Datasets:
AI4M
/

text
stringlengths
0
3.34M
Recent events have amply confirmed worries about the threat to Christians in North Africa and the Middle East following the regime changes in recent times. "Who will save my beloved Syria?" This was the impassioned plea by the Jesuit Bishop Antoine Audo, president of Caritas Syria, published in the Caritas blog on June 21. He lamented the situation of ongoing violence, economic crisis and instability. A short time later came news of the killing of Father Franҫois Mourad, a Syrian hermit, who was a guest at the Franciscan monastery of St Anthony of Padua in Al-Ghassaniyah, Syria. According to a June 24 report by Asia News it is uncertain whether he was killed by a stray bullet or if it was a deliberate killing by Islamic fighters who had attacked the monastery. His death followed a vigil held last Saturday for the two archbishops kidnapped in Syria in April, whose fate is still unknown. The Patriarch of Antioch, John Yazigi, led around 300 people in the vigil near the Lebanese city of Tripoli to call for the release of Greek Orthodox Archbishop Paul Yazigi, and Syrian Orthodox Archbishop Yohanna Ibrahim, according to a report by Reuters on June 22. This is taking place while NATO countries are moving to supplying the insurgent forces in Syria with arms. At the same time, according to a June 22 A1 report by the New York Times, there is strong evidence that arms from Libya are being sent to rebels in Syria. "The flow is an important source of weapons for the uprising and a case of bloody turnabout, as the inheritors of one strongman's arsenal use them in the fight against another," the article noted. Meanwhile, Christians are caught in the midst of this conflict and their fate does not seem to be of concern to those who are supplying arms. The situation in Egypt is also proving difficult for Christians. In recent months the New York Times has published several articles referring to attacks on Christians. "The leader of the Coptic Orthodox Church accused President Mohamed Morsi's government on Tuesday of 'delinquency' and 'misjudgments' for failing to prevent sectarian street-fighting that escalated into an attack on the church's main cathedral after a funeral mass over the weekend, leaving at least six Christians dead," was the opening paragraph of an April 9 report by the New York Times. Amnesty International has also entered the debate, with a June 11 statement criticizing the increase in blasphemy cases. The press release referred to a couple of recent court decisions, where Coptic Christians were convicted of blasphemy. It also said that there have been "numerous recent reports of others accused and convicted of blasphemy in Egypt." "Bloggers and media professionals whose ideas are 'deemed offensive' as well as Coptic Christians – particularly in Upper Egypt – make up the majority of those targeted," according to Amnesty International. Human Rights Watch, another prominent rights organization, had previously expressed concern over the Arab Spring in its World Report 2013, published in February. In his introduction to the report Kenneth Roth, the organization's executive director, commented: "Two years into the Arab Spring, euphoria seems a thing of the past." There are fears that the biggest winners of the uprising, the Islamists, will limit human rights, he added. He also said there are doubts about the role of Sharia law in Egypt and what this will mean for human rights, including religious freedom. Regarding Libya, Roth observed that there is a weak government, incapable of ensuring that human rights are respected. In part this is due to local factors but he also blamed the NATO powers for having simply declared victory and then left, instead of helping to build institutions after the overthrow of Gaddafi. Another report, this one by the Pew Forum on Religion and Public Life, has concluded that restrictions on religion have continued to increase. The June 20 report "Arab Spring Adds to Global Restrictions on Religion" noted that the already high levels of control regarding religious freedom have augmented. As well as restrictions imposed by governments the level of social hostility has increased, the Pew Forum commented. The Middle East is certainly not the only region where religious liberty is under threat, the report noted. In fact, in the period 2007-2011 the number of countries with high levels of restrictions rose from 10 to 20. Christians continued to be the group with the highest number of reports of harassment or intimidation, in 105 countries. Nevertheless, North Africa and the Middle East stood out as the area with the highest levels of both government restrictions and social hostility. Overthrowing nasty dictators and authoritarian regimes seems an attractive path to take and is also popular with public opinion. The consequences of such actions are, as we are seeing now, not always so attractive.
lemma (in first_countable_topology) first_countable_basis_Int_stableE: obtains \<A> where "countable \<A>" "\<And>A. A \<in> \<A> \<Longrightarrow> x \<in> A" "\<And>A. A \<in> \<A> \<Longrightarrow> open A" "\<And>S. open S \<Longrightarrow> x \<in> S \<Longrightarrow> (\<exists>A\<in>\<A>. A \<subseteq> S)" "\<And>A B. A \<in> \<A> \<Longrightarrow> B \<in> \<A> \<Longrightarrow> A \<inter> B \<in> \<A>"
c c Copyright (C) 1998-2001 Ljubomir Milanovic & Horst Wagner c This file is part of the g2 library c c This library is free software; you can redistribute it and/or c modify it under the terms of the GNU Lesser General Public c License as published by the Free Software Foundation; either c version 2.1 of the License, or (at your option) any later version. c c This library is distributed in the hope that it will be useful, c but WITHOUT ANY WARRANTY; without even the implied warranty of c MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU c Lesser General Public License for more details. c c You should have received a copy of the GNU Lesser General Public c License along with this library; if not, write to the Free Software c Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA c real demo_f real a, b real d, d1, d2 real color d=g2_open_vd() write (6,*) d d1=g2_open_X11(100.0, 100.0) write (6,*) d1 d2=g2_open_PS('demo_f.ps', 4.0, 1.0) write (6,*) d2 call g2_attach(d, d1) call g2_attach(d, d2) call g2_plot(d, 50.0, 50.0) call g2_arc(d, 50.0, 50.0, 30.0, 20.0, 45.0, 180.0) color=g2_ink(d1, 1.0, 0.0, 0.0) call g2_pen(d1, color) write (6,*) color call g2_string(d1, 15.0, 75.0, 'TEST (Window)') color=g2_ink(d2, 0.0, 1.0, 0.0) call g2_pen(d2, color) write (6,*) color call g2_string(d2, 15.0, 75.0, 'TEST (File)') call g2_pen(d, 1.0) call g2_circle(d, 20.0, 20.0, 10.0) call g2_string(d, 20.0, 20.0, 'All devices!') call g2_flush(d) call g2_close(d2) read (*,*) a stop end
{-# OPTIONS --without-K --exact-split --allow-unsolved-metas #-} module 16-sets where import 15-number-theory open 15-number-theory public
function omega = angle(f,ori,varargin) % angle fibre to orientation or fibre to fibre % % Syntax % % omega = angle(f,ori) % angle orientation to fibre % omega = angle(f1,f2) % angle fibre to fibre % % Input % f, f1, f2 - @fibre % ori - @orientation % % Output % omega - double % % See also % orientation/angle if isa(ori,'orientation') omega = angle(ori .\ f.r,f.h,varargin{:}); else omega = max(angle(f,orientation(ori),varargin{:})); % in the non symmetric case we have also %omega = min(angle(f.h,ori.h) + angle(f.r,ori.r), angle(f.h,-ori.h) + angle(f.r,-ori.r)); end end
(* * Copyright 2014, NICTA * * This software may be distributed and modified according to the terms of * the BSD 2-Clause license. Note that NO WARRANTY is provided. * See "LICENSE_BSD2.txt" for details. * * @TAG(NICTA_BSD) *) theory SimpStrategy imports "~~/src/HOL/Main" begin text {* Support for defining alternative simplifier strategies for some parts of terms or some premises of rewrite rules. The "name" parameter to the simp_strategy constant is used to identify which simplification strategy should be used on this term. Note that, although names have type nat, it is safe for them to all be defined as 0. The important thing is that the simplifier doesn't know they're equal. *} definition simp_strategy :: "nat \<Rightarrow> ('a :: {}) \<Rightarrow> 'a" where "simp_strategy name x \<equiv> x" text {* This congruence rule forbids the simplifier from simplifying the arguments of simp_strategy normally. *} lemma simp_strategy_cong[cong]: "simp_strategy name x = simp_strategy name x" by simp text {* This strategy, or rather lack thereof, can be used to forbid simplification. *} definition NoSimp :: nat where "NoSimp = 0" text {* This strategy indicates that a boolean subterm should be simplified only by using explicit assumptions of the simpset. *} definition ByAssum :: nat where "ByAssum = 0" lemma Eq_TrueI_ByAssum: "P \<Longrightarrow> simp_strategy ByAssum P \<equiv> True" by (simp add: simp_strategy_def) simproc_setup simp_strategy_ByAssum ("simp_strategy ByAssum b") = {* K (fn ss => fn ct => let val b = Thm.dest_arg ct val t = Thm.instantiate ([],[((("P",0),@{typ bool}), b)]) @{thm Eq_TrueI_ByAssum} val prems = Raw_Simplifier.prems_of ss in get_first (try (fn p => p RS t)) prems end) *} lemma ByAssum: "simp_strategy ByAssum P \<Longrightarrow> P" by (simp add: simp_strategy_def) lemma simp_ByAssum_test: "P \<Longrightarrow> simp_strategy ByAssum P" by simp text {* Generic framework for instantiating a simproc which simplifies within a simp_strategy with a given simpset. The boolean determines whether simp_strategy Name True should be rewritten to True. *} lemma simp_strategy_Eq_True: "simp_strategy name True \<equiv> True" by (simp add: simp_strategy_def) ML {* fun simp_strategy_True_conv ct = case Thm.term_of ct of (Const (@{const_name simp_strategy}, _) $ _ $ @{term True}) => Thm.instantiate ([], [((("name",0), @{typ nat}), Thm.dest_arg1 ct)]) @{thm simp_strategy_Eq_True} | _ => Conv.all_conv ct fun new_simp_strategy thy (name : term) ss rewr_True = let val ctxt = Proof_Context.init_global thy; val ss = Simplifier.make_simproc ctxt ("simp_strategy_" ^ fst (dest_Const name)) {lhss = [@{term simp_strategy} $ name $ @{term x}], proc = (fn _ => fn ctxt' => fn ct => ct |> (Conv.arg_conv (Simplifier.rewrite (put_simpset ss ctxt')) then_conv (if rewr_True then simp_strategy_True_conv else Conv.all_conv)) |> (fn c => if Thm.is_reflexive c then NONE else SOME c)) } in ss end *} end
""" PaduaTransforms an implementation of the Padua transform and its inverse via the fast Fourier transform. """ module PaduaTransforms using StaticArrays: SVector using FFTW using LinearAlgebra: rmul! export getpaduanum, getdegree, nextpaduanum export getpaduapoints export PaduaTransformPlan, paduatransform! export InvPaduaTransformPlan, invpaduatransform! ## Number of Padua Points and Degree ## """ getpaduanum(n) calculates number of Padua points needed to approximate a function using Chebyshev polynomials up to total degree `n`. This number is equal to the number of coefficients. The formula is ```math N = (n + 1) ⋅ (n + 2) ÷ 2 ``` # Examples ```jldoctest julia> getpaduanum(13) 105 ``` """ getpaduanum(degree) = (degree + 1) * (degree + 2) ÷ 2 """ getdegree(N) calculates total degree, given the number of coefficients or Padua points `N`. Throws an error if `N` is not a possible number of Padua points. The formula is ```math n = \\frac{\\sqrt{1 + 8N} - 3}{2} ``` # Examples ```jldoctest julia> getdegree(105) 13 julia> getdegree(104) ERROR: ArgumentError: number of Padua points or coeffs must be (n + 1) * (n + 2) ÷ 2 [...] ``` """ function getdegree(N) d = (sqrt(1 + 8N) - 3) / 2 isinteger(d) ? Int(d) : throw(ArgumentError( "number of Padua points or coeffs must be (n + 1) * (n + 2) ÷ 2")) end """ nextpaduanum(N) get next valid number of Padua points ≥ `N`. # Examples ```jldoctest julia> nextpaduanum(104) 105 ``` """ function nextpaduanum(N) d = Int(cld(sqrt(1 + 8N) - 3, 2)) getpaduanum(d) end ## Padua Points ## """ paduapoint(T::Type, j::Integer, i::Integer, n::Integer) returns the Padua point ``z_{ij}``, where ```math z_{ij} = (\\cos{\\frac{jπ}{n}}, \\cos{\\frac{iπ}{n+1}}) ``` Note, that only points with ``i-j`` even are actually Padua points. Check with [`ispadua`](@ref). # Examples ```jldoctest julia> [PaduaTransforms.paduapoint(Float32, x, y, 1) for y in 0:1+1, x in 0:1] 3×2 Matrix{Tuple{Float32, Float32}}: (1.0, 1.0) (-1.0, 1.0) (1.0, 0.0) (-1.0, 0.0) (1.0, -1.0) (-1.0, -1.0) ``` """ function paduapoint(::Type{T}, j, i, n) where T x = cospi(T(j) / T(n)) y = cospi(T(i) / T(n + 1)) return x, y end """ ispadua(i, j) returns if [`paduapoint`](@ref) at position `(i, j)` is a Padua point. # Examples ```jldoctest julia> pointornothing(i, j, n) = PaduaTransforms.ispadua(i, j) ? PaduaTransforms.paduapoint(Float64, j, i, n) : nothing pointornothing (generic function with 1 method) julia> [pointornothing(y, x, 2) for y in 0:3, x in 0:2] 4×3 Matrix{Union{Nothing, Tuple{Float64, Float64}}}: (1.0, 1.0) nothing (-1.0, 1.0) nothing (0.0, 0.5) nothing (1.0, -0.5) nothing (-1.0, -0.5) nothing (0.0, -1.0) nothing ``` """ ispadua(i, j) = iseven(i - j) """ getpaduapoints([T=Float64,] n) returns the Padua points ```math \\textrm{Pad}_n = \\{(\\cos{\\frac{jπ}{n}}, \\cos{\\frac{iπ}{n + 1}}) \\; | \\; 0 ≤ j ≤ n, \\; 0 ≤ i ≤ n + 1, \\; i - j \\; \\textrm{even} \\} ``` where each row is a point # Examples ```jldoctest julia> getpaduapoints(Float32, 1) 3×2 Matrix{Float32}: 1.0 1.0 1.0 -1.0 -1.0 0.0 ``` """ function getpaduapoints(::Type{T}, n) where T out = Matrix{T}(undef, getpaduanum(n), 2) i = 1 for x in 0:n for y in 0:n+1 if ispadua(x, y) out[i, 1:2] .= paduapoint(T, x, y, n) i += 1 end end end return out end getpaduapoints(n) = getpaduapoints(Float64, n) """ getpaduapoints(f::Function, [T=Float64,] n) evaluates the function `f` on the Padua points for degree `n`. If `f` returns a single value, `getpaduapoints` returns a `Vector{T}`, else if `f` returns a tuple or other iterable `getpaduapoints` returns a `Matrix{T}` where each row represents `f` applied to a Padua point. # Examples ```jldoctest julia> getpaduapoints(Float64, 2) do x, y; 3x - y, y^2; end 6×2 Matrix{Float64}: 2.0 1.0 3.5 0.25 -0.5 0.25 1.0 1.0 -4.0 1.0 -2.5 0.25 ``` """ function getpaduapoints(f::Function, ::Type{T}, n) where T D = length(f(zero(T), zero(T))) if D == 1 out = Vector{T}(undef, getpaduanum(n)) else out = Matrix{T}(undef, getpaduanum(n), D) end # Function barrier to alleviate issues from type instability _fillpoints!(out, f, T, n) return out end getpaduapoints(f::Function, n) = getpaduapoints(f, Float64, n) function _fillpoints!(out::AbstractMatrix, f, ::Type{T}, n) where T i = 1 for x in 0:n for y in 0:n+1 if ispadua(x, y) v = paduapoint(T, x, y, n) out[i, :] .= f(v[1], v[2]) i += 1 end end end out end function _fillpoints!(out::AbstractVector, f, ::Type{T}, n) where T i = 1 for x in 0:n for y in 0:n+1 if ispadua(x, y) v = paduapoint(T, x, y, n) out[i] = f(v[1], v[2]) i += 1 end end end out end ## Padua Transform ## struct PaduaTransformPlan{T, P} degree::Int vals::Matrix{T} dctplan::P end """ PaduaTransformPlan{T}(n::Integer) create plan to compute coefficients of Chebyshev polynomials in 2D up to total degree `n` using the Padua transform. """ function PaduaTransformPlan{T}(degree::Integer) where T vals = Matrix{T}(undef, degree + 2, degree + 1) plan = FFTW.plan_r2r!(vals, FFTW.REDFT00) PaduaTransformPlan{T, typeof(plan)}(degree, vals, plan) end """ weight!(mat::AbstractMatrix, degree::Integer) weight fourier coefficients to obtain Chebyshev coefficients as part of a [`paduatransform!`](@ref). The weighting factor applied to the coefficients is ```math w = \\frac{1}{n(n+1)} ⋅ \\begin{cases} \\frac{1}{2} & \\textrm{if on vertex} \\\\ 1 & \\textrm{if on edge} \\\\ 2 & \\textrm{if in interior} \\\\ \\end{cases} ``` # Examples ```julia-repl julia> weight!(ones(4+2, 4+1), 4) 6×5 Matrix{Float64}: 0.025 0.05 0.05 0.05 0.025 0.05 0.1 0.1 0.1 0.05 0.05 0.1 0.1 0.1 0.05 0.05 0.1 0.1 0.1 0.05 0.05 0.1 0.1 0.1 0.05 0.025 0.05 0.05 0.05 0.025 ``` """ function weight!(mat::AbstractMatrix{T}, degree::Integer) where T rmul!(mat, T(2 / ( degree * (degree + 1) ))) rmul!(@view(mat[1, :]), T(0.5)) rmul!(@view(mat[end, :]), T(0.5)) rmul!(@view(mat[:, 1]), T(0.5)) rmul!(@view(mat[:, end]), T(0.5)) mat end """ tovalsmat!(mat::Matrix, from::AbstractVector, degree::Integer) write values of function evaluated at Padua points from `from` to matrix `mat`. # Examples ```jldoctest julia> PaduaTransforms.tovalsmat!(ones(3 + 2, 3 + 1), 1:getpaduanum(3), 3) 5×4 Matrix{Float64}: 1.0 0.0 6.0 0.0 0.0 4.0 0.0 9.0 2.0 0.0 7.0 0.0 0.0 5.0 0.0 10.0 3.0 0.0 8.0 0.0 julia> PaduaTransforms.tovalsmat!(ones(2 + 2, 2 + 1), 1:getpaduanum(2), 2) 4×3 Matrix{Float64}: 1.0 0.0 5.0 0.0 3.0 0.0 2.0 0.0 6.0 0.0 4.0 0.0 ``` """ function tovalsmat!(mat::Matrix{T}, from::AbstractVector, degree::Integer) where T axes(from, 1) == 1:getpaduanum(degree) || error() size(mat) == (degree + 2, degree + 1) || error() if isodd(degree) # x 0 # 0 x # x 0 @inbounds for i in 1:length(from) mat[2i - 1] = from[i] mat[2i] = zero(T) end else @assert iseven(degree) # x 0 x # 0 x 0 # x 0 x # 0 x 0 valspercol = (degree + 2) ÷ 2 # odd columns (j is column index) for j in 1:2:degree + 1, i in 1:valspercol k = (j - 1) * valspercol + i @inbounds mat[2i - 1, j] = from[k] @inbounds mat[2i, j] = zero(T) end # even columns for j in 2:2:degree + 1, i in 1:valspercol k = (j - 1) * valspercol + i @inbounds mat[2i - 1, j] = zero(T) @inbounds mat[2i, j] = from[k] end end mat end """ fromcoeffsmat!(to::AbstractVector, mat::Matrix, degree::Integer, ::Val{lex}) write Chebyshev coefficients from `mat` into vector `to`. `lex::Bool` determines whether coefficients should be written in lexigraphical order or not. The lower right triangle does not get written into `to`. These would represent greater polynomial degrees than `degree`. If `lex` is `Val(true)` the coefficients correspond to the following basis polynomials ```math T_0(x) T_0(y), T_1(x) T_0(y), T_0(x) T_1(y), T_2(x) T_0(y), T_1(x) T_1(y), T_0(x) T_2(y), ... ``` else if `lex` is `Val(false)` they correspond to ```math T_0(x) T_0(y), T_0(x) T_1(y), T_1(x) T_0(y), T_0(x) T_2(y), T_1(x) T_1(y), T_2(x) T_0(y), ... ``` # Examples ```julia-repl julia> mat = [(x, y) for y in 0:2+1, x in 0:2] 4×3 Matrix{Tuple{Int64, Int64}}: (0, 0) (1, 0) (2, 0) (0, 1) (1, 1) (2, 1) (0, 2) (1, 2) (2, 2) (0, 3) (1, 3) (2, 3) julia> to1 = similar(mat, getpaduanum(2)); to2 = similar(mat, getpaduanum(2)); julia> fromcoeffsmat!(to1, mat, 2, Val(true)) 6-element Vector{Tuple{Int64, Int64}}: (0, 0) (1, 0) (0, 1) (2, 0) (1, 1) (0, 2) julia> fromcoeffsmat!(to2, mat, 2, Val(false)) 6-element Vector{Tuple{Int64, Int64}}: (0, 0) (0, 1) (1, 0) (0, 2) (1, 1) (2, 0) ``` """ function fromcoeffsmat!(to::AbstractVector, mat::Matrix, degree::Integer, ::Val{false}) length(to) == getpaduanum(degree) || error() axes(mat) == (1:(degree + 2), 1:(degree + 1)) || error() n = firstindex(to) for d in 1:degree + 1 for ix in 1:d iy = d - ix + 1 @assert ix + iy == d + 1 "ix and iy must lie on d-th diagonal" to[n] = mat[iy, ix] n += 1 end end to end function fromcoeffsmat!(to::AbstractVector, mat::Matrix, degree::Integer, ::Val{true}) length(to) == getpaduanum(degree) || error() size(mat) == (degree + 2, degree + 1) || error() n = firstindex(to) for d in 1:degree + 1 for iy in 1:d ix = d - iy + 1 @assert ix + iy == d + 1 "ix and iy must lie on d-th diagonal" to[n] = mat[iy, ix] n += 1 end end to end """ fromcoeffsmat!(to::AbstractMatrix, mat::Matrix, degree::Integer) copy Chebyshev coefficients from `mat` to `to` without copying coefficients coresponding to total degree greater than `degree`. # Examples ```jldoctest julia> PaduaTransforms.fromcoeffsmat!(zeros(4, 4), reshape(1:20, 5, 4), 3) 4×4 Matrix{Float64}: 1.0 6.0 11.0 16.0 2.0 7.0 12.0 0.0 3.0 8.0 0.0 0.0 4.0 0.0 0.0 0.0 ``` """ function fromcoeffsmat!(to::AbstractMatrix, mat::AbstractMatrix, degree::Integer) axes(to) == (1:degree + 1, 1:degree + 1) || error() axes(mat) == (1:degree + 2, 1:degree + 1) || error() for j in 1:degree + 1 for i in 1:degree + 2 - j @inbounds to[i, j] = mat[i, j] end end to end """ paduatransform!(out, P::PaduaTransformPlan, vals[, lex]) obtain coefficients of Chebyshev polynomials on 2D via the Padua transform, given values `vals` evaluated at the Padua points. Coefficients will be written into `out`, which should either be a matrix or a vector. if `out` is a matrix, make sure that all entries in the lower right diagonal are zero as these will not get overwritten. `lex` determines the order in which coefficeints are written into `out` if `out` is a vector. See [`fromcoeffsmat!`](@ref) for details. # Examples ```jldoctest julia> plan = PaduaTransformPlan{Float64}(3); julia> f(x, y) = 3 + 4x + 5 * y * (2x^2 - 1) f (generic function with 1 method) julia> vals = getpaduapoints(f, 3) 10-element Vector{Float64}: 12.0 7.0 2.0 3.232233047033631 6.767766952966369 -1.5000000000000004 1.0000000000000004 3.5000000000000013 2.5355339059327378 -4.535533905932738 julia> paduatransform!(zeros(4, 4), plan, vals) 4×4 Matrix{Float64}: 3.0 4.0 0.0 1.4803e-16 -5.92119e-16 -1.4803e-16 5.0 0.0 0.0 0.0 0.0 0.0 -2.96059e-16 0.0 0.0 0.0 julia> paduatransform!(zeros(getpaduanum(3)), plan, vals, Val(true)) 10-element Vector{Float64}: 3.0 4.0 -5.921189464667501e-16 0.0 -1.4802973661668753e-16 0.0 1.4802973661668753e-16 5.0 0.0 -2.9605947323337506e-16 julia> paduatransform!(zeros(getpaduanum(3)), plan, vals, Val(false)) 10-element Vector{Float64}: 3.0 -5.921189464667501e-16 4.0 0.0 -1.4802973661668753e-16 0.0 -2.9605947323337506e-16 0.0 5.0 1.4802973661668753e-16 ``` """ function paduatransform!(P::PaduaTransformPlan) coeffs = P.dctplan * P.vals weight!(coeffs, P.degree) coeffs end function paduatransform!(out, P::PaduaTransformPlan, vals, args...) tovalsmat!(P.vals, vals, P.degree) coeffs = paduatransform!(P) fromcoeffsmat!(out, coeffs, P.degree, args...) end """ paduatransform!(out::AbstractArray{<:Any, 3}, P::PaduaTransformPlan, vals::AbstractMatrix, args...) transforms each column in `vals` and writes the resulting coefficients in a slice of `out`. """ function paduatransform!(out::AbstractArray{<:Any, 3}, P::PaduaTransformPlan, vals::AbstractMatrix, args...) axes(out, 3) == axes(vals, 2)|| error() @views for i in axes(out, 3) paduatransform!(out[:, :, i], P, vals[:, i], args...) end out end """ paduatransform!(out::Array{<:Any, 3}, P::PaduaTransformPlan, vals::AbstractVector{<:AbstractVector{T}}, args...) transforms vector of vectors to Chebyshev coefficients and writes the resulting coefficients in a slice of `out`. Each vector in the vector of vectors represents a point. Each slice of `out` represents a transform of one dimension. """ function paduatransform!(out::Array{<:Any, 3}, P::PaduaTransformPlan, vals::AbstractVector{<:AbstractVector{T}}, args...) where T # Here, each column is a point and each row represents one dimension r = reinterpret(reshape, T, vals) axes(out, 3) == axes(r, 1) || error() @views for i in axes(out, 3) paduatransform!(out[:, :, i], P, r[i, :], args...) end out end ## Inverse Padua Transform ## struct InvPaduaTransformPlan{T, P} degree::Int coeffs::Matrix{T} dctplan::P end """ InvPaduaTransformPlan{T}(n::Integer) create plan to compute values on Padua points, given coefficients of Chebyshev polynomials up to total degree `n`. """ function InvPaduaTransformPlan{T}(degree::Integer) where T coeffs = Matrix{T}(undef, degree + 2, degree + 1) iplan = FFTW.plan_r2r!(coeffs, FFTW.REDFT00) InvPaduaTransformPlan{T, typeof(iplan)}(degree, coeffs, iplan) end """ tocoeffsmat!(mat::AbstractMatrix, coeffs::AbstractMatrix) writes coefficients in `coeffs` into matrix `mat` for the [`invpaduatransform!`](@ref). # Examples ```jldoctest julia> PaduaTransforms.tocoeffsmat!(zeros(5, 4), reshape(1:16, 4, 4)) 5×4 Matrix{Float64}: 1.0 5.0 9.0 13.0 2.0 6.0 10.0 14.0 3.0 7.0 11.0 15.0 4.0 8.0 12.0 16.0 0.0 0.0 0.0 0.0 ``` """ function tocoeffsmat!(mat::AbstractMatrix{T}, coeffs::AbstractMatrix) where T mat[1:end-1, :] = coeffs mat[ end, :] .= zero(T) mat end """ invweight!(coeffs::AbstractMatrix) weight Chebyshev coefficients before the Fourier transform for the [`invpaduatransform!`](@ref). using the weighting ```math w = \\begin{cases} 1 & \\textrm{if on vertex} \\\\ \\frac{1}{2} & \\textrm{if on edge} \\\\ \\frac{1}{4} & \\textrm{if in interior} \\\\ \\end{cases} ``` # Examples ```jldoctest julia> PaduaTransforms.invweight!(ones(5, 5)) 5×5 Matrix{Float64}: 1.0 0.5 0.5 0.5 1.0 0.5 0.25 0.25 0.25 0.5 0.5 0.25 0.25 0.25 0.5 0.5 0.25 0.25 0.25 0.5 1.0 0.5 0.5 0.5 1.0 ``` """ function invweight!(coeffs::AbstractMatrix{T}) where T rmul!(@view(coeffs[:,2:end-1]), T(0.5)) rmul!(@view(coeffs[2:end-1, :]), T(0.5)) coeffs end """ fromvalsmat!(to::AbstractVector, mat::AbstractMatrix, n::Integer) write values from `mat` into the vector `to` after an [`invpaduatransform!`](@ref) of total degree `n`. """ function fromvalsmat!(to::AbstractVector, mat::AbstractMatrix, degree::Integer) axes(to, 1) == 1:getpaduanum(degree) || error() axes(mat) == (1:degree + 2, 1:degree + 1) || error() if isodd(degree) # x 0 # 0 x # x 0 @inbounds for i in 1:length(to) to[i] = mat[2i - 1] end else @assert iseven(degree) # x 0 x # 0 x 0 # x 0 x # 0 x 0 valspercol = (degree + 2) ÷ 2 # odd columns (j is column index) for j in 1:2:degree + 1, i in 1:valspercol k = (j - 1) * valspercol + i @inbounds to[k] = mat[2i - 1, j] end # even columns for j in 2:2:degree + 1, i in 1:valspercol k = (j - 1) * valspercol + i @inbounds to[k] = mat[2i, j] end end to end function invpaduatransform!(IP::InvPaduaTransformPlan) invweight!(IP.coeffs) IP.dctplan * IP.coeffs IP.coeffs end """ invpaduatransform!(vals::AbstractVector, IP::InvPaduaTransformPlan, coeffs::AbstractMatrix) evaluates the polynomial defined by the coefficients of Chebyshev polynomials `coeffs` on the Padua points using the inverse transform plan `IP` and writes the resulting values into `vals`. """ function invpaduatransform!(vals::AbstractVector, IP::InvPaduaTransformPlan, coeffs::AbstractMatrix) tocoeffsmat!(IP.coeffs, coeffs) invpaduatransform!(IP) fromvalsmat!(vals, IP.coeffs, IP.degree) end function invpaduatransform!(vals::AbstractMatrix, IP::InvPaduaTransformPlan, coeffs::AbstractArray{<:Any, 3}) axes(coeffs, 3) == axes(vals, 2) || error() @views for i in axes(coeffs, 3) invpaduatransform!(vals[:, i], IP, coeffs[:, :, i]) end vals end end # Padua
Men who became uncooperative with the CPS system and were unable to adjust to the church @-@ managed camps were reassigned to a few camps managed by the Selective Service System . These camps tended to be the least productive and most difficult to administer . Men who felt compelled to protest the restrictions of the conscription law attempted to disrupt the program through the use of various techniques , including the initiation of work slowdowns and labor strikes . Routine rule breaking frustrated camp directors . The most difficult cases were given to the federal court system and the men imprisoned .
{- Byzantine Fault Tolerant Consensus Verification in Agda, version 0.9. Copyright (c) 2021, Oracle and/or its affiliates. Licensed under the Universal Permissive License v 1.0 as shown at https://opensource.oracle.com/licenses/upl -} open import LibraBFT.Base.Types import LibraBFT.Impl.Crypto.Crypto.Hash as Hash open import LibraBFT.ImplShared.Consensus.Types open import Optics.All open import Util.KVMap as Map open import Util.PKCS open import Util.Prelude module LibraBFT.Impl.Consensus.ConsensusTypes.BlockData where ------------------------------------------------------------------------------ newGenesis : {-Instant →-} QuorumCert → BlockData ------------------------------------------------------------------------------ newGenesisFromLedgerInfo : LedgerInfo → Either ErrLog BlockData newGenesisFromLedgerInfo li = if not (li ^∙ liEndsEpoch) then Left fakeErr -- ["BlockData", "newGenesisFromLedgerInfo", "liNextEpochState == Nothing"] else let ancestor = BlockInfo∙new (li ^∙ liEpoch) {-Round-} 0 Hash.valueZero (li ^∙ liTransactionAccumulatorHash) (li ^∙ liVersion) --(li ^∙ liTimestamp) nothing genesisQuorumCert = QuorumCert∙new (VoteData∙new ancestor ancestor) (LedgerInfoWithSignatures∙new (LedgerInfo∙new ancestor Hash.valueZero) Map.empty) in pure $ newGenesis {-(li ^∙ liTimestamp)-} genesisQuorumCert newGenesis {-timestamp-} qc = BlockData∙new (qc ^∙ qcCertifiedBlock ∙ biEpoch + 1) {-Round-} 0 --timestamp qc Genesis newNil : Round → QuorumCert → BlockData newNil r qc = BlockData∙new (qc ^∙ qcCertifiedBlock ∙ biEpoch) r --(qc ^∙ qcCertifiedBlock ∙ biTimestamp) qc NilBlock newProposal : TX → Author → Round → {-Instant →-} QuorumCert → BlockData newProposal payload author round {-timestamp-} quorumCert = BlockData∙new (quorumCert ^∙ qcCertifiedBlock ∙ biEpoch) round {-timestamp-} quorumCert (Proposal payload author) isGenesisBlock : BlockData → Bool isGenesisBlock bd = bd ^∙ bdBlockType == Genesis isNilBlock : BlockData → Bool isNilBlock bd = bd ^∙ bdBlockType == NilBlock
||| Utility types and functions for automatically deriving ||| interface instances. So far, this module does not provide ||| deriving functions for existing interfaces. See ||| Doc.Generic4 for examples, how this could be done ||| using the functionality provided here. module Language.Reflection.Derive import Decidable.Equality import public Language.Reflection.Syntax import public Language.Reflection.Types %language ElabReflection ||| Utility type for deriving interface implementations ||| automatically. See implementations of `Eq'` and `Ord'` ||| in Doc.Generic4 as examples, how this can be done. public export record DeriveUtil where constructor MkDeriveUtil ||| The underlying type info containing the list and names ||| of data constructors plus their arguments as well as ||| the data type's name and type arguments. typeInfo : ParamTypeInfo ||| Fully applied data type, i.e. `var "Either" .$ var "a" .$ var "b"` appliedType : TTImp ||| The names of type parameters paramNames : List Name ||| Types of constructor arguments where at least one ||| type parameter makes an appearance. These are the ||| `tpe` fields of `ExplicitArg` where `hasParam` ||| is set to true and `isRecursive` is set ||| to false. See the documentation of `ExplicitArg` ||| when this is the case argTypesWithParams : List TTImp ||| Creates a deriving utility from information about ||| a (possibly) parameterized type. export genericUtil : ParamTypeInfo -> DeriveUtil genericUtil ti = let pNames = map fst $ params ti appTpe = appNames (name ti) pNames twps = calcArgTypesWithParams ti in MkDeriveUtil ti appTpe pNames twps ||| Generates the name of an interface's implementation function export implName : DeriveUtil -> String -> Name implName g interfaceName = UN $ "impl" ++ interfaceName ++ nameStr g.typeInfo.name ||| Syntax tree and additional info about the ||| implementation function of an interface. ||| ||| With 'implementation function', we mean the following: ||| When deriving an interface implementation, the elaborator ||| creates a function returning the corresponding record value. ||| Values of this record should provide both the full type ||| and implementation of this function as `TTImp` values. ||| ||| ```idris exampel ||| public export ||| implEqEither : {0 a : _} -> {0 b : _} -> Eq a => Eq b => Eq (Either a b) ||| implEqEither = ?impl ||| ``` public export record InterfaceImpl where constructor MkInterfaceImpl ||| The interface's name, for instance "Eq" ord "Ord". ||| This is used to generate the name of the ||| implementation function. interfaceName : String ||| Visibility of the implementation function. visibility : Visibility ||| Visibility of the implementation function. options : List FnOpt ||| Actual implementation of the implementation function. ||| This will be the right hand side of the sole pattern clause ||| in the function definition. ||| ||| As an example, assume there is a `genEq` function used ||| as an implementation for `(==)` for data types with ||| some kind of `Generic` instance (see the tutorial on ||| Generics for more information about this). An implementation ||| for interface `Eq` could then look like this: ||| ||| ```idirs example ||| impl = var (singleCon "Eq") .$ `(genEq) .$ `(\a,b => not (a == b)) ||| ``` impl : TTImp ||| Full type of the implementation function, including ||| implicit arguments (type parameters), which have to be part ||| of the `TTImp`. ||| ||| See also `implementationType`, a utility function to create this ||| kind of function types for type classes with a single parameter ||| of type `Type`. ||| ||| Example: ||| ||| ```idirs example ||| `({0 a: _} -> {0 b : _} -> Eq a => Eq b => Eq (Either a b)) ||| ``` type : TTImp -- pair of type and implementation private implDecl : DeriveUtil -> (DeriveUtil -> InterfaceImpl) -> (Decl,Decl) implDecl g f = let (MkInterfaceImpl iname vis opts impl type) = f g function = implName g iname in ( interfaceHintOpts vis opts function type , def function [var function .= impl] ) ||| Generates a list of pairs of declarations for the ||| implementations of the interfaces specified. ||| ||| The first elements of the pairs are type declarations, while ||| the second elements are the actual implementations. ||| ||| This separation of type declaration and implementation ||| allows us to first declare all types before declaring ||| the actual implementations. This is essential in the ||| implementation of `deriveMutual`. export deriveDecls : Name -> List (DeriveUtil -> InterfaceImpl) -> Elab $ List (Decl,Decl) deriveDecls name fs = mkDecls <$> getParamInfo' name where mkDecls : ParamTypeInfo -> List (Decl,Decl) mkDecls pi = let g = genericUtil pi in map (implDecl g) fs ||| Given a name of a data type plus a list of interfaces, tries ||| to implement these interfaces automatically using ||| elaborator reflection. ||| ||| Again, see Doc.Generic4 for a tutorial and examples how ||| to use this. export derive : Name -> List (DeriveUtil -> InterfaceImpl) -> Elab () derive name fs = do decls <- deriveDecls name fs -- Declare types first. Then declare implementations. declare $ map fst decls declare $ map snd decls ||| Allows the derivation of mutually dependant interface ||| implementations by first defining type declarations before ||| declaring implementations. ||| ||| Note: There is no need to call this from withi a `mutual` block. export deriveMutual : List (Name, List (DeriveUtil -> InterfaceImpl)) -> Elab() deriveMutual pairs = do declss <- traverse (uncurry deriveDecls) pairs -- Declare types first. Then declare implementations. traverse_ (declare . map fst) declss traverse_ (declare . map snd) declss ||| Given a `TTImp` representing an interface, generates ||| the type of the implementation function with all type ||| parameters applied and auto implicits specified. ||| ||| Example: Given the `DeriveUtil` info of `Either`, this ||| will generate the following type for input ``(Eq)`: ||| ||| ```idris example ||| {0 a : _} -> {0 b : _} -> Eq a => Eq b => Eq (Either a b) ||| ``` ||| ||| Note: This function is only to be used with single-parameter ||| type classes, whose type parameters are of type `Type`. export implementationType : (iface : TTImp) -> DeriveUtil -> TTImp implementationType iface (MkDeriveUtil _ appTp names argTypesWithParams) = let appIface = iface .$ appTp autoArgs = piAllAuto appIface $ map (iface .$) argTypesWithParams in piAllImplicit autoArgs names -------------------------------------------------------------------------------- -- Interface Factories -------------------------------------------------------------------------------- ||| Creates an `Eq` value from the passed implementation functions ||| for (==) and (/=). public export %inline mkEq' : (eq : a -> a -> Bool) -> (neq : a -> a -> Bool) -> Eq a mkEq' = %runElab check (var $ singleCon "Eq") ||| Like `mkEq'` but generates (/=) from the passed `eq` function. public export %inline mkEq : (eq : a -> a -> Bool) -> Eq a mkEq eq = mkEq' eq (\a,b => not $ eq a b) ||| Creates an `Ord` value from the passed implementation functions ||| for `compare`, `(<)`, `(>)`, `(<=)`, `(>=)`, `min`, `max`. public export %inline mkOrd' : Eq a => (compare : a -> a -> Ordering) -> (lt : a -> a -> Bool) -> (gt : a -> a -> Bool) -> (leq : a -> a -> Bool) -> (geq : a -> a -> Bool) -> (min : a -> a -> a) -> (max : a -> a -> a) -> Ord a mkOrd' = %runElab check (var $ singleCon "Ord") ||| Creates an `Ord` value from the passed comparison function ||| using default implementations based on `comp` for all ||| other function. public export mkOrd : Eq a => (comp : a -> a -> Ordering) -> Ord a mkOrd comp = mkOrd' comp (\a,b => comp a b == LT) (\a,b => comp a b == GT) (\a,b => comp a b /= GT) (\a,b => comp a b /= LT) (\a,b => if comp a b == GT then a else b) (\a,b => if comp a b == LT then a else b) ||| Creates a `Num` value from the passed functions. public export %inline mkNum : (plus : a -> a -> a) -> (times : a -> a -> a) -> (fromInt : Integer -> a) -> Num a mkNum = %runElab check (var $ singleCon "Num") ||| Creates a `Neg` value from the passed functions. public export %inline mkNeg : Num a => (negate : a -> a) -> (minus : a -> a -> a) -> Neg a mkNeg = %runElab check (var $ singleCon "Neg") ||| Creates an `Abs` value from the passed function ||| and `Num` instance. public export mkAbs : Num a => (abs : a -> a) -> Abs a mkAbs = %runElab check (var $ singleCon "Abs") ||| Creates a `Fractional` value from the passed functions ||| and `Num` instance. public export %inline mkFractional : Num a => (div : a -> a -> a) -> (recip : a -> a) -> Fractional a mkFractional = %runElab check (var $ singleCon "Fractional") ||| Creates an `Integral` value from the passed functions. mkIntegral : Num a => (div : a -> a -> a) -> (mod : a -> a -> a) -> Integral a mkIntegral = %runElab check (var $ singleCon "Integral") ||| Creates a `Show` value from the passed functions. public export %inline mkShow' : (show : a -> String) -> (showPrec : Prec -> a -> String) -> Show a mkShow' = %runElab check (var $ singleCon "Show") ||| Creates a `Show` value from the passed `show` functions. public export %inline mkShow : (show : a -> String) -> Show a mkShow show = mkShow' show (\_ => show) ||| Creates a `Show` value from the passed `showPrec` functions. public export %inline mkShowPrec : (showPrec : Prec -> a -> String) -> Show a mkShowPrec showPrec = mkShow' (showPrec Open) showPrec ||| Creates an `Uninhabited` value from the passed function. public export %inline mkUninhabited : (uninhabited : a -> Void) -> Uninhabited a mkUninhabited = %runElab check (var $ singleCon "Uninhabited") ||| Creates a `Semigroup` value from the passed function. public export %inline mkSemigroup : (mappend : a -> a -> a) -> Semigroup a mkSemigroup = %runElab check (var $ singleCon "Semigroup") ||| Creates a `Monoid` value from the passed neutral value. public export %inline mkMonoid : Semigroup a => (neutral : a) -> Monoid a mkMonoid = %runElab check (var $ singleCon "Monoid") ||| Creates a `DecEq` value from the passed implementation function ||| for `decEq` public export %inline mkDecEq : (decEq : (x1 : a) -> (x2 : a) -> Dec (x1 = x2)) -> DecEq a mkDecEq = %runElab check (var $ singleCon "DecEq")
(* Default settings (from HsToCoq.Coq.Preamble) *) Generalizable All Variables. Unset Implicit Arguments. Set Maximal Implicit Insertion. Unset Strict Implicit. Unset Printing Implicit Defensive. Require Coq.Program.Tactics. Require Coq.Program.Wf. (* Converted imports: *) Require Coq.Program.Basics. Require Data.Foldable. Require Data.Functor. Require Data.Functor.Classes. Require Data.SemigroupInternal. Require Data.Traversable. Require GHC.Base. Require GHC.Num. Import Data.Functor.Notations. Import GHC.Base.Notations. Import GHC.Num.Notations. (* Converted type declarations: *) Inductive Compose (f : Type -> Type) (g : Type -> Type) (a : Type) : Type := | Mk_Compose (getCompose : f (g a)) : Compose f g a. Arguments Mk_Compose {_} {_} {_} _. Definition getCompose {f : Type -> Type} {g : Type -> Type} {a : Type} (arg_0__ : Compose f g a) := let 'Mk_Compose getCompose := arg_0__ in getCompose. (* Converted value declarations: *) (* Skipping all instances of class `Data.Data.Data', including `Data.Functor.Compose.Data__Compose' *) (* Skipping all instances of class `GHC.Generics.Generic', including `Data.Functor.Compose.Generic__Compose' *) (* Skipping all instances of class `GHC.Generics.Generic1', including `Data.Functor.Compose.Generic1__Compose__5' *) Local Definition Eq1__Compose_liftEq {inst_f} {inst_g} `{Data.Functor.Classes.Eq1 inst_f} `{Data.Functor.Classes.Eq1 inst_g} : forall {a} {b}, (a -> b -> bool) -> (Compose inst_f inst_g) a -> (Compose inst_f inst_g) b -> bool := fun {a} {b} => fun arg_0__ arg_1__ arg_2__ => match arg_0__, arg_1__, arg_2__ with | eq, Mk_Compose x, Mk_Compose y => Data.Functor.Classes.liftEq (Data.Functor.Classes.liftEq eq) x y end. Program Instance Eq1__Compose {f} {g} `{Data.Functor.Classes.Eq1 f} `{Data.Functor.Classes.Eq1 g} : Data.Functor.Classes.Eq1 (Compose f g) := fun _ k__ => k__ {| Data.Functor.Classes.liftEq__ := fun {a} {b} => Eq1__Compose_liftEq |}. Local Definition Ord1__Compose_liftCompare {inst_f} {inst_g} `{Data.Functor.Classes.Ord1 inst_f} `{Data.Functor.Classes.Ord1 inst_g} : forall {a} {b}, (a -> b -> comparison) -> (Compose inst_f inst_g) a -> (Compose inst_f inst_g) b -> comparison := fun {a} {b} => fun arg_0__ arg_1__ arg_2__ => match arg_0__, arg_1__, arg_2__ with | comp, Mk_Compose x, Mk_Compose y => Data.Functor.Classes.liftCompare (Data.Functor.Classes.liftCompare comp) x y end. Program Instance Ord1__Compose {f} {g} `{Data.Functor.Classes.Ord1 f} `{Data.Functor.Classes.Ord1 g} : Data.Functor.Classes.Ord1 (Compose f g) := fun _ k__ => k__ {| Data.Functor.Classes.liftCompare__ := fun {a} {b} => Ord1__Compose_liftCompare |}. (* Skipping all instances of class `Data.Functor.Classes.Read1', including `Data.Functor.Compose.Read1__Compose' *) (* Skipping all instances of class `Data.Functor.Classes.Show1', including `Data.Functor.Compose.Show1__Compose' *) Local Definition Eq___Compose_op_zeze__ {inst_f} {inst_g} {inst_a} `{Data.Functor.Classes.Eq1 inst_f} `{Data.Functor.Classes.Eq1 inst_g} `{GHC.Base.Eq_ inst_a} : (Compose inst_f inst_g inst_a) -> (Compose inst_f inst_g inst_a) -> bool := Data.Functor.Classes.eq1. Local Definition Eq___Compose_op_zsze__ {inst_f} {inst_g} {inst_a} `{Data.Functor.Classes.Eq1 inst_f} `{Data.Functor.Classes.Eq1 inst_g} `{GHC.Base.Eq_ inst_a} : (Compose inst_f inst_g inst_a) -> (Compose inst_f inst_g inst_a) -> bool := fun x y => negb (Eq___Compose_op_zeze__ x y). Program Instance Eq___Compose {f} {g} {a} `{Data.Functor.Classes.Eq1 f} `{Data.Functor.Classes.Eq1 g} `{GHC.Base.Eq_ a} : GHC.Base.Eq_ (Compose f g a) := fun _ k__ => k__ {| GHC.Base.op_zeze____ := Eq___Compose_op_zeze__ ; GHC.Base.op_zsze____ := Eq___Compose_op_zsze__ |}. Local Definition Ord__Compose_compare {inst_f} {inst_g} {inst_a} `{Data.Functor.Classes.Ord1 inst_f} `{Data.Functor.Classes.Ord1 inst_g} `{GHC.Base.Ord inst_a} : (Compose inst_f inst_g inst_a) -> (Compose inst_f inst_g inst_a) -> comparison := Data.Functor.Classes.compare1. Local Definition Ord__Compose_op_zl__ {inst_f} {inst_g} {inst_a} `{Data.Functor.Classes.Ord1 inst_f} `{Data.Functor.Classes.Ord1 inst_g} `{GHC.Base.Ord inst_a} : (Compose inst_f inst_g inst_a) -> (Compose inst_f inst_g inst_a) -> bool := fun x y => Ord__Compose_compare x y GHC.Base.== Lt. Local Definition Ord__Compose_op_zlze__ {inst_f} {inst_g} {inst_a} `{Data.Functor.Classes.Ord1 inst_f} `{Data.Functor.Classes.Ord1 inst_g} `{GHC.Base.Ord inst_a} : (Compose inst_f inst_g inst_a) -> (Compose inst_f inst_g inst_a) -> bool := fun x y => Ord__Compose_compare x y GHC.Base./= Gt. Local Definition Ord__Compose_op_zg__ {inst_f} {inst_g} {inst_a} `{Data.Functor.Classes.Ord1 inst_f} `{Data.Functor.Classes.Ord1 inst_g} `{GHC.Base.Ord inst_a} : (Compose inst_f inst_g inst_a) -> (Compose inst_f inst_g inst_a) -> bool := fun x y => Ord__Compose_compare x y GHC.Base.== Gt. Local Definition Ord__Compose_op_zgze__ {inst_f} {inst_g} {inst_a} `{Data.Functor.Classes.Ord1 inst_f} `{Data.Functor.Classes.Ord1 inst_g} `{GHC.Base.Ord inst_a} : (Compose inst_f inst_g inst_a) -> (Compose inst_f inst_g inst_a) -> bool := fun x y => Ord__Compose_compare x y GHC.Base./= Lt. Local Definition Ord__Compose_max {inst_f} {inst_g} {inst_a} `{Data.Functor.Classes.Ord1 inst_f} `{Data.Functor.Classes.Ord1 inst_g} `{GHC.Base.Ord inst_a} : (Compose inst_f inst_g inst_a) -> (Compose inst_f inst_g inst_a) -> (Compose inst_f inst_g inst_a) := fun x y => if Ord__Compose_op_zlze__ x y : bool then y else x. Local Definition Ord__Compose_min {inst_f} {inst_g} {inst_a} `{Data.Functor.Classes.Ord1 inst_f} `{Data.Functor.Classes.Ord1 inst_g} `{GHC.Base.Ord inst_a} : (Compose inst_f inst_g inst_a) -> (Compose inst_f inst_g inst_a) -> (Compose inst_f inst_g inst_a) := fun x y => if Ord__Compose_op_zlze__ x y : bool then x else y. Program Instance Ord__Compose {f} {g} {a} `{Data.Functor.Classes.Ord1 f} `{Data.Functor.Classes.Ord1 g} `{GHC.Base.Ord a} : GHC.Base.Ord (Compose f g a) := fun _ k__ => k__ {| GHC.Base.op_zl____ := Ord__Compose_op_zl__ ; GHC.Base.op_zlze____ := Ord__Compose_op_zlze__ ; GHC.Base.op_zg____ := Ord__Compose_op_zg__ ; GHC.Base.op_zgze____ := Ord__Compose_op_zgze__ ; GHC.Base.compare__ := Ord__Compose_compare ; GHC.Base.max__ := Ord__Compose_max ; GHC.Base.min__ := Ord__Compose_min |}. (* Skipping all instances of class `GHC.Read.Read', including `Data.Functor.Compose.Read__Compose' *) (* Skipping all instances of class `GHC.Show.Show', including `Data.Functor.Compose.Show__Compose' *) Local Definition Functor__Compose_fmap {inst_f} {inst_g} `{GHC.Base.Functor inst_f} `{GHC.Base.Functor inst_g} : forall {a} {b}, (a -> b) -> (Compose inst_f inst_g) a -> (Compose inst_f inst_g) b := fun {a} {b} => fun arg_0__ arg_1__ => match arg_0__, arg_1__ with | f, Mk_Compose x => Mk_Compose (GHC.Base.fmap (GHC.Base.fmap f) x) end. Local Definition Functor__Compose_op_zlzd__ {inst_f} {inst_g} `{GHC.Base.Functor inst_f} `{GHC.Base.Functor inst_g} : forall {a} {b}, a -> (Compose inst_f inst_g) b -> (Compose inst_f inst_g) a := fun {a} {b} => Functor__Compose_fmap GHC.Base.∘ GHC.Base.const. Program Instance Functor__Compose {f} {g} `{GHC.Base.Functor f} `{GHC.Base.Functor g} : GHC.Base.Functor (Compose f g) := fun _ k__ => k__ {| GHC.Base.fmap__ := fun {a} {b} => Functor__Compose_fmap ; GHC.Base.op_zlzd____ := fun {a} {b} => Functor__Compose_op_zlzd__ |}. Local Definition Foldable__Compose_foldMap {inst_f} {inst_g} `{Data.Foldable.Foldable inst_f} `{Data.Foldable.Foldable inst_g} : forall {m} {a}, forall `{GHC.Base.Monoid m}, (a -> m) -> (Compose inst_f inst_g) a -> m := fun {m} {a} `{GHC.Base.Monoid m} => fun arg_0__ arg_1__ => match arg_0__, arg_1__ with | f, Mk_Compose t => Data.Foldable.foldMap (Data.Foldable.foldMap f) t end. Local Definition Foldable__Compose_fold {inst_f} {inst_g} `{Data.Foldable.Foldable inst_f} `{Data.Foldable.Foldable inst_g} : forall {m}, forall `{GHC.Base.Monoid m}, (Compose inst_f inst_g) m -> m := fun {m} `{GHC.Base.Monoid m} => Foldable__Compose_foldMap GHC.Base.id. Local Definition Foldable__Compose_foldl {inst_f} {inst_g} `{Data.Foldable.Foldable inst_f} `{Data.Foldable.Foldable inst_g} : forall {b} {a}, (b -> a -> b) -> b -> (Compose inst_f inst_g) a -> b := fun {b} {a} => fun f z t => Data.SemigroupInternal.appEndo (Data.SemigroupInternal.getDual (Foldable__Compose_foldMap (Data.SemigroupInternal.Mk_Dual GHC.Base.∘ (Data.SemigroupInternal.Mk_Endo GHC.Base.∘ GHC.Base.flip f)) t)) z. Local Definition Foldable__Compose_foldr {inst_f} {inst_g} `{Data.Foldable.Foldable inst_f} `{Data.Foldable.Foldable inst_g} : forall {a} {b}, (a -> b -> b) -> b -> (Compose inst_f inst_g) a -> b := fun {a} {b} => fun f z t => Data.SemigroupInternal.appEndo (Foldable__Compose_foldMap (Coq.Program.Basics.compose Data.SemigroupInternal.Mk_Endo f) t) z. Local Definition Foldable__Compose_foldl' {inst_f} {inst_g} `{Data.Foldable.Foldable inst_f} `{Data.Foldable.Foldable inst_g} : forall {b} {a}, (b -> a -> b) -> b -> (Compose inst_f inst_g) a -> b := fun {b} {a} => fun f z0 xs => let f' := fun x k z => k (f z x) in Foldable__Compose_foldr f' GHC.Base.id xs z0. Local Definition Foldable__Compose_foldr' {inst_f} {inst_g} `{Data.Foldable.Foldable inst_f} `{Data.Foldable.Foldable inst_g} : forall {a} {b}, (a -> b -> b) -> b -> (Compose inst_f inst_g) a -> b := fun {a} {b} => fun f z0 xs => let f' := fun k x z => k (f x z) in Foldable__Compose_foldl f' GHC.Base.id xs z0. Local Definition Foldable__Compose_length {inst_f} {inst_g} `{Data.Foldable.Foldable inst_f} `{Data.Foldable.Foldable inst_g} : forall {a}, (Compose inst_f inst_g) a -> GHC.Num.Int := fun {a} => Foldable__Compose_foldl' (fun arg_0__ arg_1__ => match arg_0__, arg_1__ with | c, _ => c GHC.Num.+ #1 end) #0. Local Definition Foldable__Compose_null {inst_f} {inst_g} `{Data.Foldable.Foldable inst_f} `{Data.Foldable.Foldable inst_g} : forall {a}, (Compose inst_f inst_g) a -> bool := fun {a} => Foldable__Compose_foldr (fun arg_0__ arg_1__ => false) true. Local Definition Foldable__Compose_product {inst_f} {inst_g} `{Data.Foldable.Foldable inst_f} `{Data.Foldable.Foldable inst_g} : forall {a}, forall `{GHC.Num.Num a}, (Compose inst_f inst_g) a -> a := fun {a} `{GHC.Num.Num a} => Coq.Program.Basics.compose Data.SemigroupInternal.getProduct (Foldable__Compose_foldMap Data.SemigroupInternal.Mk_Product). Local Definition Foldable__Compose_sum {inst_f} {inst_g} `{Data.Foldable.Foldable inst_f} `{Data.Foldable.Foldable inst_g} : forall {a}, forall `{GHC.Num.Num a}, (Compose inst_f inst_g) a -> a := fun {a} `{GHC.Num.Num a} => Coq.Program.Basics.compose Data.SemigroupInternal.getSum (Foldable__Compose_foldMap Data.SemigroupInternal.Mk_Sum). Local Definition Foldable__Compose_toList {inst_f} {inst_g} `{Data.Foldable.Foldable inst_f} `{Data.Foldable.Foldable inst_g} : forall {a}, (Compose inst_f inst_g) a -> list a := fun {a} => fun t => GHC.Base.build' (fun _ => (fun c n => Foldable__Compose_foldr c n t)). Program Instance Foldable__Compose {f} {g} `{Data.Foldable.Foldable f} `{Data.Foldable.Foldable g} : Data.Foldable.Foldable (Compose f g) := fun _ k__ => k__ {| Data.Foldable.fold__ := fun {m} `{GHC.Base.Monoid m} => Foldable__Compose_fold ; Data.Foldable.foldMap__ := fun {m} {a} `{GHC.Base.Monoid m} => Foldable__Compose_foldMap ; Data.Foldable.foldl__ := fun {b} {a} => Foldable__Compose_foldl ; Data.Foldable.foldl'__ := fun {b} {a} => Foldable__Compose_foldl' ; Data.Foldable.foldr__ := fun {a} {b} => Foldable__Compose_foldr ; Data.Foldable.foldr'__ := fun {a} {b} => Foldable__Compose_foldr' ; Data.Foldable.length__ := fun {a} => Foldable__Compose_length ; Data.Foldable.null__ := fun {a} => Foldable__Compose_null ; Data.Foldable.product__ := fun {a} `{GHC.Num.Num a} => Foldable__Compose_product ; Data.Foldable.sum__ := fun {a} `{GHC.Num.Num a} => Foldable__Compose_sum ; Data.Foldable.toList__ := fun {a} => Foldable__Compose_toList |}. Local Definition Traversable__Compose_traverse {inst_f} {inst_g} `{Data.Traversable.Traversable inst_f} `{Data.Traversable.Traversable inst_g} : forall {f} {a} {b}, forall `{GHC.Base.Applicative f}, (a -> f b) -> (Compose inst_f inst_g) a -> f ((Compose inst_f inst_g) b) := fun {f} {a} {b} `{GHC.Base.Applicative f} => fun arg_0__ arg_1__ => match arg_0__, arg_1__ with | f, Mk_Compose t => Mk_Compose Data.Functor.<$> Data.Traversable.traverse (Data.Traversable.traverse f) t end. Local Definition Traversable__Compose_mapM {inst_f} {inst_g} `{Data.Traversable.Traversable inst_f} `{Data.Traversable.Traversable inst_g} : forall {m} {a} {b}, forall `{GHC.Base.Monad m}, (a -> m b) -> (Compose inst_f inst_g) a -> m ((Compose inst_f inst_g) b) := fun {m} {a} {b} `{GHC.Base.Monad m} => Traversable__Compose_traverse. Local Definition Traversable__Compose_sequenceA {inst_f} {inst_g} `{Data.Traversable.Traversable inst_f} `{Data.Traversable.Traversable inst_g} : forall {f} {a}, forall `{GHC.Base.Applicative f}, (Compose inst_f inst_g) (f a) -> f ((Compose inst_f inst_g) a) := fun {f} {a} `{GHC.Base.Applicative f} => Traversable__Compose_traverse GHC.Base.id. Local Definition Traversable__Compose_sequence {inst_f} {inst_g} `{Data.Traversable.Traversable inst_f} `{Data.Traversable.Traversable inst_g} : forall {m} {a}, forall `{GHC.Base.Monad m}, (Compose inst_f inst_g) (m a) -> m ((Compose inst_f inst_g) a) := fun {m} {a} `{GHC.Base.Monad m} => Traversable__Compose_sequenceA. Program Instance Traversable__Compose {f} {g} `{Data.Traversable.Traversable f} `{Data.Traversable.Traversable g} : Data.Traversable.Traversable (Compose f g) := fun _ k__ => k__ {| Data.Traversable.mapM__ := fun {m} {a} {b} `{GHC.Base.Monad m} => Traversable__Compose_mapM ; Data.Traversable.sequence__ := fun {m} {a} `{GHC.Base.Monad m} => Traversable__Compose_sequence ; Data.Traversable.sequenceA__ := fun {f} {a} `{GHC.Base.Applicative f} => Traversable__Compose_sequenceA ; Data.Traversable.traverse__ := fun {f} {a} {b} `{GHC.Base.Applicative f} => Traversable__Compose_traverse |}. Local Definition Applicative__Compose_liftA2 {inst_f} {inst_g} `{GHC.Base.Applicative inst_f} `{GHC.Base.Applicative inst_g} : forall {a} {b} {c}, (a -> b -> c) -> (Compose inst_f inst_g) a -> (Compose inst_f inst_g) b -> (Compose inst_f inst_g) c := fun {a} {b} {c} => fun arg_0__ arg_1__ arg_2__ => match arg_0__, arg_1__, arg_2__ with | f, Mk_Compose x, Mk_Compose y => Mk_Compose (GHC.Base.liftA2 (GHC.Base.liftA2 f) x y) end. Local Definition Applicative__Compose_op_zlztzg__ {inst_f} {inst_g} `{GHC.Base.Applicative inst_f} `{GHC.Base.Applicative inst_g} : forall {a} {b}, (Compose inst_f inst_g) (a -> b) -> (Compose inst_f inst_g) a -> (Compose inst_f inst_g) b := fun {a} {b} => fun arg_0__ arg_1__ => match arg_0__, arg_1__ with | Mk_Compose f, Mk_Compose x => Mk_Compose (GHC.Base.liftA2 _GHC.Base.<*>_ f x) end. Local Definition Applicative__Compose_op_ztzg__ {inst_f} {inst_g} `{GHC.Base.Applicative inst_f} `{GHC.Base.Applicative inst_g} : forall {a} {b}, (Compose inst_f inst_g) a -> (Compose inst_f inst_g) b -> (Compose inst_f inst_g) b := fun {a} {b} => fun a1 a2 => Applicative__Compose_op_zlztzg__ (GHC.Base.id GHC.Base.<$ a1) a2. Local Definition Applicative__Compose_pure {inst_f} {inst_g} `{GHC.Base.Applicative inst_f} `{GHC.Base.Applicative inst_g} : forall {a}, a -> (Compose inst_f inst_g) a := fun {a} => fun x => Mk_Compose (GHC.Base.pure (GHC.Base.pure x)). Program Instance Applicative__Compose {f} {g} `{GHC.Base.Applicative f} `{GHC.Base.Applicative g} : GHC.Base.Applicative (Compose f g) := fun _ k__ => k__ {| GHC.Base.liftA2__ := fun {a} {b} {c} => Applicative__Compose_liftA2 ; GHC.Base.op_zlztzg____ := fun {a} {b} => Applicative__Compose_op_zlztzg__ ; GHC.Base.op_ztzg____ := fun {a} {b} => Applicative__Compose_op_ztzg__ ; GHC.Base.pure__ := fun {a} => Applicative__Compose_pure |}. (* Skipping all instances of class `GHC.Base.Alternative', including `Data.Functor.Compose.Alternative__Compose' *) (* External variables: Gt Lt Type bool comparison false list negb true Coq.Program.Basics.compose Data.Foldable.Foldable Data.Foldable.foldMap Data.Foldable.foldMap__ Data.Foldable.fold__ Data.Foldable.foldl'__ Data.Foldable.foldl__ Data.Foldable.foldr'__ Data.Foldable.foldr__ Data.Foldable.length__ Data.Foldable.null__ Data.Foldable.product__ Data.Foldable.sum__ Data.Foldable.toList__ Data.Functor.op_zlzdzg__ Data.Functor.Classes.Eq1 Data.Functor.Classes.Ord1 Data.Functor.Classes.compare1 Data.Functor.Classes.eq1 Data.Functor.Classes.liftCompare Data.Functor.Classes.liftCompare__ Data.Functor.Classes.liftEq Data.Functor.Classes.liftEq__ Data.SemigroupInternal.Mk_Dual Data.SemigroupInternal.Mk_Endo Data.SemigroupInternal.Mk_Product Data.SemigroupInternal.Mk_Sum Data.SemigroupInternal.appEndo Data.SemigroupInternal.getDual Data.SemigroupInternal.getProduct Data.SemigroupInternal.getSum Data.Traversable.Traversable Data.Traversable.mapM__ Data.Traversable.sequenceA__ Data.Traversable.sequence__ Data.Traversable.traverse Data.Traversable.traverse__ GHC.Base.Applicative GHC.Base.Eq_ GHC.Base.Functor GHC.Base.Monad GHC.Base.Monoid GHC.Base.Ord GHC.Base.build' GHC.Base.compare__ GHC.Base.const GHC.Base.flip GHC.Base.fmap GHC.Base.fmap__ GHC.Base.id GHC.Base.liftA2 GHC.Base.liftA2__ GHC.Base.max__ GHC.Base.min__ GHC.Base.op_z2218U__ GHC.Base.op_zeze__ GHC.Base.op_zeze____ GHC.Base.op_zg____ GHC.Base.op_zgze____ GHC.Base.op_zl____ GHC.Base.op_zlzd__ GHC.Base.op_zlzd____ GHC.Base.op_zlze____ GHC.Base.op_zlztzg__ GHC.Base.op_zlztzg____ GHC.Base.op_zsze__ GHC.Base.op_zsze____ GHC.Base.op_ztzg____ GHC.Base.pure GHC.Base.pure__ GHC.Num.Int GHC.Num.Num GHC.Num.fromInteger GHC.Num.op_zp__ *)
module Brainfeck.ST import Control.ST import Data.Fin import Data.Fuel import Data.Vect as V import System import Brainfeck.Lex import Brainfeck.Parse import Brainfeck.Type import Brainfeck.VM as VM %default total export interface CharIO (m : Type -> Type) where getChar : STrans m Char res (const res) putChar : Char -> STrans m () res (const res) info : String -> STrans m () res (const res) export VMST : Nat -> Nat -> Nat -> Type VMST l r i = State (VMState l r i) readChar : CharIO io => (vm : Var) -> ST io () [vm ::: VMST l r i] readChar vm = do c <- getChar update vm (inputChar c) outputChar : CharIO io => (vm : Var) -> ST io () [vm ::: VMST l r i] outputChar vmVar = do vm <- read vmVar let cell = outputChar vm putChar cell updateVM : (VMState l r i -> VMState l r i) -> (vm : Var) -> ST id () [vm ::: VMST l r i] updateVM f vmVar = update vmVar f increment : (vm : Var) -> ST id () [vm ::: VMST l r i] increment = updateVM VM.increment decrement : (vm : Var) -> ST id () [vm ::: VMST l r i] decrement = updateVM VM.decrement jumpBack : (vm : Var) -> ST id () [vm ::: VMST l r (S i)] jumpBack = updateVM VM.jumpBack jumpForward : (vm : Var) -> ST id () [vm ::: VMST l r (S i)] jumpForward = updateVM VM.jumpForward data StepResult : Type where StepInfo : String -> (l : Nat) -> (r : Nat) -> (i : Nat) -> StepResult StepSuccess : (l : Nat) -> (r : Nat) -> (i : Nat) -> StepResult ResultST : Type ResultST = State StepResult data AlwaysSucceeds : Type where STrivial : (l : Nat) -> (r : Nat) -> AlwaysSucceeds AlwaysST : Type AlwaysST = State StepResult shiftLeft : CharIO io => (vm : Var) -> ST io StepResult [vm ::: VMST l r i :-> (\res => case res of (StepInfo e l r i) => VMST l r i (StepSuccess l' r' i) => VMST l' r' i)] shiftLeft {l = Z} {r} {i} _ = do let msg = "Cell index is 0. Unable to leftshift." info msg pure $ StepInfo msg Z r i shiftLeft {l = (S k)} {r} {i} vm = update vm (VM.shiftLeft) >>= \_ => pure (StepSuccess k (S r) i) shiftRight : {l : Nat} -> {r : Nat} -> {auto p : IsSucc (l + r)} -> (vm : Var) -> ST id AlwaysSucceeds [ vm ::: VMST l r i :-> (\res => case res of (STrivial l' r') => VMST l' r' i) ] shiftRight {l = (S k)} {r = Z} vmVar = update vmVar (VM.shiftRight . grow) >>= \_ => pure (STrivial (S (S k)) k) where growProof : (vm : VMState llen (0 + (rlen + 0)) i) -> VMState llen rlen i growProof {rlen} vm = rewrite plusCommutative 0 rlen in vm grow : VMState (S k) 0 i -> VMState (S k) (S k) i grow vm = growProof (growVM vm) shiftRight {l} {r = (S k)} vm = update vm VM.shiftRight >>= \_ => pure (STrivial (S l) k) stepSuccess : {l : Nat} -> {r : Nat} -> {i : Nat} -> StepResult stepSuccess {l} {r} {i} = StepSuccess l r i step : CharIO io => {auto p : IsSucc (l + r) } -> (vm : Var) -> ST io StepResult [ vm ::: VMST l r (S i) :-> (\res => case res of (StepInfo e l r i) => VMST l r i (StepSuccess l' r' i) => VMST l' r' i) ] step {l} {r} {i} vmVar = do vm <- read vmVar case instruction vm of OLeft => do vm' <- shiftLeft vmVar case vm' of (StepInfo e l r i) => pure $ StepInfo e l r i (StepSuccess l' r' i) => pure $ StepSuccess l' r' i ORight => shiftRight vmVar >>= \(STrivial l' r') => pure (StepSuccess l' r' (S i)) OInc => increment vmVar >>= \_ => pure stepSuccess ODec => decrement vmVar >>= \_ => pure stepSuccess OOut => outputChar vmVar >>= \_ => pure stepSuccess OIn => readChar vmVar >>= \_ => pure stepSuccess OJumpZero _ => jumpForward vmVar >>= \_ => pure stepSuccess OJumpNZero _ => jumpBack vmVar >>= \_ => pure stepSuccess runLoop : CharIO io => {auto p : IsSucc (l + r) } -> Fuel -> (vm : Var) -> ST io () [ remove vm (VMST l r (S i)) ] runLoop Dry vmVar = delete vmVar runLoop (More f) vmVar = do res <- step vmVar case res of (StepInfo _ _ _ (S k)) => info "Aborting" >>= \_ => delete vmVar (StepInfo _ _ _ Z ) => info "Ended up in an undefined state (missing all instructions)" >>= \_ => delete vmVar (StepSuccess _ _ Z ) => do info "Ended up in an undefined state (missing all instructions) after successful step" delete vmVar (StepSuccess tapeL tapeR (S k)) => do case isItSucc (tapeL + tapeR) of No _ => info "Somehow the tape was deleted. Aborting." >>= \_ => delete vmVar Yes prf => do vm <- read vmVar let pc' = FS (pc vm) case strengthen pc' of (Left l) => delete vmVar -- end of program (Right r) => do update vmVar (record { pc = r }) runLoop f vmVar printTokens : CharIO io => Bool -> Tokens n -> ST io () [] printTokens False _ = pure () printTokens True xs = do info "Lexed Tokens: " let strs = foldr (++) "" . V.intersperse ", " $ map (tokenToS . snd) xs info strs info "" pure () printParse : CharIO io => Bool -> Instructions n -> ST io () [] printParse False _ = pure () printParse True xs = do info "Parsed Operations: " let strs = foldr (++) "" . V.intersperse ", " $ map operationToS xs info strs info "" pure () export runProgram : CharIO io => (printLex : Bool) -> (printParse : Bool) -> Fuel -> (progText : String) -> ST io () [] runProgram plex pparse fuel progText = case lex progText of (Z ** _ ) => info "Nothing to do. Bye" (S n ** ts) => do printTokens plex ts case parse ts of Left (MkParseError loc s) => info $ "Error at " ++ locToS loc ++ " " ++ s Right (Z ** _) => info "Empty parse" Right (S n ** ops) => do printParse pparse ops let vm = initVM ops case isItSucc InitialVMSize of (No _) => info "This was compiled with an invalid InitialVMSize! See ya." (Yes prf) => do v <- new vm runLoop {p = prf} {l = 0} {r = InitialVMSize} fuel v
{-# LANGUAGE DeriveAnyClass #-} {-# LANGUAGE DeriveFunctor #-} {-# LANGUAGE DeriveGeneric #-} {-# LANGUAGE GADTs #-} {-# LANGUAGE FlexibleContexts #-} {-# LANGUAGE FlexibleInstances #-} {-# LANGUAGE ImportQualifiedPost #-} {-# LANGUAGE LambdaCase #-} {-# LANGUAGE MultiParamTypeClasses #-} {-# LANGUAGE ScopedTypeVariables #-} {-# LANGUAGE TypeFamilies #-} {-# LANGUAGE UndecidableInstances #-} {-# LANGUAGE ViewPatterns #-} {-# OPTIONS_GHC -Wwarn #-} module Data.CDF ( Centile(..) , renderCentile , briefCentiles , stdCentiles , nEquicentiles , CDFError (..) , CDF(..) , CDFIx (..) , KnownCDF (..) , liftCDFVal , unliftCDFVal , centilesCDF , filterCDF , zeroCDF , projectCDF , projectCDF' , indexCDF , DirectCDF , cdf , mapToCDF , Divisible (..) , Combine (..) , stdCombine1 , stdCombine2 , CDF2 , collapseCDFs , cdf2OfCDFs -- , module Data.SOP.Strict ) where import Prelude (String, (!!), error, head, show) import Cardano.Prelude hiding (head, show) import Data.Aeson (FromJSON(..), ToJSON(..)) import Data.SOP.Strict import Data.Time.Clock (NominalDiffTime) import Data.Vector qualified as Vec import Statistics.Sample qualified as Stat import Text.Printf (printf) import Ouroboros.Consensus.Util.Time (secondsToNominalDiffTime) -- | Centile specifier: a fractional in range of [0; 1]. newtype Centile = Centile { unCentile :: Double } deriving (Eq, Generic, FromJSON, ToJSON, Show) deriving anyclass NFData renderCentile :: Int -> Centile -> String renderCentile width = \case Centile x -> printf ("%0."<>show (width-2)<>"f") x briefCentiles :: [Centile] briefCentiles = [ Centile 0.5, Centile 0.9, Centile 1.0 ] stdCentiles :: [Centile] stdCentiles = [ Centile 0.01, Centile 0.05 , Centile 0.1, Centile 0.2, Centile 0.3, Centile 0.4 , Centile 0.5, Centile 0.6 , Centile 0.7, Centile 0.75 , Centile 0.8, Centile 0.85, Centile 0.875 , Centile 0.9, Centile 0.925, Centile 0.95, Centile 0.97, Centile 0.98, Centile 0.99 , Centile 0.995, Centile 0.997, Centile 0.998, Centile 0.999 , Centile 0.9995, Centile 0.9997, Centile 0.9998, Centile 0.9999 ] -- | Given a N-large population, produce centiles for each element, except for min and max. -- We don't need min and max, because CDF already has range. nEquicentiles :: Int -> [Centile] nEquicentiles n = if reindices == indices then Centile <$> centiles else error $ printf "centilesForN: reindices for %d: %s, indices: %s" n (show reindices) (show indices) where reindices = centiles <&> runCentile n centiles = [ step * (fromIntegral i + 0.5) | i <- indices ] indices = if n > 2 then [1 .. n - 2] -- ignore first and last indices, standing for min and max. else [] step :: Double step = 1.0 / fromIntegral n -- | Given a centile of N-large population, produce index of the population element referred by centile. {-# INLINE runCentile #-} runCentile :: Int -> Double -> Int runCentile n centile = floor (fromIntegral n * centile) & min (n - 1) {-# INLINE vecCentile #-} vecCentile :: Vec.Vector a -> Int -> Centile -> a vecCentile vec n (Centile c) = vec Vec.! runCentile n c -- -- * Parametric CDF (cumulative distribution function) -- data CDF p a = CDF { cdfSize :: Int , cdfAverage :: Double , cdfStddev :: Double , cdfRange :: (a, a) , cdfSamples :: [(Centile, p a)] } deriving (Eq, Functor, Generic, Show) deriving anyclass NFData instance (FromJSON (p a), FromJSON a) => FromJSON (CDF p a) instance ( ToJSON (p a), ToJSON a) => ToJSON (CDF p a) -- * Singletons -- data CDFIx p where CDFI :: CDFIx I CDF2 :: CDFIx (CDF I) class KnownCDF a where cdfIx :: CDFIx a instance KnownCDF I where cdfIx = CDFI instance KnownCDF (CDF I) where cdfIx = CDF2 centilesCDF :: CDF p a -> [Centile] centilesCDF = fmap fst . cdfSamples zeroCDF :: (Num a) => CDF p a zeroCDF = CDF { cdfSize = 0 , cdfAverage = 0 , cdfStddev = 0 , cdfRange = (0, 0) , cdfSamples = mempty } filterCDF :: ((Centile, p a) -> Bool) -> CDF p a -> CDF p a filterCDF f d = d { cdfSamples = cdfSamples d & filter f } indexCDF :: Int -> CDF p a -> p a indexCDF i d = snd $ cdfSamples d !! i projectCDF :: Centile -> CDF p a -> Maybe (p a) projectCDF p = fmap snd . find ((== p) . fst) . cdfSamples projectCDF' :: String -> Centile -> CDF p a -> p a projectCDF' desc p = maybe (error er) snd . find ((== p) . fst) . cdfSamples where er = printf "Missing centile %f in %s" (show $ unCentile p) desc -- -- * Trivial instantiation: samples are value points -- type DirectCDF a = CDF I a liftCDFVal :: Real a => a -> CDFIx p -> p a liftCDFVal x = \case CDFI -> I x CDF2 -> CDF { cdfSize = 1 , cdfAverage = fromRational (toRational x) , cdfStddev = 0 , cdfRange = (x, x) , cdfSamples = [] , .. } unliftCDFVal :: Divisible a => CDFIx p -> p a -> a unliftCDFVal CDFI (I x) =x unliftCDFVal CDF2 CDF{cdfRange = (mi, ma)} = (mi + ma) `divide` 2 cdf :: (Real a, KnownCDF p) => [Centile] -> [a] -> CDF p a cdf centiles (sort -> sorted) = CDF { cdfSize = size , cdfAverage = Stat.mean doubleVec , cdfStddev = Stat.stdDev doubleVec , cdfRange = (mini, maxi) , cdfSamples = ( (Centile 0, liftCDFVal mini ix) :) . (<> [(Centile 1.0, liftCDFVal maxi ix) ]) $ centiles <&> \spec -> let sample = if size == 0 then 0 else vecCentile vec size spec in (,) spec (liftCDFVal sample ix) } where ix = cdfIx vec = Vec.fromList sorted size = length vec doubleVec = fromRational . toRational <$> vec (,) mini maxi = if size == 0 then (0, 0) else (vec Vec.! 0, Vec.last vec) mapToCDF :: Real a => (b -> a) -> [Centile] -> [b] -> DirectCDF a mapToCDF f pspecs xs = cdf pspecs (f <$> xs) type CDF2 a = CDF (CDF I) a data CDFError = CDFIncoherentSamplingLengths [Int] | CDFIncoherentSamplingCentiles [[Centile]] | CDFEmptyDataset deriving Show -- | Avoiding `Fractional` class Real a => Divisible a where divide :: a -> Double -> a instance Divisible Double where divide = (/) instance Divisible Int where divide x by = round $ fromIntegral x / by instance Divisible Integer where divide x by = round $ fromIntegral x / by instance Divisible Word32 where divide x by = round $ fromIntegral x / by instance Divisible Word64 where divide x by = round $ fromIntegral x / by instance Divisible NominalDiffTime where divide x by = x / secondsToNominalDiffTime by -- * Combining population stats data Combine p a = Combine { cWeightedAverages :: !([(Int, Double)] -> Double) , cStddevs :: !([Double] -> Double) , cRanges :: !([(a, a)] -> (a, a)) , cWeightedSamples :: !([(Int, a)] -> a) , cCDF :: !([p a] -> Either CDFError (CDF I a)) } stdCombine1 :: forall a. (Divisible a) => [Centile] -> Combine I a stdCombine1 cs = Combine { cWeightedAverages = weightedAverage , cRanges = outerRange , cStddevs = maximum -- it's an approximation , cWeightedSamples = weightedAverage , cCDF = Right . cdf cs . fmap unI } where weightedAverage :: forall b. (Divisible b) => [(Int, b)] -> b weightedAverage xs = (`divide` (fromIntegral . sum $ fst <$> xs)) . sum $ xs <&> \(size, avg) -> fromIntegral size * avg outerRange xs = (,) (minimum $ fst <$> xs) (maximum $ snd <$> xs) stdCombine2 :: Divisible a => [Centile] -> Combine (CDF I) a stdCombine2 cs = let c@Combine{..} = stdCombine1 cs in Combine { cCDF = collapseCDFs c , .. } -- | Collapse: Given a ([Value] -> CDF I) function, and a list of (CDF I), produce a (CDF I). -- collapseCDFs :: forall a. Combine I a -> [CDF I a] -> Either CDFError (CDF I a) collapseCDFs _ [] = Left CDFEmptyDataset collapseCDFs Combine{..} xs = do unless (all (head lengths ==) lengths) $ Left $ CDFIncoherentSamplingLengths lengths unless (null incoherent) $ Left $ CDFIncoherentSamplingCentiles (fmap fst <$> incoherent) pure CDF { cdfSize = sum sizes , cdfAverage = xs <&> cdfAverage & cWeightedAverages . zip sizes , cdfRange = xs <&> cdfRange & cRanges , cdfStddev = xs <&> cdfStddev & cStddevs , cdfSamples = coherent <&> fmap (I . cWeightedSamples . zip sizes . fmap unI) } where sizes = xs <&> cdfSize samples = xs <&> cdfSamples lengths = length <$> samples centileOrdered :: [[(Centile, I a)]] -- Each sublist must (checked) have the same Centile. centileOrdered = transpose samples coherent :: [(Centile, [I a])] (incoherent, coherent) = partitionEithers $ centileOrdered <&> \case [] -> error "cdfOfCDFs: empty list of centiles, hands down." xxs@((c, _):(fmap fst -> cs)) -> if any (/= c) cs then Left xxs else Right (c, snd <$> xxs) -- | Polymorphic, but practically speaking, intended for either: -- 1. given a ([I] -> CDF I) function, and a list of (CDF I), produce a CDF (CDF I), or -- 2. given a ([CDF I] -> CDF I) function, and a list of (CDF (CDF I)), produce a CDF (CDF I) cdf2OfCDFs :: forall a p. Combine p a -> [CDF p a] -> Either CDFError (CDF (CDF I) a) cdf2OfCDFs _ [] = Left CDFEmptyDataset cdf2OfCDFs Combine{..} xs = do unless (all (head lengths ==) lengths) $ Left $ CDFIncoherentSamplingLengths lengths unless (null incoherent) $ Left $ CDFIncoherentSamplingCentiles (fmap fst <$> incoherent) cdfSamples <- mapM sequence -- ..to Either CDFError [(Centile, CDF I a)] (coherent <&> fmap cCDF :: [(Centile, Either CDFError (CDF I a))]) pure CDF { cdfSize = sum sizes , cdfAverage = xs <&> cdfAverage & cWeightedAverages . zip sizes , cdfRange = xs <&> cdfRange & cRanges , cdfStddev = xs <&> cdfStddev & cStddevs , cdfSamples = cdfSamples } where sizes = xs <&> cdfSize samples = xs <&> cdfSamples lengths = length <$> samples centileOrdered :: [[(Centile, p a)]] centileOrdered = transpose samples (incoherent, coherent) = partitionEithers $ centileOrdered <&> \case [] -> error "cdfOfCDFs: empty list of centiles, hands down." xxs@((c, _):(fmap fst -> cs)) -> if any (/= c) cs then Left xxs else Right (c, snd <$> xxs)
By July 28 , the division was still embroiled in this fight and the 766th bypassed it and moved toward <unk> on the left flank of the city . However the 766th had suffered significant setbacks at Yongdok , with substantial losses due to American and British naval artillery fire . Once it arrived in the area , it met heavier resistance from South Korean police and militia operating in armored vehicles . With air support , they offered the heaviest resistance the unit had faced thus far . With the support of only one of the 5th Division 's regiments , the 766th was unable to sustain its advance , and had to pull back by the 29th . Movement from the ROK Capital Division prevented the 766th Regiment from infiltrating further into the mountains . ROK cavalry and civilian police then began isolated counteroffensives against the 766th . These forces included special counter @-@ guerrilla units targeting the 766th and countering its tactics . South Korean troops halted the advance of the North Koreans again around the end of the month thanks to increased reinforcements and support closer to the Pusan Perimeter logistics network .
# The tic-tac-toe matrix has already been defined for you ttt <- matrix(c("O", NA, "X", NA, "O", NA, "X", "O", "X"), nrow = 3, ncol = 3) # define the double for loop for (i in 1:nrow(ttt)) { for (j in 1:ncol(ttt)) { print(paste("On row",i,"and column",j,"board contains",ttt[i,j])) } }
The history of Toniná continued after most other Classic Maya cities had fallen , perhaps aided by the site 's relative isolation . Ruler 10 is associated with a monument dating to 904 in the Terminal Classic and a monument dating to 909 bears the last known Long Count date although the name of the king has not survived . Ceramic fragments indicate that occupation at the site continued for another century or more .
When about-to-be parents rush to the hospital for delivery full of the joy and terror, there is almost never the thought that when they leave their newborn will not be with them. They're unprepared for the heartbreak of an empty lap. But an infant born too sick or too soon to go home may remain behind in the neonatal intensive care unit for a few days or for months on end. This week, for example, Kamryn Ruth Abbott celebrated her third month of life at Memorial Hermann Memorial City Medical Center's NICU.
