Datasets:
AI4M
/

text
stringlengths
0
3.34M
import analysis.normed_space.int import polyhedral_lattice.basic /-! # The integers are a polyhedral lattice. The integers, with its usual norm, are a polyhedral lattice. -/ noncomputable theory open_locale big_operators lemma int.sum_units_to_nat_smul (n : ℤ) : ∑ (i : units ℤ), int.to_nat (i * n) • (i : ℤ) = n := begin rw [units_int.univ, finset.sum_insert], swap, dec_trivial, simp only [neg_mul, mul_one, one_mul, nsmul_eq_mul, units.coe_one, units.coe_neg_one, mul_neg, finset.sum_singleton, ←sub_eq_add_neg, int.to_nat_sub_to_nat_neg], end instance int.polyhedral_lattice : polyhedral_lattice ℤ := { polyhedral' := begin refine ⟨units ℤ, infer_instance, coe, _⟩, intro n, refine ⟨λ e, int.to_nat (e * n), (int.sum_units_to_nat_smul _).symm, _⟩, simp only [int.norm_coe_units, mul_one, nat.cast_one, one_mul, units_int.univ], show ∥n∥ = ((1 * n).to_nat) + (↑(((-1) * n).to_nat) + 0), simp only [neg_mul, add_zero, one_mul], exact (int.to_nat_add_to_nat_neg_eq_norm _).symm, end }
#' Title #' #' @param parms #' @param set #' #' @return #' @export #' #' @examples #' #' p <- set_parms(livestock$parms, set = list(b = 0.2, f = 0.9)) #' set_parms <- function(parms, set = list(NA)) { parms.names <- names(parms) set.names <- names(set) m.names <- sort(unique(c(parms.names, set.names))) parms_new <- sapply(m.names, function(i) { if (i %in% set.names) set[[i]] else parms[[i]] }, simplify = FALSE) return(parms_new) }
lemma open_UNION_box: fixes M :: "'a::euclidean_space set" assumes "open M" defines "a' \<equiv> \<lambda>f :: 'a \<Rightarrow> real \<times> real. (\<Sum>(i::'a)\<in>Basis. fst (f i) *\<^sub>R i)" defines "b' \<equiv> \<lambda>f :: 'a \<Rightarrow> real \<times> real. (\<Sum>(i::'a)\<in>Basis. snd (f i) *\<^sub>R i)" defines "I \<equiv> {f\<in>Basis \<rightarrow>\<^sub>E \<rat> \<times> \<rat>. box (a' f) (b' f) \<subseteq> M}" shows "M = (\<Union>f\<in>I. box (a' f) (b' f))"
[GOAL] R : Type u_1 inst✝⁴ : CommRing R I J : Ideal R M : Type u_2 inst✝³ : AddCommGroup M inst✝² : Module R M M' : Type u_3 inst✝¹ : AddCommGroup M' inst✝ : Module R M' f : M →ₗ[R] M' h : IsAssociatedPrime I M hf : Function.Injective ↑f ⊢ IsAssociatedPrime I M' [PROOFSTEP] obtain ⟨x, rfl⟩ := h.2 [GOAL] case intro R : Type u_1 inst✝⁴ : CommRing R J : Ideal R M : Type u_2 inst✝³ : AddCommGroup M inst✝² : Module R M M' : Type u_3 inst✝¹ : AddCommGroup M' inst✝ : Module R M' f : M →ₗ[R] M' hf : Function.Injective ↑f x : M h : IsAssociatedPrime (Submodule.annihilator (Submodule.span R {x})) M ⊢ IsAssociatedPrime (Submodule.annihilator (Submodule.span R {x})) M' [PROOFSTEP] refine' ⟨h.1, ⟨f x, _⟩⟩ [GOAL] case intro R : Type u_1 inst✝⁴ : CommRing R J : Ideal R M : Type u_2 inst✝³ : AddCommGroup M inst✝² : Module R M M' : Type u_3 inst✝¹ : AddCommGroup M' inst✝ : Module R M' f : M →ₗ[R] M' hf : Function.Injective ↑f x : M h : IsAssociatedPrime (Submodule.annihilator (Submodule.span R {x})) M ⊢ Submodule.annihilator (Submodule.span R {x}) = Submodule.annihilator (Submodule.span R {↑f x}) [PROOFSTEP] ext r [GOAL] case intro.h R : Type u_1 inst✝⁴ : CommRing R J : Ideal R M : Type u_2 inst✝³ : AddCommGroup M inst✝² : Module R M M' : Type u_3 inst✝¹ : AddCommGroup M' inst✝ : Module R M' f : M →ₗ[R] M' hf : Function.Injective ↑f x : M h : IsAssociatedPrime (Submodule.annihilator (Submodule.span R {x})) M r : R ⊢ r ∈ Submodule.annihilator (Submodule.span R {x}) ↔ r ∈ Submodule.annihilator (Submodule.span R {↑f x}) [PROOFSTEP] rw [Submodule.mem_annihilator_span_singleton, Submodule.mem_annihilator_span_singleton, ← map_smul, ← f.map_zero, hf.eq_iff] [GOAL] R : Type u_1 inst✝⁵ : CommRing R I J : Ideal R M : Type u_2 inst✝⁴ : AddCommGroup M inst✝³ : Module R M M' : Type u_3 inst✝² : AddCommGroup M' inst✝¹ : Module R M' f : M →ₗ[R] M' inst✝ : Subsingleton M ⊢ ¬IsAssociatedPrime I M [PROOFSTEP] rintro ⟨hI, x, hx⟩ [GOAL] case intro.intro R : Type u_1 inst✝⁵ : CommRing R I J : Ideal R M : Type u_2 inst✝⁴ : AddCommGroup M inst✝³ : Module R M M' : Type u_3 inst✝² : AddCommGroup M' inst✝¹ : Module R M' f : M →ₗ[R] M' inst✝ : Subsingleton M hI : Ideal.IsPrime I x : M hx : I = Submodule.annihilator (Submodule.span R {x}) ⊢ False [PROOFSTEP] apply hI.ne_top [GOAL] case intro.intro R : Type u_1 inst✝⁵ : CommRing R I J : Ideal R M : Type u_2 inst✝⁴ : AddCommGroup M inst✝³ : Module R M M' : Type u_3 inst✝² : AddCommGroup M' inst✝¹ : Module R M' f : M →ₗ[R] M' inst✝ : Subsingleton M hI : Ideal.IsPrime I x : M hx : I = Submodule.annihilator (Submodule.span R {x}) ⊢ I = ⊤ [PROOFSTEP] rwa [Subsingleton.elim x 0, Submodule.span_singleton_eq_bot.mpr rfl, Submodule.annihilator_bot] at hx [GOAL] R : Type u_1 inst✝⁴ : CommRing R I J : Ideal R M : Type u_2 inst✝³ : AddCommGroup M inst✝² : Module R M M' : Type u_3 inst✝¹ : AddCommGroup M' inst✝ : Module R M' f : M →ₗ[R] M' H : IsNoetherianRing R x : M hx : x ≠ 0 ⊢ ∃ P, IsAssociatedPrime P M ∧ Submodule.annihilator (Submodule.span R {x}) ≤ P [PROOFSTEP] have : (R ∙ x).annihilator ≠ ⊤ := by rwa [Ne.def, Ideal.eq_top_iff_one, Submodule.mem_annihilator_span_singleton, one_smul] [GOAL] R : Type u_1 inst✝⁴ : CommRing R I J : Ideal R M : Type u_2 inst✝³ : AddCommGroup M inst✝² : Module R M M' : Type u_3 inst✝¹ : AddCommGroup M' inst✝ : Module R M' f : M →ₗ[R] M' H : IsNoetherianRing R x : M hx : x ≠ 0 ⊢ Submodule.annihilator (Submodule.span R {x}) ≠ ⊤ [PROOFSTEP] rwa [Ne.def, Ideal.eq_top_iff_one, Submodule.mem_annihilator_span_singleton, one_smul] [GOAL] R : Type u_1 inst✝⁴ : CommRing R I J : Ideal R M : Type u_2 inst✝³ : AddCommGroup M inst✝² : Module R M M' : Type u_3 inst✝¹ : AddCommGroup M' inst✝ : Module R M' f : M →ₗ[R] M' H : IsNoetherianRing R x : M hx : x ≠ 0 this : Submodule.annihilator (Submodule.span R {x}) ≠ ⊤ ⊢ ∃ P, IsAssociatedPrime P M ∧ Submodule.annihilator (Submodule.span R {x}) ≤ P [PROOFSTEP] obtain ⟨P, ⟨l, h₁, y, rfl⟩, h₃⟩ := set_has_maximal_iff_noetherian.mpr H {P | (R ∙ x).annihilator ≤ P ∧ P ≠ ⊤ ∧ ∃ y : M, P = (R ∙ y).annihilator} ⟨(R ∙ x).annihilator, rfl.le, this, x, rfl⟩ [GOAL] case intro.intro.intro.intro.intro R : Type u_1 inst✝⁴ : CommRing R I J : Ideal R M : Type u_2 inst✝³ : AddCommGroup M inst✝² : Module R M M' : Type u_3 inst✝¹ : AddCommGroup M' inst✝ : Module R M' f : M →ₗ[R] M' H : IsNoetherianRing R x : M hx : x ≠ 0 this : Submodule.annihilator (Submodule.span R {x}) ≠ ⊤ y : M h₃ : ∀ (I : Submodule R R), I ∈ {P | Submodule.annihilator (Submodule.span R {x}) ≤ P ∧ P ≠ ⊤ ∧ ∃ y, P = Submodule.annihilator (Submodule.span R {y})} → ¬Submodule.annihilator (Submodule.span R {y}) < I l : Submodule.annihilator (Submodule.span R {x}) ≤ Submodule.annihilator (Submodule.span R {y}) h₁ : Submodule.annihilator (Submodule.span R {y}) ≠ ⊤ ⊢ ∃ P, IsAssociatedPrime P M ∧ Submodule.annihilator (Submodule.span R {x}) ≤ P [PROOFSTEP] refine' ⟨_, ⟨⟨h₁, _⟩, y, rfl⟩, l⟩ [GOAL] case intro.intro.intro.intro.intro R : Type u_1 inst✝⁴ : CommRing R I J : Ideal R M : Type u_2 inst✝³ : AddCommGroup M inst✝² : Module R M M' : Type u_3 inst✝¹ : AddCommGroup M' inst✝ : Module R M' f : M →ₗ[R] M' H : IsNoetherianRing R x : M hx : x ≠ 0 this : Submodule.annihilator (Submodule.span R {x}) ≠ ⊤ y : M h₃ : ∀ (I : Submodule R R), I ∈ {P | Submodule.annihilator (Submodule.span R {x}) ≤ P ∧ P ≠ ⊤ ∧ ∃ y, P = Submodule.annihilator (Submodule.span R {y})} → ¬Submodule.annihilator (Submodule.span R {y}) < I l : Submodule.annihilator (Submodule.span R {x}) ≤ Submodule.annihilator (Submodule.span R {y}) h₁ : Submodule.annihilator (Submodule.span R {y}) ≠ ⊤ ⊢ ∀ {x y_1 : R}, x * y_1 ∈ Submodule.annihilator (Submodule.span R {y}) → x ∈ Submodule.annihilator (Submodule.span R {y}) ∨ y_1 ∈ Submodule.annihilator (Submodule.span R {y}) [PROOFSTEP] intro a b hab [GOAL] case intro.intro.intro.intro.intro R : Type u_1 inst✝⁴ : CommRing R I J : Ideal R M : Type u_2 inst✝³ : AddCommGroup M inst✝² : Module R M M' : Type u_3 inst✝¹ : AddCommGroup M' inst✝ : Module R M' f : M →ₗ[R] M' H : IsNoetherianRing R x : M hx : x ≠ 0 this : Submodule.annihilator (Submodule.span R {x}) ≠ ⊤ y : M h₃ : ∀ (I : Submodule R R), I ∈ {P | Submodule.annihilator (Submodule.span R {x}) ≤ P ∧ P ≠ ⊤ ∧ ∃ y, P = Submodule.annihilator (Submodule.span R {y})} → ¬Submodule.annihilator (Submodule.span R {y}) < I l : Submodule.annihilator (Submodule.span R {x}) ≤ Submodule.annihilator (Submodule.span R {y}) h₁ : Submodule.annihilator (Submodule.span R {y}) ≠ ⊤ a b : R hab : a * b ∈ Submodule.annihilator (Submodule.span R {y}) ⊢ a ∈ Submodule.annihilator (Submodule.span R {y}) ∨ b ∈ Submodule.annihilator (Submodule.span R {y}) [PROOFSTEP] rw [or_iff_not_imp_left] [GOAL] case intro.intro.intro.intro.intro R : Type u_1 inst✝⁴ : CommRing R I J : Ideal R M : Type u_2 inst✝³ : AddCommGroup M inst✝² : Module R M M' : Type u_3 inst✝¹ : AddCommGroup M' inst✝ : Module R M' f : M →ₗ[R] M' H : IsNoetherianRing R x : M hx : x ≠ 0 this : Submodule.annihilator (Submodule.span R {x}) ≠ ⊤ y : M h₃ : ∀ (I : Submodule R R), I ∈ {P | Submodule.annihilator (Submodule.span R {x}) ≤ P ∧ P ≠ ⊤ ∧ ∃ y, P = Submodule.annihilator (Submodule.span R {y})} → ¬Submodule.annihilator (Submodule.span R {y}) < I l : Submodule.annihilator (Submodule.span R {x}) ≤ Submodule.annihilator (Submodule.span R {y}) h₁ : Submodule.annihilator (Submodule.span R {y}) ≠ ⊤ a b : R hab : a * b ∈ Submodule.annihilator (Submodule.span R {y}) ⊢ ¬a ∈ Submodule.annihilator (Submodule.span R {y}) → b ∈ Submodule.annihilator (Submodule.span R {y}) [PROOFSTEP] intro ha [GOAL] case intro.intro.intro.intro.intro R : Type u_1 inst✝⁴ : CommRing R I J : Ideal R M : Type u_2 inst✝³ : AddCommGroup M inst✝² : Module R M M' : Type u_3 inst✝¹ : AddCommGroup M' inst✝ : Module R M' f : M →ₗ[R] M' H : IsNoetherianRing R x : M hx : x ≠ 0 this : Submodule.annihilator (Submodule.span R {x}) ≠ ⊤ y : M h₃ : ∀ (I : Submodule R R), I ∈ {P | Submodule.annihilator (Submodule.span R {x}) ≤ P ∧ P ≠ ⊤ ∧ ∃ y, P = Submodule.annihilator (Submodule.span R {y})} → ¬Submodule.annihilator (Submodule.span R {y}) < I l : Submodule.annihilator (Submodule.span R {x}) ≤ Submodule.annihilator (Submodule.span R {y}) h₁ : Submodule.annihilator (Submodule.span R {y}) ≠ ⊤ a b : R hab : a * b ∈ Submodule.annihilator (Submodule.span R {y}) ha : ¬a ∈ Submodule.annihilator (Submodule.span R {y}) ⊢ b ∈ Submodule.annihilator (Submodule.span R {y}) [PROOFSTEP] rw [Submodule.mem_annihilator_span_singleton] at ha hab [GOAL] case intro.intro.intro.intro.intro R : Type u_1 inst✝⁴ : CommRing R I J : Ideal R M : Type u_2 inst✝³ : AddCommGroup M inst✝² : Module R M M' : Type u_3 inst✝¹ : AddCommGroup M' inst✝ : Module R M' f : M →ₗ[R] M' H : IsNoetherianRing R x : M hx : x ≠ 0 this : Submodule.annihilator (Submodule.span R {x}) ≠ ⊤ y : M h₃ : ∀ (I : Submodule R R), I ∈ {P | Submodule.annihilator (Submodule.span R {x}) ≤ P ∧ P ≠ ⊤ ∧ ∃ y, P = Submodule.annihilator (Submodule.span R {y})} → ¬Submodule.annihilator (Submodule.span R {y}) < I l : Submodule.annihilator (Submodule.span R {x}) ≤ Submodule.annihilator (Submodule.span R {y}) h₁ : Submodule.annihilator (Submodule.span R {y}) ≠ ⊤ a b : R hab : (a * b) • y = 0 ha : ¬a • y = 0 ⊢ b ∈ Submodule.annihilator (Submodule.span R {y}) [PROOFSTEP] have H₁ : (R ∙ y).annihilator ≤ (R ∙ a • y).annihilator := by intro c hc rw [Submodule.mem_annihilator_span_singleton] at hc ⊢ rw [smul_comm, hc, smul_zero] [GOAL] R : Type u_1 inst✝⁴ : CommRing R I J : Ideal R M : Type u_2 inst✝³ : AddCommGroup M inst✝² : Module R M M' : Type u_3 inst✝¹ : AddCommGroup M' inst✝ : Module R M' f : M →ₗ[R] M' H : IsNoetherianRing R x : M hx : x ≠ 0 this : Submodule.annihilator (Submodule.span R {x}) ≠ ⊤ y : M h₃ : ∀ (I : Submodule R R), I ∈ {P | Submodule.annihilator (Submodule.span R {x}) ≤ P ∧ P ≠ ⊤ ∧ ∃ y, P = Submodule.annihilator (Submodule.span R {y})} → ¬Submodule.annihilator (Submodule.span R {y}) < I l : Submodule.annihilator (Submodule.span R {x}) ≤ Submodule.annihilator (Submodule.span R {y}) h₁ : Submodule.annihilator (Submodule.span R {y}) ≠ ⊤ a b : R hab : (a * b) • y = 0 ha : ¬a • y = 0 ⊢ Submodule.annihilator (Submodule.span R {y}) ≤ Submodule.annihilator (Submodule.span R {a • y}) [PROOFSTEP] intro c hc [GOAL] R : Type u_1 inst✝⁴ : CommRing R I J : Ideal R M : Type u_2 inst✝³ : AddCommGroup M inst✝² : Module R M M' : Type u_3 inst✝¹ : AddCommGroup M' inst✝ : Module R M' f : M →ₗ[R] M' H : IsNoetherianRing R x : M hx : x ≠ 0 this : Submodule.annihilator (Submodule.span R {x}) ≠ ⊤ y : M h₃ : ∀ (I : Submodule R R), I ∈ {P | Submodule.annihilator (Submodule.span R {x}) ≤ P ∧ P ≠ ⊤ ∧ ∃ y, P = Submodule.annihilator (Submodule.span R {y})} → ¬Submodule.annihilator (Submodule.span R {y}) < I l : Submodule.annihilator (Submodule.span R {x}) ≤ Submodule.annihilator (Submodule.span R {y}) h₁ : Submodule.annihilator (Submodule.span R {y}) ≠ ⊤ a b : R hab : (a * b) • y = 0 ha : ¬a • y = 0 c : R hc : c ∈ Submodule.annihilator (Submodule.span R {y}) ⊢ c ∈ Submodule.annihilator (Submodule.span R {a • y}) [PROOFSTEP] rw [Submodule.mem_annihilator_span_singleton] at hc ⊢ [GOAL] R : Type u_1 inst✝⁴ : CommRing R I J : Ideal R M : Type u_2 inst✝³ : AddCommGroup M inst✝² : Module R M M' : Type u_3 inst✝¹ : AddCommGroup M' inst✝ : Module R M' f : M →ₗ[R] M' H : IsNoetherianRing R x : M hx : x ≠ 0 this : Submodule.annihilator (Submodule.span R {x}) ≠ ⊤ y : M h₃ : ∀ (I : Submodule R R), I ∈ {P | Submodule.annihilator (Submodule.span R {x}) ≤ P ∧ P ≠ ⊤ ∧ ∃ y, P = Submodule.annihilator (Submodule.span R {y})} → ¬Submodule.annihilator (Submodule.span R {y}) < I l : Submodule.annihilator (Submodule.span R {x}) ≤ Submodule.annihilator (Submodule.span R {y}) h₁ : Submodule.annihilator (Submodule.span R {y}) ≠ ⊤ a b : R hab : (a * b) • y = 0 ha : ¬a • y = 0 c : R hc : c • y = 0 ⊢ c • a • y = 0 [PROOFSTEP] rw [smul_comm, hc, smul_zero] [GOAL] case intro.intro.intro.intro.intro R : Type u_1 inst✝⁴ : CommRing R I J : Ideal R M : Type u_2 inst✝³ : AddCommGroup M inst✝² : Module R M M' : Type u_3 inst✝¹ : AddCommGroup M' inst✝ : Module R M' f : M →ₗ[R] M' H : IsNoetherianRing R x : M hx : x ≠ 0 this : Submodule.annihilator (Submodule.span R {x}) ≠ ⊤ y : M h₃ : ∀ (I : Submodule R R), I ∈ {P | Submodule.annihilator (Submodule.span R {x}) ≤ P ∧ P ≠ ⊤ ∧ ∃ y, P = Submodule.annihilator (Submodule.span R {y})} → ¬Submodule.annihilator (Submodule.span R {y}) < I l : Submodule.annihilator (Submodule.span R {x}) ≤ Submodule.annihilator (Submodule.span R {y}) h₁ : Submodule.annihilator (Submodule.span R {y}) ≠ ⊤ a b : R hab : (a * b) • y = 0 ha : ¬a • y = 0 H₁ : Submodule.annihilator (Submodule.span R {y}) ≤ Submodule.annihilator (Submodule.span R {a • y}) ⊢ b ∈ Submodule.annihilator (Submodule.span R {y}) [PROOFSTEP] have H₂ : (Submodule.span R {a • y}).annihilator ≠ ⊤ := by rwa [Ne.def, Submodule.annihilator_eq_top_iff, Submodule.span_singleton_eq_bot] [GOAL] R : Type u_1 inst✝⁴ : CommRing R I J : Ideal R M : Type u_2 inst✝³ : AddCommGroup M inst✝² : Module R M M' : Type u_3 inst✝¹ : AddCommGroup M' inst✝ : Module R M' f : M →ₗ[R] M' H : IsNoetherianRing R x : M hx : x ≠ 0 this : Submodule.annihilator (Submodule.span R {x}) ≠ ⊤ y : M h₃ : ∀ (I : Submodule R R), I ∈ {P | Submodule.annihilator (Submodule.span R {x}) ≤ P ∧ P ≠ ⊤ ∧ ∃ y, P = Submodule.annihilator (Submodule.span R {y})} → ¬Submodule.annihilator (Submodule.span R {y}) < I l : Submodule.annihilator (Submodule.span R {x}) ≤ Submodule.annihilator (Submodule.span R {y}) h₁ : Submodule.annihilator (Submodule.span R {y}) ≠ ⊤ a b : R hab : (a * b) • y = 0 ha : ¬a • y = 0 H₁ : Submodule.annihilator (Submodule.span R {y}) ≤ Submodule.annihilator (Submodule.span R {a • y}) ⊢ Submodule.annihilator (Submodule.span R {a • y}) ≠ ⊤ [PROOFSTEP] rwa [Ne.def, Submodule.annihilator_eq_top_iff, Submodule.span_singleton_eq_bot] [GOAL] case intro.intro.intro.intro.intro R : Type u_1 inst✝⁴ : CommRing R I J : Ideal R M : Type u_2 inst✝³ : AddCommGroup M inst✝² : Module R M M' : Type u_3 inst✝¹ : AddCommGroup M' inst✝ : Module R M' f : M →ₗ[R] M' H : IsNoetherianRing R x : M hx : x ≠ 0 this : Submodule.annihilator (Submodule.span R {x}) ≠ ⊤ y : M h₃ : ∀ (I : Submodule R R), I ∈ {P | Submodule.annihilator (Submodule.span R {x}) ≤ P ∧ P ≠ ⊤ ∧ ∃ y, P = Submodule.annihilator (Submodule.span R {y})} → ¬Submodule.annihilator (Submodule.span R {y}) < I l : Submodule.annihilator (Submodule.span R {x}) ≤ Submodule.annihilator (Submodule.span R {y}) h₁ : Submodule.annihilator (Submodule.span R {y}) ≠ ⊤ a b : R hab : (a * b) • y = 0 ha : ¬a • y = 0 H₁ : Submodule.annihilator (Submodule.span R {y}) ≤ Submodule.annihilator (Submodule.span R {a • y}) H₂ : Submodule.annihilator (Submodule.span R {a • y}) ≠ ⊤ ⊢ b ∈ Submodule.annihilator (Submodule.span R {y}) [PROOFSTEP] rwa [H₁.eq_of_not_lt (h₃ (R ∙ a • y).annihilator ⟨l.trans H₁, H₂, _, rfl⟩), Submodule.mem_annihilator_span_singleton, smul_comm, smul_smul] [GOAL] R : Type u_1 inst✝⁵ : CommRing R I J : Ideal R M : Type u_2 inst✝⁴ : AddCommGroup M inst✝³ : Module R M M' : Type u_3 inst✝² : AddCommGroup M' inst✝¹ : Module R M' f : M →ₗ[R] M' inst✝ : Subsingleton M ⊢ associatedPrimes R M = ∅ [PROOFSTEP] ext [GOAL] case h R : Type u_1 inst✝⁵ : CommRing R I J : Ideal R M : Type u_2 inst✝⁴ : AddCommGroup M inst✝³ : Module R M M' : Type u_3 inst✝² : AddCommGroup M' inst✝¹ : Module R M' f : M →ₗ[R] M' inst✝ : Subsingleton M x✝ : Ideal R ⊢ x✝ ∈ associatedPrimes R M ↔ x✝ ∈ ∅ [PROOFSTEP] simp only [Set.mem_empty_iff_false, iff_false_iff] [GOAL] case h R : Type u_1 inst✝⁵ : CommRing R I J : Ideal R M : Type u_2 inst✝⁴ : AddCommGroup M inst✝³ : Module R M M' : Type u_3 inst✝² : AddCommGroup M' inst✝¹ : Module R M' f : M →ₗ[R] M' inst✝ : Subsingleton M x✝ : Ideal R ⊢ ¬x✝ ∈ associatedPrimes R M [PROOFSTEP] apply not_isAssociatedPrime_of_subsingleton [GOAL] R : Type u_1 inst✝⁶ : CommRing R I J : Ideal R M : Type u_2 inst✝⁵ : AddCommGroup M inst✝⁴ : Module R M M' : Type u_3 inst✝³ : AddCommGroup M' inst✝² : Module R M' f : M →ₗ[R] M' inst✝¹ : IsNoetherianRing R inst✝ : Nontrivial M ⊢ Set.Nonempty (associatedPrimes R M) [PROOFSTEP] obtain ⟨x, hx⟩ := exists_ne (0 : M) [GOAL] case intro R : Type u_1 inst✝⁶ : CommRing R I J : Ideal R M : Type u_2 inst✝⁵ : AddCommGroup M inst✝⁴ : Module R M M' : Type u_3 inst✝³ : AddCommGroup M' inst✝² : Module R M' f : M →ₗ[R] M' inst✝¹ : IsNoetherianRing R inst✝ : Nontrivial M x : M hx : x ≠ 0 ⊢ Set.Nonempty (associatedPrimes R M) [PROOFSTEP] obtain ⟨P, hP, _⟩ := exists_le_isAssociatedPrime_of_isNoetherianRing R x hx [GOAL] case intro.intro.intro R : Type u_1 inst✝⁶ : CommRing R I J : Ideal R M : Type u_2 inst✝⁵ : AddCommGroup M inst✝⁴ : Module R M M' : Type u_3 inst✝³ : AddCommGroup M' inst✝² : Module R M' f : M →ₗ[R] M' inst✝¹ : IsNoetherianRing R inst✝ : Nontrivial M x : M hx : x ≠ 0 P : Ideal R hP : IsAssociatedPrime P M right✝ : Submodule.annihilator (Submodule.span R {x}) ≤ P ⊢ Set.Nonempty (associatedPrimes R M) [PROOFSTEP] exact ⟨P, hP⟩ [GOAL] R : Type u_1 inst✝⁴ : CommRing R I J : Ideal R M : Type u_2 inst✝³ : AddCommGroup M inst✝² : Module R M M' : Type u_3 inst✝¹ : AddCommGroup M' inst✝ : Module R M' f : M →ₗ[R] M' h : IsAssociatedPrime I M ⊢ Submodule.annihilator ⊤ ≤ I [PROOFSTEP] obtain ⟨hI, x, rfl⟩ := h [GOAL] case intro.intro R : Type u_1 inst✝⁴ : CommRing R J : Ideal R M : Type u_2 inst✝³ : AddCommGroup M inst✝² : Module R M M' : Type u_3 inst✝¹ : AddCommGroup M' inst✝ : Module R M' f : M →ₗ[R] M' x : M hI : Ideal.IsPrime (Submodule.annihilator (Submodule.span R {x})) ⊢ Submodule.annihilator ⊤ ≤ Submodule.annihilator (Submodule.span R {x}) [PROOFSTEP] exact Submodule.annihilator_mono le_top [GOAL] R : Type u_1 inst✝⁴ : CommRing R I J : Ideal R M : Type u_2 inst✝³ : AddCommGroup M inst✝² : Module R M M' : Type u_3 inst✝¹ : AddCommGroup M' inst✝ : Module R M' f : M →ₗ[R] M' hI : Ideal.IsPrimary I h : IsAssociatedPrime J (R ⧸ I) ⊢ J = Ideal.radical I [PROOFSTEP] obtain ⟨hJ, x, e⟩ := h [GOAL] case intro.intro R : Type u_1 inst✝⁴ : CommRing R I J : Ideal R M : Type u_2 inst✝³ : AddCommGroup M inst✝² : Module R M M' : Type u_3 inst✝¹ : AddCommGroup M' inst✝ : Module R M' f : M →ₗ[R] M' hI : Ideal.IsPrimary I hJ : Ideal.IsPrime J x : R ⧸ I e : J = Submodule.annihilator (Submodule.span R {x}) ⊢ J = Ideal.radical I [PROOFSTEP] have : x ≠ 0 := by rintro rfl apply hJ.1 rwa [Submodule.span_singleton_eq_bot.mpr rfl, Submodule.annihilator_bot] at e [GOAL] R : Type u_1 inst✝⁴ : CommRing R I J : Ideal R M : Type u_2 inst✝³ : AddCommGroup M inst✝² : Module R M M' : Type u_3 inst✝¹ : AddCommGroup M' inst✝ : Module R M' f : M →ₗ[R] M' hI : Ideal.IsPrimary I hJ : Ideal.IsPrime J x : R ⧸ I e : J = Submodule.annihilator (Submodule.span R {x}) ⊢ x ≠ 0 [PROOFSTEP] rintro rfl [GOAL] R : Type u_1 inst✝⁴ : CommRing R I J : Ideal R M : Type u_2 inst✝³ : AddCommGroup M inst✝² : Module R M M' : Type u_3 inst✝¹ : AddCommGroup M' inst✝ : Module R M' f : M →ₗ[R] M' hI : Ideal.IsPrimary I hJ : Ideal.IsPrime J e : J = Submodule.annihilator (Submodule.span R {0}) ⊢ False [PROOFSTEP] apply hJ.1 [GOAL] R : Type u_1 inst✝⁴ : CommRing R I J : Ideal R M : Type u_2 inst✝³ : AddCommGroup M inst✝² : Module R M M' : Type u_3 inst✝¹ : AddCommGroup M' inst✝ : Module R M' f : M →ₗ[R] M' hI : Ideal.IsPrimary I hJ : Ideal.IsPrime J e : J = Submodule.annihilator (Submodule.span R {0}) ⊢ J = ⊤ [PROOFSTEP] rwa [Submodule.span_singleton_eq_bot.mpr rfl, Submodule.annihilator_bot] at e [GOAL] case intro.intro R : Type u_1 inst✝⁴ : CommRing R I J : Ideal R M : Type u_2 inst✝³ : AddCommGroup M inst✝² : Module R M M' : Type u_3 inst✝¹ : AddCommGroup M' inst✝ : Module R M' f : M →ₗ[R] M' hI : Ideal.IsPrimary I hJ : Ideal.IsPrime J x : R ⧸ I e : J = Submodule.annihilator (Submodule.span R {x}) this : x ≠ 0 ⊢ J = Ideal.radical I [PROOFSTEP] obtain ⟨x, rfl⟩ := Ideal.Quotient.mkₐ_surjective R _ x [GOAL] case intro.intro.intro R : Type u_1 inst✝⁴ : CommRing R I J : Ideal R M : Type u_2 inst✝³ : AddCommGroup M inst✝² : Module R M M' : Type u_3 inst✝¹ : AddCommGroup M' inst✝ : Module R M' f : M →ₗ[R] M' hI : Ideal.IsPrimary I hJ : Ideal.IsPrime J x : R e : J = Submodule.annihilator (Submodule.span R {↑(Ideal.Quotient.mkₐ R I) x}) this : ↑(Ideal.Quotient.mkₐ R I) x ≠ 0 ⊢ J = Ideal.radical I [PROOFSTEP] replace e : ∀ {y}, y ∈ J ↔ x * y ∈ I [GOAL] case e R : Type u_1 inst✝⁴ : CommRing R I J : Ideal R M : Type u_2 inst✝³ : AddCommGroup M inst✝² : Module R M M' : Type u_3 inst✝¹ : AddCommGroup M' inst✝ : Module R M' f : M →ₗ[R] M' hI : Ideal.IsPrimary I hJ : Ideal.IsPrime J x : R e : J = Submodule.annihilator (Submodule.span R {↑(Ideal.Quotient.mkₐ R I) x}) this : ↑(Ideal.Quotient.mkₐ R I) x ≠ 0 ⊢ ∀ {y : R}, y ∈ J ↔ x * y ∈ I [PROOFSTEP] intro y [GOAL] case e R : Type u_1 inst✝⁴ : CommRing R I J : Ideal R M : Type u_2 inst✝³ : AddCommGroup M inst✝² : Module R M M' : Type u_3 inst✝¹ : AddCommGroup M' inst✝ : Module R M' f : M →ₗ[R] M' hI : Ideal.IsPrimary I hJ : Ideal.IsPrime J x : R e : J = Submodule.annihilator (Submodule.span R {↑(Ideal.Quotient.mkₐ R I) x}) this : ↑(Ideal.Quotient.mkₐ R I) x ≠ 0 y : R ⊢ y ∈ J ↔ x * y ∈ I [PROOFSTEP] rw [e, Submodule.mem_annihilator_span_singleton, ← map_smul, smul_eq_mul, mul_comm, Ideal.Quotient.mkₐ_eq_mk, ← Ideal.Quotient.mk_eq_mk, Submodule.Quotient.mk_eq_zero] [GOAL] case intro.intro.intro R : Type u_1 inst✝⁴ : CommRing R I J : Ideal R M : Type u_2 inst✝³ : AddCommGroup M inst✝² : Module R M M' : Type u_3 inst✝¹ : AddCommGroup M' inst✝ : Module R M' f : M →ₗ[R] M' hI : Ideal.IsPrimary I hJ : Ideal.IsPrime J x : R this : ↑(Ideal.Quotient.mkₐ R I) x ≠ 0 e : ∀ {y : R}, y ∈ J ↔ x * y ∈ I ⊢ J = Ideal.radical I [PROOFSTEP] apply le_antisymm [GOAL] case intro.intro.intro.a R : Type u_1 inst✝⁴ : CommRing R I J : Ideal R M : Type u_2 inst✝³ : AddCommGroup M inst✝² : Module R M M' : Type u_3 inst✝¹ : AddCommGroup M' inst✝ : Module R M' f : M →ₗ[R] M' hI : Ideal.IsPrimary I hJ : Ideal.IsPrime J x : R this : ↑(Ideal.Quotient.mkₐ R I) x ≠ 0 e : ∀ {y : R}, y ∈ J ↔ x * y ∈ I ⊢ J ≤ Ideal.radical I [PROOFSTEP] intro y hy [GOAL] case intro.intro.intro.a R : Type u_1 inst✝⁴ : CommRing R I J : Ideal R M : Type u_2 inst✝³ : AddCommGroup M inst✝² : Module R M M' : Type u_3 inst✝¹ : AddCommGroup M' inst✝ : Module R M' f : M →ₗ[R] M' hI : Ideal.IsPrimary I hJ : Ideal.IsPrime J x : R this : ↑(Ideal.Quotient.mkₐ R I) x ≠ 0 e : ∀ {y : R}, y ∈ J ↔ x * y ∈ I y : R hy : y ∈ J ⊢ y ∈ Ideal.radical I [PROOFSTEP] exact (hI.2 <| e.mp hy).resolve_left ((Submodule.Quotient.mk_eq_zero I).not.mp this) [GOAL] case intro.intro.intro.a R : Type u_1 inst✝⁴ : CommRing R I J : Ideal R M : Type u_2 inst✝³ : AddCommGroup M inst✝² : Module R M M' : Type u_3 inst✝¹ : AddCommGroup M' inst✝ : Module R M' f : M →ₗ[R] M' hI : Ideal.IsPrimary I hJ : Ideal.IsPrime J x : R this : ↑(Ideal.Quotient.mkₐ R I) x ≠ 0 e : ∀ {y : R}, y ∈ J ↔ x * y ∈ I ⊢ Ideal.radical I ≤ J [PROOFSTEP] rw [hJ.radical_le_iff] [GOAL] case intro.intro.intro.a R : Type u_1 inst✝⁴ : CommRing R I J : Ideal R M : Type u_2 inst✝³ : AddCommGroup M inst✝² : Module R M M' : Type u_3 inst✝¹ : AddCommGroup M' inst✝ : Module R M' f : M →ₗ[R] M' hI : Ideal.IsPrimary I hJ : Ideal.IsPrime J x : R this : ↑(Ideal.Quotient.mkₐ R I) x ≠ 0 e : ∀ {y : R}, y ∈ J ↔ x * y ∈ I ⊢ I ≤ J [PROOFSTEP] intro y hy [GOAL] case intro.intro.intro.a R : Type u_1 inst✝⁴ : CommRing R I J : Ideal R M : Type u_2 inst✝³ : AddCommGroup M inst✝² : Module R M M' : Type u_3 inst✝¹ : AddCommGroup M' inst✝ : Module R M' f : M →ₗ[R] M' hI : Ideal.IsPrimary I hJ : Ideal.IsPrime J x : R this : ↑(Ideal.Quotient.mkₐ R I) x ≠ 0 e : ∀ {y : R}, y ∈ J ↔ x * y ∈ I y : R hy : y ∈ I ⊢ y ∈ J [PROOFSTEP] exact e.mpr (I.mul_mem_left x hy) [GOAL] R : Type u_1 inst✝⁵ : CommRing R I J : Ideal R M : Type u_2 inst✝⁴ : AddCommGroup M inst✝³ : Module R M M' : Type u_3 inst✝² : AddCommGroup M' inst✝¹ : Module R M' f : M →ₗ[R] M' inst✝ : IsNoetherianRing R hI : Ideal.IsPrimary I ⊢ associatedPrimes R (R ⧸ I) = {Ideal.radical I} [PROOFSTEP] ext J [GOAL] case h R : Type u_1 inst✝⁵ : CommRing R I J✝ : Ideal R M : Type u_2 inst✝⁴ : AddCommGroup M inst✝³ : Module R M M' : Type u_3 inst✝² : AddCommGroup M' inst✝¹ : Module R M' f : M →ₗ[R] M' inst✝ : IsNoetherianRing R hI : Ideal.IsPrimary I J : Ideal R ⊢ J ∈ associatedPrimes R (R ⧸ I) ↔ J ∈ {Ideal.radical I} [PROOFSTEP] rw [Set.mem_singleton_iff] [GOAL] case h R : Type u_1 inst✝⁵ : CommRing R I J✝ : Ideal R M : Type u_2 inst✝⁴ : AddCommGroup M inst✝³ : Module R M M' : Type u_3 inst✝² : AddCommGroup M' inst✝¹ : Module R M' f : M →ₗ[R] M' inst✝ : IsNoetherianRing R hI : Ideal.IsPrimary I J : Ideal R ⊢ J ∈ associatedPrimes R (R ⧸ I) ↔ J = Ideal.radical I [PROOFSTEP] refine' ⟨IsAssociatedPrime.eq_radical hI, _⟩ [GOAL] case h R : Type u_1 inst✝⁵ : CommRing R I J✝ : Ideal R M : Type u_2 inst✝⁴ : AddCommGroup M inst✝³ : Module R M M' : Type u_3 inst✝² : AddCommGroup M' inst✝¹ : Module R M' f : M →ₗ[R] M' inst✝ : IsNoetherianRing R hI : Ideal.IsPrimary I J : Ideal R ⊢ J = Ideal.radical I → J ∈ associatedPrimes R (R ⧸ I) [PROOFSTEP] rintro rfl [GOAL] case h R : Type u_1 inst✝⁵ : CommRing R I J : Ideal R M : Type u_2 inst✝⁴ : AddCommGroup M inst✝³ : Module R M M' : Type u_3 inst✝² : AddCommGroup M' inst✝¹ : Module R M' f : M →ₗ[R] M' inst✝ : IsNoetherianRing R hI : Ideal.IsPrimary I ⊢ Ideal.radical I ∈ associatedPrimes R (R ⧸ I) [PROOFSTEP] haveI : Nontrivial (R ⧸ I) := by refine ⟨(Ideal.Quotient.mk I : _) 1, (Ideal.Quotient.mk I : _) 0, ?_⟩ rw [Ne.def, Ideal.Quotient.eq, sub_zero, ← Ideal.eq_top_iff_one] exact hI.1 [GOAL] R : Type u_1 inst✝⁵ : CommRing R I J : Ideal R M : Type u_2 inst✝⁴ : AddCommGroup M inst✝³ : Module R M M' : Type u_3 inst✝² : AddCommGroup M' inst✝¹ : Module R M' f : M →ₗ[R] M' inst✝ : IsNoetherianRing R hI : Ideal.IsPrimary I ⊢ Nontrivial (R ⧸ I) [PROOFSTEP] refine ⟨(Ideal.Quotient.mk I : _) 1, (Ideal.Quotient.mk I : _) 0, ?_⟩ [GOAL] R : Type u_1 inst✝⁵ : CommRing R I J : Ideal R M : Type u_2 inst✝⁴ : AddCommGroup M inst✝³ : Module R M M' : Type u_3 inst✝² : AddCommGroup M' inst✝¹ : Module R M' f : M →ₗ[R] M' inst✝ : IsNoetherianRing R hI : Ideal.IsPrimary I ⊢ ↑(Ideal.Quotient.mk I) 1 ≠ ↑(Ideal.Quotient.mk I) 0 [PROOFSTEP] rw [Ne.def, Ideal.Quotient.eq, sub_zero, ← Ideal.eq_top_iff_one] [GOAL] R : Type u_1 inst✝⁵ : CommRing R I J : Ideal R M : Type u_2 inst✝⁴ : AddCommGroup M inst✝³ : Module R M M' : Type u_3 inst✝² : AddCommGroup M' inst✝¹ : Module R M' f : M →ₗ[R] M' inst✝ : IsNoetherianRing R hI : Ideal.IsPrimary I ⊢ ¬I = ⊤ [PROOFSTEP] exact hI.1 [GOAL] case h R : Type u_1 inst✝⁵ : CommRing R I J : Ideal R M : Type u_2 inst✝⁴ : AddCommGroup M inst✝³ : Module R M M' : Type u_3 inst✝² : AddCommGroup M' inst✝¹ : Module R M' f : M →ₗ[R] M' inst✝ : IsNoetherianRing R hI : Ideal.IsPrimary I this : Nontrivial (R ⧸ I) ⊢ Ideal.radical I ∈ associatedPrimes R (R ⧸ I) [PROOFSTEP] obtain ⟨a, ha⟩ := associatedPrimes.nonempty R (R ⧸ I) [GOAL] case h.intro R : Type u_1 inst✝⁵ : CommRing R I J : Ideal R M : Type u_2 inst✝⁴ : AddCommGroup M inst✝³ : Module R M M' : Type u_3 inst✝² : AddCommGroup M' inst✝¹ : Module R M' f : M →ₗ[R] M' inst✝ : IsNoetherianRing R hI : Ideal.IsPrimary I this : Nontrivial (R ⧸ I) a : Ideal R ha : a ∈ associatedPrimes R (R ⧸ I) ⊢ Ideal.radical I ∈ associatedPrimes R (R ⧸ I) [PROOFSTEP] exact ha.eq_radical hI ▸ ha
{-# LANGUAGE OverloadedStrings #-} module VisualizeFunction where import Control.Monad import Data.Binary.Put import Numeric.LinearAlgebra.HMatrix import System.IO import qualified Data.ByteString.Lazy as L import qualified Data.Vector.Storable as V -- derived from description at https://en.wikipedia.org/wiki/BMP_file_format putBMPHeader headerLength imageLength = do putLazyByteString "BM" -- magic identifier putWord32le (headerLength + imageLength) -- total length of file (bytes) putLazyByteString "HELO" -- apparently a reserved field which can be filled arbitrarily putWord32le headerLength -- offset of pixel array in the file (bytes) putBitmapInfoHeader (width, height) bpp = do putWord32le 40 -- size of BITMAPINFOHEADER putWord32le $ fromIntegral width putWord32le $ fromIntegral (-height) -- negative height -> first row is top of image putWord16le 1 -- # of color planes putWord16le bpp -- bits per pixel putWord32le 0 -- compression method (uncompressed RGB is 0) putWord32le 0 -- uncompressed size (optional if no compression is used) replicateM_ 2 $ putWord32le 0 -- dummy values for {x,y}-resolution putWord32le 0 -- use all 2^bpp colors putWord32le 0 -- # of "important colors", which is "generally ignored" addBitmapHeader (w, h) image = do let headerLength = (2 + 4 + 4 + 4) + 40 let imageLength = fromIntegral $ L.length image putBMPHeader headerLength imageLength putBitmapInfoHeader (w, h) 32 putLazyByteString image putRGB r g b = mapM_ putWord8 [b,g,r,0] scaleFromTo (a, b) (a', b') x = ((x-a)/(b-a))*(b'-a')+a' putPixel x y z = putRGB r g b where minimum = 0 maximum = 2^8 - 1 r = round $ if z < 0 then scaleFromTo (0, -1) (minimum, maximum) z else minimum g = round $ minimum b = round $ if z > 0 then scaleFromTo (0, 1) (minimum, maximum) z else minimum visualizeFunction (xmin, ymin) (xmax, ymax) (w, h) (zmin, zmax) f = runPut image where xs = linspace w (xmin, xmax) ys = linspace h (ymin, ymax) f' = scaleFromTo (zmin, zmax) (-1, 1) . f image = V.forM_ ys (\y -> V.forM_ xs (\x -> putPixel x y (f' $ vector [x,y]))) visualizeFunctionBMP min max dims range = runPut . addBitmapHeader dims . visualizeFunction min max dims range saveImage name img = withBinaryFile name WriteMode $ \h -> L.hPutStr h img emitSample = saveImage "sample.bmp" $ visualizeFunctionBMP (-1,-1) (1,1) (2048, 2048) (-1,1) (tanh . V.sum)
theory IICF_Array_List imports "../Intf/IICF_List" "../../../ds/LLVM_DS_Array_List" begin abbreviation (input) "raw_al_assn \<equiv> \<upharpoonleft>arl_assn" definition "al_assn R \<equiv> hr_comp raw_al_assn (\<langle>the_pure R\<rangle>list_rel)" abbreviation "al_assn' TYPE('l::len2) R \<equiv> al_assn R :: (_ \<Rightarrow> (_,'l)array_list \<Rightarrow> _)" lemma arl_assn_free[sepref_frame_free_rules]: "MK_FREE (\<upharpoonleft>arl_assn) arl_free" apply rule by vcg lemma al_assn_free[sepref_frame_free_rules]: "MK_FREE (al_assn R) arl_free" unfolding al_assn_def by (rule sepref_frame_free_rules)+ context fixes l_dummy :: "'l::len2 itself" and L AA defines [simp]: "L \<equiv> (LENGTH ('l))" defines [simp]: "AA \<equiv> raw_al_assn :: _ \<Rightarrow> (_,'l) array_list \<Rightarrow> _" begin private lemma n_unf: "hr_comp AA (\<langle>the_pure A\<rangle>list_rel) = al_assn A" unfolding al_assn_def AA_def .. private lemma params: "(max_snat, max_snat) \<in> Id \<rightarrow> Id" "(L,L)\<in>nat_rel" by auto context notes [fcomp_norm_unfold] = n_unf notes [param] = params notes [simp] = refine_pw_simps begin thm bool1_rel_def bool.assn_is_rel[symmetric] private method m_ref = ((unfold snat_rel_def snat.assn_is_rel[symmetric] bool1_rel_def bool.assn_is_rel[symmetric])?, sepref_to_hoare, vcg_monadify, vcg') lemma al_empty_hnr_aux: "(uncurry0 (arl_new_raw::(_,'l::len2)array_list llM), uncurry0 (RETURN op_list_empty)) \<in> [\<lambda>_. 4 < L]\<^sub>a unit_assn\<^sup>k \<rightarrow> AA" by m_ref sepref_decl_impl (no_register) al_empty: al_empty_hnr_aux . lemma al_nth_hnr_aux: "(uncurry arl_nth, uncurry mop_list_get) \<in> AA\<^sup>k *\<^sub>a snat_assn\<^sup>k \<rightarrow>\<^sub>a id_assn" by m_ref sepref_decl_impl (ismop) al_nth: al_nth_hnr_aux . lemma al_upd_hnr_aux: "(uncurry2 arl_upd, uncurry2 mop_list_set) \<in> AA\<^sup>d *\<^sub>a snat_assn\<^sup>k *\<^sub>a id_assn\<^sup>k \<rightarrow>\<^sub>a AA" by m_ref sepref_decl_impl (ismop) al_upd: al_upd_hnr_aux . lemma al_append_hnr_aux: "(uncurry arl_push_back, uncurry mop_list_append) \<in> [\<lambda>(xs,_). length xs + 1 < max_snat L]\<^sub>a AA\<^sup>d *\<^sub>a id_assn\<^sup>k \<rightarrow> AA" by m_ref sepref_decl_impl (ismop) al_append: al_append_hnr_aux . lemma al_pop_last_hnr_aux: "(arl_pop_back, mop_list_pop_last) \<in> AA\<^sup>d \<rightarrow>\<^sub>a id_assn \<times>\<^sub>a AA" by m_ref sepref_decl_impl (ismop) al_pop_last: al_pop_last_hnr_aux . lemma al_butlast_hnr_aux: "(\<lambda>l. doM { (_,l) \<leftarrow> arl_pop_back l; return l}, mop_list_butlast) \<in> AA\<^sup>d \<rightarrow>\<^sub>a AA" by m_ref sepref_decl_impl (ismop) al_butlast: al_butlast_hnr_aux . lemma al_len_hnr_aux: "(arl_len, mop_list_length) \<in> AA\<^sup>k \<rightarrow>\<^sub>a snat_assn" by m_ref sepref_decl_impl (ismop) al_len: al_len_hnr_aux . lemma al_is_empty_hnr_aux: "(\<lambda>al. doM { l\<leftarrow>arl_len al; ll_icmp_eq l (signed_nat 0) }, mop_list_is_empty) \<in> AA\<^sup>k \<rightarrow>\<^sub>a bool1_assn" by m_ref sepref_decl_impl (ismop) al_is_empty: al_is_empty_hnr_aux . end end definition [simp]: "op_al_empty TYPE('l::len2) \<equiv> op_list_empty" sepref_register "op_al_empty TYPE('l::len2)" lemma al_custom_empty_hnr[sepref_fr_rules]: "(uncurry0 arl_new_raw, uncurry0 (RETURN (PR_CONST (op_al_empty TYPE('l::len2))))) \<in> [\<lambda>_. 4<LENGTH('l)]\<^sub>a unit_assn\<^sup>k \<rightarrow> al_assn' TYPE('l) A" apply simp apply (rule al_empty_hnr[simplified]) done lemma al_fold_custom_empty: "[] = op_al_empty TYPE('l::len2)" "op_list_empty = op_al_empty TYPE('l::len2)" "mop_list_empty = RETURN (op_al_empty TYPE('l::len2))" by auto subsection \<open>Ad-Hoc Regression Tests\<close> experiment begin sepref_definition example [llvm_code] is "\<lambda>n. do { let l = op_list_empty; l \<leftarrow> mop_list_append l 42; l \<leftarrow> mop_list_append l 43; l \<leftarrow> mop_list_append l 44; l \<leftarrow> mop_list_append l 45; l \<leftarrow> mop_list_append l 46; let x = l!2; let l = l[2:=l!3]; l \<leftarrow> mop_list_set l 3 x; let (_,l) = op_list_pop_last l; RETURN l }" :: "(snat_assn' TYPE(32))\<^sup>k \<rightarrow>\<^sub>a al_assn' TYPE(32) (snat_assn' TYPE(32))" apply (annot_snat_const "TYPE(32)") supply [simp] = max_snat_def apply (rewrite al_fold_custom_empty[where 'l=32]) by sepref export_llvm example end end
theory Chop_tmap imports Main "~~/src/HOL/Library/BNF_Corec" "$HIPSTER_HOME/IsaHipster" begin setup Tactic_Data.set_coinduct_sledgehammer codatatype (lset: 'a) Llist = lnull: LNil | LCons (lhd: 'a) (ltl: "'a Llist") where "ltl LNil = LNil" codatatype 'a Tree = is_Leaf: Leaf | Node (left: "'a Tree") (val: 'a) (right: "'a Tree") where "left Leaf = Leaf" | "right Leaf = Leaf" primcorec chop :: "'a Tree \<Rightarrow> 'a Tree" where "is_Leaf t \<or> is_Leaf (left t) \<and> is_Leaf (right t) \<Longrightarrow> is_Leaf (chop t)" | "val (chop t) = (if is_Leaf (left t) then val (right t) else val (left t))" | "left (chop t) = (if is_Leaf (left t) then left (right t) else right t)" | "right (chop t) = (if is_Leaf (left t) then right (right t) else chop (left t))" primcorec llist_of :: "'a Tree \<Rightarrow> 'a Llist" where "is_Leaf t \<Longrightarrow> lnull (llist_of t)" | "lhd (llist_of t) = val t" | "ltl (llist_of t) = llist_of (chop t)" primcorec lmap :: "('a \<Rightarrow> 'b) \<Rightarrow> 'a Llist \<Rightarrow> 'b Llist" where "lmap f xs = (case xs of LNil \<Rightarrow> LNil | LCons x xs \<Rightarrow> LCons (f x) (lmap f xs))" primcorec tmap :: "('a \<Rightarrow> 'a) \<Rightarrow> 'a Tree \<Rightarrow> 'a Tree" where "tmap f t = (case t of Leaf \<Rightarrow> Leaf | Node l x r \<Rightarrow> Node (tmap f l) (f x) (tmap f r))" hipster chop tmap lemma unknown [thy_expl]: "left (left (left y)) = Leaf" oops why doesn't this return nicer things? *) (*hipster tmap*) lemma lemma_a [thy_expl]: "tmap y (Node Leaf z Leaf) = Node Leaf (y z) Leaf" apply (coinduction arbitrary: y z rule: Chop_tmap.Tree.coinduct_strong) by simp lemma lemma_aa [thy_expl]: "Node Leaf (y z) (tmap y x2) = tmap y (Node Leaf z x2)" apply (coinduction arbitrary: x2 y z rule: Chop_tmap.Tree.coinduct_strong) by (simp_all add: tmap.ctr(1)) lemma lemma_ab [thy_expl]: "Node (tmap y z) (y x2) Leaf = tmap y (Node z x2 Leaf)" apply (coinduction arbitrary: x2 y z rule: Chop_tmap.Tree.coinduct_strong) by (simp_all add: tmap.ctr(1)) theorem chop_tmap: "chop (tmap f t) = tmap f (chop t)" (*by hipster_coinduct_sledgehammer Failed to apply initial proof method*) end
#include <benchmark/benchmark.h> #include "Tests/ArrowSQLRunner/ArrowSQLRunner.h" #include <boost/filesystem.hpp> #include <boost/program_options.hpp> extern bool g_enable_heterogeneous_execution; extern bool g_enable_multifrag_heterogeneous_execution; boost::filesystem::path g_data_path; size_t g_fragment_size = 1'000'000; using namespace TestHelpers::ArrowSQLRunner; static void createTaxiReducedTable() { getStorage()->dropTable("trips"); ArrowStorage::TableOptions to{g_fragment_size}; createTable("trips", {{"pickup_datetime", SQLTypeInfo(kTIMESTAMP, 0, 0)}, {"passenger_count", SQLTypeInfo(kSMALLINT)}, {"trip_distance", SQLTypeInfo(kDECIMAL, 14, 2)}, {"total_amount", SQLTypeInfo(kDECIMAL, 14, 2)}, {"cab_type", SQLTypeInfo(kVARCHAR, true, kENCODING_DICT)}}, to); } static void populateTaxiReducedTable() { namespace fs = boost::filesystem; ArrowStorage::CsvParseOptions po; po.header = false; if (fs::is_directory(g_data_path)) { for (auto it = fs::directory_iterator{g_data_path}; it != fs::directory_iterator{}; it++) { getStorage()->appendCsvFile(it->path().string(), "trips", po); } } else { getStorage()->appendCsvFile(g_data_path.string(), "trips", po); } } template <class T> T v(const TargetValue& r) { auto scalar_r = boost::get<ScalarTargetValue>(&r); auto p = boost::get<T>(scalar_r); return *p; } static void warmup() { auto res = v<int64_t>(run_simple_agg("select count(*) from trips", ExecutorDeviceType::CPU)); std::cout << "Number of loaded tuples: " << res << std::endl; } static void taxi_q1(benchmark::State& state) { for (auto _ : state) { run_multiple_agg("select cab_type, count(*) from trips group by cab_type", ExecutorDeviceType::CPU); } } static void taxi_q2(benchmark::State& state) { for (auto _ : state) { run_multiple_agg( "SELECT passenger_count, avg(total_amount) FROM trips GROUP BY passenger_count", ExecutorDeviceType::CPU); } } static void taxi_q3(benchmark::State& state) { for (auto _ : state) { run_multiple_agg( "SELECT passenger_count, extract(year from pickup_datetime) AS pickup_year, " "count(*) FROM trips GROUP BY passenger_count, pickup_year", ExecutorDeviceType::CPU); } } static void taxi_q4(benchmark::State& state) { for (auto _ : state) { run_multiple_agg( "SELECT passenger_count, extract(year from pickup_datetime) AS pickup_year, " "cast(trip_distance as int) AS distance, count(*) AS the_count FROM trips GROUP " "BY passenger_count, pickup_year, distance ORDER BY pickup_year, the_count " "desc", ExecutorDeviceType::CPU); } } BENCHMARK(taxi_q1); BENCHMARK(taxi_q2); BENCHMARK(taxi_q3); BENCHMARK(taxi_q4); int main(int argc, char* argv[]) { ::benchmark::Initialize(&argc, argv); namespace po = boost::program_options; namespace fs = boost::filesystem; po::options_description desc("Options"); desc.add_options()("enable-heterogeneous", po::value<bool>(&g_enable_heterogeneous_execution) ->default_value(g_enable_heterogeneous_execution) ->implicit_value(true), "Allow heterogeneous execution."); desc.add_options()("enable-multifrag", po::value<bool>(&g_enable_multifrag_heterogeneous_execution) ->default_value(g_enable_multifrag_heterogeneous_execution) ->implicit_value(true), "Allow multifrag heterogeneous execution."); desc.add_options()("data", po::value<fs::path>(&g_data_path), "Path to taxi dataset."); desc.add_options()("fragment-size", po::value<size_t>(&g_fragment_size)->default_value(g_fragment_size), "Table fragment size."); logger::LogOptions log_options(argv[0]); log_options.severity_ = logger::Severity::FATAL; log_options.set_options(); // update default values desc.add(log_options.get_options()); po::variables_map vm; po::store(po::command_line_parser(argc, argv).options(desc).run(), vm); po::notify(vm); if (vm.count("help")) { std::cout << "Usage:" << std::endl << desc << std::endl; } logger::init(log_options); init(); try { createTaxiReducedTable(); populateTaxiReducedTable(); warmup(); ::benchmark::RunSpecifiedBenchmarks(); } catch (const std::exception& e) { LOG(ERROR) << e.what(); return -1; } reset(); }
! TODO: adapt this to neo2 magfie function kappa2() real(8) :: kappa2 kappa2 = (1d0 - eta*B0mn(fsind,1)*(1-eps(fsind)))/(2d0*eta*(B0mn(fsind,1)*eps(fsind))) !kappa2 = sqrt((mi*v**2/2d0-J_perp()*om_c(0d0))/(2*J_perp()*& ! om_c(pi/2)*eps(fsind))) !print *, mi*v**2/2d0, E() - qi*Phi_E(fsind) end function kappa2 ! Shaing2009-035009 - (8) for bounce averaged toroidal drift function Omph_shaing() real(8) :: Omph_shaing, kappa, Eell, Kell ! Elliptic integrals for Shaing formula !kappa = sqrt((E()-qi*Phi_E(fsind)-J_perp()*om_c(0.0d0))/(2*J_perp()*& ! om_c(pi/2)*eps(fsind))) kappa = sqrt((mi*v**2/2d0-J_perp()*om_c(0d0))/(2*J_perp()*& om_c(pi/2)*eps)) !kappa = sqrt(0.83) ! test case so that 2*E/K = 1 Kell = ellf(pi/2d0, kappa) Eell = elle(pi/2d0, kappa) ! Shaing2009-035009 - (8) for bounce averaged toroidal drift Omph_shaing = Om_tE +& J_perp()*B0mn(fsind,1)/mi*depsdr(fsind)*(2*Eell/Kell-1) end function Omph_shaing
/- Copyright (c) 2018 Jeremy Avigad. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Jeremy Avigad, Mario Carneiro, Simon Hudon, Alex Keizer -/ import Qpf.MathlibPort.Fin2 import Qpf.Util.HEq -- import Mathlib universe u v w abbrev DVec {n : Nat} (αs : Fin2 n → Type u) : Type _ := (i : Fin2 n) → αs i abbrev Vec (α : Type _) (n : Nat) := @DVec n fun _ => α namespace Vec def append1 {α : Type u} {n} (tl : Vec α n) (hd : α) : Vec α (.succ n) | .fs i => tl i | .fz => hd -- infixl:67 " ::: " => append1 /-- Drop the last element from a `Vec` -/ def drop (v : Vec α (n+1)) : Vec α n := fun i => v <| .fs i def constVec {α : Type _} (a : α) (n : Nat) : Vec α n := fun _ => a end Vec unif_hint (n : Nat) where |- Fin2 n → Type u =?= Vec.{u+1} (Type u) n unif_hint {α : Type _} (n : Nat) where |- DVec.{u+1} (Vec.constVec α n) =?= Vec.{u+1} α n namespace DVec /-- Return the last element from a `DVec` -/ abbrev last (v : @DVec (n+1) αs ) : αs 0 := v 0 /-- Drop the last element from a `DVec` -/ def drop (v : DVec αs) : DVec (Vec.drop αs) := fun i => v <| .fs i @[reducible] def nil : @DVec 0 αs := fun emp => by contradiction @[reducible] def append1 {α : Type u} {αs : Vec (Type u) n} (tl : DVec αs) (hd : α) : DVec (Vec.append1 αs α) | .fs i => tl i | .fz => hd -- infixl:67 " ::: " => append1 end DVec namespace Vec variable {α : Type _} {n : Nat} abbrev nil : Vec α 0 := DVec.nil abbrev last : Vec α n.succ → α := DVec.last end Vec /- # Notation macros -/ syntax "!![" term,* "]" : term macro_rules | `(!![]) => `(Vec.nil) | `(!![$x]) => `(Vec.append1 !![] $x) | `(!![ $xs,* , $x]) => `(Vec.append1 !![$xs,*] $x) namespace Vec theorem drop_append1 {v : Vec α n} {a : α} {i : PFin2 n} : drop (append1 v a) i = v i := rfl theorem drop_append1' {v : Vec α n} {a : α} : drop (append1 v a) = v := by funext x; rfl theorem last_append1 {v : Vec α n} {a : α} : last (append1 v a) = a := rfl @[simp] theorem append1_drop_last (v : Vec α (n+1)) : append1 (drop v) (last v) = v := funext $ fun i => by cases i; rfl; rfl def reverse (v : Vec α n) : Vec α n := fun i => v i.inv @[simp] theorem reverse_involution {v : Vec α n} : v.reverse.reverse = v := by funext i; dsimp only [reverse] apply congrArg; simp only [Fin2.inv, PFin2.toFin2_ofFin2_iso, PFin2.inv_involution, PFin2.ofFin2_toFin2_iso] end Vec namespace Vec /-- Create a `Vec` from a `List`. Note that this conceptually reverses the list, since in a `Vec` the 0th index points to the right-most element -/ def ofList : (as : List α) → Vec α (as.length) | List.nil => Vec.nil | List.cons a as => Vec.append1 (ofList as) a /-- Create a `List` from a `Vec`. Note that this conceptually reverses the vector, since in a `Vec` the 0th index points to the right-most element -/ def toList : {n : Nat} → Vec α n → List α | 0, _ => List.nil | _+1, v => List.cons v.last (toList v.drop) @[simp] theorem toList_length_eq_n {v : Vec α n} : v.toList.length = n := by induction n case zero => rfl case succ n ih => dsimp only [toList, List.length] dsimp only [HAdd.hAdd, Add.add, Nat.add] apply congrArg apply ih @[simp] theorem ofList_toList_iso {v : Vec α n} : HEq (ofList (toList v)) v := by apply HEq.trans (b := cast (β:=Vec α (List.length (toList v))) ?hc v); case hc => simp only [toList_length_eq_n] case h₂ => apply cast_heq case h₁ => apply heq_of_eq; funext i; apply eq_of_heq; rw[cast_arg] <;> try (solve | simp); simp_heq induction n <;> cases i; case succ.fz n ih => { dsimp[ofList, toList, append1, last, DVec.last] apply hcongr <;> (try solve | intros; rfl) simp_heq; simp only [OfNat.ofNat] apply hcongr <;> (try solve | intros; rfl) simp } case succ.fs n ih i => { dsimp[ofList, toList, append1, drop] apply HEq.trans (@ih (fun i => v (.fs i)) i); apply hcongr <;> (try solve | intros; rfl) simp_heq apply hcongr; case H₂ => apply cast_heq case H₃ => apply congrArg; simp case H₄ => intro _; apply congrArg; simp apply hcongr <;> (try solve | intros; rfl); simp } theorem ofList_toList_iso' {v : Vec α n} : HEq (fun (j : PFin2.{u} (toList v).length) => ofList (toList v) j.toFin2) (fun (j : PFin2.{u} (toList v).length) => v <| PFin2.toFin2 <| cast (by rw[toList_length_eq_n]) j) := by apply HEq.funext . rfl intro j have n_eq : (toList v).length = n := toList_length_eq_n; apply hcongr . apply ofList_toList_iso . intros apply hcongr <;> intros <;> (try rw[n_eq]) . simp_heq . intros; simp . rw[n_eq] @[simp] theorem toList_ofList_iso {as : List α} : toList (ofList as) = as := by induction as; case nil => rfl case cons a as ih => simp only [toList, ofList, append1, last, DVec.last, drop, ih] instance : Coe (Vec (Type u) n) (TypeVec.{u} n) where coe v i := v i instance : Coe (TypeVec.{u} n) (Vec (Type u) n) where coe v i := v i instance : Coe (Fin n → α) (Vec α n) where coe f i := f (Fin2.inv i) end Vec
```python from sympy import * ``` ```python s=10 ``` ```python x = Symbol("x") ``` ```python y = x #y = (2*x-1) ``` ```python legpols = [] ``` ```python for k in range(0,s+1): legpol = 0 for j in range(0, k//2+1): legpol += (-1)**j * factorial(2*k - 2*j) / factorial(k-j) / factorial(k-2*j) / factorial(j) / 2**k * y**(k-2*j) legpols.append(expand(legpol)) ``` ```python legpols ``` [1, x, 3*x**2/2 - 1/2, 5*x**3/2 - 3*x/2, 35*x**4/8 - 15*x**2/4 + 3/8, 63*x**5/8 - 35*x**3/4 + 15*x/8, 231*x**6/16 - 315*x**4/16 + 105*x**2/16 - 5/16, 429*x**7/16 - 693*x**5/16 + 315*x**3/16 - 35*x/16, 6435*x**8/128 - 3003*x**6/32 + 3465*x**4/64 - 315*x**2/32 + 35/128, 12155*x**9/128 - 6435*x**7/32 + 9009*x**5/64 - 1155*x**3/32 + 315*x/128, 46189*x**10/256 - 109395*x**8/256 + 45045*x**6/128 - 15015*x**4/128 + 3465*x**2/256 - 63/256] ```python ```
theory Funpow imports "HOL-Library.FuncSet" "HOL-Library.Permutations" begin section \<open>Auxiliary Lemmas about @{term "op ^^"}\<close> lemma funpow_simp_l: "f ((f ^^ n) x) = (f ^^ Suc n) x" by (metis comp_apply funpow.simps(2)) lemma funpow_add_app: "(f ^^ n) ((f ^^ m) x) = (f ^^ (n + m)) x" by (metis comp_apply funpow_add) lemma funpow_mod_eq: assumes "(f ^^ n) x = x" "0 < n" shows "(f ^^ (m mod n)) x = (f ^^ m) x" proof (induct m rule: less_induct) case (less m) { assume "m < n" then have ?case by simp } moreover { assume "m = n" then have ?case by (simp add: \<open>_ = x\<close>)} moreover { assume "n < m" then have "m - n < m" "0 < m - n" using \<open>0 < n\<close> by arith+ have "(f ^^ (m mod n)) x = (f ^^ ((m - n) mod n)) x" using \<open>0 < m - n\<close> by (simp add: mod_geq) also have "\<dots> = (f ^^ (m - n)) x" using \<open>m - n < m\<close> by (rule less) also have "\<dots> = (f ^^ (m - n)) ((f ^^ n) x)" by (simp add: assms) also have "\<dots> = (f ^^ m) x" using \<open>0 < m - n\<close> by (simp add: funpow_add_app) finally have ?case . } ultimately show ?case by (metis linorder_neqE_nat) qed lemma id_funpow_id: assumes "f x = x" shows "(f ^^ n) x = x" using assms by (induct n) auto lemma inv_id_abs[simp]: "inv (\<lambda>a. a) = id" unfolding id_def[symmetric] by simp lemma inj_funpow: fixes f :: "'a \<Rightarrow> 'a" assumes "inj f" shows "inj (f ^^ n)" proof (induct n) case 0 then show ?case by (auto simp: id_def[symmetric]) next case (Suc n) with assms show ?case unfolding funpow.simps by (rule inj_comp) qed lemma funpow_inj_finite: assumes "inj p" "finite {(p ^^ n) x |n. True}" shows "\<exists>n>0. (p ^^ n) x = x" proof - have "\<not>finite {0::nat..}" by simp moreover have "{(p ^^ n) x |n. True} = (\<lambda>n. (p ^^ n) x) ` {0..}" by auto with assms have "finite \<dots>" by simp ultimately have "\<exists>n\<in>{0..}. \<not> finite {m \<in> {0..}. (p ^^ m) x = (p ^^ n) x}" by (rule pigeonhole_infinite) then obtain n where "\<not>finite {m. (p ^^ m) x = (p ^^ n) x}" by auto then have "\<not>finite ({m. (p ^^ m) x = (p ^^ n) x} - {n})" by auto then have "({m. (p ^^ m) x = (p ^^ n) x} - {n}) \<noteq> {}" by (metis finite.emptyI) then obtain m where m: "(p ^^ m) x = (p ^^ n) x" "m \<noteq> n" by auto { fix m n assume "(p ^^ n) x = (p ^^ m) x" "m < n" have "(p ^^ (n - m)) x = inv (p ^^ m) ((p ^^ m) ((p ^^ (n - m)) x))" using \<open>inj p\<close> by (simp add: inv_f_f inj_funpow) also have "((p ^^ m) ((p ^^ (n - m)) x)) = (p ^^ n) x" using `m < n` by (simp add: funpow_add_app) also have "inv (p ^^ m) \<dots> = x" using \<open>inj p\<close> by (simp add: \<open>(p ^^ n) x = _\<close> inj_funpow) finally have "(p ^^ (n - m)) x = x" "0 < n - m" using \<open>m < n\<close> by auto } note general = this show ?thesis proof (cases m n rule: linorder_cases) case less then show ?thesis using general m by metis next case equal then show ?thesis using m by metis next case greater then show ?thesis using general m by metis qed qed lemma permutes_in_funpow_image: assumes "f permutes S" "x \<in> S" shows "(f ^^ n) x \<in> S" using assms by (induct n) (auto simp: permutes_in_image) (* XXX move*) lemma permutation_self: assumes "permutation p" shows "\<exists>n>0. (p ^^ n) x = x" proof cases assume "p x = x" then show ?thesis by auto next assume "p x \<noteq> x" from assms have "inj p" by (intro permutation_bijective bij_is_inj) { fix n from \<open>p x \<noteq> x\<close> have "(p ^^ Suc n) x \<noteq> (p ^^ n) x" proof (induct n arbitrary: x) case 0 then show ?case by simp next case (Suc n) have "p (p x) \<noteq> p x" proof (rule notI) assume "p (p x) = p x" then show False using \<open>p x \<noteq> x\<close> \<open>inj p\<close> by (simp add: inj_eq) qed have "(p ^^ Suc (Suc n)) x = (p ^^ Suc n) (p x)" by (metis funpow_simp_l funpow_swap1) also have "\<dots> \<noteq> (p ^^ n) (p x)" by (rule Suc) fact also have "(p ^^ n) (p x) = (p ^^ Suc n) x" by (metis funpow_simp_l funpow_swap1) finally show ?case by simp qed } then have "{(p ^^ n) x | n. True} \<subseteq> {x. p x \<noteq> x}" by auto then have "finite {(p ^^ n) x | n. True}" using permutation_finite_support[OF assms] by (rule finite_subset) with \<open>inj p\<close> show ?thesis by (rule funpow_inj_finite) qed (* XXX move *) lemma (in -) funpow_invs: assumes "m \<le> n" and inv: "\<And>x. f (g x) = x" shows "(f ^^ m) ((g ^^ n) x) = (g ^^ (n - m)) x" using \<open>m \<le> n\<close> proof (induction m) case (Suc m) moreover then have "n - m = Suc (n - Suc m)" by auto ultimately show ?case by (auto simp: inv) qed simp section \<open>Function-power distance between values\<close> (* xxx move *) definition funpow_dist :: "('a \<Rightarrow> 'a) \<Rightarrow> 'a \<Rightarrow> 'a \<Rightarrow> nat" where "funpow_dist f x y \<equiv> LEAST n. (f ^^ n) x = y" abbreviation funpow_dist1 :: "('a \<Rightarrow> 'a) \<Rightarrow> 'a \<Rightarrow> 'a \<Rightarrow> nat" where "funpow_dist1 f x y \<equiv> Suc (funpow_dist f (f x) y)" lemma funpow_dist_0: assumes "x = y" shows "funpow_dist f x y = 0" using assms unfolding funpow_dist_def by (intro Least_eq_0) simp lemma funpow_dist_least: assumes "n < funpow_dist f x y" shows "(f ^^ n) x \<noteq> y" proof (rule notI) assume "(f ^^ n) x = y" then have "funpow_dist f x y \<le> n" unfolding funpow_dist_def by (rule Least_le) with assms show False by linarith qed lemma funpow_dist1_least: assumes "0 < n" "n < funpow_dist1 f x y" shows "(f ^^ n) x \<noteq> y" proof (rule notI) assume "(f ^^ n) x = y" then have "(f ^^ (n - 1)) (f x) = y" using \<open>0 < n\<close> by (cases n) (simp_all add: funpow_swap1) then have "funpow_dist f (f x) y \<le> n - 1" unfolding funpow_dist_def by (rule Least_le) with assms show False by simp qed section \<open>Cyclic Permutations\<close> inductive_set orbit :: "('a \<Rightarrow> 'a) \<Rightarrow> 'a \<Rightarrow> 'a set" for f x where base: "f x \<in> orbit f x" | step: "y \<in> orbit f x \<Longrightarrow> f y \<in> orbit f x" definition cyclic_on :: "('a \<Rightarrow> 'a) \<Rightarrow> 'a set \<Rightarrow> bool" where "cyclic_on f S \<longleftrightarrow> (\<exists>s\<in>S. S = orbit f s)" lemma orbit_altdef: "orbit f x = {(f ^^ n) x | n. 0 < n}" (is "?L = ?R") proof (intro set_eqI iffI) fix y assume "y \<in> ?L" then show "y \<in> ?R" by (induct rule: orbit.induct) (auto simp: exI[where x=1] exI[where x="Suc n" for n]) next fix y assume "y \<in> ?R" then obtain n where "y = (f ^^ n) x" "0 < n" by blast then show "y \<in> ?L" proof (induction n arbitrary: y) case (Suc n) then show ?case by (cases "n = 0") (auto intro: orbit.intros) qed simp qed lemma orbit_trans: assumes "s \<in> orbit f t" "t \<in> orbit f u" shows "s \<in> orbit f u" using assms by induct (auto intro: orbit.intros) lemma orbit_subset: assumes "s \<in> orbit f (f t)" shows "s \<in> orbit f t" using assms by (induct) (auto intro: orbit.intros) lemma orbit_sim_step: assumes "s \<in> orbit f t" shows "f s \<in> orbit f (f t)" using assms by induct (auto intro: orbit.intros) lemma orbit_step: assumes "y \<in> orbit f x" "f x \<noteq> y" shows "y \<in> orbit f (f x)" using assms proof induction case (step y) then show ?case by (cases "x = y") (auto intro: orbit.intros) qed simp lemma self_in_orbit_trans: assumes "s \<in> orbit f s" "t \<in> orbit f s" shows "t \<in> orbit f t" using assms(2,1) by induct (auto intro: orbit_sim_step) lemma orbit_swap: assumes "s \<in> orbit f s" "t \<in> orbit f s" shows "s \<in> orbit f t" using assms(2,1) proof induction case base then show ?case by (cases "f s = s") (auto intro: orbit_step) next case (step x) then show ?case by (cases "f x = s") (auto intro: orbit_step) qed lemma permutation_self_in_orbit: assumes "permutation f" shows "s \<in> orbit f s" unfolding orbit_altdef using permutation_self[OF assms, of s] by simp metis lemma orbit_altdef_self_in: assumes "s \<in> orbit f s" shows "orbit f s = {(f ^^ n) s | n. True}" proof (intro set_eqI iffI) fix x assume "x \<in> {(f ^^ n) s | n. True}" then obtain n where "x = (f ^^ n) s" by auto then show "x \<in> orbit f s" using assms by (cases "n = 0") (auto simp: orbit_altdef) qed (auto simp: orbit_altdef) lemma orbit_altdef_permutation: assumes "permutation f" shows "orbit f s = {(f ^^ n) s | n. True}" using assms by (intro orbit_altdef_self_in permutation_self_in_orbit) lemma orbit_altdef_bounded: assumes "(f ^^ n) s = s" "0 < n" shows "orbit f s = {(f ^^ m) s| m. m < n}" proof - from assms have "s \<in> orbit f s" unfolding orbit_altdef by auto metis then have "orbit f s = {(f ^^ m) s|m. True}" by (rule orbit_altdef_self_in) also have "\<dots> = {(f ^^ m) s| m. m < n}" using assms by (auto simp: funpow_mod_eq intro: exI[where x="m mod n" for m]) finally show ?thesis . qed lemma funpow_in_orbit: assumes "s \<in> orbit f t" shows "(f ^^ n) s \<in> orbit f t" using assms by (induct n) (auto intro: orbit.intros) lemma finite_orbit: assumes "s \<in> orbit f s" shows "finite (orbit f s)" proof - from assms obtain n where n: "0 < n" "(f ^^n) s = s" by (auto simp: orbit_altdef) then show ?thesis by (auto simp: orbit_altdef_bounded) qed lemma self_in_orbit_step: assumes "s \<in> orbit f s" shows "orbit f (f s) = orbit f s" proof (intro set_eqI iffI) fix t assume "t \<in> orbit f s" then show "t \<in> orbit f (f s)" using assms by (auto intro: orbit_step orbit_sim_step) qed (auto intro: orbit_subset) lemma permutation_orbit_step: assumes "permutation f" shows "orbit f (f s) = orbit f s" using assms by (intro self_in_orbit_step permutation_self_in_orbit) lemma orbit_nonempty: "orbit f s \<noteq> {}" using orbit.base by fastforce lemma orbit_inv_eq: assumes "permutation f" shows "orbit (inv f) x = orbit f x" (is "?L = ?R") proof - { fix g y assume A: "permutation g" "y \<in> orbit (inv g) x" have "y \<in> orbit g x" proof - have inv_g: "\<And>y. x = g y \<Longrightarrow> inv g x = y" "\<And>y. inv g (g y) = y" by (metis A(1) bij_inv_eq_iff permutation_bijective)+ { fix y assume "y \<in> orbit g x" then have "inv g y \<in> orbit g x" by (cases) (simp_all add: inv_g A(1) permutation_self_in_orbit) } note inv_g_in_orb = this from A(2) show ?thesis by induct (simp_all add: inv_g_in_orb A permutation_self_in_orbit) qed } note orb_inv_ss = this have "inv (inv f) = f" by (simp add: assms inv_inv_eq permutation_bijective) then show ?thesis using orb_inv_ss[OF assms] orb_inv_ss[OF permutation_inverse[OF assms]] by auto qed lemma cyclic_on_alldef: "cyclic_on f S \<longleftrightarrow> S \<noteq> {} \<and> (\<forall>s\<in>S. S = orbit f s)" unfolding cyclic_on_def by (auto intro: orbit.step orbit_swap orbit_trans) lemma cyclic_on_funpow_in: assumes "cyclic_on f S" "s \<in> S" shows "(f^^n) s \<in> S" using assms unfolding cyclic_on_def by (auto intro: funpow_in_orbit) lemma finite_cyclic_on: assumes "cyclic_on f S" shows "finite S" using assms by (auto simp: cyclic_on_def finite_orbit) lemma cyclic_on_singleI: assumes "s \<in> S" "S = orbit f s" shows "cyclic_on f S" using assms unfolding cyclic_on_def by blast lemma inj_on_funpow_least: assumes "(f ^^ n) s = s" "\<And>m. \<lbrakk>m < n; 0 < m\<rbrakk> \<Longrightarrow> (f ^^ m) s \<noteq> s" shows "inj_on (\<lambda>k. (f^^k) s) {0..<n}" proof - { fix k l assume A: "k < n" "l < n" "k \<noteq> l" "(f ^^ k) s = (f ^^ l) s" def k' \<equiv> "min k l" and l' \<equiv> "max k l" with A have A': "k' < l'" "(f ^^ k') s = (f ^^ l') s" "l' < n" by (auto simp: min_def max_def) have "s = (f ^^ ((n - l') + l')) s" using assms \<open>l' < n\<close> by simp also have "\<dots> = (f ^^ (n - l')) ((f ^^ l') s)" by (simp add: funpow_add) also have "(f ^^ l') s = (f ^^ k') s" by (simp add: A') also have "(f ^^ (n - l')) \<dots> = (f ^^ (n - l' + k')) s" by (simp add: funpow_add) finally have "(f ^^ (n - l' + k')) s = s" by simp moreover have "n - l' + k' < n" "0 < n - l' + k'"using A' by linarith+ ultimately have False using assms(2) by auto } then show ?thesis by (intro inj_onI) auto qed lemma cyclic_on_inI: assumes "cyclic_on f S" "s \<in> S" shows "f s \<in> S" using assms by (auto simp: cyclic_on_def intro: orbit.intros) lemma bij_betw_funpow: assumes "bij_betw f S S" shows "bij_betw (f ^^ n) S S" proof (induct n) case 0 then show ?case by (auto simp: id_def[symmetric]) next case (Suc n) then show ?case unfolding funpow.simps using assms by (rule bij_betw_trans) qed (*XXX rename move*) lemma orbit_FOO: assumes self:"a \<in> orbit g a" and eq: "\<And>x. x \<in> orbit g a \<Longrightarrow> g' (f x) = f (g x)" shows "f ` orbit g a = orbit g' (f a)" (is "?L = ?R") proof (intro set_eqI iffI) fix x assume "x \<in> ?L" then obtain x0 where "x0 \<in> orbit g a" "x = f x0" by auto then show "x \<in> ?R" proof (induct arbitrary: x) case base then show ?case by (auto simp: self orbit.base eq[symmetric]) next case step then show ?case by cases (auto simp: eq[symmetric] orbit.intros) qed next fix x assume "x \<in> ?R" then show "x \<in> ?L" proof (induct arbitrary: ) case base then show ?case by (auto simp: self orbit.base eq) next case step then show ?case by cases (auto simp: eq orbit.intros) qed qed lemma cyclic_on_FOO: assumes "cyclic_on f S" assumes "\<And>x. x \<in> S \<Longrightarrow> g (h x) = h (f x)" shows "cyclic_on g (h ` S)" using assms by (auto simp: cyclic_on_def) (meson orbit_FOO) lemma cyclic_on_f_in: assumes "f permutes S" "cyclic_on f A" "f x \<in> A" shows "x \<in> A" proof - from assms have fx_in_orb: "f x \<in> orbit f (f x)" by (auto simp: cyclic_on_alldef) from assms have "A = orbit f (f x)" by (auto simp: cyclic_on_alldef) moreover then have "\<dots> = orbit f x" using \<open>f x \<in> A\<close> by (auto intro: orbit_step orbit_subset) ultimately show ?thesis by (metis (no_types) orbit.simps permutes_inverses(2)[OF assms(1)]) qed lemma permutes_not_in: assumes "f permutes S" "x \<notin> S" shows "f x = x" using assms by (auto simp: permutes_def) lemma orbit_cong0: assumes "x \<in> A" "f \<in> A \<rightarrow> A" "\<And>y. y \<in> A \<Longrightarrow> f y = g y" shows "orbit f x = orbit g x" proof - { fix n have "(f ^^ n) x = (g ^^ n) x \<and> (f ^^ n) x \<in> A" by (induct n rule: nat.induct) (insert assms, auto) } then show ?thesis by (auto simp: orbit_altdef) qed lemma orbit_cong: assumes self_in: "t \<in> orbit f t" and eq: "\<And>s. s \<in> orbit f t \<Longrightarrow> g s = f s" shows "orbit g t = orbit f t" using assms(1) _ assms(2) by (rule orbit_cong0) (auto simp: orbit.step eq) lemma cyclic_cong: assumes "\<And>s. s \<in> S \<Longrightarrow> f s = g s" shows "cyclic_on f S = cyclic_on g S" proof - have "(\<exists>s\<in>S. orbit f s = orbit g s) \<Longrightarrow> cyclic_on f S = cyclic_on g S" by (metis cyclic_on_alldef cyclic_on_def) then show ?thesis by (metis assms orbit_cong cyclic_on_def) qed lemma permutes_comp_preserves_cyclic1: assumes "g permutes B" "cyclic_on f C" assumes "A \<inter> B = {}" "C \<subseteq> A" shows "cyclic_on (f o g) C" proof - have *: "\<And>c. c \<in> C \<Longrightarrow> f (g c) = f c" using assms by (subst permutes_not_in[where f=g]) auto with assms(2) show ?thesis by (simp cong: cyclic_cong) qed lemma permutes_comp_preserves_cyclic2: assumes "f permutes A" "cyclic_on g C" assumes "A \<inter> B = {}" "C \<subseteq> B" shows "cyclic_on (f o g) C" proof - obtain c where c: "c \<in> C" "C = orbit g c" "c \<in> orbit g c" using \<open>cyclic_on g C\<close> by (auto simp: cyclic_on_def) then have "\<And>c. c \<in> C \<Longrightarrow> f (g c) = g c" using assms c by (subst permutes_not_in[where f=f]) (auto intro: orbit.intros) with assms(2) show ?thesis by (simp cong: cyclic_cong) qed (*XXX merge with previous section?*) subsection \<open>Orbits\<close> lemma permutes_orbit_subset: assumes "f permutes S" "x \<in> S" shows "orbit f x \<subseteq> S" proof fix y assume "y \<in> orbit f x" then show "y \<in> S" by induct (auto simp: permutes_in_image assms) qed lemma cyclic_on_orbit': assumes "permutation f" shows "cyclic_on f (orbit f x)" unfolding cyclic_on_alldef using orbit_nonempty[of f x] by (auto intro: assms orbit_swap orbit_trans permutation_self_in_orbit) (* XXX remove? *) lemma cyclic_on_orbit: assumes "f permutes S" "finite S" shows "cyclic_on f (orbit f x)" using assms by (intro cyclic_on_orbit') (auto simp: permutation_permutes) lemma orbit_cyclic_eq3: assumes "cyclic_on f S" "y \<in> S" shows "orbit f y = S" using assms unfolding cyclic_on_alldef by simp (*XXX move*) lemma orbit_eq_singleton_iff: "orbit f x = {x} \<longleftrightarrow> f x = x" (is "?L \<longleftrightarrow> ?R") proof assume A: ?R { fix y assume "y \<in> orbit f x" then have "y = x" by induct (auto simp: A) } then show ?L by (metis orbit_nonempty singletonI subsetI subset_singletonD) next assume A: ?L then have "\<And>y. y \<in> orbit f x \<Longrightarrow> f x = y" by - (erule orbit.cases, simp_all) then show ?R using A by blast qed (* XXX move *) lemma eq_on_cyclic_on_iff1: assumes "cyclic_on f S" "x \<in> S" obtains "f x \<in> S" "f x = x \<longleftrightarrow> card S = 1" proof from assms show "f x \<in> S" by (auto simp: cyclic_on_def intro: orbit.intros) from assms have "S = orbit f x" by (auto simp: cyclic_on_alldef) then have "f x = x \<longleftrightarrow> S = {x}" by (metis orbit_eq_singleton_iff) then show "f x = x \<longleftrightarrow> card S = 1" using \<open>x \<in> S\<close> by (auto simp: card_Suc_eq) qed subsection \<open>Decomposition of Arbitrary Permutations\<close> definition perm_restrict :: "('a \<Rightarrow> 'a) \<Rightarrow> 'a set \<Rightarrow> ('a \<Rightarrow> 'a)" where "perm_restrict f S x \<equiv> if x \<in> S then f x else x" lemma perm_restrict_comp: assumes "A \<inter> B = {}" "cyclic_on f B" shows "perm_restrict f A o perm_restrict f B = perm_restrict f (A \<union> B)" proof - have "\<And>x. x \<in> B \<Longrightarrow> f x \<in> B" using \<open>cyclic_on f B\<close> by (rule cyclic_on_inI) with assms show ?thesis by (auto simp: perm_restrict_def fun_eq_iff) qed lemma perm_restrict_simps: "x \<in> S \<Longrightarrow> perm_restrict f S x = f x" "x \<notin> S \<Longrightarrow> perm_restrict f S x = x" by (auto simp: perm_restrict_def) lemma perm_restrict_perm_restrict: "perm_restrict (perm_restrict f A) B = perm_restrict f (A \<inter> B)" by (auto simp: perm_restrict_def) lemma perm_restrict_union: assumes "perm_restrict f A permutes A" "perm_restrict f B permutes B" "A \<inter> B = {}" shows "perm_restrict f A o perm_restrict f B = perm_restrict f (A \<union> B)" using assms by (auto simp: fun_eq_iff perm_restrict_def permutes_def) (metis Diff_iff Diff_triv) lemma perm_restrict_id[simp]: assumes "f permutes S" shows "perm_restrict f S = f" using assms by (auto simp: permutes_def perm_restrict_def) lemma cyclic_on_perm_restrict: "cyclic_on (perm_restrict f S) S \<longleftrightarrow> cyclic_on f S" by (simp add: perm_restrict_def cong: cyclic_cong) lemma perm_restrict_diff_cyclic: assumes "f permutes S" "cyclic_on f A" shows "perm_restrict f (S - A) permutes (S - A)" proof - { fix y have "\<exists>x. perm_restrict f (S - A) x = y" proof cases assume A: "y \<in> S - A" with \<open>f permutes S\<close> obtain x where "f x = y" "x \<in> S" unfolding permutes_def by auto metis moreover with A have "x \<notin> A" by (metis Diff_iff assms(2) cyclic_on_inI) ultimately have "perm_restrict f (S - A) x = y" by (simp add: perm_restrict_simps) then show ?thesis .. next assume "y \<notin> S - A" then have "perm_restrict f (S - A) y = y" by (simp add: perm_restrict_simps) then show ?thesis .. qed } note X = this { fix x y assume "perm_restrict f (S - A) x = perm_restrict f (S - A) y" with assms have "x = y" by (auto simp: perm_restrict_def permutes_def split: if_splits intro: cyclic_on_f_in) } note Y = this show ?thesis by (auto simp: permutes_def perm_restrict_simps X intro: Y) qed lemma orbit_eqI: "y = f x \<Longrightarrow> y \<in> orbit f x" "z = f y \<Longrightarrow>y \<in> orbit f x \<Longrightarrow>z \<in> orbit f x" by (metis orbit.base) (metis orbit.step) lemma permutes_decompose: assumes "f permutes S" "finite S" shows "\<exists>C. (\<forall>c \<in> C. cyclic_on f c) \<and> \<Union>C = S \<and> (\<forall>c1 \<in> C. \<forall>c2 \<in> C. c1 \<noteq> c2 \<longrightarrow> c1 \<inter> c2 = {})" using assms(2,1) proof (induction arbitrary: f rule: finite_psubset_induct) case (psubset S) show ?case proof (cases "S = {}") case True then show ?thesis by (intro exI[where x="{}"]) auto next case False then obtain s where "s \<in> S" by auto with `f permutes S` have "orbit f s \<subseteq> S" by (rule permutes_orbit_subset) have cyclic_orbit: "cyclic_on f (orbit f s)" using \<open>f permutes S\<close> \<open>finite S\<close> by (rule cyclic_on_orbit) let ?f' = "perm_restrict f (S - orbit f s)" have "f s \<in> S" using \<open>f permutes S\<close> \<open>s \<in> S\<close> by (auto simp: permutes_in_image) then have "S - orbit f s \<subset> S" using orbit.base[of f s] \<open>s \<in> S\<close> by blast moreover have "?f' permutes (S - orbit f s)" using \<open>f permutes S\<close> cyclic_orbit by (rule perm_restrict_diff_cyclic) ultimately obtain C where C: "\<And>c. c \<in> C \<Longrightarrow> cyclic_on ?f' c" "\<Union>C = S - orbit f s" "\<forall>c1 \<in> C. \<forall>c2 \<in> C. c1 \<noteq> c2 \<longrightarrow> c1 \<inter> c2 = {}" using psubset.IH by metis { fix c assume "c \<in> C" then have *: "\<And>x. x \<in> c \<Longrightarrow> perm_restrict f (S - orbit f s) x = f x" using C(2) \<open>f permutes S\<close> by (auto simp add: perm_restrict_def) then have "cyclic_on f c" using C(1)[OF \<open>c \<in> C\<close>] by (simp cong: cyclic_cong add: *) } note in_C_cyclic = this have Un_ins: "\<Union>insert (orbit f s) C = S" using \<open>\<Union>C = _\<close> \<open>orbit f s \<subseteq> S\<close> by blast have Disj_ins: "(\<forall>c1 \<in> insert (orbit f s) C. \<forall>c2 \<in> insert (orbit f s) C. c1 \<noteq> c2 \<longrightarrow> c1 \<inter> c2 = {})" using C by auto show ?thesis by (intro conjI Un_ins Disj_ins exI[where x="insert (orbit f s) C"]) (auto simp: cyclic_orbit in_C_cyclic) qed qed subsection \<open>Funpow + Orbit\<close> lemma funpow_dist_prop: "y \<in> orbit f x \<Longrightarrow> (f ^^ funpow_dist f x y) x = y" unfolding funpow_dist_def by (rule LeastI_ex) (auto simp: orbit_altdef) lemma funpow_dist_0_eq: assumes "y \<in> orbit f x" shows "funpow_dist f x y = 0 \<longleftrightarrow> x = y" using assms by (auto simp: funpow_dist_0 dest: funpow_dist_prop) lemma funpow_dist_step: assumes "x \<noteq> y" "y \<in> orbit f x" shows "funpow_dist f x y = Suc (funpow_dist f (f x) y)" proof - from \<open>y \<in> _\<close> obtain n where "(f ^^ n) x = y" by (auto simp: orbit_altdef) with \<open>x \<noteq> y\<close> obtain n' where [simp]: "n = Suc n'" by (cases n) auto show ?thesis unfolding funpow_dist_def proof (rule Least_Suc2) show "(f ^^ n) x = y" by fact then show "(f ^^ n') (f x) = y" by (simp add: funpow_swap1) show "(f ^^ 0) x \<noteq> y" using \<open>x \<noteq> y\<close> by simp show "\<forall>k. ((f ^^ Suc k) x = y) = ((f ^^ k) (f x) = y)" by (simp add: funpow_swap1) qed qed lemma funpow_dist1_prop: assumes "y \<in> orbit f x" shows "(f ^^ funpow_dist1 f x y) x = y" by (metis assms funpow.simps(1) funpow_dist_0 funpow_dist_prop funpow_simp_l funpow_swap1 id_apply orbit_step) (*XXX simplify? *) lemma funpow_neq_less_funpow_dist: assumes "y \<in> orbit f x" "m \<le> funpow_dist f x y" "n \<le> funpow_dist f x y" "m \<noteq> n" shows "(f ^^ m) x \<noteq> (f ^^ n) x" proof (rule notI) assume A: "(f ^^ m) x = (f ^^ n) x" def m' \<equiv> "min m n" and n' \<equiv> "max m n" with A assms have A': "m' < n'" "(f ^^ m') x = (f ^^ n') x" "n' \<le> funpow_dist f x y" by (auto simp: min_def max_def) have "y = (f ^^ funpow_dist f x y) x" using \<open>y \<in> _\<close> by (simp only: funpow_dist_prop) also have "\<dots> = (f ^^ ((funpow_dist f x y - n') + n')) x" using \<open>n' \<le> _\<close> by simp also have "\<dots> = (f ^^ ((funpow_dist f x y - n') + m')) x" by (simp add: funpow_add \<open>(f ^^ m') x = _\<close>) also have "(f ^^ ((funpow_dist f x y - n') + m')) x \<noteq> y" using A' by (intro funpow_dist_least) linarith finally show "False" by simp qed (* XXX reduce to funpow_neq_less_funpow_dist? *) lemma funpow_neq_less_funpow_dist1: assumes "y \<in> orbit f x" "m < funpow_dist1 f x y" "n < funpow_dist1 f x y" "m \<noteq> n" shows "(f ^^ m) x \<noteq> (f ^^ n) x" proof (rule notI) assume A: "(f ^^ m) x = (f ^^ n) x" def m' \<equiv> "min m n" and n' \<equiv> "max m n" with A assms have A': "m' < n'" "(f ^^ m') x = (f ^^ n') x" "n' < funpow_dist1 f x y" by (auto simp: min_def max_def) have "y = (f ^^ funpow_dist1 f x y) x" using \<open>y \<in> _\<close> by (simp only: funpow_dist1_prop) also have "\<dots> = (f ^^ ((funpow_dist1 f x y - n') + n')) x" using \<open>n' < _\<close> by simp also have "\<dots> = (f ^^ ((funpow_dist1 f x y - n') + m')) x" by (simp add: funpow_add \<open>(f ^^ m') x = _\<close>) also have "(f ^^ ((funpow_dist1 f x y - n') + m')) x \<noteq> y" using A' by (intro funpow_dist1_least) linarith+ finally show "False" by simp qed lemma inj_on_funpow_dist: assumes "y \<in> orbit f x" shows "inj_on (\<lambda>n. (f ^^ n) x) {0..funpow_dist f x y}" using funpow_neq_less_funpow_dist[OF assms] by (intro inj_onI) auto lemma orbit_conv_funpow_dist1: assumes "x \<in> orbit f x" shows "orbit f x = (\<lambda>n. (f ^^ n) x) ` {0..<funpow_dist1 f x x}" (is "?L = ?R") using funpow_dist1_prop[OF assms] by (auto simp: orbit_altdef_bounded[where n="funpow_dist1 f x x"]) lemma funpow_dist1_prop1: assumes "(f ^^ n) x = y" "0 < n" shows "(f ^^ funpow_dist1 f x y) x = y" proof - from assms have "y \<in> orbit f x" by (auto simp: orbit_altdef) then show ?thesis by (rule funpow_dist1_prop) qed lemma funpow_dist1_dist: assumes "funpow_dist1 f x y < funpow_dist1 f x z" assumes "{y,z} \<subseteq> orbit f x" shows "funpow_dist1 f x z = funpow_dist1 f x y + funpow_dist1 f y z" (is "?L = ?R") proof - have x_z: "(f ^^ funpow_dist1 f x z) x = z" using assms by (blast intro: funpow_dist1_prop) have x_y: "(f ^^ funpow_dist1 f x y) x = y" using assms by (blast intro: funpow_dist1_prop) have "(f ^^ (funpow_dist1 f x z - funpow_dist1 f x y)) y = (f ^^ (funpow_dist1 f x z - funpow_dist1 f x y)) ((f ^^ funpow_dist1 f x y) x)" using x_y by simp also have "\<dots> = z" using assms x_z by (simp del: funpow.simps add: funpow_add_app) finally have y_z_diff: "(f ^^ (funpow_dist1 f x z - funpow_dist1 f x y)) y = z" . then have "(f ^^ funpow_dist1 f y z) y = z" using assms by (intro funpow_dist1_prop1) auto then have "(f ^^ funpow_dist1 f y z) ((f ^^ funpow_dist1 f x y) x) = z" using x_y by simp then have "(f ^^ (funpow_dist1 f y z + funpow_dist1 f x y)) x = z" by (simp del: funpow.simps add: funpow_add_app) show ?thesis proof (rule antisym) from y_z_diff have "(f ^^ funpow_dist1 f y z) y = z" using assms by (intro funpow_dist1_prop1) auto then have "(f ^^ funpow_dist1 f y z) ((f ^^ funpow_dist1 f x y) x) = z" using x_y by simp then have "(f ^^ (funpow_dist1 f y z + funpow_dist1 f x y)) x = z" by (simp del: funpow.simps add: funpow_add_app) then have "funpow_dist1 f x z \<le> funpow_dist1 f y z + funpow_dist1 f x y" using funpow_dist1_least not_less by fastforce then show "?L \<le> ?R" by presburger next have "funpow_dist1 f y z \<le> funpow_dist1 f x z - funpow_dist1 f x y" using y_z_diff assms(1) by (metis not_less zero_less_diff funpow_dist1_least) then show "?R \<le> ?L" by linarith qed qed lemma funpow_dist1_le_self: assumes "(f ^^ m) x = x" "0 < m" "y \<in> orbit f x" shows "funpow_dist1 f x y \<le> m" proof (cases "x = y") case True with assms show ?thesis by (auto dest!: funpow_dist1_least) next case False have "(f ^^ funpow_dist1 f x y) x = (f ^^ (funpow_dist1 f x y mod m)) x" using assms by (simp add: funpow_mod_eq) then have "\<not>(funpow_dist1 f x y mod m < funpow_dist1 f x y)" by (metis False assms(3) funpow_dist_least funpow_dist_prop funpow_dist_step) then show ?thesis by (metis (poly_guards_query) Divides.mod_less_eq_dividend assms(2) le_less mod_less_divisor) qed subsection \<open>Permutation Domains\<close> definition has_dom :: "('a \<Rightarrow> 'a) \<Rightarrow> 'a set \<Rightarrow> bool" where "has_dom f S \<equiv> \<forall>s. s \<notin> S \<longrightarrow> f s = s" lemma permutes_conv_has_dom: "f permutes S \<longleftrightarrow> bij f \<and> has_dom f S" by (auto simp: permutes_def has_dom_def bij_iff) section \<open>Segments\<close> inductive_set segment :: "('a \<Rightarrow> 'a) \<Rightarrow> 'a \<Rightarrow> 'a \<Rightarrow> 'a set" for f a b where base: "f a \<noteq> b \<Longrightarrow> f a \<in> segment f a b" | step: "x \<in> segment f a b \<Longrightarrow> f x \<noteq> b \<Longrightarrow> f x \<in> segment f a b" lemma segment_step_2D: assumes "x \<in> segment f a (f b)" shows "x \<in> segment f a b \<or> x = b" using assms by induct (auto intro: segment.intros) lemma not_in_segment2D: assumes "x \<in> segment f a b" shows "x \<noteq> b" using assms by induct auto lemma segment_altdef: assumes "b \<in> orbit f a" shows "segment f a b = (\<lambda>n. (f ^^ n) a) ` {1..<funpow_dist1 f a b}" (is "?L = ?R") proof (intro set_eqI iffI) fix x assume "x \<in> ?L" have "f a \<noteq>b \<Longrightarrow> b \<in> orbit f (f a)" using assms by (simp add: orbit_step) then have *: "f a \<noteq> b \<Longrightarrow> 0 < funpow_dist f (f a) b" using assms using gr0I funpow_dist_0_eq[OF \<open>_ \<Longrightarrow> b \<in> orbit f (f a)\<close>] by (simp add: orbit.intros) from \<open>x \<in> ?L\<close> show "x \<in> ?R" proof induct case base then show ?case by (intro image_eqI[where x=1]) (auto simp: *) next case step then show ?case using assms funpow_dist1_prop less_antisym by (fastforce intro!: image_eqI[where x="Suc n" for n]) qed next fix x assume "x \<in> ?R" then obtain n where "(f ^^ n ) a = x" "0 < n" "n < funpow_dist1 f a b" by auto then show "x \<in> ?L" proof (induct n arbitrary: x) case 0 then show ?case by simp next case (Suc n) have "(f ^^ Suc n) a \<noteq> b" using Suc by (meson funpow_dist1_least) with Suc show ?case by (cases "n = 0") (auto intro: segment.intros) qed qed (*XXX move up*) lemma segmentD_orbit: assumes "x \<in> segment f y z" shows "x \<in> orbit f y" using assms by induct (auto intro: orbit.intros) lemma segment1_empty: "segment f x (f x) = {}" by (auto simp: segment_altdef orbit.base funpow_dist_0) lemma segment_subset: assumes "y \<in> segment f x z" assumes "w \<in> segment f x y" shows "w \<in> segment f x z" using assms by (induct arbitrary: w) (auto simp: segment1_empty intro: segment.intros dest: segment_step_2D elim: segment.cases) (* XXX move up*) lemma not_in_segment1: assumes "y \<in> orbit f x" shows "x \<notin> segment f x y" proof assume "x \<in> segment f x y" then obtain n where n: "0 < n" "n < funpow_dist1 f x y" "(f ^^ n) x = x" using assms by (auto simp: segment_altdef Suc_le_eq) then have neq_y: "(f ^^ (funpow_dist1 f x y - n)) x \<noteq> y" by (simp add: funpow_dist1_least) have "(f ^^ (funpow_dist1 f x y - n)) x = (f ^^ (funpow_dist1 f x y - n)) ((f ^^ n) x)" using n by (simp add: funpow_add_app) also have "\<dots> = (f ^^ funpow_dist1 f x y) x" using \<open>n < _\<close> by (simp add: funpow_add_app) also have "\<dots> = y" using assms by (rule funpow_dist1_prop) finally show False using neq_y by contradiction qed lemma not_in_segment2: "y \<notin> segment f x y" using not_in_segment2D by metis (*XXX move*) lemma in_segmentE: assumes "y \<in> segment f x z" "z \<in> orbit f x" obtains "(f ^^ funpow_dist1 f x y) x = y" "funpow_dist1 f x y < funpow_dist1 f x z" proof from assms show "(f ^^ funpow_dist1 f x y) x = y" by (intro segmentD_orbit funpow_dist1_prop) moreover obtain n where "(f ^^ n) x = y" "0 < n" "n < funpow_dist1 f x z" using assms by (auto simp: segment_altdef) moreover then have "funpow_dist1 f x y \<le> n" by (meson funpow_dist1_least not_less) ultimately show "funpow_dist1 f x y < funpow_dist1 f x z" by linarith qed (*XXX move*) lemma cyclic_split_segment: assumes S: "cyclic_on f S" "a \<in> S" "b \<in> S" and "a \<noteq> b" shows "S = {a,b} \<union> segment f a b \<union> segment f b a" (is "?L = ?R") proof (intro set_eqI iffI) fix c assume "c \<in> ?L" with S have "c \<in> orbit f a" unfolding cyclic_on_alldef by auto then show "c \<in> ?R" by induct (auto intro: segment.intros) next fix c assume "c \<in> ?R" moreover have "segment f a b \<subseteq> orbit f a" "segment f b a \<subseteq> orbit f b" by (auto dest: segmentD_orbit) ultimately show "c \<in> ?L" using S by (auto simp: cyclic_on_alldef) qed (*XXX move*) lemma segment_split: assumes y_in_seg: "y \<in> segment f x z" shows "segment f x z = segment f x y \<union> {y} \<union> segment f y z" (is "?L = ?R") proof (intro set_eqI iffI) fix w assume "w \<in> ?L" then show "w \<in> ?R" by induct (auto intro: segment.intros) next fix w assume "w \<in> ?R" moreover { assume "w \<in> segment f x y" then have "w \<in> segment f x z" using segment_subset[OF y_in_seg] by auto } moreover { assume "w \<in> segment f y z" then have "w \<in> segment f x z" using y_in_seg by induct (auto intro: segment.intros) } ultimately show "w \<in> ?L" using y_in_seg by (auto intro: segment.intros) qed lemma in_segmentD_inv: assumes "x \<in> segment f a b" "x \<noteq> f a" assumes "inj f" shows "inv f x \<in> segment f a b" using assms by (auto elim: segment.cases) lemma in_orbit_invI: assumes "b \<in> orbit f a" assumes "inj f" shows "a \<in> orbit (inv f) b" using assms(1) apply induct apply (simp add: assms(2) orbit_eqI(1)) by (metis assms(2) inv_f_f orbit.base orbit_trans) lemma segment_step_2: assumes A: "x \<in> segment f a b" "b \<noteq> a" and "inj f" shows "x \<in> segment f a (f b)" using A by induct (auto intro: segment.intros dest: not_in_segment2D injD[OF \<open>inj f\<close>]) lemma inv_end_in_segment: assumes "b \<in> orbit f a" "f a \<noteq> b" "bij f" shows "inv f b \<in> segment f a b" using assms(1,2) proof induct case base then show ?case by simp next case (step x) moreover from \<open>bij f\<close> have "inj f" by (rule bij_is_inj) moreover then have "x \<noteq> f x \<Longrightarrow> f a = x \<Longrightarrow> x \<in> segment f a (f x)" by (meson segment.simps) moreover have "x \<noteq> f x" using step \<open>inj f\<close> by (metis in_orbit_invI inv_f_eq not_in_segment1 segment.base) then have "inv f x \<in> segment f a (f x) \<Longrightarrow> x \<in> segment f a (f x)" using \<open>bij f\<close> \<open>inj f\<close> by (auto dest: segment.step simp: surj_f_inv_f bij_is_surj) then have "inv f x \<in> segment f a x \<Longrightarrow> x \<in> segment f a (f x)" using \<open>f a \<noteq> f x\<close> \<open>inj f\<close> by (auto dest: segment_step_2 injD) ultimately show ?case by (cases "f a = x") simp_all qed lemma segment_overlapping: assumes "x \<in> orbit f a" "x \<in> orbit f b" "bij f" shows "segment f a x \<subseteq> segment f b x \<or> segment f b x \<subseteq> segment f a x" using assms(1,2) proof induction case base then show ?case by (simp add: segment1_empty) next case (step x) from \<open>bij f\<close> have "inj f" by (simp add: bij_is_inj) have *: "\<And>f x y. y \<in> segment f x (f x) \<Longrightarrow> False" by (simp add: segment1_empty) { fix y z assume A: "y \<in> segment f b (f x)" "y \<notin> segment f a (f x)" "z \<in> segment f a (f x)" from \<open>x \<in> orbit f a\<close> \<open>f x \<in> orbit f b\<close> \<open>y \<in> segment f b (f x)\<close> have "x \<in> orbit f b" by (metis * inv_end_in_segment[OF _ _ \<open>bij f\<close>] inv_f_eq[OF \<open>inj f\<close>] segmentD_orbit) moreover with \<open>x \<in> orbit f a\<close> step.IH have "segment f a (f x) \<subseteq> segment f b (f x) \<or> segment f b (f x) \<subseteq> segment f a (f x)" apply auto apply (metis * inv_end_in_segment[OF _ _ \<open>bij f\<close>] inv_f_eq[OF \<open>inj f\<close>] segment_step_2D segment_subset step.prems subsetCE) by (metis (no_types, lifting) `inj f` * inv_end_in_segment[OF _ _ \<open>bij f\<close>] inv_f_eq orbit_eqI(2) segment_step_2D segment_subset subsetCE) ultimately have "segment f a (f x) \<subseteq> segment f b (f x)" using A by auto } note C = this then show ?case by auto qed lemma segment_disj: assumes "a \<noteq> b" "bij f" shows "segment f a b \<inter> segment f b a = {}" proof (rule ccontr) assume "\<not>?thesis" then obtain x where x: "x \<in> segment f a b" "x \<in> segment f b a" by blast then have "segment f a b = segment f a x \<union> {x} \<union> segment f x b" "segment f b a = segment f b x \<union> {x} \<union> segment f x a" by (auto dest: segment_split) then have o: "x \<in> orbit f a" "x \<in> orbit f b" by (auto dest: segmentD_orbit) note * = segment_overlapping[OF o \<open>bij f\<close>] have "inj f" using \<open>bij f\<close> by (simp add: bij_is_inj) have "segment f a x = segment f b x" proof (intro set_eqI iffI) fix y assume A: "y \<in> segment f b x" then have "y \<in> segment f a x \<or> f a \<in> segment f b a" using * x(2) by (auto intro: segment.base segment_subset) then show "y \<in> segment f a x" using \<open>inj f\<close> A by (metis (no_types) not_in_segment2 segment_step_2) next fix y assume A: "y \<in> segment f a x " then have "y \<in> segment f b x \<or> f b \<in> segment f a b" using * x(1) by (auto intro: segment.base segment_subset) then show "y \<in> segment f b x" using \<open>inj f\<close> A by (metis (no_types) not_in_segment2 segment_step_2) qed moreover have "segment f a x \<noteq> segment f b x" by (metis assms bij_is_inj not_in_segment2 segment.base segment_step_2 segment_subset x(1)) ultimately show False by contradiction qed lemma segment_x_x_eq: assumes "permutation f" shows "segment f x x = orbit f x - {x}" (is "?L = ?R") proof (intro set_eqI iffI) fix y assume "y \<in> ?L" then show "y \<in> ?R" by (auto dest: segmentD_orbit simp: not_in_segment2) next fix y assume "y \<in> ?R" then have "y \<in> orbit f x" "y \<noteq> x" by auto then show "y \<in> ?L" by induct (auto intro: segment.intros) qed section \<open>Lists of Powers\<close> definition iterate :: "nat \<Rightarrow> nat \<Rightarrow> ('a \<Rightarrow> 'a ) \<Rightarrow> 'a \<Rightarrow> 'a list" where "iterate m n f x = map (\<lambda>n. (f^^n) x) [m..<n]" lemma set_iterate: "set (iterate m n f x) = (\<lambda>k. (f ^^ k) x) ` {m..<n} " by (auto simp: iterate_def) lemma iterate_empty[simp]: "iterate n m f x = [] \<longleftrightarrow> m \<le> n" by (auto simp: iterate_def) lemma iterate_nth[simp]: assumes "k < n - m" shows "iterate m n f x ! k = (f^^(m+k)) x" using assms by (induct k arbitrary: m) (auto simp: iterate_def) lemma iterate_applied: "iterate n m f (f x) = iterate (Suc n) (Suc m) f x" by (induct m arbitrary: n) (auto simp: iterate_def funpow_swap1) end
# basic test that parsing works correctly testdir = dirname(@__FILE__) @test_throws Gumbo.InvalidHTMLException parsehtml("", strict=true) let page = open("$testdir/example.html") do example example |> readall |> parsehtml end @test page.doctype == "html" root = page.root @test tag(root[1][1]) == :meta @test root[2][1][1].text == "A simple test page." @test is(root[2][1][1].parent, root[2][1]) end
The Marilyn Denis Show has brought you Marilyn’s 10 Days of Giveaways from which you could get a chance to win exciting prizes every day. To enter Marilyn.ca 10 Days of Giveaways, Visit Sweepstakes entry page and follow the on-screen steps to enter the Sweepstakes. You can enter daily now through December 17th, 2018. So hurry up! Giveaway Period: This sweepstakes runs until December 17th, 2018!
