Datasets:
AI4M
/

text
stringlengths
0
3.34M
{-# LANGUAGE DataKinds #-} {-# LANGUAGE GADTs #-} {-# LANGUAGE LambdaCase #-} {-# LANGUAGE RankNTypes #-} {-# LANGUAGE TypeApplications #-} {-# LANGUAGE TypeOperators #-} {-# LANGUAGE NoImplicitPrelude #-} {-# OPTIONS_GHC -Wno-type-defaults #-} {-# OPTIONS_GHC -fno-warn-unused-imports #-} {-# OPTIONS_GHC -fplugin Data.Singletons.TypeNats.Presburger #-} module Algebra.Algorithms.Groebner.ZeroDimSpec where import Algebra.Algorithms.Groebner import Algebra.Algorithms.ZeroDim import Algebra.Internal import Algebra.Prelude.Core hiding ((%)) import Algebra.Ring.Ideal import Algebra.Ring.Polynomial import Algebra.Ring.Polynomial.Quotient import Control.Monad import Control.Monad.Random import Data.Complex import Data.Convertible (convert) import qualified Data.Foldable as F import qualified Data.Matrix as M import Data.Maybe import qualified Data.Sized as SV import Data.Type.Natural.Lemma.Order import qualified Data.Vector as V import Numeric.Field.Fraction (Fraction, (%)) import Numeric.Natural import Test.QuickCheck hiding (promote) import qualified Test.QuickCheck as QC import Test.Tasty import Test.Tasty.ExpectedFailure import Test.Tasty.HUnit import Test.Tasty.QuickCheck import Utils import qualified Prelude as P default (Fraction Integer, Natural) asGenListOf :: Gen [a] -> a -> Gen [a] asGenListOf = const test_solveLinear :: TestTree test_solveLinear = testGroup "solveLinear" [ testCase "solves data set correctly" $ forM_ linSet $ \set -> solveLinear (M.fromLists $ inputMat set) (V.fromList $ inputVec set) @?= Just (V.fromList $ answer set) , testProperty "solves any solvable cases" $ forAll (resize 10 arbitrary) $ \(MatrixCase ms) -> let mat = M.fromLists ms :: M.Matrix (Fraction Integer) in rank mat == M.ncols mat ==> forAll (vector (length $ head ms)) $ \v -> let ans = M.getCol 1 $ mat P.* M.colVector (V.fromList v) in solveLinear mat ans == Just (V.fromList v) , ignoreTestBecause "Needs effective inputs for this" $ testCase "cannot solve unsolvable cases" $ pure () ] test_univPoly :: TestTree test_univPoly = testGroup "univPoly" [ testProperty "produces monic generators of the elimination ideal" $ withMaxSuccess 25 $ QC.mapSize (const 4) $ checkForTypeNat [2 .. 4] chk_univPoly ] test_radical :: TestTree test_radical = testGroup "radical" [ ignoreTestBecause "We can verify correctness by comparing with singular, but it's not quite smart way..." $ testCase "really computes radical" $ pure () ] test_fglm :: TestTree test_fglm = testGroup "fglm" [ testProperty "computes monomial basis" $ withMaxSuccess 25 $ mapSize (const 3) $ checkForTypeNat [2 .. 4] $ \sdim -> case zeroOrSucc sdim of IsZero -> error "impossible" IsSucc k -> withWitness (lneqSucc k) $ withWitness (lneqZero k) $ withKnownNat k $ forAll (zeroDimOf sdim) $ \(ZeroDimIdeal ideal) -> let base = reifyQuotient (mapIdeal (changeOrder Lex) ideal) $ \ii -> map quotRepr $ fromJust $ standardMonomials' ii in stdReduced (snd $ fglm ideal) == stdReduced base , testProperty "computes lex base" $ checkForTypeNat [2 .. 4] $ \sdim -> case zeroOrSucc sdim of IsZero -> error "impossible" IsSucc k -> withKnownNat k $ withWitness (lneqSucc k) $ withWitness (lneqZero k) $ forAll (zeroDimOf sdim) $ \(ZeroDimIdeal ideal) -> stdReduced (fst $ fglm ideal) == stdReduced (calcGroebnerBasisWith Lex ideal) , testProperty "returns lex base in descending order" $ checkForTypeNat [2 .. 4] $ \sdim -> case zeroOrSucc sdim of IsZero -> error "impossible" IsSucc k -> withKnownNat k $ case (lneqSucc k, lneqZero k) of (Witness, Witness) -> forAll (zeroDimOf sdim) $ \(ZeroDimIdeal ideal) -> isDescending (map leadingMonomial $ fst $ fglm ideal) ] test_solve' :: TestTree test_solve' = testGroup "solve'" [ testProperty "solves equation with admissible error" $ withMaxSuccess 50 $ mapSize (const 4) $ do checkForTypeNat [2 .. 4] $ chkIsApproximateZero 1e-5 (pure . solve' 1e-5) , testGroup "solves regression cases correctly" $ map (approxZeroTestCase 1e-5 (pure . solve' 1e-5)) companionRegressions ] test_solveViaCompanion :: TestTree test_solveViaCompanion = testGroup "solveViaCompanion" [ testProperty "solves equation with admissible error" $ withMaxSuccess 50 $ mapSize (const 4) $ checkForTypeNat [2 .. 4] $ chkIsApproximateZero 1e-5 (pure . solveViaCompanion 1e-5) , testGroup "solves regression cases correctly" $ map (approxZeroTestCase 1e-5 (pure . solveViaCompanion 1e-5)) companionRegressions ] test_solveM :: TestTree test_solveM = testGroup "solveM" [ testProperty "solves equation with admissible error" $ withMaxSuccess 50 $ mapSize (const 4) $ checkForTypeNat [2 .. 4] $ chkIsApproximateZero 1e-9 solveM , testGroup "solves regressions correctly" $ map (approxZeroTestCase 1e-9 solveM) companionRegressions ] isDescending :: Ord a => [a] -> Bool isDescending xs = and $ zipWith (>=) xs (drop 1 xs) chkIsApproximateZero :: (KnownNat n) => Double -> ( forall m. (0 < m, KnownNat m) => Ideal (Polynomial (Fraction Integer) m) -> IO [Sized m (Complex Double)] ) -> SNat n -> Property chkIsApproximateZero err solver sn = case zeroOrSucc sn of IsSucc _ -> withKnownNat sn $ forAll (zeroDimOf sn) $ ioProperty . checkSolverApproxZero err solver IsZero -> error "chkIsApproximateZero must be called with non-zero typenats!" companionRegressions :: [SolverTestCase] companionRegressions = [ SolverTestCase @3 $ let [x, y, z] = vars in ZeroDimIdeal $ toIdeal [ 2 * x ^ 2 + (0.5 :: Fraction Integer) .*. x * y , - (0.5 :: Fraction Integer) .*. y ^ 2 + y * z , z ^ 2 - z ] , SolverTestCase @3 $ let [x, y, z] = vars in ZeroDimIdeal $ toIdeal [2 * x + 1, 2 * y ^ 2, - z ^ 2 - 1] , SolverTestCase @2 $ let [x, y] = vars in ZeroDimIdeal $ toIdeal [x ^ 2 - y, -2 * y ^ 2] ] approxZeroTestCase :: Double -> ( forall n. (0 < n, KnownNat n) => Ideal (Polynomial (Fraction Integer) n) -> IO [Sized n (Complex Double)] ) -> SolverTestCase -> TestTree approxZeroTestCase err calc (SolverTestCase f@(ZeroDimIdeal i)) = testCase (show $ getIdeal f) $ do isZeroDimensional (F.toList i) @? "Not zero-dimensional!" checkSolverApproxZero err calc f @? "Solved correctly" checkSolverApproxZero :: (0 < n, KnownNat n) => Double -> (Ideal (Polynomial (Fraction Integer) n) -> IO [Sized n (Complex Double)]) -> ZeroDimIdeal n -> IO Bool checkSolverApproxZero err solver (ZeroDimIdeal ideal) = do anss <- solver ideal let mul r d = convert r * d pure $ all ( \as -> all ((< err) . magnitude . substWith mul as) $ generators ideal ) anss data SolverTestCase where SolverTestCase :: (0 < n, KnownNat n) => ZeroDimIdeal n -> SolverTestCase chk_univPoly :: KnownNat n => SNat n -> Property chk_univPoly sdim = forAll (zeroDimOf sdim) $ \(ZeroDimIdeal ideal) -> let ods = enumOrdinal sdim in conjoin $ flip map ods $ \nth -> let gen = univPoly nth ideal in forAll (unaryPoly sdim nth) $ \f -> (f `modPolynomial` [gen] == 0) == (f `isIdealMember` ideal) rank :: (Ord r, Fractional r) => M.Matrix r -> Int rank mat = let Just (u, _, _, _, _, _) = M.luDecomp' mat in V.foldr (\a acc -> if a /= 0 then acc + 1 else acc) (0 :: Int) $ M.getDiag u data TestSet = TestSet { inputMat :: [[Fraction Integer]] , inputVec :: [Fraction Integer] , answer :: [Fraction Integer] } deriving (Show, Eq, Ord) linSet :: [TestSet] linSet = [ TestSet [ [1, 0, 0, 0, 0] , [0, (-2), (-2), (-2), (-2)] , [0, 0, 3 % 2, 0, (-1) % 2] , [0, 0, 0, 0, (-5) % 2] , [0, 1, 1, 1, 1] , [0, 0, (-2), 1, (-1)] ] [0, (-2), 19 % 5, 14 % 5, 1, 0] [0, (-81) % 25, 54 % 25, 16 % 5, (-28) % 25] ]
import tactic.default .tactic .basic universes u v w namespace two_three variables (α : Type u) (β : Type v) {γ : Type w} open tree nat variables {α β} inductive liftp (p : α → Prop) : tree α β → Prop | leaf {k v} : p k → liftp (tree.leaf k v) | node2 {x} {t₀ t₁} : p x → liftp t₀ → liftp t₁ → liftp (tree.node2 t₀ x t₁) | node3 {x y} {t₀ t₁ t₂} : p x → p y → liftp t₀ → liftp t₁ → liftp t₂ → liftp (tree.node3 t₀ x t₁ y t₂) -- | node4 {x y z} {t₀ t₁ t₂ t₃} : -- p x → p y → p z → -- liftp t₀ → liftp t₁ → -- liftp t₂ → liftp t₃ → -- liftp (tree.node4 t₀ x t₁ y t₂ z t₃) lemma liftp_true {t : tree α β} : liftp (λ _, true) t := begin induction t; repeat { trivial <|> assumption <|> constructor }, end lemma liftp_map {p q : α → Prop} {t : tree α β} (f : ∀ x, p x → q x) (h : liftp p t) : liftp q t := begin induction h; constructor; solve_by_elim end lemma liftp_and {p q : α → Prop} {t : tree α β} (h : liftp p t) (h' : liftp q t) : liftp (λ x, p x ∧ q x) t := begin induction h; cases h'; constructor; solve_by_elim [and.intro] end lemma exists_of_liftp {p : α → Prop} {t : tree α β} (h : liftp p t) : ∃ x, p x := begin cases h; split; assumption end section defs variables [has_le α] [has_lt α] open tree nat variables [@decidable_rel α (<)] def insert' (x : α) (v' : β) : tree α β → (tree α β → γ) → (tree α β → α → tree α β → γ) → γ | (tree.leaf y v) ret_one inc_two := match cmp x y with | ordering.lt := inc_two (tree.leaf x v') y (tree.leaf y v) | ordering.eq := ret_one (tree.leaf y v') | ordering.gt := inc_two (tree.leaf y v) x (tree.leaf x v') end | (tree.node2 t₀ y t₁) ret_one inc_two := if x < y then insert' t₀ (λ t', ret_one $ tree.node2 t' y t₁) (λ ta k tb, ret_one $ tree.node3 ta k tb y t₁) else insert' t₁ (λ t', ret_one $ tree.node2 t₀ y t') (λ ta k tb, ret_one $ tree.node3 t₀ y ta k tb) | (tree.node3 t₀ y t₁ z t₂) ret_one inc_two := if x < y then insert' t₀ (λ t', ret_one $ tree.node3 t' y t₁ z t₂) (λ ta k tb, inc_two (tree.node2 ta k tb) y (tree.node2 t₁ z t₂)) else if x < z then insert' t₁ (λ t', ret_one $ tree.node3 t₀ y t' z t₂) (λ ta k tb, inc_two (tree.node2 t₀ y ta) k (tree.node2 tb z t₂)) else insert' t₂ (λ t', ret_one $ tree.node3 t₀ y t₁ z t') (λ ta k tb, inc_two (tree.node2 t₀ y t₁) z (tree.node2 ta k tb)) def insert (x : α) (v' : β) (t : tree α β) : tree α β := insert' x v' t id tree.node2 -- inductive shrunk (α : Type u) : ℕ section add_ variables (ret shr : tree α β → γ) def add_left : tree α β → α → tree α β → γ | t₀ x t@(tree.leaf _ _) := ret t₀ | t₀ x (tree.node2 t₁ y t₂) := shr (tree.node3 t₀ x t₁ y t₂) | t₀ x (tree.node3 t₁ y t₂ z t₃) := ret (tree.node2 (tree.node2 t₀ x t₁) y (tree.node2 t₂ z t₃)) def add_right : tree α β → α → tree α β → γ | t@(tree.leaf _ _) x t₀ := ret t | (tree.node2 t₀ x t₁) y t₂ := shr (tree.node3 t₀ x t₁ y t₂) | (tree.node3 t₀ x t₁ y t₂) z t₃ := ret (tree.node2 (tree.node2 t₀ x t₁) y (tree.node2 t₂ z t₃)) variables (t₀ : tree α β) (x : α) (t₁ : tree α β) (y : α) (t₂ : tree α β) def add_left_left : Π (t₀ : tree α β) (x : α) (t₁ : tree α β) (y : α) (t₂ : tree α β), γ | t₀ x (tree.leaf k v) z t₂ := ret t₀ | t₀ x (tree.node2 t₁ y t₂) z t₃ := ret (tree.node2 (tree.node3 t₀ x t₁ y t₂) z t₃) | t₀ w (tree.node3 t₁ x t₂ y t₃) z t₄ := ret (tree.node3 (tree.node2 t₀ w t₁) x (tree.node2 t₂ y t₃) z t₄) def add_middle : Π (t₀ : tree α β) (x : α) (t₁ : tree α β) (y : α) (t₂ : tree α β), γ | t@(tree.leaf k v) y t₁ z t₂ := ret t | (tree.node2 t₀ x t₁) y t₂ z t₃ := ret (tree.node2 (tree.node3 t₀ x t₁ y t₂) z t₃) | (tree.node3 t₀ w t₁ x t₂) y t₃ z t₄ := ret (tree.node3 (tree.node2 t₀ w t₁) x (tree.node2 t₂ y t₃) z t₄) def add_right_right : Π (t₀ : tree α β) (x : α) (t₁ : tree α β) (y : α) (t₂ : tree α β), γ | t₀ x (tree.leaf k v) z t₂ := ret t₀ | t₀ x (tree.node2 t₁ y t₂) z t₃ := ret (tree.node2 t₀ x (tree.node3 t₁ y t₂ z t₃)) | t₀ w (tree.node3 t₁ x t₂ y t₃) z t₄ := ret (tree.node3 t₀ w (tree.node2 t₁ x t₂) y (tree.node2 t₃ z t₄)) end add_ def delete' [decidable_eq α] (x : α) : tree α β → (option α → tree α β → γ) → (option α → tree α β → γ) → (unit → γ) → γ | (tree.leaf y v) ret shr del := if x = y then del () else ret (some y) (tree.leaf y v) | (tree.node2 t₀ y t₁) ret shr del := if x < y then delete' t₀ (λ a t', ret a $ tree.node2 t' y t₁) (λ a t', add_left (ret a) (shr a) t' y t₁) (λ _, shr (some y) t₁) else delete' t₁ (λ y' t', ret none $ tree.node2 t₀ (y'.get_or_else y) t') (λ y' t', add_right (ret none) (shr none) t₀ (y'.get_or_else y) t') (λ _, shr none t₀) | (tree.node3 t₀ y t₁ z t₂) ret shr del := if x < y then delete' t₀ (λ a t', ret a $ tree.node3 t' y t₁ z t₂) (λ a t', add_left_left (ret a) t' y t₁ z t₂) (λ _, ret (some y) $ tree.node2 t₁ z t₂) else if x < z then delete' t₁ (λ a t', ret none $ tree.node3 t₀ (a.get_or_else y) t' z t₂) (λ a t', add_middle (ret none) t₀ y t' z t₂) (λ _, ret none $ tree.node2 t₀ z t₂) else delete' t₂ (λ a t', ret none $ tree.node3 t₀ y t₁ (a.get_or_else z) t') (λ a t', add_right_right (ret none) t₀ y t₁ z t') (λ _, ret none $ tree.node2 t₀ y t₁) def delete [decidable_eq α] (x : α) (t : tree α β) : option (tree α β) := delete' x t (λ _, some) (λ _, some) (λ _, none) end defs local attribute [simp] add_left add_right add_left_left add_middle add_right_right first last variables [linear_order α] -- #check @above_of_above_of_forall_le_of_le lemma first_le_last_of_sorted {t : tree α β} (h : sorted' t) : first t ≤ last t := begin induction h; subst_vars; dsimp [first, last], { refl }, repeat { solve_by_elim [le_of_lt] <|> transitivity }, end lemma eq_of_below {x : option α} {y : α} (h : below x y) : x.get_or_else y = y := by cases h; refl lemma above_of_above_of_le {x y : α} {k} (h : x ≤ y) (h' : above y k) : above x k := by cases h'; constructor; solve_by_elim [lt_of_le_of_lt] @[interactive] meta def interactive.saturate : tactic unit := do tactic.interactive.casesm (some ()) [``(above _ (some _)), ``(below (some _) _), ``(below' (some _) _)], tactic.find_all_hyps ``(sorted' _) $ λ h, do { n ← tactic.get_unused_name `h, tactic.mk_app ``first_le_last_of_sorted [h] >>= tactic.note n none, tactic.skip }, tactic.find_all_hyps ``(below _ _) $ λ h, do { n ← tactic.get_unused_name `h, tactic.mk_app ``eq_of_below [h] >>= tactic.note n none, tactic.skip }, tactic.find_all_hyps ``(¬ _ < _) $ λ h, do { -- n ← tactic.get_unused_name `h, tactic.mk_app ``le_of_not_gt [h] >>= tactic.note h.local_pp_name none, tactic.clear h, tactic.skip } @[interactive] meta def interactive.above : tactic unit := do -- tactic.interactive.saturate, tactic.find_hyp ``(above _ _) $ λ h, do tactic.refine ``(above_of_above_of_le _ %%h), tactic.interactive.chain_trans section sorted_insert variables (lb ub : option α) (P : γ → Prop) (ret : tree α β → γ) -- (ret' : tree α β → tree α β) (mk : tree α β → α → tree α β → γ) (h₀ : ∀ t, below lb (first t) → above (last t) ub → sorted' t → P (ret t)) (h₂ : ∀ t₀ x t₁, below lb (first t₀) → above (last t₀) (some x) → below (some x) (first t₁) → above (last t₁) ub → sorted' t₀ → sorted' t₁ → P (mk t₀ x t₁)) include h₀ h₂ lemma sorted_insert_aux' {k : α} {v : β} {t} (h : sorted' t) (h' : below lb (min k (first t))) (h'' : above k ub) (h''' : above (last t) ub) : P (insert' k v t ret mk) := begin -- generalize_hyp hlb : none = k₀ at h, induction h generalizing lb ub ret mk, case two_three.sorted'.leaf : k' v' lb ub ret mk h₀ h₂ h' h'' { dsimp [insert'], trichotomy k =? k'; dsimp [insert']; apply h₀ <|> apply h₂, all_goals { try { have h := le_of_lt h }, simp [first, h, min_eq_left, min_eq_right, min_self] at h', }, repeat { assumption <|> constructor <|> refl } }, case two_three.sorted'.node2 : x t₀ t₁ h h' h_a h_a_1 h_ih₀ h_ih₁ lb ub ret mk h₀ h₂ { dsimp [insert'], split_ifs; [apply @h_ih₀ lb (some x), apply @h_ih₁ (some x) ub]; clear h_ih₀ h_ih₁, all_goals { try { intros, apply h₀ <|> apply h₂ }, clear h₀ h₂, }, all_goals { casesm* [above _ (some _), below (some _) _], dsimp [first, last] at * { fail_if_unchanged := ff }, repeat { assumption <|> constructor } }, all_goals { find_all_hyps foo := ¬ (_ < _) then { replace foo := le_of_not_gt foo }, find_all_hyps ht := sorted' _ then { have hh := first_le_last_of_sorted ht } }, { rw min_eq_right at h'_1, assumption, chain_trans, }, { have h : first t₀ ≤ k, chain_trans, have hh' := min_eq_right h, cc, }, { subst x, rw min_eq_right h_1, constructor } }, case two_three.sorted'.node3 : x y t₀ t₁ t₂ h_a h_a_1 h_a_2 h_a_3 h_a_4 h_a_5 h_a_6 h_ih₀ h_ih₁ h_ih₂ lb ub ret mk h₀ h₂ h' h'' h''' { dsimp [insert'], split_ifs; [apply @h_ih₀ lb (some x), apply @h_ih₁ (some x) (some y), apply @h_ih₂ (some y) ub]; clear h_ih₀ h_ih₁ h_ih₂, all_goals { try { intros, apply h₀ <|> apply h₂ }, clear h₀ h₂, }, all_goals { casesm* [above _ (some _), below (some _) _], subst_vars, dsimp [first, last] at * { fail_if_unchanged := ff }, repeat { assumption <|> constructor } }, all_goals { find_all_hyps foo := ¬ (_ < _) then { replace foo := le_of_not_gt foo }, find_all_hyps ht := sorted' _ then { have hh := first_le_last_of_sorted ht }, have h₀ : first t₀ ≤ k; [chain_trans, skip], try { have h₁ : first t₁ ≤ k; [chain_trans, skip] }, try { have h₂ : first t₂ ≤ k; [chain_trans, skip] } }, { have hh' := min_eq_right h₀, cc, }, { have hh' := min_eq_right h₀, cc, }, { rw min_eq_right h₁, constructor, }, { have hh' := min_eq_right h₀, cc, }, { have hh' := min_eq_right h₀, cc, }, { rw min_eq_right h₂, constructor, } }, end end sorted_insert lemma sorted_insert {k : α} {v : β} {t : tree α β} (h : sorted' t) : sorted' (insert k v t) := sorted_insert_aux' none none _ _ _ (λ t _ _ h, h) (λ t₀ x t₁ h₀ h₁ h₂ h₃ ht₀ ht₁, sorted'.node2 (by cases h₁; assumption) (by cases h₂; refl) ht₀ ht₁) h (by constructor) (by constructor) (by constructor) section with_height_insert variables (n : ℕ) (P : γ → Prop) (ret : tree α β → γ) (mk : tree α β → α → tree α β → γ) (h₀ : ∀ t, with_height n t → P (ret t)) (h₂ : ∀ t₀ x t₁, with_height n t₀ → with_height n t₁ → P (mk t₀ x t₁)) include h₀ h₂ lemma with_height_insert_aux {k : α} {v : β} {t} (h : with_height n t) : P (insert' k v t ret mk) := begin induction h generalizing ret mk, case two_three.with_height.leaf : k' v' { dsimp [insert'], trichotomy k =? k', all_goals { dsimp [insert'], subst_vars, apply h₂ <|> apply h₀, repeat { constructor }, }, }, case two_three.with_height.node2 : h_n h_x h_t₀ h_t₁ h_a h_a_1 h_ih₀ h_ih₁ { dsimp [insert'], split_ifs, repeat { intro <|> apply h_ih₀ <|> apply h_ih₁ <|> apply h₀ <|> apply h₂ <|> assumption <|> constructor }, }, case two_three.with_height.node3 : h_n h_x h_y h_t₀ h_t₁ h_t₂ h_a h_a_1 h_a_2 h_ih₀ h_ih₁ h_ih₂ { dsimp [insert'], split_ifs, repeat { intro <|> apply h_ih₀ <|> apply h_ih₁ <|> apply h_ih₂ <|> apply h₀ <|> apply h₂ <|> assumption <|> constructor }, }, end end with_height_insert lemma with_height_insert {k : α} {v : β} {n t} (h : with_height n t) : with_height n (insert k v t) ∨ with_height (succ n) (insert k v t) := begin apply with_height_insert_aux _ (λ t' : tree α β, with_height n t' ∨ with_height (succ n) t') _ _ _ _ h, { introv h', left, apply h' }, { introv h₀ h₁, right, constructor; assumption } end section with_height_add_left variables (n : ℕ) (P : γ → Prop) (ret shr : tree α β → γ) variables (h₀ : ∀ t, with_height (succ (succ n)) t → P (ret t)) (h₁ : ∀ t, with_height (succ n) t → P (shr t)) include h₀ h₁ lemma with_height_add_left {k : α} {t₀ t₁} (h : with_height n t₀) (h' : with_height (succ n) t₁) : P (add_left ret shr t₀ k t₁) := begin cases h'; dsimp [add_left], { apply h₁, repeat { assumption <|> constructor}, }, { apply h₀, repeat { assumption <|> constructor}, }, end lemma with_height_add_right {k : α} {t₀ t₁} (h : with_height (succ n) t₀) (h' : with_height n t₁) : P (add_right ret shr t₀ k t₁) := begin cases h; dsimp [add_right], { apply h₁, repeat { assumption <|> constructor}, }, { apply h₀, repeat { assumption <|> constructor}, }, end omit h₁ lemma with_height_add_left_left {k k' : α} {t₀ t₁ t₂} (hh₀ : with_height n t₀) (hh₁ : with_height (succ n) t₁) (hh₂ : with_height (succ n) t₂) : P (add_left_left ret t₀ k t₁ k' t₂) := begin cases hh₁; clear hh₁; dsimp; apply h₀, repeat { assumption <|> constructor }, end lemma with_height_add_middle {k k' : α} {t₀ t₁ t₂} (hh₀ : with_height (succ n) t₀) (hh₁ : with_height n t₁) (hh₂ : with_height (succ n) t₂) : P (add_middle ret t₀ k t₁ k' t₂) := begin cases hh₀; clear hh₀; dsimp; apply h₀, repeat { assumption <|> constructor }, end lemma with_height_add_right_right {k k' : α} {t₀ t₁ t₂} (hh₀ : with_height (succ n) t₀) (hh₁ : with_height (succ n) t₁) (hh₂ : with_height n t₂) : P (add_right_right ret t₀ k t₁ k' t₂) := begin cases hh₁; clear hh₁; dsimp; apply h₀, repeat { assumption <|> constructor }, end end with_height_add_left section with_height_delete variables (n : ℕ) (P : γ → Prop) (ret shr : option α → tree α β → γ) (del : unit → γ) (h₀ : ∀ a t, with_height n t → P (ret a t)) (h₁ : ∀ a t n', succ n' = n → with_height n' t → P (shr a t)) (h₂ : ∀ u, n = 0 → P (del u)) include h₀ h₁ h₂ lemma with_height_delete_aux {k : α} {t} (h : with_height n t) : P (delete' k t ret shr del) := begin induction h generalizing ret shr del, case two_three.with_height.leaf : k' v' { dsimp [delete'], split_ifs, all_goals { subst_vars, apply h₂ <|> apply h₀ <|> apply h₁, repeat { constructor }, }, }, case two_three.with_height.node2 : n h_x h_t₀ h_t₁ h_a h_a_1 h_ih₀ h_ih₁ { dsimp [delete'], split_ifs, repeat { intro <|> apply h_ih₀ <|> apply h_ih₁ <|> apply h₀ <|> apply h₁ <|> apply with_height_add_left <|> apply with_height_add_right <|> assumption <|> constructor, try { subst_vars } } }, case two_three.with_height.node3 : h_n h_x h_y h_t₀ h_t₁ h_t₂ h_a h_a_1 h_a_2 h_ih₀ h_ih₁ h_ih₂ { dsimp [delete'], split_ifs, repeat { intro <|> apply h_ih₀ <|> apply h_ih₁ <|> apply h_ih₂ }, all_goals { repeat { intro <|> apply h₀ <|> apply h₁ <|> apply h₂ <|> apply with_height_add_left <|> apply with_height_add_right <|> apply with_height_add_left_left <|> apply with_height_add_middle <|> apply with_height_add_right_right, }, repeat { subst_vars, assumption <|> constructor } }, }, end end with_height_delete lemma with_height_delete {n} {k : α} {t : tree α β} (h : with_height n t) : option.elim (delete k t) false (with_height n) ∨ option.elim (delete k t) (n = 0) (with_height n.pred) := with_height_delete_aux n (λ x : option (tree α β), option.elim x false (with_height n) ∨ option.elim x (n = 0) (with_height n.pred)) (λ _, some) (λ _, some) _ (by { dsimp, tauto }) (by { dsimp, intros, subst n, tauto }) (by { dsimp, tauto }) h section sorted_add_left variables (P : γ → Prop) (lb ub : option α) (ret shr : tree α β → γ) variables (h₀ : ∀ t, below lb (first t) → above (last t) ub → sorted' t → P (ret t)) (h₁ : ∀ t, below lb (first t) → above (last t) ub → sorted' t → P (shr t)) include h₀ h₁ lemma sorted_add_left {k : α} {t₀ t₁} (hhₐ : below lb (first t₀)) (hh₀ : sorted' t₀) (hh₁ : last t₀ < k) (hh₂ : k = first t₁) (hh₃ : sorted' t₁) (hh₄ : above (last t₁) ub) : P (add_left ret shr t₀ k t₁) := begin cases hh₃; clear hh₃; dsimp [add_left], all_goals { apply h₁ <|> apply h₀, clear h₀ h₁, repeat { assumption <|> constructor } }, dsimp at *, subst_vars, cases hh₄; constructor, chain_trans end lemma sorted_add_right {k : α} {t₀ t₁} (hhₐ : below lb (first t₀)) (hh₀ : sorted' t₀) (hh₁ : last t₀ < k) (hh₂ : k = first t₁) (hh₃ : sorted' t₁) (hh₄ : above (last t₁) ub) : P (add_right ret shr t₀ k t₁) := begin cases hh₀; clear hh₀; dsimp [add_left], all_goals { apply h₁ <|> apply h₀, clear h₀ h₁, repeat { assumption <|> constructor } }, dsimp at *, subst_vars, cases hh₄; constructor, have := first_le_last_of_sorted hh₃, chain_trans end omit h₁ lemma sorted_add_left_left {k k' : α} {t₀ t₁ t₂} (hhₐ : below lb (first t₀)) (hh₀ : sorted' t₀) (hh₁ : last t₀ < k) (hh₂ : k = first t₁) (hh₃ : sorted' t₁) (hh₄ : last t₁ < k') (hh₅ : k' = first t₂) (hh₆ : sorted' t₂) (hh₇ : above (last t₂) ub) : P (add_left_left ret t₀ k t₁ k' t₂) := begin cases hh₃; clear hh₃; dsimp at *, all_goals { saturate, subst_vars, apply h₀, repeat { assumption <|> constructor <|> above }, }, end lemma sorted_add_middle {k k' : α} {t₀ t₁ t₂} (hhₐ : below lb (first t₀)) (hh₀ : sorted' t₀) (hh₁ : last t₀ < k) (hh₂ : k = first t₁) (hh₃ : sorted' t₁) (hh₄ : last t₁ < k') (hh₅ : k' = first t₂) (hh₆ : sorted' t₂) (hh₇ : above (last t₂) ub) : P (add_middle ret t₀ k t₁ k' t₂) := begin cases hh₀; clear hh₀; dsimp; apply h₀; clear h₀, repeat { assumption <|> constructor <|> above }, end lemma sorted_add_right_right {k k' : α} {t₀ t₁ t₂} (hhₐ : below lb (first t₀)) (hh₀ : sorted' t₀) (hh₁ : last t₀ < k) (hh₂ : k = first t₁) (hh₃ : sorted' t₁) (hh₄ : last t₁ < k') (hh₅ : k' = first t₂) (hh₆ : sorted' t₂) (hh₇ : above (last t₂) ub) : P (add_right_right ret t₀ k t₁ k' t₂) := begin cases hh₃; clear hh₃; dsimp at *; apply h₀; clear h₀, repeat { assumption <|> constructor <|> above }, end end sorted_add_left section sorted_delete variables (lb ub : option α) (P : γ → Prop) (ret shr : option α → tree α β → γ) (del : unit → γ) -- (h₀ : ∀ a t, sorted' t → P (ret a t)) -- (h₁ : ∀ a t, sorted' t → P (shr a t)) -- (h₀ : ∀ a t, below lb (first t) → below a (first t) → above (last t) ub → sorted' t → P (ret a t)) -- (h₁ : ∀ a t, below lb (first t) → below a (first t) → above (last t) ub → sorted' t → P (shr a t)) (h₀ : ∀ a t, below lb (first t) → above (last t) ub → sorted' t → P (ret a t)) (h₁ : ∀ a t, below lb (first t) → above (last t) ub → sorted' t → P (shr a t)) (h₂ : ∀ u, P (del u)) include h₀ h₁ h₂ lemma sorted_delete_aux {k : α} {t} (hh₀ : below lb (first t)) (hh₁ : sorted' t) (hh₂ : above (last t) ub) : P (delete' k t ret shr del) := begin induction hh₁ generalizing lb ub ret shr del, case two_three.sorted'.leaf : k' v' { dsimp [delete'], split_ifs, all_goals { subst_vars, apply h₂ <|> apply h₀ <|> apply h₁, repeat { assumption <|> constructor <|> dsimp at * }, }, }, case two_three.sorted'.node2 : n h_x h_t₀ h_t₁ hh₀ hh₁ hh₂ h_ih₀ h_ih₁ { dsimp [delete'], find_all_hyps hh := sorted' _ then { have h := first_le_last_of_sorted hh }, split_ifs, all_goals { try { repeat { repeat { intro h, try { have := first_le_last_of_sorted h } }, apply h_ih₀ lb (some n) <|> apply h_ih₁ (some n) ub <|> casesm [above _ (some _)] <|> apply h₀ <|> apply h₁ <|> apply h₂ <|> apply sorted_add_left <|> apply sorted_add_right <|> apply sorted_add_left_left <|> apply sorted_add_middle <|> apply sorted_add_right_right <|> assumption <|> constructor, try { subst_vars } }, done } }, { apply h_ih₀ lb (some n); clear h_ih₀ h_ih₁, { intros, casesm* [above _ (some _)], apply h₀, repeat { assumption <|> constructor } }, { intros, apply sorted_add_left, intros, apply h₀, repeat { assumption <|> constructor }, all_goals { casesm* [above _ (some _)], repeat { intro <|> apply h₀ <|> apply h₁ <|> apply h₂ <|> apply with_height_add_left <|> apply with_height_add_right <|> apply with_height_add_left_left <|> apply with_height_add_middle <|> apply with_height_add_right_right, } }, repeat { subst_vars, intro <|> assumption <|> constructor } }, admit, admit, admit, }, admit }, admit, -- case two_three.sorted'.node3 : h_n h_x h_y h_t₀ h_t₁ h_t₂ h_a h_a_1 h_a_2 h_ih₀ h_ih₁ h_ih₂ -- { dsimp [delete'], split_ifs, -- repeat { intro <|> apply h_ih₀ <|> apply h_ih₁ <|> apply h_ih₂ }, -- all_goals -- { repeat { intro <|> apply h₀ <|> apply h₁ <|> apply h₂ <|> -- apply with_height_add_left <|> -- apply with_height_add_right <|> -- apply with_height_add_left_left <|> -- apply with_height_add_middle <|> -- apply with_height_add_right_right, }, -- repeat -- { subst_vars, -- assumption <|> constructor } }, }, end end sorted_delete end two_three
\subsection{External Interface Requirements} \subsubsection{User interfaces} In the design document there will be the specific application UI created after the process (UX) of defining how users interact with SafeStreets. The following mocks describe only the generic application screen design: \begin{figure}[H] \centering \begin{minipage}[b]{0.40\textwidth} \includegraphics[width=\textwidth]{Images/rasd-mocks/login.png} \caption{Login form} \end{minipage} \hfill \begin{minipage}[b]{0.40\textwidth} \includegraphics[width=\textwidth]{Images/rasd-mocks/registration.png} \caption{Registration form} \end{minipage} \end{figure} \newpage \begin{figure}[H] \centering \begin{minipage}[b]{0.40\textwidth} \includegraphics[width=\textwidth]{Images/rasd-mocks/report.png} \caption{User send violation report} \end{minipage} \hfill \begin{minipage}[b]{0.40\textwidth} \includegraphics[width=\textwidth]{Images/rasd-mocks/violationsMap.png} \caption{Map showing violations} \end{minipage} \end{figure} \begin{figure}[H] \centering \begin{minipage}[b]{0.40\textwidth} \includegraphics[width=\textwidth]{Images/rasd-mocks/interventions.png} \caption{Suggestion for possible interventions} \end{minipage} \hfill \begin{minipage}[b]{0.40\textwidth} \includegraphics[width=\textwidth]{Images/rasd-mocks/vehicle.png} \caption{Violations by vehicle} \end{minipage} \end{figure} \newpage \subsubsection{Hardware interfaces} There are no hardware interfaces. \subsubsection{Software interfaces} The system functionalities are provided with the usage of some external web services: \paragraph{Google Maps} Google Maps library is used in the page that shows the map. Furthermore, Google Maps APIs are used to transform addresses in coordinates and vice versa. \paragraph{Vehicle model identification} Using an external web service, SafeStreets is able to retrieve information about the vehicles from the license plate number. This data will be show in statistics about violations by vehicles. \paragraph{IndicePA} The \textit{CUU (Codice Univoco Ufficio)} verification is made by an external web service provided by \textit{IndicePA}. The code is required during the authorities registration to ensure their identity. The external API are exposed only for authorities application and the implementation details will be shown in the design document (DD). \subsubsection{Communication interfaces} Any communication functionality takes place via internet with HTTPS to allow protection and privacy. This protocol will be used for both access to the web-application and REST communication. \newpage \subsection{Design constraints} \subsubsection{Standards compliance} Part of the information collected by SafeStreets (e.g. license plate) are sensitive. For this reason the project is subject to the \textit{General Data Protection Regulation (GDPR)}. One of the technique used by the system to protect these important information is the creation of different type of users. For example normal account can only send information and see general information. While authorities have a different account that is able to access to the collected and generated data in details. \subsubsection{Hardware limitations} The application is based on retrieving data from the pictures sent by the user. Obviously the camera of the devices is a crucial aspect to consider during the design process. For this reason a minimum resolution of the sensor is required to install the application. The identification of this value will be done during design phase and will be written in the design document (DD). An other constraint is generated by the precision of the GPS sensor of the device, since the impact is smaller than the image resolution, the requirement is not so strict. \subsubsection{Any other constraint} SafeStreets works with violations and traffic tickets so it has to deal with laws and regulations; for this aspect see the specific domain assumption. Furthermore we have to consider the possible improper use of the platform. To prevent it, SafeStreets does specific controls on images and it is able to detect manipulations or repeated pictures of the same violations. The implementation of this part will be done with some external algorithm and will be detailed in the design document (DD). \newpage \subsection{Functional requirements} \subsubsection{Definition of use case diagram} The use case diagrams provide a vision of the uses that can be done with the platform. They show the relationship between the actors and the use that every actor made with the software to reach the goals. \subsubsection{Scenario 1} Paul wants to sign up to SafeStreets platform. He has to insert his personal data (name, surname, place, mail and so forth). Then he will receive a confirm mail and can use the platform. \subsubsection{Scenario 2} Bob is coming back to his car when he notice that someone double parked and he can’t go out from the parking. He logs in into the SafeStreets and he takes a picture of the car. Then he has to insert the information about the violation: type of violation and route where the violation happened. Once Bob has added the data he can send the report. \subsubsection{Scenario 3} Luke is walking on the sidewalk when he see that a man is parking on a park reserved for disable. Luke logs in into the SafeStreets and he takes a picture of the car. Then he has to insert the information about the violation: type of violation and route where the violation happened. Once Luke has added the data he can send the report. \subsubsection{Scenario 4} Mark has submitted a report to the platform, and he wants to check if it has been accepted or declined. He logs in into the app, he goes to his reserved area and next to his report there is the status of message sent. \subsubsection{Scenario 5} An accidents in via Anzani occurs, the municipality system records the information about it. SafeStreets is able to retrieve a portion of these data and cross it with violations information, in order to generate statistics. \subsubsection{Scenario 6} The local authority wants to check which are the streets with more violations. They log in into the platform and access to their personal area where they can check the streets status. \subsubsection{Scenario 7} The local authority wants to check which are the vehicles with more violations. They log in into the platform and access to their personal area where they can check the cars that have the most reports assigned. \subsubsection{Scenario 8} The system receives pictures from the users and have to check if they are reliable. It runs an algorithm that can detect if the photo is real or it has been manipulated. In the first case, the report will be stored and be used by authorities. In the second case the report will be discarded. \subsection{Description of use case scenarios} \subsubsection{Description scenario 1} \begin{center} \begin{tabular}{ | l | p{6cm} | } \hline ACTORS & Visitors \\ \hline GOALS & Sign up \\ \hline INPUT CONDITION & Personal data (name, surname, mail, telephone number, place where he lives, car license plate etc.) \\ \hline EVENTS FLOW & The user from the home page clicks on sign up. He inserts all of his information and if it is all correct he will recive an email of confirm. \\ \hline OUTPUT CONDITION & The user can now log in and use all the function that the user can do on the platform. \\ \hline EXCEPTIONS & Data incorrect, user already exists, mail already exists. All of this exceptions will be notified instantly to the user. \\ \hline \end{tabular} \end{center} \subsubsection{Description scenario 2} \begin{center} \begin{tabular}{ | l | p{6cm} | } \hline ACTORS & User \\ \hline GOALS & Report a violation \\ \hline INPUT CONDITION & Type of violation (double row park), name of the street, \\ \hline EVENTS FLOW & The user take a picture of the car that has done the violation. He insert the type of violation and the route where it happened. The system use an algorithm to read the car license plate and then store all the informations once it is established that the photo isn't fake. \\ \hline OUTPUT CONDITION & The violation has been stored with all the data, it will be generated a traffic ticket, and the local authority can decide to highlight who has made the violation or the street. \\ \hline EXCEPTIONS & Data incorrect or fake photo. The report will be discarded and no traffic ticket will be generated. \\ \hline \end{tabular} \end{center} \newpage \subsubsection{Description scenario 3} \begin{center} \begin{tabular}{ | l | p{6cm} | } \hline ACTORS & User \\ \hline GOALS & Report a violation \\ \hline INPUT CONDITION & Type of violation (wrong park), name of the street, \\ \hline EVENTS FLOW & The user take a picture of the car that has done the violation. He insert the type of violation and the route where it happened. The system use an algorithm to read the car license plate and then store all the informations once it is established that the photo isn't fake. \\ \hline OUTPUT CONDITION & The violation has been stored with all the data, it will be generated a traffic ticket, and the local authority can decide to highlight who has made the violation or the street. \\ \hline EXCEPTIONS & Data incorrect or fake photo. The report will be discarded and no traffic ticket will be generated. \\ \hline \end{tabular} \end{center} \subsubsection{Description scenario 4} \begin{center} \begin{tabular}{ | l | p{6cm} | } \hline ACTORS & User \\ \hline GOALS & Check report status \\ \hline INPUT CONDITION & User credentials \\ \hline EVENTS FLOW & The user log in into the platform. He accesses to his personal area and he can check the status of his report \\ \hline OUTPUT CONDITION & Report status \\ \hline EXCEPTIONS & The user hasn't made any report. The system show a messagge that the list of the reports is empty. \\ \hline \end{tabular} \end{center} \subsubsection{Description scenario 5} \begin{center} \begin{tabular}{ | l | p{6cm} | } \hline ACTORS & Authority, SafeStreets \\ \hline GOALS & Generate statistics \\ \hline INPUT CONDITION & The authority inserts data about an accident. \\ \hline EVENTS FLOW & The authority add the data about an accident in their system. SafeStreets retrieve these data generate statistic for the authority. \\ \hline OUTPUT CONDITION & Accident and violation statistics\\ \hline EXCEPTIONS & There are no exceptions \\ \hline \end{tabular} \end{center} \subsubsection{Description scenario 6} \begin{center} \begin{tabular}{ | l | p{6cm} | } \hline ACTORS & Authority \\ \hline GOALS & Check streets status \\ \hline INPUT CONDITION & Local authority credentials \\ \hline EVENTS FLOW & The authority log in into the platform. He accesses to his personal area and he can check the streets status \\ \hline OUTPUT CONDITION & Different colors for the streets based on their status and possibly changes to the color of some streets \\ \hline EXCEPTIONS & none \\ \hline \end{tabular} \end{center} \subsubsection{Description scenario 7} \begin{center} \begin{tabular}{ | l | p{6cm} | } \hline ACTORS & Authority \\ \hline GOALS & Check cars status \\ \hline INPUT CONDITION & Local authority credentials \\ \hline EVENTS FLOW & The authority log in into the platform. He accesses to his personal area and he can check the cars status based on reports \\ \hline OUTPUT CONDITION & Different colors for the cars based on how many reports they recived and possibly changes to the color of some cars \\ \hline EXCEPTIONS & none \\ \hline \end{tabular} \end{center} \subsubsection{Description scenario 8} \begin{center} \begin{tabular}{ | l | p{6cm} | } \hline ACTORS & SafeStreets \\ \hline GOALS & Check the reliability of the photo \\ \hline INPUT CONDITION & Photo that has been taken by a user. \\ \hline EVENTS FLOW & The system recives from the user a photo of a possibile violation. It runs an algorithm that can establish if it is real or fake. \\ \hline OUTPUT CONDITION & The photo is real of fake. \\ \hline EXCEPTIONS & none \\ \hline \end{tabular} \end{center} \newpage \subsection{Activity diagram} \subsubsection{Scenario 1} \begin{figure}[H] \begin{minipage}[b]{0.40\textwidth} \includegraphics[width=12cm,height=17cm]{Images/ActivityRASD/Scenario1.png} \caption{Scenario 1} \end{minipage} \end{figure} \newpage \subsubsection{Scenario 3} \begin{figure}[H] \begin{minipage}[b]{0.40\textwidth} \includegraphics[width=12cm,height=17cm]{Images/ActivityRASD/Scenario3.png} \caption{Scenario 3} \end{minipage} \end{figure} \newpage \subsubsection{Scenario 4} \begin{figure}[H] \begin{minipage}[b]{0.40\textwidth} \includegraphics[width=12cm,height=17cm]{Images/ActivityRASD/Scenario4.png} \caption{Scenario 4} \end{minipage} \end{figure} \newpage \subsubsection{Scenario 7} \begin{figure}[H] \begin{minipage}[b]{0.40\textwidth} \includegraphics[width=12cm,height=16.5cm]{Images/ActivityRASD/Scenario7.png} \caption{Scenario 7} \end{minipage} \end{figure} \newpage \subsubsection{Scenario 8} \begin{figure}[H] \begin{minipage}[b]{0.40\textwidth} \includegraphics[width=14cm,height=17cm]{Images/ActivityRASD/Scenario8.png} \caption{Scenario 8} \end{minipage} \end{figure} \newpage \subsection{Sequence diagram} \subsubsection{Scenario 2} \begin{figure}[H] \begin{minipage}[b]{0.40\textwidth} \includegraphics[width=18cm,height=15cm]{Images/SequenceRASD/Scenario2.png} \caption{Scenario 2} \end{minipage} \end{figure} \newpage \subsubsection{Scenario 5} \begin{figure}[H] \begin{minipage}[b]{0.40\textwidth} \includegraphics[width=15cm,height=10cm]{Images/SequenceRASD/Scenario5.png} \caption{Scenario 5} \end{minipage} \end{figure} \newpage \subsubsection{Scenario 6} \begin{figure}[H] \begin{minipage}[b]{0.40\textwidth} \includegraphics[width=15cm,height=10cm]{Images/SequenceRASD/Scenario6.png} \caption{Scenario 6} \end{minipage} \end{figure} \subsection{Software system attributes} \subsubsection{Reliability} The system has to ensure reliability, for this reason we have decided to keep a backup server, updated everyday. Consistency is guaranteed by the algorithm we have already described. Furthermore SafeStreets guarantees reliability in terms of plate recognition because the results are compared with the information coming from users. \subsubsection{Availability} The platform has to be available every day, especially in the rush hours because are the ones where there traffic is higher. SafeStreets must have an availability of 99\% (3.65 days/year downtime). \subsubsection{Security} The data have to be encrypted, to grant the privacy (e.g. user's position, car license plate and so forth). For this reason is used HTTPS protocol to transmit data from user to SafeStreets. Every account must have a strong password with the combination of upper-case, lower-case letters and numbers. \paragraph{Chain of custody} \hfill The system have to guarantee the chain of custody, thus SafeStreets needs to ensure that the data received from the users are genuine. In order to implement this feature the system checks the authenticity of the pictures recived before creating and storing new reports. In this way we have the certainty that the data stored are reliable and all the other portions of the system can work without deal with this aspect (for them it is trasparent). \subsubsection{Maintainability} The system is developed to be compatible with other platform, like the system of the local authority. There could be maintenance interventions, when it's possible there will be in the hours with the less use of the platform (e.g. midnight). There will be released updates, both for web-application and system. \subsubsection{Portability} The entire system is portable, every user (citizen or local authority) can access to their profile, see data, statistics and make reports of violation from their mobile, their tablet or PCs. \subsection{Mapping on requirements} \begin{center} \begin{tabular}{ | l | p{2cm} | p{2cm}| p{2cm}|} \hline RawID & GoalID & ReqID & Use Case ID \\ \hline 1&G1&RE.1&Scenario 2/3\\ \hline 2&G2.1&RE.2&\\ \hline 3&G2&RE.3&\\ \hline 4&G3.1&RE.4&Scenario 6\\ \hline 5&G3&RE.5&\\ \hline 6&G4&RE.6&\\ \hline 7&G5&RE.7&Scenario 8\\ \hline 8&G2&RE.8&\\ \hline \end{tabular} \end{center}
%================ch3====================================== \chapter{Genomic Data Analysis Methods}\label{ch:ch5} \section{Steps of Genomic Data Analysis} Regardless of the analysis type, the data analysis has a common pattern. I will discuss this general pattern and how it applies to genomics problems. The data analysis steps typically include data collection, quality check and cleaning, processing, modeling, visualization and reporting. Although, one expects to go through these steps in a linear fashion, it is normal to go back and repeat the steps with different parameters or tools. In practice, data analysis requires going through the same steps over and over again in order to be able to do a combination of the following: \begin{itemize} \item answering other related questions, \item dealing with data quality issues that are later realized, and,) including new data sets to the analysis. \end{itemize} We will now go through a brief explanation of the steps within the context of genomic data analysis\cite{seq2018}. \subsection{Data collection} Data collection refers to any source, experiment or survey that provides data for the data analysis question you have. In genomics, data collection is done by high-throughput assays. One can also use publicly available data sets and specialized databases. How much data and what type of data you should collect depends on the question you are trying to answer and the technical and biological variability of the system you are studying. \subsection{Data quality check and cleaning} In general, data analysis almost always deals with imperfect data. It is common to have missing values or measurements that are noisy. Data quality check and cleaning aims to identify any data quality issue and clean it from the dataset. High-throughput genomics data is produced by technologies that could embed technical biases into the data. If we were to give an example from sequencing, the sequenced reads do not have the same quality of bases called. Towards the ends of the reads, you could have bases that might be called incorrectly. Identifying those low quality bases and removing them will improve read mapping step. \subsection{Data processing} This step refers to processing the data to a format that is suitable for exploratory analysis and modeling. Often times, the data will not come in ready to analyze format. You may need to convert it to other formats by transforming data points (such as log transforming, normalizing etc), or subset the data set with some arbitrary or pre-defined condition. In terms of genomics, processing includes multiple steps. Following the sequencing analysis example above, processing will include aligning reads to the genome and quantification over genes or regions of interest. This is simply counting how many reads are covering your regions of interest. This quantity can give you ideas about how much a gene is expressed if your experimental protocol was RNA sequencing. This can be followed by some normalization to aid the next step. \subsection{Exploratory data analysis and modeling} This phase usually takes in the processed or semi-processed data and applies machine-learning or statistical methods to explore the data. Typically, one needs to see relationship between variables measured, relationship between samples based on the variables measured. At this point, we might be looking to see if the samples group as expected by the experimental design, are there outliers or any other anomalies ? After this step you might want to do additional clean up or re-processing to deal with anomalies. Another related step is modeling. This generally refers to modeling your variable of interest based on other variables you measured. In the context of genomics, it could be that you are trying to predict disease status of the patients from expression of genes you measured from their tissue samples. Then your variable of interest is the disease status and . This is generally called predictive modeling and could be solved with regression based or any other machine-learning methods. This kind of approach is generally called “predictive modeling Statistical modeling would also be a part of this modeling step, this can cover predictive modeling as well where we use statistical methods such as linear regression. Other analyses such as hypothesis testing, where we have an expectation and we are trying to confirm that expectation is also related to statistical modeling. A good example of this in genomics is the differential gene expression analysis. This can be formulated as comparing two data sets, in this case expression values from condition A and condition B, with the expectation that condition A and condition B has similar expression values\cite{edwards2013beginner}. \subsection{Visualization and reporting} Visualization is necessary for all the previous steps more or less. But in the final phase, we need final figures, tables and text that describes the outcome of your analysis. This will be your report. In genomics, we use common data visualization methods as well as specific visualization methods developed or popularized by genomic data analysis.
lemma locally_path_connected_UNIV: "locally path_connected (UNIV::'a :: real_normed_vector set)"
a=array(c(1,5,8,7)) a a1=array(1:15,dim=c(3,4,3)) a1 v1<-c(1,5,7,45,78,98) v2<-c(10,12,15,18,16,11) (a2<-array(c(v1,v2),dim=c(3,3,4), dimnames=list(c("R1","R2","R3"), c("C1","C2","C3"), c("M1","M2","M3","M4")))) #access element a1 a1[c(1,3),1:2,2] a1[,,3] a1[1:2,,] a1[c(1,3),1:2,c(1,3)] #create 2 vector of diff length\ v3<-c(10,20,40) v4<-c(4,-5,6,7,10,12,10,-2,1) (a3<-array(c(v3,v4),dim=c(3,3,2)))
digest("The quick brown fox jumps over the lazy dog","crc32", serialize=F)
Require Export Fiat.Common.Coq__8_4__8_5__Compat. Require Import Coq.Strings.String Coq.ZArith.ZArith Coq.Lists.List Coq.Logic.FunctionalExtensionality Coq.Sets.Ensembles Fiat.Computation Fiat.Computation.Refinements.Iterate_Decide_Comp Fiat.ADT Fiat.ADTRefinement Fiat.ADTNotation Fiat.QueryStructure.Specification.Representation.QueryStructureSchema Fiat.ADTRefinement.BuildADTRefinements Fiat.QueryStructure.Specification.Representation.QueryStructure Fiat.Common.Ensembles.IndexedEnsembles Fiat.Common.IterateBoundedIndex Fiat.QueryStructure.Specification.Operations.Query Fiat.QueryStructure.Specification.Operations.Insert Fiat.QueryStructure.Implementation.Constraints.ConstraintChecksRefinements. (* Facts about implements insert operations. *) Section InsertRefinements. Hint Resolve crossConstr. Hint Unfold SatisfiesCrossRelationConstraints SatisfiesTupleConstraints SatisfiesAttributeConstraints. Arguments GetUnConstrRelation : simpl never. Arguments UpdateUnConstrRelation : simpl never. Arguments replace_BoundedIndex : simpl never. Arguments BuildQueryStructureConstraints : simpl never. Arguments BuildQueryStructureConstraints' : simpl never. Program Definition Insert_Valid (qsSchema : QueryStructureSchema) (qs : QueryStructure qsSchema) (Ridx : _) (tup : _ ) (schConstr : forall tup', GetRelation qs Ridx tup' -> SatisfiesTupleConstraints Ridx (indexedElement tup) (indexedElement tup')) (schConstr' : forall tup', GetRelation qs Ridx tup' -> SatisfiesTupleConstraints Ridx (indexedElement tup') (indexedElement tup)) (schConstr_self : @SatisfiesAttributeConstraints qsSchema Ridx (indexedElement tup)) (qsConstr : forall Ridx', SatisfiesCrossRelationConstraints Ridx Ridx' (indexedElement tup) (GetRelation qs Ridx')) (qsConstr' : forall Ridx', Ridx' <> Ridx -> forall tup', GetRelation qs Ridx' tup' -> SatisfiesCrossRelationConstraints Ridx' Ridx (indexedElement tup') (EnsembleInsert tup (GetRelation qs Ridx))) : QueryStructure qsSchema := {| rawRels := UpdateRelation (rawRels qs) Ridx {| rawRel := EnsembleInsert tup (GetRelation qs Ridx)|} |}. Next Obligation. unfold GetRelation. unfold SatisfiesAttributeConstraints, QSGetNRelSchema, GetNRelSchema, GetRelation in *. set ((ilist2.ith2 (rawRels qs) Ridx)) as X in *; destruct X; simpl in *. destruct (attrConstraints (Vector.nth (Vector.map schemaRaw (QSschemaSchemas qsSchema)) Ridx)); eauto; unfold EnsembleInsert in *; simpl in *; intuition; subst; eauto. Defined. Next Obligation. unfold GetRelation. unfold SatisfiesTupleConstraints, QSGetNRelSchema, GetNRelSchema, GetRelation in *. set ((ilist2.ith2 (rawRels qs) Ridx )) as X in *; destruct X; simpl in *. destruct (tupleConstraints (Vector.nth (Vector.map schemaRaw (QSschemaSchemas qsSchema)) Ridx)); eauto. unfold EnsembleInsert in *; simpl in *; intuition; subst; eauto. congruence. Qed. Next Obligation. caseEq (BuildQueryStructureConstraints qsSchema idx idx'); eauto. unfold SatisfiesCrossRelationConstraints, UpdateRelation in *; destruct (fin_eq_dec Ridx idx'); subst. - rewrite ilist2.ith_replace2_Index_eq; simpl. rewrite ilist2.ith_replace2_Index_neq in H1; eauto using string_dec. generalize (qsConstr' idx H0 _ H1); rewrite H; eauto. - rewrite ilist2.ith_replace2_Index_neq; eauto using string_dec. destruct (fin_eq_dec Ridx idx); subst. + rewrite ilist2.ith_replace2_Index_eq in H1; simpl in *; eauto. unfold EnsembleInsert in H1; destruct H1; subst; eauto. * generalize (qsConstr idx'); rewrite H; eauto. * pose proof (crossConstr qs idx idx') as X; rewrite H in X; eauto. + rewrite ilist2.ith_replace2_Index_neq in H1; eauto using string_dec. pose proof (crossConstr qs idx idx') as X; rewrite H in X; eauto. Qed. Lemma QSInsertSpec_refine' : forall qsSchema (qs : QueryStructure qsSchema) Ridx tup default, refine (Pick (QSInsertSpec qs Ridx tup)) (schConstr_self <- {b | decides b (SatisfiesAttributeConstraints Ridx (indexedElement tup))}; schConstr <- {b | decides b (forall tup', GetRelation qs Ridx tup' -> SatisfiesTupleConstraints Ridx (indexedElement tup) (indexedElement tup'))}; schConstr' <- {b | decides b (forall tup', GetRelation qs Ridx tup' -> SatisfiesTupleConstraints Ridx (indexedElement tup') (indexedElement tup))}; qsConstr <- {b | decides b (forall Ridx', SatisfiesCrossRelationConstraints Ridx Ridx' (indexedElement tup) (GetRelation qs Ridx'))}; qsConstr' <- {b | decides b (forall Ridx', Ridx' <> Ridx -> forall tup', (GetRelation qs Ridx') tup' -> SatisfiesCrossRelationConstraints Ridx' Ridx (indexedElement tup') (EnsembleInsert tup (GetRelation qs Ridx)))}; match schConstr_self, schConstr, schConstr', qsConstr, qsConstr' with | true, true, true, true, true => {qs' | (forall Ridx', Ridx <> Ridx' -> GetRelation qs Ridx' = GetRelation qs' Ridx') /\ forall t, GetRelation qs' Ridx t <-> (EnsembleInsert tup (GetRelation qs Ridx) t) } | _, _ , _, _, _ => default end). Proof. intros qsSchema qs Ridx tup default v Comp_v; computes_to_inv; destruct v0; [ destruct v1; [ destruct v2; [ destruct v3; [ destruct v4; [ repeat (computes_to_inv; destruct_ex; split_and); simpl in *; computes_to_econstructor; unfold QSInsertSpec; eauto | ] | ] | ] | ] | ]; cbv delta [decides] beta in *; simpl in *; repeat (computes_to_inv; destruct_ex); eauto; computes_to_econstructor; unfold QSInsertSpec; intros; solve [exfalso; intuition]. Qed. Lemma QSInsertSpec_refine : forall qsSchema (qs : QueryStructure qsSchema) Ridx tup default, refine (Pick (QSInsertSpec qs Ridx tup)) (schConstr_self <- {b | decides b (SatisfiesAttributeConstraints Ridx (indexedElement tup))}; schConstr <- {b | decides b (forall tup', GetRelation qs Ridx tup' -> SatisfiesTupleConstraints Ridx (indexedElement tup) (indexedElement tup'))}; schConstr' <- {b | decides b (forall tup', GetRelation qs Ridx tup' -> SatisfiesTupleConstraints Ridx (indexedElement tup') (indexedElement tup))}; qsConstr <- (@Iterate_Decide_Comp _ (fun Ridx' => SatisfiesCrossRelationConstraints Ridx Ridx' (indexedElement tup) (GetRelation qs Ridx'))); qsConstr' <- (@Iterate_Decide_Comp _ (fun Ridx' => Ridx' <> Ridx -> forall tup', (GetRelation qs Ridx') tup' -> SatisfiesCrossRelationConstraints Ridx' Ridx (indexedElement tup') (EnsembleInsert tup (GetRelation qs Ridx)))); match schConstr_self, schConstr, schConstr', qsConstr, qsConstr' with | true, true, true, true, true => {qs' | (forall Ridx', Ridx <> Ridx' -> GetRelation qs Ridx' = GetRelation qs' Ridx') /\ forall t, GetRelation qs' Ridx t <-> (EnsembleInsert tup (GetRelation qs Ridx) t) } | _, _, _, _, _ => default end). Proof. intros. rewrite QSInsertSpec_refine'; f_equiv. unfold pointwise_relation; intros. repeat (f_equiv; unfold pointwise_relation; intros). setoid_rewrite Iterate_Decide_Comp_BoundedIndex; f_equiv; eauto. setoid_rewrite Iterate_Decide_Comp_BoundedIndex; f_equiv; eauto. Qed. Lemma freshIdx_UnConstrFreshIdx_Equiv : forall qsSchema (qs : QueryStructure qsSchema) Ridx, refine {x : nat | freshIdx qs Ridx x} {idx : nat | UnConstrFreshIdx (GetRelation qs Ridx) idx}. Proof. unfold freshIdx, UnConstrFreshIdx, refine; intros. computes_to_inv. computes_to_econstructor; intros. apply H in H0. unfold RawTupleIndex; intro; subst. destruct tup; omega. Qed. Lemma refine_SuccessfulInsert : forall qsSchema (qs : QueryStructure qsSchema) Ridx tup b, computes_to {idx | UnConstrFreshIdx (GetRelation qs Ridx) idx} b -> refine (b <- {result : bool | decides result (forall t : IndexedElement, GetRelation qs Ridx t <-> EnsembleInsert {| elementIndex := b; indexedElement := tup |} (GetRelation qs Ridx) t)}; ret (qs, b)) (ret (qs, false)). Proof. intros; computes_to_inv. unfold UnConstrFreshIdx in *. refine pick val false; simpl. - simplify with monad laws; reflexivity. - intro. unfold EnsembleInsert in H0. assert (GetRelation qs Ridx {| elementIndex := b; indexedElement := tup |}). eapply H0; intuition. apply H in H1; simpl in *; intuition. Qed. Corollary refine_SuccessfulInsert_Bind ResultT: forall qsSchema (qs : QueryStructure qsSchema) Ridx tup b (k : _ -> Comp ResultT), computes_to {idx | UnConstrFreshIdx (GetRelation qs Ridx) idx} b -> refine (x2 <- {x : bool | SuccessfulInsertSpec qs Ridx qs {| elementIndex := b; indexedElement := tup |} x}; k (qs, x2)) (k (qs, false)). Proof. unfold SuccessfulInsertSpec; intros. rewrite <- refineEquiv_bind_unit with (f := k). rewrite <- refine_SuccessfulInsert by eauto. rewrite refineEquiv_bind_bind. setoid_rewrite refineEquiv_bind_unit; f_equiv. Qed. Lemma QSInsertSpec_refine_opt : forall qsSchema (qs : QueryStructure qsSchema) Ridx tup, refine (QSInsert qs Ridx tup) match (attrConstraints (GetNRelSchema (qschemaSchemas qsSchema) Ridx)), (tupleConstraints (GetNRelSchema (qschemaSchemas qsSchema) Ridx)) with Some aConstr, Some tConstr => idx <- {idx | UnConstrFreshIdx (GetRelation qs Ridx) idx} ; (schConstr_self <- {b | decides b (aConstr tup) }; schConstr <- {b | decides b (forall tup', GetRelation qs Ridx tup' -> tConstr tup (indexedElement tup'))}; schConstr' <- {b | decides b (forall tup', GetRelation qs Ridx tup' -> tConstr (indexedElement tup') tup)}; qsConstr <- (@Iterate_Decide_Comp_opt _ (fun Ridx' => match (BuildQueryStructureConstraints qsSchema Ridx Ridx') with | Some CrossConstr => Some (CrossConstr tup (GetRelation qs Ridx')) | None => None end)); qsConstr' <- (@Iterate_Decide_Comp_opt _ (fun Ridx' => If (fin_eq_dec Ridx Ridx') Then None Else match (BuildQueryStructureConstraints qsSchema Ridx' Ridx) with | Some CrossConstr => Some ( forall tup', (GetRelation qs Ridx') tup' -> CrossConstr (indexedElement tup') ( (EnsembleInsert {| elementIndex := idx; indexedElement := tup |} (GetRelation qs Ridx)))) | None => None end)); match schConstr_self, schConstr, schConstr', qsConstr, qsConstr' with | true, true, true, true, true => qs' <- {qs' | (forall Ridx', Ridx <> Ridx' -> GetRelation qs Ridx' = GetRelation qs' Ridx') /\ forall t, GetRelation qs' Ridx t <-> (EnsembleInsert {| elementIndex := idx; indexedElement := tup |} (GetRelation qs Ridx) t)}; ret (qs', true) | _, _, _, _, _ => ret (qs, false) end) | Some aConstr, None => idx <- {idx | UnConstrFreshIdx (GetRelation qs Ridx) idx} ; (schConstr_self <- {b | decides b (aConstr tup) }; qsConstr <- (@Iterate_Decide_Comp_opt _ (fun Ridx' => match (BuildQueryStructureConstraints qsSchema Ridx Ridx') with | Some CrossConstr => Some (CrossConstr tup (GetRelation qs Ridx')) | None => None end)); qsConstr' <- (@Iterate_Decide_Comp_opt _ (fun Ridx' => If (fin_eq_dec Ridx Ridx') Then None Else match (BuildQueryStructureConstraints qsSchema Ridx' Ridx) with | Some CrossConstr => Some ( forall tup', (GetRelation qs Ridx') tup' -> CrossConstr (indexedElement tup') ( (EnsembleInsert {| elementIndex := idx; indexedElement := tup |} (GetRelation qs Ridx)))) | None => None end)); match schConstr_self, qsConstr, qsConstr' with | true, true, true => qs' <- {qs' | (forall Ridx', Ridx <> Ridx' -> GetRelation qs Ridx' = GetRelation qs' Ridx') /\ forall t, GetRelation qs' Ridx t <-> (EnsembleInsert {| elementIndex := idx; indexedElement := tup |} (GetRelation qs Ridx) t)}; ret (qs', true) | _, _, _ => ret (qs, false) end) | None, Some tConstr => idx <- {idx | UnConstrFreshIdx (GetRelation qs Ridx) idx} ; (schConstr <- {b | decides b (forall tup', GetRelation qs Ridx tup' -> tConstr tup (indexedElement tup'))}; schConstr' <- {b | decides b (forall tup', GetRelation qs Ridx tup' -> tConstr (indexedElement tup') tup)}; qsConstr <- (@Iterate_Decide_Comp_opt _ (fun Ridx' => match (BuildQueryStructureConstraints qsSchema Ridx Ridx') with | Some CrossConstr => Some (CrossConstr tup (GetRelation qs Ridx')) | None => None end)); qsConstr' <- (@Iterate_Decide_Comp_opt _ (fun Ridx' => If (fin_eq_dec Ridx Ridx') Then None Else match (BuildQueryStructureConstraints qsSchema Ridx' Ridx) with | Some CrossConstr => Some ( forall tup', (GetRelation qs Ridx') tup' -> CrossConstr (indexedElement tup') ( (EnsembleInsert {| elementIndex := idx; indexedElement := tup |} (GetRelation qs Ridx)))) | None => None end)); match schConstr, schConstr', qsConstr, qsConstr' with | true, true, true, true => qs' <- {qs' | (forall Ridx', Ridx <> Ridx' -> GetRelation qs Ridx' = GetRelation qs' Ridx') /\ forall t, GetRelation qs' Ridx t <-> (EnsembleInsert {| elementIndex := idx; indexedElement := tup |} (GetRelation qs Ridx) t)}; ret (qs', true) | _, _, _, _ => ret (qs, false) end) | None, None => idx <- {idx | UnConstrFreshIdx (GetRelation qs Ridx) idx} ; (qsConstr <- (@Iterate_Decide_Comp_opt _ (fun Ridx' => match (BuildQueryStructureConstraints qsSchema Ridx Ridx') with | Some CrossConstr => Some (CrossConstr tup (GetRelation qs Ridx')) | None => None end)); qsConstr' <- (@Iterate_Decide_Comp_opt _ (fun Ridx' => If (fin_eq_dec Ridx Ridx') Then None Else match (BuildQueryStructureConstraints qsSchema Ridx' Ridx) with | Some CrossConstr => Some ( forall tup', (GetRelation qs Ridx') tup' -> CrossConstr (indexedElement tup') ( (EnsembleInsert {| elementIndex := idx; indexedElement := tup |} (GetRelation qs Ridx)))) | None => None end)); match qsConstr, qsConstr' with | true, true => qs' <- {qs' | (forall Ridx', Ridx <> Ridx' -> GetRelation qs Ridx' = GetRelation qs' Ridx') /\ forall t, GetRelation qs' Ridx t <-> (EnsembleInsert {| elementIndex := idx; indexedElement := tup |} (GetRelation qs Ridx) t)}; ret (qs', true) | _, _ => ret (qs, false) end) end. Proof. unfold QSInsert. intros; simpl. unfold If_Then_Else. setoid_rewrite QSInsertSpec_refine with (default := ret qs). simplify with monad laws. setoid_rewrite refine_SatisfiesAttributeConstraints_self; simpl. match goal with |- context [attrConstraints ?R] => destruct (attrConstraints R) end. setoid_rewrite refine_SatisfiesTupleConstraints_Constr; simpl. setoid_rewrite refine_SatisfiesTupleConstraints_Constr'; simpl. match goal with |- context [tupleConstraints ?R] => destruct (tupleConstraints R) end. setoid_rewrite refine_SatisfiesCrossConstraints_Constr; simpl. rewrite freshIdx_UnConstrFreshIdx_Equiv. repeat (eapply refine_under_bind; intros). eapply refine_under_bind_both. unfold SatisfiesCrossRelationConstraints; simpl. setoid_rewrite refine_Iterate_Decide_Comp_equiv. eapply refine_Iterate_Decide_Comp. - simpl; intros; simpl in *. destruct (fin_eq_dec Ridx idx); simpl in *; substs; eauto. + congruence. + destruct (BuildQueryStructureConstraints qsSchema idx Ridx); eauto. - simpl; intros. intro; apply H4. simpl in *; destruct (fin_eq_dec Ridx idx); simpl in *; substs; eauto. + destruct (BuildQueryStructureConstraints qsSchema idx Ridx); eauto. - intros. repeat setoid_rewrite refine_If_Then_Else_Bind. unfold If_Then_Else. repeat find_if_inside; unfold SuccessfulInsertSpec; try (simplify with monad laws; eapply refine_SuccessfulInsert; eauto). + apply refine_under_bind; intros. refine pick val true; simpl. simplify with monad laws; reflexivity. intros; computes_to_inv; intuition; eapply H7; eauto. - simpl; simplify with monad laws. setoid_rewrite refine_SatisfiesCrossConstraints_Constr; simpl. rewrite freshIdx_UnConstrFreshIdx_Equiv. repeat (eapply refine_under_bind; intros). eapply refine_under_bind_both. unfold SatisfiesCrossRelationConstraints; simpl. setoid_rewrite refine_Iterate_Decide_Comp_equiv. eapply refine_Iterate_Decide_Comp. + simpl; intros; simpl in *. destruct (fin_eq_dec Ridx idx); simpl in *; substs; eauto. * congruence. * destruct (BuildQueryStructureConstraints qsSchema idx Ridx); eauto. + simpl; intros. intro; apply H2. simpl in *; destruct (fin_eq_dec Ridx idx); simpl in *; substs; eauto. * destruct (BuildQueryStructureConstraints qsSchema idx Ridx); eauto. + intros. repeat setoid_rewrite refine_If_Then_Else_Bind. unfold If_Then_Else. repeat find_if_inside; unfold SuccessfulInsertSpec; try (simplify with monad laws; eapply refine_SuccessfulInsert; eauto). * apply refine_under_bind; intros. refine pick val true; simpl. simplify with monad laws; reflexivity. intros; computes_to_inv; intuition; eapply H5; eauto. - simplify with monad laws. setoid_rewrite refine_SatisfiesTupleConstraints_Constr; simpl. setoid_rewrite refine_SatisfiesTupleConstraints_Constr'; simpl. match goal with |- context [tupleConstraints ?R] => destruct (tupleConstraints R) end. setoid_rewrite refine_SatisfiesCrossConstraints_Constr; simpl. rewrite freshIdx_UnConstrFreshIdx_Equiv. repeat (eapply refine_under_bind; intros). eapply refine_under_bind_both. unfold SatisfiesCrossRelationConstraints; simpl. setoid_rewrite refine_Iterate_Decide_Comp_equiv. eapply refine_Iterate_Decide_Comp. + simpl; intros; simpl in *. destruct (fin_eq_dec Ridx idx); simpl in *; substs; eauto. * congruence. * destruct (BuildQueryStructureConstraints qsSchema idx Ridx); eauto. + simpl; intros. intro; apply H3. simpl in *; destruct (fin_eq_dec Ridx idx); simpl in *; substs; eauto. * destruct (BuildQueryStructureConstraints qsSchema idx Ridx); eauto. + intros. repeat setoid_rewrite refine_If_Then_Else_Bind. unfold If_Then_Else. repeat find_if_inside; unfold SuccessfulInsertSpec; try (simplify with monad laws; eapply refine_SuccessfulInsert; eauto). * apply refine_under_bind; intros. refine pick val true; simpl. simplify with monad laws; reflexivity. intros; computes_to_inv; intuition; eapply H6; eauto. + simpl; simplify with monad laws. setoid_rewrite refine_SatisfiesCrossConstraints_Constr; simpl. rewrite freshIdx_UnConstrFreshIdx_Equiv. repeat (eapply refine_under_bind; intros). eapply refine_under_bind_both. unfold SatisfiesCrossRelationConstraints; simpl. setoid_rewrite refine_Iterate_Decide_Comp_equiv. eapply refine_Iterate_Decide_Comp. * simpl; intros; simpl in *. destruct (fin_eq_dec Ridx idx); simpl in *; substs; eauto. congruence. destruct (BuildQueryStructureConstraints qsSchema idx Ridx); eauto. * simpl; intros. intro; apply H1. simpl in *; destruct (fin_eq_dec Ridx idx); simpl in *; substs; eauto. destruct (BuildQueryStructureConstraints qsSchema idx Ridx); eauto. * intros. repeat setoid_rewrite refine_If_Then_Else_Bind. unfold If_Then_Else. repeat find_if_inside; unfold SuccessfulInsertSpec; try (simplify with monad laws; eapply refine_SuccessfulInsert; eauto). apply refine_under_bind; intros. refine pick val true; simpl. simplify with monad laws; reflexivity. intros; computes_to_inv; intuition; eapply H4; eauto. Qed. Lemma QSInsertSpec_UnConstr_refine' : forall qsSchema (qs : _ ) (Ridx : _) (tup : _ ) (or : _ ) (NIntup : ~ GetUnConstrRelation qs Ridx tup), @DropQSConstraints_AbsR qsSchema or qs -> refine (or' <- (qs' <- Pick (QSInsertSpec or Ridx tup); b <- Pick (SuccessfulInsertSpec or Ridx qs' tup); ret (qs', b)); nr' <- {nr' | DropQSConstraints_AbsR (fst or') nr'}; ret (nr', snd or')) (schConstr_self <- {b | decides b (SatisfiesAttributeConstraints Ridx (indexedElement tup))}; schConstr <- {b | decides b (forall tup', GetUnConstrRelation qs Ridx tup' -> SatisfiesTupleConstraints Ridx (indexedElement tup) (indexedElement tup'))}; schConstr' <- {b | decides b (forall tup', GetUnConstrRelation qs Ridx tup' -> SatisfiesTupleConstraints Ridx (indexedElement tup') (indexedElement tup))}; qsConstr <- (@Iterate_Decide_Comp _ (fun Ridx' => SatisfiesCrossRelationConstraints Ridx Ridx' (indexedElement tup) (GetUnConstrRelation qs Ridx'))); qsConstr' <- (@Iterate_Decide_Comp _ (fun Ridx' => Ridx' <> Ridx -> forall tup', (GetUnConstrRelation qs Ridx') tup' -> SatisfiesCrossRelationConstraints Ridx' Ridx (indexedElement tup') (EnsembleInsert tup (GetUnConstrRelation qs Ridx)))); match schConstr_self, schConstr, schConstr', qsConstr, qsConstr' with | true, true, true, true, true => ret (UpdateUnConstrRelation qs Ridx (EnsembleInsert tup (GetUnConstrRelation qs Ridx)), true) | _, _, _, _, _ => ret (qs, false) end). Proof. intros. setoid_rewrite refineEquiv_pick_eq'. unfold DropQSConstraints_AbsR in *; intros; subst. rewrite QSInsertSpec_refine with (default := ret or). unfold refine; intros; subst. computes_to_inv. repeat rewrite GetRelDropConstraints in *. (* These assert are gross. Need to eliminate them. *) assert ((fun Ridx' => SatisfiesCrossRelationConstraints Ridx Ridx' (indexedElement tup) (GetUnConstrRelation (DropQSConstraints or) Ridx')) = (fun Ridx' => SatisfiesCrossRelationConstraints Ridx Ridx' (indexedElement tup) (GetRelation or Ridx'))) as rewriteSat by (apply functional_extensionality; intros; rewrite GetRelDropConstraints; reflexivity); rewrite rewriteSat in H'''; clear rewriteSat. assert ((fun Ridx' => Ridx' <> Ridx -> forall tup', GetUnConstrRelation (DropQSConstraints or) Ridx' tup' -> SatisfiesCrossRelationConstraints Ridx' Ridx (indexedElement tup') (EnsembleInsert tup (GetRelation or Ridx))) = (fun Ridx' => Ridx' <> Ridx -> forall tup', GetRelation or Ridx' tup' -> SatisfiesCrossRelationConstraints Ridx' Ridx (indexedElement tup') (EnsembleInsert tup (GetRelation or Ridx)))) as rewriteSat by (apply functional_extensionality; intros; rewrite GetRelDropConstraints; reflexivity). rewrite GetRelDropConstraints in H', H'', H''''. setoid_rewrite rewriteSat in H''''; clear rewriteSat. (* Resume not-terribleness *) generalize (Iterate_Decide_Comp_BoundedIndex _ _ H''') as H3'; generalize (Iterate_Decide_Comp_BoundedIndex _ _ H'''') as H4'; intros. revert H''' H''''. computes_to_inv. intros. eapply BindComputes with (a := match v0 as x', v1 as x0', v2 as x1', v3 as x2', v4 as x3' return decides x' _ -> decides x0' _ -> decides x1' _ -> decides x2' _ -> decides x3' _ -> _ with | true, true, true, true, true => fun H H0 H1 H2 H3 => (@Insert_Valid _ or Ridx tup H0 H1 H H2 H3, true) | _, _, _, _, _ => fun _ _ _ _ _ => (or, false) end H H' H'' H3' H4'). eapply BindComputes with (a := match v0 as x', v1 as x0', v2 as x1', v3 as x2', v4 as x3' return decides x' _ -> decides x0' _ -> decides x1' _ -> decides x2' _ -> decides x3' _ -> _ with | true, true, true, true, true => fun H H0 H1 H2 H3 => @Insert_Valid _ or Ridx tup H0 H1 H H2 H3 | _, _, _, _, _ => fun _ _ _ _ _ => or end H H' H'' H3' H4'). repeat (computes_to_econstructor; eauto). repeat find_if_inside; try computes_to_econstructor; simpl in *. unfold GetRelation, Insert_Valid, UpdateUnConstrRelation, UpdateRelation, EnsembleInsert ; simpl; split; intros; eauto. rewrite ilist2.ith_replace2_Index_neq; eauto using string_dec; simpl. rewrite ilist2.ith_replace2_Index_eq; unfold EnsembleInsert, GetRelation; simpl; intuition. computes_to_econstructor. eapply PickComputes with (a := match v0 as x', v1 as x0', v2 as x1', v3 as x2', v4 as x3' return decides x' _ -> decides x0' _ -> decides x1' _ -> decides x2' _ -> decides x3' _ -> _ with | true, true, true, true, true => fun H H0 H1 H2 H3 => true | _, _, _, _, _ => fun _ _ _ _ _ => false end H H' H'' H3' H4'). repeat find_if_inside; simpl; try (solve [unfold not; let H := fresh in intros H; eapply NIntup; eapply H; unfold EnsembleInsert; eauto]). intros; rewrite <- GetRelDropConstraints. unfold Insert_Valid, GetUnConstrRelation, DropQSConstraints, UpdateRelation; simpl. rewrite <- ilist2.ith_imap2, ilist2.ith_replace2_Index_eq; simpl; tauto. simpl in *. unfold not; intros; apply NIntup. rewrite GetRelDropConstraints; eapply H0; unfold DropQSConstraints, Insert_Valid, EnsembleInsert; simpl; eauto. unfold not; intros; apply NIntup; rewrite GetRelDropConstraints; eapply H0; unfold DropQSConstraints, Insert_Valid, EnsembleInsert; simpl; eauto. unfold not; intros; apply NIntup; rewrite GetRelDropConstraints; eapply H0; unfold DropQSConstraints, Insert_Valid, EnsembleInsert; simpl; eauto. unfold not; intros; apply NIntup; rewrite GetRelDropConstraints; eapply H0; unfold DropQSConstraints, Insert_Valid, EnsembleInsert; simpl; eauto. unfold not; intros; apply NIntup; rewrite GetRelDropConstraints; eapply H0; unfold DropQSConstraints, Insert_Valid, EnsembleInsert; simpl; eauto. simpl in *. repeat find_if_inside; simpl; eauto. repeat find_if_inside; simpl; eauto. repeat computes_to_econstructor. unfold Insert_Valid, GetUnConstrRelation, DropQSConstraints, UpdateRelation; simpl; eauto. computes_to_inv; subst. unfold Insert_Valid, GetUnConstrRelation, DropQSConstraints, UpdateUnConstrRelation; simpl; eauto. rewrite ilist2.imap_replace2_Index, <- ilist2.ith_imap2. simpl; computes_to_econstructor. Qed. Lemma freshIdx2UnConstr {qsSchema} qs Ridx : refine {bound | forall tup, @GetUnConstrRelation (QueryStructureSchemaRaw qsSchema) qs Ridx tup -> RawTupleIndex tup <> bound} {bound | UnConstrFreshIdx (GetUnConstrRelation qs Ridx) bound}. Proof. unfold UnConstrFreshIdx; intros v Comp_v; computes_to_econstructor. computes_to_inv; intros. unfold RawTupleIndex in *; apply Comp_v in H; omega. Qed. Lemma QSInsertSpec_UnConstr_refine : forall qsSchema qs Ridx tup or refined_schConstr_self refined_schConstr refined_schConstr' refined_qsConstr refined_qsConstr', refine {b | decides b (SatisfiesAttributeConstraints Ridx tup)} refined_schConstr_self -> refine {b | decides b (forall tup' : @IndexedElement (@RawTuple (@GetNRelSchemaHeading (numRawQSschemaSchemas (QueryStructureSchemaRaw qsSchema)) (qschemaSchemas (QueryStructureSchemaRaw qsSchema)) _)), GetUnConstrRelation qs Ridx tup' -> SatisfiesTupleConstraints Ridx tup (indexedElement tup'))} refined_schConstr -> refine {b | decides b (forall tup', GetUnConstrRelation qs Ridx tup' -> SatisfiesTupleConstraints Ridx (indexedElement tup') tup)} refined_schConstr' -> refine (@Iterate_Decide_Comp _ (fun Ridx' => SatisfiesCrossRelationConstraints Ridx Ridx' tup (GetUnConstrRelation qs Ridx'))) refined_qsConstr -> (forall idx, refine (@Iterate_Decide_Comp _ (fun Ridx' => Ridx' <> Ridx -> forall tup', (GetUnConstrRelation qs Ridx') tup' -> SatisfiesCrossRelationConstraints Ridx' Ridx (indexedElement tup') (EnsembleInsert {| elementIndex := idx; indexedElement := tup |} (GetUnConstrRelation qs Ridx)))) (refined_qsConstr' idx)) -> @DropQSConstraints_AbsR qsSchema or qs -> refine (or' <- (idx <- Pick (freshIdx or Ridx); qs' <- Pick (QSInsertSpec or Ridx {| elementIndex := idx; indexedElement := tup |}); b <- Pick (SuccessfulInsertSpec or Ridx qs' {| elementIndex := idx; indexedElement := tup |}); ret (qs', b)); nr' <- {nr' | DropQSConstraints_AbsR (fst or') nr'}; ret (nr', snd or')) (idx <- {idx | UnConstrFreshIdx (GetUnConstrRelation qs Ridx) idx}; (schConstr_self <- refined_schConstr_self; schConstr <- refined_schConstr; schConstr' <- refined_schConstr'; qsConstr <- refined_qsConstr ; qsConstr' <- (refined_qsConstr' idx); match schConstr_self, schConstr, schConstr', qsConstr, qsConstr' with | true, true, true, true, true => ret (UpdateUnConstrRelation qs Ridx (EnsembleInsert {| elementIndex := idx; indexedElement := tup |} (GetUnConstrRelation qs Ridx)), true) | _, _, _, _, _ => ret (qs, false) end)). Proof. intros. simplify with monad laws. unfold freshIdx. rewrite <- GetRelDropConstraints. unfold DropQSConstraints_AbsR in *; subst. rewrite freshIdx2UnConstr. apply refine_bind_pick; intros. setoid_rewrite <- H; setoid_rewrite <- H0; setoid_rewrite <- H1; setoid_rewrite <- H2; setoid_rewrite <- (H3 a). setoid_rewrite <- (QSInsertSpec_UnConstr_refine' _ {| elementIndex := a; indexedElement := tup |}). repeat setoid_rewrite refineEquiv_bind_bind. setoid_rewrite refineEquiv_bind_unit; simpl. unfold DropQSConstraints_AbsR in *; subst. f_equiv; intros. unfold UnConstrFreshIdx, not in *; intros. apply H4 in H5; simpl in *; omega. reflexivity. Qed. Local Transparent QSInsert. Definition UpdateUnConstrRelationInsertC {qsSchema} (qs : UnConstrQueryStructure qsSchema) Ridx tup := ret (UpdateUnConstrRelation qs Ridx (EnsembleInsert tup (GetUnConstrRelation qs Ridx))). Lemma QSInsertSpec_refine_subgoals ResultT : forall qsSchema (qs : QueryStructure qsSchema) qs' Ridx tup default success refined_schConstr_self refined_schConstr refined_schConstr' refined_qsConstr refined_qsConstr' (k : _ -> Comp ResultT), DropQSConstraints_AbsR qs qs' -> refine {b | decides b (SatisfiesAttributeConstraints Ridx tup)} refined_schConstr_self -> refine {b | decides b (forall tup', GetUnConstrRelation qs' Ridx tup' -> SatisfiesTupleConstraints Ridx tup (indexedElement tup'))} refined_schConstr -> (forall b', decides b' (forall tup', GetUnConstrRelation qs' Ridx tup' -> SatisfiesTupleConstraints Ridx tup (indexedElement tup')) -> refine {b | decides b (forall tup', GetUnConstrRelation qs' Ridx tup' -> SatisfiesTupleConstraints Ridx (indexedElement tup') tup)} (refined_schConstr' b')) -> refine (@Iterate_Decide_Comp_opt _ (fun Ridx' => match (BuildQueryStructureConstraints qsSchema Ridx Ridx') with | Some CrossConstr => Some (CrossConstr tup (GetUnConstrRelation qs' Ridx')) | None => None end)) refined_qsConstr -> (forall idx, UnConstrFreshIdx (GetUnConstrRelation qs' Ridx) idx -> refine (@Iterate_Decide_Comp_opt _ (fun Ridx' => if (fin_eq_dec Ridx Ridx') then None else match (BuildQueryStructureConstraints qsSchema Ridx' Ridx) with | Some CrossConstr => Some ( forall tup', (GetUnConstrRelation qs' Ridx') tup' -> CrossConstr (indexedElement tup') ( (EnsembleInsert {| elementIndex := idx; indexedElement := tup |} (GetUnConstrRelation qs' Ridx)))) | None => None end)) (refined_qsConstr' idx)) -> (forall idx qs' qs'', DropQSConstraints_AbsR qs' qs'' -> UnConstrFreshIdx (GetRelation qs Ridx) idx -> (forall Ridx', Ridx <> Ridx' -> GetRelation qs Ridx' = GetRelation qs' Ridx') -> (forall t, GetRelation qs' Ridx t <-> (EnsembleInsert {| elementIndex := idx; indexedElement := tup |} (GetRelation qs Ridx) t)) -> refine (k (qs', true)) (success qs'')) -> refine (k (qs, false)) default -> refine (qs' <- QSInsert qs Ridx tup; k qs') (idx <- {idx | UnConstrFreshIdx (GetUnConstrRelation qs' Ridx) idx} ; schConstr_self <- refined_schConstr_self; schConstr <- refined_schConstr; schConstr' <- refined_schConstr' schConstr; qsConstr <- refined_qsConstr; qsConstr' <- refined_qsConstr' idx; match schConstr_self, schConstr, schConstr', qsConstr, qsConstr' with | true, true, true, true, true => qs'' <- UpdateUnConstrRelationInsertC qs' Ridx {| elementIndex := idx; indexedElement := tup |}; success qs'' | _, _, _, _, _ => default end). Proof. intros. unfold QSInsert. simplify with monad laws. setoid_rewrite QSInsertSpec_refine with (default := ret qs). rewrite freshIdx_UnConstrFreshIdx_Equiv. simplify with monad laws. rewrite <- H, (GetRelDropConstraints qs). apply refine_under_bind_both; [reflexivity | intros]. rewrite <- !GetRelDropConstraints; rewrite !H. repeat (apply refine_under_bind_both; [repeat rewrite <- (GetRelDropConstraints qs); eauto | intros]). computes_to_inv; eauto. rewrite refine_SatisfiesCrossConstraints_Constr; etransitivity; try eassumption. simpl; f_equiv; apply functional_extensionality; intros; rewrite <- H, GetRelDropConstraints; reflexivity. rewrite <- H, GetRelDropConstraints, refine_SatisfiesCrossConstraints'_Constr. etransitivity; try eapply H4. simpl; f_equiv; apply functional_extensionality; intros. rewrite <- H; rewrite !(GetRelDropConstraints qs); eauto. rewrite <- H, GetRelDropConstraints; computes_to_inv; eauto. repeat find_if_inside; try simplify with monad laws; try solve [rewrite refine_SuccessfulInsert_Bind; eauto]. apply Iterate_Decide_Comp_BoundedIndex in H11. apply Iterate_Decide_Comp_BoundedIndex in H12. computes_to_inv; simpl in *. assert (forall tup' : IndexedElement, GetRelation qs Ridx tup' -> SatisfiesTupleConstraints (qsSchema := qsSchema) Ridx (indexedElement {| elementIndex := a; indexedElement := tup |}) (indexedElement tup')) as H9' by (intros; apply H9; rewrite <- H, GetRelDropConstraints; eassumption). assert (forall Ridx' : Fin.t (numRawQSschemaSchemas qsSchema), Ridx' <> Ridx -> forall tup' : IndexedElement, GetRelation qs Ridx' tup' -> SatisfiesCrossRelationConstraints Ridx' Ridx (indexedElement tup') (EnsembleInsert {| elementIndex := a; indexedElement := tup |} (GetRelation qs Ridx))) as H12' by (intros; rewrite <- GetRelDropConstraints, H; eauto). assert (forall tup' : IndexedElement, GetRelation qs Ridx tup' -> SatisfiesTupleConstraints (qsSchema := qsSchema) Ridx (indexedElement tup') (indexedElement {| elementIndex := a; indexedElement := tup |})) as H10' by (intros; apply H10; rewrite <- H, GetRelDropConstraints; eassumption). refine pick val (Insert_Valid qs {| elementIndex := a; indexedElement := tup |} H9' H10' H8 H11 H12'). simplify with monad laws. refine pick val true. unfold UpdateUnConstrRelationInsertC. simplify with monad laws. setoid_rewrite refineEquiv_bind_unit. eapply H5. rewrite <- H. rewrite GetRelDropConstraints. unfold DropQSConstraints_AbsR, DropQSConstraints, Insert_Valid; simpl. unfold UpdateRelation. rewrite ilist2.imap_replace2_Index; reflexivity. eauto. intros; unfold Insert_Valid, GetRelation, UpdateRelation; simpl. rewrite ilist2.ith_replace2_Index_neq; simpl; eauto. intros; unfold Insert_Valid, GetRelation, UpdateRelation; simpl. rewrite ilist2.ith_replace2_Index_eq; simpl; reflexivity. unfold SuccessfulInsertSpec; simpl. unfold Insert_Valid, GetRelation, UpdateRelation; simpl. rewrite ilist2.ith_replace2_Index_eq; simpl; reflexivity. split; intros. unfold Insert_Valid, GetRelation, UpdateRelation; simpl. rewrite ilist2.ith_replace2_Index_neq; simpl; eauto. rewrite <- H; rewrite GetRelDropConstraints. unfold Insert_Valid, GetRelation, UpdateRelation; simpl. rewrite ilist2.ith_replace2_Index_eq; simpl; reflexivity. Qed. Lemma QSInsertSpec_refine_short_circuit' : forall qsSchema (qs : QueryStructure qsSchema) Ridx tup default, refine (Pick (QSInsertSpec qs Ridx tup)) (schConstr_self <- {b | decides b (SatisfiesAttributeConstraints Ridx (indexedElement tup))}; If schConstr_self Then schConstr <- {b | decides b (forall tup', GetRelation qs Ridx tup' -> SatisfiesTupleConstraints Ridx (indexedElement tup) (indexedElement tup'))}; If schConstr Then schConstr' <- {b | decides b (forall tup', GetRelation qs Ridx tup' -> SatisfiesTupleConstraints Ridx (indexedElement tup') (indexedElement tup))}; If schConstr' Then qsConstr <- {b | decides b (forall Ridx', SatisfiesCrossRelationConstraints Ridx Ridx' (indexedElement tup) (GetRelation qs Ridx'))}; If qsConstr Then qsConstr' <- {b | decides b (forall Ridx', Ridx' <> Ridx -> forall tup', (GetRelation qs Ridx') tup' -> SatisfiesCrossRelationConstraints Ridx' Ridx (indexedElement tup') (EnsembleInsert tup (GetRelation qs Ridx)))}; If qsConstr' Then {qs' | (forall Ridx', Ridx <> Ridx' -> GetRelation qs Ridx' = GetRelation qs' Ridx') /\ forall t, GetRelation qs' Ridx t <-> (EnsembleInsert tup (GetRelation qs Ridx) t) } Else default Else default Else default Else default Else default). Proof. intros qsSchema qs Ridx tup default v Comp_v; computes_to_inv. destruct v0; [ simpl in *; computes_to_inv; destruct v0; [ simpl in *; computes_to_inv; destruct v0; [simpl in *; computes_to_inv; destruct v0; [ simpl in *; computes_to_inv; destruct v0; [ repeat (computes_to_inv; destruct_ex; split_and); simpl in *; computes_to_econstructor; unfold QSInsertSpec; eauto | ] | ] | ] | ] | ]; cbv delta [decides] beta in *; simpl in *; repeat (computes_to_inv; destruct_ex); eauto. intuition. unfold QSInsertSpec; intros; intuition. unfold QSInsertSpec; intros; intuition. unfold QSInsertSpec; intros; intuition. unfold QSInsertSpec; intros; intuition. unfold QSInsertSpec; intros; intuition. computes_to_econstructor; unfold QSInsertSpec; intros; intros. solve [exfalso; intuition]. Qed. Lemma QSInsertSpec_refine_short_circuit : forall qsSchema (qs : QueryStructure qsSchema) Ridx tup default, refine (Pick (QSInsertSpec qs Ridx tup)) (schConstr_self <- {b | decides b (SatisfiesAttributeConstraints Ridx (indexedElement tup))}; If schConstr_self Then schConstr <- {b | decides b (forall tup', GetRelation qs Ridx tup' -> SatisfiesTupleConstraints Ridx (indexedElement tup) (indexedElement tup'))}; If schConstr Then schConstr' <- {b | decides b (forall tup', GetRelation qs Ridx tup' -> SatisfiesTupleConstraints Ridx (indexedElement tup') (indexedElement tup))}; If schConstr' Then qsConstr <- (@Iterate_Decide_Comp _ (fun Ridx' => SatisfiesCrossRelationConstraints Ridx Ridx' (indexedElement tup) (GetRelation qs Ridx'))); If qsConstr Then qsConstr' <- (@Iterate_Decide_Comp _ (fun Ridx' => Ridx' <> Ridx -> forall tup', (GetRelation qs Ridx') tup' -> SatisfiesCrossRelationConstraints Ridx' Ridx (indexedElement tup') (EnsembleInsert tup (GetRelation qs Ridx)))); If qsConstr' Then {qs' | (forall Ridx', Ridx <> Ridx' -> GetRelation qs Ridx' = GetRelation qs' Ridx') /\ forall t, GetRelation qs' Ridx t <-> (EnsembleInsert tup (GetRelation qs Ridx) t) } Else default Else default Else default Else default Else default). Proof. intros. rewrite QSInsertSpec_refine_short_circuit'; f_equiv. unfold pointwise_relation; intros. apply refine_If_Then_Else; f_equiv; unfold pointwise_relation; intros. apply refine_If_Then_Else; f_equiv; unfold pointwise_relation; intros. apply refine_If_Then_Else; f_equiv; unfold pointwise_relation; intros. setoid_rewrite Iterate_Decide_Comp_BoundedIndex; f_equiv; eauto. apply refine_If_Then_Else; f_equiv; unfold pointwise_relation; intros. setoid_rewrite Iterate_Decide_Comp_BoundedIndex; f_equiv; eauto. Qed. Lemma QSInsertSpec_refine_subgoals_short_circuit ResultT : forall qsSchema (qs : QueryStructure qsSchema) qs' Ridx tup default success refined_schConstr_self refined_schConstr refined_schConstr' refined_qsConstr refined_qsConstr' (k : _ -> Comp ResultT), DropQSConstraints_AbsR qs qs' -> refine {b | decides b (SatisfiesAttributeConstraints Ridx tup)} refined_schConstr_self -> refine {b | decides b (forall tup', GetUnConstrRelation qs' Ridx tup' -> SatisfiesTupleConstraints Ridx tup (indexedElement tup'))} refined_schConstr -> (forall b', decides b' (forall tup', GetUnConstrRelation qs' Ridx tup' -> SatisfiesTupleConstraints Ridx tup (indexedElement tup')) -> refine {b | decides b (forall tup', GetUnConstrRelation qs' Ridx tup' -> SatisfiesTupleConstraints Ridx (indexedElement tup') tup)} (refined_schConstr' b')) -> refine (@Iterate_Decide_Comp.Iterate_Decide_Comp_opt _ (fun Ridx' => match (BuildQueryStructureConstraints qsSchema Ridx Ridx') with | Some CrossConstr => Some (CrossConstr tup (GetUnConstrRelation qs' Ridx')) | None => None end)) refined_qsConstr -> (forall idx, UnConstrFreshIdx (GetUnConstrRelation qs' Ridx) idx -> refine (@Iterate_Decide_Comp.Iterate_Decide_Comp_opt _ (fun Ridx' => if (fin_eq_dec Ridx Ridx') then None else match (BuildQueryStructureConstraints qsSchema Ridx' Ridx) with | Some CrossConstr => Some ( forall tup', (GetUnConstrRelation qs' Ridx') tup' -> CrossConstr (indexedElement tup') ( (EnsembleInsert {| elementIndex := idx; indexedElement := tup |} (GetUnConstrRelation qs' Ridx)))) | None => None end)) (refined_qsConstr' idx)) -> (forall idx qs' qs'', DropQSConstraints_AbsR qs' qs'' -> UnConstrFreshIdx (GetRelation qs Ridx) idx -> (forall Ridx', Ridx <> Ridx' -> GetRelation qs Ridx' = GetRelation qs' Ridx') -> (forall t, GetRelation qs' Ridx t <-> (EnsembleInsert {| elementIndex := idx; indexedElement := tup |} (GetRelation qs Ridx) t)) -> refine (k (qs', true)) (success qs'')) -> refine (k (qs, false)) default -> refine (qs' <- QSInsert qs Ridx tup; k qs') (idx <- {idx | UnConstrFreshIdx (GetUnConstrRelation qs' Ridx) idx} ; schConstr_self <- refined_schConstr_self; If schConstr_self Then schConstr <- refined_schConstr; If schConstr Then schConstr' <- refined_schConstr' schConstr; If schConstr' Then qsConstr <- refined_qsConstr; If qsConstr Then qsConstr' <- refined_qsConstr' idx; If qsConstr' Then qs'' <- UpdateUnConstrRelationInsertC qs' Ridx {| elementIndex := idx; indexedElement := tup |}; success qs'' Else default Else default Else default Else default Else default ). Proof. intros; unfold QSInsert. simplify with monad laws. setoid_rewrite QSInsertSpec_refine_short_circuit with (default := ret qs). rewrite freshIdx_UnConstrFreshIdx_Equiv. simplify with monad laws. rewrite <- !H, (GetRelDropConstraints qs). apply refine_under_bind_both; [reflexivity | intros]. apply refine_under_bind_both; [eassumption | intros]. rewrite refine_If_Then_Else_Bind. eapply refine_if; intros; subst; simpl; try simplify with monad laws. apply refine_under_bind_both; [eauto | intros]. rewrite <- H1; simpl. rewrite <- (GetRelDropConstraints qs), H; reflexivity. rewrite refine_If_Then_Else_Bind. eapply refine_if; intros; subst; simpl; try simplify with monad laws. apply refine_under_bind_both; [eauto | intros]. rewrite <- H2; simpl. rewrite <- (GetRelDropConstraints qs), H; reflexivity. computes_to_inv; simpl in *; eauto. rewrite <- !GetRelDropConstraints in H9; rewrite !H in H9. eauto. rewrite refine_If_Then_Else_Bind. eapply refine_if; intros; subst; simpl; try simplify with monad laws. apply refine_under_bind_both; [eauto | intros]. rewrite <- H3; simpl. etransitivity. apply refine_SatisfiesCrossConstraints_Constr. f_equiv. apply functional_extensionality; intro. destruct (BuildQueryStructureConstraints qsSchema Ridx x). rewrite <- (GetRelDropConstraints qs), H; reflexivity. reflexivity. rewrite refine_If_Then_Else_Bind. eapply refine_if; intros; subst; simpl; try simplify with monad laws. apply refine_under_bind_both; [eauto | intros]. rewrite <- H4; simpl. etransitivity. apply refine_SatisfiesCrossConstraints'_Constr. f_equiv. apply functional_extensionality; intro. simpl. find_if_inside; eauto. destruct (BuildQueryStructureConstraints qsSchema x Ridx). rewrite <- (GetRelDropConstraints qs), H. rewrite <- (GetRelDropConstraints qs), H. reflexivity. reflexivity. computes_to_inv; simpl in *; subst. rewrite <- H, (GetRelDropConstraints qs); eauto. rewrite refine_If_Then_Else_Bind. eapply refine_if. simpl in *; intros; subst; simpl; computes_to_inv; simpl in *. assert (forall tup' : IndexedElement, GetRelation qs Ridx tup' -> SatisfiesTupleConstraints (qsSchema := qsSchema) Ridx (indexedElement {| elementIndex := a; indexedElement := tup |}) (indexedElement tup')) as H9' by (intros; apply H9; try rewrite <- H, GetRelDropConstraints; eassumption). assert (forall Ridx' : Fin.t (numRawQSschemaSchemas qsSchema), Ridx' <> Ridx -> forall tup' : IndexedElement, GetRelation qs Ridx' tup' -> SatisfiesCrossRelationConstraints Ridx' Ridx (indexedElement tup') (EnsembleInsert {| elementIndex := a; indexedElement := tup |} (GetRelation qs Ridx))) as H12' by (apply Iterate_Decide_Comp_BoundedIndex in H12; computes_to_inv; subst; simpl in *; apply H12). assert (forall tup' : IndexedElement, GetRelation qs Ridx tup' -> SatisfiesTupleConstraints (qsSchema := qsSchema) Ridx (indexedElement tup') (indexedElement {| elementIndex := a; indexedElement := tup |})) as H10' by (intros; apply H10; try rewrite <- H, GetRelDropConstraints; eassumption). assert (forall Ridx' : Fin.t (numRawQSschemaSchemas qsSchema), SatisfiesCrossRelationConstraints (qsSchema := qsSchema) Ridx Ridx' (indexedElement {| elementIndex := a; indexedElement := tup |}) (GetRelation qs Ridx')) as H11'. (apply Iterate_Decide_Comp_BoundedIndex in H11; computes_to_inv; subst; simpl in *; apply H11). refine pick val (Insert_Valid qs {| elementIndex := a; indexedElement := tup |} H9' H10' H8 H11' H12'). simplify with monad laws. refine pick val true. unfold UpdateUnConstrRelationInsertC. simplify with monad laws. setoid_rewrite refineEquiv_bind_unit. eapply H5. rewrite H. unfold DropQSConstraints_AbsR, DropQSConstraints, Insert_Valid; simpl. unfold UpdateRelation. rewrite ilist2.imap_replace2_Index; try reflexivity. simpl. unfold UpdateUnConstrRelation; simpl. rewrite <- H. rewrite GetRelDropConstraints; reflexivity. apply H7. intros. intros; unfold Insert_Valid, GetRelation, UpdateRelation; simpl. simpl. rewrite ilist2.ith_replace2_Index_neq; simpl; eauto. intros; unfold Insert_Valid, GetRelation, UpdateRelation; simpl. rewrite ilist2.ith_replace2_Index_eq; simpl; reflexivity. unfold SuccessfulInsertSpec; simpl. unfold Insert_Valid, GetRelation, UpdateRelation; simpl. rewrite ilist2.ith_replace2_Index_eq; simpl; reflexivity. split; intros. unfold Insert_Valid, GetRelation, UpdateRelation; simpl. rewrite ilist2.ith_replace2_Index_neq; simpl; eauto. rewrite <- GetRelDropConstraints. unfold Insert_Valid, GetRelation, UpdateRelation; simpl. unfold DropQSConstraints, GetUnConstrRelation; simpl. rewrite ilist2.imap_replace2_Index; simpl. rewrite ilist2.ith_replace2_Index_eq; simpl; reflexivity. intros; subst; computes_to_inv; simpl. simplify with monad laws. refine pick val _; try simplify with monad laws; eauto. unfold SuccessfulInsertSpec. computes_to_inv; simpl in *; subst. intro. pose proof (proj2 (H13 _) (or_introl (eq_refl _))). apply H7 in H14; simpl in H14; omega. refine pick val _; try simplify with monad laws; eauto. unfold SuccessfulInsertSpec. computes_to_inv; simpl in *; subst. intro. pose proof (proj2 (H12 _) (or_introl (eq_refl _))). apply H7 in H13; simpl in H13; omega. refine pick val _; try simplify with monad laws; eauto. unfold SuccessfulInsertSpec. computes_to_inv; simpl in *; subst. intro. pose proof (proj2 (H11 _) (or_introl (eq_refl _))). apply H7 in H12; simpl in H12; omega. refine pick val _; try simplify with monad laws; eauto. unfold SuccessfulInsertSpec. computes_to_inv; simpl in *; subst. intro. pose proof (proj2 (H10 _) (or_introl (eq_refl _))). apply H7 in H11; simpl in H11; omega. refine pick val _; try simplify with monad laws; eauto. unfold SuccessfulInsertSpec. computes_to_inv; simpl in *; subst. intro. pose proof (proj2 (H9 _) (or_introl (eq_refl _))). apply H7 in H10; simpl in H10; omega. Qed. Lemma QSInsertSpec_UnConstr_refine_opt : forall qsSchema qs or (Ridx : Fin.t _) tup, @DropQSConstraints_AbsR qsSchema or qs -> refine (or' <- (idx <- Pick (freshIdx or Ridx); qs' <- Pick (QSInsertSpec or Ridx {| elementIndex := idx; indexedElement := tup |}); b <- Pick (SuccessfulInsertSpec or Ridx qs' {| elementIndex := idx; indexedElement := tup |}); ret (qs', b)); nr' <- {nr' | DropQSConstraints_AbsR (fst or') nr'}; ret (nr', snd or')) match (attrConstraints (GetNRelSchema (qschemaSchemas qsSchema) Ridx)), (tupleConstraints (GetNRelSchema (qschemaSchemas qsSchema) Ridx)) with Some aConstr, Some tConstr => idx <- {idx | UnConstrFreshIdx (GetUnConstrRelation qs Ridx) idx} ; (schConstr_self <- {b | decides b (aConstr tup) }; schConstr <- {b | decides b (forall tup', GetUnConstrRelation qs Ridx tup' -> tConstr tup (indexedElement tup'))}; schConstr' <- {b | decides b (forall tup', GetUnConstrRelation qs Ridx tup' -> tConstr (indexedElement tup') tup)}; qsConstr <- (@Iterate_Decide_Comp_opt _ (fun Ridx' => match (BuildQueryStructureConstraints qsSchema Ridx Ridx') with | Some CrossConstr => Some (CrossConstr tup (GetUnConstrRelation qs Ridx')) | None => None end)); qsConstr' <- (@Iterate_Decide_Comp_opt _ (fun Ridx' => if (fin_eq_dec Ridx Ridx') then None else match (BuildQueryStructureConstraints qsSchema Ridx' Ridx) with | Some CrossConstr => Some ( forall tup', (GetUnConstrRelation qs Ridx') tup' -> CrossConstr (indexedElement tup') ( (EnsembleInsert {| elementIndex := idx; indexedElement := tup |} (GetUnConstrRelation qs Ridx)))) | None => None end)); match schConstr_self, schConstr, schConstr', qsConstr, qsConstr' with | true, true, true, true, true => ret (UpdateUnConstrRelation qs Ridx (EnsembleInsert {| elementIndex := idx; indexedElement := tup |} (GetUnConstrRelation qs Ridx)), true) | _, _, _, _, _ => ret (qs, false) end) | Some aConstr, None => idx <- {idx | UnConstrFreshIdx (GetUnConstrRelation qs Ridx) idx} ; (schConstr_self <- {b | decides b (aConstr tup) }; qsConstr <- (@Iterate_Decide_Comp_opt _ (fun Ridx' => match (BuildQueryStructureConstraints qsSchema Ridx Ridx') with | Some CrossConstr => Some (CrossConstr tup (GetUnConstrRelation qs Ridx')) | None => None end)); qsConstr' <- (@Iterate_Decide_Comp_opt _ (fun Ridx' => if (fin_eq_dec Ridx Ridx') then None else match (BuildQueryStructureConstraints qsSchema Ridx' Ridx) with | Some CrossConstr => Some ( forall tup', (GetUnConstrRelation qs Ridx') tup' -> CrossConstr (indexedElement tup') ( (EnsembleInsert {| elementIndex := idx; indexedElement := tup |} (GetUnConstrRelation qs Ridx)))) | None => None end)); match schConstr_self, qsConstr, qsConstr' with | true, true, true => ret (UpdateUnConstrRelation qs Ridx (EnsembleInsert {| elementIndex := idx; indexedElement := tup |} (GetUnConstrRelation qs Ridx)), true) | _, _, _ => ret (qs, false) end) | None, Some tConstr => idx <- {idx | UnConstrFreshIdx (GetUnConstrRelation qs Ridx) idx} ; (schConstr <- {b | decides b (forall tup', GetUnConstrRelation qs Ridx tup' -> tConstr tup (indexedElement tup'))}; schConstr' <- {b | decides b (forall tup', GetUnConstrRelation qs Ridx tup' -> tConstr (indexedElement tup') tup)}; qsConstr <- (@Iterate_Decide_Comp_opt _ (fun Ridx' => match (BuildQueryStructureConstraints qsSchema Ridx Ridx') with | Some CrossConstr => Some (CrossConstr tup (GetUnConstrRelation qs Ridx')) | None => None end)); qsConstr' <- (@Iterate_Decide_Comp_opt _ (fun Ridx' => if (fin_eq_dec Ridx Ridx') then None else match (BuildQueryStructureConstraints qsSchema Ridx' Ridx) with | Some CrossConstr => Some ( forall tup', (GetUnConstrRelation qs Ridx') tup' -> CrossConstr (indexedElement tup') ( (EnsembleInsert {| elementIndex := idx; indexedElement := tup |} (GetUnConstrRelation qs Ridx)))) | None => None end)); match schConstr, schConstr', qsConstr, qsConstr' with | true, true, true, true => ret (UpdateUnConstrRelation qs Ridx (EnsembleInsert {| elementIndex := idx; indexedElement := tup |} (GetUnConstrRelation qs Ridx)), true) | _, _, _, _ => ret (qs, false) end) | None, None => idx <- {idx | UnConstrFreshIdx (GetUnConstrRelation qs Ridx) idx} ; (qsConstr <- (@Iterate_Decide_Comp_opt _ (fun Ridx' => match (BuildQueryStructureConstraints qsSchema Ridx Ridx') with | Some CrossConstr => Some (CrossConstr tup (GetUnConstrRelation qs Ridx')) | None => None end)); qsConstr' <- (@Iterate_Decide_Comp_opt _ (fun Ridx' => if (fin_eq_dec Ridx Ridx') then None else match (BuildQueryStructureConstraints qsSchema Ridx' Ridx) with | Some CrossConstr => Some ( forall tup', (GetUnConstrRelation qs Ridx') tup' -> CrossConstr (indexedElement tup') ( (EnsembleInsert {| elementIndex := idx; indexedElement := tup |} (GetUnConstrRelation qs Ridx)))) | None => None end)); match qsConstr, qsConstr' with | true, true => ret (UpdateUnConstrRelation qs Ridx (EnsembleInsert {| elementIndex := idx; indexedElement := tup |} (GetUnConstrRelation qs Ridx)), true) | _, _ => ret (qs, false) end) end. unfold QSInsert. intros; rewrite QSInsertSpec_UnConstr_refine; eauto using refine_SatisfiesAttributeConstraints_self, refine_SatisfiesTupleConstraints, refine_SatisfiesTupleConstraints', refine_SatisfiesCrossConstraints; [ | intros; eapply refine_SatisfiesCrossConstraints']. destruct (attrConstraints (GetNRelSchema (qschemaSchemas qsSchema) Ridx)); destruct (tupleConstraints (GetNRelSchema (qschemaSchemas qsSchema) Ridx)). - reflexivity. - f_equiv; unfold pointwise_relation; intros. repeat setoid_rewrite refineEquiv_bind_bind. repeat setoid_rewrite refineEquiv_bind_unit; f_equiv. - f_equiv; unfold pointwise_relation; intros. repeat setoid_rewrite refineEquiv_bind_bind. repeat setoid_rewrite refineEquiv_bind_unit; f_equiv. - f_equiv; unfold pointwise_relation; intros. repeat setoid_rewrite refineEquiv_bind_bind. repeat setoid_rewrite refineEquiv_bind_unit; f_equiv. Qed. End InsertRefinements. (* We should put all these simplification hints into a distinct file so we're not unfolding things all willy-nilly. *) Arguments Iterate_Decide_Comp _ _ / _. Arguments SatisfiesCrossRelationConstraints _ _ _ _ _ / . Arguments BuildQueryStructureConstraints _ _ _ / . Arguments BuildQueryStructureConstraints_cons / . Arguments GetNRelSchemaHeading _ _ _ / . Arguments id _ _ / . Create HintDb refine_keyconstraints discriminated. (*Hint Rewrite refine_Any_DecideableSB_True : refine_keyconstraints.*) Arguments ith_Bounded _ _ _ _ _ _ / . Arguments SatisfiesTupleConstraints _ _ _ _ / . Arguments GetUnConstrRelation : simpl never. Arguments UpdateUnConstrRelation : simpl never. Arguments replace_BoundedIndex : simpl never. Opaque UpdateUnConstrRelationInsertC.