module _ where open import Agda.Builtin.List open import Agda.Builtin.Reflection open import Agda.Builtin.Unit record Id (A : Set) : Set where field id : A → A open Id {{...}} postulate T : {A : Set} → A → Set cong : ∀ {A B : Set} (f : A → B) {x} → T x → T (f x) X : Set lem : (x : X) → T x instance IdX : Id X IdX .id n = n macro follows-from : Term → Term → TC ⊤ follows-from prf hole = do typeError (termErr prf ∷ []) loops : (x : X) → T x loops x = follows-from (cong id (lem x))
! ! ------------------------------------------------------------- ! B I S E C T ! ------------------------------------------------------------- ! SUBROUTINE BISECT(N, EPS1, D, E, E2, LB, UB, MM, M, W, IND, IERR, RV4, & RV5) !----------------------------------------------- ! M o d u l e s !----------------------------------------------- USE vast_kind_param, ONLY: DOUBLE !...Translated by Pacific-Sierra Research 77to90 4.3E 21:52:17 11/14/01 !...Switches: IMPLICIT NONE !----------------------------------------------- ! D u m m y A r g u m e n t s !----------------------------------------------- INTEGER , INTENT(IN) :: N INTEGER , INTENT(IN) :: MM INTEGER , INTENT(INOUT) :: M INTEGER , INTENT(OUT) :: IERR REAL(DOUBLE) , INTENT(INOUT) :: EPS1 REAL(DOUBLE) , INTENT(INOUT) :: LB REAL(DOUBLE) , INTENT(INOUT) :: UB INTEGER , INTENT(INOUT) :: IND(MM) REAL(DOUBLE) , INTENT(IN) :: D(N) REAL(DOUBLE) , INTENT(IN) :: E(N) REAL(DOUBLE) , INTENT(INOUT) :: E2(N) REAL(DOUBLE) , INTENT(INOUT) :: W(MM) REAL(DOUBLE) , INTENT(INOUT) :: RV4(N) REAL(DOUBLE) , INTENT(INOUT) :: RV5(N) !----------------------------------------------- ! L o c a l V a r i a b l e s !----------------------------------------------- INTEGER :: I, J, K, L, P, Q, R, S, II, M1, M2, TAG, ISTURM REAL(DOUBLE) :: U, V, T1, T2, XU, X0, X1, MACHEP !----------------------------------------------- ! ! ! THIS SUBROUTINE IS A TRANSLATION OF THE BISECTION TECHNIQUE ! IN THE ALGOL PROCEDURE TRISTURM BY PETERS AND WILKINSON. ! HANDBOOK FOR AUTO. COMP., VOL.II-LINEAR ALGEBRA, 418-439(1971). ! ! THIS SUBROUTINE FINDS THOSE EIGENVALUES OF A TRIDIAGONAL ! SYMMETRIC MATRIX WHICH LIE IN A SPECIFIED INTERVAL, ! USING BISECTION. ! ! ON INPUT: ! ! N IS THE ORDER OF THE MATRIX; ! ! EPS1 IS AN ABSOLUTE ERROR TOLERANCE FOR THE COMPUTED ! EIGENVALUES. IF THE INPUT EPS1 IS NON-POSITIVE, ! IT IS RESET FOR EACH SUBMATRIX TO A DEFAULT VALUE, ! NAMELY, MINUS THE PRODUCT OF THE RELATIVE MACHINE ! PRECISION AND THE 1-NORM OF THE SUBMATRIX; ! ! D CONTAINS THE DIAGONAL ELEMENTS OF THE INPUT MATRIX; ! ! E CONTAINS THE SUBDIAGONAL ELEMENTS OF THE INPUT MATRIX ! IN ITS LAST N-1 POSITIONS. E(1) IS ARBITRARY; ! ! E2 CONTAINS THE SQUARES OF THE CORRESPONDING ELEMENTS OF E. ! E2(1) IS ARBITRARY; ! ! LB AND UB DEFINE THE INTERVAL TO BE SEARCHED FOR EIGENVALUES. ! IF LB IS NOT LESS THAN UB, NO EIGENVALUES WILL BE FOUND; ! ! MM SHOULD BE SET TO AN UPPER BOUND FOR THE NUMBER OF ! EIGENVALUES IN THE INTERVAL. WARNING: IF MORE THAN ! MM EIGENVALUES ARE DETERMINED TO LIE IN THE INTERVAL, ! AN ERROR RETURN IS MADE WITH NO EIGENVALUES FOUND. ! ! ON OUTPUT: ! ! EPS1 IS UNALTERED UNLESS IT HAS BEEN RESET TO ITS ! (LAST) DEFAULT VALUE; ! ! D AND E ARE UNALTERED; ! ! ELEMENTS OF E2, CORRESPONDING TO ELEMENTS OF E REGARDED ! AS NEGLIGIBLE, HAVE BEEN REPLACED BY ZERO CAUSING THE ! MATRIX TO SPLIT INTO A DIRECT SUM OF SUBMATRICES. ! E2(1) IS ALSO SET TO ZERO; ! ! M IS THE NUMBER OF EIGENVALUES DETERMINED TO LIE IN (LB,UB); ! ! W CONTAINS THE M EIGENVALUES IN ASCENDING ORDER; ! ! IND CONTAINS IN ITS FIRST M POSITIONS THE SUBMATRIX INDICES ! ASSOCIATED WITH THE CORRESPONDING EIGENVALUES IN W -- ! 1 FOR EIGENVALUES BELONGING TO THE FIRST SUBMATRIX FROM ! THE TOP, 2 FOR THOSE BELONGING TO THE SECOND SUBMATRIX, ETC.; ! ! IERR IS SET TO ! ZERO FOR NORMAL RETURN, ! 3*N+1 IF M EXCEEDS MM; ! ! RV4 AND RV5 ARE TEMPORARY STORAGE ARRAYS. ! ! THE ALGOL PROCEDURE STURMCNT CONTAINED IN TRISTURM ! APPEARS IN BISECT IN-LINE. ! ! NOTE THAT SUBROUTINE TQL1 OR IMTQL1 IS GENERALLY FASTER THAN ! BISECT, IF MORE THAN N/4 EIGENVALUES ARE TO BE FOUND. ! ! QUESTIONS AND COMMENTS SHOULD BE DIRECTED TO B. S. GARBOW, ! APPLIED MATHEMATICS DIVISION, ARGONNE NATIONAL LABORATORY ! ! ------------------------------------------------------------------ ! ! :::::::::: MACHEP IS A MACHINE DEPENDENT PARAMETER SPECIFYING ! THE RELATIVE PRECISION OF FLOATING POINT ARITHMETIC. ! MACHEP = 16.0D0**(-13) FOR LONG FORM ARITHMETIC ! ON S360 :::::::::: DATA MACHEP/ 1.D-12/ ! IERR = 0 TAG = 0 T1 = LB T2 = UB ! :::::::::: LOOK FOR SMALL SUB-DIAGONAL ENTRIES :::::::::: DO I = 1, N IF (I == 1) GO TO 20 IF (DABS(E(I)) > MACHEP*(DABS(D(I))+DABS(D(I-1)))) CYCLE 20 CONTINUE E2(I) = 0.0D0 END DO ! :::::::::: DETERMINE THE NUMBER OF EIGENVALUES ! IN THE INTERVAL :::::::::: P = 1 Q = N X1 = UB ISTURM = 1 GO TO 320 60 CONTINUE M = S X1 = LB ISTURM = 2 GO TO 320 80 CONTINUE M = M - S IF (M > MM) GO TO 980 Q = 0 R = 0 ! :::::::::: ESTABLISH AND PROCESS NEXT SUBMATRIX, REFINING ! INTERVAL BY THE GERSCHGORIN BOUNDS :::::::::: 100 CONTINUE IF (R == M) GO TO 1001 TAG = TAG + 1 P = Q + 1 XU = D(P) X0 = D(P) U = 0.0D0 ! DO Q = P, N X1 = U U = 0.0D0 V = 0.0D0 IF (Q /= N) THEN U = DABS(E(Q+1)) V = E2(Q+1) ENDIF XU = DMIN1(D(Q)-(X1+U),XU) X0 = DMAX1(D(Q)+(X1+U),X0) IF (V /= 0.0D0) CYCLE EXIT END DO ! X1 = DMAX1(DABS(XU),DABS(X0))*MACHEP IF (EPS1 <= 0.0D0) EPS1 = -X1 IF (P == Q) THEN ! :::::::::: CHECK FOR ISOLATED ROOT WITHIN INTERVAL :::::::::: IF (T1>D(P) .OR. D(P)>=T2) GO TO 940 M1 = P M2 = P RV5(P) = D(P) GO TO 900 ENDIF X1 = X1*DFLOAT(Q - P + 1) LB = DMAX1(T1,XU - X1) UB = DMIN1(T2,X0 + X1) X1 = LB ISTURM = 3 GO TO 320 200 CONTINUE M1 = S + 1 X1 = UB ISTURM = 4 GO TO 320 220 CONTINUE M2 = S IF (M1 > M2) GO TO 940 ! :::::::::: FIND ROOTS BY BISECTION :::::::::: X0 = UB ISTURM = 5 ! RV5(M1:M2) = UB RV4(M1:M2) = LB ! :::::::::: LOOP FOR K-TH EIGENVALUE ! FOR K=M2 STEP -1 UNTIL M1 DO -- ! (-DO- NOT USED TO LEGALIZE COMPUTED-GO-TO) :::::::::: K = M2 250 CONTINUE XU = LB ! :::::::::: FOR I=K STEP -1 UNTIL M1 DO -- :::::::::: DO II = M1, K I = M1 + K - II IF (XU >= RV4(I)) CYCLE XU = RV4(I) EXIT END DO ! X0 = MIN(RV5(K),X0) ! :::::::::: NEXT BISECTION STEP :::::::::: 300 CONTINUE X1 = (XU + X0)*0.5D0 IF (X0 - XU <= 2.0D0*MACHEP*(DABS(XU) + DABS(X0)) + DABS(EPS1)) GO TO 420 ! :::::::::: IN-LINE PROCEDURE FOR STURM SEQUENCE :::::::::: 320 CONTINUE S = P - 1 U = 1.0D0 ! DO I = P, Q IF (U == 0.0D0) THEN V = DABS(E(I))/MACHEP ELSE V = E2(I)/U ENDIF U = D(I) - X1 - V IF (U >= 0.0D0) CYCLE S = S + 1 END DO ! GO TO (60,80,200,220,360) ISTURM ! :::::::::: REFINE INTERVALS :::::::::: 360 CONTINUE IF (S >= K) GO TO 400 XU = X1 IF (S >= M1) GO TO 380 RV4(M1) = X1 GO TO 300 380 CONTINUE RV4(S+1) = X1 RV5(S) = MIN(X1,RV5(S)) GO TO 300 400 CONTINUE X0 = X1 GO TO 300 ! :::::::::: K-TH EIGENVALUE FOUND :::::::::: 420 CONTINUE RV5(K) = X1 K = K - 1 IF (K >= M1) GO TO 250 ! :::::::::: ORDER EIGENVALUES TAGGED WITH THEIR ! SUBMATRIX ASSOCIATIONS :::::::::: 900 CONTINUE S = R R = R + M2 - M1 + 1 J = 1 K = M1 ! DO L = 1, R IF (J <= S) THEN IF (K > M2) EXIT IF (RV5(K) >= W(L)) GO TO 915 ! W(L+S-J+1:L+1:(-1)) = W(L+S-J:L:(-1)) IND(L+S-J+1:L+1:(-1)) = IND(L+S-J:L:(-1)) ENDIF ! W(L) = RV5(K) IND(L) = TAG K = K + 1 CYCLE 915 CONTINUE J = J + 1 END DO ! 940 CONTINUE IF (Q < N) GO TO 100 GO TO 1001 ! :::::::::: SET ERROR -- UNDERESTIMATE OF NUMBER OF ! EIGENVALUES IN INTERVAL :::::::::: 980 CONTINUE IERR = 3*N + 1 1001 CONTINUE LB = T1 UB = T2 RETURN ! :::::::::: LAST CARD OF BISECT :::::::::: END SUBROUTINE BISECT
[GOAL] p q r : ℕ+ ⊢ sumInv {p, q, r} = (↑↑p)⁻¹ + (↑↑q)⁻¹ + (↑↑r)⁻¹ [PROOFSTEP] simp only [sumInv, add_zero, insert_eq_cons, add_assoc, map_cons, sum_cons, map_singleton, sum_singleton] [GOAL] pqr : Multiset ℕ+ ⊢ Admissible pqr → 1 < sumInv pqr [PROOFSTEP] rw [Admissible] [GOAL] pqr : Multiset ℕ+ ⊢ (∃ q r, A' q r = pqr) ∨ (∃ r, D' r = pqr) ∨ E' 3 = pqr ∨ E' 4 = pqr ∨ E' 5 = pqr → 1 < sumInv pqr [PROOFSTEP] rintro (⟨p', q', H⟩ | ⟨n, H⟩ | H | H | H) [GOAL] case inl.intro.intro pqr : Multiset ℕ+ p' q' : ℕ+ H : A' p' q' = pqr ⊢ 1 < sumInv pqr [PROOFSTEP] rw [← H, A', sumInv_pqr, add_assoc] [GOAL] case inl.intro.intro pqr : Multiset ℕ+ p' q' : ℕ+ H : A' p' q' = pqr ⊢ 1 < (↑↑1)⁻¹ + ((↑↑p')⁻¹ + (↑↑q')⁻¹) [PROOFSTEP] simp only [lt_add_iff_pos_right, PNat.one_coe, inv_one, Nat.cast_one] [GOAL] case inl.intro.intro pqr : Multiset ℕ+ p' q' : ℕ+ H : A' p' q' = pqr ⊢ 0 < (↑↑p')⁻¹ + (↑↑q')⁻¹ [PROOFSTEP] apply add_pos [GOAL] case inl.intro.intro.ha pqr : Multiset ℕ+ p' q' : ℕ+ H : A' p' q' = pqr ⊢ 0 < (↑↑p')⁻¹ [PROOFSTEP] simp only [PNat.pos, Nat.cast_pos, inv_pos] [GOAL] case inl.intro.intro.hb pqr : Multiset ℕ+ p' q' : ℕ+ H : A' p' q' = pqr ⊢ 0 < (↑↑q')⁻¹ [PROOFSTEP] simp only [PNat.pos, Nat.cast_pos, inv_pos] [GOAL] case inr.inl.intro pqr : Multiset ℕ+ n : ℕ+ H : D' n = pqr ⊢ 1 < sumInv pqr [PROOFSTEP] rw [← H, D', sumInv_pqr] [GOAL] case inr.inl.intro pqr : Multiset ℕ+ n : ℕ+ H : D' n = pqr ⊢ 1 < (↑↑2)⁻¹ + (↑↑2)⁻¹ + (↑↑n)⁻¹ [PROOFSTEP] conv_rhs => simp only [OfNat.ofNat, PNat.mk_coe] [GOAL] pqr : Multiset ℕ+ n : ℕ+ H : D' n = pqr | (↑↑2)⁻¹ + (↑↑2)⁻¹ + (↑↑n)⁻¹ [PROOFSTEP] simp only [OfNat.ofNat, PNat.mk_coe] [GOAL] pqr : Multiset ℕ+ n : ℕ+ H : D' n = pqr | (↑↑2)⁻¹ + (↑↑2)⁻¹ + (↑↑n)⁻¹ [PROOFSTEP] simp only [OfNat.ofNat, PNat.mk_coe] [GOAL] pqr : Multiset ℕ+ n : ℕ+ H : D' n = pqr | (↑↑2)⁻¹ + (↑↑2)⁻¹ + (↑↑n)⁻¹ [PROOFSTEP] simp only [OfNat.ofNat, PNat.mk_coe] [GOAL] case inr.inl.intro pqr : Multiset ℕ+ n : ℕ+ H : D' n = pqr ⊢ 1 < (↑(1 + 1))⁻¹ + (↑(1 + 1))⁻¹ + (↑↑n)⁻¹ [PROOFSTEP] norm_num [GOAL] case inr.inr.inl pqr : Multiset ℕ+ H : E' 3 = pqr ⊢ 1 < sumInv pqr case inr.inr.inr.inl pqr : Multiset ℕ+ H : E' 4 = pqr ⊢ 1 < sumInv pqr case inr.inr.inr.inr pqr : Multiset ℕ+ H : E' 5 = pqr ⊢ 1 < sumInv pqr [PROOFSTEP] all_goals rw [← H, E', sumInv_pqr] conv_rhs => simp only [OfNat.ofNat, PNat.mk_coe] [GOAL] case inr.inr.inl pqr : Multiset ℕ+ H : E' 3 = pqr ⊢ 1 < sumInv pqr [PROOFSTEP] rw [← H, E', sumInv_pqr] [GOAL] case inr.inr.inl pqr : Multiset ℕ+ H : E' 3 = pqr ⊢ 1 < (↑↑2)⁻¹ + (↑↑3)⁻¹ + (↑↑3)⁻¹ [PROOFSTEP] conv_rhs => simp only [OfNat.ofNat, PNat.mk_coe] [GOAL] pqr : Multiset ℕ+ H : E' 3 = pqr | (↑↑2)⁻¹ + (↑↑3)⁻¹ + (↑↑3)⁻¹ [PROOFSTEP] simp only [OfNat.ofNat, PNat.mk_coe] [GOAL] pqr : Multiset ℕ+ H : E' 3 = pqr | (↑↑2)⁻¹ + (↑↑3)⁻¹ + (↑↑3)⁻¹ [PROOFSTEP] simp only [OfNat.ofNat, PNat.mk_coe] [GOAL] pqr : Multiset ℕ+ H : E' 3 = pqr | (↑↑2)⁻¹ + (↑↑3)⁻¹ + (↑↑3)⁻¹ [PROOFSTEP] simp only [OfNat.ofNat, PNat.mk_coe] [GOAL] case inr.inr.inr.inl pqr : Multiset ℕ+ H : E' 4 = pqr ⊢ 1 < sumInv pqr [PROOFSTEP] rw [← H, E', sumInv_pqr] [GOAL] case inr.inr.inr.inl pqr : Multiset ℕ+ H : E' 4 = pqr ⊢ 1 < (↑↑2)⁻¹ + (↑↑3)⁻¹ + (↑↑4)⁻¹ [PROOFSTEP] conv_rhs => simp only [OfNat.ofNat, PNat.mk_coe] [GOAL] pqr : Multiset ℕ+ H : E' 4 = pqr | (↑↑2)⁻¹ + (↑↑3)⁻¹ + (↑↑4)⁻¹ [PROOFSTEP] simp only [OfNat.ofNat, PNat.mk_coe] [GOAL] pqr : Multiset ℕ+ H : E' 4 = pqr | (↑↑2)⁻¹ + (↑↑3)⁻¹ + (↑↑4)⁻¹ [PROOFSTEP] simp only [OfNat.ofNat, PNat.mk_coe] [GOAL] pqr : Multiset ℕ+ H : E' 4 = pqr | (↑↑2)⁻¹ + (↑↑3)⁻¹ + (↑↑4)⁻¹ [PROOFSTEP] simp only [OfNat.ofNat, PNat.mk_coe] [GOAL] case inr.inr.inr.inr pqr : Multiset ℕ+ H : E' 5 = pqr ⊢ 1 < sumInv pqr [PROOFSTEP] rw [← H, E', sumInv_pqr] [GOAL] case inr.inr.inr.inr pqr : Multiset ℕ+ H : E' 5 = pqr ⊢ 1 < (↑↑2)⁻¹ + (↑↑3)⁻¹ + (↑↑5)⁻¹ [PROOFSTEP] conv_rhs => simp only [OfNat.ofNat, PNat.mk_coe] [GOAL] pqr : Multiset ℕ+ H : E' 5 = pqr | (↑↑2)⁻¹ + (↑↑3)⁻¹ + (↑↑5)⁻¹ [PROOFSTEP] simp only [OfNat.ofNat, PNat.mk_coe] [GOAL] pqr : Multiset ℕ+ H : E' 5 = pqr | (↑↑2)⁻¹ + (↑↑3)⁻¹ + (↑↑5)⁻¹ [PROOFSTEP] simp only [OfNat.ofNat, PNat.mk_coe] [GOAL] pqr : Multiset ℕ+ H : E' 5 = pqr | (↑↑2)⁻¹ + (↑↑3)⁻¹ + (↑↑5)⁻¹ [PROOFSTEP] simp only [OfNat.ofNat, PNat.mk_coe] [GOAL] p q r : ℕ+ hpq : p ≤ q hqr : q ≤ r H : 1 < sumInv {p, q, r} ⊢ p < 3 [PROOFSTEP] have h3 : (0 : ℚ) < 3 := by norm_num [GOAL] p q r : ℕ+ hpq : p ≤ q hqr : q ≤ r H : 1 < sumInv {p, q, r} ⊢ 0 < 3 [PROOFSTEP] norm_num [GOAL] p q r : ℕ+ hpq : p ≤ q hqr : q ≤ r H : 1 < sumInv {p, q, r} h3 : 0 < 3 ⊢ p < 3 [PROOFSTEP] contrapose! H [GOAL] p q r : ℕ+ hpq : p ≤ q hqr : q ≤ r h3 : 0 < 3 H : 3 ≤ p ⊢ sumInv {p, q, r} ≤ 1 [PROOFSTEP] rw [sumInv_pqr] [GOAL] p q r : ℕ+ hpq : p ≤ q hqr : q ≤ r h3 : 0 < 3 H : 3 ≤ p ⊢ (↑↑p)⁻¹ + (↑↑q)⁻¹ + (↑↑r)⁻¹ ≤ 1 [PROOFSTEP] have h3q := H.trans hpq [GOAL] p q r : ℕ+ hpq : p ≤ q hqr : q ≤ r h3 : 0 < 3 H : 3 ≤ p h3q : 3 ≤ q ⊢ (↑↑p)⁻¹ + (↑↑q)⁻¹ + (↑↑r)⁻¹ ≤ 1 [PROOFSTEP] have h3r := h3q.trans hqr [GOAL] p q r : ℕ+ hpq : p ≤ q hqr : q ≤ r h3 : 0 < 3 H : 3 ≤ p h3q : 3 ≤ q h3r : 3 ≤ r ⊢ (↑↑p)⁻¹ + (↑↑q)⁻¹ + (↑↑r)⁻¹ ≤ 1 [PROOFSTEP] have hp : (p : ℚ)⁻¹ ≤ 3⁻¹ := by rw [inv_le_inv _ h3] assumption_mod_cast norm_num [GOAL] p q r : ℕ+ hpq : p ≤ q hqr : q ≤ r h3 : 0 < 3 H : 3 ≤ p h3q : 3 ≤ q h3r : 3 ≤ r ⊢ (↑↑p)⁻¹ ≤ 3⁻¹ [PROOFSTEP] rw [inv_le_inv _ h3] [GOAL] p q r : ℕ+ hpq : p ≤ q hqr : q ≤ r h3 : 0 < 3 H : 3 ≤ p h3q : 3 ≤ q h3r : 3 ≤ r ⊢ 3 ≤ ↑↑p p q r : ℕ+ hpq : p ≤ q hqr : q ≤ r h3 : 0 < 3 H : 3 ≤ p h3q : 3 ≤ q h3r : 3 ≤ r ⊢ 0 < ↑↑p [PROOFSTEP] assumption_mod_cast [GOAL] p q r : ℕ+ hpq : p ≤ q hqr : q ≤ r h3 : 0 < 3 H : 3 ≤ p h3q : 3 ≤ q h3r : 3 ≤ r ⊢ 0 < ↑↑p [PROOFSTEP] norm_num [GOAL] p q r : ℕ+ hpq : p ≤ q hqr : q ≤ r h3 : 0 < 3 H : 3 ≤ p h3q : 3 ≤ q h3r : 3 ≤ r hp : (↑↑p)⁻¹ ≤ 3⁻¹ ⊢ (↑↑p)⁻¹ + (↑↑q)⁻¹ + (↑↑r)⁻¹ ≤ 1 [PROOFSTEP] have hq : (q : ℚ)⁻¹ ≤ 3⁻¹ := by rw [inv_le_inv _ h3] assumption_mod_cast norm_num [GOAL] p q r : ℕ+ hpq : p ≤ q hqr : q ≤ r h3 : 0 < 3 H : 3 ≤ p h3q : 3 ≤ q h3r : 3 ≤ r hp : (↑↑p)⁻¹ ≤ 3⁻¹ ⊢ (↑↑q)⁻¹ ≤ 3⁻¹ [PROOFSTEP] rw [inv_le_inv _ h3] [GOAL] p q r : ℕ+ hpq : p ≤ q hqr : q ≤ r h3 : 0 < 3 H : 3 ≤ p h3q : 3 ≤ q h3r : 3 ≤ r hp : (↑↑p)⁻¹ ≤ 3⁻¹ ⊢ 3 ≤ ↑↑q p q r : ℕ+ hpq : p ≤ q hqr : q ≤ r h3 : 0 < 3 H : 3 ≤ p h3q : 3 ≤ q h3r : 3 ≤ r hp : (↑↑p)⁻¹ ≤ 3⁻¹ ⊢ 0 < ↑↑q [PROOFSTEP] assumption_mod_cast [GOAL] p q r : ℕ+ hpq : p ≤ q hqr : q ≤ r h3 : 0 < 3 H : 3 ≤ p h3q : 3 ≤ q h3r : 3 ≤ r hp : (↑↑p)⁻¹ ≤ 3⁻¹ ⊢ 0 < ↑↑q [PROOFSTEP] norm_num [GOAL] p q r : ℕ+ hpq : p ≤ q hqr : q ≤ r h3 : 0 < 3 H : 3 ≤ p h3q : 3 ≤ q h3r : 3 ≤ r hp : (↑↑p)⁻¹ ≤ 3⁻¹ hq : (↑↑q)⁻¹ ≤ 3⁻¹ ⊢ (↑↑p)⁻¹ + (↑↑q)⁻¹ + (↑↑r)⁻¹ ≤ 1 [PROOFSTEP] have hr : (r : ℚ)⁻¹ ≤ 3⁻¹ := by rw [inv_le_inv _ h3] assumption_mod_cast norm_num [GOAL] p q r : ℕ+ hpq : p ≤ q hqr : q ≤ r h3 : 0 < 3 H : 3 ≤ p h3q : 3 ≤ q h3r : 3 ≤ r hp : (↑↑p)⁻¹ ≤ 3⁻¹ hq : (↑↑q)⁻¹ ≤ 3⁻¹ ⊢ (↑↑r)⁻¹ ≤ 3⁻¹ [PROOFSTEP] rw [inv_le_inv _ h3] [GOAL] p q r : ℕ+ hpq : p ≤ q hqr : q ≤ r h3 : 0 < 3 H : 3 ≤ p h3q : 3 ≤ q h3r : 3 ≤ r hp : (↑↑p)⁻¹ ≤ 3⁻¹ hq : (↑↑q)⁻¹ ≤ 3⁻¹ ⊢ 3 ≤ ↑↑r p q r : ℕ+ hpq : p ≤ q hqr : q ≤ r h3 : 0 < 3 H : 3 ≤ p h3q : 3 ≤ q h3r : 3 ≤ r hp : (↑↑p)⁻¹ ≤ 3⁻¹ hq : (↑↑q)⁻¹ ≤ 3⁻¹ ⊢ 0 < ↑↑r [PROOFSTEP] assumption_mod_cast [GOAL] p q r : ℕ+ hpq : p ≤ q hqr : q ≤ r h3 : 0 < 3 H : 3 ≤ p h3q : 3 ≤ q h3r : 3 ≤ r hp : (↑↑p)⁻¹ ≤ 3⁻¹ hq : (↑↑q)⁻¹ ≤ 3⁻¹ ⊢ 0 < ↑↑r [PROOFSTEP] norm_num [GOAL] p q r : ℕ+ hpq : p ≤ q hqr : q ≤ r h3 : 0 < 3 H : 3 ≤ p h3q : 3 ≤ q h3r : 3 ≤ r hp : (↑↑p)⁻¹ ≤ 3⁻¹ hq : (↑↑q)⁻¹ ≤ 3⁻¹ hr : (↑↑r)⁻¹ ≤ 3⁻¹ ⊢ (↑↑p)⁻¹ + (↑↑q)⁻¹ + (↑↑r)⁻¹ ≤ 1 [PROOFSTEP] calc (p : ℚ)⁻¹ + (q : ℚ)⁻¹ + (r : ℚ)⁻¹ ≤ 3⁻¹ + 3⁻¹ + 3⁻¹ := add_le_add (add_le_add hp hq) hr _ = 1 := by norm_num [GOAL] p q r : ℕ+ hpq : p ≤ q hqr : q ≤ r h3 : 0 < 3 H : 3 ≤ p h3q : 3 ≤ q h3r : 3 ≤ r hp : (↑↑p)⁻¹ ≤ 3⁻¹ hq : (↑↑q)⁻¹ ≤ 3⁻¹ hr : (↑↑r)⁻¹ ≤ 3⁻¹ ⊢ 3⁻¹ + 3⁻¹ + 3⁻¹ = 1 [PROOFSTEP] norm_num [GOAL] q r : ℕ+ hqr : q ≤ r H : 1 < sumInv {2, q, r} ⊢ q < 4 [PROOFSTEP] have h4 : (0 : ℚ) < 4 := by norm_num [GOAL] q r : ℕ+ hqr : q ≤ r H : 1 < sumInv {2, q, r} ⊢ 0 < 4 [PROOFSTEP] norm_num [GOAL] q r : ℕ+ hqr : q ≤ r H : 1 < sumInv {2, q, r} h4 : 0 < 4 ⊢ q < 4 [PROOFSTEP] contrapose! H [GOAL] q r : ℕ+ hqr : q ≤ r h4 : 0 < 4 H : 4 ≤ q ⊢ sumInv {2, q, r} ≤ 1 [PROOFSTEP] rw [sumInv_pqr] [GOAL] q r : ℕ+ hqr : q ≤ r h4 : 0 < 4 H : 4 ≤ q ⊢ (↑↑2)⁻¹ + (↑↑q)⁻¹ + (↑↑r)⁻¹ ≤ 1 [PROOFSTEP] have h4r := H.trans hqr [GOAL] q r : ℕ+ hqr : q ≤ r h4 : 0 < 4 H : 4 ≤ q h4r : 4 ≤ r ⊢ (↑↑2)⁻¹ + (↑↑q)⁻¹ + (↑↑r)⁻¹ ≤ 1 [PROOFSTEP] have hq : (q : ℚ)⁻¹ ≤ 4⁻¹ := by rw [inv_le_inv _ h4] assumption_mod_cast norm_num [GOAL] q r : ℕ+ hqr : q ≤ r h4 : 0 < 4 H : 4 ≤ q h4r : 4 ≤ r ⊢ (↑↑q)⁻¹ ≤ 4⁻¹ [PROOFSTEP] rw [inv_le_inv _ h4] [GOAL] q r : ℕ+ hqr : q ≤ r h4 : 0 < 4 H : 4 ≤ q h4r : 4 ≤ r ⊢ 4 ≤ ↑↑q q r : ℕ+ hqr : q ≤ r h4 : 0 < 4 H : 4 ≤ q h4r : 4 ≤ r ⊢ 0 < ↑↑q [PROOFSTEP] assumption_mod_cast [GOAL] q r : ℕ+ hqr : q ≤ r h4 : 0 < 4 H : 4 ≤ q h4r : 4 ≤ r ⊢ 0 < ↑↑q [PROOFSTEP] norm_num [GOAL] q r : ℕ+ hqr : q ≤ r h4 : 0 < 4 H : 4 ≤ q h4r : 4 ≤ r hq : (↑↑q)⁻¹ ≤ 4⁻¹ ⊢ (↑↑2)⁻¹ + (↑↑q)⁻¹ + (↑↑r)⁻¹ ≤ 1 [PROOFSTEP] have hr : (r : ℚ)⁻¹ ≤ 4⁻¹ := by rw [inv_le_inv _ h4] assumption_mod_cast norm_num [GOAL] q r : ℕ+ hqr : q ≤ r h4 : 0 < 4 H : 4 ≤ q h4r : 4 ≤ r hq : (↑↑q)⁻¹ ≤ 4⁻¹ ⊢ (↑↑r)⁻¹ ≤ 4⁻¹ [PROOFSTEP] rw [inv_le_inv _ h4] [GOAL] q r : ℕ+ hqr : q ≤ r h4 : 0 < 4 H : 4 ≤ q h4r : 4 ≤ r hq : (↑↑q)⁻¹ ≤ 4⁻¹ ⊢ 4 ≤ ↑↑r q r : ℕ+ hqr : q ≤ r h4 : 0 < 4 H : 4 ≤ q h4r : 4 ≤ r hq : (↑↑q)⁻¹ ≤ 4⁻¹ ⊢ 0 < ↑↑r [PROOFSTEP] assumption_mod_cast [GOAL] q r : ℕ+ hqr : q ≤ r h4 : 0 < 4 H : 4 ≤ q h4r : 4 ≤ r hq : (↑↑q)⁻¹ ≤ 4⁻¹ ⊢ 0 < ↑↑r [PROOFSTEP] norm_num [GOAL] q r : ℕ+ hqr : q ≤ r h4 : 0 < 4 H : 4 ≤ q h4r : 4 ≤ r hq : (↑↑q)⁻¹ ≤ 4⁻¹ hr : (↑↑r)⁻¹ ≤ 4⁻¹ ⊢ (↑↑2)⁻¹ + (↑↑q)⁻¹ + (↑↑r)⁻¹ ≤ 1 [PROOFSTEP] calc (2⁻¹ + (q : ℚ)⁻¹ + (r : ℚ)⁻¹) ≤ 2⁻¹ + 4⁻¹ + 4⁻¹ := add_le_add (add_le_add le_rfl hq) hr _ = 1 := by norm_num [GOAL] q r : ℕ+ hqr : q ≤ r h4 : 0 < 4 H : 4 ≤ q h4r : 4 ≤ r hq : (↑↑q)⁻¹ ≤ 4⁻¹ hr : (↑↑r)⁻¹ ≤ 4⁻¹ ⊢ 2⁻¹ + 4⁻¹ + 4⁻¹ = 1 [PROOFSTEP] norm_num [GOAL] r : ℕ+ H : 1 < sumInv {2, 3, r} ⊢ r < 6 [PROOFSTEP] have h6 : (0 : ℚ) < 6 := by norm_num [GOAL] r : ℕ+ H : 1 < sumInv {2, 3, r} ⊢ 0 < 6 [PROOFSTEP] norm_num [GOAL] r : ℕ+ H : 1 < sumInv {2, 3, r} h6 : 0 < 6 ⊢ r < 6 [PROOFSTEP] contrapose! H [GOAL] r : ℕ+ h6 : 0 < 6 H : 6 ≤ r ⊢ sumInv {2, 3, r} ≤ 1 [PROOFSTEP] rw [sumInv_pqr] [GOAL] r : ℕ+ h6 : 0 < 6 H : 6 ≤ r ⊢ (↑↑2)⁻¹ + (↑↑3)⁻¹ + (↑↑r)⁻¹ ≤ 1 [PROOFSTEP] have hr : (r : ℚ)⁻¹ ≤ 6⁻¹ := by rw [inv_le_inv _ h6] assumption_mod_cast norm_num [GOAL] r : ℕ+ h6 : 0 < 6 H : 6 ≤ r ⊢ (↑↑r)⁻¹ ≤ 6⁻¹ [PROOFSTEP] rw [inv_le_inv _ h6] [GOAL] r : ℕ+ h6 : 0 < 6 H : 6 ≤ r ⊢ 6 ≤ ↑↑r r : ℕ+ h6 : 0 < 6 H : 6 ≤ r ⊢ 0 < ↑↑r [PROOFSTEP] assumption_mod_cast [GOAL] r : ℕ+ h6 : 0 < 6 H : 6 ≤ r ⊢ 0 < ↑↑r [PROOFSTEP] norm_num [GOAL] r : ℕ+ h6 : 0 < 6 H : 6 ≤ r hr : (↑↑r)⁻¹ ≤ 6⁻¹ ⊢ (↑↑2)⁻¹ + (↑↑3)⁻¹ + (↑↑r)⁻¹ ≤ 1 [PROOFSTEP] calc (2⁻¹ + 3⁻¹ + (r : ℚ)⁻¹ : ℚ) ≤ 2⁻¹ + 3⁻¹ + 6⁻¹ := add_le_add (add_le_add le_rfl le_rfl) hr _ = 1 := by norm_num [GOAL] r : ℕ+ h6 : 0 < 6 H : 6 ≤ r hr : (↑↑r)⁻¹ ≤ 6⁻¹ ⊢ 2⁻¹ + 3⁻¹ + 6⁻¹ = 1 [PROOFSTEP] norm_num [GOAL] p q r : ℕ+ hpq : p ≤ q hqr : q ≤ r H : 1 < sumInv {p, q, r} ⊢ Admissible {p, q, r} [PROOFSTEP] have hp3 : p < 3 := lt_three hpq hqr H [GOAL] p q r : ℕ+ hpq : p ≤ q hqr : q ≤ r H : 1 < sumInv {p, q, r} hp3 : p < 3 ⊢ Admissible {p, q, r} [PROOFSTEP] replace hp3 := Finset.mem_Iio.mpr hp3 [GOAL] p q r : ℕ+ hpq : p ≤ q hqr : q ≤ r H : 1 < sumInv {p, q, r} hp3 : p ∈ Finset.Iio 3 ⊢ Admissible {p, q, r} [PROOFSTEP] conv at hp3 => change p ∈ ({1, 2} : Multiset ℕ+) [GOAL] p q r : ℕ+ hpq : p ≤ q hqr : q ≤ r H : 1 < sumInv {p, q, r} hp3 : p ∈ Finset.Iio 3 | p ∈ Finset.Iio 3 [PROOFSTEP] change p ∈ ({1, 2} : Multiset ℕ+) [GOAL] p q r : ℕ+ hpq : p ≤ q hqr : q ≤ r H : 1 < sumInv {p, q, r} hp3 : p ∈ Finset.Iio 3 | p ∈ Finset.Iio 3 [PROOFSTEP] change p ∈ ({1, 2} : Multiset ℕ+) [GOAL] p q r : ℕ+ hpq : p ≤ q hqr : q ≤ r H : 1 < sumInv {p, q, r} hp3 : p ∈ Finset.Iio 3 | p ∈ Finset.Iio 3 [PROOFSTEP] change p ∈ ({1, 2} : Multiset ℕ+) [GOAL] p q r : ℕ+ hpq : p ≤ q hqr : q ≤ r H : 1 < sumInv {p, q, r} hp3 : p ∈ {1, 2} ⊢ Admissible {p, q, r} [PROOFSTEP] fin_cases hp3 [GOAL] case head q r : ℕ+ hqr : q ≤ r hpq : 1 ≤ q H : 1 < sumInv {1, q, r} ⊢ Admissible {1, q, r} [PROOFSTEP] exact admissible_A' q r [GOAL] case tail.head q r : ℕ+ hqr : q ≤ r hpq : 2 ≤ q H : 1 < sumInv {2, q, r} ⊢ Admissible {2, q, r} [PROOFSTEP] have hq4 : q < 4 := lt_four hqr H [GOAL] case tail.head q r : ℕ+ hqr : q ≤ r hpq : 2 ≤ q H : 1 < sumInv {2, q, r} hq4 : q < 4 ⊢ Admissible {2, q, r} [PROOFSTEP] replace hq4 := Finset.mem_Ico.mpr ⟨hpq, hq4⟩ [GOAL] case tail.head q r : ℕ+ hqr : q ≤ r hpq : 2 ≤ q H : 1 < sumInv {2, q, r} hq4 : q ∈ Finset.Ico 2 4 ⊢ Admissible {2, q, r} [PROOFSTEP] clear hpq [GOAL] case tail.head q r : ℕ+ hqr : q ≤ r H : 1 < sumInv {2, q, r} hq4 : q ∈ Finset.Ico 2 4 ⊢ Admissible {2, q, r} [PROOFSTEP] conv at hq4 => change q ∈ ({2, 3} : Multiset ℕ+) [GOAL] q r : ℕ+ hqr : q ≤ r H : 1 < sumInv {2, q, r} hq4 : q ∈ Finset.Ico 2 4 | q ∈ Finset.Ico 2 4 [PROOFSTEP] change q ∈ ({2, 3} : Multiset ℕ+) [GOAL] q r : ℕ+ hqr : q ≤ r H : 1 < sumInv {2, q, r} hq4 : q ∈ Finset.Ico 2 4 | q ∈ Finset.Ico 2 4 [PROOFSTEP] change q ∈ ({2, 3} : Multiset ℕ+) [GOAL] q r : ℕ+ hqr : q ≤ r H : 1 < sumInv {2, q, r} hq4 : q ∈ Finset.Ico 2 4 | q ∈ Finset.Ico 2 4 [PROOFSTEP] change q ∈ ({2, 3} : Multiset ℕ+) [GOAL] case tail.head q r : ℕ+ hqr : q ≤ r H : 1 < sumInv {2, q, r} hq4 : q ∈ {2, 3} ⊢ Admissible {2, q, r} [PROOFSTEP] fin_cases hq4 [GOAL] case tail.head.head r : ℕ+ hqr : 2 ≤ r H : 1 < sumInv {2, 2, r} ⊢ Admissible {2, 2, r} [PROOFSTEP] exact admissible_D' r [GOAL] case tail.head.tail.head r : ℕ+ hqr : 3 ≤ r H : 1 < sumInv {2, 3, r} ⊢ Admissible {2, 3, r} [PROOFSTEP] have hr6 : r < 6 := lt_six H [GOAL] case tail.head.tail.head r : ℕ+ hqr : 3 ≤ r H : 1 < sumInv {2, 3, r} hr6 : r < 6 ⊢ Admissible {2, 3, r} [PROOFSTEP] replace hr6 := Finset.mem_Ico.mpr ⟨hqr, hr6⟩ [GOAL] case tail.head.tail.head r : ℕ+ hqr : 3 ≤ r H : 1 < sumInv {2, 3, r} hr6 : r ∈ Finset.Ico 3 6 ⊢ Admissible {2, 3, r} [PROOFSTEP] clear hqr [GOAL] case tail.head.tail.head r : ℕ+ H : 1 < sumInv {2, 3, r} hr6 : r ∈ Finset.Ico 3 6 ⊢ Admissible {2, 3, r} [PROOFSTEP] conv at hr6 => change r ∈ ({3, 4, 5} : Multiset ℕ+) [GOAL] r : ℕ+ H : 1 < sumInv {2, 3, r} hr6 : r ∈ Finset.Ico 3 6 | r ∈ Finset.Ico 3 6 [PROOFSTEP] change r ∈ ({3, 4, 5} : Multiset ℕ+) [GOAL] r : ℕ+ H : 1 < sumInv {2, 3, r} hr6 : r ∈ Finset.Ico 3 6 | r ∈ Finset.Ico 3 6 [PROOFSTEP] change r ∈ ({3, 4, 5} : Multiset ℕ+) [GOAL] r : ℕ+ H : 1 < sumInv {2, 3, r} hr6 : r ∈ Finset.Ico 3 6 | r ∈ Finset.Ico 3 6 [PROOFSTEP] change r ∈ ({3, 4, 5} : Multiset ℕ+) [GOAL] case tail.head.tail.head r : ℕ+ H : 1 < sumInv {2, 3, r} hr6 : r ∈ {3, 4, 5} ⊢ Admissible {2, 3, r} [PROOFSTEP] fin_cases hr6 [GOAL] case tail.head.tail.head.head H : 1 < sumInv {2, 3, 3} ⊢ Admissible {2, 3, 3} [PROOFSTEP] exact admissible_E6 [GOAL] case tail.head.tail.head.tail.head H : 1 < sumInv {2, 3, 4} ⊢ Admissible {2, 3, 4} [PROOFSTEP] exact admissible_E7 [GOAL] case tail.head.tail.head.tail.tail.head H : 1 < sumInv {2, 3, 5} ⊢ Admissible {2, 3, 5} [PROOFSTEP] exact admissible_E8 [GOAL] p q r : ℕ+ hs : List.Sorted (fun x x_1 => x ≤ x_1) [p, q, r] x✝ : List.length [p, q, r] = 3 H : 1 < sumInv ↑[p, q, r] ⊢ Admissible ↑[p, q, r] [PROOFSTEP] obtain ⟨⟨hpq, -⟩, hqr⟩ : (p ≤ q ∧ p ≤ r) ∧ q ≤ r [GOAL] p q r : ℕ+ hs : List.Sorted (fun x x_1 => x ≤ x_1) [p, q, r] x✝ : List.length [p, q, r] = 3 H : 1 < sumInv ↑[p, q, r] ⊢ (p ≤ q ∧ p ≤ r) ∧ q ≤ r case intro.intro p q r : ℕ+ hs : List.Sorted (fun x x_1 => x ≤ x_1) [p, q, r] x✝ : List.length [p, q, r] = 3 H : 1 < sumInv ↑[p, q, r] hqr : q ≤ r hpq : p ≤ q ⊢ Admissible ↑[p, q, r] [PROOFSTEP] simpa using hs [GOAL] case intro.intro p q r : ℕ+ hs : List.Sorted (fun x x_1 => x ≤ x_1) [p, q, r] x✝ : List.length [p, q, r] = 3 H : 1 < sumInv ↑[p, q, r] hqr : q ≤ r hpq : p ≤ q ⊢ Admissible ↑[p, q, r] [PROOFSTEP] exact admissible_of_one_lt_sumInv_aux' hpq hqr H [GOAL] p q r : ℕ+ H : 1 < sumInv {p, q, r} ⊢ Admissible {p, q, r} [PROOFSTEP] simp only [Admissible] [GOAL] p q r : ℕ+ H : 1 < sumInv {p, q, r} ⊢ (∃ q_1 r_1, A' q_1 r_1 = {p, q, r}) ∨ (∃ r_1, D' r_1 = {p, q, r}) ∨ E' 3 = {p, q, r} ∨ E' 4 = {p, q, r} ∨ E' 5 = {p, q, r} [PROOFSTEP] let S := sort ((· ≤ ·) : ℕ+ → ℕ+ → Prop) { p, q, r } [GOAL] p q r : ℕ+ H : 1 < sumInv {p, q, r} S : List ℕ+ := sort (fun x x_1 => x ≤ x_1) {p, q, r} ⊢ (∃ q_1 r_1, A' q_1 r_1 = {p, q, r}) ∨ (∃ r_1, D' r_1 = {p, q, r}) ∨ E' 3 = {p, q, r} ∨ E' 4 = {p, q, r} ∨ E' 5 = {p, q, r} [PROOFSTEP] have hS : S.Sorted (· ≤ ·) := sort_sorted _ _ [GOAL] p q r : ℕ+ H : 1 < sumInv {p, q, r} S : List ℕ+ := sort (fun x x_1 => x ≤ x_1) {p, q, r} hS : List.Sorted (fun x x_1 => x ≤ x_1) S ⊢ (∃ q_1 r_1, A' q_1 r_1 = {p, q, r}) ∨ (∃ r_1, D' r_1 = {p, q, r}) ∨ E' 3 = {p, q, r} ∨ E' 4 = {p, q, r} ∨ E' 5 = {p, q, r} [PROOFSTEP] have hpqr : ({ p, q, r } : Multiset ℕ+) = S := (sort_eq LE.le { p, q, r }).symm [GOAL] p q r : ℕ+ H : 1 < sumInv {p, q, r} S : List ℕ+ := sort (fun x x_1 => x ≤ x_1) {p, q, r} hS : List.Sorted (fun x x_1 => x ≤ x_1) S hpqr : {p, q, r} = ↑S ⊢ (∃ q_1 r_1, A' q_1 r_1 = {p, q, r}) ∨ (∃ r_1, D' r_1 = {p, q, r}) ∨ E' 3 = {p, q, r} ∨ E' 4 = {p, q, r} ∨ E' 5 = {p, q, r} [PROOFSTEP] rw [hpqr] [GOAL] p q r : ℕ+ H : 1 < sumInv {p, q, r} S : List ℕ+ := sort (fun x x_1 => x ≤ x_1) {p, q, r} hS : List.Sorted (fun x x_1 => x ≤ x_1) S hpqr : {p, q, r} = ↑S ⊢ (∃ q r, A' q r = ↑S) ∨ (∃ r, D' r = ↑S) ∨ E' 3 = ↑S ∨ E' 4 = ↑S ∨ E' 5 = ↑S [PROOFSTEP] rw [hpqr] at H [GOAL] p q r : ℕ+ S : List ℕ+ := sort (fun x x_1 => x ≤ x_1) {p, q, r} H : 1 < sumInv ↑S hS : List.Sorted (fun x x_1 => x ≤ x_1) S hpqr : {p, q, r} = ↑S ⊢ (∃ q r, A' q r = ↑S) ∨ (∃ r, D' r = ↑S) ∨ E' 3 = ↑S ∨ E' 4 = ↑S ∨ E' 5 = ↑S [PROOFSTEP] apply admissible_of_one_lt_sumInv_aux hS _ H [GOAL] p q r : ℕ+ S : List ℕ+ := sort (fun x x_1 => x ≤ x_1) {p, q, r} H : 1 < sumInv ↑S hS : List.Sorted (fun x x_1 => x ≤ x_1) S hpqr : {p, q, r} = ↑S ⊢ List.length S = 3 [PROOFSTEP] simp only [ge_iff_le, insert_eq_cons, length_sort, card_cons, card_singleton]
function result = saveImageFile(arg1, arg2, arg3); % saveImageFile(IMGDIR, fname, res); % saveImageFile(IMGFULLFILEPATH, res); % res=200 for spectrograms global paths PARAMS; % we need to knwo the value of PARAMS.mode debug.printfunctionstack('>'); result = 0; switch nargin case 2, [IMGDIR, fname] = fileparts(arg1); outpath = arg1; res = arg2; case 3, [IMGDIR, fname] = deal(arg1, arg2); outpath = fullfile(arg1, sprintf('%s.png',arg2)); res = arg3; otherwise, debug.print_debug(0, 'could not save image file - wrong number of arguments') return; end if ~exist(IMGDIR,'dir') mkdir(IMGDIR); end try % Save the image file print(gcf, '-dpng', sprintf('-r%d',res), outpath ); % Lock the output directory if in archive mode - it means we do not want to delete these files ever if strcmp('PARAMS.mode','archive') system(sprintf('touch %s/lock',IMGDIR)); end % Did our image file actually get saved? if exist(outpath, 'file') debug.print_debug(1, sprintf('%s: Saved image file %s',datestr(utnow),outpath) ); result = 1; else debug.print_debug(1, sprintf('%s: Image file %s was not created',datestr(utnow),outpath)); end catch debug.print_debug(0, sprintf('%s: Could not save the image file %s',datestr(utnow),outpath)); end %print_debug(sprintf('< %s',mfilename),2); debug.printfunctionstack('<');
using MeshArrays, MITgcmTools, OceanStateEstimation using CSV, DataFrames, Statistics, Plots #using FortranFiles, import Plots: heatmap """ heatmap(x::MeshArray; args...) Apply heatmap to each subdomain in a MeshArray """ function heatmap(x::MeshArray; args...) n=x.grid.nFaces p=() for i=1:n; p=(p...,heatmap(x[i]; args...)); end plot(p...) end #Convert Velocity (m/s) to transport (m^3/s) function convert_velocities(U::MeshArray,V::MeshArray,G::NamedTuple) for i in eachindex(U) tmp1=U[i]; tmp1[(!isfinite).(tmp1)] .= 0.0 tmp1=V[i]; tmp1[(!isfinite).(tmp1)] .= 0.0 U[i]=G.DRF[i[2]]*U[i].*G.DYG[i[1]] V[i]=G.DRF[i[2]]*V[i].*G.DXG[i[1]] end return U,V end ## """ trsp_read(myspec::String,mypath::String) Function that reads files that were generated by `trsp_prep` """ function trsp_read(myspec::String,mypath::String) γ=GridSpec(myspec,mypath) TrspX=γ.read(mypath*"TrspX.bin",MeshArray(γ,Float32)) TrspY=γ.read(mypath*"TrspY.bin",MeshArray(γ,Float32)) TauX=γ.read(mypath*"TauX.bin",MeshArray(γ,Float32)) TauY=γ.read(mypath*"TauY.bin",MeshArray(γ,Float32)) SSH=γ.read(mypath*"SSH.bin",MeshArray(γ,Float32)) return TrspX, TrspY, TauX, TauY, SSH end """ trsp_prep(γ,Γ,dirOut) Function that generates small binary files (2D) from large netcdf ones (4D). ``` using FortranFiles, MeshArrays !isdir("nctiles_climatology") ? error("missing files") : nothing include(joinpath(dirname(pathof(MeshArrays)),"gcmfaces_nctiles.jl")) (TrspX, TrspY, TauX, TauY, SSH)=trsp_prep(γ,Γ,MeshArrays.GRID_LLC90); ``` """ function trsp_prep(γ::gcmgrid,Γ::NamedTuple,dirOut::String="") #wind stress fileName="nctiles_climatology/oceTAUX/oceTAUX" oceTAUX=read_nctiles(fileName,"oceTAUX",γ) fileName="nctiles_climatology/oceTAUY/oceTAUY" oceTAUY=read_nctiles(fileName,"oceTAUY",γ) oceTAUX=mask(oceTAUX,0.0) oceTAUY=mask(oceTAUY,0.0) #sea surface height anomaly fileName="nctiles_climatology/ETAN/ETAN" ETAN=read_nctiles(fileName,"ETAN",γ) fileName="nctiles_climatology/sIceLoad/sIceLoad" sIceLoad=read_nctiles(fileName,"sIceLoad",γ) rhoconst=1029.0 myssh=(ETAN+sIceLoad./rhoconst) myssh=mask(myssh,0.0) #seawater transports fileName="nctiles_climatology/UVELMASS/UVELMASS" U=read_nctiles(fileName,"UVELMASS",γ) fileName="nctiles_climatology/VVELMASS/VVELMASS" V=read_nctiles(fileName,"VVELMASS",γ) U=mask(U,0.0) V=mask(V,0.0) #time averaging and vertical integration TrspX=similar(Γ.DXC) TrspY=similar(Γ.DYC) TauX=similar(Γ.DXC) TauY=similar(Γ.DYC) SSH=similar(Γ.XC) for i=1:γ.nFaces tmpX=mean(U.f[i],dims=4) tmpY=mean(V.f[i],dims=4) for k=1:length(Γ.RC) tmpX[:,:,k]=tmpX[:,:,k].*Γ.DYG.f[i] tmpX[:,:,k]=tmpX[:,:,k].*Γ.DRF[k] tmpY[:,:,k]=tmpY[:,:,k].*Γ.DXG.f[i] tmpY[:,:,k]=tmpY[:,:,k].*Γ.DRF[k] end TrspX.f[i]=dropdims(sum(tmpX,dims=3),dims=(3,4)) TrspY.f[i]=dropdims(sum(tmpY,dims=3),dims=(3,4)) TauX.f[i]=dropdims(mean(oceTAUX.f[i],dims=3),dims=3) TauY.f[i]=dropdims(mean(oceTAUY.f[i],dims=3),dims=3) SSH.f[i]=dropdims(mean(myssh.f[i],dims=3),dims=3) end if !isempty(dirOut) write_bin(TrspX,dirOut*"TrspX.bin") write_bin(TrspY,dirOut*"TrspY.bin") write_bin(TauX,dirOut*"TauX.bin") write_bin(TauY,dirOut*"TauY.bin") write_bin(SSH,dirOut*"SSH.bin") end return TrspX, TrspY, TauX, TauY, SSH end """ trsp_prep(γ,Γ,dirOut) Function that writes a `MeshArray` to a binary file using `FortranFiles`. """ function write_bin(inFLD::MeshArray,filOut::String) recl=prod(inFLD.grid.ioSize)*4 tmp=Float32.(convert2gcmfaces(inFLD)) println("saving to file: "*filOut) f = FortranFile(filOut,"w",access="direct",recl=recl,convert="big-endian") write(f,rec=1,tmp) close(f) end ## """ rotate_uv(uv,γ) 1. Convert to `Sv` units and mask out land 2. Interpolate `x/y` transport to grid cell center 3. Convert to `Eastward/Northward` transport 4. Display Subdomain Arrays (optional) """ function rotate_uv(uv::Dict,G::NamedTuple) u=1e-6 .*uv["U"]; v=1e-6 .*uv["V"]; u[findall(G.hFacW[:,1].==0)].=NaN v[findall(G.hFacS[:,1].==0)].=NaN; nanmean(x) = mean(filter(!isnan,x)) nanmean(x,y) = mapslices(nanmean,x,dims=y) (u,v)=exch_UV(u,v); uC=similar(u); vC=similar(v) for iF=1:u.grid.nFaces tmp1=u[iF][1:end-1,:]; tmp2=u[iF][2:end,:] uC[iF]=reshape(nanmean([tmp1[:] tmp2[:]],2),size(tmp1)) tmp1=v[iF][:,1:end-1]; tmp2=v[iF][:,2:end] vC[iF]=reshape(nanmean([tmp1[:] tmp2[:]],2),size(tmp1)) end cs=G.AngleCS sn=G.AngleSN u=uC.*cs-vC.*sn v=uC.*sn+vC.*cs; return u,v,uC,vC end """ interp_uv(u,v) """ function interp_uv(u,v) mypath=MeshArrays.GRID_LLC90 SPM,lon,lat=read_SPM(mypath) #interpolation matrix (sparse) uI=MatrixInterp(write(u),SPM,size(lon)) #interpolation itself vI=MatrixInterp(write(v),SPM,size(lon)); #interpolation itself return transpose(uI),transpose(vI),vec(lon[:,1]),vec(lat[1,:]) end
%% Copyright (C) 2009-2011, Gostai S.A.S. %% %% This software is provided "as is" without warranty of any kind, %% either expressed or implied, including but not limited to the %% implied warranties of fitness for a particular purpose. %% %% See the LICENSE file for more information. \section{Code} Functions written in \us. \subsection{Prototypes} \begin{refObjects} \item[Comparable] \item[Executable] \end{refObjects} \subsection{Construction} The keywords \lstinline|function| and \lstinline|closure| build Code instances. \begin{urbiassert} function(){}.protos[0] === 'package'.lang.getSlotValue("Code"); closure (){}.protos[0] === 'package'.lang.getSlotValue("Code"); \end{urbiassert} \subsection{Slots} \begin{urbiscriptapi} \item['=='](<that>)% Whether \this and \var{that} are the same source code (actually checks that both have the same \refSlot{asString}), and same closed values. Closures and functions are different, even if the body is the same. \begin{urbiassert} function () { 1 } == function () { 1 }; function () { 1 } != closure () { 1 }; closure () { 1 } != function () { 1 }; closure () { 1 } == closure () { 1 }; \end{urbiassert} No form of equivalence is applied on the body, it must be the same. \begin{urbiassert} function () { 1 + 1 } == function () { 1 + 1 }; function () { 1 + 2 } != function () { 2 + 1 }; \end{urbiassert} Arguments do matter, even if in practice the functions are the same. \begin{urbiassert} function (var ignored) {} != function () {}; function (var x) { x } != function (y) { y }; \end{urbiassert} A lazy function cannot be equal to a strict one. \begin{urbiassert} function () { 1 } != function { 1 }; \end{urbiassert} If the functions capture different variables, they are different. \begin{urbiscript} { var x; function Object.capture_x() { x }; function Object.capture_x_again () { x }; { var x; function Object.capture_another_x() { x }; } }|; assert { getSlotValue("capture_x") == getSlotValue("capture_x_again"); getSlotValue("capture_x") != getSlotValue("capture_another_x"); }; \end{urbiscript} If the functions capture different targets, they are different. \begin{urbiscript} class Foo { function makeFunction() { function () {} }; function makeClosure() { closure () {} }; }|; class Bar { function makeFunction() { function () {} }; function makeClosure() { closure () {} }; }|; assert { Foo.makeFunction() == Bar.makeFunction(); Foo.makeClosure() != Bar.makeClosure(); }; \end{urbiscript} \item[apply](<args>)% Invoke the routine, with all the arguments. The target, \this, will be set to \lstinline|\var{args}[0]| and the remaining arguments with be given as arguments. \begin{urbiassert} function (x, y) { x+y }.apply([nil, 10, 20]) == 30; function () { this }.apply([123]) == 123; // There is Object.apply. 1.apply([this]) == 1; \end{urbiassert} \begin{urbiscript} function () {}.apply([]); [00000001:error] !!! apply: argument list must begin with `this' function () {}.apply([1, 2]); [00000002:error] !!! apply: expected 0 argument, given 1 \end{urbiscript} \item[asString] Conversion to \refObject{String}. \begin{urbiassert} closure () { 1 }.asString() == "closure () { 1 }"; function () { 1 }.asString() == "function () { 1 }"; \end{urbiassert} \item[bodyString] Conversion to \refObject{String} of the routine body. \begin{urbiassert} closure () { 1 }.bodyString() == "1"; function () { 1 }.bodyString() == "1"; \end{urbiassert} \item[spawn](<clear>)% Run \this, with fresh tags if \var{clear} is true, otherwise under the control of the current tags. Return the spawn \refObject{Job}. This is an internal function, instead, use \lstinline|detach| and \lstinline|disown|. \begin{urbiscript} var jobs = []|; var res = []|; for (var i : [0, 1, 2]) { jobs << closure () { res << i; res << i }.spawn(true) | if (i == 2) break }| jobs; [00009120] [Job<shell_7>, Job<shell_8>, Job<shell_9>] // Wait for the jobs to be done. jobs.each (function (var j) { j.waitForTermination }); assert (res == [0, 1, 0, 2, 1, 2]); \end{urbiscript} \begin{urbiscript} jobs = []|; res = []|; for (var i : [0, 1, 2]) { jobs << closure () { res << i; res << i }.spawn(false) | if (i == 2) break }| jobs; [00009120] [Job<shell_10>, Job<shell_11>, Job<shell_12>] // Give some time to get the output of the detached expressions. sleep(100ms); assert (res == [0, 1, 0]); \end{urbiscript} \end{urbiscriptapi} %%% Local Variables: %%% coding: utf-8 %%% mode: latex %%% TeX-master: "../urbi-sdk" %%% ispell-dictionary: "american" %%% ispell-personal-dictionary: "../urbi.dict" %%% fill-column: 76 %%% End:
#!/usr/bin/env julia using Plots pyplot() julia1 = readdlm("julia_times-1.dat") julia4 = readdlm("julia_times-4.dat") python = readdlm("python_times.dat") plot(xaxis = (:log,), yaxis = (:log,), xlabel = "Datapoints", ylabel = "Time (seconds)", size=(900, 600)) plot!(julia1[:,1], julia1[:,2], linewidth = 2, marker = (:auto,), color = :blue, lab = "LombScargle.jl - single thread") plot!(julia4[:,1], julia4[:,2], linewidth = 2, marker = (:auto,), color = :orange, lab = "LombScargle.jl - 4 threads") plot!(python[:,1], python[:,2], linewidth = 2, marker = (:auto,), color = :green, lab = "Astropy") savefig("benchmarks.svg") savefig("benchmarks.png")
lemma is_nth_power_nat_code [code]: "is_nth_power_nat n m = (if n = 0 then m = 1 else if m = 0 then n > 0 else if n = 1 then True else (\<exists>k\<in>{1..m}. k ^ n = m))"
import plotly.graph_objs as go import pandas as pd import numpy as np import plotly import warnings warnings.filterwarnings("ignore", category=DeprecationWarning) class PlotBuilder3D: def __init__(self): pass def set_title(self, title): self.title = title def set_width(self, width): self.width = width def set_height(self, height): self.height = height def set_yscale(self, yscale): self.yscale = yscale # ---------------------------- def set_xaxis(self, xaxis): self.xaxis = xaxis def set_yaxis(self, yaxis): self.yaxis = yaxis def set_zaxis(self, zaxis): self.zaxis = zaxis # ---------------------------- def prepare(self, z_csv, x_csv, y_csv, t_coeff=1, online=True, path=".", filename="wt2", to_file=""): print("Making plot...") # Z---------------------------------------------- z_data = pd.read_csv(z_csv, header=None) # Z---------------------------------------------- # X---------------------------------------------- x = pd.read_csv(x_csv, keep_default_na=False) x_header = list(x)[0] # x["x"] = list(x["x"]) x_ticktext = list(x['x']) x_tickvals = list(x['vals']) # x_tickvals = np.linspace( # list(x["x"])[0], list(x["x"])[-1], 10) # x_ticktext = np.linspace( # list(x["vals"])[0], list(x["vals"])[-1], 10) # x_ticktext = np.round(x_ticktext, 2) # print(list(x["x"])[-1]) for i in range(len(x_ticktext)): x_ticktext[i] = x_ticktext[i] x_ticktext[i] = str(x_ticktext[i]) print('x_ticktext:', x_ticktext) print('x_tickvals:', x_tickvals) # X---------------------------------------------- # Y---------------------------------------------- y = pd.read_csv(y_csv, keep_default_na=False) y_header = list(y)[0] # print(list(y["y"])) # exit(0) # y["y"] = list(y["y"]) # y["vals"] = list(y["vals"]) # y_tickvals = np.linspace( # list(y["y"])[0], list(y["y"])[-1], 10) # y_ticktext = np.linspace( # list(y["vals"])[0], list(y["vals"])[-1], 10) # y_ticktext = np.round(y_ticktext, 2) y_ticktext = list(y["y"]) y_tickvals = list(y["vals"]) y_tickvals = np.array(y_tickvals) / t_coeff print('y_ticktext:', y_ticktext) print('y_tickvals:', y_tickvals) # Y---------------------------------------------- data = [ go.Surface( showlegend=False, showscale=False, lighting=dict(diffuse=0.5, specular=.2, fresnel=0.2), z=z_data.values, colorscale="Portland", ) ] scale = int(y_ticktext[-1]) layout = go.Layout( # plot_bgcolor="#000000", # pap_bgcolor="#000000", title=self.title, titlefont=dict( # family="Courier New, monospace", # family='Open Sans, sans-serif', family='Lato', size=14, color="#222"), # margin=go.Margin( # l=0, # r=0, # b=0, # t=35, # pad=50, # ), xaxis=dict( # linecolor="black", # linewidth=2, # autotick=False, # dtick=1, ticks='outside', tickfont=dict( # size=20, size=200, ), ), yaxis=dict( # tickangle=45, title="y Axis", titlefont=dict( family="Courier New, monospace", # family='Old Standard TT, serif', size=40, # size=14, color="#FFFFFF"), # autotick=False, # dtick=1, ticks='outside', # tickangle=90, tickfont=dict( # size=20, size=200, ), ), # zaxis=dict( # tickangle=90 # ), autosize=False, # autosize=True, width=self.width, height=self.height, plot_bgcolor="#AAA", # paper_bgcolor="#AAA", scene=go.Scene( camera=dict( up=dict(x=0, y=0, z=1), center=dict(x=0, y=0, z=0.2), eye=dict(x=3.75, y=3.75, z=3.75) ), aspectratio={"x": 1, "y": self.yscale * \ y_ticktext[-1], "z": 1}, xaxis={ "title": self.xaxis, "showgrid": False, "showline": False, # "showline":True, # "ticks": "outside", # "showticklabels": True, # "linewidth": 1, # "tickvals": list(range(len(x_tickvals))), # "ticktext": list(range(len(x_tickvals))), "tickvals": x_tickvals, "ticktext": x_ticktext, 'titlefont': dict( size=18, ), 'tickfont': dict( size=14, ), 'autorange': True, # "tickangle": 45, # "linecolor": "black", # "linewidth": 2, }, yaxis={ 'autorange': True, "title": self.yaxis+"\t\t\t\t.", "ticktext": y_ticktext[::2], "tickvals": y_tickvals[::2], # "linecolor": "black", "linewidth": 1, 'titlefont': dict( size=18, ), 'tickfont': dict( size=14, ) }, zaxis={ 'autorange': True, "range": [0, 1], "title": self.zaxis, # 'dtick': -20, # "tickangle": 45, # "linecolor": "black", "linewidth": 1, 'titlefont': dict( size=18, ), 'tickfont': dict( size=14, ) # "transform": {"rotate": '0'} }, ), showlegend=False ) self.fig = go.Figure(data=data, layout=layout) if to_file: py.image.save_as(self.fig, filename=to_file) return # fig["layout"].update(scene=dict(aspectmode="data")) # online=False # if online: # py.iplot(fig, filename=filename) # # plotly.offline.init_notebook_mode() # # plotly.offline.iplot(fig, filename="wt.html") # # plotly. # # py.offline.iplot(fig, filename="wt") # else: # # plotly.offline.init_notebook_mode(connected=True) # # plotly.offline.init_notebook_mode() # plotly.offline.plot(fig, filename=path + filename + ".html") # # plotly.offline.iplot(fig, filename=path + filename + ".html") return def iplot(self, z_csv, x_csv, y_csv, t_coeff=1, online=True, path=".", filename="wt2", to_file=""): self.prepare(z_csv, x_csv, y_csv, t_coeff, online, path, filename, to_file) plotly.offline.init_notebook_mode(connected=True) plotly.offline.iplot(self.fig) def plot(self, z_csv, x_csv, y_csv, t_coeff=1, online=True, path=".", filename="wt2", to_file=""): self.prepare(z_csv, x_csv, y_csv, t_coeff, online, path, filename, to_file) plotly.offline.plot(self.fig, filename=path + filename + ".html") # ---------------------------------------------------------------------------------------------------------------------
[STATEMENT] theorem compliant_stateful_ACS_static_valid': "all_security_requirements_fulfilled M \<lparr> nodes = hosts \<T>, edges = flows_fix \<T> \<union> flows_state \<T> \<rparr>" [PROOF STATE] proof (prove) goal (1 subgoal): 1. all_security_requirements_fulfilled M \<lparr>nodes = hosts \<T>, edges = flows_fix \<T> \<union> flows_state \<T>\<rparr> [PROOF STEP] proof - [PROOF STATE] proof (state) goal (1 subgoal): 1. all_security_requirements_fulfilled M \<lparr>nodes = hosts \<T>, edges = flows_fix \<T> \<union> flows_state \<T>\<rparr> [PROOF STEP] from validReqs [PROOF STATE] proof (chain) picking this: valid_reqs M [PROOF STEP] have valid_ReqsIFS: "valid_reqs (get_IFS M)" [PROOF STATE] proof (prove) using this: valid_reqs M goal (1 subgoal): 1. valid_reqs (get_IFS M) [PROOF STEP] by(simp add: get_IFS_def valid_reqs_def) \<comment> \<open>show that it holds for IFS, by monotonicity as it holds for more in IFS\<close> [PROOF STATE] proof (state) this: valid_reqs (get_IFS M) goal (1 subgoal): 1. all_security_requirements_fulfilled M \<lparr>nodes = hosts \<T>, edges = flows_fix \<T> \<union> flows_state \<T>\<rparr> [PROOF STEP] from all_security_requirements_fulfilled_mono[OF valid_ReqsIFS _ valid_stateful_policy compliant_stateful_IFS[unfolded stateful_policy_to_network_graph_def]] [PROOF STATE] proof (chain) picking this: ?E' \<subseteq> all_flows \<T> \<Longrightarrow> all_security_requirements_fulfilled (get_IFS M) \<lparr>nodes = hosts \<T>, edges = ?E'\<rparr> [PROOF STEP] have goalIFS: "all_security_requirements_fulfilled (get_IFS M) \<lparr> nodes = hosts \<T>, edges = flows_fix \<T> \<union> flows_state \<T> \<rparr>" [PROOF STATE] proof (prove) using this: ?E' \<subseteq> all_flows \<T> \<Longrightarrow> all_security_requirements_fulfilled (get_IFS M) \<lparr>nodes = hosts \<T>, edges = ?E'\<rparr> goal (1 subgoal): 1. all_security_requirements_fulfilled (get_IFS M) \<lparr>nodes = hosts \<T>, edges = flows_fix \<T> \<union> flows_state \<T>\<rparr> [PROOF STEP] by(simp add: all_flows_def) [PROOF STATE] proof (state) this: all_security_requirements_fulfilled (get_IFS M) \<lparr>nodes = hosts \<T>, edges = flows_fix \<T> \<union> flows_state \<T>\<rparr> goal (1 subgoal): 1. all_security_requirements_fulfilled M \<lparr>nodes = hosts \<T>, edges = flows_fix \<T> \<union> flows_state \<T>\<rparr> [PROOF STEP] from wf_stateful_policy.E_state_fix[OF stateful_policy_wf] [PROOF STATE] proof (chain) picking this: flows_state \<T> \<subseteq> flows_fix \<T> [PROOF STEP] have "flows_fix \<T> \<union> flows_state \<T> = flows_fix \<T>" [PROOF STATE] proof (prove) using this: flows_state \<T> \<subseteq> flows_fix \<T> goal (1 subgoal): 1. flows_fix \<T> \<union> flows_state \<T> = flows_fix \<T> [PROOF STEP] by blast [PROOF STATE] proof (state) this: flows_fix \<T> \<union> flows_state \<T> = flows_fix \<T> goal (1 subgoal): 1. all_security_requirements_fulfilled M \<lparr>nodes = hosts \<T>, edges = flows_fix \<T> \<union> flows_state \<T>\<rparr> [PROOF STEP] from this compliant_stateful_ACS_static_valid [PROOF STATE] proof (chain) picking this: flows_fix \<T> \<union> flows_state \<T> = flows_fix \<T> all_security_requirements_fulfilled (get_ACS M) \<lparr>nodes = hosts \<T>, edges = flows_fix \<T>\<rparr> [PROOF STEP] have goalACS: "all_security_requirements_fulfilled (get_ACS M) \<lparr> nodes = hosts \<T>, edges = flows_fix \<T> \<union> flows_state \<T> \<rparr>" [PROOF STATE] proof (prove) using this: flows_fix \<T> \<union> flows_state \<T> = flows_fix \<T> all_security_requirements_fulfilled (get_ACS M) \<lparr>nodes = hosts \<T>, edges = flows_fix \<T>\<rparr> goal (1 subgoal): 1. all_security_requirements_fulfilled (get_ACS M) \<lparr>nodes = hosts \<T>, edges = flows_fix \<T> \<union> flows_state \<T>\<rparr> [PROOF STEP] by simp \<comment> \<open>ACS and IFS together form M, we know it holds for ACS\<close> [PROOF STATE] proof (state) this: all_security_requirements_fulfilled (get_ACS M) \<lparr>nodes = hosts \<T>, edges = flows_fix \<T> \<union> flows_state \<T>\<rparr> goal (1 subgoal): 1. all_security_requirements_fulfilled M \<lparr>nodes = hosts \<T>, edges = flows_fix \<T> \<union> flows_state \<T>\<rparr> [PROOF STEP] from goalACS goalIFS [PROOF STATE] proof (chain) picking this: all_security_requirements_fulfilled (get_ACS M) \<lparr>nodes = hosts \<T>, edges = flows_fix \<T> \<union> flows_state \<T>\<rparr> all_security_requirements_fulfilled (get_IFS M) \<lparr>nodes = hosts \<T>, edges = flows_fix \<T> \<union> flows_state \<T>\<rparr> [PROOF STEP] show ?thesis [PROOF STATE] proof (prove) using this: all_security_requirements_fulfilled (get_ACS M) \<lparr>nodes = hosts \<T>, edges = flows_fix \<T> \<union> flows_state \<T>\<rparr> all_security_requirements_fulfilled (get_IFS M) \<lparr>nodes = hosts \<T>, edges = flows_fix \<T> \<union> flows_state \<T>\<rparr> goal (1 subgoal): 1. all_security_requirements_fulfilled M \<lparr>nodes = hosts \<T>, edges = flows_fix \<T> \<union> flows_state \<T>\<rparr> [PROOF STEP] apply(simp add: all_security_requirements_fulfilled_def get_IFS_def get_ACS_def) [PROOF STATE] proof (prove) goal (1 subgoal): 1. \<lbrakk>\<forall>m. m \<in> set M \<and> \<not> c_isIFS m \<longrightarrow> c_sinvar m \<lparr>nodes = hosts \<T>, edges = flows_fix \<T> \<union> flows_state \<T>\<rparr>; \<forall>m. m \<in> set M \<and> c_isIFS m \<longrightarrow> c_sinvar m \<lparr>nodes = hosts \<T>, edges = flows_fix \<T> \<union> flows_state \<T>\<rparr>\<rbrakk> \<Longrightarrow> \<forall>m\<in>set M. c_sinvar m \<lparr>nodes = hosts \<T>, edges = flows_fix \<T> \<union> flows_state \<T>\<rparr> [PROOF STEP] by fastforce [PROOF STATE] proof (state) this: all_security_requirements_fulfilled M \<lparr>nodes = hosts \<T>, edges = flows_fix \<T> \<union> flows_state \<T>\<rparr> goal: No subgoals! [PROOF STEP] qed
/** * * @file core_zsyssq.c * * PLASMA core_blas kernel * PLASMA is a software package provided by Univ. of Tennessee, * Univ. of California Berkeley and Univ. of Colorado Denver * * @version 2.8.0 * @author Mathieu Faverge * @date 2010-11-15 * @precisions normal z -> c d s * **/ #include <math.h> #include <lapacke.h> #include "common.h" #define COMPLEX #define UPDATE( __nb, __value ) \ if (__value != 0. ){ \ if ( *scale < __value ) { \ *sumsq = __nb + (*sumsq) * ( *scale / __value ) * ( *scale / __value ); \ *scale = __value; \ } else { \ *sumsq = *sumsq + __nb * ( __value / *scale ) * ( __value / *scale ); \ } \ } /***************************************************************************** * * @ingroup dplasma_cores_complex64 * * CORE_zsyssq returns the values scl and ssq such that * * ( scl**2 )*ssq = sum( A( i, j )**2 ) + ( scale**2 )*sumsq, * i,j * * with i from 0 to N-1 and j form 0 to N-1. The value of sumsq is * assumed to be at least unity and the value of ssq will then satisfy * * 1.0 .le. ssq .le. ( sumsq + 2*n*n ). * * scale is assumed to be non-negative and scl returns the value * * scl = max( scale, abs( real( A( i, j ) ) ), abs( aimag( A( i, j ) ) ) ), * i,j * * scale and sumsq must be supplied in SCALE and SUMSQ respectively. * SCALE and SUMSQ are overwritten by scl and ssq respectively. * * The routine makes only one pass through the tile triangular part of the * symmetric tile A defined by uplo. * See also LAPACK zlassq.f * ******************************************************************************* * * @param[in] uplo * Specifies whether the upper or lower triangular part of * the symmetric matrix A is to be referenced as follows: * = PlasmaLower: Only the lower triangular part of the * symmetric matrix A is to be referenced. * = PlasmaUpper: Only the upper triangular part of the * symmetric matrix A is to be referenced. * * @param[in] N * The number of columns and rows in the tile A. * * @param[in] A * The N-by-N matrix on which to compute the norm. * * @param[in] LDA * The leading dimension of the tile A. LDA >= max(1,N). * * @param[in,out] scale * On entry, the value scale in the equation above. * On exit, scale is overwritten with the value scl. * * @param[in,out] sumsq * On entry, the value sumsq in the equation above. * On exit, SUMSQ is overwritten with the value ssq. * ******************************************************************************* * * @return * \retval PLASMA_SUCCESS successful exit * \retval -k, the k-th argument had an illegal value * */ #if defined(PLASMA_HAVE_WEAK) #pragma weak CORE_zsyssq = PCORE_zsyssq #define CORE_zsyssq PCORE_zsyssq #endif int CORE_zsyssq(PLASMA_enum uplo, int N, const PLASMA_Complex64_t *A, int LDA, double *scale, double *sumsq) { int i, j; double tmp; double *ptr; if ( uplo == PlasmaUpper ) { for(j=0; j<N; j++) { ptr = (double*) ( A + j * LDA ); for(i=0; i<j; i++, ptr++) { tmp = fabs(*ptr); UPDATE( 2., tmp ); #ifdef COMPLEX ptr++; tmp = fabs(*ptr); UPDATE( 2., tmp ); #endif } /* Diagonal */ tmp = fabs(*ptr); UPDATE( 1., tmp ); #ifdef COMPLEX ptr++; tmp = fabs(*ptr); UPDATE( 1., tmp ); #endif } } else { for(j=0; j<N; j++) { ptr = (double*) ( A + j * LDA + j); /* Diagonal */ tmp = fabs(*ptr); UPDATE( 1., tmp ); ptr++; #ifdef COMPLEX tmp = fabs(*ptr); UPDATE( 1., tmp ); ptr++; #endif for(i=j+1; i<N; i++, ptr++) { tmp = fabs(*ptr); UPDATE( 2., tmp ); #ifdef COMPLEX ptr++; tmp = fabs(*ptr); UPDATE( 2., tmp ); #endif } } } return PLASMA_SUCCESS; }
## Not run: ## Example: download the font file of WenQuanYi Micro Hei, ## add it to SWF device, and use it to draw text in swf(). ## WenQuanYi Micro Hei is an open source and high quality ## Chinese (and CJKV) font. wd = setwd(tempdir()) ft.url = "http://sourceforge.net/projects/wqy/files/wqy-microhei" ft.url = paste(ft.url, "0.2.0-beta/wqy-microhei-0.2.0-beta.tar.gz", sep = "/") download.file(ft.url, basename(ft.url)) ## Extract and add the directory to search path untar(basename(ft.url), compressed = "gzip") font.paths("wqy-microhei") ## Register this font file and assign the family name "wqy" ## Other font faces will be the same with regular by default font.add("wqy", regular = "wqy-microhei.ttc") ## A more concise way to add font is to give the path directly, ## without calling font.paths() # font.add("wqy", "wqy-microhei/wqy-microhei.ttc") ## List available font families font.families() if(require(R2SWF)) { ## Now it shows that we can use the family "wqy" in swf() swf("testfont.swf") ## Select font family globally op = par(family = "serif", font.lab = 2) ## Inline selecting font plot(1, type = "n") text(1, 1, intToUtf8(c(20013, 25991)), family = "wqy", font = 1, cex = 2) dev.off() swf2html("testfont.swf") } setwd(wd) ## End(Not run)
/- Copyright (c) 2020 Bhavik Mehta. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Bhavik Mehta -/ import category_theory.limits.preserves.shapes.binary_products import category_theory.limits.preserves.shapes.products import category_theory.limits.shapes.binary_products import category_theory.limits.shapes.finite_products import category_theory.pempty import logic.equiv.fin /-! # Constructing finite products from binary products and terminal. If a category has binary products and a terminal object then it has finite products. If a functor preserves binary products and the terminal object then it preserves finite products. # TODO Provide the dual results. Show the analogous results for functors which reflect or create (co)limits. -/ universes v u u' noncomputable theory open category_theory category_theory.category category_theory.limits namespace category_theory variables {J : Type v} [small_category J] variables {C : Type u} [category.{v} C] variables {D : Type u'} [category.{v} D] /-- Given `n+1` objects of `C`, a fan for the last `n` with point `c₁.X` and a binary fan on `c₁.X` and `f 0`, we can build a fan for all `n+1`. In `extend_fan_is_limit` we show that if the two given fans are limits, then this fan is also a limit. -/ @[simps {rhs_md := semireducible}] def extend_fan {n : ℕ} {f : ulift (fin (n+1)) → C} (c₁ : fan (λ (i : ulift (fin n)), f ⟨i.down.succ⟩)) (c₂ : binary_fan (f ⟨0⟩) c₁.X) : fan f := fan.mk c₂.X begin rintro ⟨i⟩, revert i, refine fin.cases _ _, { apply c₂.fst }, { intro i, apply c₂.snd ≫ c₁.π.app (ulift.up i) }, end /-- Show that if the two given fans in `extend_fan` are limits, then the constructed fan is also a limit. -/ def extend_fan_is_limit {n : ℕ} (f : ulift (fin (n+1)) → C) {c₁ : fan (λ (i : ulift (fin n)), f ⟨i.down.succ⟩)} {c₂ : binary_fan (f ⟨0⟩) c₁.X} (t₁ : is_limit c₁) (t₂ : is_limit c₂) : is_limit (extend_fan c₁ c₂) := { lift := λ s, begin apply (binary_fan.is_limit.lift' t₂ (s.π.app ⟨0⟩) _).1, apply t₁.lift ⟨_, discrete.nat_trans (λ i, s.π.app ⟨i.down.succ⟩)⟩ end, fac' := λ s, begin rintro ⟨j⟩, apply fin.induction_on j, { apply (binary_fan.is_limit.lift' t₂ _ _).2.1 }, { rintro i -, dsimp only [extend_fan_π_app], rw [fin.cases_succ, ← assoc, (binary_fan.is_limit.lift' t₂ _ _).2.2, t₁.fac], refl } end, uniq' := λ s m w, begin apply binary_fan.is_limit.hom_ext t₂, { rw (binary_fan.is_limit.lift' t₂ _ _).2.1, apply w ⟨0⟩ }, { rw (binary_fan.is_limit.lift' t₂ _ _).2.2, apply t₁.uniq ⟨_, _⟩, rintro ⟨j⟩, rw assoc, dsimp only [discrete.nat_trans_app], rw ← w ⟨j.succ⟩, dsimp only [extend_fan_π_app], rw fin.cases_succ } end } section variables [has_binary_products.{v} C] [has_terminal C] /-- If `C` has a terminal object and binary products, then it has a product for objects indexed by `ulift (fin n)`. This is a helper lemma for `has_finite_products_of_has_binary_and_terminal`, which is more general than this. -/ private lemma has_product_ulift_fin : Π (n : ℕ) (f : ulift.{v} (fin n) → C), has_product f | 0 := λ f, begin letI : has_limits_of_shape (discrete (ulift.{v} (fin 0))) C := has_limits_of_shape_of_equivalence (discrete.equivalence.{v} (equiv.ulift.trans fin_zero_equiv').symm), apply_instance, end | (n+1) := λ f, begin haveI := has_product_ulift_fin n, apply has_limit.mk ⟨_, extend_fan_is_limit f (limit.is_limit.{v} _) (limit.is_limit _)⟩, end /-- If `C` has a terminal object and binary products, then it has limits of shape `discrete (ulift (fin n))` for any `n : ℕ`. This is a helper lemma for `has_finite_products_of_has_binary_and_terminal`, which is more general than this. -/ private lemma has_limits_of_shape_ulift_fin (n : ℕ) : has_limits_of_shape (discrete (ulift.{v} (fin n))) C := { has_limit := λ K, begin letI := has_product_ulift_fin n K.obj, let : discrete.functor K.obj ≅ K := discrete.nat_iso (λ i, iso.refl _), apply has_limit_of_iso this, end } /-- If `C` has a terminal object and binary products, then it has finite products. -/ lemma has_finite_products_of_has_binary_and_terminal : has_finite_products C := ⟨λ J 𝒥₁ 𝒥₂, begin resetI, let e := fintype.equiv_fin J, apply has_limits_of_shape_of_equivalence (discrete.equivalence (e.trans equiv.ulift.symm)).symm, refine has_limits_of_shape_ulift_fin (fintype.card J), end⟩ end section preserves variables (F : C ⥤ D) variables [preserves_limits_of_shape (discrete.{v} walking_pair) F] variables [preserves_limits_of_shape (discrete.{v} pempty) F] variables [has_finite_products.{v} C] /-- If `F` preserves the terminal object and binary products, then it preserves products indexed by `ulift (fin n)` for any `n`. -/ noncomputable def preserves_fin_of_preserves_binary_and_terminal : Π (n : ℕ) (f : ulift.{v} (fin n) → C), preserves_limit (discrete.functor f) F | 0 := λ f, begin letI : preserves_limits_of_shape (discrete (ulift (fin 0))) F := preserves_limits_of_shape_of_equiv.{v v} (discrete.equivalence (equiv.ulift.trans fin_zero_equiv').symm) _, apply_instance, end | (n+1) := begin haveI := preserves_fin_of_preserves_binary_and_terminal n, intro f, refine preserves_limit_of_preserves_limit_cone (extend_fan_is_limit f (limit.is_limit.{v} _) (limit.is_limit _)) _, apply (is_limit_map_cone_fan_mk_equiv _ _ _).symm _, let := extend_fan_is_limit (λ i, F.obj (f i)) (is_limit_of_has_product_of_preserves_limit F _) (is_limit_of_has_binary_product_of_preserves_limit F _ _), refine is_limit.of_iso_limit this _, apply cones.ext _ _, apply iso.refl _, rintro ⟨j⟩, apply fin.induction_on j, { apply (category.id_comp _).symm }, { rintro i -, dsimp only [extend_fan_π_app, iso.refl_hom, fan.mk_π_app], rw [fin.cases_succ, fin.cases_succ], change F.map _ ≫ _ = 𝟙 _ ≫ _, rw [id_comp, ←F.map_comp], refl } end /-- If `F` preserves the terminal object and binary products, then it preserves limits of shape `discrete (ulift (fin n))`. -/ def preserves_ulift_fin_of_preserves_binary_and_terminal (n : ℕ) : preserves_limits_of_shape (discrete (ulift (fin n))) F := { preserves_limit := λ K, begin let : discrete.functor K.obj ≅ K := discrete.nat_iso (λ i, iso.refl _), haveI := preserves_fin_of_preserves_binary_and_terminal F n K.obj, apply preserves_limit_of_iso_diagram F this, end } /-- If `F` preserves the terminal object and binary products then it preserves finite products. -/ def preserves_finite_products_of_preserves_binary_and_terminal (J : Type v) [fintype J] : preserves_limits_of_shape.{v} (discrete J) F := begin classical, let e := fintype.equiv_fin J, haveI := preserves_ulift_fin_of_preserves_binary_and_terminal F (fintype.card J), apply preserves_limits_of_shape_of_equiv.{v v} (discrete.equivalence (e.trans equiv.ulift.symm)).symm, end end preserves /-- Given `n+1` objects of `C`, a cofan for the last `n` with point `c₁.X` and a binary cofan on `c₁.X` and `f 0`, we can build a cofan for all `n+1`. In `extend_cofan_is_colimit` we show that if the two given cofans are colimits, then this cofan is also a colimit. -/ @[simps {rhs_md := semireducible}] def extend_cofan {n : ℕ} {f : ulift (fin (n+1)) → C} (c₁ : cofan (λ (i : ulift (fin n)), f ⟨i.down.succ⟩)) (c₂ : binary_cofan (f ⟨0⟩) c₁.X) : cofan f := cofan.mk c₂.X begin rintro ⟨i⟩, revert i, refine fin.cases _ _, { apply c₂.inl }, { intro i, apply c₁.ι.app (ulift.up i) ≫ c₂.inr }, end /-- Show that if the two given cofans in `extend_cofan` are colimits, then the constructed cofan is also a colimit. -/ def extend_cofan_is_colimit {n : ℕ} (f : ulift (fin (n+1)) → C) {c₁ : cofan (λ (i : ulift (fin n)), f ⟨i.down.succ⟩)} {c₂ : binary_cofan (f ⟨0⟩) c₁.X} (t₁ : is_colimit c₁) (t₂ : is_colimit c₂) : is_colimit (extend_cofan c₁ c₂) := { desc := λ s, begin apply (binary_cofan.is_colimit.desc' t₂ (s.ι.app ⟨0⟩) _).1, apply t₁.desc ⟨_, discrete.nat_trans (λ i, s.ι.app ⟨i.down.succ⟩)⟩ end, fac' := λ s, begin rintro ⟨j⟩, apply fin.induction_on j, { apply (binary_cofan.is_colimit.desc' t₂ _ _).2.1 }, { rintro i -, dsimp only [extend_cofan_ι_app], rw [fin.cases_succ, assoc, (binary_cofan.is_colimit.desc' t₂ _ _).2.2, t₁.fac], refl } end, uniq' := λ s m w, begin apply binary_cofan.is_colimit.hom_ext t₂, { rw (binary_cofan.is_colimit.desc' t₂ _ _).2.1, apply w ⟨0⟩ }, { rw (binary_cofan.is_colimit.desc' t₂ _ _).2.2, apply t₁.uniq ⟨_, _⟩, rintro ⟨j⟩, dsimp only [discrete.nat_trans_app], rw ← w ⟨j.succ⟩, dsimp only [extend_cofan_ι_app], rw [fin.cases_succ, assoc], } end } section variables [has_binary_coproducts.{v} C] [has_initial C] /-- If `C` has an initial object and binary coproducts, then it has a coproduct for objects indexed by `ulift (fin n)`. This is a helper lemma for `has_cofinite_products_of_has_binary_and_terminal`, which is more general than this. -/ private lemma has_coproduct_ulift_fin : Π (n : ℕ) (f : ulift.{v} (fin n) → C), has_coproduct f | 0 := λ f, begin letI : has_colimits_of_shape (discrete (ulift.{v} (fin 0))) C := has_colimits_of_shape_of_equivalence (discrete.equivalence.{v} (equiv.ulift.trans fin_zero_equiv').symm), apply_instance, end | (n+1) := λ f, begin haveI := has_coproduct_ulift_fin n, apply has_colimit.mk ⟨_, extend_cofan_is_colimit f (colimit.is_colimit.{v} _) (colimit.is_colimit _)⟩, end /-- If `C` has an initial object and binary coproducts, then it has colimits of shape `discrete (ulift (fin n))` for any `n : ℕ`. This is a helper lemma for `has_cofinite_products_of_has_binary_and_terminal`, which is more general than this. -/ private lemma has_colimits_of_shape_ulift_fin (n : ℕ) : has_colimits_of_shape (discrete (ulift.{v} (fin n))) C := { has_colimit := λ K, begin letI := has_coproduct_ulift_fin n K.obj, let : K ≅ discrete.functor K.obj := discrete.nat_iso (λ i, iso.refl _), apply has_colimit_of_iso this, end } /-- If `C` has an initial object and binary coproducts, then it has finite coproducts. -/ lemma has_finite_coproducts_of_has_binary_and_terminal : has_finite_coproducts C := ⟨λ J 𝒥₁ 𝒥₂, begin resetI, let e := fintype.equiv_fin J, apply has_colimits_of_shape_of_equivalence (discrete.equivalence (e.trans equiv.ulift.symm)).symm, refine has_colimits_of_shape_ulift_fin (fintype.card J), end⟩ end section preserves variables (F : C ⥤ D) variables [preserves_colimits_of_shape (discrete.{v} walking_pair) F] variables [preserves_colimits_of_shape (discrete.{v} pempty) F] variables [has_finite_coproducts.{v} C] /-- If `F` preserves the initial object and binary coproducts, then it preserves products indexed by `ulift (fin n)` for any `n`. -/ noncomputable def preserves_fin_of_preserves_binary_and_initial : Π (n : ℕ) (f : ulift.{v} (fin n) → C), preserves_colimit (discrete.functor f) F | 0 := λ f, begin letI : preserves_colimits_of_shape (discrete (ulift (fin 0))) F := preserves_colimits_of_shape_of_equiv.{v v} (discrete.equivalence (equiv.ulift.trans fin_zero_equiv').symm) _, apply_instance, end | (n+1) := begin haveI := preserves_fin_of_preserves_binary_and_initial n, intro f, refine preserves_colimit_of_preserves_colimit_cocone (extend_cofan_is_colimit f (colimit.is_colimit.{v} _) (colimit.is_colimit _)) _, apply (is_colimit_map_cocone_cofan_mk_equiv _ _ _).symm _, let := extend_cofan_is_colimit (λ i, F.obj (f i)) (is_colimit_of_has_coproduct_of_preserves_colimit F _) (is_colimit_of_has_binary_coproduct_of_preserves_colimit F _ _), refine is_colimit.of_iso_colimit this _, apply cocones.ext _ _, apply iso.refl _, rintro ⟨j⟩, apply fin.induction_on j, { apply category.comp_id }, { rintro i -, dsimp only [extend_cofan_ι_app, iso.refl_hom, cofan.mk_ι_app], rw [fin.cases_succ, fin.cases_succ], erw [comp_id, ←F.map_comp], refl, } end /-- If `F` preserves the initial object and binary coproducts, then it preserves colimits of shape `discrete (ulift (fin n))`. -/ def preserves_ulift_fin_of_preserves_binary_and_initial (n : ℕ) : preserves_colimits_of_shape (discrete (ulift (fin n))) F := { preserves_colimit := λ K, begin let : discrete.functor K.obj ≅ K := discrete.nat_iso (λ i, iso.refl _), haveI := preserves_fin_of_preserves_binary_and_initial F n K.obj, apply preserves_colimit_of_iso_diagram F this, end } /-- If `F` preserves the initial object and binary coproducts then it preserves finite products. -/ def preserves_finite_coproducts_of_preserves_binary_and_initial (J : Type v) [fintype J] : preserves_colimits_of_shape.{v} (discrete J) F := begin classical, let e := fintype.equiv_fin J, haveI := preserves_ulift_fin_of_preserves_binary_and_initial F (fintype.card J), apply preserves_colimits_of_shape_of_equiv.{v v} (discrete.equivalence (e.trans equiv.ulift.symm)).symm, end end preserves end category_theory
module Main import Effects import IdrisWeb.CGI.Cgi import IdrisWeb.Session.Session import IdrisWeb.Session.SessionUtils import IdrisWeb.DB.SQLite.SQLiteNew ThreadID : Type ThreadID = Int DB_NAME : String DB_NAME = "/tmp/messageboard.db" UserID : Type UserID = Int USERID_VAR : String USERID_VAR = "user_id" ---------- -- Handler info ---------- handleRegisterForm : Maybe String -> Maybe String -> FormHandler [CGI (InitialisedCGI TaskRunning), SESSION (SessionRes SessionUninitialised), SQLITE () ] handlePost : Maybe Int -> Maybe String -> FormHandler [CGI (InitialisedCGI TaskRunning), SESSION (SessionRes SessionUninitialised), SQLITE () ] handleNewThread : Maybe String -> Maybe String -> FormHandler [CGI (InitialisedCGI TaskRunning), SESSION (SessionRes SessionUninitialised), SQLITE () ] handleLoginForm : Maybe String -> Maybe String -> FormHandler [CGI (InitialisedCGI TaskRunning), SESSION (SessionRes SessionUninitialised), SQLITE () ] handlers : HandlerList handlers = [(([FormString, FormString], [CgiEffect, SessionEffect, SqliteEffect]) ** (handleRegisterForm, "handleRegisterForm")), (([FormString, FormString], [CgiEffect, SessionEffect, SqliteEffect]) ** (handleLoginForm, "handleLoginForm")), (([FormString, FormString], [CgiEffect, SessionEffect, SqliteEffect]) ** (handleNewThread, "handleNewThread")), (([FormInt, FormString], [CgiEffect, SessionEffect, SqliteEffect]) ** (handlePost, "handlePost"))] -- Template system would be nice... htmlPreamble : String htmlPreamble = "<html><head><title>IdrisWeb Message Board</title></head><body>" htmlPostamble : String htmlPostamble = "</body></html>" notLoggedIn : EffM IO [CGI (InitialisedCGI TaskRunning), SESSION (SessionRes SessionInitialised), SQLITE ()] [CGI (InitialisedCGI TaskRunning), SESSION (SessionRes SessionUninitialised), SQLITE ()] () notLoggedIn = do output htmlPreamble output "<h1>Error</h1><br />You must be logged in to do that!" output htmlPostamble discardSession outputWithPreamble : String -> Eff IO [CGI (InitialisedCGI TaskRunning)] () outputWithPreamble txt = do output htmlPreamble output txt output htmlPostamble ----------- -- Post Creation ----------- postInsert : Int -> Int -> String -> Eff IO [SQLITE ()] Bool postInsert uid thread_id content = do conn_res <- openDB DB_NAME if_valid then do let sql = "INSERT INTO `Posts` (`UserID`, `ThreadID`, `Content`) VALUES (?, ?, ?)" ps_res <- prepareStatement sql if_valid then do bindInt 1 uid bindInt 2 thread_id bindText 3 content bind_res <- finishBind if_valid then do executeStatement finalise closeDB return True else do cleanupBindFail return False else do cleanupPSFail return False else return False addPostToDB : Int -> String -> SessionData -> EffM IO [CGI (InitialisedCGI TaskRunning), SESSION (SessionRes SessionInitialised), SQLITE ()] [CGI (InitialisedCGI TaskRunning), SESSION (SessionRes SessionUninitialised), SQLITE ()] () addPostToDB thread_id content sd = do -- TODO: would be nice to abstract this out case lookup USERID_VAR sd of Just (SInt uid) => do insert_res <- postInsert uid thread_id content if insert_res then do -- TODO: redirection would be nice outputWithPreamble "Post successful" discardSession return () else do outputWithPreamble "There was an error adding the post to the database." discardSession return () Nothing => do notLoggedIn return () handlePost (Just thread_id) (Just content) = do withSession (addPostToDB thread_id content) notLoggedIn pure () handlePost _ _ = do outputWithPreamble"<h1>Error</h1><br />There was an error processing your post." pure () newPostForm : Int -> UserForm newPostForm thread_id = do addHidden FormInt thread_id addTextBox "Post Content" FormString Nothing useEffects [CgiEffect, SessionEffect, SqliteEffect] addSubmit handlePost handlers showNewPostForm : Int -> CGIProg [SESSION (SessionRes SessionUninitialised), SQLITE ()] () showNewPostForm thread_id = do output htmlPreamble output "<h2>Create new post</h2>" addForm (newPostForm thread_id) output htmlPostamble ----------- -- Thread Creation ----------- threadInsert : Int -> String -> String -> Eff IO [SQLITE ()] (Maybe QueryError) threadInsert uid title content = do let query = "INSERT INTO `Threads` (`UserID`, `Title`) VALUES (?, ?)" insert_res <- executeInsert DB_NAME query [(1, DBInt uid), (2, DBText title)] case insert_res of Left err => return (Just err) Right thread_id => do post_res <- postInsert uid thread_id content if post_res then return Nothing else return $ Just (ExecError "post") addNewThread : String -> String -> SessionData -> EffM IO [CGI (InitialisedCGI TaskRunning), SESSION (SessionRes SessionInitialised), SQLITE ()] [CGI (InitialisedCGI TaskRunning), SESSION (SessionRes SessionUninitialised), SQLITE ()] () addNewThread title content sd = do case lookup USERID_VAR sd of Just (SInt uid) => do insert_res <- threadInsert uid title content case insert_res of Just err => do output $ "There was an error adding the thread to the database: " ++ show err discardSession return () Nothing => do output "Thread added successfully" discardSession return () Nothing => do notLoggedIn return () -- Create a new thread, given the title and content handleNewThread (Just title) (Just content) = do withSession (addNewThread title content) notLoggedIn pure () handleNewThread _ _ = do outputWithPreamble "<h1>Error</h1><br />There was an error posting your thread." pure () newThreadForm : UserForm newThreadForm = do addTextBox "Title" FormString Nothing addTextBox "Post Content" FormString Nothing -- password field would be good useEffects [CgiEffect, SessionEffect, SqliteEffect] addSubmit handleNewThread handlers showNewThreadForm : CGIProg [SESSION (SessionRes SessionUninitialised), SQLITE ()] () showNewThreadForm = do output htmlPreamble output "<h1>New Thread</h1>" addForm newThreadForm output htmlPostamble ----------- -- Registration ----------- insertUser : String -> String -> Eff IO [SQLITE ()] (Either QueryError Int) insertUser name pwd = executeInsert DB_NAME query bind_vals where query = "INSERT INTO `Users` (`Username`, `Password`) VALUES (?, ?)" bind_vals = [(1, DBText name), (2, DBText pwd)] userExists' : EffM IO [SQLITE (Either (SQLiteExecuting InvalidRow) (SQLiteExecuting ValidRow))] [SQLITE ()] Bool userExists' = if_valid then do finaliseValid closeDB return True else do finaliseInvalid closeDB return False userExists : String -> Eff IO [SQLITE ()] (Either QueryError Bool) userExists username = do conn_res <- openDB DB_NAME if_valid then do let sql = "SELECT * FROM `Users` WHERE `Username` = ?" ps_res <- prepareStatement sql if_valid then do bindText 1 username bind_res <- finishBind if_valid then do executeStatement res <- userExists' return $ Right res else do let be = getBindError bind_res cleanupBindFail return $ Left be else do cleanupPSFail return $ Left (getQueryError ps_res) else return $ Left (getQueryError conn_res) handleRegisterForm (Just name) (Just pwd) = do user_exists_res <- userExists name case user_exists_res of Left err => do outputWithPreamble "Error checking for user existence" pure () Right user_exists => if (not user_exists) then do insert_res <- insertUser name pwd case insert_res of Left err => do outputWithPreamble ("Error inserting new user" ++ (show err)) pure () Right insert_res => do outputWithPreamble "User created successfully!" pure () else do outputWithPreamble "This user already exists; please pick another name!" pure () handleRegisterForm _ _ = do outputWithPreamble "Error processing form input data." pure () registerForm : UserForm registerForm = do addTextBox "Username" FormString Nothing addTextBox "Password" FormString Nothing -- password field would be good useEffects [CgiEffect, SessionEffect, SqliteEffect] addSubmit handleRegisterForm handlers showRegisterForm : CGIProg [SESSION (SessionRes SessionUninitialised), SQLITE ()] () showRegisterForm = do output htmlPreamble output "<h1>Create a new account</h1>" addForm registerForm output htmlPostamble ----------- -- Login ----------- alreadyLoggedIn : SessionData -> EffM IO [CGI (InitialisedCGI TaskRunning), SESSION (SessionRes SessionInitialised), SQLITE ()] [CGI (InitialisedCGI TaskRunning), SESSION (SessionRes SessionUninitialised), SQLITE ()] () alreadyLoggedIn _ = do outputWithPreamble "<h1>Error</h1><br />You appear to already be logged in!" discardSession -- If the credentials match, return an ID -- Maybe consolidate the Maybe UserID into the Either, or possibly keep them -- distinct to encapsulate the system error vs auth failure authUser' : EffM IO [SQLITE (Either (SQLiteExecuting InvalidRow) (SQLiteExecuting ValidRow))] [SQLITE ()] (Either QueryError (Maybe UserID)) authUser' = if_valid then do user_id <- getColumnInt 0 finaliseValid closeDB return $ Right (Just user_id) else do finaliseInvalid closeDB return $ Right Nothing authUser : String -> String -> Eff IO [SQLITE ()] (Either QueryError (Maybe UserID)) authUser username password = do conn_res <- openDB DB_NAME if_valid then do let sql = "SELECT `UserID` FROM `Users` WHERE `Username` = ? AND `Password` = ?" ps_res <- prepareStatement sql if_valid then do bindText 1 username bindText 2 password bind_res <- finishBind if_valid then do executeStatement authUser' else do let be = getBindError bind_res cleanupBindFail return $ Left be else do cleanupPSFail return $ Left (getQueryError ps_res) else return $ Left (getQueryError conn_res) setSession : UserID -> Eff IO [CGI (InitialisedCGI TaskRunning), SESSION (SessionRes SessionUninitialised), SQLITE ()] Bool setSession user_id = do create_res <- createSession [(USERID_VAR, SInt user_id)] sess_res <- setSessionCookie db_res <- writeSessionToDB return (sess_res && db_res) handleLoginForm (Just name) (Just pwd) = do auth_res <- authUser name pwd case auth_res of Right (Just uid) => do set_sess_res <- setSession uid if set_sess_res then do output $ "Welcome, " ++ name return () else do output "Could not set session" return () Right Nothing => do output "Invalid username or password" return () Left err => do output $ "Error: " ++ (show err) return () loginForm : UserForm loginForm = do addTextBox "Username" FormString Nothing addTextBox "Password" FormString Nothing -- password field would be good useEffects [CgiEffect, SessionEffect, SqliteEffect] addSubmit handleLoginForm handlers showLoginForm : CGIProg [SESSION (SessionRes SessionUninitialised), SQLITE ()] () showLoginForm = do output htmlPreamble output "<h1>Log in</h1>" addForm loginForm output "</html>" ----------- -- Post / Thread Display ----------- collectPostResults : Eff IO [SQLITE (SQLiteExecuting ValidRow)] (List DBVal) -- (List (String, String)) collectPostResults = do name <- getColumnText 0 content <- getColumnText 1 pure [DBText name, DBText content] -- Gets the posts getPosts : Int -> Eff IO [SQLITE ()] (Either QueryError ResultSet) getPosts thread_id = executeSelect DB_NAME query bind_vals collectPostResults where query = "SELECT `Username`, `Content` FROM `Posts` NATURAL JOIN `Users` WHERE `ThreadID` = ?" bind_vals = [(1, DBInt thread_id)] collectThreadResults : Eff IO [SQLITE (SQLiteExecuting ValidRow)] (List DBVal) collectThreadResults = do thread_id <- getColumnInt 0 title <- getColumnText 1 uid <- getColumnInt 2 username <- getColumnText 3 pure [DBInt thread_id, DBText title, DBInt uid, DBText username] -- Returns (Title, Thread starter ID, Thread starter name) getThreads : Eff IO [SQLITE ()] (Either QueryError ResultSet) getThreads = executeSelect DB_NAME query [] collectThreadResults where query = "SELECT `ThreadID`, `Title`, `UserID`, `Username` FROM `Threads` NATURAL JOIN `Users`" traversePosts : ResultSet -> Eff IO [CGI (InitialisedCGI TaskRunning)] () traversePosts [] = pure () traversePosts (x :: xs) = do traverseRow x traversePosts xs where traverseRow : List DBVal -> Eff IO [CGI (InitialisedCGI TaskRunning)] () traverseRow ((DBText name)::(DBText content)::[]) = output $ "<tr><td>" ++ name ++ "</td><td>" ++ content ++ "</td></tr>" traverseRow _ = pure () -- invalid row, discard printPosts : ThreadID -> CGIProg [SQLITE ()] () printPosts thread_id = do post_res <- getPosts thread_id case post_res of Left err => do output $ "Could not retrieve posts, error: " ++ (show err) return () Right posts => do output "<table>" traversePosts posts output "</table>" output $ "<a href=\"?action=newpost&thread_id=" ++ (show thread_id) ++ "\">New post</a><br />" return () traverseThreads : ResultSet -> Eff IO [CGI (InitialisedCGI TaskRunning)] () traverseThreads [] = pure () traverseThreads (x::xs) = do traverseRow x traverseThreads xs where traverseRow : List DBVal -> Eff IO [CGI (InitialisedCGI TaskRunning)] () traverseRow ((DBInt thread_id)::(DBText title)::(DBInt user_id)::(DBText username)::[]) = (output $ "<tr><td><a href=\"?action=showthread&thread_id=" ++ (show thread_id) ++ "\">" ++ title ++ "</a></td><td>" ++ username ++ "</td></tr>") traverseRow _ = pure () printThreads : CGIProg [SQLITE ()] () printThreads = do thread_res <- getThreads case thread_res of Left err => do output $ "Could not retrieve threads, error: " ++ (show err) return () Right threads => do output htmlPreamble output "<table><tr><th>Title</th><th>Author</th></tr>" traverseThreads threads output "</table><br />" output "<a href=\"?action=newthread\">Create a new thread</a><br />" output "<a href=\"?action=register\">Register</a><br />" output "<a href=\"?action=login\">Log In</a><br />" output htmlPostamble return () ----------- -- Request handling ----------- handleNonFormRequest : Maybe String -> Maybe Int -> CGIProg [SESSION (SessionRes SessionUninitialised), SQLITE ()] () handleNonFormRequest (Just "newthread") Nothing = showNewThreadForm handleNonFormRequest (Just "newpost") (Just thread_id) = showNewPostForm thread_id handleNonFormRequest (Just "showthread") (Just thread_id) = printPosts thread_id handleNonFormRequest (Just "register") Nothing = showRegisterForm handleNonFormRequest (Just "login") Nothing = showLoginForm handleNonFormRequest Nothing _ = printThreads -- Hacky, probably best to use the parser strToInt : String -> Int strToInt s = cast s handleRequest : CGIProg [SESSION (SessionRes SessionUninitialised), SQLITE ()] () handleRequest = do handler_set <- isHandlerSet if handler_set then do handleForm handlers return () else do action <- queryGetVar "action" thread_id <- queryGetVar "thread_id" handleNonFormRequest action (map strToInt thread_id) main : IO () main = do runCGI [initCGIState, InvalidSession, ()] handleRequest pure ()
#include "spinodal_spect.h" #include <gsl/gsl_rng.h> // Generate array of random numbers between 0 and 1 double *rand_ZeroToOne(int Nx, int Ny, int seed, double *random_ZeroToOne_array) { const gsl_rng_type *T; gsl_rng *r; int i, NxNy = Nx * Ny; gsl_rng_env_setup(); T = gsl_rng_default; r = gsl_rng_alloc(T); gsl_rng_set(r, seed); // Generate array of random numbers between 0 and 1 for (i = 0; i < NxNy; i++) { random_ZeroToOne_array[i] = gsl_rng_uniform(r); } gsl_rng_free(r); return random_ZeroToOne_array; }
[STATEMENT] lemma fds_shift_1 [simp]: "fds_shift a 1 = 1" [PROOF STATE] proof (prove) goal (1 subgoal): 1. fds_shift a 1 = 1 [PROOF STEP] by (rule fds_eqI) (simp add: fds_shift_def one_fds_def)
State Before: α : Type u_2 β✝ : Type ?u.39374 γ : Type ?u.39377 ι : Type ?u.39380 inst✝³ : Countable ι f✝ g : α → β✝ inst✝² : TopologicalSpace β✝ β : Type u_1 f : α → β inst✝¹ : NormedAddCommGroup β inst✝ : NormedSpace ℝ β m m0 : MeasurableSpace α μ : Measure α hf : StronglyMeasurable f c : ℝ hf_bound : ∀ᵐ (x : α) ∂μ, ‖f x‖ ≤ c ⊢ ∀ᵐ (x : α) ∂μ, Tendsto (fun n => ↑(approxBounded hf c n) x) atTop (𝓝 (f x)) State After: no goals Tactic: filter_upwards [hf_bound] with x hfx using tendsto_approxBounded_of_norm_le hf hfx
[STATEMENT] lemma ceiling_add_le: "\<lceil>x + y\<rceil> \<le> \<lceil>x\<rceil> + \<lceil>y\<rceil>" [PROOF STATE] proof (prove) goal (1 subgoal): 1. \<lceil>x + y\<rceil> \<le> \<lceil>x\<rceil> + \<lceil>y\<rceil> [PROOF STEP] by (simp only: ceiling_le_iff of_int_add add_mono le_of_int_ceiling)
lemma complex_Im_of_nat [simp]: "Im (of_nat n) = 0"
Incidentally , Turner 's favorite sport is soccer , not football . He is also interested in foreign cultures and expressed regret at being unable to spend a semester abroad because of college football . Turner said that , dependent upon the outcome of his football career , he would like to attend the 2010 World Cup in South Africa . He also got to meet his childhood idol David Beckham while at the 2010 South Africa world cup .