{- | Module : $Header$ Description : This is the abstract file for the Scheme compiler. Copyright : (c) Michael Buchel License : BSD3 Maintainer : [email protected] Stability : experimental Portability : portable This is the abstract module, where all the abstract concepts are kept. | -} module Abstract where import Data.Array import Data.Complex import Data.Ratio -- | Data structure for holding Lisp values. data LispVal = Atom String | List [LispVal] | DottedList [LispVal] LispVal | Number Integer | String String | Bool Bool | Character Char | Float Double | Ratio Rational | Complex (Complex Double) | Vector (Array Int LispVal) -- | Instance of show for LispVal. instance Show LispVal where show = showVal -- | Seperates the list into words. unwordsList :: [LispVal] -- ^ List to unword. -> String unwordsList = unwords . map showVal -- | Lisp value to string. showVal :: LispVal -- ^ Expression we got. -> String showVal (Atom name) = name showVal (List x) = "(" ++ unwordsList x ++ ")" showVal (DottedList x y) = "(" ++ unwordsList x ++ " . " ++ showVal y ++ ")" showVal (String contents) = "\"" ++ contents ++ "\"" showVal (Bool True) = "#t" showVal (Bool False) = "#f" showVal (Number x) = show x showVal (Character x) = show x showVal (Float x) = show x showVal (Ratio x) = show x showVal (Complex x) = show x showVal (Vector x) = show x
# The references to special cases are to Table of Integrals, Series, and Products, § 9.121, followed by NIST's DLMF. """ Compute the Gauss hypergeometric function `₂F₁(a,b;c;z)`. """ function _₂F₁(a::Number,b::Number,c::Number,z::Number) if real(a) > real(b) return _₂F₁(b,a,c,z) # ensure a ≤ b elseif isequal(a,c) # 1. 15.4.6 return exp(-b*log1p(-z)) elseif isequal(b,c) # 1. 15.4.6 return exp(-a*log1p(-z)) elseif isequal(c,0.5) if isequal(a+b,0) # 31. 15.4.11 & 15.4.12 return cosnasinsqrt(2b,z) elseif isequal(a+b,1) # 32. 15.4.13 & 15.4.14 return cosnasinsqrt(1-2b,z)*exp(-0.5log1p(-z)) elseif isequal(b-a,0.5) # 15.4.7 & 15.4.8 return expnlog1pcoshatanhsqrt(-2a,z) end elseif isequal(c,1.5) if abeqcd(a,b,0.5) # 13. 15.4.4 & 15.4.5 return sqrtasinsqrt(z) elseif abeqcd(a,b,1) # 14. return sqrtasinsqrt(z)*exp(-0.5log1p(-z)) elseif abeqcd(a,b,0.5,1) # 15. 15.4.2 & 15.4.3 return sqrtatanhsqrt(z) elseif isequal(a+b,1) # 29. 15.4.15 & 15.4.16 return sinnasinsqrt(1-2b,z) elseif isequal(a+b,2) # 30. return sinnasinsqrt(2-2b,z)*exp(-0.5log1p(-z)) elseif isequal(b-a,0.5) # 4. 15.4.9 & 15.4.10 return expnlog1psinhatanhsqrt(1-2a,z) end elseif isequal(c,2) if abeqcd(a,b,1) # 6. 15.4.1 return (s = -z; log1p(s)/s) elseif a ∈ ℤ && b == 1 # 5. return expm1nlog1p(1-a,-z) elseif a == 1 && b ∈ ℤ # 5. return expm1nlog1p(1-b,-z) end elseif isequal(c,2.5) && abeqcd(a,b,1,1.5) return speciallog(z) end _₂F₁general(a,b,c,z) # catch-all end _₂F₁(a::Number,b::Number,c::Number,z::AbstractArray) = reshape(promote_type(typeof(a),typeof(b),typeof(c),eltype(z))[ _₂F₁(a,b,c,z[i]) for i in eachindex(z) ], size(z)) """ Compute the Gauss hypergeometric function `₂F₁(a,b;c;z)` with general parameters a,b, and c. This polyalgorithm is designed based on the paper N. Michel and M. V. Stoitsov, Fast computation of the Gauss hypergeometric function with all its parameters complex with application to the Pöschl–Teller–Ginocchio potential wave functions, Comp. Phys. Commun., 178:535–551, 2008. """ function _₂F₁general(a::Number,b::Number,c::Number,z::Number) T = promote_type(typeof(a),typeof(b),typeof(c),typeof(z)) real(b) < real(a) && (return _₂F₁general(b,a,c,z)) real(c) < real(a)+real(b) && (return exp((c-a-b)*log1p(-z))*_₂F₁general(c-a,c-b,c,z)) if abs(z) ≤ ρ || -a ∈ ℕ₀ || -b ∈ ℕ₀ _₂F₁maclaurin(a,b,c,z) elseif abs(z/(z-1)) ≤ ρ && absarg(1-z) < convert(real(T),π) exp(-a*log1p(-z))_₂F₁maclaurin(a,c-b,c,z/(z-1)) elseif abs(inv(z)) ≤ ρ && absarg(-z) < convert(real(T),π) _₂F₁Inf(a,b,c,z) elseif abs(1-inv(z)) ≤ ρ && absarg(z) < convert(real(T),π) && absarg(1-z) < convert(real(T),π) exp(-a*log1p(-z))*_₂F₁Inf(a,c-b,c,z/(z-1)) elseif abs(1-z) ≤ ρ && absarg(z) < convert(real(T),π) && absarg(1-z) < convert(real(T),π) _₂F₁one(a,b,c,z) elseif abs(inv(1-z)) ≤ ρ && absarg(-z) < convert(real(T),π) exp(-a*log1p(-z))*_₂F₁one(a,c-b,c,z/(z-1)) elseif absarg(1-z) < convert(real(T),π) _₂F₁taylor(a,b,c,z) else zero(T)#throw(DomainError()) end end """ Compute the Gauss hypergeometric function `₂F₁(a,b;c;z)` with general parameters a,b, and c. This polyalgorithm is designed based on the review J. W. Pearson, S. Olver and M. A. Porter, Numerical methos for the computation of the confluent and Gauss hypergeometric functions, arXiv:1407.7786, 2014. """ function _₂F₁general2(a::Number,b::Number,c::Number,z::Number) T = promote_type(typeof(a),typeof(b),typeof(c),typeof(z)) if abs(z) ≤ ρ || -a ∈ ℕ₀ || -b ∈ ℕ₀ _₂F₁maclaurin(a,b,c,z) elseif abs(z/(z-1)) ≤ ρ && absarg(1-z) < convert(real(T),π) # 15.8.1 w = z/(z-1) _₂F₁maclaurin(a,c-b,c,w)*exp(-a*log1p(-z)) elseif abs(inv(z)) ≤ ρ && absarg(-z) < convert(real(T),π) w = inv(z) if isapprox(a,b) # 15.8.8 gamma(c)/gamma(a)/gamma(c-a)*(-w)^a*_₂F₁logsumalt(a,c-a,z,w) elseif a-b ∉ ℤ # 15.8.2 gamma(c)*((-w)^a*gamma(b-a)/gamma(b)/gamma(c-a)*_₂F₁maclaurin(a,a-c+1,a-b+1,w)+(-w)^b*gamma(a-b)/gamma(a)/gamma(c-b)*_₂F₁maclaurin(b,b-c+1,b-a+1,w)) else zero(T) # TODO: full 15.8.8 end elseif abs(inv(1-z)) ≤ ρ && absarg(-z) < convert(real(T),π) w = inv(1-z) if isapprox(a,b) # 15.8.9 gamma(c)*exp(-a*log1p(-z))/gamma(a)/gamma(c-b)*_₂F₁logsum(a,c-a,z,w,1) elseif a-b ∉ ℤ # 15.8.3 gamma(c)*(exp(-a*log1p(-z))*gamma(b-a)/gamma(b)/gamma(c-a)*_₂F₁maclaurin(a,c-b,a-b+1,w)+exp(-b*log1p(-z))*gamma(a-b)/gamma(a)/gamma(c-b)*_₂F₁maclaurin(b,c-a,b-a+1,w)) else zero(T) # TODO: full 15.8.9 end elseif abs(1-z) ≤ ρ && absarg(z) < convert(real(T),π) && absarg(1-z) < convert(real(T),π) w = 1-z if isapprox(c,a+b) # 15.8.10 gamma(c)/gamma(a)/gamma(b)*_₂F₁logsum(a,b,z,w,-1) elseif c-a-b ∉ ℤ # 15.8.4 gamma(c)*(gamma(c-a-b)/gamma(c-a)/gamma(c-b)*_₂F₁maclaurin(a,b,a+b-c+1,w)+exp((c-a-b)*log1p(-z))*gamma(a+b-c)/gamma(a)/gamma(b)*_₂F₁maclaurin(c-a,c-b,c-a-b+1,w)) else zero(T) # TODO: full 15.8.10 end elseif abs(1-inv(z)) ≤ ρ && absarg(z) < convert(real(T),π) && absarg(1-z) < convert(real(T),π) w = 1-inv(z) if isapprox(c,a+b) # 15.8.11 gamma(c)*z^(-a)/gamma(a)*_₂F₁logsumalt(a,b,z,w) elseif c-a-b ∉ ℤ # 15.8.5 gamma(c)*(z^(-a)*gamma(c-a-b)/gamma(c-a)/gamma(c-b)*_₂F₁maclaurin(a,a-c+1,a+b-c+1,w)+z^(a-c)*(1-z)^(c-a-b)*gamma(a+b-c)/gamma(a)/gamma(b)*_₂F₁maclaurin(c-a,1-a,c-a-b+1,w)) else zero(T) # TODO: full 15.8.11 end elseif abs(z-0.5) > 0.5 if isapprox(a,b) && !isapprox(c,a+0.5) gamma(c)/gamma(a)/gamma(c-a)*(0.5-z)^(-a)*_₂F₁continuationalt(a,c,0.5,z) elseif a-b ∉ ℤ gamma(c)*(gamma(b-a)/gamma(b)/gamma(c-a)*(0.5-z)^(-a)*_₂F₁continuation(a,a+b,c,0.5,z) + gamma(a-b)/gamma(a)/gamma(c-b)*(0.5-z)^(-b)*_₂F₁continuation(b,a+b,c,0.5,z)) else zero(T) end else zero(T)#throw(DomainError()) end end """ Compute the generalized hypergeometric function `₃F₂(a₁,a₂,a₃;b₁,b₂;z)` with the Maclaurin series. """ function _₃F₂(a₁::Number,a₂::Number,a₃::Number,b₁::Number,b₂::Number,z::Number) if abs(z) ≤ ρ _₃F₂maclaurin(a₁,a₂,a₃,b₁,b₂,z) else zero(z) end end _₃F₂(a₁::Number,a₂::Number,a₃::Number,b₁::Number,b₂::Number,z::AbstractArray) = reshape(promote_type(typeof(a₁),typeof(a₂),typeof(a₃),typeof(b₁),typeof(b₂),eltype(z))[ _₃F₂(a₁,a₂,a₃,b₁,b₂,z[i]) for i in eachindex(z) ], size(z)) _₃F₂(a₁::Number,b₁::Number,z) = _₃F₂(1,1,a₁,2,b₁,z) """ Compute the generalized hypergeometric function `mFn(a;b;z)` with the Maclaurin series. """ function mFn{S<:Number,V<:Number}(a::AbstractVector{S},b::AbstractVector{V},z::Number) if abs(z) ≤ ρ || length(a) ≤ length(b) mFnmaclaurin(a,b,z) else zero(promote_type(S,V,typeof(z))) end end mFn{S<:Number,V<:Number}(a::AbstractVector{S},b::AbstractVector{V},z::AbstractArray) = reshape(promote_type(S,V,eltype(z))[ mFn(a,b,z[i]) for i in eachindex(z) ], size(z))
-- --------------------------------------------------------------------- -- Ejercicio. Demostrar eue si -- |x + 3| < 5 -- entonces -- -8 < x < 2 -- ---------------------------------------------------------------------- import data.real.basic -- 1ª demostración -- =============== example (x y : ℝ) : abs (x + 3) < 5 → -8 < x ∧ x < 2 := begin rw abs_lt, intro h, split, linarith, linarith, end -- Prueba -- ====== /- x y : ℝ ⊢ abs (x + 3) < 5 → -8 < x ∧ x < 2 >> rw abs_lt, ⊢ -5 < x + 3 ∧ x + 3 < 5 → -8 < x ∧ x < 2 >> intro h, h : -5 < x + 3 ∧ x + 3 < 5 ⊢ -8 < x ∧ x < 2 >> split, | ⊢ -8 < x >> linarith, ⊢ x < 2 >> linarith, no goals -/ -- Comentario: El lema usado es -- + abs_lt: abs a < b ↔ -b < a ∧ a < b -- 2ª demostración -- =============== example (x y : ℝ) : abs (x + 3) < 5 → -8 < x ∧ x < 2 := begin rw abs_lt, intro h, split; linarith, end -- Comentario: La composición (split; linarith) aplica split y a -- continuación le aplica linarith a cada subojetivo.
If $X$ is a countable set and $A$ is a function from $X$ to $M$, then $\bigcup_{x \in X} A(x)$ is in $M$.
! ############################################################################################################################### ! Begin MIT license text. ! _______________________________________________________________________________________________________ ! Copyright 2019 Dr William R Case, Jr ([email protected]) ! Permission is hereby granted, free of charge, to any person obtaining a copy of this software and ! associated documentation files (the "Software"), to deal in the Software without restriction, including ! without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell ! copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to ! the following conditions: ! The above copyright notice and this permission notice shall be included in all copies or substantial ! portions of the Software and documentation. ! THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS ! OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, ! FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE ! AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER ! LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, ! OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN ! THE SOFTWARE. ! _______________________________________________________________________________________________________ ! End MIT license text. MODULE TRANSFORM_NODE_FORCES_Interface INTERFACE SUBROUTINE TRANSFORM_NODE_FORCES ( COORD_SYS ) USE PENTIUM_II_KIND, ONLY : BYTE, LONG, DOUBLE USE IOUNT1, ONLY : WRT_ERR, WRT_LOG, ERR, F04, F06 USE SCONTR, ONLY : BLNK_SUB_NAM, MELGP, NCORD USE TIMDAT, ONLY : TSEC USE SUBR_BEGEND_LEVELS, ONLY : TRANSFORM_NODE_FORCES_BEGEND USE CONSTANTS_1, ONLY : ZERO USE MODEL_STUF, ONLY : CAN_ELEM_TYPE_OFFSET, GRID, CORD, BGRID, ELDOF, ELGP, OFFDIS, OFFSET, PEB, PEG, PEL, TE, & TYPE IMPLICIT NONE CHARACTER(LEN=*), INTENT(IN) :: COORD_SYS ! 'B" for basic, 'G' for global INTEGER(LONG), PARAMETER :: NCOLA = 3 ! An input to subr MATMULT_FFF called herein INTEGER(LONG), PARAMETER :: NCOLB = 1 ! An input to subr MATMULT_FFF called herein INTEGER(LONG), PARAMETER :: NROWA = 3 ! An input to subr MATMULT_FFF called herein INTEGER(LONG), PARAMETER :: NROW = 3 ! An input to subr MATPUT, MATGET called herein INTEGER(LONG), PARAMETER :: NCOL = 1 ! An input to subr MATPUT, MATGET called herein INTEGER(LONG), PARAMETER :: PCOL = 1 ! An input to subr MATPUT, MATGET called herein INTEGER(LONG), PARAMETER :: SUBR_BEGEND = TRANSFORM_NODE_FORCES_BEGEND REAL(DOUBLE) :: THETAD,PHID ! Returns from subr GEN_T0L (not used here) END SUBROUTINE TRANSFORM_NODE_FORCES END INTERFACE END MODULE TRANSFORM_NODE_FORCES_Interface
! ! (c) 2019 Guide Star Engineering, LLC ! This Software was developed for the US Nuclear Regulatory Commission (US NRC) ! under contract "Multi-Dimensional Physics Implementation into Fuel Analysis under ! Steady-state and Transients (FAST)", contract # NRC-HQ-60-17-C-0007 ! ! ! NEMO - Numerical Engine (for) Multiphysics Operators ! Copyright (c) 2007, Stefano Toninel ! Gian Marco Bianchi University of Bologna ! David P. Schmidt University of Massachusetts - Amherst ! Salvatore Filippone University of Rome Tor Vergata ! All rights reserved. ! ! Redistribution and use in source and binary forms, with or without modification, ! are permitted provided that the following conditions are met: ! ! 1. Redistributions of source code must retain the above copyright notice, ! this list of conditions and the following disclaimer. ! 2. Redistributions in binary form must reproduce the above copyright notice, ! this list of conditions and the following disclaimer in the documentation ! and/or other materials provided with the distribution. ! 3. Neither the name of the NEMO project nor the names of its contributors ! may be used to endorse or promote products derived from this software ! without specific prior written permission. ! ! THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ! ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED ! WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE ! DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ! ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES ! (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; ! LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ! ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT ! (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS ! SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. ! !--------------------------------------------------------------------------------- ! ! $Id: part_random.f90 8157 2014-10-09 13:02:44Z sfilippo $ ! ! Description: ! Random partitioning ! SUBMODULE(part_random) part_random_procedures USE class_psblas IMPLICIT NONE CONTAINS MODULE PROCEDURE bld_part_random ! INTEGER :: ic, icontxt, info, mypnum, n REAL(psb_dpk_) :: alpha REAL(psb_dpk_) :: load(0:(nprocs-1)) icontxt = icontxt_() mypnum = mypnum_() !!$ !!$ if(associated(part) .and. size(part) /= ncells) then !!$ deallocate(part) !!$ part => null() !!$ end if !!$ !!$ if(.not.associated(part)) then ALLOCATE(part(ncells),stat=info) IF(info /= 0) THEN WRITE(*,100) CALL abort_psblas END IF !!$ end if IF(mypnum == 0) THEN WRITE(*,200) WRITE(*,300,advance='no') 'RANDOM' END IF ! RANDOM partitioning n = nprocs - 1 DO ic = 1, ncells CALL random_NUMBER(alpha) part(ic) = NINT(alpha * n) END DO ! Computes load of single processes load = 0.d0 DO ic=0,n load(ic) = COUNT(part==ic) load(ic) = REAL(load(ic)) / REAL(ncells) * 100 ENDDO WRITE(*,400) load 100 FORMAT(' ERROR! Memory allocation failure in BLD_PART_RANDOM') 200 FORMAT(' Domain Partitioning',5x,'Load') 300 FORMAT(1x,a) 400 FORMAT(15x,16(3x,f5.1,'%')) END PROCEDURE bld_part_random END SUBMODULE part_random_procedures
[STATEMENT] lemma sgn_integer_code [code]: "sgn k = (if k = 0 then 0 else if (k::integer) < 0 then - 1 else 1)" [PROOF STATE] proof (prove) goal (1 subgoal): 1. sgn k = (if k = 0 then 0 else if k < 0 then - 1 else 1) [PROOF STEP] by simp
associate(x => y) endassociate associate(x => (y)) end associate associate(x => y+z) end associate associate(x => -y) end associate call some_subroutine(x, (x)) x = f((x))
/- Copyright (c) 2016 Jeremy Avigad. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Jeremy Avigad, Deniz Aydin, Floris van Doorn, Mario Carneiro -/ import Std.Classes.Cast import Std.Data.Nat.Lemmas import Std.Data.Int.Basic import Std.Data.Option.Basic import Std.Tactic.NormCast.Lemmas import Std.Tactic.RCases open Nat namespace Int @[simp] theorem ofNat_eq_coe : ofNat n = Nat.cast n := rfl @[simp] theorem ofNat_zero : ((0 : Nat) : Int) = 0 := rfl @[simp] theorem ofNat_one : ((1 : Nat) : Int) = 1 := rfl @[simp] theorem default_eq_zero : default = (0 : Int) := rfl /- ## Definitions of basic functions -/ theorem subNatNat_of_sub_eq_zero {m n : Nat} (h : n - m = 0) : subNatNat m n = ↑(m - n) := by rw [subNatNat, h, ofNat_eq_coe] theorem subNatNat_of_sub_eq_succ {m n k : Nat} (h : n - m = succ k) : subNatNat m n = -[k+1] := by rw [subNatNat, h] @[local simp] protected theorem neg_zero : -(0:Int) = 0 := rfl theorem ofNat_add (n m : Nat) : (↑(n + m) : Int) = n + m := rfl theorem ofNat_mul (n m : Nat) : (↑(n * m) : Int) = n * m := rfl theorem ofNat_succ (n : Nat) : (succ n : Int) = n + 1 := rfl @[local simp] theorem neg_ofNat_zero : -((0 : Nat) : Int) = 0 := rfl @[local simp] theorem neg_ofNat_succ (n : Nat) : -(succ n : Int) = -[n+1] := rfl @[local simp] theorem neg_negSucc (n : Nat) : -(-[n+1]) = succ n := rfl theorem negSucc_coe (n : Nat) : -[n+1] = -↑(n + 1) := rfl theorem negOfNat_eq : negOfNat n = -ofNat n := rfl /- ## These are only for internal use -/ @[simp] theorem add_def {a b : Int} : Int.add a b = a + b := rfl @[simp] theorem ofNat_add_ofNat (m n : Nat) : (↑m + ↑n : Int) = ↑(m + n) := rfl @[simp] theorem ofNat_add_negSucc (m n : Nat) : ↑m + -[n+1] = subNatNat m (succ n) := rfl @[simp] theorem negSucc_add_ofNat (m n : Nat) : -[m+1] + ↑n = subNatNat n (succ m) := rfl @[simp] theorem negSucc_add_negSucc (m n : Nat) : -[m+1] + -[n+1] = -[succ (m + n) +1] := rfl @[simp] theorem mul_def {a b : Int} : Int.mul a b = a * b := rfl @[local simp] theorem ofNat_mul_ofNat (m n : Nat) : (↑m * ↑n : Int) = ↑(m * n) := rfl @[local simp] theorem ofNat_mul_negSucc' (m n : Nat) : ↑m * -[n+1] = negOfNat (m * succ n) := rfl @[local simp] theorem negSucc_mul_ofNat' (m n : Nat) : -[m+1] * ↑n = negOfNat (succ m * n) := rfl @[local simp] theorem negSucc_mul_negSucc' (m n : Nat) : -[m+1] * -[n+1] = ofNat (succ m * succ n) := rfl /- ## some basic functions and properties -/ theorem ofNat_inj : ((m : Nat) : Int) = (n : Nat) ↔ m = n := ⟨ofNat.inj, congrArg _⟩ theorem ofNat_eq_zero : ((n : Nat) : Int) = 0 ↔ n = 0 := ofNat_inj theorem ofNat_ne_zero : ((n : Nat) : Int) ≠ 0 ↔ n ≠ 0 := not_congr ofNat_eq_zero theorem negSucc_inj : negSucc m = negSucc n ↔ m = n := ⟨negSucc.inj, fun H => by simp [H]⟩ theorem negSucc_eq (n : Nat) : -[n+1] = -((n : Int) + 1) := rfl @[simp] theorem negSucc_ne_zero (n : Nat) : -[n+1] ≠ 0 := fun. @[simp] theorem zero_ne_negSucc (n : Nat) : 0 ≠ -[n+1] := fun. /- ## neg -/ @[simp] protected theorem neg_neg : ∀ a : Int, -(-a) = a | 0 => rfl | succ _ => rfl | -[_+1] => rfl protected theorem neg_inj {a b : Int} : -a = -b ↔ a = b := ⟨fun h => by rw [← Int.neg_neg a, ← Int.neg_neg b, h], congrArg _⟩ protected theorem neg_eq_zero : -a = 0 ↔ a = 0 := Int.neg_inj (b := 0) protected theorem neg_ne_zero : -a ≠ 0 ↔ a ≠ 0 := not_congr Int.neg_eq_zero protected theorem sub_eq_add_neg {a b : Int} : a - b = a + -b := rfl theorem add_neg_one (i : Int) : i + -1 = i - 1 := rfl /- ## basic properties of subNatNat -/ -- @[elabAsElim] -- TODO(Mario): unexpected eliminator resulting type theorem subNatNat_elim (m n : Nat) (motive : Nat → Nat → Int → Prop) (hp : ∀ i n, motive (n + i) n i) (hn : ∀ i m, motive m (m + i + 1) -[i+1]) : motive m n (subNatNat m n) := by unfold subNatNat match h : n - m with | 0 => have ⟨k, h⟩ := Nat.le.dest (Nat.le_of_sub_eq_zero h) rw [h.symm, Nat.add_sub_cancel_left]; apply hp | succ k => rw [Nat.sub_eq_iff_eq_add (Nat.le_of_lt (Nat.lt_of_sub_eq_succ h))] at h rw [h, Nat.add_comm]; apply hn theorem subNatNat_add_left : subNatNat (m + n) m = n := by unfold subNatNat rw [Nat.sub_eq_zero_of_le (Nat.le_add_right ..), Nat.add_sub_cancel_left, ofNat_eq_coe] theorem subNatNat_add_right : subNatNat m (m + n + 1) = negSucc n := by simp [subNatNat, Nat.add_assoc, Nat.add_sub_cancel_left] theorem subNatNat_add_add (m n k : Nat) : subNatNat (m + k) (n + k) = subNatNat m n := by apply subNatNat_elim m n (fun m n i => subNatNat (m + k) (n + k) = i) · intro i j rw [Nat.add_assoc, Nat.add_comm i k, ← Nat.add_assoc] exact subNatNat_add_left · intro i j rw [Nat.add_assoc j i 1, Nat.add_comm j (i+1), Nat.add_assoc, Nat.add_comm (i+1) (j+k)] exact subNatNat_add_right theorem subNatNat_of_le {m n : Nat} (h : n ≤ m) : subNatNat m n = ↑(m - n) := subNatNat_of_sub_eq_zero (Nat.sub_eq_zero_of_le h) theorem subNatNat_of_lt {m n : Nat} (h : m < n) : subNatNat m n = -[pred (n - m) +1] := subNatNat_of_sub_eq_succ <| (Nat.succ_pred_eq_of_pos (Nat.sub_pos_of_lt h)).symm /- ## natAbs -/ @[simp] theorem natAbs_ofNat (n : Nat) : natAbs ↑n = n := rfl @[simp] theorem natAbs_negSucc (n : Nat) : natAbs -[n+1] = n.succ := rfl @[simp] theorem natAbs_zero : natAbs (0 : Int) = (0 : Nat) := rfl @[simp] theorem natAbs_one : natAbs (1 : Int) = (1 : Nat) := rfl @[simp] theorem natAbs_eq_zero : natAbs a = 0 ↔ a = 0 := ⟨fun H => match a with | ofNat _ => congrArg ofNat H | -[_+1] => absurd H (succ_ne_zero _), fun e => e ▸ rfl⟩ theorem natAbs_ne_zero {a : Int} : a.natAbs ≠ 0 ↔ a ≠ 0 := not_congr Int.natAbs_eq_zero theorem natAbs_pos : 0 < natAbs a ↔ a ≠ 0 := by rw [Nat.pos_iff_ne_zero, Ne, natAbs_eq_zero] theorem natAbs_mul_self : ∀ {a : Int}, ↑(natAbs a * natAbs a) = a * a | ofNat _ => rfl | -[_+1] => rfl @[simp] theorem natAbs_neg : ∀ (a : Int), natAbs (-a) = natAbs a | 0 => rfl | succ _ => rfl | -[_+1] => rfl theorem natAbs_eq : ∀ (a : Int), a = natAbs a ∨ a = -↑(natAbs a) | ofNat _ => Or.inl rfl | -[_+1] => Or.inr rfl theorem eq_nat_or_neg (a : Int) : ∃ n : Nat, a = n ∨ a = -↑n := ⟨_, natAbs_eq a⟩ theorem natAbs_negOfNat (n : Nat) : natAbs (negOfNat n) = n := by cases n <;> rfl theorem natAbs_mul (a b : Int) : natAbs (a * b) = natAbs a * natAbs b := by cases a <;> cases b <;> simp only [← Int.mul_def, Int.mul, natAbs_negOfNat] <;> simp only [natAbs] theorem natAbs_mul_natAbs_eq {a b : Int} {c : Nat} (h : a * b = (c : Int)) : a.natAbs * b.natAbs = c := by rw [← natAbs_mul, h, natAbs] @[simp] theorem natAbs_mul_self' (a : Int) : (natAbs a * natAbs a : Int) = a * a := by rw [← Int.ofNat_mul, natAbs_mul_self] theorem natAbs_eq_natAbs_iff {a b : Int} : a.natAbs = b.natAbs ↔ a = b ∨ a = -b := by constructor <;> intro h · cases Int.natAbs_eq a with | inl h₁ | inr h₁ => cases Int.natAbs_eq b with | inl h₂ | inr h₂ => rw [h₁, h₂]; simp [h] · cases h with (subst a; try rfl) | inr h => rw [Int.natAbs_neg] theorem natAbs_eq_iff {a : Int} {n : Nat} : a.natAbs = n ↔ a = n ∨ a = -↑n := by rw [← Int.natAbs_eq_natAbs_iff, Int.natAbs_ofNat] /- ## sign -/ @[simp] theorem sign_zero : sign 0 = 0 := rfl @[simp] theorem sign_one : sign 1 = 1 := rfl theorem sign_neg_one : sign (-1) = -1 := rfl theorem sign_of_succ (n : Nat) : sign (Nat.succ n) = 1 := rfl theorem natAbs_sign (z : Int) : z.sign.natAbs = if z = 0 then 0 else 1 := match z with | 0 | succ _ | -[_+1] => rfl theorem natAbs_sign_of_nonzero {z : Int} (hz : z ≠ 0) : z.sign.natAbs = 1 := by rw [Int.natAbs_sign, if_neg hz] theorem sign_ofNat_of_nonzero {n : Nat} (hn : n ≠ 0) : Int.sign n = 1 := match n, Nat.exists_eq_succ_of_ne_zero hn with | _, ⟨n, rfl⟩ => Int.sign_of_succ n @[simp] theorem sign_neg (z : Int) : Int.sign (-z) = -Int.sign z := by match z with | 0 | succ _ | -[_+1] => rfl /- # ring properties -/ /- addition -/ protected theorem add_comm : ∀ a b : Int, a + b = b + a | ofNat n, ofNat m => by simp [Nat.add_comm] | ofNat _, -[_+1] => rfl | -[_+1], ofNat _ => rfl | -[_+1], -[_+1] => by simp [Nat.add_comm] @[local simp] protected theorem add_zero : ∀ a : Int, a + 0 = a | ofNat _ => rfl | -[_+1] => rfl @[local simp] protected theorem zero_add (a : Int) : 0 + a = a := Int.add_comm .. ▸ a.add_zero theorem ofNat_add_negSucc_of_lt (h : m < n.succ) : ofNat m + -[n+1] = -[n - m+1] := show subNatNat .. = _ by simp [succ_sub (le_of_lt_succ h), subNatNat] theorem subNatNat_sub (h : n ≤ m) (k : Nat) : subNatNat (m - n) k = subNatNat m (k + n) := by rwa [← subNatNat_add_add _ _ n, Nat.sub_add_cancel] theorem subNatNat_add (m n k : Nat) : subNatNat (m + n) k = m + subNatNat n k := by cases n.lt_or_ge k with | inl h' => simp [subNatNat_of_lt h', succ_pred_eq_of_pos (Nat.sub_pos_of_lt h')] conv => lhs; rw [← Nat.sub_add_cancel (Nat.le_of_lt h')] apply subNatNat_add_add | inr h' => simp [subNatNat_of_le h', subNatNat_of_le (Nat.le_trans h' (le_add_left ..)), Nat.add_sub_assoc h'] theorem subNatNat_add_negSucc (m n k : Nat) : subNatNat m n + -[k+1] = subNatNat m (n + succ k) := by have h := Nat.lt_or_ge m n cases h with | inr h' => rw [subNatNat_of_le h'] simp rw [subNatNat_sub h', Nat.add_comm] | inl h' => have h₂ : m < n + succ k := Nat.lt_of_lt_of_le h' (le_add_right _ _) have h₃ : m ≤ n + k := le_of_succ_le_succ h₂ rw [subNatNat_of_lt h', subNatNat_of_lt h₂] simp [Nat.add_comm] rw [← add_succ, succ_pred_eq_of_pos (Nat.sub_pos_of_lt h'), add_succ, succ_sub h₃, Nat.pred_succ] rw [Nat.add_comm n, Nat.add_sub_assoc (Nat.le_of_lt h')] protected theorem add_assoc : ∀ a b c : Int, a + b + c = a + (b + c) | (m:Nat), (n:Nat), c => aux1 .. | Nat.cast m, b, Nat.cast k => by rw [Int.add_comm, ← aux1, Int.add_comm k, aux1, Int.add_comm b] | a, (n:Nat), (k:Nat) => by rw [Int.add_comm, Int.add_comm a, ← aux1, Int.add_comm a, Int.add_comm k] | -[m+1], -[n+1], (k:Nat) => aux2 .. | -[m+1], (n:Nat), -[k+1] => by rw [Int.add_comm, ← aux2, Int.add_comm n, ← aux2, Int.add_comm -[m+1]] | (m:Nat), -[n+1], -[k+1] => by rw [Int.add_comm, Int.add_comm m, Int.add_comm m, ← aux2, Int.add_comm -[k+1]] | -[m+1], -[n+1], -[k+1] => by simp [add_succ, Nat.add_comm, Nat.add_left_comm, neg_ofNat_succ] where aux1 (m n : Nat) : ∀ c : Int, m + n + c = m + (n + c) | (k:Nat) => by simp [Nat.add_assoc] | -[k+1] => by simp [subNatNat_add] aux2 (m n k : Nat) : -[m+1] + -[n+1] + k = -[m+1] + (-[n+1] + k) := by simp [add_succ] rw [Int.add_comm, subNatNat_add_negSucc] simp [add_succ, succ_add, Nat.add_comm] protected theorem add_left_comm (a b c : Int) : a + (b + c) = b + (a + c) := by rw [← Int.add_assoc, Int.add_comm a, Int.add_assoc] protected theorem add_right_comm (a b c : Int) : a + b + c = a + c + b := by rw [Int.add_assoc, Int.add_comm b, ← Int.add_assoc] /- ## negation -/ theorem subNatNat_self : ∀ n, subNatNat n n = 0 | 0 => rfl | succ m => by rw [subNatNat_of_sub_eq_zero (Nat.sub_self ..), Nat.sub_self, ofNat_zero] attribute [local simp] subNatNat_self @[local simp] protected theorem add_left_neg : ∀ a : Int, -a + a = 0 | 0 => rfl | succ m => by simp | -[m+1] => by simp @[local simp] protected theorem add_right_neg (a : Int) : a + -a = 0 := by rw [Int.add_comm, Int.add_left_neg] @[simp] protected theorem neg_eq_of_add_eq_zero {a b : Int} (h : a + b = 0) : -a = b := by rw [← Int.add_zero (-a), ← h, ← Int.add_assoc, Int.add_left_neg, Int.zero_add] protected theorem eq_neg_of_eq_neg {a b : Int} (h : a = -b) : b = -a := by rw [h, Int.neg_neg] protected theorem eq_neg_comm {a b : Int} : a = -b ↔ b = -a := ⟨Int.eq_neg_of_eq_neg, Int.eq_neg_of_eq_neg⟩ protected theorem neg_eq_comm {a b : Int} : -a = b ↔ -b = a := by rw [eq_comm, Int.eq_neg_comm, eq_comm] protected theorem neg_add_cancel_left (a b : Int) : -a + (a + b) = b := by rw [← Int.add_assoc, Int.add_left_neg, Int.zero_add] protected theorem add_neg_cancel_left (a b : Int) : a + (-a + b) = b := by rw [← Int.add_assoc, Int.add_right_neg, Int.zero_add] protected theorem add_neg_cancel_right (a b : Int) : a + b + -b = a := by rw [Int.add_assoc, Int.add_right_neg, Int.add_zero] protected theorem neg_add_cancel_right (a b : Int) : a + -b + b = a := by rw [Int.add_assoc, Int.add_left_neg, Int.add_zero] protected theorem add_left_cancel {a b c : Int} (h : a + b = a + c) : b = c := by have h₁ : -a + (a + b) = -a + (a + c) := by rw [h] simp [← Int.add_assoc, Int.add_left_neg, Int.zero_add] at h₁; exact h₁ @[local simp] protected theorem neg_add {a b : Int} : -(a + b) = -a + -b := by apply Int.add_left_cancel (a := a + b) rw [Int.add_right_neg, Int.add_comm a, ← Int.add_assoc, Int.add_assoc b, Int.add_right_neg, Int.add_zero, Int.add_right_neg] /- ## subtraction -/ @[simp] theorem negSucc_sub_one (n : Nat) : -[n+1] - 1 = -[n + 1 +1] := rfl protected theorem sub_self (a : Int) : a - a = 0 := by rw [Int.sub_eq_add_neg, Int.add_right_neg] protected theorem sub_zero (a : Int) : a - 0 = a := by simp [Int.sub_eq_add_neg] protected theorem zero_sub (a : Int) : 0 - a = -a := by simp [Int.sub_eq_add_neg] protected theorem sub_eq_zero_of_eq {a b : Int} (h : a = b) : a - b = 0 := by rw [h, Int.sub_self] protected theorem eq_of_sub_eq_zero {a b : Int} (h : a - b = 0) : a = b := by have : 0 + b = b := by rw [Int.zero_add] have : a - b + b = b := by rwa [h] rwa [Int.sub_eq_add_neg, Int.neg_add_cancel_right] at this protected theorem sub_eq_zero {a b : Int} : a - b = 0 ↔ a = b := ⟨Int.eq_of_sub_eq_zero, Int.sub_eq_zero_of_eq⟩ protected theorem sub_sub (a b c : Int) : a - b - c = a - (b + c) := by simp [Int.sub_eq_add_neg, Int.add_assoc] protected theorem neg_sub (a b : Int) : -(a - b) = b - a := by simp [Int.sub_eq_add_neg, Int.add_comm] protected theorem sub_sub_self (a b : Int) : a - (a - b) = b := by simp [Int.sub_eq_add_neg, ← Int.add_assoc] protected theorem sub_neg (a b : Int) : a - -b = a + b := by simp [Int.sub_eq_add_neg] /- ## multiplication -/ @[simp] theorem ofNat_mul_negSucc (m n : Nat) : (m : Int) * -[n+1] = -↑(m * succ n) := rfl @[simp] theorem negSucc_mul_ofNat (m n : Nat) : -[m+1] * n = -↑(succ m * n) := rfl @[simp] theorem negSucc_mul_negSucc (m n : Nat) : -[m+1] * -[n+1] = succ m * succ n := rfl protected theorem mul_comm (a b : Int) : a * b = b * a := by cases a <;> cases b <;> simp [Nat.mul_comm] theorem ofNat_mul_negOfNat (m n : Nat) : (m : Nat) * negOfNat n = negOfNat (m * n) := by cases n <;> rfl theorem negOfNat_mul_ofNat (m n : Nat) : negOfNat m * (n : Nat) = negOfNat (m * n) := by rw [Int.mul_comm]; simp [ofNat_mul_negOfNat, Nat.mul_comm] theorem negSucc_mul_negOfNat (m n : Nat) : -[m+1] * negOfNat n = ofNat (succ m * n) := by cases n <;> rfl theorem negOfNat_mul_negSucc (m n : Nat) : negOfNat n * -[m+1] = ofNat (n * succ m) := by rw [Int.mul_comm, negSucc_mul_negOfNat, Nat.mul_comm] attribute [local simp] ofNat_mul_negOfNat negOfNat_mul_ofNat negSucc_mul_negOfNat negOfNat_mul_negSucc protected theorem mul_assoc (a b c : Int) : a * b * c = a * (b * c) := by cases a <;> cases b <;> cases c <;> simp [Nat.mul_assoc] protected theorem mul_left_comm (a b c : Int) : a * (b * c) = b * (a * c) := by rw [← Int.mul_assoc, ← Int.mul_assoc, Int.mul_comm a] protected theorem mul_right_comm (a b c : Int) : a * b * c = a * c * b := by rw [Int.mul_assoc, Int.mul_assoc, Int.mul_comm b] @[simp] protected theorem mul_zero (a : Int) : a * 0 = 0 := by cases a <;> rfl @[simp] protected theorem zero_mul (a : Int) : 0 * a = 0 := Int.mul_comm .. ▸ a.mul_zero theorem negOfNat_eq_subNatNat_zero (n) : negOfNat n = subNatNat 0 n := by cases n <;> rfl theorem ofNat_mul_subNatNat (m n k : Nat) : m * subNatNat n k = subNatNat (m * n) (m * k) := by cases m with | zero => simp [ofNat_zero, Int.zero_mul, Nat.zero_mul] | succ m => cases n.lt_or_ge k with | inl h => have h' : succ m * n < succ m * k := Nat.mul_lt_mul_of_pos_left h (Nat.succ_pos m) simp [subNatNat_of_lt h, subNatNat_of_lt h'] rw [succ_pred_eq_of_pos (Nat.sub_pos_of_lt h), ← neg_ofNat_succ, Nat.mul_sub_left_distrib, ← succ_pred_eq_of_pos (Nat.sub_pos_of_lt h')]; rfl | inr h => have h' : succ m * k ≤ succ m * n := Nat.mul_le_mul_left _ h simp [subNatNat_of_le h, subNatNat_of_le h', Nat.mul_sub_left_distrib] theorem negOfNat_add (m n : Nat) : negOfNat m + negOfNat n = negOfNat (m + n) := by cases m <;> cases n <;> simp [Nat.succ_add] <;> rfl theorem negSucc_mul_subNatNat (m n k : Nat) : -[m+1] * subNatNat n k = subNatNat (succ m * k) (succ m * n) := by cases n.lt_or_ge k with | inl h => have h' : succ m * n < succ m * k := Nat.mul_lt_mul_of_pos_left h (Nat.succ_pos m) rw [subNatNat_of_lt h, subNatNat_of_le (Nat.le_of_lt h')] simp [succ_pred_eq_of_pos (Nat.sub_pos_of_lt h), Nat.mul_sub_left_distrib] | inr h => cases Nat.lt_or_ge k n with | inl h' => have h₁ : succ m * n > succ m * k := Nat.mul_lt_mul_of_pos_left h' (Nat.succ_pos m) rw [subNatNat_of_le h, subNatNat_of_lt h₁, negSucc_mul_ofNat, Nat.mul_sub_left_distrib, ← succ_pred_eq_of_pos (Nat.sub_pos_of_lt h₁)]; rfl | inr h' => rw [Nat.le_antisymm h h', subNatNat_self, subNatNat_self, Int.mul_zero] attribute [local simp] ofNat_mul_subNatNat negOfNat_add negSucc_mul_subNatNat protected theorem mul_add : ∀ a b c : Int, a * (b + c) = a * b + a * c | (m:Nat), (n:Nat), (k:Nat) => by simp [Nat.left_distrib] | (m:Nat), (n:Nat), -[k+1] => by simp [negOfNat_eq_subNatNat_zero]; rw [← subNatNat_add]; rfl | (m:Nat), -[n+1], (k:Nat) => by simp [negOfNat_eq_subNatNat_zero]; rw [Int.add_comm, ← subNatNat_add]; rfl | (m:Nat), -[n+1], -[k+1] => by simp; rw [← Nat.left_distrib, succ_add]; rfl | -[m+1], (n:Nat), (k:Nat) => by simp [Nat.mul_comm]; rw [← Nat.right_distrib, Nat.mul_comm] | -[m+1], (n:Nat), -[k+1] => by simp [negOfNat_eq_subNatNat_zero]; rw [Int.add_comm, ← subNatNat_add]; rfl | -[m+1], -[n+1], (k:Nat) => by simp [negOfNat_eq_subNatNat_zero]; rw [← subNatNat_add]; rfl | -[m+1], -[n+1], -[k+1] => by simp; rw [← Nat.left_distrib, succ_add]; rfl protected theorem add_mul (a b c : Int) : (a + b) * c = a * c + b * c := by simp [Int.mul_comm, Int.mul_add] protected theorem neg_mul_eq_neg_mul (a b : Int) : -(a * b) = -a * b := Int.neg_eq_of_add_eq_zero <| by rw [← Int.add_mul, Int.add_right_neg, Int.zero_mul] protected theorem neg_mul_eq_mul_neg (a b : Int) : -(a * b) = a * -b := Int.neg_eq_of_add_eq_zero <| by rw [← Int.mul_add, Int.add_right_neg, Int.mul_zero] @[local simp] protected theorem neg_mul (a b : Int) : -a * b = -(a * b) := (Int.neg_mul_eq_neg_mul a b).symm @[local simp] protected theorem mul_neg (a b : Int) : a * -b = -(a * b) := (Int.neg_mul_eq_mul_neg a b).symm protected theorem neg_mul_neg (a b : Int) : -a * -b = a * b := by simp protected theorem neg_mul_comm (a b : Int) : -a * b = a * -b := by simp protected theorem mul_sub (a b c : Int) : a * (b - c) = a * b - a * c := by simp [Int.sub_eq_add_neg, Int.mul_add] protected theorem sub_mul (a b c : Int) : (a - b) * c = a * c - b * c := by simp [Int.sub_eq_add_neg, Int.add_mul] protected theorem zero_ne_one : (0 : Int) ≠ 1 := fun. @[simp] protected theorem sub_add_cancel (a b : Int) : a - b + b = a := Int.neg_add_cancel_right a b @[simp] protected theorem add_sub_cancel (a b : Int) : a + b - b = a := Int.add_neg_cancel_right a b protected theorem add_sub_assoc (a b c : Int) : a + b - c = a + (b - c) := by rw [Int.sub_eq_add_neg, Int.add_assoc, ← Int.sub_eq_add_neg] theorem ofNat_sub (h : m ≤ n) : ((n - m : Nat) : Int) = n - m := by match m with | 0 => rfl | succ m => show ofNat (n - succ m) = subNatNat n (succ m) rw [subNatNat, Nat.sub_eq_zero_of_le h] theorem negSucc_coe' (n : Nat) : -[n+1] = -↑n - 1 := by rw [Int.sub_eq_add_neg, ← Int.neg_add]; rfl protected theorem subNatNat_eq_coe {m n : Nat} : subNatNat m n = ↑m - ↑n := by apply subNatNat_elim m n fun m n i => i = m - n · intros i n rw [Int.ofNat_add, Int.sub_eq_add_neg, Int.add_assoc, Int.add_left_comm, Int.add_right_neg, Int.add_zero] · intros i n simp only [negSucc_coe, ofNat_add, Int.sub_eq_add_neg, Int.neg_add, ← Int.add_assoc] rw [← @Int.sub_eq_add_neg n, ← ofNat_sub, Nat.sub_self, ofNat_zero, Int.zero_add] apply Nat.le_refl theorem toNat_sub (m n : Nat) : toNat (m - n) = m - n := by rw [← Int.subNatNat_eq_coe] refine subNatNat_elim m n (fun m n i => toNat i = m - n) (fun i n => ?_) (fun i n => ?_) · exact (Nat.add_sub_cancel_left ..).symm · dsimp; rw [Nat.add_assoc, Nat.sub_eq_zero_of_le (Nat.le_add_right ..)]; rfl @[simp] protected theorem one_mul : ∀ a : Int, 1 * a = a | ofNat n => show ofNat (1 * n) = ofNat n by rw [Nat.one_mul] | -[n+1] => show -[1 * n +1] = -[n+1] by rw [Nat.one_mul] @[simp] protected theorem mul_one (a : Int) : a * 1 = a := by rw [Int.mul_comm, Int.one_mul] protected theorem mul_neg_one (a : Int) : a * -1 = -a := by rw [Int.mul_neg, Int.mul_one] protected theorem neg_eq_neg_one_mul : ∀ a : Int, -a = -1 * a | 0 => rfl | succ n => show _ = -[1 * n +1] by rw [Nat.one_mul]; rfl | -[n+1] => show _ = ofNat _ by rw [Nat.one_mul]; rfl theorem sign_mul_natAbs : ∀ a : Int, sign a * natAbs a = a | 0 => rfl | succ _ => Int.one_mul _ | -[_+1] => (Int.neg_eq_neg_one_mul _).symm @[simp] theorem sign_mul : ∀ a b, sign (a * b) = sign a * sign b | a, 0 | 0, b => by simp [Int.mul_zero, Int.zero_mul] | succ _, succ _ | succ _, -[_+1] | -[_+1], succ _ | -[_+1], -[_+1] => rfl /-! ## Order properties of the integers -/ theorem nonneg_def {a : Int} : NonNeg a ↔ ∃ n : Nat, a = n := ⟨fun ⟨n⟩ => ⟨n, rfl⟩, fun h => match a, h with | _, ⟨n, rfl⟩ => ⟨n⟩⟩ theorem NonNeg.elim {a : Int} : NonNeg a → ∃ n : Nat, a = n := nonneg_def.1 theorem nonneg_or_nonneg_neg : ∀ (a : Int), NonNeg a ∨ NonNeg (-a) | (_:Nat) => .inl ⟨_⟩ | -[_+1] => .inr ⟨_⟩ theorem le_def (a b : Int) : a ≤ b ↔ NonNeg (b - a) := .rfl theorem lt_iff_add_one_le (a b : Int) : a < b ↔ a + 1 ≤ b := .rfl theorem le.intro_sub {a b : Int} (n : Nat) (h : b - a = n) : a ≤ b := by simp [le_def, h]; constructor theorem le.intro {a b : Int} (n : Nat) (h : a + n = b) : a ≤ b := le.intro_sub n <| by rw [← h, Int.add_comm]; simp [Int.sub_eq_add_neg, Int.add_assoc] theorem le.dest_sub {a b : Int} (h : a ≤ b) : ∃ n : Nat, b - a = n := nonneg_def.1 h theorem le.dest {a b : Int} (h : a ≤ b) : ∃ n : Nat, a + n = b := let ⟨n, h₁⟩ := le.dest_sub h ⟨n, by rw [← h₁, Int.add_comm]; simp [Int.sub_eq_add_neg, Int.add_assoc]⟩ protected theorem le_total (a b : Int) : a ≤ b ∨ b ≤ a := (nonneg_or_nonneg_neg (b - a)).imp_right fun H => by rwa [show -(b - a) = a - b by simp [Int.add_comm, Int.sub_eq_add_neg]] at H @[simp, norm_cast] theorem ofNat_le {m n : Nat} : (↑m : Int) ≤ ↑n ↔ m ≤ n := ⟨fun h => let ⟨k, hk⟩ := le.dest h Nat.le.intro <| Int.ofNat.inj <| (Int.ofNat_add m k).trans hk, fun h => let ⟨k, (hk : m + k = n)⟩ := Nat.le.dest h le.intro k (by rw [← hk]; rfl)⟩ theorem ofNat_zero_le (n : Nat) : 0 ≤ (↑n : Int) := ofNat_le.2 n.zero_le theorem eq_ofNat_of_zero_le {a : Int} (h : 0 ≤ a) : ∃ n : Nat, a = n := by have t := le.dest_sub h; simp [Int.sub_eq_add_neg] at t; exact t theorem eq_succ_of_zero_lt {a : Int} (h : 0 < a) : ∃ n : Nat, a = n.succ := let ⟨n, (h : ↑(1 + n) = a)⟩ := le.dest h ⟨n, by rw [Nat.add_comm] at h; exact h.symm⟩ theorem lt_add_succ (a : Int) (n : Nat) : a < a + Nat.succ n := le.intro n <| by rw [Int.add_comm, Int.add_left_comm]; rfl theorem lt.intro {a b : Int} {n : Nat} (h : a + Nat.succ n = b) : a < b := h ▸ lt_add_succ a n theorem lt.dest {a b : Int} (h : a < b) : ∃ n : Nat, a + Nat.succ n = b := let ⟨n, h⟩ := le.dest h; ⟨n, by rwa [Int.add_comm, Int.add_left_comm] at h⟩ @[simp, norm_cast] theorem ofNat_lt {n m : Nat} : (↑n : Int) < ↑m ↔ n < m := by rw [lt_iff_add_one_le, ← ofNat_succ, ofNat_le]; rfl @[simp, norm_cast] theorem ofNat_pos {n : Nat} : 0 < (↑n : Int) ↔ 0 < n := ofNat_lt theorem ofNat_nonneg (n : Nat) : 0 ≤ (n : Int) := ⟨_⟩ theorem ofNat_succ_pos (n : Nat) : 0 < (succ n : Int) := ofNat_lt.2 <| Nat.succ_pos _ @[simp] protected theorem le_refl (a : Int) : a ≤ a := le.intro _ (Int.add_zero a) protected theorem le_trans {a b c : Int} (h₁ : a ≤ b) (h₂ : b ≤ c) : a ≤ c := let ⟨n, hn⟩ := le.dest h₁; let ⟨m, hm⟩ := le.dest h₂ le.intro (n + m) <| by rw [← hm, ← hn, Int.add_assoc, ofNat_add] protected theorem le_antisymm {a b : Int} (h₁ : a ≤ b) (h₂ : b ≤ a) : a = b := by let ⟨n, hn⟩ := le.dest h₁; let ⟨m, hm⟩ := le.dest h₂ have := hn; rw [← hm, Int.add_assoc, ← ofNat_add] at this have := Int.ofNat.inj <| Int.add_left_cancel <| this.trans (Int.add_zero _).symm rw [← hn, Nat.eq_zero_of_add_eq_zero_left this, ofNat_zero, Int.add_zero a] protected protected theorem ne_of_lt {a b : Int} (h : a < b) : a ≠ b := fun e => by cases e; exact Int.lt_irrefl _ h protected theorem ne_of_gt {a b : Int} (h : b < a) : a ≠ b := (Int.ne_of_lt h).symm protected theorem le_of_lt {a b : Int} (h : a < b) : a ≤ b := let ⟨_, hn⟩ := lt.dest h; le.intro _ hn protected theorem lt_iff_le_and_ne {a b : Int} : a < b ↔ a ≤ b ∧ a ≠ b := by refine ⟨fun h => ⟨Int.le_of_lt h, Int.ne_of_lt h⟩, fun ⟨aleb, aneb⟩ => ?_⟩ let ⟨n, hn⟩ := le.dest aleb have : n ≠ 0 := aneb.imp fun eq => by rw [← hn, eq, ofNat_zero, Int.add_zero] apply lt.intro; rwa [← Nat.succ_pred_eq_of_pos (Nat.pos_of_ne_zero this)] at hn theorem lt_succ (a : Int) : a < a + 1 := Int.le_refl _ protected theorem mul_nonneg {a b : Int} (ha : 0 ≤ a) (hb : 0 ≤ b) : 0 ≤ a * b := by let ⟨n, hn⟩ := eq_ofNat_of_zero_le ha let ⟨m, hm⟩ := eq_ofNat_of_zero_le hb rw [hn, hm, ← ofNat_mul]; apply ofNat_nonneg protected theorem mul_pos {a b : Int} (ha : 0 < a) (hb : 0 < b) : 0 < a * b := by let ⟨n, hn⟩ := eq_succ_of_zero_lt ha let ⟨m, hm⟩ := eq_succ_of_zero_lt hb rw [hn, hm, ← ofNat_mul]; apply ofNat_succ_pos protected theorem zero_lt_one : (0 : Int) < 1 := ⟨_⟩ protected theorem lt_iff_le_not_le {a b : Int} : a < b ↔ a ≤ b ∧ ¬b ≤ a := by rw [Int.lt_iff_le_and_ne] constructor <;> refine fun ⟨h, h'⟩ => ⟨h, h'.imp fun h' => ?_⟩ · exact Int.le_antisymm h h' · subst h'; apply Int.le_refl protected theorem not_le {a b : Int} : ¬a ≤ b ↔ b < a := ⟨fun h => Int.lt_iff_le_not_le.2 ⟨(Int.le_total ..).resolve_right h, h⟩, fun h => (Int.lt_iff_le_not_le.1 h).2⟩ protected theorem not_lt {a b : Int} : ¬a < b ↔ b ≤ a := by rw [← Int.not_le, Decidable.not_not] protected theorem lt_trichotomy (a b : Int) : a < b ∨ a = b ∨ b < a := if eq : a = b then .inr <| .inl eq else if le : a ≤ b then .inl <| Int.lt_iff_le_and_ne.2 ⟨le, eq⟩ else .inr <| .inr <| Int.not_le.1 le protected theorem lt_of_le_of_lt {a b c : Int} (h₁ : a ≤ b) (h₂ : b < c) : a < c := Int.not_le.1 fun h => Int.not_le.2 h₂ (Int.le_trans h h₁) protected theorem lt_of_lt_of_le {a b c : Int} (h₁ : a < b) (h₂ : b ≤ c) : a < c := Int.not_le.1 fun h => Int.not_le.2 h₁ (Int.le_trans h₂ h) protected theorem lt_trans {a b c : Int} (h₁ : a < b) (h₂ : b < c) : a < c := Int.lt_of_le_of_lt (Int.le_of_lt h₁) h₂ protected theorem le_of_not_le {a b : Int} : ¬ a ≤ b → b ≤ a := (Int.le_total a b).resolve_left protected theorem min_def (n m : Int) : min n m = if n ≤ m then n else m := rfl protected theorem max_def (n m : Int) : max n m = if n ≤ m then m else n := rfl protected theorem min_comm (a b : Int) : min a b = min b a := by simp [Int.min_def] by_cases h₁ : a ≤ b <;> by_cases h₂ : b ≤ a <;> simp [h₁, h₂] · exact Int.le_antisymm h₁ h₂ · cases not_or_intro h₁ h₂ <| Int.le_total .. protected theorem min_le_right (a b : Int) : min a b ≤ b := by rw [Int.min_def]; split <;> simp [*] protected theorem min_le_left (a b : Int) : min a b ≤ a := Int.min_comm .. ▸ Int.min_le_right .. protected theorem le_min {a b c : Int} : a ≤ min b c ↔ a ≤ b ∧ a ≤ c := ⟨fun h => ⟨Int.le_trans h (Int.min_le_left ..), Int.le_trans h (Int.min_le_right ..)⟩, fun ⟨h₁, h₂⟩ => by rw [Int.min_def]; split <;> assumption⟩ protected theorem min_eq_left {a b : Int} (h : a ≤ b) : min a b = a := by simp [Int.min_def, h] protected theorem min_eq_right {a b : Int} (h : b ≤ a) : min a b = b := by rw [Int.min_comm a b]; exact Int.min_eq_left h protected theorem max_comm (a b : Int) : max a b = max b a := by simp only [Int.max_def] by_cases h₁ : a ≤ b <;> by_cases h₂ : b ≤ a <;> simp [h₁, h₂] · exact Int.le_antisymm h₂ h₁ · cases not_or_intro h₁ h₂ <| Int.le_total .. protected theorem le_max_left (a b : Int) : a ≤ max a b := by rw [Int.max_def]; split <;> simp [*] protected theorem le_max_right (a b : Int) : b ≤ max a b := Int.max_comm .. ▸ Int.le_max_left .. protected theorem max_le {a b c : Int} : max a b ≤ c ↔ a ≤ c ∧ b ≤ c := ⟨fun h => ⟨Int.le_trans (Int.le_max_left ..) h, Int.le_trans (Int.le_max_right ..) h⟩, fun ⟨h₁, h₂⟩ => by rw [Int.max_def]; split <;> assumption⟩ protected theorem max_eq_right {a b : Int} (h : a ≤ b) : max a b = b := by simp [Int.max_def, h, Int.not_lt.2 h] protected theorem max_eq_left {a b : Int} (h : b ≤ a) : max a b = a := by rw [← Int.max_comm b a]; exact Int.max_eq_right h theorem eq_natAbs_of_zero_le {a : Int} (h : 0 ≤ a) : a = natAbs a := by let ⟨n, e⟩ := eq_ofNat_of_zero_le h rw [e]; rfl theorem le_natAbs {a : Int} : a ≤ natAbs a := match Int.le_total 0 a with | .inl h => by rw [eq_natAbs_of_zero_le h]; apply Int.le_refl | .inr h => Int.le_trans h (ofNat_zero_le _) theorem negSucc_lt_zero (n : Nat) : -[n+1] < 0 := Int.not_le.1 fun h => let ⟨_, h⟩ := eq_ofNat_of_zero_le h; nomatch h @[simp] theorem negSucc_not_nonneg (n : Nat) : 0 ≤ -[n+1] ↔ False := by simp only [Int.not_le, iff_false]; exact Int.negSucc_lt_zero n @[simp] theorem negSucc_not_pos (n : Nat) : 0 < -[n+1] ↔ False := by simp only [Int.not_lt, iff_false]; constructor theorem eq_negSucc_of_lt_zero : ∀ {a : Int}, a < 0 → ∃ n : Nat, a = -[n+1] | ofNat _, h => absurd h (Int.not_lt.2 (ofNat_zero_le _)) | -[n+1], _ => ⟨n, rfl⟩ protected theorem add_le_add_left {a b : Int} (h : a ≤ b) (c : Int) : c + a ≤ c + b := let ⟨n, hn⟩ := le.dest h; le.intro n <| by rw [Int.add_assoc, hn] protected theorem add_lt_add_left {a b : Int} (h : a < b) (c : Int) : c + a < c + b := Int.lt_iff_le_and_ne.2 ⟨Int.add_le_add_left (Int.le_of_lt h) _, fun heq => b.lt_irrefl <| by rwa [Int.add_left_cancel heq] at h⟩ protected theorem add_le_add_right {a b : Int} (h : a ≤ b) (c : Int) : a + c ≤ b + c := Int.add_comm c a ▸ Int.add_comm c b ▸ Int.add_le_add_left h c protected theorem add_lt_add_right {a b : Int} (h : a < b) (c : Int) : a + c < b + c := Int.add_comm c a ▸ Int.add_comm c b ▸ Int.add_lt_add_left h c protected theorem le_of_add_le_add_left {a b c : Int} (h : a + b ≤ a + c) : b ≤ c := by have : -a + (a + b) ≤ -a + (a + c) := Int.add_le_add_left h _ simp [Int.neg_add_cancel_left] at this assumption protected theorem lt_of_add_lt_add_left {a b c : Int} (h : a + b < a + c) : b < c := by have : -a + (a + b) < -a + (a + c) := Int.add_lt_add_left h _ simp [Int.neg_add_cancel_left] at this assumption protected theorem le_of_add_le_add_right {a b c : Int} (h : a + b ≤ c + b) : a ≤ c := Int.le_of_add_le_add_left (a := b) <| by rwa [Int.add_comm b a, Int.add_comm b c] protected theorem lt_of_add_lt_add_right {a b c : Int} (h : a + b < c + b) : a < c := Int.lt_of_add_lt_add_left (a := b) <| by rwa [Int.add_comm b a, Int.add_comm b c] protected theorem add_le_add_iff_left (a : Int) : a + b ≤ a + c ↔ b ≤ c := ⟨Int.le_of_add_le_add_left, (Int.add_le_add_left · _)⟩ protected theorem add_lt_add_iff_left (a : Int) : a + b < a + c ↔ b < c := ⟨Int.lt_of_add_lt_add_left, (Int.add_lt_add_left · _)⟩ protected theorem add_le_add_iff_right (c : Int) : a + c ≤ b + c ↔ a ≤ b := ⟨Int.le_of_add_le_add_right, (Int.add_le_add_right · _)⟩ protected theorem add_lt_add_iff_right (c : Int) : a + c < b + c ↔ a < b := ⟨Int.lt_of_add_lt_add_right, (Int.add_lt_add_right · _)⟩ protected theorem add_le_add {a b c d : Int} (h₁ : a ≤ b) (h₂ : c ≤ d) : a + c ≤ b + d := Int.le_trans (Int.add_le_add_right h₁ c) (Int.add_le_add_left h₂ b) protected theorem le_add_of_nonneg_right {a b : Int} (h : 0 ≤ b) : a ≤ a + b := by have : a + b ≥ a + 0 := Int.add_le_add_left h a rwa [Int.add_zero] at this protected theorem le_add_of_nonneg_left {a b : Int} (h : 0 ≤ b) : a ≤ b + a := by have : 0 + a ≤ b + a := Int.add_le_add_right h a rwa [Int.zero_add] at this protected theorem add_lt_add {a b c d : Int} (h₁ : a < b) (h₂ : c < d) : a + c < b + d := Int.lt_trans (Int.add_lt_add_right h₁ c) (Int.add_lt_add_left h₂ b) protected theorem add_lt_add_of_le_of_lt {a b c d : Int} (h₁ : a ≤ b) (h₂ : c < d) : a + c < b + d := Int.lt_of_le_of_lt (Int.add_le_add_right h₁ c) (Int.add_lt_add_left h₂ b) protected theorem add_lt_add_of_lt_of_le {a b c d : Int} (h₁ : a < b) (h₂ : c ≤ d) : a + c < b + d := Int.lt_of_lt_of_le (Int.add_lt_add_right h₁ c) (Int.add_le_add_left h₂ b) protected theorem lt_add_of_pos_right (a : Int) {b : Int} (h : 0 < b) : a < a + b := by have : a + 0 < a + b := Int.add_lt_add_left h a rwa [Int.add_zero] at this protected theorem lt_add_of_pos_left (a : Int) {b : Int} (h : 0 < b) : a < b + a := by have : 0 + a < b + a := Int.add_lt_add_right h a rwa [Int.zero_add] at this protected theorem add_nonneg {a b : Int} (ha : 0 ≤ a) (hb : 0 ≤ b) : 0 ≤ a + b := Int.zero_add 0 ▸ Int.add_le_add ha hb protected theorem add_pos {a b : Int} (ha : 0 < a) (hb : 0 < b) : 0 < a + b := Int.zero_add 0 ▸ Int.add_lt_add ha hb protected theorem add_pos_of_pos_of_nonneg {a b : Int} (ha : 0 < a) (hb : 0 ≤ b) : 0 < a + b := Int.zero_add 0 ▸ Int.add_lt_add_of_lt_of_le ha hb protected theorem add_pos_of_nonneg_of_pos {a b : Int} (ha : 0 ≤ a) (hb : 0 < b) : 0 < a + b := Int.zero_add 0 ▸ Int.add_lt_add_of_le_of_lt ha hb protected theorem add_nonpos {a b : Int} (ha : a ≤ 0) (hb : b ≤ 0) : a + b ≤ 0 := Int.zero_add 0 ▸ Int.add_le_add ha hb protected theorem add_neg {a b : Int} (ha : a < 0) (hb : b < 0) : a + b < 0 := Int.zero_add 0 ▸ Int.add_lt_add ha hb protected theorem add_neg_of_neg_of_nonpos {a b : Int} (ha : a < 0) (hb : b ≤ 0) : a + b < 0 := Int.zero_add 0 ▸ Int.add_lt_add_of_lt_of_le ha hb protected theorem add_neg_of_nonpos_of_neg {a b : Int} (ha : a ≤ 0) (hb : b < 0) : a + b < 0 := Int.zero_add 0 ▸ Int.add_lt_add_of_le_of_lt ha hb protected theorem lt_add_of_le_of_pos {a b c : Int} (hbc : b ≤ c) (ha : 0 < a) : b < c + a := Int.add_zero b ▸ Int.add_lt_add_of_le_of_lt hbc ha theorem add_one_le_iff {a b : Int} : a + 1 ≤ b ↔ a < b := .rfl theorem lt_add_one_iff {a b : Int} : a < b + 1 ↔ a ≤ b := Int.add_le_add_iff_right _ @[simp] theorem succ_ofNat_pos (n : Nat) : 0 < (n : Int) + 1 := lt_add_one_iff.2 (ofNat_zero_le _) theorem le_add_one {a b : Int} (h : a ≤ b) : a ≤ b + 1 := Int.le_of_lt (Int.lt_add_one_iff.2 h) protected theorem neg_le_neg {a b : Int} (h : a ≤ b) : -b ≤ -a := by have : 0 ≤ -a + b := Int.add_left_neg a ▸ Int.add_le_add_left h (-a) have : 0 + -b ≤ -a + b + -b := Int.add_le_add_right this (-b) rwa [Int.add_neg_cancel_right, Int.zero_add] at this protected theorem le_of_neg_le_neg {a b : Int} (h : -b ≤ -a) : a ≤ b := suffices - -a ≤ - -b by simp [Int.neg_neg] at this; assumption Int.neg_le_neg h protected theorem nonneg_of_neg_nonpos {a : Int} (h : -a ≤ 0) : 0 ≤ a := Int.le_of_neg_le_neg <| by rwa [Int.neg_zero] protected theorem neg_nonpos_of_nonneg {a : Int} (h : 0 ≤ a) : -a ≤ 0 := by have : -a ≤ -0 := Int.neg_le_neg h rwa [Int.neg_zero] at this protected theorem nonpos_of_neg_nonneg {a : Int} (h : 0 ≤ -a) : a ≤ 0 := Int.le_of_neg_le_neg <| by rwa [Int.neg_zero] protected theorem neg_nonneg_of_nonpos {a : Int} (h : a ≤ 0) : 0 ≤ -a := by have : -0 ≤ -a := Int.neg_le_neg h rwa [Int.neg_zero] at this protected theorem neg_lt_neg {a b : Int} (h : a < b) : -b < -a := by have : 0 < -a + b := Int.add_left_neg a ▸ Int.add_lt_add_left h (-a) have : 0 + -b < -a + b + -b := Int.add_lt_add_right this (-b) rwa [Int.add_neg_cancel_right, Int.zero_add] at this protected theorem lt_of_neg_lt_neg {a b : Int} (h : -b < -a) : a < b := Int.neg_neg a ▸ Int.neg_neg b ▸ Int.neg_lt_neg h protected theorem pos_of_neg_neg {a : Int} (h : -a < 0) : 0 < a := Int.lt_of_neg_lt_neg <| by rwa [Int.neg_zero] protected theorem neg_neg_of_pos {a : Int} (h : 0 < a) : -a < 0 := by have : -a < -0 := Int.neg_lt_neg h rwa [Int.neg_zero] at this protected theorem neg_of_neg_pos {a : Int} (h : 0 < -a) : a < 0 := have : -0 < -a := by rwa [Int.neg_zero] Int.lt_of_neg_lt_neg this protected theorem neg_pos_of_neg {a : Int} (h : a < 0) : 0 < -a := by have : -0 < -a := Int.neg_lt_neg h rwa [Int.neg_zero] at this protected theorem le_neg_of_le_neg {a b : Int} (h : a ≤ -b) : b ≤ -a := by have h := Int.neg_le_neg h rwa [Int.neg_neg] at h protected theorem neg_le_of_neg_le {a b : Int} (h : -a ≤ b) : -b ≤ a := by have h := Int.neg_le_neg h rwa [Int.neg_neg] at h protected theorem lt_neg_of_lt_neg {a b : Int} (h : a < -b) : b < -a := by have h := Int.neg_lt_neg h rwa [Int.neg_neg] at h protected theorem neg_lt_of_neg_lt {a b : Int} (h : -a < b) : -b < a := by have h := Int.neg_lt_neg h rwa [Int.neg_neg] at h protected theorem sub_nonneg_of_le {a b : Int} (h : b ≤ a) : 0 ≤ a - b := by have h := Int.add_le_add_right h (-b) rwa [Int.add_right_neg] at h protected theorem le_of_sub_nonneg {a b : Int} (h : 0 ≤ a - b) : b ≤ a := by have h := Int.add_le_add_right h b rwa [Int.sub_add_cancel, Int.zero_add] at h protected theorem sub_nonpos_of_le {a b : Int} (h : a ≤ b) : a - b ≤ 0 := by have h := Int.add_le_add_right h (-b) rwa [Int.add_right_neg] at h protected theorem le_of_sub_nonpos {a b : Int} (h : a - b ≤ 0) : a ≤ b := by have h := Int.add_le_add_right h b rwa [Int.sub_add_cancel, Int.zero_add] at h protected theorem sub_pos_of_lt {a b : Int} (h : b < a) : 0 < a - b := by have h := Int.add_lt_add_right h (-b) rwa [Int.add_right_neg] at h protected theorem lt_of_sub_pos {a b : Int} (h : 0 < a - b) : b < a := by have h := Int.add_lt_add_right h b rwa [Int.sub_add_cancel, Int.zero_add] at h protected theorem sub_neg_of_lt {a b : Int} (h : a < b) : a - b < 0 := by have h := Int.add_lt_add_right h (-b) rwa [Int.add_right_neg] at h protected theorem lt_of_sub_neg {a b : Int} (h : a - b < 0) : a < b := by have h := Int.add_lt_add_right h b rwa [Int.sub_add_cancel, Int.zero_add] at h protected theorem add_le_of_le_neg_add {a b c : Int} (h : b ≤ -a + c) : a + b ≤ c := by have h := Int.add_le_add_left h a rwa [Int.add_neg_cancel_left] at h protected theorem le_neg_add_of_add_le {a b c : Int} (h : a + b ≤ c) : b ≤ -a + c := by have h := Int.add_le_add_left h (-a) rwa [Int.neg_add_cancel_left] at h protected theorem add_le_of_le_sub_left {a b c : Int} (h : b ≤ c - a) : a + b ≤ c := by have h := Int.add_le_add_left h a rwa [← Int.add_sub_assoc, Int.add_comm a c, Int.add_sub_cancel] at h protected theorem le_sub_left_of_add_le {a b c : Int} (h : a + b ≤ c) : b ≤ c - a := by have h := Int.add_le_add_right h (-a) rwa [Int.add_comm a b, Int.add_neg_cancel_right] at h protected theorem add_le_of_le_sub_right {a b c : Int} (h : a ≤ c - b) : a + b ≤ c := by have h := Int.add_le_add_right h b rwa [Int.sub_add_cancel] at h protected theorem le_sub_right_of_add_le {a b c : Int} (h : a + b ≤ c) : a ≤ c - b := by have h := Int.add_le_add_right h (-b) rwa [Int.add_neg_cancel_right] at h protected theorem le_add_of_neg_add_le {a b c : Int} (h : -b + a ≤ c) : a ≤ b + c := by have h := Int.add_le_add_left h b rwa [Int.add_neg_cancel_left] at h protected theorem neg_add_le_of_le_add {a b c : Int} (h : a ≤ b + c) : -b + a ≤ c := by have h := Int.add_le_add_left h (-b) rwa [Int.neg_add_cancel_left] at h protected theorem le_add_of_sub_left_le {a b c : Int} (h : a - b ≤ c) : a ≤ b + c := by have h := Int.add_le_add_right h b rwa [Int.sub_add_cancel, Int.add_comm] at h protected theorem sub_left_le_of_le_add {a b c : Int} (h : a ≤ b + c) : a - b ≤ c := by have h := Int.add_le_add_right h (-b) rwa [Int.add_comm b c, Int.add_neg_cancel_right] at h protected theorem le_add_of_sub_right_le {a b c : Int} (h : a - c ≤ b) : a ≤ b + c := by have h := Int.add_le_add_right h c rwa [Int.sub_add_cancel] at h protected theorem sub_right_le_of_le_add {a b c : Int} (h : a ≤ b + c) : a - c ≤ b := by have h := Int.add_le_add_right h (-c) rwa [Int.add_neg_cancel_right] at h protected theorem le_add_of_neg_add_le_left {a b c : Int} (h : -b + a ≤ c) : a ≤ b + c := by rw [Int.add_comm] at h exact Int.le_add_of_sub_left_le h protected theorem neg_add_le_left_of_le_add {a b c : Int} (h : a ≤ b + c) : -b + a ≤ c := by rw [Int.add_comm] exact Int.sub_left_le_of_le_add h protected theorem le_add_of_neg_add_le_right {a b c : Int} (h : -c + a ≤ b) : a ≤ b + c := by rw [Int.add_comm] at h exact Int.le_add_of_sub_right_le h protected theorem neg_add_le_right_of_le_add {a b c : Int} (h : a ≤ b + c) : -c + a ≤ b := by rw [Int.add_comm] at h exact Int.neg_add_le_left_of_le_add h protected theorem le_add_of_neg_le_sub_left {a b c : Int} (h : -a ≤ b - c) : c ≤ a + b := Int.le_add_of_neg_add_le_left (Int.add_le_of_le_sub_right h) protected theorem neg_le_sub_left_of_le_add {a b c : Int} (h : c ≤ a + b) : -a ≤ b - c := by have h := Int.le_neg_add_of_add_le (Int.sub_left_le_of_le_add h) rwa [Int.add_comm] at h protected theorem le_add_of_neg_le_sub_right {a b c : Int} (h : -b ≤ a - c) : c ≤ a + b := Int.le_add_of_sub_right_le (Int.add_le_of_le_sub_left h) protected theorem neg_le_sub_right_of_le_add {a b c : Int} (h : c ≤ a + b) : -b ≤ a - c := Int.le_sub_left_of_add_le (Int.sub_right_le_of_le_add h) protected theorem sub_le_of_sub_le {a b c : Int} (h : a - b ≤ c) : a - c ≤ b := Int.sub_left_le_of_le_add (Int.le_add_of_sub_right_le h) protected theorem sub_le_sub_left {a b : Int} (h : a ≤ b) (c : Int) : c - b ≤ c - a := Int.add_le_add_left (Int.neg_le_neg h) c protected theorem sub_le_sub_right {a b : Int} (h : a ≤ b) (c : Int) : a - c ≤ b - c := Int.add_le_add_right h (-c) protected theorem sub_le_sub {a b c d : Int} (hab : a ≤ b) (hcd : c ≤ d) : a - d ≤ b - c := Int.add_le_add hab (Int.neg_le_neg hcd) protected theorem add_lt_of_lt_neg_add {a b c : Int} (h : b < -a + c) : a + b < c := by have h := Int.add_lt_add_left h a rwa [Int.add_neg_cancel_left] at h protected theorem lt_neg_add_of_add_lt {a b c : Int} (h : a + b < c) : b < -a + c := by have h := Int.add_lt_add_left h (-a) rwa [Int.neg_add_cancel_left] at h protected theorem add_lt_of_lt_sub_left {a b c : Int} (h : b < c - a) : a + b < c := by have h := Int.add_lt_add_left h a rwa [← Int.add_sub_assoc, Int.add_comm a c, Int.add_sub_cancel] at h protected theorem lt_sub_left_of_add_lt {a b c : Int} (h : a + b < c) : b < c - a := by have h := Int.add_lt_add_right h (-a) rwa [Int.add_comm a b, Int.add_neg_cancel_right] at h protected theorem add_lt_of_lt_sub_right {a b c : Int} (h : a < c - b) : a + b < c := by have h := Int.add_lt_add_right h b rwa [Int.sub_add_cancel] at h protected theorem lt_sub_right_of_add_lt {a b c : Int} (h : a + b < c) : a < c - b := by have h := Int.add_lt_add_right h (-b) rwa [Int.add_neg_cancel_right] at h protected theorem lt_add_of_neg_add_lt {a b c : Int} (h : -b + a < c) : a < b + c := by have h := Int.add_lt_add_left h b rwa [Int.add_neg_cancel_left] at h protected theorem neg_add_lt_of_lt_add {a b c : Int} (h : a < b + c) : -b + a < c := by have h := Int.add_lt_add_left h (-b) rwa [Int.neg_add_cancel_left] at h protected theorem lt_add_of_sub_left_lt {a b c : Int} (h : a - b < c) : a < b + c := by have h := Int.add_lt_add_right h b rwa [Int.sub_add_cancel, Int.add_comm] at h protected theorem sub_left_lt_of_lt_add {a b c : Int} (h : a < b + c) : a - b < c := by have h := Int.add_lt_add_right h (-b) rwa [Int.add_comm b c, Int.add_neg_cancel_right] at h protected theorem lt_add_of_sub_right_lt {a b c : Int} (h : a - c < b) : a < b + c := by have h := Int.add_lt_add_right h c rwa [Int.sub_add_cancel] at h protected theorem sub_right_lt_of_lt_add {a b c : Int} (h : a < b + c) : a - c < b := by have h := Int.add_lt_add_right h (-c) rwa [Int.add_neg_cancel_right] at h protected theorem lt_add_of_neg_add_lt_left {a b c : Int} (h : -b + a < c) : a < b + c := by rw [Int.add_comm] at h exact Int.lt_add_of_sub_left_lt h protected theorem neg_add_lt_left_of_lt_add {a b c : Int} (h : a < b + c) : -b + a < c := by rw [Int.add_comm] exact Int.sub_left_lt_of_lt_add h protected theorem lt_add_of_neg_add_lt_right {a b c : Int} (h : -c + a < b) : a < b + c := by rw [Int.add_comm] at h exact Int.lt_add_of_sub_right_lt h protected theorem neg_add_lt_right_of_lt_add {a b c : Int} (h : a < b + c) : -c + a < b := by rw [Int.add_comm] at h exact Int.neg_add_lt_left_of_lt_add h protected theorem lt_add_of_neg_lt_sub_left {a b c : Int} (h : -a < b - c) : c < a + b := Int.lt_add_of_neg_add_lt_left (Int.add_lt_of_lt_sub_right h) protected theorem neg_lt_sub_left_of_lt_add {a b c : Int} (h : c < a + b) : -a < b - c := by have h := Int.lt_neg_add_of_add_lt (Int.sub_left_lt_of_lt_add h) rwa [Int.add_comm] at h protected theorem lt_add_of_neg_lt_sub_right {a b c : Int} (h : -b < a - c) : c < a + b := Int.lt_add_of_sub_right_lt (Int.add_lt_of_lt_sub_left h) protected theorem neg_lt_sub_right_of_lt_add {a b c : Int} (h : c < a + b) : -b < a - c := Int.lt_sub_left_of_add_lt (Int.sub_right_lt_of_lt_add h) protected theorem sub_lt_of_sub_lt {a b c : Int} (h : a - b < c) : a - c < b := Int.sub_left_lt_of_lt_add (Int.lt_add_of_sub_right_lt h) protected theorem sub_lt_sub_left {a b : Int} (h : a < b) (c : Int) : c - b < c - a := Int.add_lt_add_left (Int.neg_lt_neg h) c protected theorem sub_lt_sub_right {a b : Int} (h : a < b) (c : Int) : a - c < b - c := Int.add_lt_add_right h (-c) protected theorem sub_lt_sub {a b c d : Int} (hab : a < b) (hcd : c < d) : a - d < b - c := Int.add_lt_add hab (Int.neg_lt_neg hcd) protected theorem sub_lt_sub_of_le_of_lt {a b c d : Int} (hab : a ≤ b) (hcd : c < d) : a - d < b - c := Int.add_lt_add_of_le_of_lt hab (Int.neg_lt_neg hcd) protected theorem sub_lt_sub_of_lt_of_le {a b c d : Int} (hab : a < b) (hcd : c ≤ d) : a - d < b - c := Int.add_lt_add_of_lt_of_le hab (Int.neg_le_neg hcd) protected theorem sub_le_self (a : Int) {b : Int} (h : 0 ≤ b) : a - b ≤ a := calc a + -b _ ≤ a + 0 := Int.add_le_add_left (Int.neg_nonpos_of_nonneg h) _ _ = a := by rw [Int.add_zero] protected theorem sub_lt_self (a : Int) {b : Int} (h : 0 < b) : a - b < a := calc a + -b _ < a + 0 := Int.add_lt_add_left (Int.neg_neg_of_pos h) _ _ = a := by rw [Int.add_zero] protected theorem add_le_add_three {a b c d e f : Int} (h₁ : a ≤ d) (h₂ : b ≤ e) (h₃ : c ≤ f) : a + b + c ≤ d + e + f := Int.add_le_add (Int.add_le_add h₁ h₂) h₃ protected theorem mul_lt_mul_of_pos_left {a b c : Int} (h₁ : a < b) (h₂ : 0 < c) : c * a < c * b := by have : 0 < c * (b - a) := Int.mul_pos h₂ (Int.sub_pos_of_lt h₁) rw [Int.mul_sub] at this exact Int.lt_of_sub_pos this protected theorem mul_lt_mul_of_pos_right {a b c : Int} (h₁ : a < b) (h₂ : 0 < c) : a * c < b * c := by have : 0 < b - a := Int.sub_pos_of_lt h₁ have : 0 < (b - a) * c := Int.mul_pos this h₂ rw [Int.sub_mul] at this exact Int.lt_of_sub_pos this protected theorem mul_le_mul_of_nonneg_left {a b c : Int} (h₁ : a ≤ b) (h₂ : 0 ≤ c) : c * a ≤ c * b := by if hba : b ≤ a then rw [Int.le_antisymm hba h₁]; apply Int.le_refl else if hc0 : c ≤ 0 then simp [Int.le_antisymm hc0 h₂, Int.zero_mul] else exact Int.le_of_lt <| Int.mul_lt_mul_of_pos_left (Int.lt_iff_le_not_le.2 ⟨h₁, hba⟩) (Int.lt_iff_le_not_le.2 ⟨h₂, hc0⟩) protected theorem mul_le_mul_of_nonneg_right {a b c : Int} (h₁ : a ≤ b) (h₂ : 0 ≤ c) : a * c ≤ b * c := by rw [Int.mul_comm, Int.mul_comm b]; exact Int.mul_le_mul_of_nonneg_left h₁ h₂ protected theorem mul_le_mul {a b c d : Int} (hac : a ≤ c) (hbd : b ≤ d) (nn_b : 0 ≤ b) (nn_c : 0 ≤ c) : a * b ≤ c * d := Int.le_trans (Int.mul_le_mul_of_nonneg_right hac nn_b) (Int.mul_le_mul_of_nonneg_left hbd nn_c) protected theorem mul_nonpos_of_nonneg_of_nonpos {a b : Int} (ha : 0 ≤ a) (hb : b ≤ 0) : a * b ≤ 0 := by have h : a * b ≤ a * 0 := Int.mul_le_mul_of_nonneg_left hb ha rwa [Int.mul_zero] at h protected theorem mul_nonpos_of_nonpos_of_nonneg {a b : Int} (ha : a ≤ 0) (hb : 0 ≤ b) : a * b ≤ 0 := by have h : a * b ≤ 0 * b := Int.mul_le_mul_of_nonneg_right ha hb rwa [Int.zero_mul] at h protected theorem mul_lt_mul {a b c d : Int} (h₁ : a < c) (h₂ : b ≤ d) (h₃ : 0 < b) (h₄ : 0 ≤ c) : a * b < c * d := Int.lt_of_lt_of_le (Int.mul_lt_mul_of_pos_right h₁ h₃) (Int.mul_le_mul_of_nonneg_left h₂ h₄) protected theorem mul_lt_mul' {a b c d : Int} (h₁ : a ≤ c) (h₂ : b < d) (h₃ : 0 ≤ b) (h₄ : 0 < c) : a * b < c * d := Int.lt_of_le_of_lt (Int.mul_le_mul_of_nonneg_right h₁ h₃) (Int.mul_lt_mul_of_pos_left h₂ h₄) protected theorem mul_neg_of_pos_of_neg {a b : Int} (ha : 0 < a) (hb : b < 0) : a * b < 0 := by have h : a * b < a * 0 := Int.mul_lt_mul_of_pos_left hb ha rwa [Int.mul_zero] at h protected theorem mul_neg_of_neg_of_pos {a b : Int} (ha : a < 0) (hb : 0 < b) : a * b < 0 := by have h : a * b < 0 * b := Int.mul_lt_mul_of_pos_right ha hb rwa [Int.zero_mul] at h protected theorem mul_le_mul_of_nonpos_right {a b c : Int} (h : b ≤ a) (hc : c ≤ 0) : a * c ≤ b * c := have : -c ≥ 0 := Int.neg_nonneg_of_nonpos hc have : b * -c ≤ a * -c := Int.mul_le_mul_of_nonneg_right h this Int.le_of_neg_le_neg <| by rwa [← Int.neg_mul_eq_mul_neg, ← Int.neg_mul_eq_mul_neg] at this protected theorem mul_nonneg_of_nonpos_of_nonpos {a b : Int} (ha : a ≤ 0) (hb : b ≤ 0) : 0 ≤ a * b := by have : 0 * b ≤ a * b := Int.mul_le_mul_of_nonpos_right ha hb rwa [Int.zero_mul] at this protected theorem mul_lt_mul_of_neg_left {a b c : Int} (h : b < a) (hc : c < 0) : c * a < c * b := have : -c > 0 := Int.neg_pos_of_neg hc have : -c * b < -c * a := Int.mul_lt_mul_of_pos_left h this have : -(c * b) < -(c * a) := by rwa [← Int.neg_mul_eq_neg_mul, ← Int.neg_mul_eq_neg_mul] at this Int.lt_of_neg_lt_neg this protected theorem mul_lt_mul_of_neg_right {a b c : Int} (h : b < a) (hc : c < 0) : a * c < b * c := have : -c > 0 := Int.neg_pos_of_neg hc have : b * -c < a * -c := Int.mul_lt_mul_of_pos_right h this have : -(b * c) < -(a * c) := by rwa [← Int.neg_mul_eq_mul_neg, ← Int.neg_mul_eq_mul_neg] at this Int.lt_of_neg_lt_neg this protected theorem mul_pos_of_neg_of_neg {a b : Int} (ha : a < 0) (hb : b < 0) : 0 < a * b := by have : 0 * b < a * b := Int.mul_lt_mul_of_neg_right ha hb rwa [Int.zero_mul] at this protected theorem mul_self_le_mul_self {a b : Int} (h1 : 0 ≤ a) (h2 : a ≤ b) : a * a ≤ b * b := Int.mul_le_mul h2 h2 h1 (Int.le_trans h1 h2) protected theorem mul_self_lt_mul_self {a b : Int} (h1 : 0 ≤ a) (h2 : a < b) : a * a < b * b := Int.mul_lt_mul' (Int.le_of_lt h2) h2 h1 (Int.lt_of_le_of_lt h1 h2) theorem exists_eq_neg_ofNat {a : Int} (H : a ≤ 0) : ∃ n : Nat, a = -(n : Int) := let ⟨n, h⟩ := eq_ofNat_of_zero_le (Int.neg_nonneg_of_nonpos H) ⟨n, Int.eq_neg_of_eq_neg h.symm⟩ theorem natAbs_of_nonneg {a : Int} (H : 0 ≤ a) : (natAbs a : Int) = a := match a, eq_ofNat_of_zero_le H with | _, ⟨_, rfl⟩ => rfl theorem ofNat_natAbs_of_nonpos {a : Int} (H : a ≤ 0) : (natAbs a : Int) = -a := by rw [← natAbs_neg, natAbs_of_nonneg (Int.neg_nonneg_of_nonpos H)] theorem lt_of_add_one_le {a b : Int} (H : a + 1 ≤ b) : a < b := H theorem add_one_le_of_lt {a b : Int} (H : a < b) : a + 1 ≤ b := H theorem lt_add_one_of_le {a b : Int} (H : a ≤ b) : a < b + 1 := Int.add_le_add_right H 1 theorem le_of_lt_add_one {a b : Int} (H : a < b + 1) : a ≤ b := Int.le_of_add_le_add_right H theorem sub_one_lt_of_le {a b : Int} (H : a ≤ b) : a - 1 < b := Int.sub_right_lt_of_lt_add <| lt_add_one_of_le H theorem le_of_sub_one_lt {a b : Int} (H : a - 1 < b) : a ≤ b := le_of_lt_add_one <| Int.lt_add_of_sub_right_lt H theorem le_sub_one_of_lt {a b : Int} (H : a < b) : a ≤ b - 1 := Int.le_sub_right_of_add_le H theorem lt_of_le_sub_one {a b : Int} (H : a ≤ b - 1) : a < b := Int.add_le_of_le_sub_right H theorem sign_eq_one_of_pos {a : Int} (h : 0 < a) : sign a = 1 := match a, eq_succ_of_zero_lt h with | _, ⟨_, rfl⟩ => rfl theorem sign_eq_neg_one_of_neg {a : Int} (h : a < 0) : sign a = -1 := match a, eq_negSucc_of_lt_zero h with | _, ⟨_, rfl⟩ => rfl theorem eq_zero_of_sign_eq_zero : ∀ {a : Int}, sign a = 0 → a = 0 | 0, _ => rfl theorem pos_of_sign_eq_one : ∀ {a : Int}, sign a = 1 → 0 < a | (_ + 1 : Nat), _ => ofNat_lt.2 (Nat.succ_pos _) theorem neg_of_sign_eq_neg_one : ∀ {a : Int}, sign a = -1 → a < 0 | (_ + 1 : Nat), h => nomatch h | 0, h => nomatch h | -[_+1], _ => negSucc_lt_zero _ theorem sign_eq_one_iff_pos (a : Int) : sign a = 1 ↔ 0 < a := ⟨pos_of_sign_eq_one, sign_eq_one_of_pos⟩ theorem sign_eq_neg_one_iff_neg (a : Int) : sign a = -1 ↔ a < 0 := ⟨neg_of_sign_eq_neg_one, sign_eq_neg_one_of_neg⟩ theorem sign_eq_zero_iff_zero (a : Int) : sign a = 0 ↔ a = 0 := ⟨eq_zero_of_sign_eq_zero, fun h => by rw [h, sign_zero]⟩ protected theorem mul_eq_zero {a b : Int} : a * b = 0 ↔ a = 0 ∨ b = 0 := by refine ⟨fun h => ?_, fun h => h.elim (by simp [·, Int.zero_mul]) (by simp [·, Int.mul_zero])⟩ exact match Int.lt_trichotomy a 0, Int.lt_trichotomy b 0 with | .inr (.inl heq₁), _ => .inl heq₁ | _, .inr (.inl heq₂) => .inr heq₂ | .inl hlt₁, .inl hlt₂ => absurd h <| Int.ne_of_gt <| Int.mul_pos_of_neg_of_neg hlt₁ hlt₂ | .inl hlt₁, .inr (.inr hgt₂) => absurd h <| Int.ne_of_lt <| Int.mul_neg_of_neg_of_pos hlt₁ hgt₂ | .inr (.inr hgt₁), .inl hlt₂ => absurd h <| Int.ne_of_lt <| Int.mul_neg_of_pos_of_neg hgt₁ hlt₂ | .inr (.inr hgt₁), .inr (.inr hgt₂) => absurd h <| Int.ne_of_gt <| Int.mul_pos hgt₁ hgt₂ protected theorem mul_ne_zero {a b : Int} (a0 : a ≠ 0) (b0 : b ≠ 0) : a * b ≠ 0 := mt Int.mul_eq_zero.1 <| not_or.2 ⟨a0, b0⟩ protected theorem eq_of_mul_eq_mul_right {a b c : Int} (ha : a ≠ 0) (h : b * a = c * a) : b = c := have : (b - c) * a = 0 := by rwa [Int.sub_mul, Int.sub_eq_zero] Int.sub_eq_zero.1 <| (Int.mul_eq_zero.1 this).resolve_right ha protected theorem eq_of_mul_eq_mul_left {a b c : Int} (ha : a ≠ 0) (h : a * b = a * c) : b = c := have : a * b - a * c = 0 := Int.sub_eq_zero_of_eq h have : a * (b - c) = 0 := by rw [Int.mul_sub, this] have : b - c = 0 := (Int.mul_eq_zero.1 this).resolve_left ha Int.eq_of_sub_eq_zero this theorem eq_one_of_mul_eq_self_left {a b : Int} (Hpos : a ≠ 0) (H : b * a = a) : b = 1 := Int.eq_of_mul_eq_mul_right Hpos <| by rw [Int.one_mul, H] theorem eq_one_of_mul_eq_self_right {a b : Int} (Hpos : b ≠ 0) (H : b * a = b) : a = 1 := Int.eq_of_mul_eq_mul_left Hpos <| by rw [Int.mul_one, H] /-! ### nat abs -/ theorem ofNat_natAbs_eq_of_nonneg : ∀ a : Int, 0 ≤ a → Int.natAbs a = a | (_:Nat), _ => rfl | -[n+1], h => absurd (negSucc_lt_zero n) (Int.not_lt.2 h) theorem eq_natAbs_iff_mul_eq_zero : natAbs a = n ↔ (a - n) * (a + n) = 0 := by rw [natAbs_eq_iff, Int.mul_eq_zero, ← Int.sub_neg, Int.sub_eq_zero, Int.sub_eq_zero] theorem natAbs_add_le (a b : Int) : natAbs (a + b) ≤ natAbs a + natAbs b := by suffices ∀ a b : Nat, natAbs (subNatNat a b.succ) ≤ (a + b).succ by match a, b with | (a:Nat), (b:Nat) => simp | (a:Nat), -[b+1] => simp; apply this | -[a+1], (b:Nat) => simp [Nat.succ_add, Nat.add_comm a b]; apply this | -[a+1], -[b+1] => simp [Nat.succ_add]; apply Nat.le_refl refine fun a b => subNatNat_elim a b.succ (fun m n i => n = b.succ → natAbs i ≤ (m + b).succ) ?_ (fun i n (e : (n + i).succ = _) => ?_) rfl · rintro i n rfl rw [Nat.add_comm _ i, Nat.add_assoc] exact Nat.le_add_right i (b.succ + b).succ · apply succ_le_succ rw [← succ.inj e, ← Nat.add_assoc, Nat.add_comm] apply Nat.le_add_right theorem natAbs_sub_le (a b : Int) : natAbs (a - b) ≤ natAbs a + natAbs b := by rw [← Int.natAbs_neg b]; apply natAbs_add_le theorem negSucc_eq' (m : Nat) : -[m+1] = -m - 1 := by simp only [negSucc_eq, Int.neg_add]; rfl theorem natAbs_lt_natAbs_of_nonneg_of_lt {a b : Int} (w₁ : 0 ≤ a) (w₂ : a < b) : a.natAbs < b.natAbs := match a, b, eq_ofNat_of_zero_le w₁, eq_ofNat_of_zero_le (Int.le_trans w₁ (Int.le_of_lt w₂)) with | _, _, ⟨_, rfl⟩, ⟨_, rfl⟩ => ofNat_lt.1 w₂ /-! ### toNat -/ theorem toNat_eq_max : ∀ a : Int, (toNat a : Int) = max a 0 | (n : Nat) => (Int.max_eq_left (ofNat_zero_le n)).symm | -[n+1] => (Int.max_eq_right (Int.le_of_lt (negSucc_lt_zero n))).symm @[simp] theorem toNat_zero : (0 : Int).toNat = 0 := rfl @[simp] theorem toNat_one : (1 : Int).toNat = 1 := rfl @[simp] theorem toNat_of_nonneg {a : Int} (h : 0 ≤ a) : (toNat a : Int) = a := by rw [toNat_eq_max, Int.max_eq_left h] @[simp] theorem toNat_ofNat (n : Nat) : toNat ↑n = n := rfl @[simp] theorem toNat_ofNat_add_one {n : Nat} : ((n : Int) + 1).toNat = n + 1 := rfl theorem self_le_toNat (a : Int) : a ≤ toNat a := by rw [toNat_eq_max]; apply Int.le_max_left @[simp] theorem le_toNat {n : Nat} {z : Int} (h : 0 ≤ z) : n ≤ z.toNat ↔ (n : Int) ≤ z := by rw [← Int.ofNat_le, Int.toNat_of_nonneg h] @[simp] theorem toNat_lt {n : Nat} {z : Int} (h : 0 ≤ z) : z.toNat < n ↔ z < (n : Int) := by rw [← Int.not_le, ← Nat.not_le, Int.le_toNat h] theorem toNat_add {a b : Int} (ha : 0 ≤ a) (hb : 0 ≤ b) : (a + b).toNat = a.toNat + b.toNat := match a, b, eq_ofNat_of_zero_le ha, eq_ofNat_of_zero_le hb with | _, _, ⟨_, rfl⟩, ⟨_, rfl⟩ => rfl theorem toNat_add_nat {a : Int} (ha : 0 ≤ a) (n : Nat) : (a + n).toNat = a.toNat + n := match a, eq_ofNat_of_zero_le ha with | _, ⟨_, rfl⟩ => rfl @[simp] theorem pred_toNat : ∀ i : Int, (i - 1).toNat = i.toNat - 1 | 0 => rfl | (n+1:Nat) => by simp [ofNat_add] | -[n+1] => rfl @[simp] theorem toNat_sub_toNat_neg : ∀ n : Int, ↑n.toNat - ↑(-n).toNat = n | 0 => rfl | (_+1:Nat) => Int.sub_zero _ | -[_+1] => Int.zero_sub _ @[simp] theorem toNat_add_toNat_neg_eq_natAbs : ∀ n : Int, n.toNat + (-n).toNat = n.natAbs | 0 => rfl | (_+1:Nat) => Nat.add_zero _ | -[_+1] => Nat.zero_add _ theorem mem_toNat' : ∀ (a : Int) (n : Nat), toNat' a = some n ↔ a = n | (m : Nat), n => Option.some_inj.trans ofNat_inj.symm | -[m+1], n => by constructor <;> intro. @[simp] theorem toNat_neg_nat : ∀ n : Nat, (-(n : Int)).toNat = 0 | 0 => rfl | _+1 => rfl
module LightClick.IR.Channel.Normalise import Data.List import Data.Vect import Toolkit.Data.DList import Toolkit.Data.DVect import LightClick.Types import LightClick.Terms import LightClick.IR.ModuleCentric import LightClick.IR.ChannelCentric import public LightClick.IR.Channel.Normalise.Error import LightClick.IR.Channel.Normalise.LetFloat import LightClick.IR.Channel.Normalise.Merge import LightClick.IR.Channel.Normalise.FreshBinders %default total export covering -- comes from Merge runMerge not being total. normalise : ChannelIR UNIT -> Either Normalise.Error (ChannelIR UNIT) normalise expr = do e' <- runLetFloat expr em' <- runMerge e' emb' <- freshBinders em' pure emb' -- --------------------------------------------------------------------- [ EOF ]
module Language.LSP.Message.Progress import Language.JSON import Language.LSP.Message.Derive import Language.LSP.Message.Utils import Language.Reflection %language ElabReflection %default total ||| Refer to https://microsoft.github.io/language-server-protocol/specification.html#progress public export ProgressToken : Type ProgressToken = OneOf [Int, String] ||| Refer to https://microsoft.github.io/language-server-protocol/specification.html#clientInitiatedProgress public export record WorkDoneProgressOptions where constructor MkWorkDoneProgressOptions workDoneProgress : Maybe Bool %runElab deriveJSON defaultOpts `{{WorkDoneProgressOptions}} ||| Refer to https://microsoft.github.io/language-server-protocol/specification.html#clientInitiatedProgress public export record WorkDoneProgressParams where constructor MkWorkDoneProgressParams workDoneToken : Maybe ProgressToken %runElab deriveJSON defaultOpts `{{WorkDoneProgressParams}} ||| Refer to https://microsoft.github.io/language-server-protocol/specification.html#partialResultParams public export record PartialResultParams where constructor MkPartialResultParams partialResultToken : Maybe ProgressToken %runElab deriveJSON defaultOpts `{{PartialResultParams}} ||| Refer to https://microsoft.github.io/language-server-protocol/specification.html#workDoneProgressBegin public export record WorkDoneProgressBegin where constructor MkWorkDoneProgressBegin title : String cancellable : Maybe Bool message : Maybe String percentage : Maybe Int %runElab deriveJSON (record {staticFields = [("kind", JString "begin")]} defaultOpts) `{{WorkDoneProgressBegin}} ||| Refer to https://microsoft.github.io/language-server-protocol/specification.html#workDoneProgressReport public export record WorkDoneProgressReport where constructor MkWorkDoneProgressReport cancellable : Maybe Bool message : Maybe String percentage : Maybe Int %runElab deriveJSON (record {staticFields = [("kind", JString "report")]} defaultOpts) `{{WorkDoneProgressReport}} ||| Refer to https://microsoft.github.io/language-server-protocol/specification.html#workDoneProgressEnd public export record WorkDoneProgressEnd where constructor MkWorkDoneProgressEnd message : Maybe String %runElab deriveJSON (record {staticFields = [("kind", JString "end")]} defaultOpts) `{{WorkDoneProgressEnd}}
context("check_response") test_that("check_response returns an error", { skip_on_cran() skip_on_travis() skip_on_appveyor() skip_if_government_down() # Sys.sleep(time = 0.5) expect_warning(ncdc_locs_cats(startdate='2100-01-01'), "no data found") # Sys.sleep(time = 0.5) expect_warning(ncdc_locs_cats(startdate='1990-01-0'), "An error occured") # Sys.sleep(time = 0.5) expect_warning( ncdc(datasetid='GHCNDS', locationid='FIPS:BR', datatypeid='PRCP', startdate = '2010-05-01', enddate = '2010-05-10') , "Error:.+") # Sys.sleep(time = 0.5) expect_warning( ncdc(datasetid='GHCND') , "Required parameter 'startdate' is missing") }) test_that("check_response returns the correct error messages", { skip_on_cran() skip_on_travis() skip_on_appveyor() skip_if_government_down() # no data found # Sys.sleep(time = 0.5) expect_warning(ncdc_locs_cats(startdate='2100-01-01'), "no data found") # wrong date input # Sys.sleep(time = 0.5) expect_warning(ncdc_locs_cats(startdate='1990-01-0'), "error occured while servicing your request") # missing startdate parameter # Sys.sleep(time = 0.5) expect_warning(ncdc(datasetid='GHCND'), "Required parameter 'startdate' is missing") # internal server error # Sys.sleep(time = 0.5) expect_warning( ncdc(datasetid='GHCNDS', locationid='FIPS:BR', datatypeid='PRCP', startdate = '2010-05-01', enddate = '2010-05-10'), "Error:.+" ) # no data found # Sys.sleep(time = 0.5) expect_warning(ncdc_datacats(startdate = '2013-10-01', locationid = "234234234"), "no data found") # bad key # Sys.sleep(time = 0.5) expect_warning(ncdc_datacats(datacategoryid="ANNAGR", token = "asdfs"), "400") # Sys.sleep(time = 0.5) # invalid longitude value - no useful server error message, gives 200 status, but empty JSON array expect_warning(ncdc_stations(extent=c(47.5204,-122.2047,47.6139,-192.1065)), "no data found") })
\documentclass[11pt]{article} \usepackage{amsfonts} \usepackage{url} \setlength{\oddsidemargin}{0in} \setlength{\evensidemargin}{0in} \setlength{\textwidth}{6.5in} \setlength{\topmargin}{0in} \setlength{\headsep}{0.5in} \setlength{\textheight}{8.5in} \setcounter{page}{1} %\pagestyle{empty} %\hbadness=10000 \begin{document} \huge \noindent {Discrete Optimization Assignment:} \vspace{0.25cm} \noindent {\bf Any Integer} \normalsize \section{Problem Statement} This assignment is designed to familiarize you with the programming assignment infrastructure. All of the assignments in this class involve writing an optimization algorithm (i.e. a program) and submitting your results with the provided submission script. In this assignment, you will write a very simple program to submit a {\em positive integer} of your choice to the course. Your grade on this assignment will be determined by the size of the integer you submit to the grader. \section{Assignment} Write an algorithm to submit a positive integer to the course. Try submitting different integers in the range from -10 to 10 to see how the grader feedback changes based on the number you submit. \section{Data Format Specification} The output is one line containing your integer, $i$. % \begin{verbatim}[Output Format] i \end{verbatim} % \paragraph{Examples} \begin{verbatim}[Output Example] -3 \end{verbatim} \begin{verbatim}[Output Example] 1 \end{verbatim} \begin{verbatim}[Output Example] 3 \end{verbatim} \section{Instructions} Edit \texttt{solver.py} and modify the \texttt{solve\_it()} function to return your integer. Your \texttt{solve\_it} implementation can be tested with the command \texttt{python ./solver.py} \paragraph{Handin} Run \texttt{submit.py} with the command, \texttt{python ./submit.py}\\ Follow the instructions to submit your integer and return to the Coursera website to view your results. There is no penalty for multiple submissions. However, it may take several minutes for your grade to appear on the website. \input{techReqs.tex} \end{document}
-- #print "---- h1" def h1 (b : Bool) : Nat := match b with | true => 0 | false => 10 #eval h1 false #print "---- h2" def h2 (x : List Nat) : Nat := match x with | [x1, x2] => x1 + x2 | x::xs => x | _ => 0 #eval h2 [1, 2] #eval h2 [10, 4, 5] #eval h2 [] #print "---- h3" def h3 (x : Array Nat) : Nat := match x with | #[x] => x | #[x, y] => x + y | xs => xs.size #eval h3 #[10] #eval h3 #[10, 20] #eval h3 #[10, 20, 30, 40] #print "---- inv" inductive Image {α β : Type} (f : α → β) : β → Type | mk (a : α) : Image f (f a) def mkImage {α β : Type} (f : α → β) (a : α) : Image f (f a) := Image.mk a def inv {α β : Type} {f : α → β} {b : β} (t : Image f b) : α := match b, t with | _, Image.mk a => a #eval inv (mkImage Nat.succ 10) theorem foo {p q} (h : p ∨ q) : q ∨ p := match h with | Or.inl h => Or.inr h | Or.inr h => Or.inl h def f (x : Nat × Nat) : Bool × Bool × Bool → Nat := match x with | (a, b) => fun _ => a structure S := (x y z : Nat := 0) def f1 : S → S := fun { x := x, ..} => { y := x } theorem ex2 : f1 { x := 10 } = { y := 10 } := rfl universes u inductive Vec (α : Type u) : Nat → Type u | nil : Vec α 0 | cons {n} (head : α) (tail : Vec α n) : Vec α (n+1) inductive VecPred {α : Type u} (P : α → Prop) : {n : Nat} → Vec α n → Prop | nil : VecPred P Vec.nil | cons {n : Nat} {head : α} {tail : Vec α n} : P head → VecPred P tail → VecPred P (Vec.cons head tail) theorem ex3 {α : Type u} (P : α → Prop) : {n : Nat} → (v : Vec α (n+1)) → VecPred P v → Exists P | _, Vec.cons head _, VecPred.cons h _ => ⟨head, h⟩ theorem ex4 {α : Type u} (P : α → Prop) : {n : Nat} → (v : Vec α (n+1)) → VecPred P v → Exists P | _, Vec.cons head _, VecPred.cons h (w : VecPred P Vec.nil) => ⟨head, h⟩ -- ERROR axiom someNat : Nat noncomputable def f2 (x : Nat) := -- must mark as noncomputable since it uses axiom `someNat` x + someNat inductive Parity : Nat -> Type | even (n) : Parity (n + n) | odd (n) : Parity (Nat.succ (n + n)) axiom nDiv2 (n : Nat) : n % 2 = 0 → n = n/2 + n/2 axiom nDiv2Succ (n : Nat) : n % 2 ≠ 0 → n = Nat.succ (n/2 + n/2) def parity (n : Nat) : Parity n := if h : n % 2 = 0 then Eq.ndrec (Parity.even (n/2)) (nDiv2 n h).symm else Eq.ndrec (Parity.odd (n/2)) (nDiv2Succ n h).symm partial def natToBin : (n : Nat) → List Bool | 0 => [] | n => match n, parity n with | _, Parity.even j => false :: natToBin j | _, Parity.odd j => true :: natToBin j #eval natToBin 6 partial def natToBin' : (n : Nat) → List Bool | 0 => [] | n => match parity n with | Parity.even j => false :: natToBin j | Parity.odd j => true :: natToBin j partial def natToBinBad (n : Nat) : List Bool := match n, parity n with | 0, _ => [] | _, Parity.even j => false :: natToBin j | _, Parity.odd j => true :: natToBin j partial def natToBin2 (n : Nat) : List Bool := match n, parity n with | _, Parity.even 0 => [] | _, Parity.even j => false :: natToBin j | _, Parity.odd j => true :: natToBin j #eval natToBin2 6 partial def natToBin2' (n : Nat) : List Bool := match parity n with | Parity.even 0 => [] | Parity.even j => false :: natToBin j | Parity.odd j => true :: natToBin j #check fun (a, b) => a -- Error type of pattern variable contains metavariables #check fun (a, b) => (a:Nat) + b #check fun (a, b) => a && b #check fun ((a : Nat), (b : Nat)) => a + b #check fun | some a, some b => some (a + b : Nat) | _, _ => none -- overapplied matcher #check fun x => (match x with | 0 => id | x+1 => id) x #check fun | #[1, 2] => 2 | #[] => 0 | #[3, 4, 5] => 3 | _ => 4 -- underapplied matcher def g {α} : List α → Nat | [a] => 1 | _ => 0 #check g.match_1 #check fun (e : Empty) => (nomatch e : False)
[STATEMENT] lemma asprod_distrib1:"m \<noteq> 0 \<Longrightarrow> m *\<^sub>a (x + y) = (m *\<^sub>a x) + (m *\<^sub>a y)" [PROOF STATE] proof (prove) goal (1 subgoal): 1. m \<noteq> 0 \<Longrightarrow> m *\<^sub>a (x + y) = m *\<^sub>a x + m *\<^sub>a y [PROOF STEP] apply (cut_tac mem_ant[of "x"], cut_tac mem_ant[of "y"]) [PROOF STATE] proof (prove) goal (1 subgoal): 1. \<lbrakk>m \<noteq> 0; x = - \<infinity> \<or> (\<exists>z. x = ant z) \<or> x = \<infinity>; y = - \<infinity> \<or> (\<exists>z. y = ant z) \<or> y = \<infinity>\<rbrakk> \<Longrightarrow> m *\<^sub>a (x + y) = m *\<^sub>a x + m *\<^sub>a y [PROOF STEP] apply (cut_tac less_linear[of "m" "0"], erule disjE, erule disjE, erule disjE, simp, erule disjE, simp add:asprod_def add_ant_def, simp, simp, (erule disjE)+, erule exE, simp add:asprod_mult, simp add:Zero_ant_def asprod_mult) [PROOF STATE] proof (prove) goal (2 subgoals): 1. \<lbrakk>m \<noteq> 0; x = - \<infinity>; (\<exists>z. y = ant z) \<or> y = \<infinity>; 0 < m\<rbrakk> \<Longrightarrow> m *\<^sub>a (- \<infinity> + y) = m *\<^sub>a (- \<infinity>) + m *\<^sub>a y 2. \<lbrakk>m \<noteq> 0; y = - \<infinity> \<or> (\<exists>z. y = ant z) \<or> y = \<infinity>; m < 0 \<or> m = 0 \<or> 0 < m; (\<exists>z. x = ant z) \<or> x = \<infinity>\<rbrakk> \<Longrightarrow> m *\<^sub>a (x + y) = m *\<^sub>a x + m *\<^sub>a y [PROOF STEP] apply (erule disjE, erule exE, simp add:asprod_mult, simp add: Zero_ant_def asprod_mult, erule disjE, erule disjE, erule disjE, erule exE, simp add:asprod_mult, simp add:Zero_ant_def asprod_mult, erule disjE, erule exE, simp add:asprod_mult, simp add:Zero_ant_def asprod_mult) [PROOF STATE] proof (prove) goal (1 subgoal): 1. \<lbrakk>m \<noteq> 0; m < 0 \<or> m = 0 \<or> 0 < m; (\<exists>z. x = ant z) \<or> x = \<infinity>; (\<exists>z. y = ant z) \<or> y = \<infinity>\<rbrakk> \<Longrightarrow> m *\<^sub>a (x + y) = m *\<^sub>a x + m *\<^sub>a y [PROOF STEP] apply (simp, erule disjE, erule exE, simp, (erule disjE)+, erule exE, simp add:asprod_mult, simp add:a_zpz, simp add:asprod_mult distrib_left, simp add:asprod_mult) [PROOF STATE] proof (prove) goal (2 subgoals): 1. \<And>z. \<lbrakk>m \<noteq> 0; (\<exists>z. y = ant z) \<or> y = \<infinity>; x = ant z; 0 < m\<rbrakk> \<Longrightarrow> m *\<^sub>a (ant z + y) = m *\<^sub>a ant z + m *\<^sub>a y 2. \<lbrakk>m \<noteq> 0; m < 0 \<or> 0 < m; (\<exists>z. y = ant z) \<or> y = \<infinity>; x = \<infinity>\<rbrakk> \<Longrightarrow> m *\<^sub>a (x + y) = m *\<^sub>a x + m *\<^sub>a y [PROOF STEP] apply (erule disjE, erule exE, simp add:a_zpz asprod_mult, simp add: distrib_left, simp add:asprod_mult, (erule disjE)+, erule exE, simp add:asprod_mult, simp, erule disjE, erule exE, simp add:asprod_mult, simp) [PROOF STATE] proof (prove) goal: No subgoals! [PROOF STEP] done
Formal statement is: lemma coeff_map_poly: assumes "f 0 = 0" shows "coeff (map_poly f p) n = f (coeff p n)" Informal statement is: If $f(0) = 0$, then the coefficient of $x^n$ in $f(p(x))$ is $f(a_n)$, where $a_n$ is the coefficient of $x^n$ in $p(x)$.