lemma lebesgue_on_UNIV_eq: "lebesgue_on UNIV = lebesgue"
! ! Copyright 2016 ARTED developers ! ! Licensed under the Apache License, Version 2.0 (the "License"); ! you may not use this file except in compliance with the License. ! You may obtain a copy of the License at ! ! http://www.apache.org/licenses/LICENSE-2.0 ! ! Unless required by applicable law or agreed to in writing, software ! distributed under the License is distributed on an "AS IS" BASIS, ! WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. ! See the License for the specific language governing permissions and ! limitations under the License. ! !This file is "main.f90" !This file contains main program and four subroutines. !PROGRAM main !SUBROUTINE err_finalize(err_message) !--------10--------20--------30--------40--------50--------60--------70--------80--------90--------100-------110-------120--------130 Program main use Global_Variables use timelog use opt_variables use environment implicit none integer :: iter,ik,ib,ia,i,ixyz character(3) :: Rion_update character(10) :: functional_t !$ integer :: omp_get_max_threads call MPI_init(ierr) call MPI_COMM_SIZE(MPI_COMM_WORLD,Nprocs,ierr) call MPI_COMM_RANK(MPI_COMM_WORLD,Myrank,ierr) call timelog_initialize call load_environments if(Myrank == 0) then write(*,'(2A)')'ARTED ver. = ',ARTED_ver call print_optimize_message end if NEW_COMM_WORLD=MPI_COMM_WORLD NUMBER_THREADS=1 !$ NUMBER_THREADS=omp_get_max_threads() !$ if(iter*0 == 0) then !$ if(myrank == 0)write(*,*)'parallel = Hybrid' !$ else if(myrank == 0)write(*,*)'parallel = Flat MPI' !$ end if if(myrank == 0)write(*,*)'NUMBER_THREADS = ',NUMBER_THREADS etime1=MPI_WTIME() Time_start=MPI_WTIME() !reentrance call MPI_BCAST(Time_start,1,MPI_REAL8,0,MPI_COMM_WORLD,ierr) Rion_update='on' call Read_data if (entrance_option == 'reentrance' ) go to 2 allocate(rho_in(1:NL,1:Nscf+1),rho_out(1:NL,1:Nscf+1)) rho_in(1:NL,1:Nscf+1)=0.d0; rho_out(1:NL,1:Nscf+1)=0.d0 allocate(Eall_GS(0:Nscf),esp_var_ave(1:Nscf),esp_var_max(1:Nscf),dns_diff(1:Nscf)) call fd_coef call init call init_wf call Gram_Schmidt rho=0.d0; Vh=0.d0 ! call psi_rho_omp !sym ! initialize for optimization. call opt_vars_initialize_p1 call psi_rho_GS !sym rho_in(1:NL,1)=rho(1:NL) call input_pseudopotential_YS !shinohara ! call input_pseudopotential_KY !shinohara ! call MPI_FINALIZE(ierr) !!debug shinohara ! stop !!debug shinohara call prep_ps_periodic('initial ') ! initialize for optimization. call opt_vars_initialize_p2 call Hartree ! yabana functional_t = functional if(functional_t == 'TBmBJ') functional = 'PZ' call Exc_Cor('GS') if(functional_t == 'TBmBJ') functional = 'TBmBJ' ! yabana Vloc(1:NL)=Vh(1:NL)+Vpsl(1:NL)+Vexc(1:NL) ! call Total_Energy(Rion_update,'GS') call Total_Energy_omp(Rion_update,'GS') ! debug call Ion_Force_omp(Rion_update,'GS') if (MD_option /= 'Y') Rion_update = 'off' Eall_GS(0)=Eall if(Myrank == 0) write(*,*) 'This is the end of preparation for ground state calculation' if(Myrank == 0) write(*,*) '-----------------------------------------------------------' call timelog_reset do iter=1,Nscf if (Myrank == 0) write(*,*) 'iter = ',iter if( kbTev < 0d0 )then ! sato if (FSset_option == 'Y') then if (iter/NFSset_every*NFSset_every == iter .and. iter >= NFSset_start) then do ik=1,NK esp_vb_min(ik)=minval(esp(1:NBocc(ik),ik)) esp_vb_max(ik)=maxval(esp(1:NBocc(ik),ik)) esp_cb_min(ik)=minval(esp(NBocc(ik)+1:NB,ik)) esp_cb_max(ik)=maxval(esp(NBocc(ik)+1:NB,ik)) end do if (minval(esp_cb_min(:))-maxval(esp_vb_max(:))<0.d0) then call Occupation_Redistribution else if (Myrank == 0) then write(*,*) '=======================================' write(*,*) 'occupation redistribution is not needed' write(*,*) '=======================================' end if end if end if end if else if( iter /= 1 )then ! sato call Fermi_Dirac_distribution if((Myrank == 0).and.(iter == Nscf))then open(126,file='occ.out') do ik=1,NK do ib=1,NB write(126,'(2I7,e26.16E3)')ik,ib,occ(ib,ik) end do end do close(126) end if end if call Gram_Schmidt call diag_omp call Gram_Schmidt call CG_omp(Ncg) call Gram_Schmidt ! call psi_rho_omp !sym call psi_rho_GS call Density_Update(iter) call Hartree ! yabana functional_t = functional if(functional_t == 'TBmBJ' .and. iter < 20) functional = 'PZ' call Exc_Cor('GS') if(functional_t == 'TBmBJ' .and. iter < 20) functional = 'TBmBJ' ! yabana Vloc(1:NL)=Vh(1:NL)+Vpsl(1:NL)+Vexc(1:NL) call Total_Energy_omp(Rion_update,'GS') call Ion_Force_omp(Rion_update,'GS') call sp_energy_omp call current_GS_omp_KB Eall_GS(iter)=Eall esp_var_ave(iter)=sum(esp_var(:,:))/(NK*Nelec/2) esp_var_max(iter)=maxval(esp_var(:,:)) dns_diff(iter)=sqrt(sum((rho_out(:,iter)-rho_in(:,iter))**2))*Hxyz if (Myrank == 0) then write(*,*) 'Total Energy = ',Eall_GS(iter),Eall_GS(iter)-Eall_GS(iter-1) write(*,'(a28,3e15.6)') 'jav(1),jav(2),jav(3)= ',jav(1),jav(2),jav(3) write(*,'(4(i3,f12.6,2x))') (ib,esp(ib,1),ib=1,NB) do ia=1,NI write(*,'(1x,i7,3f15.6)') ia,force(1,ia),force(2,ia),force(3,ia) end do write(*,*) 'var_ave,var_max=',esp_var_ave(iter),esp_var_max(iter) write(*,*) 'dns. difference =',dns_diff(iter) if (iter/20*20 == iter) then etime2=MPI_WTIME() write(*,*) '=====' write(*,*) 'elapse time=',etime2-etime1,'sec=',(etime2-etime1)/60,'min' end if write(*,*) '-----------------------------------------------' end if end do etime2 = MPI_WTIME() if(Myrank == 0) then call timelog_set(LOG_DYNAMICS, etime2 - etime1) call timelog_show_hour('Ground State time :', LOG_DYNAMICS) call timelog_show_min ('CG time :', LOG_CG) call timelog_show_min ('Gram Schmidt time :', LOG_GRAM_SCHMIDT) call timelog_show_min ('diag time :', LOG_DIAG) call timelog_show_min ('sp_energy time :', LOG_SP_ENERGY) call timelog_show_min ('hpsi time :', LOG_HPSI) call timelog_show_min (' - stencil time :', LOG_HPSI_STENCIL) call timelog_show_min (' - pseudo pt. time :', LOG_HPSI_PSEUDO) call timelog_show_min ('psi_rho time :', LOG_PSI_RHO) call timelog_show_min ('Hartree time :', LOG_HARTREE) call timelog_show_min ('Exc_Cor time :', LOG_EXC_COR) call timelog_show_min ('current time :', LOG_CURRENT) call timelog_show_min ('Total_Energy time :', LOG_TOTAL_ENERGY) call timelog_show_min ('Ion_Force time :', LOG_ION_FORCE) end if if(Myrank == 0) write(*,*) 'This is the end of GS calculation' zu_GS0(:,:,:)=zu_GS(:,:,:) zu(:,:,:)=zu_GS(:,1:NBoccmax,:) Rion_eq=Rion dRion(:,:,-1)=0.d0; dRion(:,:,0)=0.d0 ! call psi_rho_omp !sym call psi_rho_GS call Hartree ! yabana call Exc_Cor('GS') ! yabana Vloc(1:NL)=Vh(1:NL)+Vpsl(1:NL)+Vexc(1:NL) Vloc_GS(:)=Vloc(:) call Total_Energy_omp(Rion_update,'GS') Eall0=Eall if(Myrank == 0) write(*,*) 'Eall =',Eall etime2=MPI_WTIME() if (Myrank == 0) then write(*,*) '-----------------------------------------------' write(*,*) 'static time=',etime2-etime1,'sec=', (etime2-etime1)/60,'min' write(*,*) '-----------------------------------------------' end if etime1=etime2 if (Myrank == 0) then write(*,*) '-----------------------------------------------' write(*,*) '----some information for Band map--------------' do ik=1,NK esp_vb_min(ik)=minval(esp(1:NBocc(ik),ik)) esp_vb_max(ik)=maxval(esp(1:NBocc(ik),ik)) esp_cb_min(ik)=minval(esp(NBocc(ik)+1:NB,ik)) esp_cb_max(ik)=maxval(esp(NBocc(ik)+1:NB,ik)) end do write(*,*) 'Bottom of VB',minval(esp_vb_min(:)) write(*,*) 'Top of VB',maxval(esp_vb_max(:)) write(*,*) 'Bottom of CB',minval(esp_cb_min(:)) write(*,*) 'Top of CB',maxval(esp_cb_max(:)) write(*,*) 'The Bandgap',minval(esp_cb_min(:))-maxval(esp_vb_max(:)) write(*,*) 'BG between same k-point',minval(esp_cb_min(:)-esp_vb_max(:)) write(*,*) 'Physicaly upper bound of CB for DOS',minval(esp_cb_max(:)) write(*,*) 'Physicaly upper bound of CB for eps(omega)',minval(esp_cb_max(:)-esp_vb_min(:)) write(*,*) '-----------------------------------------------' write(*,*) '-----------------------------------------------' end if #ifndef ARTED_DEBUG call write_GS_data #endif deallocate(rho_in,rho_out) deallocate(Eall_GS,esp_var_ave,esp_var_max,dns_diff) !====GS calculation============================ if(Myrank == 0) write(*,*) 'This is the end of preparation for Real time calculation' !====RT calculation============================ call init_Ac ! yabana ! kAc0=kAc ! yabana rho_gs(:)=rho(:) !reentrance 2 if (entrance_option == 'reentrance') then position_option='append' else position_option='rewind' entrance_iter=-1 end if if (Myrank == 0) then open(7,file=file_epst,position = position_option) open(8,file=file_dns,position = position_option) open(9,file=file_force_dR,position = position_option) if (AD_RHO /= 'No') then open(404,file=file_ovlp,position = position_option) open(408,file=file_nex,position = position_option) end if endif call timelog_reset call timelog_enable_verbose #ifdef ARTED_USE_PAPI call papi_begin #endif etime1=MPI_WTIME() do iter=entrance_iter+1,Nt do ixyz=1,3 kAc(:,ixyz)=kAc0(:,ixyz)+Ac_tot(iter,ixyz) enddo call dt_evolve_omp_KB(iter) call current_omp_KB javt(iter,:)=jav(:) if (MD_option == 'Y') then call Ion_Force_omp(Rion_update,'RT') if (iter/10*10 == iter) then call Total_Energy_omp(Rion_update,'RT') end if else if (iter/10*10 == iter) then call Total_Energy_omp(Rion_update,'RT') call Ion_Force_omp(Rion_update,'RT') end if end if call timelog_begin(LOG_OTHER) if (Longi_Trans == 'Lo') then Ac_ind(iter+1,:)=2*Ac_ind(iter,:)-Ac_ind(iter-1,:)-4*Pi*javt(iter,:)*dt**2 if (Sym /= 1) then Ac_ind(iter+1,1)=0.d0 Ac_ind(iter+1,2)=0.d0 end if Ac_tot(iter+1,:)=Ac_ext(iter+1,:)+Ac_ind(iter+1,:) else if (Longi_Trans == 'Tr') then Ac_tot(iter+1,:)=Ac_ext(iter+1,:) end if E_ext(iter,:)=-(Ac_ext(iter+1,:)-Ac_ext(iter-1,:))/(2*dt) E_ind(iter,:)=-(Ac_ind(iter+1,:)-Ac_ind(iter-1,:))/(2*dt) E_tot(iter,:)=-(Ac_tot(iter+1,:)-Ac_tot(iter-1,:))/(2*dt) Eelemag=aLxyz*sum(E_tot(iter,:)**2)/(8.d0*Pi) Eall=Eall+Eelemag do ia=1,NI force_ion(:,ia)=Zps(Kion(ia))*E_tot(iter,:) enddo force=force+force_ion !pseudo potential update if (MD_option == 'Y') then Tion=0.d0 do ia=1,NI dRion(:,ia,iter+1)=2*dRion(:,ia,iter)-dRion(:,ia,iter-1)+force(:,ia)*dt**2/(umass*Mass(Kion(ia))) Rion(:,ia)=Rion_eq(:,ia)+dRion(:,ia,iter+1) Tion=Tion+0.5d0*umass*Mass(Kion(ia))*sum((dRion(:,ia,iter+1)-dRion(:,ia,iter-1))**2)/(2*dt)**2 enddo call prep_ps_periodic('not_initial') else dRion(:,:,iter+1)=0.d0 Tion=0.d0 endif Eall=Eall+Tion !write section if (iter/10*10 == iter.and.Myrank == 0) then write(*,'(1x,f10.4,8f12.6,f22.14)') iter*dt,& &E_ext(iter,1),E_tot(iter,1),& &E_ext(iter,2),E_tot(iter,2),& &E_ext(iter,3),E_tot(iter,3),& &Eall,Eall-Eall0,Tion write(7,'(1x,100e16.6E3)') iter*dt,& &E_ext(iter,1),E_tot(iter,1),& &E_ext(iter,2),E_tot(iter,2),& &E_ext(iter,3),E_tot(iter,3),& &Eall,Eall-Eall0,Tion write(9,'(1x,100e16.6E3)') iter*dt,((force(ixyz,ia),ixyz=1,3),ia=1,NI),((dRion(ixyz,ia,iter),ixyz=1,3),ia=1,NI) endif #ifndef ARTED_DEBUG !Dynamical Density if (iter/100*100 == iter.and.Myrank == 0) then write(8,'(1x,i10)') iter do i=1,NL write(8,'(1x,2e16.6E3)') rho(i),(rho(i)-rho_gs(i)) enddo endif #endif !j_Ac writing if(Myrank == 0)then if (iter/1000*1000 == iter .or. iter == Nt) then open(407,file=file_j_ac) do i=0,Nt write(407,'(100e26.16E3)') i*dt,javt(i,1),javt(i,2),javt(i,3),& &Ac_ext(i,1),Ac_ext(i,2),Ac_ext(i,3),Ac_tot(i,1),Ac_tot(i,2),Ac_tot(i,3) end do write(407,'(100e26.16E3)') (Nt+1)*dt,javt(Nt,1),javt(Nt,2),javt(Nt,3),& &Ac_ext(Nt+1,1),Ac_ext(Nt+1,2),Ac_ext(Nt+1,3),Ac_tot(Nt+1,1),Ac_tot(Nt+1,2),Ac_tot(Nt+1,3) close(407) end if end if !Adiabatic evolution if (AD_RHO /= 'No' .and. iter/100*100 == iter) then call k_shift_wf(Rion_update,2) if (Myrank == 0) then do ia=1,NI write(*,'(1x,i7,3f15.6)') ia,force(1,ia),force(2,ia),force(3,ia) end do write(404,'(1x,i10)') iter do ik=1,NK write(404,'(1x,i5,500e16.6)')ik,(ovlp_occ(ib,ik)*NKxyz,ib=1,NB) enddo write(408,'(1x,3e16.6E3)') iter*dt,sum(ovlp_occ(NBoccmax+1:NB,:)),sum(occ)-sum(ovlp_occ(1:NBoccmax,:)) write(*,*) 'number of excited electron',sum(ovlp_occ(NBoccmax+1:NB,:)),sum(occ)-sum(ovlp_occ(1:NBoccmax,:)) write(*,*) 'var_tot,var_max=',sum(esp_var(:,:))/(NK*Nelec/2),maxval(esp_var(:,:)) end if end if !Timer if (iter/1000*1000 == iter.and.Myrank == 0) then etime2=MPI_WTIME() call timelog_set(LOG_DYNAMICS, etime2 - etime1) call timelog_show_hour('dynamics time :', LOG_DYNAMICS) call timelog_show_min ('dt_evolve time :', LOG_DT_EVOLVE) call timelog_show_min ('Hartree time :', LOG_HARTREE) call timelog_show_min ('current time :', LOG_CURRENT) end if !Timer for shutdown if (iter/10*10 == iter) then Time_now=MPI_WTIME() call MPI_BCAST(Time_now,1,MPI_REAL8,0,MPI_COMM_WORLD,ierr) if (Myrank == 0 .and. iter/100*100 == iter) then write(*,*) 'Total time =',(Time_now-Time_start) end if if ((Time_now - Time_start)>Time_shutdown) then call MPI_BARRIER(MPI_COMM_WORLD,ierr) write(*,*) Myrank,'iter =',iter iter_now=iter call prep_Reentrance_write go to 1 end if end if call timelog_end(LOG_OTHER) enddo !end of RT iteraction======================== etime2=MPI_WTIME() #ifdef ARTED_USE_PAPI call papi_end #endif call timelog_disable_verbose if(Myrank == 0) then call timelog_set(LOG_DYNAMICS, etime2 - etime1) #ifdef ARTED_USE_PAPI call papi_result(timelog_get(LOG_DYNAMICS)) #endif call timelog_show_hour('dynamics time :', LOG_DYNAMICS) call timelog_show_min ('dt_evolve time :', LOG_DT_EVOLVE) call timelog_show_min ('hpsi time :', LOG_HPSI) call timelog_show_min (' - init time :', LOG_HPSI_INIT) call timelog_show_min (' - stencil time :', LOG_HPSI_STENCIL) call timelog_show_min (' - pseudo pt. time :', LOG_HPSI_PSEUDO) call timelog_show_min (' - update time :', LOG_HPSI_UPDATE) print *, ' - stencil GFLOPS :', get_stencil_gflops(timelog_get(LOG_HPSI_STENCIL)) #ifdef ARTED_PROFILE_THREADS call write_threads_performance #endif call timelog_show_min ('psi_rho time :', LOG_PSI_RHO) call timelog_show_min ('Hartree time :', LOG_HARTREE) call timelog_show_min ('Exc_Cor time :', LOG_EXC_COR) call timelog_show_min ('current time :', LOG_CURRENT) call timelog_show_min ('Total_Energy time :', LOG_TOTAL_ENERGY) call timelog_show_min ('Ion_Force time :', LOG_ION_FORCE) call timelog_show_min ('Other time :', LOG_OTHER) end if if(Myrank == 0) then close(7) close(8) close(9) if (AD_RHO /= 'No') then close(404) close(408) end if endif if(Myrank == 0) write(*,*) 'This is the end of RT calculation' #ifdef ARTED_DEBUG call err_finalize('force shutdown.') #endif !====RT calculation=========================== !====Analyzing calculation==================== !Adiabatic evolution call k_shift_wf_last(Rion_update,10) call Fourier_tr call MPI_BARRIER(MPI_COMM_WORLD,ierr) if (Myrank == 0) write(*,*) 'This is the end of all calculation' Time_now=MPI_WTIME() if (Myrank == 0 ) write(*,*) 'Total time =',(Time_now-Time_start) 1 if(Myrank == 0) write(*,*) 'This calculation is shutdown successfully!' call MPI_FINALIZE(ierr) End Program Main !--------10--------20--------30--------40--------50--------60--------70--------80--------90--------100-------110-------120--------130 Subroutine Read_data use Global_Variables use opt_variables, only: symmetric_load_balancing, is_symmetric_mode use environment implicit none integer :: ia,i,j if (Myrank == 0) then write(*,*) 'Nprocs=',Nprocs write(*,*) 'Myrank=0: ',Myrank read(*,*) entrance_option write(*,*) 'entrance_option=',entrance_option read(*,*) Time_shutdown write(*,*) 'Time_shutdown=',Time_shutdown,'sec' end if call MPI_BCAST(entrance_option,10,MPI_CHARACTER,0,MPI_COMM_WORLD,ierr) call MPI_BCAST(Time_shutdown,1,MPI_REAL8,0,MPI_COMM_WORLD,ierr) if(entrance_option == 'reentrance') then call prep_Reentrance_Read return else if(entrance_option == 'new') then else call err_finalize('entrance_option /= new or reentrance') end if if(Myrank == 0)then read(*,*) entrance_iter read(*,*) SYSname read(*,*) directory !yabana read(*,*) functional, cval !yabana read(*,*) ps_format !shinohara read(*,*) PSmask_option !shinohara read(*,*) alpha_mask, gamma_mask, eta_mask !shinohara read(*,*) aL,ax,ay,az read(*,*) Sym,crystal_structure ! sym read(*,*) Nd,NLx,NLy,NLz,NKx,NKy,NKz read(*,*) NEwald, aEwald read(*,*) KbTev ! sato write(*,*) 'entrance_iter=',entrance_iter write(*,*) SYSname write(*,*) directory !yabana write(*,*) 'functional=',functional if(functional == 'TBmBJ') write(*,*) 'cvalue=',cval !yabana write(*,*) 'ps_format =',ps_format !shinohara write(*,*) 'PSmask_option =',PSmask_option !shinohara write(*,*) 'alpha_mask, gamma_mask, eta_mask =',alpha_mask, gamma_mask, eta_mask !shinohara file_GS=trim(directory)//trim(SYSname)//'_GS.out' file_RT=trim(directory)//trim(SYSname)//'_RT.out' file_epst=trim(directory)//trim(SYSname)//'_t.out' file_epse=trim(directory)//trim(SYSname)//'_e.out' file_force_dR=trim(directory)//trim(SYSname)//'_force_dR.out' file_j_ac=trim(directory)//trim(SYSname)//'_j_ac.out' file_DoS=trim(directory)//trim(SYSname)//'_DoS.out' file_band=trim(directory)//trim(SYSname)//'_band.out' file_dns=trim(directory)//trim(SYSname)//'_dns.out' file_ovlp=trim(directory)//trim(SYSname)//'_ovlp.out' file_nex=trim(directory)//trim(SYSname)//'_nex.out' write(*,*) 'aL,ax,ay,az=',aL,ax,ay,az write(*,*) 'Sym=',Sym,'crystal structure=',crystal_structure !sym write(*,*) 'Nd,NLx,NLy,NLz,NKx,NKy,NKz=',Nd,NLx,NLy,NLz,NKx,NKy,NKz write(*,*) 'NEwald, aEwald =',NEwald, aEwald write(*,*) 'KbTev=',KbTev ! sato end if call MPI_BCAST(SYSname,50,MPI_CHARACTER,0,MPI_COMM_WORLD,ierr) call MPI_BCAST(directory,50,MPI_CHARACTER,0,MPI_COMM_WORLD,ierr) !yabana call MPI_BCAST(functional,10,MPI_CHARACTER,0,MPI_COMM_WORLD,ierr) call MPI_BCAST(cval,1,MPI_REAL8,0,MPI_COMM_WORLD,ierr) !yabana call MPI_BCAST(ps_format,10,MPI_CHARACTER,0,MPI_COMM_WORLD,ierr)!shinohara call MPI_BCAST(PSmask_option,1,MPI_CHARACTER,0,MPI_COMM_WORLD,ierr)!shinohara call MPI_BCAST(alpha_mask,1,MPI_REAL8,0,MPI_COMM_WORLD,ierr) !shinohara call MPI_BCAST(gamma_mask,1,MPI_REAL8,0,MPI_COMM_WORLD,ierr) !shinohara call MPI_BCAST(eta_mask,1,MPI_REAL8,0,MPI_COMM_WORLD,ierr) !shinohara call MPI_BCAST(file_GS,50,MPI_CHARACTER,0,MPI_COMM_WORLD,ierr) call MPI_BCAST(file_RT,50,MPI_CHARACTER,0,MPI_COMM_WORLD,ierr) call MPI_BCAST(file_epst,50,MPI_CHARACTER,0,MPI_COMM_WORLD,ierr) call MPI_BCAST(file_epse,50,MPI_CHARACTER,0,MPI_COMM_WORLD,ierr) call MPI_BCAST(file_force_dR,50,MPI_CHARACTER,0,MPI_COMM_WORLD,ierr) call MPI_BCAST(file_j_ac,50,MPI_CHARACTER,0,MPI_COMM_WORLD,ierr) call MPI_BCAST(file_DoS,50,MPI_CHARACTER,0,MPI_COMM_WORLD,ierr) call MPI_BCAST(file_band,50,MPI_CHARACTER,0,MPI_COMM_WORLD,ierr) call MPI_BCAST(file_dns,50,MPI_CHARACTER,0,MPI_COMM_WORLD,ierr) call MPI_BCAST(file_ovlp,50,MPI_CHARACTER,0,MPI_COMM_WORLD,ierr) call MPI_BCAST(file_nex,50,MPI_CHARACTER,0,MPI_COMM_WORLD,ierr) call MPI_BCAST(aL,1,MPI_REAL8,0,MPI_COMM_WORLD,ierr) call MPI_BCAST(ax,1,MPI_REAL8,0,MPI_COMM_WORLD,ierr) call MPI_BCAST(ay,1,MPI_REAL8,0,MPI_COMM_WORLD,ierr) call MPI_BCAST(az,1,MPI_REAL8,0,MPI_COMM_WORLD,ierr) call MPI_BCAST(Sym,1,MPI_Integer,0,MPI_COMM_WORLD,ierr) !sym call MPI_BCAST(crystal_structure,50,MPI_CHARACTER,0,MPI_COMM_WORLD,ierr) call MPI_BCAST(Nd,1,MPI_INTEGER,0,MPI_COMM_WORLD,ierr) call MPI_BCAST(NLx,1,MPI_INTEGER,0,MPI_COMM_WORLD,ierr) call MPI_BCAST(NLy,1,MPI_INTEGER,0,MPI_COMM_WORLD,ierr) call MPI_BCAST(NLz,1,MPI_INTEGER,0,MPI_COMM_WORLD,ierr) call MPI_BCAST(NKx,1,MPI_INTEGER,0,MPI_COMM_WORLD,ierr) call MPI_BCAST(NKy,1,MPI_INTEGER,0,MPI_COMM_WORLD,ierr) call MPI_BCAST(NKz,1,MPI_INTEGER,0,MPI_COMM_WORLD,ierr) call MPI_BCAST(NEwald,1,MPI_INTEGER,0,MPI_COMM_WORLD,ierr) call MPI_BCAST(aEwald,1,MPI_REAL8,0,MPI_COMM_WORLD,ierr) call MPI_BCAST(KbTev,1,MPI_REAL8,0,MPI_COMM_WORLD,ierr) ! sato !sym --- select case(crystal_structure) case("diamond") if(functional == "PZ")then if(Sym == 8)then if((mod(NLx,4)+mod(NLy,4)+mod(NLz,4)) /= 0)call err_finalize('Bad grid point') if(NLx /= NLy)call err_finalize('Bad grid point') if(NKx /= NKy) call err_finalize('NKx /= NKy') else if(Sym ==4 )then if(NLx /= NLy)call err_finalize('Bad grid point') if(NKx /= NKy) call err_finalize('NKx /= NKy') else if(Sym /= 1)then call err_finalize('Bad crystal structure') end if else if(functional == "TBmBJ")then if(Sym == 4)then if(NLx /= NLy)call err_finalize('Bad grid point') if(NKx /= NKy) call err_finalize('NKx /= NKy') else if(Sym /= 1)then call err_finalize('Bad crystal structure') end if else if(Sym /= 1)call err_finalize('Bad crystal structure') end if case default if(Sym /= 1)call err_finalize('Bad symmetry') end select !sym --- if(mod(NKx,2)+mod(NKy,2)+mod(NKz,2) /= 0) call err_finalize('NKx,NKy,NKz /= even') if(mod(NLx,2)+mod(NLy,2)+mod(NLz,2) /= 0) call err_finalize('NLx,NLy,NLz /= even') call MPI_BARRIER(MPI_COMM_WORLD,ierr) aLx=ax*aL; aLy=ay*aL; aLz=az*aL aLxyz=aLx*aLy*aLz bLx=2*Pi/aLx; bLy=2*Pi/aLy; bLz=2*Pi/aLz Hx=aLx/NLx; Hy=aLy/NLy; Hz=aLz/NLz Hxyz=Hx*Hy*Hz NL=NLx*NLy*NLz NG=NL NKxyz=NKx*NKy*NKz select case(Sym) case(1) NK=NKx*NKy*NKz case(4) NK=(NKx/2)*(NKy/2)*NKz case(8) NK=NKz*(NKx/2)*((NKx/2)+1)/2 end select NK_ave=NK/Nprocs; NK_remainder=NK-NK_ave*Nprocs NG_ave=NG/Nprocs; NG_remainder=NG-NG_ave*Nprocs if(is_symmetric_mode() == 1 .and. ENABLE_LOAD_BALANCER == 1) then call symmetric_load_balancing(NK,NK_ave,NK_s,NK_e,NK_remainder,Myrank,Nprocs) else if (NK/Nprocs*Nprocs == NK) then NK_s=NK_ave*Myrank+1 NK_e=NK_ave*(Myrank+1) else if (Myrank < (Nprocs-1) - NK_remainder + 1) then NK_s=NK_ave*Myrank+1 NK_e=NK_ave*(Myrank+1) else NK_s=NK-(NK_ave+1)*((Nprocs-1)-Myrank)-NK_ave NK_e=NK-(NK_ave+1)*((Nprocs-1)-Myrank) end if end if if(Myrank == Nprocs-1 .and. NK_e /= NK) call err_finalize('prep. NK_e error') end if if (NG/Nprocs*Nprocs == NG) then NG_s=NG_ave*Myrank+1 NG_e=NG_ave*(Myrank+1) else if (Myrank < (Nprocs-1) - NG_remainder + 1) then NG_s=NG_ave*Myrank+1 NG_e=NG_ave*(Myrank+1) else NG_s=NG-(NG_ave+1)*((Nprocs-1)-Myrank)-NG_ave NG_e=NG-(NG_ave+1)*((Nprocs-1)-Myrank) end if end if if(Myrank == Nprocs-1 .and. NG_e /= NG) call err_finalize('prep. NG_e error') allocate(lap(-Nd:Nd),nab(-Nd:Nd)) allocate(lapx(-Nd:Nd),lapy(-Nd:Nd),lapz(-Nd:Nd)) allocate(nabx(-Nd:Nd),naby(-Nd:Nd),nabz(-Nd:Nd)) allocate(Lx(NL),Ly(NL),Lz(NL),Gx(NG),Gy(NG),Gz(NG)) allocate(Lxyz(0:NLx-1,0:NLy-1,0:NLz-1)) allocate(ifdx(-Nd:Nd,1:NL),ifdy(-Nd:Nd,1:NL),ifdz(-Nd:Nd,1:NL)) allocate(kAc(NK,3),kAc0(NK,3)) allocate(Vh(NL),Vexc(NL),Eexc(NL),rho(NL),Vpsl(NL),Vloc(NL),Vloc_GS(NL),Vloc_t(NL)) !yabana allocate(tmass(NL),tjr(NL,3),tjr2(NL),tmass_t(NL),tjr_t(NL,3),tjr2_t(NL)) !yabana allocate(rhoe_G(NG_s:NG_e),rhoion_G(NG_s:NG_e)) allocate(rho_gs(NL)) allocate(tpsi(NL),htpsi(NL),ttpsi(NL)) allocate(tpsi_omp(NL,0:NUMBER_THREADS-1),htpsi_omp(NL,0:NUMBER_THREADS-1)) ! sato allocate(ttpsi_omp(NL,0:NUMBER_THREADS-1)) ! sato allocate(xk_omp(NL,0:NUMBER_THREADS-1),hxk_omp(NL,0:NUMBER_THREADS-1)) ! sato allocate(gk_omp(NL,0:NUMBER_THREADS-1),pk_omp(NL,0:NUMBER_THREADS-1)) ! sato allocate(pko_omp(NL,0:NUMBER_THREADS-1),txk_omp(NL,0:NUMBER_THREADS-1)) ! sato allocate(tau_s_l_omp(NL,0:NUMBER_THREADS-1),j_s_l_omp(NL,3,0:NUMBER_THREADS-1)) ! sato allocate(work(-Nd:NLx+Nd-1,-Nd:NLy+Nd-1,-Nd:NLz+Nd-1)) allocate(zwork(-Nd:NLx+Nd-1,-Nd:NLy+Nd-1,-Nd:NLz+Nd-1)) allocate(nxyz(-NLx/2:NLx/2-1,-NLy/2:NLy/2-1,-NLz/2:NLz/2-1)) !Hartree allocate(rho_3D(0:NLx-1,0:NLy-1,0:NLz-1),Vh_3D(0:NLx-1,0:NLy-1,0:NLz-1))!Hartree allocate(rhoe_G_temp(1:NG),rhoe_G_3D(-NLx/2:NLx/2-1,-NLy/2:NLy/2-1,-NLz/2:NLz/2-1))!Hartree allocate(f1(0:NLx-1,0:NLy-1,-NLz/2:NLz/2-1),f2(0:NLx-1,-NLy/2:NLy/2-1,-NLz/2:NLz/2-1))!Hartree allocate(f3(-NLx/2:NLx/2-1,-NLy/2:NLy/2-1,0:NLz-1),f4(-NLx/2:NLx/2-1,0:NLy-1,0:NLz-1))!Hartree allocate(eGx(-NLx/2:NLx/2-1,0:NLx-1),eGy(-NLy/2:NLy/2-1,0:NLy-1),eGz(-NLz/2:NLz/2-1,0:NLz-1))!Hartree allocate(eGxc(-NLx/2:NLx/2-1,0:NLx-1),eGyc(-NLy/2:NLy/2-1,0:NLy-1),eGzc(-NLz/2:NLz/2-1,0:NLz-1))!Hartree allocate(itable_sym(Sym,NL)) ! sym allocate(rho_l(NL),rho_tmp1(NL),rho_tmp2(NL)) !sym if (Myrank == 0) then read(*,*) NB,Nelec write(*,*) 'NB,Nelec=',NB,Nelec endif if( kbTev < 0d0 )then ! sato NBoccmax=Nelec/2 else NBoccmax=NB end if call MPI_BCAST(Nelec,1,MPI_INTEGER,0,MPI_COMM_WORLD,ierr) ! sato call MPI_BCAST(NB,1,MPI_INTEGER,0,MPI_COMM_WORLD,ierr) call MPI_BCAST(NBoccmax,1,MPI_INTEGER,0,MPI_COMM_WORLD,ierr) call MPI_BARRIER(MPI_COMM_WORLD,ierr) NKB=(NK_e-NK_s+1)*NBoccmax ! sato allocate(occ(NB,NK),wk(NK),esp(NB,NK)) allocate(ovlp_occ_l(NB,NK),ovlp_occ(NB,NK)) allocate(zu_GS(NL,NB,NK_s:NK_e),zu_GS0(NL,NB,NK_s:NK_e)) allocate(zu(NL,NBoccmax,NK_s:NK_e)) allocate(ik_table(NKB),ib_table(NKB)) ! sato allocate(esp_var(NB,NK)) allocate(NBocc(NK)) !redistribution NBocc(:)=NBoccmax allocate(esp_vb_min(NK),esp_vb_max(NK)) !redistribution allocate(esp_cb_min(NK),esp_cb_max(NK)) !redistribution if (Myrank == 0) then read(*,*) FSset_option read(*,*) Ncg read(*,*) Nmemory_MB,alpha_MB read(*,*) NFSset_start,NFSset_every read(*,*) Nscf read(*,*) ext_field read(*,*) Longi_Trans read(*,*) MD_option read(*,*) AD_RHO read(*,*) Nt,dt write(*,*) 'FSset_option =',FSset_option write(*,*) 'Ncg=',Ncg write(*,*) 'Nmemory_MB,alpha_MB =',Nmemory_MB,alpha_MB write(*,*) 'NFSset_start,NFSset_every =',NFSset_start,NFSset_every write(*,*) 'Nscf=',Nscf write(*,*) 'ext_field =',ext_field write(*,*) 'Longi_Trans =',Longi_Trans write(*,*) 'MD_option =', MD_option write(*,*) 'AD_RHO =', AD_RHO write(*,*) 'Nt,dt=',Nt,dt endif call MPI_BCAST(FSset_option,1,MPI_CHARACTER,0,MPI_COMM_WORLD,ierr) call MPI_BCAST(Ncg,1,MPI_INTEGER,0,MPI_COMM_WORLD,ierr) call MPI_BCAST(Nmemory_MB,1,MPI_INTEGER,0,MPI_COMM_WORLD,ierr) call MPI_BCAST(alpha_MB,1,MPI_REAL8,0,MPI_COMM_WORLD,ierr) call MPI_BCAST(NFSset_start,1,MPI_INTEGER,0,MPI_COMM_WORLD,ierr) call MPI_BCAST(NFSset_every,1,MPI_INTEGER,0,MPI_COMM_WORLD,ierr) call MPI_BCAST(Nscf,1,MPI_INTEGER,0,MPI_COMM_WORLD,ierr) call MPI_BCAST(ext_field,2,MPI_CHARACTER,0,MPI_COMM_WORLD,ierr) call MPI_BCAST(Longi_Trans,2,MPI_CHARACTER,0,MPI_COMM_WORLD,ierr) call MPI_BCAST(MD_option,1,MPI_CHARACTER,0,MPI_COMM_WORLD,ierr) call MPI_BCAST(AD_RHO,2,MPI_CHARACTER,0,MPI_COMM_WORLD,ierr) call MPI_BCAST(Nt,1,MPI_INTEGER,0,MPI_COMM_WORLD,ierr) call MPI_BCAST(dt,1,MPI_REAL8,0,MPI_COMM_WORLD,ierr) call MPI_BCAST(entrance_option,12,MPI_CHARACTER,0,MPI_COMM_WORLD,ierr) ! call MPI_BCAST(Time_shutdown,1,MPI_REAL8,0,MPI_COMM_WORLD,ierr) call MPI_BCAST(entrance_iter,1,MPI_INTEGER,0,MPI_COMM_WORLD,ierr) call MPI_BARRIER(MPI_COMM_WORLD,ierr) if(ext_field /= 'LF' .and. ext_field /= 'LR' ) call err_finalize('incorrect option for ext_field') if(Longi_Trans /= 'Lo' .and. Longi_Trans /= 'Tr' ) call err_finalize('incorrect option for Longi_Trans') if(AD_RHO /= 'TD' .and. AD_RHO /= 'GS' .and. AD_RHO /= 'No' ) call err_finalize('incorrect option for Longi_Trans') call MPI_BARRIER(MPI_COMM_WORLD,ierr) allocate(javt(0:Nt,3)) allocate(Ac_ext(-1:Nt+1,3),Ac_ind(-1:Nt+1,3),Ac_tot(-1:Nt+1,3)) allocate(E_ext(0:Nt,3),E_ind(0:Nt,3),E_tot(0:Nt,3)) if (Myrank == 0) then read(*,*) dAc read(*,*) Nomega,domega read(*,*) AE_shape read(*,*) IWcm2_1,tpulsefs_1,omegaev_1,phi_CEP_1 read(*,*) Epdir_1(1),Epdir_1(2),Epdir_1(3) read(*,*) IWcm2_2,tpulsefs_2,omegaev_2,phi_CEP_2 read(*,*) Epdir_2(1),Epdir_2(2),Epdir_2(3) read(*,*) T1_T2fs read(*,*) NI,NE write(*,*) 'dAc=',dAc write(*,*) 'Nomega,etep=',Nomega,domega write(*,*) 'AE_shape=',AE_shape write(*,*) 'IWcm2_1, tpulsefs_1, omegaev_1, phi_CEP_1 =',IWcm2_1,tpulsefs_1,omegaev_1,phi_CEP_1 write(*,*) 'Epdir_1(1), Epdir_1(2), Epdir_1(3) =', Epdir_1(1),Epdir_1(2),Epdir_1(3) write(*,*) 'IWcm2_2, tpulsefs_2, omegaev_2, phi_CEP_2 =',IWcm2_2,tpulsefs_2,omegaev_2,phi_CEP_2 write(*,*) 'Epdir_2(1), Epdir_2(2), Epdir_2(3) =', Epdir_2(1),Epdir_2(2),Epdir_2(3) write(*,*) 'T1_T2fs =', T1_T2fs write(*,*) '' write(*,*) '===========ion configuration================' write(*,*) 'NI,NE=',NI,NE endif call MPI_BCAST(dAc,1,MPI_REAL8,0,MPI_COMM_WORLD,ierr) call MPI_BCAST(Nomega,1,MPI_INTEGER,0,MPI_COMM_WORLD,ierr) call MPI_BCAST(domega,1,MPI_REAL8,0,MPI_COMM_WORLD,ierr) call MPI_BCAST(AE_shape,8,MPI_CHARACTER,0,MPI_COMM_WORLD,ierr) call MPI_BCAST(IWcm2_1,1,MPI_REAL8,0,MPI_COMM_WORLD,ierr) call MPI_BCAST(tpulsefs_1,1,MPI_REAL8,0,MPI_COMM_WORLD,ierr) call MPI_BCAST(omegaev_1,1,MPI_REAL8,0,MPI_COMM_WORLD,ierr) call MPI_BCAST(phi_CEP_1,1,MPI_REAL8,0,MPI_COMM_WORLD,ierr) call MPI_BCAST(Epdir_1,3,MPI_REAL8,0,MPI_COMM_WORLD,ierr) call MPI_BCAST(IWcm2_2,1,MPI_REAL8,0,MPI_COMM_WORLD,ierr) call MPI_BCAST(tpulsefs_2,1,MPI_REAL8,0,MPI_COMM_WORLD,ierr) call MPI_BCAST(omegaev_2,1,MPI_REAL8,0,MPI_COMM_WORLD,ierr) call MPI_BCAST(phi_CEP_2,1,MPI_REAL8,0,MPI_COMM_WORLD,ierr) call MPI_BCAST(Epdir_2,3,MPI_REAL8,0,MPI_COMM_WORLD,ierr) call MPI_BCAST(T1_T2fs,1,MPI_REAL8,0,MPI_COMM_WORLD,ierr) call MPI_BCAST(NI,1,MPI_INTEGER,0,MPI_COMM_WORLD,ierr) call MPI_BCAST(NE,1,MPI_INTEGER,0,MPI_COMM_WORLD,ierr) call MPI_BARRIER(MPI_COMM_WORLD,ierr) if(AE_shape /= 'Asin2cos' .and. AE_shape /= 'Esin2sin' & &.and. AE_shape /= 'input' .and. AE_shape /= 'Asin2_cw' ) call err_finalize('incorrect option for AE_shape') allocate(Zatom(NE),Kion(NI),Rps(NE),NRps(NE)) allocate(Rion(3,NI),Rion_eq(3,NI),dRion(3,NI,-1:Nt+1)) allocate(Zps(NE),NRloc(NE),Rloc(NE),Mass(NE),force(3,NI)) allocate(dVloc_G(NG_s:NG_e,NE),force_ion(3,NI)) allocate(Mps(NI),Lref(NE),Mlps(NE)) allocate(anorm(0:Lmax,NE),inorm(0:Lmax,NE)) allocate(rad(Nrmax,NE),vloctbl(Nrmax,NE),dvloctbl(Nrmax,NE)) allocate(radnl(Nrmax,NE)) allocate(udVtbl(Nrmax,0:Lmax,NE),dudVtbl(Nrmax,0:Lmax,NE)) allocate(Floc(3,NI),Fnl(3,NI),Fion(3,NI)) if (Myrank == 0) then read(*,*) (Zatom(j),j=1,NE) read(*,*) (Lref(j),j=1,NE) do ia=1,NI read(*,*) i,(Rion(j,ia),j=1,3),Kion(ia) enddo write(*,*) 'Zatom=',(Zatom(j),j=1,NE) write(*,*) 'Lref=',(Lref(j),j=1,NE) write(*,*) 'i,Kion(ia)','(Rion(j,a),j=1,3)' do ia=1,NI write(*,*) ia,Kion(ia) write(*,'(3f12.8)') (Rion(j,ia),j=1,3) end do endif call MPI_BCAST(Zatom,NE,MPI_REAL8,0,MPI_COMM_WORLD,ierr) call MPI_BCAST(Kion,NI,MPI_INTEGER,0,MPI_COMM_WORLD,ierr) call MPI_BCAST(Lref,NE,MPI_INTEGER,0,MPI_COMM_WORLD,ierr) call MPI_BCAST(Rion,3*NI,MPI_REAL8,0,MPI_COMM_WORLD,ierr) call MPI_BARRIER(MPI_COMM_WORLD,ierr) Rion(1,:)=Rion(1,:)*aLx Rion(2,:)=Rion(2,:)*aLy Rion(3,:)=Rion(3,:)*aLz return End Subroutine Read_data !--------10--------20--------30--------40--------50--------60--------70--------80--------90--------100-------110-------120--------130 subroutine prep_Reentrance_Read use Global_Variables use timelog, only: timelog_reentrance_read use opt_variables, only: opt_vars_initialize_p1, opt_vars_initialize_p2 implicit none real(8) :: time_in,time_out call MPI_BARRIER(MPI_COMM_WORLD,ierr) time_in=MPI_WTIME() if(Myrank == 0) then read(*,*) directory end if call MPI_BCAST(directory,50,MPI_CHARACTER,0,MPI_COMM_WORLD,ierr) write(cMyrank,'(I5.5)')Myrank file_reentrance=trim(directory)//'tmp_re.'//trim(cMyrank) open(500,file=file_reentrance,form='unformatted') read(500) iter_now,entrance_iter ! need to exclude from reading data: ! Time_shutdown, Time_start, Time_now,iter_now,entrance_iter,entrance_option !======== read section =========================== !== read data ===! !ARTED version ! character(50),parameter :: ARTED_ver='ARTED_sc.2014.08.10.0' ! constants ! real(8),parameter :: Pi=3.141592653589793d0 ! complex(8),parameter :: zI=(0.d0,1.d0) ! real(8),parameter :: a_B=0.529177d0,Ry=13.6058d0 ! real(8),parameter :: umass=1822.9d0 !yabana !! DFT parameters ! real(8),parameter :: gammaU=-0.1423d0,beta1U=1.0529d0 ! real(8),parameter :: beta2U=0.3334d0,AU=0.0311d0,BU=-0.048d0 ! real(8),parameter :: CU=0.002d0,DU=-0.0116d0 !yabana ! grid read(500) NLx,NLy,NLz,Nd,NL,NG,NKx,NKy,NKz,NK,Sym,nGzero read(500) NKxyz read(500) aL,ax,ay,az,aLx,aLy,aLz,aLxyz read(500) bLx,bLy,bLz,Hx,Hy,Hz,Hxyz ! pseudopotential ! integer,parameter :: Nrmax=3000,Lmax=4 read(500) ps_type read(500) ps_format !shinohara read(500) PSmask_option != 'n' !shinohara read(500) alpha_mask, gamma_mask, eta_mask!shinohara read(500) Nps,Nlma ! material read(500) NI,NE,NB,NBoccmax read(500) Ne_tot ! physical quantities read(500) Eall,Eall0,jav(3),Tion read(500) Ekin,Eloc,Enl,Eh,Exc,Eion,Eelemag !yabana read(500) Nelec !FS set ! Bloch momentum,laser pulse, electric field ! real(8) :: f0,Wcm2,pulseT,wave_length,omega,pulse_time,pdir(3),phi_CEP=0.00*2*pi read(500) AE_shape read(500) f0_1,IWcm2_1,tpulsefs_1,omegaev_1,omega_1,tpulse_1,Epdir_1(3),phi_CEP_1 ! sato read(500) f0_2,IWcm2_2,tpulsefs_2,omegaev_2,omega_2,tpulse_2,Epdir_2(3),phi_CEP_2 ! sato read(500) T1_T2fs,T1_T2 ! control parameters read(500) NEwald !Ewald summation read(500) aEwald read(500) Ncg !# of conjugate gradient (cg) read(500) dt,dAc,domega read(500) Nscf,Nt,Nomega read(500) Nmemory_MB !Modified-Broyden (MB) method read(500) alpha_MB read(500) NFSset_start,NFSset_every !Fermi Surface (FS) set ! file names, flags, etc read(500) SYSname,directory read(500) file_GS,file_RT read(500) file_epst,file_epse read(500) file_force_dR,file_j_ac read(500) file_DoS,file_band read(500) file_dns,file_ovlp,file_nex read(500) ext_field read(500) Longi_Trans read(500) FSset_option,MD_option read(500) AD_RHO !ovlp_option !yabana read(500) functional read(500) cval ! cvalue for TBmBJ. If cval<=0, calculated in the program !yabana ! MPI ! include 'mpif.h' ! read(500) Myrank,Nprocs,ierr ! read(500) NEW_COMM_WORLD,NEWPROCS,NEWRANK ! sato read(500) NK_ave,NG_ave,NK_s,NK_e,NG_s,NG_e read(500) NK_remainder,NG_remainder read(500) etime1,etime2 ! Timer ! read(500) Time_shutdown ! read(500) Time_start,Time_now ! read(500) iter_now,entrance_iter ! read(500) entrance_option !initial or reentrance read(500) position_option ! omp ! integer :: NUMBER_THREADS read(500) NKB ! sym read(500) crystal_structure !sym ! Finite temperature read(500) KbTev ! For reentrance read(500) cMyrank,file_reentrance ! allocatable allocate(Lx(NL),Ly(NL),Lz(NL),Gx(NG),Gy(NG),Gz(NG)) allocate(ifdx(-Nd:Nd,1:NL),ifdy(-Nd:Nd,1:NL),ifdz(-Nd:Nd,1:NL)) allocate(lap(-Nd:Nd),nab(-Nd:Nd)) allocate(lapx(-Nd:Nd),lapy(-Nd:Nd),lapz(-Nd:Nd)) allocate(nabx(-Nd:Nd),naby(-Nd:Nd),nabz(-Nd:Nd)) allocate(Lxyz(0:NLx-1,0:NLy-1,0:NLz-1)) read(500) Lx(:),Ly(:),Lz(:),Lxyz(:,:,:) read(500) ifdx(:,:),ifdy(:,:),ifdz(:,:) read(500) Gx(:),Gy(:),Gz(:) read(500) lap(:),nab(:) read(500) lapx(:),lapy(:),lapz(:) read(500) nabx(:),naby(:),nabz(:) allocate(Mps(NI),Jxyz(Nps,NI),Jxx(Nps,NI),Jyy(Nps,NI),Jzz(Nps,NI)) allocate(Mlps(NE),Lref(NE),Zps(NE),NRloc(NE)) allocate(NRps(NE),inorm(0:Lmax,NE),iuV(Nlma),a_tbl(Nlma)) allocate(rad(Nrmax,NE),Rps(NE),vloctbl(Nrmax,NE),udVtbl(Nrmax,0:Lmax,NE)) allocate(radnl(Nrmax,NE)) allocate(Rloc(NE),uV(Nps,Nlma),duV(Nps,Nlma,3),anorm(0:Lmax,NE)) allocate(dvloctbl(Nrmax,NE),dudVtbl(Nrmax,0:Lmax,NE)) read(500) Mps(:),Jxyz(:,:),Jxx(:,:),Jyy(:,:),Jzz(:,:) read(500) Mlps(:),Lref(:),Zps(:),NRloc(:) read(500) NRps(:),inorm(:,:),iuV(:),a_tbl(:) read(500) rad(:,:),Rps(:),vloctbl(:,:),udVtbl(:,:,:) read(500) radnl(:,:) read(500) Rloc(:),uV(:,:),duV(:,:,:),anorm(:,:) read(500) dvloctbl(:,:),dudVtbl(:,:,:) allocate(Zatom(NE),Kion(NI)) allocate(Rion(3,NI),Mass(NE),Rion_eq(3,NI),dRion(3,NI,-1:Nt+1)) allocate(occ(NB,NK),wk(NK)) read(500) Zatom(:),Kion(:) read(500) Rion(:,:),Mass(:),Rion_eq(:,:),dRion(:,:,:) read(500) occ(:,:),wk(:) allocate(javt(0:Nt,3)) allocate(Vpsl(NL),Vh(NL),Vexc(NL),Eexc(NL),Vloc(NL),Vloc_GS(NL),Vloc_t(NL)) allocate(tmass(NL),tjr(NL,3),tjr2(NL),tmass_t(NL),tjr_t(NL,3),tjr2_t(NL)) allocate(dVloc_G(NG_s:NG_e,NE)) allocate(rho(NL),rho_gs(NL)) allocate(rhoe_G(NG_s:NG_e),rhoion_G(NG_s:NG_e)) allocate(force(3,NI),esp(NB,NK),force_ion(3,NI)) allocate(Floc(3,NI),Fnl(3,NI),Fion(3,NI)) allocate(ovlp_occ_l(NB,NK),ovlp_occ(NB,NK)) read(500) javt(:,:) read(500) Vpsl(:),Vh(:),Vexc(:),Eexc(:),Vloc(:),Vloc_GS(:),Vloc_t(:) read(500) tmass(:),tjr(:,:),tjr2(:),tmass_t(:),tjr_t(:,:),tjr2_t(:) read(500) dVloc_G(:,:) read(500) rho(:),rho_gs(:) ! real(8),allocatable :: rho_in(:,:),rho_out(:,:) !MB method read(500) rhoe_G(:),rhoion_G(:) read(500) force(:,:),esp(:,:),force_ion(:,:) read(500) Floc(:,:),Fnl(:,:),Fion(:,:) read(500) ovlp_occ_l(:,:),ovlp_occ(:,:) allocate(NBocc(NK)) !redistribution allocate(esp_vb_min(NK),esp_vb_max(NK)) !redistribution allocate(esp_cb_min(NK),esp_cb_max(NK)) !redistribution ! allocate(Eall_GS(0:Nscf),esp_var_ave(1:Nscf),esp_var_max(1:Nscf),dns_diff(1:Nscf)) read(500) NBocc(:) !FS set read(500) esp_vb_min(:),esp_vb_max(:) !FS set read(500) esp_cb_min(:),esp_cb_max(:) !FS set ! read(500) Eall_GS(:),esp_var_ave(:),esp_var_max(:),dns_diff(:) allocate(zu_GS(NL,NB,NK_s:NK_e),zu_GS0(NL,NB,NK_s:NK_e)) allocate(zu(NL,NBoccmax,NK_s:NK_e)) allocate(tpsi(NL),htpsi(NL),zwork(-Nd:NLx+Nd-1,-Nd:NLy+Nd-1,-Nd:NLz+Nd-1),ttpsi(NL)) allocate(work(-Nd:NLx+Nd-1,-Nd:NLy+Nd-1,-Nd:NLz+Nd-1)) allocate(esp_var(NB,NK)) ! wave functions, work array read(500) zu(:,:,:),zu_GS(:,:,:),zu_GS0(:,:,:) ! read(500) tpsi(:),htpsi(:),zwork(:,:,:),ttpsi(:) ! read(500) work(:,:,:) read(500) esp_var(:,:) allocate(nxyz(-NLx/2:NLx/2-1,-NLy/2:NLy/2-1,-NLz/2:NLz/2-1)) !Hartree allocate(rho_3D(0:NLx-1,0:NLy-1,0:NLz-1),Vh_3D(0:NLx-1,0:NLy-1,0:NLz-1))!Hartree allocate(rhoe_G_temp(1:NG),rhoe_G_3D(-NLx/2:NLx/2-1,-NLy/2:NLy/2-1,-NLz/2:NLz/2-1))!Hartree allocate(f1(0:NLx-1,0:NLy-1,-NLz/2:NLz/2-1),f2(0:NLx-1,-NLy/2:NLy/2-1,-NLz/2:NLz/2-1))!Hartree allocate(f3(-NLx/2:NLx/2-1,-NLy/2:NLy/2-1,0:NLz-1),f4(-NLx/2:NLx/2-1,0:NLy-1,0:NLz-1))!Hartree allocate(eGx(-NLx/2:NLx/2-1,0:NLx-1),eGy(-NLy/2:NLy/2-1,0:NLy-1),eGz(-NLz/2:NLz/2-1,0:NLz-1))!Hartree allocate(eGxc(-NLx/2:NLx/2-1,0:NLx-1),eGyc(-NLy/2:NLy/2-1,0:NLy-1),eGzc(-NLz/2:NLz/2-1,0:NLz-1))!Hartree ! variables for 4-times loop in Fourier transportation read(500) nxyz(:,:,:) read(500) rho_3D(:,:,:),Vh_3D(:,:,:) read(500) rhoe_G_temp(:),rhoe_G_3D(:,:,:) read(500) f1(:,:,:),f2(:,:,:),f3(:,:,:),f4(:,:,:) read(500) eGx(:,:),eGy(:,:),eGz(:,:),eGxc(:,:),eGyc(:,:),eGzc(:,:) allocate(E_ext(0:Nt,3),E_ind(0:Nt,3),E_tot(0:Nt,3)) allocate(kAc(NK,3),kAc0(NK,3)) allocate(Ac_ext(-1:Nt+1,3),Ac_ind(-1:Nt+1,3),Ac_tot(-1:Nt+1,3)) read(500) E_ext(:,:),E_ind(:,:),E_tot(:,:) read(500) kAc(:,:),kAc0(:,:) !k+A(t)/c (kAc) read(500) Ac_ext(:,:),Ac_ind(:,:),Ac_tot(:,:) !A(t)/c (Ac) allocate(ekr(Nps,NI)) ! sato allocate(ekr_omp(Nps,NI,NK_s:NK_e)) allocate(tpsi_omp(NL,0:NUMBER_THREADS-1),htpsi_omp(NL,0:NUMBER_THREADS-1)) ! sato allocate(ttpsi_omp(NL,0:NUMBER_THREADS-1)) ! sato allocate(xk_omp(NL,0:NUMBER_THREADS-1),hxk_omp(NL,0:NUMBER_THREADS-1)) ! sato allocate(gk_omp(NL,0:NUMBER_THREADS-1),pk_omp(NL,0:NUMBER_THREADS-1)) ! sato allocate(pko_omp(NL,0:NUMBER_THREADS-1),txk_omp(NL,0:NUMBER_THREADS-1)) ! sato allocate(ik_table(NKB),ib_table(NKB)) ! sato ! sato read(500) ekr(:,:) ! omp ! integer :: NUMBER_THREADS read(500) ekr_omp(:,:,:) read(500) tpsi_omp(:,:),ttpsi_omp(:,:),htpsi_omp(:,:) read(500) xk_omp(:,:),hxk_omp(:,:),gk_omp(:,:),pk_omp(:,:),pko_omp(:,:),txk_omp(:,:) read(500) ik_table(:),ib_table(:) allocate(tau_s_l_omp(NL,0:NUMBER_THREADS-1),j_s_l_omp(NL,3,0:NUMBER_THREADS-1)) ! sato read(500) tau_s_l_omp(:,:),j_s_l_omp(:,:,:) allocate(itable_sym(Sym,NL)) ! sym allocate(rho_l(NL),rho_tmp1(NL),rho_tmp2(NL)) !sym read(500) itable_sym(:,:) ! sym read(500) rho_l(:),rho_tmp1(:),rho_tmp2(:) !sym call timelog_reentrance_read(500) call opt_vars_initialize_p1 call opt_vars_initialize_p2 !== read data ===! close(500) call MPI_BARRIER(MPI_COMM_WORLD,ierr) time_out=MPI_WTIME() if(myrank == 0)write(*,*)'Reentrance time read =',time_out-time_in,' sec' return end subroutine prep_Reentrance_Read !--------10--------20--------30--------40--------50--------60--------70--------80--------90--------100-------110-------120--------130 subroutine prep_Reentrance_write use Global_Variables use timelog, only: timelog_reentrance_write implicit none real(8) :: time_in,time_out call MPI_BARRIER(MPI_COMM_WORLD,ierr) time_in=MPI_WTIME() if (Myrank == 0) then open(501,file=trim(directory)//trim(SYSname)//'_re.dat') write(501,*) "'reentrance'"! entrance_option write(501,*) Time_shutdown write(501,*) "'"//trim(directory)//"'" close(501) end if write(cMyrank,'(I5.5)')Myrank file_reentrance=trim(directory)//'tmp_re.'//trim(cMyrank) open(500,file=file_reentrance,form='unformatted') write(500) iter_now,iter_now !iter_now=entrance_iter !======== write section =========================== !== write data ===! ! grid write(500) NLx,NLy,NLz,Nd,NL,NG,NKx,NKy,NKz,NK,Sym,nGzero write(500) NKxyz write(500) aL,ax,ay,az,aLx,aLy,aLz,aLxyz write(500) bLx,bLy,bLz,Hx,Hy,Hz,Hxyz ! pseudopotential ! integer,parameter :: Nrmax=3000,Lmax=4 write(500) ps_type write(500) ps_format !shinohara write(500) PSmask_option != 'n' !shinohara write(500) alpha_mask, gamma_mask, eta_mask!shinohara write(500) Nps,Nlma ! material write(500) NI,NE,NB,NBoccmax write(500) Ne_tot ! physical quantities write(500) Eall,Eall0,jav(3),Tion write(500) Ekin,Eloc,Enl,Eh,Exc,Eion,Eelemag !yabana write(500) Nelec !FS set ! Bloch momentum,laser pulse, electric field ! real(8) :: f0,Wcm2,pulseT,wave_length,omega,pulse_time,pdir(3),phi_CEP=0.00*2*pi write(500) AE_shape write(500) f0_1,IWcm2_1,tpulsefs_1,omegaev_1,omega_1,tpulse_1,Epdir_1(3),phi_CEP_1 ! sato write(500) f0_2,IWcm2_2,tpulsefs_2,omegaev_2,omega_2,tpulse_2,Epdir_2(3),phi_CEP_2 ! sato write(500) T1_T2fs,T1_T2 ! control parameters write(500) NEwald !Ewald summation write(500) aEwald write(500) Ncg write(500) dt,dAc,domega write(500) Nscf,Nt,Nomega write(500) Nmemory_MB !Modified-Broyden (MB) method write(500) alpha_MB write(500) NFSset_start,NFSset_every !Fermi Surface (FS) set ! file names, flags, etc write(500) SYSname,directory write(500) file_GS,file_RT write(500) file_epst,file_epse write(500) file_force_dR,file_j_ac write(500) file_DoS,file_band write(500) file_dns,file_ovlp,file_nex write(500) ext_field write(500) Longi_Trans write(500) FSset_option,MD_option write(500) AD_RHO !ovlp_option !yabana write(500) functional write(500) cval ! cvalue for TBmBJ. If cval<=0, calculated in the program !yabana ! MPI ! include 'mpif.h' ! write(500) Myrank,Nprocs,ierr ! write(500) NEW_COMM_WORLD,NEWPROCS,NEWRANK ! sato write(500) NK_ave,NG_ave,NK_s,NK_e,NG_s,NG_e write(500) NK_remainder,NG_remainder write(500) etime1,etime2 ! Timer ! write(500) Time_shutdown ! write(500) Time_start,Time_now ! write(500) iter_now,entrance_iter ! write(500) entrance_option !initial or reentrance write(500) position_option ! omp ! integer :: NUMBER_THWRITES write(500) NKB ! sym write(500) crystal_structure !sym ! Finite temperature write(500) KbTev ! For reentrance write(500) cMyrank,file_reentrance ! allocatable write(500) Lx(:),Ly(:),Lz(:),Lxyz(:,:,:) write(500) ifdx(:,:),ifdy(:,:),ifdz(:,:) write(500) Gx(:),Gy(:),Gz(:) write(500) lap(:),nab(:) write(500) lapx(:),lapy(:),lapz(:) write(500) nabx(:),naby(:),nabz(:) write(500) Mps(:),Jxyz(:,:),Jxx(:,:),Jyy(:,:),Jzz(:,:) write(500) Mlps(:),Lref(:),Zps(:),NRloc(:) write(500) NRps(:),inorm(:,:),iuV(:),a_tbl(:) write(500) rad(:,:),Rps(:),vloctbl(:,:),udVtbl(:,:,:) write(500) radnl(:,:) write(500) Rloc(:),uV(:,:),duV(:,:,:),anorm(:,:) write(500) dvloctbl(:,:),dudVtbl(:,:,:) write(500) Zatom(:),Kion(:) write(500) Rion(:,:),Mass(:),Rion_eq(:,:),dRion(:,:,:) write(500) occ(:,:),wk(:) write(500) javt(:,:) write(500) Vpsl(:),Vh(:),Vexc(:),Eexc(:),Vloc(:),Vloc_GS(:),Vloc_t(:) write(500) tmass(:),tjr(:,:),tjr2(:),tmass_t(:),tjr_t(:,:),tjr2_t(:) write(500) dVloc_G(:,:) write(500) rho(:),rho_gs(:) ! real(8),allocatable :: rho_in(:,:),rho_out(:,:) !MB method write(500) rhoe_G(:),rhoion_G(:) write(500) force(:,:),esp(:,:),force_ion(:,:) write(500) Floc(:,:),Fnl(:,:),Fion(:,:) write(500) ovlp_occ_l(:,:),ovlp_occ(:,:) write(500) NBocc(:) !FS set write(500) esp_vb_min(:),esp_vb_max(:) !FS set write(500) esp_cb_min(:),esp_cb_max(:) !FS set ! write(500) Eall_GS(:),esp_var_ave(:),esp_var_max(:),dns_diff(:) ! wave functions, work array write(500) zu(:,:,:),zu_GS(:,:,:),zu_GS0(:,:,:) ! write(500) tpsi(:),htpsi(:),zwork(:,:,:),ttpsi(:) ! write(500) work(:,:,:) write(500) esp_var(:,:) ! variables for 4-times loop in Fourier transportation write(500) nxyz(:,:,:) write(500) rho_3D(:,:,:),Vh_3D(:,:,:) write(500) rhoe_G_temp(:),rhoe_G_3D(:,:,:) write(500) f1(:,:,:),f2(:,:,:),f3(:,:,:),f4(:,:,:) write(500) eGx(:,:),eGy(:,:),eGz(:,:),eGxc(:,:),eGyc(:,:),eGzc(:,:) write(500) E_ext(:,:),E_ind(:,:),E_tot(:,:) write(500) kAc(:,:),kAc0(:,:) !k+A(t)/c (kAc) write(500) Ac_ext(:,:),Ac_ind(:,:),Ac_tot(:,:) !A(t)/c (Ac) ! sato write(500) ekr(:,:) ! omp ! integer :: NUMBER_THWRITES write(500) ekr_omp(:,:,:) write(500) tpsi_omp(:,:),ttpsi_omp(:,:),htpsi_omp(:,:) write(500) xk_omp(:,:),hxk_omp(:,:),gk_omp(:,:),pk_omp(:,:),pko_omp(:,:),txk_omp(:,:) write(500) ik_table(:),ib_table(:) write(500) tau_s_l_omp(:,:),j_s_l_omp(:,:,:) write(500) itable_sym(:,:) ! sym write(500) rho_l(:),rho_tmp1(:),rho_tmp2(:) !sym call timelog_reentrance_write(500) !== write data ===! close(500) call MPI_BARRIER(MPI_COMM_WORLD,ierr) time_out=MPI_WTIME() if(myrank == 0)write(*,*)'Reentrance time write =',time_out-time_in,' sec' return end subroutine prep_Reentrance_write !--------10--------20--------30--------40--------50--------60--------70--------80--------90--------100-------110-------120--------130 Subroutine err_finalize(err_message) use Global_Variables implicit none character(*),intent(in) :: err_message if (Myrank == 0) then write(*,*) err_message endif call MPI_FINALIZE(ierr) stop End Subroutine Err_finalize
Require Import Coq.Arith.Arith. Require Export Coq.Vectors.Vector. Require Import Coq.Program.Equality. (* for dependent induction *) Require Import Coq.Setoids.Setoid. Require Import Coq.Logic.ProofIrrelevance. (* CoLoR: `opam install coq-color` *) Require Export CoLoR.Util.Vector.VecUtil. Open Scope vector_scope. (* Re-define :: List notation for vectors. Probably not such a good idea *) Notation "h :: t" := (cons h t) (at level 60, right associativity) : vector_scope. Import VectorNotations. Section VPermutation. Variable A:Type. Inductive VPermutation: forall n, vector A n -> vector A n -> Prop := | vperm_nil: VPermutation 0 [] [] | vperm_skip {n} x l l' : VPermutation n l l' -> VPermutation (S n) (x::l) (x::l') | vperm_swap {n} x y l : VPermutation (S (S n)) (y::x::l) (x::y::l) | vperm_trans {n} l l' l'' : VPermutation n l l' -> VPermutation n l' l'' -> VPermutation n l l''. Local Hint Constructors VPermutation : vperm_hints. (** Some facts about [VPermutation] *) Theorem VPermutation_nil : forall (l : vector A 0), VPermutation 0 [] l -> l = []. Proof. intros l HF. dependent destruction l. reflexivity. Qed. (** VPermutation over vectors is a equivalence relation *) Theorem VPermutation_refl : forall {n} (l: vector A n), VPermutation n l l. Proof. induction l; constructor. exact IHl. Qed. Theorem VPermutation_sym : forall {n} (l l' : vector A n), VPermutation n l l' -> VPermutation n l' l. Proof. intros n l l' Hperm. induction Hperm; auto with vperm_hints. apply vperm_trans with (l'0:=l'); auto. Qed. Theorem VPermutation_trans : forall {n} (l l' l'' : vector A n), VPermutation n l l' -> VPermutation n l' l'' -> VPermutation n l l''. Proof. intros n l l' l''. apply vperm_trans. Qed. End VPermutation. Hint Resolve VPermutation_refl vperm_nil vperm_skip : vperm_hints. (* These hints do not reduce the size of the problem to solve and they must be used with care to avoid combinatoric explosions *) Local Hint Resolve vperm_swap vperm_trans : vperm_hints. Local Hint Resolve VPermutation_sym VPermutation_trans : vperm_hints. (* This provides reflexivity, symmetry and transitivity and rewriting on morphims to come *) Instance VPermutation_Equivalence A n : Equivalence (@VPermutation A n) | 10 := { Equivalence_Reflexive := @VPermutation_refl A n ; Equivalence_Symmetric := @VPermutation_sym A n ; Equivalence_Transitive := @VPermutation_trans A n }. Require Import Coq.Sorting.Permutation. Require Import Helix.Util.VecUtil. Section VPermutation_properties. Variable A:Type. Lemma ListVecPermutation {n} {l1 l2} {v1 v2}: l1 = list_of_vec v1 -> l2 = list_of_vec v2 -> Permutation l1 l2 <-> VPermutation A n v1 v2. Proof. intros H1 H2. split. - intros P; revert n v1 v2 H1 H2. dependent induction P; intros n v1 v2 H1 H2. + dependent destruction v1; inversion H1; subst. dependent destruction v2; inversion H2; subst. apply vperm_nil. + dependent destruction v1; inversion H1; subst. dependent destruction v2; inversion H2; subst. apply vperm_skip. now apply IHP. + do 2 (dependent destruction v1; inversion H1; subst). do 2 (dependent destruction v2; inversion H2; subst). apply list_of_vec_eq in H5; subst. apply vperm_swap. + assert (n = length l'). { pose proof (Permutation_length P1) as len. subst. now rewrite list_of_vec_length in len. } subst. apply vperm_trans with (l' := vec_of_list l'). * apply IHP1; auto. now rewrite list_of_vec_vec_of_list. * apply IHP2; auto. now rewrite list_of_vec_vec_of_list. - subst l1 l2. intros P. dependent induction P. + subst; auto. + simpl. apply perm_skip. apply IHP. + simpl. apply perm_swap. + apply perm_trans with (l':=list_of_vec l'); auto. Qed. End VPermutation_properties. Lemma Vsig_of_forall_cons {A : Type} {n : nat} (P : A->Prop) (x : A) (l : vector A n) (P1h : P x) (P1x : @Vforall A P n l): (@Vsig_of_forall A P (S n) (@cons A x n l) (@conj (P x) (@Vforall A P n l) P1h P1x)) = (Vcons (@exist A P x P1h) (Vsig_of_forall P1x)). Proof. simpl. f_equal. apply subset_eq_compat. reflexivity. f_equal. apply proof_irrelevance. Qed. Lemma VPermutation_Vsig_of_forall {n: nat} {A: Type} (P: A->Prop) (v1 v2 : vector A n) (P1 : Vforall P v1) (P2 : Vforall P v2): VPermutation A n v1 v2 -> VPermutation {x : A | P x} n (Vsig_of_forall P1) (Vsig_of_forall P2). Proof. intros V. revert P1 P2. dependent induction V; intros P1 P2. - apply vperm_nil. - destruct P1 as [P1h P1x]. destruct P2 as [P2h P2x]. rewrite 2!Vsig_of_forall_cons. replace P1h with P2h by apply proof_irrelevance. apply vperm_skip. apply IHV. - destruct P1 as [P1y [P1x P1l]]. destruct P2 as [P1x' [P1y' P1l']]. repeat rewrite Vsig_of_forall_cons. replace P1y' with P1y by apply proof_irrelevance. replace P1x' with P1x by apply proof_irrelevance. replace P1l' with P1l by apply proof_irrelevance. apply vperm_swap. - assert(Vforall P l'). { apply Vforall_intro. intros x H. apply list_of_vec_in in H. eapply ListVecPermutation in V1; auto. apply Permutation_in with (l':=(list_of_vec l)) in H. + apply Vforall_lforall in P1. apply ListUtil.lforall_in with (l:=(list_of_vec l)); auto. + symmetry. auto. } (* Looks like a coq bug here. It should find H automatically *) unshelve eauto with vperm_hints. apply H. Qed.
calc_T_k(reactor, R_0, B_0) = K_T(reactor) * B_0 * R_0
> module PNat.Properties > import Syntax.PreorderReasoning > import PNat.PNat > import PNat.Operations > import Nat.Positive > import Unique.Predicates > import Subset.Properties > import Nat.LTProperties > import Pairs.Operations > %default total > %access export > ||| PNat is an implementation of DecEq > implementation DecEq PNat where > decEq (Element m pm) (Element n pn) with (decEq m n) > | (Yes prf) = Yes (subsetEqLemma1 (Element m pm) (Element n pn) prf PositiveUnique) > | (No contra) = No (\ prf => contra (getWitnessPreservesEq prf)) > ||| PNat is an implementation of Show > implementation Show PNat where > show = show . toNat > ||| > predToNatLemma : (x : PNat) -> S (pred x) = toNat x > predToNatLemma (Element _ (MkPositive {n})) = Refl > ||| > toNatfromNatLemma : (m : Nat) -> (zLTm : Z `LT` m) -> toNat (fromNat m zLTm) = m > {- > toNatfromNatLemma Z zLTz = absurd zLTz > toNatfromNatLemma (S m) _ = Refl > ---} > --{- > toNatfromNatLemma m zLTm = Refl > ---} > ||| > toNatLTLemma : (x : PNat) -> Z `LT` toNat x > toNatLTLemma x = s2 where > s1 : Z `LT` (S (pred x)) > s1 = ltZS (pred x) > s2 : Z `LT` (toNat x) > s2 = replace (predToNatLemma x) s1 > ||| > toNatEqLemma : {x, y : PNat} -> (toNat x) = (toNat y) -> x = y > toNatEqLemma {x} {y} p = subsetEqLemma1 x y p PositiveUnique > ||| > -- toNatMultLemma : {x, y : PNat} -> toNat (x * y) = (toNat x) * (toNat y) > toNatMultLemma : {x, y : PNat} -> toNat (x * y) = (toNat x) * (toNat y) > toNatMultLemma {x = (Element m pm)} {y = (Element n pn)} = Refl > ||| > multOneRightNeutral : (x : PNat) -> x * (Element 1 MkPositive) = x > multOneRightNeutral (Element m pm) = > ( (Element m pm) * (Element 1 MkPositive) ) > ={ Refl }= > ( Element (m * 1) (multPreservesPositivity pm MkPositive) ) > ={ toNatEqLemma (multOneRightNeutral m) }= > ( Element m pm ) > QED > ||| > multCommutative : (x : PNat) -> (y : PNat) -> x * y = y * x > multCommutative (Element m pm) (Element n pn) = > let pmn = multPreservesPositivity pm pn in > let pnm = multPreservesPositivity pn pm in > ( Element (m * n) pmn ) > ={ toNatEqLemma (multCommutative m n) }= > ( Element (n * m) pnm ) > QED > ||| > multAssociative : (x : PNat) -> (y : PNat) -> (z : PNat) -> > x * (y * z) = (x * y) * z > multAssociative (Element m pm) (Element n pn) (Element o po) = > let pno = multPreservesPositivity pn po in > let pmno = multPreservesPositivity pm pno in > let pmn = multPreservesPositivity pm pn in > let pmno' = multPreservesPositivity pmn po in > ( (Element m pm) * ((Element n pn) * (Element o po)) ) > ={ Refl }= > ( (Element m pm) * (Element (n * o) pno) ) > ={ Refl }= > ( Element (m * (n * o)) pmno ) > ={ toNatEqLemma (multAssociative m n o) }= > ( Element ((m * n) * o) pmno' ) > ={ Refl }= > ( (Element (m * n) pmn) * (Element o po) ) > ={ Refl }= > ( ((Element m pm) * (Element n pn)) * (Element o po) ) > QED > {- > ---}
/* * This file is open source software, licensed to you under the terms * of the Apache License, Version 2.0 (the "License"). See the NOTICE file * distributed with this work for additional information regarding copyright * ownership. You may not use this file except in compliance with the License. * * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, * software distributed under the License is distributed on an * "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY * KIND, either express or implied. See the License for the * specific language governing permissions and limitations * under the License. */ /* * Copyright (C) 2020 ScyllaDB */ #define BOOST_TEST_MODULE parquet #include <parquet4seastar/rle_encoding.hh> #include <boost/test/included/unit_test.hpp> #include <cstdint> #include <cstring> #include <random> #include <vector> #include <array> using parquet4seastar::BitReader; using parquet4seastar::RleDecoder; BOOST_AUTO_TEST_CASE(BitReader_happy) { constexpr int bit_width = 3; std::array<uint8_t, 6> packed = { 0b10001000, 0b01000110, // {0, 1, 2, 3, 4} packed with bit width 3 0b10000000, 0b00000001, // 128 encoded as LEB128 0b11111111, 0b00000001, // -128 encoded as zigzag }; std::array<int, 2> unpacked_1; const std::array<int, 2> expected_1 = {0, 1}; std::array<int, 3> unpacked_2; const std::array<int, 3> expected_2 = {2, 3, 4}; uint32_t unpacked_3; const uint32_t expected_3 = 128; int32_t unpacked_4; const int32_t expected_4 = -128; bool ok; int values_read; BitReader reader(packed.data(), packed.size()); values_read = reader.GetBatch(bit_width, unpacked_1.data(), expected_1.size()); BOOST_CHECK_EQUAL(values_read, expected_1.size()); BOOST_CHECK_EQUAL_COLLECTIONS(unpacked_1.begin(), unpacked_1.end(), expected_1.begin(), expected_1.end()); values_read = reader.GetBatch(bit_width, unpacked_2.data(), expected_2.size()); BOOST_CHECK_EQUAL(values_read, expected_2.size()); BOOST_CHECK_EQUAL_COLLECTIONS(unpacked_2.begin(), unpacked_2.end(), expected_2.begin(), expected_2.end()); ok = reader.GetVlqInt(&unpacked_3); BOOST_CHECK(ok); BOOST_CHECK_EQUAL(unpacked_3, expected_3); ok = reader.GetZigZagVlqInt(&unpacked_4); BOOST_CHECK(ok); BOOST_CHECK_EQUAL(unpacked_4, expected_4); values_read = reader.GetBatch(bit_width, unpacked_2.data(), 999999); BOOST_CHECK_EQUAL(values_read, 0); } BOOST_AUTO_TEST_CASE(BitReader_ULEB128_corrupted) { std::array<uint8_t, 1> packed = { 0b10000000,// Incomplete ULEB128 }; uint32_t unpacked; BitReader reader(packed.data(), packed.size()); bool ok = reader.GetVlqInt(&unpacked); BOOST_CHECK(!ok); } BOOST_AUTO_TEST_CASE(BitReader_ULEB128_overflow) { std::array<uint8_t, 7> packed = { 0b10000000, 0b10000000, 0b10000000, 0b10000000, 0b10000000, 0b10000000, 0b00000000 }; uint32_t unpacked; BitReader reader(packed.data(), packed.size()); bool ok = reader.GetVlqInt(&unpacked); BOOST_CHECK(!ok); } BOOST_AUTO_TEST_CASE(BitReader_zigzag_corrupted) { std::array<uint8_t, 1> packed = { 0b10000000, // Incomplete zigzag }; int32_t unpacked; BitReader reader(packed.data(), packed.size()); bool ok = reader.GetZigZagVlqInt(&unpacked); BOOST_CHECK(!ok); } BOOST_AUTO_TEST_CASE(BitReader_zigzag_overflow) { std::array<uint8_t, 7> packed = { 0b10000000, 0b10000000, 0b10000000, 0b10000000, 0b10000000, 0b10000000, 0b00000000 }; int32_t unpacked; BitReader reader(packed.data(), packed.size()); bool ok = reader.GetZigZagVlqInt(&unpacked); BOOST_CHECK(!ok); } // Refer to doc/parquet/Encodings.md (section about RLE) // for a description of the encoding being tested here. BOOST_AUTO_TEST_CASE(RleDecoder_happy) { constexpr int bit_width = 3; std::array<uint8_t, 6> packed = { 0b00000011, 0b10001000, 0b11000110, 0b11111010, // bit-packed-run {0, 1, 2, 3, 4, 5, 6, 7} 0b00001000, 0b00000101 // rle-run {5, 5, 5, 5} }; std::array<int, 6> unpacked_1; const std::array<int, 6> expected_1 = {0, 1, 2, 3, 4, 5}; std::array<int, 4> unpacked_2; const std::array<int, 4> expected_2 = {6, 7, 5, 5}; std::array<int, 2> unpacked_3; const std::array<int, 2> expected_3 = {5, 5}; int values_read; RleDecoder reader(packed.data(), packed.size(), bit_width); values_read = reader.GetBatch(unpacked_1.data(), expected_1.size()); BOOST_CHECK_EQUAL(values_read, expected_1.size()); BOOST_CHECK_EQUAL_COLLECTIONS(unpacked_1.begin(), unpacked_1.end(), expected_1.begin(), expected_1.end()); values_read = reader.GetBatch(unpacked_2.data(), expected_2.size()); BOOST_CHECK_EQUAL(values_read, expected_2.size()); BOOST_CHECK_EQUAL_COLLECTIONS(unpacked_2.begin(), unpacked_2.end(), expected_2.begin(), expected_2.end()); values_read = reader.GetBatch(unpacked_3.data(), 9999999); BOOST_CHECK_EQUAL(values_read, expected_3.size()); BOOST_CHECK_EQUAL_COLLECTIONS(unpacked_3.begin(), unpacked_3.end(), expected_3.begin(), expected_3.end()); values_read = reader.GetBatch(unpacked_2.data(), 9999999); BOOST_CHECK_EQUAL(values_read, 0); } BOOST_AUTO_TEST_CASE(RleDecoder_bit_packed_ULEB128) { constexpr int bit_width = 16; std::array<uint8_t, 1026> packed = { 0b10000001, 0b00000001// bit-packed-run with 8 * 64 values }; std::array<int, 512> expected; std::array<int, 512> unpacked; for (size_t i = 0; i < expected.size(); ++i) { uint16_t value = i; memcpy(&packed[2 + i*2], &value, 2); expected[i] = i; } int values_read; RleDecoder reader(packed.data(), packed.size(), bit_width); values_read = reader.GetBatch(unpacked.data(), 9999999); BOOST_CHECK_EQUAL(values_read, expected.size()); BOOST_CHECK_EQUAL_COLLECTIONS(unpacked.begin(), unpacked.end(), expected.begin(), expected.end()); } BOOST_AUTO_TEST_CASE(RleDecoder_rle_ULEB128) { constexpr int bit_width = 8; std::array<uint8_t, 3> packed = { 0b10000000, 0b00000001, 0b00000101 // rle-run with 64 copies of 5 }; std::array<int, 64> expected; std::array<int, 64> unpacked; for (size_t i = 0; i < expected.size(); ++i) { expected[i] = 5; } int values_read; RleDecoder reader(packed.data(), packed.size(), bit_width); values_read = reader.GetBatch(unpacked.data(), 9999999); BOOST_CHECK_EQUAL(values_read, expected.size()); BOOST_CHECK_EQUAL_COLLECTIONS(unpacked.begin(), unpacked.end(), expected.begin(), expected.end()); } BOOST_AUTO_TEST_CASE(RleDecoder_bit_packed_too_short) { constexpr int bit_width = 3; std::array<uint8_t, 3> packed = { 0b00000011, 0b10001000, 0b11000110 // bit-packed-run {0, 1, 2, 3, 4, EOF }; std::array<int, 8> unpacked; RleDecoder reader(packed.data(), packed.size(), bit_width); int values_read = reader.GetBatch(unpacked.data(), unpacked.size()); BOOST_CHECK_EQUAL(values_read, 0); } BOOST_AUTO_TEST_CASE(RleDecoder_rle_too_short) { constexpr int bit_width = 3; std::array<uint8_t, 1> packed = { 0b00001000 // rle-run without value }; std::array<int, 4> unpacked; RleDecoder reader(packed.data(), packed.size(), bit_width); int values_read = reader.GetBatch(unpacked.data(), unpacked.size()); BOOST_CHECK_EQUAL(values_read, 0); } BOOST_AUTO_TEST_CASE(RleDecoder_bit_packed_ULEB128_too_short) { constexpr int bit_width = 3; std::array<uint8_t, 1> packed = { 0b10000001 // bit-packed-run of incomplete ULEB128 length }; std::array<int, 512> unpacked; RleDecoder reader(packed.data(), packed.size(), bit_width); int values_read = reader.GetBatch(unpacked.data(), unpacked.size()); BOOST_CHECK_EQUAL(values_read, 0); } BOOST_AUTO_TEST_CASE(RleDecoder_rle_ULEB128_too_short) { constexpr int bit_width = 3; std::array<uint8_t, 1> packed = { 0b10000000 // rle-run of incomplete ULEB128 length }; std::array<int, 512> unpacked; RleDecoder reader(packed.data(), packed.size(), bit_width); int values_read = reader.GetBatch(unpacked.data(), unpacked.size()); BOOST_CHECK_EQUAL(values_read, 0); }
import matplotlib matplotlib.use('TkAgg') import pymc3 as pm import pandas as pd import matplotlib import numpy as np import pickle as pkl import datetime from BaseModel import BaseModel import isoweek from matplotlib import rc from shared_utils import * from pymc3.stats import quantiles from matplotlib import pyplot as plt from config import * # <-- to select the right model # from pandas import register_matplotlib_converters # register_matplotlib_converters() # the fk python def temporal_contribution(model_i=15, combinations=combinations, save_plot=False): use_ia, use_report_delay, use_demographics, trend_order, periodic_order = combinations[model_i] plt.style.use('ggplot') with open('../data/counties/counties.pkl', "rb") as f: county_info = pkl.load(f) C1 = "#D55E00" C2 = "#E69F00" C3 = C2 # "#808080" if use_report_delay: fig = plt.figure(figsize=(25, 10)) grid = plt.GridSpec(4, 1, top=0.93, bottom=0.12, left=0.11, right=0.97, hspace=0.28, wspace=0.30) else: fig = plt.figure(figsize=(16, 10)) grid = plt.GridSpec(3, 1, top=0.93, bottom=0.12, left=0.11, right=0.97, hspace=0.28, wspace=0.30) disease = "covid19" prediction_region = "germany" data = load_daily_data(disease, prediction_region, county_info) first_day = pd.Timestamp('2020-04-01') last_day = data.index.max() _, target_train, _, _ = split_data( data, train_start=first_day, test_start=last_day - pd.Timedelta(days=1), post_test=last_day + pd.Timedelta(days=1) ) tspan = (target_train.index[0], target_train.index[-1]) model = BaseModel(tspan, county_info, ["../data/ia_effect_samples/{}_{}.pkl".format(disease, i) for i in range(100)], include_ia=use_ia, include_report_delay=use_report_delay, include_demographics=True, trend_poly_order=4, periodic_poly_order=4) features = model.evaluate_features( target_train.index, target_train.columns) trend_features = features["temporal_trend"].swaplevel(0, 1).loc["09162"] periodic_features = features["temporal_seasonal"].swaplevel(0, 1).loc["09162"] #t_all = t_all_b if disease == "borreliosis" else t_all_cr trace = load_final_trace() trend_params = pm.trace_to_dataframe(trace, varnames=["W_t_t"]) periodic_params = pm.trace_to_dataframe(trace, varnames=["W_t_s"]) TT = trend_params.values.dot(trend_features.values.T) TP = periodic_params.values.dot(periodic_features.values.T) TTP = TT + TP # add report delay if used #if use_report_delay: # delay_features = features["temporal_report_delay"].swaplevel(0,1).loc["09162"] # delay_params = pm.trace_to_dataframe(trace,varnames=["W_t_d"]) # TD =delay_params.values.dot(delay_features.values.T) # TTP += TD # TD_quantiles = quantiles(TD, (25, 75)) TT_quantiles = quantiles(TT, (25, 75)) TP_quantiles = quantiles(TP, (25, 75)) TTP_quantiles = quantiles(TTP, (2.5,25, 75,97.5)) dates = [pd.Timestamp(day) for day in target_train.index.values] days = [ (day - min(dates)).days for day in dates] # Temporal trend+periodic effect if use_report_delay: ax_tp = fig.add_subplot(grid[0, 0]) else: ax_tp = fig.add_subplot(grid[0, 0]) ax_tp.fill_between(days, np.exp(TTP_quantiles[25]), np.exp( TTP_quantiles[75]), alpha=0.5, zorder=1, facecolor=C1) ax_tp.plot(days, np.exp(TTP.mean(axis=0)), "-", color=C1, lw=2, zorder=5) ax_tp.plot(days, np.exp( TTP_quantiles[25]), "-", color=C2, lw=2, zorder=3) ax_tp.plot(days, np.exp( TTP_quantiles[75]), "-", color=C2, lw=2, zorder=3) ax_tp.plot(days, np.exp( TTP_quantiles[2.5]), "--", color=C2, lw=2, zorder=3) ax_tp.plot(days, np.exp( TTP_quantiles[97.5]), "--", color=C2, lw=2, zorder=3) #ax_tp.plot(days, np.exp(TTP[:25, :].T), # "--", color=C3, lw=1, alpha=0.5, zorder=2) ax_tp.tick_params(axis="x", rotation=45) # Temporal trend effect ax_t = fig.add_subplot(grid[1, 0], sharex=ax_tp) #ax_t.fill_between(days, np.exp(TT_quantiles[25]), np.exp( # TT_quantiles[75]), alpha=0.5, zorder=1, facecolor=C1) ax_t.plot(days, np.exp(TT.mean(axis=0)), "-", color=C1, lw=2, zorder=5) #ax_t.plot(days, np.exp( # TT_quantiles[25]), "-", color=C2, lw=2, zorder=3) #ax_t.plot(days, np.exp( # TT_quantiles[75]), "-", color=C2, lw=2, zorder=3) #ax_t.plot(days, np.exp(TT[:25, :].T), # "--", color=C3, lw=1, alpha=0.5, zorder=2) ax_t.tick_params(axis="x", rotation=45) ax_t.ticklabel_format(axis="y", style="sci", scilimits=(0,0)) # Temporal periodic effect ax_p = fig.add_subplot(grid[2, 0], sharex=ax_tp) #ax_p.fill_between(days, np.exp(TP_quantiles[25]), np.exp( # TP_quantiles[75]), alpha=0.5, zorder=1, facecolor=C1) ax_p.plot(days, np.exp(TP.mean(axis=0)), "-", color=C1, lw=2, zorder=5) ax_p.set_ylim([-0.0001,0.001]) #ax_p.plot(days, np.exp( # TP_quantiles[25]), "-", color=C2, lw=2, zorder=3) #ax_p.plot(days, np.exp( # TP_quantiles[75]), "-", color=C2, lw=2, zorder=3) #ax_p.plot(days, np.exp(TP[:25, :].T), # "--", color=C3, lw=1, alpha=0.5, zorder=2) ax_p.tick_params(axis="x", rotation=45) ax_p.ticklabel_format(axis="y", style="sci", scilimits=(0,0)) ticks = ['2020-03-02','2020-03-12','2020-03-22','2020-04-01','2020-04-11','2020-04-21','2020-05-1','2020-05-11','2020-05-21'] labels = ['02.03.2020','12.03.2020','22.03.2020','01.04.2020','11.04.2020','21.04.2020','01.05.2020','11.05.2020','21.05.2020'] #if use_report_delay: # ax_td = fig.add_subplot(grid[2, 0], sharex=ax_p) # # ax_td.fill_between(days, np.exp(TD_quantiles[25]), np.exp( # TD_quantiles[75]), alpha=0.5, zorder=1, facecolor=C1) # ax_td.plot(days, np.exp(TD.mean(axis=0)), # "-", color=C1, lw=2, zorder=5) # ax_td.plot(days, np.exp( # TD_quantiles[25]), "-", color=C2, lw=2, zorder=3) # ax_td.plot(days, np.exp( # TD_quantiles[75]), "-", color=C2, lw=2, zorder=3) # ax_td.plot(days, np.exp(TD[:25, :].T), # "--", color=C3, lw=1, alpha=0.5, zorder=2) # ax_td.tick_params(axis="x", rotation=45) #ax_tp.set_title("campylob." if disease == # "campylobacter" else disease, fontsize=22) ax_p.set_xlabel("time [days]", fontsize=22) ax_p.set_ylabel("periodic\ncontribution", fontsize=22) ax_t.set_ylabel("trend\ncontribution", fontsize=22) ax_tp.set_ylabel("combined\ncontribution", fontsize=22) #if use_report_delay: # ax_td.set_ylabel("r.delay\ncontribution", fontsize=22) ax_t.set_xlim(days[0], days[-1]) ax_t.tick_params(labelbottom=False, labelleft=True, labelsize=18, length=6) ax_p.tick_params(labelbottom=True, labelleft=True, labelsize=18, length=6) ax_tp.tick_params(labelbottom=False, labelleft=True, labelsize=18, length=6) #ax_p.set_xticks(ticks)#,labels) if save_plot: fig.savefig("../figures/temporal_contribution_{}.pdf".format(model_i)) #return fig if __name__ == "__main__": _ = temporal_contribution(15, combinations,save_plot=True)
The time has now come for us to seriously think about where we would like the Front Page Davis Wiki to go. This page will be the hub for Future Plans for the Davis Wiki, and the wiki:wikispot:Front Page Wiki Spot and http://localwiki.org Local Wiki projects in general. Issues Software Wiki Community/Future/Spammers and Newbies Wiki Community/Future/Software Features Wiki Community/Future/Gnome Features Community Wiki Community/Future/Outreach Wiki Community/Future/Fundraising Content and Culture Wiki Community/Future/Builders and Commenters Related Pages In the past, long range planning is scattered on a lot of other pages. A selection below: Wiki Community/Longview Wiki Community/Proposals Cut that comment bar out Wiki Community/Room to grow Wiki Community/Building Community wiki:wikispot:Feature Requests wiki:wikispot:FAQ Wikispot FAQ Davis Wiki fundraiser Wiki Community/Outreach Mature Davisite Wiki Recruitment Drive
{-# OPTIONS --cubical --prop #-} module Issue2487-2 where import Issue2487.Infective
include("SolveBalances_Flow.jl") include("DataFile_Flow.jl") using PyPlot TSTART = 0 TSTOP = 24 Ts = 0.01 data_dictionary = DataFile_Flow(TSTART,TSTOP,Ts) (T,X) = SolveBalances_Flow(TSTART,TSTOP,Ts,data_dictionary)
From iris.bi Require Import bi. From iris.proofmode Require Export classes. Set Default Proof Using "Type". Import bi. Section bi_modalities. Context {PROP : bi}. Lemma modality_persistently_mixin : modality_mixin (@bi_persistently PROP) MIEnvId MIEnvClear. Proof. split; simpl; eauto using equiv_entails_sym, persistently_intro, persistently_mono, persistently_sep_2 with typeclass_instances. Qed. Definition modality_persistently := Modality _ modality_persistently_mixin. Lemma modality_affinely_mixin : modality_mixin (@bi_affinely PROP) MIEnvId (MIEnvForall Affine). Proof. split; simpl; eauto using equiv_entails_sym, affinely_intro, affinely_mono, affinely_sep_2 with typeclass_instances. Qed. Definition modality_affinely := Modality _ modality_affinely_mixin. Lemma modality_intuitionistically_mixin : modality_mixin (@bi_intuitionistically PROP) MIEnvId MIEnvIsEmpty. Proof. split; simpl; eauto using equiv_entails_sym, intuitionistically_emp, affinely_mono, persistently_mono, intuitionistically_idemp, intuitionistically_sep_2 with typeclass_instances. Qed. Definition modality_intuitionistically := Modality _ modality_intuitionistically_mixin. Lemma modality_embed_mixin `{BiEmbed PROP PROP'} : modality_mixin (@embed PROP PROP' _) (MIEnvTransform IntoEmbed) (MIEnvTransform IntoEmbed). Proof. split; simpl; split_and?; eauto using equiv_entails_sym, embed_emp_2, embed_sep, embed_and. - intros P Q. rewrite /IntoEmbed=> ->. by rewrite embed_intuitionistically_2. - by intros P Q ->. Qed. Definition modality_embed `{BiEmbed PROP PROP'} := Modality _ modality_embed_mixin. End bi_modalities. Section sbi_modalities. Context {PROP : sbi}. Lemma modality_plainly_mixin `{BiPlainly PROP} : modality_mixin (@plainly PROP _) (MIEnvForall Plain) MIEnvClear. Proof. split; simpl; split_and?; eauto using equiv_entails_sym, plainly_intro, plainly_mono, plainly_and, plainly_sep_2 with typeclass_instances. Qed. Definition modality_plainly `{BiPlainly PROP} := Modality _ modality_plainly_mixin. Lemma modality_laterN_mixin n : modality_mixin (@sbi_laterN PROP n) (MIEnvTransform (MaybeIntoLaterN false n)) (MIEnvTransform (MaybeIntoLaterN false n)). Proof. split; simpl; split_and?; eauto using equiv_entails_sym, laterN_intro, laterN_mono, laterN_and, laterN_sep with typeclass_instances. rewrite /MaybeIntoLaterN=> P Q ->. by rewrite laterN_intuitionistically_2. Qed. Definition modality_laterN n := Modality _ (modality_laterN_mixin n). End sbi_modalities.
#### Healthy Neighborhoods Project: Using Ecological Data to Improve Community Health ### Neville Subproject: Using Random Forestes, Factor Analysis, and Logistic regression to Screen Variables for Imapcts on Public Health ## National Health and Nutrition Examination Survey: The R Project for Statistical Computing Script by DrewC! # Detecting Prediabetes in those under 65 #### Section A: Prepare Code ### Step 1: Import Libraries and Import Dataset ## Import Hadley Wickham Libraries library(tidyverse) # All of the libraries above in one line of code ## Import Data setwd("C:/Users/drewc/GitHub/Data_Club") # Set wd to project repository df_check = read.csv("_data/health_check_stage.csv") # Import dataset from _data folder ## Verify dim(df_check) model_linear <- lm(MSPB~ Case_Mix_Index + Mean_Physician_Income + Percent_For_Profit, data = df_check) summary(model_linear) model_linear <- lm(MSPB~ Mean_Physician_Income + Percent_For_Profit, data = df_check) summary(model_linear)
Welcome to the Profile Reviews section. This is a list of members who have requested others to review their profile. Have you ever wondered what people think of your profile? Now is your chance to find out. Submit your profile to be reviewed by members, read reviews of other member's profiles, post comments on reviews. Click here for a list of profile reviews with no responses yet. Click here to get your profile reviewed. Would YOU like to have your profile reviewed on Connecting Singles? Have you been searching for the ONE and wondering if she or he has browsed on by without stopping to get acquainted. First impressions are important in online dating. Maybe there's a difference between the person you are trying to present in your profile and the one others see when they're viewing it. Submit your profile to see how you come across to others and what you can do to correct that image if necessary to attract the attention you are seeking. Use this feature to request reviews by site members, read and learn from the reviews of other profiles, or leave constructive comments on the reviews of others.
lemma pderiv_diff: "pderiv ((p :: _ :: idom poly) - q) = pderiv p - pderiv q"
#redirect A Plus Image
addprocs(1) using BaseBenchmarks using BenchmarkTools using Base.Test BaseBenchmarks.loadall!() @test begin run(BaseBenchmarks.SUITE, verbose = true, samples = 1, evals = 2, gctrial = false, gcsample = false); true end
(*=========================================================================== Specification logic -- step-indexed and with hidden frames This is a step-indexed version of the specification logic defined in Chapter 3 of Krishnaswami's thesis, which is adapted from Birkedal et al. A specification S is a predicate on nat and SPred, where it holds for a pair (k,P) if it denotes a "desirable" machine execution for up to k steps starting from any machine configuration that has a sub-state satisfying P. The meaning of "desirable" depends on S; it might, for example, mean "safe under certain assumptions". Note the wording "up to" and "sub-state" above: they suggest that formally, S must be closed under decreasing k and starring on assertions to P. The utility of this is to get a higher-order frame rule in the specification logic, which is very valuable for a low-level language that does not have structured control flow and therefore does not have the structure required to define a Hoare triple. When frames cannot be fixed by the symmetry of pre- and postconditions, they must float freely around the specification logic, which is exactly what the higher-order frame rule allows -- see [spec_frame]. ===========================================================================*) Require Import ssreflect ssrbool ssrfun ssrnat eqtype tuple seq fintype. Require Import bitsrep procstate procstatemonad SPred septac. Require Import instr eval monad monadinst reader step cursor. Require Import common_tactics. (* Importing this file really only makes sense if you also import ilogic, so we force that. *) Require Export ilogic later. Transparent ILPre_Ops. Set Implicit Arguments. Unset Strict Implicit. Import Prenex Implicits. Require Import Setoid RelationClasses Morphisms. (* The ssreflect inequalities on nat are just getting in the way here. They don't work with non-Equivalence setoids. *) Local Open Scope coq_nat_scope. (* The natural numbers in descending order. *) (* Instance ge_Pre: PreOrder ge. Proof. repeat constructor. hnf. eauto with arith. Qed. *) (* SPred, ordered by extension with **. *) Definition extSP (P Q: SPred) := exists R, (P ** R) -|- Q. Instance extSP_Pre: PreOrder extSP. Proof. split. - exists empSP. apply empSPR. - move=> P1 P2 P3 [R1 H1] [R2 H2]. exists (R1 ** R2). by rewrite <-H1, sepSPA in H2. Qed. Instance extSP_impl_m : Proper (extSP --> extSP ++> Basics.impl) extSP. Proof. rewrite /extSP. intros P P' [RP HP] Q Q' [RQ HQ] [R H]. eexists. rewrite -HQ -H -HP. split; by ssimpl. Qed. Instance extSP_iff_m : Proper (lequiv ==> lequiv ==> iff) extSP. Proof. rewrite /extSP. intros P P' HP Q Q' HQ. setoid_rewrite HP. setoid_rewrite HQ. done. Qed. Instance extSP_sepSP_m : Proper (extSP ++> extSP ++> extSP) sepSP. Proof. rewrite /extSP. intros P P' [RP HP] Q Q' [RQ HQ]. eexists. rewrite -HP -HQ. split; by ssimpl. Qed. Instance subrelation_equivSP_extSP: subrelation lequiv extSP. Proof. rewrite /extSP => P P' HP. exists empSP. rewrite HP. apply empSPR. Qed. Instance subrelation_equivSP_inverse_extSP: subrelation lequiv (inverse extSP). Proof. rewrite /extSP => P P' HP. exists empSP. rewrite HP. apply empSPR. Qed. Hint Extern 0 (extSP ?P ?P) => reflexivity. (* Definition of "spec" and properties of it as a logic *) Section ILSpecSect. Local Existing Instance ILPre_Ops. Local Existing Instance ILPre_ILogic. Local Existing Instance ILLaterPreOps. Local Existing Instance ILLaterPre. Definition spec := ILPreFrm ge (ILPreFrm extSP Prop). Global Instance ILSpecOps: ILLOperators spec | 2 := _. Global Instance ILOps: ILogicOps spec | 2 := _. Global Instance ILSpec: ILLater spec | 2 := _. End ILSpecSect. Local Obligation Tactic := try solve [Tactics.program_simpl|auto]. (* This uses 'refine' instead of Program Definition to work around a Coq 8.4 bug. *) Definition mkspec (f: nat -> SPred -> Prop) (Hnat: forall k P, f (S k) P -> f k P) (HSPred: forall k P P', extSP P P' -> f k P -> f k P') : spec. refine (mkILPreFrm (fun k => mkILPreFrm (f k) _) _). Proof. have Hnat' : forall k' k P, k' >= k -> f k' P -> f k P. - move => k' k P. elim; by auto. move=> k' k Hk P /= Hf. eapply Hnat'; eassumption. Grab Existential Variables. Proof. move=> P P' HP /= Hf. eapply HSPred; eassumption. Defined. Implicit Arguments mkspec []. Definition spec_fun (S: spec) := fun k P => S k P. Coercion spec_fun: spec >-> Funclass. Add Parametric Morphism (S: spec) : S with signature ge ++> extSP ++> Basics.impl as spec_impl_m. Proof. rewrite /spec_fun. move => k k' Hk P P' HP. rewrite -[Basics.impl _ _]/(@lentails _ ILogicOps_Prop _ _). by rewrite ->HP, ->Hk. Qed. Add Parametric Morphism (S: spec) : S with signature eq ==> lequiv ==> iff as spec_iff_m. Proof. move=> k P P' HP. split => HS. - by rewrite ->HP in HS. - by rewrite <-HP in HS. Qed. (* The default definition of spec equivalence is sometimes inconvenient. Here is an alternative one. *) Lemma spec_equiv (S S': spec): (forall k P, S k P <-> S' k P) -> S -|- S'. Proof. move=> H; split => k P /=; apply H. Qed. Lemma spec_downwards_closed (S: spec) P k k': k <= k' -> S k' P -> S k P. Proof. move=> Hk. have Hk' : k' >= k by auto. by rewrite ->Hk'. Qed. (* Properties of spec_at *) Program Definition spec_at (S: spec) (R: SPred) := mkspec (fun k P => S k (R ** P)) _ _. Next Obligation. move=> S R k P P'. eauto using spec_downwards_closed. Qed. Next Obligation. move=> S R k P P' HP. by rewrite ->HP. Qed. Infix "@" := spec_at (at level 44, left associativity). Lemma spec_frame (S : spec) (R : SPred) : S |-- S @ R. Proof. move => k P H. rewrite /spec_at /=. assert (extSP P (P ** R)) as HPR by (exists R; reflexivity). rewrite ->sepSPC in HPR. by rewrite <-HPR. Qed. (* For variations of this instance with lentails instead of extSP, look at [spec_at_covar_m] and [spec_at_contra_m]. *) Instance spec_at_entails_m: Proper (lentails ++> extSP ++> lentails) spec_at. Proof. move=> S S' HS R R' HR k P. rewrite /spec_at /= /spec_fun /=. by rewrite <- HR, -> HS. Qed. Instance spec_at_equiv_m: Proper (lequiv ++> lequiv ++> lequiv) spec_at. Proof. move => S S' HS R R' HR. split; cancel2; by (rewrite HS || rewrite HR). Qed. Lemma spec_at_emp S: S @ empSP -|- S. Proof. split; last exact: spec_frame. move=> k P. rewrite /spec_at /spec_fun /=. by rewrite empSPL. Qed. Lemma spec_at_at S R R': S @ R @ R' -|- S @ (R ** R'). Proof. apply spec_equiv => k P. rewrite /spec_at /spec_fun /=. split; by [rewrite -sepSPA | rewrite sepSPA]. Qed. Lemma spec_at_forall {T} F R: (Forall x:T, F x) @ R -|- Forall x:T, (F x @ R). Proof. split; rewrite /= /spec_fun /=; auto. Qed. Lemma spec_at_exists {T} F R: (Exists x:T, F x) @ R -|- Exists x:T, (F x @ R). Proof. split; rewrite /= /spec_fun /= => k P [x Hx]; eauto. Qed. Lemma spec_at_true R: ltrue @ R -|- ltrue. Proof. split; rewrite /= /spec_fun /=; auto. Qed. Lemma spec_at_false R: lfalse @ R -|- lfalse. Proof. split; rewrite /= /spec_fun /=; auto. Qed. Lemma spec_at_and S S' R: (S //\\ S') @ R -|- (S @ R) //\\ (S' @ R). Proof. split; rewrite /spec_at /= /spec_fun /= => k P H; auto. Qed. Lemma spec_at_or S S' R: (S \\// S') @ R -|- (S @ R) \\// (S' @ R). Proof. split; rewrite /spec_at /= /spec_fun /= => k P H; auto. Qed. Lemma spec_at_propimpl p S R: (p ->> S) @ R -|- p ->> (S @ R). Proof. split; rewrite /= /spec_fun /=; auto. Qed. Lemma spec_at_propand p S R: (p /\\ S) @ R -|- p /\\ (S @ R). Proof. split; rewrite /= /spec_fun /=; auto. Qed. Lemma spec_at_impl S S' R: (S -->> S') @ R -|- (S @ R) -->> (S' @ R). Proof. split. - apply: limplAdj. rewrite <-spec_at_and. cancel2. exact: landAdj. - rewrite /spec_at /= /spec_fun /= => k P H. (* This proof follows the corresponding one (Lemma 25) in Krishnaswami's PhD thesis. *) intros k' Hk' P' [Pext HPext] HS. move/(_ k' Hk' (P ** Pext)): H => H. rewrite ->sepSPA in HPext. (* The rewriting by using explicit subrelation instances here is a bit awkward. *) rewrite <-(subrelation_equivSP_extSP HPext). apply H; first by exists Pext. rewrite ->(subrelation_equivSP_inverse_extSP HPext). done. Qed. Hint Rewrite spec_at_at spec_at_true spec_at_false spec_at_and spec_at_or spec_at_impl @spec_at_forall @spec_at_exists spec_at_propimpl spec_at_propand : push_at. (* This lemma is what [spec_at_at] really should be in order to be consistent with the others in the hint database, but this variant is not suitable for autorewrite. *) Lemma spec_at_swap S R1 R2: S @ R1 @ R2 -|- S @ R2 @ R1. Proof. autorewrite with push_at. by rewrite sepSPC. Qed. (* "Rule of consequence" for spec_at *) Class AtCovar S := at_covar: forall P Q, P |-- Q -> S @ P |-- S @ Q. Class AtContra S := at_contra: forall P Q, P |-- Q -> S @ Q |-- S @ P. Instance: Proper (lequiv ==> iff) AtCovar. Proof. move=> S S' HS. rewrite /AtCovar. by setoid_rewrite HS. Qed. Instance: Proper (lequiv ==> iff) AtContra. Proof. move=> S S' HS. rewrite /AtContra. by setoid_rewrite HS. Qed. Instance AtCovar_forall A S {HS: forall a:A, AtCovar (S a)} : AtCovar (Forall a, S a). Proof. move=> P Q HPQ. autorewrite with push_at. cancel1 => a. by rewrite ->(HS _ _ _ HPQ). Qed. Instance AtContra_forall A S {HS: forall a:A, AtContra (S a)} : AtContra (Forall a, S a). Proof. move=> P Q HPQ. autorewrite with push_at. cancel1 => a. by rewrite ->(HS _ _ _ HPQ). Qed. Instance AtCovar_and S1 S2 {H1: AtCovar S1} {H2: AtCovar S2} : AtCovar (S1 //\\ S2). Proof. rewrite land_is_forall. by apply AtCovar_forall => [[]]. Qed. Instance AtContra_and S1 S2 {H1: AtContra S1} {H2: AtContra S2} : AtContra (S1 //\\ S2). Proof. rewrite land_is_forall. by apply AtContra_forall => [[]]. Qed. Instance AtCovar_true : AtCovar ltrue. Proof. rewrite ltrue_is_forall. by apply AtCovar_forall => [[]]. Qed. Instance AtContra_true : AtContra ltrue. Proof. rewrite ltrue_is_forall. by apply AtContra_forall => [[]]. Qed. Instance AtCovar_exists A S {HS: forall a:A, AtCovar (S a)} : AtCovar (Exists a, S a). Proof. move=> P Q HPQ. autorewrite with push_at. cancel1 => a. by rewrite ->(HS _ _ _ HPQ). Qed. Instance AtContra_exists A S {HS: forall a:A, AtContra (S a)} : AtContra (Exists a, S a). Proof. move=> P Q HPQ. autorewrite with push_at. cancel1 => a. by rewrite ->(HS _ _ _ HPQ). Qed. Instance AtCovar_or S1 S2 {H1: AtCovar S1} {H2: AtCovar S2} : AtCovar (S1 \\// S2). Proof. rewrite lor_is_exists. by apply AtCovar_exists => [[]]. Qed. Instance AtContra_or S1 S2 {H1: AtContra S1} {H2: AtContra S2} : AtContra (S1 \\// S2). Proof. rewrite lor_is_exists. by apply AtContra_exists => [[]]. Qed. Instance AtCovar_false : AtCovar lfalse. Proof. rewrite lfalse_is_exists. by apply AtCovar_exists => [[]]. Qed. Instance AtContra_false : AtContra lfalse. Proof. rewrite lfalse_is_exists. by apply AtContra_exists => [[]]. Qed. Instance AtCovar_impl S1 S2 {H1: AtContra S1} {H2: AtCovar S2} : AtCovar (S1 -->> S2). Proof. move=> P Q HPQ. autorewrite with push_at. by rewrite ->(H1 _ _ HPQ), <-(H2 _ _ HPQ). Qed. Instance AtContra_impl S1 S2 {H1: AtCovar S1} {H2: AtContra S2} : AtContra (S1 -->> S2). Proof. move=> P Q HPQ. autorewrite with push_at. by rewrite ->(H1 _ _ HPQ), <-(H2 _ _ HPQ). Qed. Instance AtCovar_at S R {HS: AtCovar S} : AtCovar (S @ R). Proof. move=> P Q HPQ. rewrite [_ @ P]spec_at_swap [_ @ Q]spec_at_swap. by rewrite <-(HS _ _ HPQ). Qed. Instance AtContra_at S R {HS: AtContra S} : AtContra (S @ R). Proof. move=> P Q HPQ. rewrite [_ @ Q]spec_at_swap [_ @ P]spec_at_swap. by rewrite <-(HS _ _ HPQ). Qed. Instance spec_at_covar_m S {HS: AtCovar S} : Proper (lentails ++> lentails) (spec_at S). Proof. move=> P Q HPQ. by apply HS. Qed. Instance spec_at_contra_m S {HS: AtContra S} : Proper (lentails --> lentails) (spec_at S). Proof. move=> P Q HPQ. by apply HS. Qed. Instance at_contra_entails_m (S: spec) `{HContra: AtContra S}: Proper (ge ++> lentails --> lentails) S. Proof. move => k k' Hk P P' HP H. rewrite <-Hk. specialize (HContra P' P HP k empSP). simpl in HContra. rewrite ->!empSPR in HContra. by auto. Qed. Instance at_covar_entails_m (S: spec) `{HCovar: AtCovar S}: Proper (ge ++> lentails ++> lentails) S. Proof. move => k k' Hk P P' HP H. rewrite <-Hk. specialize (HCovar P P' HP k empSP). simpl in HCovar. rewrite ->!empSPR in HCovar. by auto. Qed. (* Rules for pulling existentials from the second argument of spec_at. These rules together form a spec-level analogue of the "existential rule" for Hoare triples. Whether an existential quantifier can be pulled out of the R in [S @ R] depends on S. Rewrite by <-at_ex to pull it out from a positive position in the goal. Rewrite by ->at_ex' to pull it out from a negative position in the goal. *) Class AtEx S := at_ex: forall A f, Forall x:A, S @ f x |-- S @ lexists f. (* The reverse direction of at_ex. This not only follows from AtContra but is actually equivalent to it. The proof is in revision 22259 (spec.v#22). *) Lemma at_ex' S {HS: AtContra S} : forall A f, S @ lexists f |-- Forall x:A, S @ f x. Proof. move=> A f. apply: lforallR => x. apply HS. ssplit. reflexivity. Qed. Instance: Proper (lequiv ==> iff) AtEx. Proof. move=> S S' HS. rewrite /AtEx. by setoid_rewrite HS. Qed. Lemma spec_at_and_or S R1 R2 {HS: AtEx S}: S @ R1 //\\ S @ R2 |-- S @ (R1 \\// R2). Proof. rewrite ->land_is_forall, lor_is_exists. transitivity (Forall b, S @ (if b then R1 else R2)). - apply: lforallR => [[|]]. - by apply lforallL with true. - by apply lforallL with false. apply: at_ex. Qed. Lemma spec_at_or_and S R1 R2 {HNeg: AtContra S}: S @ (R1 \\// R2) |-- S @ R1 //\\ S @ R2. Proof. rewrite ->land_is_forall, lor_is_exists. transitivity (Forall b, S @ (if b then R1 else R2)); last first. - apply: lforallR => [[|]]. - by apply lforallL with true. - by apply lforallL with false. apply: at_ex'. Qed. Instance AtEx_forall A S {HS: forall a:A, AtEx (S a)} : AtEx (Forall a, S a). Proof. move=> T f. rewrite -> spec_at_forall. apply: lforallR => a. rewrite <- at_ex; cancel1 => x. rewrite spec_at_forall; by apply lforallL with a. Qed. Instance AtEx_and S1 S2 {H1: AtEx S1} {H2: AtEx S2} : AtEx (S1 //\\ S2). Proof. rewrite land_is_forall. by apply AtEx_forall => [[]]. Qed. Instance AtEx_true : AtEx ltrue. Proof. rewrite ltrue_is_forall. by apply AtEx_forall => [[]]. Qed. Instance AtEx_impl S1 S2 {H1: AtContra S1} {H2: AtEx S2} : AtEx (S1 -->> S2). Proof. move=> A f. setoid_rewrite spec_at_impl. rewrite ->at_ex', <-at_ex => //. (*TODO: why does at_ex' leave a subgoal? *) apply: limplAdj. apply: lforallR => x. apply: landAdj. apply lforallL with x. apply: limplAdj. rewrite landC. apply: landAdj. apply lforallL with x. apply: limplAdj. rewrite landC. apply: landAdj. reflexivity. Qed. Instance AtEx_at S R {HS: AtEx S} : AtEx (S @ R). Proof. move=> A f. rewrite spec_at_at. assert (R ** lexists f -|- Exists x, R ** f x) as Hpull. - split; sbazooka. rewrite Hpull. rewrite <-at_ex. cancel1 => x. by rewrite spec_at_at. Qed. (* The payoff for all this: a tactic for pulling quantifiers *) Module Export PullQuant. Implicit Type S: spec. Definition PullQuant {A} S (f: A -> spec) := lforall f |-- S. Lemma pq_rhs S {A} S' (f: A -> spec) {HPQ: PullQuant S' f}: (forall a:A, S |-- f a) -> S |-- S'. Proof. move=> H. red in HPQ. rewrite <-HPQ. by apply: lforallR. Qed. Lemma PullQuant_forall A (f: A -> spec): PullQuant (lforall f) f. Proof. red. reflexivity. Qed. (* Hint Resolve worked here in Coq 8.3 but not since 8.4. *) Hint Extern 0 (PullQuant (lforall _) _) => apply PullQuant_forall : pullquant. Lemma PullQuant_propimpl p S: PullQuant (p ->> S) (fun H: p => S). Proof. red. reflexivity. Qed. (* Hint Resolve worked here in Coq 8.3 but not since 8.4. *) Hint Extern 0 (PullQuant (?p ->> ?S) _) => apply (@PullQuant_propimpl p S) : pullquant. Lemma pq_at_rec S R A f: PullQuant S f -> PullQuant (S @ R) (fun a:A => f a @ R). Proof. rewrite /PullQuant => Hf. rewrite <-Hf. by rewrite spec_at_forall. Qed. (* If we didn't find anything to pull from the frame itself, recurse under it. *) (* Unfortunately, Hint Resolve doesn't work here. For some obscure reason, there has to be an underscore for the last argument. *) Hint Extern 1 (PullQuant (?S @ ?R) _) => eapply (@pq_at_rec S R _ _) : pullquant. Lemma pq_impl S S' A f: PullQuant S f -> PullQuant (S' -->> S) (fun a:A => S' -->> f a). Proof. rewrite /PullQuant => Hf. rewrite <-Hf. apply: limplAdj. apply: lforallR => a. apply: landAdj. eapply lforallL. reflexivity. Qed. Hint Extern 1 (PullQuant (?S' -->> ?S) _) => eapply (@pq_impl S S' _ _) : pullquant. Import Existentials. Lemma pq_at S t: match find t with | Some (mkf _ f) => AtEx S -> PullQuant (S @ eval t) (fun a => S @ f a) | None => True end. Proof. move: (@find_correct t). case: (find t) => [[A f]|]; last done. move=> Heval HS. red. rewrite ->Heval. by rewrite <-at_ex. Qed. Hint Extern 0 (PullQuant (?S @ ?R) _) => let t := quote_term R in apply (@pq_at S t); [apply _] : pullquant. (* It's a slight breach of abstraction to [cbv [eval]] here, but it's easier than dealing with it in the hints that use reflection. *) (* For some reason, auto sometimes hangs when there are entailments among the hypotheses. As a workaround, we clear those first. Another workaround is to use [typeclasses eauto], but that sometimes fails. *) Ltac specintro := eapply pq_rhs; [ repeat match goal with H: _ |-- _ |- _ => clear H end; solve [auto with pullquant] |]; instantiate; cbv [eval]. Ltac specintros := specintro; let x := fresh "x" in move=> x; try specintros; move: x. End PullQuant. (* The spec_reads connective, [S <@ R]. It is like spec_at but requires S to not only preserve the validity of R but keep the memory in R's footprint unchanged. *) Definition spec_reads S R := Forall s : PState, (eq_pred s |-- R) ->> S @ eq_pred s. Infix "<@" := spec_reads (at level 44, left associativity). Instance spec_reads_entails: Proper (lentails ++> lentails --> lentails) spec_reads. Proof. move=> S S' HS R R' HR. red in HR. rewrite /spec_reads. cancel1 => s. by rewrite ->HS, ->HR. Qed. Instance spec_reads_equiv: Proper (lequiv ==> lequiv ==> lequiv) spec_reads. Proof. move=> S S' HS R R' HR. rewrite /spec_reads. setoid_rewrite HS. by setoid_rewrite HR. Qed. Lemma spec_reads_alt S R: S <@ R -|- Forall s, (eq_pred s |-- R ** ltrue) ->> S @ eq_pred s. Proof. rewrite /spec_reads. split. - specintros => s Hs. rewrite <-lentails_eq in Hs. case: Hs => sR [sframe [Hs [HsR _]]]. apply lforallL with sR. apply lpropimplL. - by apply-> lentails_eq. etransitivity; [apply (spec_frame (eq_pred sframe))|]. autorewrite with push_at. rewrite stateSplitsAs_eq; [|eapply Hs]. done. - cancel1 => s. apply: lpropimplR => Hs. apply lpropimplL => //. rewrite ->Hs. by ssimpl. Qed. (* This definition can be more convenient in metatheory. *) Lemma spec_reads_alt_meta S R : S <@ R -|- Forall s, R s ->> S @ eq_pred s. Proof. rewrite /spec_reads. by setoid_rewrite <-lentails_eq. Qed. Lemma spec_reads_ex S T f: Forall x:T, S <@ f x -|- S <@ lexists f. Proof. setoid_rewrite spec_reads_alt_meta. split. - specintros => s [x Hx]. apply lforallL with x. apply lforallL with s. by apply lpropimplL. - specintros => x s Hf. apply lforallL with s. apply: lpropimplL => //. econstructor. eassumption. Qed. Lemma spec_reads_frame S R: S |-- S <@ R. Proof. rewrite /spec_reads. specintros => s Hs. apply spec_frame. Qed. Lemma spec_reads_entails_at S {HEx: AtEx S} R: S <@ R |-- S @ R. Proof. rewrite spec_reads_alt_meta. rewrite ->(ILFun_exists_eq R). specintros => s Hs. apply lforallL with s. by apply: lpropimplL. Qed. Local Transparent ILFun_Ops SABIOps. Lemma emp_unit : empSP -|- eq_pred sa_unit. split; simpl; move => x H. + destruct H as [H _]; assumption. + exists H; tauto. Qed. Lemma spec_at_entails_reads S {HContra: AtContra S} R: S @ R |-- S <@ R. Proof. rewrite /spec_reads. specintros => s Hs. by rewrite <-Hs. Qed. Lemma spec_reads_eq_at S s: S <@ eq_pred s -|- S @ eq_pred s. Proof. rewrite /spec_reads. split. - apply lforallL with s. exact: lpropimplL. - specintros => s' Hs'. rewrite <-lentails_eq in Hs'. simpl in Hs'; rewrite -> Hs'; reflexivity. Qed. Lemma spec_reads_emp S: S <@ empSP -|- S. Proof. rewrite emp_unit spec_reads_eq_at -emp_unit. by rewrite spec_at_emp. Qed. Corollary spec_reads_byteIs S p b: S <@ byteIs p b -|- S @ byteIs p b. Proof. apply spec_reads_eq_at. Qed. Corollary spec_reads_flagIs S (p:Flag) b: S <@ (p~=b) -|- S @ (p~=b). Proof. apply spec_reads_eq_at. Qed. Corollary spec_reads_regIs S (p:AnyReg) b: S <@ (p~=b) -|- S @ (p~=b). Proof. apply spec_reads_eq_at. Qed. Lemma spec_reads_merge S R1 R2: S <@ R1 <@ R2 |-- S <@ (R1 ** R2). Proof. setoid_rewrite spec_reads_alt_meta. specintros => s [s1 [s2 [Hs [Hs1 Hs2]]]]. apply lforallL with s2. apply lpropimplL; first done. rewrite spec_reads_alt_meta. assert ((Forall s', R1 s' ->> S @ eq_pred s') |-- S @ eq_pred s1) as Htmp. - apply lforallL with s1. by apply lpropimplL. rewrite ->Htmp => {Htmp}. autorewrite with push_at. rewrite stateSplitsAs_eq; [|eapply Hs]. done. Qed. Lemma spec_reads_split S {HS: AtEx S} R1 R2: S <@ (R1 ** R2) |-- S <@ R1 <@ R2. Proof. rewrite /spec_reads. specintros => s2 Hs2 s1 Hs1. autorewrite with push_at. rewrite (ILFun_exists_eq (eq_pred s1 ** eq_pred s2)). specintros => s Hs. rewrite ->lentails_eq in Hs. apply lforallL with s. apply lpropimplL => //. by rewrite <-Hs1, <-Hs2. Qed. Lemma spec_reads_swap' S R1 R2: S <@ R1 <@ R2 |-- S <@ R2 <@ R1. Proof. rewrite /spec_reads. specintros => s1 Hs1 s2 Hs2. rewrite spec_at_swap. apply lforallL with s2. apply lpropimplL => //. rewrite spec_at_forall. apply lforallL with s1. rewrite spec_at_propimpl. exact: lpropimplL. Qed. Lemma spec_reads_swap S R1 R2: S <@ R1 <@ R2 -|- S <@ R2 <@ R1. Proof. split; apply spec_reads_swap'. Qed. Lemma spec_reads_forall A S R: (Forall a:A, S a) <@ R -|- Forall a:A, (S a <@ R). Proof. rewrite /spec_reads. split. - specintros => a s' Hs'. apply lforallL with s'. apply: lpropimplL => //. autorewrite with push_at. by apply lforallL with a. - specintros => s' Hs' a. apply lforallL with a. apply lforallL with s'. exact: lpropimplL. Qed. Lemma spec_reads_true R: ltrue <@ R -|- ltrue. Proof. rewrite ltrue_is_forall. rewrite spec_reads_forall. split; specintro => [[]]. Qed. Lemma spec_reads_and S1 S2 R: (S1 //\\ S2) <@ R -|- (S1 <@ R) //\\ (S2 <@ R). Proof. rewrite !land_is_forall. rewrite spec_reads_forall. split; by cancel1 => [[]]. Qed. Lemma spec_reads_exists A S R: Exists a:A, (S a <@ R) |-- (Exists a:A, S a) <@ R. Proof. rewrite /spec_reads. apply: lexistsL => a. specintros => s' Hs'. autorewrite with push_at. apply lexistsR with a. apply lforallL with s'. exact: lpropimplL. Qed. Lemma spec_reads_or S1 S2 R: (S1 <@ R) \\// (S2 <@ R) |-- (S1 \\// S2) <@ R. Proof. rewrite !lor_is_exists. rewrite <-spec_reads_exists. by cancel1 => [[]]. Qed. Lemma spec_reads_impl S1 S2 R: (S1 -->> S2) <@ R |-- S1 <@ R -->> S2 <@ R. Proof. rewrite /spec_reads. apply: limplAdj. specintros => s Hs. apply: landAdj. apply lforallL with s. apply lpropimplL => //. apply: limplAdj. rewrite landC. apply: landAdj. apply lforallL with s. apply lpropimplL => //. apply: limplAdj. autorewrite with push_at. rewrite landC. apply: landAdj. reflexivity. Qed. Lemma spec_at_reads S R1 R: S <@ R1 @ R -|- S @ R <@ R1. Proof. rewrite /spec_reads. split. - specintros => s Hs. autorewrite with push_at. apply lforallL with s. autorewrite with push_at. apply lpropimplL => //. by rewrite sepSPC. - autorewrite with push_at. specintro => s. autorewrite with push_at. specintro => Hs. apply lforallL with s. apply: lpropimplL => //. autorewrite with push_at. by rewrite sepSPC. Qed. Hint Rewrite spec_at_reads : push_at. Instance AtEx_reads S R {HS: AtEx S}: AtEx (S <@ R) := _. Instance AtCovar_reads S R {HS: AtCovar S}: AtCovar (S <@ R) := _. Instance AtContra_reads S R {HS: AtContra S}: AtContra (S <@ R) := _. Module Export PullQuant_reads. Import Existentials. Lemma pq_reads S t: match find t with | Some (mkf _ f) => PullQuant (S <@ eval t) (fun a => S <@ f a) | None => True end. Proof. move: (@find_correct t). case: (find t) => [[A f]|]; last done. move=> Heval. red. rewrite ->Heval. by apply_and spec_reads_ex. Qed. Hint Extern 0 (PullQuant (?S <@ ?R) _) => let t := quote_term R in apply (@pq_reads S t) : pullquant. Lemma pq_reads_rec S R A f: PullQuant S f -> PullQuant (S <@ R) (fun a:A => f a <@ R). Proof. rewrite /PullQuant => Hf. rewrite <-Hf. by rewrite spec_reads_forall. Qed. (* If we didn't find anything to pull from the frame itself, recurse under it. *) (* Unfortunately, Hint Resolve doesn't work here. For some obscure reason, there has to be an underscore for the last argument. *) Hint Extern 1 (PullQuant (?S <@ ?R) _) => eapply (@pq_reads_rec S R _ _) : pullquant. End PullQuant_reads. Lemma spec_at_later S R: (|> S) @ R -|- |> (S @ R). Proof. split => k P; reflexivity. Qed. Hint Rewrite spec_at_later : push_at. Local Transparent ILLaterPreOps. Lemma spec_reads_later S R: (|> S) <@ R -|- |> (S <@ R). split => k P /=; rewrite /spec_fun /=; eauto. Qed. Hint Rewrite <- spec_at_later spec_reads_later : push_later. Hint Rewrite @spec_later_exists_inhabited using repeat constructor : push_later. Lemma spec_lob_context C S: (C //\\ |> S |-- S) -> C |-- S. Proof. etransitivity. - apply landR; first apply ltrueR. reflexivity. apply: landAdj. apply: spec_lob. rewrite spec_later_impl. apply: limplAdj. apply: limplL; last by rewrite landC. apply spec_later_weaken. Qed. Instance AtEx_later S {HS: AtEx S} : AtEx (|> S). Proof. move=> A f. rewrite spec_at_later. red in HS. rewrite <-HS. rewrite spec_later_forall. cancel1 => x. by rewrite spec_at_later. Qed. Instance AtCovar_later S {HS: AtCovar S} : AtCovar (|> S). Proof. move=> P Q HPQ. autorewrite with push_at. by rewrite ->(HS _ _ HPQ). Qed. Instance AtContra_later S {HS: AtContra S} : AtContra (|> S). Proof. move=> P Q HPQ. autorewrite with push_at. by rewrite ->(HS _ _ HPQ). Qed.
module Issue840a where ------------------------------------------------------------------------ -- Prelude record ⊤ : Set where data ⊥ : Set where data _≡_ {A : Set} (x : A) : A → Set where refl : x ≡ x data Bool : Set where true false : Bool {-# BUILTIN BOOL Bool #-} {-# BUILTIN TRUE true #-} {-# BUILTIN FALSE false #-} postulate String : Set {-# BUILTIN STRING String #-} primitive primStringEquality : String → String → Bool infixr 4 _,_ record Σ (A : Set) (B : A → Set) : Set where constructor _,_ field proj₁ : A proj₂ : B proj₁ ------------------------------------------------------------------------ -- Other stuff mutual infixl 5 _,_∶_ data Signature : Set₁ where ∅ : Signature _,_∶_ : (Sig : Signature) (ℓ : String) (A : Record Sig → Set) → Signature record Record (Sig : Signature) : Set where constructor rec field fun : Record-fun Sig Record-fun : Signature → Set Record-fun ∅ = ⊤ Record-fun (Sig , ℓ ∶ A) = Σ (Record Sig) A _∈_ : String → Signature → Set ℓ ∈ ∅ = ⊥ ℓ ∈ (Sig , ℓ′ ∶ A) with primStringEquality ℓ ℓ′ ... | true = ⊤ ... | false = ℓ ∈ Sig Restrict : (Sig : Signature) (ℓ : String) → ℓ ∈ Sig → Signature Restrict ∅ ℓ () Restrict (Sig , ℓ′ ∶ A) ℓ ℓ∈ with primStringEquality ℓ ℓ′ ... | true = Sig ... | false = Restrict Sig ℓ ℓ∈ Proj : (Sig : Signature) (ℓ : String) {ℓ∈ : ℓ ∈ Sig} → Record (Restrict Sig ℓ ℓ∈) → Set Proj ∅ ℓ {} Proj (Sig , ℓ′ ∶ A) ℓ {ℓ∈} with primStringEquality ℓ ℓ′ ... | true = A ... | false = Proj Sig ℓ {ℓ∈} _∣_ : {Sig : Signature} → Record Sig → (ℓ : String) {ℓ∈ : ℓ ∈ Sig} → Record (Restrict Sig ℓ ℓ∈) _∣_ {Sig = ∅} r ℓ {} _∣_ {Sig = Sig , ℓ′ ∶ A} (rec r) ℓ {ℓ∈} with primStringEquality ℓ ℓ′ ... | true = Σ.proj₁ r ... | false = _∣_ (Σ.proj₁ r) ℓ {ℓ∈} infixl 5 _·_ _·_ : {Sig : Signature} (r : Record Sig) (ℓ : String) {ℓ∈ : ℓ ∈ Sig} → Proj Sig ℓ {ℓ∈} (r ∣ ℓ) _·_ {Sig = ∅} r ℓ {} _·_ {Sig = Sig , ℓ′ ∶ A} (rec r) ℓ {ℓ∈} with primStringEquality ℓ ℓ′ ... | true = Σ.proj₂ r ... | false = _·_ (Σ.proj₁ r) ℓ {ℓ∈} R : Set → Signature R A = ∅ , "f" ∶ (λ _ → A → A) , "x" ∶ (λ _ → A) , "lemma" ∶ (λ r → ∀ y → (r · "f") y ≡ y) record GS (A B : Set) : Set where field get : A → B set : A → B → A get-set : ∀ a b → get (set a b) ≡ b set-get : ∀ a → set a (get a) ≡ a f : {A : Set} → GS (Record (R A)) (Record (∅ , "f" ∶ (λ _ → A → A) , "lemma" ∶ (λ r → ∀ x → (r · "f") x ≡ x))) f = record { set = λ r f-lemma → rec (rec (rec (rec _ , f-lemma · "f") , r · "x") , f-lemma · "lemma") ; get-set = λ { (rec (rec (rec (_ , _) , _) , _)) (rec (rec (_ , _) , _)) → refl } ; set-get = λ { (rec (rec (rec (rec _ , _) , _) , _)) → refl } }
# distances between points with nearest neighbor approx # x = c(1,2,3,4,5,6,7,8,9) # y = c(1,2,3,4,5,6,7,8,9) # # a = x + 2 # b = y * 2 # # all = c(a,b,x,y) # plot(a,b,pch = 20, ylim = c(min(all), max(all)), xlim = c(min(all), max(all)), asp = 1) # points(x,y,pch = 20, col = 'red') # # # X = cbind(x,y) # A = cbind(a,b) nearest_xy = function(A,X,to = 1, plot = F) { Z = as.matrix(dist(rbind(X,A))) aseq = ((length(x)+1):length(c(x,a))); xseq = (1:(length(x))) Z = Z [ aseq , xseq ] # so now have distances between every point in each xy dataset. now pick which set to choose the nearest neighbor # if the A dataset is the one to match to... if (to == 1) { v = apply(Z, 1, 'min') j = 1 m = c() for (i in aseq) { jkl = Z[paste0(i),] lkj = which(jkl %in% v[paste0(i)])[1] m[j] = lkj j = j + 1 } T = cbind(A,X[m,]) } # if the X dataset is the one to match to... else if (to == 2) { v = apply(Z, 2, 'min') j = 1 m = c() for (i in xseq) { jkl = Z[,paste0(i)] lkj = which(jkl %in% v[paste0(i)])[1] m[j] = lkj j = j + 1 } T = cbind(X,A[m,]) } else {stop('pick a variable to match to.')} if (plot == T) { par(bg = 'grey90') plot(T[,1], T[,2], type = 'n', ylim = c(min(all), max(all)), xlim = c(min(all), max(all)), asp = 1) points(X[,1], X[,2], col = 'black', pch = 20) points(A[,1], A[,2], col = 'blue3', pch = 20) points(T[,3], T[,4], col = 'red3', pch = 1, cex = 1.5) segments(T[,1], T[,2],T[,3], T[,4], col = 'red3', lty = 3) } }
Importantly , the concentration of individual proteins ranges from a few molecules per cell to hundreds of thousands . In fact , about a third of all proteins is not produced in most cells or only induced under certain circumstances . For instance , of the 20 @,@ 000 or so proteins encoded by the human genome only 6 @,@ 000 are detected in <unk> cells .
