lambda>x. norm (f x ** g x) \<le> norm (f x) * (B * K)) F" using norm_g proof eventually_elim case (elim x) have "norm (f x ** g x) \<le> norm (f x) * norm (g x) * K" by (rule norm_le) also have "\<dots> \<le> norm (f x) * B * K" by (intro mult_mono' order_refl norm_g norm_ge_zero mult_nonneg_nonneg K elim) also have "\<dots> = norm (f x) * (B * K)" by (rule mult.assoc) finally show "norm (f x ** g x) \<le> norm (f x) * (B * K)" . qed with f show ?thesis by (rule Zfun_imp_Zfun) qed lemma (in bounded_bilinear) Bfun_prod_Zfun: assumes f: "Bfun f F" and g: "Zfun g F" shows "Zfun (\<lambda>x. f x ** g x) F" using flip g f by (rule bounded_bilinear.Zfun_prod_Bfun) lemma Bfun_inverse: fixes a :: "'a::real_normed_div_algebra" assumes f: "(f \<longlongrightarrow> a) F" assumes a: "a \<noteq> 0" shows "Bfun (\<lambda>x. inverse (f x)) F" proof - from a have "0 < norm a" by simp then have "\<exists>r>0. r < norm a" by (rule dense) then obtain r where r1: "0 < r" and r2: "r < norm a" by blast have "eventually (\<lambda>x. dist (f x) a < r) F" using tendstoD [OF f r1] by blast then have "eventually (\<lambda>x. norm (inverse (f x)) \<le> inverse (norm a - r)) F" proof eventually_elim case (elim x) then have 1: "norm (f x - a) < r" by (simp add: dist_norm) then have 2: "f x \<noteq> 0" using r2 by auto then have "norm (inverse (f x)) = inverse (norm (f x))" by (rule nonzero_norm_inverse) also have "\<dots> \<le> inverse (norm a - r)" proof (rule le_imp_inverse_le) show "0 < norm a - r" using r2 by simp have "norm a - norm (f x) \<le> norm (a - f x)" by (rule norm_triangle_ineq2) also have "\<dots> = norm (f x - a)" by (rule norm_minus_commute) also have "\<dots> < r" using 1 . finally show "norm a - r \<le> norm (f x)" by simp qed finally show "norm (inverse (f x)) \<le> inverse (norm a - r)" . qed then show ?thesis by (rule BfunI) qed lemma tendsto_inverse [tendsto_intros]: fixes a :: "'a::real_normed_div_algebra" assumes f: "(f \<longlongrightarrow> a) F" and a: "a \<noteq> 0" shows "((\<lambda>x. inverse (f x)) \<longlongrightarrow> inverse a) F" proof - from a have "0 < norm a" by simp with f have "eventually (\<lambda>x. dist (f x) a < norm a) F" by (rule tendstoD) then have "eventually (\<lambda>x. f x \<noteq> 0) F" unfolding dist_norm by (auto elim!: eventually_mono) with a have "eventually (\<lambda>x. inverse (f x) - inverse a = - (inverse (f x) * (f x - a) * inverse a)) F" by (auto elim!: eventually_mono simp: inverse_diff_inverse) moreover have "Zfun (\<lambda>x. - (inverse (f x) * (f x - a) * inverse a)) F" by (intro Zfun_minus Zfun_mult_left bounded_bilinear.Bfun_prod_Zfun [OF bounded_bilinear_mult] Bfun_inverse [OF f a] f [unfolded tendsto_Zfun_iff]) ultimately show ?thesis unfolding tendsto_Zfun_iff by (rule Zfun_ssubst) qed lemma continuous_inverse: fixes f :: "'a::t2_space \<Rightarrow> 'b::real_normed_div_algebra" assumes "continuous F f" and "f (Lim F (\<lambda>x. x)) \<noteq> 0" shows "continuous F (\<lambda>x. inverse (f x))" using assms unfolding continuous_def by (rule tendsto_inverse) lemma continuous_at_within_inverse[continuous_intros]: fixes f :: "'a::t2_space \<Rightarrow> 'b::real_normed_div_algebra" assumes "continuous (at a within s) f" and "f a \<noteq> 0" shows "continuous (at a within s) (\<lambda>x. inverse (f x))" using assms unfolding continuous_within by (rule tendsto_inverse) lemma continuous_on_inverse[continuous_intros]: fixes f :: "'a::topological_space \<Rightarrow> 'b::real_normed_div_algebra" assumes "continuous_on s f" and "\<forall>x\<in>s. f x \<noteq> 0" shows "continuous_on s (\<lambda>x. inverse (f x))" using assms unfolding continuous_on_def by (blast intro: tendsto_inverse) lemma tendsto_divide [tendsto_intros]: fixes a b :: "'a::real_normed_field" shows "(f \<longlongrightarrow> a) F \<Longrightarrow> (g \<longlongrightarrow> b) F \<Longrightarrow> b \<noteq> 0 \<Longrightarrow> ((\<lambda>x. f x / g x) \<longlongrightarrow> a / b) F" by (simp add: tendsto_mult tendsto_inverse divide_inverse) lemma continuous_divide: fixes f g :: "'a::t2_space \<Rightarrow> 'b::real_normed_field" assumes "continuous F f" and "continuous F g" and "g (Lim F (\<lambda>x. x)) \<noteq> 0" shows "continuous F (\<lambda>x. (f x) / (g x))" using assms unfolding continuous_def by (rule tendsto_divide) lemma continuous_at_within_divide[continuous_intros]: fixes f g :: "'a::t2_space \<Rightarrow> 'b::real_normed_field" assumes "continuous (at a within s) f" "continuous (at a within s) g" and "g a \<noteq> 0" shows "continuous (at a within s) (\<lambda>x. (f x) / (g x))" using assms unfolding continuous_within by (rule tendsto_divide) lemma isCont_divide[continuous_intros, simp]: fixes f g :: "'a::t2_space \<Rightarrow> 'b::real_normed_field" assumes "isCont f a" "isCont g a" "g a \<noteq> 0" shows "isCont (\<lambda>x. (f x) / g x) a" using assms unfolding continuous_at by (rule tendsto_divide) lemma continuous_on_divide[continuous_intros]: fixes f :: "'a::topological_space \<Rightarrow> 'b::real_normed_field" assumes "continuous_on s f" "continuous_on s g" and "\<forall>x\<in>s. g x \<noteq> 0" shows "continuous_on s (\<lambda>x. (f x) / (g x))" using assms unfolding continuous_on_def by (blast intro: tendsto_divide) lemma tendsto_power_int [tendsto_intros]: fixes a :: "'a::real_normed_div_algebra" assumes f: "(f \<longlongrightarrow> a) F" and a: "a \<noteq> 0" shows "((\<lambda>x. power_int (f x) n) \<longlongrightarrow> power_int a n) F" using assms by (cases n rule: int_cases4) (auto intro!: tendsto_intros simp: power_int_minus) lemma continuous_power_int: fixes f :: "'a::t2_space \<Rightarrow> 'b::real_normed_div_algebra" assumes "continuous F f" and "f (Lim F (\<lambda>x. x)) \<noteq> 0" shows "continuous F (\<lambda>x. power_int (f x) n)" using assms unfolding continuous_def by (rule tendsto_power_int) lemma continuous_at_within_power_int[continuous_intros]: fixes f :: "'a::t2_space \<Rightarrow> 'b::real_normed_div_algebra" assumes "continuous (at a within s) f" and "f a \<noteq> 0" shows "continuous (at a within s) (\<lambda>x. power_int (f x) n)" using assms unfolding continuous_within by (rule tendsto_power_int) lemma continuous_on_power_int [continuous_intros]: fixes f :: "'a::topological_space \<Rightarrow> 'b::real_normed_div_algebra" assumes "continuous_on s f" and "\<forall>x\<in>s. f x \<noteq> 0" shows "continuous_on s (\<lambda>x. power_int (f x) n)" using assms unfolding continuous_on_def by (blast intro: tendsto_power_int) lemma tendsto_sgn [tendsto_intros]: "(f \<longlongrightarrow> l) F \<Longrightarrow> l \<noteq> 0 \<Longrightarrow> ((\<lambda>x. sgn (f x)) \<longlongrightarrow> sgn l) F" for l :: "'a::real_normed_vector" unfolding sgn_div_norm by (simp add: tendsto_intros) lemma continuous_sgn: fixes f :: "'a::t2_space \<Rightarrow> 'b::real_normed_vector" assumes "continuous F f" and "f (Lim F (\<lambda>x. x)) \<noteq> 0" shows "continuous F (\<lambda>x. sgn (f x))" using assms unfolding continuous_def by (rule tendsto_sgn) lemma continuous_at_within_sgn[continuous_intros]: fixes f :: "'a::t2_space \<Rightarrow> 'b::real_normed_vector" assumes "continuous (at a within s) f" and "f a \<noteq> 0" shows "continuous (at a within s) (\<lambda>x. sgn (f x))" using assms unfolding continuous_within by (rule tendsto_sgn) lemma isCont_sgn[continuous_intros]: fixes f :: "'a::t2_space \<Rightarrow> 'b::real_normed_vector" assumes "isCont f a" and "f a \<noteq> 0" shows "isCont (\<lambda>x. sgn (f x)) a" using assms unfolding continuous_at by (rule tendsto_sgn) lemma continuous_on_sgn[continuous_intros]: fixes f :: "'a::topological_space \<Rightarrow> 'b::real_normed_vector" assumes "continuous_on s f" and "\<forall>x\<in>s. f x \<noteq> 0" shows "continuous_on s (\<lambda>x. sgn (f x))" using assms unfolding continuous_on_def by (blast intro: tendsto_sgn) lemma filterlim_at_infinity: fixes f :: "_ \<Rightarrow> 'a::real_normed_vector" assumes "0 \<le> c" shows "(LIM x F. f x :> at_infinity) \<longleftrightarrow> (\<forall>r>c. eventually (\<lambda>x. r \<le> norm (f x)) F)" unfolding filterlim_iff eventually_at_infinity proof safe fix P :: "'a \<Rightarrow> bool" fix b assume *: "\<forall>r>c. eventually (\<lambda>x. r \<le> norm (f x)) F" assume P: "\<forall>x. b \<le> norm x \<longrightarrow> P x" have "max b (c + 1) > c" by auto with * have "eventually (\<lambda>x. max b (c + 1) \<le> norm (f x)) F" by auto then show "eventually (\<lambda>x. P (f x)) F" proof eventually_elim case (elim x) with P show "P (f x)" by auto qed qed force lemma filterlim_at_infinity_imp_norm_at_top: fixes F assumes "filterlim f at_infinity F" shows "filterlim (\<lambda>x. norm (f x)) at_top F" proof - { fix r :: real have "\<forall>\<^sub>F x in F. r \<le> norm (f x)" using filterlim_at_infinity[of 0 f F] assms by (cases "r > 0") (auto simp: not_less intro: always_eventually order.trans[OF _ norm_ge_zero]) } thus ?thesis by (auto simp: filterlim_at_top) qed lemma filterlim_norm_at_top_imp_at_infinity: fixes F assumes "filterlim (\<lambda>x. norm (f x)) at_top F" shows "filterlim f at_infinity F" using filterlim_at_infinity[of 0 f F] assms by (auto simp: filterlim_at_top) lemma filterlim_norm_at_top: "filterlim norm at_top at_infinity" by (rule filterlim_at_infinity_imp_norm_at_top) (rule filterlim_ident) lemma filterlim_at_infinity_conv_norm_at_top: "filterlim f at_infinity G \<longleftrightarrow> filterlim (\<lambda>x. norm (f x)) at_top G" by (auto simp: filterlim_at_infinity[OF order.refl] filterlim_at_top_gt[of _ _ 0]) lemma eventually_not_equal_at_infinity: "eventually (\<lambda>x. x \<noteq> (a :: 'a :: {real_normed_vector})) at_infinity" proof - from filterlim_norm_at_top[where 'a = 'a] have "\<forall>\<^sub>F x in at_infinity. norm a < norm (x::'a)" by (auto simp: filterlim_at_top_dense) thus ?thesis by eventually_elim auto qed lemma filterlim_int_of_nat_at_topD: fixes F assumes "filterlim (\<lambda>x. f (int x)) F at_top" shows "filterlim f F at_top" proof - have "filterlim (\<lambda>x. f (int (nat x))) F at_top" by (rule filterlim_compose[OF assms filterlim_nat_sequentially]) also have "?this \<longleftrightarrow> filterlim f F at_top" by (intro filterlim_cong refl eventually_mono [OF eventually_ge_at_top[of "0::int"]]) auto finally show ?thesis . qed lemma filterlim_int_sequentially [tendsto_intros]: "filterlim int at_top sequentially" unfolding filterlim_at_top proof fix C :: int show "eventually (\<lambda>n. int n \<ge> C) at_top" using eventually_ge_at_top[of "nat \<lceil>C\<rceil>"] by eventually_elim linarith qed lemma filterlim_real_of_int_at_top [tendsto_intros]: "filterlim real_of_int at_top at_top" unfolding filterlim_at_top proof fix C :: real show "eventually (\<lambda>n. real_of_int n \<ge> C) at_top" using eventually_ge_at_top[of "\<lceil>C\<rceil>"] by eventually_elim linarith qed lemma filterlim_abs_real: "filterlim (abs::real \<Rightarrow> real) at_top at_top" proof (subst filterlim_cong[OF refl refl]) from eventually_ge_at_top[of "0::real"] show "eventually (\<lambda>x::real. \<bar>x\<bar> = x) at_top" by eventually_elim simp qed (simp_all add: filterlim_ident) lemma filterlim_of_real_at_infinity [tendsto_intros]: "filterlim (of_real :: real \<Rightarrow> 'a :: real_normed_algebra_1) at_infinity at_top" by (intro filterlim_norm_at_top_imp_at_infinity) (auto simp: filterlim_abs_real) lemma not_tendsto_and_filterlim_at_infinity: fixes c :: "'a::real_normed_vector" assumes "F \<noteq> bot" and "(f \<longlongrightarrow> c) F" and "filterlim f at_infinity F" shows False proof - from tendstoD[OF assms(2), of "1/2"] have "eventually (\<lambda>x. dist (f x) c < 1/2) F" by simp moreover from filterlim_at_infinity[of "norm c" f F] assms(3) have "eventually (\<lambda>x. norm (f x) \<ge> norm c + 1) F" by simp ultimately have "eventually (\<lambda>x. False) F" proof eventually_elim fix x assume A: "dist (f x) c < 1/2" assume "norm (f x) \<ge> norm c + 1" also have "norm (f x) = dist (f x) 0" by simp also have "\<dots> \<le> dist (f x) c + dist c 0" by (rule dist_triangle) finally show False using A by simp qed with assms show False by simp qed lemma filterlim_at_infinity_imp_not_convergent: assumes "filterlim f at_infinity sequentially" shows "\<not> convergent f" by (rule notI, rule not_tendsto_and_filterlim_at_infinity[OF _ _ assms]) (simp_all add: convergent_LIMSEQ_iff) lemma filterlim_at_infinity_imp_eventually_ne: assumes "filterlim f at_infinity F" shows "eventually (\<lambda>z. f z \<noteq> c) F" proof - have "norm c + 1 > 0" by (intro add_nonneg_pos) simp_all with filterlim_at_infinity[OF order.refl, of f F] assms have "eventually (\<lambda>z. norm (f z) \<ge> norm c + 1) F" by blast then show ?thesis by eventually_elim auto qed lemma tendsto_of_nat [tendsto_intros]: "filterlim (of_nat :: nat \<Rightarrow> 'a::real_normed_algebra_1) at_infinity sequentially" proof (subst filterlim_at_infinity[OF order.refl], intro allI impI) fix r :: real assume r: "r > 0" define n where "n = nat \<lceil>r\<rceil>" from r have n: "\<forall>m\<ge>n. of_nat m \<ge> r" unfolding n_def by linarith from eventually_ge_at_top[of n] show "eventually (\<lambda>m. norm (of_nat m :: 'a) \<ge> r) sequentially" by eventually_elim (use n in simp_all) qed subsection \<open>Relate \<^const>\<open>at\<close>, \<^const>\<open>at_left\<close> and \<^const>\<open>at_right\<close>\<close> text \<open> This lemmas are useful for conversion between \<^term>\<open>at x\<close> to \<^term>\<open>at_left x\<close> and \<^term>\<open>at_right x\<close> and also \<^term>\<open>at_right 0\<close>. \<close> lemmas filterlim_split_at_real = filterlim_split_at[where 'a=real] lemma filtermap_nhds_shift: "filtermap (\<lambda>x. x - d) (nhds a) = nhds (a - d)" for a d :: "'a::real_normed_vector" by (rule filtermap_fun_inverse[where g="\<lambda>x. x + d"]) (auto intro!: tendsto_eq_intros filterlim_ident) lemma filtermap_nhds_minus: "filtermap (\<lambda>x. - x) (nhds a) = nhds (- a)" for a :: "'a::real_normed_vector" by (rule filtermap_fun_inverse[where g=uminus]) (auto intro!: tendsto_eq_intros filterlim_ident) lemma filtermap_at_shift: "filtermap (\<lambda>x. x - d) (at a) = at (a - d)" for a d :: "'a::real_normed_vector" by (simp add: filter_eq_iff eventually_filtermap eventually_at_filter filtermap_nhds_shift[symmetric]) lemma filtermap_at_right_shift: "filtermap (\<lambda>x. x - d) (at_right a) = at_right (a - d)" for a d :: "real" by (simp add: filter_eq_iff eventually_filtermap eventually_at_filter filtermap_nhds_shift[symmetric]) lemma filterlim_shift: fixes d :: "'a::real_normed_vector" assumes "filterlim f F (at a)" shows "filterlim (f \<circ> (+) d) F (at (a - d))" unfolding filterlim_iff proof (intro strip) fix P assume "eventually P F" then have "\<forall>\<^sub>F x in filtermap (\<lambda>y. y - d) (at a). P (f (d + x))" using assms by (force simp add: filterlim_iff eventually_filtermap) then show "(\<forall>\<^sub>F x in at (a - d). P ((f \<circ> (+) d) x))" by (force simp add: filtermap_at_shift) qed lemma filterlim_shift_iff: fixes d :: "'a::real_normed_vector" shows "filterlim (f \<circ> (+) d) F (at (a - d)) = filterlim f F (at a)" (is "?lhs = ?rhs") proof assume L: ?lhs show ?rhs using filterlim_shift [OF L, of "-d"] by (simp add: filterlim_iff) qed (metis filterlim_shift) lemma at_right_to_0: "at_right a = filtermap (\<lambda>x. x + a) (at_right 0)" for a :: real using filtermap_at_right_shift[of "-a" 0] by simp lemma filterlim_at_right_to_0: "filterlim f F (at_right a) \<longleftrightarrow> filterlim (\<lambda>x. f (x + a)) F (at_right 0)" for a :: real unfolding filterlim_def filtermap_filtermap at_right_to_0[of a] .. lemma eventually_at_right_to_0: "eventually P (at_right a) \<longleftrightarrow> eventually (\<lambda>x. P (x + a)) (at_right 0)" for a :: real unfolding at_right_to_0[of a] by (simp add: eventually_filtermap) lemma at_to_0: "at a = filtermap (\<lambda>x. x + a) (at 0)" for a :: "'a::real_normed_vector" using filtermap_at_shift[of "-a" 0] by simp lemma filterlim_at_to_0: "filterlim f F (at a) \<longleftrightarrow> filterlim (\<lambda>x. f (x + a)) F (at 0)" for a :: "'a::real_normed_vector" unfolding filterlim_def filtermap_filtermap at_to_0[of a] .. lemma eventually_at_to_0: "eventually P (at a) \<longleftrightarrow> eventually (\<lambda>x. P (x + a)) (at 0)" for a :: "'a::real_normed_vector" unfolding at_to_0[of a] by (simp add: eventually_filtermap) lemma filtermap_at_minus: "filtermap (\<lambda>x. - x) (at a) = at (- a)" for a :: "'a::real_normed_vector" by (simp add: filter_eq_iff eventually_filtermap eventually_at_filter filtermap_nhds_minus[symmetric]) lemma at_left_minus: "at_left a = filtermap (\<lambda>x. - x) (at_right (- a))" for a :: real by (simp add: filter_eq_iff eventually_filtermap eventually_at_filter filtermap_nhds_minus[symmetric]) lemma at_right_minus: "at_right a = filtermap (\<lambda>x. - x) (at_left (- a))" for a :: real by (simp add: filter_eq_iff eventually_filtermap eventually_at_filter filtermap_nhds_minus[symmetric]) lemma filterlim_at_left_to_right: "filterlim f F (at_left a) \<longleftrightarrow> filterlim (\<lambda>x. f (- x)) F (at_right (-a))" for a :: real unfolding filterlim_def filtermap_filtermap at_left_minus[of a] .. lemma eventually_at_left_to_right: "eventually P (at_left a) \<longleftrightarrow> eventually (\<lambda>x. P (- x)) (at_right (-a))" for a :: real unfolding at_left_minus[of a] by (simp add: eventually_filtermap) lemma filterlim_uminus_at_top_at_bot: "LIM x at_bot. - x :: real :> at_top" unfolding filterlim_at_top eventually_at_bot_dense by (metis leI minus_less_iff order_less_asym) lemma filterlim_uminus_at_bot_at_top: "LIM x at_top. - x :: real :> at_bot" unfolding filterlim_at_bot eventually_at_top_dense by (metis leI less_minus_iff order_less_asym) lemma at_bot_mirror : shows "(at_bot::('a::{ordered_ab_group_add,linorder} filter)) = filtermap uminus at_top" proof (rule filtermap_fun_inverse[symmetric]) show "filterlim uminus at_top (at_bot::'a filter)" using eventually_at_bot_linorder filterlim_at_top le_minus_iff by force show "filterlim uminus (at_bot::'a filter) at_top" by (simp add: filterlim_at_bot minus_le_iff) qed auto lemma at_top_mirror : shows "(at_top::('a::{ordered_ab_group_add,linorder} filter)) = filtermap uminus at_bot" apply (subst at_bot_mirror) by (auto simp: filtermap_filtermap) lemma filterlim_at_top_mirror: "(LIM x at_top. f x :> F) \<longleftrightarrow> (LIM x at_bot. f (-x::real) :> F)" unfolding filterlim_def at_top_mirror filtermap_filtermap .. lemma filterlim_at_bot_mirror: "(LIM x at_bot. f x :> F) \<longleftrightarrow> (LIM x at_top. f (-x::real) :> F)" unfolding filterlim_def at_bot_mirror filtermap_filtermap .. lemma filterlim_uminus_at_top: "(LIM x F. f x :> at_top) \<longleftrightarrow> (LIM x F. - (f x) :: real :> at_bot)" using filterlim_compose[OF filterlim_uminus_at_bot_at_top, of f F] and filterlim_compose[OF filterlim_uminus_at_top_at_bot, of "\<lambda>x. - f x" F] by auto lemma tendsto_at_botI_sequentially: fixes f :: "real \<Rightarrow> 'b::first_countable_topology" assumes *: "\<And>X. filterlim X at_bot sequentially \<Longrightarrow> (\<lambda>n. f (X n)) \<longlonglongrightarrow> y" shows "(f \<longlongrightarrow> y) at_bot" unfolding filterlim_at_bot_mirror proof (rule tendsto_at_topI_sequentially) fix X :: "nat \<Rightarrow> real" assume "filterlim X at_top sequentially" thus "(\<lambda>n. f (-X n)) \<longlonglongrightarrow> y" by (intro *) (auto simp: filterlim_uminus_at_top) qed lemma filterlim_at_infinity_imp_filterlim_at_top: assumes "filterlim (f :: 'a \<Rightarrow> real) at_infinity F" assumes "eventually (\<lambda>x. f x > 0) F" shows "filterlim f at_top F" proof - from assms(2) have *: "eventually (\<lambda>x. norm (f x) = f x) F" by eventually_elim simp from assms(1) show ?thesis unfolding filterlim_at_infinity_conv_norm_at_top by (subst (asm) filterlim_cong[OF refl refl *]) qed lemma filterlim_at_infinity_imp_filterlim_at_bot: assumes "filterlim (f :: 'a \<Rightarrow> real) at_infinity F" assumes "eventually (\<lambda>x. f x < 0) F" shows "filterlim f at_bot F" proof - from assms(2) have *: "eventually (\<lambda>x. norm (f x) = -f x) F" by eventually_elim simp from assms(1) have "filterlim (\<lambda>x. - f x) at_top F" unfolding filterlim_at_infinity_conv_norm_at_top by (subst (asm) filterlim_cong[OF refl refl *]) thus ?thesis by (simp add: filterlim_uminus_at_top) qed lemma filterlim_uminus_at_bot: "(LIM x F. f x :> at_bot) \<longleftrightarrow> (LIM x F. - (f x) :: real :> at_top)" unfolding filterlim_uminus_at_top by simp lemma filterlim_inverse_at_top_right: "LIM x at_right (0::real). inverse x :> at_top" unfolding filterlim_at_top_gt[where c=0] eventually_at_filter proof safe fix Z :: real assume [arith]: "0 < Z" then have "eventually (\<lambda>x. x < inverse Z) (nhds 0)" by (auto simp: eventually_nhds_metric dist_real_def intro!: exI[of _ "\<bar>inverse Z\<bar>"]) then show "eventually (\<lambda>x. x \<noteq> 0 \<longrightarrow> x \<in> {0<..} \<longrightarrow> Z \<le> inverse x) (nhds 0)" by (auto elim!: eventually_mono simp: inverse_eq_divide field_simps) qed lemma tendsto_inverse_0: fixes x :: "_ \<Rightarrow> 'a::real_normed_div_algebra" shows "(inverse \<longlongrightarrow> (0::'a)) at_infinity" unfolding tendsto_Zfun_iff diff_0_right Zfun_def eventually_at_infinity proof safe fix r :: real assume "0 < r" show "\<exists>b. \<forall>x. b \<le> norm x \<longrightarrow> norm (inverse x :: 'a) < r" proof (intro exI[of _ "inverse (r / 2)"] allI impI) fix x :: 'a from \<open>0 < r\<close> have "0 < inverse (r / 2)" by simp also assume *: "inverse (r / 2) \<le> norm x" finally show "norm (inverse x) < r" using * \<open>0 < r\<close> by (subst nonzero_norm_inverse) (simp_all add: inverse_eq_divide field_simps) qed qed lemma tendsto_add_filterlim_at_infinity: fixes c :: "'b::real_normed_vector" and F :: "'a filter" assumes "(f \<longlongrightarrow> c) F" and "filterlim g at_infinity F" shows "filterlim (\<lambda>x. f x + g x) at_infinity F" proof (subst filterlim_at_infinity[OF order_refl], safe) fix r :: real assume r: "r > 0" from assms(1) have "((\<lambda>x. norm (f x)) \<longlongrightarrow> norm c) F" by (rule tendsto_norm) then have "eventually (\<lambda>x. norm (f x) < norm c + 1) F" by (rule order_tendstoD) simp_all moreover from r have "r + norm c + 1 > 0" by (intro add_pos_nonneg) simp_all with assms(2) have "eventually (\<lambda>x. norm (g x) \<ge> r + norm c + 1) F" unfolding filterlim_at_infinity[OF order_refl] by (elim allE[of _ "r + norm c + 1"]) simp_all ultimately show "eventually (\<lambda>x. norm (f x + g x) \<ge> r) F" proof eventually_elim fix x :: 'a assume A: "norm (f x) < norm c + 1" and B: "r + norm c + 1 \<le> norm (g x)" from A B have "r \<le> norm (g x) - norm (f x)" by simp also have "norm (g x) - norm (f x) \<le> norm (g x + f x)" by (rule norm_diff_ineq) finally show "r \<le> norm (f x + g x)" by (simp add: add_ac) qed qed lemma tendsto_add_filterlim_at_infinity': fixes c :: "'b::real_normed_vector" and F :: "'a filter" assumes "filterlim f at_infinity F" and "(g \<longlongrightarrow> c) F" shows "filterlim (\<lambda>x. f x + g x) at_infinity F" by (subst add.commute) (rule tendsto_add_filterlim_at_infinity assms)+ lemma filterlim_inverse_at_right_top: "LIM x at_top. inverse x :> at_right (0::real)" unfolding filterlim_at by (auto simp: eventually_at_top_dense) (metis tendsto_inverse_0 filterlim_mono at_top_le_at_infinity order_refl) lemma filterlim_inverse_at_top: "(f \<longlongrightarrow> (0 :: real)) F \<Longrightarrow> eventually (\<lambda>x. 0 < f x) F \<Longrightarrow> LIM x F. inverse (f x) :> at_top" by (intro filterlim_compose[OF filterlim_inverse_at_top_right]) (simp add: filterlim_def eventually_filtermap eventually_mono at_within_def le_principal) lemma filterlim_inverse_at_bot_neg: "LIM x (at_left (0::real)). inverse x :> at_bot" by (simp add: filterlim_inverse_at_top_right filterlim_uminus_at_bot filterlim_at_left_to_right) lemma filterlim_inverse_at_bot: "(f \<longlongrightarrow> (0 :: real)) F \<Longrightarrow> eventually (\<lambda>x. f x < 0) F \<Longrightarrow> LIM x F. inverse (f x) :> at_bot" unfolding filterlim_uminus_at_bot inverse_minus_eq[symmetric] by (rule filterlim_inverse_at_top) (simp_all add: tendsto_minus_cancel_left[symmetric]) lemma at_right_to_top: "(at_right (0::real)) = filtermap inverse at_top" by (intro filtermap_fun_inverse[symmetric, where g=inverse]) (auto intro: filterlim_inverse_at_top_right filterlim_inverse_at_right_top) lemma eventually_at_right_to_top: "eventually P (at_right (0::real)) \<longleftrightarrow> eventually (\<lambda>x. P (inverse x)) at_top" unfolding at_right_to_top eventually_filtermap .. lemma filterlim_at_right_to_top: "filterlim f F (at_right (0::real)) \<longleftrightarrow> (LIM x at_top. f (inverse x) :> F)" unfolding filterlim_def at_right_to_top filtermap_filtermap .. lemma at_top_to_right: "at_top = filtermap inverse (at_right (0::real))" unfolding at_right_to_top filtermap_filtermap inverse_inverse_eq filtermap_ident .. lemma eventually_at_top_to_right: "eventually P at_top \<longleftrightarrow> eventually (\<lambda>x. P (inverse x)) (at_right (0::real))" unfolding at_top_to_right eventually_filtermap .. lemma filterlim_at_top_to_right: "filterlim f F at_top \<longleftrightarrow> (LIM x (at_right (0::real)). f (inverse x) :> F)" unfolding filterlim_def at_top_to_right filtermap_filtermap .. lemma filterlim_inverse_at_infinity: fixes x :: "_ \<Rightarrow> 'a::{real_normed_div_algebra, division_ring}" shows "filterlim inverse at_infinity (at (0::'a))" unfolding filterlim_at_infinity[OF order_refl] proof safe fix r :: real assume "0 < r" then show "eventually (\<lambda>x::'a. r \<le> norm (inverse x)) (at 0)" unfolding eventually_at norm_inverse by (intro exI[of _ "inverse r"]) (auto simp: norm_conv_dist[symmetric] field_simps inverse_eq_divide) qed lemma filterlim_inverse_at_iff: fixes g :: "'a \<Rightarrow> 'b::{real_normed_div_algebra, division_ring}" shows "(LIM x F. inverse (g x) :> at 0) \<longleftrightarrow> (LIM x F. g x :> at_infinity)" unfolding filterlim_def filtermap_filtermap[symmetric] proof assume "filtermap g F \<le> at_infinity" then have "filtermap inverse (filtermap g F) \<le> filtermap inverse at_infinity" by (rule filtermap_mono) also have "\<dots> \<le> at 0" using tendsto_inverse_0[where 'a='b] by (auto intro!: exI[of _ 1] simp: le_principal eventually_filtermap filterlim_def at_within_def eventually_at_infinity) finally show "filtermap inverse (filtermap g F) \<le> at 0" . next assume "filtermap inverse (filtermap g F) \<le> at 0" then have "filtermap inverse (filtermap inverse (filtermap g F)) \<le> filtermap inverse (at 0)" by (rule filtermap_mono) with filterlim_inverse_at_infinity show "filtermap g F \<le> at_infinity" by (auto intro: order_trans simp: filterlim_def filtermap_filtermap) qed lemma tendsto_mult_filterlim_at_infinity: fixes c :: "'a::real_normed_field" assumes "(f \<longlongrightarrow> c) F" "c \<noteq> 0" assumes "filterlim g at_infinity F" shows "filterlim (\<lambda>x. f x * g x) at_infinity F" proof - have "((\<lambda>x. inverse (f x) * inverse (g x)) \<longlongrightarrow> inverse c * 0) F" by (intro tendsto_mult tendsto_inverse assms filterlim_compose[OF tendsto_inverse_0]) then have "filterlim (\<lambda>x. inverse (f x) * inverse (g x)) (at (inverse c * 0)) F" unfolding filterlim_at using assms by (auto intro: filterlim_at_infinity_imp_eventually_ne tendsto_imp_eventually_ne eventually_conj) then show ?thesis by (subst filterlim_inverse_at_iff[symmetric]) simp_all qed lemma tendsto_inverse_0_at_top: "LIM x F. f x :> at_top \<Longrightarrow> ((\<lambda>x. inverse (f x) :: real) \<longlongrightarrow> 0) F" by (metis filterlim_at filterlim_mono[OF _ at_top_le_at_infinity order_refl] filterlim_inverse_at_iff) lemma filterlim_inverse_at_top_iff: "eventually (\<lambda>x. 0 < f x) F \<Longrightarrow> (LIM x F. inverse (f x) :> at_top) \<longleftrightarrow> (f \<longlongrightarrow> (0 :: real)) F" by (auto dest: tendsto_inverse_0_at_top filterlim_inverse_at_top) lemma filterlim_at_top_iff_inverse_0: "eventually (\<lambda>x. 0 < f x) F \<Longrightarrow> (LIM x F. f x :> at_top) \<longleftrightarrow> ((inverse \<circ> f) \<longlongrightarrow> (0 :: real)) F" using filterlim_inverse_at_top_iff [of "inverse \<circ> f"] by auto lemma real_tendsto_divide_at_top: fixes c::"real" assumes "(f \<longlongrightarrow> c) F" assumes "filterlim g at_top F" shows "((\<lambda>x. f x / g x) \<longlongrightarrow> 0) F" by (auto simp: divide_inverse_commute intro!: tendsto_mult[THEN tendsto_eq_rhs] tendsto_inverse_0_at_top assms) lemma mult_nat_left_at_top: "c > 0 \<Longrightarrow> filterlim (\<lambda>x. c * x) at_top sequentially" for c :: nat by (rule filterlim_subseq) (auto simp: strict_mono_def) lemma mult_nat_right_at_top: "c > 0 \<Longrightarrow> filterlim (\<lambda>x. x * c) at_top sequentially" for c :: nat by (rule filterlim_subseq) (auto simp: strict_mono_def) lemma filterlim_times_pos: "LIM x F1. c * f x :> at_right l" if "filterlim f (at_right p) F1" "0 < c" "l = c * p" for c::"'a::{linordered_field, linorder_topology}" unfolding filterlim_iff proof safe fix P assume "\<forall>\<^sub>F x in at_right l. P x" then obtain d where "c * p < d" "\<And>y. y > c * p \<Longrightarrow> y < d \<Longrightarrow> P y" unfolding \<open>l = _ \<close> eventually_at_right_field by auto then have "\<forall>\<^sub>F a in at_right p. P (c * a)" by (auto simp: eventually_at_right_field \<open>0 < c\<close> field_simps intro!: exI[where x="d/c"]) from that(1)[unfolded filterlim_iff, rule_format, OF this] show "\<forall>\<^sub>F x in F1. P (c * f x)" . qed lemma filtermap_nhds_times: "c \<noteq> 0 \<Longrightarrow> filtermap (times c) (nhds a) = nhds (c * a)" for a c :: "'a::real_normed_field" by (rule filtermap_fun_inverse[where g="\<lambda>x. inverse c * x"]) (auto intro!: tendsto_eq_intros filterlim_ident) lemma filtermap_times_pos_at_right: fixes c::"'a::{linordered_field, linorder_topology}" assumes "c > 0" shows "filtermap (times c) (at_right p) = at_right (c * p)" using assms by (intro filtermap_fun_inverse[where g="\<lambda>x. inverse c * x"]) (auto intro!: filterlim_ident filterlim_times_pos) lemma at_to_infinity: "(at (0::'a::{real_normed_field,field})) = filtermap inverse at_infinity" proof (rule antisym) have "(inverse \<longlongrightarrow> (0::'a)) at_infinity" by (fact tendsto_inverse_0) then show "filtermap inverse at_infinity \<le> at (0::'a)" using filterlim_def filterlim_ident filterlim_inverse_at_iff by fastforce next have "filtermap inverse (filtermap inverse (at (0::'a))) \<le> filtermap inverse at_infinity" using filterlim_inverse_at_infinity unfolding filterlim_def by (rule filtermap_mono) then show "at (0::'a) \<le> filtermap inverse at_infinity" by (simp add: filtermap_ident filtermap_filtermap) qed lemma lim_at_infinity_0: fixes l :: "'a::{real_normed_field,field}" shows "(f \<longlongrightarrow> l) at_infinity \<longleftrightarrow> ((f \<circ> inverse) \<longlongrightarrow> l) (at (0::'a))" by (simp add: tendsto_compose_filtermap at_to_infinity filtermap_filtermap) lemma lim_zero_infinity: fixes l :: "'a::{real_normed_field,field}" shows "((\<lambda>x. f(1 / x)) \<longlongrightarrow> l) (at (0::'a)) \<Longrightarrow> (f \<longlongrightarrow> l) at_infinity" by (simp add: inverse_eq_divide lim_at_infinity_0 comp_def) text \<open> We only show rules for multiplication and addition when the functions are either against a real value or against infinity. Further rules are easy to derive by using @{thm filterlim_uminus_at_top}. \<close> lemma filterlim_tendsto_pos_mult_at_top: assumes f: "(f \<longlongrightarrow> c) F" and c: "0 < c" and g: "LIM x F. g x :> at_top" shows "LIM x F. (f x * g x :: real) :> at_top" unfolding filterlim_at_top_gt[where c=0] proof safe fix Z :: real assume "0 < Z" from f \<open>0 < c\<close> have "eventually (\<lambda>x. c / 2 < f x) F" by (auto dest!: tendstoD[where e="c / 2"] elim!: eventually_mono simp: dist_real_def abs_real_def split: if_split_asm) moreover from g have "eventually (\<lambda>x. (Z / c * 2) \<le> g x) F" unfolding filterlim_at_top by auto ultimately show "eventually (\<lambda>x. Z \<le> f x * g x) F" proof eventually_elim case (elim x) with \<open>0 < Z\<close> \<open>0 < c\<close> have "c / 2 * (Z / c * 2) \<le> f x * g x" by (intro mult_mono) (auto simp: zero_le_divide_iff) with \<open>0 < c\<close> show "Z \<le> f x * g x" by simp qed qed lemma filterlim_at_top_mult_at_top: assumes f: "LIM x F. f x :> at_top" and g: "LIM x F. g x :> at_top" shows "LIM x F. (f x * g x :: real) :> at_top" unfolding filterlim_at_top_gt[where c=0] proof safe fix Z :: real assume "0 < Z" from f have "eventually (\<lambda>x. 1 \<le> f x) F" unfolding filterlim_at_top by auto moreover from g have "eventually (\<lambda>x. Z \<le> g x) F" unfolding filterlim_at_top by auto ultimately show "eventually (\<lambda>x. Z \<le> f x * g x) F" proof eventually_elim case (elim x) with \<open>0 < Z\<close> have "1 * Z \<le> f x * g x" by (intro mult_mono) (auto simp: zero_le_divide_iff) then show "Z \<le> f x * g x" by simp qed qed lemma filterlim_at_top_mult_tendsto_pos: assumes f: "(f \<longlongrightarrow> c) F" and c: "0 < c" and g: "LIM x F. g x :> at_top" shows "LIM x F. (g x * f x:: real) :> at_top" by (auto simp: mult.commute intro!: filterlim_tendsto_pos_mult_at_top f c g) lemma filterlim_tendsto_pos_mult_at_bot: fixes c :: real assumes "(f \<longlongrightarrow> c) F" "0 < c" "filterlim g at_bot F" shows "LIM x F. f x * g x :> at_bot" using filterlim_tendsto_pos_mult_at_top[OF assms(1,2), of "\<lambda>x. - g x"] assms(3) unfolding filterlim_uminus_at_bot by simp lemma filterlim_tendsto_neg_mult_at_bot: fixes c :: real assumes c: "(f \<longlongrightarrow> c) F" "c < 0" and g: "filterlim g at_top F" shows "LIM x F. f x * g x :> at_bot" using c filterlim_tendsto_pos_mult_at_top[of "\<lambda>x. - f x" "- c" F, OF _ _ g] unfolding filterlim_uminus_at_bot tendsto_minus_cancel_left by simp lemma filterlim_pow_at_top: fixes f :: "'a \<Rightarrow> real" assumes "0 < n" and f: "LIM x F. f x :> at_top" shows "LIM x F. (f x)^n :: real :> at_top" using \<open>0 < n\<close> proof (induct n) case 0 then show ?case by simp next case (Suc n) with f show ?case by (cases "n = 0") (auto intro!: filterlim_at_top_mult_at_top) qed lemma filterlim_pow_at_bot_even: fixes f :: "real \<Rightarrow> real" shows "0 < n \<Longrightarrow> LIM x F. f x :> at_bot \<Longrightarrow> even n \<Longrightarrow> LIM x F. (f x)^n :> at_top" using filterlim_pow_at_top[of n "\<lambda>x. - f x" F] by (simp add: filterlim_uminus_at_top) lemma filterlim_pow_at_bot_odd: fixes f :: "real \<Rightarrow> real" shows "0 < n \<Longrightarrow> LIM x F. f x :> at_bot \<Longrightarrow> odd n \<Longrightarrow> LIM x F. (f x)^n :> at_bot" using filterlim_pow_at_top[of n "\<lambda>x. - f x" F] by (simp add: filterlim_uminus_at_bot) lemma filterlim_power_at_infinity [tendsto_intros]: fixes F and f :: "'a \<Rightarrow> 'b :: real_normed_div_algebra" assumes "filterlim f at_infinity F" "n > 0" shows "filterlim (\<lambda>x. f x ^ n) at_infinity F" by (rule filterlim_norm_at_top_imp_at_infinity) (auto simp: norm_power intro!: filterlim_pow_at_top assms intro: filterlim_at_infinity_imp_norm_at_top) lemma filterlim_tendsto_add_at_top: assumes f: "(f \<longlongrightarrow> c) F" and g: "LIM x F. g x :> at_top" shows "LIM x F. (f x + g x :: real) :> at_top" unfolding filterlim_at_top_gt[where c=0] proof safe fix Z :: real assume "0 < Z" from f have "eventually (\<lambda>x. c - 1 < f x) F" by (auto dest!: tendstoD[where e=1] elim!: eventually_mono simp: dist_real_def) moreover from g have "eventually (\<lambda>x. Z - (c - 1) \<le> g x) F" unfolding filterlim_at_top by auto ultimately show "eventually (\<lambda>x. Z \<le> f x + g x) F" by eventually_elim simp qed lemma LIM_at_top_divide: fixes f g :: "'a \<Rightarrow> real" assumes f: "(f \<longlongrightarrow> a) F" "0 < a" and g: "(g \<longlongrightarrow> 0) F" "eventually (\<lambda>x. 0 < g x) F" shows "LIM x F. f x / g x :> at_top" unfolding divide_inverse by (rule filterlim_tendsto_pos_mult_at_top[OF f]) (rule filterlim_inverse_at_top[OF g]) lemma filterlim_at_top_add_at_top: assumes f: "LIM x F. f x :> at_top" and g: "LIM x F. g x :> at_top" shows "LIM x F. (f x + g x :: real) :> at_top" unfolding filterlim_at_top_gt[where c=0] proof safe fix Z :: real assume "0 < Z" from f have "eventually (\<lambda>x. 0 \<le> f x) F" unfolding filterlim_at_top by auto moreover from g have "eventually (\<lambda>x. Z \<le> g x) F" unfolding filterlim_at_top by auto ultimately show "eventually (\<lambda>x. Z \<le> f x + g x) F" by eventually_elim simp qed lemma tendsto_divide_0: fixes f :: "_ \<Rightarrow> 'a::{real_normed_div_algebra, division_ring}" assumes f: "(f \<longlongrightarrow> c) F" and g: "LIM x F. g x :> at_infinity" shows "((\<lambda>x. f x / g x) \<longlongrightarrow> 0) F" using tendsto_mult[OF f filterlim_compose[OF tendsto_inverse_0 g]] by (simp add: divide_inverse) lemma linear_plus_1_le_power: fixes x :: real assumes x: "0 \<le> x" shows "real n * x + 1 \<le> (x + 1) ^ n" proof (induct n) case 0 then show ?case by simp next case (Suc n) from x have "real (Suc n) * x + 1 \<le> (x + 1) * (real n * x + 1)" by (simp add: field_simps) also have "\<dots> \<le> (x + 1)^Suc n" using Suc x by (simp add: mult_left_mono) finally show ?case . qed lemma filterlim_realpow_sequentially_gt1: fixes x :: "'a :: real_normed_div_algebra" assumes x[arith]: "1 < norm x" shows "LIM n sequentially. x ^ n :> at_infinity" proof (intro filterlim_at_infinity[THEN iffD2] allI impI) fix y :: real assume "0 < y" obtain N :: nat where "y < real N * (norm x - 1)" by (meson diff_gt_0_iff_gt reals_Archimedean3 x) also have "\<dots> \<le> real N * (norm x - 1) + 1" by simp also have "\<dots> \<le> (norm x - 1 + 1) ^ N" by (rule linear_plus_1_le_power) simp also have "\<dots> = norm x ^ N" by simp finally have "\<forall>n\<ge>N. y \<le> norm x ^ n" by (metis order_less_le_trans power_increasing order_less_imp_le x) then show "eventually (\<lambda>n. y \<le> norm (x ^ n)) sequentially" unfolding eventually_sequentially by (auto simp: norm_power) qed simp lemma filterlim_divide_at_infinity: fixes f g :: "'a \<Rightarrow> 'a :: real_normed_field" assumes "filterlim f (nhds c) F" "filterlim g (at 0) F" "c \<noteq> 0" shows "filterlim (\<lambda>x. f x / g x) at_infinity F" proof - have "filterlim (\<lambda>x. f x * inverse (g x)) at_infinity F" by (intro tendsto_mult_filterlim_at_infinity[OF assms(1,3)] filterlim_compose [OF filterlim_inverse_at_infinity assms(2)]) thus ?thesis by (simp add: field_simps) qed subsection \<open>Floor and Ceiling\<close> lemma eventually_floor_less: fixes f :: "'a \<Rightarrow> 'b::{order_topology,floor_ceiling}" assumes f: "(f \<longlongrightarrow> l) F" and l: "l \<notin> \<int>" shows "\<forall>\<^sub>F x in F. of_int (floor l) < f x" by (intro order_tendstoD[OF f]) (metis Ints_of_int antisym_conv2 floor_correct l) lemma eventually_less_ceiling: fixes f :: "'a \<Rightarrow> 'b::{order_topology,floor_ceiling}" assumes f: "(f \<longlongrightarrow> l) F" and l: "l \<notin> \<int>" shows "\<forall>\<^sub>F x in F. f x < of_int (ceiling l)" by (intro order_tendstoD[OF f]) (metis Ints_of_int l le_of_int_ceiling less_le) lemma eventually_floor_eq: fixes f::"'a \<Rightarrow> 'b::{order_topology,floor_ceiling}" assumes f: "(f \<longlongrightarrow> l) F" and l: "l \<notin> \<int>" shows "\<forall>\<^sub>F x in F. floor (f x) = floor l" using eventually_floor_less[OF assms] eventually_less_ceiling[OF assms] by eventually_elim (meson floor_less_iff less_ceiling_iff not_less_iff_gr_or_eq) lemma eventually_ceiling_eq: fixes f::"'a \<Rightarrow> 'b::{order_topology,floor_ceiling}" assumes f: "(f \<longlongrightarrow> l) F" and l: "l \<notin> \<int>" shows "\<forall>\<^sub>F x in F. ceiling (f x) = ceiling l" using eventually_floor_less[OF assms] eventually_less_ceiling[OF assms] by eventually_elim (meson floor_less_iff less_ceiling_iff not_less_iff_gr_or_eq) lemma tendsto_of_int_floor: fixes f::"'a \<Rightarrow> 'b::{order_topology,floor_ceiling}" assumes "(f \<longlongrightarrow> l) F" and "l \<notin> \<int>" shows "((\<lambda>x. of_int (floor (f x)) :: 'c::{ring_1,topological_space}) \<longlongrightarrow> of_int (floor l)) F" using eventually_floor_eq[OF assms] by (simp add: eventually_mono topological_tendstoI) lemma tendsto_of_int_ceiling: fixes f::"'a \<Rightarrow> 'b::{order_topology,floor_ceiling}" assumes "(f \<longlongrightarrow> l) F" and "l \<notin> \<int>" shows "((\<lambda>x. of_int (ceiling (f x)):: 'c::{ring_1,topological_space}) \<longlongrightarrow> of_int (ceiling l)) F" using eventually_ceiling_eq[OF assms] by (simp add: eventually_mono topological_tendstoI) lemma continuous_on_of_int_floor: "continuous_on (UNIV - \<int>::'a::{order_topology, floor_ceiling} set) (\<lambda>x. of_int (floor x)::'b::{ring_1, topological_space})" unfolding continuous_on_def by (auto intro!: tendsto_of_int_floor) lemma continuous_on_of_int_ceiling: "continuous_on (UNIV - \<int>::'a::{order_topology, floor_ceiling} set) (\<lambda>x. of_int (ceiling x)::'b::{ring_1, topological_space})" unfolding continuous_on_def by (auto intro!: tendsto_of_int_ceiling) subsection \<open>Limits of Sequences\<close> lemma [trans]: "X = Y \<Longrightarrow> Y \<longlonglongrightarrow> z \<Longrightarrow> X \<longlonglongrightarrow> z" by simp lemma LIMSEQ_iff: fixes L :: "'a::real_normed_vector" shows "(X \<longlonglongrightarrow> L) = (\<forall>r>0. \<exists>no. \<forall>n \<ge> no. norm (X n - L) < r)" unfolding lim_sequentially dist_norm .. lemma LIMSEQ_I: "(\<And>r. 0 < r \<Longrightarrow> \<exists>no. \<forall>n\<ge>no. norm (X n - L) < r) \<Longrightarrow> X \<longlonglongrightarrow> L" for L :: "'a::real_normed_vector" by (simp add: LIMSEQ_iff) lemma LIMSEQ_D: "X \<longlonglongrightarrow> L \<Longrightarrow> 0 < r \<Longrightarrow> \<exists>no. \<forall>n\<ge>no. norm (X n - L) < r" for L :: "'a::real_normed_vector" by (simp add: LIMSEQ_iff) lemma LIMSEQ_linear: "X \<longlonglongrightarrow> x \<Longrightarrow> l > 0 \<Longrightarrow> (\<lambda> n. X (n * l)) \<longlonglongrightarrow> x" unfolding tendsto_def eventually_sequentially by (metis div_le_dividend div_mult_self1_is_m le_trans mult.commute) text \<open>Transformation of limit.