The Civilian Public Service ( CPS ) was a program of the United States government that provided conscientious objectors with an alternative to military service during World War II . From 1941 to 1947 , nearly 12 @,@ 000 draftees , willing to serve their country in some capacity but unwilling to perform any type of military service , accepted assignments in work of national importance in 152 CPS camps throughout the United States and Puerto Rico . Draftees from the historic peace churches and other faiths worked in areas such as soil conservation , forestry , fire fighting , agriculture , under the supervision of such agencies as the U.S. Forest Service , the Soil Conservation Service , and the National Park Service . Others helped provide social services and mental health services .
module QuasiDefinite # package code goes here # imports import Base.blasfunc import Base.LinAlg: BlasReal, BlasComplex, BlasFloat, BlasChar, BlasInt, blas_int, DimensionMismatch, chkstride1, chksquare # load the libQuasiDefinite include("../deps/deps.jl") #Generic LAPACK error handlers, copied from https://github.com/JuliaLang/julia/blob/master/base/linalg/lapack.jl macro assertargsok() #Handle only negative info codes - use only if positive info code is useful! :(info[1]<0 && throw(ArgumentError("invalid argument #$(-info[1]) to LAPACK call"))) end #Check that upper/lower (for special matrices) is correctly specified macro chkuplo() :((uplo=='U' || uplo=='L') || throw(ArgumentError(string("uplo argument must be 'U' (upper) or 'L' (lower), got ", repr(uplo))))) end # from SCS.jl function __init__() # default binaries need access to Julia's lapack symbols @unix_only dlopen(Base.liblapack_name, RTLD_LAZY|RTLD_DEEPBIND|RTLD_GLOBAL) end # see: https://github.com/JuliaLang/julia/blob/master/base/linalg/lapack.jl#L1735 @eval begin function qdtrf!(uplo::BlasChar, A::StridedMatrix{Float64}) chkstride1(A) chksquare(A) @chkuplo lda = max(1,stride(A,2)) lda==0 && return A, 0 info = Array(BlasInt, 1) ccall(($(blasfunc(:dqdtrf_)), libQuasiDefinite), Void, (Ptr{BlasChar}, Ptr{BlasInt}, Ptr{Float64}, Ptr{BlasInt}, Ptr{BlasInt}), &uplo, &size(A,1), A, &lda, info) @assertargsok return A, info[1] end end @eval begin function qdtf2!(uplo::BlasChar, A::StridedMatrix{Float64}) chkstride1(A) chksquare(A) @chkuplo lda = max(1,stride(A,2)) lda==0 && return A, 0 info = Array(BlasInt, 1) ccall(($(blasfunc(:dqdtf2_)), libQuasiDefinite), Void, (Ptr{BlasChar}, Ptr{BlasInt}, Ptr{Float64}, Ptr{BlasInt}, Ptr{BlasInt}), &uplo, &size(A,1), A, &lda, info) @assertargsok return A, info[1] end end @eval begin function nptf2!(A::StridedMatrix{Float64}) chkstride1(A) lda = max(1,stride(A,2)) lda==0 && return A, 0 info = Array(BlasInt, 1) ccall(($(blasfunc(:dnptf2_)), libQuasiDefinite), Void, (Ptr{BlasInt}, Ptr{BlasInt}, Ptr{Float64}, Ptr{BlasInt}, Ptr{BlasInt}), &size(A,1), &size(A,2), A, &lda, info) @assertargsok return A, info[1] end end function run() A = Float64[2 -1; -1 2] B, info = qdtrf!('U',A) println(B) println(info) end end # module
module ML.Unsupervised.Clustering.KMeans ( fit, predict, KMeans(..) ) where import Numeric.LinearAlgebra import Numeric.LinearAlgebra.Data import Data.Ratio ((%)) import Data.List (minimumBy) import qualified Data.Vector.Storable as V import Debug.Trace data KMeans a l = KMeans { centroids :: [(l, V.Vector a)] } deriving (Show, Eq) fit :: (Fractional a, Ord a, Eq l, Show l, Show a, V.Storable a) => [l] -> [V.Vector a] -> KMeans a l fit labels points = fit' (KMeans initialCentroids) where fit' kmeans = let ass = assignment kmeans updatedKmeans = update kmeans ass in if (trace ("updated assignment: " ++ show (assignment updatedKmeans)) assignment updatedKmeans) == ass then updatedKmeans else fit' updatedKmeans update kmeans ass = KMeans $ zip labels $ fmap (\l -> centerOfMass $ snd <$> filter (\x -> fst x == l) ass) labels assignment kmeans = fmap (\x -> (assign kmeans x, x)) points assign kmeans point = fst $ minimumBy (\x1 x2 -> snd x1 `compare` snd x2) $ (fmap (\(l, cent) -> (l, distance cent point))) $ centroids kmeans distance v1 v2 = V.sum $ V.zipWith (\x1 x2 -> (x2 - x1) * (x2 - x1)) v1 v2 initialCentroids = zip labels points centerOfMass :: (Fractional a, V.Storable a) => [V.Vector a] -> V.Vector a centerOfMass (p:pts) = V.map (/ (fromRational $ (toInteger $ length pts + 1) % 1)) $ foldr sumVectors p pts dim = V.length $ head points sumVectors :: (Num a, V.Storable a) => V.Vector a -> V.Vector a -> V.Vector a sumVectors = V.zipWith (+) predict :: (Ord a, Num a, V.Storable a) => KMeans a l -> V.Vector a -> l predict kmeans point = fst $ minimumBy (\x1 x2 -> snd x1 `compare` snd x2) $ (fmap (\(l, cent) -> (l, distance cent point))) $ centroids kmeans where distance v1 v2 = V.sum $ V.zipWith (\x1 x2 -> (x2 - x1) * (x2 - x1)) v1 v2 fitMatrix :: (Element a) => [l] -> Matrix a -> KMeans a l fitMatrix = undefined
% EX_LAPLACE_ISO_PLATE: solve the Poisson problem in one quarter of a plate with a hole, discretized with NURBS (isoparametric approach). % 1) PHYSICAL DATA OF THE PROBLEM clear problem_data % Physical domain, defined as NURBS map given in a text file problem_data.geo_name = 'geo_plate_with_hole.txt'; % Type of boundary conditions for each side of the domain problem_data.nmnn_sides = [3 4]; problem_data.drchlt_sides = [1 2]; % Physical parameters problem_data.c_diff = @(x, y) ones(size(x)); % Source and boundary terms problem_data.f = @(x, y) zeros(size(x)); problem_data.g = @test_plate_mixed_bc_g_nmnn; problem_data.h = @(x, y, ind) exp(x).*sin(y); % Exact solution (optional) problem_data.uex = @(x, y) exp(x).*sin (y); problem_data.graduex = @(x, y) cat (1, ... reshape (exp(x).*sin(y), [1, size(x)]), ... reshape (exp(x).*cos(y), [1, size(x)])); % 2) CHOICE OF THE DISCRETIZATION PARAMETERS clear method_data method_data.degree = [3 3]; % Degree of the splines method_data.regularity = [2 2]; % Regularity of the splines method_data.nsub = [8 8]; % Number of subdivisions method_data.nquad = [4 4]; % Points for the Gaussian quadrature rule % 3) CALL TO THE SOLVER [geometry, msh, space, u] = solve_laplace_iso (problem_data, method_data); % 4) POST-PROCESSING % 4.1) EXPORT TO PARAVIEW output_file = 'Plate_NRB_Deg3_Reg2_Sub8'; vtk_pts = {linspace(0, 1, 21), linspace(0, 1, 21)}; fprintf ('The result is saved in the file %s \n \n', output_file); sp_to_vtk (u, space, geometry, vtk_pts, output_file, 'u') % 4.2) PLOT IN MATLAB. COMPARISON WITH THE EXACT SOLUTION [eu, F] = sp_eval (u, space, geometry, vtk_pts); [X, Y] = deal (squeeze(F(1,:,:)), squeeze(F(2,:,:))); subplot (1,2,1) surf (X, Y, eu) title ('Numerical solution'), axis tight subplot (1,2,2) surf (X, Y, problem_data.uex (X,Y)) title ('Exact solution'), axis tight % Display errors of the computed solution in the L2 and H1 norm [error_h1, error_l2] = ... sp_h1_error (space, msh, u, problem_data.uex, problem_data.graduex) %!demo %! ex_laplace_iso_plate %!test %! problem_data.geo_name = 'geo_plate_with_hole.txt'; %! problem_data.nmnn_sides = [3 4]; %! problem_data.drchlt_sides = [1 2]; %! problem_data.c_diff = @(x, y) ones(size(x)); %! problem_data.f = @(x, y) zeros(size(x)); %! problem_data.g = @test_plate_mixed_bc_g_nmnn; %! problem_data.h = @(x, y, ind) exp(x).*sin(y); %! problem_data.uex = @(x, y) exp(x).*sin (y); %! problem_data.graduex = @(x, y) cat (1, ... %! reshape (exp(x).*sin(y), [1, size(x)]), ... %! reshape (exp(x).*cos(y), [1, size(x)])); %! method_data.degree = [3 3]; % Degree of the splines %! method_data.regularity = [2 2]; % Regularity of the splines %! method_data.nsub = [8 8]; % Number of subdivisions %! method_data.nquad = [4 4]; % Points for the Gaussian quadrature rule %! [geometry, msh, space, u] = solve_laplace_iso (problem_data, method_data); %! [error_h1, error_l2] = sp_h1_error (space, msh, u, problem_data.uex, problem_data.graduex); %! assert (msh.nel, 128) %! assert (space.ndof, 231) %! assert (error_h1, 6.16178098362953e-04, 1e-16) %! assert (error_l2, 4.44336164898602e-05, 1e-16)
using SimpleGraphs, ProgressMeter, SemiIsomorphism struct Trees n::Int end function Base.iterate(T::Trees, state = 0) N = T.n NN = Int128(N)^(N - 2) if state == NN return nothing end code = Int.(digits(state, base = N, pad = N - 2) .+ 1) G = prufer_restore(code) name(G, "Tree") return (G, state + 1) end Base.length(T::Trees) = Int128(T.n)^(T.n - 2) """ distinct_trees(n) Returns a list of all trees on `n` vertices that are pairwise non-isomorphic. **WARNINGS** + This can be used up to `n = 9`. Beyond that it's very slows. + Filtering out isomorphic duplicates is done by a heuristic. Tested up to `n = 9` and it works. See https://oeis.org/A000055 """ function distinct_trees(n::Int) result = Set{SimpleGraph{Int}}() seen = Set{UInt64}() P = Progress(length(Trees(n))) for T ∈ Trees(n) next!(P) uh = uhash(T) if uh ∈ seen continue end push!(seen, uh) push!(result, T) end return collect(result) end function find_semi_iso_pair(list::Vector{SimpleGraph{T}}) where {T} nG = length(list) for j = 1:nG-1 for k = j+1:nG if is_semi_iso(TT[j], TT[k]) return TT[j], TT[k] end end end println("No pair found") nothing end function find_frac_iso_pair(list::Vector{SimpleGraph{T}}) where {T} nG = length(list) for j = 1:nG-1 for k = j+1:nG if is_fiso(TT[j], TT[k]) return TT[j], TT[k] end end end println("No pair found") nothing end
module ShowNat where open import IO open import Data.Unit open import Data.Nat.Show main = run (putStrLn (Data.Nat.Show.show 10))
(* * Copyright (c) 2020, CleanQ Project - Systems Group, ETH Zurich * All rights reserved. * * This software may be distributed and modified according to the terms of * the BSD 2-Clause license. Note that NO WARRANTY is provided. * * See "LICENSE" for details. * * SPDX-License-Identifier: BSD-2-Clause *) section \<open>Set Model Simpl proofs\<close> text \<open> Due to problems importing both SIMPL and COMPLX we split the files and have all the proofs using SIMPL in this file \<close> theory CleanQ_SetModel_Simpl (*<*) imports Main CleanQ_SetModel "../Simpl/Simpl" begin (*>*) (*<*) (* Define some global variables to make Simpl/Complex proofs work *) record 'g CleanQ_Set_State_vars = SetRB_' :: "nat CleanQ_Set_State" (*>*) (* ==================================================================================== *) subsection \<open>Integration in SIMPL\<close> (* ==================================================================================== *) text \<open> We now integrate the the CleanQ Set Model into SIMPL. For each of the two operations, enqueue and dequeue, we specify a Hoare-triple with pre and post conditions, and the operation. \<close> (* ------------------------------------------------------------------------------------ *) subsubsection \<open>Enqueue Operation\<close> (* ------------------------------------------------------------------------------------ *) text \<open> We first show, that we can define a Hoare triple for the enqueue operations from both agents X and Y, and that in both cases the invariant is preserved. \<close> lemma CleanQ_Set_enq_x_preserves_invariants : "\<Gamma>\<turnstile> \<lbrace> rb' = \<acute>SetRB \<and> CleanQ_Set_Invariants K \<acute>SetRB \<and> b \<in> SX \<acute>SetRB \<rbrace> \<acute>SetRB :== (CleanQ_Set_enq_x b \<acute>SetRB) \<lbrace> CleanQ_Set_Invariants K \<acute>SetRB \<rbrace>" by(vcg, simp only: CleanQ_Set_enq_x_Invariants) lemma CleanQ_Set_enq_y_preserves_invariants : "\<Gamma>\<turnstile> \<lbrace> rb' = \<acute>SetRB \<and> CleanQ_Set_Invariants K \<acute>SetRB \<and> b \<in> SY \<acute>SetRB \<rbrace> \<acute>SetRB :== (CleanQ_Set_enq_y b \<acute>SetRB) \<lbrace> CleanQ_Set_Invariants K \<acute>SetRB \<rbrace>" by(vcg, simp only: CleanQ_Set_enq_y_Invariants) text \<open> The same applies for the multi-step \verb+eneuque_n+ operation. \<close> lemma CleanQ_Set_enq_n_x_preserves_invariants : "\<Gamma>\<turnstile> \<lbrace> rb' = \<acute>SetRB \<and> CleanQ_Set_Invariants K \<acute>SetRB \<and> (\<forall>b \<in> B. b \<in> (SX \<acute>SetRB)) \<rbrace> \<acute>SetRB :== (CleanQ_Set_enq_n_x B \<acute>SetRB) \<lbrace> CleanQ_Set_Invariants K \<acute>SetRB \<rbrace>" apply(vcg) using CleanQ_Set_enq_n_x_Invariants by blast lemma CleanQ_Set_enq_n_y_preserves_invariants : "\<Gamma>\<turnstile> \<lbrace> rb' = \<acute>SetRB \<and> CleanQ_Set_Invariants K \<acute>SetRB \<and> (\<forall>b \<in> B. b \<in> (SY \<acute>SetRB)) \<rbrace> \<acute>SetRB :== (CleanQ_Set_enq_n_y B \<acute>SetRB) \<lbrace> CleanQ_Set_Invariants K \<acute>SetRB \<rbrace>" apply(vcg) using CleanQ_Set_enq_n_y_Invariants by blast text \<open> The enqueue operation happens in two steps. The buffer element is removed from one set and added to a new set. We can express this as two sequential operations in the next lemma, where we show that the invariant is still preserved and that the outcome is the same, as with the definition above. \<close> lemma CleanQ_Set_enq_x_two_step: "\<Gamma>\<turnstile> \<lbrace> rb' = \<acute>SetRB \<and> CleanQ_Set_Invariants K \<acute>SetRB \<and> b \<in> SX \<acute>SetRB \<rbrace> \<acute>SetRB :== \<acute>SetRB \<lparr> SX := (SX \<acute>SetRB) - {b} \<rparr> ;; \<acute>SetRB :== \<acute>SetRB \<lparr> TXY := (TXY \<acute>SetRB) \<union> {b} \<rparr> \<lbrace> \<acute>SetRB = CleanQ_Set_enq_x b rb' \<and> CleanQ_Set_Invariants K \<acute>SetRB \<rbrace>" by(vcg, auto simp:CleanQ_Set_Invariants_simp CleanQ_Set_enq_x_def) lemma CleanQ_Set_enq_y_two_step: "\<Gamma>\<turnstile> \<lbrace> rb' = \<acute>SetRB \<and> CleanQ_Set_Invariants K \<acute>SetRB \<and> b \<in> SY \<acute>SetRB \<rbrace> \<acute>SetRB :== \<acute>SetRB \<lparr> SY := (SY \<acute>SetRB) - {b} \<rparr> ;; \<acute>SetRB :== \<acute>SetRB \<lparr> TYX := (TYX \<acute>SetRB) \<union> {b} \<rparr> \<lbrace> \<acute>SetRB = CleanQ_Set_enq_y b rb' \<and> CleanQ_Set_Invariants K \<acute>SetRB \<rbrace>" by(vcg, auto simp:CleanQ_Set_Invariants_simp CleanQ_Set_enq_y_def) text \<open> Next we can define this conditionally, where we only execute the enqueue operation, when we are owning the buffer. \<close> lemma CleanQ_Set_enq_x_conditional : "\<Gamma>\<turnstile> \<lbrace> CleanQ_Set_Invariants K \<acute>SetRB \<rbrace> IF b \<in> SX \<acute>SetRB THEN \<acute>SetRB :== (CleanQ_Set_enq_x b \<acute>SetRB) FI \<lbrace> CleanQ_Set_Invariants K \<acute>SetRB \<and> b \<notin> (SX \<acute>SetRB) \<rbrace>" by(vcg, auto simp:CleanQ_Set_enq_x_Invariants CleanQ_Set_enq_x_def CleanQ_Set_Invariants_simp) lemma CleanQ_Set_enq_y_conditional : "\<Gamma>\<turnstile> \<lbrace> CleanQ_Set_Invariants K \<acute>SetRB \<rbrace> IF b \<in> SY \<acute>SetRB THEN \<acute>SetRB :== (CleanQ_Set_enq_y b \<acute>SetRB) FI \<lbrace> CleanQ_Set_Invariants K \<acute>SetRB \<and> b \<notin> (SY \<acute>SetRB) \<rbrace>" by(vcg, auto simp:CleanQ_Set_enq_y_Invariants CleanQ_Set_enq_y_def CleanQ_Set_Invariants_simp) (* ------------------------------------------------------------------------------------ *) subsubsection \<open>Dequeue Operation\<close> (* ------------------------------------------------------------------------------------ *) text \<open> We first show, that we can define a Hoare triple for the dequeue operations from both agents X and Y, and that in both cases the invariant is preserved. \<close> lemma CleanQ_Set_deq_x_preserves_invariants: "\<Gamma>\<turnstile> \<lbrace> rb' = \<acute>SetRB \<and> CleanQ_Set_Invariants K \<acute>SetRB \<and> b \<in> TYX \<acute>SetRB \<rbrace> \<acute>SetRB :== (CleanQ_Set_deq_x b \<acute>SetRB) \<lbrace> CleanQ_Set_Invariants K \<acute>SetRB \<rbrace>" by(vcg, simp only: CleanQ_Set_deq_x_Invariants) lemma CleanQ_Set_deq_y_preserves_invariants: "\<Gamma>\<turnstile> \<lbrace> rb' = \<acute>SetRB \<and> CleanQ_Set_Invariants K \<acute>SetRB \<and> b \<in> TXY \<acute>SetRB \<rbrace> \<acute>SetRB :== (CleanQ_Set_deq_y b \<acute>SetRB) \<lbrace> CleanQ_Set_Invariants K \<acute>SetRB \<rbrace>" by(vcg, simp only: CleanQ_Set_deq_y_Invariants) text \<open> The same applies for the multi-step \verb+eneuque_n+ operation. \<close> lemma CleanQ_Set_deq_n_x_preserves_invariants: "\<Gamma>\<turnstile> \<lbrace> rb' = \<acute>SetRB \<and> CleanQ_Set_Invariants K \<acute>SetRB \<and> (\<forall> b \<in> B. b \<in> TYX \<acute>SetRB) \<rbrace> \<acute>SetRB :== (CleanQ_Set_deq_n_x B \<acute>SetRB) \<lbrace> CleanQ_Set_Invariants K \<acute>SetRB \<rbrace>" apply(vcg) using CleanQ_Set_deq_n_x_Invariants by blast lemma CleanQ_Set_deq_n_y_preserves_invariants: "\<Gamma>\<turnstile> \<lbrace> rb' = \<acute>SetRB \<and> CleanQ_Set_Invariants K \<acute>SetRB \<and> (\<forall> b \<in> B. b \<in> TXY \<acute>SetRB) \<rbrace> \<acute>SetRB :== (CleanQ_Set_deq_n_y B \<acute>SetRB) \<lbrace> CleanQ_Set_Invariants K \<acute>SetRB \<rbrace>" apply(vcg) using CleanQ_Set_deq_n_y_Invariants by blast text \<open> The dequeue operation effectively happens in two steps. The buffer element is removed from one set and added to a new set. We can express this as two sequential operations in the next lemma, where we show that the invariant is still preserved and that the outcome is the same, as with the definition above. \<close> lemma CleanQ_Set_deq_x_two_step: "\<Gamma>\<turnstile> \<lbrace> rb' = \<acute>SetRB \<and> CleanQ_Set_Invariants K \<acute>SetRB \<and> b \<in> TYX \<acute>SetRB \<rbrace> \<acute>SetRB :== \<acute>SetRB \<lparr> TYX := (TYX \<acute>SetRB) - {b} \<rparr> ;; \<acute>SetRB :== \<acute>SetRB \<lparr> SX := (SX \<acute>SetRB) \<union> {b} \<rparr> \<lbrace> \<acute>SetRB = CleanQ_Set_deq_x b rb' \<and> CleanQ_Set_Invariants K \<acute>SetRB \<rbrace>" by(vcg, simp add: CleanQ_Set_deq_x_def CleanQ_Set_Invariants_simp, auto) lemma CleanQ_Set_deq_y_two_step: "\<Gamma>\<turnstile> \<lbrace> rb' = \<acute>SetRB \<and> CleanQ_Set_Invariants K \<acute>SetRB \<and> b \<in> TXY \<acute>SetRB \<rbrace> \<acute>SetRB :== \<acute>SetRB \<lparr> TXY := (TXY \<acute>SetRB) - {b} \<rparr> ;; \<acute>SetRB :== \<acute>SetRB \<lparr> SY := (SY \<acute>SetRB) \<union> {b} \<rparr> \<lbrace> \<acute>SetRB = CleanQ_Set_deq_y b rb' \<and> CleanQ_Set_Invariants K \<acute>SetRB \<rbrace>" by(vcg, simp add: CleanQ_Set_deq_y_def CleanQ_Set_Invariants_simp, auto) text \<open> Next we can define this conditionally, where we only execute the enqueue operation, when we are owning the buffer \<close> lemma CleanQ_Set_deq_x_conditional: "\<Gamma>\<turnstile> \<lbrace> CleanQ_Set_Invariants K \<acute>SetRB \<rbrace> IF b \<in> TYX \<acute>SetRB THEN \<acute>SetRB :== (CleanQ_Set_deq_x b \<acute>SetRB) FI \<lbrace> CleanQ_Set_Invariants K \<acute>SetRB \<rbrace>" by (vcg, meson CleanQ_Set_deq_x_Invariants) lemma CleanQ_Set_deq_y_conditional: "\<Gamma>\<turnstile> \<lbrace> CleanQ_Set_Invariants K \<acute>SetRB \<rbrace> IF b \<in> TXY \<acute>SetRB THEN \<acute>SetRB :== (CleanQ_Set_deq_y b \<acute>SetRB) FI \<lbrace> CleanQ_Set_Invariants K \<acute>SetRB \<rbrace>" by (vcg, meson CleanQ_Set_deq_y_Invariants) (* ------------------------------------------------------------------------------------ *) subsubsection \<open>Combining Enqueue and Dequeue\<close> (* ------------------------------------------------------------------------------------ *) text \<open> We can now combine the enqeueue and dequeue operations and pass a buffer around the queue and back to the originator. We prove this by showing the state is the same. \<close> lemma CleanQ_Set_ops_combine : "\<Gamma>\<turnstile> \<lbrace> CleanQ_Set_Invariants K \<acute>SetRB \<and> rb = \<acute>SetRB \<and> b \<in> SX \<acute>SetRB \<rbrace> \<acute>SetRB :== (CleanQ_Set_enq_x b \<acute>SetRB) ;; \<acute>SetRB :== (CleanQ_Set_deq_y b \<acute>SetRB) ;; \<acute>SetRB :== (CleanQ_Set_enq_y b \<acute>SetRB) ;; \<acute>SetRB :== (CleanQ_Set_deq_x b \<acute>SetRB) \<lbrace> CleanQ_Set_Invariants K \<acute>SetRB \<and> rb = \<acute>SetRB \<and> b \<in> SX \<acute>SetRB \<rbrace>" apply(vcg, auto simp:CleanQ_Set_ops CleanQ_Set_Invariants_simp) using insert_absorb by fastforce (*<*) end (*>*)
lemma tendsto_diff_smallo: shows "(f1 \<longlongrightarrow> a) F \<Longrightarrow> f2 \<in> o[F](f1) \<Longrightarrow> ((\<lambda>x. f1 x - f2 x) \<longlongrightarrow> a) F"
Artificial Boredom: toward human-like self-directed learning. Poster at Biologically Inspired Cognitive Architectures conference, Washington, DC. Herd, S.A., Mingus, B. & O'Reilly, R.C. (2010). 2009 - Present. Moderator of the Connectionists mailing list. This page was last modified on 9 October 2018, at 11:48.
#include <stdio.h> #include <gsl/gsl_errno.h> #include <gsl/gsl_math.h> #include <gsl/gsl_min.h> double fn1 (double x, void * params) { return cos(x) + 1.0; } int main (void) { int status; int iter = 0, max_iter = 100; const gsl_min_fminimizer_type *T; gsl_min_fminimizer *s; double m = 2.0, m_expected = M_PI; double a = 0.0, b = 6.0; gsl_function F; F.function = &fn1; F.params = 0; T = gsl_min_fminimizer_brent; s = gsl_min_fminimizer_alloc (T); gsl_min_fminimizer_set (s, &F, m, a, b); printf ("using %s method\n", gsl_min_fminimizer_name (s)); printf ("%5s [%9s, %9s] %9s %10s %9s\n", "iter", "lower", "upper", "min", "err", "err(est)"); printf ("%5d [%.7f, %.7f] %.7f %+.7f %.7f\n", iter, a, b, m, m - m_expected, b - a); do { iter++; status = gsl_min_fminimizer_iterate (s); m = gsl_min_fminimizer_x_minimum (s); a = gsl_min_fminimizer_x_lower (s); b = gsl_min_fminimizer_x_upper (s); status = gsl_min_test_interval (a, b, 0.001, 0.0); if (status == GSL_SUCCESS) printf ("Converged:\n"); printf ("%5d [%.7f, %.7f] " "%.7f %+.7f %.7f\n", iter, a, b, m, m - m_expected, b - a); } while (status == GSL_CONTINUE && iter < max_iter); gsl_min_fminimizer_free (s); return status; }
\documentclass[10pt]{beamer} \usetheme[ %%% option passed to the outer theme % progressstyle=fixedCircCnt, % fixedCircCnt, movingCircCnt (moving is deault) ]{DNA} \usepackage{natbib} \usepackage{float} \usepackage{graphicx} \usepackage[labelformat=empty,font=scriptsize,skip=0pt,justification=justified,singlelinecheck=false]{caption} \usepackage[caption=false]{subfig} \usepackage{amsmath} \usepackage{mathtools} \usepackage[percent]{overpic} \usepackage{tikz} \usetikzlibrary{arrows} \usepackage{ulem} \usepackage{multimedia} \usepackage{siunitx} \DeclareSIUnit\basepair{bp} %remove the icon \setbeamertemplate{bibliography item}{} %remove line breaks \setbeamertemplate{bibliography entry title}{} \setbeamertemplate{bibliography entry location}{} \setbeamertemplate{bibliography entry note}{} %\setbeameroption{hide notes} % Only slides %\setbeameroption{show only notes} % Only notes % \setbeameroption{show notes on second screen=right} % Both % Give a slight yellow tint to the notes page \setbeamertemplate{note page}{\pagecolor{yellow!5}\insertnote}\usepackage{palatino} % If you want to change the colors of the various elements in the theme, edit and uncomment the following lines % Change the bar colors: %\setbeamercolor{DNA}{fg=red!20,bg=red} % Change the color of the structural elements: %\setbeamercolor{structure}{fg=red} % Change the frame title text color: %\setbeamercolor{frametitle}{fg=blue} % Change the normal text color background: %\setbeamercolor{normal text}{fg=black,bg=gray!10} % % beamer: How to place images behind text (z-order) % % (http://tex.stackexchange.com/a/134311) % \makeatletter % \newbox\@backgroundblock % \newenvironment{backgroundblock}[2]{% % \global\setbox\@backgroundblock=\vbox\bgroup% % \unvbox\@backgroundblock% % \vbox to0pt\bgroup\vskip#2\hbox to0pt\bgroup\hskip#1\relax% % }{\egroup\egroup\egroup} % \addtobeamertemplate{background}{\box\@backgroundblock}{} % \makeatother %------------------------------------------------------- % INCLUDE PACKAGES %------------------------------------------------------- \usepackage[utf8]{inputenc} \usepackage[english]{babel} \usepackage[T1]{fontenc} \usepackage{helvet} %------------------------------------------------------- % DEFFINING AND REDEFINING COMMANDS %------------------------------------------------------- % colored hyperlinks \newcommand{\chref}[2]{% \href{#1}{{\usebeamercolor[bg]{DNA}#2}} } %------------------------------------------------------- % INFORMATION IN THE TITLE PAGE %------------------------------------------------------- \title[] % [] is optional - is placed on the bottom of the sidebar on every slide {% is placed on the title page \textbf{Nucleosome Heterogeneity Governs Chromatin Organization} } \subtitle[Nucleosome Heterogeneity] {% \textbf{2018--12--04} } % \author[Bruno Beltran]{Trent Newman$^{1}$, \textbf{Bruno Beltran$^{2}$}, James McGehee$^{1}$, % Cori Cahoon$^{1}$, Dan Elnatan$^{1}$, Dan Chu$^{1}$, Andrew Spakowitz$^{2}$, % Sean Burgess$^{1}$ \\ % \ttfamily [email protected]} % \institute[UC Davis Mol \& Cell Bio and Stanford Biophysics]{$^{1}$Department of % Molecular and Cellular Biology, UC Davis \\ $^{2}$Department of Biophysics, % Stanford University} \author[Bruno Beltran] {Bruno Beltran \\ {\ttfamily [email protected]} } \institute[] {% Graduate Student, Spakowitz Lab\\ Biophysics PhD Program, Stanford University %there must be an empty line above this line - otherwise some unwanted space is added between the university and the country (I do not know why:( ) } % \date{February 18, 2018} %------------------------------------------------------- % THE BODY OF THE PRESENTATION %------------------------------------------------------- \begin{document} %------------------------------------------------------- % THE TITLEPAGE %------------------------------------------------------- {\1% % this is the name of the PDF file for the background \begin{frame}[plain,noframenumbering] % the plain option removes the header from the title page, noframenumbering removes the numbering of this frame only \titlepage{} % call the title page information from above \end{frame}} % \begin{frame}{Content}{} % \tableofcontents % \end{frame} \begin{frame}{Big Picture} \includegraphics[width=0.21\linewidth]{./2018-12-04-090226_878x1113_scrot.png} \includegraphics[width=0.21\linewidth]{./2018-12-04-090240_876x1102_scrot.png} \includegraphics[width=0.21\linewidth]{./2018-12-04-090256_875x1122_scrot.png} \includegraphics[width=0.21\linewidth]{./2018-12-04-090316_874x1120_scrot.png} \includegraphics[width=0.21\linewidth]{./2018-12-04-090355_874x1119_scrot.png} \end{frame} %------------------------------------------------------- \section{Introduction} %------------------------------------------------------- \begin{frame}{Chromatin} \begin{center} \includegraphics[height=0.60\textheight]{./qual-figures/chromemt-zoom.jpg} \tiny{Ou, H.D. et al.\@ \textit{ChromEMT:\@ Visualizing 3D chromatin structure and compaction in interphase and mitotic cells}. Science 357 (2017).} \note[item]{Define chromatin.} \end{center} \end{frame} \begin{frame}{Modeling Chromatin} \begin{center} \only<1>{\includegraphics[height=0.60\textheight]{./qual-figures/model-detail-slide-1.png}} \only<2>{\includegraphics[height=0.60\textheight]{./qual-figures/model-detail-slide-2.png}} \only<3>{\includegraphics[height=0.60\textheight]{./qual-figures/model-detail-slide-3.png}} \only<4>{\includegraphics[height=0.60\textheight]{./qual-figures/model-detail-slide-4.png}} \end{center} \only<2->{\tiny{Ou, H.D. et al.\@ \textit{ChromEMT:\@ Visualizing 3D chromatin structure and compaction in interphase and mitotic cells}. Science 357 (2017).}} \only<3->{\tiny{Quinn MacPherson (unpublished data)}} \end{frame} %------------------------------------------------------- \section{Results} %------------------------------------------------------- \begin{frame}{Figure 1} \begin{figure}[t] \centering \subfloat[]{\label{fig:entry-exit} \begin{overpic}[width=100pt]{./paper-figures/fig-1a-nucleosome-geometry.png} \put(16,-3){\large$\displaystyle\theta$} \put(10,59){\large$\displaystyle\Omega_\text{entry}$} \put(62,17.5){\large$\displaystyle\Omega_\text{exit}$} \end{overpic}% }\hspace{2em} \subfloat[]{\label{fig:linker-effect} \begin{overpic}[width=130pt]{./paper-figures/fig-1b-helicity-effect.png} \put(17,11){\parbox{1.5cm}{\centering DNA Helicity}} \put(-2,47){\large$\displaystyle\phi$} \put(-6,63){$\displaystyle\SI{33}{\basepair}$} \put(11,77){$\displaystyle-\SI{2}{\basepair}$} \put(40,81){$\displaystyle\SI{35}{\basepair}$} \put(61,72){$\displaystyle+\SI{2}{\basepair}$} \put(76,46.5){$\displaystyle\SI{37}{\basepair}$} \end{overpic} }% \end{figure} \end{frame} \begin{frame}{Figure 2} \begin{figure} \centering \mbox{\includegraphics[scale=1.4]{../../deepti/nuc_chain_tmp/plots/PRL/fig2a_r2_homogenous_vs_wlc-scaled.pdf} \includegraphics[scale=1.4]{../../deepti/nuc_chain_tmp/plots/PRL/fig2b_kuhn_length_in_nm_31to51links_0unwraps-with-renderings.pdf}} \end{figure} \end{frame} \begin{frame}{Figure 3} \centering \includegraphics[height=0.75\textheight]{../../deepti/nuc_chain_tmp/plots/PRL/fig-3-kuhn_length_vs_window_size_41_sigma0to40-v4.pdf} \end{frame} \begin{frame}{Figure 4} \begin{figure} \centering \mbox{\includegraphics[scale=1.4]{../../deepti/nuc_chain_tmp/plots/PRL/fig4a_r2_exp_vs_wlc-scaled.pdf} \includegraphics[scale=1.4]{../../deepti/nuc_chain_tmp/plots/PRL/fig4b_kuhn_exponential-with-images.pdf}} \end{figure} \end{frame} \begin{frame}{Figure 5} \begin{center} \includegraphics{./paper-figures/fig5_looping_hetero31to52bp_bold3curves.pdf} \end{center} \end{frame} %------------------------------------------------------- \section{Conclusion} %------------------------------------------------------- \begin{frame}{Summary} \begin{itemize}[<+->] \item On time scales longer than nucleosome turnover, chromatin is an effective WLC.\@ \begin{itemize}[<+->] \item Nucleosome heterogeneity $\to$ structural universality \item Small amounts of heterogeneity are required to justify ``maximally entropic'' approximation. \item Maximum entropy picture is well approximated by an effective WLC.\@ \end{itemize} \item On time scales shorter than nucleosome turnover, nucleosome spacing drastically affects chromatin organization. \end{itemize} \end{frame} % \begin{frame}[allowframebreaks] % \frametitle{References} % \bibliographystyle{amsalpha} % \bibliography{./multilocus.bib} % \end{frame} {\1 \begin{frame}[plain,noframenumbering] \finalpage{Thank you!} \end{frame}} \end{document}
function result = part_sf_majorize ( n, nparta, a, npartb, b ) %*****************************************************************************80 % %% PART_SF_MAJORIZE determines if partition A majorizes partition B. % % Discussion: % % The partitions must be in standard form. % % If A, with NPARTA parts, and B, with NPARTB parts, are both partitions % of the same positive integer N, then we say that A majorizes B if, % for every index K from 1 to N, it is true that % % sum ( 1 <= I <= K ) B(I) <= sum ( 1 <= I <= K ) A(I) % % where entries of A beyond index NPARTA, and of B beyond BPARTB % are assumed to be 0. We say that A strictly majorizes B if % A majorizes B, and for at least one index K the inequality is strict. % % For any two partitions of N, it is possible that A majorizes B, % B majorizes A, both partitions majorize each other (in which case % they are equal), or that neither majorizes the other. % % Licensing: % % This code is distributed under the GNU LGPL license. % % Modified: % % 27 July 2011 % % Author: % % John Burkardt % % Reference: % % Jack vanLint, Richard Wilson, % A Course in Combinatorics, % Cambridge, 1992, % ISBN: 0-521-42260-4, % LC: QA164.L56. % % Parameters: % % Input, integer N, the integer to be partitioned. % N must be positive. % % Input, integer NPARTA, the number of parts in partition A. % 1 <= NPARTA <= N. % % Input, integer A(NPARTA), contains partition A in standard % form. A(1) through A(NPARTA) contain nonzero integers which sum to N. % % Input, integer NPARTB, the number of parts in partition B. % 1 <= NPARTB <= N. % % Input, integer B(NPARTB), contains partition B in standard % form. B(1) through B(NPARTB) contain nonzero integers which sum to N. % % Output, integer RESULT, the result of the comparison. % -2, A and B are incomparable, would have been -1. % -1, A < B, (A is strictly majorized by B), % 0, A = B, (A and B are identical), % +1, A > B, (A strictly majorizes B), % +2, A and B are incomparable, would have been +1. % % % Check. % ierror = part_sf_check ( n, nparta, a ); if ( ierror ~= 0 ) fprintf ( 1, '\n' ); fprintf ( 1, 'PART_SF_MAJORIZE - Fatal error!\n' ); fprintf ( 1, ' The input array A is illegal.\n' ); error ( 'PART_SF_MAJORIZE - Fatal error!' ); end ierror = part_sf_check ( n, npartb, b ); if ( ierror ~= 0 ) fprintf ( 1, '\n' ); fprintf ( 1, 'PART_SF_MAJORIZE - Fatal error!\n' ); fprintf ( 1, ' The input array B is illegal.\n' ); error ( 'PART_SF_MAJORIZE - Fatal error!' ); end result = 0; suma = 0; sumb = 0; for i = 1 : min ( nparta, npartb ) if ( i <= nparta ) suma = suma + a(i); end if ( i <= npartb ) sumb = sumb + b(i); end if ( result == -1 ) if ( sumb < suma ) result = -2; return end elseif ( result == 0 ) if ( suma < sumb ) result = -1; elseif ( sumb < suma ) result = +1; end elseif ( result == + 1 ) if ( suma < sumb ) result = +2; return end end end return end
import face_recognition import cv2 import tqdm from scipy.io import loadmat import matplotlib.pyplot as plt if __name__ == '__main__': f_video = '../data/sample.mat' data = loadmat(f_video) images = data['image_record'].T for image in tqdm.tqdm(images): # Resize frame of video to 1/4 size for faster face detection processing frame = image[0] # small_frame = cv2.resize(frame, (0, 0), fx=0.5, fy=0.5) # Find all the faces and face encodings in the current frame of video face_locations = face_recognition.face_locations(frame, model="cnn") # Display the results for top, right, bottom, left in face_locations: # Scale back up face locations since the frame we detected in was scaled to 1/4 size # top *= 4 # right *= 4 # bottom *= 4 # left *= 4 # Extract the region of the image that contains the face face_image = frame[top:bottom, left:right] # Blur the face image face_image = cv2.GaussianBlur(face_image, (99, 99), 30) # Put the blurred face region back into the frame image frame[top:bottom, left:right] = face_image plt.imshow(frame) plt.show()
(* Title: Irrational_Series_Erdos_Straus.thy Author: Angeliki Koutsoukou-Argyraki and Wenda Li, University of Cambridge, UK. We formalise certain irrationality criteria for infinite series by P. Erdos and E.G. Straus. In particular, we formalise Theorem 2.1, Corollary 2.10 and Theorem 3.1 in [1]. The latter is an application of Theorem 2.1 involving the prime numbers. References: [1] P. Erdos and E.G. Straus, On the irrationality of certain series, Pacific Journal of Mathematics, Vol. 55, No 1, 1974 https://projecteuclid.org/euclid.pjm/1102911140 *) theory "Irrational_Series_Erdos_Straus" imports Prime_Number_Theorem.Prime_Number_Theorem Prime_Distribution_Elementary.PNT_Consequences begin section \<open>Miscellaneous\<close> lemma suminf_comparison: assumes "summable f" and "\<forall>n. norm (g n) \<le> f n" shows "suminf g \<le> suminf f" proof (rule suminf_le) show "\<forall>n. g n \<le> f n" apply rule subgoal for n using assms(2)[rule_format,of n] by auto done show "summable g" apply (rule summable_comparison_test'[OF \<open>summable f\<close>, of 0]) using assms(2) by auto show "summable f" using assms(1) . qed lemma tendsto_of_int_diff_0: assumes "(\<lambda>n. f n - of_int(g n)) \<longlonglongrightarrow> (0::real)" "\<forall>\<^sub>F n in sequentially. f n > 0" shows "\<forall>\<^sub>F n in sequentially. 0 \<le> g n" proof - have "\<forall>\<^sub>F n in sequentially. \<bar>f n - of_int(g n)\<bar> < 1 / 2" using assms(1)[unfolded tendsto_iff,rule_format,of "1/2"] by auto then show ?thesis using assms(2) apply eventually_elim by linarith qed lemma eventually_mono_sequentially: assumes "eventually P sequentially" assumes "\<And>x. P (x+k) \<Longrightarrow> Q (x+k)" shows "eventually Q sequentially" using sequentially_offset[OF assms(1),of k] apply (subst eventually_sequentially_seg[symmetric,of _ k]) apply (elim eventually_mono) by fact lemma frequently_eventually_at_top: fixes P Q::"'a::linorder \<Rightarrow> bool" assumes "frequently P at_top" "eventually Q at_top" shows "frequently (\<lambda>x. P x \<and> (\<forall>y\<ge>x. Q y) ) at_top" using assms unfolding frequently_def eventually_at_top_linorder by (metis (mono_tags, hide_lams) le_cases order_trans) lemma eventually_at_top_mono: fixes P Q::"'a::linorder \<Rightarrow> bool" assumes event_P:"eventually P at_top" assumes PQ_imp:"\<And>x. x\<ge>z \<Longrightarrow> \<forall>y\<ge>x. P y \<Longrightarrow> Q x" shows "eventually Q at_top" proof - obtain N where N_P:"\<forall>n\<ge>N. P n" using event_P[unfolded eventually_at_top_linorder] by auto define N' where "N' = max N z" have "Q x" when "x\<ge>N'" for x apply (rule PQ_imp) using N_P that unfolding N'_def by auto then show ?thesis unfolding eventually_at_top_linorder by auto qed lemma frequently_at_top_elim: fixes P Q::"'a::linorder \<Rightarrow> bool" assumes "\<exists>\<^sub>Fx in at_top. P x" assumes "\<And>i. P i \<Longrightarrow> \<exists>j>i. Q j" shows "\<exists>\<^sub>Fx in at_top. Q x" using assms unfolding frequently_def eventually_at_top_linorder by (meson leD le_cases less_le_trans) lemma less_Liminf_iff: fixes X :: "_ \<Rightarrow> _ :: complete_linorder" shows "Liminf F X < C \<longleftrightarrow> (\<exists>y<C. frequently (\<lambda>x. y \<ge> X x) F)" apply (subst Not_eq_iff[symmetric]) apply (simp add:not_less not_frequently not_le le_Liminf_iff) by force lemma sequentially_even_odd_imp: assumes "\<forall>\<^sub>F N in sequentially. P (2*N)" "\<forall>\<^sub>F N in sequentially. P (2*N+1)" shows "\<forall>\<^sub>F n in sequentially. P n" proof - obtain N where N_P:"\<forall>x\<ge>N. P (2 * x) \<and> P (2 * x + 1)" using eventually_conj[OF assms] unfolding eventually_at_top_linorder by auto define N' where "N'=2*N " have "P n" when "n\<ge>2*N" for n proof - define n' where "n'= n div 2" then have "n'\<ge>N" using that by auto then have "P (2 * n') \<and> P (2 * n' + 1)" using N_P by auto then show ?thesis unfolding n'_def apply (cases "even n") by auto qed then show ?thesis unfolding eventually_at_top_linorder by auto qed section \<open>Theorem 2.1 and Corollary 2.10\<close> context fixes a b ::"nat\<Rightarrow>int " assumes a_pos:"\<forall> n. a n >0 " and a_large:"\<forall>\<^sub>F n in sequentially. a n > 1" and ab_tendsto: "(\<lambda>n. \<bar>b n\<bar> / (a (n-1)*a n)) \<longlonglongrightarrow> 0" begin private lemma aux_series_summable: "summable (\<lambda>n. b n / (\<Prod>k\<le>n. a k))" proof - have "\<forall>e>0. \<forall>\<^sub>F x in sequentially. \<bar>b x\<bar> / (a (x-1) * a x) < e" using ab_tendsto[unfolded tendsto_iff] apply (simp add:of_int_abs[symmetric] abs_mult del:of_int_abs) by (subst (asm) (2) abs_of_pos,use \<open>\<forall> n. a n > 0\<close> in auto)+ from this[rule_format,of 1] have "\<forall>\<^sub>F x in sequentially. \<bar>real_of_int(b x)\<bar> < (a (x-1) * a x)" using \<open>\<forall> n. a n >0\<close> by auto moreover have "\<forall>n. (\<Prod>k\<le>n. real_of_int (a k)) > 0" using a_pos by (auto intro!:linordered_semidom_class.prod_pos) ultimately have "\<forall>\<^sub>F n in sequentially. \<bar>b n\<bar> / (\<Prod>k\<le>n. a k) < (a (n-1) * a n) / (\<Prod>k\<le>n. a k)" apply (elim eventually_mono) by (auto simp add:field_simps) moreover have "\<bar>b n\<bar> / (\<Prod>k\<le>n. a k) = norm (b n / (\<Prod>k\<le>n. a k))" for n using \<open>\<forall>n. (\<Prod>k\<le>n. real_of_int (a k)) > 0\<close>[rule_format,of n] by auto ultimately have "\<forall>\<^sub>F n in sequentially. norm (b n / (\<Prod>k\<le>n. a k)) < (a (n-1) * a n) / (\<Prod>k\<le>n. a k)" by algebra moreover have "summable (\<lambda>n. (a (n-1) * a n) / (\<Prod>k\<le>n. a k))" proof - obtain s where a_gt_1:"\<forall> n\<ge>s. a n >1" using a_large[unfolded eventually_at_top_linorder] by auto define cc where "cc= (\<Prod>k<s. a k)" have "cc>0" unfolding cc_def apply (rule linordered_semidom_class.prod_pos) using a_pos by auto have "(\<Prod>k\<le>n+s. a k) \<ge> cc * 2^n" for n proof - have "prod a {s..<Suc (s + n)} \<ge> 2^n" proof (induct n) case 0 then show ?case using a_gt_1 by auto next case (Suc n) moreover have "a (s + Suc n) \<ge> 2" using a_gt_1 by (smt le_add1) ultimately show ?case apply (subst prod.atLeastLessThan_Suc,simp) using mult_mono'[of 2 "a (Suc (s + n))" " 2 ^ n" "prod a {s..<Suc (s + n)}",simplified] by (simp add: mult.commute) qed moreover have "prod a {0..(n + s)} = prod a {..<s} * prod a {s..<Suc (s + n)} " using prod.atLeastLessThan_concat[of 0 s "s+n+1" a,simplified] apply (simp add: atLeastLessThanSuc_atLeastAtMost algebra_simps atLeast0LessThan) by (smt a_gt_1 le_add2 lessThan_atLeast0 mult.left_commute prod.last_plus zero_le) ultimately show ?thesis using \<open>cc>0\<close> unfolding cc_def by (simp add: atLeast0AtMost) qed then have "1/(\<Prod>k\<le>n+s. a k) \<le> 1/(cc * 2^n)" for n proof - assume asm:"\<And>n. cc * 2 ^ n \<le> prod a {..n + s}" then have "real_of_int (cc * 2 ^ n) \<le> prod a {..n + s}" using of_int_le_iff by blast moreover have "prod a {..n + s} >0" using \<open>cc>0\<close> by (simp add: a_pos prod_pos) ultimately show ?thesis using \<open>cc>0\<close> by (auto simp:field_simps simp del:of_int_prod) qed moreover have "summable (\<lambda>n. 1/(cc * 2^n))" proof - have "summable (\<lambda>n. 1/(2::int)^n)" using summable_geometric[of "1/(2::int)"] by (simp add:power_one_over) from summable_mult[OF this,of "1/cc"] show ?thesis by auto qed ultimately have "summable (\<lambda>n. 1 / (\<Prod>k\<le>n+s. a k))" apply (elim summable_comparison_test'[where N=0]) apply (unfold real_norm_def, subst abs_of_pos) by (auto simp add: \<open>\<forall>n. 0 < (\<Prod>k\<le>n. real_of_int (a k))\<close>) then have "summable (\<lambda>n. 1 / (\<Prod>k\<le>n. a k))" apply (subst summable_iff_shift[where k=s,symmetric]) by simp then have "summable (\<lambda>n. (a (n+1) * a (n+2)) / (\<Prod>k\<le>n+2. a k))" proof - assume asm:"summable (\<lambda>n. 1 / real_of_int (prod a {..n}))" have "1 / real_of_int (prod a {..n}) = (a (n+1) * a (n+2)) / (\<Prod>k\<le>n+2. a k)" for n proof - have "a (Suc (Suc n)) \<noteq> 0" "a (Suc n) \<noteq>0" using a_pos by (metis less_irrefl)+ then show ?thesis by (simp add: atLeast0_atMost_Suc atMost_atLeast0) qed then show ?thesis using asm by auto qed then show "summable (\<lambda>n. (a (n-1) * a n) / (\<Prod>k\<le>n. a k))" apply (subst summable_iff_shift[symmetric,of _ 2]) by auto qed ultimately show ?thesis apply (elim summable_comparison_test_ev[rotated]) by (simp add: eventually_mono) qed private fun get_c::"(nat \<Rightarrow> int) \<Rightarrow> (nat \<Rightarrow> int) \<Rightarrow> int \<Rightarrow> nat \<Rightarrow> (nat \<Rightarrow> int)" where "get_c a' b' B N 0 = round (B * b' N / a' N)"| "get_c a' b' B N (Suc n) = get_c a' b' B N n * a' (n+N) - B * b' (n+N)" lemma ab_rationality_imp: assumes ab_rational:"(\<Sum>n. (b n / (\<Prod>i \<le> n. a i))) \<in> \<rat>" shows "\<exists> (B::int)>0. \<exists> c::nat\<Rightarrow> int. (\<forall>\<^sub>F n in sequentially. B*b n = c n * a n - c(n+1) \<and> \<bar>c(n+1)\<bar><a n/2) \<and> (\<lambda>n. c (Suc n) / a n) \<longlonglongrightarrow> 0" proof - have [simp]:"a n \<noteq> 0" for n using a_pos by (metis less_numeral_extra(3)) obtain A::int and B::int where AB_eq:"(\<Sum>n. real_of_int (b n) / real_of_int (prod a {..n})) = A / B" and "B>0" proof - obtain q::rat where "(\<Sum>n. real_of_int (b n) / real_of_int (prod a {..n})) = real_of_rat q" using ab_rational by (rule Rats_cases) simp moreover obtain A::int and B::int where "q = Rat.Fract A B" "B > 0" "coprime A B" by (rule Rat_cases) auto ultimately show ?thesis by (auto intro!: that[of A B] simp:of_rat_rat) qed define f where "f = (\<lambda>n. b n / real_of_int (prod a {..n}))" define R where "R = (\<lambda>N. (\<Sum>n. B*b (n+N+1) / prod a {N..n+N+1}))" have all_e_ubound:"\<forall>e>0. \<forall>\<^sub>F M in sequentially. \<forall>n. \<bar>B*b (n+M+1) / prod a {M..n+M+1}\<bar> < e/4 * 1/2^n" proof safe fix e::real assume "e>0" obtain N where N_a2: "\<forall>n \<ge> N. a n \<ge> 2" and N_ba: "\<forall>n \<ge> N. \<bar>b n\<bar> / (a (n-1) * a n) < e/(4*B)" proof - have "\<forall>\<^sub>F n in sequentially. \<bar>b n\<bar> / (a (n - 1) * a n) < e/(4*B)" using order_topology_class.order_tendstoD[OF ab_tendsto,of "e/(4*B)"] \<open>B>0\<close> \<open>e>0\<close> by auto moreover have "\<forall>\<^sub>F n in sequentially. a n \<ge> 2" using a_large by (auto elim: eventually_mono) ultimately have "\<forall>\<^sub>F n in sequentially. \<bar>b n\<bar> / (a (n - 1) * a n) < e/(4*B) \<and> a n \<ge> 2" by eventually_elim auto then show ?thesis unfolding eventually_at_top_linorder using that by auto qed have geq_N_bound:"\<bar>B*b (n+M+1) / prod a {M..n+M+1}\<bar> < e/4 * 1/2^n" when "M\<ge>N" for n M proof - define D where "D = B*b (n+M+1)/ (a (n+M) * a (n+M+1))" have "\<bar>B*b (n+M+1) / prod a {M..n+M+1}\<bar> = \<bar>D / prod a {M..<n+M}\<bar>" proof - have "{M..n+M+1} = {M..<n+M} \<union> {n+M,n+M+1}" by auto then have "prod a {M..n+M+1} = a (n+M) * a (n+M+1)* prod a {M..<n+M}" by simp then show ?thesis unfolding D_def by (simp add:algebra_simps) qed also have "... < \<bar>e/4 * (1/prod a {M..<n+M})\<bar>" proof - have "\<bar>D\<bar> < e/ 4" unfolding D_def using N_ba[rule_format, of "n+M+1"] \<open>B>0\<close> \<open>M \<ge> N\<close> \<open>e>0\<close> a_pos by (auto simp:field_simps abs_mult abs_of_pos) from mult_strict_right_mono[OF this,of "1/prod a {M..<n+M}"] a_pos \<open>e>0\<close> show ?thesis apply (auto simp:abs_prod abs_mult prod_pos) by (subst (2) abs_of_pos,auto)+ qed also have "... \<le> e/4 * 1/2^n" proof - have "prod a {M..<n+M} \<ge> 2^n" proof (induct n) case 0 then show ?case by simp next case (Suc n) then show ?case using \<open>M\<ge>N\<close> by (simp add: N_a2 mult.commute mult_mono' prod.atLeastLessThan_Suc) qed then have "real_of_int (prod a {M..<n+M}) \<ge> 2^n" using numeral_power_le_of_int_cancel_iff by blast then show ?thesis using \<open>e>0\<close> by (auto simp add:divide_simps) qed finally show ?thesis . qed show "\<forall>\<^sub>F M in sequentially. \<forall>n. \<bar>real_of_int (B * b (n + M + 1)) / real_of_int (prod a {M..n + M + 1})\<bar> < e / 4 * 1 / 2 ^ n" apply (rule eventually_sequentiallyI[of N]) using geq_N_bound by blast qed have R_tendsto_0:"R \<longlonglongrightarrow> 0" proof (rule tendstoI) fix e::real assume "e>0" show "\<forall>\<^sub>F x in sequentially. dist (R x) 0 < e" using all_e_ubound[rule_format,OF \<open>e>0\<close>] proof eventually_elim case (elim M) define g where "g = (\<lambda>n. B*b (n+M+1) / prod a {M..n+M+1})" have g_lt:"\<bar>g n\<bar> < e/4 * 1/2^n" for n using elim unfolding g_def by auto have g_abs_summable:"summable (\<lambda>n. \<bar>g n\<bar>)" proof - have "summable (\<lambda>n. e/4 * 1/2^n)" using summable_geometric[of "1/2",THEN summable_mult,of "e/4",simplified] by (auto simp add:algebra_simps power_divide) then show ?thesis apply (elim summable_comparison_test') using g_lt less_eq_real_def by auto qed have "\<bar>\<Sum>n. g n\<bar> \<le> (\<Sum>n. \<bar>g n\<bar>)" by (rule summable_rabs[OF g_abs_summable]) also have "... \<le>(\<Sum>n. e/4 * 1/2^n)" proof (rule suminf_comparison) show "summable (\<lambda>n. e/4 * 1/2^n)" using summable_geometric[of "1/2",THEN summable_mult,of "e/4",simplified] by (auto simp add:algebra_simps power_divide) show "\<forall>n. norm \<bar>g n\<bar> \<le> e / 4 * 1 / 2 ^ n" using g_lt less_eq_real_def by auto qed also have "... = (e/4) * (\<Sum>n. (1/2)^n)" apply (subst suminf_mult[symmetric]) subgoal apply (rule complete_algebra_summable_geometric) by simp subgoal by (auto simp:algebra_simps power_divide) done also have "... = e/2" by (simp add:suminf_geometric[of "1/2"]) finally have "\<bar>\<Sum>n. g n\<bar> \<le> e / 2" . then show "dist (R M) 0 < e" unfolding R_def g_def using \<open>e>0\<close> by auto qed qed obtain N where R_N_bound:"\<forall>M \<ge> N. \<bar>R M\<bar> \<le> 1 / 4" and N_geometric:"\<forall>M\<ge>N. \<forall>n. \<bar>real_of_int (B * b (n + M + 1)) / (prod a {M..n + M + 1})\<bar> < 1 / 2 ^ n" proof - obtain N1 where N1:"\<forall>M \<ge> N1. \<bar>R M\<bar> \<le> 1 / 4" using metric_LIMSEQ_D[OF R_tendsto_0,of "1/4"] all_e_ubound[rule_format,of 4,unfolded eventually_sequentially] by (auto simp:less_eq_real_def) obtain N2 where N2:"\<forall>M\<ge>N2. \<forall>n. \<bar>real_of_int (B * b (n + M + 1)) / (prod a {M..n + M + 1})\<bar> < 1 / 2 ^ n" using all_e_ubound[rule_format,of 4,unfolded eventually_sequentially] by (auto simp:less_eq_real_def) define N where "N=max N1 N2" show ?thesis using that[of N] N1 N2 unfolding N_def by simp qed define C where "C = B * prod a {..<N} * (\<Sum>n<N. f n)" have "summable f" unfolding f_def using aux_series_summable . have "A * prod a {..<N} = C + B * b N / a N + R N" proof - have "A * prod a {..<N} = B * prod a {..<N} * (\<Sum>n. f n)" unfolding AB_eq f_def using \<open>B>0\<close> by auto also have "... = B * prod a {..<N} * ((\<Sum>n<N+1. f n) + (\<Sum>n. f (n+N+1)))" using suminf_split_initial_segment[OF \<open>summable f\<close>, of "N+1"] by auto also have "... = B * prod a {..<N} * ((\<Sum>n<N. f n) + f N + (\<Sum>n. f (n+N+1)))" using sum.atLeast0_lessThan_Suc by simp also have "... = C + B * b N / a N + (\<Sum>n. B*b (n+N+1) / prod a {N..n+N+1})" proof - have "B * prod a {..<N} * f N = B * b N / a N" proof - have "{..N} = {..<N} \<union> {N}" using ivl_disj_un_singleton(2) by blast then show ?thesis unfolding f_def by auto qed moreover have "B * prod a {..<N} * (\<Sum>n. f (n+N+1)) = (\<Sum>n. B*b (n+N+1) / prod a {N..n+N+1})" proof - have "summable (\<lambda>n. f (n + N + 1))" using \<open>summable f\<close> summable_iff_shift[of f "N+1"] by auto moreover have "prod a {..<N} * f (n + N + 1) = b (n + N + 1) / prod a {N..n + N + 1}" for n proof - have "{..n + N + 1} = {..<N} \<union> {N..n + N + 1}" by auto then show ?thesis unfolding f_def apply simp apply (subst prod.union_disjoint) by auto qed ultimately show ?thesis apply (subst suminf_mult[symmetric]) by (auto simp add: mult.commute mult.left_commute) qed ultimately show ?thesis unfolding C_def by (auto simp:algebra_simps) qed also have "... = C +B * b N / a N + R N" unfolding R_def by simp finally show ?thesis . qed have R_bound:"\<bar>R M\<bar> \<le> 1 / 4" and R_Suc:"R (Suc M) = a M * R M - B * b (Suc M) / a (Suc M)" when "M \<ge> N" for M proof - define g where "g = (\<lambda>n. B*b (n+M+1) / prod a {M..n+M+1})" have g_abs_summable:"summable (\<lambda>n. \<bar>g n\<bar>)" proof - have "summable (\<lambda>n.(1::real)/2^n)" using summable_geometric[of "(1::real)/2",simplified] by (auto elim!: back_subst[of "summable"] simp:field_simps) moreover have "\<bar>g n\<bar> < 1/2^n" for n using N_geometric[rule_format,OF that] unfolding g_def by simp ultimately show ?thesis apply (elim summable_comparison_test') using less_eq_real_def by auto qed show "\<bar>R M\<bar> \<le> 1 / 4" using R_N_bound[rule_format,OF that] . have "R M = (\<Sum>n. g n)" unfolding R_def g_def by simp also have "... = g 0 + (\<Sum>n. g (Suc n))" apply (subst suminf_split_head) using summable_rabs_cancel[OF g_abs_summable] by auto also have "... = g 0 + 1/a M * (\<Sum>n. a M * g (Suc n))" apply (subst suminf_mult) by (auto simp add: g_abs_summable summable_Suc_iff summable_rabs_cancel) also have "... = g 0 + 1/a M * R (Suc M)" proof - have "a M * g (Suc n) = B * b (n + M + 2) / prod a {Suc M..n + M + 2}" for n proof - have "{M..Suc (Suc (M + n))} = {M} \<union> {Suc M..Suc (Suc (M + n))}" by auto then show ?thesis unfolding g_def using \<open>B>0\<close> by (auto simp add:algebra_simps) qed then have "(\<Sum>n. a M * g (Suc n)) = R (Suc M)" unfolding R_def by auto then show ?thesis by auto qed finally have "R M = g 0 + 1 / a M * R (Suc M)" . then have "R (Suc M) = a M * R M - g 0 * a M" by (auto simp add:algebra_simps) moreover have "{M..Suc M} = {M,Suc M}" by auto ultimately show "R (Suc M) = a M * R M - B * b (Suc M) / a (Suc M)" unfolding g_def by auto qed define c where "c = (\<lambda>n. if n\<ge>N then get_c a b B N (n-N) else undefined)" have c_rec:"c (n+1) = c n * a n - B * b n" when "n \<ge> N" for n unfolding c_def using that by (auto simp:Suc_diff_le) have c_R:"c (Suc n) / a n = R n" when "n \<ge> N" for n using that proof (induct rule:nat_induct_at_least) case base have "\<bar> c (N+1) / a N \<bar> \<le> 1/2" proof - have "c N = round (B * b N / a N)" unfolding c_def by simp moreover have "c (N+1) / a N = c N - B * b N / a N" using a_pos[rule_format,of N] by (auto simp add:c_rec[of N,simplified] divide_simps) ultimately show ?thesis using of_int_round_abs_le by auto qed moreover have "\<bar>R N\<bar> \<le> 1 / 4" using R_bound[of N] by simp ultimately have "\<bar>c (N+1) / a N - R N \<bar> < 1" by linarith moreover have "c (N+1) / a N - R N \<in> \<int>" proof - have "c (N+1) / a N = c N - B * b N / a N" using a_pos[rule_format,of N] by (auto simp add:c_rec[of N,simplified] divide_simps) moreover have " B * b N / a N + R N \<in> \<int>" proof - have "C = B * (\<Sum>n<N. prod a {..<N} * (b n / prod a {..n}))" unfolding C_def f_def by (simp add:sum_distrib_left algebra_simps) also have "... = B * (\<Sum>n<N. prod a {n<..<N} * b n)" proof - have "{..<N} = {n<..<N} \<union> {..n}" if "n<N" for n by (simp add: ivl_disj_un_one(1) sup_commute that) then show ?thesis using \<open>B>0\<close> apply simp apply (subst prod.union_disjoint) by auto qed finally have "C = real_of_int (B * (\<Sum>n<N. prod a {n<..<N} * b n))" . then have "C \<in> \<int>" using Ints_of_int by blast moreover note \<open>A * prod a {..<N} = C + B * b N / a N + R N\<close> ultimately show ?thesis by (metis Ints_diff Ints_of_int add.assoc add_diff_cancel_left') qed ultimately show ?thesis by (simp add: diff_diff_add) qed ultimately have "c (N+1) / a N - R N = 0" by (metis Ints_cases less_irrefl of_int_0 of_int_lessD) then show ?case by simp next case (Suc n) have "c (Suc (Suc n)) / a (Suc n) = c (Suc n) - B * b (Suc n) / a (Suc n)" apply (subst c_rec[of "Suc n",simplified]) using \<open>N \<le> n\<close> by (auto simp add: divide_simps) also have "... = a n * R n - B * b (Suc n) / a (Suc n)" using Suc by (auto simp: divide_simps) also have "... = R (Suc n)" using R_Suc[OF \<open>N \<le> n\<close>] by simp finally show ?case . qed have ca_tendsto_zero:"(\<lambda>n. c (Suc n) / a n) \<longlonglongrightarrow> 0" using R_tendsto_0 apply (elim filterlim_mono_eventually) using c_R by (auto intro!:eventually_sequentiallyI[of N]) have ca_bound:"\<bar>c (n + 1)\<bar> < a n / 2" when "n \<ge> N" for n proof - have "\<bar>c (Suc n)\<bar> / a n = \<bar>c (Suc n) / a n\<bar>" using a_pos[rule_format,of n] by auto also have "... = \<bar>R n\<bar>" using c_R[OF that] by auto also have "... < 1/2" using R_bound[OF that] by auto finally have "\<bar>c (Suc n)\<bar> / a n < 1/2" . then show ?thesis using a_pos[rule_format,of n] by auto qed (* (* the following part corresponds to (2.7) (2.8) in the original paper, but turns out to be not necessary. *) have c_round:"c n = round (B * b n / a n)" when "n \<ge> N" for n proof (cases "n=N") case True then show ?thesis unfolding c_def by simp next case False with \<open>n\<ge>N\<close> obtain n' where n_Suc:"n=Suc n'" and "n' \<ge> N" by (metis le_eq_less_or_eq lessE less_imp_le_nat) have "B * b n / a n = c n - R n" proof - have "R n = c n - B * b n / a n" using c_R[OF \<open>n'\<ge>N\<close>,symmetric,folded n_Suc] R_Suc[OF \<open>n'\<ge>N\<close>,folded n_Suc] by (auto simp:field_simps) then show ?thesis by (auto simp:field_simps) qed then have "\<bar>B * b n / a n - c n\<bar> = \<bar>R n\<bar>" by auto then have "\<bar>B * b n / a n - c n\<bar> < 1/2" using R_bound[OF \<open>n \<ge> N\<close>] by auto from round_unique'[OF this] show ?thesis by auto qed *) show "\<exists>B>0. \<exists>c. (\<forall>\<^sub>F n in sequentially. B * b n = c n * a n - c (n + 1) \<and> real_of_int \<bar>c (n + 1)\<bar> < a n / 2) \<and> (\<lambda>n. c (Suc n) / a n) \<longlonglongrightarrow> 0" unfolding eventually_at_top_linorder apply (rule exI[of _ B],use \<open>B>0\<close> in simp) apply (intro exI[of _c] exI[of _ N]) using c_rec ca_bound ca_tendsto_zero by fastforce qed private lemma imp_ab_rational: assumes "\<exists> (B::int)>0. \<exists> c::nat\<Rightarrow> int. (\<forall>\<^sub>F n in sequentially. B*b n = c n * a n - c(n+1) \<and> \<bar>c(n+1)\<bar><a n/2)" shows "(\<Sum>n. (b n / (\<Prod>i \<le> n. a i))) \<in> \<rat>" proof - obtain B::int and c::"nat\<Rightarrow>int" and N::nat where "B>0" and large_n:"\<forall>n\<ge>N. B * b n = c n * a n - c (n + 1) \<and> real_of_int \<bar>c (n + 1)\<bar> < a n / 2 \<and> a n\<ge>2" proof - obtain B c where "B>0" and event1:"\<forall>\<^sub>F n in sequentially. B * b n = c n * a n - c (n + 1) \<and> real_of_int \<bar>c (n + 1)\<bar> < real_of_int (a n) / 2" using assms by auto from eventually_conj[OF event1 a_large,unfolded eventually_at_top_linorder] obtain N where "\<forall>n\<ge>N. (B * b n = c n * a n - c (n + 1) \<and> real_of_int \<bar>c (n + 1)\<bar> < real_of_int (a n) / 2) \<and> 2 \<le> a n" by fastforce then show ?thesis using that[of B N c] \<open>B>0\<close> by auto qed define f where "f=(\<lambda>n. real_of_int (b n) / real_of_int (prod a {..n}))" define S where "S = (\<Sum>n. f n)" have "summable f" unfolding f_def by (rule aux_series_summable) define C where "C=B*prod a {..<N} * (\<Sum>n<N. f n)" have "B*prod a {..<N} * S = C + real_of_int (c N)" proof - define h1 where "h1= (\<lambda>n. (c (n+N) * a (n+N)) / prod a {N..n+N})" define h2 where "h2 = (\<lambda>n. c (n+N+1) / prod a {N..n+N})" have f_h12:"B*prod a {..<N}*f (n+N) = h1 n - h2 n" for n proof - define g1 where "g1 = (\<lambda>n. B * b (n+N))" define g2 where "g2 = (\<lambda>n. prod a {..<N} / prod a {..n + N})" have "B*prod a {..<N}*f (n+N) = (g1 n * g2 n)" unfolding f_def g1_def g2_def by (auto simp:algebra_simps) moreover have "g1 n = c (n+N) * a (n+N) - c (n+N+1)" using large_n[rule_format,of "n+N"] unfolding g1_def by auto moreover have "g2 n = (1/prod a {N..n+N})" proof - have "prod a ({..<N} \<union> {N..n + N}) = prod a {..<N} * prod a {N..n + N}" apply (rule prod.union_disjoint[of "{..<N}" "{N..n+N}" a]) by auto moreover have "prod a ({..<N} \<union> {N..n + N}) = prod a {..n+N}" by (simp add: ivl_disj_un_one(4)) ultimately show ?thesis unfolding g2_def apply simp using a_pos by (metis less_irrefl) qed ultimately have "B*prod a {..<N}*f (n+N) = (c (n+N) * a (n+N) - c (n+N+1)) / prod a {N..n+N}" by auto also have "... = h1 n - h2 n" unfolding h1_def h2_def by (auto simp:algebra_simps diff_divide_distrib) finally show ?thesis by simp qed have "B*prod a {..<N} * S = B*prod a {..<N} * ((\<Sum>n<N. f n) + (\<Sum>n. f (n+N)))" using suminf_split_initial_segment[OF \<open>summable f\<close>,of N] unfolding S_def by (auto simp:algebra_simps) also have "... = C + B*prod a {..<N}*(\<Sum>n. f (n+N))" unfolding C_def by (auto simp:algebra_simps) also have "... = C + (\<Sum>n. h1 n - h2 n)" apply (subst suminf_mult[symmetric]) subgoal using \<open>summable f\<close> by (simp add: summable_iff_shift) subgoal using f_h12 by auto done also have "... = C + h1 0" proof - have "(\<lambda>n. \<Sum>i\<le>n. h1 i - h2 i) \<longlonglongrightarrow> (\<Sum>i. h1 i - h2 i)" proof (rule summable_LIMSEQ') have "(\<lambda>i. h1 i - h2 i) = (\<lambda>i. real_of_int (B * prod a {..<N}) * f (i + N))" using f_h12 by auto then show "summable (\<lambda>i. h1 i - h2 i)" using \<open>summable f\<close> by (simp add: summable_iff_shift summable_mult) qed moreover have "(\<Sum>i\<le>n. h1 i - h2 i) = h1 0 - h2 n" for n proof (induct n) case 0 then show ?case by simp next case (Suc n) have "(\<Sum>i\<le>Suc n. h1 i - h2 i) = (\<Sum>i\<le>n. h1 i - h2 i) + h1 (n+1) - h2 (n+1)" by auto also have "... = h1 0 - h2 n + h1 (n+1) - h2 (n+1)" using Suc by auto also have "... = h1 0 - h2 (n+1)" proof - have "h2 n = h1 (n+1)" unfolding h2_def h1_def apply (auto simp:prod.nat_ivl_Suc') using a_pos by (metis less_numeral_extra(3)) then show ?thesis by auto qed finally show ?case by simp qed ultimately have "(\<lambda>n. h1 0 - h2 n) \<longlonglongrightarrow> (\<Sum>i. h1 i - h2 i)" by simp then have "h2 \<longlonglongrightarrow> (h1 0 - (\<Sum>i. h1 i - h2 i))" apply (elim metric_tendsto_imp_tendsto) by (auto intro!:eventuallyI simp add:dist_real_def) moreover have "h2 \<longlonglongrightarrow> 0" proof - have h2_n:"\<bar>h2 n\<bar> < (1 / 2)^(n+1)" for n proof - have "\<bar>h2 n\<bar> = \<bar>c (n + N + 1)\<bar> / prod a {N..n + N}" unfolding h2_def abs_divide using a_pos by (simp add: abs_of_pos prod_pos) also have "... < (a (N+n) / 2) / prod a {N..n + N}" unfolding h2_def apply (rule divide_strict_right_mono) subgoal using large_n[rule_format,of "N+n"] by (auto simp add:algebra_simps) subgoal using a_pos by (simp add: prod_pos) done also have "... = 1 / (2*prod a {N..<n + N})" apply (subst ivl_disj_un(6)[of N "n+N",symmetric]) using a_pos[rule_format,of "N+n"] by (auto simp add:algebra_simps) also have "... \<le> (1/2)^(n+1)" proof (induct n) case 0 then show ?case by auto next case (Suc n) define P where "P=1 / real_of_int (2 * prod a {N..<n + N})" have "1 / real_of_int (2 * prod a {N..<Suc n + N}) = P / a (n+N)" unfolding P_def by (auto simp add: prod.atLeastLessThan_Suc) also have "... \<le> ( (1 / 2) ^ (n + 1) ) / a (n+N) " apply (rule divide_right_mono) subgoal unfolding P_def using Suc by auto subgoal by (simp add: a_pos less_imp_le) done also have "... \<le> ( (1 / 2) ^ (n + 1) ) / 2 " apply (rule divide_left_mono) using large_n[rule_format,of "n+N",simplified] by auto also have "... = (1 / 2) ^ (n + 2)" by auto finally show ?case by simp qed finally show ?thesis . qed have "(\<lambda>n. (1 / 2)^(n+1)) \<longlonglongrightarrow> (0::real)" using tendsto_mult_right_zero[OF LIMSEQ_abs_realpow_zero2[of "1/2",simplified],of "1/2"] by auto then show ?thesis apply (elim Lim_null_comparison[rotated]) using h2_n less_eq_real_def by (auto intro!:eventuallyI) qed ultimately have "(\<Sum>i. h1 i - h2 i) = h1 0" using LIMSEQ_unique by fastforce then show ?thesis by simp qed also have "... = C + c N" unfolding h1_def using a_pos by auto (metis less_irrefl) finally show ?thesis . qed then have "S = (C + real_of_int (c N)) / (B*prod a {..<N})" by (metis \<open>0 < B\<close> a_pos less_irrefl mult.commute mult_pos_pos nonzero_mult_div_cancel_right of_int_eq_0_iff prod_pos) moreover have "... \<in> \<rat>" unfolding C_def f_def by (intro Rats_divide Rats_add Rats_mult Rats_of_int Rats_sum) ultimately show "S \<in> \<rat>" by auto qed theorem theorem_2_1_Erdos_Straus : "(\<Sum>n. (b n / (\<Prod>i \<le> n. a i))) \<in> \<rat> \<longleftrightarrow> (\<exists> (B::int)>0. \<exists> c::nat\<Rightarrow> int. (\<forall>\<^sub>F n in sequentially. B*b n = c n * a n - c(n+1) \<and> \<bar>c(n+1)\<bar><a n/2))" using ab_rationality_imp imp_ab_rational by auto text\<open>The following is a Corollary to Theorem 2.1. \<close> corollary corollary_2_10_Erdos_Straus: assumes ab_event:"\<forall>\<^sub>F n in sequentially. b n > 0 \<and> a (n+1) \<ge> a n" and ba_lim_leq:"lim (\<lambda>n. (b(n+1) - b n )/a n) \<le> 0" and ba_lim_exist:"convergent (\<lambda>n. (b(n+1) - b n )/a n)" and "liminf (\<lambda>n. a n / b n) = 0 " shows "(\<Sum>n. (b n / (\<Prod>i \<le> n. a i))) \<notin> \<rat>" proof assume "(\<Sum>n. (b n / (\<Prod>i \<le> n. a i))) \<in> \<rat>" then obtain B c where "B>0" and abc_event:"\<forall>\<^sub>F n in sequentially. B * b n = c n * a n - c (n + 1) \<and> \<bar>c (n + 1)\<bar> < a n / 2" and ca_vanish: "(\<lambda>n. c (Suc n) / a n) \<longlonglongrightarrow> 0" using ab_rationality_imp by auto have bac_close:"(\<lambda>n. B * b n / a n - c n) \<longlonglongrightarrow> 0" proof - have "\<forall>\<^sub>F n in sequentially. B * b n - c n * a n + c (n + 1) = 0" using abc_event by (auto elim!:eventually_mono) then have "\<forall>\<^sub>F n in sequentially. (B * b n - c n * a n + c (n+1)) / a n = 0 " apply eventually_elim by auto then have "\<forall>\<^sub>F n in sequentially. B * b n / a n - c n + c (n + 1) / a n = 0" apply eventually_elim using a_pos by (auto simp:divide_simps) (metis less_irrefl) then have "(\<lambda>n. B * b n / a n - c n + c (n + 1) / a n) \<longlonglongrightarrow> 0" by (simp add: eventually_mono tendsto_iff) from tendsto_diff[OF this ca_vanish] show ?thesis by auto qed have c_pos:"\<forall>\<^sub>F n in sequentially. c n > 0" proof - from bac_close have *:"\<forall>\<^sub>F n in sequentially. c n \<ge> 0" apply (elim tendsto_of_int_diff_0) using ab_event a_large apply (eventually_elim) using \<open>B>0\<close> by auto show ?thesis proof (rule ccontr) assume "\<not> (\<forall>\<^sub>F n in sequentially. c n > 0)" moreover have "\<forall>\<^sub>F n in sequentially. c (Suc n) \<ge> 0 \<and> c n\<ge>0" using * eventually_sequentially_Suc[of "\<lambda>n. c n\<ge>0"] by (metis (mono_tags, lifting) eventually_at_top_linorder le_Suc_eq) ultimately have "\<exists>\<^sub>F n in sequentially. c n = 0 \<and> c (Suc n) \<ge> 0" using eventually_elim2 frequently_def by fastforce moreover have "\<forall>\<^sub>F n in sequentially. b n > 0 \<and> B * b n = c n * a n - c (n + 1)" using ab_event abc_event by eventually_elim auto ultimately have "\<exists>\<^sub>F n in sequentially. c n = 0 \<and> c (Suc n) \<ge> 0 \<and> b n > 0 \<and> B * b n = c n * a n - c (n + 1)" using frequently_eventually_frequently by fastforce from frequently_ex[OF this] obtain n where "c n = 0" "c (Suc n) \<ge> 0" "b n > 0" "B * b n = c n * a n - c (n + 1)" by auto then have "B * b n \<le> 0" by auto then show False using \<open>b n>0\<close> \<open>B > 0\<close> using mult_pos_pos not_le by blast qed qed have bc_epsilon:"\<forall>\<^sub>F n in sequentially. b (n+1) / b n > (c (n+1) - \<epsilon>) / c n" when "\<epsilon>>0" "\<epsilon><1" for \<epsilon>::real proof - have "\<forall>\<^sub>F x in sequentially. \<bar>c (Suc x) / a x\<bar> < \<epsilon> / 2" using ca_vanish[unfolded tendsto_iff,rule_format, of "\<epsilon>/2"] \<open>\<epsilon>>0\<close> by auto moreover then have "\<forall>\<^sub>F x in sequentially. \<bar>c (x+2) / a (x+1)\<bar> < \<epsilon> / 2" apply (subst (asm) eventually_sequentially_Suc[symmetric]) by simp moreover have "\<forall>\<^sub>F n in sequentially. B * b (n+1) = c (n+1) * a (n+1) - c (n + 2)" using abc_event apply (subst (asm) eventually_sequentially_Suc[symmetric]) by (auto elim:eventually_mono) moreover have "\<forall>\<^sub>F n in sequentially. c n > 0 \<and> c (n+1) > 0 \<and> c (n+2) > 0" proof - have "\<forall>\<^sub>F n in sequentially. 0 < c (Suc n)" using c_pos by (subst eventually_sequentially_Suc) simp moreover then have "\<forall>\<^sub>F n in sequentially. 0 < c (Suc (Suc n))" using c_pos by (subst eventually_sequentially_Suc) simp ultimately show ?thesis using c_pos by eventually_elim auto qed ultimately show ?thesis using ab_event abc_event proof eventually_elim case (elim n) define \<epsilon>\<^sub>0 \<epsilon>\<^sub>1 where "\<epsilon>\<^sub>0 = c (n+1) / a n" and "\<epsilon>\<^sub>1 = c (n+2) / a (n+1)" have "\<epsilon>\<^sub>0 > 0" "\<epsilon>\<^sub>1 > 0" "\<epsilon>\<^sub>0 < \<epsilon>/2" "\<epsilon>\<^sub>1 < \<epsilon>/2" using a_pos elim by (auto simp add: \<epsilon>\<^sub>0_def \<epsilon>\<^sub>1_def) have "(\<epsilon> - \<epsilon>\<^sub>1) * c n > 0" apply (rule mult_pos_pos) using \<open>\<epsilon>\<^sub>1 > 0\<close> \<open>\<epsilon>\<^sub>1 < \<epsilon>/2\<close> \<open>\<epsilon>>0\<close> elim by auto moreover have "\<epsilon>\<^sub>0 * (c (n+1) - \<epsilon>) > 0" apply (rule mult_pos_pos[OF \<open>\<epsilon>\<^sub>0 > 0\<close>]) using elim(4) that(2) by linarith ultimately have "(\<epsilon> - \<epsilon>\<^sub>1) * c n + \<epsilon>\<^sub>0 * (c (n+1) - \<epsilon>) > 0" by auto moreover have "c n - \<epsilon>\<^sub>0 > 0" using \<open>\<epsilon>\<^sub>0 < \<epsilon> / 2\<close> elim(4) that(2) by linarith moreover have "c n > 0" by (simp add: elim(4)) ultimately have "(c (n+1) - \<epsilon>) / c n < (c (n+1) - \<epsilon>\<^sub>1) / (c n - \<epsilon>\<^sub>0)" by (auto simp add: field_simps) also have "... \<le> (c (n+1) - \<epsilon>\<^sub>1) / (c n - \<epsilon>\<^sub>0) * (a (n+1) / a n)" proof - have "(c (n+1) - \<epsilon>\<^sub>1) / (c n - \<epsilon>\<^sub>0) > 0" by (smt \<open>0 < (\<epsilon> - \<epsilon>\<^sub>1) * real_of_int (c n)\<close> \<open>0 < real_of_int (c n) - \<epsilon>\<^sub>0\<close> divide_pos_pos elim(4) mult_le_0_iff of_int_less_1_iff that(2)) moreover have "(a (n+1) / a n) \<ge> 1" using a_pos elim(5) by auto ultimately show ?thesis by (metis mult_cancel_left1 real_mult_le_cancel_iff2) qed also have "... = (B * b (n+1)) / (B * b n)" proof - have "B * b n = c n * a n - c (n + 1)" using elim by auto also have "... = a n * (c n - \<epsilon>\<^sub>0)" using a_pos[rule_format,of n] unfolding \<epsilon>\<^sub>0_def by (auto simp:field_simps) finally have "B * b n = a n * (c n - \<epsilon>\<^sub>0)" . moreover have "B * b (n+1) = a (n+1) * (c (n+1) - \<epsilon>\<^sub>1)" unfolding \<epsilon>\<^sub>1_def using a_pos[rule_format,of "n+1"] apply (subst \<open>B * b (n + 1) = c (n + 1) * a (n + 1) - c (n + 2)\<close>) by (auto simp:field_simps) ultimately show ?thesis by (simp add: mult.commute) qed also have "... = b (n+1) / b n" using \<open>B>0\<close> by auto finally show ?case . qed qed have eq_2_11:"\<exists>\<^sub>F n in sequentially. b (n+1) > b n + (1 - \<epsilon>)^2 * a n / B" when "\<epsilon>>0" "\<epsilon><1" "\<not> (\<forall>\<^sub>F n in sequentially. c (n+1) \<le> c n)" for \<epsilon>::real proof - have "\<exists>\<^sub>F x in sequentially. c x < c (Suc x) " using that(3) by (simp add:not_eventually frequently_elim1) moreover have "\<forall>\<^sub>F x in sequentially. \<bar>c (Suc x) / a x\<bar> < \<epsilon>" using ca_vanish[unfolded tendsto_iff,rule_format, of \<epsilon>] \<open>\<epsilon>>0\<close> by auto moreover have "\<forall>\<^sub>F n in sequentially. c n > 0 \<and> c (n+1) > 0" proof - have "\<forall>\<^sub>F n in sequentially. 0 < c (Suc n)" using c_pos by (subst eventually_sequentially_Suc) simp then show ?thesis using c_pos by eventually_elim auto qed ultimately show ?thesis using ab_event abc_event bc_epsilon[OF \<open>\<epsilon>>0\<close> \<open>\<epsilon><1\<close>] proof (elim frequently_rev_mp,eventually_elim) case (elim n) then have "c (n+1) / a n < \<epsilon>" using a_pos[rule_format,of n] by auto also have "... \<le> \<epsilon> * c n" using elim(7) that(1) by auto finally have "c (n+1) / a n < \<epsilon> * c n" . then have "c (n+1) / c n < \<epsilon> * a n" using a_pos[rule_format,of n] elim by (auto simp:field_simps) then have "(1 - \<epsilon>) * a n < a n - c (n+1) / c n" by (auto simp:algebra_simps) then have "(1 - \<epsilon>)^2 * a n / B < (1 - \<epsilon>) * (a n - c (n+1) / c n) / B" apply (subst (asm) real_mult_less_iff1[symmetric, of "(1-\<epsilon>)/B"]) using \<open>\<epsilon><1\<close> \<open>B>0\<close> by (auto simp:divide_simps power2_eq_square) then have "b n + (1 - \<epsilon>)^2 * a n / B < b n + (1 - \<epsilon>) * (a n - c (n+1) / c n) / B" using \<open>B>0\<close> by auto also have "... = b n + (1 - \<epsilon>) * ((c n *a n - c (n+1)) / c n) / B" using elim by (auto simp:field_simps) also have "... = b n + (1 - \<epsilon>) * (b n / c n)" proof - have "B * b n = c n * a n - c (n + 1)" using elim by auto from this[symmetric] show ?thesis using \<open>B>0\<close> by simp qed also have "... = (1+(1-\<epsilon>)/c n) * b n" by (auto simp:algebra_simps) also have "... = ((c n+1-\<epsilon>)/c n) * b n" using elim by (auto simp:divide_simps) also have "... \<le> ((c (n+1) -\<epsilon>)/c n) * b n" proof - define cp where "cp = c n+1" have "c (n+1) \<ge> cp" unfolding cp_def using \<open>c n < c (Suc n)\<close> by auto moreover have "c n>0" "b n>0" using elim by auto ultimately show ?thesis apply (fold cp_def) by (auto simp:divide_simps) qed also have "... < b (n+1)" using elim by (auto simp:divide_simps) finally show ?case . qed qed have "\<forall>\<^sub>F n in sequentially. c (n+1) \<le> c n" proof (rule ccontr) assume "\<not> (\<forall>\<^sub>F n in sequentially. c (n + 1) \<le> c n)" from eq_2_11[OF _ _ this,of "1/2"] have "\<exists>\<^sub>F n in sequentially. b (n+1) > b n + 1/4 * a n / B" by (auto simp:algebra_simps power2_eq_square) then have *:"\<exists>\<^sub>F n in sequentially. (b (n+1) - b n) / a n > 1 / (B * 4)" apply (elim frequently_elim1) subgoal for n using a_pos[rule_format,of n] by (auto simp:field_simps) done define f where "f = (\<lambda>n. (b (n+1) - b n) / a n)" have "f \<longlonglongrightarrow> lim f" using convergent_LIMSEQ_iff ba_lim_exist unfolding f_def by auto from this[unfolded tendsto_iff,rule_format, of "1 / (B*4)"] have "\<forall>\<^sub>F x in sequentially. \<bar>f x - lim f\<bar> < 1 / (B * 4)" using \<open>B>0\<close> by (auto simp:dist_real_def) moreover have "\<exists>\<^sub>F n in sequentially. f n > 1 / (B * 4)" using * unfolding f_def by auto ultimately have "\<exists>\<^sub>F n in sequentially. f n > 1 / (B * 4) \<and> \<bar>f n - lim f\<bar> < 1 / (B * 4)" by (auto elim:frequently_eventually_frequently[rotated]) from frequently_ex[OF this] obtain n where "f n > 1 / (B * 4)" "\<bar>f n - lim f\<bar> < 1 / (B * 4)" by auto moreover have "lim f \<le> 0" using ba_lim_leq unfolding f_def by auto ultimately show False by linarith qed then obtain N where N_dec:"\<forall>n\<ge>N. c (n+1) \<le> c n" by (meson eventually_at_top_linorder) define max_c where "max_c = (MAX n \<in> {..N}. c n)" have max_c:"c n \<le> max_c" for n proof (cases "n\<le>N") case True then show ?thesis unfolding max_c_def by simp next case False then have "n\<ge>N" by auto then have "c n\<le>c N" proof (induct rule:nat_induct_at_least) case base then show ?case by simp next case (Suc n) then have "c (n+1) \<le> c n" using N_dec by auto then show ?case using \<open>c n \<le> c N\<close> by auto qed moreover have "c N \<le> max_c" unfolding max_c_def by auto ultimately show ?thesis by auto qed have "max_c > 0 " proof - obtain N where "\<forall>n\<ge>N. 0 < c n" using c_pos[unfolded eventually_at_top_linorder] by auto then have "c N > 0" by auto then show ?thesis using max_c[of N] by simp qed have ba_limsup_bound:"1/(B*(B+1)) \<le> limsup (\<lambda>n. b n/a n)" "limsup (\<lambda>n. b n/a n) \<le> max_c / B + 1 / (B+1)" proof - define f where "f = (\<lambda>n. b n/a n)" from tendsto_mult_right_zero[OF bac_close,of "1/B"] have "(\<lambda>n. f n - c n / B) \<longlonglongrightarrow> 0" unfolding f_def using \<open>B>0\<close> by (auto simp:algebra_simps) from this[unfolded tendsto_iff,rule_format,of "1/(B+1)"] have "\<forall>\<^sub>F x in sequentially. \<bar>f x - c x / B\<bar> < 1 / (B+1)" using \<open>B>0\<close> by auto then have *:"\<forall>\<^sub>F n in sequentially. 1/(B*(B+1)) \<le> ereal (f n) \<and> ereal (f n) \<le> max_c / B + 1 / (B+1)" using c_pos proof eventually_elim case (elim n) then have "f n - c n / B < 1 / (B+1)" by auto then have "f n < c n / B + 1 / (B+1)" by simp also have "... \<le> max_c / B + 1 / (B+1)" using max_c[of n] using \<open>B>0\<close> by (auto simp:divide_simps) finally have *:"f n < max_c / B + 1 / (B+1)" . have "1/(B*(B+1)) = 1/B - 1 / (B+1)" using \<open>B>0\<close> by (auto simp:divide_simps) also have "... \<le> c n/B - 1 / (B+1)" using \<open>0 < c n\<close> \<open>B>0\<close> by (auto,auto simp:divide_simps) also have "... < f n" using elim by auto finally have "1/(B*(B+1)) < f n" . with * show ?case by simp qed show "limsup f \<le> max_c / B + 1 / (B+1)" apply (rule Limsup_bounded) using * by (auto elim:eventually_mono) have "1/(B*(B+1)) \<le> liminf f" apply (rule Liminf_bounded) using * by (auto elim:eventually_mono) also have "liminf f \<le> limsup f" by (simp add: Liminf_le_Limsup) finally show "1/(B*(B+1)) \<le> limsup f" . qed have "0 < inverse (ereal (max_c / B + 1 / (B+1)))" using \<open>max_c > 0\<close> \<open>B>0\<close> by (simp add: pos_add_strict) also have "... \<le> inverse (limsup (\<lambda>n. b n/a n))" proof (rule ereal_inverse_antimono[OF _ ba_limsup_bound(2)]) have "0<1/(B*(B+1))" using \<open>B>0\<close> by auto also have "... \<le> limsup (\<lambda>n. b n/a n)" using ba_limsup_bound(1) . finally show "0\<le>limsup (\<lambda>n. b n/a n)" using zero_ereal_def by auto qed also have "... = liminf (\<lambda>n. inverse (ereal ( b n/a n)))" apply (subst Liminf_inverse_ereal[symmetric]) using a_pos ab_event by (auto elim!:eventually_mono simp:divide_simps) also have "... = liminf (\<lambda>n. ( a n/b n))" apply (rule Liminf_eq) using a_pos ab_event apply (auto elim!:eventually_mono) by (metis less_int_code(1)) finally have "liminf (\<lambda>n. ( a n/b n)) > 0" . then show False using \<open>liminf (\<lambda>n. a n / b n) = 0\<close> by simp qed end section\<open>Some auxiliary results on the prime numbers. \<close> lemma nth_prime_nonzero[simp]:"nth_prime n \<noteq> 0" by (simp add: prime_gt_0_nat prime_nth_prime) lemma nth_prime_gt_zero[simp]:"nth_prime n >0" by (simp add: prime_gt_0_nat prime_nth_prime) lemma ratio_of_consecutive_primes: "(\<lambda>n. nth_prime (n+1)/nth_prime n) \<longlonglongrightarrow>1" proof - define f where "f=(\<lambda>x. real (nth_prime (Suc x)) /real (nth_prime x))" define g where "g=(\<lambda>x. (real x * ln (real x)) / (real (Suc x) * ln (real (Suc x))))" have p_n:"(\<lambda>x. real (nth_prime x) / (real x * ln (real x))) \<longlonglongrightarrow> 1" using nth_prime_asymptotics[unfolded asymp_equiv_def,simplified] . moreover have p_sn:"(\<lambda>n. real (nth_prime (Suc n)) / (real (Suc n) * ln (real (Suc n)))) \<longlonglongrightarrow> 1" using nth_prime_asymptotics[unfolded asymp_equiv_def,simplified ,THEN LIMSEQ_Suc] . ultimately have "(\<lambda>x. f x * g x) \<longlonglongrightarrow> 1" using tendsto_divide[OF p_sn p_n] unfolding f_def g_def by (auto simp:algebra_simps) moreover have "g \<longlonglongrightarrow> 1" unfolding g_def by real_asymp ultimately have "(\<lambda>x. if g x = 0 then 0 else f x) \<longlonglongrightarrow> 1" apply (drule_tac tendsto_divide[OF _ \<open>g \<longlonglongrightarrow> 1\<close>]) by auto then have "f \<longlonglongrightarrow> 1" proof (elim filterlim_mono_eventually) have "\<forall>\<^sub>F x in sequentially. (if g (x+3) = 0 then 0 else f (x+3)) = f (x+3)" unfolding g_def by auto then show "\<forall>\<^sub>F x in sequentially. (if g x = 0 then 0 else f x) = f x" apply (subst (asm) eventually_sequentially_seg) by simp qed auto then show ?thesis unfolding f_def by auto qed lemma nth_prime_double_sqrt_less: assumes "\<epsilon> > 0" shows "\<forall>\<^sub>F n in sequentially. (nth_prime (2*n) - nth_prime n) / sqrt (nth_prime n) < n powr (1/2+\<epsilon>)" proof - define pp ll where "pp=(\<lambda>n. (nth_prime (2*n) - nth_prime n) / sqrt (nth_prime n))" and "ll=(\<lambda>x::nat. x * ln x)" have pp_pos:"pp (n+1) > 0" for n unfolding pp_def by simp have "(\<lambda>x. nth_prime (2 * x)) \<sim>[sequentially] (\<lambda>x. (2 * x) * ln (2 * x))" using nth_prime_asymptotics[THEN asymp_equiv_compose ,of "(*) 2" sequentially,unfolded comp_def] using mult_nat_left_at_top pos2 by blast also have "... \<sim>[sequentially] (\<lambda>x. 2 *x * ln x)" by real_asymp finally have "(\<lambda>x. nth_prime (2 * x)) \<sim>[sequentially] (\<lambda>x. 2 *x * ln x)" . from this[unfolded asymp_equiv_def, THEN tendsto_mult_left,of 2] have "(\<lambda>x. nth_prime (2 * x) / (x * ln x)) \<longlonglongrightarrow> 2" unfolding asymp_equiv_def by auto moreover have *:"(\<lambda>x. nth_prime x / (x * ln x)) \<longlonglongrightarrow> 1" using nth_prime_asymptotics unfolding asymp_equiv_def by auto ultimately have "(\<lambda>x. (nth_prime (2 * x) - nth_prime x) / ll x) \<longlonglongrightarrow> 1" unfolding ll_def apply - apply (drule (1) tendsto_diff) apply (subst of_nat_diff,simp) by (subst diff_divide_distrib,simp) moreover have "(\<lambda>x. sqrt (nth_prime x) / sqrt (ll x)) \<longlonglongrightarrow> 1" unfolding ll_def using tendsto_real_sqrt[OF *] by (auto simp: real_sqrt_divide) ultimately have "(\<lambda>x. pp x * (sqrt (ll x) / (ll x))) \<longlonglongrightarrow> 1" apply - apply (drule (1) tendsto_divide,simp) by (auto simp:field_simps of_nat_diff pp_def) moreover have "\<forall>\<^sub>F x in sequentially. sqrt (ll x) / ll x = 1/sqrt (ll x)" apply (subst eventually_sequentially_Suc[symmetric]) by (auto intro!:eventuallyI simp:ll_def divide_simps) ultimately have "(\<lambda>x. pp x / sqrt (ll x)) \<longlonglongrightarrow> 1" apply (elim filterlim_mono_eventually) by (auto elim!:eventually_mono) (metis mult.right_neutral times_divide_eq_right) moreover have "(\<lambda>x. sqrt (ll x) / x powr (1/2+\<epsilon>)) \<longlonglongrightarrow> 0" unfolding ll_def using \<open>\<epsilon>>0\<close> by real_asymp ultimately have "(\<lambda>x. pp x / x powr (1/2+\<epsilon>) * (sqrt (ll x) / sqrt (ll x))) \<longlonglongrightarrow> 0" apply - apply (drule (1) tendsto_mult) by (auto elim:filterlim_mono_eventually) moreover have "\<forall>\<^sub>F x in sequentially. sqrt (ll x) / sqrt (ll x) = 1" apply (subst eventually_sequentially_Suc[symmetric]) by (auto intro!:eventuallyI simp:ll_def ) ultimately have "(\<lambda>x. pp x / x powr (1/2+\<epsilon>)) \<longlonglongrightarrow> 0" apply (elim filterlim_mono_eventually) by (auto elim:eventually_mono) from tendstoD[OF this, of 1,simplified] show "\<forall>\<^sub>F x in sequentially. pp x < x powr (1 / 2 + \<epsilon>)" apply (elim eventually_mono_sequentially[of _ 1]) using pp_pos by auto qed section \<open>Theorem 3.1\<close> text\<open>Theorem 3.1 is an application of Theorem 2.1 with the sequences considered involving the prime numbers.\<close> theorem theorem_3_10_Erdos_Straus: fixes a::"nat \<Rightarrow> int" assumes a_pos:"\<forall> n. a n >0" and "mono a" and nth_1:"(\<lambda>n. nth_prime n / (a n)^2) \<longlonglongrightarrow> 0" and nth_2:"liminf (\<lambda>n. a n / nth_prime n) = 0" shows "(\<Sum>n. (nth_prime n / (\<Prod>i \<le> n. a i))) \<notin> \<rat>" proof assume asm:"(\<Sum>n. (nth_prime n / (\<Prod>i \<le> n. a i))) \<in> \<rat>" have a2_omega:"(\<lambda>n. (a n)^2) \<in> \<omega>(\<lambda>x. x * ln x)" proof - have "(\<lambda>n. real (nth_prime n)) \<in> o(\<lambda>n. real_of_int ((a n)\<^sup>2))" apply (rule smalloI_tendsto[OF nth_1]) using a_pos by (metis (mono_tags, lifting) less_int_code(1) not_eventuallyD of_int_0_eq_iff zero_eq_power2) moreover have "(\<lambda>x. real (nth_prime x)) \<in> \<Omega>(\<lambda>x. real x * ln (real x))" using nth_prime_bigtheta by blast ultimately show ?thesis using landau_omega.small_big_trans smallo_imp_smallomega by blast qed have a_gt_1:"\<forall>\<^sub>F n in sequentially. 