/* * Copyright 2014 Marc Normandin * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ /* * pso.h * * Created on: Jun 30, 2013 * Author: marc */ #ifndef PSO_H_ #define PSO_H_ #include <iostream> #include <vector> #include <algorithm> #include <functional> #include <cmath> #include <cstdlib> #include <gsl/gsl_rng.h> #include <limits> #include <fstream> #include <cassert> #include "rng.h" #include "dim.h" #include "particle.h" template<class FitnessFunction> class PSO { public: // This routine is used by the PSO unit test PSO(const unsigned int numParticles, const std::vector<Dim>& dim, const gslseed_t seed, FitnessFunction& fitnessFunction, const unsigned int maxIterations) : mNumParticles(numParticles), mGBest(dim), mDim(dim), mRng(seed), mFitnessFunction(fitnessFunction), mMaxIterations(maxIterations) { mParticles.reserve(mNumParticles); } unsigned int getNumParticles() const { return mNumParticles; } const Particle& iterate() { createRandomParticles(); unsigned int numIterations = 0; std::vector<double> particleFitnesses(mParticles.size()); do { // Evaluate the fitness/objective function mFitnessFunction(mParticles, &particleFitnesses); //For each particle for (unsigned int i = 0; i < mParticles.size(); i++) { // Calculate fitness value const prob_t fitness = particleFitnesses[i]; // // If the fitness value is better than the best fitness value (pBest) in history // set current value as the new pBest mParticles[i].updateFitness( fitness ); } // Choose the particle with the best fitness value of all the particles as the gBest std::vector<Particle>::const_iterator best = std::max_element(mParticles.begin(), mParticles.end()); mGBest = Particle( best->getBestPosition(), best->getBestFitness() ); // Update the inertia weight const double inertiaWeight = computeInertiaWeight(numIterations, mMaxIterations); // For each particle for (unsigned int i = 0; i < mParticles.size(); i++) { mParticles[i].updatePosition( mGBest, mDim, mCognitiveWeight, mSocialWeight, mRng, inertiaWeight ); } numIterations++; } while(numIterations < mMaxIterations); return mGBest; } protected: PSO(const PSO&); void operator=(const PSO&); void createRandomParticles() { mParticles.clear(); // Remove previous particles in the container // For each particle for (unsigned int i = 0; i < mNumParticles; i++) { std::vector<dim_t> pos; // For each dimension for (unsigned int d = 0; d < mDim.size(); d++) { dim_t posd = mRng.uniform( mDim[d].min(), mDim[d].max() ); pos.push_back(posd); } // Add the particle to the collection mParticles.push_back( Particle(pos) ); } } // Compute inertia. This is based on equation 4.1 from: // http://www.hindawi.com/journals/ddns/2010/462145/ double computeInertiaWeight(const unsigned int iteration, const unsigned int maxInterations) const { // Note. We add +1 because our iterations go from 0 to max-1. double inertiaWeight = (mOmega1 - mOmega2) * ( (maxInterations - (iteration+1.0)) / (1.0 * (iteration+1.0) ) ) + mOmega2; return inertiaWeight; } private: unsigned int mNumParticles; std::vector<Particle> mParticles; // Particle positions Particle mGBest; std::vector<Dim> mDim; // These values control how random the particle velocities are static const double mCognitiveWeight; static const double mSocialWeight; // These values control the rate of convergence static const double mOmega1; static const double mOmega2; RandomNumberGenerator mRng; FitnessFunction& mFitnessFunction; unsigned int mMaxIterations; }; #endif /* PSO_H_ */
# -*- coding: utf-8 -*- import turtle import numpy import time import random from collections import defaultdict import abc # UI object turtle.colormode(255) #turtle.delay(0) # if want to see the drawing procedure slower, comment this line myPen = turtle.Turtle() myPen.speed(0) myPen.color((0, 0, 0)) #grid color = black myPen.hideturtle() # Global Constant MIN_NUM = 1 MAX_NUM = 9 INT_LIST = [1, 2, 3, 4, 5, 6, 7, 8, 9] TRANS_PROB = 0.3 # UI Constants topLeft_x = -150 topLeft_y = 150 cellSize = 36 # Create Grid class visualizeRandomWalk: def __init__(self, GRID_SIZE=9, seed=5): self.GRID_SIZE = GRID_SIZE self.__grid = numpy.zeros((self.GRID_SIZE, self.GRID_SIZE), dtype=int) random.seed(seed) numpy.random.seed(seed) #set up random seed self.__cages = defaultdict(lambda: [0, []]) def populateGrid(self): for cell in range(self.GRID_SIZE * self.GRID_SIZE): row = cell // self.GRID_SIZE col = cell % self.GRID_SIZE # print(cell) if self.__grid[row, col] == 0: values = INT_LIST random.shuffle(values) for num in values: if self.validNum(row, col, num): self.__grid[row, col] = num if self.fullGrid(): return True elif self.populateGrid(): return True break self.__grid[row, col] = 0 def validNum(self, row, col, n): if n not in self.getRow(row): if n not in self.getCol(col): if n not in self.getNonet((row, col)): return True return False def fullGrid(self): for i in range(self.GRID_SIZE): row = self.getRow(i) col = self.getCol(i) if (0 in row) or (0 in col): return False return True def getNonet(self, coordinate): row = coordinate[0] // 3 col = coordinate[1] // 3 return self.__grid[3 * row:3 * row + 3, 3 * col:3 * col + 3] def getRow(self, idx): return self.__grid[idx, :] def getCol(self, idx): return self.__grid[:, idx] # Generate Cages def genCages(self, method='rw', maxCageSize=5): if method == 'rw': cageInd = 0 self.currentCell = [] self.nextCell = [] self.notAssigned = [] maxCageSize = maxCageSize for row in range(len(self.__grid[0])): for column in range(len(self.__grid[0])): self.notAssigned.append([row, column]) # initialize with all poosition of rows and columns cells random.shuffle(self.notAssigned) # [[,],[,],[,]] shuffle the sequence of cells self.cageSize = defaultdict(list) self.__cagesRw = defaultdict(list) # {'cageID': [[x1,y1],[x2, y2]]} self.cageValues = defaultdict(list) # {'cageID': [[val_1], [val_2]...] , } self.cageSums = defaultdict(list) # {'cageID': [val] , } while self.notAssigned: # cell: [x1,y1] flag = True self.currentCell = self.notAssigned[0] self.__cagesRw[cageInd].append(self.currentCell) self.cageValues[cageInd].append(self.__grid[self.currentCell[0]][self.currentCell[1]]) self.cageSums[cageInd] = [self.__grid[self.currentCell[0]][self.currentCell[1]]] self.cageSize[cageInd] = len(self.cageValues[cageInd]) walkDirectionList = [[0, 1], [0, -1], [1, 0], [-1, 0]] # right, left, up, down while walkDirectionList != []: direction = random.choice(walkDirectionList) self.nextCell = [self.currentCell[0] + direction[0], self.currentCell[1] + direction[1]] # if not acceptable, delete that direction and redo walk while self.nextCell[0] < 0 or self.nextCell[0] > 8 or self.nextCell[1] < 0 or self.nextCell[ 1] > 8 \ or self.nextCell not in self.notAssigned or [ self.__grid[self.nextCell[0]][self.nextCell[1]]] in \ self.cageValues[cageInd]: walkDirectionList.remove(direction) # if no available direction, go to next notAssigned cell if walkDirectionList == []: flag = False break direction = random.choice(walkDirectionList) self.nextCell = [self.currentCell[0] + direction[0], self.currentCell[1] + direction[1]] # if no available direction go to next not assigned cell, other wise append the next cell from walk if flag == False or self.cageSize[cageInd] == maxCageSize: cageInd += 1 self.notAssigned.remove(self.currentCell) break #back to while notAssigned loop, start from a new cell # append cells to cages, cell value to cage_value, cell value add into cageSums self.__cagesRw[cageInd].append(self.nextCell) self.cageValues[cageInd].append([self.__grid[self.nextCell[0]][self.nextCell[1]]]) self.cageSize[cageInd] = len(self.cageValues[cageInd]) if self.cageSums[cageInd] == []: self.cageSums[cageInd] = [self.__grid[self.nextCell[0]][self.nextCell[1]]] else: self.cageSums[cageInd] = [ self.cageSums[cageInd][0] + self.__grid[self.nextCell[0]][self.nextCell[1]]] # remove current cell from not assigned list self.notAssigned.remove(self.currentCell) # next cell becomes current cell, reset walk_direction_list self.currentCell = self.nextCell walkDirectionList = [[0, 1], [0, -1], [1, 0], [-1, 0]] for cageID in self.__cagesRw.keys(): self.__cages[cageID] = (self.cageSums[cageID][0], self.__cagesRw[cageID]) return print('Killer sudoku has been generated') elif method == 'oc': randValue = numpy.random.uniform(0, 1, 100) # cages = defaultdict(lambda: [0, []]) cageID = 0 for row in range(self.GRID_SIZE): for col in range(self.GRID_SIZE): # First cell if row == 0 and col == 0: self.__cages[cageID][1].append((row, col)) self.__cages[cageID][0] += self.__grid[row, col] # Identify adjacent cages and their sizes if col > 0: leftCage = self.getCageID(self.__cages, (row, col - 1)) leftCageSize = self.getSize(self.__cages, leftCage) leftCageValues = [self.__grid[cell[0], cell[1]] for cell in self.__cages[leftCage][1]] if row > 0: aboveCage = self.getCageID(self.__cages, (row - 1, col)) aboveCageSize = self.getSize(self.__cages, aboveCage) aboveCageValues = [self.__grid[cell[0], cell[1]] for cell in self.__cages[aboveCage][1]] # Only consider cells to the left of first row if row == 0 and col > 0: rand = random.choice(randValue) if leftCageSize < maxCageSize and rand >= TRANS_PROB: self.__cages[cageID][1].append((row, col)) self.__cages[cageID][0] += self.__grid[row, col] else: cageID += 1 self.__cages[cageID][1].append((row, col)) self.__cages[cageID][0] += self.__grid[row, col] # Only consider cells above (no cells to the left) if row > 0 and col == 0: rand = random.choice(randValue) if aboveCageSize < maxCageSize and rand >= TRANS_PROB and self.__grid[row, col] not in aboveCageValues: self.__cages[aboveCage][1].append((row, col)) self.__cages[aboveCage][0] += self.__grid[row, col] else: cageID += 1 self.__cages[cageID][1].append((row, col)) self.__cages[cageID][0] += self.__grid[row, col] # Consider cells to the left and above if row > 0 and col > 0: rand = random.choice(randValue) if rand >= TRANS_PROB * 2 and aboveCageSize < maxCageSize and self.__grid[row][col] not in aboveCageValues: self.__cages[aboveCage][1].append((row, col)) self.__cages[aboveCage][0] += self.__grid[row, col] elif rand >= TRANS_PROB and leftCageSize < maxCageSize and self.__grid[row][col] not in leftCageValues: self.__cages[leftCage][1].append((row, col)) self.__cages[leftCage][0] += self.__grid[row, col] else: cageID += 1 self.__cages[cageID][1].append((row, col)) self.__cages[cageID][0] += self.__grid[row, col] for cage in list(self.__cages.keys()): self.__cages[cage] = tuple(self.__cages[cage]) return print('Killer sudoku has been generated') else: raise AttributeError('The input method not found') def getGrid(self): return self.__grid def getCages(self): return self.__cages def getCageID(self, dic, pos): for key, value in dic.items(): cellList = value[1] for cell in cellList: if cell == pos: return key # Function to get size of the cage def getSize(self, dic, cageID): size = len(dic[cageID][1]) return size # UI methods def render(self): for row in range(0, 10): myPen.pensize(1) myPen.penup() # Puts pen up for defaut turtle myPen.goto(topLeft_x, topLeft_y - row * cellSize) # draw row from the topleft to the bottom myPen.pendown() #begin to draw myPen.goto(topLeft_x + 9 * cellSize, topLeft_y - row * cellSize) #draw the line till 9 cellsize long, #myPen.penup() for col in range(0, 10): myPen.pensize(1) myPen.penup() myPen.goto(topLeft_x + col * cellSize, topLeft_y) myPen.pendown() myPen.goto(topLeft_x + col * cellSize, topLeft_y - 9 * cellSize) #myPen.penup() for cageRowLine in range(0, 10): if (cageRowLine % 3) == 0: myPen.pensize(3) myPen.penup() myPen.goto(topLeft_x, topLeft_y - cageRowLine * cellSize) #draw horizontal lines myPen.pendown() myPen.goto(topLeft_x + 9 * cellSize, topLeft_y - cageRowLine * cellSize) #myPen.penup() for cageColLine in range(0, 10): if (cageColLine % 3) == 0: myPen.pensize(3) myPen.penup() myPen.goto(topLeft_x + cageColLine * cellSize, topLeft_y) #drawing vertical lines myPen.pendown() myPen.goto(topLeft_x + cageColLine * cellSize, topLeft_y - 9 * cellSize) #myPen.penup() for row in range(self.GRID_SIZE): for col in range(self.GRID_SIZE): if self.__grid[row, col] != 0: self.text(self.__grid[row, col], topLeft_x + col * cellSize + 13, topLeft_y - row * cellSize - cellSize + 4.5, 18) for cage in list(self.__cages.keys()): color = self.getRandomColor() for cell in self.__cages[cage][1]: cellRow = cell[0] cellCol = cell[1] self.fillCellColor(cellRow, cellCol, color) self.text(self.__grid[cellRow, cellCol], topLeft_x + cellCol * cellSize + 13, topLeft_y - cellRow * cellSize - cellSize + 4.5, 18) for cage in list(self.__cages.keys()): #draw sum in the cage self.text(self.__cages[cage][0], #number - sum topLeft_x + self.__cages[cage][1][0][1] * cellSize + 3, # place on x-axis to try, topLeft_y - self.__cages[cage][1][0][0] * cellSize - cellSize + 23, #locate the bottom of number on this line, need to move down 7) # size to try turtle.getscreen()._root.mainloop() def getRandomColor(self): #higher the first #, the lighter the color R = random.randrange(100, 256, 4) G = random.randrange(80, 256, 4) B = random.randrange(100, 256, 4) return (R, G, B) def text(self, message, x, y, size): #draw the sum on the top-left corner FONT = ('Arial', size, 'normal') myPen.penup() myPen.goto(x, y) myPen.write(message, align="left", font=FONT) def fillCellColor(self, row, col, color): myPen.penup() myPen.goto(topLeft_x + col * cellSize, topLeft_y - row * cellSize) myPen.pensize(0.5) myPen.pendown() myPen.fillcolor(color) myPen.begin_fill() for side in range(4): myPen.forward(cellSize) myPen.right(90) myPen.end_fill() myPen.penup() ''' KS1 = KillerSudoku(Grid, 5) KS1.populateGrid() KS1.genCages(method='oc', maxCageSize=5) print(KS1.getCages()) print(KS1.getGrid()) KS1.render() ''' ''' KS1 = killerSudoku(GRID_SIZE=9,seed=5) KS1.populateGrid() KS1.genCages(method='oc', maxCageSize=5) print(KS1.getCages()) print(len(KS1.getCages())) t = KS1.getCages() print(random.choice(t[len(KS1.getCages())-1][1])) '''
[GOAL] G : Type u_1 inst✝ : Group G V : Set G ⊢ index ∅ V = 0 [PROOFSTEP] simp only [index, Nat.sInf_eq_zero] [GOAL] G : Type u_1 inst✝ : Group G V : Set G ⊢ 0 ∈ Finset.card '' {t | ∅ ⊆ ⋃ (g : G) (_ : g ∈ t), (fun h => g * h) ⁻¹' V} ∨ Finset.card '' {t | ∅ ⊆ ⋃ (g : G) (_ : g ∈ t), (fun h => g * h) ⁻¹' V} = ∅ [PROOFSTEP] left [GOAL] case h G : Type u_1 inst✝ : Group G V : Set G ⊢ 0 ∈ Finset.card '' {t | ∅ ⊆ ⋃ (g : G) (_ : g ∈ t), (fun h => g * h) ⁻¹' V} [PROOFSTEP] use∅ [GOAL] case h G : Type u_1 inst✝ : Group G V : Set G ⊢ ∅ ∈ {t | ∅ ⊆ ⋃ (g : G) (_ : g ∈ t), (fun h => g * h) ⁻¹' V} ∧ Finset.card ∅ = 0 [PROOFSTEP] simp only [Finset.card_empty, empty_subset, mem_setOf_eq, eq_self_iff_true, and_self_iff] [GOAL] G : Type u_1 inst✝¹ : Group G inst✝ : TopologicalSpace G K₀ : PositiveCompacts G U : Set G ⊢ prehaar (↑K₀) U ⊥ = 0 [PROOFSTEP] rw [prehaar, Compacts.coe_bot, index_empty, Nat.cast_zero, zero_div] [GOAL] G : Type u_1 inst✝¹ : Group G inst✝ : TopologicalSpace G K₀ : PositiveCompacts G U : Set G K : Compacts G ⊢ 0 ≤ prehaar (↑K₀) U K [PROOFSTEP] apply div_nonneg [GOAL] case ha G : Type u_1 inst✝¹ : Group G inst✝ : TopologicalSpace G K₀ : PositiveCompacts G U : Set G K : Compacts G ⊢ 0 ≤ ↑(index (↑K) U) [PROOFSTEP] norm_cast [GOAL] case hb G : Type u_1 inst✝¹ : Group G inst✝ : TopologicalSpace G K₀ : PositiveCompacts G U : Set G K : Compacts G ⊢ 0 ≤ ↑(index (↑K₀) U) [PROOFSTEP] norm_cast [GOAL] case ha G : Type u_1 inst✝¹ : Group G inst✝ : TopologicalSpace G K₀ : PositiveCompacts G U : Set G K : Compacts G ⊢ 0 ≤ index (↑K) U [PROOFSTEP] apply zero_le [GOAL] case hb G : Type u_1 inst✝¹ : Group G inst✝ : TopologicalSpace G K₀ : PositiveCompacts G U : Set G K : Compacts G ⊢ 0 ≤ index (↑K₀) U [PROOFSTEP] apply zero_le [GOAL] G : Type u_1 inst✝¹ : Group G inst✝ : TopologicalSpace G K₀ : Set G f : Compacts G → ℝ ⊢ f ∈ haarProduct K₀ ↔ ∀ (K : Compacts G), f K ∈ Icc 0 ↑(index (↑K) K₀) [PROOFSTEP] simp only [haarProduct, Set.pi, forall_prop_of_true, mem_univ, mem_setOf_eq] [GOAL] G : Type u_1 inst✝² : Group G inst✝¹ : TopologicalSpace G inst✝ : TopologicalGroup G K V : Set G hK : IsCompact K hV : Set.Nonempty (interior V) ⊢ ∃ n, n ∈ Finset.card '' {t | K ⊆ ⋃ (g : G) (_ : g ∈ t), (fun h => g * h) ⁻¹' V} [PROOFSTEP] rcases compact_covered_by_mul_left_translates hK hV with ⟨t, ht⟩ [GOAL] case intro G : Type u_1 inst✝² : Group G inst✝¹ : TopologicalSpace G inst✝ : TopologicalGroup G K V : Set G hK : IsCompact K hV : Set.Nonempty (interior V) t : Finset G ht : K ⊆ ⋃ (g : G) (_ : g ∈ t), (fun h => g * h) ⁻¹' V ⊢ ∃ n, n ∈ Finset.card '' {t | K ⊆ ⋃ (g : G) (_ : g ∈ t), (fun h => g * h) ⁻¹' V} [PROOFSTEP] exact ⟨t.card, t, ht, rfl⟩ [GOAL] G : Type u_1 inst✝² : Group G inst✝¹ : TopologicalSpace G inst✝ : TopologicalGroup G K V : Set G hK : IsCompact K hV : Set.Nonempty (interior V) ⊢ ∃ t, K ⊆ ⋃ (g : G) (_ : g ∈ t), (fun h => g * h) ⁻¹' V ∧ Finset.card t = index K V [PROOFSTEP] have := Nat.sInf_mem (index_defined hK hV) [GOAL] G : Type u_1 inst✝² : Group G inst✝¹ : TopologicalSpace G inst✝ : TopologicalGroup G K V : Set G hK : IsCompact K hV : Set.Nonempty (interior V) this : sInf (Finset.card '' {t | K ⊆ ⋃ (g : G) (_ : g ∈ t), (fun h => g * h) ⁻¹' V}) ∈ Finset.card '' {t | K ⊆ ⋃ (g : G) (_ : g ∈ t), (fun h => g * h) ⁻¹' V} ⊢ ∃ t, K ⊆ ⋃ (g : G) (_ : g ∈ t), (fun h => g * h) ⁻¹' V ∧ Finset.card t = index K V [PROOFSTEP] rwa [mem_image] at this [GOAL] G : Type u_1 inst✝² : Group G inst✝¹ : TopologicalSpace G inst✝ : TopologicalGroup G K₀ : PositiveCompacts G K : Compacts G V : Set G hV : Set.Nonempty (interior V) ⊢ index (↑K) V ≤ index ↑K ↑K₀ * index (↑K₀) V [PROOFSTEP] obtain ⟨s, h1s, h2s⟩ := index_elim K.isCompact K₀.interior_nonempty [GOAL] case intro.intro G : Type u_1 inst✝² : Group G inst✝¹ : TopologicalSpace G inst✝ : TopologicalGroup G K₀ : PositiveCompacts G K : Compacts G V : Set G hV : Set.Nonempty (interior V) s : Finset G h1s : ↑K ⊆ ⋃ (g : G) (_ : g ∈ s), (fun h => g * h) ⁻¹' ↑K₀ h2s : Finset.card s = index ↑K ↑K₀ ⊢ index (↑K) V ≤ index ↑K ↑K₀ * index (↑K₀) V [PROOFSTEP] obtain ⟨t, h1t, h2t⟩ := index_elim K₀.isCompact hV [GOAL] case intro.intro.intro.intro G : Type u_1 inst✝² : Group G inst✝¹ : TopologicalSpace G inst✝ : TopologicalGroup G K₀ : PositiveCompacts G K : Compacts G V : Set G hV : Set.Nonempty (interior V) s : Finset G h1s : ↑K ⊆ ⋃ (g : G) (_ : g ∈ s), (fun h => g * h) ⁻¹' ↑K₀ h2s : Finset.card s = index ↑K ↑K₀ t : Finset G h1t : ↑K₀ ⊆ ⋃ (g : G) (_ : g ∈ t), (fun h => g * h) ⁻¹' V h2t : Finset.card t = index (↑K₀) V ⊢ index (↑K) V ≤ index ↑K ↑K₀ * index (↑K₀) V [PROOFSTEP] rw [← h2s, ← h2t, mul_comm] [GOAL] case intro.intro.intro.intro G : Type u_1 inst✝² : Group G inst✝¹ : TopologicalSpace G inst✝ : TopologicalGroup G K₀ : PositiveCompacts G K : Compacts G V : Set G hV : Set.Nonempty (interior V) s : Finset G h1s : ↑K ⊆ ⋃ (g : G) (_ : g ∈ s), (fun h => g * h) ⁻¹' ↑K₀ h2s : Finset.card s = index ↑K ↑K₀ t : Finset G h1t : ↑K₀ ⊆ ⋃ (g : G) (_ : g ∈ t), (fun h => g * h) ⁻¹' V h2t : Finset.card t = index (↑K₀) V ⊢ index (↑K) V ≤ Finset.card t * Finset.card s [PROOFSTEP] refine' le_trans _ Finset.card_mul_le [GOAL] case intro.intro.intro.intro G : Type u_1 inst✝² : Group G inst✝¹ : TopologicalSpace G inst✝ : TopologicalGroup G K₀ : PositiveCompacts G K : Compacts G V : Set G hV : Set.Nonempty (interior V) s : Finset G h1s : ↑K ⊆ ⋃ (g : G) (_ : g ∈ s), (fun h => g * h) ⁻¹' ↑K₀ h2s : Finset.card s = index ↑K ↑K₀ t : Finset G h1t : ↑K₀ ⊆ ⋃ (g : G) (_ : g ∈ t), (fun h => g * h) ⁻¹' V h2t : Finset.card t = index (↑K₀) V ⊢ index (↑K) V ≤ Finset.card (t * s) [PROOFSTEP] apply Nat.sInf_le [GOAL] case intro.intro.intro.intro.hm G : Type u_1 inst✝² : Group G inst✝¹ : TopologicalSpace G inst✝ : TopologicalGroup G K₀ : PositiveCompacts G K : Compacts G V : Set G hV : Set.Nonempty (interior V) s : Finset G h1s : ↑K ⊆ ⋃ (g : G) (_ : g ∈ s), (fun h => g * h) ⁻¹' ↑K₀ h2s : Finset.card s = index ↑K ↑K₀ t : Finset G h1t : ↑K₀ ⊆ ⋃ (g : G) (_ : g ∈ t), (fun h => g * h) ⁻¹' V h2t : Finset.card t = index (↑K₀) V ⊢ Finset.card (t * s) ∈ Finset.card '' {t | ↑K ⊆ ⋃ (g : G) (_ : g ∈ t), (fun h => g * h) ⁻¹' V} [PROOFSTEP] refine' ⟨_, _, rfl⟩ [GOAL] case intro.intro.intro.intro.hm G : Type u_1 inst✝² : Group G inst✝¹ : TopologicalSpace G inst✝ : TopologicalGroup G K₀ : PositiveCompacts G K : Compacts G V : Set G hV : Set.Nonempty (interior V) s : Finset G h1s : ↑K ⊆ ⋃ (g : G) (_ : g ∈ s), (fun h => g * h) ⁻¹' ↑K₀ h2s : Finset.card s = index ↑K ↑K₀ t : Finset G h1t : ↑K₀ ⊆ ⋃ (g : G) (_ : g ∈ t), (fun h => g * h) ⁻¹' V h2t : Finset.card t = index (↑K₀) V ⊢ t * s ∈ {t | ↑K ⊆ ⋃ (g : G) (_ : g ∈ t), (fun h => g * h) ⁻¹' V} [PROOFSTEP] rw [mem_setOf_eq] [GOAL] case intro.intro.intro.intro.hm G : Type u_1 inst✝² : Group G inst✝¹ : TopologicalSpace G inst✝ : TopologicalGroup G K₀ : PositiveCompacts G K : Compacts G V : Set G hV : Set.Nonempty (interior V) s : Finset G h1s : ↑K ⊆ ⋃ (g : G) (_ : g ∈ s), (fun h => g * h) ⁻¹' ↑K₀ h2s : Finset.card s = index ↑K ↑K₀ t : Finset G h1t : ↑K₀ ⊆ ⋃ (g : G) (_ : g ∈ t), (fun h => g * h) ⁻¹' V h2t : Finset.card t = index (↑K₀) V ⊢ ↑K ⊆ ⋃ (g : G) (_ : g ∈ t * s), (fun h => g * h) ⁻¹' V [PROOFSTEP] refine' Subset.trans h1s _ [GOAL] case intro.intro.intro.intro.hm G : Type u_1 inst✝² : Group G inst✝¹ : TopologicalSpace G inst✝ : TopologicalGroup G K₀ : PositiveCompacts G K : Compacts G V : Set G hV : Set.Nonempty (interior V) s : Finset G h1s : ↑K ⊆ ⋃ (g : G) (_ : g ∈ s), (fun h => g * h) ⁻¹' ↑K₀ h2s : Finset.card s = index ↑K ↑K₀ t : Finset G h1t : ↑K₀ ⊆ ⋃ (g : G) (_ : g ∈ t), (fun h => g * h) ⁻¹' V h2t : Finset.card t = index (↑K₀) V ⊢ ⋃ (g : G) (_ : g ∈ s), (fun h => g * h) ⁻¹' ↑K₀ ⊆ ⋃ (g : G) (_ : g ∈ t * s), (fun h => g * h) ⁻¹' V [PROOFSTEP] apply iUnion₂_subset [GOAL] case intro.intro.intro.intro.hm.h G : Type u_1 inst✝² : Group G inst✝¹ : TopologicalSpace G inst✝ : TopologicalGroup G K₀ : PositiveCompacts G K : Compacts G V : Set G hV : Set.Nonempty (interior V) s : Finset G h1s : ↑K ⊆ ⋃ (g : G) (_ : g ∈ s), (fun h => g * h) ⁻¹' ↑K₀ h2s : Finset.card s = index ↑K ↑K₀ t : Finset G h1t : ↑K₀ ⊆ ⋃ (g : G) (_ : g ∈ t), (fun h => g * h) ⁻¹' V h2t : Finset.card t = index (↑K₀) V ⊢ ∀ (i : G), i ∈ s → (fun h => i * h) ⁻¹' ↑K₀ ⊆ ⋃ (g : G) (_ : g ∈ t * s), (fun h => g * h) ⁻¹' V [PROOFSTEP] intro g₁ hg₁ [GOAL] case intro.intro.intro.intro.hm.h G : Type u_1 inst✝² : Group G inst✝¹ : TopologicalSpace G inst✝ : TopologicalGroup G K₀ : PositiveCompacts G K : Compacts G V : Set G hV : Set.Nonempty (interior V) s : Finset G h1s : ↑K ⊆ ⋃ (g : G) (_ : g ∈ s), (fun h => g * h) ⁻¹' ↑K₀ h2s : Finset.card s = index ↑K ↑K₀ t : Finset G h1t : ↑K₀ ⊆ ⋃ (g : G) (_ : g ∈ t), (fun h => g * h) ⁻¹' V h2t : Finset.card t = index (↑K₀) V g₁ : G hg₁ : g₁ ∈ s ⊢ (fun h => g₁ * h) ⁻¹' ↑K₀ ⊆ ⋃ (g : G) (_ : g ∈ t * s), (fun h => g * h) ⁻¹' V [PROOFSTEP] rw [preimage_subset_iff] [GOAL] case intro.intro.intro.intro.hm.h G : Type u_1 inst✝² : Group G inst✝¹ : TopologicalSpace G inst✝ : TopologicalGroup G K₀ : PositiveCompacts G K : Compacts G V : Set G hV : Set.Nonempty (interior V) s : Finset G h1s : ↑K ⊆ ⋃ (g : G) (_ : g ∈ s), (fun h => g * h) ⁻¹' ↑K₀ h2s : Finset.card s = index ↑K ↑K₀ t : Finset G h1t : ↑K₀ ⊆ ⋃ (g : G) (_ : g ∈ t), (fun h => g * h) ⁻¹' V h2t : Finset.card t = index (↑K₀) V g₁ : G hg₁ : g₁ ∈ s ⊢ ∀ (a : G), g₁ * a ∈ ↑K₀ → a ∈ ⋃ (g : G) (_ : g ∈ t * s), (fun h => g * h) ⁻¹' V [PROOFSTEP] intro g₂ hg₂ [GOAL] case intro.intro.intro.intro.hm.h G : Type u_1 inst✝² : Group G inst✝¹ : TopologicalSpace G inst✝ : TopologicalGroup G K₀ : PositiveCompacts G K : Compacts G V : Set G hV : Set.Nonempty (interior V) s : Finset G h1s : ↑K ⊆ ⋃ (g : G) (_ : g ∈ s), (fun h => g * h) ⁻¹' ↑K₀ h2s : Finset.card s = index ↑K ↑K₀ t : Finset G h1t : ↑K₀ ⊆ ⋃ (g : G) (_ : g ∈ t), (fun h => g * h) ⁻¹' V h2t : Finset.card t = index (↑K₀) V g₁ : G hg₁ : g₁ ∈ s g₂ : G hg₂ : g₁ * g₂ ∈ ↑K₀ ⊢ g₂ ∈ ⋃ (g : G) (_ : g ∈ t * s), (fun h => g * h) ⁻¹' V [PROOFSTEP] have := h1t hg₂ [GOAL] case intro.intro.intro.intro.hm.h G : Type u_1 inst✝² : Group G inst✝¹ : TopologicalSpace G inst✝ : TopologicalGroup G K₀ : PositiveCompacts G K : Compacts G V : Set G hV : Set.Nonempty (interior V) s : Finset G h1s : ↑K ⊆ ⋃ (g : G) (_ : g ∈ s), (fun h => g * h) ⁻¹' ↑K₀ h2s : Finset.card s = index ↑K ↑K₀ t : Finset G h1t : ↑K₀ ⊆ ⋃ (g : G) (_ : g ∈ t), (fun h => g * h) ⁻¹' V h2t : Finset.card t = index (↑K₀) V g₁ : G hg₁ : g₁ ∈ s g₂ : G hg₂ : g₁ * g₂ ∈ ↑K₀ this : g₁ * g₂ ∈ ⋃ (g : G) (_ : g ∈ t), (fun h => g * h) ⁻¹' V ⊢ g₂ ∈ ⋃ (g : G) (_ : g ∈ t * s), (fun h => g * h) ⁻¹' V [PROOFSTEP] rcases this with ⟨_, ⟨g₃, rfl⟩, A, ⟨hg₃, rfl⟩, h2V⟩ [GOAL] case intro.intro.intro.intro.hm.h.intro.intro.intro.intro.intro.intro G : Type u_1 inst✝² : Group G inst✝¹ : TopologicalSpace G inst✝ : TopologicalGroup G K₀ : PositiveCompacts G K : Compacts G V : Set G hV : Set.Nonempty (interior V) s : Finset G h1s : ↑K ⊆ ⋃ (g : G) (_ : g ∈ s), (fun h => g * h) ⁻¹' ↑K₀ h2s : Finset.card s = index ↑K ↑K₀ t : Finset G h1t : ↑K₀ ⊆ ⋃ (g : G) (_ : g ∈ t), (fun h => g * h) ⁻¹' V h2t : Finset.card t = index (↑K₀) V g₁ : G hg₁ : g₁ ∈ s g₂ : G hg₂ : g₁ * g₂ ∈ ↑K₀ g₃ : G hg₃ : g₃ ∈ t h2V : g₁ * g₂ ∈ (fun h => (fun h => g₃ * h) ⁻¹' V) hg₃ ⊢ g₂ ∈ ⋃ (g : G) (_ : g ∈ t * s), (fun h => g * h) ⁻¹' V [PROOFSTEP] rw [mem_preimage, ← mul_assoc] at h2V [GOAL] case intro.intro.intro.intro.hm.h.intro.intro.intro.intro.intro.intro G : Type u_1 inst✝² : Group G inst✝¹ : TopologicalSpace G inst✝ : TopologicalGroup G K₀ : PositiveCompacts G K : Compacts G V : Set G hV : Set.Nonempty (interior V) s : Finset G h1s : ↑K ⊆ ⋃ (g : G) (_ : g ∈ s), (fun h => g * h) ⁻¹' ↑K₀ h2s : Finset.card s = index ↑K ↑K₀ t : Finset G h1t : ↑K₀ ⊆ ⋃ (g : G) (_ : g ∈ t), (fun h => g * h) ⁻¹' V h2t : Finset.card t = index (↑K₀) V g₁ : G hg₁ : g₁ ∈ s g₂ : G hg₂ : g₁ * g₂ ∈ ↑K₀ g₃ : G hg₃ : g₃ ∈ t h2V : g₃ * g₁ * g₂ ∈ V ⊢ g₂ ∈ ⋃ (g : G) (_ : g ∈ t * s), (fun h => g * h) ⁻¹' V [PROOFSTEP] exact mem_biUnion (Finset.mul_mem_mul hg₃ hg₁) h2V [GOAL] G : Type u_1 inst✝² : Group G inst✝¹ : TopologicalSpace G inst✝ : TopologicalGroup G K : PositiveCompacts G V : Set G hV : Set.Nonempty (interior V) ⊢ 0 < index (↑K) V [PROOFSTEP] unfold index [GOAL] G : Type u_1 inst✝² : Group G inst✝¹ : TopologicalSpace G inst✝ : TopologicalGroup G K : PositiveCompacts G V : Set G hV : Set.Nonempty (interior V) ⊢ 0 < sInf (Finset.card '' {t | ↑K ⊆ ⋃ (g : G) (_ : g ∈ t), (fun h => g * h) ⁻¹' V}) [PROOFSTEP] rw [Nat.sInf_def, Nat.find_pos, mem_image] [GOAL] G : Type u_1 inst✝² : Group G inst✝¹ : TopologicalSpace G inst✝ : TopologicalGroup G K : PositiveCompacts G V : Set G hV : Set.Nonempty (interior V) ⊢ ¬∃ x, x ∈ {t | ↑K ⊆ ⋃ (g : G) (_ : g ∈ t), (fun h => g * h) ⁻¹' V} ∧ Finset.card x = 0 [PROOFSTEP] rintro ⟨t, h1t, h2t⟩ [GOAL] case intro.intro G : Type u_1 inst✝² : Group G inst✝¹ : TopologicalSpace G inst✝ : TopologicalGroup G K : PositiveCompacts G V : Set G hV : Set.Nonempty (interior V) t : Finset G h1t : t ∈ {t | ↑K ⊆ ⋃ (g : G) (_ : g ∈ t), (fun h => g * h) ⁻¹' V} h2t : Finset.card t = 0 ⊢ False [PROOFSTEP] rw [Finset.card_eq_zero] at h2t [GOAL] case intro.intro G : Type u_1 inst✝² : Group G inst✝¹ : TopologicalSpace G inst✝ : TopologicalGroup G K : PositiveCompacts G V : Set G hV : Set.Nonempty (interior V) t : Finset G h1t : t ∈ {t | ↑K ⊆ ⋃ (g : G) (_ : g ∈ t), (fun h => g * h) ⁻¹' V} h2t : t = ∅ ⊢ False [PROOFSTEP] subst h2t [GOAL] case intro.intro G : Type u_1 inst✝² : Group G inst✝¹ : TopologicalSpace G inst✝ : TopologicalGroup G K : PositiveCompacts G V : Set G hV : Set.Nonempty (interior V) h1t : ∅ ∈ {t | ↑K ⊆ ⋃ (g : G) (_ : g ∈ t), (fun h => g * h) ⁻¹' V} ⊢ False [PROOFSTEP] obtain ⟨g, hg⟩ := K.interior_nonempty [GOAL] case intro.intro.intro G : Type u_1 inst✝² : Group G inst✝¹ : TopologicalSpace G inst✝ : TopologicalGroup G K : PositiveCompacts G V : Set G hV : Set.Nonempty (interior V) h1t : ∅ ∈ {t | ↑K ⊆ ⋃ (g : G) (_ : g ∈ t), (fun h => g * h) ⁻¹' V} g : G hg : g ∈ interior ↑K ⊢ False [PROOFSTEP] show g ∈ (∅ : Set G) [GOAL] case intro.intro.intro G : Type u_1 inst✝² : Group G inst✝¹ : TopologicalSpace G inst✝ : TopologicalGroup G K : PositiveCompacts G V : Set G hV : Set.Nonempty (interior V) h1t : ∅ ∈ {t | ↑K ⊆ ⋃ (g : G) (_ : g ∈ t), (fun h => g * h) ⁻¹' V} g : G hg : g ∈ interior ↑K ⊢ g ∈ ∅ [PROOFSTEP] convert h1t (interior_subset hg) [GOAL] case h.e'_5 G : Type u_1 inst✝² : Group G inst✝¹ : TopologicalSpace G inst✝ : TopologicalGroup G K : PositiveCompacts G V : Set G hV : Set.Nonempty (interior V) h1t : ∅ ∈ {t | ↑K ⊆ ⋃ (g : G) (_ : g ∈ t), (fun h => g * h) ⁻¹' V} g : G hg : g ∈ interior ↑K ⊢ ∅ = ⋃ (g : G) (_ : g ∈ ∅), (fun h => g * h) ⁻¹' V [PROOFSTEP] symm [GOAL] case h.e'_5 G : Type u_1 inst✝² : Group G inst✝¹ : TopologicalSpace G inst✝ : TopologicalGroup G K : PositiveCompacts G V : Set G hV : Set.Nonempty (interior V) h1t : ∅ ∈ {t | ↑K ⊆ ⋃ (g : G) (_ : g ∈ t), (fun h => g * h) ⁻¹' V} g : G hg : g ∈ interior ↑K ⊢ ⋃ (g : G) (_ : g ∈ ∅), (fun h => g * h) ⁻¹' V = ∅ [PROOFSTEP] simp only [Finset.not_mem_empty, iUnion_of_empty, iUnion_empty] [GOAL] G : Type u_1 inst✝² : Group G inst✝¹ : TopologicalSpace G inst✝ : TopologicalGroup G K : PositiveCompacts G V : Set G hV : Set.Nonempty (interior V) ⊢ ∃ n, n ∈ Finset.card '' {t | ↑K ⊆ ⋃ (g : G) (_ : g ∈ t), (fun h => g * h) ⁻¹' V} [PROOFSTEP] exact index_defined K.isCompact hV [GOAL] G : Type u_1 inst✝² : Group G inst✝¹ : TopologicalSpace G inst✝ : TopologicalGroup G K K' V : Set G hK' : IsCompact K' h : K ⊆ K' hV : Set.Nonempty (interior V) ⊢ index K V ≤ index K' V [PROOFSTEP] rcases index_elim hK' hV with ⟨s, h1s, h2s⟩ [GOAL] case intro.intro G : Type u_1 inst✝² : Group G inst✝¹ : TopologicalSpace G inst✝ : TopologicalGroup G K K' V : Set G hK' : IsCompact K' h : K ⊆ K' hV : Set.Nonempty (interior V) s : Finset G h1s : K' ⊆ ⋃ (g : G) (_ : g ∈ s), (fun h => g * h) ⁻¹' V h2s : Finset.card s = index K' V ⊢ index K V ≤ index K' V [PROOFSTEP] apply Nat.sInf_le [GOAL] case intro.intro.hm G : Type u_1 inst✝² : Group G inst✝¹ : TopologicalSpace G inst✝ : TopologicalGroup G K K' V : Set G hK' : IsCompact K' h : K ⊆ K' hV : Set.Nonempty (interior V) s : Finset G h1s : K' ⊆ ⋃ (g : G) (_ : g ∈ s), (fun h => g * h) ⁻¹' V h2s : Finset.card s = index K' V ⊢ index K' V ∈ Finset.card '' {t | K ⊆ ⋃ (g : G) (_ : g ∈ t), (fun h => g * h) ⁻¹' V} [PROOFSTEP] rw [mem_image] [GOAL] case intro.intro.hm G : Type u_1 inst✝² : Group G inst✝¹ : TopologicalSpace G inst✝ : TopologicalGroup G K K' V : Set G hK' : IsCompact K' h : K ⊆ K' hV : Set.Nonempty (interior V) s : Finset G h1s : K' ⊆ ⋃ (g : G) (_ : g ∈ s), (fun h => g * h) ⁻¹' V h2s : Finset.card s = index K' V ⊢ ∃ x, x ∈ {t | K ⊆ ⋃ (g : G) (_ : g ∈ t), (fun h => g * h) ⁻¹' V} ∧ Finset.card x = index K' V [PROOFSTEP] refine' ⟨s, Subset.trans h h1s, h2s⟩ [GOAL] G : Type u_1 inst✝² : Group G inst✝¹ : TopologicalSpace G inst✝ : TopologicalGroup G K₁ K₂ : Compacts G V : Set G hV : Set.Nonempty (interior V) ⊢ index (K₁.carrier ∪ K₂.carrier) V ≤ index K₁.carrier V + index K₂.carrier V [PROOFSTEP] rcases index_elim K₁.2 hV with ⟨s, h1s, h2s⟩ [GOAL] case intro.intro G : Type u_1 inst✝² : Group G inst✝¹ : TopologicalSpace G inst✝ : TopologicalGroup G K₁ K₂ : Compacts G V : Set G hV : Set.Nonempty (interior V) s : Finset G h1s : K₁.carrier ⊆ ⋃ (g : G) (_ : g ∈ s), (fun h => g * h) ⁻¹' V h2s : Finset.card s = index K₁.carrier V ⊢ index (K₁.carrier ∪ K₂.carrier) V ≤ index K₁.carrier V + index K₂.carrier V [PROOFSTEP] rcases index_elim K₂.2 hV with ⟨t, h1t, h2t⟩ [GOAL] case intro.intro.intro.intro G : Type u_1 inst✝² : Group G inst✝¹ : TopologicalSpace G inst✝ : TopologicalGroup G K₁ K₂ : Compacts G V : Set G hV : Set.Nonempty (interior V) s : Finset G h1s : K₁.carrier ⊆ ⋃ (g : G) (_ : g ∈ s), (fun h => g * h) ⁻¹' V h2s : Finset.card s = index K₁.carrier V t : Finset G h1t : K₂.carrier ⊆ ⋃ (g : G) (_ : g ∈ t), (fun h => g * h) ⁻¹' V h2t : Finset.card t = index K₂.carrier V ⊢ index (K₁.carrier ∪ K₂.carrier) V ≤ index K₁.carrier V + index K₂.carrier V [PROOFSTEP] rw [← h2s, ← h2t] [GOAL] case intro.intro.intro.intro G : Type u_1 inst✝² : Group G inst✝¹ : TopologicalSpace G inst✝ : TopologicalGroup G K₁ K₂ : Compacts G V : Set G hV : Set.Nonempty (interior V) s : Finset G h1s : K₁.carrier ⊆ ⋃ (g : G) (_ : g ∈ s), (fun h => g * h) ⁻¹' V h2s : Finset.card s = index K₁.carrier V t : Finset G h1t : K₂.carrier ⊆ ⋃ (g : G) (_ : g ∈ t), (fun h => g * h) ⁻¹' V h2t : Finset.card t = index K₂.carrier V ⊢ index (K₁.carrier ∪ K₂.carrier) V ≤ Finset.card s + Finset.card t [PROOFSTEP] refine' le_trans _ (Finset.card_union_le _ _) [GOAL] case intro.intro.intro.intro G : Type u_1 inst✝² : Group G inst✝¹ : TopologicalSpace G inst✝ : TopologicalGroup G K₁ K₂ : Compacts G V : Set G hV : Set.Nonempty (interior V) s : Finset G h1s : K₁.carrier ⊆ ⋃ (g : G) (_ : g ∈ s), (fun h => g * h) ⁻¹' V h2s : Finset.card s = index K₁.carrier V t : Finset G h1t : K₂.carrier ⊆ ⋃ (g : G) (_ : g ∈ t), (fun h => g * h) ⁻¹' V h2t : Finset.card t = index K₂.carrier V ⊢ index (K₁.carrier ∪ K₂.carrier) V ≤ Finset.card (s ∪ t) [PROOFSTEP] apply Nat.sInf_le [GOAL] case intro.intro.intro.intro.hm G : Type u_1 inst✝² : Group G inst✝¹ : TopologicalSpace G inst✝ : TopologicalGroup G K₁ K₂ : Compacts G V : Set G hV : Set.Nonempty (interior V) s : Finset G h1s : K₁.carrier ⊆ ⋃ (g : G) (_ : g ∈ s), (fun h => g * h) ⁻¹' V h2s : Finset.card s = index K₁.carrier V t : Finset G h1t : K₂.carrier ⊆ ⋃ (g : G) (_ : g ∈ t), (fun h => g * h) ⁻¹' V h2t : Finset.card t = index K₂.carrier V ⊢ Finset.card (s ∪ t) ∈ Finset.card '' {t | K₁.carrier ∪ K₂.carrier ⊆ ⋃ (g : G) (_ : g ∈ t), (fun h => g * h) ⁻¹' V} [PROOFSTEP] refine' ⟨_, _, rfl⟩ [GOAL] case intro.intro.intro.intro.hm G : Type u_1 inst✝² : Group G inst✝¹ : TopologicalSpace G inst✝ : TopologicalGroup G K₁ K₂ : Compacts G V : Set G hV : Set.Nonempty (interior V) s : Finset G h1s : K₁.carrier ⊆ ⋃ (g : G) (_ : g ∈ s), (fun h => g * h) ⁻¹' V h2s : Finset.card s = index K₁.carrier V t : Finset G h1t : K₂.carrier ⊆ ⋃ (g : G) (_ : g ∈ t), (fun h => g * h) ⁻¹' V h2t : Finset.card t = index K₂.carrier V ⊢ s ∪ t ∈ {t | K₁.carrier ∪ K₂.carrier ⊆ ⋃ (g : G) (_ : g ∈ t), (fun h => g * h) ⁻¹' V} [PROOFSTEP] rw [mem_setOf_eq] [GOAL] case intro.intro.intro.intro.hm G : Type u_1 inst✝² : Group G inst✝¹ : TopologicalSpace G inst✝ : TopologicalGroup G K₁ K₂ : Compacts G V : Set G hV : Set.Nonempty (interior V) s : Finset G h1s : K₁.carrier ⊆ ⋃ (g : G) (_ : g ∈ s), (fun h => g * h) ⁻¹' V h2s : Finset.card s = index K₁.carrier V t : Finset G h1t : K₂.carrier ⊆ ⋃ (g : G) (_ : g ∈ t), (fun h => g * h) ⁻¹' V h2t : Finset.card t = index K₂.carrier V ⊢ K₁.carrier ∪ K₂.carrier ⊆ ⋃ (g : G) (_ : g ∈ s ∪ t), (fun h => g * h) ⁻¹' V [PROOFSTEP] apply union_subset [GOAL] case intro.intro.intro.intro.hm.sr G : Type u_1 inst✝² : Group G inst✝¹ : TopologicalSpace G inst✝ : TopologicalGroup G K₁ K₂ : Compacts G V : Set G hV : Set.Nonempty (interior V) s : Finset G h1s : K₁.carrier ⊆ ⋃ (g : G) (_ : g ∈ s), (fun h => g * h) ⁻¹' V h2s : Finset.card s = index K₁.carrier V t : Finset G h1t : K₂.carrier ⊆ ⋃ (g : G) (_ : g ∈ t), (fun h => g * h) ⁻¹' V h2t : Finset.card t = index K₂.carrier V ⊢ K₁.carrier ⊆ ⋃ (g : G) (_ : g ∈ s ∪ t), (fun h => g * h) ⁻¹' V [PROOFSTEP] refine' Subset.trans (by assumption) _ [GOAL] G : Type u_1 inst✝² : Group G inst✝¹ : TopologicalSpace G inst✝ : TopologicalGroup G K₁ K₂ : Compacts G V : Set G hV : Set.Nonempty (interior V) s : Finset G h1s : K₁.carrier ⊆ ⋃ (g : G) (_ : g ∈ s), (fun h => g * h) ⁻¹' V h2s : Finset.card s = index K₁.carrier V t : Finset G h1t : K₂.carrier ⊆ ⋃ (g : G) (_ : g ∈ t), (fun h => g * h) ⁻¹' V h2t : Finset.card t = index K₂.carrier V ⊢ K₁.carrier ⊆ ?m.46641 [PROOFSTEP] assumption [GOAL] case intro.intro.intro.intro.hm.tr G : Type u_1 inst✝² : Group G inst✝¹ : TopologicalSpace G inst✝ : TopologicalGroup G K₁ K₂ : Compacts G V : Set G hV : Set.Nonempty (interior V) s : Finset G h1s : K₁.carrier ⊆ ⋃ (g : G) (_ : g ∈ s), (fun h => g * h) ⁻¹' V h2s : Finset.card s = index K₁.carrier V t : Finset G h1t : K₂.carrier ⊆ ⋃ (g : G) (_ : g ∈ t), (fun h => g * h) ⁻¹' V h2t : Finset.card t = index K₂.carrier V ⊢ K₂.carrier ⊆ ⋃ (g : G) (_ : g ∈ s ∪ t), (fun h => g * h) ⁻¹' V [PROOFSTEP] refine' Subset.trans (by assumption) _ [GOAL] G : Type u_1 inst✝² : Group G inst✝¹ : TopologicalSpace G inst✝ : TopologicalGroup G K₁ K₂ : Compacts G V : Set G hV : Set.Nonempty (interior V) s : Finset G h1s : K₁.carrier ⊆ ⋃ (g : G) (_ : g ∈ s), (fun h => g * h) ⁻¹' V h2s : Finset.card s = index K₁.carrier V t : Finset G h1t : K₂.carrier ⊆ ⋃ (g : G) (_ : g ∈ t), (fun h => g * h) ⁻¹' V h2t : Finset.card t = index K₂.carrier V ⊢ K₂.carrier ⊆ ?m.46676 [PROOFSTEP] assumption [GOAL] case intro.intro.intro.intro.hm.sr G : Type u_1 inst✝² : Group G inst✝¹ : TopologicalSpace G inst✝ : TopologicalGroup G K₁ K₂ : Compacts G V : Set G hV : Set.Nonempty (interior V) s : Finset G h1s : K₁.carrier ⊆ ⋃ (g : G) (_ : g ∈ s), (fun h => g * h) ⁻¹' V h2s : Finset.card s = index K₁.carrier V t : Finset G h1t : K₂.carrier ⊆ ⋃ (g : G) (_ : g ∈ t), (fun h => g * h) ⁻¹' V h2t : Finset.card t = index K₂.carrier V ⊢ ⋃ (g : G) (_ : g ∈ s), (fun h => g * h) ⁻¹' V ⊆ ⋃ (g : G) (_ : g ∈ s ∪ t), (fun h => g * h) ⁻¹' V [PROOFSTEP] apply biUnion_subset_biUnion_left [GOAL] case intro.intro.intro.intro.hm.tr G : Type u_1 inst✝² : Group G inst✝¹ : TopologicalSpace G inst✝ : TopologicalGroup G K₁ K₂ : Compacts G V : Set G hV : Set.Nonempty (interior V) s : Finset G h1s : K₁.carrier ⊆ ⋃ (g : G) (_ : g ∈ s), (fun h => g * h) ⁻¹' V h2s : Finset.card s = index K₁.carrier V t : Finset G h1t : K₂.carrier ⊆ ⋃ (g : G) (_ : g ∈ t), (fun h => g * h) ⁻¹' V h2t : Finset.card t = index K₂.carrier V ⊢ ⋃ (g : G) (_ : g ∈ t), (fun h => g * h) ⁻¹' V ⊆ ⋃ (g : G) (_ : g ∈ s ∪ t), (fun h => g * h) ⁻¹' V [PROOFSTEP] apply biUnion_subset_biUnion_left [GOAL] case intro.intro.intro.intro.hm.sr.h G : Type u_1 inst✝² : Group G inst✝¹ : TopologicalSpace G inst✝ : TopologicalGroup G K₁ K₂ : Compacts G V : Set G hV : Set.Nonempty (interior V) s : Finset G h1s : K₁.carrier ⊆ ⋃ (g : G) (_ : g ∈ s), (fun h => g * h) ⁻¹' V h2s : Finset.card s = index K₁.carrier V t : Finset G h1t : K₂.carrier ⊆ ⋃ (g : G) (_ : g ∈ t), (fun h => g * h) ⁻¹' V h2t : Finset.card t = index K₂.carrier V ⊢ (fun x => x ∈ s.val) ⊆ fun x => x ∈ (s ∪ t).val [PROOFSTEP] intro g hg [GOAL] case intro.intro.intro.intro.hm.tr.h G : Type u_1 inst✝² : Group G inst✝¹ : TopologicalSpace G inst✝ : TopologicalGroup G K₁ K₂ : Compacts G V : Set G hV : Set.Nonempty (interior V) s : Finset G h1s : K₁.carrier ⊆ ⋃ (g : G) (_ : g ∈ s), (fun h => g * h) ⁻¹' V h2s : Finset.card s = index K₁.carrier V t : Finset G h1t : K₂.carrier ⊆ ⋃ (g : G) (_ : g ∈ t), (fun h => g * h) ⁻¹' V h2t : Finset.card t = index K₂.carrier V ⊢ (fun x => x ∈ t.val) ⊆ fun x => x ∈ (s ∪ t).val [PROOFSTEP] intro g hg [GOAL] case intro.intro.intro.intro.hm.sr.h G : Type u_1 inst✝² : Group G inst✝¹ : TopologicalSpace G inst✝ : TopologicalGroup G K₁ K₂ : Compacts G V : Set G hV : Set.Nonempty (interior V) s : Finset G h1s : K₁.carrier ⊆ ⋃ (g : G) (_ : g ∈ s), (fun h => g * h) ⁻¹' V h2s : Finset.card s = index K₁.carrier V t : Finset G h1t : K₂.carrier ⊆ ⋃ (g : G) (_ : g ∈ t), (fun h => g * h) ⁻¹' V h2t : Finset.card t = index K₂.carrier V g : G hg : g ∈ fun x => x ∈ s.val ⊢ g ∈ fun x => x ∈ (s ∪ t).val [PROOFSTEP] simp only [mem_def] at hg [GOAL] case intro.intro.intro.intro.hm.tr.h G : Type u_1 inst✝² : Group G inst✝¹ : TopologicalSpace G inst✝ : TopologicalGroup G K₁ K₂ : Compacts G V : Set G hV : Set.Nonempty (interior V) s : Finset G h1s : K₁.carrier ⊆ ⋃ (g : G) (_ : g ∈ s), (fun h => g * h) ⁻¹' V h2s : Finset.card s = index K₁.carrier V t : Finset G h1t : K₂.carrier ⊆ ⋃ (g : G) (_ : g ∈ t), (fun h => g * h) ⁻¹' V h2t : Finset.card t = index K₂.carrier V g : G hg : g ∈ fun x => x ∈ t.val ⊢ g ∈ fun x => x ∈ (s ∪ t).val [PROOFSTEP] simp only [mem_def] at hg [GOAL] case intro.intro.intro.intro.hm.sr.h G : Type u_1 inst✝² : Group G inst✝¹ : TopologicalSpace G inst✝ : TopologicalGroup G K₁ K₂ : Compacts G V : Set G hV : Set.Nonempty (interior V) s : Finset G h1s : K₁.carrier ⊆ ⋃ (g : G) (_ : g ∈ s), (fun h => g * h) ⁻¹' V h2s : Finset.card s = index K₁.carrier V t : Finset G h1t : K₂.carrier ⊆ ⋃ (g : G) (_ : g ∈ t), (fun h => g * h) ⁻¹' V h2t : Finset.card t = index K₂.carrier V g : G hg : g ∈ s.val ⊢ g ∈ fun x => x ∈ (s ∪ t).val [PROOFSTEP] simp only [mem_def, Multiset.mem_union, Finset.union_val, hg, or_true_iff, true_or_iff] [GOAL] case intro.intro.intro.intro.hm.tr.h G : Type u_1 inst✝² : Group G inst✝¹ : TopologicalSpace G inst✝ : TopologicalGroup G K₁ K₂ : Compacts G V : Set G hV : Set.Nonempty (interior V) s : Finset G h1s : K₁.carrier ⊆ ⋃ (g : G) (_ : g ∈ s), (fun h => g * h) ⁻¹' V h2s : Finset.card s = index K₁.carrier V t : Finset G h1t : K₂.carrier ⊆ ⋃ (g : G) (_ : g ∈ t), (fun h => g * h) ⁻¹' V h2t : Finset.card t = index K₂.carrier V g : G hg : g ∈ t.val ⊢ g ∈ fun x => x ∈ (s ∪ t).val [PROOFSTEP] simp only [mem_def, Multiset.mem_union, Finset.union_val, hg, or_true_iff, true_or_iff] [GOAL] G : Type u_1 inst✝² : Group G inst✝¹ : TopologicalSpace G inst✝ : TopologicalGroup G K₁ K₂ : Compacts G V : Set G hV : Set.Nonempty (interior V) h : Disjoint (K₁.carrier * V⁻¹) (K₂.carrier * V⁻¹) ⊢ index (K₁.carrier ∪ K₂.carrier) V = index K₁.carrier V + index K₂.carrier V [PROOFSTEP] apply le_antisymm (index_union_le K₁ K₂ hV) [GOAL] G : Type u_1 inst✝² : Group G inst✝¹ : TopologicalSpace G inst✝ : TopologicalGroup G K₁ K₂ : Compacts G V : Set G hV : Set.Nonempty (interior V) h : Disjoint (K₁.carrier * V⁻¹) (K₂.carrier * V⁻¹) ⊢ index K₁.carrier V + index K₂.carrier V ≤ index (K₁.carrier ∪ K₂.carrier) V [PROOFSTEP] rcases index_elim (K₁.2.union K₂.2) hV with ⟨s, h1s, h2s⟩ [GOAL] case intro.intro G : Type u_1 inst✝² : Group G inst✝¹ : TopologicalSpace G inst✝ : TopologicalGroup G K₁ K₂ : Compacts G V : Set G hV : Set.Nonempty (interior V) h : Disjoint (K₁.carrier * V⁻¹) (K₂.carrier * V⁻¹) s : Finset G h1s : K₁.carrier ∪ K₂.carrier ⊆ ⋃ (g : G) (_ : g ∈ s), (fun h => g * h) ⁻¹' V h2s : Finset.card s = index (K₁.carrier ∪ K₂.carrier) V ⊢ index K₁.carrier V + index K₂.carrier V ≤ index (K₁.carrier ∪ K₂.carrier) V [PROOFSTEP] rw [← h2s] [GOAL] case intro.intro G : Type u_1 inst✝² : Group G inst✝¹ : TopologicalSpace G inst✝ : TopologicalGroup G K₁ K₂ : Compacts G V : Set G hV : Set.Nonempty (interior V) h : Disjoint (K₁.carrier * V⁻¹) (K₂.carrier * V⁻¹) s : Finset G h1s : K₁.carrier ∪ K₂.carrier ⊆ ⋃ (g : G) (_ : g ∈ s), (fun h => g * h) ⁻¹' V h2s : Finset.card s = index (K₁.carrier ∪ K₂.carrier) V ⊢ index K₁.carrier V + index K₂.carrier V ≤ Finset.card s [PROOFSTEP] have : ∀ K : Set G, (K ⊆ ⋃ g ∈ s, (fun h => g * h) ⁻¹' V) → index K V ≤ (s.filter fun g => ((fun h : G => g * h) ⁻¹' V ∩ K).Nonempty).card := by intro K hK; apply Nat.sInf_le; refine' ⟨_, _, rfl⟩; rw [mem_setOf_eq] intro g hg; rcases hK hg with ⟨_, ⟨g₀, rfl⟩, _, ⟨h1g₀, rfl⟩, h2g₀⟩ simp only [mem_preimage] at h2g₀ simp only [mem_iUnion]; use g₀; constructor; swap · simp only [Finset.mem_filter, h1g₀, true_and_iff]; use g simp only [hg, h2g₀, mem_inter_iff, mem_preimage, and_self_iff] exact h2g₀ [GOAL] G : Type u_1 inst✝² : Group G inst✝¹ : TopologicalSpace G inst✝ : TopologicalGroup G K₁ K₂ : Compacts G V : Set G hV : Set.Nonempty (interior V) h : Disjoint (K₁.carrier * V⁻¹) (K₂.carrier * V⁻¹) s : Finset G h1s : K₁.carrier ∪ K₂.carrier ⊆ ⋃ (g : G) (_ : g ∈ s), (fun h => g * h) ⁻¹' V h2s : Finset.card s = index (K₁.carrier ∪ K₂.carrier) V ⊢ ∀ (K : Set G), K ⊆ ⋃ (g : G) (_ : g ∈ s), (fun h => g * h) ⁻¹' V → index K V ≤ Finset.card (Finset.filter (fun g => Set.Nonempty ((fun h => g * h) ⁻¹' V ∩ K)) s) [PROOFSTEP] intro K hK [GOAL] G : Type u_1 inst✝² : Group G inst✝¹ : TopologicalSpace G inst✝ : TopologicalGroup G K₁ K₂ : Compacts G V : Set G hV : Set.Nonempty (interior V) h : Disjoint (K₁.carrier * V⁻¹) (K₂.carrier * V⁻¹) s : Finset G h1s : K₁.carrier ∪ K₂.carrier ⊆ ⋃ (g : G) (_ : g ∈ s), (fun h => g * h) ⁻¹' V h2s : Finset.card s = index (K₁.carrier ∪ K₂.carrier) V K : Set G hK : K ⊆ ⋃ (g : G) (_ : g ∈ s), (fun h => g * h) ⁻¹' V ⊢ index K V ≤ Finset.card (Finset.filter (fun g => Set.Nonempty ((fun h => g * h) ⁻¹' V ∩ K)) s) [PROOFSTEP] apply Nat.sInf_le [GOAL] case hm G : Type u_1 inst✝² : Group G inst✝¹ : TopologicalSpace G inst✝ : TopologicalGroup G K₁ K₂ : Compacts G V : Set G hV : Set.Nonempty (interior V) h : Disjoint (K₁.carrier * V⁻¹) (K₂.carrier * V⁻¹) s : Finset G h1s : K₁.carrier ∪ K₂.carrier ⊆ ⋃ (g : G) (_ : g ∈ s), (fun h => g * h) ⁻¹' V h2s : Finset.card s = index (K₁.carrier ∪ K₂.carrier) V K : Set G hK : K ⊆ ⋃ (g : G) (_ : g ∈ s), (fun h => g * h) ⁻¹' V ⊢ Finset.card (Finset.filter (fun g => Set.Nonempty ((fun h => g * h) ⁻¹' V ∩ K)) s) ∈ Finset.card '' {t | K ⊆ ⋃ (g : G) (_ : g ∈ t), (fun h => g * h) ⁻¹' V} [PROOFSTEP] refine' ⟨_, _, rfl⟩ [GOAL] case hm G : Type u_1 inst✝² : Group G inst✝¹ : TopologicalSpace G inst✝ : TopologicalGroup G K₁ K₂ : Compacts G V : Set G hV : Set.Nonempty (interior V) h : Disjoint (K₁.carrier * V⁻¹) (K₂.carrier * V⁻¹) s : Finset G h1s : K₁.carrier ∪ K₂.carrier ⊆ ⋃ (g : G) (_ : g ∈ s), (fun h => g * h) ⁻¹' V h2s : Finset.card s = index (K₁.carrier ∪ K₂.carrier) V K : Set G hK : K ⊆ ⋃ (g : G) (_ : g ∈ s), (fun h => g * h) ⁻¹' V ⊢ Finset.filter (fun g => Set.Nonempty ((fun h => g * h) ⁻¹' V ∩ K)) s ∈ {t | K ⊆ ⋃ (g : G) (_ : g ∈ t), (fun h => g * h) ⁻¹' V} [PROOFSTEP] rw [mem_setOf_eq] [GOAL] case hm G : Type u_1 inst✝² : Group G inst✝¹ : TopologicalSpace G inst✝ : TopologicalGroup G K₁ K₂ : Compacts G V : Set G hV : Set.Nonempty (interior V) h : Disjoint (K₁.carrier * V⁻¹) (K₂.carrier * V⁻¹) s : Finset G h1s : K₁.carrier ∪ K₂.carrier ⊆ ⋃ (g : G) (_ : g ∈ s), (fun h => g * h) ⁻¹' V h2s : Finset.card s = index (K₁.carrier ∪ K₂.carrier) V K : Set G hK : K ⊆ ⋃ (g : G) (_ : g ∈ s), (fun h => g * h) ⁻¹' V ⊢ K ⊆ ⋃ (g : G) (_ : g ∈ Finset.filter (fun g => Set.Nonempty ((fun h => g * h) ⁻¹' V ∩ K)) s), (fun h => g * h) ⁻¹' V [PROOFSTEP] intro g hg [GOAL] case hm G : Type u_1 inst✝² : Group G inst✝¹ : TopologicalSpace G inst✝ : TopologicalGroup G K₁ K₂ : Compacts G V : Set G hV : Set.Nonempty (interior V) h : Disjoint (K₁.carrier * V⁻¹) (K₂.carrier * V⁻¹) s : Finset G h1s : K₁.carrier ∪ K₂.carrier ⊆ ⋃ (g : G) (_ : g ∈ s), (fun h => g * h) ⁻¹' V h2s : Finset.card s = index (K₁.carrier ∪ K₂.carrier) V K : Set G hK : K ⊆ ⋃ (g : G) (_ : g ∈ s), (fun h => g * h) ⁻¹' V g : G hg : g ∈ K ⊢ g ∈ ⋃ (g : G) (_ : g ∈ Finset.filter (fun g => Set.Nonempty ((fun h => g * h) ⁻¹' V ∩ K)) s), (fun h => g * h) ⁻¹' V [PROOFSTEP] rcases hK hg with ⟨_, ⟨g₀, rfl⟩, _, ⟨h1g₀, rfl⟩, h2g₀⟩ [GOAL] case hm.intro.intro.intro.intro.intro.intro G : Type u_1 inst✝² : Group G inst✝¹ : TopologicalSpace G inst✝ : TopologicalGroup G K₁ K₂ : Compacts G V : Set G hV : Set.Nonempty (interior V) h : Disjoint (K₁.carrier * V⁻¹) (K₂.carrier * V⁻¹) s : Finset G h1s : K₁.carrier ∪ K₂.carrier ⊆ ⋃ (g : G) (_ : g ∈ s), (fun h => g * h) ⁻¹' V h2s : Finset.card s = index (K₁.carrier ∪ K₂.carrier) V K : Set G hK : K ⊆ ⋃ (g : G) (_ : g ∈ s), (fun h => g * h) ⁻¹' V g : G hg : g ∈ K g₀ : G h1g₀ : g₀ ∈ s h2g₀ : g ∈ (fun h => (fun h => g₀ * h) ⁻¹' V) h1g₀ ⊢ g ∈ ⋃ (g : G) (_ : g ∈ Finset.filter (fun g => Set.Nonempty ((fun h => g * h) ⁻¹' V ∩ K)) s), (fun h => g * h) ⁻¹' V [PROOFSTEP] simp only [mem_preimage] at h2g₀ [GOAL] case hm.intro.intro.intro.intro.intro.intro G : Type u_1 inst✝² : Group G inst✝¹ : TopologicalSpace G inst✝ : TopologicalGroup G K₁ K₂ : Compacts G V : Set G hV : Set.Nonempty (interior V) h : Disjoint (K₁.carrier * V⁻¹) (K₂.carrier * V⁻¹) s : Finset G h1s : K₁.carrier ∪ K₂.carrier ⊆ ⋃ (g : G) (_ : g ∈ s), (fun h => g * h) ⁻¹' V h2s : Finset.card s = index (K₁.carrier ∪ K₂.carrier) V K : Set G hK : K ⊆ ⋃ (g : G) (_ : g ∈ s), (fun h => g * h) ⁻¹' V g : G hg : g ∈ K g₀ : G h1g₀ : g₀ ∈ s h2g₀ : g₀ * g ∈ V ⊢ g ∈ ⋃ (g : G) (_ : g ∈ Finset.filter (fun g => Set.Nonempty ((fun h => g * h) ⁻¹' V ∩ K)) s), (fun h => g * h) ⁻¹' V [PROOFSTEP] simp only [mem_iUnion] [GOAL] case hm.intro.intro.intro.intro.intro.intro G : Type u_1 inst✝² : Group G inst✝¹ : TopologicalSpace G inst✝ : TopologicalGroup G K₁ K₂ : Compacts G V : Set G hV : Set.Nonempty (interior V) h : Disjoint (K₁.carrier * V⁻¹) (K₂.carrier * V⁻¹) s : Finset G h1s : K₁.carrier ∪ K₂.carrier ⊆ ⋃ (g : G) (_ : g ∈ s), (fun h => g * h) ⁻¹' V h2s : Finset.card s = index (K₁.carrier ∪ K₂.carrier) V K : Set G hK : K ⊆ ⋃ (g : G) (_ : g ∈ s), (fun h => g * h) ⁻¹' V g : G hg : g ∈ K g₀ : G h1g₀ : g₀ ∈ s h2g₀ : g₀ * g ∈ V ⊢ ∃ i i_1, g ∈ (fun h => i * h) ⁻¹' V [PROOFSTEP] use g₀ [GOAL] case h G : Type u_1 inst✝² : Group G inst✝¹ : TopologicalSpace G inst✝ : TopologicalGroup G K₁ K₂ : Compacts G V : Set G hV : Set.Nonempty (interior V) h : Disjoint (K₁.carrier * V⁻¹) (K₂.carrier * V⁻¹) s : Finset G h1s : K₁.carrier ∪ K₂.carrier ⊆ ⋃ (g : G) (_ : g ∈ s), (fun h => g * h) ⁻¹' V h2s : Finset.card s = index (K₁.carrier ∪ K₂.carrier) V K : Set G hK : K ⊆ ⋃ (g : G) (_ : g ∈ s), (fun h => g * h) ⁻¹' V g : G hg : g ∈ K g₀ : G h1g₀ : g₀ ∈ s h2g₀ : g₀ * g ∈ V ⊢ ∃ i, g ∈ (fun h => g₀ * h) ⁻¹' V [PROOFSTEP] constructor [GOAL] case h.h G : Type u_1 inst✝² : Group G inst✝¹ : TopologicalSpace G inst✝ : TopologicalGroup G K₁ K₂ : Compacts G V : Set G hV : Set.Nonempty (interior V) h : Disjoint (K₁.carrier * V⁻¹) (K₂.carrier * V⁻¹) s : Finset G h1s : K₁.carrier ∪ K₂.carrier ⊆ ⋃ (g : G) (_ : g ∈ s), (fun h => g * h) ⁻¹' V h2s : Finset.card s = index (K₁.carrier ∪ K₂.carrier) V K : Set G hK : K ⊆ ⋃ (g : G) (_ : g ∈ s), (fun h => g * h) ⁻¹' V g : G hg : g ∈ K g₀ : G h1g₀ : g₀ ∈ s h2g₀ : g₀ * g ∈ V ⊢ g ∈ (fun h => g₀ * h) ⁻¹' V case h.w G : Type u_1 inst✝² : Group G inst✝¹ : TopologicalSpace G inst✝ : TopologicalGroup G K₁ K₂ : Compacts G V : Set G hV : Set.Nonempty (interior V) h : Disjoint (K₁.carrier * V⁻¹) (K₂.carrier * V⁻¹) s : Finset G h1s : K₁.carrier ∪ K₂.carrier ⊆ ⋃ (g : G) (_ : g ∈ s), (fun h => g * h) ⁻¹' V h2s : Finset.card s = index (K₁.carrier ∪ K₂.carrier) V K : Set G hK : K ⊆ ⋃ (g : G) (_ : g ∈ s), (fun h => g * h) ⁻¹' V g : G hg : g ∈ K g₀ : G h1g₀ : g₀ ∈ s h2g₀ : g₀ * g ∈ V ⊢ g₀ ∈ Finset.filter (fun g => Set.Nonempty ((fun h => g * h) ⁻¹' V ∩ K)) s [PROOFSTEP] swap [GOAL] case h.w G : Type u_1 inst✝² : Group G inst✝¹ : TopologicalSpace G inst✝ : TopologicalGroup G K₁ K₂ : Compacts G V : Set G hV : Set.Nonempty (interior V) h : Disjoint (K₁.carrier * V⁻¹) (K₂.carrier * V⁻¹) s : Finset G h1s : K₁.carrier ∪ K₂.carrier ⊆ ⋃ (g : G) (_ : g ∈ s), (fun h => g * h) ⁻¹' V h2s : Finset.card s = index (K₁.carrier ∪ K₂.carrier) V K : Set G hK : K ⊆ ⋃ (g : G) (_ : g ∈ s), (fun h => g * h) ⁻¹' V g : G hg : g ∈ K g₀ : G h1g₀ : g₀ ∈ s h2g₀ : g₀ * g ∈ V ⊢ g₀ ∈ Finset.filter (fun g => Set.Nonempty ((fun h => g * h) ⁻¹' V ∩ K)) s [PROOFSTEP] simp only [Finset.mem_filter, h1g₀, true_and_iff] [GOAL] case h.w G : Type u_1 inst✝² : Group G inst✝¹ : TopologicalSpace G inst✝ : TopologicalGroup G K₁ K₂ : Compacts G V : Set G hV : Set.Nonempty (interior V) h : Disjoint (K₁.carrier * V⁻¹) (K₂.carrier * V⁻¹) s : Finset G h1s : K₁.carrier ∪ K₂.carrier ⊆ ⋃ (g : G) (_ : g ∈ s), (fun h => g * h) ⁻¹' V h2s : Finset.card s = index (K₁.carrier ∪ K₂.carrier) V K : Set G hK : K ⊆ ⋃ (g : G) (_ : g ∈ s), (fun h => g * h) ⁻¹' V g : G hg : g ∈ K g₀ : G h1g₀ : g₀ ∈ s h2g₀ : g₀ * g ∈ V ⊢ Set.Nonempty ((fun h => g₀ * h) ⁻¹' V ∩ K) [PROOFSTEP] use g [GOAL] case h G : Type u_1 inst✝² : Group G inst✝¹ : TopologicalSpace G inst✝ : TopologicalGroup G K₁ K₂ : Compacts G V : Set G hV : Set.Nonempty (interior V) h : Disjoint (K₁.carrier * V⁻¹) (K₂.carrier * V⁻¹) s : Finset G h1s : K₁.carrier ∪ K₂.carrier ⊆ ⋃ (g : G) (_ : g ∈ s), (fun h => g * h) ⁻¹' V h2s : Finset.card s = index (K₁.carrier ∪ K₂.carrier) V K : Set G hK : K ⊆ ⋃ (g : G) (_ : g ∈ s), (fun h => g * h) ⁻¹' V g : G hg : g ∈ K g₀ : G h1g₀ : g₀ ∈ s h2g₀ : g₀ * g ∈ V ⊢ g ∈ (fun h => g₀ * h) ⁻¹' V ∩ K [PROOFSTEP] simp only [hg, h2g₀, mem_inter_iff, mem_preimage, and_self_iff] [GOAL] case h.h G : Type u_1 inst✝² : Group G inst✝¹ : TopologicalSpace G inst✝ : TopologicalGroup G K₁ K₂ : Compacts G V : Set G hV : Set.Nonempty (interior V) h : Disjoint (K₁.carrier * V⁻¹) (K₂.carrier * V⁻¹) s : Finset G h1s : K₁.carrier ∪ K₂.carrier ⊆ ⋃ (g : G) (_ : g ∈ s), (fun h => g * h) ⁻¹' V h2s : Finset.card s = index (K₁.carrier ∪ K₂.carrier) V K : Set G hK : K ⊆ ⋃ (g : G) (_ : g ∈ s), (fun h => g * h) ⁻¹' V g : G hg : g ∈ K g₀ : G h1g₀ : g₀ ∈ s h2g₀ : g₀ * g ∈ V ⊢ g ∈ (fun h => g₀ * h) ⁻¹' V [PROOFSTEP] exact h2g₀ [GOAL] case intro.intro G : Type u_1 inst✝² : Group G inst✝¹ : TopologicalSpace G inst✝ : TopologicalGroup G K₁ K₂ : Compacts G V : Set G hV : Set.Nonempty (interior V) h : Disjoint (K₁.carrier * V⁻¹) (K₂.carrier * V⁻¹) s : Finset G h1s : K₁.carrier ∪ K₂.carrier ⊆ ⋃ (g : G) (_ : g ∈ s), (fun h => g * h) ⁻¹' V h2s : Finset.card s = index (K₁.carrier ∪ K₂.carrier) V this : ∀ (K : Set G), K ⊆ ⋃ (g : G) (_ : g ∈ s), (fun h => g * h) ⁻¹' V → index K V ≤ Finset.card (Finset.filter (fun g => Set.Nonempty ((fun h => g * h) ⁻¹' V ∩ K)) s) ⊢ index K₁.carrier V + index K₂.carrier V ≤ Finset.card s [PROOFSTEP] refine' le_trans (add_le_add (this K₁.1 <| Subset.trans (subset_union_left _ _) h1s) (this K₂.1 <| Subset.trans (subset_union_right _ _) h1s)) _ [GOAL] case intro.intro G : Type u_1 inst✝² : Group G inst✝¹ : TopologicalSpace G inst✝ : TopologicalGroup G K₁ K₂ : Compacts G V : Set G hV : Set.Nonempty (interior V) h : Disjoint (K₁.carrier * V⁻¹) (K₂.carrier * V⁻¹) s : Finset G h1s : K₁.carrier ∪ K₂.carrier ⊆ ⋃ (g : G) (_ : g ∈ s), (fun h => g * h) ⁻¹' V h2s : Finset.card s = index (K₁.carrier ∪ K₂.carrier) V this : ∀ (K : Set G), K ⊆ ⋃ (g : G) (_ : g ∈ s), (fun h => g * h) ⁻¹' V → index K V ≤ Finset.card (Finset.filter (fun g => Set.Nonempty ((fun h => g * h) ⁻¹' V ∩ K)) s) ⊢ Finset.card (Finset.filter (fun g => Set.Nonempty ((fun h => g * h) ⁻¹' V ∩ K₁.carrier)) s) + Finset.card (Finset.filter (fun g => Set.Nonempty ((fun h => g * h) ⁻¹' V ∩ K₂.carrier)) s) ≤ Finset.card s [PROOFSTEP] rw [← Finset.card_union_eq, Finset.filter_union_right] [GOAL] case intro.intro G : Type u_1 inst✝² : Group G inst✝¹ : TopologicalSpace G inst✝ : TopologicalGroup G K₁ K₂ : Compacts G V : Set G hV : Set.Nonempty (interior V) h : Disjoint (K₁.carrier * V⁻¹) (K₂.carrier * V⁻¹) s : Finset G h1s : K₁.carrier ∪ K₂.carrier ⊆ ⋃ (g : G) (_ : g ∈ s), (fun h => g * h) ⁻¹' V h2s : Finset.card s = index (K₁.carrier ∪ K₂.carrier) V this : ∀ (K : Set G), K ⊆ ⋃ (g : G) (_ : g ∈ s), (fun h => g * h) ⁻¹' V → index K V ≤ Finset.card (Finset.filter (fun g => Set.Nonempty ((fun h => g * h) ⁻¹' V ∩ K)) s) ⊢ Finset.card (Finset.filter (fun x => Set.Nonempty ((fun h => x * h) ⁻¹' V ∩ K₁.carrier) ∨ Set.Nonempty ((fun h => x * h) ⁻¹' V ∩ K₂.carrier)) s) ≤ Finset.card s case intro.intro G : Type u_1 inst✝² : Group G inst✝¹ : TopologicalSpace G inst✝ : TopologicalGroup G K₁ K₂ : Compacts G V : Set G hV : Set.Nonempty (interior V) h : Disjoint (K₁.carrier * V⁻¹) (K₂.carrier * V⁻¹) s : Finset G h1s : K₁.carrier ∪ K₂.carrier ⊆ ⋃ (g : G) (_ : g ∈ s), (fun h => g * h) ⁻¹' V h2s : Finset.card s = index (K₁.carrier ∪ K₂.carrier) V this : ∀ (K : Set G), K ⊆ ⋃ (g : G) (_ : g ∈ s), (fun h => g * h) ⁻¹' V → index K V ≤ Finset.card (Finset.filter (fun g => Set.Nonempty ((fun h => g * h) ⁻¹' V ∩ K)) s) ⊢ Disjoint (Finset.filter (fun g => Set.Nonempty ((fun h => g * h) ⁻¹' V ∩ K₁.carrier)) s) (Finset.filter (fun g => Set.Nonempty ((fun h => g * h) ⁻¹' V ∩ K₂.carrier)) s) [PROOFSTEP] exact s.card_filter_le _ [GOAL] case intro.intro G : Type u_1 inst✝² : Group G inst✝¹ : TopologicalSpace G inst✝ : TopologicalGroup G K₁ K₂ : Compacts G V : Set G hV : Set.Nonempty (interior V) h : Disjoint (K₁.carrier * V⁻¹) (K₂.carrier * V⁻¹) s : Finset G h1s : K₁.carrier ∪ K₂.carrier ⊆ ⋃ (g : G) (_ : g ∈ s), (fun h => g * h) ⁻¹' V h2s : Finset.card s = index (K₁.carrier ∪ K₂.carrier) V this : ∀ (K : Set G), K ⊆ ⋃ (g : G) (_ : g ∈ s), (fun h => g * h) ⁻¹' V → index K V ≤ Finset.card (Finset.filter (fun g => Set.Nonempty ((fun h => g * h) ⁻¹' V ∩ K)) s) ⊢ Disjoint (Finset.filter (fun g => Set.Nonempty ((fun h => g * h) ⁻¹' V ∩ K₁.carrier)) s) (Finset.filter (fun g => Set.Nonempty ((fun h => g * h) ⁻¹' V ∩ K₂.carrier)) s) [PROOFSTEP] apply Finset.disjoint_filter.mpr [GOAL] case intro.intro G : Type u_1 inst✝² : Group G inst✝¹ : TopologicalSpace G inst✝ : TopologicalGroup G K₁ K₂ : Compacts G V : Set G hV : Set.Nonempty (interior V) h : Disjoint (K₁.carrier * V⁻¹) (K₂.carrier * V⁻¹) s : Finset G h1s : K₁.carrier ∪ K₂.carrier ⊆ ⋃ (g : G) (_ : g ∈ s), (fun h => g * h) ⁻¹' V h2s : Finset.card s = index (K₁.carrier ∪ K₂.carrier) V this : ∀ (K : Set G), K ⊆ ⋃ (g : G) (_ : g ∈ s), (fun h => g * h) ⁻¹' V → index K V ≤ Finset.card (Finset.filter (fun g => Set.Nonempty ((fun h => g * h) ⁻¹' V ∩ K)) s) ⊢ ∀ (x : G), x ∈ s → Set.Nonempty ((fun h => x * h) ⁻¹' V ∩ K₁.carrier) → ¬Set.Nonempty ((fun h => x * h) ⁻¹' V ∩ K₂.carrier) [PROOFSTEP] rintro g₁ _ ⟨g₂, h1g₂, h2g₂⟩ ⟨g₃, h1g₃, h2g₃⟩ [GOAL] case intro.intro.intro.intro.intro.intro G : Type u_1 inst✝² : Group G inst✝¹ : TopologicalSpace G inst✝ : TopologicalGroup G K₁ K₂ : Compacts G V : Set G hV : Set.Nonempty (interior V) h : Disjoint (K₁.carrier * V⁻¹) (K₂.carrier * V⁻¹) s : Finset G h1s : K₁.carrier ∪ K₂.carrier ⊆ ⋃ (g : G) (_ : g ∈ s), (fun h => g * h) ⁻¹' V h2s : Finset.card s = index (K₁.carrier ∪ K₂.carrier) V this : ∀ (K : Set G), K ⊆ ⋃ (g : G) (_ : g ∈ s), (fun h => g * h) ⁻¹' V → index K V ≤ Finset.card (Finset.filter (fun g => Set.Nonempty ((fun h => g * h) ⁻¹' V ∩ K)) s) g₁ : G a✝ : g₁ ∈ s g₂ : G h1g₂ : g₂ ∈ (fun h => g₁ * h) ⁻¹' V h2g₂ : g₂ ∈ K₁.carrier g₃ : G h1g₃ : g₃ ∈ (fun h => g₁ * h) ⁻¹' V h2g₃ : g₃ ∈ K₂.carrier ⊢ False [PROOFSTEP] simp only [mem_preimage] at h1g₃ h1g₂ [GOAL] case intro.intro.intro.intro.intro.intro G : Type u_1 inst✝² : Group G inst✝¹ : TopologicalSpace G inst✝ : TopologicalGroup G K₁ K₂ : Compacts G V : Set G hV : Set.Nonempty (interior V) h : Disjoint (K₁.carrier * V⁻¹) (K₂.carrier * V⁻¹) s : Finset G h1s : K₁.carrier ∪ K₂.carrier ⊆ ⋃ (g : G) (_ : g ∈ s), (fun h => g * h) ⁻¹' V h2s : Finset.card s = index (K₁.carrier ∪ K₂.carrier) V this : ∀ (K : Set G), K ⊆ ⋃ (g : G) (_ : g ∈ s), (fun h => g * h) ⁻¹' V → index K V ≤ Finset.card (Finset.filter (fun g => Set.Nonempty ((fun h => g * h) ⁻¹' V ∩ K)) s) g₁ : G a✝ : g₁ ∈ s g₂ : G h2g₂ : g₂ ∈ K₁.carrier g₃ : G h2g₃ : g₃ ∈ K₂.carrier h1g₃ : g₁ * g₃ ∈ V h1g₂ : g₁ * g₂ ∈ V ⊢ False [PROOFSTEP] refine' h.le_bot (_ : g₁⁻¹ ∈ _) [GOAL] case intro.intro.intro.intro.intro.intro G : Type u_1 inst✝² : Group G inst✝¹ : TopologicalSpace G inst✝ : TopologicalGroup G K₁ K₂ : Compacts G V : Set G hV : Set.Nonempty (interior V) h : Disjoint (K₁.carrier * V⁻¹) (K₂.carrier * V⁻¹) s : Finset G h1s : K₁.carrier ∪ K₂.carrier ⊆ ⋃ (g : G) (_ : g ∈ s), (fun h => g * h) ⁻¹' V h2s : Finset.card s = index (K₁.carrier ∪ K₂.carrier) V this : ∀ (K : Set G), K ⊆ ⋃ (g : G) (_ : g ∈ s), (fun h => g * h) ⁻¹' V → index K V ≤ Finset.card (Finset.filter (fun g => Set.Nonempty ((fun h => g * h) ⁻¹' V ∩ K)) s) g₁ : G a✝ : g₁ ∈ s g₂ : G h2g₂ : g₂ ∈ K₁.carrier g₃ : G h2g₃ : g₃ ∈ K₂.carrier h1g₃ : g₁ * g₃ ∈ V h1g₂ : g₁ * g₂ ∈ V ⊢ g₁⁻¹ ∈ K₁.carrier * V⁻¹ ⊓ K₂.carrier * V⁻¹ [PROOFSTEP] constructor [GOAL] case intro.intro.intro.intro.intro.intro.left G : Type u_1 inst✝² : Group G inst✝¹ : TopologicalSpace G inst✝ : TopologicalGroup G K₁ K₂ : Compacts G V : Set G hV : Set.Nonempty (interior V) h : Disjoint (K₁.carrier * V⁻¹) (K₂.carrier * V⁻¹) s : Finset G h1s : K₁.carrier ∪ K₂.carrier ⊆ ⋃ (g : G) (_ : g ∈ s), (fun h => g * h) ⁻¹' V h2s : Finset.card s = index (K₁.carrier ∪ K₂.carrier) V this : ∀ (K : Set G), K ⊆ ⋃ (g : G) (_ : g ∈ s), (fun h => g * h) ⁻¹' V → index K V ≤ Finset.card (Finset.filter (fun g => Set.Nonempty ((fun h => g * h) ⁻¹' V ∩ K)) s) g₁ : G a✝ : g₁ ∈ s g₂ : G h2g₂ : g₂ ∈ K₁.carrier g₃ : G h2g₃ : g₃ ∈ K₂.carrier h1g₃ : g₁ * g₃ ∈ V h1g₂ : g₁ * g₂ ∈ V ⊢ g₁⁻¹ ∈ K₁.carrier * V⁻¹ [PROOFSTEP] simp only [Set.mem_inv, Set.mem_mul, exists_exists_and_eq_and, exists_and_left] [GOAL] case intro.intro.intro.intro.intro.intro.right G : Type u_1 inst✝² : Group G inst✝¹ : TopologicalSpace G inst✝ : TopologicalGroup G K₁ K₂ : Compacts G V : Set G hV : Set.Nonempty (interior V) h : Disjoint (K₁.carrier * V⁻¹) (K₂.carrier * V⁻¹) s : Finset G h1s : K₁.carrier ∪ K₂.carrier ⊆ ⋃ (g : G) (_ : g ∈ s), (fun h => g * h) ⁻¹' V h2s : Finset.card s = index (K₁.carrier ∪ K₂.carrier) V this : ∀ (K : Set G), K ⊆ ⋃ (g : G) (_ : g ∈ s), (fun h => g * h) ⁻¹' V → index K V ≤ Finset.card (Finset.filter (fun g => Set.Nonempty ((fun h => g * h) ⁻¹' V ∩ K)) s) g₁ : G a✝ : g₁ ∈ s g₂ : G h2g₂ : g₂ ∈ K₁.carrier g₃ : G h2g₃ : g₃ ∈ K₂.carrier h1g₃ : g₁ * g₃ ∈ V h1g₂ : g₁ * g₂ ∈ V ⊢ g₁⁻¹ ∈ K₂.carrier * V⁻¹ [PROOFSTEP] simp only [Set.mem_inv, Set.mem_mul, exists_exists_and_eq_and, exists_and_left] [GOAL] case intro.intro.intro.intro.intro.intro.left G : Type u_1 inst✝² : Group G inst✝¹ : TopologicalSpace G inst✝ : TopologicalGroup G K₁ K₂ : Compacts G V : Set G hV : Set.Nonempty (interior V) h : Disjoint (K₁.carrier * V⁻¹) (K₂.carrier * V⁻¹) s : Finset G h1s : K₁.carrier ∪ K₂.carrier ⊆ ⋃ (g : G) (_ : g ∈ s), (fun h => g * h) ⁻¹' V h2s : Finset.card s = index (K₁.carrier ∪ K₂.carrier) V this : ∀ (K : Set G), K ⊆ ⋃ (g : G) (_ : g ∈ s), (fun h => g * h) ⁻¹' V → index K V ≤ Finset.card (Finset.filter (fun g => Set.Nonempty ((fun h => g * h) ⁻¹' V ∩ K)) s) g₁ : G a✝ : g₁ ∈ s g₂ : G h2g₂ : g₂ ∈ K₁.carrier g₃ : G h2g₃ : g₃ ∈ K₂.carrier h1g₃ : g₁ * g₃ ∈ V h1g₂ : g₁ * g₂ ∈ V ⊢ ∃ x, x ∈ K₁.carrier ∧ ∃ x_1, x_1⁻¹ ∈ V ∧ x * x_1 = g₁⁻¹ [PROOFSTEP] refine' ⟨_, h2g₂, (g₁ * g₂)⁻¹, _, _⟩ [GOAL] case intro.intro.intro.intro.intro.intro.left.refine'_1 G : Type u_1 inst✝² : Group G inst✝¹ : TopologicalSpace G inst✝ : TopologicalGroup G K₁ K₂ : Compacts G V : Set G hV : Set.Nonempty (interior V) h : Disjoint (K₁.carrier * V⁻¹) (K₂.carrier * V⁻¹) s : Finset G h1s : K₁.carrier ∪ K₂.carrier ⊆ ⋃ (g : G) (_ : g ∈ s), (fun h => g * h) ⁻¹' V h2s : Finset.card s = index (K₁.carrier ∪ K₂.carrier) V this : ∀ (K : Set G), K ⊆ ⋃ (g : G) (_ : g ∈ s), (fun h => g * h) ⁻¹' V → index K V ≤ Finset.card (Finset.filter (fun g => Set.Nonempty ((fun h => g * h) ⁻¹' V ∩ K)) s) g₁ : G a✝ : g₁ ∈ s g₂ : G h2g₂ : g₂ ∈ K₁.carrier g₃ : G h2g₃ : g₃ ∈ K₂.carrier h1g₃ : g₁ * g₃ ∈ V h1g₂ : g₁ * g₂ ∈ V ⊢ (g₁ * g₂)⁻¹⁻¹ ∈ V case intro.intro.intro.intro.intro.intro.left.refine'_2 G : Type u_1 inst✝² : Group G inst✝¹ : TopologicalSpace G inst✝ : TopologicalGroup G K₁ K₂ : Compacts G V : Set G hV : Set.Nonempty (interior V) h : Disjoint (K₁.carrier * V⁻¹) (K₂.carrier * V⁻¹) s : Finset G h1s : K₁.carrier ∪ K₂.carrier ⊆ ⋃ (g : G) (_ : g ∈ s), (fun h => g * h) ⁻¹' V h2s : Finset.card s = index (K₁.carrier ∪ K₂.carrier) V this : ∀ (K : Set G), K ⊆ ⋃ (g : G) (_ : g ∈ s), (fun h => g * h) ⁻¹' V → index K V ≤ Finset.card (Finset.filter (fun g => Set.Nonempty ((fun h => g * h) ⁻¹' V ∩ K)) s) g₁ : G a✝ : g₁ ∈ s g₂ : G h2g₂ : g₂ ∈ K₁.carrier g₃ : G h2g₃ : g₃ ∈ K₂.carrier h1g₃ : g₁ * g₃ ∈ V h1g₂ : g₁ * g₂ ∈ V ⊢ g₂ * (g₁ * g₂)⁻¹ = g₁⁻¹ [PROOFSTEP] simp only [inv_inv, h1g₂] [GOAL] case intro.intro.intro.intro.intro.intro.left.refine'_2 G : Type u_1 inst✝² : Group G inst✝¹ : TopologicalSpace G inst✝ : TopologicalGroup G K₁ K₂ : Compacts G V : Set G hV : Set.Nonempty (interior V) h : Disjoint (K₁.carrier * V⁻¹) (K₂.carrier * V⁻¹) s : Finset G h1s : K₁.carrier ∪ K₂.carrier ⊆ ⋃ (g : G) (_ : g ∈ s), (fun h => g * h) ⁻¹' V h2s : Finset.card s = index (K₁.carrier ∪ K₂.carrier) V this : ∀ (K : Set G), K ⊆ ⋃ (g : G) (_ : g ∈ s), (fun h => g * h) ⁻¹' V → index K V ≤ Finset.card (Finset.filter (fun g => Set.Nonempty ((fun h => g * h) ⁻¹' V ∩ K)) s) g₁ : G a✝ : g₁ ∈ s g₂ : G h2g₂ : g₂ ∈ K₁.carrier g₃ : G h2g₃ : g₃ ∈ K₂.carrier h1g₃ : g₁ * g₃ ∈ V h1g₂ : g₁ * g₂ ∈ V ⊢ g₂ * (g₁ * g₂)⁻¹ = g₁⁻¹ [PROOFSTEP] simp only [mul_inv_rev, mul_inv_cancel_left] [GOAL] case intro.intro.intro.intro.intro.intro.right G : Type u_1 inst✝² : Group G inst✝¹ : TopologicalSpace G inst✝ : TopologicalGroup G K₁ K₂ : Compacts G V : Set G hV : Set.Nonempty (interior V) h : Disjoint (K₁.carrier * V⁻¹) (K₂.carrier * V⁻¹) s : Finset G h1s : K₁.carrier ∪ K₂.carrier ⊆ ⋃ (g : G) (_ : g ∈ s), (fun h => g * h) ⁻¹' V h2s : Finset.card s = index (K₁.carrier ∪ K₂.carrier) V this : ∀ (K : Set G), K ⊆ ⋃ (g : G) (_ : g ∈ s), (fun h => g * h) ⁻¹' V → index K V ≤ Finset.card (Finset.filter (fun g => Set.Nonempty ((fun h => g * h) ⁻¹' V ∩ K)) s) g₁ : G a✝ : g₁ ∈ s g₂ : G h2g₂ : g₂ ∈ K₁.carrier g₃ : G h2g₃ : g₃ ∈ K₂.carrier h1g₃ : g₁ * g₃ ∈ V h1g₂ : g₁ * g₂ ∈ V ⊢ ∃ x, x ∈ K₂.carrier ∧ ∃ x_1, x_1⁻¹ ∈ V ∧ x * x_1 = g₁⁻¹ [PROOFSTEP] refine' ⟨_, h2g₃, (g₁ * g₃)⁻¹, _, _⟩ [GOAL] case intro.intro.intro.intro.intro.intro.right.refine'_1 G : Type u_1 inst✝² : Group G inst✝¹ : TopologicalSpace G inst✝ : TopologicalGroup G K₁ K₂ : Compacts G V : Set G hV : Set.Nonempty (interior V) h : Disjoint (K₁.carrier * V⁻¹) (K₂.carrier * V⁻¹) s : Finset G h1s : K₁.carrier ∪ K₂.carrier ⊆ ⋃ (g : G) (_ : g ∈ s), (fun h => g * h) ⁻¹' V h2s : Finset.card s = index (K₁.carrier ∪ K₂.carrier) V this : ∀ (K : Set G), K ⊆ ⋃ (g : G) (_ : g ∈ s), (fun h => g * h) ⁻¹' V → index K V ≤ Finset.card (Finset.filter (fun g => Set.Nonempty ((fun h => g * h) ⁻¹' V ∩ K)) s) g₁ : G a✝ : g₁ ∈ s g₂ : G h2g₂ : g₂ ∈ K₁.carrier g₃ : G h2g₃ : g₃ ∈ K₂.carrier h1g₃ : g₁ * g₃ ∈ V h1g₂ : g₁ * g₂ ∈ V ⊢ (g₁ * g₃)⁻¹⁻¹ ∈ V case intro.intro.intro.intro.intro.intro.right.refine'_2 G : Type u_1 inst✝² : Group G inst✝¹ : TopologicalSpace G inst✝ : TopologicalGroup G K₁ K₂ : Compacts G V : Set G hV : Set.Nonempty (interior V) h : Disjoint (K₁.carrier * V⁻¹) (K₂.carrier * V⁻¹) s : Finset G h1s : K₁.carrier ∪ K₂.carrier ⊆ ⋃ (g : G) (_ : g ∈ s), (fun h => g * h) ⁻¹' V h2s : Finset.card s = index (K₁.carrier ∪ K₂.carrier) V this : ∀ (K : Set G), K ⊆ ⋃ (g : G) (_ : g ∈ s), (fun h => g * h) ⁻¹' V → index K V ≤ Finset.card (Finset.filter (fun g => Set.Nonempty ((fun h => g * h) ⁻¹' V ∩ K)) s) g₁ : G a✝ : g₁ ∈ s g₂ : G h2g₂ : g₂ ∈ K₁.carrier g₃ : G h2g₃ : g₃ ∈ K₂.carrier h1g₃ : g₁ * g₃ ∈ V h1g₂ : g₁ * g₂ ∈ V ⊢ g₃ * (g₁ * g₃)⁻¹ = g₁⁻¹ [PROOFSTEP] simp only [inv_inv, h1g₃] [GOAL] case intro.intro.intro.intro.intro.intro.right.refine'_2 G : Type u_1 inst✝² : Group G inst✝¹ : TopologicalSpace G inst✝ : TopologicalGroup G K₁ K₂ : Compacts G V : Set G hV : Set.Nonempty (interior V) h : Disjoint (K₁.carrier * V⁻¹) (K₂.carrier * V⁻¹) s : Finset G h1s : K₁.carrier ∪ K₂.carrier ⊆ ⋃ (g : G) (_ : g ∈ s), (fun h => g * h) ⁻¹' V h2s : Finset.card s = index (K₁.carrier ∪ K₂.carrier) V this : ∀ (K : Set G), K ⊆ ⋃ (g : G) (_ : g ∈ s), (fun h => g * h) ⁻¹' V → index K V ≤ Finset.card (Finset.filter (fun g => Set.Nonempty ((fun h => g * h) ⁻¹' V ∩ K)) s) g₁ : G a✝ : g₁ ∈ s g₂ : G h2g₂ : g₂ ∈ K₁.carrier g₃ : G h2g₃ : g₃ ∈ K₂.carrier h1g₃ : g₁ * g₃ ∈ V h1g₂ : g₁ * g₂ ∈ V ⊢ g₃ * (g₁ * g₃)⁻¹ = g₁⁻¹ [PROOFSTEP] simp only [mul_inv_rev, mul_inv_cancel_left] [GOAL] G : Type u_1 inst✝² : Group G inst✝¹ : TopologicalSpace G inst✝ : TopologicalGroup G K : Set G hK : IsCompact K V : Set G hV : Set.Nonempty (interior V) g : G ⊢ index ((fun h => g * h) '' K) V ≤ index K V [PROOFSTEP] rcases index_elim hK hV with ⟨s, h1s, h2s⟩ [GOAL] case intro.intro G : Type u_1 inst✝² : Group G inst✝¹ : TopologicalSpace G inst✝ : TopologicalGroup G K : Set G hK : IsCompact K V : Set G hV : Set.Nonempty (interior V) g : G s : Finset G h1s : K ⊆ ⋃ (g : G) (_ : g ∈ s), (fun h => g * h) ⁻¹' V h2s : Finset.card s = index K V ⊢ index ((fun h => g * h) '' K) V ≤ index K V [PROOFSTEP] rw [← h2s] [GOAL] case intro.intro G : Type u_1 inst✝² : Group G inst✝¹ : TopologicalSpace G inst✝ : TopologicalGroup G K : Set G hK : IsCompact K V : Set G hV : Set.Nonempty (interior V) g : G s : Finset G h1s : K ⊆ ⋃ (g : G) (_ : g ∈ s), (fun h => g * h) ⁻¹' V h2s : Finset.card s = index K V ⊢ index ((fun h => g * h) '' K) V ≤ Finset.card s [PROOFSTEP] apply Nat.sInf_le [GOAL] case intro.intro.hm G : Type u_1 inst✝² : Group G inst✝¹ : TopologicalSpace G inst✝ : TopologicalGroup G K : Set G hK : IsCompact K V : Set G hV : Set.Nonempty (interior V) g : G s : Finset G h1s : K ⊆ ⋃ (g : G) (_ : g ∈ s), (fun h => g * h) ⁻¹' V h2s : Finset.card s = index K V ⊢ Finset.card s ∈ Finset.card '' {t | (fun h => g * h) '' K ⊆ ⋃ (g : G) (_ : g ∈ t), (fun h => g * h) ⁻¹' V} [PROOFSTEP] rw [mem_image] [GOAL] case intro.intro.hm G : Type u_1 inst✝² : Group G inst✝¹ : TopologicalSpace G inst✝ : TopologicalGroup G K : Set G hK : IsCompact K V : Set G hV : Set.Nonempty (interior V) g : G s : Finset G h1s : K ⊆ ⋃ (g : G) (_ : g ∈ s), (fun h => g * h) ⁻¹' V h2s : Finset.card s = index K V ⊢ ∃ x, x ∈ {t | (fun h => g * h) '' K ⊆ ⋃ (g : G) (_ : g ∈ t), (fun h => g * h) ⁻¹' V} ∧ Finset.card x = Finset.card s [PROOFSTEP] refine' ⟨s.map (Equiv.mulRight g⁻¹).toEmbedding, _, Finset.card_map _⟩ [GOAL] case intro.intro.hm G : Type u_1 inst✝² : Group G inst✝¹ : TopologicalSpace G inst✝ : TopologicalGroup G K : Set G hK : IsCompact K V : Set G hV : Set.Nonempty (interior V) g : G s : Finset G h1s : K ⊆ ⋃ (g : G) (_ : g ∈ s), (fun h => g * h) ⁻¹' V h2s : Finset.card s = index K V ⊢ Finset.map (Equiv.toEmbedding (Equiv.mulRight g⁻¹)) s ∈ {t | (fun h => g * h) '' K ⊆ ⋃ (g : G) (_ : g ∈ t), (fun h => g * h) ⁻¹' V} [PROOFSTEP] simp only [mem_setOf_eq] [GOAL] case intro.intro.hm G : Type u_1 inst✝² : Group G inst✝¹ : TopologicalSpace G inst✝ : TopologicalGroup G K : Set G hK : IsCompact K V : Set G hV : Set.Nonempty (interior V) g : G s : Finset G h1s : K ⊆ ⋃ (g : G) (_ : g ∈ s), (fun h => g * h) ⁻¹' V h2s : Finset.card s = index K V ⊢ (fun h => g * h) '' K ⊆ ⋃ (g_1 : G) (_ : g_1 ∈ Finset.map (Equiv.toEmbedding (Equiv.mulRight g⁻¹)) s), (fun h => g_1 * h) ⁻¹' V [PROOFSTEP] refine' Subset.trans (image_subset _ h1s) _ [GOAL] case intro.intro.hm G : Type u_1 inst✝² : Group G inst✝¹ : TopologicalSpace G inst✝ : TopologicalGroup G K : Set G hK : IsCompact K V : Set G hV : Set.Nonempty (interior V) g : G s : Finset G h1s : K ⊆ ⋃ (g : G) (_ : g ∈ s), (fun h => g * h) ⁻¹' V h2s : Finset.card s = index K V ⊢ (fun h => g * h) '' ⋃ (g : G) (_ : g ∈ s), (fun h => g * h) ⁻¹' V ⊆ ⋃ (g_1 : G) (_ : g_1 ∈ Finset.map (Equiv.toEmbedding (Equiv.mulRight g⁻¹)) s), (fun h => g_1 * h) ⁻¹' V [PROOFSTEP] rintro _ ⟨g₁, ⟨_, ⟨g₂, rfl⟩, ⟨_, ⟨hg₂, rfl⟩, hg₁⟩⟩, rfl⟩ [GOAL] case intro.intro.hm.intro.intro.intro.intro.intro.intro.intro.intro G : Type u_1 inst✝² : Group G inst✝¹ : TopologicalSpace G inst✝ : TopologicalGroup G K : Set G hK : IsCompact K V : Set G hV : Set.Nonempty (interior V) g : G s : Finset G h1s : K ⊆ ⋃ (g : G) (_ : g ∈ s), (fun h => g * h) ⁻¹' V h2s : Finset.card s = index K V g₁ g₂ : G hg₂ : g₂ ∈ s hg₁ : g₁ ∈ (fun h => (fun h => g₂ * h) ⁻¹' V) hg₂ ⊢ (fun h => g * h) g₁ ∈ ⋃ (g_1 : G) (_ : g_1 ∈ Finset.map (Equiv.toEmbedding (Equiv.mulRight g⁻¹)) s), (fun h => g_1 * h) ⁻¹' V [PROOFSTEP] simp only [mem_preimage] at hg₁ [GOAL] case intro.intro.hm.intro.intro.intro.intro.intro.intro.intro.intro G : Type u_1 inst✝² : Group G inst✝¹ : TopologicalSpace G inst✝ : TopologicalGroup G K : Set G hK : IsCompact K V : Set G hV : Set.Nonempty (interior V) g : G s : Finset G h1s : K ⊆ ⋃ (g : G) (_ : g ∈ s), (fun h => g * h) ⁻¹' V h2s : Finset.card s = index K V g₁ g₂ : G hg₂ : g₂ ∈ s hg₁ : g₂ * g₁ ∈ V ⊢ (fun h => g * h) g₁ ∈ ⋃ (g_1 : G) (_ : g_1 ∈ Finset.map (Equiv.toEmbedding (Equiv.mulRight g⁻¹)) s), (fun h => g_1 * h) ⁻¹' V [PROOFSTEP] simp only [exists_prop, mem_iUnion, Finset.mem_map, Equiv.coe_mulRight, exists_exists_and_eq_and, mem_preimage, Equiv.toEmbedding_apply] [GOAL] case intro.intro.hm.intro.intro.intro.intro.intro.intro.intro.intro G : Type u_1 inst✝² : Group G inst✝¹ : TopologicalSpace G inst✝ : TopologicalGroup G K : Set G hK : IsCompact K V : Set G hV : Set.Nonempty (interior V) g : G s : Finset G h1s : K ⊆ ⋃ (g : G) (_ : g ∈ s), (fun h => g * h) ⁻¹' V h2s : Finset.card s = index K V g₁ g₂ : G hg₂ : g₂ ∈ s hg₁ : g₂ * g₁ ∈ V ⊢ ∃ a, a ∈ s ∧ a * g⁻¹ * (g * g₁) ∈ V [PROOFSTEP] refine' ⟨_, hg₂, _⟩ [GOAL] case intro.intro.hm.intro.intro.intro.intro.intro.intro.intro.intro G : Type u_1 inst✝² : Group G inst✝¹ : TopologicalSpace G inst✝ : TopologicalGroup G K : Set G hK : IsCompact K V : Set G hV : Set.Nonempty (interior V) g : G s : Finset G h1s : K ⊆ ⋃ (g : G) (_ : g ∈ s), (fun h => g * h) ⁻¹' V h2s : Finset.card s = index K V g₁ g₂ : G hg₂ : g₂ ∈ s hg₁ : g₂ * g₁ ∈ V ⊢ g₂ * g⁻¹ * (g * g₁) ∈ V [PROOFSTEP] simp only [mul_assoc, hg₁, inv_mul_cancel_left] [GOAL] G : Type u_1 inst✝² : Group G inst✝¹ : TopologicalSpace G inst✝ : TopologicalGroup G K : Set G hK : IsCompact K g : G V : Set G hV : Set.Nonempty (interior V) ⊢ index ((fun h => g * h) '' K) V = index K V [PROOFSTEP] refine' le_antisymm (mul_left_index_le hK hV g) _ [GOAL] G : Type u_1 inst✝² : Group G inst✝¹ : TopologicalSpace G inst✝ : TopologicalGroup G K : Set G hK : IsCompact K g : G V : Set G hV : Set.Nonempty (interior V) ⊢ index K V ≤ index ((fun h => g * h) '' K) V [PROOFSTEP] convert mul_left_index_le (hK.image <| continuous_mul_left g) hV g⁻¹ [GOAL] case h.e'_3.h.e'_3 G : Type u_1 inst✝² : Group G inst✝¹ : TopologicalSpace G inst✝ : TopologicalGroup G K : Set G hK : IsCompact K g : G V : Set G hV : Set.Nonempty (interior V) ⊢ K = (fun h => g⁻¹ * h) '' ((fun b => g * b) '' K) [PROOFSTEP] rw [image_image] [GOAL] case h.e'_3.h.e'_3 G : Type u_1 inst✝² : Group G inst✝¹ : TopologicalSpace G inst✝ : TopologicalGroup G K : Set G hK : IsCompact K g : G V : Set G hV : Set.Nonempty (interior V) ⊢ K = (fun x => g⁻¹ * (g * x)) '' K [PROOFSTEP] symm [GOAL] case h.e'_3.h.e'_3 G : Type u_1 inst✝² : Group G inst✝¹ : TopologicalSpace G inst✝ : TopologicalGroup G K : Set G hK : IsCompact K g : G V : Set G hV : Set.Nonempty (interior V) ⊢ (fun x => g⁻¹ * (g * x)) '' K = K [PROOFSTEP] convert image_id' _ with h [GOAL] case h.e'_2.h.e'_3.h G : Type u_1 inst✝² : Group G inst✝¹ : TopologicalSpace G inst✝ : TopologicalGroup G K : Set G hK : IsCompact K g : G V : Set G hV : Set.Nonempty (interior V) h : G ⊢ g⁻¹ * (g * h) = h [PROOFSTEP] apply inv_mul_cancel_left [GOAL] G : Type u_1 inst✝² : Group G inst✝¹ : TopologicalSpace G inst✝ : TopologicalGroup G K₀ : PositiveCompacts G U : Set G K : Compacts G hU : Set.Nonempty (interior U) ⊢ prehaar (↑K₀) U K ≤ ↑(index ↑K ↑K₀) [PROOFSTEP] unfold prehaar [GOAL] G : Type u_1 inst✝² : Group G inst✝¹ : TopologicalSpace G inst✝ : TopologicalGroup G K₀ : PositiveCompacts G U : Set G K : Compacts G hU : Set.Nonempty (interior U) ⊢ ↑(index (↑K) U) / ↑(index (↑K₀) U) ≤ ↑(index ↑K ↑K₀) [PROOFSTEP] rw [div_le_iff] [GOAL] G : Type u_1 inst✝² : Group G inst✝¹ : TopologicalSpace G inst✝ : TopologicalGroup G K₀ : PositiveCompacts G U : Set G K : Compacts G hU : Set.Nonempty (interior U) ⊢ ↑(index (↑K) U) ≤ ↑(index ↑K ↑K₀) * ↑(index (↑K₀) U) [PROOFSTEP] norm_cast [GOAL] G : Type u_1 inst✝² : Group G inst✝¹ : TopologicalSpace G inst✝ : TopologicalGroup G K₀ : PositiveCompacts G U : Set G K : Compacts G hU : Set.Nonempty (interior U) ⊢ 0 < ↑(index (↑K₀) U) [PROOFSTEP] norm_cast [GOAL] G : Type u_1 inst✝² : Group G inst✝¹ : TopologicalSpace G inst✝ : TopologicalGroup G K₀ : PositiveCompacts G U : Set G K : Compacts G hU : Set.Nonempty (interior U) ⊢ index (↑K) U ≤ index ↑K ↑K₀ * index (↑K₀) U [PROOFSTEP] apply le_index_mul K₀ K hU [GOAL] G : Type u_1 inst✝² : Group G inst✝¹ : TopologicalSpace G inst✝ : TopologicalGroup G K₀ : PositiveCompacts G U : Set G K : Compacts G hU : Set.Nonempty (interior U) ⊢ 0 < index (↑K₀) U [PROOFSTEP] exact index_pos K₀ hU [GOAL] G : Type u_1 inst✝² : Group G inst✝¹ : TopologicalSpace G inst✝ : TopologicalGroup G K₀ : PositiveCompacts G U : Set G hU : Set.Nonempty (interior U) K : Set G h1K : IsCompact K h2K : Set.Nonempty (interior K) ⊢ 0 < prehaar (↑K₀) U { carrier := K, isCompact' := h1K } [PROOFSTEP] apply div_pos [GOAL] case ha G : Type u_1 inst✝² : Group G inst✝¹ : TopologicalSpace G inst✝ : TopologicalGroup G K₀ : PositiveCompacts G U : Set G hU : Set.Nonempty (interior U) K : Set G h1K : IsCompact K h2K : Set.Nonempty (interior K) ⊢ 0 < ↑(index (↑{ carrier := K, isCompact' := h1K }) U) [PROOFSTEP] norm_cast [GOAL] case hb G : Type u_1 inst✝² : Group G inst✝¹ : TopologicalSpace G inst✝ : TopologicalGroup G K₀ : PositiveCompacts G U : Set G hU : Set.Nonempty (interior U) K : Set G h1K : IsCompact K h2K : Set.Nonempty (interior K) ⊢ 0 < ↑(index (↑K₀) U) [PROOFSTEP] norm_cast [GOAL] case ha G : Type u_1 inst✝² : Group G inst✝¹ : TopologicalSpace G inst✝ : TopologicalGroup G K₀ : PositiveCompacts G U : Set G hU : Set.Nonempty (interior U) K : Set G h1K : IsCompact K h2K : Set.Nonempty (interior K) ⊢ 0 < index (↑{ carrier := K, isCompact' := h1K }) U case hb G : Type u_1 inst✝² : Group G inst✝¹ : TopologicalSpace G inst✝ : TopologicalGroup G K₀ : PositiveCompacts G U : Set G hU : Set.Nonempty (interior U) K : Set G h1K : IsCompact K h2K : Set.Nonempty (interior K) ⊢ 0 < index (↑K₀) U [PROOFSTEP] apply index_pos ⟨⟨K, h1K⟩, h2K⟩ hU [GOAL] case hb G : Type u_1 inst✝² : Group G inst✝¹ : TopologicalSpace G inst✝ : TopologicalGroup G K₀ : PositiveCompacts G U : Set G hU : Set.Nonempty (interior U) K : Set G h1K : IsCompact K h2K : Set.Nonempty (interior K) ⊢ 0 < index (↑K₀) U [PROOFSTEP] exact index_pos K₀ hU [GOAL] G : Type u_1 inst✝² : Group G inst✝¹ : TopologicalSpace G inst✝ : TopologicalGroup G K₀ : PositiveCompacts G U : Set G hU : Set.Nonempty (interior U) K₁ K₂ : Compacts G h : ↑K₁ ⊆ K₂.carrier ⊢ prehaar (↑K₀) U K₁ ≤ prehaar (↑K₀) U K₂ [PROOFSTEP] simp only [prehaar] [GOAL] G : Type u_1 inst✝² : Group G inst✝¹ : TopologicalSpace G inst✝ : TopologicalGroup G K₀ : PositiveCompacts G U : Set G hU : Set.Nonempty (interior U) K₁ K₂ : Compacts G h : ↑K₁ ⊆ K₂.carrier ⊢ ↑(index (↑K₁) U) / ↑(index (↑K₀) U) ≤ ↑(index (↑K₂) U) / ↑(index (↑K₀) U) [PROOFSTEP] rw [div_le_div_right] [GOAL] G : Type u_1 inst✝² : Group G inst✝¹ : TopologicalSpace G inst✝ : TopologicalGroup G K₀ : PositiveCompacts G U : Set G hU : Set.Nonempty (interior U) K₁ K₂ : Compacts G h : ↑K₁ ⊆ K₂.carrier ⊢ ↑(index (↑K₁) U) ≤ ↑(index (↑K₂) U) G : Type u_1 inst✝² : Group G inst✝¹ : TopologicalSpace G inst✝ : TopologicalGroup G K₀ : PositiveCompacts G U : Set G hU : Set.Nonempty (interior U) K₁ K₂ : Compacts G h : ↑K₁ ⊆ K₂.carrier ⊢ 0 < ↑(index (↑K₀) U) [PROOFSTEP] exact_mod_cast index_mono K₂.2 h hU [GOAL] G : Type u_1 inst✝² : Group G inst✝¹ : TopologicalSpace G inst✝ : TopologicalGroup G K₀ : PositiveCompacts G U : Set G hU : Set.Nonempty (interior U) K₁ K₂ : Compacts G h : ↑K₁ ⊆ K₂.carrier ⊢ 0 < ↑(index (↑K₀) U) [PROOFSTEP] exact_mod_cast index_pos K₀ hU [GOAL] G : Type u_1 inst✝² : Group G inst✝¹ : TopologicalSpace G inst✝ : TopologicalGroup G K₀ : PositiveCompacts G U : Set G hU : Set.Nonempty (interior U) ⊢ 0 < ↑(index (↑K₀.toCompacts) U) [PROOFSTEP] exact_mod_cast index_pos K₀ hU [GOAL] G : Type u_1 inst✝² : Group G inst✝¹ : TopologicalSpace G inst✝ : TopologicalGroup G K₀ : PositiveCompacts G U : Set G K₁ K₂ : Compacts G hU : Set.Nonempty (interior U) ⊢ prehaar (↑K₀) U (K₁ ⊔ K₂) ≤ prehaar (↑K₀) U K₁ + prehaar (↑K₀) U K₂ [PROOFSTEP] simp only [prehaar] [GOAL] G : Type u_1 inst✝² : Group G inst✝¹ : TopologicalSpace G inst✝ : TopologicalGroup G K₀ : PositiveCompacts G U : Set G K₁ K₂ : Compacts G hU : Set.Nonempty (interior U) ⊢ ↑(index (↑(K₁ ⊔ K₂)) U) / ↑(index (↑K₀) U) ≤ ↑(index (↑K₁) U) / ↑(index (↑K₀) U) + ↑(index (↑K₂) U) / ↑(index (↑K₀) U) [PROOFSTEP] rw [div_add_div_same, div_le_div_right] [GOAL] G : Type u_1 inst✝² : Group G inst✝¹ : TopologicalSpace G inst✝ : TopologicalGroup G K₀ : PositiveCompacts G U : Set G K₁ K₂ : Compacts G hU : Set.Nonempty (interior U) ⊢ ↑(index (↑(K₁ ⊔ K₂)) U) ≤ ↑(index (↑K₁) U) + ↑(index (↑K₂) U) G : Type u_1 inst✝² : Group G inst✝¹ : TopologicalSpace G inst✝ : TopologicalGroup G K₀ : PositiveCompacts G U : Set G K₁ K₂ : Compacts G hU : Set.Nonempty (interior U) ⊢ 0 < ↑(index (↑K₀) U) [PROOFSTEP] exact_mod_cast index_union_le K₁ K₂ hU [GOAL] G : Type u_1 inst✝² : Group G inst✝¹ : TopologicalSpace G inst✝ : TopologicalGroup G K₀ : PositiveCompacts G U : Set G K₁ K₂ : Compacts G hU : Set.Nonempty (interior U) ⊢ 0 < ↑(index (↑K₀) U) [PROOFSTEP] exact_mod_cast index_pos K₀ hU [GOAL] G : Type u_1 inst✝² : Group G inst✝¹ : TopologicalSpace G inst✝ : TopologicalGroup G K₀ : PositiveCompacts G U : Set G K₁ K₂ : Compacts G hU : Set.Nonempty (interior U) h : Disjoint (K₁.carrier * U⁻¹) (K₂.carrier * U⁻¹) ⊢ prehaar (↑K₀) U (K₁ ⊔ K₂) = prehaar (↑K₀) U K₁ + prehaar (↑K₀) U K₂ [PROOFSTEP] simp only [prehaar] [GOAL] G : Type u_1 inst✝² : Group G inst✝¹ : TopologicalSpace G inst✝ : TopologicalGroup G K₀ : PositiveCompacts G U : Set G K₁ K₂ : Compacts G hU : Set.Nonempty (interior U) h : Disjoint (K₁.carrier * U⁻¹) (K₂.carrier * U⁻¹) ⊢ ↑(index (↑(K₁ ⊔ K₂)) U) / ↑(index (↑K₀) U) = ↑(index (↑K₁) U) / ↑(index (↑K₀) U) + ↑(index (↑K₂) U) / ↑(index (↑K₀) U) [PROOFSTEP] rw [div_add_div_same] -- Porting note: Here was `congr`, but `to_additive` failed to generate a theorem. [GOAL] G : Type u_1 inst✝² : Group G inst✝¹ : TopologicalSpace G inst✝ : TopologicalGroup G K₀ : PositiveCompacts G U : Set G K₁ K₂ : Compacts G hU : Set.Nonempty (interior U) h : Disjoint (K₁.carrier * U⁻¹) (K₂.carrier * U⁻¹) ⊢ ↑(index (↑(K₁ ⊔ K₂)) U) / ↑(index (↑K₀) U) = (↑(index (↑K₁) U) + ↑(index (↑K₂) U)) / ↑(index (↑K₀) U) [PROOFSTEP] refine congr_arg (fun x : ℝ => x / index K₀ U) ?