/- Copyright (c) 2021 Oliver Nash. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Oliver Nash ! This file was ported from Lean 3 source module algebra.lie.cartan_matrix ! leanprover-community/mathlib commit 65ec59902eb17e4ab7da8d7e3d0bd9774d1b8b99 ! Please do not edit these lines, except to modify the commit id ! if you have ported upstream changes. -/ import Mathbin.Algebra.Lie.Free import Mathbin.Algebra.Lie.Quotient import Mathbin.Data.Matrix.Notation /-! # Lie algebras from Cartan matrices Split semi-simple Lie algebras are uniquely determined by their Cartan matrix. Indeed, if `A` is an `l × l` Cartan matrix, the corresponding Lie algebra may be obtained as the Lie algebra on `3l` generators: $H_1, H_2, \ldots H_l, E_1, E_2, \ldots, E_l, F_1, F_2, \ldots, F_l$ subject to the following relations: $$ \begin{align} [H_i, H_j] &= 0\\ [E_i, F_i] &= H_i\\ [E_i, F_j] &= 0 \quad\text{if $i \ne j$}\\ [H_i, E_j] &= A_{ij}E_j\\ [H_i, F_j] &= -A_{ij}F_j\\ ad(E_i)^{1 - A_{ij}}(E_j) &= 0 \quad\text{if $i \ne j$}\\ ad(F_i)^{1 - A_{ij}}(F_j) &= 0 \quad\text{if $i \ne j$}\\ \end{align} $$ In this file we provide the above construction. It is defined for any square matrix of integers but the results for non-Cartan matrices should be regarded as junk. Recall that a Cartan matrix is a square matrix of integers `A` such that: * For diagonal values we have: `A i i = 2`. * For off-diagonal values (`i ≠ j`) we have: `A i j ∈ {-3, -2, -1, 0}`. * `A i j = 0 ↔ A j i = 0`. * There exists a diagonal matrix `D` over ℝ such that `D ⬝ A ⬝ D⁻¹` is symmetric positive definite. ## Alternative construction This construction is sometimes performed within the free unital associative algebra `free_algebra R X`, rather than within the free Lie algebra `free_lie_algebra R X`, as we do here. However the difference is illusory since the construction stays inside the Lie subalgebra of `free_algebra R X` generated by `X`, and this is naturally isomorphic to `free_lie_algebra R X` (though the proof of this seems to require Poincaré–Birkhoff–Witt). ## Definitions of exceptional Lie algebras This file also contains the Cartan matrices of the exceptional Lie algebras. By using these in the above construction, it thus provides definitions of the exceptional Lie algebras. These definitions make sense over any commutative ring. When the ring is ℝ, these are the split real forms of the exceptional semisimple Lie algebras. ## References * [N. Bourbaki, *Lie Groups and Lie Algebras, Chapters 4--6*](bourbaki1968) plates V -- IX, pages 275--290 * [N. Bourbaki, *Lie Groups and Lie Algebras, Chapters 7--9*](bourbaki1975b) chapter VIII, §4.3 * [J.P. Serre, *Complex Semisimple Lie Algebras*](serre1965) chapter VI, appendix ## Main definitions * `matrix.to_lie_algebra` * `cartan_matrix.E₆` * `cartan_matrix.E₇` * `cartan_matrix.E₈` * `cartan_matrix.F₄` * `cartan_matrix.G₂` * `lie_algebra.e₆` * `lie_algebra.e₇` * `lie_algebra.e₈` * `lie_algebra.f₄` * `lie_algebra.g₂` ## Tags lie algebra, semi-simple, cartan matrix -/ universe u v w noncomputable section variable (R : Type u) {B : Type v} [CommRing R] [DecidableEq B] [Fintype B] variable (A : Matrix B B ℤ) namespace CartanMatrix variable (B) /-- The generators of the free Lie algebra from which we construct the Lie algebra of a Cartan matrix as a quotient. -/ inductive Generators | H : B → generators | E : B → generators | F : B → generators #align cartan_matrix.generators CartanMatrix.Generators instance [Inhabited B] : Inhabited (Generators B) := ⟨Generators.H default⟩ variable {B} namespace Relations open Function -- mathport name: exprH local notation "H" => FreeLieAlgebra.of R ∘ Generators.H -- mathport name: exprE local notation "E" => FreeLieAlgebra.of R ∘ Generators.E -- mathport name: exprF local notation "F" => FreeLieAlgebra.of R ∘ Generators.F -- mathport name: exprad local notation "ad" => LieAlgebra.ad R (FreeLieAlgebra R (Generators B)) /-- The terms correpsonding to the `⁅H, H⁆`-relations. -/ def hH : B × B → FreeLieAlgebra R (Generators B) := uncurry fun i j => ⁅H i, H j⁆ #align cartan_matrix.relations.HH CartanMatrix.Relations.hH /-- The terms correpsonding to the `⁅E, F⁆`-relations. -/ def eF : B × B → FreeLieAlgebra R (Generators B) := uncurry fun i j => if i = j then ⁅E i, F i⁆ - H i else ⁅E i, F j⁆ #align cartan_matrix.relations.EF CartanMatrix.Relations.eF /-- The terms correpsonding to the `⁅H, E⁆`-relations. -/ def hE : B × B → FreeLieAlgebra R (Generators B) := uncurry fun i j => ⁅H i, E j⁆ - A i j • E j #align cartan_matrix.relations.HE CartanMatrix.Relations.hE /-- The terms correpsonding to the `⁅H, F⁆`-relations. -/ def hF : B × B → FreeLieAlgebra R (Generators B) := uncurry fun i j => ⁅H i, F j⁆ + A i j • F j #align cartan_matrix.relations.HF CartanMatrix.Relations.hF /-- The terms correpsonding to the `ad E`-relations. Note that we use `int.to_nat` so that we can take the power and that we do not bother restricting to the case `i ≠ j` since these relations are zero anyway. We also defensively ensure this with `ad_E_of_eq_eq_zero`. -/ def adE : B × B → FreeLieAlgebra R (Generators B) := uncurry fun i j => ad (E i) ^ (-A i j).toNat <| ⁅E i, E j⁆ #align cartan_matrix.relations.ad_E CartanMatrix.Relations.adE /-- The terms correpsonding to the `ad F`-relations. See also `ad_E` docstring. -/ def adF : B × B → FreeLieAlgebra R (Generators B) := uncurry fun i j => ad (F i) ^ (-A i j).toNat <| ⁅F i, F j⁆ #align cartan_matrix.relations.ad_F CartanMatrix.Relations.adF private theorem ad_E_of_eq_eq_zero (i : B) (h : A i i = 2) : adE R A ⟨i, i⟩ = 0 := by have h' : (-2 : ℤ).toNat = 0 := by rfl simp [ad_E, h, h'] #align cartan_matrix.relations.ad_E_of_eq_eq_zero cartan_matrix.relations.ad_E_of_eq_eq_zero private theorem ad_F_of_eq_eq_zero (i : B) (h : A i i = 2) : adF R A ⟨i, i⟩ = 0 := by have h' : (-2 : ℤ).toNat = 0 := by rfl simp [ad_F, h, h'] #align cartan_matrix.relations.ad_F_of_eq_eq_zero cartan_matrix.relations.ad_F_of_eq_eq_zero /-- The union of all the relations as a subset of the free Lie algebra. -/ def toSet : Set (FreeLieAlgebra R (Generators B)) := (Set.range <| hH R) ∪ (Set.range <| eF R) ∪ (Set.range <| hE R A) ∪ (Set.range <| hF R A) ∪ (Set.range <| adE R A) ∪ (Set.range <| adF R A) #align cartan_matrix.relations.to_set CartanMatrix.Relations.toSet /-- The ideal of the free Lie algebra generated by the relations. -/ def toIdeal : LieIdeal R (FreeLieAlgebra R (Generators B)) := LieSubmodule.lieSpan R _ <| toSet R A #align cartan_matrix.relations.to_ideal CartanMatrix.Relations.toIdeal end Relations end CartanMatrix /- ./././Mathport/Syntax/Translate/Command.lean:42:9: unsupported derive handler lie_algebra[lie_algebra] R -/ /-- The Lie algebra corresponding to a Cartan matrix. Note that it is defined for any matrix of integers. Its value for non-Cartan matrices should be regarded as junk. -/ def Matrix.ToLieAlgebra := FreeLieAlgebra R _ ⧸ CartanMatrix.Relations.toIdeal R A deriving Inhabited, LieRing, «./././Mathport/Syntax/Translate/Command.lean:42:9: unsupported derive handler lie_algebra[lie_algebra] R» #align matrix.to_lie_algebra Matrix.ToLieAlgebra namespace CartanMatrix /- ./././Mathport/Syntax/Translate/Expr.lean:207:4: warning: unsupported notation `«expr!![ » -/ /- ./././Mathport/Syntax/Translate/Expr.lean:387:14: unsupported user notation matrix.notation -/ /-- The Cartan matrix of type e₆. See [bourbaki1968] plate V, page 277. The corresponding Dynkin diagram is: ``` o | o --- o --- o --- o --- o ``` -/ def e₆ : Matrix (Fin 6) (Fin 6) ℤ := «expr!![ » "./././Mathport/Syntax/Translate/Expr.lean:387:14: unsupported user notation matrix.notation" #align cartan_matrix.E₆ CartanMatrix.e₆ /- ./././Mathport/Syntax/Translate/Expr.lean:207:4: warning: unsupported notation `«expr!![ » -/ /- ./././Mathport/Syntax/Translate/Expr.lean:387:14: unsupported user notation matrix.notation -/ /-- The Cartan matrix of type e₇. See [bourbaki1968] plate VI, page 281. The corresponding Dynkin diagram is: ``` o | o --- o --- o --- o --- o --- o ``` -/ def e₇ : Matrix (Fin 7) (Fin 7) ℤ := «expr!![ » "./././Mathport/Syntax/Translate/Expr.lean:387:14: unsupported user notation matrix.notation" #align cartan_matrix.E₇ CartanMatrix.e₇ /- ./././Mathport/Syntax/Translate/Expr.lean:207:4: warning: unsupported notation `«expr!![ » -/ /- ./././Mathport/Syntax/Translate/Expr.lean:387:14: unsupported user notation matrix.notation -/ /-- The Cartan matrix of type e₈. See [bourbaki1968] plate VII, page 285. The corresponding Dynkin diagram is: ``` o | o --- o --- o --- o --- o --- o --- o ``` -/ def e₈ : Matrix (Fin 8) (Fin 8) ℤ := «expr!![ » "./././Mathport/Syntax/Translate/Expr.lean:387:14: unsupported user notation matrix.notation" #align cartan_matrix.E₈ CartanMatrix.e₈ /- ./././Mathport/Syntax/Translate/Expr.lean:207:4: warning: unsupported notation `«expr!![ » -/ /- ./././Mathport/Syntax/Translate/Expr.lean:387:14: unsupported user notation matrix.notation -/ /-- The Cartan matrix of type f₄. See [bourbaki1968] plate VIII, page 288. The corresponding Dynkin diagram is: ``` o --- o =>= o --- o ``` -/ def f₄ : Matrix (Fin 4) (Fin 4) ℤ := «expr!![ » "./././Mathport/Syntax/Translate/Expr.lean:387:14: unsupported user notation matrix.notation" #align cartan_matrix.F₄ CartanMatrix.f₄ /- ./././Mathport/Syntax/Translate/Expr.lean:207:4: warning: unsupported notation `«expr!![ » -/ /- ./././Mathport/Syntax/Translate/Expr.lean:387:14: unsupported user notation matrix.notation -/ /-- The Cartan matrix of type g₂. See [bourbaki1968] plate IX, page 290. The corresponding Dynkin diagram is: ``` o ≡>≡ o ``` Actually we are using the transpose of Bourbaki's matrix. This is to make this matrix consistent with `cartan_matrix.F₄`, in the sense that all non-zero values below the diagonal are -1. -/ def g₂ : Matrix (Fin 2) (Fin 2) ℤ := «expr!![ » "./././Mathport/Syntax/Translate/Expr.lean:387:14: unsupported user notation matrix.notation" #align cartan_matrix.G₂ CartanMatrix.g₂ end CartanMatrix namespace LieAlgebra /-- The exceptional split Lie algebra of type e₆. -/ abbrev E₆ := CartanMatrix.e₆.ToLieAlgebra R #align lie_algebra.e₆ LieAlgebra.E₆ /-- The exceptional split Lie algebra of type e₇. -/ abbrev E₇ := CartanMatrix.e₇.ToLieAlgebra R #align lie_algebra.e₇ LieAlgebra.E₇ /-- The exceptional split Lie algebra of type e₈. -/ abbrev E₈ := CartanMatrix.e₈.ToLieAlgebra R #align lie_algebra.e₈ LieAlgebra.E₈ /-- The exceptional split Lie algebra of type f₄. -/ abbrev F₄ := CartanMatrix.f₄.ToLieAlgebra R #align lie_algebra.f₄ LieAlgebra.F₄ /-- The exceptional split Lie algebra of type g₂. -/ abbrev G₂ := CartanMatrix.g₂.ToLieAlgebra R #align lie_algebra.g₂ LieAlgebra.G₂ end LieAlgebra
// @file kn2row_conv.c // // \date Created on: Sep 23, 2017 // \author Gopalakrishna Hegde // // Description: // // // #include <assert.h> #include <stdbool.h> #include <stdlib.h> #include <string.h> #include <cblas.h> #include "common_types.h" #include "data_reshape.h" #include "utils.h" // // col_shift : +ve --> shift left overlap mat , -ve --> shift right overlap mat // or shift left base mat and keep overlap mat as it is. // // // row_shift : +ve (coeff is down the center coeff) --> shift up overlap mat , // -ve --> shift down overlap mat or shift up the base mat. void MatrixShiftAdd(float *base_mat, int base_no_rows, int base_no_cols, float *overlap_mat, int ov_no_rows, int ov_no_cols, int row_shift, int col_shift) { if (row_shift == 0 && col_shift == 0 && (base_no_rows == ov_no_rows) && (base_no_cols == ov_no_cols)) { // normal matrix add cblas_saxpy(base_no_rows * base_no_cols, 1.0, overlap_mat, 1, base_mat, 1); return; } int rows_to_add, cols_to_add; int base_row_start, base_col_start; int ov_row_start, ov_col_start; // without padding case if (ov_no_rows > base_no_rows) { rows_to_add = base_no_rows; cols_to_add = base_no_cols; base_row_start = 0; base_col_start = 0; ov_row_start = row_shift < 0? -row_shift : 0; ov_col_start = col_shift < 0? -col_shift : 0; } else { rows_to_add = ov_no_rows - abs(row_shift); cols_to_add = ov_no_cols - abs(col_shift); ov_col_start = col_shift > 0? col_shift : 0; ov_row_start = row_shift > 0? row_shift : 0; base_row_start = row_shift < 0? -row_shift : 0; base_col_start = col_shift < 0? -col_shift : 0; } for (int r = 0; r < rows_to_add; ++r) { int base_mat_offset = (r + base_row_start) * base_no_cols + base_col_start; int overlap_mat_offset = (r + ov_row_start) * ov_no_cols + ov_col_start; cblas_saxpy(cols_to_add, 1.0, overlap_mat + overlap_mat_offset, 1, base_mat + base_mat_offset, 1); } } /* Ker2Row convolution implementations. * * Assumptions: * 1. in_data is in NCHW format. * 2. filters are in MCKK format where M is the no of output maps. * 3. Stride will always be 1. * 4. pad will be zero or kernel_size / 2 * * Output will be in NCHW format. */ bool Kn2RowConvLayer(const float *in_data, const float *filters, const float *bias, TensorDim in_dim, TensorDim filt_dim, int stride, int pad, int group, float *output) { // Currently we have limited support. assert(group == 1); assert((pad == 0) || (pad == filt_dim.w / 2)); assert(in_dim.n == 1); assert(filt_dim.h == filt_dim.w); assert(stride == 1); // Output dimensions. TensorDim out_dim; out_dim.w = (in_dim.w + (pad + pad) - filt_dim.w) / stride + 1; out_dim.h = (in_dim.h + (pad + pad) - filt_dim.h) / stride + 1; out_dim.c = filt_dim.n; out_dim.n = in_dim.n; // Re-arrange filters in the k x k x no_out_maps x no_in_maps. // We can avoid this if the filters are already reshaped in this format. float *kkmc_filters = malloc(filt_dim.n * filt_dim.c * filt_dim.h * filt_dim.w * sizeof(float)); NCHW2HWNC(filters, filt_dim.n, filt_dim.c, filt_dim.h, filt_dim.w, kkmc_filters); // Just for convenience int H = in_dim.h; int W = in_dim.w; float alpha = 1.0; float beta = 0.0; // We need separate buffer because GEMM output will have width = H*W even // if there is no padding (pad = 0). float *gemm_output = malloc(out_dim.c * H * W * sizeof(float)); // Prefill output buffer with bias if present else set to zero. if (bias) { for (int m = 0; m < out_dim.c; ++m) { for (int a = 0; a < out_dim.h * out_dim.w; ++a) { output[m * out_dim.h * out_dim.w + a] = bias[m]; } // For batch size > 1 for (int b = 1; b < out_dim.n; ++b) { memcpy(output + b * out_dim.c * out_dim.h * out_dim.w, output, out_dim.c * out_dim.h * out_dim.w * sizeof(float)); } } } else { memset(output, 0, out_dim.n * out_dim.c * out_dim.h * out_dim.w * sizeof(float)); } for (int kr = 0; kr < filt_dim.h; kr++) { int row_shift = kr - filt_dim.h / 2; for (int kc = 0; kc < filt_dim.w; kc++) { int group_no = kr * filt_dim.w + kc; int col_shift = kc - filt_dim.w / 2; // Matrix dimensions - A -> mxk B -> kxn C --> mxn int m = filt_dim.n; int k = filt_dim.c; int n = in_dim.h * in_dim.w; // This is just 1x1 convolution cblas_sgemm(CblasRowMajor, CblasNoTrans, CblasNoTrans, m, n, k, alpha, kkmc_filters + group_no * m * k, k, in_data, n, beta, gemm_output, n); // Slide the resulting matrix which has contribution from one of the // KxK kernel coefficients and add to the output. for (int omap = 0; omap < filt_dim.n; omap++) { MatrixShiftAdd(output + omap * out_dim.h * out_dim.w, out_dim.h, out_dim.w, gemm_output + omap * H * W, H, W, row_shift, col_shift); } } } free(kkmc_filters); free(gemm_output); return true; }
% % Locations.tex % % Aleph Objects Operations Manual % % Copyright (C) 2014, 2015 Aleph Objects, Inc. % % This document is licensed under the Creative Commons Attribution 4.0 % International Public License (CC BY-SA 4.0) by Aleph Objects, Inc. % \section{Aleph Mountain} \section{Fulfillment} \subsection{Retail} \begin{itemize} \item Loveland, Colorado, USA \end{itemize} \subsection{Amazon} \begin{itemize} \item USA \end{itemize} \subsection{Shipwire} \begin{itemize} \item Chicago, Illinois, USA \item Philadelphia, Pennsylvania, USA \item Los Angeles, California, USA \item Toronto, Canada \item London, United Kingdom \end{itemize} \subsection{Resellers} \begin{itemize} \item Builders \item Drop Ship \end{itemize} \section{Contract Manufacturers} \section{Customer} \section{Employee} \section{Historical} \begin{itemize} \item 2011 Redstone Canyon, Colorado, USA \item 2011 Fort Collins, Colorado, USA \item 2011-2014 AOHQ, Loveland, Colorado, USA \end{itemize}
[STATEMENT] lemma allocAsk_o_sysOfClient_eq: "allocAsk o sysOfClient = allocAsk o snd " [PROOF STATE] proof (prove) goal (1 subgoal): 1. allocAsk \<circ> sysOfClient = allocAsk \<circ> snd [PROOF STEP] apply record_auto [PROOF STATE] proof (prove) goal: No subgoals! [PROOF STEP] done
integer a,b,g,q parameter(a=-1,g=0,q=+1,b=2)
# # Example of a medium-scale graphene calculation. Only suitable for running # on a cluster or machine with large memory. #src tags: long # using DFTK kgrid = [12, 12, 4] Tsmear = 0.0009500431544769484 Ecut = 15 lattice = [4.659533614391621 -2.3297668071958104 0.0; 0.0 4.035274479829987 0.0; 0.0 0.0 15.117809010356462] C = ElementPsp(:C, psp=load_psp("hgh/pbe/c-q4")) atoms = [C => [[0.0, 0.0, 0.0], [0.33333333333, 0.66666666667, 0.0]]] model = model_DFT(lattice, atoms, [:gga_x_pbe, :gga_c_pbe]; temperature=Tsmear, smearing=Smearing.Gaussian()) basis = PlaneWaveBasis(model, Ecut, kgrid=kgrid) # Run SCF n_bands = 6 scfres = self_consistent_field(basis; n_bands=n_bands) # Print obtained energies println() display(scfres.energies)
section propositional variables P Q R : Prop ------------------------------------------------ -- Proposições de dupla negaço: ------------------------------------------------ theorem doubleneg_intro : P → ¬¬P := begin intros p np, contradiction, end theorem doubleneg_elim : ¬¬P → P := begin intro np, by_contradiction hboom, contradiction, end theorem doubleneg_law : ¬¬P ↔ P := begin split, exact doubleneg_elim P, exact doubleneg_intro P, end ------------------------------------------------ -- Comutatividade dos ∨,∧: ------------------------------------------------ theorem disj_comm : (P ∨ Q) → (Q ∨ P) := begin intro pq, cases pq with hp hq, right, exact hp, left, exact hq, end theorem conj_comm : (P ∧ Q) → (Q ∧ P) := begin intros hpq, cases hpq with hp hq, split, exact hq, exact hp, end ------------------------------------------------ -- Proposições de interdefinabilidade dos →,∨: ------------------------------------------------ theorem impl_as_disj_converse : (¬P ∨ Q) → (P → Q) := begin intro npq, intro p, cases npq with hnp hq, contradiction, exact hq end theorem disj_as_impl : (P ∨ Q) → (¬P → Q) := begin intro pq, intro np, cases pq with hp hq, contradiction, exact hq, end ------------------------------------------------ -- Proposições de contraposição: ------------------------------------------------ theorem impl_as_contrapositive : (P → Q) → (¬Q → ¬P) := begin intro pq, intro nq, intro p, have hq : Q := pq p, contradiction, end theorem impl_as_contrapositive_converse : (¬Q → ¬P) → (P → Q) := begin intro hnqp, intro p, by_contradiction, have np := hnqp h, contradiction, end theorem contrapositive_law : (P → Q) ↔ (¬Q → ¬P) := begin split, exact impl_as_contrapositive P Q, exact impl_as_contrapositive_converse P Q, end ------------------------------------------------ -- A irrefutabilidade do LEM: ------------------------------------------------ theorem lem_irrefutable : ¬¬(P∨¬P) := begin intro n_p_or_np, have h : P ∨ ¬P, right, intro np, have h2 : P ∨ ¬P, left, exact np, contradiction, contradiction, end ------------------------------------------------ -- A lei de Peirce ------------------------------------------------ theorem peirce_law_weak : ((P → Q) → P) → ¬¬P := begin intro p_q_p, intro np, by_cases h : (P → Q), have h2 : P := p_q_p h, contradiction, have h2 : (P → Q), intro p, contradiction, have h3 : P := p_q_p h2, contradiction, end ------------------------------------------------ -- Proposições de interdefinabilidade dos ∨,∧: ------------------------------------------------ theorem disj_as_negconj : P∨Q → ¬(¬P∧¬Q) := begin intro p_or_q, intro np_or_nq, cases np_or_nq with hnp hnq, cases p_or_q with hp hq, contradiction, contradiction, end theorem conj_as_negdisj : P∧Q → ¬(¬P∨¬Q) := begin intro p_and_q, intro np_or_nq, cases p_and_q with hp hq, cases np_or_nq with hnp hnq, contradiction, contradiction, end ------------------------------------------------ -- As leis de De Morgan para ∨,∧: ------------------------------------------------ theorem demorgan_disj : ¬(P∨Q) → (¬P ∧ ¬Q) := begin intro n_p_or_q, split, intro p, have h2 : P ∨ Q, left, exact p, contradiction, intro q, have h2 : P ∨ Q, right, exact q, contradiction, end theorem demorgan_disj_converse : (¬P ∧ ¬Q) → ¬(P∨Q) := begin intro np_and_nq, intro p_or_q, cases np_and_nq with hnp hnq, cases p_or_q with hp hq, contradiction, contradiction, end theorem demorgan_conj : ¬(P∧Q) → (¬Q ∨ ¬P) := begin intro p_and_q, by_cases q:Q, right, intro p, have hpq: P∧Q, split, exact p, exact q, contradiction, left, exact q, end theorem demorgan_conj_converse : (¬Q ∨ ¬P) → ¬(P∧Q) := begin intro nq_or_np, intro p_and_q, cases p_and_q with p q, cases nq_or_np with hnq hnp, contradiction, contradiction, end -- try again withou magic theorem demorgan_conj_law : ¬(P∧Q) ↔ (¬Q ∨ ¬P) := begin split, exact demorgan_conj P Q, exact demorgan_conj_converse P Q, end theorem demorgan_disj_law : ¬(P∨Q) ↔ (¬P ∧ ¬Q) := begin split, exact demorgan_disj P Q, exact demorgan_disj_converse P Q, end ------------------------------------------------ -- Proposições de distributividade dos ∨,∧: ------------------------------------------------ theorem distr_conj_disj : P∧(Q∨R) → (P∧Q)∨(P∧R) := begin intro p_and_q_or_r, cases p_and_q_or_r with p q_or_r, cases q_or_r with q r, left, split, exact p, exact q, right, split, exact p, exact r, end theorem distr_conj_disj_converse : (P∧Q)∨(P∧R) → P∧(Q∨R) := begin intro pq_pr, cases pq_pr with p_and_q p_and_r, cases p_and_q with p q, split, exact p, left, exact q, cases p_and_r with p r, split, exact p, right, exact r, end theorem distr_disj_conj : P∨(Q∧R) → (P∨Q)∧(P∨R) := begin intro p_or_qr, cases p_or_qr with p qr, split, left, exact p, left, exact p, cases qr with q r, split, right, exact q, right, exact r, end theorem distr_disj_conj_converse : (P∨Q)∧(P∨R) → P∨(Q∧R) := begin intro pq_and_pr, cases pq_and_pr with pq pr, cases pq with p q, left, exact p, cases pr with p r, left, exact p, right, split, exact q, exact r, end ------------------------------------------------ -- Currificação ------------------------------------------------ theorem curry_prop : ((P∧Q)→R) → (P→(Q→R)) := begin intro pq_r, intro p, intro q, have h : P ∧ Q, split, exact p, exact q, have r : R := pq_r h, exact r, end theorem uncurry_prop : (P→(Q→R)) → ((P∧Q)→R) := begin intro p_q_r, intro pq, cases pq with p q, have q_r : Q → R := p_q_r p, have r : R := q_r q, exact r, end ------------------------------------------------ -- Reflexividade da →: ------------------------------------------------ theorem impl_refl : P → P := begin intro p, exact p, end ------------------------------------------------ -- Weakening and contraction: ------------------------------------------------ theorem weaken_disj_right : P → (P∨Q) := begin intro p, left, exact p, end theorem weaken_disj_left : Q → (P∨Q) := begin intro q, right, exact q, end theorem weaken_conj_right : (P∧Q) → P := begin intro pq, cases pq with p q, exact p, end theorem weaken_conj_left : (P∧Q) → Q := begin intro pq, cases pq with p q, exact q, end theorem conj_idempot : (P∧P) ↔ P := begin split, intro pp, cases pp with p p, exact p, intro pp, split, exact pp, exact pp, end theorem disj_idempot : (P∨P) ↔ P := begin split, intro pp, cases pp with p p, repeat {exact p}, intro pp, left, exact pp, end end propositional ---------------------------------------------------------------- section predicate variable U : Type variables P Q : U -> Prop ------------------------------------------------ -- As leis de De Morgan para ∃,∀: ------------------------------------------------ theorem demorgan_exists : ¬(∃x, P x) → (∀x, ¬P x) := begin intro nex_px, intro x, intro n_px, have h : ∃x, P x, existsi x, exact n_px, contradiction, end theorem demorgan_exists_converse : (∀x, ¬P x) → ¬(∃x, P x) := begin intro px_npx, intro ex_px, cases ex_px with x px, have h : ¬P x := px_npx x, contradiction, end theorem demorgan_forall : ¬(∀x, P x) → (∃x, ¬P x) := begin intro pu_px, by_contradiction ne, apply pu_px, intro x, by_contradiction npx, apply ne, existsi x, exact npx, end theorem demorgan_forall_converse : (∃x, ¬P x) → ¬(∀x, P x) := begin intro e_npx, intro p_px, cases e_npx with x npx, have h : P x := p_px x, contradiction, end theorem demorgan_forall_law : ¬(∀x, P x) ↔ (∃x, ¬P x) := begin split, exact demorgan_forall U P, exact demorgan_forall_converse U P, end theorem demorgan_exists_law : ¬(∃x, P x) ↔ (∀x, ¬P x) := begin split, exact demorgan_exists U P, exact demorgan_exists_converse U P, end ------------------------------------------------ -- Proposições de interdefinabilidade dos ∃,∀: ------------------------------------------------ theorem exists_as_neg_forall : (∃x, P x) → ¬(∀x, ¬P x) := begin intro e_px, intro p_npx, cases e_px with x px, have h: ¬P x := p_npx x, contradiction, end theorem forall_as_neg_exists : (∀x, P x) → ¬(∃x, ¬P x) := begin intro p_px, intro e_npx, cases e_npx with x npx, have h: P x := p_px x, contradiction, end theorem forall_as_neg_exists_converse : ¬(∃x, ¬P x) → (∀x, P x) := begin intros n_e_npx x, by_contradiction npx, apply n_e_npx, existsi x, exact npx, end theorem exists_as_neg_forall_converse : ¬(∀x, ¬P x) → (∃x, P x) := begin rw contrapositive_law, rw doubleneg_law, exact demorgan_exists U P, end theorem forall_as_neg_exists_law : (∀x, P x) ↔ ¬(∃x, ¬P x) := begin split, exact forall_as_neg_exists U P, exact forall_as_neg_exists_converse U P, end theorem exists_as_neg_forall_law : (∃x, P x) ↔ ¬(∀x, ¬P x) := begin split, exact exists_as_neg_forall U P, exact exists_as_neg_forall_converse U P, end ------------------------------------------------ -- Proposições de distributividade de quantificadores: ------------------------------------------------ theorem exists_conj_as_conj_exists : (∃x, P x ∧ Q x) → (∃x, P x) ∧ (∃x, Q x) := begin intro e_pxq, cases e_pxq with x pxq, cases pxq with px qx, split, existsi x, exact px, existsi x, exact qx, end theorem exists_disj_as_disj_exists : (∃x, P x ∨ Q x) → (∃x, P x) ∨ (∃x, Q x) := begin intro e_px_qx, cases e_px_qx with x q, cases q with px qx, left, existsi x, exact px, right, existsi x, exact qx, end theorem exists_disj_as_disj_exists_converse : (∃x, P x) ∨ (∃x, Q x) → (∃x, P x ∨ Q x) := begin intro epx_eqx, cases epx_eqx with epx eqx, cases epx with x px, existsi x, left, exact px, cases eqx with x qx, existsi x, right, exact qx, end theorem forall_conj_as_conj_forall : (∀x, P x ∧ Q x) → (∀x, P x) ∧ (∀x, Q x) := begin intro p_px_qx, split, intro x, have h : P x ∧ Q x := p_px_qx x, cases h with px qx, exact px, intro x, have h: P x ∧ Q x := p_px_qx x, cases h with px qx, exact qx, end theorem forall_conj_as_conj_forall_converse : (∀x, P x) ∧ (∀x, Q x) → (∀x, P x ∧ Q x) := begin intro p_px_qx, intro x, cases p_px_qx with px qx, split, have h : P x := px x, exact h, have h : Q x := qx x, exact h end theorem forall_disj_as_disj_forall_converse : (∀x, P x) ∨ (∀x, Q x) → (∀x, P x ∨ Q x) := begin intro p_px_qx, intro x, cases p_px_qx with px qx, have h : P x := px x, left, exact h, have h : Q x := qx x, right, exact h, end /- NOT THEOREMS -------------------------------- theorem forall_disj_as_disj_forall : (∀x, P x ∨ Q x) → (∀x, P x) ∨ (∀x, Q x) := begin end theorem exists_conj_as_conj_exists_converse : (∃x, P x) ∧ (∃x, Q x) → (∃x, P x ∧ Q x) := begin end ---------------------------------------------- -/ end predicate
(*<*) theory Restrict_Frees_Impl imports Restrict_Bounds_Impl Restrict_Frees begin (*>*) section \<open>Refining the Non-Deterministic @{term simplification.split} Function\<close> definition "fixfree_impl \<Q> = map (apsnd set) (filter (\<lambda>(Q, _ :: (nat \<times> nat) list). \<exists>x \<in> fv Q. gen_impl x Q = []) (sorted_list_of_set ((apsnd sorted_list_of_set) ` \<Q>)))" definition "nongens_impl Q = filter (\<lambda>x. gen_impl x Q = []) (sorted_list_of_set (fv Q))" lemma set_nongens_impl: "set (nongens_impl Q) = nongens Q" by (auto simp: nongens_def nongens_impl_def set_gen_impl simp flip: List.set_empty) lemma set_fixfree_impl: "finite \<Q> \<Longrightarrow> \<forall>(_, Qeq) \<in> \<Q>. finite Qeq \<Longrightarrow> set (fixfree_impl \<Q>) = fixfree \<Q>" by (fastforce simp: fixfree_def nongens_def fixfree_impl_def set_gen_impl image_iff apsnd_def map_prod_def simp flip: List.set_empty split: prod.splits intro: exI[of _ "sorted_list_of_set _"]) lemma fixfree_empty_iff: "finite \<Q> \<Longrightarrow> \<forall>(_, Qeq) \<in> \<Q>. finite Qeq \<Longrightarrow> fixfree \<Q> \<noteq> {} \<longleftrightarrow> fixfree_impl \<Q> \<noteq> []" by (auto simp: set_fixfree_impl dest: arg_cong[of _ _ set] simp flip: List.set_empty) definition "inf_impl \<Q>fin Q = map (apsnd set) (filter (\<lambda>(Qfix, xys). disjointvars Qfix (set xys) \<noteq> {} \<or> fv Qfix \<union> Field (set xys) \<noteq> fv Q) (sorted_list_of_set ((apsnd sorted_list_of_set) ` \<Q>fin)))" lemma set_inf_impl: "finite \<Q>fin \<Longrightarrow> \<forall>(_, Qeq) \<in> \<Q>fin. finite Qeq \<Longrightarrow> set (inf_impl \<Q>fin Q) = inf \<Q>fin Q" by (fastforce simp: inf_def inf_impl_def image_iff) lemma inf_empty_iff: "finite \<Q>fin \<Longrightarrow> \<forall>(_, Qeq) \<in> \<Q>fin. finite Qeq \<Longrightarrow> inf \<Q>fin Q \<noteq> {} \<longleftrightarrow> inf_impl \<Q>fin Q \<noteq> []" by (auto simp: set_inf_impl dest: arg_cong[of _ _ set] simp flip: List.set_empty) definition (in simplification) split_impl :: "('a :: {infinite, linorder}, 'b :: linorder) fmla \<Rightarrow> (('a, 'b) fmla \<times> ('a, 'b) fmla) nres" where "split_impl Q = do { Q' \<leftarrow> rb_impl Q; \<Q>pair \<leftarrow> WHILE (\<lambda>(\<Q>fin, _). fixfree_impl \<Q>fin \<noteq> []) (\<lambda>(\<Q>fin, \<Q>inf). do { (Qfix, Qeq) \<leftarrow> RETURN (hd (fixfree_impl \<Q>fin)); x \<leftarrow> RETURN (hd (nongens_impl Qfix)); G \<leftarrow> RETURN (hd (cov_impl x Qfix)); let \<Q>fin = \<Q>fin - {(Qfix, Qeq)} \<union> {(simp (Conj Qfix (DISJ (qps G))), Qeq)} \<union> (\<Union>y \<in> eqs x G. {(cp (Qfix[x \<^bold>\<rightarrow> y]), Qeq \<union> {(x,y)})}); let \<Q>inf = \<Q>inf \<union> {cp (Qfix \<^bold>\<bottom> x)}; RETURN (\<Q>fin, \<Q>inf)}) ({(Q', {})}, {}); \<Q>pair \<leftarrow> WHILE (\<lambda>(\<Q>fin, _). inf_impl \<Q>fin Q \<noteq> []) (\<lambda>(\<Q>fin, \<Q>inf). do { Qpair \<leftarrow> RETURN (hd (inf_impl \<Q>fin Q)); let \<Q>fin = \<Q>fin - {Qpair}; let \<Q>inf = \<Q>inf \<union> {CONJ Qpair}; RETURN (\<Q>fin, \<Q>inf)}) \<Q>pair; let (Qfin, Qinf) = assemble \<Q>pair; Qinf \<leftarrow> rb_impl Qinf; RETURN (Qfin, Qinf)}" lemma (in simplification) split_INV2_imp_split_INV1: "split_INV2 Q \<Q>pair \<Longrightarrow> split_INV1 Q \<Q>pair" unfolding split_INV1_def split_INV2_def wf_state_def sr_def by auto lemma hd_fixfree_impl_props: assumes "finite \<Q>" "\<forall>(_, Qeq) \<in> \<Q>. finite Qeq" "fixfree_impl \<Q> \<noteq> []" shows "hd (fixfree_impl \<Q>) \<in> \<Q>" "nongens (fst (hd (fixfree_impl \<Q>))) \<noteq> {}" proof - from hd_in_set[of "fixfree_impl \<Q>"] assms(3) have "hd (fixfree_impl \<Q>) \<in> set (fixfree_impl \<Q>)" by blast then have "hd (fixfree_impl \<Q>) \<in> fixfree \<Q>" by (auto simp: set_fixfree_impl assms(1,2)) then show "hd (fixfree_impl \<Q>) \<in> \<Q>" "nongens (fst (hd (fixfree_impl \<Q>))) \<noteq> {}" unfolding fixfree_def by auto qed lemma (in simplification) split_impl_refines_split: "split_impl Q \<le> split Q" apply (unfold split_def split_impl_def Let_def) supply rb_impl_refines_rb[refine_mono] apply refine_mono apply (rule order_trans[OF WHILE_le_WHILEI[where I="split_INV1 Q"]]) apply (rule order_trans[OF WHILEI_le_WHILEIT]) apply (rule WHILEIT_refine[OF _ _ _ refine_IdI, THEN refine_IdD]) apply (simp_all only: pair_in_Id_conv split: prod.splits) [4] apply (intro allI impI, hypsubst_thin) apply (subst fixfree_empty_iff; auto simp: split_INV1_def wf_state_def) apply (intro allI impI, simp only: prod.inject, elim conjE, hypsubst_thin) apply refine_mono apply (subst set_fixfree_impl[symmetric]; auto simp: split_INV1_def wf_state_def intro!: hd_in_set) apply clarsimp subgoal for Q' \<Q>fin \<Q>inf Qfix Qeq Qfix' Qeq' using hd_fixfree_impl_props(2)[of \<Q>fin] by (force simp: split_INV1_def wf_state_def set_nongens_impl[symmetric] dest!: sym[of "(Qfix', _)"] intro!: hd_in_set) apply clarsimp subgoal for Q' \<Q>fin \<Q>inf Qfix Qeq Qfix' Qeq' apply (intro RETURN_rule cov_impl_cov hd_in_set rrb_cov_impl) using hd_fixfree_impl_props(1)[of \<Q>fin] by (force simp: split_INV1_def wf_state_def dest!: sym[of "(Qfix', _)"]) apply (rule order_trans[OF WHILE_le_WHILEI[where I="split_INV1 Q"]]) apply (rule order_trans[OF WHILEI_le_WHILEIT]) apply (rule WHILEIT_refine[OF _ _ _ refine_IdI, THEN refine_IdD]) apply (simp_all only: pair_in_Id_conv split_INV2_imp_split_INV1 split: prod.splits) [4] apply (intro allI impI, simp only: prod.inject, elim conjE, hypsubst_thin) apply (subst inf_empty_iff; auto simp: split_INV2_def wf_state_def) apply (intro allI impI, simp only: prod.inject, elim conjE, hypsubst_thin) apply refine_mono apply (subst set_inf_impl[symmetric]; auto simp: split_INV2_def wf_state_def intro!: hd_in_set) done definition (in simplification) split_impl_det :: "('a :: {infinite, linorder}, 'b :: linorder) fmla \<Rightarrow> (('a, 'b) fmla \<times> ('a, 'b) fmla) dres" where "split_impl_det Q = do { Q' \<leftarrow> rb_impl_det Q; \<Q>pair \<leftarrow> dWHILE (\<lambda>(\<Q>fin, _). fixfree_impl \<Q>fin \<noteq> []) (\<lambda>(\<Q>fin, \<Q>inf). do { (Qfix, Qeq) \<leftarrow> dRETURN (hd (fixfree_impl \<Q>fin)); x \<leftarrow> dRETURN (hd (nongens_impl Qfix)); G \<leftarrow> dRETURN (hd (cov_impl x Qfix)); let \<Q>fin = \<Q>fin - {(Qfix, Qeq)} \<union> {(simp (Conj Qfix (DISJ (qps G))), Qeq)} \<union> (\<Union>y \<in> eqs x G. {(cp (Qfix[x \<^bold>\<rightarrow> y]), Qeq \<union> {(x,y)})}); let \<Q>inf = \<Q>inf \<union> {cp (Qfix \<^bold>\<bottom> x)}; dRETURN (\<Q>fin, \<Q>inf)}) ({(Q', {})}, {}); \<Q>pair \<leftarrow> dWHILE (\<lambda>(\<Q>fin, _). inf_impl \<Q>fin Q \<noteq> []) (\<lambda>(\<Q>fin, \<Q>inf). do { Qpair \<leftarrow> dRETURN (hd (inf_impl \<Q>fin Q)); let \<Q>fin = \<Q>fin - {Qpair}; let \<Q>inf = \<Q>inf \<union> {CONJ Qpair}; dRETURN (\<Q>fin, \<Q>inf)}) \<Q>pair; let (Qfin, Qinf) = assemble \<Q>pair; Qinf \<leftarrow> rb_impl_det Qinf; dRETURN (Qfin, Qinf)}" lemma (in simplification) split_impl_det_refines_split_impl: "nres_of (split_impl_det Q) \<le> split_impl Q" unfolding split_impl_def split_impl_det_def Let_def by (refine_transfer rb_impl_det_refines_rb_impl) lemmas (in simplification) SPLIT_correct = split_impl_det_refines_split_impl[THEN order_trans, OF split_impl_refines_split[THEN order_trans, OF split_correct]] (*<*) end (*>*)
<a href="https://colab.research.google.com/github/ol8vil/thingsboard/blob/master/GAAX.ipynb" target="_parent"></a> ``` import math from sympy import * init_printing(use_unicode=True) ``` ``` PR1 = 20*10**6 # reservoir pressure for 1st well PR2 = 20*10**6 # reservoir pressure for 2nd well PRw1 = 18*10**6 # downhole pressure for 1st well PRw2 = 18*10**6 # downhole pressure for 2nd well R1 = 300 # contour supplement radius for 1st well R2 = 300 # contour supplement radius for 2nd well Rw1 = 0.12 # 1st well’s radius Rw2 = 0.12 # 2nd well’s radius b1 = 140 # vertical distance from 1st well to origin of the coordinates in the intersection area b2 = 140 # vertical distance from 2nd well to origin of the coordinates in the intersection area h1 = 4 # thickness of the reservoir layer h2 = 4 # thickness of the reservoir layer k = 0.63*10**-2 # permeability coefficient μ = 1*10**-2 r1z1 = 57.4 # radius on edge of zone 1 for well 1 r1z2 = 262 # radius on edge of zone 2 for well 1 μz1 = 103.4*10**-4 # viscosity on the boarder of the 1st zone μz2 = 141*10**-4 # viscosity on the boarder of the 2nd zone μz3 = 206.9*10**-4 # viscosity on the boarder of the 3rd zone (contour supplement) P1z1 = PR1-((PR1-PRw1) * math.log(R1/r1z1))/math.log(R1/Rw1)# pressure on edge of zone 1 for well 1 P1z2 = PR1-((PR1-PRw1) * math.log(R1/r1z2))/math.log(R1/Rw1)# pressure on edge of zone 2 for well 1 P2z1 = P1z1 # pressure on edge of zone 1 for well 2 P2z2 = P1z2 # pressure on edge of zone 2 for well 2 r2z1 = R2 * (R2/Rw2)**(-(PR2-P2z1)/(PR2-PRw2)) # radius on edge of zone 1 for well 2 r2z2 = R2 * (R2/Rw2)**(-(PR2-P2z2)/(PR2-PRw2)) # radius on edge of zone 2 for well 2 ``` ``` # Calculate the ratio of the pressure drop over the natural log of the contour # supplement radius over wells radius for both wells DP1 = (PR1 - PRw1) / log(R1 / Rw1) DP2 = (PR2 - PRw2) / log(R2 / Rw2) ``` ``` # define radius for any given point in the intersection area for the 1st and # 2nd well x, y = symbols('x y') r1 = sqrt(x**2 + (y+b1)**2) r2 = sqrt(x**2 + (y-b2)**2) ``` ``` # define Cos[θ] as a function of the angle between the two pressure vectors w = (r1**2 +r2**2 - (b1+b2)**2) / (2*r1*r2) w ``` ``` #define the Net pressure function for both pressure vectors P = sqrt(DP1**2 * log((R1/r1)**2)+DP2**2*log((R2/r2)**2)+2*DP1*DP2*log(R2/r2)*log(R1/r1)*w) P ``` ``` xintersection = (math.sqrt(-(b1+b2)**4+2*R1**2*(b1+b2)**2+2*R2**2*(b1+b2)**2-(R1-R2)**2))/(2*sqrt(b1**2+2*b1*b2+b2**2)) yintersection = (-b1**2+b2**2+R1**2-R2**2)/(2*(b1+b2)) print(xintersection) print(yintersection) ``` 265.329983228432 0.0 ``` yP0 = solve(DP1*log(R1/r1.subs(x, 0))-DP2*log(R2/r2.subs(x, 0)),y) # -4.89639*10**-15 yP0 ```
#pragma once #include <voilk/protocol/authority.hpp> #include <fc/variant.hpp> #include <boost/container/flat_set.hpp> #include <string> #include <vector> namespace voilk { namespace protocol { struct get_required_auth_visitor { typedef void result_type; flat_set< account_name_type >& active; flat_set< account_name_type >& owner; flat_set< account_name_type >& posting; std::vector< authority >& other; get_required_auth_visitor( flat_set< account_name_type >& a, flat_set< account_name_type >& own, flat_set< account_name_type >& post, std::vector< authority >& oth ) : active( a ), owner( own ), posting( post ), other( oth ) {} template< typename ...Ts > void operator()( const fc::static_variant< Ts... >& v ) { v.visit( *this ); } template< typename T > void operator()( const T& v )const { v.get_required_active_authorities( active ); v.get_required_owner_authorities( owner ); v.get_required_posting_authorities( posting ); v.get_required_authorities( other ); } }; } } // voilk::protocol // // Place VOILK_DECLARE_OPERATION_TYPE in a .hpp file to declare // functions related to your operation type // #define VOILK_DECLARE_OPERATION_TYPE( OperationType ) \ \ namespace voilk { namespace protocol { \ \ void operation_validate( const OperationType& o ); \ void operation_get_required_authorities( const OperationType& op, \ flat_set< account_name_type >& active, \ flat_set< account_name_type >& owner, \ flat_set< account_name_type >& posting, \ vector< authority >& other ); \ \ } } /* voilk::protocol */
If $f$ is the identity function on the coefficients of $p$, then $p = f(p)$.
Since 2015 Villa 's shirt sponsors have been <unk> . Previous commercial sponsors have been Davenports ( 1982 – 83 ) , Mita ( 1983 – 93 ) , Müller ( 1993 – 95 ) , AST Computer ( 1995 – 98 ) , LDV ( 1998 – 2000 ) , NTL ( 2000 – 02 ) , Rover ( 2002 – 04 ) , DWS Investments ( 2004 – 06 ) , <unk> ( 2006 – 08 ) , <unk> ( 2010 – 11 ) , Genting Casinos ( 2011 – 13 ) , <unk> ( 2013 – 2015 ) , and Intuit <unk> ( 2015 – ) . Since 2016 , kit has been manufactured by Under Armour . Previous manufacturers have been Umbro ( 1972 – 81 , 1990 – 93 ) , le Coq Sportif ( 1981 – 83 ) , Henson ( 1983 – 87 ) , Hummel ( 1987 – 90 , 2004 – 07 ) , Asics ( 1993 – 95 ) , Reebok ( 1995 – 2000 ) , Diadora ( 2000 – 04 ) , Nike ( 2007 – 12 ) and Macron ( 2012 @-@ 16 ) .
# -*- coding: utf-8 -*- import sys import math import numpy as np import matplotlib.pyplot as plt from scipy import sparse import cg sys.path.append('..\\3rd_exercise') import multigrid as mg def rho_func(x): return np.sin(x) * np.exp(-x**2) N = 512 gridkwds = dict(rho_func=rho_func, N=N, xmin=-5, xmax=5, levels=int(math.log(N, 2)+1e-2)-1) rho = rho_func(np.linspace(-5, 5, N)) L = sparse.diags([1, -2, 1], [-1, 0, 1], (N, N), format='csc') def compare(imax_cg, imax_mg): x_cg = np.arange(imax_cg) # one mg iteration contains 2*levels single iterations of the solver N = 2*gridkwds['levels']*imax_mg x_mg = np.arange(0, N, 2*gridkwds['levels']) err_cg = cg.cg(L, rho, imax=imax_cg)[2] err_jacobi = mg.err(solver='jacobi', imax=imax_mg, **gridkwds) err_omegajac = mg.err(solver='omega_jacobi', imax=imax_mg, **gridkwds) err_gaussseidel = mg.err(solver='gauss_seidel', imax=imax_mg, **gridkwds) err_redblack = mg.err(solver='red_black', imax=imax_mg, **gridkwds) ax = plt.gca() ax.semilogy(x_cg, err_cg, label='cg') ax.semilogy(x_mg, err_jacobi, label='mg - jacobi') ax.semilogy(x_mg, err_omegajac, label='mg - omega-jacobi') ax.semilogy(x_mg, err_gaussseidel, label='mg - gauss-seidel') ax.semilogy(x_mg, err_redblack, label='mg - red-black') ax.set_title('comparision - Multigrid and Conjugate Gradient') ax.legend() compare(500, 30)
{-# LANGUAGE BangPatterns #-} {-# LANGUAGE CPP #-} {-# LANGUAGE DeriveDataTypeable #-} {-# LANGUAGE DeriveFoldable #-} {-# LANGUAGE DeriveFunctor #-} {-# LANGUAGE DeriveGeneric #-} {-# LANGUAGE DeriveTraversable #-} {-# LANGUAGE FlexibleContexts #-} {-# LANGUAGE GeneralizedNewtypeDeriving #-} {-# LANGUAGE NoImplicitPrelude #-} {-# LANGUAGE Rank2Types #-} {-# LANGUAGE ScopedTypeVariables #-} {-# LANGUAGE StandaloneDeriving #-} ----------------------------------------------------------------------------- -- | -- A class for semirings (types with two binary operations, one commutative and one associative, and two respective identities), with various general-purpose instances. -- ----------------------------------------------------------------------------- module Data.Semiring ( -- * Semiring typeclass Semiring(..) , (+) , (*) , (^) , foldMapP , foldMapT , sum , product , sum' , product' , isZero , isOne -- * Types , Add(..) , Mul(..) , WrappedNum(..) , Mod2(..) #if defined(VERSION_containers) , IntSetOf(..) , IntMapOf(..) #endif -- * Ring typeclass , Ring(..) , fromInteger , fromIntegral , minus , (-) ) where import Control.Applicative (Applicative(..), Const(..), liftA2) import Data.Bits (Bits) import Data.Bool (Bool(..), (||), (&&), otherwise) import Data.Coerce (Coercible, coerce) import Data.Complex (Complex(..)) import Data.Eq (Eq(..)) import Data.Fixed (Fixed, HasResolution) import Data.Foldable (Foldable(foldMap)) import qualified Data.Foldable as Foldable import Data.Function ((.), const, id) #if defined(VERSION_unordered_containers) || defined(VERSION_containers) import Data.Function (flip) #endif import Data.Functor (Functor(..)) #if MIN_VERSION_base(4,12,0) import Data.Functor.Contravariant (Predicate(..), Equivalence(..), Op(..)) #endif import Data.Functor.Identity (Identity(..)) #if defined(VERSION_unordered_containers) import Data.Hashable (Hashable) import Data.HashMap.Strict (HashMap) import qualified Data.HashMap.Strict as HashMap import Data.HashSet (HashSet) import qualified Data.HashSet as HashSet #endif import Data.Int (Int, Int8, Int16, Int32, Int64) import Data.Maybe (Maybe(..)) #if MIN_VERSION_base(4,12,0) import Data.Monoid (Ap(..)) #endif #if defined(VERSION_containers) #if MIN_VERSION_base(4,7,0) import Data.IntMap (IntMap) import qualified Data.IntMap as IntMap import Data.IntSet (IntSet) import qualified Data.IntSet as IntSet #endif import Data.Map (Map) import qualified Data.Map as Map #endif import Data.Monoid (Monoid(..), Dual(..)) import Data.Ord (Ord((<)), (>=)) import Data.Ord (Down(..)) import Data.Proxy (Proxy(..)) import Data.Ratio (Ratio, Rational, (%)) import Data.Semigroup.Compat (Semigroup(..)) #if defined(VERSION_containers) import Data.Set (Set) import qualified Data.Set as Set #endif import Data.Traversable (Traversable) import Data.Typeable (Typeable) import Data.Word (Word, Word8, Word16, Word32, Word64) import Foreign.C.Types (CChar, CClock, CDouble, CFloat, CInt, CIntMax, CIntPtr, CLLong, CLong, CPtrdiff, CSChar, CSUSeconds, CShort, CSigAtomic, CSize, CTime, CUChar, CUInt, CUIntMax, CUIntPtr, CULLong, CULong, CUSeconds, CUShort, CWchar) import Foreign.Ptr (IntPtr, WordPtr) import Foreign.Storable (Storable) import GHC.Enum (Enum, Bounded) import GHC.Err (error) import GHC.Float (Float, Double) import GHC.Generics (Generic,Generic1) import GHC.IO (IO) import GHC.Integer (Integer) import qualified GHC.Num as Num import GHC.Read (Read) import GHC.Real (Integral, Fractional, Real, RealFrac) import qualified GHC.Real as Real import GHC.Show (Show) import Numeric.Natural (Natural) #ifdef mingw32_HOST_OS #define HOST_OS_WINDOWS 1 #else #define HOST_OS_WINDOWS 0 #endif #if !HOST_OS_WINDOWS import System.Posix.Types (CCc, CDev, CGid, CIno, CMode, CNlink, COff, CPid, CRLim, CSpeed, CSsize, CTcflag, CUid, Fd) #endif infixl 7 *, `times` infixl 6 +, `plus`, -, `minus` infixr 8 ^ {-------------------------------------------------------------------- Helpers --------------------------------------------------------------------} -- | Raise a number to a non-negative integral power. -- If the power is negative, this will call 'error'. {-# SPECIALISE [1] (^) :: Integer -> Integer -> Integer, Integer -> Int -> Integer, Int -> Int -> Int #-} {-# INLINABLE [1] (^) #-} -- See note [Inlining (^)] (^) :: (Semiring a, Integral b) => a -> b -> a x ^ y | y < 0 = error "Data.Semiring.^: negative power" | y == 0 = one | otherwise = getMul (stimes y (Mul x)) {- Note [Inlining (^)] ~~~~~~~~~~~~~~~~~~~ The INLINABLE pragma allows (^) to be specialised at its call sites. If it is called repeatedly at the same type, that can make a huge difference, because of those constants which can be repeatedly calculated. Currently the fromInteger calls are not floated because we get \d1 d2 x y -> blah after the gentle round of simplification. -} {- Rules for powers with known small exponent see Trac #5237 For small exponents, (^) is inefficient compared to manually expanding the multiplication tree. Here, rules for the most common exponent types are given. The range of exponents for which rules are given is quite arbitrary and kept small to not unduly increase the number of rules. It might be desirable to have corresponding rules also for exponents of other types (e.g., Word), but it's doubtful they would fire, since the exponents of other types tend to get floated out before the rule has a chance to fire. (Why?) Note: Trying to save multiplication by sharing the square for exponents 4 and 5 does not save time, indeed, for Double, it is up to twice slower, so the rules contain flat sequences of multiplications. -} {-# RULES "^0/Int" forall x. x ^ (0 :: Int) = one "^1/Int" forall x. x ^ (1 :: Int) = let u = x in u "^2/Int" forall x. x ^ (2 :: Int) = let u = x in u*u "^3/Int" forall x. x ^ (3 :: Int) = let u = x in u*u*u "^4/Int" forall x. x ^ (4 :: Int) = let u = x in u*u*u*u "^5/Int" forall x. x ^ (5 :: Int) = let u = x in u*u*u*u*u "^0/Integer" forall x. x ^ (0 :: Integer) = one "^1/Integer" forall x. x ^ (1 :: Integer) = let u = x in u "^2/Integer" forall x. x ^ (2 :: Integer) = let u = x in u*u "^3/Integer" forall x. x ^ (3 :: Integer) = let u = x in u*u*u "^4/Integer" forall x. x ^ (4 :: Integer) = let u = x in u*u*u*u "^5/Integer" forall x. x ^ (5 :: Integer) = let u = x in u*u*u*u*u #-} -- | Infix shorthand for 'plus'. (+) :: Semiring a => a -> a -> a (+) = plus {-# INLINE (+) #-} -- | Infix shorthand for 'times'. (*) :: Semiring a => a -> a -> a (*) = times {-# INLINE (*) #-} -- | Infix shorthand for 'minus'. (-) :: Ring a => a -> a -> a (-) = minus {-# INLINE (-) #-} -- | Map each element of the structure to a semiring, and combine the results -- using 'plus'. foldMapP :: (Foldable t, Semiring s) => (a -> s) -> t a -> s foldMapP f = Foldable.foldr (plus . f) zero {-# INLINE foldMapP #-} -- | Map each element of the structure to a semiring, and combine the results -- using 'times'. foldMapT :: (Foldable t, Semiring s) => (a -> s) -> t a -> s foldMapT f = Foldable.foldr (times . f) one {-# INLINE foldMapT #-} infixr 9 #. (#.) :: Coercible b c => (b -> c) -> (a -> b) -> a -> c (#.) _ = coerce -- | The 'sum' function computes the additive sum of the elements in a structure. -- This function is lazy. For a strict version, see 'sum''. sum :: (Foldable t, Semiring a) => t a -> a sum = getAdd #. foldMap Add {-# INLINE sum #-} -- | The 'product' function computes the product of the elements in a structure. -- This function is lazy. for a strict version, see 'product''. product :: (Foldable t, Semiring a) => t a -> a product = getMul #. foldMap Mul {-# INLINE product #-} -- | The 'sum'' function computes the additive sum of the elements in a structure. -- This function is strict. For a lazy version, see 'sum'. sum' :: (Foldable t, Semiring a) => t a -> a sum' = Foldable.foldl' plus zero {-# INLINE sum' #-} -- | The 'product'' function computes the additive sum of the elements in a structure. -- This function is strict. For a lazy version, see 'product'. product' :: (Foldable t, Semiring a) => t a -> a product' = Foldable.foldl' times one {-# INLINE product' #-} -- | Monoid under 'plus'. Analogous to 'Data.Monoid.Sum', but -- uses the 'Semiring' constraint rather than 'Num.Num'. newtype Add a = Add { getAdd :: a } deriving ( Bounded , Enum , Eq , Foldable , Fractional , Functor , Generic , Generic1 , Num.Num , Ord , Read , Real , RealFrac , Show , Storable , Traversable , Typeable ) instance Semiring a => Semigroup (Add a) where Add a <> Add b = Add (a + b) stimes n (Add a) = Add (fromNatural (Real.fromIntegral n) * a) {-# INLINE (<>) #-} instance Semiring a => Monoid (Add a) where mempty = Add zero mappend = (<>) {-# INLINE mempty #-} {-# INLINE mappend #-} -- | This is an internal type, solely for purposes -- of default implementation of 'fromNatural'. newtype Add' a = Add' { getAdd' :: a } instance Semiring a => Semigroup (Add' a) where Add' a <> Add' b = Add' (a + b) -- | Monoid under 'times'. Analogous to 'Data.Monoid.Product', but -- uses the 'Semiring' constraint rather than 'Num.Num'. newtype Mul a = Mul { getMul :: a } deriving ( Bounded , Enum , Eq , Foldable , Fractional , Functor , Generic , Generic1 , Num.Num , Ord , Read , Real , RealFrac , Show , Storable , Traversable , Typeable ) instance Semiring a => Semigroup (Mul a) where Mul a <> Mul b = Mul (a * b) {-# INLINE (<>) #-} instance Semiring a => Monoid (Mul a) where mempty = Mul one mappend = (<>) {-# INLINE mempty #-} {-# INLINE mappend #-} -- | Provide Semiring and Ring for an arbitrary 'Num.Num'. It is useful with GHC 8.6+'s DerivingVia extension. newtype WrappedNum a = WrapNum { unwrapNum :: a } deriving ( Bounded , Enum , Eq , Foldable , Fractional , Functor , Generic , Generic1 , Num.Num , Ord , Read , Real , RealFrac , Show , Storable , Traversable , Typeable , Bits ) instance Num.Num a => Semiring (WrappedNum a) where plus = (Num.+) zero = 0 times = (Num.*) one = 1 fromNatural = Real.fromIntegral instance Num.Num a => Ring (WrappedNum a) where negate = Num.negate -- | 'Mod2' represents the integers mod 2. -- -- It is useful in the computing of <https://en.wikipedia.org/wiki/Zhegalkin_polynomial Zhegalkin polynomials>. newtype Mod2 = Mod2 { getMod2 :: Bool } deriving ( Bounded , Enum , Eq , Ord , Read , Show , Generic ) instance Semiring Mod2 where -- we inline the definition of 'xor' -- on Bools, since the instance did not exist until -- base-4.7.0. plus (Mod2 x) (Mod2 y) = Mod2 (x /= y) times (Mod2 x) (Mod2 y) = Mod2 (x && y) zero = Mod2 False one = Mod2 True instance Ring Mod2 where negate = id {-# INLINE negate #-} {-------------------------------------------------------------------- Classes --------------------------------------------------------------------} -- | The class of semirings (types with two binary -- operations and two respective identities). One -- can think of a semiring as two monoids of the same -- underlying type, with the first being commutative. -- In the documentation, you will often see the first -- monoid being referred to as @additive@, and the second -- monoid being referred to as @multiplicative@, a typical -- convention when talking about semirings. -- -- For any type R with a 'Num.Num' -- instance, the additive monoid is (R, 'Prelude.+', 0) -- and the multiplicative monoid is (R, 'Prelude.*', 1). -- -- For 'Prelude.Bool', the additive monoid is ('Prelude.Bool', 'Prelude.||', 'Prelude.False') -- and the multiplicative monoid is ('Prelude.Bool', 'Prelude.&&', 'Prelude.True'). -- -- Instances should satisfy the following laws: -- -- [/additive left identity/] -- @'zero' '+' x = x@ -- [/additive right identity/] -- @x '+' 'zero' = x@ -- [/additive associativity/] -- @x '+' (y '+' z) = (x '+' y) '+' z@ -- [/additive commutativity/] -- @x '+' y = y '+' x@ -- [/multiplicative left identity/] -- @'one' '*' x = x@ -- [/multiplicative right identity/] -- @x '*' 'one' = x@ -- [/multiplicative associativity/] -- @x '*' (y '*' z) = (x '*' y) '*' z@ -- [/left-distributivity of '*' over '+'/] -- @x '*' (y '+' z) = (x '*' y) '+' (x '*' z)@ -- [/right-distributivity of '*' over '+'/] -- @(x '+' y) '*' z = (x '*' z) '+' (y '*' z)@ -- [/annihilation/] -- @'zero' '*' x = x '*' 'zero' = 'zero'@ class Semiring a where #if __GLASGOW_HASKELL__ >= 708 {-# MINIMAL plus, times, (zero, one | fromNatural) #-} #endif plus :: a -> a -> a -- ^ Commutative Operation zero :: a -- ^ Commutative Unit zero = fromNatural 0 times :: a -> a -> a -- ^ Associative Operation one :: a -- ^ Associative Unit one = fromNatural 1 fromNatural :: Natural -> a -- ^ Homomorphism of additive semigroups fromNatural 0 = zero fromNatural n = getAdd' (stimes n (Add' one)) -- | The class of semirings with an additive inverse. -- -- @'negate' a '+' a = 'zero'@ class Semiring a => Ring a where #if __GLASGOW_HASKELL__ >= 708 {-# MINIMAL negate #-} #endif negate :: a -> a -- | Subtract two 'Ring' values. For any type @R@ with -- a 'Num.Num' instance, this is the same as '(Prelude.-)'. -- -- @x `minus` y = x '+' 'negate' y@ minus :: Ring a => a -> a -> a minus x y = x + negate y {-# INLINE minus #-} -- | Convert from integer to ring. -- -- When @{-#@ @LANGUAGE RebindableSyntax #-}@ is enabled, -- this function is used for desugaring integer literals. -- This may be used to facilitate transition from 'Num.Num' to 'Ring': -- no need to replace 0 and 1 with 'one' and 'zero' -- or to cast numeric literals. fromInteger :: Ring a => Integer -> a fromInteger x | x >= 0 = fromNatural (Num.fromInteger x) | otherwise = negate (fromNatural (Num.fromInteger (Num.negate x))) {-# INLINE fromInteger #-} -- | Convert from integral to ring. fromIntegral :: (Integral a, Ring b) => a -> b fromIntegral x | x >= 0 = fromNatural (Real.fromIntegral x) | otherwise = negate (fromNatural (Real.fromIntegral (Num.negate x))) {-# INLINE fromIntegral #-} {-------------------------------------------------------------------- Instances (base) --------------------------------------------------------------------} instance Semiring b => Semiring (a -> b) where plus f g = \x -> f x `plus` g x zero = const zero times f g = \x -> f x `times` g x one = const one fromNatural = const . fromNatural {-# INLINE plus #-} {-# INLINE zero #-} {-# INLINE times #-} {-# INLINE one #-} {-# INLINE fromNatural #-} instance Ring b => Ring (a -> b) where negate f x = negate (f x) {-# INLINE negate #-} instance Semiring () where plus _ _ = () zero = () times _ _ = () one = () fromNatural _ = () {-# INLINE plus #-} {-# INLINE zero #-} {-# INLINE times #-} {-# INLINE one #-} {-# INLINE fromNatural #-} instance Ring () where negate _ = () {-# INLINE negate #-} instance Semiring (Proxy a) where plus _ _ = Proxy zero = Proxy times _ _ = Proxy one = Proxy fromNatural _ = Proxy {-# INLINE plus #-} {-# INLINE zero #-} {-# INLINE times #-} {-# INLINE one #-} {-# INLINE fromNatural #-} instance Semiring Bool where plus = (||) zero = False times = (&&) one = True fromNatural 0 = False fromNatural _ = True {-# INLINE plus #-} {-# INLINE zero #-} {-# INLINE times #-} {-# INLINE one #-} {-# INLINE fromNatural #-} instance Semiring a => Semiring (Maybe a) where zero = Nothing one = Just one plus Nothing y = y plus x Nothing = x plus (Just x) (Just y) = Just (plus x y) times Nothing _ = Nothing times _ Nothing = Nothing times (Just x) (Just y) = Just (times x y) fromNatural 0 = Nothing fromNatural n = Just (fromNatural n) {-# INLINE plus #-} {-# INLINE zero #-} {-# INLINE times #-} {-# INLINE one #-} {-# INLINE fromNatural #-} instance Semiring a => Semiring (IO a) where zero = pure zero one = pure one plus = liftA2 plus times = liftA2 times fromNatural = pure . fromNatural {-# INLINE plus #-} {-# INLINE zero #-} {-# INLINE times #-} {-# INLINE one #-} {-# INLINE fromNatural #-} instance Ring a => Ring (IO a) where negate = fmap negate {-# INLINE negate #-} instance Semiring a => Semiring (Dual a) where zero = Dual zero Dual x `plus` Dual y = Dual (y `plus` x) one = Dual one Dual x `times` Dual y = Dual (y `times` x) fromNatural = Dual . fromNatural {-# INLINE plus #-} {-# INLINE zero #-} {-# INLINE times #-} {-# INLINE one #-} {-# INLINE fromNatural #-} instance Ring a => Ring (Dual a) where negate (Dual x) = Dual (negate x) {-# INLINE negate #-} instance Semiring a => Semiring (Const a b) where zero = Const zero one = Const one plus (Const x) (Const y) = Const (x `plus` y) times (Const x) (Const y) = Const (x `times` y) fromNatural = Const . fromNatural {-# INLINE plus #-} {-# INLINE zero #-} {-# INLINE times #-} {-# INLINE one #-} {-# INLINE fromNatural #-} instance Ring a => Ring (Const a b) where negate (Const x) = Const (negate x) {-# INLINE negate #-} -- | This instance can suffer due to floating point arithmetic. instance Ring a => Semiring (Complex a) where zero = zero :+ zero one = one :+ zero plus (x :+ y) (x' :+ y') = plus x x' :+ plus y y' times (x :+ y) (x' :+ y') = (x * x' - (y * y')) :+ (x * y' + y * x') fromNatural n = fromNatural n :+ zero {-# INLINE plus #-} {-# INLINE zero #-} {-# INLINE times #-} {-# INLINE one #-} {-# INLINE fromNatural #-} instance Ring a => Ring (Complex a) where negate (x :+ y) = negate x :+ negate y {-# INLINE negate #-} #if MIN_VERSION_base(4,12,0) instance (Semiring a, Applicative f) => Semiring (Ap f a) where zero = pure zero one = pure one plus = liftA2 plus times = liftA2 times fromNatural = pure . fromNatural {-# INLINE plus #-} {-# INLINE zero #-} {-# INLINE times #-} {-# INLINE one #-} {-# INLINE fromNatural #-} instance (Ring a, Applicative f) => Ring (Ap f a) where negate = fmap negate {-# INLINE negate #-} #endif #if MIN_VERSION_base(4,12,0) deriving instance Semiring (Predicate a) deriving instance Semiring a => Semiring (Equivalence a) deriving instance Semiring a => Semiring (Op a b) deriving instance Ring a => Ring (Op a b) #endif #define deriveSemiring(ty) \ instance Semiring (ty) where { \ zero = 0 \ ; one = 1 \ ; plus x y = (Num.+) x y \ ; times x y = (Num.*) x y \ ; fromNatural = Real.fromIntegral \ ; {-# INLINE zero #-} \ ; {-# INLINE one #-} \ ; {-# INLINE plus #-} \ ; {-# INLINE times #-} \ ; {-# INLINE fromNatural #-} \ } deriveSemiring(Int) deriveSemiring(Int8) deriveSemiring(Int16) deriveSemiring(Int32) deriveSemiring(Int64) deriveSemiring(Integer) deriveSemiring(Word) deriveSemiring(Word8) deriveSemiring(Word16) deriveSemiring(Word32) deriveSemiring(Word64) deriveSemiring(Float) deriveSemiring(Double) deriveSemiring(CUIntMax) deriveSemiring(CIntMax) deriveSemiring(CUIntPtr) deriveSemiring(CIntPtr) deriveSemiring(CSUSeconds) deriveSemiring(CUSeconds) deriveSemiring(CTime) deriveSemiring(CClock) deriveSemiring(CSigAtomic) deriveSemiring(CWchar) deriveSemiring(CSize) deriveSemiring(CPtrdiff) deriveSemiring(CDouble) deriveSemiring(CFloat) deriveSemiring(CULLong) deriveSemiring(CLLong) deriveSemiring(CULong) deriveSemiring(CLong) deriveSemiring(CUInt) deriveSemiring(CInt) deriveSemiring(CUShort) deriveSemiring(CShort) deriveSemiring(CUChar) deriveSemiring(CSChar) deriveSemiring(CChar) deriveSemiring(IntPtr) deriveSemiring(WordPtr) #if !HOST_OS_WINDOWS deriveSemiring(CCc) deriveSemiring(CDev) deriveSemiring(CGid) deriveSemiring(CIno) deriveSemiring(CMode) deriveSemiring(CNlink) deriveSemiring(COff) deriveSemiring(CPid) deriveSemiring(CRLim) deriveSemiring(CSpeed) deriveSemiring(CSsize) deriveSemiring(CTcflag) deriveSemiring(CUid) deriveSemiring(Fd) #endif deriveSemiring(Natural) instance Integral a => Semiring (Ratio a) where {-# SPECIALIZE instance Semiring Rational #-} zero = 0 % 1 one = 1 % 1 plus = (Num.+) times = (Num.*) fromNatural n = Real.fromIntegral n % 1 {-# INLINE zero #-} {-# INLINE one #-} {-# INLINE plus #-} {-# INLINE times #-} {-# INLINE fromNatural #-} deriving instance Semiring a => Semiring (Identity a) deriving instance Semiring a => Semiring (Down a) instance HasResolution a => Semiring (Fixed a) where zero = 0 one = 1 plus = (Num.+) times = (Num.*) fromNatural = Real.fromIntegral {-# INLINE zero #-} {-# INLINE one #-} {-# INLINE plus #-} {-# INLINE times #-} {-# INLINE fromNatural #-} #define deriveRing(ty) \ instance Ring (ty) where { \ negate = Num.negate \ ; {-# INLINE negate #-} \ } deriveRing(Int) deriveRing(Int8) deriveRing(Int16) deriveRing(Int32) deriveRing(Int64) deriveRing(Integer) deriveRing(Word) deriveRing(Word8) deriveRing(Word16) deriveRing(Word32) deriveRing(Word64) deriveRing(Float) deriveRing(Double) deriveRing(CUIntMax) deriveRing(CIntMax) deriveRing(CUIntPtr) deriveRing(CIntPtr) deriveRing(CSUSeconds) deriveRing(CUSeconds) deriveRing(CTime) deriveRing(CClock) deriveRing(CSigAtomic) deriveRing(CWchar) deriveRing(CSize) deriveRing(CPtrdiff) deriveRing(CDouble) deriveRing(CFloat) deriveRing(CULLong) deriveRing(CLLong) deriveRing(CULong) deriveRing(CLong) deriveRing(CUInt) deriveRing(CInt) deriveRing(CUShort) deriveRing(CShort) deriveRing(CUChar) deriveRing(CSChar) deriveRing(CChar) deriveRing(IntPtr) deriveRing(WordPtr) #if !HOST_OS_WINDOWS deriveRing(CCc) deriveRing(CDev) deriveRing(CGid) deriveRing(CIno) deriveRing(CMode) deriveRing(CNlink) deriveRing(COff) deriveRing(CPid) deriveRing(CRLim) deriveRing(CSpeed) deriveRing(CSsize) deriveRing(CTcflag) deriveRing(CUid) deriveRing(Fd) #endif instance Integral a => Ring (Ratio a) where negate = Num.negate {-# INLINE negate #-} deriving instance Ring a => Ring (Down a) deriving instance Ring a => Ring (Identity a) instance HasResolution a => Ring (Fixed a) where negate = Num.negate {-# INLINE negate #-} {-------------------------------------------------------------------- Instances (containers) --------------------------------------------------------------------} #if defined(VERSION_containers) -- | The multiplication laws are satisfied for -- any underlying 'Monoid', so we require a -- 'Monoid' constraint instead of a 'Semiring' -- constraint since 'times' can use -- the context of either. instance (Ord a, Monoid a) => Semiring (Set a) where zero = Set.empty one = Set.singleton mempty plus = Set.union times xs ys = Foldable.foldMap (flip Set.map ys . mappend) xs fromNatural 0 = zero fromNatural _ = one {-# INLINE plus #-} {-# INLINE zero #-} {-# INLINE times #-} {-# INLINE one #-} {-# INLINE fromNatural #-} -- | Wrapper to mimic 'Set' ('Data.Semigroup.Sum' 'Int'), -- 'Set' ('Data.Semigroup.Product' 'Int'), etc., -- while having a more efficient underlying representation. newtype IntSetOf a = IntSetOf { getIntSet :: IntSet } deriving ( Eq , Generic , Generic1 , Ord , Read , Show , Typeable , Semigroup , Monoid ) instance (Coercible Int a, Monoid a) => Semiring (IntSetOf a) where zero = coerce IntSet.empty one = coerce IntSet.singleton (mempty :: a) plus = coerce IntSet.union xs `times` ys = coerce IntSet.fromList [ mappend k l | k :: a <- coerce IntSet.toList xs , l :: a <- coerce IntSet.toList ys ] fromNatural 0 = zero fromNatural _ = one {-# INLINE plus #-} {-# INLINE zero #-} {-# INLINE times #-} {-# INLINE one #-} {-# INLINE fromNatural #-} -- | The multiplication laws are satisfied for -- any underlying 'Monoid' as the key type, -- so we require a 'Monoid' constraint instead of -- a 'Semiring' constraint since 'times' can use -- the context of either. instance (Ord k, Monoid k, Semiring v) => Semiring (Map k v) where zero = Map.empty one = Map.singleton mempty one plus = Map.unionWith (+) xs `times` ys = Map.fromListWith (+) [ (mappend k l, v * u) | (k,v) <- Map.toList xs , (l,u) <- Map.toList ys ] fromNatural 0 = zero fromNatural n = Map.singleton mempty (fromNatural n) {-# INLINE plus #-} {-# INLINE zero #-} {-# INLINE times #-} {-# INLINE one #-} {-# INLINE fromNatural #-} -- | Wrapper to mimic 'Map' ('Data.Semigroup.Sum' 'Int') v, -- 'Map' ('Data.Semigroup.Product' 'Int') v, etc., -- while having a more efficient underlying representation. newtype IntMapOf k v = IntMapOf { getIntMap :: IntMap v } deriving ( Eq , Generic , Generic1 , Ord , Read , Show , Typeable , Semigroup , Monoid ) instance (Coercible Int k, Monoid k, Semiring v) => Semiring (IntMapOf k v) where zero = coerce (IntMap.empty :: IntMap v) one = coerce (IntMap.singleton :: Int -> v -> IntMap v) (mempty :: k) (one :: v) plus = coerce (IntMap.unionWith (+) :: IntMap v -> IntMap v -> IntMap v) xs `times` ys = coerce (IntMap.fromListWith (+) :: [(Int, v)] -> IntMap v) [ (mappend k l, v * u) | (k :: k, v :: v) <- coerce (IntMap.toList :: IntMap v -> [(Int, v)]) xs , (l :: k, u :: v) <- coerce (IntMap.toList :: IntMap v -> [(Int, v)]) ys ] fromNatural 0 = zero fromNatural n = coerce (IntMap.singleton :: Int -> v -> IntMap v) (mempty :: k) (fromNatural n :: v) {-# INLINE plus #-} {-# INLINE zero #-} {-# INLINE times #-} {-# INLINE one #-} {-# INLINE fromNatural #-} #endif {-------------------------------------------------------------------- Instances (unordered-containers) --------------------------------------------------------------------} #if defined(VERSION_unordered_containers) -- | The multiplication laws are satisfied for -- any underlying 'Monoid', so we require a -- 'Monoid' constraint instead of a 'Semiring' -- constraint since 'times' can use -- the context of either. instance (Eq a, Hashable a, Monoid a) => Semiring (HashSet a) where zero = HashSet.empty one = HashSet.singleton mempty plus = HashSet.union times xs ys = Foldable.foldMap (flip HashSet.map ys . mappend) xs fromNatural 0 = zero fromNatural _ = one {-# INLINE plus #-} {-# INLINE zero #-} {-# INLINE times #-} {-# INLINE one #-} {-# INLINE fromNatural #-} -- | The multiplication laws are satisfied for -- any underlying 'Monoid' as the key type, -- so we require a 'Monoid' constraint instead of -- a 'Semiring' constraint since 'times' can use -- the context of either. instance (Eq k, Hashable k, Monoid k, Semiring v) => Semiring (HashMap k v) where zero = HashMap.empty one = HashMap.singleton mempty one plus = HashMap.unionWith (+) xs `times` ys = HashMap.fromListWith (+) [ (mappend k l, v * u) | (k,v) <- HashMap.toList xs , (l,u) <- HashMap.toList ys ] fromNatural 0 = zero fromNatural n = HashMap.singleton mempty (fromNatural n) {-# INLINE plus #-} {-# INLINE zero #-} {-# INLINE times #-} {-# INLINE one #-} {-# INLINE fromNatural #-} #endif -- | Is the value 'zero'? isZero :: (Eq a, Semiring a) => a -> Bool isZero x = x == zero {-# INLINEABLE isZero #-} -- | Is the value 'one'? isOne :: (Eq a, Semiring a) => a -> Bool isOne x = x == one {-# INLINEABLE isOne #-}
theory Short_Theory_13_2 imports "HOL-IMP.BExp" begin datatype com = SKIP | Assign vname aexp ("_ ::= _" [1000, 61] 61) | Seq com com ("_;;/ _" [60, 61] 60) | If bexp com com ("(IF _/ THEN _/ ELSE _)" [0, 0, 61] 61) | Or com com ("_/ OR _" [60, 61] 61) | While bexp com ("(WHILE _/ DO _)" [0, 61] 61) text \<open>acom is the type of annotated commands (wrt. a type of annotation)\<close> datatype 'a acom = SKIP 'a ("SKIP {_}" 61) | Assign vname aexp 'a ("(_ ::= _/ {_})" [1000, 61, 0] 61) | Seq "('a acom)" "('a acom)" ("_;;//_" [60, 61] 60) | If bexp 'a "'a acom" 'a "'a acom" 'a ("(IF _/ THEN ({_}/ _)/ ELSE ({_}/ _)//{_})" [0, 0, 0, 61, 0, 0] 61) | Or "'a acom" "'a acom" 'a ("_ OR// _//{_}" [60, 61, 0] 60) | While 'a bexp 'a "'a acom" 'a ("({_}//WHILE _//DO ({_}//_)//{_})" [0, 0, 0, 61, 0] 61) notation com.SKIP ("SKIP") text \<open>strip maps acoms back to the original commands\<close> text_raw\<open>\snip{stripdef}{1}{1}{%\<close> fun strip :: "'a acom \<Rightarrow> com" where "strip (SKIP {P}) = SKIP" | "strip (x ::= e {P}) = x ::= e" | "strip (C\<^sub>1;;C\<^sub>2) = strip C\<^sub>1;; strip C\<^sub>2" | "strip (IF b THEN {P\<^sub>1} C\<^sub>1 ELSE {P\<^sub>2} C\<^sub>2 {P}) = IF b THEN strip C\<^sub>1 ELSE strip C\<^sub>2" | "strip (C\<^sub>1 OR C\<^sub>2 {P}) = strip C\<^sub>1 OR strip C\<^sub>2" | "strip ({I} WHILE b DO {P} C {Q}) = WHILE b DO strip C" text_raw\<open>}%endsnip\<close> text \<open>asize counts the number of annotations that a com admits\<close> text_raw\<open>\snip{asizedef}{1}{1}{%\<close> fun asize :: "com \<Rightarrow> nat" where "asize SKIP = 1" | "asize (x ::= e) = 1" | "asize (C\<^sub>1;;C\<^sub>2) = asize C\<^sub>1 + asize C\<^sub>2" | "asize (IF b THEN C\<^sub>1 ELSE C\<^sub>2) = asize C\<^sub>1 + asize C\<^sub>2 + 3" | "asize (C\<^sub>1 OR C\<^sub>2) = asize C\<^sub>1 + asize C\<^sub>2 + 1" | "asize (WHILE b DO C) = asize C + 3" text_raw\<open>}%endsnip\<close> text \<open>shift eats the first n elements of a sequence\<close> text_raw\<open>\snip{annotatedef}{1}{1}{%\<close> definition shift :: "(nat \<Rightarrow> 'a) \<Rightarrow> nat \<Rightarrow> nat \<Rightarrow> 'a" where "shift f n = (\<lambda>p. f(p+n))" text \<open>Defined in terms of shift, annotate annotates a command c with a sequence of annotations\<close> fun annotate :: "(nat \<Rightarrow> 'a) \<Rightarrow> com \<Rightarrow> 'a acom" where "annotate f SKIP = SKIP {f 0}" | "annotate f (x ::= e) = x ::= e {f 0}" | "annotate f (c\<^sub>1;;c\<^sub>2) = annotate f c\<^sub>1;; annotate (shift f (asize c\<^sub>1)) c\<^sub>2" | "annotate f (IF b THEN c\<^sub>1 ELSE c\<^sub>2) = IF b THEN {f 0} annotate (shift f 1) c\<^sub>1 ELSE {f(asize c\<^sub>1 + 1)} annotate (shift f (asize c\<^sub>1 + 2)) c\<^sub>2 {f(asize c\<^sub>1 + asize c\<^sub>2 + 2)}" | "annotate f (c\<^sub>1 OR c\<^sub>2) = annotate f c\<^sub>1 OR annotate (shift f (asize c\<^sub>1)) c\<^sub>2 {f (asize c\<^sub>1 + asize c\<^sub>2)}" | "annotate f (WHILE b DO c) = {f 0} WHILE b DO {f 1} annotate (shift f 2) c {f(asize c + 2)}" text_raw\<open>}%endsnip\<close> text \<open>annos collects a command's annotations into a list\<close> text_raw\<open>\snip{annosdef}{1}{1}{%\<close> fun annos :: "'a acom \<Rightarrow> 'a list" where "annos (SKIP {P}) = [P]" | "annos (x ::= e {P}) = [P]" | "annos (C\<^sub>1;;C\<^sub>2) = annos C\<^sub>1 @ annos C\<^sub>2" | "annos (IF b THEN {P\<^sub>1} C\<^sub>1 ELSE {P\<^sub>2} C\<^sub>2 {Q}) = P\<^sub>1 # annos C\<^sub>1 @ P\<^sub>2 # annos C\<^sub>2 @ [Q]" | "annos (C\<^sub>1 OR C\<^sub>2 {P}) = annos C\<^sub>1 @ annos C\<^sub>2 @ [P]" | "annos ({I} WHILE b DO {P} C {Q}) = I # P # annos C @ [Q]" text_raw\<open>}%endsnip\<close> text \<open>anno retrives the pth annotation of a command, by first collecting its annotations then indexing into the pth list element\<close> definition anno :: "'a acom \<Rightarrow> nat \<Rightarrow> 'a" where "anno C p = annos C ! p" text \<open>post retrieves the last annotation of a command, by first collecting its annotations\<close> definition post :: "'a acom \<Rightarrow>'a" where "post C = last(annos C)" text \<open>map_acom maps the annotations of an acom\<close> text_raw\<open>\snip{mapacomdef}{1}{2}{%\<close> fun map_acom :: "('a \<Rightarrow> 'b) \<Rightarrow> 'a acom \<Rightarrow> 'b acom" where "map_acom f (SKIP {P}) = SKIP {f P}" | "map_acom f (x ::= e {P}) = x ::= e {f P}" | "map_acom f (C\<^sub>1;;C\<^sub>2) = map_acom f C\<^sub>1;; map_acom f C\<^sub>2" | "map_acom f (IF b THEN {P\<^sub>1} C\<^sub>1 ELSE {P\<^sub>2} C\<^sub>2 {Q}) = IF b THEN {f P\<^sub>1} map_acom f C\<^sub>1 ELSE {f P\<^sub>2} map_acom f C\<^sub>2 {f Q}" | "map_acom f (C\<^sub>1 OR C\<^sub>2 {P}) = map_acom f C\<^sub>1 OR map_acom f C\<^sub>2 {f P}" | "map_acom f ({I} WHILE b DO {P} C {Q}) = {f I} WHILE b DO {f P} map_acom f C {f Q}" text_raw\<open>}%endsnip\<close> text \<open>the list of annotations for any command is always nonempty\<close> lemma annos_ne: "annos C \<noteq> []" by(induction C) auto text \<open>stripping a command that has been annotated recovers it\<close> lemma strip_annotate[simp]: "strip(annotate f c) = c" by(induction c arbitrary: f) auto text \<open>the list of annotations of a com, once annotated, is as large as the number of annotations it admits\<close> lemma length_annos_annotate[simp]: "length (annos (annotate f c)) = asize c" by(induction c arbitrary: f) auto text \<open>the size of the list of annotations of a command is as large as the number of annotations its underlying com admits\<close> lemma size_annos: "size(annos C) = asize(strip C)" by(induction C)(auto) text \<open>if two acom share the same com, then they have the same number of annotations\<close> lemma size_annos_same: "strip C1 = strip C2 \<Longrightarrow> size(annos C1) = size(annos C2)" apply(induct C2 arbitrary: C1) apply(case_tac C1, simp_all)+ done lemmas size_annos_same2 = eqTrueI[OF size_annos_same] text \<open>dually, the pth annotation is the pth element of the annotating sequence\<close> lemma anno_annotate[simp]: "p < asize c \<Longrightarrow> anno (annotate f c) p = f p" proof (induction c arbitrary: f p) case SKIP then show ?case by (auto simp: anno_def) next case (Assign x1 x2) then show ?case by (auto simp: anno_def) next case (Seq c1 c2) then show ?case by (auto simp: anno_def nth_append shift_def) next case (If x1 c1 c2) then show ?case by (auto simp: anno_def nth_append nth_Cons shift_def split: nat.split, metis add_Suc_right add_diff_inverse add.commute, rule_tac f=f in arg_cong, arith) next case (Or c1 c2) then show ?case by (auto simp: anno_def nth_append shift_def, rule_tac f=f in arg_cong, arith) next case (While x1 c) then show ?case by (auto simp: anno_def nth_append nth_Cons shift_def split: nat.split, rule_tac f=f in arg_cong, arith) qed text \<open>two acoms are equal iff they have the same underlying command and same list of annotations\<close> text \<open>Proof is by inductive definiton of acom, and list lemmas / annos lemmas\<close> lemma eq_acom_iff_strip_annos: "C1 = C2 \<longleftrightarrow> strip C1 = strip C2 \<and> annos C1 = annos C2" apply(induction C1 arbitrary: C2) apply(case_tac C2, auto simp: size_annos_same2)+ done text \<open>two acoms are equal iff they have the same underlying command and same sublist of annotations\<close> lemma eq_acom_iff_strip_anno: "C1=C2 \<longleftrightarrow> strip C1 = strip C2 \<and> (\<forall>p<size(annos C1). anno C1 p = anno C2 p)" by(auto simp add: eq_acom_iff_strip_annos anno_def list_eq_iff_nth_eq size_annos_same2) text \<open>the last annotation after mapping through f is exactly the last annotation, then mapping it by f\<close> lemma post_map_acom[simp]: "post(map_acom f C) = f(post C)" by (induction C) (auto simp: post_def last_append annos_ne) text \<open>the underlying command is unchanged by map_acom\<close> lemma strip_map_acom[simp]: "strip (map_acom f C) = strip C" by (induction C) auto text \<open>the pth annotation after mapping through f is exactly the pth annotation, then mapping it by f\<close> lemma anno_map_acom: "p < size(annos C) \<Longrightarrow> anno (map_acom f C) p = f(anno C p)" apply(induction C arbitrary: p) apply(auto simp: anno_def nth_append nth_Cons' size_annos) done text \<open>inversion lemma for strip C\<close> lemma strip_eq_SKIP: "strip C = SKIP \<longleftrightarrow> (\<exists>P. C = SKIP {P})" by (cases C) simp_all lemma strip_eq_Assign: "strip C = x::=e \<longleftrightarrow> (\<exists>P. C = x::=e {P})" by (cases C) simp_all lemma strip_eq_Seq: "strip C = c1;;c2 \<longleftrightarrow> (\<exists>C1 C2. C = C1;;C2 & strip C1 = c1 & strip C2 = c2)" by (cases C) simp_all lemma strip_eq_If: "strip C = IF b THEN c1 ELSE c2 \<longleftrightarrow> (\<exists>P1 P2 C1 C2 Q. C = IF b THEN {P1} C1 ELSE {P2} C2 {Q} & strip C1 = c1 & strip C2 = c2)" by (cases C) simp_all lemma strip_eq_Or: "strip C = c1 OR c2 \<longleftrightarrow> (\<exists>C1 C2 P. C = C1 OR C2 {P} & strip C1 = c1 & strip C2 = c2)" by (cases C) simp_all lemma strip_eq_While: "strip C = WHILE b DO c1 \<longleftrightarrow> (\<exists>I P C1 Q. C = {I} WHILE b DO {P} C1 {Q} & strip C1 = c1)" by (cases C) simp_all text \<open>shifting a constant sequence does nothing\<close> text \<open>the set of all members of an acom created by annotate with a constant sequence on that annotation is a singleton\<close> lemma set_annos_anno[simp]: "set (annos (annotate (\<lambda>p. a) c)) = {a}" by(induction c) simp_all text \<open>the last annotation of an acom is in the set of list of annotations of that acom\<close> lemma post_in_annos: "post C \<in> set(annos C)" by(auto simp: post_def annos_ne) text \<open>the last annotation of C is the last element of the list of annotations generated from C.\<close> lemma post_anno_asize: "post C = anno C (size(annos C) - 1)" by(simp add: post_def last_conv_nth[OF annos_ne] anno_def) notation sup (infixl "\<squnion>" 65) and inf (infixl "\<sqinter>" 70) and bot ("\<bottom>") and top ("\<top>") context fixes f :: "vname \<Rightarrow> aexp \<Rightarrow> 'a \<Rightarrow> 'a::sup" fixes g :: "bexp \<Rightarrow> 'a \<Rightarrow> 'a" begin fun Step :: "'a \<Rightarrow> 'a acom \<Rightarrow> 'a acom" where "Step S (SKIP {Q}) = (SKIP {S})" | "Step S (x ::= e {Q}) = x ::= e {f x e S}" | "Step S (C1;; C2) = Step S C1;; Step (post C1) C2" | "Step S (IF b THEN {P1} C1 ELSE {P2} C2 {Q}) = IF b THEN {g b S} Step P1 C1 ELSE {g (Not b) S} Step P2 C2 {post C1 \<squnion> post C2}" | "Step S (C1 OR C2 {P}) = Step S C1 OR Step S C2 {post C1 \<squnion> post C2}" | "Step S ({I} WHILE b DO {P} C {Q}) = {S \<squnion> post C} WHILE b DO {g b I} Step P C {g (Not b) I}" end end
\cleardoublepage \chapter{Results and Conclusion} \label{chap:5} \section{Heading Level 1} \subsection{Heading Level 2} \subsubsection{Heading Level 3} \paragraph{Paragraph Level 1} \subparagraph{Paragraph Level 2}