1 < a n" proof - have "\<forall>\<^sub>F x in sequentially. \<bar>x * ln x\<bar> \<le> (a x)\<^sup>2" using a2_omega[unfolded smallomega_def,simplified,rule_format,of 1] by auto then have "\<forall>\<^sub>F x in sequentially. \<bar>(x+3) * ln (x+3)\<bar> \<le> (a (x+3))\<^sup>2" apply (subst (asm) eventually_sequentially_seg[symmetric, of _ 3]) by simp then have "\<forall>\<^sub>F n in sequentially. 1 < a ( n+3)" proof (elim eventually_mono) fix x assume "\<bar>real (x + 3) * ln (real (x + 3))\<bar> \<le> real_of_int ((a (x + 3))\<^sup>2)" moreover have "\<bar>real (x + 3) * ln (real (x + 3))\<bar> > 3" proof - have "ln (real (x + 3)) > 1" apply simp using ln3_gt_1 ln_gt_1 by force moreover have "real(x+3) \<ge> 3" by simp ultimately have "(x+3)*ln (real (x + 3)) > 3*1 " apply (rule_tac mult_le_less_imp_less) by auto then show ?thesis by auto qed ultimately have "real_of_int ((a (x + 3))\<^sup>2) > 3" by auto then show "1 < a (x + 3)" by (smt Suc3_eq_add_3 a_pos add.commute of_int_1 one_power2) qed then show ?thesis apply (subst eventually_sequentially_seg[symmetric, of _ 3]) by auto qed obtain B::int and c where "B>0" and Bc_large:"\<forall>\<^sub>F n in sequentially. B * nth_prime n = c n * a n - c (n + 1) \<and> \<bar>c (n + 1)\<bar> < a n / 2" and ca_vanish: "(\<lambda>n. c (Suc n) / real_of_int (a n)) \<longlonglongrightarrow> 0" proof - note a_gt_1 moreover have "(\<lambda>n. real_of_int \<bar>int (nth_prime n)\<bar> / real_of_int (a (n - 1) * a n)) \<longlonglongrightarrow> 0" proof - define f where "f=(\<lambda>n. nth_prime (n+1) / (a n * a (n+1)))" define g where "g=(\<lambda>n. 2*nth_prime n / (a n)^2)" have "\<forall>\<^sub>F x in sequentially. norm (f x) \<le> g x" proof - have "\<forall>\<^sub>F n in sequentially. nth_prime (n+1) < 2*nth_prime n" using ratio_of_consecutive_primes[unfolded tendsto_iff ,rule_format,of 1,simplified] apply (elim eventually_mono) by (auto simp :divide_simps dist_norm) moreover have "\<forall>\<^sub>F n in sequentially. real_of_int (a n * a (n+1)) \<ge> (a n)^2" apply (rule eventuallyI) using \<open>mono a\<close> by (auto simp:power2_eq_square a_pos incseq_SucD) ultimately show ?thesis unfolding f_def g_def apply eventually_elim apply (subst norm_divide) apply (rule_tac linordered_field_class.frac_le) using a_pos[rule_format, THEN order.strict_implies_not_eq ] by auto qed moreover have "g \<longlonglongrightarrow> 0 " using nth_1[THEN tendsto_mult_right_zero,of 2] unfolding g_def by auto ultimately have "f \<longlonglongrightarrow> 0" using Lim_null_comparison[of f g sequentially] by auto then show ?thesis unfolding f_def by (rule_tac LIMSEQ_imp_Suc) auto qed moreover have "(\<Sum>n. real_of_int (int (nth_prime n)) / real_of_int (prod a {..n})) \<in> \<rat>" using asm by simp ultimately have "\<exists>B>0. \<exists>c. (\<forall>\<^sub>F n in sequentially. B * int (nth_prime n) = c n * a n - c (n + 1) \<and> real_of_int \<bar>c (n + 1)\<bar> < real_of_int (a n) / 2) \<and> (\<lambda>n. real_of_int (c (Suc n)) / real_of_int (a n)) \<longlonglongrightarrow> 0" using ab_rationality_imp[OF a_pos,of nth_prime] by fast then show thesis apply clarify apply (rule_tac c=c and B=B in that) by auto qed have bac_close:"(\<lambda>n. B * nth_prime n / a n - c n) \<longlonglongrightarrow> 0" proof - have "\<forall>\<^sub>F n in sequentially. B * nth_prime n - c n * a n + c (n + 1) = 0" using Bc_large by (auto elim!:eventually_mono) then have "\<forall>\<^sub>F n in sequentially. (B * nth_prime n - c n * a n + c (n+1)) / a n = 0 " apply eventually_elim by auto then have "\<forall>\<^sub>F n in sequentially. B * nth_prime n / a n - c n + c (n + 1) / a n = 0" apply eventually_elim using a_pos by (auto simp:divide_simps) (metis less_irrefl) then have "(\<lambda>n. B * nth_prime n / a n - c n + c (n + 1) / a n) \<longlonglongrightarrow> 0" by (simp add: eventually_mono tendsto_iff) from tendsto_diff[OF this ca_vanish] show ?thesis by auto qed have c_pos:"\<forall>\<^sub>F n in sequentially. c n > 0" proof - from bac_close have *:"\<forall>\<^sub>F n in sequentially. c n \<ge> 0" apply (elim tendsto_of_int_diff_0) using a_gt_1 apply (eventually_elim) using \<open>B>0\<close> by auto show ?thesis proof (rule ccontr) assume "\<not> (\<forall>\<^sub>F n in sequentially. c n > 0)" moreover have "\<forall>\<^sub>F n in sequentially. c (Suc n) \<ge> 0 \<and> c n\<ge>0" using * eventually_sequentially_Suc[of "\<lambda>n. c n\<ge>0"] by (metis (mono_tags, lifting) eventually_at_top_linorder le_Suc_eq) ultimately have "\<exists>\<^sub>F n in sequentially. c n = 0 \<and> c (Suc n) \<ge> 0" using eventually_elim2 frequently_def by fastforce moreover have "\<forall>\<^sub>F n in sequentially. nth_prime n > 0 \<and> B * nth_prime n = c n * a n - c (n + 1)" using Bc_large by eventually_elim auto ultimately have "\<exists>\<^sub>F n in sequentially. c n = 0 \<and> c (Suc n) \<ge> 0 \<and> B * nth_prime n = c n * a n - c (n + 1)" using frequently_eventually_frequently by fastforce from frequently_ex[OF this] obtain n where "c n = 0" "c (Suc n) \<ge> 0" "B * nth_prime n = c n * a n - c (n + 1)" by auto then have "B * nth_prime n \<le> 0" by auto then show False using \<open>B > 0\<close> by (simp add: mult_le_0_iff) qed qed have B_nth_prime:"\<forall>\<^sub>F n in sequentially. nth_prime n > B" proof - have "\<forall>\<^sub>F x in sequentially. B+1 \<le> nth_prime x" using nth_prime_at_top[unfolded filterlim_at_top_ge[where c="nat B+1"] ,rule_format,of "nat B + 1",simplified] apply (elim eventually_mono) using \<open>B>0\<close> by auto then show ?thesis apply (elim eventually_mono) by auto qed have bc_epsilon:"\<forall>\<^sub>F n in sequentially. nth_prime (n+1) / nth_prime n > (c (n+1) - \<epsilon>) / c n" when "\<epsilon>>0" "\<epsilon><1" for \<epsilon>::real proof - have "\<forall>\<^sub>F x in sequentially. \<bar>c (Suc x) / a x\<bar> < \<epsilon> / 2" using ca_vanish[unfolded tendsto_iff,rule_format, of "\<epsilon>/2"] \<open>\<epsilon>>0\<close> by auto moreover then have "\<forall>\<^sub>F x in sequentially. \<bar>c (x+2) / a (x+1)\<bar> < \<epsilon> / 2" apply (subst (asm) eventually_sequentially_Suc[symmetric]) by simp moreover have "\<forall>\<^sub>F n in sequentially. B * nth_prime (n+1) = c (n+1) * a (n+1) - c (n + 2)" using Bc_large apply (subst (asm) eventually_sequentially_Suc[symmetric]) by (auto elim:eventually_mono) moreover have "\<forall>\<^sub>F n in sequentially. c n > 0 \<and> c (n+1) > 0 \<and> c (n+2) > 0" proof - have "\<forall>\<^sub>F n in sequentially. 0 < c (Suc n)" using c_pos by (subst eventually_sequentially_Suc) simp moreover then have "\<forall>\<^sub>F n in sequentially. 0 < c (Suc (Suc n))" using c_pos by (subst eventually_sequentially_Suc) simp ultimately show ?thesis using c_pos by eventually_elim auto qed ultimately show ?thesis using Bc_large proof eventually_elim case (elim n) define \<epsilon>\<^sub>0 \<epsilon>\<^sub>1 where "\<epsilon>\<^sub>0 = c (n+1) / a n" and "\<epsilon>\<^sub>1 = c (n+2) / a (n+1)" have "\<epsilon>\<^sub>0 > 0" "\<epsilon>\<^sub>1 > 0" "\<epsilon>\<^sub>0 < \<epsilon>/2" "\<epsilon>\<^sub>1 < \<epsilon>/2" using a_pos elim \<open>mono a\<close> by (auto simp add: \<epsilon>\<^sub>0_def \<epsilon>\<^sub>1_def abs_of_pos) have "(\<epsilon> - \<epsilon>\<^sub>1) * c n > 0" apply (rule mult_pos_pos) using \<open>\<epsilon>\<^sub>1 > 0\<close> \<open>\<epsilon>\<^sub>1 < \<epsilon>/2\<close> \<open>\<epsilon>>0\<close> elim by auto moreover have "\<epsilon>\<^sub>0 * (c (n+1) - \<epsilon>) > 0" apply (rule mult_pos_pos[OF \<open>\<epsilon>\<^sub>0 > 0\<close>]) using elim(4) that(2) by linarith ultimately have "(\<epsilon> - \<epsilon>\<^sub>1) * c n + \<epsilon>\<^sub>0 * (c (n+1) - \<epsilon>) > 0" by auto moreover have "c n - \<epsilon>\<^sub>0 > 0" using \<open>\<epsilon>\<^sub>0 < \<epsilon> / 2\<close> elim(4) that(2) by linarith moreover have "c n > 0" by (simp add: elim(4)) ultimately have "(c (n+1) - \<epsilon>) / c n < (c (n+1) - \<epsilon>\<^sub>1) / (c n - \<epsilon>\<^sub>0)" by (auto simp add:field_simps) also have "... \<le> (c (n+1) - \<epsilon>\<^sub>1) / (c n - \<epsilon>\<^sub>0) * (a (n+1) / a n)" proof - have "(c (n+1) - \<epsilon>\<^sub>1) / (c n - \<epsilon>\<^sub>0) > 0" by (smt \<open>0 < (\<epsilon> - \<epsilon>\<^sub>1) * real_of_int (c n)\<close> \<open>0 < real_of_int (c n) - \<epsilon>\<^sub>0\<close> divide_pos_pos elim(4) mult_le_0_iff of_int_less_1_iff that(2)) moreover have "(a (n+1) / a n) \<ge> 1" using a_pos \<open>mono a\<close> by (simp add: mono_def) ultimately show ?thesis by (metis mult_cancel_left1 real_mult_le_cancel_iff2) qed also have "... = (B * nth_prime (n+1)) / (B * nth_prime n)" proof - have "B * nth_prime n = c n * a n - c (n + 1)" using elim by auto also have "... = a n * (c n - \<epsilon>\<^sub>0)" using a_pos[rule_format,of n] unfolding \<epsilon>\<^sub>0_def by (auto simp:field_simps) finally have "B * nth_prime n = a n * (c n - \<epsilon>\<^sub>0)" . moreover have "B * nth_prime (n+1) = a (n+1) * (c (n+1) - \<epsilon>\<^sub>1)" unfolding \<epsilon>\<^sub>1_def using a_pos[rule_format,of "n+1"] apply (subst \<open>B * nth_prime (n + 1) = c (n + 1) * a (n + 1) - c (n + 2)\<close>) by (auto simp:field_simps) ultimately show ?thesis by (simp add: mult.commute) qed also have "... = nth_prime (n+1) / nth_prime n" using \<open>B>0\<close> by auto finally show ?case . qed qed have c_ubound:"\<forall>x. \<exists>n. c n > x" proof (rule ccontr) assume " \<not> (\<forall>x. \<exists>n. x < c n)" then obtain ub where "\<forall>n. c n \<le> ub" "ub > 0" by (meson dual_order.trans int_one_le_iff_zero_less le_cases not_le) define pa where "pa = (\<lambda>n. nth_prime n / a n)" have pa_pos:"\<And>n. pa n > 0" unfolding pa_def by (simp add: a_pos) have "liminf (\<lambda>n. 1 / pa n) = 0" using nth_2 unfolding pa_def by auto then have "(\<exists>y<ereal (real_of_int B / real_of_int (ub + 1)). \<exists>\<^sub>F x in sequentially. ereal (1 / pa x) \<le> y)" apply (subst less_Liminf_iff[symmetric]) using \<open>0 < B\<close> \<open>0 < ub\<close> by auto then have "\<exists>\<^sub>F x in sequentially. 1 / pa x < B/(ub+1)" by (meson frequently_mono le_less_trans less_ereal.simps(1)) then have "\<exists>\<^sub>F x in sequentially. B*pa x > (ub+1)" apply (elim frequently_elim1) by (metis \<open>0 < ub\<close> mult.left_neutral of_int_0_less_iff pa_pos pos_divide_less_eq pos_less_divide_eq times_divide_eq_left zless_add1_eq) moreover have "\<forall>\<^sub>F x in sequentially. c x \<le> ub" using \<open>\<forall>n. c n \<le> ub\<close> by simp ultimately have "\<exists>\<^sub>F x in sequentially. B*pa x - c x > 1" apply (elim frequently_rev_mp eventually_mono) by linarith moreover have "(\<lambda>n. B * pa n - c n) \<longlonglongrightarrow>0" unfolding pa_def using bac_close by auto from tendstoD[OF this,of 1] have "\<forall>\<^sub>F n in sequentially. \<bar>B * pa n - c n\<bar> < 1" by auto ultimately have "\<exists>\<^sub>F x in sequentially. B*pa x - c x > 1 \<and> \<bar>B * pa x - c x\<bar> < 1" using frequently_eventually_frequently by blast then show False by (simp add: frequently_def) qed have eq_2_11:"\<forall>\<^sub>F n in sequentially. c (n+1)>c n \<longrightarrow> nth_prime (n+1) > nth_prime n + (1 - \<epsilon>)^2 * a n / B" when "\<epsilon>>0" "\<epsilon><1" for \<epsilon>::real proof - have "\<forall>\<^sub>F x in sequentially. \<bar>c (Suc x) / a x\<bar> < \<epsilon>" using ca_vanish[unfolded tendsto_iff,rule_format, of \<epsilon>] \<open>\<epsilon>>0\<close> by auto moreover have "\<forall>\<^sub>F n in sequentially. c n > 0 \<and> c (n+1) > 0" proof - have "\<forall>\<^sub>F n in sequentially. 0 < c (Suc n)" using c_pos by (subst eventually_sequentially_Suc) simp then show ?thesis using c_pos by eventually_elim auto qed ultimately show ?thesis using Bc_large bc_epsilon[OF \<open>\<epsilon>>0\<close> \<open>\<epsilon><1\<close>] proof (eventually_elim, rule_tac impI) case (elim n) assume "c n < c (n + 1)" have "c (n+1) / a n < \<epsilon>" using a_pos[rule_format,of n] using elim(1,2) by auto also have "... \<le> \<epsilon> * c n" using elim(2) that(1) by auto finally have "c (n+1) / a n < \<epsilon> * c n" . then have "c (n+1) / c n < \<epsilon> * a n" using a_pos[rule_format,of n] elim by (auto simp:field_simps) then have "(1 - \<epsilon>) * a n < a n - c (n+1) / c n" by (auto simp:algebra_simps) then have "(1 - \<epsilon>)^2 * a n / B < (1 - \<epsilon>) * (a n - c (n+1) / c n) / B" apply (subst (asm) real_mult_less_iff1[symmetric, of "(1-\<epsilon>)/B"]) using \<open>\<epsilon><1\<close> \<open>B>0\<close> by (auto simp:divide_simps power2_eq_square) then have "nth_prime n + (1 - \<epsilon>)^2 * a n / B < nth_prime n + (1 - \<epsilon>) * (a n - c (n+1) / c n) / B" using \<open>B>0\<close> by auto also have "... = nth_prime n + (1 - \<epsilon>) * ((c n *a n - c (n+1)) / c n) / B" using elim by (auto simp:field_simps) also have "... = nth_prime n + (1 - \<epsilon>) * (nth_prime n / c n)" proof - have "B * nth_prime n = c n * a n - c (n + 1)" using elim by auto from this[symmetric] show ?thesis using \<open>B>0\<close> by simp qed also have "... = (1+(1-\<epsilon>)/c n) * nth_prime n" by (auto simp:algebra_simps) also have "... = ((c n+1-\<epsilon>)/c n) * nth_prime n" using elim by (auto simp:divide_simps) also have "... \<le> ((c (n+1) -\<epsilon>)/c n) * nth_prime n" proof - define cp where "cp = c n+1" have "c (n+1) \<ge> cp" unfolding cp_def using \<open>c n < c (n + 1)\<close> by auto moreover have "c n>0" "nth_prime n>0" using elim by auto ultimately show ?thesis apply (fold cp_def) by (auto simp:divide_simps) qed also have "... < nth_prime (n+1)" using elim by (auto simp:divide_simps) finally show "real (nth_prime n) + (1 - \<epsilon>)\<^sup>2 * real_of_int (a n) / real_of_int B < real (nth_prime (n + 1))" . qed qed have c_neq_large:"\<forall>\<^sub>F n in sequentially. c (n+1) \<noteq> c n" proof (rule ccontr) assume "\<not> (\<forall>\<^sub>F n in sequentially. c (n + 1) \<noteq> c n)" then have that:"\<exists>\<^sub>F n in sequentially. c (n + 1) = c n" unfolding frequently_def . have "\<forall>\<^sub>F x in sequentially. (B * int (nth_prime x) = c x * a x - c (x + 1) \<and> \<bar>real_of_int (c (x + 1))\<bar> < real_of_int (a x) / 2) \<and> 0 < c x \<and> B < int (nth_prime x) \<and> (c (x+1)>c x \<longrightarrow> nth_prime (x+1) > nth_prime x + a x / (2* B))" using Bc_large c_pos B_nth_prime eq_2_11[of "1-1/ sqrt 2",simplified] by eventually_elim (auto simp:divide_simps) then have "\<exists>\<^sub>F m in sequentially. nth_prime (m+1) > (1+1/(2*B))*nth_prime m" proof (elim frequently_eventually_at_top[OF that, THEN frequently_at_top_elim]) fix n assume "c (n + 1) = c n \<and> (\<forall>y\<ge>n. (B * int (nth_prime y) = c y * a y - c (y + 1) \<and> \<bar>real_of_int (c (y + 1))\<bar> < real_of_int (a y) / 2) \<and> 0 < c y \<and> B < int (nth_prime y) \<and> (c y < c (y + 1) \<longrightarrow> real (nth_prime y) + real_of_int (a y) / real_of_int (2 * B) < real (nth_prime (y + 1))))" then have "c (n + 1) = c n" and Bc_eq:"\<forall>y\<ge>n. B * int (nth_prime y) = c y * a y - c (y + 1) \<and> 0 < c y \<and> \<bar>real_of_int (c (y + 1))\<bar> < real_of_int (a y) / 2 \<and> B < int (nth_prime y) \<and> (c y < c (y + 1) \<longrightarrow> real (nth_prime y) + real_of_int (a y) / real_of_int (2 * B) < real (nth_prime (y + 1)))" by auto obtain m where "n<m" "c m \<le> c n" "c n<c (m+1)" proof - have "\<exists>N. N > n \<and> c N > c n" using c_ubound[rule_format, of "MAX x\<in>{..n}. c x"] by (metis Max_ge atMost_iff dual_order.trans finite_atMost finite_imageI image_eqI linorder_not_le order_refl) then obtain N where "N>n" "c N>c n" by auto define A m where "A={m. n<m \<and> (m+1)\<le>N \<and> c (m+1) > c n}" and "m = Min A" have "finite A" unfolding A_def by (metis (no_types, lifting) A_def add_leE finite_nat_set_iff_bounded_le mem_Collect_eq) moreover have "N-1\<in>A" unfolding A_def using \<open>c n < c N\<close> \<open>n < N\<close> \<open>c (n + 1) = c n\<close> by (smt Suc_diff_Suc Suc_eq_plus1 Suc_leI Suc_pred add.commute add_diff_inverse_nat add_leD1 diff_is_0_eq' mem_Collect_eq nat_add_left_cancel_less zero_less_one) ultimately have "m\<in>A" using Min_in unfolding m_def by auto then have "n<m" "c n<c (m+1)" "m>0" unfolding m_def A_def by auto moreover have "c m \<le> c n" proof (rule ccontr) assume " \<not> c m \<le> c n" then have "m-1\<in>A" using \<open>m\<in>A\<close> \<open>c (n + 1) = c n\<close> unfolding A_def by auto (smt One_nat_def Suc_eq_plus1 Suc_lessI less_diff_conv) from Min_le[OF \<open>finite A\<close> this,folded m_def] \<open>m>0\<close> show False by auto qed ultimately show ?thesis using that[of m] by auto qed have "(1 + 1 / (2 * B)) * nth_prime m < nth_prime m + a m / (2*B)" proof - have "nth_prime m < a m" proof - have "B * int (nth_prime m) < c m * (a m - 1)" using Bc_eq[rule_format,of m] \<open>c m \<le> c n\<close> \<open>c n < c (m + 1)\<close> \<open>n < m\<close> by (auto simp:algebra_simps) also have "... \<le> c n * (a m - 1)" by (simp add: \<open>c m \<le> c n\<close> a_pos mult_right_mono) finally have "B * int (nth_prime m) < c n * (a m - 1)" . moreover have "c n\<le>B" proof - have " B * int (nth_prime n) = c n * (a n - 1)" "B < int (nth_prime n)" and c_a:"\<bar>real_of_int (c (n + 1))\<bar> < real_of_int (a n) / 2" using Bc_eq[rule_format,of n] \<open>c (n + 1) = c n\<close> by (auto simp:algebra_simps) from this(1) have " c n dvd (B * int (nth_prime n))" by simp moreover have "coprime (c n) (int (nth_prime n))" proof - have "c n < int (nth_prime n)" proof (rule ccontr) assume "\<not> c n < int (nth_prime n)" then have asm:"c n \<ge> int (nth_prime n)" by auto then have "a n > 2 * nth_prime n" using c_a \<open>c (n + 1) = c n\<close> by auto then have "a n -1 \<ge> 2 * nth_prime n" by simp then have "a n - 1 > 2 * B" using \<open>B < int (nth_prime n)\<close> by auto from mult_le_less_imp_less[OF asm this] \<open>B>0\<close> have "int (nth_prime n) * (2 * B) < c n * (a n - 1)" by auto then show False using \<open>B * int (nth_prime n) = c n * (a n - 1)\<close> by (smt \<open>0 < B\<close> \<open>B < int (nth_prime n)\<close> combine_common_factor mult.commute mult_pos_pos) qed then have "\<not> nth_prime n dvd c n" by (simp add: Bc_eq zdvd_not_zless) then have "coprime (int (nth_prime n)) (c n)" by (auto intro!:prime_imp_coprime_int) then show ?thesis using coprime_commute by blast qed ultimately have "c n dvd B" using coprime_dvd_mult_left_iff by auto then show ?thesis using \<open>0 < B\<close> zdvd_imp_le by blast qed moreover have "c n > 0 " using Bc_eq by blast ultimately show ?thesis using \<open>B>0\<close> by (smt a_pos mult_mono) qed then show ?thesis using \<open>B>0\<close> by (auto simp:field_simps) qed also have "... < nth_prime (m+1)" using Bc_eq[rule_format, of m] \<open>n<m\<close> \<open>c m \<le> c n\<close> \<open>c n < c (m+1)\<close> by linarith finally show "\<exists>j>n. (1 + 1 / real_of_int (2 * B)) * real (nth_prime j) < real (nth_prime (j + 1))" using \<open>m>n\<close> by auto qed then have "\<exists>\<^sub>F m in sequentially. nth_prime (m+1)/nth_prime m > (1+1/(2*B))" by (auto elim:frequently_elim1 simp:field_simps) moreover have "\<forall>\<^sub>F m in sequentially. nth_prime (m+1)/nth_prime m < (1+1/(2*B))" using ratio_of_consecutive_primes[unfolded tendsto_iff,rule_format,of "1/(2*B)"] \<open>B>0\<close> unfolding dist_real_def by (auto elim!:eventually_mono simp:algebra_simps) ultimately show False by (simp add: eventually_mono frequently_def) qed have c_gt_half:"\<forall>\<^sub>F N in sequentially. card {n\<in>{N..<2*N}. c n > c (n+1)} > N / 2" proof - define h where "h=(\<lambda>n. (nth_prime (2*n) - nth_prime n) / sqrt (nth_prime n))" have "\<forall>\<^sub>F n in sequentially. h n < n / 2" proof - have "\<forall>\<^sub>F n in sequentially. h n < n powr (5/6)" using nth_prime_double_sqrt_less[of "1/3"] unfolding h_def by auto moreover have "\<forall>\<^sub>F n in sequentially. n powr (5/6) < (n /2)" by real_asymp ultimately show ?thesis by eventually_elim auto qed moreover have "\<forall>\<^sub>F n in sequentially. sqrt (nth_prime n) / a n < 1 / (2*B)" using nth_1[THEN tendsto_real_sqrt,unfolded tendsto_iff ,rule_format,of "1/(2*B)"] \<open>B>0\<close> a_pos by (auto simp:real_sqrt_divide abs_of_pos) ultimately have "\<forall>\<^sub>F x in sequentially. c (x+1) \<noteq> c x \<and> sqrt (nth_prime x) / a x < 1 / (2*B) \<and> h x < x / 2 \<and> (c (x+1)>c x \<longrightarrow> nth_prime (x+1) > nth_prime x + a x / (2* B))" using c_neq_large B_nth_prime eq_2_11[of "1-1/ sqrt 2",simplified] by eventually_elim (auto simp:divide_simps) then show ?thesis proof (elim eventually_at_top_mono) fix N assume "N\<ge>1" and N_asm:"\<forall>y\<ge>N. c (y + 1) \<noteq> c y \<and> sqrt (real (nth_prime y)) / real_of_int (a y) < 1 / real_of_int (2 * B) \<and> h y < y / 2 \<and> (c y < c (y + 1) \<longrightarrow> real (nth_prime y) + real_of_int (a y) / real_of_int (2 * B) < real (nth_prime (y + 1)))" define S where "S={n \<in> {N..<2 * N}. c n < c (n + 1)}" define g where "g=(\<lambda>n. (nth_prime (n+1) - nth_prime n) / sqrt (nth_prime n))" define f where "f=(\<lambda>n. nth_prime (n+1) - nth_prime n)" have g_gt_1:"g n>1" when "n\<ge>N" "c n < c (n + 1)" for n proof - have "nth_prime n + sqrt (nth_prime n) < nth_prime (n+1)" proof - have "nth_prime n + sqrt (nth_prime n) < nth_prime n + a n / (2*B)" using N_asm[rule_format,OF \<open>n\<ge>N\<close>] a_pos by (auto simp:field_simps) also have "... < nth_prime (n+1)" using N_asm[rule_format,OF \<open>n\<ge>N\<close>] \<open>c n < c (n + 1)\<close> by auto finally show ?thesis . qed then show ?thesis unfolding g_def using \<open>c n < c (n + 1)\<close> by auto qed have g_geq_0:"g n \<ge> 0" for n unfolding g_def by auto have "finite S" "\<forall>x\<in>S. x\<ge>N \<and> c x<c (x+1)" unfolding S_def by auto then have "card S \<le> sum g S" proof (induct S) case empty then show ?case by auto next case (insert x F) moreover have "g x>1" proof - have "c x < c (x+1)" "x\<ge>N" using insert(4) by auto then show ?thesis using g_gt_1 by auto qed ultimately show ?case by simp qed also have "... \<le> sum g {N..<2*N}" apply (rule sum_mono2) unfolding S_def using g_geq_0 by auto also have "... \<le> sum (\<lambda>n. f n/sqrt (nth_prime N)) {N..<2*N}" apply (rule sum_mono) unfolding f_def g_def by (auto intro!:divide_left_mono) also have "... = sum f {N..<2*N} / sqrt (nth_prime N)" unfolding sum_divide_distrib[symmetric] by auto also have "... = (nth_prime (2*N) - nth_prime N) / sqrt (nth_prime N)" proof - have "sum f {N..<2 * N} = nth_prime (2 * N) - nth_prime N" proof (induct N) case 0 then show ?case by simp next case (Suc N) have ?case if "N=0" proof - have "sum f {Suc N..<2 * Suc N} = sum f {1}" using that by (simp add: numeral_2_eq_2) also have "... = nth_prime 2 - nth_prime 1" unfolding f_def by (simp add:numeral_2_eq_2) also have "... = nth_prime (2 * Suc N) - nth_prime (Suc N)" using that by auto finally show ?thesis . qed moreover have ?case if "N\<noteq>0" proof - have "sum f {Suc N..<2 * Suc N} = sum f {N..<2 * Suc N} - f N" apply (subst (2) sum.atLeast_Suc_lessThan) using that by auto also have "... = sum f {N..<2 * N}+ f (2*N) + f(2*N+1) - f N" by auto also have "... = nth_prime (2 * Suc N) - nth_prime (Suc N)" using Suc unfolding f_def by auto finally show ?thesis . qed ultimately show ?case by blast qed then show ?thesis by auto qed also have "... = h N" unfolding h_def by auto also have "... < N/2" using N_asm by auto finally have "card S < N/2" . define T where "T={n \<in> {N..<2 * N}. c n > c (n + 1)}" have "T \<union> S = {N..<2 * N}" "T \<inter> S = {}" "finite T" unfolding T_def S_def using N_asm by fastforce+ then have "card T + card S = card {N..<2 * N}" using card_Un_disjoint \<open>finite S\<close> by metis also have "... = N" by simp finally have "card T + card S = N" . with \<open>card S < N/2\<close> show "card T > N/2" by linarith qed qed text\<open>Inequality (3.5) in the original paper required a slight modification: \<close> have a_gt_plus:"\<forall>\<^sub>F n in sequentially. c n > c (n+1) \<longrightarrow>a (n+1) > a n + (a n - c(n+1) - 1) / c (n+1)" proof - note a_gt_1[THEN eventually_all_ge_at_top] c_pos[THEN eventually_all_ge_at_top] moreover have "\<forall>\<^sub>F n in sequentially. B * int (nth_prime (n+1)) = c (n+1) * a (n+1) - c (n + 2)" using Bc_large apply (subst (asm) eventually_sequentially_Suc[symmetric]) by (auto elim:eventually_mono) moreover have "\<forall>\<^sub>F n in sequentially. B * int (nth_prime n) = c n * a n - c (n + 1) \<and> \<bar>c (n + 1)\<bar> < a n / 2" using Bc_large by (auto elim:eventually_mono) ultimately show ?thesis apply (eventually_elim) proof (rule impI) fix n assume "\<forall>y\<ge>n. 1 < a y" "\<forall>y\<ge>n. 0 < c y" and Suc_n_eq:"B * int (nth_prime (n + 1)) = c (n + 1) * a (n + 1) - c (n + 2)" and "B * int (nth_prime n) = c n * a n - c (n + 1) \<and> real_of_int \<bar>c (n + 1)\<bar> < real_of_int (a n) / 2" and "c (n + 1) < c n" then have n_eq:"B * int (nth_prime n) = c n * a n - c (n + 1)" and c_less_a: "real_of_int \<bar>c (n + 1)\<bar> < real_of_int (a n) / 2" by auto from \<open>\<forall>y\<ge>n. 1 < a y\<close> \<open>\<forall>y\<ge>n. 0 < c y\<close> have *:"a n>1" "a (n+1) > 1" "c n > 0" "c (n+1) > 0" "c (n+2) > 0" by auto then have "(1+1/c (n+1))* (a n - 1)/a (n+1) = (c (n+1)+1) * ((a n - 1) / (c (n+1) * a (n+1)))" by (auto simp:field_simps) also have "... \<le> c n * ((a n - 1) / (c (n+1) * a (n+1)))" apply (rule mult_right_mono) subgoal using \<open>c (n + 1) < c n\<close> by auto subgoal by (smt \<open>0 < c (n + 1)\<close> a_pos divide_nonneg_pos mult_pos_pos of_int_0_le_iff of_int_0_less_iff) done also have "... = (c n * (a n - 1)) / (c (n+1) * a (n+1))" by auto also have "... < (c n * (a n - 1)) / (c (n+1) * a (n+1) - c (n+2))" apply (rule divide_strict_left_mono) subgoal using \<open>c (n+2) > 0\<close> by auto unfolding Suc_n_eq[symmetric] using * \<open>B>0\<close> by auto also have "... < (c n * a n - c (n+1)) / (c (n+1) * a (n+1) - c (n+2))" apply (rule frac_less) unfolding Suc_n_eq[symmetric] using * \<open>B>0\<close> \<open>c (n + 1) < c n\<close> by (auto simp:algebra_simps) also have "... = nth_prime n / nth_prime (n+1)" unfolding Suc_n_eq[symmetric] n_eq[symmetric] using \<open>B>0\<close> by auto also have "... < 1" by auto finally have "(1 + 1 / real_of_int (c (n + 1))) * real_of_int (a n - 1) / real_of_int (a (n + 1)) < 1 " . then show "a n + (a n - c (n + 1) - 1) / (c (n + 1)) < (a (n + 1))" using * by (auto simp:field_simps) qed qed have a_gt_1:"\<forall>\<^sub>F n in sequentially. c n > c (n+1) \<longrightarrow> a (n+1) > a n + 1" using Bc_large a_gt_plus c_pos[THEN eventually_all_ge_at_top] apply eventually_elim proof (rule impI) fix n assume "c (n + 1) < c n \<longrightarrow> a n + (a n - c (n + 1) - 1) / c (n + 1) < a (n + 1)" "c (n + 1) < c n" and B_eq:"B * int (nth_prime n) = c n * a n - c (n + 1) \<and> \<bar>real_of_int (c (n + 1))\<bar> < real_of_int (a n) / 2" and c_pos:"\<forall>y\<ge>n. 0 < c y" from this(1,2) have "a n + (a n - c (n + 1) - 1) / c (n + 1) < a (n + 1)" by auto moreover have "a n - 2 * c (n+1) > 0" using B_eq c_pos[rule_format,of "n+1"] by auto then have "a n - 2 * c (n+1) \<ge> 1" by simp then have "(a n - c (n + 1) - 1) / c (n + 1) \<ge> 1" using c_pos[rule_format,of "n+1"] by (auto simp:field_simps) ultimately show "a n + 1 < a (n + 1)" by auto qed text\<open>The following corresponds to inequality (3.6) in the paper, which had to be slightly corrected: \<close> have a_gt_sqrt:"\<forall>\<^sub>F n in sequentially. c n > c (n+1) \<longrightarrow> a (n+1) > a n + (sqrt n - 2)" proof - have a_2N:"\<forall>\<^sub>F N in sequentially. a (2*N) \<ge> N /2 +1" using c_gt_half a_gt_1[THEN eventually_all_ge_at_top] proof eventually_elim case (elim N) define S where "S={n \<in> {N..<2 * N}. c (n + 1) < c n}" define f where "f = (\<lambda>n. a (Suc n) - a n)" have f_1:"\<forall>x\<in>S. f x\<ge>1" and f_0:"\<forall>x. f x\<ge>0" subgoal using elim unfolding S_def f_def by auto subgoal using \<open>mono a\<close>[THEN incseq_SucD] unfolding f_def by auto done have "N / 2 < card S" using elim unfolding S_def by auto also have "... \<le> sum f S" unfolding of_int_sum apply (rule sum_bounded_below[of _ 1,simplified]) using f_1 by auto also have "... \<le> sum f {N..<2 * N}" unfolding of_int_sum apply (rule sum_mono2) unfolding S_def using f_0 by auto also have "... = a (2*N) - a N" unfolding of_int_sum f_def of_int_diff apply (rule sum_Suc_diff') by auto finally have "N / 2 < a (2*N) - a N" . then show ?case using a_pos[rule_format,of N] by linarith qed have a_n4:"\<forall>\<^sub>F n in sequentially. a n > n/4" proof - obtain N where a_N:"\<forall>n\<ge>N. a (2*n) \<ge> n /2+1" using a_2N unfolding eventually_at_top_linorder by auto have "a n>n/4" when "n\<ge>2*N" for n proof - define n' where "n'=n div 2" have "n'\<ge>N" unfolding n'_def using that by auto have "n/4 < n' /2+1" unfolding n'_def by auto also have "... \<le> a (2*n')" using a_N \<open>n'\<ge>N\<close> by auto also have "... \<le>a n" unfolding n'_def apply (cases "even n") subgoal by simp subgoal by (simp add: assms(2) incseqD) done finally show ?thesis . qed then show ?thesis unfolding eventually_at_top_linorder by auto qed have c_sqrt:"\<forall>\<^sub>F n in sequentially. c n < sqrt n / 4" proof - have "\<forall>\<^sub>F x in sequentially. x>1" by simp moreover have "\<forall>\<^sub>F x in sequentially. real (nth_prime x) / (real x * ln (real x)) < 2" using nth_prime_asymptotics[unfolded asymp_equiv_def,THEN order_tendstoD(2),of 2] by simp ultimately have "\<forall>\<^sub>F n in sequentially. c n < B*8 *ln n + 1" using a_n4 Bc_large proof eventually_elim case (elim n) from this(4) have "c n=(B*nth_prime n+c (n+1))/a n" using a_pos[rule_format,of n] by (auto simp:divide_simps) also have "... = (B*nth_prime n)/a n+c (n+1)/a n" by (auto simp:divide_simps) also have "... < (B*nth_prime n)/a n + 1" proof - have "c (n+1)/a n < 1" using elim(4) by auto then show ?thesis by auto qed also have "... < B*8 * ln n + 1" proof - have "B*nth_prime n < 2*B*n*ln n" using \<open>real (nth_prime n) / (real n * ln (real n)) < 2\<close> \<open>B>0\<close> \<open> 1 < n\<close> by (auto simp:divide_simps) moreover have "real n / 4 < real_of_int (a n)" by fact ultimately have "(B*nth_prime n) / a n < (2*B*n*ln n) / (n/4)" apply (rule_tac frac_less) using \<open>B>0\<close> \<open> 1 < n\<close> by auto also have "... = B*8 * ln n" using \<open> 1 < n\<close> by auto finally show ?thesis by auto qed finally show ?case . qed moreover have "\<forall>\<^sub>F n in sequentially. B*8 *ln n + 1 < sqrt n / 4" by real_asymp ultimately show ?thesis by eventually_elim auto qed have "\<forall>\<^sub>F n in sequentially. 0 < c (n+1)" "\<forall>\<^sub>F n in sequentially. c (n+1) < sqrt (n+1) / 4" "\<forall>\<^sub>F n in sequentially. n > 4" "\<forall>\<^sub>F n in sequentially. (n - 4) / sqrt (n + 1) + 1 > sqrt n" subgoal using c_pos[THEN eventually_all_ge_at_top] by eventually_elim auto subgoal using c_sqrt[THEN eventually_all_ge_at_top] by eventually_elim (use le_add1 in blast) subgoal by simp subgoal by real_asymp done then show ?thesis using a_gt_plus a_n4 apply eventually_elim proof (rule impI) fix n assume asm:"0 < c (n + 1)" "c (n + 1) < sqrt (real (n + 1)) / 4" and a_ineq:"c (n + 1) < c n \<longrightarrow> a n + (a n - c (n + 1) - 1) / c (n + 1) < a (n + 1)" "c (n + 1) < c n" and "n / 4 < a n" "n > 4" and n_neq:" sqrt (real n) < real (n - 4) / sqrt (real (n + 1)) + 1" have "(n-4) / sqrt(n+1) = (n/4 - 1)/ (sqrt (real (n + 1)) / 4)" using \<open>n>4\<close> by (auto simp:divide_simps) also have "... < (a n - 1) / c (n + 1)" apply (rule frac_less) using \<open>n > 4\<close> \<open>n / 4 < a n\<close> \<open>0 < c (n + 1)\<close> \<open>c (n + 1) < sqrt (real (n + 1)) / 4\<close> by auto also have "... - 1 = (a n - c (n + 1) - 1) / c (n + 1)" using \<open>0 < c (n + 1)\<close> by (auto simp:field_simps) also have "a n + ... < a (n+1)" using a_ineq by auto finally have "a n + ((n - 4) / sqrt (n + 1) - 1) < a (n + 1)" by simp moreover have "(n - 4) / sqrt (n + 1) - 1 > sqrt n - 2" using n_neq[THEN diff_strict_right_mono,of 2] \<open>n>4\<close> by (auto simp:algebra_simps of_nat_diff) ultimately show "real_of_int (a n) + (sqrt (real n) - 2) < real_of_int (a (n + 1))" by argo qed qed text\<open>The following corresponds to inequality $ a_{2N} > N^{3/2}/2$ in the paper, which had to be slightly corrected: \<close> have a_2N_sqrt:"\<forall>\<^sub>F N in sequentially. a (2*N) > real N * (sqrt (real N)/2 - 1)" using c_gt_half a_gt_sqrt[THEN eventually_all_ge_at_top] eventually_gt_at_top[of 4] proof eventually_elim case (elim N) define S where "S={n \<in> {N..<2 * N}. c (n + 1) < c n}" define f where "f = (\<lambda>n. a (Suc n) - a n)" have f_N:"\<forall>x\<in>S. f x\<ge>sqrt N - 2" proof fix x assume "x\<in>S" then have "sqrt (real x) - 2 < f x" "x\<ge>N" using elim unfolding S_def f_def by auto moreover have "sqrt x - 2 \<ge> sqrt N - 2" using \<open>x\<ge>N\<close> by simp ultimately show "sqrt (real N) - 2 \<le> real_of_int (f x)" by argo qed have f_0:"\<forall>x. f x\<ge>0" using \<open>mono a\<close>[THEN incseq_SucD] unfolding f_def by auto have "(N / 2) * (sqrt N - 2) < card S * (sqrt N - 2)" apply (rule mult_strict_right_mono) subgoal using elim unfolding S_def by auto subgoal using \<open>N>4\<close> by (metis diff_gt_0_iff_gt numeral_less_real_of_nat_iff real_sqrt_four real_sqrt_less_iff) done also have "... \<le> sum f S" unfolding of_int_sum apply (rule sum_bounded_below) using f_N by auto also have "... \<le> sum f {N..<2 * N}" unfolding of_int_sum apply (rule sum_mono2) unfolding S_def using f_0 by auto also have "... = a (2*N) - a N" unfolding of_int_sum f_def of_int_diff apply (rule sum_Suc_diff') by auto finally have "real N / 2 * (sqrt (real N) - 2) < real_of_int (a (2 * N) - a N)" . then have "real N / 2 * (sqrt (real N) - 2) < a (2 * N)" using a_pos[rule_format,of N] by linarith then show ?case by (auto simp:field_simps) qed text\<open>The following part is required to derive the final contradiction of the proof.\<close> have a_n_sqrt:"\<forall>\<^sub>F n in sequentially. a n > (((n-1)/2) powr (3/2) - (n-1)) /2" proof (rule sequentially_even_odd_imp) define f where "f=(\<lambda>N. ((real (2 * N - 1) / 2) powr (3 / 2) - real (2 * N - 1)) / 2)" define g where "g=(\<lambda>N. real N * (sqrt (real N) / 2 - 1))" have "\<forall>\<^sub>F N in sequentially. g N > f N" unfolding f_def g_def by real_asymp moreover have "\<forall>\<^sub>F N in sequentially. a (2 * N) > g N" unfolding g_def using a_2N_sqrt . ultimately show "\<forall>\<^sub>F N in sequentially. f N < a (2 * N)" by eventually_elim auto next define f where "f=(\<lambda>N. ((real (2 * N + 1 - 1) / 2) powr (3 / 2) - real (2 * N + 1 - 1)) / 2)" define g where "g=(\<lambda>N. real N * (sqrt (real N) / 2 - 1))" have "\<forall>\<^sub>F N in sequentially. g N = f N" using eventually_gt_at_top[of 0] apply eventually_elim unfolding f_def g_def by (auto simp:algebra_simps powr_half_sqrt[symmetric] powr_mult_base) moreover have "\<forall>\<^sub>F N in sequentially. a (2 * N) > g N" unfolding g_def using a_2N_sqrt . moreover have "\<forall>\<^sub>F N in sequentially. a (2 * N + 1) \<ge> a (2*N)" apply (rule eventuallyI) using \<open>mono a\<close> by (simp add: incseqD) ultimately show "\<forall>\<^sub>F N in sequentially. f N < (a (2 * N + 1))" apply eventually_elim by auto qed have a_nth_prime_gt:"\<forall>\<^sub>F n in sequentially. a n / nth_prime n > 1" proof - define f where "f=(\<lambda>n::nat. (((n-1)/2) powr (3/2) - (n-1)) /2)" have "\<forall>\<^sub>F x in sequentially. real (nth_prime x) / (real x * ln (real x)) < 2" using nth_prime_asymptotics[unfolded asymp_equiv_def,THEN order_tendstoD(2),of 2] by simp from this[] eventually_gt_at_top[of 1] have "\<forall>\<^sub>F n in sequentially. real (nth_prime n) < 2*(real n * ln n)" apply eventually_elim by (auto simp:field_simps) moreover have *:"\<forall>\<^sub>F N in sequentially. f N >0 " unfolding f_def by real_asymp moreover have " \<forall>\<^sub>F n in sequentially. f n < a n" using a_n_sqrt unfolding f_def . ultimately have "\<forall>\<^sub>F n in sequentially. a n / nth_prime n > f n / (2*(real n * ln n))" apply eventually_elim apply (rule frac_less2) by auto moreover have "\<forall>\<^sub>F n in sequentially. (f n)/ (2*(real n * ln n)) > 1" unfolding f_def by real_asymp ultimately show ?thesis by eventually_elim argo qed have a_nth_prime_lt:"\<exists>\<^sub>F n in sequentially. a n / nth_prime n < 1" proof - have "liminf (\<lambda>x. a x / nth_prime x) < 1" using nth_2 by auto from this[unfolded less_Liminf_iff] show ?thesis apply (auto elim!:frequently_elim1) by (meson divide_less_eq_1 ereal_less_eq(7) leD leI nth_prime_nonzero of_nat_eq_0_iff of_nat_less_0_iff order.trans) qed from a_nth_prime_gt a_nth_prime_lt show False by (simp add: eventually_mono frequently_def) qed section\<open>Acknowledgements\<close> text\<open>A.K.-A. and W.L. were supported by the ERC Advanced Grant ALEXANDRIA (Project 742178) funded by the European Research Council and led by Professor Lawrence Paulson at the University of Cambridge, UK.\<close> end
program main implicit none integer,parameter :: n = 1000 real(KIND=4),allocatable,dimension(:) :: a,b real(KIND=4) :: c integer :: i real(KIND=8) :: sum allocate(a(n),b(n)) c = 2.0 do i = 1, n a(i) = 10.0 end do !$acc data copyin(a) copyout(b) !$acc kernels !$acc loop independent do i = 1, n b(i) = a(i) + c end do !$acc end kernels !$acc end data sum = 0.d0 do i = 1, n sum = sum + b(i) end do print *, sum/n deallocate(a,b) end program main
{-# options_ghc -Wno-type-defaults #-} {- | Module : Task.Block Description : Blocks encapsulate the task of rendering a picture of a dynamical system to one or more tiles. -} module Task.Block ( Block(..) , fillBlock , progressively ) where import Task.Concurrent import Control.Concurrent.MVar import Control.Monad import Data.Word import Foreign.ForeignPtr import Control.Concurrent import Data.Array.IO hiding (index) import System.Random import Data.Time (diffUTCTime, getCurrentTime) import Data.Complex import Foreign (Ptr, peekByteOff, pokeByteOff, allocaArray) -- import Utilities (groupsOf) -- | A Block carries the information required to go from a -- runnable dynamical system and choice of color scheme -- to a buffer filled with the resulting color data. data Block = Block { coordToModel :: (Double, Double) -> (Double, Double) , compute :: Word32 -> Word32 -> Complex Double -> Complex Double -> Ptr Word8 -> IO () -- ^ The arguments of the compute function are: -- * Block width, in subsamples -- * Subsamples per point -- * Array of two doubles: initial (x,y) values -- * Array of two doubles: (dx,dy) -- * Output color samples , logSampleRate :: Int -- ^ The rate of over- or under-sampling to use. -- * logSampleRate == 0: draw one point per pixel. -- * logSampleRate == N < 0: draw 2^-N by 2^-N pixel -- blocks per model point. -- * logSampleRate == N > 0: subsample each pixel -- on a 2^N by 2^N subgrid and average the -- results, for a smoother picture. , blockBuffer :: Synchronizable (ForeignPtr Word8) -- ^ The pixel buffer to write into. , xStride :: Int -- ^ The width of the pixel buffer. , x0 :: Int -- ^ The upper-left x coordinate of this block in the pixel buffer. , y0 :: Int -- ^ The upper-left y coordinate of this block in the pixel buffer. , deltaX :: Double -- ^ The model size of a pixel in the X direction , deltaY :: Double -- ^ The model size of a pixel in the Y direction , xSize :: Int -- ^ The width of the block. , ySize :: Int -- ^ The height of the block , shouldRedraw :: MVar () -- ^ A variable used to signal that this block is complete -- and the pixel buffer should be redrawn. } -- | Render the block into its output buffer. fillBlock :: Block -> IO () fillBlock Block{..} = do let skip = if logSampleRate < 0 then 2^(negate logSampleRate) else 1 k = if logSampleRate > 0 then 2^logSampleRate else 1 let points = [ (x,y) | y <- [0, skip .. ySize - 1] , x <- [0, skip .. xSize - 1] ] uv_points = [ (fromIntegral (x0 + x), fromIntegral (y0 + y)) | (x,y) <- points ] indexOf (u,v) = u + v * xStride -- Run the computation on each subsampled point. allocaArray (length points * 3) $ \tmp -> do compute (fromIntegral (xSize `div` skip)) (floor k) (deltaX :+ deltaY) (let (u,v) = coordToModel (fromIntegral x0, fromIntegral y0) in u :+ v) tmp -- Resample the results --let rgbs = resampleBy averageColor nSubsamples results -- Fill target buffer with result colors. with blockBuffer $ \buffer -> withForeignPtr buffer $ \ptr -> do forM_ (zip uv_points [0..]) $ \((u,v), ix) -> do let index = floor $ u + v * fromIntegral xStride forM_ [indexOf (du,dv) | dv <- [0 .. skip - 1] , du <- [0 .. skip - 1] ] $ \offset -> do peekByteOff @Word8 tmp (3*ix + 0) >>= pokeByteOff ptr (3*index + offset + 0) peekByteOff @Word8 tmp (3*ix + 1) >>= pokeByteOff ptr (3*index + offset + 1) peekByteOff @Word8 tmp (3*ix + 2) >>= pokeByteOff ptr (3*index + offset + 2) -- Completed the block, signal for a redraw void (tryPutMVar shouldRedraw ()) {- -- | Render the block into its output buffer. fillBlock :: Block -> IO () fillBlock Block{..} = do let skip = if logSampleRate < 0 then 2^(negate logSampleRate) else 1 k = if logSampleRate > 0 then 2^logSampleRate else 1 subsamples = [s / k | s <- [0..k-1]] nSubsamples = floor (k^2) let points = [ (x,y) | y <- [0, skip .. ySize - 1] , x <- [0, skip .. xSize - 1] ] uv_points = [ (fromIntegral (x0 + x), fromIntegral (y0 + y)) | (x,y) <- points ] indexOf (u,v) = u + v * xStride let subsample (u,v) = [ (u + du, v + dv) | du <- subsamples, dv <- subsamples ] let samples = map coordToModel $ concatMap subsample uv_points -- Run the computation on each subsampled point. results <- compute samples -- Resample the results let rgbs = resampleBy averageColor nSubsamples results -- Fill target buffer with result colors. with blockBuffer $ \buffer -> withForeignPtr buffer $ \ptr -> do forM_ (zip uv_points rgbs) $ \((u,v), rgb) -> do let index = floor $ u + v * fromIntegral xStride forM_ [indexOf (du,dv) | dv <- [0 .. skip - 1] , du <- [0 .. skip - 1] ] $ \offset -> do pokeColor ptr (index + offset) rgb -- Completed the block, signal for a redraw void (tryPutMVar shouldRedraw ()) resampleBy :: ([a] -> b) -> Int -> [a] -> [b] resampleBy f n | n > 0 = map f . groupsOf n | otherwise = map f . groupsOf 1 -} -- | Chop up a block into sub-blocks, delegate rendering -- tasks for sub-blocks, and blit the results back -- into an image. progressively :: (Block -> IO ()) -> (Block -> IO ()) progressively render block = do let subBlockSize = 16 width = xSize block height = ySize block xBlocks = case width `divMod` subBlockSize of (z, 0) -> z (z, _) -> z + 1 yBlocks = case height `divMod` subBlockSize of (z, 0) -> z (z, _) -> z + 1 blockIDs <- shuffle [(x,y) | x <- [0..xBlocks - 1], y <- [0..yBlocks - 1]] poolSize <- subtract 1 <$> getNumCapabilities caps <- getNumCapabilities putStrLn $ show caps ++ " capabilities, pool size " ++ show poolSize ++ " (w=" ++ show (xSize block) ++ ", h=" ++ show (ySize block) ++ ")" let rates = filter (<= logSampleRate block) [0] -- [-4, -2, 0] --, logSampleRate block] let todo = [(rate, x, y) | rate <- rates, (x,y) <- blockIDs] putStrLn $ "***** start @ rates=" ++ show rates start <- getCurrentTime forPool_ poolSize todo $ \(rate,x,y) -> do render $ block { xSize = subBlockSize, ySize = subBlockSize, x0 = subBlockSize * x, y0 = subBlockSize * y, logSampleRate = rate } end <- getCurrentTime putStrLn $ "***** " ++ show width ++ " x " ++ show height ++ " @ rates " ++ show rates ++ " rendered in " ++ show (diffUTCTime end start) shuffle :: [a] -> IO [a] shuffle xs = do ar <- makeArray xs forM_ [2..n] $ \i -> do j <- randomRIO (1,i) vi <- readArray ar i vj <- readArray ar j writeArray ar j vi writeArray ar i vj forM [1..n] (readArray ar) where n = length xs makeArray :: [a] -> IO (IOArray Int a) makeArray = newListArray (1,n)
section \<open>Code Generation for the Skeleton Algorithm \label{sec:skel_code}\<close> theory Gabow_Skeleton_Code imports Gabow_Skeleton CAVA_Automata.Digraph_Impl CAVA_Base.CAVA_Code_Target begin section \<open>Statistics\<close> text \<open> In this section, we do the ML setup that gathers statistics about the algorithm's execution. \<close> code_printing code_module Gabow_Skeleton_Statistics \<rightharpoonup> (SML) \<open> structure Gabow_Skeleton_Statistics = struct val active = Unsynchronized.ref false val num_vis = Unsynchronized.ref 0 val time = Unsynchronized.ref Time.zeroTime fun is_active () = !active fun newnode () = ( num_vis := !num_vis + 1; if !num_vis mod 10000 = 0 then tracing (IntInf.toString (!num_vis) ^ "\n") else () ) fun start () = (active := true; time := Time.now ()) fun stop () = (time := Time.- (Time.now (), !time)) fun to_string () = let val t = Time.toMilliseconds (!time) val states_per_ms = real (!num_vis) / real t val realStr = Real.fmt (StringCvt.FIX (SOME 2)) in "Required time: " ^ IntInf.toString (t) ^ "ms\n" ^ "States per ms: " ^ realStr states_per_ms ^ "\n" ^ "# states: " ^ IntInf.toString (!num_vis) ^ "\n" end val _ = Statistics.register_stat ("Gabow-Skeleton",is_active,to_string) end \<close> code_reserved SML Gabow_Skeleton_Statistics code_printing constant stat_newnode \<rightharpoonup> (SML) "Gabow'_Skeleton'_Statistics.newnode" | constant stat_start \<rightharpoonup> (SML) "Gabow'_Skeleton'_Statistics.start" | constant stat_stop \<rightharpoonup> (SML) "Gabow'_Skeleton'_Statistics.stop" section \<open>Automatic Refinement Setup\<close> consts i_node_state :: interface definition "node_state_rel \<equiv> {(-1::int,DONE)} \<union> {(int k,STACK k) | k. True }" lemma node_state_rel_simps[simp]: "(i,DONE)\<in>node_state_rel \<longleftrightarrow> i=-1" "(i,STACK n)\<in>node_state_rel \<longleftrightarrow> i = int n" unfolding node_state_rel_def by auto lemma node_state_rel_sv[simp,intro!,relator_props]: "single_valued node_state_rel" unfolding node_state_rel_def by (auto intro: single_valuedI) lemmas [autoref_rel_intf] = REL_INTFI[of node_state_rel i_node_state] primrec is_DONE where "is_DONE DONE = True" | "is_DONE (STACK _) = False" lemma node_state_rel_refine[autoref_rules]: "(-1,DONE)\<in>node_state_rel" "(int,STACK)\<in>nat_rel\<rightarrow>node_state_rel" "(\<lambda>i. i<0,is_DONE)\<in>node_state_rel\<rightarrow>bool_rel" "((\<lambda>f g i. if i\<ge>0 then f (nat i) else g),case_node_state) \<in>(nat_rel \<rightarrow> R) \<rightarrow> R \<rightarrow> node_state_rel \<rightarrow> R" unfolding node_state_rel_def apply auto [3] apply (fastforce dest: fun_relD) done (* TODO: Make changing the Autoref-config simpler, by concentrating everything here *) consts i_node :: interface (* TODO: Move generic part of this locale to Digraph_impl *) locale fr_graph_impl_loc = fr_graph G for mrel and node_rel :: "('vi \<times> 'v) set" and node_eq_impl :: "'vi \<Rightarrow> 'vi \<Rightarrow> bool" and node_hash_impl :: "nat \<Rightarrow> 'vi \<Rightarrow> nat" and node_def_hash_size :: nat and G_impl and G :: "('v,'more) graph_rec_scheme" + assumes G_refine: "(G_impl,G)\<in>\<langle>mrel,node_rel\<rangle>g_impl_rel_ext" and node_eq_refine: "(node_eq_impl, (=)) \<in> node_rel \<rightarrow> node_rel \<rightarrow> bool_rel" and node_hash: "is_bounded_hashcode node_rel node_eq_impl node_hash_impl" and node_hash_def_size: "(is_valid_def_hm_size TYPE('vi) node_def_hash_size)" begin (*abbreviation "node_rel \<equiv> Id :: ('v \<times> _) set"*) lemmas [autoref_rel_intf] = REL_INTFI[of node_rel i_node] lemmas [autoref_rules] = G_refine node_eq_refine lemmas [autoref_ga_rules] = node_hash node_hash_def_size lemma locale_this: "fr_graph_impl_loc mrel node_rel node_eq_impl node_hash_impl node_def_hash_size G_impl G" by unfold_locales abbreviation "oGSi_rel \<equiv> \<langle>node_rel,node_state_rel\<rangle>(ahm_rel node_hash_impl)" abbreviation "GSi_rel \<equiv> \<langle>node_rel\<rangle>as_rel \<times>\<^sub>r \<langle>nat_rel\<rangle>as_rel \<times>\<^sub>r oGSi_rel \<times>\<^sub>r \<langle>nat_rel \<times>\<^sub>r \<langle>node_rel\<rangle>list_set_rel\<rangle>as_rel" lemmas [autoref_op_pat] = GS.S_def GS.B_def GS.I_def GS.P_def end section \<open>Generating the Code\<close> thm autoref_ga_rules context fr_graph_impl_loc begin schematic_goal push_code_aux: "(?c,push_impl)\<in>node_rel \<rightarrow> GSi_rel \<rightarrow> GSi_rel" unfolding push_impl_def_opt[abs_def] using [[autoref_trace_failed_id]] apply (autoref (keep_goal)) done concrete_definition (in -) push_code uses fr_graph_impl_loc.push_code_aux lemmas [autoref_rules] = push_code.refine[OF locale_this] schematic_goal pop_code_aux: "(?c,pop_impl)\<in>GSi_rel \<rightarrow> \<langle>GSi_rel\<rangle>nres_rel" unfolding pop_impl_def_opt[abs_def] unfolding GS.mark_as_done_def using [[autoref_trace_failed_id]] apply (autoref (keep_goal)) done concrete_definition (in -) pop_code uses fr_graph_impl_loc.pop_code_aux lemmas [autoref_rules] = pop_code.refine[OF locale_this] schematic_goal S_idx_of_code_aux: notes [autoref_rules] = IdI[of "undefined::nat"] (* TODO: hack!*) shows "(?c,GS.S_idx_of)\<in>GSi_rel \<rightarrow> node_rel \<rightarrow> nat_rel" unfolding GS.S_idx_of_def[abs_def] using [[autoref_trace_failed_id]] apply (autoref (keep_goal)) done concrete_definition (in -) S_idx_of_code uses fr_graph_impl_loc.S_idx_of_code_aux lemmas [autoref_rules] = S_idx_of_code.refine[OF locale_this] schematic_goal idx_of_code_aux: notes [autoref_rules] = IdI[of "undefined::nat"] (* TODO: hack!*) shows "(?c,GS.idx_of_impl)\<in> GSi_rel \<rightarrow> node_rel \<rightarrow> \<langle>nat_rel\<rangle>nres_rel" unfolding GS.idx_of_impl_def[abs_def, unfolded GS.find_seg_impl_def GS.S_idx_of_def, THEN opt_GSdef, unfolded GS_sel_simps, abs_def] using [[autoref_trace_failed_id]] apply (autoref (keep_goal)) done concrete_definition (in -) idx_of_code uses fr_graph_impl_loc.idx_of_code_aux lemmas [autoref_rules] = idx_of_code.refine[OF locale_this] schematic_goal collapse_code_aux: "(?c,collapse_impl)\<in>node_rel \<rightarrow> GSi_rel \<rightarrow> \<langle>GSi_rel\<rangle>nres_rel" unfolding collapse_impl_def_opt[abs_def] using [[autoref_trace_failed_id]] apply (autoref (keep_goal)) done concrete_definition (in -) collapse_code uses fr_graph_impl_loc.collapse_code_aux lemmas [autoref_rules] = collapse_code.refine[OF locale_this] term select_edge_impl schematic_goal select_edge_code_aux: "(?c,select_edge_impl) \<in> GSi_rel \<rightarrow> \<langle>\<langle>node_rel\<rangle>option_rel \<times>\<^sub>r GSi_rel\<rangle>nres_rel" unfolding select_edge_impl_def_opt[abs_def] using [[autoref_trace_failed_id]] using [[goals_limit=1]] apply (autoref (keep_goal,trace)) done concrete_definition (in -) select_edge_code uses fr_graph_impl_loc.select_edge_code_aux lemmas [autoref_rules] = select_edge_code.refine[OF locale_this] context begin interpretation autoref_syn . term fr_graph.pop_impl lemma [autoref_op_pat]: "push_impl \<equiv> OP push_impl" "collapse_impl \<equiv> OP collapse_impl" "select_edge_impl \<equiv> OP select_edge_impl" "pop_impl \<equiv> OP pop_impl" by simp_all end find_theorems is_valid_def_hm_size schematic_goal skeleton_code_aux: "(?c,skeleton_impl) \<in> \<langle>oGSi_rel\<rangle>nres_rel" unfolding skeleton_impl_def[abs_def] initial_impl_def GS_initial_impl_def unfolding path_is_empty_impl_def is_on_stack_impl_def is_done_impl_def is_done_oimpl_def unfolding GS.is_on_stack_impl_def GS.is_done_impl_def using [[autoref_trace_failed_id]] apply (autoref (keep_goal,trace)) done concrete_definition (in -) skeleton_code for node_eq_impl G_impl uses fr_graph_impl_loc.skeleton_code_aux thm skeleton_code.refine lemmas [autoref_rules] = skeleton_code.refine[OF locale_this] schematic_goal pop_tr_aux: "RETURN ?c \<le> pop_code node_eq_impl node_hash_impl s" unfolding pop_code_def by refine_transfer concrete_definition (in -) pop_tr uses fr_graph_impl_loc.pop_tr_aux lemmas [refine_transfer] = pop_tr.refine[OF locale_this] schematic_goal select_edge_tr_aux: "RETURN ?c \<le> select_edge_code node_eq_impl s" unfolding select_edge_code_def by refine_transfer concrete_definition (in -) select_edge_tr uses fr_graph_impl_loc.select_edge_tr_aux lemmas [refine_transfer] = select_edge_tr.refine[OF locale_this] schematic_goal idx_of_tr_aux: "RETURN ?c \<le> idx_of_code node_eq_impl node_hash_impl v s" unfolding idx_of_code_def by refine_transfer concrete_definition (in -) idx_of_tr uses fr_graph_impl_loc.idx_of_tr_aux lemmas [refine_transfer] = idx_of_tr.refine[OF locale_this] schematic_goal collapse_tr_aux: "RETURN ?c \<le> collapse_code node_eq_impl node_hash_impl v s" unfolding collapse_code_def by refine_transfer concrete_definition (in -) collapse_tr uses fr_graph_impl_loc.collapse_tr_aux lemmas [refine_transfer] = collapse_tr.refine[OF locale_this] schematic_goal skeleton_tr_aux: "RETURN ?c \<le> skeleton_code node_hash_impl node_def_hash_size node_eq_impl g" unfolding skeleton_code_def by refine_transfer concrete_definition (in -) skeleton_tr uses fr_graph_impl_loc.skeleton_tr_aux lemmas [refine_transfer] = skeleton_tr.refine[OF locale_this] end term skeleton_tr export_code skeleton_tr checking SML end
import Control.Monad.State increase : Nat -> State Nat () increase inc = do current <- get put (current + inc) update : (stateType -> stateType) -> State stateType () update f = do state <- get put (f state) increase' : Nat -> State Nat () increase' inc = update (+inc)
section \<open>Some preliminaries on equivalence relations and quotients\<close> theory Equiv_Relation2 imports Preliminaries Pick begin text\<open>Unary predicates vs. sets:\<close> definition "S2P A \<equiv> \<lambda> x. x \<in> A" lemma S2P_app[simp]: "S2P r x \<longleftrightarrow> x \<in> r" unfolding S2P_def by auto lemma S2P_Collect[simp]: "S2P (Collect \<phi>) = \<phi>" apply(rule ext)+ by simp lemma Collect_S2P[simp]: "Collect (S2P r) = r" by (metis Collect_mem_eq S2P_Collect) text\<open>Binary predicates vs. relatipons:\<close> definition "P2R \<phi> \<equiv> {(x,y). \<phi> x y}" definition "R2P r \<equiv> \<lambda> x y. (x,y) \<in> r" lemma in_P2R[simp]: "xy \<in> P2R \<phi> \<longleftrightarrow> \<phi> (fst xy) (snd xy)" unfolding P2R_def by auto lemma in_P2R_pair[simp]: "(x,y) \<in> P2R \<phi> \<longleftrightarrow> \<phi> x y" by simp lemma R2P_app[simp]: "R2P r x y \<longleftrightarrow> (x,y) \<in> r" unfolding R2P_def by auto lemma R2P_P2R[simp]: "R2P (P2R \<phi>) = \<phi>" apply(rule ext)+ by simp lemma P2R_R2P[simp]: "P2R (R2P r) = r" using Collect_mem_eq P2R_def R2P_P2R case_prod_curry by metis definition "reflP P \<phi> \<equiv> (\<forall> x y. \<phi> x y \<or> \<phi> y x \<longrightarrow> P x) \<and> (\<forall> x. P x \<longrightarrow> \<phi> x x)" definition "symP \<phi> \<equiv> \<forall> x y. \<phi> x y \<longrightarrow> \<phi> y x" definition transP where "transP \<phi> \<equiv> \<forall> x y z. \<phi> x y \<and> \<phi> y z \<longrightarrow> \<phi> x z" definition "equivP A \<phi> \<equiv> reflP A \<phi> \<and> symP \<phi> \<and> transP \<phi>" lemma refl_on_P2R[simp]: "refl_on (Collect P) (P2R \<phi>) \<longleftrightarrow> reflP P \<phi>" unfolding reflP_def refl_on_def by force lemma reflP_R2P[simp]: "reflP (S2P A) (R2P r) \<longleftrightarrow> refl_on A r" unfolding reflP_def refl_on_def by auto lemma sym_P2R[simp]: "sym (P2R \<phi>) \<longleftrightarrow> symP \<phi>" unfolding symP_def sym_def by auto lemma symP_R2P[simp]: "symP (R2P r) \<longleftrightarrow> sym r" unfolding symP_def sym_def by auto lemma trans_P2R[simp]: "trans (P2R \<phi>) \<longleftrightarrow> transP \<phi>" unfolding transP_def trans_def by auto lemma transP_R2P[simp]: "transP (R2P r) \<longleftrightarrow> trans r" unfolding transP_def trans_def by auto lemma equiv_P2R[simp]: "equiv (Collect P) (P2R \<phi>) \<longleftrightarrow> equivP P \<phi>" unfolding equivP_def equiv_def by auto lemma equivP_R2P[simp]: "equivP (S2P A) (R2P r) \<longleftrightarrow> equiv A r" unfolding equivP_def equiv_def by auto lemma in_P2R_Im_singl[simp]: "y \<in> P2R \<phi> `` {x} \<longleftrightarrow> \<phi> x y" by simp definition proj :: "('a \<Rightarrow> 'a \<Rightarrow> bool) \<Rightarrow> 'a \<Rightarrow> 'a set" where "proj \<phi> x \<equiv> {y. \<phi> x y}" lemma proj_P2R: "proj \<phi> x = P2R \<phi> `` {x}" unfolding proj_def by auto lemma proj_P2R_raw: "proj \<phi> = (\<lambda> x. P2R \<phi> `` {x})" apply(rule ext) unfolding proj_P2R .. definition univ :: "('a \<Rightarrow> 'b) \<Rightarrow> ('a set \<Rightarrow> 'b)" where "univ f X == f (SOME x. x \<in> X)" definition quotientP :: "('a \<Rightarrow> bool) \<Rightarrow> ('a \<Rightarrow> 'a \<Rightarrow> bool) \<Rightarrow> ('a set \<Rightarrow> bool)" (infixl "'/'/'/" 90) where "P /// \<phi> \<equiv> S2P ((Collect P) // (P2R \<phi>))" lemma proj_preserves: "P x \<Longrightarrow> (P /// \<phi>) (proj \<phi> x)" unfolding proj_P2R quotientP_def by (metis S2P_def mem_Collect_eq quotientI) lemma proj_in_iff: assumes "equivP P \<phi>" shows "(P///\<phi>) (proj \<phi> x) \<longleftrightarrow> P x" using assms unfolding quotientP_def proj_def by (metis (mono_tags) Collect_mem_eq Equiv_Relation2.proj_def Equiv_Relation2.proj_preserves S2P_Collect empty_Collect_eq equivP_def equiv_P2R in_quotient_imp_non_empty quotientP_def reflP_def) lemma proj_iff[simp]: "\<lbrakk>equivP P \<phi>; P x; P y\<rbrakk> \<Longrightarrow> proj \<phi> x = proj \<phi> y \<longleftrightarrow> \<phi> x y" unfolding proj_P2R by (metis (full_types) equiv_P2R equiv_class_eq_iff equiv_class_self in_P2R_pair mem_Collect_eq proj_P2R proj_def) lemma in_proj[simp]: "\<lbrakk>equivP P \<phi>; P x\<rbrakk> \<Longrightarrow> x \<in> proj \<phi> x" unfolding proj_P2R equiv_def refl_on_def equiv_P2R[symmetric] by auto lemma proj_image[simp]: "(proj \<phi>) ` (Collect P) = Collect (P///\<phi>)" unfolding proj_P2R_raw quotientP_def quotient_def by auto lemma in_quotientP_imp_in_rel: "\<lbrakk>equivP P \<phi>; (P///\<phi>) X; x \<in> X; y \<in> X\<rbrakk> \<Longrightarrow> \<phi> x y" unfolding equiv_P2R[symmetric] quotientP_def quotient_eq_iff by (metis S2P_def in_P2R_pair quotient_eq_iff) lemma in_quotientP_imp_closed: "\<lbrakk>equivP P \<phi>; (P///\<phi>) X; x \<in> X; \<phi> x y\<rbrakk> \<Longrightarrow> y \<in> X" using S2P_Collect S2P_def equivP_def proj_P2R_raw proj_def quotientE quotientP_def transP_def by metis lemma in_quotientP_imp_subset: assumes "equivP P \<phi>" and "(P///\<phi>) X" shows "X \<subseteq> Collect P" by (metis (mono_tags, lifting) CollectI assms equivP_def in_quotientP_imp_in_rel reflP_def subsetI) lemma equivP_pick_in: assumes "equivP P \<phi> " and "(P///\<phi>) X" shows "pick X \<in> X" by (metis assms in_quotientP_imp_non_empty pick_NE) lemma equivP_pick_preserves: assumes "equivP P \<phi> " and "(P///\<phi>) X" shows "P (pick X)" by (metis assms equivP_pick_in in_quotientP_imp_subset mem_Collect_eq set_rev_mp) lemma proj_pick: assumes \<phi>: "equivP P \<phi>" and X: "(P///\<phi>) X" shows "proj \<phi> (pick X) = X" by (smt proj_def Equiv_Relation2.proj_iff Equiv_Relation2.proj_image X \<phi> equivP_pick_in equivP_pick_preserves image_iff mem_Collect_eq) lemma pick_proj: assumes "equivP P \<phi>" and "P x" shows "\<phi> (pick (proj \<phi> x)) x" by (metis assms equivP_def in_proj mem_Collect_eq pick proj_def symP_def) lemma equivP_pick_iff[simp]: assumes \<phi>: "equivP P \<phi>" and X: "(P///\<phi>) X" and Y: "(P///\<phi>) Y" shows "\<phi> (pick X) (pick Y) \<longleftrightarrow> X = Y" by (metis Equiv_Relation2.proj_iff X Y \<phi> equivP_pick_preserves proj_pick) lemma equivP_pick_inj_on: assumes "equivP P \<phi>" shows "inj_on pick (Collect (P///\<phi>))" using assms unfolding inj_on_def by (metis assms equivP_pick_iff mem_Collect_eq) definition congruentP where "congruentP \<phi> f \<equiv> \<forall> x y. \<phi> x y \<longrightarrow> f x = f y" abbreviation RESPECTS_P (infixr "respectsP" 80) where "f respectsP r == congruentP r f" lemma congruent_P2R: "congruent (P2R \<phi>) f = congruentP \<phi> f" unfolding congruent_def congruentP_def by auto lemma univ_commute[simp]: assumes "equivP P \<phi>" and "f respectsP \<phi>" and "P x" shows "(univ f) (proj \<phi> x) = f x" unfolding congruent_P2R[symmetric] by (metis (full_types) assms pick_def congruentP_def pick_proj univ_def) lemma univ_unique: assumes "equivP P \<phi>" and "f respectsP \<phi>" and "\<And> x. P x \<Longrightarrow> G (proj \<phi> x) = f x" shows "\<forall> X. (P///\<phi>) X \<longrightarrow> G X = univ f X" by (metis assms equivP_pick_preserves proj_pick univ_commute) lemma univ_preserves: assumes "equivP P \<phi> " and "f respectsP \<phi>" and "\<And> x. P x \<Longrightarrow> f x \<in> B" shows "\<forall> X. (P///\<phi>) X \<longrightarrow> univ f X \<in> B" by (metis Equiv_Relation2.univ_commute assms equivP_pick_preserves proj_pick) end
[STATEMENT] lemma wca_on_warp_on: \<comment> \<open>\citet[T.3 part]{Sen:1970}\<close> shows "wca_on A f \<longleftrightarrow> warp_on A f" [PROOF STATE] proof (prove) goal (1 subgoal): 1. wca_on A f = warp_on A f [PROOF STEP] unfolding %invisible warp_on_def wca_on_def rsp_on_def rwp_on_def [PROOF STATE] proof (prove) goal (1 subgoal): 1. (\<forall>(x, y)\<in>{(x, y). \<exists>B\<subseteq>A. x \<in> B \<and> y \<in> f B}. \<forall>B\<subseteq>A. x \<in> f B \<and> y \<in> B \<longrightarrow> y \<in> f B) = (\<forall>(x, y)\<in>{(x, y). \<exists>B\<subseteq>A. x \<in> Rf f B \<and> y \<in> f B}. (y, x) \<notin> {(x, y). \<exists>B\<subseteq>A. x \<in> B \<and> y \<in> f B}) [PROOF STEP] by blast
State Before: c : ℝ f g : ℕ → Bool n : ℕ h : f n = false ⊢ cantorFunctionAux c f n = 0 State After: no goals Tactic: simp [cantorFunctionAux, h]
function vars(vh) num_masses = vh.userdata.num_masses; lbx = horzcat(-4*ones(1,num_masses), -inf*ones(1,num_masses)).'; ubx = horzcat(4*ones(1,num_masses), inf*ones(1,num_masses)).'; vh.addState('x', [2*num_masses 1], 'lb', lbx, 'ub', ubx); vh.addControl('u', [num_masses-1 1], 'lb', -0.5, 'ub', 0.5);
[GOAL] G : Type u_1 H : Type u_2 inst✝¹ : AddZeroClass G inst✝ : AddZeroClass H x : G ≃+ H ⊢ (fun f => { toEquiv := { toFun := ↑(MulEquiv.toMonoidHom f), invFun := ↑(MulEquiv.toMonoidHom (MulEquiv.symm f)), left_inv := (_ : Function.LeftInverse f.invFun f.toFun), right_inv := (_ : Function.RightInverse f.invFun f.toFun) }, map_add' := (_ : ∀ (x y : Multiplicative G), Equiv.toFun f.toEquiv (x * y) = Equiv.toFun f.toEquiv x * Equiv.toFun f.toEquiv y) }) ((fun f => { toEquiv := { toFun := ↑(↑AddMonoidHom.toMultiplicative (toAddMonoidHom f)), invFun := ↑(↑AddMonoidHom.toMultiplicative (toAddMonoidHom (symm f))), left_inv := (_ : Function.LeftInverse f.invFun f.toFun), right_inv := (_ : Function.RightInverse f.invFun f.toFun) }, map_mul' := (_ : ∀ (x y : G), Equiv.toFun f.toEquiv (x + y) = Equiv.toFun f.toEquiv x + Equiv.toFun f.toEquiv y) }) x) = x [PROOFSTEP] ext [GOAL] case h G : Type u_1 H : Type u_2 inst✝¹ : AddZeroClass G inst✝ : AddZeroClass H x : G ≃+ H x✝ : G ⊢ ↑((fun f => { toEquiv := { toFun := ↑(MulEquiv.toMonoidHom f), invFun := ↑(MulEquiv.toMonoidHom (MulEquiv.symm f)), left_inv := (_ : Function.LeftInverse f.invFun f.toFun), right_inv := (_ : Function.RightInverse f.invFun f.toFun) }, map_add' := (_ : ∀ (x y : Multiplicative G), Equiv.toFun f.toEquiv (x * y) = Equiv.toFun f.toEquiv x * Equiv.toFun f.toEquiv y) }) ((fun f => { toEquiv := { toFun := ↑(↑AddMonoidHom.toMultiplicative (toAddMonoidHom f)), invFun := ↑(↑AddMonoidHom.toMultiplicative (toAddMonoidHom (symm f))), left_inv := (_ : Function.LeftInverse f.invFun f.toFun), right_inv := (_ : Function.RightInverse f.invFun f.toFun) }, map_mul' := (_ : ∀ (x y : G), Equiv.toFun f.toEquiv (x + y) = Equiv.toFun f.toEquiv x + Equiv.toFun f.toEquiv y) }) x)) x✝ = ↑x x✝ [PROOFSTEP] rfl [GOAL] G : Type u_1 H : Type u_2 inst✝¹ : AddZeroClass G inst✝ : AddZeroClass H x : Multiplicative G ≃* Multiplicative H ⊢ (fun f => { toEquiv := { toFun := ↑(↑AddMonoidHom.toMultiplicative (toAddMonoidHom f)), invFun := ↑(↑AddMonoidHom.toMultiplicative (toAddMonoidHom (symm f))), left_inv := (_ : Function.LeftInverse f.invFun f.toFun), right_inv := (_ : Function.RightInverse f.invFun f.toFun) }, map_mul' := (_ : ∀ (x y : G), Equiv.toFun f.toEquiv (x + y) = Equiv.toFun f.toEquiv x + Equiv.toFun f.toEquiv y) }) ((fun f => { toEquiv := { toFun := ↑(MulEquiv.toMonoidHom f), invFun := ↑(MulEquiv.toMonoidHom (MulEquiv.symm f)), left_inv := (_ : Function.LeftInverse f.invFun f.toFun), right_inv := (_ : Function.RightInverse f.invFun f.toFun) }, map_add' := (_ : ∀ (x y : Multiplicative G), Equiv.toFun f.toEquiv (x * y) = Equiv.toFun f.toEquiv x * Equiv.toFun f.toEquiv y) }) x) = x [PROOFSTEP] ext [GOAL] case h G : Type u_1 H : Type u_2 inst✝¹ : AddZeroClass G inst✝ : AddZeroClass H x : Multiplicative G ≃* Multiplicative H x✝ : Multiplicative G ⊢ ↑((fun f => { toEquiv := { toFun := ↑(↑AddMonoidHom.toMultiplicative (toAddMonoidHom f)), invFun := ↑(↑AddMonoidHom.toMultiplicative (toAddMonoidHom (symm f))), left_inv := (_ : Function.LeftInverse f.invFun f.toFun), right_inv := (_ : Function.RightInverse f.invFun f.toFun) }, map_mul' := (_ : ∀ (x y : G), Equiv.toFun f.toEquiv (x + y) = Equiv.toFun f.toEquiv x + Equiv.toFun f.toEquiv y) }) ((fun f => { toEquiv := { toFun := ↑(MulEquiv.toMonoidHom f), invFun := ↑(MulEquiv.toMonoidHom (MulEquiv.symm f)), left_inv := (_ : Function.LeftInverse f.invFun f.toFun), right_inv := (_ : Function.RightInverse f.invFun f.toFun) }, map_add' := (_ : ∀ (x y : Multiplicative G), Equiv.toFun f.toEquiv (x * y) = Equiv.toFun f.toEquiv x * Equiv.toFun f.toEquiv y) }) x)) x✝ = ↑x x✝ [PROOFSTEP] rfl [GOAL] G : Type u_1 H : Type u_2 inst✝¹ : MulOneClass G inst✝ : MulOneClass H x : G ≃* H ⊢ (fun f => { toEquiv := { toFun := ↑(AddEquiv.toAddMonoidHom f), invFun := ↑(AddEquiv.toAddMonoidHom (AddEquiv.symm f)), left_inv := (_ : Function.LeftInverse f.invFun f.toFun), right_inv := (_ : Function.RightInverse f.invFun f.toFun) }, map_mul' := (_ : ∀ (x y : Additive G), Equiv.toFun f.toEquiv (x + y) = Equiv.toFun f.toEquiv x + Equiv.toFun f.toEquiv y) }) ((fun f => { toEquiv := { toFun := ↑(↑MonoidHom.toAdditive (toMonoidHom f)), invFun := ↑(↑MonoidHom.toAdditive (toMonoidHom (symm f))), left_inv := (_ : Function.LeftInverse f.invFun f.toFun), right_inv := (_ : Function.RightInverse f.invFun f.toFun) }, map_add' := (_ : ∀ (x y : G), Equiv.toFun f.toEquiv (x * y) = Equiv.toFun f.toEquiv x * Equiv.toFun f.toEquiv y) }) x) = x [PROOFSTEP] ext [GOAL] case h G : Type u_1 H : Type u_2 inst✝¹ : MulOneClass G inst✝ : MulOneClass H x : G ≃* H x✝ : G ⊢ ↑((fun f => { toEquiv := { toFun := ↑(AddEquiv.toAddMonoidHom f), invFun := ↑(AddEquiv.toAddMonoidHom (AddEquiv.symm f)), left_inv := (_ : Function.LeftInverse f.invFun f.toFun), right_inv := (_ : Function.RightInverse f.invFun f.toFun) }, map_mul' := (_ : ∀ (x y : Additive G), Equiv.toFun f.toEquiv (x + y) = Equiv.toFun f.toEquiv x + Equiv.toFun f.toEquiv y) }) ((fun f => { toEquiv := { toFun := ↑(↑MonoidHom.toAdditive (toMonoidHom f)), invFun := ↑(↑MonoidHom.toAdditive (toMonoidHom (symm f))), left_inv := (_ : Function.LeftInverse f.invFun f.toFun), right_inv := (_ : Function.RightInverse f.invFun f.toFun) }, map_add' := (_ : ∀ (x y : G), Equiv.toFun f.toEquiv (x * y) = Equiv.toFun f.toEquiv x * Equiv.toFun f.toEquiv y) }) x)) x✝ = ↑x x✝ [PROOFSTEP] rfl [GOAL] G : Type u_1 H : Type u_2 inst✝¹ : MulOneClass G inst✝ : MulOneClass H x : Additive G ≃+ Additive H ⊢ (fun f => { toEquiv := { toFun := ↑(↑MonoidHom.toAdditive (toMonoidHom f)), invFun := ↑(↑MonoidHom.toAdditive (toMonoidHom (symm f))), left_inv := (_ : Function.LeftInverse f.invFun f.toFun), right_inv := (_ : Function.RightInverse f.invFun f.toFun) }, map_add' := (_ : ∀ (x y : G), Equiv.toFun f.toEquiv (x * y) = Equiv.toFun f.toEquiv x * Equiv.toFun f.toEquiv y) }) ((fun f => { toEquiv := { toFun := ↑(AddEquiv.toAddMonoidHom f), invFun := ↑(AddEquiv.toAddMonoidHom (AddEquiv.symm f)), left_inv := (_ : Function.LeftInverse f.invFun f.toFun), right_inv := (_ : Function.RightInverse f.invFun f.toFun) }, map_mul' := (_ : ∀ (x y : Additive G), Equiv.toFun f.toEquiv (x + y) = Equiv.toFun f.toEquiv x + Equiv.toFun f.toEquiv y) }) x) = x [PROOFSTEP] ext [GOAL] case h G : Type u_1 H : Type u_2 inst✝¹ : MulOneClass G inst✝ : MulOneClass H x : Additive G ≃+ Additive H x✝ : Additive G ⊢ ↑((fun f => { toEquiv := { toFun := ↑(↑MonoidHom.toAdditive (toMonoidHom f)), invFun := ↑(↑MonoidHom.toAdditive (toMonoidHom (symm f))), left_inv := (_ : Function.LeftInverse f.invFun f.toFun), right_inv := (_ : Function.RightInverse f.invFun f.toFun) }, map_add' := (_ : ∀ (x y : G), Equiv.toFun f.toEquiv (x * y) = Equiv.toFun f.toEquiv x * Equiv.toFun f.toEquiv y) }) ((fun f => { toEquiv := { toFun := ↑(AddEquiv.toAddMonoidHom f), invFun := ↑(AddEquiv.toAddMonoidHom (AddEquiv.symm f)), left_inv := (_ : Function.LeftInverse f.invFun f.toFun), right_inv := (_ : Function.RightInverse f.invFun f.toFun) }, map_mul' := (_ : ∀ (x y : Additive G), Equiv.toFun f.toEquiv (x + y) = Equiv.toFun f.toEquiv x + Equiv.toFun f.toEquiv y) }) x)) x✝ = ↑x x✝ [PROOFSTEP] rfl [GOAL] G : Type u_1 H : Type u_2 inst✝¹ : MulOneClass G inst✝ : AddZeroClass H x : Additive G ≃+ H ⊢ (fun f => { toEquiv := { toFun := ↑(MulEquiv.toMonoidHom f), invFun := ↑(MulEquiv.toMonoidHom (MulEquiv.symm f)), left_inv := (_ : Function.LeftInverse f.invFun f.toFun), right_inv := (_ : Function.RightInverse f.invFun f.toFun) }, map_add' := (_ : ∀ (x y : G), Equiv.toFun f.toEquiv (x * y) = Equiv.toFun f.toEquiv x * Equiv.toFun f.toEquiv y) }) ((fun f => { toEquiv := { toFun := ↑(↑AddMonoidHom.toMultiplicative' (toAddMonoidHom f)), invFun := ↑(↑AddMonoidHom.toMultiplicative'' (toAddMonoidHom (symm f))), left_inv := (_ : Function.LeftInverse f.invFun f.toFun), right_inv := (_ : Function.RightInverse f.invFun f.toFun) }, map_mul' := (_ : ∀ (x y : Additive G), Equiv.toFun f.toEquiv (x + y) = Equiv.toFun f.toEquiv x + Equiv.toFun f.toEquiv y) }) x) = x [PROOFSTEP] ext [GOAL] case h G : Type u_1 H : Type u_2 inst✝¹ : MulOneClass G inst✝ : AddZeroClass H x : Additive G ≃+ H x✝ : Additive G ⊢ ↑((fun f => { toEquiv := { toFun := ↑(MulEquiv.toMonoidHom f), invFun := ↑(MulEquiv.toMonoidHom (MulEquiv.symm f)), left_inv := (_ : Function.LeftInverse f.invFun f.toFun), right_inv := (_ : Function.RightInverse f.invFun f.toFun) }, map_add' := (_ : ∀ (x y : G), Equiv.toFun f.toEquiv (x * y) = Equiv.toFun f.toEquiv x * Equiv.toFun f.toEquiv y) }) ((fun f => { toEquiv := { toFun := ↑(↑AddMonoidHom.toMultiplicative' (toAddMonoidHom f)), invFun := ↑(↑AddMonoidHom.toMultiplicative'' (toAddMonoidHom (symm f))), left_inv := (_ : Function.LeftInverse f.invFun f.toFun), right_inv := (_ : Function.RightInverse f.invFun f.toFun) }, map_mul' := (_ : ∀ (x y : Additive G), Equiv.toFun f.toEquiv (x + y) = Equiv.toFun f.toEquiv x + Equiv.toFun f.toEquiv y) }) x)) x✝ = ↑x x✝ [PROOFSTEP] rfl [GOAL] G : Type u_1 H : Type u_2 inst✝¹ : MulOneClass G inst✝ : AddZeroClass H x : G ≃* Multiplicative H ⊢ (fun f => { toEquiv := { toFun := ↑(↑AddMonoidHom.toMultiplicative' (toAddMonoidHom f)), invFun := ↑(↑AddMonoidHom.toMultiplicative'' (toAddMonoidHom (symm f))), left_inv := (_ : Function.LeftInverse f.invFun f.toFun), right_inv := (_ : Function.RightInverse f.invFun f.toFun) }, map_mul' := (_ : ∀ (x y : Additive G), Equiv.toFun f.toEquiv (x + y) = Equiv.toFun f.toEquiv x + Equiv.toFun f.toEquiv y) }) ((fun f => { toEquiv := { toFun := ↑(MulEquiv.toMonoidHom f), invFun := ↑(MulEquiv.toMonoidHom (MulEquiv.symm f)), left_inv := (_ : Function.LeftInverse f.invFun f.toFun), right_inv := (_ : Function.RightInverse f.invFun f.toFun) }, map_add' := (_ : ∀ (x y : G), Equiv.toFun f.toEquiv (x * y) = Equiv.toFun f.toEquiv x * Equiv.toFun f.toEquiv y) }) x) = x [PROOFSTEP] ext [GOAL] case h G : Type u_1 H : Type u_2 inst✝¹ : MulOneClass G inst✝ : AddZeroClass H x : G ≃* Multiplicative H x✝ : G ⊢ ↑((fun f => { toEquiv := { toFun := ↑(↑AddMonoidHom.toMultiplicative' (toAddMonoidHom f)), invFun := ↑(↑AddMonoidHom.toMultiplicative'' (toAddMonoidHom (symm f))), left_inv := (_ : Function.LeftInverse f.invFun f.toFun), right_inv := (_ : Function.RightInverse f.invFun f.toFun) }, map_mul' := (_ : ∀ (x y : Additive G), Equiv.toFun f.toEquiv (x + y) = Equiv.toFun f.toEquiv x + Equiv.toFun f.toEquiv y) }) ((fun f => { toEquiv := { toFun := ↑(MulEquiv.toMonoidHom f), invFun := ↑(MulEquiv.toMonoidHom (MulEquiv.symm f)), left_inv := (_ : Function.LeftInverse f.invFun f.toFun), right_inv := (_ : Function.RightInverse f.invFun f.toFun) }, map_add' := (_ : ∀ (x y : G), Equiv.toFun f.toEquiv (x * y) = Equiv.toFun f.toEquiv x * Equiv.toFun f.toEquiv y) }) x)) x✝ = ↑x x✝ [PROOFSTEP] rfl [GOAL] G : Type u_1 H : Type u_2 inst✝¹ : AddZeroClass G inst✝ : MulOneClass H x : G ≃+ Additive H ⊢ (fun f => { toEquiv := { toFun := ↑(MulEquiv.toMonoidHom f), invFun := ↑(MulEquiv.toMonoidHom (MulEquiv.symm f)), left_inv := (_ : Function.LeftInverse f.invFun f.toFun), right_inv := (_ : Function.RightInverse f.invFun f.toFun) }, map_add' := (_ : ∀ (x y : Multiplicative G), Equiv.toFun f.toEquiv (x * y) = Equiv.toFun f.toEquiv x * Equiv.toFun f.toEquiv y) }) ((fun f => { toEquiv := { toFun := ↑(↑AddMonoidHom.toMultiplicative'' (toAddMonoidHom f)), invFun := ↑(↑AddMonoidHom.toMultiplicative' (toAddMonoidHom (symm f))), left_inv := (_ : Function.LeftInverse f.invFun f.toFun), right_inv := (_ : Function.RightInverse f.invFun f.toFun) }, map_mul' := (_ : ∀ (x y : G), Equiv.toFun f.toEquiv (x + y) = Equiv.toFun f.toEquiv x + Equiv.toFun f.toEquiv y) }) x) = x [PROOFSTEP] ext [GOAL] case h G : Type u_1 H : Type u_2 inst✝¹ : AddZeroClass G inst✝ : MulOneClass H x : G ≃+ Additive H x✝ : G ⊢ ↑((fun f => { toEquiv := { toFun := ↑(MulEquiv.toMonoidHom f), invFun := ↑(MulEquiv.toMonoidHom (MulEquiv.symm f)), left_inv := (_ : Function.LeftInverse f.invFun f.toFun), right_inv := (_ : Function.RightInverse f.invFun f.toFun) }, map_add' := (_ : ∀ (x y : Multiplicative G), Equiv.toFun f.toEquiv (x * y) = Equiv.toFun f.toEquiv x * Equiv.toFun f.toEquiv y) }) ((fun f => { toEquiv := { toFun := ↑(↑AddMonoidHom.toMultiplicative'' (toAddMonoidHom f)), invFun := ↑(↑AddMonoidHom.toMultiplicative' (toAddMonoidHom (symm f))), left_inv := (_ : Function.LeftInverse f.invFun f.toFun), right_inv := (_ : Function.RightInverse f.invFun f.toFun) }, map_mul' := (_ : ∀ (x y : G), Equiv.toFun f.toEquiv (x + y) = Equiv.toFun f.toEquiv x + Equiv.toFun f.toEquiv y) }) x)) x✝ = ↑x x✝ [PROOFSTEP] rfl [GOAL] G : Type u_1 H : Type u_2 inst✝¹ : AddZeroClass G inst✝ : MulOneClass H x : Multiplicative G ≃* H ⊢ (fun f => { toEquiv := { toFun := ↑(↑AddMonoidHom.toMultiplicative'' (toAddMonoidHom f)), invFun := ↑(↑AddMonoidHom.toMultiplicative' (toAddMonoidHom (symm f))), left_inv := (_ : Function.LeftInverse f.invFun f.toFun), right_inv := (_ : Function.RightInverse f.invFun f.toFun) }, map_mul' := (_ : ∀ (x y : G), Equiv.toFun f.toEquiv (x + y) = Equiv.toFun f.toEquiv x + Equiv.toFun f.toEquiv y) }) ((fun f => { toEquiv := { toFun := ↑(MulEquiv.toMonoidHom f), invFun := ↑(MulEquiv.toMonoidHom (MulEquiv.symm f)), left_inv := (_ : Function.LeftInverse f.invFun f.toFun), right_inv := (_ : Function.RightInverse f.invFun f.toFun) }, map_add' := (_ : ∀ (x y : Multiplicative G), Equiv.toFun f.toEquiv (x * y) = Equiv.toFun f.toEquiv x * Equiv.toFun f.toEquiv y) }) x) = x [PROOFSTEP] ext [GOAL] case h G : Type u_1 H : Type u_2 inst✝¹ : AddZeroClass G inst✝ : MulOneClass H x : Multiplicative G ≃* H x✝ : Multiplicative G ⊢ ↑((fun f => { toEquiv := { toFun := ↑(↑AddMonoidHom.toMultiplicative'' (toAddMonoidHom f)), invFun := ↑(↑AddMonoidHom.toMultiplicative' (toAddMonoidHom (symm f))), left_inv := (_ : Function.LeftInverse f.invFun f.toFun), right_inv := (_ : Function.RightInverse f.invFun f.toFun) }, map_mul' := (_ : ∀ (x y : G), Equiv.toFun f.toEquiv (x + y) = Equiv.toFun f.toEquiv x + Equiv.toFun f.toEquiv y) }) ((fun f => { toEquiv := { toFun := ↑(MulEquiv.toMonoidHom f), invFun := ↑(MulEquiv.toMonoidHom (MulEquiv.symm f)), left_inv := (_ : Function.LeftInverse f.invFun f.toFun), right_inv := (_ : Function.RightInverse f.invFun f.toFun) }, map_add' := (_ : ∀ (x y : Multiplicative G), Equiv.toFun f.toEquiv (x * y) = Equiv.toFun f.toEquiv x * Equiv.toFun f.toEquiv y) }) x)) x✝ = ↑x x✝ [PROOFSTEP] rfl
function grad = B_MVDR_spatialCov(X, curr_layer, beamform_layer, after_power_layer) % X is the multichannel complex spectrum inputs [D,C,T,N] = size(X); % weight is the beamforming weight weight = reshape(curr_layer.a, D,C,N); lambda = curr_layer.lambda; phi_s = curr_layer.phi_s; phi_n = curr_layer.phi_n; if isfield(curr_layer, 'noiseCovL2') noiseCovL2 = curr_layer.noiseCovL2; else noiseCovL2 = 0; % add noiseCovRegularization*\lambda*I to noise covariance, where \lambda is the maximum eigenvalue end % Y is the beamforming's output Y = beamform_layer.a; % future_grad is the gradient of the power specturm of beamformed signal future_grad = after_power_layer.grad; if N>1 [validMask, variableLength] = getValidFrameMask(curr_layer); future_gradUtt = ExtractVariableLengthTrajectory(future_grad, validMask); YUtt = ExtractVariableLengthTrajectory(Y, validMask); X = reshape(X, D*C, T, N); XUtt = ExtractVariableLengthTrajectory(X, validMask); for i=1:N grad{i} = GetGradUtt(reshape(XUtt{i},D,C,size(XUtt{i},2)),YUtt{i},phi_s(:,:,:,:,i), phi_n(:,:,:,:,i), ... weight(:,:,i), lambda(:,:,:,:,i), future_gradUtt{i}, noiseCovL2); end grad = cell2mat_gpu(grad); grad = permute(grad, [1 3 2]); else grad = GetGradUtt(X,Y,phi_s, phi_n, weight, lambda, future_grad, noiseCovL2); end end %% function grad = GetGradUtt(X,Y,phi_s, phi_n, weight, lambda, future_grad, noiseCovL2) [D,C,T,N] = size(X); u = zeros(C,1); u(1) = 1; for f=1:D x = squeeze(X(f,:,:)); xx = x*x'; ww = weight(f,:).' * conj(weight(f,:)); phi_n_inv = inv(phi_n{1,1,f}); yy = abs(Y(f,:).*conj(Y(f,:))); dyyy = sum(future_grad(f,:).*yy); dyxx = bsxfun(@times, x, future_grad(f,:)) * x'; if 1 grad_phi_s(:,:,f) = 2 * phi_n_inv * dyxx * weight(f,:).' * u' / lambda{1,1,f} -2 * dyyy * phi_n_inv / lambda{1,1,f}; grad_phi_n(:,:,f) = - 2* phi_n_inv * dyxx * ww + 2 * dyyy * phi_n_inv * phi_s{1,1,f} * phi_n_inv / lambda{1,1,f}; elseif 0 % no lambda grad_phi_s(:,:,f) = 2 * phi_n_inv * dyxx * weight(f,:).' * u'; grad_phi_n(:,:,f) = - 2* phi_n_inv * dyxx * ww; else % only lambda grad_phi_s(:,:,f) = -2 * dyyy * phi_n_inv / lambda{1,1,f}; grad_phi_n(:,:,f) = 2 * dyyy * phi_n_inv * phi_s{1,1,f} * phi_n_inv / lambda{1,1,f}; end end grad = conj([reshape(grad_phi_s,C*C*D,1); reshape(grad_phi_n,C*C*D,1)]); end
const EAGER_INIT = Ref{Bool}(false) const EAGER_THUNK_CHAN = Channel(typemax(Int)) const EAGER_THUNK_MAP = Dict{Int,Int}() const EAGER_CONTEXT = Ref{Context}() eager_context() = isassigned(EAGER_CONTEXT) ? EAGER_CONTEXT[] : nothing function init_eager() EAGER_INIT[] && return EAGER_INIT[] = true if eager_context() === nothing EAGER_CONTEXT[] = Context([myid(),workers()...]) end ctx = EAGER_CONTEXT[] @async try sopts = SchedulerOptions(;allow_errors=true) topts = ThunkOptions(;single=1) Dagger.compute(ctx, Dagger.delayed(eager_thunk;options=topts)(); options=sopts) catch err iob = IOContext(IOBuffer(), :color=>true) println(iob, "Error in eager scheduler:") Base.showerror(iob, err) Base.show_backtrace(iob, catch_backtrace()) println(iob) seek(iob.io, 0) write(stderr, iob) finally EAGER_INIT[] = false end end "Adjusts the scheduler's cached pressure indicator for the specified worker by the specified amount." function adjust_pressure!(h::SchedulerHandle, proctype::Type, pressure) uid = Dagger.get_tls().sch_uid lock(ACTIVE_TASKS_LOCK) do ACTIVE_TASKS[uid][proctype][] += pressure notify(TASK_SYNC) end exec!(_adjust_pressure!, h, myid(), proctype, pressure) end function _adjust_pressure!(ctx, state, task, tid, (pid, proctype, pressure)) state.worker_pressure[pid][proctype] += pressure nothing end "Allows a thunk to safely wait on another thunk, by temporarily reducing its effective pressure to 0." function thunk_yield(f) if Dagger.in_thunk() h = sch_handle() tls = Dagger.get_tls() proctype = typeof(tls.processor) util = tls.utilization adjust_pressure!(h, proctype, -util) try f() finally adjust_pressure!(h, proctype, util) end else f() end end function eager_thunk() h = sch_handle() util = Dagger.get_tls().utilization # Don't apply pressure from this thunk adjust_pressure!(h, Dagger.ThreadProc, -util) while isopen(EAGER_THUNK_CHAN) try future, uid, f, args, opts = take!(EAGER_THUNK_CHAN) args = map(x->x isa Dagger.EagerThunk ? ThunkID(EAGER_THUNK_MAP[x.uid]) : x, args) tid = add_thunk!(f, h, args...; opts...) register_future!(h, tid, future) EAGER_THUNK_MAP[uid] = tid.id catch err iob = IOContext(IOBuffer(), :color=>true) println(iob, "Error in eager listener:") Base.showerror(iob, err) Base.show_backtrace(iob, catch_backtrace()) println(iob) seek(iob.io, 0) write(stderr, iob) end end end
(**************************************************************) (* Copyright Dominique Larchey-Wendling [*] *) (* *) (* [*] Affiliation LORIA -- CNRS *) (**************************************************************) (* This file is distributed under the terms of the *) (* CeCILL v2 FREE SOFTWARE LICENSE AGREEMENT *) (**************************************************************) Require Import Arith Omega. Require Import bar. Set Implicit Arguments. Tactic Notation "eq" "goal" "with" hyp(H) := match goal with |- ?b => match type of H with ?t => replace b with t; auto end end. Theorem nat_rev_ind (P : nat -> Prop) (HP : forall n, P (S n) -> P n) x y : x <= y -> P y -> P x. Proof. induction 1; auto. Qed. Reserved Notation "f ↑ n" (at level 1, left associativity). Fixpoint iter X (f : X -> X) n x := match n with | 0 => x | S n => f (f↑n x) end where "f ↑ n" := (@iter _ f n). Section th_min. Variables (X : Type) (eqdec : forall x y : X, { x = y } + { x <> y }). Infix "=?" := eqdec (at level 70). Variable (f : X -> X) (x0 : X) (Hx0 : exists τ, 0 < τ /\ f↑τ x0 = f↑(2*τ) x0). Theorem th_min : { τ | 0 < τ /\ f↑τ x0 = f↑(2*τ) x0 }. Proof. apply Constructive_Epsilon; trivial. intros n. destruct (le_lt_dec n 0) as [ | H ]; [right; omega | ]. destruct (eqdec (f↑n x0) (f↑(2*n) x0)); tauto. Qed. End th_min. Extraction Inline bar_rect. Extraction Inline Constructive_Epsilon. Recursive Extraction th_min.