\<close> lemma Lim_transform: "(g \<longlongrightarrow> a) F \<Longrightarrow> ((\<lambda>x. f x - g x) \<longlongrightarrow> 0) F \<Longrightarrow> (f \<longlongrightarrow> a) F" for a b :: "'a::real_normed_vector" using tendsto_add [of g a F "\<lambda>x. f x - g x" 0] by simp lemma Lim_transform2: "(f \<longlongrightarrow> a) F \<Longrightarrow> ((\<lambda>x. f x - g x) \<longlongrightarrow> 0) F \<Longrightarrow> (g \<longlongrightarrow> a) F" for a b :: "'a::real_normed_vector" by (erule Lim_transform) (simp add: tendsto_minus_cancel) proposition Lim_transform_eq: "((\<lambda>x. f x - g x) \<longlongrightarrow> 0) F \<Longrightarrow> (f \<longlongrightarrow> a) F \<longleftrightarrow> (g \<longlongrightarrow> a) F" for a :: "'a::real_normed_vector" using Lim_transform Lim_transform2 by blast lemma Lim_transform_eventually: "\<lbrakk>(f \<longlongrightarrow> l) F; eventually (\<lambda>x. f x = g x) F\<rbrakk> \<Longrightarrow> (g \<longlongrightarrow> l) F" using eventually_elim2 by (fastforce simp add: tendsto_def) lemma Lim_transform_within: assumes "(f \<longlongrightarrow> l) (at x within S)" and "0 < d" and "\<And>x'. x'\<in>S \<Longrightarrow> 0 < dist x' x \<Longrightarrow> dist x' x < d \<Longrightarrow> f x' = g x'" shows "(g \<longlongrightarrow> l) (at x within S)" proof (rule Lim_transform_eventually) show "eventually (\<lambda>x. f x = g x) (at x within S)" using assms by (auto simp: eventually_at) show "(f \<longlongrightarrow> l) (at x within S)" by fact qed lemma filterlim_transform_within: assumes "filterlim g G (at x within S)" assumes "G \<le> F" "0<d" "(\<And>x'. x' \<in> S \<Longrightarrow> 0 < dist x' x \<Longrightarrow> dist x' x < d \<Longrightarrow> f x' = g x') " shows "filterlim f F (at x within S)" using assms apply (elim filterlim_mono_eventually) unfolding eventually_at by auto text \<open>Common case assuming being away from some crucial point like 0.\<close> lemma Lim_transform_away_within: fixes a b :: "'a::t1_space" assumes "a \<noteq> b" and "\<forall>x\<in>S. x \<noteq> a \<and> x \<noteq> b \<longrightarrow> f x = g x" and "(f \<longlongrightarrow> l) (at a within S)" shows "(g \<longlongrightarrow> l) (at a within S)" proof (rule Lim_transform_eventually) show "(f \<longlongrightarrow> l) (at a within S)" by fact show "eventually (\<lambda>x. f x = g x) (at a within S)" unfolding eventually_at_topological by (rule exI [where x="- {b}"]) (simp add: open_Compl assms) qed lemma Lim_transform_away_at: fixes a b :: "'a::t1_space" assumes ab: "a \<noteq> b" and fg: "\<forall>x. x \<noteq> a \<and> x \<noteq> b \<longrightarrow> f x = g x" and fl: "(f \<longlongrightarrow> l) (at a)" shows "(g \<longlongrightarrow> l) (at a)" using Lim_transform_away_within[OF ab, of UNIV f g l] fg fl by simp text \<open>Alternatively, within an open set.\<close> lemma Lim_transform_within_open: assumes "(f \<longlongrightarrow> l) (at a within T)" and "open s" and "a \<in> s" and "\<And>x. x\<in>s \<Longrightarrow> x \<noteq> a \<Longrightarrow> f x = g x" shows "(g \<longlongrightarrow> l) (at a within T)" proof (rule Lim_transform_eventually) show "eventually (\<lambda>x. f x = g x) (at a within T)" unfolding eventually_at_topological using assms by auto show "(f \<longlongrightarrow> l) (at a within T)" by fact qed text \<open>A congruence rule allowing us to transform limits assuming not at point.\<close> lemma Lim_cong_within: assumes "a = b" and "x = y" and "S = T" and "\<And>x. x \<noteq> b \<Longrightarrow> x \<in> T \<Longrightarrow> f x = g x" shows "(f \<longlongrightarrow> x) (at a within S) \<longleftrightarrow> (g \<longlongrightarrow> y) (at b within T)" unfolding tendsto_def eventually_at_topological using assms by simp text \<open>An unbounded sequence's inverse tends to 0.\<close> lemma LIMSEQ_inverse_zero: assumes "\<And>r::real. \<exists>N. \<forall>n\<ge>N. r < X n" shows "(\<lambda>n. inverse (X n)) \<longlonglongrightarrow> 0" apply (rule filterlim_compose[OF tendsto_inverse_0]) by (metis assms eventually_at_top_linorderI filterlim_at_top_dense filterlim_at_top_imp_at_infinity) text \<open>The sequence \<^term>\<open>1/n\<close> tends to 0 as \<^term>\<open>n\<close> tends to infinity.\<close> lemma LIMSEQ_inverse_real_of_nat: "(\<lambda>n. inverse (real (Suc n))) \<longlonglongrightarrow> 0" by (metis filterlim_compose tendsto_inverse_0 filterlim_mono order_refl filterlim_Suc filterlim_compose[OF filterlim_real_sequentially] at_top_le_at_infinity) text \<open> The sequence \<^term>\<open>r + 1/n\<close> tends to \<^term>\<open>r\<close> as \<^term>\<open>n\<close> tends to infinity is now easily proved. \<close> lemma LIMSEQ_inverse_real_of_nat_add: "(\<lambda>n. r + inverse (real (Suc n))) \<longlonglongrightarrow> r" using tendsto_add [OF tendsto_const LIMSEQ_inverse_real_of_nat] by auto lemma LIMSEQ_inverse_real_of_nat_add_minus: "(\<lambda>n. r + -inverse (real (Suc n))) \<longlonglongrightarrow> r" using tendsto_add [OF tendsto_const tendsto_minus [OF LIMSEQ_inverse_real_of_nat]] by auto lemma LIMSEQ_inverse_real_of_nat_add_minus_mult: "(\<lambda>n. r * (1 + - inverse (real (Suc n)))) \<longlonglongrightarrow> r" using tendsto_mult [OF tendsto_const LIMSEQ_inverse_real_of_nat_add_minus [of 1]] by auto lemma lim_inverse_n: "((\<lambda>n. inverse(of_nat n)) \<longlongrightarrow> (0::'a::real_normed_field)) sequentially" using lim_1_over_n by (simp add: inverse_eq_divide) lemma lim_inverse_n': "((\<lambda>n. 1 / n) \<longlongrightarrow> 0) sequentially" using lim_inverse_n by (simp add: inverse_eq_divide) lemma LIMSEQ_Suc_n_over_n: "(\<lambda>n. of_nat (Suc n) / of_nat n :: 'a :: real_normed_field) \<longlonglongrightarrow> 1" proof (rule Lim_transform_eventually) show "eventually (\<lambda>n. 1 + inverse (of_nat n :: 'a) = of_nat (Suc n) / of_nat n) sequentially" using eventually_gt_at_top[of "0::nat"] by eventually_elim (simp add: field_simps) have "(\<lambda>n. 1 + inverse (of_nat n) :: 'a) \<longlonglongrightarrow> 1 + 0" by (intro tendsto_add tendsto_const lim_inverse_n) then show "(\<lambda>n. 1 + inverse (of_nat n) :: 'a) \<longlonglongrightarrow> 1" by simp qed lemma LIMSEQ_n_over_Suc_n: "(\<lambda>n. of_nat n / of_nat (Suc n) :: 'a :: real_normed_field) \<longlonglongrightarrow> 1" proof (rule Lim_transform_eventually) show "eventually (\<lambda>n. inverse (of_nat (Suc n) / of_nat n :: 'a) = of_nat n / of_nat (Suc n)) sequentially" using eventually_gt_at_top[of "0::nat"] by eventually_elim (simp add: field_simps del: of_nat_Suc) have "(\<lambda>n. inverse (of_nat (Suc n) / of_nat n :: 'a)) \<longlonglongrightarrow> inverse 1" by (intro tendsto_inverse LIMSEQ_Suc_n_over_n) simp_all then show "(\<lambda>n. inverse (of_nat (Suc n) / of_nat n :: 'a)) \<longlonglongrightarrow> 1" by simp qed subsection \<open>Convergence on sequences\<close> lemma convergent_cong: assumes "eventually (\<lambda>x. f x = g x) sequentially" shows "convergent f \<longleftrightarrow> convergent g" unfolding convergent_def by (subst filterlim_cong[OF refl refl assms]) (rule refl) lemma convergent_Suc_iff: "convergent (\<lambda>n. f (Suc n)) \<longleftrightarrow> convergent f" by (auto simp: convergent_def filterlim_sequentially_Suc) lemma convergent_ignore_initial_segment: "convergent (\<lambda>n. f (n + m)) = convergent f" proof (induct m arbitrary: f) case 0 then show ?case by simp next case (Suc m) have "convergent (\<lambda>n. f (n + Suc m)) \<longleftrightarrow> convergent (\<lambda>n. f (Suc n + m))" by simp also have "\<dots> \<longleftrightarrow> convergent (\<lambda>n. f (n + m))" by (rule convergent_Suc_iff) also have "\<dots> \<longleftrightarrow> convergent f" by (rule Suc) finally show ?case . qed lemma convergent_add: fixes X Y :: "nat \<Rightarrow> 'a::topological_monoid_add" assumes "convergent (\<lambda>n. X n)" and "convergent (\<lambda>n. Y n)" shows "convergent (\<lambda>n. X n + Y n)" using assms unfolding convergent_def by (blast intro: tendsto_add) lemma convergent_sum: fixes X :: "'a \<Rightarrow> nat \<Rightarrow> 'b::topological_comm_monoid_add" shows "(\<And>i. i \<in> A \<Longrightarrow> convergent (\<lambda>n. X i n)) \<Longrightarrow> convergent (\<lambda>n. \<Sum>i\<in>A. X i n)" by (induct A rule: infinite_finite_induct) (simp_all add: convergent_const convergent_add) lemma (in bounded_linear) convergent: assumes "convergent (\<lambda>n. X n)" shows "convergent (\<lambda>n. f (X n))" using assms unfolding convergent_def by (blast intro: tendsto) lemma (in bounded_bilinear) convergent: assumes "convergent (\<lambda>n. X n)" and "convergent (\<lambda>n. Y n)" shows "convergent (\<lambda>n. X n ** Y n)" using assms unfolding convergent_def by (blast intro: tendsto) lemma convergent_minus_iff: fixes X :: "nat \<Rightarrow> 'a::topological_group_add" shows "convergent X \<longleftrightarrow> convergent (\<lambda>n. - X n)" unfolding convergent_def by (force dest: tendsto_minus) lemma convergent_diff: fixes X Y :: "nat \<Rightarrow> 'a::topological_group_add" assumes "convergent (\<lambda>n. X n)" assumes "convergent (\<lambda>n. Y n)" shows "convergent (\<lambda>n. X n - Y n)" using assms unfolding convergent_def by (blast intro: tendsto_diff) lemma convergent_norm: assumes "convergent f" shows "convergent (\<lambda>n. norm (f n))" proof - from assms have "f \<longlonglongrightarrow> lim f" by (simp add: convergent_LIMSEQ_iff) then have "(\<lambda>n. norm (f n)) \<longlonglongrightarrow> norm (lim f)" by (rule tendsto_norm) then show ?thesis by (auto simp: convergent_def) qed lemma convergent_of_real: "convergent f \<Longrightarrow> convergent (\<lambda>n. of_real (f n) :: 'a::real_normed_algebra_1)" unfolding convergent_def by (blast intro!: tendsto_of_real) lemma convergent_add_const_iff: "convergent (\<lambda>n. c + f n :: 'a::topological_ab_group_add) \<longleftrightarrow> convergent f" proof assume "convergent (\<lambda>n. c + f n)" from convergent_diff[OF this convergent_const[of c]] show "convergent f" by simp next assume "convergent f" from convergent_add[OF convergent_const[of c] this] show "convergent (\<lambda>n. c + f n)" by simp qed lemma convergent_add_const_right_iff: "convergent (\<lambda>n. f n + c :: 'a::topological_ab_group_add) \<longleftrightarrow> convergent f" using convergent_add_const_iff[of c f] by (simp add: add_ac) lemma convergent_diff_const_right_iff: "convergent (\<lambda>n. f n - c :: 'a::topological_ab_group_add) \<longleftrightarrow> convergent f" using convergent_add_const_right_iff[of f "-c"] by (simp add: add_ac) lemma convergent_mult: fixes X Y :: "nat \<Rightarrow> 'a::topological_semigroup_mult" assumes "convergent (\<lambda>n. X n)" and "convergent (\<lambda>n. Y n)" shows "convergent (\<lambda>n. X n * Y n)" using assms unfolding convergent_def by (blast intro: tendsto_mult) lemma convergent_mult_const_iff: assumes "c \<noteq> 0" shows "convergent (\<lambda>n. c * f n :: 'a::{field,topological_semigroup_mult}) \<longleftrightarrow> convergent f" proof assume "convergent (\<lambda>n. c * f n)" from assms convergent_mult[OF this convergent_const[of "inverse c"]] show "convergent f" by (simp add: field_simps) next assume "convergent f" from convergent_mult[OF convergent_const[of c] this] show "convergent (\<lambda>n. c * f n)" by simp qed lemma convergent_mult_const_right_iff: fixes c :: "'a::{field,topological_semigroup_mult}" assumes "c \<noteq> 0" shows "convergent (\<lambda>n. f n * c) \<longleftrightarrow> convergent f" using convergent_mult_const_iff[OF assms, of f] by (simp add: mult_ac) lemma convergent_imp_Bseq: "convergent f \<Longrightarrow> Bseq f" by (simp add: Cauchy_Bseq convergent_Cauchy) text \<open>A monotone sequence converges to its least upper bound.\<close> lemma LIMSEQ_incseq_SUP: fixes X :: "nat \<Rightarrow> 'a::{conditionally_complete_linorder,linorder_topology}" assumes u: "bdd_above (range X)" and X: "incseq X" shows "X \<longlonglongrightarrow> (SUP i. X i)" by (rule order_tendstoI) (auto simp: eventually_sequentially u less_cSUP_iff intro: X[THEN incseqD] less_le_trans cSUP_lessD[OF u]) lemma LIMSEQ_decseq_INF: fixes X :: "nat \<Rightarrow> 'a::{conditionally_complete_linorder, linorder_topology}" assumes u: "bdd_below (range X)" and X: "decseq X" shows "X \<longlonglongrightarrow> (INF i. X i)" by (rule order_tendstoI) (auto simp: eventually_sequentially u cINF_less_iff intro: X[THEN decseqD] le_less_trans less_cINF_D[OF u]) text \<open>Main monotonicity theorem.\<close> lemma Bseq_monoseq_convergent: "Bseq X \<Longrightarrow> monoseq X \<Longrightarrow> convergent X" for X :: "nat \<Rightarrow> real" by (auto simp: monoseq_iff convergent_def intro: LIMSEQ_decseq_INF LIMSEQ_incseq_SUP dest: Bseq_bdd_above Bseq_bdd_below) lemma Bseq_mono_convergent: "Bseq X \<Longrightarrow> (\<forall>m n. m \<le> n \<longrightarrow> X m \<le> X n) \<Longrightarrow> convergent X" for X :: "nat \<Rightarrow> real" by (auto intro!: Bseq_monoseq_convergent incseq_imp_monoseq simp: incseq_def) lemma monoseq_imp_convergent_iff_Bseq: "monoseq f \<Longrightarrow> convergent f \<longleftrightarrow> Bseq f" for f :: "nat \<Rightarrow> real" using Bseq_monoseq_convergent[of f] convergent_imp_Bseq[of f] by blast lemma Bseq_monoseq_convergent'_inc: fixes f :: "nat \<Rightarrow> real" shows "Bseq (\<lambda>n. f (n + M)) \<Longrightarrow> (\<And>m n. M \<le> m \<Longrightarrow> m \<le> n \<Longrightarrow> f m \<le> f n) \<Longrightarrow> convergent f" by (subst convergent_ignore_initial_segment [symmetric, of _ M]) (auto intro!: Bseq_monoseq_convergent simp: monoseq_def) lemma Bseq_monoseq_convergent'_dec: fixes f :: "nat \<Rightarrow> real" shows "Bseq (\<lambda>n. f (n + M)) \<Longrightarrow> (\<And>m n. M \<le> m \<Longrightarrow> m \<le> n \<Longrightarrow> f m \<ge> f n) \<Longrightarrow> convergent f" by (subst convergent_ignore_initial_segment [symmetric, of _ M]) (auto intro!: Bseq_monoseq_convergent simp: monoseq_def) lemma Cauchy_iff: "Cauchy X \<longleftrightarrow> (\<forall>e>0. \<exists>M. \<forall>m\<ge>M. \<forall>n\<ge>M. norm (X m - X n) < e)" for X :: "nat \<Rightarrow> 'a::real_normed_vector" unfolding Cauchy_def dist_norm .. lemma CauchyI: "(\<And>e. 0 < e \<Longrightarrow> \<exists>M. \<forall>m\<ge>M. \<forall>n\<ge>M. norm (X m - X n) < e) \<Longrightarrow> Cauchy X" for X :: "nat \<Rightarrow> 'a::real_normed_vector" by (simp add: Cauchy_iff) lemma CauchyD: "Cauchy X \<Longrightarrow> 0 < e \<Longrightarrow> \<exists>M. \<forall>m\<ge>M. \<forall>n\<ge>M. norm (X m - X n) < e" for X :: "nat \<Rightarrow> 'a::real_normed_vector" by (simp add: Cauchy_iff) lemma incseq_convergent: fixes X :: "nat \<Rightarrow> real" assumes "incseq X" and "\<forall>i. X i \<le> B" obtains L where "X \<longlonglongrightarrow> L" "\<forall>i. X i \<le> L" proof atomize_elim from incseq_bounded[OF assms] \<open>incseq X\<close> Bseq_monoseq_convergent[of X] obtain L where "X \<longlonglongrightarrow> L" by (auto simp: convergent_def monoseq_def incseq_def) with \<open>incseq X\<close> show "\<exists>L. X \<longlonglongrightarrow> L \<and> (\<forall>i. X i \<le> L)" by (auto intro!: exI[of _ L] incseq_le) qed lemma decseq_convergent: fixes X :: "nat \<Rightarrow> real" assumes "decseq X" and "\<forall>i. B \<le> X i" obtains L where "X \<longlonglongrightarrow> L" "\<forall>i. L \<le> X i" proof atomize_elim from decseq_bounded[OF assms] \<open>decseq X\<close> Bseq_monoseq_convergent[of X] obtain L where "X \<longlonglongrightarrow> L" by (auto simp: convergent_def monoseq_def decseq_def) with \<open>decseq X\<close> show "\<exists>L. X \<longlonglongrightarrow> L \<and> (\<forall>i. L \<le> X i)" by (auto intro!: exI[of _ L] decseq_ge) qed lemma monoseq_convergent: fixes X :: "nat \<Rightarrow> real" assumes X: "monoseq X" and B: "\<And>i. \<bar>X i\<bar> \<le> B" obtains L where "X \<longlonglongrightarrow> L" using X unfolding monoseq_iff proof assume "incseq X" show thesis using abs_le_D1 [OF B] incseq_convergent [OF \<open>incseq X\<close>] that by meson next assume "decseq X" show thesis using decseq_convergent [OF \<open>decseq X\<close>] that by (metis B abs_le_iff add.inverse_inverse neg_le_iff_le) qed subsection \<open>Power Sequences\<close> lemma Bseq_realpow: "0 \<le> x \<Longrightarrow> x \<le> 1 \<Longrightarrow> Bseq (\<lambda>n. x ^ n)" for x :: real by (metis decseq_bounded decseq_def power_decreasing zero_le_power) lemma monoseq_realpow: "0 \<le> x \<Longrightarrow> x \<le> 1 \<Longrightarrow> monoseq (\<lambda>n. x ^ n)" for x :: real using monoseq_def power_decreasing by blast lemma convergent_realpow: "0 \<le> x \<Longrightarrow> x \<le> 1 \<Longrightarrow> convergent (\<lambda>n. x ^ n)" for x :: real by (blast intro!: Bseq_monoseq_convergent Bseq_realpow monoseq_realpow) lemma LIMSEQ_inverse_realpow_zero: "1 < x \<Longrightarrow> (\<lambda>n. inverse (x ^ n)) \<longlonglongrightarrow> 0" for x :: real by (rule filterlim_compose[OF tendsto_inverse_0 filterlim_realpow_sequentially_gt1]) simp lemma LIMSEQ_realpow_zero: fixes x :: real assumes "0 \<le> x" "x < 1" shows "(\<lambda>n. x ^ n) \<longlonglongrightarrow> 0" proof (cases "x = 0") case False with \<open>0 \<le> x\<close> have x0: "0 < x" by simp then have "1 < inverse x" using \<open>x < 1\<close> by (rule one_less_inverse) then have "(\<lambda>n. inverse (inverse x ^ n)) \<longlonglongrightarrow> 0" by (rule LIMSEQ_inverse_realpow_zero) then show ?thesis by (simp add: power_inverse) next case True show ?thesis by (rule LIMSEQ_imp_Suc) (simp add: True) qed lemma LIMSEQ_power_zero [tendsto_intros]: "norm x < 1 \<Longrightarrow> (\<lambda>n. x ^ n) \<longlonglongrightarrow> 0" for x :: "'a::real_normed_algebra_1" apply (drule LIMSEQ_realpow_zero [OF norm_ge_zero]) by (simp add: Zfun_le norm_power_ineq tendsto_Zfun_iff) lemma LIMSEQ_divide_realpow_zero: "1 < x \<Longrightarrow> (\<lambda>n. a / (x ^ n) :: real) \<longlonglongrightarrow> 0" by (rule tendsto_divide_0 [OF tendsto_const filterlim_realpow_sequentially_gt1]) simp lemma tendsto_power_zero: fixes x::"'a::real_normed_algebra_1" assumes "filterlim f at_top F" assumes "norm x < 1" shows "((\<lambda>y. x ^ (f y)) \<longlongrightarrow> 0) F" proof (rule tendstoI) fix e::real assume "0 < e" from tendstoD[OF LIMSEQ_power_zero[OF \<open>norm x < 1\<close>] \<open>0 < e\<close>] have "\<forall>\<^sub>F xa in sequentially. norm (x ^ xa) < e" by simp then obtain N where N: "norm (x ^ n) < e" if "n \<ge> N" for n by (auto simp: eventually_sequentially) have "\<forall>\<^sub>F i in F. f i \<ge> N" using \<open>filterlim f sequentially F\<close> by (simp add: filterlim_at_top) then show "\<forall>\<^sub>F i in F. dist (x ^ f i) 0 < e" by eventually_elim (auto simp: N) qed text \<open>Limit of \<^term>\<open>c^n\<close> for \<^term>\<open>\<bar>c\<bar> < 1\<close>.\<close> lemma LIMSEQ_abs_realpow_zero: "\<bar>c\<bar> < 1 \<Longrightarrow> (\<lambda>n. \<bar>c\<bar> ^ n :: real) \<longlonglongrightarrow> 0" by (rule LIMSEQ_realpow_zero [OF abs_ge_zero]) lemma LIMSEQ_abs_realpow_zero2: "\<bar>c\<bar> < 1 \<Longrightarrow> (\<lambda>n. c ^ n :: real) \<longlonglongrightarrow> 0" by (rule LIMSEQ_power_zero) simp subsection \<open>Limits of Functions\<close> lemma LIM_eq: "f \<midarrow>a\<rightarrow> L = (\<forall>r>0. \<exists>s>0. \<forall>x. x \<noteq> a \<and> norm (x - a) < s \<longrightarrow> norm (f x - L) < r)" for a :: "'a::real_normed_vector" and L :: "'b::real_normed_vector" by (simp add: LIM_def dist_norm) lemma LIM_I: "(\<And>r. 0 < r \<Longrightarrow> \<exists>s>0. \<forall>x. x \<noteq> a \<and> norm (x - a) < s \<longrightarrow> norm (f x - L) < r) \<Longrightarrow> f \<midarrow>a\<rightarrow> L" for a :: "'a::real_normed_vector" and L :: "'b::real_normed_vector" by (simp add: LIM_eq) lemma LIM_D: "f \<midarrow>a\<rightarrow> L \<Longrightarrow> 0 < r \<Longrightarrow> \<exists>s>0.\<forall>x. x \<noteq> a \<and> norm (x - a) < s \<longrightarrow> norm (f x - L) < r" for a :: "'a::real_normed_vector" and L :: "'b::real_normed_vector" by (simp add: LIM_eq) lemma LIM_offset: "f \<midarrow>a\<rightarrow> L \<Longrightarrow> (\<lambda>x. f (x + k)) \<midarrow>(a - k)\<rightarrow> L" for a :: "'a::real_normed_vector" by (simp add: filtermap_at_shift[symmetric, of a k] filterlim_def filtermap_filtermap) lemma LIM_offset_zero: "f \<midarrow>a\<rightarrow> L \<Longrightarrow> (\<lambda>h. f (a + h)) \<midarrow>0\<rightarrow> L" for a :: "'a::real_normed_vector" by (drule LIM_offset [where k = a]) (simp add: add.commute) lemma LIM_offset_zero_cancel: "(\<lambda>h. f (a + h)) \<midarrow>0\<rightarrow> L \<Longrightarrow> f \<midarrow>a\<rightarrow> L" for a :: "'a::real_normed_vector" by (drule LIM_offset [where k = "- a"]) simp lemma LIM_offset_zero_iff: "NO_MATCH 0 a \<Longrightarrow> f \<midarrow>a\<rightarrow> L \<longleftrightarrow> (\<lambda>h. f (a + h)) \<midarrow>0\<rightarrow> L" for f :: "'a :: real_normed_vector \<Rightarrow> _" using LIM_offset_zero_cancel[of f a L] LIM_offset_zero[of f L a] by auto lemma tendsto_offset_zero_iff: fixes f :: "'a :: real_normed_vector \<Rightarrow> _" assumes " NO_MATCH 0 a" "a \<in> S" "open S" shows "(f \<longlongrightarrow> L) (at a within S) \<longleftrightarrow> ((\<lambda>h. f (a + h)) \<longlongrightarrow> L) (at 0)" using assms by (simp add: tendsto_within_open_NO_MATCH LIM_offset_zero_iff) lemma LIM_zero: "(f \<longlongrightarrow> l) F \<Longrightarrow> ((\<lambda>x. f x - l) \<longlongrightarrow> 0) F" for f :: "'a \<Rightarrow> 'b::real_normed_vector" unfolding tendsto_iff dist_norm by simp lemma LIM_zero_cancel: fixes f :: "'a \<Rightarrow> 'b::real_normed_vector" shows "((\<lambda>x. f x - l) \<longlongrightarrow> 0) F \<Longrightarrow> (f \<longlongrightarrow> l) F" unfolding tendsto_iff dist_norm by simp lemma LIM_zero_iff: "((\<lambda>x. f x - l) \<longlongrightarrow> 0) F = (f \<longlongrightarrow> l) F" for f :: "'a \<Rightarrow> 'b::real_normed_vector" unfolding tendsto_iff dist_norm by simp lemma LIM_imp_LIM: fixes f :: "'a::topological_space \<Rightarrow> 'b::real_normed_vector" fixes g :: "'a::topological_space \<Rightarrow> 'c::real_normed_vector" assumes f: "f \<midarrow>a\<rightarrow> l" and le: "\<And>x. x \<noteq> a \<Longrightarrow> norm (g x - m) \<le> norm (f x - l)" shows "g \<midarrow>a\<rightarrow> m" by (rule metric_LIM_imp_LIM [OF f]) (simp add: dist_norm le) lemma LIM_equal2: fixes f g :: "'a::real_normed_vector \<Rightarrow> 'b::topological_space" assumes "0 < R" and "\<And>x. x \<noteq> a \<Longrightarrow> norm (x - a) < R \<Longrightarrow> f x = g x" shows "g \<midarrow>a\<rightarrow> l \<Longrightarrow> f \<midarrow>a\<rightarrow> l" by (rule metric_LIM_equal2 [OF _ assms]) (simp_all add: dist_norm) lemma LIM_compose2: fixes a :: "'a::real_normed_vector" assumes f: "f \<midarrow>a\<rightarrow> b" and g: "g \<midarrow>b\<rightarrow> c" and inj: "\<exists>d>0. \<forall>x. x \<noteq> a \<and> norm (x - a) < d \<longrightarrow> f x \<noteq> b" shows "(\<lambda>x. g (f x)) \<midarrow>a\<rightarrow> c" by (rule metric_LIM_compose2 [OF f g inj [folded dist_norm]]) lemma real_LIM_sandwich_zero: fixes f g :: "'a::topological_space \<Rightarrow> real" assumes f: "f \<midarrow>a\<rightarrow> 0" and 1: "\<And>x. x \<noteq> a \<Longrightarrow> 0 \<le> g x" and 2: "\<And>x. x \<noteq> a \<Longrightarrow> g x \<le> f x" shows "g \<midarrow>a\<rightarrow> 0" proof (rule LIM_imp_LIM [OF f]) (* FIXME: use tendsto_sandwich *) fix x assume x: "x \<noteq> a" with 1 have "norm (g x - 0) = g x" by simp also have "g x \<le> f x" by (rule 2 [OF x]) also have "f x \<le> \<bar>f x\<bar>" by (rule abs_ge_self) also have "\<bar>f x\<bar> = norm (f x - 0)" by simp finally show "norm (g x - 0) \<le> norm (f x - 0)" . qed subsection \<open>Continuity\<close> lemma LIM_isCont_iff: "(f \<midarrow>a\<rightarrow> f a) = ((\<lambda>h. f (a + h)) \<midarrow>0\<rightarrow> f a)" for f :: "'a::real_normed_vector \<Rightarrow> 'b::topological_space" by (rule iffI [OF LIM_offset_zero LIM_offset_zero_cancel]) lemma isCont_iff: "isCont f x = (\<lambda>h. f (x + h)) \<midarrow>0\<rightarrow> f x" for f :: "'a::real_normed_vector \<Rightarrow> 'b::topological_space" by (simp add: isCont_def LIM_isCont_iff) lemma isCont_LIM_compose2: fixes a :: "'a::real_normed_vector" assumes f [unfolded isCont_def]: "isCont f a" and g: "g \<midarrow>f a\<rightarrow> l" and inj: "\<exists>d>0. \<forall>x. x \<noteq> a \<and> norm (x - a) < d \<longrightarrow> f x \<noteq> f a" shows "(\<lambda>x. g (f x)) \<midarrow>a\<rightarrow> l" by (rule LIM_compose2 [OF f g inj]) lemma isCont_norm [simp]: "isCont f a \<Longrightarrow> isCont (\<lambda>x. norm (f x)) a" for f :: "'a::t2_space \<Rightarrow> 'b::real_normed_vector" by (fact continuous_norm) lemma isCont_rabs [simp]: "isCont f a \<Longrightarrow> isCont (\<lambda>x. \<bar>f x\<bar>) a" for f :: "'a::t2_space \<Rightarrow> real" by (fact continuous_rabs) lemma isCont_add [simp]: "isCont f a \<Longrightarrow> isCont g a \<Longrightarrow> isCont (\<lambda>x. f x + g x) a" for f :: "'a::t2_space \<Rightarrow> 'b::topological_monoid_add" by (fact continuous_add) lemma isCont_minus [simp]: "isCont f a \<Longrightarrow> isCont (\<lambda>x. - f x) a" for f :: "'a::t2_space \<Rightarrow> 'b::real_normed_vector" by (fact continuous_minus) lemma isCont_diff [simp]: "isCont f a \<Longrightarrow> isCont g a \<Longrightarrow> isCont (\<lambda>x. f x - g x) a" for f :: "'a::t2_space \<Rightarrow> 'b::real_normed_vector" by (fact continuous_diff) lemma isCont_mult [simp]: "isCont f a \<Longrightarrow> isCont g a \<Longrightarrow> isCont (\<lambda>x. f x * g x) a" for f g :: "'a::t2_space \<Rightarrow> 'b::real_normed_algebra" by (fact continuous_mult) lemma (in bounded_linear) isCont: "isCont g a \<Longrightarrow> isCont (\<lambda>x. f (g x)) a" by (fact continuous) lemma (in bounded_bilinear) isCont: "isCont f a \<Longrightarrow> isCont g a \<Longrightarrow> isCont (\<lambda>x. f x ** g x) a" by (fact continuous) lemmas isCont_scaleR [simp] = bounded_bilinear.isCont [OF bounded_bilinear_scaleR] lemmas isCont_of_real [simp] = bounded_linear.isCont [OF bounded_linear_of_real] lemma isCont_power [simp]: "isCont f a \<Longrightarrow> isCont (\<lambda>x. f x ^ n) a" for f :: "'a::t2_space \<Rightarrow> 'b::{power,real_normed_algebra}" by (fact continuous_power) lemma isCont_sum [simp]: "\<forall>i\<in>A. isCont (f i) a \<Longrightarrow> isCont (\<lambda>x. \<Sum>i\<in>A. f i x) a" for f :: "'a \<Rightarrow> 'b::t2_space \<Rightarrow> 'c::topological_comm_monoid_add" by (auto intro: continuous_sum) subsection \<open>Uniform Continuity\<close> lemma uniformly_continuous_on_def: fixes f :: "'a::metric_space \<Rightarrow> 'b::metric_space" shows "uniformly_continuous_on s f \<longleftrightarrow> (\<forall>e>0. \<exists>d>0. \<forall>x\<in>s. \<forall>x'\<in>s. dist x' x < d \<longrightarrow> dist (f x') (f x) < e)" unfolding uniformly_continuous_on_uniformity uniformity_dist filterlim_INF filterlim_principal eventually_inf_principal by (force simp: Ball_def uniformity_dist[symmetric] eventually_uniformity_metric) abbreviation isUCont :: "['a::metric_space \<Rightarrow> 'b::metric_space] \<Rightarrow> bool" where "isUCont f \<equiv> uniformly_continuous_on UNIV f" lemma isUCont_def: "isUCont f \<longleftrightarrow> (\<forall>r>0. \<exists>s>0. \<forall>x y. dist x y < s \<longrightarrow> dist (f x) (f y) < r)" by (auto simp: uniformly_continuous_on_def dist_commute) lemma isUCont_isCont: "isUCont f \<Longrightarrow> isCont f x" by (drule uniformly_continuous_imp_continuous) (simp add: continuous_on_eq_continuous_at) lemma uniformly_continuous_on_Cauchy: fixes f :: "'a::metric_space \<Rightarrow> 'b::metric_space" assumes "uniformly_continuous_on S f" "Cauchy X" "\<And>n. X n \<in> S" shows "Cauchy (\<lambda>n. f (X n))" using assms unfolding uniformly_continuous_on_def by (meson Cauchy_def) lemma isUCont_Cauchy: "isUCont f \<Longrightarrow> Cauchy X \<Longrightarrow> Cauchy (\<lambda>n. f (X n))" by (rule uniformly_continuous_on_Cauchy[where S=UNIV and f=f]) simp_all lemma uniformly_continuous_imp_Cauchy_continuous: fixes f :: "'a::metric_space \<Rightarrow> 'b::metric_space" shows "\<lbrakk>uniformly_continuous_on S f; Cauchy \<sigma>; \<And>n. (\<sigma> n) \<in> S\<rbrakk> \<Longrightarrow> Cauchy(f \<circ> \<sigma>)" by (simp add: uniformly_continuous_on_def Cauchy_def) meson lemma (in bounded_linear) isUCont: "isUCont f" unfolding isUCont_def dist_norm proof (intro allI impI) fix r :: real assume r: "0 < r" obtain K where K: "0 < K" and norm_le: "norm (f x) \<le> norm x * K" for x using pos_bounded by blast show "\<exists>s>0. \<forall>x y. norm (x - y) < s \<longrightarrow> norm (f x - f y) < r" proof (rule exI, safe) from r K show "0 < r / K" by simp next fix x y :: 'a assume xy: "norm (x - y) < r / K" have "norm (f x - f y) = norm (f (x - y))" by (simp only: diff) also have "\<dots> \<le> norm (x - y) * K" by (rule norm_le) also from K xy have "\<dots> < r" by (simp only: pos_less_divide_eq) finally show "norm (f x - f y) < r" . qed qed lemma (in bounded_linear) Cauchy: "Cauchy X \<Longrightarrow> Cauchy (\<lambda>n. f (X n))" by (rule isUCont [THEN isUCont_Cauchy]) lemma LIM_less_bound: fixes f :: "real \<Rightarrow> real" assumes ev: "b < x" "\<forall> x' \<in> { b <..< x}. 0 \<le> f x'" and "isCont f x" shows "0 \<le> f x" proof (rule tendsto_lowerbound) show "(f \<longlongrightarrow> f x) (at_left x)" using \<open>isCont f x\<close> by (simp add: filterlim_at_split isCont_def) show "eventually (\<lambda>x. 0 \<le> f x) (at_left x)" using ev by (auto simp: eventually_at dist_real_def intro!: exI[of _ "x - b"]) qed simp subsection \<open>Nested Intervals and Bisection -- Needed for Compactness\<close> lemma nested_sequence_unique: assumes "\<forall>n. f n \<le> f (Suc n)" "\<forall>n. g (Suc n) \<le> g n" "\<forall>n. f n \<le> g n" "(\<lambda>n. f n - g n) \<longlonglongrightarrow> 0" shows "\<exists>l::real. ((\<forall>n. f n \<le> l) \<and> f \<longlonglongrightarrow> l) \<and> ((\<forall>n. l \<le> g n) \<and> g \<longlonglongrightarrow> l)" proof - have "incseq f" unfolding incseq_Suc_iff by fact have "decseq g" unfolding decseq_Suc_iff by fact have "f n \<le> g 0" for n proof - from \<open>decseq g\<close> have "g n \<le> g 0" by (rule decseqD) simp with \<open>\<forall>n. f n \<le> g n\<close>[THEN spec, of n] show ?thesis by auto qed then obtain u where "f \<longlonglongrightarrow> u" "\<forall>i. f i \<le> u" using incseq_convergent[OF \<open>incseq f\<close>] by auto moreover have "f 0 \<le> g n" for n proof - from \<open>incseq f\<close> have "f 0 \<le> f n" by (rule incseqD) simp with \<open>\<forall>n. f n \<le> g n\<close>[THEN spec, of n] show ?thesis by simp qed then obtain l where "g \<longlonglongrightarrow> l" "\<forall>i. l \<le> g i" using decseq_convergent[OF \<open>decseq g\<close>] by auto moreover note LIMSEQ_unique[OF assms(4) tendsto_diff[OF \<open>f \<longlonglongrightarrow> u\<close> \<open>g \<longlonglongrightarrow> l\<close>]] ultimately show ?thesis by auto qed lemma Bolzano[consumes 1, case_names trans local]: fixes P :: "real \<Rightarrow> real \<Rightarrow> bool" assumes [arith]: "a \<le> b" and trans: "\<And>a b c. P a b \<Longrightarrow> P b c \<Longrightarrow> a \<le> b \<Longrightarrow> b \<le> c \<Longrightarrow> P a c" and local: "\<And>x. a \<le> x \<Longrightarrow> x \<le> b \<Longrightarrow> \<exists>d>0. \<forall>a b. a \<le> x \<and> x \<le> b \<and> b - a < d \<longrightarrow> P a b" shows "P a b" proof - define bisect where "bisect \<equiv> \<lambda>(x,y). if P x ((x+y) / 2) then ((x+y)/2, y) else (x, (x+y)/2)" define l u where "l n \<equiv> fst ((bisect^^n)(a,b))" and "u n \<equiv> snd ((bisect^^n)(a,b))" for n have l[simp]: "l 0 = a" "\<And>n. l (Suc n) = (if P (l n) ((l n + u n) / 2) then (l n + u n) / 2 else l n)" and u[simp]: "u 0 = b" "\<And>n. u (Suc n) = (if P (l n) ((l n + u n) / 2) then u n else (l n + u n) / 2)" by (simp_all add: l_def u_def bisect_def split: prod.split) have [simp]: "l n \<le> u n" for n by (induct n) auto have "\<exists>x. ((\<forall>n. l n \<le> x) \<and> l \<longlonglongrightarrow> x) \<and> ((\<forall>n. x \<le> u n) \<and> u \<longlonglongrightarrow> x)" proof (safe intro!: nested_sequence_unique) show "l n \<le> l (Suc n)" "u (Suc n) \<le> u n" for n by (induct n) auto next have "l n - u n = (a - b) / 2^n" for n by (induct n) (auto simp: field_simps) then show "(\<lambda>n. l n - u n) \<longlonglongrightarrow> 0" by (simp add: LIMSEQ_divide_realpow_zero) qed fact then obtain x where x: "\<And>n. l n \<le> x" "\<And>n. x \<le> u n" and "l \<longlonglongrightarrow> x" "u \<longlonglongrightarrow> x" by auto obtain d where "0 < d" and d: "a \<le> x \<Longrightarrow> x \<le> b \<Longrightarrow> b - a < d \<Longrightarrow> P a b" for a b using \<open>l 0 \<le> x\<close> \<open>x \<le> u 0\<close> local[of x] by auto show "P a b" proof (rule ccontr) assume "\<not> P a b" have "\<not> P (l n) (u n)" for n proof (induct n) case 0 then show ?case by (simp add: \<open>\<not> P a b\<close>) next case (Suc n) with trans[of "l n" "(l n + u n) / 2" "u n"] show ?case by auto qed moreover { have "eventually (\<lambda>n. x - d / 2 < l n) sequentially" using \<open>0 < d\<close> \<open>l \<longlonglongrightarrow> x\<close> by (intro order_tendstoD[of _ x]) auto moreover have "eventually (\<lambda>n. u n < x + d / 2) sequentially" using \<open>0 < d\<close> \<open>u \<longlonglongrightarrow> x\<close> by (intro order_tendstoD[of _ x]) auto ultimately have "eventually (\<lambda>n. P (l n) (u n)) sequentially" proof eventually_elim case (elim n) from add_strict_mono[OF this] have "u n - l n < d" by simp with x show "P (l n) (u n)" by (rule d) qed } ultimately show False by simp qed qed lemma compact_Icc[simp, intro]: "compact {a .. b::real}" proof (cases "a \<le> b", rule compactI) fix C assume C: "a \<le> b" "\<forall>t\<in>C. open t" "{a..b} \<subseteq> \<Union>C" define T where "T = {a .. b}" from C(1,3) show "\<exists>C'\<subseteq>C. finite C' \<and> {a..b} \<subseteq> \<Union>C'" proof (induct rule: Bolzano) case (trans a b c) then have *: "{a..c} = {a..b} \<union> {b..c}" by auto with trans obtain C1 C2 where "C1\<subseteq>C" "finite C1" "{a..b} \<subseteq> \<Union>C1" "C2\<subseteq>C" "finite C2" "{b..c} \<subseteq> \<Union>C2" by auto with trans show ?case unfolding * by (intro exI[of _ "C1 \<union> C2"]) auto next case (local x) with C have "x \<in> \<Union>C" by auto with C(2) obtain c where "x \<in> c" "open c" "c \<in> C" by auto then obtain e where "0 < e" "{x - e <..< x + e} \<subseteq> c" by (auto simp: open_dist dist_real_def subset_eq Ball_def abs_less_iff) with \<open>c \<in> C\<close> show ?case by (safe intro!: exI[of _ "e/2"] exI[of _ "{c}"]) auto qed qed simp lemma continuous_image_closed_interval: fixes a b and f :: "real \<Rightarrow> real" defines "S \<equiv> {a..b}" assumes "a \<le> b" and f: "continuous_on S f" shows "\<exists>c d. f`S = {c..d} \<and> c \<le> d" proof - have S: "compact S" "S \<noteq> {}" using \<open>a \<le> b\<close> by (auto simp: S_def) obtain c where "c \<in> S" "\<forall>d\<in>S. f d \<le> f c" using continuous_attains_sup[OF S f] by auto moreover obtain d where "d \<in> S" "\<forall>c\<in>S. f d \<le> f c" using continuous_attains_inf[OF S f] by auto moreover have "connected (f`S)" using connected_continuous_image[OF f] connected_Icc by (auto simp: S_def) ultimately have "f ` S = {f d .. f c} \<and> f d \<le> f c" by (auto simp: connected_iff_interval) then show ?thesis by auto qed lemma open_Collect_positive: fixes f :: "'a::topological_space \<Rightarrow> real" assumes f: "continuous_on s f" shows "\<exists>A. open A \<and> A \<inter> s = {x\<in>s. 0 < f x}" using continuous_on_open_invariant[THEN iffD1, OF f, rule_format, of "{0 <..}"] by (auto simp: Int_def field_simps) lemma open_Collect_less_Int: fixes f g :: "'a::topological_space \<Rightarrow> real" assumes f: "continuous_on s f" and g: "continuous_on s g" shows "\<exists>A. open A \<and> A \<inter> s = {x\<in>s. f x < g x}" using open_Collect_positive[OF continuous_on_diff[OF g f]] by (simp add: field_simps) subsection \<open>Boundedness of continuous functions\<close> text\<open>By bisection, function continuous on closed interval is bounded above\<close> lemma isCont_eq_Ub: fixes f :: "real \<Rightarrow> 'a::linorder_topology" shows "a \<le> b \<Longrightarrow> \<forall>x::real. a \<le> x \<and> x \<le> b \<longrightarrow> isCont f x \<Longrightarrow> \<exists>M. (\<forall>x. a \<le> x \<and> x \<le> b \<longrightarrow> f x \<le> M) \<and> (\<exists>x. a \<le> x \<and> x \<le> b \<and> f x = M)" using continuous_attains_sup[of "{a..b}" f] by (auto simp: continuous_at_imp_continuous_on Ball_def Bex_def) lemma isCont_eq_Lb: fixes f :: "real \<Rightarrow> 'a::linorder_topology" shows "a \<le> b \<Longrightarrow> \<forall>x. a \<le> x \<and> x \<le> b \<longrightarrow> isCont f x \<Longrightarrow> \<exists>M. (\<forall>x. a \<le> x \<and> x \<le> b \<longrightarrow> M \<le> f x) \<and> (\<exists>x. a \<le> x \<and> x \<le> b \<and> f x = M)" using continuous_attains_inf[of "{a..b}" f] by (auto simp: continuous_at_imp_continuous_on Ball_def Bex_def) lemma isCont_bounded: fixes f :: "real \<Rightarrow> 'a::linorder_topology" shows "a \<le> b \<Longrightarrow> \<forall>x. a \<le> x \<and> x \<le> b \<longrightarrow> isCont f x \<Longrightarrow> \<exists>M. \<forall>x. a \<le> x \<and> x \<le> b \<longrightarrow> f x \<le> M" using isCont_eq_Ub[of a b f] by auto lemma isCont_has_Ub: fixes f :: "real \<Rightarrow> 'a::linorder_topology" shows "a \<le> b \<Longrightarrow> \<forall>x. a \<le> x \<and> x \<le> b \<longrightarrow> isCont f x \<Longrightarrow> \<exists>M. (\<forall>x. a \<le> x \<and> x \<le> b \<longrightarrow> f x \<le> M) \<and> (\<forall>N. N < M \<longrightarrow> (\<exists>x. a \<le> x \<and> x \<le> b \<and> N < f x))" using isCont_eq_Ub[of a b f] by auto lemma isCont_Lb_Ub: fixes f :: "real \<Rightarrow> real" assumes "a \<le> b" "\<forall>x. a \<le> x \<and> x \<le> b \<longrightarrow> isCont f x" shows "\<exists>L M. (\<forall>x. a \<le> x \<and> x \<le> b \<longrightarrow> L \<le> f x \<and> f x \<le> M) \<and> (\<forall>y. L \<le> y \<and> y \<le> M \<longrightarrow> (\<exists>x. a \<le> x \<and> x \<le> b \<and> (f x = y)))" proof - obtain M where M: "a \<le> M" "M \<le> b" "\<forall>x. a \<le> x \<and> x \<le> b \<longrightarrow> f x \<le> f M" using isCont_eq_Ub[OF assms] by auto obtain L where L: "a \<le> L" "L \<le> b" "\<forall>x. a \<le> x \<and> x \<le> b \<longrightarrow> f L \<le> f x" using isCont_eq_Lb[OF assms] by auto have "(\<forall>x. a \<le> x \<and> x \<le> b \<longrightarrow> f L \<le> f x \<and> f x \<le> f M)" using M L by simp moreover have "(\<forall>y. f L \<le> y \<and> y \<le> f M \<longrightarrow> (\<exists>x\<ge>a. x \<le> b \<and> f x = y))" proof (cases "L \<le> M") case True then show ?thesis using IVT[of f L _ M] M L assms by (metis order.trans) next case False then show ?thesis using IVT2[of f L _ M] by (metis L(2) M(1) assms(2) le_cases order.trans) qed ultimately show ?thesis by blast qed text \<open>Continuity of inverse function.\<close> lemma isCont_inverse_function: fixes f g :: "real \<Rightarrow> real" assumes d: "0 < d" and inj: "\<And>z. \<bar>z-x\<bar> \<le> d \<Longrightarrow> g (f z) = z" and cont: "\<And>z. \<bar>z-x\<bar> \<le> d \<Longrightarrow> isCont f z" shows "isCont g (f x)" proof - let ?A = "f (x - d)" let ?B = "f (x + d)" let ?D = "{x - d..x + d}" have f: "continuous_on ?D f" using cont by (intro continuous_at_imp_continuous_on ballI) auto then have g: "continuous_on (f`?D) g" using inj by (intro continuous_on_inv) auto from d f have "{min ?A ?B <..< max ?A ?B} \<subseteq> f ` ?D" by (intro connected_contains_Ioo connected_continuous_image) (auto split: split_min split_max) with g have "continuous_on {min ?A ?B <..< max ?A ?B} g" by (rule continuous_on_subset) moreover have "(?A < f x \<and> f x < ?B) \<or> (?B < f x \<and> f x < ?A)" using d inj by (intro continuous_inj_imp_mono[OF _ _ f] inj_on_imageI2[of g, OF inj_onI]) auto then have "f x \<in> {min ?A ?B <..< max ?A ?B}" by auto ultimately show ?thesis by (simp add: continuous_on_eq_continuous_at) qed lemma isCont_inverse_function2: fixes f g :: "real \<Rightarrow> real" shows "\<lbrakk>a < x; x < b; \<And>z. \<lbrakk>a \<le> z; z \<le> b\<rbrakk> \<Longrightarrow> g (f z) = z; \<And>z. \<lbrakk>a \<le> z; z \<le> b\<rbrakk> \<Longrightarrow> isCont f z\<rbrakk> \<Longrightarrow> isCont g (f x)" apply (rule isCont_inverse_function [where f=f and d="min (x - a) (b - x)"]) apply (simp_all add: abs_le_iff) done text \<open>Bartle/Sherbert: Introduction to Real Analysis, Theorem 4.2.9, p. 110.\<close> lemma LIM_fun_gt_zero: "f \<midarrow>c\<rightarrow> l \<Longrightarrow> 0 < l \<Longrightarrow> \<exists>r. 0 < r \<and> (\<forall>x. x \<noteq> c \<and> \<bar>c - x\<bar> < r \<longrightarrow> 0 < f x)" for f :: "real \<Rightarrow> real" by (force simp: dest: LIM_D) lemma LIM_fun_less_zero: "f \<midarrow>c\<rightarrow> l \<Longrightarrow> l < 0 \<Longrightarrow> \<exists>r. 0 < r \<and> (\<forall>x. x \<noteq> c \<and> \<bar>c - x\<bar> < r \<longrightarrow> f x < 0)" for f :: "real \<Rightarrow> real" by (drule LIM_D [where r="-l"]) force+ lemma LIM_fun_not_zero: "f \<midarrow>c\<rightarrow> l \<Longrightarrow> l \<noteq> 0 \<Longrightarrow> \<exists>r. 0 < r \<and> (\<forall>x. x \<noteq> c \<and> \<bar>c - x\<bar> < r \<longrightarrow> f x \<noteq> 0)" for f :: "real \<Rightarrow> real" using LIM_fun_gt_zero[of f l c] LIM_fun_less_zero[of f l c] by (auto simp: neq_iff) end
Formal statement is: lemma le_emeasure_sup_measure'1: assumes "sets B = sets A" "X \<in> sets A" shows "emeasure A X \<le> emeasure (sup_measure' A B) X" Informal statement is: If $B$ is a $\sigma$-algebra that contains $A$, then the outer measure of $X$ with respect to $A$ is less than or equal to the outer measure of $X$ with respect to $B$.