% TTeMPS Toolbox. % Michael Steinlechner, 2013-2016 % Questions and contact: [email protected] % BSD 2-clause license, see LICENSE.txt function [eta, B1,B3] = precond_laplace_overlapJacobi( L, xi, xL, xR, G, B1, B3 ) % L is a cell of operators r = xi.rank; n = xi.size; d = xi.order; % If B1 and B3 are not given as arguments, we need to precalculate them if nargin < 7 % % if applying L is expensive (not just tridiag), one can store all % % applications with xL and compute the ones for xR with G. % % You need to first store LUl % LUl = cell(d,1); % for idx = 1:d % LUl{idx} = tensorprod_ttemps( xL.U{idx}, L{idx}, 2 ); % end % % and then change to LUr in the loop for B3 below % % if idx+1==d % % LUr = tensorprod_ttemps( LUl{idx+1}, G{idx}, 1, true); % % else % % LUr = tensorprod_ttemps( tensorprod_ttemps( LUl{idx+1}, G{idx+1}', 3), G{idx}, 1, true); % % end B1 = cell(d,1); B1{1} = 0; for idx = 2:d LUl = tensorprod_ttemps( xL.U{idx-1}, L{idx-1}, 2 ); if idx>2 TT = tensorprod_ttemps( xL.U{idx-1}, B1{idx-1}, 1 ); else TT = 0; end B1{idx} = unfold(xL.U{idx-1},'left')'*unfold(TT + LUl,'left'); end B3 = cell(d,1); for idx = d-1:-1:1 LUr = tensorprod_ttemps( xR.U{idx+1}, L{idx+1}, 2 ); if idx<d-1 TT = tensorprod_ttemps( xR.U{idx+1}, B3{idx+1}, 3 ); else TT = 0; end B3{idx} = unfold(xR.U{idx+1},'right')*unfold(TT + LUr,'right')'; end B3{d} = 0; end eta = xi; xi = tangent_to_TTeMPS( xi ); % % 1. STEP: Project right hand side % below is hard-coded version of % for ii=1:d % eta_partial_ii = TTeMPS_partial_project_overlap( xL, xR, xi, ii); % Y{ii} = eta_partial_ii.dU{ii}; % end % TODO, it seems that the left and right cell arrays consist of a lot of % identities and zeros. Y = cell(1,d); % precompute inner products left = innerprod( xL, xi, 'LR', d-1, true ); right = innerprod( xR, xi, 'RL', 2, true ); % contract to first core Y{1} = tensorprod_ttemps( xi.U{1}, right{2}, 3 ); % contract to first core for idx = 2:d-1 res = tensorprod_ttemps( xi.U{idx}, left{idx-1}, 1 ); Y{idx} = tensorprod_ttemps( res, right{idx+1}, 3 ); end % contract to last core Y{d} = tensorprod_ttemps( xi.U{d}, left{d-1}, 1 ); % 2. STEP: Solve ALS systems: % B1 and B3 were precalculated before for idx = 1:d rl = r(idx); rr = r(idx+1); B2 = L{idx}; % Solve via the diagonalization trick [V1,E1] = eig(B1{idx}); [V3,E3] = eig(B3{idx}); V = kron(V3,V1); EE = diag(E1)*ones(1,rr) + ones(rl,1)*diag(E3)'; E = EE(:); rhs = matricize( Y{idx}, 2 ) * V; Z = zeros(size(rhs)); for i=1:length(E) Z(:,i) = (B2 + E(i)*speye(n(idx))) \ rhs(:,i); end eta.dU{idx} = tensorize( Z*V', 2, [rl, n(idx), rr] ); end eta = TTeMPS_tangent_orth( xL, xR, eta ); % todo? Can we improve efficiency since eta is not a generic TTeMPS but shares the same x.U as xL and xR end
(* Title: HOL/Algebra/Divisibility.thy Author: Clemens Ballarin Author: Stephan Hohe *) section {* Divisibility in monoids and rings *} theory Divisibility imports "~~/src/HOL/Library/Permutation" Coset Group begin section {* Factorial Monoids *} subsection {* Monoids with Cancellation Law *} locale monoid_cancel = monoid + assumes l_cancel: "\<lbrakk>c \<otimes> a = c \<otimes> b; a \<in> carrier G; b \<in> carrier G; c \<in> carrier G\<rbrakk> \<Longrightarrow> a = b" and r_cancel: "\<lbrakk>a \<otimes> c = b \<otimes> c; a \<in> carrier G; b \<in> carrier G; c \<in> carrier G\<rbrakk> \<Longrightarrow> a = b" lemma (in monoid) monoid_cancelI: assumes l_cancel: "\<And>a b c. \<lbrakk>c \<otimes> a = c \<otimes> b; a \<in> carrier G; b \<in> carrier G; c \<in> carrier G\<rbrakk> \<Longrightarrow> a = b" and r_cancel: "\<And>a b c. \<lbrakk>a \<otimes> c = b \<otimes> c; a \<in> carrier G; b \<in> carrier G; c \<in> carrier G\<rbrakk> \<Longrightarrow> a = b" shows "monoid_cancel G" by default fact+ lemma (in monoid_cancel) is_monoid_cancel: "monoid_cancel G" .. sublocale group \<subseteq> monoid_cancel by default simp_all locale comm_monoid_cancel = monoid_cancel + comm_monoid lemma comm_monoid_cancelI: fixes G (structure) assumes "comm_monoid G" assumes cancel: "\<And>a b c. \<lbrakk>a \<otimes> c = b \<otimes> c; a \<in> carrier G; b \<in> carrier G; c \<in> carrier G\<rbrakk> \<Longrightarrow> a = b" shows "comm_monoid_cancel G" proof - interpret comm_monoid G by fact show "comm_monoid_cancel G" by unfold_locales (metis assms(2) m_ac(2))+ qed lemma (in comm_monoid_cancel) is_comm_monoid_cancel: "comm_monoid_cancel G" by intro_locales sublocale comm_group \<subseteq> comm_monoid_cancel .. subsection {* Products of Units in Monoids *} lemma (in monoid) Units_m_closed[simp, intro]: assumes h1unit: "h1 \<in> Units G" and h2unit: "h2 \<in> Units G" shows "h1 \<otimes> h2 \<in> Units G" unfolding Units_def using assms by auto (metis Units_inv_closed Units_l_inv Units_m_closed Units_r_inv) lemma (in monoid) prod_unit_l: assumes abunit[simp]: "a \<otimes> b \<in> Units G" and aunit[simp]: "a \<in> Units G" and carr[simp]: "a \<in> carrier G" "b \<in> carrier G" shows "b \<in> Units G" proof - have c: "inv (a \<otimes> b) \<otimes> a \<in> carrier G" by simp have "(inv (a \<otimes> b) \<otimes> a) \<otimes> b = inv (a \<otimes> b) \<otimes> (a \<otimes> b)" by (simp add: m_assoc) also have "\<dots> = \<one>" by simp finally have li: "(inv (a \<otimes> b) \<otimes> a) \<otimes> b = \<one>" . have "\<one> = inv a \<otimes> a" by (simp add: Units_l_inv[symmetric]) also have "\<dots> = inv a \<otimes> \<one> \<otimes> a" by simp also have "\<dots> = inv a \<otimes> ((a \<otimes> b) \<otimes> inv (a \<otimes> b)) \<otimes> a" by (simp add: Units_r_inv[OF abunit, symmetric] del: Units_r_inv) also have "\<dots> = ((inv a \<otimes> a) \<otimes> b) \<otimes> inv (a \<otimes> b) \<otimes> a" by (simp add: m_assoc del: Units_l_inv) also have "\<dots> = b \<otimes> inv (a \<otimes> b) \<otimes> a" by simp also have "\<dots> = b \<otimes> (inv (a \<otimes> b) \<otimes> a)" by (simp add: m_assoc) finally have ri: "b \<otimes> (inv (a \<otimes> b) \<otimes> a) = \<one> " by simp from c li ri show "b \<in> Units G" by (simp add: Units_def, fast) qed lemma (in monoid) prod_unit_r: assumes abunit[simp]: "a \<otimes> b \<in> Units G" and bunit[simp]: "b \<in> Units G" and carr[simp]: "a \<in> carrier G" "b \<in> carrier G" shows "a \<in> Units G" proof - have c: "b \<otimes> inv (a \<otimes> b) \<in> carrier G" by simp have "a \<otimes> (b \<otimes> inv (a \<otimes> b)) = (a \<otimes> b) \<otimes> inv (a \<otimes> b)" by (simp add: m_assoc del: Units_r_inv) also have "\<dots> = \<one>" by simp finally have li: "a \<otimes> (b \<otimes> inv (a \<otimes> b)) = \<one>" . have "\<one> = b \<otimes> inv b" by (simp add: Units_r_inv[symmetric]) also have "\<dots> = b \<otimes> \<one> \<otimes> inv b" by simp also have "\<dots> = b \<otimes> (inv (a \<otimes> b) \<otimes> (a \<otimes> b)) \<otimes> inv b" by (simp add: Units_l_inv[OF abunit, symmetric] del: Units_l_inv) also have "\<dots> = (b \<otimes> inv (a \<otimes> b) \<otimes> a) \<otimes> (b \<otimes> inv b)" by (simp add: m_assoc del: Units_l_inv) also have "\<dots> = b \<otimes> inv (a \<otimes> b) \<otimes> a" by simp finally have ri: "(b \<otimes> inv (a \<otimes> b)) \<otimes> a = \<one> " by simp from c li ri show "a \<in> Units G" by (simp add: Units_def, fast) qed lemma (in comm_monoid) unit_factor: assumes abunit: "a \<otimes> b \<in> Units G" and [simp]: "a \<in> carrier G" "b \<in> carrier G" shows "a \<in> Units G" using abunit[simplified Units_def] proof clarsimp fix i assume [simp]: "i \<in> carrier G" and li: "i \<otimes> (a \<otimes> b) = \<one>" and ri: "a \<otimes> b \<otimes> i = \<one>" have carr': "b \<otimes> i \<in> carrier G" by simp have "(b \<otimes> i) \<otimes> a = (i \<otimes> b) \<otimes> a" by (simp add: m_comm) also have "\<dots> = i \<otimes> (b \<otimes> a)" by (simp add: m_assoc) also have "\<dots> = i \<otimes> (a \<otimes> b)" by (simp add: m_comm) also note li finally have li': "(b \<otimes> i) \<otimes> a = \<one>" . have "a \<otimes> (b \<otimes> i) = a \<otimes> b \<otimes> i" by (simp add: m_assoc) also note ri finally have ri': "a \<otimes> (b \<otimes> i) = \<one>" . from carr' li' ri' show "a \<in> Units G" by (simp add: Units_def, fast) qed subsection {* Divisibility and Association *} subsubsection {* Function definitions *} definition factor :: "[_, 'a, 'a] \<Rightarrow> bool" (infix "divides\<index>" 65) where "a divides\<^bsub>G\<^esub> b \<longleftrightarrow> (\<exists>c\<in>carrier G. b = a \<otimes>\<^bsub>G\<^esub> c)" definition associated :: "[_, 'a, 'a] => bool" (infix "\<sim>\<index>" 55) where "a \<sim>\<^bsub>G\<^esub> b \<longleftrightarrow> a divides\<^bsub>G\<^esub> b \<and> b divides\<^bsub>G\<^esub> a" abbreviation "division_rel G == \<lparr>carrier = carrier G, eq = op \<sim>\<^bsub>G\<^esub>, le = op divides\<^bsub>G\<^esub>\<rparr>" definition properfactor :: "[_, 'a, 'a] \<Rightarrow> bool" where "properfactor G a b \<longleftrightarrow> a divides\<^bsub>G\<^esub> b \<and> \<not>(b divides\<^bsub>G\<^esub> a)" definition irreducible :: "[_, 'a] \<Rightarrow> bool" where "irreducible G a \<longleftrightarrow> a \<notin> Units G \<and> (\<forall>b\<in>carrier G. properfactor G b a \<longrightarrow> b \<in> Units G)" definition prime :: "[_, 'a] \<Rightarrow> bool" where "prime G p \<longleftrightarrow> p \<notin> Units G \<and> (\<forall>a\<in>carrier G. \<forall>b\<in>carrier G. p divides\<^bsub>G\<^esub> (a \<otimes>\<^bsub>G\<^esub> b) \<longrightarrow> p divides\<^bsub>G\<^esub> a \<or> p divides\<^bsub>G\<^esub> b)" subsubsection {* Divisibility *} lemma dividesI: fixes G (structure) assumes carr: "c \<in> carrier G" and p: "b = a \<otimes> c" shows "a divides b" unfolding factor_def using assms by fast lemma dividesI' [intro]: fixes G (structure) assumes p: "b = a \<otimes> c" and carr: "c \<in> carrier G" shows "a divides b" using assms by (fast intro: dividesI) lemma dividesD: fixes G (structure) assumes "a divides b" shows "\<exists>c\<in>carrier G. b = a \<otimes> c" using assms unfolding factor_def by fast lemma dividesE [elim]: fixes G (structure) assumes d: "a divides b" and elim: "\<And>c. \<lbrakk>b = a \<otimes> c; c \<in> carrier G\<rbrakk> \<Longrightarrow> P" shows "P" proof - from dividesD[OF d] obtain c where "c\<in>carrier G" and "b = a \<otimes> c" by auto thus "P" by (elim elim) qed lemma (in monoid) divides_refl[simp, intro!]: assumes carr: "a \<in> carrier G" shows "a divides a" apply (intro dividesI[of "\<one>"]) apply (simp, simp add: carr) done lemma (in monoid) divides_trans [trans]: assumes dvds: "a divides b" "b divides c" and acarr: "a \<in> carrier G" shows "a divides c" using dvds[THEN dividesD] by (blast intro: dividesI m_assoc acarr) lemma (in monoid) divides_mult_lI [intro]: assumes ab: "a divides b" and carr: "a \<in> carrier G" "b \<in> carrier G" "c \<in> carrier G" shows "(c \<otimes> a) divides (c \<otimes> b)" using ab apply (elim dividesE, simp add: m_assoc[symmetric] carr) apply (fast intro: dividesI) done lemma (in monoid_cancel) divides_mult_l [simp]: assumes carr: "a \<in> carrier G" "b \<in> carrier G" "c \<in> carrier G" shows "(c \<otimes> a) divides (c \<otimes> b) = a divides b" apply safe apply (elim dividesE, intro dividesI, assumption) apply (rule l_cancel[of c]) apply (simp add: m_assoc carr)+ apply (fast intro: carr) done lemma (in comm_monoid) divides_mult_rI [intro]: assumes ab: "a divides b" and carr: "a \<in> carrier G" "b \<in> carrier G" "c \<in> carrier G" shows "(a \<otimes> c) divides (b \<otimes> c)" using carr ab apply (simp add: m_comm[of a c] m_comm[of b c]) apply (rule divides_mult_lI, assumption+) done lemma (in comm_monoid_cancel) divides_mult_r [simp]: assumes carr: "a \<in> carrier G" "b \<in> carrier G" "c \<in> carrier G" shows "(a \<otimes> c) divides (b \<otimes> c) = a divides b" using carr by (simp add: m_comm[of a c] m_comm[of b c]) lemma (in monoid) divides_prod_r: assumes ab: "a divides b" and carr: "a \<in> carrier G" "b \<in> carrier G" "c \<in> carrier G" shows "a divides (b \<otimes> c)" using ab carr by (fast intro: m_assoc) lemma (in comm_monoid) divides_prod_l: assumes carr[intro]: "a \<in> carrier G" "b \<in> carrier G" "c \<in> carrier G" and ab: "a divides b" shows "a divides (c \<otimes> b)" using ab carr apply (simp add: m_comm[of c b]) apply (fast intro: divides_prod_r) done lemma (in monoid) unit_divides: assumes uunit: "u \<in> Units G" and acarr: "a \<in> carrier G" shows "u divides a" proof (intro dividesI[of "(inv u) \<otimes> a"], fast intro: uunit acarr) from uunit acarr have xcarr: "inv u \<otimes> a \<in> carrier G" by fast from uunit acarr have "u \<otimes> (inv u \<otimes> a) = (u \<otimes> inv u) \<otimes> a" by (fast intro: m_assoc[symmetric]) also have "\<dots> = \<one> \<otimes> a" by (simp add: Units_r_inv[OF uunit]) also from acarr have "\<dots> = a" by simp finally show "a = u \<otimes> (inv u \<otimes> a)" .. qed lemma (in comm_monoid) divides_unit: assumes udvd: "a divides u" and carr: "a \<in> carrier G" "u \<in> Units G" shows "a \<in> Units G" using udvd carr by (blast intro: unit_factor) lemma (in comm_monoid) Unit_eq_dividesone: assumes ucarr: "u \<in> carrier G" shows "u \<in> Units G = u divides \<one>" using ucarr by (fast dest: divides_unit intro: unit_divides) subsubsection {* Association *} lemma associatedI: fixes G (structure) assumes "a divides b" "b divides a" shows "a \<sim> b" using assms by (simp add: associated_def) lemma (in monoid) associatedI2: assumes uunit[simp]: "u \<in> Units G" and a: "a = b \<otimes> u" and bcarr[simp]: "b \<in> carrier G" shows "a \<sim> b" using uunit bcarr unfolding a apply (intro associatedI) apply (rule dividesI[of "inv u"], simp) apply (simp add: m_assoc Units_closed) apply fast done lemma (in monoid) associatedI2': assumes a: "a = b \<otimes> u" and uunit: "u \<in> Units G" and bcarr: "b \<in> carrier G" shows "a \<sim> b" using assms by (intro associatedI2) lemma associatedD: fixes G (structure) assumes "a \<sim> b" shows "a divides b" using assms by (simp add: associated_def) lemma (in monoid_cancel) associatedD2: assumes assoc: "a \<sim> b" and carr: "a \<in> carrier G" "b \<in> carrier G" shows "\<exists>u\<in>Units G. a = b \<otimes> u" using assoc unfolding associated_def proof clarify assume "b divides a" hence "\<exists>u\<in>carrier G. a = b \<otimes> u" by (rule dividesD) from this obtain u where ucarr: "u \<in> carrier G" and a: "a = b \<otimes> u" by auto assume "a divides b" hence "\<exists>u'\<in>carrier G. b = a \<otimes> u'" by (rule dividesD) from this obtain u' where u'carr: "u' \<in> carrier G" and b: "b = a \<otimes> u'" by auto note carr = carr ucarr u'carr from carr have "a \<otimes> \<one> = a" by simp also have "\<dots> = b \<otimes> u" by (simp add: a) also have "\<dots> = a \<otimes> u' \<otimes> u" by (simp add: b) also from carr have "\<dots> = a \<otimes> (u' \<otimes> u)" by (simp add: m_assoc) finally have "a \<otimes> \<one> = a \<otimes> (u' \<otimes> u)" . with carr have u1: "\<one> = u' \<otimes> u" by (fast dest: l_cancel) from carr have "b \<otimes> \<one> = b" by simp also have "\<dots> = a \<otimes> u'" by (simp add: b) also have "\<dots> = b \<otimes> u \<otimes> u'" by (simp add: a) also from carr have "\<dots> = b \<otimes> (u \<otimes> u')" by (simp add: m_assoc) finally have "b \<otimes> \<one> = b \<otimes> (u \<otimes> u')" . with carr have u2: "\<one> = u \<otimes> u'" by (fast dest: l_cancel) from u'carr u1[symmetric] u2[symmetric] have "\<exists>u'\<in>carrier G. u' \<otimes> u = \<one> \<and> u \<otimes> u' = \<one>" by fast hence "u \<in> Units G" by (simp add: Units_def ucarr) from ucarr this a show "\<exists>u\<in>Units G. a = b \<otimes> u" by fast qed lemma associatedE: fixes G (structure) assumes assoc: "a \<sim> b" and e: "\<lbrakk>a divides b; b divides a\<rbrakk> \<Longrightarrow> P" shows "P" proof - from assoc have "a divides b" "b divides a" by (simp add: associated_def)+ thus "P" by (elim e) qed lemma (in monoid_cancel) associatedE2: assumes assoc: "a \<sim> b" and e: "\<And>u. \<lbrakk>a = b \<otimes> u; u \<in> Units G\<rbrakk> \<Longrightarrow> P" and carr: "a \<in> carrier G" "b \<in> carrier G" shows "P" proof - from assoc and carr have "\<exists>u\<in>Units G. a = b \<otimes> u" by (rule associatedD2) from this obtain u where "u \<in> Units G" "a = b \<otimes> u" by auto thus "P" by (elim e) qed lemma (in monoid) associated_refl [simp, intro!]: assumes "a \<in> carrier G" shows "a \<sim> a" using assms by (fast intro: associatedI) lemma (in monoid) associated_sym [sym]: assumes "a \<sim> b" and "a \<in> carrier G" "b \<in> carrier G" shows "b \<sim> a" using assms by (iprover intro: associatedI elim: associatedE) lemma (in monoid) associated_trans [trans]: assumes "a \<sim> b" "b \<sim> c" and "a \<in> carrier G" "b \<in> carrier G" "c \<in> carrier G" shows "a \<sim> c" using assms by (iprover intro: associatedI divides_trans elim: associatedE) lemma (in monoid) division_equiv [intro, simp]: "equivalence (division_rel G)" apply unfold_locales apply simp_all apply (metis associated_def) apply (iprover intro: associated_trans) done subsubsection {* Division and associativity *} lemma divides_antisym: fixes G (structure) assumes "a divides b" "b divides a" and "a \<in> carrier G" "b \<in> carrier G" shows "a \<sim> b" using assms by (fast intro: associatedI) lemma (in monoid) divides_cong_l [trans]: assumes xx': "x \<sim> x'" and xdvdy: "x' divides y" and carr [simp]: "x \<in> carrier G" "x' \<in> carrier G" "y \<in> carrier G" shows "x divides y" proof - from xx' have "x divides x'" by (simp add: associatedD) also note xdvdy finally show "x divides y" by simp qed lemma (in monoid) divides_cong_r [trans]: assumes xdvdy: "x divides y" and yy': "y \<sim> y'" and carr[simp]: "x \<in> carrier G" "y \<in> carrier G" "y' \<in> carrier G" shows "x divides y'" proof - note xdvdy also from yy' have "y divides y'" by (simp add: associatedD) finally show "x divides y'" by simp qed lemma (in monoid) division_weak_partial_order [simp, intro!]: "weak_partial_order (division_rel G)" apply unfold_locales apply simp_all apply (simp add: associated_sym) apply (blast intro: associated_trans) apply (simp add: divides_antisym) apply (blast intro: divides_trans) apply (blast intro: divides_cong_l divides_cong_r associated_sym) done subsubsection {* Multiplication and associativity *} lemma (in monoid_cancel) mult_cong_r: assumes "b \<sim> b'" and carr: "a \<in> carrier G" "b \<in> carrier G" "b' \<in> carrier G" shows "a \<otimes> b \<sim> a \<otimes> b'" using assms apply (elim associatedE2, intro associatedI2) apply (auto intro: m_assoc[symmetric]) done lemma (in comm_monoid_cancel) mult_cong_l: assumes "a \<sim> a'" and carr: "a \<in> carrier G" "a' \<in> carrier G" "b \<in> carrier G" shows "a \<otimes> b \<sim> a' \<otimes> b" using assms apply (elim associatedE2, intro associatedI2) apply assumption apply (simp add: m_assoc Units_closed) apply (simp add: m_comm Units_closed) apply simp+ done lemma (in monoid_cancel) assoc_l_cancel: assumes carr: "a \<in> carrier G" "b \<in> carrier G" "b' \<in> carrier G" and "a \<otimes> b \<sim> a \<otimes> b'" shows "b \<sim> b'" using assms apply (elim associatedE2, intro associatedI2) apply assumption apply (rule l_cancel[of a]) apply (simp add: m_assoc Units_closed) apply fast+ done lemma (in comm_monoid_cancel) assoc_r_cancel: assumes "a \<otimes> b \<sim> a' \<otimes> b" and carr: "a \<in> carrier G" "a' \<in> carrier G" "b \<in> carrier G" shows "a \<sim> a'" using assms apply (elim associatedE2, intro associatedI2) apply assumption apply (rule r_cancel[of a b]) apply (metis Units_closed assms(3) assms(4) m_ac) apply fast+ done subsubsection {* Units *} lemma (in monoid_cancel) assoc_unit_l [trans]: assumes asc: "a \<sim> b" and bunit: "b \<in> Units G" and carr: "a \<in> carrier G" shows "a \<in> Units G" using assms by (fast elim: associatedE2) lemma (in monoid_cancel) assoc_unit_r [trans]: assumes aunit: "a \<in> Units G" and asc: "a \<sim> b" and bcarr: "b \<in> carrier G" shows "b \<in> Units G" using aunit bcarr associated_sym[OF asc] by (blast intro: assoc_unit_l) lemma (in comm_monoid) Units_cong: assumes aunit: "a \<in> Units G" and asc: "a \<sim> b" and bcarr: "b \<in> carrier G" shows "b \<in> Units G" using assms by (blast intro: divides_unit elim: associatedE) lemma (in monoid) Units_assoc: assumes units: "a \<in> Units G" "b \<in> Units G" shows "a \<sim> b" using units by (fast intro: associatedI unit_divides) lemma (in monoid) Units_are_ones: "Units G {.=}\<^bsub>(division_rel G)\<^esub> {\<one>}" apply (simp add: set_eq_def elem_def, rule, simp_all) proof clarsimp fix a assume aunit: "a \<in> Units G" show "a \<sim> \<one>" apply (rule associatedI) apply (fast intro: dividesI[of "inv a"] aunit Units_r_inv[symmetric]) apply (fast intro: dividesI[of "a"] l_one[symmetric] Units_closed[OF aunit]) done next have "\<one> \<in> Units G" by simp moreover have "\<one> \<sim> \<one>" by simp ultimately show "\<exists>a \<in> Units G. \<one> \<sim> a" by fast qed lemma (in comm_monoid) Units_Lower: "Units G = Lower (division_rel G) (carrier G)" apply (simp add: Units_def Lower_def) apply (rule, rule) apply clarsimp apply (rule unit_divides) apply (unfold Units_def, fast) apply assumption apply clarsimp apply (metis Unit_eq_dividesone Units_r_inv_ex m_ac(2) one_closed) done subsubsection {* Proper factors *} lemma properfactorI: fixes G (structure) assumes "a divides b" and "\<not>(b divides a)" shows "properfactor G a b" using assms unfolding properfactor_def by simp lemma properfactorI2: fixes G (structure) assumes advdb: "a divides b" and neq: "\<not>(a \<sim> b)" shows "properfactor G a b" apply (rule properfactorI, rule advdb) proof (rule ccontr, simp) assume "b divides a" with advdb have "a \<sim> b" by (rule associatedI) with neq show "False" by fast qed lemma (in comm_monoid_cancel) properfactorI3: assumes p: "p = a \<otimes> b" and nunit: "b \<notin> Units G" and carr: "a \<in> carrier G" "b \<in> carrier G" "p \<in> carrier G" shows "properfactor G a p" unfolding p using carr apply (intro properfactorI, fast) proof (clarsimp, elim dividesE) fix c assume ccarr: "c \<in> carrier G" note [simp] = carr ccarr have "a \<otimes> \<one> = a" by simp also assume "a = a \<otimes> b \<otimes> c" also have "\<dots> = a \<otimes> (b \<otimes> c)" by (simp add: m_assoc) finally have "a \<otimes> \<one> = a \<otimes> (b \<otimes> c)" . hence rinv: "\<one> = b \<otimes> c" by (intro l_cancel[of "a" "\<one>" "b \<otimes> c"], simp+) also have "\<dots> = c \<otimes> b" by (simp add: m_comm) finally have linv: "\<one> = c \<otimes> b" . from ccarr linv[symmetric] rinv[symmetric] have "b \<in> Units G" unfolding Units_def by fastforce with nunit show "False" .. qed lemma properfactorE: fixes G (structure) assumes pf: "properfactor G a b" and r: "\<lbrakk>a divides b; \<not>(b divides a)\<rbrakk> \<Longrightarrow> P" shows "P" using pf unfolding properfactor_def by (fast intro: r) lemma properfactorE2: fixes G (structure) assumes pf: "properfactor G a b" and elim: "\<lbrakk>a divides b; \<not>(a \<sim> b)\<rbrakk> \<Longrightarrow> P" shows "P" using pf unfolding properfactor_def by (fast elim: elim associatedE) lemma (in monoid) properfactor_unitE: assumes uunit: "u \<in> Units G" and pf: "properfactor G a u" and acarr: "a \<in> carrier G" shows "P" using pf unit_divides[OF uunit acarr] by (fast elim: properfactorE) lemma (in monoid) properfactor_divides: assumes pf: "properfactor G a b" shows "a divides b" using pf by (elim properfactorE) lemma (in monoid) properfactor_trans1 [trans]: assumes dvds: "a divides b" "properfactor G b c" and carr: "a \<in> carrier G" "b \<in> carrier G" "c \<in> carrier G" shows "properfactor G a c" using dvds carr apply (elim properfactorE, intro properfactorI) apply (iprover intro: divides_trans)+ done lemma (in monoid) properfactor_trans2 [trans]: assumes dvds: "properfactor G a b" "b divides c" and carr: "a \<in> carrier G" "b \<in> carrier G" "c \<in> carrier G" shows "properfactor G a c" using dvds carr apply (elim properfactorE, intro properfactorI) apply (iprover intro: divides_trans)+ done lemma properfactor_lless: fixes G (structure) shows "properfactor G = lless (division_rel G)" apply (rule ext) apply (rule ext) apply rule apply (fastforce elim: properfactorE2 intro: weak_llessI) apply (fastforce elim: weak_llessE intro: properfactorI2) done lemma (in monoid) properfactor_cong_l [trans]: assumes x'x: "x' \<sim> x" and pf: "properfactor G x y" and carr: "x \<in> carrier G" "x' \<in> carrier G" "y \<in> carrier G" shows "properfactor G x' y" using pf unfolding properfactor_lless proof - interpret weak_partial_order "division_rel G" .. from x'x have "x' .=\<^bsub>division_rel G\<^esub> x" by simp also assume "x \<sqsubset>\<^bsub>division_rel G\<^esub> y" finally show "x' \<sqsubset>\<^bsub>division_rel G\<^esub> y" by (simp add: carr) qed lemma (in monoid) properfactor_cong_r [trans]: assumes pf: "properfactor G x y" and yy': "y \<sim> y'" and carr: "x \<in> carrier G" "y \<in> carrier G" "y' \<in> carrier G" shows "properfactor G x y'" using pf unfolding properfactor_lless proof - interpret weak_partial_order "division_rel G" .. assume "x \<sqsubset>\<^bsub>division_rel G\<^esub> y" also from yy' have "y .=\<^bsub>division_rel G\<^esub> y'" by simp finally show "x \<sqsubset>\<^bsub>division_rel G\<^esub> y'" by (simp add: carr) qed lemma (in monoid_cancel) properfactor_mult_lI [intro]: assumes ab: "properfactor G a b" and carr: "a \<in> carrier G" "b \<in> carrier G" "c \<in> carrier G" shows "properfactor G (c \<otimes> a) (c \<otimes> b)" using ab carr by (fastforce elim: properfactorE intro: properfactorI) lemma (in monoid_cancel) properfactor_mult_l [simp]: assumes carr: "a \<in> carrier G" "b \<in> carrier G" "c \<in> carrier G" shows "properfactor G (c \<otimes> a) (c \<otimes> b) = properfactor G a b" using carr by (fastforce elim: properfactorE intro: properfactorI) lemma (in comm_monoid_cancel) properfactor_mult_rI [intro]: assumes ab: "properfactor G a b" and carr: "a \<in> carrier G" "b \<in> carrier G" "c \<in> carrier G" shows "properfactor G (a \<otimes> c) (b \<otimes> c)" using ab carr by (fastforce elim: properfactorE intro: properfactorI) lemma (in comm_monoid_cancel) properfactor_mult_r [simp]: assumes carr: "a \<in> carrier G" "b \<in> carrier G" "c \<in> carrier G" shows "properfactor G (a \<otimes> c) (b \<otimes> c) = properfactor G a b" using carr by (fastforce elim: properfactorE intro: properfactorI) lemma (in monoid) properfactor_prod_r: assumes ab: "properfactor G a b" and carr[simp]: "a \<in> carrier G" "b \<in> carrier G" "c \<in> carrier G" shows "properfactor G a (b \<otimes> c)" by (intro properfactor_trans2[OF ab] divides_prod_r, simp+) lemma (in comm_monoid) properfactor_prod_l: assumes ab: "properfactor G a b" and carr[simp]: "a \<in> carrier G" "b \<in> carrier G" "c \<in> carrier G" shows "properfactor G a (c \<otimes> b)" by (intro properfactor_trans2[OF ab] divides_prod_l, simp+) subsection {* Irreducible Elements and Primes *} subsubsection {* Irreducible elements *} lemma irreducibleI: fixes G (structure) assumes "a \<notin> Units G" and "\<And>b. \<lbrakk>b \<in> carrier G; properfactor G b a\<rbrakk> \<Longrightarrow> b \<in> Units G" shows "irreducible G a" using assms unfolding irreducible_def by blast lemma irreducibleE: fixes G (structure) assumes irr: "irreducible G a" and elim: "\<lbrakk>a \<notin> Units G; \<forall>b. b \<in> carrier G \<and> properfactor G b a \<longrightarrow> b \<in> Units G\<rbrakk> \<Longrightarrow> P" shows "P" using assms unfolding irreducible_def by blast lemma irreducibleD: fixes G (structure) assumes irr: "irreducible G a" and pf: "properfactor G b a" and bcarr: "b \<in> carrier G" shows "b \<in> Units G" using assms by (fast elim: irreducibleE) lemma (in monoid_cancel) irreducible_cong [trans]: assumes irred: "irreducible G a" and aa': "a \<sim> a'" and carr[simp]: "a \<in> carrier G" "a' \<in> carrier G" shows "irreducible G a'" using assms apply (elim irreducibleE, intro irreducibleI) apply simp_all apply (metis assms(2) assms(3) assoc_unit_l) apply (metis assms(2) assms(3) assms(4) associated_sym properfactor_cong_r) done lemma (in monoid) irreducible_prod_rI: assumes airr: "irreducible G a" and bunit: "b \<in> Units G" and carr[simp]: "a \<in> carrier G" "b \<in> carrier G" shows "irreducible G (a \<otimes> b)" using airr carr bunit apply (elim irreducibleE, intro irreducibleI, clarify) apply (subgoal_tac "a \<in> Units G", simp) apply (intro prod_unit_r[of a b] carr bunit, assumption) apply (metis assms associatedI2 m_closed properfactor_cong_r) done lemma (in comm_monoid) irreducible_prod_lI: assumes birr: "irreducible G b" and aunit: "a \<in> Units G" and carr [simp]: "a \<in> carrier G" "b \<in> carrier G" shows "irreducible G (a \<otimes> b)" apply (subst m_comm, simp+) apply (intro irreducible_prod_rI assms) done lemma (in comm_monoid_cancel) irreducible_prodE [elim]: assumes irr: "irreducible G (a \<otimes> b)" and carr[simp]: "a \<in> carrier G" "b \<in> carrier G" and e1: "\<lbrakk>irreducible G a; b \<in> Units G\<rbrakk> \<Longrightarrow> P" and e2: "\<lbrakk>a \<in> Units G; irreducible G b\<rbrakk> \<Longrightarrow> P" shows "P" using irr proof (elim irreducibleE) assume abnunit: "a \<otimes> b \<notin> Units G" and isunit[rule_format]: "\<forall>ba. ba \<in> carrier G \<and> properfactor G ba (a \<otimes> b) \<longrightarrow> ba \<in> Units G" show "P" proof (cases "a \<in> Units G") assume aunit: "a \<in> Units G" have "irreducible G b" apply (rule irreducibleI) proof (rule ccontr, simp) assume "b \<in> Units G" with aunit have "(a \<otimes> b) \<in> Units G" by fast with abnunit show "False" .. next fix c assume ccarr: "c \<in> carrier G" and "properfactor G c b" hence "properfactor G c (a \<otimes> b)" by (simp add: properfactor_prod_l[of c b a]) from ccarr this show "c \<in> Units G" by (fast intro: isunit) qed from aunit this show "P" by (rule e2) next assume anunit: "a \<notin> Units G" with carr have "properfactor G b (b \<otimes> a)" by (fast intro: properfactorI3) hence bf: "properfactor G b (a \<otimes> b)" by (subst m_comm[of a b], simp+) hence bunit: "b \<in> Units G" by (intro isunit, simp) have "irreducible G a" apply (rule irreducibleI) proof (rule ccontr, simp) assume "a \<in> Units G" with bunit have "(a \<otimes> b) \<in> Units G" by fast with abnunit show "False" .. next fix c assume ccarr: "c \<in> carrier G" and "properfactor G c a" hence "properfactor G c (a \<otimes> b)" by (simp add: properfactor_prod_r[of c a b]) from ccarr this show "c \<in> Units G" by (fast intro: isunit) qed from this bunit show "P" by (rule e1) qed qed subsubsection {* Prime elements *} lemma primeI: fixes G (structure) assumes "p \<notin> Units G" and "\<And>a b. \<lbrakk>a \<in> carrier G; b \<in> carrier G; p divides (a \<otimes> b)\<rbrakk> \<Longrightarrow> p divides a \<or> p divides b" shows "prime G p" using assms unfolding prime_def by blast lemma primeE: fixes G (structure) assumes pprime: "prime G p" and e: "\<lbrakk>p \<notin> Units G; \<forall>a\<in>carrier G. \<forall>b\<in>carrier G. p divides a \<otimes> b \<longrightarrow> p divides a \<or> p divides b\<rbrakk> \<Longrightarrow> P" shows "P" using pprime unfolding prime_def by (blast dest: e) lemma (in comm_monoid_cancel) prime_divides: assumes carr: "a \<in> carrier G" "b \<in> carrier G" and pprime: "prime G p" and pdvd: "p divides a \<otimes> b" shows "p divides a \<or> p divides b" using assms by (blast elim: primeE) lemma (in monoid_cancel) prime_cong [trans]: assumes pprime: "prime G p" and pp': "p \<sim> p'" and carr[simp]: "p \<in> carrier G" "p' \<in> carrier G" shows "prime G p'" using pprime apply (elim primeE, intro primeI) apply (metis assms(2) assms(3) assoc_unit_l) apply (metis assms(2) assms(3) assms(4) associated_sym divides_cong_l m_closed) done subsection {* Factorization and Factorial Monoids *} subsubsection {* Function definitions *} definition factors :: "[_, 'a list, 'a] \<Rightarrow> bool" where "factors G fs a \<longleftrightarrow> (\<forall>x \<in> (set fs). irreducible G x) \<and> foldr (op \<otimes>\<^bsub>G\<^esub>) fs \<one>\<^bsub>G\<^esub> = a" definition wfactors ::"[_, 'a list, 'a] \<Rightarrow> bool" where "wfactors G fs a \<longleftrightarrow> (\<forall>x \<in> (set fs). irreducible G x) \<and> foldr (op \<otimes>\<^bsub>G\<^esub>) fs \<one>\<^bsub>G\<^esub> \<sim>\<^bsub>G\<^esub> a" abbreviation list_assoc :: "('a,_) monoid_scheme \<Rightarrow> 'a list \<Rightarrow> 'a list \<Rightarrow> bool" (infix "[\<sim>]\<index>" 44) where "list_assoc G == list_all2 (op \<sim>\<^bsub>G\<^esub>)" definition essentially_equal :: "[_, 'a list, 'a list] \<Rightarrow> bool" where "essentially_equal G fs1 fs2 \<longleftrightarrow> (\<exists>fs1'. fs1 <~~> fs1' \<and> fs1' [\<sim>]\<^bsub>G\<^esub> fs2)" locale factorial_monoid = comm_monoid_cancel + assumes factors_exist: "\<lbrakk>a \<in> carrier G; a \<notin> Units G\<rbrakk> \<Longrightarrow> \<exists>fs. set fs \<subseteq> carrier G \<and> factors G fs a" and factors_unique: "\<lbrakk>factors G fs a; factors G fs' a; a \<in> carrier G; a \<notin> Units G; set fs \<subseteq> carrier G; set fs' \<subseteq> carrier G\<rbrakk> \<Longrightarrow> essentially_equal G fs fs'" subsubsection {* Comparing lists of elements *} text {* Association on lists *} lemma (in monoid) listassoc_refl [simp, intro]: assumes "set as \<subseteq> carrier G" shows "as [\<sim>] as" using assms by (induct as) simp+ lemma (in monoid) listassoc_sym [sym]: assumes "as [\<sim>] bs" and "set as \<subseteq> carrier G" and "set bs \<subseteq> carrier G" shows "bs [\<sim>] as" using assms proof (induct as arbitrary: bs, simp) case Cons thus ?case apply (induct bs, simp) apply clarsimp apply (iprover intro: associated_sym) done qed lemma (in monoid) listassoc_trans [trans]: assumes "as [\<sim>] bs" and "bs [\<sim>] cs" and "set as \<subseteq> carrier G" and "set bs \<subseteq> carrier G" and "set cs \<subseteq> carrier G" shows "as [\<sim>] cs" using assms apply (simp add: list_all2_conv_all_nth set_conv_nth, safe) apply (rule associated_trans) apply (subgoal_tac "as ! i \<sim> bs ! i", assumption) apply (simp, simp) apply blast+ done lemma (in monoid_cancel) irrlist_listassoc_cong: assumes "\<forall>a\<in>set as. irreducible G a" and "as [\<sim>] bs" and "set as \<subseteq> carrier G" and "set bs \<subseteq> carrier G" shows "\<forall>a\<in>set bs. irreducible G a" using assms apply (clarsimp simp add: list_all2_conv_all_nth set_conv_nth) apply (blast intro: irreducible_cong) done text {* Permutations *} lemma perm_map [intro]: assumes p: "a <~~> b" shows "map f a <~~> map f b" using p by induct auto lemma perm_map_switch: assumes m: "map f a = map f b" and p: "b <~~> c" shows "\<exists>d. a <~~> d \<and> map f d = map f c" using p m by (induct arbitrary: a) (simp, force, force, blast) lemma (in monoid) perm_assoc_switch: assumes a:"as [\<sim>] bs" and p: "bs <~~> cs" shows "\<exists>bs'. as <~~> bs' \<and> bs' [\<sim>] cs" using p a apply (induct bs cs arbitrary: as, simp) apply (clarsimp simp add: list_all2_Cons2, blast) apply (clarsimp simp add: list_all2_Cons2) apply blast apply blast done lemma (in monoid) perm_assoc_switch_r: assumes p: "as <~~> bs" and a:"bs [\<sim>] cs" shows "\<exists>bs'. as [\<sim>] bs' \<and> bs' <~~> cs" using p a apply (induct as bs arbitrary: cs, simp) apply (clarsimp simp add: list_all2_Cons1, blast) apply (clarsimp simp add: list_all2_Cons1) apply blast apply blast done declare perm_sym [sym] lemma perm_setP: assumes perm: "as <~~> bs" and as: "P (set as)" shows "P (set bs)" proof - from perm have "multiset_of as = multiset_of bs" by (simp add: multiset_of_eq_perm) hence "set as = set bs" by (rule multiset_of_eq_setD) with as show "P (set bs)" by simp qed lemmas (in monoid) perm_closed = perm_setP[of _ _ "\<lambda>as. as \<subseteq> carrier G"] lemmas (in monoid) irrlist_perm_cong = perm_setP[of _ _ "\<lambda>as. \<forall>a\<in>as. irreducible G a"] text {* Essentially equal factorizations *} lemma (in monoid) essentially_equalI: assumes ex: "fs1 <~~> fs1'" "fs1' [\<sim>] fs2" shows "essentially_equal G fs1 fs2" using ex unfolding essentially_equal_def by fast lemma (in monoid) essentially_equalE: assumes ee: "essentially_equal G fs1 fs2" and e: "\<And>fs1'. \<lbrakk>fs1 <~~> fs1'; fs1' [\<sim>] fs2\<rbrakk> \<Longrightarrow> P" shows "P" using ee unfolding essentially_equal_def by (fast intro: e) lemma (in monoid) ee_refl [simp,intro]: assumes carr: "set as \<subseteq> carrier G" shows "essentially_equal G as as" using carr by (fast intro: essentially_equalI) lemma (in monoid) ee_sym [sym]: assumes ee: "essentially_equal G as bs" and carr: "set as \<subseteq> carrier G" "set bs \<subseteq> carrier G" shows "essentially_equal G bs as" using ee proof (elim essentially_equalE) fix fs assume "as <~~> fs" "fs [\<sim>] bs" hence "\<exists>fs'. as [\<sim>] fs' \<and> fs' <~~> bs" by (rule perm_assoc_switch_r) from this obtain fs' where a: "as [\<sim>] fs'" and p: "fs' <~~> bs" by auto from p have "bs <~~> fs'" by (rule perm_sym) with a[symmetric] carr show ?thesis by (iprover intro: essentially_equalI perm_closed) qed lemma (in monoid) ee_trans [trans]: assumes ab: "essentially_equal G as bs" and bc: "essentially_equal G bs cs" and ascarr: "set as \<subseteq> carrier G" and bscarr: "set bs \<subseteq> carrier G" and cscarr: "set cs \<subseteq> carrier G" shows "essentially_equal G as cs" using ab bc proof (elim essentially_equalE) fix abs bcs assume "abs [\<sim>] bs" and pb: "bs <~~> bcs" hence "\<exists>bs'. abs <~~> bs' \<and> bs' [\<sim>] bcs" by (rule perm_assoc_switch) from this obtain bs' where p: "abs <~~> bs'" and a: "bs' [\<sim>] bcs" by auto assume "as <~~> abs" with p have pp: "as <~~> bs'" by fast from pp ascarr have c1: "set bs' \<subseteq> carrier G" by (rule perm_closed) from pb bscarr have c2: "set bcs \<subseteq> carrier G" by (rule perm_closed) note a also assume "bcs [\<sim>] cs" finally (listassoc_trans) have"bs' [\<sim>] cs" by (simp add: c1 c2 cscarr) with pp show ?thesis by (rule essentially_equalI) qed subsubsection {* Properties of lists of elements *} text {* Multiplication of factors in a list *} lemma (in monoid) multlist_closed [simp, intro]: assumes ascarr: "set fs \<subseteq> carrier G" shows "foldr (op \<otimes>) fs \<one> \<in> carrier G" by (insert ascarr, induct fs, simp+) lemma (in comm_monoid) multlist_dividesI (*[intro]*): assumes "f \<in> set fs" and "f \<in> carrier G" and "set fs \<subseteq> carrier G" shows "f divides (foldr (op \<otimes>) fs \<one>)" using assms apply (induct fs) apply simp apply (case_tac "f = a", simp) apply (fast intro: dividesI) apply clarsimp apply (metis assms(2) divides_prod_l multlist_closed) done lemma (in comm_monoid_cancel) multlist_listassoc_cong: assumes "fs [\<sim>] fs'" and "set fs \<subseteq> carrier G" and "set fs' \<subseteq> carrier G" shows "foldr (op \<otimes>) fs \<one> \<sim> foldr (op \<otimes>) fs' \<one>" using assms proof (induct fs arbitrary: fs', simp) case (Cons a as fs') thus ?case apply (induct fs', simp) proof clarsimp fix b bs assume "a \<sim> b" and acarr: "a \<in> carrier G" and bcarr: "b \<in> carrier G" and ascarr: "set as \<subseteq> carrier G" hence p: "a \<otimes> foldr op \<otimes> as \<one> \<sim> b \<otimes> foldr op \<otimes> as \<one>" by (fast intro: mult_cong_l) also assume "as [\<sim>] bs" and bscarr: "set bs \<subseteq> carrier G" and "\<And>fs'. \<lbrakk>as [\<sim>] fs'; set fs' \<subseteq> carrier G\<rbrakk> \<Longrightarrow> foldr op \<otimes> as \<one> \<sim> foldr op \<otimes> fs' \<one>" hence "foldr op \<otimes> as \<one> \<sim> foldr op \<otimes> bs \<one>" by simp with ascarr bscarr bcarr have "b \<otimes> foldr op \<otimes> as \<one> \<sim> b \<otimes> foldr op \<otimes> bs \<one>" by (fast intro: mult_cong_r) finally show "a \<otimes> foldr op \<otimes> as \<one> \<sim> b \<otimes> foldr op \<otimes> bs \<one>" by (simp add: ascarr bscarr acarr bcarr) qed qed lemma (in comm_monoid) multlist_perm_cong: assumes prm: "as <~~> bs" and ascarr: "set as \<subseteq> carrier G" shows "foldr (op \<otimes>) as \<one> = foldr (op \<otimes>) bs \<one>" using prm ascarr apply (induct, simp, clarsimp simp add: m_ac, clarsimp) proof clarsimp fix xs ys zs assume "xs <~~> ys" "set xs \<subseteq> carrier G" hence "set ys \<subseteq> carrier G" by (rule perm_closed) moreover assume "set ys \<subseteq> carrier G \<Longrightarrow> foldr op \<otimes> ys \<one> = foldr op \<otimes> zs \<one>" ultimately show "foldr op \<otimes> ys \<one> = foldr op \<otimes> zs \<one>" by simp qed lemma (in comm_monoid_cancel) multlist_ee_cong: assumes "essentially_equal G fs fs'" and "set fs \<subseteq> carrier G" and "set fs' \<subseteq> carrier G" shows "foldr (op \<otimes>) fs \<one> \<sim> foldr (op \<otimes>) fs' \<one>" using assms apply (elim essentially_equalE) apply (simp add: multlist_perm_cong multlist_listassoc_cong perm_closed) done subsubsection {* Factorization in irreducible elements *} lemma wfactorsI: fixes G (structure) assumes "\<forall>f\<in>set fs. irreducible G f" and "foldr (op \<otimes>) fs \<one> \<sim> a" shows "wfactors G fs a" using assms unfolding wfactors_def by simp lemma wfactorsE: fixes G (structure) assumes wf: "wfactors G fs a" and e: "\<lbrakk>\<forall>f\<in>set fs. irreducible G f; foldr (op \<otimes>) fs \<one> \<sim> a\<rbrakk> \<Longrightarrow> P" shows "P" using wf unfolding wfactors_def by (fast dest: e) lemma (in monoid) factorsI: assumes "\<forall>f\<in>set fs. irreducible G f" and "foldr (op \<otimes>) fs \<one> = a" shows "factors G fs a" using assms unfolding factors_def by simp lemma factorsE: fixes G (structure) assumes f: "factors G fs a" and e: "\<lbrakk>\<forall>f\<in>set fs. irreducible G f; foldr (op \<otimes>) fs \<one> = a\<rbrakk> \<Longrightarrow> P" shows "P" using f unfolding factors_def by (simp add: e) lemma (in monoid) factors_wfactors: assumes "factors G as a" and "set as \<subseteq> carrier G" shows "wfactors G as a" using assms by (blast elim: factorsE intro: wfactorsI) lemma (in monoid) wfactors_factors: assumes "wfactors G as a" and "set as \<subseteq> carrier G" shows "\<exists>a'. factors G as a' \<and> a' \<sim> a" using assms by (blast elim: wfactorsE intro: factorsI) lemma (in monoid) factors_closed [dest]: assumes "factors G fs a" and "set fs \<subseteq> carrier G" shows "a \<in> carrier G" using assms by (elim factorsE, clarsimp) lemma (in monoid) nunit_factors: assumes anunit: "a \<notin> Units G" and fs: "factors G as a" shows "length as > 0" proof - from anunit Units_one_closed have "a \<noteq> \<one>" by auto with fs show ?thesis by (auto elim: factorsE) qed lemma (in monoid) unit_wfactors [simp]: assumes aunit: "a \<in> Units G" shows "wfactors G [] a" using aunit by (intro wfactorsI) (simp, simp add: Units_assoc) lemma (in comm_monoid_cancel) unit_wfactors_empty: assumes aunit: "a \<in> Units G" and wf: "wfactors G fs a" and carr[simp]: "set fs \<subseteq> carrier G" shows "fs = []" proof (rule ccontr, cases fs, simp) fix f fs' assume fs: "fs = f # fs'" from carr have fcarr[simp]: "f \<in> carrier G" and carr'[simp]: "set fs' \<subseteq> carrier G" by (simp add: fs)+ from fs wf have "irreducible G f" by (simp add: wfactors_def) hence fnunit: "f \<notin> Units G" by (fast elim: irreducibleE) from fs wf have a: "f \<otimes> foldr (op \<otimes>) fs' \<one> \<sim> a" by (simp add: wfactors_def) note aunit also from fs wf have a: "f \<otimes> foldr (op \<otimes>) fs' \<one> \<sim> a" by (simp add: wfactors_def) have "a \<sim> f \<otimes> foldr (op \<otimes>) fs' \<one>" by (simp add: Units_closed[OF aunit] a[symmetric]) finally have "f \<otimes> foldr (op \<otimes>) fs' \<one> \<in> Units G" by simp hence "f \<in> Units G" by (intro unit_factor[of f], simp+) with fnunit show "False" by simp qed text {* Comparing wfactors *} lemma (in comm_monoid_cancel) wfactors_listassoc_cong_l: assumes fact: "wfactors G fs a" and asc: "fs [\<sim>] fs'" and carr: "a \<in> carrier G" "set fs \<subseteq> carrier G" "set fs' \<subseteq> carrier G" shows "wfactors G fs' a" using fact apply (elim wfactorsE, intro wfactorsI) apply (metis assms(2) assms(4) assms(5) irrlist_listassoc_cong) proof - from asc[symmetric] have "foldr op \<otimes> fs' \<one> \<sim> foldr op \<otimes> fs \<one>" by (simp add: multlist_listassoc_cong carr) also assume "foldr op \<otimes> fs \<one> \<sim> a" finally show "foldr op \<otimes> fs' \<one> \<sim> a" by (simp add: carr) qed lemma (in comm_monoid) wfactors_perm_cong_l: assumes "wfactors G fs a" and "fs <~~> fs'" and "set fs \<subseteq> carrier G" shows "wfactors G fs' a" using assms apply (elim wfactorsE, intro wfactorsI) apply (rule irrlist_perm_cong, assumption+) apply (simp add: multlist_perm_cong[symmetric]) done lemma (in comm_monoid_cancel) wfactors_ee_cong_l [trans]: assumes ee: "essentially_equal G as bs" and bfs: "wfactors G bs b" and carr: "b \<in> carrier G" "set as \<subseteq> carrier G" "set bs \<subseteq> carrier G" shows "wfactors G as b" using ee proof (elim essentially_equalE) fix fs assume prm: "as <~~> fs" with carr have fscarr: "set fs \<subseteq> carrier G" by (simp add: perm_closed) note bfs also assume [symmetric]: "fs [\<sim>] bs" also (wfactors_listassoc_cong_l) note prm[symmetric] finally (wfactors_perm_cong_l) show "wfactors G as b" by (simp add: carr fscarr) qed lemma (in monoid) wfactors_cong_r [trans]: assumes fac: "wfactors G fs a" and aa': "a \<sim> a'" and carr[simp]: "a \<in> carrier G" "a' \<in> carrier G" "set fs \<subseteq> carrier G" shows "wfactors G fs a'" using fac proof (elim wfactorsE, intro wfactorsI) assume "foldr op \<otimes> fs \<one> \<sim> a" also note aa' finally show "foldr op \<otimes> fs \<one> \<sim> a'" by simp qed subsubsection {* Essentially equal factorizations *} lemma (in comm_monoid_cancel) unitfactor_ee: assumes uunit: "u \<in> Units G" and carr: "set as \<subseteq> carrier G" shows "essentially_equal G (as[0 := (as!0 \<otimes> u)]) as" (is "essentially_equal G ?as' as") using assms apply (intro essentially_equalI[of _ ?as'], simp) apply (cases as, simp) apply (clarsimp, fast intro: associatedI2[of u]) done lemma (in comm_monoid_cancel) factors_cong_unit: assumes uunit: "u \<in> Units G" and anunit: "a \<notin> Units G" and afs: "factors G as a" and ascarr: "set as \<subseteq> carrier G" shows "factors G (as[0 := (as!0 \<otimes> u)]) (a \<otimes> u)" (is "factors G ?as' ?a'") using assms apply (elim factorsE, clarify) apply (cases as) apply (simp add: nunit_factors) apply clarsimp apply (elim factorsE, intro factorsI) apply (clarsimp, fast intro: irreducible_prod_rI) apply (simp add: m_ac Units_closed) done lemma (in comm_monoid) perm_wfactorsD: assumes prm: "as <~~> bs" and afs: "wfactors G as a" and bfs: "wfactors G bs b" and [simp]: "a \<in> carrier G" "b \<in> carrier G" and ascarr[simp]: "set as \<subseteq> carrier G" shows "a \<sim> b" using afs bfs proof (elim wfactorsE) from prm have [simp]: "set bs \<subseteq> carrier G" by (simp add: perm_closed) assume "foldr op \<otimes> as \<one> \<sim> a" hence "a \<sim> foldr op \<otimes> as \<one>" by (rule associated_sym, simp+) also from prm have "foldr op \<otimes> as \<one> = foldr op \<otimes> bs \<one>" by (rule multlist_perm_cong, simp) also assume "foldr op \<otimes> bs \<one> \<sim> b" finally show "a \<sim> b" by simp qed lemma (in comm_monoid_cancel) listassoc_wfactorsD: assumes assoc: "as [\<sim>] bs" and afs: "wfactors G as a" and bfs: "wfactors G bs b" and [simp]: "a \<in> carrier G" "b \<in> carrier G" and [simp]: "set as \<subseteq> carrier G" "set bs \<subseteq> carrier G" shows "a \<sim> b" using afs bfs proof (elim wfactorsE) assume "foldr op \<otimes> as \<one> \<sim> a" hence "a \<sim> foldr op \<otimes> as \<one>" by (rule associated_sym, simp+) also from assoc have "foldr op \<otimes> as \<one> \<sim> foldr op \<otimes> bs \<one>" by (rule multlist_listassoc_cong, simp+) also assume "foldr op \<otimes> bs \<one> \<sim> b" finally show "a \<sim> b" by simp qed lemma (in comm_monoid_cancel) ee_wfactorsD: assumes ee: "essentially_equal G as bs" and afs: "wfactors G as a" and bfs: "wfactors G bs b" and [simp]: "a \<in> carrier G" "b \<in> carrier G" and ascarr[simp]: "set as \<subseteq> carrier G" and bscarr[simp]: "set bs \<subseteq> carrier G" shows "a \<sim> b" using ee proof (elim essentially_equalE) fix fs assume prm: "as <~~> fs" hence as'carr[simp]: "set fs \<subseteq> carrier G" by (simp add: perm_closed) from afs prm have afs': "wfactors G fs a" by (rule wfactors_perm_cong_l, simp) assume "fs [\<sim>] bs" from this afs' bfs show "a \<sim> b" by (rule listassoc_wfactorsD, simp+) qed lemma (in comm_monoid_cancel) ee_factorsD: assumes ee: "essentially_equal G as bs" and afs: "factors G as a" and bfs:"factors G bs b" and "set as \<subseteq> carrier G" "set bs \<subseteq> carrier G" shows "a \<sim> b" using assms by (blast intro: factors_wfactors dest: ee_wfactorsD) lemma (in factorial_monoid) ee_factorsI: assumes ab: "a \<sim> b" and afs: "factors G as a" and anunit: "a \<notin> Units G" and bfs: "factors G bs b" and bnunit: "b \<notin> Units G" and ascarr: "set as \<subseteq> carrier G" and bscarr: "set bs \<subseteq> carrier G" shows "essentially_equal G as bs" proof - note carr[simp] = factors_closed[OF afs ascarr] ascarr[THEN subsetD] factors_closed[OF bfs bscarr] bscarr[THEN subsetD] from ab carr have "\<exists>u\<in>Units G. a = b \<otimes> u" by (fast elim: associatedE2) from this obtain u where uunit: "u \<in> Units G" and a: "a = b \<otimes> u" by auto from uunit bscarr have ee: "essentially_equal G (bs[0 := (bs!0 \<otimes> u)]) bs" (is "essentially_equal G ?bs' bs") by (rule unitfactor_ee) from bscarr uunit have bs'carr: "set ?bs' \<subseteq> carrier G" by (cases bs) (simp add: Units_closed)+ from uunit bnunit bfs bscarr have fac: "factors G ?bs' (b \<otimes> u)" by (rule factors_cong_unit) from afs fac[simplified a[symmetric]] ascarr bs'carr anunit have "essentially_equal G as ?bs'" by (blast intro: factors_unique) also note ee finally show "essentially_equal G as bs" by (simp add: ascarr bscarr bs'carr) qed lemma (in factorial_monoid) ee_wfactorsI: assumes asc: "a \<sim> b" and asf: "wfactors G as a" and bsf: "wfactors G bs b" and acarr[simp]: "a \<in> carrier G" and bcarr[simp]: "b \<in> carrier G" and ascarr[simp]: "set as \<subseteq> carrier G" and bscarr[simp]: "set bs \<subseteq> carrier G" shows "essentially_equal G as bs" using assms proof (cases "a \<in> Units G") assume aunit: "a \<in> Units G" also note asc finally have bunit: "b \<in> Units G" by simp from aunit asf ascarr have e: "as = []" by (rule unit_wfactors_empty) from bunit bsf bscarr have e': "bs = []" by (rule unit_wfactors_empty) have "essentially_equal G [] []" by (fast intro: essentially_equalI) thus ?thesis by (simp add: e e') next assume anunit: "a \<notin> Units G" have bnunit: "b \<notin> Units G" proof clarify assume "b \<in> Units G" also note asc[symmetric] finally have "a \<in> Units G" by simp with anunit show "False" .. qed have "\<exists>a'. factors G as a' \<and> a' \<sim> a" by (rule wfactors_factors[OF asf ascarr]) from this obtain a' where fa': "factors G as a'" and a': "a' \<sim> a" by auto from fa' ascarr have a'carr[simp]: "a' \<in> carrier G" by fast have a'nunit: "a' \<notin> Units G" proof (clarify) assume "a' \<in> Units G" also note a' finally have "a \<in> Units G" by simp with anunit show "False" .. qed have "\<exists>b'. factors G bs b' \<and> b' \<sim> b" by (rule wfactors_factors[OF bsf bscarr]) from this obtain b' where fb': "factors G bs b'" and b': "b' \<sim> b" by auto from fb' bscarr have b'carr[simp]: "b' \<in> carrier G" by fast have b'nunit: "b' \<notin> Units G" proof (clarify) assume "b' \<in> Units G" also note b' finally have "b \<in> Units G" by simp with bnunit show "False" .. qed note a' also note asc also note b'[symmetric] finally have "a' \<sim> b'" by simp from this fa' a'nunit fb' b'nunit ascarr bscarr show "essentially_equal G as bs" by (rule ee_factorsI) qed lemma (in factorial_monoid) ee_wfactors: assumes asf: "wfactors G as a" and bsf: "wfactors G bs b" and acarr: "a \<in> carrier G" and bcarr: "b \<in> carrier G" and ascarr: "set as \<subseteq> carrier G" and bscarr: "set bs \<subseteq> carrier G" shows asc: "a \<sim> b = essentially_equal G as bs" using assms by (fast intro: ee_wfactorsI ee_wfactorsD) lemma (in factorial_monoid) wfactors_exist [intro, simp]: assumes acarr[simp]: "a \<in> carrier G" shows "\<exists>fs. set fs \<subseteq> carrier G \<and> wfactors G fs a" proof (cases "a \<in> Units G") assume "a \<in> Units G" hence "wfactors G [] a" by (rule unit_wfactors) thus ?thesis by (intro exI) force next assume "a \<notin> Units G" hence "\<exists>fs. set fs \<subseteq> carrier G \<and> factors G fs a" by (intro factors_exist acarr) from this obtain fs where fscarr: "set fs \<subseteq> carrier G" and f: "factors G fs a" by auto from f have "wfactors G fs a" by (rule factors_wfactors) fact from fscarr this show ?thesis by fast qed lemma (in monoid) wfactors_prod_exists [intro, simp]: assumes "\<forall>a \<in> set as. irreducible G a" and "set as \<subseteq> carrier G" shows "\<exists>a. a \<in> carrier G \<and> wfactors G as a" unfolding wfactors_def using assms by blast lemma (in factorial_monoid) wfactors_unique: assumes "wfactors G fs a" and "wfactors G fs' a" and "a \<in> carrier G" and "set fs \<subseteq> carrier G" and "set fs' \<subseteq> carrier G" shows "essentially_equal G fs fs'" using assms by (fast intro: ee_wfactorsI[of a a]) lemma (in monoid) factors_mult_single: assumes "irreducible G a" and "factors G fb b" and "a \<in> carrier G" shows "factors G (a # fb) (a \<otimes> b)" using assms unfolding factors_def by simp lemma (in monoid_cancel) wfactors_mult_single: assumes f: "irreducible G a" "wfactors G fb b" "a \<in> carrier G" "b \<in> carrier G" "set fb \<subseteq> carrier G" shows "wfactors G (a # fb) (a \<otimes> b)" using assms unfolding wfactors_def by (simp add: mult_cong_r) lemma (in monoid) factors_mult: assumes factors: "factors G fa a" "factors G fb b" and ascarr: "set fa \<subseteq> carrier G" and bscarr:"set fb \<subseteq> carrier G" shows "factors G (fa @ fb) (a \<otimes> b)" using assms unfolding factors_def apply (safe, force) apply hypsubst_thin apply (induct fa) apply simp apply (simp add: m_assoc) done lemma (in comm_monoid_cancel) wfactors_mult [intro]: assumes asf: "wfactors G as a" and bsf:"wfactors G bs b" and acarr: "a \<in> carrier G" and bcarr: "b \<in> carrier G" and ascarr: "set as \<subseteq> carrier G" and bscarr:"set bs \<subseteq> carrier G" shows "wfactors G (as @ bs) (a \<otimes> b)" apply (insert wfactors_factors[OF asf ascarr]) apply (insert wfactors_factors[OF bsf bscarr]) proof (clarsimp) fix a' b' assume asf': "factors G as a'" and a'a: "a' \<sim> a" and bsf': "factors G bs b'" and b'b: "b' \<sim> b" from asf' have a'carr: "a' \<in> carrier G" by (rule factors_closed) fact from bsf' have b'carr: "b' \<in> carrier G" by (rule factors_closed) fact note carr = acarr bcarr a'carr b'carr ascarr bscarr from asf' bsf' have "factors G (as @ bs) (a' \<otimes> b')" by (rule factors_mult) fact+ with carr have abf': "wfactors G (as @ bs) (a' \<otimes> b')" by (intro factors_wfactors) simp+ also from b'b carr have trb: "a' \<otimes> b' \<sim> a' \<otimes> b" by (intro mult_cong_r) also from a'a carr have tra: "a' \<otimes> b \<sim> a \<otimes> b" by (intro mult_cong_l) finally show "wfactors G (as @ bs) (a \<otimes> b)" by (simp add: carr) qed lemma (in comm_monoid) factors_dividesI: assumes "factors G fs a" and "f \<in> set fs" and "set fs \<subseteq> carrier G" shows "f divides a" using assms by (fast elim: factorsE intro: multlist_dividesI) lemma (in comm_monoid) wfactors_dividesI: assumes p: "wfactors G fs a" and fscarr: "set fs \<subseteq> carrier G" and acarr: "a \<in> carrier G" and f: "f \<in> set fs" shows "f divides a" apply (insert wfactors_factors[OF p fscarr], clarsimp) proof - fix a' assume fsa': "factors G fs a'" and a'a: "a' \<sim> a" with fscarr have a'carr: "a' \<in> carrier G" by (simp add: factors_closed) from fsa' fscarr f have "f divides a'" by (fast intro: factors_dividesI) also note a'a finally show "f divides a" by (simp add: f fscarr[THEN subsetD] acarr a'carr) qed subsubsection {* Factorial monoids and wfactors *} lemma (in comm_monoid_cancel) factorial_monoidI: assumes wfactors_exists: "\<And>a. a \<in> carrier G \<Longrightarrow> \<exists>fs. set fs \<subseteq> carrier G \<and> wfactors G fs a" and wfactors_unique: "\<And>a fs fs'. \<lbrakk>a \<in> carrier G; set fs \<subseteq> carrier G; set fs' \<subseteq> carrier G; wfactors G fs a; wfactors G fs' a\<rbrakk> \<Longrightarrow> essentially_equal G fs fs'" shows "factorial_monoid G" proof fix a assume acarr: "a \<in> carrier G" and anunit: "a \<notin> Units G" from wfactors_exists[OF acarr] obtain as where ascarr: "set as \<subseteq> carrier G" and afs: "wfactors G as a" by auto from afs ascarr have "\<exists>a'. factors G as a' \<and> a' \<sim> a" by (rule wfactors_factors) from this obtain a' where afs': "factors G as a'" and a'a: "a' \<sim> a" by auto from afs' ascarr have a'carr: "a' \<in> carrier G" by fast have a'nunit: "a' \<notin> Units G" proof clarify assume "a' \<in> Units G" also note a'a finally have "a \<in> Units G" by (simp add: acarr) with anunit show "False" .. qed from a'carr acarr a'a have "\<exists>u. u \<in> Units G \<and> a' = a \<otimes> u" by (blast elim: associatedE2) from this obtain u where uunit: "u \<in> Units G" and a': "a' = a \<otimes> u" by auto note [simp] = acarr Units_closed[OF uunit] Units_inv_closed[OF uunit] have "a = a \<otimes> \<one>" by simp also have "\<dots> = a \<otimes> (u \<otimes> inv u)" by (simp add: uunit) also have "\<dots> = a' \<otimes> inv u" by (simp add: m_assoc[symmetric] a'[symmetric]) finally have a: "a = a' \<otimes> inv u" . from ascarr uunit have cr: "set (as[0:=(as!0 \<otimes> inv u)]) \<subseteq> carrier G" by (cases as, clarsimp+) from afs' uunit a'nunit acarr ascarr have "factors G (as[0:=(as!0 \<otimes> inv u)]) a" by (simp add: a factors_cong_unit) with cr show "\<exists>fs. set fs \<subseteq> carrier G \<and> factors G fs a" by fast qed (blast intro: factors_wfactors wfactors_unique) subsection {* Factorizations as Multisets *} text {* Gives useful operations like intersection *} (* FIXME: use class_of x instead of closure_of {x} *) abbreviation "assocs G x == eq_closure_of (division_rel G) {x}" definition "fmset G as = multiset_of (map (\<lambda>a. assocs G a) as)" text {* Helper lemmas *} lemma (in monoid) assocs_repr_independence: assumes "y \<in> assocs G x" and "x \<in> carrier G" shows "assocs G x = assocs G y" using assms apply safe apply (elim closure_ofE2, intro closure_ofI2[of _ _ y]) apply (clarsimp, iprover intro: associated_trans associated_sym, simp+) apply (elim closure_ofE2, intro closure_ofI2[of _ _ x]) apply (clarsimp, iprover intro: associated_trans, simp+) done lemma (in monoid) assocs_self: assumes "x \<in> carrier G" shows "x \<in> assocs G x" using assms by (fastforce intro: closure_ofI2) lemma (in monoid) assocs_repr_independenceD: assumes repr: "assocs G x = assocs G y" and ycarr: "y \<in> carrier G" shows "y \<in> assocs G x" unfolding repr using ycarr by (intro assocs_self) lemma (in comm_monoid) assocs_assoc: assumes "a \<in> assocs G b" and "b \<in> carrier G" shows "a \<sim> b" using assms by (elim closure_ofE2, simp) lemmas (in comm_monoid) assocs_eqD = assocs_repr_independenceD[THEN assocs_assoc] subsubsection {* Comparing multisets *} lemma (in monoid) fmset_perm_cong: assumes prm: "as <~~> bs" shows "fmset G as = fmset G bs" using perm_map[OF prm] by (simp add: multiset_of_eq_perm fmset_def) lemma (in comm_monoid_cancel) eqc_listassoc_cong: assumes "as [\<sim>] bs" and "set as \<subseteq> carrier G" and "set bs \<subseteq> carrier G" shows "map (assocs G) as = map (assocs G) bs" using assms apply (induct as arbitrary: bs, simp) apply (clarsimp simp add: Cons_eq_map_conv list_all2_Cons1, safe) apply (clarsimp elim!: closure_ofE2) defer 1 apply (clarsimp elim!: closure_ofE2) defer 1 proof - fix a x z assume carr[simp]: "a \<in> carrier G" "x \<in> carrier G" "z \<in> carrier G" assume "x \<sim> a" also assume "a \<sim> z" finally have "x \<sim> z" by simp with carr show "x \<in> assocs G z" by (intro closure_ofI2) simp+ next fix a x z assume carr[simp]: "a \<in> carrier G" "x \<in> carrier G" "z \<in> carrier G" assume "x \<sim> z" also assume [symmetric]: "a \<sim> z" finally have "x \<sim> a" by simp with carr show "x \<in> assocs G a" by (intro closure_ofI2) simp+ qed lemma (in comm_monoid_cancel) fmset_listassoc_cong: assumes "as [\<sim>] bs" and "set as \<subseteq> carrier G" and "set bs \<subseteq> carrier G" shows "fmset G as = fmset G bs" using assms unfolding fmset_def by (simp add: eqc_listassoc_cong) lemma (in comm_monoid_cancel) ee_fmset: assumes ee: "essentially_equal G as bs" and ascarr: "set as \<subseteq> carrier G" and bscarr: "set bs \<subseteq> carrier G" shows "fmset G as = fmset G bs" using ee proof (elim essentially_equalE) fix as' assume prm: "as <~~> as'" from prm ascarr have as'carr: "set as' \<subseteq> carrier G" by (rule perm_closed) from prm have "fmset G as = fmset G as'" by (rule fmset_perm_cong) also assume "as' [\<sim>] bs" with as'carr bscarr have "fmset G as' = fmset G bs" by (simp add: fmset_listassoc_cong) finally show "fmset G as = fmset G bs" . qed lemma (in monoid_cancel) fmset_ee__hlp_induct: assumes prm: "cas <~~> cbs" and cdef: "cas = map (assocs G) as" "cbs = map (assocs G) bs" shows "\<forall>as bs. (cas <~~> cbs \<and> cas = map (assocs G) as \<and> cbs = map (assocs G) bs) \<longrightarrow> (\<exists>as'. as <~~> as' \<and> map (assocs G) as' = cbs)" apply (rule perm.induct[of cas cbs], rule prm) apply safe apply simp_all apply (simp add: map_eq_Cons_conv, blast) apply force proof - fix ys as bs assume p1: "map (assocs G) as <~~> ys" and r1[rule_format]: "\<forall>asa bs. map (assocs G) as = map (assocs G) asa \<and> ys = map (assocs G) bs \<longrightarrow> (\<exists>as'. asa <~~> as' \<and> map (assocs G) as' = map (assocs G) bs)" and p2: "ys <~~> map (assocs G) bs" and r2[rule_format]: "\<forall>as bsa. ys = map (assocs G) as \<and> map (assocs G) bs = map (assocs G) bsa \<longrightarrow> (\<exists>as'. as <~~> as' \<and> map (assocs G) as' = map (assocs G) bsa)" and p3: "map (assocs G) as <~~> map (assocs G) bs" from p1 have "multiset_of (map (assocs G) as) = multiset_of ys" by (simp add: multiset_of_eq_perm) hence setys: "set (map (assocs G) as) = set ys" by (rule multiset_of_eq_setD) have "set (map (assocs G) as) = { assocs G x | x. x \<in> set as}" by clarsimp fast with setys have "set ys \<subseteq> { assocs G x | x. x \<in> set as}" by simp hence "\<exists>yy. ys = map (assocs G) yy" apply (induct ys, simp, clarsimp) proof - fix yy x show "\<exists>yya. (assocs G x) # map (assocs G) yy = map (assocs G) yya" by (rule exI[of _ "x#yy"], simp) qed from this obtain yy where ys: "ys = map (assocs G) yy" by auto from p1 ys have "\<exists>as'. as <~~> as' \<and> map (assocs G) as' = map (assocs G) yy" by (intro r1, simp) from this obtain as' where asas': "as <~~> as'" and as'yy: "map (assocs G) as' = map (assocs G) yy" by auto from p2 ys have "\<exists>as'. yy <~~> as' \<and> map (assocs G) as' = map (assocs G) bs" by (intro r2, simp) from this obtain as'' where yyas'': "yy <~~> as''" and as''bs: "map (assocs G) as'' = map (assocs G) bs" by auto from as'yy and yyas'' have "\<exists>cs. as' <~~> cs \<and> map (assocs G) cs = map (assocs G) as''" by (rule perm_map_switch) from this obtain cs where as'cs: "as' <~~> cs" and csas'': "map (assocs G) cs = map (assocs G) as''" by auto from asas' and as'cs have ascs: "as <~~> cs" by fast from csas'' and as''bs have "map (assocs G) cs = map (assocs G) bs" by simp from ascs and this show "\<exists>as'. as <~~> as' \<and> map (assocs G) as' = map (assocs G) bs" by fast qed lemma (in comm_monoid_cancel) fmset_ee: assumes mset: "fmset G as = fmset G bs" and ascarr: "set as \<subseteq> carrier G" and bscarr: "set bs \<subseteq> carrier G" shows "essentially_equal G as bs" proof - from mset have mpp: "map (assocs G) as <~~> map (assocs G) bs" by (simp add: fmset_def multiset_of_eq_perm) have "\<exists>cas. cas = map (assocs G) as" by simp from this obtain cas where cas: "cas = map (assocs G) as" by simp have "\<exists>cbs. cbs = map (assocs G) bs" by simp from this obtain cbs where cbs: "cbs = map (assocs G) bs" by simp from cas cbs mpp have [rule_format]: "\<forall>as bs. (cas <~~> cbs \<and> cas = map (assocs G) as \<and> cbs = map (assocs G) bs) \<longrightarrow> (\<exists>as'. as <~~> as' \<and> map (assocs G) as' = cbs)" by (intro fmset_ee__hlp_induct, simp+) with mpp cas cbs have "\<exists>as'. as <~~> as' \<and> map (assocs G) as' = map (assocs G) bs" by simp from this obtain as' where tp: "as <~~> as'" and tm: "map (assocs G) as' = map (assocs G) bs" by auto from tm have lene: "length as' = length bs" by (rule map_eq_imp_length_eq) from tp have "set as = set as'" by (simp add: multiset_of_eq_perm multiset_of_eq_setD) with ascarr have as'carr: "set as' \<subseteq> carrier G" by simp from tm as'carr[THEN subsetD] bscarr[THEN subsetD] have "as' [\<sim>] bs" by (induct as' arbitrary: bs) (simp, fastforce dest: assocs_eqD[THEN associated_sym]) from tp and this show "essentially_equal G as bs" by (fast intro: essentially_equalI) qed lemma (in comm_monoid_cancel) ee_is_fmset: assumes "set as \<subseteq> carrier G" and "set bs \<subseteq> carrier G" shows "essentially_equal G as bs = (fmset G as = fmset G bs)" using assms by (fast intro: ee_fmset fmset_ee) subsubsection {* Interpreting multisets as factorizations *} lemma (in monoid) mset_fmsetEx: assumes elems: "\<And>X. X \<in> set_of Cs \<Longrightarrow> \<exists>x. P x \<and> X = assocs G x" shows "\<exists>cs. (\<forall>c \<in> set cs. P c) \<and> fmset G cs = Cs" proof - have "\<exists>Cs'. Cs = multiset_of Cs'" by (rule surjE[OF surj_multiset_of], fast) from this obtain Cs' where Cs: "Cs = multiset_of Cs'" by auto have "\<exists>cs. (\<forall>c \<in> set cs. P c) \<and> multiset_of (map (assocs G) cs) = Cs" using elems unfolding Cs apply (induct Cs', simp) apply clarsimp apply (subgoal_tac "\<exists>cs. (\<forall>x\<in>set cs. P x) \<and> multiset_of (map (assocs G) cs) = multiset_of Cs'") proof clarsimp fix a Cs' cs assume ih: "\<And>X. X = a \<or> X \<in> set Cs' \<Longrightarrow> \<exists>x. P x \<and> X = assocs G x" and csP: "\<forall>x\<in>set cs. P x" and mset: "multiset_of (map (assocs G) cs) = multiset_of Cs'" from ih have "\<exists>x. P x \<and> a = assocs G x" by fast from this obtain c where cP: "P c" and a: "a = assocs G c" by auto from cP csP have tP: "\<forall>x\<in>set (c#cs). P x" by simp from mset a have "multiset_of (map (assocs G) (c#cs)) = multiset_of Cs' + {#a#}" by simp from tP this show "\<exists>cs. (\<forall>x\<in>set cs. P x) \<and> multiset_of (map (assocs G) cs) = multiset_of Cs' + {#a#}" by fast qed simp thus ?thesis by (simp add: fmset_def) qed lemma (in monoid) mset_wfactorsEx: assumes elems: "\<And>X. X \<in> set_of Cs \<Longrightarrow> \<exists>x. (x \<in> carrier G \<and> irreducible G x) \<and> X = assocs G x" shows "\<exists>c cs. c \<in> carrier G \<and> set cs \<subseteq> carrier G \<and> wfactors G cs c \<and> fmset G cs = Cs" proof - have "\<exists>cs. (\<forall>c\<in>set cs. c \<in> carrier G \<and> irreducible G c) \<and> fmset G cs = Cs" by (intro mset_fmsetEx, rule elems) from this obtain cs where p[rule_format]: "\<forall>c\<in>set cs. c \<in> carrier G \<and> irreducible G c" and Cs[symmetric]: "fmset G cs = Cs" by auto from p have cscarr: "set cs \<subseteq> carrier G" by fast from p have "\<exists>c. c \<in> carrier G \<and> wfactors G cs c" by (intro wfactors_prod_exists) fast+ from this obtain c where ccarr: "c \<in> carrier G" and cfs: "wfactors G cs c" by auto with cscarr Cs show ?thesis by fast qed subsubsection {* Multiplication on multisets *} lemma (in factorial_monoid) mult_wfactors_fmset: assumes afs: "wfactors G as a" and bfs: "wfactors G bs b" and cfs: "wfactors G cs (a \<otimes> b)" and carr: "a \<in> carrier G" "b \<in> carrier G" "set as \<subseteq> carrier G" "set bs \<subseteq> carrier G" "set cs \<subseteq> carrier G" shows "fmset G cs = fmset G as + fmset G bs" proof - from assms have "wfactors G (as @ bs) (a \<otimes> b)" by (intro wfactors_mult) with carr cfs have "essentially_equal G cs (as@bs)" by (intro ee_wfactorsI[of "a\<otimes>b" "a\<otimes>b"], simp+) with carr have "fmset G cs = fmset G (as@bs)" by (intro ee_fmset, simp+) also have "fmset G (as@bs) = fmset G as + fmset G bs" by (simp add: fmset_def) finally show "fmset G cs = fmset G as + fmset G bs" . qed lemma (in factorial_monoid) mult_factors_fmset: assumes afs: "factors G as a" and bfs: "factors G bs b" and cfs: "factors G cs (a \<otimes> b)" and "set as \<subseteq> carrier G" "set bs \<subseteq> carrier G" "set cs \<subseteq> carrier G" shows "fmset G cs = fmset G as + fmset G bs" using assms by (blast intro: factors_wfactors mult_wfactors_fmset) lemma (in comm_monoid_cancel) fmset_wfactors_mult: assumes mset: "fmset G cs = fmset G as + fmset G bs" and carr: "a \<in> carrier G" "b \<in> carrier G" "c \<in> carrier G" "set as \<subseteq> carrier G" "set bs \<subseteq> carrier G" "set cs \<subseteq> carrier G" and fs: "wfactors G as a" "wfactors G bs b" "wfactors G cs c" shows "c \<sim> a \<otimes> b" proof - from carr fs have m: "wfactors G (as @ bs) (a \<otimes> b)" by (intro wfactors_mult) from mset have "fmset G cs = fmset G (as@bs)" by (simp add: fmset_def) then have "essentially_equal G cs (as@bs)" by (rule fmset_ee) (simp add: carr)+ then show "c \<sim> a \<otimes> b" by (rule ee_wfactorsD[of "cs" "as@bs"]) (simp add: assms m)+ qed subsubsection {* Divisibility on multisets *} lemma (in factorial_monoid) divides_fmsubset: assumes ab: "a divides b" and afs: "wfactors G as a" and bfs: "wfactors G bs b" and carr: "a \<in> carrier G" "b \<in> carrier G" "set as \<subseteq> carrier G" "set bs \<subseteq> carrier G" shows "fmset G as \<le> fmset G bs" using ab proof (elim dividesE) fix c assume ccarr: "c \<in> carrier G" hence "\<exists>cs. set cs \<subseteq> carrier G \<and> wfactors G cs c" by (rule wfactors_exist) from this obtain cs where cscarr: "set cs \<subseteq> carrier G" and cfs: "wfactors G cs c" by auto note carr = carr ccarr cscarr assume "b = a \<otimes> c" with afs bfs cfs carr have "fmset G bs = fmset G as + fmset G cs" by (intro mult_wfactors_fmset[OF afs cfs]) simp+ thus ?thesis by simp qed lemma (in comm_monoid_cancel) fmsubset_divides: assumes msubset: "fmset G as \<le> fmset G bs" and afs: "wfactors G as a" and bfs: "wfactors G bs b" and acarr: "a \<in> carrier G" and bcarr: "b \<in> carrier G" and ascarr: "set as \<subseteq> carrier G" and bscarr: "set bs \<subseteq> carrier G" shows "a divides b" proof - from afs have airr: "\<forall>a \<in> set as. irreducible G a" by (fast elim: wfactorsE) from bfs have birr: "\<forall>b \<in> set bs. irreducible G b" by (fast elim: wfactorsE) have "\<exists>c cs. c \<in> carrier G \<and> set cs \<subseteq> carrier G \<and> wfactors G cs c \<and> fmset G cs = fmset G bs - fmset G as" proof (intro mset_wfactorsEx, simp) fix X assume "count (fmset G as) X < count (fmset G bs) X" hence "0 < count (fmset G bs) X" by simp hence "X \<in> set_of (fmset G bs)" by simp hence "X \<in> set (map (assocs G) bs)" by (simp add: fmset_def) hence "\<exists>x. x \<in> set bs \<and> X = assocs G x" by (induct bs) auto from this obtain x where xbs: "x \<in> set bs" and X: "X = assocs G x" by auto with bscarr have xcarr: "x \<in> carrier G" by fast from xbs birr have xirr: "irreducible G x" by simp from xcarr and xirr and X show "\<exists>x. x \<in> carrier G \<and> irreducible G x \<and> X = assocs G x" by fast qed from this obtain c cs where ccarr: "c \<in> carrier G" and cscarr: "set cs \<subseteq> carrier G" and csf: "wfactors G cs c" and csmset: "fmset G cs = fmset G bs - fmset G as" by auto from csmset msubset have "fmset G bs = fmset G as + fmset G cs" by (simp add: multiset_eq_iff mset_le_def) hence basc: "b \<sim> a \<otimes> c" by (rule fmset_wfactors_mult) fact+ thus ?thesis proof (elim associatedE2) fix u assume "u \<in> Units G" "b = a \<otimes> c \<otimes> u" with acarr ccarr show "a divides b" by (fast intro: dividesI[of "c \<otimes> u"] m_assoc) qed (simp add: acarr bcarr ccarr)+ qed lemma (in factorial_monoid) divides_as_fmsubset: assumes "wfactors G as a" and "wfactors G bs b" and "a \<in> carrier G" and "b \<in> carrier G" and "set as \<subseteq> carrier G" and "set bs \<subseteq> carrier G" shows "a divides b = (fmset G as \<le> fmset G bs)" using assms by (blast intro: divides_fmsubset fmsubset_divides) text {* Proper factors on multisets *} lemma (in factorial_monoid) fmset_properfactor: assumes asubb: "fmset G as \<le> fmset G bs" and anb: "fmset G as \<noteq> fmset G bs" and "wfactors G as a" and "wfactors G bs b" and "a \<in> carrier G" and "b \<in> carrier G" and "set as \<subseteq> carrier G" and "set bs \<subseteq> carrier G" shows "properfactor G a b" apply (rule properfactorI) apply (rule fmsubset_divides[of as bs], fact+) proof assume "b divides a" hence "fmset G bs \<le> fmset G as" by (rule divides_fmsubset) fact+ with asubb have "fmset G as = fmset G bs" by (rule order_antisym) with anb show "False" .. qed lemma (in factorial_monoid) properfactor_fmset: assumes pf: "properfactor G a b" and "wfactors G as a" and "wfactors G bs b" and "a \<in> carrier G" and "b \<in> carrier G" and "set as \<subseteq> carrier G" and "set bs \<subseteq> carrier G" shows "fmset G as \<le> fmset G bs \<and> fmset G as \<noteq> fmset G bs" using pf apply (elim properfactorE) apply rule apply (intro divides_fmsubset, assumption) apply (rule assms)+ apply (metis assms divides_fmsubset fmsubset_divides) done subsection {* Irreducible Elements are Prime *} lemma (in factorial_monoid) irreducible_is_prime: assumes pirr: "irreducible G p" and pcarr: "p \<in> carrier G" shows "prime G p" using pirr proof (elim irreducibleE, intro primeI) fix a b assume acarr: "a \<in> carrier G" and bcarr: "b \<in> carrier G" and pdvdab: "p divides (a \<otimes> b)" and pnunit: "p \<notin> Units G" assume irreduc[rule_format]: "\<forall>b. b \<in> carrier G \<and> properfactor G b p \<longrightarrow> b \<in> Units G" from pdvdab have "\<exists>c\<in>carrier G. a \<otimes> b = p \<otimes> c" by (rule dividesD) from this obtain c where ccarr: "c \<in> carrier G" and abpc: "a \<otimes> b = p \<otimes> c" by auto from acarr have "\<exists>fs. set fs \<subseteq> carrier G \<and> wfactors G fs a" by (rule wfactors_exist) from this obtain as where ascarr: "set as \<subseteq> carrier G" and afs: "wfactors G as a" by auto from bcarr have "\<exists>fs. set fs \<subseteq> carrier G \<and> wfactors G fs b" by (rule wfactors_exist) from this obtain bs where bscarr: "set bs \<subseteq> carrier G" and bfs: "wfactors G bs b" by auto from ccarr have "\<exists>fs. set fs \<subseteq> carrier G \<and> wfactors G fs c" by (rule wfactors_exist) from this obtain cs where cscarr: "set cs \<subseteq> carrier G" and cfs: "wfactors G cs c" by auto note carr[simp] = pcarr acarr bcarr ccarr ascarr bscarr cscarr from afs and bfs have abfs: "wfactors G (as @ bs) (a \<otimes> b)" by (rule wfactors_mult) fact+ from pirr cfs have pcfs: "wfactors G (p # cs) (p \<otimes> c)" by (rule wfactors_mult_single) fact+ with abpc have abfs': "wfactors G (p # cs) (a \<otimes> b)" by simp from abfs' abfs have "essentially_equal G (p # cs) (as @ bs)" by (rule wfactors_unique) simp+ hence "\<exists>ds. p # cs <~~> ds \<and> ds [\<sim>] (as @ bs)" by (fast elim: essentially_equalE) from this obtain ds where "p # cs <~~> ds" and dsassoc: "ds [\<sim>] (as @ bs)" by auto then have "p \<in> set ds" by (simp add: perm_set_eq[symmetric]) with dsassoc have "\<exists>p'. p' \<in> set (as@bs) \<and> p \<sim> p'" unfolding list_all2_conv_all_nth set_conv_nth by force from this obtain p' where "p' \<in> set (as@bs)" and pp': "p \<sim> p'" by auto hence "p' \<in> set as \<or> p' \<in> set bs" by simp moreover { assume p'elem: "p' \<in> set as" with ascarr have [simp]: "p' \<in> carrier G" by fast note pp' also from afs have "p' divides a" by (rule wfactors_dividesI) fact+ finally have "p divides a" by simp } moreover { assume p'elem: "p' \<in> set bs" with bscarr have [simp]: "p' \<in> carrier G" by fast note pp' also from bfs have "p' divides b" by (rule wfactors_dividesI) fact+ finally have "p divides b" by simp } ultimately show "p divides a \<or> p divides b" by fast qed --"A version using @{const factors}, more complicated" lemma (in factorial_monoid) factors_irreducible_is_prime: assumes pirr: "irreducible G p" and pcarr: "p \<in> carrier G" shows "prime G p" using pirr apply (elim irreducibleE, intro primeI) apply assumption proof - fix a b assume acarr: "a \<in> carrier G" and bcarr: "b \<in> carrier G" and pdvdab: "p divides (a \<otimes> b)" assume irreduc[rule_format]: "\<forall>b. b \<in> carrier G \<and> properfactor G b p \<longrightarrow> b \<in> Units G" from pdvdab have "\<exists>c\<in>carrier G. a \<otimes> b = p \<otimes> c" by (rule dividesD) from this obtain c where ccarr: "c \<in> carrier G" and abpc: "a \<otimes> b = p \<otimes> c" by auto note [simp] = pcarr acarr bcarr ccarr show "p divides a \<or> p divides b" proof (cases "a \<in> Units G") assume aunit: "a \<in> Units G" note pdvdab also have "a \<otimes> b = b \<otimes> a" by (simp add: m_comm) also from aunit have bab: "b \<otimes> a \<sim> b" by (intro associatedI2[of "a"], simp+) finally have "p divides b" by simp thus "p divides a \<or> p divides b" .. next assume anunit: "a \<notin> Units G" show "p divides a \<or> p divides b" proof (cases "b \<in> Units G") assume bunit: "b \<in> Units G" note pdvdab also from bunit have baa: "a \<otimes> b \<sim> a" by (intro associatedI2[of "b"], simp+) finally have "p divides a" by simp thus "p divides a \<or> p divides b" .. next assume bnunit: "b \<notin> Units G" have cnunit: "c \<notin> Units G" proof (rule ccontr, simp) assume cunit: "c \<in> Units G" from bnunit have "properfactor G a (a \<otimes> b)" by (intro properfactorI3[of _ _ b], simp+) also note abpc also from cunit have "p \<otimes> c \<sim> p" by (intro associatedI2[of c], simp+) finally have "properfactor G a p" by simp with acarr have "a \<in> Units G" by (fast intro: irreduc) with anunit show "False" .. qed have abnunit: "a \<otimes> b \<notin> Units G" proof clarsimp assume abunit: "a \<otimes> b \<in> Units G" hence "a \<in> Units G" by (rule unit_factor) fact+ with anunit show "False" .. qed from acarr anunit have "\<exists>fs. set fs \<subseteq> carrier G \<and> factors G fs a" by (rule factors_exist) then obtain as where ascarr: "set as \<subseteq> carrier G" and afac: "factors G as a" by auto from bcarr bnunit have "\<exists>fs. set fs \<subseteq> carrier G \<and> factors G fs b" by (rule factors_exist) then obtain bs where bscarr: "set bs \<subseteq> carrier G" and bfac: "factors G bs b" by auto from ccarr cnunit have "\<exists>fs. set fs \<subseteq> carrier G \<and> factors G fs c" by (rule factors_exist) then obtain cs where cscarr: "set cs \<subseteq> carrier G" and cfac: "factors G cs c" by auto note [simp] = ascarr bscarr cscarr from afac and bfac have abfac: "factors G (as @ bs) (a \<otimes> b)" by (rule factors_mult) fact+ from pirr cfac have pcfac: "factors G (p # cs) (p \<otimes> c)" by (rule factors_mult_single) fact+ with abpc have abfac': "factors G (p # cs) (a \<otimes> b)" by simp from abfac' abfac have "essentially_equal G (p # cs) (as @ bs)" by (rule factors_unique) (fact | simp)+ hence "\<exists>ds. p # cs <~~> ds \<and> ds [\<sim>] (as @ bs)" by (fast elim: essentially_equalE) from this obtain ds where "p # cs <~~> ds" and dsassoc: "ds [\<sim>] (as @ bs)" by auto then have "p \<in> set ds" by (simp add: perm_set_eq[symmetric]) with dsassoc have "\<exists>p'. p' \<in> set (as@bs) \<and> p \<sim> p'" unfolding list_all2_conv_all_nth set_conv_nth by force from this obtain p' where "p' \<in> set (as@bs)" and pp': "p \<sim> p'" by auto hence "p' \<in> set as \<or> p' \<in> set bs" by simp moreover { assume p'elem: "p' \<in> set as" with ascarr have [simp]: "p' \<in> carrier G" by fast note pp' also from afac p'elem have "p' divides a" by (rule factors_dividesI) fact+ finally have "p divides a" by simp } moreover { assume