universe u constant vec : Type u → ℕ → Type u namespace vec constant empty : Π α : Type u, vec α 0 constant cons : Π {α : Type u} {n : ℕ}, α → vec α n → vec α (n + 1) constant append : Π {α : Type u} {n m : ℕ}, vec α m → vec α n → vec α (n + m) end vec #check vec -- Above, we used the example vec α n for vectors of elements of type α of -- length n. Declare a constant vec_add that could represent a function -- that adds two vectors of natural numbers of the same length, and a constant -- vec_reverse that can represent a function that reverses its argument. -- Use implicit arguments for parameters that can be inferred. Declare some -- variables and check some expressions involving the constants that you have -- declared. constant vec_add : Π {α : Type u} {n : ℕ}, vec α n → vec α n → vec α n #reduce vec.cons 456 (vec.cons 123 (vec.empty _)) #check vec_add (vec.cons 456 (vec.cons 123 (vec.empty _))) (vec.cons 456 (vec.cons 123 (vec.empty _))) constant vec_reverse : Π {α : Type u} {n : ℕ}, vec α n → vec α n #check vec_reverse (vec.cons 456 (vec.cons 123 (vec.empty _))) -- Similarly, declare a constant matrix so that matrix α m n could represent the -- type of m by n matrices. Declare some constants to represent functions on -- this type, such as matrix addition and multiplication, and (using vec) -- multiplication of a matrix by a vector. Once again, declare some variables -- and check some expressions involving the constants that you have declared. constant matrix : Type u → ℕ → ℕ → Type u constant matrix_add : Π {α : Type u} {n m : ℕ}, matrix α n m → matrix α n m constant matrix_mul : Π {α : Type u} {n m k : ℕ}, matrix α n m → matrix α m k → matrix α n k constant matrix_vec_mul : Π {α : Type u} {n m : ℕ}, matrix α n m → vec α m → vec α n
text \<open> Version 0.5, last changed 2019-02-01 (C) fovefi ltd, www.fovefi.co (author: Manfred Kerber [[email protected]] based on Percentile_Code.thy in foveSIMM by Lukas Bulwahn) Dually licenced under Creative Commons Attribution (CC-BY) 4.0 [https://creativecommons.org/licenses/by/4.0/] ISC License (1-clause BSD License) [https://www.isc.org/downloads/software-support-policy/isc-license/] See LICENSE files for details. (Rationale for this dual licence: http://arxiv.org/abs/1107.3212) In the following, an executable definition of the percentile function is given that is close to the one used in OpenSIMM, a system with a standard implementation for the computation of risk. Here, the percentile function is extended so that it is defined on the complete interval [0,1]. The extension is done by taking a constant slope at the ends of the interval. To this end the original implementation was adjusted. \<close> theory Percentile_Code imports Percentile begin section \<open>Code Generation of Percentile\<close> paragraph \<open>The percentile definition close to the Java implementation\<close> text \<open> In the Java code follows a check that the level is below 1 - 1/(2*size). * If not, it throws an exception. In the Isabelle implementation (there is no exception * handling in Isabelle), the code is underspecified, that is, no specific values will be * returned for larger values. This will be fixed in the definition of the percentile function * in the next section. \<close> text \<open> An integer greater equal 0 considered as a real number is the same as the integer first considered as a natural number and this then considered as a real number. \<close> lemma real_of_int: assumes "0 \<le> i" shows "real_of_int i = real (nat i)" by (simp add: assms) text \<open> The value of the minimum of the domain of equidistant point is determined. \<close> lemma Min_equidistant_points_on_unit_interval_of_bounded: fixes x :: real assumes "ys \<noteq> []" assumes "1 / (2 * length ys) < x" assumes "x \<le> 1 - 1 / (2 * length ys)" shows "Min {x' \<in> dom (equidistant_points_on_unit_interval_of ys). x \<le> x'} = (ceiling (length ys * x - 0.5) + 0.5) / length ys" (is "Min ?A = ?expr") proof (rule Min_eqI) text \<open>let ?A = "{x' \<in> dom (equidistant_points_on_unit_interval_of ys). x \<le> x'}"\<close> show "finite ?A" by simp show "?expr \<le> y" if "y \<in> ?A" for y proof - from that \<open>ys \<noteq> []\<close> obtain n where "y = (real n + 1 / 2) / real (length ys)" and "x \<le> y" unfolding equidistant_points_on_unit_interval_of_def apply auto done obtain i where "i = int n" by auto from this \<open>y = _\<close> have y: "y = (real_of_int i + 1 / 2) / real (length ys)" by simp have "i \<ge> ceiling (length ys * x - 0.5)" proof - have "x \<le> (real_of_int i + 1 / 2) / real (length ys)" using \<open>x \<le> y\<close> y by blast from this have "length ys * x \<le> (real_of_int i + 1 / 2)" apply - apply (frule mult_left_mono[where c="real (length ys)"]) apply simp by (simp add: assms(1)) find_theorems "_ * _ \<le> _ * _" from this have "length ys * x - 1 / 2 \<le> real_of_int i" by linarith from this show ?thesis by (simp add: ceiling_le) qed from this y have "y \<ge> (real_of_int (ceiling (length ys * x - 0.5)) + 1 / 2) / real (length ys)" apply simp find_theorems "_ / _ \<le> _ / _" apply (rule divide_right_mono) apply simp apply simp done from this show ?thesis by simp qed show "?expr \<in> ?A" proof - from assms have "0 \<le> real (length ys) * x - 1 / 2" apply auto by (simp add: Groups.mult_ac(2) divide_less_eq) from this have "0 \<le> \<lceil>real (length ys) * x - 1 / 2\<rceil>" by simp from this have a: "real_of_int \<lceil>real (length ys) * x - 1 / 2\<rceil> = real (nat \<lceil>real (length ys) * x - 1 / 2\<rceil>)" by simp have b: "nat \<lceil>real (length ys) * x - 1 / 2\<rceil> \<in> {0..<length ys}" proof - have "real (length ys) * x - 1 / 2 \<le> (length ys - 1)" proof - have "real (length ys) * x - 1 / 2 \<le> real (length ys) * (1 - 1 / real (2 * length ys)) - 1 / 2" using assms(1, 3) by simp also have "\<dots> = real (length ys) - 1" apply auto apply (subst right_diff_distrib) apply simp by (simp add: assms(1)) also have "\<dots> = real (length ys - 1)" by (metis One_nat_def Suc_pred assms(1) diff_Suc_Suc diff_is_0_eq length_greater_0_conv of_nat_1 of_nat_diff zero_diff) finally show ?thesis . qed text \<open>have "\<lceil>real (length ys) * x - 1 / 2\<rceil> \<ge> 0" s_orry\<close> from this have a: "\<lceil>real (length ys) * x - 1 / 2\<rceil> \<le> \<lceil>real (length ys - 1)\<rceil>" using ceiling_mono by blast have "\<lceil>real (length ys - 1)\<rceil> = int (length ys - 1)" by simp from a this have "nat \<lceil>real (length ys) * x - 1 / 2\<rceil> < length ys" by (smt assms(1) int_nat_eq length_greater_0_conv nat_less_le of_nat_0_less_iff of_nat_1 of_nat_diff of_nat_less_imp_less zero_less_diff) from this show ?thesis apply auto done qed have "(real_of_int \<lceil>real (length ys) * x - 5 / 10\<rceil> + 5 / 10) / real (length ys) \<in> dom (equidistant_points_on_unit_interval_of ys)" unfolding dom_equidistant_points_on_unit_interval_of apply auto apply (subst a) apply (rule image_eqI) apply (rule refl) apply (rule b) done find_theorems "dom (equidistant_points_on_unit_interval_of _)" moreover have "x \<le> (real_of_int \<lceil>real (length ys) * x - 5 / 10\<rceil> + 5 / 10) / real (length ys)" proof - have "real (length ys) > 0" (* only need \<ge> *) by (simp add: assms) have a: "real (length ys) * x - 5 / 10 \<le> real_of_int \<lceil>real (length ys) * x - 5 / 10\<rceil>" by linarith have "x \<le> ((real (length ys) * x - 5 / 10) + 5 / 10) / real (length ys)" using \<open>real (length ys) > 0\<close> by auto also have "\<dots> \<le> (real_of_int \<lceil>real (length ys) * x - 5 / 10\<rceil> + 5 / 10) / real (length ys)" using \<open>real (length ys) > 0\<close> a apply - apply (rule divide_right_mono) apply linarith apply simp done finally show ?thesis . qed ultimately show ?thesis by auto qed qed text \<open> A property of the ceiling function. \<close> lemma ceiling_minus_leq: assumes "a + b \<ge> 1" shows "real_of_int \<lceil>x - a\<rceil> - b \<le> x" using assms by linarith text \<open> Relationship between floor and ceiling (floor plus 1 is less equal ceiling). \<close> lemma floor_leq_ceiling: fixes x :: real assumes "x \<notin> real_of_int ` UNIV" shows "1 + real_of_int (floor x) \<le> real_of_int (ceiling x)" using assms by (smt UNIV_I ceiling_correct image_eqI int_less_real_le le_floor_iff) text \<open> If i < y for two integers then i \<le> y - 1 (when converted to real).\<close> lemma less_to_leq: fixes y :: real assumes "real i < y" assumes "y \<in> real_of_int ` UNIV" shows "real i \<le> y - 1" proof - from assms(2) obtain j where "y = real_of_int j" apply auto done obtain k where "j = int k" by (smt \<open>y = real_of_int j\<close> assms(1) int_less_real_le nat_0_le of_int_1 of_nat_0_le_iff) from this \<open>y = _\<close> assms(1) show ?thesis by auto qed text \<open> The value of the maximum of the domain of equidistant point is determined. \<close> lemma Max_equidistant_points_on_unit_interval_of_bounded: fixes x :: real assumes "ys \<noteq> []" assumes "1 / (2 * length ys) < x" "x \<le> 1 - 1 / (2 * length ys)" shows "Max {x' \<in> dom (equidistant_points_on_unit_interval_of ys). x' < x} = (ceiling (length ys * x - 0.5) - 0.5) / length ys" (is "_ = ?expr") proof - let ?A = "{x' \<in> (\<lambda>x. (1 / length ys) * (x + 0.5)) ` {0..<length ys}. x' < x}" have "Max ?A = ?expr" find_theorems "_ ` _" "Max" proof (rule Max_eqI) show "finite ?A" by simp show "y \<le> ?expr" if "y \<in> ?A" for y proof - show ?thesis proof (cases "real (length ys) * x - 1 / 2 \<in> range real_of_int") case True from that obtain i where "i \<in> {0..<length ys}" and y: "y = 1 / real (length ys) * (real i + 5 / 10)" and "y < x" by auto have "(real i + 5 / 10) < real (length ys) * x" by (metis \<open>y < x\<close> assms(1) divide_less_eq length_greater_0_conv mult.commute mult_numeral_1 numeral_One of_nat_0_less_iff times_divide_eq_right y) from this have "real i < real (length ys) * x - 0.5" by linarith from this have "real i \<le> real (length ys) * x - 1.5" apply - apply (frule less_to_leq) apply (simp add: True) by linarith from this have "(real i + 5 / 10) \<le> real (length ys) * x - 1" apply simp done have "1 / real (length ys) > 0" by (simp add: assms(1)) from this assms y have y2: "y \<le> 1 / real (length ys) * (real (length ys) * x - 1)" using \<open>real i + 5 / 10 \<le> real (length ys) * x - 1\<close> real_mult_le_cancel_iff2 by blast have "real (length ys) * x - 1 / 2 \<le> real_of_int \<lceil>real (length ys) * x - 1 / 2\<rceil>" by simp from this have "real (length ys) * x - 1 \<le> real_of_int \<lceil>real (length ys) * x - 1 / 2\<rceil> - 1 / 2" proof - have "real (length ys) * x - 1 = (real (length ys) * x - 1 / 2) - 1 / 2" by simp also have "\<dots> \<le> real_of_int \<lceil>real (length ys) * x - 1 / 2\<rceil> - 1 / 2" by linarith finally show ?thesis . qed from this y2 show ?thesis apply auto find_theorems "?a \<le> ?b \<Longrightarrow> ?b \<le> ?c \<Longrightarrow> ?a \<le> ?c" apply (rule order.trans) apply assumption apply (rule divide_right_mono) apply simp apply simp done find_theorems "_ / _ \<le> _ / _" next case False then show ?thesis proof - have "y \<le> 1 / real (length ys) * (real_of_int \<lfloor>real (length ys) * x - 5 / 10\<rfloor> + 5 / 10)" proof - from that obtain i where "i \<in> {0..<length ys}" and "y = 1 / real (length ys) * (real i + 5 / 10)" and "y \<le> x" by auto have "i \<le> \<lfloor>real (length ys) * x - 5 / 10\<rfloor>" proof - have a: "1 / real (length ys) * (real i + 5 / 10) \<le> x" using \<open>y = _\<close> \<open>y \<le> x\<close> by blast have "(real i + 5 / 10) \<le> real (length ys) * x" proof - have "(real i + 5 / 10) = real (length ys) * (1 / real (length ys) * (real i + 5 / 10))" by (simp add: assms(1)) also have "\<dots> \<le> real (length ys) * x" using a mult_left_mono of_nat_0_le_iff by blast finally show ?thesis . qed from this have "real i \<le> real (length ys) * x - 5 / 10" by linarith from this show ?thesis by linarith qed from this \<open>y = _\<close> show ?thesis proof - have "real (length ys) > 0" by (simp add: assms(1)) from \<open>i \<le> floor _\<close> have "(real i + 5 / 10) \<le> real_of_int \<lfloor>real (length ys) * x - 5 / 10\<rfloor> + 5 / 10" by linarith from this \<open>y = _\<close> \<open>real (length ys) > 0\<close> show ?thesis using real_mult_le_cancel_iff2 by fastforce qed qed also have "\<dots> \<le> (real_of_int \<lceil>real (length ys) * x - 5 / 10\<rceil> - 5 / 10) / real (length ys)" proof - from False have "(real_of_int \<lfloor>real (length ys) * x - 5 / 10\<rfloor> + 5 / 10) \<le> (real_of_int \<lceil>real (length ys) * x - 5 / 10\<rceil> - 5 / 10)" apply simp apply (rule floor_leq_ceiling) apply assumption done from this show ?thesis apply simp apply (rule divide_right_mono) apply simp apply simp done qed finally show ?thesis . qed qed qed show "?expr \<in> ?A" proof - have "?expr \<in> (\<lambda>x. 1 / real (length ys) * (real x + 5 / 10)) ` {0..<length ys}" proof have "real (length ys) * x - 1 / 2 > 0" by (metis assms(1) assms(2) diff_gt_0_iff_gt divide_divide_eq_left divide_less_eq length_greater_0_conv mult.commute of_nat_0_less_iff of_nat_mult of_nat_numeral) from this have "nat \<lceil>real (length ys) * x - 1 / 2\<rceil> \<ge> 1" by linarith from this show "(real_of_int \<lceil>real (length ys) * x - 5 / 10\<rceil> - 5 / 10) / real (length ys) = 1 / real (length ys) * (real (nat \<lceil>real (length ys) * x - 5 / 10\<rceil> - 1) + 5 / 10)" using \<open>ys \<noteq> []\<close> apply auto done have "real (length ys) \<ge> 0" by auto have "x \<le> 1" by (smt assms(3) divide_less_0_1_iff of_nat_0_le_iff) from this have "real (length ys) * x \<le> length ys" by (simp add: mult_left_le) from this \<open>real (length ys) \<ge> 0\<close> have "real (length ys) * x \<le> length ys + 1 / 2" by linarith from this have "real (length ys) * x - 1 / 2 \<le> length ys" by fastforce from this show "nat \<lceil>real (length ys) * x - 5 / 10\<rceil> - 1 \<in> {0..<length ys}" apply auto using \<open>1 \<le> nat \<lceil>real (length ys) * x - 1 / 2\<rceil>\<close> by linarith qed moreover have "?expr < x" proof - have "real_of_int \<lceil>real (length ys) * x - 5 / 10\<rceil> < real (length ys) * x + 5 / 10" by linarith then have "real_of_int \<lceil>real (length ys) * x - 5 / 10\<rceil> < x * real (length ys) + 5 / 10" by (simp add: mult.commute) have "real_of_int \<lceil>real (length ys) * x - 5 / 10\<rceil> - 5 / 10 < x * real (length ys)" using \<open>real_of_int \<lceil>real (length ys) * x - 5 / 10\<rceil> < x * real (length ys) + 5 / 10\<close> by linarith from this show "(real_of_int \<lceil>real (length ys) * x - 5 / 10\<rceil> - 5 / 10) / real (length ys) < x" apply auto by (simp add: assms(1) divide_less_eq) qed ultimately show ?thesis by auto qed qed from this show ?thesis unfolding equidistant_points_on_unit_interval_of_def by simp qed text \<open> The lemma determines the values of equidistant point on the unit interval. \<close> lemma equidistant_points_on_unit_interval_of_eq_nth2: fixes i :: int assumes "0 \<le> i" "nat i < length ys" shows "the (equidistant_points_on_unit_interval_of ys ((real_of_int i + 5 / 10) / size ys)) = ys ! (nat i)" proof - let ?xs = "map (\<lambda>x. (real x + 1 / 2) / real (length ys)) [0..<length ys]" have "distinct ?xs" by (auto intro!: inj_onI simp add: distinct_map) have eq: "(real_of_int i + 1 / 2) / real (length ys) = ?xs ! nat i" using assms by auto show ?thesis unfolding equidistant_points_on_unit_interval_of_def apply simp apply (subst eq) thm map_of_zip_nth apply (subst map_of_zip_nth) apply simp apply (rule \<open>distinct ?xs\<close>) apply (rule assms) apply simp done qed text \<open> The lemma gives an alternative characterization of the values of equidistant point on the unit interval. \<close> lemma equidistant_points_on_unit_interval_of_eq_nth1: fixes i :: int assumes "1 \<le> i" "i \<le> length ys" shows "the (equidistant_points_on_unit_interval_of ys ((real_of_int i - 5 / 10) / size ys)) = ys ! nat (i - 1)" proof - (* todo: size ys = real (length ys); which is better to write down? *) let ?f = "\<lambda>x. the (equidistant_points_on_unit_interval_of ys (x / size ys))" have "?f (real_of_int i - 5 / 10) = ?f (real_of_int (i - 1) + 5 / 10)" by force also have "\<dots> = ys ! nat (i - 1)" using assms by (simp only: equidistant_points_on_unit_interval_of_eq_nth2) finally show ?thesis . qed text \<open> The definition contains executable version of the percentile function which is close to the Java implementation in the OpenSIMM implementation. \<close> definition percentile_impl_inner :: "real list \<Rightarrow> real \<Rightarrow> real" where "percentile_impl_inner values level = (let (size :: real) = (real (length values)); (sorted :: (real list)) = sort values; i = (ceiling (size * level - 0.5)); (lower :: real) = (i - 0.5) / size; (upper ::real) = (i + 0.5) / size; \<comment>\<open>Note that we convert i to a nat since we want to use it as an index in a list. This means that we automatically have values greater equal 0\<close> (lower_value :: real) = sorted ! (nat (i-1)); (upper_value :: real) = sorted ! (nat i) in lower_value + (level - lower) * (upper_value - lower_value) / (upper - lower))" definition percentile_impl :: "(real list) \<Rightarrow> real \<Rightarrow> real" where "percentile_impl values level = (let (size :: nat) = (length values); (sorted :: real list) = sort values in (if (0 \<le> level \<and> level < 1/(2 *size)) then (linear (0, (extrapolation_0 sorted)) (1/(2*size), sorted!0)) level else (if (1 - 1/(2 *size) < level \<and> level \<le> 1) then (linear (1 - 1/(2 *size), sorted!(size - 1)) (1, (extrapolation_1 sorted))) level else percentile_impl_inner sorted level)))" text \<open> The theorem states the equivalence of the abstract definition of the percentile function from the Percentile theory and the computational version in the standard interval. \<close> theorem percentile_inner_java_equiv: assumes "sorted values" assumes "length values > 1" assumes "1 / (2 * length values) < level" (* todo: lesseq instead of less *) assumes "level \<le> 1 - 1 / (2 * length values)" shows "Percentile.percentile values level = percentile_impl_inner values level" proof - have non_empty: "values \<noteq> []" using assms(2) by auto have Percentile_inner_equ: "Percentile.percentile values level = Percentile.percentile_inner values level" using percentile_alt1 using assms by simp from assms(3) have "level \<noteq> 1 / real (2 * length values)" by blast let ?def = "(let p = equidistant_points_on_unit_interval_of (sort values); (x1, x2) = (Max {x' \<in> dom p. x' < level}, Min {x' \<in> dom p. level \<le> x'}); (y1, y2) = (the (p x1), the (p x2)) in linear (x1, y1) (x2, y2) level)" { fix size sorted i lower upper lower_value upper_value assume "size = real (length values)" assume "sorted = sort values" assume "i = \<lceil>size * level - 5 / 10\<rceil>" assume "lower = (real_of_int i - 5 / 10) / size" assume "upper = (real_of_int i + 5 / 10) / size" assume "lower_value = sorted ! nat (i - 1)" assume "upper_value = sorted ! nat i" have "length values = length sorted" and "sorted \<noteq> []" (* is this noteq Nil fact needed? *) and "length sorted > 0" using \<open>sorted = _\<close> \<open>_ \<noteq> []\<close> apply auto by (metis length_0_conv length_sort) (* todo: find a better lemma *) have "lower_value + (level - lower) * (upper_value - lower_value) / (upper - lower) = linear (lower, lower_value) (upper, upper_value) level" apply (subst linear_eq[symmetric]) .. also have "\<dots> = ?def" proof - have b1: "0 \<le> \<lceil>real (length sorted) * level - 5 / 10\<rceil>" proof - have "- 1 / 2 \<le> real (length sorted) * level - 5 / 10" apply simp by (meson assms(3) le_less_trans less_eq_real_def of_nat_0_le_iff zero_le_divide_1_iff zero_le_mult_iff) (* strange proof? *) from this show ?thesis by linarith qed have b2: "nat \<lceil>real (length sorted) * level - 5 / 10\<rceil> < length sorted" proof - have "real (length sorted) * level \<le> real (length sorted) - 1 / 2" proof - from assms(4) have "level \<le> 1 - 1 / real (2 * length sorted)" using \<open>length values = length sorted\<close> by simp from this have "real (length sorted) * level \<le> real (length sorted) * (1 - 1 / real (2 * length sorted))" using \<open>0 < length sorted\<close> by auto also have "\<dots> = real (length sorted) - 1 / 2" apply simp by (metis \<open>length values = length sorted\<close> \<open>size = real (length values)\<close> non_empty length_0_conv mult.commute mult.right_neutral mult_cancel_left nonzero_mult_divide_mult_cancel_left of_nat_eq_iff of_nat_mult right_diff_distrib' times_divide_eq_right) finally show ?thesis . qed from this show ?thesis using b1 by linarith qed have b3: "1 \<le> \<lceil>real (length sorted) * level - 5 / 10\<rceil>" proof - show ?thesis using assms(3) \<open>length _ = _\<close> \<open>length sorted > 0\<close> by (simp add: Groups.mult_ac(2) divide_less_eq) qed from b2 have b4: "\<lceil>real (length sorted) * level - 5 / 10\<rceil> \<le> int (length sorted)" by simp have "Max {x' \<in> dom (equidistant_points_on_unit_interval_of sorted). x' < level} = lower" using \<open>lower = _\<close> \<open>i = _\<close> \<open>size = _\<close> \<open>length values = _\<close> apply (subst Max_equidistant_points_on_unit_interval_of_bounded) prefer 4 apply simp using \<open>sorted \<noteq> []\<close> apply blast using assms(3) apply auto[1] using assms(4) by auto moreover have "Min {x' \<in> dom (equidistant_points_on_unit_interval_of sorted). level \<le> x'} = upper" using \<open>upper = _\<close> \<open>i = _\<close> \<open>size = _\<close> \<open>length values = _\<close> apply (subst Min_equidistant_points_on_unit_interval_of_bounded) prefer 4 apply simp using \<open>sorted \<noteq> []\<close> apply blast using assms(3) apply auto[1] using assms(4) by auto moreover have "the (equidistant_points_on_unit_interval_of sorted lower) = lower_value" using \<open>i = _\<close> \<open>size = _\<close> \<open>lower_value = _\<close> \<open>lower = _\<close> \<open>length values = _\<close> apply (simp only:) apply (subst equidistant_points_on_unit_interval_of_eq_nth1) apply (rule b3) apply (rule b4) apply simp done moreover have "the (equidistant_points_on_unit_interval_of sorted upper) = upper_value" using \<open>i = _\<close> \<open>size = _\<close> \<open>upper_value = _\<close> \<open>upper = _\<close> \<open>length values = _\<close> apply (simp only:) apply (subst equidistant_points_on_unit_interval_of_eq_nth2) apply (rule b1) apply (rule b2) apply simp done ultimately show ?thesis using \<open>sorted = _\<close> by simp qed finally have "lower_value + (level - lower) * (upper_value - lower_value) / (upper - lower) = ?def" by simp (* intermediate proof step not needed? change proof structure? *) } from this \<open>level \<noteq> _\<close> show ?thesis using percentile_inner_alternative_pseudo_def percentile_impl_inner_def Percentile_inner_equ by (simp add: percentile_inner_alternative_pseudo_def percentile_impl_inner_def) qed theorem percentile_java_equiv_left: assumes "length values > 1" assumes "sorted values" assumes "1 / real (2 * length values) = level" shows "Percentile.percentile values level = percentile_impl values level" proof - have "(length values) * level = 1/2" using assms by auto then have ceil: "ceiling ((length values) * level - 0.5) = 0" using ceiling_def by (simp add: \<open>real (length values) * level = 1 / 2\<close>) have "(sort values)!0 = (sort values)!(nat (0-1))" by simp have "2 * length values \<ge> 4" using assms(1) by linarith then have "1/(2 * length values) \<le> 1/4" using inverse_of_nat_le by fastforce then have "1/(2*length values) < 1 - 1/(2 *length values)" by linarith then have "percentile_impl values level = percentile_impl_inner values level" using assms percentile_impl_def by (simp add: sorted_sort_id) then have "percentile_impl values level = (sort values)!0" using ceil percentile_impl_inner_def by auto then have "percentile_impl_inner values level = (sort values)!0" using ceil by (simp add: percentile_impl_inner_def) have "length values = length (sort values)" by simp have left_most: "(\<lambda>x. (1 / length values) * (x + 0.5)) 0 = level" using \<open>real (length values) * level = 1 / 2\<close> add_divide_distrib eq_divide_eq_1 mult_cancel_right1 nonzero_mult_div_cancel_left times_divide_eq_left assms by auto have "level = ((map (\<lambda>x. (1 /length values) * (x + 0.5)) [0..<length values]))!0" using assms left_most by (smt add.left_neutral diff_zero gr0I not_less_zero nth_map_upt of_nat_0) then have "level \<in> set (map (\<lambda>x. (1 /length values) * (x + 0.5)) [0..<length values])" using assms(1) by (metis gr_implies_not0 length_map length_upt neq0_conv nth_mem zero_less_diff) then have "level \<in> set (map (\<lambda>x. (1 /length values) * (x + 0.5)) [0..<length values])" using left_most by blast then have "level \<in> dom (equidistant_points_on_unit_interval_of (sort values))" using equidistant_points_on_unit_interval_of_def by simp then have "neighbors (equidistant_points_on_unit_interval_of (sort values)) level = (level, level)" using defined_point_neighbors_eq finite_equidistant_points_on_unit_interval_of by blast then have val_0: "linear_approximation (equidistant_points_on_unit_interval_of (sort values)) level = (sort values)!0" using one_point_interpolation \<open>length values = length (sort values)\<close> \<open>level \<in> dom (equidistant_points_on_unit_interval_of (sort values))\<close> assms(1) equidistant_points_on_unit_interval_of_eq_nth2 finite_equidistant_points_on_unit_interval_of left_most length_greater_0_conv mult_cancel_right1 nat_zero_as_int of_nat_eq_0_iff real_of_int times_divide_eq_left proof - have f1: "(0::int) \<le> 0" by auto have f3: "length values \<noteq> 0 \<longrightarrow> (5 / 10 + real_of_int 0) / (of_nat_1 (length (sort values))) = 1 * (5 / 10) / (if length values = 0 then 0 else of_nat_1 (length values))" by auto have f4: "1 / (if length values = 0 then 0 else (length values)) * (5 / 10) = level" using left_most by auto have "\<forall>x1. real_of_int x1 + 5 / 10 = 5 / 10 + real_of_int x1" by auto then have "length values \<noteq> 0 \<longrightarrow> linear_approximation (equidistant_points_on_unit_interval_of (sort values)) level = sort values ! 0" using f4 f3 f1 \<open>\<And>c b a. b / c * a = b * a / c\<close> \<open>length values = length (sort values)\<close> \<open>level \<in> dom (equidistant_points_on_unit_interval_of (sort values))\<close> assms equidistant_points_on_unit_interval_of_eq_nth2 finite_equidistant_points_on_unit_interval_of length_greater_0_conv nat_zero_as_int one_point_interpolation divide_inverse_commute divide_numeral_1 inverse_divide of_int_0 by (smt length_0_conv) then show ?thesis using assms(1) by linarith qed then have "Percentile.percentile values level = Percentile.percentile_inner values level" using percentile_alt1[of "values" "level"] assms by (smt Max_equidistant_points_on_unit_interval_of Max_ge \<open>level \<in> dom (equidistant_points_on_unit_interval_of (sort values))\<close> finite_equidistant_points_on_unit_interval_of le_less_trans le_numeral_extra(1) length_greater_0_conv sorted_sort_id) then have "Percentile.percentile values level = (sort values)!0" using linear_approximation_def using one_point_interpolation percentile_alt1 using val_0 by (simp add: percentile_inner_def) then show ?thesis by (simp add: \<open>percentile_impl values level = percentile_impl_inner values level\<close> \<open>percentile_impl_inner values level = sort values ! 0\<close>) qed theorem percentile_java_equiv: assumes "sorted values" assumes "length values > 1" assumes "0 \<le> level \<and> level \<le> 1" shows "Percentile.percentile values level = percentile_impl values level" proof - have l1: "0 \<le> level \<and> level < 1/(2* (length values)) \<longrightarrow> Percentile.percentile values level = (linear (0, extrapolation_0 values) (1/(2* (length values)), values!0)) level" using assms(1) assms(2) percentile_alt2 by blast have "0 \<le> level \<and> level < 1/(2* (length values)) \<longrightarrow> percentile_impl values level = (linear (0, (extrapolation_0 values)) (1/(2* (length values)), values!0)) level" using percentile_impl_def by (simp add: assms(1) sorted_sort_id) then have low: "0 \<le> level \<and> level < 1/(2* (length values)) \<longrightarrow> ?thesis" using l1 by auto have w: "1/(2* length values) < level \<and> level \<le> 1 - 1/(2* length values) \<longrightarrow> 1/(2* length values) \<le> level \<and> level \<le> 1 - 1/(2* length values)" by auto have l2: "1/(2* length values) < level \<and> level \<le> 1 - 1/(2* length values) \<longrightarrow> Percentile.percentile values level = percentile_impl_inner values level" using percentile_inner_java_equiv[of "values" "level"] using assms(1) assms(2) by blast have "1/(2* length values) < level \<and> level \<le> 1 - 1/(2* length values) \<longrightarrow> percentile_impl values level = percentile_impl_inner values level" using assms percentile_impl_def by (simp add: sorted_sort_id) then have mid: "1/(2* length values) < level \<and> level \<le> 1 - 1/(2* length values) \<longrightarrow> ?thesis" using l2 percentile_inner_java_equiv by simp have l3: "1 - 1/(2 * (length values)) < level \<and> level \<le> 1 \<longrightarrow> Percentile.percentile values level = (linear (1-1/(2* (length values)), values!(length values -1)) (1, extrapolation_1 values)) level" using assms(1) assms(2) percentile_alt3 by blast have "2 \<le> length values" using assms(2) by linarith then have quarter: "1/(2*(length values)) \<le> 1/4" using inverse_of_nat_le by fastforce then have "3/4 \<le> 1 - 1/(2*(length values))" using inverse_of_nat_le by fastforce then have "1/(2 * (length values)) < 1 - 1/(2 * (length values))" by linarith then have "1 - 1/(2 * (length values)) < level \<and> level \<le> 1 \<longrightarrow> \<not> ( level \<le> 1/(2 * (length values)))" by linarith then have "1 - 1/(2 * (length values)) < level \<and> level \<le> 1 \<longrightarrow> percentile_impl values level = (linear (1-1/(2* (length values)), values!(length values -1)) (1, extrapolation_1 values)) level" using percentile_impl_def by (smt assms(1) sorted_sort_id) then have up: "1 - 1/(2* (length values)) < level \<and> level \<le> 1 \<longrightarrow> ?thesis" using l3 by linarith have border_left: "1/(2* (length values)) = level \<longrightarrow> ?thesis" using assms(1) assms(2) percentile_java_equiv_left by blast then show ?thesis using low mid up assms by linarith qed export_code percentile_impl in Scala end
# this rule fails because it overwrites default fields myRule { *key_values = list("URL2", "dont_do_that", "IRODS/WEBDAV_URL", "custom_value2"); # or *key_values = "" msiPidCreate(*path, *key_values, *handle); writeLine("stdout", "*handle"); } INPUT *path="/tempZone/home/rods/example2.txt" OUTPUT ruleExecOut
Formal statement is: lemma Dynkin_system_trivial: shows "Dynkin_system A (Pow A)" Informal statement is: The power set of a set $A$ is a Dynkin system.
function call(::Types.Help, args::Vector, storage, conn::IO) write(conn, Types.help_msg) end
\chapter{Yaschas Massif 01XAF} Force an encounter near the rock where you farmed the Gahongas. Reveal and grab the Mysterious Artefact on the top of the stairs. Take the 600 Gil if you accidentally reveal it. Use the Chocobo, \pickup{Unicorn Horn}{up the stone ledge before the wide area} Get the 960 Gil chest if you haven't already while heading to the gate. \newline
%We then discuss design goals and introduce proposals for their % implementation. %Details of the proposals are discussed in individual sections. %In this chapter we discuss the challenge of building a software package to % maintain primary and derivative data of images and annotations. % CHALLENGES: %(\eg{} image URIs, GPS data, annotation bounding boxes, \ldots), %(\eg{} SIFT descriptors, annotation matches, detection models, \ldots), % Abstracted away caching w/ cache invalidation. % Ease of experimentation and comparision between algorithms % Hyperparamter optimization % % are examples of primary data and % are examples of derived data % This is the problem we intend to address in this chapter --- we want to % develop a framework to abstract algorithm inputs and dependencies away % from the developer and allows for the developer to interactively write % algorithms to extract features, train models, and perform comparisons % between objects while also testing different hyperparamter settings. \newcommand{\DependencyCache}{Dependency Cache} \chapter{System architecture}\label{chap:system} In this chapter we describe a system architecture designed to aid in the development and deployment of the computer vision algorithms used by IBEIS{}. It is common to use directed acyclic graphs implement pipelines. Other related work is GNU Make, Luigi, Oozie, Azkaban, Airflow. Ours differs because instead of specifying general task dependencies we are specifying object dependencies. The design of our dependency cache is to efficiently compute multiple levels of hierarchical derivative information from a single root object. This is well suited for computer vision applications because often there are many choices of algorithms and features that are repeatably applied to many instances of the same base object (\eg{} an image). In addition to computing dependencies of a single object, multiple objects can be specified as input to a function. In this way a function can train a model (\eg{} an SVM, Neighbor Indexer, DCNN, \ldots). This multi-input model can then be referenced either by the input that created it, or it can be detached from it and referenced by a unique UUID{}. This allows for efficient and organized training, testing, and distribution of learned models. The provenance information of how this model was created is always maintained even if the original inputs cease to exist. Furthermore, algorithms that make comparisons, classifications, and or just output results in general can also be implemented here. These algorithms are testable and comparable through the test harness which is available in an IPython notebook interface. The main differences between us and Luigi are: * we have less boilerplate code because we implement a less general design. * we support a more functional design. Functions can be executed and tested completely outside the scope of the depcache. * We are focused on quickly changing parameters settings and searching for good values for parameter settings. Therefore configuration objects are central to our design. * The test harness is a good example of this. What we do not do: Hadoop integration, everything currently runs locally. However, Luigi could be used to implement the back end of our data registration interface. The main novelty of this interface is not to be yet another DAG workflow manager. We believe the main contribution of this interface is a low barrier to entry model of implementing and testing computer vision algorithms. TODO:{} abstract away row-id inputs. Row-id input is nice because of its efficiency. Every object is represented by an integer akin to a C++ pointer. However, this is less friendly to a new user. There should be an alternative mode to have inputs to registered functions be native types of the variables that are needed. The depcache should do any loading that is needed behind the scenes. % https://github.com/spotify/luigi % https://media.readthedocs.org/pdf/luigi/latest/luigi.pdf Not only must the image analysis system Between the raw images and all of the derived information, there is a large amount of data that needs to be maintained by the IBEIS image analysis system. In order to * developing algorithms * testing and comparing multiple configurations on different datasets * maintaining large amounts of datasets * Information is derived under multiple configurations * Models are trained on multiple pieces of information We maintain a common structure that handles * Precomputed Features * Models (nn indexer) * Algorithms (nn indexer) * User interactions? the system architecture of the IBEIS image analysis module, which allows for the development, testing, and maintenance of computer vision algorithms. The image analysis component of IBEIS fundamentally keeps track of two primary objects: images and annotations. However, between all of the computer vision algorithms and their different settings the system can end up generating a lot of derived data. This introduces a problem that is often dealt with using memoization or caching, however when the bounding box of an annotation is changed many of these derived properties become invalid. To handle these problems we defined the \glossterm{\DependencyCache{}} class. This is a directed acyclic multi-graph that is able to store the results of feature extraction algorithms, and set-to-set comparison results. This cache is primarily built for handling data that can be deterministically derived given its input and configuration parameters. This cache is extensible and allows for new algorithms to be incorporated into Image Analysis as plugins. The user simply writes the algorithm as a function which accepts input annotations and a configuration. If any features not provided by the system are required those are written as standalone functions which again just take in a parent object (like an annotation) and return a result. These functions or classes are registered as plugins using Python decorators. Optionally, a configuration object can be specified. The system can use these configurations to grid search for an optimal set of parameters. \section{Dependency cache}\label{sec:depc} \subsection{Root nodes} This are the non-recomputable root of the graph. This is a first class object like an annotation or an image. It is possible for there to be more than one root node. For instance image and annotation could be in the same graph, with annotation being an ancestor of image. However, because an annotation is not automatically recomputable, there must be is a user interaction that separates any two root nodes in the graph. Any non-recomputable node in the system can be viewed as the root of its own \DependencyCache{}. \subsection{Derived single-input nodes} For a configuration and a single set of parents (at most one parent from each ancestor node), a single-input function computes a Dependant property and returns the result. \subsection{Derived multi-input nodes} An algorithm might also take in multiple sets of parents from of the same type. For instance an identification algorithm might take in a set of query annotations and a set of database annotations, or a neighbor index might just take in a single set of annotations. There is a case when the two inputs are from the same table. This is a Cartesian-product-input node. \subsection{Non-derived nodes} The system also allows for non-derived nodes. These nodes store the result of some user interaction, and as such, are not deterministic. If a parent of a non-derived node is altered, by default the non-derived node must be deleted. However, if the manual interaction is a segmentation mask, and the bounding box of the parent annotation was simply translated by a few pixels, it would be best if the system was able to modify the original input. Thus the user can specify a modification function for a node that can alter a user input given a change to a parent. \subsection{Implicit Edges} The computation of a node is allowed to use another node in its computation function. This implicitly adds an edge between these two nodes that is not expressed in the DAG visualization. It is ok to do this if the configuration for the accessed node is specified in the configuration to the first node. It is even ok to access node in a cyclic fashion as long as there are no cycles in configuration space. (\ie{} a chip with config1 can ask for the keypoints computed on a chip with config2) \subsection{Configuration} Configurations are combined over paths in the DAG{}. \subsection{External Storage} Data in the cache can either be stored internally or externally \subsection{Getters} A getter in the dependency cache is asked to return the properties of a table at rows that correspond to a root under a configuration. If the row does not exist there are three options: return None, recompute it, or get the input from an external source (such as Wildbook). In the case of a manual interaction, recomputation is marked as requested, and execution is blocked until the interaction is complete or an error is thrown. \subsection{Setters} Setters are used to either modify a manual node or set information from an external source. \subsection{Test Harness}\label{sec:testharn} The test harness makes use of the configurations. An algorithm is simply a node in the DAG and a test harness iterates over different configuration settings. \subsection{Graph modification}\label{sec:modification} Any modification made to the headers appropriately modifies the structure and steps are taken to rectify the database. Recomputation occurs as necessary. Algorithm modifications can be made by adding a config param and preserving old behavior or bumping an algorithm version flag which indicates that all previous results must be invalidated. %\section{Testing}\label{sec:testing} %utool doctests \section{IBEIS-IA definition}\label{sec:ibeisdepc} Enumerates the exact way the dependency cache is used to create the IBEIS image analysis system. \subsection{IBEIS DAG / DAM} \begin{comment} python -m ibeis.control.IBEISControl --test-show_depc_graph --save figures5/digraph.png --dpath ~/latex/crall-candidacy-2015/ --diskshow --clipwhite --reduced --dpi=120 python -m ibeis.control.IBEISControl --test-show_depc_graph --save figures5/digraph.png --dpath ~/latex/crall-candidacy-2015/ \end{comment} \ImageCommand{figures5/digraph.png}{\textwidth}{ % --- dependency digraph % --- }{digraph} \digraph{} \subsection{Using system to handle photobombs} \keywords{heuristic, turking, segmentation\\} \relatedto{annotation property} It is a challenging task to segment two overlapping animals with similar textures. At this only provides a minor barrier to identification we choose to manually segment photobombs when they become a problem. This will allow for the system to build up training data that can eventually be used to learn how to segment out a foreground animal in an annotation. To address the issue of photobombing in the \GGR{}, I will manually paint over the photobombed sections of images using a matplotlib \ucite{mpl} interaction whenever a photobomb occurs in matching. Ideally we would have trained a state of the art segmentation technique --- like a CNN --- to segment out the primary animal in each annotation. However, the implementation, training, testing, and evaluation of such techniques is outside the scope of this work. \begin{comment} ./mass_tex_fixes.py --outline --fpaths chapter5-systemchapter.tex --numlines=1 \end{comment} \section{Dependency Cache Design}\label{sec:depc} \paragraph{Related Work} It is common to use directed acyclic graphs implement pipelines. Other related work is GNU Make, Luigi, Oozie, Azkaban, Airflow, and Dryad. Of these, Luigi --- a python based pipeline manager --- is the most similar to our system. Ours differs because instead of specifying general task dependencies we are specifying object dependencies. \subsection{Assumptions} We distinguish ourselves from previous work by targeting a more niche application: dependency caches for computer vision algorithm development in Python. \begin{itemize} \item It is assumed that there is one root-object and multiple instances of these objects will be created. \end{itemize} \subsection{Types of derived data} We identify and distinguish between three types of derived data: (1) features, (2) comparisons, and (3) models. % Features are properties directly derived from an object and correspond with an object in a one-to-one manner (\eg{} an annotation and its chip, or an image and a set of raw detections from a bounding box detector). % Comparisons determine a notion of similarity or difference between a fixed size set of objects. Typically comparisons are pairwise. (\eg{} SIFT descriptors between two annotations are compared to find correspondences). % Models are often learned from a set of multiple objects and are described with a many-to-one relationship (\eg{} a kd-tree indexer indexes the features of many annotations, and a neural network may be trained to detect bounding boxes using many images.). Models are often used to generate features or make comparisons. This introduces a problem that is often dealt with using memoization or caching. However, when certain properties of a primary object (such as a bounding box of an annotation) are changed many of these derived properties become invalid. \section{Dependency Cache Details}\label{sec:depcdetails} For each dependency cache there is a single root object. Multiple instances of this object can be created. A table is made for each property in the \depcache{}. Tables may have multiple properties. All properties of a table are computed at the same time for some number of root instances. Results of a property are either stored internally in an SQL Database or externally in a file. Filenames are derived automatically from dependency information. Multiple roots can be used to specify models. When a model is a dependency of a computation the model is either specified in the input using the input to the model, or using the model's UUID{}. \subsection{Determining root-most inputs} Inputs to a table are determined by finding the ``root most'' tables in an ``expanded input graph''. An expanded input graph takes the table node and creates an expanded input graph based on its parents. \paragraph{Expanded input graph} An expanded input graph is computed between the root node and the table node. First all paths from the root to the table are enumerated as a list of edges (recall the \depcache{} is a multi-digraph, so an edge is specified as a 3-tuple $(u, v, k)$). Each edge is associated with a ``local input-id'' which specifies if an edge is one-to-one or many-to-one as well as the $k$ edge key. Different inputs will be distinguished by accumulated local input-ids. Each path is then traversed from the table to the root. The local-input ids along the way are accumulated in a list and appended to the node label at each step (duplicate consecutive input-ids are removed). This results in a graph where the table node is the only sink and there are multiple source nodes which are specify a different set of root objects. \paragraph{Root-most tables} To specify the inputs to a table it is convenient to specify only the ids of the root objects and a configuration object. However, when some dependencies have multiple inputs (such as model classifications) it is more convenient to specify multiple inputs. A specifiable node is one that is either a source node or a node with multiple inputs. The ``root-most'' tables a subset of specifiable inputs such that all paths from source nodes to the sink node there is exactly one specifiable node identified as ``root-most''. (Removing all the child edges of the root-most nodes would cut all sources from the sink). These represent the sets of inputs that must be specified by a user. In the case where all paths are one-to-one properties the user specifies just a single root object. In the case where two root objects are compared the list of root pairs is specified. If a model is involved the id of the model must be specified as well (for convenience a default values can be specified in the configuration). \paragraph{Computing input order} Given the set of inputs we must walk down the dependency graph and lookup or compute intermediate values between the specified nodes and the target node. To do this we topologically sort the nodes in the expanded input graph and compute them in this order. For each branch in the tree (a set of paths from a source to the sink) we compute a branch id. \expandedinput{} \section{Test Harness}\label{sec:testharn} We have developed a test harness to explore the configuration space of our algorithms. Currently the test harness is only capable of performing grid search and interactive search. \paragraph{Major goals}: \begin{itemize} \item Reproducibility of experiments. \item Ease of algorithm comparisons. \item Reporting of results. \end{itemize} There are many related works on hyper-parameter optimization that are applicable here. Extensions would be to incorporate random search, A/B testing, and Bayesian hyper-parameter optimization methods. Random search has shown to be superior to grid search for hyper parameter optimization of neural networks~\cite{bergstra_random_2012}. %pass \cite{hutter_sequential_2011} \paragraph{Bulleted lists (for draft document only)} A summary of the design goals of the images analysis module are: \begin{itemize} \item Dependant property storage and retrieval of data with automatic dependency pipeline execution. \item Reproducible experiments. \item Distribution through ``publication'' of trained models. \item Extensible for new algorithm integration. \item Automatic hyper parameter optimization. \item Maintain data provenance / data lineage. (The history of data ownership, where did this data come from?) \end{itemize} A summary of \depcache{} features are: \begin{itemize} \item New algorithms are integrated into the system by registering the algorithms, its output types, its dependencies, and its configurations. \item Algorithms can be implemented to accept single inputs for feature extraction, multiple inputs for model training, and pairwise inputs for primary object comparisions. \item Results are cached based on a unique hash of their input and configuration dependencies. This allows for results to be implicitly invalidated if the parent object changes. \item Registered configurations define hyper paraemters of models. A result comparison function can be registered in order to automatically optimize hyper-parameters through grid-search, random search, or baysian based techniques. \item Registered configurations also allow for experiments to be reproduced. Experiemnts are tagged with a hash and manifest file indicating how the experiment was run. \item Trained models that are ``publishable'' are not invalidated if a source of parent data is removed. These models can be downloaded to other instances of image analysis and used without the parent data. However at least a fingerprint of what the parent data was is always maintained. \end{itemize} These challenges are summarized as: \begin{itemize} \item Adding, removing, and modifying primary data. \item Algorithm configurations. \item Dependant computations. \end{itemize} \paragraph{The system architecture should} \begin{itemize} \item Integrate of algorithms from multiple sources across multiple languages. \item Correctly compute and cache algorithm results based on all relevant inputs. \item Allow trained models to be distributed and used by other instances of the image analysis software. \item Invalidate cached results if the source data changes (note that there is an exception for ``publishable'' results such as trained models such as quality classifiers) \item Have the capacity to augment models without completely rebuilding their structure (\eg{} adding points to a nearest neighbor kd-tree index). \item Optimize hyper-parameters of an algorithm given a method to compare results. \end{itemize} \paragraph{Goals} \begin{itemize} \item \textbf{Abstract need for caching away from the developer}: We aim to have all caches created and invalided based on the algorithm dependency structure and the requested configurations. \item \textbf{Lazy and configurable and computation of heirarchical derivative data}: Make derived data such as features a top-level attribute of a root-object (annotation) such that it is evaluated as needed and stored as specified. \item \textbf{Efficient integration of new algorithms}: Functional design with minimal boilerplate. To integrate a new table into the \depcache{} all that is needed is a function that computes the requested outputs given the appropriate inputs. This function is register with the \depcache{} using a decorator. This makes it simple to integrate independently developed algorithms. \item \textbf{Train models in a reproducible manner}: Models can be simple such as a kd-tree indexer or complex such as a neural network classifier. A model should contain at least a fingerprint of the data and configuration that was used to compute it. Models should also be distributable so they can be used in systems they were not necessarily trained on. \item \textbf{Modular testing}: Functions registered with the \depcache{} should be able to be tested without heavy reliance on the \depcache{} itself. However, the \depcache{} should make testing easier by having the ability to quickly supply test input data. Any property of the \depcache{} should be recomputable on-the-fly without effecting the state of the cache for both testing and timing purposes. The \depcache{} should be able to automatically test and time each table. \end{itemize} \paragraph{Image Analysis Modules Design} \begin{itemize} \item We designed the module to have a low barrier to entry. We aim to clearly point out entry points into program execution. We have aim to have a small startup time with both low import module overhead and low open database overhead. \item Doc-strings are used as documentation, examples, and unit tests. Most functions show an example that loads the necessary data to step through an understand / debug / enhance or develop a function. \item \Depcache{} marshals data around with getters (lazy computation) and setters. \item Module functionality split between different standalone packages. Helpers and general utilities are in \utool{}. Computer vision algorithms are in \vtool{}. Plotting functions are in \plottool{}, GUI functions are in \guitool{}. \end{itemize} \paragraph{Features} \begin{itemize} \item One-to-one properties that belong to each root-object. \item One-vs-one comparisons between objects. \item One-vs-many comparisons between an object and a set of objects. \item Training or building of many-to-one models. \item Properties and models computed by the \depcache{} are highly configuration. \end{itemize} % Sources to cite: % http://www.mitre.org/sites/default/files/publications/pr-15-1254-architectural-model-mitre-research-blueridge.pdf % http://www.computer.org/csdl/proceedings/ssdbm/2004/2146/00/21460423.pdf % http://www.alexanderpokluda.ca/coursework/cs848/CS848%20Paper%20Presentation%20-%20Alexander%20Pokluda.pdf % http://uazone.org/demch/papers/bddac2013-bigdata-infrastructure-v06.pdf % http://www.rosebt.com/uploads/8/1/8/1/8181762/big_data_the_management_revolution.pdf % http://www.sciencedirect.com/science/article/pii/S0167739X14002015 - Pegasus, has transformation from abstract to executable workflow %We propose extensions to this architecture to support both result caching % and hyperparameter optimization as well as reproducible model training % and distribution. \item \textbf{Maintain data provenance}: \item \textbf{Interactity} Development should be an interactive experience. Computer algorithms tend have more empirically than theoretical justification. This process of trail and error should be reflected in the algorithm development process. \begin{itemize} \item \textbf{Data and algorithm interaction}: The developer should have the ability to explore the data interactively and manually specify tags or properties (such as causes of failure cases) that may be relevant to a specific task. The developer should be able to browse root objects, inspect dependant properties, and run algorithms from an interactive interface. Algorithms should have an intuitive ``entry point'' which demonstrates how to acquire the necessary data to start stepping through algorithm logic. \item \textbf{Discoverablity}: Ideally the learning curve should be low by making the system have a high level of discoverability --- that is a new developer should be able to sit down at the system and be able to intuitively ``play with'' and manipulate objects to see an immediate % tangible results. We envision that this design goal will be met using IPython and autocompletion. It is then our challenge to develop a discoverable API{}. \end{itemize} Of these goals, interactivity is the least important for addressing the challenges. Maintaining data providence is essential. %There are several factors that cause the design of such an % organization scheme to be challenging. %Developers must be able to run feasibility studies to test if the system %is able to identify a new species of animal. The system is demoed on a %regular basis and is regularly updated for live use in the field. New %algorithms are integrated. Existing algorithms are updated and modified. %Algorithms are often run with different configurations. %We envision a framework which addresses these challenges by % satisfying several design goals.
Formal statement is: lemma Re_i_times [simp]: "Re (\<i> * z) = - Im z" Informal statement is: The real part of $\i z$ is $-\text{Im}(z)$.
import librosa import numpy as np import glob import matplotlib.pyplot as plt data, sampling_rate = librosa.load("./bin/audio.mp3")
State Before: R : Type u S : Type v σ : Type u_1 τ : Type ?u.474475 r : R e : ℕ n✝ m : σ s : σ →₀ ℕ inst✝¹ : CommSemiring R p q : MvPolynomial σ R inst✝ : Fintype σ f : MvPolynomial σ R n : ℕ h : totalDegree f < n * Fintype.card σ d : σ →₀ ℕ hd : d ∈ support f ⊢ ∃ i, ↑d i < n State After: R : Type u S : Type v σ : Type u_1 τ : Type ?u.474475 r : R e : ℕ n✝ m : σ s : σ →₀ ℕ inst✝¹ : CommSemiring R p q : MvPolynomial σ R inst✝ : Fintype σ f : MvPolynomial σ R n : ℕ d : σ →₀ ℕ hd : d ∈ support f h : ∀ (i : σ), n ≤ ↑d i ⊢ n * Fintype.card σ ≤ totalDegree f Tactic: contrapose! h State Before: R : Type u S : Type v σ : Type u_1 τ : Type ?u.474475 r : R e : ℕ n✝ m : σ s : σ →₀ ℕ inst✝¹ : CommSemiring R p q : MvPolynomial σ R inst✝ : Fintype σ f : MvPolynomial σ R n : ℕ d : σ →₀ ℕ hd : d ∈ support f h : ∀ (i : σ), n ≤ ↑d i ⊢ n * Fintype.card σ ≤ totalDegree f State After: no goals Tactic: calc n * Fintype.card σ = ∑ _s : σ, n := by rw [Finset.sum_const, Nat.nsmul_eq_mul, mul_comm, Finset.card_univ] _ ≤ ∑ s, d s := (Finset.sum_le_sum fun s _ => h s) _ ≤ d.sum fun _ e => e := by rw [Finsupp.sum_fintype] intros rfl _ ≤ f.totalDegree := le_totalDegree hd State Before: R : Type u S : Type v σ : Type u_1 τ : Type ?u.474475 r : R e : ℕ n✝ m : σ s : σ →₀ ℕ inst✝¹ : CommSemiring R p q : MvPolynomial σ R inst✝ : Fintype σ f : MvPolynomial σ R n : ℕ d : σ →₀ ℕ hd : d ∈ support f h : ∀ (i : σ), n ≤ ↑d i ⊢ n * Fintype.card σ = ∑ _s : σ, n State After: no goals Tactic: rw [Finset.sum_const, Nat.nsmul_eq_mul, mul_comm, Finset.card_univ] State Before: R : Type u S : Type v σ : Type u_1 τ : Type ?u.474475 r : R e : ℕ n✝ m : σ s : σ →₀ ℕ inst✝¹ : CommSemiring R p q : MvPolynomial σ R inst✝ : Fintype σ f : MvPolynomial σ R n : ℕ d : σ →₀ ℕ hd : d ∈ support f h : ∀ (i : σ), n ≤ ↑d i ⊢ ∑ s : σ, ↑d s ≤ sum d fun x e => e State After: case h R : Type u S : Type v σ : Type u_1 τ : Type ?u.474475 r : R e : ℕ n✝ m : σ s : σ →₀ ℕ inst✝¹ : CommSemiring R p q : MvPolynomial σ R inst✝ : Fintype σ f : MvPolynomial σ R n : ℕ d : σ →₀ ℕ hd : d ∈ support f h : ∀ (i : σ), n ≤ ↑d i ⊢ σ → 0 = 0 Tactic: rw [Finsupp.sum_fintype] State Before: case h R : Type u S : Type v σ : Type u_1 τ : Type ?u.474475 r : R e : ℕ n✝ m : σ s : σ →₀ ℕ inst✝¹ : CommSemiring R p q : MvPolynomial σ R inst✝ : Fintype σ f : MvPolynomial σ R n : ℕ d : σ →₀ ℕ hd : d ∈ support f h : ∀ (i : σ), n ≤ ↑d i ⊢ σ → 0 = 0 State After: case h R : Type u S : Type v σ : Type u_1 τ : Type ?u.474475 r : R e : ℕ n✝ m : σ s : σ →₀ ℕ inst✝¹ : CommSemiring R p q : MvPolynomial σ R inst✝ : Fintype σ f : MvPolynomial σ R n : ℕ d : σ →₀ ℕ hd : d ∈ support f h : ∀ (i : σ), n ≤ ↑d i i✝ : σ ⊢ 0 = 0 Tactic: intros State Before: case h R : Type u S : Type v σ : Type u_1 τ : Type ?u.474475 r : R e : ℕ n✝ m : σ s : σ →₀ ℕ inst✝¹ : CommSemiring R p q : MvPolynomial σ R inst✝ : Fintype σ f : MvPolynomial σ R n : ℕ d : σ →₀ ℕ hd : d ∈ support f h : ∀ (i : σ), n ≤ ↑d i i✝ : σ ⊢ 0 = 0 State After: no goals Tactic: rfl
Location privacy took a hit in California yesterday when Governor Jerry Brown vetoed SB 1434, an EFF- and ACLU-sponsored bill that would have required law enforcement to apply for a search warrant in order to obtain location tracking information. Despite the bill's passing through the state legislature with overwhelming bipartisan support, despite local newspaper editorials in favor of the bill, and despite more than 1,300 concerned Californians using our action center to urge him to sign the bill into law, Governor Brown instead decided to sell out privacy rights to law enforcement. It's not the first time, either. Last year, he did the same thing with SB 914, a bill that would have required police to obtain a search warrant before searching an arrested individual’s cell phone incident to arrest. It may be that legislative action is needed to keep the law current in our rapidly evolving electronic age. But I am not convinced that this bill strikes the right balance between the operational needs of law enforcement and individual expectations of privacy. Skeptical about a law enforcement sponsored bill claiming to protect privacy? You should be. As we explained to Governor Brown, AB 2055 doesn’t do anything at all. AB 2055 is a narrow response to the U.S. Supreme Court’s decision in United States v. Jones, which held the Fourth Amendment required law enforcement to obtain a search warrant before installing a GPS device on a car. In theory, AB 2055 changes California law to explicitly permit law enforcement to apply to a judge for a search warrant to install a GPS device. But in fact, it does not require police to obtain a search warrant. It just says they can apply for one. So to the extent it attempts to codify Jones, it fails. And, more basically, there’s no need to codify Jones: the Supreme Court’s decision is the law and California law enforcement officials have to follow it, regardless of what state law says. That’s not the only problem with AB 2055. That law only applies to GPS devices, and not the other myriad ways law enforcement can obtain location information without installing a GPS device. With increasing concern about law enforcement’s growing addiction to warrantless cell phone tracking — which a federal appeals court in New Orleans will be hearing argument about tomorrow — any legislative action needs to be forward-looking and future-proof. And while we might expect a state that boasts the world's biggest technology companies and just legalized self-driving cars to move the law forward, Governor Brown has instead decided to maintain the status quo. Ultimately law enforcement got exactly what it wanted with AB 2055, which is nothing at all. And while Governor Brown joins the chorus — which included Justice Alito in his concurring opinion in Jones — that solemnly speaks of the need to update our electronic privacy laws to reflect the changing technological landscape, his words ring hollow when he vetoes a bill that had bipartisan legislative support. Because in the end, all that's been done since the first federal electronic privacy bill was passed in 1986 has been a steady diet of allowing law enforcement to gorge itself on as much data and information they can eat without a warrant. It's no surprise that now they're hooked, they'll do whatever it takes to keep the information faucet on. Governor Brown's veto of SB 1434 only continues this dangerous trend.
Formal statement is: lemma nonneg_bounded: "\<exists>K\<ge>0. \<forall>a b. norm (a ** b) \<le> norm a * norm b * K" Informal statement is: There exists a constant $K \geq 0$ such that for all matrices $a$ and $b$, we have $\|ab\| \leq \|a\| \|b\| K$.