Formal statement is: lemma measure_mono_fmeasurable: "A \<subseteq> B \<Longrightarrow> A \<in> sets M \<Longrightarrow> B \<in> fmeasurable M \<Longrightarrow> measure M A \<le> measure M B" Informal statement is: If $A \subseteq B$ and $A$ is measurable, then $B$ is measurable and $\mu(A) \leq \mu(B)$.
Serena Williams penned an emotional letter to mom Oracene Price which she shared on the social networking site Reddit on Tuesday. Having been by her side since the beginning, 23-time Grand Slam champion Serena Williams has just one thing to say to mom Oracene Price. The former World No.1, who became a mother herself earlier this month, penned a heartfelt thank you letter to Oracene on the social networking site Reddit, referencing her upbringing, and how her mother taught her to love herself. "Dear Mom, You are one of the strongest women I know," the former World No.1 wrote. "I was looking at my daughter (OMG, yes, I have a daughter) and she has my arms and legs! My exact same strong, muscular, powerful, sensational arms and body." Williams gave birth to daughter Alexis Olympia Ohanian, Jr. on Sept. 1. The youngest of five children, of course including sister Venus, Williams shared how she hopes to now teach her own daughter the same lessons. "I am proud we were able to show them what some women look like. We don't all look the same," she added. "We are curvy, strong, muscular, tall, small, just to name a few, and all the same: we are women and proud! "Thank you for being the role model I needed to endure all the hardships that I now regard as a challenges--ones that I enjoy. I hope to teach my baby Alexis Olympia the same, and have the same fortitude you have had." Read the full post from Serena, shared on Reddit, below! Williams, who won the Australian Open in January while eight weeks pregnant, intends to return to the WTA and competitive tennis in 2018.
myTestRule { # Input parameters are: # Data object path # Local file path # Source resource # Output parameter is: # Status # Output from executing the example is: # File /tempZone/home/rods/sub1/foo1 is retrieved from the data grid and written to foo1 msiSplitPath(*SourceFile,*Coll,*File); msiDataObjGetWithOptions(*SourceFile,"./*File",*Resource,*Status); writeLine("stdout","File *SourceFile is retrieved from the data grid and written to *File"); } INPUT *SourceFile="/tempZone/home/rods/sub1/foo1", *Resource="demoResc" OUTPUT ruleExecOut
postulate @0 A : Set _ : @0 Set → (Set → Set) → Set _ = λ @0 where A G → G A
{-# OPTIONS --safe --warning=error --without-K #-} open import LogicalFormulae open import Groups.Abelian.Definition open import Groups.Homomorphisms.Definition open import Setoids.Setoids open import Sets.EquivalenceRelations open import Rings.Definition open import Lists.Lists open import Rings.Homomorphisms.Definition module Rings.Polynomial.Ring {a b : _} {A : Set a} {S : Setoid {a} {b} A} {_+_ _*_ : A → A → A} (R : Ring S _+_ _*_) where open Ring R open Setoid S open Equivalence eq open import Groups.Polynomials.Group additiveGroup open import Groups.Polynomials.Definition additiveGroup open import Rings.Polynomial.Multiplication R polyRing : Ring naivePolySetoid _+P_ _*P_ Ring.additiveGroup polyRing = polyGroup Ring.*WellDefined polyRing {a} {b} {c} {d} = *PwellDefined {a} {b} {c} {d} Ring.1R polyRing = 1R :: [] Ring.groupIsAbelian polyRing {x} {y} = AbelianGroup.commutative (abelian (record { commutative = Ring.groupIsAbelian R })) {x} {y} Ring.*Associative polyRing {a} {b} {c} = *Passoc {a} {b} {c} Ring.*Commutative polyRing {a} {b} = p*Commutative {a} {b} Ring.*DistributesOver+ polyRing {a} {b} {c} = *Pdistrib {a} {b} {c} Ring.identIsIdent polyRing {a} = *Pident {a} polyInjectionIsHom : RingHom R polyRing polyInjection RingHom.preserves1 polyInjectionIsHom = reflexive ,, record {} RingHom.ringHom polyInjectionIsHom = reflexive ,, (reflexive ,, record {}) GroupHom.groupHom (RingHom.groupHom polyInjectionIsHom) = reflexive ,, record {} GroupHom.wellDefined (RingHom.groupHom polyInjectionIsHom) = SetoidInjection.wellDefined polyInjectionIsInj
Karan Malhotra 's action drama Brothers was Fernandez 's next release . Co @-@ starring alongside Akshay Kumar and Sidharth Malhotra , Fernandez played Jenny , a fearless mother struggling for her child , a role which she described as " challenging " , " intense " , and " difficult " . The role marked a departure from the glamorous characters that she had a reputation for portraying . Film critics praised her performance , though their response to the film was mixed . <unk> Sharma of Zee News called her character " soft , timid and promising " , and praised her for : " convincingly pull [ ing ] off a pleasing character of a street fighter 's wife " . Film critic Subhash K. Jha noted that she : " ... in a limited role gives her finest emotive shot " , while critic Raja Sen remarked : " [ she ] plays Kumar 's long @-@ sobbing wife who gets so deliriously happy on seeing a text message that it may well have contained news about a Kick sequel . "
% Copyright (C) 2017-2018 Titus Cieslewski, RPG, University of Zurich, % Switzerland % You can contact the author at <titus at ifi dot uzh dot ch> % Copyright (C) 2017-2018 Siddharth Choudhary, College of Computing, % Georgia Institute of Technology, Atlanta, GA, USA % Copyright (C) 2017-2018 Davide Scaramuzza, RPG, University of Zurich, % Switzerland % % This file is part of dslam_open. % % dslam_open is free software: you can redistribute it and/or modify % it under the terms of the GNU General Public License as published by % the Free Software Foundation, either version 3 of the License, or % (at your option) any later version. % % dslam_open is distributed in the hope that it will be useful, % but WITHOUT ANY WARRANTY; without even the implied warranty of % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the % GNU General Public License for more details. % % You should have received a copy of the GNU General Public License % along with dslam_open. If not, see <http://www.gnu.org/licenses/>. function quiver = posesToQuiver(T) n = numel(T); quiver = zeros(n, 6); for i = 1:n quiver(i, :) = poseToQuiver(T{i}); end end
theory Tagged_Solver imports Refine_Util begin (* TODO/FIXME: A solver is some named entity, and it should be possible to reference it by its short/long name like a constant or a theorem! *) ML {* signature TAGGED_SOLVER = sig type solver = thm list * string * string * (Proof.context -> tactic') val get_solvers: Proof.context -> solver list val declare_solver: thm list -> binding -> string -> (Proof.context -> tactic') -> morphism -> Context.generic -> Context.generic val lookup_solver: string -> Context.generic -> solver option val add_triggers: string -> thm list -> morphism -> Context.generic -> Context.generic val delete_solver: string -> morphism -> Context.generic -> Context.generic val tac_of_solver: Proof.context -> solver -> tactic' val get_potential_solvers: Proof.context -> int -> thm -> solver list val get_potential_tacs: Proof.context -> int -> thm -> tactic' list val solve_greedy_step_tac: Proof.context -> tactic' val solve_greedy_tac: Proof.context -> tactic' val solve_greedy_keep_tac: Proof.context -> tactic' val solve_full_step_tac: Proof.context -> tactic' val solve_full_tac: Proof.context -> tactic' val solve_full_keep_tac: Proof.context -> tactic' val cfg_keep: bool Config.T val cfg_trace: bool Config.T val cfg_full: bool Config.T val cfg_step: bool Config.T val solve_tac: Proof.context -> tactic' val pretty_solvers: Proof.context -> Pretty.T end structure Tagged_Solver : TAGGED_SOLVER = struct type solver = thm list * string * string * (Proof.context -> tactic') structure solvers = Generic_Data ( type T = solver Item_Net.T * solver Symtab.table val empty = (Item_Net.init (op = o pairself #2) (fn p:solver => #1 p |> map concl_of) , Symtab.empty ) fun merge ((n1,t1),(n2,t2)) = (Item_Net.merge (n1,n2), Symtab.merge (op = o pairself #2) (t1,t2)) val extend = I ) fun get_solvers ctxt = solvers.get (Context.Proof ctxt) |> #2 |> Symtab.dest |> map #2 fun lookup_solver n context = let val tab = solvers.get context |> #2 in Symtab.lookup tab n end fun add_triggers n thms phi context = case lookup_solver n context of NONE => error ("Undefined solver: " ^ n) | SOME (trigs,n,desc,tac) => let val thms = map (Morphism.thm phi) thms val trigs = thms @ trigs val solver = (trigs,n,desc,tac) in solvers.map (Item_Net.update solver ## Symtab.update (n, solver)) context end fun declare_solver thms n desc tac phi context = let val thms = map (Morphism.thm phi) thms val n = Morphism.binding phi n val n = Context.cases Sign.full_name Proof_Context.full_name context n val _ = if Symtab.defined (solvers.get context |> #2) n then error ("Duplicate solver " ^ n) else () val solver = (thms,n,desc,tac) in solvers.map (Item_Net.update solver ## Symtab.update (n,solver)) context end fun delete_solver n _ context = case lookup_solver n context of NONE => error ("Undefined solver: " ^ n) | SOME solver => solvers.map (Item_Net.remove solver ## Symtab.delete (#2 solver)) context val cfg_keep = Attrib.setup_config_bool @{binding tagged_solver_keep} (K false) val cfg_trace = Attrib.setup_config_bool @{binding tagged_solver_trace} (K false) val cfg_step = Attrib.setup_config_bool @{binding tagged_solver_step} (K false) val cfg_full = Attrib.setup_config_bool @{binding tagged_solver_full} (K false) (* Get potential solvers. Overapproximation caused by net *) fun get_potential_solvers ctxt i st = let val concl = Logic.concl_of_goal (prop_of st) i val net = solvers.get (Context.Proof ctxt) |> #1 val solvers = Item_Net.retrieve net concl in solvers end fun notrace_tac_of_solver ctxt (thms,_,_,tac) = match_tac thms THEN' tac ctxt fun trace_tac_of_solver ctxt (thms,name,_,tac) i st = let val _ = tracing ("Trying solver " ^ name) val r = match_tac thms i st in case Seq.pull r of NONE => (tracing " No trigger"; Seq.empty) | SOME _ => let val r = Seq.maps (tac ctxt i) r in case Seq.pull r of NONE => (tracing (" No solution (" ^ name ^ ")"); Seq.empty) | SOME _ => (tracing (" OK (" ^ name ^ ")"); r) end end fun tac_of_solver ctxt = if Config.get ctxt cfg_trace then trace_tac_of_solver ctxt else notrace_tac_of_solver ctxt fun get_potential_tacs ctxt i st = if i <= nprems_of st then eq_assume_tac :: ( get_potential_solvers ctxt i st |> map (tac_of_solver ctxt) ) else [] fun solve_greedy_step_tac ctxt i st = (FIRST' (get_potential_tacs ctxt i st)) i st fun solve_full_step_tac ctxt i st = (APPEND_LIST' (get_potential_tacs ctxt i st) i st) (* Try to solve, take first matching tactic, but allow backtracking over its results *) fun solve_greedy_tac ctxt i st = let val tacs = get_potential_tacs ctxt i st in (FIRST' tacs THEN_ALL_NEW_FWD solve_greedy_tac ctxt) i st end (* Try to solve. Allow backtracking over matching tactics. *) fun solve_full_tac ctxt i st = let val tacs = get_potential_tacs ctxt i st in (APPEND_LIST' tacs THEN_ALL_NEW_FWD solve_full_tac ctxt) i st end fun solve_greedy_keep_tac ctxt i st = let val tacs = get_potential_tacs ctxt i st in (FIRST' tacs THEN_ALL_NEW_FWD (TRY o solve_greedy_keep_tac ctxt)) i st end fun solve_full_keep_tac ctxt i st = let val tacs = get_potential_tacs ctxt i st in (APPEND_LIST' tacs THEN_ALL_NEW_FWD (TRY o solve_full_keep_tac ctxt)) i st end fun solve_tac ctxt = case (Config.get ctxt cfg_keep, Config.get ctxt cfg_step, Config.get ctxt cfg_full) of (_,true,false) => solve_greedy_step_tac ctxt | (_,true,true) => solve_full_step_tac ctxt | (true,false,false) => solve_greedy_keep_tac ctxt | (false,false,false) => solve_greedy_tac ctxt | (true,false,true) => solve_full_keep_tac ctxt | (false,false,true) => solve_full_tac ctxt fun pretty_solvers ctxt = let fun pretty_solver (ts,name,desc,_) = Pretty.block ( Pretty.str (name ^ ": " ^ desc) :: Pretty.fbrk :: Pretty.str ("Triggers: ") :: Pretty.commas (map (Display.pretty_thm ctxt) ts)) val solvers = get_solvers ctxt in Pretty.big_list "Solvers:" (map pretty_solver solvers) end end *} method_setup tagged_solver = {* let open Refine_Util val flags = parse_bool_config "keep" Tagged_Solver.cfg_keep || parse_bool_config "trace" Tagged_Solver.cfg_trace || parse_bool_config "full" Tagged_Solver.cfg_full || parse_bool_config "step" Tagged_Solver.cfg_step in parse_paren_lists flags >> (fn _ => fn ctxt => SIMPLE_METHOD' (Tagged_Solver.solve_tac ctxt) ) end *} "Select tactic to solve goal by pattern" term True (* Localization Test *) (* locale foo = fixes A b assumes A: "A x = True" begin definition "B == A" lemma AI: "A x" unfolding A .. lemma A_trig: "A x ==> A x" . lemma BI: "A x ==> B x" unfolding B_def . lemma B_trig: "B x ==> B x" . declaration {* fn phi => Tagged_Solver.declare_solver @{thms A_trig} @{binding "A_solver"} "description" (K (rtac (Morphism.thm phi @{thm AI}))) phi *} ML_val {* Tagged_Solver.pretty_solvers @{context} |> Pretty.writeln *} (* FIXME: Does not work because of improper naming! declaration {* Tagged_Solver.add_triggers "local.A_solver" @{thms A_trig} *} *) declaration {* fn phi => Tagged_Solver.declare_solver @{thms B_trig} @{binding "B_solver"} "description" (K (rtac (Morphism.thm phi @{thm BI}))) phi *} ML_val {* Tagged_Solver.pretty_solvers @{context} |> Pretty.writeln *} end definition "TAG x == True" interpretation tag!: foo TAG 1 apply unfold_locales unfolding TAG_def by simp ML_val {* Tagged_Solver.pretty_solvers @{context} |> Pretty.writeln *} definition "TAG' x == True" interpretation tag'!: foo TAG' 2 apply unfold_locales unfolding TAG'_def by simp interpretation tag2!: foo TAG 3 by unfold_locales ML_val {* Tagged_Solver.pretty_solvers @{context} |> Pretty.writeln *} lemma "tag.B undefined" by (tagged_solver (keep)) declaration {* Tagged_Solver.delete_solver "Tagged_Solver.tag.B_solver" *} ML_val {* Tagged_Solver.pretty_solvers @{context} |> Pretty.writeln *} *) end
% J. C. Spall, March 1999 % This code evaluates the basic root-finding (R-M) SA algorithm. Computes sample mean % and standard deviation of the mean from Navg realizations. % n=1000; randn('seed',71111113) a=0.081; A=5.1; alpha=.501; s=.1; theta_0=[1,1]'; Navg=2000; loss_eq2_5(theta_0) rslossavg=0; rslossavgsq=0; for i=1:Navg theta=theta_0; for k=1:n theta=theta-(a/(k+A)^alpha)*gradloss(theta,s)'; end rslossavg=(i-1)*rslossavg/i+loss_eq2_5(theta)/i; rslossavgsq=(i-1)*rslossavgsq/i+(loss_eq2_5(theta)^2)/i; end mean=rslossavg stdevmean=(((Navg/(Navg-1))*(rslossavgsq-mean^2))^.5)/(Navg^.5)
Very professional, courteous, excellent workmanship. Had a problem on Sunday morning and they were prompt and here in a half an hour. Left yard clean as if they had not been here. Did a thorough job of both trees not a flip flop job. Highly recommend this company!!! Their experience and customer care speaks for itself. We've used them on multiple jobs, check them out on You Tube and see for yourself.
Enjoy your family. Enjoy your friends. Make lots of special memories.
module IgnoreDo bound : Maybe () -> Maybe b -> Maybe b bound m n = do x <- m let y = Z n ignored : Maybe () -> Maybe b -> Maybe b ignored m n = do _ <- m let _ = Z n seqd : Maybe () -> Maybe b -> Maybe b seqd m n = do m n
/- Copyright (c) 2022 Violeta Hernández Palacios. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Violeta Hernández Palacios -/ import data.polynomial.cardinal import ring_theory.algebraic /-! ### Cardinality of algebraic numbers In this file, we prove variants of the following result: the cardinality of algebraic numbers under an R-algebra is at most `# R[X] * ℵ₀`. Although this can be used to prove that real or complex transcendental numbers exist, a more direct proof is given by `liouville.is_transcendental`. -/ universes u v open cardinal polynomial set open_locale cardinal polynomial namespace algebraic lemma infinite_of_char_zero (R A : Type*) [comm_ring R] [is_domain R] [ring A] [algebra R A] [char_zero A] : {x : A | is_algebraic R x}.infinite := infinite_of_injective_forall_mem nat.cast_injective is_algebraic_nat theorem aleph_0_le_cardinal_mk_of_char_zero (R A : Type*) [comm_ring R] [is_domain R] [ring A] [algebra R A] [char_zero A] : ℵ₀ ≤ #{x : A // is_algebraic R x} := infinite_iff.1 (set.infinite_coe_iff.2 $ infinite_of_char_zero R A) section lift variables (R : Type u) (A : Type v) [comm_ring R] [comm_ring A] [is_domain A] [algebra R A] [no_zero_smul_divisors R A] theorem cardinal_mk_lift_le_mul : cardinal.lift.{u} (#{x : A // is_algebraic R x}) ≤ cardinal.lift.{v} #(R[X]) * ℵ₀ := begin rw [←mk_ulift, ←mk_ulift], choose g hg₁ hg₂ using λ x : {x : A | is_algebraic R x}, x.coe_prop, refine lift_mk_le_lift_mk_mul_of_lift_mk_preimage_le g (λ f, _), rw [lift_le_aleph_0, le_aleph_0_iff_set_countable], suffices : maps_to coe (g ⁻¹' {f}) (f.root_set A), from this.countable_of_inj_on (subtype.coe_injective.inj_on _) (f.root_set_finite A).countable, rintro x (rfl : g x = f), exact mem_root_set.2 ⟨hg₁ x, hg₂ x⟩ end theorem cardinal_mk_lift_le_max : cardinal.lift.{u} (#{x : A // is_algebraic R x}) ≤ max (cardinal.lift.{v} (#R)) ℵ₀ := (cardinal_mk_lift_le_mul R A).trans $ (mul_le_mul_right' (lift_le.2 cardinal_mk_le_max) _).trans $ by simp @[simp] lemma cardinal_mk_lift_of_infinite [infinite R] : cardinal.lift.{u} (#{x : A // is_algebraic R x}) = cardinal.lift.{v} (#R) := ((cardinal_mk_lift_le_max R A).trans_eq (max_eq_left $ aleph_0_le_mk _)).antisymm $ lift_mk_le'.2 ⟨⟨λ x, ⟨algebra_map R A x, is_algebraic_algebra_map _⟩, λ x y h, no_zero_smul_divisors.algebra_map_injective R A (subtype.ext_iff.1 h)⟩⟩ variable [countable R] @[simp] protected theorem countable : set.countable {x : A | is_algebraic R x} := begin rw [←le_aleph_0_iff_set_countable, ←lift_le], apply (cardinal_mk_lift_le_max R A).trans, simp end @[simp] theorem cardinal_mk_of_countble_of_char_zero [char_zero A] [is_domain R] : #{x : A // is_algebraic R x} = ℵ₀ := (algebraic.countable R A).le_aleph_0.antisymm (aleph_0_le_cardinal_mk_of_char_zero R A) end lift section non_lift variables (R A : Type u) [comm_ring R] [comm_ring A] [is_domain A] [algebra R A] [no_zero_smul_divisors R A] theorem cardinal_mk_le_mul : #{x : A // is_algebraic R x} ≤ #R[X] * ℵ₀ := by { rw [←lift_id (#_), ←lift_id #R[X]], exact cardinal_mk_lift_le_mul R A } theorem cardinal_mk_le_max : #{x : A // is_algebraic R x} ≤ max (#R) ℵ₀ := by { rw [←lift_id (#_), ←lift_id (#R)], exact cardinal_mk_lift_le_max R A } @[simp] theorem cardinal_mk_of_infinite [infinite R] : #{x : A // is_algebraic R x} = #R := lift_inj.1 $ cardinal_mk_lift_of_infinite R A end non_lift end algebraic
-- $ ghc --make -O -rtsopts -threaded parallel.hs -- $ ./parallel 3000 +RTS -N4 -s -A200M import System.Environment(getArgs) import Numeric.LinearAlgebra import Control.Parallel.Strategies import System.Time inParallel = parMap rwhnf id -- matrix product decomposed into p parallel subtasks parMul p x y = fromBlocks [ inParallel ( map (x <>) ys ) ] where [ys] = toBlocksEvery (rows y) (cols y `div` p) y main = do n <- (read . head) `fmap` getArgs let m = ident n :: Matrix Double time $ print $ maxElement $ takeDiag $ m <> m time $ print $ maxElement $ takeDiag $ parMul 2 m m time $ print $ maxElement $ takeDiag $ parMul 4 m m time $ print $ maxElement $ takeDiag $ parMul 8 m m time act = do t0 <- getClockTime act t1 <- getClockTime print $ tdSec $ normalizeTimeDiff $ diffClockTimes t1 t0
program t ! test for : in format-item-list integer::a=12345 1234 format (1x, i5/) 5678 format (1x, i5,:/) write(*,1234) a write(*,5678) a endprogram t
import Lean import Lean.Data.Json.Basic import Lean.Data.Json.FromToJson import LeanCodePrompts.ParseJson import LeanCodePrompts.Utils import LeanCodePrompts.TeXPrompts open Lean initialize texCommandCache : IO.Ref (HashMap String String) ← do -- IO.println "Initialising TeX Command cache..." -- let js ← Json.parseFile <| ← reroutePath "data/texcmds.json" -- let l := js.map $ fun j => (j[0]!.getStr!, j[1]!.getStr!) let .obj js ← IO.ofExcept $ Json.parse $ ← IO.FS.readFile (← reroutePath "data/full-tex.json") | panic! "Invalid JSON format" let l : List (String × String) := js.fold (λ as s j => (s, j.getStr!) :: as) [] IO.mkRef $ HashMap.ofList l /-- Replaces the TeX sequences in a string with their corresponding Unicode characters using the `texcmds` list. -/ def teXToUnicode (s : String) : IO String := do match s.splitOn "\\" with | [] => return s | h :: ls => -- filtering instances of `\\\\` let ls' := ls.filter (· != "") let us ← ls'.mapM $ fun l => do let cmd := l.takeWhile (· ∉ teXDelimiters) let s ← findUnicodeReplacement cmd pure $ s ++ l.dropWhile (· ∉ teXDelimiters) return .join (h :: us) where findUnicodeReplacement (cmd : String) : IO String := do if let .some u := (← texCommandCache.get).find? cmd then pure u else pure <| "\\" ++ cmd teXDelimiters := [' ', '_', '^', '{', '}', '[', ']', '(', ')'] namespace List def alternate : List α → List α × List α | [] => ([], []) | a :: as => match alternate as with | (odds, evens) => (a :: evens, odds) def interleave : List α → List α → List α | [], bs => bs | as, [] => as | a :: as, b :: bs => a :: b :: interleave as bs theorem alternate_interleave : (l : List α) → let (odds, evens) := l.alternate .interleave odds evens = l | [] => rfl | [a] => rfl | a :: a' :: as => by dsimp only [alternate, interleave] congr apply alternate_interleave #eval [1, 2, 3, 4, 5, 6].alternate end List def openAIKey : IO (Option String) := IO.getEnv "OPENAI_API_KEY" /-- Query open-ai with given prompt and parameters -/ -- this is delibrately different from the one in `Translate.lean` -- this is to keep everything at the `IO` level without disturbing the rest of the code def openAIQuery (prompt : String) (n : Nat := 1) (temp : JsonNumber := ⟨2, 1⟩) (stopTokens : Array String := #[":=", "-/"]) : IO Json := do let .some key ← openAIKey | panic! "OPENAI_API_KEY not set" let data := Json.mkObj [ ("model", "code-davinci-002"), ("prompt", prompt), ("temperature", Json.num temp), ("n", n), ("max_tokens", 150), ("stop", Json.arr <| stopTokens |>.map Json.str) ] |>.pretty let out ← IO.Process.output { cmd:= "curl", args:= #["https://api.openai.com/v1/completions", "-X", "POST", "-H", "Authorization: Bearer " ++ key, "-H", "Content-Type: application/json", "--data", data]} IO.ofExcept $ Json.parse out.stdout def makePrompt (formula : String) : IO String := do let teXPromptsProcessed ← teXPrompts.mapM $ λ (teXFormula, leanFormula) => do return s!"TeX: ${← teXToUnicode teXFormula}$\nLean: `{leanFormula}`\n\n" let promptPrefix := String.join teXPromptsProcessed.toList return s!"{promptPrefix}TeX: ${formula}$\nLean: `" /-- Translates a string representing a TeX formula to the corresponding Lean code. -/ def teXToLean (s : String) : IO String := do let t ← teXToUnicode s -- needs a better heuristic for triggering Codex-based translation if t.contains '\\' then IO.println s!"Translating with Codex: {t}" let prompt ← makePrompt s let codexOutput ← openAIQuery prompt (stopTokens := #["$", "$$", "\\[", "\n"]) let translation := codexOutput["choices"]![0]!["text"]!.getStr! return s!"`{translation}`" else IO.println s!"Translated via Unicode mapping: {t}" return s!"`{t}`" /-- Extracts the TeX formulas within `$` or `$$` in the given string, translates them individually to Lean code, and then replaces them back with `\`` (backticks). -/ def translateTeX : String → IO String := translateTeXAux "$$" (translateTeXAux "$" (translateTeXAux "`" pure pure) teXToLean) teXToLean where /-- Splits a string according to the delimiter. The substrings in the odd positions are processed as text, while those in the even positions are processed as formulas. -/ translateTeXAux (teXDelimiter : String) (modText : String → IO String) (modFormula : String → IO String) : String → IO String := fun s => do let (text, formulas) := s.splitOn teXDelimiter |>.alternate let text' ← text.mapM modText let formulas' ← formulas.mapM modFormula let s' := .interleave text' formulas' return .join s'
\subsection{Small-$R$ jet selection} If you want to use variables such as \verb|\fcut| you need to add the option \texttt{jetetmiss} to \texttt{atlaspackage}. \begin{table}[ht] \caption{Jet reconstruction criteria.}% \label{tab:object:jet1} \centering % \resizebox{\textwidth}{!}{ \begin{tabular}{ll} \toprule Feature & Criterion \\ \midrule Algorithm & \Antikt \\ \(R\)-parameter & 0.4 \\ Input constituent & EMTopo \\ Analysis release number & 21.2.10 \\ %Calibration tag & JetCalibTools-00-04-76 \\ \texttt{CalibArea} tag & 00-04-81 \\ Calibration configuration & \texttt{JES\_data2017\_2016\_2015\_Recommendation\_Feb2018\_rel21.config} \\ Calibration sequence (Data) & \texttt{JetArea\_Residual\_EtaJES\_GSC\_Insitu} \\ Calibration sequence (MC) & \texttt{JetArea\_Residual\_EtaJES\_GSC} \\ %Calibration sequence (AFII) & \texttt{JetArea\_Residual\_EtaJES\_GSC} \\ \midrule \multicolumn{2}{c}{Selection requirements} \\ \midrule Observable & Requirement \\ \midrule Jet cleaning & \texttt{LooseBad} \\ BatMan cleaning & No \\ \pT & \(> \SI[parse-numbers=false]{XX}{\GeV}\) \\ \(|\eta|\) & \(< X\) \\ JVT & (\emph{Update if needed}) \(>0.59\) for \(\pT < \SI{60}{\GeV}\), \(|\eta| < 0.4\)\\ \bottomrule \end{tabular} % } \end{table} \clearpage \subsection{Large-$R$ jet selection} \begin{table}[ht] \caption{Large-\(R\) jet reconstruction criteria.}% \label{tab:object:jet2} \centering % \resizebox{\textwidth}{!}{ \begin{tabular}{ll} \toprule Feature & Criterion \\ \midrule Algorithm & \antikt \\ R-parameter & 1.0 \\ Input constituent & \texttt{LCTopo} \\ Grooming algorithm & Trimming \\ \fcut & 0.05 \\ \(R_{\text{trim}}\) & 0.2 \\ Analysis release number & 21.2.10 \\ %Calibration tag & JetCalibTools-00-04-76 \\ \texttt{CalibArea} tag & 00-04-81 \\ Calibration configuration & \texttt{JES\_MC16recommendation\_FatJet\_JMS\_comb\_19Jan2018.config} \\ Calibration sequence (Data) & \texttt{EtaJES\_JMS\_Insitu} \\ Calibration sequence (MC) & \texttt{EtaJES\_JMS} \\ \bottomrule \multicolumn{2}{c}{Selection requirements} \\ \midrule Observable & Requirement \\ \midrule \pT & \(> \SI[parse-numbers=false]{XX}{\GeV}\) \\ \(|\eta|\) & \(< X\) \\ Mass & \(> \SI[parse-numbers=false]{XX}{\GeV}\) \\ \bottomrule \multicolumn{2}{c}{Boosted object tagger} \\ \midrule Object & Working point \\ \midrule \(W\) / \(Z\) / top & 50\% / 80\% \\ \(X\rightarrow bb\) & single/double \btag with/without loose/tight mass \\ \bottomrule \end{tabular} % } \end{table} \subsection{\MET selection} \begin{table}[ht] \caption{\MET reconstruction criteria.}% \label{tab:object:met} \centering \begin{tabular}{ll} \toprule Parameter & Value \\ \midrule Algorithm & Calo-based \\ Soft term & Track-based (TST) \\ MET operating point & \texttt{Tight} \\ Analysis release & 21.2.16 \\ Calibration tag & \texttt{METUtilities-00-02-46} \\ \bottomrule \multicolumn{2}{c}{Selection requirements} \\ \midrule Observable & Requirement \\ \midrule \MET & \(> \SI[parse-numbers=false]{XX}{\GeV}\) \\ \(\sum{\ET} / \MET\) & \(< X\) \\ Object-based \MET significance & \(> X\) \\ \bottomrule \end{tabular} \end{table}
function disp( prob, varargin ) cvx_display( cvx_validate( prob.index_, prob.id_ ), varargin{:} ); % Copyright 2005-2014 CVX Research, Inc. % See the file LICENSE.txt for full copyright information. % The command 'cvx_where' will show where this file is located.