_ [GOAL] G : Type u_1 inst✝² : Group G inst✝¹ : TopologicalSpace G inst✝ : TopologicalGroup G K₀ : PositiveCompacts G U : Set G K₁ K₂ : Compacts G hU : Set.Nonempty (interior U) h : Disjoint (K₁.carrier * U⁻¹) (K₂.carrier * U⁻¹) ⊢ ↑(index (↑(K₁ ⊔ K₂)) U) = ↑(index (↑K₁) U) + ↑(index (↑K₂) U) [PROOFSTEP] exact_mod_cast index_union_eq K₁ K₂ hU h [GOAL] G : Type u_1 inst✝² : Group G inst✝¹ : TopologicalSpace G inst✝ : TopologicalGroup G K₀ : PositiveCompacts G U : Set G hU : Set.Nonempty (interior U) g : G K : Compacts G ⊢ prehaar (↑K₀) U (Compacts.map (fun b => g * b) (_ : Continuous fun b => g * b) K) = prehaar (↑K₀) U K [PROOFSTEP] simp only [prehaar, Compacts.coe_map, is_left_invariant_index K.isCompact _ hU] [GOAL] G : Type u_1 inst✝² : Group G inst✝¹ : TopologicalSpace G inst✝ : TopologicalGroup G K₀ : PositiveCompacts G U : Set G hU : Set.Nonempty (interior U) ⊢ prehaar (↑K₀) U ∈ haarProduct ↑K₀ [PROOFSTEP] rintro ⟨K, hK⟩ _ [GOAL] case mk G : Type u_1 inst✝² : Group G inst✝¹ : TopologicalSpace G inst✝ : TopologicalGroup G K₀ : PositiveCompacts G U : Set G hU : Set.Nonempty (interior U) K : Set G hK : IsCompact K a✝ : { carrier := K, isCompact' := hK } ∈ univ ⊢ prehaar (↑K₀) U { carrier := K, isCompact' := hK } ∈ (fun K => Icc 0 ↑(index ↑K ↑K₀)) { carrier := K, isCompact' := hK } [PROOFSTEP] rw [mem_Icc] [GOAL] case mk G : Type u_1 inst✝² : Group G inst✝¹ : TopologicalSpace G inst✝ : TopologicalGroup G K₀ : PositiveCompacts G U : Set G hU : Set.Nonempty (interior U) K : Set G hK : IsCompact K a✝ : { carrier := K, isCompact' := hK } ∈ univ ⊢ 0 ≤ prehaar (↑K₀) U { carrier := K, isCompact' := hK } ∧ prehaar (↑K₀) U { carrier := K, isCompact' := hK } ≤ ↑(index ↑{ carrier := K, isCompact' := hK } ↑K₀) [PROOFSTEP] exact ⟨prehaar_nonneg K₀ _, prehaar_le_index K₀ _ hU⟩ [GOAL] G : Type u_1 inst✝² : Group G inst✝¹ : TopologicalSpace G inst✝ : TopologicalGroup G K₀ : PositiveCompacts G ⊢ Set.Nonempty (haarProduct ↑K₀ ∩ ⋂ (V : OpenNhdsOf 1), clPrehaar (↑K₀) V) [PROOFSTEP] have : IsCompact (haarProduct (K₀ : Set G)) := by apply isCompact_univ_pi; intro K; apply isCompact_Icc [GOAL] G : Type u_1 inst✝² : Group G inst✝¹ : TopologicalSpace G inst✝ : TopologicalGroup G K₀ : PositiveCompacts G ⊢ IsCompact (haarProduct ↑K₀) [PROOFSTEP] apply isCompact_univ_pi [GOAL] case h G : Type u_1 inst✝² : Group G inst✝¹ : TopologicalSpace G inst✝ : TopologicalGroup G K₀ : PositiveCompacts G ⊢ ∀ (i : Compacts G), IsCompact (Icc 0 ↑(index ↑i ↑K₀)) [PROOFSTEP] intro K [GOAL] case h G : Type u_1 inst✝² : Group G inst✝¹ : TopologicalSpace G inst✝ : TopologicalGroup G K₀ : PositiveCompacts G K : Compacts G ⊢ IsCompact (Icc 0 ↑(index ↑K ↑K₀)) [PROOFSTEP] apply isCompact_Icc [GOAL] G : Type u_1 inst✝² : Group G inst✝¹ : TopologicalSpace G inst✝ : TopologicalGroup G K₀ : PositiveCompacts G this : IsCompact (haarProduct ↑K₀) ⊢ Set.Nonempty (haarProduct ↑K₀ ∩ ⋂ (V : OpenNhdsOf 1), clPrehaar (↑K₀) V) [PROOFSTEP] refine' this.inter_iInter_nonempty (clPrehaar K₀) (fun s => isClosed_closure) fun t => _ [GOAL] G : Type u_1 inst✝² : Group G inst✝¹ : TopologicalSpace G inst✝ : TopologicalGroup G K₀ : PositiveCompacts G this : IsCompact (haarProduct ↑K₀) t : Finset (OpenNhdsOf 1) ⊢ Set.Nonempty (haarProduct ↑K₀ ∩ ⋂ (i : OpenNhdsOf 1) (_ : i ∈ t), clPrehaar (↑K₀) i) [PROOFSTEP] let V₀ := ⋂ V ∈ t, (V : OpenNhdsOf (1 : G)).carrier [GOAL] G : Type u_1 inst✝² : Group G inst✝¹ : TopologicalSpace G inst✝ : TopologicalGroup G K₀ : PositiveCompacts G this : IsCompact (haarProduct ↑K₀) t : Finset (OpenNhdsOf 1) V₀ : Set G := ⋂ (V : OpenNhdsOf 1) (_ : V ∈ t), V.carrier ⊢ Set.Nonempty (haarProduct ↑K₀ ∩ ⋂ (i : OpenNhdsOf 1) (_ : i ∈ t), clPrehaar (↑K₀) i) [PROOFSTEP] have h1V₀ : IsOpen V₀ := by apply isOpen_biInter; apply Finset.finite_toSet; rintro ⟨⟨V, hV₁⟩, hV₂⟩ _; exact hV₁ [GOAL] G : Type u_1 inst✝² : Group G inst✝¹ : TopologicalSpace G inst✝ : TopologicalGroup G K₀ : PositiveCompacts G this : IsCompact (haarProduct ↑K₀) t : Finset (OpenNhdsOf 1) V₀ : Set G := ⋂ (V : OpenNhdsOf 1) (_ : V ∈ t), V.carrier ⊢ IsOpen V₀ [PROOFSTEP] apply isOpen_biInter [GOAL] case hs G : Type u_1 inst✝² : Group G inst✝¹ : TopologicalSpace G inst✝ : TopologicalGroup G K₀ : PositiveCompacts G this : IsCompact (haarProduct ↑K₀) t : Finset (OpenNhdsOf 1) V₀ : Set G := ⋂ (V : OpenNhdsOf 1) (_ : V ∈ t), V.carrier ⊢ Set.Finite fun i => i ∈ t.val case h G : Type u_1 inst✝² : Group G inst✝¹ : TopologicalSpace G inst✝ : TopologicalGroup G K₀ : PositiveCompacts G this : IsCompact (haarProduct ↑K₀) t : Finset (OpenNhdsOf 1) V₀ : Set G := ⋂ (V : OpenNhdsOf 1) (_ : V ∈ t), V.carrier ⊢ ∀ (i : OpenNhdsOf 1), (i ∈ fun i => i ∈ t.val) → IsOpen i.carrier [PROOFSTEP] apply Finset.finite_toSet [GOAL] case h G : Type u_1 inst✝² : Group G inst✝¹ : TopologicalSpace G inst✝ : TopologicalGroup G K₀ : PositiveCompacts G this : IsCompact (haarProduct ↑K₀) t : Finset (OpenNhdsOf 1) V₀ : Set G := ⋂ (V : OpenNhdsOf 1) (_ : V ∈ t), V.carrier ⊢ ∀ (i : OpenNhdsOf 1), (i ∈ fun i => i ∈ t.val) → IsOpen i.carrier [PROOFSTEP] rintro ⟨⟨V, hV₁⟩, hV₂⟩ _ [GOAL] case h.mk.mk G : Type u_1 inst✝² : Group G inst✝¹ : TopologicalSpace G inst✝ : TopologicalGroup G K₀ : PositiveCompacts G this : IsCompact (haarProduct ↑K₀) t : Finset (OpenNhdsOf 1) V₀ : Set G := ⋂ (V : OpenNhdsOf 1) (_ : V ∈ t), V.carrier V : Set G hV₁ : IsOpen V hV₂ : 1 ∈ { carrier := V, is_open' := hV₁ }.carrier a✝ : { toOpens := { carrier := V, is_open' := hV₁ }, mem' := hV₂ } ∈ fun i => i ∈ t.val ⊢ IsOpen { toOpens := { carrier := V, is_open' := hV₁ }, mem' := hV₂ }.toOpens.carrier [PROOFSTEP] exact hV₁ [GOAL] G : Type u_1 inst✝² : Group G inst✝¹ : TopologicalSpace G inst✝ : TopologicalGroup G K₀ : PositiveCompacts G this : IsCompact (haarProduct ↑K₀) t : Finset (OpenNhdsOf 1) V₀ : Set G := ⋂ (V : OpenNhdsOf 1) (_ : V ∈ t), V.carrier h1V₀ : IsOpen V₀ ⊢ Set.Nonempty (haarProduct ↑K₀ ∩ ⋂ (i : OpenNhdsOf 1) (_ : i ∈ t), clPrehaar (↑K₀) i) [PROOFSTEP] have h2V₀ : (1 : G) ∈ V₀ := by simp only [mem_iInter]; rintro ⟨⟨V, hV₁⟩, hV₂⟩ _; exact hV₂ [GOAL] G : Type u_1 inst✝² : Group G inst✝¹ : TopologicalSpace G inst✝ : TopologicalGroup G K₀ : PositiveCompacts G this : IsCompact (haarProduct ↑K₀) t : Finset (OpenNhdsOf 1) V₀ : Set G := ⋂ (V : OpenNhdsOf 1) (_ : V ∈ t), V.carrier h1V₀ : IsOpen V₀ ⊢ 1 ∈ V₀ [PROOFSTEP] simp only [mem_iInter] [GOAL] G : Type u_1 inst✝² : Group G inst✝¹ : TopologicalSpace G inst✝ : TopologicalGroup G K₀ : PositiveCompacts G this : IsCompact (haarProduct ↑K₀) t : Finset (OpenNhdsOf 1) V₀ : Set G := ⋂ (V : OpenNhdsOf 1) (_ : V ∈ t), V.carrier h1V₀ : IsOpen V₀ ⊢ ∀ (i : OpenNhdsOf 1), i ∈ t → 1 ∈ i.carrier [PROOFSTEP] rintro ⟨⟨V, hV₁⟩, hV₂⟩ _ [GOAL] case mk.mk G : Type u_1 inst✝² : Group G inst✝¹ : TopologicalSpace G inst✝ : TopologicalGroup G K₀ : PositiveCompacts G this : IsCompact (haarProduct ↑K₀) t : Finset (OpenNhdsOf 1) V₀ : Set G := ⋂ (V : OpenNhdsOf 1) (_ : V ∈ t), V.carrier h1V₀ : IsOpen V₀ V : Set G hV₁ : IsOpen V hV₂ : 1 ∈ { carrier := V, is_open' := hV₁ }.carrier i✝ : { toOpens := { carrier := V, is_open' := hV₁ }, mem' := hV₂ } ∈ t ⊢ 1 ∈ { toOpens := { carrier := V, is_open' := hV₁ }, mem' := hV₂ }.toOpens.carrier [PROOFSTEP] exact hV₂ [GOAL] G : Type u_1 inst✝² : Group G inst✝¹ : TopologicalSpace G inst✝ : TopologicalGroup G K₀ : PositiveCompacts G this : IsCompact (haarProduct ↑K₀) t : Finset (OpenNhdsOf 1) V₀ : Set G := ⋂ (V : OpenNhdsOf 1) (_ : V ∈ t), V.carrier h1V₀ : IsOpen V₀ h2V₀ : 1 ∈ V₀ ⊢ Set.Nonempty (haarProduct ↑K₀ ∩ ⋂ (i : OpenNhdsOf 1) (_ : i ∈ t), clPrehaar (↑K₀) i) [PROOFSTEP] refine' ⟨prehaar K₀ V₀, _⟩ [GOAL] G : Type u_1 inst✝² : Group G inst✝¹ : TopologicalSpace G inst✝ : TopologicalGroup G K₀ : PositiveCompacts G this : IsCompact (haarProduct ↑K₀) t : Finset (OpenNhdsOf 1) V₀ : Set G := ⋂ (V : OpenNhdsOf 1) (_ : V ∈ t), V.carrier h1V₀ : IsOpen V₀ h2V₀ : 1 ∈ V₀ ⊢ prehaar (↑K₀) V₀ ∈ haarProduct ↑K₀ ∩ ⋂ (i : OpenNhdsOf 1) (_ : i ∈ t), clPrehaar (↑K₀) i [PROOFSTEP] constructor [GOAL] case left G : Type u_1 inst✝² : Group G inst✝¹ : TopologicalSpace G inst✝ : TopologicalGroup G K₀ : PositiveCompacts G this : IsCompact (haarProduct ↑K₀) t : Finset (OpenNhdsOf 1) V₀ : Set G := ⋂ (V : OpenNhdsOf 1) (_ : V ∈ t), V.carrier h1V₀ : IsOpen V₀ h2V₀ : 1 ∈ V₀ ⊢ prehaar (↑K₀) V₀ ∈ haarProduct ↑K₀ [PROOFSTEP] apply prehaar_mem_haarProduct K₀ [GOAL] case left G : Type u_1 inst✝² : Group G inst✝¹ : TopologicalSpace G inst✝ : TopologicalGroup G K₀ : PositiveCompacts G this : IsCompact (haarProduct ↑K₀) t : Finset (OpenNhdsOf 1) V₀ : Set G := ⋂ (V : OpenNhdsOf 1) (_ : V ∈ t), V.carrier h1V₀ : IsOpen V₀ h2V₀ : 1 ∈ V₀ ⊢ Set.Nonempty (interior V₀) [PROOFSTEP] use 1 [GOAL] case h G : Type u_1 inst✝² : Group G inst✝¹ : TopologicalSpace G inst✝ : TopologicalGroup G K₀ : PositiveCompacts G this : IsCompact (haarProduct ↑K₀) t : Finset (OpenNhdsOf 1) V₀ : Set G := ⋂ (V : OpenNhdsOf 1) (_ : V ∈ t), V.carrier h1V₀ : IsOpen V₀ h2V₀ : 1 ∈ V₀ ⊢ 1 ∈ interior V₀ [PROOFSTEP] rwa [h1V₀.interior_eq] [GOAL] case right G : Type u_1 inst✝² : Group G inst✝¹ : TopologicalSpace G inst✝ : TopologicalGroup G K₀ : PositiveCompacts G this : IsCompact (haarProduct ↑K₀) t : Finset (OpenNhdsOf 1) V₀ : Set G := ⋂ (V : OpenNhdsOf 1) (_ : V ∈ t), V.carrier h1V₀ : IsOpen V₀ h2V₀ : 1 ∈ V₀ ⊢ prehaar (↑K₀) V₀ ∈ ⋂ (i : OpenNhdsOf 1) (_ : i ∈ t), clPrehaar (↑K₀) i [PROOFSTEP] simp only [mem_iInter] [GOAL] case right G : Type u_1 inst✝² : Group G inst✝¹ : TopologicalSpace G inst✝ : TopologicalGroup G K₀ : PositiveCompacts G this : IsCompact (haarProduct ↑K₀) t : Finset (OpenNhdsOf 1) V₀ : Set G := ⋂ (V : OpenNhdsOf 1) (_ : V ∈ t), V.carrier h1V₀ : IsOpen V₀ h2V₀ : 1 ∈ V₀ ⊢ ∀ (i : OpenNhdsOf 1), i ∈ t → prehaar (↑K₀) (⋂ (V : OpenNhdsOf 1) (_ : V ∈ t), V.carrier) ∈ clPrehaar (↑K₀) i [PROOFSTEP] rintro ⟨V, hV⟩ h2V [GOAL] case right.mk G : Type u_1 inst✝² : Group G inst✝¹ : TopologicalSpace G inst✝ : TopologicalGroup G K₀ : PositiveCompacts G this : IsCompact (haarProduct ↑K₀) t : Finset (OpenNhdsOf 1) V₀ : Set G := ⋂ (V : OpenNhdsOf 1) (_ : V ∈ t), V.carrier h1V₀ : IsOpen V₀ h2V₀ : 1 ∈ V₀ V : Opens G hV : 1 ∈ V.carrier h2V : { toOpens := V, mem' := hV } ∈ t ⊢ prehaar (↑K₀) (⋂ (V : OpenNhdsOf 1) (_ : V ∈ t), V.carrier) ∈ clPrehaar ↑K₀ { toOpens := V, mem' := hV } [PROOFSTEP] apply subset_closure [GOAL] case right.mk.a G : Type u_1 inst✝² : Group G inst✝¹ : TopologicalSpace G inst✝ : TopologicalGroup G K₀ : PositiveCompacts G this : IsCompact (haarProduct ↑K₀) t : Finset (OpenNhdsOf 1) V₀ : Set G := ⋂ (V : OpenNhdsOf 1) (_ : V ∈ t), V.carrier h1V₀ : IsOpen V₀ h2V₀ : 1 ∈ V₀ V : Opens G hV : 1 ∈ V.carrier h2V : { toOpens := V, mem' := hV } ∈ t ⊢ prehaar (↑K₀) (⋂ (V : OpenNhdsOf 1) (_ : V ∈ t), V.carrier) ∈ prehaar ↑K₀ '' {U | U ⊆ ↑{ toOpens := V, mem' := hV }.toOpens ∧ IsOpen U ∧ 1 ∈ U} [PROOFSTEP] apply mem_image_of_mem [GOAL] case right.mk.a.h G : Type u_1 inst✝² : Group G inst✝¹ : TopologicalSpace G inst✝ : TopologicalGroup G K₀ : PositiveCompacts G this : IsCompact (haarProduct ↑K₀) t : Finset (OpenNhdsOf 1) V₀ : Set G := ⋂ (V : OpenNhdsOf 1) (_ : V ∈ t), V.carrier h1V₀ : IsOpen V₀ h2V₀ : 1 ∈ V₀ V : Opens G hV : 1 ∈ V.carrier h2V : { toOpens := V, mem' := hV } ∈ t ⊢ ⋂ (V : OpenNhdsOf 1) (_ : V ∈ t), V.carrier ∈ {U | U ⊆ ↑{ toOpens := V, mem' := hV }.toOpens ∧ IsOpen U ∧ 1 ∈ U} [PROOFSTEP] rw [mem_setOf_eq] [GOAL] case right.mk.a.h G : Type u_1 inst✝² : Group G inst✝¹ : TopologicalSpace G inst✝ : TopologicalGroup G K₀ : PositiveCompacts G this : IsCompact (haarProduct ↑K₀) t : Finset (OpenNhdsOf 1) V₀ : Set G := ⋂ (V : OpenNhdsOf 1) (_ : V ∈ t), V.carrier h1V₀ : IsOpen V₀ h2V₀ : 1 ∈ V₀ V : Opens G hV : 1 ∈ V.carrier h2V : { toOpens := V, mem' := hV } ∈ t ⊢ ⋂ (V : OpenNhdsOf 1) (_ : V ∈ t), V.carrier ⊆ ↑{ toOpens := V, mem' := hV }.toOpens ∧ IsOpen (⋂ (V : OpenNhdsOf 1) (_ : V ∈ t), V.carrier) ∧ 1 ∈ ⋂ (V : OpenNhdsOf 1) (_ : V ∈ t), V.carrier [PROOFSTEP] exact ⟨Subset.trans (iInter_subset _ ⟨V, hV⟩) (iInter_subset _ h2V), h1V₀, h2V₀⟩ [GOAL] G : Type u_1 inst✝² : Group G inst✝¹ : TopologicalSpace G inst✝ : TopologicalGroup G K₀ : PositiveCompacts G V : OpenNhdsOf 1 ⊢ chaar K₀ ∈ clPrehaar (↑K₀) V [PROOFSTEP] have := (Classical.choose_spec (nonempty_iInter_clPrehaar K₀)).2 [GOAL] G : Type u_1 inst✝² : Group G inst✝¹ : TopologicalSpace G inst✝ : TopologicalGroup G K₀ : PositiveCompacts G V : OpenNhdsOf 1 this : Classical.choose (_ : Set.Nonempty (haarProduct ↑K₀ ∩ ⋂ (V : OpenNhdsOf 1), clPrehaar (↑K₀) V)) ∈ ⋂ (V : OpenNhdsOf 1), clPrehaar (↑K₀) V ⊢ chaar K₀ ∈ clPrehaar (↑K₀) V [PROOFSTEP] rw [mem_iInter] at this [GOAL] G : Type u_1 inst✝² : Group G inst✝¹ : TopologicalSpace G inst✝ : TopologicalGroup G K₀ : PositiveCompacts G V : OpenNhdsOf 1 this : ∀ (i : OpenNhdsOf 1), Classical.choose (_ : Set.Nonempty (haarProduct ↑K₀ ∩ ⋂ (V : OpenNhdsOf 1), clPrehaar (↑K₀) V)) ∈ clPrehaar (↑K₀) i ⊢ chaar K₀ ∈ clPrehaar (↑K₀) V [PROOFSTEP] exact this V [GOAL] G : Type u_1 inst✝² : Group G inst✝¹ : TopologicalSpace G inst✝ : TopologicalGroup G K₀ : PositiveCompacts G K : Compacts G ⊢ 0 ≤ chaar K₀ K [PROOFSTEP] have := chaar_mem_haarProduct K₀ K (mem_univ _) [GOAL] G : Type u_1 inst✝² : Group G inst✝¹ : TopologicalSpace G inst✝ : TopologicalGroup G K₀ : PositiveCompacts G K : Compacts G this : chaar K₀ K ∈ (fun K => Icc 0 ↑(index ↑K ↑K₀)) K ⊢ 0 ≤ chaar K₀ K [PROOFSTEP] rw [mem_Icc] at this [GOAL] G : Type u_1 inst✝² : Group G inst✝¹ : TopologicalSpace G inst✝ : TopologicalGroup G K₀ : PositiveCompacts G K : Compacts G this : 0 ≤ chaar K₀ K ∧ chaar K₀ K ≤ ↑(index ↑K ↑K₀) ⊢ 0 ≤ chaar K₀ K [PROOFSTEP] exact this.1 [GOAL] G : Type u_1 inst✝² : Group G inst✝¹ : TopologicalSpace G inst✝ : TopologicalGroup G K₀ : PositiveCompacts G ⊢ chaar K₀ ⊥ = 0 [PROOFSTEP] let eval : (Compacts G → ℝ) → ℝ := fun f => f ⊥ [GOAL] G : Type u_1 inst✝² : Group G inst✝¹ : TopologicalSpace G inst✝ : TopologicalGroup G K₀ : PositiveCompacts G eval : (Compacts G → ℝ) → ℝ := fun f => f ⊥ ⊢ chaar K₀ ⊥ = 0 [PROOFSTEP] have : Continuous eval := continuous_apply ⊥ [GOAL] G : Type u_1 inst✝² : Group G inst✝¹ : TopologicalSpace G inst✝ : TopologicalGroup G K₀ : PositiveCompacts G eval : (Compacts G → ℝ) → ℝ := fun f => f ⊥ this : Continuous eval ⊢ chaar K₀ ⊥ = 0 [PROOFSTEP] show chaar K₀ ∈ eval ⁻¹' {(0 : ℝ)} [GOAL] G : Type u_1 inst✝² : Group G inst✝¹ : TopologicalSpace G inst✝ : TopologicalGroup G K₀ : PositiveCompacts G eval : (Compacts G → ℝ) → ℝ := fun f => f ⊥ this : Continuous eval ⊢ chaar K₀ ∈ eval ⁻¹' {0} [PROOFSTEP] apply mem_of_subset_of_mem _ (chaar_mem_clPrehaar K₀ ⊤) [GOAL] G : Type u_1 inst✝² : Group G inst✝¹ : TopologicalSpace G inst✝ : TopologicalGroup G K₀ : PositiveCompacts G eval : (Compacts G → ℝ) → ℝ := fun f => f ⊥ this : Continuous eval ⊢ clPrehaar ↑K₀ ⊤ ⊆ eval ⁻¹' {0} [PROOFSTEP] unfold clPrehaar [GOAL] G : Type u_1 inst✝² : Group G inst✝¹ : TopologicalSpace G inst✝ : TopologicalGroup G K₀ : PositiveCompacts G eval : (Compacts G → ℝ) → ℝ := fun f => f ⊥ this : Continuous eval ⊢ closure (prehaar ↑K₀ '' {U | U ⊆ ↑⊤.toOpens ∧ IsOpen U ∧ 1 ∈ U}) ⊆ eval ⁻¹' {0} [PROOFSTEP] rw [IsClosed.closure_subset_iff] [GOAL] G : Type u_1 inst✝² : Group G inst✝¹ : TopologicalSpace G inst✝ : TopologicalGroup G K₀ : PositiveCompacts G eval : (Compacts G → ℝ) → ℝ := fun f => f ⊥ this : Continuous eval ⊢ prehaar ↑K₀ '' {U | U ⊆ ↑⊤.toOpens ∧ IsOpen U ∧ 1 ∈ U} ⊆ eval ⁻¹' {0} [PROOFSTEP] rintro _ ⟨U, _, rfl⟩ [GOAL] case intro.intro G : Type u_1 inst✝² : Group G inst✝¹ : TopologicalSpace G inst✝ : TopologicalGroup G K₀ : PositiveCompacts G eval : (Compacts G → ℝ) → ℝ := fun f => f ⊥ this : Continuous eval U : Set G left✝ : U ∈ {U | U ⊆ ↑⊤.toOpens ∧ IsOpen U ∧ 1 ∈ U} ⊢ prehaar (↑K₀) U ∈ eval ⁻¹' {0} [PROOFSTEP] apply prehaar_empty [GOAL] G : Type u_1 inst✝² : Group G inst✝¹ : TopologicalSpace G inst✝ : TopologicalGroup G K₀ : PositiveCompacts G eval : (Compacts G → ℝ) → ℝ := fun f => f ⊥ this : Continuous eval ⊢ IsClosed (eval ⁻¹' {0}) [PROOFSTEP] apply continuous_iff_isClosed.mp this [GOAL] case a G : Type u_1 inst✝² : Group G inst✝¹ : TopologicalSpace G inst✝ : TopologicalGroup G K₀ : PositiveCompacts G eval : (Compacts G → ℝ) → ℝ := fun f => f ⊥ this : Continuous eval ⊢ IsClosed {0} [PROOFSTEP] exact isClosed_singleton [GOAL] G : Type u_1 inst✝² : Group G inst✝¹ : TopologicalSpace G inst✝ : TopologicalGroup G K₀ : PositiveCompacts G ⊢ chaar K₀ K₀.toCompacts = 1 [PROOFSTEP] let eval : (Compacts G → ℝ) → ℝ := fun f => f K₀.toCompacts [GOAL] G : Type u_1 inst✝² : Group G inst✝¹ : TopologicalSpace G inst✝ : TopologicalGroup G K₀ : PositiveCompacts G eval : (Compacts G → ℝ) → ℝ := fun f => f K₀.toCompacts ⊢ chaar K₀ K₀.toCompacts = 1 [PROOFSTEP] have : Continuous eval := continuous_apply _ [GOAL] G : Type u_1 inst✝² : Group G inst✝¹ : TopologicalSpace G inst✝ : TopologicalGroup G K₀ : PositiveCompacts G eval : (Compacts G → ℝ) → ℝ := fun f => f K₀.toCompacts this : Continuous eval ⊢ chaar K₀ K₀.toCompacts = 1 [PROOFSTEP] show chaar K₀ ∈ eval ⁻¹' {(1 : ℝ)} [GOAL] G : Type u_1 inst✝² : Group G inst✝¹ : TopologicalSpace G inst✝ : TopologicalGroup G K₀ : PositiveCompacts G eval : (Compacts G → ℝ) → ℝ := fun f => f K₀.toCompacts this : Continuous eval ⊢ chaar K₀ ∈ eval ⁻¹' {1} [PROOFSTEP] apply mem_of_subset_of_mem _ (chaar_mem_clPrehaar K₀ ⊤) [GOAL] G : Type u_1 inst✝² : Group G inst✝¹ : TopologicalSpace G inst✝ : TopologicalGroup G K₀ : PositiveCompacts G eval : (Compacts G → ℝ) → ℝ := fun f => f K₀.toCompacts this : Continuous eval ⊢ clPrehaar ↑K₀ ⊤ ⊆ eval ⁻¹' {1} [PROOFSTEP] unfold clPrehaar [GOAL] G : Type u_1 inst✝² : Group G inst✝¹ : TopologicalSpace G inst✝ : TopologicalGroup G K₀ : PositiveCompacts G eval : (Compacts G → ℝ) → ℝ := fun f => f K₀.toCompacts this : Continuous eval ⊢ closure (prehaar ↑K₀ '' {U | U ⊆ ↑⊤.toOpens ∧ IsOpen U ∧ 1 ∈ U}) ⊆ eval ⁻¹' {1} [PROOFSTEP] rw [IsClosed.closure_subset_iff] [GOAL] G : Type u_1 inst✝² : Group G inst✝¹ : TopologicalSpace G inst✝ : TopologicalGroup G K₀ : PositiveCompacts G eval : (Compacts G → ℝ) → ℝ := fun f => f K₀.toCompacts this : Continuous eval ⊢ prehaar ↑K₀ '' {U | U ⊆ ↑⊤.toOpens ∧ IsOpen U ∧ 1 ∈ U} ⊆ eval ⁻¹' {1} [PROOFSTEP] rintro _ ⟨U, ⟨_, h2U, h3U⟩, rfl⟩ [GOAL] case intro.intro.intro.intro G : Type u_1 inst✝² : Group G inst✝¹ : TopologicalSpace G inst✝ : TopologicalGroup G K₀ : PositiveCompacts G eval : (Compacts G → ℝ) → ℝ := fun f => f K₀.toCompacts this : Continuous eval U : Set G left✝ : U ⊆ ↑⊤.toOpens h2U : IsOpen U h3U : 1 ∈ U ⊢ prehaar (↑K₀) U ∈ eval ⁻¹' {1} [PROOFSTEP] apply prehaar_self [GOAL] case intro.intro.intro.intro.hU G : Type u_1 inst✝² : Group G inst✝¹ : TopologicalSpace G inst✝ : TopologicalGroup G K₀ : PositiveCompacts G eval : (Compacts G → ℝ) → ℝ := fun f => f K₀.toCompacts this : Continuous eval U : Set G left✝ : U ⊆ ↑⊤.toOpens h2U : IsOpen U h3U : 1 ∈ U ⊢ Set.Nonempty (interior U) [PROOFSTEP] rw [h2U.interior_eq] [GOAL] case intro.intro.intro.intro.hU G : Type u_1 inst✝² : Group G inst✝¹ : TopologicalSpace G inst✝ : TopologicalGroup G K₀ : PositiveCompacts G eval : (Compacts G → ℝ) → ℝ := fun f => f K₀.toCompacts this : Continuous eval U : Set G left✝ : U ⊆ ↑⊤.toOpens h2U : IsOpen U h3U : 1 ∈ U ⊢ Set.Nonempty U [PROOFSTEP] exact ⟨1, h3U⟩ [GOAL] G : Type u_1 inst✝² : Group G inst✝¹ : TopologicalSpace G inst✝ : TopologicalGroup G K₀ : PositiveCompacts G eval : (Compacts G → ℝ) → ℝ := fun f => f K₀.toCompacts this : Continuous eval ⊢ IsClosed (eval ⁻¹' {1}) [PROOFSTEP] apply continuous_iff_isClosed.mp this [GOAL] case a G : Type u_1 inst✝² : Group G inst✝¹ : TopologicalSpace G inst✝ : TopologicalGroup G K₀ : PositiveCompacts G eval : (Compacts G → ℝ) → ℝ := fun f => f K₀.toCompacts this : Continuous eval ⊢ IsClosed {1} [PROOFSTEP] exact isClosed_singleton [GOAL] G : Type u_1 inst✝² : Group G inst✝¹ : TopologicalSpace G inst✝ : TopologicalGroup G K₀ : PositiveCompacts G K₁ K₂ : Compacts G h : ↑K₁ ⊆ ↑K₂ ⊢ chaar K₀ K₁ ≤ chaar K₀ K₂ [PROOFSTEP] let eval : (Compacts G → ℝ) → ℝ := fun f => f K₂ - f K₁ [GOAL] G : Type u_1 inst✝² : Group G inst✝¹ : TopologicalSpace G inst✝ : TopologicalGroup G K₀ : PositiveCompacts G K₁ K₂ : Compacts G h : ↑K₁ ⊆ ↑K₂ eval : (Compacts G → ℝ) → ℝ := fun f => f K₂ - f K₁ ⊢ chaar K₀ K₁ ≤ chaar K₀ K₂ [PROOFSTEP] have : Continuous eval := (continuous_apply K₂).sub (continuous_apply K₁) [GOAL] G : Type u_1 inst✝² : Group G inst✝¹ : TopologicalSpace G inst✝ : TopologicalGroup G K₀ : PositiveCompacts G K₁ K₂ : Compacts G h : ↑K₁ ⊆ ↑K₂ eval : (Compacts G → ℝ) → ℝ := fun f => f K₂ - f K₁ this : Continuous eval ⊢ chaar K₀ K₁ ≤ chaar K₀ K₂ [PROOFSTEP] rw [← sub_nonneg] [GOAL] G : Type u_1 inst✝² : Group G inst✝¹ : TopologicalSpace G inst✝ : TopologicalGroup G K₀ : PositiveCompacts G K₁ K₂ : Compacts G h : ↑K₁ ⊆ ↑K₂ eval : (Compacts G → ℝ) → ℝ := fun f => f K₂ - f K₁ this : Continuous eval ⊢ 0 ≤ chaar K₀ K₂ - chaar K₀ K₁ [PROOFSTEP] show chaar K₀ ∈ eval ⁻¹' Ici (0 : ℝ) [GOAL] G : Type u_1 inst✝² : Group G inst✝¹ : TopologicalSpace G inst✝ : TopologicalGroup G K₀ : PositiveCompacts G K₁ K₂ : Compacts G h : ↑K₁ ⊆ ↑K₂ eval : (Compacts G → ℝ) → ℝ := fun f => f K₂ - f K₁ this : Continuous eval ⊢ chaar K₀ ∈ eval ⁻¹' Ici 0 [PROOFSTEP] apply mem_of_subset_of_mem _ (chaar_mem_clPrehaar K₀ ⊤) [GOAL] G : Type u_1 inst✝² : Group G inst✝¹ : TopologicalSpace G inst✝ : TopologicalGroup G K₀ : PositiveCompacts G K₁ K₂ : Compacts G h : ↑K₁ ⊆ ↑K₂ eval : (Compacts G → ℝ) → ℝ := fun f => f K₂ - f K₁ this : Continuous eval ⊢ clPrehaar ↑K₀ ⊤ ⊆ eval ⁻¹' Ici 0 [PROOFSTEP] unfold clPrehaar [GOAL] G : Type u_1 inst✝² : Group G inst✝¹ : TopologicalSpace G inst✝ : TopologicalGroup G K₀ : PositiveCompacts G K₁ K₂ : Compacts G h : ↑K₁ ⊆ ↑K₂ eval : (Compacts G → ℝ) → ℝ := fun f => f K₂ - f K₁ this : Continuous eval ⊢ closure (prehaar ↑K₀ '' {U | U ⊆ ↑⊤.toOpens ∧ IsOpen U ∧ 1 ∈ U}) ⊆ eval ⁻¹' Ici 0 [PROOFSTEP] rw [IsClosed.closure_subset_iff] [GOAL] G : Type u_1 inst✝² : Group G inst✝¹ : TopologicalSpace G inst✝ : TopologicalGroup G K₀ : PositiveCompacts G K₁ K₂ : Compacts G h : ↑K₁ ⊆ ↑K₂ eval : (Compacts G → ℝ) → ℝ := fun f => f K₂ - f K₁ this : Continuous eval ⊢ prehaar ↑K₀ '' {U | U ⊆ ↑⊤.toOpens ∧ IsOpen U ∧ 1 ∈ U} ⊆ eval ⁻¹' Ici 0 [PROOFSTEP] rintro _ ⟨U, ⟨_, h2U, h3U⟩, rfl⟩ [GOAL] case intro.intro.intro.intro G : Type u_1 inst✝² : Group G inst✝¹ : TopologicalSpace G inst✝ : TopologicalGroup G K₀ : PositiveCompacts G K₁ K₂ : Compacts G h : ↑K₁ ⊆ ↑K₂ eval : (Compacts G → ℝ) → ℝ := fun f => f K₂ - f K₁ this : Continuous eval U : Set G left✝ : U ⊆ ↑⊤.toOpens h2U : IsOpen U h3U : 1 ∈ U ⊢ prehaar (↑K₀) U ∈ eval ⁻¹' Ici 0 [PROOFSTEP] simp only [mem_preimage, mem_Ici, sub_nonneg] [GOAL] case intro.intro.intro.intro G : Type u_1 inst✝² : Group G inst✝¹ : TopologicalSpace G inst✝ : TopologicalGroup G K₀ : PositiveCompacts G K₁ K₂ : Compacts G h : ↑K₁ ⊆ ↑K₂ eval : (Compacts G → ℝ) → ℝ := fun f => f K₂ - f K₁ this : Continuous eval U : Set G left✝ : U ⊆ ↑⊤.toOpens h2U : IsOpen U h3U : 1 ∈ U ⊢ prehaar (↑K₀) U K₁ ≤ prehaar (↑K₀) U K₂ [PROOFSTEP] apply prehaar_mono _ h [GOAL] G : Type u_1 inst✝² : Group G inst✝¹ : TopologicalSpace G inst✝ : TopologicalGroup G K₀ : PositiveCompacts G K₁ K₂ : Compacts G h : ↑K₁ ⊆ ↑K₂ eval : (Compacts G → ℝ) → ℝ := fun f => f K₂ - f K₁ this : Continuous eval U : Set G left✝ : U ⊆ ↑⊤.toOpens h2U : IsOpen U h3U : 1 ∈ U ⊢ Set.Nonempty (interior U) [PROOFSTEP] rw [h2U.interior_eq] [GOAL] G : Type u_1 inst✝² : Group G inst✝¹ : TopologicalSpace G inst✝ : TopologicalGroup G K₀ : PositiveCompacts G K₁ K₂ : Compacts G h : ↑K₁ ⊆ ↑K₂ eval : (Compacts G → ℝ) → ℝ := fun f => f K₂ - f K₁ this : Continuous eval U : Set G left✝ : U ⊆ ↑⊤.toOpens h2U : IsOpen U h3U : 1 ∈ U ⊢ Set.Nonempty U [PROOFSTEP] exact ⟨1, h3U⟩ [GOAL] G : Type u_1 inst✝² : Group G inst✝¹ : TopologicalSpace G inst✝ : TopologicalGroup G K₀ : PositiveCompacts G K₁ K₂ : Compacts G h : ↑K₁ ⊆ ↑K₂ eval : (Compacts G → ℝ) → ℝ := fun f => f K₂ - f K₁ this : Continuous eval ⊢ IsClosed (eval ⁻¹' Ici 0) [PROOFSTEP] apply continuous_iff_isClosed.mp this [GOAL] case a G : Type u_1 inst✝² : Group G inst✝¹ : TopologicalSpace G inst✝ : TopologicalGroup G K₀ : PositiveCompacts G K₁ K₂ : Compacts G h : ↑K₁ ⊆ ↑K₂ eval : (Compacts G → ℝ) → ℝ := fun f => f K₂ - f K₁ this : Continuous eval ⊢ IsClosed (Ici 0) [PROOFSTEP] exact isClosed_Ici [GOAL] G : Type u_1 inst✝² : Group G inst✝¹ : TopologicalSpace G inst✝ : TopologicalGroup G K₀ : PositiveCompacts G K₁ K₂ : Compacts G ⊢ chaar K₀ (K₁ ⊔ K₂) ≤ chaar K₀ K₁ + chaar K₀ K₂ [PROOFSTEP] let eval : (Compacts G → ℝ) → ℝ := fun f => f K₁ + f K₂ - f (K₁ ⊔ K₂) [GOAL] G : Type u_1 inst✝² : Group G inst✝¹ : TopologicalSpace G inst✝ : TopologicalGroup G K₀ : PositiveCompacts G K₁ K₂ : Compacts G eval : (Compacts G → ℝ) → ℝ := fun f => f K₁ + f K₂ - f (K₁ ⊔ K₂) ⊢ chaar K₀ (K₁ ⊔ K₂) ≤ chaar K₀ K₁ + chaar K₀ K₂ [PROOFSTEP] have : Continuous eval := by exact ((continuous_apply K₁).add (continuous_apply K₂)).sub (continuous_apply (K₁ ⊔ K₂)) [GOAL] G : Type u_1 inst✝² : Group G inst✝¹ : TopologicalSpace G inst✝ : TopologicalGroup G K₀ : PositiveCompacts G K₁ K₂ : Compacts G eval : (Compacts G → ℝ) → ℝ := fun f => f K₁ + f K₂ - f (K₁ ⊔ K₂) ⊢ Continuous eval [PROOFSTEP] exact ((continuous_apply K₁).add (continuous_apply K₂)).sub (continuous_apply (K₁ ⊔ K₂)) [GOAL] G : Type u_1 inst✝² : Group G inst✝¹ : TopologicalSpace G inst✝ : TopologicalGroup G K₀ : PositiveCompacts G K₁ K₂ : Compacts G eval : (Compacts G → ℝ) → ℝ := fun f => f K₁ + f K₂ - f (K₁ ⊔ K₂) this : Continuous eval ⊢ chaar K₀ (K₁ ⊔ K₂) ≤ chaar K₀ K₁ + chaar K₀ K₂ [PROOFSTEP] rw [← sub_nonneg] [GOAL] G : Type u_1 inst✝² : Group G inst✝¹ : TopologicalSpace G inst✝ : TopologicalGroup G K₀ : PositiveCompacts G K₁ K₂ : Compacts G eval : (Compacts G → ℝ) → ℝ := fun f => f K₁ + f K₂ - f (K₁ ⊔ K₂) this : Continuous eval ⊢ 0 ≤ chaar K₀ K₁ + chaar K₀ K₂ - chaar K₀ (K₁ ⊔ K₂) [PROOFSTEP] show chaar K₀ ∈ eval ⁻¹' Ici (0 : ℝ) [GOAL] G : Type u_1 inst✝² : Group G inst✝¹ : TopologicalSpace G inst✝ : TopologicalGroup G K₀ : PositiveCompacts G K₁ K₂ : Compacts G eval : (Compacts G → ℝ) → ℝ := fun f => f K₁ + f K₂ - f (K₁ ⊔ K₂) this : Continuous eval ⊢ chaar K₀ ∈ eval ⁻¹' Ici 0 [PROOFSTEP] apply mem_of_subset_of_mem _ (chaar_mem_clPrehaar K₀ ⊤) [GOAL] G : Type u_1 inst✝² : Group G inst✝¹ : TopologicalSpace G inst✝ : TopologicalGroup G K₀ : PositiveCompacts G K₁ K₂ : Compacts G eval : (Compacts G → ℝ) → ℝ := fun f => f K₁ + f K₂ - f (K₁ ⊔ K₂) this : Continuous eval ⊢ clPrehaar ↑K₀ ⊤ ⊆ eval ⁻¹' Ici 0 [PROOFSTEP] unfold clPrehaar [GOAL] G : Type u_1 inst✝² : Group G inst✝¹ : TopologicalSpace G inst✝ : TopologicalGroup G K₀ : PositiveCompacts G K₁ K₂ : Compacts G eval : (Compacts G → ℝ) → ℝ := fun f => f K₁ + f K₂ - f (K₁ ⊔ K₂) this : Continuous eval ⊢ closure (prehaar ↑K₀ '' {U | U ⊆ ↑⊤.toOpens ∧ IsOpen U ∧ 1 ∈ U}) ⊆ eval ⁻¹' Ici 0 [PROOFSTEP] rw [IsClosed.closure_subset_iff] [GOAL] G : Type u_1 inst✝² : Group G inst✝¹ : TopologicalSpace G inst✝ : TopologicalGroup G K₀ : PositiveCompacts G K₁ K₂ : Compacts G eval : (Compacts G → ℝ) → ℝ := fun f => f K₁ + f K₂ - f (K₁ ⊔ K₂) this : Continuous eval ⊢ prehaar ↑K₀ '' {U | U ⊆ ↑⊤.toOpens ∧ IsOpen U ∧ 1 ∈ U} ⊆ eval ⁻¹' Ici 0 [PROOFSTEP] rintro _ ⟨U, ⟨_, h2U, h3U⟩, rfl⟩ [GOAL] case intro.intro.intro.intro G : Type u_1 inst✝² : Group G inst✝¹ : TopologicalSpace G inst✝ : TopologicalGroup G K₀ : PositiveCompacts G K₁ K₂ : Compacts G eval : (Compacts G → ℝ) → ℝ := fun f => f K₁ + f K₂ - f (K₁ ⊔ K₂) this : Continuous eval U : Set G left✝ : U ⊆ ↑⊤.toOpens h2U : IsOpen U h3U : 1 ∈ U ⊢ prehaar (↑K₀) U ∈ eval ⁻¹' Ici 0 [PROOFSTEP] simp only [mem_preimage, mem_Ici, sub_nonneg] [GOAL] case intro.intro.intro.intro G : Type u_1 inst✝² : Group G inst✝¹ : TopologicalSpace G inst✝ : TopologicalGroup G K₀ : PositiveCompacts G K₁ K₂ : Compacts G eval : (Compacts G → ℝ) → ℝ := fun f => f K₁ + f K₂ - f (K₁ ⊔ K₂) this : Continuous eval U : Set G left✝ : U ⊆ ↑⊤.toOpens h2U : IsOpen U h3U : 1 ∈ U ⊢ prehaar (↑K₀) U (K₁ ⊔ K₂) ≤ prehaar (↑K₀) U K₁ + prehaar (↑K₀) U K₂ [PROOFSTEP] apply prehaar_sup_le [GOAL] case intro.intro.intro.intro.hU G : Type u_1 inst✝² : Group G inst✝¹ : TopologicalSpace G inst✝ : TopologicalGroup G K₀ : PositiveCompacts G K₁ K₂ : Compacts G eval : (Compacts G → ℝ) → ℝ := fun f => f K₁ + f K₂ - f (K₁ ⊔ K₂) this : Continuous eval U : Set G left✝ : U ⊆ ↑⊤.toOpens h2U : IsOpen U h3U : 1 ∈ U ⊢ Set.Nonempty (interior U) [PROOFSTEP] rw [h2U.interior_eq] [GOAL] case intro.intro.intro.intro.hU G : Type u_1 inst✝² : Group G inst✝¹ : TopologicalSpace G inst✝ : TopologicalGroup G K₀ : PositiveCompacts G K₁ K₂ : Compacts G eval : (Compacts G → ℝ) → ℝ := fun f => f K₁ + f K₂ - f (K₁ ⊔ K₂) this : Continuous eval U : Set G left✝ : U ⊆ ↑⊤.toOpens h2U : IsOpen U h3U : 1 ∈ U ⊢ Set.Nonempty U [PROOFSTEP] exact ⟨1, h3U⟩ [GOAL] G : Type u_1 inst✝² : Group G inst✝¹ : TopologicalSpace G inst✝ : TopologicalGroup G K₀ : PositiveCompacts G K₁ K₂ : Compacts G eval : (Compacts G → ℝ) → ℝ := fun f => f K₁ + f K₂ - f (K₁ ⊔ K₂) this : Continuous eval ⊢ IsClosed (eval ⁻¹' Ici 0) [PROOFSTEP] apply continuous_iff_isClosed.mp this [GOAL] case a G : Type u_1 inst✝² : Group G inst✝¹ : TopologicalSpace G inst✝ : TopologicalGroup G K₀ : PositiveCompacts G K₁ K₂ : Compacts G eval : (Compacts G → ℝ) → ℝ := fun f => f K₁ + f K₂ - f (K₁ ⊔ K₂) this : Continuous eval ⊢ IsClosed (Ici 0) [PROOFSTEP] exact isClosed_Ici [GOAL] G : Type u_1 inst✝³ : Group G inst✝² : TopologicalSpace G inst✝¹ : TopologicalGroup G inst✝ : T2Space G K₀ : PositiveCompacts G K₁ K₂ : Compacts G h : Disjoint K₁.carrier K₂.carrier ⊢ chaar K₀ (K₁ ⊔ K₂) = chaar K₀ K₁ + chaar K₀ K₂ [PROOFSTEP] rcases isCompact_isCompact_separated K₁.2 K₂.2 h with ⟨U₁, U₂, h1U₁, h1U₂, h2U₁, h2U₂, hU⟩ [GOAL] case intro.intro.intro.intro.intro.intro G : Type u_1 inst✝³ : Group G inst✝² : TopologicalSpace G inst✝¹ : TopologicalGroup G inst✝ : T2Space G K₀ : PositiveCompacts G K₁ K₂ : Compacts G h : Disjoint K₁.carrier K₂.carrier U₁ U₂ : Set G h1U₁ : IsOpen U₁ h1U₂ : IsOpen U₂ h2U₁ : K₁.carrier ⊆ U₁ h2U₂ : K₂.carrier ⊆ U₂ hU : Disjoint U₁ U₂ ⊢ chaar K₀ (K₁ ⊔ K₂) = chaar K₀ K₁ + chaar K₀ K₂ [PROOFSTEP] rcases compact_open_separated_mul_right K₁.2 h1U₁ h2U₁ with ⟨L₁, h1L₁, h2L₁⟩ [GOAL] case intro.intro.intro.intro.intro.intro.intro.intro G : Type u_1 inst✝³ : Group G inst✝² : TopologicalSpace G inst✝¹ : TopologicalGroup G inst✝ : T2Space G K₀ : PositiveCompacts G K₁ K₂ : Compacts G h : Disjoint K₁.carrier K₂.carrier U₁ U₂ : Set G h1U₁ : IsOpen U₁ h1U₂ : IsOpen U₂ h2U₁ : K₁.carrier ⊆ U₁ h2U₂ : K₂.carrier ⊆ U₂ hU : Disjoint U₁ U₂ L₁ : Set G h1L₁ : L₁ ∈ 𝓝 1 h2L₁ : K₁.carrier * L₁ ⊆ U₁ ⊢ chaar K₀ (K₁ ⊔ K₂) = chaar K₀ K₁ + chaar K₀ K₂ [PROOFSTEP] rcases mem_nhds_iff.mp h1L₁ with ⟨V₁, h1V₁, h2V₁, h3V₁⟩ [GOAL] case intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro G : Type u_1 inst✝³ : Group G inst✝² : TopologicalSpace G inst✝¹ : TopologicalGroup G inst✝ : T2Space G K₀ : PositiveCompacts G K₁ K₂ : Compacts G h : Disjoint K₁.carrier K₂.carrier U₁ U₂ : Set G h1U₁ : IsOpen U₁ h1U₂ : IsOpen U₂ h2U₁ : K₁.carrier ⊆ U₁ h2U₂ : K₂.carrier ⊆ U₂ hU : Disjoint U₁ U₂ L₁ : Set G h1L₁ : L₁ ∈ 𝓝 1 h2L₁ : K₁.carrier * L₁ ⊆ U₁ V₁ : Set G h1V₁ : V₁ ⊆ L₁ h2V₁ : IsOpen V₁ h3V₁ : 1 ∈ V₁ ⊢ chaar K₀ (K₁ ⊔ K₂) = chaar K₀ K₁ + chaar K₀ K₂ [PROOFSTEP] replace h2L₁ := Subset.trans (mul_subset_mul_left h1V₁) h2L₁ [GOAL] case intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro G : Type u_1 inst✝³ : Group G inst✝² : TopologicalSpace G inst✝¹ : TopologicalGroup G inst✝ : T2Space G K₀ : PositiveCompacts G K₁ K₂ : Compacts G h : Disjoint K₁.carrier K₂.carrier U₁ U₂ : Set G h1U₁ : IsOpen U₁ h1U₂ : IsOpen U₂ h2U₁ : K₁.carrier ⊆ U₁ h2U₂ : K₂.carrier ⊆ U₂ hU : Disjoint U₁ U₂ L₁ : Set G h1L₁ : L₁ ∈ 𝓝 1 V₁ : Set G h1V₁ : V₁ ⊆ L₁ h2V₁ : IsOpen V₁ h3V₁ : 1 ∈ V₁ h2L₁ : K₁.carrier * V₁ ⊆ U₁ ⊢ chaar K₀ (K₁ ⊔ K₂) = chaar K₀ K₁ + chaar K₀ K₂ [PROOFSTEP] rcases compact_open_separated_mul_right K₂.2 h1U₂ h2U₂ with ⟨L₂, h1L₂, h2L₂⟩ [GOAL] case intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro G : Type u_1 inst✝³ : Group G inst✝² : TopologicalSpace G inst✝¹ : TopologicalGroup G inst✝ : T2Space G K₀ : PositiveCompacts G K₁ K₂ : Compacts G h : Disjoint K₁.carrier K₂.carrier U₁ U₂ : Set G h1U₁ : IsOpen U₁ h1U₂ : IsOpen U₂ h2U₁ : K₁.carrier ⊆ U₁ h2U₂ : K₂.carrier ⊆ U₂ hU : Disjoint U₁ U₂ L₁ : Set G h1L₁ : L₁ ∈ 𝓝 1 V₁ : Set G h1V₁ : V₁ ⊆ L₁ h2V₁ : IsOpen V₁ h3V₁ : 1 ∈ V₁ h2L₁ : K₁.carrier * V₁ ⊆ U₁ L₂ : Set G h1L₂ : L₂ ∈ 𝓝 1 h2L₂ : K₂.carrier * L₂ ⊆ U₂ ⊢ chaar K₀ (K₁ ⊔ K₂) = chaar K₀ K₁ + chaar K₀ K₂ [PROOFSTEP] rcases mem_nhds_iff.mp h1L₂ with ⟨V₂, h1V₂, h2V₂, h3V₂⟩ [GOAL] case intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro G : Type u_1 inst✝³ : Group G inst✝² : TopologicalSpace G inst✝¹ : TopologicalGroup G inst✝ : T2Space G K₀ : PositiveCompacts G K₁ K₂ : Compacts G h : Disjoint K₁.carrier K₂.carrier U₁ U₂ : Set G h1U₁ : IsOpen U₁ h1U₂ : IsOpen U₂ h2U₁ : K₁.carrier ⊆ U₁ h2U₂ : K₂.carrier ⊆ U₂ hU : Disjoint U₁ U₂ L₁ : Set G h1L₁ : L₁ ∈ 𝓝 1 V₁ : Set G h1V₁ : V₁ ⊆ L₁ h2V₁ : IsOpen V₁ h3V₁ : 1 ∈ V₁ h2L₁ : K₁.carrier * V₁ ⊆ U₁ L₂ : Set G h1L₂ : L₂ ∈ 𝓝 1 h2L₂ : K₂.carrier * L₂ ⊆ U₂ V₂ : Set G h1V₂ : V₂ ⊆ L₂ h2V₂ : IsOpen V₂ h3V₂ : 1 ∈ V₂ ⊢ chaar K₀ (K₁ ⊔ K₂) = chaar K₀ K₁ + chaar K₀ K₂ [PROOFSTEP] replace h2L₂ := Subset.trans (mul_subset_mul_left h1V₂) h2L₂ [GOAL] case intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro G : Type u_1 inst✝³ : Group G inst✝² : TopologicalSpace G inst✝¹ : TopologicalGroup G inst✝ : T2Space G K₀ : PositiveCompacts G K₁ K₂ : Compacts G h : Disjoint K₁.carrier K₂.carrier U₁ U₂ : Set G h1U₁ : IsOpen U₁ h1U₂ : IsOpen U₂ h2U₁ : K₁.carrier ⊆ U₁ h2U₂ : K₂.carrier ⊆ U₂ hU : Disjoint U₁ U₂ L₁ : Set G h1L₁ : L₁ ∈ 𝓝 1 V₁ : Set G h1V₁ : V₁ ⊆ L₁ h2V₁ : IsOpen V₁ h3V₁ : 1 ∈ V₁ h2L₁ : K₁.carrier * V₁ ⊆ U₁ L₂ : Set G h1L₂ : L₂ ∈ 𝓝 1 V₂ : Set G h1V₂ : V₂ ⊆ L₂ h2V₂ : IsOpen V₂ h3V₂ : 1 ∈ V₂ h2L₂ : K₂.carrier * V₂ ⊆ U₂ ⊢ chaar K₀ (K₁ ⊔ K₂) = chaar K₀ K₁ + chaar K₀ K₂ [PROOFSTEP] let eval : (Compacts G → ℝ) → ℝ := fun f => f K₁ + f K₂ - f (K₁ ⊔ K₂) [GOAL] case intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro G : Type u_1 inst✝³ : Group G inst✝² : TopologicalSpace G inst✝¹ : TopologicalGroup G inst✝ : T2Space G K₀ : PositiveCompacts G K₁ K₂ : Compacts G h : Disjoint K₁.carrier K₂.carrier U₁ U₂ : Set G h1U₁ : IsOpen U₁ h1U₂ : IsOpen U₂ h2U₁ : K₁.carrier ⊆ U₁ h2U₂ : K₂.carrier ⊆ U₂ hU : Disjoint U₁ U₂ L₁ : Set G h1L₁ : L₁ ∈ 𝓝 1 V₁ : Set G h1V₁ : V₁ ⊆ L₁ h2V₁ : IsOpen V₁ h3V₁ : 1 ∈ V₁ h2L₁ : K₁.carrier * V₁ ⊆ U₁ L₂ : Set G h1L₂ : L₂ ∈ 𝓝 1 V₂ : Set G h1V₂ : V₂ ⊆ L₂ h2V₂ : IsOpen V₂ h3V₂ : 1 ∈ V₂ h2L₂ : K₂.carrier * V₂ ⊆ U₂ eval : (Compacts G → ℝ) → ℝ := fun f => f K₁ + f K₂ - f (K₁ ⊔ K₂) ⊢ chaar K₀ (K₁ ⊔ K₂) = chaar K₀ K₁ + chaar K₀ K₂ [PROOFSTEP] have : Continuous eval := ((continuous_apply K₁).add (continuous_apply K₂)).sub (continuous_apply (K₁ ⊔ K₂)) [GOAL] case intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro G : Type u_1 inst✝³ : Group G inst✝² : TopologicalSpace G inst✝¹ : TopologicalGroup G inst✝ : T2Space G K₀ : PositiveCompacts G K₁ K₂ : Compacts G h : Disjoint K₁.carrier K₂.carrier U₁ U₂ : Set G h1U₁ : IsOpen U₁ h1U₂ : IsOpen U₂ h2U₁ : K₁.carrier ⊆ U₁ h2U₂ : K₂.carrier ⊆ U₂ hU : Disjoint U₁ U₂ L₁ : Set G h1L₁ : L₁ ∈ 𝓝 1 V₁ : Set G h1V₁ : V₁ ⊆ L₁ h2V₁ : IsOpen V₁ h3V₁ : 1 ∈ V₁ h2L₁ : K₁.carrier * V₁ ⊆ U₁ L₂ : Set G h1L₂ : L₂ ∈ 𝓝 1 V₂ : Set G h1V₂ : V₂ ⊆ L₂ h2V₂ : IsOpen V₂ h3V₂ : 1 ∈ V₂ h2L₂ : K₂.carrier * V₂ ⊆ U₂ eval : (Compacts G → ℝ) → ℝ := fun f => f K₁ + f K₂ - f (K₁ ⊔ K₂) this : Continuous eval ⊢ chaar K₀ (K₁ ⊔ K₂) = chaar K₀ K₁ + chaar K₀ K₂ [PROOFSTEP] rw [eq_comm, ← sub_eq_zero] [GOAL] case intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro G : Type u_1 inst✝³ : Group G inst✝² : TopologicalSpace G inst✝¹ : TopologicalGroup G inst✝ : T2Space G K₀ : PositiveCompacts G K₁ K₂ : Compacts G h : Disjoint K₁.carrier K₂.carrier U₁ U₂ : Set G h1U₁ : IsOpen U₁ h1U₂ : IsOpen U₂ h2U₁ : K₁.carrier ⊆ U₁ h2U₂ : K₂.carrier ⊆ U₂ hU : Disjoint U₁ U₂ L₁ : Set G h1L₁ : L₁ ∈ 𝓝 1 V₁ : Set G h1V₁ : V₁ ⊆ L₁ h2V₁ : IsOpen V₁ h3V₁ : 1 ∈ V₁ h2L₁ : K₁.carrier * V₁ ⊆ U₁ L₂ : Set G h1L₂ : L₂ ∈ 𝓝 1 V₂ : Set G h1V₂ : V₂ ⊆ L₂ h2V₂ : IsOpen V₂ h3V₂ : 1 ∈ V₂ h2L₂ : K₂.carrier * V₂ ⊆ U₂ eval : (Compacts G → ℝ) → ℝ := fun f => f K₁ + f K₂ - f (K₁ ⊔ K₂) this : Continuous eval ⊢ chaar K₀ K₁ + chaar K₀ K₂ - chaar K₀ (K₁ ⊔ K₂) = 0 [PROOFSTEP] show chaar K₀ ∈ eval ⁻¹' {(0 : ℝ)} [GOAL] case intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro G : Type u_1 inst✝³ : Group G inst✝² : TopologicalSpace G inst✝¹ : TopologicalGroup G inst✝ : T2Space G K₀ : PositiveCompacts G K₁ K₂ : Compacts G h : Disjoint K₁.carrier K₂.carrier U₁ U₂ : Set G h1U₁ : IsOpen U₁ h1U₂ : IsOpen U₂ h2U₁ : K₁.carrier ⊆ U₁ h2U₂ : K₂.carrier ⊆ U₂ hU : Disjoint U₁ U₂ L₁ : Set G h1L₁ : L₁ ∈ 𝓝 1 V₁ : Set G h1V₁ : V₁ ⊆ L₁ h2V₁ : IsOpen V₁ h3V₁ : 1 ∈ V₁ h2L₁ : K₁.carrier * V₁ ⊆ U₁ L₂ : Set G h1L₂ : L₂ ∈ 𝓝 1 V₂ : Set G h1V₂ : V₂ ⊆ L₂ h2V₂ : IsOpen V₂ h3V₂ : 1 ∈ V₂ h2L₂ : K₂.carrier * V₂ ⊆ U₂ eval : (Compacts G → ℝ) → ℝ := fun f => f K₁ + f K₂ - f (K₁ ⊔ K₂) this : Continuous eval ⊢ chaar K₀ ∈ eval ⁻¹' {0} [PROOFSTEP] let V := V₁ ∩ V₂ [GOAL] case intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro G : Type u_1 inst✝³ : Group G inst✝² : TopologicalSpace G inst✝¹ : TopologicalGroup G inst✝ : T2Space G K₀ : PositiveCompacts G K₁ K₂ : Compacts G h : Disjoint K₁.carrier K₂.carrier U₁ U₂ : Set G h1U₁ : IsOpen U₁ h1U₂ : IsOpen U₂ h2U₁ : K₁.carrier ⊆ U₁ h2U₂ : K₂.carrier ⊆ U₂ hU : Disjoint U₁ U₂ L₁ : Set G h1L₁ : L₁ ∈ 𝓝 1 V₁ : Set G h1V₁ : V₁ ⊆ L₁ h2V₁ : IsOpen V₁ h3V₁ : 1 ∈ V₁ h2L₁ : K₁.carrier * V₁ ⊆ U₁ L₂ : Set G h1L₂ : L₂ ∈ 𝓝 1 V₂ : Set G h1V₂ : V₂ ⊆ L₂ h2V₂ : IsOpen V₂ h3V₂ : 1 ∈ V₂ h2L₂ : K₂.carrier * V₂ ⊆ U₂ eval : (Compacts G → ℝ) → ℝ := fun f => f K₁ + f K₂ - f (K₁ ⊔ K₂) this : Continuous eval V : Set G := V₁ ∩ V₂ ⊢ chaar K₀ ∈ eval ⁻¹' {0} [PROOFSTEP] apply mem_of_subset_of_mem _ (chaar_mem_clPrehaar K₀ ⟨⟨V⁻¹, (h2V₁.inter h2V₂).preimage continuous_inv⟩, by simp only [mem_inv, inv_one, h3V₁, h3V₂, mem_inter_iff, true_and_iff]⟩) [GOAL] G : Type u_1 inst✝³ : Group G inst✝² : TopologicalSpace G inst✝¹ : TopologicalGroup G inst✝ : T2Space G K₀ : PositiveCompacts G K₁ K₂ : Compacts G h : Disjoint K₁.carrier K₂.carrier U₁ U₂ : Set G h1U₁ : IsOpen U₁ h1U₂ : IsOpen U₂ h2U₁ : K₁.carrier ⊆ U₁ h2U₂ : K₂.carrier ⊆ U₂ hU : Disjoint U₁ U₂ L₁ : Set G h1L₁ : L₁ ∈ 𝓝 1 V₁ : Set G h1V₁ : V₁ ⊆ L₁ h2V₁ : IsOpen V₁ h3V₁ : 1 ∈ V₁ h2L₁ : K₁.carrier * V₁ ⊆ U₁ L₂ : Set G h1L₂ : L₂ ∈ 𝓝 1 V₂ : Set G h1V₂ : V₂ ⊆ L₂ h2V₂ : IsOpen V₂ h3V₂ : 1 ∈ V₂ h2L₂ : K₂.carrier * V₂ ⊆ U₂ eval : (Compacts G → ℝ) → ℝ := fun f => f K₁ + f K₂ - f (K₁ ⊔ K₂) this : Continuous eval V : Set G := V₁ ∩ V₂ ⊢ 1 ∈ { carrier := V⁻¹, is_open' := (_ : IsOpen ((fun a => a⁻¹) ⁻¹' (V₁ ∩ V₂))) }.carrier [PROOFSTEP] simp only [mem_inv, inv_one, h3V₁, h3V₂, mem_inter_iff, true_and_iff] [GOAL] G : Type u_1 inst✝³ : Group G inst✝² : TopologicalSpace G inst✝¹ : TopologicalGroup G inst✝ : T2Space G K₀ : PositiveCompacts G K₁ K₂ : Compacts G h : Disjoint K₁.carrier K₂.carrier U₁ U₂ : Set G h1U₁ : IsOpen U₁ h1U₂ : IsOpen U₂ h2U₁ : K₁.carrier ⊆ U₁ h2U₂ : K₂.carrier ⊆ U₂ hU : Disjoint U₁ U₂ L₁ : Set G h1L₁ : L₁ ∈ 𝓝 1 V₁ : Set G h1V₁ : V₁ ⊆ L₁ h2V₁ : IsOpen V₁ h3V₁ : 1 ∈ V₁ h2L₁ : K₁.carrier * V₁ ⊆ U₁ L₂ : Set G h1L₂ : L₂ ∈ 𝓝 1 V₂ : Set G h1V₂ : V₂ ⊆ L₂ h2V₂ : IsOpen V₂ h3V₂ : 1 ∈ V₂ h2L₂ : K₂.carrier * V₂ ⊆ U₂ eval : (Compacts G → ℝ) → ℝ := fun f => f K₁ + f K₂ - f (K₁ ⊔ K₂) this : Continuous eval V : Set G := V₁ ∩ V₂ ⊢ clPrehaar ↑K₀ { toOpens := { carrier := V⁻¹, is_open' := (_ : IsOpen ((fun a => a⁻¹) ⁻¹' (V₁ ∩ V₂))) }, mem' := (_ : 1 ∈ (V₁ ∩ V₂)⁻¹) } ⊆ eval ⁻¹' {0} [PROOFSTEP] unfold clPrehaar [GOAL] G : Type u_1 inst✝³ : Group G inst✝² : TopologicalSpace G inst✝¹ : TopologicalGroup G inst✝ : T2Space G K₀ : PositiveCompacts G K₁ K₂ : Compacts G h : Disjoint K₁.carrier K₂.carrier U₁ U₂ : Set G h1U₁ : IsOpen U₁ h1U₂ : IsOpen U₂ h2U₁ : K₁.carrier ⊆ U₁ h2U₂ : K₂.carrier ⊆ U₂ hU : Disjoint U₁ U₂ L₁ : Set G h1L₁ : L₁ ∈ 𝓝 1 V₁ : Set G h1V₁ : V₁ ⊆ L₁ h2V₁ : IsOpen V₁ h3V₁ : 1 ∈ V₁ h2L₁ : K₁.carrier * V₁ ⊆ U₁ L₂ : Set G h1L₂ : L₂ ∈ 𝓝 1 V₂ : Set G h1V₂ : V₂ ⊆ L₂ h2V₂ : IsOpen V₂ h3V₂ : 1 ∈ V₂ h2L₂ : K₂.carrier * V₂ ⊆ U₂ eval : (Compacts G → ℝ) → ℝ := fun f => f K₁ + f K₂ - f (K₁ ⊔ K₂) this : Continuous eval V : Set G := V₁ ∩ V₂ ⊢ closure (prehaar ↑K₀ '' {U | U ⊆ ↑{ toOpens := { carrier := V⁻¹, is_open' := (_ : IsOpen ((fun a => a⁻¹) ⁻¹' (V₁ ∩ V₂))) }, mem' := (_ : 1 ∈ (V₁ ∩ V₂)⁻¹) }.toOpens ∧ IsOpen U ∧ 1 ∈ U}) ⊆ eval ⁻¹' {0} [PROOFSTEP] rw [IsClosed.closure_subset_iff] [GOAL] G : Type u_1 inst✝³ : Group G inst✝² : TopologicalSpace G inst✝¹ : TopologicalGroup G inst✝ : T2Space G K₀ : PositiveCompacts G K₁ K₂ : Compacts G h : Disjoint K₁.carrier K₂.carrier U₁ U₂ : Set G h1U₁ : IsOpen U₁ h1U₂ : IsOpen U₂ h2U₁ : K₁.carrier ⊆ U₁ h2U₂ : K₂.carrier ⊆ U₂ hU : Disjoint U₁ U₂ L₁ : Set G h1L₁ : L₁ ∈ 𝓝 1 V₁ : Set G h1V₁ : V₁ ⊆ L₁ h2V₁ : IsOpen V₁ h3V₁ : 1 ∈ V₁ h2L₁ : K₁.carrier * V₁ ⊆ U₁ L₂ : Set G h1L₂ : L₂ ∈ 𝓝 1 V₂ : Set G h1V₂ : V₂ ⊆ L₂ h2V₂ : IsOpen V₂ h3V₂ : 1 ∈ V₂ h2L₂ : K₂.carrier * V₂ ⊆ U₂ eval : (Compacts G → ℝ) → ℝ := fun f => f K₁ + f K₂ - f (K₁ ⊔ K₂) this : Continuous eval V : Set G := V₁ ∩ V₂ ⊢ prehaar ↑K₀ '' {U | U ⊆ ↑{ toOpens := { carrier := V⁻¹, is_open' := (_ : IsOpen ((fun a => a⁻¹) ⁻¹' (V₁ ∩ V₂))) }, mem' := (_ : 1 ∈ (V₁ ∩ V₂)⁻¹) }.toOpens ∧ IsOpen U ∧ 1 ∈ U} ⊆ eval ⁻¹' {0} [PROOFSTEP] rintro _ ⟨U, ⟨h1U, h2U, h3U⟩, rfl⟩ [GOAL] case intro.intro.intro.intro G : Type u_1 inst✝³ : Group G inst✝² : TopologicalSpace G inst✝¹ : TopologicalGroup G inst✝ : T2Space G K₀ : PositiveCompacts G K₁ K₂ : Compacts G h : Disjoint K₁.carrier K₂.carrier U₁ U₂ : Set G h1U₁ : IsOpen U₁ h1U₂ : IsOpen U₂ h2U₁ : K₁.carrier ⊆ U₁ h2U₂ : K₂.carrier ⊆ U₂ hU : Disjoint U₁ U₂ L₁ : Set G h1L₁ : L₁ ∈ 𝓝 1 V₁ : Set G h1V₁ : V₁ ⊆ L₁ h2V₁ : IsOpen V₁ h3V₁ : 1 ∈ V₁ h2L₁ : K₁.carrier * V₁ ⊆ U₁ L₂ : Set G h1L₂ : L₂ ∈ 𝓝 1 V₂ : Set G h1V₂ : V₂ ⊆ L₂ h2V₂ : IsOpen V₂ h3V₂ : 1 ∈ V₂ h2L₂ : K₂.carrier * V₂ ⊆ U₂ eval : (Compacts G → ℝ) → ℝ := fun f => f K₁ + f K₂ - f (K₁ ⊔ K₂) this : Continuous eval V : Set G := V₁ ∩ V₂ U : Set G h1U : U ⊆ ↑{ toOpens := { carrier := V⁻¹, is_open' := (_ : IsOpen ((fun a => a⁻¹) ⁻¹' (V₁ ∩ V₂))) }, mem' := (_ : 1 ∈ (V₁ ∩ V₂)⁻¹) }.toOpens h2U : IsOpen U h3U : 1 ∈ U ⊢ prehaar (↑K₀) U ∈ eval ⁻¹' {0} [PROOFSTEP] simp only [mem_preimage, sub_eq_zero, mem_singleton_iff] [GOAL] case intro.intro.intro.intro G : Type u_1 inst✝³ : Group G inst✝² : TopologicalSpace G inst✝¹ : TopologicalGroup G inst✝ : T2Space G K₀ : PositiveCompacts G K₁ K₂ : Compacts G h : Disjoint K₁.carrier K₂.carrier U₁ U₂ : Set G h1U₁ : IsOpen U₁ h1U₂ : IsOpen U₂ h2U₁ : K₁.carrier ⊆ U₁ h2U₂ : K₂.carrier ⊆ U₂ hU : Disjoint U₁ U₂ L₁ : Set G h1L₁ : L₁ ∈ 𝓝 1 V₁ : Set G h1V₁ : V₁ ⊆ L₁ h2V₁ : IsOpen V₁ h3V₁ : 1 ∈ V₁ h2L₁ : K₁.carrier * V₁ ⊆ U₁ L₂ : Set G h1L₂ : L₂ ∈ 𝓝 1 V₂ : Set G h1V₂ : V₂ ⊆ L₂ h2V₂ : IsOpen V₂ h3V₂ : 1 ∈ V₂ h2L₂ : K₂.carrier * V₂ ⊆ U₂ eval : (Compacts G → ℝ) → ℝ := fun f => f K₁ + f K₂ - f (K₁ ⊔ K₂) this : Continuous eval V : Set G := V₁ ∩ V₂ U : Set G h1U : U ⊆ ↑{ toOpens := { carrier := V⁻¹, is_open' := (_ : IsOpen ((fun a => a⁻¹) ⁻¹' (V₁ ∩ V₂))) }, mem' := (_ : 1 ∈ (V₁ ∩ V₂)⁻¹) }.toOpens h2U : IsOpen U h3U : 1 ∈ U ⊢ prehaar (↑K₀) U K₁ + prehaar (↑K₀) U K₂ = prehaar (↑K₀) U (K₁ ⊔ K₂) [PROOFSTEP] rw [eq_comm] [GOAL] case intro.intro.intro.intro G : Type u_1 inst✝³ : Group G inst✝² : TopologicalSpace G inst✝¹ : TopologicalGroup G inst✝ : T2Space G K₀ : PositiveCompacts G K₁ K₂ : Compacts G h : Disjoint K₁.carrier K₂.carrier U₁ U₂ : Set G h1U₁ : IsOpen U₁ h1U₂ : IsOpen U₂ h2U₁ : K₁.carrier ⊆ U₁ h2U₂ : K₂.carrier ⊆ U₂ hU : Disjoint U₁ U₂ L₁ : Set G h1L₁ : L₁ ∈ 𝓝 1 V₁ : Set G h1V₁ : V₁ ⊆ L₁ h2V₁ : IsOpen V₁ h3V₁ : 1 ∈ V₁ h2L₁ : K₁.carrier * V₁ ⊆ U₁ L₂ : Set G h1L₂ : L₂ ∈ 𝓝 1 V₂ : Set G h1V₂ : V₂ ⊆ L₂ h2V₂ : IsOpen V₂ h3V₂ : 1 ∈ V₂ h2L₂ : K₂.carrier * V₂ ⊆ U₂ eval : (Compacts G → ℝ) → ℝ := fun f => f K₁ + f K₂ - f (K₁ ⊔ K₂) this : Continuous eval V : Set G := V₁ ∩ V₂ U : Set G h1U : U ⊆ ↑{ toOpens := { carrier := V⁻¹, is_open' := (_ : IsOpen ((fun a => a⁻¹) ⁻¹' (V₁ ∩ V₂))) }, mem' := (_ : 1 ∈ (V₁ ∩ V₂)⁻¹) }.toOpens h2U : IsOpen U h3U : 1 ∈ U ⊢ prehaar (↑K₀) U (K₁ ⊔ K₂) = prehaar (↑K₀) U K₁ + prehaar (↑K₀) U K₂ [PROOFSTEP] apply prehaar_sup_eq [GOAL] case intro.intro.intro.intro.hU G : Type u_1 inst✝³ : Group G inst✝² : TopologicalSpace G inst✝¹ : TopologicalGroup G inst✝ : T2Space G K₀ : PositiveCompacts G K₁ K₂ : Compacts G h : Disjoint K₁.carrier K₂.carrier U₁ U₂ : Set G h1U₁ : IsOpen U₁ h1U₂ : IsOpen U₂ h2U₁ : K₁.carrier ⊆ U₁ h2U₂ : K₂.carrier ⊆ U₂ hU : Disjoint U₁ U₂ L₁ : Set G h1L₁ : L₁ ∈ 𝓝 1 V₁ : Set G h1V₁ : V₁ ⊆ L₁ h2V₁ : IsOpen V₁ h3V₁ : 1 ∈ V₁ h2L₁ : K₁.carrier * V₁ ⊆ U₁ L₂ : Set G h1L₂ : L₂ ∈ 𝓝 1 V₂ : Set G h1V₂ : V₂ ⊆ L₂ h2V₂ : IsOpen V₂ h3V₂ : 1 ∈ V₂ h2L₂ : K₂.carrier * V₂ ⊆ U₂ eval : (Compacts G → ℝ) → ℝ := fun f => f K₁ + f K₂ - f (K₁ ⊔ K₂) this : Continuous eval V : Set G := V₁ ∩ V₂ U : Set G h1U : U ⊆ ↑{ toOpens := { carrier := V⁻¹, is_open' := (_ : IsOpen ((fun a => a⁻¹) ⁻¹' (V₁ ∩ V₂))) }, mem' := (_ : 1 ∈ (V₁ ∩ V₂)⁻¹) }.toOpens h2U : IsOpen U h3U : 1 ∈ U ⊢ Set.Nonempty (interior U) [PROOFSTEP] rw [h2U.interior_eq] [GOAL] case intro.intro.intro.intro.hU G : Type u_1 inst✝³ : Group G inst✝² : TopologicalSpace G inst✝¹ : TopologicalGroup G inst✝ : T2Space G K₀ : PositiveCompacts G K₁ K₂ : Compacts G h : Disjoint K₁.carrier K₂.carrier U₁ U₂ : Set G h1U₁ : IsOpen U₁ h1U₂ : IsOpen U₂ h2U₁ : K₁.carrier ⊆ U₁ h2U₂ : K₂.carrier ⊆ U₂ hU : Disjoint U₁ U₂ L₁ : Set G h1L₁ : L₁ ∈ 𝓝 1 V₁ : Set G h1V₁ : V₁ ⊆ L₁ h2V₁ : IsOpen V₁ h3V₁ : 1 ∈ V₁ h2L₁ : K₁.carrier * V₁ ⊆ U₁ L₂ : Set G h1L₂ : L₂ ∈ 𝓝 1 V₂ : Set G h1V₂ : V₂ ⊆ L₂ h2V₂ : IsOpen V₂ h3V₂ : 1 ∈ V₂ h2L₂ : K₂.carrier * V₂ ⊆ U₂ eval : (Compacts G → ℝ) → ℝ := fun f => f K₁ + f K₂ - f (K₁ ⊔ K₂) this : Continuous eval V : Set G := V₁ ∩ V₂ U : Set G h1U : U ⊆ ↑{ toOpens := { carrier := V⁻¹, is_open' := (_ : IsOpen ((fun a => a⁻¹) ⁻¹' (V₁ ∩ V₂))) }, mem' := (_ : 1 ∈ (V₁ ∩ V₂)⁻¹) }.toOpens h2U : IsOpen U h3U : 1 ∈ U ⊢ Set.Nonempty U [PROOFSTEP] exact ⟨1, h3U⟩ [GOAL] case intro.intro.intro.intro.h G : Type u_1 inst✝³ : Group G inst✝² : TopologicalSpace G inst✝¹ : TopologicalGroup G inst✝ : T2Space G K₀ : PositiveCompacts G K₁ K₂ : Compacts G h : Disjoint K₁.carrier K₂.carrier U₁ U₂ : Set G h1U₁ : IsOpen U₁ h1U₂ : IsOpen U₂ h2U₁ : K₁.carrier ⊆ U₁ h2U₂ : K₂.carrier ⊆ U₂ hU : Disjoint U₁ U₂ L₁ : Set G h1L₁ : L₁ ∈ 𝓝 1 V₁ : Set G h1V₁ : V₁ ⊆ L₁ h2V₁ : IsOpen V₁ h3V₁ : 1 ∈ V₁ h2L₁ : K₁.carrier * V₁ ⊆ U₁ L₂ : Set G h1L₂ : L₂ ∈ 𝓝 1 V₂ : Set G h1V₂ : V₂ ⊆ L₂ h2V₂ : IsOpen V₂ h3V₂ : 1 ∈ V₂ h2L₂ : K₂.carrier * V₂ ⊆ U₂ eval : (Compacts G → ℝ) → ℝ := fun f => f K₁ + f K₂ - f (K₁ ⊔ K₂) this : Continuous eval V : Set G := V₁ ∩ V₂ U : Set G h1U : U ⊆ ↑{ toOpens := { carrier := V⁻¹, is_open' := (_ : IsOpen ((fun a => a⁻¹) ⁻¹' (V₁ ∩ V₂))) }, mem' := (_ : 1 ∈ (V₁ ∩ V₂)⁻¹) }.toOpens h2U : IsOpen U h3U : 1 ∈ U ⊢ Disjoint (K₁.carrier * U⁻¹) (K₂.carrier * U⁻¹) [PROOFSTEP] refine' disjoint_of_subset _ _ hU [GOAL] case intro.intro.intro.intro.h.refine'_1 G : Type u_1 inst✝³ : Group G inst✝² : TopologicalSpace G inst✝¹ : TopologicalGroup G inst✝ : T2Space G K₀ : PositiveCompacts G K₁ K₂ : Compacts G h : Disjoint K₁.carrier K₂.carrier U₁ U₂ : Set G h1U₁ : IsOpen U₁ h1U₂ : IsOpen U₂ h2U₁ : K₁.carrier ⊆ U₁ h2U₂ : K₂.carrier ⊆ U₂ hU : Disjoint U₁ U₂ L₁ : Set G h1L₁ : L₁ ∈ 𝓝 1 V₁ : Set G h1V₁ : V₁ ⊆ L₁ h2V₁ : IsOpen V₁ h3V₁ : 1 ∈ V₁ h2L₁ : K₁.carrier * V₁ ⊆ U₁ L₂ : Set G h1L₂ : L₂ ∈ 𝓝 1 V₂ : Set G h1V₂ : V₂ ⊆ L₂ h2V₂ : IsOpen V₂ h3V₂ : 1 ∈ V₂ h2L₂ : K₂.carrier * V₂ ⊆ U₂ eval : (Compacts G → ℝ) → ℝ := fun f => f K₁ + f K₂ - f (K₁ ⊔ K₂) this : Continuous eval V : Set G := V₁ ∩ V₂ U : Set G h1U : U ⊆ ↑{ toOpens := { carrier := V⁻¹, is_open' := (_ : IsOpen ((fun a => a⁻¹) ⁻¹' (V₁ ∩ V₂))) }, mem' := (_ : 1 ∈ (V₁ ∩ V₂)⁻¹) }.toOpens h2U : IsOpen U h3U : 1 ∈ U ⊢ K₁.carrier * U⁻¹ ⊆ U₁ [PROOFSTEP] refine' Subset.trans (mul_subset_mul Subset.rfl _) h2L₁ [GOAL] case intro.intro.intro.intro.h.refine'_1 G : Type u_1 inst✝³ : Group G inst✝² : TopologicalSpace G inst✝¹ : TopologicalGroup G inst✝ : T2Space G K₀ : PositiveCompacts G K₁ K₂ : Compacts G h : Disjoint K₁.carrier K₂.carrier U₁ U₂ : Set G h1U₁ : IsOpen U₁ h1U₂ : IsOpen U₂ h2U₁ : K₁.carrier ⊆ U₁ h2U₂ : K₂.carrier ⊆ U₂ hU : Disjoint U₁ U₂ L₁ : Set G h1L₁ : L₁ ∈ 𝓝 1 V₁ : Set G h1V₁ : V₁ ⊆ L₁ h2V₁ : IsOpen V₁ h3V₁ : 1 ∈ V₁ h2L₁ : K₁.carrier * V₁ ⊆ U₁ L₂ : Set G h1L₂ : L₂ ∈ 𝓝 1 V₂ : Set G h1V₂ : V₂ ⊆ L₂ h2V₂ : IsOpen V₂ h3V₂ : 1 ∈ V₂ h2L₂ : K₂.carrier * V₂ ⊆ U₂ eval : (Compacts G → ℝ) → ℝ := fun f => f K₁ + f K₂ - f (K₁ ⊔ K₂) this : Continuous eval V : Set G := V₁ ∩ V₂ U : Set G h1U : U ⊆ ↑{ toOpens := { carrier := V⁻¹, is_open' := (_ : IsOpen ((fun a => a⁻¹) ⁻¹' (V₁ ∩ V₂))) }, mem' := (_ : 1 ∈ (V₁ ∩ V₂)⁻¹) }.toOpens h2U : IsOpen U h3U : 1 ∈ U ⊢ U⁻¹ ⊆ V₁ [PROOFSTEP] exact Subset.trans (inv_subset.mpr h1U) (inter_subset_left _ _) [GOAL] case intro.intro.intro.intro.h.refine'_2 G : Type u_1 inst✝³ : Group G inst✝² : TopologicalSpace G inst✝¹ : TopologicalGroup G inst✝ : T2Space G K₀ : PositiveCompacts G K₁ K₂ : Compacts G h : Disjoint K₁.carrier K₂.carrier U₁ U₂ : Set G h1U₁ : IsOpen U₁ h1U₂ : IsOpen U₂ h2U₁ : K₁.carrier ⊆ U₁ h2U₂ : K₂.carrier ⊆ U₂ hU : Disjoint U₁ U₂ L₁ : Set G h1L₁ : L₁ ∈ 𝓝 1 V₁ : Set G h1V₁ : V₁ ⊆ L₁ h2V₁ : IsOpen V₁ h3V₁ : 1 ∈ V₁ h2L₁ : K₁.carrier * V₁ ⊆ U₁ L₂ : Set G h1L₂ : L₂ ∈ 𝓝 1 V₂ : Set G h1V₂ : V₂ ⊆ L₂ h2V₂ : IsOpen V₂ h3V₂ : 1 ∈ V₂ h2L₂ : K₂.carrier * V₂ ⊆ U₂ eval : (Compacts G → ℝ) → ℝ := fun f => f K₁ + f K₂ - f (K₁ ⊔ K₂) this : Continuous eval V : Set G := V₁ ∩ V₂ U : Set G h1U : U ⊆ ↑{ toOpens := { carrier := V⁻¹, is_open' := (_ : IsOpen ((fun a => a⁻¹) ⁻¹' (V₁ ∩ V₂))) }, mem' := (_ : 1 ∈ (V₁ ∩ V₂)⁻¹) }.toOpens h2U : IsOpen U h3U : 1 ∈ U ⊢ K₂.carrier * U⁻¹ ⊆ U₂ [PROOFSTEP] refine' Subset.trans (mul_subset_mul Subset.rfl _) h2L₂ [GOAL] case intro.intro.intro.intro.h.refine'_2 G : Type u_1 inst✝³ : Group G inst✝² : TopologicalSpace G inst✝¹ : TopologicalGroup G inst✝ : T2Space G K₀ : PositiveCompacts G K₁ K₂ : Compacts G h : Disjoint K₁.carrier K₂.carrier U₁ U₂ : Set G h1U₁ : IsOpen U₁ h1U₂ : IsOpen U₂ h2U₁ : K₁.carrier ⊆ U₁ h2U₂ : K₂.carrier ⊆ U₂ hU : Disjoint U₁ U₂ L₁ : Set G h1L₁ : L₁ ∈ 𝓝 1 V₁ : Set G h1V₁ : V₁ ⊆ L₁ h2V₁ : IsOpen V₁ h3V₁ : 1 ∈ V₁ h2L₁ : K₁.carrier * V₁ ⊆ U₁ L₂ : Set G h1L₂ : L₂ ∈ 𝓝 1 V₂ : Set G h1V₂ : V₂ ⊆ L₂ h2V₂ : IsOpen V₂ h3V₂ : 1 ∈ V₂ h2L₂ : K₂.carrier * V₂ ⊆ U₂ eval : (Compacts G → ℝ) → ℝ := fun f => f K₁ + f K₂ - f (K₁ ⊔ K₂) this : Continuous eval V : Set G := V₁ ∩ V₂ U : Set G h1U : U ⊆ ↑{ toOpens := { carrier := V⁻¹, is_open' := (_ : IsOpen ((fun a => a⁻¹) ⁻¹' (V₁ ∩ V₂))) }, mem' := (_ : 1 ∈ (V₁ ∩ V₂)⁻¹) }.toOpens h2U : IsOpen U h3U : 1 ∈ U ⊢ U⁻¹ ⊆ V₂ [PROOFSTEP] exact Subset.trans (inv_subset.mpr h1U) (inter_subset_right _ _) [GOAL] G : Type u_1 inst✝³ : Group G inst✝² : TopologicalSpace G inst✝¹ : TopologicalGroup G inst✝ : T2Space G K₀ : PositiveCompacts G K₁ K₂ : Compacts G h : Disjoint K₁.carrier K₂.carrier U₁ U₂ : Set G h1U₁ : IsOpen U₁ h1U₂ : IsOpen U₂ h2U₁ : K₁.carrier ⊆ U₁ h2U₂ : K₂.carrier ⊆ U₂ hU : Disjoint U₁ U₂ L₁ : Set G h1L₁ : L₁ ∈ 𝓝 1 V₁ : Set G h1V₁ : V₁ ⊆ L₁ h2V₁ : IsOpen V₁ h3V₁ : 1 ∈ V₁ h2L₁ : K₁.carrier * V₁ ⊆ U₁ L₂ : Set G h1L₂ : L₂ ∈ 𝓝 1 V₂ : Set G h1V₂ : V₂ ⊆ L₂ h2V₂ : IsOpen V₂ h3V₂ : 1 ∈ V₂ h2L₂ : K₂.carrier * V₂ ⊆ U₂ eval : (Compacts G → ℝ) → ℝ := fun f => f K₁ + f K₂ - f (K₁ ⊔ K₂) this : Continuous eval V : Set G := V₁ ∩ V₂ ⊢ IsClosed (eval ⁻¹' {0}) [PROOFSTEP] apply continuous_iff_isClosed.mp this [GOAL] case a G : Type u_1 inst✝³ : Group G inst✝² : TopologicalSpace G inst✝¹ : TopologicalGroup G inst✝ : T2Space G K₀ : PositiveCompacts G K₁ K₂ : Compacts G h : Disjoint K₁.carrier K₂.carrier U₁ U₂ : Set G h1U₁ : IsOpen U₁ h1U₂ : IsOpen U₂ h2U₁ : K₁.carrier ⊆ U₁ h2U₂ : K₂.carrier ⊆ U₂ hU : Disjoint U₁ U₂ L₁ : Set G h1L₁ : L₁ ∈ 𝓝 1 V₁ : Set G h1V₁ : V₁ ⊆ L₁ h2V₁ : IsOpen V₁ h3V₁ : 1 ∈ V₁ h2L₁ : K₁.carrier * V₁ ⊆ U₁ L₂ : Set G h1L₂ : L₂ ∈ 𝓝 1 V₂ : Set G h1V₂ : V₂ ⊆ L₂ h2V₂ : IsOpen V₂ h3V₂ : 1 ∈ V₂ h2L₂ : K₂.carrier * V₂ ⊆ U₂ eval : (Compacts G → ℝ) → ℝ := fun f => f K₁ + f K₂ - f (K₁ ⊔ K₂) this : Continuous eval V : Set G := V₁ ∩ V₂ ⊢ IsClosed {0} [PROOFSTEP] exact isClosed_singleton [GOAL] G : Type u_1 inst✝² : Group G inst✝¹ : TopologicalSpace G inst✝ : TopologicalGroup G K₀ : PositiveCompacts G g : G K : Compacts G ⊢ chaar K₀ (Compacts.map (fun b => g * b) (_ : Continuous fun b => g * b) K) = chaar K₀ K [PROOFSTEP] let eval : (Compacts G → ℝ) → ℝ := fun f => f (K.map _ <| continuous_mul_left g) - f K [GOAL] G : Type u_1 inst✝² : Group G inst✝¹ : TopologicalSpace G inst✝ : TopologicalGroup G K₀ : PositiveCompacts G g : G K : Compacts G eval : (Compacts G → ℝ) → ℝ := fun f => f (Compacts.map (fun b => g * b) (_ : Continuous fun b => g * b) K) - f K ⊢ chaar K₀ (Compacts.map (fun b => g * b) (_ : Continuous fun b => g * b) K) = chaar K₀ K [PROOFSTEP] have : Continuous eval := (continuous_apply (K.map _ _)).sub (continuous_apply K) [GOAL] G : Type u_1 inst✝² : Group G inst✝¹ : TopologicalSpace G inst✝ : TopologicalGroup G K₀ : PositiveCompacts G g : G K : Compacts G eval : (Compacts G → ℝ) → ℝ := fun f => f (Compacts.map (fun b => g * b) (_ : Continuous fun b => g * b) K) - f K this : Continuous eval ⊢ chaar K₀ (Compacts.map (fun b => g * b) (_ : Continuous fun b => g * b) K) = chaar K₀ K [PROOFSTEP] rw [← sub_eq_zero] [GOAL] G : Type u_1 inst✝² : Group G inst✝¹ : TopologicalSpace G inst✝ : TopologicalGroup G K₀ : PositiveCompacts G g : G K : Compacts G eval : (Compacts G → ℝ) → ℝ := fun f => f (Compacts.map (fun b => g * b) (_ : Continuous fun b => g * b) K) - f K this : Continuous eval ⊢ chaar K₀ (Compacts.map (fun b => g * b) (_ : Continuous fun b => g * b) K) - chaar K₀ K = 0 [PROOFSTEP] show chaar K₀ ∈ eval ⁻¹' {(0 : ℝ)} [GOAL] G : Type u_1 inst✝² : Group G inst✝¹ : TopologicalSpace G inst✝ : TopologicalGroup G K₀ : PositiveCompacts G g : G K : Compacts G eval : (Compacts G → ℝ) → ℝ := fun f => f (Compacts.map (fun b => g * b) (_ : Continuous fun b => g * b) K) - f K this : Continuous eval ⊢ chaar K₀ ∈ eval ⁻¹' {0} [PROOFSTEP] apply mem_of_subset_of_mem _ (chaar_mem_clPrehaar K₀ ⊤) [GOAL] G : Type u_1 inst✝² : Group G inst✝¹ : TopologicalSpace G inst✝ : TopologicalGroup G K₀ : PositiveCompacts G g : G K : Compacts G eval : (Compacts G → ℝ) → ℝ := fun f => f (Compacts.map (fun b => g * b) (_ : Continuous fun b => g * b) K) - f K this : Continuous eval ⊢ clPrehaar ↑K₀ ⊤ ⊆ eval ⁻¹' {0} [PROOFSTEP] unfold clPrehaar [GOAL] G : Type u_1 inst✝² : Group G inst✝¹ : TopologicalSpace G inst✝ : TopologicalGroup G K₀ : PositiveCompacts G g : G K : Compacts G eval : (Compacts G → ℝ) → ℝ := fun f => f (Compacts.map (fun b => g * b) (_ : Continuous fun b => g * b) K) - f K this : Continuous eval ⊢ closure (prehaar ↑K₀ '' {U | U ⊆ ↑⊤.toOpens ∧ IsOpen U ∧ 1 ∈ U}) ⊆ eval ⁻¹' {0} [PROOFSTEP] rw [IsClosed.closure_subset_iff] [GOAL] G : Type u_1 inst✝² : Group G inst✝¹ : TopologicalSpace G inst✝ : TopologicalGroup G K₀ : PositiveCompacts G g : G K : Compacts G eval : (Compacts G → ℝ) → ℝ := fun f => f (Compacts.map (fun b => g * b) (_ : Continuous fun b => g * b) K) - f K this : Continuous eval ⊢ prehaar ↑K₀ '' {U | U ⊆ ↑⊤.toOpens ∧ IsOpen U ∧ 1 ∈ U} ⊆ eval ⁻¹' {0} [PROOFSTEP] rintro _ ⟨U, ⟨_, h2U, h3U⟩, rfl⟩ [GOAL] case intro.intro.intro.intro G : Type u_1 inst✝² : Group G inst✝¹ : TopologicalSpace G inst✝ : TopologicalGroup G K₀ : PositiveCompacts G g : G K : Compacts G eval : (Compacts G → ℝ) → ℝ := fun f => f (Compacts.map (fun b => g * b) (_ : Continuous fun b => g * b) K) - f K this : Continuous eval U : Set G left✝ : U ⊆ ↑⊤.toOpens h2U : IsOpen U h3U : 1 ∈ U ⊢ prehaar (↑K₀) U ∈ eval ⁻¹' {0} [PROOFSTEP] simp only [mem_singleton_iff, mem_preimage, sub_eq_zero] [GOAL] case intro.intro.intro.intro G : Type u_1 inst✝² : Group G inst✝¹ : TopologicalSpace G inst✝ : TopologicalGroup G K₀ : PositiveCompacts G g : G K : Compacts G eval : (Compacts G → ℝ) → ℝ := fun f => f (Compacts.map (fun b => g * b) (_ : Continuous fun b => g * b) K) - f K this : Continuous eval U : Set G left✝ : U ⊆ ↑⊤.toOpens h2U : IsOpen U h3U : 1 ∈ U ⊢ prehaar (↑K₀) U (Compacts.map (fun b => g * b) (_ : Continuous fun b => g * b) K) = prehaar (↑K₀) U K [PROOFSTEP] apply is_left_invariant_prehaar [GOAL] case intro.intro.intro.intro.hU G : Type u_1 inst✝² : Group G inst✝¹ : TopologicalSpace G inst✝ : TopologicalGroup G K₀ : PositiveCompacts G g : G K : Compacts G eval : (Compacts G → ℝ) → ℝ := fun f => f (Compacts.map (fun b => g * b) (_ : Continuous fun b => g * b) K) - f K this : Continuous eval U : Set G left✝ : U ⊆ ↑⊤.toOpens h2U : IsOpen U h3U : 1 ∈ U ⊢ Set.Nonempty (interior U) [PROOFSTEP] rw [h2U.interior_eq] [GOAL] case intro.intro.intro.intro.hU G : Type u_1 inst✝² : Group G inst✝¹ : TopologicalSpace G inst✝ : TopologicalGroup G K₀ : PositiveCompacts G g : G K : Compacts G eval : (Compacts G → ℝ) → ℝ := fun f => f (Compacts.map (fun b => g * b) (_ : Continuous fun b => g * b) K) - f K this : Continuous eval U : Set G left✝ : U ⊆ ↑⊤.toOpens h2U : IsOpen U h3U : 1 ∈ U ⊢ Set.Nonempty U [PROOFSTEP] exact ⟨1, h3U⟩ [GOAL] G : Type u_1 inst✝² : Group G inst✝¹ : TopologicalSpace G inst✝ : TopologicalGroup G K₀ : PositiveCompacts G g : G K : Compacts G eval : (Compacts G → ℝ) → ℝ := fun f => f (Compacts.map (fun b => g * b) (_ : Continuous fun b => g * b) K) - f K this : Continuous eval ⊢ IsClosed (eval ⁻¹' {0}) [PROOFSTEP] apply continuous_iff_isClosed.mp this [GOAL] case a G : Type u_1 inst✝² : Group G inst✝¹ : TopologicalSpace G inst✝ : TopologicalGroup G K₀ : PositiveCompacts G g : G K : Compacts G eval : (Compacts G → ℝ) → ℝ := fun f => f (Compacts.map (fun b => g * b) (_ : Continuous fun b => g * b) K) - f K this : Continuous eval ⊢ IsClosed {0} [PROOFSTEP] exact isClosed_singleton [GOAL] G : Type u_1 inst✝³ : Group G inst✝² : TopologicalSpace G inst✝¹ : TopologicalGroup G inst✝ : T2Space G K₀ : PositiveCompacts G K₁ K₂ : Compacts G h : ↑K₁ ⊆ ↑K₂ ⊢ (fun K => { val := chaar K₀ K, property := (_ : 0 ≤ chaar K₀ K) }) K₁ ≤ (fun K => { val := chaar K₀ K, property := (_ : 0 ≤ chaar K₀ K) }) K₂ [PROOFSTEP] simp only [← NNReal.coe_le_coe, NNReal.toReal, chaar_mono, h] [GOAL] G : Type u_1 inst✝³ : Group G inst✝² : TopologicalSpace G inst✝¹ : TopologicalGroup G inst✝ : T2Space G K₀ : PositiveCompacts G K₁ K₂ : Compacts G h : Disjoint ↑K₁ ↑K₂ ⊢ (fun K => { val := chaar K₀ K, property := (_ : 0 ≤ chaar K₀ K) }) (K₁ ⊔ K₂) = (fun K => { val := chaar K₀ K, property := (_ : 0 ≤ chaar K₀ K) }) K₁ + (fun K => { val := chaar K₀ K, property := (_ : 0 ≤ chaar K₀ K) }) K₂ [PROOFSTEP] simp only [chaar_sup_eq h] [GOAL] G : Type u_1 inst✝³ : Group G inst✝² : TopologicalSpace G inst✝¹ : TopologicalGroup G inst✝ : T2Space G K₀ : PositiveCompacts G K₁ K₂ : Compacts G h : Disjoint ↑K₁ ↑K₂ ⊢ { val := chaar K₀ K₁ + chaar K₀ K₂, property := (_ : (fun r => 0 ≤ r) (chaar K₀ K₁ + chaar K₀ K₂)) } = { val := chaar K₀ K₁, property := (_ : 0 ≤ chaar K₀ K₁) } + { val := chaar K₀ K₂, property := (_ : 0 ≤ chaar K₀ K₂) } [PROOFSTEP] rfl [GOAL] G : Type u_1 inst✝³ : Group G inst✝² : TopologicalSpace G inst✝¹ : TopologicalGroup G inst✝ : T2Space G K₀ : PositiveCompacts G K₁ K₂ : Compacts G ⊢ (fun K => { val := chaar K₀ K, property := (_ : 0 ≤ chaar K₀ K) }) (K₁ ⊔ K₂) ≤ (fun K => { val := chaar K₀ K, property := (_ : 0 ≤ chaar K₀ K) }) K₁ + (fun K => { val := chaar K₀ K, property := (_ : 0 ≤ chaar K₀ K) }) K₂ [PROOFSTEP] simp only [← NNReal.coe_le_coe, NNReal.coe_add] [GOAL] G : Type u_1 inst✝³ : Group G inst✝² : TopologicalSpace G inst✝¹ : TopologicalGroup G inst✝ : T2Space G K₀ : PositiveCompacts G K₁ K₂ : Compacts G ⊢ ↑{ val := chaar K₀ (K₁ ⊔ K₂), property := (_ : 0 ≤ chaar K₀ (K₁ ⊔ K₂)) } ≤ ↑{ val := chaar K₀ K₁, property := (_ : 0 ≤ chaar K₀ K₁) } + ↑{ val := chaar K₀ K₂, property := (_ : 0 ≤ chaar K₀ K₂) } [PROOFSTEP] simp only [NNReal.toReal, chaar_sup_le] [GOAL] G : Type u_1 inst✝³ : Group G inst✝² : TopologicalSpace G inst✝¹ : TopologicalGroup G inst✝ : T2Space G K₀ : PositiveCompacts G ⊢ (fun s => ↑(Content.toFun (haarContent K₀) s)) K₀.toCompacts = 1 [PROOFSTEP] simp_rw [← ENNReal.coe_one, haarContent_apply, ENNReal.coe_eq_coe, chaar_self] [GOAL] G : Type u_1 inst✝³ : Group G inst✝² : TopologicalSpace G inst✝¹ : TopologicalGroup G inst✝ : T2Space G K₀ : PositiveCompacts G ⊢ { val := 1, property := (_ : (fun r => 0 ≤ r) 1) } = 1 [PROOFSTEP] rfl [GOAL] G : Type u_1 inst✝³ : Group G inst✝² : TopologicalSpace G inst✝¹ : TopologicalGroup G inst✝ : T2Space G K₀ : PositiveCompacts G g : G K : Compacts G ⊢ (fun s => ↑(Content.toFun (haarContent K₀) s)) (Compacts.map (fun b => g * b) (_ : Continuous fun b => g * b) K) = (fun s => ↑(Content.toFun (haarContent K₀) s)) K [PROOFSTEP] simpa only [ENNReal.coe_eq_coe, ← NNReal.coe_eq, haarContent_apply] using is_left_invariant_chaar g K [GOAL] G : Type u_1 inst✝³ : Group G inst✝² : TopologicalSpace G inst✝¹ : TopologicalGroup G inst✝ : T2Space G K₀ : PositiveCompacts G ⊢ 0 < ↑(Content.outerMeasure (haarContent K₀)) ↑K₀ [PROOFSTEP] refine' zero_lt_one.trans_le _ [GOAL] G : Type u_1 inst✝³ : Group G inst✝² : TopologicalSpace G inst✝¹ : TopologicalGroup G inst✝ : T2Space G K₀ : PositiveCompacts G ⊢ 1 ≤ ↑(Content.outerMeasure (haarContent K₀)) ↑K₀ [PROOFSTEP] rw [Content.outerMeasure_eq_iInf] [GOAL] G : Type u_1 inst✝³ : Group G inst✝² : TopologicalSpace G inst✝¹ : TopologicalGroup G inst✝ : T2Space G K₀ : PositiveCompacts G ⊢ 1 ≤ ⨅ (U : Set G) (hU : IsOpen U) (_ : ↑K₀ ⊆ U), Content.innerContent (haarContent K₀) { carrier := U, is_open' := hU } [PROOFSTEP] refine' le_iInf₂ fun U hU => le_iInf fun hK₀ => le_trans _ <| le_iSup₂ K₀.toCompacts hK₀ [GOAL] G : Type u_1 inst✝³ : Group G inst✝² : TopologicalSpace G inst✝¹ : TopologicalGroup G inst✝ : T2Space G K₀ : PositiveCompacts G U : Set G hU : IsOpen U hK₀ : ↑K₀ ⊆ U ⊢ 1 ≤ (fun s => ↑(Content.toFun (haarContent K₀) s)) K₀.toCompacts [PROOFSTEP] exact haarContent_self.ge [GOAL] G : Type u_1 inst✝⁵ : Group G inst✝⁴ : TopologicalSpace G inst✝³ : T2Space G inst✝² : TopologicalGroup G inst✝¹ : MeasurableSpace G inst✝ : BorelSpace G K₀ : PositiveCompacts G s : Set G hs : MeasurableSet s ⊢ ↑↑(haarMeasure K₀) s = ↑(Content.outerMeasure (haarContent K₀)) s / ↑(Content.outerMeasure (haarContent K₀)) ↑K₀ [PROOFSTEP] change ((haarContent K₀).outerMeasure K₀)⁻¹ * (haarContent K₀).measure s = _ [GOAL] G : Type u_1 inst✝⁵ : Group G inst✝⁴ : TopologicalSpace G inst✝³ : T2Space G inst✝² : TopologicalGroup G inst✝¹ : MeasurableSpace G inst✝ : BorelSpace G K₀ : PositiveCompacts G s : Set G hs : MeasurableSet s ⊢ (↑(Content.outerMeasure (haarContent K₀)) ↑K₀)⁻¹ * ↑↑(Content.measure (haarContent K₀)) s = ↑(Content.outerMeasure (haarContent K₀)) s / ↑(Content.outerMeasure (haarContent K₀)) ↑K₀ [PROOFSTEP] simp only [hs, div_eq_mul_inv, mul_comm, Content.measure_apply] [GOAL] G : Type u_1 inst✝⁵ : Group G inst✝⁴ : TopologicalSpace G inst✝³ : T2Space G inst✝² : TopologicalGroup G inst✝¹ : MeasurableSpace G inst✝ : BorelSpace G K₀ : PositiveCompacts G ⊢ IsMulLeftInvariant (haarMeasure K₀) [PROOFSTEP] rw [← forall_measure_preimage_mul_iff] [GOAL] G : Type u_1 inst✝⁵ : Group G inst✝⁴ : TopologicalSpace G inst✝³ : T2Space G inst✝² : TopologicalGroup G inst✝¹ : MeasurableSpace G inst✝ : BorelSpace G K₀ : PositiveCompacts G ⊢ ∀ (g : G) (A : Set G), MeasurableSet A → ↑↑(haarMeasure K₀) ((fun h => g * h) ⁻¹' A) = ↑↑(haarMeasure K₀) A [PROOFSTEP] intro g A hA [GOAL] G : Type u_1 inst✝⁵ : Group G inst✝⁴ : TopologicalSpace G inst✝³ : T2Space G inst✝² : TopologicalGroup G inst✝¹ : MeasurableSpace G inst✝ : BorelSpace G K₀ : PositiveCompacts G g : G A : Set G hA : MeasurableSet A ⊢ ↑↑(haarMeasure K₀) ((fun h => g * h) ⁻¹' A) = ↑↑(haarMeasure K₀) A [PROOFSTEP] rw [haarMeasure_apply hA, haarMeasure_apply (measurable_const_mul g hA)] -- Porting note: Here was `congr 1`, but `to_additive` failed to generate a theorem. [GOAL] G : Type u_1 inst✝⁵ : Group G inst✝⁴ : TopologicalSpace G inst✝³ : T2Space G inst✝² : TopologicalGroup G inst✝¹ : MeasurableSpace G inst✝ : BorelSpace G K₀ : PositiveCompacts G g : G A : Set G hA : MeasurableSet A ⊢ ↑(Content.outerMeasure (haarContent K₀)) ((fun x => g * x) ⁻¹' A) / ↑(Content.outerMeasure (haarContent K₀)) ↑K₀ = ↑(Content.outerMeasure (haarContent K₀)) A / ↑(Content.outerMeasure (haarContent K₀)) ↑K₀ [PROOFSTEP] refine congr_arg (fun x : ℝ≥0∞ => x / (haarContent K₀).outerMeasure K₀) ?_ [GOAL] G : Type u_1 inst✝⁵ : Group G inst✝⁴ : TopologicalSpace G inst✝³ : T2Space G inst✝² : TopologicalGroup G inst✝¹ : MeasurableSpace G inst✝ : BorelSpace G K₀ : PositiveCompacts G g : G A : Set G hA : MeasurableSet A ⊢ ↑(Content.outerMeasure (haarContent K₀)) ((fun x => g * x) ⁻¹' A) = ↑(Content.outerMeasure (haarContent K₀)) A [PROOFSTEP] apply Content.is_mul_left_invariant_outerMeasure [GOAL] case h G : Type u_1 inst✝⁵ : Group G inst✝⁴ : TopologicalSpace G inst✝³ : T2Space G inst✝² : TopologicalGroup G inst✝¹ : MeasurableSpace G inst✝ : BorelSpace G K₀ : PositiveCompacts G g : G A : Set G hA : MeasurableSet A ⊢ ∀ (g : G) {K : Compacts G}, (fun s => ↑(Content.toFun (haarContent K₀) s)) (Compacts.map (fun b => g * b) (_ : Continuous fun b => g * b) K) = (fun s => ↑(Content.toFun (haarContent K₀) s)) K [PROOFSTEP] apply is_left_invariant_haarContent [GOAL] G : Type u_1 inst✝⁵ : Group G inst✝⁴ : TopologicalSpace G inst✝³ : T2Space G inst✝² : TopologicalGroup G inst✝¹ : MeasurableSpace G inst✝ : BorelSpace G K₀ : PositiveCompacts G ⊢ ↑↑(haarMeasure K₀) ↑K₀ = 1 [PROOFSTEP] haveI : LocallyCompactSpace G := K₀.locallyCompactSpace_of_group [GOAL] G : Type u_1 inst✝⁵ : Group G inst✝⁴ : TopologicalSpace G inst✝³ : T2Space G inst✝² : TopologicalGroup G inst✝¹ : MeasurableSpace G inst✝ : BorelSpace G K₀ : PositiveCompacts G this : LocallyCompactSpace G ⊢ ↑↑(haarMeasure K₀) ↑K₀ = 1 [PROOFSTEP] rw [haarMeasure_apply K₀.isCompact.measurableSet, ENNReal.div_self] [GOAL] case h0 G : Type u_1 inst✝⁵ : Group G inst✝⁴ : TopologicalSpace G inst✝³ : T2Space G inst✝² : TopologicalGroup G inst✝¹ : MeasurableSpace G inst✝ : BorelSpace G K₀ : PositiveCompacts G this : LocallyCompactSpace G ⊢ ↑(Content.outerMeasure (haarContent K₀)) ↑K₀ ≠ 0 [PROOFSTEP] rw [← pos_iff_ne_zero] [GOAL] case h0 G : Type u_1 inst✝⁵ : Group G inst✝⁴ : TopologicalSpace G inst✝³ : T2Space G inst✝² : TopologicalGroup G inst✝¹ : MeasurableSpace G inst✝ : BorelSpace G K₀ : PositiveCompacts G this : LocallyCompactSpace G ⊢ 0 < ↑(Content.outerMeasure (haarContent K₀)) ↑K₀ [PROOFSTEP] exact haarContent_outerMeasure_self_pos [GOAL] case hI G : Type u_1 inst✝⁵ : Group G inst✝⁴ : TopologicalSpace G inst✝³ : T2Space G inst✝² : TopologicalGroup G inst✝¹ : MeasurableSpace G inst✝ : BorelSpace G K₀ : PositiveCompacts G this : LocallyCompactSpace G ⊢ ↑(Content.outerMeasure (haarContent K₀)) ↑K₀ ≠ ⊤ [PROOFSTEP] exact (Content.outerMeasure_lt_top_of_isCompact _ K₀.isCompact).ne [GOAL] G : Type u_1 inst✝⁵ : Group G inst✝⁴ : TopologicalSpace G inst✝³ : T2Space G inst✝² : TopologicalGroup G inst✝¹ : MeasurableSpace G inst✝ : BorelSpace G K₀ : PositiveCompacts G ⊢ Regular (haarMeasure K₀) [PROOFSTEP] haveI : LocallyCompactSpace G := K₀.locallyCompactSpace_of_group [GOAL] G : Type u_1 inst✝⁵ : Group G inst✝⁴ : TopologicalSpace G inst✝³ : T2Space G inst✝² : TopologicalGroup G inst✝¹ : MeasurableSpace G inst✝ : BorelSpace G K₀ : PositiveCompacts G this : LocallyCompactSpace G ⊢ Regular (haarMeasure K₀) [PROOFSTEP] apply Regular.smul [GOAL] case hx G : Type u_1 inst✝⁵ : Group G inst✝⁴ : TopologicalSpace G inst✝³ : T2Space G inst✝² : TopologicalGroup G inst✝¹ : MeasurableSpace G inst✝ : BorelSpace G K₀ : PositiveCompacts G this : LocallyCompactSpace G ⊢ (↑(Content.outerMeasure (haarContent K₀)) ↑K₀)⁻¹ ≠ ⊤ [PROOFSTEP] rw [ENNReal.inv_ne_top] [GOAL] case hx G : Type u_1 inst✝⁵ : Group G inst✝⁴ : TopologicalSpace G inst✝³ : T2Space G inst✝² : TopologicalGroup G inst✝¹ : MeasurableSpace G inst✝ : BorelSpace G K₀ : PositiveCompacts G this : LocallyCompactSpace G ⊢ ↑(Content.outerMeasure (haarContent K₀)) ↑K₀ ≠ 0 [PROOFSTEP] exact haarContent_outerMeasure_self_pos.ne' [GOAL] G : Type u_1 inst✝⁶ : Group G inst✝⁵ : TopologicalSpace G inst✝⁴ : T2Space G inst✝³ : TopologicalGroup G inst✝² : MeasurableSpace G inst✝¹ : BorelSpace G inst✝ : SecondCountableTopology G K₀ : PositiveCompacts G ⊢ SigmaFinite (haarMeasure K₀) [PROOFSTEP] haveI : LocallyCompactSpace G := K₀.locallyCompactSpace_of_group [GOAL] G : Type u_1 inst✝⁶ : Group G inst✝⁵ : TopologicalSpace G inst✝⁴ : T2Space G inst✝³ : TopologicalGroup G inst✝² : MeasurableSpace G inst✝¹ : BorelSpace G inst✝ : SecondCountableTopology G K₀ : PositiveCompacts G this : LocallyCompactSpace G ⊢ SigmaFinite (haarMeasure K₀) [PROOFSTEP] infer_instance [GOAL] G : Type u_1 inst✝⁵ : Group G inst✝⁴ : TopologicalSpace G inst✝³ : T2Space G inst✝² : TopologicalGroup G inst✝¹ : MeasurableSpace G inst✝ : BorelSpace G K₀ : PositiveCompacts G ⊢ IsHaarMeasure (haarMeasure K₀) [PROOFSTEP] apply isHaarMeasure_of_isCompact_nonempty_interior (haarMeasure K₀) K₀ K₀.isCompact K₀.interior_nonempty [GOAL] case h G : Type u_1 inst✝⁵ : Group G inst✝⁴ : TopologicalSpace G inst✝³ : T2Space G inst✝² : TopologicalGroup G inst✝¹ : MeasurableSpace G inst✝ : BorelSpace G K₀ : PositiveCompacts G ⊢ ↑↑(haarMeasure K₀) ↑K₀ ≠ 0 [PROOFSTEP] simp only [haarMeasure_self] [GOAL] case h G : Type u_1 inst✝⁵ : Group G inst✝⁴ : TopologicalSpace G inst✝³ : T2Space G inst✝² : TopologicalGroup G inst✝¹ : MeasurableSpace G inst✝ : BorelSpace G K₀ : PositiveCompacts G ⊢ 1 ≠ 0 [PROOFSTEP] exact one_ne_zero [GOAL] case h' G : Type u_1 inst✝⁵ : Group G inst✝⁴ : TopologicalSpace G inst✝³ : T2Space G inst✝² : TopologicalGroup G inst✝¹ : MeasurableSpace G inst✝ : BorelSpace G K₀ : PositiveCompacts G ⊢ ↑↑(haarMeasure K₀) ↑K₀ ≠ ⊤ [PROOFSTEP] simp only [haarMeasure_self] [GOAL] G : Type u_1 inst✝⁸ : Group G inst✝⁷ : TopologicalSpace G inst✝⁶ : T2Space G inst✝⁵ : TopologicalGroup G inst✝⁴ : MeasurableSpace G inst✝³ : BorelSpace G inst✝² : SecondCountableTopology G μ : Measure G inst✝¹ : SigmaFinite μ inst✝ : IsMulLeftInvariant μ K₀ : PositiveCompacts G ⊢ (↑↑μ ↑K₀ / ↑↑(haarMeasure K₀) ↑K₀) • haarMeasure K₀ = ↑↑μ ↑K₀ • haarMeasure K₀ [PROOFSTEP] rw [haarMeasure_self, div_one] [GOAL] G : Type u_1 inst✝⁸ : Group G inst✝⁷ : TopologicalSpace G inst✝⁶ : T2Space G inst✝⁵ : TopologicalGroup G inst✝⁴ : MeasurableSpace G inst✝³ : BorelSpace G inst✝² : SecondCountableTopology G μ : Measure G inst✝¹ : SigmaFinite μ inst✝ : IsMulLeftInvariant μ K : Set G hK : IsCompact K h2K : Set.Nonempty (interior K) hμK : ↑↑μ K ≠ ⊤ ⊢ Regular μ [PROOFSTEP] rw [haarMeasure_unique μ ⟨⟨K, hK⟩, h2K⟩] [GOAL] G : Type u_1 inst✝⁸ : Group G inst✝⁷ : TopologicalSpace G inst✝⁶ : T2Space G inst✝⁵ : TopologicalGroup G inst✝⁴ : MeasurableSpace G inst✝³ : BorelSpace G inst✝² : SecondCountableTopology G μ : Measure G inst✝¹ : SigmaFinite μ inst✝ : IsMulLeftInvariant μ K : Set G hK : IsCompact K h2K : Set.Nonempty (interior K) hμK : ↑↑μ K ≠ ⊤ ⊢ Regular (↑↑μ ↑{ toCompacts := { carrier := K, isCompact' := hK }, interior_nonempty' := h2K } • haarMeasure { toCompacts := { carrier := K, isCompact' := hK }, interior_nonempty' := h2K }) [PROOFSTEP] exact Regular.smul hμK [GOAL] G : Type u_1 inst✝⁹ : Group G inst✝⁸ : TopologicalSpace G inst✝⁷ : T2Space G inst✝⁶ : TopologicalGroup G inst✝⁵ : MeasurableSpace G inst✝⁴ : BorelSpace G inst✝³ : SecondCountableTopology G inst✝² : LocallyCompactSpace G μ ν : Measure G inst✝¹ : IsHaarMeasure μ inst✝ : IsHaarMeasure ν ⊢ ∃ c, c ≠ 0 ∧ c ≠ ⊤ ∧ μ = c • ν [PROOFSTEP] have K : PositiveCompacts G := Classical.arbitrary _ [GOAL] G : Type u_1 inst✝⁹ : Group G inst✝⁸ : TopologicalSpace G inst✝⁷ : T2Space G inst✝⁶ : TopologicalGroup G inst✝⁵ : MeasurableSpace G inst✝⁴ : BorelSpace G inst✝³ : SecondCountableTopology G inst✝² : LocallyCompactSpace G μ ν : Measure G inst✝¹ : IsHaarMeasure μ inst✝ : IsHaarMeasure ν K : PositiveCompacts G ⊢ ∃ c, c ≠ 0 ∧ c ≠ ⊤ ∧ μ = c • ν [PROOFSTEP] have νpos : 0 < ν K := measure_pos_of_nonempty_interior _ K.interior_nonempty [GOAL] G : Type u_1 inst✝⁹ : Group G inst✝⁸ : TopologicalSpace G inst✝⁷ : T2Space G inst✝⁶ : TopologicalGroup G inst✝⁵ : MeasurableSpace G inst✝⁴ : BorelSpace G inst✝³ : SecondCountableTopology G inst✝² : LocallyCompactSpace G μ ν : Measure G inst✝¹ : IsHaarMeasure μ inst✝ : IsHaarMeasure ν K : PositiveCompacts G νpos : 0 < ↑↑ν ↑K ⊢ ∃ c, c ≠ 0 ∧ c ≠ ⊤ ∧ μ = c • ν [PROOFSTEP] have νne : ν K ≠ ∞ := K.isCompact.measure_lt_top.ne [GOAL] G : Type u_1 inst✝⁹ : Group G inst✝⁸ : TopologicalSpace G inst✝⁷ : T2Space G inst✝⁶ : TopologicalGroup G inst✝⁵ : MeasurableSpace G inst✝⁴ : BorelSpace G inst✝³ : SecondCountableTopology G inst✝² : LocallyCompactSpace G μ ν : Measure G inst✝¹ : IsHaarMeasure μ inst✝ : IsHaarMeasure ν K : PositiveCompacts G νpos : 0 < ↑↑ν ↑K νne : ↑↑ν ↑K ≠ ⊤ ⊢ ∃ c, c ≠ 0 ∧ c ≠ ⊤ ∧ μ = c • ν [PROOFSTEP] refine' ⟨μ K / ν K, _, _, _⟩ [GOAL] case refine'_1 G : Type u_1 inst✝⁹ : Group G inst✝⁸ : TopologicalSpace G inst✝⁷ : T2Space G inst✝⁶ : TopologicalGroup G inst✝⁵ : MeasurableSpace G inst✝⁴ : BorelSpace G inst✝³ : SecondCountableTopology G inst✝² : LocallyCompactSpace G μ ν : Measure G inst✝¹ : IsHaarMeasure μ inst✝ : IsHaarMeasure ν K : PositiveCompacts G νpos : 0 < ↑↑ν ↑K νne : ↑↑ν ↑K ≠ ⊤ ⊢ ↑↑μ ↑K / ↑↑ν ↑K ≠ 0 [PROOFSTEP] simp only [νne, (μ.measure_pos_of_nonempty_interior K.interior_nonempty).ne', Ne.def, ENNReal.div_eq_zero_iff, not_false_iff, or_self_iff] [GOAL] case refine'_2 G : Type u_1 inst✝⁹ : Group G inst✝⁸ : TopologicalSpace G inst✝⁷ : T2Space G inst✝⁶ : TopologicalGroup G inst✝⁵ : MeasurableSpace G inst✝⁴ : BorelSpace G inst✝³ : SecondCountableTopology G inst✝² : LocallyCompactSpace G μ ν : Measure G inst✝¹ : IsHaarMeasure μ inst✝ : IsHaarMeasure ν K : PositiveCompacts G νpos : 0 < ↑↑ν ↑K νne : ↑↑ν ↑K ≠ ⊤ ⊢ ↑↑μ ↑K / ↑↑ν ↑K ≠ ⊤ [PROOFSTEP] simp only [div_eq_mul_inv, νpos.ne', (K.isCompact.measure_lt_top (μ := μ)).ne, or_self_iff, ENNReal.inv_eq_top, ENNReal.mul_eq_top, Ne.def, not_false_iff, and_false_iff, false_and_iff] [GOAL] case refine'_3 G : Type u_1 inst✝⁹ : Group G inst✝⁸ : TopologicalSpace G inst✝⁷ : T2Space G inst✝⁶ : TopologicalGroup G inst✝⁵ : MeasurableSpace G inst✝⁴ : BorelSpace G inst✝³ : SecondCountableTopology G inst✝² : LocallyCompactSpace G μ ν : Measure G inst✝¹ : IsHaarMeasure μ inst✝ : IsHaarMeasure ν K : PositiveCompacts G νpos : 0 < ↑↑ν ↑K νne : ↑↑ν ↑K ≠ ⊤ ⊢ μ = (↑↑μ ↑K / ↑↑ν ↑K) • ν [PROOFSTEP] calc μ = μ K • haarMeasure K := haarMeasure_unique μ K _ = (μ K / ν K) • ν K • haarMeasure K := by rw [smul_smul, div_eq_mul_inv, mul_assoc, ENNReal.inv_mul_cancel νpos.ne' νne, mul_one] _ = (μ K / ν K) • ν := by rw [← haarMeasure_unique ν K] [GOAL] G : Type u_1 inst✝⁹ : Group G inst✝⁸ : TopologicalSpace G inst✝⁷ : T2Space G inst✝⁶ : TopologicalGroup G inst✝⁵ : MeasurableSpace G inst✝⁴ : BorelSpace G inst✝³ : SecondCountableTopology G inst✝² : LocallyCompactSpace G μ ν : Measure G inst✝¹ : IsHaarMeasure μ inst✝ : IsHaarMeasure ν K : PositiveCompacts G νpos : 0 < ↑↑ν ↑K νne : ↑↑ν ↑K ≠ ⊤ ⊢ ↑↑μ ↑K • haarMeasure K = (↑↑μ ↑K / ↑↑ν ↑K) • ↑↑ν ↑K • haarMeasure K [PROOFSTEP] rw [smul_smul, div_eq_mul_inv, mul_assoc, ENNReal.inv_mul_cancel νpos.ne' νne, mul_one] [GOAL] G : Type u_1 inst✝⁹ : Group G inst✝⁸ : TopologicalSpace G inst✝⁷ : T2Space G inst✝⁶ : TopologicalGroup G inst✝⁵ : MeasurableSpace G inst✝⁴ : BorelSpace G inst✝³ : SecondCountableTopology G inst✝² : LocallyCompactSpace G μ ν : Measure G inst✝¹ : IsHaarMeasure μ inst✝ : IsHaarMeasure ν K : PositiveCompacts G νpos : 0 < ↑↑ν ↑K νne : ↑↑ν ↑K ≠ ⊤ ⊢ (↑↑μ ↑K / ↑↑ν ↑K) • ↑↑ν ↑K • haarMeasure K = (↑↑μ ↑K / ↑↑ν ↑K) • ν [PROOFSTEP] rw [← haarMeasure_unique ν K] [GOAL] G : Type u_1 inst✝⁸ : Group G inst✝⁷ : TopologicalSpace G inst✝⁶ : T2Space G inst✝⁵ : TopologicalGroup G inst✝⁴ : MeasurableSpace G inst✝³ : BorelSpace G inst✝² : SecondCountableTopology G inst✝¹ : LocallyCompactSpace G μ : Measure G inst✝ : IsHaarMeasure μ ⊢ Regular μ [PROOFSTEP] have K : PositiveCompacts G := Classical.arbitrary _ [GOAL] G : Type u_1 inst✝⁸ : Group G inst✝⁷ : TopologicalSpace G inst✝⁶ : T2Space G inst✝⁵ : TopologicalGroup G inst✝⁴ : MeasurableSpace G inst✝³ : BorelSpace G inst✝² : SecondCountableTopology G inst✝¹ : LocallyCompactSpace G μ : Measure G inst✝ : IsHaarMeasure μ K : PositiveCompacts G ⊢ Regular μ [PROOFSTEP] obtain ⟨c, _, ctop, hμ⟩ : ∃ c : ℝ≥0∞, c ≠ 0 ∧ c ≠ ∞ ∧ μ = c • haarMeasure K := isHaarMeasure_eq_smul_isHaarMeasure μ _ [GOAL] case intro.intro.intro G : Type u_1 inst✝⁸ : Group G inst✝⁷ : TopologicalSpace G inst✝⁶ : T2Space G inst✝⁵ : TopologicalGroup G inst✝⁴ : MeasurableSpace G inst✝³ : BorelSpace G inst✝² : SecondCountableTopology G inst✝¹ : LocallyCompactSpace G μ : Measure G inst✝ : IsHaarMeasure μ K : PositiveCompacts G c : ℝ≥0∞ left✝ : c ≠ 0 ctop : c ≠ ⊤ hμ : μ = c • haarMeasure K ⊢ Regular μ [PROOFSTEP] rw [hμ] [GOAL] case intro.intro.intro G : Type u_1 inst✝⁸ : Group G inst✝⁷ : TopologicalSpace G inst✝⁶ : T2Space G inst✝⁵ : TopologicalGroup G inst✝⁴ : MeasurableSpace G inst✝³ : BorelSpace G inst✝² : SecondCountableTopology G inst✝¹ : LocallyCompactSpace G μ : Measure G inst✝ : IsHaarMeasure μ K : PositiveCompacts G c : ℝ≥0∞ left✝ : c ≠ 0 ctop : c ≠ ⊤ hμ : μ = c • haarMeasure K ⊢ Regular (c • haarMeasure K) [PROOFSTEP] exact Regular.smul ctop [GOAL] G : Type u_1 inst✝⁸ : Group G inst✝⁷ : TopologicalSpace G inst✝⁶ : T2Space G inst✝⁵ : TopologicalGroup G inst✝⁴ : MeasurableSpace G inst✝³ : BorelSpace G inst✝² : SecondCountableTopology G μ : Measure G inst✝¹ : IsHaarMeasure μ inst✝ : LocallyCompactSpace G E : Set G hE : MeasurableSet E hEpos : 0 < ↑↑μ E ⊢ E / E ∈ 𝓝 1 [PROOFSTEP] obtain ⟨L, hL, hLE, hLpos, hLtop⟩ : ∃ L : Set G, MeasurableSet L ∧ L ⊆ E ∧ 0 < μ L ∧ μ L < ∞ := exists_subset_measure_lt_top hE hEpos [GOAL] case intro.intro.intro.intro G : Type u_1 inst✝⁸ : Group G inst✝⁷ : TopologicalSpace G inst✝⁶ : T2Space G inst✝⁵ : TopologicalGroup G inst✝⁴ : MeasurableSpace G inst✝³ : BorelSpace G inst✝² : SecondCountableTopology G μ : Measure G inst✝¹ : IsHaarMeasure μ inst✝ : LocallyCompactSpace G E : Set G hE : MeasurableSet E hEpos : 0 < ↑↑μ E L : Set G hL : MeasurableSet L hLE : L ⊆ E hLpos : 0 < ↑↑μ L hLtop : ↑↑μ L < ⊤ ⊢ E / E ∈ 𝓝 1 [PROOFSTEP] obtain ⟨K, hKL, hK, hKpos⟩ : ∃ (K : Set G), K ⊆ L ∧ IsCompact K ∧ 0 < μ K := MeasurableSet.exists_lt_isCompact_of_ne_top hL (ne_of_lt hLtop) hLpos [GOAL] case intro.intro.intro.intro.intro.intro.intro G : Type u_1 inst✝⁸ : Group G inst✝⁷ : TopologicalSpace G inst✝⁶ : T2Space G inst✝⁵ : TopologicalGroup G inst✝⁴ : MeasurableSpace G inst✝³ : BorelSpace G inst✝² : SecondCountableTopology G μ : Measure G inst✝¹ : IsHaarMeasure μ inst✝ : LocallyCompactSpace G E : Set G hE : MeasurableSet E hEpos : 0 < ↑↑μ E L : Set G hL : MeasurableSet L hLE : L ⊆ E hLpos : 0 < ↑↑μ L hLtop : ↑↑μ L < ⊤ K : Set G hKL : K ⊆ L hK : IsCompact K hKpos : 0 < ↑↑μ K ⊢ E / E ∈ 𝓝 1 [PROOFSTEP] have hKtop : μ K ≠ ∞ := by apply ne_top_of_le_ne_top (ne_of_lt hLtop) apply measure_mono hKL [GOAL] G : Type u_1 inst✝⁸ : Group G inst✝⁷ : TopologicalSpace G inst✝⁶ : T2Space G inst✝⁵ : TopologicalGroup G inst✝⁴ : MeasurableSpace G inst✝³ : BorelSpace G inst✝² : SecondCountableTopology G μ : Measure G inst✝¹ : IsHaarMeasure μ inst✝ : LocallyCompactSpace G E : Set G hE : MeasurableSet E hEpos : 0 < ↑↑μ E L : Set G hL : MeasurableSet L hLE : L ⊆ E hLpos : 0 < ↑↑μ L hLtop : ↑↑μ L < ⊤ K : Set G hKL : K ⊆ L hK : IsCompact K hKpos : 0 < ↑↑μ K ⊢ ↑↑μ K ≠ ⊤ [PROOFSTEP] apply ne_top_of_le_ne_top (ne_of_lt hLtop) [GOAL] G : Type u_1 inst✝⁸ : Group G inst✝⁷ : TopologicalSpace G inst✝⁶ : T2Space G inst✝⁵ : TopologicalGroup G inst✝⁴ : MeasurableSpace G inst✝³ : BorelSpace G inst✝² : SecondCountableTopology G μ : Measure G inst✝¹ : IsHaarMeasure μ inst✝ : LocallyCompactSpace G E : Set G hE : MeasurableSet E hEpos : 0 < ↑↑μ E L : Set G hL : MeasurableSet L hLE : L ⊆ E hLpos : 0 < ↑↑μ L hLtop : ↑↑μ L < ⊤ K : Set G hKL : K ⊆ L hK : IsCompact K hKpos : 0 < ↑↑μ K ⊢ ↑↑μ K ≤ ↑↑μ L [PROOFSTEP] apply measure_mono hKL [GOAL] case intro.intro.intro.intro.intro.intro.intro G : Type u_1 inst✝⁸ : Group G inst✝⁷ : TopologicalSpace G inst✝⁶ : T2Space G inst✝⁵ : TopologicalGroup G inst✝⁴ : MeasurableSpace G inst✝³ : BorelSpace G inst✝² : SecondCountableTopology G μ : Measure G inst✝¹ : IsHaarMeasure μ inst✝ : LocallyCompactSpace G E : Set G hE : MeasurableSet E hEpos : 0 < ↑↑μ E L : Set G hL : MeasurableSet L hLE : L ⊆ E hLpos : 0 < ↑↑μ L hLtop : ↑↑μ L < ⊤ K : Set G hKL : K ⊆ L hK : IsCompact K hKpos : 0 < ↑↑μ K hKtop : ↑↑μ K ≠ ⊤ ⊢ E / E ∈ 𝓝 1 [PROOFSTEP] obtain ⟨U, hUK, hU, hμUK⟩ : ∃ (U : Set G), U ⊇ K ∧ IsOpen U ∧ μ U < μ K + μ K := Set.exists_isOpen_lt_add K hKtop hKpos.ne' [GOAL] case intro.intro.intro.intro.intro.intro.intro.intro.intro.intro G : Type u_1 inst✝⁸ : Group G inst✝⁷ : TopologicalSpace G inst✝⁶ : T2Space G inst✝⁵ : TopologicalGroup G inst✝⁴ : MeasurableSpace G inst✝³ : BorelSpace G inst✝² : SecondCountableTopology G μ : Measure G inst✝¹ : IsHaarMeasure μ inst✝ : LocallyCompactSpace G E : Set G hE : MeasurableSet E hEpos : 0 < ↑↑μ E L : Set G hL : MeasurableSet L hLE : L ⊆ E hLpos : 0 < ↑↑μ L hLtop : ↑↑μ L < ⊤ K : Set G hKL : K ⊆ L hK : IsCompact K hKpos : 0 < ↑↑μ K hKtop : ↑↑μ K ≠ ⊤ U : Set G hUK : U ⊇ K hU : IsOpen U hμUK : ↑↑μ U < ↑↑μ K + ↑↑μ K ⊢ E / E ∈ 𝓝 1 [PROOFSTEP] obtain ⟨V, hV1, hVKU⟩ : ∃ V ∈ 𝓝 (1 : G), V * K ⊆ U := compact_open_separated_mul_left hK hU hUK [GOAL] case intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro G : Type u_1 inst✝⁸ : Group G inst✝⁷ : TopologicalSpace G inst✝⁶ : T2Space G inst✝⁵ : TopologicalGroup G inst✝⁴ : MeasurableSpace G inst✝³ : BorelSpace G inst✝² : SecondCountableTopology G μ : Measure G inst✝¹ : IsHaarMeasure μ inst✝ : LocallyCompactSpace G E : Set G hE : MeasurableSet E hEpos : 0 < ↑↑μ E L : Set G hL : MeasurableSet L hLE : L ⊆ E hLpos : 0 < ↑↑μ L hLtop : ↑↑μ L < ⊤ K : Set G hKL : K ⊆ L hK : IsCompact K hKpos : 0 < ↑↑μ K hKtop : ↑↑μ K ≠ ⊤ U : Set G hUK : U ⊇ K hU : IsOpen U hμUK : ↑↑μ U < ↑↑μ K + ↑↑μ K V : Set G hV1 : V ∈ 𝓝 1 hVKU : V * K ⊆ U ⊢ E / E ∈ 𝓝 1 [PROOFSTEP] have hv : ∀ v : G, v ∈ V → ¬Disjoint ({ v } * K) K := by intro v hv hKv have hKvsub : { v } * K ∪ K ⊆ U := by apply Set.union_subset _ hUK apply _root_.subset_trans _ hVKU apply Set.mul_subset_mul _ (Set.Subset.refl K) simp only [Set.singleton_subset_iff, hv] replace hKvsub := @measure_mono _ _ μ _ _ hKvsub have hcontr := lt_of_le_of_lt hKvsub hμUK rw [measure_union hKv (IsCompact.measurableSet hK)] at hcontr have hKtranslate : μ ({ v } * K) = μ K := by simp only [singleton_mul, image_mul_left, measure_preimage_mul] rw [hKtranslate, lt_self_iff_false] at hcontr assumption [GOAL] G : Type u_1 inst✝⁸ : Group G inst✝⁷ : TopologicalSpace G inst✝⁶ : T2Space G inst✝⁵ : TopologicalGroup G inst✝⁴ : MeasurableSpace G inst✝³ : BorelSpace G inst✝² : SecondCountableTopology G μ : Measure G inst✝¹ : IsHaarMeasure μ inst✝ : LocallyCompactSpace G E : Set G hE : MeasurableSet E hEpos : 0 < ↑↑μ E L : Set G hL : MeasurableSet L hLE : L ⊆ E hLpos : 0 < ↑↑μ L hLtop : ↑↑μ L < ⊤ K : Set G hKL : K ⊆ L hK : IsCompact K hKpos : 0 < ↑↑μ K hKtop : ↑↑μ K ≠ ⊤ U : Set G hUK : U ⊇ K hU : IsOpen U hμUK : ↑↑μ U < ↑↑μ K + ↑↑μ K V : Set G hV1 : V ∈ 𝓝 1 hVKU : V * K ⊆ U ⊢ ∀ (v : G), v ∈ V → ¬Disjoint ({v} * K) K [PROOFSTEP] intro v hv hKv [GOAL] G : Type u_1 inst✝⁸ : Group G inst✝⁷ : TopologicalSpace G inst✝⁶ : T2Space G inst✝⁵ : TopologicalGroup G inst✝⁴ : MeasurableSpace G inst✝³ : BorelSpace G inst✝² : SecondCountableTopology G μ : Measure G inst✝¹ : IsHaarMeasure μ inst✝ : LocallyCompactSpace G E : Set G hE : MeasurableSet E hEpos : 0 < ↑↑μ E L : Set G hL : MeasurableSet L hLE : L ⊆ E hLpos : 0 < ↑↑μ L hLtop : ↑↑μ L < ⊤ K : Set G hKL : K ⊆ L hK : IsCompact K hKpos : 0 < ↑↑μ K hKtop : ↑↑μ K ≠ ⊤ U : Set G hUK : U ⊇ K hU : IsOpen U hμUK : ↑↑μ U < ↑↑μ K + ↑↑μ K V : Set G hV1 : V ∈ 𝓝 1 hVKU : V * K ⊆ U v : G hv : v ∈ V hKv : Disjoint ({v} * K) K ⊢ False [PROOFSTEP] have hKvsub : { v } * K ∪ K ⊆ U := by apply Set.union_subset _ hUK apply _root_.subset_trans _ hVKU apply Set.mul_subset_mul _ (Set.Subset.refl K) simp only [Set.singleton_subset_iff, hv] [GOAL] G : Type u_1 inst✝⁸ : Group G inst✝⁷ : TopologicalSpace G inst✝⁶ : T2Space G inst✝⁵ : TopologicalGroup G inst✝⁴ : MeasurableSpace G inst✝³ : BorelSpace G inst✝² : SecondCountableTopology G μ : Measure G inst✝¹ : IsHaarMeasure μ inst✝ : LocallyCompactSpace G E : Set G hE : MeasurableSet E hEpos : 0 < ↑↑μ E L : Set G hL : MeasurableSet L hLE : L ⊆ E hLpos : 0 < ↑↑μ L hLtop : ↑↑μ L < ⊤ K : Set G hKL : K ⊆ L hK : IsCompact K hKpos : 0 < ↑↑μ K hKtop : ↑↑μ K ≠ ⊤ U : Set G hUK : U ⊇ K hU : IsOpen U hμUK : ↑↑μ U < ↑↑μ K + ↑↑μ K V : Set G hV1 : V ∈ 𝓝 1 hVKU : V * K ⊆ U v : G hv : v ∈ V hKv : Disjoint ({v} * K) K ⊢ {v} * K ∪ K ⊆ U [PROOFSTEP] apply Set.union_subset _ hUK [GOAL] G : Type u_1 inst✝⁸ : Group G inst✝⁷ : TopologicalSpace G inst✝⁶ : T2Space G inst✝⁵ : TopologicalGroup G inst✝⁴ : MeasurableSpace G inst✝³ : BorelSpace G inst✝² : SecondCountableTopology G μ : Measure G inst✝¹ : IsHaarMeasure μ inst✝ : LocallyCompactSpace G E : Set G hE : MeasurableSet E hEpos : 0 < ↑↑μ E L : Set G hL : MeasurableSet L hLE : L ⊆ E hLpos : 0 < ↑↑μ L hLtop : ↑↑μ L < ⊤ K : Set G hKL : K ⊆ L hK : IsCompact K hKpos : 0 < ↑↑μ K hKtop : ↑↑μ K ≠ ⊤ U : Set G hUK : U ⊇ K hU : IsOpen U hμUK : ↑↑μ U < ↑↑μ K + ↑↑μ K V : Set G hV1 : V ∈ 𝓝 1 hVKU : V * K ⊆ U v : G hv : v ∈ V hKv : Disjoint ({v} * K) K ⊢ {v} * K ⊆ U [PROOFSTEP] apply _root_.subset_trans _ hVKU [GOAL] G : Type u_1 inst✝⁸ : Group G inst✝⁷ : TopologicalSpace G inst✝⁶ : T2Space G inst✝⁵ : TopologicalGroup G inst✝⁴ : MeasurableSpace G inst✝³ : BorelSpace G inst✝² : SecondCountableTopology G μ : Measure G inst✝¹ : IsHaarMeasure μ inst✝ : LocallyCompactSpace G E : Set G hE : MeasurableSet E hEpos : 0 < ↑↑μ E L : Set G hL : MeasurableSet L hLE : L ⊆ E hLpos : 0 < ↑↑μ L hLtop : ↑↑μ L < ⊤ K : Set G hKL : K ⊆ L hK : IsCompact K hKpos : 0 < ↑↑μ K hKtop : ↑↑μ K ≠ ⊤ U : Set G hUK : U ⊇ K hU : IsOpen U hμUK : ↑↑μ U < ↑↑μ K + ↑↑μ K V : Set G hV1 : V ∈ 𝓝 1 hVKU : V * K ⊆ U v : G hv : v ∈ V hKv : Disjoint ({v} * K) K ⊢ {v} * K ⊆ V * K [PROOFSTEP] apply Set.mul_subset_mul _ (Set.Subset.refl K) [GOAL] G : Type u_1 inst✝⁸ : Group G inst✝⁷ : TopologicalSpace G inst✝⁶ : T2Space G inst✝⁵ : TopologicalGroup G inst✝⁴ : MeasurableSpace G inst✝³ : BorelSpace G inst✝² : SecondCountableTopology G μ : Measure G inst✝¹ : IsHaarMeasure μ inst✝ : LocallyCompactSpace G E : Set G hE : MeasurableSet E hEpos : 0 < ↑↑μ E L : Set G hL : MeasurableSet L hLE : L ⊆ E hLpos : 0 < ↑↑μ L hLtop : ↑↑μ L < ⊤ K : Set G hKL : K ⊆ L hK : IsCompact K hKpos : 0 < ↑↑μ K hKtop : ↑↑μ K ≠ ⊤ U : Set G hUK : U ⊇ K hU : IsOpen U hμUK : ↑↑μ U < ↑↑μ K + ↑↑μ K V : Set G hV1 : V ∈ 𝓝 1 hVKU : V * K ⊆ U v : G hv : v ∈ V hKv : Disjoint ({v} * K) K ⊢ {v} ⊆ V [PROOFSTEP] simp only [Set.singleton_subset_iff, hv] [GOAL] G : Type u_1 inst✝⁸ : Group G inst✝⁷ : TopologicalSpace G inst✝⁶ : T2Space G inst✝⁵ : TopologicalGroup G inst✝⁴ : MeasurableSpace G inst✝³ : BorelSpace G inst✝² : SecondCountableTopology G μ : Measure G inst✝¹ : IsHaarMeasure μ inst✝ : LocallyCompactSpace G E : Set G hE : MeasurableSet E hEpos : 0 < ↑↑μ E L : Set G hL : MeasurableSet L hLE : L ⊆ E hLpos : 0 < ↑↑μ L hLtop : ↑↑μ L < ⊤ K : Set G hKL : K ⊆ L hK : IsCompact K hKpos : 0 < ↑↑μ K hKtop : ↑↑μ K ≠ ⊤ U : Set G hUK : U ⊇ K hU : IsOpen U hμUK : ↑↑μ U < ↑↑μ K + ↑↑μ K V : Set G hV1 : V ∈ 𝓝 1 hVKU : V * K ⊆ U v : G hv : v ∈ V hKv : Disjoint ({v} * K) K hKvsub : {v} * K ∪ K ⊆ U ⊢ False [PROOFSTEP] replace hKvsub := @measure_mono _ _ μ _ _ hKvsub [GOAL] G : Type u_1 inst✝⁸ : Group G inst✝⁷ : TopologicalSpace G inst✝⁶ : T2Space G inst✝⁵ : TopologicalGroup G inst✝⁴ : MeasurableSpace G inst✝³ : BorelSpace G inst✝² : SecondCountableTopology G μ : Measure G inst✝¹ : IsHaarMeasure μ inst✝ : LocallyCompactSpace G E : Set G hE : MeasurableSet E hEpos : 0 < ↑↑μ E L : Set G hL : MeasurableSet L hLE : L ⊆ E hLpos : 0 < ↑↑μ L hLtop : ↑↑μ L < ⊤ K : Set G hKL : K ⊆ L hK : IsCompact K hKpos : 0 < ↑↑μ K hKtop : ↑↑μ K ≠ ⊤ U : Set G hUK : U ⊇ K hU : IsOpen U hμUK : ↑↑μ U < ↑↑μ K + ↑↑μ K V : Set G hV1 : V ∈ 𝓝 1 hVKU : V * K ⊆ U v : G hv : v ∈ V hKv : Disjoint ({v} * K) K hKvsub : ↑↑μ ({v} * K ∪ K) ≤ ↑↑μ U ⊢ False [PROOFSTEP] have hcontr := lt_of_le_of_lt hKvsub hμUK [GOAL] G : Type u_1 inst✝⁸ : Group G inst✝⁷ : TopologicalSpace G inst✝⁶ : T2Space G inst✝⁵ : TopologicalGroup G inst✝⁴ : MeasurableSpace G inst✝³ : BorelSpace G inst✝² : SecondCountableTopology G μ : Measure G inst✝¹ : IsHaarMeasure μ inst✝ : LocallyCompactSpace G E : Set G hE : MeasurableSet E hEpos : 0 < ↑↑μ E L : Set G hL : MeasurableSet L hLE : L ⊆ E hLpos : 0 < ↑↑μ L hLtop : ↑↑μ L < ⊤ K : Set G hKL : K ⊆ L hK : IsCompact K hKpos : 0 < ↑↑μ K hKtop : ↑↑μ K ≠ ⊤ U : Set G hUK : U ⊇ K hU : IsOpen U hμUK : ↑↑μ U < ↑↑μ K + ↑↑μ K V : Set G hV1 : V ∈ 𝓝 1 hVKU : V * K ⊆ U v : G hv : v ∈ V hKv : Disjoint ({v} * K) K hKvsub : ↑↑μ ({v} * K ∪ K) ≤ ↑↑μ U hcontr : ↑↑μ ({v} * K ∪ K) < ↑↑μ K + ↑↑μ K ⊢ False [PROOFSTEP] rw [measure_union hKv (IsCompact.measurableSet hK)] at hcontr [GOAL] G : Type u_1 inst✝⁸ : Group G inst✝⁷ : TopologicalSpace G inst✝⁶ : T2Space G inst✝⁵ : TopologicalGroup G inst✝⁴ : MeasurableSpace G inst✝³ : BorelSpace G inst✝² : SecondCountableTopology G μ : Measure G inst✝¹ : IsHaarMeasure μ inst✝ : LocallyCompactSpace G E : Set G hE : MeasurableSet E hEpos : 0 < ↑↑μ E L : Set G hL : MeasurableSet L hLE : L ⊆ E hLpos : 0 < ↑↑μ L hLtop : ↑↑μ L < ⊤ K : Set G hKL : K ⊆ L hK : IsCompact K hKpos : 0 < ↑↑μ K hKtop : ↑↑μ K ≠ ⊤ U : Set G hUK : U ⊇ K hU : IsOpen U hμUK : ↑↑μ U < ↑↑μ K + ↑↑μ K V : Set G hV1 : V ∈ 𝓝 1 hVKU : V * K ⊆ U v : G hv : v ∈ V hKv : Disjoint ({v} * K) K hKvsub : ↑↑μ ({v} * K ∪ K) ≤ ↑↑μ U hcontr : ↑↑μ ({v} * K) + ↑↑μ K < ↑↑μ K + ↑↑μ K ⊢ False [PROOFSTEP] have hKtranslate : μ ({ v } * K) = μ K := by simp only [singleton_mul, image_mul_left, measure_preimage_mul] [GOAL] G : Type u_1 inst✝⁸ : Group G inst✝⁷ : TopologicalSpace G inst✝⁶ : T2Space G inst✝⁵ : TopologicalGroup G inst✝⁴ : MeasurableSpace G inst✝³ : BorelSpace G inst✝² : SecondCountableTopology G μ : Measure G inst✝¹ : IsHaarMeasure μ inst✝ : LocallyCompactSpace G E : Set G hE : MeasurableSet E hEpos : 0 < ↑↑μ E L : Set G hL : MeasurableSet L hLE : L ⊆ E hLpos : 0 < ↑↑μ L hLtop : ↑↑μ L < ⊤ K : Set G hKL : K ⊆ L hK : IsCompact K hKpos : 0 < ↑↑μ K hKtop : ↑↑μ K ≠ ⊤ U : Set G hUK : U ⊇ K hU : IsOpen U hμUK : ↑↑μ U < ↑↑μ K + ↑↑μ K V : Set G hV1 : V ∈ 𝓝 1 hVKU : V * K ⊆ U v : G hv : v ∈ V hKv : Disjoint ({v} * K) K hKvsub : ↑↑μ ({v} * K ∪ K) ≤ ↑↑μ U hcontr : ↑↑μ ({v} * K) + ↑↑μ K < ↑↑μ K + ↑↑μ K ⊢ ↑↑μ ({v} * K) = ↑↑μ K [PROOFSTEP] simp only [singleton_mul, image_mul_left, measure_preimage_mul] [GOAL] G : Type u_1 inst✝⁸ : Group G inst✝⁷ : TopologicalSpace G inst✝⁶ : T2Space G inst✝⁵ : TopologicalGroup G inst✝⁴ : MeasurableSpace G inst✝³ : BorelSpace G inst✝² : SecondCountableTopology G μ : Measure G inst✝¹ : IsHaarMeasure μ inst✝ : LocallyCompactSpace G E : Set G hE : MeasurableSet E hEpos : 0 < ↑↑μ E L : Set G hL : MeasurableSet L hLE : L ⊆ E hLpos : 0 < ↑↑μ L hLtop : ↑↑μ L < ⊤ K : Set G hKL : K ⊆ L hK : IsCompact K hKpos : 0 < ↑↑μ K hKtop : ↑↑μ K ≠ ⊤ U : Set G hUK : U ⊇ K hU : IsOpen U hμUK : ↑↑μ U < ↑↑μ K + ↑↑μ K V : Set G hV1 : V ∈ 𝓝 1 hVKU : V * K ⊆ U v : G hv : v ∈ V hKv : Disjoint ({v} * K) K hKvsub : ↑↑μ ({v} * K ∪ K) ≤ ↑↑μ U hcontr : ↑↑μ ({v} * K) + ↑↑μ K < ↑↑μ K + ↑↑μ K hKtranslate : ↑↑μ ({v} * K) = ↑↑μ K ⊢ False [PROOFSTEP] rw [hKtranslate, lt_self_iff_false] at hcontr [GOAL] G : Type u_1 inst✝⁸ : Group G inst✝⁷ : TopologicalSpace G inst✝⁶ : T2Space G inst✝⁵ : TopologicalGroup G inst✝⁴ : MeasurableSpace G inst✝³ : BorelSpace G inst✝² : SecondCountableTopology G μ : Measure G inst✝¹ : IsHaarMeasure μ inst✝ : LocallyCompactSpace G E : Set G hE : MeasurableSet E hEpos : 0 < ↑↑μ E L : Set G hL : MeasurableSet L hLE : L ⊆ E hLpos : 0 < ↑↑μ L hLtop : ↑↑μ L < ⊤ K : Set G hKL : K ⊆ L hK : IsCompact K hKpos : 0 < ↑↑μ K hKtop : ↑↑μ K ≠ ⊤ U : Set G hUK : U ⊇ K hU : IsOpen U hμUK : ↑↑μ U < ↑↑μ K + ↑↑μ K V : Set G hV1 : V ∈ 𝓝 1 hVKU : V * K ⊆ U v : G hv : v ∈ V hKv : Disjoint ({v} * K) K hKvsub : ↑↑μ ({v} * K ∪ K) ≤ ↑↑μ U hcontr : False hKtranslate : ↑↑μ ({v} * K) = ↑↑μ K ⊢ False [PROOFSTEP] assumption [GOAL] case intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro G : Type u_1 inst✝⁸ : Group G inst✝⁷ : TopologicalSpace G inst✝⁶ : T2Space G inst✝⁵ : TopologicalGroup G inst✝⁴ : MeasurableSpace G inst✝³ : BorelSpace G inst✝² : SecondCountableTopology G μ : Measure G inst✝¹ : IsHaarMeasure μ inst✝ : LocallyCompactSpace G E : Set G hE : MeasurableSet E hEpos : 0 < ↑↑μ E L : Set G hL : MeasurableSet L hLE : L ⊆ E hLpos : 0 < ↑↑μ L hLtop : ↑↑μ L < ⊤ K : Set G hKL : K ⊆ L hK : IsCompact K hKpos : 0 < ↑↑μ K hKtop : ↑↑μ K ≠ ⊤ U : Set G hUK : U ⊇ K hU : IsOpen U hμUK : ↑↑μ U < ↑↑μ K + ↑↑μ K V : Set G hV1 : V ∈ 𝓝 1 hVKU : V * K ⊆ U hv : ∀ (v : G), v ∈ V → ¬Disjoint ({v} * K) K ⊢ E / E ∈ 𝓝 1 [PROOFSTEP] suffices V ⊆ E / E from Filter.mem_of_superset hV1 this [GOAL] case intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro G : Type u_1 inst✝⁸ : Group G inst✝⁷ : TopologicalSpace G inst✝⁶ : T2Space G inst✝⁵ : TopologicalGroup G inst✝⁴ : MeasurableSpace G inst✝³ : BorelSpace G inst✝² : SecondCountableTopology G μ : Measure G inst✝¹ : IsHaarMeasure μ inst✝ : LocallyCompactSpace G E : Set G hE : MeasurableSet E hEpos : 0 < ↑↑μ E L : Set G hL : MeasurableSet L hLE : L ⊆ E hLpos : 0 < ↑↑μ L hLtop : ↑↑μ L < ⊤ K : Set G hKL : K ⊆ L hK : IsCompact K hKpos : 0 < ↑↑μ K hKtop : ↑↑μ K ≠ ⊤ U : Set G hUK : U ⊇ K hU : IsOpen U hμUK : ↑↑μ U < ↑↑μ K + ↑↑μ K V : Set G hV1 : V ∈ 𝓝 1 hVKU : V * K ⊆ U hv : ∀ (v : G), v ∈ V → ¬Disjoint ({v} * K) K ⊢ V ⊆ E / E [PROOFSTEP] intro v hvV [GOAL] case intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro G : Type u_1 inst✝⁸ : Group G inst✝⁷ : TopologicalSpace G inst✝⁶ : T2Space G inst✝⁵ : TopologicalGroup G inst✝⁴ : MeasurableSpace G inst✝³ : BorelSpace G inst✝² : SecondCountableTopology G μ : Measure G inst✝¹ : IsHaarMeasure μ inst✝ : LocallyCompactSpace G E : Set G hE : MeasurableSet E hEpos : 0 < ↑↑μ E L : Set G hL : MeasurableSet L hLE : L ⊆ E hLpos : 0 < ↑↑μ L hLtop : ↑↑μ L < ⊤ K : Set G hKL : K ⊆ L hK : IsCompact K hKpos : 0 < ↑↑μ K hKtop : ↑↑μ K ≠ ⊤ U : Set G hUK : U ⊇ K hU : IsOpen U hμUK : ↑↑μ U < ↑↑μ K + ↑↑μ K V : Set G hV1 : V ∈ 𝓝 1 hVKU : V * K ⊆ U hv : ∀ (v : G), v ∈ V → ¬Disjoint ({v} * K) K v : G hvV : v ∈ V ⊢ v ∈ E / E [PROOFSTEP] obtain ⟨x, hxK, hxvK⟩ : ∃ x : G, x ∈ { v } * K ∧ x ∈ K := Set.not_disjoint_iff.1 (hv v hvV) [GOAL] case intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro G : Type u_1 inst✝⁸ : Group G inst✝⁷ : TopologicalSpace G inst✝⁶ : T2Space G inst✝⁵ : TopologicalGroup G inst✝⁴ : MeasurableSpace G inst✝³ : BorelSpace G inst✝² : SecondCountableTopology G μ : Measure G inst✝¹ : IsHaarMeasure μ inst✝ : LocallyCompactSpace G E : Set G hE : MeasurableSet E hEpos : 0 < ↑↑μ E L : Set G hL : MeasurableSet L hLE : L ⊆ E hLpos : 0 < ↑↑μ L hLtop : ↑↑μ L < ⊤ K : Set G hKL : K ⊆ L hK : IsCompact K hKpos : 0 < ↑↑μ K hKtop : ↑↑μ K ≠ ⊤ U : Set G hUK : U ⊇ K hU : IsOpen U hμUK : ↑↑μ U < ↑↑μ K + ↑↑μ K V : Set G hV1 : V ∈ 𝓝 1 hVKU : V * K ⊆ U hv : ∀ (v : G), v ∈ V → ¬Disjoint ({v} * K) K v : G hvV : v ∈ V x : G hxK : x ∈ {v} * K hxvK : x ∈ K ⊢ v ∈ E / E [PROOFSTEP] refine' ⟨x, v⁻¹ * x, hLE (hKL hxvK), _, _⟩ [GOAL] case intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.refine'_1 G : Type u_1 inst✝⁸ : Group G inst✝⁷ : TopologicalSpace G inst✝⁶ : T2Space G inst✝⁵ : TopologicalGroup G inst✝⁴ : MeasurableSpace G inst✝³ : BorelSpace G inst✝² : SecondCountableTopology G μ : Measure G inst✝¹ : IsHaarMeasure μ inst✝ : LocallyCompactSpace G E : Set G hE : MeasurableSet E hEpos : 0 < ↑↑μ E L : Set G hL : MeasurableSet L hLE : L ⊆ E hLpos : 0 < ↑↑μ L hLtop : ↑↑μ L < ⊤ K : Set G hKL : K ⊆ L hK : IsCompact K hKpos : 0 < ↑↑μ K hKtop : ↑↑μ K ≠ ⊤ U : Set G hUK : U ⊇ K hU : IsOpen U hμUK : ↑↑μ U < ↑↑μ K + ↑↑μ K V : Set G hV1 : V ∈ 𝓝 1 hVKU : V * K ⊆ U hv : ∀ (v : G), v ∈ V → ¬Disjoint ({v} * K) K v : G hvV : v ∈ V x : G hxK : x ∈ {v} * K hxvK : x ∈ K ⊢ v⁻¹ * x ∈ E [PROOFSTEP] apply hKL.trans hLE [GOAL] case intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.refine'_1.a G : Type u_1 inst✝⁸ : Group G inst✝⁷ : TopologicalSpace G inst✝⁶ : T2Space G inst✝⁵ : TopologicalGroup G inst✝⁴ : MeasurableSpace G inst✝³ : BorelSpace G inst✝² : SecondCountableTopology G μ : Measure G inst✝¹ : IsHaarMeasure μ inst✝ : LocallyCompactSpace G E : Set G hE : MeasurableSet E hEpos : 0 < ↑↑μ E L : Set G hL : MeasurableSet L hLE : L ⊆ E hLpos : 0 < ↑↑μ L hLtop : ↑↑μ L < ⊤ K : Set G hKL : K ⊆ L hK : IsCompact K hKpos : 0 < ↑↑μ K hKtop : ↑↑μ K ≠ ⊤ U : Set G hUK : U ⊇ K hU : IsOpen U hμUK : ↑↑μ U < ↑↑μ K + ↑↑μ K V : Set G hV1 : V ∈ 𝓝 1 hVKU : V * K ⊆ U hv : ∀ (v : G), v ∈ V → ¬Disjoint ({v} * K) K v : G hvV : v ∈ V x : G hxK : x ∈ {v} * K hxvK : x ∈ K ⊢ v⁻¹ * x ∈ K [PROOFSTEP] simpa only [singleton_mul, image_mul_left, mem_preimage] using hxK [GOAL] case intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.refine'_2 G : Type u_1 inst✝⁸ : Group G inst✝⁷ : TopologicalSpace G inst✝⁶ : T2Space G inst✝⁵ : TopologicalGroup G inst✝⁴ : MeasurableSpace G inst✝³ : BorelSpace G inst✝² : SecondCountableTopology G μ : Measure G inst✝¹ : IsHaarMeasure μ inst✝ : LocallyCompactSpace G E : Set G hE : MeasurableSet E hEpos : 0 < ↑↑μ E L : Set G hL : MeasurableSet L hLE : L ⊆ E hLpos : 0 < ↑↑μ L hLtop : ↑↑μ L < ⊤ K : Set G hKL : K ⊆ L hK : IsCompact K hKpos : 0 < ↑↑μ K hKtop : ↑↑μ K ≠ ⊤ U : Set G hUK : U ⊇ K hU : IsOpen U hμUK : ↑↑μ U < ↑↑μ K + ↑↑μ K V : Set G hV1 : V ∈ 𝓝 1 hVKU : V * K ⊆ U hv : ∀ (v : G), v ∈ V → ¬Disjoint ({v} * K) K v : G hvV : v ∈ V x : G hxK : x ∈ {v} * K hxvK : x ∈ K ⊢ (fun x x_1 => x / x_1) x (v⁻¹ * x) = v [PROOFSTEP] simp only [div_eq_iff_eq_mul, ← mul_assoc, mul_right_inv, one_mul] [GOAL] G : Type u_1 inst✝⁸ : CommGroup G inst✝⁷ : TopologicalSpace G inst✝⁶ : TopologicalGroup G inst✝⁵ : T2Space G inst✝⁴ : MeasurableSpace G inst✝³ : BorelSpace G inst✝² : SecondCountableTopology G μ : Measure G inst✝¹ : IsHaarMeasure μ inst✝ : LocallyCompactSpace G ⊢ IsInvInvariant μ [PROOFSTEP] constructor [GOAL] case inv_eq_self G : Type u_1 inst✝⁸ : CommGroup G inst✝⁷ : TopologicalSpace G inst✝⁶ : TopologicalGroup G inst✝⁵ : T2Space G inst✝⁴ : MeasurableSpace G inst✝³ : BorelSpace G inst✝² : SecondCountableTopology G μ : Measure G inst✝¹ : IsHaarMeasure μ inst✝ : LocallyCompactSpace G ⊢ Measure.inv μ = μ [PROOFSTEP] haveI : IsHaarMeasure (Measure.map Inv.inv μ) := (MulEquiv.inv G).isHaarMeasure_map μ continuous_inv continuous_inv [GOAL] case inv_eq_self G : Type u_1 inst✝⁸ : CommGroup G inst✝⁷ : TopologicalSpace G inst✝⁶ : TopologicalGroup G inst✝⁵ : T2Space G inst✝⁴ : MeasurableSpace G inst✝³ : BorelSpace G inst✝² : SecondCountableTopology G μ : Measure G inst✝¹ : IsHaarMeasure μ inst✝ : LocallyCompactSpace G this : IsHaarMeasure (map inv μ) ⊢ Measure.inv μ = μ [PROOFSTEP] obtain ⟨c, _, _, hc⟩ : ∃ c : ℝ≥0∞, c ≠ 0 ∧ c ≠ ∞ ∧ Measure.map Inv.inv μ = c • μ := isHaarMeasure_eq_smul_isHaarMeasure _ _ [GOAL] case inv_eq_self.intro.intro.intro G : Type u_1 inst✝⁸ : CommGroup G inst✝⁷ : TopologicalSpace G inst✝⁶ : TopologicalGroup G inst✝⁵ : T2Space G inst✝⁴ : MeasurableSpace G inst✝³ : BorelSpace G inst✝² : SecondCountableTopology G μ : Measure G inst✝¹ : IsHaarMeasure μ inst✝ : LocallyCompactSpace G this : IsHaarMeasure (map inv μ) c : ℝ≥0∞ left✝¹ : c ≠ 0 left✝ : c ≠ ⊤ hc : map inv μ = c • μ ⊢ Measure.inv μ = μ [PROOFSTEP] have : map Inv.inv (map Inv.inv μ) = c ^ 2 • μ := by simp only [hc, smul_smul, pow_two, Measure.map_smul] [GOAL] G : Type u_1 inst✝⁸ : CommGroup G inst✝⁷ : TopologicalSpace G inst✝⁶ : TopologicalGroup G inst✝⁵ : T2Space G inst✝⁴ : MeasurableSpace G inst✝³ : BorelSpace G inst✝² : SecondCountableTopology G μ : Measure G inst✝¹ : IsHaarMeasure μ inst✝ : LocallyCompactSpace G this : IsHaarMeasure (map inv μ) c : ℝ≥0∞ left✝¹ : c ≠ 0 left✝ : c ≠ ⊤ hc : map inv μ = c • μ ⊢ map inv (map inv μ) = c ^ 2 • μ [PROOFSTEP] simp only [hc, smul_smul, pow_two, Measure.map_smul] [GOAL] case inv_eq_self.intro.intro.intro G : Type u_1 inst✝⁸ : CommGroup G inst✝⁷ : TopologicalSpace G inst✝⁶ : TopologicalGroup G inst✝⁵ : T2Space G inst✝⁴ : MeasurableSpace G inst✝³ : BorelSpace G inst✝² : SecondCountableTopology G μ : Measure G inst✝¹ : IsHaarMeasure μ inst✝ : LocallyCompactSpace G this✝ : IsHaarMeasure (map inv μ) c : ℝ≥0∞ left✝¹ : c ≠ 0 left✝ : c ≠ ⊤ hc : map inv μ = c • μ this : map inv (map inv μ) = c ^ 2 • μ ⊢ Measure.inv μ = μ [PROOFSTEP] have μeq : μ = c ^ 2 • μ := by rw [map_map continuous_inv.measurable continuous_inv.measurable] at this simpa only [inv_involutive, Involutive.comp_self, map_id] [GOAL] G : Type u_1 inst✝⁸ : CommGroup G inst✝⁷ : TopologicalSpace G inst✝⁶ : TopologicalGroup G inst✝⁵ : T2Space G inst✝⁴ : MeasurableSpace G inst✝³ : BorelSpace G inst✝² : SecondCountableTopology G μ : Measure G inst✝¹ : IsHaarMeasure μ inst✝ : LocallyCompactSpace G this✝ : IsHaarMeasure (map inv μ) c : ℝ≥0∞ left✝¹ : c ≠ 0 left✝ : c ≠ ⊤ hc : map inv μ = c • μ this : map inv (map inv μ) = c ^ 2 • μ ⊢ μ = c ^ 2 • μ [PROOFSTEP] rw [map_map continuous_inv.measurable continuous_inv.measurable] at this [GOAL] G : Type u_1 inst✝⁸ : CommGroup G inst✝⁷ : TopologicalSpace G inst✝⁶ : TopologicalGroup G inst✝⁵ : T2Space G inst✝⁴ : MeasurableSpace G inst✝³ : BorelSpace G inst✝² : SecondCountableTopology G μ : Measure G inst✝¹ : IsHaarMeasure μ inst✝ : LocallyCompactSpace G this✝ : IsHaarMeasure (map inv μ) c : ℝ≥0∞ left✝¹ : c ≠ 0 left✝ : c ≠ ⊤ hc : map inv μ = c • μ this : map ((fun a => a⁻¹) ∘ fun a => a⁻¹) μ = c ^ 2 • μ ⊢ μ = c ^ 2 • μ [PROOFSTEP] simpa only [inv_involutive, Involutive.comp_self, map_id] [GOAL] case inv_eq_self.intro.intro.intro G : Type u_1 inst✝⁸ : CommGroup G inst✝⁷ : TopologicalSpace G inst✝⁶ : TopologicalGroup G inst✝⁵ : T2Space G inst✝⁴ : MeasurableSpace G inst✝³ : BorelSpace G inst✝² : SecondCountableTopology G μ : Measure G inst✝¹ : IsHaarMeasure μ inst✝ : LocallyCompactSpace G this✝ : IsHaarMeasure (map inv μ) c : ℝ≥0∞ left✝¹ : c ≠ 0 left✝ : c ≠ ⊤ hc : map inv μ = c • μ this : map inv (map inv μ) = c ^ 2 • μ μeq : μ = c ^ 2 • μ ⊢ Measure.inv μ = μ [PROOFSTEP] have K : PositiveCompacts G := Classical.arbitrary _ [GOAL] case inv_eq_self.intro.intro.intro G : Type u_1 inst✝⁸ : CommGroup G inst✝⁷ : TopologicalSpace G inst✝⁶ : TopologicalGroup G inst✝⁵ : T2Space G inst✝⁴ : MeasurableSpace G inst✝³ : BorelSpace G inst✝² : SecondCountableTopology G μ : Measure G inst✝¹ : IsHaarMeasure μ inst✝ : LocallyCompactSpace G this✝ : IsHaarMeasure (map inv μ) c : ℝ≥0∞ left✝¹ : c ≠ 0 left✝ : c ≠ ⊤ hc : map inv μ = c • μ this : map inv (map inv μ) = c ^ 2 • μ μeq : μ = c ^ 2 • μ K : PositiveCompacts G ⊢ Measure.inv μ = μ [PROOFSTEP] have : c ^ 2 * μ K = 1 ^ 2 * μ K := by conv_rhs => rw [μeq] simp [GOAL] G : Type u_1 inst✝⁸ : CommGroup G inst✝⁷ : TopologicalSpace G inst✝⁶ : TopologicalGroup G inst✝⁵ : T2Space G inst✝⁴ : MeasurableSpace G inst✝³ : BorelSpace G inst✝² : SecondCountableTopology G μ : Measure G inst✝¹ : IsHaarMeasure μ inst✝ : LocallyCompactSpace G this✝ : IsHaarMeasure (map inv μ) c : ℝ≥0∞ left✝¹ : c ≠ 0 left✝ : c ≠ ⊤ hc : map inv μ = c • μ this : map inv (map inv μ) = c ^ 2 • μ μeq : μ = c ^ 2 • μ K : PositiveCompacts G ⊢ c ^ 2 * ↑↑μ ↑K = 1 ^ 2 * ↑↑μ ↑K [PROOFSTEP] conv_rhs => rw [μeq] [GOAL] G : Type u_1 inst✝⁸ : CommGroup G inst✝⁷ : TopologicalSpace G inst✝⁶ : TopologicalGroup G inst✝⁵ : T2Space G inst✝⁴ : MeasurableSpace G inst✝³ : BorelSpace G inst✝² : SecondCountableTopology G μ : Measure G inst✝¹ : IsHaarMeasure μ inst✝ : LocallyCompactSpace G this✝ : IsHaarMeasure (map inv μ) c : ℝ≥0∞ left✝¹ : c ≠ 0 left✝ : c ≠ ⊤ hc : map inv μ = c • μ this : map inv (map inv μ) = c ^ 2 • μ μeq : μ = c ^ 2 • μ K : PositiveCompacts G | 1 ^ 2 * ↑↑μ ↑K [PROOFSTEP] rw [μeq] [GOAL] G : Type u_1 inst✝⁸ : CommGroup G inst✝⁷ : TopologicalSpace G inst✝⁶ : TopologicalGroup G inst✝⁵ : T2Space G inst✝⁴ : MeasurableSpace G inst✝³ : BorelSpace G inst✝² : SecondCountableTopology G μ : Measure G inst✝¹ : IsHaarMeasure μ inst✝ : LocallyCompactSpace G this✝ : IsHaarMeasure (map inv μ) c : ℝ≥0∞ left✝¹ : c ≠ 0 left✝ : c ≠ ⊤ hc : map inv μ = c • μ this : map inv (map inv μ) = c ^ 2 • μ μeq : μ = c ^ 2 • μ K : PositiveCompacts G | 1 ^ 2 * ↑↑μ ↑K [PROOFSTEP] rw [μeq] [GOAL] G : Type u_1 inst✝⁸ : CommGroup G inst✝⁷ : TopologicalSpace G inst✝⁶ : TopologicalGroup G inst✝⁵ : T2Space G inst✝⁴ : MeasurableSpace G inst✝³ : BorelSpace G inst✝² : SecondCountableTopology G μ : Measure G inst✝¹ : IsHaarMeasure μ inst✝ : LocallyCompactSpace G this✝ : IsHaarMeasure (map inv μ) c : ℝ≥0∞ left✝¹ : c ≠ 0 left✝ : c ≠ ⊤ hc : map inv μ = c • μ this : map inv (map inv μ) = c ^ 2 • μ μeq : μ = c ^ 2 • μ K : PositiveCompacts G | 1 ^ 2 * ↑↑μ ↑K [PROOFSTEP] rw [μeq] [GOAL] G : Type u_1 inst✝⁸ : CommGroup G inst✝⁷ : TopologicalSpace G inst✝⁶ : TopologicalGroup G inst✝⁵ : T2Space G inst✝⁴ : MeasurableSpace G inst✝³ : BorelSpace G inst✝² : SecondCountableTopology G μ : Measure G inst✝¹ : IsHaarMeasure μ inst✝ : LocallyCompactSpace G this✝ : IsHaarMeasure (map inv μ) c : ℝ≥0∞ left✝¹ : c ≠ 0 left✝ : c ≠ ⊤ hc : map inv μ = c • μ this : map inv (map inv μ) = c ^ 2 • μ μeq : μ = c ^ 2 • μ K : PositiveCompacts G ⊢ c ^ 2 * ↑↑μ ↑K = 1 ^ 2 * ↑↑(c ^ 2 • μ) ↑K [PROOFSTEP] simp [GOAL] case inv_eq_self.intro.intro.intro G : Type u_1 inst✝⁸ : CommGroup G inst✝⁷ : TopologicalSpace G inst✝⁶ : TopologicalGroup G inst✝⁵ : T2Space G inst✝⁴ : MeasurableSpace G inst✝³ : BorelSpace G inst✝² : SecondCountableTopology G μ : Measure G inst✝¹ : IsHaarMeasure μ inst✝ : LocallyCompactSpace G this✝¹ : IsHaarMeasure (map inv μ) c : ℝ≥0∞ left✝¹ : c ≠ 0 left✝ : c ≠ ⊤ hc : map inv μ = c • μ this✝ : map inv (map inv μ) = c ^ 2 • μ μeq : μ = c ^ 2 • μ K : PositiveCompacts G this : c ^ 2 * ↑↑μ ↑K = 1 ^ 2 * ↑↑μ ↑K ⊢ Measure.inv μ = μ [PROOFSTEP] have : c ^ 2 = 1 ^ 2 := (ENNReal.mul_eq_mul_right (measure_pos_of_nonempty_interior _ K.interior_nonempty).ne' K.isCompact.measure_lt_top.ne).1 this [GOAL] case inv_eq_self.intro.intro.intro G : Type u_1 inst✝⁸ : CommGroup G inst✝⁷ : TopologicalSpace G inst✝⁶ : TopologicalGroup G inst✝⁵ : T2Space G inst✝⁴ : MeasurableSpace G inst✝³ : BorelSpace G inst✝² : SecondCountableTopology G μ : Measure G inst✝¹ : IsHaarMeasure μ inst✝ : LocallyCompactSpace G this✝² : IsHaarMeasure (map inv μ) c : ℝ≥0∞ left✝¹ : c ≠ 0 left✝ : c ≠ ⊤ hc : map inv μ = c • μ this✝¹ : map inv (map inv μ) = c ^ 2 • μ μeq : μ = c ^ 2 • μ K : PositiveCompacts G this✝ : c ^ 2 * ↑↑μ ↑K = 1 ^ 2 * ↑↑μ ↑K this : c ^ 2 = 1 ^ 2 ⊢ Measure.inv μ = μ [PROOFSTEP] have : c = 1 := (ENNReal.pow_strictMono two_ne_zero).injective this [GOAL] case inv_eq_self.intro.intro.intro G : Type u_1 inst✝⁸ : CommGroup G inst✝⁷ : TopologicalSpace G inst✝⁶ : TopologicalGroup G inst✝⁵ : T2Space G inst✝⁴ : MeasurableSpace G inst✝³ : BorelSpace G inst✝² : SecondCountableTopology G μ : Measure G inst✝¹ : IsHaarMeasure μ inst✝ : LocallyCompactSpace G this✝³ : IsHaarMeasure (map inv μ) c : ℝ≥0∞ left✝¹ : c ≠ 0 left✝ : c ≠ ⊤ hc : map inv μ = c • μ this✝² : map inv (map inv μ) = c ^ 2 • μ μeq : μ = c ^ 2 • μ K : PositiveCompacts G this✝¹ : c ^ 2 * ↑↑μ ↑K = 1 ^ 2 * ↑↑μ ↑K this✝ : c ^ 2 = 1 ^ 2 this : c = 1 ⊢ Measure.inv μ = μ [PROOFSTEP] rw [Measure.inv, hc, this, one_smul] [GOAL] G : Type u_1 inst✝⁹ : CommGroup G inst✝⁸ : TopologicalSpace G inst✝⁷ : TopologicalGroup G inst✝⁶ : T2Space G inst✝⁵ : MeasurableSpace G inst✝⁴ : BorelSpace G inst✝³ : SecondCountableTopology G μ : Measure G inst✝² : IsHaarMeasure μ inst✝¹ : CompactSpace G inst✝ : RootableBy G ℤ n : ℤ hn : n ≠ 0 ⊢ map (fun g => g ^ n) μ = μ [PROOFSTEP] let f := @zpowGroupHom G _ n [GOAL] G : Type u_1 inst✝⁹ : CommGroup G inst✝⁸ : TopologicalSpace G inst✝⁷ : TopologicalGroup G inst✝⁶ : T2Space G inst✝⁵ : MeasurableSpace G inst✝⁴ : BorelSpace G inst✝³ : SecondCountableTopology G μ : Measure G inst✝² : IsHaarMeasure μ inst✝¹ : CompactSpace G inst✝ : RootableBy G ℤ n : ℤ hn : n ≠ 0 f : G →* G := zpowGroupHom n ⊢ map (fun g => g ^ n) μ = μ [PROOFSTEP] have hf : Continuous f := continuous_zpow n [GOAL] G : Type u_1 inst✝⁹ : CommGroup G inst✝⁸ : TopologicalSpace G inst✝⁷ : TopologicalGroup G inst✝⁶ : T2Space G inst✝⁵ : MeasurableSpace G inst✝⁴ : BorelSpace G inst✝³ : SecondCountableTopology G μ : Measure G inst✝² : IsHaarMeasure μ inst✝¹ : CompactSpace G inst✝ : RootableBy G ℤ n : ℤ hn : n ≠ 0 f : G →* G := zpowGroupHom n hf : Continuous ↑f ⊢ map (fun g => g ^ n) μ = μ [PROOFSTEP] haveI : (μ.map f).IsHaarMeasure := isHaarMeasure_map μ f hf (RootableBy.surjective_pow G ℤ hn) (by simp) [GOAL] G : Type u_1 inst✝⁹ : CommGroup G inst✝⁸ : TopologicalSpace G inst✝⁷ : TopologicalGroup G inst✝⁶ : T2Space G inst✝⁵ : MeasurableSpace G inst✝⁴ : BorelSpace G inst✝³ : SecondCountableTopology G μ : Measure G inst✝² : IsHaarMeasure μ inst✝¹ : CompactSpace G inst✝ : RootableBy G ℤ n : ℤ hn : n ≠ 0 f : G →* G := zpowGroupHom n hf : Continuous ↑f ⊢ Filter.Tendsto (↑f) (Filter.cocompact G) (Filter.cocompact G) [PROOFSTEP] simp [GOAL] G : Type u_1 inst✝⁹ : CommGroup G inst✝⁸ : TopologicalSpace G inst✝⁷ : TopologicalGroup G inst✝⁶ : T2Space G inst✝⁵ : MeasurableSpace G inst✝⁴ : BorelSpace G inst✝³ : SecondCountableTopology G μ : Measure G inst✝² : IsHaarMeasure μ inst✝¹ : CompactSpace G inst✝ : RootableBy G ℤ n : ℤ hn : n ≠ 0 f : G →* G := zpowGroupHom n hf : Continuous ↑f this : IsHaarMeasure (map (↑f) μ) ⊢ map (fun g => g ^ n) μ = μ [PROOFSTEP] obtain ⟨C, -, -, hC⟩ := isHaarMeasure_eq_smul_isHaarMeasure (μ.map f) μ [GOAL] case intro.intro.intro G : Type u_1 inst✝⁹ : CommGroup G inst✝⁸ : TopologicalSpace G inst✝⁷ : TopologicalGroup G inst✝⁶ : T2Space G inst✝⁵ : MeasurableSpace G inst✝⁴ : BorelSpace G inst✝³ : SecondCountableTopology G μ : Measure G inst✝² : IsHaarMeasure μ inst✝¹ : CompactSpace G inst✝ : RootableBy G ℤ n : ℤ hn : n ≠ 0 f : G →* G := zpowGroupHom n hf : Continuous ↑f this : IsHaarMeasure (map (↑f) μ) C : ℝ≥0∞ hC : map (↑f) μ = C • μ ⊢ map (fun g => g ^ n) μ = μ [PROOFSTEP] suffices C = 1 by rwa [this, one_smul] at hC [GOAL] G : Type u_1 inst✝⁹ : CommGroup G inst✝⁸ : TopologicalSpace G inst✝⁷ : TopologicalGroup G inst✝⁶ : T2Space G inst✝⁵ : MeasurableSpace G inst✝⁴ : BorelSpace G inst✝³ : SecondCountableTopology G μ : Measure G inst✝² : IsHaarMeasure μ inst✝¹ : CompactSpace G inst✝ : RootableBy G ℤ n : ℤ hn : n ≠ 0 f : G →* G := zpowGroupHom n hf : Continuous ↑f this✝ : IsHaarMeasure (map (↑f) μ) C : ℝ≥0∞ hC : map (↑f) μ = C • μ this : C = 1 ⊢ map (fun g => g ^ n) μ = μ [PROOFSTEP] rwa [this, one_smul] at hC [GOAL] case intro.intro.intro G : Type u_1 inst✝⁹ : CommGroup G inst✝⁸ : TopologicalSpace G inst✝⁷ : TopologicalGroup G inst✝⁶ : T2Space G inst✝⁵ : MeasurableSpace G inst✝⁴ : BorelSpace G inst✝³ : SecondCountableTopology G μ : Measure G inst✝² : IsHaarMeasure μ inst✝¹ : CompactSpace G inst✝ : RootableBy G ℤ n : ℤ hn : n ≠ 0 f : G →* G := zpowGroupHom n hf : Continuous ↑f this : IsHaarMeasure (map (↑f) μ) C : ℝ≥0∞ hC : map (↑f) μ = C • μ ⊢ C = 1 [PROOFSTEP] have h_univ : (μ.map f) univ = μ univ := by rw [map_apply_of_aemeasurable hf.measurable.aemeasurable MeasurableSet.univ, preimage_univ] [GOAL] G : Type u_1 inst✝⁹ : CommGroup G inst✝⁸ : TopologicalSpace G inst✝⁷ : TopologicalGroup G inst✝⁶ : T2Space G inst✝⁵ : MeasurableSpace G inst✝⁴ : BorelSpace G inst✝³ : SecondCountableTopology G μ : Measure G inst✝² : IsHaarMeasure μ inst✝¹ : CompactSpace G inst✝ : RootableBy G ℤ n : ℤ hn : n ≠ 0 f : G →* G := zpowGroupHom n hf : Continuous ↑f this : IsHaarMeasure (map (↑f) μ) C : ℝ≥0∞ hC : map (↑f) μ = C • μ ⊢ ↑↑(map (↑f) μ) univ = ↑↑μ univ [PROOFSTEP] rw [map_apply_of_aemeasurable hf.measurable.aemeasurable MeasurableSet.univ, preimage_univ] [GOAL] case intro.intro.intro G : Type u_1 inst✝⁹ : CommGroup G inst✝⁸ : TopologicalSpace G inst✝⁷ : TopologicalGroup G inst✝⁶ : T2Space G inst✝⁵ : MeasurableSpace G inst✝⁴ : BorelSpace G inst✝³ : SecondCountableTopology G μ : Measure G inst✝² : IsHaarMeasure μ inst✝¹ : CompactSpace G inst✝ : RootableBy G ℤ n : ℤ hn : n ≠ 0 f : G →* G := zpowGroupHom n hf : Continuous ↑f this : IsHaarMeasure (map (↑f) μ) C : ℝ≥0∞ hC : map (↑f) μ = C • μ h_univ : ↑↑(map (↑f) μ) univ = ↑↑μ univ ⊢ C = 1 [PROOFSTEP] have hμ₀ : μ univ ≠ 0 := IsOpenPosMeasure.open_pos univ isOpen_univ univ_nonempty [GOAL] case intro.intro.intro G : Type u_1 inst✝⁹ : CommGroup G inst✝⁸ : TopologicalSpace G inst✝⁷ : TopologicalGroup G inst✝⁶ : T2Space G inst✝⁵ : MeasurableSpace G inst✝⁴ : BorelSpace G inst✝³ : SecondCountableTopology G μ : Measure G inst✝² : IsHaarMeasure μ inst✝¹ : CompactSpace G inst✝ : RootableBy G ℤ n : ℤ hn : n ≠ 0 f : G →* G := zpowGroupHom n hf : Continuous ↑f this : IsHaarMeasure (map (↑f) μ) C : ℝ≥0∞ hC : map (↑f) μ = C • μ h_univ : ↑↑(map (↑f) μ) univ = ↑↑μ univ hμ₀ : ↑↑μ univ ≠ 0 ⊢ C = 1 [PROOFSTEP] have hμ₁ : μ univ ≠ ∞ := CompactSpace.isFiniteMeasure.measure_univ_lt_top.ne [GOAL] case intro.intro.intro G : Type u_1 inst✝⁹ : CommGroup G inst✝⁸ : TopologicalSpace G inst✝⁷ : TopologicalGroup G inst✝⁶ : T2Space G inst✝⁵ : MeasurableSpace G inst✝⁴ : BorelSpace G inst✝³ : SecondCountableTopology G μ : Measure G inst✝² : IsHaarMeasure μ inst✝¹ : CompactSpace G inst✝ : RootableBy G ℤ n : ℤ hn : n ≠ 0 f : G →* G := zpowGroupHom n hf : Continuous ↑f this : IsHaarMeasure (map (↑f) μ) C : ℝ≥0∞ hC : map (↑f) μ = C • μ h_univ : ↑↑(map (↑f) μ) univ = ↑↑μ univ hμ₀ : ↑↑μ univ ≠ 0 hμ₁ : ↑↑μ univ ≠ ⊤ ⊢ C = 1 [PROOFSTEP] rwa [hC, smul_apply, Algebra.id.smul_eq_mul, mul_comm, ← ENNReal.eq_div_iff hμ₀ hμ₁, ENNReal.div_self hμ₀ hμ₁] at h_univ
theory int_mul_comm imports Main "$HIPSTER_HOME/IsaHipster" begin datatype Sign = Pos | Neg datatype Nat = Zero | Succ "Nat" datatype Z = P "Nat" | N "Nat" fun toInteger :: "Sign => Nat => Z" where "toInteger (Pos) y = P y" | "toInteger (Neg) (Zero) = P Zero" | "toInteger (Neg) (Succ m) = N m" fun sign2 :: "Z => Sign" where "sign2 (P y) = Pos" | "sign2 (N z) = Neg" fun plus :: "Nat => Nat => Nat" where "plus (Zero) y = y" | "plus (Succ n) y = Succ (plus n y)" fun opposite :: "Sign => Sign" where "opposite (Pos) = Neg" | "opposite (Neg) = Pos" fun timesSign :: "Sign => Sign => Sign" where "timesSign (Pos) y = y" | "timesSign (Neg) y = opposite y" fun mult :: "Nat => Nat => Nat" where "mult (Zero) y = Zero" | "mult (Succ n) y = plus y (mult n y)" fun absVal :: "Z => Nat" where "absVal (P n) = n" | "absVal (N m) = Succ m" fun times :: "Z => Z => Z" where "times x y = toInteger (timesSign (sign2 x) (sign2 y)) (mult (absVal x) (absVal y))" (*hipster toInteger sign2 plus opposite timesSign mult absVal times *) theorem x0 : "!! (x :: Z) (y :: Z) . (times x y) = (times y x)" by (tactic \<open>Subgoal.FOCUS_PARAMS (K (Tactic_Data.hard_tac @{context})) @{context} 1\<close>) end
{-# OPTIONS --without-K --safe #-} open import Categories.Category.Core module Categories.Object.Product.Limit {o ℓ e} (C : Category o ℓ e) where open import Level open import Data.Nat.Base using (ℕ) open import Data.Fin.Base using (Fin) open import Data.Fin.Patterns open import Categories.Category.Lift open import Categories.Category.Finite.Fin open import Categories.Category.Finite.Fin.Construction.Discrete open import Categories.Object.Product C open import Categories.Diagram.Limit open import Categories.Functor.Core import Categories.Category.Construction.Cones as Co import Categories.Morphism.Reasoning as MR private module C = Category C open C open MR C open HomReasoning module _ {o′ ℓ′ e′} {F : Functor (liftC o′ ℓ′ e′ (Discrete 2)) C} where private module F = Functor F open F limit⇒product : Limit F → Product (F₀ (lift 0F)) (F₀ (lift 1F)) limit⇒product L = record { A×B = apex ; π₁ = proj (lift 0F) ; π₂ = proj (lift 1F) ; ⟨_,_⟩ = λ f g → rep record { apex = record { ψ = λ { (lift 0F) → f ; (lift 1F) → g } ; commute = λ { {lift 0F} {lift 0F} (lift 0F) → elimˡ identity ; {lift 1F} {lift 1F} (lift 0F) → elimˡ identity } } } ; project₁ = commute ; project₂ = commute ; unique = λ {_} {h} eq eq′ → terminal.!-unique record { arr = h ; commute = λ { {lift 0F} → eq ; {lift 1F} → eq′ } } } where open Limit L module _ o′ ℓ′ e′ A B where open Equiv product⇒limit-F : Functor (liftC o′ ℓ′ e′ (Discrete 2)) C product⇒limit-F = record { F₀ = λ { (lift 0F) → A ; (lift 1F) → B } ; F₁ = λ { {lift 0F} {lift 0F} _ → C.id ; {lift 1F} {lift 1F} _ → C.id } ; identity = λ { {lift 0F} → refl ; {lift 1F} → refl } ; homomorphism = λ { {lift 0F} {lift 0F} {lift 0F} → sym identity² ; {lift 1F} {lift 1F} {lift 1F} → sym identity² } ; F-resp-≈ = λ { {lift 0F} {lift 0F} _ → refl ; {lift 1F} {lift 1F} _ → refl } } module _ o′ ℓ′ e′ {A B} (p : Product A B) where open Product p private F = product⇒limit-F o′ ℓ′ e′ A B open Functor F product⇒limit : Limit F product⇒limit = record { terminal = record { ⊤ = record { N = A×B ; apex = record { ψ = λ { (lift 0F) → π₁ ; (lift 1F) → π₂ } ; commute = λ { {lift 0F} {lift 0F} (lift 0F) → identityˡ ; {lift 1F} {lift 1F} (lift 0F) → identityˡ } } } ; ! = λ {K} → let open Co.Cone F K in record { arr = ⟨ ψ (lift 0F) , ψ (lift 1F) ⟩ ; commute = λ { {lift 0F} → project₁ ; {lift 1F} → project₂ } } ; !-unique = λ {K} f → let module K = Co.Cone F K module f = Co.Cone⇒ F f in begin ⟨ K.ψ (lift 0F) , K.ψ (lift 1F) ⟩ ≈˘⟨ ⟨⟩-cong₂ f.commute f.commute ⟩ ⟨ π₁ ∘ f.arr , π₂ ∘ f.arr ⟩ ≈⟨ g-η ⟩ f.arr ∎ } }
Require Import Reals Coquelicot.Coquelicot Coquelicot.Series. Require Import ProofIrrelevance EquivDec. Require Import Sums utils.Utils Morphisms. Require Import Lia Lra. Require Import Coq.Logic.FunctionalExtensionality. From mathcomp Require Import ssreflect ssrfun seq. Require Import ExtLib.Structures.Monad ExtLib.Structures.MonadLaws. Require Import ExtLib.Structures.Functor. Import MonadNotation FunctorNotation. Set Bullet Behavior "Strict Subproofs". Require List. Require Import Permutation. (* **************************************************************************************** This file defines the pmf monad (also called the finitary Giry monad) which is a monad of finitely supported probability measures on a set. The construction is very general, and we don't need to work in that generality. Our main application is to use this monad to define and reason about Markov Decision Processes. We also add results on conditional probability and conditional expectation, everything tailored to the discrete case. **************************************************************************************** *) (* Helper lemmas. Move to RealAdd. *) Fixpoint list_fst_sum {A : Type} (l : list (nonnegreal*A)): R := match l with | nil => 0 | (n,_) :: ns => n + list_fst_sum ns end. Definition list_fst_sum' {A : Type} (l : list (nonnegreal*A)) : R := list_sum (map (fun x => nonneg (fst x)) l). Lemma list_fst_sum_compat {A : Type} (l : list (nonnegreal*A)) : list_fst_sum l = list_fst_sum' l. Proof. induction l. * unfold list_fst_sum' ; simpl ; reflexivity. * unfold list_fst_sum'. destruct a. simpl. rewrite IHl. f_equal. Qed. Lemma list_sum_is_nonneg {A : Type} (l : list(nonnegreal*A)) : 0 <= list_fst_sum l. Proof. induction l. simpl ; lra. simpl. destruct a as [n]. assert (0 <= n) by apply (cond_nonneg n). apply (Rplus_le_le_0_compat _ _ H). lra. Qed. Lemma prod_nonnegreal : forall (a b : nonnegreal), 0 <= a*b. Proof. intros (a,ha) (b,hb). exact (Rmult_le_pos _ _ ha hb). Qed. Lemma div_nonnegreal : forall (a b : nonnegreal), 0 <> b -> 0 <= a/b. Proof. intros (a,ha) (b,hb) Hb. apply (Rdiv_le_0_compat). apply ha. simpl in *. case hb. trivial. intros H. firstorder. Qed. Lemma mknonnegreal_assoc (r1 r2 r3 : nonnegreal) : mknonnegreal _ (prod_nonnegreal (mknonnegreal _ (prod_nonnegreal r1 r2) ) r3) = mknonnegreal _ (prod_nonnegreal r1 (mknonnegreal _ (prod_nonnegreal r2 r3))). Proof. apply nonneg_ext; simpl. lra. Qed. Lemma Rone_mult_nonnegreal (r : nonnegreal) (hr : 0 <= R1*r) : mknonnegreal (R1*r) hr = r. Proof. destruct r as [r hr']. simpl. assert (r = R1 * r) by lra. simpl in hr. revert hr. rewrite <- H. intros. f_equal. apply proof_irrelevance. Qed. Lemma list_fst_sum_cat {A : Type} (l1 l2 : list (nonnegreal * A)) : list_fst_sum (l1 ++ l2) = (list_fst_sum l1) + (list_fst_sum l2). Proof. induction l1. * simpl ; nra. * simpl ; destruct a; nra. Qed. Definition nonneg_list_sum {A : Type} (l : list (nonnegreal * A)) : nonnegreal := {| nonneg := list_fst_sum l; cond_nonneg := (list_sum_is_nonneg l) |}. Section Pmf. (* Defines the record of discrete probability measures on a type. *) Record Pmf (A : Type) := mkPmf { outcomes :> list (nonnegreal * A); sum1 : list_fst_sum outcomes = R1 }. Global Arguments outcomes {_}. Global Arguments sum1 {_}. Global Arguments mkPmf {_}. Lemma Pmf_ext {A} (p q : Pmf A) : outcomes p = outcomes q -> p = q. Proof. destruct p as [op sp]. destruct q as [oq sq]. rewrite /outcomes => ?. (* what's happening here? *) subst. f_equal. apply proof_irrelevance. Qed. Lemma sum1_compat {B} (p : Pmf B) : list_sum (map (fun y : nonnegreal * B => nonneg (fst y)) (p.(outcomes))) = R1. Proof. rewrite <- p.(sum1). rewrite list_fst_sum_compat. unfold list_fst_sum'. reflexivity. Qed. Lemma pure_sum1 {A} (a : A) : list_fst_sum [::(mknonnegreal R1 (Rlt_le _ _ Rlt_0_1),a)] = R1. Proof. simpl. lra. Qed. Definition Pmf_pure : forall {A : Type}, A -> Pmf A := fun {A} (a:A) => {| outcomes := [::(mknonnegreal R1 (Rlt_le _ _ Rlt_0_1),a)]; sum1 := pure_sum1 _ |}. Global Instance Proper_pure {A : Type}: Proper (eq ==> eq) (@Pmf_pure A). Proof. unfold Proper,respectful; intros. now subst. Qed. Fixpoint dist_bind_outcomes {A B : Type} (f : A -> Pmf B) (p : list (nonnegreal*A)) : list(nonnegreal*B) := match p with | nil => nil | (n,a) :: ps => map (fun (py:nonnegreal*B) => (mknonnegreal _ (prod_nonnegreal n py.1),py.2)) (f a).(outcomes) ++ (dist_bind_outcomes f ps) end. Lemma dist_bind_outcomes_cat {A B : Type} (f : A -> Pmf B) (l1 l2 : list(nonnegreal*A)) : dist_bind_outcomes f (l1 ++ l2) = (dist_bind_outcomes f l1) ++ (dist_bind_outcomes f l2). Proof. induction l1. * simpl; easy. * destruct a as [an aa]. simpl. rewrite <- catA. rewrite IHl1. reflexivity. Qed. Lemma list_fst_sum_const_mult {A B : Type} (f : A -> Pmf B) (n : nonnegreal) (a : A): list_fst_sum [seq (mknonnegreal _ (prod_nonnegreal n py.1), py.2) | py <- f a] = n*list_fst_sum [seq py | py <- f a]. Proof. destruct (f a) as [fa Hfa]. simpl. revert Hfa. generalize R1 as t. induction fa. * simpl; intros. auto with real. * simpl in *. destruct a0. intros t Htn0. rewrite (IHfa (t - n0)). specialize (IHfa (t-n0)). simpl. auto with real. rewrite <- Htn0. lra. Qed. Lemma list_fst_sum_const_div {A : Type} (l : list (nonnegreal*A)) {n : nonnegreal} (hn : 0 <> nonneg n) : list_fst_sum [seq (mknonnegreal _ (div_nonnegreal py.1 _ hn), py.2) | py <- l] = list_fst_sum [seq py | py <- l]/n. Proof. generalize R1 as t. induction l. * simpl. intros H. lra. * simpl in *. destruct a. intros t. simpl. rewrite (IHl (t - n)). specialize (IHl (t-n)). simpl. lra. Qed. Lemma dist_bind_sum1 {A B : Type} (f : A -> Pmf B) (p : Pmf A) : list_fst_sum (dist_bind_outcomes f p.(outcomes)) = R1. Proof. destruct p as [p Hp]. simpl. revert Hp. generalize R1 as t. induction p. * simpl; intuition. * simpl in *. destruct a as [n a]. intros t0 Hnt0. rewrite list_fst_sum_cat. rewrite (IHp (t0-n)). rewrite list_fst_sum_const_mult. destruct (f a) as [fp Hfp]. simpl. rewrite map_id Hfp. lra. lra. Qed. Lemma dist_bind_sum1_compat {A B : Type} (f : A -> Pmf B) (p : Pmf A) : list_fst_sum' (dist_bind_outcomes f p.(outcomes)) = R1. Proof. rewrite <-list_fst_sum_compat. apply dist_bind_sum1. Qed. Definition Pmf_bind {A B : Type} (p : Pmf A) (f : A -> Pmf B) : Pmf B :={| outcomes := dist_bind_outcomes f p.(outcomes); sum1 := dist_bind_sum1 f p |}. Global Instance Proper_bind {A B : Type}: Proper (eq ==> (pointwise_relation A eq) ==> eq) (@Pmf_bind A B). Proof. unfold Proper, respectful, pointwise_relation. intros p q Hpq f g Hfg; subst. apply Pmf_ext. destruct q as [q Hq]. unfold Pmf_bind; simpl. clear Hq. induction q; simpl; trivial. destruct a. f_equal; trivial. now rewrite Hfg. Qed. Global Instance Monad_Pmf : Monad Pmf := {| ret := @Pmf_pure; bind := @Pmf_bind; |}. (*We can use the nice bind and return syntax, since Pmf is now part of the Monad typeclass.*) Open Scope monad_scope. Lemma Pmf_ret_of_bind {A : Type} (p : Pmf A) : p >>= (fun a => ret a) = p. Proof. apply Pmf_ext ; simpl. induction p.(outcomes). simpl. reflexivity. simpl. destruct a. rewrite IHl. f_equal. f_equal. destruct n. apply nonneg_ext. apply Rmult_1_r. Qed. Lemma Pmf_bind_of_ret {A B : Type} (a : A) (f : A -> Pmf B) : (ret a) >>= f = f a. Proof. apply Pmf_ext. simpl. rewrite cats0. rewrite <- map_id. apply eq_map. intros (n,b). simpl. now rewrite Rone_mult_nonnegreal. Qed. Lemma Pmf_bind_of_bind {A B C : Type} (p : Pmf A) (f : A -> Pmf B) (g : B -> Pmf C) : (p >>= f) >>= g = p >>= (fun a => (f a) >>= g). Proof. apply Pmf_ext. destruct p as [pout Hp]. revert Hp. simpl. generalize R1 as t. induction pout. * simpl ; easy. * simpl. destruct a as [an aa]. intros t Ht. rewrite dist_bind_outcomes_cat. simpl. rewrite <- (IHpout (t-an)). destruct (f aa) as [faa Hfaa]. f_equal. revert Hfaa. simpl. generalize R1 as u. induction faa. - simpl. reflexivity. - destruct a as [an1 aa1]. simpl. intros u Hu. rewrite map_cat. rewrite (IHfaa (u-an1)); clear IHfaa. f_equal. rewrite <- map_comp. unfold comp. simpl. apply List.map_ext; intros. f_equal. apply nonneg_ext. apply Rmult_assoc. lra. - lra. Qed. (* Global Instance Pmf_MonadLaws : MonadLaws Monad_Pmf := {| *) (* bind_of_return := @Pmf_bind_of_ret; *) (* bind_associativity := @Pmf_bind_of_bind; *) (* | }.*) Definition dist_bind_outcomes_alt {A B : Type} (f : A -> list (nonnegreal * B)) (p : list (nonnegreal*A)) : list(nonnegreal*B) := flatten (map (fun '(n,a) => map (fun (py:nonnegreal*B) => (mknonnegreal _ (prod_nonnegreal n py.1),py.2)) (f a)) p). Definition dist_bind_outcomes_alt2 {A B : Type} (f : A -> list (nonnegreal * B)) (p : list (nonnegreal*A)) : list(nonnegreal*B) := List.concat (List.map (fun na => List.map (fun (py:nonnegreal*B) => (mknonnegreal _ (prod_nonnegreal (fst na) py.1),py.2)) (f (snd na))) p). Lemma dist_bind_outcomes_alt2_eq {A B : Type} (f : A -> list (nonnegreal * B)) (p : list (nonnegreal*A)) : dist_bind_outcomes_alt f p = dist_bind_outcomes_alt2 f p. Proof. induction p; simpl; trivial. unfold dist_bind_outcomes_alt, dist_bind_outcomes_alt2 in *. destruct a; simpl. rewrite IHp. firstorder. Qed. Instance dist_bind_outcomes_alt_eq_ext_proper {A B : Type} : Proper (pointwise_relation A eq ==> eq ==> eq) (@dist_bind_outcomes_alt A B). Proof. intros ??????; subst. unfold dist_bind_outcomes_alt. f_equal. eapply eq_map. intros ?. destruct x0; simpl. rewrite H. eapply eq_map. intros ?. reflexivity. Qed. Lemma dist_bind_outcomes_alt_eq {A B : Type} (f : A -> Pmf B) (p : list (nonnegreal*A)) : dist_bind_outcomes f p = dist_bind_outcomes_alt (fun x => (f x).(outcomes)) p. Proof. unfold dist_bind_outcomes_alt. induction p; simpl; trivial. destruct a. simpl. now f_equal. Qed. Lemma dist_bind_outcomes_alt_comm {A B C : Type} (p:seq (nonnegreal * A)) (q:seq (nonnegreal * B)) (f : A -> B -> Pmf C) : Permutation (dist_bind_outcomes_alt2 (fun a : A => dist_bind_outcomes_alt2 (fun x : B => f a x) q) p) (dist_bind_outcomes_alt2 (fun a : B => dist_bind_outcomes_alt2 (fun x : A => (f^~ a) x) p) q). Proof. unfold dist_bind_outcomes_alt2. erewrite List.map_ext. 2: { intros. rewrite List.concat_map. rewrite List.map_map. reflexivity. } symmetry. erewrite List.map_ext. 2: { intros. rewrite List.concat_map. rewrite List.map_map. reflexivity. } symmetry. repeat rewrite concat_map_concat'. rewrite concat_map_swap_perm. apply Permutation_concat. apply Permutation_concat. match goal with | [|- Permutation ?x ?y ] => cut (x = y); [intros eqqq; rewrite eqqq; reflexivity | ] end. repeat (apply List.map_ext; intros). repeat rewrite List.map_map. repeat (apply List.map_ext; intros). simpl. f_equal. apply nonneg_ext. lra. Qed. Lemma Pmf_bind_comm {A B C : Type} (p : Pmf A) (q : Pmf B) (f : A -> B -> Pmf C) : Permutation (Pmf_bind p (fun a => Pmf_bind q (f a))) (Pmf_bind q (fun b => Pmf_bind p (fun a => f a b))). Proof. unfold Pmf_bind; simpl. destruct p as [p p1]; destruct q as [q q1]. repeat rewrite dist_bind_outcomes_alt_eq; simpl. erewrite dist_bind_outcomes_alt_eq_ext_proper ; try (intros ?; rewrite dist_bind_outcomes_alt_eq; apply dist_bind_outcomes_alt2_eq) ; try reflexivity. erewrite (dist_bind_outcomes_alt_eq_ext_proper (fun x : B => dist_bind_outcomes (f^~ x) p)) ; try (intros ?; rewrite dist_bind_outcomes_alt_eq; apply dist_bind_outcomes_alt2_eq) ; try reflexivity. repeat rewrite dist_bind_outcomes_alt2_eq; simpl. apply dist_bind_outcomes_alt_comm. Qed. (* The functorial action of Pmf. *) Definition Pmf_map {A B : Type}(f : A -> B) (p : Pmf A) : Pmf B := p >>= (ret \o f). Global Instance Pmf_Functor : Functor Pmf := {| fmap := @Pmf_map |}. Lemma Pmf_map_id {A : Type} (p : Pmf A) : id <$> p = p. Proof. simpl. unfold Pmf_map. now rewrite Pmf_ret_of_bind. Qed. Lemma Pmf_map_ret {A B : Type} (a : A) (f : A -> B) : f <$> (ret a) = ret (f a). Proof. simpl. unfold Pmf_map. rewrite Pmf_bind_of_ret. now unfold comp. Qed. Lemma Pmf_map_bind {A B : Type} (p : Pmf A) (f : A -> B) : p >>= (ret \o f) = f <$> p. Proof. reflexivity. Qed. Lemma Pmf_map_comp {A B C : Type}(p : Pmf A) (f : A -> B)(g : B -> C) : g <$> (f <$> p) = (g \o f) <$> p. Proof. simpl. unfold Pmf_map, comp. rewrite Pmf_bind_of_bind. now setoid_rewrite Pmf_bind_of_ret. Qed. Definition Pmf_prod {A B : Type} (p : Pmf A) (q : Pmf B) : Pmf (A*B) := a <- p;; b <- q;; ret (a,b). End Pmf. Definition prob {A : Type} (l : seq(nonnegreal*A)) : nonnegreal := mknonnegreal (list_fst_sum l) (list_sum_is_nonneg _). (* Make all notations part of a single scope. *) Notation "𝕡[ x ]" := (nonneg (prob x)) (at level 75, right associativity). Section expected_value. Open Scope fun_scope. Arguments outcomes {_}. Definition expt_value {A : Type} (p : Pmf A) (f : A -> R): R := list_sum (map (fun x => (f x.2) * nonneg x.1) p.(outcomes)). Global Instance expt_value_Proper {A : Type}: Proper (eq ==> pointwise_relation A eq ==> eq) (@expt_value A). intros p q Hpq f g Hfg. rewrite Hpq. apply list_sum_map_ext. intros a. now f_equal. Qed. Lemma expt_value_zero {A : Type} (p : Pmf A) : expt_value p (fun a => 0) = 0. Proof. unfold expt_value. induction p.(outcomes). - simpl;lra. - simpl. rewrite IHl. lra. Qed. Lemma expt_value_const_mul {A : Type} (p : Pmf A) (f : A -> R) (c : R): expt_value p (fun a => c * (f a)) = c * expt_value p (fun a => f a). Proof. unfold expt_value. induction p.(outcomes). simpl ; lra. simpl. rewrite IHl. lra. Qed. Lemma expt_value_const_mul' {A : Type} (p : Pmf A) (f : A -> R) (c : R): expt_value p (fun a => (f a)*c) = c * expt_value p (fun a => f a). Proof. unfold expt_value. induction p.(outcomes). simpl ; lra. simpl. rewrite IHl. lra. Qed. Lemma expt_value_add {A : Type} (p : Pmf A) (f1 f2 : A -> R) : expt_value p (fun x => f1 x + f2 x) = (expt_value p f1) + (expt_value p f2). Proof. unfold expt_value. induction p.(outcomes). * simpl ; lra. * simpl. rewrite IHl. lra. Qed. Lemma expt_value_sub {A : Type} (p : Pmf A) (f1 f2 : A -> R) : expt_value p (fun x => f1 x - f2 x) = (expt_value p f1) - (expt_value p f2). Proof. unfold expt_value. induction p.(outcomes). * simpl ; lra. * simpl. rewrite IHl. lra. Qed. Lemma expt_value_le {A : Type} (p : Pmf A) (f1 f2 : A -> R) : (forall a : A, f1 a <= f2 a) -> expt_value p f1 <= expt_value p f2. Proof. intros Hf1f2. unfold expt_value. induction p.(outcomes). * simpl ; lra. * simpl. enough (f1 a.2 * a.1 <= f2 a.2 * a.1). apply (Rplus_le_compat _ _ _ _ H IHl). apply Rmult_le_compat_r. apply cond_nonneg. exact (Hf1f2 a.2). Qed. Lemma expt_value_sum_f_R0 {A : Type} (p : Pmf A) (f : nat -> A -> R) (N : nat) : expt_value p (fun a => sum_f_R0 (fun n => f n a) N) = sum_f_R0 (fun n => expt_value p (f n)) N. Proof. unfold expt_value. induction p.(outcomes). * simpl. now rewrite sum_eq_R0. * simpl. rewrite IHl. rewrite sum_plus. f_equal. destruct a. simpl. rewrite <- scal_sum. apply Rmult_comm. Qed. Lemma sum_f_R0_Rabs_Series_aux_1 {A : Type} (p : Pmf A) (f : nat -> A -> R) (N : nat): sum_f_R0 (fun n => expt_value p (fun a => f n a)) N <= Rabs (sum_f_R0 (fun n => expt_value p (fun a => f n a)) N). Proof. apply Rle_abs. Qed. Lemma sum_f_R0_Rabs_Series_aux_2 {A : Type} (p : Pmf A) (f : nat -> A -> R) (N : nat): Rabs (sum_f_R0 (fun n => expt_value p (fun a => f n a)) N) <= sum_f_R0 (fun n => Rabs (expt_value p (fun a => f n a))) N. Proof. apply Rabs_triang_gen. Qed. Lemma expt_value_Rabs_Rle {A : Type} (p : Pmf A) (f : A -> R): Rabs (expt_value p f) <= expt_value p (fun a => Rabs (f a)). Proof. unfold expt_value. induction p.(outcomes). * simpl. rewrite Rabs_R0 ; lra. * simpl. refine (Rle_trans _ _ _ _ _). apply Rabs_triang. rewrite Rabs_mult. rewrite (Rabs_pos_eq a.1). apply Rplus_le_compat. apply Rmult_le_compat_r. apply cond_nonneg. now right. apply IHl. apply cond_nonneg. Qed. Lemma ex_series_le_Reals : forall (a : nat -> R) (b : nat -> R), (forall n : nat, Rabs (a n) <= b n) -> ex_series b -> ex_series a. Proof. intros a b Hab Hexb. apply (@ex_series_le _ _ a b). now apply Hab. assumption. Qed. Lemma expt_value_ex_series {A : Type} (p : Pmf A) (f : nat -> A -> R) : ex_series (fun n => expt_value p (fun a => Rabs (f n a))) -> ex_series (fun n => expt_value p (f n)). Proof. intros Hex. refine (@ex_series_le_Reals _ _ _ _). intros n. apply expt_value_Rabs_Rle. assumption. Qed. Lemma expt_val_bdd_aux {A : Type} (g : nat -> A -> R) (p : Pmf A): (forall (a : A), is_lim_seq (fun n => g n a) 0) -> is_lim_seq (fun n => expt_value p (fun x => g n x)) 0. Proof. intros H. unfold expt_value. rewrite is_lim_seq_Reals. unfold Un_cv. induction p.(outcomes). * simpl. intros eps0 H0. exists 0%nat. rewrite R_dist_eq. intros n Hn. apply H0. * simpl in *. intros eps0 H0. enough (H0': eps0/4 > 0). specialize (IHl (eps0/4)%R H0'). destruct IHl as [N0 HN0]. specialize (H a.2). revert H. rewrite is_lim_seq_Reals. intros H. unfold Un_cv in H. set (Ha := cond_nonneg a.1). case Ha. intro Ha1. clear Ha. enough (H1': eps0/(4 * a.1) > 0). specialize (H (eps0/(4 * a.1))%R H1'). destruct H as [N1 HN1]. exists (N0 + N1)%nat. intros n Hn. specialize (HN0 n). specialize (HN1 n). assert (Hn0 : (n >= N0)%nat) by lia. assert (Hn1 : (n >= N1)%nat) by lia. specialize (HN1 Hn1). specialize (HN0 Hn0). clear Hn0 ; clear Hn1. revert HN0. revert HN1. unfold R_dist. rewrite Rminus_0_r ; rewrite Rminus_0_r ; rewrite Rminus_0_r. intros HN0 HN1. refine (Rle_lt_trans _ _ _ _ _). apply Rabs_triang. rewrite Rabs_mult. rewrite (Rabs_pos_eq a.1). eapply Rlt_trans. assert ((eps0 / (4 * a.1))*a.1 + (eps0 / 4) = eps0/2). field ; lra. assert (Rabs (g n a.2) * a.1 + Rabs (list_sum [seq g n x.2 * nonneg (x.1) | x <- l]) < eps0/2). rewrite <-H. refine (Rplus_lt_compat _ _ _ _ _ _). now apply Rmult_lt_compat_r. assumption. apply H1. lra. now left. apply Rlt_gt. apply RIneq.Rdiv_lt_0_compat. assumption. lra. intros Ha1. rewrite <-Ha1. setoid_rewrite Rmult_0_r. setoid_rewrite Rplus_0_l. exists N0. intros n Hn. eapply Rlt_trans. specialize (HN0 n Hn). apply HN0. lra. lra. Qed. Lemma expt_value_Series {A : Type} (p : Pmf A) (f : nat -> A -> R) : (forall a:A, ex_series (fun n => f n a)) -> expt_value p (fun a => Series (fun n => f n a)) = Series (fun n => expt_value p (f n)). Proof. intros Hex. symmetry. apply is_series_unique. rewrite is_series_Reals. unfold infinite_sum. intros eps Heps. setoid_rewrite <- expt_value_sum_f_R0. unfold R_dist. unfold Series. setoid_rewrite <-expt_value_sub. assert (Ha : forall a:A, is_series (fun n => f n a) (Series (fun n => f n a)) ). intros a. eapply (Series_correct _). apply (Hex a). assert (Hinf : forall a:A, infinite_sum (fun n => f n a) (Series (fun n => f n a)) ). intros a. rewrite <- is_series_Reals. apply Ha. clear Ha. unfold infinite_sum in Hinf. unfold Series in Hinf. unfold R_dist in Hinf. (* Change the name of the hypothesis from H to something else. *) assert (H : forall x, Rabs x = R_dist x 0). intros x. unfold R_dist. f_equal ; lra. setoid_rewrite H. setoid_rewrite H in Hinf. set (He := @expt_val_bdd_aux A). setoid_rewrite is_lim_seq_Reals in He. unfold Un_cv in He. apply He. apply Hinf. assumption. Qed. Lemma expt_value_pure {A : Type} (a : A) (f : A -> R) : expt_value (Pmf_pure a) f = f a. Proof. unfold expt_value ; unfold Pmf_pure ; simpl. lra. Qed. Lemma expt_value_Series_aux_2 {A : Type} (p : Pmf A) (f : nat -> A -> R) (N : nat): expt_value p (fun a => sum_f_R0 (fun n => f n a) N) <= expt_value p (fun a => sum_f_R0 (fun n => Rabs (f n a)) N). Proof. apply expt_value_le. intros a. induction N. * simpl. apply Rle_abs. * simpl. apply Rplus_le_compat ; try assumption. apply Rle_abs. Qed. Lemma expt_value_bind_aux {A B : Type} (p : Pmf A) (g : A -> Pmf B) (f : B -> R) (n : nonnegreal) : forall a : A, list_sum [seq (f x.2) * nonneg(x.1) * n | x <- (g a).(outcomes)] = list_sum [seq (f x.2) * nonneg(x.1) | x <- (g a).(outcomes)] * n. Proof. intros a. induction (g a).(outcomes). * simpl ; lra. * rewrite map_cons. simpl. rewrite IHl. lra. Qed. Lemma expt_value_bind {A B : Type} (p : Pmf A) (g : A -> Pmf B) (f : B -> R) : expt_value (Pmf_bind p g) f = expt_value p (fun a => expt_value (g a) f). Proof. unfold Pmf_bind. unfold expt_value. simpl. induction (p.(outcomes)). * simpl ; reflexivity. * destruct a. simpl. rewrite <-IHl. rewrite map_cat. rewrite list_sum_cat. f_equal. rewrite <-map_comp. rewrite <- (expt_value_bind_aux p). f_equal. apply List.map_ext. intros a0. simpl. lra. Qed. Lemma expt_value_bind' {A B : Type} (p : Pmf A) (g : A -> Pmf B) (f : A -> B -> R) : forall init:A, expt_value (Pmf_bind p g) (f init) = expt_value p (fun a => expt_value (g a) (f init)). Proof. intros init. unfold Pmf_bind. unfold expt_value. simpl. induction (p.(outcomes)). * simpl ; reflexivity. * destruct a. simpl. rewrite <-IHl. rewrite map_cat. rewrite list_sum_cat. f_equal. rewrite <-map_comp. rewrite <- (expt_value_bind_aux p). f_equal. apply List.map_ext. intros a0. simpl. lra. Qed. Lemma expt_value_bind_ret {A B : Type} (a : A) (g : A -> Pmf B) (f : B -> R) : expt_value (Pmf_bind (Pmf_pure a) g) f = expt_value (g a) f. Proof. rewrite expt_value_bind. rewrite expt_value_pure. reflexivity. Qed. Lemma expt_value_expt_value {A : Type} (p q : Pmf A) (f : A -> R) : expt_value p (fun a => expt_value q f) = (expt_value q f)*(expt_value p (fun a => 1)). Proof. unfold expt_value. induction p.(outcomes). simpl ; lra. simpl. rewrite IHl. lra. Qed. Lemma expt_value_expt_value_pure {A : Type} (a : A) (p : Pmf A) (f : A -> R): expt_value p (fun a => expt_value (Pmf_pure a) f) = (expt_value p f). Proof. f_equal. apply functional_extensionality. intros x. now rewrite expt_value_pure. Qed. Lemma expt_value_Rle {A : Type} {D : R} {f : A -> R} (hf : forall a:A, Rabs (f a) <= D) (p : Pmf A) : Rabs(expt_value p f) <= D. Proof. eapply Rle_trans. apply expt_value_Rabs_Rle. unfold expt_value. rewrite <- Rmult_1_r. change (D*1) with (D*R1). rewrite <- (sum1_compat p). induction p.(outcomes). * simpl ; lra. * simpl in *. rewrite Rmult_plus_distr_l. assert ( Rabs (f a.2) * a.1 <= D * a.1). apply Rmult_le_compat_r. apply cond_nonneg. refine (Rle_trans _ _ _ _ _). apply Rle_abs. rewrite Rabs_Rabsolu. apply hf. refine (Rle_trans _ _ _ _ _). apply Rplus_le_compat. apply Rmult_le_compat_r. apply cond_nonneg. apply hf. apply IHl. now right. Qed. Lemma expt_value_bdd {A : Type} {D : R} {f : A -> R} (hf : forall a:A, (f a) <= D) (p : Pmf A) : (expt_value p f) <= D. Proof. unfold expt_value. rewrite <- Rmult_1_r. change (D*1) with (D*R1). rewrite <- (sum1_compat p). induction p.(outcomes). * simpl ; lra. * simpl in *. rewrite Rmult_plus_distr_l. assert ( f a.2 * a.1 <= D * a.1). apply Rmult_le_compat_r. apply cond_nonneg. apply hf. now apply Rplus_le_compat. Qed. Lemma expt_value_lbdd {A : Type} {D : R} {f : A -> R} (hf : forall a:A, D <= (f a)) (p : Pmf A) : D <= (expt_value p f). Proof. unfold expt_value. replace D with (D * R1) by lra. rewrite <- (sum1_compat p). induction p.(outcomes). * simpl; lra. * simpl in *. rewrite Rmult_plus_distr_l. assert ( D * a.1 <= f a.2 * a.1). apply Rmult_le_compat_r. apply cond_nonneg. apply hf. now apply Rplus_le_compat. Qed. Lemma expt_value_const {A : Type} (c : R) (p : Pmf A) : expt_value p (fun _ => c) = c. Proof. destruct p as [lp Hp]. unfold expt_value. simpl. rewrite list_sum_const_mul. rewrite list_fst_sum_compat in Hp. unfold list_fst_sum' in Hp. rewrite Hp. lra. Qed. Lemma expt_value_sum_comm {A B : Type} (f : A -> B -> R) (p : Pmf B) (la : list A): expt_value p (fun b => list_sum (map (fun a => f a b) la)) = list_sum (List.map (fun a => expt_value p (fun b => f a b)) la). Proof. destruct p as [lp Hlp]. unfold expt_value. simpl. clear Hlp. revert lp. induction lp. + simpl. symmetry. apply list_sum_map_zero. + simpl. rewrite IHlp. rewrite list_sum_map_add. f_equal. rewrite Rmult_comm. rewrite <-list_sum_const_mul. f_equal. apply List.map_ext; intros. lra. Qed. Lemma expt_value_minus {A : Type} (f : A -> R) (p : Pmf A): expt_value p (fun x => - (f x)) = - expt_value p f. Proof. apply Rplus_opp_r_uniq. rewrite <-expt_value_add. setoid_rewrite Rplus_opp_r. apply expt_value_const. Qed. Lemma expt_value_prod_pmf {A B : Type} (f : A -> B -> R) (p : Pmf A) (q : Pmf B): expt_value (Pmf_prod p q) (fun '(a,b) => f a b) = expt_value p (fun a => expt_value q (fun b => f a b)). Proof. unfold Pmf_prod; simpl. rewrite expt_value_bind. setoid_rewrite expt_value_bind. now setoid_rewrite expt_value_pure. Qed. End expected_value. Section variance. Definition variance {A : Type} (p : Pmf A) (f : A -> R) := expt_value p (fun a => Rsqr((f a) - expt_value p f)). Lemma variance_eq {A : Type} (p : Pmf A) (f : A -> R): variance p f = expt_value p (fun a => (f a)²) - (expt_value p f)². Proof. unfold variance. setoid_rewrite Rsqr_plus. setoid_rewrite <-Rsqr_neg. setoid_rewrite Ropp_mult_distr_r_reverse. do 2 rewrite expt_value_add. rewrite Rplus_assoc. unfold Rminus. f_equal. rewrite expt_value_const. rewrite expt_value_minus. setoid_rewrite Rmult_assoc. rewrite expt_value_const_mul. rewrite expt_value_const_mul'. rewrite <-Rmult_assoc. replace (expt_value p [eta f]) with (expt_value p f) by reflexivity. unfold Rsqr. ring. Qed. Lemma variance_le_expt_value_sqr {A : Type} (p : Pmf A) (f : A -> R): variance p f <= expt_value p (fun a => (f a)²). Proof. rewrite variance_eq. rewrite Rle_minus_l. rewrite <-(Rplus_0_r) at 1. apply Rplus_le_compat_l. apply Rle_0_sqr. Qed. Definition total_variance {A : Type} (lp : list (Pmf A)) (lf : list (A -> R)): R := list_sum (map (fun '(f,p) => variance p f) (zip lf lp)). Lemma list_sum_sqr_pos {A : Type} (f : A -> R) (l : list A): 0 <= list_sum (map (fun x => (f x)²) l). Proof. apply list_sum_pos_pos'. rewrite List.Forall_forall; intros. rewrite List.in_map_iff in H *; intros. destruct H as [a [Ha HIna]]. unfold comp in Ha; subst. apply Rle_0_sqr. Qed. Lemma total_variance_eq_sum {A : Type} (lp : list (Pmf A)) (lf : list (A -> R)) : total_variance lp lf = list_sum (map (fun '(f,p) => expt_value p (comp Rsqr f)) (zip lf lp)) - list_sum (map (fun '(f,p) => (expt_value p f)²) (zip lf lp)). Proof. rewrite <-list_sum_map_sub. unfold total_variance. apply list_sum_map_ext; intros. destruct x. apply variance_eq. Qed. Lemma total_variance_le_expt_sqr {A : Type} (lp : list (Pmf A)) (lf : list (A -> R)) : total_variance lp lf <= list_sum (map (fun '(f,p) => expt_value p (comp Rsqr f)) (zip lf lp)). Proof. rewrite total_variance_eq_sum. rewrite Rle_minus_l. rewrite <-(Rplus_0_r) at 1. apply Rplus_le_compat_l. apply list_sum_pos_pos'. rewrite List.Forall_forall; intros. rewrite List.in_map_iff in H *; intros. destruct H as [a [Ha HIna]]. unfold comp in Ha; subst. destruct a; apply Rle_0_sqr. Qed. End variance.
[STATEMENT] lemma admissible_leI: assumes f: "mcont luba orda Sup (\<le>) (\<lambda>x. f x)" and g: "mcont luba orda Sup (\<le>) (\<lambda>x. g x)" shows "ccpo.admissible luba orda (\<lambda>x. f x \<le> g x)" [PROOF STATE] proof (prove) goal (1 subgoal): 1. ccpo.admissible luba orda (\<lambda>x. f x \<le> g x) [PROOF STEP] proof(rule ccpo.admissibleI) [PROOF STATE] proof (state) goal (1 subgoal): 1. \<And>A. \<lbrakk>Complete_Partial_Order.chain orda A; A \<noteq> {}; \<forall>x\<in>A. f x \<le> g x\<rbrakk> \<Longrightarrow> f (luba A) \<le> g (luba A) [PROOF STEP] fix A [PROOF STATE] proof (state) goal (1 subgoal): 1. \<And>A. \<lbrakk>Complete_Partial_Order.chain orda A; A \<noteq> {}; \<forall>x\<in>A. f x \<le> g x\<rbrakk> \<Longrightarrow> f (luba A) \<le> g (luba A) [PROOF STEP] assume chain: "Complete_Partial_Order.chain orda A" and le: "\<forall>x\<in>A. f x \<le> g x" and False: "A \<noteq> {}" [PROOF STATE] proof (state) this: Complete_Partial_Order.chain orda A \<forall>x\<in>A. f x \<le> g x A \<noteq> {} goal (1 subgoal): 1. \<And>A. \<lbrakk>Complete_Partial_Order.chain orda A; A \<noteq> {}; \<forall>x\<in>A. f x \<le> g x\<rbrakk> \<Longrightarrow> f (luba A) \<le> g (luba A) [PROOF STEP] have "f (luba A) = \<Squnion>(f ` A)" [PROOF STATE] proof (prove) goal (1 subgoal): 1. f (luba A) = \<Squnion> (f ` A) [PROOF STEP] by(simp add: mcont_contD[OF f] chain False) [PROOF STATE] proof (state) this: f (luba A) = \<Squnion> (f ` A) goal (1 subgoal): 1. \<And>A. \<lbrakk>Complete_Partial_Order.chain orda A; A \<noteq> {}; \<forall>x\<in>A. f x \<le> g x\<rbrakk> \<Longrightarrow> f (luba A) \<le> g (luba A) [PROOF STEP] also [PROOF STATE] proof (state) this: f (luba A) = \<Squnion> (f ` A) goal (1 subgoal): 1. \<And>A. \<lbrakk>Complete_Partial_Order.chain orda A; A \<noteq> {}; \<forall>x\<in>A. f x \<le> g x\<rbrakk> \<Longrightarrow> f (luba A) \<le> g (luba A) [PROOF STEP] have "\<dots> \<le> \<Squnion>(g ` A)" [PROOF STATE] proof (prove) goal (1 subgoal): 1. \<Squnion> (f ` A) \<le> \<Squnion> (g ` A) [PROOF STEP] proof(rule ccpo_Sup_least) [PROOF STATE] proof (state) goal (2 subgoals): 1. Complete_Partial_Order.chain (\<le>) (f ` A) 2. \<And>x. x \<in> f ` A \<Longrightarrow> x \<le> \<Squnion> (g ` A) [PROOF STEP] from chain [PROOF STATE] proof (chain) picking this: Complete_Partial_Order.chain orda A [PROOF STEP] show "Complete_Partial_Order.chain (\<le>) (f ` A)" [PROOF STATE] proof (prove) using this: Complete_Partial_Order.chain orda A goal (1 subgoal): 1. Complete_Partial_Order.chain (\<le>) (f ` A) [PROOF STEP] by(rule chain_imageI)(rule mcont_monoD[OF f]) [PROOF STATE] proof (state) this: Complete_Partial_Order.chain (\<le>) (f ` A) goal (1 subgoal): 1. \<And>x. x \<in> f ` A \<Longrightarrow> x \<le> \<Squnion> (g ` A) [PROOF STEP] fix x [PROOF STATE] proof (state) goal (1 subgoal): 1. \<And>x. x \<in> f ` A \<Longrightarrow> x \<le> \<Squnion> (g ` A) [PROOF STEP] assume "x \<in> f ` A" [PROOF STATE] proof (state) this: x \<in> f ` A goal (1 subgoal): 1. \<And>x. x \<in> f ` A \<Longrightarrow> x \<le> \<Squnion> (g ` A) [PROOF STEP] then [PROOF STATE] proof (chain) picking this: x \<in> f ` A [PROOF STEP] obtain y where "y \<in> A" "x = f y" [PROOF STATE] proof (prove) using this: x \<in> f ` A goal (1 subgoal): 1. (\<And>y. \<lbrakk>y \<in> A; x = f y\<rbrakk> \<Longrightarrow> thesis) \<Longrightarrow> thesis [PROOF STEP] by blast [PROOF STATE] proof (state) this: y \<in> A x = f y goal (1 subgoal): 1. \<And>x. x \<in> f ` A \<Longrightarrow> x \<le> \<Squnion> (g ` A) [PROOF STEP] note this(2) [PROOF STATE] proof (state) this: x = f y goal (1 subgoal): 1. \<And>x. x \<in> f ` A \<Longrightarrow> x \<le> \<Squnion> (g ` A) [PROOF STEP] also [PROOF STATE] proof (state) this: x = f y goal (1 subgoal): 1. \<And>x. x \<in> f ` A \<Longrightarrow> x \<le> \<Squnion> (g ` A) [PROOF STEP] have "f y \<le> g y" [PROOF STATE] proof (prove) goal (1 subgoal): 1. f y \<le> g y [PROOF STEP] using le \<open>y \<in> A\<close> [PROOF STATE] proof (prove) using this: \<forall>x\<in>A. f x \<le> g x y \<in> A goal (1 subgoal): 1. f y \<le> g y [PROOF STEP] by simp [PROOF STATE] proof (state) this: f y \<le> g y goal (1 subgoal): 1. \<And>x. x \<in> f ` A \<Longrightarrow> x \<le> \<Squnion> (g ` A) [PROOF STEP] also [PROOF STATE] proof (state) this: f y \<le> g y goal (1 subgoal): 1. \<And>x. x \<in> f ` A \<Longrightarrow> x \<le> \<Squnion> (g ` A) [PROOF STEP] have "Complete_Partial_Order.chain (\<le>) (g ` A)" [PROOF STATE] proof (prove) goal (1 subgoal): 1. Complete_Partial_Order.chain (\<le>) (g ` A) [PROOF STEP] using chain [PROOF STATE] proof (prove) using this: Complete_Partial_Order.chain orda A goal (1 subgoal): 1. Complete_Partial_Order.chain (\<le>) (g ` A) [PROOF STEP] by(rule chain_imageI)(rule mcont_monoD[OF g]) [PROOF STATE] proof (state) this: Complete_Partial_Order.chain (\<le>) (g ` A) goal (1 subgoal): 1. \<And>x. x \<in> f ` A \<Longrightarrow> x \<le> \<Squnion> (g ` A) [PROOF STEP] hence "g y \<le> \<Squnion>(g ` A)" [PROOF STATE] proof (prove) using this: Complete_Partial_Order.chain (\<le>) (g ` A) goal (1 subgoal): 1. g y \<le> \<Squnion> (g ` A) [PROOF STEP] by(rule ccpo_Sup_upper)(simp add: \<open>y \<in> A\<close>) [PROOF STATE] proof (state) this: g y \<le> \<Squnion> (g ` A) goal (1 subgoal): 1. \<And>x. x \<in> f ` A \<Longrightarrow> x \<le> \<Squnion> (g ` A) [PROOF STEP] finally [PROOF STATE] proof (chain) picking this: x \<le> \<Squnion> (g ` A) [PROOF STEP] show "x \<le> \<dots>" [PROOF STATE] proof (prove) using this: x \<le> \<Squnion> (g ` A) goal (1 subgoal): 1. x \<le> \<Squnion> (g ` A) [PROOF STEP] . [PROOF STATE] proof (state) this: x \<le> \<Squnion> (g ` A) goal: No subgoals! [PROOF STEP] qed [PROOF STATE] proof (state) this: \<Squnion> (f ` A) \<le> \<Squnion> (g ` A) goal (1 subgoal): 1. \<And>A. \<lbrakk>Complete_Partial_Order.chain orda A; A \<noteq> {}; \<forall>x\<in>A. f x \<le> g x\<rbrakk> \<Longrightarrow> f (luba A) \<le> g (luba A) [PROOF STEP] also [PROOF STATE] proof (state) this: \<Squnion> (f ` A) \<le> \<Squnion> (g ` A) goal (1 subgoal): 1. \<And>A. \<lbrakk>Complete_Partial_Order.chain orda A; A \<noteq> {}; \<forall>x\<in>A. f x \<le> g x\<rbrakk> \<Longrightarrow> f (luba A) \<le> g (luba A) [PROOF STEP] have "\<dots> = g (luba A)" [PROOF STATE] proof (prove) goal (1 subgoal): 1. \<Squnion> (g ` A) = g (luba A) [PROOF STEP] by(simp add: mcont_contD[OF g] chain False) [PROOF STATE] proof (state) this: \<Squnion> (g ` A) = g (luba A) goal (1 subgoal): 1. \<And>A. \<lbrakk>Complete_Partial_Order.chain orda A; A \<noteq> {}; \<forall>x\<in>A. f x \<le> g x\<rbrakk> \<Longrightarrow> f (luba A) \<le> g (luba A) [PROOF STEP] finally [PROOF STATE] proof (chain) picking this: f (luba A) \<le> g (luba A) [PROOF STEP] show "f (luba A) \<le> g (luba A)" [PROOF STATE] proof (prove) using this: f (luba A) \<le> g (luba A) goal (1 subgoal): 1. f (luba A) \<le> g (luba A) [PROOF STEP] . [PROOF STATE] proof (state) this: f (luba A) \<le> g (luba A) goal: No subgoals! [PROOF STEP] qed
(** << This file contains parition function of quicksort as an exampl that tries to use [fold_left_right_tup] from [FoldLib]. [1] Bird, Richard. Introduction to Functional Programming using Haskell (2nd ed.). Prentice Hall. Harlow, England. 1998. >> *) Require Import Recdef. Require Import homo.MyLib. (** ** Partitioning *) (** *** [partition_lt] We use [partition] from the List library of Coq to defined [partition_lt]. *) Functional Scheme partition_ind := Induction for partition Sort Prop. Definition f_part (p: nat) := fun x => Nat.ltb x p. Definition partition_lt (p: nat) (l: list nat) := partition (f_part p) l. Functional Scheme partition_lt_ind := Induction for partition_lt Sort Prop. (** *** [partition_wont_expand] *) Lemma partition_wont_expand: forall l p m_lt m_ge, (m_lt, m_ge) = partition_lt p l -> length m_lt <= length l /\ length m_ge <= length l. Proof. intros l p. functional induction (partition (f_part p) l); intros * P. - injection P; intros; subst; auto. - unfold partition_lt in P. simpl in P. rewrite e0 in P. rewrite e1 in P. injection P; intros; subst. simpl. symmetry in e0. apply IHp0 in e0. intuition. - unfold partition_lt in P. simpl in P. rewrite e0 in P. rewrite e1 in P. injection P; intros; subst. simpl. symmetry in e0. apply IHp0 in e0. intuition. Qed. (** *** [partition_lt_idempotent] *) Lemma partition_lt_idempotent: forall l p m_lt m_ge, (m_lt, m_ge) = partition_lt p l -> (m_lt, []) = partition_lt p m_lt. Proof. intros l p. functional induction (partition (f_part p) l); intros * P. - injection P; intros; now subst m_lt m_ge. - unfold partition_lt in P. simpl in P. rewrite e0 in P. rewrite e1 in P. symmetry in e0. apply IHp0 in e0. injection P; intros; subst m_lt m_ge. simpl. rewrite <- e0. rewrite e1. reflexivity. - simpl in P. unfold partition_lt in P. rewrite e0 in P. rewrite e1 in P. injection P; intros; subst m_lt m_ge. symmetry in e0. apply IHp0 in e0. apply e0. Qed. (** *** [partition__lt] *) Lemma partition__lt: forall l p m_lt m_ge k, (m_lt, m_ge) = partition_lt p l -> In k m_lt -> k < p. Proof. induction l as [| y ys] ; intros * P IN. - inversion P; subst. apply in_nil in IN; inversion IN. - unfold partition_lt in P. simpl in P. name_term tpl (partition (f_part p) ys) Py. destruct tpl as [lo hi]. rewrite <- Py in P. unfold f_part in P. remember (Nat.ltb y p) as r. destruct r. + injection P; intros T1 T2. inversion T1; clear T1. subst. symmetry in Heqr. apply Nat.ltb_lt in Heqr. destruct IN. * now subst k. * apply IHys with (m_lt:=lo) (m_ge:=hi); auto. + injection P; intros; subst lo. apply IHys with (m_lt:=m_lt) (m_ge:=hi); auto. Qed. Lemma partition__le: forall l p m_lt m_ge k, (m_lt, m_ge) = partition_lt p l -> In k m_ge -> p <= k. Proof. induction l as [| y ys] ; intros * P IN. - inversion P; subst. apply in_nil in IN; inversion IN. - unfold partition_lt in P. simpl in P. name_term tpl (partition (f_part p) ys) Py. destruct tpl as [lo hi]. rewrite <- Py in P. unfold f_part in P. remember (Nat.ltb y p) as r. destruct r. + injection P; intros T1 T2. subst hi; apply IHys with (k:=k) in Py; auto. + symmetry in Heqr. apply Nat.ltb_ge in Heqr. injection P; intros T1 T2. subst. destruct IN. * now subst k. * apply IHys with (m_lt:=lo) (m_ge:=hi); auto. Qed. Require Import Sorting.Sorted Sorting.Permutation. Definition join_parted (p:nat) (m_lt m_ge: list nat) := m_lt ++ [p] ++ m_ge. Lemma partition_join_parted_permute: forall m p m_lt m_ge, (m_lt, m_ge) = partition_lt p m -> Permutation (p::m) (m_lt++[p]++m_ge). Proof. intros * P. apply Permutation_cons_app. revert P. revert m_ge m_lt p. induction m as [| x xs]; intros * P. - simpl in P. injection P; intros; subst. apply perm_nil. - simpl in P. unfold partition_lt in P. name_term tpl (partition (f_part p) xs) Tpl. rewrite <- Tpl in P. unfold f_part in P. destruct tpl as [lo hi]. remember (Nat.ltb x p) as r. destruct r; injection P; intros; subst m_lt m_ge. + apply IHxs in Tpl. simpl. apply perm_skip. apply Tpl. + apply Permutation_cons_app. apply IHxs in Tpl; auto. Qed. Definition partition_one (l: list nat) (p: nat) := (fix f (l: list nat) (z: list nat * list nat) := match l with | [] => z | x::xs => match z with | (lo, hi) => if Nat.ltb x p then f xs (lo ++ [x], hi) else f xs (lo, hi ++ [x]) end end) l ([],[]). Lemma f_fact_7: forall {S1 S2 A B C D E F: Type} (f: S1 -> S2 -> A -> B -> C -> D -> E -> F) (bb:bool) s1 s2 f1 f2 f4 f5 pp1 pp2, f s1 s2 f1 f2 (if bb then pp1 else pp2) f4 f5 = if bb then f s1 s2 f1 f2 pp1 f4 f5 else f s1 s2 f1 f2 pp2 f4 f5 . Proof. intros. now destruct bb. Qed. (** ** Quicksort *) (** *** [qsort] *) Function qsort (m: list nat) {measure length m}:= match m with | [] => [] | x::xs => let (m_lt, m_ge) := partition_lt x xs in (qsort m_lt) ++ [x] ++ (qsort m_ge) end. Proof. - intros * M * P. symmetry in P. apply partition_wont_expand in P. simpl. intuition. - intros * M * P. symmetry in P. apply partition_wont_expand in P. simpl. intuition. Qed.
SARAJEVO, Bosnia-Herzegovina (AP) — The U.S. Embassy and Bosnian journalists have expressed outrage after unknown assailants attacked and seriously hurt a reporter of an independent Bosnian Serb television station. BNTV reporter Vladimir Kovacevic has been hospitalized following the attack by two assailants late Sunday outside his home in Banja Luka, the main town in the Serb-run part of Bosnia. Kovacevic posted a photo on Twitter showing his bloodied and bandaged head. He has said that the men attacked him with metal bars as he was coming home after reporting from an anti-government rally. BNTV has faced criticism from the Bosnian Serb authorities for its independent editorial policies. The U.S. Embassy tweeted Monday that the attacks on journalists are "unacceptable." The Bosnian journalists' association says the attack is aimed at intimidating independent media.
(* Title: HOL/Proofs/Lambda/ListBeta.thy Author: Tobias Nipkow Copyright 1998 TU Muenchen *) section \<open>Lifting beta-reduction to lists\<close> theory ListBeta imports ListApplication ListOrder begin text \<open> Lifting beta-reduction to lists of terms, reducing exactly one element. \<close> abbreviation list_beta :: "dB list => dB list => bool" (infixl "=>" 50) where "rs => ss == step1 beta rs ss" lemma head_Var_reduction: "Var n \<degree>\<degree> rs \<rightarrow>\<^sub>\<beta> v \<Longrightarrow> \<exists>ss. rs => ss \<and> v = Var n \<degree>\<degree> ss" apply (induct u == "Var n \<degree>\<degree> rs" v arbitrary: rs set: beta) apply simp apply (rule_tac xs = rs in rev_exhaust) apply simp apply (atomize, force intro: append_step1I) apply (rule_tac xs = rs in rev_exhaust) apply simp apply (auto 0 3 intro: disjI2 [THEN append_step1I]) done lemma apps_betasE [elim!]: assumes major: "r \<degree>\<degree> rs \<rightarrow>\<^sub>\<beta> s" and cases: "!!r'. [| r \<rightarrow>\<^sub>\<beta> r'; s = r' \<degree>\<degree> rs |] ==> R" "!!rs'. [| rs => rs'; s = r \<degree>\<degree> rs' |] ==> R" "!!t u us. [| r = Abs t; rs = u # us; s = t[u/0] \<degree>\<degree> us |] ==> R" shows R proof - from major have "(\<exists>r'. r \<rightarrow>\<^sub>\<beta> r' \<and> s = r' \<degree>\<degree> rs) \<or> (\<exists>rs'. rs => rs' \<and> s = r \<degree>\<degree> rs') \<or> (\<exists>t u us. r = Abs t \<and> rs = u # us \<and> s = t[u/0] \<degree>\<degree> us)" apply (induct u == "r \<degree>\<degree> rs" s arbitrary: r rs set: beta) apply (case_tac r) apply simp apply (simp add: App_eq_foldl_conv) apply (split if_split_asm) apply simp apply blast apply simp apply (simp add: App_eq_foldl_conv) apply (split if_split_asm) apply simp apply simp apply (drule App_eq_foldl_conv [THEN iffD1]) apply (split if_split_asm) apply simp apply blast apply (force intro!: disjI1 [THEN append_step1I]) apply (drule App_eq_foldl_conv [THEN iffD1]) apply (split if_split_asm) apply simp apply blast apply (clarify, auto 0 3 intro!: exI intro: append_step1I) done with cases show ?thesis by blast qed lemma apps_preserves_beta [simp]: "r \<rightarrow>\<^sub>\<beta> s ==> r \<degree>\<degree> ss \<rightarrow>\<^sub>\<beta> s \<degree>\<degree> ss" by (induct ss rule: rev_induct) auto lemma apps_preserves_beta2 [simp]: "r \<rightarrow>\<^sub>\<beta>\<^sup>* s ==> r \<degree>\<degree> ss \<rightarrow>\<^sub>\<beta>\<^sup>* s \<degree>\<degree> ss" apply (induct set: rtranclp) apply blast apply (blast intro: apps_preserves_beta rtranclp.rtrancl_into_rtrancl) done lemma apps_preserves_betas [simp]: "rs => ss \<Longrightarrow> r \<degree>\<degree> rs \<rightarrow>\<^sub>\<beta> r \<degree>\<degree> ss" apply (induct rs arbitrary: ss rule: rev_induct) apply simp apply simp apply (rule_tac xs = ss in rev_exhaust) apply simp apply simp apply (drule Snoc_step1_SnocD) apply blast done end
(** * 6.822 Formal Reasoning About Programs, Spring 2018 - Pset 9 *) Require Import Frap Pset9Sig. Set Implicit Arguments. Theorem logical_rel_fundamental: forall abst1 abst2 (value_rel_abs: exp -> exp -> Prop), (forall v1 v2, value_rel_abs v1 v2 -> value v1 /\ value v2) -> abst1 <> AbsT -> abst2 <> AbsT -> forall e G t, hasty None G e t -> logical_rel abst1 abst2 value_rel_abs G e e t. Proof. Admitted. Theorem counter_impls_equiv: forall x e, hasty None ($0 $+ (x, counter_type)) e Nat -> exists n : nat, eval (subst counter_impl1 x e) n /\ eval (subst counter_impl2 x e) n. Proof. Admitted.