!------------------------------------------------------------------------------- ! Copyright (c) 2019 FrontISTR Commons ! This software is released under the MIT License, see LICENSE.txt !------------------------------------------------------------------------------- !> \brief Adaptive Mesh Refinement module hecmw_adapt_INT_SR contains !C !C*** !C*** hecmw_adapt_INT_SEND_RECV !C*** !C subroutine hecmw_adapt_INT_SEND_RECV & & ( N, NEIBPETOT,NEIBPE,STACK_IMPORT, NOD_IMPORT, & & STACK_EXPORT, NOD_EXPORT, & & WS, WR, X, SOLVER_COMM,my_rank, NB, m) use hecmw_util implicit real*8 (A-H,O-Z) integer(kind=kint) , intent(in) :: N, m integer(kind=kint) , intent(in) :: NEIBPETOT integer(kind=kint), pointer :: NEIBPE (:) integer(kind=kint), pointer :: STACK_IMPORT(:) integer(kind=kint), pointer :: NOD_IMPORT (:) integer(kind=kint), pointer :: STACK_EXPORT(:) integer(kind=kint), pointer :: NOD_EXPORT (:) integer(kind=kint), dimension(NB*m), intent(inout):: WS integer(kind=kint), dimension(NB*m), intent(inout):: WR integer(kind=kint), dimension(NB*N), intent(inout):: X integer(kind=kint) , intent(in) ::SOLVER_COMM integer(kind=kint) , intent(in) :: my_rank integer(kind=kint ), dimension(:,:), save, allocatable :: sta1 integer(kind=kint ), dimension(:,:), save, allocatable :: sta2 integer(kind=kint ), dimension(: ), save, allocatable :: req1 integer(kind=kint ), dimension(: ), save, allocatable :: req2 integer(kind=kint ), save :: NFLAG data NFLAG/0/ !C !C-- INIT. if (NFLAG.eq.0) then allocate (sta1(MPI_STATUS_SIZE,NEIBPETOT)) allocate (sta2(MPI_STATUS_SIZE,NEIBPETOT)) allocate (req1(NEIBPETOT)) allocate (req2(NEIBPETOT)) NFLAG= 1 endif !C !C-- SEND do neib= 1, NEIBPETOT istart= STACK_EXPORT(neib-1) inum = STACK_EXPORT(neib ) - istart do k= istart+1, istart+inum ii= NB*NOD_EXPORT(k) - NB ik= NB*k - NB do j= 1, NB WS(ik+j)= X(ii+j) enddo enddo call MPI_ISEND (WS(NB*istart+1), NB*inum, MPI_INTEGER, & & NEIBPE(neib), 0, SOLVER_COMM, req1(neib), ierr) enddo !C !C-- RECEIVE do neib= 1, NEIBPETOT istart= STACK_IMPORT(neib-1) inum = STACK_IMPORT(neib ) - istart call MPI_IRECV (WR(NB*istart+1), NB*inum, MPI_INTEGER, & & NEIBPE(neib), 0, SOLVER_COMM, req2(neib), ierr) enddo call MPI_WAITALL (NEIBPETOT, req2, sta2, ierr) do neib= 1, NEIBPETOT istart= STACK_IMPORT(neib-1) inum = STACK_IMPORT(neib ) - istart do k= istart+1, istart+inum ii= NB*NOD_IMPORT(k) - NB ik= NB*k - NB do j= 1, NB X(ii+j)= WR(ik+j) enddo enddo enddo call MPI_WAITALL (NEIBPETOT, req1, sta1, ierr) end subroutine hecmw_adapt_INT_SEND_RECV end module hecmw_adapt_INT_SR
{- Byzantine Fault Tolerant Consensus Verification in Agda, version 0.9. Copyright (c) 2020, 2021, Oracle and/or its affiliates. Licensed under the Universal Permissive License v 1.0 as shown at https://opensource.oracle.com/licenses/upl -} open import LibraBFT.Prelude open import LibraBFT.Lemmas open import LibraBFT.Base.ByteString open import LibraBFT.Base.Encode open import LibraBFT.Base.KVMap open import LibraBFT.Base.PKCS open import LibraBFT.Hash open import LibraBFT.Impl.Base.Types open import LibraBFT.Impl.Consensus.Types open import LibraBFT.Impl.Util.Util -- This module provides some scaffolding to define the handlers for our fake/simple -- "implementation" and connect them to the interface of the SystemModel. module LibraBFT.Impl.Handle (hash : BitString → Hash) (hash-cr : ∀{x y} → hash x ≡ hash y → Collision hash x y ⊎ x ≡ y) where open import LibraBFT.Impl.Consensus.ChainedBFT.EventProcessor hash hash-cr open RWST-do -- This represents an uninitialised EventProcessor, about which we know nothing, which we use as -- the initial EventProcessor for every peer until it is initialised. postulate fakeEP : EventProcessor -- Eventually, the initialization should establish some properties we care about, but for now we -- just initialise again to fakeEP, which means we cannot prove the base case for various -- properties, e.g., in Impl.Properties.VotesOnce initialEventProcessorAndMessages : (a : Author) → EpochConfig → EventProcessor → EventProcessor × List NetworkMsg initialEventProcessorAndMessages a _ _ = fakeEP , [] handle : NodeId → NetworkMsg → Instant → LBFT Unit handle _self msg now with msg ...| P p = processProposalMsg now p ...| V v = processVote now v ...| C c = return unit -- We don't do anything with commit messages, they are just for defining Correctness. -- For now, the SystemModel supports only one kind of action: to send a Message. Later it might -- include things like logging, crashes, assertion failures, etc. At that point, definitions like -- the following might become part of the SystemModel, but they are included here to enable the -- temporary scaffolding below. data Action (Msg : Set) : Set where send : Msg → Action Msg action-send-injective : ∀ {Msg}{m m' : Msg} → send m ≡ send m' → m ≡ m' action-send-injective refl = refl msgToSend : {Msg : Set} → Action Msg → Msg msgToSend (send m) = m msgToSend≡ : ∀ {Msg x}{m : Msg} → m ≡ msgToSend x → send m ≡ x msgToSend≡ {_} {send m} {m} refl = refl -- Note: the SystemModel allows anyone to receive any message sent, so intended recipient is ignored; -- it is included in the model only to facilitate future work on liveness properties, when we will need -- assumptions about message delivery between honest peers. outputToActions : EventProcessor → Output → List (Action NetworkMsg) outputToActions ep (BroadcastProposal p) = List-map (const (Action.send (P p))) (List-map proj₁ (kvm-toList (:vvAddressToValidatorInfo (₋epValidators (₋epEC ep))))) outputToActions _ (LogErr x) = [] outputToActions _ (SendVote v toList) = List-map (const (Action.send (V v))) toList outputsToActions : ∀ {State} → List Output → List (Action NetworkMsg) outputsToActions {st} = concat ∘ List-map (outputToActions st) runHandler : EventProcessor → LBFT Unit → EventProcessor × List (Action NetworkMsg) runHandler st handler = ×-map₂ (outputsToActions {st}) (proj₂ (LBFT-run handler st)) -- And ultimately, the all-knowing system layer only cares about the -- step function. peerStep : NodeId → NetworkMsg → Instant → EventProcessor → EventProcessor × List (Action NetworkMsg) peerStep nid msg ts st = runHandler st (handle nid msg ts) -- This (temporary) wrapper bridges the gap between our (draft) concrete handler and -- the form required by the new system model, which does not (yet) support actions other -- than send. peerStepWrapper : NodeId → NetworkMsg → EventProcessor → EventProcessor × List NetworkMsg peerStepWrapper nid msg st = ×-map₂ (List-map msgToSend) (peerStep nid msg 0 st)
{-# LANGUAGE CPP #-} {-# LANGUAGE DefaultSignatures #-} {-# LANGUAGE FlexibleContexts #-} {-# LANGUAGE FlexibleInstances #-} {-# LANGUAGE OverloadedStrings #-} {-# LANGUAGE RankNTypes #-} {-# LANGUAGE ScopedTypeVariables #-} {-# LANGUAGE TypeOperators #-} -- | Module containing 'Homoiconic' and 'FromCode' type classes and its instance -- declarations. module Language.Finkel.Homoiconic ( -- * Homoiconic class Homoiconic(..) , fromCode , Result(..) -- * Generic functions , genericToCode , genericFromCode , genericParseCode -- * Generic classes , GToCode(..) , GParseCode(..) -- * Data.Data function , dataToCode ) where #include "ghc_modules.h" -- base import Control.Applicative (Alternative (..)) import Data.Complex (Complex (..)) import Data.Data import Data.Fixed (Fixed (..)) import Data.Functor.Compose (Compose (..)) import Data.Functor.Const (Const (..)) import Data.Functor.Identity (Identity (..)) import Data.Int (Int16, Int32, Int64, Int8) import Data.List.NonEmpty (NonEmpty (..)) import Data.Monoid (All (..), Alt (..), Any (..), Dual (..), First (..), Last (..), Product (..), Sum (..)) import Data.Ratio (Ratio, denominator, numerator, (%)) import Data.Version (Version (..)) import Data.Word (Word16, Word32, Word64, Word8) import GHC.Generics (C, Constructor (..), D, Generic (..), K1 (..), M1 (..), S, U1 (..), V1, (:*:) (..), (:+:) (..)) import Numeric.Natural (Natural) import qualified Data.Functor.Product as Product import qualified Data.Functor.Sum as Sum import qualified Data.Semigroup as Semigroup #if !MIN_VERSION_ghc(8,8,0) import Control.Monad.Fail (MonadFail (..)) import Prelude hiding (fail) #endif -- ghc import GHC_Data_FastString (FastString, unpackFS) import GHC_Types_SrcLoc (GenLocated (..), SrcSpan, getLoc) -- Internal import Language.Finkel.Form -- ------------------------------------------------------------------- -- -- Homoiconic type class -- -- ------------------------------------------------------------------- -- | Class for handling Haskell value as 'Code'. -- -- Instance of 'Homoiconic' should satisfy the law: -- -- @ -- 'parseCode' ('toCode' x) ≡ 'Success' x -- @ -- -- The function 'listToCode' and 'parseHsListCode' are used when handling -- Haskell list values specially (e.g., 'Char'). These functions have default -- implementations, which simply applies 'toCode' to elements of the argument -- list, and which parses elements of 'HsList', respectively. -- -- One can implement 'Homoiconic' instance with 'GHC.Generics.Generic', e.g.: -- -- @ -- {-# LANGUAGE DeriveGeneric #-} -- -- data MyData -- = MyInt Int -- | MyChar Char -- deriving (Generic) -- -- instance Homoiconic MyData -- @ -- -- Sample snippet using above @MyData@: -- -- >>> toCode (MyInt 42) -- (MyInt 42) -- >>> fromCode (toCode (MyChar 'a')) :: Maybe MyData -- Just (MyChar 'a') --- class Homoiconic a where -- | Convert Haskell value to 'Code'. toCode :: a -> Code {-# INLINE toCode #-} default toCode :: (Generic a, GToCode (Rep a)) => a -> Code toCode = genericToCode -- | Convert list of Haskell values to 'Code'. listToCode :: [a] -> Code listToCode xs = let xs' = map toCode xs l = getLoc (mkLocatedForm xs') in LForm (L l (HsList xs')) {-# INLINE listToCode #-} -- | Convert 'Code' to Haskell value, or 'Failure' if the code could -- not be converted. parseCode :: Code -> Result a {-# INLINE parseCode #-} default parseCode :: (Generic a, GParseCode (Rep a)) => Code -> Result a parseCode = genericParseCode -- | Convert 'Code' to list of Haskell values, or 'Failure' if the code -- could not be converted. parseHsListCode :: Code -> Result [a] parseHsListCode xs = case unCode xs of HsList as -> mapM parseCode as _ -> fail "got non HsList value" {-# INLINE parseHsListCode #-} -- | Like 'parseCode', but the result wrapped with 'Maybe' instead of 'Result'. fromCode :: Homoiconic a => Code -> Maybe a fromCode code = case parseCode code of Success a -> Just a _ -> Nothing -- ------------------------------------------------------------------- -- -- Instances of Homoiconic -- -- ------------------------------------------------------------------- -- -- Prelude -- instance Homoiconic () where toCode _ = LForm (genSrc (Atom AUnit)) parseCode a = case unCode a of Atom AUnit -> pure () _ -> failedToParse "()" instance Homoiconic Char where toCode = LForm . genSrc . Atom . AChar NoSourceText listToCode = LForm . genSrc . Atom . aString NoSourceText parseCode a = case unCode a of Atom (AChar _ x) -> pure x _ -> failedToParse "Char" parseHsListCode a = case unCode a of Atom (AString _ s) -> pure (unpackFS s) _ -> failedToParse "String" instance Homoiconic Int where toCode = integralToCode parseCode = integralFromCode instance Homoiconic Word where toCode = integralToCode parseCode = integralFromCode instance Homoiconic Integer where toCode = integralToCode parseCode = integralFromCode instance Homoiconic Float where toCode = realFracToCode parseCode = fractionalFromCode instance Homoiconic Double where toCode = realFracToCode parseCode = fractionalFromCode instance Homoiconic a => Homoiconic [a] where toCode = listToCode parseCode = parseHsListCode instance Homoiconic Bool where toCode = showAsSymbolCode parseCode a = case unCode a of Atom (ASymbol sym) | sym == "True" -> pure True | sym == "False" -> pure False _ -> failedToParse "Bool" instance Homoiconic Ordering where toCode = showAsSymbolCode parseCode a = case unCode a of Atom (ASymbol sym) | sym == "EQ" -> pure EQ | sym == "LT" -> pure LT | sym == "GT" -> pure GT _ -> failedToParse "Ordering" instance Homoiconic a => Homoiconic (Maybe a) where toCode a = case a of Nothing -> toCode (aSymbol "Nothing") Just x -> toCode1 "Just" x parseCode a = case unCode a of Atom (ASymbol "Nothing") -> pure Nothing List [LForm (L _ (Atom (ASymbol "Just"))), x] -> pure <$> parseCode x _ -> failedToParse "Maybe" instance (Homoiconic a, Homoiconic b) => Homoiconic (Either a b) where toCode a = case a of Right x -> toCode1 "Right" x Left x -> toCode1 "Left" x parseCode a = case unCode a of List [LForm (L _ (Atom (ASymbol x))), y] | x == "Right" -> fmap Right (parseCode y) | x == "Left" -> fmap Left (parseCode y) _ -> failedToParse "Either" instance (Homoiconic a, Homoiconic b) => Homoiconic (a, b) where toCode (a1, a2) = toCode2 "," a1 a2 parseCode = parseCode2 "," (,) instance (Homoiconic a, Homoiconic b, Homoiconic c) => Homoiconic (a, b, c) where toCode (a1, a2, a3) = toCode (List [symbolCode ",", toCode a1, toCode a2, toCode a3]) parseCode a = case unCode a of List [LForm (L _ (Atom (ASymbol ","))), a1, a2, a3] -> (,,) <$> parseCode a1 <*> parseCode a2 <*> parseCode a3 _ -> failedToParse "(,,)" instance (Homoiconic a, Homoiconic b, Homoiconic c, Homoiconic d) => Homoiconic (a, b, c, d) where toCode (a1, a2, a3, a4) = toCode (List [ symbolCode ",", toCode a1, toCode a2, toCode a3 , toCode a4]) parseCode a = case unCode a of List [LForm (L _ (Atom (ASymbol ","))), a1, a2, a3, a4] -> (,,,) <$> parseCode a1 <*> parseCode a2 <*> parseCode a3 <*> parseCode a4 _ -> failedToParse "(,,,)" instance (Homoiconic a, Homoiconic b, Homoiconic c, Homoiconic d, Homoiconic e) => Homoiconic (a, b, c, d, e) where toCode (a1, a2, a3, a4, a5) = toCode (List [ symbolCode ",", toCode a1, toCode a2, toCode a3 , toCode a4, toCode a5]) parseCode a = case unCode a of List [LForm (L _ (Atom (ASymbol ","))), a1, a2, a3, a4, a5] -> (,,,,) <$> parseCode a1 <*> parseCode a2 <*> parseCode a3 <*> parseCode a4 <*> parseCode a5 _ -> failedToParse "(,,,,)" instance (Homoiconic a, Homoiconic b, Homoiconic c, Homoiconic d, Homoiconic e, Homoiconic f) => Homoiconic (a, b, c, d, e, f) where toCode (a1, a2, a3, a4, a5, a6) = toCode (List [ symbolCode ",", toCode a1, toCode a2, toCode a3 , toCode a4, toCode a5, toCode a6]) parseCode a = case unCode a of List [LForm (L _ (Atom (ASymbol ","))), a1, a2, a3, a4, a5, a6] -> (,,,,,) <$> parseCode a1 <*> parseCode a2 <*> parseCode a3 <*> parseCode a4 <*> parseCode a5 <*> parseCode a6 _ -> failedToParse "(,,,,,)" -- -- Data.Complex -- instance Homoiconic a => Homoiconic (Complex a) where toCode (a :+ b) = toCode2 ":+" a b parseCode = parseCode2 ":+" (:+) -- -- Data.Fixed -- instance Homoiconic (Fixed a) where toCode (MkFixed a) = toCode1 "MkFixed" a parseCode = parseCode1 "MkFixed" MkFixed -- -- Data.Functor.Compose instance Homoiconic (f (g a)) => Homoiconic (Compose f g a) where toCode (Compose a) = toCode1 "Compose" a parseCode = parseCode1 "Compose" Compose -- -- Data.Functor.Const -- instance Homoiconic a => Homoiconic (Const a b) where toCode (Const a) = toCode1 "Const" a parseCode = parseCode1 "Const" Const -- -- Data.Functor.Identity -- instance Homoiconic a=> Homoiconic (Identity a) where toCode (Identity a) = toCode1 "Identity" a parseCode = parseCode1 "Identity" Identity -- -- Data.Functor.Product -- instance (Homoiconic (f a), Homoiconic (g a)) => Homoiconic (Product.Product f g a) where toCode (Product.Pair a b) = toCode2 "Pair" a b parseCode = parseCode2 "Pair" Product.Pair -- -- Data.Functor.Sum -- instance (Homoiconic (f a), Homoiconic (g a)) => Homoiconic (Sum.Sum f g a) where toCode a = case a of Sum.InL x -> toCode1 "InL" x Sum.InR x -> toCode1 "InR" x parseCode a = case unCode a of List [LForm (L _ (Atom (ASymbol tag))), b] | tag == "InL" -> Sum.InL <$> parseCode b | tag == "InR" -> Sum.InR <$> parseCode b _ -> failedToParse "Sum" -- -- Data.Int -- instance Homoiconic Int8 where toCode = integralToCode parseCode = integralFromCode instance Homoiconic Int16 where toCode = integralToCode parseCode = integralFromCode instance Homoiconic Int32 where toCode = integralToCode parseCode = integralFromCode instance Homoiconic Int64 where toCode = integralToCode parseCode = integralFromCode -- -- Data.List.NonEmpty -- instance Homoiconic a => Homoiconic (NonEmpty a) where toCode (a :| as) = toCode2 ":|" a as parseCode = parseCode2 ":|" (:|) -- -- Data.Monoid -- instance Homoiconic All where toCode (All a) = toCode1 "All" a parseCode = parseCode1 "All" All instance Homoiconic (f a) => Homoiconic (Alt f a) where toCode (Alt a) = toCode1 "Alt" a parseCode = parseCode1 "Alt" Alt instance Homoiconic Any where toCode (Any a) = toCode1 "Any" a parseCode = parseCode1 "Any" Any instance Homoiconic a => Homoiconic (Dual a) where toCode (Dual a) = toCode1 "Dual" a parseCode = parseCode1 "Dual" Dual instance Homoiconic a => Homoiconic (First a) where toCode (First a) = toCode1 "First" a parseCode = parseCode1 "First" First instance Homoiconic a => Homoiconic (Last a) where toCode (Last a) = toCode1 "Last" a parseCode = parseCode1 "Last" Last instance Homoiconic a => Homoiconic (Product a) where toCode (Product a) = toCode1 "Product" a parseCode = parseCode1 "Product" Product instance Homoiconic a => Homoiconic (Sum a) where toCode (Sum a) = toCode1 "Sum" a parseCode = parseCode1 "Sum" Sum -- -- Data.Proxy -- instance Homoiconic a => Homoiconic (Proxy a) where toCode _ = symbolCode "Proxy" parseCode a = case unCode a of Atom (ASymbol "Proxy") -> pure Proxy _ -> failedToParse "Proxy" -- -- Data.Version -- instance Homoiconic Version where toCode (Version b t) = toCode2 "Version" b t parseCode = parseCode2 "Version" Version -- -- Data.Ratio -- instance (Integral a, Homoiconic a) => Homoiconic (Ratio a) where toCode a = let n = toCode (numerator a) d = toCode (denominator a) in toCode (List [symbolCode ":%", n, d]) parseCode = parseCode2 ":%" (%) -- -- Data.Semigroup -- instance (Homoiconic a, Homoiconic b) => Homoiconic (Semigroup.Arg a b) where toCode (Semigroup.Arg a b) = toCode2 "Arg" a b parseCode = parseCode2 "Arg" Semigroup.Arg instance Homoiconic a => Homoiconic (Semigroup.First a) where toCode (Semigroup.First a) = toCode1 "First" a parseCode = parseCode1 "First" Semigroup.First instance Homoiconic a => Homoiconic (Semigroup.Last a) where toCode (Semigroup.Last a) = toCode1 "Last" a parseCode = parseCode1 "Last" Semigroup.Last instance Homoiconic a => Homoiconic (Semigroup.Max a) where toCode (Semigroup.Max a) = toCode1 "Max" a parseCode = parseCode1 "Max" Semigroup.Max instance Homoiconic a => Homoiconic (Semigroup.Min a) where toCode (Semigroup.Min a) = toCode1 "Min" a parseCode = parseCode1 "Min" Semigroup.Min #if !MIN_VERSION_ghc(9,0,0) instance Homoiconic a => Homoiconic (Semigroup.Option a) where toCode (Semigroup.Option a) = toCode1 "Option" a parseCode = parseCode1 "Option" Semigroup.Option #endif instance Homoiconic a => Homoiconic (Semigroup.WrappedMonoid a) where toCode (Semigroup.WrapMonoid a) = toCode1 "WrapMonoid" a parseCode = parseCode1 "WrapMonoid" Semigroup.WrapMonoid -- -- Data.Word -- instance Homoiconic Word8 where toCode = integralToCode parseCode = integralFromCode instance Homoiconic Word16 where toCode = integralToCode parseCode = integralFromCode instance Homoiconic Word32 where toCode = integralToCode parseCode = integralFromCode instance Homoiconic Word64 where toCode = integralToCode parseCode = integralFromCode -- -- Numeric.Natural -- instance Homoiconic Natural where toCode = integralToCode parseCode = integralFromCode -- -- Language.Finkel.Form -- instance Homoiconic Atom where toCode = LForm . genSrc . Atom parseCode a = case unCode a of Atom x -> pure x _ -> failedToParse "Atom" instance Homoiconic (Form Atom) where toCode = LForm . genSrc parseCode = pure . unCode instance Homoiconic (LForm Atom) where toCode = id parseCode = pure -- ------------------------------------------------------------------- -- -- Generic toCode -- -- ------------------------------------------------------------------- -- | Generic variant of 'toCode'. genericToCode :: (Generic a, GToCode (Rep a)) => a -> Code genericToCode = unCodeArgs . gToCode . from {-# INLINABLE genericToCode #-} -- | To distinguish arguments of constructor from non-argument. data CodeArgs = NonArg Code | Args [Code] unCodeArgs :: CodeArgs -> Code unCodeArgs ca = case ca of NonArg c -> c Args cs -> toCode (List cs) {-# INLINABLE unCodeArgs #-} instance Semigroup.Semigroup CodeArgs where Args xs <> Args ys = Args (xs Semigroup.<> ys) Args xs <> NonArg y = Args (xs Semigroup.<> [y]) NonArg x <> Args ys = Args (x : ys) NonArg x <> NonArg y = Args [x, y] {-# INLINE (<>) #-} -- | For making 'Code' with 'Generic' instances. class GToCode f where gToCode :: f a -> CodeArgs instance GToCode V1 where gToCode _ = NonArg undefined {-# INLINE gToCode #-} instance GToCode U1 where gToCode U1 = NonArg nil {-# INLINE gToCode #-} instance (GToCode f, GToCode g) => GToCode (f :+: g) where gToCode lr = case lr of L1 x -> gToCode x R1 x -> gToCode x {-# INLINE gToCode #-} instance (GToCode f, GToCode g) => GToCode (f :*: g) where gToCode (f :*: g) = gToCode f Semigroup.<> gToCode g {-# INLINE gToCode #-} instance Homoiconic c => GToCode (K1 i c) where gToCode (K1 x) = NonArg (toCode x) {-# INLINE gToCode #-} instance GToCode f => GToCode (M1 D c f) where gToCode (M1 x) = gToCode x {-# INLINE gToCode #-} instance (Constructor c, GToCode f) => GToCode (M1 C c f) where gToCode m1@(M1 x) = let constr = toCode (aSymbol (conName m1)) in case gToCode x of NonArg c -> if null c then NonArg constr else NonArg (toCode (List [constr, c])) Args cs -> NonArg (toCode (List (constr : cs))) {-# INLINE gToCode #-} instance GToCode f => GToCode (M1 S c f) where gToCode (M1 x) = gToCode x {-# INLINE gToCode #-} -- ------------------------------------------------------------------- -- -- Generic FromCode -- -- ------------------------------------------------------------------- -- | Generic variant of 'fromCode'. genericFromCode :: (Generic a, GParseCode (Rep a)) => Code -> Maybe a genericFromCode x = case genericParseCode x of Success a -> Just a _ -> Nothing {-# INLINABLE genericFromCode #-} -- | Generic function to get result value from 'Code'. genericParseCode :: (Generic a, GParseCode (Rep a)) => Code -> Result a genericParseCode = let f a xs = if null xs then pure (to a) else fail "Unexpected leftover" in runCodeP gParseCode fail f {-# INLINABLE genericParseCode #-} -- | For getting value from 'Code' with 'Generic' instances. class GParseCode f where gParseCode :: CodeP (f a) instance GParseCode V1 where gParseCode = pure undefined {-# INLINE gParseCode #-} instance GParseCode U1 where gParseCode = pure U1 {-# INLINE gParseCode #-} instance (GParseCode f, GParseCode g) => GParseCode (f :+: g) where gParseCode = fmap L1 gParseCode <|> fmap R1 gParseCode {-# INLINE gParseCode #-} instance (GParseCode f, GParseCode g) => GParseCode (f :*: g) where gParseCode = (:*:) <$> gParseCode <*> gParseCode {-# INLINE gParseCode #-} instance Homoiconic c => GParseCode (K1 i c) where gParseCode = unconsP (\l c cs -> case parseCode c of Success a -> contP (K1 a) (LForm (L l (List cs))) _ -> failP ("Unexpected: " ++ show c)) {-# INLINE gParseCode #-} instance GParseCode f => GParseCode (M1 D c f) where gParseCode = fmap M1 gParseCode {-# INLINE gParseCode #-} instance {-# OVERLAPPABLE #-} Constructor c => GParseCode (M1 C c U1) where gParseCode = let c1 :: M1 C c U1 a c1 = undefined in eqP (toCode (aSymbol (conName c1))) *> fmap M1 gParseCode {-# INLINE gParseCode #-} instance {-# OVERLAPPABLE #-} (Constructor c, GParseCode f) => GParseCode (M1 C c f) where gParseCode = let c1 :: M1 C c f a c1 = undefined in eqCarP (toCode (aSymbol (conName c1))) *> fmap M1 gParseCode {-# INLINE gParseCode #-} instance GParseCode f => GParseCode (M1 S c f) where gParseCode = fmap M1 gParseCode {-# INLINE gParseCode #-} -- ------------------------------------------------------------------- -- -- Code parser for GParseCode -- -- ------------------------------------------------------------------- -- | Dedicated data type to hold parsed result of 'Code'. -- -- Using dedicated data type when parsing 'Code' data type for 'parseCode'. This -- data type is intentionally not defined as an instance of 'Homoiconic', so -- that the user defined data types can tell the parse error from explicit -- failure constructor of the target type, e,g, 'Nothing' for 'Maybe', 'Left' -- for 'Either', ... etc. data Result a = Success a | Failure String deriving (Eq, Show) instance Functor Result where fmap f r = case r of Success a -> Success (f a) Failure e -> Failure e {-# INLINE fmap #-} instance Applicative Result where pure a = Success a {-# INLINE pure #-} f <*> m = f >>= flip fmap m {-# INLINE (<*>) #-} instance Monad Result where m >>= k = case m of Success a -> k a Failure e -> Failure e {-# INLINE (>>=) #-} instance MonadFail Result where fail = Failure {-# INLINE fail #-} failedToParse :: String -> Result a failedToParse ty = Failure ("Failed to parse " ++ ty) {-# INLINABLE failedToParse #-} -- | Simple parser for 'Code'. newtype CodeP a = CodeP {runCodeP :: forall r. (String -> r) -- On failure -> (a -> Code -> r) -- On success -> Code -- Input -> r} instance Functor CodeP where fmap f p = CodeP (\err go -> runCodeP p err (go . f)) {-# INLINE fmap #-} instance Applicative CodeP where pure a = CodeP (\_ go -> go a) {-# INLINE pure #-} f <*> p = f >>= flip fmap p {-# INLINE (<*>) #-} instance Monad CodeP where m >>= k = CodeP (\err go -> runCodeP m err (\a -> runCodeP (k a) err go)) {-# INLINE (>>=) #-} instance Alternative CodeP where empty = failP "Alternative.empty" {-# INLINE empty #-} p1 <|> p2 = CodeP (\err go cs -> runCodeP p1 (\_ -> runCodeP p2 err go cs) go cs) {-# INLINE (<|>) #-} failP :: String -> CodeP a failP msg = CodeP (\err _ _ -> err msg) {-# INLINABLE failP #-} contP :: a -> Code -> CodeP a contP a cs = CodeP (\_ go _ -> go a cs) {-# INLINEABLE contP #-} unconsP :: (SrcSpan -> Code -> [Code] -> CodeP a) -> CodeP a unconsP f = CodeP (\err go cs -> case cs of LForm (L l (List (x : xs))) -> runCodeP (f l x xs) err go cs _ -> err "Not a list") {-# INLINEABLE unconsP #-} eqP :: Code -> CodeP () eqP x = CodeP (\err go cs -> if cs == x then go () nil else err ("eqP: unexpected " ++ show cs)) {-# INLINABLE eqP #-} eqCarP :: Code -> CodeP () eqCarP x = unconsP (\l c cs -> if x == c then contP () (LForm (L l (List cs))) else failP ("eqCarP: unexpected " ++ show c)) {-# INLINABLE eqCarP #-} -- ------------------------------------------------------------------- -- -- Data to Code -- -- ------------------------------------------------------------------- dataToCode :: Data d => d -> Code dataToCode x = let constr = toConstr x isTupleStr cs = case cs of '(':cs1 -> go cs1 _ -> False where go xs = case xs of ',':xs' -> go xs' [')'] -> True _ -> False cstr = case showConstr constr of str | isTupleStr str -> "," | otherwise -> str hd = toCode (aSymbol cstr) in case constrRep constr of IntConstr n -> toCode (aIntegral n) FloatConstr f -> toCode (aFractional (fromRational f :: Double)) CharConstr c -> toCode c _ -> case gmapQ dataToCode x of [] -> hd _ -> toCode (List (hd:gmapQ dataToCode x)) -- ------------------------------------------------------------------- -- -- Auxiliary -- -- ------------------------------------------------------------------- realFracToCode :: (Real a, Show a) => a -> Code realFracToCode = LForm . genSrc . Atom . aFractional {-# INLINABLE realFracToCode #-} fractionalFromCode :: Fractional a => Code -> Result a fractionalFromCode a = case unCode a of Atom (AFractional x) -> pure (fromRational (fl_value x)) _ -> failedToParse "fractional" {-# INLINABLE fractionalFromCode #-} symbolCode :: String -> Code symbolCode = LForm . genSrc . Atom . aSymbol {-# INLINABLE symbolCode #-} showAsSymbolCode :: Show a => a -> Code showAsSymbolCode = symbolCode . show {-# INLINABLE showAsSymbolCode #-} integralToCode :: Integral a => a -> Code integralToCode = LForm . genSrc . Atom . aIntegral {-# INLINABLE integralToCode #-} integralFromCode :: Integral a => Code -> Result a integralFromCode a = case unCode a of Atom (AInteger n) -> pure (fromIntegral (il_value n)) _ -> failedToParse "integral" toCode1 :: Homoiconic a => FastString -> a -> Code toCode1 tag arg1 = toCode (List [LForm (genSrc (Atom (ASymbol tag))), toCode arg1]) {-# INLINABLE toCode1 #-} toCode2 :: (Homoiconic a, Homoiconic b) => FastString -> a -> b -> Code toCode2 tag arg1 arg2 = toCode (List [ LForm (genSrc (Atom (ASymbol tag))) , toCode arg1, toCode arg2 ]) {-# INLINABLE toCode2 #-} parseCode1 :: (Homoiconic a) => FastString -> (a -> h) -> Code -> Result h parseCode1 tag f a = case unCode a of List [LForm (L _ (Atom (ASymbol tag'))), x] | tag == tag' -> f <$> parseCode x _ -> failedToParse (unpackFS tag) {-# INLINABLE parseCode1 #-} parseCode2 :: (Homoiconic a, Homoiconic b) => FastString -> (a -> b -> h) -> Code -> Result h parseCode2 tag f a = case unCode a of List [LForm (L _ (Atom (ASymbol tag'))), x, y] | tag == tag' -> f <$> parseCode x <*> parseCode y _ -> failedToParse (unpackFS tag) {-# INLINABLE parseCode2 #-}
c **************************************************************** c * * c * extract indexes into the global * c * displacmenent, velocity, acceleration vectors * c * for equations for a list of elements. this * c * essentially de-blocks the indexes for a set of * c * elements * c * * c * written by : rhd * c * last modified : 02/18/98 * c * * c **************************************************************** subroutine get_edest_terms( table, elem_list, list_length ) use global_data ! old common.main use elem_block_data, only : edest_blocks use main_data, only : elems_to_blocks c implicit integer (a-z) c dimension table(mxedof,*), elem_list(*) integer, dimension (:,:), pointer :: edest c do i = 1, list_length elem = elem_list(i) if ( elem .le. 0 ) cycle totdof = iprops(2,elem) * iprops(4,elem) blk = elems_to_blocks(elem,1) rel_elem = elems_to_blocks(elem,2) edest => edest_blocks(blk)%ptr do dof = 1, totdof table(dof,i) = edest(dof,rel_elem) end do end do c return end c **************************************************************** c * * c * extract indexes into the global * c * displacmenent, velocity, acceleration vectors * c * for equations for a single element. * c * * c * written by : rhd * c * last modified : 02/18/98 * c * * c **************************************************************** c subroutine get_single_edest_terms( edest_vec, elem ) use global_data ! old common.main use elem_block_data, only : edest_blocks use main_data, only : elems_to_blocks c implicit integer (a-z) c dimension edest_vec(*) integer, dimension (:,:), pointer :: edest c if ( elem .le. 0 ) return totdof = iprops(2,elem) * iprops(4,elem) blk = elems_to_blocks(elem,1) rel_elem = elems_to_blocks(elem,2) edest => edest_blocks(blk)%ptr do dof = 1, totdof edest_vec(dof) = edest(dof,rel_elem) end do c return end
# coding=utf-8 ############################################################################### # La section avec les paramètres à changer from glob import glob from setuptools import find_packages info = dict( packages=['server_file_handler'], # La liste des dossiers contenant les modules python (généralement un seul) name="server-utils", # Le nom du projet python version='0.1', # La version du code description='Server utility package', # La description du paquet author='Leo Granier', # Auteur du paquet author_email='[email protected]', # email de l'auteur ) console_scripts = [ # Here you can specify some CLI entry points for you software with the following format: # 'name=package:function_name' # See https://amir.rachum.com/blog/2017/07/28/python-entry-points/ for details # You can also not specify anything, all files __main__.py at the root of a module with a "main" function will # be declared as entry points 'server-file-handler=server_file_handler.run_server:run_forever' ] ############################################################################## if __name__ == '__main__': import os import re from multiprocessing import cpu_count from os import listdir from os.path import join, splitext, basename, isfile, isdir from setuptools import setup, Extension # On regarde si le mode debug est activé DEBUG = os.environ.get("DEBUG") DEBUG = DEBUG is not None and DEBUG == "1" if DEBUG: print("Debug enabled") # Reformatage du nom de projet info["name"] = info["name"].lower().replace(" ", "_") # En cas de compilation de code C il faut connaitre le chemin vers les librairies numpy try: import numpy numpy_include_path = numpy.get_include() except ImportError: import sys numpy_include_path = join(sys.executable, "site-packages/numpy/core/include/numpy") # Compilation de code C. Cette section cherche des fichiers cython à compiler def generate_extensions(filenames): extra_compile_args = ['-fopenmp'] if DEBUG: extra_compile_args.append("-O0") extensions = [] language = "c++" for base_folder in info["packages"]: # base_folder = abspath(base_folder) for i in filenames: extension_name = join(base_folder, i.split(".")[0]).replace("/", ".") extension_file = join(base_folder, i) if splitext(basename(i))[1] == ".pyx": ext = cythonize(extension_file, annotate=DEBUG, gdb_debug=DEBUG, nthreads=cpu_count(), language=language)[0] ext.name = extension_name else: ext = Extension(extension_name, [extension_file], language=language, extra_compile_args=extra_compile_args, include_dirs=[numpy_include_path], extra_link_args=['-fopenmp']) extensions.append(ext) return extensions # On essaie de compiler les fichiers C et les fichiers Cython kwargs = {} files = sum((listdir(base_folder) for base_folder in info["packages"]), []) try: from Cython.Build import cythonize r = re.compile(".+\.pyx") try: cython_files = [i for i in files if r.fullmatch(i) is not None] except AttributeError: cython_files = [i for i in files if r.match(i) is not None] if len(cython_files): extensions = generate_extensions(cython_files) kwargs.update(dict( ext_modules=extensions )) except ImportError: # Cython not present, compiling C files only r = re.compile(".+\.c(pp)?") c_files = [i for i in files if r.fullmatch(i)] extensions = generate_extensions(c_files) kwargs.update(dict( ext_modules=extensions, )) # On recupere la liste des requirements depuis le fichier requirements requirements_file = "requirements.txt" if isfile(requirements_file): with open(requirements_file, "r") as fp: requirements = fp.read().splitlines() else: requirements = [] # On supprime les commentaires des requirements requirements = [i for i in requirements if len(i) and i[0] != "#"] # On transforme les requirements qui sont des urls Git required = [] EGG_MARK = '#egg=' for line in requirements: if line.startswith('-e git:') or line.startswith('-e git+') or \ line.startswith('git:') or line.startswith('git+'): if EGG_MARK in line: package_name = line[line.find(EGG_MARK) + len(EGG_MARK):] required.append(f"{package_name} @ {line.split(EGG_MARK)[0]}") # dependency_links.append(line) else: raise ValueError('Dependency to a git repository should have the format:\n' 'git+ssh://[email protected]/xxxxx/xxxxxx#egg=package_name') else: required.append(line) # On ajoute les scripts script_folder = "bin" if isdir(script_folder): kwargs["scripts"] = list(glob(join(script_folder, "*"))) # On ajoute les entry points if len(console_scripts) == 0: for package in info["packages"]: if isfile(join(package, "__main__.py")): console_scripts.append(f"{package} = {package}:main") # On ajoute eventuellement les donnees data_folder = "data" package_data = [] for package in info["packages"]: package_folder = join(package, data_folder) if isdir(package_folder): for folder, _, files in os.walk(package_folder): package_data.append((folder.replace("%s/data" % package, package), [join(folder, file) for file in files])) if len(package_data): kwargs["data_files"] = package_data kwargs.update(dict(install_requires=required, entry_points=dict(console_scripts=console_scripts))) kwargs.update(info) setup(**kwargs)
(* * Copyright (C) BedRock Systems Inc. 2021 * * This software is distributed under the terms of the BedRock Open-Source License. * See the LICENSE-BedRock file in the repository root for details. *) (* * The following code contains code derived from code original to the * stdpp project. That original code is * * Copyright stdpp developers and contributors * * and used according to the following license. * * SPDX-License-Identifier: BSD-3-Clause * * Original stdpp License: * https://gitlab.mpi-sws.org/iris/stdpp/-/blob/221197c43d43ce34b211068b84eff0ec4a9ee57a/LICENSE *) Require Export stdpp.list. From bedrock.prelude Require Import base numbers. Export bedrock.prelude.base. (** * Small extensions to [stdpp.list]. *) (** ** Type-level list quantifier *) Inductive ForallT {A} (P : A -> Type) : list A -> Type := | ForallT_nil : ForallT P [] | ForallT_cons x l : P x -> ForallT P l -> ForallT P (x :: l). Definition ForallT_true {A} (P : A -> Type) (go : ∀ x, P x) : ∀ l, ForallT P l := fix go_list l := match l with | [] => ForallT_nil _ | x :: l => ForallT_cons _ _ _ (go x) (go_list l) end. (** ** Teach [set_solver] to reason about more list operations, similarly to set operations. *) (* Upstreamed in https://gitlab.mpi-sws.org/iris/stdpp/-/merge_requests/366 *) #[global] Instance set_unfold_list_bind {A B} (f : A → list B) l P Q y : (∀ x, SetUnfoldElemOf x l (P x)) → (∀ x, SetUnfoldElemOf y (f x) (Q x)) → SetUnfoldElemOf y (l ≫= f) (∃ x, Q x ∧ P x). Proof. constructor. rewrite elem_of_list_bind. naive_solver. Qed. #[global] Instance list_bind_mono {A B} : Proper (pointwise_relation _ (⊆) ==> (⊆) ==> (⊆)) (mbind (M := list) (A := A) (B := B)). Proof. rewrite /pointwise_relation =>f1 f2 Hf xs1 xs2 Hxs. set_solver. Qed. #[global] Instance list_bind_perm {A B} : Proper (pointwise_relation _ Permutation ==> Permutation ==> Permutation) (mbind (M := list) (A := A) (B := B)). Proof. move =>f1 f2 Hf xs _ <-. elim: xs => [//|x xs IH]; csimpl. by rewrite {}IH (Hf x). Qed. (* To upstream, based on upstream [set_unfold_filter]. *) #[global] Instance set_unfold_list_filter {A} (P : A → Prop) `{!∀ x, Decision (P x)} (xs : list A) Q x : SetUnfoldElemOf x xs Q → SetUnfoldElemOf x (filter P xs) (P x ∧ Q). Proof. constructor. rewrite elem_of_list_filter. set_solver. Qed. #[global] Instance set_unfold_list_difference `{EqDecision A} (x : A) l k P Q : SetUnfoldElemOf x l P → SetUnfoldElemOf x k Q → SetUnfoldElemOf x (list_difference l k) (P ∧ ¬ Q). Proof. constructor. rewrite elem_of_list_difference. set_solver. Qed. #[global] Instance set_unfold_list_intersection `{EqDecision A} (x : A) l k P Q : SetUnfoldElemOf x l P → SetUnfoldElemOf x k Q → SetUnfoldElemOf x (list_intersection l k) (P ∧ Q). Proof. constructor. rewrite elem_of_list_intersection. set_solver. Qed. #[global] Instance set_unfold_list_union `{EqDecision A} (x : A) l k P Q : SetUnfoldElemOf x l P → SetUnfoldElemOf x k Q → SetUnfoldElemOf x (list_union l k) (P ∨ Q). Proof. constructor. rewrite elem_of_list_union. set_solver. Qed. #[global] Instance set_unfold_list_intersection_with `{EqDecision A} (y : A) l k P Q R f : (∀ x, SetUnfoldElemOf x l (P x)) → (∀ x, SetUnfoldElemOf x k (Q x)) → (∀ x1 x2, SetUnfold (f x1 x2 = Some y) (R x1 x2)) → SetUnfoldElemOf y (list_intersection_with f l k) (∃ x1 x2 : A, P x1 ∧ Q x2 ∧ R x1 x2). Proof. constructor. rewrite elem_of_list_intersection_with. set_solver. Qed. (* [list_union_with] does not exist. *) #[global] Instance set_unfold_in {A} (x : A) l P : SetUnfoldElemOf x l P → SetUnfold (In x l) P. Proof. constructor. rewrite -elem_of_list_In. set_solver. Qed. #[global] Instance set_unfold_list_ret {A} (x y : A) P : SetUnfold (x = y) P → SetUnfoldElemOf x (mret (M := list) y) P. Proof. constructor. rewrite elem_of_list_ret. set_solver. Qed. #[global] Instance set_unfold_list_mjoin {A} (x : A) (xss : list (list A)) P Q : (∀ xs, SetUnfoldElemOf x xs (P xs)) → (∀ xs, SetUnfoldElemOf xs xss (Q xs)) → SetUnfoldElemOf x (mjoin (M := list) xss) (∃ xs, P xs ∧ Q xs). Proof. constructor. rewrite elem_of_list_join. set_solver. Qed. #[global] Instance set_unfold_list_omap {A B} (y : B) xs (f : A → option B) P Q : (∀ x, SetUnfoldElemOf x xs (P x)) → (∀ x, SetUnfold (f x = Some y) (Q x)) → SetUnfoldElemOf y (omap (M := list) f xs) (∃ x : A, P x ∧ Q x). Proof. constructor. rewrite elem_of_list_omap. set_solver. Qed. (* Outside this theory remain [elem_of_list_split*], [elem_of_list_lookup] and [elem_of_list_lookup_total]. Of those, [elem_of_list_lookup] seems interesting but might be a breaking change. *) Lemma foldr_cons {A B} (f : A -> B -> B) x y ys : foldr f x (y :: ys) = f y (foldr f x ys). Proof. done. Qed. (* From stdlib's [repeat] to stdpp's [replicate]. *) Lemma repeat_replicate {A} (x : A) n : repeat x n = replicate n x. Proof. by elim: n => [//| n /= ->]. Qed. Section list. Context {A : Type}. Implicit Types (l k xs : list A) (i j : nat). Lemma fmap_ext_in {B} (f g : A → B) l : (∀ a : A, a ∈ l → f a = g a) → f <$> l = g <$> l. Proof. elim: l => [//|x l IHl Hext]; cbn; f_equiv. { apply Hext, elem_of_cons, or_introl, eq_refl. } apply IHl => y Hin. apply Hext, elem_of_cons, or_intror, Hin. Qed. (** List disjointness is decidable *) Section disjoint_dec. Notation Disjoint l k := (List.Forall (λ x, List.Forall (x ≠.) k) l) (only parsing). #[local] Lemma list_disjoint_alt l k : l ## k <-> Disjoint l k. Proof. rewrite Forall_forall. setoid_rewrite Forall_forall. set_solver. Qed. #[global] Instance list_disjoint_dec `{EqDecision A} : RelDecision (##@{list A}). Proof. refine (λ l k, cast_if (decide (Disjoint l k))); by rewrite list_disjoint_alt. Defined. End disjoint_dec. (** Witnesses for non-disjoint lists *) Lemma list_not_disjoint `{EqDecision A} l k : ¬ l ## k <-> exists x, x ∈ l /\ x ∈ k. Proof. split; last set_solver+. rewrite list_disjoint_alt. move/not_Forall_Exists=>/Exists_exists [] x [] ? /=. move/not_Forall_Exists=>/Exists_exists [] y [] ? /=. destruct (decide (x = y)); [by exists x; simplify_eq|done]. Qed. Lemma disjoint_cons_r l x k : l ## x :: k <-> x ∉ l /\ l ## k. Proof. set_solver+. Qed. Lemma list_alter_insert l i f : alter f i l = if l !! i is Some x then <[i:=f x]> l else l. Proof. elim: l i => [//|x l IHl] [//|i]; csimpl. rewrite IHl. by case_match. Qed. Lemma list_filter_empty_iff xs `(∀ x, Decision (P x)) : filter P xs = [] ↔ List.Forall (λ x, ¬P x) xs. Proof. elim: xs => [//|x xs IH] /=. rewrite filter_cons Forall_cons. case_decide; naive_solver. Qed. (** List variant of << map_filter_insert : ... filter P (<[i:=x]> m) = if decide (P (i, x)) then <[i:=x]> (filter P m) else filter P (delete i m) ]. In the [P x] branch, we cannot reuse [<[i:=x]> (filter P m)]: [x] must be inserted not at position [i] but [length (filter P (take i xs))]. Instead, we use an alternative version. *) Lemma list_filter_insert i x xs P `(∀ x, Decision (P x)) : i < length xs → filter P (<[i:=x]> xs) = if decide (P x) then filter P (take i xs) ++ [x] ++ filter P (drop (S i) xs) else filter P (delete i xs). Proof. move=> Hle; rewrite insert_take_drop // delete_take_drop. by rewrite !(filter_app, filter_cons, filter_nil); case_decide. Qed. (** Properties of [list_fmap] *) Lemma list_fmap_filter {B} P Q xs (f : A -> B) `(∀ x, Decision (P x)) `(∀ x, Decision (Q x)) : (∀ x, P x <-> Q (f x)) → f <$> filter P xs = filter Q (f <$> xs). Proof. move=> Heq. elim: xs => [//|x xs IH]; csimpl; rewrite !filter_cons. repeat case_decide; csimpl; rewrite IH; naive_solver. Qed. Lemma list_fmap_id' l (f : A -> A): (forall x, f x = x) -> f <$> l = l. Proof. move => ?. elim: l => // ?? {2}<-. csimpl. by f_equal. Qed. (** Properties of [list_delete] *) Lemma list_delete_elem_of_1 l i x y: l !! i = Some y -> x ≠ y -> x ∈ l -> x ∈ delete i l. Proof. move => Hl ?. rewrite {1}(delete_Permutation _ _ _ Hl). set_solver. Qed. Lemma list_delete_elem_of_2 l x i: x ∈ delete i l -> x ∈ l. Proof. elim: l i => // a l IH [ |i]/=; set_solver. Qed. (** Properties of [NoDup] *) Lemma NoDup_Permutation' l k: NoDup l -> length l = length k -> (∀ x : A, x ∈ l -> x ∈ k) → l ≡ₚ k. Proof. move => ???. apply submseteq_Permutation_length_eq => //. by apply NoDup_submseteq. Qed. Lemma NoDup_not_in_delete l i x: NoDup l -> l !! i = Some x -> x ∉ delete i l. Proof. move => + Hin. by rewrite {1}(delete_Permutation _ _ _ Hin) => /NoDup_cons[??]. Qed. End list. #[global] Hint Resolve NoDup_nil_2 | 0 : core. #[global] Hint Resolve NoDup_cons_2 : core. #[global] Hint Resolve not_elem_of_nil | 0 : core. Section lists. Context {A B : Type}. Implicit Types (xs : list A) (ys : list B). Section zip_with. Context {C : Type}. Lemma NoDup_zip_with_fst_gen xs ys (f : A -> B -> C) : (∀ x1 x2 y1 y2, f x1 y1 = f x2 y2 -> x1 = x2) -> NoDup xs → NoDup (zip_with f xs ys). Proof. move=> Hinj. elim: xs ys => /= [//|x xs IHxs] [//|y ys] /NoDup_cons [Hni Hnd]. apply NoDup_cons, conj, IHxs, Hnd. intros ?%elem_of_zip_with. naive_solver. Qed. Lemma NoDup_zip_with_fst_inj xs ys (f : A -> B -> C) `{!Inj2 eq eq eq f} : NoDup xs → NoDup (zip_with f xs ys). Proof. apply NoDup_zip_with_fst_gen. naive_solver. Qed. Lemma NoDup_zip_with_snd_gen xs ys (f : A -> B -> C) : (∀ x1 x2 y1 y2, f x1 y1 = f x2 y2 -> y1 = y2) -> NoDup ys → NoDup (zip_with f xs ys). Proof. move=> Hinj. elim: xs ys => /= [//|x xs IHxs] [//|y ys] /NoDup_cons [Hni Hnd]. apply NoDup_cons, conj, IHxs, Hnd. intros ?%elem_of_zip_with. naive_solver. Qed. Lemma NoDup_zip_with_snd_inj xs ys `(f : A -> B -> C) `{!Inj2 eq eq eq f} : NoDup ys → NoDup (zip_with f xs ys). Proof. apply NoDup_zip_with_snd_gen. naive_solver. Qed. End zip_with. Lemma NoDup_zip_fst xs ys : NoDup xs → NoDup (zip xs ys). Proof. exact: NoDup_zip_with_fst_inj. Qed. Lemma NoDup_zip_snd xs ys : NoDup ys → NoDup (zip xs ys). Proof. exact: NoDup_zip_with_snd_inj. Qed. Lemma elem_of_zip x1 x2 xs ys : (x1, x2) ∈ zip xs ys → x1 ∈ xs ∧ x2 ∈ ys. Proof. intros. eauto using elem_of_zip_l, elem_of_zip_r. Qed. (** Properties of [Forall] *) (** Strengthens [mapM_fmap_Some_inv] by weakening the second premiss *) Lemma mapM_fmap_Forall_Some_inv (f : A -> option B) (g : B -> A) l k : mapM f l = Some k -> Forall (fun x => ∀ y, f x = Some y -> g y = x) l -> g <$> k = l. Proof. intros Hmap Hl. have Hlen := mapM_length _ _ _ Hmap. apply mapM_Some_1 in Hmap. elim: Hl k Hmap Hlen; intros. - by rewrite (nil_length_inv k). - decompose_Forall_hyps. auto with f_equal. Qed. Lemma Forall_fmap_fmap_1 (f : A -> B) (g : B -> A) l : Forall (fun x => g (f x) = x) l -> g <$> (f <$> l) = l. Proof. intros. rewrite -list_fmap_compose -{2}(list_fmap_id l). exact: Forall_fmap_ext_1. Qed. Lemma Forall_fmap_fmap (f : A -> B) (g : B -> A) l : Forall (fun x => g (f x) = x) l <-> g <$> (f <$> l) = l. Proof. split; first apply Forall_fmap_fmap_1. rewrite -list_fmap_compose -{2}(list_fmap_id l). by rewrite -Forall_fmap_ext. Qed. End lists. Section list_difference. Context `{EqDecision A}. Implicit Types l k : list A. Implicit Types x y : A. Lemma list_difference_nil_r l : list_difference l [] = l. Proof. induction l; simpl; auto with f_equal. Qed. Lemma list_difference_cons_r y l k : list_difference l (y :: k) = list_difference (list_difference l [y]) k. Proof. induction l as [|x l IH]; [done | ]. rewrite [RHS]/=. case_decide as Hy. { simpl. rewrite decide_True; set_solver. } rewrite [RHS]/=. case_decide as Hk; simpl. - rewrite decide_True; set_solver. - rewrite IH decide_False; set_solver. Qed. Lemma list_difference_app_r l k1 k2 : list_difference l (k1 ++ k2) = list_difference (list_difference l k1) k2. Proof. revert l. induction k1 as [|y k1 IH]=>l; simpl. - by rewrite list_difference_nil_r. - by rewrite (list_difference_cons_r y) IH -(list_difference_cons_r y). Qed. Lemma list_difference_singleton_not_in l x : x ∉ l -> list_difference l [x] = l. Proof. elim: l => /= [//|y l IHl] /not_elem_of_cons [Hne Hni]. rewrite decide_False. 2: { by intros ->%elem_of_list_singleton. } f_equal. apply IHl, Hni. Qed. End list_difference. #[deprecated(note="Use list_difference_singleton_not_in")] Notation list_difference_id := list_difference_singleton_not_in. Lemma tail_length {A} (l : list A): length (tail l) <= length l <= length (tail l) + 1. Proof. induction l; simpl; by lia. Qed. Lemma tail_length_eq {A} (l : list A): 0 < length l -> length (tail l) + 1 = length l. Proof. intros H. destruct l; simpl in *; by lia. Qed. (* Make [take 0 xs] reduce with [cbn] *) #[global] Arguments take : simpl nomatch. Lemma head_Some_elem_of {A} (x : A) (xs : list A) : head xs = Some x → x ∈ xs. Proof. destruct xs => [//|[->]]. by apply elem_of_cons; left. Qed. Lemma list_empty_eq_ext {A} (xs : list A) : (∀ x : A, x ∈ xs ↔ False) ↔ xs = []. Proof. case: xs; set_solver. Qed. Lemma list_singleton_eq_ext {A} (x : A) xs (HnoDup : NoDup xs) : (∀ y, y ∈ xs ↔ y = x) ↔ xs = [x]. Proof. split => [H | -> y]; last by set_solver. apply symmetry, Permutation_singleton_l, NoDup_Permutation; [apply NoDup_singleton|done|..] => z. set_solver. Qed. Lemma not_elem_of_list_lookup {A} {i} {xs : list A} {x} y : xs !! i = Some x → y ∉ xs → x ≠ y. Proof. intros Hl Hni ->. eapply Hni, elem_of_list_lookup_2, Hl. Qed. Lemma list_difference_delete `{EqDecision A} i (x : A) (xs : list A) : xs !! i = Some x → NoDup xs -> (* Needed because [list_difference xs [x]] removes all occurrences of [x]. *) list_difference xs [x] = delete i xs. Proof. elim: xs i => [//|y xs /= IHxs] [[->] |i /= Hl] /NoDup_cons [Hni HnoDup] /=. { by rewrite decide_True ?list_difference_singleton_not_in ?elem_of_list_singleton. } rewrite decide_False ?(IHxs i) // elem_of_list_singleton. by have := not_elem_of_list_lookup _ Hl Hni. Qed. Lemma list_remove_delete `{EqDecision A} i (x : A) (xs : list A) : xs !! i = Some x → NoDup xs -> (* Needed because [i] might not be the first occurrence. *) list_remove x xs = Some (delete i xs). Proof. elim: xs i => /= [|y xs IHxs] // [/= [->]|i /= Hl] //= /NoDup_cons [Hni HnoDup]. { by rewrite decide_True. } rewrite decide_False ?(IHxs i Hl) //. by have := not_elem_of_list_lookup _ Hl Hni. Qed. Lemma list_difference_remove `{EqDecision A} (x : A) (xs : list A) : x ∈ xs → NoDup xs -> list_remove x xs = Some (list_difference xs [x]). Proof. intros [i Hl]%elem_of_list_lookup_1 HnoDup. by rewrite !(list_remove_delete i, list_difference_delete i). Qed. #[global] Instance map_Inj A B (f : A -> B) : Inj eq eq f -> Inj eq eq (map f). Proof. move=>Hinj x. induction x; induction y; first done. - by move=>H; case:( nil_cons H). - by rewrite eq_comm; move=>H; case:( nil_cons H). - by move=>[/Hinj<-/IHx->]. Qed.
lemma (in ring_of_sets) Diff [intro]: assumes "a \<in> M" "b \<in> M" shows "a - b \<in> M"
module GUIgeneric.loadAllRepository where open import GUIgeneric.GUI open import GUIgeneric.GUIDefinitions open import GUIgeneric.GUIExample open import GUIgeneric.GUIExampleBankAccount open import GUIgeneric.GUIExampleLib open import GUIgeneric.GUIFeatures open import GUIgeneric.GUIFeaturesPart2 open import GUIgeneric.GUIFeaturesPart3 open import GUIgeneric.GUIFeaturesPart4 open import GUIgeneric.GUIFeaturesPart5 open import GUIgeneric.GUIModel open import GUIgeneric.GUIModelExample open import GUIgeneric.Prelude
{-# OPTIONS_GHC -Wall #-} {-# LANGUAGE BangPatterns #-} module Numeric.MCMC.Langevin ( MarkovChain(..), Options(..) , runChain ) where import Control.Monad import Control.Monad.Trans import Control.Monad.Reader import Control.Monad.Primitive import Control.Arrow import System.Random.MWC import System.Random.MWC.Distributions import Data.List import Statistics.Distribution import Statistics.Distribution.Normal hiding (standard) import GHC.Float -- | State of the Markov chain. Current parameter values are held in 'theta', -- while accepts counts the number of proposals accepted. data MarkovChain = MarkovChain { theta :: [Double] , accepts :: {-# UNPACK #-} !Int } -- | Options for the chain. The target (expected to be a log density), its -- gradient, and a step size tuning parameter. data Options = Options { _target :: [Double] -> Double , _gTarget :: [Double] -> [Double] , _eps :: {-# UNPACK #-} !Double } -- | A result with this type has a view of the chain options. type ViewsOptions = ReaderT Options -- | Display the current state. instance Show MarkovChain where show config = filter (`notElem` "[]") $ show (map double2Float (theta config)) -- | Density function for an isotropic Gaussian. The (identity) covariance -- matrix is multiplied by the scalar 'sig'. isoGauss :: [Double] -> [Double] -> Double -> Double isoGauss xs mu sig = foldl1' (*) (zipWith density nds xs) where nds = map (`normalDistr` sig) mu {-# INLINE isoGauss #-} -- | Mean function for the discretized Langevin diffusion. localMean :: Monad m => [Double] -- Current state -> ViewsOptions m [Double] -- Localized mean localMean t = do Options _ gTarget e <- ask return $! zipWith (+) t (map (* (0.5 * e^(2 :: Int))) (gTarget t)) {-# INLINE localMean #-} -- | Perturb the state, creating a new proposal. perturb :: PrimMonad m => [Double] -- Current state -> Gen (PrimState m) -- MWC PRNG -> ViewsOptions m [Double] -- Resulting perturbation. perturb t g = do Options _ _ e <- ask zs <- replicateM (length t) (lift $ standard g) t0 <- localMean t let perturbedState = zipWith (+) t0 t1 t1 = map (* e) zs return $! perturbedState {-# INLINE perturb #-} -- | Perform a Metropolis accept/reject step. metropolisStep :: PrimMonad m => MarkovChain -- Current state -> Gen (PrimState m) -- MWC PRNG -> ViewsOptions m MarkovChain -- New state metropolisStep state g = do Options target _ e <- ask let (t0, nacc) = (theta &&& accepts) state zc <- lift $ uniformR (0, 1) g proposal <- perturb t0 g t0Mean <- localMean t0 proposalMean <- localMean proposal let mc = if zc < acceptProb then (proposal, 1) else (t0, 0) acceptProb = if isNaN val then 0 else val where val = arRatio arRatio = exp . min 0 $ target proposal + log (isoGauss proposal t0Mean (e^(2 :: Int))) - target t0 - log (isoGauss t0 proposalMean (e^(2 :: Int))) return $! MarkovChain (fst mc) (nacc + snd mc) {-# INLINE metropolisStep #-} -- | Diffuse through states. runChain :: Options -- Options of the Markov chain. -> Int -- Number of epochs to iterate the chain. -> Int -- Print every nth iteration -> MarkovChain -- Initial state of the Markov chain. -> Gen RealWorld -- MWC PRNG -> IO MarkovChain -- End state of the Markov chain, wrapped in IO. runChain = go where go o n t !c g | n == 0 = return c | n `rem` t /= 0 = do r <- runReaderT (metropolisStep c g) o go o (n - 1) t r g | otherwise = do r <- runReaderT (metropolisStep c g) o print r go o (n - 1) t r g {-# INLINE runChain #-}
# demo of PCA fitting # phase shifted data courtesy of Vladimir Galogaza. # list of image files # these are stored in zernike/psidata in the R library, so must expand path name require(zernike) fpath <- file.path(find.package(package="zernike"), "psidata") files <- scan(file.path(fpath, "files_pca.txt"), what="character") for (i in 1:length(files)) files[i] <- file.path(fpath, files[i]) # load the images into an array images <- load.images(files) nr <- dim(images)[1] nc <- dim(images)[2] nf <- dim(images)[3] # parameters for this run source(file.path(fpath, "parameters.txt")) # phase shifts phases <- wrap((0:(nf-1))/frames.per.cycle*2*pi) phases <- switch(ps.dir, ccw = -phases, cw = phases, phases) # target SA coefficients for numerical null. sa.t <- sconic(diam,roc,lambda=wavelength) zopt <- psfit_options() zopt$plots <- FALSE zopt$satarget <- sa.t cat("Performing PSI analysis. Please wait...\n") flush.console() system.time(psfit <- psifit(images, phases, psialg="ls", options=zopt)) cat("Zernike fit to wavefront from PSI analysis\n") flush.console() plot(psfit$wf.smooth) mtext(paste("RMS =",format(pupilrms(psfit$wf.smooth),digits=3))) cat("Performing PCA analysis. Please wait...\n") system.time(pcfit <- psifit(images, phases, cp=psfit$cp, psialg="pc1", options=zopt)) cat("Wavefront from PCA routine\n") flush.console() if (tolower(.Platform$OS.type) == "windows") windows() else x11() plot(pcfit$wf.smooth) mtext(paste("RMS =",format(pupilrms(pcfit$wf.smooth),digits=3))) cat("Performing 'Advanced iterative algorithm'. Please wait...\n") system.time(aifit <- psifit(images, phases=pcfit$phases, cp=psfit$cp, psialg="aia", options=zopt)) cat("Wavefront from 'AIA'\n") flush.console() if (tolower(.Platform$OS.type) == "windows") windows() else x11() plot(aifit$wf.smooth) mtext(paste("RMS =",format(pupilrms(aifit$wf.smooth),digits=3))) # full intercomparison wfnets <- array(0, dim=c(nr, nc, 3)) wfsmooth <- array(0, dim=c(nr,nc,3)) legends=c("baseline PSI", "PCA", "AIA") plotn(psfit, pcfit, aifit, labels=legends) plotn(psfit, pcfit, aifit, labels=legends, wftype="smooth", qt=c(0,1)) cat("Why it works\n") cat("Calculating principal components...\n") flush.console() im.mat <- matrix(images,nr*nc,nf) im.mat <- im.mat-rowMeans(im.mat) im.svd <- svd(im.mat) pcs <- array(im.svd$u, dim=c(nr,nc,nf)) cat("And here they are...\n") cat("The quadrature signal is assumed to be in the first two slots\n") flush.console() if (tolower(.Platform$OS.type) == "windows") { windows(width=10, height=2.5*nf)} else { x11(width=10, height=2.5*nf) } par(mar=rep(0,4)) split.screen(figs=c(nf/2,2)) for (i in 1:nf) { screen(i) image(pcs[,,i], col=grey256, axes=FALSE, asp=nc/nr, useRaster=TRUE) } close.screen(all.screens=TRUE) #clean up rm(im.mat, im.svd, pcs)
lemma set_coeffs_not_only_0 [simp]: "set (coeffs p) \<noteq> {0}"
REBOL [ Title: "date - Tests" Version: 1.0.0 Rights: { Copyright 2017 Brett Handley } License: { Licensed under the Apache License, Version 2.0 See: http://www.apache.org/licenses/LICENSE-2.0 } Author: "Brett Handley" Purpose: {Testing.} ] script-needs [ %requirements.r %../date.r ] requirements 'date [ [ equal? "2017-08-01" date/as/excel 1-Aug-2017 ] [ equal? "2017-08-01 10:00:00" date/as/excel 1-Aug-2017/10:00 ] [ equal? "20170801T130000+10:00" date/as/iso8601 1-Aug-2017/13:00+10:00 ] [ equal? "2017-08-01T13:00:00+10:00" date/as/w3c 1-Aug-2017/13:00+10:00 ] [ equal? 1-Aug-2017/3:00 date/as/utc 1-Aug-2017/13:00+10:00 ] [ equal? 31-Jul-2017/19:00-8:00 date/as/zone -8:00 1-Aug-2017/13:00+10:00 ] [ equal? date/from/iso8601 date/as/iso8601 d: 1-aug-2017 d ] [ equal? 1-Aug-2017 date/from/unspecified "20170801" ] [ equal? 1-Aug-2017 date/from/unspecified "1 aug 2017" ] [ equal? date/from/w3c date/as/w3c d: 1-aug-2017 d ] [ equal? date/from/w3c date/as/w3c d: 1-aug-2017 d ] [ date/is/leap-year? 1-aug-2016 ] [ equal? 31-Aug-2017 date/of/month/end 1-Aug-2017 ] [ equal? 1-Aug-2017 date/of/month/start 1-Aug-2017 ] ]
function [C, Ceq] = multipleShooting2(z,pack,dyn) % % This function enforces the dynamics of the cart-pole system % using 4th-order runge kutta: % % % INPUTS: % z = [N,1] = vector of decision variables % pack = struct with matrix dimensions % dyn = struct with physical parameters % % OUTPUTS: % C = [] % Ceq = column vector of defects. Trajectory is feasible iff norm(Ceq)->0 % % NOTES: % [t,x,u] = unPackDecVar(z,pack); % size(t) == [1,1]; % size(x) == [nState, nSegment+1] % size(u) == [nControl, nSubStep*nSegment+1] % % * The trajectory is represented with piecewise-linear control % and piece-wise quartic state (implicityly). % [t,x,u] = unPackDecVar(z,pack); nx = size(x,2); nu = size(u,2); nSubStep = (nu-1)/(nx-1); dt = t/(nu-1); xLow = x(:,1:(nx-1)); %Each segment starts here xUpp = x(:,2:nx); %And goes here % Time-step along each trajectory segment in parallel xStar = xLow; uIdx = 0:nSubStep:(nu-1); for i=1:nSubStep uStarLow = u(:,i + uIdx); uStarUpp = u(:,i+1 + uIdx); uStarMid = 0.5*(uStarLow+uStarUpp); k1 = cartPoleDynamics(xStar,uStarLow,dyn); k2 = cartPoleDynamics(xStar+0.5*k1,uStarMid,dyn); k3 = cartPoleDynamics(xStar+0.5*k2,uStarMid,dyn); k4 = cartPoleDynamics(xStar+k3,uStarUpp,dyn); xStar = xStar + (dt/6)*(k1 + 2*k2 + 2*k3 + k4); end % Defect constraint: defect = xStar-xUpp; % Pack up and return: C = []; Ceq = reshape(defect,numel(defect),1); end
--------------------------------------- -- Pairs of sets --------------------------------------- {-# OPTIONS --allow-unsolved-meta #-} module sv20.assign2.SetTheory.Pairs where -- Everything involving pairs, be them unordered -- or ordered pairs. Also the definition of power set -- and cartesian product between sets. open import sv20.assign2.SetTheory.Logic open import sv20.assign2.SetTheory.Algebra open import sv20.assign2.SetTheory.Subset open import sv20.assign2.SetTheory.ZAxioms -- Pairs, justified by the pair axiom _ₚ_ : 𝓢 → 𝓢 → 𝓢 x ₚ y = proj₁ (pair x y) pair-d : (x y : 𝓢) → ∀ {z} → z ∈ x ₚ y ⇔ (z ≡ x ∨ z ≡ y) pair-d x y = proj₂ _ (pair x y) -- Both ∧-projections pair-d₁ : (x y : 𝓢) → ∀ {z} → z ∈ x ₚ y → (z ≡ x ∨ z ≡ y) pair-d₁ x y = ∧-proj₁ (pair-d x y) pair-d₂ : (x y : 𝓢) → ∀ {z} → (z ≡ x ∨ z ≡ y) → z ∈ x ₚ y pair-d₂ x y = ∧-proj₂ (pair-d x y) pair-p₁ : (x y : 𝓢) → x ₚ y ≡ y ₚ x pair-p₁ x y = equalitySubset (x ₚ y) (y ₚ x) (p₁ , p₂) where p₁ : (z : 𝓢) → z ∈ x ₚ y → z ∈ y ₚ x p₁ z z∈x,y = pair-d₂ y x (∨-sym _ _ (pair-d₁ x y z∈x,y)) p₂ : (z : 𝓢) → z ∈ y ₚ x → z ∈ x ₚ y p₂ z z∈y,x = pair-d₂ x y (∨-sym _ _ (pair-d₁ y x z∈y,x)) singleton : 𝓢 → 𝓢 singleton x = x ₚ x singletonp : (x : 𝓢) → ∀ {z} → z ∈ singleton x → z ≡ x singletonp x x₁ = ∨-idem _ (pair-d₁ x x x₁) singletonp₂ : (x : 𝓢) → x ∈ singleton x singletonp₂ x = pair-d₂ x x (inj₁ refl) singletonp₃ : (x : 𝓢) → ∀ {y} → x ≡ y → x ∈ singleton y singletonp₃ x x≡y = pair-d₂ _ _ (inj₁ x≡y) singletonp₄ : (x y : 𝓢) → x ∈ singleton y → x ∩ singleton y ≡ ∅ singletonp₄ x y h = {!!} where p₁ : x ≡ y p₁ = singletonp _ h p₂ : x ∩ singleton x ≡ ∅ p₂ = {!!} pair-prop-helper₁ : {a b c : 𝓢} → a ≡ b ∨ a ≡ c → a ≢ b → a ≡ c pair-prop-helper₁ (inj₁ a≡b) h = ⊥-elim (h a≡b) pair-prop-helper₁ (inj₂ refl) _ = refl pair-prop-helper₂ : {a b : 𝓢} → a ≢ b → b ≢ a pair-prop-helper₂ h b≡a = h (sym _ _ b≡a) -- Theorem 44, p. 31 (Suppes, 1972). pair-prop : (x y u v : 𝓢) → x ₚ y ≡ u ₚ v → (u ≡ x ∧ v ≡ y) ∨ (v ≡ x ∧ u ≡ y) pair-prop x y u v eq = ∨-e _ _ _ (pem (x ≡ y)) h-x≡y h-x≢y where u∈u,v : u ∈ (u ₚ v) u∈u,v = ∨-prop₁ (pair-d₂ u v) refl u∈x,y : u ∈ (x ₚ y) u∈x,y = memberEq u (u ₚ v) (x ₚ y) (u∈u,v , (sym _ _ eq)) disj₁ : u ≡ x ∨ u ≡ y disj₁ = pair-d₁ _ _ u∈x,y v∈u,v : v ∈ (u ₚ v) v∈u,v = ∨-prop₂ (pair-d₂ u v) refl v∈x,y : v ∈ (x ₚ y) v∈x,y = memberEq v (u ₚ v) (x ₚ y) (v∈u,v , (sym _ _ eq)) disj₂ : v ≡ x ∨ v ≡ y disj₂ = pair-d₁ _ _ v∈x,y x∈x,y : x ∈ (x ₚ y) x∈x,y = ∨-prop₁ (pair-d₂ x y) refl x∈u,v : x ∈ (u ₚ v) x∈u,v = memberEq x (x ₚ y) (u ₚ v) (x∈x,y , eq) disj₃ : x ≡ u ∨ x ≡ v disj₃ = pair-d₁ _ _ x∈u,v y∈x,y : y ∈ (x ₚ y) y∈x,y = ∨-prop₂ (pair-d₂ x y) refl y∈u,v : y ∈ (u ₚ v) y∈u,v = memberEq y (x ₚ y) (u ₚ v) (y∈x,y , eq) disj₄ : y ≡ u ∨ y ≡ v disj₄ = pair-d₁ _ _ y∈u,v h-x≡y : x ≡ y → (u ≡ x ∧ v ≡ y) ∨ (v ≡ x ∧ u ≡ y) h-x≡y eq₂ = inj₁ (x≡u , v≡y) where x≡u : u ≡ x x≡u = ∨-idem _ disj-aux where disj-aux : u ≡ x ∨ u ≡ x disj-aux = subs _ (sym _ _ eq₂) disj₁ v≡y : v ≡ y v≡y = ∨-idem _ disj-aux where disj-aux : v ≡ y ∨ v ≡ y disj-aux = subs _ eq₂ disj₂ h-x≢y : x ≢ y → (u ≡ x ∧ v ≡ y) ∨ (v ≡ x ∧ u ≡ y) h-x≢y ¬eq = ∨-e _ _ _ (pem (x ≡ u)) h₁ h₂ where h₁ : x ≡ u → (u ≡ x ∧ v ≡ y) ∨ (v ≡ x ∧ u ≡ y) h₁ x≡u = ∨-e _ _ _ (pem (y ≡ u)) h₁₁ h₁₂ where h₁₁ : y ≡ u → (u ≡ x ∧ v ≡ y) ∨ (v ≡ x ∧ u ≡ y) h₁₁ y≡u = ⊥-elim (¬eq (trans x≡u (sym _ _ y≡u))) h₁₂ : y ≢ u → (u ≡ x ∧ v ≡ y) ∨ (v ≡ x ∧ u ≡ y) h₁₂ h = inj₁ (sym _ _ x≡u , sym _ _ (pair-prop-helper₁ disj₄ h)) h₂ : x ≢ u → (u ≡ x ∧ v ≡ y) ∨ (v ≡ x ∧ u ≡ y) h₂ h = inj₂ (sym _ _ (pair-prop-helper₁ disj₃ h) , (pair-prop-helper₁ disj₁ (pair-prop-helper₂ h))) -- Theorem 45, p. 32 (Suppes 1960). singleton-eq : (x y : 𝓢) → singleton x ≡ singleton y → x ≡ y singleton-eq x y eq = sym _ _ (∧-proj₁ (∨-idem _ aux)) where aux : ((y ≡ x) ∧ (y ≡ x)) ∨ ((y ≡ x) ∧ (y ≡ x)) aux = pair-prop x x y y eq singleton-⊆ : (x A : 𝓢) → x ∈ A → singleton x ⊆ A singleton-⊆ x A x∈A t t∈xₛ = subs _ (sym _ _ (singletonp _ t∈xₛ)) x∈A prop-p₂ : (y z : 𝓢) → y ₚ z ≡ singleton y ∪ singleton z prop-p₂ y z = equalitySubset _ _ (p₁ , p₂) where p₁ : (x : 𝓢) → x ∈ y ₚ z → x ∈ singleton y ∪ singleton z p₁ _ h = ∪-d₂ _ _ (∨-prop₅ (pair-d₁ _ _ h) (singletonp₃ _) (singletonp₃ _)) p₂ : (x : 𝓢) → x ∈ singleton y ∪ singleton z → x ∈ y ₚ z p₂ x h = pair-d₂ _ _ (∨-prop₅ (∪-d₁ _ _ h) (singletonp _) (singletonp _)) -- Ordered pairs _ₒ_ : 𝓢 → 𝓢 → 𝓢 x ₒ y = singleton x ₚ (x ₚ y) -- Just an abvreviation for next theorem abv₁ : 𝓢 → 𝓢 → 𝓢 → 𝓢 → Set abv₁ u x v y = (u ₚ u ≡ x ₚ x ∧ u ₚ v ≡ x ₚ y) ∨ (u ₚ v ≡ x ₚ x ∧ u ₚ u ≡ x ₚ y) -- Theorem 46, p. 32 (Suppes). ord-p : (x y u v : 𝓢) → x ₒ y ≡ u ₒ v → x ≡ u ∧ y ≡ v ord-p x y u v eq = ∨-e _ _ _ aux a→c b→c where aux : (singleton u ≡ singleton x ∧ (u ₚ v) ≡ (x ₚ y)) ∨ ((u ₚ v) ≡ singleton x ∧ singleton u ≡ (x ₚ y)) aux = pair-prop _ _ _ _ eq a→c : singleton u ≡ singleton x ∧ u ₚ v ≡ x ₚ y → x ≡ u ∧ y ≡ v a→c (eqₚ , eqₛ) = x≡u , y≡v where x≡u : x ≡ u x≡u = singleton-eq _ _ (sym _ _ eqₚ) p₁ : (x ≡ u ∧ y ≡ v) ∨ (y ≡ u ∧ x ≡ v) p₁ = pair-prop _ _ _ _ eqₛ p₂ : x ≡ u ∧ y ≡ v → y ≡ v p₂ (h₁ , h₂) = h₂ p₃ : y ≡ u ∧ x ≡ v → y ≡ v p₃ (h₁ , h₂) = subs (λ w → w ≡ v) x≡y h₂ where x≡y : x ≡ y x≡y = subs (λ w → x ≡ w) (sym y u h₁) x≡u y≡v : y ≡ v y≡v = ∨-e _ _ _ p₁ p₂ p₃ b→c : u ₚ v ≡ singleton x ∧ singleton u ≡ x ₚ y → x ≡ u ∧ y ≡ v b→c (h₁ , h₂) = p₃ , subs (λ w → w ≡ v) p₈ p₄ where p₁ : (x ≡ u ∧ x ≡ v) ∨ (x ≡ u ∧ x ≡ v) p₁ = pair-prop _ _ _ _ h₁ p₂ : x ≡ u ∧ x ≡ v p₂ = ∨-idem _ p₁ p₃ : x ≡ u p₃ = ∧-proj₁ p₂ p₄ : x ≡ v p₄ = ∧-proj₂ p₂ p₅ : (x ≡ u ∧ y ≡ u) ∨ (y ≡ u ∧ x ≡ u) p₅ = pair-prop _ _ _ _ h₂ p₆ : x ≡ u ∧ y ≡ u p₆ = ∨-∧ p₅ p₇ : y ≡ u p₇ = ∧-proj₂ p₆ p₈ : x ≡ y p₈ = subs (λ w → w ≡ y) (sym _ _ p₃) (sym _ _ p₇) -- Power sets 𝓟_ : 𝓢 → 𝓢 𝓟 x = proj₁ (pow x) -- Theorem 86, p. 47 (Suppes 1960) 𝓟-d : (x : 𝓢) → ∀ {z} → z ∈ (𝓟 x) ⇔ z ⊆ x 𝓟-d x = proj₂ _ (pow x) -- Both projections. 𝓟-d₁ : (x : 𝓢) → ∀ {z} → z ∈ (𝓟 x) → z ⊆ x 𝓟-d₁ _ = ∧-proj₁ (𝓟-d _) 𝓟-d₂ : (x : 𝓢) → ∀ {z} → z ⊆ x → z ∈ (𝓟 x) 𝓟-d₂ _ = ∧-proj₂ (𝓟-d _) -- Theorem 87, p. 47 (Suppes 1960). A∈𝓟A : (A : 𝓢) → A ∈ 𝓟 A A∈𝓟A A = 𝓟-d₂ A subsetOfItself -- Theorem 91, p. 48 (Suppes 1960). ⊆𝓟 : (A B : 𝓢) → A ⊆ B ⇔ 𝓟 A ⊆ 𝓟 B ⊆𝓟 A B = iₗ , iᵣ where iₗ : A ⊆ B → 𝓟 A ⊆ 𝓟 B iₗ A⊆B t t∈𝓟A = 𝓟-d₂ _ t⊆B where t⊆A : t ⊆ A t⊆A = 𝓟-d₁ A t∈𝓟A t⊆B : t ⊆ B t⊆B = trans-⊆ _ _ _ (t⊆A , A⊆B) iᵣ : 𝓟 A ⊆ 𝓟 B → A ⊆ B iᵣ 𝓟A⊆𝓟B t t∈A = 𝓟-d₁ _ A∈𝓟B _ t∈A where A∈𝓟B : A ∈ 𝓟 B A∈𝓟B = 𝓟A⊆𝓟B _ (A∈𝓟A _) -- Theorem 92, p. 48 (Suppes 1960). 𝓟∪ : (A B : 𝓢) → (𝓟 A) ∪ (𝓟 B) ⊆ 𝓟 (A ∪ B) 𝓟∪ A B t t∈𝓟A∪𝓟B = 𝓟-d₂ _ t⊆A∪B where ∪₁ : t ∈ 𝓟 A ∨ t ∈ 𝓟 B ∪₁ = ∪-d₁ _ _ t∈𝓟A∪𝓟B p : t ⊆ A ∨ t ⊆ B p = ∨-prop₄ aux₁ (𝓟-d₁ _) where aux₁ : t ⊆ A ∨ t ∈ 𝓟 B aux₁ = ∨-prop₃ ∪₁ (𝓟-d₁ _) t⊆A∪B : t ⊆ A ∪ B t⊆A∪B = ∪-prop₂ _ _ _ p -- Cartesian Product. First we have to prove some things using -- the subset axiom in order to be able to define cartesian products. -- Two abvreviations to make sub₄ shorter. abv₂ : 𝓢 → 𝓢 → 𝓢 → Set abv₂ z A B = z ∈ 𝓟 (𝓟 (A ∪ B)) abv₃ : 𝓢 → 𝓢 → 𝓢 → Set abv₃ z A B = ∃ (λ y → ∃ (λ w → (y ∈ A ∧ w ∈ B) ∧ z ≡ y ₒ w)) --Instance of the subset axiom. sub₄ : (A B : 𝓢) → ∃ (λ C → {z : 𝓢} → z ∈ C ⇔ abv₂ z A B ∧ abv₃ z A B) sub₄ A B = sub (λ x → abv₃ x A B) (𝓟 (𝓟 (A ∪ B))) -- Proved inside theorem 95, p. 49 (Suppes 1960) prop₁ : (A B x : 𝓢) → abv₃ x A B → abv₂ x A B prop₁ A B x (y , (z , ((y∈A , z∈B) , eqo))) = subs _ (sym _ _ eqo) yₒz∈𝓟𝓟A∪B where yₛ⊆A : singleton y ⊆ A yₛ⊆A = singleton-⊆ _ _ y∈A yₛ⊆A∪B : singleton y ⊆ A ∪ B yₛ⊆A∪B t t∈yₛ = trans-⊆ _ _ _ (yₛ⊆A , (∪-prop _ _)) _ t∈yₛ zₛ⊆B : singleton z ⊆ B zₛ⊆B = singleton-⊆ _ _ z∈B zₛ⊆A∪B : singleton z ⊆ A ∪ B zₛ⊆A∪B t t∈zₛ = trans-⊆ _ _ _ (zₛ⊆B , ∪-prop₃ _ _) _ t∈zₛ y,z⊆A∪B : y ₚ z ⊆ A ∪ B y,z⊆A∪B t t∈y,z = ∪-prop₄ _ _ _ yₛ⊆A∪B zₛ⊆A∪B _ p where p : t ∈ singleton y ∪ singleton z p = subs (λ w → t ∈ w) (prop-p₂ y z) t∈y,z yₛ∈𝓟A∪B : singleton y ∈ 𝓟 (A ∪ B) yₛ∈𝓟A∪B = 𝓟-d₂ _ yₛ⊆A∪B y,z∈𝓟A∪B : y ₚ z ∈ 𝓟 (A ∪ B) y,z∈𝓟A∪B = 𝓟-d₂ _ y,z⊆A∪B yₒz⊆𝓟A∪B : y ₒ z ⊆ 𝓟 (A ∪ B) yₒz⊆𝓟A∪B t t∈o = ∨-e _ _ _ (pair-d₁ _ _ t∈o) i₁ i₂ where i₁ : t ≡ singleton y → t ∈ 𝓟 (A ∪ B) i₁ eq = subs _ (sym t (singleton y) eq) yₛ∈𝓟A∪B i₂ : t ≡ y ₚ z → t ∈ 𝓟 (A ∪ B) i₂ eq = subs _ (sym t (y ₚ z) eq) y,z∈𝓟A∪B yₒz∈𝓟𝓟A∪B : y ₒ z ∈ 𝓟 (𝓟 (A ∪ B)) yₒz∈𝓟𝓟A∪B = 𝓟-d₂ _ yₒz⊆𝓟A∪B Aᵤ : 𝓢 → 𝓢 → 𝓢 Aᵤ A B = proj₁ (sub₄ A B) -- Theorem 95, p 49 (Suppes 1960). pAᵤ : (A B : 𝓢) → {z : 𝓢} → z ∈ (Aᵤ A B) ⇔ abv₂ z A B ∧ abv₃ z A B pAᵤ A B = proj₂ _ (sub₄ A B) crts : (A B : 𝓢) → ∃ (λ C → (z : 𝓢) → z ∈ C ⇔ abv₃ z A B) crts A B = (Aᵤ A B) , (λ w → ⇔-p₂ w (pAᵤ A B) (prop₁ A B w)) _X_ : 𝓢 → 𝓢 → 𝓢 A X B = proj₁ (crts A B) -- Theorem 97, p. 50 (Suppes 1960). crts-p : (A B x : 𝓢) → x ∈ A X B ⇔ abv₃ x A B crts-p A B x = proj₂ _ (crts A B) x -- Both projections crts-p₁ : (A B x : 𝓢) → x ∈ A X B → abv₃ x A B crts-p₁ A B x = ∧-proj₁ (crts-p A B x) crts-p₂ : (A B x : 𝓢) → abv₃ x A B → x ∈ A X B crts-p₂ A B x = ∧-proj₂ (crts-p A B x) crts-d₁ : (x y A B : 𝓢) → x ₒ y ∈ A X B → x ∈ A ∧ y ∈ B crts-d₁ x y A B h = (subs (λ w → w ∈ A) (sym _ _ eq₁) aux∈A) , subs (λ w → w ∈ B) (sym _ _ eq₂) aux₂∈B where foo : ∃ (λ z → ∃ (λ w → (z ∈ A ∧ w ∈ B) ∧ (x ₒ y) ≡ (z ₒ w))) foo = crts-p₁ A B (x ₒ y) h aux : 𝓢 aux = proj₁ foo aux-p : ∃ (λ w → (aux ∈ A ∧ w ∈ B) ∧ (x ₒ y) ≡ (aux ₒ w)) aux-p = proj₂ _ foo aux₂ : 𝓢 aux₂ = proj₁ aux-p aux₂-p : (aux ∈ A ∧ aux₂ ∈ B) ∧ (x ₒ y) ≡ (aux ₒ aux₂) aux₂-p = proj₂ _ aux-p aux∈A : aux ∈ A aux∈A = ∧-proj₁ (∧-proj₁ aux₂-p) aux₂∈B : aux₂ ∈ B aux₂∈B = ∧-proj₂ (∧-proj₁ aux₂-p) eq : x ₒ y ≡ aux ₒ aux₂ eq = ∧-proj₂ aux₂-p eqs : x ≡ aux ∧ y ≡ aux₂ eqs = ord-p _ _ _ _ eq eq₁ : x ≡ aux eq₁ = ∧-proj₁ eqs eq₂ : y ≡ aux₂ eq₂ = ∧-proj₂ eqs -- References -- -- Suppes, Patrick (1960). Axiomatic Set Theory. -- The University Series in Undergraduate Mathematics. -- D. Van Nostrand Company, inc. -- -- Enderton, Herbert B. (1977). Elements of Set Theory. -- Academic Press Inc.
Require Export MoreCoq. Check (3=3). Check (forall (n : nat), n = 2). Theorem silly : 0 * 3 = 0. reflexivity. Qed. Print silly. Check eq_refl. Check Prop. Check silly. Theorem silly_1 : forall (n:nat), n = n. reflexivity. Qed. Check silly_1. Check (0*3 =0). Check (0). Check (forall (n m:nat),n = m). Check (eq_refl). Print silly. Lemma silly_implication : (1+1)=2 -> 0*3 = 0. intros H. reflexivity. Qed. Print silly_implication. Print silly_1. Check mult. Check (nat -> nat -> nat). Check (forall p q, p -> q). Inductive and (P Q : Prop) : Prop := conj : P -> Q -> (and P Q). Notation "P /\ Q" := (and P Q) : type_scope. Check and. Check (conj). Check (forall (p : Prop), p -> p -> and p p). Check (0 = 0). Check (nat). Theorem aaaaaa: Prop -> Prop -> Prop. apply and. Qed. Theorem and_example : (0 = 0) /\ (4 = mult 2 2). apply conj. reflexivity. reflexivity. Qed. Print and_example. Print conj. Print and. Theorem proj1 : forall (P Q : Prop), P /\ Q -> P. intros P Q H. destruct H. apply H. Qed. Print proj1. Check proj1. Theorem and_commut : forall (P Q : Prop), P /\ Q -> Q /\ P. intros P Q. intros H. destruct H. apply conj. apply H0. apply H. Qed. Theorem and_assoc : forall (P Q R : Prop), P /\ ( Q /\ R ) -> (P /\ Q) /\ R. intros P Q R h. destruct h. destruct H0. apply conj. apply conj. apply H. apply H0. apply H1. Qed. Definition iff ( P Q :Prop) := (P -> Q) /\ (Q /\ P). Notation "P <-> Q" := (iff P Q) (at level 95, no associativity) : type_scope. Theorem iff_implies : forall (P Q :Prop), (P <-> Q) -> P -> Q. intros P Q. intros H. intros H1. destruct H. apply H in H1. apply H1. Qed. Theorem iff_sym : forall (P Q : Prop), (P <-> Q) -> (Q <-> P). intros P Q h. destruct h. destruct H0. apply conj. intros q. apply H1. apply conj. apply H1. apply H0. Qed. Inductive or (P Q : Prop) : Prop := | or_introl : P -> or P Q | or_intror : Q -> or P Q. Notation "P \/ Q" := (or P Q) : type_scope. Check (or_introl). Theorem or_commut : forall (P Q : Prop), P \/ Q -> Q \/ P. intros P Q h. destruct h. apply or_intror. apply H. apply or_introl. apply H. Qed. Theorem or_distributes_over_and_1 : forall (P Q R : Prop), P \/ (Q /\ R) -> (P \/ Q) /\ (P \/ R). intros P Q R h. apply conj. destruct h. left. apply H. destruct H. right. apply H. destruct h. left. apply H. destruct H. right. apply H0. Qed. Theorem andb_prop : forall (b c : bool), andb b c = true -> b = true /\ c = true. intros b c h. unfold andb in h. destruct b. rewrite -> h. apply conj. reflexivity. reflexivity. apply conj. apply h. inversion h. Qed. Check true. Check and. Inductive False : Prop :=. Theorem False_implies_nonsense : False -> 2 + 2 = 5. intros h. inversion h. Qed. Theorem False_iiiiiiiiiii : False -> 1 + 1 = 3. intros h. destruct h. Qed. Theorem nonsense_implies_False : 2 + 2 = 5 -> False. intros h. inversion h. Qed. Inductive Truth : Prop := | fact : Truth. Definition not (P : Prop) := P -> False. Notation "~ x" := (not x) : type_scope. Check not. Theorem contradiction_implies_anything : forall (P Q :Prop), (P /\ (~P)) -> Q. intros P Q. intros H. unfold not in H. destruct H. apply H0 in H. inversion H. Qed. Theorem double_neg : forall (P : Prop), P -> ~~P. intros P p. unfold not. unfold not. intros h. apply h in p. inversion p. Qed. Definition peirce := forall (P Q : Prop), ((P -> Q) -> P) -> P. Definition classic := forall (P : Prop), ~~P -> P. Theorem O : peirce <-> classic. apply conj. intro h. unfold peirce in h. unfold classic. unfold not. intro P. intro h1. Abort. Theorem contrapositive: forall (P Q : Prop), (P -> Q) -> (~Q -> ~P). intros P Q. intros h. unfold not. intros h1. intros p. apply h in p. apply h1 in p. destruct p. Qed. Theorem not_False: False -> False. intros h. inversion h. Qed. Print not_False. Theorem excluded_middle_irrefutable: forall (P : Prop), ~~(P \/ (~P)). intros p. unfold not. intros h. apply h. right. intros p1. apply h. left. apply p1. Qed. Print excluded_middle_irrefutable. Theorem peirce_classic : peirce -> classic. unfold peirce. unfold classic. intros h. unfold not. intros P. assert (((P -> False) -> P) -> P) as H. apply h. intros h1. apply H. intro h2. apply h1 in h2. inversion h2. Qed. Definition excluded_middle := forall (P : Prop), P \/ ~P. Theorem classic_excluded_middle : classic -> excluded_middle. unfold classic. unfold excluded_middle. intros H. intros P. assert (~~(P\/~P)) as h. apply excluded_middle_irrefutable. apply H in h. apply h. Qed. Definition de_morgan_not_and_not := forall (P Q :Prop), ~(~P /\ ~Q) -> P\/Q. (* Theorem excluded_middle_de_morgan_not_and_not : classic -> de_morgan_not_and_not. unfold de_morgan_not_and_not. unfold classic. unfold not. intros h. intros p q. intros h1. apply h. intros h2. apply h1. apply conj. intros p1. apply h2. left. apply p1. intros q1. apply h2. right. apply q1. Qed. *) Theorem excluded_middle_classic : excluded_middle -> classic. unfold excluded_middle. unfold classic. unfold not. intros h1. intros p. intros h. assert (p \/ (p -> False)) as H. apply h1. destruct H. apply H. apply h in H. inversion H. Qed. Theorem excluded_middle_de_morgan_not_and_not : excluded_middle -> de_morgan_not_and_not. unfold excluded_middle. unfold de_morgan_not_and_not. unfold not. intros h. intros p q. intro h1. assert (p \/ ( p -> False)) as H. apply h. destruct H. left. apply H. assert (q \/ (q -> False)) as H2. apply h. destruct H2. right. apply H0. assert ((p -> False) /\ (q -> False)) as H3. apply conj. apply H. apply H0. apply h1 in H3. inversion H3. Qed. Definition implies_to_or := forall p q:Prop, (p -> q) -> (~p\/q). Theorem de_morgan_not_and_not_implies_to_or: de_morgan_not_and_not -> implies_to_or. unfold de_morgan_not_and_not. unfold implies_to_or. unfold not. intros H. intros p q. intros h1. apply H. intros h2. destruct h2. apply H0. intros p'. apply H1. apply h1. apply p'. Qed. Theorem implies_to_or_peirce : implies_to_or -> peirce. unfold implies_to_or. unfold peirce. unfold not. intros H. intros p q. intros h. assert ((p -> p) -> (p -> False) \/ p) as h1. apply H. assert ( p->p) as h2. intros p'. apply p'. apply h1 in h2. destruct h2. apply h. intros p'. apply H0 in p'. inversion p'. apply H0. Qed. (* Please all use excluded_middle *) Notation "x <> y" := (~ (x = y)) : type_scope. Theorem not_false_then_true : forall (b : bool), b <> false -> b = true. intros b. intros h. destruct b. reflexivity. unfold not in h. assert (false = false) as h'. reflexivity. apply h in h'. inversion h'. Qed.