[STATEMENT] lemma isOK_update_error [simp]: "isOK (m <+? f) \<longleftrightarrow> isOK m" [PROOF STATE] proof (prove) goal (1 subgoal): 1. isOK (try m catch (\<lambda>x. Inl (f x))) = isOK m [PROOF STEP] by (cases m) simp_all
(* Sequent Calculus for First-Order Additive Linear Logic *) From Coq Require Import Wf_nat Lia. From Quantifiers Require Import foformulas_ext. Set Implicit Arguments. Parameter vatom : DecType. Parameter tatom : Type. Parameter fatom : Type. Inductive Ncon := top_con. Inductive Bcon := wth_con. Inductive Qcon := frl_con. Notation term := (@term vatom tatom nat). Notation closed t := (tvars t = nil). Notation rclosed r := (forall n, closed (r n)). Notation "↑ r" := (felift (evar 0) r) (at level 25, format "↑ r"). Notation "v ⇓" := (fesubs v) (at level 18, format "v ⇓"). Notation "A ⟦ r ⟧" := (esubs r A) (at level 8, left associativity, format "A ⟦ r ⟧"). Notation "A [ u // x ]" := (subs x u A) (at level 8, format "A [ u // x ]"). Notation "⇑" := fup. Notation "A ↑" := (A⟦⇑⟧) (at level 8, format "A ↑"). Notation "x ∈ A" := (In x (freevars A)) (at level 30). Notation "x ∉ A" := (~ In x (freevars A)) (at level 30). Notation formula := (@formula vatom tatom fatom Ncon Nocon Bcon Qcon nat). (* Notation top := (fnul nat top_con). Notation wth := (fbin wth_con). Notation frl := (fqtf frl_con). *) Notation "⟙" := (fnul nat top_con). Infix "﹠" := (fbin wth_con) (at level 50). Notation "∀" := (fqtf frl_con). #[local] Hint Rewrite (@felift_esubs vatom tatom fatom Ncon Nocon Bcon Qcon) : term_db. #[local] Hint Rewrite (@freevars_fup vatom tatom fatom Ncon Nocon Bcon Qcon) : term_db. #[local] Hint Rewrite (@esubs_fup vatom tatom fatom Ncon Nocon Bcon Qcon) : term_db. #[local] Hint Rewrite (@nfree_subs vatom tatom fatom Ncon Nocon Bcon Qcon nat) using intuition; fail : term_db. #[local] Hint Resolve closed_fesubs : term_db. #[local] Hint Resolve closed_felift : term_db. #[local] Hint Rewrite (@subs_esubs vatom tatom fatom Ncon Nocon Bcon Qcon nat) using try (intuition; fail); try apply no_ecapture_not_egenerated; try (intuition; fail); try apply closed_no_ecapture; intuition; fail : term_db. (** * Proofs *) (** Proofs *) (** two-sided sequent calculus for first-order (additive) linear logic with connectives: top, with, forall *) Inductive prove : formula -> formula -> Type := | ax : forall A, prove A A | topr : forall C, prove C ⟙ | wdgr { C A B } : prove C A -> prove C B -> prove C (A﹠B) | wdgll { A C } : forall B, prove A C -> prove (A﹠B) C | wdglr { A C } : forall B, prove A C -> prove (B﹠A) C | frlr { x C A } : prove C↑ A↑[evar 0//x] -> prove C (∀x A) | frll { x A C } : forall u, closed u -> prove A[u//x] C -> prove (∀x A) C. #[local] Hint Constructors prove : term_db. (** height of proofs *) Fixpoint psize {A B} (pi : prove A B) : nat := match pi with | ax _ => 1 | topr _ => 1 | wdgr pi1 pi2 => S (max (psize pi1) (psize pi2)) | wdgll _ pi1 => S (psize pi1) | wdglr _ pi1 => S (psize pi1) | frlr pi1 => S (psize pi1) | frll _ _ pi1 => S (psize pi1) end. (** apply [r] in proof [pi] *) Theorem pesubs r (Hc : rclosed r) C A (pi : prove C A) : { pi' : prove C⟦r⟧ A⟦r⟧ & psize pi' = psize pi }. Proof. revert r Hc; induction pi; intros r Hc; try (destruct (IHpi r) as [pi' Hs]); try (destruct (IHpi1 r) as [pi1' Hs1]); try (destruct (IHpi2 r) as [pi2' Hs2]); intuition. - now exists (ax _). - now exists (topr _). - exists (wdgr pi1' pi2') ; simpl ; auto. - exists (wdgll _ pi') ; simpl ; auto. - exists (wdglr _ pi') ; simpl ; auto. - clear pi' Hs; destruct (IHpi (↑r)) as [pi' Hs]; intuition. cbn. rewrite <- Hs. clear Hs. rnow revert pi'. exists (frlr pi'). reflexivity. - cbn. rewrite <- Hs. clear Hs. rnow revert pi'. rewrite <- (tvars_tesubs_closed r _ Hc) in e. exists (frll _ e pi'). reflexivity. Qed. (** * Cut Elimination *) Theorem cutr : forall A B C, prove A B -> prove B C -> prove A C. Proof. enough (IH : forall n, forall A B C (pi1 : prove A B) (pi2 : prove B C), n = psize pi1 + psize pi2 -> prove A C) by (intros A B C pi1 pi2 ; apply (IH _ _ _ _ pi1 pi2 eq_refl)). induction n as [n IH0] using lt_wf_rect; intros; subst. assert (IH : forall A B C (pi1' : prove A B) (pi2' : prove B C), psize pi1' + psize pi2' < psize pi1 + psize pi2 -> prove A C) by (intros; eapply IH0; [ eassumption | reflexivity ]); clear IH0. destruct pi2; intuition. - apply wdgr. + apply (IH _ _ _ pi1 pi2_1). cbn. lia. + apply (IH _ _ _ pi1 pi2_2). cbn. lia. - enough (forall A D (pi1 : prove A D) A0 B C (pi2 : prove A0 C) (IH : forall A1 B0 C0 (pi1' : prove A1 B0) (pi2' : prove B0 C0), psize pi1' + psize pi2' < psize pi1 + psize (wdgll B pi2) -> prove A1 C0), D = A0﹠B -> prove A C) as IH2 by (eapply IH2; [ eassumption | reflexivity ]); clear. intros A D pi1; destruct pi1; intros; inversion H; subst; try (constructor ; apply (IH _ _ _ pi1 (wdgll _ pi2)); cbn; lia). + now apply wdgll. + apply (IH _ _ _ pi1_1 pi2). cbn. lia. + apply (frll u); [ assumption | ]. apply (IH _ _ _ pi1 (wdgll _ pi2)). cbn. lia. - enough (forall A D (pi1 : prove A D) A0 B C (pi2 : prove A0 C) (IH : forall A1 B0 C0 (pi1' : prove A1 B0) (pi2' : prove B0 C0), psize pi1' + psize pi2' < psize pi1 + psize (wdglr B pi2) -> prove A1 C0), D = B﹠A0 -> prove A C) as IH2 by (eapply IH2; [ eassumption | reflexivity ]); clear. intros A D pi1; destruct pi1; intros; inversion H; subst; try (constructor; apply (IH _ _ _ pi1 (wdglr _ pi2)); cbn; lia). + now apply wdglr. + apply (IH _ _ _ pi1_2 pi2). cbn. lia. + apply (frll u); [ assumption | ]. apply (IH _ _ _ pi1 (wdglr _ pi2)). cbn. lia. - destruct (pesubs ⇑ closed_fup pi1) as [pi1' Hs]. apply frlr. apply (IH _ _ _ pi1' pi2); simpl; lia. - enough (forall A D (pi1 : prove A D) x A0 C u e (pi2 : prove A0[u//x] C) (IH : forall A1 B C0 (pi1' : prove A1 B) (pi2' : prove B C0), psize pi1' + psize pi2' < psize pi1 + psize (frll u e pi2) -> prove A1 C0), D = ∀ x A0 -> prove A C) as IH2 by (eapply IH2; [ eassumption | reflexivity ]); clear. intros A D pi1; destruct pi1; intros; inversion H; subst; try (constructor; apply (IH _ _ _ pi1 (frll _ e pi2)); simpl; lia). + now apply (frll u). + destruct (pesubs (u⇓) (closed_fesubs _ e) pi1) as [pi1' Hs]. simpl in IH; rewrite <- Hs in IH; clear Hs. revert pi1' IH; rnow idtac. apply (IH _ _ _ pi1' pi2); lia. + apply (frll u); [ assumption | ]. apply (IH _ _ _ pi1 (frll _ e0 pi2)). cbn. lia. Qed. (** * Hilbert style properties *) Lemma frl_elim : forall A u x, closed u -> prove (∀ x A) A[u//x]. Proof. intros A u x Hc; apply (frll u); auto with term_db. Qed. Lemma frl_wth : forall A B x, prove (∀ x (A﹠B)) (∀ x A ﹠ ∀ x B). Proof. intros A B x. repeat constructor; simpl; apply (frll (evar 0)); simpl; do 2 constructor. Qed. Lemma frl_nfree : forall A x, x ∉ A -> prove A (∀ x A). Proof. intros A x Hnf. apply frlr. rnow rewrite nfree_subs. Qed. (** * Other properties *) (** Axiom expansion *) Lemma ax_exp : forall A, prove A A. Proof. enough (Hn : forall n A, fsize A = n -> prove A A) by (intros A; eapply Hn; reflexivity). induction n as [n IH] using lt_wf_rect; intros; subst. destruct A; [ | destruct n | destruct n | destruct b | destruct q ]. - apply ax. - apply topr. - apply wdgr; [ apply wdgll | apply wdglr ]; (eapply IH; [ | reflexivity ]); simpl; lia. - apply frlr; rnow apply (frll (evar 0)). Qed.
[STATEMENT] lemma prime_product [forward]: "prime (p * q) \<Longrightarrow> p = 1 \<or> q = 1" [PROOF STATE] proof (prove) goal (1 subgoal): 1. prime (p * q) \<Longrightarrow> p = 1 \<or> q = 1 [PROOF STEP] @proof [PROOF STATE] proof (prove) goal (1 subgoal): 1. prime (p * q) \<Longrightarrow> p = 1 \<or> q = 1 [PROOF STEP] @have "p dvd q * p" [PROOF STATE] proof (prove) goal (1 subgoal): 1. prime (p * q) \<Longrightarrow> p = 1 \<or> q = 1 [PROOF STEP] @qed
<a href="https://colab.research.google.com/github/fysixs/IsingModel/blob/master/Ising1D.ipynb" target="_parent"></a> [comment]: <> (Written by Andrés Cárdenas) [comment]: <> (July 2021) [comment]: <> (www.fysixs.com) [comment]: <> ([email protected]) <div class="row" align ="left"> <font face="Gill Sans" color = #667495> &nbsp;**Cool Stuff in Physics** <br> *Andrés Cárdenas, 2021*, <i><a href="https://www.fysixs.com">www.fysixs.com</a></i> </font> </div> <hr size=5 color=#8D84B5 > </hr> <div align="left"> <br> # <font color = #667495 face="Gill Sans"> &nbsp; &nbsp; &nbsp; **The Ising Model** ## <font color = #667495 face="Gill Sans"> &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;*One-D Treatment* </font> <br> </div> <hr size=5 color=#8D84B5 > </hr> <center> --- <font size = 4 color=#AB63FA> **⟹** <font size = 4 color=#667495> ***To get started please run the cell below.*** <font size = 4 color=#AB63FA> **⟸** <br> Use me to run a cell</font> --- ``` #@title <font size = 3 face="Verdana" color=9467BD> <b>START HERE: Environment Setup 💻 ################################################# ################################################# # IMPORTS ################################################# ################################################# import subprocess import numpy as np import sympy as sp import ipywidgets as widgets import h5py from scipy.constants import k from IPython.display import clear_output from scipy import stats from google.colab import output from IPython.display import Markdown as md from IPython.display import IFrame from ipywidgets import GridBox from bokeh.io import output_notebook, curdoc from bokeh.themes import Theme from bokeh.events import DoubleTap from bokeh.layouts import column, row, layout from bokeh.models import CustomJS, Panel, Tabs, RangeTool, Spinner from bokeh.models import Slider, TextInput, Select, Div, Button from bokeh.models import PrintfTickFormatter, LinearAxis, LabelSet from bokeh.models import Range1d, TapTool, NumericInput from bokeh.models.widgets import DataTable, TableColumn, ScientificFormatter, NumberFormatter from bokeh.plotting import ColumnDataSource, figure, show from bokeh.transform import factor_cmap output_notebook() sp.init_printing(use_unicode=True) ################################################# ################################################# # Definitions for the Notebook ################################################# ################################################# # Plotting colors plt_clr = { "func" : "royalblue", "pol" : "coral", "func1": "royalblue", "func2": "seagreen", "fill" : "#0D70B9", "te" : "#FFC300", "te_m" : "#FBFF00", "txt" : "#91899B", } plt_clr = ['rgb(95, 70, 144)', 'rgb(29, 105, 150)', 'rgb(56, 166, 165)', 'rgb(15, 133, 84)', 'rgb(115, 175, 72)', 'rgb(237, 173, 8)', 'rgb(225, 124, 5)', 'rgb(204, 80, 62)', 'rgb(148, 52, 110)', 'rgb(111, 64, 112)', 'rgb(102, 102, 102)'] # UI Colors ui_clr = { "button" : "#462770", "slider" : "#8B78A6", "txt" : "#91899B", } TOOLTIPS = [ ("(x,y)", "($x, $y)"), ] theme = Theme(json = { "attrs": { "Figure" : { "background_fill_color": "#20262B", "border_fill_color": "#15191C", "outline_line_color": "#E0E0E0", "outline_line_alpha": 0.25 }, "Grid": { "grid_line_color": "#E0E0E0", "grid_line_alpha": 0.25 }, "Axis": { #"fixed_location": 0, "major_tick_line_alpha": 0.8, "major_tick_line_color": "lightgrey", "minor_tick_line_alpha": 0.8, "minor_tick_line_color": "lightgrey", "axis_line_alpha": 0.8, "axis_line_color": ui_clr['slider'], "major_label_text_color": "lightgrey", "major_label_text_font": "Helvetica", "major_label_text_font_size": "8pt", "axis_label_standoff": 10, "axis_label_text_color": "#E0E0E0", "axis_label_text_font": "Helvetica", "axis_label_text_font_size": "1.25em", "axis_label_text_font_style": "normal" }, "Legend": { "spacing": 8, "glyph_width": 15, "label_standoff": 8, "label_text_color": "#E0E0E0", "label_text_font": "Helvetica", "label_text_font_size": "1.025em", "border_line_alpha": 0, "background_fill_alpha": 0.25, "background_fill_color": "#20262B" }, "ColorBar": { "title_text_color": "#E0E0E0", "title_text_font": "Helvetica", "title_text_font_size": "1.025em", "title_text_font_style": "normal", "major_label_text_color": "#E0E0E0", "major_label_text_font": "Helvetica", "major_label_text_font_size": "1.025em", "background_fill_color": "#15191C", "major_tick_line_alpha": 0, "bar_line_alpha": 0 }, "Title": { "text_color": "#E0E0E0", "text_font": "Helvetica", "text_font_size": "1.15em" } } }) curdoc().theme = theme # ΛΛΛΛΛΛΛΛΛΛΛΛΛΛΛΛΛΛΛΛΛΛ # Plotting Defs # ΛΛΛΛΛΛΛΛΛΛΛΛΛΛΛΛΛΛΛΛΛΛ def plot_spins(data, idx): colors = [ "firebrick" if spin < 0 else "royalblue" for spin in data['spins'][idx,:] ] nspins = len(colors) cds = ColumnDataSource(data={'x':np.array(range(nspins)), 'top':np.ones(nspins), 'color':colors}) p_title = f"Spins at step {int((idx+1)*data['params'][4])}" p = figure(plot_width=300, plot_height=100, title=p_title, toolbar_location=None, tools="") p.vbar(x='x', top='top', color='color', source=cds) p.xgrid.visible = False p.ygrid.visible = False p.xaxis.visible = False p.yaxis.visible = False return p def plot_energy(data): p = figure(plot_width=600, plot_height=300, title=f"Energy @ T = {data['params'][2]}", tooltips = [("(step, E)", "($x, $y)")], tools = "box_zoom,reset", toolbar_location="right") p.xaxis.axis_label="Step" p.axis.axis_label_text_font_size = "10pt" x = np.array(range(0,int(data['params'][3]),int(data['params'][4]))) cds = ColumnDataSource(data={'x':x, 'y':data['energy'][()] }) p.line(x='x', y='y', source=cds, color=plt_clr[1], line_width = 2) return p def plot_mag(data): M = data['mag'][()] count, bins = np.histogram(data['mag'][()], bins=np.arange(min(M), max(M) + 1)) vzeros = np.zeros(len(bins)-1) vmax = max(count)*1.1 # cds = ColumnDataSource(data={'x':bins[:-1], # 'top':count}) hist = figure(plot_width=200, plot_height=300, x_range=(0, vmax), title='Histogram', tooltips = [("(Mag, count)", "($y, $x)")], tools = "box_zoom,reset", toolbar_location=None, y_axis_location="right", min_border=10) hist.yaxis.axis_label="Magnetization" hist.xaxis.axis_label="Count" hist.axis.axis_label_text_font_size = "10pt" hist.quad(left=0, bottom=bins[:-1], top=bins[1:], right=count, color=plt_clr[0]) hist.ygrid.visible = False hist.xaxis.major_label_orientation = np.pi/4 hist.js_on_event(DoubleTap, CustomJS(args=dict(p=hist), code='p.reset.emit()')) p = figure(plot_width=600, plot_height=300, title=f"Magnetization @ T = {data['params'][2]}", tooltips = [("(step, Mag)", "($x, $y)")], tools = "box_zoom,reset", toolbar_location="above") p.xgrid.visible = False p.xaxis.axis_label="Step" p.axis.axis_label_text_font_size = "10pt" x = np.array(range(0,int(data['params'][3]),int(data['params'][4]))) cds = ColumnDataSource(data={'x':x, 'y':data['mag'][()] }) p.line(x='x', y='y', source=cds, color=plt_clr[4]) return row([p, hist]) def plot_corr(data): correl = data['corr'][()] nspins = len(data['spins'][0,:]) p = figure(plot_width=600, plot_height=300, # title=f'Correlation Function', tooltips = [("(r, corr)", "($x, $y)")], tools = "box_zoom,reset", toolbar_location="right") p.xaxis.axis_label = "Number of Spins Away" p.yaxis.axis_label = "Correlation" p.axis.axis_label_text_font_size = "10pt" r = np.arange((nspins-1)//2) p.line(x=r, y=correl, color=plt_clr[3], line_width=2, line_alpha = 0.9) return p # Clone the entire repo. !git clone -l -s https://github.com/fysixs/IsingModel.git /content/Ising clear_output() md("<font size=3 color=9467BD> ***Environment Setup Complete! Please run the cell below if you are planning to use Julia for calculations.***") ``` ``` #@title #@markdown <font color=#8D84B5> ***Setup*** %%shell set -e #---------------------------------------------------# JULIA_VERSION="1.6.2" # any version ≥ 0.7.0 JULIA_PACKAGES="HDF5 Statistics" JULIA_PACKAGES_IF_GPU="CUDA" # or CuArrays for older Julia versions JULIA_NUM_THREADS=2 #---------------------------------------------------# if [ -n "$COLAB_GPU" ] && [ -z `which julia` ]; then # Install Julia JULIA_VER=`cut -d '.' -f -2 <<< "$JULIA_VERSION"` echo "Installing Julia $JULIA_VERSION on the current Colab Runtime..." BASE_URL="https://julialang-s3.julialang.org/bin/linux/x64" URL="$BASE_URL/$JULIA_VER/julia-$JULIA_VERSION-linux-x86_64.tar.gz" wget -nv $URL -O /tmp/julia.tar.gz # -nv means "not verbose" tar -x -f /tmp/julia.tar.gz -C /usr/local --strip-components 1 rm /tmp/julia.tar.gz # Install Packages if [ "$COLAB_GPU" = "1" ]; then JULIA_PACKAGES="$JULIA_PACKAGES $JULIA_PACKAGES_IF_GPU" fi for PKG in `echo $JULIA_PACKAGES`; do echo "Installing Julia package $PKG..." julia -e 'using Pkg; pkg"add '$PKG'; precompile;"' &> /dev/null done # # Launch the julia kernel in a detached tmux session # echo "Starting julia kernel..." # tmux new -s julia -d # tmux send-keys -t julia.0 "julia -i" ENTER echo '' echo "Success!" fi ``` <hr size=3 color=#8D84B5 > </hr> <br> ### <font color = #667495 face="Gill Sans"> **1. Defining the basic model**</font> > **Spins** = $\{\sigma_1, \sigma_2, \ldots, \sigma_n\, |\, \sigma_i = \pm 1\}$<br> > **External Field** = Off <br> > **Total Energy** = <br> $$ \mathcal{H} = -\varepsilon \sum_{i, j \text{ neighbors}} \sigma_i \sigma_j $$ ``` #@title <font size = 4 face="Verdana" color=667495> <b>Run Model #@markdown Please make your selections below. <br> If running anything over $10^6$ iterations `julia` is the clear choice over `python`. # ΛΛΛΛΛΛΛΛΛΛΛΛΛΛΛΛΛΛΛΛΛΛ # Data Defs # ΛΛΛΛΛΛΛΛΛΛΛΛΛΛΛΛΛΛΛΛΛΛ """ Data structure for the lattice """ class lattice: # def __init__(self, nspins, eps, temp, pbc=True): def __init__(self, params): self.nspins = params['nspins'] self.eps = params['eps'] self.T = params['temp'] self.pbc = params['pbc'] self.E = 0.0 self.M = 0.0 probs = np.random.rand( self.nspins ) self.spins = np.array( [ -1 if prob < 0.5 else 1 for prob in probs ] ) def energy(self): enrg = [ self.spins[i] * self.spins[i+1] for i in range(self.nspins-1) ] if (self.pbc): enrg.append( self.spins[0] * self.spins[-1] ) self.E = -self.eps * sum(enrg) return def mag(self): self.M = self.spins.sum() return # ΛΛΛΛΛΛΛΛΛΛΛΛΛΛΛΛΛΛΛΛΛΛ # Physics Defs # ΛΛΛΛΛΛΛΛΛΛΛΛΛΛΛΛΛΛΛΛΛΛ """ The Boltzmann factor for energy E in units of 𝜀, temperature in units of 𝜀/k """ def boltz(E, T): return np.exp( -E/(k*T) ) def corr(lattice): if (lattice.pbc): nspins = lattice.nspins spins = lattice.spins savg = spins.mean() savg2 = savg*savg coeff = 1 / ( 2 * nspins ) c = np.ones( (nspins-1)//2 ) for r in range(1, (nspins-1)//2): for i in range(nspins): c[r] += spins[i] * ( spins[(i + r)%nspins] + spins[(i - r)%nspins] ) c[r] *= coeff c[r] -= savg2 return c # ΛΛΛΛΛΛΛΛΛΛΛΛΛΛΛΛΛΛΛΛΛΛ # Algorithm Defs # ΛΛΛΛΛΛΛΛΛΛΛΛΛΛΛΛΛΛΛΛΛΛ def MC_flip(lattice, idx): nspins = lattice.nspins spins = lattice.spins # These are the calculations to obtain ΔE # Ef = Ei + eps * ( spins[idx]*spins[idx-1] + spins[idx]*spins[idx+1] ) - # ( (-1)*spins[idx]*spins[idx-1] + (-1)*spins[idx]*spins[idx+1] ) # Ef = Ei + 2 * ( spins[idx]*spins[idx-1] + spins[idx]*spins[idx+1] ) if lattice.pbc: ΔE = 2 * spins[idx % nspins] * ( spins[(idx-1) % nspins] + spins[(idx+1) % nspins] ) else: if idx == nspins-1: ΔE = 2 * spins[idx] * spins[idx-1] elif idx == 0: ΔE = 2 * spins[idx] * spins[idx+1] else: ΔE = 2 * spins[idx] * ( spins[idx-1] + spins[idx+1] ) ΔM = - 2 * spins[idx] return ΔE, ΔM def MC_step(lattice): nspins = lattice.nspins idx = int( np.random.rand() * nspins ) ΔE, ΔM = MC_flip(lattice, idx) if ΔE <= 0.0: lattice.spins[idx] *= -1 lattice.E += ΔE lattice.M += ΔM else: if ( np.random.rand() < boltz(ΔE, lattice.T) ): lattice.spins[idx] *= -1 lattice.E += ΔE lattice.M += ΔM return def MC_run(params, data, lattice): lattice.energy() lattice.mag() iter = [params['iters'], params['wrt_it']] Eavg = np.zeros(iter[1]) data['spins'][0,:] = lattice.spins.copy() data['energy'][0] = lattice.E data['mag'][0] = lattice.M progPy = widgets.IntProgress( value=0, min=0, max= iter[0] // iter[1] - 1, step=1, description='Calculating:', bar_style='', # 'success', 'info', 'warning', 'danger' or '' orientation='horizontal' ) display(progPy) i = 0 for step in range(iter[0]): MC_step(lattice) Eavg[i] = lattice.E i += 1 if (step+1)%iter[1] == 0: k = step//iter[1] progPy.value = k data['spins'][k,:] = lattice.spins.copy() data['energy'][k] = Eavg.mean() data['mag'][k] = lattice.M i = 0 data['corr'][:] = corr(lattice) return def run_at_T(): # ΛΛΛΛΛΛΛΛΛΛΛΛΛΛΛΛΛΛΛΛΛΛ # Widgets # ΛΛΛΛΛΛΛΛΛΛΛΛΛΛΛΛΛΛΛΛΛΛ # Energies in units of 𝜀,temperatures in units of 𝜀/k. items_layout = widgets.Layout( width='auto') nspins_input = widgets.BoundedFloatText(value=1e3, min=10, max=1e6, step=1, description='Spins:', layout=items_layout) eps_input = widgets.BoundedFloatText(value=1.0, min=0, max=1e2, step=0.1, description='ε:', layout=items_layout) temp_input = widgets.BoundedFloatText(value=1.0, min=0, max=20, step=0.1, description='Temp:', layout=items_layout) iters_input = widgets.BoundedFloatText(value=1e4, min=1e3, max=1e10, step=1e3, description='Iterations:', layout=items_layout) runPy_button = widgets.Button(description='ʀᴜɴ ᴏɴ ᴘʏᴛʜᴏɴ', button_style='info', # 'success', 'info', 'warning', 'danger' or '' tooltip='Click me', icon='check', ) runJu_button = widgets.Button(description='ʀᴜɴ ᴏɴ ᴊᴜʟɪᴀ', button_style='warning', # 'success', 'info', 'warning', 'danger' or '' tooltip='Click me', icon='check' ) output = widgets.Output() # ΛΛΛΛΛΛΛΛΛΛΛΛΛΛΛΛΛΛΛΛΛΛ # Preparing Data # ΛΛΛΛΛΛΛΛΛΛΛΛΛΛΛΛΛΛΛΛΛΛ def build_params(): params = {'nspins': int(nspins_input.value), 'eps' : float(eps_input.value), 'temp' : float(temp_input.value), 'pbc' : True, 'iters' : int(iters_input.value), 'wrt_it': int(1e3) } return params def build_data(params): nspins = params['nspins'] iters = params['iters'] wrt_it = params['wrt_it'] data = h5py.File("./Ising1D.hdf5", "w") data.create_dataset('params',(5, ), dtype='f') data['params'][0] = params['nspins'] data['params'][1] = params['eps'] data['params'][2] = params['temp'] data['params'][3] = params['iters'] data['params'][4] = params['wrt_it'] data.create_dataset('energy', (iters // wrt_it, ), dtype='f') data.create_dataset('mag', (iters // wrt_it, ), dtype='f') data.create_dataset('corr', ((nspins-1)//2, ), dtype='f') data.create_dataset('spins', (iters // wrt_it, nspins), dtype='f') return data # ΛΛΛΛΛΛΛΛΛΛΛΛΛΛΛΛΛΛΛΛΛΛ # Interface # ΛΛΛΛΛΛΛΛΛΛΛΛΛΛΛΛΛΛΛΛΛΛ def runPy_button_clicked(b): with output: output.clear_output() params = build_params() data = build_data(params) lattice_pbc = lattice(params) MC_run(params, data, lattice_pbc) display(md("<font size = 3 color=9467BD><b>Run complete!")) data.close() return runPy_button.on_click(runPy_button_clicked) def run(params): julia_call = ['julia', '/content/Ising/MCRun1D.jl', str(params['nspins']), str(params['eps']), str(params['temp']), str(params['iters']), str(params['wrt_it'])] prog = widgets.IntProgress( value=0, min=0, max= params['iters'] // params['wrt_it'] - 1, step=1, description='Calculating:', bar_style='', # 'success', 'info', 'warning', 'danger' or '' orientation='horizontal' ) display(prog) with subprocess.Popen(julia_call, stdout=subprocess.PIPE, stderr=subprocess.STDOUT) as process: for line in process.stdout: prog.value += 1 def runJu_button_clicked(b): with output: output.clear_output() params = build_params() run(params) display(md("<font size = 3 color=9467BD><b>Run complete!")) return runJu_button.on_click(runJu_button_clicked) # ΛΛΛΛΛΛΛΛΛΛΛΛΛΛΛΛΛΛΛΛΛΛ # UI # ΛΛΛΛΛΛΛΛΛΛΛΛΛΛΛΛΛΛΛΛΛΛ UI = GridBox(children=[nspins_input, eps_input, runPy_button, temp_input, iters_input, runJu_button], layout=widgets.Layout( width='70%', grid_template_columns='200px 200px 100px', grid_template_rows='30px 30px', grid_gap='10px 10px') ) # buttons = widgets.HBox([runPy_button, runJu_button]) display( UI ) display(output) return run_at_T() ``` ``` #@title <font size = 4 face="Verdana" color=667495> <b>Visualize Output #@markdown Please run this cell to visualize the calculations. data = h5py.File("./Ising1D.hdf5", "r") steps = len(data['energy']) conf_i = plot_spins( data, 0) conf_f = plot_spins( data, steps - 1) enrg = plot_energy( data ) cor = plot_corr(data) spinplots = row( conf_i, conf_f ) p1 = column( spinplots, enrg ) tab1 = Panel(child=p1, title="Spin Configutation & Energy") p2 = column( spinplots, plot_mag( data ) ) tab2 = Panel(child=p2, title="Magnetization") p3 = column(spinplots, cor) tab3 = Panel(child=p3, title="Correlation") # spinplots = row( conf_i, conf_f ) # plots = column( spinplots, enrg, mag[0], mag[1], cor ) # show(plots) show(Tabs(tabs=[tab1, tab2, tab3])) display(md( f"<font size = 3 color=9467BD><b> Initial Energy = {data['energy'][0]}ε ⟶ Final Energy = {data['energy'][-1]}ε" )) data.close() ``` <hr size=3 color=#8D84B5 align="left"> </hr> # <font color = #667495 face="Gill Sans"> *References*</font> <hr size=2 color=grey width=30% align="left"> </hr> 1. [An Introduction to Thermal Physics](https://www.amazon.com/Introduction-Thermal-Physics-Daniel-Schroeder/dp/0192895540) - Daniel V. Schroeder
Jack , meanwhile , has decided to abandon his double life . He arrives in full mourning and announces his brother 's death in Paris of a severe chill , a story undermined by Algernon 's presence in the guise of Ernest .
/- Copyright (c) 2018 Kenny Lau. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Kenny Lau ! This file was ported from Lean 3 source module ring_theory.ideal.quotient_operations ! leanprover-community/mathlib commit d3acee0d776b15ffb8318f327325ff343cc8bdcc ! Please do not edit these lines, except to modify the commit id ! if you have ported upstream changes. -/ import Mathbin.RingTheory.Ideal.Operations import Mathbin.RingTheory.Ideal.Quotient /-! # More operations on modules and ideals related to quotients -/ universe u v w namespace RingHom variable {R : Type u} {S : Type v} [CommRing R] [CommRing S] (f : R →+* S) /-- The induced map from the quotient by the kernel to the codomain. This is an isomorphism if `f` has a right inverse (`quotient_ker_equiv_of_right_inverse`) / is surjective (`quotient_ker_equiv_of_surjective`). -/ def kerLift (f : R →+* S) : R ⧸ f.ker →+* S := Ideal.Quotient.lift _ f fun r => f.mem_ker.mp #align ring_hom.ker_lift RingHom.kerLift @[simp] theorem kerLift_mk (f : R →+* S) (r : R) : kerLift f (Ideal.Quotient.mk f.ker r) = f r := Ideal.Quotient.lift_mk _ _ _ #align ring_hom.ker_lift_mk RingHom.kerLift_mk /-- The induced map from the quotient by the kernel is injective. -/ theorem kerLift_injective (f : R →+* S) : Function.Injective (kerLift f) := fun a b => Quotient.inductionOn₂' a b fun a b (h : f a = f b) => Ideal.Quotient.eq.2 <| show a - b ∈ ker f by rw [mem_ker, map_sub, h, sub_self] #align ring_hom.ker_lift_injective RingHom.kerLift_injective theorem lift_injective_of_ker_le_ideal (I : Ideal R) {f : R →+* S} (H : ∀ a : R, a ∈ I → f a = 0) (hI : f.ker ≤ I) : Function.Injective (Ideal.Quotient.lift I f H) := by rw [RingHom.injective_iff_ker_eq_bot, RingHom.ker_eq_bot_iff_eq_zero] intro u hu obtain ⟨v, rfl⟩ := Ideal.Quotient.mk_surjective u rw [Ideal.Quotient.lift_mk] at hu rw [Ideal.Quotient.eq_zero_iff_mem] exact hI ((RingHom.mem_ker f).mpr hu) #align ring_hom.lift_injective_of_ker_le_ideal RingHom.lift_injective_of_ker_le_ideal variable {f} /-- The **first isomorphism theorem** for commutative rings, computable version. -/ def quotientKerEquivOfRightInverse {g : S → R} (hf : Function.RightInverse g f) : R ⧸ f.ker ≃+* S := { kerLift f with toFun := kerLift f invFun := Ideal.Quotient.mk f.ker ∘ g left_inv := by rintro ⟨x⟩ apply ker_lift_injective simp [hf (f x)] right_inv := hf } #align ring_hom.quotient_ker_equiv_of_right_inverse RingHom.quotientKerEquivOfRightInverse @[simp] theorem quotientKerEquivOfRightInverse.apply {g : S → R} (hf : Function.RightInverse g f) (x : R ⧸ f.ker) : quotientKerEquivOfRightInverse hf x = kerLift f x := rfl #align ring_hom.quotient_ker_equiv_of_right_inverse.apply RingHom.quotientKerEquivOfRightInverse.apply @[simp] theorem quotientKerEquivOfRightInverse.Symm.apply {g : S → R} (hf : Function.RightInverse g f) (x : S) : (quotientKerEquivOfRightInverse hf).symm x = Ideal.Quotient.mk f.ker (g x) := rfl #align ring_hom.quotient_ker_equiv_of_right_inverse.symm.apply RingHom.quotientKerEquivOfRightInverse.Symm.apply /-- The **first isomorphism theorem** for commutative rings. -/ noncomputable def quotientKerEquivOfSurjective (hf : Function.Surjective f) : R ⧸ f.ker ≃+* S := quotientKerEquivOfRightInverse (Classical.choose_spec hf.HasRightInverse) #align ring_hom.quotient_ker_equiv_of_surjective RingHom.quotientKerEquivOfSurjective end RingHom namespace Ideal variable {R : Type u} {S : Type v} {F : Type w} [CommRing R] [CommRing S] @[simp] theorem map_quotient_self (I : Ideal R) : map (Quotient.mk I) I = ⊥ := eq_bot_iff.2 <| Ideal.map_le_iff_le_comap.2 fun x hx => (Submodule.mem_bot (R ⧸ I)).2 <| Ideal.Quotient.eq_zero_iff_mem.2 hx #align ideal.map_quotient_self Ideal.map_quotient_self @[simp] theorem mk_ker {I : Ideal R} : (Quotient.mk I).ker = I := by ext <;> rw [RingHom.ker, mem_comap, Submodule.mem_bot, quotient.eq_zero_iff_mem] #align ideal.mk_ker Ideal.mk_ker theorem map_mk_eq_bot_of_le {I J : Ideal R} (h : I ≤ J) : I.map J.Quotient.mk = ⊥ := by rw [map_eq_bot_iff_le_ker, mk_ker] exact h #align ideal.map_mk_eq_bot_of_le Ideal.map_mk_eq_bot_of_le theorem ker_quotient_lift {S : Type v} [CommRing S] {I : Ideal R} (f : R →+* S) (H : I ≤ f.ker) : (Ideal.Quotient.lift I f H).ker = f.ker.map I.Quotient.mk := by ext x constructor · intro hx obtain ⟨y, hy⟩ := quotient.mk_surjective x rw [RingHom.mem_ker, ← hy, Ideal.Quotient.lift_mk, ← RingHom.mem_ker] at hx rw [← hy, mem_map_iff_of_surjective I.Quotient.mk quotient.mk_surjective] exact ⟨y, hx, rfl⟩ · intro hx rw [mem_map_iff_of_surjective I.Quotient.mk quotient.mk_surjective] at hx obtain ⟨y, hy⟩ := hx rw [RingHom.mem_ker, ← hy.right, Ideal.Quotient.lift_mk, ← RingHom.mem_ker f] exact hy.left #align ideal.ker_quotient_lift Ideal.ker_quotient_lift @[simp] theorem bot_quotient_isMaximal_iff (I : Ideal R) : (⊥ : Ideal (R ⧸ I)).IsMaximal ↔ I.IsMaximal := ⟨fun hI => @mk_ker _ _ I ▸ @comap_isMaximal_of_surjective _ _ _ _ _ _ (Quotient.mk I) Quotient.mk_surjective ⊥ hI, fun hI => by skip letI := quotient.field I exact bot_is_maximal⟩ #align ideal.bot_quotient_is_maximal_iff Ideal.bot_quotient_isMaximal_iff /-- See also `ideal.mem_quotient_iff_mem` in case `I ≤ J`. -/ @[simp] theorem mem_quotient_iff_mem_sup {I J : Ideal R} {x : R} : Quotient.mk I x ∈ J.map (Quotient.mk I) ↔ x ∈ J ⊔ I := by rw [← mem_comap, comap_map_of_surjective (Quotient.mk' I) quotient.mk_surjective, ← RingHom.ker_eq_comap_bot, mk_ker] #align ideal.mem_quotient_iff_mem_sup Ideal.mem_quotient_iff_mem_sup /-- See also `ideal.mem_quotient_iff_mem_sup` if the assumption `I ≤ J` is not available. -/ theorem mem_quotient_iff_mem {I J : Ideal R} (hIJ : I ≤ J) {x : R} : Quotient.mk I x ∈ J.map (Quotient.mk I) ↔ x ∈ J := by rw [mem_quotient_iff_mem_sup, sup_eq_left.mpr hIJ] #align ideal.mem_quotient_iff_mem Ideal.mem_quotient_iff_mem theorem comap_map_mk {I J : Ideal R} (h : I ≤ J) : Ideal.comap (Ideal.Quotient.mk I) (Ideal.map (Ideal.Quotient.mk I) J) = J := by ext rw [← Ideal.mem_quotient_iff_mem h, Ideal.mem_comap] #align ideal.comap_map_mk Ideal.comap_map_mk section QuotientAlgebra variable (R₁ R₂ : Type _) {A B : Type _} variable [CommSemiring R₁] [CommSemiring R₂] [CommRing A] [CommRing B] variable [Algebra R₁ A] [Algebra R₂ A] [Algebra R₁ B] /-- The `R₁`-algebra structure on `A/I` for an `R₁`-algebra `A` -/ instance Quotient.algebra {I : Ideal A} : Algebra R₁ (A ⧸ I) := { RingHom.comp (Ideal.Quotient.mk I) (algebraMap R₁ A) with toFun := fun x => Ideal.Quotient.mk I (algebraMap R₁ A x) smul := (· • ·) smul_def' := fun r x => Quotient.inductionOn' x fun x => ((Quotient.mk I).congr_arg <| Algebra.smul_def _ _).trans (RingHom.map_mul _ _ _) commutes' := fun _ _ => mul_comm _ _ } #align ideal.quotient.algebra Ideal.Quotient.algebra -- Lean can struggle to find this instance later if we don't provide this shortcut instance Quotient.isScalarTower [SMul R₁ R₂] [IsScalarTower R₁ R₂ A] (I : Ideal A) : IsScalarTower R₁ R₂ (A ⧸ I) := by infer_instance #align ideal.quotient.is_scalar_tower Ideal.Quotient.isScalarTower /-- The canonical morphism `A →ₐ[R₁] A ⧸ I` as morphism of `R₁`-algebras, for `I` an ideal of `A`, where `A` is an `R₁`-algebra. -/ def Quotient.mkₐ (I : Ideal A) : A →ₐ[R₁] A ⧸ I := ⟨fun a => Submodule.Quotient.mk a, rfl, fun _ _ => rfl, rfl, fun _ _ => rfl, fun _ => rfl⟩ #align ideal.quotient.mkₐ Ideal.Quotient.mkₐ theorem Quotient.algHom_ext {I : Ideal A} {S} [Semiring S] [Algebra R₁ S] ⦃f g : A ⧸ I →ₐ[R₁] S⦄ (h : f.comp (Quotient.mkₐ R₁ I) = g.comp (Quotient.mkₐ R₁ I)) : f = g := AlgHom.ext fun x => Quotient.inductionOn' x <| AlgHom.congr_fun h #align ideal.quotient.alg_hom_ext Ideal.Quotient.algHom_ext theorem Quotient.alg_map_eq (I : Ideal A) : algebraMap R₁ (A ⧸ I) = (algebraMap A (A ⧸ I)).comp (algebraMap R₁ A) := rfl #align ideal.quotient.alg_map_eq Ideal.Quotient.alg_map_eq theorem Quotient.mkₐ_toRingHom (I : Ideal A) : (Quotient.mkₐ R₁ I).toRingHom = Ideal.Quotient.mk I := rfl #align ideal.quotient.mkₐ_to_ring_hom Ideal.Quotient.mkₐ_toRingHom @[simp] theorem Quotient.mkₐ_eq_mk (I : Ideal A) : ⇑(Quotient.mkₐ R₁ I) = Ideal.Quotient.mk I := rfl #align ideal.quotient.mkₐ_eq_mk Ideal.Quotient.mkₐ_eq_mk @[simp] theorem Quotient.algebraMap_eq (I : Ideal R) : algebraMap R (R ⧸ I) = I.Quotient.mk := rfl #align ideal.quotient.algebra_map_eq Ideal.Quotient.algebraMap_eq @[simp] theorem Quotient.mk_comp_algebraMap (I : Ideal A) : (Quotient.mk I).comp (algebraMap R₁ A) = algebraMap R₁ (A ⧸ I) := rfl #align ideal.quotient.mk_comp_algebra_map Ideal.Quotient.mk_comp_algebraMap @[simp] theorem Quotient.mk_algebraMap (I : Ideal A) (x : R₁) : Quotient.mk I (algebraMap R₁ A x) = algebraMap R₁ (A ⧸ I) x := rfl #align ideal.quotient.mk_algebra_map Ideal.Quotient.mk_algebraMap /-- The canonical morphism `A →ₐ[R₁] I.quotient` is surjective. -/ theorem Quotient.mkₐ_surjective (I : Ideal A) : Function.Surjective (Quotient.mkₐ R₁ I) := surjective_quot_mk _ #align ideal.quotient.mkₐ_surjective Ideal.Quotient.mkₐ_surjective /-- The kernel of `A →ₐ[R₁] I.quotient` is `I`. -/ @[simp] theorem Quotient.mkₐ_ker (I : Ideal A) : (Quotient.mkₐ R₁ I : A →+* A ⧸ I).ker = I := Ideal.mk_ker #align ideal.quotient.mkₐ_ker Ideal.Quotient.mkₐ_ker variable {R₁} /-- `ideal.quotient.lift` as an `alg_hom`. -/ def Quotient.liftₐ (I : Ideal A) (f : A →ₐ[R₁] B) (hI : ∀ a : A, a ∈ I → f a = 0) : A ⧸ I →ₐ[R₁] B := {-- this is is_scalar_tower.algebra_map_apply R₁ A (A ⧸ I) but the file `algebra.algebra.tower` -- imports this file. Ideal.Quotient.lift I (f : A →+* B) hI with commutes' := fun r => by have : algebraMap R₁ (A ⧸ I) r = algebraMap A (A ⧸ I) (algebraMap R₁ A r) := by simp_rw [Algebra.algebraMap_eq_smul_one, smul_assoc, one_smul] rw [this, Ideal.Quotient.algebraMap_eq, RingHom.toFun_eq_coe, Ideal.Quotient.lift_mk, AlgHom.coe_toRingHom, Algebra.algebraMap_eq_smul_one, Algebra.algebraMap_eq_smul_one, map_smul, map_one] } #align ideal.quotient.liftₐ Ideal.Quotient.liftₐ @[simp] theorem Quotient.liftₐ_apply (I : Ideal A) (f : A →ₐ[R₁] B) (hI : ∀ a : A, a ∈ I → f a = 0) (x) : Ideal.Quotient.liftₐ I f hI x = Ideal.Quotient.lift I (f : A →+* B) hI x := rfl #align ideal.quotient.liftₐ_apply Ideal.Quotient.liftₐ_apply theorem Quotient.liftₐ_comp (I : Ideal A) (f : A →ₐ[R₁] B) (hI : ∀ a : A, a ∈ I → f a = 0) : (Ideal.Quotient.liftₐ I f hI).comp (Ideal.Quotient.mkₐ R₁ I) = f := AlgHom.ext fun x => (Ideal.Quotient.lift_mk I (f : A →+* B) hI : _) #align ideal.quotient.liftₐ_comp Ideal.Quotient.liftₐ_comp theorem KerLift.map_smul (f : A →ₐ[R₁] B) (r : R₁) (x : A ⧸ f.toRingHom.ker) : f.toRingHom.kerLift (r • x) = r • f.toRingHom.kerLift x := by obtain ⟨a, rfl⟩ := quotient.mkₐ_surjective R₁ _ x rw [← AlgHom.map_smul, quotient.mkₐ_eq_mk, RingHom.kerLift_mk] exact f.map_smul _ _ #align ideal.ker_lift.map_smul Ideal.KerLift.map_smul /-- The induced algebras morphism from the quotient by the kernel to the codomain. This is an isomorphism if `f` has a right inverse (`quotient_ker_alg_equiv_of_right_inverse`) / is