p'elem: "p' \<in> set bs" with bscarr have [simp]: "p' \<in> carrier G" by fast note pp' also from bfac have "p' divides b" by (rule factors_dividesI) fact+ finally have "p divides b" by simp } ultimately show "p divides a \<or> p divides b" by fast qed qed qed subsection {* Greatest Common Divisors and Lowest Common Multiples *} subsubsection {* Definitions *} definition isgcd :: "[('a,_) monoid_scheme, 'a, 'a, 'a] \<Rightarrow> bool" ("(_ gcdof\<index> _ _)" [81,81,81] 80) where "x gcdof\<^bsub>G\<^esub> a b \<longleftrightarrow> x divides\<^bsub>G\<^esub> a \<and> x divides\<^bsub>G\<^esub> b \<and> (\<forall>y\<in>carrier G. (y divides\<^bsub>G\<^esub> a \<and> y divides\<^bsub>G\<^esub> b \<longrightarrow> y divides\<^bsub>G\<^esub> x))" definition islcm :: "[_, 'a, 'a, 'a] \<Rightarrow> bool" ("(_ lcmof\<index> _ _)" [81,81,81] 80) where "x lcmof\<^bsub>G\<^esub> a b \<longleftrightarrow> a divides\<^bsub>G\<^esub> x \<and> b divides\<^bsub>G\<^esub> x \<and> (\<forall>y\<in>carrier G. (a divides\<^bsub>G\<^esub> y \<and> b divides\<^bsub>G\<^esub> y \<longrightarrow> x divides\<^bsub>G\<^esub> y))" definition somegcd :: "('a,_) monoid_scheme \<Rightarrow> 'a \<Rightarrow> 'a \<Rightarrow> 'a" where "somegcd G a b = (SOME x. x \<in> carrier G \<and> x gcdof\<^bsub>G\<^esub> a b)" definition somelcm :: "('a,_) monoid_scheme \<Rightarrow> 'a \<Rightarrow> 'a \<Rightarrow> 'a" where "somelcm G a b = (SOME x. x \<in> carrier G \<and> x lcmof\<^bsub>G\<^esub> a b)" definition "SomeGcd G A = inf (division_rel G) A" locale gcd_condition_monoid = comm_monoid_cancel + assumes gcdof_exists: "\<lbrakk>a \<in> carrier G; b \<in> carrier G\<rbrakk> \<Longrightarrow> \<exists>c. c \<in> carrier G \<and> c gcdof a b" locale primeness_condition_monoid = comm_monoid_cancel + assumes irreducible_prime: "\<lbrakk>a \<in> carrier G; irreducible G a\<rbrakk> \<Longrightarrow> prime G a" locale divisor_chain_condition_monoid = comm_monoid_cancel + assumes division_wellfounded: "wf {(x, y). x \<in> carrier G \<and> y \<in> carrier G \<and> properfactor G x y}" subsubsection {* Connections to \texttt{Lattice.thy} *} lemma gcdof_greatestLower: fixes G (structure) assumes carr[simp]: "a \<in> carrier G" "b \<in> carrier G" shows "(x \<in> carrier G \<and> x gcdof a b) = greatest (division_rel G) x (Lower (division_rel G) {a, b})" unfolding isgcd_def greatest_def Lower_def elem_def by auto lemma lcmof_leastUpper: fixes G (structure) assumes carr[simp]: "a \<in> carrier G" "b \<in> carrier G" shows "(x \<in> carrier G \<and> x lcmof a b) = least (division_rel G) x (Upper (division_rel G) {a, b})" unfolding islcm_def least_def Upper_def elem_def by auto lemma somegcd_meet: fixes G (structure) assumes carr: "a \<in> carrier G" "b \<in> carrier G" shows "somegcd G a b = meet (division_rel G) a b" unfolding somegcd_def meet_def inf_def by (simp add: gcdof_greatestLower[OF carr]) lemma (in monoid) isgcd_divides_l: assumes "a divides b" and "a \<in> carrier G" "b \<in> carrier G" shows "a gcdof a b" using assms unfolding isgcd_def by fast lemma (in monoid) isgcd_divides_r: assumes "b divides a" and "a \<in> carrier G" "b \<in> carrier G" shows "b gcdof a b" using assms unfolding isgcd_def by fast subsubsection {* Existence of gcd and lcm *} lemma (in factorial_monoid) gcdof_exists: assumes acarr: "a \<in> carrier G" and bcarr: "b \<in> carrier G" shows "\<exists>c. c \<in> carrier G \<and> c gcdof a b" proof - from acarr have "\<exists>as. set as \<subseteq> carrier G \<and> wfactors G as a" by (rule wfactors_exist) from this obtain as where ascarr: "set as \<subseteq> carrier G" and afs: "wfactors G as a" by auto from afs have airr: "\<forall>a \<in> set as. irreducible G a" by (fast elim: wfactorsE) from bcarr have "\<exists>bs. set bs \<subseteq> carrier G \<and> wfactors G bs b" by (rule wfactors_exist) from this obtain bs where bscarr: "set bs \<subseteq> carrier G" and bfs: "wfactors G bs b" by auto from bfs have birr: "\<forall>b \<in> set bs. irreducible G b" by (fast elim: wfactorsE) have "\<exists>c cs. c \<in> carrier G \<and> set cs \<subseteq> carrier G \<and> wfactors G cs c \<and> fmset G cs = fmset G as #\<inter> fmset G bs" proof (intro mset_wfactorsEx) fix X assume "X \<in> set_of (fmset G as #\<inter> fmset G bs)" hence "X \<in> set_of (fmset G as)" by (simp add: multiset_inter_def) hence "X \<in> set (map (assocs G) as)" by (simp add: fmset_def) hence "\<exists>x. X = assocs G x \<and> x \<in> set as" by (induct as) auto from this obtain x where X: "X = assocs G x" and xas: "x \<in> set as" by auto with ascarr have xcarr: "x \<in> carrier G" by fast from xas airr have xirr: "irreducible G x" by simp from xcarr and xirr and X show "\<exists>x. (x \<in> carrier G \<and> irreducible G x) \<and> X = assocs G x" by fast qed from this obtain c cs where ccarr: "c \<in> carrier G" and cscarr: "set cs \<subseteq> carrier G" and csirr: "wfactors G cs c" and csmset: "fmset G cs = fmset G as #\<inter> fmset G bs" by auto have "c gcdof a b" proof (simp add: isgcd_def, safe) from csmset have "fmset G cs \<le> fmset G as" by (simp add: multiset_inter_def mset_le_def) thus "c divides a" by (rule fmsubset_divides) fact+ next from csmset have "fmset G cs \<le> fmset G bs" by (simp add: multiset_inter_def mset_le_def, force) thus "c divides b" by (rule fmsubset_divides) fact+ next fix y assume ycarr: "y \<in> carrier G" hence "\<exists>ys. set ys \<subseteq> carrier G \<and> wfactors G ys y" by (rule wfactors_exist) from this obtain ys where yscarr: "set ys \<subseteq> carrier G" and yfs: "wfactors G ys y" by auto assume "y divides a" hence ya: "fmset G ys \<le> fmset G as" by (rule divides_fmsubset) fact+ assume "y divides b" hence yb: "fmset G ys \<le> fmset G bs" by (rule divides_fmsubset) fact+ from ya yb csmset have "fmset G ys \<le> fmset G cs" by (simp add: mset_le_def) thus "y divides c" by (rule fmsubset_divides) fact+ qed with ccarr show "\<exists>c. c \<in> carrier G \<and> c gcdof a b" by fast qed lemma (in factorial_monoid) lcmof_exists: assumes acarr: "a \<in> carrier G" and bcarr: "b \<in> carrier G" shows "\<exists>c. c \<in> carrier G \<and> c lcmof a b" proof - from acarr have "\<exists>as. set as \<subseteq> carrier G \<and> wfactors G as a" by (rule wfactors_exist) from this obtain as where ascarr: "set as \<subseteq> carrier G" and afs: "wfactors G as a" by auto from afs have airr: "\<forall>a \<in> set as. irreducible G a" by (fast elim: wfactorsE) from bcarr have "\<exists>bs. set bs \<subseteq> carrier G \<and> wfactors G bs b" by (rule wfactors_exist) from this obtain bs where bscarr: "set bs \<subseteq> carrier G" and bfs: "wfactors G bs b" by auto from bfs have birr: "\<forall>b \<in> set bs. irreducible G b" by (fast elim: wfactorsE) have "\<exists>c cs. c \<in> carrier G \<and> set cs \<subseteq> carrier G \<and> wfactors G cs c \<and> fmset G cs = (fmset G as - fmset G bs) + fmset G bs" proof (intro mset_wfactorsEx) fix X assume "X \<in> set_of ((fmset G as - fmset G bs) + fmset G bs)" hence "X \<in> set_of (fmset G as) \<or> X \<in> set_of (fmset G bs)" by (cases "X :# fmset G bs", simp, simp) moreover { assume "X \<in> set_of (fmset G as)" hence "X \<in> set (map (assocs G) as)" by (simp add: fmset_def) hence "\<exists>x. x \<in> set as \<and> X = assocs G x" by (induct as) auto from this obtain x where xas: "x \<in> set as" and X: "X = assocs G x" by auto with ascarr have xcarr: "x \<in> carrier G" by fast from xas airr have xirr: "irreducible G x" by simp from xcarr and xirr and X have "\<exists>x. (x \<in> carrier G \<and> irreducible G x) \<and> X = assocs G x" by fast } moreover { assume "X \<in> set_of (fmset G bs)" hence "X \<in> set (map (assocs G) bs)" by (simp add: fmset_def) hence "\<exists>x. x \<in> set bs \<and> X = assocs G x" by (induct as) auto from this obtain x where xbs: "x \<in> set bs" and X: "X = assocs G x" by auto with bscarr have xcarr: "x \<in> carrier G" by fast from xbs birr have xirr: "irreducible G x" by simp from xcarr and xirr and X have "\<exists>x. (x \<in> carrier G \<and> irreducible G x) \<and> X = assocs G x" by fast } ultimately show "\<exists>x. (x \<in> carrier G \<and> irreducible G x) \<and> X = assocs G x" by fast qed from this obtain c cs where ccarr: "c \<in> carrier G" and cscarr: "set cs \<subseteq> carrier G" and csirr: "wfactors G cs c" and csmset: "fmset G cs = fmset G as - fmset G bs + fmset G bs" by auto have "c lcmof a b" proof (simp add: islcm_def, safe) from csmset have "fmset G as \<le> fmset G cs" by (simp add: mset_le_def, force) thus "a divides c" by (rule fmsubset_divides) fact+ next from csmset have "fmset G bs \<le> fmset G cs" by (simp add: mset_le_def) thus "b divides c" by (rule fmsubset_divides) fact+ next fix y assume ycarr: "y \<in> carrier G" hence "\<exists>ys. set ys \<subseteq> carrier G \<and> wfactors G ys y" by (rule wfactors_exist) from this obtain ys where yscarr: "set ys \<subseteq> carrier G" and yfs: "wfactors G ys y" by auto assume "a divides y" hence ya: "fmset G as \<le> fmset G ys" by (rule divides_fmsubset) fact+ assume "b divides y" hence yb: "fmset G bs \<le> fmset G ys" by (rule divides_fmsubset) fact+ from ya yb csmset have "fmset G cs \<le> fmset G ys" apply (simp add: mset_le_def, clarify) apply (case_tac "count (fmset G as) a < count (fmset G bs) a") apply simp apply simp done thus "c divides y" by (rule fmsubset_divides) fact+ qed with ccarr show "\<exists>c. c \<in> carrier G \<and> c lcmof a b" by fast qed subsection {* Conditions for Factoriality *} subsubsection {* Gcd condition *} lemma (in gcd_condition_monoid) division_weak_lower_semilattice [simp]: shows "weak_lower_semilattice (division_rel G)" proof - interpret weak_partial_order "division_rel G" .. show ?thesis apply (unfold_locales, simp_all) proof - fix x y assume carr: "x \<in> carrier G" "y \<in> carrier G" hence "\<exists>z. z \<in> carrier G \<and> z gcdof x y" by (rule gcdof_exists) from this obtain z where zcarr: "z \<in> carrier G" and isgcd: "z gcdof x y" by auto with carr have "greatest (division_rel G) z (Lower (division_rel G) {x, y})" by (subst gcdof_greatestLower[symmetric], simp+) thus "\<exists>z. greatest (division_rel G) z (Lower (division_rel G) {x, y})" by fast qed qed lemma (in gcd_condition_monoid) gcdof_cong_l: assumes a'a: "a' \<sim> a" and agcd: "a gcdof b c" and a'carr: "a' \<in> carrier G" and carr': "a \<in> carrier G" "b \<in> carrier G" "c \<in> carrier G" shows "a' gcdof b c" proof - note carr = a'carr carr' interpret weak_lower_semilattice "division_rel G" by simp have "a' \<in> carrier G \<and> a' gcdof b c" apply (simp add: gcdof_greatestLower carr') apply (subst greatest_Lower_cong_l[of _ a]) apply (simp add: a'a) apply (simp add: carr) apply (simp add: carr) apply (simp add: carr) apply (simp add: gcdof_greatestLower[symmetric] agcd carr) done thus ?thesis .. qed lemma (in gcd_condition_monoid) gcd_closed [simp]: assumes carr: "a \<in> carrier G" "b \<in> carrier G" shows "somegcd G a b \<in> carrier G" proof - interpret weak_lower_semilattice "division_rel G" by simp show ?thesis apply (simp add: somegcd_meet[OF carr]) apply (rule meet_closed[simplified], fact+) done qed lemma (in gcd_condition_monoid) gcd_isgcd: assumes carr: "a \<in> carrier G" "b \<in> carrier G" shows "(somegcd G a b) gcdof a b" proof - interpret weak_lower_semilattice "division_rel G" by simp from carr have "somegcd G a b \<in> carrier G \<and> (somegcd G a b) gcdof a b" apply (subst gcdof_greatestLower, simp, simp) apply (simp add: somegcd_meet[OF carr] meet_def) apply (rule inf_of_two_greatest[simplified], assumption+) done thus "(somegcd G a b) gcdof a b" by simp qed lemma (in gcd_condition_monoid) gcd_exists: assumes carr: "a \<in> carrier G" "b \<in> carrier G" shows "\<exists>x\<in>carrier G. x = somegcd G a b" proof - interpret weak_lower_semilattice "division_rel G" by simp show ?thesis by (metis carr(1) carr(2) gcd_closed) qed lemma (in gcd_condition_monoid) gcd_divides_l: assumes carr: "a \<in> carrier G" "b \<in> carrier G" shows "(somegcd G a b) divides a" proof - interpret weak_lower_semilattice "division_rel G" by simp show ?thesis by (metis carr(1) carr(2) gcd_isgcd isgcd_def) qed lemma (in gcd_condition_monoid) gcd_divides_r: assumes carr: "a \<in> carrier G" "b \<in> carrier G" shows "(somegcd G a b) divides b" proof - interpret weak_lower_semilattice "division_rel G" by simp show ?thesis by (metis carr gcd_isgcd isgcd_def) qed lemma (in gcd_condition_monoid) gcd_divides: assumes sub: "z divides x" "z divides y" and L: "x \<in> carrier G" "y \<in> carrier G" "z \<in> carrier G" shows "z divides (somegcd G x y)" proof - interpret weak_lower_semilattice "division_rel G" by simp show ?thesis by (metis gcd_isgcd isgcd_def assms) qed lemma (in gcd_condition_monoid) gcd_cong_l: assumes xx': "x \<sim> x'" and carr: "x \<in> carrier G" "x' \<in> carrier G" "y \<in> carrier G" shows "somegcd G x y \<sim> somegcd G x' y" proof - interpret weak_lower_semilattice "division_rel G" by simp show ?thesis apply (simp add: somegcd_meet carr) apply (rule meet_cong_l[simplified], fact+) done qed lemma (in gcd_condition_monoid) gcd_cong_r: assumes carr: "x \<in> carrier G" "y \<in> carrier G" "y' \<in> carrier G" and yy': "y \<sim> y'" shows "somegcd G x y \<sim> somegcd G x y'" proof - interpret weak_lower_semilattice "division_rel G" by simp show ?thesis apply (simp add: somegcd_meet carr) apply (rule meet_cong_r[simplified], fact+) done qed (* lemma (in gcd_condition_monoid) asc_cong_gcd_l [intro]: assumes carr: "b \<in> carrier G" shows "asc_cong (\<lambda>a. somegcd G a b)" using carr unfolding CONG_def by clarsimp (blast intro: gcd_cong_l) lemma (in gcd_condition_monoid) asc_cong_gcd_r [intro]: assumes carr: "a \<in> carrier G" shows "asc_cong (\<lambda>b. somegcd G a b)" using carr unfolding CONG_def by clarsimp (blast intro: gcd_cong_r) lemmas (in gcd_condition_monoid) asc_cong_gcd_split [simp] = assoc_split[OF _ asc_cong_gcd_l] assoc_split[OF _ asc_cong_gcd_r] *) lemma (in gcd_condition_monoid) gcdI: assumes dvd: "a divides b" "a divides c" and others: "\<forall>y\<in>carrier G. y divides b \<and> y divides c \<longrightarrow> y divides a" and acarr: "a \<in> carrier G" and bcarr: "b \<in> carrier G" and ccarr: "c \<in> carrier G" shows "a \<sim> somegcd G b c" apply (simp add: somegcd_def) apply (rule someI2_ex) apply (rule exI[of _ a], simp add: isgcd_def) apply (simp add: assms) apply (simp add: isgcd_def assms, clarify) apply (insert assms, blast intro: associatedI) done lemma (in gcd_condition_monoid) gcdI2: assumes "a gcdof b c" and "a \<in> carrier G" and bcarr: "b \<in> carrier G" and ccarr: "c \<in> carrier G" shows "a \<sim> somegcd G b c" using assms unfolding isgcd_def by (blast intro: gcdI) lemma (in gcd_condition_monoid) SomeGcd_ex: assumes "finite A" "A \<subseteq> carrier G" "A \<noteq> {}" shows "\<exists>x\<in> carrier G. x = SomeGcd G A" proof - interpret weak_lower_semilattice "division_rel G" by simp show ?thesis apply (simp add: SomeGcd_def) apply (rule finite_inf_closed[simplified], fact+) done qed lemma (in gcd_condition_monoid) gcd_assoc: assumes carr: "a \<in> carrier G" "b \<in> carrier G" "c \<in> carrier G" shows "somegcd G (somegcd G a b) c \<sim> somegcd G a (somegcd G b c)" proof - interpret weak_lower_semilattice "division_rel G" by simp show ?thesis apply (subst (2 3) somegcd_meet, (simp add: carr)+) apply (simp add: somegcd_meet carr) apply (rule weak_meet_assoc[simplified], fact+) done qed lemma (in gcd_condition_monoid) gcd_mult: assumes acarr: "a \<in> carrier G" and bcarr: "b \<in> carrier G" and ccarr: "c \<in> carrier G" shows "c \<otimes> somegcd G a b \<sim> somegcd G (c \<otimes> a) (c \<otimes> b)" proof - (* following Jacobson, Basic Algebra, p.140 *) let ?d = "somegcd G a b" let ?e = "somegcd G (c \<otimes> a) (c \<otimes> b)" note carr[simp] = acarr bcarr ccarr have dcarr: "?d \<in> carrier G" by simp have ecarr: "?e \<in> carrier G" by simp note carr = carr dcarr ecarr have "?d divides a" by (simp add: gcd_divides_l) hence cd'ca: "c \<otimes> ?d divides (c \<otimes> a)" by (simp add: divides_mult_lI) have "?d divides b" by (simp add: gcd_divides_r) hence cd'cb: "c \<otimes> ?d divides (c \<otimes> b)" by (simp add: divides_mult_lI) from cd'ca cd'cb have cd'e: "c \<otimes> ?d divides ?e" by (rule gcd_divides) simp+ hence "\<exists>u. u \<in> carrier G \<and> ?e = c \<otimes> ?d \<otimes> u" by (elim dividesE, fast) from this obtain u where ucarr[simp]: "u \<in> carrier G" and e_cdu: "?e = c \<otimes> ?d \<otimes> u" by auto note carr = carr ucarr have "?e divides c \<otimes> a" by (rule gcd_divides_l) simp+ hence "\<exists>x. x \<in> carrier G \<and> c \<otimes> a = ?e \<otimes> x" by (elim dividesE, fast) from this obtain x where xcarr: "x \<in> carrier G" and ca_ex: "c \<otimes> a = ?e \<otimes> x" by auto with e_cdu have ca_cdux: "c \<otimes> a = c \<otimes> ?d \<otimes> u \<otimes> x" by simp from ca_cdux xcarr have "c \<otimes> a = c \<otimes> (?d \<otimes> u \<otimes> x)" by (simp add: m_assoc) then have "a = ?d \<otimes> u \<otimes> x" by (rule l_cancel[of c a]) (simp add: xcarr)+ hence du'a: "?d \<otimes> u divides a" by (rule dividesI[OF xcarr]) have "?e divides c \<otimes> b" by (intro gcd_divides_r, simp+) hence "\<exists>x. x \<in> carrier G \<and> c \<otimes> b = ?e \<otimes> x" by (elim dividesE, fast) from this obtain x where xcarr: "x \<in> carrier G" and cb_ex: "c \<otimes> b = ?e \<otimes> x" by auto with e_cdu have cb_cdux: "c \<otimes> b = c \<otimes> ?d \<otimes> u \<otimes> x" by simp from cb_cdux xcarr have "c \<otimes> b = c \<otimes> (?d \<otimes> u \<otimes> x)" by (simp add: m_assoc) with xcarr have "b = ?d \<otimes> u \<otimes> x" by (intro l_cancel[of c b], simp+) hence du'b: "?d \<otimes> u divides b" by (intro dividesI[OF xcarr]) from du'a du'b carr have du'd: "?d \<otimes> u divides ?d" by (intro gcd_divides, simp+) hence uunit: "u \<in> Units G" proof (elim dividesE) fix v assume vcarr[simp]: "v \<in> carrier G" assume d: "?d = ?d \<otimes> u \<otimes> v" have "?d \<otimes> \<one> = ?d \<otimes> u \<otimes> v" by simp fact also have "?d \<otimes> u \<otimes> v = ?d \<otimes> (u \<otimes> v)" by (simp add: m_assoc) finally have "?d \<otimes> \<one> = ?d \<otimes> (u \<otimes> v)" . hence i2: "\<one> = u \<otimes> v" by (rule l_cancel) simp+ hence i1: "\<one> = v \<otimes> u" by (simp add: m_comm) from vcarr i1[symmetric] i2[symmetric] show "u \<in> Units G" by (unfold Units_def, simp, fast) qed from e_cdu uunit have "somegcd G (c \<otimes> a) (c \<otimes> b) \<sim> c \<otimes> somegcd G a b" by (intro associatedI2[of u], simp+) from this[symmetric] show "c \<otimes> somegcd G a b \<sim> somegcd G (c \<otimes> a) (c \<otimes> b)" by simp qed lemma (in monoid) assoc_subst: assumes ab: "a \<sim> b" and cP: "ALL a b. a : carrier G & b : carrier G & a \<sim> b --> f a : carrier G & f b : carrier G & f a \<sim> f b" and carr: "a \<in> carrier G" "b \<in> carrier G" shows "f a \<sim> f b" using assms by auto lemma (in gcd_condition_monoid) relprime_mult: assumes abrelprime: "somegcd G a b \<sim> \<one>" and acrelprime: "somegcd G a c \<sim> \<one>" and carr[simp]: "a \<in> carrier G" "b \<in> carrier G" "c \<in> carrier G" shows "somegcd G a (b \<otimes> c) \<sim> \<one>" proof - have "c = c \<otimes> \<one>" by simp also from abrelprime[symmetric] have "\<dots> \<sim> c \<otimes> somegcd G a b" by (rule assoc_subst) (simp add: mult_cong_r)+ also have "\<dots> \<sim> somegcd G (c \<otimes> a) (c \<otimes> b)" by (rule gcd_mult) fact+ finally have c: "c \<sim> somegcd G (c \<otimes> a) (c \<otimes> b)" by simp from carr have a: "a \<sim> somegcd G a (c \<otimes> a)" by (fast intro: gcdI divides_prod_l) have "somegcd G a (b \<otimes> c) \<sim> somegcd G a (c \<otimes> b)" by (simp add: m_comm) also from a have "\<dots> \<sim> somegcd G (somegcd G a (c \<otimes> a)) (c \<otimes> b)" by (rule assoc_subst) (simp add: gcd_cong_l)+ also from gcd_assoc have "\<dots> \<sim> somegcd G a (somegcd G (c \<otimes> a) (c \<otimes> b))" by (rule assoc_subst) simp+ also from c[symmetric] have "\<dots> \<sim> somegcd G a c" by (rule assoc_subst) (simp add: gcd_cong_r)+ also note acrelprime finally show "somegcd G a (b \<otimes> c) \<sim> \<one>" by simp qed lemma (in gcd_condition_monoid) primeness_condition: "primeness_condition_monoid G" apply unfold_locales apply (rule primeI) apply (elim irreducibleE, assumption) proof - fix p a b assume pcarr: "p \<in> carrier G" and acarr: "a \<in> carrier G" and bcarr: "b \<in> carrier G" and pirr: "irreducible G p" and pdvdab: "p divides a \<otimes> b" from pirr have pnunit: "p \<notin> Units G" and r[rule_format]: "\<forall>b. b \<in> carrier G \<and> properfactor G b p \<longrightarrow> b \<in> Units G" by - (fast elim: irreducibleE)+ show "p divides a \<or> p divides b" proof (rule ccontr, clarsimp) assume npdvda: "\<not> p divides a" with pcarr acarr have "\<one> \<sim> somegcd G p a" apply (intro gcdI, simp, simp, simp) apply (fast intro: unit_divides) apply (fast intro: unit_divides) apply (clarsimp simp add: Unit_eq_dividesone[symmetric]) apply (rule r, rule, assumption) apply (rule properfactorI, assumption) proof (rule ccontr, simp) fix y assume ycarr: "y \<in> carrier G" assume "p divides y" also assume "y divides a" finally have "p divides a" by (simp add: pcarr ycarr acarr) with npdvda show "False" .. qed simp+ with pcarr acarr have pa: "somegcd G p a \<sim> \<one>" by (fast intro: associated_sym[of "\<one>"] gcd_closed) assume npdvdb: "\<not> p divides b" with pcarr bcarr have "\<one> \<sim> somegcd G p b" apply (intro gcdI, simp, simp, simp) apply (fast intro: unit_divides) apply (fast intro: unit_divides) apply (clarsimp simp add: Unit_eq_dividesone[symmetric]) apply (rule r, rule, assumption) apply (rule properfactorI, assumption) proof (rule ccontr, simp) fix y assume ycarr: "y \<in> carrier G" assume "p divides y" also assume "y divides b" finally have "p divides b" by (simp add: pcarr ycarr bcarr) with npdvdb show "False" .. qed simp+ with pcarr bcarr have pb: "somegcd G p b \<sim> \<one>" by (fast intro: associated_sym[of "\<one>"] gcd_closed) from pcarr acarr bcarr pdvdab have "p gcdof p (a \<otimes> b)" by (fast intro: isgcd_divides_l) with pcarr acarr bcarr have "p \<sim> somegcd G p (a \<otimes> b)" by (fast intro: gcdI2) also from pa pb pcarr acarr bcarr have "somegcd G p (a \<otimes> b) \<sim> \<one>" by (rule relprime_mult) finally have "p \<sim> \<one>" by (simp add: pcarr acarr bcarr) with pcarr have "p \<in> Units G" by (fast intro: assoc_unit_l) with pnunit show "False" .. qed qed sublocale gcd_condition_monoid \<subseteq> primeness_condition_monoid by (rule primeness_condition) subsubsection {* Divisor chain condition *} lemma (in divisor_chain_condition_monoid) wfactors_exist: assumes acarr: "a \<in> carrier G" shows "\<exists>as. set as \<subseteq> carrier G \<and> wfactors G as a" proof - have r[rule_format]: "a \<in> carrier G \<longrightarrow> (\<exists>as. set as \<subseteq> carrier G \<and> wfactors G as a)" apply (rule wf_induct[OF division_wellfounded]) proof - fix x assume ih: "\<forall>y. (y, x) \<in> {(x, y). x \<in> carrier G \<and> y \<in> carrier G \<and> properfactor G x y} \<longrightarrow> y \<in> carrier G \<longrightarrow> (\<exists>as. set as \<subseteq> carrier G \<and> wfactors G as y)" show "x \<in> carrier G \<longrightarrow> (\<exists>as. set as \<subseteq> carrier G \<and> wfactors G as x)" apply clarify apply (cases "x \<in> Units G") apply (rule exI[of _ "[]"], simp) apply (cases "irreducible G x") apply (rule exI[of _ "[x]"], simp add: wfactors_def) proof - assume xcarr: "x \<in> carrier G" and xnunit: "x \<notin> Units G" and xnirr: "\<not> irreducible G x" hence "\<exists>y. y \<in> carrier G \<and> properfactor G y x \<and> y \<notin> Units G" apply - apply (rule ccontr, simp) apply (subgoal_tac "irreducible G x", simp) apply (rule irreducibleI, simp, simp) done from this obtain y where ycarr: "y \<in> carrier G" and ynunit: "y \<notin> Units G" and pfyx: "properfactor G y x" by auto have ih': "\<And>y. \<lbrakk>y \<in> carrier G; properfactor G y x\<rbrakk> \<Longrightarrow> \<exists>as. set as \<subseteq> carrier G \<and> wfactors G as y" by (rule ih[rule_format, simplified]) (simp add: xcarr)+ from ycarr pfyx have "\<exists>as. set as \<subseteq> carrier G \<and> wfactors G as y" by (rule ih') from this obtain ys where yscarr: "set ys \<subseteq> carrier G" and yfs: "wfactors G ys y" by auto from pfyx have "y divides x" and nyx: "\<not> y \<sim> x" by - (fast elim: properfactorE2)+ hence "\<exists>z. z \<in> carrier G \<and> x = y \<otimes> z" by fast from this obtain z where zcarr: "z \<in> carrier G" and x: "x = y \<otimes> z" by auto from zcarr ycarr have "properfactor G z x" apply (subst x) apply (intro properfactorI3[of _ _ y]) apply (simp add: m_comm) apply (simp add: ynunit)+ done with zcarr have "\<exists>as. set as \<subseteq> carrier G \<and> wfactors G as z" by (rule ih') from this obtain zs where zscarr: "set zs \<subseteq> carrier G" and zfs: "wfactors G zs z" by auto from yscarr zscarr have xscarr: "set (ys@zs) \<subseteq> carrier G" by simp from yfs zfs ycarr zcarr yscarr zscarr have "wfactors G (ys@zs) (y\<otimes>z)" by (rule wfactors_mult) hence "wfactors G (ys@zs) x" by (simp add: x) from xscarr this show "\<exists>xs. set xs \<subseteq> carrier G \<and> wfactors G xs x" by fast qed qed from acarr show ?thesis by (rule r) qed subsubsection {* Primeness condition *} lemma (in comm_monoid_cancel) multlist_prime_pos: assumes carr: "a \<in> carrier G" "set as \<subseteq> carrier G" and aprime: "prime G a" and "a divides (foldr (op \<otimes>) as \<one>)" shows "\<exists>i<length as. a divides (as!i)" proof - have r[rule_format]: "set as \<subseteq> carrier G \<and> a divides (foldr (op \<otimes>) as \<one>) \<longrightarrow> (\<exists>i. i < length as \<and> a divides (as!i))" apply (induct as) apply clarsimp defer 1 apply clarsimp defer 1 proof - assume "a divides \<one>" with carr have "a \<in> Units G" by (fast intro: divides_unit[of a \<one>]) with aprime show "False" by (elim primeE, simp) next fix aa as assume ih[rule_format]: "a divides foldr op \<otimes> as \<one> \<longrightarrow> (\<exists>i<length as. a divides as ! i)" and carr': "aa \<in> carrier G" "set as \<subseteq> carrier G" and "a divides aa \<otimes> foldr op \<otimes> as \<one>" with carr aprime have "a divides aa \<or> a divides foldr op \<otimes> as \<one>" by (intro prime_divides) simp+ moreover { assume "a divides aa" hence p1: "a divides (aa#as)!0" by simp have "0 < Suc (length as)" by simp with p1 have "\<exists>i<Suc (length as). a divides (aa # as) ! i" by fast } moreover { assume "a divides foldr op \<otimes> as \<one>" hence "\<exists>i. i < length as \<and> a divides as ! i" by (rule ih) from this obtain i where "a divides as ! i" and len: "i < length as" by auto hence p1: "a divides (aa#as) ! (Suc i)" by simp from len have "Suc i < Suc (length as)" by simp with p1 have "\<exists>i<Suc (length as). a divides (aa # as) ! i" by force } ultimately show "\<exists>i<Suc (length as). a divides (aa # as) ! i" by fast qed from assms show ?thesis by (intro r, safe) qed lemma (in primeness_condition_monoid) wfactors_unique__hlp_induct: "\<forall>a as'. a \<in> carrier G \<and> set as \<subseteq> carrier G \<and> set as' \<subseteq> carrier G \<and> wfactors G as a \<and> wfactors G as' a \<longrightarrow> essentially_equal G as as'" proof (induct as) case Nil show ?case apply auto proof - fix a as' assume a: "a \<in> carrier G" assume "wfactors G [] a" then obtain "\<one> \<sim> a" by (auto elim: wfactorsE) with a have "a \<in> Units G" by (auto intro: assoc_unit_r) moreover assume "wfactors G as' a" moreover assume "set as' \<subseteq> carrier G" ultimately have "as' = []" by (rule unit_wfactors_empty) then show "essentially_equal G [] as'" by simp qed next case (Cons ah as) then show ?case apply clarsimp proof - fix a as' assume ih [rule_format]: "\<forall>a as'. a \<in> carrier G \<and> set as' \<subseteq> carrier G \<and> wfactors G as a \<and> wfactors G as' a \<longrightarrow> essentially_equal G as as'" and acarr: "a \<in> carrier G" and ahcarr: "ah \<in> carrier G" and ascarr: "set as \<subseteq> carrier G" and as'carr: "set as' \<subseteq> carrier G" and afs: "wfactors G (ah # as) a" and afs': "wfactors G as' a" hence ahdvda: "ah divides a" by (intro wfactors_dividesI[of "ah#as" "a"], simp+) hence "\<exists>a'\<in> carrier G. a = ah \<otimes> a'" by fast from this obtain a' where a'carr: "a' \<in> carrier G" and a: "a = ah \<otimes> a'" by auto have a'fs: "wfactors G as a'" apply (rule wfactorsE[OF afs], rule wfactorsI, simp) apply (simp add: a, insert ascarr a'carr) apply (intro assoc_l_cancel[of ah _ a'] multlist_closed ahcarr, assumption+) done from afs have ahirr: "irreducible G ah" by (elim wfactorsE, simp) with ascarr have ahprime: "prime G ah" by (intro irreducible_prime ahcarr) note carr [simp] = acarr ahcarr ascarr as'carr a'carr note ahdvda also from afs' have "a divides (foldr (op \<otimes>) as' \<one>)" by (elim wfactorsE associatedE, simp) finally have "ah divides (foldr (op \<otimes>) as' \<one>)" by simp with ahprime have "\<exists>i<length as'. ah divides as'!i" by (intro multlist_prime_pos, simp+) from this obtain i where len: "i<length as'" and ahdvd: "ah divides as'!i" by auto from afs' carr have irrasi: "irreducible G (as'!i)" by (fast intro: nth_mem[OF len] elim: wfactorsE) from len carr have asicarr[simp]: "as'!i \<in> carrier G" by (unfold set_conv_nth, force) note carr = carr asicarr from ahdvd have "\<exists>x \<in> carrier G. as'!i = ah \<otimes> x" by fast from this obtain x where "x \<in> carrier G" and asi: "as'!i = ah \<otimes> x" by auto with carr irrasi[simplified asi] have asiah: "as'!i \<sim> ah" apply - apply (elim irreducible_prodE[of "ah" "x"], assumption+) apply (rule associatedI2[of x], assumption+) apply (rule irreducibleE[OF ahirr], simp) done note setparts = set_take_subset[of i as'] set_drop_subset[of "Suc i" as'] note partscarr [simp] = setparts[THEN subset_trans[OF _ as'carr]] note carr = carr partscarr have "\<exists>aa_1. aa_1 \<in> carrier G \<and> wfactors G (take i as') aa_1" apply (intro wfactors_prod_exists) using setparts afs' by (fast elim: wfactorsE, simp) from this obtain aa_1 where aa1carr: "aa_1 \<in> carrier G" and aa1fs: "wfactors G (take i as') aa_1" by auto have "\<exists>aa_2. aa_2 \<in> carrier G \<and> wfactors G (drop (Suc i) as') aa_2" apply (intro wfactors_prod_exists) using setparts afs' by (fast elim: wfactorsE, simp) from this obtain aa_2 where aa2carr: "aa_2 \<in> carrier G" and aa2fs: "wfactors G (drop (Suc i) as') aa_2" by auto note carr = carr aa1carr[simp] aa2carr[simp] from aa1fs aa2fs have v1: "wfactors G (take i as' @ drop (Suc i) as') (aa_1 \<otimes> aa_2)" by (intro wfactors_mult, simp+) hence v1': "wfactors G (as'!i # take i as' @ drop (Suc i) as') (as'!i \<otimes> (aa_1 \<otimes> aa_2))" apply (intro wfactors_mult_single) using setparts afs' by (fast intro: nth_mem[OF len] elim: wfactorsE, simp+) from aa2carr carr aa1fs aa2fs have "wfactors G (as'!i # drop (Suc i) as') (as'!i \<otimes> aa_2)" by (metis irrasi wfactors_mult_single) with len carr aa1carr aa2carr aa1fs have v2: "wfactors G (take i as' @ as'!i # drop (Suc i) as') (aa_1 \<otimes> (as'!i \<otimes> aa_2))" apply (intro wfactors_mult) apply fast apply (simp, (fast intro: nth_mem[OF len])?)+ done from len have as': "as' = (take i as' @ as'!i # drop (Suc i) as')" by (simp add: Cons_nth_drop_Suc) with carr have eer: "essentially_equal G (take i as' @ as'!i # drop (Suc i) as') as'" by simp with v2 afs' carr aa1carr aa2carr nth_mem[OF len] have "aa_1 \<otimes> (as'!i \<otimes> aa_2) \<sim> a" by (metis as' ee_wfactorsD m_closed) then have t1: "as'!i \<otimes> (aa_1 \<otimes> aa_2) \<sim> a" by (metis aa1carr aa2carr asicarr m_lcomm) from carr asiah have "ah \<otimes> (aa_1 \<otimes> aa_2) \<sim> as'!i \<otimes> (aa_1 \<otimes> aa_2)" by (metis associated_sym m_closed mult_cong_l) also note t1 finally have "ah \<otimes> (aa_1 \<otimes> aa_2) \<sim> a" by simp with carr aa1carr aa2carr a'carr nth_mem[OF len] have a': "aa_1 \<otimes> aa_2 \<sim> a'" by (simp add: a, fast intro: assoc_l_cancel[of ah _ a']) note v1 also note a' finally have "wfactors G (take i as' @ drop (Suc i) as') a'" by simp from a'fs this carr have "essentially_equal G as (take i as' @ drop (Suc i) as')" by (intro ih[of a']) simp hence ee1: "essentially_equal G (ah # as) (ah # take i as' @ drop (Suc i) as')" apply (elim essentially_equalE) apply (fastforce intro: essentially_equalI) done from carr have ee2: "essentially_equal G (ah # take i as' @ drop (Suc i) as') (as' ! i # take i as' @ drop (Suc i) as')" proof (intro essentially_equalI) show "ah # take i as' @ drop (Suc i) as' <~~> ah # take i as' @ drop (Suc i) as'" by simp next show "ah # take i as' @ drop (Suc i) as' [\<sim>] as' ! i # take i as' @ drop (Suc i) as'" apply (simp add: list_all2_append) apply (simp add: asiah[symmetric]) done qed note ee1 also note ee2 also have "essentially_equal G (as' ! i # take i as' @ drop (Suc i) as') (take i as' @ as' ! i # drop (Suc i) as')" apply (intro essentially_equalI) apply (subgoal_tac "as' ! i # take i as' @ drop (Suc i) as' <~~> take i as' @ as' ! i # drop (Suc i) as'") apply simp apply (rule perm_append_Cons) apply simp done finally have "essentially_equal G (ah # as) (take i as' @ as' ! i # drop (Suc i) as')" by simp then show "essentially_equal G (ah # as) as'" by (subst as', assumption) qed qed lemma (in primeness_condition_monoid) wfactors_unique: assumes "wfactors G as a" "wfactors G as' a" and "a \<in> carrier G" "set as \<subseteq> carrier G" "set as' \<subseteq> carrier G" shows "essentially_equal G as as'" apply (rule wfactors_unique__hlp_induct[rule_format, of a]) apply (simp add: assms) done subsubsection {* Application to factorial monoids *} text {* Number of factors for wellfoundedness *} definition factorcount :: "_ \<Rightarrow> 'a \<Rightarrow> nat" where "factorcount G a = (THE c. (ALL as. set as \<subseteq> carrier G \<and> wfactors G as a \<longrightarrow> c = length as))" lemma (in monoid) ee_length: assumes ee: "essentially_equal G as bs" shows "length as = length bs" apply (rule essentially_equalE[OF ee]) apply (metis list_all2_conv_all_nth perm_length) done lemma (in factorial_monoid) factorcount_exists: assumes carr[simp]: "a \<in> carrier G" shows "EX c. ALL as. set as \<subseteq> carrier G \<and> wfactors G as a \<longrightarrow> c = length as" proof - have "\<exists>as. set as \<subseteq> carrier G \<and> wfactors G as a" by (intro wfactors_exist, simp) from this obtain as where ascarr[simp]: "set as \<subseteq> carrier G" and afs: "wfactors G as a" by (auto simp del: carr) have "ALL as'. set as' \<subseteq> carrier G \<and> wfactors G as' a \<longrightarrow> length as = length as'" by (metis afs ascarr assms ee_length wfactors_unique) thus "EX c. ALL as'. set as' \<subseteq> carrier G \<and> wfactors G as' a \<longrightarrow> c = length as'" .. qed lemma (in factorial_monoid) factorcount_unique: assumes afs: "wfactors G as a" and acarr[simp]: "a \<in> carrier G" and ascarr[simp]: "set as \<subseteq> carrier G" shows "factorcount G a = length as" proof - have "EX ac. ALL as. set as \<subseteq> carrier G \<and> wfactors G as a \<longrightarrow> ac = length as" by (rule factorcount_exists, simp) from this obtain ac where alen: "ALL as. set as \<subseteq> carrier G \<and> wfactors G as a \<longrightarrow> ac = length as" by auto have ac: "ac = factorcount G a" apply (simp add: factorcount_def) apply (rule theI2) apply (rule alen) apply (metis afs alen ascarr)+ done from ascarr afs have "ac = length as" by (iprover intro: alen[rule_format]) with ac show ?thesis by simp qed lemma (in factorial_monoid) divides_fcount: assumes dvd: "a divides b" and acarr: "a \<in> carrier G" and bcarr:"b \<in> carrier G" shows "factorcount G a <= factorcount G b" apply (rule dividesE[OF dvd]) proof - fix c from assms have "\<exists>as. set as \<subseteq> carrier G \<and> wfactors G as a" by fast from this obtain as where ascarr: "set as \<subseteq> carrier G" and afs: "wfactors G as a" by auto with acarr have fca: "factorcount G a = length as" by (intro factorcount_unique) assume ccarr: "c \<in> carrier G" hence "\<exists>cs. set cs \<subseteq> carrier G \<and> wfactors G cs c" by fast from this obtain cs where cscarr: "set cs \<subseteq> carrier G" and cfs: "wfactors G cs c" by auto note [simp] = acarr bcarr ccarr ascarr cscarr assume b: "b = a \<otimes> c" from afs cfs have "wfactors G (as@cs) (a \<otimes> c)" by (intro wfactors_mult, simp+) with b have "wfactors G (as@cs) b" by simp hence "factorcount G b = length (as@cs)" by (intro factorcount_unique, simp+) hence "factorcount G b = length as + length cs" by simp with fca show ?thesis by simp qed lemma (in factorial_monoid) associated_fcount: assumes acarr: "a \<in> carrier G" and bcarr:"b \<in> carrier G" and asc: "a \<sim> b" shows "factorcount G a = factorcount G b" apply (rule associatedE[OF asc]) apply (drule divides_fcount[OF _ acarr bcarr]) apply (drule divides_fcount[OF _ bcarr acarr]) apply simp done lemma (in factorial_monoid) properfactor_fcount: assumes acarr: "a \<in> carrier G" and bcarr:"b \<in> carrier G" and pf: "properfactor G a b" shows "factorcount G a < factorcount G b" apply (rule properfactorE[OF pf], elim dividesE) proof - fix c from assms have "\<exists>as. set as \<subseteq> carrier G \<and> wfactors G as a" by fast from this obtain as where ascarr: "set as \<subseteq> carrier G" and afs: "wfactors G as a" by auto with acarr have fca: "factorcount G a = length as" by (intro factorcount_unique) assume ccarr: "c \<in> carrier G" hence "\<exists>cs. set cs \<subseteq> carrier G \<and> wfactors G cs c" by fast from this obtain cs where cscarr: "set cs \<subseteq> carrier G" and cfs: "wfactors G cs c" by auto assume b: "b = a \<otimes> c" have "wfactors G (as@cs) (a \<otimes> c)" by (rule wfactors_mult) fact+ with b have "wfactors G (as@cs) b" by simp with ascarr cscarr bcarr have "factorcount G b = length (as@cs)" by (simp add: factorcount_unique) hence fcb: "factorcount G b = length as + length cs" by simp assume nbdvda: "\<not> b divides a" have "c \<notin> Units G" proof (rule ccontr, simp) assume cunit:"c \<in> Units G" have "b \<otimes> inv c = a \<otimes> c \<otimes> inv c" by (simp add: b) also from ccarr acarr cunit have "\<dots> = a \<otimes> (c \<otimes> inv c)" by (fast intro: m_assoc) also from ccarr cunit have "\<dots> = a \<otimes> \<one>" by simp also from acarr have "\<dots> = a" by simp finally have "a = b \<otimes> inv c" by simp with ccarr cunit have "b divides a" by (fast intro: dividesI[of "inv c"]) with nbdvda show False by simp qed with cfs have "length cs > 0" apply - apply (rule ccontr, simp) apply (metis Units_one_closed ccarr cscarr l_one one_closed properfactorI3 properfactor_fmset unit_wfactors) done with fca fcb show ?thesis by simp qed sublocale factorial_monoid \<subseteq> divisor_chain_condition_monoid apply unfold_locales apply (rule wfUNIVI) apply (rule measure_induct[of "factorcount G"]) apply simp apply (metis properfactor_fcount) done sublocale factorial_monoid \<subseteq> primeness_condition_monoid by default (rule irreducible_is_prime) lemma (in factorial_monoid) primeness_condition: shows "primeness_condition_monoid G" .. lemma (in factorial_monoid) gcd_condition [simp]: shows "gcd_condition_monoid G" by default (rule gcdof_exists) sublocale factorial_monoid \<subseteq> gcd_condition_monoid by default (rule gcdof_exists) lemma (in factorial_monoid) division_weak_lattice [simp]: shows "weak_lattice (division_rel G)" proof - interpret weak_lower_semilattice "division_rel G" by simp show "weak_lattice (division_rel G)" apply (unfold_locales, simp_all) proof - fix x y assume carr: "x \<in> carrier G" "y \<in> carrier G" hence "\<exists>z. z \<in> carrier G \<and> z lcmof x y" by (rule lcmof_exists) from this obtain z where zcarr: "z \<in> carrier G" and isgcd: "z lcmof x y" by auto with carr have "least (division_rel G) z (Upper (division_rel G) {x, y})" by (simp add: lcmof_leastUpper[symmetric]) thus "\<exists>z. least (division_rel G) z (Upper (division_rel G) {x, y})" by fast qed qed subsection {* Factoriality Theorems *} theorem factorial_condition_one: (* Jacobson theorem 2.21 *) shows "(divisor_chain_condition_monoid G \<and> primeness_condition_monoid G) = factorial_monoid G" apply rule proof clarify assume dcc: "divisor_chain_condition_monoid G" and pc: "primeness_condition_monoid G" interpret divisor_chain_condition_monoid "G" by (rule dcc) interpret primeness_condition_monoid "G" by (rule pc) show "factorial_monoid G" by (fast intro: factorial_monoidI wfactors_exist wfactors_unique) next assume fm: "factorial_monoid G" interpret factorial_monoid "G" by (rule fm) show "divisor_chain_condition_monoid G \<and> primeness_condition_monoid G" by rule unfold_locales qed theorem factorial_condition_two: (* Jacobson theorem 2.22 *) shows "(divisor_chain_condition_monoid G \<and> gcd_condition_monoid G) = factorial_monoid G" apply rule proof clarify assume dcc: "divisor_chain_condition_monoid G" and gc: "gcd_condition_monoid G" interpret divisor_chain_condition_monoid "G" by (rule dcc) interpret gcd_condition_monoid "G" by (rule gc) show "factorial_monoid G" by (simp add: factorial_condition_one[symmetric], rule, unfold_locales) next assume fm: "factorial_monoid G" interpret factorial_monoid "G" by (rule fm) show "divisor_chain_condition_monoid G \<and> gcd_condition_monoid G" by rule unfold_locales qed end
lemma order: "p \<noteq> 0 \<Longrightarrow> [:-a, 1:] ^ order a p dvd p \<and> \<not> [:-a, 1:] ^ Suc (order a p) dvd p"
[GOAL] E : Type u_1 inst✝ : NormedAddCommGroup E c : ℂ R θ : ℝ ⊢ circleMap c R (θ + 2 * π) = circleMap c R θ [PROOFSTEP] simp [circleMap, add_mul, exp_periodic _] [GOAL] E : Type u_1 inst✝ : NormedAddCommGroup E c : ℂ R θ : ℝ ⊢ circleMap c R θ - c = circleMap 0 R θ [PROOFSTEP] simp [circleMap] [GOAL] E : Type u_1 inst✝ : NormedAddCommGroup E R θ : ℝ ⊢ ↑Complex.abs (circleMap 0 R θ) = |R| [PROOFSTEP] simp [circleMap] [GOAL] E : Type u_1 inst✝ : NormedAddCommGroup E c : ℂ R θ : ℝ ⊢ circleMap c R θ ∈ sphere c |R| [PROOFSTEP] simp [GOAL] E : Type u_1 inst✝ : NormedAddCommGroup E c : ℂ R : ℝ hR : 0 ≤ R θ : ℝ ⊢ circleMap c R θ ∈ sphere c R [PROOFSTEP] simpa only [_root_.abs_of_nonneg hR] using circleMap_mem_sphere' c R θ [GOAL] E : Type u_1 inst✝ : NormedAddCommGroup E c : ℂ R θ : ℝ ⊢ ¬circleMap c R θ ∈ ball c R [PROOFSTEP] simp [dist_eq, le_abs_self] [GOAL] E : Type u_1 inst✝ : NormedAddCommGroup E c : ℂ R : ℝ ⊢ range (circleMap c R) = c +ᵥ R • range fun θ => exp (↑θ * I) [PROOFSTEP] simp only [← image_vadd, ← image_smul, ← range_comp, vadd_eq_add, circleMap, (· ∘ ·), real_smul] [GOAL] E : Type u_1 inst✝ : NormedAddCommGroup E c : ℂ R : ℝ ⊢ (c +ᵥ R • range fun θ => exp (↑θ * I)) = sphere c |R| [PROOFSTEP] rw [Complex.range_exp_mul_I, smul_sphere R 0 zero_le_one] [GOAL] E : Type u_1 inst✝ : NormedAddCommGroup E c : ℂ R : ℝ ⊢ c +ᵥ sphere (R • 0) (‖R‖ * 1) = sphere c |R| [PROOFSTEP] simp [GOAL] E : Type u_1 inst✝ : NormedAddCommGroup E c : ℂ R : ℝ ⊢ circleMap c R '' Ioc 0 (2 * π) = sphere c |R| [PROOFSTEP] rw [← range_circleMap, ← (periodic_circleMap c R).image_Ioc Real.two_pi_pos 0, zero_add] [GOAL] E : Type u_1 inst✝ : NormedAddCommGroup E c : ℂ R θ : ℝ ⊢ circleMap c R θ = c ↔ R = 0 [PROOFSTEP] simp [circleMap, exp_ne_zero] [GOAL] E : Type u_1 inst✝ : NormedAddCommGroup E c : ℂ R θ : ℝ ⊢ HasDerivAt (circleMap c R) (circleMap 0 R θ * I) θ [PROOFSTEP] simpa only [mul_assoc, one_mul, ofRealClm_apply, circleMap, ofReal_one, zero_add] using (((ofRealClm.hasDerivAt (x := θ)).mul_const I).cexp.const_mul (R : ℂ)).const_add c [GOAL] E : Type u_1 inst✝ : NormedAddCommGroup E c : ℂ R θ : ℝ ⊢ deriv (circleMap c R) θ = 0 ↔ R = 0 [PROOFSTEP] simp [I_ne_zero] [GOAL] E : Type u_1 inst✝ : NormedAddCommGroup E c : ℂ R θ : ℝ ⊢ ↑‖deriv (circleMap c R) θ‖₊ ≤ ↑(↑Real.nnabs R) [PROOFSTEP] simp [GOAL] E : Type u_1 inst✝ : NormedAddCommGroup E R : ℝ z w : ℂ hw : w ∈ ball z R ⊢ Continuous fun θ => (circleMap z R θ - w)⁻¹ [PROOFSTEP] have : ∀ θ, circleMap z R θ - w ≠ 0 := by simp_rw [sub_ne_zero] exact fun θ => circleMap_ne_mem_ball hw θ [GOAL] E : Type u_1 inst✝ : NormedAddCommGroup E R : ℝ z w : ℂ hw : w ∈ ball z R ⊢ ∀ (θ : ℝ), circleMap z R θ - w ≠ 0 [PROOFSTEP] simp_rw [sub_ne_zero] [GOAL] E : Type u_1 inst✝ : NormedAddCommGroup E R : ℝ z w : ℂ hw : w ∈ ball z R ⊢ ∀ (θ : ℝ), circleMap z R θ ≠ w [PROOFSTEP] exact fun θ => circleMap_ne_mem_ball hw θ [GOAL] E : Type u_1 inst✝ : NormedAddCommGroup E R : ℝ z w : ℂ hw : w ∈ ball z R this : ∀ (θ : ℝ), circleMap z R θ - w ≠ 0 ⊢ Continuous fun θ => (circleMap z R θ - w)⁻¹ [PROOFSTEP] exact Continuous.inv₀ (by continuity) this [GOAL] E : Type u_1 inst✝ : NormedAddCommGroup E R : ℝ z w : ℂ hw : w ∈ ball z R this : ∀ (θ : ℝ), circleMap z R θ - w ≠ 0 ⊢ Continuous fun θ => circleMap z R θ - w [PROOFSTEP] continuity [GOAL] E : Type u_1 inst✝¹ : NormedAddCommGroup E f g : ℂ → E c : ℂ R : ℝ inst✝ : NormedSpace ℂ E hf : CircleIntegrable f c R ⊢ IntervalIntegrable (fun θ => deriv (circleMap c R) θ • f (circleMap c R θ)) volume 0 (2 * π) [PROOFSTEP] simp only [CircleIntegrable, deriv_circleMap, intervalIntegrable_iff] at * [GOAL] E : Type u_1 inst✝¹ : NormedAddCommGroup E f g : ℂ → E c : ℂ R : ℝ inst✝ : NormedSpace ℂ E hf : IntegrableOn (fun θ => f (circleMap c R θ)) (Ι 0 (2 * π)) ⊢ IntegrableOn (fun θ => (circleMap 0 R θ * I) • f (circleMap c R θ)) (Ι 0 (2 * π)) [PROOFSTEP] refine' (hf.norm.const_mul |R|).mono' _ _ [GOAL] case refine'_1 E : Type u_1 inst✝¹ : NormedAddCommGroup E f g : ℂ → E c : ℂ R : ℝ inst✝ : NormedSpace ℂ E hf : IntegrableOn (fun θ => f (circleMap c R θ)) (Ι 0 (2 * π)) ⊢ AEStronglyMeasurable (fun θ => (circleMap 0 R θ * I) • f (circleMap c R θ)) (Measure.restrict volume (Ι 0 (2 * π))) [PROOFSTEP] exact ((continuous_circleMap _ _).aestronglyMeasurable.mul_const I).smul hf.aestronglyMeasurable [GOAL] case refine'_2 E : Type u_1 inst✝¹ : NormedAddCommGroup E f g : ℂ → E c : ℂ R : ℝ inst✝ : NormedSpace ℂ E hf : IntegrableOn (fun θ => f (circleMap c R θ)) (Ι 0 (2 * π)) ⊢ ∀ᵐ (a : ℝ) ∂Measure.restrict volume (Ι 0 (2 * π)), ‖(circleMap 0 R a * I) • f (circleMap c R a)‖ ≤ |R| * ‖f (circleMap c R a)‖ [PROOFSTEP] simp [norm_smul] [GOAL] E : Type u_1 inst✝ : NormedAddCommGroup E f : ℂ → E c : ℂ ⊢ CircleIntegrable f c 0 [PROOFSTEP] simp [CircleIntegrable] [GOAL] E : Type u_1 inst✝¹ : NormedAddCommGroup E inst✝ : NormedSpace ℂ E f : ℂ → E c : ℂ R : ℝ ⊢ CircleIntegrable f c R ↔ IntervalIntegrable (fun θ => deriv (circleMap c R) θ • f (circleMap c R θ)) volume 0 (2 * π) [PROOFSTEP] by_cases h₀ : R = 0 [GOAL] case pos E : Type u_1 inst✝¹ : NormedAddCommGroup E inst✝ : NormedSpace ℂ E f : ℂ → E c : ℂ R : ℝ h₀ : R = 0 ⊢ CircleIntegrable f c R ↔ IntervalIntegrable (fun θ => deriv (circleMap c R) θ • f (circleMap c R θ)) volume 0 (2 * π) [PROOFSTEP] simp [h₀, const] [GOAL] case neg E : Type u_1 inst✝¹ : NormedAddCommGroup E inst✝ : NormedSpace ℂ E f : ℂ → E c : ℂ R : ℝ h₀ : ¬R = 0 ⊢ CircleIntegrable f c R ↔ IntervalIntegrable (fun θ => deriv (circleMap c R) θ • f (circleMap c R θ)) volume 0 (2 * π) [PROOFSTEP] refine' ⟨fun h => h.out, fun h => _⟩ [GOAL] case neg E : Type u_1 inst✝¹ : NormedAddCommGroup E inst✝ : NormedSpace ℂ E f : ℂ → E c : ℂ R : ℝ h₀ : ¬R = 0 h : IntervalIntegrable (fun θ => deriv (circleMap c R) θ • f (circleMap c R θ)) volume 0 (2 * π) ⊢ CircleIntegrable f c R [PROOFSTEP] simp only [CircleIntegrable, intervalIntegrable_iff, deriv_circleMap] at h ⊢ [GOAL] case neg E : Type u_1 inst✝¹ : NormedAddCommGroup E inst✝ : NormedSpace ℂ E f : ℂ → E c : ℂ R : ℝ h₀ : ¬R = 0 h : IntegrableOn (fun θ => (circleMap 0 R θ * I) • f (circleMap c R θ)) (Ι 0 (2 * π)) ⊢ IntegrableOn (fun θ => f (circleMap c R θ)) (Ι 0 (2 * π)) [PROOFSTEP] refine' (h.norm.const_mul |R|⁻¹).mono' _ _ [GOAL] case neg.refine'_1 E : Type u_1 inst✝¹ : NormedAddCommGroup E inst✝ : NormedSpace ℂ E f : ℂ → E c : ℂ R : ℝ h₀ : ¬R = 0 h : IntegrableOn (fun θ => (circleMap 0 R θ * I) • f (circleMap c R θ)) (Ι 0 (2 * π)) ⊢ AEStronglyMeasurable (fun θ => f (circleMap c R θ)) (Measure.restrict volume (Ι 0 (2 * π))) [PROOFSTEP] have H : ∀ {θ}, circleMap 0 R θ * I ≠ 0 := fun {θ} => by simp [h₀, I_ne_zero] [GOAL] E : Type u_1 inst✝¹ : NormedAddCommGroup E inst✝ : NormedSpace ℂ E f : ℂ → E c : ℂ R : ℝ h₀ : ¬R = 0 h : IntegrableOn (fun θ => (circleMap 0 R θ * I) • f (circleMap c R θ)) (Ι 0 (2 * π)) θ : ℝ ⊢ circleMap 0 R θ * I ≠ 0 [PROOFSTEP] simp [h₀, I_ne_zero] [GOAL] case neg.refine'_1 E : Type u_1 inst✝¹ : NormedAddCommGroup E inst✝ : NormedSpace ℂ E f : ℂ → E c : ℂ R : ℝ h₀ : ¬R = 0 h : IntegrableOn (fun θ => (circleMap 0 R θ * I) • f (circleMap c R θ)) (Ι 0 (2 * π)) H : ∀ {θ : ℝ}, circleMap 0 R θ * I ≠ 0 ⊢ AEStronglyMeasurable (fun θ => f (circleMap c R θ)) (Measure.restrict volume (Ι 0 (2 * π))) [PROOFSTEP] simpa only [inv_smul_smul₀ H] using ((continuous_circleMap 0 R).aestronglyMeasurable.mul_const I).aemeasurable.inv.aestronglyMeasurable.smul h.aestronglyMeasurable [GOAL] case neg.refine'_2 E : Type u_1 inst✝¹ : NormedAddCommGroup E inst✝ : NormedSpace ℂ E f : ℂ → E c : ℂ R : ℝ h₀ : ¬R = 0 h : IntegrableOn (fun θ => (circleMap 0 R θ * I) • f (circleMap c R θ)) (Ι 0 (2 * π)) ⊢ ∀ᵐ (a : ℝ) ∂Measure.restrict volume (Ι 0 (2 * π)), ‖f (circleMap c R a)‖ ≤ |R|⁻¹ * ‖(circleMap 0 R a * I) • f (circleMap c R a)‖ [PROOFSTEP] simp [norm_smul, h₀] [GOAL] E : Type u_1 inst✝ : NormedAddCommGroup E c w : ℂ R : ℝ n : ℤ ⊢ CircleIntegrable (fun z => (z - w) ^ n) c R ↔ R = 0 ∨ 0 ≤ n ∨ ¬w ∈ sphere c |R| [PROOFSTEP] constructor [GOAL] case mp E : Type u_1 inst✝ : NormedAddCommGroup E c w : ℂ R : ℝ n : ℤ ⊢ CircleIntegrable (fun z => (z - w) ^ n) c R → R = 0 ∨ 0 ≤ n ∨ ¬w ∈ sphere c |R| [PROOFSTEP] intro h [GOAL] case mp E : Type u_1 inst✝ : NormedAddCommGroup E c w : ℂ R : ℝ n : ℤ h : CircleIntegrable (fun z => (z - w) ^ n) c R ⊢ R = 0 ∨ 0 ≤ n ∨ ¬w ∈ sphere c |R| [PROOFSTEP] contrapose! h [GOAL] case mp E : Type u_1 inst✝ : NormedAddCommGroup E c w : ℂ R : ℝ n : ℤ h : R ≠ 0 ∧ n < 0 ∧ w ∈ sphere c |R| ⊢ ¬CircleIntegrable (fun z => (z - w) ^ n) c R [PROOFSTEP] rcases h with ⟨hR, hn, hw⟩ [GOAL] case mp.intro.intro E : Type u_1 inst✝ : NormedAddCommGroup E c w : ℂ R : ℝ n : ℤ hR : R ≠ 0 hn : n < 0 hw : w ∈ sphere c |R| ⊢ ¬CircleIntegrable (fun z => (z - w) ^ n) c R [PROOFSTEP] simp only [circleIntegrable_iff R, deriv_circleMap] [GOAL] case mp.intro.intro E : Type u_1 inst✝ : NormedAddCommGroup E c w : ℂ R : ℝ n : ℤ hR : R ≠ 0 hn : n < 0 hw : w ∈ sphere c |R| ⊢ ¬IntervalIntegrable (fun θ => (circleMap 0 R θ * I) • (circleMap c R θ - w) ^ n) volume 0 (2 * π) [PROOFSTEP] rw [← image_circleMap_Ioc] at hw [GOAL] case mp.intro.intro E : Type u_1 inst✝ : NormedAddCommGroup E c w : ℂ R : ℝ n : ℤ hR : R ≠ 0 hn : n < 0 hw : w ∈ circleMap c R '' Ioc 0 (2 * π) ⊢ ¬IntervalIntegrable (fun θ => (circleMap 0 R θ * I) • (circleMap c R θ - w) ^ n) volume 0 (2 * π) [PROOFSTEP] rcases hw with ⟨θ, hθ, rfl⟩ [GOAL] case mp.intro.intro.intro.intro E : Type u_1 inst✝ : NormedAddCommGroup E c : ℂ R : ℝ n : ℤ hR : R ≠ 0 hn : n < 0 θ : ℝ hθ : θ ∈ Ioc 0 (2 * π) ⊢ ¬IntervalIntegrable (fun θ_1 => (circleMap 0 R θ_1 * I) • (circleMap c R θ_1 - circleMap c R θ) ^ n) volume 0 (2 * π) [PROOFSTEP] replace hθ : θ ∈ [[0, 2 * π]] [GOAL] case hθ E : Type u_1 inst✝ : NormedAddCommGroup E c : ℂ R : ℝ n : ℤ hR : R ≠ 0 hn : n < 0 θ : ℝ hθ : θ ∈ Ioc 0 (2 * π) ⊢ θ ∈ [[0, 2 * π]] case mp.intro.intro.intro.intro E : Type u_1 inst✝ : NormedAddCommGroup E c : ℂ R : ℝ n : ℤ hR : R ≠ 0 hn : n < 0 θ : ℝ hθ : θ ∈ [[0, 2 * π]] ⊢ ¬IntervalIntegrable (fun θ_1 => (circleMap 0 R θ_1 * I) • (circleMap c R θ_1 - circleMap c R θ) ^ n) volume 0 (2 * π) [PROOFSTEP] exact Icc_subset_uIcc (Ioc_subset_Icc_self hθ) [GOAL] case mp.intro.intro.intro.intro E : Type u_1 inst✝ : NormedAddCommGroup E c : ℂ R : ℝ n : ℤ hR : R ≠ 0 hn : n < 0 θ : ℝ hθ : θ ∈ [[0, 2 * π]] ⊢ ¬IntervalIntegrable (fun θ_1 => (circleMap 0 R θ_1 * I) • (circleMap c R θ_1 - circleMap c R θ) ^ n) volume 0 (2 * π) [PROOFSTEP] refine' not_intervalIntegrable_of_sub_inv_isBigO_punctured _ Real.two_pi_pos.ne hθ [GOAL] case mp.intro.intro.intro.intro E : Type u_1 inst✝ : NormedAddCommGroup E c : ℂ R : ℝ n : ℤ hR : R ≠ 0 hn : n < 0 θ : ℝ hθ : θ ∈ [[0, 2 * π]] ⊢ (fun x => (x - θ)⁻¹) =O[𝓝[{θ}ᶜ] θ] fun θ_1 => (circleMap 0 R θ_1 * I) • (circleMap c R θ_1 - circleMap c R θ) ^ n [PROOFSTEP] set f : ℝ → ℂ := fun θ' => circleMap c R θ' - circleMap c R θ [GOAL] case mp.intro.intro.intro.intro E : Type u_1 inst✝ : NormedAddCommGroup E c : ℂ R : ℝ n : ℤ hR : R ≠ 0 hn : n < 0 θ : ℝ hθ : θ ∈ [[0, 2 * π]] f : ℝ → ℂ := fun θ' => circleMap c R θ' - circleMap c R θ ⊢ (fun x => (x - θ)⁻¹) =O[𝓝[{θ}ᶜ] θ] fun θ_1 => (circleMap 0 R θ_1 * I) • (circleMap c R θ_1 - circleMap c R θ) ^ n [PROOFSTEP] have : ∀ᶠ θ' in 𝓝[≠] θ, f θ' ∈ ball (0 : ℂ) 1 \ {0} := by suffices : ∀ᶠ z in 𝓝[≠] circleMap c R θ, z - circleMap c R θ ∈ ball (0 : ℂ) 1 \ {0} exact ((differentiable_circleMap c R θ).hasDerivAt.tendsto_punctured_nhds (deriv_circleMap_ne_zero hR)).eventually this filter_upwards [self_mem_nhdsWithin, mem_nhdsWithin_of_mem_nhds (ball_mem_nhds _ zero_lt_one)] simp_all [dist_eq, sub_eq_zero] [GOAL] E : Type u_1 inst✝ : NormedAddCommGroup E c : ℂ R : ℝ n : ℤ hR : R ≠ 0 hn : n < 0 θ : ℝ hθ : θ ∈ [[0, 2 * π]] f : ℝ → ℂ := fun θ' => circleMap c R θ' - circleMap c R θ ⊢ ∀ᶠ (θ' : ℝ) in 𝓝[{θ}ᶜ] θ, f θ' ∈ ball 0 1 \ {0} [PROOFSTEP] suffices : ∀ᶠ z in 𝓝[≠] circleMap c R θ, z - circleMap c R θ ∈ ball (0 : ℂ) 1 \ {0} [GOAL] E : Type u_1 inst✝ : NormedAddCommGroup E c : ℂ R : ℝ n : ℤ hR : R ≠ 0 hn : n < 0 θ : ℝ hθ : θ ∈ [[0, 2 * π]] f : ℝ → ℂ := fun θ' => circleMap c R θ' - circleMap c R θ this : ∀ᶠ (z : ℂ) in 𝓝[{circleMap c R θ}ᶜ] circleMap c R θ, z - circleMap c R θ ∈ ball 0 1 \ {0} ⊢ ∀ᶠ (θ' : ℝ) in 𝓝[{θ}ᶜ] θ, f θ' ∈ ball 0 1 \ {0} case this E : Type u_1 inst✝ : NormedAddCommGroup E c : ℂ R : ℝ n : ℤ hR : R ≠ 0 hn : n < 0 θ : ℝ hθ : θ ∈ [[0, 2 * π]] f : ℝ → ℂ := fun θ' => circleMap c R θ' - circleMap c R θ ⊢ ∀ᶠ (z : ℂ) in 𝓝[{circleMap c R θ}ᶜ] circleMap c R θ, z - circleMap c R θ ∈ ball 0 1 \ {0} [PROOFSTEP] exact ((differentiable_circleMap c R θ).hasDerivAt.tendsto_punctured_nhds (deriv_circleMap_ne_zero hR)).eventually this [GOAL] case this E : Type u_1 inst✝ : NormedAddCommGroup E c : ℂ R : ℝ n : ℤ hR : R ≠ 0 hn : n < 0 θ : ℝ hθ : θ ∈ [[0, 2 * π]] f : ℝ → ℂ := fun θ' => circleMap c R θ' - circleMap c R θ ⊢ ∀ᶠ (z : ℂ) in 𝓝[{circleMap c R θ}ᶜ] circleMap c R θ, z - circleMap c R θ ∈ ball 0 1 \ {0} [PROOFSTEP] filter_upwards [self_mem_nhdsWithin, mem_nhdsWithin_of_mem_nhds (ball_mem_nhds _ zero_lt_one)] [GOAL] case h E : Type u_1 inst✝ : NormedAddCommGroup E c : ℂ R : ℝ n : ℤ hR : R ≠ 0 hn : n < 0 θ : ℝ hθ : θ ∈ [[0, 2 * π]] f : ℝ → ℂ := fun θ' => circleMap c R θ' - circleMap c R θ ⊢ ∀ (a : ℂ), a ∈ {circleMap c R θ}ᶜ → a ∈ ball (circleMap c R θ) 1 → a - circleMap c R θ ∈ ball 0 1 \ {0} [PROOFSTEP] simp_all [dist_eq, sub_eq_zero] [GOAL] case mp.intro.intro.intro.intro E : Type u_1 inst✝ : NormedAddCommGroup E c : ℂ R : ℝ n : ℤ hR : R ≠ 0 hn : n < 0 θ : ℝ hθ : θ ∈ [[0, 2 * π]] f : ℝ → ℂ := fun θ' => circleMap c R θ' - circleMap c R θ this : ∀ᶠ (θ' : ℝ) in 𝓝[{θ}ᶜ] θ, f θ' ∈ ball 0 1 \ {0} ⊢ (fun x => (x - θ)⁻¹) =O[𝓝[{θ}ᶜ] θ] fun θ_1 => (circleMap 0 R θ_1 * I) • (circleMap c R θ_1 - circleMap c R θ) ^ n [PROOFSTEP] refine' (((hasDerivAt_circleMap c R θ).isBigO_sub.mono inf_le_left).inv_rev (this.mono fun θ' h₁ h₂ => absurd h₂ h₁.2)).trans _ [GOAL] case mp.intro.intro.intro.intro E : Type u_1 inst✝ : NormedAddCommGroup E c : ℂ R : ℝ n : ℤ hR : R ≠ 0 hn : n < 0 θ : ℝ hθ : θ ∈ [[0, 2 * π]] f : ℝ → ℂ := fun θ' => circleMap c R θ' - circleMap c R θ this : ∀ᶠ (θ' : ℝ) in 𝓝[{θ}ᶜ] θ, f θ' ∈ ball 0 1 \ {0} ⊢ (fun x => (circleMap c R x - circleMap c R θ)⁻¹) =O[𝓝 θ ⊓ 𝓟 {θ}ᶜ] fun θ_1 => (circleMap 0 R θ_1 * I) • (circleMap c R θ_1 - circleMap c R θ) ^ n [PROOFSTEP] refine' IsBigO.of_bound |R|⁻¹ (this.mono fun θ' hθ' => _) [GOAL] case mp.intro.intro.intro.intro E : Type u_1 inst✝ : NormedAddCommGroup E c : ℂ R : ℝ n : ℤ hR : R ≠ 0 hn : n < 0 θ : ℝ hθ : θ ∈ [[0, 2 * π]] f : ℝ → ℂ := fun θ' => circleMap c R θ' - circleMap c R θ this : ∀ᶠ (θ' : ℝ) in 𝓝[{θ}ᶜ] θ, f θ' ∈ ball 0 1 \ {0} θ' : ℝ hθ' : f θ' ∈ ball 0 1 \ {0} ⊢ ‖(circleMap c R θ' - circleMap c R θ)⁻¹‖ ≤ |R|⁻¹ * ‖(circleMap 0 R θ' * I) • (circleMap c R θ' - circleMap c R θ) ^ n‖ [PROOFSTEP] set x := abs (f θ') [GOAL] case mp.intro.intro.intro.intro E : Type u_1 inst✝ : NormedAddCommGroup E c : ℂ R : ℝ n : ℤ hR : R ≠ 0 hn : n < 0 θ : ℝ hθ : θ ∈ [[0, 2 * π]] f : ℝ → ℂ := fun θ' => circleMap c R θ' - circleMap c R θ this : ∀ᶠ (θ' : ℝ) in 𝓝[{θ}ᶜ] θ, f θ' ∈ ball 0 1 \ {0} θ' : ℝ hθ' : f θ' ∈ ball 0 1 \ {0} x : ℝ := ↑Complex.abs (f θ') ⊢ ‖(circleMap c R θ' - circleMap c R θ)⁻¹‖ ≤ |R|⁻¹ * ‖(circleMap 0 R θ' * I) • (circleMap c R θ' - circleMap c R θ) ^ n‖ [PROOFSTEP] suffices x⁻¹ ≤ x ^ n by simpa only [inv_mul_cancel_left₀, abs_eq_zero.not.2 hR, norm_eq_abs, map_inv₀, Algebra.id.smul_eq_mul, map_mul, abs_circleMap_zero, abs_I, mul_one, abs_zpow, Ne.def, not_false_iff] using this [GOAL] E : Type u_1 inst✝ : NormedAddCommGroup E c : ℂ R : ℝ n : ℤ hR : R ≠ 0 hn : n < 0 θ : ℝ hθ : θ ∈ [[0, 2 * π]] f : ℝ → ℂ := fun θ' => circleMap c R θ' - circleMap c R θ this✝ : ∀ᶠ (θ' : ℝ) in 𝓝[{θ}ᶜ] θ, f θ' ∈ ball 0 1 \ {0} θ' : ℝ hθ' : f θ' ∈ ball 0 1 \ {0} x : ℝ := ↑Complex.abs (f θ') this : x⁻¹ ≤ x ^ n ⊢ ‖(circleMap c R θ' - circleMap c R θ)⁻¹‖ ≤ |R|⁻¹ * ‖(circleMap 0 R θ' * I) • (circleMap c R θ' - circleMap c R θ) ^ n‖ [PROOFSTEP] simpa only [inv_mul_cancel_left₀, abs_eq_zero.not.2 hR, norm_eq_abs, map_inv₀, Algebra.id.smul_eq_mul, map_mul, abs_circleMap_zero, abs_I, mul_one, abs_zpow, Ne.def, not_false_iff] using this [GOAL] case mp.intro.intro.intro.intro E : Type u_1 inst✝ : NormedAddCommGroup E c : ℂ R : ℝ n : ℤ hR : R ≠ 0 hn : n < 0 θ : ℝ hθ : θ ∈ [[0, 2 * π]] f : ℝ → ℂ := fun θ' => circleMap c R θ' - circleMap c R θ this : ∀ᶠ (θ' : ℝ) in 𝓝[{θ}ᶜ] θ, f θ' ∈ ball 0 1 \ {0} θ' : ℝ hθ' : f θ' ∈ ball 0 1 \ {0} x : ℝ := ↑Complex.abs (f θ') ⊢ x⁻¹ ≤ x ^ n [PROOFSTEP] have : x ∈ Ioo (0 : ℝ) 1 := by simpa [and_comm] using hθ' [GOAL] E : Type u_1 inst✝ : NormedAddCommGroup E c : ℂ R : ℝ n : ℤ hR : R ≠ 0 hn : n < 0 θ : ℝ hθ : θ ∈ [[0, 2 * π]] f : ℝ → ℂ := fun θ' => circleMap c R θ' - circleMap c R θ this : ∀ᶠ (θ' : ℝ) in 𝓝[{θ}ᶜ] θ, f θ' ∈ ball 0 1 \ {0} θ' : ℝ hθ' : f θ' ∈ ball 0 1 \ {0} x : ℝ := ↑Complex.abs (f θ') ⊢ x ∈ Ioo 0 1 [PROOFSTEP] simpa [and_comm] using hθ' [GOAL] case mp.intro.intro.intro.intro E : Type u_1 inst✝ : NormedAddCommGroup E c : ℂ R : ℝ n : ℤ hR : R ≠ 0 hn : n < 0 θ : ℝ hθ : θ ∈ [[0, 2 * π]] f : ℝ → ℂ := fun θ' => circleMap c R θ' - circleMap c R θ this✝ : ∀ᶠ (θ' : ℝ) in 𝓝[{θ}ᶜ] θ, f θ' ∈ ball 0 1 \ {0} θ' : ℝ hθ' : f θ' ∈ ball 0 1 \ {0} x : ℝ := ↑Complex.abs (f θ') this : x ∈ Ioo 0 1 ⊢ x⁻¹ ≤ x ^ n [PROOFSTEP] rw [← zpow_neg_one] [GOAL] case mp.intro.intro.intro.intro E : Type u_1 inst✝ : NormedAddCommGroup E c : ℂ R : ℝ n : ℤ hR : R ≠ 0 hn : n < 0 θ : ℝ hθ : θ ∈ [[0, 2 * π]] f : ℝ → ℂ := fun θ' => circleMap c R θ' - circleMap c R θ this✝ : ∀ᶠ (θ' : ℝ) in 𝓝[{θ}ᶜ] θ, f θ' ∈ ball 0 1 \ {0} θ' : ℝ hθ' : f θ' ∈ ball 0 1 \ {0} x : ℝ := ↑Complex.abs (f θ') this : x ∈ Ioo 0 1 ⊢ x ^ (-1) ≤ x ^ n [PROOFSTEP] refine' (zpow_strictAnti this.1 this.2).le_iff_le.2 (Int.lt_add_one_iff.1 _) [GOAL] case mp.intro.intro.intro.intro E : Type u_1 inst✝ : NormedAddCommGroup E c : ℂ R : ℝ n : ℤ hR : R ≠ 0 hn : n < 0 θ : ℝ hθ : θ ∈ [[0, 2 * π]] f : ℝ → ℂ := fun θ' => circleMap c R θ' - circleMap c R θ this✝ : ∀ᶠ (θ' : ℝ) in 𝓝[{θ}ᶜ] θ, f θ' ∈ ball 0 1 \ {0} θ' : ℝ hθ' : f θ' ∈ ball 0 1 \ {0} x : ℝ := ↑Complex.abs (f θ') this : x ∈ Ioo 0 1 ⊢ n < -1 + 1 [PROOFSTEP] exact hn [GOAL] case mpr E : Type u_1 inst✝ : NormedAddCommGroup E c w : ℂ R : ℝ n : ℤ ⊢ R = 0 ∨ 0 ≤ n ∨ ¬w ∈ sphere c |R| → CircleIntegrable (fun z => (z - w) ^ n) c R [PROOFSTEP] rintro (rfl | H) [GOAL] case mpr.inl E : Type u_1 inst✝ : NormedAddCommGroup E c w : ℂ n : ℤ ⊢ CircleIntegrable (fun z => (z - w) ^ n) c 0 case mpr.inr E : Type u_1 inst✝ : NormedAddCommGroup E c w : ℂ R : ℝ n : ℤ H : 0 ≤ n ∨ ¬w ∈ sphere c |R| ⊢ CircleIntegrable (fun z => (z - w) ^ n) c R [PROOFSTEP] exacts [circleIntegrable_zero_radius, ((continuousOn_id.sub continuousOn_const).zpow₀ _ fun z hz => H.symm.imp_left fun (hw : w ∉ sphere c |R|) => sub_ne_zero.2 <| ne_of_mem_of_not_mem hz hw).circleIntegrable'] [GOAL] E : Type u_1 inst✝ : NormedAddCommGroup E c w : ℂ R : ℝ ⊢ CircleIntegrable (fun z => (z - w)⁻¹) c R ↔ R = 0 ∨ ¬w ∈ sphere c |R| [PROOFSTEP] simp only [← zpow_neg_one, circleIntegrable_sub_zpow_iff] [GOAL] E : Type u_1 inst✝ : NormedAddCommGroup E c w : ℂ R : ℝ ⊢ R = 0 ∨ False ∨ ¬w ∈ sphere c |R| ↔ R = 0 ∨ ¬w ∈ sphere c |R| [PROOFSTEP] norm_num [GOAL] E : Type u_1 inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace ℂ E inst✝ : CompleteSpace E f : ℂ → E c : ℂ R : ℝ ⊢ (∮ (z : ℂ) in C(c, R), f z) = ∫ (θ : ℝ) in Icc 0 (2 * π), deriv (circleMap c R) θ • f (circleMap c R θ) [PROOFSTEP] rw [circleIntegral, intervalIntegral.integral_of_le Real.two_pi_pos.le, Measure.restrict_congr_set Ioc_ae_eq_Icc] [GOAL] E : Type u_1 inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace ℂ E inst✝ : CompleteSpace E f : ℂ → E c : ℂ ⊢ (∮ (z : ℂ) in C(c, 0), f z) = 0 [PROOFSTEP] simp [circleIntegral, const] [GOAL] E : Type u_1 inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace ℂ E inst✝ : CompleteSpace E f g : ℂ → E c : ℂ R : ℝ hR : 0 ≤ R h : EqOn f g (sphere c R) θ : ℝ x✝ : θ ∈ [[0, 2 * π]] ⊢ deriv (circleMap c R) θ • (fun z => f z) (circleMap c R θ) = deriv (circleMap c R) θ • (fun z => g z) (circleMap c R θ) [PROOFSTEP] simp only [h (circleMap_mem_sphere _ hR _)] [GOAL] E : Type u_1 inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace ℂ E inst✝ : CompleteSpace E f : ℂ → E c w : ℂ R : ℝ ⊢ (∮ (z : ℂ) in C(c, R), (z - w)⁻¹ • (z - w) • f z) = ∮ (z : ℂ) in C(c, R), f z [PROOFSTEP] rcases eq_or_ne R 0 with (rfl | hR) [GOAL] case inl E : Type u_1 inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace ℂ E inst✝ : CompleteSpace E f : ℂ → E c w : ℂ ⊢ (∮ (z : ℂ) in C(c, 0), (z - w)⁻¹ • (z - w) • f z) = ∮ (z : ℂ) in C(c, 0), f z [PROOFSTEP] simp only [integral_radius_zero] [GOAL] case inr E : Type u_1 inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace ℂ E inst✝ : CompleteSpace E f : ℂ → E c w : ℂ R : ℝ hR : R ≠ 0 ⊢ (∮ (z : ℂ) in C(c, R), (z - w)⁻¹ • (z - w) • f z) = ∮ (z : ℂ) in C(c, R), f z [PROOFSTEP] have : (circleMap c R ⁻¹' { w }).Countable := (countable_singleton _).preimage_circleMap c hR [GOAL] case inr E : Type u_1 inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace ℂ E inst✝ : CompleteSpace E f : ℂ → E c w : ℂ R : ℝ hR : R ≠ 0 this : Set.Countable (circleMap c R ⁻¹' {w}) ⊢ (∮ (z : ℂ) in C(c, R), (z - w)⁻¹ • (z - w) • f z) = ∮ (z : ℂ) in C(c, R), f z [PROOFSTEP] refine' intervalIntegral.integral_congr_ae ((this.ae_not_mem _).mono fun θ hθ _' => _) [GOAL] case inr E : Type u_1 inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace ℂ E inst✝ : CompleteSpace E f : ℂ → E c w : ℂ R : ℝ hR : R ≠ 0 this : Set.Countable (circleMap c R ⁻¹' {w}) θ : ℝ hθ : ¬θ ∈ circleMap c R ⁻¹' {w} _' : θ ∈ Ι 0 (2 * π) ⊢ deriv (circleMap c R) θ • (fun z => (z - w)⁻¹ • (z - w) • f z) (circleMap c R θ) = deriv (circleMap c R) θ • (fun z => f z) (circleMap c R θ) [PROOFSTEP] change circleMap c R θ ≠ w at hθ [GOAL] case inr E : Type u_1 inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace ℂ E inst✝ : CompleteSpace E f : ℂ → E c w : ℂ R : ℝ hR : R ≠ 0 this : Set.Countable (circleMap c R ⁻¹' {w}) θ : ℝ _' : θ ∈ Ι 0 (2 * π) hθ : circleMap c R θ ≠ w ⊢ deriv (circleMap c R) θ • (fun z => (z - w)⁻¹ • (z - w) • f z) (circleMap c R θ) = deriv (circleMap c R) θ • (fun z => f z) (circleMap c R θ) [PROOFSTEP] simp only [inv_smul_smul₀ (sub_ne_zero.2 <| hθ)] [GOAL] E : Type u_1 inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace ℂ E inst✝ : CompleteSpace E f g : ℂ → E c : ℂ R : ℝ hf : CircleIntegrable f c R hg : CircleIntegrable g c R ⊢ (∮ (z : ℂ) in C(c, R), f z - g z) = (∮ (z : ℂ) in C(c, R), f z) - ∮ (z : ℂ) in C(c, R), g z [PROOFSTEP] simp only [circleIntegral, smul_sub, intervalIntegral.integral_sub hf.out hg.out] [GOAL] E : Type u_1 inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace ℂ E inst✝ : CompleteSpace E f : ℂ → E c : ℂ R C : ℝ hf : ∀ (z : ℂ), z ∈ sphere c |R| → ‖f z‖ ≤ C θ : ℝ x✝ : θ ∈ Ι 0 (2 * π) ⊢ ‖deriv (circleMap c R) θ • f (circleMap c R θ)‖ = |R| * ‖f (circleMap c R θ)‖ [PROOFSTEP] simp [norm_smul] [GOAL] E : Type u_1 inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace ℂ E inst✝ : CompleteSpace E f : ℂ → E c : ℂ R C : ℝ hf : ∀ (z : ℂ), z ∈ sphere c |R| → ‖f z‖ ≤ C ⊢ |R| * C * |2 * π - 0| = 2 * π * |R| * C [PROOFSTEP] rw [sub_zero, _root_.abs_of_pos Real.two_pi_pos] [GOAL] E : Type u_1 inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace ℂ E inst✝ : CompleteSpace E f : ℂ → E c : ℂ R C : ℝ hf : ∀ (z : ℂ), z ∈ sphere c |R| → ‖f z‖ ≤ C ⊢ |R| * C * (2 * π) = 2 * π * |R| * C [PROOFSTEP] ac_rfl [GOAL] E : Type u_1 inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace ℂ E inst✝ : CompleteSpace E f : ℂ → E c : ℂ R C : ℝ hR : 0 ≤ R hf : ∀ (z : ℂ), z ∈ sphere c R → ‖f z‖ ≤ C this : |R| = R ⊢ ∀ (z : ℂ), z ∈ sphere c |R| → ‖f z‖ ≤ C [PROOFSTEP] rwa [this] [GOAL] E : Type u_1 inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace ℂ E inst✝ : CompleteSpace E f : ℂ → E c : ℂ R C : ℝ hR : 0 ≤ R hf : ∀ (z : ℂ), z ∈ sphere c R → ‖f z‖ ≤ C this : |R| = R ⊢ 2 * π * |R| * C = 2 * π * R * C [PROOFSTEP] rw [this] [GOAL] E : Type u_1 inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace ℂ E inst✝ : CompleteSpace E f : ℂ → E c : ℂ R C : ℝ hR : 0 ≤ R hf : ∀ (z : ℂ), z ∈ sphere c R → ‖f z‖ ≤ C ⊢ ‖(2 * ↑π * I)⁻¹ • ∮ (z : ℂ) in C(c, R), f z‖ ≤ R * C [PROOFSTEP] have : ‖(2 * π * I : ℂ)⁻¹‖ = (2 * π)⁻¹ := by simp [Real.pi_pos.le] [GOAL] E : Type u_1 inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace ℂ E inst✝ : CompleteSpace E f : ℂ → E c : ℂ R C : ℝ hR : 0 ≤ R hf : ∀ (z : ℂ), z ∈ sphere c R → ‖f z‖ ≤ C ⊢ ‖(2 * ↑π * I)⁻¹‖ = (2 * π)⁻¹ [PROOFSTEP] simp [Real.pi_pos.le] [GOAL] E : Type u_1 inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace ℂ E inst✝ : CompleteSpace E f : ℂ → E c : ℂ R C : ℝ hR : 0 ≤ R hf : ∀ (z : ℂ), z ∈ sphere c R → ‖f z‖ ≤ C this : ‖(2 * ↑π * I)⁻¹‖ = (2 * π)⁻¹ ⊢ ‖(2 * ↑π * I)⁻¹ • ∮ (z : ℂ) in C(c, R), f z‖ ≤ R * C [PROOFSTEP] rw [norm_smul, this, ← div_eq_inv_mul, div_le_iff Real.two_pi_pos, mul_comm (R * C), ← mul_assoc] [GOAL] E : Type u_1 inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace ℂ E inst✝ : CompleteSpace E f : ℂ → E c : ℂ R C : ℝ hR : 0 ≤ R hf : ∀ (z : ℂ), z ∈ sphere c R → ‖f z‖ ≤ C this : ‖(2 * ↑π * I)⁻¹‖ = (2 * π)⁻¹ ⊢ ‖∮ (z : ℂ) in C(c, R), f z‖ ≤ 2 * π * R * C [PROOFSTEP] exact norm_integral_le_of_norm_le_const hR hf [GOAL] E : Type u_1 inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace ℂ E inst✝ : CompleteSpace E f : ℂ → E c : ℂ R C : ℝ hR : 0 < R hc : ContinuousOn f (sphere c R) hf : ∀ (z : ℂ), z ∈ sphere c R → ‖f z‖ ≤ C hlt : ∃ z, z ∈ sphere c R ∧ ‖f z‖ < C ⊢ ‖∮ (z : ℂ) in C(c, R), f z‖ < 2 * π * R * C [PROOFSTEP] rw [← _root_.abs_of_pos hR, ← image_circleMap_Ioc] at hlt [GOAL] E : Type u_1 inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace ℂ E inst✝ : CompleteSpace E f : ℂ → E c : ℂ R C : ℝ hR : 0 < R hc : ContinuousOn f (sphere c R) hf : ∀ (z : ℂ), z ∈ sphere c R → ‖f z‖ ≤ C hlt : ∃ z, z ∈ circleMap c R '' Ioc 0 (2 * π) ∧ ‖f z‖ < C ⊢ ‖∮ (z : ℂ) in C(c, R), f z‖ < 2 * π * R * C [PROOFSTEP] rcases hlt with ⟨_, ⟨θ₀, hmem, rfl⟩, hlt⟩ [GOAL] case intro.intro.intro.intro E : Type u_1 inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace ℂ E inst✝ : CompleteSpace E f : ℂ → E c : ℂ R C : ℝ hR : 0 < R hc : ContinuousOn f (sphere c R) hf : ∀ (z : ℂ), z ∈ sphere c R → ‖f z‖ ≤ C θ₀ : ℝ hmem : θ₀ ∈ Ioc 0 (2 * π) hlt : ‖f (circleMap c R θ₀)‖ < C ⊢ ‖∮ (z : ℂ) in C(c, R), f z‖ < 2 * π * R * C [PROOFSTEP] calc ‖∮ z in C(c, R), f z‖ ≤ ∫ θ in (0)..2 * π, ‖deriv (circleMap c R) θ • f (circleMap c R θ)‖ := intervalIntegral.norm_integral_le_integral_norm Real.two_pi_pos.le _ < ∫ _ in (0)..2 * π, R * C := by simp only [norm_smul, deriv_circleMap, norm_eq_abs, map_mul, abs_I, mul_one, abs_circleMap_zero, abs_of_pos hR] refine' intervalIntegral.integral_lt_integral_of_continuousOn_of_le_of_exists_lt Real.two_pi_pos _ continuousOn_const (fun θ _ => _) ⟨θ₀, Ioc_subset_Icc_self hmem, _⟩ · exact continuousOn_const.mul (hc.comp (continuous_circleMap _ _).continuousOn fun θ _ => circleMap_mem_sphere _ hR.le _).norm · exact mul_le_mul_of_nonneg_left (hf _ <| circleMap_mem_sphere _ hR.le _) hR.le · exact (mul_lt_mul_left hR).2 hlt _ = 2 * π * R * C := by simp [mul_assoc]; ring [GOAL] E : Type u_1 inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace ℂ E inst✝ : CompleteSpace E f : ℂ → E c : ℂ R C : ℝ hR : 0 < R hc : ContinuousOn f (sphere c R) hf : ∀ (z : ℂ), z ∈ sphere c R → ‖f z‖ ≤ C θ₀ : ℝ hmem : θ₀ ∈ Ioc 0 (2 * π) hlt : ‖f (circleMap c R θ₀)‖ < C ⊢ ∫ (θ : ℝ) in 0 ..2 * π, ‖deriv (circleMap c R) θ • f (circleMap c R θ)‖ < ∫ (x : ℝ) in 0 ..2 * π, R * C [PROOFSTEP] simp only [norm_smul, deriv_circleMap, norm_eq_abs, map_mul, abs_I, mul_one, abs_circleMap_zero, abs_of_pos hR] [GOAL] E : Type u_1 inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace ℂ E inst✝ : CompleteSpace E f : ℂ → E c : ℂ R C : ℝ hR : 0 < R hc : ContinuousOn f (sphere c R) hf : ∀ (z : ℂ), z ∈ sphere c R → ‖f z‖ ≤ C θ₀ : ℝ hmem : θ₀ ∈ Ioc 0 (2 * π) hlt : ‖f (circleMap c R θ₀)‖ < C ⊢ ∫ (θ : ℝ) in 0 ..2 * π, R * ‖f (circleMap c R θ)‖ < ∫ (x : ℝ) in 0 ..2 * π, R * C [PROOFSTEP] refine' intervalIntegral.integral_lt_integral_of_continuousOn_of_le_of_exists_lt Real.two_pi_pos _ continuousOn_const (fun θ _ => _) ⟨θ₀, Ioc_subset_Icc_self hmem, _⟩ [GOAL] case refine'_1 E : Type u_1 inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace ℂ E inst✝ : CompleteSpace E f : ℂ → E c : ℂ R C : ℝ hR : 0 < R hc : ContinuousOn f (sphere c R) hf : ∀ (z : ℂ), z ∈ sphere c R → ‖f z‖ ≤ C θ₀ : ℝ hmem : θ₀ ∈ Ioc 0 (2 * π) hlt : ‖f (circleMap c R θ₀)‖ < C ⊢ ContinuousOn (fun θ => R * ‖f (circleMap c R θ)‖) (Icc 0 (2 * π)) [PROOFSTEP] exact continuousOn_const.mul (hc.comp (continuous_circleMap _ _).continuousOn fun θ _ => circleMap_mem_sphere _ hR.le _).norm [GOAL] case refine'_2 E : Type u_1 inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace ℂ E inst✝ : CompleteSpace E f : ℂ → E c : ℂ R C : ℝ hR : 0 < R hc : ContinuousOn f (sphere c R) hf : ∀ (z : ℂ), z ∈ sphere c R → ‖f z‖ ≤ C θ₀ : ℝ hmem : θ₀ ∈ Ioc 0 (2 * π) hlt : ‖f (circleMap c R θ₀)‖ < C θ : ℝ x✝ : θ ∈ Ioc 0 (2 * π) ⊢ R * ‖f (circleMap c R θ)‖ ≤ R * C [PROOFSTEP] exact mul_le_mul_of_nonneg_left (hf _ <| circleMap_mem_sphere _ hR.le _) hR.le [GOAL] case refine'_3 E : Type u_1 inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace ℂ E inst✝ : CompleteSpace E f : ℂ → E c : ℂ R C : ℝ hR : 0 < R hc : ContinuousOn f (sphere c R) hf : ∀ (z : ℂ), z ∈ sphere c R → ‖f z‖ ≤ C θ₀ : ℝ hmem : θ₀ ∈ Ioc 0 (2 * π) hlt : ‖f (circleMap c R θ₀)‖ < C ⊢ R * ‖f (circleMap c R θ₀)‖ < R * C [PROOFSTEP] exact (mul_lt_mul_left hR).2 hlt [GOAL] E : Type u_1 inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace ℂ E inst✝ : CompleteSpace E f : ℂ → E c : ℂ R C : ℝ hR : 0 < R hc : ContinuousOn f (sphere c R) hf : ∀ (z : ℂ), z ∈ sphere c R → ‖f z‖ ≤ C θ₀ : ℝ hmem : θ₀ ∈ Ioc 0 (2 * π) hlt : ‖f (circleMap c R θ₀)‖ < C ⊢ ∫ (x : ℝ) in 0 ..2 * π, R * C = 2 * π * R * C [PROOFSTEP] simp [mul_assoc] [GOAL] E : Type u_1 inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace ℂ E inst✝ : CompleteSpace E f : ℂ → E c : ℂ R C : ℝ hR : 0 < R hc : ContinuousOn f (sphere c R) hf : ∀ (z : ℂ), z ∈ sphere c R → ‖f z‖ ≤ C θ₀ : ℝ hmem : θ₀ ∈ Ioc 0 (2 * π) hlt : ‖f (circleMap c R θ₀)‖ < C ⊢ R * (2 * (π * C)) = 2 * (π * (R * C)) [PROOFSTEP] ring [GOAL] E : Type u_1 inst✝⁵ : NormedAddCommGroup E inst✝⁴ : NormedSpace ℂ E inst✝³ : CompleteSpace E 𝕜 : Type u_2 inst✝² : IsROrC 𝕜 inst✝¹ : NormedSpace 𝕜 E inst✝ : SMulCommClass 𝕜 ℂ E a : 𝕜 f : ℂ → E c : ℂ R : ℝ ⊢ (∮ (z : ℂ) in C(c, R), a • f z) = a • ∮ (z : ℂ) in C(c, R), f z [PROOFSTEP] simp only [circleIntegral, ← smul_comm a (_ : ℂ) (_ : E), intervalIntegral.integral_smul] [GOAL] E : Type u_1 inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace ℂ E inst✝ : CompleteSpace E f : ℂ → ℂ a : E c : ℂ R : ℝ ⊢ (∮ (z : ℂ) in C(c, R), f z • a) = (∮ (z : ℂ) in C(c, R), f z) • a [PROOFSTEP] simp only [circleIntegral, intervalIntegral.integral_smul_const, ← smul_assoc] [GOAL] E : Type u_1 inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace ℂ E inst✝ : CompleteSpace E c : ℂ R : ℝ hR : R ≠ 0 ⊢ (∮ (z : ℂ) in C(c, R), (z - c)⁻¹) = 2 * ↑π * I [PROOFSTEP] simp [circleIntegral, ← div_eq_mul_inv, mul_div_cancel_left _ (circleMap_ne_center hR), -- porting note: `simp` didn't need a hint to apply `integral_const` hereintervalIntegral.integral_const I] [GOAL] E : Type u_1 inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace ℂ E inst✝ : CompleteSpace E f f' : ℂ → E c : ℂ R : ℝ h : ∀ (z : ℂ), z ∈ sphere c |R| → HasDerivWithinAt f (f' z) (sphere c |R|) z ⊢ (∮ (z : ℂ) in C(c, R), f' z) = 0 [PROOFSTEP] by_cases hi : CircleIntegrable f' c R [GOAL] case pos E : Type u_1 inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace ℂ E inst✝ : CompleteSpace E f f' : ℂ → E c : ℂ R : ℝ h : ∀ (z : ℂ), z ∈ sphere c |R| → HasDerivWithinAt f (f' z) (sphere c |R|) z hi : CircleIntegrable f' c R ⊢ (∮ (z : ℂ) in C(c, R), f' z) = 0 [PROOFSTEP] rw [← sub_eq_zero.2 ((periodic_circleMap c R).comp f).eq] [GOAL] case pos E : Type u_1 inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace ℂ E inst✝ : CompleteSpace E f f' : ℂ → E c : ℂ R : ℝ h : ∀ (z : ℂ), z ∈ sphere c |R| → HasDerivWithinAt f (f' z) (sphere c |R|) z hi : CircleIntegrable f' c R ⊢ (∮ (z : ℂ) in C(c, R), f' z) = (f ∘ circleMap c R) (2 * π) - (f ∘ circleMap c R) 0 [PROOFSTEP] refine' intervalIntegral.integral_eq_sub_of_hasDerivAt (fun θ _ => _) hi.out [GOAL] case pos E : Type u_1 inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace ℂ E inst✝ : CompleteSpace E f f' : ℂ → E c : ℂ R : ℝ h : ∀ (z : ℂ), z ∈ sphere c |R| → HasDerivWithinAt f (f' z) (sphere c |R|) z hi : CircleIntegrable f' c R θ : ℝ x✝ : θ ∈ [[0, 2 * π]] ⊢ HasDerivAt (f ∘ circleMap c R) (deriv (circleMap c R) θ • (fun z => f' z) (circleMap c R θ)) θ [PROOFSTEP] exact (h _ (circleMap_mem_sphere' _ _ _)).scomp_hasDerivAt θ (differentiable_circleMap _ _ _).hasDerivAt (circleMap_mem_sphere' _ _) [GOAL] case neg E : Type u_1 inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace ℂ E inst✝ : CompleteSpace E f f' : ℂ → E c : ℂ R : ℝ h : ∀ (z : ℂ), z ∈ sphere c |R| → HasDerivWithinAt f (f' z) (sphere c |R|) z hi : ¬CircleIntegrable f' c R ⊢ (∮ (z : ℂ) in C(c, R), f' z) = 0 [PROOFSTEP] exact integral_undef hi [GOAL] E : Type u_1 inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace ℂ E inst✝ : CompleteSpace E n : ℤ c w : ℂ R : ℝ hn : n < 0 hw : w ∈ sphere c |R| ⊢ (∮ (z : ℂ) in C(c, R), (z - w) ^ n) = 0 [PROOFSTEP] rcases eq_or_ne R 0 with (rfl | h0) [GOAL] case inl E : Type u_1 inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace ℂ E inst✝ : CompleteSpace E n : ℤ c w : ℂ hn : n < 0 hw : w ∈ sphere c |0| ⊢ (∮ (z : ℂ) in C(c, 0), (z - w) ^ n) = 0 [PROOFSTEP] apply integral_radius_zero [GOAL] case inr E : Type u_1 inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace ℂ E inst✝ : CompleteSpace E n : ℤ c w : ℂ R : ℝ hn : n < 0 hw : w ∈ sphere c |R| h0 : R ≠ 0 ⊢ (∮ (z : ℂ) in C(c, R), (z - w) ^ n) = 0 [PROOFSTEP] apply integral_undef [GOAL] case inr.hf E : Type u_1 inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace ℂ E inst✝ : CompleteSpace E n : ℤ c w : ℂ R : ℝ hn : n < 0 hw : w ∈ sphere c |R| h0 : R ≠ 0 ⊢ ¬CircleIntegrable (fun z => (z - w) ^ n) c R [PROOFSTEP] simpa [circleIntegrable_sub_zpow_iff, *, not_or] [GOAL] E : Type u_1 inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace ℂ E inst✝ : CompleteSpace E n : ℤ hn : n ≠ -1 c w : ℂ R : ℝ ⊢ (∮ (z : ℂ) in C(c, R), (z - w) ^ n) = 0 [PROOFSTEP] rcases em (w ∈ sphere c |R| ∧ n < -1) with (⟨hw, hn⟩ | H) [GOAL] case inl.intro E : Type u_1 inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace ℂ E inst✝ : CompleteSpace E n : ℤ hn✝ : n ≠ -1 c w : ℂ R : ℝ hw : w ∈ sphere c |R| hn : n < -1 ⊢ (∮ (z : ℂ) in C(c, R), (z - w) ^ n) = 0 [PROOFSTEP] exact integral_sub_zpow_of_undef (hn.trans (by decide)) hw [GOAL] E : Type u_1 inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace ℂ E inst✝ : CompleteSpace E n : ℤ hn✝ : n ≠ -1 c w : ℂ R : ℝ hw : w ∈ sphere c |R| hn : n < -1 ⊢ -1 < 0 [PROOFSTEP] decide [GOAL] case inr E : Type u_1 inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace ℂ E inst✝ : CompleteSpace E n : ℤ hn : n ≠ -1 c w : ℂ R : ℝ H : ¬(w ∈ sphere c |R| ∧ n < -1) ⊢ (∮ (z : ℂ) in C(c, R), (z - w) ^ n) = 0 [PROOFSTEP] push_neg at H [GOAL] case inr E : Type u_1 inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace ℂ E inst✝ : CompleteSpace E n : ℤ hn : n ≠ -1 c w : ℂ R : ℝ H : w ∈ sphere c |R| → -1 ≤ n ⊢ (∮ (z : ℂ) in C(c, R), (z - w) ^ n) = 0 [PROOFSTEP] have hd : ∀ z, z ≠ w ∨ -1 ≤ n → HasDerivAt (fun z => (z - w) ^ (n + 1) / (n + 1)) ((z - w) ^ n) z := by intro z hne convert ((hasDerivAt_zpow (n + 1) _ (hne.imp _ _)).comp z ((hasDerivAt_id z).sub_const w)).div_const _ using 1 · have hn' : (n + 1 : ℂ) ≠ 0 := by rwa [Ne, ← eq_neg_iff_add_eq_zero, ← Int.cast_one, ← Int.cast_neg, Int.cast_inj] simp [mul_assoc, mul_div_cancel_left _ hn'] exacts [sub_ne_zero.2, neg_le_iff_add_nonneg.1] [GOAL] E : Type u_1 inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace ℂ E inst✝ : CompleteSpace E n : ℤ hn : n ≠ -1 c w : ℂ R : ℝ H : w ∈ sphere c |R| → -1 ≤ n ⊢ ∀ (z : ℂ), z ≠ w ∨ -1 ≤ n → HasDerivAt (fun z => (z - w) ^ (n + 1) / (↑n + 1)) ((z - w) ^ n) z [PROOFSTEP] intro z hne [GOAL] E : Type u_1 inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace ℂ E inst✝ : CompleteSpace E n : ℤ hn : n ≠ -1 c w : ℂ R : ℝ H : w ∈ sphere c |R| → -1 ≤ n z : ℂ hne : z ≠ w ∨ -1 ≤ n ⊢ HasDerivAt (fun z => (z - w) ^ (n + 1) / (↑n + 1)) ((z - w) ^ n) z [PROOFSTEP] convert ((hasDerivAt_zpow (n + 1) _ (hne.imp _ _)).comp z ((hasDerivAt_id z).sub_const w)).div_const _ using 1 [GOAL] case h.e'_7 E : Type u_1 inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace ℂ E inst✝ : CompleteSpace E n : ℤ hn : n ≠ -1 c w : ℂ R : ℝ H : w ∈ sphere c |R| → -1 ≤ n z : ℂ hne : z ≠ w ∨ -1 ≤ n ⊢ (z - w) ^ n = ↑(n + 1) * (id z - w) ^ (n + 1 - 1) * 1 / (↑n + 1) [PROOFSTEP] have hn' : (n + 1 : ℂ) ≠ 0 := by rwa [Ne, ← eq_neg_iff_add_eq_zero, ← Int.cast_one, ← Int.cast_neg, Int.cast_inj] [GOAL] E : Type u_1 inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace ℂ E inst✝ : CompleteSpace E n : ℤ hn : n ≠ -1 c w : ℂ R : ℝ H : w ∈ sphere c |R| → -1 ≤ n z : ℂ hne : z ≠ w ∨ -1 ≤ n ⊢ ↑n + 1 ≠ 0 [PROOFSTEP] rwa [Ne, ← eq_neg_iff_add_eq_zero, ← Int.cast_one, ← Int.cast_neg, Int.cast_inj] [GOAL] case h.e'_7 E : Type u_1 inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace ℂ E inst✝ : CompleteSpace E n : ℤ hn : n ≠ -1 c w : ℂ R : ℝ H : w ∈ sphere c |R| → -1 ≤ n z : ℂ hne : z ≠ w ∨ -1 ≤ n hn' : ↑n + 1 ≠ 0 ⊢ (z - w) ^ n = ↑(n + 1) * (id z - w) ^ (n + 1 - 1) * 1 / (↑n + 1) [PROOFSTEP] simp [mul_assoc, mul_div_cancel_left _ hn'] [GOAL] case convert_1 E : Type u_1 inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace ℂ E inst✝ : CompleteSpace E n : ℤ hn : n ≠ -1 c w : ℂ R : ℝ H : w ∈ sphere c |R| → -1 ≤ n z : ℂ hne : z ≠ w ∨ -1 ≤ n ⊢ z ≠ w → id z - w ≠ 0 case convert_2 