/// \file python_module.cpp /// /// \brief This contains the bindings /// /// \details To facilitate quick building, we create a single Python binary /// module. We programmatically create scopes to create submodules /// from a single file. This integrates with the Python code which /// follows the regular folder structure/submodule layout. /// We also flatten the esl namespaces through usage of the 'using' /// namespace declaration. /// /// We simplify the interface to the identity<t> system, by /// creating a python_identity type that can be converted without /// checking to all other identities. /// /// /// \authors Maarten P. Scholl /// \date 2020-08-30 /// \copyright Copyright 2017-2020 The Institute for New Economic Thinking, /// Oxford Martin School, University of Oxford /// /// Licensed under the Apache License, Version 2.0 (the "License"); /// you may not use this file except in compliance with the License. /// You may obtain a copy of the License at /// /// http://www.apache.org/licenses/LICENSE-2.0 /// /// Unless required by applicable law or agreed to in writing, /// software distributed under the License is distributed on an "AS /// IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either /// express or implied. See the License for the specific language /// governing permissions and limitations under the License. /// /// You may obtain instructions to fulfill the attribution /// requirements in CITATION.cff /// #include <esl/python_module_esl.hpp> #ifdef WITH_PYTHON using namespace boost::python; #include <boost/python/to_python_converter.hpp> // to_python //////////////////////////////////////////////////////////////////////////////// // utility //////////////////////////////////////////////////////////////////////////////// #include <boost/shared_ptr.hpp> #include <boost/smart_ptr/make_shared.hpp> #include <random> boost::shared_ptr<std::seed_seq> construct_seed_seq_from_list(boost::python::list list) { std::vector<std::seed_seq::result_type> result_; for(boost::python::ssize_t i = 0; i < boost::python::len(list); ++i) { result_.push_back(boost::python::extract<std::seed_seq::result_type>(list[i])); } return boost::make_shared<std::seed_seq>(result_.begin(), result_.end()); } /// /// \brief /// /// \tparam object_t_ template<typename object_t_> void do_release(typename boost::shared_ptr<object_t_> const &, object_t_ *) { } template<typename object_t_> typename std::shared_ptr<object_t_> to_std(typename boost::shared_ptr<object_t_> const &p) { return std::shared_ptr<object_t_>(p.get(), [p](auto &&PH1) { return do_release<object_t_>(p, std::forward<decltype(PH1)>(PH1)); }); } template<typename object_t_> boost::shared_ptr<object_t_> to_boost(std::shared_ptr<object_t_>& ptr) { return boost::shared_ptr<object_t_>(ptr.get(), [ptr](object_t_ *) mutable { ptr.reset(); }); } #include <optional> template<typename element_t_> boost::python::object optional_to_python(const std::optional<element_t_> &o) { if(o.has_value()){ return boost::python::object(o.value()); } return boost::python::object(); // Python's None } //////////////////////////////////////////////////////////////////////////////// // map indexing suite # include <boost/python/suite/indexing/indexing_suite.hpp> // Forward declaration template <class Container, bool NoProxy, class DerivedPolicies> class map_indexing_suite; namespace detail2 { template <class Container, bool NoProxy> class final_map_derived_policies : public map_indexing_suite<Container, NoProxy, final_map_derived_policies<Container, NoProxy> > { }; } // By default indexed elements are returned by proxy. This can be // disabled by supplying *true* in the NoProxy template parameter. // template < class Container, bool NoProxy = false, class DerivedPolicies = detail2::final_map_derived_policies<Container, NoProxy> > class map_indexing_suite : public indexing_suite< Container , DerivedPolicies , NoProxy , true , typename Container::value_type::second_type , typename Container::key_type , typename Container::key_type > { public: typedef typename Container::value_type value_type; typedef typename Container::value_type::second_type data_type; typedef typename Container::key_type key_type; typedef typename Container::key_type index_type; typedef typename Container::size_type size_type; typedef typename Container::difference_type difference_type; template <class Class> static void extension_def(Class& cl) { cl.def("keys", &keys); cl.def("values", &values); // Wrap the map's element (value_type) std::string elem_name = "map_indexing_suite_"; object class_name(cl.attr("__name__")); extract<std::string> class_name_extractor(class_name); elem_name += class_name_extractor(); elem_name += "_entry"; typedef typename boost::mpl::if_< boost::mpl::and_<boost::is_class<data_type>, boost::mpl::bool_<!NoProxy> > , return_internal_reference<> , default_call_policies >::type get_data_return_policy; class_<value_type>(elem_name.c_str()) .def("__repr__", &DerivedPolicies::print_elem) .def("data", &DerivedPolicies::get_data, get_data_return_policy()) .def("key", &DerivedPolicies::get_key) ; } static object print_elem(typename Container::value_type const& e) { return "(%s, %s)" % boost::python::make_tuple(e.first, e.second); } static typename boost::mpl::if_< boost::mpl::and_<boost::is_class<data_type>, boost::mpl::bool_<!NoProxy> > , data_type& , data_type >::type get_data(typename Container::value_type& e) { return e.second; } static typename Container::key_type get_key(typename Container::value_type& e) { return e.first; } static data_type& get_item(Container& container, index_type i_) { auto i = container.find(i_); if (i == container.end()){ PyErr_SetString(PyExc_KeyError, "Invalid key"); throw_error_already_set(); } return i->second; } static void set_item(Container& container, index_type i, data_type const& v) { container[i] = v; } static void delete_item(Container& container, index_type i) { container.erase(i); } static size_t size(Container& container) { return container.size(); } static bool contains(Container& container, key_type const& key) { return container.find(key) != container.end(); } static bool compare_index(Container& container, index_type a, index_type b) { return container.key_comp()(a, b); } [[nodiscard]] static boost::python::list keys(const Container &container) { boost::python::list result_; for(const auto &[k, v]: container){ result_.append(k); } return result_; } [[nodiscard]] static boost::python::list values(const Container &container) { boost::python::list result_; for(const auto &[k, v]: container){ result_.append(v); } return result_; } static index_type convert_index(Container& /*container*/, PyObject* i_) { extract<key_type const&> i(i_); if (i.check()) { return i(); }else{ extract<key_type> i(i_); if (i.check()) return i(); } PyErr_SetString(PyExc_TypeError, "Invalid index type"); throw_error_already_set(); return index_type(); } }; //////////////////////////////////////////////////////////////////////////////// // esl top level //////////////////////////////////////////////////////////////////////////////// #include <esl/agent.hpp> #include <esl/exception.hpp> #include <esl/version.hpp> #include <esl/quantity.hpp> using namespace esl; #include <esl/simulation/identity.hpp> using esl::python_identity; class python_agent : public agent , public boost::python::wrapper<agent> { public: python_agent(python_identity i) : agent(reinterpret_identity_cast<agent>(i)) { } simulation::time_point act(simulation::time_interval step, std::seed_seq &seed) override { auto o = get_override("act"); if(o){ boost::python::object result_ = o(step, boost::ref(seed)); if(result_.is_none()){ return simulation::time_point(step.upper); } return boost::python::extract<simulation::time_point>(result_); } return agent::act(step, boost::ref(seed)); } std::string describe() const override { auto o = get_override("describe"); if(o){ boost::python::object result_ = o(); return boost::python::extract<std::string>(result_); } return agent::describe(); } }; /// /// \brief Translates C++ exceptions to Python errors, by setting the /// Python error text equal to the C++ exception message. /// /// \details This is a fallback converter for all exceptions, /// we can design more friendly converters /// /// \param e void translate_exception(const exception &e) { PyErr_SetString ( PyExc_RuntimeError, e.what()); } //////////////////////////////////////////////////////////////////////////////// // esl.computation //////////////////////////////////////////////////////////////////////////////// #include <esl/computation/python_module_computation.hpp> #include <esl/computation/block_pool.hpp> #include <esl/computation/environment.hpp> #include <esl/computation/timing.hpp> using namespace esl::computation; /// /// \brief This class enables access to the computation::environment /// internal functions for Python derived classes. /// /// \details Python does not have access via inheritance of protected /// members, so we need to make everything public /// class python_environment : public esl::computation::environment , public wrapper<esl::computation::environment> { public: python_environment() : esl::computation::environment() { } virtual ~python_environment() = default; void step(simulation::model &simulation) override { boost::python::override method_ = get_override("step"); if(!method_.is_none()){ method_(simulation); return; } environment::step(simulation); } void run(simulation::model &simulation) override { boost::python::override o = get_override("run"); if(!o.is_none()){ o(simulation); return; } environment::run(simulation); } size_t activate() override { boost::python::override method_ = get_override("activate"); if(!method_.is_none()){ boost::python::object result_ = method_(); return boost::python::extract<size_t>(result_); } return environment::activate(); } size_t deactivate() override { boost::python::override method_ = get_override("deactivate"); if(!method_.is_none()){ boost::python::object result_ = method_(); return boost::python::extract<size_t>(result_); } return environment::deactivate(); } void before_step() override { boost::python::override method_ = get_override("before_step"); if(!method_.is_none()){ method_(); }else { environment::before_step(); } } void after_step(simulation::model &simulation) override { boost::python::override method_ = get_override("after_step"); if(!method_.is_none()){ method_(simulation); }else{ environment::after_step(simulation); } } void after_run(simulation::model &simulation) override { boost::python::override method_ = get_override("after_run"); if(!method_.is_none()){ method_(simulation); }else { environment::after_run(simulation); } } void activate_agent_python(const python_identity a) { environment::activate_agent(reinterpret_identity_cast<agent>(a)); } void deactivate_agent_python(const python_identity a) { environment::deactivate_agent(reinterpret_identity_cast<agent>(a)); } size_t send_messages(simulation::model &simulation) { boost::python::override method_ = get_override("send_messages"); if(!method_.is_none()){ boost::python::object result_ = method_(simulation); return boost::python::extract<size_t>(result_); }else { return environment::send_messages(simulation); } } }; //////////////////////////////////////////////////////////////////////////////// // esl.computation.distributed //////////////////////////////////////////////////////////////////////////////// #include <esl/computation/distributed/protocol.hpp> using namespace esl::computation::distributed; //////////////////////////////////////////////////////////////////////////////// // esl.data //////////////////////////////////////////////////////////////////////////////// #include <esl/data/severity.hpp> #include <esl/data/log.hpp> void python_log_detailed( esl::data::severity level , boost::python::object o , const std::string &function , const std::string &file , size_t line ) { auto render_ = boost::python::extract<const char *>(boost::python::str(o)); switch(level){ case severity::trace: main_log.get<severity::trace>(function.c_str(), file.c_str(), line) << render_ << std::endl; break; case severity::notice: main_log.get<severity::notice>(function.c_str(), file.c_str(), line) << render_ << std::endl; break; case severity::warning: main_log.get<severity::notice>(function.c_str(), file.c_str(), line) << render_ << std::endl; break; case severity::errorlog: main_log.get<severity::notice>(function.c_str(), file.c_str(), line) << render_ << std::endl; break; default: break; } } //////////////////////////////////////////////////////////////////////////////// //esl.economics //////////////////////////////////////////////////////////////////////////////// #include <esl/economics/iso_4217.hpp> #include <esl/economics/currencies.hpp> #include <esl/economics/price.hpp> #include <esl/economics/company.hpp> using namespace esl::economics; #include <esl/law/jurisdiction.hpp> #include <esl/law/organization.hpp> using namespace esl::law; std::string python_currency_code(const iso_4217 &c) { return (std::string() + c.code[0]) + c.code[1]; } double python_price_to_floating_point(const price &p) { return double(p); } struct python_organization : public virtual organization , public wrapper<organization> { python_organization(const python_identity &i, const jurisdiction &j) : organization(reinterpret_identity_cast<organization>(i),j) { } }; struct python_company : public company , public wrapper<company> { public: python_company(const python_identity &i, const law::jurisdiction &j) : company(reinterpret_identity_cast<company>(i),j) , wrapper<company>() { } std::optional<finance::dividend_policy> upcoming_dividend(simulation::time_interval interval, std::seed_seq &seed) override { boost::python::override policy_ = wrapper<company>::get_override("upcoming_dividend")(interval, seed); if(policy_.is_none()){ return {}; } return extract<finance::dividend_policy>(policy_); } }; //////////////////////////////////////////////////////////////////////////////// //esl.economics.accounting //////////////////////////////////////////////////////////////////////////////// #include <esl/economics/accounting/standard.hpp> using namespace esl::economics::accounting; //we need to forward declare items from the finance submodule #include <esl/economics/finance/stock.hpp> #include <esl/economics/finance/bond.hpp> #include <esl/economics/cash.hpp> using namespace esl::economics::finance; // because python has no ad-hoc polymorphism for function overloads, // we need to wrap these. price value_money(standard &s, const money &p, const quantity &q) { return s.value(p, q); } price value_cash(standard &s, const cash &p, const quantity &q) { return s.value(p, q); } price value_stock(standard &s, const stock &p, const quantity &q) { return s.value(p, q); } price value_loan(standard &s, const loan &p, const quantity &q) { return s.value(p, q); } price value_securities_lending_contract(standard &s, const securities_lending_contract &p, const quantity &q) { return s.value(p, q); } //////////////////////////////////////////////////////////////////////////////// // esl.economics.finance //////////////////////////////////////////////////////////////////////////////// #include <esl/economics/finance/share_class.hpp> #include <esl/economics/finance/isin.hpp> #include <boost/python/suite/indexing/vector_indexing_suite.hpp> std::string get_isin_code(const finance::isin &i) { return std::string(i.code.data(), i.code.data() + i.code.size()); } void set_isin_code(finance::isin &i, const std::string &code) { i.code = esl::to_array<0,9,char>(code); } //////////////////////////////////////////////////////////////////////////////// // esl.economics.markets //////////////////////////////////////////////////////////////////////////////// #include <esl/economics/markets/quote.hpp> #include <esl/economics/markets/iso_10383.hpp> #include <esl/economics/markets/ticker.hpp> using namespace esl::economics::markets; price quote_helper_get_price(const quote &q) { auto p = std::get_if<price>(&q.type); return *p; } void quote_helper_set_price(quote &q, price p) { q.type = p; } double quote_helper_operator_double(const quote &q) { return double(q); } boost::shared_ptr<quote> construct_quote_from_price(price p) { return boost::make_shared<quote>(p); } boost::shared_ptr<quote> construct_quote_from_exchange_rate(const exchange_rate &e) { return boost::make_shared<quote>(e); } boost::shared_ptr<ticker> python_ticker_constructor(const python_identity &base_property = python_identity() , const python_identity &quote_property = python_identity()) { return boost::make_shared<ticker>( reinterpret_identity_cast<esl::law::property>(base_property) , reinterpret_identity_cast<esl::law::property>(quote_property)); } //////////////////////////////////////////////////////////////////////////////// // esl.economics.markets.order_book //////////////////////////////////////////////////////////////////////////////// #include <esl/economics/markets/order_book/basic_book.hpp> #include <esl/economics/markets/order_book/binary_tree_order_book.hpp> #include <esl/economics/markets/order_book/static_order_book.hpp> #include <esl/economics/markets/order_book/matching_engine.hpp> #include <esl/economics/markets/order_book/python_module_order_book.hpp> using namespace esl::economics::markets::order_book; boost::shared_ptr<limit_order> python_limit_order_message_constructor (ticker symbol , const python_identity &owner , limit_order::side_t side , const quote &limit , std::uint64_t quantity , limit_order::lifetime_t lifetime // = good_until_cancelled ) { return boost::make_shared<limit_order>( symbol, reinterpret_identity_cast<agent>(owner), side, limit, quantity, lifetime ); } //////////////////////////////////////////////////////////////////////////////// // esl.economics.markets.walras //////////////////////////////////////////////////////////////////////////////// //#include <esl/economics/markets/walras/python_module_walras.hpp> #include <esl/economics/markets/walras/price_setter.hpp> #include <esl/economics/markets/walras/tatonnement.hpp> using namespace esl::economics::markets::walras; class python_differentiable_order_message : public esl::economics::markets::walras::differentiable_order_message , public wrapper<esl::economics::markets::walras::differentiable_order_message> { public: python_differentiable_order_message( const python_identity &sender = python_identity(), const python_identity& recipient = python_identity(), esl::simulation::time_point sent = esl::simulation::time_point(), esl::simulation::time_point received = esl::simulation::time_point()) : esl::economics::markets::walras::differentiable_order_message ( esl::reinterpret_identity_cast<esl::agent>(sender) , esl::reinterpret_identity_cast<esl::agent>(recipient) , sent , received) , wrapper<esl::economics::markets::walras::differentiable_order_message>() { } // the default implementation is to demand zero for all [[nodiscard]] std::map<esl::identity<esl::law::property>, esl::variable> excess_demand(const std::map< esl::identity<esl::law::property> , std::tuple<quote, esl::variable>> &quotes) const override { dict quotes_; for(const auto &[i, v]: quotes){ auto t = make_tuple(std::get<0>(v), esl::value(std::get<1>(v))); quotes_.setdefault(i, t); } // specify the type, so that the return value is converted to python::object //boost::python::override return_value_ = get_override("excess_demand")(quotes_); boost::python::override method_ = get_override("excess_demand"); if(!method_.is_none()){ boost::python::object return_value_ = method_(quotes_); dict excess_ = extract<dict>(return_value_); auto keys = list(excess_.keys()); auto values = list(excess_.values()); std::map<esl::identity<esl::law::property>, esl::variable> result_; for(int i = 0; i < len(keys); ++i) { extract<esl::identity<esl::law::property>> extractor(keys[i]); extract<double> value_extractor(values[i]); if(extractor.check() && value_extractor.check()) { auto key = extractor(); auto value = value_extractor(); result_.emplace(key, esl::variable(value)); } } return result_; }//else{ return {}; } }; boost::python::dict get_differentiable_order_message_supply(const esl::economics::markets::walras::differentiable_order_message &m) { boost::python::dict result_; for(const auto &[k,v] : m.supply){ result_[k] = boost::python::make_tuple(boost::python::object(std::get<0>(v)), boost::python::object(std::get<1>(v))); } return result_; } void set_differentiable_order_message_supply(esl::economics::markets::walras::differentiable_order_message &m, boost::python::dict t) { m.supply.clear(); auto items_ = t.items(); for(boost::python::ssize_t i = 0; i < boost::python::len(items_); ++i){ boost::python::tuple tuple_ = boost::python::tuple(items_[i]); python_identity k = boost::python::extract<python_identity>(tuple_[0]); auto v = boost::python::tuple(tuple_[1]); esl::quantity long_ = boost::python::extract<quantity>(v[0]); esl::quantity short_ = boost::python::extract<quantity>(v[1]); std::tuple<esl::quantity, esl::quantity> T = { long_, short_}; m.supply.insert({esl::identity<esl::law::property>(k.digits), T}); } } /// /// \brief Excess demand model wrapper /// class python_excess_demand_model : public esl::economics::markets::tatonnement ::excess_demand_model , public wrapper<esl::economics::markets::tatonnement ::excess_demand_model> { public: explicit python_excess_demand_model(esl::law::property_map<quote> initial_quotes) : excess_demand_model(std::move(initial_quotes)) , wrapper<esl::economics::markets::tatonnement ::excess_demand_model>() { } }; /// /// \brief Helper funciton /// /// \param e /// \return boost::python::dict compute_clearing_quotes(python_excess_demand_model *e) { auto quotes_ = e->compute_clearing_quotes(); boost::python::dict result_; if(quotes_.has_value()){ for(const auto &[k,v]: quotes_.value()){ auto i = python_identity(k); result_[boost::python::object(i)] = boost::python::object(v); } } return result_; } /// /// \brief Constructor wrapper that deals with the Python-supplied mapping /// /// \param Python dict with property base pointers as keys, and quote s as value /// \return boost::shared_ptr<python_excess_demand_model> excess_demand_model_python_constructor(const dict &d) { esl::law::property_map<quote> pm; list keys = list(d.keys()); list values = list(d.values()); for (int i = 0; i < len(keys); ++i) { extract<boost::shared_ptr<esl::law::property>> extractor(keys[i]); extract<quote> value_extractor(values[i]); if (extractor.check() && value_extractor.check()){ auto key = extractor(); auto value = value_extractor(); pm.try_emplace(to_std(key), value); } } auto model_ = boost::make_shared<python_excess_demand_model>(pm); model_->methods = { python_excess_demand_model::derivative_free_root , python_excess_demand_model::derivative_free_minimization}; return model_; } /* list get_differentiable_order_message(const excess_demand_model* e) { boost::shared_ptr<walras::differentiable_order_message> e->excess_demand_functions_ }*/ typedef std::vector<boost::shared_ptr<walras::differentiable_order_message>> messages_t; /// /// \brief converts the list of demand messages to Python /// /// \param e /// \return messages_t get_excess_demand_functions(const tatonnement::excess_demand_model &e) { std::vector<boost::shared_ptr<walras::differentiable_order_message>> result_; for(auto m: e.excess_demand_functions_){ result_.push_back(to_boost(m)); } return result_; } /// /// \brief accepts Python list back to /// /// \param e /// \param l void set_excess_demand_functions(tatonnement::excess_demand_model &e, const list& l) { std::vector<boost::shared_ptr<walras::differentiable_order_message>> result_; e.excess_demand_functions_.clear(); for(int i = 0; i < len(l); ++i){ extract<boost::shared_ptr<python_differentiable_order_message>> extractor(l[i]); e.excess_demand_functions_.push_back(to_std(extractor())); } } //////////////////////////////////////////////////////////////////////////////// // esl.geography //////////////////////////////////////////////////////////////////////////////// /// /// \brief /// \param c /// \return std::string python_country_code(const esl::geography::iso_3166_1_alpha_2 &c) { return (std::string() + c.code[0]) + c.code[1]; } //////////////////////////////////////////////////////////////////////////////// // esl.interaction //////////////////////////////////////////////////////////////////////////////// //? #include <boost/serialization/export.hpp> //? BOOST_CLASS_EXPORT(esl::interaction::python_message); # include <boost/python/suite/indexing/indexing_suite.hpp> # include <boost/python/suite/indexing/vector_indexing_suite.hpp> //# include <boost/python/suite/indexing/map_indexing_suite.hpp> #include <esl/interaction/python_module_interaction.hpp> #include <esl/interaction/transfer.hpp> using namespace esl::interaction; /// /// \brief Takes a python function object and wraps it, so we can call it /// from C++ /// /// \details See communicator.hpp for callback_handle type definition /// /// /// \param f The python function that handles the message /// \return communicator::callback_handle make_callback_handle(boost::python::object f) { // std::function<simulation::time_point( message_t // , simulation::time_interval // , std::seed_seq & // )>; return [&]( communicator::message_t m , simulation::time_interval i , std::seed_seq &s ) { auto result_ = f(m, i, s); return boost::python::extract<simulation::time_point>(result_); }; } /// /// \brief Since the main class is a template, we must expose a /// non-template to python. /// class python_message : public message<python_message, library_message_code<0x1u>()> { public: // this helps the linker resolve the message code constexpr const static message_code python_code = code; template<class archive_t> void serialize(archive_t &archive, const unsigned int version) { (void)version; //BOOST_SERIALIZATION_BASE_OBJECT_NVP(message); archive &boost::serialization::make_nvp("message", boost::serialization::base_object<message<python_message, library_message_code<0x1u>()>>( *this)); } }; /// /// \brief Provides interface for a multimap<k,v> to Python /// /// template <class container_t_, bool NoProxy, class DerivedPolicies> class multimap_indexing_suite; namespace detail { template <class container_t_, bool NoProxy> class final_map_derived_policies : public multimap_indexing_suite<container_t_, NoProxy, final_map_derived_policies<container_t_, NoProxy> > {}; } template < typename multimap_t_ , bool NoProxy = false , typename DerivedPolicies = ::detail::final_map_derived_policies<multimap_t_, NoProxy> > class multimap_indexing_suite : public indexing_suite<multimap_t_, DerivedPolicies , NoProxy , true , typename multimap_t_::value_type::second_type , typename multimap_t_::key_type , typename multimap_t_::key_type > { public: typedef typename multimap_t_::value_type value_type; typedef typename multimap_t_::value_type::second_type data_type; typedef typename multimap_t_::key_type key_type; typedef typename multimap_t_::key_type index_type; typedef typename multimap_t_::size_type size_type; typedef typename multimap_t_::difference_type difference_type; template <class Class> static void extension_def(Class& cl) { cl.def("keys", &keys); cl.def("values", &values); // Wrap the map's element (value_type) std::string name_ = "multimap_indexing_suite_"; object class_name(cl.attr("__name__")); extract<std::string> class_name_extractor(class_name); name_ += class_name_extractor(); name_ += "_entry"; typedef typename boost::mpl::if_< boost::mpl::and_<boost::is_class<data_type>, boost::mpl::bool_<!NoProxy> > , return_internal_reference<> , default_call_policies >::type get_data_return_policy; class_<value_type>(name_.c_str()) .def("__repr__", &DerivedPolicies::representation) .def("data", &DerivedPolicies::get_data, get_data_return_policy()) .def("key", &DerivedPolicies::get_key) ; } static object representation(typename multimap_t_::value_type const &e) { return "(%s, %s)" % boost::python::make_tuple(e.first, e.second); } static typename boost::mpl::if_< boost::mpl::and_<boost::is_class<data_type>, boost::mpl::bool_<!NoProxy> > , data_type & , data_type >::type get_data(typename multimap_t_::value_type &e) { return e.second; } static typename multimap_t_::key_type get_key(typename multimap_t_::value_type &e) { return e.first; } static data_type &get_item(multimap_t_ &container, index_type i_) { typename multimap_t_::iterator i = container.find(i_); if (i == container.end()){ PyErr_SetString(PyExc_KeyError, "Invalid key"); throw_error_already_set(); } return i->second; } static void set_item(multimap_t_ &container, index_type i, data_type const& v) { for(auto &[k,value_]: container){ if(k == i){ value_ = v; } } } static void delete_item(multimap_t_ &container, index_type i) { container.erase(i); } static size_t size(multimap_t_ &container) { return container.size(); } static bool contains(multimap_t_ &container, key_type const &key) { return container.find(key) != container.end(); } static bool compare_index(multimap_t_ &container, index_type a, index_type b) { return container.key_comp()(a, b); } static index_type convert_index(multimap_t_ &container, PyObject *i_) { (void) container; extract<key_type const&> i(i_); if (i.check()){ return i(); }else{ extract<key_type> i2(i_); if (i2.check()) { return i2(); } } PyErr_SetString(PyExc_TypeError, "Invalid index type"); throw_error_already_set(); return index_type(); } [[nodiscard]] static boost::python::list keys(const multimap_t_ &container) { boost::python::list result_; for(const auto &[k, v]: container){ result_.append(k); } return result_; } [[nodiscard]] static boost::python::list values(const multimap_t_ &container) { boost::python::list result_; for(const auto &[k, v]: container){ result_.append(v); } return result_; } }; /// /// \rbrief /// /// \param c /// \param o void send_message_python(communicator &c, boost::python::object o) { (void)c; (void)o; extract<const communicator::message_t &> extractor_(o); } //////////////////////////////////////////////////////////////////////////////// // esl.law //////////////////////////////////////////////////////////////////////////////// #include <esl/law/legal_person.hpp> #include <esl/law/natural_person.hpp> #include <esl/law/property.hpp> #include <esl/law/organization.hpp> #include <esl/law/government.hpp> #include <esl/law/jurisdictions.hpp> #include <esl/law/legal_entity.hpp> #include <esl/economics/company.hpp> using namespace esl::law; std::string python_iso_17442_local(esl::law::iso_17442 &e) { std::stringstream stream_; stream_.write(e.local.data(), e.local.size()); return stream_.str(); } std::string python_iso_17442_code(esl::law::iso_17442 &e) { std::stringstream stream_; stream_.write(e.code.data(), e.code.size()); return stream_.str(); } std::string python_iso_17442_checksum(esl::law::iso_17442 &e) { std::stringstream stream_; auto t = e.checksum(); stream_<< std::get<0>(t) << std::get<1>(t); return stream_.str(); } /// /// \brief This is needed because we need to deal with the default argument /// \param p /// \return std::string python_represent_property_identity(const esl::identity<esl::law::property> &p) { return p.representation(); } size_t python_property_identity_hash(const esl::identity<esl::law::property> &p) { return std::hash<esl::identity<esl::law::property>>()(p); } //////////////////////////////////////////////////////////////////////////////// // esl.simulation //////////////////////////////////////////////////////////////////////////////// #include <esl/simulation/model.hpp> #include <esl/simulation/time.hpp> #include <esl/simulation/world.hpp> using namespace esl::simulation; template<typename entity_t_> python_identity create_identity(entity_t_ &e) { auto i = e.template create<object>(); return i; } template<typename identity_t_> boost::shared_ptr<identity_t_> convert_digit_list_generic(const boost::python::list &list) { std::vector<uint64_t> result_; for(boost::python::ssize_t i = 0; i < boost::python::len(list); ++i) { result_.push_back(boost::python::extract<std::uint64_t>(list[i])); } return boost::make_shared<identity_t_>(result_); } boost::python::dict agent_collection_local_agents(const agent_collection &c) { boost::python::dict result_; for(const auto &[k,v]: c.local_agents_){ result_[boost::python::object(k)] = boost::python::object(v); } return result_; } BOOST_PYTHON_MEMBER_FUNCTION_OVERLOADS( python_identity_representation_overload , python_identity::representation , 0 , 1); size_t python_identity_hash(const python_identity &p) { return std::hash<python_identity>()(p); } /// /// /// /// \param agent_constructor /// \return boost::shared_ptr<esl::agent> python_agent_collection_create_identifier( esl::simulation::agent_collection &a , boost::python::object parent) { (void)a; (void)parent; boost::shared_ptr<esl::agent> result_; return result_; } /// /// /// /// \param agent_constructor /// \return boost::shared_ptr<esl::agent> python_agent_collection_create( agent_collection & , boost::python::object ) { boost::shared_ptr<esl::agent> result_; //boost::python::call<int>(agent_constructor); return result_; } /// /// \param agent void python_agent_collection_activate(agent_collection &c, boost::shared_ptr<esl::agent> a) { c.activate(to_std(a)); } /// /// \param agent void python_agent_collection_deactivate(agent_collection &c, boost::shared_ptr<esl::agent> a) { c.deactivate(to_std(a)); } /// \brief Export time_point constructor to Python. /// /// \param o /// \return time_point python_time_point(const object& o) { return extract<time_point>(o); } /// /// \brief Export time_duration constructor to Python. /// /// \param o /// \return time_duration python_time_duration(const object& o) { return extract<time_duration>(o); } //////////////////////////////////////////////////////////////////////////////// // esl.simulation.parameter //////////////////////////////////////////////////////////////////////////////// #include <esl/simulation/parameter/parametrization.hpp> using namespace esl::simulation::parameter; class python_model : public model , public wrapper<model> { public: python_model(environment &e, const parameter::parametrization &p) : model(e, p) , wrapper<model>() { } ~python_model() override = default; void initialize() override { boost::python::override method_ = get_override("initialize"); if(method_.is_none()){ model::initialize(); }else{ method_(); } } /// /// \brief Call Python code for user defined model logic. /// Because we can't enforce return type as we would in C++, /// we are more permissive and default to jumping over the entire /// interval if no next event has been specified. /// /// \param step /// \return time_point step(time_interval step) override { boost::python::override method_ = get_override("step"); if(method_.is_none()){ return model::step(step); } boost::python::object result_ = method_(step); if(result_.is_none()){ return step.upper; } return boost::python::extract<time_point>(result_); } void terminate() override { boost::python::override method_ = get_override("terminate"); if(method_.is_none()){ model::terminate(); }else{ method_(); } } }; template<typename parameter_t_> std::optional<boost::python::object> pack(std::shared_ptr<parameter_base> parameter) { auto value_ = std::dynamic_pointer_cast<constant<parameter_t_>>(parameter); if(value_) { return boost::python::object(parameter_t_(*value_)); } return {}; } /// /// \brief Because Python allows returning many types from a single function, /// we can wrap the function by packing the result in a python object. /// /// \param p The parameter set /// \param name The parameter name /// \return The parameter value as a python object boost::python::object parametrization_get_helper(const parametrization &p, const std::string &name) { auto parameter_ = p.values.find(name); if(p.values.end() == parameter_) { throw esl::exception("not a valid parameter: " + name + ""); } auto result_ = pack<double>(parameter_->second); if(result_.has_value()){ return result_.value(); } result_ = pack<std::int64_t>(parameter_->second); if(result_.has_value()){ return result_.value(); } result_ = pack<std::uint64_t>(parameter_->second); if(result_.has_value()){ return result_.value(); } throw esl::exception("parametrization[" + name + "] can't be converted to Python"); } //////////////////////////////////////////////////////////////////////////////// // IMPLEMENTATION //////////////////////////////////////////////////////////////////////////////// namespace esl { scope create_scope(const std::string &name) { std::string nested_name = extract<std::string>(scope().attr("__name__") + "." + name); object nested_module(handle<>(borrowed(PyImport_AddModule(nested_name.c_str())))); scope().attr(name.c_str()) = nested_module; scope parent = nested_module; return parent; } /// /// \brief Python module structure follows directory structure and /// C++ namespaces. We use __init__.py for submodules, so we can mix /// native code and Python-binding specific Python code. Thus, we /// protect the name of the module with an underscore, and import it /// from __init__.py /// BOOST_PYTHON_MODULE(_esl) { //////////////////////////////////////////////////////////////////////////// // utility //////////////////////////////////////////////////////////////////////////// class_<std::seed_seq, boost::shared_ptr<std::seed_seq>, boost::noncopyable>("seed", no_init)\ .def("__init__", boost::python::make_constructor( construct_seed_seq_from_list)) .def_readonly("size", &std::seed_seq::size) .def("generate", +[](std::seed_seq &seed){ std::vector<std::uint32_t> seeds_(1); seed.generate(seeds_.begin(), seeds_.end()); return seeds_[0]; }) .def("__str__", +[](std::seed_seq &seed){ std::stringstream stream_; stream_ << "seed {"; seed.param(std::ostream_iterator<typename std::seed_seq::result_type>(stream_, ", ")); stream_ << "}"; return stream_.str(); }) ; //////////////////////////////////////////////////////////////////////////// // top level module //////////////////////////////////////////////////////////////////////////// class_<esl::exception>("exception", init<std::string>()) .def("message", &esl::exception::what); register_exception_translator<esl::exception>(translate_exception); class_<quantity>("quantity", init<>()) .def(init<std::uint64_t>()) .def(self += self) .def(self + self) .def(self -= self) .def(self - self) //.def(self *= self) .def(self * self) .def(self < self) .def(self > self) .def(self == self) .def(self != self) .def(self <= self) .def(self >= self) //.def(self /= self) //.def(self / self) //.def(self %= self) //.def(self % self) // conversion to floating point type .def(float_(self)) .def("__repr__", &quantity::representation) .def("__str__", &quantity::representation) .def(self *= std::uint64_t()) .def(self * std::uint64_t()) .def(self / std::uint64_t()); //class_<entity<void>>("entity"); class_< python_agent , boost::noncopyable //, bases<communicator> >("agent", init<python_identity>()) .def("describe", &python_agent::describe) .def("act", &python_agent::act) .add_property( "identifier" , +[](const python_agent &a){return (python_identity)(a.identifier); } ) .add_property( "inbox" , +[](const python_agent &a){return a.inbox; } ) .add_property("outbox" , +[](const python_agent &a){return a.outbox; } ) .def("create", &create_identity<agent>) .def("__repr__", &python_agent::describe) .def("__str__", &python_agent::describe) ; def("version", version, "Print the library's version."); //////////////////////////////////////////////////////////////////////////// // esl.computation //////////////////////////////////////////////////////////////////////////// { boost::python::scope scope_computation_ = create_scope("_computation"); class_<block_pool::block<object>>( "block", "The block is a unit of memory used by the block_pool allocator, and has fixed size.") .def_readwrite("data", &computation::block_pool::block<object>::data) .def_readwrite("index", &computation::block_pool::block<object>::index); // computational environment base class with default single thread class_<python_environment, boost::noncopyable>( "environment", "The environment class runs models: it schedules agents and delivers messages sent between agents.") .def("step", &python_environment::step) .def("run", &python_environment::run) .def("activate", &python_environment::activate) .def("deactivate", &python_environment::deactivate) .def("before_step", &python_environment::before_step) .def("after_step", &python_environment::after_step) .def("after_run", &python_environment::after_run) .def("activate_agent", &python_environment::activate_agent) .def("deactivate_agent", &python_environment::deactivate_agent) .def("send_messages", &python_environment::send_messages) ; // timing information class_<computation::agent_timing>( "agent_timing", "Contains performance metrics for individual agents.") .def_readwrite("messaging", &agent_timing::messaging) .def_readwrite("acting", &agent_timing::acting); { boost::python::scope scope_distributed_ = create_scope("_distributed"); scope().attr("__doc__") = "submodule for distributed computing using MPI"; class_<activation>("activation") .def_readwrite("location", &activation::location) .def_readwrite("activated", &activation::activated); class_<migration>("migration") .def_readwrite("source", &migration::source) .def_readwrite("target", &migration::target) .def_readwrite("migrant", &migration::migrant); class_<deactivation>("deactivation") .def_readwrite("deactivated", &deactivation::deactivated); } // class_<environment>("environment") // .def("run", &environment::run) // .def("step", &environment::step) // .def("activate", &environment::activate) // .def("deactivate", &environment::deactivate) // .def("before_step", &environment::before_step) // .def("after_step", &environment::after_step) // .def("after_run", &environment::after_run) // .def("activate_agent", &environment::activate_agent) // .def("deactivate_agent", &environment::deactivate_agent) // .def("send_messages", &environment::send_messages) // ; // } //////////////////////////////////////////////////////////////////////////// // esl.data //////////////////////////////////////////////////////////////////////////// { boost::python::scope scope_data_ = create_scope("_data"); enum_<severity>("severity") .value("trace", severity::trace) .value("notice", severity::notice) .value("warning", severity::warning) .value("error", severity::errorlog) ; def("log_detailed", &python_log_detailed); // esl::data::main_log.get<level>(BOOST_CURRENT_FUNCTION, __FILE__, __LINE__) //////////////////////////////////////////////////////////////////////// // esl.format //////////////////////////////////////////////////////////////////////// { boost::python::scope scope_format_ = create_scope("_format"); } } //////////////////////////////////////////////////////////////////////////// // esl.economics //////////////////////////////////////////////////////////////////////////// { boost::python::scope scope_economics_ = create_scope("_economics"); class_<iso_4217>("iso_4217") .add_property("code", python_currency_code) .add_property("denominator", &iso_4217::denominator) .add_property("__repr__", python_currency_code) .add_property("__str__", python_currency_code); class_<std::map<finance::share_class, std::uint64_t>>("map_share_class_uint64_t") .def(map_indexing_suite<std::map<finance::share_class, std::uint64_t>>()) ; //class_<std::unordered_map<identity<shareholder>, std::map<finance::share_class, std::uint64_t>>>("unordered_map_shareholder_identity_share_class_uint64_t") // .def(map_indexing_suite<std::unordered_map<identity<shareholder>, std::map<finance::share_class, std::uint64_t>>>()) //**; class_<python_organization /*, bases<legal_person>*/, boost::noncopyable>("organization" , init<const python_identity &,const jurisdiction &>()) ; class_< python_company, bases<python_organization>, boost::noncopyable >( "company", init<const python_identity &, const law::jurisdiction &>()) .add_property("balance_sheet", +[](python_company &c) { return c.balance_sheet; }) .add_property("shares_outstanding", +[](python_company &c) { return c.shares_outstanding; }) .add_property("shareholders", +[](python_company &c) { return c.shareholders; }) .def("unique_shareholders", +[](const python_company &c) { boost::python::list result_; for(const auto &sh : c.unique_shareholders()){ result_.append((python_identity)sh); } return result_; }) .def("total_shares", &python_company::company::total_shares) ; //////////////////////////////////////////////////////////////////////////// // esl.economics.accounting //////////////////////////////////////////////////////////////////////////// { boost::python::scope scope_accounting_ = create_scope("_accounting"); class_<std::map<identity<law::property>, markets::quote> >("map_property_identifier_quote") .def(map_indexing_suite<std::map<identity<law::property>, markets::quote>>()) ; class_<standard>("standard" , "A basic accounting standard" ,init<iso_4217>()) .add_property("reporting_currency", &standard::reporting_currency) .add_property("foreign_currencies", &standard::foreign_currencies) .def("value", &value_money) .def("value", &value_cash) .def("value", &value_stock) .def("value", &value_loan) .def("value", &value_securities_lending_contract) ; } //////////////////////////////////////////////////////////////////////////// // esl.economics.currencies //////////////////////////////////////////////////////////////////////////// { boost::python::scope scope_currencies_ = create_scope("_currencies"); scope().attr("AED") = currencies::AED; scope().attr("AFN") = currencies::AFN; scope().attr("ALL") = currencies::ALL; scope().attr("AMD") = currencies::AMD; scope().attr("ANG") = currencies::ANG; scope().attr("AOA") = currencies::AOA; scope().attr("ARS") = currencies::ARS; scope().attr("AUD") = currencies::AUD; scope().attr("AWG") = currencies::AWG; scope().attr("AZN") = currencies::AZN; scope().attr("BAM") = currencies::BAM; scope().attr("BBD") = currencies::BBD; scope().attr("BDT") = currencies::BDT; scope().attr("BGN") = currencies::BGN; scope().attr("BHD") = currencies::BHD; scope().attr("BIF") = currencies::BIF; scope().attr("BMD") = currencies::BMD; scope().attr("BND") = currencies::BND; scope().attr("BOB") = currencies::BOB; scope().attr("BOV") = currencies::BOV; scope().attr("BRL") = currencies::BRL; scope().attr("BSD") = currencies::BSD; scope().attr("BTN") = currencies::BTN; scope().attr("BWP") = currencies::BWP; scope().attr("BYN") = currencies::BYN; scope().attr("BZD") = currencies::BZD; scope().attr("CAD") = currencies::CAD; scope().attr("CDF") = currencies::CDF; scope().attr("CHE") = currencies::CHE; scope().attr("CHF") = currencies::CHF; scope().attr("CHW") = currencies::CHW; scope().attr("CLF") = currencies::CLF; scope().attr("CLP") = currencies::CLP; scope().attr("CNY") = currencies::CNY; scope().attr("COP") = currencies::COP; scope().attr("COU") = currencies::COU; scope().attr("CRC") = currencies::CRC; scope().attr("CUC") = currencies::CUC; scope().attr("CUP") = currencies::CUP; scope().attr("CVE") = currencies::CVE; scope().attr("CZK") = currencies::CZK; scope().attr("DJF") = currencies::DJF; scope().attr("DKK") = currencies::DKK; scope().attr("DOP") = currencies::DOP; scope().attr("DZD") = currencies::DZD; scope().attr("EGP") = currencies::EGP; scope().attr("ERN") = currencies::ERN; scope().attr("ETB") = currencies::ETB; scope().attr("EUR") = currencies::EUR; scope().attr("FJD") = currencies::FJD; scope().attr("FKP") = currencies::FKP; scope().attr("GBP") = currencies::GBP; scope().attr("GEL") = currencies::GEL; scope().attr("GHS") = currencies::GHS; scope().attr("GIP") = currencies::GIP; scope().attr("GMD") = currencies::GMD; scope().attr("GNF") = currencies::GNF; scope().attr("GTQ") = currencies::GTQ; scope().attr("GYD") = currencies::GYD; scope().attr("HKD") = currencies::HKD; scope().attr("HNL") = currencies::HNL; scope().attr("HRK") = currencies::HRK; scope().attr("HTG") = currencies::HTG; scope().attr("HUF") = currencies::HUF; scope().attr("IDR") = currencies::IDR; scope().attr("ILS") = currencies::ILS; scope().attr("INR") = currencies::INR; scope().attr("IQD") = currencies::IQD; scope().attr("IRR") = currencies::IRR; scope().attr("ISK") = currencies::ISK; scope().attr("JMD") = currencies::JMD; scope().attr("JOD") = currencies::JOD; scope().attr("JPY") = currencies::JPY; scope().attr("KES") = currencies::KES; scope().attr("KGS") = currencies::KGS; scope().attr("KHR") = currencies::KHR; scope().attr("KMF") = currencies::KMF; scope().attr("KPW") = currencies::KPW; scope().attr("KRW") = currencies::KRW; scope().attr("KWD") = currencies::KWD; scope().attr("KYD") = currencies::KYD; scope().attr("KZT") = currencies::KZT; scope().attr("LAK") = currencies::LAK; scope().attr("LBP") = currencies::LBP; scope().attr("LKR") = currencies::LKR; scope().attr("LRD") = currencies::LRD; scope().attr("LSL") = currencies::LSL; scope().attr("LYD") = currencies::LYD; scope().attr("MAD") = currencies::MAD; scope().attr("MDL") = currencies::MDL; scope().attr("MGA") = currencies::MGA; scope().attr("MKD") = currencies::MKD; scope().attr("MMK") = currencies::MMK; scope().attr("MNT") = currencies::MNT; scope().attr("MOP") = currencies::MOP; scope().attr("MRU") = currencies::MRU; scope().attr("MUR") = currencies::MUR; scope().attr("MVR") = currencies::MVR; scope().attr("MWK") = currencies::MWK; scope().attr("MXN") = currencies::MXN; scope().attr("MXV") = currencies::MXV; scope().attr("MYR") = currencies::MYR; scope().attr("MZN") = currencies::MZN; scope().attr("NAD") = currencies::NAD; scope().attr("NGN") = currencies::NGN; scope().attr("NIO") = currencies::NIO; scope().attr("NOK") = currencies::NOK; scope().attr("NPR") = currencies::NPR; scope().attr("NZD") = currencies::NZD; scope().attr("OMR") = currencies::OMR; scope().attr("PAB") = currencies::PAB; scope().attr("PEN") = currencies::PEN; scope().attr("PGK") = currencies::PGK; scope().attr("PHP") = currencies::PHP; scope().attr("PKR") = currencies::PKR; scope().attr("PLN") = currencies::PLN; scope().attr("PYG") = currencies::PYG; scope().attr("QAR") = currencies::QAR; scope().attr("RON") = currencies::RON; scope().attr("RSD") = currencies::RSD; scope().attr("RUB") = currencies::RUB; scope().attr("RWF") = currencies::RWF; scope().attr("SAR") = currencies::SAR; scope().attr("SBD") = currencies::SBD; scope().attr("SCR") = currencies::SCR; scope().attr("SDG") = currencies::SDG; scope().attr("SEK") = currencies::SEK; scope().attr("SGD") = currencies::SGD; scope().attr("SHP") = currencies::SHP; scope().attr("SLL") = currencies::SLL; scope().attr("SOS") = currencies::SOS; scope().attr("SRD") = currencies::SRD; scope().attr("SSP") = currencies::SSP; scope().attr("STN") = currencies::STN; scope().attr("SVC") = currencies::SVC; scope().attr("SYP") = currencies::SYP; scope().attr("SZL") = currencies::SZL; scope().attr("THB") = currencies::THB; scope().attr("TJS") = currencies::TJS; scope().attr("TMT") = currencies::TMT; scope().attr("TND") = currencies::TND; scope().attr("TOP") = currencies::TOP; scope().attr("TRY") = currencies::TRY; scope().attr("TTD") = currencies::TTD; scope().attr("TWD") = currencies::TWD; scope().attr("TZS") = currencies::TZS; scope().attr("UAH") = currencies::UAH; scope().attr("UGX") = currencies::UGX; scope().attr("USD") = currencies::USD; scope().attr("USN") = currencies::USN; scope().attr("UYI") = currencies::UYI; scope().attr("UYU") = currencies::UYU; scope().attr("UZS") = currencies::UZS; scope().attr("VEF") = currencies::VEF; scope().attr("VND") = currencies::VND; scope().attr("VUV") = currencies::VUV; scope().attr("WST") = currencies::WST; scope().attr("XAF") = currencies::XAF; scope().attr("XAG") = currencies::XAG; scope().attr("XAU") = currencies::XAU; scope().attr("XBA") = currencies::XBA; scope().attr("XBB") = currencies::XBB; scope().attr("XBC") = currencies::XBC; scope().attr("XBD") = currencies::XBD; scope().attr("XCD") = currencies::XCD; scope().attr("XDR") = currencies::XDR; scope().attr("XOF") = currencies::XOF; scope().attr("XPD") = currencies::XPD; scope().attr("XPF") = currencies::XPF; scope().attr("XPT") = currencies::XPT; scope().attr("XSU") = currencies::XSU; scope().attr("XUA") = currencies::XUA; // scope().attr("XXX") = currencies::XXX; scope().attr("YER") = currencies::YER; scope().attr("ZAR") = currencies::ZAR; scope().attr("ZMW") = currencies::ZMW; scope().attr("ZWL") = currencies::ZWL; } class_<price>("price", init<std::int64_t, iso_4217>()) .add_property("value", &price::value) .add_property("valuation", &price::valuation) .def("approximate", &price::approximate) .def(self == self) .def(self != self) .def(self < self) .def(self <= self) .def(self > self) .def(self >= self) //.def(self * std::uint64_t) .def("__repr__", &price::representation) .def("__str__", &price::representation) .def("__float__", &python_price_to_floating_point); //////////////////////////////////////////////////////////////////////// // esl.economics.finance //////////////////////////////////////////////////////////////////////// { boost::python::scope scope_finance = create_scope("_finance"); class_<finance::isin>("iso_6166", no_init) .def(init<geography::iso_3166_1_alpha_2, std::string>()) .def(init<std::string>()) .def(init<std::string, std::string>()) .def(init<geography::iso_3166_1_alpha_2, cusip>()) .add_property("issuer", &finance::isin::issuer) .add_property("code", &get_isin_code, &set_isin_code) .def("__repr__", &finance::isin::representation) .def("__str__", &finance::isin::representation) .def("checksum", +[](const finance::isin &i){ std::string s = ""; s += i.checksum(); return s;}) ; class_<finance::cusip>("cusip", no_init) .def(init<std::string>()) .add_property("issuer" , +[](const finance::cusip &c){ return std::string(c.issuer.begin(), c.issuer.end()); }) .def("__repr__", &finance::cusip::representation) .def("__str__", &finance::cusip::representation) .def("checksum", +[](const finance::cusip &c){ std::string s = ""; s += c.checksum(); return s; }) ; class_<finance::share_class>( "share_class", init<std::uint8_t, std::uint8_t, float, bool, bool, bool>()) .add_property("rank", &finance::share_class::rank) .add_property("votes", &finance::share_class::votes) .add_property("preference", &finance::share_class::preference) .add_property("dividend", &finance::share_class::dividend) .add_property("cumulative", &finance::share_class::cumulative) .add_property("redeemable", &finance::share_class::redeemable) .def(self == self) .def(self < self); class_<std::map<share_class, std::tuple<std::uint64_t, price>>>("map_share_class_uint64_t_price") .def(map_indexing_suite<std::map<share_class, std::tuple<std::uint64_t, price>>>()); class_<finance::dividend_policy>("dividend_policy", init<time_point, time_point,time_interval,time_point,iso_4217,std::map<share_class, std::tuple<std::uint64_t, price>>>() ) .add_property("announcement_date", &dividend_policy::announcement_date) .add_property("ex_dividend_date", &dividend_policy::ex_dividend_date) .add_property("dividend_period", &dividend_policy::dividend_period) .add_property("payable_date", &dividend_policy::payable_date) .add_property("dividend_currency", &dividend_policy::dividend_currency) .add_property("dividend_per_share", &dividend_policy::dividend_per_share) .def("total_dividends", &dividend_policy::total_dividends) ; } //////////////////////////////////////////////////////////////////////// // esl.economics.markets //////////////////////////////////////////////////////////////////////// { boost::python::scope scope_markets_ = create_scope("_markets"); class_<iso_10383>("iso_10383", init<std::string>()) .def("__repr__", &iso_10383::representation) .def(self_ns::str(self_ns::self)) .def(self == self) .def(self != self) .def(self < self) .def(self > self) .def(self <= self) .def(self >= self); class_<quote, boost::shared_ptr<quote>>("quote", no_init) .def("__init__", boost::python::make_constructor( construct_quote_from_price)) .def("__init__", boost::python::make_constructor( construct_quote_from_exchange_rate)) .add_property("price", &quote_helper_get_price, &quote_helper_set_price) .def_readwrite("lot", &quote::lot) .def(self == self) .def(self != self) .def(self < self) .def(self > self) .def(self <= self) .def(self >= self) .def("__float__", &quote_helper_operator_double) .def("__repr__", &quote::representation) .def("__str__", &quote::representation); implicitly_convertible<quote, double>(); class_<ticker>( "ticker", no_init) .def("__init__", make_constructor(python_ticker_constructor)) .add_property("base" , +[](const ticker &r){return reinterpret_identity_cast<python_identity>(r.base); } , +[](ticker &r, const python_identity &i){ r.base = reinterpret_identity_cast<law::property>(i); } ) .add_property("quote" , +[](const ticker &r){return (python_identity)(r.quote); } , +[](ticker &r, const python_identity &i){ r.quote = reinterpret_identity_cast<law::property>(i); } ) .def(self == self) .def(self != self) .def(self < self) .def(self > self) .def(self <= self) .def(self >= self); enum_<indication>("indication") .value("firm", indication::firm) .value("indicative", indication::indicative); //////////////////////////////////////////////////////////////////// // esl.economics.markets.impact_function //////////////////////////////////////////////////////////////////// { boost::python::scope scope_impact_function_ = create_scope("_impact_function"); } //////////////////////////////////////////////////////////////////// // esl.economics.markets.order_book //////////////////////////////////////////////////////////////////// { boost::python::scope scope_order_book_ = create_scope("_order_book"); class_<std::vector<execution_report>>("execution_reports") .def(vector_indexing_suite<std::vector<execution_report>>()) .def("clear", +[](std::vector<execution_report> &e){return e.clear();}) //.def("size", +[](const std::vector<execution_report> &e){return e.size();}) // superseeded by len(e) ; enum_<execution_report::state_t>("execution_state") .value("invalid", execution_report::state_t::invalid) .value("cancel", execution_report::state_t::cancel) .value("match", execution_report::state_t::match) .value("placement", execution_report::state_t::placement); class_<execution_report>("execution_report" , init<execution_report::state_t , limit_order::side_t , std::uint32_t , std::uint64_t , quote , python_identity >()) .def_readwrite("state", &execution_report::state) .def_readwrite("quantity", &execution_report::quantity) .def_readwrite("identifier", &execution_report::identifier) .def_readwrite("side", &execution_report::side) .def_readwrite("limit", &execution_report::limit) .add_property ("owner" , +[](const execution_report &r){return reinterpret_identity_cast<python_identity>(r.owner); } , +[](execution_report &r, const python_identity &i){ r.owner = reinterpret_identity_cast<agent>(i); } ) .def("__repr__", &execution_report::representation) .def("__str__", &execution_report::representation); // for list of order identifiers class_<std::vector<basic_book::order_identifier>>("order_identifier_list") .def(vector_indexing_suite<std::vector<basic_book::order_identifier>>()) .def("clear", +[](std::vector<basic_book::order_identifier> &e){return e.clear();}) ; enum_<limit_order::side_t>("side_t") .value("buy", limit_order::side_t::buy) .value("sell", limit_order::side_t::sell) ; enum_<limit_order::lifetime_t>("lifetime_t") .value("good_until_cancelled", limit_order::lifetime_t::good_until_cancelled) .value("fill_or_kill", limit_order::lifetime_t::fill_or_kill) .value("immediate_or_cancel", limit_order::lifetime_t::immediate_or_cancel) ; /// /// \brief Export the abstract base class, so that python users too can /// implement new order books. /// class_<limit_order>("limit_order", no_init) .def("__init__", make_constructor(python_limit_order_message_constructor)) .def_readwrite("lifetime", &limit_order::lifetime) .def_readwrite("side", &limit_order::side) .def_readwrite("symbol", &limit_order::symbol) .add_property ( "owner" , +[](const limit_order &r){return reinterpret_identity_cast<python_identity>(r.owner); } , +[](limit_order &r, const python_identity &i){ r.owner = reinterpret_identity_cast<agent>(i); } ) .def_readwrite("limit", &limit_order::limit) .def_readwrite("quantity", &limit_order::quantity) ; class_<std::vector<limit_order>>("limit_orders") .def(vector_indexing_suite<std::vector<limit_order>>()); /// /// \brief Export the abstract base class, so that python users too can /// implement new order books. /// class_<basic_book, boost::noncopyable>("basic_book", no_init) .def_readwrite("reports", &basic_book::reports) .def("ask", +[](const basic_book& b) { return optional_to_python<quote>(b.ask()); }) .def("bid", +[](const basic_book& b) { return optional_to_python<quote>(b.bid()); }) .def("insert", &basic_book::insert) .def("cancel", &basic_book::cancel) .def("orders", +[](const basic_book& b) { boost::python::list result_; for(auto i: b.orders()){ result_.append(i); } return result_; }) .def("display", &basic_book::display); // class_<static_order_book, bases<basic_book>> ( "static_order_book" , "Limit order book optimized for fast throughput. Uses statically allocated memory pool." , init<quote, quote, size_t>()) .def_readwrite("reports", &basic_book::reports) ; class_<binary_tree_order_book, bases<basic_book>>( "binary_tree_order_book", init<>()) .def_readwrite("reports", &basic_book::reports) .def("ask", &basic_book::ask) .def("bid", &basic_book::bid) .def("insert", &basic_book::insert) .def("cancel", &basic_book::cancel) .def("display", &basic_book::display); class_<matching_engine>("matching_engine", init<>()) .def_readwrite("books", &matching_engine::books) ; } //////////////////////////////////////////////////////////////////// // esl.economics.markets.walras //////////////////////////////////////////////////////////////////// { boost::python::scope scope_walras_ = create_scope("_walras"); enum_<tatonnement::excess_demand_model::solver>("solver") // TODO: implement automatic differentiation for Python //.value("root", excess_demand_model::root) //.value("minimization", excess_demand_model::minimization) .value( "derivative_free_root", tatonnement::excess_demand_model::derivative_free_root) .value("derivative_free_minimization", tatonnement::excess_demand_model:: derivative_free_minimization) .export_values(); class_<python_differentiable_order_message, boost::noncopyable>( "differentiable_order_message", init<python_identity, python_identity, esl::simulation::time_point, esl::simulation::time_point>()) .add_property( "supply", &get_differentiable_order_message_supply, &set_differentiable_order_message_supply); // expose vector of messages to Python class_<messages_t>("messages_t") .def(vector_indexing_suite<messages_t>()); class_<python_excess_demand_model, boost::noncopyable>( "excess_demand_model", no_init) // non-trivial constructor .def("__init__", make_constructor( &excess_demand_model_python_constructor)) .def_readwrite("circuit_breaker", &tatonnement::excess_demand_model::circuit_breaker) .def_readwrite("methods", &tatonnement::excess_demand_model::methods) .def_readwrite("quotes", &tatonnement::excess_demand_model::quotes) .def("compute_clearing_quotes", &compute_clearing_quotes) .add_property("excess_demand_functions", &get_excess_demand_functions, &set_excess_demand_functions); } } } //////////////////////////////////////////////////////////////////////////// // esl.geography //////////////////////////////////////////////////////////////////////////// { boost::python::scope scope_geography_ = create_scope("_geography"); class_<esl::geography::iso_3166_1_alpha_2>("iso_3166_1_alpha_2", init<std::string>()) .add_property("code", python_country_code) .def("__repr__", &esl::geography::iso_3166_1_alpha_2::representation) .def("__str__", &esl::geography::iso_3166_1_alpha_2::representation); { boost::python::scope scope_countries_ = create_scope("_countries"); scope().attr("AE") = esl::geography::countries::AE; scope().attr("AF") = esl::geography::countries::AF; scope().attr("AG") = esl::geography::countries::AG; scope().attr("AI") = esl::geography::countries::AI; scope().attr("AL") = esl::geography::countries::AL; scope().attr("AM") = esl::geography::countries::AM; scope().attr("AO") = esl::geography::countries::AO; scope().attr("AQ") = esl::geography::countries::AQ; scope().attr("AR") = esl::geography::countries::AR; scope().attr("AS") = esl::geography::countries::AS; scope().attr("AT") = esl::geography::countries::AT; scope().attr("AU") = esl::geography::countries::AU; scope().attr("AW") = esl::geography::countries::AW; scope().attr("AX") = esl::geography::countries::AX; scope().attr("AZ") = esl::geography::countries::AZ; scope().attr("BA") = esl::geography::countries::BA; scope().attr("BB") = esl::geography::countries::BB; scope().attr("BD") = esl::geography::countries::BD; scope().attr("BE") = esl::geography::countries::BE; scope().attr("BF") = esl::geography::countries::BF; scope().attr("BG") = esl::geography::countries::BG; scope().attr("BH") = esl::geography::countries::BH; scope().attr("BI") = esl::geography::countries::BI; scope().attr("BJ") = esl::geography::countries::BJ; scope().attr("BL") = esl::geography::countries::BL; scope().attr("BM") = esl::geography::countries::BM; scope().attr("BN") = esl::geography::countries::BN; scope().attr("BO") = esl::geography::countries::BO; scope().attr("BQ") = esl::geography::countries::BQ; scope().attr("BR") = esl::geography::countries::BR; scope().attr("BS") = esl::geography::countries::BS; scope().attr("BT") = esl::geography::countries::BT; scope().attr("BV") = esl::geography::countries::BV; scope().attr("BW") = esl::geography::countries::BW; scope().attr("BY") = esl::geography::countries::BY; scope().attr("BZ") = esl::geography::countries::BZ; scope().attr("CA") = esl::geography::countries::CA; scope().attr("CC") = esl::geography::countries::CC; scope().attr("CD") = esl::geography::countries::CD; scope().attr("CF") = esl::geography::countries::CF; scope().attr("CG") = esl::geography::countries::CG; scope().attr("CH") = esl::geography::countries::CH; scope().attr("CI") = esl::geography::countries::CI; scope().attr("CK") = esl::geography::countries::CK; scope().attr("CL") = esl::geography::countries::CL; scope().attr("CM") = esl::geography::countries::CM; scope().attr("CN") = esl::geography::countries::CN; scope().attr("CO") = esl::geography::countries::CO; scope().attr("CR") = esl::geography::countries::CR; scope().attr("CU") = esl::geography::countries::CU; scope().attr("CV") = esl::geography::countries::CV; scope().attr("CW") = esl::geography::countries::CW; scope().attr("CX") = esl::geography::countries::CX; scope().attr("CY") = esl::geography::countries::CY; scope().attr("CZ") = esl::geography::countries::CZ; scope().attr("DE") = esl::geography::countries::DE; scope().attr("DJ") = esl::geography::countries::DJ; scope().attr("DK") = esl::geography::countries::DK; scope().attr("DM") = esl::geography::countries::DM; scope().attr("DO") = esl::geography::countries::DO; scope().attr("DZ") = esl::geography::countries::DZ; scope().attr("EC") = esl::geography::countries::EC; scope().attr("EE") = esl::geography::countries::EE; scope().attr("EG") = esl::geography::countries::EG; scope().attr("EH") = esl::geography::countries::EH; scope().attr("ER") = esl::geography::countries::ER; scope().attr("ES") = esl::geography::countries::ES; scope().attr("ET") = esl::geography::countries::ET; scope().attr("FI") = esl::geography::countries::FI; scope().attr("FJ") = esl::geography::countries::FJ; scope().attr("FK") = esl::geography::countries::FK; scope().attr("FM") = esl::geography::countries::FM; scope().attr("FO") = esl::geography::countries::FO; scope().attr("FR") = esl::geography::countries::FR; scope().attr("GA") = esl::geography::countries::GA; scope().attr("GB") = esl::geography::countries::GB; scope().attr("GD") = esl::geography::countries::GD; scope().attr("GE") = esl::geography::countries::GE; scope().attr("GF") = esl::geography::countries::GF; scope().attr("GG") = esl::geography::countries::GG; scope().attr("GH") = esl::geography::countries::GH; scope().attr("GI") = esl::geography::countries::GI; scope().attr("GL") = esl::geography::countries::GL; scope().attr("GM") = esl::geography::countries::GM; scope().attr("GN") = esl::geography::countries::GN; scope().attr("GP") = esl::geography::countries::GP; scope().attr("GQ") = esl::geography::countries::GQ; scope().attr("GR") = esl::geography::countries::GR; scope().attr("GS") = esl::geography::countries::GS; scope().attr("GT") = esl::geography::countries::GT; scope().attr("GU") = esl::geography::countries::GU; scope().attr("GW") = esl::geography::countries::GW; scope().attr("GY") = esl::geography::countries::GY; scope().attr("HK") = esl::geography::countries::HK; scope().attr("HM") = esl::geography::countries::HM; scope().attr("HN") = esl::geography::countries::HN; scope().attr("HR") = esl::geography::countries::HR; scope().attr("HT") = esl::geography::countries::HT; scope().attr("HU") = esl::geography::countries::HU; scope().attr("ID") = esl::geography::countries::ID; scope().attr("IE") = esl::geography::countries::IE; scope().attr("IL") = esl::geography::countries::IL; scope().attr("IM") = esl::geography::countries::IM; scope().attr("IN") = esl::geography::countries::IN; scope().attr("IO") = esl::geography::countries::IO; scope().attr("IQ") = esl::geography::countries::IQ; scope().attr("IR") = esl::geography::countries::IR; scope().attr("IS") = esl::geography::countries::IS; scope().attr("IT") = esl::geography::countries::IT; scope().attr("JE") = esl::geography::countries::JE; scope().attr("JM") = esl::geography::countries::JM; scope().attr("JO") = esl::geography::countries::JO; scope().attr("JP") = esl::geography::countries::JP; scope().attr("KE") = esl::geography::countries::KE; scope().attr("KG") = esl::geography::countries::KG; scope().attr("KH") = esl::geography::countries::KH; scope().attr("KI") = esl::geography::countries::KI; scope().attr("KM") = esl::geography::countries::KM; scope().attr("KN") = esl::geography::countries::KN; scope().attr("KP") = esl::geography::countries::KP; scope().attr("KR") = esl::geography::countries::KR; scope().attr("KW") = esl::geography::countries::KW; scope().attr("KY") = esl::geography::countries::KY; scope().attr("KZ") = esl::geography::countries::KZ; scope().attr("LA") = esl::geography::countries::LA; scope().attr("LB") = esl::geography::countries::LB; scope().attr("LC") = esl::geography::countries::LC; scope().attr("LI") = esl::geography::countries::LI; scope().attr("LK") = esl::geography::countries::LK; scope().attr("LR") = esl::geography::countries::LR; scope().attr("LS") = esl::geography::countries::LS; scope().attr("LT") = esl::geography::countries::LT; scope().attr("LU") = esl::geography::countries::LU; scope().attr("LV") = esl::geography::countries::LV; scope().attr("LY") = esl::geography::countries::LY; scope().attr("MA") = esl::geography::countries::MA; scope().attr("MC") = esl::geography::countries::MC; scope().attr("MD") = esl::geography::countries::MD; scope().attr("ME") = esl::geography::countries::ME; scope().attr("MF") = esl::geography::countries::MF; scope().attr("MG") = esl::geography::countries::MG; scope().attr("MH") = esl::geography::countries::MH; scope().attr("MK") = esl::geography::countries::MK; scope().attr("ML") = esl::geography::countries::ML; scope().attr("MM") = esl::geography::countries::MM; scope().attr("MN") = esl::geography::countries::MN; scope().attr("MO") = esl::geography::countries::MO; scope().attr("MP") = esl::geography::countries::MP; scope().attr("MQ") = esl::geography::countries::MQ; scope().attr("MR") = esl::geography::countries::MR; scope().attr("MS") = esl::geography::countries::MS; scope().attr("MT") = esl::geography::countries::MT; scope().attr("MU") = esl::geography::countries::MU; scope().attr("MV") = esl::geography::countries::MV; scope().attr("MW") = esl::geography::countries::MW; scope().attr("MX") = esl::geography::countries::MX; scope().attr("MY") = esl::geography::countries::MY; scope().attr("MZ") = esl::geography::countries::MZ; scope().attr("NA") = esl::geography::countries::NA; scope().attr("NC") = esl::geography::countries::NC; scope().attr("NE") = esl::geography::countries::NE; scope().attr("NF") = esl::geography::countries::NF; scope().attr("NG") = esl::geography::countries::NG; scope().attr("NI") = esl::geography::countries::NI; scope().attr("NL") = esl::geography::countries::NL; scope().attr("NO") = esl::geography::countries::NO; scope().attr("NP") = esl::geography::countries::NP; scope().attr("NR") = esl::geography::countries::NR; scope().attr("NU") = esl::geography::countries::NU; scope().attr("NZ") = esl::geography::countries::NZ; scope().attr("OM") = esl::geography::countries::OM; scope().attr("PA") = esl::geography::countries::PA; scope().attr("PE") = esl::geography::countries::PE; scope().attr("PF") = esl::geography::countries::PF; scope().attr("PG") = esl::geography::countries::PG; scope().attr("PH") = esl::geography::countries::PH; scope().attr("PK") = esl::geography::countries::PK; scope().attr("PL") = esl::geography::countries::PL; scope().attr("PM") = esl::geography::countries::PM; scope().attr("PN") = esl::geography::countries::PN; scope().attr("PR") = esl::geography::countries::PR; scope().attr("PS") = esl::geography::countries::PS; scope().attr("PT") = esl::geography::countries::PT; scope().attr("PW") = esl::geography::countries::PW; scope().attr("PY") = esl::geography::countries::PY; scope().attr("QA") = esl::geography::countries::QA; scope().attr("RE") = esl::geography::countries::RE; scope().attr("RO") = esl::geography::countries::RO; scope().attr("RS") = esl::geography::countries::RS; scope().attr("RU") = esl::geography::countries::RU; scope().attr("RW") = esl::geography::countries::RW; scope().attr("SA") = esl::geography::countries::SA; scope().attr("SB") = esl::geography::countries::SB; scope().attr("SC") = esl::geography::countries::SC; scope().attr("SD") = esl::geography::countries::SD; scope().attr("SE") = esl::geography::countries::SE; scope().attr("SG") = esl::geography::countries::SG; scope().attr("SH") = esl::geography::countries::SH; scope().attr("SI") = esl::geography::countries::SI; scope().attr("SJ") = esl::geography::countries::SJ; scope().attr("SK") = esl::geography::countries::SK; scope().attr("SL") = esl::geography::countries::SL; scope().attr("SM") = esl::geography::countries::SM; scope().attr("SN") = esl::geography::countries::SN; scope().attr("SO") = esl::geography::countries::SO; scope().attr("SR") = esl::geography::countries::SR; scope().attr("SS") = esl::geography::countries::SS; scope().attr("ST") = esl::geography::countries::ST; scope().attr("SV") = esl::geography::countries::SV; scope().attr("SX") = esl::geography::countries::SX; scope().attr("SY") = esl::geography::countries::SY; scope().attr("SZ") = esl::geography::countries::SZ; scope().attr("TC") = esl::geography::countries::TC; scope().attr("TD") = esl::geography::countries::TD; scope().attr("TF") = esl::geography::countries::TF; scope().attr("TG") = esl::geography::countries::TG; scope().attr("TH") = esl::geography::countries::TH; scope().attr("TJ") = esl::geography::countries::TJ; scope().attr("TK") = esl::geography::countries::TK; scope().attr("TL") = esl::geography::countries::TL; scope().attr("TM") = esl::geography::countries::TM; scope().attr("TN") = esl::geography::countries::TN; scope().attr("TO") = esl::geography::countries::TO; scope().attr("TR") = esl::geography::countries::TR; scope().attr("TT") = esl::geography::countries::TT; scope().attr("TV") = esl::geography::countries::TV; scope().attr("TW") = esl::geography::countries::TW; scope().attr("TZ") = esl::geography::countries::TZ; scope().attr("UA") = esl::geography::countries::UA; scope().attr("UG") = esl::geography::countries::UG; scope().attr("UM") = esl::geography::countries::UM; scope().attr("US") = esl::geography::countries::US; scope().attr("UY") = esl::geography::countries::UY; scope().attr("UZ") = esl::geography::countries::UZ; scope().attr("VA") = esl::geography::countries::VA; scope().attr("VC") = esl::geography::countries::VC; scope().attr("VE") = esl::geography::countries::VE; scope().attr("VG") = esl::geography::countries::VG; scope().attr("VI") = esl::geography::countries::VI; scope().attr("VN") = esl::geography::countries::VN; scope().attr("VU") = esl::geography::countries::VU; scope().attr("WF") = esl::geography::countries::WF; scope().attr("WS") = esl::geography::countries::WS; scope().attr("YE") = esl::geography::countries::YE; scope().attr("YT") = esl::geography::countries::YT; scope().attr("ZA") = esl::geography::countries::ZA; scope().attr("ZM") = esl::geography::countries::ZM; scope().attr("ZW") = esl::geography::countries::ZW; } } //////////////////////////////////////////////////////////////////////////// // esl.interaction //////////////////////////////////////////////////////////////////////////// { boost::python::scope scope_interaction_ = create_scope("_interaction"); def("make_callback_handle", &make_callback_handle); class_<communicator::callback_handle>("callback_handle"); class_<communicator::callback_t>("callback_t") .def_readwrite("function", &communicator::callback_t::function) .def_readwrite("description", &communicator::callback_t::description) .def_readwrite("message", &communicator::callback_t::message) .def_readwrite("file", &communicator::callback_t::file) .def_readwrite("line", &communicator::callback_t::line) //.def("__call__", &communicator::callback_t::operator ()) ; enum_<communicator::scheduling>("scheduling") .value("in_order", communicator::scheduling::in_order) .value("random", communicator::scheduling::random); class_<communicator::inbox_t>("inbox_t").def( multimap_indexing_suite<communicator::inbox_t>()) // .def( "insert" // , +[](const ... &r){return ; } // ) ; class_<communicator::outbox_t>("outbox_t") .def( boost::python::vector_indexing_suite<communicator::outbox_t>()); class_<communicator>("communicator") .def("send_message", send_message_python) .def_readwrite("inbox", &communicator::inbox) .def_readwrite("outbox", &communicator::outbox); class_<header>("header", init<message_code, python_identity, python_identity, simulation::time_point, simulation::time_point>()) .def(init<message_code, python_identity, python_identity, simulation::time_point>()) .def(init<message_code, python_identity, python_identity>()) .def(init<message_code, python_identity>()) .def(init<message_code>()) .def(init<message_code>()) .def_readwrite("type", &header::type) .add_property("sender" , +[](const header &r){return (python_identity)(r.sender); } , +[](header &r, const python_identity &i){ r.sender = reinterpret_identity_cast<agent>(i); } ) .add_property("recipient" , +[](const header &r){return (python_identity)(r.recipient); } , +[](header &r, const python_identity &i){ r.recipient = reinterpret_identity_cast<agent>(i); } ) .def_readwrite("sent", &header::sent) .def_readwrite("received", &header::received); class_<python_message, bases<header>>("message").def_readonly( "code", &python_message::python_code); } //////////////////////////////////////////////////////////////////////////// // esl.law //////////////////////////////////////////////////////////////////////////// { boost::python::scope scope_law_ = create_scope("_law"); class_<iso_17442>("iso_17442", init<std::string>()) .add_property("local", &python_iso_17442_local) .add_property("code", &python_iso_17442_code) .def("checksum", &python_iso_17442_checksum) ; class_<legal_entity>("legal_entity") ; class_<jurisdiction>("jurisdiction", init<geography::iso_3166_1_alpha_2, economics::iso_4217>()) .add_property("sovereign", &esl::law::jurisdiction::sovereign) .add_property("tender", &esl::law::jurisdiction::tender) ; // // \brief this is not to be used, it is there to complete the type system // class_<identity<property>>( "property_identity") .def("__init__", make_constructor(convert_digit_list_generic<identity<property>>)) .def("__str__", &python_represent_property_identity) .def("__repr__", &python_represent_property_identity) .def(self == self) .def(self != self) .def(self < self) .def(self <= self) .def(self > self) .def(self >= self) .def("__hash__", &python_property_identity_hash) ; class_< property //, bases<entity<void>> >( "property", init<python_identity>()) .def("__init__", make_constructor(+[](const python_identity &i) { return boost::make_shared<property>(reinterpret_identity_cast<property>(i)); })) .def("name", &property::name) .add_property("identifier" , +[](const property &r){return (python_identity)(r.identifier); } ) ; class_<natural_person> ( "natural_person", init<esl::geography::iso_3166_1_alpha_2>()) .add_property("nationality", &natural_person::nationality) ; { boost::python::scope scope_jurisdictions_ = create_scope("_jurisdictions"); scope().attr("AF") = esl::law::jurisdictions::AF; scope().attr("AL") = esl::law::jurisdictions::AL; scope().attr("DZ") = esl::law::jurisdictions::DZ; scope().attr("AS") = esl::law::jurisdictions::AS; scope().attr("AD") = esl::law::jurisdictions::AD; scope().attr("AO") = esl::law::jurisdictions::AO; scope().attr("AI") = esl::law::jurisdictions::AI; scope().attr("AG") = esl::law::jurisdictions::AG; scope().attr("AR") = esl::law::jurisdictions::AR; scope().attr("AM") = esl::law::jurisdictions::AM; scope().attr("AW") = esl::law::jurisdictions::AW; scope().attr("AU") = esl::law::jurisdictions::AU; scope().attr("AT") = esl::law::jurisdictions::AT; scope().attr("AZ") = esl::law::jurisdictions::AZ; scope().attr("BS") = esl::law::jurisdictions::BS; scope().attr("BH") = esl::law::jurisdictions::BH; scope().attr("BD") = esl::law::jurisdictions::BD; scope().attr("BB") = esl::law::jurisdictions::BB; scope().attr("BY") = esl::law::jurisdictions::BY; scope().attr("BE") = esl::law::jurisdictions::BE; scope().attr("BZ") = esl::law::jurisdictions::BZ; scope().attr("BJ") = esl::law::jurisdictions::BJ; scope().attr("BM") = esl::law::jurisdictions::BM; scope().attr("BT") = esl::law::jurisdictions::BT; scope().attr("BO") = esl::law::jurisdictions::BO; scope().attr("BQ") = esl::law::jurisdictions::BQ; scope().attr("BA") = esl::law::jurisdictions::BA; scope().attr("BW") = esl::law::jurisdictions::BW; scope().attr("BV") = esl::law::jurisdictions::BV; scope().attr("BR") = esl::law::jurisdictions::BR; scope().attr("IO") = esl::law::jurisdictions::IO; scope().attr("VG") = esl::law::jurisdictions::VG; scope().attr("BN") = esl::law::jurisdictions::BN; scope().attr("BG") = esl::law::jurisdictions::BG; scope().attr("BF") = esl::law::jurisdictions::BF; scope().attr("BI") = esl::law::jurisdictions::BI; scope().attr("CV") = esl::law::jurisdictions::CV; scope().attr("KH") = esl::law::jurisdictions::KH; scope().attr("CM") = esl::law::jurisdictions::CM; scope().attr("CA") = esl::law::jurisdictions::CA; scope().attr("KY") = esl::law::jurisdictions::KY; scope().attr("CF") = esl::law::jurisdictions::CF; scope().attr("TD") = esl::law::jurisdictions::TD; scope().attr("CL") = esl::law::jurisdictions::CL; scope().attr("CN") = esl::law::jurisdictions::CN; scope().attr("HK") = esl::law::jurisdictions::HK; scope().attr("MO") = esl::law::jurisdictions::MO; scope().attr("CX") = esl::law::jurisdictions::CX; scope().attr("CC") = esl::law::jurisdictions::CC; scope().attr("CO") = esl::law::jurisdictions::CO; scope().attr("KM") = esl::law::jurisdictions::KM; scope().attr("CG") = esl::law::jurisdictions::CG; scope().attr("CK") = esl::law::jurisdictions::CK; scope().attr("CR") = esl::law::jurisdictions::CR; scope().attr("HR") = esl::law::jurisdictions::HR; scope().attr("CU") = esl::law::jurisdictions::CU; scope().attr("CW") = esl::law::jurisdictions::CW; scope().attr("CY") = esl::law::jurisdictions::CY; scope().attr("CZ") = esl::law::jurisdictions::CZ; scope().attr("CI") = esl::law::jurisdictions::CI; scope().attr("KP") = esl::law::jurisdictions::KP; scope().attr("CD") = esl::law::jurisdictions::CD; scope().attr("DK") = esl::law::jurisdictions::DK; scope().attr("DJ") = esl::law::jurisdictions::DJ; scope().attr("DM") = esl::law::jurisdictions::DM; scope().attr("DO") = esl::law::jurisdictions::DO; scope().attr("EC") = esl::law::jurisdictions::EC; scope().attr("EG") = esl::law::jurisdictions::EG; scope().attr("SV") = esl::law::jurisdictions::SV; scope().attr("GQ") = esl::law::jurisdictions::GQ; scope().attr("ER") = esl::law::jurisdictions::ER; scope().attr("EE") = esl::law::jurisdictions::EE; scope().attr("ET") = esl::law::jurisdictions::ET; scope().attr("FO") = esl::law::jurisdictions::FO; scope().attr("FJ") = esl::law::jurisdictions::FJ; scope().attr("FI") = esl::law::jurisdictions::FI; scope().attr("FR") = esl::law::jurisdictions::FR; scope().attr("GF") = esl::law::jurisdictions::GF; scope().attr("PF") = esl::law::jurisdictions::PF; scope().attr("TF") = esl::law::jurisdictions::TF; scope().attr("GA") = esl::law::jurisdictions::GA; scope().attr("GM") = esl::law::jurisdictions::GM; scope().attr("GE") = esl::law::jurisdictions::GE; scope().attr("DE") = esl::law::jurisdictions::DE; scope().attr("GH") = esl::law::jurisdictions::GH; scope().attr("GI") = esl::law::jurisdictions::GI; scope().attr("GR") = esl::law::jurisdictions::GR; scope().attr("GL") = esl::law::jurisdictions::GL; scope().attr("GD") = esl::law::jurisdictions::GD; scope().attr("GP") = esl::law::jurisdictions::GP; scope().attr("GU") = esl::law::jurisdictions::GU; scope().attr("GT") = esl::law::jurisdictions::GT; scope().attr("GG") = esl::law::jurisdictions::GG; scope().attr("GN") = esl::law::jurisdictions::GN; scope().attr("GW") = esl::law::jurisdictions::GW; scope().attr("GY") = esl::law::jurisdictions::GY; scope().attr("HT") = esl::law::jurisdictions::HT; scope().attr("HM") = esl::law::jurisdictions::HM; scope().attr("VA") = esl::law::jurisdictions::VA; scope().attr("HN") = esl::law::jurisdictions::HN; scope().attr("HU") = esl::law::jurisdictions::HU; scope().attr("IS") = esl::law::jurisdictions::IS; scope().attr("IN") = esl::law::jurisdictions::IN; scope().attr("ID") = esl::law::jurisdictions::ID; scope().attr("IR") = esl::law::jurisdictions::IR; scope().attr("IQ") = esl::law::jurisdictions::IQ; scope().attr("IE") = esl::law::jurisdictions::IE; scope().attr("IM") = esl::law::jurisdictions::IM; scope().attr("IL") = esl::law::jurisdictions::IL; scope().attr("IT") = esl::law::jurisdictions::IT; scope().attr("JM") = esl::law::jurisdictions::JM; scope().attr("JP") = esl::law::jurisdictions::JP; scope().attr("JE") = esl::law::jurisdictions::JE; scope().attr("JO") = esl::law::jurisdictions::JO; scope().attr("KZ") = esl::law::jurisdictions::KZ; scope().attr("KE") = esl::law::jurisdictions::KE; scope().attr("KI") = esl::law::jurisdictions::KI; scope().attr("KW") = esl::law::jurisdictions::KW; scope().attr("KG") = esl::law::jurisdictions::KG; scope().attr("LA") = esl::law::jurisdictions::LA; scope().attr("LV") = esl::law::jurisdictions::LV; scope().attr("LB") = esl::law::jurisdictions::LB; scope().attr("LS") = esl::law::jurisdictions::LS; scope().attr("LR") = esl::law::jurisdictions::LR; scope().attr("LY") = esl::law::jurisdictions::LY; scope().attr("LI") = esl::law::jurisdictions::LI; scope().attr("LT") = esl::law::jurisdictions::LT; scope().attr("LU") = esl::law::jurisdictions::LU; scope().attr("MG") = esl::law::jurisdictions::MG; scope().attr("MW") = esl::law::jurisdictions::MW; scope().attr("MY") = esl::law::jurisdictions::MY; scope().attr("MV") = esl::law::jurisdictions::MV; scope().attr("ML") = esl::law::jurisdictions::ML; scope().attr("MT") = esl::law::jurisdictions::MT; scope().attr("MH") = esl::law::jurisdictions::MH; scope().attr("MQ") = esl::law::jurisdictions::MQ; scope().attr("MR") = esl::law::jurisdictions::MR; scope().attr("MU") = esl::law::jurisdictions::MU; scope().attr("YT") = esl::law::jurisdictions::YT; scope().attr("MX") = esl::law::jurisdictions::MX; scope().attr("FM") = esl::law::jurisdictions::FM; scope().attr("MC") = esl::law::jurisdictions::MC; scope().attr("MN") = esl::law::jurisdictions::MN; scope().attr("ME") = esl::law::jurisdictions::ME; scope().attr("MS") = esl::law::jurisdictions::MS; scope().attr("MA") = esl::law::jurisdictions::MA; scope().attr("MZ") = esl::law::jurisdictions::MZ; scope().attr("MM") = esl::law::jurisdictions::MM; scope().attr("NA") = esl::law::jurisdictions::NA; scope().attr("NR") = esl::law::jurisdictions::NR; scope().attr("NP") = esl::law::jurisdictions::NP; scope().attr("NL") = esl::law::jurisdictions::NL; scope().attr("NC") = esl::law::jurisdictions::NC; scope().attr("NZ") = esl::law::jurisdictions::NZ; scope().attr("NI") = esl::law::jurisdictions::NI; scope().attr("NE") = esl::law::jurisdictions::NE; scope().attr("NG") = esl::law::jurisdictions::NG; scope().attr("NU") = esl::law::jurisdictions::NU; scope().attr("NF") = esl::law::jurisdictions::NF; scope().attr("MP") = esl::law::jurisdictions::MP; scope().attr("NO") = esl::law::jurisdictions::NO; scope().attr("OM") = esl::law::jurisdictions::OM; scope().attr("PK") = esl::law::jurisdictions::PK; scope().attr("PW") = esl::law::jurisdictions::PW; scope().attr("PA") = esl::law::jurisdictions::PA; scope().attr("PG") = esl::law::jurisdictions::PG; scope().attr("PY") = esl::law::jurisdictions::PY; scope().attr("PE") = esl::law::jurisdictions::PE; scope().attr("PH") = esl::law::jurisdictions::PH; scope().attr("PN") = esl::law::jurisdictions::PN; scope().attr("PL") = esl::law::jurisdictions::PL; scope().attr("PT") = esl::law::jurisdictions::PT; scope().attr("PR") = esl::law::jurisdictions::PR; scope().attr("QA") = esl::law::jurisdictions::QA; scope().attr("KR") = esl::law::jurisdictions::KR; scope().attr("MD") = esl::law::jurisdictions::MD; scope().attr("RO") = esl::law::jurisdictions::RO; scope().attr("RU") = esl::law::jurisdictions::RU; scope().attr("RW") = esl::law::jurisdictions::RW; scope().attr("RE") = esl::law::jurisdictions::RE; scope().attr("BL") = esl::law::jurisdictions::BL; scope().attr("SH") = esl::law::jurisdictions::SH; scope().attr("KN") = esl::law::jurisdictions::KN; scope().attr("LC") = esl::law::jurisdictions::LC; scope().attr("MF") = esl::law::jurisdictions::MF; scope().attr("PM") = esl::law::jurisdictions::PM; scope().attr("VC") = esl::law::jurisdictions::VC; scope().attr("WS") = esl::law::jurisdictions::WS; scope().attr("SM") = esl::law::jurisdictions::SM; scope().attr("ST") = esl::law::jurisdictions::ST; scope().attr("SA") = esl::law::jurisdictions::SA; scope().attr("SN") = esl::law::jurisdictions::SN; scope().attr("RS") = esl::law::jurisdictions::RS; scope().attr("SC") = esl::law::jurisdictions::SC; scope().attr("SL") = esl::law::jurisdictions::SL; scope().attr("SG") = esl::law::jurisdictions::SG; scope().attr("SX") = esl::law::jurisdictions::SX; scope().attr("SK") = esl::law::jurisdictions::SK; scope().attr("SI") = esl::law::jurisdictions::SI; scope().attr("SB") = esl::law::jurisdictions::SB; scope().attr("SO") = esl::law::jurisdictions::SO; scope().attr("ZA") = esl::law::jurisdictions::ZA; scope().attr("SS") = esl::law::jurisdictions::SS; scope().attr("ES") = esl::law::jurisdictions::ES; scope().attr("LK") = esl::law::jurisdictions::LK; scope().attr("SD") = esl::law::jurisdictions::SD; scope().attr("SR") = esl::law::jurisdictions::SR; scope().attr("SJ") = esl::law::jurisdictions::SJ; scope().attr("SZ") = esl::law::jurisdictions::SZ; scope().attr("SE") = esl::law::jurisdictions::SE; scope().attr("CH") = esl::law::jurisdictions::CH; scope().attr("SY") = esl::law::jurisdictions::SY; scope().attr("TJ") = esl::law::jurisdictions::TJ; scope().attr("TH") = esl::law::jurisdictions::TH; scope().attr("MK") = esl::law::jurisdictions::MK; scope().attr("TL") = esl::law::jurisdictions::TL; scope().attr("TG") = esl::law::jurisdictions::TG; scope().attr("TK") = esl::law::jurisdictions::TK; scope().attr("TO") = esl::law::jurisdictions::TO; scope().attr("TT") = esl::law::jurisdictions::TT; scope().attr("TN") = esl::law::jurisdictions::TN; scope().attr("TR") = esl::law::jurisdictions::TR; scope().attr("TM") = esl::law::jurisdictions::TM; scope().attr("TC") = esl::law::jurisdictions::TC; scope().attr("TV") = esl::law::jurisdictions::TV; scope().attr("UG") = esl::law::jurisdictions::UG; scope().attr("UA") = esl::law::jurisdictions::UA; scope().attr("AE") = esl::law::jurisdictions::AE; scope().attr("GB") = esl::law::jurisdictions::GB; scope().attr("TZ") = esl::law::jurisdictions::TZ; scope().attr("UM") = esl::law::jurisdictions::UM; scope().attr("VI") = esl::law::jurisdictions::VI; scope().attr("US") = esl::law::jurisdictions::US; scope().attr("UY") = esl::law::jurisdictions::UY; scope().attr("UZ") = esl::law::jurisdictions::UZ; scope().attr("VU") = esl::law::jurisdictions::VU; scope().attr("VE") = esl::law::jurisdictions::VE; scope().attr("VN") = esl::law::jurisdictions::VN; scope().attr("WF") = esl::law::jurisdictions::WF; scope().attr("EH") = esl::law::jurisdictions::EH; scope().attr("YE") = esl::law::jurisdictions::YE; scope().attr("ZM") = esl::law::jurisdictions::ZM; scope().attr("ZW") = esl::law::jurisdictions::ZW; scope().attr("AX") = esl::law::jurisdictions::AX; } } //////////////////////////////////////////////////////////////////////////// // esl.mathematics //////////////////////////////////////////////////////////////////////////// { boost::python::scope scope_mathematics_ = create_scope("_mathematics"); // class_<adept::Stack>("stack", init<>()) // .def("pause_recording", &adept::Stack::pause_recording) // .def("continue_recording", &adept::Stack::continue_recording) // .def("new_recording", &adept::Stack::new_recording) // .def("compute_adjoint", &adept::Stack::compute_adjoint) // ; } //////////////////////////////////////////////////////////////////////////// // esl.simulation //////////////////////////////////////////////////////////////////////////// { boost::python::scope scope_simulation_ = create_scope("_simulation"); class_<esl::entity<object>, boost::noncopyable>( "entity", init<python_identity>()) .def_readonly("identifier", &esl::entity<object>::identifier) .def(self_ns::str(self_ns::self)) .def("create", &create_identity<esl::entity<object>>) .def(self == self) .def(self != self) ; class_<python_identity>("identity") .def("__init__", make_constructor(convert_digit_list_generic<python_identity>)) .def_readonly("digits", &python_identity::digits) .def("__str__", &python_identity::representation, python_identity_representation_overload(args("width"), "")) .def("__repr__", &python_identity::representation, python_identity_representation_overload(args("width"), "")) .def(self < self) .def(self > self) .def(self == self) .def(self != self) .def(self <= self) .def(self >= self) .def("__hash__", &python_identity_hash) ; class_<agent_collection>("agent_collection", init<std::reference_wrapper<computation::environment>>()) .def("create_identifier", python_agent_collection_create_identifier) .def("create", python_agent_collection_create) .def("activate", python_agent_collection_activate) .def("deactivate", python_agent_collection_deactivate) .def("local_agents", agent_collection_local_agents) ; class_<python_model, boost::noncopyable>("model",init<environment &, const parameter::parametrization &>()) .def_readonly("start", &python_model::start) .def_readwrite("end", &python_model::end) .def_readwrite("time", &python_model::time) .def_readonly("sample", &python_model::sample) .def("initialize", &python_model::initialize) .def("step", &python_model::step) .def("terminate", &python_model::terminate) .def_readonly("world", &python_model::world) .def_readwrite("agents", &python_model::agents) ; def("time_point", python_time_point); def("time_duration", python_time_duration); class_<time_interval>("time_interval", init<time_point, time_point>()) .def_readwrite("lower", &time_interval::lower) .def_readwrite("upper", &time_interval::upper) .def("empty", &time_interval::empty) .def("singleton", &time_interval::singleton) .def("degenerate", &time_interval::degenerate) .def("contains", &time_interval::contains) .def("__repr__", &time_interval::representation) .def("__str__", &time_interval::representation); class_<world, boost::noncopyable>("world") .def_readonly("identifier", &world::identifier) .def("__repr__", &world::representation) .def("__str__", &world::representation) .def("create", &create_identity<world>) ; implicitly_convertible<python_identity,identity<agent>>(); implicitly_convertible<identity<agent>,python_identity>(); implicitly_convertible<python_identity,identity<property>>(); implicitly_convertible<identity<property>,python_identity>(); { //////////////////////////////////////////////////////////////////// // esl.simulation.parameter //////////////////////////////////////////////////////////////////// boost::python::scope scope_parameter_ = create_scope("_parameter"); class_<parameter_base, std::shared_ptr<parameter_base>>("parameter_base", "Abstract base class of model parameters.",init<>()); class_<constant<double>,bases<parameter_base>>("constant_double", "Floating point number model parameter.",init<double>()); implicitly_convertible<std::shared_ptr<constant<double>>, std::shared_ptr<parameter_base>>(); class_<constant<std::int64_t>,bases<parameter_base>>("constant_int64", "Signed 64-bit integer model parameter.", init<int64_t>()); implicitly_convertible<std::shared_ptr<constant<std::int64_t>>, std::shared_ptr<parameter_base>>(); class_<constant<std::uint64_t>,bases<parameter_base>>("constant_uint64","Unsigned 64-bit integer model parameter.", init<uint64_t>()); implicitly_convertible<std::shared_ptr<constant<std::uint64_t>>, std::shared_ptr<parameter_base>>(); class_<constant<price>,bases<parameter_base>>("constant_price", "Price model parameter.", init<price>()); implicitly_convertible<std::shared_ptr<constant<price>>, std::shared_ptr<parameter_base>>(); class_<std::map<std::string, std::shared_ptr<parameter_base> > >("parameter_values", "Stores model parameters by parameter name.") .def(map_indexing_suite<std::map<std::string, std::shared_ptr<parameter_base> >>()) //.def("keys", map_indexing_suite<std::map<std::string, std::shared_ptr<parameter_base> >>::) ; class_<parametrization>("parametrization", init<>()) .def("__getitem__", parametrization_get_helper) .def_readwrite("values", &parametrization::values) ; } } } }//namespace esl #endif