surjective (`quotient_ker_alg_equiv_of_surjective`). -/ def kerLiftAlg (f : A →ₐ[R₁] B) : A ⧸ f.toRingHom.ker →ₐ[R₁] B := AlgHom.mk' f.toRingHom.kerLift fun _ _ => KerLift.map_smul f _ _ #align ideal.ker_lift_alg Ideal.kerLiftAlg @[simp] theorem kerLiftAlg_mk (f : A →ₐ[R₁] B) (a : A) : kerLiftAlg f (Quotient.mk f.toRingHom.ker a) = f a := rfl #align ideal.ker_lift_alg_mk Ideal.kerLiftAlg_mk @[simp] theorem kerLiftAlg_toRingHom (f : A →ₐ[R₁] B) : (kerLiftAlg f).toRingHom = RingHom.kerLift f := rfl #align ideal.ker_lift_alg_to_ring_hom Ideal.kerLiftAlg_toRingHom /-- The induced algebra morphism from the quotient by the kernel is injective. -/ theorem kerLiftAlg_injective (f : A →ₐ[R₁] B) : Function.Injective (kerLiftAlg f) := RingHom.kerLift_injective f #align ideal.ker_lift_alg_injective Ideal.kerLiftAlg_injective /-- The **first isomorphism** theorem for algebras, computable version. -/ def quotientKerAlgEquivOfRightInverse {f : A →ₐ[R₁] B} {g : B → A} (hf : Function.RightInverse g f) : (A ⧸ f.toRingHom.ker) ≃ₐ[R₁] B := { RingHom.quotientKerEquivOfRightInverse fun x => show f.toRingHom (g x) = x from hf x, kerLiftAlg f with } #align ideal.quotient_ker_alg_equiv_of_right_inverse Ideal.quotientKerAlgEquivOfRightInverse @[simp] theorem quotientKerAlgEquivOfRightInverse.apply {f : A →ₐ[R₁] B} {g : B → A} (hf : Function.RightInverse g f) (x : A ⧸ f.toRingHom.ker) : quotientKerAlgEquivOfRightInverse hf x = kerLiftAlg f x := rfl #align ideal.quotient_ker_alg_equiv_of_right_inverse.apply Ideal.quotientKerAlgEquivOfRightInverse.apply @[simp] theorem QuotientKerAlgEquivOfRightInverseSymm.apply {f : A →ₐ[R₁] B} {g : B → A} (hf : Function.RightInverse g f) (x : B) : (quotientKerAlgEquivOfRightInverse hf).symm x = Quotient.mkₐ R₁ f.toRingHom.ker (g x) := rfl #align ideal.quotient_ker_alg_equiv_of_right_inverse_symm.apply Ideal.QuotientKerAlgEquivOfRightInverseSymm.apply /-- The **first isomorphism theorem** for algebras. -/ noncomputable def quotientKerAlgEquivOfSurjective {f : A →ₐ[R₁] B} (hf : Function.Surjective f) : (A ⧸ f.toRingHom.ker) ≃ₐ[R₁] B := quotientKerAlgEquivOfRightInverse (Classical.choose_spec hf.HasRightInverse) #align ideal.quotient_ker_alg_equiv_of_surjective Ideal.quotientKerAlgEquivOfSurjective /-- The ring hom `R/I →+* S/J` induced by a ring hom `f : R →+* S` with `I ≤ f⁻¹(J)` -/ def quotientMap {I : Ideal R} (J : Ideal S) (f : R →+* S) (hIJ : I ≤ J.comap f) : R ⧸ I →+* S ⧸ J := Quotient.lift I ((Quotient.mk J).comp f) fun _ ha => by simpa [Function.comp_apply, RingHom.coe_comp, quotient.eq_zero_iff_mem] using hIJ ha #align ideal.quotient_map Ideal.quotientMap @[simp] theorem quotientMap_mk {J : Ideal R} {I : Ideal S} {f : R →+* S} {H : J ≤ I.comap f} {x : R} : quotientMap I f H (Quotient.mk J x) = Quotient.mk I (f x) := Quotient.lift_mk J _ _ #align ideal.quotient_map_mk Ideal.quotientMap_mk @[simp] theorem quotientMap_algebraMap {J : Ideal A} {I : Ideal S} {f : A →+* S} {H : J ≤ I.comap f} {x : R₁} : quotientMap I f H (algebraMap R₁ (A ⧸ J) x) = Quotient.mk I (f (algebraMap _ _ x)) := Quotient.lift_mk J _ _ #align ideal.quotient_map_algebra_map Ideal.quotientMap_algebraMap theorem quotientMap_comp_mk {J : Ideal R} {I : Ideal S} {f : R →+* S} (H : J ≤ I.comap f) : (quotientMap I f H).comp (Quotient.mk J) = (Quotient.mk I).comp f := RingHom.ext fun x => by simp only [Function.comp_apply, RingHom.coe_comp, Ideal.quotientMap_mk] #align ideal.quotient_map_comp_mk Ideal.quotientMap_comp_mk /-- The ring equiv `R/I ≃+* S/J` induced by a ring equiv `f : R ≃+** S`, where `J = f(I)`. -/ @[simps] def quotientEquiv (I : Ideal R) (J : Ideal S) (f : R ≃+* S) (hIJ : J = I.map (f : R →+* S)) : R ⧸ I ≃+* S ⧸ J := { quotientMap J (↑f) (by rw [hIJ] exact @le_comap_map _ S _ _ _ _ _ _) with invFun := quotientMap I (↑f.symm) (by rw [hIJ] exact le_of_eq (map_comap_of_equiv I f)) left_inv := by rintro ⟨r⟩ simp right_inv := by rintro ⟨s⟩ simp } #align ideal.quotient_equiv Ideal.quotientEquiv @[simp] theorem quotientEquiv_mk (I : Ideal R) (J : Ideal S) (f : R ≃+* S) (hIJ : J = I.map (f : R →+* S)) (x : R) : quotientEquiv I J f hIJ (Ideal.Quotient.mk I x) = Ideal.Quotient.mk J (f x) := rfl #align ideal.quotient_equiv_mk Ideal.quotientEquiv_mk @[simp] theorem quotientEquiv_symm_mk (I : Ideal R) (J : Ideal S) (f : R ≃+* S) (hIJ : J = I.map (f : R →+* S)) (x : S) : (quotientEquiv I J f hIJ).symm (Ideal.Quotient.mk J x) = Ideal.Quotient.mk I (f.symm x) := rfl #align ideal.quotient_equiv_symm_mk Ideal.quotientEquiv_symm_mk /-- `H` and `h` are kept as separate hypothesis since H is used in constructing the quotient map. -/ theorem quotientMap_injective' {J : Ideal R} {I : Ideal S} {f : R →+* S} {H : J ≤ I.comap f} (h : I.comap f ≤ J) : Function.Injective (quotientMap I f H) := by refine' (injective_iff_map_eq_zero (QuotientMap I f H)).2 fun a ha => _ obtain ⟨r, rfl⟩ := quotient.mk_surjective a rw [quotient_map_mk, quotient.eq_zero_iff_mem] at ha exact quotient.eq_zero_iff_mem.mpr (h ha) #align ideal.quotient_map_injective' Ideal.quotientMap_injective' /-- If we take `J = I.comap f` then `quotient_map` is injective automatically. -/ theorem quotientMap_injective {I : Ideal S} {f : R →+* S} : Function.Injective (quotientMap I f le_rfl) := quotientMap_injective' le_rfl #align ideal.quotient_map_injective Ideal.quotientMap_injective theorem quotientMap_surjective {J : Ideal R} {I : Ideal S} {f : R →+* S} {H : J ≤ I.comap f} (hf : Function.Surjective f) : Function.Surjective (quotientMap I f H) := fun x => let ⟨x, hx⟩ := Quotient.mk_surjective x let ⟨y, hy⟩ := hf x ⟨(Quotient.mk J) y, by simp [hx, hy]⟩ #align ideal.quotient_map_surjective Ideal.quotientMap_surjective /-- Commutativity of a square is preserved when taking quotients by an ideal. -/ theorem comp_quotientMap_eq_of_comp_eq {R' S' : Type _} [CommRing R'] [CommRing S'] {f : R →+* S} {f' : R' →+* S'} {g : R →+* R'} {g' : S →+* S'} (hfg : f'.comp g = g'.comp f) (I : Ideal S') : (quotientMap I g' le_rfl).comp (quotientMap (I.comap g') f le_rfl) = (quotientMap I f' le_rfl).comp (quotientMap (I.comap f') g (le_of_eq (trans (comap_comap f g') (hfg ▸ comap_comap g f')))) := by refine' RingHom.ext fun a => _ obtain ⟨r, rfl⟩ := quotient.mk_surjective a simp only [RingHom.comp_apply, quotient_map_mk] exact congr_arg (Quotient.mk' I) (trans (g'.comp_apply f r).symm (hfg ▸ f'.comp_apply g r)) #align ideal.comp_quotient_map_eq_of_comp_eq Ideal.comp_quotientMap_eq_of_comp_eq /-- The algebra hom `A/I →+* B/J` induced by an algebra hom `f : A →ₐ[R₁] B` with `I ≤ f⁻¹(J)`. -/ def quotientMapₐ {I : Ideal A} (J : Ideal B) (f : A →ₐ[R₁] B) (hIJ : I ≤ J.comap f) : A ⧸ I →ₐ[R₁] B ⧸ J := { quotientMap J (f : A →+* B) hIJ with commutes' := fun r => by simp } #align ideal.quotient_mapₐ Ideal.quotientMapₐ @[simp] theorem quotient_map_mkₐ {I : Ideal A} (J : Ideal B) (f : A →ₐ[R₁] B) (H : I ≤ J.comap f) {x : A} : quotientMapₐ J f H (Quotient.mk I x) = Quotient.mkₐ R₁ J (f x) := rfl #align ideal.quotient_map_mkₐ Ideal.quotient_map_mkₐ theorem quotient_map_comp_mkₐ {I : Ideal A} (J : Ideal B) (f : A →ₐ[R₁] B) (H : I ≤ J.comap f) : (quotientMapₐ J f H).comp (Quotient.mkₐ R₁ I) = (Quotient.mkₐ R₁ J).comp f := AlgHom.ext fun x => by simp only [quotient_map_mkₐ, quotient.mkₐ_eq_mk, AlgHom.comp_apply] #align ideal.quotient_map_comp_mkₐ Ideal.quotient_map_comp_mkₐ /-- The algebra equiv `A/I ≃ₐ[R] B/J` induced by an algebra equiv `f : A ≃ₐ[R] B`, where`J = f(I)`. -/ def quotientEquivAlg (I : Ideal A) (J : Ideal B) (f : A ≃ₐ[R₁] B) (hIJ : J = I.map (f : A →+* B)) : (A ⧸ I) ≃ₐ[R₁] B ⧸ J := { quotientEquiv I J (f : A ≃+* B) hIJ with commutes' := fun r => by simp } #align ideal.quotient_equiv_alg Ideal.quotientEquivAlg instance (priority := 100) quotientAlgebra {I : Ideal A} [Algebra R A] : Algebra (R ⧸ I.comap (algebraMap R A)) (A ⧸ I) := (quotientMap I (algebraMap R A) (le_of_eq rfl)).toAlgebra #align ideal.quotient_algebra Ideal.quotientAlgebra theorem algebraMap_quotient_injective {I : Ideal A} [Algebra R A] : Function.Injective (algebraMap (R ⧸ I.comap (algebraMap R A)) (A ⧸ I)) := by rintro ⟨a⟩ ⟨b⟩ hab replace hab := quotient.eq.mp hab rw [← RingHom.map_sub] at hab exact quotient.eq.mpr hab #align ideal.algebra_map_quotient_injective Ideal.algebraMap_quotient_injective variable (R₁) /-- Quotienting by equal ideals gives equivalent algebras. -/ def quotientEquivAlgOfEq {I J : Ideal A} (h : I = J) : (A ⧸ I) ≃ₐ[R₁] A ⧸ J := quotientEquivAlg I J AlgEquiv.refl <| h ▸ (map_id I).symm #align ideal.quotient_equiv_alg_of_eq Ideal.quotientEquivAlgOfEq @[simp] theorem quotientEquivAlgOfEq_mk {I J : Ideal A} (h : I = J) (x : A) : quotientEquivAlgOfEq R₁ h (Ideal.Quotient.mk I x) = Ideal.Quotient.mk J x := rfl #align ideal.quotient_equiv_alg_of_eq_mk Ideal.quotientEquivAlgOfEq_mk @[simp] theorem quotientEquivAlgOfEq_symm {I J : Ideal A} (h : I = J) : (quotientEquivAlgOfEq R₁ h).symm = quotientEquivAlgOfEq R₁ h.symm := by ext <;> rfl #align ideal.quotient_equiv_alg_of_eq_symm Ideal.quotientEquivAlgOfEq_symm end QuotientAlgebra end Ideal namespace DoubleQuot open Ideal variable {R : Type u} section variable [CommRing R] (I J : Ideal R) /-- The obvious ring hom `R/I → R/(I ⊔ J)` -/ def quotLeftToQuotSup : R ⧸ I →+* R ⧸ I ⊔ J := Ideal.Quotient.factor I (I ⊔ J) le_sup_left #align double_quot.quot_left_to_quot_sup DoubleQuot.quotLeftToQuotSup /-- The kernel of `quot_left_to_quot_sup` -/ theorem ker_quotLeftToQuotSup : (quotLeftToQuotSup I J).ker = J.map (Ideal.Quotient.mk I) := by simp only [mk_ker, sup_idem, sup_comm, quot_left_to_quot_sup, quotient.factor, ker_quotient_lift, map_eq_iff_sup_ker_eq_of_surjective I.Quotient.mk quotient.mk_surjective, ← sup_assoc] #align double_quot.ker_quot_left_to_quot_sup DoubleQuot.ker_quotLeftToQuotSup /-- The ring homomorphism `(R/I)/J' -> R/(I ⊔ J)` induced by `quot_left_to_quot_sup` where `J'` is the image of `J` in `R/I`-/ def quotQuotToQuotSup : (R ⧸ I) ⧸ J.map (Ideal.Quotient.mk I) →+* R ⧸ I ⊔ J := Ideal.Quotient.lift (J.map (Ideal.Quotient.mk I)) (quot_left_to_quot_sup I J) (ker_quot_left_to_quot_sup I J).symm.le #align double_quot.quot_quot_to_quot_sup DoubleQuot.quotQuotToQuotSup /-- The composite of the maps `R → (R/I)` and `(R/I) → (R/I)/J'` -/ def quotQuotMk : R →+* (R ⧸ I) ⧸ J.map I.Quotient.mk := (J.map I.Quotient.mk).Quotient.mk.comp I.Quotient.mk #align double_quot.quot_quot_mk DoubleQuot.quotQuotMk /-- The kernel of `quot_quot_mk` -/ theorem ker_quotQuotMk : (quotQuotMk I J).ker = I ⊔ J := by rw [RingHom.ker_eq_comap_bot, quot_quot_mk, ← comap_comap, ← RingHom.ker, mk_ker, comap_map_of_surjective (Ideal.Quotient.mk I) quotient.mk_surjective, ← RingHom.ker, mk_ker, sup_comm] #align double_quot.ker_quot_quot_mk DoubleQuot.ker_quotQuotMk /-- The ring homomorphism `R/(I ⊔ J) → (R/I)/J' `induced by `quot_quot_mk` -/ def liftSupQuotQuotMk (I J : Ideal R) : R ⧸ I ⊔ J →+* (R ⧸ I) ⧸ J.map (Ideal.Quotient.mk I) := Ideal.Quotient.lift (I ⊔ J) (quotQuotMk I J) (ker_quotQuotMk I J).symm.le #align double_quot.lift_sup_quot_quot_mk DoubleQuot.liftSupQuotQuotMk /-- `quot_quot_to_quot_add` and `lift_sup_double_qot_mk` are inverse isomorphisms. In the case where `I ≤ J`, this is the Third Isomorphism Theorem (see `quot_quot_equiv_quot_of_le`)-/ def quotQuotEquivQuotSup : (R ⧸ I) ⧸ J.map (Ideal.Quotient.mk I) ≃+* R ⧸ I ⊔ J := RingEquiv.ofHomInv (quotQuotToQuotSup I J) (liftSupQuotQuotMk I J) (by ext z rfl) (by ext z rfl) #align double_quot.quot_quot_equiv_quot_sup DoubleQuot.quotQuotEquivQuotSup @[simp] theorem quotQuotEquivQuotSup_quotQuotMk (x : R) : quotQuotEquivQuotSup I J (quotQuotMk I J x) = Ideal.Quotient.mk (I ⊔ J) x := rfl #align double_quot.quot_quot_equiv_quot_sup_quot_quot_mk DoubleQuot.quotQuotEquivQuotSup_quotQuotMk @[simp] theorem quotQuotEquivQuotSup_symm_quotQuotMk (x : R) : (quotQuotEquivQuotSup I J).symm (Ideal.Quotient.mk (I ⊔ J) x) = quotQuotMk I J x := rfl #align double_quot.quot_quot_equiv_quot_sup_symm_quot_quot_mk DoubleQuot.quotQuotEquivQuotSup_symm_quotQuotMk /-- The obvious isomorphism `(R/I)/J' → (R/J)/I' ` -/ def quotQuotEquivComm : (R ⧸ I) ⧸ J.map I.Quotient.mk ≃+* (R ⧸ J) ⧸ I.map J.Quotient.mk := ((quotQuotEquivQuotSup I J).trans (quotEquivOfEq sup_comm)).trans (quotQuotEquivQuotSup J I).symm #align double_quot.quot_quot_equiv_comm DoubleQuot.quotQuotEquivComm @[simp] theorem quotQuotEquivComm_quotQuotMk (x : R) : quotQuotEquivComm I J (quotQuotMk I J x) = quotQuotMk J I x := rfl #align double_quot.quot_quot_equiv_comm_quot_quot_mk DoubleQuot.quotQuotEquivComm_quotQuotMk @[simp] theorem quotQuotEquivComm_comp_quotQuotMk : RingHom.comp (↑(quotQuotEquivComm I J)) (quotQuotMk I J) = quotQuotMk J I := RingHom.ext <| quotQuotEquivComm_quotQuotMk I J #align double_quot.quot_quot_equiv_comm_comp_quot_quot_mk DoubleQuot.quotQuotEquivComm_comp_quotQuotMk @[simp] theorem quotQuotEquivComm_symm : (quotQuotEquivComm I J).symm = quotQuotEquivComm J I := rfl #align double_quot.quot_quot_equiv_comm_symm DoubleQuot.quotQuotEquivComm_symm variable {I J} /-- **The Third Isomorphism theorem** for rings. See `quot_quot_equiv_quot_sup` for a version that does not assume an inclusion of ideals. -/ def quotQuotEquivQuotOfLe (h : I ≤ J) : (R ⧸ I) ⧸ J.map I.Quotient.mk ≃+* R ⧸ J := (quotQuotEquivQuotSup I J).trans (Ideal.quotEquivOfEq <| sup_eq_right.mpr h) #align double_quot.quot_quot_equiv_quot_of_le DoubleQuot.quotQuotEquivQuotOfLe @[simp] theorem quotQuotEquivQuotOfLe_quotQuotMk (x : R) (h : I ≤ J) : quotQuotEquivQuotOfLe h (quotQuotMk I J x) = J.Quotient.mk x := rfl #align double_quot.quot_quot_equiv_quot_of_le_quot_quot_mk DoubleQuot.quotQuotEquivQuotOfLe_quotQuotMk @[simp] theorem quotQuotEquivQuotOfLe_symm_mk (x : R) (h : I ≤ J) : (quotQuotEquivQuotOfLe h).symm (J.Quotient.mk x) = quotQuotMk I J x := rfl #align double_quot.quot_quot_equiv_quot_of_le_symm_mk DoubleQuot.quotQuotEquivQuotOfLe_symm_mk theorem quotQuotEquivQuotOfLe_comp_quotQuotMk (h : I ≤ J) : RingHom.comp (↑(quotQuotEquivQuotOfLe h)) (quotQuotMk I J) = J.Quotient.mk := by ext <;> rfl #align double_quot.quot_quot_equiv_quot_of_le_comp_quot_quot_mk DoubleQuot.quotQuotEquivQuotOfLe_comp_quotQuotMk theorem quotQuotEquivQuotOfLe_symm_comp_mk (h : I ≤ J) : RingHom.comp (↑(quotQuotEquivQuotOfLe h).symm) J.Quotient.mk = quotQuotMk I J := by ext <;> rfl #align double_quot.quot_quot_equiv_quot_of_le_symm_comp_mk DoubleQuot.quotQuotEquivQuotOfLe_symm_comp_mk end section Algebra @[simp] theorem quotQuotEquivComm_mk_mk [CommRing R] (I J : Ideal R) (x : R) : quotQuotEquivComm I J (Ideal.Quotient.mk _ (Ideal.Quotient.mk _ x)) = algebraMap R _ x := rfl #align double_quot.quot_quot_equiv_comm_mk_mk DoubleQuot.quotQuotEquivComm_mk_mk variable [CommSemiring R] {A : Type v} [CommRing A] [Algebra R A] (I J : Ideal A) @[simp] theorem quotQuotEquivQuotSup_quot_quot_algebraMap (x : R) : DoubleQuot.quotQuotEquivQuotSup I J (algebraMap R _ x) = algebraMap _ _ x := rfl #align double_quot.quot_quot_equiv_quot_sup_quot_quot_algebra_map DoubleQuot.quotQuotEquivQuotSup_quot_quot_algebraMap @[simp] theorem quotQuotEquivComm_algebraMap (x : R) : quotQuotEquivComm I J (algebraMap R _ x) = algebraMap _ _ x := rfl #align double_quot.quot_quot_equiv_comm_algebra_map DoubleQuot.quotQuotEquivComm_algebraMap end Algebra end DoubleQuot
/* * Copyright (c) CERN 2013 * * Copyright (c) Members of the EMI Collaboration. 2011-2013 * See http://www.eu-emi.eu/partners for details on the copyright * holders. * * Licensed under the Apache License, Version 2.0 * See the LICENSE file for further information * */ /** @file LocationPlugin.hh * @brief Base class for an UGR location plugin * @author Fabrizio Furano * @date Oct 2011 */ #ifndef LOCATIONPLUGIN_HH #define LOCATIONPLUGIN_HH #include "Config.h" #include "SimpleDebug.hh" #include "LocationInfoHandler.hh" #include "PluginInterface.hh" #include <string> #include <vector> #include <map> #include <functional> #include <bitset> #include <boost/thread.hpp> class LocationInfoHandler; class UgrConnector; #define LocPluginLogInfo(lvl, where, what) do { \ if (UgrLogger::get()->getLevel() >= lvl && UgrLogger::get()->isLogged(pluglogmask)) \ { \ std::ostringstream outs; \ outs << "UGR " << pluglogname << " " << where << " " << __func__ << " : " << what; \ UgrLogger::get()->log((UgrLogger::Level)lvl, outs.str()); \ } \ }while(0) #define LocPluginLogInfoThr(lvl, where, what) do { \ if (UgrLogger::get()->getLevel() >= lvl && UgrLogger::get()->isLogged(pluglogmask)) \ { \ std::ostringstream outs; \ outs << "UGR " << pluglogname << "[" << getID() << "] " << where << " " << __func__ << " : " << what; \ UgrLogger::get()->log((UgrLogger::Level)lvl, outs.str()); \ } \ }while(0) #define LocPluginLogErr(where, what) do { \ std::ostringstream outs; \ outs << "UGR " << pluglogname << "[" << getID() << "] " << where << " !! " << __func__ << " : " << what; \ UgrLogger::get()->log((UgrLogger::Level)0, outs.str()); \ }while(0) enum PluginEndpointState { PLUGIN_ENDPOINT_UNKNOWN = 0, PLUGIN_ENDPOINT_ONLINE, PLUGIN_ENDPOINT_OFFLINE, PLUGIN_ENDPOINT_TEMPORARY_OFFLINE, PLUGIN_ENDPOINT_NOT_EXIST, PLUGIN_ENDPOINT_OVERLOADED, PLUGIN_ENDPOINT_ERROR_AUTH, PLUGIN_ENDPOINT_ERROR_OTHER, }; /// contains information about the availability of the plugin endpoint class PluginEndpointStatus { public: /// current status of the plugin's endpoint PluginEndpointState state; /// average latency in ms int latency_ms; /// error code (e.g. the http one) int errcode; /// string description std::string explanation; /// when the status was checked last time_t lastcheck; /// We will like to be able to encode this info to a string, e.g. for external caching purposes int encodeToString(std::string &str); /// We will like to be able to encode this info to a string, e.g. for external caching purposes int decode(void *data, int sz); /// We will like to be able to encode this info to a string, e.g. for being monitored /// This func actually appends it to a given string int encodeToMonString(std::string &str); PluginEndpointStatus() { lastcheck = 0; state = PLUGIN_ENDPOINT_UNKNOWN; latency_ms = 0; errcode = 0; }; }; class PluginAvailabilityInfo { public: PluginAvailabilityInfo(int interval_ms = 5000, int latency_ms = 5000); /// Do we do any status checking at all? bool state_checking; /// How often the check has to be made int time_interval_ms; /// The maximum allowed latency int max_latency_ms; virtual bool isOK() { // A plugin can be used if it's ONLINE since 10 checks return ((status.state <= PLUGIN_ENDPOINT_ONLINE) && (time(0)-lastchange > time_interval_ms/100)); } bool getCheckRunning(); bool setCheckRunning(bool b); bool isExpired(time_t timenow); /// Gets the current status for this plugin/endpoint virtual void getStatus(PluginEndpointStatus &st); /// Sets the current status for this plugin/endpoint, set dirty virtual void setStatus(PluginEndpointStatus &st, bool setdirty, char *logname); virtual bool isDirty() { return status_dirty; } virtual void setDirty(bool d) { boost::unique_lock< boost::mutex > l(workmutex); status_dirty = d; } private: boost::mutex workmutex; bool isCheckRunning; /// The current status PluginEndpointStatus status; bool status_dirty; /// when the status changed last time time_t lastchange; }; /** LocationPlugin * Base class for a plugin which gathers info about files from some source. No assumption * is made about what source is this. * This base implementation acts as a default fake plugin, that puts test data * as responses. Very useful for testing. * */ class LocationPlugin : public PluginInterface { private: std::bitset<64> flags; int nthreads; /// Easy way to get threaded life friend void pluginFunc(LocationPlugin *pl, int myidx); friend void executor_findNewLocation(LocationPlugin* p, std::string new_lfn, std::shared_ptr<NewLocationHandler> handler); friend void executor_deleteReplica(LocationPlugin* p, std::string new_lfn, std::shared_ptr<DeleteReplicaHandler> handler); friend void executor_deleteDir(LocationPlugin* p, std::string new_lfn, std::shared_ptr<DeleteReplicaHandler> handler); friend void executor_mkDirMinusPonSiteFN(LocationPlugin* p, std::string lfn, std::shared_ptr<HandlerTraits> handler); public: enum workOp { wop_Nop = 0, wop_Stat, wop_Locate, wop_List, wop_Check, wop_CheckReplica }; enum Flag{ Readable=0, Writable=1, Listable=2 }; /// The description of an operation to be done asynchronously struct worktoken { /// FileInfo that refers to the file UgrFileInfo *fi; /// Operation to perform to gather info on the item workOp wop; LocationInfoHandler *handler; /// Alternative replica name to check for the given file std::string repl; /// Alternative prefix to locally prepend to the string being searched std::string altpfx; /// alternative execution task /// if operation is valid, execute only operation std::function<void (void)> operation; }; protected: /// The name assigned to this plugin from the creation std::string name; /// We keep a private thread pool and a synchronized work queue, in order to provide /// pure non blocking behaviour std::vector< boost::thread * > workers; /// Online/offline, etc PluginAvailabilityInfo availInfo; // Ext cache ExtCacheHandler *extCache; // Workaround for a bug in boost, where interrupt() hangs bool exiting; /// Tells us if this plugin is invoked directly by UgrConnector (slave=false) or by another plugin (slave=true) bool slave; /// Tells us if this plugin demands the validation of the replicas to the slave plugins bool replicaXlator; /// Queue of the pending operations std::deque< struct worktoken *> workqueue; /// Condvar for synchronizing the queue boost::condition_variable workcondvar; /// Mutex for protecting the queue boost::mutex workmutex; UgrLogger::bitmask pluglogmask; UgrLogger::component pluglogname; /// Push into the queue a new op to be performed, relative to an instance of UgrFileInfo void pushOp(UgrFileInfo *fi, LocationInfoHandler *handler, workOp wop = wop_Nop, char *newpfx = 0); /// Push generic operation to be performed void pushOp(const std::function<void (void)> & operation); void pushRepCheckOp(UgrFileInfo *fi, LocationInfoHandler *handler, std::string &rep); /// Gets the next op to perform struct worktoken *getOp(); /// The method that performs the operation /// This has to be overridden in the true plugins virtual void runsearch(struct worktoken *wtk, int myidx); /// Implement the Checker at the plugin level /// virtual void run_Check(int myidx); /// execute a findNewLocation operation, need to be implemented by the plugin /// @param fi UgrFileInfo instance to populate /// @param handler the location info handler to write into virtual int run_findNewLocation(const std::string & new_lfn, std::shared_ptr<NewLocationHandler> handler); /// executes a deleteReplica operation, this need to be implemented by the plugin /// virtual int run_deleteReplica(const std::string & lfn, std::shared_ptr<DeleteReplicaHandler> handler); /// executes a deleteDir operation, this need to be implemented by the plugin /// virtual int run_deleteDir(const std::string & lfn, std::shared_ptr<DeleteReplicaHandler> handler); /// executes a 'mkdir -p' operation on a replica URL, this need to be implemented by the plugin /// virtual int run_mkDirMinusPonSiteFN(const std::string &sitefn, std::shared_ptr<HandlerTraits> handler); // The simple, default global name translation std::vector<std::string> xlatepfx_from; std::string xlatepfx_to; // The prefix multiplier, to look for files in multiple dirs at once std::vector<std::string> pfxmultiply; /// Applies the plugin-specific name translation. This may depend also on the operation being requested. virtual int doNameXlation(std::string &from, std::string &to, workOp op, std::string &altpfx); /// Add parent directory if needed bool doParentQueryCheck(std::string & from, struct worktoken *wtk, int myidx); /// Invokes a full round of CheckReplica towards other slave plugins virtual void req_checkreplica(UgrFileInfo *fi, std::string &repl); public: LocationPlugin(UgrConnector & c, std::vector<std::string> &parms); virtual ~LocationPlugin(); virtual void stop(); virtual int start(ExtCacheHandler *c); /// Gives life to the object virtual int Tick(time_t timenow); virtual int isOK() { return availInfo.isOK(); } virtual bool canDoChecksum() { std::string pfx("locplugin."); pfx += name; pfx += ".candochecksum"; return UgrCFG->GetBool(pfx.c_str(), false); } /// Tells us if this plugin is invoked directly by UgrConnector (slave=false) or by another plugin (slave=true) bool isSlave() { return slave; }; /// Tells us if this plugin demands the validation of the replicas to the slave plugins bool isReplicaXlator() { return replicaXlator; } bool getFlag(Flag flag_type){ return flags[static_cast<size_t>(flag_type)]; } void setFlag(Flag flag_type, bool value){ flags[static_cast<size_t>(flag_type)] = value; } /// /// return the plugin name ( id ) /// virtual const std::string & get_Name() { return name; } // Calls that characterize the behavior of the plugin // In general: // do_XXX triggers the start of an async task that gathers a specific kind of info // it's not serialized, and it has to return immediately, exposing a non-blocking behavior // do_waitXXX waits for the completion of the task that was triggered by the corresponding // invokation of do_XXX. This is a blocking function, that must honour the timeout value that // is given // The async stat process will put (asynchronously) the required info directly in the data fields of // the given instance of UgrFileInfo. Access to this data struct has to be properly protected, since it's // a shared thing /// Start the async stat process /// @param fi UgrFileInfo instance to populate /// @param handler the location info handler to write into virtual int do_Stat(UgrFileInfo *fi, LocationInfoHandler *handler); /// Waits max a number of seconds for a stat process to be complete /// @param fi UgrFileInfo instance to wait for /// @param tmout Timeout for waiting virtual int do_waitStat(UgrFileInfo *fi, int tmout = 5); /// Start the async location process /// @param fi UgrFileInfo instance to populate /// @param handler the location info handler to write into virtual int do_Locate(UgrFileInfo *fi, LocationInfoHandler *handler); /// Waits max a number of seconds for a locate process to be complete /// @param fi UgrFileInfo instance to wait for /// @param tmout Timeout for waiting virtual int do_waitLocate(UgrFileInfo *fi, int tmout = 5); /// Start the async listing process /// @param fi UgrFileInfo instance to populate /// @param handler the location info handler to write into virtual int do_List(UgrFileInfo *fi, LocationInfoHandler *handler); /// Waits max a number of seconds for a list process to be complete /// @param fi UgrFileInfo instance to wait for /// @param tmout Timeout for waiting virtual int do_waitList(UgrFileInfo *fi, int tmout = 5); /// /// \brief async_findNewLocation /// \param new_lfn /// \param handler /// \return 0 if success, negative if plugin error /// /// Execute a findNewLocation query on this plugin asynchronously. this call run_findNewLocation internally /// int async_findNewLocation(const std::string & new_lfn, const std::shared_ptr<NewLocationHandler> & handler); /// /// \brief async_deleteReplica /// \param lfn /// \param handler /// \return 0 if success, negative if plugin error /// /// Execute a delete operation on this plugin asynchronously. this call run_deleteReplica internally /// int async_deleteReplica(const std::string & lfn, const std::shared_ptr<DeleteReplicaHandler> & handler); /// /// \brief async_deleteDir /// \param lfn /// \param handler /// \return 0 if success, negative if plugin error /// /// Execute a delete operation on this plugin asynchronously. this call run_deleteDir internally /// int async_deleteDir(const std::string & lfn, const std::shared_ptr<DeleteReplicaHandler> & handler); /// /// \brief async_mkDirMinusPonSiteFN /// \param lfn /// \param handler /// \return 0 if success, negative if plugin error /// /// Execute a 'mkdir -p' operation on this plugin asynchronously. this call run_mkDirMinusPonSiteFN internally /// int async_mkDirMinusPonSiteFN(const std::string & lfn, const std::shared_ptr<HandlerTraits> & handler); /// Asynchronously check if this plugin knows about the given replica /// Eventually add the replica /// @param fi UgrFileInfo instance to populate /// @param rep the replica to check /// @param handler the location info handler to write into virtual int do_CheckReplica(UgrFileInfo *fi, std::string &rep, LocationInfoHandler *handler); /// Asynchronously check the plugin Status void do_Check(int myidx); void appendMonString(std::string &mons); public: static const std::string & getConfigPrefix(); }; #endif
lines = readlines(ARGS[1]) function check_boards(check_val, boards) for (i, o) in enumerate(boards) if board_wins(check_val, boards[i][1], boards[i][2]) return boards[i][1], boards[i][2] else continue end end return nothing, nothing end function board_wins(check_val, check_board, result_board) for (row_i, row_v) in enumerate(check_board) for (col_i, col_v) in enumerate(row_v) if col_v == check_val result_board[row_i][col_i] = check_val break end end end if check_rows(result_board) return true elseif check_columns(result_board) return true else return false end end function check_columns(result_board) for (i, v) in enumerate(result_board[1]) if !isnothing(v) if size([row[i] for row in result_board if row[i] != ""]) == (5,) return true end end end return false end function check_rows(result_board) for row in result_board if size([x for x in row if x != ""]) == (5,) return true end end return false end function solution1(lines) moves = nothing boards = [] board = [] for (iter_val, line) in enumerate(lines) if iter_val == 1 moves = split(line, ",") elseif iter_val > 2 if line == "" append!(boards, [(board, [["" for i in 1:5] for i in 1:5])]) board = [] else append!(board, [split(line)]) end else continue end end (win_board, win_positions) = (nothing, nothing) skip = Int[] for move in moves for (i, o) in enumerate(boards) if i in skip continue end for (row_i, row_v) in enumerate(boards[i][1]) for (col_i, col_v) in enumerate(row_v) if col_v == move boards[i][2][row_i][col_i] = move break break end end end if check_rows(boards[i][2]) (win_board, win_positions) = boards[i] append!(skip, i) elseif check_columns(boards[i][2]) (win_board, win_positions) = boards[i] append!(skip, i) end end if isnothing(win_board) continue else sum_val = 0 for (row_i, row_v) in enumerate(win_positions) for (col_i, col_v) in enumerate(row_v) if col_v == "" sum_val += parse(Int, win_board[row_i][col_i]) end end end println(sum_val*parse(Int, move)) end (win_board, win_positions) = (nothing, nothing) end # moves = parse_moves(lines[1]) # lines = Array(lines) # println(lines[3:size(lines)]) # boards = parse_games(lines[3:-1]) return nothing end # function solution2(lines) # end solution1(lines)
""" streamplot(f::function, xinterval, yinterval; kwargs...) f must either accept `f(::Point)` or `f(x::Number, y::Number)`. f must return a Point2. Example: ```julia v(x::Point2{T}) where T = Point2f(x[2], 4*x[1]) streamplot(v, -2..2, -2..2) ``` ## Attributes $(ATTRIBUTES) ## Implementation See the function `Makie.streamplot_impl` for implementation details. """ @recipe(StreamPlot, f, limits) do scene merge( Attributes( stepsize = 0.01, gridsize = (32, 32, 32), maxsteps = 500, colormap = theme(scene, :colormap), colorrange = Makie.automatic, arrow_size = 10, arrow_head = automatic, density = 1.0, quality = 16 ), default_theme(scene, Lines) # so that we can theme the lines as needed. ) end function convert_arguments(::Type{<: StreamPlot}, f::Function, xrange, yrange) xmin, xmax = extrema(xrange) ymin, ymax = extrema(yrange) return (f, Rect(xmin, ymin, xmax - xmin, ymax - ymin)) end function convert_arguments(::Type{<: StreamPlot}, f::Function, xrange, yrange, zrange) xmin, xmax = extrema(xrange) ymin, ymax = extrema(yrange) zmin, zmax = extrema(zrange) mini = Vec3f(xmin, ymin, zmin) maxi = Vec3f(xmax, ymax, zmax) return (f, Rect(mini, maxi .- mini)) end function convert_arguments(::Type{<: StreamPlot}, f::Function, limits::Rect) return (f, limits) end scatterfun(N) = N == 2 ? scatter! : meshscatter! """ streamplot_impl(CallType, f, limits::Rect{N, T}, resolutionND, stepsize) Code adapted from an example implementation by Moritz Schauer (@mschauer) from https://github.com/JuliaPlots/Makie.jl/issues/355#issuecomment-504449775 Background: The algorithm puts an arrow somewhere and extends the streamline in both directions from there. Then, it chooses a new position (from the remaining ones), repeating the the exercise until the streamline gets blocked, from which on a new starting point, the process repeats. So, ideally, the new starting points for streamlines are not too close to current streamlines. Links: [Quasirandom sequences](http://extremelearning.com.au/unreasonable-effectiveness-of-quasirandom-sequences/) """ function streamplot_impl(CallType, f, limits::Rect{N, T}, resolutionND, stepsize, maxsteps=500, dens=1.0) where {N, T} resolution = to_ndim(Vec{N, Int}, resolutionND, last(resolutionND)) mask = trues(resolution...) # unvisited squares arrow_pos = Point{N, Float32}[] arrow_dir = Vec{N, Float32}[] line_points = Point{N, Float32}[] colors = Float64[] line_colors = Float64[] dt = Point{N, Float32}(stepsize) mini, maxi = minimum(limits), maximum(limits) r = ntuple(N) do i LinRange(mini[i], maxi[i], resolution[i] + 1) end apply_f(x0, P) = if P <: Point f(x0) else f(x0...) end # see http://extremelearning.com.au/unreasonable-effectiveness-of-quasirandom-sequences/ ϕ = (MathConstants.φ, 1.324717957244746, 1.2207440846057596)[N] acoeff = ϕ.^(-(1:N)) n_points = 0 # count visited squares ind = 0 # index of low discrepancy sequence while n_points < prod(resolution)*min(one(dens), dens) # fill up to 100*dens% of mask # next index from low discrepancy sequence c = CartesianIndex(ntuple(N) do i j = ceil(Int, ((0.5 + acoeff[i]*ind) % 1)*resolution[i]) clamp(j, 1, size(mask, i)) end) ind += 1 if mask[c] x0 = Point(ntuple(N) do i first(r[i]) + (c[i] - 0.5) * step(r[i]) end) point = apply_f(x0, CallType) if !(point isa Point2 || point isa Point3) error("Function passed to streamplot must return Point2 or Point3") end pnorm = norm(point) push!(arrow_pos, x0) push!(arrow_dir, point ./ pnorm) push!(colors, pnorm) mask[c] = false n_points += 1 for d in (-1, 1) n_linepoints = 1 x = x0 ccur = c push!(line_points, Point{N, Float32}(NaN), x) push!(line_colors, 0.0, pnorm) while x in limits && n_linepoints < maxsteps point = apply_f(x, CallType) pnorm = norm(point) x = x .+ d .* dt .* point ./ pnorm if !(x in limits) break end # WHAT? Why does point behave different from tuple in this # broadcast idx = CartesianIndex(searchsortedlast.(r, Tuple(x))) if idx != ccur if !mask[idx] break end mask[idx] = false n_points += 1 ccur = idx end push!(line_points, x) push!(line_colors, pnorm) n_linepoints += 1 end end end end return ( arrow_pos, arrow_dir, line_points, colors, line_colors, ) end function plot!(p::StreamPlot) data = lift(p.f, p.limits, p.gridsize, p.stepsize, p.maxsteps, p.density) do f, limits, resolution, stepsize, maxsteps, density P = if applicable(f, Point2f(0)) || applicable(f, Point3f(0)) Point else Number end streamplot_impl(P, f, limits, resolution, stepsize, maxsteps, density) end lines!( p, lift(x->x[3], data), color = lift(last, data), colormap = p.colormap, colorrange = p.colorrange, linestyle = p.linestyle, linewidth = p.linewidth, inspectable = p.inspectable, transparency = p.transparency ) N = ndims(p.limits[]) if N == 2 # && scatterplot.markerspace[] == Pixel (default) # Calculate arrow head rotations as angles. To avoid distortions from # (extreme) aspect ratios we need to project to pixel space and renormalize. scene = parent_scene(p) rotations = lift(scene.camera.projectionview, scene.px_area, data) do pv, pxa, data angles = map(data[1], data[2]) do pos, dir pstart = project(scene, pos) pstop = project(scene, pos .+ dir) pdir = pstop - pstart n = norm(pdir) if n == 0 zero(n) else angle = acos(pdir[2] / n) angle = ifelse(pdir[1] > 0, 2pi - angle, angle) end end Billboard(angles) end else rotations = map(x -> x[2], data) end scatterfun(N)( p, lift(first, data), markersize = p.arrow_size, marker = @lift(arrow_head(N, $(p.arrow_head), $(p.quality))), color = lift(x-> x[4], data), rotations = rotations, colormap = p.colormap, colorrange = p.colorrange, inspectable = p.inspectable, transparency = p.transparency ) end