E : Type u_1 inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace ℂ E inst✝ : CompleteSpace E n : ℤ hn : n ≠ -1 c w : ℂ R : ℝ H : w ∈ sphere c |R| → -1 ≤ n z : ℂ hne : z ≠ w ∨ -1 ≤ n ⊢ -1 ≤ n → 0 ≤ n + 1 [PROOFSTEP] exacts [sub_ne_zero.2, neg_le_iff_add_nonneg.1] [GOAL] case inr E : Type u_1 inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace ℂ E inst✝ : CompleteSpace E n : ℤ hn : n ≠ -1 c w : ℂ R : ℝ H : w ∈ sphere c |R| → -1 ≤ n hd : ∀ (z : ℂ), z ≠ w ∨ -1 ≤ n → HasDerivAt (fun z => (z - w) ^ (n + 1) / (↑n + 1)) ((z - w) ^ n) z ⊢ (∮ (z : ℂ) in C(c, R), (z - w) ^ n) = 0 [PROOFSTEP] refine' integral_eq_zero_of_hasDerivWithinAt' fun z hz => (hd z _).hasDerivWithinAt [GOAL] case inr E : Type u_1 inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace ℂ E inst✝ : CompleteSpace E n : ℤ hn : n ≠ -1 c w : ℂ R : ℝ H : w ∈ sphere c |R| → -1 ≤ n hd : ∀ (z : ℂ), z ≠ w ∨ -1 ≤ n → HasDerivAt (fun z => (z - w) ^ (n + 1) / (↑n + 1)) ((z - w) ^ n) z z : ℂ hz : z ∈ sphere c |R| ⊢ z ≠ w ∨ -1 ≤ n [PROOFSTEP] exact (ne_or_eq z w).imp_right fun (h : z = w) => H <| h ▸ hz [GOAL] E : Type u_1 inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace ℂ E inst✝ : CompleteSpace E f : ℂ → E c : ℂ R : ℝ n : ℕ w : ℂ ⊢ (↑(cauchyPowerSeries f c R n) fun x => w) = (2 * ↑π * I)⁻¹ • ∮ (z : ℂ) in C(c, R), (w / (z - c)) ^ n • (z - c)⁻¹ • f z [PROOFSTEP] simp only [cauchyPowerSeries, ContinuousMultilinearMap.mkPiField_apply, Fin.prod_const, div_eq_mul_inv, mul_pow, mul_smul, circleIntegral.integral_smul] [GOAL] E : Type u_1 inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace ℂ E inst✝ : CompleteSpace E f : ℂ → E c : ℂ R : ℝ n : ℕ w : ℂ ⊢ (w ^ n • (2 * ↑π * I)⁻¹ • ∮ (z : ℂ) in C(c, R), (z - c)⁻¹ ^ n • (z - c)⁻¹ • f z) = (2 * ↑π * I)⁻¹ • w ^ n • ∮ (z : ℂ) in C(c, R), (z - c)⁻¹ ^ n • (z - c)⁻¹ • f z [PROOFSTEP] rw [← smul_comm (w ^ n)] [GOAL] E : Type u_1 inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace ℂ E inst✝ : CompleteSpace E f : ℂ → E c : ℂ R : ℝ n : ℕ ⊢ ‖cauchyPowerSeries f c R n‖ = (2 * π)⁻¹ * ‖∮ (z : ℂ) in C(c, R), (z - c)⁻¹ ^ n • (z - c)⁻¹ • f z‖ [PROOFSTEP] simp [cauchyPowerSeries, norm_smul, Real.pi_pos.le] [GOAL] E : Type u_1 inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace ℂ E inst✝ : CompleteSpace E f : ℂ → E c : ℂ R : ℝ n : ℕ ⊢ 0 ≤ (2 * π)⁻¹ [PROOFSTEP] simp [Real.pi_pos.le] [GOAL] E : Type u_1 inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace ℂ E inst✝ : CompleteSpace E f : ℂ → E c : ℂ R : ℝ n : ℕ ⊢ (2 * π)⁻¹ * ∫ (θ : ℝ) in 0 ..2 * π, ‖deriv (circleMap c R) θ • (circleMap c R θ - c)⁻¹ ^ n • (circleMap c R θ - c)⁻¹ • f (circleMap c R θ)‖ = (2 * π)⁻¹ * (|R|⁻¹ ^ n * (|R| * (|R|⁻¹ * ∫ (x : ℝ) in 0 ..2 * π, ‖f (circleMap c R x)‖))) [PROOFSTEP] simp [norm_smul, mul_left_comm |R|] [GOAL] E : Type u_1 inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace ℂ E inst✝ : CompleteSpace E f : ℂ → E c : ℂ R : ℝ n : ℕ ⊢ (2 * π)⁻¹ * (|R|⁻¹ ^ n * (|R| * (|R|⁻¹ * ∫ (x : ℝ) in 0 ..2 * π, ‖f (circleMap c R x)‖))) ≤ ((2 * π)⁻¹ * ∫ (θ : ℝ) in 0 ..2 * π, ‖f (circleMap c R θ)‖) * |R|⁻¹ ^ n [PROOFSTEP] rcases eq_or_ne R 0 with (rfl | hR) [GOAL] case inl E : Type u_1 inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace ℂ E inst✝ : CompleteSpace E f : ℂ → E c : ℂ n : ℕ ⊢ (2 * π)⁻¹ * (|0|⁻¹ ^ n * (|0| * (|0|⁻¹ * ∫ (x : ℝ) in 0 ..2 * π, ‖f (circleMap c 0 x)‖))) ≤ ((2 * π)⁻¹ * ∫ (θ : ℝ) in 0 ..2 * π, ‖f (circleMap c 0 θ)‖) * |0|⁻¹ ^ n [PROOFSTEP] cases n [GOAL] case inl.zero E : Type u_1 inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace ℂ E inst✝ : CompleteSpace E f : ℂ → E c : ℂ ⊢ (2 * π)⁻¹ * (|0|⁻¹ ^ Nat.zero * (|0| * (|0|⁻¹ * ∫ (x : ℝ) in 0 ..2 * π, ‖f (circleMap c 0 x)‖))) ≤ ((2 * π)⁻¹ * ∫ (θ : ℝ) in 0 ..2 * π, ‖f (circleMap c 0 θ)‖) * |0|⁻¹ ^ Nat.zero [PROOFSTEP] simp [-mul_inv_rev] [GOAL] case inl.succ E : Type u_1 inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace ℂ E inst✝ : CompleteSpace E f : ℂ → E c : ℂ n✝ : ℕ ⊢ (2 * π)⁻¹ * (|0|⁻¹ ^ Nat.succ n✝ * (|0| * (|0|⁻¹ * ∫ (x : ℝ) in 0 ..2 * π, ‖f (circleMap c 0 x)‖))) ≤ ((2 * π)⁻¹ * ∫ (θ : ℝ) in 0 ..2 * π, ‖f (circleMap c 0 θ)‖) * |0|⁻¹ ^ Nat.succ n✝ [PROOFSTEP] simp [-mul_inv_rev] [GOAL] case inl.zero E : Type u_1 inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace ℂ E inst✝ : CompleteSpace E f : ℂ → E c : ℂ ⊢ 0 ≤ (2 * π)⁻¹ * (2 * π * ‖f c‖) [PROOFSTEP] rw [← mul_assoc, inv_mul_cancel (Real.two_pi_pos.ne.symm), one_mul] [GOAL] case inl.zero E : Type u_1 inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace ℂ E inst✝ : CompleteSpace E f : ℂ → E c : ℂ ⊢ 0 ≤ ‖f c‖ [PROOFSTEP] apply norm_nonneg [GOAL] case inr E : Type u_1 inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace ℂ E inst✝ : CompleteSpace E f : ℂ → E c : ℂ R : ℝ n : ℕ hR : R ≠ 0 ⊢ (2 * π)⁻¹ * (|R|⁻¹ ^ n * (|R| * (|R|⁻¹ * ∫ (x : ℝ) in 0 ..2 * π, ‖f (circleMap c R x)‖))) ≤ ((2 * π)⁻¹ * ∫ (θ : ℝ) in 0 ..2 * π, ‖f (circleMap c R θ)‖) * |R|⁻¹ ^ n [PROOFSTEP] rw [mul_inv_cancel_left₀, mul_assoc, mul_comm (|R|⁻¹ ^ n)] [GOAL] case inr.h E : Type u_1 inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace ℂ E inst✝ : CompleteSpace E f : ℂ → E c : ℂ R : ℝ n : ℕ hR : R ≠ 0 ⊢ |R| ≠ 0 [PROOFSTEP] rwa [Ne.def, _root_.abs_eq_zero] [GOAL] E : Type u_1 inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace ℂ E inst✝ : CompleteSpace E f : ℂ → E c : ℂ R : ℝ≥0 ⊢ ↑R ≤ FormalMultilinearSeries.radius (cauchyPowerSeries f c ↑R) [PROOFSTEP] refine' (cauchyPowerSeries f c R).le_radius_of_bound ((2 * π)⁻¹ * ∫ θ : ℝ in (0)..2 * π, ‖f (circleMap c R θ)‖) fun n => _ [GOAL] E : Type u_1 inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace ℂ E inst✝ : CompleteSpace E f : ℂ → E c : ℂ R : ℝ≥0 n : ℕ ⊢ ‖cauchyPowerSeries f c (↑R) n‖ * ↑R ^ n ≤ (2 * π)⁻¹ * ∫ (θ : ℝ) in 0 ..2 * π, ‖f (circleMap c (↑R) θ)‖ [PROOFSTEP] refine' (mul_le_mul_of_nonneg_right (norm_cauchyPowerSeries_le _ _ _ _) (pow_nonneg R.coe_nonneg _)).trans _ [GOAL] E : Type u_1 inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace ℂ E inst✝ : CompleteSpace E f : ℂ → E c : ℂ R : ℝ≥0 n : ℕ ⊢ ((2 * π)⁻¹ * ∫ (θ : ℝ) in 0 ..2 * π, ‖f (circleMap c (↑R) θ)‖) * |↑R|⁻¹ ^ n * ↑R ^ n ≤ (2 * π)⁻¹ * ∫ (θ : ℝ) in 0 ..2 * π, ‖f (circleMap c (↑R) θ)‖ [PROOFSTEP] rw [_root_.abs_of_nonneg R.coe_nonneg] [GOAL] E : Type u_1 inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace ℂ E inst✝ : CompleteSpace E f : ℂ → E c : ℂ R : ℝ≥0 n : ℕ ⊢ ((2 * π)⁻¹ * ∫ (θ : ℝ) in 0 ..2 * π, ‖f (circleMap c (↑R) θ)‖) * (↑R)⁻¹ ^ n * ↑R ^ n ≤ (2 * π)⁻¹ * ∫ (θ : ℝ) in 0 ..2 * π, ‖f (circleMap c (↑R) θ)‖ [PROOFSTEP] cases' eq_or_ne (R ^ n : ℝ) 0 with hR hR [GOAL] case inl E : Type u_1 inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace ℂ E inst✝ : CompleteSpace E f : ℂ → E c : ℂ R : ℝ≥0 n : ℕ hR : ↑(R ^ n) = 0 ⊢ ((2 * π)⁻¹ * ∫ (θ : ℝ) in 0 ..2 * π, ‖f (circleMap c (↑R) θ)‖) * (↑R)⁻¹ ^ n * ↑R ^ n ≤ (2 * π)⁻¹ * ∫ (θ : ℝ) in 0 ..2 * π, ‖f (circleMap c (↑R) θ)‖ [PROOFSTEP] rw_mod_cast [hR, mul_zero] [GOAL] case inl E : Type u_1 inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace ℂ E inst✝ : CompleteSpace E f : ℂ → E c : ℂ R : ℝ≥0 n : ℕ hR : R ^ n = 0 ⊢ 0 ≤ (2 * π)⁻¹ * ∫ (θ : ℝ) in 0 ..2 * π, ‖f (circleMap c (↑R) θ)‖ [PROOFSTEP] exact mul_nonneg (inv_nonneg.2 Real.two_pi_pos.le) (intervalIntegral.integral_nonneg Real.two_pi_pos.le fun _ _ => norm_nonneg _) [GOAL] case inr E : Type u_1 inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace ℂ E inst✝ : CompleteSpace E f : ℂ → E c : ℂ R : ℝ≥0 n : ℕ hR : ↑(R ^ n) ≠ 0 ⊢ ((2 * π)⁻¹ * ∫ (θ : ℝ) in 0 ..2 * π, ‖f (circleMap c (↑R) θ)‖) * (↑R)⁻¹ ^ n * ↑R ^ n ≤ (2 * π)⁻¹ * ∫ (θ : ℝ) in 0 ..2 * π, ‖f (circleMap c (↑R) θ)‖ [PROOFSTEP] rw [inv_pow] [GOAL] case inr E : Type u_1 inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace ℂ E inst✝ : CompleteSpace E f : ℂ → E c : ℂ R : ℝ≥0 n : ℕ hR : ↑(R ^ n) ≠ 0 ⊢ ((2 * π)⁻¹ * ∫ (θ : ℝ) in 0 ..2 * π, ‖f (circleMap c (↑R) θ)‖) * (↑R ^ n)⁻¹ * ↑R ^ n ≤ (2 * π)⁻¹ * ∫ (θ : ℝ) in 0 ..2 * π, ‖f (circleMap c (↑R) θ)‖ [PROOFSTEP] have : (R : ℝ) ^ n ≠ 0 := by norm_cast at hR ⊢ [GOAL] E : Type u_1 inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace ℂ E inst✝ : CompleteSpace E f : ℂ → E c : ℂ R : ℝ≥0 n : ℕ hR : ↑(R ^ n) ≠ 0 ⊢ ↑R ^ n ≠ 0 [PROOFSTEP] norm_cast at hR ⊢ [GOAL] case inr E : Type u_1 inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace ℂ E inst✝ : CompleteSpace E f : ℂ → E c : ℂ R : ℝ≥0 n : ℕ hR : ↑(R ^ n) ≠ 0 this : ↑R ^ n ≠ 0 ⊢ ((2 * π)⁻¹ * ∫ (θ : ℝ) in 0 ..2 * π, ‖f (circleMap c (↑R) θ)‖) * (↑R ^ n)⁻¹ * ↑R ^ n ≤ (2 * π)⁻¹ * ∫ (θ : ℝ) in 0 ..2 * π, ‖f (circleMap c (↑R) θ)‖ [PROOFSTEP] rw [inv_mul_cancel_right₀ this] [GOAL] E : Type u_1 inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace ℂ E inst✝ : CompleteSpace E f : ℂ → E c : ℂ R : ℝ w : ℂ hf : CircleIntegrable f c R hw : ↑Complex.abs w < R ⊢ HasSum (fun n => ∮ (z : ℂ) in C(c, R), (w / (z - c)) ^ n • (z - c)⁻¹ • f z) (∮ (z : ℂ) in C(c, R), (z - (c + w))⁻¹ • f z) [PROOFSTEP] have hR : 0 < R := (Complex.abs.nonneg w).trans_lt hw [GOAL] E : Type u_1 inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace ℂ E inst✝ : CompleteSpace E f : ℂ → E c : ℂ R : ℝ w : ℂ hf : CircleIntegrable f c R hw : ↑Complex.abs w < R hR : 0 < R ⊢ HasSum (fun n => ∮ (z : ℂ) in C(c, R), (w / (z - c)) ^ n • (z - c)⁻¹ • f z) (∮ (z : ℂ) in C(c, R), (z - (c + w))⁻¹ • f z) [PROOFSTEP] have hwR : abs w / R ∈ Ico (0 : ℝ) 1 := ⟨div_nonneg (Complex.abs.nonneg w) hR.le, (div_lt_one hR).2 hw⟩ [GOAL] E : Type u_1 inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace ℂ E inst✝ : CompleteSpace E f : ℂ → E c : ℂ R : ℝ w : ℂ hf : CircleIntegrable f c R hw : ↑Complex.abs w < R hR : 0 < R hwR : ↑Complex.abs w / R ∈ Ico 0 1 ⊢ HasSum (fun n => ∮ (z : ℂ) in C(c, R), (w / (z - c)) ^ n • (z - c)⁻¹ • f z) (∮ (z : ℂ) in C(c, R), (z - (c + w))⁻¹ • f z) [PROOFSTEP] refine' intervalIntegral.hasSum_integral_of_dominated_convergence (fun n θ => ‖f (circleMap c R θ)‖ * (abs w / R) ^ n) (fun n => _) (fun n => _) _ _ _ [GOAL] case refine'_1 E : Type u_1 inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace ℂ E inst✝ : CompleteSpace E f : ℂ → E c : ℂ R : ℝ w : ℂ hf : CircleIntegrable f c R hw : ↑Complex.abs w < R hR : 0 < R hwR : ↑Complex.abs w / R ∈ Ico 0 1 n : ℕ ⊢ AEStronglyMeasurable (fun θ => deriv (circleMap c R) θ • (fun z => (w / (z - c)) ^ n • (z - c)⁻¹ • f z) (circleMap c R θ)) (Measure.restrict volume (Ι 0 (2 * π))) [PROOFSTEP] simp only [deriv_circleMap] [GOAL] case refine'_1 E : Type u_1 inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace ℂ E inst✝ : CompleteSpace E f : ℂ → E c : ℂ R : ℝ w : ℂ hf : CircleIntegrable f c R hw : ↑Complex.abs w < R hR : 0 < R hwR : ↑Complex.abs w / R ∈ Ico 0 1 n : ℕ ⊢ AEStronglyMeasurable (fun θ => (circleMap 0 R θ * I) • (w / (circleMap c R θ - c)) ^ n • (circleMap c R θ - c)⁻¹ • f (circleMap c R θ)) (Measure.restrict volume (Ι 0 (2 * π))) [PROOFSTEP] apply_rules [AEStronglyMeasurable.smul, hf.def.1] [GOAL] case refine'_1.hf E : Type u_1 inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace ℂ E inst✝ : CompleteSpace E f : ℂ → E c : ℂ R : ℝ w : ℂ hf : CircleIntegrable f c R hw : ↑Complex.abs w < R hR : 0 < R hwR : ↑Complex.abs w / R ∈ Ico 0 1 n : ℕ ⊢ AEStronglyMeasurable (fun x => circleMap 0 R x * I) (Measure.restrict volume (Ι 0 (2 * π))) [PROOFSTEP] apply Measurable.aestronglyMeasurable [GOAL] case refine'_1.hg.hf E : Type u_1 inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace ℂ E inst✝ : CompleteSpace E f : ℂ → E c : ℂ R : ℝ w : ℂ hf : CircleIntegrable f c R hw : ↑Complex.abs w < R hR : 0 < R hwR : ↑Complex.abs w / R ∈ Ico 0 1 n : ℕ ⊢ AEStronglyMeasurable (fun x => (w / (circleMap c R x - c)) ^ n) (Measure.restrict volume (Ι 0 (2 * π))) [PROOFSTEP] apply Measurable.aestronglyMeasurable [GOAL] case refine'_1.hg.hg.hf E : Type u_1 inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace ℂ E inst✝ : CompleteSpace E f : ℂ → E c : ℂ R : ℝ w : ℂ hf : CircleIntegrable f c R hw : ↑Complex.abs w < R hR : 0 < R hwR : ↑Complex.abs w / R ∈ Ico 0 1 n : ℕ ⊢ AEStronglyMeasurable (fun x => (circleMap c R x - c)⁻¹) (Measure.restrict volume (Ι 0 (2 * π))) [PROOFSTEP] apply Measurable.aestronglyMeasurable [GOAL] case refine'_1.hf.hf E : Type u_1 inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace ℂ E inst✝ : CompleteSpace E f : ℂ → E c : ℂ R : ℝ w : ℂ hf : CircleIntegrable f c R hw : ↑Complex.abs w < R hR : 0 < R hwR : ↑Complex.abs w / R ∈ Ico 0 1 n : ℕ ⊢ Measurable fun x => circleMap 0 R x * I [PROOFSTEP] exact (measurable_circleMap 0 R).mul_const I [GOAL] case refine'_1.hg.hf.hf E : Type u_1 inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace ℂ E inst✝ : CompleteSpace E f : ℂ → E c : ℂ R : ℝ w : ℂ hf : CircleIntegrable f c R hw : ↑Complex.abs w < R hR : 0 < R hwR : ↑Complex.abs w / R ∈ Ico 0 1 n : ℕ ⊢ Measurable fun x => (w / (circleMap c R x - c)) ^ n [PROOFSTEP] exact (((measurable_circleMap c R).sub measurable_const).const_div w).pow measurable_const [GOAL] case refine'_1.hg.hg.hf.hf E : Type u_1 inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace ℂ E inst✝ : CompleteSpace E f : ℂ → E c : ℂ R : ℝ w : ℂ hf : CircleIntegrable f c R hw : ↑Complex.abs w < R hR : 0 < R hwR : ↑Complex.abs w / R ∈ Ico 0 1 n : ℕ ⊢ Measurable fun x => (circleMap c R x - c)⁻¹ [PROOFSTEP] exact ((measurable_circleMap c R).sub measurable_const).inv [GOAL] case refine'_2 E : Type u_1 inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace ℂ E inst✝ : CompleteSpace E f : ℂ → E c : ℂ R : ℝ w : ℂ hf : CircleIntegrable f c R hw : ↑Complex.abs w < R hR : 0 < R hwR : ↑Complex.abs w / R ∈ Ico 0 1 n : ℕ ⊢ ∀ᵐ (t : ℝ), t ∈ Ι 0 (2 * π) → ‖deriv (circleMap c R) t • (fun z => (w / (z - c)) ^ n • (z - c)⁻¹ • f z) (circleMap c R t)‖ ≤ (fun n θ => ‖f (circleMap c R θ)‖ * (↑Complex.abs w / R) ^ n) n t [PROOFSTEP] simp [norm_smul, abs_of_pos hR, mul_left_comm R, inv_mul_cancel_left₀ hR.ne', mul_comm ‖_‖] [GOAL] case refine'_3 E : Type u_1 inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace ℂ E inst✝ : CompleteSpace E f : ℂ → E c : ℂ R : ℝ w : ℂ hf : CircleIntegrable f c R hw : ↑Complex.abs w < R hR : 0 < R hwR : ↑Complex.abs w / R ∈ Ico 0 1 ⊢ ∀ᵐ (t : ℝ), t ∈ Ι 0 (2 * π) → Summable fun n => (fun n θ => ‖f (circleMap c R θ)‖ * (↑Complex.abs w / R) ^ n) n t [PROOFSTEP] exact eventually_of_forall fun _ _ => (summable_geometric_of_lt_1 hwR.1 hwR.2).mul_left _ [GOAL] case refine'_4 E : Type u_1 inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace ℂ E inst✝ : CompleteSpace E f : ℂ → E c : ℂ R : ℝ w : ℂ hf : CircleIntegrable f c R hw : ↑Complex.abs w < R hR : 0 < R hwR : ↑Complex.abs w / R ∈ Ico 0 1 ⊢ IntervalIntegrable (fun t => ∑' (n : ℕ), (fun n θ => ‖f (circleMap c R θ)‖ * (↑Complex.abs w / R) ^ n) n t) volume 0 (2 * π) [PROOFSTEP] simpa only [tsum_mul_left, tsum_geometric_of_lt_1 hwR.1 hwR.2] using hf.norm.mul_continuousOn continuousOn_const [GOAL] case refine'_5 E : Type u_1 inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace ℂ E inst✝ : CompleteSpace E f : ℂ → E c : ℂ R : ℝ w : ℂ hf : CircleIntegrable f c R hw : ↑Complex.abs w < R hR : 0 < R hwR : ↑Complex.abs w / R ∈ Ico 0 1 ⊢ ∀ᵐ (t : ℝ), t ∈ Ι 0 (2 * π) → HasSum (fun n => deriv (circleMap c R) t • (fun z => (w / (z - c)) ^ n • (z - c)⁻¹ • f z) (circleMap c R t)) (deriv (circleMap c R) t • (fun z => (z - (c + w))⁻¹ • f z) (circleMap c R t)) [PROOFSTEP] refine' eventually_of_forall fun θ _ => HasSum.const_smul _ _ [GOAL] case refine'_5 E : Type u_1 inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace ℂ E inst✝ : CompleteSpace E f : ℂ → E c : ℂ R : ℝ w : ℂ hf : CircleIntegrable f c R hw : ↑Complex.abs w < R hR : 0 < R hwR : ↑Complex.abs w / R ∈ Ico 0 1 θ : ℝ x✝ : θ ∈ Ι 0 (2 * π) ⊢ HasSum (fun n => (fun z => (w / (z - c)) ^ n • (z - c)⁻¹ • f z) (circleMap c R θ)) ((fun z => (z - (c + w))⁻¹ • f z) (circleMap c R θ)) [PROOFSTEP] simp only [smul_smul] [GOAL] case refine'_5 E : Type u_1 inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace ℂ E inst✝ : CompleteSpace E f : ℂ → E c : ℂ R : ℝ w : ℂ hf : CircleIntegrable f c R hw : ↑Complex.abs w < R hR : 0 < R hwR : ↑Complex.abs w / R ∈ Ico 0 1 θ : ℝ x✝ : θ ∈ Ι 0 (2 * π) ⊢ HasSum (fun n => ((w / (circleMap c R θ - c)) ^ n * (circleMap c R θ - c)⁻¹) • f (circleMap c R θ)) ((circleMap c R θ - (c + w))⁻¹ • f (circleMap c R θ)) [PROOFSTEP] refine' HasSum.smul_const _ _ [GOAL] case refine'_5 E : Type u_1 inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace ℂ E inst✝ : CompleteSpace E f : ℂ → E c : ℂ R : ℝ w : ℂ hf : CircleIntegrable f c R hw : ↑Complex.abs w < R hR : 0 < R hwR : ↑Complex.abs w / R ∈ Ico 0 1 θ : ℝ x✝ : θ ∈ Ι 0 (2 * π) ⊢ HasSum (fun n => (w / (circleMap c R θ - c)) ^ n * (circleMap c R θ - c)⁻¹) (circleMap c R θ - (c + w))⁻¹ [PROOFSTEP] have : ‖w / (circleMap c R θ - c)‖ < 1 := by simpa [abs_of_pos hR] using hwR.2 [GOAL] E : Type u_1 inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace ℂ E inst✝ : CompleteSpace E f : ℂ → E c : ℂ R : ℝ w : ℂ hf : CircleIntegrable f c R hw : ↑Complex.abs w < R hR : 0 < R hwR : ↑Complex.abs w / R ∈ Ico 0 1 θ : ℝ x✝ : θ ∈ Ι 0 (2 * π) ⊢ ‖w / (circleMap c R θ - c)‖ < 1 [PROOFSTEP] simpa [abs_of_pos hR] using hwR.2 [GOAL] case refine'_5 E : Type u_1 inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace ℂ E inst✝ : CompleteSpace E f : ℂ → E c : ℂ R : ℝ w : ℂ hf : CircleIntegrable f c R hw : ↑Complex.abs w < R hR : 0 < R hwR : ↑Complex.abs w / R ∈ Ico 0 1 θ : ℝ x✝ : θ ∈ Ι 0 (2 * π) this : ‖w / (circleMap c R θ - c)‖ < 1 ⊢ HasSum (fun n => (w / (circleMap c R θ - c)) ^ n * (circleMap c R θ - c)⁻¹) (circleMap c R θ - (c + w))⁻¹ [PROOFSTEP] convert (hasSum_geometric_of_norm_lt_1 this).mul_right _ using 1 [GOAL] case h.e'_6 E : Type u_1 inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace ℂ E inst✝ : CompleteSpace E f : ℂ → E c : ℂ R : ℝ w : ℂ hf : CircleIntegrable f c R hw : ↑Complex.abs w < R hR : 0 < R hwR : ↑Complex.abs w / R ∈ Ico 0 1 θ : ℝ x✝ : θ ∈ Ι 0 (2 * π) this : ‖w / (circleMap c R θ - c)‖ < 1 ⊢ (circleMap c R θ - (c + w))⁻¹ = (1 - w / (circleMap c R θ - c))⁻¹ * (circleMap c R θ - c)⁻¹ [PROOFSTEP] simp [← sub_sub, ← mul_inv, sub_mul, div_mul_cancel _ (circleMap_ne_center hR.ne')] [GOAL] E : Type u_1 inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace ℂ E inst✝ : CompleteSpace E f : ℂ → E c : ℂ R : ℝ w : ℂ hf : CircleIntegrable f c R hw : ↑Complex.abs w < R ⊢ HasSum (fun n => ↑(cauchyPowerSeries f c R n) fun x => w) ((2 * ↑π * I)⁻¹ • ∮ (z : ℂ) in C(c, R), (z - (c + w))⁻¹ • f z) [PROOFSTEP] simp only [cauchyPowerSeries_apply] [GOAL] E : Type u_1 inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace ℂ E inst✝ : CompleteSpace E f : ℂ → E c : ℂ R : ℝ w : ℂ hf : CircleIntegrable f c R hw : ↑Complex.abs w < R ⊢ HasSum (fun n => (2 * ↑π * I)⁻¹ • ∮ (z : ℂ) in C(c, R), (w / (z - c)) ^ n • (z - c)⁻¹ • f z) ((2 * ↑π * I)⁻¹ • ∮ (z : ℂ) in C(c, R), (z - (c + w))⁻¹ • f z) [PROOFSTEP] exact (hasSum_two_pi_I_cauchyPowerSeries_integral hf hw).const_smul _ [GOAL] E : Type u_1 inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace ℂ E inst✝ : CompleteSpace E f : ℂ → E c : ℂ R : ℝ≥0 hf : CircleIntegrable f c ↑R hR : 0 < R y✝ : ℂ hy : y✝ ∈ EMetric.ball 0 ↑R ⊢ HasSum (fun n => ↑(cauchyPowerSeries f c (↑R) n) fun x => y✝) ((2 * ↑π * I)⁻¹ • ∮ (z : ℂ) in C(c, ↑R), (z - (c + y✝))⁻¹ • f z) [PROOFSTEP] refine' hasSum_cauchyPowerSeries_integral hf _ [GOAL] E : Type u_1 inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace ℂ E inst✝ : CompleteSpace E f : ℂ → E c : ℂ R : ℝ≥0 hf : CircleIntegrable f c ↑R hR : 0 < R y✝ : ℂ hy : y✝ ∈ EMetric.ball 0 ↑R ⊢ ↑Complex.abs y✝ < ↑R [PROOFSTEP] rw [← norm_eq_abs, ← coe_nnnorm, NNReal.coe_lt_coe, ← ENNReal.coe_lt_coe] [GOAL] E : Type u_1 inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace ℂ E inst✝ : CompleteSpace E f : ℂ → E c : ℂ R : ℝ≥0 hf : CircleIntegrable f c ↑R hR : 0 < R y✝ : ℂ hy : y✝ ∈ EMetric.ball 0 ↑R ⊢ ↑‖y✝‖₊ < ↑R [PROOFSTEP] exact mem_emetric_ball_zero_iff.1 hy [GOAL] E : Type u_1 inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace ℂ E inst✝ : CompleteSpace E c w : ℂ R : ℝ hw : w ∈ ball c R ⊢ (∮ (z : ℂ) in C(c, R), (z - w)⁻¹) = 2 * ↑π * I [PROOFSTEP] have hR : 0 < R := dist_nonneg.trans_lt hw [GOAL] E : Type u_1 inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace ℂ E inst✝ : CompleteSpace E c w : ℂ R : ℝ hw : w ∈ ball c R hR : 0 < R ⊢ (∮ (z : ℂ) in C(c, R), (z - w)⁻¹) = 2 * ↑π * I [PROOFSTEP] suffices H : HasSum (fun n : ℕ => ∮ z in C(c, R), ((w - c) / (z - c)) ^ n * (z - c)⁻¹) (2 * π * I) [GOAL] E : Type u_1 inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace ℂ E inst✝ : CompleteSpace E c w : ℂ R : ℝ hw : w ∈ ball c R hR : 0 < R H : HasSum (fun n => ∮ (z : ℂ) in C(c, R), ((w - c) / (z - c)) ^ n * (z - c)⁻¹) (2 * ↑π * I) ⊢ (∮ (z : ℂ) in C(c, R), (z - w)⁻¹) = 2 * ↑π * I [PROOFSTEP] have A : CircleIntegrable (fun _ => (1 : ℂ)) c R := continuousOn_const.circleIntegrable' [GOAL] E : Type u_1 inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace ℂ E inst✝ : CompleteSpace E c w : ℂ R : ℝ hw : w ∈ ball c R hR : 0 < R H : HasSum (fun n => ∮ (z : ℂ) in C(c, R), ((w - c) / (z - c)) ^ n * (z - c)⁻¹) (2 * ↑π * I) A : CircleIntegrable (fun x => 1) c R ⊢ (∮ (z : ℂ) in C(c, R), (z - w)⁻¹) = 2 * ↑π * I [PROOFSTEP] refine' (H.unique _).symm [GOAL] E : Type u_1 inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace ℂ E inst✝ : CompleteSpace E c w : ℂ R : ℝ hw : w ∈ ball c R hR : 0 < R H : HasSum (fun n => ∮ (z : ℂ) in C(c, R), ((w - c) / (z - c)) ^ n * (z - c)⁻¹) (2 * ↑π * I) A : CircleIntegrable (fun x => 1) c R ⊢ HasSum (fun n => ∮ (z : ℂ) in C(c, R), ((w - c) / (z - c)) ^ n * (z - c)⁻¹) (∮ (z : ℂ) in C(c, R), (z - w)⁻¹) [PROOFSTEP] simpa only [smul_eq_mul, mul_one, add_sub_cancel'_right] using hasSum_two_pi_I_cauchyPowerSeries_integral A hw [GOAL] case H E : Type u_1 inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace ℂ E inst✝ : CompleteSpace E c w : ℂ R : ℝ hw : w ∈ ball c R hR : 0 < R ⊢ HasSum (fun n => ∮ (z : ℂ) in C(c, R), ((w - c) / (z - c)) ^ n * (z - c)⁻¹) (2 * ↑π * I) [PROOFSTEP] have H : ∀ n : ℕ, n ≠ 0 → (∮ z in C(c, R), (z - c) ^ (-n - 1 : ℤ)) = 0 := by refine' fun n hn => integral_sub_zpow_of_ne _ _ _ _; simpa [GOAL] E : Type u_1 inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace ℂ E inst✝ : CompleteSpace E c w : ℂ R : ℝ hw : w ∈ ball c R hR : 0 < R ⊢ ∀ (n : ℕ), n ≠ 0 → (∮ (z : ℂ) in C(c, R), (z - c) ^ (-↑n - 1)) = 0 [PROOFSTEP] refine' fun n hn => integral_sub_zpow_of_ne _ _ _ _ [GOAL] E : Type u_1 inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace ℂ E inst✝ : CompleteSpace E c w : ℂ R : ℝ hw : w ∈ ball c R hR : 0 < R n : ℕ hn : n ≠ 0 ⊢ -↑n - 1 ≠ -1 [PROOFSTEP] simpa [GOAL] case H E : Type u_1 inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace ℂ E inst✝ : CompleteSpace E c w : ℂ R : ℝ hw : w ∈ ball c R hR : 0 < R H : ∀ (n : ℕ), n ≠ 0 → (∮ (z : ℂ) in C(c, R), (z - c) ^ (-↑n - 1)) = 0 ⊢ HasSum (fun n => ∮ (z : ℂ) in C(c, R), ((w - c) / (z - c)) ^ n * (z - c)⁻¹) (2 * ↑π * I) [PROOFSTEP] have : (∮ z in C(c, R), ((w - c) / (z - c)) ^ 0 * (z - c)⁻¹) = 2 * π * I := by simp [hR.ne'] [GOAL] E : Type u_1 inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace ℂ E inst✝ : CompleteSpace E c w : ℂ R : ℝ hw : w ∈ ball c R hR : 0 < R H : ∀ (n : ℕ), n ≠ 0 → (∮ (z : ℂ) in C(c, R), (z - c) ^ (-↑n - 1)) = 0 ⊢ (∮ (z : ℂ) in C(c, R), ((w - c) / (z - c)) ^ 0 * (z - c)⁻¹) = 2 * ↑π * I [PROOFSTEP] simp [hR.ne'] [GOAL] case H E : Type u_1 inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace ℂ E inst✝ : CompleteSpace E c w : ℂ R : ℝ hw : w ∈ ball c R hR : 0 < R H : ∀ (n : ℕ), n ≠ 0 → (∮ (z : ℂ) in C(c, R), (z - c) ^ (-↑n - 1)) = 0 this : (∮ (z : ℂ) in C(c, R), ((w - c) / (z - c)) ^ 0 * (z - c)⁻¹) = 2 * ↑π * I ⊢ HasSum (fun n => ∮ (z : ℂ) in C(c, R), ((w - c) / (z - c)) ^ n * (z - c)⁻¹) (2 * ↑π * I) [PROOFSTEP] refine' this ▸ hasSum_single _ fun n hn => _ [GOAL] case H E : Type u_1 inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace ℂ E inst✝ : CompleteSpace E c w : ℂ R : ℝ hw : w ∈ ball c R hR : 0 < R H : ∀ (n : ℕ), n ≠ 0 → (∮ (z : ℂ) in C(c, R), (z - c) ^ (-↑n - 1)) = 0 this : (∮ (z : ℂ) in C(c, R), ((w - c) / (z - c)) ^ 0 * (z - c)⁻¹) = 2 * ↑π * I n : ℕ hn : n ≠ 0 ⊢ (∮ (z : ℂ) in C(c, R), ((w - c) / (z - c)) ^ n * (z - c)⁻¹) = 0 [PROOFSTEP] simp only [div_eq_mul_inv, mul_pow, integral_const_mul, mul_assoc] [GOAL] case H E : Type u_1 inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace ℂ E inst✝ : CompleteSpace E c w : ℂ R : ℝ hw : w ∈ ball c R hR : 0 < R H : ∀ (n : ℕ), n ≠ 0 → (∮ (z : ℂ) in C(c, R), (z - c) ^ (-↑n - 1)) = 0 this : (∮ (z : ℂ) in C(c, R), ((w - c) / (z - c)) ^ 0 * (z - c)⁻¹) = 2 * ↑π * I n : ℕ hn : n ≠ 0 ⊢ ((w - c) ^ n * ∮ (z : ℂ) in C(c, R), (z - c)⁻¹ ^ n * (z - c)⁻¹) = 0 [PROOFSTEP] rw [(integral_congr hR.le fun z hz => _).trans (H n hn), mul_zero] [GOAL] E : Type u_1 inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace ℂ E inst✝ : CompleteSpace E c w : ℂ R : ℝ hw : w ∈ ball c R hR : 0 < R H : ∀ (n : ℕ), n ≠ 0 → (∮ (z : ℂ) in C(c, R), (z - c) ^ (-↑n - 1)) = 0 this : (∮ (z : ℂ) in C(c, R), ((w - c) / (z - c)) ^ 0 * (z - c)⁻¹) = 2 * ↑π * I n : ℕ hn : n ≠ 0 ⊢ ∀ (z : ℂ), z ∈ sphere c R → (z - c)⁻¹ ^ n * (z - c)⁻¹ = (z - c) ^ (-↑n - 1) [PROOFSTEP] intro z _ [GOAL] E : Type u_1 inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace ℂ E inst✝ : CompleteSpace E c w : ℂ R : ℝ hw : w ∈ ball c R hR : 0 < R H : ∀ (n : ℕ), n ≠ 0 → (∮ (z : ℂ) in C(c, R), (z - c) ^ (-↑n - 1)) = 0 this : (∮ (z : ℂ) in C(c, R), ((w - c) / (z - c)) ^ 0 * (z - c)⁻¹) = 2 * ↑π * I n : ℕ hn : n ≠ 0 z : ℂ hz✝ : z ∈ sphere c R ⊢ (z - c)⁻¹ ^ n * (z - c)⁻¹ = (z - c) ^ (-↑n - 1) [PROOFSTEP] rw [← pow_succ', ← zpow_ofNat, inv_zpow, ← zpow_neg, Int.ofNat_succ, neg_add, sub_eq_add_neg _ (1 : ℤ)]
/- In Lean, false is a proposition that is false in the sense that there is no proof of it. It's an uninhabited type. -/ #check false /- inductive false : Prop -/ /- There's no introduction rule for false as there are no proofs of it at all. -/ /- The elimination rule for false is very important. -/ theorem false_elim' : ∀ (P : Prop), false → P := -- false elimination λ P f, match f with end theorem false_imp_anything : ∀ (P : Prop), false → P := λ P f, false.elim f -- Universal specialization lemma false_imp_false : false → false := false_imp_anything false lemma false_imp_true : false → true := false_imp_anything true -- trick question lemma true_imp_false : true → false := λ t, _ -- stuck /- As expected from propositional logic true → true is true true → false is false false → true is true false → false is true -/
/- Copyright (c) 2022 Kevin Buzzard. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Author : Kevin Buzzard -/ import tactic -- imports all the Lean tactics import data.real.basic -- imports the real numbers import solutions.section02reals.sheet3 -- import the definition of `tends_to` from a previous sheet -- to get a proof from a type class -- apply_instance tactic should figure it out -- so can write have : linear_order ℝ := {apply_instance,}, -- you can maybe do this one now theorem tends_to_neg {a : ℕ → ℝ} {t : ℝ} (ha : tends_to a t) : tends_to (λ n, - a n) (-t) := begin rw tends_to at *, intros ε hε, specialize ha ε hε, -- try to do linear rewriting? cases ha with B ha, use B, intros n hB, specialize ha n hB, -- or simp, rw abs_sub_comm, exact ha, rw [←abs_neg] at ha, rw ←neg_add', exact ha, end /- `tends_to_add` is quite a challenge. In a few weeks' time I'll show you a two-line proof using filters, but right now as you're still learning I think it's important that you try and suffer and struggle through the first principles proof. BIG piece of advice: write down a complete maths proof first, with all the details there. Then, once you know the maths proof, try translating it into Lean. Note that a bunch of the results we proved in sheet 4 will be helpful. -/ /-- If `a(n)` tends to `t` and `b(n)` tends to `u` then `a(n) + b(n)` tends to `t + u`. -/ theorem tends_to_add {a b : ℕ → ℝ} {t u : ℝ} (ha : tends_to a t) (hb : tends_to b u) : tends_to (λ n, a n + b n) (t + u) := begin rw tends_to at *, intros e he, specialize ha (e/2) (half_pos he), specialize hb (e/2) (half_pos he), cases ha with k ha, cases hb with j hb, use (max k j), intros n hn, specialize ha n (le_of_max_le_left hn), specialize hb n (le_of_max_le_right hn), have h3 : a n - t + (b n - u) = a n + b n - (t + u), -- how to get rid of this? { ring, }, rw [←h3, ←(add_halves e)], exact lt_of_le_of_lt (abs_add (a n - t) (b n - u)) (add_lt_add ha hb), end -- what is simp_rw -- rw but deeper /-- If `a(n)` tends to t and `b(n)` tends to `u` then `a(n) - b(n)` tends to `t - u`. -/ theorem tends_to_sub {a b : ℕ → ℝ} {t u : ℝ} (ha : tends_to a t) (hb : tends_to b u) : tends_to (λ n, a n - b n) (t - u) := begin exact tends_to_add ha (tends_to_neg hb), end
[STATEMENT] lemma Cong\<^sub>0_subst_left: assumes "t \<approx>\<^sub>0 t'" and "t \<frown> u" shows "t' \<frown> u" and "t \\ u \<approx>\<^sub>0 t' \\ u" [PROOF STATE] proof (prove) goal (1 subgoal): 1. t' \<frown> u &&& t \ u \<approx>\<^sub>0 t' \ u [PROOF STEP] proof - [PROOF STATE] proof (state) goal (2 subgoals): 1. t' \<frown> u 2. t \ u \<approx>\<^sub>0 t' \ u [PROOF STEP] have 1: "t \<frown> u \<and> t \<frown> t' \<and> u \\ t \<frown> t' \\ t" [PROOF STATE] proof (prove) goal (1 subgoal): 1. t \<frown> u \<and> t \<frown> t' \<and> u \ t \<frown> t' \ t [PROOF STEP] using assms [PROOF STATE] proof (prove) using this: t \<approx>\<^sub>0 t' t \<frown> u goal (1 subgoal): 1. t \<frown> u \<and> t \<frown> t' \<and> u \ t \<frown> t' \ t [PROOF STEP] by (metis Resid_along_normal_preserves_Cong\<^sub>0 Cong\<^sub>0_imp_con Cong\<^sub>0_reflexive R.con_sym R.null_is_zero(2) R.arr_resid_iff_con R.sources_resid R.conI) [PROOF STATE] proof (state) this: t \<frown> u \<and> t \<frown> t' \<and> u \ t \<frown> t' \ t goal (2 subgoals): 1. t' \<frown> u 2. t \ u \<approx>\<^sub>0 t' \ u [PROOF STEP] hence 2: "t' \<frown> u \<and> u \\ t \<frown> t' \\ t \<and> (t \\ u) \\ (t' \\ u) = (t \\ t') \\ (u \\ t') \<and> (t' \\ u) \\ (t \\ u) = (t' \\ t) \\ (u \\ t)" [PROOF STATE] proof (prove) using this: t \<frown> u \<and> t \<frown> t' \<and> u \ t \<frown> t' \ t goal (1 subgoal): 1. t' \<frown> u \<and> u \ t \<frown> t' \ t \<and> (t \ u) \ (t' \ u) = (t \ t') \ (u \ t') \<and> (t' \ u) \ (t \ u) = (t' \ t) \ (u \ t) [PROOF STEP] by (meson R.con_sym R.cube R.resid_reflects_con) [PROOF STATE] proof (state) this: t' \<frown> u \<and> u \ t \<frown> t' \ t \<and> (t \ u) \ (t' \ u) = (t \ t') \ (u \ t') \<and> (t' \ u) \ (t \ u) = (t' \ t) \ (u \ t) goal (2 subgoals): 1. t' \<frown> u 2. t \ u \<approx>\<^sub>0 t' \ u [PROOF STEP] show "t' \<frown> u" [PROOF STATE] proof (prove) goal (1 subgoal): 1. t' \<frown> u [PROOF STEP] using 2 [PROOF STATE] proof (prove) using this: t' \<frown> u \<and> u \ t \<frown> t' \ t \<and> (t \ u) \ (t' \ u) = (t \ t') \ (u \ t') \<and> (t' \ u) \ (t \ u) = (t' \ t) \ (u \ t) goal (1 subgoal): 1. t' \<frown> u [PROOF STEP] by simp [PROOF STATE] proof (state) this: t' \<frown> u goal (1 subgoal): 1. t \ u \<approx>\<^sub>0 t' \ u [PROOF STEP] show "t \\ u \<approx>\<^sub>0 t' \\ u" [PROOF STATE] proof (prove) goal (1 subgoal): 1. t \ u \<approx>\<^sub>0 t' \ u [PROOF STEP] using assms 1 2 [PROOF STATE] proof (prove) using this: t \<approx>\<^sub>0 t' t \<frown> u t \<frown> u \<and> t \<frown> t' \<and> u \ t \<frown> t' \ t t' \<frown> u \<and> u \ t \<frown> t' \ t \<and> (t \ u) \ (t' \ u) = (t \ t') \ (u \ t') \<and> (t' \ u) \ (t \ u) = (t' \ t) \ (u \ t) goal (1 subgoal): 1. t \ u \<approx>\<^sub>0 t' \ u [PROOF STEP] by (metis R.arr_resid_iff_con R.con_imp_coinitial R.cube forward_stable) [PROOF STATE] proof (state) this: t \ u \<approx>\<^sub>0 t' \ u goal: No subgoals! [PROOF STEP] qed
Require Import List String Ensembles Arith Computation.Core ADT.ADTSig ADT.Core Common.ilist ADTNotation.StringBound ADTNotation.BuildADT ADTNotation.BuildADTSig QueryStructure.QueryStructureSchema QueryStructure.QueryStructure. Local Obligation Tactic := intuition. Program Definition EmptyRelation (sch : Schema) : Relation sch := Build_Relation sch (fun T : @IndexedTuple (schemaHeading sch) => False) _. Next Obligation. destruct (schemaConstraints sch); intuition. Qed. Fixpoint Build_EmptyRelations (schemas : list NamedSchema) : ilist (fun ns : NamedSchema => Relation (relSchema ns)) schemas := match schemas with | [] => inil _ | sch :: schemas' => icons _ (EmptyRelation (relSchema sch)) (Build_EmptyRelations schemas') end. Lemma Build_EmptyRelation_IsEmpty qsSchema : forall idx, ith_Bounded relName (Build_EmptyRelations qsSchema) idx = EmptyRelation _. Proof. intro. eapply (ith_Bounded_ind (B' := fun _ => unit) _ (fun As idx il a b b' => b = EmptyRelation (relSchema a)) idx (Build_EmptyRelations qsSchema) tt). destruct idx as [idx [n nth_n] ]; simpl in *; subst. revert qsSchema nth_n; induction n; destruct qsSchema; simpl; eauto; intros; icons_invert; simpl; auto. unfold Some_Dep_Option; simpl; eapply IHn. Qed. Program Definition QSEmptySpec (qsSchema : QueryStructureSchema) : QueryStructure qsSchema := {| rels := Build_EmptyRelations (qschemaSchemas qsSchema) |}. Next Obligation. rewrite Build_EmptyRelation_IsEmpty in *; simpl in *; destruct (BuildQueryStructureConstraints qsSchema idx idx'); intuition. Qed. Notation "'empty'" := (ret (QSEmptySpec qsSchemaHint)) (at level 80) : QuerySpec_scope.
universe u v structure InjectiveFunction (α : Type u) (β : Type v) where fn : α → β inj : ∀ a b, fn a = fn b → a = b def add1 : InjectiveFunction Nat Nat where fn a := a + 1 inj a b h := by injection h; assumption instance : CoeFun (InjectiveFunction α β) (fun _ => α → β) where coe s := s.fn #eval add1 10 def mapAdd1 (xs : List Nat) : List Nat := xs.map add1 #eval mapAdd1 [1, 2] def foo : InjectiveFunction Bool (Nat → Nat) where fn | true, a => a + 1 | false, a => a inj a b h := by cases a cases b; rfl; injection (congrFun h 0) cases b; injection (congrFun h 0); rfl theorem ex1 (x : Nat) : foo true x = x + 1 := rfl theorem ex2 (x : Nat) : foo false x = x := rfl #eval foo true 10 #eval foo false 20 #eval [1, 2, 3].map (foo true)
function sammi(model, parser, data, secondaries, options) % Visualize the given model, set of reactions, and/or data using SAMMI. % Documentation at: https://sammim.readthedocs.io/en/latest/index.html % % Citation: Schultz, A., & Akbani, R. (2019). SAMMI: A Semi-Automated % Tool for the Visualization of Metabolic Networks. Bioinformatics. % % USAGE: % sammi(model,parser,data,secondaries,options) % % INPUT: % model: COBRA model to be visualized % % OPTIONAL INPUTS: % parser: How the model is to be parsed. There are four possible % options for this parameter. Default empty array. % *empty array: If this parameter is an empty arrray, all reaction % in the model will be loaded in a single map. Not advisable for % large maps. % *string: If this parameter is a characters array there are two % options. Either the parameter defines the path to a SAMMI map (JSON % file downloaded from a previous instance of SAMMI), in which case % the given map will be used, or the parameter defines a field in the % model struct, in which case this field will be used to parse the % model into subgraphs. % *cell array: If this parameter is a cell array, it should be a cell % array of strings containing reaction IDs. Only these reactions will % be included in a single SAMMI map. % *struct: If this model is a struct of length n, the model will be % parsed into n subgraphs. Each element of the struct should contain % two fields plus an additional optional one: % name: Name of the subgraph. % rxns: Reactions to be included in the subgraph. % flux: Optional field. Data to be mapped as reaction color. % data: Data to be mapped onto the model. Struct of length n. Defaults % to an empty array where no data is mapped. Element of the struct should % contain two fields: % type: A cell array of two strings. The firt string should be % either 'rxns', 'mets', or 'links' indicating which type of data % is to be mapped. The second string should be either 'color' or % 'size', indicating how the data is to be mapped. 'links' only % work with 'size', since link color is the same as the one of % the reaction it is assciated with. % data: a table object. VariableNames will be translated into % condition names, and RowNames should be reaction IDs for 'rxns' % and 'links' data, and metabolite IDs for 'mets' data. NaN values % will not be mapped. % secondaries: Cell array of strings of regular expressions. All % metabolites, in all subgraphs, matching any of the regular expressions % will be shelved. Default to empty array where no metabolites are % shelved. % options: Struct with the following fields: % htmlName: Name of the html file to be written and opened for the % visualization. Defaults to 'index_load'. Change this options to % write to a different html file that will not be overwritten by the % default option. % load: Load the html file in a new tab upon writing the file. % Default to true. If you would not like a new tab to open, set % this parameter to false and refresh a previously opened window. To % open a new window without re-running SAMMI use the openSammi % function. % jscode: String. Defaults to empty string. Additional JavaScript % code to run after loading the map. Can be any code to modify the % loaded map. % % OUTPUT: % No MATLAB output. Opens a browser window with the SAMMI visualization. % % EXAMPLES: % %1 Open model in single map % sammi(model) % % %2 Open model as multiple subgraphs divided by subSystems % sammi(model,'subSystems') % % %3 Open model as multiple subgraphs divided by subSystems, load two % %conditions with randomly generated data, and shelve hydrogen, water, % %and O2 upon loading. % rxntbl = array2table(randn(length(model.rxns),2),... % 'VariableNames', {'condition1','condition2'},... % 'RowNames', model.rxns); % data(1).type = {'rxns' 'color'}; % data(1).data = rxntbl; % data(2).type = {'rxns' 'size'}; % data(2).data = rxntbl; % secondaries = {'^h\[.\]$','^h20\[.\]$','^o2\[.\]$'}; % sammi(model,'subSystems',data,secondaries) if nargin < 2 parser = []; end if nargin < 3 data = []; end if nargin < 4 secondaries = []; end if nargin < 5 || ~isfield(options,'htmlName') options.htmlName = 'index_load.html'; elseif isempty(regexp(options.htmlName,'\.html$')) options.htmlName = [options.htmlName '.html']; end if nargin < 5 || ~isfield(options,'load') options.load = true; end if nargin < 5 || ~isfield(options,'jscode') options.jscode = ''; end %Read in index sfolder = regexprep(which('sammi'),'sammi.m$',''); html = fileread([sfolder 'index.html']); %Define options if isstruct(parser) jsonstr = structParse(model,parser); elseif ischar(parser) && exist(parser,'file') == 2 && ~isempty(regexp(parser,'\.json$','ONCE')) %Read map jsonstr = fileread(parser); jsonstr = strrep(jsonstr,'\','\\'); %Add graph jsonstr = strcat('e = ',jsonstr,';\nreceivedTextSammi(JSON.stringify(e));'); elseif ischar(parser) && isfield(model,parser) ss = unique(model.(parser)); if length(model.(parser)) == length(model.rxns) for i = 1:length(ss) dat(i).name = ss{i}; dat(i).rxns = model.rxns(ismember(model.subSystems,ss{i})); end else for i = 1:length(ss) dat(i).name = ss{i}; dat(i).rxns = model.rxns(sum(model.S(ismember(model.(parser),ss{i}),:)) ~= 0); end end jsonstr = structParse(model,dat); elseif iscell(parser) || isempty(parser) if iscell(parser) %Keep only reactions we want model = removeRxns(model,model.rxns(~ismember(model.rxns,parser))); end %Convert model to sammi JSON string jsonstr = makeSAMMIJson(model); %Add graph jsonstr = strcat('e = ',jsonstr,';\nreceivedJSONwrapper(e)'); end %Add data for i = 1:length(data) if isequal(data(i).type{1},'rxns') if isequal(data(i).type{2},'color') datastring = makeSAMMIdataString(data(i).data); jsonstr = strcat(jsonstr,';\ndat = ',datastring,... ';\nreceivedTextFlux(dat)'); elseif isequal(data(i).type{2},'size') datastring = makeSAMMIdataString(data(i).data); jsonstr = strcat(jsonstr,';\ndat = ',datastring,... ';\nreceivedTextSizeRxn(dat)'); end end if isequal(data(i).type{1},'mets') if isequal(data(i).type{2},'color') datastring = makeSAMMIdataString(data(i).data); jsonstr = strcat(jsonstr,';\ndat = ',datastring,... ';\nreceivedTextConcentration(dat)'); elseif isequal(data(i).type{2},'size') datastring = makeSAMMIdataString(data(i).data); jsonstr = strcat(jsonstr,';\ndat = ',datastring,... ';\nreceivedTextSizeMet(dat)'); end end if isequal(data(i).type{1},'links') if isequal(data(i).type{2},'size') datastring = makeSAMMIdataString(data(i).data); jsonstr = strcat(jsonstr,';\ndat = ',datastring,... ';\nreceivedTextWidth(dat)'); end end end %Shelve secondaries if ~isempty(secondaries) secondaries = strrep(secondaries,'\','\\\\'); jsonstr = strcat(jsonstr,';\nshelveList("(?:',strjoin(secondaries,')|(?:'),')");'); end %Add last bit of code jsonstr = strcat(jsonstr,';',options.jscode); %Replace in html html = strrep(html,'//MATLAB_CODE_HERE//',jsonstr); %Account for speial characters html = strrep(html,'%','%%'); %Write to file fid = fopen([sfolder options.htmlName],'w'); fprintf(fid,html); fclose(fid); %Open window if options.load web([sfolder options.htmlName],'-browser') end end function jsonstr = structParse(model,parser) %Get only reactions we are using rx = {}; for i = 1:length(parser); rx = unique(cat(1,rx,parser(i).rxns)); end model = removeRxns(model,model.rxns(~ismember(model.rxns,rx))); %Convert model to sammi JSON file jsonstr = makeSAMMIJson(model); %Add graph jsonstr = strcat('graph = ',jsonstr); %Make conversion vector convvec = makeSAMMIparseVector(parser); %Add parssing line jsonstr = strcat(jsonstr,';\ne = ',convvec,';\nfilterWrapper(e)'); end
% file : bkjz91.tex 26 July 9.30 \thispagestyle{empty} % empty head \markboth{}{26 July 91} % empty foot \begin{center} {\large\bf Zebra Reference Manual} \vspace{8mm} \end{center} \begin{center} {\LARGE\bf book JZ91} \vspace{2mm} \end{center} \begin{center} {\Large\bf Processor support} \vspace{4mm} \end{center} \begin{center} {\large\bf Zebra version 3.67 \vspace{2mm} \\ July 1991 \vspace{2mm} \\ J. Zoll} \end{center} \vspace*{20pt} \begin{description} \in{30mm} \item[Chapter 1] Basic calling sequences \begin{itemize} \in{30mm} \item[1.1] JZIN/JZOUT - simplest use \item[1.2] JZIN - processor entry, general use \item[1.3] JZINIT - initialize the JZ91 package \item[1.4] JZTELL - count processor conditions \item[1.5] JZZERO - zero the down call bank \item[1.6] JZROOT - reset to processor level zero \item[1.7] JZEND - print processor usage statistics \item[1.8] Titles JZAN - processor constants \item[1.9] Titles JZFL - processor flags \end{itemize} \item[Chapter 2] Extra features \begin{itemize} \in{30mm} \item[2.1] JZIN - extra features \item[2.2] JZINIT - extra features \item[2.3] JZSETF - set processor flag by program \item[2.4] JZLOG - processor logging \item[2.5] JZWIND - unwind the processor stack \item[2.6] JZTRAC - print processor trace-back \item[2.7] Receiving the working space \item[2.8] Note on processor timing \item[2.9] Off-line initialization of a processor \end{itemize} \item[Appendix] JZ91 data structure and bank descriptions \end{description} \newpage \vspace*{40pt} {\large\bf Acknowledgement} This package is derived from the HYDRA package JQ81 A.Norton, J.Zoll, HYDRA Topical Manual, book JQ81, CERN Program Library \cleardoublepage % continue on next odd page \markboth{Principles}{Principles} \vspace*{20pt} \lile{8mm} \begin{center} {\large\bf{Principles}}\\ \end{center} % \smark{Principles} \lspa \vspace*{2pt} {\large\bf Purpose} The MZ package of ZEBRA helps the user to organize his data. The purpose of the present JZ package is to assist him in structuring his program. It allows to formalize the concept of 'program module' beyond the mere subroutine and it provides the back-up service for these modules. It is at the design stage of a program, rather than later, that the advantage of the JZ package will be most strongly felt, since it provides a frame-work for the design; again just like with the data structures of ZEBRA. The program we are talking about will be designed as a collection of modules called 'processors'. The art consists in designing processors with interfaces as simple and logical as possible, and entirely documentable. A given processor has a given task which formalizes into a transformation of the input data structure or rather sub-structure. The result may be a modification of the input structure, or a new output structure, or just printed output and the like. The processor is controlled by what is essentially a parameter list. Normally this list contains pointers to the sub-structure the processor is to work with. Since links have to be held on relocatable memory the parameter list is passed in a special purpose bank, the 'call bank', containing reference links and data words. This call bank is filled with the input parameters by the higher level code which calls the processor. The processor takes them from there and also places back into the same call bank any output parameters, in particular links to the output data structure, if any has been lifted. Clearly the content of the call bank is part of the specification of the processor. A processor may call other processors. This is not to say that a good design should aim at having processors at several levels. On the contrary, the fewer levels one can do with the better, of course. Also, one should not write trivial processors where simple subroutines will do. By convention, every processor is entitled to have the ZEBRA working space near the beginning of Q freely to itself. As a result a processor calling another processor looses at that moment the content of its working space. Its dimensions are saved by JZ, and they are automatically restored when control comes back to the calling processor, ie. it does not have to call MZWORK again. As an extra facility, JZ91 may be asked to save and restore also the contents of the first so many links and of the first so many data words of the working space. \newpage {\large\bf JZ91 Services} JZ91 provides the following services to an application software organized into processors: --- handling of 'call banks' serving to transmit parametric information of the link and data types between processors at levels n-1, n, and n+1. For the processor at call-depth n the 'up' call-bank, pointed to by the system link LQUP, assures the communication with the higher level at call-depth n-1; and the 'down' call-bank, pointed to by LQDW, communicates to the lower level at call-depth n+1. Call banks of equal size are pre-lifted, one for each level of a definite number of levels, they stay permanently in memory. --- handling of 'processor constants', being part of the environmental data for each processor, fixed during the run. If a processor needs any constants at all, it may initialize them itself, this then being the default initialization. By using titles, loaded with TZINIT described in book TZ, this default can be over-ruled. The system link LQAN gives Access to these Numbers thus : \bva IQ(LQAN) number of constants Q(LQAN+1) first constant . . . \end{verbatim} --- handling of 'processor conditions' which may be signalled from any processor with CALL JZTELL (J), J being a small integer normally from 1 to 10. This provides for simple counters over the whole run grouped by processors. --- handling of statistics of processor usage, like number of times entered and time spent. The number of times entered is accessible to the processor in IQ(LQSV+2). --- saving the size of the working space, on special request also the contents, on down-call to the next processor and restoring it on up-return. --- handling of 'processor flags' for test runs during program development. The flags may be used to drive debug operations of a processor without having to recompile it. The flags for a given processor are defined by the user on titles JZFL and they are copied on entry to the processor into the vector JQFLAG, ready for inspection by the code in the processor; non-initialized flags are set to zero. This is only available with the program-development version of JZ91; the production version presets all flags to zero and leaves them thus for the whole run. This 'environment' information is held in the bank of 'support variables', one bank for each processor, which is permanently in store as part of the JZ91 data structure. Communication between the processors and JZ91 is via : \bva COMMON /JZUC/LQJZ,LQUP,LQDW,LQSV,LQAN, JQLEV,JQFLAG(10) \end{verbatim} JZ91 operates in and for one store only, which must be the user's main store, normally the primary store. Links in the call bank can point only into this store. \lile{-8mm} \chapter{Basic calling sequences} \section{JZIN/JZOUT - simplest use} \smark{JZIN/JZOUT - basic} Processor AA transfers control to processor BB with a simple Fortran \hspace{.2mm} CALL BB, having readied the contents of its down call-bank at LQDW: \bvb . . . LQ(LQDW-1) = load parameters of the link type LQ(LQDW-2) = . . . IQ(LQDW+1) = load parameters of the data type IQ(LQDW+2) = . . . CALL BB transfer control . . . \end{verbatim} \lspa In the simplest case the processor BB does not call itself another processor, does not have processor constants, and does not use processor flags. It would then look like this : \bvb SUBROUTINE BB +CDE, Q. this is supposed to declare the store and also /JZUC/ +, links, data, last CALL JZIN ('BB ',0,0,0) CALL MZWORK (0,data(1),last,0) processor body CALL JZOUT ('BB ') RETURN END \end{verbatim} \lspa By calling JZIN the processor causes switching of the environment, gaining access to its own data, in particular to its call-bank via the system link LQUP, thus LQ(LQUP-1) is its first link parameter. The inverse switching is done by JZOUT. The processor name has to be given to JZOUT explicitely. This handshake is a check against forgotten calls. The call to MZWORK must come after the call to JZIN because JZIN saves the working space parameters of AA, and hence they must still be intact. For efficiency, JZIN and JZOUT, and also other routines, expect to receive the processor name IAM with 4 characters exactly, with blank-fill if necessary. \newpage \section{JZIN - processor entry, general use} \smark{JZIN - general} Processor AA transfers control to processor BB with a simple Fortran \hspace{.2mm} CALL BB, having readied the contents of its down call-bank at LQDW. To trigger swopping of the processor environment, the first executable statement in the processor BB should be \Subr{CALL JZIN (IAM, IFDOWN, NAN, 0)} \bvb with IAM processor ID, a text string of 4 characters exactly of type CHARACTER*4 IFDOWN flag indicating whether this processor does or does not call other processors : = 0 no / = 1 yes NAN number of processor constants used 0 zero; non-zero gives access to the extra features described in para. 2.1 \end{verbatim} \lspa JZIN saves the environment of the upper processor and then sets up the environment of the new processor. If this does not yet exist, it calls the internal service routine JZLIFT to create the bank of support variables, digesting the titles for this processor, if any. JZIN returns the initialisation status thus : \bvb IQUEST(1) = -ve : just initialized without JZAN title 0 : just initialized with JZAN title +ve : normal running \end{verbatim} \lspa Thus a processor using processor constants can check this condition like in this {\bf example} : \bvc SUBROUTINE BB +CDE, Q. declaring the store and /JZUC/ CHARACTER IAM*4 PARAMETER (IAM = 'BB ') CALL JZIN (IAM,0,3,0) IF (IQUEST(1)) 11, 17, 21 C-- Initialize constants if and only if not set from title 11 Q(LQAN+1) = .0025 Q(LQAN+2) = .3 C-- Complete initialization calculating derived constants 17 Q(LQAN+3) = .5 * SIN (Q(LQAN+2)) 21 CALL MZWORK (...) ... processor body CALL JZOUT (IAM) RETURN END \end{verbatim} \lspa The 3rd and the 4th parameter to JZIN are looked at only on first contact for each processor. \newpage Note that over-ruling with the JZAN title only works if the processor is programmed to handle it. This is done in this example where statement 11 is reached only if there is no title. JZIN readies for the new processor these links : \bvb COMMON /JZUC/LQJZ,LQUP,LQDW,LQSV,LQAN, JQLEV,JQFLAG(10) LQJZ the header bank supporting the JZ91 data-structure LQUP the upper call bank LQDW the down call bank, if needed, else = zero. LQSV the bank of support variables; IQ(LQSV+1) contains system information, IQ(LQSV+2) is 1 for first entry, 2 for second, etc. LQAN the processor constants inside the SV bank : IQ(LQAN) number of constants Q(LQAN+1) first constant Q(LQAN+2) second constant . . . and also : JQLEV is the current call depth level, = zero for the root JQFLAG(10) receives a copy of the flags for this processor. \end{verbatim} \lspa Note that the data in this common /JZUC/ must not be changed by the user, JQFLAG excepted. JZIN goes to ZFATAL if IFDOWN is non-zero and the lowest possible call-depth has been reached. There are always 10 flag words. Words not explicitely initialized with a JZFL title for a given processor are always zero. This feature is only available with the program development version, in the production version of ZEBRA the flags are all initialized to zero and never change, JZFL titles are dropped by JZINIT and are otherwise ignored. If you need the working space also in the initialization part of the processor, look out : you cannot place the CALL MZWORK before the CALL JZIN, nor immediately after, because MZWORK destroys IQUEST. \newpage \section{JZINIT - initialize the JZ91 package} \smark{JZINIT} The highest processor level, at call depth zero, is called the 'root'. The MAIN program is necessarily at this level. The root level is handled as a processor, with the ID given in IAMR to JZINIT. This is used to associate the titles JZAN and JZFL, if any. The root gets 10 processor constants and 10 JZTELL counters, unless the extra features of para.~2.2 are used. Before using the JZ91 package one has to initialize it with \Subr{CALL JZINIT (IXSTOR, CHIAMR, CHOPT, MAXLEV, NLCALL, NDCALL, 0)} \bvb IXSTOR the index of the processing store, (or the index of any division in this store) may be zero if the primary store is used CHIAMR the processor ID of the root, type CHARACTER*4, string of 4 characters CHOPT character string of options : T timing selected Q quiet, no log output E error messages only MAXLEV maximum call-depth number, eg. =1 if only the root calls processors NLCALL maximum number of links in all call banks NDCALL maximum number of data words in all call banks 0 zero; non-zero gives access to the extra features described in para. 2.2 \end{verbatim} \lspa JZINIT will create the long-range division JZ91 in the store signalled by IXSTOR for holding the JZ91 data structure, which contains all JZ data, like the call banks, the SV banks, etc. This store must be the store where the user does his processing; the links LQJZ,LQUP,... will be declared by JZINIT to be a link-area for this store. Links in call banks can only point into this store. Titles JZAN and JZFL, if any, must have been read into the title-structure of this same store before JZINIT is called, because it will re-format or re-link them for use. All call banks are pre-lifted by JZINIT, all of the same maximum size as specified by NLCALL and NDCALL, one call bank for each of the MAXLEV levels. They are permanent banks, being continously re-used. Accounting the execution time of the processors individually is an option which could be expensive in real time on some computers. JZINIT returns IQUEST(1) just like JZIN. \newpage \section{JZTELL - count processor conditions} \smark{JZTELL} To signal condition J in the current processor one may \Subr{CALL JZTELL (J)} which bumps the counter J=1,2,...,NCD contained in the support variables. The first or the last counter are bumped for underflow or overflow in J. NCD, the number of counters available in the SV bank, is normally 10. If more are needed the extra features of JZIN have to be used, as explained in para.~2.1. \section{JZZERO - zero the down call bank} \smark{JZZERO} When filling the down call bank for the next processor to be called it is safer to clear the unused part of this bank to zero, with \Subr{CALL JZZERO (NL, ND)} \bvb with NL leave the links 1 to NL untouched and reset links NL+1 to the end to zero; ND same for the data words, words 1 to ND untouched. \end{verbatim} \lspa Note that JZIN does already clear the new down call bank to zero. \section{JZROOT - reset processor level to root} \smark{JZROOT} If recovery to 'next event' is done with transfer to QNEXT (see book MZ, para.~3.04), QNEXT should reset the processor level to 'root' with : \Subr{CALL JZROOT} No harm is done by calling JZROOT on first entry to QNEXT, when the level is already zero. \section{JZEND - print processor usage statistics} \smark{JZEND} To get this printed on the log file, one calls from ZEND : \Subr{CALL JZEND} The apparent number of calls to the root reflects the number of times that JZROOT did actually have to unwind the processor stack, except for the initial entry with JZINIT. \newpage \section{Titles JZAN - processor constants} \smark{Titles JZAN constants} See TZINIT in book TZ for input of titles into the dynamic store. For each processor whose constants are to be initialized via the titles, thus over-ruling the default in the processor itself, one title should be given : \bvb word 1 processor ID in A4 format 2 constant 1 3 constant 2 ... ... n+1 constant n \end{verbatim} \lspa The number constants given should agree with the number given as NAN to JZIN. A discrepancy causes a diagnostic message. If some constants are derived by the processor from other constants, as in the example of para.~1.2, their places have to be kept open by giving dummy zeros. If several titles are given for the same processor, the first title coming in the title input stream is taken, later ones are dropped. \bvc Example : *DO JZAN -E11 -C21/72 #. Constants for central detector decoding MAIN :CDRC GLOBAL T0 0. DE/DX SCALE 4. MAX BASE 15. S-SAMPL LENGTH 8. A-COEFF 0.89 MIN P-LENGTH 2. T-SLEW CONSTANT 1000. AV INV RAW E1 0.00585 DEDXOFFSET 68.0 T-COR FOR S/W -35.0 *DO JZAN -C11/72 :V0FI DPPMAX 30.0 #. maximum DELTA P / P Y2TMAX 6.0 ETAMAX 99.0 AMBFLG 1.0 #. do not remove ambiguities DISVMN 0.0 DISZMX 0.3 STDIMP 1.0 PENALT 0.1 *DO JZAN -E11 -C21/72 :SERC DUMMY (RUN NO.) 0. TBIN TRAK+BGR 2. CDIN TRAK+DIGIT+BGR 3. FDIN NOT CALLED 0. DUMMY 6* 0. \end{verbatim} \lspa \newpage \section{Titles JZFL - processor flags} \smark{Titles JZFL flags} Zero, one or several titles may be given, each containing flags for one or several processors, given as one data group for one processor which looks thus : \bvb word a processor ID in A4 format a+1 flag word 1 a+2 flag word 2 . . . (n=0 is possible, it blocks later settings) a+n flag word n a+n+1 END - the termination literal, may be omitted for the last group. Any JZFL title looks then like this : word 1 first word of first group of n1 words ie. n1-2 flags n1+1 first word of second group . . . \end{verbatim} \lspa If several flag settings are given for the same processor, the first one is taken and further are dropped. \bvb Examples : *DO JZFL :IMRE 0 0 0 0 0 1 0 0 :END :VEFI 99 5 0 0 0 1 1 0 :END :V0FI 0 0 0 0 0 0 0 0 :END :TMER 0 0 0 0 0 0 0 :END :VEMO 0 0 0 0 0 1 :END :XCAL 0 :END :TFIT #B1110110001 :END For single-group titles it is more economic to omit the end terminator (no re-formatting needed) : *DO JZFL :VEMO 0 0 0 0 0 1 *DO JZFL :XCAL 0 *DO JZFL :TFIT #B1110110001 \end{verbatim} \lspa \chapter{Extra features} \section{JZIN - extra features} \smark{JZIN - extra features} These are requested by giving a LIST as the fourth parameter to JZIN rather than zero. The first word of LIST must indicate the length of the list. Each further word selects the features described: \bvb LIST(2) = NCD the number of JZTELL counters to be provided for the processor (the default is 10) LIST(3) = NLS the number of working space links and LIST(4) = NDS the number of working space data to be saved (the defaults are 0) \end{verbatim} \lspa When processor AA calls BB it looses the working space since BB has the right to use it freely, only the size of the working space is saved by JZIN and restored by JZOUT. With these 2 options JZIN is requested to save links 1,...,NLS and/or data words 1,...,NDS into the bank of support variables on down-call. JZOUT will restore them on up-return. Saving working space data is intended to be used with {\bf small} amounts of data only, otherwise this costs time and also memory. \bvb Examples : DIMENSION LIST(2) DATA LIST /1,24/ selects NCD=24; NLS and NDS remain zero DIMENSION LIST(3) DATA LIST /2,4,3/ selects NCD=4 and NLS=3; NDS remains zero \end{verbatim} \lspa \section{JZINIT - extra features} \smark{JZINIT - extra features} This is handled in analogy with the extra features of JZIN : \bvb LIST(2) = NANR the number of processor constants for the root (default is 10) LIST(3) = NCD the number of JZTELL counters for the root (default is 10) LIST(4) = NLSR the number of working space links and LIST(5) = NDSR the number of working space data to be saved (defaults are 0) LIST(6) = NACCE extra system accounting words in all SV banks, this is for monitoring to be used only by experts (default is 0) \end{verbatim} \lspa \newpage \section{JZSETF - set processor flag by program} \smark{JZSETF - set flag} To change the value of flag JFL in processor CHID one can call: \Subr{CALL JZSETF (CHID, JFL, VALUE)} This routine acts only if the flag JFL actually exists in the processor CHID, ie. if a title JZFL of at least JFL flags has been given. In case of do-nothing it returns IQUEST(1)=0. In case of succesful operation it returns 3 values in IQUEST(1/3) in this order: \bvb 1 LFL adr of the flag JFL is IQ(LFL+JFL) 2 NFL length of the flag vector 3 OLD previous content of the changed flag \end{verbatim} \lspa \section{JZLOG - processor logging} \smark{JZLOG - logging} This gives control over the amount of information printed about the operation of the processors~: \Subr{CALL JZLOG (CHOPT)} CHOPT is a CHARACTER string whose individual letters select particular outputs : \bvb Q : suppress all messages E : print error messages only N : reset to normal logging T : monitor each call to JZTELL A : monitor each call to JZIN B : and dump the call bank C : and dump the parameters X : monitor each call to JZOUT Y : and dump the call bank \end{verbatim} Options B and C imply A, option Y implies X. The implementation of the effect of options B, C, Y, is waiting for other new code in Zebra. \bvb Examples : CALL JZLOG ('E') CALL JZLOG ('TBCY') maximum logging CALL JZLOG ('A') log only entries CALL JZLOG ('N') back to normal \end{verbatim} \lspa \newpage \section{JZWIND - unwind the processor stack} \smark{JZWIND} If one uses setjmp/longjmp to abnormally quit from some low level processor to some higher level processor (other than the root) the processor receiving the longjmp has to unwind the JZ91 stack to itself by calling JZWIND giving its name IAM : \Subr{CALL JZWIND (IAM)} \section{JZTRAC - print processor trace-back} \smark{JZTRAC} This routine is called from ZPOSTM during error termination. \Subr{CALL JZTRAC (MODE)} It prints the processor names and the call-bank addresses, it also optionally marks some banks as 'critical' to get a full dump of these banks in DZSNAP. Marking 'critical' depends on single bits in MODE : \bvb bit 1 all SV banks in the chain 2 all call banks in the chain 3 all banks pointed to from the links in the current call banks at LQUP and LQDW. \end{verbatim} \lspa \section{Receiving the working space} \smark{Notes} Sometimes the situation arises when the calling processor wants to receive the working space of the called processor intact; it may for instance contain a large error matrix which one does not want to be copied into a bank just in case it may be needed. This request is done in the calling processor by setting status-bit 15 into the down call bank, ie. CALL SBIT1 (IQ(LQDW),15). JZOUT will see this flag, it will reset it to zero, and it will leave the working space unchanged. \section{Note on processor timing} \smark{Notes} JZ91 uses the KERNLIB routine TIMED (Z 007) for measuring the time spent in each processor. TIMED is called every time the processor level changes and the value returned is added into the right Q(LQSV+5). If the user also wants to use TIMED to time a section of his code inside (!) a processor, he can do this. But unless he follows the recomendation below, he will invalidate the timing figures for the particular processor. To keep things right, he should do this : \bvb CALL TIMED (T) Q(LQSV+5)=Q(LQSV+5) + T user code to be timed CALL TIMED (T) Q(LQSV+5)=Q(LQSV+5) + T \end{verbatim} \lspa The first call marks the start time of the user code; the time spent in the processor till this moment is cumulated into the SV bank. The second call brings the time interval of the user code, it too is cumulated. Note that you cannot so measure an interval across a processor call. \newpage \section{Off-line initialization of a processor} \smark{Notes} In case the initialization part of a processor is bulky it may be convenient to split it off from the processor proper into a separate subroutine to be called just once from the root, so as to have it executed and then out of the way. Suppose we have the processor BB, and we split the initialization off into subroutine BBIN. This might then look as follows : \bvb SUBROUTINE BBIN +CDE, Q. CALL JZIN ('BB ',0,36,0) IF (IQUEST(1)) 11, 17, 99 C-- Initialize constants if and only if not set from title 11 Q(LQAN+1) = .0025 Q(LQAN+2) = .3 C-- Complete initialization calculating derived constants 17 Q(LQAN+3) = .5 * SIN (Q(LQAN+2)) IQ(LQSV+2) = 0 to reset the entry count from 1 to zero 99 CALL JZOUT ('BB ') RETURN END C===================================================== SUBROUTINE BB +CDE, Q. CALL JZIN ('BB ',0,0,0) IF (IQUEST(1).LE.0) CALL ZFATAM ('BB, NOT INITIALIZED.') CALL MZWORK (...) processor body CALL JZOUT ('BB ') RETURN END C===================================================== Note that in subroutine BB it is still wise to check on IQUEST(1) in case the explicit CALL BBIN from the main program has been lost. \end{verbatim} \lspa \newpage \markboth{appendix: bank JZ91}{appendix: bank JZ91} \vspace*{4mm} {\Large\bf Appendix: JZ91 data structure and bank descriptions} \vspace*{4mm} {\large\bf JZ91 - header bank} address : LQJZ system link in /JZUC/ \bvb - 2*JQMLEV+6 current SV bank for depth JQMLEV ... ... +7 1 - JQMLEV+6 current SV bank for depth 0 (root) - JQMLEV+5 down call bank for depth JQMLEV-1 ... ... - 7 1 - 6 down call bank for depth 0 (root) - 5 zero (= LQUP for the root) - 4 fan-out bank for immediate access to SV banks - 3 linear chain of SV banks - 2 linear chain of pending JZFL derived title banks links : - 1 linear chain of pending JZAN title banks data : 1 guard word 2 NQLINK working space parameters 3 NDATA at level 0 (= root) 4 NQLINK 5 NDATA at level 1 (= 1 below the root) ... ... 2*JQMLEV+1 NDATA at level JQMLEV-1 2*JQMLEV+2 guard word JQMLEV is MAXLEV of JZINIT, the maximum call depth \end{verbatim} \lspa {\large\bf Fan-out bank} address : LQ(LQJZ-4) \bvb link -J address of SV bank J data 1 N = length of the list, J=1,...,N J+1 ID of SV bank J \end{verbatim} \lspa \newpage \markboth{appendix: bank JZSV}{appendix: bank JZSV} {\large\bf JZSV - bank of support variables} One such bank for each processor initialized \bvb links : -(NLSV+3) saved working space link 1 ... ... - 4 saved working space link NLSV - 3 two links reserved for the user - 2 - 1 reserved data : LQSV + 0 status word bits 1/8 = LV, the processor has been init. for this level bits 9/16 = JQNACC-9, extra account words, normally zero bit 17 set : constants are title initialized + 1 processor ID in A4 format + 2 number of calls to this processor + 3 NLSV working space links to be saved + 4 NDSV working space data words to be saved + 5 cumulate time for current call + 6 longest time interval for this processor + 7 cumulated execution time for this processor + 8 intermediate time cumulator (to improve precision) [ + 9 ... possibly extra accounting words ] LCD = LQSV + JQNACC (constant in /JQC/) LCD + 0 NCD = number of conditions to be recorded 1 count condition 1 and lower 2 count condition 2 ... ... NCD count condition NCD and higher LAN = LCD + NCD + 1 --> LQAN LAN + 0 NAN = number of processor constants 1 constant 1 ... ... NAN constant NAN LDSV = LAN + NAN + 1 LDSV + 0 saved working space data word 1 ... ... NDSV-1 saved data word NDSV LFL = LDSV + NDSV only in P=QDEBUG version LFL + 0 NFL = number of flag words + 1 flag word 1 ... ... NFL flag word NFL \end{verbatim} \lspa
/////////1/////////2/////////3/////////4/////////5/////////6/////////7/////////8 // archive_pointer_oserializer.ipp: // (C) Copyright 2002 Robert Ramey - http://www.rrsd.com . // Use, modification and distribution is subject to the Boost Software // License, Version 1.0. (See accompanying file LICENSE_1_0.txt or copy at // http://www.boost.org/LICENSE_1_0.txt) // See http://www.boost.org for updates, documentation, and revision history. #include <boost/config.hpp> // msvc 6.0 needs this for warning suppression #include <boost/archive/detail/archive_pointer_oserializer.hpp> #include <boost/archive/detail/basic_serializer_map.hpp> namespace boost { namespace archive { namespace detail { template<class Archive> basic_serializer_map & oserializer_map(){ static basic_serializer_map map; return map; } template<class Archive> archive_pointer_oserializer<Archive>::archive_pointer_oserializer( const boost::serialization::extended_type_info & type ) : basic_pointer_oserializer(type) { oserializer_map<Archive>().insert(this); } template<class Archive> const basic_pointer_oserializer * archive_pointer_oserializer<Archive>::find( const boost::serialization::extended_type_info & type ){ return static_cast<const basic_pointer_oserializer *>( oserializer_map<Archive>().tfind(type) ); } } // namespace detail } // namespace archive } // namespace boost
[STATEMENT] lemma vfieldD[dest]: assumes "\<langle>r, s\<rangle> \<in>\<^sub>\<circ> vfield A" shows "r \<in>\<^sub>\<circ> A" and "s = \<F>\<^sub>\<circ> r" [PROOF STATE] proof (prove) goal (1 subgoal): 1. r \<in>\<^sub>\<circ> A &&& s = \<F>\<^sub>\<circ> r [PROOF STEP] using assms [PROOF STATE] proof (prove) using this: \<langle>r, s\<rangle> \<in>\<^sub>\<circ> vfield A goal (1 subgoal): 1. r \<in>\<^sub>\<circ> A &&& s = \<F>\<^sub>\<circ> r [PROOF STEP] unfolding vfield_def [PROOF STATE] proof (prove) using this: \<langle>r, s\<rangle> \<in>\<^sub>\<circ> (\<lambda>r\<in>\<^sub>\<circ>A. \<D>\<^sub>\<circ> r \<union>\<^sub>\<circ> \<R>\<^sub>\<circ> r) goal (1 subgoal): 1. r \<in>\<^sub>\<circ> A &&& s = (\<lambda>r\<in>\<^sub>\<circ>set {r}. \<D>\<^sub>\<circ> r \<union>\<^sub>\<circ> \<R>\<^sub>\<circ> r)\<lparr>r\<rparr> [PROOF STEP] by auto