{-# OPTIONS --without-K --exact-split --rewriting #-} open import Coequalizers.Definition open import lib.Basics open import lib.types.Paths open import Graphs.Definition module Coequalizers.EdgeCoproduct where module CoeqCoprodEquiv {i j k : ULevel} (V : Type i) (E₁ : Type j) (E₂ : Type k) ⦃ gph : Graph (E₁ ⊔ E₂) V ⦄ where instance gph1 : Graph E₁ V gph1 = record { π₀ = (Graph.π₀ gph) ∘ inl ; π₁ = (Graph.π₁ gph) ∘ inl } instance gph2 : Graph E₂ (V / E₁) gph2 = record { π₀ = c[_] ∘ (Graph.π₀ gph) ∘ inr ; π₁ = c[_] ∘ (Graph.π₁ gph) ∘ inr } edge-coproduct-expand : (V / (E₁ ⊔ E₂)) ≃ ((V / E₁) / E₂) edge-coproduct-expand = equiv f g f-g g-f where f : V / (E₁ ⊔ E₂) → (V / E₁) / E₂ f = Coeq-rec (c[_] ∘ c[_]) λ { (inl x) → ap c[_] (quot x) ; (inr x) → quot x} g : (V / E₁) / E₂ → V / (E₁ ⊔ E₂) g = Coeq-rec (Coeq-rec c[_] (λ e → quot (inl e))) (λ e → quot (inr e)) f-g : (x : (V / E₁) / E₂) → (f (g x) == x) f-g = Coeq-elim (λ x' → f (g x') == x') (Coeq-elim (λ x' → f (g (c[ x' ])) == c[ x' ]) (λ v → idp) (λ e → ↓-='-in (lemma1 e))) λ e → ↓-app=idf-in $ idp ∙' quot e =⟨ ∙'-unit-l _ ⟩ quot e =⟨ ! (Coeq-rec-β= _ _ _) ⟩ ap f (quot (inr e)) =⟨ ap (ap f) (! (Coeq-rec-β= _ _ _)) ⟩ ap f (ap g (quot e)) =⟨ ! (ap-∘ f g (quot e)) ⟩ ap (f ∘ g) (quot e) =⟨ ! (∙-unit-r _) ⟩ ap (f ∘ g) (quot e) ∙ idp =∎ where lemma1 : (e : E₁) → idp ∙' ap (λ z → c[ z ]) (quot e) == ap (λ z → f (g c[ z ])) (quot e) ∙ idp lemma1 e = idp ∙' ap c[_] (quot e) =⟨ ∙'-unit-l _ ⟩ ap c[_] (quot e) =⟨ ! (Coeq-rec-β= _ _ _) ⟩ ap f (quot (inl e)) =⟨ ap (ap f) (! (Coeq-rec-β= _ _ _)) ⟩ ap f (ap (Coeq-rec c[_] (λ e → quot (inl e))) (quot e)) =⟨ idp ⟩ ap f (ap (g ∘ c[_]) (quot e)) =⟨ ! (ap-∘ f (g ∘ c[_]) (quot e)) ⟩ ap (f ∘ g ∘ c[_]) (quot e) =⟨ ! (∙-unit-r _) ⟩ ap (f ∘ g ∘ c[_]) (quot e) ∙ idp =∎ g-f : (x : V / (E₁ ⊔ E₂)) → (g (f x) == x) g-f = Coeq-elim (λ x → g (f x) == x) (λ v → idp) (λ { (inl e) → ↓-app=idf-in (! (lemma1 e)) ; (inr e) → ↓-app=idf-in (! (lemma2 e))}) where lemma1 : (e : E₁) → ap (λ z → g (f z)) (quot (inl e)) ∙ idp == idp ∙' quot (inl e) lemma1 e = ap (g ∘ f) (quot (inl e)) ∙ idp =⟨ ∙-unit-r _ ⟩ ap (g ∘ f) (quot (inl e)) =⟨ ap-∘ g f (quot (inl e)) ⟩ ap g (ap f (quot (inl e))) =⟨ ap (ap g) (Coeq-rec-β= _ _ _) ⟩ ap g (ap c[_] (quot e)) =⟨ ! (ap-∘ g c[_] (quot e)) ⟩ ap (g ∘ c[_]) (quot e) =⟨ idp ⟩ ap (Coeq-rec c[_] (λ e' → quot (inl e'))) (quot e) =⟨ Coeq-rec-β= _ _ _ ⟩ quot (inl e) =⟨ ! (∙'-unit-l _) ⟩ idp ∙' quot (inl e) =∎ lemma2 : (e : E₂) → ap (λ z → g (f z)) (quot (inr e)) ∙ idp == idp ∙' quot (inr e) lemma2 e = ap (g ∘ f) (quot (inr e)) ∙ idp =⟨ ∙-unit-r _ ⟩ ap (g ∘ f) (quot (inr e)) =⟨ ap-∘ g f (quot (inr e)) ⟩ ap g (ap f (quot (inr e))) =⟨ ap (ap g) (Coeq-rec-β= _ _ _) ⟩ ap g (quot e) =⟨ Coeq-rec-β= _ _ _ ⟩ quot (inr e) =⟨ ! (∙'-unit-l _) ⟩ idp ∙' quot (inr e) =∎
[STATEMENT] lemma mem_correct_default: "mem_correct (\<lambda> k. do {m \<leftarrow> State_Monad.get; State_Monad.return (m k)}) (\<lambda> k v. do {m \<leftarrow> State_Monad.get; State_Monad.set (m(k\<mapsto>v))}) (\<lambda> _. True)" [PROOF STATE] proof (prove) goal (1 subgoal): 1. mem_correct (\<lambda>k. State_Monad.get \<bind> (\<lambda>m. State_Monad.return (m k))) (\<lambda>k v. State_Monad.get \<bind> (\<lambda>m. State_Monad.set (m(k \<mapsto> v)))) (\<lambda>_. True) [PROOF STEP] by standard (auto simp: map_le_def state_mem_defs.map_of_def State_Monad.bind_def State_Monad.get_def State_Monad.return_def State_Monad.set_def lift_p_def)
For a 1913 revival at the same theatre the young actors Gerald Ames and A. E. Matthews succeeded the creators as Jack and Algy . John <unk> as Jack and Margaret Scudamore as Lady Bracknell headed the cast in a 1923 production at the Haymarket Theatre . Many revivals in the first decades of the 20th century treated " the present " as the current year . It was not until the 1920s that the case for 1890s costumes was established ; as a critic in The Manchester Guardian put it , " Thirty years on , one begins to feel that Wilde should be done in the costume of his period — that his wit today needs the backing of the atmosphere that gave it life and truth . … Wilde 's glittering and complex verbal felicities go ill with the shingle and the short skirt . "
############################################################################# #### ## #A anusp.gi ANUPQ package Eamonn O'Brien #A Alice Niemeyer ## #Y Copyright 1993-2001, Lehrstuhl D fuer Mathematik, RWTH Aachen, Germany #Y Copyright 1993-2001, School of Mathematical Sciences, ANU, Australia ## ############################################################################# ## #F ANUPQSPerror( <param> ) . . . . . . . . . . . . report illegal parameter ## InstallGlobalFunction( ANUPQSPerror, function( param ) Error( "Valid Options:\n", " \"ClassBound\", <bound>\n", " \"PcgsAutomorphisms\"\n", " \"Exponent\", <exponent>\n", " \"Metabelian\"\n", " \"OutputLevel\", <level>\n", " \"SetupFile\", <file>\n", "Illegal Parameter: \"", param, "\"" ); end ); ############################################################################# ## #F ANUPQSPextractArgs( <args> ) . . . . . . . . . . . . parse argument list ## InstallGlobalFunction( ANUPQSPextractArgs, function( args ) local CR, i, act, G, match; # allow to give only a prefix match := function( g, w ) return 1 < Length(g) and Length(g) <= Length(w) and w{[1..Length(g)]} = g; end; # extract arguments G := args[2]; CR := rec( group := G ); i := 3; while i <= Length(args) do act := args[i]; # "ClassBound", <class> if match( act, "ClassBound" ) then i := i + 1; CR.ClassBound := args[i]; if CR.ClassBound <= PClassPGroup(G) then Error( "\"ClassBound\" must be at least ", PClassPGroup(G)+1 ); fi; # "PcgsAutomorphisms" elif match( act, "PcgsAutomorphisms" ) then CR.PcgsAutomorphisms := true; #this may be available later # "SpaceEfficient" #elif match( act, "SpaceEfficient" ) then # CR.SpaceEfficient := true; # "Exponent", <exp> elif match( act, "Exponent" ) then i := i + 1; CR.Exponent := args[i]; # "Metabelian" elif match( act, "Metabelian" ) then CR.Metabelian := true; # "Verbose" elif match( act, "Verbose" ) then CR.Verbose := true; # "SetupFile", <file> elif match( act, "SetupFile" ) then i := i + 1; CR.SetupFile := args[i]; # "TmpDir", <dir> elif match( act, "TmpDir" ) then i := i + 1; CR.TmpDir := args[i]; # "Output", <level> elif match( act, "OutputLevel" ) then i := i + 1; CR.OutputLevel := args[i]; CR.Verbose := true; # signal an error else ANUPQSPerror(act); fi; i := i + 1; od; return CR; end ); ############################################################################# ## #F PqFpGroupPcGroup( <G> ) . . . . . . corresponding fp group of a pc group ## InstallGlobalFunction( PqFpGroupPcGroup, G -> Image( IsomorphismFpGroup( G ) ) ); ############################################################################# ## #M FpGroupPcGroup( <G> ) . . . . . . . corresponding fp group of a pc group ## InstallMethod( FpGroupPcGroup, "pc group", [IsPcGroup], 0, PqFpGroupPcGroup ); ############################################################################# ## #F PQ_EPIMORPHISM_STANDARD_PRESENTATION( <args> ) . (epi. onto) SP for group ## InstallGlobalFunction( PQ_EPIMORPHISM_STANDARD_PRESENTATION, function( args ) local datarec, rank, Q, Qclass, automorphisms, generators, x, images, i, r, j, aut, result, desc, k; datarec := ANUPQ_ARG_CHK("StandardPresentation", args); if datarec.calltype = "interactive" and IsBound(datarec.SPepi) then # Note: the `pq' binary seg-faults if called twice to # calculate the standard presentation of a group return datarec.SPepi; fi; if VALUE_PQ_OPTION("pQuotient") = fail and VALUE_PQ_OPTION("Prime", datarec) <> fail then # Ensure a saved value of `Prime' has precedence # over a saved value of `pQuotient'. Unbind(datarec.pQuotient); fi; if VALUE_PQ_OPTION("pQuotient", datarec) <> fail then PQ_AUT_GROUP( datarec.pQuotient ); datarec.Prime := PrimePGroup( datarec.pQuotient ); elif VALUE_PQ_OPTION("Prime", datarec) <> fail then rank := Number( List( AbelianInvariants(datarec.group), x -> Gcd(x, datarec.Prime) ), y -> y = datarec.Prime ); # construct free group with <rank> generators Q := FreeGroup( IsSyllableWordsFamily, rank, "q" ); # construct power-relation Q := Q / List( GeneratorsOfGroup(Q), x -> x^datarec.Prime ); # construct pc group Q := PcGroupFpGroup(Q); # construct automorphism automorphisms := []; generators := GeneratorsOfGroup(Q); for x in GeneratorsOfGroup( GL(rank, datarec.Prime) ) do images := []; for i in [ 1 .. rank ] do r := One(Q); for j in [ 1 .. rank ] do r := r * generators[j]^Int(x[i][j]); od; images[i] := r; od; aut := GroupHomomorphismByImages( Q, Q, generators, images ); SetIsBijective( aut, true ); Add( automorphisms, aut ); od; SetAutomorphismGroup( Q, GroupByGenerators( automorphisms ) ); datarec.pQuotient := Q; fi; #PushOptions(rec(nonuser := true)); Qclass := PClassPGroup( datarec.pQuotient ); if VALUE_PQ_OPTION("ClassBound", 63) <= Qclass then Error( "option `ClassBound' must be greater than `pQuotient' class (", Qclass, ")\n" ); fi; PQ_PC_PRESENTATION(datarec, "SP" : ClassBound := Qclass); PQ_SP_STANDARD_PRESENTATION(datarec); PQ_SP_ISOMORPHISM(datarec); if datarec.calltype = "non-interactive" then PQ_COMPLETE_NONINTERACTIVE_FUNC_CALL(datarec); if IsBound( datarec.setupfile ) then #PopOptions(); return true; fi; fi; # try to read output result := ANUPQReadOutput( ANUPQData.SPimages ); if not IsBound(result.ANUPQmagic) then Error("something wrong with `pq' binary. Please check installation\n"); fi; desc := rec(); result.ANUPQgroups[Length(result.ANUPQgroups)](desc); # if result.ANUPQautos <> fail and # Length( result.ANUPQautos ) = Length( result.ANUPQgroups ) then # result.ANUPQautos[ Length(result.ANUPQgroups) ]( desc.group ); # fi; # revise images to correspond to images of user-supplied generators datarec.SP := desc.group; x := Length( desc.map ); k := Length( GeneratorsOfGroup( datarec.group ) ); # images of user supplied generators are last k entries in .pqImages datarec.SPepi := GroupHomomorphismByImagesNC( datarec.group, datarec.SP, GeneratorsOfGroup(datarec.group), desc.map{[x - k + 1..x]} ); #PopOptions(); return datarec.SPepi; end ); ############################################################################# ## #F EpimorphismPqStandardPresentation( <arg> ) . . . epi. onto SP for p-group ## InstallGlobalFunction( EpimorphismPqStandardPresentation, function( arg ) return PQ_EPIMORPHISM_STANDARD_PRESENTATION( arg ); end ); ############################################################################# ## #F PqStandardPresentation( <arg> : <options> ) . . . . . . . SP for p-group ## InstallGlobalFunction( PqStandardPresentation, function( arg ) local SPepi; SPepi := PQ_EPIMORPHISM_STANDARD_PRESENTATION( arg ); if SPepi = true then return true; # the SetupFile case fi; return Range( SPepi ); end ); ############################################################################# ## #M EpimorphismStandardPresentation( <F> ) . . . . . epi. onto SP for p-group #M EpimorphismStandardPresentation( [<i>] ) ## InstallMethod( EpimorphismStandardPresentation, "fp group", [IsFpGroup], 0, EpimorphismPqStandardPresentation ); InstallMethod( EpimorphismStandardPresentation, "pc group", [IsPcGroup], 0, EpimorphismPqStandardPresentation ); InstallMethod( EpimorphismStandardPresentation, "positive integer", [IsPosInt], 0, EpimorphismPqStandardPresentation ); InstallOtherMethod( EpimorphismStandardPresentation, "", [], 0, EpimorphismPqStandardPresentation ); ############################################################################# ## #M StandardPresentation( <F> ) . . . . . . . . . . . . . . . SP for p-group #M StandardPresentation( [<i>] ) ## InstallMethod( StandardPresentation, "fp group", [IsFpGroup], 0, PqStandardPresentation ); InstallMethod( StandardPresentation, "pc group", [IsPcGroup], 0, PqStandardPresentation ); InstallMethod( StandardPresentation, "positive integer", [IsPosInt], 0, PqStandardPresentation ); InstallOtherMethod( StandardPresentation, "", [], 0, PqStandardPresentation ); ############################################################################# ## #F IsPqIsomorphicPGroup( <G>, <H> ) . . . . . . . . . . . isomorphism test ## InstallGlobalFunction( IsPqIsomorphicPGroup, function( G, H ) local p, class, SG, SH, Ggens, Hgens; # <G> and <H> must both be pc groups and p-groups if not IsPcGroup(G) then Error( "<G> must be a pc group" ); fi; if not IsPcGroup(H) then Error( "<H> must be a pc group" ); fi; if Size(G) <> Size(H) then return false; fi; p := SmallestRootInt(Size(G)); if not IsPrimeInt(p) then Error( "<G> must be a p-group" ); fi; # check the Frattini factor if RankPGroup(G) <> RankPGroup(H) then return false; fi; # check the exponent-p length and the sizes of the groups in the # p-central series of both groups if List(PCentralSeries(G,p), Size) <> List(PCentralSeries(H,p), Size) then return false; fi; # if the groups are elementary abelian they are isomorphic class := PClassPGroup(G); if class = 1 then return true; fi; # compute a standard presentation for both SG := PqStandardPresentation(PqFpGroupPcGroup(G) : Prime := p, ClassBound := class); SH := PqStandardPresentation(PqFpGroupPcGroup(H) : Prime := p, ClassBound := class); # the groups are equal if the presentation are equal Ggens := GeneratorsOfGroup( FreeGroupOfFpGroup( SG ) ); Hgens := GeneratorsOfGroup( FreeGroupOfFpGroup( SH ) ); return RelatorsOfFpGroup(SG) = List( RelatorsOfFpGroup(SH), x -> MappedWord( x, Hgens, Ggens ) ); end ); ############################################################################# ## #M IsIsomorphicPGroup( <F>, <G> ) ## InstallMethod( IsIsomorphicPGroup, "pc group, pc group", [IsPcGroup, IsPcGroup], 0, IsPqIsomorphicPGroup ); #E anusp.gi . . . . . . . . . . . . . . . . . . . . . . . . . . . ends here
#include <stdlib.h> #include <gsl/block/gsl_block.h> #define BASE_DOUBLE #include <gsl/templates_on.h> #include <gsl/block/init_source.c> #include <gsl/templates_off.h> #undef BASE_DOUBLE
/- Copyright (c) 2023 Rémy Degenne. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Rémy Degenne ! This file was ported from Lean 3 source module probability.kernel.composition ! leanprover-community/mathlib commit 97d1aa955750bd57a7eeef91de310e633881670b ! Please do not edit these lines, except to modify the commit id ! if you have ported upstream changes. -/ import Mathbin.Probability.Kernel.Basic /-! # Product and composition of kernels We define * the composition-product `κ ⊗ₖ η` of two s-finite kernels `κ : kernel α β` and `η : kernel (α × β) γ`, a kernel from `α` to `β × γ`. * the map and comap of a kernel along a measurable function. * the composition `η ∘ₖ κ` of s-finite kernels `κ : kernel α β` and `η : kernel β γ`, a kernel from `α` to `γ`. * the product `prod κ η` of s-finite kernels `κ : kernel α β` and `η : kernel α γ`, a kernel from `α` to `β × γ`. A note on names: The composition-product `kernel α β → kernel (α × β) γ → kernel α (β × γ)` is named composition in [kallenberg2021] and product on the wikipedia article on transition kernels. Most papers studying categories of kernels call composition the map we call composition. We adopt that convention because it fits better with the use of the name `comp` elsewhere in mathlib. ## Main definitions Kernels built from other kernels: * `comp_prod (κ : kernel α β) (η : kernel (α × β) γ) : kernel α (β × γ)`: composition-product of 2 s-finite kernels. We define a notation `κ ⊗ₖ η = comp_prod κ η`. `∫⁻ bc, f bc ∂((κ ⊗ₖ η) a) = ∫⁻ b, ∫⁻ c, f (b, c) ∂(η (a, b)) ∂(κ a)` * `map (κ : kernel α β) (f : β → γ) (hf : measurable f) : kernel α γ` `∫⁻ c, g c ∂(map κ f hf a) = ∫⁻ b, g (f b) ∂(κ a)` * `comap (κ : kernel α β) (f : γ → α) (hf : measurable f) : kernel γ β` `∫⁻ b, g b ∂(comap κ f hf c) = ∫⁻ b, g b ∂(κ (f c))` * `comp (η : kernel β γ) (κ : kernel α β) : kernel α γ`: composition of 2 s-finite kernels. We define a notation `η ∘ₖ κ = comp η κ`. `∫⁻ c, g c ∂((η ∘ₖ κ) a) = ∫⁻ b, ∫⁻ c, g c ∂(η b) ∂(κ a)` * `prod (κ : kernel α β) (η : kernel α γ) : kernel α (β × γ)`: product of 2 s-finite kernels. `∫⁻ bc, f bc ∂(prod κ η a) = ∫⁻ b, ∫⁻ c, f (b, c) ∂(η a) ∂(κ a)` ## Main statements * `lintegral_comp_prod`, `lintegral_map`, `lintegral_comap`, `lintegral_comp`, `lintegral_prod`: Lebesgue integral of a function against a composition-product/map/comap/composition/product of kernels. * Instances of the form `<class>.<operation>` where class is one of `is_markov_kernel`, `is_finite_kernel`, `is_s_finite_kernel` and operation is one of `comp_prod`, `map`, `comap`, `comp`, `prod`. These instances state that the three classes are stable by the various operations. ## Notations * `κ ⊗ₖ η = probability_theory.kernel.comp_prod κ η` * `η ∘ₖ κ = probability_theory.kernel.comp η κ` -/ open MeasureTheory open ENNReal namespace ProbabilityTheory namespace Kernel variable {α β ι : Type _} {mα : MeasurableSpace α} {mβ : MeasurableSpace β} include mα mβ section CompositionProduct /-! ### Composition-Product of kernels We define a kernel composition-product `comp_prod : kernel α β → kernel (α × β) γ → kernel α (β × γ)`. -/ variable {γ : Type _} {mγ : MeasurableSpace γ} {s : Set (β × γ)} include mγ /-- Auxiliary function for the definition of the composition-product of two kernels. For all `a : α`, `comp_prod_fun κ η a` is a countably additive function with value zero on the empty set, and the composition-product of kernels is defined in `kernel.comp_prod` through `measure.of_measurable`. -/ noncomputable def compProdFun (κ : kernel α β) (η : kernel (α × β) γ) (a : α) (s : Set (β × γ)) : ℝ≥0∞ := ∫⁻ b, η (a, b) { c | (b, c) ∈ s } ∂κ a #align probability_theory.kernel.comp_prod_fun ProbabilityTheory.kernel.compProdFun theorem compProdFun_empty (κ : kernel α β) (η : kernel (α × β) γ) (a : α) : compProdFun κ η a ∅ = 0 := by simp only [comp_prod_fun, Set.mem_empty_iff_false, Set.setOf_false, measure_empty, lintegral_const, MulZeroClass.zero_mul] #align probability_theory.kernel.comp_prod_fun_empty ProbabilityTheory.kernel.compProdFun_empty theorem compProdFun_unionᵢ (κ : kernel α β) (η : kernel (α × β) γ) [IsSFiniteKernel η] (a : α) (f : ℕ → Set (β × γ)) (hf_meas : ∀ i, MeasurableSet (f i)) (hf_disj : Pairwise (Disjoint on f)) : compProdFun κ η a (⋃ i, f i) = ∑' i, compProdFun κ η a (f i) := by have h_Union : (fun b => η (a, b) { c : γ | (b, c) ∈ ⋃ i, f i }) = fun b => η (a, b) (⋃ i, { c : γ | (b, c) ∈ f i }) := by ext1 b congr with c simp only [Set.mem_unionᵢ, Set.supᵢ_eq_unionᵢ, Set.mem_setOf_eq] rfl rw [comp_prod_fun, h_Union] have h_tsum : (fun b => η (a, b) (⋃ i, { c : γ | (b, c) ∈ f i })) = fun b => ∑' i, η (a, b) { c : γ | (b, c) ∈ f i } := by ext1 b rw [measure_Union] · intro i j hij s hsi hsj c hcs have hbci : {(b, c)} ⊆ f i := by rw [Set.singleton_subset_iff] exact hsi hcs have hbcj : {(b, c)} ⊆ f j := by rw [Set.singleton_subset_iff] exact hsj hcs simpa only [Set.bot_eq_empty, Set.le_eq_subset, Set.singleton_subset_iff, Set.mem_empty_iff_false] using hf_disj hij hbci hbcj · exact fun i => (@measurable_prod_mk_left β γ _ _ b) _ (hf_meas i) rw [h_tsum, lintegral_tsum] · rfl · intro i have hm : MeasurableSet { p : (α × β) × γ | (p.1.2, p.2) ∈ f i } := measurable_fst.snd.prod_mk measurable_snd (hf_meas i) exact ((measurable_prod_mk_mem η hm).comp measurable_prod_mk_left).AeMeasurable #align probability_theory.kernel.comp_prod_fun_Union ProbabilityTheory.kernel.compProdFun_unionᵢ theorem compProdFun_tsum_right (κ : kernel α β) (η : kernel (α × β) γ) [IsSFiniteKernel η] (a : α) (hs : MeasurableSet s) : compProdFun κ η a s = ∑' n, compProdFun κ (seq η n) a s := by simp_rw [comp_prod_fun, (measure_sum_seq η _).symm] have : (∫⁻ b, measure.sum (fun n => seq η n (a, b)) { c : γ | (b, c) ∈ s } ∂κ a) = ∫⁻ b, ∑' n, seq η n (a, b) { c : γ | (b, c) ∈ s } ∂κ a := by congr ext1 b rw [measure.sum_apply] exact measurable_prod_mk_left hs rw [this, lintegral_tsum fun n : ℕ => _] exact ((measurable_prod_mk_mem (seq η n) ((measurable_fst.snd.prod_mk measurable_snd) hs)).comp measurable_prod_mk_left).AeMeasurable #align probability_theory.kernel.comp_prod_fun_tsum_right ProbabilityTheory.kernel.compProdFun_tsum_right theorem compProdFun_tsum_left (κ : kernel α β) (η : kernel (α × β) γ) [IsSFiniteKernel κ] (a : α) (s : Set (β × γ)) : compProdFun κ η a s = ∑' n, compProdFun (seq κ n) η a s := by simp_rw [comp_prod_fun, (measure_sum_seq κ _).symm, lintegral_sum_measure] #align probability_theory.kernel.comp_prod_fun_tsum_left ProbabilityTheory.kernel.compProdFun_tsum_left /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (n m) -/ theorem compProdFun_eq_tsum (κ : kernel α β) [IsSFiniteKernel κ] (η : kernel (α × β) γ) [IsSFiniteKernel η] (a : α) (hs : MeasurableSet s) : compProdFun κ η a s = ∑' (n) (m), compProdFun (seq κ n) (seq η m) a s := by simp_rw [comp_prod_fun_tsum_left κ η a s, comp_prod_fun_tsum_right _ η a hs] #align probability_theory.kernel.comp_prod_fun_eq_tsum ProbabilityTheory.kernel.compProdFun_eq_tsum /-- Auxiliary lemma for `measurable_comp_prod_fun`. -/ theorem measurable_compProdFun_of_finite (κ : kernel α β) [IsFiniteKernel κ] (η : kernel (α × β) γ) [IsFiniteKernel η] (hs : MeasurableSet s) : Measurable fun a => compProdFun κ η a s := by simp only [comp_prod_fun] have h_meas : Measurable (Function.uncurry fun a b => η (a, b) { c : γ | (b, c) ∈ s }) := by have : (Function.uncurry fun a b => η (a, b) { c : γ | (b, c) ∈ s }) = fun p => η p { c : γ | (p.2, c) ∈ s } := by ext1 p have hp_eq_mk : p = (p.fst, p.snd) := prod.mk.eta.symm rw [hp_eq_mk, Function.uncurry_apply_pair] rw [this] exact measurable_prod_mk_mem η (measurable_fst.snd.prod_mk measurable_snd hs) exact measurable_lintegral κ h_meas #align probability_theory.kernel.measurable_comp_prod_fun_of_finite ProbabilityTheory.kernel.measurable_compProdFun_of_finite theorem measurable_compProdFun (κ : kernel α β) [IsSFiniteKernel κ] (η : kernel (α × β) γ) [IsSFiniteKernel η] (hs : MeasurableSet s) : Measurable fun a => compProdFun κ η a s := by simp_rw [comp_prod_fun_tsum_right κ η _ hs] refine' Measurable.eNNReal_tsum fun n => _ simp only [comp_prod_fun] have h_meas : Measurable (Function.uncurry fun a b => seq η n (a, b) { c : γ | (b, c) ∈ s }) := by have : (Function.uncurry fun a b => seq η n (a, b) { c : γ | (b, c) ∈ s }) = fun p => seq η n p { c : γ | (p.2, c) ∈ s } := by ext1 p have hp_eq_mk : p = (p.fst, p.snd) := prod.mk.eta.symm rw [hp_eq_mk, Function.uncurry_apply_pair] rw [this] exact measurable_prod_mk_mem (seq η n) (measurable_fst.snd.prod_mk measurable_snd hs) exact measurable_lintegral κ h_meas #align probability_theory.kernel.measurable_comp_prod_fun ProbabilityTheory.kernel.measurable_compProdFun /-- Composition-Product of kernels. It verifies `∫⁻ bc, f bc ∂(comp_prod κ η a) = ∫⁻ b, ∫⁻ c, f (b, c) ∂(η (a, b)) ∂(κ a)` (see `lintegral_comp_prod`). -/ noncomputable def compProd (κ : kernel α β) [IsSFiniteKernel κ] (η : kernel (α × β) γ) [IsSFiniteKernel η] : kernel α (β × γ) where val a := Measure.ofMeasurable (fun s hs => compProdFun κ η a s) (compProdFun_empty κ η a) (compProdFun_unionᵢ κ η a) property := by refine' measure.measurable_of_measurable_coe _ fun s hs => _ have : (fun a => measure.of_measurable (fun s hs => comp_prod_fun κ η a s) (comp_prod_fun_empty κ η a) (comp_prod_fun_Union κ η a) s) = fun a => comp_prod_fun κ η a s := by ext1 a rwa [measure.of_measurable_apply] rw [this] exact measurable_comp_prod_fun κ η hs #align probability_theory.kernel.comp_prod ProbabilityTheory.kernel.compProd -- mathport name: kernel.comp_prod scoped[ProbabilityTheory] infixl:100 " ⊗ₖ " => ProbabilityTheory.kernel.compProd theorem compProd_apply_eq_compProdFun (κ : kernel α β) [IsSFiniteKernel κ] (η : kernel (α × β) γ) [IsSFiniteKernel η] (a : α) (hs : MeasurableSet s) : (κ ⊗ₖ η) a s = compProdFun κ η a s := by rw [comp_prod] change measure.of_measurable (fun s hs => comp_prod_fun κ η a s) (comp_prod_fun_empty κ η a) (comp_prod_fun_Union κ η a) s = ∫⁻ b, η (a, b) { c | (b, c) ∈ s } ∂κ a rw [measure.of_measurable_apply _ hs] rfl #align probability_theory.kernel.comp_prod_apply_eq_comp_prod_fun ProbabilityTheory.kernel.compProd_apply_eq_compProdFun theorem compProd_apply (κ : kernel α β) [IsSFiniteKernel κ] (η : kernel (α × β) γ) [IsSFiniteKernel η] (a : α) (hs : MeasurableSet s) : (κ ⊗ₖ η) a s = ∫⁻ b, η (a, b) { c | (b, c) ∈ s } ∂κ a := compProd_apply_eq_compProdFun κ η a hs #align probability_theory.kernel.comp_prod_apply ProbabilityTheory.kernel.compProd_apply /-- Lebesgue integral against the composition-product of two kernels. -/ theorem lintegral_comp_prod' (κ : kernel α β) [IsSFiniteKernel κ] (η : kernel (α × β) γ) [IsSFiniteKernel η] (a : α) {f : β → γ → ℝ≥0∞} (hf : Measurable (Function.uncurry f)) : (∫⁻ bc, f bc.1 bc.2 ∂(κ ⊗ₖ η) a) = ∫⁻ b, ∫⁻ c, f b c ∂η (a, b) ∂κ a := by let F : ℕ → simple_func (β × γ) ℝ≥0∞ := simple_func.eapprox (Function.uncurry f) have h : ∀ a, (⨆ n, F n a) = Function.uncurry f a := simple_func.supr_eapprox_apply (Function.uncurry f) hf simp only [Prod.forall, Function.uncurry_apply_pair] at h simp_rw [← h, Prod.mk.eta] have h_mono : Monotone F := fun i j hij b => simple_func.monotone_eapprox (Function.uncurry f) hij _ rw [lintegral_supr (fun n => (F n).Measurable) h_mono] have : ∀ b, (∫⁻ c, ⨆ n, F n (b, c) ∂η (a, b)) = ⨆ n, ∫⁻ c, F n (b, c) ∂η (a, b) := by intro a rw [lintegral_supr] · exact fun n => (F n).Measurable.comp measurable_prod_mk_left · exact fun i j hij b => h_mono hij _ simp_rw [this] have h_some_meas_integral : ∀ f' : simple_func (β × γ) ℝ≥0∞, Measurable fun b => ∫⁻ c, f' (b, c) ∂η (a, b) := by intro f' have : (fun b => ∫⁻ c, f' (b, c) ∂η (a, b)) = (fun ab => ∫⁻ c, f' (ab.2, c) ∂η ab) ∘ fun b => (a, b) := by ext1 ab rfl rw [this] refine' Measurable.comp _ measurable_prod_mk_left exact measurable_lintegral η ((simple_func.measurable _).comp (measurable_fst.snd.prod_mk measurable_snd)) rw [lintegral_supr] rotate_left · exact fun n => h_some_meas_integral (F n) · exact fun i j hij b => lintegral_mono fun c => h_mono hij _ congr ext1 n refine' simple_func.induction _ _ (F n) · intro c s hs simp only [simple_func.const_zero, simple_func.coe_piecewise, simple_func.coe_const, simple_func.coe_zero, Set.piecewise_eq_indicator, lintegral_indicator_const hs] rw [comp_prod_apply κ η _ hs, ← lintegral_const_mul c _] swap · exact (measurable_prod_mk_mem η ((measurable_fst.snd.prod_mk measurable_snd) hs)).comp measurable_prod_mk_left congr ext1 b rw [lintegral_indicator_const_comp measurable_prod_mk_left hs] rfl · intro f f' h_disj hf_eq hf'_eq simp_rw [simple_func.coe_add, Pi.add_apply] change (∫⁻ x, (f : β × γ → ℝ≥0∞) x + f' x ∂(κ ⊗ₖ η) a) = ∫⁻ b, ∫⁻ c : γ, f (b, c) + f' (b, c) ∂η (a, b) ∂κ a rw [lintegral_add_left (simple_func.measurable _), hf_eq, hf'_eq, ← lintegral_add_left] swap · exact h_some_meas_integral f congr with b rw [← lintegral_add_left ((simple_func.measurable _).comp measurable_prod_mk_left)] #align probability_theory.kernel.lintegral_comp_prod' ProbabilityTheory.kernel.lintegral_comp_prod' /-- Lebesgue integral against the composition-product of two kernels. -/ theorem lintegral_compProd (κ : kernel α β) [IsSFiniteKernel κ] (η : kernel (α × β) γ) [IsSFiniteKernel η] (a : α) {f : β × γ → ℝ≥0∞} (hf : Measurable f) : (∫⁻ bc, f bc ∂(κ ⊗ₖ η) a) = ∫⁻ b, ∫⁻ c, f (b, c) ∂η (a, b) ∂κ a := by let g := Function.curry f change (∫⁻ bc, f bc ∂(κ ⊗ₖ η) a) = ∫⁻ b, ∫⁻ c, g b c ∂η (a, b) ∂κ a rw [← lintegral_comp_prod'] · simp_rw [g, Function.curry_apply, Prod.mk.eta] · simp_rw [g, Function.uncurry_curry] exact hf #align probability_theory.kernel.lintegral_comp_prod ProbabilityTheory.kernel.lintegral_compProd /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (n m) -/ theorem compProd_eq_tsum_compProd (κ : kernel α β) [IsSFiniteKernel κ] (η : kernel (α × β) γ) [IsSFiniteKernel η] (a : α) (hs : MeasurableSet s) : (κ ⊗ₖ η) a s = ∑' (n : ℕ) (m : ℕ), (seq κ n ⊗ₖ seq η m) a s := by simp_rw [comp_prod_apply_eq_comp_prod_fun _ _ _ hs] exact comp_prod_fun_eq_tsum κ η a hs #align probability_theory.kernel.comp_prod_eq_tsum_comp_prod ProbabilityTheory.kernel.compProd_eq_tsum_compProd theorem compProd_eq_sum_compProd (κ : kernel α β) [IsSFiniteKernel κ] (η : kernel (α × β) γ) [IsSFiniteKernel η] : κ ⊗ₖ η = kernel.sum fun n => kernel.sum fun m => seq κ n ⊗ₖ seq η m := by ext (a s hs) : 2 simp_rw [kernel.sum_apply' _ a hs] rw [comp_prod_eq_tsum_comp_prod κ η a hs] #align probability_theory.kernel.comp_prod_eq_sum_comp_prod ProbabilityTheory.kernel.compProd_eq_sum_compProd theorem compProd_eq_sum_compProd_left (κ : kernel α β) [IsSFiniteKernel κ] (η : kernel (α × β) γ) [IsSFiniteKernel η] : κ ⊗ₖ η = kernel.sum fun n => seq κ n ⊗ₖ η := by rw [comp_prod_eq_sum_comp_prod] congr with (n a s hs) simp_rw [kernel.sum_apply' _ _ hs, comp_prod_apply_eq_comp_prod_fun _ _ _ hs, comp_prod_fun_tsum_right _ η a hs] #align probability_theory.kernel.comp_prod_eq_sum_comp_prod_left ProbabilityTheory.kernel.compProd_eq_sum_compProd_left theorem compProd_eq_sum_compProd_right (κ : kernel α β) [IsSFiniteKernel κ] (η : kernel (α × β) γ) [IsSFiniteKernel η] : κ ⊗ₖ η = kernel.sum fun n => κ ⊗ₖ seq η n := by rw [comp_prod_eq_sum_comp_prod] simp_rw [comp_prod_eq_sum_comp_prod_left κ _] rw [kernel.sum_comm] #align probability_theory.kernel.comp_prod_eq_sum_comp_prod_right ProbabilityTheory.kernel.compProd_eq_sum_compProd_right instance IsMarkovKernel.compProd (κ : kernel α β) [IsMarkovKernel κ] (η : kernel (α × β) γ) [IsMarkovKernel η] : IsMarkovKernel (κ ⊗ₖ η) := ⟨fun a => ⟨by rw [comp_prod_apply κ η a MeasurableSet.univ] simp only [Set.mem_univ, Set.setOf_true, measure_univ, lintegral_one]⟩⟩ #align probability_theory.kernel.is_markov_kernel.comp_prod ProbabilityTheory.kernel.IsMarkovKernel.compProd theorem compProd_apply_univ_le (κ : kernel α β) [IsSFiniteKernel κ] (η : kernel (α × β) γ) [IsFiniteKernel η] (a : α) : (κ ⊗ₖ η) a Set.univ ≤ κ a Set.univ * IsFiniteKernel.bound η := by rw [comp_prod_apply κ η a MeasurableSet.univ] simp only [Set.mem_univ, Set.setOf_true] let Cη := is_finite_kernel.bound η calc (∫⁻ b, η (a, b) Set.univ ∂κ a) ≤ ∫⁻ b, Cη ∂κ a := lintegral_mono fun b => measure_le_bound η (a, b) Set.univ _ = Cη * κ a Set.univ := (lintegral_const Cη) _ = κ a Set.univ * Cη := mul_comm _ _ #align probability_theory.kernel.comp_prod_apply_univ_le ProbabilityTheory.kernel.compProd_apply_univ_le instance IsFiniteKernel.compProd (κ : kernel α β) [IsFiniteKernel κ] (η : kernel (α × β) γ) [IsFiniteKernel η] : IsFiniteKernel (κ ⊗ₖ η) := ⟨⟨IsFiniteKernel.bound κ * IsFiniteKernel.bound η, ENNReal.mul_lt_top (IsFiniteKernel.bound_ne_top κ) (IsFiniteKernel.bound_ne_top η), fun a => calc (κ ⊗ₖ η) a Set.univ ≤ κ a Set.univ * IsFiniteKernel.bound η := compProd_apply_univ_le κ η a _ ≤ IsFiniteKernel.bound κ * IsFiniteKernel.bound η := mul_le_mul (measure_le_bound κ a Set.univ) le_rfl (zero_le _) (zero_le _) ⟩⟩ #align probability_theory.kernel.is_finite_kernel.comp_prod ProbabilityTheory.kernel.IsFiniteKernel.compProd instance IsSFiniteKernel.compProd (κ : kernel α β) [IsSFiniteKernel κ] (η : kernel (α × β) γ) [IsSFiniteKernel η] : IsSFiniteKernel (κ ⊗ₖ η) := by rw [comp_prod_eq_sum_comp_prod] exact kernel.is_s_finite_kernel_sum fun n => kernel.is_s_finite_kernel_sum inferInstance #align probability_theory.kernel.is_s_finite_kernel.comp_prod ProbabilityTheory.kernel.IsSFiniteKernel.compProd end CompositionProduct section MapComap /-! ### map, comap -/ variable {γ : Type _} {mγ : MeasurableSpace γ} {f : β → γ} {g : γ → α} include mγ /-- The pushforward of a kernel along a measurable function. We include measurability in the assumptions instead of using junk values to make sure that typeclass inference can infer that the `map` of a Markov kernel is again a Markov kernel. -/ noncomputable def map (κ : kernel α β) (f : β → γ) (hf : Measurable f) : kernel α γ where val a := (κ a).map f property := (Measure.measurable_map _ hf).comp (kernel.measurable κ) #align probability_theory.kernel.map ProbabilityTheory.kernel.map theorem map_apply (κ : kernel α β) (hf : Measurable f) (a : α) : map κ f hf a = (κ a).map f := rfl #align probability_theory.kernel.map_apply ProbabilityTheory.kernel.map_apply theorem map_apply' (κ : kernel α β) (hf : Measurable f) (a : α) {s : Set γ} (hs : MeasurableSet s) : map κ f hf a s = κ a (f ⁻¹' s) := by rw [map_apply, measure.map_apply hf hs] #align probability_theory.kernel.map_apply' ProbabilityTheory.kernel.map_apply' theorem lintegral_map (κ : kernel α β) (hf : Measurable f) (a : α) {g' : γ → ℝ≥0∞} (hg : Measurable g') : (∫⁻ b, g' b ∂map κ f hf a) = ∫⁻ a, g' (f a) ∂κ a := by rw [map_apply _ hf, lintegral_map hg hf] #align probability_theory.kernel.lintegral_map ProbabilityTheory.kernel.lintegral_map theorem sum_map_seq (κ : kernel α β) [IsSFiniteKernel κ] (hf : Measurable f) : (kernel.sum fun n => map (seq κ n) f hf) = map κ f hf := by ext (a s hs) : 2 rw [kernel.sum_apply, map_apply' κ hf a hs, measure.sum_apply _ hs, ← measure_sum_seq κ, measure.sum_apply _ (hf hs)] simp_rw [map_apply' _ hf _ hs] #align probability_theory.kernel.sum_map_seq ProbabilityTheory.kernel.sum_map_seq instance IsMarkovKernel.map (κ : kernel α β) [IsMarkovKernel κ] (hf : Measurable f) : IsMarkovKernel (map κ f hf) := ⟨fun a => ⟨by rw [map_apply' κ hf a MeasurableSet.univ, Set.preimage_univ, measure_univ]⟩⟩ #align probability_theory.kernel.is_markov_kernel.map ProbabilityTheory.kernel.IsMarkovKernel.map instance IsFiniteKernel.map (κ : kernel α β) [IsFiniteKernel κ] (hf : Measurable f) : IsFiniteKernel (map κ f hf) := by refine' ⟨⟨is_finite_kernel.bound κ, is_finite_kernel.bound_lt_top κ, fun a => _⟩⟩ rw [map_apply' κ hf a MeasurableSet.univ] exact measure_le_bound κ a _ #align probability_theory.kernel.is_finite_kernel.map ProbabilityTheory.kernel.IsFiniteKernel.map instance IsSFiniteKernel.map (κ : kernel α β) [IsSFiniteKernel κ] (hf : Measurable f) : IsSFiniteKernel (map κ f hf) := ⟨⟨fun n => map (seq κ n) f hf, inferInstance, (sum_map_seq κ hf).symm⟩⟩ #align probability_theory.kernel.is_s_finite_kernel.map ProbabilityTheory.kernel.IsSFiniteKernel.map /-- Pullback of a kernel, such that for each set s `comap κ g hg c s = κ (g c) s`. We include measurability in the assumptions instead of using junk values to make sure that typeclass inference can infer that the `comap` of a Markov kernel is again a Markov kernel. -/ def comap (κ : kernel α β) (g : γ → α) (hg : Measurable g) : kernel γ β where val a := κ (g a) property := (kernel.measurable κ).comp hg #align probability_theory.kernel.comap ProbabilityTheory.kernel.comap theorem comap_apply (κ : kernel α β) (hg : Measurable g) (c : γ) : comap κ g hg c = κ (g c) := rfl #align probability_theory.kernel.comap_apply ProbabilityTheory.kernel.comap_apply theorem comap_apply' (κ : kernel α β) (hg : Measurable g) (c : γ) (s : Set β) : comap κ g hg c s = κ (g c) s := rfl #align probability_theory.kernel.comap_apply' ProbabilityTheory.kernel.comap_apply' theorem lintegral_comap (κ : kernel α β) (hg : Measurable g) (c : γ) (g' : β → ℝ≥0∞) : (∫⁻ b, g' b ∂comap κ g hg c) = ∫⁻ b, g' b ∂κ (g c) := rfl #align probability_theory.kernel.lintegral_comap ProbabilityTheory.kernel.lintegral_comap theorem sum_comap_seq (κ : kernel α β) [IsSFiniteKernel κ] (hg : Measurable g) : (kernel.sum fun n => comap (seq κ n) g hg) = comap κ g hg := by ext (a s hs) : 2 rw [kernel.sum_apply, comap_apply' κ hg a s, measure.sum_apply _ hs, ← measure_sum_seq κ, measure.sum_apply _ hs] simp_rw [comap_apply' _ hg _ s] #align probability_theory.kernel.sum_comap_seq ProbabilityTheory.kernel.sum_comap_seq instance IsMarkovKernel.comap (κ : kernel α β) [IsMarkovKernel κ] (hg : Measurable g) : IsMarkovKernel (comap κ g hg) := ⟨fun a => ⟨by rw [comap_apply' κ hg a Set.univ, measure_univ]⟩⟩ #align probability_theory.kernel.is_markov_kernel.comap ProbabilityTheory.kernel.IsMarkovKernel.comap instance IsFiniteKernel.comap (κ : kernel α β) [IsFiniteKernel κ] (hg : Measurable g) : IsFiniteKernel (comap κ g hg) := by refine' ⟨⟨is_finite_kernel.bound κ, is_finite_kernel.bound_lt_top κ, fun a => _⟩⟩ rw [comap_apply' κ hg a Set.univ] exact measure_le_bound κ _ _ #align probability_theory.kernel.is_finite_kernel.comap ProbabilityTheory.kernel.IsFiniteKernel.comap instance IsSFiniteKernel.comap (κ : kernel α β) [IsSFiniteKernel κ] (hg : Measurable g) : IsSFiniteKernel (comap κ g hg) := ⟨⟨fun n => comap (seq κ n) g hg, inferInstance, (sum_comap_seq κ hg).symm⟩⟩ #align probability_theory.kernel.is_s_finite_kernel.comap ProbabilityTheory.kernel.IsSFiniteKernel.comap end MapComap open ProbabilityTheory section FstSnd /-- Define a `kernel (γ × α) β` from a `kernel α β` by taking the comap of the projection. -/ def prodMkLeft (κ : kernel α β) (γ : Type _) [MeasurableSpace γ] : kernel (γ × α) β := comap κ Prod.snd measurable_snd #align probability_theory.kernel.prod_mk_left ProbabilityTheory.kernel.prodMkLeft variable {γ : Type _} {mγ : MeasurableSpace γ} {f : β → γ} {g : γ → α} include mγ theorem prodMkLeft_apply (κ : kernel α β) (ca : γ × α) : prodMkLeft κ γ ca = κ ca.snd := rfl #align probability_theory.kernel.prod_mk_left_apply ProbabilityTheory.kernel.prodMkLeft_apply theorem prodMkLeft_apply' (κ : kernel α β) (ca : γ × α) (s : Set β) : prodMkLeft κ γ ca s = κ ca.snd s := rfl #align probability_theory.kernel.prod_mk_left_apply' ProbabilityTheory.kernel.prodMkLeft_apply' theorem lintegral_prodMkLeft (κ : kernel α β) (ca : γ × α) (g : β → ℝ≥0∞) : (∫⁻ b, g b ∂prodMkLeft κ γ ca) = ∫⁻ b, g b ∂κ ca.snd := rfl #align probability_theory.kernel.lintegral_prod_mk_left ProbabilityTheory.kernel.lintegral_prodMkLeft instance IsMarkovKernel.prodMkLeft (κ : kernel α β) [IsMarkovKernel κ] : IsMarkovKernel (prodMkLeft κ γ) := by rw [prod_mk_left] infer_instance #align probability_theory.kernel.is_markov_kernel.prod_mk_left ProbabilityTheory.kernel.IsMarkovKernel.prodMkLeft instance IsFiniteKernel.prodMkLeft (κ : kernel α β) [IsFiniteKernel κ] : IsFiniteKernel (prodMkLeft κ γ) := by rw [prod_mk_left] infer_instance #align probability_theory.kernel.is_finite_kernel.prod_mk_left ProbabilityTheory.kernel.IsFiniteKernel.prodMkLeft instance IsSFiniteKernel.prodMkLeft (κ : kernel α β) [IsSFiniteKernel κ] : IsSFiniteKernel (prodMkLeft κ γ) := by rw [prod_mk_left] infer_instance #align probability_theory.kernel.is_s_finite_kernel.prod_mk_left ProbabilityTheory.kernel.IsSFiniteKernel.prodMkLeft /-- Define a `kernel (β × α) γ` from a `kernel (α × β) γ` by taking the comap of `prod.swap`. -/ def swapLeft (κ : kernel (α × β) γ) : kernel (β × α) γ := comap κ Prod.swap measurable_swap #align probability_theory.kernel.swap_left ProbabilityTheory.kernel.swapLeft theorem swapLeft_apply (κ : kernel (α × β) γ) (a : β × α) : swapLeft κ a = κ a.symm := rfl #align probability_theory.kernel.swap_left_apply ProbabilityTheory.kernel.swapLeft_apply theorem swapLeft_apply' (κ : kernel (α × β) γ) (a : β × α) (s : Set γ) : swapLeft κ a s = κ a.symm s := rfl #align probability_theory.kernel.swap_left_apply' ProbabilityTheory.kernel.swapLeft_apply' theorem lintegral_swapLeft (κ : kernel (α × β) γ) (a : β × α) (g : γ → ℝ≥0∞) : (∫⁻ c, g c ∂swapLeft κ a) = ∫⁻ c, g c ∂κ a.symm := by rw [swap_left, lintegral_comap _ measurable_swap a] #align probability_theory.kernel.lintegral_swap_left ProbabilityTheory.kernel.lintegral_swapLeft instance IsMarkovKernel.swapLeft (κ : kernel (α × β) γ) [IsMarkovKernel κ] : IsMarkovKernel (swapLeft κ) := by rw [swap_left] infer_instance #align probability_theory.kernel.is_markov_kernel.swap_left ProbabilityTheory.kernel.IsMarkovKernel.swapLeft instance IsFiniteKernel.swapLeft (κ : kernel (α × β) γ) [IsFiniteKernel κ] : IsFiniteKernel (swapLeft κ) := by rw [swap_left] infer_instance #align probability_theory.kernel.is_finite_kernel.swap_left ProbabilityTheory.kernel.IsFiniteKernel.swapLeft instance IsSFiniteKernel.swapLeft (κ : kernel (α × β) γ) [IsSFiniteKernel κ] : IsSFiniteKernel (swapLeft κ) := by rw [swap_left] infer_instance #align probability_theory.kernel.is_s_finite_kernel.swap_left ProbabilityTheory.kernel.IsSFiniteKernel.swapLeft /-- Define a `kernel α (γ × β)` from a `kernel α (β × γ)` by taking the map of `prod.swap`. -/ noncomputable def swapRight (κ : kernel α (β × γ)) : kernel α (γ × β) := map κ Prod.swap measurable_swap #align probability_theory.kernel.swap_right ProbabilityTheory.kernel.swapRight theorem swapRight_apply (κ : kernel α (β × γ)) (a : α) : swapRight κ a = (κ a).map Prod.swap := rfl #align probability_theory.kernel.swap_right_apply ProbabilityTheory.kernel.swapRight_apply theorem swapRight_apply' (κ : kernel α (β × γ)) (a : α) {s : Set (γ × β)} (hs : MeasurableSet s) : swapRight κ a s = κ a { p | p.symm ∈ s } := by rw [swap_right_apply, measure.map_apply measurable_swap hs] rfl #align probability_theory.kernel.swap_right_apply' ProbabilityTheory.kernel.swapRight_apply' theorem lintegral_swapRight (κ : kernel α (β × γ)) (a : α) {g : γ × β → ℝ≥0∞} (hg : Measurable g) : (∫⁻ c, g c ∂swapRight κ a) = ∫⁻ bc : β × γ, g bc.symm ∂κ a := by rw [swap_right, lintegral_map _ measurable_swap a hg] #align probability_theory.kernel.lintegral_swap_right ProbabilityTheory.kernel.lintegral_swapRight instance IsMarkovKernel.swapRight (κ : kernel α (β × γ)) [IsMarkovKernel κ] : IsMarkovKernel (swapRight κ) := by rw [swap_right] infer_instance #align probability_theory.kernel.is_markov_kernel.swap_right ProbabilityTheory.kernel.IsMarkovKernel.swapRight instance IsFiniteKernel.swapRight (κ : kernel α (β × γ)) [IsFiniteKernel κ] : IsFiniteKernel (swapRight κ) := by rw [swap_right] infer_instance #align probability_theory.kernel.is_finite_kernel.swap_right ProbabilityTheory.kernel.IsFiniteKernel.swapRight instance IsSFiniteKernel.swapRight (κ : kernel α (β × γ)) [IsSFiniteKernel κ] : IsSFiniteKernel (swapRight κ) := by rw [swap_right] infer_instance #align probability_theory.kernel.is_s_finite_kernel.swap_right ProbabilityTheory.kernel.IsSFiniteKernel.swapRight /-- Define a `kernel α β` from a `kernel α (β × γ)` by taking the map of the first projection. -/ noncomputable def fst (κ : kernel α (β × γ)) : kernel α β := map κ Prod.fst measurable_fst #align probability_theory.kernel.fst ProbabilityTheory.kernel.fst theorem fst_apply (κ : kernel α (β × γ)) (a : α) : fst κ a = (κ a).map Prod.fst := rfl #align probability_theory.kernel.fst_apply ProbabilityTheory.kernel.fst_apply theorem fst_apply' (κ : kernel α (β × γ)) (a : α) {s : Set β} (hs : MeasurableSet s) : fst κ a s = κ a { p | p.1 ∈ s } := by rw [fst_apply, measure.map_apply measurable_fst hs] rfl #align probability_theory.kernel.fst_apply' ProbabilityTheory.kernel.fst_apply' theorem lintegral_fst (κ : kernel α (β × γ)) (a : α) {g : β → ℝ≥0∞} (hg : Measurable g) : (∫⁻ c, g c ∂fst κ a) = ∫⁻ bc : β × γ, g bc.fst ∂κ a := by rw [fst, lintegral_map _ measurable_fst a hg] #align probability_theory.kernel.lintegral_fst ProbabilityTheory.kernel.lintegral_fst instance IsMarkovKernel.fst (κ : kernel α (β × γ)) [IsMarkovKernel κ] : IsMarkovKernel (fst κ) := by rw [fst] infer_instance #align probability_theory.kernel.is_markov_kernel.fst ProbabilityTheory.kernel.IsMarkovKernel.fst instance IsFiniteKernel.fst (κ : kernel α (β × γ)) [IsFiniteKernel κ] : IsFiniteKernel (fst κ) := by rw [fst] infer_instance #align probability_theory.kernel.is_finite_kernel.fst ProbabilityTheory.kernel.IsFiniteKernel.fst instance IsSFiniteKernel.fst (κ : kernel α (β × γ)) [IsSFiniteKernel κ] : IsSFiniteKernel (fst κ) := by rw [fst] infer_instance #align probability_theory.kernel.is_s_finite_kernel.fst ProbabilityTheory.kernel.IsSFiniteKernel.fst /-- Define a `kernel α γ` from a `kernel α (β × γ)` by taking the map of the second projection. -/ noncomputable def snd (κ : kernel α (β × γ)) : kernel α γ := map κ Prod.snd measurable_snd #align probability_theory.kernel.snd ProbabilityTheory.kernel.snd theorem snd_apply (κ : kernel α (β × γ)) (a : α) : snd κ a = (κ a).map Prod.snd := rfl #align probability_theory.kernel.snd_apply ProbabilityTheory.kernel.snd_apply theorem snd_apply' (κ : kernel α (β × γ)) (a : α) {s : Set γ} (hs : MeasurableSet s) : snd κ a s = κ a { p | p.2 ∈ s } := by rw [snd_apply, measure.map_apply measurable_snd hs] rfl #align probability_theory.kernel.snd_apply' ProbabilityTheory.kernel.snd_apply' theorem lintegral_snd (κ : kernel α (β × γ)) (a : α) {g : γ → ℝ≥0∞} (hg : Measurable g) : (∫⁻ c, g c ∂snd κ a) = ∫⁻ bc : β × γ, g bc.snd ∂κ a := by rw [snd, lintegral_map _ measurable_snd a hg] #align probability_theory.kernel.lintegral_snd ProbabilityTheory.kernel.lintegral_snd instance IsMarkovKernel.snd (κ : kernel α (β × γ)) [IsMarkovKernel κ] : IsMarkovKernel (snd κ) := by rw [snd] infer_instance #align probability_theory.kernel.is_markov_kernel.snd ProbabilityTheory.kernel.IsMarkovKernel.snd instance IsFiniteKernel.snd (κ : kernel α (β × γ)) [IsFiniteKernel κ] : IsFiniteKernel (snd κ) := by rw [snd] infer_instance #align probability_theory.kernel.is_finite_kernel.snd ProbabilityTheory.kernel.IsFiniteKernel.snd instance IsSFiniteKernel.snd (κ : kernel α (β × γ)) [IsSFiniteKernel κ] : IsSFiniteKernel (snd κ) := by rw [snd] infer_instance #align probability_theory.kernel.is_s_finite_kernel.snd ProbabilityTheory.kernel.IsSFiniteKernel.snd end FstSnd section Comp /-! ### Composition of two kernels -/ variable {γ : Type _} {mγ : MeasurableSpace γ} {f : β → γ} {g : γ → α} include mγ /-- Composition of two s-finite kernels. -/ noncomputable def comp (η : kernel β γ) [IsSFiniteKernel η] (κ : kernel α β) [IsSFiniteKernel κ] : kernel α γ := snd (κ ⊗ₖ prodMkLeft η α) #align probability_theory.kernel.comp ProbabilityTheory.kernel.comp -- mathport name: kernel.comp scoped[ProbabilityTheory] infixl:100 " ∘ₖ " => ProbabilityTheory.kernel.comp theorem comp_apply (η : kernel β γ) [IsSFiniteKernel η] (κ : kernel α β) [IsSFiniteKernel κ] (a : α) {s : Set γ} (hs : MeasurableSet s) : (η ∘ₖ κ) a s = ∫⁻ b, η b s ∂κ a := by rw [comp, snd_apply' _ _ hs, comp_prod_apply] swap; · exact measurable_snd hs simp only [Set.mem_setOf_eq, Set.setOf_mem_eq, prod_mk_left_apply' _ _ s] #align probability_theory.kernel.comp_apply ProbabilityTheory.kernel.comp_apply theorem lintegral_comp (η : kernel β γ) [IsSFiniteKernel η] (κ : kernel α β) [IsSFiniteKernel κ] (a : α) {g : γ → ℝ≥0∞} (hg : Measurable g) : (∫⁻ c, g c ∂(η ∘ₖ κ) a) = ∫⁻ b, ∫⁻ c, g c ∂η b ∂κ a := by rw [comp, lintegral_snd _ _ hg] change (∫⁻ bc, (fun a b => g b) bc.fst bc.snd ∂(κ ⊗ₖ prod_mk_left η α) a) = ∫⁻ b, ∫⁻ c, g c ∂η b ∂κ a exact lintegral_comp_prod _ _ _ (hg.comp measurable_snd) #align probability_theory.kernel.lintegral_comp ProbabilityTheory.kernel.lintegral_comp instance IsMarkovKernel.comp (η : kernel β γ) [IsMarkovKernel η] (κ : kernel α β) [IsMarkovKernel κ] : IsMarkovKernel (η ∘ₖ κ) := by rw [comp] infer_instance #align probability_theory.kernel.is_markov_kernel.comp ProbabilityTheory.kernel.IsMarkovKernel.comp instance IsFiniteKernel.comp (η : kernel β γ) [IsFiniteKernel η] (κ : kernel α β) [IsFiniteKernel κ] : IsFiniteKernel (η ∘ₖ κ) := by rw [comp] infer_instance #align probability_theory.kernel.is_finite_kernel.comp ProbabilityTheory.kernel.IsFiniteKernel.comp instance IsSFiniteKernel.comp (η : kernel β γ) [IsSFiniteKernel η] (κ : kernel α β) [IsSFiniteKernel κ] : IsSFiniteKernel (η ∘ₖ κ) := by rw [comp] infer_instance #align probability_theory.kernel.is_s_finite_kernel.comp ProbabilityTheory.kernel.IsSFiniteKernel.comp /-- Composition of kernels is associative. -/ theorem comp_assoc {δ : Type _} {mδ : MeasurableSpace δ} (ξ : kernel γ δ) [IsSFiniteKernel ξ] (η : kernel β γ) [IsSFiniteKernel η] (κ : kernel α β) [IsSFiniteKernel κ] : ξ ∘ₖ η ∘ₖ κ = ξ ∘ₖ (η ∘ₖ κ) := by refine' ext_fun fun a f hf => _ simp_rw [lintegral_comp _ _ _ hf, lintegral_comp _ _ _ (measurable_lintegral' ξ hf)] #align probability_theory.kernel.comp_assoc ProbabilityTheory.kernel.comp_assoc theorem deterministic_comp_eq_map (hf : Measurable f) (κ : kernel α β) [IsSFiniteKernel κ] : deterministic hf ∘ₖ κ = map κ f hf := by ext (a s hs) : 2 simp_rw [map_apply' _ _ _ hs, comp_apply _ _ _ hs, deterministic_apply' hf _ hs, lintegral_indicator_const_comp hf hs, one_mul] #align probability_theory.kernel.deterministic_comp_eq_map ProbabilityTheory.kernel.deterministic_comp_eq_map theorem comp_deterministic_eq_comap (κ : kernel α β) [IsSFiniteKernel κ] (hg : Measurable g) : κ ∘ₖ deterministic hg = comap κ g hg := by ext (a s hs) : 2 simp_rw [comap_apply' _ _ _ s, comp_apply _ _ _ hs, deterministic_apply hg a, lintegral_dirac' _ (kernel.measurable_coe κ hs)] #align probability_theory.kernel.comp_deterministic_eq_comap ProbabilityTheory.kernel.comp_deterministic_eq_comap end Comp section Prod /-! ### Product of two kernels -/ variable {γ : Type _} {mγ : MeasurableSpace γ} include mγ /-- Product of two s-finite kernels. -/ noncomputable def prod (κ : kernel α β) [IsSFiniteKernel κ] (η : kernel α γ) [IsSFiniteKernel η] : kernel α (β × γ) := κ ⊗ₖ swapLeft (prodMkLeft η β) #align probability_theory.kernel.prod ProbabilityTheory.kernel.prod theorem prod_apply (κ : kernel α β) [IsSFiniteKernel κ] (η : kernel α γ) [IsSFiniteKernel η] (a : α) {s : Set (β × γ)} (hs : MeasurableSet s) : (prod κ η) a s = ∫⁻ b : β, (η a) { c : γ | (b, c) ∈ s } ∂κ a := by simp_rw [Prod, comp_prod_apply _ _ _ hs, swap_left_apply _ _, prod_mk_left_apply, Prod.swap_prod_mk] #align probability_theory.kernel.prod_apply ProbabilityTheory.kernel.prod_apply theorem lintegral_prod (κ : kernel α β) [IsSFiniteKernel κ] (η : kernel α γ) [IsSFiniteKernel η] (a : α) {g : β × γ → ℝ≥0∞} (hg : Measurable g) : (∫⁻ c, g c ∂(prod κ η) a) = ∫⁻ b, ∫⁻ c, g (b, c) ∂η a ∂κ a := by simp_rw [Prod, lintegral_comp_prod _ _ _ hg, swap_left_apply, prod_mk_left_apply, Prod.swap_prod_mk] #align probability_theory.kernel.lintegral_prod ProbabilityTheory.kernel.lintegral_prod instance IsMarkovKernel.prod (κ : kernel α β) [IsMarkovKernel κ] (η : kernel α γ) [IsMarkovKernel η] : IsMarkovKernel (prod κ η) := by rw [Prod] infer_instance #align probability_theory.kernel.is_markov_kernel.prod ProbabilityTheory.kernel.IsMarkovKernel.prod instance IsFiniteKernel.prod (κ : kernel α β) [IsFiniteKernel κ] (η : kernel α γ) [IsFiniteKernel η] : IsFiniteKernel (prod κ η) := by rw [Prod] infer_instance #align probability_theory.kernel.is_finite_kernel.prod ProbabilityTheory.kernel.IsFiniteKernel.prod instance IsSFiniteKernel.prod (κ : kernel α β) [IsSFiniteKernel κ] (η : kernel α γ) [IsSFiniteKernel η] : IsSFiniteKernel (prod κ η) := by rw [Prod] infer_instance #align probability_theory.kernel.is_s_finite_kernel.prod ProbabilityTheory.kernel.IsSFiniteKernel.prod end Prod end Kernel end ProbabilityTheory
#ifndef H_GPM_STRIPPED_DOWN #define H_GPM_STRIPPED_DOWN #include <gsl/gsl_vector.h> #include <gsl/gsl_histogram.h> #include "../csm_all.h" void ght_find_theta_range(LDP laser_ref, LDP laser_sens, const double*x0, double max_linear_correction, double max_angular_correction_deg, int interval, gsl_histogram*hist, int*num_correspondences); void ght_one_shot(LDP laser_ref, LDP laser_sens, const double*x0, double max_linear_correction, double max_angular_correction_deg, int interval, double*x, int*num_correspondences) ; #endif
module Control.Monad.Reader import Control.Monad.Identity import Control.Monad.Trans ||| A computation which runs in a static context and produces an output public export interface Monad m => MonadReader stateType (m : Type -> Type) | m where ||| Get the context ask : m stateType ||| `local f c` runs the computation `c` in an environment modified by `f`. local : MonadReader stateType m => (stateType -> stateType) -> m a -> m a ||| The transformer on which the Reader monad is based public export record ReaderT (stateType : Type) (m : Type -> Type) (a : Type) where constructor MkReaderT runReaderT' : stateType -> m a public export implementation Functor f => Functor (ReaderT stateType f) where map f (MkReaderT g) = MkReaderT (\st => map f (g st)) public export implementation Applicative f => Applicative (ReaderT stateType f) where pure x = MkReaderT (\st => pure x) (MkReaderT f) <*> (MkReaderT a) = MkReaderT (\st => let f' = f st in let a' = a st in f' <*> a') public export implementation Monad m => Monad (ReaderT stateType m) where (MkReaderT f) >>= k = MkReaderT (\st => do v <- f st let MkReaderT kv = k v kv st) public export implementation MonadTrans (ReaderT stateType) where lift x = MkReaderT (\_ => x) public export implementation Monad m => MonadReader stateType (ReaderT stateType m) where ask = MkReaderT (\st => pure st) local f (MkReaderT action) = MkReaderT (action . f) public export implementation HasIO m => HasIO (ReaderT stateType m) where liftIO f = MkReaderT (\_ => liftIO f) public export implementation (Monad f, Alternative f) => Alternative (ReaderT stateType f) where empty = lift empty (MkReaderT f) <|> (MkReaderT g) = MkReaderT (\st => f st <|> g st) ||| Evaluate a function in the context held by this computation public export asks : MonadReader stateType m => (stateType -> a) -> m a asks f = ask >>= pure . f ||| Unwrap and apply a ReaderT monad computation public export %inline runReaderT : stateType -> ReaderT stateType m a -> m a runReaderT s action = runReaderT' action s ||| The Reader monad. The ReaderT transformer applied to the Identity monad. public export Reader : (stateType : Type) -> (a : Type) -> Type Reader s a = ReaderT s Identity a ||| Unwrap and apply a Reader monad computation public export runReader : stateType -> Reader stateType a -> a runReader s = runIdentity . runReaderT s
%The spherical K-means algorithm %(C) 2007-2011 Nguyen Xuan Vinh %Contact: vinh.nguyenx at gmail.com or vinh.nguyen at monash.edu %Reference: % [1] Xuan Vinh Nguyen: Gene Clustering on the Unit Hypersphere with the % Spherical K-Means Algorithm: Coping with Extremely Large Number of Local Optima. BIOCOMP 2008: 226-233 %Usage: Normalize the data set to have mean zero and unit norm function b=normalize_norm_mean(a) [n dim]=size(a); for i=1:n a(i,:)=(a(i,:)-mean(a(i,:)))/norm(a(i,:)-mean(a(i,:)),2); end b=a;
<!-- dom:TITLE: PHY321: Classical Mechanics 1 --> # PHY321: Classical Mechanics 1 <!-- dom:AUTHOR: Solution Homework 8, due Monday March 29 --> <!-- Author: --> **Solution Homework 8, due Monday March 29** Date: **Mar 30, 2021** ### Introduction to homework 8 This week's sets of classical pen and paper and computational exercises are tailored to the topic of two-body problems and central forces. It follows what was discussed during the lectures during week 12 (March 15-19) and week 12 (March 22-26). The relevant reading background is 1. Sections 8.1-8.7 of Taylor. 2. Lecture notes on two-body problems, central forces and gravity. ### Exercise 1 (10pt), Conservation of Energy The equations of motion in the center-of-mass frame in two dimensions with $x=r\cos{(\phi)}$ and $y=r\sin{(\phi)}$ and $r\in [0,\infty)$, $\phi\in [0,2\pi]$ and $r=\sqrt{x^2+y^2}$ are given by $$ \mu \ddot{r}=-\frac{dV(r)}{dr}+\mu r\dot{\phi}^2, $$ and $$ \dot{\phi}=\frac{L}{\mu r^2}. $$ Here $V(r)$ is any central force which depends only on the relative coordinate. * 1a (5pt) Show that you can rewrite the radial equation in terms of an effective potential $V_{\mathrm{eff}}(r)=V(r)+L^2/(2\mu r^2)$. Here we use that $$ \dot{\phi}=\frac{L}{\mu r^2}. $$ and rewrite the above equation of motion as $$ \mu \ddot{r}=-\frac{dV(r)}{dr}+\frac{L^2}{\mu r^3}. $$ If we now define an effective potential $$ V_{\mathrm{eff}}=V(r)+\frac{L^2}{2\mu r^2}, $$ we can rewrite our equation of motion in terms of $$ \mu \ddot{r}=-\frac{dV_{\mathrm{eff}}(r)}{dr}=-\frac{dV(r)}{dr}+\frac{L^2}{\mu r^3}. $$ The addition due to the angular momentum comes from the kinetic energy when we rewrote it in terms of polar coordinates. It introduces a so-called centrifugal barrier due to the angular momentum. This centrifugal barrier pushes the object farther away from the origin. Alternatively, <!-- Equation labels as ordinary links --> <div id="_auto1"></div> $$ \begin{equation} -\frac{dV_{\text{eff}}(r)}{dr} = \mu \ddot{r} =-\frac{dV(r)}{dr}+\mu\dot{\phi}^2r \label{_auto1} \tag{1} \end{equation} $$ <!-- Equation labels as ordinary links --> <div id="_auto2"></div> $$ \begin{equation} -\frac{dV_{\text{eff}}(r)}{dr} = -\frac{dV(r)}{dr}+\mu\left( \frac{L}{\mu r^2}\right) ^2r \label{_auto2} \tag{2} \end{equation} $$ <!-- Equation labels as ordinary links --> <div id="_auto3"></div> $$ \begin{equation} = -\frac{dV(r)}{dr}+\mu\frac{L^2}{\mu}r^{-3} \label{_auto3} \tag{3} \end{equation} $$ <!-- Equation labels as ordinary links --> <div id="_auto4"></div> $$ \begin{equation} = -\frac{d\left( V(r)+\frac{1}{2} \frac{L^2}{\mu r^2}\right) }{dr}. \label{_auto4} \tag{4} \end{equation} $$ Integrating we obtain <!-- Equation labels as ordinary links --> <div id="_auto5"></div> $$ \begin{equation} V_{\text{eff}}(r) = V(r) + \frac{L^2}{2\mu r^2} + C \label{_auto5} \tag{5} \end{equation} $$ Imposing the extra condition that $V_{\text{eff}}(r\rightarrow \infty) = V(r\rightarrow \infty)$, <!-- Equation labels as ordinary links --> <div id="_auto6"></div> $$ \begin{equation} V_{\text{eff}}(r) = V(r) + \frac{L^2}{2\mu r^2} \label{_auto6} \tag{6} \end{equation} $$ * 1b (5pt) Write out the final differential equation for the radial degrees of freedom when we specify that $V(r)=-\alpha/r$. Plot the effective potential. You can choose values for $\alpha$ and $L$ and discuss (see Taylor section 8.4 and example 8.2) the physics of the system for two energies, one larger than zero and one smaller than zero. This is similar to what you did in the first midterm, except that the potential is different. We insert now the explicit potential form $V(r)=-\alpha/r$. This gives us the following equation of motion $$ \mu \ddot{r}=-\frac{dV_{\mathrm{eff}}(r)}{dr}=-\frac{d(-\alpha/r)}{dr}+\frac{L^2}{\mu r^3}=-\frac{\alpha}{r^2}+\frac{L^2}{\mu r^3}. $$ The following code plots this effective potential for a simple choice of parameters, with a standard gravitational potential $-\alpha/r$. Here we have chosen $L=m=\alpha=1$. ```python %matplotlib inline # Common imports import numpy as np from math import * import matplotlib.pyplot as plt Deltax = 0.01 #set up arrays xinitial = 0.3 xfinal = 5.0 alpha = 0.2 # spring constant m = 1.0 # mass, you can change these AngMom = 1.0 # The angular momentum n = ceil((xfinal-xinitial)/Deltax) x = np.zeros(n) for i in range(n): x[i] = xinitial+i*Deltax V = np.zeros(n) V = -alpha/x**2+0.5*AngMom*AngMom/(m*x*x) # Plot potential fig, ax = plt.subplots() ax.set_xlabel('r[m]') ax.set_ylabel('V[J]') ax.plot(x, V) fig.tight_layout() plt.show() ``` If we select a potential energy below zero (and not necessarily one which corresponds to the minimum point), the object will oscillate between two values of $r$, a value $r_{\mathrm{min}}$ and a value $r_{\mathrm{max}}$. We can assume that for example the kinetic energy is zero at these two points. The object will thus oscillate back and forth between these two points. As we will see in connection with the solution of the equations of motion, this case corresponds to elliptical orbits. If we select $r$ equal to the minimum of the potential and use initial conditions for the velocity that correspond to circular motion, the object will have a constant value of $r$ given by the value at the minimum and the orbit is a circle. If we select a potential energy larger than zero, then, since the kinetic energy is always larger or equal to zero, the object will move away from the origin. See also the discussion in Taylor, sections 8.4-8.6. ### Exercise 2 (40pt), Harmonic oscillator again Consider a particle of mass $m$ in a $2$-dimensional harmonic oscillator with potential $$ V(r)=\frac{1}{2}kr^2=\frac{1}{2}k(x^2+y^2). $$ We assume the orbit has a final non-zero angular momentum $L$. The effective potential looks like that of a harmonic oscillator for large $r$, but for small $r$, the centrifugal potential repels the particle from the origin. The combination of the two potentials has a minimum for at some radius $r_{\rm min}$. * 2a (10pt) Set up the effective potential and plot it. Find $r_{\rm min}$ and $\dot{\phi}$. Show that the latter is given by $\dot{\phi}=\sqrt{k/m}$. At $r_{\rm min}$ the particle does not accelerate and $r$ stays constant and the motion is circular. With fixed $k$ and $m$, which parameter can we adjust to change the value of $r$ at $r_{\rm min}$? We consider the effective potential. The radius of a circular orbit is at the minimum of the potential (where the effective force is zero). The potential is plotted here with the parameters $k=m=1.0$ and $L=1.0$. ```python # Common imports import numpy as np from math import * import matplotlib.pyplot as plt Deltax = 0.01 #set up arrays xinitial = 0.5 xfinal = 3.0 k = 1.0 # spring constant m = 1.0 # mass, you can change these AngMom = 1.0 # The angular momentum n = ceil((xfinal-xinitial)/Deltax) x = np.zeros(n) for i in range(n): x[i] = xinitial+i*Deltax V = np.zeros(n) V = 0.5*k*x*x+0.5*AngMom*AngMom/(m*x*x) # Plot potential fig, ax = plt.subplots() ax.set_xlabel('r[m]') ax.set_ylabel('V[J]') ax.plot(x, V) fig.tight_layout() plt.show() ``` We have an effective potential $$ \begin{eqnarray*} V_{\rm eff}&=&\frac{1}{2}kr^2+\frac{L^2}{2mr^2} \end{eqnarray*} $$ The effective potential looks like that of a harmonic oscillator for large $r$, but for small $r$, the centrifugal potential repels the particle from the origin. The combination of the two potentials has a minimum for at some radius $r_{\rm min}$. $$ \begin{eqnarray*} 0&=&kr_{\rm min}-\frac{L^2}{mr_{\rm min}^3},\\ r_{\rm min}&=&\left(\frac{L^2}{mk}\right)^{1/4},\\ \dot{\theta}&=&\frac{L}{mr_{\rm min}^2}=\sqrt{k/m}. \end{eqnarray*} $$ For particles at $r_{\rm min}$ with $\dot{r}=0$, the particle does not accelerate and $r$ stays constant, i.e. a circular orbit. The radius of the circular orbit can be adjusted by changing the angular momentum $L$. For the above parameters this minimum is at $r_{\rm min}=1$. * 2b (10pt) Now consider small vibrations about $r_{\rm min}$. The effective spring constant is the curvature of the effective potential. Use the curvature at $r_{\rm min}$ to find the effective spring constant (hint, look at exercise 4 in homework 6) $k_{\mathrm{eff}}$. Show also that $\omega=\sqrt{k_{\mathrm{eff}}/m}=2\dot{\phi}$ $$ \begin{eqnarray*} k_{\rm eff}&=&\left.\frac{d^2}{dr^2}V_{\rm eff}(r)\right|_{r=r_{\rm min}}=k+\frac{3L^2}{mr_{\rm min}^4}\\ &=&4k,\\ \omega&=&\sqrt{k_{\rm eff}/m}=2\sqrt{k/m}=2\dot{\theta}. \end{eqnarray*} $$ Because the radius oscillates with twice the angular frequency, the orbit has two places where $r$ reaches a minimum in one cycle. This differs from the inverse-square force where there is one minimum in an orbit. One can show that the orbit for the harmonic oscillator is also elliptical, but in this case the center of the potential is at the center of the ellipse, not at one of the foci. * 2c (10pt) The solution to the equations of motion in Cartesian coordinates is simple. The $x$ and $y$ equations of motion separate, and we have $\ddot{x}=-kx/m$ and $\ddot{y}=-ky/m$. The harmonic oscillator is indeed a system where the degrees of freedom separate and we can find analytical solutions. Define a natural frequency $\omega_0=\sqrt{k/m}$ and show that (where $A$, $B$, $C$ and $D$ are arbitrary constants defined by the initial conditions) $$ \begin{eqnarray*} x&=&A\cos\omega_0 t+B\sin\omega_0 t,\\ y&=&C\cos\omega_0 t+D\sin\omega_0 t. \end{eqnarray*} $$ The solution is also simple to write down exactly in Cartesian coordinates. The $x$ and $y$ equations of motion separate, $$ \begin{eqnarray*} \ddot{x}&=&-kx,\\ \ddot{y}&=&-ky. \end{eqnarray*} $$ We know from our studies of the harmonic oscillator that the general solution can be expressed as $$ \begin{eqnarray*} x&=&A\cos\omega_0 t+B\sin\omega_0 t,\\ y&=&C\cos\omega_0 t+D\sin\omega_0 t. \end{eqnarray*} $$ * 2d (10pt) With the solutions for $x$ and $y$, and $r^2=x^2+y^2$ and the definitions $\alpha=\frac{A^2+B^2+C^2+D^2}{2}$, $\beta=\frac{A^2-B^2+C^2-D^2}{2}$ and $\gamma=AB+CD$, show that $$ r^2=\alpha+(\beta^2+\gamma^2)^{1/2}\cos(2\omega_0 t-\delta), $$ with $$ \delta=\arctan(\gamma/\beta). $$ We start with $r^2 & = x^2+y^2$ and square the above analytical solutions and after some **exciting algebraic manipulations** we arrive at <!-- Equation labels as ordinary links --> <div id="_auto7"></div> $$ \begin{equation} r^2 = x^2+y^2 \label{_auto7} \tag{7} \end{equation} $$ <!-- Equation labels as ordinary links --> <div id="_auto8"></div> $$ \begin{equation} = \left( A\cos\omega_0 t+B\sin\omega_0 t\right) ^2 + \left( C\cos\omega_0 t+D\sin\omega_0 t\right) ^2 \label{_auto8} \tag{8} \end{equation} $$ <!-- Equation labels as ordinary links --> <div id="_auto9"></div> $$ \begin{equation} = A^2\cos^2\omega_0 t+B^2\sin^2\omega_0 t + 2AB\sin\omega_0 t \cos\omega_0 t + C^2\cos^2\omega_0 t+D^2\sin^2\omega_0 t + 2CD\sin\omega_0 t \cos\omega_0 t \label{_auto9} \tag{9} \end{equation} $$ <!-- Equation labels as ordinary links --> <div id="_auto10"></div> $$ \begin{equation} = (A^2+C^2)\cos^2\omega_0 t + (B^2+D^2)\sin^2\omega_0 t + 2(AC + BD)\sin\omega_0 t \cos\omega_0 t \label{_auto10} \tag{10} \end{equation} $$ <!-- Equation labels as ordinary links --> <div id="_auto11"></div> $$ \begin{equation} = (B^2+D^2) + (A^2+C^2-B^2-D^2)\cos^2\omega_0 t + 2(AC + BD)2\sin2\omega_0 t \label{_auto11} \tag{11} \end{equation} $$ <!-- Equation labels as ordinary links --> <div id="_auto12"></div> $$ \begin{equation} = (B^2+D^2) + (A^2+C^2-B^2-D^2)\frac{1+\cos{2\omega_0 t}}{2} + 2(AC + BD)\frac{1}{2}\sin2\omega_0 t \label{_auto12} \tag{12} \end{equation} $$ <!-- Equation labels as ordinary links --> <div id="_auto13"></div> $$ \begin{equation} = \frac{2B^2+2D^2+A^2+C^2-B^2-D^2}{2} + (A^2+C^2-B^2-D^2)\frac{\cos{2\omega_0 t}}{2} + (AC + BD)\sin2\omega_0 t \label{_auto13} \tag{13} \end{equation} $$ <!-- Equation labels as ordinary links --> <div id="_auto14"></div> $$ \begin{equation} = \frac{B^2+D^2+A^2+C^2}{2} + \frac{A^2+C^2-B^2-D^2}{2}\cos{2\omega_0 t} + (AC + BD)\sin2\omega_0 t \label{_auto14} \tag{14} \end{equation} $$ <!-- Equation labels as ordinary links --> <div id="_auto15"></div> $$ \begin{equation} = \alpha + \beta\cos{2\omega_0 t} + \gamma\sin2\omega_0 t \label{_auto15} \tag{15} \end{equation} $$ <!-- Equation labels as ordinary links --> <div id="_auto16"></div> $$ \begin{equation} = \alpha + \sqrt{\beta^2+\gamma^2}\left( \frac{\beta}{\sqrt{\beta^2+\gamma^2}}\cos{2\omega_0 t} + \frac{\gamma}{\sqrt{\beta^2+\gamma^2}}\sin2\omega_0 t\right) \label{_auto16} \tag{16} \end{equation} $$ <!-- Equation labels as ordinary links --> <div id="_auto17"></div> $$ \begin{equation} = \alpha + \sqrt{\beta^2+\gamma^2}\left( \cos{\delta}\cos{2\omega_0 t} + \sin{\delta}\sin2\omega_0 t\right) \label{_auto17} \tag{17} \end{equation} $$ <!-- Equation labels as ordinary links --> <div id="_auto18"></div> $$ \begin{equation} = \alpha + \sqrt{\beta^2+\gamma^2}\cos{\left( 2\omega_0 t - \delta\right) }, \label{_auto18} \tag{18} \end{equation} $$ which is what we wanted to show. ### Exercise 3 (40pt), Numerical Solution of the Harmonic Oscillator Using the code we developed in homeworks 5 and/or 6 for the Earth-Sun system, we can solve the above harmonic oscillator problem in two dimensions using our code from this homework. We need however to change the acceleration from the gravitational force to the one given by the harmonic oscillator potential. * 3a (20pt) Use for example the code in the exercise set to set up the acceleration and use the initial conditions fixed by for example $r_{\rm min}$ from exercise 2. Which value should the initial velocity take if you place yourself at $r_{\rm min}$ and you require a circular motion? Hint: see the first midterm, part 2. There you used the centripetal acceleration. Instead of solving the equations in the cartesian frame we will now rewrite the above code in terms of the radial degrees of freedom only. Our differential equation is now $$ \mu \ddot{r}=-\frac{dV(r)}{dr}+\mu\dot{\phi}^2, $$ and $$ \dot{\phi}=\frac{L}{\mu r^2}. $$ * 3b (20pt) We will use $r_{\rm min}$ to fix a value of $L$, as seen in exercise 2. This fixes also $\dot{\phi}$. Write a code which now implements the radial equation for $r$ using the same $r_{\rm min}$ as you did in 3a. Compare the results with those from 3a with the same initial conditions. Do they agree? Use only one set of initial conditions. The code here finds the solution for $x$ and $y$ using the code we developed in homework 5 and 6 and the midterm. Note that this code is tailored to run in Cartesian coordinates. There is thus no angular momentum dependent term. Here we have chosen initial conditions that correspond to the minimum of the effective potential $r_{\mathrm{min}}$. We have chosen $x_0=r_{\mathrm{min}}$ and $y_0=0$. Similarly, we use the centripetal acceleration to determine the initial velocity so that we have a circular motion (see back to the last question of the midterm). This means that we set the centripetal acceleration $v^2/r$ equal to the force from the harmonic oscillator $-k\boldsymbol{r}$. Taking the magnitude of $\boldsymbol{r}$ we have then $v^2/r=k/mr$, which gives $v=\pm\omega_0r$. Since the code here solves the equations of motion in cartesian coordinates and the harmonic oscillator potential leads to forces in the $x$- and $y$-directions that are decoupled, we have to select the initial velocities and positions so that we don't get that for example $y(t)=0$. We set $x_0$ to be different from zero and $v_{y0}$ to be different from zero. ```python # Common imports import numpy as np import pandas as pd from math import * import matplotlib.pyplot as plt import os # Where to save the figures and data files PROJECT_ROOT_DIR = "Results" FIGURE_ID = "Results/FigureFiles" DATA_ID = "DataFiles/" if not os.path.exists(PROJECT_ROOT_DIR): os.mkdir(PROJECT_ROOT_DIR) if not os.path.exists(FIGURE_ID): os.makedirs(FIGURE_ID) if not os.path.exists(DATA_ID): os.makedirs(DATA_ID) def image_path(fig_id): return os.path.join(FIGURE_ID, fig_id) def data_path(dat_id): return os.path.join(DATA_ID, dat_id) def save_fig(fig_id): plt.savefig(image_path(fig_id) + ".png", format='png') DeltaT = 0.001 #set up arrays tfinal = 10.0 n = ceil(tfinal/DeltaT) # set up arrays t = np.zeros(n) v = np.zeros((n,2)) r = np.zeros((n,2)) radius = np.zeros(n) # Constants of the model k = 1.0 # spring constant m = 1.0 # mass, you can change these omega02 = k/m # Frequency AngMom = 1.0 # The angular momentum # Potential minimum rmin = (AngMom*AngMom/k/m)**0.25 # Initial conditions as compact 2-dimensional arrays, x0=rmin and y0 = 0 # r^2 = x^2+y^2. r0 = rmin = sqrt(x0^2+y0^2) x0 = rmin; y0= 0.0 r0 = np.array([x0,y0]) vy0 = sqrt(omega02)*rmin; vx0 = 0.0 v0 = np.array([vx0,vy0]) r[0] = r0 v[0] = v0 # Start integrating using the Velocity-Verlet method for i in range(n-1): # Set up the acceleration a = -r[i]*omega02 # update velocity, time and position using the Velocity-Verlet method r[i+1] = r[i] + DeltaT*v[i]+0.5*(DeltaT**2)*a anew = -r[i+1]*omega02 v[i+1] = v[i] + 0.5*DeltaT*(a+anew) t[i+1] = t[i] + DeltaT # Plot position as function of time radius = np.sqrt(r[:,0]**2+r[:,1]**2) fig, ax = plt.subplots(3,1) ax[0].set_xlabel('time') ax[0].set_ylabel('radius squared') ax[0].plot(t,r[:,0]**2+r[:,1]**2) ax[1].set_xlabel('time') ax[1].set_ylabel('x position') ax[1].plot(t,r[:,0]) ax[2].set_xlabel('time') ax[2].set_ylabel('y position') ax[2].plot(r[:,0],r[:,1]) fig.tight_layout() save_fig("2DimHOVV") plt.show() ``` We see that the radius (to within a given error), we obtain a constant radius. The following code shows first how we can solve this problem using the radial degrees of freedom only. Here we need to add the explicit centrifugal barrier. Note that the variable $r$ depends only on time. There is no $x$ and $y$ directions since we have transformed the equations to polar coordinates. ```python DeltaT = 0.00001 #set up arrays tfinal = 5.0 n = ceil(tfinal/DeltaT) # set up arrays for t, v and r t = np.zeros(n) v = np.zeros(n) r = np.zeros(n) E = np.zeros(n) # Constants of the model AngMom = 1.0 # The angular momentum m = 1.0 k = 1.0 omega02 = k/m alpha = 5 c1 = AngMom*AngMom/(m*m) c2 = AngMom*AngMom/m rmin = 1.0# (AngMom*AngMom/k/m)**0.25 # Initial conditions r0 = rmin v0 = 0.0 r[0] = r0 v[0] = v0 E[0] = 0.5*m*v0*v0-0.5*alpha/(r0**2)+0.5*c2/(r0*r0) # Start integrating using the Velocity-Verlet method for i in range(n-1): # Set up acceleration a = -alpha/(r[i]**3)+c1/(r[i]**3) # update velocity, time and position using the Velocity-Verlet method r[i+1] = r[i] + DeltaT*v[i]+0.5*(DeltaT**2)*a anew = -alpha/(r[i+1]**3)+c1/(r[i+1]**3) v[i+1] = v[i] + 0.5*DeltaT*(a+anew) t[i+1] = t[i] + DeltaT E[i+1] = 0.5*m*v[i+1]*v[i+1]-0.5*alpha/(r[i+1]**2)+0.5*c2/(r[i+1]*r[i+1]) # Plot position as function of time #fig, ax = plt.subplots(2,1) #ax[0].set_xlabel('time') #ax[0].set_ylabel('radius') #ax[0].plot(t,r) #plt.set_xlabel('time') #plt.set_ylabel('Energy') plt.plot(t,E) save_fig("RadialHOVV") plt.show() ``` ### Exercise 4, equations for an ellipse (10pt) Consider an ellipse defined by the sum of the distances from the two foci being $2D$, which expressed in a Cartesian coordinates with the middle of the ellipse being at the origin becomes $$ \sqrt{(x-a)^2+y^2}+\sqrt{(x+a)^2+y^2}=2D. $$ Here the two foci are at $(a,0)$ and $(-a,0)$. Show that this form is can be written as $$ \frac{x^2}{D^2}+\frac{y^2}{D^2-a^2}=1. $$ We start by squaring the two sides and, again, after some **exciting algebraic manipulations** we arrive at $$ \sqrt{(x-a)^2+y^2}+\sqrt{(x+a)^2+y^2} =2D \\ (x-a)^2 + y^2 + (x+a)^2 + y^2 + 2\sqrt{(x-a)^2 + y^2}\sqrt{(x+a)^2+y^2} = 4D^2 \\ 2y^2 + 2x^2 + 2a^2 + 2\sqrt{(x-a)^2(x+a)^2 + y^4 + y^2[(x-a)^2+(x+a)^2]} = 4D^2 \\ y^2 + x^2 + a^2 + \sqrt{(x^2-a^2)^2 + y^4 + y^2(2x^2+2a^2)} = 2D^2 \\ \sqrt{(x^2-a^2)^2 + y^4 + y^2(2x^2+2a^2)} = 2D^2 -( y^2 + x^2 + a^2 ) \\ (x^2-a^2)^2 + y^4 + y^2(2x^2+2a^2) = 4D^4 + y^4 + x^4 + a^4 - 4D^2( y^2 + x^2 + a^2 ) + 2(y^2x^2+y^2a^2+x^2a^2) \\ x^4-2x^2a^2+a^4 + y^4 + 2y^2x^2+2y^2a^2 = 4D^4 + y^4 + x^4 + a^4 - 4D^2y^2 -4D^2 x^2 -4D^2 a^2 + 2y^2x^2+2y^2a^2+2x^2a^2 \\ 4D^4 - 4D^2y^2 -4D^2 x^2 -4D^2 a^2 +4x^2a^2 = 0 \\ D^4 - D^2y^2 -D^2 x^2 -D^2 a^2 +x^2a^2 = 0 \\ D^2(D^2-a^2) - x^2(D^2-a^2) = D^2y^2 \\ D^2 - x^2 = \frac{D^2y^2}{D^2-a^2} \\ 1 - \frac{x^2}{D^2} = \frac{y^2}{D^2-a^2} \\ \frac{x^2}{D^2} + \frac{y^2}{D^2-a^2} = 1, $$ where the last line is indeed the equation for an ellipse.
[STATEMENT] lemma totalize_Constrains_iff [simp]: "(totalize F \<in> A Co B) = (F \<in> A Co B)" [PROOF STATE] proof (prove) goal (1 subgoal): 1. (totalize F \<in> A Co B) = (F \<in> A Co B) [PROOF STEP] by (simp add: Constrains_def)
! { dg-do run } program foo real, parameter :: x(3) = 2.0 * [real :: 1, 2, 3 ] if (any(x /= [2., 4., 6.])) STOP 1 end program foo
Formal statement is: lemma numeral_power_int_eq_of_real_cancel_iff [simp]: "power_int (numeral x) n = (of_real y :: 'a :: {real_div_algebra, division_ring}) \<longleftrightarrow> power_int (numeral x) n = y" Informal statement is: If $x$ is a numeral and $y$ is a real number, then $x^n = y$ if and only if $x^n = y$.
#include <stdlib.h> #include <stdio.h> //#define VERY_VERBOSE #define MSG(x) { printf(x); fflush(stdout); } #define MSGF(x) { printf x ; fflush(stdout); } #include "buffer.h" static void test_buffer() { } #include "array.h" static void test_array() { int k; const int * p; const int * q; OLIO_ARRAY_STACK(st, int, 64); olio_array * hp; OLIO_ARRAY_ALLOC(hp, int, 0); printf("[testing array...]\n"); fflush(stdout); MSGF(("st %u\n", st->base.allocated)); MSGF(("hp %u\n", hp->base.allocated)); #define ARRAY_COUNT 1000 MSG("appending to arrays...\n"); for (k = 0; k < ARRAY_COUNT; k++) { olio_array_append(st, &k, 1); olio_array_append(hp, &k, 1); } MSG("prepending to arrays...\n"); for (k = 0; k < ARRAY_COUNT; k++) { olio_array_prepend(st, &k, 1); olio_array_prepend(hp, &k, 1); } MSG("inserting to arrays...\n"); for (k = 0; k <= ARRAY_COUNT * 2; k++) { olio_array_insert(st, k * 2, &k, 1); olio_array_insert(hp, k * 2, &k, 1); } MSG("checking array contents...\n"); p = olio_array_contents(st); q = olio_array_contents(hp); for (k = 0; k < ARRAY_COUNT; k++) { if (p[k * 2 + 1] != ARRAY_COUNT - 1 - k || p[k * 2 + 1 + ARRAY_COUNT * 2] != k) MSG("ERROR: odd numbered stack item not as expected\n"); if (p[k * 2] != k || p[k * 2 + ARRAY_COUNT * 2] != k + ARRAY_COUNT) MSG("ERROR: even numbered stack item not as expected\n"); if (q[k * 2 + 1] != ARRAY_COUNT - 1 - k || q[k * 2 + 1 + ARRAY_COUNT * 2] != k) MSG("ERROR: odd numbered heap item not as expected\n"); if (q[k * 2] != k || q[k * 2 + ARRAY_COUNT * 2] != k + ARRAY_COUNT) MSG("ERROR: even numbered heap item not as expected\n"); } if (p[ARRAY_COUNT * 4] != ARRAY_COUNT * 2) MSG("ERROR: last item in stack array not as expected\n"); if (q[ARRAY_COUNT * 4] != ARRAY_COUNT * 2) MSG("ERROR: last item in heap array not as expected\n"); #ifdef VERY_VERBOSE for (k = 0; k < olio_array_length(st) || k < olio_array_length(hp); k++) { MSGF(("%i: st % 4i hp % 4i\n", k, (k < olio_array_length(st)) ? p[k] : -1, (k < olio_array_length(hp)) ? q[k] : -1)); } #endif MSGF(("st %p = %p\n", st->base.data, st->stack)); MSGF(("hp %p = %p\n", hp->base.data, hp->stack)); MSG("freeing arrays...\n"); olio_array_free(st); olio_array_free(hp); } #include "string.h" static void test_string() { } #include "graph.h" static void test_graph() { int rc; olio_graph g; printf("[testing graph...]\n"); fflush(stdout); printf("graph initialization...\n"); fflush(stdout); olio_graph_init(&g, 10); printf("graph setting edges...\n"); fflush(stdout); olio_graph_set_edge(&g, 0, 1, 10); olio_graph_set_edge(&g, 1, 2, 10); printf("graph testing cyclic...\n"); fflush(stdout); rc = olio_graph_acyclic(&g); if (rc == 0) { printf("ERROR: graph NOT acyclic\n"); fflush(stdout); } printf("graph setting edges...\n"); fflush(stdout); olio_graph_set_edge(&g, 2, 0, 10); MSG("graph testing cyclic...\n"); rc = olio_graph_acyclic(&g); if (rc != 0) MSG("ERROR: graph NOT cyclic\n"); MSG("freeing graph...\n"); olio_graph_free(&g); } #include "skiplist.h" static void test_skiplist() { uint32_t test_data[] = {0xf, 0x436, 0x53547, 0x65, 0x54, 0x5654, 0x8756, 0x8767}; olio_skiplist sk; int i; printf("sizeof(entry) = %li\n", sizeof(olio_skiplist_entry)); printf("sizeof(block) = %li\n", sizeof(olio_skiplist_block)); printf("sizeof(skiplist) = %li\n", sizeof(olio_skiplist)); olio_skiplist_init(&sk); printf("adding...\n"); for (i = 0; i < sizeof(test_data) / sizeof(uint32_t); i++) { int rv = olio_skiplist_add(&sk, test_data[i], (void*) test_data[i]); printf("k: 0x%x, rv: %i\n", test_data[i], rv); } printf("searching...\n"); for (i = 0; i < sizeof(test_data) / sizeof(uint32_t); i++) { void * d = olio_skiplist_find(&sk, test_data[i]); printf("k: 0x%x, data: %p\n", test_data[i], d); } olio_skiplist_display(&sk); printf("freeing...\n"); olio_skiplist_free(&sk); olio_skiplist_display(&sk); olio_skiplist_init(&sk); printf("adding...\n"); for (i = 0; i < sizeof(test_data) / sizeof(uint32_t); i++) { int rv = olio_skiplist_add(&sk, test_data[i], (void*) test_data[i]); printf("k: 0x%x, rv: %i\n", test_data[i], rv); } printf("deleting...\n"); for (i = 0; i < sizeof(test_data) / sizeof(uint32_t); i++) { void * d; int rv = olio_skiplist_remove(&sk, test_data[i], &d); printf("k: 0x%x, rv: %i, data: %p\n", test_data[i], rv, d); olio_skiplist_display(&sk); } printf("freeing...\n"); olio_skiplist_free(&sk); olio_skiplist_display(&sk); } #include "error.h" static void test_error() { } #ifdef HAVE_GSL #include <gsl/gsl_rng.h> #include "random.h" gsl_rng * gsl; olio_random olio; static void test_random() { uint32_t seed; uint32_t a, b; long i; printf("[testing random...]\n"); fflush(stdout); gsl = gsl_rng_alloc(gsl_rng_mt19937); //for (seed = 0; seed < 1000; seed++) { seed = 0; gsl_rng_set(gsl, 0); olio_random_set_seed(&olio, 4357); for (i = 0; i < 10000; i++) { a = gsl_rng_uniform_int(gsl, 0xffffffff); b = olio_random_integer(&olio); if (a != b) { printf("mismatch\n"); } } } gsl_rng_free(gsl); } #else static void test_random() {} #endif #include "phash.h" #include "hash.h" static void test_hashes() { unsigned long i; const char * s[] = { "alpha", "beta", "gamma", "delta", "epsilon", "lamda", "mu", "nu", "omicron", "pi", "phi", "psi", "tau", "theta", "zeta", NULL }; olio_phash_build m; int rc; printf("[testing hashes...]\n"); fflush(stdout); rc = olio_phash_init(&m, NULL); if (rc == -1) { printf("error, aborting\n"); exit(1); } for (i = 0; s[i] != NULL; i++) { rc = olio_phash_add_entry(&m, s[i], strlen(s[i]), i * 1000); if (rc == -1) { printf("error, aborting\n"); exit(1); } } rc = olio_phash_generate(&m, 1000, 1); if (rc < 0) { printf("error, aborting\n"); exit(1); } if (rc > 0) { printf("failed to generate with attempt/extra limits\n"); exit(1); } printf("phash generated:\n"); printf("A hash: %08x\nB hash: %08x\nG size: %u\n", m.phash->a_hash_seed, m.phash->b_hash_seed, m.phash->g_table_size); printf("{ "); for (i = 0; i < m.phash->g_table_size; i++) { int16_t * gv = (int16_t *) m.phash->data; printf("%i, ", gv[i]); } printf("}\n"); for (i = 0; s[i] != NULL; i++) { int32_t v = olio_phash_value(m.phash, s[i], strlen(s[i])); printf(" %s -> %li\n", s[i], v); } olio_phash_free(&m); } #include "varint.h" static void test_varint_sub(uint32_t x, uint8_t bytes_expected) { uint32_t a; uint8_t storage[5]; uint8_t bytes_set, bytes_get; uint8_t i; bytes_set = olio_varint_set(x, storage); a = olio_varint_get(storage, &bytes_get); if (a != x || bytes_set != bytes_get || bytes_set != bytes_expected) { printf("x = %lu\n(%u) 0x", x, bytes_set); for (i = 0; i < bytes_set; i++) printf("%02x", storage[i]); printf("\na = %lu\n(%u)\n\n", a, bytes_get); } } static void test_varint() { printf("[testing varint...]\n"); fflush(stdout); test_varint_sub(0, 1); test_varint_sub(1,1); test_varint_sub(127, 1); test_varint_sub(200, 2); test_varint_sub(32000, 3); test_varint_sub(32000000, 3); test_varint_sub(100000000, 4); test_varint_sub(400000000, 5); test_varint_sub(0, 1); test_varint_sub(1, 1); } int main(int argv, char ** argc) { test_buffer(); test_array(); test_string(); test_graph(); test_skiplist(); test_error(); test_random(); test_hashes(); test_varint(); }
[STATEMENT] lemma concat_replicate_trivial[simp]: "concat (replicate i []) = []" [PROOF STATE] proof (prove) goal (1 subgoal): 1. concat (replicate i []) = [] [PROOF STEP] by (induct i) (auto simp add: map_replicate_const)
# Variational Bayesian Probabilistic Matrix Factorization # # Reference # ---------- # Lim, Yew Jin, and Yee Whye Teh. "Variational Bayesian approach to movie rating prediction." # Proceedings of KDD cup and workshop. Vol. 7. 2007. # mutable struct VBPMFModel M::Array I::Int64 J::Int64 n::Int64 L::Int64 U::Array V::Array τ²::Float64 σ²::Array ρ²::Array end function fit(model::VBPMFModel) M = model.M = model.M[sortperm(model.M[:, 1]), :] n = model.n I = model.I J = model.J K = size(M)[1] Ψ = zeros(n, n, J) model.σ² = ones(n) model.ρ² = ones(n) model.U = rand(I, n) model.V = rand(J, n) #1.nitialize Sj and tj for j = 1,...,J: S, t = initialize_S_t(model, n, J) for l = 1:model.L #2. Update Q(ui) for i = 1,...,I: model.U, S, t, τ²_tmp, σ²_tmp = update_U(model, Ψ, S, t, I) #3. Update Q(vj) for j = 1,...,J: model.V, Ψ, ρ²_tmp = update_V(model, Ψ, S, t, J) #update Learning the Variances model.σ², model.ρ², model.τ² = update_learning_variances(model, I, J, K, σ²_tmp, ρ²_tmp, τ²_tmp) end end function initialize_S_t(model::VBPMFModel, n, J) S = zeros(n, n, J) for j = 1:J S[:, :, j] = one(zeros(n, n)) end t = zeros(J, n) return(S, t) end function update_U(model::VBPMFModel, Ψ, S, t, I) n = model.n M = model.M U = model.U V = model.V τ² = model.τ² σ² = model.σ² τ²_tmp = 0 σ²_tmp = zeros(n) σ²_matrix = one(zeros(n, n)) .* (1 ./ σ²) for i = 1:I #(a) Compute Φi and ui: N_i = M[M[:, 1] .== i - 1, :] #user's rate item N_i[:, 1:2] .+= 1 #index start 1 Φ = inv(σ²_matrix + sum((Ψ[:, :, N_i[:, 2]] .+ mean(V[N_i[:, 2], :], dims = 1)' * mean(V[N_i[:, 2], :], dims = 1)) / τ², dims = 3)[:, :, 1]) u = Φ * sum((N_i[:, 3]' * V[N_i[:, 2], :]) / τ², dims = 1)' U[i, :] = u σ²_tmp = σ²_tmp + diag(Φ) #(b) Update Sj and tj for j ∈ N(i), and discard Φi: idx = 1 for j = N_i[:, 2] S[:, :, j] = S[:, :, j] + (Φ + U[i, :] * U[i, :]') / τ² t[j, :] = t[j, :] + ((N_i[idx, 3] * U[i, :]') / τ²)' τ²_tmp = τ²_tmp + (N_i[idx, 3] ^ 2) - (2 * N_i[idx, 3] * (U[i, :]' * V[j, :])) + tr((Φ + U[i, :] * U[i, :]') * (Ψ[:, :, j] + V[j, :] * V[j, :]')) idx = idx + 1 end end σ²_tmp = σ²_tmp + (mean(U, dims =1) .^ 2)' return(U, S, t, τ²_tmp, σ²_tmp) end function update_V(model::VBPMFModel, Ψ, S, t, J) V = zeros(J, model.n) ρ²_tmp = 0 #3. Update Q(vj) for j = 1,...,J: for j = 1:J Ψ[:, :, j] = inv(S[:, :, j]) V[j, :] = (Ψ[:, :, j] * t[j, :])' ρ²_tmp = ρ²_tmp .+ diag(Ψ[:, :, j]) end ρ²_tmp = ρ²_tmp + (mean(V, dims =1) .^ 2)' return(V, Ψ, ρ²_tmp) end function update_learning_variances(model::VBPMFModel, I, J, K, σ²_tmp, ρ²_tmp, τ²_tmp) σ² = (1/(I - 1)) * σ²_tmp ρ² = (1/(J- 1)) * ρ²_tmp τ² = (1/(K - 1)) * τ²_tmp return(σ², ρ² , τ²) end function predict(model::VBPMFModel, new_data) R_p = model.U * model.V' r = zeros(size(new_data)[1]) for i in 1:size(new_data)[1] r[i] = R_p[new_data[i, 1] + 1, new_data[i, 2] + 1] end return r end
Require Import Coq.Program.Basics. Require Import Coq.Logic.FunctionalExtensionality. Require Import Coq.Program.Combinators. Require Import omega.Omega. Require Import Setoid. Require Import ZArith. Require Import FinProof.Common. Require Import FinProof.CommonInstances. Require Import FinProof.StateMonad2. Require Import FinProof.StateMonadInstances. Require Import FinProof.ProgrammingWith. Local Open Scope struct_scope. Require Import FinProof.CommonProofs. Require Import depoolContract.ProofEnvironment. Require Import depoolContract.DePoolClass. Require Import depoolContract.SolidityNotations. Require Import depoolContract.DePoolFunc. Module DePoolFuncs := DePoolFuncs XTypesSig StateMonadSig. Import DePoolFuncs. Import DePoolSpec. Import LedgerClass. Require Import depoolContract.Lib.CommonModelProofs. Module CommonModelProofs := CommonModelProofs StateMonadSig. Import CommonModelProofs. Require Import depoolContract.Lib.Tactics. Require Import depoolContract.Lib.ErrorValueProofs. (*Require Import depoolContract.Lib.CommonCommon.*) (* Require Import depoolContract.Lib.tvmFunctionsProofs. *) Import DePoolSpec.LedgerClass.SolidityNotations. Local Open Scope struct_scope. Local Open Scope Z_scope. Local Open Scope solidity_scope. Require Import Lists.List. Import ListNotations. Local Open Scope list_scope. Set Typeclasses Iterative Deepening. Set Typeclasses Depth 100. Require Export depoolContract.Scenarios.Common.CommonDefinitions. Require Export depoolContract.Scenarios.Common.RoundDefinitions. Definition _participantCorrectPositive (p : DePoolLib_ι_Participant) := 0 <= DePoolLib_ι_Participant_ι_roundQty p /\ 0 <= DePoolLib_ι_Participant_ι_reward p /\ 0 <= DePoolLib_ι_Participant_ι_withdrawValue p. Definition participantCorrectLocally (p : DePoolLib_ι_Participant) := _participantCorrectPositive p. Definition _participantCorrectlyExists (l : Ledger) (p : DePoolLib_ι_Participant) := (participantIn l p /\ 0 < DePoolLib_ι_Participant_ι_roundQty p) \/ (participantOut l p /\ 0 = DePoolLib_ι_Participant_ι_roundQty p). Definition _participantInRound (l : Ledger) (p : DePoolLib_ι_Participant) := participantIn l p <-> (exists r addr, roundIn l r /\ addrInRound l r addr /\ isSome (eval_state ( ParticipantBase_Ф_fetchParticipant addr) l) = true). Definition participantCorrectGlobally (l : Ledger) := forall p, participantIn l p -> ( participantCorrectLocally p /\ _participantCorrectlyExists l p /\ _participantInRound l p ).