" Love Words " – 2 : 54
[STATEMENT] lemma borel_eq_atLeastAtMost: "borel = sigma UNIV (range (\<lambda>(a,b). {a..b} ::'a::ordered_euclidean_space set))" (is "_ = ?SIGMA") [PROOF STATE] proof (prove) goal (1 subgoal): 1. borel = sigma UNIV (range (\<lambda>(a, b). {a..b})) [PROOF STEP] proof (rule borel_eq_sigmaI5[OF borel_eq_atMost]) [PROOF STATE] proof (state) goal (2 subgoals): 1. \<And>a. {..a} \<in> sets (sigma UNIV (range (\<lambda>(a, b). {a..b}))) 2. \<And>a b. {a..b} \<in> sets borel [PROOF STEP] fix a::'a [PROOF STATE] proof (state) goal (2 subgoals): 1. \<And>a. {..a} \<in> sets (sigma UNIV (range (\<lambda>(a, b). {a..b}))) 2. \<And>a b. {a..b} \<in> sets borel [PROOF STEP] have *: "{..a} = (\<Union>n::nat. {- real n *\<^sub>R One .. a})" [PROOF STATE] proof (prove) goal (1 subgoal): 1. {..a} = (\<Union>n. {- real n *\<^sub>R One..a}) [PROOF STEP] proof (safe, simp_all add: eucl_le[where 'a='a]) [PROOF STATE] proof (state) goal (1 subgoal): 1. \<And>x. \<forall>i\<in>Basis. x \<bullet> i \<le> a \<bullet> i \<Longrightarrow> \<exists>xa. \<forall>i\<in>Basis. - real xa \<le> x \<bullet> i [PROOF STEP] fix x :: 'a [PROOF STATE] proof (state) goal (1 subgoal): 1. \<And>x. \<forall>i\<in>Basis. x \<bullet> i \<le> a \<bullet> i \<Longrightarrow> \<exists>xa. \<forall>i\<in>Basis. - real xa \<le> x \<bullet> i [PROOF STEP] obtain k where k: "Max ((\<bullet>) (- x) ` Basis) \<le> real k" [PROOF STATE] proof (prove) goal (1 subgoal): 1. (\<And>k. Max ((\<bullet>) (- x) ` Basis) \<le> real k \<Longrightarrow> thesis) \<Longrightarrow> thesis [PROOF STEP] using real_arch_simple [PROOF STATE] proof (prove) using this: \<exists>n. ?x \<le> of_nat n goal (1 subgoal): 1. (\<And>k. Max ((\<bullet>) (- x) ` Basis) \<le> real k \<Longrightarrow> thesis) \<Longrightarrow> thesis [PROOF STEP] by blast [PROOF STATE] proof (state) this: Max ((\<bullet>) (- x) ` Basis) \<le> real k goal (1 subgoal): 1. \<And>x. \<forall>i\<in>Basis. x \<bullet> i \<le> a \<bullet> i \<Longrightarrow> \<exists>xa. \<forall>i\<in>Basis. - real xa \<le> x \<bullet> i [PROOF STEP] { [PROOF STATE] proof (state) this: Max ((\<bullet>) (- x) ` Basis) \<le> real k goal (1 subgoal): 1. \<And>x. \<forall>i\<in>Basis. x \<bullet> i \<le> a \<bullet> i \<Longrightarrow> \<exists>xa. \<forall>i\<in>Basis. - real xa \<le> x \<bullet> i [PROOF STEP] fix i :: 'a [PROOF STATE] proof (state) goal (1 subgoal): 1. \<And>x. \<forall>i\<in>Basis. x \<bullet> i \<le> a \<bullet> i \<Longrightarrow> \<exists>xa. \<forall>i\<in>Basis. - real xa \<le> x \<bullet> i [PROOF STEP] assume "i \<in> Basis" [PROOF STATE] proof (state) this: i \<in> Basis goal (1 subgoal): 1. \<And>x. \<forall>i\<in>Basis. x \<bullet> i \<le> a \<bullet> i \<Longrightarrow> \<exists>xa. \<forall>i\<in>Basis. - real xa \<le> x \<bullet> i [PROOF STEP] with k [PROOF STATE] proof (chain) picking this: Max ((\<bullet>) (- x) ` Basis) \<le> real k i \<in> Basis [PROOF STEP] have "- x\<bullet>i \<le> real k" [PROOF STATE] proof (prove) using this: Max ((\<bullet>) (- x) ` Basis) \<le> real k i \<in> Basis goal (1 subgoal): 1. - x \<bullet> i \<le> real k [PROOF STEP] by (subst (asm) Max_le_iff) (auto simp: field_simps) [PROOF STATE] proof (state) this: - x \<bullet> i \<le> real k goal (1 subgoal): 1. \<And>x. \<forall>i\<in>Basis. x \<bullet> i \<le> a \<bullet> i \<Longrightarrow> \<exists>xa. \<forall>i\<in>Basis. - real xa \<le> x \<bullet> i [PROOF STEP] then [PROOF STATE] proof (chain) picking this: - x \<bullet> i \<le> real k [PROOF STEP] have "- real k \<le> x\<bullet>i" [PROOF STATE] proof (prove) using this: - x \<bullet> i \<le> real k goal (1 subgoal): 1. - real k \<le> x \<bullet> i [PROOF STEP] by simp [PROOF STATE] proof (state) this: - real k \<le> x \<bullet> i goal (1 subgoal): 1. \<And>x. \<forall>i\<in>Basis. x \<bullet> i \<le> a \<bullet> i \<Longrightarrow> \<exists>xa. \<forall>i\<in>Basis. - real xa \<le> x \<bullet> i [PROOF STEP] } [PROOF STATE] proof (state) this: ?i2 \<in> Basis \<Longrightarrow> - real k \<le> x \<bullet> ?i2 goal (1 subgoal): 1. \<And>x. \<forall>i\<in>Basis. x \<bullet> i \<le> a \<bullet> i \<Longrightarrow> \<exists>xa. \<forall>i\<in>Basis. - real xa \<le> x \<bullet> i [PROOF STEP] then [PROOF STATE] proof (chain) picking this: ?i2 \<in> Basis \<Longrightarrow> - real k \<le> x \<bullet> ?i2 [PROOF STEP] show "\<exists>n::nat. \<forall>i\<in>Basis. - real n \<le> x \<bullet> i" [PROOF STATE] proof (prove) using this: ?i2 \<in> Basis \<Longrightarrow> - real k \<le> x \<bullet> ?i2 goal (1 subgoal): 1. \<exists>n. \<forall>i\<in>Basis. - real n \<le> x \<bullet> i [PROOF STEP] by (auto intro!: exI[of _ k]) [PROOF STATE] proof (state) this: \<exists>n. \<forall>i\<in>Basis. - real n \<le> x \<bullet> i goal: No subgoals! [PROOF STEP] qed [PROOF STATE] proof (state) this: {..a} = (\<Union>n. {- real n *\<^sub>R One..a}) goal (2 subgoals): 1. \<And>a. {..a} \<in> sets (sigma UNIV (range (\<lambda>(a, b). {a..b}))) 2. \<And>a b. {a..b} \<in> sets borel [PROOF STEP] show "{..a} \<in> ?SIGMA" [PROOF STATE] proof (prove) goal (1 subgoal): 1. {..a} \<in> sets (sigma UNIV (range (\<lambda>(a, b). {a..b}))) [PROOF STEP] unfolding * [PROOF STATE] proof (prove) goal (1 subgoal): 1. (\<Union>n. {- real n *\<^sub>R One..a}) \<in> sets (sigma UNIV (range (\<lambda>(a, b). {a..b}))) [PROOF STEP] by (intro sets.countable_UN) (auto intro!: sigma_sets_top) [PROOF STATE] proof (state) this: {..a} \<in> sets (sigma UNIV (range (\<lambda>(a, b). {a..b}))) goal (1 subgoal): 1. \<And>a b. {a..b} \<in> sets borel [PROOF STEP] qed auto
\subsection{Bounds for Data Types} \label{sec:overview:data} Bounded refinements are also very useful in the first-order setting, for example, when working with data types. \subsubsection*{Abstracting Refinements over Data} Lets start by abstracting refinements over data definitions~\cite{vazou13}. Consider the @List@ type abstractly refined with @p :: a -> a -> Prop@, a binary relation between two values of type @a@: % \begin{code} data List <p> a = [] | (:) {h :: a, t :: List<p> a<p h>} \end{code} % Intuitively, the definition states that each "tail" is a list of elements that are @p@-related to the ``head'' @h@. That is, in a list $[x_1,\ldots,x_n]$ for each $1 \leq i < j \leq n$, we have $(\cc{p}\ x_i\ x_j)$. \paragraph{Ordered Lists} To see why this abstraction is useful, observe that we can define concrete refinements: % \begin{code} inc = \hd v -> hd <= v \end{code} % and use them to specify and verify that sorting routines return lists in increasing order: % \begin{code} isort :: List a -> List<inc> a isort = foldr insert [] insert :: a -> List<inc> a -> List<inc> a insert = -- elided for brevity \end{code} \paragraph{QuickSort} However, when we try to verify: % \begin{code} qsort :: List a -> List<inc> a qsort [] = [] qsort (x:xs) = qsort ls ++ x : qsort rs where ls = [y | y <- xs, y <= x] rs = [z | z <- xs, x < z] \end{code} % we run into a surprising problem: how can we type the \emph{append} function @(++)@ in a way that lets us prove that the concatenation above preserves order? \subsubsection*{Appending Lists} Actually, even talking about order is presumes that we are interested in a particular instantiation for the @List@ refinement. How can we generically ensure that some abstract refinement @p@? Here's how; we define a bound: % \begin{code} bound Meet p q r = \x1 x2 -> q x1 => r x2 => p x1 x2 \end{code} % that states that if two values @x1@ and @x2@ respectively satisfy the (unary) properties @q x1@ and @r x2@ then they satisfy the binary property @p x1 x2@. We can now use this to give append a type that preserves the abstract binary relation @r@: % \begin{code} (++) :: (Meet p q r) => List<p> a<q> -> List<p> a<r> -> List<p> a [] ++ ys = ys (x:xs) ++ ys = x : xs ++ ys \end{code} \paragraph{To verify \cc{qsort}} \toolname automatically instantiates the refinements at the call to @(++)@ as: % \begin{code} p |-> \hd v -> hd <= v -- inc q |-> \v -> v <= x r |-> \v -> x < v \end{code} % This instantiation is permitted as upon instantiation, the bound yields the VC: % \begin{code} x1 <= x => x < x2 => x1 <= x2 \end{code} % which is easily validated by the SMT solver, thereby verifying that the concatenation and hence @qsort@ produces increasingly ordered lists of type @List<inc> a@. \subsubsection*{Reversing Lists} As a final example, consider the tail recursive list @reverse@ function: % \begin{code} reverse [] = [] reverse (x:xs) = go x [] xs where go x acc [] = x : acc go x acc (y:xs) = go y (x : acc) xs \end{code} As with append, we would like to assign @reverse@ a refinement-generic type that does not bake order into the signature. The natural specification is that if the input was a @List<p> a@ then the output must be a @List<q> a@ where the binary relation @q@ is the inverse of @p@. \paragraph{We can specify inversion} via a bound: % \begin{code} bound Inverse p q = \x y -> p x y => q y x \end{code} % and use it to type % \begin{code} reverse :: (Inverse p q) => List<p> a -> List<q> a \end{code} \paragraph{We can use \cc{reverse}} to specify and verify that @decsort@ returns lists sorted in decreasing order: % \begin{code} decsort :: List a -> List<dec> a decsort = reverse `compose` qsort \end{code} % where @dec = \hd v -> hd >= v@. Verification proceeds by by automatically instantiating @p@ and @q@ with the (valid) concrete refinements: % \begin{code} p |-> \hd v -> hd <= v q |-> \hd v -> v <= hd \end{code} %% -- inferring %% go :: x:a -> List<q> a<q x> -> List<p> a<p x> %% -> List<q> a %% \end{code}
Lemma NotnotP_andP : (forall (P : Prop), ~(~P /\ ~~P)). Proof. intros. easy. Qed. Theorem modDeMorgan_imply_TE : (forall (P Q : Prop), ~(~P /\ ~Q) -> P \/ Q) -> (forall (P : Prop), P \/ ~ P). Proof. intros. apply H. apply NotnotP_andP. Qed. Theorem TE_imply_modDN : (forall (P : Prop), P \/ ~P) -> forall (P : Prop), (~P -> P) -> P. Proof. intros. destruct (H P). + easy. + apply H0. apply H1. Qed. <<<<<<< HEAD (* En coq, not P = p -> false *) ======= Theorem modDN_imply_Pierce : (forall (P : Prop), (~P -> P) -> P) -> (forall (P Q : Prop), ((P -> Q) -> P) -> P). Proof. intros. Qed. >>>>>>> 00e85d079641e974cef87d45fe3b169c1e270f46
[GOAL] 𝕜 : Type u_1 inst✝¹ : NontriviallyNormedField 𝕜 inst✝ : CompleteSpace 𝕜 ⊢ 𝔠 ≤ #𝕜 [PROOFSTEP] suffices ∃ f : (ℕ → Bool) → 𝕜, range f ⊆ univ ∧ Continuous f ∧ Injective f by rcases this with ⟨f, -, -, f_inj⟩ simpa using lift_mk_le_lift_mk_of_injective f_inj [GOAL] 𝕜 : Type u_1 inst✝¹ : NontriviallyNormedField 𝕜 inst✝ : CompleteSpace 𝕜 this : ∃ f, range f ⊆ Set.univ ∧ Continuous f ∧ Injective f ⊢ 𝔠 ≤ #𝕜 [PROOFSTEP] rcases this with ⟨f, -, -, f_inj⟩ [GOAL] case intro.intro.intro 𝕜 : Type u_1 inst✝¹ : NontriviallyNormedField 𝕜 inst✝ : CompleteSpace 𝕜 f : (ℕ → Bool) → 𝕜 f_inj : Injective f ⊢ 𝔠 ≤ #𝕜 [PROOFSTEP] simpa using lift_mk_le_lift_mk_of_injective f_inj [GOAL] 𝕜 : Type u_1 inst✝¹ : NontriviallyNormedField 𝕜 inst✝ : CompleteSpace 𝕜 ⊢ ∃ f, range f ⊆ Set.univ ∧ Continuous f ∧ Injective f [PROOFSTEP] apply Perfect.exists_nat_bool_injection _ univ_nonempty [GOAL] 𝕜 : Type u_1 inst✝¹ : NontriviallyNormedField 𝕜 inst✝ : CompleteSpace 𝕜 ⊢ Perfect Set.univ [PROOFSTEP] refine ⟨isClosed_univ, preperfect_iff_nhds.2 (fun x _ U hU ↦ ?_)⟩ [GOAL] 𝕜 : Type u_1 inst✝¹ : NontriviallyNormedField 𝕜 inst✝ : CompleteSpace 𝕜 x : 𝕜 x✝ : x ∈ Set.univ U : Set 𝕜 hU : U ∈ 𝓝 x ⊢ ∃ y, y ∈ U ∩ Set.univ ∧ y ≠ x [PROOFSTEP] rcases NormedField.exists_norm_lt_one 𝕜 with ⟨c, c_pos, hc⟩ [GOAL] case intro.intro 𝕜 : Type u_1 inst✝¹ : NontriviallyNormedField 𝕜 inst✝ : CompleteSpace 𝕜 x : 𝕜 x✝ : x ∈ Set.univ U : Set 𝕜 hU : U ∈ 𝓝 x c : 𝕜 c_pos : 0 < ‖c‖ hc : ‖c‖ < 1 ⊢ ∃ y, y ∈ U ∩ Set.univ ∧ y ≠ x [PROOFSTEP] have A : Tendsto (fun n ↦ x + c ^ n) atTop (𝓝 (x + 0)) := tendsto_const_nhds.add (tendsto_pow_atTop_nhds_0_of_norm_lt_1 hc) [GOAL] case intro.intro 𝕜 : Type u_1 inst✝¹ : NontriviallyNormedField 𝕜 inst✝ : CompleteSpace 𝕜 x : 𝕜 x✝ : x ∈ Set.univ U : Set 𝕜 hU : U ∈ 𝓝 x c : 𝕜 c_pos : 0 < ‖c‖ hc : ‖c‖ < 1 A : Tendsto (fun n => x + c ^ n) atTop (𝓝 (x + 0)) ⊢ ∃ y, y ∈ U ∩ Set.univ ∧ y ≠ x [PROOFSTEP] rw [add_zero] at A [GOAL] case intro.intro 𝕜 : Type u_1 inst✝¹ : NontriviallyNormedField 𝕜 inst✝ : CompleteSpace 𝕜 x : 𝕜 x✝ : x ∈ Set.univ U : Set 𝕜 hU : U ∈ 𝓝 x c : 𝕜 c_pos : 0 < ‖c‖ hc : ‖c‖ < 1 A : Tendsto (fun n => x + c ^ n) atTop (𝓝 x) ⊢ ∃ y, y ∈ U ∩ Set.univ ∧ y ≠ x [PROOFSTEP] have B : ∀ᶠ n in atTop, x + c ^ n ∈ U := tendsto_def.1 A U hU [GOAL] case intro.intro 𝕜 : Type u_1 inst✝¹ : NontriviallyNormedField 𝕜 inst✝ : CompleteSpace 𝕜 x : 𝕜 x✝ : x ∈ Set.univ U : Set 𝕜 hU : U ∈ 𝓝 x c : 𝕜 c_pos : 0 < ‖c‖ hc : ‖c‖ < 1 A : Tendsto (fun n => x + c ^ n) atTop (𝓝 x) B : ∀ᶠ (n : ℕ) in atTop, x + c ^ n ∈ U ⊢ ∃ y, y ∈ U ∩ Set.univ ∧ y ≠ x [PROOFSTEP] rcases B.exists with ⟨n, hn⟩ [GOAL] case intro.intro.intro 𝕜 : Type u_1 inst✝¹ : NontriviallyNormedField 𝕜 inst✝ : CompleteSpace 𝕜 x : 𝕜 x✝ : x ∈ Set.univ U : Set 𝕜 hU : U ∈ 𝓝 x c : 𝕜 c_pos : 0 < ‖c‖ hc : ‖c‖ < 1 A : Tendsto (fun n => x + c ^ n) atTop (𝓝 x) B : ∀ᶠ (n : ℕ) in atTop, x + c ^ n ∈ U n : ℕ hn : x + c ^ n ∈ U ⊢ ∃ y, y ∈ U ∩ Set.univ ∧ y ≠ x [PROOFSTEP] refine ⟨x + c ^ n, by simpa using hn, ?_⟩ [GOAL] 𝕜 : Type u_1 inst✝¹ : NontriviallyNormedField 𝕜 inst✝ : CompleteSpace 𝕜 x : 𝕜 x✝ : x ∈ Set.univ U : Set 𝕜 hU : U ∈ 𝓝 x c : 𝕜 c_pos : 0 < ‖c‖ hc : ‖c‖ < 1 A : Tendsto (fun n => x + c ^ n) atTop (𝓝 x) B : ∀ᶠ (n : ℕ) in atTop, x + c ^ n ∈ U n : ℕ hn : x + c ^ n ∈ U ⊢ x + c ^ n ∈ U ∩ Set.univ [PROOFSTEP] simpa using hn [GOAL] case intro.intro.intro 𝕜 : Type u_1 inst✝¹ : NontriviallyNormedField 𝕜 inst✝ : CompleteSpace 𝕜 x : 𝕜 x✝ : x ∈ Set.univ U : Set 𝕜 hU : U ∈ 𝓝 x c : 𝕜 c_pos : 0 < ‖c‖ hc : ‖c‖ < 1 A : Tendsto (fun n => x + c ^ n) atTop (𝓝 x) B : ∀ᶠ (n : ℕ) in atTop, x + c ^ n ∈ U n : ℕ hn : x + c ^ n ∈ U ⊢ x + c ^ n ≠ x [PROOFSTEP] simp only [ne_eq, add_right_eq_self] [GOAL] case intro.intro.intro 𝕜 : Type u_1 inst✝¹ : NontriviallyNormedField 𝕜 inst✝ : CompleteSpace 𝕜 x : 𝕜 x✝ : x ∈ Set.univ U : Set 𝕜 hU : U ∈ 𝓝 x c : 𝕜 c_pos : 0 < ‖c‖ hc : ‖c‖ < 1 A : Tendsto (fun n => x + c ^ n) atTop (𝓝 x) B : ∀ᶠ (n : ℕ) in atTop, x + c ^ n ∈ U n : ℕ hn : x + c ^ n ∈ U ⊢ ¬c ^ n = 0 [PROOFSTEP] apply pow_ne_zero [GOAL] case intro.intro.intro.h 𝕜 : Type u_1 inst✝¹ : NontriviallyNormedField 𝕜 inst✝ : CompleteSpace 𝕜 x : 𝕜 x✝ : x ∈ Set.univ U : Set 𝕜 hU : U ∈ 𝓝 x c : 𝕜 c_pos : 0 < ‖c‖ hc : ‖c‖ < 1 A : Tendsto (fun n => x + c ^ n) atTop (𝓝 x) B : ∀ᶠ (n : ℕ) in atTop, x + c ^ n ∈ U n : ℕ hn : x + c ^ n ∈ U ⊢ c ≠ 0 [PROOFSTEP] simpa using c_pos [GOAL] 𝕜 : Type u E : Type v inst✝⁴ : NontriviallyNormedField 𝕜 inst✝³ : CompleteSpace 𝕜 inst✝² : AddCommGroup E inst✝¹ : Module 𝕜 E inst✝ : Nontrivial E ⊢ 𝔠 ≤ #E [PROOFSTEP] have A : lift.{v} (𝔠 : Cardinal.{u}) ≤ lift.{v} (#𝕜) := by simpa using continuum_le_cardinal_of_nontriviallyNormedField 𝕜 [GOAL] 𝕜 : Type u E : Type v inst✝⁴ : NontriviallyNormedField 𝕜 inst✝³ : CompleteSpace 𝕜 inst✝² : AddCommGroup E inst✝¹ : Module 𝕜 E inst✝ : Nontrivial E ⊢ lift 𝔠 ≤ lift #𝕜 [PROOFSTEP] simpa using continuum_le_cardinal_of_nontriviallyNormedField 𝕜 [GOAL] 𝕜 : Type u E : Type v inst✝⁴ : NontriviallyNormedField 𝕜 inst✝³ : CompleteSpace 𝕜 inst✝² : AddCommGroup E inst✝¹ : Module 𝕜 E inst✝ : Nontrivial E A : lift 𝔠 ≤ lift #𝕜 ⊢ 𝔠 ≤ #E [PROOFSTEP] simpa using A.trans (Cardinal.mk_le_of_module 𝕜 E) [GOAL] E : Type u_1 𝕜 : Type u_2 inst✝⁴ : NontriviallyNormedField 𝕜 inst✝³ : AddCommGroup E inst✝² : Module 𝕜 E inst✝¹ : TopologicalSpace E inst✝ : ContinuousSMul 𝕜 E s : Set E hs : s ∈ 𝓝 0 ⊢ #↑s = #E [PROOFSTEP] obtain ⟨c, hc⟩ : ∃ x : 𝕜, 1 < ‖x‖ := NormedField.exists_lt_norm 𝕜 1 [GOAL] case intro E : Type u_1 𝕜 : Type u_2 inst✝⁴ : NontriviallyNormedField 𝕜 inst✝³ : AddCommGroup E inst✝² : Module 𝕜 E inst✝¹ : TopologicalSpace E inst✝ : ContinuousSMul 𝕜 E s : Set E hs : s ∈ 𝓝 0 c : 𝕜 hc : 1 < ‖c‖ ⊢ #↑s = #E [PROOFSTEP] have cn_ne : ∀ n, c ^ n ≠ 0 := by intro n apply pow_ne_zero rintro rfl simp only [norm_zero] at hc exact lt_irrefl _ (hc.trans zero_lt_one) [GOAL] E : Type u_1 𝕜 : Type u_2 inst✝⁴ : NontriviallyNormedField 𝕜 inst✝³ : AddCommGroup E inst✝² : Module 𝕜 E inst✝¹ : TopologicalSpace E inst✝ : ContinuousSMul 𝕜 E s : Set E hs : s ∈ 𝓝 0 c : 𝕜 hc : 1 < ‖c‖ ⊢ ∀ (n : ℕ), c ^ n ≠ 0 [PROOFSTEP] intro n [GOAL] E : Type u_1 𝕜 : Type u_2 inst✝⁴ : NontriviallyNormedField 𝕜 inst✝³ : AddCommGroup E inst✝² : Module 𝕜 E inst✝¹ : TopologicalSpace E inst✝ : ContinuousSMul 𝕜 E s : Set E hs : s ∈ 𝓝 0 c : 𝕜 hc : 1 < ‖c‖ n : ℕ ⊢ c ^ n ≠ 0 [PROOFSTEP] apply pow_ne_zero [GOAL] case h E : Type u_1 𝕜 : Type u_2 inst✝⁴ : NontriviallyNormedField 𝕜 inst✝³ : AddCommGroup E inst✝² : Module 𝕜 E inst✝¹ : TopologicalSpace E inst✝ : ContinuousSMul 𝕜 E s : Set E hs : s ∈ 𝓝 0 c : 𝕜 hc : 1 < ‖c‖ n : ℕ ⊢ c ≠ 0 [PROOFSTEP] rintro rfl [GOAL] case h E : Type u_1 𝕜 : Type u_2 inst✝⁴ : NontriviallyNormedField 𝕜 inst✝³ : AddCommGroup E inst✝² : Module 𝕜 E inst✝¹ : TopologicalSpace E inst✝ : ContinuousSMul 𝕜 E s : Set E hs : s ∈ 𝓝 0 n : ℕ hc : 1 < ‖0‖ ⊢ False [PROOFSTEP] simp only [norm_zero] at hc [GOAL] case h E : Type u_1 𝕜 : Type u_2 inst✝⁴ : NontriviallyNormedField 𝕜 inst✝³ : AddCommGroup E inst✝² : Module 𝕜 E inst✝¹ : TopologicalSpace E inst✝ : ContinuousSMul 𝕜 E s : Set E hs : s ∈ 𝓝 0 n : ℕ hc : 1 < 0 ⊢ False [PROOFSTEP] exact lt_irrefl _ (hc.trans zero_lt_one) [GOAL] case intro E : Type u_1 𝕜 : Type u_2 inst✝⁴ : NontriviallyNormedField 𝕜 inst✝³ : AddCommGroup E inst✝² : Module 𝕜 E inst✝¹ : TopologicalSpace E inst✝ : ContinuousSMul 𝕜 E s : Set E hs : s ∈ 𝓝 0 c : 𝕜 hc : 1 < ‖c‖ cn_ne : ∀ (n : ℕ), c ^ n ≠ 0 ⊢ #↑s = #E [PROOFSTEP] have A : ∀ (x : E), ∀ᶠ n in (atTop : Filter ℕ), x ∈ c ^ n • s := by intro x have : Tendsto (fun n ↦ (c ^ n)⁻¹ • x) atTop (𝓝 ((0 : 𝕜) • x)) := by have : Tendsto (fun n ↦ (c ^ n)⁻¹) atTop (𝓝 0) := by simp_rw [← inv_pow] apply tendsto_pow_atTop_nhds_0_of_norm_lt_1 rw [norm_inv] exact inv_lt_one hc exact Tendsto.smul_const this x rw [zero_smul] at this filter_upwards [this hs] with n (hn : (c ^ n)⁻¹ • x ∈ s) exact (mem_smul_set_iff_inv_smul_mem₀ (cn_ne n) _ _).2 hn [GOAL] E : Type u_1 𝕜 : Type u_2 inst✝⁴ : NontriviallyNormedField 𝕜 inst✝³ : AddCommGroup E inst✝² : Module 𝕜 E inst✝¹ : TopologicalSpace E inst✝ : ContinuousSMul 𝕜 E s : Set E hs : s ∈ 𝓝 0 c : 𝕜 hc : 1 < ‖c‖ cn_ne : ∀ (n : ℕ), c ^ n ≠ 0 ⊢ ∀ (x : E), ∀ᶠ (n : ℕ) in atTop, x ∈ c ^ n • s [PROOFSTEP] intro x [GOAL] E : Type u_1 𝕜 : Type u_2 inst✝⁴ : NontriviallyNormedField 𝕜 inst✝³ : AddCommGroup E inst✝² : Module 𝕜 E inst✝¹ : TopologicalSpace E inst✝ : ContinuousSMul 𝕜 E s : Set E hs : s ∈ 𝓝 0 c : 𝕜 hc : 1 < ‖c‖ cn_ne : ∀ (n : ℕ), c ^ n ≠ 0 x : E ⊢ ∀ᶠ (n : ℕ) in atTop, x ∈ c ^ n • s [PROOFSTEP] have : Tendsto (fun n ↦ (c ^ n)⁻¹ • x) atTop (𝓝 ((0 : 𝕜) • x)) := by have : Tendsto (fun n ↦ (c ^ n)⁻¹) atTop (𝓝 0) := by simp_rw [← inv_pow] apply tendsto_pow_atTop_nhds_0_of_norm_lt_1 rw [norm_inv] exact inv_lt_one hc exact Tendsto.smul_const this x [GOAL] E : Type u_1 𝕜 : Type u_2 inst✝⁴ : NontriviallyNormedField 𝕜 inst✝³ : AddCommGroup E inst✝² : Module 𝕜 E inst✝¹ : TopologicalSpace E inst✝ : ContinuousSMul 𝕜 E s : Set E hs : s ∈ 𝓝 0 c : 𝕜 hc : 1 < ‖c‖ cn_ne : ∀ (n : ℕ), c ^ n ≠ 0 x : E ⊢ Tendsto (fun n => (c ^ n)⁻¹ • x) atTop (𝓝 (0 • x)) [PROOFSTEP] have : Tendsto (fun n ↦ (c ^ n)⁻¹) atTop (𝓝 0) := by simp_rw [← inv_pow] apply tendsto_pow_atTop_nhds_0_of_norm_lt_1 rw [norm_inv] exact inv_lt_one hc [GOAL] E : Type u_1 𝕜 : Type u_2 inst✝⁴ : NontriviallyNormedField 𝕜 inst✝³ : AddCommGroup E inst✝² : Module 𝕜 E inst✝¹ : TopologicalSpace E inst✝ : ContinuousSMul 𝕜 E s : Set E hs : s ∈ 𝓝 0 c : 𝕜 hc : 1 < ‖c‖ cn_ne : ∀ (n : ℕ), c ^ n ≠ 0 x : E ⊢ Tendsto (fun n => (c ^ n)⁻¹) atTop (𝓝 0) [PROOFSTEP] simp_rw [← inv_pow] [GOAL] E : Type u_1 𝕜 : Type u_2 inst✝⁴ : NontriviallyNormedField 𝕜 inst✝³ : AddCommGroup E inst✝² : Module 𝕜 E inst✝¹ : TopologicalSpace E inst✝ : ContinuousSMul 𝕜 E s : Set E hs : s ∈ 𝓝 0 c : 𝕜 hc : 1 < ‖c‖ cn_ne : ∀ (n : ℕ), c ^ n ≠ 0 x : E ⊢ Tendsto (fun n => c⁻¹ ^ n) atTop (𝓝 0) [PROOFSTEP] apply tendsto_pow_atTop_nhds_0_of_norm_lt_1 [GOAL] case h E : Type u_1 𝕜 : Type u_2 inst✝⁴ : NontriviallyNormedField 𝕜 inst✝³ : AddCommGroup E inst✝² : Module 𝕜 E inst✝¹ : TopologicalSpace E inst✝ : ContinuousSMul 𝕜 E s : Set E hs : s ∈ 𝓝 0 c : 𝕜 hc : 1 < ‖c‖ cn_ne : ∀ (n : ℕ), c ^ n ≠ 0 x : E ⊢ ‖c⁻¹‖ < 1 [PROOFSTEP] rw [norm_inv] [GOAL] case h E : Type u_1 𝕜 : Type u_2 inst✝⁴ : NontriviallyNormedField 𝕜 inst✝³ : AddCommGroup E inst✝² : Module 𝕜 E inst✝¹ : TopologicalSpace E inst✝ : ContinuousSMul 𝕜 E s : Set E hs : s ∈ 𝓝 0 c : 𝕜 hc : 1 < ‖c‖ cn_ne : ∀ (n : ℕ), c ^ n ≠ 0 x : E ⊢ ‖c‖⁻¹ < 1 [PROOFSTEP] exact inv_lt_one hc [GOAL] E : Type u_1 𝕜 : Type u_2 inst✝⁴ : NontriviallyNormedField 𝕜 inst✝³ : AddCommGroup E inst✝² : Module 𝕜 E inst✝¹ : TopologicalSpace E inst✝ : ContinuousSMul 𝕜 E s : Set E hs : s ∈ 𝓝 0 c : 𝕜 hc : 1 < ‖c‖ cn_ne : ∀ (n : ℕ), c ^ n ≠ 0 x : E this : Tendsto (fun n => (c ^ n)⁻¹) atTop (𝓝 0) ⊢ Tendsto (fun n => (c ^ n)⁻¹ • x) atTop (𝓝 (0 • x)) [PROOFSTEP] exact Tendsto.smul_const this x [GOAL] E : Type u_1 𝕜 : Type u_2 inst✝⁴ : NontriviallyNormedField 𝕜 inst✝³ : AddCommGroup E inst✝² : Module 𝕜 E inst✝¹ : TopologicalSpace E inst✝ : ContinuousSMul 𝕜 E s : Set E hs : s ∈ 𝓝 0 c : 𝕜 hc : 1 < ‖c‖ cn_ne : ∀ (n : ℕ), c ^ n ≠ 0 x : E this : Tendsto (fun n => (c ^ n)⁻¹ • x) atTop (𝓝 (0 • x)) ⊢ ∀ᶠ (n : ℕ) in atTop, x ∈ c ^ n • s [PROOFSTEP] rw [zero_smul] at this [GOAL] E : Type u_1 𝕜 : Type u_2 inst✝⁴ : NontriviallyNormedField 𝕜 inst✝³ : AddCommGroup E inst✝² : Module 𝕜 E inst✝¹ : TopologicalSpace E inst✝ : ContinuousSMul 𝕜 E s : Set E hs : s ∈ 𝓝 0 c : 𝕜 hc : 1 < ‖c‖ cn_ne : ∀ (n : ℕ), c ^ n ≠ 0 x : E this : Tendsto (fun n => (c ^ n)⁻¹ • x) atTop (𝓝 0) ⊢ ∀ᶠ (n : ℕ) in atTop, x ∈ c ^ n • s [PROOFSTEP] filter_upwards [this hs] with n (hn : (c ^ n)⁻¹ • x ∈ s) [GOAL] case h E : Type u_1 𝕜 : Type u_2 inst✝⁴ : NontriviallyNormedField 𝕜 inst✝³ : AddCommGroup E inst✝² : Module 𝕜 E inst✝¹ : TopologicalSpace E inst✝ : ContinuousSMul 𝕜 E s : Set E hs : s ∈ 𝓝 0 c : 𝕜 hc : 1 < ‖c‖ cn_ne : ∀ (n : ℕ), c ^ n ≠ 0 x : E this : Tendsto (fun n => (c ^ n)⁻¹ • x) atTop (𝓝 0) n : ℕ hn : (c ^ n)⁻¹ • x ∈ s ⊢ x ∈ c ^ n • s [PROOFSTEP] exact (mem_smul_set_iff_inv_smul_mem₀ (cn_ne n) _ _).2 hn [GOAL] case intro E : Type u_1 𝕜 : Type u_2 inst✝⁴ : NontriviallyNormedField 𝕜 inst✝³ : AddCommGroup E inst✝² : Module 𝕜 E inst✝¹ : TopologicalSpace E inst✝ : ContinuousSMul 𝕜 E s : Set E hs : s ∈ 𝓝 0 c : 𝕜 hc : 1 < ‖c‖ cn_ne : ∀ (n : ℕ), c ^ n ≠ 0 A : ∀ (x : E), ∀ᶠ (n : ℕ) in atTop, x ∈ c ^ n • s ⊢ #↑s = #E [PROOFSTEP] have B : ∀ n, #(c ^ n • s) = #s := by intro n have : c ^ n • s ≃ s := { toFun := fun x ↦ ⟨(c ^ n)⁻¹ • x.1, (mem_smul_set_iff_inv_smul_mem₀ (cn_ne n) _ _).1 x.2⟩ invFun := fun x ↦ ⟨(c ^ n) • x.1, smul_mem_smul_set x.2⟩ left_inv := fun x ↦ by simp [smul_smul, mul_inv_cancel (cn_ne n)] right_inv := fun x ↦ by simp [smul_smul, inv_mul_cancel (cn_ne n)] } exact Cardinal.mk_congr this [GOAL] E : Type u_1 𝕜 : Type u_2 inst✝⁴ : NontriviallyNormedField 𝕜 inst✝³ : AddCommGroup E inst✝² : Module 𝕜 E inst✝¹ : TopologicalSpace E inst✝ : ContinuousSMul 𝕜 E s : Set E hs : s ∈ 𝓝 0 c : 𝕜 hc : 1 < ‖c‖ cn_ne : ∀ (n : ℕ), c ^ n ≠ 0 A : ∀ (x : E), ∀ᶠ (n : ℕ) in atTop, x ∈ c ^ n • s ⊢ ∀ (n : ℕ), #↑(c ^ n • s) = #↑s [PROOFSTEP] intro n [GOAL] E : Type u_1 𝕜 : Type u_2 inst✝⁴ : NontriviallyNormedField 𝕜 inst✝³ : AddCommGroup E inst✝² : Module 𝕜 E inst✝¹ : TopologicalSpace E inst✝ : ContinuousSMul 𝕜 E s : Set E hs : s ∈ 𝓝 0 c : 𝕜 hc : 1 < ‖c‖ cn_ne : ∀ (n : ℕ), c ^ n ≠ 0 A : ∀ (x : E), ∀ᶠ (n : ℕ) in atTop, x ∈ c ^ n • s n : ℕ ⊢ #↑(c ^ n • s) = #↑s [PROOFSTEP] have : c ^ n • s ≃ s := { toFun := fun x ↦ ⟨(c ^ n)⁻¹ • x.1, (mem_smul_set_iff_inv_smul_mem₀ (cn_ne n) _ _).1 x.2⟩ invFun := fun x ↦ ⟨(c ^ n) • x.1, smul_mem_smul_set x.2⟩ left_inv := fun x ↦ by simp [smul_smul, mul_inv_cancel (cn_ne n)] right_inv := fun x ↦ by simp [smul_smul, inv_mul_cancel (cn_ne n)] } [GOAL] E : Type u_1 𝕜 : Type u_2 inst✝⁴ : NontriviallyNormedField 𝕜 inst✝³ : AddCommGroup E inst✝² : Module 𝕜 E inst✝¹ : TopologicalSpace E inst✝ : ContinuousSMul 𝕜 E s : Set E hs : s ∈ 𝓝 0 c : 𝕜 hc : 1 < ‖c‖ cn_ne : ∀ (n : ℕ), c ^ n ≠ 0 A : ∀ (x : E), ∀ᶠ (n : ℕ) in atTop, x ∈ c ^ n • s n : ℕ x : ↑(c ^ n • s) ⊢ (fun x => { val := c ^ n • ↑x, property := (_ : c ^ n • ↑x ∈ c ^ n • s) }) ((fun x => { val := (c ^ n)⁻¹ • ↑x, property := (_ : (c ^ n)⁻¹ • ↑x ∈ s) }) x) = x [PROOFSTEP] simp [smul_smul, mul_inv_cancel (cn_ne n)] [GOAL] E : Type u_1 𝕜 : Type u_2 inst✝⁴ : NontriviallyNormedField 𝕜 inst✝³ : AddCommGroup E inst✝² : Module 𝕜 E inst✝¹ : TopologicalSpace E inst✝ : ContinuousSMul 𝕜 E s : Set E hs : s ∈ 𝓝 0 c : 𝕜 hc : 1 < ‖c‖ cn_ne : ∀ (n : ℕ), c ^ n ≠ 0 A : ∀ (x : E), ∀ᶠ (n : ℕ) in atTop, x ∈ c ^ n • s n : ℕ x : ↑s ⊢ (fun x => { val := (c ^ n)⁻¹ • ↑x, property := (_ : (c ^ n)⁻¹ • ↑x ∈ s) }) ((fun x => { val := c ^ n • ↑x, property := (_ : c ^ n • ↑x ∈ c ^ n • s) }) x) = x [PROOFSTEP] simp [smul_smul, inv_mul_cancel (cn_ne n)] [GOAL] E : Type u_1 𝕜 : Type u_2 inst✝⁴ : NontriviallyNormedField 𝕜 inst✝³ : AddCommGroup E inst✝² : Module 𝕜 E inst✝¹ : TopologicalSpace E inst✝ : ContinuousSMul 𝕜 E s : Set E hs : s ∈ 𝓝 0 c : 𝕜 hc : 1 < ‖c‖ cn_ne : ∀ (n : ℕ), c ^ n ≠ 0 A : ∀ (x : E), ∀ᶠ (n : ℕ) in atTop, x ∈ c ^ n • s n : ℕ this : ↑(c ^ n • s) ≃ ↑s ⊢ #↑(c ^ n • s) = #↑s [PROOFSTEP] exact Cardinal.mk_congr this [GOAL] case intro E : Type u_1 𝕜 : Type u_2 inst✝⁴ : NontriviallyNormedField 𝕜 inst✝³ : AddCommGroup E inst✝² : Module 𝕜 E inst✝¹ : TopologicalSpace E inst✝ : ContinuousSMul 𝕜 E s : Set E hs : s ∈ 𝓝 0 c : 𝕜 hc : 1 < ‖c‖ cn_ne : ∀ (n : ℕ), c ^ n ≠ 0 A : ∀ (x : E), ∀ᶠ (n : ℕ) in atTop, x ∈ c ^ n • s B : ∀ (n : ℕ), #↑(c ^ n • s) = #↑s ⊢ #↑s = #E [PROOFSTEP] apply (Cardinal.mk_of_countable_eventually_mem A B).symm [GOAL] E : Type u_1 𝕜 : Type u_2 inst✝⁵ : NontriviallyNormedField 𝕜 inst✝⁴ : AddCommGroup E inst✝³ : Module 𝕜 E inst✝² : TopologicalSpace E inst✝¹ : ContinuousAdd E inst✝ : ContinuousSMul 𝕜 E s : Set E x : E hs : s ∈ 𝓝 x ⊢ #↑s = #E [PROOFSTEP] let g := Homeomorph.addLeft x [GOAL] E : Type u_1 𝕜 : Type u_2 inst✝⁵ : NontriviallyNormedField 𝕜 inst✝⁴ : AddCommGroup E inst✝³ : Module 𝕜 E inst✝² : TopologicalSpace E inst✝¹ : ContinuousAdd E inst✝ : ContinuousSMul 𝕜 E s : Set E x : E hs : s ∈ 𝓝 x g : E ≃ₜ E := Homeomorph.addLeft x ⊢ #↑s = #E [PROOFSTEP] let t := g ⁻¹' s [GOAL] E : Type u_1 𝕜 : Type u_2 inst✝⁵ : NontriviallyNormedField 𝕜 inst✝⁴ : AddCommGroup E inst✝³ : Module 𝕜 E inst✝² : TopologicalSpace E inst✝¹ : ContinuousAdd E inst✝ : ContinuousSMul 𝕜 E s : Set E x : E hs : s ∈ 𝓝 x g : E ≃ₜ E := Homeomorph.addLeft x t : Set E := ↑g ⁻¹' s ⊢ #↑s = #E [PROOFSTEP] have : t ∈ 𝓝 0 := g.continuous.continuousAt.preimage_mem_nhds (by simpa using hs) [GOAL] E : Type u_1 𝕜 : Type u_2 inst✝⁵ : NontriviallyNormedField 𝕜 inst✝⁴ : AddCommGroup E inst✝³ : Module 𝕜 E inst✝² : TopologicalSpace E inst✝¹ : ContinuousAdd E inst✝ : ContinuousSMul 𝕜 E s : Set E x : E hs : s ∈ 𝓝 x g : E ≃ₜ E := Homeomorph.addLeft x t : Set E := ↑g ⁻¹' s ⊢ s ∈ 𝓝 (↑g 0) [PROOFSTEP] simpa using hs [GOAL] E : Type u_1 𝕜 : Type u_2 inst✝⁵ : NontriviallyNormedField 𝕜 inst✝⁴ : AddCommGroup E inst✝³ : Module 𝕜 E inst✝² : TopologicalSpace E inst✝¹ : ContinuousAdd E inst✝ : ContinuousSMul 𝕜 E s : Set E x : E hs : s ∈ 𝓝 x g : E ≃ₜ E := Homeomorph.addLeft x t : Set E := ↑g ⁻¹' s this : t ∈ 𝓝 0 ⊢ #↑s = #E [PROOFSTEP] have A : #t = #E := cardinal_eq_of_mem_nhds_zero 𝕜 this [GOAL] E : Type u_1 𝕜 : Type u_2 inst✝⁵ : NontriviallyNormedField 𝕜 inst✝⁴ : AddCommGroup E inst✝³ : Module 𝕜 E inst✝² : TopologicalSpace E inst✝¹ : ContinuousAdd E inst✝ : ContinuousSMul 𝕜 E s : Set E x : E hs : s ∈ 𝓝 x g : E ≃ₜ E := Homeomorph.addLeft x t : Set E := ↑g ⁻¹' s this : t ∈ 𝓝 0 A : #↑t = #E ⊢ #↑s = #E [PROOFSTEP] have B : #t = #s := Cardinal.mk_subtype_of_equiv s g.toEquiv [GOAL] E : Type u_1 𝕜 : Type u_2 inst✝⁵ : NontriviallyNormedField 𝕜 inst✝⁴ : AddCommGroup E inst✝³ : Module 𝕜 E inst✝² : TopologicalSpace E inst✝¹ : ContinuousAdd E inst✝ : ContinuousSMul 𝕜 E s : Set E x : E hs : s ∈ 𝓝 x g : E ≃ₜ E := Homeomorph.addLeft x t : Set E := ↑g ⁻¹' s this : t ∈ 𝓝 0 A : #↑t = #E B : #↑t = #↑s ⊢ #↑s = #E [PROOFSTEP] rwa [B] at A [GOAL] E : Type u_1 𝕜 : Type u_2 inst✝⁵ : NontriviallyNormedField 𝕜 inst✝⁴ : AddCommGroup E inst✝³ : Module 𝕜 E inst✝² : TopologicalSpace E inst✝¹ : ContinuousAdd E inst✝ : ContinuousSMul 𝕜 E s : Set E hs : IsOpen s h's : Set.Nonempty s ⊢ #↑s = #E [PROOFSTEP] rcases h's with ⟨x, hx⟩ [GOAL] case intro E : Type u_1 𝕜 : Type u_2 inst✝⁵ : NontriviallyNormedField 𝕜 inst✝⁴ : AddCommGroup E inst✝³ : Module 𝕜 E inst✝² : TopologicalSpace E inst✝¹ : ContinuousAdd E inst✝ : ContinuousSMul 𝕜 E s : Set E hs : IsOpen s x : E hx : x ∈ s ⊢ #↑s = #E [PROOFSTEP] exact cardinal_eq_of_mem_nhds 𝕜 (hs.mem_nhds hx) [GOAL] E : Type u_1 𝕜 : Type u_2 inst✝⁷ : NontriviallyNormedField 𝕜 inst✝⁶ : CompleteSpace 𝕜 inst✝⁵ : AddCommGroup E inst✝⁴ : Module 𝕜 E inst✝³ : Nontrivial E inst✝² : TopologicalSpace E inst✝¹ : ContinuousAdd E inst✝ : ContinuousSMul 𝕜 E s : Set E hs : IsOpen s h's : Set.Nonempty s ⊢ 𝔠 ≤ #↑s [PROOFSTEP] simpa [cardinal_eq_of_is_open 𝕜 hs h's] using continuum_le_cardinal_of_module 𝕜 E [GOAL] E : Type u 𝕜 : Type u_1 inst✝⁷ : NontriviallyNormedField 𝕜 inst✝⁶ : CompleteSpace 𝕜 inst✝⁵ : AddCommGroup E inst✝⁴ : Module 𝕜 E inst✝³ : Nontrivial E inst✝² : TopologicalSpace E inst✝¹ : ContinuousAdd E inst✝ : ContinuousSMul 𝕜 E s : Set E hs : Set.Countable s ⊢ Dense sᶜ [PROOFSTEP] rw [← interior_eq_empty_iff_dense_compl] [GOAL] E : Type u 𝕜 : Type u_1 inst✝⁷ : NontriviallyNormedField 𝕜 inst✝⁶ : CompleteSpace 𝕜 inst✝⁵ : AddCommGroup E inst✝⁴ : Module 𝕜 E inst✝³ : Nontrivial E inst✝² : TopologicalSpace E inst✝¹ : ContinuousAdd E inst✝ : ContinuousSMul 𝕜 E s : Set E hs : Set.Countable s ⊢ interior s = ∅ [PROOFSTEP] by_contra H [GOAL] E : Type u 𝕜 : Type u_1 inst✝⁷ : NontriviallyNormedField 𝕜 inst✝⁶ : CompleteSpace 𝕜 inst✝⁵ : AddCommGroup E inst✝⁴ : Module 𝕜 E inst✝³ : Nontrivial E inst✝² : TopologicalSpace E inst✝¹ : ContinuousAdd E inst✝ : ContinuousSMul 𝕜 E s : Set E hs : Set.Countable s H : ¬interior s = ∅ ⊢ False [PROOFSTEP] apply lt_irrefl (ℵ₀ : Cardinal.{u}) [GOAL] E : Type u 𝕜 : Type u_1 inst✝⁷ : NontriviallyNormedField 𝕜 inst✝⁶ : CompleteSpace 𝕜 inst✝⁵ : AddCommGroup E inst✝⁴ : Module 𝕜 E inst✝³ : Nontrivial E inst✝² : TopologicalSpace E inst✝¹ : ContinuousAdd E inst✝ : ContinuousSMul 𝕜 E s : Set E hs : Set.Countable s H : ¬interior s = ∅ ⊢ ℵ₀ < ℵ₀ [PROOFSTEP] calc (ℵ₀ : Cardinal.{u}) < 𝔠 := aleph0_lt_continuum _ ≤ #(interior s) := (continuum_le_cardinal_of_is_open 𝕜 isOpen_interior (nmem_singleton_empty.1 H)) _ ≤ #s := (mk_le_mk_of_subset interior_subset) _ ≤ ℵ₀ := le_aleph0 hs
module packet_mod use optical_properties_mod, only: nlayer implicit none save !positional real*8 xp,yp,zp !current position in grid real*8 nxp,nyp,nzp !current direction of packet integer xcell,ycell,zcell !optical properties real*8 ns,g,u_a(nlayer),u_s(nlayer) real*8 sint,cost,sinp,cosp,phi real*8 fi,fq,fu,fv end module packet_mod
/- Copyright (c) 2021 Jordan Brown, Thomas Browning, Patrick Lutz. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Jordan Brown, Thomas Browning, Patrick Lutz ! This file was ported from Lean 3 source module group_theory.commutator ! leanprover-community/mathlib commit 0a0ec35061ed9960bf0e7ffb0335f44447b58977 ! Please do not edit these lines, except to modify the commit id ! if you have ported upstream changes. -/ import Mathlib.Algebra.Group.Commutator import Mathlib.Data.Bracket import Mathlib.GroupTheory.Subgroup.Finite import Mathlib.Tactic.Group /-! # Commutators of Subgroups If `G` is a group and `H₁ H₂ : Subgroup G` then the commutator `⁅H₁, H₂⁆ : Subgroup G` is the subgroup of `G` generated by the commutators `h₁ * h₂ * h₁⁻¹ * h₂⁻¹`. ## Main definitions * `⁅g₁, g₂⁆` : the commutator of the elements `g₁` and `g₂` (defined by `commutatorElement` elsewhere). * `⁅H₁, H₂⁆` : the commutator of the subgroups `H₁` and `H₂`. -/ variable {G G' F : Type _} [Group G] [Group G'] [MonoidHomClass F G G'] (f : F) {g₁ g₂ g₃ g : G} theorem commutatorElement_eq_one_iff_mul_comm : ⁅g₁, g₂⁆ = 1 ↔ g₁ * g₂ = g₂ * g₁ := by rw [commutatorElement_def, mul_inv_eq_one, mul_inv_eq_iff_eq_mul] #align commutator_element_eq_one_iff_mul_comm commutatorElement_eq_one_iff_mul_comm theorem commutatorElement_eq_one_iff_commute : ⁅g₁, g₂⁆ = 1 ↔ Commute g₁ g₂ := commutatorElement_eq_one_iff_mul_comm #align commutator_element_eq_one_iff_commute commutatorElement_eq_one_iff_commute theorem Commute.commutator_eq (h : Commute g₁ g₂) : ⁅g₁, g₂⁆ = 1 := commutatorElement_eq_one_iff_commute.mpr h #align commute.commutator_eq Commute.commutator_eq variable (g₁ g₂ g₃ g) @[simp] theorem commutatorElement_one_right : ⁅g, (1 : G)⁆ = 1 := (Commute.one_right g).commutator_eq #align commutator_element_one_right commutatorElement_one_right @[simp] theorem commutatorElement_one_left : ⁅(1 : G), g⁆ = 1 := (Commute.one_left g).commutator_eq #align commutator_element_one_left commutatorElement_one_left @[simp] theorem commutatorElement_self : ⁅g, g⁆ = 1 := (Commute.refl g).commutator_eq #align commutator_element_self commutatorElement_self @[simp] theorem commutatorElement_inv : ⁅g₁, g₂⁆⁻¹ = ⁅g₂, g₁⁆ := by simp_rw [commutatorElement_def, mul_inv_rev, inv_inv, mul_assoc] #align commutator_element_inv commutatorElement_inv theorem map_commutatorElement : (f ⁅g₁, g₂⁆ : G') = ⁅f g₁, f g₂⁆ := by simp_rw [commutatorElement_def, map_mul f, map_inv f] #align map_commutator_element map_commutatorElement theorem conjugate_commutatorElement : g₃ * ⁅g₁, g₂⁆ * g₃⁻¹ = ⁅g₃ * g₁ * g₃⁻¹, g₃ * g₂ * g₃⁻¹⁆ := map_commutatorElement (MulAut.conj g₃).toMonoidHom g₁ g₂ #align conjugate_commutator_element conjugate_commutatorElement namespace Subgroup /-- The commutator of two subgroups `H₁` and `H₂`. -/ instance commutator : Bracket (Subgroup G) (Subgroup G) := ⟨fun H₁ H₂ => closure { g | ∃ g₁ ∈ H₁, ∃ g₂ ∈ H₂, ⁅g₁, g₂⁆ = g }⟩ #align subgroup.commutator Subgroup.commutator theorem commutator_def (H₁ H₂ : Subgroup G) : ⁅H₁, H₂⁆ = closure { g | ∃ g₁ ∈ H₁, ∃ g₂ ∈ H₂, ⁅g₁, g₂⁆ = g } := rfl #align subgroup.commutator_def Subgroup.commutator_def variable {g₁ g₂ g₃} {H₁ H₂ H₃ K₁ K₂ : Subgroup G} theorem commutator_mem_commutator (h₁ : g₁ ∈ H₁) (h₂ : g₂ ∈ H₂) : ⁅g₁, g₂⁆ ∈ ⁅H₁, H₂⁆ := subset_closure ⟨g₁, h₁, g₂, h₂, rfl⟩ #align subgroup.commutator_mem_commutator Subgroup.commutator_mem_commutator theorem commutator_le : ⁅H₁, H₂⁆ ≤ H₃ ↔ ∀ g₁ ∈ H₁, ∀ g₂ ∈ H₂, ⁅g₁, g₂⁆ ∈ H₃ := H₃.closure_le.trans ⟨fun h a b c d => h ⟨a, b, c, d, rfl⟩, fun h _g ⟨a, b, c, d, h_eq⟩ => h_eq ▸ h a b c d⟩ #align subgroup.commutator_le Subgroup.commutator_le theorem commutator_mono (h₁ : H₁ ≤ K₁) (h₂ : H₂ ≤ K₂) : ⁅H₁, H₂⁆ ≤ ⁅K₁, K₂⁆ := commutator_le.mpr fun _g₁ hg₁ _g₂ hg₂ => commutator_mem_commutator (h₁ hg₁) (h₂ hg₂) #align subgroup.commutator_mono Subgroup.commutator_mono theorem commutator_eq_bot_iff_le_centralizer : ⁅H₁, H₂⁆ = ⊥ ↔ H₁ ≤ H₂.centralizer := by rw [eq_bot_iff, commutator_le] refine' forall_congr' fun p => forall_congr' fun _hp => forall_congr' fun q => forall_congr' fun hq => _ rw [mem_bot, commutatorElement_eq_one_iff_mul_comm, eq_comm] #align subgroup.commutator_eq_bot_iff_le_centralizer Subgroup.commutator_eq_bot_iff_le_centralizer /-- **The Three Subgroups Lemma** (via the Hall-Witt identity) -/ theorem commutator_commutator_eq_bot_of_rotate (h1 : ⁅⁅H₂, H₃⁆, H₁⁆ = ⊥) (h2 : ⁅⁅H₃, H₁⁆, H₂⁆ = ⊥) : ⁅⁅H₁, H₂⁆, H₃⁆ = ⊥ := by simp_rw [commutator_eq_bot_iff_le_centralizer, commutator_le, mem_centralizer_iff_commutator_eq_one, ← commutatorElement_def] at h1 h2⊢ intro x hx y hy z hz trans x * z * ⁅y, ⁅z⁻¹, x⁻¹⁆⁆⁻¹ * z⁻¹ * y * ⁅x⁻¹, ⁅y⁻¹, z⁆⁆⁻¹ * y⁻¹ * x⁻¹ · group · rw [h1 _ (H₂.inv_mem hy) _ hz _ (H₁.inv_mem hx), h2 _ (H₃.inv_mem hz) _ (H₁.inv_mem hx) _ hy] group #align subgroup.commutator_commutator_eq_bot_of_rotate Subgroup.commutator_commutator_eq_bot_of_rotate variable (H₁ H₂) theorem commutator_comm_le : ⁅H₁, H₂⁆ ≤ ⁅H₂, H₁⁆ := commutator_le.mpr fun g₁ h₁ g₂ h₂ => commutatorElement_inv g₂ g₁ ▸ ⁅H₂, H₁⁆.inv_mem_iff.mpr (commutator_mem_commutator h₂ h₁) #align subgroup.commutator_comm_le Subgroup.commutator_comm_le theorem commutator_comm : ⁅H₁, H₂⁆ = ⁅H₂, H₁⁆ := le_antisymm (commutator_comm_le H₁ H₂) (commutator_comm_le H₂ H₁) #align subgroup.commutator_comm Subgroup.commutator_comm section Normal instance commutator_normal [h₁ : H₁.Normal] [h₂ : H₂.Normal] : Normal ⁅H₁, H₂⁆ := by let base : Set G := { x | ∃ g₁ ∈ H₁, ∃ g₂ ∈ H₂, ⁅g₁, g₂⁆ = x } change (closure base).Normal suffices h_base : base = Group.conjugatesOfSet base · rw [h_base] exact Subgroup.normalClosure_normal refine' Set.Subset.antisymm Group.subset_conjugatesOfSet fun a h => _ simp_rw [Group.mem_conjugatesOfSet_iff, isConj_iff] at h rcases h with ⟨b, ⟨c, hc, e, he, rfl⟩, d, rfl⟩ exact ⟨_, h₁.conj_mem c hc d, _, h₂.conj_mem e he d, (conjugate_commutatorElement c e d).symm⟩ #align subgroup.commutator_normal Subgroup.commutator_normal theorem commutator_def' [H₁.Normal] [H₂.Normal] : ⁅H₁, H₂⁆ = normalClosure { g | ∃ g₁ ∈ H₁, ∃ g₂ ∈ H₂, ⁅g₁, g₂⁆ = g } := le_antisymm closure_le_normalClosure (normalClosure_le_normal subset_closure) #align subgroup.commutator_def' Subgroup.commutator_def' theorem commutator_le_right [h : H₂.Normal] : ⁅H₁, H₂⁆ ≤ H₂ := commutator_le.mpr fun g₁ _h₁ g₂ h₂ => H₂.mul_mem (h.conj_mem g₂ h₂ g₁) (H₂.inv_mem h₂) #align subgroup.commutator_le_right Subgroup.commutator_le_right theorem commutator_le_left [H₁.Normal] : ⁅H₁, H₂⁆ ≤ H₁ := commutator_comm H₂ H₁ ▸ commutator_le_right H₂ H₁ #align subgroup.commutator_le_left Subgroup.commutator_le_left @[simp] theorem commutator_bot_left : ⁅(⊥ : Subgroup G), H₁⁆ = ⊥ := le_bot_iff.mp (commutator_le_left ⊥ H₁) #align subgroup.commutator_bot_left Subgroup.commutator_bot_left @[simp] theorem commutator_bot_right : ⁅H₁, ⊥⁆ = (⊥ : Subgroup G) := le_bot_iff.mp (commutator_le_right H₁ ⊥) #align subgroup.commutator_bot_right Subgroup.commutator_bot_right theorem commutator_le_inf [Normal H₁] [Normal H₂] : ⁅H₁, H₂⁆ ≤ H₁ ⊓ H₂ := le_inf (commutator_le_left H₁ H₂) (commutator_le_right H₁ H₂) #align subgroup.commutator_le_inf Subgroup.commutator_le_inf end Normal theorem map_commutator (f : G →* G') : map f ⁅H₁, H₂⁆ = ⁅map f H₁, map f H₂⁆ := by simp_rw [le_antisymm_iff, map_le_iff_le_comap, commutator_le, mem_comap, map_commutatorElement] constructor · intro p hp q hq exact commutator_mem_commutator (mem_map_of_mem _ hp) (mem_map_of_mem _ hq) · rintro _ ⟨p, hp, rfl⟩ _ ⟨q, hq, rfl⟩ rw [← map_commutatorElement] exact mem_map_of_mem _ (commutator_mem_commutator hp hq) #align subgroup.map_commutator Subgroup.map_commutator variable {H₁ H₂} theorem commutator_le_map_commutator {f : G →* G'} {K₁ K₂ : Subgroup G'} (h₁ : K₁ ≤ H₁.map f) (h₂ : K₂ ≤ H₂.map f) : ⁅K₁, K₂⁆ ≤ ⁅H₁, H₂⁆.map f := (commutator_mono h₁ h₂).trans (ge_of_eq (map_commutator H₁ H₂ f)) #align subgroup.commutator_le_map_commutator Subgroup.commutator_le_map_commutator variable (H₁ H₂) instance commutator_characteristic [h₁ : Characteristic H₁] [h₂ : Characteristic H₂] : Characteristic ⁅H₁, H₂⁆ := characteristic_iff_le_map.mpr fun ϕ => commutator_le_map_commutator (characteristic_iff_le_map.mp h₁ ϕ) (characteristic_iff_le_map.mp h₂ ϕ) #align subgroup.commutator_characteristic Subgroup.commutator_characteristic theorem commutator_prod_prod (K₁ K₂ : Subgroup G') : ⁅H₁.prod K₁, H₂.prod K₂⁆ = ⁅H₁, H₂⁆.prod ⁅K₁, K₂⁆ := by apply le_antisymm · rw [commutator_le] rintro ⟨p₁, p₂⟩ ⟨hp₁, hp₂⟩ ⟨q₁, q₂⟩ ⟨hq₁, hq₂⟩ exact ⟨commutator_mem_commutator hp₁ hq₁, commutator_mem_commutator hp₂ hq₂⟩ · rw [prod_le_iff] constructor <;> · rw [map_commutator] apply commutator_mono <;> simp [le_prod_iff, map_map, MonoidHom.fst_comp_inl, MonoidHom.snd_comp_inl, MonoidHom.fst_comp_inr, MonoidHom.snd_comp_inr] #align subgroup.commutator_prod_prod Subgroup.commutator_prod_prod /-- The commutator of direct product is contained in the direct product of the commutators. See `commutator_pi_pi_of_finite` for equality given `Fintype η`. -/ theorem commutator_pi_pi_le {η : Type _} {Gs : η → Type _} [∀ i, Group (Gs i)] (H K : ∀ i, Subgroup (Gs i)) : ⁅Subgroup.pi Set.univ H, Subgroup.pi Set.univ K⁆ ≤ Subgroup.pi Set.univ fun i => ⁅H i, K i⁆ := commutator_le.mpr fun _p hp _q hq i hi => commutator_mem_commutator (hp i hi) (hq i hi) #align subgroup.commutator_pi_pi_le Subgroup.commutator_pi_pi_le /-- The commutator of a finite direct product is contained in the direct product of the commutators. -/ theorem commutator_pi_pi_of_finite {η : Type _} [Finite η] {Gs : η → Type _} [∀ i, Group (Gs i)] (H K : ∀ i, Subgroup (Gs i)) : ⁅Subgroup.pi Set.univ H, Subgroup.pi Set.univ K⁆ = Subgroup.pi Set.univ fun i => ⁅H i, K i⁆ := by classical apply le_antisymm (commutator_pi_pi_le H K) · rw [pi_le_iff] intro i hi rw [map_commutator] apply commutator_mono <;> · rw [le_pi_iff] intro j _hj rintro _ ⟨_, ⟨x, hx, rfl⟩, rfl⟩ by_cases h : j = i · subst h simpa using hx · simp [h, one_mem] #align subgroup.commutator_pi_pi_of_finite Subgroup.commutator_pi_pi_of_finite end Subgroup variable (G) /-- The set of commutator elements `⁅g₁, g₂⁆` in `G`. -/ def commutatorSet : Set G := { g | ∃ g₁ g₂ : G, ⁅g₁, g₂⁆ = g } #align commutator_set commutatorSet theorem commutatorSet_def : commutatorSet G = { g | ∃ g₁ g₂ : G, ⁅g₁, g₂⁆ = g } := rfl #align commutator_set_def commutatorSet_def theorem one_mem_commutatorSet : (1 : G) ∈ commutatorSet G := ⟨1, 1, commutatorElement_self 1⟩ #align one_mem_commutator_set one_mem_commutatorSet instance : Nonempty (commutatorSet G) := ⟨⟨1, one_mem_commutatorSet G⟩⟩ variable {G g} theorem mem_commutatorSet_iff : g ∈ commutatorSet G ↔ ∃ g₁ g₂ : G, ⁅g₁, g₂⁆ = g := Iff.rfl #align mem_commutator_set_iff mem_commutatorSet_iff theorem commutator_mem_commutatorSet : ⁅g₁, g₂⁆ ∈ commutatorSet G := ⟨g₁, g₂, rfl⟩ #align commutator_mem_commutator_set commutator_mem_commutatorSet
data Unit : Set where unit : Unit F : Unit → Set₁ F {x = unit} = Set
[GOAL] H : Type u inst✝² : NormedAddCommGroup H inst✝¹ : InnerProductSpace ℂ H inst✝ : CompleteSpace H S T : VonNeumannAlgebra H h : (fun S => S.carrier) S = (fun S => S.carrier) T ⊢ S = T [PROOFSTEP] obtain ⟨⟨⟨⟨⟨⟨_, _⟩, _⟩, _⟩, _⟩, _⟩, _⟩ := S [GOAL] case mk.mk.mk.mk.mk.mk H : Type u inst✝² : NormedAddCommGroup H inst✝¹ : InnerProductSpace ℂ H inst✝ : CompleteSpace H T : VonNeumannAlgebra H carrier✝ : Set (H →L[ℂ] H) mul_mem'✝ : ∀ {a b : H →L[ℂ] H}, a ∈ carrier✝ → b ∈ carrier✝ → a * b ∈ carrier✝ one_mem'✝ : 1 ∈ { carrier := carrier✝, mul_mem' := mul_mem'✝ }.carrier add_mem'✝ : ∀ {a b : H →L[ℂ] H}, a ∈ { toSubsemigroup := { carrier := carrier✝, mul_mem' := mul_mem'✝ }, one_mem' := one_mem'✝ }.toSubsemigroup.carrier → b ∈ { toSubsemigroup := { carrier := carrier✝, mul_mem' := mul_mem'✝ }, one_mem' := one_mem'✝ }.toSubsemigroup.carrier → a + b ∈ { toSubsemigroup := { carrier := carrier✝, mul_mem' := mul_mem'✝ }, one_mem' := one_mem'✝ }.toSubsemigroup.carrier zero_mem'✝ : 0 ∈ { toSubsemigroup := { carrier := carrier✝, mul_mem' := mul_mem'✝ }, one_mem' := one_mem'✝ }.toSubsemigroup.carrier algebraMap_mem'✝ : ∀ (r : ℂ), ↑(algebraMap ℂ (H →L[ℂ] H)) r ∈ { toSubmonoid := { toSubsemigroup := { carrier := carrier✝, mul_mem' := mul_mem'✝ }, one_mem' := one_mem'✝ }, add_mem' := add_mem'✝, zero_mem' := zero_mem'✝ }.toSubmonoid.toSubsemigroup.carrier star_mem'✝ : ∀ {a : H →L[ℂ] H}, a ∈ { toSubsemiring := { toSubmonoid := { toSubsemigroup := { carrier := carrier✝, mul_mem' := mul_mem'✝ }, one_mem' := one_mem'✝ }, add_mem' := add_mem'✝, zero_mem' := zero_mem'✝ }, algebraMap_mem' := algebraMap_mem'✝ }.toSubsemiring.toSubmonoid.toSubsemigroup.carrier → star a ∈ { toSubsemiring := { toSubmonoid := { toSubsemigroup := { carrier := carrier✝, mul_mem' := mul_mem'✝ }, one_mem' := one_mem'✝ }, add_mem' := add_mem'✝, zero_mem' := zero_mem'✝ }, algebraMap_mem' := algebraMap_mem'✝ }.toSubsemiring.toSubmonoid.toSubsemigroup.carrier centralizer_centralizer'✝ : Set.centralizer (Set.centralizer { toSubalgebra := { toSubsemiring := { toSubmonoid := { toSubsemigroup := { carrier := carrier✝, mul_mem' := mul_mem'✝ }, one_mem' := one_mem'✝ }, add_mem' := add_mem'✝, zero_mem' := zero_mem'✝ }, algebraMap_mem' := algebraMap_mem'✝ }, star_mem' := star_mem'✝ }.toSubalgebra.toSubsemiring.toSubmonoid.toSubsemigroup.carrier) = { toSubalgebra := { toSubsemiring := { toSubmonoid := { toSubsemigroup := { carrier := carrier✝, mul_mem' := mul_mem'✝ }, one_mem' := one_mem'✝ }, add_mem' := add_mem'✝, zero_mem' := zero_mem'✝ }, algebraMap_mem' := algebraMap_mem'✝ }, star_mem' := star_mem'✝ }.toSubalgebra.toSubsemiring.toSubmonoid.toSubsemigroup.carrier h : (fun S => S.carrier) { toStarSubalgebra := { toSubalgebra := { toSubsemiring := { toSubmonoid := { toSubsemigroup := { carrier := carrier✝, mul_mem' := mul_mem'✝ }, one_mem' := one_mem'✝ }, add_mem' := add_mem'✝, zero_mem' := zero_mem'✝ }, algebraMap_mem' := algebraMap_mem'✝ }, star_mem' := star_mem'✝ }, centralizer_centralizer' := centralizer_centralizer'✝ } = (fun S => S.carrier) T ⊢ { toStarSubalgebra := { toSubalgebra := { toSubsemiring := { toSubmonoid := { toSubsemigroup := { carrier := carrier✝, mul_mem' := mul_mem'✝ }, one_mem' := one_mem'✝ }, add_mem' := add_mem'✝, zero_mem' := zero_mem'✝ }, algebraMap_mem' := algebraMap_mem'✝ }, star_mem' := star_mem'✝ }, centralizer_centralizer' := centralizer_centralizer'✝ } = T [PROOFSTEP] cases T [GOAL] case mk.mk.mk.mk.mk.mk.mk H : Type u inst✝² : NormedAddCommGroup H inst✝¹ : InnerProductSpace ℂ H inst✝ : CompleteSpace H carrier✝ : Set (H →L[ℂ] H) mul_mem'✝ : ∀ {a b : H →L[ℂ] H}, a ∈ carrier✝ → b ∈ carrier✝ → a * b ∈ carrier✝ one_mem'✝ : 1 ∈ { carrier := carrier✝, mul_mem' := mul_mem'✝ }.carrier add_mem'✝ : ∀ {a b : H →L[ℂ] H}, a ∈ { toSubsemigroup := { carrier := carrier✝, mul_mem' := mul_mem'✝ }, one_mem' := one_mem'✝ }.toSubsemigroup.carrier → b ∈ { toSubsemigroup := { carrier := carrier✝, mul_mem' := mul_mem'✝ }, one_mem' := one_mem'✝ }.toSubsemigroup.carrier → a + b ∈ { toSubsemigroup := { carrier := carrier✝, mul_mem' := mul_mem'✝ }, one_mem' := one_mem'✝ }.toSubsemigroup.carrier zero_mem'✝ : 0 ∈ { toSubsemigroup := { carrier := carrier✝, mul_mem' := mul_mem'✝ }, one_mem' := one_mem'✝ }.toSubsemigroup.carrier algebraMap_mem'✝ : ∀ (r : ℂ), ↑(algebraMap ℂ (H →L[ℂ] H)) r ∈ { toSubmonoid := { toSubsemigroup := { carrier := carrier✝, mul_mem' := mul_mem'✝ }, one_mem' := one_mem'✝ }, add_mem' := add_mem'✝, zero_mem' := zero_mem'✝ }.toSubmonoid.toSubsemigroup.carrier star_mem'✝ : ∀ {a : H →L[ℂ] H}, a ∈ { toSubsemiring := { toSubmonoid := { toSubsemigroup := { carrier := carrier✝, mul_mem' := mul_mem'✝ }, one_mem' := one_mem'✝ }, add_mem' := add_mem'✝, zero_mem' := zero_mem'✝ }, algebraMap_mem' := algebraMap_mem'✝ }.toSubsemiring.toSubmonoid.toSubsemigroup.carrier → star a ∈ { toSubsemiring := { toSubmonoid := { toSubsemigroup := { carrier := carrier✝, mul_mem' := mul_mem'✝ }, one_mem' := one_mem'✝ }, add_mem' := add_mem'✝, zero_mem' := zero_mem'✝ }, algebraMap_mem' := algebraMap_mem'✝ }.toSubsemiring.toSubmonoid.toSubsemigroup.carrier centralizer_centralizer'✝¹ : Set.centralizer (Set.centralizer { toSubalgebra := { toSubsemiring := { toSubmonoid := { toSubsemigroup := { carrier := carrier✝, mul_mem' := mul_mem'✝ }, one_mem' := one_mem'✝ }, add_mem' := add_mem'✝, zero_mem' := zero_mem'✝ }, algebraMap_mem' := algebraMap_mem'✝ }, star_mem' := star_mem'✝ }.toSubalgebra.toSubsemiring.toSubmonoid.toSubsemigroup.carrier) = { toSubalgebra := { toSubsemiring := { toSubmonoid := { toSubsemigroup := { carrier := carrier✝, mul_mem' := mul_mem'✝ }, one_mem' := one_mem'✝ }, add_mem' := add_mem'✝, zero_mem' := zero_mem'✝ }, algebraMap_mem' := algebraMap_mem'✝ }, star_mem' := star_mem'✝ }.toSubalgebra.toSubsemiring.toSubmonoid.toSubsemigroup.carrier toStarSubalgebra✝ : StarSubalgebra ℂ (H →L[ℂ] H) centralizer_centralizer'✝ : Set.centralizer (Set.centralizer toStarSubalgebra✝.carrier) = toStarSubalgebra✝.carrier h : (fun S => S.carrier) { toStarSubalgebra := { toSubalgebra := { toSubsemiring := { toSubmonoid := { toSubsemigroup := { carrier := carrier✝, mul_mem' := mul_mem'✝ }, one_mem' := one_mem'✝ }, add_mem' := add_mem'✝, zero_mem' := zero_mem'✝ }, algebraMap_mem' := algebraMap_mem'✝ }, star_mem' := star_mem'✝ }, centralizer_centralizer' := centralizer_centralizer'✝¹ } = (fun S => S.carrier) { toStarSubalgebra := toStarSubalgebra✝, centralizer_centralizer' := centralizer_centralizer'✝ } ⊢ { toStarSubalgebra := { toSubalgebra := { toSubsemiring := { toSubmonoid := { toSubsemigroup := { carrier := carrier✝, mul_mem' := mul_mem'✝ }, one_mem' := one_mem'✝ }, add_mem' := add_mem'✝, zero_mem' := zero_mem'✝ }, algebraMap_mem' := algebraMap_mem'✝ }, star_mem' := star_mem'✝ }, centralizer_centralizer' := centralizer_centralizer'✝¹ } = { toStarSubalgebra := toStarSubalgebra✝, centralizer_centralizer' := centralizer_centralizer'✝ } [PROOFSTEP] congr -- porting note: `StarMemClass` should be in `Prop`? [GOAL] H : Type u inst✝² : NormedAddCommGroup H inst✝¹ : InnerProductSpace ℂ H inst✝ : CompleteSpace H S : VonNeumannAlgebra H ⊢ Set.centralizer (Set.centralizer (StarSubalgebra.centralizer ℂ ↑S).toSubalgebra.toSubsemiring.toSubmonoid.toSubsemigroup.carrier) = (StarSubalgebra.centralizer ℂ ↑S).toSubalgebra.toSubsemiring.toSubmonoid.toSubsemigroup.carrier [PROOFSTEP] simp [GOAL] H : Type u inst✝² : NormedAddCommGroup H inst✝¹ : InnerProductSpace ℂ H inst✝ : CompleteSpace H S : VonNeumannAlgebra H ⊢ ↑(commutant S) = Set.centralizer ↑S [PROOFSTEP] simp [commutant] [GOAL] H : Type u inst✝² : NormedAddCommGroup H inst✝¹ : InnerProductSpace ℂ H inst✝ : CompleteSpace H S : VonNeumannAlgebra H z : H →L[ℂ] H ⊢ z ∈ commutant S ↔ ∀ (g : H →L[ℂ] H), g ∈ S → g * z = z * g [PROOFSTEP] rw [← SetLike.mem_coe, coe_commutant] [GOAL] H : Type u inst✝² : NormedAddCommGroup H inst✝¹ : InnerProductSpace ℂ H inst✝ : CompleteSpace H S : VonNeumannAlgebra H z : H →L[ℂ] H ⊢ z ∈ Set.centralizer ↑S ↔ ∀ (g : H →L[ℂ] H), g ∈ S → g * z = z * g [PROOFSTEP] rfl [GOAL] H : Type u inst✝² : NormedAddCommGroup H inst✝¹ : InnerProductSpace ℂ H inst✝ : CompleteSpace H S : VonNeumannAlgebra H ⊢ ↑(commutant (commutant S)) = ↑S [PROOFSTEP] simp
lemma lift_trans: assumes "f \<in> L F (g)" assumes "(\<lambda>x. t x (g x)) \<in> L F (h)" assumes "\<And>f g. f \<in> L F (g) \<Longrightarrow> (\<lambda>x. t x (f x)) \<in> L F (\<lambda>x. t x (g x))" shows "(\<lambda>x. t x (f x)) \<in> L F (h)"
State Before: x : ℝ h₁ : x ≠ -1 h₂ : x ≠ 1 ⊢ HasStrictDerivAt arcsin (1 / sqrt (1 - x ^ 2)) x ∧ ContDiffAt ℝ ⊤ arcsin x State After: case inl x : ℝ h₁✝ : x ≠ -1 h₂ : x ≠ 1 h₁ : x < -1 ⊢ HasStrictDerivAt arcsin (1 / sqrt (1 - x ^ 2)) x ∧ ContDiffAt ℝ ⊤ arcsin x case inr x : ℝ h₁✝ : x ≠ -1 h₂ : x ≠ 1 h₁ : -1 < x ⊢ HasStrictDerivAt arcsin (1 / sqrt (1 - x ^ 2)) x ∧ ContDiffAt ℝ ⊤ arcsin x Tactic: cases' h₁.lt_or_lt with h₁ h₁ State Before: case inr x : ℝ h₁✝ : x ≠ -1 h₂ : x ≠ 1 h₁ : -1 < x ⊢ HasStrictDerivAt arcsin (1 / sqrt (1 - x ^ 2)) x ∧ ContDiffAt ℝ ⊤ arcsin x State After: case inr.inl x : ℝ h₁✝ : x ≠ -1 h₂✝ : x ≠ 1 h₁ : -1 < x h₂ : x < 1 ⊢ HasStrictDerivAt arcsin (1 / sqrt (1 - x ^ 2)) x ∧ ContDiffAt ℝ ⊤ arcsin x case inr.inr x : ℝ h₁✝ : x ≠ -1 h₂✝ : x ≠ 1 h₁ : -1 < x h₂ : 1 < x ⊢ HasStrictDerivAt arcsin (1 / sqrt (1 - x ^ 2)) x ∧ ContDiffAt ℝ ⊤ arcsin x Tactic: cases' h₂.lt_or_lt with h₂ h₂ State Before: case inl x : ℝ h₁✝ : x ≠ -1 h₂ : x ≠ 1 h₁ : x < -1 ⊢ HasStrictDerivAt arcsin (1 / sqrt (1 - x ^ 2)) x ∧ ContDiffAt ℝ ⊤ arcsin x State After: case inl x : ℝ h₁✝ : x ≠ -1 h₂ : x ≠ 1 h₁ : x < -1 this : 1 - x ^ 2 < 0 ⊢ HasStrictDerivAt arcsin (1 / sqrt (1 - x ^ 2)) x ∧ ContDiffAt ℝ ⊤ arcsin x Tactic: have : 1 - x ^ 2 < 0 := by nlinarith [h₁] State Before: case inl x : ℝ h₁✝ : x ≠ -1 h₂ : x ≠ 1 h₁ : x < -1 this : 1 - x ^ 2 < 0 ⊢ HasStrictDerivAt arcsin (1 / sqrt (1 - x ^ 2)) x ∧ ContDiffAt ℝ ⊤ arcsin x State After: case inl x : ℝ h₁✝ : x ≠ -1 h₂ : x ≠ 1 h₁ : x < -1 this : 1 - x ^ 2 < 0 ⊢ HasStrictDerivAt arcsin 0 x ∧ ContDiffAt ℝ ⊤ arcsin x Tactic: rw [sqrt_eq_zero'.2 this.le, div_zero] State Before: case inl x : ℝ h₁✝ : x ≠ -1 h₂ : x ≠ 1 h₁ : x < -1 this : 1 - x ^ 2 < 0 ⊢ HasStrictDerivAt arcsin 0 x ∧ ContDiffAt ℝ ⊤ arcsin x State After: case inl x : ℝ h₁✝ : x ≠ -1 h₂ : x ≠ 1 h₁ : x < -1 this✝ : 1 - x ^ 2 < 0 this : arcsin =ᶠ[𝓝 x] fun x => -(π / 2) ⊢ HasStrictDerivAt arcsin 0 x ∧ ContDiffAt ℝ ⊤ arcsin x Tactic: have : arcsin =ᶠ[𝓝 x] fun _ => -(π / 2) := (gt_mem_nhds h₁).mono fun y hy => arcsin_of_le_neg_one hy.le State Before: case inl x : ℝ h₁✝ : x ≠ -1 h₂ : x ≠ 1 h₁ : x < -1 this✝ : 1 - x ^ 2 < 0 this : arcsin =ᶠ[𝓝 x] fun x => -(π / 2) ⊢ HasStrictDerivAt arcsin 0 x ∧ ContDiffAt ℝ ⊤ arcsin x State After: no goals Tactic: exact ⟨(hasStrictDerivAt_const _ _).congr_of_eventuallyEq this.symm, contDiffAt_const.congr_of_eventuallyEq this⟩ State Before: x : ℝ h₁✝ : x ≠ -1 h₂ : x ≠ 1 h₁ : x < -1 ⊢ 1 - x ^ 2 < 0 State After: no goals Tactic: nlinarith [h₁] State Before: case inr.inl x : ℝ h₁✝ : x ≠ -1 h₂✝ : x ≠ 1 h₁ : -1 < x h₂ : x < 1 ⊢ HasStrictDerivAt arcsin (1 / sqrt (1 - x ^ 2)) x ∧ ContDiffAt ℝ ⊤ arcsin x State After: case inr.inl x : ℝ h₁✝ : x ≠ -1 h₂✝ : x ≠ 1 h₁ : -1 < x h₂ : x < 1 this : 0 < sqrt (1 - x ^ 2) ⊢ HasStrictDerivAt arcsin (1 / sqrt (1 - x ^ 2)) x ∧ ContDiffAt ℝ ⊤ arcsin x Tactic: have : 0 < sqrt (1 - x ^ 2) := sqrt_pos.2 (by nlinarith [h₁, h₂]) State Before: case inr.inl x : ℝ h₁✝ : x ≠ -1 h₂✝ : x ≠ 1 h₁ : -1 < x h₂ : x < 1 this : 0 < sqrt (1 - x ^ 2) ⊢ HasStrictDerivAt arcsin (1 / sqrt (1 - x ^ 2)) x ∧ ContDiffAt ℝ ⊤ arcsin x State After: case inr.inl x : ℝ h₁✝ : x ≠ -1 h₂✝ : x ≠ 1 h₁ : -1 < x h₂ : x < 1 this : 0 < cos (arcsin x) ⊢ HasStrictDerivAt arcsin (cos (arcsin x))⁻¹ x ∧ ContDiffAt ℝ ⊤ arcsin x Tactic: simp only [← cos_arcsin, one_div] at this ⊢ State Before: case inr.inl x : ℝ h₁✝ : x ≠ -1 h₂✝ : x ≠ 1 h₁ : -1 < x h₂ : x < 1 this : 0 < cos (arcsin x) ⊢ HasStrictDerivAt arcsin (cos (arcsin x))⁻¹ x ∧ ContDiffAt ℝ ⊤ arcsin x State After: no goals Tactic: exact ⟨sinLocalHomeomorph.hasStrictDerivAt_symm ⟨h₁, h₂⟩ this.ne' (hasStrictDerivAt_sin _), sinLocalHomeomorph.contDiffAt_symm_deriv this.ne' ⟨h₁, h₂⟩ (hasDerivAt_sin _) contDiff_sin.contDiffAt⟩ State Before: x : ℝ h₁✝ : x ≠ -1 h₂✝ : x ≠ 1 h₁ : -1 < x h₂ : x < 1 ⊢ 0 < 1 - x ^ 2 State After: no goals Tactic: nlinarith [h₁, h₂] State Before: case inr.inr x : ℝ h₁✝ : x ≠ -1 h₂✝ : x ≠ 1 h₁ : -1 < x h₂ : 1 < x ⊢ HasStrictDerivAt arcsin (1 / sqrt (1 - x ^ 2)) x ∧ ContDiffAt ℝ ⊤ arcsin x State After: case inr.inr x : ℝ h₁✝ : x ≠ -1 h₂✝ : x ≠ 1 h₁ : -1 < x h₂ : 1 < x this : 1 - x ^ 2 < 0 ⊢ HasStrictDerivAt arcsin (1 / sqrt (1 - x ^ 2)) x ∧ ContDiffAt ℝ ⊤ arcsin x Tactic: have : 1 - x ^ 2 < 0 := by nlinarith [h₂] State Before: case inr.inr x : ℝ h₁✝ : x ≠ -1 h₂✝ : x ≠ 1 h₁ : -1 < x h₂ : 1 < x this : 1 - x ^ 2 < 0 ⊢ HasStrictDerivAt arcsin (1 / sqrt (1 - x ^ 2)) x ∧ ContDiffAt ℝ ⊤ arcsin x State After: case inr.inr x : ℝ h₁✝ : x ≠ -1 h₂✝ : x ≠ 1 h₁ : -1 < x h₂ : 1 < x this : 1 - x ^ 2 < 0 ⊢ HasStrictDerivAt arcsin 0 x ∧ ContDiffAt ℝ ⊤ arcsin x Tactic: rw [sqrt_eq_zero'.2 this.le, div_zero] State Before: case inr.inr x : ℝ h₁✝ : x ≠ -1 h₂✝ : x ≠ 1 h₁ : -1 < x h₂ : 1 < x this : 1 - x ^ 2 < 0 ⊢ HasStrictDerivAt arcsin 0 x ∧ ContDiffAt ℝ ⊤ arcsin x State After: case inr.inr x : ℝ h₁✝ : x ≠ -1 h₂✝ : x ≠ 1 h₁ : -1 < x h₂ : 1 < x this✝ : 1 - x ^ 2 < 0 this : arcsin =ᶠ[𝓝 x] fun x => π / 2 ⊢ HasStrictDerivAt arcsin 0 x ∧ ContDiffAt ℝ ⊤ arcsin x Tactic: have : arcsin =ᶠ[𝓝 x] fun _ => π / 2 := (lt_mem_nhds h₂).mono fun y hy => arcsin_of_one_le hy.le State Before: case inr.inr x : ℝ h₁✝ : x ≠ -1 h₂✝ : x ≠ 1 h₁ : -1 < x h₂ : 1 < x this✝ : 1 - x ^ 2 < 0 this : arcsin =ᶠ[𝓝 x] fun x => π / 2 ⊢ HasStrictDerivAt arcsin 0 x ∧ ContDiffAt ℝ ⊤ arcsin x State After: no goals Tactic: exact ⟨(hasStrictDerivAt_const _ _).congr_of_eventuallyEq this.symm, contDiffAt_const.congr_of_eventuallyEq this⟩ State Before: x : ℝ h₁✝ : x ≠ -1 h₂✝ : x ≠ 1 h₁ : -1 < x h₂ : 1 < x ⊢ 1 - x ^ 2 < 0 State After: no goals Tactic: nlinarith [h₂]
```python from sympy import * from sympy.abc import * import numpy as np import matplotlib.pyplot as plt def Kw_(C): return ((4*C - 1)/(4*C - 4)) + 0.625/C def Ks_(C): return (0.5/C) + 1 def Fm_(Fmax, Fmin): return (Fmax + Fmin)/2 def Fa_(Fmax, Fmin): return (Fmax - Fmin)/2 Ks, Kw, Fmin, Fmax, Fm, Sf, Fa, nf, Ytrab = symbols("K_s K_w F_{min} F_{max} F_m S_f F_a n_f y_{trab}") Y = ((d**(b+2))*0.67*np.pi*A) Z = (Y/(8*C)) - Ks*Fmin X = Ks*(Fm-Fmin) + (1.34*((A*d**b)/Sf)-1)*Kw*Fa e = Z/X e.evalf(3) ``` $\displaystyle \frac{\frac{0.263 A d^{b + 2.0}}{C} - F_{min} K_{s}}{F_{a} K_{w} \left(\frac{1.34 A d^{b}}{S_{f}} - 1.0\right) + K_{s} \left(F_{m} - F_{min}\right)}$ ### Resumo de molas helicoidais - Segunda - Aula 10/01 Indice da mola $C$ $$K_s = 1 + \frac{0.5}{C}$$ $$K_w = \frac{4C - 1}{4C - 4} + \frac{0.625}{C}$$ Forças médias e alternadas $$F_m = \frac{F_{max + F_{min}}}{2}$$ $$F_a = \frac{F_{max - F_{min}}}{2}$$ Determinando $d$ pela relação iterativa - Começar i com $d=1mm$ $$d = \left(\frac{11.9 C n_{f} \left(F_{a} K_{w} \left(\frac{1.34 A d^{b}}{S_{f}} - 1.0\right) + K_{s} \left(F_{m} - \frac{F_{min} \left(n_{f} - 1.0\right)}{n_{f}}\right)\right)}{A \pi}\right)^{\frac{1}{b + 2.0}}$$ Diâmetro médio $D$ e externo $D_0$ $$D = Cd$$ $$D_0 = D + d$$ Rigidez da mola $K$ $$K = \frac{F_{max - F_{min}}}{y_{trabalho}}$$ Número de espiras ativas $N_a$ e totais $N_t$ $$N_a = \frac{d^{4}G}{8D^3K}$$ $$N_t = N_a + 2$$ Rigidez da mola $K$ considerando $Na$ inteiro $$K = \frac{d^{4}G}{8D^3N_a}$$ Deflexão inicial $y_{inicial}$ $$y_{inic} = \frac{F_{min}}{K}$$ Comprimento livre $L_f$ $$L_f = dN_t + 1.15 + y_{inic}$$ ```python #Equação iterativo de 'd' U = Fm-((nf-1)/nf)*Fmin U_ = 1.34*((A*d**b)/Sf) - 1 J = ((8*C*nf)/(0.67*pi*A)) d_ = (J*(Ks*U + U_*Kw*Fa))**(1/(b+2)) d_.evalf(3) ``` $\displaystyle \left(\frac{11.9 C n_{f} \left(F_{a} K_{w} \left(\frac{1.34 A d^{b}}{S_{f}} - 1.0\right) + K_{s} \left(F_{m} - \frac{F_{min} \left(n_{f} - 1.0\right)}{n_{f}}\right)\right)}{A \pi}\right)^{\frac{1}{b + 2.0}}$ ```python #Dados do problema fmax, fmin, ytrab, c = 600, 300, 25E-3, 8 A_, b_, sf = 1909.9, -0.1453, 310 #Cálculo dos coeficientes ks, kw = Ks_(c), Kw_(c) #Cálculo das forças médias e alternadas fm = Fm_(fmax, fmin) fa = Fa_(fmax, fmin) #Cálculo iterativo do diâmetro solução = [] din = 1 #chute inicial for i in range(10): s = d_.subs({d:din, Kw:kw, Ks:ks, Fm:fm, Fa:fa, nf:1.5, Fmin:fmin, Fmax:fmax, b:b_, A:A_, Sf:sf, C:c, pi:np.pi}) solução.append(s) din = (s.evalf(5)) np.array(solução, dtype=float) ``` array([7.27672017, 6.35883075, 6.41626819, 6.41241659, 6.41267379, 6.41265647, 6.41265749, 6.41265749, 6.41265749, 6.41265749]) ```python #Diâmetro comercial e dados numéricos C, G = c, 80.8E9 dc = 6.5E-3 #Diâmetro médio D D = C*dc #Diâmetro externo D0 D0 = D + dc #Rigidez da mola K = (fmax-fmin)/ytrab K, D, D0 ``` (12000.0, 0.052, 0.058499999999999996) ```python #Qtd de espiras ativas Na_ = (G*dc**4)/(8*K*(D)**3) #aprox pra cima Na = int(Na_) + 1 (Na_, Na) ``` (10.685221354166664, 11) ```python #Rigidez da mola de novo K_ = (G*dc**4)/(8*Na*(D)**3) K_ ``` 11656.605113636362 ```python #Deflexão inicial yinic = fmin/K_ yinic ``` 0.02573648134044174 ```python #Comprimento livre Nt = Na + 2 Lf = (dc)*Nt + 1.15*(ytrab) + yinic Lf ``` 0.13898648134044173 ### Resumo de molas de compressão/tração - Terça - Aula 11/01 Comprimento livre $L_f$ $$L_f = L_b + 2L_g$$ $$L_f = N_t + 2L_g$$ Espiras ativas $N_a$ $$N_t = N_a + 1$$ Equação transcendental pra determinar o diâmetro do fio $$d = \left(G \left(\frac{2.98507462686567 F_{a} n_{f} \left(0.38659 A d^{b} - 0.2885 S_{f}\right)}{S_{f}} + F_{m} n_{f} - F_{min} \left(n_{f} - 1\right)\right)\right)^{\frac{1}{b + 2}}$$ ```python from sympy import * from sympy.abc import * import numpy as np import matplotlib.pyplot as plt Ks, Kw, Fmin, Fmax, Fm, Sf, Fa, nf, Ytrab = symbols("K_s K_w F_{min} F_{max} F_m S_f F_a n_f y_{trab}") Kb = symbols("K_b") C=8 G_ = (4*(4*Kb*C+1))/(pi*A) H_ = nf*Fm - (nf-1)*Fmin T_ = (0.577*(-0.5*Sf + 0.67*A*d**b))/(0.5*0.67*Sf) d_ = (G_*(H_ + nf*Fa*T_))**(1/(b+2)) d_.evalf(3) ``` $\displaystyle \left(\frac{\left(128.0 K_{b} + 4.0\right) \left(\frac{2.98 F_{a} n_{f} \left(0.387 A d^{b} - 0.289 S_{f}\right)}{S_{f}} + F_{m} n_{f} - F_{min} \left(n_{f} - 1.0\right)\right)}{A \pi}\right)^{\frac{1}{b + 2.0}}$ ```python #Dados dos materiais dic = { 'A227':[-0.1822, 1753.3], 'A228':[-0.1625, 2153.5], 'A229':[-0.1833, 1831.2], 'A232':[-0.1453, 1909.9], 'A232':[-0.0934, 2059.2]} material = 'A228' fmax, fmin, C = 150, 50, 8 b_, A_, sf = dic[material][0], dic[material][1], 310 fm = Fm_(fmax, fmin) fa = Fa_(fmax, fmin) kb = (-1-C+4*C**2)/(4*C*(C-1)) #Cálculo iterativo do diâmetro solução = [] din = 1 #chute inicial for i in range(10): s = d_.subs({d:din, Kb:kb, Fm:fm, Fa:fa, nf:2, Fmin:fmin, Fmax:fmax, b:b_, A:A_, Sf:sf, C:8, pi:np.pi}) solução.append(s) din = (s.evalf(5)) solução #np.array(solução, dtype=float) ``` [4.90339015850936, 4.31041980252648, 4.35523200896826, 4.35161560058455, 4.35190591019958, 4.35188262669210, 4.35188446480197, 4.35188446480197, 4.35188446480197, 4.35188446480197] ```python ```
% template.tex, dated April 5 2013 % This is a template file for Annual Reviews 1 column Journals % % Compilation using ar-1col.cls' - version 1.0, Aptara Inc. % (c) 2013 AR % % Steps to compile: latex latex latex % % For tracking purposes => this is v1.0 - Apr. 2013 \documentclass{ar-1col} % Metadata Information \jname{Xxxx. Xxx. Xxx. Xxx.} \jvol{AA} \jyear{YYYY} \doi{10.1146/((please add article doi))} % Document starts \begin{document} % Page header \markboth{Insert_author_names}{Insert_a_shortened_title} % Title \title{Title} %Authors, affiliations address. \author{Author B. Authorone,$^1$ Firstname C. Authortwo,$^2$ and D. Name Authorthree$^3$ \affil{$^1$Department/Institute, University, City, Country, Postal code} \affil{$^2$Department/Institute, University, City, Country, Postal code} \affil{$^3$Department/Institute, University, City, Country, Postal code}} %Abstract \begin{abstract} Abstract text. Abstract text. Abstract text. Abstract text. Abstract text. Abstract text. Abstract text. Abstract text. \end{abstract} %Keywords, etc. \begin{keywords} keywords; separated by comma; no full stop \end{keywords} \maketitle %Table of Contents \tableofcontents % Heading 1 \section{INTRODUCTION} Please begin the main text of your article here. This is a template file for AR Journals. % Text Box \begin{textbox} \section{TEXT BOX HEAD} Text box text. Text box text. Text box text. Text box text. Text box text. Text box text. \subsection{Text Box Sub-head} Text box text. Text box text. Text box text. Text box text. Text box text. Text box text. \subsubsection{Text Box Subsub-head} Text box text. Text box text. Text box text. Text box text. Text box text. Text box text. \end{textbox} \begin{textbox} Text box text. Text box text. Text box text. Text box text. Text box text. Text box text. Text box text. Text box text. Text box text. Text box text. Text box text. Text box text. Text box text. Text box text. Text box text. Text box text. Text box text. Text box text. \end{textbox} %Heading 1 \section{FIRST-ORDER HEADING} This is dummy text. This is dummy text. This is dummy text. This is dummy text. This is dummy text. This is dummy text. This is dummy text. This is dummy text. This is dummy text. This is dummy text. This is dummy text. This is dummy text. % Heading 2 \subsection{Second-Order Heading} This is dummy text. This is dummy text. This is dummy text. This is dummy text. % Heading 3 \subsubsection{Third-Order Heading} This is dummy text. This is dummy text. This is dummy text. This is dummy text. % Heading 4 \paragraph{Fourth-Order Heading:} Fourth-order headings are placed as part of the paragraph. % Margin Note \begin{marginnote}[<skip value - optional>] \entry{XXX}{xx xxx ....} \entry{XXX}{xx xxx ....} \entry{XXX}{xx xxx ....} \end{marginnote} % Example of a single-line equation \begin{equation} a = b \ {\rm ((Single\ Equation\ Numbered))} \end{equation} %Example of multiple-line equation Equations can also be multiple lines as shown in Equation 2 and 3. \begin{eqnarray} c = 0 \ {\rm ((Multiple\ Lines, \ Numbered))}\\ ac = 0 \ {\rm ((Multiple \ Lines, \ Numbered))} \end{eqnarray} %Example of a Figure {\itshape Figures:} Figures should be cited in the main text in chronological order. This is dummy text with a citation to the first figure (\textbf{Figure \ref{fig1}}). Only the first citation in the main text of Figure \ref{fig1}, or any other display item, should be bolded. Citations to Figure \ref{fig1} later in the text should not be bolded. \begin{figure} \includegraphics[width=3in]{fpo} \caption{Figure Caption.} \label{fig1} \end{figure} % Example of a Table {\itshape Tables:} Tables should also be cited in the main text in chronological order (\textbf {Table \ref{tab1}}). \begin{table} \tabcolsep7.5pt \caption{Table Caption.} \label{tab1} \begin{center} \begin{tabular}{@{}l|c|c|c|c@{}} \hline Head 1 &&&&Head 5\\ {[}units]$^{\rm a)}$ &Head 2 &Head 3 &Head 4 &{[}units]\\ \hline Column 1 &Column 2 &Column3$^{\rm b)}$ &Column4 &Column\\ Column 1 &Column 2 &Column3 &Column4 &Column\\ Column 1 &Column 2 &Column3 &Column4 &Column\\ Column 1 &Column 2 &Column3 &Column4 &Column\\ \hline \end{tabular} \end{center} \begin{tabnote} $^{\rm a)}$Table Footnote; $^{\rm b)}$ Second Table Footnote. \end{tabnote} \end{table} % Example of lists {\itshape Lists:} Here is an example of a numbered list. \begin{enumerate} \item et al. \item e.g., \item i.e., \item in vivo \item in vitro \item in situ \item via \end{enumerate} Here is an example of a extract. \begin{extract} This is an example text of quote or extract. This is an example text of quote or extract. \end{extract} % Summary Points \begin{summary}[SUMMARY POINTS] \begin{enumerate} \item Summary points text ......... \item Summary points text .......... \item Summary points text .......... \item Summary points text .......... \end{enumerate} \end{summary} % Future Issues \begin{issues}[FUTURE ISSUES] \begin{enumerate} \item Future issue text ........... \item Future issue text ........... \item Future issue text ........... \item Future issue text ........... \end{enumerate} \end{issues} %Disclosure \section*{DISCLOSURE STATEMENT} Disclosure statement will go here. % Acknowledgements \section*{ACKNOWLEDGMENTS} Acknowledgements, general annotations, funding. % References % % Margin notes within bibliography \bibnote[<vertical skip value - optional>]{Bibliography margin text.} % \bibliography{<bibfilename>.bib} \bibliographystyle{<bstfilename>.bst} \end{document}
#include <boost/test/unit_test.hpp> #include <ETAio/testing/tester.hpp> #include <ETAio/chain/abi_serializer.hpp> #include <ETAio/chain/wast_to_wasm.hpp> #include <ETAio.msig/ETAio.msig.wast.hpp> #include <ETAio.msig/ETAio.msig.abi.hpp> #include <exchange/exchange.wast.hpp> #include <exchange/exchange.abi.hpp> #include <test_api/test_api.wast.hpp> #include <ETAio.system/ETAio.system.wast.hpp> #include <ETAio.system/ETAio.system.abi.hpp> #include <ETAio.token/ETAio.token.wast.hpp> #include <ETAio.token/ETAio.token.abi.hpp> #include <Runtime/Runtime.h> #include <fc/variant_object.hpp> using namespace ETAio::testing; using namespace ETAio; using namespace ETAio::chain; using namespace ETAio::testing; using namespace fc; using mvo = fc::mutable_variant_object; class ETAio_msig_tester : public tester { public: ETAio_msig_tester() { create_accounts( { N(ETAio.msig), N(ETAio.stake), N(ETAio.ram), N(ETAio.ramfee), N(alice), N(bob), N(carol) } ); produce_block(); auto trace = base_tester::push_action(config::system_account_name, N(setpriv), config::system_account_name, mutable_variant_object() ("account", "ETAio.msig") ("is_priv", 1) ); set_code( N(ETAio.msig), ETAio_msig_wast ); set_abi( N(ETAio.msig), ETAio_msig_abi ); produce_blocks(); const auto& accnt = control->db().get<account_object,by_name>( N(ETAio.msig) ); abi_def abi; BOOST_REQUIRE_EQUAL(abi_serializer::to_abi(accnt.abi, abi), true); abi_ser.set_abi(abi, abi_serializer_max_time); } transaction_trace_ptr create_account_with_resources( account_name a, account_name creator, asset ramfunds, bool multisig, asset net = core_from_string("10.0000"), asset cpu = core_from_string("10.0000") ) { signed_transaction trx; set_transaction_headers(trx); authority owner_auth; if (multisig) { // multisig between account's owner key and creators active permission owner_auth = authority(2, {key_weight{get_public_key( a, "owner" ), 1}}, {permission_level_weight{{creator, config::active_name}, 1}}); } else { owner_auth = authority( get_public_key( a, "owner" ) ); } trx.actions.emplace_back( vector<permission_level>{{creator,config::active_name}}, newaccount{ .creator = creator, .name = a, .owner = owner_auth, .active = authority( get_public_key( a, "active" ) ) }); trx.actions.emplace_back( get_action( config::system_account_name, N(buyram), vector<permission_level>{{creator,config::active_name}}, mvo() ("payer", creator) ("receiver", a) ("quant", ramfunds) ) ); trx.actions.emplace_back( get_action( config::system_account_name, N(delegatebw), vector<permission_level>{{creator,config::active_name}}, mvo() ("from", creator) ("receiver", a) ("stake_net_quantity", net ) ("stake_cpu_quantity", cpu ) ("transfer", 0 ) ) ); set_transaction_headers(trx); trx.sign( get_private_key( creator, "active" ), control->get_chain_id() ); return push_transaction( trx ); } void create_currency( name contract, name manager, asset maxsupply ) { auto act = mutable_variant_object() ("issuer", manager ) ("maximum_supply", maxsupply ); base_tester::push_action(contract, N(create), contract, act ); } void issue( name to, const asset& amount, name manager = config::system_account_name ) { base_tester::push_action( N(ETAio.token), N(issue), manager, mutable_variant_object() ("to", to ) ("quantity", amount ) ("memo", "") ); } void transfer( name from, name to, const string& amount, name manager = config::system_account_name ) { base_tester::push_action( N(ETAio.token), N(transfer), manager, mutable_variant_object() ("from", from) ("to", to ) ("quantity", asset::from_string(amount) ) ("memo", "") ); } asset get_balance( const account_name& act ) { //return get_currency_balance( config::system_account_name, symbol(CORE_SYMBOL), act ); //temporary code. current get_currency_balancy uses table name N(accounts) from currency.h //generic_currency table name is N(account). const auto& db = control->db(); const auto* tbl = db.find<table_id_object, by_code_scope_table>(boost::make_tuple(N(ETAio.token), act, N(accounts))); share_type result = 0; // the balance is implied to be 0 if either the table or row does not exist if (tbl) { const auto *obj = db.find<key_value_object, by_scope_primary>(boost::make_tuple(tbl->id, symbol(CORE_SYMBOL).to_symbol_code())); if (obj) { // balance is the first field in the serialization fc::datastream<const char *> ds(obj->value.data(), obj->value.size()); fc::raw::unpack(ds, result); } } return asset( result, symbol(CORE_SYMBOL) ); } transaction_trace_ptr push_action( const account_name& signer, const action_name& name, const variant_object& data, bool auth = true ) { vector<account_name> accounts; if( auth ) accounts.push_back( signer ); auto trace = base_tester::push_action( N(ETAio.msig), name, accounts, data ); produce_block(); BOOST_REQUIRE_EQUAL( true, chain_has_transaction(trace->id) ); return trace; } transaction reqauth( account_name from, const vector<permission_level>& auths, const fc::microseconds& max_serialization_time ); abi_serializer abi_ser; }; transaction ETAio_msig_tester::reqauth( account_name from, const vector<permission_level>& auths, const fc::microseconds& max_serialization_time ) { fc::variants v; for ( auto& level : auths ) { v.push_back(fc::mutable_variant_object() ("actor", level.actor) ("permission", level.permission) ); } variant pretty_trx = fc::mutable_variant_object() ("expiration", "2020-01-01T00:30") ("ref_block_num", 2) ("ref_block_prefix", 3) ("max_net_usage_words", 0) ("max_cpu_usage_ms", 0) ("delay_sec", 0) ("actions", fc::variants({ fc::mutable_variant_object() ("account", name(config::system_account_name)) ("name", "reqauth") ("authorization", v) ("data", fc::mutable_variant_object() ("from", from) ) }) ); transaction trx; abi_serializer::from_variant(pretty_trx, trx, get_resolver(), max_serialization_time); return trx; } BOOST_AUTO_TEST_SUITE(ETAio_msig_tests) BOOST_FIXTURE_TEST_CASE( propose_approve_execute, ETAio_msig_tester ) try { auto trx = reqauth("alice", {permission_level{N(alice), config::active_name}}, abi_serializer_max_time ); push_action( N(alice), N(propose), mvo() ("proposer", "alice") ("proposal_name", "first") ("trx", trx) ("requested", vector<permission_level>{{ N(alice), config::active_name }}) ); //fail to execute before approval BOOST_REQUIRE_EXCEPTION( push_action( N(alice), N(exec), mvo() ("proposer", "alice") ("proposal_name", "first") ("executer", "alice") ), ETAio_assert_message_exception, ETAio_assert_message_is("transaction authorization failed") ); //approve and execute push_action( N(alice), N(approve), mvo() ("proposer", "alice") ("proposal_name", "first") ("level", permission_level{ N(alice), config::active_name }) ); transaction_trace_ptr trace; control->applied_transaction.connect([&]( const transaction_trace_ptr& t) { if (t->scheduled) { trace = t; } } ); push_action( N(alice), N(exec), mvo() ("proposer", "alice") ("proposal_name", "first") ("executer", "alice") ); BOOST_REQUIRE( bool(trace) ); BOOST_REQUIRE_EQUAL( 1, trace->action_traces.size() ); BOOST_REQUIRE_EQUAL( transaction_receipt::executed, trace->receipt->status ); } FC_LOG_AND_RETHROW() BOOST_FIXTURE_TEST_CASE( propose_approve_unapprove, ETAio_msig_tester ) try { auto trx = reqauth("alice", {permission_level{N(alice), config::active_name}}, abi_serializer_max_time ); push_action( N(alice), N(propose), mvo() ("proposer", "alice") ("proposal_name", "first") ("trx", trx) ("requested", vector<permission_level>{{ N(alice), config::active_name }}) ); push_action( N(alice), N(approve), mvo() ("proposer", "alice") ("proposal_name", "first") ("level", permission_level{ N(alice), config::active_name }) ); push_action( N(alice), N(unapprove), mvo() ("proposer", "alice") ("proposal_name", "first") ("level", permission_level{ N(alice), config::active_name }) ); BOOST_REQUIRE_EXCEPTION( push_action( N(alice), N(exec), mvo() ("proposer", "alice") ("proposal_name", "first") ("executer", "alice") ), ETAio_assert_message_exception, ETAio_assert_message_is("transaction authorization failed") ); } FC_LOG_AND_RETHROW() BOOST_FIXTURE_TEST_CASE( propose_approve_by_two, ETAio_msig_tester ) try { auto trx = reqauth("alice", vector<permission_level>{ { N(alice), config::active_name }, { N(bob), config::active_name } }, abi_serializer_max_time ); push_action( N(alice), N(propose), mvo() ("proposer", "alice") ("proposal_name", "first") ("trx", trx) ("requested", vector<permission_level>{ { N(alice), config::active_name }, { N(bob), config::active_name } }) ); //approve by alice push_action( N(alice), N(approve), mvo() ("proposer", "alice") ("proposal_name", "first") ("level", permission_level{ N(alice), config::active_name }) ); //fail because approval by bob is missing BOOST_REQUIRE_EXCEPTION( push_action( N(alice), N(exec), mvo() ("proposer", "alice") ("proposal_name", "first") ("executer", "alice") ), ETAio_assert_message_exception, ETAio_assert_message_is("transaction authorization failed") ); //approve by bob and execute push_action( N(bob), N(approve), mvo() ("proposer", "alice") ("proposal_name", "first") ("level", permission_level{ N(bob), config::active_name }) ); transaction_trace_ptr trace; control->applied_transaction.connect([&]( const transaction_trace_ptr& t) { if (t->scheduled) { trace = t; } } ); push_action( N(alice), N(exec), mvo() ("proposer", "alice") ("proposal_name", "first") ("executer", "alice") ); BOOST_REQUIRE( bool(trace) ); BOOST_REQUIRE_EQUAL( 1, trace->action_traces.size() ); BOOST_REQUIRE_EQUAL( transaction_receipt::executed, trace->receipt->status ); } FC_LOG_AND_RETHROW() BOOST_FIXTURE_TEST_CASE( propose_with_wrong_requested_auth, ETAio_msig_tester ) try { auto trx = reqauth("alice", vector<permission_level>{ { N(alice), config::active_name }, { N(bob), config::active_name } }, abi_serializer_max_time ); //try with not enough requested auth BOOST_REQUIRE_EXCEPTION( push_action( N(alice), N(propose), mvo() ("proposer", "alice") ("proposal_name", "third") ("trx", trx) ("requested", vector<permission_level>{ { N(alice), config::active_name } } ) ), ETAio_assert_message_exception, ETAio_assert_message_is("transaction authorization failed") ); } FC_LOG_AND_RETHROW() BOOST_FIXTURE_TEST_CASE( big_transaction, ETAio_msig_tester ) try { vector<permission_level> perm = { { N(alice), config::active_name }, { N(bob), config::active_name } }; auto wasm = wast_to_wasm( exchange_wast ); variant pretty_trx = fc::mutable_variant_object() ("expiration", "2020-01-01T00:30") ("ref_block_num", 2) ("ref_block_prefix", 3) ("max_net_usage_words", 0) ("max_cpu_usage_ms", 0) ("delay_sec", 0) ("actions", fc::variants({ fc::mutable_variant_object() ("account", name(config::system_account_name)) ("name", "setcode") ("authorization", perm) ("data", fc::mutable_variant_object() ("account", "alice") ("vmtype", 0) ("vmversion", 0) ("code", bytes( wasm.begin(), wasm.end() )) ) }) ); transaction trx; abi_serializer::from_variant(pretty_trx, trx, get_resolver(), abi_serializer_max_time); push_action( N(alice), N(propose), mvo() ("proposer", "alice") ("proposal_name", "first") ("trx", trx) ("requested", perm) ); //approve by alice push_action( N(alice), N(approve), mvo() ("proposer", "alice") ("proposal_name", "first") ("level", permission_level{ N(alice), config::active_name }) ); //approve by bob and execute push_action( N(bob), N(approve), mvo() ("proposer", "alice") ("proposal_name", "first") ("level", permission_level{ N(bob), config::active_name }) ); transaction_trace_ptr trace; control->applied_transaction.connect([&]( const transaction_trace_ptr& t) { if (t->scheduled) { trace = t; } } ); push_action( N(alice), N(exec), mvo() ("proposer", "alice") ("proposal_name", "first") ("executer", "alice") ); BOOST_REQUIRE( bool(trace) ); BOOST_REQUIRE_EQUAL( 1, trace->action_traces.size() ); BOOST_REQUIRE_EQUAL( transaction_receipt::executed, trace->receipt->status ); } FC_LOG_AND_RETHROW() BOOST_FIXTURE_TEST_CASE( update_system_contract_all_approve, ETAio_msig_tester ) try { // required to set up the link between (ETAio active) and (ETAio.prods active) // // ETAio active // | // ETAio.prods active (2/3 threshold) // / | \ <--- implicitly updated in onblock action // alice active bob active carol active set_authority(config::system_account_name, "active", authority(1, vector<key_weight>{{get_private_key("ETAio", "active").get_public_key(), 1}}, vector<permission_level_weight>{{{N(ETAio.prods), config::active_name}, 1}}), "owner", { { config::system_account_name, "active" } }, { get_private_key( config::system_account_name, "active" ) }); set_producers( {N(alice),N(bob),N(carol)} ); produce_blocks(50); create_accounts( { N(ETAio.token) } ); set_code( N(ETAio.token), ETAio_token_wast ); set_abi( N(ETAio.token), ETAio_token_abi ); create_currency( N(ETAio.token), config::system_account_name, core_from_string("10000000000.0000") ); issue(config::system_account_name, core_from_string("1000000000.0000")); BOOST_REQUIRE_EQUAL( core_from_string("1000000000.0000"), get_balance("ETAio") + get_balance("ETAio.ramfee") + get_balance("ETAio.stake") + get_balance("ETAio.ram") ); set_code( config::system_account_name, ETAio_system_wast ); set_abi( config::system_account_name, ETAio_system_abi ); produce_blocks(); create_account_with_resources( N(alice1111111), config::system_account_name, core_from_string("1.0000"), false ); create_account_with_resources( N(bob111111111), config::system_account_name, core_from_string("0.4500"), false ); create_account_with_resources( N(carol1111111), config::system_account_name, core_from_string("1.0000"), false ); BOOST_REQUIRE_EQUAL( core_from_string("1000000000.0000"), get_balance("ETAio") + get_balance("ETAio.ramfee") + get_balance("ETAio.stake") + get_balance("ETAio.ram") ); vector<permission_level> perm = { { N(alice), config::active_name }, { N(bob), config::active_name }, {N(carol), config::active_name} }; vector<permission_level> action_perm = {{config::system_account_name, config::active_name}}; auto wasm = wast_to_wasm( test_api_wast ); variant pretty_trx = fc::mutable_variant_object() ("expiration", "2020-01-01T00:30") ("ref_block_num", 2) ("ref_block_prefix", 3) ("max_net_usage_words", 0) ("max_cpu_usage_ms", 0) ("delay_sec", 0) ("actions", fc::variants({ fc::mutable_variant_object() ("account", name(config::system_account_name)) ("name", "setcode") ("authorization", action_perm) ("data", fc::mutable_variant_object() ("account", name(config::system_account_name)) ("vmtype", 0) ("vmversion", 0) ("code", bytes( wasm.begin(), wasm.end() )) ) }) ); transaction trx; abi_serializer::from_variant(pretty_trx, trx, get_resolver(), abi_serializer_max_time); // propose action push_action( N(alice), N(propose), mvo() ("proposer", "alice") ("proposal_name", "first") ("trx", trx) ("requested", perm) ); //approve by alice push_action( N(alice), N(approve), mvo() ("proposer", "alice") ("proposal_name", "first") ("level", permission_level{ N(alice), config::active_name }) ); //approve by bob push_action( N(bob), N(approve), mvo() ("proposer", "alice") ("proposal_name", "first") ("level", permission_level{ N(bob), config::active_name }) ); //approve by carol push_action( N(carol), N(approve), mvo() ("proposer", "alice") ("proposal_name", "first") ("level", permission_level{ N(carol), config::active_name }) ); // execute by alice to replace the ETAio system contract transaction_trace_ptr trace; control->applied_transaction.connect([&]( const transaction_trace_ptr& t) { if (t->scheduled) { trace = t; } } ); push_action( N(alice), N(exec), mvo() ("proposer", "alice") ("proposal_name", "first") ("executer", "alice") ); BOOST_REQUIRE( bool(trace) ); BOOST_REQUIRE_EQUAL( 1, trace->action_traces.size() ); BOOST_REQUIRE_EQUAL( transaction_receipt::executed, trace->receipt->status ); // can't create account because system contract was replace by the test_api contract BOOST_REQUIRE_EXCEPTION( create_account_with_resources( N(alice1111112), config::system_account_name, core_from_string("1.0000"), false ), ETAio_assert_message_exception, ETAio_assert_message_is("Unknown Test") ); } FC_LOG_AND_RETHROW() BOOST_FIXTURE_TEST_CASE( update_system_contract_major_approve, ETAio_msig_tester ) try { // set up the link between (ETAio active) and (ETAio.prods active) set_authority(config::system_account_name, "active", authority(1, vector<key_weight>{{get_private_key("ETAio", "active").get_public_key(), 1}}, vector<permission_level_weight>{{{N(ETAio.prods), config::active_name}, 1}}), "owner", { { config::system_account_name, "active" } }, { get_private_key( config::system_account_name, "active" ) }); create_accounts( { N(apple) } ); set_producers( {N(alice),N(bob),N(carol), N(apple)} ); produce_blocks(50); create_accounts( { N(ETAio.token) } ); set_code( N(ETAio.token), ETAio_token_wast ); set_abi( N(ETAio.token), ETAio_token_abi ); create_currency( N(ETAio.token), config::system_account_name, core_from_string("10000000000.0000") ); issue(config::system_account_name, core_from_string("1000000000.0000")); BOOST_REQUIRE_EQUAL( core_from_string("1000000000.0000"), get_balance( "ETAio" ) ); set_code( config::system_account_name, ETAio_system_wast ); set_abi( config::system_account_name, ETAio_system_abi ); produce_blocks(); create_account_with_resources( N(alice1111111), config::system_account_name, core_from_string("1.0000"), false ); create_account_with_resources( N(bob111111111), config::system_account_name, core_from_string("0.4500"), false ); create_account_with_resources( N(carol1111111), config::system_account_name, core_from_string("1.0000"), false ); BOOST_REQUIRE_EQUAL( core_from_string("1000000000.0000"), get_balance("ETAio") + get_balance("ETAio.ramfee") + get_balance("ETAio.stake") + get_balance("ETAio.ram") ); vector<permission_level> perm = { { N(alice), config::active_name }, { N(bob), config::active_name }, {N(carol), config::active_name}, {N(apple), config::active_name}}; vector<permission_level> action_perm = {{config::system_account_name, config::active_name}}; auto wasm = wast_to_wasm( test_api_wast ); variant pretty_trx = fc::mutable_variant_object() ("expiration", "2020-01-01T00:30") ("ref_block_num", 2) ("ref_block_prefix", 3) ("max_net_usage_words", 0) ("max_cpu_usage_ms", 0) ("delay_sec", 0) ("actions", fc::variants({ fc::mutable_variant_object() ("account", name(config::system_account_name)) ("name", "setcode") ("authorization", action_perm) ("data", fc::mutable_variant_object() ("account", name(config::system_account_name)) ("vmtype", 0) ("vmversion", 0) ("code", bytes( wasm.begin(), wasm.end() )) ) }) ); transaction trx; abi_serializer::from_variant(pretty_trx, trx, get_resolver(), abi_serializer_max_time); // propose action push_action( N(alice), N(propose), mvo() ("proposer", "alice") ("proposal_name", "first") ("trx", trx) ("requested", perm) ); //approve by alice push_action( N(alice), N(approve), mvo() ("proposer", "alice") ("proposal_name", "first") ("level", permission_level{ N(alice), config::active_name }) ); //approve by bob push_action( N(bob), N(approve), mvo() ("proposer", "alice") ("proposal_name", "first") ("level", permission_level{ N(bob), config::active_name }) ); // not enough approvers BOOST_REQUIRE_EXCEPTION( push_action( N(alice), N(exec), mvo() ("proposer", "alice") ("proposal_name", "first") ("executer", "alice") ), ETAio_assert_message_exception, ETAio_assert_message_is("transaction authorization failed") ); //approve by apple push_action( N(apple), N(approve), mvo() ("proposer", "alice") ("proposal_name", "first") ("level", permission_level{ N(apple), config::active_name }) ); // execute by alice to replace the ETAio system contract transaction_trace_ptr trace; control->applied_transaction.connect([&]( const transaction_trace_ptr& t) { if (t->scheduled) { trace = t; } } ); // execute by another producer different from proposer push_action( N(apple), N(exec), mvo() ("proposer", "alice") ("proposal_name", "first") ("executer", "apple") ); BOOST_REQUIRE( bool(trace) ); BOOST_REQUIRE_EQUAL( 1, trace->action_traces.size() ); BOOST_REQUIRE_EQUAL( transaction_receipt::executed, trace->receipt->status ); // can't create account because system contract was replace by the test_api contract BOOST_REQUIRE_EXCEPTION( create_account_with_resources( N(alice1111112), config::system_account_name, core_from_string("1.0000"), false ), ETAio_assert_message_exception, ETAio_assert_message_is("Unknown Test") ); } FC_LOG_AND_RETHROW() BOOST_AUTO_TEST_SUITE_END()
MODULE hfsgg_I INTERFACE !...Generated by Pacific-Sierra Research 77to90 4.3E 18:34:47 1/ 6/07 !...Modified by Charlotte Froese Fischer ! Gediminas Gaigalas 11/01/17 SUBROUTINE hfsgg END SUBROUTINE END INTERFACE END MODULE
subroutine ksunsc (x,sx,scale,ndv) implicit double precision (a-h,o-z) dimension x(*),sx(*),scale(ndv,2) c c routine to un-scale design variables before returning c to the real world c c author - Gregory A. Wrenn c location - Lockheed Engineering and Sciences Co. c 144 Research Drive c Hampton, Va. 23666 c c last modification - 17 July 1996 c do 10 i = 1,ndv ss = scale(i,1) x(i) = sx(i) * ss 10 continue c return end