/- Copyright (c) 2022 Yaël Dillies, Bhavik Mehta. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Yaël Dillies, Bhavik Mehta -/ import combinatorics.simple_graph.basic import order.partition.finpartition import tactic.positivity /-! # Edge density > THIS FILE IS SYNCHRONIZED WITH MATHLIB4. > Any changes to this file require a corresponding PR to mathlib4. This file defines the number and density of edges of a relation/graph. ## Main declarations Between two finsets of vertices, * `rel.interedges`: Finset of edges of a relation. * `rel.edge_density`: Edge density of a relation. * `simple_graph.interedges`: Finset of edges of a graph. * `simple_graph.edge_density`: Edge density of a graph. -/ open finset open_locale big_operators variables {𝕜 ι κ α β : Type*} /-! ### Density of a relation -/ namespace rel section asymmetric variables [linear_ordered_field 𝕜] (r : α → β → Prop) [Π a, decidable_pred (r a)] {s s₁ s₂ : finset α} {t t₁ t₂ : finset β} {a : α} {b : β} {δ : 𝕜} /-- Finset of edges of a relation between two finsets of vertices. -/ def interedges (s : finset α) (t : finset β) : finset (α × β) := (s ×ˢ t).filter $ λ e, r e.1 e.2 /-- Edge density of a relation between two finsets of vertices. -/ def edge_density (s : finset α) (t : finset β) : ℚ := (interedges r s t).card / (s.card * t.card) variables {r} lemma mem_interedges_iff {x : α × β} : x ∈ interedges r s t ↔ x.1 ∈ s ∧ x.2 ∈ t ∧ r x.1 x.2 := by simp only [interedges, and_assoc, mem_filter, finset.mem_product] lemma mk_mem_interedges_iff : (a, b) ∈ interedges r s t ↔ a ∈ s ∧ b ∈ t ∧ r a b := mem_interedges_iff @[simp] lemma interedges_empty_left (t : finset β) : interedges r ∅ t = ∅ := by rw [interedges, finset.empty_product, filter_empty] lemma interedges_mono (hs : s₂ ⊆ s₁) (ht : t₂ ⊆ t₁) : interedges r s₂ t₂ ⊆ interedges r s₁ t₁ := λ x, by { simp_rw mem_interedges_iff, exact λ h, ⟨hs h.1, ht h.2.1, h.2.2⟩ } variables (r) lemma card_interedges_add_card_interedges_compl (s : finset α) (t : finset β) : (interedges r s t).card + (interedges (λ x y, ¬r x y) s t).card = s.card * t.card := begin classical, rw [←card_product, interedges, interedges, ←card_union_eq, filter_union_filter_neg_eq], convert disjoint_filter.2 (λ x _, not_not.2), end lemma interedges_disjoint_left {s s' : finset α} (hs : disjoint s s') (t : finset β) : disjoint (interedges r s t) (interedges r s' t) := begin rw finset.disjoint_left at ⊢ hs, rintro x hx hy, rw [mem_interedges_iff] at hx hy, exact hs hx.1 hy.1, end lemma interedges_disjoint_right (s : finset α) {t t' : finset β} (ht : disjoint t t') : disjoint (interedges r s t) (interedges r s t') := begin rw finset.disjoint_left at ⊢ ht, rintro x hx hy, rw [mem_interedges_iff] at hx hy, exact ht hx.2.1 hy.2.1, end section decidable_eq variables [decidable_eq α] [decidable_eq β] lemma interedges_bUnion_left (s : finset ι) (t : finset β) (f : ι → finset α) : interedges r (s.bUnion f) t = s.bUnion (λ a, interedges r (f a) t) := ext $ λ a, by simp only [mem_bUnion, mem_interedges_iff, exists_and_distrib_right] lemma interedges_bUnion_right (s : finset α) (t : finset ι) (f : ι → finset β) : interedges r s (t.bUnion f) = t.bUnion (λ b, interedges r s (f b)) := ext $ λ a, by simp only [mem_interedges_iff, mem_bUnion, ←exists_and_distrib_left, ←exists_and_distrib_right] lemma interedges_bUnion (s : finset ι) (t : finset κ) (f : ι → finset α) (g : κ → finset β) : interedges r (s.bUnion f) (t.bUnion g) = (s ×ˢ t).bUnion (λ ab, interedges r (f ab.1) (g ab.2)) := by simp_rw [product_bUnion, interedges_bUnion_left, interedges_bUnion_right] end decidable_eq lemma card_interedges_le_mul (s : finset α) (t : finset β) : (interedges r s t).card ≤ s.card * t.card := (card_filter_le _ _).trans (card_product _ _).le lemma edge_density_nonneg (s : finset α) (t : finset β) : 0 ≤ edge_density r s t := by { apply div_nonneg; exact_mod_cast nat.zero_le _ } lemma edge_density_le_one (s : finset α) (t : finset β) : edge_density r s t ≤ 1 := div_le_one_of_le (by exact_mod_cast (card_interedges_le_mul _ _ _)) $ by exact_mod_cast (nat.zero_le _) lemma edge_density_add_edge_density_compl (hs : s.nonempty) (ht : t.nonempty) : edge_density r s t + edge_density (λ x y, ¬r x y) s t = 1 := begin rw [edge_density, edge_density, div_add_div_same, div_eq_one_iff_eq], { exact_mod_cast card_interedges_add_card_interedges_compl r s t }, { exact_mod_cast (mul_pos hs.card_pos ht.card_pos).ne' } end @[simp] lemma edge_density_empty_left (t : finset β) : edge_density r ∅ t = 0 := by rw [edge_density, finset.card_empty, nat.cast_zero, zero_mul, div_zero] @[simp] lemma edge_density_empty_right (s : finset α) : edge_density r s ∅ = 0 := by rw [edge_density, finset.card_empty, nat.cast_zero, mul_zero, div_zero] lemma card_interedges_finpartition_right [decidable_eq β] (s : finset α) (P : finpartition t) : (interedges r s t).card = ∑ b in P.parts, (interedges r s b).card := begin classical, simp_rw [←P.bUnion_parts, interedges_bUnion_right, id], rw card_bUnion, exact λ x hx y hy h, interedges_disjoint_right r _ (P.disjoint hx hy h), end lemma card_interedges_finpartition [decidable_eq α] [decidable_eq β] (P : finpartition s) (Q : finpartition t) : (interedges r s t).card = ∑ ab in P.parts ×ˢ Q.parts, (interedges r ab.1 ab.2).card := by simp_rw [card_interedges_finpartition_left _ P, card_interedges_finpartition_right _ _ Q, sum_product] lemma mul_edge_density_le_edge_density (hs : s₂ ⊆ s₁) (ht : t₂ ⊆ t₁) (hs₂ : s₂.nonempty) (ht₂ : t₂.nonempty) : (s₂.card : ℚ)/s₁.card * (t₂.card/t₁.card) * edge_density r s₂ t₂ ≤ edge_density r s₁ t₁ := begin have hst : (s₂.card : ℚ) * t₂.card ≠ 0 := by simp [hs₂.ne_empty, ht₂.ne_empty], rw [edge_density, edge_density, div_mul_div_comm, mul_comm, div_mul_div_cancel _ hst], refine div_le_div_of_le (by exact_mod_cast (s₁.card * t₁.card).zero_le) _, exact_mod_cast card_le_of_subset (interedges_mono hs ht), end lemma edge_density_sub_edge_density_le_one_sub_mul (hs : s₂ ⊆ s₁) (ht : t₂ ⊆ t₁) (hs₂ : s₂.nonempty) (ht₂ : t₂.nonempty) : edge_density r s₂ t₂ - edge_density r s₁ t₁ ≤ 1 - (s₂.card)/s₁.card * (t₂.card/t₁.card) := begin refine (sub_le_sub_left (mul_edge_density_le_edge_density r hs ht hs₂ ht₂) _).trans _, refine le_trans _ (mul_le_of_le_one_right _ (edge_density_le_one r s₂ t₂)), { rw [sub_mul, one_mul] }, refine sub_nonneg_of_le (mul_le_one _ (by positivity) _); exact div_le_one_of_le (nat.cast_le.2 (card_le_of_subset ‹_›)) (nat.cast_nonneg _), end lemma abs_edge_density_sub_edge_density_le_one_sub_mul (hs : s₂ ⊆ s₁) (ht : t₂ ⊆ t₁) (hs₂ : s₂.nonempty) (ht₂ : t₂.nonempty) : |edge_density r s₂ t₂ - edge_density r s₁ t₁| ≤ 1 - s₂.card/s₁.card * (t₂.card/t₁.card) := begin have habs : abs (edge_density r s₂ t₂ - edge_density r s₁ t₁) ≤ 1, { rw [abs_sub_le_iff, ←sub_zero (1 : ℚ)], split; exact sub_le_sub (edge_density_le_one r _ _) (edge_density_nonneg r _ _) }, refine abs_sub_le_iff.2 ⟨edge_density_sub_edge_density_le_one_sub_mul r hs ht hs₂ ht₂, _⟩, rw [←add_sub_cancel (edge_density r s₁ t₁) (edge_density (λ x y, ¬r x y) s₁ t₁), ←add_sub_cancel (edge_density r s₂ t₂) (edge_density (λ x y, ¬r x y) s₂ t₂), edge_density_add_edge_density_compl _ (hs₂.mono hs) (ht₂.mono ht), edge_density_add_edge_density_compl _ hs₂ ht₂, sub_sub_sub_cancel_left], exact edge_density_sub_edge_density_le_one_sub_mul _ hs ht hs₂ ht₂, end lemma abs_edge_density_sub_edge_density_le_two_mul_sub_sq (hs : s₂ ⊆ s₁) (ht : t₂ ⊆ t₁) (hδ₀ : 0 ≤ δ) (hδ₁ : δ < 1) (hs₂ : (1 - δ) * s₁.card ≤ s₂.card) (ht₂ : (1 - δ) * t₁.card ≤ t₂.card) : |(edge_density r s₂ t₂ : 𝕜) - edge_density r s₁ t₁| ≤ 2*δ - δ^2 := begin have hδ' : 0 ≤ 2 * δ - δ ^ 2, { rw [sub_nonneg, sq], exact mul_le_mul_of_nonneg_right (hδ₁.le.trans (by norm_num)) hδ₀ }, rw ←sub_pos at hδ₁, obtain rfl | hs₂' := s₂.eq_empty_or_nonempty, { rw [finset.card_empty, nat.cast_zero] at hs₂, simpa [edge_density, (nonpos_of_mul_nonpos_right hs₂ hδ₁).antisymm (nat.cast_nonneg _)] using hδ' }, obtain rfl | ht₂' := t₂.eq_empty_or_nonempty, { rw [finset.card_empty, nat.cast_zero] at ht₂, simpa [edge_density, (nonpos_of_mul_nonpos_right ht₂ hδ₁).antisymm (nat.cast_nonneg _)] using hδ' }, rw [show 2 * δ - δ ^ 2 = 1 - (1 - δ) * (1 - δ), by ring], norm_cast, refine (rat.cast_le.2 $ abs_edge_density_sub_edge_density_le_one_sub_mul r hs ht hs₂' ht₂').trans _, push_cast, have := hs₂'.mono hs, have := ht₂'.mono ht, refine sub_le_sub_left (mul_le_mul ((le_div_iff _).2 hs₂) ((le_div_iff _).2 ht₂) hδ₁.le _) _; positivity, end /-- If `s₂ ⊆ s₁`, `t₂ ⊆ t₁` and they take up all but a `δ`-proportion, then the difference in edge densities is at most `2 * δ`. -/ lemma abs_edge_density_sub_edge_density_le_two_mul (hs : s₂ ⊆ s₁) (ht : t₂ ⊆ t₁) (hδ : 0 ≤ δ) (hscard : (1 - δ) * s₁.card ≤ s₂.card) (htcard : (1 - δ) * t₁.card ≤ t₂.card) : |(edge_density r s₂ t₂ : 𝕜) - edge_density r s₁ t₁| ≤ 2 * δ := begin cases lt_or_le δ 1, { exact (abs_edge_density_sub_edge_density_le_two_mul_sub_sq r hs ht hδ h hscard htcard).trans ((sub_le_self_iff _).2 $ sq_nonneg δ) }, rw two_mul, refine (abs_sub _ _).trans (add_le_add (le_trans _ h) (le_trans _ h)); { rw abs_of_nonneg, exact_mod_cast edge_density_le_one r _ _, exact_mod_cast edge_density_nonneg r _ _ } end end asymmetric section symmetric variables (r : α → α → Prop) [decidable_rel r] {s s₁ s₂ t t₁ t₂ : finset α} {a b : α} variables {r} (hr : symmetric r) include hr @[simp] lemma swap_mem_interedges_iff {x : α × α} : x.swap ∈ interedges r s t ↔ x ∈ interedges r t s := by { rw [mem_interedges_iff, mem_interedges_iff, hr.iff], exact and.left_comm } lemma mk_mem_interedges_comm : (a, b) ∈ interedges r s t ↔ (b, a) ∈ interedges r t s := @swap_mem_interedges_iff _ _ _ _ _ hr (b, a) lemma card_interedges_comm (s t : finset α) : (interedges r s t).card = (interedges r t s).card := finset.card_congr (λ (x : α × α) _, x.swap) (λ x, (swap_mem_interedges_iff hr).2) (λ _ _ _ _ h, prod.swap_injective h) (λ x h, ⟨x.swap, (swap_mem_interedges_iff hr).2 h, x.swap_swap⟩) lemma edge_density_comm (s t : finset α) : edge_density r s t = edge_density r t s := by rw [edge_density, mul_comm, card_interedges_comm hr, edge_density] end symmetric end rel open rel /-! ### Density of a graph -/ namespace simple_graph variables (G : simple_graph α) [decidable_rel G.adj] {s s₁ s₂ t t₁ t₂ : finset α} {a b : α} /-- Finset of edges of a relation between two finsets of vertices. -/ def interedges (s t : finset α) : finset (α × α) := interedges G.adj s t /-- Density of edges of a graph between two finsets of vertices. -/ def edge_density : finset α → finset α → ℚ := edge_density G.adj lemma interedges_def (s t : finset α) : G.interedges s t = (s ×ˢ t).filter (λ e, G.adj e.1 e.2) := rfl lemma edge_density_def (s t : finset α) : G.edge_density s t = (G.interedges s t).card / (s.card * t.card) := rfl @[simp] lemma card_interedges_div_card (s t : finset α) : ((G.interedges s t).card : ℚ) / (s.card * t.card) = G.edge_density s t := rfl lemma mem_interedges_iff {x : α × α} : x ∈ G.interedges s t ↔ x.1 ∈ s ∧ x.2 ∈ t ∧ G.adj x.1 x.2 := mem_interedges_iff lemma mk_mem_interedges_iff : (a, b) ∈ G.interedges s t ↔ a ∈ s ∧ b ∈ t ∧ G.adj a b := mk_mem_interedges_iff @[simp] lemma interedges_empty_left (t : finset α) : G.interedges ∅ t = ∅ := interedges_empty_left _ lemma interedges_mono : s₂ ⊆ s₁ → t₂ ⊆ t₁ → G.interedges s₂ t₂ ⊆ G.interedges s₁ t₁ := interedges_mono lemma interedges_disjoint_left (hs : disjoint s₁ s₂) (t : finset α) : disjoint (G.interedges s₁ t) (G.interedges s₂ t) := interedges_disjoint_left _ hs _ lemma interedges_disjoint_right (s : finset α) (ht : disjoint t₁ t₂) : disjoint (G.interedges s t₁) (G.interedges s t₂) := interedges_disjoint_right _ _ ht section decidable_eq variables [decidable_eq α] lemma interedges_bUnion_left (s : finset ι) (t : finset α) (f : ι → finset α) : G.interedges (s.bUnion f) t = s.bUnion (λ a, G.interedges (f a) t) := interedges_bUnion_left _ _ _ _ lemma interedges_bUnion_right (s : finset α) (t : finset ι) (f : ι → finset α) : G.interedges s (t.bUnion f) = t.bUnion (λ b, G.interedges s (f b)) := interedges_bUnion_right _ _ _ _ lemma interedges_bUnion (s : finset ι) (t : finset κ) (f : ι → finset α) (g : κ → finset α) : G.interedges (s.bUnion f) (t.bUnion g) = (s ×ˢ t).bUnion (λ ab, G.interedges (f ab.1) (g ab.2)) := interedges_bUnion _ _ _ _ _ lemma card_interedges_add_card_interedges_compl (h : disjoint s t) : (G.interedges s t).card + (Gᶜ.interedges s t).card = s.card * t.card := begin rw [←card_product, interedges_def, interedges_def], have : (s ×ˢ t).filter (λ e , Gᶜ.adj e.1 e.2) = (s ×ˢ t).filter (λ e , ¬ G.adj e.1 e.2), { refine filter_congr (λ x hx, _), rw mem_product at hx, rw [compl_adj, and_iff_right (h.forall_ne_finset hx.1 hx.2)] }, rw [this, ←card_union_eq, filter_union_filter_neg_eq], exact disjoint_filter.2 (λ x _, not_not.2), end lemma edge_density_add_edge_density_compl (hs : s.nonempty) (ht : t.nonempty) (h : disjoint s t) : G.edge_density s t + Gᶜ.edge_density s t = 1 := begin rw [edge_density_def, edge_density_def, div_add_div_same, div_eq_one_iff_eq], { exact_mod_cast card_interedges_add_card_interedges_compl _ h }, { positivity } end end decidable_eq lemma card_interedges_le_mul (s t : finset α) : (G.interedges s t).card ≤ s.card * t.card := card_interedges_le_mul _ _ _ lemma edge_density_nonneg (s t : finset α) : 0 ≤ G.edge_density s t := edge_density_nonneg _ _ _ lemma edge_density_le_one (s t : finset α) : G.edge_density s t ≤ 1 := edge_density_le_one _ _ _ @[simp] lemma edge_density_empty_left (t : finset α) : G.edge_density ∅ t = 0 := edge_density_empty_left _ _ @[simp] lemma edge_density_empty_right (s : finset α) : G.edge_density s ∅ = 0 := edge_density_empty_right _ _ @[simp] lemma swap_mem_interedges_iff {x : α × α} : x.swap ∈ G.interedges s t ↔ x ∈ G.interedges t s := swap_mem_interedges_iff G.symm lemma mk_mem_interedges_comm : (a, b) ∈ G.interedges s t ↔ (b, a) ∈ G.interedges t s := mk_mem_interedges_comm G.symm lemma edge_density_comm (s t : finset α) : G.edge_density s t = G.edge_density t s := edge_density_comm G.symm s t end simple_graph namespace tactic open positivity /-- Extension for the `positivity` tactic: `rel.edge_density` and `simple_graph.edge_density` are always nonnegative. -/ @[positivity] meta def positivity_edge_density : expr → tactic strictness | `(rel.edge_density %%r %%s %%t) := nonnegative <$> mk_mapp ``rel.edge_density_nonneg [none, none, r, none, s, t] | `(simple_graph.edge_density %%G %%s %%t) := nonnegative <$> mk_mapp ``simple_graph.edge_density_nonneg [none, G, none, s, t] | e := pp e >>= fail ∘ format.bracket "The expression `" "` isn't of the form `rel.edge_density r s t` nor `simple_graph.edge_density G s t`" end tactic
Ruler 8 was the last of the successful warrior kings of Toniná . He celebrated a series of events between 789 and 806 , including the defeat of <unk> in 789 , and the capture of the ruler Ucha 'an Aj Chih , who appears to have been the vassal of B 'olon K 'awiil of Calakmul . In 799 he rededicated the tomb of Ruler 1 . Ruler 8 oversaw an extensive remodelling of the upper levels of the Acropolis . Ruler 8 erected a number of sculptures of bound prisoners of war and adopted the title aj b 'olon b 'aak , " He of Many Captives " . However , the lesser extent of Toniná 's power is evident from its victory over the site of Sak Tz 'i ' ( White Dog ) , an important city in the Lacandon region , an area which had once been dominated by Toniná .
## Author: Sergio García Prado rm(list = ls()) y <- c(7, 6, 8, 16, 13) k <- length(y) n <- sum(y) LogLikelihood <- function(p, y, k) { sum(y[1:(k - 1)] * log(p)) + y[k] * log(1 - sum(p)) } NegativeLogLikelihood <- function(...) { - LogLikelihood(...) } p.hat.initial <- rep(1 / k, k - 1) opt <- optim(p.hat.initial[1:(k - 1)], NegativeLogLikelihood, y = y, k = k, hessian = TRUE) (p.hat <- opt$par) # 0.139976175373378 0.120217883250931 0.159986995019396 0.319854212163691 (p.hat.var <- solve(opt$hessian)) # 0.0024070858 -0.0003370446 -0.0004477195 -0.0008948212 # -0.0003370446 0.0021183563 -0.0003852716 -0.0007700115 # -0.0004477195 -0.0003852716 0.0026874471 -0.0010228592 # -0.0008948212 -0.0007700115 -0.0010228592 0.0043497380 ## a) #### LogLikelihood1H0 <- function(theta, y, k) { LogLikelihood(c(theta[1], theta[1], theta[1], theta[2]), y, k) } NegativeLogLikelihood1H0 <- function(...) { - LogLikelihood1H0(...) } opt1.hzero <- optim(c(0.1, 0.1), NegativeLogLikelihood1H0, y = y, k = k, hessian = TRUE) (LRT1 <- 2 * (LogLikelihood(p.hat, y, k) - LogLikelihood1H0(opt1.hzero$par, y, k))) # 0.286670914555231 (LRT1.pvalue <- 1 - pchisq(LRT1, df = (k - 1) - 3)) # 0.59236182742952 ## b) #### g1 <- function(p) { c(p[1] - p[2], p[1] - p[3], p[1] + p[2] + p[3] + 2 * p[4] - 1) } g1.derivative <- function(p) { matrix(c(1, -1, 0, 0, 1, 0, -1, 0, 1, 1, 1, 2), 3, 4, byrow = TRUE) } (g1.hat <- g1(p.hat)) # 0.0197582921224479 -0.0200108196460179 0.059889477971087 (g1.hat.var <- g1.derivative(p.hat) %*% p.hat.var %*% t(g1.derivative(p.hat))) # 5.199531e-03 2.806578e-03 -2.333792e-05 # 2.806578e-03 5.989972e-03 2.394155e-05 # -2.333792e-05 2.394155e-05 1.152100e-02 (W1 <- t(g1.hat - rep(0, 3)) %*% solve(g1.hat.var) %*% (g1.hat - rep(0, 3))) # 0.6002303 (W1.pvalue <- 1 - pchisq(W1, df = (k - 1) - 3)) # 0.4384902 ## c) #### LogLikelihood2H0 <- function(theta, y, k) { LogLikelihood(c(theta[1], 2 * theta[1], theta[2], theta[2]), y, k) } NegativeLogLikelihood2H0 <- function(...) { - LogLikelihood2H0(...) } opt2.hzero <- optim(c(0.1, 0.1), NegativeLogLikelihood2H0, y = y, k = k, hessian = TRUE) (LRT2 <- 2 * (LogLikelihood(p.hat, y, k) - LogLikelihood2H0(opt2.hzero$par, y, k))) # 5.01968859661113 (LRT2.pvalue <- 1 - pchisq(LRT2, df = (k - 1) - 2)) # 0.0812808938285899 ## d) #### g2 <- function(p) { c(p[2] - 2 * p[1], p[3] - p[4]) } g2.derivative <- function(p) { matrix(c(-2, 1, 0, 0, 0, 1, -1, 0), 2, 4, byrow = TRUE) } (g2.hat <- g2(p.hat)) # -0.120217883250931 -0.159867217144294 (g2.hat.var <- g2.derivative(p.hat) %*% p.hat.var %*% t(g2.derivative(p.hat))) # 0.013094878 0.002282278 # 0.002282278 0.005576347 (W2 <- t(g2.hat - rep(0, 2)) %*% solve(g2.hat.var) %*% (g2.hat - rep(0, 2))) # 5.314512 (W2.pvalue <- 1 - pchisq(W2, df = (k - 1) - 2)) # 0.07014043
Require Import List ListSet basic Morphisms RelationClasses Equivalence. Import ListNotations. Section Definitions. Definition union_fold {A B} (eq_dec : dec_type B) (f : A -> set B) (s : set A) (base : set B) : set B := set_fold_left (fun acc a => set_union eq_dec acc (f a)) s base. Definition union_map {A B} (eq_dec : dec_type B) (f : A -> set B) (s : set A) : set B := union_fold eq_dec f s (empty_set _). Definition triple_union_fold {A B C D} (Beq_dec : dec_type B) (Ceq_dec : dec_type C) (Deq_dec : dec_type D) (f : A -> (set B * set C * set D)) (l : set A) (base : set B * set C * set D) : (set B * set C * set D) := set_fold_left (fun (acc : (set B * set C * set D)) (a : A) => match acc with (bs,cs,ds) => match f a with (bs',cs',ds') => (set_union Beq_dec bs bs', set_union Ceq_dec cs cs', set_union Deq_dec ds ds') end end) l base. Definition triple_union_map {A B C D} (Beq_dec : dec_type B) (Ceq_dec : dec_type C) (Deq_dec : dec_type D) (f : A -> (set B * set C * set D)) (l : set A) : (set B * set C * set D) := triple_union_fold Beq_dec Ceq_dec Deq_dec f l ((empty_set _),(empty_set _),(empty_set _)). Definition Subset {A} (s s' : set A) := forall x, In x s -> In x s'. Definition Set_equiv {A} (s s' : set A) := Subset s s' /\ Subset s' s. Fixpoint dedup {A} (eq_dec : dec_type A) (s : set A) := match s with nil => nil | a::s' => if set_mem eq_dec a s' then dedup eq_dec s' else a::(dedup eq_dec s') end. Fixpoint set_remove_all {A} (eq_dec : dec_type A) (a : A) (s : set A) := match s with nil => nil | a'::s' => if eq_dec a a' then set_remove_all eq_dec a s' else a'::(set_remove_all eq_dec a s') end. End Definitions. Global Program Instance subset_refl {A} : Reflexive (@Subset A). Next Obligation. intros y Hin; auto. Qed. Hint Immediate subset_refl. Global Program Instance subset_trans {A} : Transitive (@Subset A). Next Obligation. intros w Hin; apply H,H0 in Hin; assumption. Qed. Global Program Instance set_equiv_equiv {A} : Equivalence (@Set_equiv A). Next Obligation. intro; split; reflexivity. Qed. Next Obligation. intros ? ? [? ?]; split; auto. Qed. Next Obligation. intros ? ? ? [H ?] [H1 ?]; split; intros ? ?;[apply H1,H|]; auto. Qed. Section Facts. Variables (A : Type) (Aeq_dec : dec_type A). Lemma set_add_elim_LEM : forall (s : set A) a b, set_In a (set_add Aeq_dec b s) -> (a = b /\ ~ set_In a s) \/ set_In a s. Proof. intros s a ? H; destruct (set_add_elim _ _ _ _ H); [destruct (set_In_dec Aeq_dec a s)|]; auto. Qed. Theorem set_union_elim_LEM : forall (s s' : set A) a, set_In a (set_union Aeq_dec s s') -> set_In a s \/ (set_In a s' /\ ~ set_In a s). Proof. intros s ? a H; destruct (set_union_elim _ _ _ _ H);[|destruct (set_In_dec Aeq_dec a s)]; auto. Qed. Lemma set_add_nodup : forall (s : set A) a, NoDup s -> NoDup (set_add Aeq_dec a s). Proof. induction s as [|a' s IH]; intros; simpl; [constructor; [intro bad; inversion bad|constructor] |destruct (Aeq_dec a a'); [|inversion H as [|? ? Hnin Hdup]; subst; specialize (IH a Hdup); constructor; [intro Hin; apply set_add_elim2 in Hin;[apply Hnin in Hin|] |]]]; auto. Qed. Lemma set_union_nodup : forall (s s' : set A), NoDup s -> NoDup (set_union Aeq_dec s s'). Proof. induction s'; intro nds; [|apply set_add_nodup];auto. Qed. Theorem set_remove_in : forall (s : set A) (a a' : A), set_In a (set_remove Aeq_dec a' s) -> set_In a s. Proof. induction s as [|a_ s IH]; intros a a' H; [inversion H |simpl in H; destruct (Aeq_dec a' a_); [right; auto |inversion H; [subst; left|right; apply (IH a a')]; auto]]. Qed. Theorem set_remove_all_in : forall (s : set A) (a a' : A), set_In a (set_remove_all Aeq_dec a' s) -> set_In a s. Proof. induction s as [|a_ s IH]; intros a a' H; [inversion H |simpl in H; destruct (Aeq_dec a' a_); [subst; right; apply (IH a a_); auto |inversion H; [subst; left|right; apply (IH a a')]]]; auto. Qed. Theorem set_remove_all_neq : forall (s : set A) (a a' : A), set_In a (set_remove_all Aeq_dec a' s) -> a <> a'. Proof. induction s as [|a_ s IH]; intros a a' H; [inversion H |simpl in H; destruct (Aeq_dec a' a_); [|inversion H];subst]; auto. Qed. Theorem set_remove_all_neq_in : forall (s : set A) (a a' : A), set_In a s -> a <> a' -> set_In a (set_remove_all Aeq_dec a' s). Proof. induction s as [|a_ s IH]; intros a a' Hin Hneq; [inversion Hin |simpl; destruct (Aeq_dec a' a_); inversion Hin; subst; [bad_eq|apply IH |left |right; apply IH]]; auto. Qed. Theorem set_remove_all_notin : forall a (s : set A), ~ set_In a (set_remove_all Aeq_dec a s). Proof. induction s; [intros bad; inversion bad |simpl; destruct (Aeq_dec a a0); [subst|intro bad; inversion bad; [subst;bad_eq|]]; auto]. Qed. Global Program Instance set_union_respects : Proper (Set_equiv ==> Set_equiv ==> Set_equiv) (set_union Aeq_dec). Next Obligation. intros x y H0 z w H1; split; intros u Hin; (destruct (set_union_elim Aeq_dec _ _ _ Hin); [apply set_union_intro1, H0 |apply set_union_intro2, H1]; auto). Qed. Global Program Instance set_remove_all_respects : Proper ((@eq A) ==> Set_equiv ==> Set_equiv) (set_remove_all Aeq_dec). Next Obligation. intros ? ? Heq s s' [Sub Sub']; split; intros u Hin; (subst; cut (In u s'); [cut (u <> y); [intros Hin' Hneq; apply set_remove_all_neq_in; try apply Sub' |apply (set_remove_all_neq _ _ _ Hin)] |apply set_remove_all_in in Hin; (apply Sub in Hin || apply Sub' in Hin)]; auto). Qed. Global Program Instance set_add_respects : Proper ((@eq A) ==> Set_equiv ==> Set_equiv) (set_add Aeq_dec). Next Obligation. intros ? ? Heq s s' [Sub Sub']; subst; split; intros u Hin; (destruct (set_add_elim Aeq_dec _ _ _ Hin) as [|Hin']; [subst; apply set_add_intro2; reflexivity |(apply Sub in Hin' || apply Sub' in Hin'); apply set_add_intro1]; auto). Qed. Global Program Instance set_diff_respects : Proper (Set_equiv ==> Set_equiv ==> Set_equiv) (set_diff Aeq_dec). Next Obligation. intros u v [Subv Subu] s s' [Subs Subs']; split; intros x Hin; (pose (need0 := set_diff_elim1 _ _ _ _ Hin); pose (need1 := set_diff_elim2 _ _ _ _ Hin); (apply Subv in need0 || apply Subu in need0); ((cut (~ In x s');[intro; apply set_diff_intro; auto|intro xs'; apply Subs' in xs'; contradiction]) ||(cut (~ In x s);[intro; apply set_diff_intro; auto|intro xs'; apply Subs in xs'; contradiction]))). Qed. Theorem dedup_notin : forall (s : set A) a, ~ set_In a s -> ~ set_In a (dedup Aeq_dec s). Proof. induction s; intros a' Hnin bad; [inversion bad|simpl in bad;case_eq (set_mem Aeq_dec a s); intro res; rewrite res in bad;[apply IHs in bad; [|intro bad'; apply Hnin; right]; auto|]]. inversion bad; [subst; apply Hnin; left; reflexivity|apply IHs in H; [|intro bad'; apply Hnin; right]]; auto. Qed. Theorem dedup_in : forall (s : set A) a, set_In a (dedup Aeq_dec s) -> set_In a s. Proof. induction s; intros a' Hin; [inversion Hin|simpl in Hin]. case_eq (set_mem Aeq_dec a s); intro res; rewrite res in Hin. apply IHs in Hin; right; auto. inversion Hin; [subst; left|apply IHs in H; right]; auto. Qed. Theorem in_dedup : forall (s : set A) a, set_In a s -> set_In a (dedup Aeq_dec s). Proof. induction s; intros a' Hin; [inversion Hin|simpl]. case_eq (set_mem Aeq_dec a s); intro res; [apply set_mem_correct1 in res; apply IHs; inversion Hin; subst; auto |inversion Hin; subst; [left|right; apply IHs]; auto]. Qed. Theorem dedup_nodup : forall (s : set A), NoDup (dedup Aeq_dec s). Proof. induction s;[constructor|simpl; case_eq (set_mem Aeq_dec a s);intro res;[auto|apply set_mem_complete1 in res]]. apply dedup_notin in res; constructor; auto. Qed. Global Program Instance dedup_respects : Proper (Set_equiv ==> Set_equiv) (dedup Aeq_dec). Next Obligation. intros s s' [Subs Subs']; split; intros ? ?; apply in_dedup; [apply Subs|apply Subs']; apply dedup_in; auto. Qed. Theorem fold_left_nodup : forall B (f: set A -> B -> set A) (fprop : forall X b, NoDup X -> NoDup (f X b)) (s : set B) (b : set A), NoDup b -> NoDup (set_fold_left f s b). Proof. induction s; intros b ndb;[|apply IHs, fprop]; auto. Qed. Theorem union_map_nodup : forall B (f : B -> set A) s, NoDup (union_map Aeq_dec f s). Proof. intros; apply fold_left_nodup; [intros; apply set_union_nodup; auto |constructor]. Qed. Theorem union_fold_base_subset : forall B (f: B -> set A) (s : set B) (base : set A), Subset base (union_fold Aeq_dec f s base). Proof. induction s as [|b s IH]; intros base; simpl. reflexivity. transitivity (set_union Aeq_dec base (f b)); [intros ? ?; apply set_union_intro1; auto|apply IH]. Qed. Theorem fold_left_subset : forall B (f: B -> set A) (s : set B) (base : set A), Subset base (set_fold_left (fun acc b => set_union Aeq_dec acc (f b)) s base). Proof. induction s; intros b a' Hin. auto. simpl in *. apply IHs. apply set_union_intro1; auto. Qed. Theorem union_subset1 : forall {B} (Beq_dec : dec_type B) (s s' s'' : set B), Subset (set_union Beq_dec s s') s'' -> Subset s s''. Proof. intros; intros x Hin; apply (set_union_intro1 Beq_dec _ _ s'),H in Hin; auto. Qed. Theorem union_subset2 : forall {B} (Beq_dec : dec_type B) (s s' s'' : set B), Subset (set_union Beq_dec s s') s'' -> Subset s' s''. Proof. intros; intros x Hin; apply (set_union_intro2 Beq_dec _ _ s'),H in Hin; auto. Qed. Definition Triple_subset {A B C} (s s' : set A * set B * set C) : Prop := match s,s' with (As,Bs,Cs),(As',Bs',Cs') => Subset As As' /\ Subset Bs Bs' /\ Subset Cs Cs' end. Theorem triple_union_fold_base_subset : forall B C D (Beq_dec : dec_type B) (Ceq_dec : dec_type C) (f: D -> set A * set B * set C) (s : set D) (base : set A * set B * set C), Triple_subset base (triple_union_fold Aeq_dec Beq_dec Ceq_dec f s base). Proof. induction s; intros [[Bas Bbs] Bcs]. hnf; repeat split; reflexivity. simpl. specialize (IHs (let (p, ds') := f a in let (bs', cs') := p in (set_union Aeq_dec Bas bs', set_union Beq_dec Bbs cs', set_union Ceq_dec Bcs ds'))). destruct (f a) as [[bs' cs'] ds']. destruct (triple_union_fold Aeq_dec Beq_dec Ceq_dec f s (set_union Aeq_dec Bas bs', set_union Beq_dec Bbs cs', set_union Ceq_dec Bcs ds')) as [[As' Bs'] Cs']. destruct IHs as [X [Y Z]]; repeat split; solve [eapply union_subset1; eauto| eapply union_subset2; eauto]. Qed. Theorem fold_left_subset_in : forall B (f: B -> set A) (s : set B) (base : set A) b, In b s -> Subset (f b) (set_fold_left (fun acc b => set_union Aeq_dec acc (f b)) s base). Proof. induction s; intros base b Hin a' Hin'. inversion Hin. simpl in *. inversion Hin as [Heq|Hrest]. subst; apply union_fold_base_subset,set_union_intro2; auto. apply (IHs (set_union Aeq_dec base (f a)) b Hrest); auto. Qed. Theorem union_fold_subset_in : forall B (f: B -> set A) (s : set B) (base : set A) b, In b s -> Subset (f b) (union_fold Aeq_dec f s base). Proof. intros; apply fold_left_subset_in; auto. Qed. Theorem triple_union_fold_subset_in : forall B C D (Beq_dec : dec_type B) (Ceq_dec : dec_type C) (f: D -> set A * set B * set C) (s : set D) (base : set A * set B * set C) d, In d s -> Triple_subset (f d) (triple_union_fold Aeq_dec Beq_dec Ceq_dec f s base). Proof. induction s; intros base d Hin; inversion Hin; [subst|apply IHs; auto]. case_eq (triple_union_fold Aeq_dec Beq_dec Ceq_dec f s (let (p, ds) := base in let (bs, cs) := p in let (p0, ds') := f d in let (bs', cs') := p0 in (set_union Aeq_dec bs bs', set_union Beq_dec cs cs', set_union Ceq_dec ds ds'))). intros [As' Bs'] Cs' peq. pose (L := triple_union_fold_base_subset). specialize (L _ _ _ Beq_dec Ceq_dec f s (let (p, ds) := base in let (bs, cs) := p in let (p0, ds') := f d in let (bs', cs') := p0 in (set_union Aeq_dec bs bs', set_union Beq_dec cs cs', set_union Ceq_dec ds ds'))). rewrite peq in L. simpl; rewrite peq. destruct base as [[bs cs] ds]. destruct (f d) as [[a b] c]. destruct L as [Asub [Bsub Csub]]; repeat split; solve [eapply union_subset1; eauto | eapply union_subset2; eauto]. Qed. Theorem union_map_subset : forall B (f : B -> set A) s b, In b s -> Subset (f b) (union_map Aeq_dec f s). Proof. intros; apply union_fold_subset_in; auto. Qed. Theorem triple_union_map_subset : forall B C D (Beq_dec : dec_type B) (Ceq_dec : dec_type C) (f : D -> (set A * set B * set C)) (s : set D) d, set_In d s -> Triple_subset (f d) (triple_union_map Aeq_dec Beq_dec Ceq_dec f s). Proof. intros; apply triple_union_fold_subset_in; auto. Qed. Lemma in_set_ind : forall A (P : set A -> Prop), P nil -> forall s', (forall s a, P s /\ In a s' /\ Subset s s' -> P (a :: s)) -> P s'. induction s'; intros; auto. apply H0; split. apply IHs'; intros ? ? [? [? ?]]. apply H0; repeat split; [|right|intros x X; apply H3 in X;right]; auto. (* Todo *) split;[left|right];auto. Qed. Theorem union_folded_property : forall B (f : B -> set A) (P : A -> Prop) s base (fprop : forall b, set_In b s -> Forall P (f b)), Forall P base -> Forall P (union_fold Aeq_dec f s base). Proof. intros ? ? ? s; apply (@in_set_ind _ (fun s => forall base (fprop : forall b, set_In b s -> Forall P (f b)), Forall P base -> Forall P (union_fold Aeq_dec f s base))). intros base fprop allbase; auto. intros s' a [IH [ains Hsub]] base fprop allbase. simpl; apply IH. intros b Hin; apply fprop; right; auto. rewrite Forall_forall; intros x Hin; apply set_union_elim in Hin. destruct Hin as [inbase|inf]. rewrite Forall_forall in allbase; apply allbase; auto. specialize (fprop a (or_introl (eq_refl _))); rewrite Forall_forall in fprop; apply fprop; auto. Qed. (* Inductive Forall3 {D B C} (P : D -> B -> C -> Prop) : list D -> list B -> list C -> Prop := nil_forall3 : Forall3 P nil nil nil | cons_forall3 : forall d b c Ds Bs Cs, Forall3 P Ds Bs Cs -> P d b c -> Forall3 P (d::Ds) (b::Bs) (c::Cs). Fixpoint In3 {D B C} (d : D) (b : B) (c : C) (Ds : list D) (Bs : list B) (Cs : list C) : Prop := length Ds = length Bs /\ length Bs = length Cs /\ match Ds,Bs,Cs with d'::Ds,b'::Bs,c'::Cs => (d = d' /\ b' = b /\ c' = c) \/ (In3 d b c Ds Bs Cs) | nil,nil,nil => False | _,_,_ => True (* bad lists just make this meaningless *) end. Fixpoint list3 {D B C} (Ds : list D) (Bs : list B) (Cs : list C) : Prop := match Ds,Bs,Cs with d'::Ds,b'::Bs,c'::Cs => (list3 Ds Bs Cs) | _,_,_ => True end. Functional Scheme in3_ind := Induction for list3 Sort Prop. Theorem Forall3_forall : forall D B C (P : D -> B -> C -> Prop) (Ds : list D) (Bs : list B) (Cs : list C), (Forall3 P Ds Bs Cs) <-> (length Ds = length Bs /\ length Bs = length Cs /\ forall d b c, In3 d b c Ds Bs Cs -> P d b c). Proof. intros; split. intro H; induction H; repeat split. intros d b c Hin; inversion Hin. intuition. destruct IHForall3 as [len0 [len1 IH]]; simpl; auto. destruct IHForall3 as [len0 [len1 IH]]; simpl; auto. intros d' b' c' Hin. inversion Hin as [len0 [len1 [[dd [bb cc]]|Hrest]]]. subst; auto. apply IHForall3; auto. apply (@in3_ind _ _ _ (fun Ds Bs Cs prp => prp -> length Ds = length Bs /\ length Bs = length Cs /\ (forall d b c, In3 d b c Ds Bs Cs -> P d b c) -> Forall3 P Ds Bs Cs)); intros; try solve [auto |contradiction|intuition; simpl in *; discriminate]. subst; intuition; simpl in *; cut (Bs0 = []); [|destruct Bs0; [auto|discriminate]]; intro; cut (Cs0 = []); [|destruct Cs0; [auto|subst; simpl in *; discriminate]]; intros; subst; constructor. subst. destruct H1 as [? [? ?]]. simpl in *. injects H2; injects H1. remember H3 as IH; clear HeqIH. specialize (H3 _x _x0 _x1 (conj H1 (conj H2 (or_introl (conj (eq_refl _x) (conj (eq_refl _x0) (eq_refl _x1))))))). constructor; auto. apply H; auto. repeat split; auto. revert Bs Cs. induction Ds; simpl; [auto|]; induction Bs; simpl; [auto|]; induction Cs; simpl; [auto|]; apply IHDs. Qed. *) Theorem triple_union_folded_property : forall B C D (Beq_dec : dec_type B) (Ceq_dec : dec_type C) (f : D -> set A * set B * set C) (PA : A -> Prop) (PB : B -> Prop) (PC : C -> Prop) s (base : set A * set B * set C) (fprop : forall d, set_In d s -> match (f d) with (As,Bs,Cs) => Forall PA As /\ Forall PB Bs /\ Forall PC Cs end), match base with (As,Bs,Cs) => Forall PA As /\ Forall PB Bs /\ Forall PC Cs end -> (match (triple_union_fold Aeq_dec Beq_dec Ceq_dec f s base) with (As,Bs,Cs) => Forall PA As /\ Forall PB Bs /\ Forall PC Cs end). intros ? ? ? ? ? ? ? ? ? s; apply (@in_set_ind _ (fun s => forall (base : set A * set B * set C) (fprop : forall d, set_In d s -> match (f d) with (As,Bs,Cs) => Forall PA As /\ Forall PB Bs /\ Forall PC Cs end), match base with (As,Bs,Cs) => Forall PA As /\ Forall PB Bs /\ Forall PC Cs end -> (match (triple_union_fold Aeq_dec Beq_dec Ceq_dec f s base) with (As,Bs,Cs) => Forall PA As /\ Forall PB Bs /\ Forall PC Cs end))). auto. intros s' a IH base fprop allbase. simpl; apply IH. intros d Hin; apply fprop; right; auto. destruct base as [[ds bs] cs]. case_eq (f a); intros [bs' cs'] ds' Heq. repeat rewrite Forall_forall; repeat split; intros x Hin; specialize (fprop a (or_introl (eq_refl _))); rewrite Heq in fprop; repeat rewrite Forall_forall in *; apply set_union_elim in Hin; destruct Hin as [inbase|inf]; try solve [apply allbase; auto|apply fprop;auto]. Qed. Theorem length_add : forall s a, ~ set_In a s -> length (set_add Aeq_dec a s) = S (length s). Proof. induction s as [|a s IH]; intros a' H; [|simpl; destruct (Aeq_dec a' a); [subst; elimtype False; apply H; left |simpl; f_equal; apply IH; intro bad; apply H; right]]; auto. Qed. End Facts.