input := FileTools:-Text:-ReadFile("AoC-2021-17-input.txt" ):
struct TypeListItem{TThis, TNext} end struct EmptyTypeList end const TypeList = Union{EmptyTypeList, TypeListItem} encode() = EmptyTypeList encode(t) = TypeListItem{t, EmptyTypeList} encode(t, ts...) = TypeListItem{t, encode(ts...)} decode(t::Tuple) = t decode(::Type{EmptyTypeList}) = () decode(::Type{TypeListItem{TThis, EmptyTypeList}}) where TThis = (TThis,) decode(::Type{TypeListItem{TThis, TNext}}) where {TThis, TNext} = (TThis, decode(TNext)...) Base.length(::Type{EmptyTypeList}) = 0 function Base.length(::Type{TypeListItem{TThis, TNext}}) where {TThis, TNext} return 1 + length(TNext) end Base.findfirst(::Type, ::Type{EmptyTypeList}) = nothing function Base.findfirst(t::Type, ::Type{TypeListItem{TThis, TNext}}) where {TThis, TNext} t == TThis && return 1 tailidx = findfirst(t, TNext) return isnothing(tailidx) ? nothing : tailidx + 1 end pretty(::Type{TypeListItem{TThis, TNext}}) where {TThis, TNext} = begin return "$(TThis), " * pretty(TNext) end pretty(::Type{EmptyTypeList}) = ""
(* Title: Subcategory Author: Eugene W. Stark <[email protected]>, 2017 Maintainer: Eugene W. Stark <[email protected]> *) chapter "Subcategory" text\<open> In this chapter we give a construction of the subcategory of a category defined by a predicate on arrows subject to closure conditions. The arrows of the subcategory are directly identified with the arrows of the ambient category. We also define the related notions of full subcategory and inclusion functor. \<close> theory Subcategory imports Functor begin locale subcategory = C: category C for C :: "'a comp" (infixr "\<cdot>\<^sub>C" 55) and Arr :: "'a \<Rightarrow> bool" + assumes inclusion: "Arr f \<Longrightarrow> C.arr f" and dom_closed: "Arr f \<Longrightarrow> Arr (C.dom f)" and cod_closed: "Arr f \<Longrightarrow> Arr (C.cod f)" and comp_closed: "\<lbrakk> Arr f; Arr g; C.cod f = C.dom g \<rbrakk> \<Longrightarrow> Arr (g \<cdot>\<^sub>C f)" begin no_notation C.in_hom ("\<guillemotleft>_ : _ \<rightarrow> _\<guillemotright>") notation C.in_hom ("\<guillemotleft>_ : _ \<rightarrow>\<^sub>C _\<guillemotright>") definition comp (infixr "\<cdot>" 55) where "g \<cdot> f = (if Arr f \<and> Arr g \<and> C.cod f = C.dom g then g \<cdot>\<^sub>C f else C.null)" interpretation partial_magma comp proof show "\<exists>!n. \<forall>f. n \<cdot> f = n \<and> f \<cdot> n = n" proof show 1: "\<forall>f. C.null \<cdot> f = C.null \<and> f \<cdot> C.null = C.null" by (metis C.comp_null(1) C.ex_un_null comp_def) show "\<And>n. \<forall>f. n \<cdot> f = n \<and> f \<cdot> n = n \<Longrightarrow> n = C.null" using 1 C.ex_un_null by metis qed qed lemma null_char [simp]: shows "null = C.null" proof - have "\<forall>f. C.null \<cdot> f = C.null \<and> f \<cdot> C.null = C.null" by (metis C.comp_null(1) C.ex_un_null comp_def) thus ?thesis using ex_un_null by (metis comp_null(2)) qed lemma ideI: assumes "Arr a" and "C.ide a" shows "ide a" unfolding ide_def using assms null_char C.ide_def comp_def by auto lemma Arr_iff_dom_in_domain: shows "Arr f \<longleftrightarrow> C.dom f \<in> domains f" proof show "C.dom f \<in> domains f \<Longrightarrow> Arr f" using domains_def comp_def ide_def by fastforce show "Arr f \<Longrightarrow> C.dom f \<in> domains f" proof - assume f: "Arr f" have "ide (C.dom f)" using f inclusion C.dom_in_domains C.has_domain_iff_arr C.domains_def dom_closed ideI by auto moreover have "f \<cdot> C.dom f \<noteq> null" using f comp_def dom_closed null_char inclusion C.comp_arr_dom by force ultimately show ?thesis using domains_def by simp qed qed lemma Arr_iff_cod_in_codomain: shows "Arr f \<longleftrightarrow> C.cod f \<in> codomains f" proof show "C.cod f \<in> codomains f \<Longrightarrow> Arr f" using codomains_def comp_def ide_def by fastforce show "Arr f \<Longrightarrow> C.cod f \<in> codomains f" proof - assume f: "Arr f" have "ide (C.cod f)" using f inclusion C.cod_in_codomains C.has_codomain_iff_arr C.codomains_def cod_closed ideI by auto moreover have "C.cod f \<cdot> f \<noteq> null" using f comp_def cod_closed null_char inclusion C.comp_cod_arr by force ultimately show ?thesis using codomains_def by simp qed qed lemma arr_char: shows "arr f \<longleftrightarrow> Arr f" proof show "Arr f \<Longrightarrow> arr f" using arr_def comp_def Arr_iff_dom_in_domain Arr_iff_cod_in_codomain by auto show "arr f \<Longrightarrow> Arr f" proof - assume f: "arr f" obtain a where a: "a \<in> domains f \<or> a \<in> codomains f" using f arr_def by auto have "f \<cdot> a \<noteq> C.null \<or> a \<cdot> f \<noteq> C.null" using a domains_def codomains_def null_char by auto thus "Arr f" using comp_def by metis qed qed lemma arrI [intro]: assumes "Arr f" shows "arr f" using assms arr_char by simp lemma arrE [elim]: assumes "arr f" shows "Arr f" using assms arr_char by simp interpretation category comp using comp_def null_char inclusion comp_closed dom_closed cod_closed apply unfold_locales apply auto[1] apply (metis Arr_iff_dom_in_domain Arr_iff_cod_in_codomain arr_char arr_def emptyE) proof - fix f g h assume gf: "seq g f" and hg: "seq h g" show 1: "seq (h \<cdot> g) f" using gf hg inclusion comp_closed comp_def by auto show "(h \<cdot> g) \<cdot> f = h \<cdot> g \<cdot> f" using gf hg 1 C.not_arr_null inclusion comp_def arr_char by (metis (full_types) C.cod_comp C.comp_assoc) next fix f g h assume hg: "seq h g" and hgf: "seq (h \<cdot> g) f" show "seq g f" using hg hgf comp_def null_char inclusion arr_char comp_closed by (metis (full_types) C.dom_comp) next fix f g h assume hgf: "seq h (g \<cdot> f)" and gf: "seq g f" show "seq h g" using hgf gf comp_def null_char arr_char comp_closed by (metis C.seqE C.ext C.match_2) qed theorem is_category: shows "category comp" .. notation in_hom ("\<guillemotleft>_ : _ \<rightarrow> _\<guillemotright>") lemma dom_simp [simp]: assumes "arr f" shows "dom f = C.dom f" proof - have "ide (C.dom f)" using assms ideI by (meson C.ide_dom arr_char dom_closed inclusion) moreover have "f \<cdot> C.dom f \<noteq> null" using assms inclusion comp_def null_char dom_closed not_arr_null C.comp_arr_dom arr_char by auto ultimately show ?thesis using dom_eqI ext by blast qed lemma cod_simp [simp]: assumes "arr f" shows "cod f = C.cod f" proof - have "ide (C.cod f)" using assms ideI by (meson C.ide_cod arr_char cod_closed inclusion) moreover have "C.cod f \<cdot> f \<noteq> null" using assms inclusion comp_def null_char cod_closed not_arr_null C.comp_cod_arr arr_char by auto ultimately show ?thesis using cod_eqI ext by blast qed lemma cod_char: shows "cod f = (if arr f then C.cod f else C.null)" using cod_simp cod_def arr_def by auto lemma in_hom_char: shows "\<guillemotleft>f : a \<rightarrow> b\<guillemotright> \<longleftrightarrow> arr a \<and> arr b \<and> arr f \<and> \<guillemotleft>f : a \<rightarrow>\<^sub>C b\<guillemotright>" using inclusion arr_char cod_closed dom_closed by (metis C.arr_iff_in_hom C.in_homE arr_iff_in_hom cod_simp dom_simp in_homE) lemma ide_char: shows "ide a \<longleftrightarrow> arr a \<and> C.ide a" using ide_in_hom C.ide_in_hom in_hom_char by simp lemma seq_char: shows "seq g f \<longleftrightarrow> arr f \<and> arr g \<and> C.seq g f" proof show "arr f \<and> arr g \<and> C.seq g f \<Longrightarrow> seq g f" using arr_char dom_char cod_char by (intro seqI, auto) show "seq g f \<Longrightarrow> arr f \<and> arr g \<and> C.seq g f" apply (elim seqE, auto) using inclusion arr_char by auto qed lemma hom_char: shows "hom a b = C.hom a b \<inter> Collect Arr" proof show "hom a b \<subseteq> C.hom a b \<inter> Collect Arr" using in_hom_char by auto show "C.hom a b \<inter> Collect Arr \<subseteq> hom a b" using arr_char dom_char cod_char by force qed lemma comp_char: shows "g \<cdot> f = (if arr f \<and> arr g \<and> C.seq g f then g \<cdot>\<^sub>C f else C.null)" using arr_char comp_def comp_closed C.ext by force lemma comp_simp: assumes "seq g f" shows "g \<cdot> f = g \<cdot>\<^sub>C f" using assms comp_char seq_char by metis lemma inclusion_preserves_inverse: assumes "inverse_arrows f g" shows "C.inverse_arrows f g" using assms ide_char comp_simp arr_char by (intro C.inverse_arrowsI, auto) lemma iso_char: shows "iso f \<longleftrightarrow> C.iso f \<and> arr f \<and> arr (C.inv f)" proof assume f: "iso f" show "C.iso f \<and> arr f \<and> arr (C.inv f)" proof - have 1: "inverse_arrows f (inv f)" using f inv_is_inverse by auto have 2: "C.inverse_arrows f (inv f)" using 1 inclusion_preserves_inverse by blast moreover have "arr (inv f)" using 1 iso_is_arr iso_inv_iso by blast moreover have "inv f = C.inv f" using 1 2 C.inv_is_inverse C.inverse_arrow_unique by blast ultimately show ?thesis using f 2 iso_is_arr by auto qed next assume f: "C.iso f \<and> arr f \<and> arr (C.inv f)" show "iso f" proof have 1: "C.inverse_arrows f (C.inv f)" using f C.inv_is_inverse by blast show "inverse_arrows f (C.inv f)" proof have 2: "C.inv f \<cdot> f = C.inv f \<cdot>\<^sub>C f \<and> f \<cdot> C.inv f = f \<cdot>\<^sub>C C.inv f" using f 1 comp_char by fastforce have 3: "antipar f (C.inv f)" using f C.seqE seqI by simp show "ide (C.inv f \<cdot> f)" using 1 2 3 ide_char apply (elim C.inverse_arrowsE) by simp show "ide (f \<cdot> C.inv f)" using 1 2 3 ide_char apply (elim C.inverse_arrowsE) by simp qed qed qed lemma inv_char: assumes "iso f" shows "inv f = C.inv f" proof - have "C.inverse_arrows f (inv f)" proof have 1: "inverse_arrows f (inv f)" using assms iso_char inv_is_inverse by blast show "C.ide (inv f \<cdot>\<^sub>C f)" proof - have "inv f \<cdot> f = inv f \<cdot>\<^sub>C f" using assms 1 inv_in_hom iso_char [of f] comp_char [of "inv f" f] seq_char by auto thus ?thesis using 1 ide_char arr_char by force qed show "C.ide (f \<cdot>\<^sub>C inv f)" proof - have "f \<cdot> inv f = f \<cdot>\<^sub>C inv f" using assms 1 inv_in_hom iso_char [of f] comp_char [of f "inv f"] seq_char by auto thus ?thesis using 1 ide_char arr_char by force qed qed thus ?thesis using C.inverse_arrow_unique C.inv_is_inverse by blast qed end sublocale subcategory \<subseteq> category comp using is_category by auto section "Full Subcategory" locale full_subcategory = C: category C for C :: "'a comp" and Ide :: "'a \<Rightarrow> bool" + assumes inclusion: "Ide f \<Longrightarrow> C.ide f" sublocale full_subcategory \<subseteq> subcategory C "\<lambda>f. C.arr f \<and> Ide (C.dom f) \<and> Ide (C.cod f)" by (unfold_locales; simp) context full_subcategory begin text \<open> Isomorphisms in a full subcategory are inherited from the ambient category. \<close> lemma iso_char: shows "iso f \<longleftrightarrow> arr f \<and> C.iso f" proof assume f: "iso f" obtain g where g: "inverse_arrows f g" using f by blast show "arr f \<and> C.iso f" proof - have "C.inverse_arrows f g" using g apply (elim inverse_arrowsE, intro C.inverse_arrowsI) using comp_simp ide_char arr_char by auto thus ?thesis using f iso_is_arr by blast qed next assume f: "arr f \<and> C.iso f" obtain g where g: "C.inverse_arrows f g" using f by blast have "inverse_arrows f g" proof show "ide (comp g f)" using f g by (metis (no_types, lifting) C.seqE C.ide_compE C.inverse_arrowsE arr_char dom_simp ide_dom comp_def) show "ide (comp f g)" using f g C.inverse_arrows_sym [of f g] by (metis (no_types, lifting) C.seqE C.ide_compE C.inverse_arrowsE arr_char dom_simp ide_dom comp_def) qed thus "iso f" by auto qed end section "Inclusion Functor" text \<open> If \<open>S\<close> is a subcategory of \<open>C\<close>, then there is an inclusion functor from \<open>S\<close> to \<open>C\<close>. Inclusion functors are faithful embeddings. \<close> locale inclusion_functor = C: category C + S: subcategory C Arr for C :: "'a comp" and Arr :: "'a \<Rightarrow> bool" begin interpretation "functor" S.comp C S.map using S.map_def S.arr_char S.inclusion S.dom_char S.cod_char S.dom_closed S.cod_closed S.comp_closed S.arr_char S.comp_char apply unfold_locales apply auto[4] by (elim S.seqE, auto) lemma is_functor: shows "functor S.comp C S.map" .. interpretation faithful_functor S.comp C S.map apply unfold_locales by simp lemma is_faithful_functor: shows "faithful_functor S.comp C S.map" .. interpretation embedding_functor S.comp C S.map apply unfold_locales by simp end sublocale inclusion_functor \<subseteq> faithful_functor S.comp C S.map using is_faithful_functor by auto sublocale inclusion_functor \<subseteq> embedding_functor S.comp C S.map using is_embedding_functor by auto text \<open> The inclusion of a full subcategory is a special case. Such functors are fully faithful. \<close> locale full_inclusion_functor = C: category C + S: full_subcategory C Ide for C :: "'a comp" and Ide :: "'a \<Rightarrow> bool" sublocale full_inclusion_functor \<subseteq> inclusion_functor C "\<lambda>f. C.arr f \<and> Ide (C.dom f) \<and> Ide (C.cod f)" .. context full_inclusion_functor begin interpretation full_functor S.comp C S.map apply unfold_locales using S.ide_in_hom by (metis (no_types, lifting) C.in_homE S.arr_char S.in_hom_char S.map_simp) lemma is_full_functor: shows "full_functor S.comp C S.map" .. end sublocale full_inclusion_functor \<subseteq> full_functor S.comp C S.map using is_full_functor by auto sublocale full_inclusion_functor \<subseteq> fully_faithful_functor S.comp C S.map .. end
module Client.Action.Exec import Client.Action.Build import Fmt import Inigo.Async.Base import Inigo.Async.Package import Inigo.Async.Promise import Inigo.Package.CodeGen as CodeGen import Inigo.Package.Package import System.Path execDir : String execDir = "build/exec" -- TODO: Better handling of base paths export exec : CodeGen -> Bool -> List String -> Promise () exec codeGen build userArgs = do pkg <- Client.Action.Build.writeIPkgFile when build $ runBuild codeGen let Just e = executable pkg | Nothing => reject "No executable set in Inigo config" let (cmd, args) = CodeGen.cmdArgs codeGen (execDir </> e) log (fmt "Executing %s with args %s..." e (show userArgs)) ignore $ systemWithStdIO cmd (args ++ userArgs) True True
using Random, Distributions, Plots include_model("double_integrator") T = 10 h = 1.0 u_dist = Distributions.MvNormal(zeros(model.m), Diagonal(1.0e-1 * ones(model.m))) u_hist = rand(u_dist, T-1) x1 = [-1.0; 0.0] x_hist = [x1] for t = 1:T-1 w = zeros(model.d) x⁺ = propagate_dynamics(model, x_hist[end], u_hist[t], w, h, t; solver = :levenberg_marquardt, tol_r = 1.0e-8, tol_d = 1.0e-6) push!(x_hist, x⁺) end plot(hcat(x_hist...)') plot(hcat(u_hist...)') # LQR A, B = get_dynamics(model) Q = @SMatrix [1.0 0.0; 0.0 0.0] R = @SMatrix [1.0] function objective(x, u) T = length(x) J = 0.0 for t = 1:T J += x[t]' * Q * x[t] t < T & continue J += u[t]' * R * u[t] end return J / T end K, P = tvlqr([A for t = 1:T-1], [B for t = 1:T-1], [Q for t = 1:T], [R for t = 1:T-1]) K_vec = [vec(K[t]) for t = 1:T-1] plot(hcat(K_vec...)') K_inf = copy(K[1]) x1 = [-1.0; 0.0] x_hist = [x1] u_hist = [] for t = 1:T-1 w = zeros(model.d) # push!(u_hist, -K[t] * x_hist[end]) push!(u_hist, -K_inf * x_hist[end]) x⁺ = propagate_dynamics(model, x_hist[end], u_hist[end], w, h, t; solver = :levenberg_marquardt, tol_r = 1.0e-8, tol_d = 1.0e-6) push!(x_hist, x⁺) end plot(hcat(x_hist...)') plot(hcat(u_hist...)') J = objective(x_hist, u_hist) # 2.297419 # Gaussian policy sigmoid(z) = 1.0 / (1.0 + exp(-z)) ds(z) = sigmoid(z) * (1.0 - sigmoid(z)) # plot(range(-10.0, stop = 10.0, length = 100), ds.(range(-10.0, stop = 10.0, length = 100))) get_μ(θ, x) = θ[1:2]' * x get_σ(θ, x) = ds(θ[3:4]' * x) function policy(θ, x, a) μ = get_μ(θ, x) σ = get_σ(θ, x) 1.0 / (sqrt(2.0 * π) * σ) * exp(-0.5 * ((a - μ) / (σ))^2.0) end function rollout(θ, x1, model, T; w = zeros(model.d)) # initialize trajectories x_hist = [x1] u_hist = [] ∇logπ_hist = [] π_dist = [] for t = 1:T-1 # policy distribution μ = get_μ(θ, x_hist[end]) σ = get_σ(θ, x_hist[end]) π_dist = Distributions.Normal(μ, σ) # sample control push!(u_hist, rand(π_dist, 1)[1]) # gradient of policy logp(z) = log.(policy(z, x_hist[end], u_hist[end])) push!(∇logπ_hist, ForwardDiff.gradient(logp, θ)) # step dynamics x⁺ = propagate_dynamics(model, x_hist[end], u_hist[t], w, h, t; solver = :levenberg_marquardt, tol_r = 1.0e-8, tol_d = 1.0e-6) push!(x_hist, x⁺) end # evalute trajectory cost J = objective(x_hist, u_hist) return x_hist, u_hist, ∇logπ_hist, J end θ = 0.1 * rand(m) # rollout(θ, x1, model, T; # w = zeros(model.d)) function reinforce(m, x1, model, T; max_iter = 1, batch_size = 1, solver = :sgd, J_avg_min = Inf) Random.seed!(1) # parameters θ = 1.0e-5 * rand(m) # cost history J_hist = [1000.0] J_avg = [1000.0] if solver == :adam # Adam α = 0.0001 β1 = 0.9 β2 = 0.999 ϵ = 10.0^(-8.0) mom = zeros(m) vel = zeros(m) else # sgd α = 1.0e-6 end for i = 1:max_iter ∇logπ_hist = [] J = [] for j = 1:batch_size _x_hist, _u_hist, _∇logπ_hist, _J = rollout(θ, copy(x1), model, T) push!(∇logπ_hist, _∇logπ_hist) push!(J, _J) end G = (1 / batch_size) .* sum([sum(g) for g in ∇logπ_hist]) .* (mean(J) - J_avg[end])#0.0 * x1' * P[1] * x1) if solver == :adam mom = β1 .* mom + (1.0 - β1) .* G vel = β2 .* vel + (1.0 - β2) .* (G.^2.0) m̂ = mom ./ (1.0 - β1^i) v̂ = vel ./ (1.0 - β2^i) θ .-= α * m̂ ./ (sqrt.(v̂) .+ ϵ) else θ .-= α * G end push!(J_hist, mean(J)) push!(J_avg, J_avg[end] + (mean(J) - J_avg[end]) / length(J_hist)) if J_avg[end] < J_avg_min return θ, J_hist, J_avg end if i % 1000 == 0 println("i: $i") println(" cost: $(mean(J))") println(" cost (run. avg.): $(J_avg[end])") end end return θ, J_hist, J_avg end θ, J, J_avg = reinforce(4, x1, model, T, max_iter = 1e6, batch_size = 10, solver = :adam, J_avg_min = 0.3) plot(log.(J[1:100:end]), xlabel = "epoch (100 ep.)", label = "cost") plot!(log.(J_avg[1:100:end]), xlabel = "epoch (100 ep.)", label = "cost (run. avg.)", width = 2.0) x_hist, = rollout(θ, x1, model, T) include(joinpath(pwd(), "models/visualize.jl")) vis = Visualizer() render(vis) visualize!(vis, model, x_hist, Δt = h)
/- Copyright (c) 2014 Microsoft Corporation. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Author: Leonardo de Moura -/ import data.bool tools.helper_tactics open bool eq.ops decidable helper_tactics namespace pos_num theorem succ_not_is_one (a : pos_num) : is_one (succ a) = ff := pos_num.induction_on a rfl (take n iH, rfl) (take n iH, rfl) theorem succ_one : succ one = bit0 one theorem succ_bit1 (a : pos_num) : succ (bit1 a) = bit0 (succ a) theorem succ_bit0 (a : pos_num) : succ (bit0 a) = bit1 a theorem ne_of_bit0_ne_bit0 {a b : pos_num} (H₁ : bit0 a ≠ bit0 b) : a ≠ b := suppose a = b, absurd rfl (this ▸ H₁) theorem ne_of_bit1_ne_bit1 {a b : pos_num} (H₁ : bit1 a ≠ bit1 b) : a ≠ b := suppose a = b, absurd rfl (this ▸ H₁) theorem pred_succ : ∀ (a : pos_num), pred (succ a) = a | one := rfl | (bit0 a) := by rewrite succ_bit0 | (bit1 a) := calc pred (succ (bit1 a)) = cond (is_one (succ a)) one (bit1 (pred (succ a))) : rfl ... = cond ff one (bit1 (pred (succ a))) : succ_not_is_one ... = bit1 (pred (succ a)) : rfl ... = bit1 a : pred_succ a section variables (a b : pos_num) theorem one_add_one : one + one = bit0 one theorem one_add_bit0 : one + (bit0 a) = bit1 a theorem one_add_bit1 : one + (bit1 a) = succ (bit1 a) theorem bit0_add_one : (bit0 a) + one = bit1 a theorem bit1_add_one : (bit1 a) + one = succ (bit1 a) theorem bit0_add_bit0 : (bit0 a) + (bit0 b) = bit0 (a + b) theorem bit0_add_bit1 : (bit0 a) + (bit1 b) = bit1 (a + b) theorem bit1_add_bit0 : (bit1 a) + (bit0 b) = bit1 (a + b) theorem bit1_add_bit1 : (bit1 a) + (bit1 b) = succ (bit1 (a + b)) theorem one_mul : one * a = a end theorem mul_one : ∀ a, a * one = a | one := rfl | (bit1 n) := calc bit1 n * one = bit0 (n * one) + one : rfl ... = bit0 n + one : mul_one n ... = bit1 n : bit0_add_one | (bit0 n) := calc bit0 n * one = bit0 (n * one) : rfl ... = bit0 n : mul_one n theorem decidable_eq [instance] : ∀ (a b : pos_num), decidable (a = b) | one one := inl rfl | one (bit0 b) := inr (by contradiction) | one (bit1 b) := inr (by contradiction) | (bit0 a) one := inr (by contradiction) | (bit0 a) (bit0 b) := match decidable_eq a b with | inl H₁ := inl (by rewrite H₁) | inr H₁ := inr (by intro H; injection H; contradiction) end | (bit0 a) (bit1 b) := inr (by contradiction) | (bit1 a) one := inr (by contradiction) | (bit1 a) (bit0 b) := inr (by contradiction) | (bit1 a) (bit1 b) := match decidable_eq a b with | inl H₁ := inl (by rewrite H₁) | inr H₁ := inr (by intro H; injection H; contradiction) end local notation a < b := (lt a b = tt) local notation a ` ≮ `:50 b:50 := (lt a b = ff) theorem lt_one_right_eq_ff : ∀ a : pos_num, a ≮ one | one := rfl | (bit0 a) := rfl | (bit1 a) := rfl theorem lt_one_succ_eq_tt : ∀ a : pos_num, one < succ a | one := rfl | (bit0 a) := rfl | (bit1 a) := rfl theorem lt_of_lt_bit0_bit0 {a b : pos_num} (H : bit0 a < bit0 b) : a < b := H theorem lt_of_lt_bit0_bit1 {a b : pos_num} (H : bit1 a < bit0 b) : a < b := H theorem lt_of_lt_bit1_bit1 {a b : pos_num} (H : bit1 a < bit1 b) : a < b := H theorem lt_of_lt_bit1_bit0 {a b : pos_num} (H : bit0 a < bit1 b) : a < succ b := H theorem lt_bit0_bit0_eq_lt (a b : pos_num) : lt (bit0 a) (bit0 b) = lt a b := rfl theorem lt_bit1_bit1_eq_lt (a b : pos_num) : lt (bit1 a) (bit1 b) = lt a b := rfl theorem lt_bit1_bit0_eq_lt (a b : pos_num) : lt (bit1 a) (bit0 b) = lt a b := rfl theorem lt_bit0_bit1_eq_lt_succ (a b : pos_num) : lt (bit0 a) (bit1 b) = lt a (succ b) := rfl theorem lt_irrefl : ∀ (a : pos_num), a ≮ a | one := rfl | (bit0 a) := begin rewrite lt_bit0_bit0_eq_lt, apply lt_irrefl end | (bit1 a) := begin rewrite lt_bit1_bit1_eq_lt, apply lt_irrefl end theorem ne_of_lt_eq_tt : ∀ {a b : pos_num}, a < b → a = b → false | one ⌞one⌟ H₁ (eq.refl one) := absurd H₁ ff_ne_tt | (bit0 a) ⌞(bit0 a)⌟ H₁ (eq.refl (bit0 a)) := begin rewrite lt_bit0_bit0_eq_lt at H₁, apply ne_of_lt_eq_tt H₁ (eq.refl a) end | (bit1 a) ⌞(bit1 a)⌟ H₁ (eq.refl (bit1 a)) := begin rewrite lt_bit1_bit1_eq_lt at H₁, apply ne_of_lt_eq_tt H₁ (eq.refl a) end theorem lt_base : ∀ a : pos_num, a < succ a | one := rfl | (bit0 a) := begin rewrite [succ_bit0, lt_bit0_bit1_eq_lt_succ], apply lt_base end | (bit1 a) := begin rewrite [succ_bit1, lt_bit1_bit0_eq_lt], apply lt_base end theorem lt_step : ∀ {a b : pos_num}, a < b → a < succ b | one one H := rfl | one (bit0 b) H := rfl | one (bit1 b) H := rfl | (bit0 a) one H := absurd H ff_ne_tt | (bit0 a) (bit0 b) H := begin rewrite [succ_bit0, lt_bit0_bit1_eq_lt_succ, lt_bit0_bit0_eq_lt at H], apply lt_step H end | (bit0 a) (bit1 b) H := begin rewrite [succ_bit1, lt_bit0_bit0_eq_lt, lt_bit0_bit1_eq_lt_succ at H], exact H end | (bit1 a) one H := absurd H ff_ne_tt | (bit1 a) (bit0 b) H := begin rewrite [succ_bit0, lt_bit1_bit1_eq_lt, lt_bit1_bit0_eq_lt at H], exact H end | (bit1 a) (bit1 b) H := begin rewrite [succ_bit1, lt_bit1_bit0_eq_lt, lt_bit1_bit1_eq_lt at H], apply lt_step H end theorem lt_of_lt_succ_succ : ∀ {a b : pos_num}, succ a < succ b → a < b | one one H := absurd H ff_ne_tt | one (bit0 b) H := rfl | one (bit1 b) H := rfl | (bit0 a) one H := begin rewrite [succ_bit0 at H, succ_one at H, lt_bit1_bit0_eq_lt at H], apply absurd_of_eq_ff_of_eq_tt (lt_one_right_eq_ff a) H end | (bit0 a) (bit0 b) H := by exact H | (bit0 a) (bit1 b) H := by exact H | (bit1 a) one H := begin rewrite [succ_bit1 at H, succ_one at H, lt_bit0_bit0_eq_lt at H], apply absurd_of_eq_ff_of_eq_tt (lt_one_right_eq_ff (succ a)) H end | (bit1 a) (bit0 b) H := begin rewrite [succ_bit1 at H, succ_bit0 at H, lt_bit0_bit1_eq_lt_succ at H], rewrite lt_bit1_bit0_eq_lt, apply lt_of_lt_succ_succ H end | (bit1 a) (bit1 b) H := begin rewrite [lt_bit1_bit1_eq_lt, *succ_bit1 at H, lt_bit0_bit0_eq_lt at H], apply lt_of_lt_succ_succ H end theorem lt_succ_succ : ∀ {a b : pos_num}, a < b → succ a < succ b | one one H := absurd H ff_ne_tt | one (bit0 b) H := begin rewrite [succ_bit0, succ_one, lt_bit0_bit1_eq_lt_succ], apply lt_one_succ_eq_tt end | one (bit1 b) H := begin rewrite [succ_one, succ_bit1, lt_bit0_bit0_eq_lt], apply lt_one_succ_eq_tt end | (bit0 a) one H := absurd H ff_ne_tt | (bit0 a) (bit0 b) H := by exact H | (bit0 a) (bit1 b) H := by exact H | (bit1 a) one H := absurd H ff_ne_tt | (bit1 a) (bit0 b) H := begin rewrite [succ_bit1, succ_bit0, lt_bit0_bit1_eq_lt_succ, lt_bit1_bit0_eq_lt at H], apply lt_succ_succ H end | (bit1 a) (bit1 b) H := begin rewrite [lt_bit1_bit1_eq_lt at H, *succ_bit1, lt_bit0_bit0_eq_lt], apply lt_succ_succ H end theorem lt_of_lt_succ : ∀ {a b : pos_num}, succ a < b → a < b | one one H := absurd_of_eq_ff_of_eq_tt !lt_one_right_eq_ff H | one (bit0 b) H := rfl | one (bit1 b) H := rfl | (bit0 a) one H := absurd_of_eq_ff_of_eq_tt !lt_one_right_eq_ff H | (bit0 a) (bit0 b) H := by exact H | (bit0 a) (bit1 b) H := begin rewrite [succ_bit0 at H, lt_bit1_bit1_eq_lt at H, lt_bit0_bit1_eq_lt_succ], apply lt_step H end | (bit1 a) one H := absurd_of_eq_ff_of_eq_tt !lt_one_right_eq_ff H | (bit1 a) (bit0 b) H := begin rewrite [lt_bit1_bit0_eq_lt, succ_bit1 at H, lt_bit0_bit0_eq_lt at H], apply lt_of_lt_succ H end | (bit1 a) (bit1 b) H := begin rewrite [succ_bit1 at H, lt_bit0_bit1_eq_lt_succ at H, lt_bit1_bit1_eq_lt], apply lt_of_lt_succ_succ H end theorem lt_of_lt_succ_of_ne : ∀ {a b : pos_num}, a < succ b → a ≠ b → a < b | one one H₁ H₂ := absurd rfl H₂ | one (bit0 b) H₁ H₂ := rfl | one (bit1 b) H₁ H₂ := rfl | (bit0 a) one H₁ H₂ := begin rewrite [succ_one at H₁, lt_bit0_bit0_eq_lt at H₁], apply absurd_of_eq_ff_of_eq_tt (lt_one_right_eq_ff _) H₁ end | (bit0 a) (bit0 b) H₁ H₂ := begin rewrite [lt_bit0_bit0_eq_lt, succ_bit0 at H₁, lt_bit0_bit1_eq_lt_succ at H₁], apply lt_of_lt_succ_of_ne H₁ (ne_of_bit0_ne_bit0 H₂) end | (bit0 a) (bit1 b) H₁ H₂ := begin rewrite [succ_bit1 at H₁, lt_bit0_bit0_eq_lt at H₁, lt_bit0_bit1_eq_lt_succ], exact H₁ end | (bit1 a) one H₁ H₂ := begin rewrite [succ_one at H₁, lt_bit1_bit0_eq_lt at H₁], apply absurd_of_eq_ff_of_eq_tt (lt_one_right_eq_ff _) H₁ end | (bit1 a) (bit0 b) H₁ H₂ := begin rewrite [succ_bit0 at H₁, lt_bit1_bit1_eq_lt at H₁, lt_bit1_bit0_eq_lt], exact H₁ end | (bit1 a) (bit1 b) H₁ H₂ := begin rewrite [succ_bit1 at H₁, lt_bit1_bit0_eq_lt at H₁, lt_bit1_bit1_eq_lt], apply lt_of_lt_succ_of_ne H₁ (ne_of_bit1_ne_bit1 H₂) end theorem lt_trans : ∀ {a b c : pos_num}, a < b → b < c → a < c | one b (bit0 c) H₁ H₂ := rfl | one b (bit1 c) H₁ H₂ := rfl | a (bit0 b) one H₁ H₂ := absurd_of_eq_ff_of_eq_tt (lt_one_right_eq_ff _) H₂ | a (bit1 b) one H₁ H₂ := absurd_of_eq_ff_of_eq_tt (lt_one_right_eq_ff _) H₂ | (bit0 a) (bit0 b) (bit0 c) H₁ H₂ := begin rewrite lt_bit0_bit0_eq_lt at *, apply lt_trans H₁ H₂ end | (bit0 a) (bit0 b) (bit1 c) H₁ H₂ := begin rewrite [lt_bit0_bit1_eq_lt_succ at *, lt_bit0_bit0_eq_lt at H₁], apply lt_trans H₁ H₂ end | (bit0 a) (bit1 b) (bit0 c) H₁ H₂ := begin rewrite [lt_bit0_bit1_eq_lt_succ at H₁, lt_bit1_bit0_eq_lt at H₂, lt_bit0_bit0_eq_lt], apply @by_cases (a = b), begin intro H, rewrite -H at H₂, exact H₂ end, begin intro H, apply lt_trans (lt_of_lt_succ_of_ne H₁ H) H₂ end end | (bit0 a) (bit1 b) (bit1 c) H₁ H₂ := begin rewrite [lt_bit0_bit1_eq_lt_succ at *, lt_bit1_bit1_eq_lt at H₂], apply lt_trans H₁ (lt_succ_succ H₂) end | (bit1 a) (bit0 b) (bit0 c) H₁ H₂ := begin rewrite [lt_bit0_bit0_eq_lt at H₂, lt_bit1_bit0_eq_lt at *], apply lt_trans H₁ H₂ end | (bit1 a) (bit0 b) (bit1 c) H₁ H₂ := begin rewrite [lt_bit1_bit0_eq_lt at H₁, lt_bit0_bit1_eq_lt_succ at H₂, lt_bit1_bit1_eq_lt], apply @by_cases (b = c), begin intro H, rewrite H at H₁, exact H₁ end, begin intro H, apply lt_trans H₁ (lt_of_lt_succ_of_ne H₂ H) end end | (bit1 a) (bit1 b) (bit0 c) H₁ H₂ := begin rewrite [lt_bit1_bit1_eq_lt at H₁, lt_bit1_bit0_eq_lt at H₂, lt_bit1_bit0_eq_lt], apply lt_trans H₁ H₂ end | (bit1 a) (bit1 b) (bit1 c) H₁ H₂ := begin rewrite lt_bit1_bit1_eq_lt at *, apply lt_trans H₁ H₂ end theorem lt_antisymm : ∀ {a b : pos_num}, a < b → b ≮ a | one one H := rfl | one (bit0 b) H := rfl | one (bit1 b) H := rfl | (bit0 a) one H := absurd H ff_ne_tt | (bit0 a) (bit0 b) H := begin rewrite lt_bit0_bit0_eq_lt at *, apply lt_antisymm H end | (bit0 a) (bit1 b) H := begin rewrite lt_bit1_bit0_eq_lt, rewrite lt_bit0_bit1_eq_lt_succ at H, have H₁ : succ b ≮ a, from lt_antisymm H, apply eq_ff_of_ne_tt, intro H₂, apply @by_cases (succ b = a), show succ b = a → false, begin intro Hp, rewrite -Hp at H, apply absurd_of_eq_ff_of_eq_tt (lt_irrefl (succ b)) H end, show succ b ≠ a → false, begin intro Hn, have H₃ : succ b < succ a, from lt_succ_succ H₂, have H₄ : succ b < a, from lt_of_lt_succ_of_ne H₃ Hn, apply absurd_of_eq_ff_of_eq_tt H₁ H₄ end, end | (bit1 a) one H := absurd H ff_ne_tt | (bit1 a) (bit0 b) H := begin rewrite lt_bit0_bit1_eq_lt_succ, rewrite lt_bit1_bit0_eq_lt at H, have H₁ : lt b a = ff, from lt_antisymm H, apply eq_ff_of_ne_tt, intro H₂, apply @by_cases (b = a), show b = a → false, begin intro Hp, rewrite -Hp at H, apply absurd_of_eq_ff_of_eq_tt (lt_irrefl b) H end, show b ≠ a → false, begin intro Hn, have H₃ : b < a, from lt_of_lt_succ_of_ne H₂ Hn, apply absurd_of_eq_ff_of_eq_tt H₁ H₃ end, end | (bit1 a) (bit1 b) H := begin rewrite lt_bit1_bit1_eq_lt at *, apply lt_antisymm H end local notation a ≤ b := (le a b = tt) theorem le_refl : ∀ a : pos_num, a ≤ a := lt_base theorem le_eq_lt_succ {a b : pos_num} : le a b = lt a (succ b) := rfl theorem not_lt_of_le : ∀ {a b : pos_num}, a ≤ b → b < a → false | one one H₁ H₂ := absurd H₂ ff_ne_tt | one (bit0 b) H₁ H₂ := absurd_of_eq_ff_of_eq_tt (lt_one_right_eq_ff _) H₂ | one (bit1 b) H₁ H₂ := absurd_of_eq_ff_of_eq_tt (lt_one_right_eq_ff _) H₂ | (bit0 a) one H₁ H₂ := begin rewrite [le_eq_lt_succ at H₁, succ_one at H₁, lt_bit0_bit0_eq_lt at H₁], apply absurd_of_eq_ff_of_eq_tt (lt_one_right_eq_ff _) H₁ end | (bit0 a) (bit0 b) H₁ H₂ := begin rewrite [le_eq_lt_succ at H₁, succ_bit0 at H₁, lt_bit0_bit1_eq_lt_succ at H₁], rewrite [lt_bit0_bit0_eq_lt at H₂], apply not_lt_of_le H₁ H₂ end | (bit0 a) (bit1 b) H₁ H₂ := begin rewrite [le_eq_lt_succ at H₁, succ_bit1 at H₁, lt_bit0_bit0_eq_lt at H₁], rewrite [lt_bit1_bit0_eq_lt at H₂], apply not_lt_of_le H₁ H₂ end | (bit1 a) one H₁ H₂ := begin rewrite [le_eq_lt_succ at H₁, succ_one at H₁, lt_bit1_bit0_eq_lt at H₁], apply absurd_of_eq_ff_of_eq_tt (lt_one_right_eq_ff _) H₁ end | (bit1 a) (bit0 b) H₁ H₂ := begin rewrite [le_eq_lt_succ at H₁, succ_bit0 at H₁, lt_bit1_bit1_eq_lt at H₁], rewrite lt_bit0_bit1_eq_lt_succ at H₂, have H₃ : a < succ b, from lt_step H₁, apply @by_cases (b = a), begin intro Hba, rewrite -Hba at H₁, apply absurd_of_eq_ff_of_eq_tt (lt_irrefl b) H₁ end, begin intro Hnba, have H₄ : b < a, from lt_of_lt_succ_of_ne H₂ Hnba, apply not_lt_of_le H₃ H₄ end end | (bit1 a) (bit1 b) H₁ H₂ := begin rewrite [le_eq_lt_succ at H₁, succ_bit1 at H₁, lt_bit1_bit0_eq_lt at H₁], rewrite [lt_bit1_bit1_eq_lt at H₂], apply not_lt_of_le H₁ H₂ end theorem le_antisymm : ∀ {a b : pos_num}, a ≤ b → b ≤ a → a = b | one one H₁ H₂ := rfl | one (bit0 b) H₁ H₂ := by apply absurd_of_eq_ff_of_eq_tt (lt_one_right_eq_ff b) H₂ | one (bit1 b) H₁ H₂ := by apply absurd_of_eq_ff_of_eq_tt (lt_one_right_eq_ff b) H₂ | (bit0 a) one H₁ H₂ := by apply absurd_of_eq_ff_of_eq_tt (lt_one_right_eq_ff a) H₁ | (bit0 a) (bit0 b) H₁ H₂ := begin rewrite [le_eq_lt_succ at *, succ_bit0 at *, lt_bit0_bit1_eq_lt_succ at *], have H : a = b, from le_antisymm H₁ H₂, rewrite H end | (bit0 a) (bit1 b) H₁ H₂ := begin rewrite [le_eq_lt_succ at *, succ_bit1 at H₁, succ_bit0 at H₂], rewrite [lt_bit0_bit0_eq_lt at H₁, lt_bit1_bit1_eq_lt at H₂], apply false.rec _ (not_lt_of_le H₁ H₂) end | (bit1 a) one H₁ H₂ := by apply absurd_of_eq_ff_of_eq_tt (lt_one_right_eq_ff a) H₁ | (bit1 a) (bit0 b) H₁ H₂ := begin rewrite [le_eq_lt_succ at *, succ_bit0 at H₁, succ_bit1 at H₂], rewrite [lt_bit1_bit1_eq_lt at H₁, lt_bit0_bit0_eq_lt at H₂], apply false.rec _ (not_lt_of_le H₂ H₁) end | (bit1 a) (bit1 b) H₁ H₂ := begin rewrite [le_eq_lt_succ at *, succ_bit1 at *, lt_bit1_bit0_eq_lt at *], have H : a = b, from le_antisymm H₁ H₂, rewrite H end theorem le_trans {a b c : pos_num} : a ≤ b → b ≤ c → a ≤ c := begin intro H₁ H₂, rewrite [le_eq_lt_succ at *], apply @by_cases (a = b), begin intro Hab, rewrite Hab, exact H₂ end, begin intro Hnab, have Haltb : a < b, from lt_of_lt_succ_of_ne H₁ Hnab, apply lt_trans Haltb H₂ end, end end pos_num namespace num open pos_num theorem decidable_eq [instance] : ∀ (a b : num), decidable (a = b) | zero zero := inl rfl | zero (pos b) := inr (by contradiction) | (pos a) zero := inr (by contradiction) | (pos a) (pos b) := if H : a = b then inl (by rewrite H) else inr (suppose pos a = pos b, begin injection this, contradiction end) end num
/* Copyright 2005-2007 Adobe Systems Incorporated Use, modification and distribution are subject to the Boost Software License, Version 1.0. (See accompanying file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt). See http://opensource.adobe.com/gil for most recent version including documentation. */ /*************************************************************************************************/ #ifndef GIL_TIFF_DYNAMIC_IO_H #define GIL_TIFF_DYNAMIC_IO_H /// \file /// \brief Support for reading and writing TIFF files /// Requires libtiff! /// \author Hailin Jin and Lubomir Bourdev \n /// Adobe Systems Incorporated /// \date 2005-2007 \n Last updated June 10, 2006 // // We are currently providing the following functions: // template <typename Images> void tiff_read_image(const char*,any_image<Images>) // template <typename Views> void tiff_write_view(const char*,any_image_view<Views>) // #include <string> #include <boost/mpl/bool.hpp> #include "../dynamic_image/dynamic_image_all.hpp" #include "io_error.hpp" #include "tiff_io.hpp" #include "dynamic_io.hpp" namespace boost { namespace gil { namespace detail { struct tiff_write_is_supported { template<typename View> struct apply : public mpl::bool_<tiff_write_support<View>::is_supported> {}; }; class tiff_writer_dynamic : public tiff_writer { public: typedef void result_type; tiff_writer_dynamic(const char* filename) : tiff_writer(filename) {} template <typename Views> void write_view(const any_image_view<Views>& runtime_view) { dynamic_io_fnobj<tiff_write_is_supported, tiff_writer> op(this); apply_operation(runtime_view,op); } }; class tiff_type_format_checker { int _bit_depth; int _color_type; public: tiff_type_format_checker(int bit_depth_in,int color_type_in) : _bit_depth(bit_depth_in),_color_type(color_type_in) {} template <typename Image> bool apply() { return tiff_read_support<typename Image::view_t>::bit_depth==_bit_depth && tiff_read_support<typename Image::view_t>::color_type==_color_type; } }; struct tiff_read_is_supported { template<typename View> struct apply : public mpl::bool_<tiff_read_support<View>::is_supported> {}; }; class tiff_reader_dynamic : public tiff_reader { public: tiff_reader_dynamic(const char* filename) : tiff_reader(filename) {} template <typename Images> void read_image(any_image<Images>& im) { int width,height; unsigned short bps,photometric; TIFFGetField(_tp,TIFFTAG_IMAGEWIDTH,&width); TIFFGetField(_tp,TIFFTAG_IMAGELENGTH,&height); TIFFGetField(_tp,TIFFTAG_BITSPERSAMPLE,&bps); TIFFGetField(_tp,TIFFTAG_PHOTOMETRIC,&photometric); if (!construct_matched(im,tiff_type_format_checker(bps,photometric))) { io_error("tiff_reader_dynamic::read_image(): no matching image type between those of the given any_image and that of the file"); } else { im.recreate(width,height); dynamic_io_fnobj<tiff_read_is_supported, tiff_reader> op(this); apply_operation(view(im),op); } } }; } // namespace detail /// \ingroup TIFF_IO /// \brief reads a TIFF image into a run-time instantiated image /// Opens the given tiff file name, selects the first type in Images whose color space and channel are compatible to those of the image file /// and creates a new image of that type with the dimensions specified by the image file. /// Throws std::ios_base::failure if none of the types in Images are compatible with the type on disk. template <typename Images> inline void tiff_read_image(const char* filename,any_image<Images>& im) { detail::tiff_reader_dynamic m(filename); m.read_image(im); } /// \ingroup TIFF_IO /// \brief reads a TIFF image into a run-time instantiated image template <typename Images> inline void tiff_read_image(const std::string& filename,any_image<Images>& im) { tiff_read_image(filename.c_str(),im); } /// \ingroup TIFF_IO /// \brief Saves the currently instantiated view to a tiff file specified by the given tiff image file name. /// Throws std::ios_base::failure if the currently instantiated view type is not supported for writing by the I/O extension /// or if it fails to create the file. template <typename Views> inline void tiff_write_view(const char* filename,const any_image_view<Views>& runtime_view) { detail::tiff_writer_dynamic m(filename); m.write_view(runtime_view); } /// \ingroup TIFF_IO /// \brief Saves the currently instantiated view to a tiff file specified by the given tiff image file name. template <typename Views> inline void tiff_write_view(const std::string& filename,const any_image_view<Views>& runtime_view) { tiff_write_view(filename.c_str(),runtime_view); } } } // namespace boost::gil #endif
------------------------------------------------------------------------ -- "Equational" reasoning combinator setup ------------------------------------------------------------------------ {-# OPTIONS --safe #-} open import Labelled-transition-system -- Note that the module parameter is explicit. If the LTS is not given -- explicitly, then the use of _[ μ ]⟶_ in the instances below can -- make it hard for Agda to infer what instance to use. module Labelled-transition-system.Equational-reasoning-instances {ℓ} (lts : LTS ℓ) where open import Prelude open import Equational-reasoning open LTS lts private -- Converts one kind of proof of silence to another kind. get : ∀ {μ} → T (silent? μ) → Silent μ get {μ} _ with silent? μ get {μ} () | no _ get {μ} _ | yes s = s instance convert⟶ : ∀ {μ} → Convertible _[ μ ]⟶_ _[ μ ]⟶_ convert⟶ = is-convertible id convert⟶⇒ : ∀ {μ} {s : T (silent? μ)} → Convertible _[ μ ]⟶_ _⇒_ convert⟶⇒ {s = s} = is-convertible (⟶→⇒ (get s)) convert⟶[]⇒ : ∀ {μ} → Convertible _[ μ ]⟶_ _[ μ ]⇒_ convert⟶[]⇒ = is-convertible ⟶→[]⇒ convert⟶⇒̂ : ∀ {μ} → Convertible _[ μ ]⟶_ _[ μ ]⇒̂_ convert⟶⇒̂ = is-convertible ⟶→⇒̂ convert⟶⟶̂ : ∀ {μ} → Convertible _[ μ ]⟶_ _[ μ ]⟶̂_ convert⟶⟶̂ = is-convertible ⟶→⟶̂ convert⇒ : Convertible _⇒_ _⇒_ convert⇒ = is-convertible id convert⇒⇒̂ : ∀ {μ} {s : T (silent? μ)} → Convertible _⇒_ _[ μ ]⇒̂_ convert⇒⇒̂ {s = s} = is-convertible (silent (get s)) convert[]⇒ : ∀ {μ} → Convertible _[ μ ]⇒_ _[ μ ]⇒_ convert[]⇒ = is-convertible id convert[]⇒⇒ : ∀ {μ} {s : T (silent? μ)} → Convertible _[ μ ]⇒_ _⇒_ convert[]⇒⇒ {s = s} = is-convertible ([]⇒→⇒ (get s)) convert[]⇒⇒̂ : ∀ {μ} → Convertible _[ μ ]⇒_ _[ μ ]⇒̂_ convert[]⇒⇒̂ = is-convertible ⇒→⇒̂ convert⇒̂ : ∀ {μ} → Convertible _[ μ ]⇒̂_ _[ μ ]⇒̂_ convert⇒̂ = is-convertible id convert⇒̂⇒ : ∀ {μ} {s : T (silent? μ)} → Convertible _[ μ ]⇒̂_ _⇒_ convert⇒̂⇒ {s = s} = is-convertible (⇒̂→⇒ (get s)) convert⇒̂[]⇒ : ∀ {μ} {¬s : if (silent? μ) then ⊥ else ⊤} → Convertible _[ μ ]⇒̂_ _[ μ ]⇒_ convert⇒̂[]⇒ {μ} with silent? μ convert⇒̂[]⇒ {¬s = ()} | yes _ convert⇒̂[]⇒ | no ¬s = is-convertible (⇒̂→[]⇒ ¬s) convert⟶̂ : ∀ {μ} → Convertible _[ μ ]⟶̂_ _[ μ ]⟶̂_ convert⟶̂ = is-convertible id convert⟶̂⇒ : ∀ {μ} {s : T (silent? μ)} → Convertible _[ μ ]⟶̂_ _⇒_ convert⟶̂⇒ {s = s} = is-convertible (⟶̂→⇒ (get s)) convert⟶̂⇒̂ : ∀ {μ} → Convertible _[ μ ]⟶̂_ _[ μ ]⇒̂_ convert⟶̂⇒̂ = is-convertible ⟶̂→⇒̂ reflexive⇒ : Reflexive _⇒_ reflexive⇒ = is-reflexive done reflexive⟶̂ : ∀ {μ} {s : T (silent? μ)} → Reflexive _[ μ ]⟶̂_ reflexive⟶̂ {s = s} = is-reflexive (done (get s)) reflexive⇒̂ : ∀ {μ} {s : T (silent? μ)} → Reflexive _[ μ ]⇒̂_ reflexive⇒̂ {s = s} = is-reflexive (silent (get s) done) trans⇒ : Transitive _⇒_ _⇒_ trans⇒ = is-transitive ⇒-transitive trans⟶⇒ : ∀ {μ} {s : T (silent? μ)} → Transitive _[ μ ]⟶_ _⇒_ trans⟶⇒ {s = s} = is-transitive (⇒-transitive ∘ ⟶→⇒ (get s)) trans⇒̂⇒ : ∀ {μ} {s : T (silent? μ)} → Transitive _[ μ ]⇒̂_ _⇒_ trans⇒̂⇒ {s = s} = is-transitive (⇒-transitive ∘ ⇒̂→⇒ (get s)) trans⟶̂⇒ : ∀ {μ} {s : T (silent? μ)} → Transitive _[ μ ]⟶̂_ _⇒_ trans⟶̂⇒ {s = s} = is-transitive (⇒-transitive ∘ ⟶̂→⇒ (get s)) trans⇒[]⇒ : ∀ {μ} → Transitive _⇒_ _[ μ ]⇒_ trans⇒[]⇒ = is-transitive ⇒[]⇒-transitive trans⟶[]⇒ : ∀ {μ μ′} {s : T (silent? μ′)} → Transitive _[ μ′ ]⟶_ _[ μ ]⇒_ trans⟶[]⇒ {s = s} = is-transitive (⇒[]⇒-transitive ∘ ⟶→⇒ (get s)) trans[]⇒[]⇒ : ∀ {μ μ′} {s : T (silent? μ′)} → Transitive _[ μ′ ]⇒_ _[ μ ]⇒_ trans[]⇒[]⇒ {s = s} = is-transitive (⇒[]⇒-transitive ∘ []⇒→⇒ (get s)) trans⟶̂[]⇒ : ∀ {μ μ′} {s : T (silent? μ′)} → Transitive _[ μ′ ]⟶̂_ _[ μ ]⇒_ trans⟶̂[]⇒ {s = s} = is-transitive (⇒[]⇒-transitive ∘ ⟶̂→⇒ (get s)) trans⇒⇒̂ : ∀ {μ} → Transitive _⇒_ _[ μ ]⇒̂_ trans⇒⇒̂ = is-transitive ⇒⇒̂-transitive trans⟶⇒̂ : ∀ {μ μ′} {s : T (silent? μ′)} → Transitive _[ μ′ ]⟶_ _[ μ ]⇒̂_ trans⟶⇒̂ {s = s} = is-transitive (⇒⇒̂-transitive ∘ ⟶→⇒ (get s)) trans[]⇒⇒̂ : ∀ {μ μ′} {s : T (silent? μ′)} → Transitive _[ μ′ ]⇒_ _[ μ ]⇒̂_ trans[]⇒⇒̂ {s = s} = is-transitive (⇒⇒̂-transitive ∘ []⇒→⇒ (get s)) trans[]⇒̂⇒̂ : ∀ {μ μ′} {s : T (silent? μ′)} → Transitive _[ μ′ ]⇒̂_ _[ μ ]⇒̂_ trans[]⇒̂⇒̂ {s = s} = is-transitive (⇒⇒̂-transitive ∘ ⇒̂→⇒ (get s)) trans⟶̂⇒̂ : ∀ {μ μ′} {s : T (silent? μ′)} → Transitive _[ μ′ ]⟶̂_ _[ μ ]⇒̂_ trans⟶̂⇒̂ {s = s} = is-transitive (⇒⇒̂-transitive ∘ ⟶̂→⇒ (get s)) trans′⇒⟶ : ∀ {μ} {s : T (silent? μ)} → Transitive′ _⇒_ _[ μ ]⟶_ trans′⇒⟶ {s = s} = is-transitive (flip (flip ⇒-transitive ∘ ⟶→⇒ (get s))) trans′⇒[]⇒ : ∀ {μ} {s : T (silent? μ)} → Transitive′ _⇒_ _[ μ ]⇒_ trans′⇒[]⇒ {s = s} = is-transitive (flip (flip ⇒-transitive ∘ []⇒→⇒ (get s))) trans′⇒⇒̂ : ∀ {μ} {s : T (silent? μ)} → Transitive′ _⇒_ _[ μ ]⇒̂_ trans′⇒⇒̂ {s = s} = is-transitive (flip (flip ⇒-transitive ∘ ⇒̂→⇒ (get s))) trans′⇒⟶̂ : ∀ {μ} {s : T (silent? μ)} → Transitive′ _⇒_ _[ μ ]⟶̂_ trans′⇒⟶̂ {s = s} = is-transitive (flip (flip ⇒-transitive ∘ ⟶̂→⇒ (get s))) trans′[]⇒⟶ : ∀ {μ μ′} {s : T (silent? μ′)} → Transitive′ _[ μ ]⇒_ _[ μ′ ]⟶_ trans′[]⇒⟶ {s = s} = is-transitive (flip (flip []⇒⇒-transitive ∘ ⟶→⇒ (get s))) trans′[]⇒⇒ : ∀ {μ} → Transitive′ _[ μ ]⇒_ _⇒_ trans′[]⇒⇒ = is-transitive []⇒⇒-transitive trans′[]⇒[]⇒ : ∀ {μ μ′} {s : T (silent? μ′)} → Transitive′ _[ μ ]⇒_ _[ μ′ ]⇒_ trans′[]⇒[]⇒ {s = s} = is-transitive (flip (flip []⇒⇒-transitive ∘ []⇒→⇒ (get s))) trans′[]⇒[]⇒̂ : ∀ {μ μ′} {s : T (silent? μ′)} → Transitive′ _[ μ ]⇒_ _[ μ′ ]⇒̂_ trans′[]⇒[]⇒̂ {s = s} = is-transitive (flip (flip []⇒⇒-transitive ∘ ⇒̂→⇒ (get s))) trans′[]⇒⟶̂ : ∀ {μ μ′} {s : T (silent? μ′)} → Transitive′ _[ μ ]⇒_ _[ μ′ ]⟶̂_ trans′[]⇒⟶̂ {s = s} = is-transitive (flip (flip []⇒⇒-transitive ∘ ⟶̂→⇒ (get s))) trans′⇒̂⟶ : ∀ {μ μ′} {s : T (silent? μ′)} → Transitive′ _[ μ ]⇒̂_ _[ μ′ ]⟶_ trans′⇒̂⟶ {s = s} = is-transitive (flip (flip ⇒̂⇒-transitive ∘ ⟶→⇒ (get s))) trans′⇒̂⇒ : ∀ {μ} → Transitive′ _[ μ ]⇒̂_ _⇒_ trans′⇒̂⇒ = is-transitive ⇒̂⇒-transitive trans′⇒̂[]⇒ : ∀ {μ μ′} {s : T (silent? μ′)} → Transitive′ _[ μ ]⇒̂_ _[ μ′ ]⇒_ trans′⇒̂[]⇒ {s = s} = is-transitive (flip (flip ⇒̂⇒-transitive ∘ []⇒→⇒ (get s))) trans′⇒̂⇒̂ : ∀ {μ μ′} {s : T (silent? μ′)} → Transitive′ _[ μ ]⇒̂_ _[ μ′ ]⇒̂_ trans′⇒̂⇒̂ {s = s} = is-transitive (flip (flip ⇒̂⇒-transitive ∘ ⇒̂→⇒ (get s))) trans′⇒̂⟶̂ : ∀ {μ μ′} {s : T (silent? μ′)} → Transitive′ _[ μ ]⇒̂_ _[ μ′ ]⟶̂_ trans′⇒̂⟶̂ {s = s} = is-transitive (flip (flip ⇒̂⇒-transitive ∘ ⟶̂→⇒ (get s)))
A fairly cold last half of January meant that I went through quite a bit of wood. Just to be safe, I had some replenishment delivered. I wonder will this satisfy the valentine desires for warmth and ambiance ?
(* Import ListNotations. *) (* Local Open Scope logic. *) Require Import HMAC_functional_prog. Require Import SHA256. Lemma mkKey_length l: length (HMAC_SHA256.mkKey l) = SHA256_.BlockSize. Proof. intros. unfold HMAC_SHA256.mkKey. remember (Zlength l >? Z.of_nat SHA256_.BlockSize) as z. destruct z. apply zeroPad_BlockSize. rewrite length_SHA256'. apply Nat2Z.inj_le. simpl. omega. apply zeroPad_BlockSize. rewrite Zlength_correct in Heqz. apply Nat2Z.inj_le. specialize (Zgt_cases (Z.of_nat (Datatypes.length l)) (Z.of_nat SHA256.BlockSize)). rewrite <- Heqz. trivial. Qed.
example : True := by apply True.intro --^ textDocument/hover example : True := by simp [True.intro] --^ textDocument/hover example (n : Nat) : True := by match n with | Nat.zero => _ --^ textDocument/hover | n + 1 => _
/- Copyright (c) 2022 Oliver Nash. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Oliver Nash -/ import algebra.lie.nilpotent import algebra.lie.cartan_subalgebra /-! # Engel's theorem This file contains a proof of Engel's theorem providing necessary and sufficient conditions for Lie algebras and Lie modules to be nilpotent. The key result `lie_module.is_nilpotent_iff_forall` says that if `M` is a Lie module of a Noetherian Lie algebra `L`, then `M` is nilpotent iff the image of `L → End(M)` consists of nilpotent elements. In the special case that we have the adjoint representation `M = L`, this says that a Lie algebra is nilpotent iff `ad x : End(L)` is nilpotent for all `x : L`. Engel's theorem is true for any coefficients (i.e., it is really a theorem about Lie rings) and so we work with coefficients in any commutative ring `R` throughout. On the other hand, Engel's theorem is not true for infinite-dimensional Lie algebras and so a finite-dimensionality assumption is required. We prove the theorem subject to the the assumption that the Lie algebra is Noetherian as an `R`-module, though actually we only need the slightly weaker property that the relation `>` is well-founded on the complete lattice of Lie subalgebras. ## Remarks about the proof Engel's theorem is usually proved in the special case that the coefficients are a field, and uses an inductive argument on the dimension of the Lie algebra. One begins by choosing either a maximal proper Lie subalgebra (in some proofs) or a maximal nilpotent Lie subalgebra (in other proofs, at the cost of obtaining a weaker end result). Since we work with general coefficients, we cannot induct on dimension and an alternate approach must be taken. The key ingredient is the concept of nilpotency, not just for Lie algebras, but for Lie modules. Using this concept, we define an _Engelian Lie algebra_ `lie_algebra.is_engelian` to be one for which a Lie module is nilpotent whenever the action consists of nilpotent endomorphisms. The argument then proceeds by selecting a maximal Engelian Lie subalgebra and showing that it cannot be proper. The first part of the traditional statement of Engel's theorem consists of the statement that if `M` is a non-trivial `R`-module and `L ⊆ End(M)` is a finite-dimensional Lie subalgebra of nilpotent elements, then there exists a non-zero element `m : M` that is annihilated by every element of `L`. This follows trivially from the result established here `lie_module.is_nilpotent_iff_forall`, that `M` is a nilpotent Lie module over `L`, since the last non-zero term in the lower central series will consist of such elements `m` (see: `lie_module.nontrivial_max_triv_of_is_nilpotent`). It seems that this result has not previously been established at this level of generality. The second part of the traditional statement of Engel's theorem concerns nilpotency of the Lie algebra and a proof of this for general coefficients appeared in the literature as long ago [as 1937](zorn1937). This also follows trivially from `lie_module.is_nilpotent_iff_forall` simply by taking `M = L`. It is pleasing that the two parts of the traditional statements of Engel's theorem are thus unified into a single statement about nilpotency of Lie modules. This is not usually emphasised. ## Main definitions * `lie_algebra.is_engelian` * `lie_algebra.is_engelian_of_is_noetherian` * `lie_module.is_nilpotent_iff_forall` * `lie_algebra.is_nilpotent_iff_forall` -/ universes u₁ u₂ u₃ u₄ variables {R : Type u₁} {L : Type u₂} {L₂ : Type u₃} {M : Type u₄} variables [comm_ring R] [lie_ring L] [lie_algebra R L] [lie_ring L₂] [lie_algebra R L₂] variables [add_comm_group M] [module R M] [lie_ring_module L M] [lie_module R L M] include R L namespace lie_submodule open lie_module variables {I : lie_ideal R L} {x : L} (hxI : (R ∙ x) ⊔ I = ⊤) include hxI lemma exists_smul_add_of_span_sup_eq_top (y : L) : ∃ (t : R) (z ∈ I), y = t • x + z := begin have hy : y ∈ (⊤ : submodule R L) := submodule.mem_top, simp only [← hxI, submodule.mem_sup, submodule.mem_span_singleton] at hy, obtain ⟨-, ⟨t, rfl⟩, z, hz, rfl⟩ := hy, exact ⟨t, z, hz, rfl⟩, end lemma lie_top_eq_of_span_sup_eq_top (N : lie_submodule R L M) : (↑⁅(⊤ : lie_ideal R L), N⁆ : submodule R M) = (N : submodule R M).map (to_endomorphism R L M x) ⊔ (↑⁅I, N⁆ : submodule R M) := begin simp only [lie_ideal_oper_eq_linear_span', submodule.sup_span, mem_top, exists_prop, exists_true_left, submodule.map_coe, to_endomorphism_apply_apply], refine le_antisymm (submodule.span_le.mpr _) (submodule.span_mono (λ z hz, _)), { rintros z ⟨y, n, hn : n ∈ N, rfl⟩, obtain ⟨t, z, hz, rfl⟩ := exists_smul_add_of_span_sup_eq_top hxI y, simp only [set_like.mem_coe, submodule.span_union, submodule.mem_sup], exact ⟨t • ⁅x, n⁆, submodule.subset_span ⟨t • n, N.smul_mem' t hn, lie_smul t x n⟩, ⁅z, n⁆, submodule.subset_span ⟨z, hz, n, hn, rfl⟩, by simp⟩, }, { rcases hz with ⟨m, hm, rfl⟩ | ⟨y, hy, m, hm, rfl⟩, exacts [⟨x, m, hm, rfl⟩, ⟨y, m, hm, rfl⟩], }, end lemma lcs_le_lcs_of_is_nilpotent_span_sup_eq_top {n i j : ℕ} (hxn : (to_endomorphism R L M x)^n = 0) (hIM : lower_central_series R L M i ≤ I.lcs M j) : lower_central_series R L M (i + n) ≤ I.lcs M (j + 1) := begin suffices : ∀ l, ((⊤ : lie_ideal R L).lcs M (i + l) : submodule R M) ≤ (I.lcs M j : submodule R M).map ((to_endomorphism R L M x)^l) ⊔ (I.lcs M (j + 1) : submodule R M), { simpa only [bot_sup_eq, lie_ideal.incl_coe, submodule.map_zero, hxn] using this n, }, intros l, induction l with l ih, { simp only [add_zero, lie_ideal.lcs_succ, pow_zero, linear_map.one_eq_id, submodule.map_id], exact le_sup_of_le_left hIM, }, { simp only [lie_ideal.lcs_succ, i.add_succ l, lie_top_eq_of_span_sup_eq_top hxI, sup_le_iff], refine ⟨(submodule.map_mono ih).trans _, le_sup_of_le_right _⟩, { rw [submodule.map_sup, ← submodule.map_comp, ← linear_map.mul_eq_comp, ← pow_succ, ← I.lcs_succ], exact sup_le_sup_left coe_map_to_endomorphism_le _, }, { refine le_trans (mono_lie_right _ _ I _) (mono_lie_right _ _ I hIM), exact antitone_lower_central_series R L M le_self_add, }, }, end lemma is_nilpotent_of_is_nilpotent_span_sup_eq_top (hnp : is_nilpotent $ to_endomorphism R L M x) (hIM : is_nilpotent R I M) : is_nilpotent R L M := begin obtain ⟨n, hn⟩ := hnp, unfreezingI { obtain ⟨k, hk⟩ := hIM, }, have hk' : I.lcs M k = ⊥, { simp only [← coe_to_submodule_eq_iff, I.coe_lcs_eq, hk, bot_coe_submodule], }, suffices : ∀ l, lower_central_series R L M (l * n) ≤ I.lcs M l, { use k * n, simpa [hk'] using this k, }, intros l, induction l with l ih, { simp, }, { exact (l.succ_mul n).symm ▸ lcs_le_lcs_of_is_nilpotent_span_sup_eq_top hxI hn ih, }, end end lie_submodule section lie_algebra open lie_module (hiding is_nilpotent) variables (R L) /-- A Lie algebra `L` is said to be Engelian if a sufficient condition for any `L`-Lie module `M` to be nilpotent is that the image of the map `L → End(M)` consists of nilpotent elements. Engel's theorem `lie_algebra.is_engelian_of_is_noetherian` states that any Noetherian Lie algebra is Engelian. -/ def lie_algebra.is_engelian : Prop := ∀ (M : Type u₄) [add_comm_group M], by exactI ∀ [module R M] [lie_ring_module L M], by exactI ∀ [lie_module R L M], by exactI ∀ (h : ∀ (x : L), is_nilpotent (to_endomorphism R L M x)), lie_module.is_nilpotent R L M variables {R L} lemma lie_algebra.is_engelian_of_subsingleton [subsingleton L] : lie_algebra.is_engelian R L := begin intros M _i1 _i2 _i3 _i4 h, use 1, suffices : (⊤ : lie_ideal R L) = ⊥, { simp [this], }, haveI := (lie_submodule.subsingleton_iff R L L).mpr infer_instance, apply subsingleton.elim, end lemma function.surjective.is_engelian {f : L →ₗ⁅R⁆ L₂} (hf : function.surjective f) (h : lie_algebra.is_engelian.{u₁ u₂ u₄} R L) : lie_algebra.is_engelian.{u₁ u₃ u₄} R L₂ := begin introsI M _i1 _i2 _i3 _i4 h', letI : lie_ring_module L M := lie_ring_module.comp_lie_hom M f, letI : lie_module R L M := comp_lie_hom M f, have hnp : ∀ x, is_nilpotent (to_endomorphism R L M x) := λ x, h' (f x), have surj_id : function.surjective (linear_map.id : M →ₗ[R] M) := function.surjective_id, haveI : lie_module.is_nilpotent R L M := h M hnp, apply hf.lie_module_is_nilpotent surj_id, simp, end lemma lie_equiv.is_engelian_iff (e : L ≃ₗ⁅R⁆ L₂) : lie_algebra.is_engelian.{u₁ u₂ u₄} R L ↔ lie_algebra.is_engelian.{u₁ u₃ u₄} R L₂ := ⟨e.surjective.is_engelian, e.symm.surjective.is_engelian⟩ lemma lie_algebra.exists_engelian_lie_subalgebra_of_lt_normalizer {K : lie_subalgebra R L} (hK₁ : lie_algebra.is_engelian.{u₁ u₂ u₄} R K) (hK₂ : K < K.normalizer) : ∃ (K' : lie_subalgebra R L) (hK' : lie_algebra.is_engelian.{u₁ u₂ u₄} R K'), K < K' := begin obtain ⟨x, hx₁, hx₂⟩ := set_like.exists_of_lt hK₂, let K' : lie_subalgebra R L := { lie_mem' := λ y z, lie_subalgebra.lie_mem_sup_of_mem_normalizer hx₁, .. (R ∙ x) ⊔ (K : submodule R L) }, have hxK' : x ∈ K' := submodule.mem_sup_left (submodule.subset_span (set.mem_singleton _)), have hKK' : K ≤ K' := (lie_subalgebra.coe_submodule_le_coe_submodule K K').mp le_sup_right, have hK' : K' ≤ K.normalizer, { rw ← lie_subalgebra.coe_submodule_le_coe_submodule, exact sup_le ((submodule.span_singleton_le_iff_mem _ _).mpr hx₁) hK₂.le, }, refine ⟨K', _, lt_iff_le_and_ne.mpr ⟨hKK', λ contra, hx₂ (contra.symm ▸ hxK')⟩⟩, introsI M _i1 _i2 _i3 _i4 h, obtain ⟨I, hI₁ : (I : lie_subalgebra R K') = lie_subalgebra.of_le hKK'⟩ := lie_subalgebra.exists_nested_lie_ideal_of_le_normalizer hKK' hK', have hI₂ : (R ∙ (⟨x, hxK'⟩ : K')) ⊔ I = ⊤, { rw [← lie_ideal.coe_to_lie_subalgebra_to_submodule R K' I, hI₁], apply submodule.map_injective_of_injective (K' : submodule R L).injective_subtype, simpa, }, have e : K ≃ₗ⁅R⁆ I := (lie_subalgebra.equiv_of_le hKK').trans (lie_equiv.of_eq _ _ ((lie_subalgebra.coe_set_eq _ _).mpr hI₁.symm)), have hI₃ : lie_algebra.is_engelian R I := e.is_engelian_iff.mp hK₁, exact lie_submodule.is_nilpotent_of_is_nilpotent_span_sup_eq_top hI₂ (h _) (hI₃ _ (λ x, h x)), end local attribute [instance] lie_subalgebra.subsingleton_bot variables [is_noetherian R L] /-- *Engel's theorem*. Note that this implies all traditional forms of Engel's theorem via `lie_module.nontrivial_max_triv_of_is_nilpotent`, `lie_module.is_nilpotent_iff_forall`, `lie_algebra.is_nilpotent_iff_forall`. -/ lemma lie_algebra.is_engelian_of_is_noetherian : lie_algebra.is_engelian R L := begin introsI M _i1 _i2 _i3 _i4 h, rw ← is_nilpotent_range_to_endomorphism_iff, let L' := (to_endomorphism R L M).range, replace h : ∀ (y : L'), is_nilpotent (y : module.End R M), { rintros ⟨-, ⟨y, rfl⟩⟩, simp [h], }, change lie_module.is_nilpotent R L' M, let s := { K : lie_subalgebra R L' | lie_algebra.is_engelian R K }, have hs : s.nonempty := ⟨⊥, lie_algebra.is_engelian_of_subsingleton⟩, suffices : ⊤ ∈ s, { rw ← is_nilpotent_of_top_iff, apply this M, simp [lie_subalgebra.to_endomorphism_eq, h], }, have : ∀ (K ∈ s), K ≠ ⊤ → ∃ (K' ∈ s), K < K', { rintros K (hK₁ : lie_algebra.is_engelian R K) hK₂, apply lie_algebra.exists_engelian_lie_subalgebra_of_lt_normalizer hK₁, apply lt_of_le_of_ne K.le_normalizer, rw [ne.def, eq_comm, K.normalizer_eq_self_iff, ← ne.def, ← lie_submodule.nontrivial_iff_ne_bot R K], haveI : nontrivial (L' ⧸ K.to_lie_submodule), { replace hK₂ : K.to_lie_submodule ≠ ⊤ := by rwa [ne.def, ← lie_submodule.coe_to_submodule_eq_iff, K.coe_to_lie_submodule, lie_submodule.top_coe_submodule, ← lie_subalgebra.top_coe_submodule, K.coe_to_submodule_eq_iff], exact submodule.quotient.nontrivial_of_lt_top _ hK₂.lt_top, }, haveI : lie_module.is_nilpotent R K (L' ⧸ K.to_lie_submodule), { refine hK₁ _ (λ x, _), have hx := lie_algebra.is_nilpotent_ad_of_is_nilpotent (h x), exact module.End.is_nilpotent.mapq _ hx, }, exact nontrivial_max_triv_of_is_nilpotent R K (L' ⧸ K.to_lie_submodule), }, haveI _i5 : is_noetherian R L' := is_noetherian_of_surjective L _ (linear_map.range_range_restrict (to_endomorphism R L M)), obtain ⟨K, hK₁, hK₂⟩ := well_founded.well_founded_iff_has_max'.mp (lie_subalgebra.well_founded_of_noetherian R L') s hs, have hK₃ : K = ⊤, { by_contra contra, obtain ⟨K', hK'₁, hK'₂⟩ := this K hK₁ contra, specialize hK₂ K' hK'₁ (le_of_lt hK'₂), replace hK'₂ := (ne_of_lt hK'₂).symm, contradiction, }, exact hK₃ ▸ hK₁, end /-- Engel's theorem. -/ lemma lie_module.is_nilpotent_iff_forall : lie_module.is_nilpotent R L M ↔ ∀ x, is_nilpotent $ to_endomorphism R L M x := ⟨begin introsI h, obtain ⟨k, hk⟩ := nilpotent_endo_of_nilpotent_module R L M, exact λ x, ⟨k, hk x⟩, end, λ h, lie_algebra.is_engelian_of_is_noetherian M h⟩ /-- Engel's theorem. -/ lemma lie_algebra.is_nilpotent_iff_forall : lie_algebra.is_nilpotent R L ↔ ∀ x, is_nilpotent $ lie_algebra.ad R L x := lie_module.is_nilpotent_iff_forall end lie_algebra
# Euler1 in R euler1 <- function(size) { result <- 0 for (x in 1:size) { if (x %% 3 == 0 || x %% 5 == 0) result <- result + x } result } euler1(999)
Formal statement is: lemma\<^marker>\<open>tag important\<close> outer_regular_lborel: assumes B: "B \<in> sets borel" and "0 < (e::real)" obtains U where "open U" "B \<subseteq> U" "emeasure lborel (U - B) < e" Informal statement is: For any Borel set $B$ and any $\epsilon > 0$, there exists an open set $U$ such that $B \subseteq U$ and $\mu(U - B) < \epsilon$.
From Coq Require Import String Arith Psatz Bool List Program.Equality Lists.ListSet . From DanTrick Require Import DanTrickLanguage DanLogProp DanLogicHelpers StackLanguage StackLangEval EnvToStack StackLogicGrammar LogicProp TranslationPure FunctionWellFormed ImpVarMap ImpVarMapTheorems StackLangTheorems. From DanTrick Require Export LogicTranslationBase ParamsWellFormed FunctionWellFormed. Lemma compile_bool_args_sound_pos : forall (vals: list bool) (sargs: list bexp_stack) (dargs: list bexp_Dan) (num_args: nat) (idents: list ident), compile_bool_args num_args idents dargs sargs -> forall fenv_d fenv_s func_list, forall (FENV_WF: fenv_well_formed' func_list fenv_d), fenv_s = compile_fenv fenv_d -> (forall aD aS, aS = compile_aexp aD (fun x => one_index_opt x idents) (List.length idents) -> forall (FUN_APP_AEXP: fun_app_well_formed fenv_d func_list aD), forall (MAP_WF_AEXP: var_map_wf_wrt_aexp idents aD), forall nenv dbenv stk n rho, List.length dbenv = num_args -> state_to_stack idents nenv dbenv stk -> a_Dan aD dbenv fenv_d nenv n -> aexp_stack_sem aS fenv_s (stk ++ rho) (stk ++ rho, n)) -> (forall bD bS, bS = compile_bexp bD (fun x => one_index_opt x idents) (List.length idents) -> forall (FUN_APP_BEXP: fun_app_bexp_well_formed fenv_d func_list bD), forall (MAP_WF_BEXP: var_map_wf_wrt_bexp idents bD), forall nenv dbenv stk bl rho, List.length dbenv = num_args -> state_to_stack idents nenv dbenv stk -> b_Dan bD dbenv fenv_d nenv bl -> bexp_stack_sem bS fenv_s (stk ++ rho) (stk ++ rho, bl)) -> forall nenv dbenv, List.length dbenv = num_args -> (eval_prop_args_rel (fun (b : bexp_Dan) (v : bool) => b_Dan b dbenv fenv_d nenv v) dargs vals) -> forall (ARGS_FUN_APP: prop_args_rel (V := bool) (fun_app_bexp_well_formed fenv_d func_list) dargs), forall (ARGS_MAP_WF: prop_args_rel (V := bool) (var_map_wf_wrt_bexp idents) dargs), forall stk, state_to_stack idents nenv dbenv stk -> forall rho, eval_prop_args_rel (fun (boolexpr : bexp_stack) (boolval : bool) => bexp_stack_sem boolexpr (compile_fenv fenv_d) (stk ++ rho) (stk ++ rho, boolval)) sargs vals. Proof. induction vals. - intros. inversion H4. subst. inversion H. subst. inversion H0. subst. apply RelArgsNil. - intros. inversion H4. subst. inversion H. subst. inversion H0. subst. inversion ARGS_FUN_APP. inversion ARGS_MAP_WF. subst. apply RelArgsCons. + pose proof (BEXP := H2 arg (comp_bool idents arg)). eapply BEXP. -- unfold comp_bool. auto. -- eauto. -- eauto. -- eapply eq_refl. -- apply H5. -- auto. + pose proof (IHvals args' args (Datatypes.length dbenv) idents) as int. pose proof (CompiledBoolArgs idents (Datatypes.length dbenv) args args' H9). pose proof (int H3 fenv_d (compile_fenv fenv_d)) as int2. pose proof (eq_refl (compile_fenv fenv_d)) as eq. pose proof (int2 func_list FENV_WF eq H1 H2 nenv dbenv) as int3. pose proof (eq_refl (Datatypes.length dbenv)) as eq2. pose proof (int3 eq2 H11 H12 H17 stk H5 rho) as conc. apply conc. Qed. Lemma compile_arith_args_sound_pos : forall vals sargs dargs num_args idents, compile_arith_args num_args idents dargs sargs -> forall fenv_d fenv_s func_list, forall (FENV_WF: fenv_well_formed' func_list fenv_d), fenv_s = compile_fenv fenv_d -> (forall aD aS, aS = compile_aexp aD (fun x => one_index_opt x idents) (List.length idents) -> forall (FUN_APP_AEXP: fun_app_well_formed fenv_d func_list aD), forall (MAP_WF_AEXP: var_map_wf_wrt_aexp idents aD), forall nenv dbenv stk n rho, List.length dbenv = num_args -> state_to_stack idents nenv dbenv stk -> a_Dan aD dbenv fenv_d nenv n -> aexp_stack_sem aS fenv_s (stk ++ rho) (stk ++ rho, n)) -> (forall bD bS, bS = compile_bexp bD (fun x => one_index_opt x idents) (List.length idents) -> forall (FUN_APP_BEXP: fun_app_bexp_well_formed fenv_d func_list bD), forall (MAP_WF_BEXP: var_map_wf_wrt_bexp idents bD), forall nenv dbenv stk bl rho, List.length dbenv = num_args -> state_to_stack idents nenv dbenv stk -> b_Dan bD dbenv fenv_d nenv bl -> bexp_stack_sem bS fenv_s (stk ++ rho) (stk ++ rho, bl)) -> forall nenv dbenv, List.length dbenv = num_args -> (eval_prop_args_rel (fun (b : aexp_Dan) (v : nat) => a_Dan b dbenv fenv_d nenv v) dargs vals) -> forall (ARGS_FUN_APP: prop_args_rel (V := nat) (fun_app_well_formed fenv_d func_list) dargs), forall (ARGS_MAP_WF: prop_args_rel (V := nat) (var_map_wf_wrt_aexp idents) dargs), forall stk, state_to_stack idents nenv dbenv stk -> forall rho, eval_prop_args_rel (fun (boolexpr : aexp_stack) (boolval : nat) => aexp_stack_sem boolexpr (compile_fenv fenv_d) (stk ++ rho) (stk ++ rho, boolval)) sargs vals. Proof. induction vals. - intros. inversion H4. subst. inversion H. subst. inversion H0. subst. apply RelArgsNil. - intros. inversion H4. subst. inversion H. subst. inversion H0. subst. inversion ARGS_FUN_APP. inversion ARGS_MAP_WF. subst. apply RelArgsCons. + pose proof (AEXP := H1 arg (comp_arith idents arg)). eapply AEXP. -- auto. -- auto. -- auto. -- reflexivity. -- eauto. -- eauto. + pose proof (IHvals args' args (Datatypes.length dbenv) idents) as int. pose proof (CompiledArithArgs idents (Datatypes.length dbenv) args args' H9). pose proof (int H3 fenv_d (compile_fenv fenv_d)) as int2. pose proof (eq_refl (compile_fenv fenv_d)) as eq. pose proof (int2 func_list FENV_WF eq H1 H2 nenv dbenv) as int3. pose proof (eq_refl (Datatypes.length dbenv)) as eq2. pose proof (int3 eq2 H11 H12 H17 stk H5 rho) as conc. apply conc. Qed. Lemma trans_sound_pos_assume_comp_basestate_lp_aexp (idents : list DanTrickLanguage.ident) (dbenv : list nat) (fenv_d : fun_env) (func_list : list fun_Dan) (FENV_WF : fenv_well_formed' func_list fenv_d) (H1 : forall (aD : aexp_Dan) (aS : aexp_stack), aS = compile_aexp aD (fun x : ident => one_index_opt x idents) (Datatypes.length idents) -> fun_app_well_formed fenv_d func_list aD -> var_map_wf_wrt_aexp idents aD -> forall (nenv : nat_env) (dbenv0 stk : list nat) (n : nat) (rho : list nat), Datatypes.length dbenv0 = Datatypes.length dbenv -> state_to_stack idents nenv dbenv0 stk -> a_Dan aD dbenv0 fenv_d nenv n -> aexp_stack_sem aS (compile_fenv fenv_d) (stk ++ rho) (stk ++ rho, n)) (H2 : forall (bD : bexp_Dan) (bS : bexp_stack), bS = compile_bexp bD (fun x : ident => one_index_opt x idents) (Datatypes.length idents) -> fun_app_bexp_well_formed fenv_d func_list bD -> var_map_wf_wrt_bexp idents bD -> forall (nenv : nat_env) (dbenv0 stk : list nat) (bl : bool) (rho : list nat), Datatypes.length dbenv0 = Datatypes.length dbenv -> state_to_stack idents nenv dbenv0 stk -> b_Dan bD dbenv0 fenv_d nenv bl -> bexp_stack_sem bS (compile_fenv fenv_d) (stk ++ rho) (stk ++ rho, bl)) (OKfuncs: funcs_okay_too func_list (compile_fenv fenv_d)) (OKparams : Forall (fun func => all_params_ok (DanTrickLanguage.Args func) (DanTrickLanguage.Body func)) func_list) (nenv : nat_env) (l : LogicProp nat aexp_Dan) (stk : list nat) (H5 : state_to_stack idents nenv dbenv stk) (rho : list nat) (FUN_APP : Dan_lp_prop_rel (fun_app_well_formed fenv_d func_list) (fun_app_bexp_well_formed fenv_d func_list) (Dan_lp_arith l)) (MAP_WF : Dan_lp_prop_rel (var_map_wf_wrt_aexp idents) (var_map_wf_wrt_bexp idents) (Dan_lp_arith l)) (H0 : Dan_lp_rel (Dan_lp_arith l) fenv_d dbenv nenv) (s : LogicProp nat aexp_stack) (TRANSLATE : lp_transrelation (Datatypes.length dbenv) idents (Dan_lp_arith l) (MetaNat s)): meta_match_rel (MetaNat s) (compile_fenv fenv_d) (stk ++ rho). Proof. invc FUN_APP. invc MAP_WF. invc TRANSLATE. invc H9. invc H0. constructor. - Tactics.revert_until s. revert l. induction s; intros; invc H. + constructor. + invs H4. + invs H4. econstructor. * eapply H1; try eauto. reflexivity. invs H6. assumption. invs H7. assumption. * assumption. + invs H4. invs H7. invs H6. econstructor. * eapply H1; [reflexivity | | | reflexivity | .. ]; eassumption. * eapply H1; [reflexivity | | | reflexivity | .. ]; eassumption. * assumption. + invs H4. invs H6. invs H7. econstructor. * eapply IHs1. eapply H12. eassumption. assumption. assumption. * eapply IHs2; [ eapply H13 | eassumption .. ]. + invs H6. invs H7. invs H4; [eapply RelOrPropLeft | eapply RelOrPropRight]. * eapply IHs1; [ eapply H8 | eassumption .. ]. * eapply IHs2; [ eapply H9 | eassumption .. ]. + invs H4. invs H6. invs H7. econstructor; [ eapply H1; try reflexivity .. |]; eassumption. + invs H4. invs H6. invs H7. econstructor; [ | eassumption ]. eapply compile_arith_args_sound_pos; try eassumption. econstructor. assumption. reflexivity. reflexivity. - Tactics.revert_until s. revert l. induction s; intros; invs H. + constructor. + invs H4. + invs H4. eapply arith_compile_prop_rel_implies_pure'; eauto. + invs H4. invs H6. invs H7. eapply arith_compile_prop_rel_implies_pure'; eauto. + invs H4. invs H6. invs H7. econstructor; [ eapply IHs1; [ eapply H13 | ..] | eapply IHs2; [ eapply H14 | .. ]]; eauto. + invs H6. eapply arith_compile_prop_rel_implies_pure'; eauto. + invs H6. eapply arith_compile_prop_rel_implies_pure'; eauto. + invs H6. invs H7. constructor. eapply arith_compile_prop_args_rel_implies_pure'; eauto. Qed. Lemma trans_sound_pos_assume_comp_basestate_lp_bexp (idents : list DanTrickLanguage.ident) (dbenv : list nat) (fenv_d : fun_env) (func_list : list fun_Dan) (FENV_WF : fenv_well_formed' func_list fenv_d) (H1 : forall (aD : aexp_Dan) (aS : aexp_stack), aS = compile_aexp aD (fun x : ident => one_index_opt x idents) (Datatypes.length idents) -> fun_app_well_formed fenv_d func_list aD -> var_map_wf_wrt_aexp idents aD -> forall (nenv : nat_env) (dbenv0 stk : list nat) (n : nat) (rho : list nat), Datatypes.length dbenv0 = Datatypes.length dbenv -> state_to_stack idents nenv dbenv0 stk -> a_Dan aD dbenv0 fenv_d nenv n -> aexp_stack_sem aS (compile_fenv fenv_d) (stk ++ rho) (stk ++ rho, n)) (H2 : forall (bD : bexp_Dan) (bS : bexp_stack), bS = compile_bexp bD (fun x : ident => one_index_opt x idents) (Datatypes.length idents) -> fun_app_bexp_well_formed fenv_d func_list bD -> var_map_wf_wrt_bexp idents bD -> forall (nenv : nat_env) (dbenv0 stk : list nat) (bl : bool) (rho : list nat), Datatypes.length dbenv0 = Datatypes.length dbenv -> state_to_stack idents nenv dbenv0 stk -> b_Dan bD dbenv0 fenv_d nenv bl -> bexp_stack_sem bS (compile_fenv fenv_d) (stk ++ rho) (stk ++ rho, bl)) (OKfuncs: funcs_okay_too func_list (compile_fenv fenv_d)) (OKparams : Forall (fun func => all_params_ok (DanTrickLanguage.Args func) (DanTrickLanguage.Body func)) func_list) (nenv : nat_env) (s : LogicProp bool bexp_stack) (l : LogicProp bool bexp_Dan) (H4 : AbsEnv_rel (AbsEnvLP (Dan_lp_bool l)) fenv_d dbenv nenv) (stk : list nat) (H5 : state_to_stack idents nenv dbenv stk) (rho : list nat) (FUN_APP : Dan_lp_prop_rel (fun_app_well_formed fenv_d func_list) (fun_app_bexp_well_formed fenv_d func_list) (Dan_lp_bool l)) (MAP_WF : Dan_lp_prop_rel (var_map_wf_wrt_aexp idents) (var_map_wf_wrt_bexp idents) (Dan_lp_bool l)) (H : prop_rel (var_map_wf_wrt_bexp idents) l) (TRANSLATE : compile_prop_rel (comp_bool idents) l s): meta_match_rel (MetaBool s) (compile_fenv fenv_d) (stk ++ rho). Proof. invc FUN_APP. invc MAP_WF. invc H4. invc H3. constructor. - Tactics.revert_until s. induction s; intros; invs TRANSLATE. + constructor. + invs H4. + invs H4. invs H7. invs H8. econstructor; [ | eassumption ]. eapply H2; try reflexivity; try eassumption. + invs H4. invs H7. invs H8. econstructor; [ .. | eassumption ]. all: eapply H2; try reflexivity; try eassumption. + invs H4. invs H7. invs H8. econstructor; [ eapply IHs1; [ | eapply H15 | .. ] | eapply IHs2; [ | eapply H16 | .. ]]; eassumption. + invs H7. invs H8. invs H4. * eapply RelOrPropLeft. eapply IHs1; [ | eapply H13 | .. ]; eassumption. * eapply RelOrPropRight. eapply IHs2; [ | eapply H14 | .. ]; eassumption. + invs H4. invs H7. invs H8. econstructor; [ .. | eassumption ]. all: eapply H2; try reflexivity; try eassumption. + invs H4. invs H7. invs H8. econstructor; [ | eassumption ]. eapply compile_bool_args_sound_pos; try reflexivity; try eassumption. constructor. assumption. - Tactics.revert_until s. induction s; intros; invs TRANSLATE. + constructor. + constructor. + invs H7. invs H8. eapply bool_compile_prop_rel_implies_pure'; try eassumption. reflexivity. reflexivity. + invs H7. invs H8. eapply bool_compile_prop_rel_implies_pure'; eauto. + invs H7. invs H8. eapply bool_compile_prop_rel_implies_pure'; eauto. + invs H7. invs H8. eapply bool_compile_prop_rel_implies_pure'; eauto. + invs H7. invs H8. eapply bool_compile_prop_rel_implies_pure'; eauto. + invs H7. invs H8. constructor. eapply bool_compile_prop_args_rel_implies_pure'; eauto. Qed. Lemma trans_sound_pos_assume_comp_basestate (m : MetavarPred) (idents : list DanTrickLanguage.ident) (dbenv : list nat) (d : Dan_lp) (fenv_d : fun_env) (func_list : list fun_Dan) (FENV_WF : fenv_well_formed' func_list fenv_d) (H1 : forall (aD : aexp_Dan) (aS : aexp_stack), aS = compile_aexp aD (fun x : ident => one_index_opt x idents) (Datatypes.length idents) -> fun_app_well_formed fenv_d func_list aD -> var_map_wf_wrt_aexp idents aD -> forall (nenv : nat_env) (dbenv0 stk : list nat) (n : nat) (rho : list nat), Datatypes.length dbenv0 = Datatypes.length dbenv -> state_to_stack idents nenv dbenv0 stk -> a_Dan aD dbenv0 fenv_d nenv n -> aexp_stack_sem aS (compile_fenv fenv_d) (stk ++ rho) (stk ++ rho, n)) (H2 : forall (bD : bexp_Dan) (bS : bexp_stack), bS = compile_bexp bD (fun x : ident => one_index_opt x idents) (Datatypes.length idents) -> fun_app_bexp_well_formed fenv_d func_list bD -> var_map_wf_wrt_bexp idents bD -> forall (nenv : nat_env) (dbenv0 stk : list nat) (bl : bool) (rho : list nat), Datatypes.length dbenv0 = Datatypes.length dbenv -> state_to_stack idents nenv dbenv0 stk -> b_Dan bD dbenv0 fenv_d nenv bl -> bexp_stack_sem bS (compile_fenv fenv_d) (stk ++ rho) (stk ++ rho, bl)) (OKfuncs: funcs_okay_too func_list (compile_fenv fenv_d)) (OKparams : Forall (fun func => all_params_ok (DanTrickLanguage.Args func) (DanTrickLanguage.Body func)) func_list) (nenv : nat_env) (H4 : AbsEnv_rel (AbsEnvLP d) fenv_d dbenv nenv) (stk : list nat) (H5 : state_to_stack idents nenv dbenv stk) (rho : list nat) (H10 : lp_transrelation (Datatypes.length dbenv) idents d m) (H0 : Dan_lp_rel d fenv_d dbenv nenv) (MAP_WF : Dan_lp_prop_rel (var_map_wf_wrt_aexp idents) (var_map_wf_wrt_bexp idents) d) (FUN_APP : Dan_lp_prop_rel (fun_app_well_formed fenv_d func_list) (fun_app_bexp_well_formed fenv_d func_list) d): absstate_match_rel (BaseState (AbsStkSize (Datatypes.length idents + Datatypes.length dbenv)) m) (compile_fenv fenv_d) (stk ++ rho). Proof. constructor. - constructor. inversion H5. simpl. rewrite app_length. rewrite app_length. rewrite map_length. lia. - inversion MAP_WF. subst. invs FUN_APP. invs H10. invs H9. clear H9. eapply trans_sound_pos_assume_comp_basestate_lp_aexp; eauto. subst. invc H10. invc H8; eauto. eapply trans_sound_pos_assume_comp_basestate_lp_bexp; eauto. Qed. Lemma trans_sound_pos_assume_comp : forall state dan_log num_args idents, logic_transrelation num_args idents dan_log state -> forall fenv_d fenv_s func_list, forall (FENV_WF: fenv_well_formed' func_list fenv_d) (OKfuncs: funcs_okay_too func_list (compile_fenv fenv_d)) (OKparams : Forall (fun func => all_params_ok (DanTrickLanguage.Args func) (DanTrickLanguage.Body func)) func_list), fenv_s = compile_fenv fenv_d -> (forall aD aS, aS = compile_aexp aD (fun x => one_index_opt x idents) (List.length idents) -> forall (FUN_APP_AEXP: fun_app_well_formed fenv_d func_list aD), forall (MAP_WF_AEXP: var_map_wf_wrt_aexp idents aD), forall nenv dbenv stk n rho, List.length dbenv = num_args -> state_to_stack idents nenv dbenv stk -> a_Dan aD dbenv fenv_d nenv n -> aexp_stack_sem aS fenv_s (stk ++ rho) (stk ++ rho, n)) -> (forall bD bS, bS = compile_bexp bD (fun x => one_index_opt x idents) (List.length idents) -> forall (FUN_APP_BEXP: fun_app_bexp_well_formed fenv_d func_list bD), forall (MAP_WF_BEXP: var_map_wf_wrt_bexp idents bD), forall nenv dbenv stk bl rho, List.length dbenv = num_args -> state_to_stack idents nenv dbenv stk -> b_Dan bD dbenv fenv_d nenv bl -> bexp_stack_sem bS fenv_s (stk ++ rho) (stk ++ rho, bl)) -> forall nenv dbenv, List.length dbenv = num_args -> forall (FUN_APP: AbsEnv_prop_rel (fun_app_well_formed fenv_d func_list) (fun_app_bexp_well_formed fenv_d func_list) dan_log) (MAP_WF: AbsEnv_prop_rel (var_map_wf_wrt_aexp idents) (var_map_wf_wrt_bexp idents) dan_log), AbsEnv_rel dan_log fenv_d dbenv nenv -> forall stk, state_to_stack idents nenv dbenv stk -> forall rho, absstate_match_rel state fenv_s (stk ++ rho). Proof. induction state; intros. - inversion H. subst. clear H. inversion H4. inversion MAP_WF. inversion FUN_APP. subst. eapply trans_sound_pos_assume_comp_basestate; eauto. - invs H. invs H4. invs MAP_WF. invs FUN_APP. constructor. + eapply IHstate1; try eassumption; try reflexivity. + eapply IHstate2; try eassumption; try reflexivity. - invs H. invs MAP_WF. invs FUN_APP. invs H4. + eapply RelAbsOrLeft. eapply IHstate1; try eassumption; try reflexivity. + eapply RelAbsOrRight. eapply IHstate2; try eassumption; try reflexivity. Qed.
(* infotheo (c) AIST. R. Affeldt, M. Hagiwara, J. Senizergues. GNU GPLv3. *) From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq div choice fintype. From mathcomp Require Import tuple finfun bigop prime binomial ssralg finset fingroup finalg. From mathcomp Require Import matrix. Require Import Reals Fourier. Require Import Rssr Reals_ext log2 ssr_ext ssralg_ext tuple_prod. Local Open Scope reals_ext_scope. (** * Instantiation of canonical big operators with Coq reals *) Lemma iter_Rplus n r : ssrnat.iter n (Rplus r) 0 = INR n * r. Proof. elim : n r => [r /= | m IHm r]; first by rewrite mul0R. rewrite iterS IHm S_INR; field. Qed. Lemma iter_Rmult n p : ssrnat.iter n (Rmult p) 1 = p ^ n. Proof. elim : n p => // n0 IH p0 /=; by rewrite IH. Qed. Lemma morph_Ropp : {morph [eta Ropp] : x y / x + y}. Proof. by move=> x y /=; field. Qed. Lemma morph_plus_INR : {morph INR : x y / (x + y)%nat >-> x + y}. Proof. move=> x y /=; by rewrite plus_INR. Qed. Lemma morph_mult_INR : {morph INR : x y / (x * y)%nat >-> x * y}. Proof. move=> x y /=; by rewrite mult_INR. Qed. Lemma morph_mulRDr a : {morph [eta Rmult a] : x y / x + y}. Proof. move=> * /=; by rewrite mulRDr. Qed. Lemma morph_mulRDl a : {morph Rmult^~ a : x y / x + y}. Proof. move=> x y /=; by rewrite mulRDl. Qed. Lemma morph_exp2_plus : {morph [eta exp2] : x y / x + y >-> x * y}. Proof. move=> ? ? /=; by rewrite -exp2_plus. Qed. Section Abelian. Variable op : Monoid.com_law 1. Notation Local "'*%M'" := op (at level 0). Notation Local "x * y" := (op x y). Lemma mybig_index_uniq (I : eqType) (i : R) (r : seq I) (E : 'I_(size r) -> R) : uniq r -> \big[*%M/1]_i E i = \big[*%M/1]_(x <- r) oapp E i (insub (seq.index x r)). Proof. move=> Ur. apply/esym. rewrite big_tnth. apply: eq_bigr => j _. by rewrite index_uniq // valK. Qed. End Abelian. (** Instantiation of big sums for reals *) Canonical addR_monoid := Monoid.Law addRA add0R addR0. Canonical addR_comoid := Monoid.ComLaw addRC. Canonical mulR_monoid := Monoid.Law mulRA mul1R mulR1. Canonical mulR_muloid := Monoid.MulLaw mul0R mulR0. Canonical mulR_comoid := Monoid.ComLaw mulRC. Canonical addR_addoid := Monoid.AddLaw mulRDl mulRDr. Notation "\rsum_ ( i <- t ) F" := (\big[Rplus/0%R]_( i <- t) F) (at level 41, F at level 41, i at level 50, format "'[' \rsum_ ( i <- t ) '/ ' F ']'") : R_scope. Notation "\rsum_ ( m <= i < n ) F" := (\big[Rplus/0%R]_( m <= i < n ) F) (at level 41, F at level 41, i, m, n at level 50, format "'[' \rsum_ ( m <= i < n ) '/ ' F ']'") : R_scope. Notation "\rsum_ ( i | P ) F" := (\big[Rplus/0%R]_( i | P) F) (at level 41, F at level 41, i at level 50, format "'[' \rsum_ ( i | P ) '/ ' F ']'") : R_scope. Notation "\rsum_ ( i ':' A | P ) F" := (\big[Rplus/0%R]_( i : A | P ) F) (at level 41, F at level 41, i, A at level 50, format "'[' \rsum_ ( i ':' A | P ) '/ ' F ']'") : R_scope. Notation "\rsum_ ( i : t ) F" := (\big[Rplus/0%R]_( i : t) F) (at level 41, F at level 41, i at level 50, format "'[' \rsum_ ( i : t ) '/ ' F ']'") : R_scope. Notation "\rsum_ ( i < n ) F" := (\big[Rplus/0%R]_( i < n ) F) (at level 41, F at level 41, i at level 50, format "'[' \rsum_ ( i < n ) '/ ' F ']'") : R_scope. Notation "\rsum_ ( i 'in' A | P ) F" := (\big[Rplus/0%R]_( i in A | P ) F) (at level 41, F at level 41, i, A at level 50, format "'[' \rsum_ ( i 'in' A | P ) '/ ' F ']'") : R_scope. Notation "\rsum_ ( a 'in' A ) F" := (\big[Rplus/0%R]_( a in A ) F) (at level 41, F at level 41, a, A at level 50, format "'[' \rsum_ ( a 'in' A ) '/ ' F ']'") : R_scope. Lemma big_Rabs {A : finType} F : Rabs (\rsum_ (a : A) F a) <= \rsum_ (a : A) Rabs (F a). Proof. elim: (index_enum _) => [| hd tl IH]. rewrite 2!big_nil Rabs_R0; by apply Rle_refl. rewrite 2!big_cons. apply (Rle_trans _ (Rabs (F hd) + Rabs (\rsum_(j <- tl) F j))); first by apply Rabs_triang. by apply Rplus_le_compat_l. Qed. Lemma classify_big {T : finType} k (f : T -> 'I_k) (F : 'I_k -> R) : \rsum_(s : T) F (f s) = \rsum_(n : 'I_k) INR #|f @^-1: [set n]| * F n. Proof. transitivity (\rsum_(n<k) \rsum_(s | true && (f s == n)) F (f s)). by apply partition_big. apply eq_bigr => i _ /=. transitivity (\rsum_(s|f s == i) F i). by apply eq_bigr => s /eqP ->. rewrite big_const iter_Rplus. do 2 f_equal. apply eq_card => j /=. by rewrite !inE. Qed. (** Rle, Rlt lemmas for big sums of reals *) Section Rcomparison_rsum. Variable A : finType. Variables f g : A -> R. Variable P Q : pred A. Lemma Rle_big_P_f_g_X (X : {set A}) : (forall i, i \in X -> P i -> f i <= g i) -> \rsum_(i in X | P i) f i <= \rsum_(i in X | P i) g i. Proof. move=> H. elim: (index_enum _) => [| hd tl IH]. - rewrite !big_nil; by apply Rle_refl. - rewrite !big_cons. set cond := _ && _; move Hcond : cond => []; subst cond => //. apply Rplus_le_compat => //. case/andP : Hcond. by apply H. Qed. Lemma Rle_big_P_f_g : (forall i, P i -> f i <= g i) -> \rsum_(i | P i) f i <= \rsum_(i | P i) g i. Proof. move=> H. elim: (index_enum _) => [| hd tl IH]. - rewrite !big_nil; by apply Rle_refl. - rewrite !big_cons. case: ifP => Hcase //. apply Rplus_le_compat => //. by apply H. Qed. Lemma Rlt_big_f_g_X (X : {set A}) : forall (HA: (0 < #|X|)%nat), (forall i, i \in X -> f i < g i) -> \rsum_(i in X) f i < \rsum_(i in X) g i. Proof. move Ha : #|X| => a. move: a X Ha. elim => // a IHa X Ha _ H. move: (ltn0Sn a). rewrite -Ha card_gt0. case/set0Pn => a0 Ha0. rewrite (@big_setD1 _ _ _ _ a0 _ f) //= (@big_setD1 _ _ _ _ a0 _ g) //=. case: a IHa Ha => IHa Ha. rewrite (_ : X :\ a0 = set0); last first. rewrite (cardsD1 a0) Ha0 /= add1n in Ha. case: Ha. move/eqP. rewrite cards_eq0. by move/eqP. rewrite !big_set0 2!addR0; by apply H. move=> HA. apply Rplus_lt_compat. by apply H. apply Ha => //. rewrite (cardsD1 a0) Ha0 /= add1n in HA. by case: HA. move=> i Hi. rewrite in_setD in Hi. case/andP : Hi => Hi1 Hi2. by apply H. Qed. Lemma Rle_big_P_Q_f_g : (forall i, P i -> f i <= g i) -> (forall i, Q i -> 0 <= g i) -> (forall i, P i -> Q i) -> \rsum_(i | P i) f i <= \rsum_(i | Q i) g i. Proof. move=> f_g Qg H. elim: (index_enum _) => [| hd tl IH]. - rewrite !big_nil; by apply Rle_refl. - rewrite !big_cons /=. case: ifP => Hcase. rewrite (H _ Hcase). apply Rplus_le_compat => //. by apply f_g. case: ifP => // Qhd. apply Rle_trans with (\big[Rplus/0]_(j <- tl | Q j) g j). by apply IH. rewrite -{1}(add0R (\big[Rplus/0]_(j <- tl | Q j) g j)). by apply Rplus_le_compat_r, Qg. Qed. Lemma Rle_big_P_true_f_g : (forall a, 0 <= g a) -> (forall i, i \in P -> f i <= g i) -> \rsum_(i in A | P i) f i <= \rsum_(i in A) g i. Proof. move=> K H. elim: (index_enum _) => [| hd tl IH]. - rewrite !big_nil; by apply Rle_refl. - rewrite !big_cons. case/orP : (orbN (hd \in A)) => H1. rewrite H1 /=. case: ifP => Hif. apply Rplus_le_compat => //. by apply H. rewrite -[X in X <= _]add0R. by apply Rplus_le_compat. rewrite (negbTE H1) /=; exact IH. Qed. Lemma Rle_big_f_X_Y : (forall a, 0 <= f a) -> (forall i, i \in P -> i \in Q) -> \rsum_(i in P) f i <= \rsum_(i in Q) f i. Proof. move=> Hf P'_P. elim: (index_enum _) => [| hd tl IH]. - rewrite !big_nil; by apply Rle_refl. - rewrite !big_cons. set cond := _ \in _; move Hcond : cond => []; subst cond => //=. rewrite (P'_P _ Hcond). by apply Rplus_le_compat_l. set cond := _ \in _; move Hcond2 : cond => []; subst cond => //=. rewrite -[X in X <= _]add0R. by apply Rplus_le_compat. Qed. Lemma Rle_big_P_Q_f_X (X : pred A) : (forall a, 0 <= f a) -> (forall i, P i -> Q i) -> \rsum_(i in X | P i) f i <= \rsum_(i in X | Q i) f i. Proof. move=> Hf P_Q. elim: (index_enum _) => [| hd tl IH]. - rewrite !big_nil; by apply Rle_refl. - rewrite !big_cons. set cond := _ \in _; move Hcond : cond => []; subst cond => //=. case: ifP => // HP. + case: ifP => HQ. * by apply Rplus_le_compat_l. * by rewrite (P_Q _ HP) in HQ. + case: ifP => // HQ. rewrite -[X in X <= _]add0R. by apply Rplus_le_compat. Qed. Lemma Rle_big_predU_f : (forall a, 0 <= f a) -> \rsum_(i in A | [predU P & Q] i) f i <= \rsum_(i in A | P i) f i + \rsum_(i in A | Q i) f i. Proof. move=> Hf. elim: (index_enum _) => //. - rewrite !big_nil /=; fourier. - move=> h t IH /=. rewrite !big_cons /=. case: ifP => /=. + case/orP => [HP1 | HP2]. * rewrite unfold_in in HP1. rewrite HP1. case: ifP => // HP2. - rewrite -addRA; apply Rplus_le_compat_l. eapply Rle_trans; first by apply IH. have : forall a b c, 0 <= c -> a + b <= a + (c + b) by move=> *; fourier. apply. by apply Hf. - rewrite -addRA; apply Rplus_le_compat_l. eapply Rle_trans; first by apply IH. by apply Req_le. * rewrite unfold_in in HP2. rewrite HP2. case: ifP => // HP1. - rewrite -addRA; apply Rplus_le_compat_l. eapply Rle_trans; first by apply IH. have : forall a b c, 0 <= c -> a + b <= a + (c + b) by move=> *; fourier. apply. by apply Hf. - rewrite -(Rplus_comm (f h + _)) -addRA; apply Rplus_le_compat_l. eapply Rle_trans; first by apply IH. by rewrite Rplus_comm; apply Req_le. + move/negbT. rewrite negb_or. case/andP. rewrite unfold_in; move/negbTE => ->. rewrite unfold_in; move/negbTE => ->. by apply IH. Qed. Lemma Rle_big_P_true_f : (forall i : A, 0 <= f i) -> \rsum_(i in A | P i) f i <= \rsum_(i in A) f i. Proof. move=> H. elim: (index_enum _) => [| hd tl IH]. - rewrite !big_nil; by apply Rle_refl. - rewrite !big_cons. case/orP : (orbN (P hd)) => P_hd. + rewrite P_hd /=. apply Rplus_le_compat => //; by apply Rle_refl. + rewrite (negbTE P_hd) inE /= -[X in X <= _]add0R; by apply Rplus_le_compat. Qed. End Rcomparison_rsum. Lemma Rlt_big_0_g (A : finType) (g : A -> R) (HA : (0 < #|A|)%nat) : (forall i, 0 < g i) -> 0 < \rsum_(i in A) g i. Proof. move=> H. rewrite (_ : \rsum_(i in A) g i = \rsum_(i in [set: A]) g i); last first. apply eq_bigl => x /=; by rewrite !inE. eapply Rle_lt_trans; last first. apply Rlt_big_f_g_X with (f := fun x => 0) => //. by rewrite cardsT. rewrite big_const_seq iter_Rplus mulR0; by apply Rle_refl. Qed. Lemma Rle_big_0_P_g (A : finType) (P : pred A) (g : A -> R) : (forall i, P i -> 0 <= g i) -> 0 <= \rsum_(i in A | P i) g i. Proof. move=> H. apply Rle_trans with (\rsum_(i|(i \in A) && P i) (fun x => 0) i). rewrite big_const iter_Rplus mulR0 /=; by apply Rle_refl. by apply Rle_big_P_f_g. Qed. Lemma Rle_big_P_Q_f_X_new {A : finType} (f : A -> R) (P Q : pred A) : (forall a, 0 <= f a) -> (forall i, P i -> Q i) -> \rsum_(i | P i) f i <= \rsum_(i | Q i) f i. Proof. move=> Hf R_T. eapply Rle_trans; last by apply (Rle_big_P_Q_f_X A f P Q xpredT). by apply Req_le. Qed. Lemma Req_0_rmul_inv' {A : finType} (f : A -> R) (P Q : pred A) : (forall i, 0 <= f i) -> forall j, P j -> f j <= \rsum_(i | P i) f i. Proof. move=> HF j Hj. rewrite (_ : f j = \rsum_(i | i == j) f i); last by rewrite big_pred1_eq. apply: Rle_big_P_Q_f_X_new => //. move=> i /eqP ?; by subst j. Qed. Lemma Req_0_rmul_inv {C : finType} (R : pred C) F (HF : forall a, 0 <= F a) : 0 = \rsum_(i | R i) F i -> (forall i, R i -> 0 = F i). Proof. move=> abs i Hi. case/Rle_lt_or_eq_dec : (HF i) => // Fi. suff : False by done. have : F i <= \rsum_(i|R i) F i. by apply Req_0_rmul_inv'. rewrite -abs => ?. fourier. Qed. (* old lemmas that better not be used *) Section old. Lemma Req_0_rmul {C : finType} (R : pred C) F: (forall i, R i -> 0 = F i) -> 0 = \rsum_(i | R i) F i. Proof. move=> HF. rewrite (eq_bigr (fun=> 0)); first by rewrite big_const iter_Rplus mulR0. move=> i Ri; by rewrite -HF. Qed. End old. Lemma psumR_eq0P {B : finType} (g : B -> R) (U : pred B) : \rsum_(i|U i) g i = 0 -> (forall i : B, U i -> 0 <= g i) -> (forall i : B, U i -> g i = 0). Proof. move=> H2 H1 i Hi. suff H : g i = 0 /\ (\rsum_(j|(U j && (j != i))) g j) = 0 by case: H. apply Rplus_eq_R0. - apply H1 ; exact Hi. - apply: Rle_big_0_P_g => i0 Hi0; apply H1. move/andP in Hi0; by apply Hi0. - rewrite -bigD1 /=; [exact H2 | exact Hi]. Qed. Lemma rsum_neq0 {A : finType} (P : {set A}) (g : A -> R) : \rsum_(t | t \in P) g t != 0 -> [exists t, (t \in P) && (g t != 0)]. Proof. move=> H1. apply negbNE. rewrite negb_exists. apply/negP => /forallP abs. move/negP : H1; apply. rewrite big_mkcond /=. apply/eqP. transitivity (\rsum_(a : A) 0); last by rewrite big_const iter_Rplus mulR0. apply eq_bigr => a _. case: ifP => // Hcond. move: (abs a); by rewrite Hcond /= negbK => /eqP. Qed. (* TODO: factorize? *) Lemma Rle_big_eq (B : finType) (f g : B -> R) (U : pred B) : (forall i : B, U i -> f i <= g i) -> \rsum_(i|U i) g i = \rsum_(i|U i) f i -> (forall i : B, U i -> g i = f i). Proof. move=> H1 H2 i Hi. apply (Rplus_eq_reg_l (- (f i))). rewrite Rplus_opp_l Rplus_comm. move: i Hi. apply psumR_eq0P. - rewrite big_split /= -(big_morph _ morph_Ropp Ropp_0). by apply Rminus_diag_eq, H2. - move=> i Hi. apply (Rplus_le_reg_l (f i)). rewrite addR0 subRKC; by apply H1. Qed. (* TODO: generalize to any bigop *) Lemma rsum_union {C : finType} (B1 B2 B : {set C}) f : [disjoint B2 & B1] -> B = B1 :|: B2 -> \rsum_(b | b \in B) f b = \rsum_(b | b \in B1) f b + \rsum_(b | b \in B2) f b. Proof. move=> Hdisj ->. rewrite (@big_setID _ _ _ _ _ B1) /= setUK setDUl setDv set0U. suff : B2 :\: B1 = B2 by move=> ->. by apply/setDidPl. Qed. (** Big sums lemmas for products *) Section big_sums_prods. Variables A B : finType. Lemma pair_big_fst : forall (F : {: A * B} -> R) P Q, P =1 Q \o (fun x => x.1) -> \rsum_(i in A | Q i) \rsum_(j in B) (F (i, j)) = \rsum_(i in {: A * B} | P i) F i. Proof. move=> /= F Q' Q Q'Q; rewrite pair_big /=. apply eq_big. - case=> /= i1 i2; by rewrite inE andbC Q'Q. - by case. Qed. Lemma pair_big_snd : forall (F : {: A * B} -> R) P Q, P =1 Q \o (fun x => x.2) -> \rsum_(i in A) \rsum_(j in B | Q j) (F (i, j)) = \rsum_(i in {: A * B} | P i) F i. Proof. move=> /= F Q' Q Q'Q; rewrite pair_big /=. apply eq_big. - case=> /= i1 i2; by rewrite Q'Q. - by case. Qed. End big_sums_prods. (** Switching from a sum on the domain to a sum on the image of function *) Section sum_dom_codom. Variable A : finType. Lemma sum_parti (p : seq A) (X : A -> R) : forall F, uniq p -> \rsum_(i <- p) (F i) = \rsum_(r <- undup (map X p)) \big[Rplus/0]_(i <- p | X i == r) (F i). Proof. move Hn : (undup (map X (p))) => n. move: n p X Hn. elim => [p X HA F Hp | h t IH p X H F Hp]. - rewrite big_nil. move/undup_nil_inv : HA. move/map_nil_inv => ->. by rewrite big_nil. - rewrite big_cons. have [preh [pret [H1 [H2 H3]]]] : exists preh pret, perm_eq p (preh ++ pret) /\ undup (map X preh) = [:: h] /\ undup (map X pret) = t. by apply undup_perm. apply trans_eq with (\big[Rplus/0]_(i <- preh ++ pret) F i). by apply: eq_big_perm. apply trans_eq with (\big[Rplus/0]_(i <- preh ++ pret | X i == h) F i + \rsum_(j <- t) \big[Rplus/0]_(i <- preh ++ pret | X i == j) F i); last first. f_equal. apply: eq_big_perm. by rewrite perm_eq_sym. apply eq_bigr => i _ /=. apply: eq_big_perm. by rewrite perm_eq_sym. have -> : \rsum_(j <- t) \big[Rplus/0]_(i <- (preh ++ pret) | X i == j) F i = \rsum_(j <- t) \big[Rplus/0]_(i <- pret | X i == j) F i. rewrite big_seq_cond. symmetry. rewrite big_seq_cond /=. apply eq_bigr => i Hi. rewrite big_cat /=. have -> : \big[Rplus/0]_(i0 <- preh | X i0 == i) F i0 = 0. transitivity (\big[Rplus/0]_(i0 <- preh | false) F i0). rewrite big_seq_cond. apply eq_bigl => /= j. apply/negP. case/andP; move=> Xj_i; move/eqP=> j_preh. subst i. have Xj_h : X j \in [:: h]. have H4 : X j \in map X preh by apply/mapP; exists j. have H5 : X j \in undup (map X preh) by rewrite mem_undup. by rewrite H2 in H5. have : uniq (h :: t). rewrite -H. apply undup_uniq. rewrite /= in_cons in_nil orbC /= in Xj_h. move/eqP : Xj_h => Xj_h. subst h. rewrite andbC /= in Hi. by rewrite /= Hi. by rewrite big_pred0. by rewrite add0R. rewrite -IH //; last first. have : uniq (preh ++ pret) by rewrite -(@perm_eq_uniq _ _ _ H1). rewrite cat_uniq. case/andP => _; by case/andP. have -> : \big[Rplus/0]_(i <- (preh ++ pret) | X i == h) F i = \rsum_(i <- preh) F i. rewrite big_cat /=. have -> : \big[Rplus/0]_(i <- pret | X i == h) F i = 0. transitivity (\big[Rplus/0]_(i0 <- pret | false) F i0); last first. by rewrite big_pred0. rewrite big_seq_cond. apply eq_bigl => /= j. apply/negP. case/andP; move => j_pret; move/eqP => Xj_h. subst h. have Xj_t : X j \in t. have H4 : X j \in map X pret. apply/mapP; by exists j. have H5 : X j \in undup (map X pret). by rewrite mem_undup. by rewrite H3 in H5. have : uniq (X j :: t). rewrite -H. by apply undup_uniq. by rewrite /= Xj_t. rewrite addR0 big_seq_cond /=. symmetry. rewrite big_seq_cond /=. apply congr_big => //= x. case/orP : (orbN (x \in preh)) => Y. + rewrite Y /=. symmetry. have : X x \in [:: h]. rewrite -H2 mem_undup. apply/mapP. by exists x. by rewrite in_cons /= in_nil orbC. + by rewrite (negbTE Y) andbC. by rewrite big_cat. Qed. (* NB: use finset.partition_big_imset? *) Lemma sum_parti_finType (X : A -> R) F : \rsum_(i in A) (F i) = \rsum_(r <- undup (map X (enum A))) \big[Rplus/0]_(i in A | X i == r) (F i). Proof. move: (@sum_parti (enum A) X F) => /=. rewrite enum_uniq. move/(_ (refl_equal _)) => IH. transitivity (\big[Rplus/0]_(i <- enum A) F i). apply congr_big => //. by rewrite enumT. rewrite IH. apply eq_bigr => i _. apply congr_big => //. by rewrite enumT. Qed. End sum_dom_codom. Local Open Scope R_scope. Section tmp. Local Open Scope ring_scope. (* TODO: rename? *) Lemma rsum_rV_prod (C D : finType) n f (Q : {set 'rV_n}) : \rsum_(a in 'rV[C * D]_n | a \in Q) f a = \rsum_(a in {: 'rV[C]_n * 'rV[D]_n} | (prod_tuple a) \in Q) f (prod_tuple a). Proof. rewrite (reindex_onto (fun p => tuple_prod p) (fun y => prod_tuple y)) //=; last first. move=> i _; by rewrite prod_tupleK. apply eq_big => /=. move=> t /=. by rewrite tuple_prodK eqxx andbC. move=> i _; by rewrite tuple_prodK. Qed. (*Lemma rsum_rV_prod (A B : finType) n f P : \rsum_(a in 'rV[A * B]_n | P a) f a = \rsum_(a in {: 'rV[A]_n * 'rV[B]_n} | P (prod_tuple a)) f (prod_tuple a). Proof. rewrite (reindex_onto (fun p => tuple_prod p) (fun y => prod_tuple y)) //=; last first. move=> i _; by rewrite prod_tupleK. apply eq_big => /=. move=> t /=. by rewrite tuple_prodK eqxx andbC. move=> i _; by rewrite tuple_prodK. Qed.*) End tmp. (*Lemma rsum_tuple_prod (A B : finType) n f P : \rsum_(a in {:n.-tuple (A * B)%type} | P a) f a = \rsum_(a in {: n.-tuple A * n.-tuple B} | P (tuple_prod.prod_tuple a)) f (tuple_prod.prod_tuple a). Proof. rewrite (reindex_onto (fun p => tuple_prod.tuple_prod p) (fun y => tuple_prod.prod_tuple y)) //=; last first. move=> i _; by rewrite tuple_prod.prod_tupleK. apply eq_big => /=. move=> t /=. by rewrite tuple_prod.tuple_prodK eqxx andbC. move=> i _; by rewrite tuple_prod.tuple_prodK. Qed. Lemma rsum_tuple_prod_set (A B : finType) n f (P : {set {:n.-tuple (A * B)}}) : \rsum_(a in {:n.-tuple (A * B)%type} | a \in P) f a = \rsum_(a in {: n.-tuple A * n.-tuple B} | (tuple_prod.prod_tuple a) \in P) f (tuple_prod.prod_tuple a). Proof. rewrite (reindex_onto (fun p => tuple_prod.tuple_prod p) (fun y => tuple_prod.prod_tuple y)) //=; last first. move=> i _; by rewrite tuple_prod.prod_tupleK. apply eq_big => /=. move=> t /=. by rewrite tuple_prod.tuple_prodK eqxx andbC. move=> i _; by rewrite tuple_prod.tuple_prodK. Qed. *) Section big_sum_rV. Context {A : finType}. Local Open Scope vec_ext_scope. Local Open Scope ring_scope. Lemma rsum_rV_1 F G P Q : (forall i : 'rV[A]_1, F i = G (i ``_ ord0)) -> (forall i : 'rV[A]_1, P i = Q (i ``_ ord0)) -> \rsum_(i in 'rV[A]_1 | P i) F i = \rsum_(i in A | Q i) G i. Proof. move=> FG PQ. rewrite (reindex_onto (fun i => \row_(j < 1) i) (fun p => p ``_ ord0)) /=; last first. move=> m Pm. apply/matrixP => a b; rewrite {a}(ord1 a) {b}(ord1 b); by rewrite mxE. apply eq_big => a. by rewrite PQ mxE eqxx andbT. by rewrite FG !mxE. Qed. End big_sum_rV. Section big_sums_rV. Variable A : finType. Lemma rsum_0rV F Q : \rsum_( j in 'rV[A]_0 | Q j) F j = if Q (row_of_tuple [tuple]) then F (row_of_tuple [tuple]) else 0. Proof. rewrite -big_map /= /index_enum -enumT. rewrite (_ : enum (matrix_finType A 1 0) = row_of_tuple ([tuple]) :: [::]). by rewrite /= big_cons big_nil addR0. apply eq_from_nth with (row_of_tuple [tuple]) => /=. by rewrite size_tuple card_matrix. move=> i. rewrite size_tuple card_matrix expn0. destruct i => //= _. set xx := enum _ . destruct xx => //. destruct s. apply val_inj => /=. apply/ffunP. case => a. by case. Qed. End big_sums_rV. Section big_sums_rV2. Local Open Scope vec_ext_scope. Local Open Scope ring_scope. Variable A : finType. Lemma big_singl_rV (p : A -> R) : \rsum_(i in A) p i = 1%R -> \rsum_(i in 'rV[A]_1) p (i ``_ ord0) = 1%R. Proof. move=> <-. rewrite (reindex_onto (fun j => \row_(i < 1) j) (fun p => p ``_ ord0)) /=. - apply eq_big => a; first by rewrite mxE eqxx inE. move=> _; by rewrite mxE. - move=> t _; apply/matrixP => a b; by rewrite (ord1 a) (ord1 b) mxE. Qed. End big_sums_rV2. Section big_sums_tuples. Variable A : finType. Lemma rsum_1_tuple F G P Q : (forall i : tuple_finType 1 A, F i = G (thead i)) -> (forall i : tuple_finType 1 A, P i = Q (thead i)) -> \rsum_(i in {: 1.-tuple A} | P i) F i = \rsum_(i in A | Q i) G i. Proof. move=> FG PQ. rewrite (reindex_onto (fun i => [tuple of [:: i]]) (fun p => thead p)) /=; last first. case/tupleP => h t X; by rewrite theadE (tuple0 t). apply eq_big => x //. by rewrite (PQ [tuple x]) /= theadE eqxx andbC. move=> X; by rewrite FG. Qed. (* TODO: useless? *) Lemma rsum_0tuple F Q : \rsum_( j in {:0.-tuple A} | Q j) F j = if Q [tuple] then F [tuple] else 0. Proof. rewrite -big_map /= /index_enum -enumT (_ : enum (tuple_finType 0 A) = [tuple] :: [::]). by rewrite /= big_cons big_nil addR0. apply eq_from_nth with [tuple] => /=. by rewrite size_tuple card_tuple. move=> i. rewrite size_tuple card_tuple expn0. destruct i => //= _. set xx := enum _ . destruct xx => //. destruct s. apply val_inj => /=. by destruct tval. Qed. Lemma big_singl_tuple (p : A -> R) : \rsum_(i in A) p i = 1 -> \rsum_(i in {: 1.-tuple A}) p (thead i) = 1. Proof. move=> <-. rewrite (reindex_onto (fun j => [tuple of [:: j]]) (fun p => thead p)) => /=. - apply eq_bigl => x; by rewrite theadE inE eqxx. - by move=> i _; apply thead_tuple1. Qed. (*Lemma big_head_behead_P n (F : 'rV[A]_n.+1 -> R) (P1 : pred A) (P2 : pred 'rV[A]_n) : \rsum_(i in A | P1 i) \rsum_(j in 'rV[A]_n | P2 j) (F (row_mx (\row_(k < 1) i) j)) = \rsum_(p in 'rV[A]_n.+1 | (P1 (p /_ ord0)) && (P2 (tbehead p)) ) (F p). Proof. symmetry. rewrite (@partition_big _ _ _ _ _ _ (fun x : {: n.+1.-tuple A} => thead x) (fun x : A => P1 x)) //=. - apply eq_bigr => i Hi. rewrite (reindex_onto (fun j : {: n.-tuple A} => [tuple of (i :: j)]) (fun p => [tuple of (behead p)])) /=; last first. move=> j Hj. case/andP : Hj => Hj1 /eqP => <-. symmetry. by apply tuple_eta. apply congr_big => // x /=. rewrite !theadE eqxx /= Hi /= -andbA /=. set tmp := _ == x. have Htmp : tmp = true. rewrite /tmp tupleE /behead_tuple /=. apply/eqP => /=. by apply val_inj. rewrite Htmp andbC /=. f_equal. by apply/eqP. move=> i; by case/andP. Qed. Lemma big_head_behead_P_set n (F : n.+1.-tuple A -> R) (P1 : {set A}) (P2 : {set {: n.-tuple A}}) : \rsum_(i in P1) \rsum_(j in P2) (F [tuple of (i :: j)]) = \rsum_(p | (thead p \in P1) && (tbehead p \in P2)) (F p). Proof. symmetry. rewrite (@partition_big _ _ _ _ _ _ (fun x : {: n.+1.-tuple A} => thead x) (fun x : A => x \in P1)) //=. - apply eq_bigr => i Hi. rewrite (reindex_onto (fun j : {: n.-tuple A} => [tuple of (i :: j)]) (fun p => [tuple of (behead p)])) /=; last first. move=> j Hj. case/andP : Hj => Hj1 /eqP => <-. symmetry. by apply tuple_eta. apply congr_big => // x /=. rewrite !theadE eqxx /= Hi /= -andbA /=. set tmp := _ == x. have Htmp : tmp = true. rewrite /tmp tupleE /behead_tuple /=. apply/eqP => /=. by apply val_inj. rewrite Htmp andbC /=. f_equal. by apply/eqP. move=> i; by case/andP. Qed. Lemma big_head_behead n (F : n.+1.-tuple A -> R) : \rsum_(i in A) \rsum_(j in {: n.-tuple A}) (F [tuple of (i :: j)]) = \rsum_(p in {: n.+1.-tuple A}) (F p). Proof. by rewrite big_head_behead_P. Qed.*) (*Lemma big_cat_tuple m n (F : (m + n)%nat.-tuple A -> R) : \rsum_(i in {:m.-tuple A} ) \rsum_(j in {: n.-tuple A}) F [tuple of (i ++ j)] = \rsum_(p in {: (m + n)%nat.-tuple A}) (F p). Proof. move: m n F. elim. - move=> m2 F /=. transitivity ( \rsum_(i <- [tuple] :: [::]) \rsum_(j in tuple_finType m2 A) F [tuple of i ++ j] ). apply congr_big => //=. symmetry. rewrite /index_enum /=. rewrite Finite.EnumDef.enumDef /=. apply eq_from_nth with [tuple] => //=. by rewrite FinTuple.size_enum expn0. case=> //= _. destruct (FinTuple.enum 0 A) => //. by rewrite (tuple0 t). rewrite big_cons /= big_nil /= addR0. apply eq_bigr => // i _. f_equal. by apply val_inj. - move=> m IH n F. symmetry. transitivity (\rsum_(p in tuple_finType (m + n).+1 A) F p); first by apply congr_big. rewrite -big_head_behead -big_head_behead. apply eq_bigr => i _. symmetry. move: {IH}(IH n (fun x => F [tuple of i :: x])) => <-. apply eq_bigr => i0 _. apply eq_bigr => i1 _. f_equal. by apply val_inj. Qed. Lemma big_cat_tuple_seq m n (F : seq A -> R) : \rsum_(i in {:m.-tuple A} ) \rsum_(j in {: n.-tuple A}) (F (i ++ j)) = \rsum_(p in {: (m + n)%nat.-tuple A}) (F p). Proof. move: (@big_cat_tuple m n (fun l => if size l == (m+n)%nat then F l else 0)) => IH. set lhs := \rsum_(i in _) _ in IH. apply trans_eq with lhs. rewrite /lhs. apply eq_bigr => i _. apply eq_bigr => j _. set test := _ == _. have Htest : test = true by rewrite /test size_tuple eqxx. case: ifP => // abs. by rewrite abs in Htest. rewrite IH. apply eq_bigr => i _. by rewrite size_tuple eqxx. Qed.*) Local Open Scope vec_ext_scope. Local Open Scope ring_scope. Lemma big_head_rbehead n (F : 'rV[A]_n.+1 -> R) (i : A) : \rsum_(j in 'rV[A]_n) (F (row_mx (\row_(k < 1) i) j)) = \rsum_(p in 'rV[A]_n.+1 | p ``_ ord0 == i) (F p). Proof. symmetry. rewrite (reindex_onto (fun j : 'rV[A]_n => (row_mx (\row_(k < 1) i) j)) (fun p : 'rV[A]_n.+1=> rbehead p)) /=; last first. move=> m Hm. apply/matrixP => a b; rewrite {a}(ord1 a). rewrite row_mx_rbehead //. by apply/eqP. apply eq_bigl => /= x. by rewrite rbehead_row_mx eqxx andbT row_mx_row_ord0 eqxx. Qed. (*Lemma big_behead_head n (F : n.+1.-tuple A -> R) (i : A) : \rsum_(j in {: n.-tuple A}) (F [tuple of (i :: j)]) = \rsum_(p in {: n.+1.-tuple A} | thead p == i) (F p). Proof. symmetry. rewrite (reindex_onto (fun j : {: n.-tuple A} => [tuple of (i :: j)]) (fun p => tbehead p)) /=; last first. move=> ij /eqP => <-; by rewrite -tuple_eta. apply eq_bigl => /= x. rewrite inE /= theadE eqxx /=. apply/eqP. rewrite tupleE /behead_tuple /=. by apply val_inj. Qed.*) (* TODO: rename *) Lemma big_head_big_behead n (F : 'rV[A]_n.+1 -> R) (j : 'rV[A]_n) : \rsum_(i in A ) (F (row_mx (\row_(k < 1) i) j)) = \rsum_(p in 'rV[A]_n.+1 | rbehead p == j) (F p). Proof. apply/esym. rewrite (reindex_onto (fun p => row_mx (\row_(k < 1) p) j) (fun p => p ``_ ord0) ) /=; last first. move=> i /eqP <-. apply/matrixP => a b; rewrite {a}(ord1 a). by rewrite row_mx_rbehead. apply eq_bigl => /= a. by rewrite rbehead_row_mx eqxx /= row_mx_row_ord0 eqxx. Qed. (*Lemma big_head_big_behead n (F : n.+1.-tuple A -> R) (j : {:n.-tuple A}) : \rsum_(i in A ) (F [tuple of (i :: j)]) = \rsum_(p in {:n.+1.-tuple A} | behead p == j) (F p). Proof. symmetry. rewrite (reindex_onto (fun p => [tuple of (p :: j)]) (fun p => thead p) ) /=; last first. case/tupleP => hd tl /=; move/eqP => tl_i. rewrite !tupleE. f_equal. by apply val_inj. apply eq_bigl => /= a; by rewrite inE /= theadE eqxx /= eqxx. Qed.*) Lemma big_head_rbehead_P_set n (F : 'rV[A]_n.+1 -> R) (P1 : {set A}) (P2 : {set {: 'rV[A]_n}}) : \rsum_(i in P1) \rsum_(j in P2) (F (row_mx (\row_(k < 1) i) j)) = \rsum_(p in 'rV[A]_n.+1 | (p ``_ ord0 \in P1) && (rbehead p \in P2)) (F p). Proof. apply/esym. rewrite (@partition_big _ _ _ _ _ _ (fun x : 'rV[A]_n.+1 => x ``_ ord0) (fun x : A => x \in P1)) //=. - apply eq_bigr => i Hi. rewrite (reindex_onto (fun j : 'rV[A]_n => row_mx (\row_(k < 1) i) j) rbehead) /=; last first. move=> j Hj. case/andP : Hj => Hj1 /eqP => <-. apply/matrixP => a b; rewrite {a}(ord1 a). by rewrite row_mx_rbehead. apply congr_big => // x /=. by rewrite rbehead_row_mx eqxx andbT row_mx_row_ord0 eqxx Hi andbT. move=> i; by case/andP. Qed. Lemma big_head_behead_P n (F : 'rV[A]_n.+1 -> R) (P1 : pred A) (P2 : pred 'rV[A]_n) : \rsum_(i in A | P1 i) \rsum_(j in 'rV[A]_n | P2 j) (F (row_mx (\row_(k < 1) i) j)) = \rsum_(p in 'rV[A]_n.+1 | (P1 (p ``_ ord0)) && (P2 (rbehead p)) ) (F p). Proof. symmetry. rewrite (@partition_big _ _ _ _ _ _ (fun x : 'rV[A]_n.+1 => x ``_ ord0) (fun x : A => P1 x)) //=. - apply eq_bigr => i Hi. rewrite (reindex_onto (fun j : 'rV[A]_n => row_mx (\row_(k < 1) i) j) rbehead) /=; last first. move=> j Hj. case/andP : Hj => Hj1 /eqP => <-. apply/matrixP => a b; rewrite {a}(ord1 a). by rewrite row_mx_rbehead. apply congr_big => // x /=. by rewrite row_mx_row_ord0 rbehead_row_mx 2!eqxx Hi !andbT. move=> i; by case/andP. Qed. Lemma big_head_behead n (F : 'rV[A]_n.+1 -> R) : \rsum_(i in A) \rsum_(j in 'rV[A]_n) (F (row_mx (\row_(k < 1) i) j)) = \rsum_(p in 'rV[A]_n.+1) (F p). Proof. by rewrite big_head_behead_P. Qed. Lemma big_tcast n (F : n.-tuple A -> R) (P : pred {: n.-tuple A}) m (n_m : m = n) : \rsum_(p in {: n.-tuple A} | P p) (F p) = \rsum_(p in {: m.-tuple A} | P (tcast n_m p)) (F (tcast n_m p)). Proof. subst m. apply eq_bigr => ta. case/andP => _ H. by rewrite tcast_id. Qed. Local Open Scope tuple_ext_scope. (* TODO: remove? *) Lemma rsum_tuple_tnth n i (f : n.+1.-tuple A -> R): \rsum_(t | t \in {: n.+1.-tuple A}) f t = \rsum_(a | a \in A) \rsum_(t | t \_ i == a) f t. Proof. by rewrite (partition_big (fun x : n.+1.-tuple A => x \_ i) xpredT). Qed. Local Close Scope tuple_ext_scope. End big_sums_tuples. Section sum_tuple_ffun. Import Monoid.Theory. Variable R : Type. Variable times : Monoid.mul_law 0. Notation Local "*%M" := times (at level 0). Variable plus : Monoid.add_law 0 *%M. Notation Local "+%M" := plus (at level 0). Lemma sum_tuple_ffun (I J : finType) (F : {ffun I -> J} -> R) (G : _ -> _ -> _) (jdef : J) (idef : I) : \big[+%M/0]_(j : #|I|.-tuple J) G (F (Finfun j)) (nth jdef j 0) = \big[+%M/0]_(f : {ffun I -> J}) G (F f) (f (nth idef (enum I) 0)). Proof. rewrite (reindex_onto (fun y => fgraph y) (fun p => Finfun p)) //. apply eq_big; first by case => t /=; by rewrite eqxx. move=> i _. f_equal. by destruct i. destruct i as [ [tval Htval] ]. rewrite [fgraph _]/= -(nth_map idef jdef); last first. rewrite -cardE. apply/card_gt0P. by exists idef. by rewrite -codomE codom_ffun. Qed. End sum_tuple_ffun. Lemma sum_f_R0_rsum : forall k (f : nat -> R), sum_f_R0 f k = \rsum_(i<k.+1) f i. Proof. elim => [f|] /=. by rewrite big_ord_recl /= big_ord0 addR0. move=> k IH f. by rewrite big_ord_recr /= IH. Qed. Theorem RPascal k (a b : R) : (a + b) ^ k = \rsum_(i < k.+1) INR ('C(k, i))* (a ^ (k - i) * b ^ i). Proof. rewrite addRC Binomial.binomial sum_f_R0_rsum. apply eq_bigr => i _. rewrite combinaison_Coq_SSR; last by rewrite -ltnS. rewrite -minusE; field. Qed. (** Rle, Rlt lemmas for big-mult of reals *) Reserved Notation "\rmul_ ( i : A | P ) F" (at level 41, F at level 41, i, A at level 50, format "'[' \rmul_ ( i : A | P ) '/ ' F ']'"). Reserved Notation "\rmul_ ( i : t ) F" (at level 41, F at level 41, i at level 50, only parsing). Reserved Notation "\rmul_ ( i 'in' A ) F" (at level 41, F at level 41, i, A at level 50, format "'[' \rmul_ ( i 'in' A ) '/ ' F ']'"). Notation "\rmul_ ( i | P ) F" := (\big[Rmult/1%R]_( i | P) F) (at level 41, F at level 41, i at level 50, format "'[' \rmul_ ( i | P ) '/ ' F ']'") : R_scope. Reserved Notation "\rmul_ ( i < A | P ) F" (at level 41, F at level 41, i, A at level 50, format "'[' \rmul_ ( i < A | P ) '/ ' F ']'"). Reserved Notation "\rmul_ ( i < t ) F" (at level 41, F at level 41, i, t at level 50, format "'[' \rmul_ ( i < t ) '/ ' F ']'"). Notation "\rmul_ ( i : A | P ) F" := (\big[Rmult/R1]_( i : A | P ) F): R_scope. Notation "\rmul_ ( i : t ) F" := (\big[Rmult/R1]_( i : t ) F) : R_scope. Notation "\rmul_ ( i 'in' A ) F" := (\big[Rmult/R1]_( i in A ) F) : R_scope. Notation "\rmul_ ( i < A | P ) F" := (\big[Rmult/R1]_( i < A | P ) F): R_scope. Notation "\rmul_ ( i < t ) F" := (\big[Rmult/R1]_( i < t ) F) : R_scope. Section compare_big_mult. Lemma Rlt_0_big_mult {A : finType} F : (forall i, 0 < F i) -> 0 < \rmul_(i : A) F i. Proof. move=> H. elim: (index_enum _) => [| hd tl IH]. rewrite big_nil; fourier. rewrite big_cons; apply Rmult_lt_0_compat => //; by apply H. Qed. Lemma Rle_0_big_mult {A : finType} F : (forall i, 0 <= F i) -> 0 <= \rmul_(i : A) F i. Proof. move=> H. elim: (index_enum _) => [| hd tl IH]. rewrite big_nil; fourier. rewrite big_cons; apply Rmult_le_pos => //; by apply H. Qed. Local Open Scope vec_ext_scope. Local Open Scope ring_scope. Lemma Rlt_0_rmul_inv {B : finType} F (HF: forall a, 0 <= F a) : forall n (x : 'rV[B]_n.+1), 0 < \rmul_(i < n.+1) F (x ``_ i) -> forall i, 0 < F (x ``_ i). Proof. elim => [x | n IH]. rewrite big_ord_recr /= big_ord0 mul1R => Hi i. suff : i = ord_max by move=> ->. rewrite (ord1 i). by apply/val_inj. move=> x. set t := \row_(i < n.+1) (x ``_ (lift ord0 i)). rewrite big_ord_recl /= => H. apply Rlt_0_Rmult_inv in H; last 2 first. by apply HF. apply Rle_0_big_mult => i; by apply HF. case. case=> [Hi | i Hi]. rewrite (_ : Ordinal _ = ord0); last by apply val_inj. by case: H. case: H => _ H. have : 0 < \rmul_(i0 < n.+1) F (t ``_ i0). suff : \rmul_(i < n.+1) F (x ``_ (lift ord0 i)) = \rmul_(i0 < n.+1) F (t ``_ i0). by move=> <-. apply eq_bigr => j _. by rewrite mxE. have Hi' : (i < n.+1)%nat. clear -Hi; by rewrite ltnS in Hi. move/IH. move/(_ (Ordinal Hi')). set o1 := Ordinal _. set o2 := Ordinal _. suff : lift ord0 o1 = o2. move=> <-. by rewrite mxE. by apply val_inj. Qed. (* Lemma Rlt_0_rmul_inv {B : finType} F (HF: forall a, 0 <= F a) : forall n (x : n.+1.-tuple B), 0 < \rmul_(i < n.+1) F (tnth x i) -> forall i, 0 < F (tnth x i). Proof. elim => [x | n IH]. rewrite big_ord_recr /= big_ord0 mul1R => Hi i. suff : i = ord_max by move=> ->. rewrite (ord1 i). by apply/val_inj. case/tupleP => h t. rewrite big_ord_recl /= => H. apply Rlt_0_Rmult_inv in H; last 2 first. by apply HF. apply Rle_0_big_mult => i; by apply HF. case. case=> [Hi | i Hi]. by case: H. case: H => _ H. have : 0 < \rmul_(i0<n.+1) F (tnth t i0). suff : \rmul_(i<n.+1) F (tnth [tuple of h :: t] (lift ord0 i)) = \rmul_(i0<n.+1) F (tnth t i0). by move=> <-. apply eq_bigr => j _. f_equal. have Ht : t = [tuple of behead (h :: t)]. rewrite (tuple_eta t) /=. by apply/val_inj. rewrite Ht /=. rewrite tnth_behead /=. f_equal. by apply val_inj. rewrite -(lift0 j). by rewrite inord_val. have Hi' : (i < n.+1)%nat. clear -Hi; by rewrite ltnS in Hi. move/IH. move/(_ (Ordinal Hi')). suff : (tnth t (Ordinal Hi')) = (tnth [tuple of h :: t] (Ordinal Hi)). by move=> ->. have Ht : t = [tuple of behead (h :: t)]. rewrite (tuple_eta t) /=. by apply/val_inj. rewrite Ht /= tnth_behead /=. f_equal. by apply val_inj. apply val_inj => /=; by rewrite inordK. Qed. *) Lemma Rle_1_big_mult {A : finType} f : (forall i, 1 <= f i) -> 1 <= \rmul_(i : A) f i. Proof. move=> Hf. elim: (index_enum _) => [| hd tl IH]. - rewrite big_nil; by apply Rle_refl. - rewrite big_cons -{1}(mulR1 1%R). apply Rmult_le_compat => // ; fourier. Qed. Local Open Scope R_scope. Lemma Rle_big_mult {A : finType} f g : (forall i, 0 <= f i <= g i) -> \rmul_(i : A) f i <= \rmul_(i : A) g i. Proof. move=> Hfg. case/orP : (orbN [forall i, f i != 0%R]) ; last first. - rewrite negb_forall => /existsP Hf. case: Hf => i0 /negPn/eqP Hi0. rewrite (bigD1 i0) //= Hi0 mul0R; apply Rle_0_big_mult. move=> i ; move: (Hfg i) => [Hi1 Hi2] ; by apply (Rle_trans _ _ _ Hi1 Hi2). - move=> /forallP Hf. have Hprodf : 0 < \rmul_(i:A) f i. apply Rlt_0_big_mult => i. move: (Hf i) (Hfg i) => {Hf}Hf {Hfg}[Hf2 _]. apply/RltP; rewrite Rlt_neqAle eq_sym Hf /=; by apply/RleP. apply (Rmult_le_reg_r (1 * / \rmul_(i : A) f i) _ _). apply Rlt_mult_inv_pos => //; fourier. rewrite mul1R Rinv_r; last by apply not_eq_sym, Rlt_not_eq. set inv_spec := fun r => if r == 0 then 0 else / r. rewrite (_ : / (\rmul_(a : A) f a) = inv_spec (\rmul_(a : A) f a)) ; last first. rewrite /inv_spec (_ : \rmul_(a : A) f a == 0 = false) //. apply/eqP ; by apply not_eq_sym, Rlt_not_eq. rewrite (@big_morph _ _ (inv_spec) R1 Rmult R1 Rmult _); last 2 first. - move=> a b /=. case/boolP : ((a != 0) && (b != 0)). - move=> /andP [/negbTE Ha /negbTE Hb] ; rewrite /inv_spec Ha Hb. move/negbT in Ha ; move/negbT in Hb. have : (a * b)%R == 0 = false ; last move=> ->. apply/negP => /eqP Habs. apply (Rmult_eq_compat_r (/ b)) in Habs ; move: Habs. rewrite -mulRA mul0R Rinv_r ?mulR1; move/eqP; by apply/negP. apply Rinv_mult_distr; move/eqP; by apply/negP. - rewrite negb_and => Hab. case/orP : (orbN (a != 0)) => Ha. - rewrite Ha /= in Hab; move/negPn/eqP in Hab; rewrite Hab mulR0 /inv_spec. by rewrite (_ : 0 == 0 ) // mulR0. - move/negPn/eqP in Ha ; rewrite Ha mul0R /inv_spec. by rewrite (_ : 0 == 0 ) // mul0R. - rewrite /inv_spec. have : ~~ (1 == 0). apply/eqP => H01; symmetry in H01; move: H01; apply Rlt_not_eq; fourier. move/negbTE => -> ; by rewrite Rinv_1. rewrite -big_split /=. apply Rle_1_big_mult => i. move/(_ i) in Hf. move: Hfg => /(_ i) [Hf2 Hfg]. rewrite /inv_spec. move/negbTE in Hf ; rewrite Hf ; move/negbT in Hf. rewrite -(Rinv_r (f i)); last by move/eqP; apply/negP. apply Rmult_le_compat_r => //. rewrite -(mul1R (/ f i)). apply Rle_mult_inv_pos; first fourier. apply/RltP; rewrite Rlt_neqAle eq_sym Hf /=; by apply/RleP. Qed. Local Close Scope R_scope. End compare_big_mult. Local Open Scope vec_ext_scope. Local Open Scope ring_scope. Lemma log_rmul_rsum_mlog {A : finType} (f : A -> R+) : forall n (ta : 'rV[A]_n.+1), (forall i, 0 < f ta ``_ i) -> (- log (\rmul_(i < n.+1) f ta ``_ i) = \rsum_(i < n.+1) - log (f ta ``_ i))%R. Proof. elim => [i Hi | n IH]. by rewrite big_ord_recl big_ord0 mulR1 big_ord_recl big_ord0 addR0. move=> ta Hi. rewrite big_ord_recl /= log_mult; last 2 first. by apply Hi. apply Rlt_0_big_mult => i; by apply Hi. set tl := \row_(i < n.+1) ta ``_ (lift ord0 i). have Htmp : forall i0 : 'I_n.+1, 0 < f tl ``_ i0. move=> i. rewrite mxE. by apply Hi. move: {IH Htmp}(IH _ Htmp) => IH. have -> : \rmul_(i < n.+1) f ta ``_ (lift ord0 i) = \rmul_(i0<n.+1) f tl ``_ i0. apply eq_bigr => i _. congr (f _). by rewrite /tl mxE. rewrite Ropp_plus_distr [X in _ = X]big_ord_recl IH. congr (_ + _)%R. apply eq_bigr => i _. by rewrite /tl mxE. Qed. (*Lemma log_rmul_rsum_mlog {A : finType} (f : A -> R+) : forall n (ta : n.+1.-tuple A), (forall i, 0 < f ta \_ i) -> - log (\rmul_(i < n.+1) f ta \_ i) = \rsum_(i < n.+1) - log (f ta \_ i). Proof. elim => [i Hi | n IH]. by rewrite big_ord_recl big_ord0 mulR1 big_ord_recl big_ord0 addR0. case/tupleP => hd tl Hi. rewrite big_ord_recl /= log_mult; last 2 first. by apply Hi. apply Rlt_0_big_mult => i; by apply Hi. have Htmp : forall i0 : 'I_n.+1, 0 < f tl \_ i0. move=> i. move: {Hi}(Hi (inord i.+1)) => Hi. set rhs := _ \_ _ in Hi. suff : tl \_ i = rhs by move=> ->. rewrite /rhs -tnth_behead /=. f_equal. by apply val_inj. move: {IH Htmp}(IH tl Htmp) => IH. have -> : \rmul_(i < n.+1) f [tuple of hd :: tl] \_ (lift ord0 i) = \rmul_(i0<n.+1) f tl \_ i0. apply eq_bigr => i _. f_equal. rewrite (_ : lift _ _ = inord i.+1); last by rewrite -lift0 inord_val. rewrite -tnth_behead /=. f_equal. by apply val_inj. rewrite Ropp_plus_distr [X in _ = X]big_ord_recl IH. f_equal. apply eq_bigr => i _. do 3 f_equal. rewrite (_ : lift _ _ = inord i.+1); last by rewrite -lift0 inord_val. rewrite -tnth_behead /=. f_equal. by apply val_inj. Qed.*) Local Close Scope tuple_ext_scope.