[STATEMENT] lemma Red_term_pres_no_match: "\<lbrakk>i < length ts; ts ! i \<Rightarrow> t'; no_match ps dts; dts = (map dterm ts)\<rbrakk> \<Longrightarrow> no_match ps (map dterm (ts[i := t']))" [PROOF STATE] proof (prove) goal (1 subgoal): 1. \<lbrakk>i < length ts; ts ! i \<Rightarrow> t'; no_match ps dts; dts = map dterm ts\<rbrakk> \<Longrightarrow> no_match ps (map dterm (ts[i := t'])) [PROOF STEP] proof(induct ps dts arbitrary: ts i t' rule:no_match.induct) [PROOF STATE] proof (state) goal (1 subgoal): 1. \<And>ps ts tsa i t'. \<lbrakk>\<And>x xa xb xc xd tsa i t'. \<lbrakk>x < min (length ts) (length ps); ps ! x = C xa \<bullet>\<bullet> xc; ts ! x = C xb \<bullet>\<bullet> xd; xa = xb; i < length tsa; tsa ! i \<Rightarrow> t'; no_match xc xd; xd = map dterm tsa\<rbrakk> \<Longrightarrow> no_match xc (map dterm (tsa[i := t'])); i < length tsa; tsa ! i \<Rightarrow> t'; no_match ps ts; ts = map dterm tsa\<rbrakk> \<Longrightarrow> no_match ps (map dterm (tsa[i := t'])) [PROOF STEP] case (1 ps dts ts i t') [PROOF STATE] proof (state) this: \<lbrakk>?x < min (length dts) (length ps); ps ! ?x = C ?xa \<bullet>\<bullet> ?xc; dts ! ?x = C ?xb \<bullet>\<bullet> ?xd; ?xa = ?xb; ?i < length ?ts; ?ts ! ?i \<Rightarrow> ?t'; no_match ?xc ?xd; ?xd = map dterm ?ts\<rbrakk> \<Longrightarrow> no_match ?xc (map dterm (?ts[?i := ?t'])) i < length ts ts ! i \<Rightarrow> t' no_match ps dts dts = map dterm ts goal (1 subgoal): 1. \<And>ps ts tsa i t'. \<lbrakk>\<And>x xa xb xc xd tsa i t'. \<lbrakk>x < min (length ts) (length ps); ps ! x = C xa \<bullet>\<bullet> xc; ts ! x = C xb \<bullet>\<bullet> xd; xa = xb; i < length tsa; tsa ! i \<Rightarrow> t'; no_match xc xd; xd = map dterm tsa\<rbrakk> \<Longrightarrow> no_match xc (map dterm (tsa[i := t'])); i < length tsa; tsa ! i \<Rightarrow> t'; no_match ps ts; ts = map dterm tsa\<rbrakk> \<Longrightarrow> no_match ps (map dterm (tsa[i := t'])) [PROOF STEP] from \<open>no_match ps dts\<close> \<open>dts = map dterm ts\<close> [PROOF STATE] proof (chain) picking this: no_match ps dts dts = map dterm ts [PROOF STEP] obtain j nm nm' rs rs' where ob: "j < size ts" "j < size ps" "ps!j = C nm \<bullet>\<bullet> rs" "dterm (ts!j) = C nm' \<bullet>\<bullet> rs'" "nm = nm' \<longrightarrow> no_match rs rs'" [PROOF STATE] proof (prove) using this: no_match ps dts dts = map dterm ts goal (1 subgoal): 1. (\<And>j nm rs nm' rs'. \<lbrakk>j < length ts; j < length ps; ps ! j = C nm \<bullet>\<bullet> rs; dterm (ts ! j) = C nm' \<bullet>\<bullet> rs'; nm = nm' \<longrightarrow> no_match rs rs'\<rbrakk> \<Longrightarrow> thesis) \<Longrightarrow> thesis [PROOF STEP] by (subst (asm) no_match.simps) fastforce [PROOF STATE] proof (state) this: j < length ts j < length ps ps ! j = C nm \<bullet>\<bullet> rs dterm (ts ! j) = C nm' \<bullet>\<bullet> rs' nm = nm' \<longrightarrow> no_match rs rs' goal (1 subgoal): 1. \<And>ps ts tsa i t'. \<lbrakk>\<And>x xa xb xc xd tsa i t'. \<lbrakk>x < min (length ts) (length ps); ps ! x = C xa \<bullet>\<bullet> xc; ts ! x = C xb \<bullet>\<bullet> xd; xa = xb; i < length tsa; tsa ! i \<Rightarrow> t'; no_match xc xd; xd = map dterm tsa\<rbrakk> \<Longrightarrow> no_match xc (map dterm (tsa[i := t'])); i < length tsa; tsa ! i \<Rightarrow> t'; no_match ps ts; ts = map dterm tsa\<rbrakk> \<Longrightarrow> no_match ps (map dterm (tsa[i := t'])) [PROOF STEP] show ?case [PROOF STATE] proof (prove) goal (1 subgoal): 1. no_match ps (map dterm (ts[i := t'])) [PROOF STEP] proof (subst no_match.simps) [PROOF STATE] proof (state) goal (1 subgoal): 1. \<exists>i<min (length (map dterm (ts[i := t']))) (length ps). \<exists>nm nm' rs rs'. ps ! i = C nm \<bullet>\<bullet> rs \<and> map dterm (ts[i := t']) ! i = C nm' \<bullet>\<bullet> rs' \<and> (nm = nm' \<longrightarrow> no_match rs rs') [PROOF STEP] show "\<exists>k<min (length (map dterm (ts[i := t']))) (length ps). \<exists>nm nm' rs rs'. ps!k = C nm \<bullet>\<bullet> rs \<and> map dterm (ts[i := t']) ! k = C nm' \<bullet>\<bullet> rs' \<and> (nm = nm' \<longrightarrow> no_match rs rs')" (is "\<exists>k < ?m. ?P k") [PROOF STATE] proof (prove) goal (1 subgoal): 1. \<exists>k<min (length (map dterm (ts[i := t']))) (length ps). \<exists>nm nm' rs rs'. ps ! k = C nm \<bullet>\<bullet> rs \<and> map dterm (ts[i := t']) ! k = C nm' \<bullet>\<bullet> rs' \<and> (nm = nm' \<longrightarrow> no_match rs rs') [PROOF STEP] proof- [PROOF STATE] proof (state) goal (1 subgoal): 1. \<exists>k<min (length (map dterm (ts[i := t']))) (length ps). \<exists>nm nm' rs rs'. ps ! k = C nm \<bullet>\<bullet> rs \<and> map dterm (ts[i := t']) ! k = C nm' \<bullet>\<bullet> rs' \<and> (nm = nm' \<longrightarrow> no_match rs rs') [PROOF STEP] { [PROOF STATE] proof (state) goal (1 subgoal): 1. \<exists>k<min (length (map dterm (ts[i := t']))) (length ps). \<exists>nm nm' rs rs'. ps ! k = C nm \<bullet>\<bullet> rs \<and> map dterm (ts[i := t']) ! k = C nm' \<bullet>\<bullet> rs' \<and> (nm = nm' \<longrightarrow> no_match rs rs') [PROOF STEP] assume [simp]: "j=i" [PROOF STATE] proof (state) this: j = i goal (1 subgoal): 1. \<exists>k<min (length (map dterm (ts[i := t']))) (length ps). \<exists>nm nm' rs rs'. ps ! k = C nm \<bullet>\<bullet> rs \<and> map dterm (ts[i := t']) ! k = C nm' \<bullet>\<bullet> rs' \<and> (nm = nm' \<longrightarrow> no_match rs rs') [PROOF STEP] have "\<exists>rs'. dterm t' = C nm' \<bullet>\<bullet> rs' \<and> (nm = nm' \<longrightarrow> no_match rs rs')" [PROOF STATE] proof (prove) goal (1 subgoal): 1. \<exists>rs'. dterm t' = C nm' \<bullet>\<bullet> rs' \<and> (nm = nm' \<longrightarrow> no_match rs rs') [PROOF STEP] using \<open>ts ! i \<Rightarrow> t'\<close> [PROOF STATE] proof (prove) using this: ts ! i \<Rightarrow> t' goal (1 subgoal): 1. \<exists>rs'. dterm t' = C nm' \<bullet>\<bullet> rs' \<and> (nm = nm' \<longrightarrow> no_match rs rs') [PROOF STEP] proof(cases rule:Red_term_hnf_cases) [PROOF STATE] proof (state) goal (9 subgoals): 1. \<And>nma vs ts. \<lbrakk>ts ! i = term (C\<^sub>U nma vs) \<bullet>\<bullet> ts; t' = (C nma \<bullet>\<bullet> map term (rev vs)) \<bullet>\<bullet> ts\<rbrakk> \<Longrightarrow> \<exists>rs'. dterm t' = C nm' \<bullet>\<bullet> rs' \<and> (nm = nm' \<longrightarrow> no_match rs rs') 2. \<And>x vs ts. \<lbrakk>ts ! i = term (V\<^sub>U x vs) \<bullet>\<bullet> ts; t' = (V x \<bullet>\<bullet> map term (rev vs)) \<bullet>\<bullet> ts\<rbrakk> \<Longrightarrow> \<exists>rs'. dterm t' = C nm' \<bullet>\<bullet> rs' \<and> (nm = nm' \<longrightarrow> no_match rs rs') 3. \<And>vf vs n ts. \<lbrakk>ts ! i = term (Clo vf vs n) \<bullet>\<bullet> ts; t' = \<Lambda> (term (apply (lift 0 (Clo vf vs n)) (V\<^sub>U 0 []))) \<bullet>\<bullet> ts\<rbrakk> \<Longrightarrow> \<exists>rs'. dterm t' = C nm' \<bullet>\<bullet> rs' \<and> (nm = nm' \<longrightarrow> no_match rs rs') 4. \<And>s s' ts. \<lbrakk>ts ! i = \<Lambda> s \<bullet>\<bullet> ts; t' = \<Lambda> s' \<bullet>\<bullet> ts; s \<Rightarrow> s'\<rbrakk> \<Longrightarrow> \<exists>rs'. dterm t' = C nm' \<bullet>\<bullet> rs' \<and> (nm = nm' \<longrightarrow> no_match rs rs') 5. \<And>v v' ts. \<lbrakk>ts ! i = term v \<bullet>\<bullet> ts; t' = term v' \<bullet>\<bullet> ts; v \<Rightarrow> v'\<rbrakk> \<Longrightarrow> \<exists>rs'. dterm t' = C nm' \<bullet>\<bullet> rs' \<and> (nm = nm' \<longrightarrow> no_match rs rs') 6. \<And>x i r' ts. \<lbrakk>i < length ts; ts ! i \<Rightarrow> r'; ts ! i = V x \<bullet>\<bullet> ts; t' = V x \<bullet>\<bullet> ts[i := r']\<rbrakk> \<Longrightarrow> \<exists>rs'. dterm t' = C nm' \<bullet>\<bullet> rs' \<and> (nm = nm' \<longrightarrow> no_match rs rs') 7. \<And>nma i r' ts. \<lbrakk>i < length ts; ts ! i \<Rightarrow> r'; ts ! i = C nma \<bullet>\<bullet> ts; t' = C nma \<bullet>\<bullet> ts[i := r']\<rbrakk> \<Longrightarrow> \<exists>rs'. dterm t' = C nm' \<bullet>\<bullet> rs' \<and> (nm = nm' \<longrightarrow> no_match rs rs') 8. \<And>s i r' ts. \<lbrakk>i < length ts; ts ! i \<Rightarrow> r'; ts ! i = \<Lambda> s \<bullet>\<bullet> ts; t' = \<Lambda> s \<bullet>\<bullet> ts[i := r']\<rbrakk> \<Longrightarrow> \<exists>rs'. dterm t' = C nm' \<bullet>\<bullet> rs' \<and> (nm = nm' \<longrightarrow> no_match rs rs') 9. \<And>v i r' ts. \<lbrakk>i < length ts; ts ! i \<Rightarrow> r'; ts ! i = term v \<bullet>\<bullet> ts; t' = term v \<bullet>\<bullet> ts[i := r']\<rbrakk> \<Longrightarrow> \<exists>rs'. dterm t' = C nm' \<bullet>\<bullet> rs' \<and> (nm = nm' \<longrightarrow> no_match rs rs') [PROOF STEP] case (5 v v' ts'') [PROOF STATE] proof (state) this: ts ! i = term v \<bullet>\<bullet> ts'' t' = term v' \<bullet>\<bullet> ts'' v \<Rightarrow> v' goal (9 subgoals): 1. \<And>nma vs ts. \<lbrakk>ts ! i = term (C\<^sub>U nma vs) \<bullet>\<bullet> ts; t' = (C nma \<bullet>\<bullet> map term (rev vs)) \<bullet>\<bullet> ts\<rbrakk> \<Longrightarrow> \<exists>rs'. dterm t' = C nm' \<bullet>\<bullet> rs' \<and> (nm = nm' \<longrightarrow> no_match rs rs') 2. \<And>x vs ts. \<lbrakk>ts ! i = term (V\<^sub>U x vs) \<bullet>\<bullet> ts; t' = (V x \<bullet>\<bullet> map term (rev vs)) \<bullet>\<bullet> ts\<rbrakk> \<Longrightarrow> \<exists>rs'. dterm t' = C nm' \<bullet>\<bullet> rs' \<and> (nm = nm' \<longrightarrow> no_match rs rs') 3. \<And>vf vs n ts. \<lbrakk>ts ! i = term (Clo vf vs n) \<bullet>\<bullet> ts; t' = \<Lambda> (term (apply (lift 0 (Clo vf vs n)) (V\<^sub>U 0 []))) \<bullet>\<bullet> ts\<rbrakk> \<Longrightarrow> \<exists>rs'. dterm t' = C nm' \<bullet>\<bullet> rs' \<and> (nm = nm' \<longrightarrow> no_match rs rs') 4. \<And>s s' ts. \<lbrakk>ts ! i = \<Lambda> s \<bullet>\<bullet> ts; t' = \<Lambda> s' \<bullet>\<bullet> ts; s \<Rightarrow> s'\<rbrakk> \<Longrightarrow> \<exists>rs'. dterm t' = C nm' \<bullet>\<bullet> rs' \<and> (nm = nm' \<longrightarrow> no_match rs rs') 5. \<And>v v' ts. \<lbrakk>ts ! i = term v \<bullet>\<bullet> ts; t' = term v' \<bullet>\<bullet> ts; v \<Rightarrow> v'\<rbrakk> \<Longrightarrow> \<exists>rs'. dterm t' = C nm' \<bullet>\<bullet> rs' \<and> (nm = nm' \<longrightarrow> no_match rs rs') 6. \<And>x i r' ts. \<lbrakk>i < length ts; ts ! i \<Rightarrow> r'; ts ! i = V x \<bullet>\<bullet> ts; t' = V x \<bullet>\<bullet> ts[i := r']\<rbrakk> \<Longrightarrow> \<exists>rs'. dterm t' = C nm' \<bullet>\<bullet> rs' \<and> (nm = nm' \<longrightarrow> no_match rs rs') 7. \<And>nma i r' ts. \<lbrakk>i < length ts; ts ! i \<Rightarrow> r'; ts ! i = C nma \<bullet>\<bullet> ts; t' = C nma \<bullet>\<bullet> ts[i := r']\<rbrakk> \<Longrightarrow> \<exists>rs'. dterm t' = C nm' \<bullet>\<bullet> rs' \<and> (nm = nm' \<longrightarrow> no_match rs rs') 8. \<And>s i r' ts. \<lbrakk>i < length ts; ts ! i \<Rightarrow> r'; ts ! i = \<Lambda> s \<bullet>\<bullet> ts; t' = \<Lambda> s \<bullet>\<bullet> ts[i := r']\<rbrakk> \<Longrightarrow> \<exists>rs'. dterm t' = C nm' \<bullet>\<bullet> rs' \<and> (nm = nm' \<longrightarrow> no_match rs rs') 9. \<And>v i r' ts. \<lbrakk>i < length ts; ts ! i \<Rightarrow> r'; ts ! i = term v \<bullet>\<bullet> ts; t' = term v \<bullet>\<bullet> ts[i := r']\<rbrakk> \<Longrightarrow> \<exists>rs'. dterm t' = C nm' \<bullet>\<bullet> rs' \<and> (nm = nm' \<longrightarrow> no_match rs rs') [PROOF STEP] then [PROOF STATE] proof (chain) picking this: ts ! i = term v \<bullet>\<bullet> ts'' t' = term v' \<bullet>\<bullet> ts'' v \<Rightarrow> v' [PROOF STEP] obtain vs where [simp]: "v = C\<^sub>U nm' vs" "rs' = map dterm\<^sub>M\<^sub>L (rev vs) @ map dterm ts''" [PROOF STATE] proof (prove) using this: ts ! i = term v \<bullet>\<bullet> ts'' t' = term v' \<bullet>\<bullet> ts'' v \<Rightarrow> v' goal (1 subgoal): 1. (\<And>vs. \<lbrakk>v = C\<^sub>U nm' vs; rs' = map dterm\<^sub>M\<^sub>L (rev vs) @ map dterm ts''\<rbrakk> \<Longrightarrow> thesis) \<Longrightarrow> thesis [PROOF STEP] using ob [PROOF STATE] proof (prove) using this: ts ! i = term v \<bullet>\<bullet> ts'' t' = term v' \<bullet>\<bullet> ts'' v \<Rightarrow> v' j < length ts j < length ps ps ! j = C nm \<bullet>\<bullet> rs dterm (ts ! j) = C nm' \<bullet>\<bullet> rs' nm = nm' \<longrightarrow> no_match rs rs' goal (1 subgoal): 1. (\<And>vs. \<lbrakk>v = C\<^sub>U nm' vs; rs' = map dterm\<^sub>M\<^sub>L (rev vs) @ map dterm ts''\<rbrakk> \<Longrightarrow> thesis) \<Longrightarrow> thesis [PROOF STEP] by(cases v) auto [PROOF STATE] proof (state) this: v = C\<^sub>U nm' vs rs' = map dterm\<^sub>M\<^sub>L (rev vs) @ map dterm ts'' goal (9 subgoals): 1. \<And>nma vs ts. \<lbrakk>ts ! i = term (C\<^sub>U nma vs) \<bullet>\<bullet> ts; t' = (C nma \<bullet>\<bullet> map term (rev vs)) \<bullet>\<bullet> ts\<rbrakk> \<Longrightarrow> \<exists>rs'. dterm t' = C nm' \<bullet>\<bullet> rs' \<and> (nm = nm' \<longrightarrow> no_match rs rs') 2. \<And>x vs ts. \<lbrakk>ts ! i = term (V\<^sub>U x vs) \<bullet>\<bullet> ts; t' = (V x \<bullet>\<bullet> map term (rev vs)) \<bullet>\<bullet> ts\<rbrakk> \<Longrightarrow> \<exists>rs'. dterm t' = C nm' \<bullet>\<bullet> rs' \<and> (nm = nm' \<longrightarrow> no_match rs rs') 3. \<And>vf vs n ts. \<lbrakk>ts ! i = term (Clo vf vs n) \<bullet>\<bullet> ts; t' = \<Lambda> (term (apply (lift 0 (Clo vf vs n)) (V\<^sub>U 0 []))) \<bullet>\<bullet> ts\<rbrakk> \<Longrightarrow> \<exists>rs'. dterm t' = C nm' \<bullet>\<bullet> rs' \<and> (nm = nm' \<longrightarrow> no_match rs rs') 4. \<And>s s' ts. \<lbrakk>ts ! i = \<Lambda> s \<bullet>\<bullet> ts; t' = \<Lambda> s' \<bullet>\<bullet> ts; s \<Rightarrow> s'\<rbrakk> \<Longrightarrow> \<exists>rs'. dterm t' = C nm' \<bullet>\<bullet> rs' \<and> (nm = nm' \<longrightarrow> no_match rs rs') 5. \<And>v v' ts. \<lbrakk>ts ! i = term v \<bullet>\<bullet> ts; t' = term v' \<bullet>\<bullet> ts; v \<Rightarrow> v'\<rbrakk> \<Longrightarrow> \<exists>rs'. dterm t' = C nm' \<bullet>\<bullet> rs' \<and> (nm = nm' \<longrightarrow> no_match rs rs') 6. \<And>x i r' ts. \<lbrakk>i < length ts; ts ! i \<Rightarrow> r'; ts ! i = V x \<bullet>\<bullet> ts; t' = V x \<bullet>\<bullet> ts[i := r']\<rbrakk> \<Longrightarrow> \<exists>rs'. dterm t' = C nm' \<bullet>\<bullet> rs' \<and> (nm = nm' \<longrightarrow> no_match rs rs') 7. \<And>nma i r' ts. \<lbrakk>i < length ts; ts ! i \<Rightarrow> r'; ts ! i = C nma \<bullet>\<bullet> ts; t' = C nma \<bullet>\<bullet> ts[i := r']\<rbrakk> \<Longrightarrow> \<exists>rs'. dterm t' = C nm' \<bullet>\<bullet> rs' \<and> (nm = nm' \<longrightarrow> no_match rs rs') 8. \<And>s i r' ts. \<lbrakk>i < length ts; ts ! i \<Rightarrow> r'; ts ! i = \<Lambda> s \<bullet>\<bullet> ts; t' = \<Lambda> s \<bullet>\<bullet> ts[i := r']\<rbrakk> \<Longrightarrow> \<exists>rs'. dterm t' = C nm' \<bullet>\<bullet> rs' \<and> (nm = nm' \<longrightarrow> no_match rs rs') 9. \<And>v i r' ts. \<lbrakk>i < length ts; ts ! i \<Rightarrow> r'; ts ! i = term v \<bullet>\<bullet> ts; t' = term v \<bullet>\<bullet> ts[i := r']\<rbrakk> \<Longrightarrow> \<exists>rs'. dterm t' = C nm' \<bullet>\<bullet> rs' \<and> (nm = nm' \<longrightarrow> no_match rs rs') [PROOF STEP] obtain vs' where [simp]: "v' = C\<^sub>U nm' vs'" "vs \<Rightarrow> vs'" [PROOF STATE] proof (prove) goal (1 subgoal): 1. (\<And>vs'. \<lbrakk>v' = C\<^sub>U nm' vs'; vs \<Rightarrow> vs'\<rbrakk> \<Longrightarrow> thesis) \<Longrightarrow> thesis [PROOF STEP] using \<open>v\<Rightarrow>v'\<close> [PROOF STATE] proof (prove) using this: v \<Rightarrow> v' goal (1 subgoal): 1. (\<And>vs'. \<lbrakk>v' = C\<^sub>U nm' vs'; vs \<Rightarrow> vs'\<rbrakk> \<Longrightarrow> thesis) \<Longrightarrow> thesis [PROOF STEP] by(rule Red_ml.cases) auto [PROOF STATE] proof (state) this: v' = C\<^sub>U nm' vs' vs \<Rightarrow> vs' goal (9 subgoals): 1. \<And>nma vs ts. \<lbrakk>ts ! i = term (C\<^sub>U nma vs) \<bullet>\<bullet> ts; t' = (C nma \<bullet>\<bullet> map term (rev vs)) \<bullet>\<bullet> ts\<rbrakk> \<Longrightarrow> \<exists>rs'. dterm t' = C nm' \<bullet>\<bullet> rs' \<and> (nm = nm' \<longrightarrow> no_match rs rs') 2. \<And>x vs ts. \<lbrakk>ts ! i = term (V\<^sub>U x vs) \<bullet>\<bullet> ts; t' = (V x \<bullet>\<bullet> map term (rev vs)) \<bullet>\<bullet> ts\<rbrakk> \<Longrightarrow> \<exists>rs'. dterm t' = C nm' \<bullet>\<bullet> rs' \<and> (nm = nm' \<longrightarrow> no_match rs rs') 3. \<And>vf vs n ts. \<lbrakk>ts ! i = term (Clo vf vs n) \<bullet>\<bullet> ts; t' = \<Lambda> (term (apply (lift 0 (Clo vf vs n)) (V\<^sub>U 0 []))) \<bullet>\<bullet> ts\<rbrakk> \<Longrightarrow> \<exists>rs'. dterm t' = C nm' \<bullet>\<bullet> rs' \<and> (nm = nm' \<longrightarrow> no_match rs rs') 4. \<And>s s' ts. \<lbrakk>ts ! i = \<Lambda> s \<bullet>\<bullet> ts; t' = \<Lambda> s' \<bullet>\<bullet> ts; s \<Rightarrow> s'\<rbrakk> \<Longrightarrow> \<exists>rs'. dterm t' = C nm' \<bullet>\<bullet> rs' \<and> (nm = nm' \<longrightarrow> no_match rs rs') 5. \<And>v v' ts. \<lbrakk>ts ! i = term v \<bullet>\<bullet> ts; t' = term v' \<bullet>\<bullet> ts; v \<Rightarrow> v'\<rbrakk> \<Longrightarrow> \<exists>rs'. dterm t' = C nm' \<bullet>\<bullet> rs' \<and> (nm = nm' \<longrightarrow> no_match rs rs') 6. \<And>x i r' ts. \<lbrakk>i < length ts; ts ! i \<Rightarrow> r'; ts ! i = V x \<bullet>\<bullet> ts; t' = V x \<bullet>\<bullet> ts[i := r']\<rbrakk> \<Longrightarrow> \<exists>rs'. dterm t' = C nm' \<bullet>\<bullet> rs' \<and> (nm = nm' \<longrightarrow> no_match rs rs') 7. \<And>nma i r' ts. \<lbrakk>i < length ts; ts ! i \<Rightarrow> r'; ts ! i = C nma \<bullet>\<bullet> ts; t' = C nma \<bullet>\<bullet> ts[i := r']\<rbrakk> \<Longrightarrow> \<exists>rs'. dterm t' = C nm' \<bullet>\<bullet> rs' \<and> (nm = nm' \<longrightarrow> no_match rs rs') 8. \<And>s i r' ts. \<lbrakk>i < length ts; ts ! i \<Rightarrow> r'; ts ! i = \<Lambda> s \<bullet>\<bullet> ts; t' = \<Lambda> s \<bullet>\<bullet> ts[i := r']\<rbrakk> \<Longrightarrow> \<exists>rs'. dterm t' = C nm' \<bullet>\<bullet> rs' \<and> (nm = nm' \<longrightarrow> no_match rs rs') 9. \<And>v i r' ts. \<lbrakk>i < length ts; ts ! i \<Rightarrow> r'; ts ! i = term v \<bullet>\<bullet> ts; t' = term v \<bullet>\<bullet> ts[i := r']\<rbrakk> \<Longrightarrow> \<exists>rs'. dterm t' = C nm' \<bullet>\<bullet> rs' \<and> (nm = nm' \<longrightarrow> no_match rs rs') [PROOF STEP] obtain v' k where [arith]: "k<size vs" and "vs!k \<Rightarrow> v'" and [simp]: "vs' = vs[k := v']" [PROOF STATE] proof (prove) goal (1 subgoal): 1. (\<And>k v'. \<lbrakk>k < length vs; vs ! k \<Rightarrow> v'; vs' = vs[k := v']\<rbrakk> \<Longrightarrow> thesis) \<Longrightarrow> thesis [PROOF STEP] using Red_ml_list_nth[OF \<open>vs\<Rightarrow>vs'\<close>] [PROOF STATE] proof (prove) using this: \<exists>v' k. k < length vs \<and> vs ! k \<Rightarrow> v' \<and> vs' = vs[k := v'] goal (1 subgoal): 1. (\<And>k v'. \<lbrakk>k < length vs; vs ! k \<Rightarrow> v'; vs' = vs[k := v']\<rbrakk> \<Longrightarrow> thesis) \<Longrightarrow> thesis [PROOF STEP] by fastforce [PROOF STATE] proof (state) this: k < length vs vs ! k \<Rightarrow> v' vs' = vs[k := v'] goal (9 subgoals): 1. \<And>nma vs ts. \<lbrakk>ts ! i = term (C\<^sub>U nma vs) \<bullet>\<bullet> ts; t' = (C nma \<bullet>\<bullet> map term (rev vs)) \<bullet>\<bullet> ts\<rbrakk> \<Longrightarrow> \<exists>rs'. dterm t' = C nm' \<bullet>\<bullet> rs' \<and> (nm = nm' \<longrightarrow> no_match rs rs') 2. \<And>x vs ts. \<lbrakk>ts ! i = term (V\<^sub>U x vs) \<bullet>\<bullet> ts; t' = (V x \<bullet>\<bullet> map term (rev vs)) \<bullet>\<bullet> ts\<rbrakk> \<Longrightarrow> \<exists>rs'. dterm t' = C nm' \<bullet>\<bullet> rs' \<and> (nm = nm' \<longrightarrow> no_match rs rs') 3. \<And>vf vs n ts. \<lbrakk>ts ! i = term (Clo vf vs n) \<bullet>\<bullet> ts; t' = \<Lambda> (term (apply (lift 0 (Clo vf vs n)) (V\<^sub>U 0 []))) \<bullet>\<bullet> ts\<rbrakk> \<Longrightarrow> \<exists>rs'. dterm t' = C nm' \<bullet>\<bullet> rs' \<and> (nm = nm' \<longrightarrow> no_match rs rs') 4. \<And>s s' ts. \<lbrakk>ts ! i = \<Lambda> s \<bullet>\<bullet> ts; t' = \<Lambda> s' \<bullet>\<bullet> ts; s \<Rightarrow> s'\<rbrakk> \<Longrightarrow> \<exists>rs'. dterm t' = C nm' \<bullet>\<bullet> rs' \<and> (nm = nm' \<longrightarrow> no_match rs rs') 5. \<And>v v' ts. \<lbrakk>ts ! i = term v \<bullet>\<bullet> ts; t' = term v' \<bullet>\<bullet> ts; v \<Rightarrow> v'\<rbrakk> \<Longrightarrow> \<exists>rs'. dterm t' = C nm' \<bullet>\<bullet> rs' \<and> (nm = nm' \<longrightarrow> no_match rs rs') 6. \<And>x i r' ts. \<lbrakk>i < length ts; ts ! i \<Rightarrow> r'; ts ! i = V x \<bullet>\<bullet> ts; t' = V x \<bullet>\<bullet> ts[i := r']\<rbrakk> \<Longrightarrow> \<exists>rs'. dterm t' = C nm' \<bullet>\<bullet> rs' \<and> (nm = nm' \<longrightarrow> no_match rs rs') 7. \<And>nma i r' ts. \<lbrakk>i < length ts; ts ! i \<Rightarrow> r'; ts ! i = C nma \<bullet>\<bullet> ts; t' = C nma \<bullet>\<bullet> ts[i := r']\<rbrakk> \<Longrightarrow> \<exists>rs'. dterm t' = C nm' \<bullet>\<bullet> rs' \<and> (nm = nm' \<longrightarrow> no_match rs rs') 8. \<And>s i r' ts. \<lbrakk>i < length ts; ts ! i \<Rightarrow> r'; ts ! i = \<Lambda> s \<bullet>\<bullet> ts; t' = \<Lambda> s \<bullet>\<bullet> ts[i := r']\<rbrakk> \<Longrightarrow> \<exists>rs'. dterm t' = C nm' \<bullet>\<bullet> rs' \<and> (nm = nm' \<longrightarrow> no_match rs rs') 9. \<And>v i r' ts. \<lbrakk>i < length ts; ts ! i \<Rightarrow> r'; ts ! i = term v \<bullet>\<bullet> ts; t' = term v \<bullet>\<bullet> ts[i := r']\<rbrakk> \<Longrightarrow> \<exists>rs'. dterm t' = C nm' \<bullet>\<bullet> rs' \<and> (nm = nm' \<longrightarrow> no_match rs rs') [PROOF STEP] show ?thesis (is "\<exists>rs'. ?P rs' \<and> ?Q rs'") [PROOF STATE] proof (prove) goal (1 subgoal): 1. \<exists>rs'. dterm t' = C nm' \<bullet>\<bullet> rs' \<and> (nm = nm' \<longrightarrow> no_match rs rs') [PROOF STEP] proof [PROOF STATE] proof (state) goal (1 subgoal): 1. dterm t' = C nm' \<bullet>\<bullet> ?rs' \<and> (nm = nm' \<longrightarrow> no_match rs ?rs') [PROOF STEP] let ?rs' = "map dterm ((map term (rev vs) @ ts'')[(size vs - k - 1):=term v'])" [PROOF STATE] proof (state) goal (1 subgoal): 1. dterm t' = C nm' \<bullet>\<bullet> ?rs' \<and> (nm = nm' \<longrightarrow> no_match rs ?rs') [PROOF STEP] have "?P ?rs'" [PROOF STATE] proof (prove) goal (1 subgoal): 1. dterm t' = C nm' \<bullet>\<bullet> map dterm ((map term (rev vs) @ ts'')[length vs - k - 1 := term v']) [PROOF STEP] using ob 5 [PROOF STATE] proof (prove) using this: j < length ts j < length ps ps ! j = C nm \<bullet>\<bullet> rs dterm (ts ! j) = C nm' \<bullet>\<bullet> rs' nm = nm' \<longrightarrow> no_match rs rs' ts ! i = term v \<bullet>\<bullet> ts'' t' = term v'__ \<bullet>\<bullet> ts'' v \<Rightarrow> v'__ goal (1 subgoal): 1. dterm t' = C nm' \<bullet>\<bullet> map dterm ((map term (rev vs) @ ts'')[length vs - k - 1 := term v']) [PROOF STEP] by(simp add: list_update_append map_update[symmetric] rev_update) [PROOF STATE] proof (state) this: dterm t' = C nm' \<bullet>\<bullet> map dterm ((map term (rev vs) @ ts'')[length vs - k - 1 := term v']) goal (1 subgoal): 1. dterm t' = C nm' \<bullet>\<bullet> ?rs' \<and> (nm = nm' \<longrightarrow> no_match rs ?rs') [PROOF STEP] moreover [PROOF STATE] proof (state) this: dterm t' = C nm' \<bullet>\<bullet> map dterm ((map term (rev vs) @ ts'')[length vs - k - 1 := term v']) goal (1 subgoal): 1. dterm t' = C nm' \<bullet>\<bullet> ?rs' \<and> (nm = nm' \<longrightarrow> no_match rs ?rs') [PROOF STEP] have "?Q ?rs'" [PROOF STATE] proof (prove) goal (1 subgoal): 1. nm = nm' \<longrightarrow> no_match rs (map dterm ((map term (rev vs) @ ts'')[length vs - k - 1 := term v'])) [PROOF STEP] apply rule [PROOF STATE] proof (prove) goal (1 subgoal): 1. nm = nm' \<Longrightarrow> no_match rs (map dterm ((map term (rev vs) @ ts'')[length vs - k - 1 := term v'])) [PROOF STEP] apply(rule "1.hyps"[OF _ ob(3)]) [PROOF STATE] proof (prove) goal (7 subgoals): 1. nm = nm' \<Longrightarrow> j < min (length dts) (length ps) 2. nm = nm' \<Longrightarrow> dts ! j = C ?xb2 \<bullet>\<bullet> ?xd2 3. nm = nm' \<Longrightarrow> nm = ?xb2 4. nm = nm' \<Longrightarrow> length vs - k - 1 < length (map term (rev vs) @ ts'') 5. nm = nm' \<Longrightarrow> (map term (rev vs) @ ts'') ! (length vs - k - 1) \<Rightarrow> term v' 6. nm = nm' \<Longrightarrow> no_match rs ?xd2 7. nm = nm' \<Longrightarrow> ?xd2 = map dterm (map term (rev vs) @ ts'') [PROOF STEP] using "1.prems" 5 ob [PROOF STATE] proof (prove) using this: i < length ts ts ! i \<Rightarrow> t' no_match ps dts dts = map dterm ts ts ! i = term v \<bullet>\<bullet> ts'' t' = term v'__ \<bullet>\<bullet> ts'' v \<Rightarrow> v'__ j < length ts j < length ps ps ! j = C nm \<bullet>\<bullet> rs dterm (ts ! j) = C nm' \<bullet>\<bullet> rs' nm = nm' \<longrightarrow> no_match rs rs' goal (7 subgoals): 1. nm = nm' \<Longrightarrow> j < min (length dts) (length ps) 2. nm = nm' \<Longrightarrow> dts ! j = C ?xb2 \<bullet>\<bullet> ?xd2 3. nm = nm' \<Longrightarrow> nm = ?xb2 4. nm = nm' \<Longrightarrow> length vs - k - 1 < length (map term (rev vs) @ ts'') 5. nm = nm' \<Longrightarrow> (map term (rev vs) @ ts'') ! (length vs - k - 1) \<Rightarrow> term v' 6. nm = nm' \<Longrightarrow> no_match rs ?xd2 7. nm = nm' \<Longrightarrow> ?xd2 = map dterm (map term (rev vs) @ ts'') [PROOF STEP] apply (auto simp:nth_append rev_nth ctxt_term[OF \<open>vs!k \<Rightarrow> v'\<close>] simp del: map_map) [PROOF STATE] proof (prove) goal: No subgoals! [PROOF STEP] done [PROOF STATE] proof (state) this: nm = nm' \<longrightarrow> no_match rs (map dterm ((map term (rev vs) @ ts'')[length vs - k - 1 := term v'])) goal (1 subgoal): 1. dterm t' = C nm' \<bullet>\<bullet> ?rs' \<and> (nm = nm' \<longrightarrow> no_match rs ?rs') [PROOF STEP] ultimately [PROOF STATE] proof (chain) picking this: dterm t' = C nm' \<bullet>\<bullet> map dterm ((map term (rev vs) @ ts'')[length vs - k - 1 := term v']) nm = nm' \<longrightarrow> no_match rs (map dterm ((map term (rev vs) @ ts'')[length vs - k - 1 := term v'])) [PROOF STEP] show "?P ?rs' \<and> ?Q ?rs'" [PROOF STATE] proof (prove) using this: dterm t' = C nm' \<bullet>\<bullet> map dterm ((map term (rev vs) @ ts'')[length vs - k - 1 := term v']) nm = nm' \<longrightarrow> no_match rs (map dterm ((map term (rev vs) @ ts'')[length vs - k - 1 := term v'])) goal (1 subgoal): 1. dterm t' = C nm' \<bullet>\<bullet> map dterm ((map term (rev vs) @ ts'')[length vs - k - 1 := term v']) \<and> (nm = nm' \<longrightarrow> no_match rs (map dterm ((map term (rev vs) @ ts'')[length vs - k - 1 := term v']))) [PROOF STEP] .. [PROOF STATE] proof (state) this: dterm t' = C nm' \<bullet>\<bullet> map dterm ((map term (rev vs) @ ts'')[length vs - k - 1 := term v']) \<and> (nm = nm' \<longrightarrow> no_match rs (map dterm ((map term (rev vs) @ ts'')[length vs - k - 1 := term v']))) goal: No subgoals! [PROOF STEP] qed [PROOF STATE] proof (state) this: \<exists>rs'. dterm t' = C nm' \<bullet>\<bullet> rs' \<and> (nm = nm' \<longrightarrow> no_match rs rs') goal (8 subgoals): 1. \<And>nma vs ts. \<lbrakk>ts ! i = term (C\<^sub>U nma vs) \<bullet>\<bullet> ts; t' = (C nma \<bullet>\<bullet> map term (rev vs)) \<bullet>\<bullet> ts\<rbrakk> \<Longrightarrow> \<exists>rs'. dterm t' = C nm' \<bullet>\<bullet> rs' \<and> (nm = nm' \<longrightarrow> no_match rs rs') 2. \<And>x vs ts. \<lbrakk>ts ! i = term (V\<^sub>U x vs) \<bullet>\<bullet> ts; t' = (V x \<bullet>\<bullet> map term (rev vs)) \<bullet>\<bullet> ts\<rbrakk> \<Longrightarrow> \<exists>rs'. dterm t' = C nm' \<bullet>\<bullet> rs' \<and> (nm = nm' \<longrightarrow> no_match rs rs') 3. \<And>vf vs n ts. \<lbrakk>ts ! i = term (Clo vf vs n) \<bullet>\<bullet> ts; t' = \<Lambda> (term (apply (lift 0 (Clo vf vs n)) (V\<^sub>U 0 []))) \<bullet>\<bullet> ts\<rbrakk> \<Longrightarrow> \<exists>rs'. dterm t' = C nm' \<bullet>\<bullet> rs' \<and> (nm = nm' \<longrightarrow> no_match rs rs') 4. \<And>s s' ts. \<lbrakk>ts ! i = \<Lambda> s \<bullet>\<bullet> ts; t' = \<Lambda> s' \<bullet>\<bullet> ts; s \<Rightarrow> s'\<rbrakk> \<Longrightarrow> \<exists>rs'. dterm t' = C nm' \<bullet>\<bullet> rs' \<and> (nm = nm' \<longrightarrow> no_match rs rs') 5. \<And>x i r' ts. \<lbrakk>i < length ts; ts ! i \<Rightarrow> r'; ts ! i = V x \<bullet>\<bullet> ts; t' = V x \<bullet>\<bullet> ts[i := r']\<rbrakk> \<Longrightarrow> \<exists>rs'. dterm t' = C nm' \<bullet>\<bullet> rs' \<and> (nm = nm' \<longrightarrow> no_match rs rs') 6. \<And>nma i r' ts. \<lbrakk>i < length ts; ts ! i \<Rightarrow> r'; ts ! i = C nma \<bullet>\<bullet> ts; t' = C nma \<bullet>\<bullet> ts[i := r']\<rbrakk> \<Longrightarrow> \<exists>rs'. dterm t' = C nm' \<bullet>\<bullet> rs' \<and> (nm = nm' \<longrightarrow> no_match rs rs') 7. \<And>s i r' ts. \<lbrakk>i < length ts; ts ! i \<Rightarrow> r'; ts ! i = \<Lambda> s \<bullet>\<bullet> ts; t' = \<Lambda> s \<bullet>\<bullet> ts[i := r']\<rbrakk> \<Longrightarrow> \<exists>rs'. dterm t' = C nm' \<bullet>\<bullet> rs' \<and> (nm = nm' \<longrightarrow> no_match rs rs') 8. \<And>v i r' ts. \<lbrakk>i < length ts; ts ! i \<Rightarrow> r'; ts ! i = term v \<bullet>\<bullet> ts; t' = term v \<bullet>\<bullet> ts[i := r']\<rbrakk> \<Longrightarrow> \<exists>rs'. dterm t' = C nm' \<bullet>\<bullet> rs' \<and> (nm = nm' \<longrightarrow> no_match rs rs') [PROOF STEP] next [PROOF STATE] proof (state) goal (8 subgoals): 1. \<And>nma vs ts. \<lbrakk>ts ! i = term (C\<^sub>U nma vs) \<bullet>\<bullet> ts; t' = (C nma \<bullet>\<bullet> map term (rev vs)) \<bullet>\<bullet> ts\<rbrakk> \<Longrightarrow> \<exists>rs'. dterm t' = C nm' \<bullet>\<bullet> rs' \<and> (nm = nm' \<longrightarrow> no_match rs rs') 2. \<And>x vs ts. \<lbrakk>ts ! i = term (V\<^sub>U x vs) \<bullet>\<bullet> ts; t' = (V x \<bullet>\<bullet> map term (rev vs)) \<bullet>\<bullet> ts\<rbrakk> \<Longrightarrow> \<exists>rs'. dterm t' = C nm' \<bullet>\<bullet> rs' \<and> (nm = nm' \<longrightarrow> no_match rs rs') 3. \<And>vf vs n ts. \<lbrakk>ts ! i = term (Clo vf vs n) \<bullet>\<bullet> ts; t' = \<Lambda> (term (apply (lift 0 (Clo vf vs n)) (V\<^sub>U 0 []))) \<bullet>\<bullet> ts\<rbrakk> \<Longrightarrow> \<exists>rs'. dterm t' = C nm' \<bullet>\<bullet> rs' \<and> (nm = nm' \<longrightarrow> no_match rs rs') 4. \<And>s s' ts. \<lbrakk>ts ! i = \<Lambda> s \<bullet>\<bullet> ts; t' = \<Lambda> s' \<bullet>\<bullet> ts; s \<Rightarrow> s'\<rbrakk> \<Longrightarrow> \<exists>rs'. dterm t' = C nm' \<bullet>\<bullet> rs' \<and> (nm = nm' \<longrightarrow> no_match rs rs') 5. \<And>x i r' ts. \<lbrakk>i < length ts; ts ! i \<Rightarrow> r'; ts ! i = V x \<bullet>\<bullet> ts; t' = V x \<bullet>\<bullet> ts[i := r']\<rbrakk> \<Longrightarrow> \<exists>rs'. dterm t' = C nm' \<bullet>\<bullet> rs' \<and> (nm = nm' \<longrightarrow> no_match rs rs') 6. \<And>nma i r' ts. \<lbrakk>i < length ts; ts ! i \<Rightarrow> r'; ts ! i = C nma \<bullet>\<bullet> ts; t' = C nma \<bullet>\<bullet> ts[i := r']\<rbrakk> \<Longrightarrow> \<exists>rs'. dterm t' = C nm' \<bullet>\<bullet> rs' \<and> (nm = nm' \<longrightarrow> no_match rs rs') 7. \<And>s i r' ts. \<lbrakk>i < length ts; ts ! i \<Rightarrow> r'; ts ! i = \<Lambda> s \<bullet>\<bullet> ts; t' = \<Lambda> s \<bullet>\<bullet> ts[i := r']\<rbrakk> \<Longrightarrow> \<exists>rs'. dterm t' = C nm' \<bullet>\<bullet> rs' \<and> (nm = nm' \<longrightarrow> no_match rs rs') 8. \<And>v i r' ts. \<lbrakk>i < length ts; ts ! i \<Rightarrow> r'; ts ! i = term v \<bullet>\<bullet> ts; t' = term v \<bullet>\<bullet> ts[i := r']\<rbrakk> \<Longrightarrow> \<exists>rs'. dterm t' = C nm' \<bullet>\<bullet> rs' \<and> (nm = nm' \<longrightarrow> no_match rs rs') [PROOF STEP] case (7 nm'' k r' ts'') [PROOF STATE] proof (state) this: k < length ts'' ts'' ! k \<Rightarrow> r' ts ! i = C nm'' \<bullet>\<bullet> ts'' t' = C nm'' \<bullet>\<bullet> ts''[k := r'] goal (8 subgoals): 1. \<And>nma vs ts. \<lbrakk>ts ! i = term (C\<^sub>U nma vs) \<bullet>\<bullet> ts; t' = (C nma \<bullet>\<bullet> map term (rev vs)) \<bullet>\<bullet> ts\<rbrakk> \<Longrightarrow> \<exists>rs'. dterm t' = C nm' \<bullet>\<bullet> rs' \<and> (nm = nm' \<longrightarrow> no_match rs rs') 2. \<And>x vs ts. \<lbrakk>ts ! i = term (V\<^sub>U x vs) \<bullet>\<bullet> ts; t' = (V x \<bullet>\<bullet> map term (rev vs)) \<bullet>\<bullet> ts\<rbrakk> \<Longrightarrow> \<exists>rs'. dterm t' = C nm' \<bullet>\<bullet> rs' \<and> (nm = nm' \<longrightarrow> no_match rs rs') 3. \<And>vf vs n ts. \<lbrakk>ts ! i = term (Clo vf vs n) \<bullet>\<bullet> ts; t' = \<Lambda> (term (apply (lift 0 (Clo vf vs n)) (V\<^sub>U 0 []))) \<bullet>\<bullet> ts\<rbrakk> \<Longrightarrow> \<exists>rs'. dterm t' = C nm' \<bullet>\<bullet> rs' \<and> (nm = nm' \<longrightarrow> no_match rs rs') 4. \<And>s s' ts. \<lbrakk>ts ! i = \<Lambda> s \<bullet>\<bullet> ts; t' = \<Lambda> s' \<bullet>\<bullet> ts; s \<Rightarrow> s'\<rbrakk> \<Longrightarrow> \<exists>rs'. dterm t' = C nm' \<bullet>\<bullet> rs' \<and> (nm = nm' \<longrightarrow> no_match rs rs') 5. \<And>x i r' ts. \<lbrakk>i < length ts; ts ! i \<Rightarrow> r'; ts ! i = V x \<bullet>\<bullet> ts; t' = V x \<bullet>\<bullet> ts[i := r']\<rbrakk> \<Longrightarrow> \<exists>rs'. dterm t' = C nm' \<bullet>\<bullet> rs' \<and> (nm = nm' \<longrightarrow> no_match rs rs') 6. \<And>nma i r' ts. \<lbrakk>i < length ts; ts ! i \<Rightarrow> r'; ts ! i = C nma \<bullet>\<bullet> ts; t' = C nma \<bullet>\<bullet> ts[i := r']\<rbrakk> \<Longrightarrow> \<exists>rs'. dterm t' = C nm' \<bullet>\<bullet> rs' \<and> (nm = nm' \<longrightarrow> no_match rs rs') 7. \<And>s i r' ts. \<lbrakk>i < length ts; ts ! i \<Rightarrow> r'; ts ! i = \<Lambda> s \<bullet>\<bullet> ts; t' = \<Lambda> s \<bullet>\<bullet> ts[i := r']\<rbrakk> \<Longrightarrow> \<exists>rs'. dterm t' = C nm' \<bullet>\<bullet> rs' \<and> (nm = nm' \<longrightarrow> no_match rs rs') 8. \<And>v i r' ts. \<lbrakk>i < length ts; ts ! i \<Rightarrow> r'; ts ! i = term v \<bullet>\<bullet> ts; t' = term v \<bullet>\<bullet> ts[i := r']\<rbrakk> \<Longrightarrow> \<exists>rs'. dterm t' = C nm' \<bullet>\<bullet> rs' \<and> (nm = nm' \<longrightarrow> no_match rs rs') [PROOF STEP] show ?thesis (is "\<exists>rs'. ?P rs'") [PROOF STATE] proof (prove) goal (1 subgoal): 1. \<exists>rs'. dterm t' = C nm' \<bullet>\<bullet> rs' \<and> (nm = nm' \<longrightarrow> no_match rs rs') [PROOF STEP] proof [PROOF STATE] proof (state) goal (1 subgoal): 1. dterm t' = C nm' \<bullet>\<bullet> ?rs' \<and> (nm = nm' \<longrightarrow> no_match rs ?rs') [PROOF STEP] show "?P(map dterm (ts''[k := r']))" [PROOF STATE] proof (prove) goal (1 subgoal): 1. dterm t' = C nm' \<bullet>\<bullet> map dterm (ts''[k := r']) \<and> (nm = nm' \<longrightarrow> no_match rs (map dterm (ts''[k := r']))) [PROOF STEP] using 7 ob [PROOF STATE] proof (prove) using this: k < length ts'' ts'' ! k \<Rightarrow> r' ts ! i = C nm'' \<bullet>\<bullet> ts'' t' = C nm'' \<bullet>\<bullet> ts''[k := r'] j < length ts j < length ps ps ! j = C nm \<bullet>\<bullet> rs dterm (ts ! j) = C nm' \<bullet>\<bullet> rs' nm = nm' \<longrightarrow> no_match rs rs' goal (1 subgoal): 1. dterm t' = C nm' \<bullet>\<bullet> map dterm (ts''[k := r']) \<and> (nm = nm' \<longrightarrow> no_match rs (map dterm (ts''[k := r']))) [PROOF STEP] apply clarsimp [PROOF STATE] proof (prove) goal (1 subgoal): 1. \<lbrakk>k < length ts''; ts'' ! k \<Rightarrow> r'; ts ! i = C nm' \<bullet>\<bullet> ts''; t' = C nm' \<bullet>\<bullet> ts''[k := r']; i < length ts; i < length ps; ps ! i = C nm' \<bullet>\<bullet> rs; no_match rs (map dterm ts''); nm'' = nm'; rs' = map dterm ts''; nm = nm'\<rbrakk> \<Longrightarrow> no_match rs (map dterm (ts''[k := r'])) [PROOF STEP] apply(rule "1.hyps"[OF _ ob(3)]) [PROOF STATE] proof (prove) goal (7 subgoals): 1. \<lbrakk>k < length ts''; ts'' ! k \<Rightarrow> r'; ts ! i = C nm' \<bullet>\<bullet> ts''; t' = C nm' \<bullet>\<bullet> ts''[k := r']; i < length ts; i < length ps; ps ! i = C nm' \<bullet>\<bullet> rs; no_match rs (map dterm ts''); nm'' = nm'; rs' = map dterm ts''; nm = nm'\<rbrakk> \<Longrightarrow> j < min (length dts) (length ps) 2. \<lbrakk>k < length ts''; ts'' ! k \<Rightarrow> r'; ts ! i = C nm' \<bullet>\<bullet> ts''; t' = C nm' \<bullet>\<bullet> ts''[k := r']; i < length ts; i < length ps; ps ! i = C nm' \<bullet>\<bullet> rs; no_match rs (map dterm ts''); nm'' = nm'; rs' = map dterm ts''; nm = nm'\<rbrakk> \<Longrightarrow> dts ! j = C ?xb16 \<bullet>\<bullet> ?xd16 3. \<lbrakk>k < length ts''; ts'' ! k \<Rightarrow> r'; ts ! i = C nm' \<bullet>\<bullet> ts''; t' = C nm' \<bullet>\<bullet> ts''[k := r']; i < length ts; i < length ps; ps ! i = C nm' \<bullet>\<bullet> rs; no_match rs (map dterm ts''); nm'' = nm'; rs' = map dterm ts''; nm = nm'\<rbrakk> \<Longrightarrow> nm = ?xb16 4. \<lbrakk>k < length ts''; ts'' ! k \<Rightarrow> r'; ts ! i = C nm' \<bullet>\<bullet> ts''; t' = C nm' \<bullet>\<bullet> ts''[k := r']; i < length ts; i < length ps; ps ! i = C nm' \<bullet>\<bullet> rs; no_match rs (map dterm ts''); nm'' = nm'; rs' = map dterm ts''; nm = nm'\<rbrakk> \<Longrightarrow> k < length ts'' 5. \<lbrakk>k < length ts''; ts'' ! k \<Rightarrow> r'; ts ! i = C nm' \<bullet>\<bullet> ts''; t' = C nm' \<bullet>\<bullet> ts''[k := r']; i < length ts; i < length ps; ps ! i = C nm' \<bullet>\<bullet> rs; no_match rs (map dterm ts''); nm'' = nm'; rs' = map dterm ts''; nm = nm'\<rbrakk> \<Longrightarrow> ts'' ! k \<Rightarrow> r' 6. \<lbrakk>k < length ts''; ts'' ! k \<Rightarrow> r'; ts ! i = C nm' \<bullet>\<bullet> ts''; t' = C nm' \<bullet>\<bullet> ts''[k := r']; i < length ts; i < length ps; ps ! i = C nm' \<bullet>\<bullet> rs; no_match rs (map dterm ts''); nm'' = nm'; rs' = map dterm ts''; nm = nm'\<rbrakk> \<Longrightarrow> no_match rs ?xd16 7. \<lbrakk>k < length ts''; ts'' ! k \<Rightarrow> r'; ts ! i = C nm' \<bullet>\<bullet> ts''; t' = C nm' \<bullet>\<bullet> ts''[k := r']; i < length ts; i < length ps; ps ! i = C nm' \<bullet>\<bullet> rs; no_match rs (map dterm ts''); nm'' = nm'; rs' = map dterm ts''; nm = nm'\<rbrakk> \<Longrightarrow> ?xd16 = map dterm ts'' [PROOF STEP] using 7 "1.prems" ob [PROOF STATE] proof (prove) using this: k < length ts'' ts'' ! k \<Rightarrow> r' ts ! i = C nm'' \<bullet>\<bullet> ts'' t' = C nm'' \<bullet>\<bullet> ts''[k := r'] i < length ts ts ! i \<Rightarrow> t' no_match ps dts dts = map dterm ts j < length ts j < length ps ps ! j = C nm \<bullet>\<bullet> rs dterm (ts ! j) = C nm' \<bullet>\<bullet> rs' nm = nm' \<longrightarrow> no_match rs rs' goal (7 subgoals): 1. \<lbrakk>k < length ts''; ts'' ! k \<Rightarrow> r'; ts ! i = C nm' \<bullet>\<bullet> ts''; t' = C nm' \<bullet>\<bullet> ts''[k := r']; i < length ts; i < length ps; ps ! i = C nm' \<bullet>\<bullet> rs; no_match rs (map dterm ts''); nm'' = nm'; rs' = map dterm ts''; nm = nm'\<rbrakk> \<Longrightarrow> j < min (length dts) (length ps) 2. \<lbrakk>k < length ts''; ts'' ! k \<Rightarrow> r'; ts ! i = C nm' \<bullet>\<bullet> ts''; t' = C nm' \<bullet>\<bullet> ts''[k := r']; i < length ts; i < length ps; ps ! i = C nm' \<bullet>\<bullet> rs; no_match rs (map dterm ts''); nm'' = nm'; rs' = map dterm ts''; nm = nm'\<rbrakk> \<Longrightarrow> dts ! j = C ?xb16 \<bullet>\<bullet> ?xd16 3. \<lbrakk>k < length ts''; ts'' ! k \<Rightarrow> r'; ts ! i = C nm' \<bullet>\<bullet> ts''; t' = C nm' \<bullet>\<bullet> ts''[k := r']; i < length ts; i < length ps; ps ! i = C nm' \<bullet>\<bullet> rs; no_match rs (map dterm ts''); nm'' = nm'; rs' = map dterm ts''; nm = nm'\<rbrakk> \<Longrightarrow> nm = ?xb16 4. \<lbrakk>k < length ts''; ts'' ! k \<Rightarrow> r'; ts ! i = C nm' \<bullet>\<bullet> ts''; t' = C nm' \<bullet>\<bullet> ts''[k := r']; i < length ts; i < length ps; ps ! i = C nm' \<bullet>\<bullet> rs; no_match rs (map dterm ts''); nm'' = nm'; rs' = map dterm ts''; nm = nm'\<rbrakk> \<Longrightarrow> k < length ts'' 5. \<lbrakk>k < length ts''; ts'' ! k \<Rightarrow> r'; ts ! i = C nm' \<bullet>\<bullet> ts''; t' = C nm' \<bullet>\<bullet> ts''[k := r']; i < length ts; i < length ps; ps ! i = C nm' \<bullet>\<bullet> rs; no_match rs (map dterm ts''); nm'' = nm'; rs' = map dterm ts''; nm = nm'\<rbrakk> \<Longrightarrow> ts'' ! k \<Rightarrow> r' 6. \<lbrakk>k < length ts''; ts'' ! k \<Rightarrow> r'; ts ! i = C nm' \<bullet>\<bullet> ts''; t' = C nm' \<bullet>\<bullet> ts''[k := r']; i < length ts; i < length ps; ps ! i = C nm' \<bullet>\<bullet> rs; no_match rs (map dterm ts''); nm'' = nm'; rs' = map dterm ts''; nm = nm'\<rbrakk> \<Longrightarrow> no_match rs ?xd16 7. \<lbrakk>k < length ts''; ts'' ! k \<Rightarrow> r'; ts ! i = C nm' \<bullet>\<bullet> ts''; t' = C nm' \<bullet>\<bullet> ts''[k := r']; i < length ts; i < length ps; ps ! i = C nm' \<bullet>\<bullet> rs; no_match rs (map dterm ts''); nm'' = nm'; rs' = map dterm ts''; nm = nm'\<rbrakk> \<Longrightarrow> ?xd16 = map dterm ts'' [PROOF STEP] apply auto [PROOF STATE] proof (prove) goal: No subgoals! [PROOF STEP] done [PROOF STATE] proof (state) this: dterm t' = C nm' \<bullet>\<bullet> map dterm (ts''[k := r']) \<and> (nm = nm' \<longrightarrow> no_match rs (map dterm (ts''[k := r']))) goal: No subgoals! [PROOF STEP] qed [PROOF STATE] proof (state) this: \<exists>rs'. dterm t' = C nm' \<bullet>\<bullet> rs' \<and> (nm = nm' \<longrightarrow> no_match rs rs') goal (7 subgoals): 1. \<And>nma vs ts. \<lbrakk>ts ! i = term (C\<^sub>U nma vs) \<bullet>\<bullet> ts; t' = (C nma \<bullet>\<bullet> map term (rev vs)) \<bullet>\<bullet> ts\<rbrakk> \<Longrightarrow> \<exists>rs'. dterm t' = C nm' \<bullet>\<bullet> rs' \<and> (nm = nm' \<longrightarrow> no_match rs rs') 2. \<And>x vs ts. \<lbrakk>ts ! i = term (V\<^sub>U x vs) \<bullet>\<bullet> ts; t' = (V x \<bullet>\<bullet> map term (rev vs)) \<bullet>\<bullet> ts\<rbrakk> \<Longrightarrow> \<exists>rs'. dterm t' = C nm' \<bullet>\<bullet> rs' \<and> (nm = nm' \<longrightarrow> no_match rs rs') 3. \<And>vf vs n ts. \<lbrakk>ts ! i = term (Clo vf vs n) \<bullet>\<bullet> ts; t' = \<Lambda> (term (apply (lift 0 (Clo vf vs n)) (V\<^sub>U 0 []))) \<bullet>\<bullet> ts\<rbrakk> \<Longrightarrow> \<exists>rs'. dterm t' = C nm' \<bullet>\<bullet> rs' \<and> (nm = nm' \<longrightarrow> no_match rs rs') 4. \<And>s s' ts. \<lbrakk>ts ! i = \<Lambda> s \<bullet>\<bullet> ts; t' = \<Lambda> s' \<bullet>\<bullet> ts; s \<Rightarrow> s'\<rbrakk> \<Longrightarrow> \<exists>rs'. dterm t' = C nm' \<bullet>\<bullet> rs' \<and> (nm = nm' \<longrightarrow> no_match rs rs') 5. \<And>x i r' ts. \<lbrakk>i < length ts; ts ! i \<Rightarrow> r'; ts ! i = V x \<bullet>\<bullet> ts; t' = V x \<bullet>\<bullet> ts[i := r']\<rbrakk> \<Longrightarrow> \<exists>rs'. dterm t' = C nm' \<bullet>\<bullet> rs' \<and> (nm = nm' \<longrightarrow> no_match rs rs') 6. \<And>s i r' ts. \<lbrakk>i < length ts; ts ! i \<Rightarrow> r'; ts ! i = \<Lambda> s \<bullet>\<bullet> ts; t' = \<Lambda> s \<bullet>\<bullet> ts[i := r']\<rbrakk> \<Longrightarrow> \<exists>rs'. dterm t' = C nm' \<bullet>\<bullet> rs' \<and> (nm = nm' \<longrightarrow> no_match rs rs') 7. \<And>v i r' ts. \<lbrakk>i < length ts; ts ! i \<Rightarrow> r'; ts ! i = term v \<bullet>\<bullet> ts; t' = term v \<bullet>\<bullet> ts[i := r']\<rbrakk> \<Longrightarrow> \<exists>rs'. dterm t' = C nm' \<bullet>\<bullet> rs' \<and> (nm = nm' \<longrightarrow> no_match rs rs') [PROOF STEP] next [PROOF STATE] proof (state) goal (7 subgoals): 1. \<And>nma vs ts. \<lbrakk>ts ! i = term (C\<^sub>U nma vs) \<bullet>\<bullet> ts; t' = (C nma \<bullet>\<bullet> map term (rev vs)) \<bullet>\<bullet> ts\<rbrakk> \<Longrightarrow> \<exists>rs'. dterm t' = C nm' \<bullet>\<bullet> rs' \<and> (nm = nm' \<longrightarrow> no_match rs rs') 2. \<And>x vs ts. \<lbrakk>ts ! i = term (V\<^sub>U x vs) \<bullet>\<bullet> ts; t' = (V x \<bullet>\<bullet> map term (rev vs)) \<bullet>\<bullet> ts\<rbrakk> \<Longrightarrow> \<exists>rs'. dterm t' = C nm' \<bullet>\<bullet> rs' \<and> (nm = nm' \<longrightarrow> no_match rs rs') 3. \<And>vf vs n ts. \<lbrakk>ts ! i = term (Clo vf vs n) \<bullet>\<bullet> ts; t' = \<Lambda> (term (apply (lift 0 (Clo vf vs n)) (V\<^sub>U 0 []))) \<bullet>\<bullet> ts\<rbrakk> \<Longrightarrow> \<exists>rs'. dterm t' = C nm' \<bullet>\<bullet> rs' \<and> (nm = nm' \<longrightarrow> no_match rs rs') 4. \<And>s s' ts. \<lbrakk>ts ! i = \<Lambda> s \<bullet>\<bullet> ts; t' = \<Lambda> s' \<bullet>\<bullet> ts; s \<Rightarrow> s'\<rbrakk> \<Longrightarrow> \<exists>rs'. dterm t' = C nm' \<bullet>\<bullet> rs' \<and> (nm = nm' \<longrightarrow> no_match rs rs') 5. \<And>x i r' ts. \<lbrakk>i < length ts; ts ! i \<Rightarrow> r'; ts ! i = V x \<bullet>\<bullet> ts; t' = V x \<bullet>\<bullet> ts[i := r']\<rbrakk> \<Longrightarrow> \<exists>rs'. dterm t' = C nm' \<bullet>\<bullet> rs' \<and> (nm = nm' \<longrightarrow> no_match rs rs') 6. \<And>s i r' ts. \<lbrakk>i < length ts; ts ! i \<Rightarrow> r'; ts ! i = \<Lambda> s \<bullet>\<bullet> ts; t' = \<Lambda> s \<bullet>\<bullet> ts[i := r']\<rbrakk> \<Longrightarrow> \<exists>rs'. dterm t' = C nm' \<bullet>\<bullet> rs' \<and> (nm = nm' \<longrightarrow> no_match rs rs') 7. \<And>v i r' ts. \<lbrakk>i < length ts; ts ! i \<Rightarrow> r'; ts ! i = term v \<bullet>\<bullet> ts; t' = term v \<bullet>\<bullet> ts[i := r']\<rbrakk> \<Longrightarrow> \<exists>rs'. dterm t' = C nm' \<bullet>\<bullet> rs' \<and> (nm = nm' \<longrightarrow> no_match rs rs') [PROOF STEP] case (9 v k r' ts'') [PROOF STATE] proof (state) this: k < length ts'' ts'' ! k \<Rightarrow> r' ts ! i = term v \<bullet>\<bullet> ts'' t' = term v \<bullet>\<bullet> ts''[k := r'] goal (7 subgoals): 1. \<And>nma vs ts. \<lbrakk>ts ! i = term (C\<^sub>U nma vs) \<bullet>\<bullet> ts; t' = (C nma \<bullet>\<bullet> map term (rev vs)) \<bullet>\<bullet> ts\<rbrakk> \<Longrightarrow> \<exists>rs'. dterm t' = C nm' \<bullet>\<bullet> rs' \<and> (nm = nm' \<longrightarrow> no_match rs rs') 2. \<And>x vs ts. \<lbrakk>ts ! i = term (V\<^sub>U x vs) \<bullet>\<bullet> ts; t' = (V x \<bullet>\<bullet> map term (rev vs)) \<bullet>\<bullet> ts\<rbrakk> \<Longrightarrow> \<exists>rs'. dterm t' = C nm' \<bullet>\<bullet> rs' \<and> (nm = nm' \<longrightarrow> no_match rs rs') 3. \<And>vf vs n ts. \<lbrakk>ts ! i = term (Clo vf vs n) \<bullet>\<bullet> ts; t' = \<Lambda> (term (apply (lift 0 (Clo vf vs n)) (V\<^sub>U 0 []))) \<bullet>\<bullet> ts\<rbrakk> \<Longrightarrow> \<exists>rs'. dterm t' = C nm' \<bullet>\<bullet> rs' \<and> (nm = nm' \<longrightarrow> no_match rs rs') 4. \<And>s s' ts. \<lbrakk>ts ! i = \<Lambda> s \<bullet>\<bullet> ts; t' = \<Lambda> s' \<bullet>\<bullet> ts; s \<Rightarrow> s'\<rbrakk> \<Longrightarrow> \<exists>rs'. dterm t' = C nm' \<bullet>\<bullet> rs' \<and> (nm = nm' \<longrightarrow> no_match rs rs') 5. \<And>x i r' ts. \<lbrakk>i < length ts; ts ! i \<Rightarrow> r'; ts ! i = V x \<bullet>\<bullet> ts; t' = V x \<bullet>\<bullet> ts[i := r']\<rbrakk> \<Longrightarrow> \<exists>rs'. dterm t' = C nm' \<bullet>\<bullet> rs' \<and> (nm = nm' \<longrightarrow> no_match rs rs') 6. \<And>s i r' ts. \<lbrakk>i < length ts; ts ! i \<Rightarrow> r'; ts ! i = \<Lambda> s \<bullet>\<bullet> ts; t' = \<Lambda> s \<bullet>\<bullet> ts[i := r']\<rbrakk> \<Longrightarrow> \<exists>rs'. dterm t' = C nm' \<bullet>\<bullet> rs' \<and> (nm = nm' \<longrightarrow> no_match rs rs') 7. \<And>v i r' ts. \<lbrakk>i < length ts; ts ! i \<Rightarrow> r'; ts ! i = term v \<bullet>\<bullet> ts; t' = term v \<bullet>\<bullet> ts[i := r']\<rbrakk> \<Longrightarrow> \<exists>rs'. dterm t' = C nm' \<bullet>\<bullet> rs' \<and> (nm = nm' \<longrightarrow> no_match rs rs') [PROOF STEP] then [PROOF STATE] proof (chain) picking this: k < length ts'' ts'' ! k \<Rightarrow> r' ts ! i = term v \<bullet>\<bullet> ts'' t' = term v \<bullet>\<bullet> ts''[k := r'] [PROOF STEP] obtain vs where [simp]: "v = C\<^sub>U nm' vs" "rs' = map dterm\<^sub>M\<^sub>L (rev vs) @ map dterm ts''" [PROOF STATE] proof (prove) using this: k < length ts'' ts'' ! k \<Rightarrow> r' ts ! i = term v \<bullet>\<bullet> ts'' t' = term v \<bullet>\<bullet> ts''[k := r'] goal (1 subgoal): 1. (\<And>vs. \<lbrakk>v = C\<^sub>U nm' vs; rs' = map dterm\<^sub>M\<^sub>L (rev vs) @ map dterm ts''\<rbrakk> \<Longrightarrow> thesis) \<Longrightarrow> thesis [PROOF STEP] using ob [PROOF STATE] proof (prove) using this: k < length ts'' ts'' ! k \<Rightarrow> r' ts ! i = term v \<bullet>\<bullet> ts'' t' = term v \<bullet>\<bullet> ts''[k := r'] j < length ts j < length ps ps ! j = C nm \<bullet>\<bullet> rs dterm (ts ! j) = C nm' \<bullet>\<bullet> rs' nm = nm' \<longrightarrow> no_match rs rs' goal (1 subgoal): 1. (\<And>vs. \<lbrakk>v = C\<^sub>U nm' vs; rs' = map dterm\<^sub>M\<^sub>L (rev vs) @ map dterm ts''\<rbrakk> \<Longrightarrow> thesis) \<Longrightarrow> thesis [PROOF STEP] by(cases v) auto [PROOF STATE] proof (state) this: v = C\<^sub>U nm' vs rs' = map dterm\<^sub>M\<^sub>L (rev vs) @ map dterm ts'' goal (7 subgoals): 1. \<And>nma vs ts. \<lbrakk>ts ! i = term (C\<^sub>U nma vs) \<bullet>\<bullet> ts; t' = (C nma \<bullet>\<bullet> map term (rev vs)) \<bullet>\<bullet> ts\<rbrakk> \<Longrightarrow> \<exists>rs'. dterm t' = C nm' \<bullet>\<bullet> rs' \<and> (nm = nm' \<longrightarrow> no_match rs rs') 2. \<And>x vs ts. \<lbrakk>ts ! i = term (V\<^sub>U x vs) \<bullet>\<bullet> ts; t' = (V x \<bullet>\<bullet> map term (rev vs)) \<bullet>\<bullet> ts\<rbrakk> \<Longrightarrow> \<exists>rs'. dterm t' = C nm' \<bullet>\<bullet> rs' \<and> (nm = nm' \<longrightarrow> no_match rs rs') 3. \<And>vf vs n ts. \<lbrakk>ts ! i = term (Clo vf vs n) \<bullet>\<bullet> ts; t' = \<Lambda> (term (apply (lift 0 (Clo vf vs n)) (V\<^sub>U 0 []))) \<bullet>\<bullet> ts\<rbrakk> \<Longrightarrow> \<exists>rs'. dterm t' = C nm' \<bullet>\<bullet> rs' \<and> (nm = nm' \<longrightarrow> no_match rs rs') 4. \<And>s s' ts. \<lbrakk>ts ! i = \<Lambda> s \<bullet>\<bullet> ts; t' = \<Lambda> s' \<bullet>\<bullet> ts; s \<Rightarrow> s'\<rbrakk> \<Longrightarrow> \<exists>rs'. dterm t' = C nm' \<bullet>\<bullet> rs' \<and> (nm = nm' \<longrightarrow> no_match rs rs') 5. \<And>x i r' ts. \<lbrakk>i < length ts; ts ! i \<Rightarrow> r'; ts ! i = V x \<bullet>\<bullet> ts; t' = V x \<bullet>\<bullet> ts[i := r']\<rbrakk> \<Longrightarrow> \<exists>rs'. dterm t' = C nm' \<bullet>\<bullet> rs' \<and> (nm = nm' \<longrightarrow> no_match rs rs') 6. \<And>s i r' ts. \<lbrakk>i < length ts; ts ! i \<Rightarrow> r'; ts ! i = \<Lambda> s \<bullet>\<bullet> ts; t' = \<Lambda> s \<bullet>\<bullet> ts[i := r']\<rbrakk> \<Longrightarrow> \<exists>rs'. dterm t' = C nm' \<bullet>\<bullet> rs' \<and> (nm = nm' \<longrightarrow> no_match rs rs') 7. \<And>v i r' ts. \<lbrakk>i < length ts; ts ! i \<Rightarrow> r'; ts ! i = term v \<bullet>\<bullet> ts; t' = term v \<bullet>\<bullet> ts[i := r']\<rbrakk> \<Longrightarrow> \<exists>rs'. dterm t' = C nm' \<bullet>\<bullet> rs' \<and> (nm = nm' \<longrightarrow> no_match rs rs') [PROOF STEP] show ?thesis (is "\<exists>rs'. ?P rs' \<and> ?Q rs'") [PROOF STATE] proof (prove) goal (1 subgoal): 1. \<exists>rs'. dterm t' = C nm' \<bullet>\<bullet> rs' \<and> (nm = nm' \<longrightarrow> no_match rs rs') [PROOF STEP] proof [PROOF STATE] proof (state) goal (1 subgoal): 1. dterm t' = C nm' \<bullet>\<bullet> ?rs' \<and> (nm = nm' \<longrightarrow> no_match rs ?rs') [PROOF STEP] let ?rs' = "map dterm ((map term (rev vs) @ ts'')[k+size vs:=r'])" [PROOF STATE] proof (state) goal (1 subgoal): 1. dterm t' = C nm' \<bullet>\<bullet> ?rs' \<and> (nm = nm' \<longrightarrow> no_match rs ?rs') [PROOF STEP] have "?P ?rs'" [PROOF STATE] proof (prove) goal (1 subgoal): 1. dterm t' = C nm' \<bullet>\<bullet> map dterm ((map term (rev vs) @ ts'')[k + length vs := r']) [PROOF STEP] using ob 9 [PROOF STATE] proof (prove) using this: j < length ts j < length ps ps ! j = C nm \<bullet>\<bullet> rs dterm (ts ! j) = C nm' \<bullet>\<bullet> rs' nm = nm' \<longrightarrow> no_match rs rs' k < length ts'' ts'' ! k \<Rightarrow> r' ts ! i = term v \<bullet>\<bullet> ts'' t' = term v \<bullet>\<bullet> ts''[k := r'] goal (1 subgoal): 1. dterm t' = C nm' \<bullet>\<bullet> map dterm ((map term (rev vs) @ ts'')[k + length vs := r']) [PROOF STEP] by (auto simp: list_update_append) [PROOF STATE] proof (state) this: dterm t' = C nm' \<bullet>\<bullet> map dterm ((map term (rev vs) @ ts'')[k + length vs := r']) goal (1 subgoal): 1. dterm t' = C nm' \<bullet>\<bullet> ?rs' \<and> (nm = nm' \<longrightarrow> no_match rs ?rs') [PROOF STEP] moreover [PROOF STATE] proof (state) this: dterm t' = C nm' \<bullet>\<bullet> map dterm ((map term (rev vs) @ ts'')[k + length vs := r']) goal (1 subgoal): 1. dterm t' = C nm' \<bullet>\<bullet> ?rs' \<and> (nm = nm' \<longrightarrow> no_match rs ?rs') [PROOF STEP] have "?Q ?rs'" [PROOF STATE] proof (prove) goal (1 subgoal): 1. nm = nm' \<longrightarrow> no_match rs (map dterm ((map term (rev vs) @ ts'')[k + length vs := r'])) [PROOF STEP] apply rule [PROOF STATE] proof (prove) goal (1 subgoal): 1. nm = nm' \<Longrightarrow> no_match rs (map dterm ((map term (rev vs) @ ts'')[k + length vs := r'])) [PROOF STEP] apply(rule "1.hyps"[OF _ ob(3)]) [PROOF STATE] proof (prove) goal (7 subgoals): 1. nm = nm' \<Longrightarrow> j < min (length dts) (length ps) 2. nm = nm' \<Longrightarrow> dts ! j = C ?xb2 \<bullet>\<bullet> ?xd2 3. nm = nm' \<Longrightarrow> nm = ?xb2 4. nm = nm' \<Longrightarrow> k + length vs < length (map term (rev vs) @ ts'') 5. nm = nm' \<Longrightarrow> (map term (rev vs) @ ts'') ! (k + length vs) \<Rightarrow> r' 6. nm = nm' \<Longrightarrow> no_match rs ?xd2 7. nm = nm' \<Longrightarrow> ?xd2 = map dterm (map term (rev vs) @ ts'') [PROOF STEP] using 9 "1.prems" ob [PROOF STATE] proof (prove) using this: k < length ts'' ts'' ! k \<Rightarrow> r' ts ! i = term v \<bullet>\<bullet> ts'' t' = term v \<bullet>\<bullet> ts''[k := r'] i < length ts ts ! i \<Rightarrow> t' no_match ps dts dts = map dterm ts j < length ts j < length ps ps ! j = C nm \<bullet>\<bullet> rs dterm (ts ! j) = C nm' \<bullet>\<bullet> rs' nm = nm' \<longrightarrow> no_match rs rs' goal (7 subgoals): 1. nm = nm' \<Longrightarrow> j < min (length dts) (length ps) 2. nm = nm' \<Longrightarrow> dts ! j = C ?xb2 \<bullet>\<bullet> ?xd2 3. nm = nm' \<Longrightarrow> nm = ?xb2 4. nm = nm' \<Longrightarrow> k + length vs < length (map term (rev vs) @ ts'') 5. nm = nm' \<Longrightarrow> (map term (rev vs) @ ts'') ! (k + length vs) \<Rightarrow> r' 6. nm = nm' \<Longrightarrow> no_match rs ?xd2 7. nm = nm' \<Longrightarrow> ?xd2 = map dterm (map term (rev vs) @ ts'') [PROOF STEP] by (auto simp:nth_append simp del: map_map) [PROOF STATE] proof (state) this: nm = nm' \<longrightarrow> no_match rs (map dterm ((map term (rev vs) @ ts'')[k + length vs := r'])) goal (1 subgoal): 1. dterm t' = C nm' \<bullet>\<bullet> ?rs' \<and> (nm = nm' \<longrightarrow> no_match rs ?rs') [PROOF STEP] ultimately [PROOF STATE] proof (chain) picking this: dterm t' = C nm' \<bullet>\<bullet> map dterm ((map term (rev vs) @ ts'')[k + length vs := r']) nm = nm' \<longrightarrow> no_match rs (map dterm ((map term (rev vs) @ ts'')[k + length vs := r'])) [PROOF STEP] show "?P ?rs' \<and> ?Q ?rs'" [PROOF STATE] proof (prove) using this: dterm t' = C nm' \<bullet>\<bullet> map dterm ((map term (rev vs) @ ts'')[k + length vs := r']) nm = nm' \<longrightarrow> no_match rs (map dterm ((map term (rev vs) @ ts'')[k + length vs := r'])) goal (1 subgoal): 1. dterm t' = C nm' \<bullet>\<bullet> map dterm ((map term (rev vs) @ ts'')[k + length vs := r']) \<and> (nm = nm' \<longrightarrow> no_match rs (map dterm ((map term (rev vs) @ ts'')[k + length vs := r']))) [PROOF STEP] .. [PROOF STATE] proof (state) this: dterm t' = C nm' \<bullet>\<bullet> map dterm ((map term (rev vs) @ ts'')[k + length vs := r']) \<and> (nm = nm' \<longrightarrow> no_match rs (map dterm ((map term (rev vs) @ ts'')[k + length vs := r']))) goal: No subgoals! [PROOF STEP] qed [PROOF STATE] proof (state) this: \<exists>rs'. dterm t' = C nm' \<bullet>\<bullet> rs' \<and> (nm = nm' \<longrightarrow> no_match rs rs') goal (6 subgoals): 1. \<And>nma vs ts. \<lbrakk>ts ! i = term (C\<^sub>U nma vs) \<bullet>\<bullet> ts; t' = (C nma \<bullet>\<bullet> map term (rev vs)) \<bullet>\<bullet> ts\<rbrakk> \<Longrightarrow> \<exists>rs'. dterm t' = C nm' \<bullet>\<bullet> rs' \<and> (nm = nm' \<longrightarrow> no_match rs rs') 2. \<And>x vs ts. \<lbrakk>ts ! i = term (V\<^sub>U x vs) \<bullet>\<bullet> ts; t' = (V x \<bullet>\<bullet> map term (rev vs)) \<bullet>\<bullet> ts\<rbrakk> \<Longrightarrow> \<exists>rs'. dterm t' = C nm' \<bullet>\<bullet> rs' \<and> (nm = nm' \<longrightarrow> no_match rs rs') 3. \<And>vf vs n ts. \<lbrakk>ts ! i = term (Clo vf vs n) \<bullet>\<bullet> ts; t' = \<Lambda> (term (apply (lift 0 (Clo vf vs n)) (V\<^sub>U 0 []))) \<bullet>\<bullet> ts\<rbrakk> \<Longrightarrow> \<exists>rs'. dterm t' = C nm' \<bullet>\<bullet> rs' \<and> (nm = nm' \<longrightarrow> no_match rs rs') 4. \<And>s s' ts. \<lbrakk>ts ! i = \<Lambda> s \<bullet>\<bullet> ts; t' = \<Lambda> s' \<bullet>\<bullet> ts; s \<Rightarrow> s'\<rbrakk> \<Longrightarrow> \<exists>rs'. dterm t' = C nm' \<bullet>\<bullet> rs' \<and> (nm = nm' \<longrightarrow> no_match rs rs') 5. \<And>x i r' ts. \<lbrakk>i < length ts; ts ! i \<Rightarrow> r'; ts ! i = V x \<bullet>\<bullet> ts; t' = V x \<bullet>\<bullet> ts[i := r']\<rbrakk> \<Longrightarrow> \<exists>rs'. dterm t' = C nm' \<bullet>\<bullet> rs' \<and> (nm = nm' \<longrightarrow> no_match rs rs') 6. \<And>s i r' ts. \<lbrakk>i < length ts; ts ! i \<Rightarrow> r'; ts ! i = \<Lambda> s \<bullet>\<bullet> ts; t' = \<Lambda> s \<bullet>\<bullet> ts[i := r']\<rbrakk> \<Longrightarrow> \<exists>rs'. dterm t' = C nm' \<bullet>\<bullet> rs' \<and> (nm = nm' \<longrightarrow> no_match rs rs') [PROOF STEP] qed (insert ob, auto simp del: map_map) [PROOF STATE] proof (state) this: \<exists>rs'. dterm t' = C nm' \<bullet>\<bullet> rs' \<and> (nm = nm' \<longrightarrow> no_match rs rs') goal (1 subgoal): 1. \<exists>k<min (length (map dterm (ts[i := t']))) (length ps). \<exists>nm nm' rs rs'. ps ! k = C nm \<bullet>\<bullet> rs \<and> map dterm (ts[i := t']) ! k = C nm' \<bullet>\<bullet> rs' \<and> (nm = nm' \<longrightarrow> no_match rs rs') [PROOF STEP] } [PROOF STATE] proof (state) this: j = i \<Longrightarrow> \<exists>rs'. dterm t' = C nm' \<bullet>\<bullet> rs' \<and> (nm = nm' \<longrightarrow> no_match rs rs') goal (1 subgoal): 1. \<exists>k<min (length (map dterm (ts[i := t']))) (length ps). \<exists>nm nm' rs rs'. ps ! k = C nm \<bullet>\<bullet> rs \<and> map dterm (ts[i := t']) ! k = C nm' \<bullet>\<bullet> rs' \<and> (nm = nm' \<longrightarrow> no_match rs rs') [PROOF STEP] hence "\<exists>rs'. dterm (ts[i := t'] ! j) = C nm' \<bullet>\<bullet> rs' \<and> (nm = nm' \<longrightarrow> no_match rs rs')" [PROOF STATE] proof (prove) using this: j = i \<Longrightarrow> \<exists>rs'. dterm t' = C nm' \<bullet>\<bullet> rs' \<and> (nm = nm' \<longrightarrow> no_match rs rs') goal (1 subgoal): 1. \<exists>rs'. dterm (ts[i := t'] ! j) = C nm' \<bullet>\<bullet> rs' \<and> (nm = nm' \<longrightarrow> no_match rs rs') [PROOF STEP] using \<open>i < size ts\<close> ob [PROOF STATE] proof (prove) using this: j = i \<Longrightarrow> \<exists>rs'. dterm t' = C nm' \<bullet>\<bullet> rs' \<and> (nm = nm' \<longrightarrow> no_match rs rs') i < length ts j < length ts j < length ps ps ! j = C nm \<bullet>\<bullet> rs dterm (ts ! j) = C nm' \<bullet>\<bullet> rs' nm = nm' \<longrightarrow> no_match rs rs' goal (1 subgoal): 1. \<exists>rs'. dterm (ts[i := t'] ! j) = C nm' \<bullet>\<bullet> rs' \<and> (nm = nm' \<longrightarrow> no_match rs rs') [PROOF STEP] by(simp add:nth_list_update) [PROOF STATE] proof (state) this: \<exists>rs'. dterm (ts[i := t'] ! j) = C nm' \<bullet>\<bullet> rs' \<and> (nm = nm' \<longrightarrow> no_match rs rs') goal (1 subgoal): 1. \<exists>k<min (length (map dterm (ts[i := t']))) (length ps). \<exists>nm nm' rs rs'. ps ! k = C nm \<bullet>\<bullet> rs \<and> map dterm (ts[i := t']) ! k = C nm' \<bullet>\<bullet> rs' \<and> (nm = nm' \<longrightarrow> no_match rs rs') [PROOF STEP] hence "?P j" [PROOF STATE] proof (prove) using this: \<exists>rs'. dterm (ts[i := t'] ! j) = C nm' \<bullet>\<bullet> rs' \<and> (nm = nm' \<longrightarrow> no_match rs rs') goal (1 subgoal): 1. \<exists>nm nm' rs rs'. ps ! j = C nm \<bullet>\<bullet> rs \<and> map dterm (ts[i := t']) ! j = C nm' \<bullet>\<bullet> rs' \<and> (nm = nm' \<longrightarrow> no_match rs rs') [PROOF STEP] using ob [PROOF STATE] proof (prove) using this: \<exists>rs'. dterm (ts[i := t'] ! j) = C nm' \<bullet>\<bullet> rs' \<and> (nm = nm' \<longrightarrow> no_match rs rs') j < length ts j < length ps ps ! j = C nm \<bullet>\<bullet> rs dterm (ts ! j) = C nm' \<bullet>\<bullet> rs' nm = nm' \<longrightarrow> no_match rs rs' goal (1 subgoal): 1. \<exists>nm nm' rs rs'. ps ! j = C nm \<bullet>\<bullet> rs \<and> map dterm (ts[i := t']) ! j = C nm' \<bullet>\<bullet> rs' \<and> (nm = nm' \<longrightarrow> no_match rs rs') [PROOF STEP] by auto [PROOF STATE] proof (state) this: \<exists>nm nm' rs rs'. ps ! j = C nm \<bullet>\<bullet> rs \<and> map dterm (ts[i := t']) ! j = C nm' \<bullet>\<bullet> rs' \<and> (nm = nm' \<longrightarrow> no_match rs rs') goal (1 subgoal): 1. \<exists>k<min (length (map dterm (ts[i := t']))) (length ps). \<exists>nm nm' rs rs'. ps ! k = C nm \<bullet>\<bullet> rs \<and> map dterm (ts[i := t']) ! k = C nm' \<bullet>\<bullet> rs' \<and> (nm = nm' \<longrightarrow> no_match rs rs') [PROOF STEP] moreover [PROOF STATE] proof (state) this: \<exists>nm nm' rs rs'. ps ! j = C nm \<bullet>\<bullet> rs \<and> map dterm (ts[i := t']) ! j = C nm' \<bullet>\<bullet> rs' \<and> (nm = nm' \<longrightarrow> no_match rs rs') goal (1 subgoal): 1. \<exists>k<min (length (map dterm (ts[i := t']))) (length ps). \<exists>nm nm' rs rs'. ps ! k = C nm \<bullet>\<bullet> rs \<and> map dterm (ts[i := t']) ! k = C nm' \<bullet>\<bullet> rs' \<and> (nm = nm' \<longrightarrow> no_match rs rs') [PROOF STEP] have "j < ?m" [PROOF STATE] proof (prove) goal (1 subgoal): 1. j < min (length (map dterm (ts[i := t']))) (length ps) [PROOF STEP] using \<open>j < length ts\<close> \<open>j < size ps\<close> [PROOF STATE] proof (prove) using this: j < length ts j < length ps goal (1 subgoal): 1. j < min (length (map dterm (ts[i := t']))) (length ps) [PROOF STEP] by simp [PROOF STATE] proof (state) this: j < min (length (map dterm (ts[i := t']))) (length ps) goal (1 subgoal): 1. \<exists>k<min (length (map dterm (ts[i := t']))) (length ps). \<exists>nm nm' rs rs'. ps ! k = C nm \<bullet>\<bullet> rs \<and> map dterm (ts[i := t']) ! k = C nm' \<bullet>\<bullet> rs' \<and> (nm = nm' \<longrightarrow> no_match rs rs') [PROOF STEP] ultimately [PROOF STATE] proof (chain) picking this: \<exists>nm nm' rs rs'. ps ! j = C nm \<bullet>\<bullet> rs \<and> map dterm (ts[i := t']) ! j = C nm' \<bullet>\<bullet> rs' \<and> (nm = nm' \<longrightarrow> no_match rs rs') j < min (length (map dterm (ts[i := t']))) (length ps) [PROOF STEP] show ?thesis [PROOF STATE] proof (prove) using this: \<exists>nm nm' rs rs'. ps ! j = C nm \<bullet>\<bullet> rs \<and> map dterm (ts[i := t']) ! j = C nm' \<bullet>\<bullet> rs' \<and> (nm = nm' \<longrightarrow> no_match rs rs') j < min (length (map dterm (ts[i := t']))) (length ps) goal (1 subgoal): 1. \<exists>k<min (length (map dterm (ts[i := t']))) (length ps). \<exists>nm nm' rs rs'. ps ! k = C nm \<bullet>\<bullet> rs \<and> map dterm (ts[i := t']) ! k = C nm' \<bullet>\<bullet> rs' \<and> (nm = nm' \<longrightarrow> no_match rs rs') [PROOF STEP] by blast [PROOF STATE] proof (state) this: \<exists>k<min (length (map dterm (ts[i := t']))) (length ps). \<exists>nm nm' rs rs'. ps ! k = C nm \<bullet>\<bullet> rs \<and> map dterm (ts[i := t']) ! k = C nm' \<bullet>\<bullet> rs' \<and> (nm = nm' \<longrightarrow> no_match rs rs') goal: No subgoals! [PROOF STEP] qed [PROOF STATE] proof (state) this: \<exists>k<min (length (map dterm (ts[i := t']))) (length ps). \<exists>nm nm' rs rs'. ps ! k = C nm \<bullet>\<bullet> rs \<and> map dterm (ts[i := t']) ! k = C nm' \<bullet>\<bullet> rs' \<and> (nm = nm' \<longrightarrow> no_match rs rs') goal: No subgoals! [PROOF STEP] qed [PROOF STATE] proof (state) this: no_match ps (map dterm (ts[i := t'])) goal: No subgoals! [PROOF STEP] qed
{-# OPTIONS --allow-unsolved-metas #-} {- This is a copy of Sane, but building upon a rather different notion of permutation -} module Sane2 where import Data.Fin as F -- open import Data.Unit open import Data.Nat using (ℕ ; zero ; suc ; _+_ ; _>_ ) open import Data.Sum using (inj₁ ; inj₂ ; _⊎_) open import Data.Vec open import Function using ( id ) renaming (_∘_ to _○_) open import Relation.Binary -- to make certain goals look nicer open import Relation.Binary.PropositionalEquality using ( _≡_ ; refl ; sym ; cong ; trans ; subst ; module ≡-Reasoning ) open ≡-Reasoning -- start re-splitting things up, as this is getting out of hand open import FT -- Finite Types open import VecHelpers open import NatSimple open import Eval open import Permutations open import CombPerm -- Suppose we have some combinator c, its output vector v, and the corresponding -- permutation p. We construct p by looking at how many places each element is -- displaced from its index in v *to the right* (if it's where it "should" be or -- to the left, just return 0). -- In other words, if v[i] = j, then p[j] = j - i. That is, if j is in location -- i, j - i is how many spaces to the right (if any) j appears from its own -- index. Note that if v[i] = j, then c(i) = j, and inv(c)(j) = i. This suggests -- that if I can write a tabulate function for permutations, the permutation for -- a combinator c will be "tabulate (∩ -> i - (evalCombB c i))", modulo type -- coercions. -- -- JC: I think an even easier way is to use LeftCancellation and build it -- recursively! By this I mean something which gives a -- (fromℕ n ⇛ fromℕ n) given a (fromℕ (suc n) ⇛ fromℕ (suc n)) combToPerm : {n : ℕ} → (fromℕ n ⇛ fromℕ n) → Permutation n combToPerm {zero} c = [] combToPerm {suc n} c = valToFin (evalComb c (inj₁ tt)) ∷ {!!} -- This is just nasty, prove it 'directly' key-lemma : {n : ℕ} (i : F.Fin (suc n)) (j : F.Fin (suc (suc n))) → (lookup (lookup ((F.inject₁ i ∷ remove (F.inject₁ i) vId) !! j) (insert (remove (F.inject₁ i) vId) (F.suc i) (F.inject₁ i))) (insert vS (F.inject₁ i) F.zero)) ≡ (F.suc i ∷ insert (remove i vS) i F.zero) !! j key-lemma {zero} F.zero F.zero = refl key-lemma {zero} F.zero (F.suc F.zero) = refl key-lemma {zero} F.zero (F.suc (F.suc ())) key-lemma {zero} (F.suc ()) j key-lemma {suc n} F.zero F.zero = refl key-lemma {suc n} F.zero (F.suc j) = begin lookup (lookup (vS !! j) swap01vec) vId ≡⟨ lookupTab {f = id} (lookup (vS !! j) swap01vec) ⟩ lookup (vS !! j) swap01vec ≡⟨ cong (λ z → lookup z swap01vec) (lookupTab {f = F.suc} j) ⟩ lookup (F.suc j) swap01vec ≡⟨ refl ⟩ lookup j (F.zero ∷ vSS) ∎ key-lemma {suc n} (F.suc i) F.zero = begin lookup (lookup (F.inject₁ i) (insert (remove (F.inject₁ i) (tabulate F.suc)) (F.suc i) (F.suc (F.inject₁ i)))) (F.suc F.zero ∷ insert (tabulate (F.suc ○ F.suc)) (F.inject₁ i) F.zero) ≡⟨ cong (λ z → lookup z (F.suc F.zero ∷ insert (tabulate (F.suc ○ F.suc)) (F.inject₁ i) F.zero)) (lookup+1-insert-remove i (tabulate F.suc)) ⟩ lookup (lookup (F.suc i) (tabulate F.suc)) (F.suc F.zero ∷ insert (tabulate (F.suc ○ F.suc)) (F.inject₁ i) F.zero) ≡⟨ cong (λ z → lookup z (F.suc F.zero ∷ insert (tabulate (F.suc ○ F.suc)) (F.inject₁ i) F.zero)) (lookupTab {f = F.suc} (F.suc i)) ⟩ lookup (F.suc (F.suc i)) (F.suc F.zero ∷ insert (tabulate (F.suc ○ F.suc)) (F.inject₁ i) F.zero) ≡⟨ refl ⟩ lookup (F.suc i) (insert (tabulate (F.suc ○ F.suc)) (F.inject₁ i) F.zero) ≡⟨ sym (lookup-insert3 i (tabulate (F.suc ○ F.suc))) ⟩ lookup i (tabulate (F.suc ○ F.suc)) ≡⟨ lookupTab {f = F.suc ○ F.suc} i ⟩ F.suc (F.suc i) ∎ key-lemma {suc n} (F.suc i) (F.suc j) = begin (lookup (lookup (lookup j (remove (F.inject₁ (F.suc i)) vId)) (insert (remove (F.inject₁ (F.suc i)) vId) (F.suc (F.suc i)) (F.inject₁ (F.suc i)))) (insert vS (F.inject₁ (F.suc i)) F.zero)) ≡⟨ refl ⟩ -- lots of β (lookup (lookup ((F.zero ∷ remove (F.inject₁ i) vS) !! j) (F.zero ∷ insert (remove (F.inject₁ i) vS) (F.suc i) (F.inject₁ (F.suc i)))) (F.suc F.zero ∷ insert vSS (F.inject₁ i) F.zero)) ≡⟨ {!!} ⟩ (F.suc F.zero ∷ insert (remove i vSS) i F.zero) !! j ≡⟨ refl ⟩ (insert (remove (F.suc i) vS) (F.suc i) F.zero) !! j ∎ {- (lookup (lookup ((F.inject₁ i ∷ remove (F.inject₁ i) vId) !! j) (insert (remove (F.inject₁ i) vId) (F.suc i) (F.inject₁ i))) (insert vS (F.inject₁ i) F.zero)) ≡ (F.suc i ∷ insert (remove i vS) i F.zero) !! j -} -------------------------------------------------------------------------------------------------------------- -- shuffle is like permute, but takes a combinator rather than a permutation as input shuffle : {n : ℕ} {A : Set} → (fromℕ n ⇛ fromℕ n) → Vec A n → Vec A n shuffle c v = tabulate (λ x → v !! valToFin (evalComb c (finToVal x))) -------------------------------------------------------------------------------------------------------------- swapUpCorrect : {n : ℕ} → (i : F.Fin n) → (j : F.Fin (1 + n)) → evalComb (swapUpTo i) (finToVal j) ≡ finToVal (evalPerm (swapUpToPerm i) j) swapUpCorrect {zero} () j swapUpCorrect {suc zero} F.zero F.zero = refl swapUpCorrect {suc zero} F.zero (F.suc F.zero) = refl swapUpCorrect {suc zero} F.zero (F.suc (F.suc ())) swapUpCorrect {suc zero} (F.suc ()) j swapUpCorrect {suc (suc n)} F.zero j = cong finToVal ( begin j ≡⟨ sym (lookupTab {f = id} j) ⟩ lookup j (tabulate id) ≡⟨ cong (λ x → lookup j (F.zero ∷ F.suc F.zero ∷ F.suc (F.suc F.zero) ∷ x)) (sym (idP-id (tabulate (F.suc ○ F.suc ○ F.suc)))) ⟩ evalPerm (swapUpToPerm F.zero) j ∎ ) swapUpCorrect {suc (suc n)} (F.suc i) F.zero = refl swapUpCorrect {suc (suc n)} (F.suc i) (F.suc j) = begin evalComb (assocl₊⇛ ◎ (swap₊⇛ ⊕ id⇛) ◎ assocr₊⇛) (inj₂ (evalComb (swapUpTo i) (finToVal j))) ≡⟨ cong (λ x → evalComb (assocl₊⇛ ◎ (swap₊⇛ ⊕ id⇛) ◎ assocr₊⇛) (inj₂ x)) (swapUpCorrect i j) ⟩ evalComb (assocl₊⇛ ◎ (swap₊⇛ ⊕ id⇛) ◎ assocr₊⇛) (inj₂ (finToVal (evalPerm (swapUpToPerm i) j))) ≡⟨ swapi≡swap01 (F.suc (evalPerm (swapUpToPerm i) j)) ⟩ finToVal (evalPerm (swap01 (suc (suc (suc n)))) (F.suc (evalPerm (swapUpToPerm i) j))) ≡⟨ cong finToVal ( begin evalPerm (swap01 (suc (suc (suc n)))) (F.suc (evalPerm (swapUpToPerm i) j)) ≡⟨ cong (λ x → evalPerm (swap01 (suc (suc (suc n)))) (F.suc (lookup j x))) (swapUpToAct i (tabulate id)) ⟩ lookup (F.suc (lookup j (insert (tabulate (λ z → F.suc z)) (F.inject₁ i) F.zero))) (F.suc F.zero ∷ F.zero ∷ F.suc (F.suc F.zero) ∷ permute idP (tabulate (λ z → F.suc (F.suc (F.suc z))))) ≡⟨ cong (λ x → (lookup (F.suc (lookup j (insert (tabulate F.suc) (F.inject₁ i) F.zero))) (F.suc F.zero ∷ F.zero ∷ F.suc (F.suc F.zero) ∷ x))) (idP-id _) ⟩ (swap01vec !! (F.suc ((insert (tabulate F.suc) (F.inject₁ i) F.zero) !! j))) ≡⟨ cong (λ x → swap01vec !! x) (sym (map!! F.suc _ j)) ⟩ (swap01vec !! (vmap F.suc (insert (tabulate F.suc) (F.inject₁ i) F.zero) !! j)) ≡⟨ sym (lookupTab {f = (λ j → (swap01vec !! (vmap F.suc (insert (tabulate F.suc) (F.inject₁ i) F.zero) !! j)))} j) ⟩ (tabulate (λ k → (swap01vec !! (vmap F.suc (insert (tabulate F.suc) (F.inject₁ i) F.zero) !! k))) !! j) ≡⟨ refl ⟩ (((vmap F.suc (insert (tabulate F.suc) (F.inject₁ i) F.zero)) ∘̬ swap01vec) !! j) ≡⟨ cong (λ x → x !! j) (∘̬≡∘̬′ _ _) ⟩ (((vmap F.suc (insert (tabulate F.suc) (F.inject₁ i) F.zero)) ∘̬′ swap01vec) !! j) ≡⟨ cong (λ x → ((vmap F.suc (insert x (F.inject₁ i) F.zero) ∘̬′ swap01vec) !! j)) (sym (mapTab F.suc id)) ⟩ {-- For reference: newlemma6 : {m n : ℕ} → (i : F.Fin n) → (v : Vec (F.Fin m) n) → (vmap F.suc (insert (vmap F.suc v) (F.inject₁ i) F.zero)) ∘̬′ swap01vec ≡ insert (vmap F.suc (vmap F.suc v)) (F.inject₁ i) F.zero --} (((vmap F.suc (insert (vmap F.suc (tabulate id)) (F.inject₁ i) F.zero)) ∘̬′ swap01vec) !! j) ≡⟨ cong (λ x → x !! j) (newlemma6 i (tabulate id)) ⟩ (insert (vmap F.suc (vmap F.suc (tabulate id))) (F.inject₁ i) F.zero !! j) ≡⟨ cong (λ x → insert (vmap F.suc x) (F.inject₁ i) F.zero !! j) (mapTab F.suc id) ⟩ (insert (vmap F.suc (tabulate F.suc)) (F.inject₁ i) F.zero !! j) ≡⟨ cong (λ x → insert x (F.inject₁ i) F.zero !! j) (mapTab F.suc F.suc) ⟩ (insert (tabulate (λ x → F.suc (F.suc x))) (F.inject₁ i) F.zero !! j) ≡⟨ cong (λ x → lookup j (insert x (F.inject₁ i) F.zero)) (sym (idP-id _)) ⟩ (lookup j (insert (permute idP (tabulate (λ x → F.suc (F.suc x)))) (F.inject₁ i) F.zero)) ≡⟨ refl ⟩ evalPerm (swapUpToPerm (F.suc i)) (F.suc j) ∎ ) ⟩ finToVal (evalPerm (swapUpToPerm (F.suc i)) (F.suc j)) ∎ swapDownCorrect : {n : ℕ} → (i : F.Fin n) → (j : F.Fin (1 + n)) → evalComb (swapDownFrom i) (finToVal j) ≡ finToVal (evalPerm (swapDownFromPerm i) j) swapDownCorrect F.zero j = begin evalComb (swapDownFrom F.zero) (finToVal j) ≡⟨ refl ⟩ finToVal j ≡⟨ cong finToVal (sym (lookupTab {f = id} j)) ⟩ finToVal ((tabulate id) !! j) ≡⟨ cong (λ x → finToVal (x !! j)) (sym (idP-id (tabulate id))) ⟩ finToVal (permute idP (tabulate id) !! j) ≡⟨ refl ⟩ finToVal (evalPerm (swapDownFromPerm F.zero) j) ∎ swapDownCorrect (F.suc i) F.zero = begin evalComb (swapDownFrom (F.suc i)) (finToVal F.zero) ≡⟨ refl ⟩ evalComb (swapi F.zero ◎ (id⇛ ⊕ swapDownFrom i)) (finToVal F.zero) ≡⟨ refl ⟩ evalComb (id⇛ ⊕ swapDownFrom i) (evalComb (swapi F.zero) (finToVal F.zero)) ≡⟨ refl ⟩ evalComb (id⇛ ⊕ swapDownFrom i) (finToVal (F.suc F.zero)) ≡⟨ refl ⟩ inj₂ (evalComb (swapDownFrom i) (finToVal F.zero)) ≡⟨ cong inj₂ (swapDownCorrect i F.zero) ⟩ inj₂ (finToVal (evalPerm (swapDownFromPerm i) F.zero)) ≡⟨ refl ⟩ finToVal (F.suc (evalPerm (swapDownFromPerm i) F.zero)) ≡⟨ refl ⟩ -- beta finToVal (F.suc (permute (swapDownFromPerm i) (tabulate id) !! F.zero)) ≡⟨ cong finToVal (push-f-through F.suc F.zero (swapDownFromPerm i) id ) ⟩ finToVal (lookup F.zero (permute (swapDownFromPerm i) (tabulate F.suc))) ≡⟨ cong finToVal (sym (lookup-insert (permute (swapDownFromPerm i) (tabulate F.suc)))) ⟩ finToVal (evalPerm (swapDownFromPerm (F.suc i)) F.zero) ∎ swapDownCorrect (F.suc i) (F.suc F.zero) = begin evalComb (swapDownFrom (F.suc i)) (finToVal (F.suc F.zero)) ≡⟨ refl ⟩ evalComb (swapi F.zero ◎ (id⇛ ⊕ swapDownFrom i)) (finToVal (F.suc F.zero)) ≡⟨ refl ⟩ evalComb (id⇛ ⊕ swapDownFrom i) (evalComb (swapi F.zero) (finToVal (F.suc F.zero))) ≡⟨ refl ⟩ evalComb (id⇛ ⊕ swapDownFrom i) (inj₁ tt) ≡⟨ refl ⟩ inj₁ tt ≡⟨ refl ⟩ finToVal (F.zero) ≡⟨ cong finToVal (sym (lookup-insert′ (F.suc F.zero) (permute (swapDownFromPerm i) (tabulate F.suc)))) ⟩ finToVal (evalPerm (swapDownFromPerm (F.suc i)) (F.suc F.zero)) ∎ swapDownCorrect (F.suc i) (F.suc (F.suc j)) = begin evalComb (swapDownFrom (F.suc i)) (finToVal (F.suc (F.suc j))) ≡⟨ refl ⟩ evalComb (swapi F.zero ◎ (id⇛ ⊕ swapDownFrom i)) (finToVal (F.suc (F.suc j))) ≡⟨ refl ⟩ evalComb (id⇛ ⊕ swapDownFrom i) (evalComb (swapi F.zero) (finToVal (F.suc (F.suc j)))) ≡⟨ refl ⟩ evalComb (id⇛ ⊕ swapDownFrom i) (finToVal (F.suc (F.suc j))) ≡⟨ refl ⟩ evalComb (id⇛ ⊕ swapDownFrom i) (inj₂ (finToVal (F.suc j))) ≡⟨ refl ⟩ inj₂ (evalComb (swapDownFrom i) (finToVal (F.suc j))) ≡⟨ cong inj₂ (swapDownCorrect i (F.suc j)) ⟩ inj₂ (finToVal (evalPerm (swapDownFromPerm i) (F.suc j))) ≡⟨ refl ⟩ finToVal (F.suc (evalPerm (swapDownFromPerm i) (F.suc j))) ≡⟨ cong finToVal (push-f-through F.suc (F.suc j) (swapDownFromPerm i) id) ⟩ -- need to do a little β-expansion to see this finToVal (lookup (F.suc j) (permute (1iP i) (tabulate F.suc))) ≡⟨ cong finToVal (lookup-insert′′ j (permute (1iP i) (tabulate F.suc))) ⟩ finToVal (evalPerm (swapDownFromPerm (F.suc i)) (F.suc (F.suc j))) ∎ swapmCorrect : {n : ℕ} → (i j : F.Fin n) → evalComb (swapm i) (finToVal j) ≡ finToVal (evalPerm (swapmPerm i) j) swapmCorrect {zero} () _ swapmCorrect {suc n} F.zero j = begin finToVal j ≡⟨ cong finToVal (sym (lookupTab {f = id} j)) ⟩ finToVal (lookup j (tabulate id)) ≡⟨ cong (λ x → finToVal (lookup j x)) (sym (idP-id (tabulate id))) ⟩ finToVal (lookup j (permute idP (tabulate id))) ∎ swapmCorrect {suc zero} (F.suc ()) _ swapmCorrect {suc (suc n)} (F.suc i) j = -- requires the breakdown of swapm ? begin evalComb (swapm (F.suc i)) (finToVal j) ≡⟨ refl ⟩ evalComb (swapDownFrom i ◎ swapi i ◎ swapUpTo i) (finToVal j) ≡⟨ refl ⟩ evalComb (swapUpTo i) (evalComb (swapi i) (evalComb (swapDownFrom i) (finToVal j))) ≡⟨ cong (λ x → evalComb (swapUpTo i) (evalComb (swapi i) x)) (swapDownCorrect i j) ⟩ evalComb (swapUpTo i) (evalComb (swapi i) (finToVal (permute (swapDownFromPerm i) (tabulate id) !! j))) ≡⟨ cong (λ x → evalComb (swapUpTo i) x) (swapiCorrect i (permute (swapDownFromPerm i) (tabulate id) !! j)) ⟩ evalComb (swapUpTo i) (finToVal (permute (swapiPerm i) (tabulate id) !! (permute (swapDownFromPerm i) (tabulate id) !! j))) ≡⟨ (swapUpCorrect i ) (permute (swapiPerm i) (tabulate id) !! (permute (swapDownFromPerm i) (tabulate id) !! j))⟩ finToVal (permute (swapUpToPerm i) (tabulate id) !! (permute (swapiPerm i) (tabulate id) !! (permute (swapDownFromPerm i) (tabulate id) !! j))) ≡⟨ cong (λ x → finToVal (x !! (permute (swapiPerm i) (tabulate id) !! (permute (swapDownFromPerm i) (tabulate id) !! j)))) (swapUpToAct i (tabulate id)) ⟩ finToVal (insert (tabulate F.suc) (F.inject₁ i) F.zero !! (permute (swapiPerm i) (tabulate id) !! (permute (swapDownFromPerm i) (tabulate id) !! j))) ≡⟨ cong (λ z → finToVal (insert (tabulate F.suc) (F.inject₁ i) F.zero !! (z !! (permute (swapDownFromPerm i) (tabulate id) !! j)))) (swapiAct i (tabulate id)) ⟩ finToVal (insert (tabulate F.suc) (F.inject₁ i) F.zero !! (insert (remove (F.inject₁ i) (tabulate id)) (F.suc i) ((tabulate id) !! (F.inject₁ i)) !! (permute (swapDownFromPerm i) (tabulate id) !! j))) ≡⟨ cong (λ z → finToVal (insert (tabulate F.suc) (F.inject₁ i) F.zero !! (insert (remove (F.inject₁ i) (tabulate id)) (F.suc i) ((tabulate id) !! (F.inject₁ i)) !! (z !! j)))) (swapDownFromAct i (tabulate id)) ⟩ finToVal (insert (tabulate F.suc) (F.inject₁ i) F.zero !! (insert (remove (F.inject₁ i) (tabulate id)) (F.suc i) ((tabulate id) !! (F.inject₁ i)) !! ( swapDownFromVec (F.inject₁ i) (tabulate id) !! j))) ≡⟨ cong (λ z → finToVal (insert (tabulate F.suc) (F.inject₁ i) F.zero !! (insert (remove (F.inject₁ i) (tabulate id)) (F.suc i) z !! ( swapDownFromVec (F.inject₁ i) (tabulate id) !! j)))) (lookupTab {f = id} (F.inject₁ i)) ⟩ finToVal (insert (tabulate F.suc) (F.inject₁ i) F.zero !! (insert (remove (F.inject₁ i) (tabulate id)) (F.suc i) (F.inject₁ i) !! ( swapDownFromVec (F.inject₁ i) (tabulate id) !! j))) ≡⟨ refl ⟩ finToVal (insert (tabulate F.suc) (F.inject₁ i) F.zero !! (insert (remove (F.inject₁ i) (tabulate id)) (F.suc i) (F.inject₁ i) !! ( (((tabulate id) !! (F.inject₁ i)) ∷ (remove (F.inject₁ i) (tabulate id))) !! j))) ≡⟨ cong (λ z → finToVal (insert (tabulate F.suc) (F.inject₁ i) F.zero !! (insert (remove (F.inject₁ i) (tabulate id)) (F.suc i) (F.inject₁ i) !! ( (z ∷ (remove (F.inject₁ i) (tabulate id))) !! j)))) (lookupTab {f = id} (F.inject₁ i)) ⟩ finToVal (insert (tabulate F.suc) (F.inject₁ i) F.zero !! (insert (remove (F.inject₁ i) (tabulate id)) (F.suc i) (F.inject₁ i) !! ( ((F.inject₁ i) ∷ (remove (F.inject₁ i) (tabulate id))) !! j))) ≡⟨ cong finToVal (key-lemma i j) ⟩ finToVal ( ((F.suc i) ∷ (insert (remove i (tabulate F.suc)) i F.zero)) !! j) ≡⟨ cong (λ z → finToVal ((z ∷ (insert (remove i (tabulate F.suc)) i F.zero)) !! j)) (sym (lookupTab {f = F.suc} i)) ⟩ finToVal ( (((tabulate F.suc) !! i) ∷ (insert (remove i (tabulate F.suc)) i F.zero)) !! j) ≡⟨ refl ⟩ finToVal (swapmVec (F.suc i) (tabulate id) !! j) ≡⟨ cong (λ z → finToVal (z !! j)) (sym (swapmAct (F.suc i) (tabulate id))) ⟩ finToVal (permute (swapmPerm (F.suc i)) (tabulate id) !! j) ≡⟨ refl ⟩ finToVal (evalPerm (swapmPerm (F.suc i)) j) ∎ lemma1 : {n : ℕ} (p : Permutation n) → (i : F.Fin n) → evalComb (permToComb p) (finToVal i) ≡ finToVal (evalPerm p i) lemma1 {zero} [] () lemma1 {suc n} (F.zero ∷ p) F.zero = refl lemma1 {suc zero} (F.zero ∷ p) (F.suc ()) lemma1 {suc (suc n)} (F.zero ∷ p) (F.suc i) = begin inj₂ (evalComb (permToComb p) (finToVal i)) ≡⟨ cong inj₂ (lemma1 p i) ⟩ inj₂ (finToVal (evalPerm p i)) ≡⟨ refl ⟩ finToVal (F.suc (evalPerm p i)) ≡⟨ cong finToVal (push-f-through F.suc i p id) ⟩ finToVal (evalPerm (F.zero ∷ p) (F.suc i)) ∎ lemma1 {suc n} (F.suc j ∷ p) i = {!!} -- needs all the previous ones first. {- This is cleaner as a proof, but is not headed the right way as the cases are not the 'right' ones swapmCorrect2 : {n : ℕ} → (i j : F.Fin n) → evalComb (swapm i) (finToVal j) ≡ finToVal (evalPerm (swapmPerm i) j) swapmCorrect2 {zero} () _ swapmCorrect2 {suc zero} F.zero F.zero = refl swapmCorrect2 {suc zero} F.zero (F.suc ()) swapmCorrect2 {suc zero} (F.suc ()) _ swapmCorrect2 {suc (suc n)} F.zero j = sym ( trans (cong (λ x → finToVal (lookup j (F.zero ∷ F.suc F.zero ∷ x))) (idP-id (tabulate (F.suc ○ F.suc)))) (cong finToVal (lookupTab {f = id} j))) swapmCorrect2 {suc (suc n)} (F.suc F.zero) F.zero = refl swapmCorrect2 {suc (suc n)} (F.suc (F.suc i)) F.zero = let up = λ x → evalComb (swapUpTo (F.suc i)) x swap = λ x → evalComb (swapi (F.suc i)) x down = λ x → evalComb (swapDownFrom (F.suc i)) x in begin evalComb (swapm (F.suc (F.suc i))) (inj₁ tt) ≡⟨ refl ⟩ evalComb (swapDownFrom (F.suc i) ◎ swapi (F.suc i) ◎ swapUpTo (F.suc i)) (inj₁ tt) ≡⟨ refl ⟩ up (swap (down (inj₁ tt))) ≡⟨ cong (up ○ swap) (swapDownCorrect (F.suc i) F.zero) ⟩ up (swap ( finToVal (evalPerm (swapDownFromPerm (F.suc i)) F.zero) )) ≡⟨ refl ⟩ up (swap (finToVal (permute (swapDownFromPerm (F.suc i)) (tabulate id) !! F.zero))) ≡⟨ cong (λ x → up (swap (finToVal (x !! F.zero )))) (swapDownFromAct (F.suc i) (tabulate id)) ⟩ up (swap (finToVal (swapDownFromVec (F.inject₁ (F.suc i)) (tabulate id) !! F.zero))) ≡⟨ refl ⟩ up (swap (finToVal ( (((tabulate id) !! (F.inject₁ (F.suc i))) ∷ remove (F.inject₁ (F.suc i)) (tabulate id)) !! F.zero ))) ≡⟨ refl ⟩ up (swap (finToVal ((tabulate id) !! (F.inject₁ (F.suc i))))) ≡⟨ cong (up ○ swap ○ finToVal) (lookupTab {f = id} (F.inject₁ (F.suc i))) ⟩ up (swap (finToVal (F.inject₁ (F.suc i)))) ≡⟨ cong up (swapiCorrect (F.suc i) (F.inject₁ (F.suc i))) ⟩ up (finToVal (evalPerm (swapiPerm (F.suc i)) (F.inject₁ (F.suc i)))) ≡⟨ refl ⟩ up (finToVal (permute (swapiPerm (F.suc i)) (tabulate id) !! (F.inject₁ (F.suc i)))) ≡⟨ cong (λ x → up (finToVal( x !! (F.inject₁ (F.suc i))))) (swapiAct (F.suc i) (tabulate id)) ⟩ up (finToVal (insert (remove (F.inject₁ (F.suc i)) (tabulate id)) (F.suc (F.suc i)) ((tabulate id) !! (F.inject₁ (F.suc i))) !! (F.inject₁ (F.suc i)))) ≡⟨ cong (λ x → up (finToVal (insert (remove (F.inject₁ (F.suc i)) (tabulate id)) (F.suc (F.suc i)) x !! (F.inject₁ (F.suc i))))) (lookupTab {f = id} (F.inject₁ (F.suc i))) ⟩ up (finToVal (insert (remove (F.inject₁ (F.suc i)) (tabulate id)) (F.suc (F.suc i)) (F.inject₁ (F.suc i)) !! (F.inject₁ (F.suc i)))) ≡⟨ cong (up ○ finToVal) (lookup+1-insert-remove (F.suc i) (tabulate id)) ⟩ up (finToVal (lookup (F.suc (F.suc i)) (tabulate id))) ≡⟨ cong (up ○ finToVal) (lookupTab {f = id} (F.suc (F.suc i))) ⟩ up (finToVal (F.suc (F.suc i))) ≡⟨ swapUpCorrect (F.suc i) (F.suc (F.suc i)) ⟩ finToVal (evalPerm (swapUpToPerm (F.suc i)) (F.suc (F.suc i))) ≡⟨ cong (λ x → finToVal (x !! (F.suc (F.suc i)))) (swapUpToAct (F.suc i) (tabulate id)) ⟩ finToVal ( insert (tabulate F.suc) (F.inject₁ (F.suc i)) (F.zero) !! (F.suc (F.suc i))) ≡⟨ cong finToVal (sym (lookup-insert3 (F.suc i) (tabulate F.suc))) ⟩ finToVal ((tabulate F.suc) !! (F.suc i)) ≡⟨ cong finToVal (lookupTab {f = F.suc} (F.suc i)) ⟩ finToVal (F.suc (F.suc i)) ≡⟨ cong finToVal (sym (lookupTab {f = F.suc ○ F.suc} i)) ⟩ finToVal (lookup i (tabulate (F.suc ○ F.suc))) ≡⟨ refl ⟩ finToVal (lookup F.zero (swapmVec (F.suc (F.suc i)) (tabulate id))) ≡⟨ cong (λ x → finToVal (x !! F.zero)) (sym (swapmAct (F.suc (F.suc i)) (tabulate id))) ⟩ finToVal (evalPerm (swapmPerm (F.suc (F.suc i))) F.zero) ∎ swapmCorrect2 {suc (suc n)} (F.suc F.zero) (F.suc j) = begin evalComb (swapi F.zero) (inj₂ (finToVal j)) ≡⟨ swapi≡swap01 (F.suc j) ⟩ finToVal (lookup j (F.zero ∷ permute idP (tabulate (λ z → F.suc (F.suc z))))) ≡⟨ refl ⟩ finToVal (permute (F.suc F.zero ∷ idP) (tabulate id) !! (F.suc j)) ∎ swapmCorrect2 {suc (suc n)} (F.suc (F.suc i)) (F.suc j) = {!!} -} {- -- this alternate version of lemma1 might, in the long term, but a better -- way to go? lemma1′ : {n : ℕ} → (i : F.Fin n) → vmap (evalComb (swapm i)) (tabulate finToVal) ≡ vmap finToVal (permute (swapmPerm i) (tabulate id)) lemma1′ {zero} () lemma1′ {suc n} F.zero = cong (_∷_ (inj₁ tt)) ( begin vmap id (tabulate (inj₂ ○ finToVal)) ≡⟨ mapTab id (inj₂ ○ finToVal) ⟩ tabulate (inj₂ ○ finToVal) ≡⟨ cong tabulate refl ⟩ tabulate (finToVal ○ F.suc) ≡⟨ sym (mapTab finToVal F.suc) ⟩ vmap finToVal (tabulate F.suc) ≡⟨ cong (vmap finToVal) (sym (idP-id _)) ⟩ vmap finToVal (permute idP (tabulate F.suc)) ∎ ) lemma1′ {suc n} (F.suc i) = begin vmap (evalComb (swapm (F.suc i))) (tabulate finToVal) ≡⟨ refl ⟩ evalComb (swapm (F.suc i)) (inj₁ tt) ∷ vmap (evalComb (swapm (F.suc i))) (tabulate (inj₂ ○ finToVal)) ≡⟨ cong (λ x → x ∷ vmap (evalComb (swapm (F.suc i))) (tabulate (inj₂ ○ finToVal))) (swapmCorrect {suc n} (F.suc i) F.zero) ⟩ (finToVal (evalPerm (swapmPerm (F.suc i)) F.zero)) ∷ vmap (evalComb (swapm (F.suc i))) (tabulate (inj₂ ○ finToVal)) ≡⟨ cong (λ x → (finToVal (evalPerm (swapmPerm (F.suc i)) F.zero)) ∷ x ) {!!} ⟩ -- need to generalize the inductive hyp. for this to work {!!} ≡⟨ {!!} ⟩ vmap finToVal (insert (permute (swapOne i) (tabulate F.suc)) (F.suc i) F.zero) ∎ lemma2 : {n : ℕ} (c : (fromℕ n) ⇛ (fromℕ n)) → (i : F.Fin n) → (evalComb c (finToVal i)) ≡ finToVal (evalPerm (combToPerm c) i) lemma2 c i = {!!} -}
Require Export List Program Arith Omega MoreList. Export Nat. Set Implicit Arguments. Inductive letter := M | I | U. Inductive Generatable { init } : list letter -> Prop := | Init : Generatable init | Rule1 : forall l, Generatable (l ++ [I]) -> Generatable (l ++ [I;U]) | Rule2 : forall l, Generatable (M :: l) -> Generatable (M :: l ++ l) | Rule3 : forall l r, Generatable (l ++ I :: I :: I :: r) -> Generatable (l ++ U :: r) | Rule4 : forall l r, Generatable (l ++ U :: U :: r) -> Generatable (l ++ r). Arguments Generatable : clear implicits. Arguments Init : clear implicits. Hint Constructors Generatable letter. Theorem Rule1' i l r : l = r ++ [I;U] -> Generatable i (r ++ [I]) -> Generatable i l. intros;subst;auto. Qed. Theorem Rule2' i l r : l = M :: r ++ r -> Generatable i (M :: r) -> Generatable i l. intros;subst;auto. Qed. Theorem Rule3' i li l r : li = l ++ U :: r -> Generatable i (l ++ I :: I :: I :: r) -> Generatable i li. intros;subst;auto. Qed. Theorem Rule4' i li l r : li = l ++ r -> Generatable i (l ++ U :: U :: r) -> Generatable i li. intros;subst;auto. Qed. Goal Generatable [M;I;U] [M;I;U;I;U]. eapply Rule2';eauto;eauto. Qed. Goal Generatable [M;U;M] [M;U;M;U;M]. eapply Rule2';eauto;eauto. Qed. Goal Generatable [M;U] [M;U;U]. eapply Rule2';eauto;eauto. Qed. Goal Generatable [U;M;I;I;I;M;U] [U;M;U;M;U]. eapply Rule3' with (l := [U;M])(r := [M;U]);eauto. Qed. Goal Generatable [M;I;I;I;I] [M;I;U]. eapply Rule3' with (l := [M;I])(r := []);eauto. Qed. Goal Generatable [M;I;I;I;I] [M;U;I]. eapply Rule3' with (l := [M])(r := [I]);eauto. Qed. Goal Generatable [M;I;I;I] [M;U]. eapply Rule3' with (l := [M])(r := []);eauto. Qed. Goal Generatable [U;U;U] [U]. eapply Rule4' with (l := [U])(r := []);eauto. Qed. Goal Generatable [M;U;U;U;I;I;I] [M;U;I;I;I]. eapply Rule4' with (l := [M;U])(r := [I;I;I]);eauto. Qed. Theorem gen_non_div_three l : Generatable [M;I] l -> ~ divide 3 (fold_left (fun (n : nat) e => match e with M => 0 | I => 1 | U => 3 end + n) l 0). induction 1; unfold divide in *; repeat (rewrite !fold_left_app in *||simpl in *); intuition; match goal with H : exists _, _ |- _ => destruct H end; omega||apply IHGeneratable. destruct x;omega||exists x;omega. erewrite (foldl_identity ((fun (n : nat) (e : letter) => match e with | M => 0 | I => 1 | U => 3 end + n))) in H0. Admitted. Goal ~ Generatable [M;I] [M;U]. intuition;apply gen_non_div_three in H. simpl in *;intuition. Qed.