# Simple Linear Regression # Importing the dataset dataset = read.csv('Salary_Data.csv') # install.packages('caTools') # install.packages('ggplot2') library(caTools) library(ggplot2) set.seed(123) # Splitting the dataset into training set and test set split = sample.split(dataset$Salary, SplitRatio = 2/3) training_set = subset(dataset, split == TRUE) test_set = subset(dataset, split == FALSE) # Fitting Simple Linear Regression to the Training set regressor = lm(formula = Salary ~ YearsExperience, data = training_set) # Predicting the Test results y_pred = predict(regressor, newdata = test_set) # Visualising the Training set results ggplot() + geom_point(aes(x = training_set$YearsExperience, y = training_set$Salary), colour = 'red') + geom_line(aes(x = training_set$YearsExperience, y = predict(regressor, newdata = training_set)), colour = 'blue') + ggtitle('Salary vs Experience (Training Set)') + xlab('Years of Experience') + ylab('Salary') ggplot() + geom_point(aes(x = test_set$YearsExperience, y = test_set$Salary), colour = 'red') + geom_line(aes(x = training_set$YearsExperience, y = predict(regressor, newdata = training_set)), colour = 'blue') + ggtitle('Salary vs Experience (Test Set)') + xlab('Years of Experience') + ylab('Salary')
program topo_ports use mod_za ! HYCOM array I/O interface implicit none c integer nchar parameter (nchar=120) integer mp parameter (mp=1999) c integer, allocatable :: ip(:,:),iu(:,:),iv(:,:) real, allocatable :: dh(:,:) c real hmaxa,hmaxb,hmina,hminb character preambl(5)*79,cline*80 c integer i,j,isec,ifrst,ilast,l,npf,npi,npl character*3 char3 c logical lfatal,lfatalp,lprint,lprold,linput integer nports,kdport(mp), & ifport(mp),ilport(mp),jfport(mp),jlport(mp),lnport(mp) c character*13 fmt data fmt / '(i4,1x,120i1)' / c c --- error check and printout the location of hycom ports on a topography c call xcspmd !input idm,jdm allocate( ip(-1:idm+2,0:jdm+1) ) allocate( iu(-1:idm+2,0:jdm+1) ) allocate( iv(-1:idm+2,0:jdm+1) ) allocate( dh(idm,jdm) ) c call zhopen(51, 'formatted', 'old', 0) read (51,'(a79)') preambl read (51,'(a)') cline close(unit=51) write(6,'(a/(a))') 'header:', & preambl,cline(1:len_trim(cline)) write(6,*) c i = index(cline,'=') read (cline(i+1:),*) hminb,hmaxb c call zaiost call zaiopn('old', 51) call zaiord(dh,ip,.false., hmina,hmaxa, 51) call zaiocl(51) c if (abs(hmina-hminb).gt.abs(hminb)*1.e-4 .or. & abs(hmaxa-hmaxb).gt.abs(hmaxb)*1.e-4 ) then write(6,'(/ a / a,1p3e14.6 / a,1p3e14.6 /)') & 'error - .a and .b topography files not consistent:', & '.a,.b min = ',hmina,hminb,hmina-hminb, & '.a,.b max = ',hmaxa,hmaxb,hmaxa-hmaxb call zhflsh(6) stop endif c c --- land/sea masks. c do j= 1,jdm do i=1,idm if (dh(i,j).lt.2.0**99) then ip(i,j) = 1 else ip(i,j) = 0 endif enddo enddo do j= 0,jdm+1,jdm+1 do i=1,idm ip(i,j) = 0 iu(i,j) = 0 iv(i,j) = 0 enddo enddo do j= 1,jdm ip( -1,j) = ip(idm-1,j) ip( 0,j) = ip(idm, j) ip(idm+1,j) = ip( 1,j) ip(idm+2,j) = ip( 2,j) enddo c do j= 1,jdm do i=1,idm if (ip(i-1,j).gt.0.and.ip(i,j).gt.0) then iu(i,j)=1 else iu(i,j)=0 endif if (ip(i,j-1).gt.0.and.ip(i,j).gt.0) then iv(i,j)=1 else iv(i,j)=0 endif enddo enddo do j= 1,jdm iu( -1,j) = iu(idm-1,j) iu( 0,j) = iu(idm, j) iu(idm+1,j) = iu( 1,j) iu(idm+2,j) = iu( 2,j) iv( -1,j) = iv(idm-1,j) iv( 0,j) = iv(idm, j) iv(idm+1,j) = iv( 1,j) iv(idm+2,j) = iv( 2,j) enddo c c --- ports. c open(unit=99,file='ports.input') c c --- 'nports' = number of boundary port sections. call blkini_test(nports,'nports',linput) if (.not.linput) then c --- skipped sports call blkini(nports,'nports') endif write(6,*) if (nports.lt.0 .or. nports.gt.mp) then write(6,*) write(6,*) 'error in topo_ports - illegal nports value' write(6,*) stop '(topo_ports)' endif c c --- read in the ports one at a time c do l= 1,nports c c --- port location is w.r.t. u (EW) or v (NS) grid c --- and identifies the sea at the port c --- the minimum index is 0 c c --- 'kdport' = port orientation (1=N, 2=S, 3=E, 4=W) c --- 'ifport' = first i-index c --- 'ilport' = last i-index (=ifport for N or S orientation) c --- 'jfport' = first j-index c --- 'jlport' = last j-index (=jfport for E or W orientation) c --- 'lnport' = port length (calculated, not input) call blkini(kdport(l),'kdport') call blkini(ifport(l),'ifport') call blkini(ilport(l),'ilport') call blkini(jfport(l),'jfport') call blkini(jlport(l),'jlport') write(6,*) c lnport(l) = ilport(l)-ifport(l)+jlport(l)-jfport(l)+1 c c --- sanity check. c if (kdport(l).gt.2) then if (ifport(l).ne.ilport(l)) then write(6,*) write(6,*) 'error in topo_ports - port direction', & ' and orientation are not consistent' write(6,*) stop '(topo_ports)' endif else if (jfport(l).ne.jlport(l)) then write(6,*) write(6,*) 'error in topo_ports - port direction', & ' and orientation are not consistent' write(6,*) stop '(topo_ports)' endif endif if (ifport(l).gt.ilport(l) .or. & jfport(l).gt.jlport(l) ) then write(6,*) write(6,*) 'error in topo_ports - port', & ' location is not consistent' write(6,*) stop '(topo_ports)' endif enddo c close(unit=99) c c --- check ports against masks, c --- mark the port locations on masks and print them out. c lfatal = .false. do l= 1,nports lfatalp = .false. c if (kdport(l).eq.4) then c c western port c i = ifport(l) do j= jfport(l),jlport(l) if (i.lt.1 .or. i.gt.idm .or. ! assume periodic & j.lt.1 .or. j.gt.jdm ) then lfatalp = .true. elseif (iu(i,j).ne.0) then lfatalp = .true. iu(i,j) = 9 !indicate an error else iu(i,j) = -1 endif if (iu(i+1,j).ne.1 .or. & iu(i+2,j).ne.1 ) then lfatalp = .true. iu(i,j) = 7 !indicate an error endif enddo c elseif (kdport(l).eq.3) then c c eastern port c i = ifport(l) do j= jfport(l),jlport(l) if (i.lt.1 .or. i.gt.idm .or. & j.lt.1 .or. j.gt.jdm ) then lfatalp = .true. elseif (iu(i,j).ne.0) then lfatalp = .true. iu(i,j) = 9 !indicate an error else iu(i,j) = -1 endif if (iu(i-1,j).ne.1 .or. & iu(i-2,j).ne.1 ) then lfatalp = .true. iu(i,j) = 7 !indicate an error endif enddo c elseif (kdport(l).eq.1) then c c northern port c j = jfport(l) do i= ifport(l),ilport(l) if (i.lt.1 .or. i.gt.idm .or. & j.lt.3 .or. j.gt.jdm ) then lfatalp = .true. elseif (iv(i,j).ne.0) then lfatalp = .true. iv(i,j) = 9 !indicate an error else iv(i,j) = -1 endif if (iv(i,j-1).ne.1 .or. & iv(i,j-2).ne.1 ) then lfatalp = .true. iv(i,j) = 7 !indicate an error endif enddo c elseif (kdport(l).eq.2) then c c southern port c j = jfport(l) do i= ifport(l),ilport(l) if (i.lt.1 .or. i.gt.idm .or. & j.lt.1 .or. j.gt.jdm-2 ) then lfatalp = .true. elseif (iv(i,j).ne.0) then lfatalp = .true. iv(i,j) = 9 !indicate an error else iv(i,j) = -1 endif if (iv(i,j+1).ne.1 .or. & iv(i,j+2).ne.1 ) then lfatalp = .true. iv(i,j) = 7 !indicate an error endif enddo c endif c if (lfatalp) then write(6,*) write(6,*) 'error in topo_ports - port ',l,' mislocated' write(6,*) endif lfatal = lfatal .or. lfatalp enddo !l=1,nports c c --- write out -iu- and -iv- arrays, c --- data are written in strips nchar points wide c isec=(idm-1)/nchar do ifrst=0,nchar*isec,nchar ilast=min(idm,ifrst+nchar) write (char3,'(i3)') ilast-ifrst fmt(8:10)=char3 write (6,'(a,i5,a,i5)') & 'iu array, cols',ifrst+1,' --',ilast lprint = .true. do j= jdm,1,-1 lprold = lprint if (j.eq.jdm .or. j.eq.1) then lprint = .true. else lprint = maxval(iu( ifrst+1:ilast, & max(j-2,1):min(j+2,jdm))).gt.1 & .or. & minval(iu( ifrst+1:ilast, & max(j-2,1):min(j+2,jdm))).lt.0 endif if (lprint) then if (.not.lprold) then write(6,'(5x,120a1)') ('=',i=ifrst+1,ilast) endif write (6,fmt) j,(iu(i,j),i=ifrst+1,ilast) endif enddo !j enddo write (6,*) c isec=(idm-1)/nchar do ifrst=0,nchar*isec,nchar ilast=min(idm,ifrst+nchar) write (char3,'(i3)') ilast-ifrst fmt(8:10)=char3 write (6,'(a,i5,a,i5)') & 'iv array, cols',ifrst+1,' --',ilast lprint = .true. do j= jdm,1,-1 lprold = lprint if (j.eq.jdm .or. j.eq.1) then lprint = .true. else lprint = maxval(iv( ifrst+1:ilast, & max(j-2,1):min(j+2,jdm))).gt.1 & .or. & minval(iv( ifrst+1:ilast, & max(j-2,1):min(j+2,jdm))).lt.0 endif if (lprint) then if (.not.lprold) then write(6,'(5x,120a1)') ('=',i=ifrst+1,ilast) endif write (6,fmt) j,(iv(i,j),i=ifrst+1,ilast) endif enddo !j enddo write (6,*) c if (lfatal) then write(6,*) write(6,*) 'error in topo_ports - bad port(s)' write(6,*) stop '(topo_ports)' endif end subroutine blkini(ivar,cvar) implicit none c integer ivar character*6 cvar c c read in one integer value from stdin c character*6 cvarin c read(99,*) ivar,cvarin write(6,6000) cvarin,ivar c if (cvar.ne.cvarin) then write(6,*) write(6,*) 'error in blkini - input ',cvarin, + ' but should be ',cvar write(6,*) stop endif return 6000 format('blkini: ',a6,' =',i6) end subroutine blkini_test(ivar,cvar,linput) implicit none c integer ivar character*6 cvar logical linput c c read in one integer value from stdin c linput is .true. on return if the read is successful c linput is .false. on return if the read is not successful c character*6 cvarin c read(99,*) ivar,cvarin linput = cvar.eq.cvarin if (linput) then write(6,6000) cvarin,ivar endif return 6000 format('blkini: ',a6,' =',i6) end
State Before: C : Type u₁ inst✝ : Category C P Q U : Cᵒᵖ ⥤ Type w X Y : C S : Sieve X R : Presieve X J J₂ : GrothendieckTopology C x : FamilyOfElements P (generate R).arrows t : FamilyOfElements.Compatible x ⊢ FamilyOfElements.sieveExtend (FamilyOfElements.restrict (_ : R ≤ (generate R).arrows) x) = x State After: C : Type u₁ inst✝ : Category C P Q U : Cᵒᵖ ⥤ Type w X Y : C S : Sieve X R : Presieve X J J₂ : GrothendieckTopology C x : FamilyOfElements P (generate R).arrows t : FamilyOfElements.SieveCompatible x ⊢ FamilyOfElements.sieveExtend (FamilyOfElements.restrict (_ : R ≤ (generate R).arrows) x) = x Tactic: rw [compatible_iff_sieveCompatible] at t State Before: C : Type u₁ inst✝ : Category C P Q U : Cᵒᵖ ⥤ Type w X Y : C S : Sieve X R : Presieve X J J₂ : GrothendieckTopology C x : FamilyOfElements P (generate R).arrows t : FamilyOfElements.SieveCompatible x ⊢ FamilyOfElements.sieveExtend (FamilyOfElements.restrict (_ : R ≤ (generate R).arrows) x) = x State After: case h.h.h C : Type u₁ inst✝ : Category C P Q U : Cᵒᵖ ⥤ Type w X Y : C S : Sieve X R : Presieve X J J₂ : GrothendieckTopology C x : FamilyOfElements P (generate R).arrows t : FamilyOfElements.SieveCompatible x x✝¹ : C x✝ : x✝¹ ⟶ X h : (generate R).arrows x✝ ⊢ FamilyOfElements.sieveExtend (FamilyOfElements.restrict (_ : R ≤ (generate R).arrows) x) x✝ h = x x✝ h Tactic: funext _ _ h State Before: case h.h.h C : Type u₁ inst✝ : Category C P Q U : Cᵒᵖ ⥤ Type w X Y : C S : Sieve X R : Presieve X J J₂ : GrothendieckTopology C x : FamilyOfElements P (generate R).arrows t : FamilyOfElements.SieveCompatible x x✝¹ : C x✝ : x✝¹ ⟶ X h : (generate R).arrows x✝ ⊢ FamilyOfElements.sieveExtend (FamilyOfElements.restrict (_ : R ≤ (generate R).arrows) x) x✝ h = x x✝ h State After: case h.h.h C : Type u₁ inst✝ : Category C P Q U : Cᵒᵖ ⥤ Type w X Y : C S : Sieve X R : Presieve X J J₂ : GrothendieckTopology C x : FamilyOfElements P (generate R).arrows t : FamilyOfElements.SieveCompatible x x✝¹ : C x✝ : x✝¹ ⟶ X h : (generate R).arrows x✝ ⊢ x (Exists.choose (_ : ∃ h_1 g, R g ∧ h_1 ≫ g = x✝) ≫ Exists.choose (_ : ∃ g, R g ∧ Exists.choose (_ : ∃ h_1 g, R g ∧ h_1 ≫ g = x✝) ≫ g = x✝)) (_ : (generate R).arrows (Exists.choose (_ : ∃ h_1 g, R g ∧ h_1 ≫ g = x✝) ≫ Exists.choose (_ : ∃ g, R g ∧ Exists.choose (_ : ∃ h_1 g, R g ∧ h_1 ≫ g = x✝) ≫ g = x✝))) = x x✝ h Tactic: apply (t _ _ _).symm.trans State Before: case h.h.h C : Type u₁ inst✝ : Category C P Q U : Cᵒᵖ ⥤ Type w X Y : C S : Sieve X R : Presieve X J J₂ : GrothendieckTopology C x : FamilyOfElements P (generate R).arrows t : FamilyOfElements.SieveCompatible x x✝¹ : C x✝ : x✝¹ ⟶ X h : (generate R).arrows x✝ ⊢ x (Exists.choose (_ : ∃ h_1 g, R g ∧ h_1 ≫ g = x✝) ≫ Exists.choose (_ : ∃ g, R g ∧ Exists.choose (_ : ∃ h_1 g, R g ∧ h_1 ≫ g = x✝) ≫ g = x✝)) (_ : (generate R).arrows (Exists.choose (_ : ∃ h_1 g, R g ∧ h_1 ≫ g = x✝) ≫ Exists.choose (_ : ∃ g, R g ∧ Exists.choose (_ : ∃ h_1 g, R g ∧ h_1 ≫ g = x✝) ≫ g = x✝))) = x x✝ h State After: case h.h.h.e_f C : Type u₁ inst✝ : Category C P Q U : Cᵒᵖ ⥤ Type w X Y : C S : Sieve X R : Presieve X J J₂ : GrothendieckTopology C x : FamilyOfElements P (generate R).arrows t : FamilyOfElements.SieveCompatible x x✝¹ : C x✝ : x✝¹ ⟶ X h : (generate R).arrows x✝ ⊢ Exists.choose (_ : ∃ h_1 g, R g ∧ h_1 ≫ g = x✝) ≫ Exists.choose (_ : ∃ g, R g ∧ Exists.choose (_ : ∃ h_1 g, R g ∧ h_1 ≫ g = x✝) ≫ g = x✝) = x✝ Tactic: congr State Before: case h.h.h.e_f C : Type u₁ inst✝ : Category C P Q U : Cᵒᵖ ⥤ Type w X Y : C S : Sieve X R : Presieve X J J₂ : GrothendieckTopology C x : FamilyOfElements P (generate R).arrows t : FamilyOfElements.SieveCompatible x x✝¹ : C x✝ : x✝¹ ⟶ X h : (generate R).arrows x✝ ⊢ Exists.choose (_ : ∃ h_1 g, R g ∧ h_1 ≫ g = x✝) ≫ Exists.choose (_ : ∃ g, R g ∧ Exists.choose (_ : ∃ h_1 g, R g ∧ h_1 ≫ g = x✝) ≫ g = x✝) = x✝ State After: no goals Tactic: exact h.choose_spec.choose_spec.choose_spec.2
The fundamental purpose of matter management is to manage costs and risk, and ensure performance and compliance. But it can be so much more. At Mosaic Consulting, we aim to help you unleash the capabilities of whatever matter management systems you use. Our goal is to understand every aspect of your legal operations workflow and utilize our deep knowledge and experience to evaluate your processes and technology across the entire matter management lifecycle. Our consultants develop your customized program, leveraging technology and designing effective processes to drive efficiency in your legal matter management activities. Using a matter management system inherently increases efficiency and saves you money. But how you use your matter management system can increase efficiency and save money as well. A system without well designed, thought out, integrated processes can deliver baseline improvements. We can help you go above and beyond the baseline. There are many matter management systems available. Mosaic helps you weed through the possibilities and choose the system that fits your team’s needs by assessing your requirements and making recommendations that fit your operations. We quickly cut through the myriad of applications and solutions available to find the system that best meets all the requirements your team demands. The success of an implementation can depend upon who is managing it. Our consultants have over 75 years of combined experience, having completed dozens of successful implementations. We know what it takes to perform a seamless implementation as well as how to avoid the pitfalls. You are in good hands with Mosaic managing your project. No company wants to become bound to a consulting firm for an indefinite period of time in order to continue benefiting from a new system. The key to achieving reasonable self-sufficiency is documentation. Standard end-user reference manuals provided by software vendors are rarely adequate to meet this objective. This is because the documentation does not address the client’s specific configuration, processes and use of the application. Mosaic Consulting addresses this need by designing materials that speak to the specific workflows and procedures addressed in the development phase of your project. The result is documentation that you can use to train new staff and that will serve as a reference to answer specific questions existing users might have as they continue enhancing their knowledge of your matter management program, workflows and technology. Mosaic's IT team is all you will need to seamlessly integrate your matter management system with other legal and non-legal applications. Mosaic will identify the information your other applications need to receive; map the data; design and program the interface; and work with the required vendor to test and implement the new interface. Mosaic has the skills and depth of knowledge to make your matter management initiatives exceed expectations. The professionals at Mosaic are experts in matter management. And we provide a full suite of enterprise legal management services that will complement your matter management initiatives and round-out your legal operations program. Mosaic's expertise in designing and delivering training will help your team maximize the benefits of the systems and processes you put in place. We will not only provide the technical training. Our training will cover your workflows and processes around the technology.
/- Copyright (c) 2021 Andrew Yang. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Andrew Yang ! This file was ported from Lean 3 source module algebraic_geometry.properties ! leanprover-community/mathlib commit d39590fc8728fbf6743249802486f8c91ffe07bc ! Please do not edit these lines, except to modify the commit id ! if you have ported upstream changes. -/ import Mathbin.AlgebraicGeometry.AffineScheme import Mathbin.RingTheory.Nilpotent import Mathbin.Topology.Sheaves.SheafCondition.Sites import Mathbin.Algebra.Category.Ring.Constructions import Mathbin.RingTheory.LocalProperties /-! # Basic properties of schemes We provide some basic properties of schemes ## Main definition * `algebraic_geometry.is_integral`: A scheme is integral if it is nontrivial and all nontrivial components of the structure sheaf are integral domains. * `algebraic_geometry.is_reduced`: A scheme is reduced if all the components of the structure sheaf is reduced. -/ open TopologicalSpace Opposite CategoryTheory CategoryTheory.Limits TopCat namespace AlgebraicGeometry variable (X : Scheme) instance : T0Space X.carrier := by refine' T0Space.of_open_cover fun x => _ obtain ⟨U, R, ⟨e⟩⟩ := X.local_affine x let e' : U.1 ≃ₜ PrimeSpectrum R := homeo_of_iso ((LocallyRingedSpace.forget_to_SheafedSpace ⋙ SheafedSpace.forget _).mapIso e) exact ⟨U.1.1, U.2, U.1.2, e'.embedding.t0_space⟩ instance : QuasiSober X.carrier := by apply (config := { instances := false }) quasiSober_of_open_cover (Set.range fun x => Set.range <| (X.affine_cover.map x).1.base) · rintro ⟨_, i, rfl⟩ exact (X.affine_cover.is_open i).base_open.open_range · rintro ⟨_, i, rfl⟩ exact @OpenEmbedding.quasiSober _ _ _ (Homeomorph.ofEmbedding _ (X.affine_cover.is_open i).base_open.toEmbedding).symm.OpenEmbedding PrimeSpectrum.quasiSober · rw [Set.top_eq_univ, Set.unionₛ_range, Set.eq_univ_iff_forall] intro x exact ⟨_, ⟨_, rfl⟩, X.affine_cover.covers x⟩ /-- A scheme `X` is reduced if all `𝒪ₓ(U)` are reduced. -/ class IsReduced : Prop where component_reduced : ∀ U, IsReduced (X.Presheaf.obj (op U)) := by infer_instance #align algebraic_geometry.is_reduced AlgebraicGeometry.IsReduced attribute [instance] is_reduced.component_reduced theorem isReduced_of_stalk_isReduced [∀ x : X.carrier, IsReduced (X.Presheaf.stalk x)] : IsReduced X := by refine' ⟨fun U => ⟨fun s hs => _⟩⟩ apply presheaf.section_ext X.sheaf U s 0 intro x rw [RingHom.map_zero] change X.presheaf.germ x s = 0 exact (hs.map _).eq_zero #align algebraic_geometry.is_reduced_of_stalk_is_reduced AlgebraicGeometry.isReduced_of_stalk_isReduced instance stalk_isReduced_of_reduced [IsReduced X] (x : X.carrier) : IsReduced (X.Presheaf.stalk x) := by constructor rintro g ⟨n, e⟩ obtain ⟨U, hxU, s, rfl⟩ := X.presheaf.germ_exist x g rw [← map_pow, ← map_zero (X.presheaf.germ ⟨x, hxU⟩)] at e obtain ⟨V, hxV, iU, iV, e'⟩ := X.presheaf.germ_eq x hxU hxU _ 0 e rw [map_pow, map_zero] at e' replace e' := (IsNilpotent.mk _ _ e').eq_zero erw [← concrete_category.congr_hom (X.presheaf.germ_res iU ⟨x, hxV⟩) s] rw [comp_apply, e', map_zero] #align algebraic_geometry.stalk_is_reduced_of_reduced AlgebraicGeometry.stalk_isReduced_of_reduced theorem isReduced_of_open_immersion {X Y : Scheme} (f : X ⟶ Y) [H : IsOpenImmersion f] [IsReduced Y] : IsReduced X := by constructor intro U have : U = (opens.map f.1.base).obj (H.base_open.is_open_map.functor.obj U) := by ext1 exact (Set.preimage_image_eq _ H.base_open.inj).symm rw [this] exact isReduced_of_injective (inv <| f.1.c.app (op <| H.base_open.is_open_map.functor.obj U)) (as_iso <| f.1.c.app (op <| H.base_open.is_open_map.functor.obj U) : Y.presheaf.obj _ ≅ _).symm.commRingIsoToRingEquiv.Injective #align algebraic_geometry.is_reduced_of_open_immersion AlgebraicGeometry.isReduced_of_open_immersion instance {R : CommRingCat} [H : IsReduced R] : IsReduced (Scheme.spec.obj <| op R) := by apply (config := { instances := false }) is_reduced_of_stalk_is_reduced intro x dsimp have : _root_.is_reduced (CommRingCat.of <| Localization.AtPrime (PrimeSpectrum.asIdeal x)) := by dsimp infer_instance exact isReduced_of_injective (structure_sheaf.stalk_iso R x).Hom (structure_sheaf.stalk_iso R x).commRingIsoToRingEquiv.Injective theorem affine_isReduced_iff (R : CommRingCat) : IsReduced (Scheme.spec.obj <| op R) ↔ IsReduced R := by refine' ⟨_, fun h => inferInstance⟩ intro h skip have : _root_.is_reduced (LocallyRingedSpace.Γ.obj (op <| Spec.to_LocallyRingedSpace.obj <| op R)) := by change _root_.is_reduced ((Scheme.Spec.obj <| op R).Presheaf.obj <| op ⊤) infer_instance exact isReduced_of_injective (to_Spec_Γ R) (as_iso <| to_Spec_Γ R).commRingIsoToRingEquiv.Injective #align algebraic_geometry.affine_is_reduced_iff AlgebraicGeometry.affine_isReduced_iff theorem isReduced_of_isAffine_isReduced [IsAffine X] [h : IsReduced (X.Presheaf.obj (op ⊤))] : IsReduced X := haveI : IsReduced (Scheme.Spec.obj (op (Scheme.Γ.obj (op X)))) := by rw [affine_is_reduced_iff] exact h is_reduced_of_open_immersion X.iso_Spec.hom #align algebraic_geometry.is_reduced_of_is_affine_is_reduced AlgebraicGeometry.isReduced_of_isAffine_isReduced /-- To show that a statement `P` holds for all open subsets of all schemes, it suffices to show that 1. In any scheme `X`, if `P` holds for an open cover of `U`, then `P` holds for `U`. 2. For an open immerison `f : X ⟶ Y`, if `P` holds for the entire space of `X`, then `P` holds for the image of `f`. 3. `P` holds for the entire space of an affine scheme. -/ theorem reduce_to_affine_global (P : ∀ (X : Scheme) (U : Opens X.carrier), Prop) (h₁ : ∀ (X : Scheme) (U : Opens X.carrier), (∀ x : U, ∃ (V : _)(h : x.1 ∈ V)(i : V ⟶ U), P X V) → P X U) (h₂ : ∀ {X Y} (f : X ⟶ Y) [hf : IsOpenImmersion f], ∃ (U : Set X.carrier)(V : Set Y.carrier)(hU : U = ⊤)(hV : V = Set.range f.1.base), P X ⟨U, hU.symm ▸ isOpen_univ⟩ → P Y ⟨V, hV.symm ▸ hf.base_open.open_range⟩) (h₃ : ∀ R : CommRingCat, P (Scheme.spec.obj <| op R) ⊤) : ∀ (X : Scheme) (U : Opens X.carrier), P X U := by intro X U apply h₁ intro x obtain ⟨_, ⟨j, rfl⟩, hx, i⟩ := X.affine_basis_cover_is_basis.exists_subset_of_mem_open (SetLike.mem_coe.2 x.prop) U.is_open let U' : opens _ := ⟨_, (X.affine_basis_cover.is_open j).base_open.open_range⟩ let i' : U' ⟶ U := hom_of_le i refine' ⟨U', hx, i', _⟩ obtain ⟨_, _, rfl, rfl, h₂'⟩ := h₂ (X.affine_basis_cover.map j) apply h₂' apply h₃ #align algebraic_geometry.reduce_to_affine_global AlgebraicGeometry.reduce_to_affine_global theorem reduce_to_affine_nbhd (P : ∀ (X : Scheme) (x : X.carrier), Prop) (h₁ : ∀ (R : CommRingCat) (x : PrimeSpectrum R), P (Scheme.spec.obj <| op R) x) (h₂ : ∀ {X Y} (f : X ⟶ Y) [IsOpenImmersion f] (x : X.carrier), P X x → P Y (f.1.base x)) : ∀ (X : Scheme) (x : X.carrier), P X x := by intro X x obtain ⟨y, e⟩ := X.affine_cover.covers x convert h₂ (X.affine_cover.map (X.affine_cover.f x)) y _ · rw [e] apply h₁ #align algebraic_geometry.reduce_to_affine_nbhd AlgebraicGeometry.reduce_to_affine_nbhd theorem eq_zero_of_basicOpen_eq_bot {X : Scheme} [hX : IsReduced X] {U : Opens X.carrier} (s : X.Presheaf.obj (op U)) (hs : X.basicOpen s = ⊥) : s = 0 := by apply TopCat.Presheaf.section_ext X.sheaf U simp_rw [RingHom.map_zero] revert X U hX s refine' reduce_to_affine_global _ _ _ _ · intro X U hx hX s hs x obtain ⟨V, hx, i, H⟩ := hx x specialize H (X.presheaf.map i.op s) erw [Scheme.basic_open_res] at H rw [hs] at H specialize H inf_bot_eq ⟨x, hx⟩ erw [TopCat.Presheaf.germ_res_apply] at H exact H · rintro X Y f hf have e : f.val.base ⁻¹' Set.range ⇑f.val.base = Set.univ := by rw [← Set.image_univ, Set.preimage_image_eq _ hf.base_open.inj] refine' ⟨_, _, e, rfl, _⟩ rintro H hX s hs ⟨_, x, rfl⟩ haveI := is_reduced_of_open_immersion f specialize H (f.1.c.app _ s) _ ⟨x, by rw [opens.mem_mk, e] trivial⟩ · rw [← Scheme.preimage_basic_open, hs] ext1 simp [opens.map] · erw [← PresheafedSpace.stalk_map_germ_apply f.1 ⟨_, _⟩ ⟨x, _⟩] at H apply_fun inv <| PresheafedSpace.stalk_map f.val x at H erw [CategoryTheory.IsIso.hom_inv_id_apply, map_zero] at H exact H · intro R hX s hs x erw [basic_open_eq_of_affine', PrimeSpectrum.basicOpen_eq_bot_iff] at hs replace hs := hs.map (Spec_Γ_identity.app R).inv -- what the hell?! replace hs := @IsNilpotent.eq_zero _ _ _ _ (show _ from _) hs rw [iso.hom_inv_id_apply] at hs rw [hs, map_zero] exact @is_reduced.component_reduced hX ⊤ #align algebraic_geometry.eq_zero_of_basic_open_eq_bot AlgebraicGeometry.eq_zero_of_basicOpen_eq_bot @[simp] theorem basicOpen_eq_bot_iff {X : Scheme} [IsReduced X] {U : Opens X.carrier} (s : X.Presheaf.obj <| op U) : X.basicOpen s = ⊥ ↔ s = 0 := by refine' ⟨eq_zero_of_basic_open_eq_bot s, _⟩ rintro rfl simp #align algebraic_geometry.basic_open_eq_bot_iff AlgebraicGeometry.basicOpen_eq_bot_iff /-- A scheme `X` is integral if its carrier is nonempty, and `𝒪ₓ(U)` is an integral domain for each `U ≠ ∅`. -/ class IsIntegral : Prop where Nonempty : Nonempty X.carrier := by infer_instance component_integral : ∀ (U : Opens X.carrier) [Nonempty U], IsDomain (X.Presheaf.obj (op U)) := by infer_instance #align algebraic_geometry.is_integral AlgebraicGeometry.IsIntegral attribute [instance] is_integral.component_integral is_integral.nonempty instance [h : IsIntegral X] : IsDomain (X.Presheaf.obj (op ⊤)) := @IsIntegral.component_integral _ _ (by simp) instance (priority := 900) isReduced_of_isIntegral [IsIntegral X] : IsReduced X := by constructor intro U cases' U.1.eq_empty_or_nonempty with h h · have : U = ⊥ := SetLike.ext' h haveI := CommRingCat.subsingleton_of_isTerminal (X.sheaf.is_terminal_of_eq_empty this) change _root_.is_reduced (X.sheaf.val.obj (op U)) infer_instance · haveI : Nonempty U := by simpa infer_instance #align algebraic_geometry.is_reduced_of_is_integral AlgebraicGeometry.isReduced_of_isIntegral instance is_irreducible_of_isIntegral [IsIntegral X] : IrreducibleSpace X.carrier := by by_contra H replace H : ¬IsPreirreducible (⊤ : Set X.carrier) := fun h => H { to_preirreducibleSpace := ⟨h⟩ to_nonempty := inferInstance } simp_rw [isPreirreducible_iff_closed_union_closed, not_forall, not_or] at H rcases H with ⟨S, T, hS, hT, h₁, h₂, h₃⟩ erw [not_forall] at h₂ h₃ simp_rw [not_forall] at h₂ h₃ haveI : Nonempty (⟨Sᶜ, hS.1⟩ : opens X.carrier) := ⟨⟨_, h₂.some_spec.some_spec⟩⟩ haveI : Nonempty (⟨Tᶜ, hT.1⟩ : opens X.carrier) := ⟨⟨_, h₃.some_spec.some_spec⟩⟩ haveI : Nonempty (⟨Sᶜ, hS.1⟩ ⊔ ⟨Tᶜ, hT.1⟩ : opens X.carrier) := ⟨⟨_, Or.inl h₂.some_spec.some_spec⟩⟩ let e : X.presheaf.obj _ ≅ CommRingCat.of _ := (X.sheaf.is_product_of_disjoint ⟨_, hS.1⟩ ⟨_, hT.1⟩ _).conePointUniqueUpToIso (CommRingCat.prodFanIsLimit _ _) apply (config := { instances := false }) false_of_nontrivial_of_product_domain · exact e.symm.CommRing_iso_to_ring_equiv.is_domain _ · apply X.to_LocallyRingedSpace.component_nontrivial · apply X.to_LocallyRingedSpace.component_nontrivial · ext x constructor · rintro ⟨hS, hT⟩ cases h₁ (show x ∈ ⊤ by trivial) exacts[hS h, hT h] · intro x exact x.rec _ #align algebraic_geometry.is_irreducible_of_is_integral AlgebraicGeometry.is_irreducible_of_isIntegral theorem isIntegral_of_is_irreducible_isReduced [IsReduced X] [H : IrreducibleSpace X.carrier] : IsIntegral X := by constructor intro U hU haveI := (@LocallyRingedSpace.component_nontrivial X.to_LocallyRingedSpace U hU).1 have : NoZeroDivisors (X.to_LocallyRingedSpace.to_SheafedSpace.to_PresheafedSpace.presheaf.obj (op U)) := by refine' ⟨fun a b e => _⟩ simp_rw [← basic_open_eq_bot_iff, ← opens.not_nonempty_iff_eq_bot] by_contra' h obtain ⟨_, ⟨x, hx₁, rfl⟩, ⟨x, hx₂, e'⟩⟩ := @nonempty_preirreducible_inter _ H.1 (X.basic_open a).2 (X.basic_open b).2 h.1 h.2 replace e' := Subtype.eq e' subst e' replace e := congr_arg (X.presheaf.germ x) e rw [RingHom.map_mul, RingHom.map_zero] at e refine' zero_ne_one' (X.presheaf.stalk x.1) (isUnit_zero_iff.1 _) convert hx₁.mul hx₂ exact e.symm exact NoZeroDivisors.to_isDomain _ #align algebraic_geometry.is_integral_of_is_irreducible_is_reduced AlgebraicGeometry.isIntegral_of_is_irreducible_isReduced theorem isIntegral_iff_is_irreducible_and_isReduced : IsIntegral X ↔ IrreducibleSpace X.carrier ∧ IsReduced X := ⟨fun _ => ⟨inferInstance, inferInstance⟩, fun ⟨_, _⟩ => is_integral_of_is_irreducible_is_reduced X⟩ #align algebraic_geometry.is_integral_iff_is_irreducible_and_is_reduced AlgebraicGeometry.isIntegral_iff_is_irreducible_and_isReduced theorem isIntegral_of_open_immersion {X Y : Scheme} (f : X ⟶ Y) [H : IsOpenImmersion f] [IsIntegral Y] [Nonempty X.carrier] : IsIntegral X := by constructor intro U hU have : U = (opens.map f.1.base).obj (H.base_open.is_open_map.functor.obj U) := by ext1 exact (Set.preimage_image_eq _ H.base_open.inj).symm rw [this] have : IsDomain (Y.presheaf.obj (op (H.base_open.is_open_map.functor.obj U))) := by apply (config := { instances := false }) is_integral.component_integral infer_instance refine' ⟨⟨_, _, hU.some.prop, rfl⟩⟩ exact (as_iso <| f.1.c.app (op <| H.base_open.is_open_map.functor.obj U) : Y.presheaf.obj _ ≅ _).symm.commRingIsoToRingEquiv.IsDomain _ #align algebraic_geometry.is_integral_of_open_immersion AlgebraicGeometry.isIntegral_of_open_immersion instance {R : CommRingCat} [H : IsDomain R] : IsIntegral (Scheme.spec.obj <| op R) := by apply (config := { instances := false }) is_integral_of_is_irreducible_is_reduced · infer_instance · dsimp [Spec.Top_obj] infer_instance theorem affine_isIntegral_iff (R : CommRingCat) : IsIntegral (Scheme.spec.obj <| op R) ↔ IsDomain R := ⟨fun h => RingEquiv.isDomain ((Scheme.Spec.obj <| op R).Presheaf.obj _) (as_iso <| to_Spec_Γ R).commRingIsoToRingEquiv, fun h => inferInstance⟩ #align algebraic_geometry.affine_is_integral_iff AlgebraicGeometry.affine_isIntegral_iff theorem isIntegral_of_isAffine_isDomain [IsAffine X] [Nonempty X.carrier] [h : IsDomain (X.Presheaf.obj (op ⊤))] : IsIntegral X := haveI : IsIntegral (Scheme.Spec.obj (op (Scheme.Γ.obj (op X)))) := by rw [affine_is_integral_iff] exact h is_integral_of_open_immersion X.iso_Spec.hom #align algebraic_geometry.is_integral_of_is_affine_is_domain AlgebraicGeometry.isIntegral_of_isAffine_isDomain theorem map_injective_of_isIntegral [IsIntegral X] {U V : Opens X.carrier} (i : U ⟶ V) [H : Nonempty U] : Function.Injective (X.Presheaf.map i.op) := by rw [injective_iff_map_eq_zero] intro x hx rw [← basic_open_eq_bot_iff] at hx⊢ rw [Scheme.basic_open_res] at hx revert hx contrapose! simp_rw [← opens.not_nonempty_iff_eq_bot, Classical.not_not] apply nonempty_preirreducible_inter U.is_open (RingedSpace.basic_open _ _).IsOpen simpa using H #align algebraic_geometry.map_injective_of_is_integral AlgebraicGeometry.map_injective_of_isIntegral end AlgebraicGeometry
<!-- dom:TITLE: Week 48: Support Vector Machines and Summary of course --> # Week 48: Support Vector Machines and Summary of course <!-- dom:AUTHOR: Morten Hjorth-Jensen at Department of Physics, University of Oslo & Department of Physics and Astronomy and National Superconducting Cyclotron Laboratory, Michigan State University --> <!-- Author: --> **Morten Hjorth-Jensen**, Department of Physics, University of Oslo and Department of Physics and Astronomy and National Superconducting Cyclotron Laboratory, Michigan State University Date: **Nov 26, 2020** Copyright 1999-2020, Morten Hjorth-Jensen. Released under CC Attribution-NonCommercial 4.0 license ## Overview of week 48 * **Thursday**: Support Vector Machines: Kernels, Classification and Regression * **Friday**: Summary of course with perspectives for future studies Geron's chapter 5. Chapter 12 (sections 12.1-12.3 are the most relevant ones) of Hastie et al contains also a good discussion. ## Thursday We finalize our discussion on Support Vector Machines with an emphasis on kernel transformations and applications to regression. The following [video attempts at giving an overview on this part](https://www.youtube.com/watch?v=Toet3EiSFcM&ab_channel=StatQuestwithJoshStarmer). See also the [follow-up video](https://www.youtube.com/watch?v=Qc5IyLW_hns&ab_channel=StatQuestwithJoshStarmer). ## Friday Friday's lecture is split in two parts. It starts with a summary of what we have done this semester and continues with perspectives for future studies and modern research projects in machine learning. ## Support Vector Machines, overarching aims As discussed last week, a Support Vector Machine (SVM) is a very powerful and versatile Machine Learning method, capable of performing linear or nonlinear classification, regression, and even outlier detection. It is one of the most popular models in Machine Learning, and anyone interested in Machine Learning should have it in their toolbox. SVMs are particularly well suited for classification of complex but small-sized or medium-sized datasets. The case with two well-separated classes only can be understood in an intuitive way in terms of lines in a two-dimensional space separating the two classes. The basic mathematics behind the SVM is however less familiar to most of us. It relies on the definition of hyperplanes and the definition of a **margin** which separates classes (in case of classification problems) of variables. It is also used for regression problems. I recommend you take a look at the lectures from last week on the binary classification problem. ## Kernels and non-linearity The cases we studied last week were all characterized by two classes with a close to linear separability. The classifiers we have described so far find linear boundaries in our input feature space. It is possible to make our procedure more flexible by exploring the feature space using other basis expansions such as higher-order polynomials, wavelets, splines etc. If our feature space is not easy to separate, as shown in the figure here generated by the code below (see also Figures 12.2 and 12.3 of [Hastie et al.](https://www.springer.com/gp/book/9780387848570)), we can achieve a better separation by introducing more complex basis functions. The ideal would be (see Figures 12.2 and 12.3) to, via a specific transformation to obtain a separation between the classes which is almost linear. The change of basis, from $x\rightarrow z=\phi(x)$ leads to the same type of equations to be solved, except that we need to introduce, for example, a polynomial transformation to a two-dimensional training set. ```python %matplotlib inline import numpy as np import os np.random.seed(42) # To plot pretty figures import matplotlib import matplotlib.pyplot as plt plt.rcParams['axes.labelsize'] = 14 plt.rcParams['xtick.labelsize'] = 12 plt.rcParams['ytick.labelsize'] = 12 from sklearn.svm import SVC from sklearn import datasets X1D = np.linspace(-4, 4, 9).reshape(-1, 1) X2D = np.c_[X1D, X1D**2] y = np.array([0, 0, 1, 1, 1, 1, 1, 0, 0]) plt.figure(figsize=(11, 4)) plt.subplot(121) plt.grid(True, which='both') plt.axhline(y=0, color='k') plt.plot(X1D[:, 0][y==0], np.zeros(4), "bs") plt.plot(X1D[:, 0][y==1], np.zeros(5), "g^") plt.gca().get_yaxis().set_ticks([]) plt.xlabel(r"$x_1$", fontsize=20) plt.axis([-4.5, 4.5, -0.2, 0.2]) plt.subplot(122) plt.grid(True, which='both') plt.axhline(y=0, color='k') plt.axvline(x=0, color='k') plt.plot(X2D[:, 0][y==0], X2D[:, 1][y==0], "bs") plt.plot(X2D[:, 0][y==1], X2D[:, 1][y==1], "g^") plt.xlabel(r"$x_1$", fontsize=20) plt.ylabel(r"$x_2$", fontsize=20, rotation=0) plt.gca().get_yaxis().set_ticks([0, 4, 8, 12, 16]) plt.plot([-4.5, 4.5], [6.5, 6.5], "r--", linewidth=3) plt.axis([-4.5, 4.5, -1, 17]) plt.subplots_adjust(right=1) plt.show() ``` ## The equations Suppose we define a polynomial transformation of degree two only. We define a vector $\boldsymbol{x}_i=[x_i,y_i]$ and have $$ \boldsymbol{z}_i^T = \phi(\boldsymbol{x}_i)^T =\left[1, \sqrt{2}x_i, \sqrt{2}y_i, x_i^2, y_i^2, \sqrt{2}x_iy_i\right]. $$ With our new basis, the equations we solved earlier are basically the same, that is we have now (without the slack option for simplicity) $$ {\cal L}=\sum_i\lambda_i-\frac{1}{2}\sum_{ij}^n\lambda_i\lambda_jy_iy_j\boldsymbol{z}_i^T\boldsymbol{z}_j, $$ subject to the constraints $\lambda_i\geq 0$, $\sum_i\lambda_iy_i=0$, and for the support vectors $$ y_i(\boldsymbol{z}_i^T\boldsymbol{w}+b)= 1 \hspace{0.1cm}\forall i, $$ from which we also find $b$. To compute $\boldsymbol{z}_i^T\boldsymbol{z}_j$ we define the kernel $K(\boldsymbol{x}_i,\boldsymbol{x}_j)$ as $$ K(\boldsymbol{x}_i,\boldsymbol{x}_j)=\boldsymbol{z}_i^T\boldsymbol{z}_j= \phi(\boldsymbol{x}_i)^T\phi(\boldsymbol{x}_j). $$ For the above example, the kernel reads $$ K(\boldsymbol{x}_i,\boldsymbol{x}_j)=[1, \sqrt{2}x_i, \sqrt{2}y_i, x_i^2, y_i^2, \sqrt{2}x_iy_i]\begin{bmatrix} 1\\ \sqrt{2}x_j \\ \sqrt{2}y_j \\ x_j^2\\ y_i^2\\ \sqrt{2}x_jy_j \end{bmatrix}=1+2x_ix_j+2y_iy_j+(x_ix_j)^2+(y_iy_j)^2+2x_ix_jy_iy_j. $$ We note that this dot product can be rewritten as $$ K(\boldsymbol{x}_i,\boldsymbol{x}_j)=[1+\boldsymbol{x}_i^T\boldsymbol{x}_j]^d, $$ where $d=2$ in our case and $\boldsymbol{x}_i=[x_i,y_i]$ and $\boldsymbol{x}_j=[x_j,y_j]$. To compute the last equation is however inefficient from a computational stand. Instead of computing the last equation for the kernel, we simply compute the dot product $(\boldsymbol{x}_i^T\boldsymbol{x}_j)^2$. This leads to the so-called kernel trick. ## The problem to solve Using our definition of the kernel, we can rewrite again the Lagrangian $$ {\cal L}=\sum_i\lambda_i-\frac{1}{2}\sum_{ij}^n\lambda_i\lambda_jy_iy_j\boldsymbol{x}_i^T\boldsymbol{z}_j, $$ subject to the constraints $\lambda_i\geq 0$, $\sum_i\lambda_iy_i=0$ in terms of a convex optimization problem $$ \frac{1}{2} \boldsymbol{\lambda}^T\begin{bmatrix} y_1y_1K(\boldsymbol{x}_1,\boldsymbol{x}_1) & y_1y_2K(\boldsymbol{x}_1,\boldsymbol{x}_2) & \dots & \dots & y_1y_nK(\boldsymbol{x}_1,\boldsymbol{x}_n) \\ y_2y_1K(\boldsymbol{x}_2,\boldsymbol{x}_1) & y_2y_2(\boldsymbol{x}_2,\boldsymbol{x}_2) & \dots & \dots & y_1y_nK(\boldsymbol{x}_2,\boldsymbol{x}_n) \\ \dots & \dots & \dots & \dots & \dots \\ \dots & \dots & \dots & \dots & \dots \\ y_ny_1K(\boldsymbol{x}_n,\boldsymbol{x}_1) & y_ny_2K(\boldsymbol{x}_n\boldsymbol{x}_2) & \dots & \dots & y_ny_nK(\boldsymbol{x}_n,\boldsymbol{x}_n) \\ \end{bmatrix}\boldsymbol{\lambda}-\mathbb{1}\boldsymbol{\lambda}, $$ subject to $\boldsymbol{y}^T\boldsymbol{\lambda}=0$. Here we defined the vectors $\boldsymbol{\lambda} =[\lambda_1,\lambda_2,\dots,\lambda_n]$ and $\boldsymbol{y}=[y_1,y_2,\dots,y_n]$. If we add the slack constants this leads to the additional constraint $0\leq \lambda_i \leq C$. ## Tailoring the equations to the usage of CVXOPT We can rewrite this (see the solutions below) in terms of a convex optimization problem of the type $$ \begin{align*} &\mathrm{min}_{\lambda}\hspace{0.2cm} \frac{1}{2}\boldsymbol{\lambda}^T\boldsymbol{P}\boldsymbol{\lambda}+\boldsymbol{q}^T\boldsymbol{\lambda},\\ \nonumber &\mathrm{subject\hspace{0.1cm}to} \hspace{0.2cm} \boldsymbol{G}\boldsymbol{\lambda} \preceq \boldsymbol{h} \hspace{0.2cm} \wedge \boldsymbol{A}\boldsymbol{\lambda}=f. \end{align*} $$ Below we discuss how to solve these equations. Here we note that the matrix $\boldsymbol{P}$ has matrix elements $p_{ij}=y_iy_jK(\boldsymbol{x}_i,\boldsymbol{x}_j)$. Given a kernel $K$ and the targets $y_i$ this matrix is easy to set up. The constraint $\boldsymbol{y}^T\boldsymbol{\lambda}=0$ leads to $f=0$ and $\boldsymbol{A}=\boldsymbol{y}$. How to set up the matrix $\boldsymbol{G}$ is discussed later. Here note that the inequalities $0\leq \lambda_i \leq C$ can be split up into $0\leq \lambda_i$ and $\lambda_i \leq C$. These two inequalities define then the matrix $\boldsymbol{G}$ and the vector $\boldsymbol{h}$. ## Different kernels and Mercer's theorem There are several popular kernels being used. These are 1. Linear: $K(\boldsymbol{x},\boldsymbol{y})=\boldsymbol{x}^T\boldsymbol{y}$, 2. Polynomial: $K(\boldsymbol{x},\boldsymbol{y})=(\boldsymbol{x}^T\boldsymbol{y}+\gamma)^d$, 3. Gaussian Radial Basis Function: $K(\boldsymbol{x},\boldsymbol{y})=\exp{\left(-\gamma\vert\vert\boldsymbol{x}-\boldsymbol{y}\vert\vert^2\right)}$, 4. Tanh: $K(\boldsymbol{x},\boldsymbol{y})=\tanh{(\boldsymbol{x}^T\boldsymbol{y}+\gamma)}$, and many other ones. An important theorem for us is [Mercer's theorem](https://en.wikipedia.org/wiki/Mercer%27s_theorem). The theorem states that if a kernel function $K$ is symmetric, continuous and leads to a positive semi-definite matrix $\boldsymbol{P}$ then there exists a function $\phi$ that maps $\boldsymbol{x}_i$ and $\boldsymbol{x}_j$ into another space (possibly with much higher dimensions) such that $$ K(\boldsymbol{x}_i,\boldsymbol{x}_j)=\phi(\boldsymbol{x}_i)^T\phi(\boldsymbol{x}_j). $$ So you can use $K$ as a kernel since you know $\phi$ exists, even if you don’t know what $\phi$ is. Note that some frequently used kernels (such as the Sigmoid kernel) don’t respect all of Mercer’s conditions, yet they generally work well in practice. ## The moons example ([Adapted from Geron, chapter 5](https://www.oreilly.com/library/view/hands-on-machine-learning/9781492032632/)) ```python from __future__ import division, print_function, unicode_literals import numpy as np np.random.seed(42) import matplotlib import matplotlib.pyplot as plt plt.rcParams['axes.labelsize'] = 14 plt.rcParams['xtick.labelsize'] = 12 plt.rcParams['ytick.labelsize'] = 12 from sklearn.svm import SVC from sklearn import datasets from sklearn.pipeline import Pipeline from sklearn.preprocessing import StandardScaler from sklearn.svm import LinearSVC from sklearn.datasets import make_moons X, y = make_moons(n_samples=100, noise=0.15, random_state=42) def plot_dataset(X, y, axes): plt.plot(X[:, 0][y==0], X[:, 1][y==0], "bs") plt.plot(X[:, 0][y==1], X[:, 1][y==1], "g^") plt.axis(axes) plt.grid(True, which='both') plt.xlabel(r"$x_1$", fontsize=20) plt.ylabel(r"$x_2$", fontsize=20, rotation=0) plot_dataset(X, y, [-1.5, 2.5, -1, 1.5]) plt.show() from sklearn.datasets import make_moons from sklearn.pipeline import Pipeline from sklearn.preprocessing import PolynomialFeatures polynomial_svm_clf = Pipeline([ ("poly_features", PolynomialFeatures(degree=3)), ("scaler", StandardScaler()), ("svm_clf", LinearSVC(C=10, loss="hinge", random_state=42)) ]) polynomial_svm_clf.fit(X, y) def plot_predictions(clf, axes): x0s = np.linspace(axes[0], axes[1], 100) x1s = np.linspace(axes[2], axes[3], 100) x0, x1 = np.meshgrid(x0s, x1s) X = np.c_[x0.ravel(), x1.ravel()] y_pred = clf.predict(X).reshape(x0.shape) y_decision = clf.decision_function(X).reshape(x0.shape) plt.contourf(x0, x1, y_pred, cmap=plt.cm.brg, alpha=0.2) plt.contourf(x0, x1, y_decision, cmap=plt.cm.brg, alpha=0.1) plot_predictions(polynomial_svm_clf, [-1.5, 2.5, -1, 1.5]) plot_dataset(X, y, [-1.5, 2.5, -1, 1.5]) plt.show() from sklearn.svm import SVC poly_kernel_svm_clf = Pipeline([ ("scaler", StandardScaler()), ("svm_clf", SVC(kernel="poly", degree=3, coef0=1, C=5)) ]) poly_kernel_svm_clf.fit(X, y) poly100_kernel_svm_clf = Pipeline([ ("scaler", StandardScaler()), ("svm_clf", SVC(kernel="poly", degree=10, coef0=100, C=5)) ]) poly100_kernel_svm_clf.fit(X, y) plt.figure(figsize=(11, 4)) plt.subplot(121) plot_predictions(poly_kernel_svm_clf, [-1.5, 2.5, -1, 1.5]) plot_dataset(X, y, [-1.5, 2.5, -1, 1.5]) plt.title(r"$d=3, r=1, C=5$", fontsize=18) plt.subplot(122) plot_predictions(poly100_kernel_svm_clf, [-1.5, 2.5, -1, 1.5]) plot_dataset(X, y, [-1.5, 2.5, -1, 1.5]) plt.title(r"$d=10, r=100, C=5$", fontsize=18) plt.show() def gaussian_rbf(x, landmark, gamma): return np.exp(-gamma * np.linalg.norm(x - landmark, axis=1)**2) gamma = 0.3 x1s = np.linspace(-4.5, 4.5, 200).reshape(-1, 1) x2s = gaussian_rbf(x1s, -2, gamma) x3s = gaussian_rbf(x1s, 1, gamma) XK = np.c_[gaussian_rbf(X1D, -2, gamma), gaussian_rbf(X1D, 1, gamma)] yk = np.array([0, 0, 1, 1, 1, 1, 1, 0, 0]) plt.figure(figsize=(11, 4)) plt.subplot(121) plt.grid(True, which='both') plt.axhline(y=0, color='k') plt.scatter(x=[-2, 1], y=[0, 0], s=150, alpha=0.5, c="red") plt.plot(X1D[:, 0][yk==0], np.zeros(4), "bs") plt.plot(X1D[:, 0][yk==1], np.zeros(5), "g^") plt.plot(x1s, x2s, "g--") plt.plot(x1s, x3s, "b:") plt.gca().get_yaxis().set_ticks([0, 0.25, 0.5, 0.75, 1]) plt.xlabel(r"$x_1$", fontsize=20) plt.ylabel(r"Similarity", fontsize=14) plt.annotate(r'$\mathbf{x}$', xy=(X1D[3, 0], 0), xytext=(-0.5, 0.20), ha="center", arrowprops=dict(facecolor='black', shrink=0.1), fontsize=18, ) plt.text(-2, 0.9, "$x_2$", ha="center", fontsize=20) plt.text(1, 0.9, "$x_3$", ha="center", fontsize=20) plt.axis([-4.5, 4.5, -0.1, 1.1]) plt.subplot(122) plt.grid(True, which='both') plt.axhline(y=0, color='k') plt.axvline(x=0, color='k') plt.plot(XK[:, 0][yk==0], XK[:, 1][yk==0], "bs") plt.plot(XK[:, 0][yk==1], XK[:, 1][yk==1], "g^") plt.xlabel(r"$x_2$", fontsize=20) plt.ylabel(r"$x_3$ ", fontsize=20, rotation=0) plt.annotate(r'$\phi\left(\mathbf{x}\right)$', xy=(XK[3, 0], XK[3, 1]), xytext=(0.65, 0.50), ha="center", arrowprops=dict(facecolor='black', shrink=0.1), fontsize=18, ) plt.plot([-0.1, 1.1], [0.57, -0.1], "r--", linewidth=3) plt.axis([-0.1, 1.1, -0.1, 1.1]) plt.subplots_adjust(right=1) plt.show() x1_example = X1D[3, 0] for landmark in (-2, 1): k = gaussian_rbf(np.array([[x1_example]]), np.array([[landmark]]), gamma) print("Phi({}, {}) = {}".format(x1_example, landmark, k)) rbf_kernel_svm_clf = Pipeline([ ("scaler", StandardScaler()), ("svm_clf", SVC(kernel="rbf", gamma=5, C=0.001)) ]) rbf_kernel_svm_clf.fit(X, y) from sklearn.svm import SVC gamma1, gamma2 = 0.1, 5 C1, C2 = 0.001, 1000 hyperparams = (gamma1, C1), (gamma1, C2), (gamma2, C1), (gamma2, C2) svm_clfs = [] for gamma, C in hyperparams: rbf_kernel_svm_clf = Pipeline([ ("scaler", StandardScaler()), ("svm_clf", SVC(kernel="rbf", gamma=gamma, C=C)) ]) rbf_kernel_svm_clf.fit(X, y) svm_clfs.append(rbf_kernel_svm_clf) plt.figure(figsize=(11, 7)) for i, svm_clf in enumerate(svm_clfs): plt.subplot(221 + i) plot_predictions(svm_clf, [-1.5, 2.5, -1, 1.5]) plot_dataset(X, y, [-1.5, 2.5, -1, 1.5]) gamma, C = hyperparams[i] plt.title(r"$\gamma = {}, C = {}$".format(gamma, C), fontsize=16) plt.show() ``` ## Mathematical optimization of convex functions A mathematical (quadratic) optimization problem, or just optimization problem, has the form $$ \begin{align*} &\mathrm{min}_{\lambda}\hspace{0.2cm} \frac{1}{2}\boldsymbol{\lambda}^T\boldsymbol{P}\boldsymbol{\lambda}+\boldsymbol{q}^T\boldsymbol{\lambda},\\ \nonumber &\mathrm{subject\hspace{0.1cm}to} \hspace{0.2cm} \boldsymbol{G}\boldsymbol{\lambda} \preceq \boldsymbol{h} \wedge \boldsymbol{A}\boldsymbol{\lambda}=f. \end{align*} $$ subject to some constraints for say a selected set $i=1,2,\dots, n$. In our case we are optimizing with respect to the Lagrangian multipliers $\lambda_i$, and the vector $\boldsymbol{\lambda}=[\lambda_1, \lambda_2,\dots, \lambda_n]$ is the optimization variable we are dealing with. In our case we are particularly interested in a class of optimization problems called convex optmization problems. In our discussion on gradient descent methods we discussed at length the definition of a convex function. Convex optimization problems play a central role in applied mathematics and we recommend strongly [Boyd and Vandenberghe's text on the topics](http://web.stanford.edu/~boyd/cvxbook/). ## How do we solve these problems? If we use Python as programming language and wish to venture beyond **scikit-learn**, **tensorflow** and similar software which makes our lives so much easier, we need to dive into the wonderful world of quadratic programming. We can, if we wish, solve the minimization problem using say standard gradient methods or conjugate gradient methods. However, these methods tend to exhibit a rather slow converge. So, welcome to the promised land of quadratic programming. The functions we need are contained in the quadratic programming package **CVXOPT** and we need to import it together with **numpy** as ```python import numpy import cvxopt ``` This will make our life much easier. You don't need to write your own optimizer. ## A simple example We remind ourselves about the general problem we want to solve $$ \begin{align*} &\mathrm{min}_{x}\hspace{0.2cm} \frac{1}{2}\boldsymbol{x}^T\boldsymbol{P}\boldsymbol{x}+\boldsymbol{q}^T\boldsymbol{x},\\ \nonumber &\mathrm{s.t.} \hspace{0.2cm} \boldsymbol{G}\boldsymbol{x} \preceq \boldsymbol{h} \wedge \boldsymbol{A}\boldsymbol{x}=f. \end{align*} $$ Note: we use **s.t.** for subject to. Let us show how to perform the optmization using a simple case. Assume we want to optimize the following problem $$ \begin{align*} &\mathrm{min}_{x}\hspace{0.2cm} \frac{1}{2}x^2+5x+3y \\ \nonumber &\mathrm{subject to} \\ \nonumber &x, y \geq 0 \\ \nonumber &x+3y \geq 15 \\ \nonumber &2x+5y \leq 100 \\ \nonumber &3x+4y \leq 80. \\ \nonumber \end{align*} $$ The minimization problem can be rewritten in terms of vectors and matrices as (with $x$ and $y$ being the unknowns) $$ \frac{1}{2}\begin{bmatrix} x\\ y \end{bmatrix}^T \begin{bmatrix} 1 & 0\\ 0 & 0 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} + \begin{bmatrix}3\\ 4 \end{bmatrix}^T \begin{bmatrix}x \\ y \end{bmatrix}. $$ Similarly, we can now set up the inequalities (we need to change $\geq$ to $\leq$ by multiplying with $-1$ on bot sides) as the following matrix-vector equation $$ \begin{bmatrix} -1 & 0 \\ 0 & -1 \\ -1 & -3 \\ 2 & 5 \\ 3 & 4\end{bmatrix}\begin{bmatrix} x \\ y\end{bmatrix} \preceq \begin{bmatrix}0 \\ 0\\ -15 \\ 100 \\ 80\end{bmatrix}. $$ We have collapsed all the inequalities into a single matrix $\boldsymbol{G}$. We see also that our matrix $$ \boldsymbol{P} =\begin{bmatrix} 1 & 0\\ 0 & 0 \end{bmatrix} $$ is clearly positive semi-definite (all eigenvalues larger or equal zero). Finally, the vector $\boldsymbol{h}$ is defined as $$ \boldsymbol{h} = \begin{bmatrix}0 \\ 0\\ -15 \\ 100 \\ 80\end{bmatrix}. $$ Since we don't have any equalities the matrix $\boldsymbol{A}$ is set to zero The following code solves the equations for us ```python # Import the necessary packages import numpy from cvxopt import matrix from cvxopt import solvers P = matrix(numpy.diag([1,0]), tc='d') q = matrix(numpy.array([3,4]), tc='d') G = matrix(numpy.array([[-1,0],[0,-1],[-1,-3],[2,5],[3,4]]), tc='d') h = matrix(numpy.array([0,0,-15,100,80]), tc='d') # Construct the QP, invoke solver sol = solvers.qp(P,q,G,h) # Extract optimal value and solution sol['x'] sol['primal objective'] ``` ## Back to the more realistic cases We are now ready to return to our setup of the optmization problem for a more realistic case. Introducing the **slack** parameter $C$ we have $$ \frac{1}{2} \boldsymbol{\lambda}^T\begin{bmatrix} y_1y_1K(\boldsymbol{x}_1,\boldsymbol{x}_1) & y_1y_2K(\boldsymbol{x}_1,\boldsymbol{x}_2) & \dots & \dots & y_1y_nK(\boldsymbol{x}_1,\boldsymbol{x}_n) \\ y_2y_1K(\boldsymbol{x}_2,\boldsymbol{x}_1) & y_2y_2K(\boldsymbol{x}_2,\boldsymbol{x}_2) & \dots & \dots & y_1y_nK(\boldsymbol{x}_2,\boldsymbol{x}_n) \\ \dots & \dots & \dots & \dots & \dots \\ \dots & \dots & \dots & \dots & \dots \\ y_ny_1K(\boldsymbol{x}_n,\boldsymbol{x}_1) & y_ny_2K(\boldsymbol{x}_n\boldsymbol{x}_2) & \dots & \dots & y_ny_nK(\boldsymbol{x}_n,\boldsymbol{x}_n) \\ \end{bmatrix}\boldsymbol{\lambda}-\mathbb{I}\boldsymbol{\lambda}, $$ subject to $\boldsymbol{y}^T\boldsymbol{\lambda}=0$. Here we defined the vectors $\boldsymbol{\lambda} =[\lambda_1,\lambda_2,\dots,\lambda_n]$ and $\boldsymbol{y}=[y_1,y_2,\dots,y_n]$. With the slack constants this leads to the additional constraint $0\leq \lambda_i \leq C$. ## Setting up the matrices and the problem We have the general problem $$ \begin{align*} &\mathrm{min}_{\lambda}\hspace{0.2cm} \frac{1}{2}\boldsymbol{\lambda}^T\boldsymbol{P}\boldsymbol{\lambda}+\boldsymbol{q}^T\boldsymbol{\lambda},\\ \nonumber &\mathrm{s.t.} \hspace{0.2cm} \boldsymbol{G}\boldsymbol{\lambda} \preceq \boldsymbol{h} \wedge \boldsymbol{A}\boldsymbol{\lambda}=f. \end{align*} $$ 1. With a given kernel we can thus define the matrix $\boldsymbol{P}$. 2. The matrix $\boldsymbol{P}$ has matrix elements $p_{ij}=y_iy_jK(\boldsymbol{x}_i,\boldsymbol{x}_j)$. Given a kernel $K$ and the targets $y_i$ this matrix is easy to set up. 3. The vector $\boldsymbol{q}$ is zero. 4. The constraint $\boldsymbol{y}^T\boldsymbol{\lambda}=0$ leads to $f=0$ and $\boldsymbol{A}=\boldsymbol{y}$. 5. To set up the matrix $\boldsymbol{G}$ we note that the inequalities $0\leq \lambda_i \leq C$ can be split up into $0\leq \lambda_i$ and $\lambda_i \leq C$. These two inequalities define then the matrix $\boldsymbol{G}$ and the vector $\boldsymbol{h}$. ## Setting up $\boldsymbol{G}\boldsymbol{\lambda} \preceq \boldsymbol{h}$ We have two constraints, $0\le \lambda_i$ and $\lambda_i \le C$. To do this we multiply the ones with the contraint $\ge$ with $-1$ in order to get $\le$. It means that the problem $\boldsymbol{G}\boldsymbol{\lambda} \preceq \boldsymbol{h}$ can be written as $$ \begin{bmatrix} -1& 0 & 0 & \dots & 0 \\ 0& -1 & 0 & \dots & 0 \\ 0& 0 & -1 & \dots & 0 \\ \dots& \dots & \dots & \dots & \dots \\ 0& 0 & 0 & \dots & -1 \\ 1 & 0 & 0 & \dots & 0 \\ 0& 1 & 0 & \dots & 0 \\ 0& 0 & 1 & \dots & 0 \\ \dots& \dots & \dots & \dots & \dots \\ 0& 0 & 0 & \dots & 1 \\ \end{bmatrix} \begin{bmatrix} \lambda_1 \\ \lambda_2 \\ \lambda_3 \\ \dots \\ \lambda_n \\ \end{bmatrix}= \begin{bmatrix} 0 \\ 0 \\ 0 \\ \dots \\ 0 \\ C \\ C \\ C \\ \dots \\ C \\ \end{bmatrix}. $$ And then we are ready to go. ## SVMs and Regression and multiclass classification [See handwritten lectures from lecture November 26.](https://github.com/CompPhysics/MachineLearning/blob/master/doc/HandWrittenNotes/NotesNovember26.pdf). More text will be added here. See also [Hastie et al.](https://www.springer.com/gp/book/9780387848570) section 12.3. ## Summary of course ## What? Me worry? No final exam in this course! <!-- dom:FIGURE: [figures/exam1.jpeg, width=500 frac=0.6] --> <!-- begin figure --> <p></p> <!-- end figure --> ## Topics we have covered this year The course has two central parts 1. Statistical analysis and optimization of data 2. Machine learning ## Statistical analysis and optimization of data The following topics be covered 1. Basic concepts, expectation values, variance, covariance, correlation functions and errors; 2. Simpler models, binomial distribution, the Poisson distribution, simple and multivariate normal distributions; 3. Central elements from linear algebra 4. Gradient methods for data optimization 5. Estimation of errors using cross-validation, bootstrapping and jackknife methods; 6. Practical optimization using Singular-value decomposition and least squares for parameterizing data. 7. Principal Component Analysis. ## Machine learning The following topics will be covered 1. Linear methods for regression and classification: a. Ordinary Least Squares b. Ridge regression c. Lasso regression d. Logistic regression 5. Neural networks and deep learning: a. Feed Forward Neural Networks b. Convolutional Neural Networks c. Recurrent Neural Networks 4. Decisions trees and ensemble methods: a. Decision trees b. Bagging and voting c. Random forests d. Boosting and gradient boosting 5. Support vector machines a. Binary classification and multiclass classification b. Kernel methods c. Regression ## Learning outcomes and overarching aims of this course The course introduces a variety of central algorithms and methods essential for studies of data analysis and machine learning. The course is project based and through the various projects, normally three, you will be exposed to fundamental research problems in these fields, with the aim to reproduce state of the art scientific results. The students will learn to develop and structure large codes for studying these systems, get acquainted with computing facilities and learn to handle large scientific projects. A good scientific and ethical conduct is emphasized throughout the course. * Understand linear methods for regression and classification; * Learn about neural network; * Learn about baggin, boosting and trees * Support vector machines * Learn about basic data analysis; * Be capable of extending the acquired knowledge to other systems and cases; * Have an understanding of central algorithms used in data analysis and machine learning; * Work on numerical projects to illustrate the theory. The projects play a central role and you are expected to know modern programming languages like Python or C++. ## Perspective on Machine Learning 1. Rapidly emerging application area 2. Experiment AND theory are evolving in many many fields. Still many low-hanging fruits. 3. Requires education/retraining for more widespread adoption 4. A lot of “word-of-mouth” development methods Huge amounts of data sets require automation, classical analysis tools often inadequate. High energy physics hit this wall in the 90’s. In 2009 single top quark production was determined via [Boosted decision trees, Bayesian Neural Networks, etc.](https://arxiv.org/pdf/0903.0850.pdf) ## Machine Learning Research Where to find recent results: 1. Conference proceedings, arXiv and blog posts! 2. **NIPS**: [Neural Information Processing Systems](https://papers.nips.cc) 3. **ICLR**: [International Conference on Learning Representations](https://openreview.net/group?id=ICLR.cc/2018/Conference#accepted-oral-papers) 4. **ICML**: International Conference on Machine Learning 5. [Journal of Machine Learning Research](http://www.jmlr.org/papers/v19/) ## Starting your Machine Learning Project 1. Identify problem type: classification, generation, regression 2. Consider your data carefully 3. Choose a simple model that fits 1. and 2. 4. Consider your data carefully again… data representation 5. Based on results, feedback loop to earliest possible point ## Choose a Model and Algorithm 1. Supervised? 2. Start with the simplest model that fits your problem 3. Start with minimal processing of data ## Preparing Your Data 1. Shuffle your data 2. Mean center your data * Why? 3. Normalize the variance * Why? 4. **Whitening** * Decorrelates data * Can be hit or miss 5. When to do train/test split? ## Which Activation and Weights to Choose in Neural Networks 1. RELU? ELU? 2. Sigmoid or Tanh? 3. Set all weights to 0? * Terrible idea 4. Set all weights to random values? * Small random values ## Optimization Methods and Hyperparameters 1. Stochastic gradient descent a. Stochastic gradient descent + momentum 2. State-of-the-art approaches: * RMSProp * Adam Which regularization and hyperparameters? $L_1$ or $L_2$, soft classifiers, depths of trees and many other. Need to explore a large set of hyperparameters and regularization methods. ## Resampling When do we resample? 1. Bootstrap 2. Cross-validation 3. Jackknife and many other ## Other courses on Data science and Machine Learning at UiO The link here <https://www.mn.uio.no/english/research/about/centre-focus/innovation/data-science/studies/> gives an excellent overview of courses on Machine learning at UiO. 1. [STK2100 Machine learning and statistical methods for prediction and classification](http://www.uio.no/studier/emner/matnat/math/STK2100/index-eng.html). 2. [IN3050/IN4050 Introduction to Artificial Intelligence and Machine Learning](https://www.uio.no/studier/emner/matnat/ifi/IN3050/index-eng.html). Introductory course in machine learning and AI with an algorithmic approach. 3. [STK-INF3000/4000 Selected Topics in Data Science](http://www.uio.no/studier/emner/matnat/math/STK-INF3000/index-eng.html). The course provides insight into selected contemporary relevant topics within Data Science. 4. [IN4080 Natural Language Processing](https://www.uio.no/studier/emner/matnat/ifi/IN4080/index.html). Probabilistic and machine learning techniques applied to natural language processing. 5. [STK-IN4300 – Statistical learning methods in Data Science](https://www.uio.no/studier/emner/matnat/math/STK-IN4300/index-eng.html). An advanced introduction to statistical and machine learning. For students with a good mathematics and statistics background. 6. [IN-STK5000 Adaptive Methods for Data-Based Decision Making](https://www.uio.no/studier/emner/matnat/ifi/IN-STK5000/index-eng.html). Methods for adaptive collection and processing of data based on machine learning techniques. 7. [IN5400/INF5860 – Machine Learning for Image Analysis](https://www.uio.no/studier/emner/matnat/ifi/IN5400/). An introduction to deep learning with particular emphasis on applications within Image analysis, but useful for other application areas too. 8. [TEK5040 – Dyp læring for autonome systemer](https://www.uio.no/studier/emner/matnat/its/TEK5040/). The course addresses advanced algorithms and architectures for deep learning with neural networks. The course provides an introduction to how deep-learning techniques can be used in the construction of key parts of advanced autonomous systems that exist in physical environments and cyber environments. ## Additional courses of interest 1. [STK4051 Computational Statistics](https://www.uio.no/studier/emner/matnat/math/STK4051/index-eng.html) 2. [STK4021 Applied Bayesian Analysis and Numerical Methods](https://www.uio.no/studier/emner/matnat/math/STK4021/index-eng.html) ## What's the future like? Based on multi-layer nonlinear neural networks, deep learning can learn directly from raw data, automatically extract and abstract features from layer to layer, and then achieve the goal of regression, classification, or ranking. Deep learning has made breakthroughs in computer vision, speech processing and natural language, and reached or even surpassed human level. The success of deep learning is mainly due to the three factors: big data, big model, and big computing. In the past few decades, many different architectures of deep neural networks have been proposed, such as 1. Convolutional neural networks, which are mostly used in image and video data processing, and have also been applied to sequential data such as text processing; 2. Recurrent neural networks, which can process sequential data of variable length and have been widely used in natural language understanding and speech processing; 3. Encoder-decoder framework, which is mostly used for image or sequence generation, such as machine translation, text summarization, and image captioning. ## Types of Machine Learning, a repetition The approaches to machine learning are many, but are often split into two main categories. In *supervised learning* we know the answer to a problem, and let the computer deduce the logic behind it. On the other hand, *unsupervised learning* is a method for finding patterns and relationship in data sets without any prior knowledge of the system. Some authours also operate with a third category, namely *reinforcement learning*. This is a paradigm of learning inspired by behavioural psychology, where learning is achieved by trial-and-error, solely from rewards and punishment. Another way to categorize machine learning tasks is to consider the desired output of a system. Some of the most common tasks are: * Classification: Outputs are divided into two or more classes. The goal is to produce a model that assigns inputs into one of these classes. An example is to identify digits based on pictures of hand-written ones. Classification is typically supervised learning. * Regression: Finding a functional relationship between an input data set and a reference data set. The goal is to construct a function that maps input data to continuous output values. * Clustering: Data are divided into groups with certain common traits, without knowing the different groups beforehand. It is thus a form of unsupervised learning. * Other unsupervised learning algortihms like **Boltzmann machines** ## Why Boltzmann machines? What is known as restricted Boltzmann Machines (RMB) have received a lot of attention lately. One of the major reasons is that they can be stacked layer-wise to build deep neural networks that capture complicated statistics. The original RBMs had just one visible layer and a hidden layer, but recently so-called Gaussian-binary RBMs have gained quite some popularity in imaging since they are capable of modeling continuous data that are common to natural images. Furthermore, they have been used to solve complicated [quantum mechanical many-particle problems or classical statistical physics problems like the Ising and Potts classes of models](https://journals.aps.org/rmp/abstract/10.1103/RevModPhys.91.045002). ## Boltzmann Machines Why use a generative model rather than the more well known discriminative deep neural networks (DNN)? * Discriminitave methods have several limitations: They are mainly supervised learning methods, thus requiring labeled data. And there are tasks they cannot accomplish, like drawing new examples from an unknown probability distribution. * A generative model can learn to represent and sample from a probability distribution. The core idea is to learn a parametric model of the probability distribution from which the training data was drawn. As an example a. A model for images could learn to draw new examples of cats and dogs, given a training dataset of images of cats and dogs. b. Generate a sample of an ordered or disordered phase, having been given samples of such phases. c. Model the trial function for [Monte Carlo calculations](https://journals.aps.org/rmp/abstract/10.1103/RevModPhys.91.045002). ## Some similarities and differences from DNNs 1. Both use gradient-descent based learning procedures for minimizing cost functions 2. Energy based models don't use backpropagation and automatic differentiation for computing gradients, instead turning to Markov Chain Monte Carlo methods. 3. DNNs often have several hidden layers. A restricted Boltzmann machine has only one hidden layer, however several RBMs can be stacked to make up Deep Belief Networks, of which they constitute the building blocks. History: The RBM was developed by amongst others [Geoffrey Hinton](https://en.wikipedia.org/wiki/Geoffrey_Hinton), called by some the "Godfather of Deep Learning", working with the University of Toronto and Google. ## Boltzmann machines (BM) A BM is what we would call an undirected probabilistic graphical model with stochastic continuous or discrete units. It is interpreted as a stochastic recurrent neural network where the state of each unit(neurons/nodes) depends on the units it is connected to. The weights in the network represent thus the strength of the interaction between various units/nodes. It turns into a Hopfield network if we choose deterministic rather than stochastic units. In contrast to a Hopfield network, a BM is a so-called generative model. It allows us to generate new samples from the learned distribution. ## A standard BM setup A standard BM network is divided into a set of observable and visible units $\hat{x}$ and a set of unknown hidden units/nodes $\hat{h}$. Additionally there can be bias nodes for the hidden and visible layers. These biases are normally set to $1$. BMs are stackable, meaning they cwe can train a BM which serves as input to another BM. We can construct deep networks for learning complex PDFs. The layers can be trained one after another, a feature which makes them popular in deep learning However, they are often hard to train. This leads to the introduction of so-called restricted BMs, or RBMS. Here we take away all lateral connections between nodes in the visible layer as well as connections between nodes in the hidden layer. The network is illustrated in the figure below. ## The structure of the RBM network <!-- dom:FIGURE: [figures/RBM.png, width=800 frac=1.0] --> <!-- begin figure --> <p></p> <!-- end figure --> ## The network **The network layers**: 1. A function $\mathbf{x}$ that represents the visible layer, a vector of $M$ elements (nodes). This layer represents both what the RBM might be given as training input, and what we want it to be able to reconstruct. This might for example be given by the pixels of an image or coefficients representing speech, or the coordinates of a quantum mechanical state function. 2. The function $\mathbf{h}$ represents the hidden, or latent, layer. A vector of $N$ elements (nodes). Also called "feature detectors". ## Goals The goal of the hidden layer is to increase the model's expressive power. We encode complex interactions between visible variables by introducing additional, hidden variables that interact with visible degrees of freedom in a simple manner, yet still reproduce the complex correlations between visible degrees in the data once marginalized over (integrated out). **The network parameters, to be optimized/learned**: 1. $\mathbf{a}$ represents the visible bias, a vector of same length as $\mathbf{x}$. 2. $\mathbf{b}$ represents the hidden bias, a vector of same lenght as $\mathbf{h}$. 3. $W$ represents the interaction weights, a matrix of size $M\times N$. ## Joint distribution The restricted Boltzmann machine is described by a Bolztmann distribution <!-- Equation labels as ordinary links --> <div id="_auto1"></div> $$ \begin{equation} P_{rbm}(\mathbf{x},\mathbf{h}) = \frac{1}{Z} e^{-\frac{1}{T_0}E(\mathbf{x},\mathbf{h})}, \label{_auto1} \tag{1} \end{equation} $$ where $Z$ is the normalization constant or partition function, defined as <!-- Equation labels as ordinary links --> <div id="_auto2"></div> $$ \begin{equation} Z = \int \int e^{-\frac{1}{T_0}E(\mathbf{x},\mathbf{h})} d\mathbf{x} d\mathbf{h}. \label{_auto2} \tag{2} \end{equation} $$ It is common to ignore $T_0$ by setting it to one. ## Network Elements, the energy function The function $E(\mathbf{x},\mathbf{h})$ gives the **energy** of a configuration (pair of vectors) $(\mathbf{x}, \mathbf{h})$. The lower the energy of a configuration, the higher the probability of it. This function also depends on the parameters $\mathbf{a}$, $\mathbf{b}$ and $W$. Thus, when we adjust them during the learning procedure, we are adjusting the energy function to best fit our problem. An expression for the energy function is $$ E(\hat{x},\hat{h}) = -\sum_{ia}^{NA}b_i^a \alpha_i^a(x_i)-\sum_{jd}^{MD}c_j^d \beta_j^d(h_j)-\sum_{ijad}^{NAMD}b_i^a \alpha_i^a(x_i)c_j^d \beta_j^d(h_j)w_{ij}^{ad}. $$ Here $\beta_j^d(h_j)$ and $\alpha_i^a(x_j)$ are so-called transfer functions that map a given input value to a desired feature value. The labels $a$ and $d$ denote that there can be multiple transfer functions per variable. The first sum depends only on the visible units. The second on the hidden ones. **Note** that there is no connection between nodes in a layer. The quantities $b$ and $c$ can be interpreted as the visible and hidden biases, respectively. The connection between the nodes in the two layers is given by the weights $w_{ij}$. ## Defining different types of RBMs There are different variants of RBMs, and the differences lie in the types of visible and hidden units we choose as well as in the implementation of the energy function $E(\mathbf{x},\mathbf{h})$. **Binary-Binary RBM:** RBMs were first developed using binary units in both the visible and hidden layer. The corresponding energy function is defined as follows: <!-- Equation labels as ordinary links --> <div id="_auto3"></div> $$ \begin{equation} E(\mathbf{x}, \mathbf{h}) = - \sum_i^M x_i a_i- \sum_j^N b_j h_j - \sum_{i,j}^{M,N} x_i w_{ij} h_j, \label{_auto3} \tag{3} \end{equation} $$ where the binary values taken on by the nodes are most commonly 0 and 1. **Gaussian-Binary RBM:** Another varient is the RBM where the visible units are Gaussian while the hidden units remain binary: <!-- Equation labels as ordinary links --> <div id="_auto4"></div> $$ \begin{equation} E(\mathbf{x}, \mathbf{h}) = \sum_i^M \frac{(x_i - a_i)^2}{2\sigma_i^2} - \sum_j^N b_j h_j - \sum_{i,j}^{M,N} \frac{x_i w_{ij} h_j}{\sigma_i^2}. \label{_auto4} \tag{4} \end{equation} $$ ## More about RBMs 1. Useful when we model continuous data (i.e., we wish $\mathbf{x}$ to be continuous) 2. Requires a smaller learning rate, since there's no upper bound to the value a component might take in the reconstruction Other types of units include: 1. Softmax and multinomial units 2. Gaussian visible and hidden units 3. Binomial units 4. Rectified linear units ## Autoencoders: Overarching view Autoencoders are artificial neural networks capable of learning efficient representations of the input data (these representations are called codings) without any supervision (i.e., the training set is unlabeled). These codings typically have a much lower dimensionality than the input data, making autoencoders useful for dimensionality reduction. More importantly, autoencoders act as powerful feature detectors, and they can be used for unsupervised pretraining of deep neural networks. Lastly, they are capable of randomly generating new data that looks very similar to the training data; this is called a generative model. For example, you could train an autoencoder on pictures of faces, and it would then be able to generate new faces. Surprisingly, autoencoders work by simply learning to copy their inputs to their outputs. This may sound like a trivial task, but we will see that constraining the network in various ways can make it rather difficult. For example, you can limit the size of the internal representation, or you can add noise to the inputs and train the network to recover the original inputs. These constraints prevent the autoencoder from trivially copying the inputs directly to the outputs, which forces it to learn efficient ways of representing the data. In short, the codings are byproducts of the autoencoder’s attempt to learn the identity function under some constraints. [Video on autoencoders](https://www.coursera.org/lecture/building-deep-learning-models-with-tensorflow/autoencoders-1U4L3) See also A. Geron's textbook, chapter 15. ## Bayesian Machine Learning This is an important topic if we aim at extracting a probability distribution. This gives us also a confidence interval and error estimates. Bayesian machine learning allows us to encode our prior beliefs about what those models should look like, independent of what the data tells us. This is especially useful when we don’t have a ton of data to confidently learn our model. [Video on Bayesian deep learning](https://www.youtube.com/watch?v=E1qhGw8QxqY&ab_channel=AndrewGordonWilson) See also the [slides here](https://github.com/CompPhysics/MachineLearning/blob/master/doc/Articles/lec03.pdf). ## Reinforcement Learning Reinforcement Learning (RL) is one of the most exciting fields of Machine Learning today, and also one of the oldest. It has been around since the 1950s, producing many interesting applications over the years. It studies how agents take actions based on trial and error, so as to maximize some notion of cumulative reward in a dynamic system or environment. Due to its generality, the problem has also been studied in many other disciplines, such as game theory, control theory, operations research, information theory, multi-agent systems, swarm intelligence, statistics, and genetic algorithms. In March 2016, AlphaGo, a computer program that plays the board game Go, beat Lee Sedol in a five-game match. This was the first time a computer Go program had beaten a 9-dan (highest rank) professional without handicaps. AlphaGo is based on deep convolutional neural networks and reinforcement learning. AlphaGo’s victory was a major milestone in artificial intelligence and it has also made reinforcement learning a hot research area in the field of machine learning. [Lecture on Reinforcement Learning](https://www.youtube.com/watch?v=FgzM3zpZ55o&ab_channel=stanfordonline). See also A. Geron's textbook, chapter 16. ## Transfer learning The goal of transfer learning is to transfer the model or knowledge obtained from a source task to the target task, in order to resolve the issues of insufficient training data in the target task. The rationality of doing so lies in that usually the source and target tasks have inter-correlations, and therefore either the features, samples, or models in the source task might provide useful information for us to better solve the target task. Transfer learning is a hot research topic in recent years, with many problems still waiting to be studied. [Lecture on transfer learning](https://www.ias.edu/video/machinelearning/2020/0331-SamoryKpotufe). ## Adversarial learning The conventional deep generative model has a potential problem: the model tends to generate extreme instances to maximize the probabilistic likelihood, which will hurt its performance. Adversarial learning utilizes the adversarial behaviors (e.g., generating adversarial instances or training an adversarial model) to enhance the robustness of the model and improve the quality of the generated data. In recent years, one of the most promising unsupervised learning technologies, generative adversarial networks (GAN), has already been successfully applied to image, speech, and text. [Lecture on adversial learning](https://www.youtube.com/watch?v=CIfsB_EYsVI&ab_channel=StanfordUniversitySchoolofEngineering). ## Dual learning Dual learning is a new learning paradigm, the basic idea of which is to use the primal-dual structure between machine learning tasks to obtain effective feedback/regularization, and guide and strengthen the learning process, thus reducing the requirement of large-scale labeled data for deep learning. The idea of dual learning has been applied to many problems in machine learning, including machine translation, image style conversion, question answering and generation, image classification and generation, text classification and generation, image-to-text, and text-to-image. ## Distributed machine learning Distributed computation will speed up machine learning algorithms, significantly improve their efficiency, and thus enlarge their application. When distributed meets machine learning, more than just implementing the machine learning algorithms in parallel is required. ## Meta learning Meta learning is an emerging research direction in machine learning. Roughly speaking, meta learning concerns learning how to learn, and focuses on the understanding and adaptation of the learning itself, instead of just completing a specific learning task. That is, a meta learner needs to be able to evaluate its own learning methods and adjust its own learning methods according to specific learning tasks. ## The Challenges Facing Machine Learning While there has been much progress in machine learning, there are also challenges. For example, the mainstream machine learning technologies are black-box approaches, making us concerned about their potential risks. To tackle this challenge, we may want to make machine learning more explainable and controllable. As another example, the computational complexity of machine learning algorithms is usually very high and we may want to invent lightweight algorithms or implementations. Furthermore, in many domains such as physics, chemistry, biology, and social sciences, people usually seek elegantly simple equations (e.g., the Schrödinger equation) to uncover the underlying laws behind various phenomena. In the field of machine learning, can we reveal simple laws instead of designing more complex models for data fitting? Although there are many challenges, we are still very optimistic about the future of machine learning. As we look forward to the future, here are what we think the research hotspots in the next ten years will be. ## Explainable machine learning Machine learning, especially deep learning, evolves rapidly. The ability gap between machine and human on many complex cognitive tasks becomes narrower and narrower. However, we are still in the very early stage in terms of explaining why those effective models work and how they work. **What is missing: the gap between correlation and causation**. Standard Machine Learning is based on what e have called a frequentist approach. Most machine learning techniques, especially the statistical ones, depend highly on correlations in data sets to make predictions and analyses. In contrast, rational humans tend to reply on clear and trustworthy causality relations obtained via logical reasoning on real and clear facts. It is one of the core goals of explainable machine learning to transition from solving problems by data correlation to solving problems by logical reasoning. Bayesian Machine Learning is one of the exciting research directions in this field. ## Quantum machine learning Quantum machine learning is an emerging interdisciplinary research area at the intersection of quantum computing and machine learning. Quantum computers use effects such as quantum coherence and quantum entanglement to process information, which is fundamentally different from classical computers. Quantum algorithms have surpassed the best classical algorithms in several problems (e.g., searching for an unsorted database, inverting a sparse matrix), which we call quantum acceleration. When quantum computing meets machine learning, it can be a mutually beneficial and reinforcing process, as it allows us to take advantage of quantum computing to improve the performance of classical machine learning algorithms. In addition, we can also use the machine learning algorithms (on classic computers) to analyze and improve quantum computing systems. [Lecture on Quantum ML](https://www.youtube.com/watch?v=Xh9pUu3-WxM&ab_channel=InstituteforPure%26AppliedMathematics%28IPAM%29). [Read interview with Maria Schuld on her work on Quantum Machine Learning](https://physics.aps.org/articles/v13/179?utm_campaign=weekly&utm_medium=email&utm_source=emailalert). See also [her recent textbook](https://www.springer.com/gp/book/9783319964232). ## Quantum machine learning algorithms based on linear algebra Many quantum machine learning algorithms are based on variants of quantum algorithms for solving linear equations, which can efficiently solve N-variable linear equations with complexity of O(log2 N) under certain conditions. The quantum matrix inversion algorithm can accelerate many machine learning methods, such as least square linear regression, least square version of support vector machine, Gaussian process, and more. The training of these algorithms can be simplified to solve linear equations. The key bottleneck of this type of quantum machine learning algorithms is data input—that is, how to initialize the quantum system with the entire data set. Although efficient data-input algorithms exist for certain situations, how to efficiently input data into a quantum system is as yet unknown for most cases. ## Quantum reinforcement learning In quantum reinforcement learning, a quantum agent interacts with the classical environment to obtain rewards from the environment, so as to adjust and improve its behavioral strategies. In some cases, it achieves quantum acceleration by the quantum processing capabilities of the agent or the possibility of exploring the environment through quantum superposition. Such algorithms have been proposed in superconducting circuits and systems of trapped ions. ## Quantum deep learning Dedicated quantum information processors, such as quantum annealers and programmable photonic circuits, are well suited for building deep quantum networks. The simplest deep quantum network is the Boltzmann machine. The classical Boltzmann machine consists of bits with tunable interactions and is trained by adjusting the interaction of these bits so that the distribution of its expression conforms to the statistics of the data. To quantize the Boltzmann machine, the neural network can simply be represented as a set of interacting quantum spins that correspond to an adjustable Ising model. Then, by initializing the input neurons in the Boltzmann machine to a fixed state and allowing the system to heat up, we can read out the output qubits to get the result. ## Social machine learning Machine learning aims to imitate how humans learn. While we have developed successful machine learning algorithms, until now we have ignored one important fact: humans are social. Each of us is one part of the total society and it is difficult for us to live, learn, and improve ourselves, alone and isolated. Therefore, we should design machines with social properties. Can we let machines evolve by imitating human society so as to achieve more effective, intelligent, interpretable “social machine learning”? And much more. ## The last words? Early computer scientist Alan Kay said, **The best way to predict the future is to create it**. Therefore, all machine learning practitioners, whether scholars or engineers, professors or students, need to work together to advance these important research topics. Together, we will not just predict the future, but create it. ## Best wishes to you all and thanks so much for your heroic efforts this semester <!-- dom:FIGURE: [figures/Nebbdyr2.png, width=500 frac=0.6] --> <!-- begin figure --> <p></p> <!-- end figure -->
open import Everything module Test.Functor where List = List⟨_⟩ module _ {a b} {A : Set a} {B : Set b} where map-list : (A → B) → List A → List B map-list f ∅ = ∅ map-list f (x , xs) = f x , map-list f xs instance SurjtranscommutativityList : ∀ {ℓ} → Surjtranscommutativity.class Function⟦ ℓ ⟧ (MFunction List) _≡̇_ map-list transitivity transitivity SurjtranscommutativityList .⋆ f g ∅ = ∅ SurjtranscommutativityList .⋆ f g (x , xs) rewrite SurjtranscommutativityList .⋆ f g xs = ∅ SurjextensionalityList : ∀ {ℓ} → Surjextensionality.class Function⟦ ℓ ⟧ _≡̇_ (MFunction List) _≡̇_ _ map-list SurjextensionalityList .⋆ _ _ f₁ f₂ f₁≡̇f₂ ∅ = ∅ SurjextensionalityList .⋆ _ _ f₁ f₂ f₁≡̇f₂ (x , xs) rewrite SurjextensionalityList .⋆ _ _ f₁ f₂ f₁≡̇f₂ xs | f₁≡̇f₂ x = ∅ SurjidentityList : ∀ {ℓ} → Surjidentity.class Function⟦ ℓ ⟧ (MFunction List) _≡̇_ map-list ε ε SurjidentityList .⋆ ∅ = ∅ SurjidentityList .⋆ (x , xs) rewrite SurjidentityList .⋆ xs = ∅ test-isprecategory-1 : ∀ {ℓ} → IsPrecategory {𝔒 = Ø ℓ} Function⟦ ℓ ⟧ _≡̇_ (flip _∘′_) test-isprecategory-1 {ℓ} = IsPrecategoryExtension {A = Ø ℓ} {B = ¡} test-isprecategory-2 : ∀ {ℓ} → IsPrecategory {𝔒 = Ø ℓ} Function⟦ ℓ ⟧ _≡̇_ (flip _∘′_) test-isprecategory-2 {ℓ} = IsPrecategoryFunction {𝔬 = ℓ} test-isprecategory-1a : ∀ {ℓ} → IsPrecategory {𝔒 = Ø ℓ} (Extension (¡ {𝔒 = Ø ℓ})) _≡̇_ (flip _∘′_) test-isprecategory-1a {ℓ} = IsPrecategoryExtension {A = Ø ℓ} {B = ¡} test-isprecategory-2a : ∀ {ℓ} → IsPrecategory {𝔒 = Ø ℓ} (Extension (¡ {𝔒 = Ø ℓ})) _≡̇_ (flip _∘′_) test-isprecategory-2a {ℓ} = IsPrecategoryFunction {𝔬 = ℓ} test-isprecategory-1b : IsPrecategory {𝔒 = ¶} (Extension (Term.Term ¶)) _≡̇_ (flip _∘′_) test-isprecategory-1b = IsPrecategoryExtension {A = ¶} {B = Term.Term ¶} -- test-isprecategory-2b : IsPrecategory {𝔒 = ¶} (Extension (Term.Term ¶)) _≡̇_ (flip _∘′_) -- test-isprecategory-2b = {!!} -- IsPrecategoryFunction {𝔬 = ?} instance HmapList : ∀ {a} → Hmap.class Function⟦ a ⟧ (MFunction List) HmapList = ∁ λ _ _ → map-list instance isPrefunctorList : ∀ {ℓ} → IsPrefunctor (λ (x y : Ø ℓ) → x → y) Proposextensequality transitivity (λ (x y : Ø ℓ) → List x → List y) Proposextensequality transitivity smap isPrefunctorList = ∁ isFunctorList : ∀ {ℓ} → IsFunctor (λ (x y : Ø ℓ) → x → y) Proposextensequality ε transitivity (λ (x y : Ø ℓ) → List x → List y) Proposextensequality ε transitivity smap isFunctorList = ∁ instance FmapList : ∀ {ℓ} → Fmap (List {ℓ}) FmapList = ∁ smap module _ {a} {A : Set a} {B : Set a} where test-smap-list : (A → B) → List A → List B test-smap-list = smap module _ {a} {A : Set a} {B : Set a} where test-fmap-list : (A → B) → List A → List B test-fmap-list = fmap -- the intention here is to try to say "I want to invoke a functoral mapping, so that I can be sure that, for example, that `test-map-list ε₁ ≡ ε₂`.