```python import sys, os sys.path.insert(0, os.path.join(os.pardir, 'src')) import sympy as sym from approx1D import least_squares_orth, comparison_plot import matplotlib.pyplot as plt x = sym.Symbol('x') # Naive approach: (not utilizing the fact that i+1 computations can # make use of i computations) def naive(f, s, Omega, N=10): psi = [] for i in range(N+1): psi.append(sym.sin((2*i+1)*x)) u, c = least_squares_orth(f, psi, Omega, symbolic=False) comparison_plot(f, u, Omega, 'tmp_sin%02dx' % i, legend_loc='upper left', show=True) # Efficient approach: compute just the matrix diagonal def efficient(f, s, Omega, N=10): u = 0 for i in range(N+1): psi = [sym.sin((2*i+1)*x)] next_term, c = least_squares_orth(f, psi, Omega, False) u = u + next_term comparison_plot(f, u, Omega, 'tmp_sin%02dx' % i, legend_loc='upper left', show=False, plot_title='s=%g, i=%d' % (s, i)) if __name__ == '__main__': s = 20 # steepness f = sym.tanh(s*(x-sym.pi)) from math import pi Omega = [0, 2*pi] # sym.pi did not work here efficient(f, s, Omega, N=10) # Make movie # avconv/ffmpeg skips frames, use convert instead (few files) cmd = 'convert -delay 200 tmp_sin*.png tanh_sines_approx.gif' os.system(cmd) # Make static plots, 3 figures on 2 lines for ext in 'pdf', 'png': cmd = 'doconce combine_images %s -3 ' % ext cmd += 'tmp_sin00x tmp_sin01x tmp_sin02x tmp_sin04x ' cmd += 'tmp_sin07x tmp_sin10x tanh_sines_approx' os.system(cmd) plt.show() ``` ```python ```
include("gen_code_mem.jl") include("gen_code_snippets.jl") include("multilincomb.jl"); include("gen_c_code.jl") include("gen_julia_code.jl") include("gen_matlab_code.jl") export gen_code # Every language needs: # comment(::Lang,s) # slotname(::Lang,i) # # assign_coeff(::Lang,v,i) # function_definition(::Lang,graph,T,funname) # function_init(lang::Lang,T,mem,graph) # init_mem(lang::Lang,max_nof_nodes) # function_end(lang::Lang,graph,mem) # execute_operation!(lang::Lang,T,graph,node, # dealloc_list, mem) # Fallback. Default to no main function function gen_main(lang, T, fname, funname) return init_code(lang) end function preprocess_codegen(graph, lang) return graph # Fallback to no preprocessing end """ gen_code( fname, graph; priohelp = Dict{Symbol,Float64}(), lang = LangJulia(), funname = "dummy", precomputed_nodes = [:A], ) Generates the code for the `graph` in the language specified in `lang` and writes it into the file `fname`. The string `funname` is the function name. Topological order of the nodes is comptued using [`get_topo_order`](@ref) and `priohelp` can be used to influence the order. The nodes listed in `precomputed_nodes` are viewed as inputs, and code to compute these nodes are not computed. Currently supported languages: [`LangC_MKL`](@ref), [`LangC_OpenBLAS`](@ref), [`LangJulia`](@ref), [`LangMatlab`](@ref). """ function gen_code( fname, graph; priohelp = Dict{Symbol,Float64}(), lang = LangJulia(), funname = "dummy", precomputed_nodes = [:A], ) # Make dispatch possible for lang return _gen_code(fname, graph, lang, priohelp, funname, precomputed_nodes) end # Most gen code calls will call this. Can be overloaded with lang function _gen_code(fname, graph, lang, priohelp, funname, precomputed_nodes) # Error if graph is trivial (no operations) or has trivial nodes. if isempty(graph.operations) error("Unable to generate code for graphs without operations.") end if has_trivial_nodes(graph) error("Please run compress_graph!() on the graph first.") end T = eltype(eltype(typeof(graph.coeffs.vals))) if (fname isa String) file = open(abspath(fname), "w+") else # Lazy: Print out to stdout if no filename file = Base.stdout end graph = preprocess_codegen(graph, lang) (order, can_be_deallocated, max_nof_slots) = get_topo_order(graph; priohelp = priohelp) # max_nof_slots is the path width which gives # a bound on the number memory slots needed. println( file, to_string( function_definition(lang, graph, T, funname, precomputed_nodes), ), ) # We do a double sweep in order to determine exactly how many memory slots # are needed. The first sweep we carry out all operations but store only the # maximum number of memory slots needed. The second sweep generates the # code. mem = init_mem(lang, max_nof_slots + 3, precomputed_nodes) function_init(lang, T, mem, graph, precomputed_nodes) # Sweep 1: Determine exactly the number of slots needed nof_slots = 0 for (i, node) in enumerate(order) if (node in precomputed_nodes) # Nothing to do for precomputed nodes continue end (exec_code, result_variable) = execute_operation!(lang, T, graph, node, can_be_deallocated[i], mem) # How many slots needed to reach this point if (!isnothing(findlast(mem.slots .!= :Free))) nof_slots = max(nof_slots, findlast(mem.slots .!= :Free)) end end # Sweep 2: mem = init_mem(lang, nof_slots, precomputed_nodes) function_init_code = function_init(lang, T, mem, graph, precomputed_nodes) push_comment!( function_init_code, "Computation order: " * join(string.(order), " "), ) println(file, to_string(function_init_code)) for (i, node) in enumerate(order) if (node in precomputed_nodes) # Nothing to do for precomputed nodes continue end (exec_code, result_variable) = execute_operation!(lang, T, graph, node, can_be_deallocated[i], mem) println(file, to_string(exec_code)) end println(file, to_string(function_end(lang, graph, mem))) # Generate main function, if necessary. exec_code = gen_main(lang, T, fname, funname) println(file, to_string(exec_code)) if (fname isa String) close(file) end end
# [ include("../src/"*s) for s in readdir("../src") ] using PolyChaos # using LinearAlgebra # import FFTW # import SpecialFunctions # numerically compute recurrence coefficients for (almost) Gaussian density w(t) N = 10 w(t) = exp(-t^2) lb, ub = -Inf, Inf @time α, β = rm_compute(w,lb,ub;Nquad=200,Npoly=N) # analytical solution α_ana = zeros(N) β_ana = [ √π; [0.5*k for k=1:N-1] ] # compare display("Deviation for α: $(α-α_ana)") display("Deviation for β: $(β-β_ana)") ## do the same for Chebyshev polynomials #4 v(t) = sqrt(1-t)/sqrt(1+t) lb, ub = -1+1e-8, 1-1e-8 @time α, β = rm_compute(v,lb,ub;Nquad=2000,Npoly=N) # analytical solution α_ana = [-0.5; zeros(N-1) ] β_ana = [ π; [0.25 for k=1:N-1] ] # compare display("Deviation for α: $(α-α_ana)") display("Deviation for β: $(β-β_ana)")
[STATEMENT] lemma sum_list_us_le: "sum_list (\<^bold>u y i) \<le> i + 1" [PROOF STATE] proof (prove) goal (1 subgoal): 1. sum_list (\<^bold>u y i) \<le> i + 1 [PROOF STEP] proof (induct i) [PROOF STATE] proof (state) goal (2 subgoals): 1. sum_list (\<^bold>u y 0) \<le> 0 + 1 2. \<And>i. sum_list (\<^bold>u y i) \<le> i + 1 \<Longrightarrow> sum_list (\<^bold>u y (Suc i)) \<le> Suc i + 1 [PROOF STEP] case 0 [PROOF STATE] proof (state) this: goal (2 subgoals): 1. sum_list (\<^bold>u y 0) \<le> 0 + 1 2. \<And>i. sum_list (\<^bold>u y i) \<le> i + 1 \<Longrightarrow> sum_list (\<^bold>u y (Suc i)) \<le> Suc i + 1 [PROOF STEP] then [PROOF STATE] proof (chain) picking this: [PROOF STEP] show ?case [PROOF STATE] proof (prove) goal (1 subgoal): 1. sum_list (\<^bold>u y 0) \<le> 0 + 1 [PROOF STEP] by (auto simp: sum_list_update) (metis Suc_eq_plus1 in_set_replicate length_replicate sum_list_eq_0_iff sum_list_inc_le') [PROOF STATE] proof (state) this: sum_list (\<^bold>u y 0) \<le> 0 + 1 goal (1 subgoal): 1. \<And>i. sum_list (\<^bold>u y i) \<le> i + 1 \<Longrightarrow> sum_list (\<^bold>u y (Suc i)) \<le> Suc i + 1 [PROOF STEP] next [PROOF STATE] proof (state) goal (1 subgoal): 1. \<And>i. sum_list (\<^bold>u y i) \<le> i + 1 \<Longrightarrow> sum_list (\<^bold>u y (Suc i)) \<le> Suc i + 1 [PROOF STEP] case (Suc i) [PROOF STATE] proof (state) this: sum_list (\<^bold>u y i) \<le> i + 1 goal (1 subgoal): 1. \<And>i. sum_list (\<^bold>u y i) \<le> i + 1 \<Longrightarrow> sum_list (\<^bold>u y (Suc i)) \<le> Suc i + 1 [PROOF STEP] then [PROOF STATE] proof (chain) picking this: sum_list (\<^bold>u y i) \<le> i + 1 [PROOF STEP] show ?case [PROOF STATE] proof (prove) using this: sum_list (\<^bold>u y i) \<le> i + 1 goal (1 subgoal): 1. sum_list (\<^bold>u y (Suc i)) \<le> Suc i + 1 [PROOF STEP] by auto (metis Suc_le_mono add.commute le_trans length_us plus_1_eq_Suc sum_list_inc_le') [PROOF STATE] proof (state) this: sum_list (\<^bold>u y (Suc i)) \<le> Suc i + 1 goal: No subgoals! [PROOF STEP] qed
open import Relation.Binary.Core module PLRTree.Heap.Properties {A : Set} (_≤_ : A → A → Set) (trans≤ : Transitive _≤_) where open import PLRTree {A} open import PLRTree.Heap _≤_ lemma-≤-≤* : {x y : A}{t : PLRTree} → x ≤ y → y ≤* t → x ≤* t lemma-≤-≤* {x = x} _ (lf≤* _) = lf≤* x lemma-≤-≤* x≤y (nd≤* y≤z y≤*l y≤*r) = nd≤* (trans≤ x≤y y≤z) (lemma-≤-≤* x≤y y≤*l) (lemma-≤-≤* x≤y y≤*r)
Currently , about 75 @,@ 000 military personnel and 15 @,@ 000 civilians comprise the armed forces , for a total of 90 @,@ 000 men and women . Out of these 75 @,@ 000 , <unk> . 43 @,@ 000 are in the Land Forces .
{-# LANGUAGE BinaryLiterals #-} {-# LANGUAGE CPP #-} {-# LANGUAGE FlexibleContexts #-} {-# LANGUAGE FlexibleInstances #-} {-# LANGUAGE MultiParamTypeClasses #-} {-# LANGUAGE NegativeLiterals #-} {-# LANGUAGE NoMonomorphismRestriction #-} {-# LANGUAGE ScopedTypeVariables #-} -- | Tests for the flat module module Main where import Control.Monad import Data.Bits import qualified Data.ByteString as B import qualified Data.ByteString.Lazy as L import qualified Data.ByteString.Short as SBS import Data.Char import Data.Either import Flat import Flat.Bits import Flat.Decoder import qualified Flat.Encoder as E import qualified Flat.Encoder.Prim as E import qualified Flat.Encoder.Strict as E import Data.Int import Data.Proxy import qualified Data.Sequence as Seq import Data.String (fromString) import qualified Data.Text as T import Data.Word import Numeric.Natural import System.Exit import Test.Data import Test.Data.Arbitrary () import Test.Data.Flat import Test.Data.Values hiding (lbs, ns) import Test.E import Test.E.Arbitrary () import Test.E.Flat import Test.Tasty import Test.Tasty.HUnit import Test.Tasty.QuickCheck as QC hiding (getSize) import Flat.Endian import Data.FloatCast import Data.Text.Arbitrary -- import Test.QuickCheck.Arbitrary import qualified Data.Complex as B import qualified Data.Ratio as B import qualified Data.Map as C import qualified Data.Map.Strict as CS import qualified Data.Map.Lazy as CL import qualified Data.IntMap.Strict as CS import qualified Data.IntMap.Lazy as CL -- import Data.List -- import Data.Ord #if MIN_VERSION_base(4,9,0) import qualified Data.List.NonEmpty as BI #endif instance Arbitrary UTF8Text where arbitrary = UTF8Text <$> arbitrary shrink t = UTF8Text <$> shrink (unUTF8 t) #if! defined(ghcjs_HOST_OS) && ! defined (ETA_VERSION) instance Arbitrary UTF16Text where arbitrary = UTF16Text <$> arbitrary shrink t = UTF16Text <$> shrink (unUTF16 t) #endif -- instance Flat [Int16] -- instance Flat [Word8] -- instance Flat [Bool] main = do -- #ifdef ghcjs_HOST_OS -- print "GHCJS" -- #endif -- printInfo -- print $ flat asciiStrT mainTest -- print $ flatRaw 18446744073709551615::Word64 -- print $ B.unpack . flat $ (True,0::Word64,18446744073709551615::Word64) -- print (2^56::Word64,fromIntegral (1::Word8) `shiftL` 56 :: Word64,(18446744073709551615::Word64) `shiftR` 1) -- mainShow -- eWord64E id 0b mainShow = do mapM_ (\_ -> generate (arbitrary :: Gen Int) >>= print) [1 .. 10] exitFailure mainTest = defaultMain tests tests :: TestTree tests = testGroup "Tests" [testPrimitives, testEncDec, testFlat] testPrimitives = testGroup "conversion/memory primitives" [testEndian, testFloatingConvert] --,testShifts -- ghcjs fails this testEncDec = testGroup "encode/decode primitives" [ testEncodingPrim , testDecodingPrim #ifdef TEST_DECBITS , testDecBits #endif ] testFlat = testGroup "flat/unflat" [testSize, testLargeEnum, testContainers, flatUnflatRT, flatTests] -- Flat.Endian tests (to run, need to modify imports and cabal file) testEndian = testGroup "Endian" [ convBE toBE16 (2 ^ 10 + 3) (2 ^ 9 + 2 ^ 8 + 4) , convBE toBE32 (2 ^ 18 + 3) 50332672 , convBE toBE64 (2 ^ 34 + 3) 216172782180892672 , convBE toBE16 0x1234 0x3412 , convBE toBE32 0x11223344 0x44332211 , convBE toBE64 0x0123456789ABCDEF 0xEFCDAB8967452301] testFloatingConvert = testGroup "Floating conversions" [ conv floatToWord (-0.15625) 3189768192 , conv wordToFloat 3189768192 (-0.15625) , conv doubleToWord (-0.15625) 13818169556679524352 , conv wordToDouble 13818169556679524352 (-0.15625) , rt "floatToWord" (prop_float_conv :: RT Float) , rt "doubleToWord" (prop_double_conv :: RT Double)] convBE f v littleEndianE = let e = if isBigEndian then v else littleEndianE in testCase (unwords ["conv BigEndian", sshow v, "to", sshow e]) $ f v @?= e conv f v e = testCase (unwords ["conv", sshow v, showB . flat $ v, "to", sshow e]) $ f v @?= e -- ghcjs bug on shiftR 0, see: https://github.com/ghcjs/ghcjs/issues/706 testShifts = testGroup "Shifts" $ map tst [0 .. 33] where tst n = testCase ("shiftR " ++ show n) $ let val = 4294967295 :: Word32 s = val `shift` (-n) r = val `shiftR` n in r @?= s -- shR = shiftR -- shR = unsafeShiftR shR val 0 = val shR val n = shift val (-n) testEncodingPrim = testGroup "Encoding Primitives" [ encRawWith 1 E.eTrueF [0b10000001] , encRawWith 3 (E.eTrueF >=> E.eFalseF >=> E.eTrueF) [0b10100001] -- Depends on endianess --,encRawWith 32 (E.eWord32E id $ 2^18 + 3) [3,0,4,0,1] -- ,encRawWith 64 (E.eWord64E id $ 0x1122334455667788) [0x88,0x77,0x66,0x55,0x44,0x33,0x22,0x11,1] --,encRawWith 65 (E.eTrueF >=> E.eWord64E id (2^34 + 3)) [1,0,0,0,2,0,0,128,129] --,encRawWith 65 (E.eFalseF >=> E.eWord64E id (2^34 + 3)) [1,0,0,0,2,0,0,0,129] -- Big Endian , encRawWith 32 (E.eWord32BEF $ 2 ^ 18 + 3) [0, 4, 0, 3, 1] , encRawWith 64 (E.eWord64BEF $ 2 ^ 34 + 3) [0, 0, 0, 4, 0, 0, 0, 3, 1] , encRawWith 65 (E.eTrueF >=> E.eWord64BEF (2 ^ 34 + 3)) [128, 0, 0, 2, 0, 0, 0, 1, 129] , encRawWith 65 (E.eFalseF >=> E.eWord64BEF (2 ^ 34 + 3)) [0, 0, 0, 2, 0, 0, 0, 1, 129]] where encRawWith sz enc exp = testCase (unwords ["encode raw with size", show sz]) $ flatRawWith sz enc @?= exp testDecodingPrim = testGroup "Decoding Primitives" [ dec ((,,,) <$> dropBits 13 <*> dBool <*> dBool <*> dBool) [0b10111110, 0b10011010] ((), False, True, False) , dec ((,,,) <$> dropBits 1 <*> dBE16 <*> dBool <*> dropBits 6) [0b11000000, 0b00000001, 0b01000000] ((), 2 ^ 15 + 2, True, ()) , dec ((,,,) <$> dropBits 1 <*> dBE32 <*> dBool <*> dropBits 6) [0b11000000, 0b00000000, 0b00000000, 0b00000001, 0b01000000] ((), 2 ^ 31 + 2, True, ()) , dec dBE64 [ 0b10000000 , 0b00000000 , 0b00000000 , 0b00000000 , 0b00000000 , 0b00000000 , 0b00000000 , 0b00000010] (2 ^ 63 + 2) , dec ((,,,) <$> dropBits 1 <*> dBE64 <*> dBool <*> dropBits 6) [ 0b11000000 , 0b00000000 , 0b00000000 , 0b00000000 , 0b00000000 , 0b00000000 , 0b00000000 , 0b00000001 , 0b01000000] ((), 2 ^ 63 + 2, True, ())] where dec decOp v e = testCase (unwords ["decode", sshow v]) $ unflatRawWith decOp (B.pack v) @?= Right e testDecBits = testGroup "Decode Bits" $ concat [ decBitsN dBEBits8 , decBitsN dBEBits16 , decBitsN dBEBits32 , decBitsN dBEBits64] -- Test dBEBits8/16/32/64, extraction of up to 8/16/32/bits from various positions where decBitsN :: forall a. (Num a, FiniteBits a, Show a, Flat a) => (Int -> Get a) -> [TestTree] decBitsN dec = let s = finiteBitSize (undefined :: a) in [decBits_ dec val numBitsToTake pre | numBitsToTake <- [0 .. s] , val <- [ 0 :: a , 1 + 2 ^ (s - 2) + 2 ^ (s - 5) , fromIntegral $ (2 ^ s :: Integer) - 1] , pre <- [0, 1, 7]] decBits_ :: forall a. (FiniteBits a, Show a, Flat a) => (Int -> Get a) -> a -> Int -> Int -> TestTree decBits_ deco val numBitsToTake pre = -- a sequence composed by pre zero bits followed by the val and zero bits till the next byte boundary let vs = B.pack . asBytes . fromBools $ replicate pre False ++ toBools (asBits val) len = B.length vs sz = finiteBitSize (undefined :: a) dec :: Get a dec = do dropBits pre r <- deco numBitsToTake dropBits (len * 8 - numBitsToTake - pre) return r -- we expect the first numBitsToTake bits of the value expectedD @ (Right expected) :: Decoded a = Right $ val `shR` (sz - numBitsToTake) -- ghcjs: shiftR fails, see: https://github.com/ghcjs/ghcjs/issues/706 actualD @ (Right actual) :: Decoded a = unflatRawWith dec vs in testCase (unwords [ "take" , show numBitsToTake , "bits from" , show val , "of size" , show sz , "with prefix" , show pre , "sequence" , showB vs , show expected , show actual , show $ val == actual , show $ expected == actual , show $ expected /= actual , show $ show expected == show actual , show $ flat expected == flat actual]) $ actualD @?= expectedD testSize = testGroup "Size" $ concat [ sz () 0 , sz True 1 , sz One 2 , sz Two 2 , sz Three 2 , sz Four 3 , sz Five 3 , sz 'a' 8 , sz 'à' 16 , sz '经' 24 , sz (0 :: Word8) 8 , sz (1 :: Word8) 8 , concatMap (uncurry sz) ns , concatMap (uncurry sz) nsI , concatMap (uncurry sz) nsII , sz (1.1 :: Float) 32 , sz (1.1 :: Double) 64 , sz "" 1 , sz "abc" (4 + 3 * 8) , sz ((), (), Unit) 0 , sz (True, False, One, Five) 7 , sz map1 7 , sz bs (4 + 3 * 8) , sz stBS bsSize , sz lzBS bsSize #ifndef ghcjs_HOST_OS , sz shBS bsSize #endif , sz tx utf8Size , sz (UTF8Text tx) utf8Size #if! defined(ghcjs_HOST_OS) && ! defined (ETA_VERSION) , sz (UTF16Text tx) utf16Size #endif ] where tx = T.pack "txt" utf8Size = 8 + 8 + 3 * 32 + 8 utf16Size = 8 + 8 + 3 * 16 + 8 bsSize = 8 + 8 + 3 * 8 + 8 sz v e = [testCase (unwords ["size of", sshow v]) $ getSize v @?= e] -- E258_256 = 11111110 _257 = 111111110 _258 = 111111111 testLargeEnum = testGroup "test enum with more than 256 constructors" $ concat [ #ifdef ENUM_LARGE sz E258_256 8 , sz E258_257 9 , sz E258_258 9 -- As encodes are inlined, this is going to take for ever if this is compiled with -O1 or -O2 -- , encRaw (E258_256) [0b11111110] -- , encRaw (E258_257) [0b11111111,0b00000000] -- , encRaw (E258_258) [0b11111111,0b10000000] -- , encRaw (E258_256,E258_257,E258_258) [0b11111110,0b11111111,0b01111111,0b11000000] , map trip [E258_1, E258_256, E258_257, E258_258] , map trip [E256_1, E256_134, E256_256] #endif ] testContainers = testGroup "containers" [trip longSeq, trip dataMap, trip listMap] -- , trip intMap flatUnflatRT = testGroup "unflat (flat v) == v" [ rt "()" (prop_Flat_roundtrip :: RT ()) , rt "Bool" (prop_Flat_roundtrip :: RT Bool) , rt "Char" (prop_Flat_roundtrip :: RT Char) , rt "Complex" (prop_Flat_roundtrip :: RT (B.Complex Float)) , rt "Either N Bool" (prop_Flat_roundtrip :: RT (Either N Bool)) , rt "Either Int Char" (prop_Flat_roundtrip :: RT (Either Int Char)) , rt "Int8" (prop_Flat_Large_roundtrip :: RTL Int8) , rt "Int16" (prop_Flat_Large_roundtrip :: RTL Int16) , rt "Int32" (prop_Flat_Large_roundtrip :: RTL Int32) , rt "Int64" (prop_Flat_Large_roundtrip :: RTL Int64) , rt "Int" (prop_Flat_Large_roundtrip :: RTL Int) , rt "[Int16]" (prop_Flat_roundtrip :: RT [Int16]) , rt "String" (prop_Flat_roundtrip :: RT String) #if MIN_VERSION_base(4,9,0) , rt "NonEmpty" (prop_Flat_roundtrip :: RT (BI.NonEmpty Bool)) #endif , rt "Maybe N" (prop_Flat_roundtrip :: RT (Maybe N)) , rt "Ratio" (prop_Flat_roundtrip :: RT (B.Ratio Int32)) , rt "Word8" (prop_Flat_Large_roundtrip :: RTL Word8) , rt "Word16" (prop_Flat_Large_roundtrip :: RTL Word16) , rt "Word32" (prop_Flat_Large_roundtrip :: RTL Word32) , rt "Word64" (prop_Flat_Large_roundtrip :: RTL Word64) , rt "Word" (prop_Flat_Large_roundtrip :: RTL Word) , rt "Natural" (prop_Flat_roundtrip :: RT Natural) , rt "Integer" (prop_Flat_roundtrip :: RT Integer) , rt "Float" (prop_Flat_roundtrip :: RT Float) , rt "Double" (prop_Flat_roundtrip :: RT Double) , rt "Text" (prop_Flat_roundtrip :: RT T.Text) , rt "UTF8 Text" (prop_Flat_roundtrip :: RT UTF8Text) #if! defined(ghcjs_HOST_OS) && ! defined (ETA_VERSION) , rt "UTF16 Text" (prop_Flat_roundtrip :: RT UTF16Text) #endif , rt "ByteString" (prop_Flat_roundtrip :: RT B.ByteString) , rt "Lazy ByteString" (prop_Flat_roundtrip :: RT L.ByteString) #ifndef ghcjs_HOST_OS , rt "Short ByteString" (prop_Flat_roundtrip :: RT SBS.ShortByteString) #endif , rt "Map.Strict" (prop_Flat_roundtrip :: RT (CS.Map Int Bool)) , rt "Map.Lazy" (prop_Flat_roundtrip :: RT (CL.Map Int Bool)) , rt "IntMap.Strict" (prop_Flat_roundtrip :: RT (CS.IntMap Bool)) , rt "IntMap.Lazy" (prop_Flat_roundtrip :: RT (CL.IntMap Bool)) , rt "Unit" (prop_Flat_roundtrip :: RT Unit) , rt "Un" (prop_Flat_roundtrip :: RT Un) , rt "N" (prop_Flat_roundtrip :: RT N) , rt "E2" (prop_Flat_roundtrip :: RT E2) , rt "E3" (prop_Flat_roundtrip :: RT E3) , rt "E4" (prop_Flat_roundtrip :: RT E4) , rt "E8" (prop_Flat_roundtrip :: RT E8) , rt "E16" (prop_Flat_roundtrip :: RT E16) , rt "E17" (prop_Flat_roundtrip :: RT E17) , rt "E32" (prop_Flat_roundtrip :: RT E32) , rt "A" (prop_Flat_roundtrip :: RT A) , rt "B" (prop_Flat_roundtrip :: RT B) -- ,rt "Tree Bool" (prop_Flat_roundtrip:: RT (Tree Bool)) -- ,rt "Tree N" (prop_Flat_roundtrip:: RT (Tree N)) , rt "List N" (prop_Flat_roundtrip :: RT (List N))] rt n = QC.testProperty (unwords ["round trip", n]) flatTests = testGroup "flat/unflat Unit tests" $ concat [ -- Expected errors errDec (Proxy :: Proxy Bool) [] -- no data , errDec (Proxy :: Proxy Bool) [128] -- no filler , errDec (Proxy :: Proxy Bool) [128 + 1, 1, 2, 4, 8] -- additional bytes , errDec (Proxy :: Proxy Text) (B.unpack (flat ((fromString "\x80") :: B.ByteString))) -- invalid UTF-8 , encRaw () [] , encRaw ((), (), Unit) [] , encRaw (Unit, 'a', Unit, 'a', Unit, 'a', Unit) [97, 97, 97] , a () [1] , a True [128 + 1] , a (True, True) [128 + 64 + 1] , a (True, False, True) [128 + 32 + 1] , a (True, False, True, True) [128 + 32 + 16 + 1] , a (True, False, True, True, True) [128 + 32 + 16 + 8 + 1] , a (True, False, True, True, True, True) [128 + 32 + 16 + 8 + 4 + 1] , a (True, False, True, True, True, True, True) [128 + 32 + 16 + 8 + 4 + 2 + 1] , a (True, False, True, True, (True, True, True, True)) [128 + 32 + 16 + 8 + 4 + 2 + 1, 1] , encRaw (True, False, True, True) [128 + 32 + 16] , encRaw ( (True, True, False, True, False) , (False, False, True, False, True, True)) [128 + 64 + 16 + 1, 64 + 32] , encRaw ('\0', '\1', '\127') [0, 1, 127] , encRaw (33 :: Word32, 44 :: Word32) [33, 44] --,s (Elem True) [64] --,s (NECons True (NECons False (Elem True))) [128+64+32+4] , encRaw (0 :: Word8) [0] , encRaw (1 :: Word8) [1] , encRaw (255 :: Word8) [255] , encRaw (0 :: Word16) [0] , encRaw (1 :: Word16) [1] , encRaw (255 :: Word16) [255, 1] , encRaw (256 :: Word16) [128, 2] , encRaw (65535 :: Word16) [255, 255, 3] , encRaw (127 :: Word32) [127] , encRaw (128 :: Word32) [128, 1] , encRaw (129 :: Word32) [129, 1] , encRaw (255 :: Word32) [255, 1] , encRaw (16383 :: Word32) [255, 127] , encRaw (16384 :: Word32) [128, 128, 1] , encRaw (16385 :: Word32) [129, 128, 1] , encRaw (32767 :: Word32) [255, 255, 1] , encRaw (32768 :: Word32) [128, 128, 2] , encRaw (32769 :: Word32) [129, 128, 2] , encRaw (65535 :: Word32) [255, 255, 3] , encRaw (2097151 :: Word32) [255, 255, 127] , encRaw (2097152 :: Word32) [128, 128, 128, 1] , encRaw (2097153 :: Word32) [129, 128, 128, 1] , encRaw (4294967295 :: Word32) [255, 255, 255, 255, 15] , encRaw (255 :: Word64) [255, 1] , encRaw (65535 :: Word64) [255, 255, 3] , encRaw (4294967295 :: Word64) [255, 255, 255, 255, 15] , encRaw (18446744073709551615 :: Word64) [255, 255, 255, 255, 255, 255, 255, 255, 255, 1] , encRaw (False, 18446744073709551615 :: Word64) [127, 255, 255, 255, 255, 255, 255, 255, 255, 128, 128] , encRaw (255 :: Word) [255, 1] , encRaw (65535 :: Word) [255, 255, 3] , encRaw (4294967295 :: Word) [255, 255, 255, 255, 15] , tstI [0 :: Int8, 2, -2] , encRaw (127 :: Int8) [254] , encRaw (-128 :: Int8) [255] , tstI [0 :: Int16, 2, -2, 127, -128] , tstI [0 :: Int32, 2, -2, 127, -128] , tstI [0 :: Int64, 2, -2, 127, -128] , encRaw (-1024 :: Int64) [255, 15] , encRaw (maxBound :: Word8) [255] , encRaw (True, maxBound :: Word8) [255, 128] , encRaw (maxBound :: Word16) [255, 255, 3] , encRaw (True, maxBound :: Word16) [255, 255, 129, 128] , encRaw (maxBound :: Word32) [255, 255, 255, 255, 15] , encRaw (True, maxBound :: Word32) [255, 255, 255, 255, 135, 128] , encRaw (maxBound :: Word64) [255, 255, 255, 255, 255, 255, 255, 255, 255, 1] , encRaw (True, maxBound :: Word64) [255, 255, 255, 255, 255, 255, 255, 255, 255, 128, 128] , encRaw (minBound :: Int64) [255, 255, 255, 255, 255, 255, 255, 255, 255, 1] , encRaw (maxBound :: Int64) [254, 255, 255, 255, 255, 255, 255, 255, 255, 1] , tstI [0 :: Int, 2, -2, 127, -128] , tstI [0 :: Integer, 2, -2, 127, -128, -256, -512] , encRaw (-1024 :: Integer) [255, 15] , encRaw (0 :: Float) [0, 0, 0, 0] , encRaw (-2 :: Float) [0b11000000, 0, 0, 0] , encRaw (0.085 :: Float) [0b00111101, 0b10101110, 0b00010100, 0b01111011] , encRaw (0 :: Double) [0, 0, 0, 0, 0, 0, 0, 0] , encRaw (-2 :: Double) [0b11000000, 0, 0, 0, 0, 0, 0, 0] , encRaw (23 :: Double) [0b01000000, 0b00110111, 0, 0, 0, 0, 0, 0] , encRaw (-0.15625 :: Float) [0b10111110, 0b00100000, 0, 0] , encRaw (-0.15625 :: Double) [0b10111111, 0b11000100, 0, 0, 0, 0, 0, 0] , encRaw (-123.2325E-23 :: Double) [ 0b10111011 , 0b10010111 , 0b01000111 , 0b00101000 , 0b01110101 , 0b01111011 , 0b01000111 , 0b10111010] , encRaw (Left True :: Either Bool (Double, Double)) [0b01000000] , encRaw (-2.1234E15 :: Double) [195, 30, 44, 226, 90, 221, 64, 0] , encRaw (1.1234E-22 :: Double) [59, 96, 249, 241, 120, 219, 249, 174] , encRaw ((False, -2.1234E15) :: (Bool, Double)) [97, 143, 22, 113, 45, 110, 160, 0, 0] , encRaw ((True, -2.1234E15) :: (Bool, Double)) [225, 143, 22, 113, 45, 110, 160, 0, 0] , encRaw ((-2.1234E15, 1.1234E-22) :: (Double, Double)) $ [0b11000011, 30, 44, 226, 90, 221, 64, 0] ++ [59, 96, 249, 241, 120, 219, 249, 174] , encRaw ((True, -2.1234E15, 1.1234E-22) :: (Bool, Double, Double)) [ 0b11100001 , 143 , 22 , 113 , 45 , 110 , 160 , 0 , 29 , 176 , 124 , 248 , 188 , 109 , 252 , 215 , 0] , encRaw (Right (-2.1234E15, 1.1234E-22) :: Either Bool (Double, Double)) [ 0b11100001 , 143 , 22 , 113 , 45 , 110 , 160 , 0 , 29 , 176 , 124 , 248 , 188 , 109 , 252 , 215 , 0] , encRaw (Left True :: Either Bool Direction) [0b01000000] , encRaw (Right West :: Either Bool Direction) [0b11110000] , map trip [minBound, maxBound :: Word8] , map trip [minBound, maxBound :: Word16] , map trip [minBound, maxBound :: Word32] , map trip [minBound, maxBound :: Word64] , map trip [minBound :: Int8, maxBound :: Int8] , map trip [minBound :: Int16, maxBound :: Int16] , map trip [minBound :: Int32, maxBound :: Int32] , map trip [minBound :: Int64, maxBound :: Int64] , map tripShow [0 :: Float, -0 :: Float, 0 / 0 :: Float, 1 / 0 :: Float] , map tripShow [0 :: Double, -0 :: Double, 0 / 0 :: Double, 1 / 0 :: Double] , encRaw '\0' [0] , encRaw '\1' [1] , encRaw '\127' [127] , encRaw 'a' [97] , encRaw 'à' [224, 1] , encRaw '经' [207, 253, 1] , [trip [chr 0x10FFFF]] , encRaw Unit [] , encRaw (Un False) [0] , encRaw (One, Two, Three) [16 + 8] , encRaw (Five, Five, Five) [255, 128] --,s (NECons True (Elem True)) [128+64+16] , encRaw "" [0] #ifdef LIST_BIT , encRaw "abc" [176, 216, 172, 96] , encRaw [False, True, False, True] [128 + 32 + 16 + 8 + 2 + 1, 0] #elif defined(LIST_BYTE) , s "abc" s3 , s (cs 600) s600 #endif -- Aligned structures --,s (T.pack "") [1,0] --,s (Just $ T.pack "abc") [128+1,3,97,98,99,0] --,s (T.pack "abc") (al s3) --,s (T.pack $ cs 600) (al s600) , encRaw map1 [0b10111000] , encRaw (B.pack $ csb 3) (bsl c3) , encRaw (B.pack $ csb 600) (bsl s600) , encRaw (L.pack $ csb 3) (bsl c3) -- Long LazyStrings can have internal sections shorter than 255 --,s (L.pack $ csb 600) (bsl s600) , [trip [1 .. 100 :: Int16]] -- See https://github.com/typelead/eta/issues/901 #ifndef ETA_VERSION , [trip longAsciiStrT] , [trip longBoolListT] #endif , [trip asciiTextT] , [trip english] , [trip "维护和平正"] , [trip (T.pack "abc")] , [trip unicodeText] , [trip unicodeTextUTF8T] , [trip longBS, trip longLBS] #ifndef ghcjs_HOST_OS , [trip longSBS] #endif #if! defined(ghcjs_HOST_OS) && ! defined (ETA_VERSION) , [trip unicodeTextUTF16T] #endif ] --al = (1:) -- prealign where bsl = id -- noalign tstI = map ti ti v | v >= 0 = testCase (unwords ["Int", show v]) $ teq v (2 * fromIntegral v :: Word64) | otherwise = testCase (unwords ["Int", show v]) $ teq v (2 * fromIntegral (-v) - 1 :: Word64) teq a b = ser a @?= ser b --,testCase (unwords ["unflat raw",sshow v]) $ desRaw e @?= Right v] -- Aligned values unflat to the original value, modulo the added filler. a v e = [ testCase (unwords ["flat", sshow v]) $ ser v @?= e , testCase (unwords ["unflat", sshow v]) $ let Right v' = des e in v @?= v'] -- a v e = [testCase (unwords ["flat postAligned",show v]) $ ser (postAligned v) @?= e -- ,testCase (unwords ["unflat postAligned",show v]) $ let Right (PostAligned v' _) = des e in v @?= v'] encRaw :: forall a. (Show a, Flat a) => a -> [Word8] -> [TestTree] encRaw v e = [ testCase (unwords ["flat raw", sshow v, show . B.unpack . flat $ v]) $ serRaw v @?= e] trip :: forall a. (Show a, Flat a, Eq a) => a -> TestTree trip v = testCase (unwords ["roundtrip", sshow v]) $ -- direct comparison (unflat (flat v :: B.ByteString) :: Decoded a) @?= (Right v :: Decoded a) tripShow :: forall a. (Show a, Flat a, Eq a) => a -> TestTree tripShow v = testCase (unwords ["roundtrip", sshow v]) $ -- we use show to get Right NaN == Right NaN show (unflat (flat v :: B.ByteString) :: Decoded a) @?= show (Right v :: Decoded a) -- Test Data lzBS = L.pack bs stBS = B.pack bs bs = [32, 32, 32 :: Word8] s3 = [3, 97, 98, 99, 0] c3a = [3, 99, 99, 99, 0] -- Array Word8 c3 = pre c3a s600 = pre s600a pre = (1:) s600a = concat [[255], csb 255, [255], csb 255, [90], csb 90, [0]] s600B = concat [[55], csb 55, [255], csb 255, [90], csb 90, [200], csb 200, [0]] longSeq :: Seq.Seq Word8 longSeq = Seq.fromList lbs longBS = B.pack lbs longLBS = L.concat $ concat $ replicate 10 [L.pack lbs] lbs = concat $ replicate 100 [234, 123, 255, 0] cs n = replicate n 'c' -- take n $ cycle ['a'..'z'] csb = map (fromIntegral . ord) . cs map1 = C.fromList [(False, True), (True, False)] ns :: [(Word64, Int)] ns = [((-) (2 ^ (i * 7)) 1, fromIntegral (8 * i)) | i <- [1 .. 10]] nsI :: [(Int64, Int)] nsI = nsI_ nsII :: [(Integer, Int)] nsII = nsI_ nsI_ = [((-) (2 ^ (((-) i 1) * 7)) 1, fromIntegral (8 * i)) | i <- [1 .. 10]] #ifndef ghcjs_HOST_OS shBS = SBS.toShort stBS longSBS = SBS.toShort longBS #endif sshow = take 80 . show showB = show . B.unpack errDec :: forall a. (Flat a, Eq a, Show a) => Proxy a -> [Word8] -> [TestTree] --errDec _ bs = [testCase "bad decode" $ let ev = (des bs::Decoded a) in ev @?= Left ""] errDec _ bs = [ testCase "bad decode" $ let ev = (des bs :: Decoded a) in isRight ev @?= False] ser :: Flat a => a -> [Word8] ser = B.unpack . flat des :: Flat a => [Word8] -> Decoded a des = unflat flatRawWith sz enc = B.unpack $ E.strictEncoder (sz + 8) (E.Encoding $ enc >=> E.eFillerF) serRaw :: Flat a => a -> [Word8] -- serRaw = B.unpack . flatRaw -- serRaw = L.unpack . flatRaw serRaw = asBytes . bits --desRaw :: Flat a => [Word8] -> Decoded a --desRaw = unflatRaw . L.pack type RT a = a -> Bool type RTL a = Large a -> Bool prop_Flat_roundtrip :: (Flat a, Eq a) => a -> Bool prop_Flat_roundtrip = roundTripExt prop_Flat_Large_roundtrip :: (Eq b, Flat b) => Large b -> Bool prop_Flat_Large_roundtrip (Large x) = roundTripExt x roundTrip x = unflat (flat x :: B.ByteString) == Right x -- Test roundtrip for both the value and the value embedded between bools roundTripExt x = roundTrip x && roundTrip (True, x, False) prop_double_conv d = wordToDouble (doubleToWord d) == d prop_float_conv d = wordToFloat (floatToWord d) == d {- prop_common_unsigned :: (Num l,Num h,Flat l,Flat h) => l -> h -> Bool prop_common_unsigned n _ = let n2 :: h = fromIntegral n in flat n == flat n2 -} -- e :: Stream Bool -- e = unflatIncremental . flat $ stream1 -- el :: List Bool -- el = unflatIncremental . flat $ infList -- deflat = unflat -- b1 :: BLOB UTF8 -- b1 = BLOB UTF8 (preAligned (List255 [97,98,99])) -- -- b1 = BLOB (preAligned (UTF8 (List255 [97,98,99])))
\section{Conclusion} LSST \gls{DM} has been constructing a cloud ready system for many years. We believe commercial cloud is the correct approach but we may be a few years ahead of commercial and federal cost models aligning. We hope that we may be able to partner with google to usher in a new ear of federally funded research in the cloud. ~
#include "opq.h" #include <boost/math/constants/constants.hpp> #include <boost/thread/once.hpp> #include "externals/cxx/namespace.hpp" #include "externals/cxx/pretty_function.hpp" #include <stdexcept> BEGIN_NAMESPACE(rysq, asymptotic) template<size_t N, typename T> struct asymptotic_ { static void roots(T X, T *R, T *W) { boost::call_once(once_flag, &asymptotic_<N,T>::initialize); T r = 1/X; T w = 1/sqrt(X); for (size_t i = 0; i < N; ++i) { R[i] = r*R_[i]; W[i] = w*W_[i]; } } private: static T R_[N], W_[N]; static boost::once_flag once_flag; static void initialize() { static const size_t n = 2*N; T beta[n], alpha[n] = { 0 }; beta[0] = boost::math::constants::root_pi<T>(); for (size_t i = 1; i < n; ++i) { beta[i] = T(i)/2; } T r[n], w[n]; int status = opq::coefficients(n, alpha, beta, r, w); if (status != 0) { throw std::runtime_error(PRETTY_FUNCTION("opq::coefficients returned ", status)); } // CALL RYSGW_(N,ALPHA,BETA,EPS,RTS,W_TS,IERR,W_RK) for for (size_t i = 0; i < N; ++i) { size_t j = i + N; R_[i] = r[j]*r[j]; W_[i] = w[j]; } } }; template<size_t N, typename T> T asymptotic_<N,T>::R_[N]; template<size_t N, typename T> T asymptotic_<N,T>::W_[N]; template<size_t N, typename T> boost::once_flag asymptotic_<N,T>::once_flag = BOOST_ONCE_INIT; template<size_t N, typename T> void roots(T X, T *R, T *W) { asymptotic_<N,T>::roots(X, R, W); } END_NAMESPACE(rysq, asymptotic)
! ################################################################################################################################## ! Begin MIT license text. ! _______________________________________________________________________________________________________ ! Copyright 2019 Dr William R Case, Jr ([email protected]) ! Permission is hereby granted, free of charge, to any person obtaining a copy of this software and ! associated documentation files (the "Software"), to deal in the Software without restriction, including ! without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell ! copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to ! the following conditions: ! The above copyright notice and this permission notice shall be included in all copies or substantial ! portions of the Software and documentation. ! THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS ! OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, ! FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE ! AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER ! LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, ! OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN ! THE SOFTWARE. ! _______________________________________________________________________________________________________ ! End MIT license text. SUBROUTINE CHECK_BAR_MOIs ( NAME, ID, I1, I2, I12, IERR ) ! Checks sensibility of the 3 MOI's of a BAR or BEAM element and replaces zero values with small finite ones USE PENTIUM_II_KIND, ONLY : BYTE, LONG, DOUBLE USE IOUNT1, ONLY : WRT_LOG, ERR, F04, F06 USE SCONTR, ONLY : BLNK_SUB_NAM, FATAL_ERR USE TIMDAT, ONLY : TSEC USE PARAMS, ONLY : EPSIL, SUPINFO USE CONSTANTS_1, ONLY : ZERO USE SUBR_BEGEND_LEVELS, ONLY : CHECK_BAR_MOIs_BEGEND USE CHECK_BAR_MOIs_USE_IFs IMPLICIT NONE CHARACTER(LEN=LEN(BLNK_SUB_NAM)):: SUBR_NAME = 'CHECK_BAR_MOIs' CHARACTER(LEN=*), INTENT(IN) :: NAME ! Either PBAR, PBARL or PBEAM CHARACTER(LEN=*), INTENT(IN) :: ID ! Character value of the bar's ID INTEGER(LONG), INTENT(OUT) :: IERR ! Error indicator INTEGER(LONG), PARAMETER :: SUBR_BEGEND = CHECK_BAR_MOIs_BEGEND REAL(DOUBLE), INTENT(INOUT) :: I1 ! MOI of the bar or beam REAL(DOUBLE), INTENT(INOUT) :: I2 ! MOI of the bar or beam REAL(DOUBLE), INTENT(INOUT) :: I12 ! MOI of the bar or beam REAL(DOUBLE) :: EPS1 ! A small number ! ********************************************************************************************************************************* IF (WRT_LOG >= SUBR_BEGEND) THEN CALL OURTIM WRITE(F04,9001) SUBR_NAME,TSEC 9001 FORMAT(1X,A,' BEGIN',F10.3) ENDIF ! ********************************************************************************************************************************** ! Initialize IERR = 0 EPS1 = EPSIL(1) ! If I12 is zero replace a zero value of I1 and/or I2 with a small positive value. If I12 is not zero, make sure I1*I2 > I12^2 IF (DABS(I12) <= EPS1) THEN IF (DABS(I1) < EPS1) THEN I1 = 10*EPS1 WRITE(ERR,1001) NAME, ID, 'I1', I1 IF (SUPINFO == 'N') THEN WRITE(F06,1001) NAME, ID, 'I1', I1 ENDIF ENDIF IF (DABS(I2) <= EPS1) THEN I2 = 10*EPS1 WRITE(ERR,1001) NAME, ID, 'I2', I2 IF (SUPINFO == 'N') THEN WRITE(F06,1001) NAME, ID, 'I2', I2 ENDIF ENDIF ELSE ! I12^2 must be <= I1*I2 is proven by the Cauchy-Schwarz inequality IF (I12*I12 > I1*I2) THEN IERR = IERR + 1 WRITE(ERR,1195) NAME, ID, I1, I2, I12 WRITE(F06,1195) NAME, ID, I1, I2, I12 ENDIF ENDIF ! ********************************************************************************************************************************** IF (WRT_LOG >= SUBR_BEGEND) THEN CALL OURTIM WRITE(F04,9002) SUBR_NAME,TSEC 9002 FORMAT(1X,A,' END ',F10.3) ENDIF RETURN ! ********************************************************************************************************************************** 1001 FORMAT(' *INFORMATION: FOR ',A,' ',A8,' MOMENT OF INERTIA ',A,' HAS BEEN CHANGED FROM 0 TO A SMALL NUMBER = ',1ES10.3) 1195 FORMAT(' *ERROR 1195: THE MOMENTS AND PRODUCTS OF INERTIA ON ',A,' ',A8,' DO NOT SATISIFY THE REQUIREMENT THAT:' & ,/,14X,' I12^2 <= I1*12 WHERE: I1 = ',1ES10.3,', I2 = ',1ES10.3,', I12 = ',1ES10.3) ! ********************************************************************************************************************************** END SUBROUTINE CHECK_BAR_MOIs
MODULE integers USE ISO_C_BINDING IMPLICIT NONE CONTAINS FUNCTION add_ints1(a,b) RESULT(y) INTEGER ( KIND = 1 ) , INTENT(in) :: a INTEGER(1), INTENT(in) :: b INTEGER*1 :: y y = a+b END FUNCTION add_ints1 FUNCTION add_ints2(a,b) RESULT(y) INTEGER*2, INTENT(in) :: a,b INTEGER(KIND=2 ) :: y y = a+b END FUNCTION add_ints2 FUNCTION add_ints4(a,b) RESULT(y) INTEGER (KIND =4), INTENT(in) :: a INTEGER, INTENT(in) :: b INTEGER :: y y = a+b END FUNCTION add_ints4 FUNCTION add_ints8(a,b) RESULT(y) INTEGER (KIND= 8), INTENT(in) :: a INTEGER*8, INTENT(in) :: b INTEGER(8) :: y y = a+b END FUNCTION add_ints8 FUNCTION add_ints_byval(a,b) RESULT(y) INTEGER, INTENT(in), VALUE :: a, b INTEGER :: y y = a + b END FUNCTION add_ints_byval ! Test lower case parsing: function add_ints1_lower(a,b) result(y) integer ( kind = 1 ) , intent(in) :: a integer ( 1), intent(in) :: b integer*1 :: y y = a+b end function add_ints1_lower function add_ints2_lower(a,b) result(y) integer*2, intent(in) :: a,b integer(KIND=2 ) :: y y = a+b end function add_ints2_lower function add_ints4_lower(a,b) result(y) integer (kind =4), intent(in) :: a integer, intent(in) :: b integer :: y y = a+b end function add_ints4_lower FUNCTION add_iso_ints(a,b) RESULT(y) INTEGER (C_INT) , INTENT(in) :: a, b INTEGER (C_INT) :: y y = a+b END FUNCTION add_iso_ints FUNCTION add_iso_longs(a,b) RESULT(y) INTEGER (C_LONG) , INTENT(in) :: a, b INTEGER (C_LONG) :: y y = a+b END FUNCTION add_iso_longs END MODULE integers
Do you wonder if you just use drugs or, rather, that you abuse drugs? Has someone close to you made a comment about you use of alcohol, cocaine, painkillers, or marijuana (or commented more than once)? This book’s purpose is to help you determine whether or not you’re progressing towards full-blow addiction or not. And it provides suggestions for how to turn things around before things get really ugly. The purpose of this book is to stop kind-of-bad behavior before it becomes really bad behavior—bad for you, your health, your job, and those in your life who care about you. Almost Addicted explains how to navigate the spectrum of addiction, explaining the differences between a potential, emerging would-be drug use problem and a devastating drug problem already in full motion. And if you’re asking these questions on behalf of someone else—wondering about your spouse or sibling’s drug use—this book will also help answer those questions as well. It will help you sort out the difference between a potential problem and less worrisome occasional drug use. Why stop using drugs if I’m not actually an addict? Why do I feel like my spouse has a drug problem, but I can’t exactly pinpoint it? What are some signs that a person is using drugs? Am I medicating my anxiety with marijuana? How do I stop my drug use from slowly turning into full-blown addiction? Part 1 A Problem Emerges from the Shadows discusses why almost-addiction is a concern and why we should care about a pre-addiction even if it’s not yet full-blown—think of it as preventative care. The authors very clearly differentiate between what a real, full-blown addict acts like and what someone who may be almost-addict acts like, making it easier to identify where on the spectrum of addiction one may presently fall. It also discusses why disengaging from being almost-addicted to substances is a good idea. Would you have more money to spend on necessities or luxuries? Would you do better at work? Would you have more time to devote to hobbies? Would any anxiety and depression you experience improve? Is your drug use a source of tension or arguments with your wife, husband, or partner? Does drug use eat into the time that you could otherwise be spending with your children? Do you use drugs as a way to avoid family responsibilities? Part 2 The Roots of Almost Addiction delves into the impact of the past on one’s present life and the correlation between mental health issues and drug use/abuse. The authors smartly point out that often times certain medical conditions may also be in play – and discuss how to navigate that double-sided coin. Those who suffer from types of depression, ADD/ADHD, trauma, as well as other challenges to the mind are more likely to struggle at some point with substance use/abuse. Part 3 Catching and Confronting Almost Addiction in Others explains the warning signs for spotting drug use/abuse, as well as how to handle your response to the discovery of the other person’s drug use. It discusses the importance of protecting one’s self emotionally, financially and physically from the drug user, such as disengaging from taking part in the cover-up, denial, and recommends focusing on your own health and well-being, including enlisting the support of others. Part 4 Solutions for Your Almost Addiction offers some smart tips for creating a life that’s full, rather than full of holes, in the absence of drugs. One chapter in particular, Time for A Change: Helping Yourself, is so very practical that it really could be the topic for a very useful follow-up book on how to recreate a life after stopping drugs. It explains how switching-up your daily routines can support your avoidance of drugs, as well as how to come up with a list of your “triggers,” so that you can proactively avoid being triggered. Essentially, having a plan for how you’ll engage your mind, body and spirit in the absence of drug use means you’ll…have a plan! No plan = misery. Does this mean new friends? You bet. At the end of the day, will you care about having ditched those people? Not one bit. I have just one criticism of Almost Addicted. I so, so wish that the section on Solutions for Your Almost Addiction had been emphasized and placed before the section Catching and Confronting Almost Addiction in Others. The book’s order of chapters subtly suggests that focusing on others’ addictions should come before focusing on one’s own, and I feel the reverse is true. It’s most productive to focus first on one’s own potential addictions — you know, put on your oxygen mask first, then help your fellow passengers. Here’s a link to the book on Amazon.com, where you’ll find this review and other reviews of the book.
Starting XI Prediction: Solskjaer to keep 4-3-3 formation with Lingard, Rashford, and Martial leading the attack against PSG? Manchester United return to UEFA Champions League action against Paris Saint-Germain at Old Trafford on Tuesday evening. It is what the Theatre of Dreams is made for, European nights under the floodlights. Last season, United made it to the same stage of the competition, losing to Sevilla and exiting the competition. This season, under the management of Ole Gunnar Solskjaer, things may go a bit different for the Red Devils. Confidence is high and United are undefeated in 11 matches, winning ten and drawing one. Now is perhaps the best time to face the French champions as Neymar is out of the match and striker, Edinson Cavani limped out of Saturday’s 1-0 victory over Bordeaux. PSG are a competent team but playing in France, they do not really have much competition which may be a negative ahead of this game, as United have been challenged in every match they have played, showing the difference between the Premier League and French football. The Spanish number one was rarely tested against Fulham at Craven Cottage on Saturday but when he was, he was at his best. There are suggestions that the goalkeeper is calling for a £350,000 per week wage to sign a new contract at United, which is fair considering that he is the player who has been the difference for United – more often than not. He seems players like Alexis Sanchez on a high wage, yet in terms of what he offers United, De Gea offers so much more. United have managed to keep two clean sheets in their last two matches, which shows that some things have changed for United under Solskjaer. Ashley Young and Victor Lindelof were rested against Fulham, with the ‘ice man’ suffering from a knock. I expect both will be back against PSG with Luke Shaw keeping his place and Eric Bailly partnering Lindelof, which has seen both players in good form recently. Solskjaer has Phil Jones, Chris Smalling and possibly Marcos Rojo to select also, keeping options open. United’s best midfield will be tested against PSG on Tuesday. Ander Herrera, Nemanja Matic, and Paul Pogba. Both Herrera and Matic allow Pogba to play further forward, which has seen the Frenchman play some good football recently, also seeing him score eight goals and five assists in his last ten matches under Solskjaer. This United midfield has the form, the ability and the experience to work the magic against PSG at the Theatre of Dreams. Marcus Rashford and Jesse Lingard were both rested in the 3-0 victory over Fulham at the weekend, meaning they will both be fresh to face PSG at Old Trafford. Anthony Martial played 70 minutes against Fulham, scoring a sublime goal, also getting an assist, which will mean his confidence will be high ahead of the Champions League match. These three, on their day, can be devastating to any team. If United manage to keep a clean sheet at home, the quarter-finals could be set for United this season. Preview: U23’s out to fight for their futures against Reading? Where did it all go wrong for Luke Shaw?
using StochasticDelayDiffEq using Random using SparseArrays function sir_dde!(du,u,h,p,t) (S,I,R) = u (β,c,τ) = p N = S+I+R infection = β*c*I/N*S (Sd,Id,Rd) = h(p, t-τ) # Time delayed variables Nd = Sd+Id+Rd recovery = β*c*Id/Nd*Sd @inbounds begin du[1] = -infection du[2] = infection - recovery du[3] = recovery end nothing end; # Define a sparse matrix by making a dense matrix and setting some values as not zero A = zeros(3,2) A[1,1] = 1 A[2,1] = 1 A[2,2] = 1 A[3,2] = 1 A = SparseArrays.sparse(A); # Make `g` write the sparse matrix values function sir_delayed_noise!(du,u,h,p,t) (S,I,R) = u (β,c,τ) = p N = S+I+R infection = β*c*I/N*S (Sd,Id,Rd) = h(p, t-τ) # Time delayed variables Nd = Sd+Id+Rd recovery = β*c*Id/Nd*Sd du[1,1] = -sqrt(infection) du[2,1] = sqrt(infection) du[2,2] = -sqrt(recovery) du[3,2] = sqrt(recovery) end; function condition(u,t,integrator) # Event when event_f(u,t) == 0 u[2] end; function affect!(integrator) integrator.u[2] = 0.0 end; cb = ContinuousCallback(condition,affect!); δt = 0.1 tmax = 40.0 tspan = (0.0,tmax) t = 0.0:δt:tmax; u0 = [990.0,10.0,0.0]; # S,I,R function sir_history(p, t) [1000.0, 0.0, 0.0] end; p = [0.05,10.0,4.0]; # β,c,τ Random.seed!(1234); prob_sdde = SDDEProblem(sir_dde!,sir_delayed_noise!,u0,sir_history,tspan,p;noise_rate_prototype=A); sol_sdde = solve(prob_sdde,LambaEM(),callback=cb);
On April 8 , 2015 , Nathan was placed on the 15 @-@ day disabled list due to a strained right elbow . During a rehab start with the Toledo Mud Hens on April 22 , Nathan re @-@ injured his elbow after throwing only 10 pitches . The same night , Nathan underwent MRIs , which tested positive revealing tears in his ulnar collateral ligament of the elbow and his pronator teres muscle , and would undergo Tommy John surgery , ending Nathan 's 2015 season . Sources projected that this surgery could end Nathan 's career , but he was not planning to retire yet .
package java.io; public class ByteArrayOutputStream extends OutputStream { private byte[] bytes; public ByteArrayOutputStream() { bytes = new byte[1]; } public synchronized byte[] toByteArray() { return bytes; } public synchronized void write(int i) { bytes[0] = (byte)i; } }
Require Import Wellfounded. Require Import reduction. Require Import proofsystem. Set Implicit Arguments. (* A generic soundness proof. The proof is parameterized over a semantic interpretation of reachability rules, which can be instantiated to show one-path or all-path soundness. The semantics of a rule must be further parameterized by some kind of "index" with a well-founded approximation order, used to justifying circularity. This module reduces showing soundess of the proof system to showing a few lemmas about the selected semantics of reachability rules. The soundness result proved in this module shows that the conclusion of the proof holds with any index. To finish a specific soundness proof this should be shown equaivalent to some un-indexed notion of soundenss. *) Lemma clos_true_step : forall {A: Set} (R : A -> A -> Prop) x z, clos R true x z -> exists y, R x y /\ clos R false y z. intros. rewrite clos_iff_left in H;inversion H;subst;rewrite <- ?clos_iff_left in * |-; eauto using clos_refl, clos_unstrict. Qed. Module Type ReachabilitySemantics. Parameter cfg : Set. Parameter S : cfg -> cfg -> Prop. Parameter index : Set. (* This is one step of soundness relation *) Parameter ix_rel : index -> index -> Prop. Parameter holds : bool -> forall env, formula cfg env -> formula cfg env-> index -> Prop. (* Parameter ix_wf : well_founded (fun x y => ix_rel y x). *) (* Will this lemma be any harder to supply than one that distinguishes a one-step and all-step version of ix_rel, and only promises immediate successors in the argument of the hypothesis? *) Parameter ix_rel_ind : forall env (phi phi' : formula cfg env), forall i0, (forall i, clos ix_rel false i0 i -> (forall i', ix_rel i i' -> holds true phi phi' i') -> holds true phi phi' i) -> holds true phi phi' i0. Parameter holds_strict_later : forall env phi1 phi2 i, @holds true env phi1 phi2 i -> forall i', ix_rel i i' -> holds true phi1 phi2 i'. Parameter holds_unstrict : forall env phi1 phi2 i, @holds true env phi1 phi2 i -> holds false phi1 phi2 i. Parameter holds_step : forall env (phi phi' : formula cfg env), (forall (e : env) (c : cfg), phi e c -> (exists c2 : cfg, S c c2) /\ (forall c2 : cfg, S c c2 -> phi' e c2)) -> forall i, holds true phi phi' i. Parameter holds_refl : forall env phi i, @holds false env phi phi i. Parameter holds_trans_strict : forall env phi phi' phi'' i, @holds true env phi phi' i -> (forall i' : index, ix_rel i i' -> holds false phi' phi'' i') -> holds true phi phi'' i. Parameter holds_trans : forall env phi phi' phi'' i, @holds false env phi phi' i -> holds false phi' phi'' i -> holds false phi phi'' i. Parameter holds_case : forall strict env (phi phi1 phi' : formula cfg env) i, holds strict phi phi' i -> holds strict phi1 phi' i -> holds strict (fun (e : env) (g : cfg) => phi e g \/ phi1 e g) phi' i. Parameter holds_mut_conseq : forall strict env1 (phi1 phi2 : formula cfg env1) env2 (phi1' phi2' : formula cfg env2), (forall gamma rho, phi1 rho gamma -> exists rho', phi1' rho' gamma /\ forall gamma', phi2' rho' gamma' -> phi2 rho gamma') -> forall i, holds strict phi1' phi2' i -> holds strict phi1 phi2 i. End ReachabilitySemantics. Module Type StateBasedReachability. Parameter cfg : Set. Parameter S : cfg -> cfg -> Prop. Parameter index : Set. (* This is one step of soundness relation *) Parameter ix_rel : index -> index -> Prop. Parameter state_reaches : bool -> index -> cfg -> (cfg -> Prop) -> Prop. Definition holds strict env (phi phi' : formula cfg env) i := forall rho gamma, phi rho gamma -> state_reaches strict i gamma (phi' rho). Parameter ix_rel_ind : forall env (phi phi' : formula cfg env), forall i0, (forall i, clos ix_rel false i0 i -> (forall i', ix_rel i i' -> holds true phi phi' i') -> holds true phi phi' i) -> holds true phi phi' i0. Parameter reach_later : forall i i', ix_rel i i' -> forall gamma P, state_reaches true i gamma P -> state_reaches true i' gamma P. Parameter reach_unstrict : forall i gamma P, state_reaches true i gamma P -> state_reaches false i gamma P. (* These are really from axiom cases, maybe make it generic *) Parameter reach_refl : forall i gamma (P : cfg -> Prop), P gamma -> state_reaches false i gamma P. Parameter reach_step : forall i gamma (P : cfg -> Prop), (exists gamma', S gamma gamma') -> (forall gamma', S gamma gamma' -> P gamma') -> state_reaches true i gamma P. Parameter reach_impl : forall (P Q : cfg -> Prop), (forall c, P c -> Q c) -> forall strict i gamma, state_reaches strict i gamma P -> state_reaches strict i gamma Q. Parameter reach_join : forall i gamma P, state_reaches false i gamma (fun gamma' => state_reaches false i gamma' P) -> state_reaches false i gamma P. Parameter reach_join_strict : forall i gamma P, state_reaches true i gamma (fun gamma' => forall i', ix_rel i i' -> state_reaches false i' gamma' P) -> state_reaches true i gamma P. End StateBasedReachability. Module StateBasedSemantics (Reach : StateBasedReachability) <: ReachabilitySemantics. Import Reach. Definition cfg := cfg. Definition S := S. Definition index := index. Definition ix_rel := ix_rel. Definition holds := holds. Definition ix_rel_ind := ix_rel_ind. Lemma holds_strict_later : forall env phi1 phi2 i, @holds true env phi1 phi2 i -> forall i', ix_rel i i' -> holds true phi1 phi2 i'. unfold holds, Reach.holds; eauto using reach_later. Qed. Lemma holds_unstrict : forall env phi1 phi2 i, @holds true env phi1 phi2 i -> @holds false env phi1 phi2 i. unfold holds, Reach.holds; eauto using reach_unstrict. Qed. Lemma holds_step : forall env (phi phi' : formula cfg env), (forall (e : env) (c : cfg), phi e c -> (exists c2 : cfg, S c c2) /\ (forall c2 : cfg, S c c2 -> phi' e c2)) -> forall i, holds true phi phi' i. unfold holds, Reach.holds; intros; apply reach_step;firstorder. Qed. Lemma holds_refl : forall env phi i, @holds false env phi phi i. unfold holds, Reach.holds; intros; apply reach_refl;assumption. Qed. Lemma holds_case : forall strict env (phi phi1 phi' : formula cfg env) i, holds strict phi phi' i -> holds strict phi1 phi' i -> holds strict (fun (e : env) (g : cfg) => phi e g \/ phi1 e g) phi' i. Proof. firstorder. Qed. Lemma holds_mut_conseq : forall strict env1 (phi1 phi2 : formula cfg env1) env2 (phi1' phi2' : formula cfg env2), (forall gamma rho, phi1 rho gamma -> exists rho', phi1' rho' gamma /\ forall gamma', phi2' rho' gamma' -> phi2 rho gamma') -> forall i, holds strict phi1' phi2' i -> holds strict phi1 phi2 i. Proof. unfold holds, Reach.holds;intros. specialize (H _ _ H1). firstorder using reach_impl. Qed. Lemma holds_trans : forall env phi phi' phi'' i, @holds false env phi phi' i -> holds false phi' phi'' i -> holds false phi phi'' i. Proof. unfold holds, Reach.holds;intros. eauto using reach_join, reach_impl. Qed. Lemma holds_trans_strict : forall env phi phi' phi'' i, @holds true env phi phi' i -> (forall i' : index, ix_rel i i' -> holds false phi' phi'' i') -> holds true phi phi'' i. Proof. unfold holds, Reach.holds;intros. eauto using reach_join_strict, reach_impl. Qed. End StateBasedSemantics. Module Soundness(Sem : ReachabilitySemantics). Import Sem. Definition system_holds (S : system cfg) (i : index) : Prop := forall env phi1 phi2, S env phi1 phi2 -> holds true phi1 phi2 i. Lemma system_next (S : system cfg) (i : index) : system_holds S i -> forall i', ix_rel i i' -> system_holds S i'. Proof. unfold system_holds; eauto using holds_strict_later. Qed. Lemma system_later (S : system cfg) (i : index) : system_holds S i -> forall i', clos ix_rel false i i' -> system_holds S i'. Proof. intros Hsys i' Hpath; revert Hsys; induction Hpath; eauto using system_next. Qed. Lemma holds_weak : forall (C : option (system cfg)) env phi1 phi2 i, @holds true env phi1 phi2 i -> holds (match C with | None => false | Some _ => true end) phi1 phi2 i. Proof. destruct C;auto using holds_unstrict. Qed. Lemma holds_conseq : forall strict env (phi1 phi2 phi1' phi2' : formula cfg env), forall env (phi1 phi2 phi1' phi2' : formula cfg env), (forall rho gamma, phi1 rho gamma -> phi1' rho gamma) -> (forall rho gamma, phi2' rho gamma -> phi2 rho gamma) -> forall i, holds strict phi1' phi2' i -> holds strict phi1 phi2 i. intros. revert H1. apply holds_mut_conseq. firstorder. Qed. Ltac spec_ih := let HA := fresh "HA" in let HC := fresh "HC" in intros ? HA HC; match goal with | [IHcirc : appcontext C [cons_opt_system] |-_] => idtac | _ => repeat match goal with [IH : forall i, system_holds _ i -> _ |- _] => specialize (IH _ HA HC) end end. Lemma soundness : forall C A env phi1 phi2, IS cfg S C A env phi1 phi2 -> forall (i : index), system_holds A i -> match C with | None => True | Some S' => forall i', ix_rel i i' -> system_holds S' i' end -> holds ( match C with | None => false | Some _ => true end) phi1 phi2 i. Proof. induction 1;spec_ih. + (* step *) auto using holds_weak, holds_step. + (* axiom *) auto using holds_weak. + (* refl *) destruct C;[destruct H|]; auto using holds_refl. + (* trans *) destruct C. * assert (forall i', ix_rel i i' -> holds false phi' phi'' i') as IH2. clear -IHIS2 HA HC. intros. apply IHIS2;[clear IHIS2|exact I]. assert (system_holds A i') by (eauto using system_next). firstorder. clear -IHIS1 IH2. eauto using holds_trans_strict. * assert (holds false phi' phi'' i) as IH2 by (clear -IHIS2 HA HC; auto). clear -IHIS1 IH2. eauto using holds_trans. + (* consequence *) eauto using holds_conseq. + (* case *) auto using holds_case. + (* abstr *) revert IHIS;clear;apply holds_mut_conseq;firstorder. + (* abstr' *) revert IHIS; clear -H; apply holds_mut_conseq. firstorder;eexists;split;[eassumption|];instantiate;firstorder. + (* circularity *) apply holds_weak. apply ix_rel_ind. intros i0 Hii0 IHlater. apply IHIS; clear H IHIS. eauto using system_later. simpl. intros i' Hi'. unfold system_holds. intros rho phi1 phi2 H. destruct H. * (* rules from C *) destruct C;[|solve[destruct H]]. simpl in H. assert (forall i', clos ix_rel true i i' -> system_holds s i'). clear -HC. intros. apply clos_true_step in H. destruct H as [i1 [Hstep Hrest]]. eauto using system_later. clear HC; rename H0 into HC. assert (clos ix_rel true i i'). clear -Hi' Hii0. eauto using clos, clos_cons_rt. specialize (HC _ H0). auto. * (* The added rule *) destruct H as [-> [-> ->]]. unfold eq_rect_r in * |- *; simpl eq_rect in * |- *. auto. + (* subst *) eauto using holds_mut_conseq. + (* Logical framing *) revert IHIS; eapply holds_mut_conseq; intuition; eauto. Qed. End Soundness.
{-# OPTIONS --without-K --rewriting #-} open import HoTT import homotopy.ConstantToSetExtendsToProp as ConstExt {- q[_]ᴳ G/Q ↞------ G ↑ ↑ φ₂ ╎ ╎ inject ↑ ↑ H ↞------- P φ₁ Then, H ≃ᴳ P/Q. -} module groups.PropQuotUniqueFactorization {i j l₁ l₂} {G : Group i} {H : Group j} (P : SubgroupProp G l₁) (Q : NormalSubgroupProp G l₂) (φ₁ : Subgroup P →ᴳ H) (φ₁-is-surj : is-surjᴳ φ₁) (φ₂ : H →ᴳ QuotGroup Q) (φ₂-is-inj : is-injᴳ φ₂) (φ-comm : ∀ p → GroupHom.f (φ₂ ∘ᴳ φ₁) p == q[ fst p ]) where private module G = Group G module H = Group H module P = Subgroup P module φ₁ = GroupHom φ₁ module φ₂ = GroupHom φ₂ P/Q-prop : NormalSubgroupProp (Subgroup P) l₂ P/Q-prop = quot-of-sub P Q P/Q : Group (lmax i (lmax l₁ l₂)) P/Q = QuotGroup P/Q-prop module P/Q = Group P/Q module _ (k : Group.El H) where H-to-P/Q-f' : hfiber φ₁.f k → P/Q.El H-to-P/Q-f' (p , _) = q[ p ] abstract H-to-P/Q-f'-const : (hf₁ hf₂ : hfiber φ₁.f k) → H-to-P/Q-f' hf₁ == H-to-P/Q-f' hf₂ H-to-P/Q-f'-const (h₁ , r₁) (h₂ , r₂) = quot-relᴳ {P = P/Q-prop} $ <– (quot-relᴳ-equiv {P = Q}) $ ! (φ-comm h₁) ∙ ap φ₂.f (r₁ ∙ ! r₂) ∙ φ-comm h₂ module HToP/Q = ConstExt P/Q.El-is-set H-to-P/Q-f' H-to-P/Q-f'-const H-to-P/Q-f : Trunc -1 (hfiber φ₁.f k) → P/Q.El H-to-P/Q-f = HToP/Q.ext H-to-P/Q-f-is-const : ∀ hf₁ hf₂ → H-to-P/Q-f hf₁ == H-to-P/Q-f hf₂ H-to-P/Q-f-is-const = HToP/Q.ext-is-const abstract H-to-P/Q-f-comp : (k₁ k₂ : H.El) → (hf₁₂ : Trunc -1 (hfiber φ₁.f (H.comp k₁ k₂))) → (hf₁ : Trunc -1 (hfiber φ₁.f k₁)) → (hf₂ : Trunc -1 (hfiber φ₁.f k₂)) → H-to-P/Q-f (H.comp k₁ k₂) hf₁₂ == P/Q.comp (H-to-P/Q-f k₁ hf₁) (H-to-P/Q-f k₂ hf₂) H-to-P/Q-f-comp k₁ k₂ hf₁₂ = Trunc-elim (λ hf₁ → Π-is-prop λ hf₂ → P/Q.El-is-set _ (P/Q.comp (H-to-P/Q-f k₁ hf₁) (H-to-P/Q-f k₂ hf₂))) (λ{(p₁ , r₁) → Trunc-elim (λ hf₂ → P/Q.El-is-set _ (P/Q.comp q[ p₁ ] (H-to-P/Q-f k₂ hf₂))) (λ{(p₂ , r₂) → H-to-P/Q-f-is-const (H.comp k₁ k₂) hf₁₂ [ P.comp p₁ p₂ , φ₁.pres-comp p₁ p₂ ∙ ap2 H.comp r₁ r₂ ]})}) H-to-P/Q : H →ᴳ P/Q H-to-P/Q = record { f = λ k → H-to-P/Q-f k (φ₁-is-surj k); pres-comp = λ k₁ k₂ → H-to-P/Q-f-comp k₁ k₂ (φ₁-is-surj (H.comp k₁ k₂)) (φ₁-is-surj k₁) (φ₁-is-surj k₂)} H-iso-P/Q : H ≃ᴳ P/Q H-iso-P/Q = H-to-P/Q , is-eq to from to-from from-to where to : H.El → P/Q.El to = λ k → H-to-P/Q-f k (φ₁-is-surj k) from : P/Q.El → H.El from = SetQuot-rec H.El-is-set (λ p → φ₁.f p) (λ {p₁} {p₂} q'p₁p₂⁻¹ → φ₂-is-inj (φ₁.f p₁) (φ₁.f p₂) $ φ-comm p₁ ∙ quot-relᴳ {P = Q} q'p₁p₂⁻¹ ∙ ! (φ-comm p₂)) abstract to-from : ∀ p/q → to (from p/q) == p/q to-from = SetQuot-elim (λ p/q → raise-level -1 $ P/Q.El-is-set _ p/q) (λ p → H-to-P/Q-f-is-const (φ₁.f p) (φ₁-is-surj (φ₁.f p)) [ p , idp ]) (λ _ → prop-has-all-paths-↓ $ P/Q.El-is-set _ _) from-to' : ∀ k (hf : Trunc -1 (hfiber φ₁.f k)) → from (H-to-P/Q-f k hf) == k from-to' k = Trunc-elim (λ hf → H.El-is-set (from (H-to-P/Q-f k hf)) k) (λ{(p , r) → r}) from-to : ∀ k → from (to k) == k from-to k = from-to' k (φ₁-is-surj k)
# Some manipulations on the two degree of freedom model ```python from sympy import * init_printing() def symb(x, y = ''): return symbols('{0}_{1}'.format(x,y), type = float) ``` Displacement vector: ```python x = Matrix([symb('u','g'), symb('u','r')]) display(x) ``` $\displaystyle \left[\begin{matrix}u_{g}\\u_{r}\end{matrix}\right]$ Inertia matrix: ```python J_r, J_g, n = symbols('J_r J_g n', positive=True) M = diag(J_r, J_g*n**2) display(M) ``` $\displaystyle \left[\begin{matrix}J_{r} & 0\\0 & J_{g} n^{2}\end{matrix}\right]$ Stiffness matrix ```python k = symbols('k', positive=True) K = eye(2) K[0, 1] = -1 K[1, 0] = -1 K = k*K display(K) ``` $\displaystyle \left[\begin{matrix}k & - k\\- k & k\end{matrix}\right]$ ## Characteristic polynomial ```python lamda = symb('lambda') omega = symb('omega') A = Inverse(M)*K cp = A.charpoly(lamda) cp = factor(cp) display(cp) ```
%! Author = Frederik Bußmann %! Date = 21.10.21 \section{Introduction} \label{sec:introduction} Hello and welcome! \\ This is an introduction~\cite{citation01}. \clearpage
module B { port P }
import algebra.ring example {α : Type*} [ring α] (a b c : α) : a * 0 + 0 * b + c * 0 + 0 * a = 0 := begin rw [mul_zero, mul_zero, zero_mul, zero_mul], repeat { rw add_zero }, end example {α : Type*} [group α] {a b : α} (h : a * b = 1) : a⁻¹ = b := by rw [←(mul_one a⁻¹), ← h, inv_mul_cancel_left]
/* * * Copyright (c) 2002, 2003 Kresimir Fresl, Toon Knapen and Karl Meerbergen * * Permission to copy, modify, use and distribute this software * for any non-commercial or commercial purpose is granted provided * that this license appear on all copies of the software source code. * * Authors assume no responsibility whatsoever for its use and makes * no guarantees about its quality, correctness or reliability. * * KF acknowledges the support of the Faculty of Civil Engineering, * University of Zagreb, Croatia. * */ #ifndef BOOST_NUMERIC_BINDINGS_TRAITS_UBLAS_HERMITIAN_H #define BOOST_NUMERIC_BINDINGS_TRAITS_UBLAS_HERMITIAN_H #include <boost/numeric/bindings/traits/traits.hpp> #ifndef BOOST_NUMERIC_BINDINGS_POOR_MANS_TRAITS #ifndef BOOST_UBLAS_HAVE_BINDINGS # include <boost/numeric/ublas/hermitian.hpp> #endif #include <boost/numeric/bindings/traits/ublas_matrix.hpp> #include <boost/numeric/bindings/traits/detail/ublas_uplo.hpp> namespace boost { namespace numeric { namespace bindings { namespace traits { // ublas::hermitian_matrix<> template <typename T, typename F1, typename F2, typename A, typename M> struct matrix_detail_traits<boost::numeric::ublas::hermitian_matrix<T, F1, F2, A>, M> { #ifndef BOOST_NUMERIC_BINDINGS_NO_SANITY_CHECK BOOST_STATIC_ASSERT( (boost::is_same<boost::numeric::ublas::hermitian_matrix<T, F1, F2, A>, typename boost::remove_const<M>::type>::value) ); #endif #ifdef BOOST_BINDINGS_FORTRAN BOOST_STATIC_ASSERT((boost::is_same< typename F2::orientation_category, boost::numeric::ublas::column_major_tag >::value)); #endif typedef boost::numeric::ublas::hermitian_matrix<T, F1, F2, A> identifier_type; typedef M matrix_type; typedef hermitian_packed_t matrix_structure; typedef typename detail::ublas_ordering< typename F2::orientation_category >::type ordering_type; typedef typename detail::ublas_uplo< F1 >::type uplo_type; typedef T value_type ; typedef typename detail::generate_const<M,T>::type* pointer ; static pointer storage (matrix_type& hm) { typedef typename detail::generate_const<M,A>::type array_type ; return vector_traits<array_type>::storage (hm.data()); } static int size1 (matrix_type& hm) { return hm.size1(); } static int size2 (matrix_type& hm) { return hm.size2(); } static int storage_size (matrix_type& hm) { return (size1 (hm) + 1) * size2 (hm) / 2; } }; namespace detail { template <typename M> int matrix_bandwidth( M const& m, upper_t ) { return matrix_traits<M const>::upper_bandwidth( m ) ; } template <typename M> int matrix_bandwidth( M const& m, lower_t ) { // When the lower triangular band matrix is stored the // upper bandwidth must be zero assert( 0 == matrix_traits<M const>::upper_bandwidth( m ) ) ; return matrix_traits<M const>::lower_bandwidth( m ) ; } } // namespace detail // ublas::hermitian_adaptor<> template <typename M, typename F1, typename MA> struct matrix_detail_traits<boost::numeric::ublas::hermitian_adaptor<M, F1>, MA> { #ifndef BOOST_NUMERIC_BINDINGS_NO_SANITY_CHECK BOOST_STATIC_ASSERT( (boost::is_same<boost::numeric::ublas::hermitian_adaptor<M, F1>, typename boost::remove_const<MA>::type>::value) ); #endif typedef boost::numeric::ublas::hermitian_adaptor<M, F1> identifier_type; typedef MA matrix_type; typedef hermitian_t matrix_structure; typedef typename matrix_traits<M>::ordering_type ordering_type; typedef typename detail::ublas_uplo< F1 >::type uplo_type; typedef typename M::value_type value_type; typedef typename detail::generate_const<MA, value_type>::type* pointer; private: typedef typename detail::generate_const<MA, typename MA::matrix_closure_type>::type m_type; public: static pointer storage (matrix_type& hm) { return matrix_traits<m_type>::storage (hm.data()); } static int size1 (matrix_type& hm) { return hm.size1(); } static int size2 (matrix_type& hm) { return hm.size2(); } static int storage_size (matrix_type& hm) { return size1 (hm) * size2 (hm); } static int leading_dimension (matrix_type& hm) { return matrix_traits<m_type>::leading_dimension (hm.data()); } // For banded M static int upper_bandwidth(matrix_type& hm) { return detail::matrix_bandwidth( hm.data(), uplo_type() ); } static int lower_bandwidth(matrix_type& hm) { return detail::matrix_bandwidth( hm.data(), uplo_type() ); } }; }}}} #endif // BOOST_NUMERIC_BINDINGS_POOR_MANS_TRAITS #endif // BOOST_NUMERIC_BINDINGS_TRAITS_UBLAS_HERMITIAN_H
import BrownCs22.Library.Defs import BrownCs22.Library.Tactics import Mathlib.Data.Nat.ModEq import Mathlib.Data.Int.GCD open BrownCs22 /- Let's check computationally that our RSA algorithm works. -/ -- given a public key and a modulus `n`, we can encrypt a message. def rsa_encrypt (public_key : ℕ) (n : ℕ) (message : ℕ) : ℕ := (message ^ public_key) % n -- given a private key and a modulus `n`, we can decrypt a message. def rsa_decrypt (private_key : ℕ) (n : ℕ) (encrypted_message : ℕ) : ℕ := (encrypted_message ^ private_key) % n -- let's choose `n` to be the product of two primes. def p := 113 def q := 37 def n := p * q #eval Nat.Prime p #eval Nat.Prime q -- We choose our public key that is relatively prime to `(p - 1)*(q - 1)`. def public_key := 13 #eval Nat.gcd public_key ((p - 1)*(q - 1)) -- Now we need an inverse to the public key mod `(p - 1)*(q - 1)`. -- We get this from the extended Euclidean algorithm. #eval Nat.xgcd public_key ((p - 1)*(q - 1)) def private_key := 1861 -- double check it's an inverse #eval private_key * public_key % ((p - 1)*(q - 1)) -- Okay! Let's choose a message. def message := 1034 def encrypted_message := rsa_encrypt public_key n message #eval encrypted_message def decrypted_message := rsa_decrypt private_key n encrypted_message -- encrypting and decrypting the message produces the same output! #eval decrypted_message -- We can state, and (mostly) prove, the partial correctness theorem from class! theorem rsa_correct (p q : ℕ) (public_key private_key : ℕ) (message : ℕ) (hp : Prime p) (hq : Prime q) (h_pub_pri : public_key * private_key ≡ 1 [MOD (p - 1)*(q - 1)]) (h_msg : message < p*q) (h_rel_prime : Nat.gcd msg (p*q) = 1) : rsa_decrypt private_key (p*q) (rsa_encrypt public_key (p*q) message) = message := by dsimp [rsa_decrypt, rsa_encrypt] have h_lin_combo : ∃ k, public_key * private_key = 1 + (p - 1)*(q - 1)*k := sorry eliminate h_lin_combo with k hk calc (message ^ public_key % (p * q)) ^ private_key % (p * q) = (message ^ public_key) ^ private_key % (p * q) := by rw [← Nat.pow_mod] _ = message ^ (public_key * private_key) % (p * q) := by rw [pow_mul] _ = message ^ (1 + (p - 1)*(q - 1)*k) % (p * q) := by rw [hk] _ = message ^ (1 + totient (p*q)*k) % (p * q) := by sorry _ = (message * (message ^ totient (p * q))^k) % (p * q) := by rw [pow_add, pow_one, pow_mul] _ = (message % (p * q)) * ((message ^ totient (p * q))^k % (p * q)) % (p * q) := by rw [Nat.mul_mod] _ = (message % (p * q)) * 1 % (p * q) := by sorry _ = message % (p * q) := by rw [mul_one, Nat.mod_mod] _ = message := by rw [Nat.mod_eq_of_lt h_msg]
theory condes_dilemmas imports Main begin text {* Proving the constructive and destructive dilemmas in propositional calculus *} lemma "(P\<longrightarrow>Q) \<Longrightarrow>(R\<longrightarrow>S) \<Longrightarrow>(P\<or>R) \<Longrightarrow>(Q\<or>S)" apply(erule disjE) apply(erule impE) apply assumption apply(rule disjI1) apply assumption apply(rule disjI2) apply (erule mp) apply assumption done lemma "(P\<longrightarrow>Q) \<Longrightarrow>(R\<longrightarrow>S) \<Longrightarrow>(\<not>Q\<or>\<not>S)\<Longrightarrow>(\<not>P\<or>\<not>R) " apply(erule disjE) apply(rule disjI1) apply(rule notI) apply(erule notE) apply (erule mp) apply assumption apply(rule disjI2) apply(rule notI) apply(erule notE) apply(erule mp) apply assumption done
! RUN: %S/test_errors.sh %s %flang %t !ERROR: IF statement is not allowed in IF statement IF (A > 0.0) IF (B < 0.0) A = LOG (A) END
[STATEMENT] lemma fact_aux_lemma [simp]: "rec_eval rec_fact_aux [x, y] = fact x" [PROOF STATE] proof (prove) goal (1 subgoal): 1. rec_eval rec_fact_aux [x, y] = fact x [PROOF STEP] by (induct x) (simp_all add: rec_fact_aux_def)
lemma in_bigomega_zero [simp]: "f \<in> \<Omega>[F](\<lambda>x. 0)"
Lethbridge Regional Police have concluded an investigation into a robbery at the west side Safeway Monday night and at this time no charges have been laid. Investigation determined the 78-year-old male subject was suffering from medical issues at the time of the incident and as such has been admitted to hospital. Police have referred the matter for Crown review in consideration of whether or not charges should be pursued. No further information will be released pending the outcome of the Crown’s review of the case. Lethbridge Regional Police are currently investigating a robbery that occurred at the Safeway located at 550 University Drive West. At approximately 6pm this evening a 78 year old male entered the grocery store and approached a cashier stating he was going to rob the store and that he had a gun. The male left the business without receiving any money and was apprehended a short distance away by police. The investigation is on-going and further details will be released tomorrow.
lemma\<^marker>\<open>tag important\<close> emeasure_lborel_cbox[simp]: assumes [simp]: "\<And>b. b \<in> Basis \<Longrightarrow> l \<bullet> b \<le> u \<bullet> b" shows "emeasure lborel (cbox l u) = (\<Prod>b\<in>Basis. (u - l) \<bullet> b)"
# -*- coding: utf-8 -*- # author: huihui # date: 2020/8/3 1:18 下午 import torch import torch.utils.data import lr_scheduler as L import os import argparse import pickle import time from collections import OrderedDict import opts import models import utils import codecs import numpy as np import matplotlib matplotlib.use('Agg') import matplotlib.pyplot as plt import matplotlib.ticker as ticker parser = argparse.ArgumentParser(description='train.py') opts.model_opts(parser) opt = parser.parse_args() config = utils.read_config(opt.config) torch.manual_seed(opt.seed) opts.convert_to_config(opt, config) # cuda use_cuda = torch.cuda.is_available() config.use_cuda = use_cuda def load_data(): print('loading data...\n') data = pickle.load(open(config.data + 'data.pkl', 'rb')) data['train']['length'] = int(data['train']['length'] * opt.scale) trainset = utils.BiDataset(data['train'], char=config.char) validset = utils.BiDataset(data['valid'], char=config.char) src_vocab = data['dict']['src'] tgt_vocab = data['dict']['tgt'] config.src_vocab_size = src_vocab.size() config.tgt_vocab_size = tgt_vocab.size() trainloader = torch.utils.data.DataLoader(dataset=trainset, batch_size=config.batch_size, shuffle=True, num_workers=0, collate_fn=utils.padding) if hasattr(config, 'valid_batch_size'): valid_batch_size = config.valid_batch_size else: valid_batch_size = config.batch_size validloader = torch.utils.data.DataLoader(dataset=validset, batch_size=valid_batch_size, shuffle=False, num_workers=0, collate_fn=utils.padding) return {'trainset': trainset, 'validset': validset, 'trainloader': trainloader, 'validloader': validloader, 'src_vocab': src_vocab, 'tgt_vocab': tgt_vocab} def build_model(checkpoints, print_log): for k, v in config.items(): print_log("%s:\t%s\n" % (str(k), str(v))) # model print('building model...\n') model = getattr(models, opt.model)(config) if checkpoints is not None: model.load_state_dict(checkpoints['model']) if opt.pretrain: print('loading checkpoint from %s' % opt.pretrain) pre_ckpt = torch.load(opt.pretrain)['model'] pre_ckpt = OrderedDict({key[8:]: pre_ckpt[key] for key in pre_ckpt if key.startswith('encoder')}) print(model.encoder.state_dict().keys()) print(pre_ckpt.keys()) model.encoder.load_state_dict(pre_ckpt) if use_cuda: model.cuda() # optimizer if checkpoints is not None: optim = checkpoints['optim'] else: optim = models.Optim(config.optim, config.learning_rate, config.max_grad_norm, lr_decay=config.learning_rate_decay, start_decay_at=config.start_decay_at) optim.set_parameters(model.parameters()) # print log param_count = 0 for param in model.parameters(): param_count += param.view(-1).size()[0] for k, v in config.items(): print_log("%s:\t%s\n" % (str(k), str(v))) print_log("\n") print_log(repr(model) + "\n\n") print_log('total number of parameters: %d\n\n' % param_count) return model, optim, print_log def train_model(model, data, optim, epoch, params): model.train() trainloader = data['trainloader'] for src, tgt, src_len, tgt_len, original_src, original_tgt in trainloader: model.zero_grad() if config.use_cuda: src = src.cuda() tgt = tgt.cuda() src_len = src_len.cuda() lengths, indices = torch.sort(src_len, dim=0, descending=True) src = torch.index_select(src, dim=0, index=indices) tgt = torch.index_select(tgt, dim=0, index=indices) dec = tgt[:, :-1] targets = tgt[:, 1:] try: if config.schesamp: if epoch > 8: e = epoch - 8 loss, outputs = model(src, lengths, dec, targets, teacher_ratio=0.9 ** e) else: loss, outputs = model(src, lengths, dec, targets) else: loss, outputs = model(src, lengths, dec, targets) pred = outputs.max(2)[1] targets = targets.t() num_correct = pred.eq(targets).masked_select(targets.ne(utils.PAD)).sum().item() num_total = targets.ne(utils.PAD).sum().item() if config.max_split == 0: loss = torch.sum(loss) / num_total loss.backward() optim.step() params['report_loss'] += loss.item() params['report_correct'] += num_correct params['report_total'] += num_total except RuntimeError as e: if 'out of memory' in str(e): print('| WARNING: ran out of memory') if hasattr(torch.cuda, 'empty_cache'): torch.cuda.empty_cache() else: raise e utils.progress_bar(params['updates'], config.eval_interval) params['updates'] += 1 if params['updates'] % config.eval_interval == 0: params['log']("epoch: %3d, loss: %6.3f, time: %6.3f, updates: %8d, accuracy: %2.2f\n" % (epoch, params['report_loss'], time.time() - params['report_time'], params['updates'], params['report_correct'] * 100.0 / params['report_total'])) print('evaluating after %d updates...\r' % params['updates']) score = eval_model(model, data, params) for metric in config.metrics: params[metric].append(score[metric]) if score[metric] >= max(params[metric]): with codecs.open(params['log_path'] + 'best_' + metric + '_prediction.txt', 'w', 'utf-8') as f: f.write(codecs.open(params['log_path'] + 'candidate.txt', 'r', 'utf-8').read()) save_model(params['log_path'] + 'best_' + metric + '_checkpoint.pt', model, optim, params['updates']) model.train() params['report_loss'], params['report_time'] = 0, time.time() params['report_correct'], params['report_total'] = 0, 0 if params['updates'] % config.save_interval == 0: save_model(params['log_path'] + 'checkpoint.pt', model, optim, params['updates']) optim.updateLearningRate(score=0, epoch=epoch) def eval_model(model, data, params): model.eval() reference, candidate, source, alignments = [], [], [], [] count, total_count = 0, len(data['validset']) validloader = data['validloader'] tgt_vocab = data['tgt_vocab'] for src, tgt, src_len, tgt_len, original_src, original_tgt in validloader: if config.use_cuda: src = src.cuda() src_len = src_len.cuda() with torch.no_grad(): if config.beam_size > 1: samples, alignment, weight = model.beam_sample(src, src_len, beam_size=config.beam_size, eval_=True) else: samples, alignment = model.sample(src, src_len) candidate += [tgt_vocab.convertToLabels(s, utils.EOS) for s in samples] source += original_src reference += original_tgt if alignment is not None: alignments += [align for align in alignment] count += len(original_src) utils.progress_bar(count, total_count) if config.unk and config.attention != 'None': cands = [] for s, c, align in zip(source, candidate, alignments): cand = [] for word, idx in zip(c, align): if word == utils.UNK_WORD and idx < len(s): try: cand.append(s[idx]) except: cand.append(word) print("%d %d\n" % (len(s), idx)) else: cand.append(word) cands.append(cand) if len(cand) == 0: print('Error!') candidate = cands with codecs.open(params['log_path'] + 'candidate.txt', 'w+', 'utf-8') as f: for i in range(len(candidate)): f.write(" ".join(candidate[i]) + '\n') score = {} for metric in config.metrics: score[metric] = getattr(utils, metric)(reference, candidate, params['log_path'], params['log'], config) return score def save_model(path, model, optim, updates): model_state_dict = model.state_dict() checkpoints = { 'model': model_state_dict, 'config': config, 'optim': optim, 'updates': updates} torch.save(checkpoints, path) def build_log(): # log if not os.path.exists(config.logF): os.mkdir(config.logF) if opt.log == '': log_path = config.logF + str(int(time.time() * 1000)) + '/' else: log_path = config.logF + opt.log + '/' if not os.path.exists(log_path): os.mkdir(log_path) print_log = utils.print_log(log_path + 'log.txt') return print_log, log_path def showAttention(path, s, c, attentions, index): # Set up figure with colorbar fig = plt.figure() ax = fig.add_subplot(111) cax = ax.matshow(attentions.numpy(), cmap='bone') fig.colorbar(cax) # Set up axes ax.set_xticklabels([''] + s, rotation=90) ax.set_yticklabels([''] + c) # Show label at every tick ax.xaxis.set_major_locator(ticker.MultipleLocator(1)) ax.yaxis.set_major_locator(ticker.MultipleLocator(1)) plt.show() plt.savefig(path + str(index) + '.jpg') def main(): # checkpoint if opt.restore: print('loading checkpoint...\n') checkpoints = torch.load(opt.restore) else: checkpoints = None data = load_data() print_log, log_path = build_log() model, optim, print_log = build_model(checkpoints, print_log) # scheduler if config.schedule: scheduler = L.CosineAnnealingLR(optim.optimizer, T_max=config.epoch) params = {'updates': 0, 'report_loss': 0, 'report_total': 0, 'report_correct': 0, 'report_time': time.time(), 'log': print_log, 'log_path': log_path} for metric in config.metrics: params[metric] = [] if opt.restore: params['updates'] = checkpoints['updates'] if opt.mode == "train": for i in range(1, config.epoch + 1): print('{} / {}'.format(i,config.epoch)) if config.schedule: scheduler.step() print("Decaying learning rate to %g" % scheduler.get_lr()[0]) train_model(model, data, optim, i, params) for metric in config.metrics: print_log("Best %s score: %.2f\n" % (metric, max(params[metric]))) else: score = eval_model(model, data, params) print(score) if __name__ == '__main__': main()