#! /usr/bin/Rscript setwd("/var/textBasedIR/") library(ggplot2) df <- read.csv("flickr8k_unigram_hybrid_results.csv", header = FALSE, col.names = c("method", "lambda", "recall@1", "mrr")) setwd("/home/mandar/Desktop/") p1 <- ggplot(df, aes(x = recall.1, y = mrr)) + geom_point(size=3, aes(color=factor(method), shape=factor(method))) + geom_smooth(aes(color=factor(method)), method = "lm", se = FALSE) + theme_bw() + theme( axis.title.x = element_text(face="bold", color="black", size=12), axis.title.y = element_text(face="bold", color="black", size=12), plot.title = element_text(face="bold", color = "black", size=12), legend.position=c(1,1), legend.justification=c(1,1)) + labs(x="Recall@1", y = "Mean Reciprocal Rank", title= "Linear Regression (95% CI) of Mean Reciprocal Rank vs Recall@1, by selection method") p2 <- ggplot(df, aes(x = lambda, y = mrr))+ geom_point(size=3, aes(color=factor(method), shape=factor(method))) + geom_smooth(aes(color=factor(method)), method = "lm", se = FALSE) + theme_bw() + theme( axis.title.x = element_text(face="bold", color="black", size=12), axis.title.y = element_text(face="bold", color="black", size=12), plot.title = element_text(face="bold", color = "black", size=12), legend.position=c(1,1), legend.justification=c(1,1)) + labs(x="Number of Lambda", y = "Mean Reciprocal Rank", title= "Linear Regression (95% CI) of Mean Reciprocal Rank vs Lambda, by selection method") p3 <- ggplot(df, aes(x = lambda, y = recall.1)) + geom_point(size=3, aes(color=factor(method), shape=factor(method))) + geom_smooth(aes(color=factor(method)), method = "lm", se = FALSE) + theme_bw() + theme( axis.title.x = element_text(face="bold", color="black", size=12), axis.title.y = element_text(face="bold", color="black", size=12), plot.title = element_text(face="bold", color = "black", size=12), legend.position=c(1,1), legend.justification=c(1,1)) + labs(x="Number of Lambda", y = "Recall@1", title= "Linear Regression (95% CI) of Recall@1 vs Lambda, by selection method")
I was able to capture a video of the "tearing" as well, here is the frame(s) that it happens in on both the source file and the actual playback on catalyst. It is somewhat subtle at times but on videos with more motion it is more noticeable. I have files that run on the exact same machine that have double that data rate that run fine, they just don't have any fast motion so I don't see it. This is with 1 layer running, plenty of system resources showing on the meters and no apparent frame drops. In testing I could play back I think 6 layers of this file with no frame drops. I have more pics if it's helpful. Any news on the Mavericks patch? I just had to replace my Mac Pro and the new model won't run osx 10.7 or 10.8!!! Although it is not a show computer I do use it for pre vis and programming and we start production rehearsals next week!! I am sure Richard will post the link to the download when he is happy for it to be used on shows.
[GOAL] k : Type u_1 V : Type u_2 P : Type u_3 inst✝⁴ : Ring k inst✝³ : AddCommGroup V inst✝² : Module k V inst✝¹ : AffineSpace V P ι : Type u_4 inst✝ : Fintype ι p : ι → P ⊢ AffineIndependent k p ↔ ∀ (w : ι → k), ∑ i : ι, w i = 0 → ↑(Finset.weightedVSub Finset.univ p) w = 0 → ∀ (i : ι), w i = 0 [PROOFSTEP] constructor [GOAL] case mp k : Type u_1 V : Type u_2 P : Type u_3 inst✝⁴ : Ring k inst✝³ : AddCommGroup V inst✝² : Module k V inst✝¹ : AffineSpace V P ι : Type u_4 inst✝ : Fintype ι p : ι → P ⊢ AffineIndependent k p → ∀ (w : ι → k), ∑ i : ι, w i = 0 → ↑(Finset.weightedVSub Finset.univ p) w = 0 → ∀ (i : ι), w i = 0 [PROOFSTEP] exact fun h w hw hs i => h Finset.univ w hw hs i (Finset.mem_univ _) [GOAL] case mpr k : Type u_1 V : Type u_2 P : Type u_3 inst✝⁴ : Ring k inst✝³ : AddCommGroup V inst✝² : Module k V inst✝¹ : AffineSpace V P ι : Type u_4 inst✝ : Fintype ι p : ι → P ⊢ (∀ (w : ι → k), ∑ i : ι, w i = 0 → ↑(Finset.weightedVSub Finset.univ p) w = 0 → ∀ (i : ι), w i = 0) → AffineIndependent k p [PROOFSTEP] intro h s w hw hs i hi [GOAL] case mpr k : Type u_1 V : Type u_2 P : Type u_3 inst✝⁴ : Ring k inst✝³ : AddCommGroup V inst✝² : Module k V inst✝¹ : AffineSpace V P ι : Type u_4 inst✝ : Fintype ι p : ι → P h : ∀ (w : ι → k), ∑ i : ι, w i = 0 → ↑(Finset.weightedVSub Finset.univ p) w = 0 → ∀ (i : ι), w i = 0 s : Finset ι w : ι → k hw : ∑ i in s, w i = 0 hs : ↑(Finset.weightedVSub s p) w = 0 i : ι hi : i ∈ s ⊢ w i = 0 [PROOFSTEP] rw [Finset.weightedVSub_indicator_subset _ _ (Finset.subset_univ s)] at hs [GOAL] case mpr k : Type u_1 V : Type u_2 P : Type u_3 inst✝⁴ : Ring k inst✝³ : AddCommGroup V inst✝² : Module k V inst✝¹ : AffineSpace V P ι : Type u_4 inst✝ : Fintype ι p : ι → P h : ∀ (w : ι → k), ∑ i : ι, w i = 0 → ↑(Finset.weightedVSub Finset.univ p) w = 0 → ∀ (i : ι), w i = 0 s : Finset ι w : ι → k hw : ∑ i in s, w i = 0 hs : ↑(Finset.weightedVSub Finset.univ p) (Set.indicator (↑s) w) = 0 i : ι hi : i ∈ s ⊢ w i = 0 [PROOFSTEP] rw [Set.sum_indicator_subset _ (Finset.subset_univ s)] at hw [GOAL] case mpr k : Type u_1 V : Type u_2 P : Type u_3 inst✝⁴ : Ring k inst✝³ : AddCommGroup V inst✝² : Module k V inst✝¹ : AffineSpace V P ι : Type u_4 inst✝ : Fintype ι p : ι → P h : ∀ (w : ι → k), ∑ i : ι, w i = 0 → ↑(Finset.weightedVSub Finset.univ p) w = 0 → ∀ (i : ι), w i = 0 s : Finset ι w : ι → k hw : ∑ i : ι, Set.indicator (↑s) (fun i => w i) i = 0 hs : ↑(Finset.weightedVSub Finset.univ p) (Set.indicator (↑s) w) = 0 i : ι hi : i ∈ s ⊢ w i = 0 [PROOFSTEP] replace h := h ((↑s : Set ι).indicator w) hw hs i [GOAL] case mpr k : Type u_1 V : Type u_2 P : Type u_3 inst✝⁴ : Ring k inst✝³ : AddCommGroup V inst✝² : Module k V inst✝¹ : AffineSpace V P ι : Type u_4 inst✝ : Fintype ι p : ι → P s : Finset ι w : ι → k hw : ∑ i : ι, Set.indicator (↑s) (fun i => w i) i = 0 hs : ↑(Finset.weightedVSub Finset.univ p) (Set.indicator (↑s) w) = 0 i : ι hi : i ∈ s h : Set.indicator (↑s) w i = 0 ⊢ w i = 0 [PROOFSTEP] simpa [hi] using h [GOAL] k : Type u_1 V : Type u_2 P : Type u_3 inst✝³ : Ring k inst✝² : AddCommGroup V inst✝¹ : Module k V inst✝ : AffineSpace V P ι : Type u_4 p : ι → P i1 : ι ⊢ AffineIndependent k p ↔ LinearIndependent k fun i => p ↑i -ᵥ p i1 [PROOFSTEP] classical constructor · intro h rw [linearIndependent_iff'] intro s g hg i hi set f : ι → k := fun x => if hx : x = i1 then -∑ y in s, g y else g ⟨x, hx⟩ with hfdef let s2 : Finset ι := insert i1 (s.map (Embedding.subtype _)) have hfg : ∀ x : { x // x ≠ i1 }, g x = f x := by intro x rw [hfdef] dsimp only erw [dif_neg x.property, Subtype.coe_eta] rw [hfg] have hf : ∑ ι in s2, f ι = 0 := by rw [Finset.sum_insert (Finset.not_mem_map_subtype_of_not_property s (Classical.not_not.2 rfl)), Finset.sum_subtype_map_embedding fun x _ => (hfg x).symm] rw [hfdef] dsimp only rw [dif_pos rfl] exact neg_add_self _ have hs2 : s2.weightedVSub p f = (0 : V) := by set f2 : ι → V := fun x => f x • (p x -ᵥ p i1) with hf2def set g2 : { x // x ≠ i1 } → V := fun x => g x • (p x -ᵥ p i1) have hf2g2 : ∀ x : { x // x ≠ i1 }, f2 x = g2 x := by simp only [hf2def] refine' fun x => _ rw [hfg] rw [Finset.weightedVSub_eq_weightedVSubOfPoint_of_sum_eq_zero s2 f p hf (p i1), Finset.weightedVSubOfPoint_insert, Finset.weightedVSubOfPoint_apply, Finset.sum_subtype_map_embedding fun x _ => hf2g2 x] exact hg exact h s2 f hf hs2 i (Finset.mem_insert_of_mem (Finset.mem_map.2 ⟨i, hi, rfl⟩)) · intro h rw [linearIndependent_iff'] at h intro s w hw hs i hi rw [Finset.weightedVSub_eq_weightedVSubOfPoint_of_sum_eq_zero s w p hw (p i1), ← s.weightedVSubOfPoint_erase w p i1, Finset.weightedVSubOfPoint_apply] at hs let f : ι → V := fun i => w i • (p i -ᵥ p i1) have hs2 : (∑ i in (s.erase i1).subtype fun i => i ≠ i1, f i) = 0 := by rw [← hs] convert Finset.sum_subtype_of_mem f fun x => Finset.ne_of_mem_erase have h2 := h ((s.erase i1).subtype fun i => i ≠ i1) (fun x => w x) hs2 simp_rw [Finset.mem_subtype] at h2 have h2b : ∀ i ∈ s, i ≠ i1 → w i = 0 := fun i his hi => h2 ⟨i, hi⟩ (Finset.mem_erase_of_ne_of_mem hi his) exact Finset.eq_zero_of_sum_eq_zero hw h2b i hi [GOAL] k : Type u_1 V : Type u_2 P : Type u_3 inst✝³ : Ring k inst✝² : AddCommGroup V inst✝¹ : Module k V inst✝ : AffineSpace V P ι : Type u_4 p : ι → P i1 : ι ⊢ AffineIndependent k p ↔ LinearIndependent k fun i => p ↑i -ᵥ p i1 [PROOFSTEP] constructor [GOAL] case mp k : Type u_1 V : Type u_2 P : Type u_3 inst✝³ : Ring k inst✝² : AddCommGroup V inst✝¹ : Module k V inst✝ : AffineSpace V P ι : Type u_4 p : ι → P i1 : ι ⊢ AffineIndependent k p → LinearIndependent k fun i => p ↑i -ᵥ p i1 [PROOFSTEP] intro h [GOAL] case mp k : Type u_1 V : Type u_2 P : Type u_3 inst✝³ : Ring k inst✝² : AddCommGroup V inst✝¹ : Module k V inst✝ : AffineSpace V P ι : Type u_4 p : ι → P i1 : ι h : AffineIndependent k p ⊢ LinearIndependent k fun i => p ↑i -ᵥ p i1 [PROOFSTEP] rw [linearIndependent_iff'] [GOAL] case mp k : Type u_1 V : Type u_2 P : Type u_3 inst✝³ : Ring k inst✝² : AddCommGroup V inst✝¹ : Module k V inst✝ : AffineSpace V P ι : Type u_4 p : ι → P i1 : ι h : AffineIndependent k p ⊢ ∀ (s : Finset { x // x ≠ i1 }) (g : { x // x ≠ i1 } → k), ∑ i in s, g i • (p ↑i -ᵥ p i1) = 0 → ∀ (i : { x // x ≠ i1 }), i ∈ s → g i = 0 [PROOFSTEP] intro s g hg i hi [GOAL] case mp k : Type u_1 V : Type u_2 P : Type u_3 inst✝³ : Ring k inst✝² : AddCommGroup V inst✝¹ : Module k V inst✝ : AffineSpace V P ι : Type u_4 p : ι → P i1 : ι h : AffineIndependent k p s : Finset { x // x ≠ i1 } g : { x // x ≠ i1 } → k hg : ∑ i in s, g i • (p ↑i -ᵥ p i1) = 0 i : { x // x ≠ i1 } hi : i ∈ s ⊢ g i = 0 [PROOFSTEP] set f : ι → k := fun x => if hx : x = i1 then -∑ y in s, g y else g ⟨x, hx⟩ with hfdef [GOAL] case mp k : Type u_1 V : Type u_2 P : Type u_3 inst✝³ : Ring k inst✝² : AddCommGroup V inst✝¹ : Module k V inst✝ : AffineSpace V P ι : Type u_4 p : ι → P i1 : ι h : AffineIndependent k p s : Finset { x // x ≠ i1 } g : { x // x ≠ i1 } → k hg : ∑ i in s, g i • (p ↑i -ᵥ p i1) = 0 i : { x // x ≠ i1 } hi : i ∈ s f : ι → k := fun x => if hx : x = i1 then -∑ y in s, g y else g { val := x, property := hx } hfdef : f = fun x => if hx : x = i1 then -∑ y in s, g y else g { val := x, property := hx } ⊢ g i = 0 [PROOFSTEP] let s2 : Finset ι := insert i1 (s.map (Embedding.subtype _)) [GOAL] case mp k : Type u_1 V : Type u_2 P : Type u_3 inst✝³ : Ring k inst✝² : AddCommGroup V inst✝¹ : Module k V inst✝ : AffineSpace V P ι : Type u_4 p : ι → P i1 : ι h : AffineIndependent k p s : Finset { x // x ≠ i1 } g : { x // x ≠ i1 } → k hg : ∑ i in s, g i • (p ↑i -ᵥ p i1) = 0 i : { x // x ≠ i1 } hi : i ∈ s f : ι → k := fun x => if hx : x = i1 then -∑ y in s, g y else g { val := x, property := hx } hfdef : f = fun x => if hx : x = i1 then -∑ y in s, g y else g { val := x, property := hx } s2 : Finset ι := insert i1 (Finset.map (Embedding.subtype fun x => x ≠ i1) s) ⊢ g i = 0 [PROOFSTEP] have hfg : ∀ x : { x // x ≠ i1 }, g x = f x := by intro x rw [hfdef] dsimp only erw [dif_neg x.property, Subtype.coe_eta] [GOAL] k : Type u_1 V : Type u_2 P : Type u_3 inst✝³ : Ring k inst✝² : AddCommGroup V inst✝¹ : Module k V inst✝ : AffineSpace V P ι : Type u_4 p : ι → P i1 : ι h : AffineIndependent k p s : Finset { x // x ≠ i1 } g : { x // x ≠ i1 } → k hg : ∑ i in s, g i • (p ↑i -ᵥ p i1) = 0 i : { x // x ≠ i1 } hi : i ∈ s f : ι → k := fun x => if hx : x = i1 then -∑ y in s, g y else g { val := x, property := hx } hfdef : f = fun x => if hx : x = i1 then -∑ y in s, g y else g { val := x, property := hx } s2 : Finset ι := insert i1 (Finset.map (Embedding.subtype fun x => x ≠ i1) s) ⊢ ∀ (x : { x // x ≠ i1 }), g x = f ↑x [PROOFSTEP] intro x [GOAL] k : Type u_1 V : Type u_2 P : Type u_3 inst✝³ : Ring k inst✝² : AddCommGroup V inst✝¹ : Module k V inst✝ : AffineSpace V P ι : Type u_4 p : ι → P i1 : ι h : AffineIndependent k p s : Finset { x // x ≠ i1 } g : { x // x ≠ i1 } → k hg : ∑ i in s, g i • (p ↑i -ᵥ p i1) = 0 i : { x // x ≠ i1 } hi : i ∈ s f : ι → k := fun x => if hx : x = i1 then -∑ y in s, g y else g { val := x, property := hx } hfdef : f = fun x => if hx : x = i1 then -∑ y in s, g y else g { val := x, property := hx } s2 : Finset ι := insert i1 (Finset.map (Embedding.subtype fun x => x ≠ i1) s) x : { x // x ≠ i1 } ⊢ g x = f ↑x [PROOFSTEP] rw [hfdef] [GOAL] k : Type u_1 V : Type u_2 P : Type u_3 inst✝³ : Ring k inst✝² : AddCommGroup V inst✝¹ : Module k V inst✝ : AffineSpace V P ι : Type u_4 p : ι → P i1 : ι h : AffineIndependent k p s : Finset { x // x ≠ i1 } g : { x // x ≠ i1 } → k hg : ∑ i in s, g i • (p ↑i -ᵥ p i1) = 0 i : { x // x ≠ i1 } hi : i ∈ s f : ι → k := fun x => if hx : x = i1 then -∑ y in s, g y else g { val := x, property := hx } hfdef : f = fun x => if hx : x = i1 then -∑ y in s, g y else g { val := x, property := hx } s2 : Finset ι := insert i1 (Finset.map (Embedding.subtype fun x => x ≠ i1) s) x : { x // x ≠ i1 } ⊢ g x = (fun x => if hx : x = i1 then -∑ y in s, g y else g { val := x, property := hx }) ↑x [PROOFSTEP] dsimp only [GOAL] k : Type u_1 V : Type u_2 P : Type u_3 inst✝³ : Ring k inst✝² : AddCommGroup V inst✝¹ : Module k V inst✝ : AffineSpace V P ι : Type u_4 p : ι → P i1 : ι h : AffineIndependent k p s : Finset { x // x ≠ i1 } g : { x // x ≠ i1 } → k hg : ∑ i in s, g i • (p ↑i -ᵥ p i1) = 0 i : { x // x ≠ i1 } hi : i ∈ s f : ι → k := fun x => if hx : x = i1 then -∑ y in s, g y else g { val := x, property := hx } hfdef : f = fun x => if hx : x = i1 then -∑ y in s, g y else g { val := x, property := hx } s2 : Finset ι := insert i1 (Finset.map (Embedding.subtype fun x => x ≠ i1) s) x : { x // x ≠ i1 } ⊢ g x = if hx : ↑x = i1 then -∑ y in s, g y else g { val := ↑x, property := hx } [PROOFSTEP] erw [dif_neg x.property, Subtype.coe_eta] [GOAL] case mp k : Type u_1 V : Type u_2 P : Type u_3 inst✝³ : Ring k inst✝² : AddCommGroup V inst✝¹ : Module k V inst✝ : AffineSpace V P ι : Type u_4 p : ι → P i1 : ι h : AffineIndependent k p s : Finset { x // x ≠ i1 } g : { x // x ≠ i1 } → k hg : ∑ i in s, g i • (p ↑i -ᵥ p i1) = 0 i : { x // x ≠ i1 } hi : i ∈ s f : ι → k := fun x => if hx : x = i1 then -∑ y in s, g y else g { val := x, property := hx } hfdef : f = fun x => if hx : x = i1 then -∑ y in s, g y else g { val := x, property := hx } s2 : Finset ι := insert i1 (Finset.map (Embedding.subtype fun x => x ≠ i1) s) hfg : ∀ (x : { x // x ≠ i1 }), g x = f ↑x ⊢ g i = 0 [PROOFSTEP] rw [hfg] [GOAL] case mp k : Type u_1 V : Type u_2 P : Type u_3 inst✝³ : Ring k inst✝² : AddCommGroup V inst✝¹ : Module k V inst✝ : AffineSpace V P ι : Type u_4 p : ι → P i1 : ι h : AffineIndependent k p s : Finset { x // x ≠ i1 } g : { x // x ≠ i1 } → k hg : ∑ i in s, g i • (p ↑i -ᵥ p i1) = 0 i : { x // x ≠ i1 } hi : i ∈ s f : ι → k := fun x => if hx : x = i1 then -∑ y in s, g y else g { val := x, property := hx } hfdef : f = fun x => if hx : x = i1 then -∑ y in s, g y else g { val := x, property := hx } s2 : Finset ι := insert i1 (Finset.map (Embedding.subtype fun x => x ≠ i1) s) hfg : ∀ (x : { x // x ≠ i1 }), g x = f ↑x ⊢ f ↑i = 0 [PROOFSTEP] have hf : ∑ ι in s2, f ι = 0 := by rw [Finset.sum_insert (Finset.not_mem_map_subtype_of_not_property s (Classical.not_not.2 rfl)), Finset.sum_subtype_map_embedding fun x _ => (hfg x).symm] rw [hfdef] dsimp only rw [dif_pos rfl] exact neg_add_self _ [GOAL] k : Type u_1 V : Type u_2 P : Type u_3 inst✝³ : Ring k inst✝² : AddCommGroup V inst✝¹ : Module k V inst✝ : AffineSpace V P ι : Type u_4 p : ι → P i1 : ι h : AffineIndependent k p s : Finset { x // x ≠ i1 } g : { x // x ≠ i1 } → k hg : ∑ i in s, g i • (p ↑i -ᵥ p i1) = 0 i : { x // x ≠ i1 } hi : i ∈ s f : ι → k := fun x => if hx : x = i1 then -∑ y in s, g y else g { val := x, property := hx } hfdef : f = fun x => if hx : x = i1 then -∑ y in s, g y else g { val := x, property := hx } s2 : Finset ι := insert i1 (Finset.map (Embedding.subtype fun x => x ≠ i1) s) hfg : ∀ (x : { x // x ≠ i1 }), g x = f ↑x ⊢ ∑ ι in s2, f ι = 0 [PROOFSTEP] rw [Finset.sum_insert (Finset.not_mem_map_subtype_of_not_property s (Classical.not_not.2 rfl)), Finset.sum_subtype_map_embedding fun x _ => (hfg x).symm] [GOAL] k : Type u_1 V : Type u_2 P : Type u_3 inst✝³ : Ring k inst✝² : AddCommGroup V inst✝¹ : Module k V inst✝ : AffineSpace V P ι : Type u_4 p : ι → P i1 : ι h : AffineIndependent k p s : Finset { x // x ≠ i1 } g : { x // x ≠ i1 } → k hg : ∑ i in s, g i • (p ↑i -ᵥ p i1) = 0 i : { x // x ≠ i1 } hi : i ∈ s f : ι → k := fun x => if hx : x = i1 then -∑ y in s, g y else g { val := x, property := hx } hfdef : f = fun x => if hx : x = i1 then -∑ y in s, g y else g { val := x, property := hx } s2 : Finset ι := insert i1 (Finset.map (Embedding.subtype fun x => x ≠ i1) s) hfg : ∀ (x : { x // x ≠ i1 }), g x = f ↑x ⊢ f i1 + ∑ x in s, g x = 0 [PROOFSTEP] rw [hfdef] [GOAL] k : Type u_1 V : Type u_2 P : Type u_3 inst✝³ : Ring k inst✝² : AddCommGroup V inst✝¹ : Module k V inst✝ : AffineSpace V P ι : Type u_4 p : ι → P i1 : ι h : AffineIndependent k p s : Finset { x // x ≠ i1 } g : { x // x ≠ i1 } → k hg : ∑ i in s, g i • (p ↑i -ᵥ p i1) = 0 i : { x // x ≠ i1 } hi : i ∈ s f : ι → k := fun x => if hx : x = i1 then -∑ y in s, g y else g { val := x, property := hx } hfdef : f = fun x => if hx : x = i1 then -∑ y in s, g y else g { val := x, property := hx } s2 : Finset ι := insert i1 (Finset.map (Embedding.subtype fun x => x ≠ i1) s) hfg : ∀ (x : { x // x ≠ i1 }), g x = f ↑x ⊢ (fun x => if hx : x = i1 then -∑ y in s, g y else g { val := x, property := hx }) i1 + ∑ x in s, g x = 0 [PROOFSTEP] dsimp only [GOAL] k : Type u_1 V : Type u_2 P : Type u_3 inst✝³ : Ring k inst✝² : AddCommGroup V inst✝¹ : Module k V inst✝ : AffineSpace V P ι : Type u_4 p : ι → P i1 : ι h : AffineIndependent k p s : Finset { x // x ≠ i1 } g : { x // x ≠ i1 } → k hg : ∑ i in s, g i • (p ↑i -ᵥ p i1) = 0 i : { x // x ≠ i1 } hi : i ∈ s f : ι → k := fun x => if hx : x = i1 then -∑ y in s, g y else g { val := x, property := hx } hfdef : f = fun x => if hx : x = i1 then -∑ y in s, g y else g { val := x, property := hx } s2 : Finset ι := insert i1 (Finset.map (Embedding.subtype fun x => x ≠ i1) s) hfg : ∀ (x : { x // x ≠ i1 }), g x = f ↑x ⊢ (if hx : i1 = i1 then -∑ y in s, g y else g { val := i1, property := hx }) + ∑ x in s, g x = 0 [PROOFSTEP] rw [dif_pos rfl] [GOAL] k : Type u_1 V : Type u_2 P : Type u_3 inst✝³ : Ring k inst✝² : AddCommGroup V inst✝¹ : Module k V inst✝ : AffineSpace V P ι : Type u_4 p : ι → P i1 : ι h : AffineIndependent k p s : Finset { x // x ≠ i1 } g : { x // x ≠ i1 } → k hg : ∑ i in s, g i • (p ↑i -ᵥ p i1) = 0 i : { x // x ≠ i1 } hi : i ∈ s f : ι → k := fun x => if hx : x = i1 then -∑ y in s, g y else g { val := x, property := hx } hfdef : f = fun x => if hx : x = i1 then -∑ y in s, g y else g { val := x, property := hx } s2 : Finset ι := insert i1 (Finset.map (Embedding.subtype fun x => x ≠ i1) s) hfg : ∀ (x : { x // x ≠ i1 }), g x = f ↑x ⊢ -∑ y in s, g y + ∑ x in s, g x = 0 [PROOFSTEP] exact neg_add_self _ [GOAL] case mp k : Type u_1 V : Type u_2 P : Type u_3 inst✝³ : Ring k inst✝² : AddCommGroup V inst✝¹ : Module k V inst✝ : AffineSpace V P ι : Type u_4 p : ι → P i1 : ι h : AffineIndependent k p s : Finset { x // x ≠ i1 } g : { x // x ≠ i1 } → k hg : ∑ i in s, g i • (p ↑i -ᵥ p i1) = 0 i : { x // x ≠ i1 } hi : i ∈ s f : ι → k := fun x => if hx : x = i1 then -∑ y in s, g y else g { val := x, property := hx } hfdef : f = fun x => if hx : x = i1 then -∑ y in s, g y else g { val := x, property := hx } s2 : Finset ι := insert i1 (Finset.map (Embedding.subtype fun x => x ≠ i1) s) hfg : ∀ (x : { x // x ≠ i1 }), g x = f ↑x hf : ∑ ι in s2, f ι = 0 ⊢ f ↑i = 0 [PROOFSTEP] have hs2 : s2.weightedVSub p f = (0 : V) := by set f2 : ι → V := fun x => f x • (p x -ᵥ p i1) with hf2def set g2 : { x // x ≠ i1 } → V := fun x => g x • (p x -ᵥ p i1) have hf2g2 : ∀ x : { x // x ≠ i1 }, f2 x = g2 x := by simp only [hf2def] refine' fun x => _ rw [hfg] rw [Finset.weightedVSub_eq_weightedVSubOfPoint_of_sum_eq_zero s2 f p hf (p i1), Finset.weightedVSubOfPoint_insert, Finset.weightedVSubOfPoint_apply, Finset.sum_subtype_map_embedding fun x _ => hf2g2 x] exact hg [GOAL] k : Type u_1 V : Type u_2 P : Type u_3 inst✝³ : Ring k inst✝² : AddCommGroup V inst✝¹ : Module k V inst✝ : AffineSpace V P ι : Type u_4 p : ι → P i1 : ι h : AffineIndependent k p s : Finset { x // x ≠ i1 } g : { x // x ≠ i1 } → k hg : ∑ i in s, g i • (p ↑i -ᵥ p i1) = 0 i : { x // x ≠ i1 } hi : i ∈ s f : ι → k := fun x => if hx : x = i1 then -∑ y in s, g y else g { val := x, property := hx } hfdef : f = fun x => if hx : x = i1 then -∑ y in s, g y else g { val := x, property := hx } s2 : Finset ι := insert i1 (Finset.map (Embedding.subtype fun x => x ≠ i1) s) hfg : ∀ (x : { x // x ≠ i1 }), g x = f ↑x hf : ∑ ι in s2, f ι = 0 ⊢ ↑(Finset.weightedVSub s2 p) f = 0 [PROOFSTEP] set f2 : ι → V := fun x => f x • (p x -ᵥ p i1) with hf2def [GOAL] k : Type u_1 V : Type u_2 P : Type u_3 inst✝³ : Ring k inst✝² : AddCommGroup V inst✝¹ : Module k V inst✝ : AffineSpace V P ι : Type u_4 p : ι → P i1 : ι h : AffineIndependent k p s : Finset { x // x ≠ i1 } g : { x // x ≠ i1 } → k hg : ∑ i in s, g i • (p ↑i -ᵥ p i1) = 0 i : { x // x ≠ i1 } hi : i ∈ s f : ι → k := fun x => if hx : x = i1 then -∑ y in s, g y else g { val := x, property := hx } hfdef : f = fun x => if hx : x = i1 then -∑ y in s, g y else g { val := x, property := hx } s2 : Finset ι := insert i1 (Finset.map (Embedding.subtype fun x => x ≠ i1) s) hfg : ∀ (x : { x // x ≠ i1 }), g x = f ↑x hf : ∑ ι in s2, f ι = 0 f2 : ι → V := fun x => f x • (p x -ᵥ p i1) hf2def : f2 = fun x => f x • (p x -ᵥ p i1) ⊢ ↑(Finset.weightedVSub s2 p) f = 0 [PROOFSTEP] set g2 : { x // x ≠ i1 } → V := fun x => g x • (p x -ᵥ p i1) [GOAL] k : Type u_1 V : Type u_2 P : Type u_3 inst✝³ : Ring k inst✝² : AddCommGroup V inst✝¹ : Module k V inst✝ : AffineSpace V P ι : Type u_4 p : ι → P i1 : ι h : AffineIndependent k p s : Finset { x // x ≠ i1 } g : { x // x ≠ i1 } → k i : { x // x ≠ i1 } hi : i ∈ s f : ι → k := fun x => if hx : x = i1 then -∑ y in s, g y else g { val := x, property := hx } hfdef : f = fun x => if hx : x = i1 then -∑ y in s, g y else g { val := x, property := hx } s2 : Finset ι := insert i1 (Finset.map (Embedding.subtype fun x => x ≠ i1) s) hfg : ∀ (x : { x // x ≠ i1 }), g x = f ↑x hf : ∑ ι in s2, f ι = 0 f2 : ι → V := fun x => f x • (p x -ᵥ p i1) hf2def : f2 = fun x => f x • (p x -ᵥ p i1) g2 : { x // x ≠ i1 } → V := fun x => g x • (p ↑x -ᵥ p i1) hg : Finset.sum s g2 = 0 ⊢ ↑(Finset.weightedVSub s2 p) f = 0 [PROOFSTEP] have hf2g2 : ∀ x : { x // x ≠ i1 }, f2 x = g2 x := by simp only [hf2def] refine' fun x => _ rw [hfg] [GOAL] k : Type u_1 V : Type u_2 P : Type u_3 inst✝³ : Ring k inst✝² : AddCommGroup V inst✝¹ : Module k V inst✝ : AffineSpace V P ι : Type u_4 p : ι → P i1 : ι h : AffineIndependent k p s : Finset { x // x ≠ i1 } g : { x // x ≠ i1 } → k i : { x // x ≠ i1 } hi : i ∈ s f : ι → k := fun x => if hx : x = i1 then -∑ y in s, g y else g { val := x, property := hx } hfdef : f = fun x => if hx : x = i1 then -∑ y in s, g y else g { val := x, property := hx } s2 : Finset ι := insert i1 (Finset.map (Embedding.subtype fun x => x ≠ i1) s) hfg : ∀ (x : { x // x ≠ i1 }), g x = f ↑x hf : ∑ ι in s2, f ι = 0 f2 : ι → V := fun x => f x • (p x -ᵥ p i1) hf2def : f2 = fun x => f x • (p x -ᵥ p i1) g2 : { x // x ≠ i1 } → V := fun x => g x • (p ↑x -ᵥ p i1) hg : Finset.sum s g2 = 0 ⊢ ∀ (x : { x // x ≠ i1 }), f2 ↑x = g2 x [PROOFSTEP] simp only [hf2def] [GOAL] k : Type u_1 V : Type u_2 P : Type u_3 inst✝³ : Ring k inst✝² : AddCommGroup V inst✝¹ : Module k V inst✝ : AffineSpace V P ι : Type u_4 p : ι → P i1 : ι h : AffineIndependent k p s : Finset { x // x ≠ i1 } g : { x // x ≠ i1 } → k i : { x // x ≠ i1 } hi : i ∈ s f : ι → k := fun x => if hx : x = i1 then -∑ y in s, g y else g { val := x, property := hx } hfdef : f = fun x => if hx : x = i1 then -∑ y in s, g y else g { val := x, property := hx } s2 : Finset ι := insert i1 (Finset.map (Embedding.subtype fun x => x ≠ i1) s) hfg : ∀ (x : { x // x ≠ i1 }), g x = f ↑x hf : ∑ ι in s2, f ι = 0 f2 : ι → V := fun x => f x • (p x -ᵥ p i1) hf2def : f2 = fun x => f x • (p x -ᵥ p i1) g2 : { x // x ≠ i1 } → V := fun x => g x • (p ↑x -ᵥ p i1) hg : Finset.sum s g2 = 0 ⊢ ∀ (x : { x // x ≠ i1 }), (if hx : ↑x = i1 then -∑ y in s, g y else g { val := ↑x, property := hx }) • (p ↑x -ᵥ p i1) = g x • (p ↑x -ᵥ p i1) [PROOFSTEP] refine' fun x => _ [GOAL] k : Type u_1 V : Type u_2 P : Type u_3 inst✝³ : Ring k inst✝² : AddCommGroup V inst✝¹ : Module k V inst✝ : AffineSpace V P ι : Type u_4 p : ι → P i1 : ι h : AffineIndependent k p s : Finset { x // x ≠ i1 } g : { x // x ≠ i1 } → k i : { x // x ≠ i1 } hi : i ∈ s f : ι → k := fun x => if hx : x = i1 then -∑ y in s, g y else g { val := x, property := hx } hfdef : f = fun x => if hx : x = i1 then -∑ y in s, g y else g { val := x, property := hx } s2 : Finset ι := insert i1 (Finset.map (Embedding.subtype fun x => x ≠ i1) s) hfg : ∀ (x : { x // x ≠ i1 }), g x = f ↑x hf : ∑ ι in s2, f ι = 0 f2 : ι → V := fun x => f x • (p x -ᵥ p i1) hf2def : f2 = fun x => f x • (p x -ᵥ p i1) g2 : { x // x ≠ i1 } → V := fun x => g x • (p ↑x -ᵥ p i1) hg : Finset.sum s g2 = 0 x : { x // x ≠ i1 } ⊢ (if hx : ↑x = i1 then -∑ y in s, g y else g { val := ↑x, property := hx }) • (p ↑x -ᵥ p i1) = g x • (p ↑x -ᵥ p i1) [PROOFSTEP] rw [hfg] [GOAL] k : Type u_1 V : Type u_2 P : Type u_3 inst✝³ : Ring k inst✝² : AddCommGroup V inst✝¹ : Module k V inst✝ : AffineSpace V P ι : Type u_4 p : ι → P i1 : ι h : AffineIndependent k p s : Finset { x // x ≠ i1 } g : { x // x ≠ i1 } → k i : { x // x ≠ i1 } hi : i ∈ s f : ι → k := fun x => if hx : x = i1 then -∑ y in s, g y else g { val := x, property := hx } hfdef : f = fun x => if hx : x = i1 then -∑ y in s, g y else g { val := x, property := hx } s2 : Finset ι := insert i1 (Finset.map (Embedding.subtype fun x => x ≠ i1) s) hfg : ∀ (x : { x // x ≠ i1 }), g x = f ↑x hf : ∑ ι in s2, f ι = 0 f2 : ι → V := fun x => f x • (p x -ᵥ p i1) hf2def : f2 = fun x => f x • (p x -ᵥ p i1) g2 : { x // x ≠ i1 } → V := fun x => g x • (p ↑x -ᵥ p i1) hg : Finset.sum s g2 = 0 hf2g2 : ∀ (x : { x // x ≠ i1 }), f2 ↑x = g2 x ⊢ ↑(Finset.weightedVSub s2 p) f = 0 [PROOFSTEP] rw [Finset.weightedVSub_eq_weightedVSubOfPoint_of_sum_eq_zero s2 f p hf (p i1), Finset.weightedVSubOfPoint_insert, Finset.weightedVSubOfPoint_apply, Finset.sum_subtype_map_embedding fun x _ => hf2g2 x] [GOAL] k : Type u_1 V : Type u_2 P : Type u_3 inst✝³ : Ring k inst✝² : AddCommGroup V inst✝¹ : Module k V inst✝ : AffineSpace V P ι : Type u_4 p : ι → P i1 : ι h : AffineIndependent k p s : Finset { x // x ≠ i1 } g : { x // x ≠ i1 } → k i : { x // x ≠ i1 } hi : i ∈ s f : ι → k := fun x => if hx : x = i1 then -∑ y in s, g y else g { val := x, property := hx } hfdef : f = fun x => if hx : x = i1 then -∑ y in s, g y else g { val := x, property := hx } s2 : Finset ι := insert i1 (Finset.map (Embedding.subtype fun x => x ≠ i1) s) hfg : ∀ (x : { x // x ≠ i1 }), g x = f ↑x hf : ∑ ι in s2, f ι = 0 f2 : ι → V := fun x => f x • (p x -ᵥ p i1) hf2def : f2 = fun x => f x • (p x -ᵥ p i1) g2 : { x // x ≠ i1 } → V := fun x => g x • (p ↑x -ᵥ p i1) hg : Finset.sum s g2 = 0 hf2g2 : ∀ (x : { x // x ≠ i1 }), f2 ↑x = g2 x ⊢ ∑ x in s, g2 x = 0 [PROOFSTEP] exact hg [GOAL] case mp k : Type u_1 V : Type u_2 P : Type u_3 inst✝³ : Ring k inst✝² : AddCommGroup V inst✝¹ : Module k V inst✝ : AffineSpace V P ι : Type u_4 p : ι → P i1 : ι h : AffineIndependent k p s : Finset { x // x ≠ i1 } g : { x // x ≠ i1 } → k hg : ∑ i in s, g i • (p ↑i -ᵥ p i1) = 0 i : { x // x ≠ i1 } hi : i ∈ s f : ι → k := fun x => if hx : x = i1 then -∑ y in s, g y else g { val := x, property := hx } hfdef : f = fun x => if hx : x = i1 then -∑ y in s, g y else g { val := x, property := hx } s2 : Finset ι := insert i1 (Finset.map (Embedding.subtype fun x => x ≠ i1) s) hfg : ∀ (x : { x // x ≠ i1 }), g x = f ↑x hf : ∑ ι in s2, f ι = 0 hs2 : ↑(Finset.weightedVSub s2 p) f = 0 ⊢ f ↑i = 0 [PROOFSTEP] exact h s2 f hf hs2 i (Finset.mem_insert_of_mem (Finset.mem_map.2 ⟨i, hi, rfl⟩)) [GOAL] case mpr k : Type u_1 V : Type u_2 P : Type u_3 inst✝³ : Ring k inst✝² : AddCommGroup V inst✝¹ : Module k V inst✝ : AffineSpace V P ι : Type u_4 p : ι → P i1 : ι ⊢ (LinearIndependent k fun i => p ↑i -ᵥ p i1) → AffineIndependent k p [PROOFSTEP] intro h [GOAL] case mpr k : Type u_1 V : Type u_2 P : Type u_3 inst✝³ : Ring k inst✝² : AddCommGroup V inst✝¹ : Module k V inst✝ : AffineSpace V P ι : Type u_4 p : ι → P i1 : ι h : LinearIndependent k fun i => p ↑i -ᵥ p i1 ⊢ AffineIndependent k p [PROOFSTEP] rw [linearIndependent_iff'] at h [GOAL] case mpr k : Type u_1 V : Type u_2 P : Type u_3 inst✝³ : Ring k inst✝² : AddCommGroup V inst✝¹ : Module k V inst✝ : AffineSpace V P ι : Type u_4 p : ι → P i1 : ι h : ∀ (s : Finset { x // x ≠ i1 }) (g : { x // x ≠ i1 } → k), ∑ i in s, g i • (p ↑i -ᵥ p i1) = 0 → ∀ (i : { x // x ≠ i1 }), i ∈ s → g i = 0 ⊢ AffineIndependent k p [PROOFSTEP] intro s w hw hs i hi [GOAL] case mpr k : Type u_1 V : Type u_2 P : Type u_3 inst✝³ : Ring k inst✝² : AddCommGroup V inst✝¹ : Module k V inst✝ : AffineSpace V P ι : Type u_4 p : ι → P i1 : ι h : ∀ (s : Finset { x // x ≠ i1 }) (g : { x // x ≠ i1 } → k), ∑ i in s, g i • (p ↑i -ᵥ p i1) = 0 → ∀ (i : { x // x ≠ i1 }), i ∈ s → g i = 0 s : Finset ι w : ι → k hw : ∑ i in s, w i = 0 hs : ↑(Finset.weightedVSub s p) w = 0 i : ι hi : i ∈ s ⊢ w i = 0 [PROOFSTEP] rw [Finset.weightedVSub_eq_weightedVSubOfPoint_of_sum_eq_zero s w p hw (p i1), ← s.weightedVSubOfPoint_erase w p i1, Finset.weightedVSubOfPoint_apply] at hs [GOAL] case mpr k : Type u_1 V : Type u_2 P : Type u_3 inst✝³ : Ring k inst✝² : AddCommGroup V inst✝¹ : Module k V inst✝ : AffineSpace V P ι : Type u_4 p : ι → P i1 : ι h : ∀ (s : Finset { x // x ≠ i1 }) (g : { x // x ≠ i1 } → k), ∑ i in s, g i • (p ↑i -ᵥ p i1) = 0 → ∀ (i : { x // x ≠ i1 }), i ∈ s → g i = 0 s : Finset ι w : ι → k hw : ∑ i in s, w i = 0 hs : ∑ i in Finset.erase s i1, w i • (p i -ᵥ p i1) = 0 i : ι hi : i ∈ s ⊢ w i = 0 [PROOFSTEP] let f : ι → V := fun i => w i • (p i -ᵥ p i1) [GOAL] case mpr k : Type u_1 V : Type u_2 P : Type u_3 inst✝³ : Ring k inst✝² : AddCommGroup V inst✝¹ : Module k V inst✝ : AffineSpace V P ι : Type u_4 p : ι → P i1 : ι h : ∀ (s : Finset { x // x ≠ i1 }) (g : { x // x ≠ i1 } → k), ∑ i in s, g i • (p ↑i -ᵥ p i1) = 0 → ∀ (i : { x // x ≠ i1 }), i ∈ s → g i = 0 s : Finset ι w : ι → k hw : ∑ i in s, w i = 0 hs : ∑ i in Finset.erase s i1, w i • (p i -ᵥ p i1) = 0 i : ι hi : i ∈ s f : ι → V := fun i => w i • (p i -ᵥ p i1) ⊢ w i = 0 [PROOFSTEP] have hs2 : (∑ i in (s.erase i1).subtype fun i => i ≠ i1, f i) = 0 := by rw [← hs] convert Finset.sum_subtype_of_mem f fun x => Finset.ne_of_mem_erase [GOAL] k : Type u_1 V : Type u_2 P : Type u_3 inst✝³ : Ring k inst✝² : AddCommGroup V inst✝¹ : Module k V inst✝ : AffineSpace V P ι : Type u_4 p : ι → P i1 : ι h : ∀ (s : Finset { x // x ≠ i1 }) (g : { x // x ≠ i1 } → k), ∑ i in s, g i • (p ↑i -ᵥ p i1) = 0 → ∀ (i : { x // x ≠ i1 }), i ∈ s → g i = 0 s : Finset ι w : ι → k hw : ∑ i in s, w i = 0 hs : ∑ i in Finset.erase s i1, w i • (p i -ᵥ p i1) = 0 i : ι hi : i ∈ s f : ι → V := fun i => w i • (p i -ᵥ p i1) ⊢ ∑ i in Finset.subtype (fun i => i ≠ i1) (Finset.erase s i1), f ↑i = 0 [PROOFSTEP] rw [← hs] [GOAL] k : Type u_1 V : Type u_2 P : Type u_3 inst✝³ : Ring k inst✝² : AddCommGroup V inst✝¹ : Module k V inst✝ : AffineSpace V P ι : Type u_4 p : ι → P i1 : ι h : ∀ (s : Finset { x // x ≠ i1 }) (g : { x // x ≠ i1 } → k), ∑ i in s, g i • (p ↑i -ᵥ p i1) = 0 → ∀ (i : { x // x ≠ i1 }), i ∈ s → g i = 0 s : Finset ι w : ι → k hw : ∑ i in s, w i = 0 hs : ∑ i in Finset.erase s i1, w i • (p i -ᵥ p i1) = 0 i : ι hi : i ∈ s f : ι → V := fun i => w i • (p i -ᵥ p i1) ⊢ ∑ i in Finset.subtype (fun i => i ≠ i1) (Finset.erase s i1), f ↑i = ∑ i in Finset.erase s i1, w i • (p i -ᵥ p i1) [PROOFSTEP] convert Finset.sum_subtype_of_mem f fun x => Finset.ne_of_mem_erase [GOAL] case mpr k : Type u_1 V : Type u_2 P : Type u_3 inst✝³ : Ring k inst✝² : AddCommGroup V inst✝¹ : Module k V inst✝ : AffineSpace V P ι : Type u_4 p : ι → P i1 : ι h : ∀ (s : Finset { x // x ≠ i1 }) (g : { x // x ≠ i1 } → k), ∑ i in s, g i • (p ↑i -ᵥ p i1) = 0 → ∀ (i : { x // x ≠ i1 }), i ∈ s → g i = 0 s : Finset ι w : ι → k hw : ∑ i in s, w i = 0 hs : ∑ i in Finset.erase s i1, w i • (p i -ᵥ p i1) = 0 i : ι hi : i ∈ s f : ι → V := fun i => w i • (p i -ᵥ p i1) hs2 : ∑ i in Finset.subtype (fun i => i ≠ i1) (Finset.erase s i1), f ↑i = 0 ⊢ w i = 0 [PROOFSTEP] have h2 := h ((s.erase i1).subtype fun i => i ≠ i1) (fun x => w x) hs2 [GOAL] case mpr k : Type u_1 V : Type u_2 P : Type u_3 inst✝³ : Ring k inst✝² : AddCommGroup V inst✝¹ : Module k V inst✝ : AffineSpace V P ι : Type u_4 p : ι → P i1 : ι h : ∀ (s : Finset { x // x ≠ i1 }) (g : { x // x ≠ i1 } → k), ∑ i in s, g i • (p ↑i -ᵥ p i1) = 0 → ∀ (i : { x // x ≠ i1 }), i ∈ s → g i = 0 s : Finset ι w : ι → k hw : ∑ i in s, w i = 0 hs : ∑ i in Finset.erase s i1, w i • (p i -ᵥ p i1) = 0 i : ι hi : i ∈ s f : ι → V := fun i => w i • (p i -ᵥ p i1) hs2 : ∑ i in Finset.subtype (fun i => i ≠ i1) (Finset.erase s i1), f ↑i = 0 h2 : ∀ (i : { x // x ≠ i1 }), i ∈ Finset.subtype (fun i => i ≠ i1) (Finset.erase s i1) → (fun x => w ↑x) i = 0 ⊢ w i = 0 [PROOFSTEP] simp_rw [Finset.mem_subtype] at h2 [GOAL] case mpr k : Type u_1 V : Type u_2 P : Type u_3 inst✝³ : Ring k inst✝² : AddCommGroup V inst✝¹ : Module k V inst✝ : AffineSpace V P ι : Type u_4 p : ι → P i1 : ι h : ∀ (s : Finset { x // x ≠ i1 }) (g : { x // x ≠ i1 } → k), ∑ i in s, g i • (p ↑i -ᵥ p i1) = 0 → ∀ (i : { x // x ≠ i1 }), i ∈ s → g i = 0 s : Finset ι w : ι → k hw : ∑ i in s, w i = 0 hs : ∑ i in Finset.erase s i1, w i • (p i -ᵥ p i1) = 0 i : ι hi : i ∈ s f : ι → V := fun i => w i • (p i -ᵥ p i1) hs2 : ∑ i in Finset.subtype (fun i => i ≠ i1) (Finset.erase s i1), f ↑i = 0 h2 : ∀ (i : { x // x ≠ i1 }), ↑i ∈ Finset.erase s i1 → w ↑i = 0 ⊢ w i = 0 [PROOFSTEP] have h2b : ∀ i ∈ s, i ≠ i1 → w i = 0 := fun i his hi => h2 ⟨i, hi⟩ (Finset.mem_erase_of_ne_of_mem hi his) [GOAL] case mpr k : Type u_1 V : Type u_2 P : Type u_3 inst✝³ : Ring k inst✝² : AddCommGroup V inst✝¹ : Module k V inst✝ : AffineSpace V P ι : Type u_4 p : ι → P i1 : ι h : ∀ (s : Finset { x // x ≠ i1 }) (g : { x // x ≠ i1 } → k), ∑ i in s, g i • (p ↑i -ᵥ p i1) = 0 → ∀ (i : { x // x ≠ i1 }), i ∈ s → g i = 0 s : Finset ι w : ι → k hw : ∑ i in s, w i = 0 hs : ∑ i in Finset.erase s i1, w i • (p i -ᵥ p i1) = 0 i : ι hi : i ∈ s f : ι → V := fun i => w i • (p i -ᵥ p i1) hs2 : ∑ i in Finset.subtype (fun i => i ≠ i1) (Finset.erase s i1), f ↑i = 0 h2 : ∀ (i : { x // x ≠ i1 }), ↑i ∈ Finset.erase s i1 → w ↑i = 0 h2b : ∀ (i : ι), i ∈ s → i ≠ i1 → w i = 0 ⊢ w i = 0 [PROOFSTEP] exact Finset.eq_zero_of_sum_eq_zero hw h2b i hi [GOAL] k : Type u_1 V : Type u_2 P : Type u_3 inst✝³ : Ring k inst✝² : AddCommGroup V inst✝¹ : Module k V inst✝ : AffineSpace V P ι : Type u_4 s : Set P p₁ : P hp₁ : p₁ ∈ s ⊢ (AffineIndependent k fun p => ↑p) ↔ LinearIndependent k fun v => ↑v [PROOFSTEP] rw [affineIndependent_iff_linearIndependent_vsub k (fun p => p : s → P) ⟨p₁, hp₁⟩] [GOAL] k : Type u_1 V : Type u_2 P : Type u_3 inst✝³ : Ring k inst✝² : AddCommGroup V inst✝¹ : Module k V inst✝ : AffineSpace V P ι : Type u_4 s : Set P p₁ : P hp₁ : p₁ ∈ s ⊢ (LinearIndependent k fun i => ↑↑i -ᵥ ↑{ val := p₁, property := hp₁ }) ↔ LinearIndependent k fun v => ↑v [PROOFSTEP] constructor [GOAL] case mp k : Type u_1 V : Type u_2 P : Type u_3 inst✝³ : Ring k inst✝² : AddCommGroup V inst✝¹ : Module k V inst✝ : AffineSpace V P ι : Type u_4 s : Set P p₁ : P hp₁ : p₁ ∈ s ⊢ (LinearIndependent k fun i => ↑↑i -ᵥ ↑{ val := p₁, property := hp₁ }) → LinearIndependent k fun v => ↑v [PROOFSTEP] intro h [GOAL] case mp k : Type u_1 V : Type u_2 P : Type u_3 inst✝³ : Ring k inst✝² : AddCommGroup V inst✝¹ : Module k V inst✝ : AffineSpace V P ι : Type u_4 s : Set P p₁ : P hp₁ : p₁ ∈ s h : LinearIndependent k fun i => ↑↑i -ᵥ ↑{ val := p₁, property := hp₁ } ⊢ LinearIndependent k fun v => ↑v [PROOFSTEP] have hv : ∀ v : (fun p => (p -ᵥ p₁ : V)) '' (s \ { p₁ }), (v : V) +ᵥ p₁ ∈ s \ { p₁ } := fun v => (vsub_left_injective p₁).mem_set_image.1 ((vadd_vsub (v : V) p₁).symm ▸ v.property) [GOAL] case mp k : Type u_1 V : Type u_2 P : Type u_3 inst✝³ : Ring k inst✝² : AddCommGroup V inst✝¹ : Module k V inst✝ : AffineSpace V P ι : Type u_4 s : Set P p₁ : P hp₁ : p₁ ∈ s h : LinearIndependent k fun i => ↑↑i -ᵥ ↑{ val := p₁, property := hp₁ } hv : ∀ (v : ↑((fun p => p -ᵥ p₁) '' (s \ {p₁}))), ↑v +ᵥ p₁ ∈ s \ {p₁} ⊢ LinearIndependent k fun v => ↑v [PROOFSTEP] let f : (fun p : P => (p -ᵥ p₁ : V)) '' (s \ { p₁ }) → { x : s // x ≠ ⟨p₁, hp₁⟩ } := fun x => ⟨⟨(x : V) +ᵥ p₁, Set.mem_of_mem_diff (hv x)⟩, fun hx => Set.not_mem_of_mem_diff (hv x) (Subtype.ext_iff.1 hx)⟩ [GOAL] case mp k : Type u_1 V : Type u_2 P : Type u_3 inst✝³ : Ring k inst✝² : AddCommGroup V inst✝¹ : Module k V inst✝ : AffineSpace V P ι : Type u_4 s : Set P p₁ : P hp₁ : p₁ ∈ s h : LinearIndependent k fun i => ↑↑i -ᵥ ↑{ val := p₁, property := hp₁ } hv : ∀ (v : ↑((fun p => p -ᵥ p₁) '' (s \ {p₁}))), ↑v +ᵥ p₁ ∈ s \ {p₁} f : ↑((fun p => p -ᵥ p₁) '' (s \ {p₁})) → { x // x ≠ { val := p₁, property := hp₁ } } := fun x => { val := { val := ↑x +ᵥ p₁, property := (_ : ↑x +ᵥ p₁ ∈ s) }, property := (_ : { val := ↑x +ᵥ p₁, property := (_ : ↑x +ᵥ p₁ ∈ s) } = { val := p₁, property := hp₁ } → False) } ⊢ LinearIndependent k fun v => ↑v [PROOFSTEP] convert h.comp f fun x1 x2 hx => Subtype.ext (vadd_right_cancel p₁ (Subtype.ext_iff.1 (Subtype.ext_iff.1 hx))) [GOAL] case h.e'_4.h.h.e k : Type u_1 V : Type u_2 P : Type u_3 inst✝³ : Ring k inst✝² : AddCommGroup V inst✝¹ : Module k V inst✝ : AffineSpace V P ι : Type u_4 s : Set P p₁ : P hp₁ : p₁ ∈ s h : LinearIndependent k fun i => ↑↑i -ᵥ ↑{ val := p₁, property := hp₁ } hv : ∀ (v : ↑((fun p => p -ᵥ p₁) '' (s \ {p₁}))), ↑v +ᵥ p₁ ∈ s \ {p₁} f : ↑((fun p => p -ᵥ p₁) '' (s \ {p₁})) → { x // x ≠ { val := p₁, property := hp₁ } } := fun x => { val := { val := ↑x +ᵥ p₁, property := (_ : ↑x +ᵥ p₁ ∈ s) }, property := (_ : { val := ↑x +ᵥ p₁, property := (_ : ↑x +ᵥ p₁ ∈ s) } = { val := p₁, property := hp₁ } → False) } x✝ : ↑((fun p => p -ᵥ p₁) '' (s \ {p₁})) ⊢ Subtype.val = (fun i => ↑↑i -ᵥ ↑{ val := p₁, property := hp₁ }) ∘ f [PROOFSTEP] ext v [GOAL] case h.e'_4.h.h.e.h k : Type u_1 V : Type u_2 P : Type u_3 inst✝³ : Ring k inst✝² : AddCommGroup V inst✝¹ : Module k V inst✝ : AffineSpace V P ι : Type u_4 s : Set P p₁ : P hp₁ : p₁ ∈ s h : LinearIndependent k fun i => ↑↑i -ᵥ ↑{ val := p₁, property := hp₁ } hv : ∀ (v : ↑((fun p => p -ᵥ p₁) '' (s \ {p₁}))), ↑v +ᵥ p₁ ∈ s \ {p₁} f : ↑((fun p => p -ᵥ p₁) '' (s \ {p₁})) → { x // x ≠ { val := p₁, property := hp₁ } } := fun x => { val := { val := ↑x +ᵥ p₁, property := (_ : ↑x +ᵥ p₁ ∈ s) }, property := (_ : { val := ↑x +ᵥ p₁, property := (_ : ↑x +ᵥ p₁ ∈ s) } = { val := p₁, property := hp₁ } → False) } x✝ : ↑((fun p => p -ᵥ p₁) '' (s \ {p₁})) v : { x // x ∈ (fun p => p -ᵥ p₁) '' (s \ {p₁}) } ⊢ ↑v = ((fun i => ↑↑i -ᵥ ↑{ val := p₁, property := hp₁ }) ∘ f) v [PROOFSTEP] exact (vadd_vsub (v : V) p₁).symm [GOAL] case mpr k : Type u_1 V : Type u_2 P : Type u_3 inst✝³ : Ring k inst✝² : AddCommGroup V inst✝¹ : Module k V inst✝ : AffineSpace V P ι : Type u_4 s : Set P p₁ : P hp₁ : p₁ ∈ s ⊢ (LinearIndependent k fun v => ↑v) → LinearIndependent k fun i => ↑↑i -ᵥ ↑{ val := p₁, property := hp₁ } [PROOFSTEP] intro h [GOAL] case mpr k : Type u_1 V : Type u_2 P : Type u_3 inst✝³ : Ring k inst✝² : AddCommGroup V inst✝¹ : Module k V inst✝ : AffineSpace V P ι : Type u_4 s : Set P p₁ : P hp₁ : p₁ ∈ s h : LinearIndependent k fun v => ↑v ⊢ LinearIndependent k fun i => ↑↑i -ᵥ ↑{ val := p₁, property := hp₁ } [PROOFSTEP] let f : { x : s // x ≠ ⟨p₁, hp₁⟩ } → (fun p : P => (p -ᵥ p₁ : V)) '' (s \ { p₁ }) := fun x => ⟨((x : s) : P) -ᵥ p₁, ⟨x, ⟨⟨(x : s).property, fun hx => x.property (Subtype.ext hx)⟩, rfl⟩⟩⟩ [GOAL] case mpr k : Type u_1 V : Type u_2 P : Type u_3 inst✝³ : Ring k inst✝² : AddCommGroup V inst✝¹ : Module k V inst✝ : AffineSpace V P ι : Type u_4 s : Set P p₁ : P hp₁ : p₁ ∈ s h : LinearIndependent k fun v => ↑v f : { x // x ≠ { val := p₁, property := hp₁ } } → ↑((fun p => p -ᵥ p₁) '' (s \ {p₁})) := fun x => { val := ↑↑x -ᵥ p₁, property := (_ : ∃ a, a ∈ s \ {p₁} ∧ (fun p => p -ᵥ p₁) a = ↑↑x -ᵥ p₁) } ⊢ LinearIndependent k fun i => ↑↑i -ᵥ ↑{ val := p₁, property := hp₁ } [PROOFSTEP] convert h.comp f fun x1 x2 hx => Subtype.ext (Subtype.ext (vsub_left_cancel (Subtype.ext_iff.1 hx))) [GOAL] k : Type u_1 V : Type u_2 P : Type u_3 inst✝³ : Ring k inst✝² : AddCommGroup V inst✝¹ : Module k V inst✝ : AffineSpace V P ι : Type u_4 s : Set V hs : ∀ (v : V), v ∈ s → v ≠ 0 p₁ : P ⊢ (LinearIndependent k fun v => ↑v) ↔ AffineIndependent k fun p => ↑p [PROOFSTEP] rw [affineIndependent_set_iff_linearIndependent_vsub k (Set.mem_union_left _ (Set.mem_singleton p₁))] [GOAL] k : Type u_1 V : Type u_2 P : Type u_3 inst✝³ : Ring k inst✝² : AddCommGroup V inst✝¹ : Module k V inst✝ : AffineSpace V P ι : Type u_4 s : Set V hs : ∀ (v : V), v ∈ s → v ≠ 0 p₁ : P ⊢ (LinearIndependent k fun v => ↑v) ↔ LinearIndependent k fun v => ↑v [PROOFSTEP] have h : (fun p => (p -ᵥ p₁ : V)) '' (({ p₁ } ∪ (fun v => v +ᵥ p₁) '' s) \ { p₁ }) = s := by simp_rw [Set.union_diff_left, Set.image_diff (vsub_left_injective p₁), Set.image_image, Set.image_singleton, vsub_self, vadd_vsub, Set.image_id'] exact Set.diff_singleton_eq_self fun h => hs 0 h rfl [GOAL] k : Type u_1 V : Type u_2 P : Type u_3 inst✝³ : Ring k inst✝² : AddCommGroup V inst✝¹ : Module k V inst✝ : AffineSpace V P ι : Type u_4 s : Set V hs : ∀ (v : V), v ∈ s → v ≠ 0 p₁ : P ⊢ (fun p => p -ᵥ p₁) '' (({p₁} ∪ (fun v => v +ᵥ p₁) '' s) \ {p₁}) = s [PROOFSTEP] simp_rw [Set.union_diff_left, Set.image_diff (vsub_left_injective p₁), Set.image_image, Set.image_singleton, vsub_self, vadd_vsub, Set.image_id'] [GOAL] k : Type u_1 V : Type u_2 P : Type u_3 inst✝³ : Ring k inst✝² : AddCommGroup V inst✝¹ : Module k V inst✝ : AffineSpace V P ι : Type u_4 s : Set V hs : ∀ (v : V), v ∈ s → v ≠ 0 p₁ : P ⊢ s \ {0} = s [PROOFSTEP] exact Set.diff_singleton_eq_self fun h => hs 0 h rfl [GOAL] k : Type u_1 V : Type u_2 P : Type u_3 inst✝³ : Ring k inst✝² : AddCommGroup V inst✝¹ : Module k V inst✝ : AffineSpace V P ι : Type u_4 s : Set V hs : ∀ (v : V), v ∈ s → v ≠ 0 p₁ : P h : (fun p => p -ᵥ p₁) '' (({p₁} ∪ (fun v => v +ᵥ p₁) '' s) \ {p₁}) = s ⊢ (LinearIndependent k fun v => ↑v) ↔ LinearIndependent k fun v => ↑v [PROOFSTEP] rw [h] [GOAL] k : Type u_1 V : Type u_2 P : Type u_3 inst✝³ : Ring k inst✝² : AddCommGroup V inst✝¹ : Module k V inst✝ : AffineSpace V P ι : Type u_4 p : ι → P ⊢ AffineIndependent k p ↔ ∀ (s1 s2 : Finset ι) (w1 w2 : ι → k), ∑ i in s1, w1 i = 1 → ∑ i in s2, w2 i = 1 → ↑(Finset.affineCombination k s1 p) w1 = ↑(Finset.affineCombination k s2 p) w2 → Set.indicator (↑s1) w1 = Set.indicator (↑s2) w2 [PROOFSTEP] classical constructor · intro ha s1 s2 w1 w2 hw1 hw2 heq ext i by_cases hi : i ∈ s1 ∪ s2 · rw [← sub_eq_zero] rw [Set.sum_indicator_subset _ (Finset.subset_union_left s1 s2)] at hw1 rw [Set.sum_indicator_subset _ (Finset.subset_union_right s1 s2)] at hw2 have hws : (∑ i in s1 ∪ s2, (Set.indicator (↑s1) w1 - Set.indicator (↑s2) w2) i) = 0 := by simp [hw1, hw2] rw [Finset.affineCombination_indicator_subset _ _ (Finset.subset_union_left s1 s2), Finset.affineCombination_indicator_subset _ _ (Finset.subset_union_right s1 s2), ← @vsub_eq_zero_iff_eq V, Finset.affineCombination_vsub] at heq exact ha (s1 ∪ s2) (Set.indicator (↑s1) w1 - Set.indicator (↑s2) w2) hws heq i hi · rw [← Finset.mem_coe, Finset.coe_union] at hi have h₁ : Set.indicator (↑s1) w1 i = 0 := by simp only [Set.indicator, Finset.mem_coe, ite_eq_right_iff] intro h by_contra exact (mt (@Set.mem_union_left _ i ↑s1 ↑s2) hi) h have h₂ : Set.indicator (↑s2) w2 i = 0 := by simp only [Set.indicator, Finset.mem_coe, ite_eq_right_iff] intro h by_contra exact (mt (@Set.mem_union_right _ i ↑s2 ↑s1) hi) h simp [h₁, h₂] · intro ha s w hw hs i0 hi0 let w1 : ι → k := Function.update (Function.const ι 0) i0 1 have hw1 : ∑ i in s, w1 i = 1 := by rw [Finset.sum_update_of_mem hi0] simp only [Finset.sum_const_zero, add_zero, const_apply] have hw1s : s.affineCombination k p w1 = p i0 := s.affineCombination_of_eq_one_of_eq_zero w1 p hi0 (Function.update_same _ _ _) fun _ _ hne => Function.update_noteq hne _ _ let w2 := w + w1 have hw2 : ∑ i in s, w2 i = 1 := by simp_all only [Pi.add_apply, Finset.sum_add_distrib, zero_add] have hw2s : s.affineCombination k p w2 = p i0 := by simp_all only [← Finset.weightedVSub_vadd_affineCombination, zero_vadd] replace ha := ha s s w2 w1 hw2 hw1 (hw1s.symm ▸ hw2s) have hws : w2 i0 - w1 i0 = 0 := by rw [← Finset.mem_coe] at hi0 rw [← Set.indicator_of_mem hi0 w2, ← Set.indicator_of_mem hi0 w1, ha, sub_self] simpa using hws [GOAL] k : Type u_1 V : Type u_2 P : Type u_3 inst✝³ : Ring k inst✝² : AddCommGroup V inst✝¹ : Module k V inst✝ : AffineSpace V P ι : Type u_4 p : ι → P ⊢ AffineIndependent k p ↔ ∀ (s1 s2 : Finset ι) (w1 w2 : ι → k), ∑ i in s1, w1 i = 1 → ∑ i in s2, w2 i = 1 → ↑(Finset.affineCombination k s1 p) w1 = ↑(Finset.affineCombination k s2 p) w2 → Set.indicator (↑s1) w1 = Set.indicator (↑s2) w2 [PROOFSTEP] constructor [GOAL] case mp k : Type u_1 V : Type u_2 P : Type u_3 inst✝³ : Ring k inst✝² : AddCommGroup V inst✝¹ : Module k V inst✝ : AffineSpace V P ι : Type u_4 p : ι → P ⊢ AffineIndependent k p → ∀ (s1 s2 : Finset ι) (w1 w2 : ι → k), ∑ i in s1, w1 i = 1 → ∑ i in s2, w2 i = 1 → ↑(Finset.affineCombination k s1 p) w1 = ↑(Finset.affineCombination k s2 p) w2 → Set.indicator (↑s1) w1 = Set.indicator (↑s2) w2 [PROOFSTEP] intro ha s1 s2 w1 w2 hw1 hw2 heq [GOAL] case mp k : Type u_1 V : Type u_2 P : Type u_3 inst✝³ : Ring k inst✝² : AddCommGroup V inst✝¹ : Module k V inst✝ : AffineSpace V P ι : Type u_4 p : ι → P ha : AffineIndependent k p s1 s2 : Finset ι w1 w2 : ι → k hw1 : ∑ i in s1, w1 i = 1 hw2 : ∑ i in s2, w2 i = 1 heq : ↑(Finset.affineCombination k s1 p) w1 = ↑(Finset.affineCombination k s2 p) w2 ⊢ Set.indicator (↑s1) w1 = Set.indicator (↑s2) w2 [PROOFSTEP] ext i [GOAL] case mp.h k : Type u_1 V : Type u_2 P : Type u_3 inst✝³ : Ring k inst✝² : AddCommGroup V inst✝¹ : Module k V inst✝ : AffineSpace V P ι : Type u_4 p : ι → P ha : AffineIndependent k p s1 s2 : Finset ι w1 w2 : ι → k hw1 : ∑ i in s1, w1 i = 1 hw2 : ∑ i in s2, w2 i = 1 heq : ↑(Finset.affineCombination k s1 p) w1 = ↑(Finset.affineCombination k s2 p) w2 i : ι ⊢ Set.indicator (↑s1) w1 i = Set.indicator (↑s2) w2 i [PROOFSTEP] by_cases hi : i ∈ s1 ∪ s2 [GOAL] case pos k : Type u_1 V : Type u_2 P : Type u_3 inst✝³ : Ring k inst✝² : AddCommGroup V inst✝¹ : Module k V inst✝ : AffineSpace V P ι : Type u_4 p : ι → P ha : AffineIndependent k p s1 s2 : Finset ι w1 w2 : ι → k hw1 : ∑ i in s1, w1 i = 1 hw2 : ∑ i in s2, w2 i = 1 heq : ↑(Finset.affineCombination k s1 p) w1 = ↑(Finset.affineCombination k s2 p) w2 i : ι hi : i ∈ s1 ∪ s2 ⊢ Set.indicator (↑s1) w1 i = Set.indicator (↑s2) w2 i [PROOFSTEP] rw [← sub_eq_zero] [GOAL] case pos k : Type u_1 V : Type u_2 P : Type u_3 inst✝³ : Ring k inst✝² : AddCommGroup V inst✝¹ : Module k V inst✝ : AffineSpace V P ι : Type u_4 p : ι → P ha : AffineIndependent k p s1 s2 : Finset ι w1 w2 : ι → k hw1 : ∑ i in s1, w1 i = 1 hw2 : ∑ i in s2, w2 i = 1 heq : ↑(Finset.affineCombination k s1 p) w1 = ↑(Finset.affineCombination k s2 p) w2 i : ι hi : i ∈ s1 ∪ s2 ⊢ Set.indicator (↑s1) w1 i - Set.indicator (↑s2) w2 i = 0 [PROOFSTEP] rw [Set.sum_indicator_subset _ (Finset.subset_union_left s1 s2)] at hw1 [GOAL] case pos k : Type u_1 V : Type u_2 P : Type u_3 inst✝³ : Ring k inst✝² : AddCommGroup V inst✝¹ : Module k V inst✝ : AffineSpace V P ι : Type u_4 p : ι → P ha : AffineIndependent k p s1 s2 : Finset ι w1 w2 : ι → k hw1 : ∑ i in s1 ∪ s2, Set.indicator (↑s1) (fun i => w1 i) i = 1 hw2 : ∑ i in s2, w2 i = 1 heq : ↑(Finset.affineCombination k s1 p) w1 = ↑(Finset.affineCombination k s2 p) w2 i : ι hi : i ∈ s1 ∪ s2 ⊢ Set.indicator (↑s1) w1 i - Set.indicator (↑s2) w2 i = 0 [PROOFSTEP] rw [Set.sum_indicator_subset _ (Finset.subset_union_right s1 s2)] at hw2 [GOAL] case pos k : Type u_1 V : Type u_2 P : Type u_3 inst✝³ : Ring k inst✝² : AddCommGroup V inst✝¹ : Module k V inst✝ : AffineSpace V P ι : Type u_4 p : ι → P ha : AffineIndependent k p s1 s2 : Finset ι w1 w2 : ι → k hw1 : ∑ i in s1 ∪ s2, Set.indicator (↑s1) (fun i => w1 i) i = 1 hw2 : ∑ i in s1 ∪ s2, Set.indicator (↑s2) (fun i => w2 i) i = 1 heq : ↑(Finset.affineCombination k s1 p) w1 = ↑(Finset.affineCombination k s2 p) w2 i : ι hi : i ∈ s1 ∪ s2 ⊢ Set.indicator (↑s1) w1 i - Set.indicator (↑s2) w2 i = 0 [PROOFSTEP] have hws : (∑ i in s1 ∪ s2, (Set.indicator (↑s1) w1 - Set.indicator (↑s2) w2) i) = 0 := by simp [hw1, hw2] [GOAL] k : Type u_1 V : Type u_2 P : Type u_3 inst✝³ : Ring k inst✝² : AddCommGroup V inst✝¹ : Module k V inst✝ : AffineSpace V P ι : Type u_4 p : ι → P ha : AffineIndependent k p s1 s2 : Finset ι w1 w2 : ι → k hw1 : ∑ i in s1 ∪ s2, Set.indicator (↑s1) (fun i => w1 i) i = 1 hw2 : ∑ i in s1 ∪ s2, Set.indicator (↑s2) (fun i => w2 i) i = 1 heq : ↑(Finset.affineCombination k s1 p) w1 = ↑(Finset.affineCombination k s2 p) w2 i : ι hi : i ∈ s1 ∪ s2 ⊢ ∑ i in s1 ∪ s2, (Set.indicator (↑s1) w1 - Set.indicator (↑s2) w2) i = 0 [PROOFSTEP] simp [hw1, hw2] [GOAL] case pos k : Type u_1 V : Type u_2 P : Type u_3 inst✝³ : Ring k inst✝² : AddCommGroup V inst✝¹ : Module k V inst✝ : AffineSpace V P ι : Type u_4 p : ι → P ha : AffineIndependent k p s1 s2 : Finset ι w1 w2 : ι → k hw1 : ∑ i in s1 ∪ s2, Set.indicator (↑s1) (fun i => w1 i) i = 1 hw2 : ∑ i in s1 ∪ s2, Set.indicator (↑s2) (fun i => w2 i) i = 1 heq : ↑(Finset.affineCombination k s1 p) w1 = ↑(Finset.affineCombination k s2 p) w2 i : ι hi : i ∈ s1 ∪ s2 hws : ∑ i in s1 ∪ s2, (Set.indicator (↑s1) w1 - Set.indicator (↑s2) w2) i = 0 ⊢ Set.indicator (↑s1) w1 i - Set.indicator (↑s2) w2 i = 0 [PROOFSTEP] rw [Finset.affineCombination_indicator_subset _ _ (Finset.subset_union_left s1 s2), Finset.affineCombination_indicator_subset _ _ (Finset.subset_union_right s1 s2), ← @vsub_eq_zero_iff_eq V, Finset.affineCombination_vsub] at heq [GOAL] case pos k : Type u_1 V : Type u_2 P : Type u_3 inst✝³ : Ring k inst✝² : AddCommGroup V inst✝¹ : Module k V inst✝ : AffineSpace V P ι : Type u_4 p : ι → P ha : AffineIndependent k p s1 s2 : Finset ι w1 w2 : ι → k hw1 : ∑ i in s1 ∪ s2, Set.indicator (↑s1) (fun i => w1 i) i = 1 hw2 : ∑ i in s1 ∪ s2, Set.indicator (↑s2) (fun i => w2 i) i = 1 heq : ↑(Finset.weightedVSub (s1 ∪ s2) p) (Set.indicator (↑s1) w1 - Set.indicator (↑s2) w2) = 0 i : ι hi : i ∈ s1 ∪ s2 hws : ∑ i in s1 ∪ s2, (Set.indicator (↑s1) w1 - Set.indicator (↑s2) w2) i = 0 ⊢ Set.indicator (↑s1) w1 i - Set.indicator (↑s2) w2 i = 0 [PROOFSTEP] exact ha (s1 ∪ s2) (Set.indicator (↑s1) w1 - Set.indicator (↑s2) w2) hws heq i hi [GOAL] case neg k : Type u_1 V : Type u_2 P : Type u_3 inst✝³ : Ring k inst✝² : AddCommGroup V inst✝¹ : Module k V inst✝ : AffineSpace V P ι : Type u_4 p : ι → P ha : AffineIndependent k p s1 s2 : Finset ι w1 w2 : ι → k hw1 : ∑ i in s1, w1 i = 1 hw2 : ∑ i in s2, w2 i = 1 heq : ↑(Finset.affineCombination k s1 p) w1 = ↑(Finset.affineCombination k s2 p) w2 i : ι hi : ¬i ∈ s1 ∪ s2 ⊢ Set.indicator (↑s1) w1 i = Set.indicator (↑s2) w2 i [PROOFSTEP] rw [← Finset.mem_coe, Finset.coe_union] at hi [GOAL] case neg k : Type u_1 V : Type u_2 P : Type u_3 inst✝³ : Ring k inst✝² : AddCommGroup V inst✝¹ : Module k V inst✝ : AffineSpace V P ι : Type u_4 p : ι → P ha : AffineIndependent k p s1 s2 : Finset ι w1 w2 : ι → k hw1 : ∑ i in s1, w1 i = 1 hw2 : ∑ i in s2, w2 i = 1 heq : ↑(Finset.affineCombination k s1 p) w1 = ↑(Finset.affineCombination k s2 p) w2 i : ι hi : ¬i ∈ ↑s1 ∪ ↑s2 ⊢ Set.indicator (↑s1) w1 i = Set.indicator (↑s2) w2 i [PROOFSTEP] have h₁ : Set.indicator (↑s1) w1 i = 0 := by simp only [Set.indicator, Finset.mem_coe, ite_eq_right_iff] intro h by_contra exact (mt (@Set.mem_union_left _ i ↑s1 ↑s2) hi) h [GOAL] k : Type u_1 V : Type u_2 P : Type u_3 inst✝³ : Ring k inst✝² : AddCommGroup V inst✝¹ : Module k V inst✝ : AffineSpace V P ι : Type u_4 p : ι → P ha : AffineIndependent k p s1 s2 : Finset ι w1 w2 : ι → k hw1 : ∑ i in s1, w1 i = 1 hw2 : ∑ i in s2, w2 i = 1 heq : ↑(Finset.affineCombination k s1 p) w1 = ↑(Finset.affineCombination k s2 p) w2 i : ι hi : ¬i ∈ ↑s1 ∪ ↑s2 ⊢ Set.indicator (↑s1) w1 i = 0 [PROOFSTEP] simp only [Set.indicator, Finset.mem_coe, ite_eq_right_iff] [GOAL] k : Type u_1 V : Type u_2 P : Type u_3 inst✝³ : Ring k inst✝² : AddCommGroup V inst✝¹ : Module k V inst✝ : AffineSpace V P ι : Type u_4 p : ι → P ha : AffineIndependent k p s1 s2 : Finset ι w1 w2 : ι → k hw1 : ∑ i in s1, w1 i = 1 hw2 : ∑ i in s2, w2 i = 1 heq : ↑(Finset.affineCombination k s1 p) w1 = ↑(Finset.affineCombination k s2 p) w2 i : ι hi : ¬i ∈ ↑s1 ∪ ↑s2 ⊢ i ∈ s1 → w1 i = 0 [PROOFSTEP] intro h [GOAL] k : Type u_1 V : Type u_2 P : Type u_3 inst✝³ : Ring k inst✝² : AddCommGroup V inst✝¹ : Module k V inst✝ : AffineSpace V P ι : Type u_4 p : ι → P ha : AffineIndependent k p s1 s2 : Finset ι w1 w2 : ι → k hw1 : ∑ i in s1, w1 i = 1 hw2 : ∑ i in s2, w2 i = 1 heq : ↑(Finset.affineCombination k s1 p) w1 = ↑(Finset.affineCombination k s2 p) w2 i : ι hi : ¬i ∈ ↑s1 ∪ ↑s2 h : i ∈ s1 ⊢ w1 i = 0 [PROOFSTEP] by_contra [GOAL] k : Type u_1 V : Type u_2 P : Type u_3 inst✝³ : Ring k inst✝² : AddCommGroup V inst✝¹ : Module k V inst✝ : AffineSpace V P ι : Type u_4 p : ι → P ha : AffineIndependent k p s1 s2 : Finset ι w1 w2 : ι → k hw1 : ∑ i in s1, w1 i = 1 hw2 : ∑ i in s2, w2 i = 1 heq : ↑(Finset.affineCombination k s1 p) w1 = ↑(Finset.affineCombination k s2 p) w2 i : ι hi : ¬i ∈ ↑s1 ∪ ↑s2 h : i ∈ s1 x✝ : ¬w1 i = 0 ⊢ False [PROOFSTEP] exact (mt (@Set.mem_union_left _ i ↑s1 ↑s2) hi) h [GOAL] case neg k : Type u_1 V : Type u_2 P : Type u_3 inst✝³ : Ring k inst✝² : AddCommGroup V inst✝¹ : Module k V inst✝ : AffineSpace V P ι : Type u_4 p : ι → P ha : AffineIndependent k p s1 s2 : Finset ι w1 w2 : ι → k hw1 : ∑ i in s1, w1 i = 1 hw2 : ∑ i in s2, w2 i = 1 heq : ↑(Finset.affineCombination k s1 p) w1 = ↑(Finset.affineCombination k s2 p) w2 i : ι hi : ¬i ∈ ↑s1 ∪ ↑s2 h₁ : Set.indicator (↑s1) w1 i = 0 ⊢ Set.indicator (↑s1) w1 i = Set.indicator (↑s2) w2 i [PROOFSTEP] have h₂ : Set.indicator (↑s2) w2 i = 0 := by simp only [Set.indicator, Finset.mem_coe, ite_eq_right_iff] intro h by_contra exact (mt (@Set.mem_union_right _ i ↑s2 ↑s1) hi) h [GOAL] k : Type u_1 V : Type u_2 P : Type u_3 inst✝³ : Ring k inst✝² : AddCommGroup V inst✝¹ : Module k V inst✝ : AffineSpace V P ι : Type u_4 p : ι → P ha : AffineIndependent k p s1 s2 : Finset ι w1 w2 : ι → k hw1 : ∑ i in s1, w1 i = 1 hw2 : ∑ i in s2, w2 i = 1 heq : ↑(Finset.affineCombination k s1 p) w1 = ↑(Finset.affineCombination k s2 p) w2 i : ι hi : ¬i ∈ ↑s1 ∪ ↑s2 h₁ : Set.indicator (↑s1) w1 i = 0 ⊢ Set.indicator (↑s2) w2 i = 0 [PROOFSTEP] simp only [Set.indicator, Finset.mem_coe, ite_eq_right_iff] [GOAL] k : Type u_1 V : Type u_2 P : Type u_3 inst✝³ : Ring k inst✝² : AddCommGroup V inst✝¹ : Module k V inst✝ : AffineSpace V P ι : Type u_4 p : ι → P ha : AffineIndependent k p s1 s2 : Finset ι w1 w2 : ι → k hw1 : ∑ i in s1, w1 i = 1 hw2 : ∑ i in s2, w2 i = 1 heq : ↑(Finset.affineCombination k s1 p) w1 = ↑(Finset.affineCombination k s2 p) w2 i : ι hi : ¬i ∈ ↑s1 ∪ ↑s2 h₁ : Set.indicator (↑s1) w1 i = 0 ⊢ i ∈ s2 → w2 i = 0 [PROOFSTEP] intro h [GOAL] k : Type u_1 V : Type u_2 P : Type u_3 inst✝³ : Ring k inst✝² : AddCommGroup V inst✝¹ : Module k V inst✝ : AffineSpace V P ι : Type u_4 p : ι → P ha : AffineIndependent k p s1 s2 : Finset ι w1 w2 : ι → k hw1 : ∑ i in s1, w1 i = 1 hw2 : ∑ i in s2, w2 i = 1 heq : ↑(Finset.affineCombination k s1 p) w1 = ↑(Finset.affineCombination k s2 p) w2 i : ι hi : ¬i ∈ ↑s1 ∪ ↑s2 h₁ : Set.indicator (↑s1) w1 i = 0 h : i ∈ s2 ⊢ w2 i = 0 [PROOFSTEP] by_contra [GOAL] k : Type u_1 V : Type u_2 P : Type u_3 inst✝³ : Ring k inst✝² : AddCommGroup V inst✝¹ : Module k V inst✝ : AffineSpace V P ι : Type u_4 p : ι → P ha : AffineIndependent k p s1 s2 : Finset ι w1 w2 : ι → k hw1 : ∑ i in s1, w1 i = 1 hw2 : ∑ i in s2, w2 i = 1 heq : ↑(Finset.affineCombination k s1 p) w1 = ↑(Finset.affineCombination k s2 p) w2 i : ι hi : ¬i ∈ ↑s1 ∪ ↑s2 h₁ : Set.indicator (↑s1) w1 i = 0 h : i ∈ s2 x✝ : ¬w2 i = 0 ⊢ False [PROOFSTEP] exact (mt (@Set.mem_union_right _ i ↑s2 ↑s1) hi) h [GOAL] case neg k : Type u_1 V : Type u_2 P : Type u_3 inst✝³ : Ring k inst✝² : AddCommGroup V inst✝¹ : Module k V inst✝ : AffineSpace V P ι : Type u_4 p : ι → P ha : AffineIndependent k p s1 s2 : Finset ι w1 w2 : ι → k hw1 : ∑ i in s1, w1 i = 1 hw2 : ∑ i in s2, w2 i = 1 heq : ↑(Finset.affineCombination k s1 p) w1 = ↑(Finset.affineCombination k s2 p) w2 i : ι hi : ¬i ∈ ↑s1 ∪ ↑s2 h₁ : Set.indicator (↑s1) w1 i = 0 h₂ : Set.indicator (↑s2) w2 i = 0 ⊢ Set.indicator (↑s1) w1 i = Set.indicator (↑s2) w2 i [PROOFSTEP] simp [h₁, h₂] [GOAL] case mpr k : Type u_1 V : Type u_2 P : Type u_3 inst✝³ : Ring k inst✝² : AddCommGroup V inst✝¹ : Module k V inst✝ : AffineSpace V P ι : Type u_4 p : ι → P ⊢ (∀ (s1 s2 : Finset ι) (w1 w2 : ι → k), ∑ i in s1, w1 i = 1 → ∑ i in s2, w2 i = 1 → ↑(Finset.affineCombination k s1 p) w1 = ↑(Finset.affineCombination k s2 p) w2 → Set.indicator (↑s1) w1 = Set.indicator (↑s2) w2) → AffineIndependent k p [PROOFSTEP] intro ha s w hw hs i0 hi0 [GOAL] case mpr k : Type u_1 V : Type u_2 P : Type u_3 inst✝³ : Ring k inst✝² : AddCommGroup V inst✝¹ : Module k V inst✝ : AffineSpace V P ι : Type u_4 p : ι → P ha : ∀ (s1 s2 : Finset ι) (w1 w2 : ι → k), ∑ i in s1, w1 i = 1 → ∑ i in s2, w2 i = 1 → ↑(Finset.affineCombination k s1 p) w1 = ↑(Finset.affineCombination k s2 p) w2 → Set.indicator (↑s1) w1 = Set.indicator (↑s2) w2 s : Finset ι w : ι → k hw : ∑ i in s, w i = 0 hs : ↑(Finset.weightedVSub s p) w = 0 i0 : ι hi0 : i0 ∈ s ⊢ w i0 = 0 [PROOFSTEP] let w1 : ι → k := Function.update (Function.const ι 0) i0 1 [GOAL] case mpr k : Type u_1 V : Type u_2 P : Type u_3 inst✝³ : Ring k inst✝² : AddCommGroup V inst✝¹ : Module k V inst✝ : AffineSpace V P ι : Type u_4 p : ι → P ha : ∀ (s1 s2 : Finset ι) (w1 w2 : ι → k), ∑ i in s1, w1 i = 1 → ∑ i in s2, w2 i = 1 → ↑(Finset.affineCombination k s1 p) w1 = ↑(Finset.affineCombination k s2 p) w2 → Set.indicator (↑s1) w1 = Set.indicator (↑s2) w2 s : Finset ι w : ι → k hw : ∑ i in s, w i = 0 hs : ↑(Finset.weightedVSub s p) w = 0 i0 : ι hi0 : i0 ∈ s w1 : ι → k := update (const ι 0) i0 1 ⊢ w i0 = 0 [PROOFSTEP] have hw1 : ∑ i in s, w1 i = 1 := by rw [Finset.sum_update_of_mem hi0] simp only [Finset.sum_const_zero, add_zero, const_apply] [GOAL] k : Type u_1 V : Type u_2 P : Type u_3 inst✝³ : Ring k inst✝² : AddCommGroup V inst✝¹ : Module k V inst✝ : AffineSpace V P ι : Type u_4 p : ι → P ha : ∀ (s1 s2 : Finset ι) (w1 w2 : ι → k), ∑ i in s1, w1 i = 1 → ∑ i in s2, w2 i = 1 → ↑(Finset.affineCombination k s1 p) w1 = ↑(Finset.affineCombination k s2 p) w2 → Set.indicator (↑s1) w1 = Set.indicator (↑s2) w2 s : Finset ι w : ι → k hw : ∑ i in s, w i = 0 hs : ↑(Finset.weightedVSub s p) w = 0 i0 : ι hi0 : i0 ∈ s w1 : ι → k := update (const ι 0) i0 1 ⊢ ∑ i in s, w1 i = 1 [PROOFSTEP] rw [Finset.sum_update_of_mem hi0] [GOAL] k : Type u_1 V : Type u_2 P : Type u_3 inst✝³ : Ring k inst✝² : AddCommGroup V inst✝¹ : Module k V inst✝ : AffineSpace V P ι : Type u_4 p : ι → P ha : ∀ (s1 s2 : Finset ι) (w1 w2 : ι → k), ∑ i in s1, w1 i = 1 → ∑ i in s2, w2 i = 1 → ↑(Finset.affineCombination k s1 p) w1 = ↑(Finset.affineCombination k s2 p) w2 → Set.indicator (↑s1) w1 = Set.indicator (↑s2) w2 s : Finset ι w : ι → k hw : ∑ i in s, w i = 0 hs : ↑(Finset.weightedVSub s p) w = 0 i0 : ι hi0 : i0 ∈ s w1 : ι → k := update (const ι 0) i0 1 ⊢ 1 + ∑ x in s \ {i0}, const ι 0 x = 1 [PROOFSTEP] simp only [Finset.sum_const_zero, add_zero, const_apply] [GOAL] case mpr k : Type u_1 V : Type u_2 P : Type u_3 inst✝³ : Ring k inst✝² : AddCommGroup V inst✝¹ : Module k V inst✝ : AffineSpace V P ι : Type u_4 p : ι → P ha : ∀ (s1 s2 : Finset ι) (w1 w2 : ι → k), ∑ i in s1, w1 i = 1 → ∑ i in s2, w2 i = 1 → ↑(Finset.affineCombination k s1 p) w1 = ↑(Finset.affineCombination k s2 p) w2 → Set.indicator (↑s1) w1 = Set.indicator (↑s2) w2 s : Finset ι w : ι → k hw : ∑ i in s, w i = 0 hs : ↑(Finset.weightedVSub s p) w = 0 i0 : ι hi0 : i0 ∈ s w1 : ι → k := update (const ι 0) i0 1 hw1 : ∑ i in s, w1 i = 1 ⊢ w i0 = 0 [PROOFSTEP] have hw1s : s.affineCombination k p w1 = p i0 := s.affineCombination_of_eq_one_of_eq_zero w1 p hi0 (Function.update_same _ _ _) fun _ _ hne => Function.update_noteq hne _ _ [GOAL] case mpr k : Type u_1 V : Type u_2 P : Type u_3 inst✝³ : Ring k inst✝² : AddCommGroup V inst✝¹ : Module k V inst✝ : AffineSpace V P ι : Type u_4 p : ι → P ha : ∀ (s1 s2 : Finset ι) (w1 w2 : ι → k), ∑ i in s1, w1 i = 1 → ∑ i in s2, w2 i = 1 → ↑(Finset.affineCombination k s1 p) w1 = ↑(Finset.affineCombination k s2 p) w2 → Set.indicator (↑s1) w1 = Set.indicator (↑s2) w2 s : Finset ι w : ι → k hw : ∑ i in s, w i = 0 hs : ↑(Finset.weightedVSub s p) w = 0 i0 : ι hi0 : i0 ∈ s w1 : ι → k := update (const ι 0) i0 1 hw1 : ∑ i in s, w1 i = 1 hw1s : ↑(Finset.affineCombination k s p) w1 = p i0 ⊢ w i0 = 0 [PROOFSTEP] let w2 := w + w1 [GOAL] case mpr k : Type u_1 V : Type u_2 P : Type u_3 inst✝³ : Ring k inst✝² : AddCommGroup V inst✝¹ : Module k V inst✝ : AffineSpace V P ι : Type u_4 p : ι → P ha : ∀ (s1 s2 : Finset ι) (w1 w2 : ι → k), ∑ i in s1, w1 i = 1 → ∑ i in s2, w2 i = 1 → ↑(Finset.affineCombination k s1 p) w1 = ↑(Finset.affineCombination k s2 p) w2 → Set.indicator (↑s1) w1 = Set.indicator (↑s2) w2 s : Finset ι w : ι → k hw : ∑ i in s, w i = 0 hs : ↑(Finset.weightedVSub s p) w = 0 i0 : ι hi0 : i0 ∈ s w1 : ι → k := update (const ι 0) i0 1 hw1 : ∑ i in s, w1 i = 1 hw1s : ↑(Finset.affineCombination k s p) w1 = p i0 w2 : ι → k := w + w1 ⊢ w i0 = 0 [PROOFSTEP] have hw2 : ∑ i in s, w2 i = 1 := by simp_all only [Pi.add_apply, Finset.sum_add_distrib, zero_add] [GOAL] k : Type u_1 V : Type u_2 P : Type u_3 inst✝³ : Ring k inst✝² : AddCommGroup V inst✝¹ : Module k V inst✝ : AffineSpace V P ι : Type u_4 p : ι → P ha : ∀ (s1 s2 : Finset ι) (w1 w2 : ι → k), ∑ i in s1, w1 i = 1 → ∑ i in s2, w2 i = 1 → ↑(Finset.affineCombination k s1 p) w1 = ↑(Finset.affineCombination k s2 p) w2 → Set.indicator (↑s1) w1 = Set.indicator (↑s2) w2 s : Finset ι w : ι → k hw : ∑ i in s, w i = 0 hs : ↑(Finset.weightedVSub s p) w = 0 i0 : ι hi0 : i0 ∈ s w1 : ι → k := update (const ι 0) i0 1 hw1 : ∑ i in s, w1 i = 1 hw1s : ↑(Finset.affineCombination k s p) w1 = p i0 w2 : ι → k := w + w1 ⊢ ∑ i in s, w2 i = 1 [PROOFSTEP] simp_all only [Pi.add_apply, Finset.sum_add_distrib, zero_add] [GOAL] case mpr k : Type u_1 V : Type u_2 P : Type u_3 inst✝³ : Ring k inst✝² : AddCommGroup V inst✝¹ : Module k V inst✝ : AffineSpace V P ι : Type u_4 p : ι → P ha : ∀ (s1 s2 : Finset ι) (w1 w2 : ι → k), ∑ i in s1, w1 i = 1 → ∑ i in s2, w2 i = 1 → ↑(Finset.affineCombination k s1 p) w1 = ↑(Finset.affineCombination k s2 p) w2 → Set.indicator (↑s1) w1 = Set.indicator (↑s2) w2 s : Finset ι w : ι → k hw : ∑ i in s, w i = 0 hs : ↑(Finset.weightedVSub s p) w = 0 i0 : ι hi0 : i0 ∈ s w1 : ι → k := update (const ι 0) i0 1 hw1 : ∑ i in s, w1 i = 1 hw1s : ↑(Finset.affineCombination k s p) w1 = p i0 w2 : ι → k := w + w1 hw2 : ∑ i in s, w2 i = 1 ⊢ w i0 = 0 [PROOFSTEP] have hw2s : s.affineCombination k p w2 = p i0 := by simp_all only [← Finset.weightedVSub_vadd_affineCombination, zero_vadd] [GOAL] k : Type u_1 V : Type u_2 P : Type u_3 inst✝³ : Ring k inst✝² : AddCommGroup V inst✝¹ : Module k V inst✝ : AffineSpace V P ι : Type u_4 p : ι → P ha : ∀ (s1 s2 : Finset ι) (w1 w2 : ι → k), ∑ i in s1, w1 i = 1 → ∑ i in s2, w2 i = 1 → ↑(Finset.affineCombination k s1 p) w1 = ↑(Finset.affineCombination k s2 p) w2 → Set.indicator (↑s1) w1 = Set.indicator (↑s2) w2 s : Finset ι w : ι → k hw : ∑ i in s, w i = 0 hs : ↑(Finset.weightedVSub s p) w = 0 i0 : ι hi0 : i0 ∈ s w1 : ι → k := update (const ι 0) i0 1 hw1 : ∑ i in s, w1 i = 1 hw1s : ↑(Finset.affineCombination k s p) w1 = p i0 w2 : ι → k := w + w1 hw2 : ∑ i in s, w2 i = 1 ⊢ ↑(Finset.affineCombination k s p) w2 = p i0 [PROOFSTEP] simp_all only [← Finset.weightedVSub_vadd_affineCombination, zero_vadd] [GOAL] case mpr k : Type u_1 V : Type u_2 P : Type u_3 inst✝³ : Ring k inst✝² : AddCommGroup V inst✝¹ : Module k V inst✝ : AffineSpace V P ι : Type u_4 p : ι → P ha : ∀ (s1 s2 : Finset ι) (w1 w2 : ι → k), ∑ i in s1, w1 i = 1 → ∑ i in s2, w2 i = 1 → ↑(Finset.affineCombination k s1 p) w1 = ↑(Finset.affineCombination k s2 p) w2 → Set.indicator (↑s1) w1 = Set.indicator (↑s2) w2 s : Finset ι w : ι → k hw : ∑ i in s, w i = 0 hs : ↑(Finset.weightedVSub s p) w = 0 i0 : ι hi0 : i0 ∈ s w1 : ι → k := update (const ι 0) i0 1 hw1 : ∑ i in s, w1 i = 1 hw1s : ↑(Finset.affineCombination k s p) w1 = p i0 w2 : ι → k := w + w1 hw2 : ∑ i in s, w2 i = 1 hw2s : ↑(Finset.affineCombination k s p) w2 = p i0 ⊢ w i0 = 0 [PROOFSTEP] replace ha := ha s s w2 w1 hw2 hw1 (hw1s.symm ▸ hw2s) [GOAL] case mpr k : Type u_1 V : Type u_2 P : Type u_3 inst✝³ : Ring k inst✝² : AddCommGroup V inst✝¹ : Module k V inst✝ : AffineSpace V P ι : Type u_4 p : ι → P s : Finset ι w : ι → k hw : ∑ i in s, w i = 0 hs : ↑(Finset.weightedVSub s p) w = 0 i0 : ι hi0 : i0 ∈ s w1 : ι → k := update (const ι 0) i0 1 hw1 : ∑ i in s, w1 i = 1 hw1s : ↑(Finset.affineCombination k s p) w1 = p i0 w2 : ι → k := w + w1 hw2 : ∑ i in s, w2 i = 1 hw2s : ↑(Finset.affineCombination k s p) w2 = p i0 ha : Set.indicator (↑s) w2 = Set.indicator (↑s) w1 ⊢ w i0 = 0 [PROOFSTEP] have hws : w2 i0 - w1 i0 = 0 := by rw [← Finset.mem_coe] at hi0 rw [← Set.indicator_of_mem hi0 w2, ← Set.indicator_of_mem hi0 w1, ha, sub_self] [GOAL] k : Type u_1 V : Type u_2 P : Type u_3 inst✝³ : Ring k inst✝² : AddCommGroup V inst✝¹ : Module k V inst✝ : AffineSpace V P ι : Type u_4 p : ι → P s : Finset ι w : ι → k hw : ∑ i in s, w i = 0 hs : ↑(Finset.weightedVSub s p) w = 0 i0 : ι hi0 : i0 ∈ s w1 : ι → k := update (const ι 0) i0 1 hw1 : ∑ i in s, w1 i = 1 hw1s : ↑(Finset.affineCombination k s p) w1 = p i0 w2 : ι → k := w + w1 hw2 : ∑ i in s, w2 i = 1 hw2s : ↑(Finset.affineCombination k s p) w2 = p i0 ha : Set.indicator (↑s) w2 = Set.indicator (↑s) w1 ⊢ w2 i0 - w1 i0 = 0 [PROOFSTEP] rw [← Finset.mem_coe] at hi0 [GOAL] k : Type u_1 V : Type u_2 P : Type u_3 inst✝³ : Ring k inst✝² : AddCommGroup V inst✝¹ : Module k V inst✝ : AffineSpace V P ι : Type u_4 p : ι → P s : Finset ι w : ι → k hw : ∑ i in s, w i = 0 hs : ↑(Finset.weightedVSub s p) w = 0 i0 : ι hi0 : i0 ∈ ↑s w1 : ι → k := update (const ι 0) i0 1 hw1 : ∑ i in s, w1 i = 1 hw1s : ↑(Finset.affineCombination k s p) w1 = p i0 w2 : ι → k := w + w1 hw2 : ∑ i in s, w2 i = 1 hw2s : ↑(Finset.affineCombination k s p) w2 = p i0 ha : Set.indicator (↑s) w2 = Set.indicator (↑s) w1 ⊢ w2 i0 - w1 i0 = 0 [PROOFSTEP] rw [← Set.indicator_of_mem hi0 w2, ← Set.indicator_of_mem hi0 w1, ha, sub_self] [GOAL] case mpr k : Type u_1 V : Type u_2 P : Type u_3 inst✝³ : Ring k inst✝² : AddCommGroup V inst✝¹ : Module k V inst✝ : AffineSpace V P ι : Type u_4 p : ι → P s : Finset ι w : ι → k hw : ∑ i in s, w i = 0 hs : ↑(Finset.weightedVSub s p) w = 0 i0 : ι hi0 : i0 ∈ s w1 : ι → k := update (const ι 0) i0 1 hw1 : ∑ i in s, w1 i = 1 hw1s : ↑(Finset.affineCombination k s p) w1 = p i0 w2 : ι → k := w + w1 hw2 : ∑ i in s, w2 i = 1 hw2s : ↑(Finset.affineCombination k s p) w2 = p i0 ha : Set.indicator (↑s) w2 = Set.indicator (↑s) w1 hws : w2 i0 - w1 i0 = 0 ⊢ w i0 = 0 [PROOFSTEP] simpa using hws [GOAL] k : Type u_1 V : Type u_2 P : Type u_3 inst✝⁴ : Ring k inst✝³ : AddCommGroup V inst✝² : Module k V inst✝¹ : AffineSpace V P ι : Type u_4 inst✝ : Fintype ι p : ι → P ⊢ AffineIndependent k p ↔ ∀ (w1 w2 : ι → k), ∑ i : ι, w1 i = 1 → ∑ i : ι, w2 i = 1 → ↑(Finset.affineCombination k Finset.univ p) w1 = ↑(Finset.affineCombination k Finset.univ p) w2 → w1 = w2 [PROOFSTEP] rw [affineIndependent_iff_indicator_eq_of_affineCombination_eq] [GOAL] k : Type u_1 V : Type u_2 P : Type u_3 inst✝⁴ : Ring k inst✝³ : AddCommGroup V inst✝² : Module k V inst✝¹ : AffineSpace V P ι : Type u_4 inst✝ : Fintype ι p : ι → P ⊢ (∀ (s1 s2 : Finset ι) (w1 w2 : ι → k), ∑ i in s1, w1 i = 1 → ∑ i in s2, w2 i = 1 → ↑(Finset.affineCombination k s1 p) w1 = ↑(Finset.affineCombination k s2 p) w2 → Set.indicator (↑s1) w1 = Set.indicator (↑s2) w2) ↔ ∀ (w1 w2 : ι → k), ∑ i : ι, w1 i = 1 → ∑ i : ι, w2 i = 1 → ↑(Finset.affineCombination k Finset.univ p) w1 = ↑(Finset.affineCombination k Finset.univ p) w2 → w1 = w2 [PROOFSTEP] constructor [GOAL] case mp k : Type u_1 V : Type u_2 P : Type u_3 inst✝⁴ : Ring k inst✝³ : AddCommGroup V inst✝² : Module k V inst✝¹ : AffineSpace V P ι : Type u_4 inst✝ : Fintype ι p : ι → P ⊢ (∀ (s1 s2 : Finset ι) (w1 w2 : ι → k), ∑ i in s1, w1 i = 1 → ∑ i in s2, w2 i = 1 → ↑(Finset.affineCombination k s1 p) w1 = ↑(Finset.affineCombination k s2 p) w2 → Set.indicator (↑s1) w1 = Set.indicator (↑s2) w2) → ∀ (w1 w2 : ι → k), ∑ i : ι, w1 i = 1 → ∑ i : ι, w2 i = 1 → ↑(Finset.affineCombination k Finset.univ p) w1 = ↑(Finset.affineCombination k Finset.univ p) w2 → w1 = w2 [PROOFSTEP] intro h w1 w2 hw1 hw2 hweq [GOAL] case mp k : Type u_1 V : Type u_2 P : Type u_3 inst✝⁴ : Ring k inst✝³ : AddCommGroup V inst✝² : Module k V inst✝¹ : AffineSpace V P ι : Type u_4 inst✝ : Fintype ι p : ι → P h : ∀ (s1 s2 : Finset ι) (w1 w2 : ι → k), ∑ i in s1, w1 i = 1 → ∑ i in s2, w2 i = 1 → ↑(Finset.affineCombination k s1 p) w1 = ↑(Finset.affineCombination k s2 p) w2 → Set.indicator (↑s1) w1 = Set.indicator (↑s2) w2 w1 w2 : ι → k hw1 : ∑ i : ι, w1 i = 1 hw2 : ∑ i : ι, w2 i = 1 hweq : ↑(Finset.affineCombination k Finset.univ p) w1 = ↑(Finset.affineCombination k Finset.univ p) w2 ⊢ w1 = w2 [PROOFSTEP] simpa only [Set.indicator_univ, Finset.coe_univ] using h _ _ w1 w2 hw1 hw2 hweq [GOAL] case mpr k : Type u_1 V : Type u_2 P : Type u_3 inst✝⁴ : Ring k inst✝³ : AddCommGroup V inst✝² : Module k V inst✝¹ : AffineSpace V P ι : Type u_4 inst✝ : Fintype ι p : ι → P ⊢ (∀ (w1 w2 : ι → k), ∑ i : ι, w1 i = 1 → ∑ i : ι, w2 i = 1 → ↑(Finset.affineCombination k Finset.univ p) w1 = ↑(Finset.affineCombination k Finset.univ p) w2 → w1 = w2) → ∀ (s1 s2 : Finset ι) (w1 w2 : ι → k), ∑ i in s1, w1 i = 1 → ∑ i in s2, w2 i = 1 → ↑(Finset.affineCombination k s1 p) w1 = ↑(Finset.affineCombination k s2 p) w2 → Set.indicator (↑s1) w1 = Set.indicator (↑s2) w2 [PROOFSTEP] intro h s1 s2 w1 w2 hw1 hw2 hweq [GOAL] case mpr k : Type u_1 V : Type u_2 P : Type u_3 inst✝⁴ : Ring k inst✝³ : AddCommGroup V inst✝² : Module k V inst✝¹ : AffineSpace V P ι : Type u_4 inst✝ : Fintype ι p : ι → P h : ∀ (w1 w2 : ι → k), ∑ i : ι, w1 i = 1 → ∑ i : ι, w2 i = 1 → ↑(Finset.affineCombination k Finset.univ p) w1 = ↑(Finset.affineCombination k Finset.univ p) w2 → w1 = w2 s1 s2 : Finset ι w1 w2 : ι → k hw1 : ∑ i in s1, w1 i = 1 hw2 : ∑ i in s2, w2 i = 1 hweq : ↑(Finset.affineCombination k s1 p) w1 = ↑(Finset.affineCombination k s2 p) w2 ⊢ Set.indicator (↑s1) w1 = Set.indicator (↑s2) w2 [PROOFSTEP] have hw1' : (∑ i, (s1 : Set ι).indicator w1 i) = 1 := by rwa [Set.sum_indicator_subset _ (Finset.subset_univ s1)] at hw1 [GOAL] k : Type u_1 V : Type u_2 P : Type u_3 inst✝⁴ : Ring k inst✝³ : AddCommGroup V inst✝² : Module k V inst✝¹ : AffineSpace V P ι : Type u_4 inst✝ : Fintype ι p : ι → P h : ∀ (w1 w2 : ι → k), ∑ i : ι, w1 i = 1 → ∑ i : ι, w2 i = 1 → ↑(Finset.affineCombination k Finset.univ p) w1 = ↑(Finset.affineCombination k Finset.univ p) w2 → w1 = w2 s1 s2 : Finset ι w1 w2 : ι → k hw1 : ∑ i in s1, w1 i = 1 hw2 : ∑ i in s2, w2 i = 1 hweq : ↑(Finset.affineCombination k s1 p) w1 = ↑(Finset.affineCombination k s2 p) w2 ⊢ ∑ i : ι, Set.indicator (↑s1) w1 i = 1 [PROOFSTEP] rwa [Set.sum_indicator_subset _ (Finset.subset_univ s1)] at hw1 [GOAL] case mpr k : Type u_1 V : Type u_2 P : Type u_3 inst✝⁴ : Ring k inst✝³ : AddCommGroup V inst✝² : Module k V inst✝¹ : AffineSpace V P ι : Type u_4 inst✝ : Fintype ι p : ι → P h : ∀ (w1 w2 : ι → k), ∑ i : ι, w1 i = 1 → ∑ i : ι, w2 i = 1 → ↑(Finset.affineCombination k Finset.univ p) w1 = ↑(Finset.affineCombination k Finset.univ p) w2 → w1 = w2 s1 s2 : Finset ι w1 w2 : ι → k hw1 : ∑ i in s1, w1 i = 1 hw2 : ∑ i in s2, w2 i = 1 hweq : ↑(Finset.affineCombination k s1 p) w1 = ↑(Finset.affineCombination k s2 p) w2 hw1' : ∑ i : ι, Set.indicator (↑s1) w1 i = 1 ⊢ Set.indicator (↑s1) w1 = Set.indicator (↑s2) w2 [PROOFSTEP] have hw2' : (∑ i, (s2 : Set ι).indicator w2 i) = 1 := by rwa [Set.sum_indicator_subset _ (Finset.subset_univ s2)] at hw2 [GOAL] k : Type u_1 V : Type u_2 P : Type u_3 inst✝⁴ : Ring k inst✝³ : AddCommGroup V inst✝² : Module k V inst✝¹ : AffineSpace V P ι : Type u_4 inst✝ : Fintype ι p : ι → P h : ∀ (w1 w2 : ι → k), ∑ i : ι, w1 i = 1 → ∑ i : ι, w2 i = 1 → ↑(Finset.affineCombination k Finset.univ p) w1 = ↑(Finset.affineCombination k Finset.univ p) w2 → w1 = w2 s1 s2 : Finset ι w1 w2 : ι → k hw1 : ∑ i in s1, w1 i = 1 hw2 : ∑ i in s2, w2 i = 1 hweq : ↑(Finset.affineCombination k s1 p) w1 = ↑(Finset.affineCombination k s2 p) w2 hw1' : ∑ i : ι, Set.indicator (↑s1) w1 i = 1 ⊢ ∑ i : ι, Set.indicator (↑s2) w2 i = 1 [PROOFSTEP] rwa [Set.sum_indicator_subset _ (Finset.subset_univ s2)] at hw2 [GOAL] case mpr k : Type u_1 V : Type u_2 P : Type u_3 inst✝⁴ : Ring k inst✝³ : AddCommGroup V inst✝² : Module k V inst✝¹ : AffineSpace V P ι : Type u_4 inst✝ : Fintype ι p : ι → P h : ∀ (w1 w2 : ι → k), ∑ i : ι, w1 i = 1 → ∑ i : ι, w2 i = 1 → ↑(Finset.affineCombination k Finset.univ p) w1 = ↑(Finset.affineCombination k Finset.univ p) w2 → w1 = w2 s1 s2 : Finset ι w1 w2 : ι → k hw1 : ∑ i in s1, w1 i = 1 hw2 : ∑ i in s2, w2 i = 1 hweq : ↑(Finset.affineCombination k s1 p) w1 = ↑(Finset.affineCombination k s2 p) w2 hw1' : ∑ i : ι, Set.indicator (↑s1) w1 i = 1 hw2' : ∑ i : ι, Set.indicator (↑s2) w2 i = 1 ⊢ Set.indicator (↑s1) w1 = Set.indicator (↑s2) w2 [PROOFSTEP] rw [Finset.affineCombination_indicator_subset w1 p (Finset.subset_univ s1), Finset.affineCombination_indicator_subset w2 p (Finset.subset_univ s2)] at hweq [GOAL] case mpr k : Type u_1 V : Type u_2 P : Type u_3 inst✝⁴ : Ring k inst✝³ : AddCommGroup V inst✝² : Module k V inst✝¹ : AffineSpace V P ι : Type u_4 inst✝ : Fintype ι p : ι → P h : ∀ (w1 w2 : ι → k), ∑ i : ι, w1 i = 1 → ∑ i : ι, w2 i = 1 → ↑(Finset.affineCombination k Finset.univ p) w1 = ↑(Finset.affineCombination k Finset.univ p) w2 → w1 = w2 s1 s2 : Finset ι w1 w2 : ι → k hw1 : ∑ i in s1, w1 i = 1 hw2 : ∑ i in s2, w2 i = 1 hweq : ↑(Finset.affineCombination k Finset.univ p) (Set.indicator (↑s1) w1) = ↑(Finset.affineCombination k Finset.univ p) (Set.indicator (↑s2) w2) hw1' : ∑ i : ι, Set.indicator (↑s1) w1 i = 1 hw2' : ∑ i : ι, Set.indicator (↑s2) w2 i = 1 ⊢ Set.indicator (↑s1) w1 = Set.indicator (↑s2) w2 [PROOFSTEP] exact h _ _ hw1' hw2' hweq [GOAL] k : Type u_1 V : Type u_2 P : Type u_3 inst✝³ : Ring k inst✝² : AddCommGroup V inst✝¹ : Module k V inst✝ : AffineSpace V P ι : Type u_4 p : ι → P hp : AffineIndependent k p j : ι w : ι → kˣ ⊢ AffineIndependent k fun i => ↑(AffineMap.lineMap (p j) (p i)) ↑(w i) [PROOFSTEP] rw [affineIndependent_iff_linearIndependent_vsub k _ j] at hp ⊢ [GOAL] k : Type u_1 V : Type u_2 P : Type u_3 inst✝³ : Ring k inst✝² : AddCommGroup V inst✝¹ : Module k V inst✝ : AffineSpace V P ι : Type u_4 p : ι → P j : ι hp : LinearIndependent k fun i => p ↑i -ᵥ p j w : ι → kˣ ⊢ LinearIndependent k fun i => ↑(AffineMap.lineMap (p j) (p ↑i)) ↑(w ↑i) -ᵥ ↑(AffineMap.lineMap (p j) (p j)) ↑(w j) [PROOFSTEP] simp only [AffineMap.lineMap_vsub_left, AffineMap.coe_const, AffineMap.lineMap_same, const_apply] [GOAL] k : Type u_1 V : Type u_2 P : Type u_3 inst✝³ : Ring k inst✝² : AddCommGroup V inst✝¹ : Module k V inst✝ : AffineSpace V P ι : Type u_4 p : ι → P j : ι hp : LinearIndependent k fun i => p ↑i -ᵥ p j w : ι → kˣ ⊢ LinearIndependent k fun i => ↑(w ↑i) • (p ↑i -ᵥ p j) [PROOFSTEP] exact hp.units_smul fun i => w i [GOAL] k : Type u_1 V : Type u_2 P : Type u_3 inst✝⁴ : Ring k inst✝³ : AddCommGroup V inst✝² : Module k V inst✝¹ : AffineSpace V P ι : Type u_4 inst✝ : Nontrivial k p : ι → P ha : AffineIndependent k p ⊢ Injective p [PROOFSTEP] intro i j hij [GOAL] k : Type u_1 V : Type u_2 P : Type u_3 inst✝⁴ : Ring k inst✝³ : AddCommGroup V inst✝² : Module k V inst✝¹ : AffineSpace V P ι : Type u_4 inst✝ : Nontrivial k p : ι → P ha : AffineIndependent k p i j : ι hij : p i = p j ⊢ i = j [PROOFSTEP] rw [affineIndependent_iff_linearIndependent_vsub _ _ j] at ha [GOAL] k : Type u_1 V : Type u_2 P : Type u_3 inst✝⁴ : Ring k inst✝³ : AddCommGroup V inst✝² : Module k V inst✝¹ : AffineSpace V P ι : Type u_4 inst✝ : Nontrivial k p : ι → P i j : ι ha : LinearIndependent k fun i => p ↑i -ᵥ p j hij : p i = p j ⊢ i = j [PROOFSTEP] by_contra hij' [GOAL] k : Type u_1 V : Type u_2 P : Type u_3 inst✝⁴ : Ring k inst✝³ : AddCommGroup V inst✝² : Module k V inst✝¹ : AffineSpace V P ι : Type u_4 inst✝ : Nontrivial k p : ι → P i j : ι ha : LinearIndependent k fun i => p ↑i -ᵥ p j hij : p i = p j hij' : ¬i = j ⊢ False [PROOFSTEP] refine' ha.ne_zero ⟨i, hij'⟩ (vsub_eq_zero_iff_eq.mpr _) [GOAL] k : Type u_1 V : Type u_2 P : Type u_3 inst✝⁴ : Ring k inst✝³ : AddCommGroup V inst✝² : Module k V inst✝¹ : AffineSpace V P ι : Type u_4 inst✝ : Nontrivial k p : ι → P i j : ι ha : LinearIndependent k fun i => p ↑i -ᵥ p j hij : p i = p j hij' : ¬i = j ⊢ p ↑{ val := i, property := hij' } = p j [PROOFSTEP] simp_all only [ne_eq] [GOAL] k : Type u_1 V : Type u_2 P : Type u_3 inst✝³ : Ring k inst✝² : AddCommGroup V inst✝¹ : Module k V inst✝ : AffineSpace V P ι : Type u_4 ι2 : Type u_5 f : ι2 ↪ ι p : ι → P ha : AffineIndependent k p ⊢ AffineIndependent k (p ∘ ↑f) [PROOFSTEP] classical intro fs w hw hs i0 hi0 let fs' := fs.map f let w' i := if h : ∃ i2, f i2 = i then w h.choose else 0 have hw' : ∀ i2 : ι2, w' (f i2) = w i2 := by intro i2 have h : ∃ i : ι2, f i = f i2 := ⟨i2, rfl⟩ have hs : h.choose = i2 := f.injective h.choose_spec simp_rw [dif_pos h, hs] have hw's : ∑ i in fs', w' i = 0 := by rw [← hw, Finset.sum_map] simp [hw'] have hs' : fs'.weightedVSub p w' = (0 : V) := by rw [← hs, Finset.weightedVSub_map] congr with i simp_all only [comp_apply, EmbeddingLike.apply_eq_iff_eq, exists_eq, dite_true] rw [← ha fs' w' hw's hs' (f i0) ((Finset.mem_map' _).2 hi0), hw'] [GOAL] k : Type u_1 V : Type u_2 P : Type u_3 inst✝³ : Ring k inst✝² : AddCommGroup V inst✝¹ : Module k V inst✝ : AffineSpace V P ι : Type u_4 ι2 : Type u_5 f : ι2 ↪ ι p : ι → P ha : AffineIndependent k p ⊢ AffineIndependent k (p ∘ ↑f) [PROOFSTEP] intro fs w hw hs i0 hi0 [GOAL] k : Type u_1 V : Type u_2 P : Type u_3 inst✝³ : Ring k inst✝² : AddCommGroup V inst✝¹ : Module k V inst✝ : AffineSpace V P ι : Type u_4 ι2 : Type u_5 f : ι2 ↪ ι p : ι → P ha : AffineIndependent k p fs : Finset ι2 w : ι2 → k hw : ∑ i in fs, w i = 0 hs : ↑(Finset.weightedVSub fs (p ∘ ↑f)) w = 0 i0 : ι2 hi0 : i0 ∈ fs ⊢ w i0 = 0 [PROOFSTEP] let fs' := fs.map f [GOAL] k : Type u_1 V : Type u_2 P : Type u_3 inst✝³ : Ring k inst✝² : AddCommGroup V inst✝¹ : Module k V inst✝ : AffineSpace V P ι : Type u_4 ι2 : Type u_5 f : ι2 ↪ ι p : ι → P ha : AffineIndependent k p fs : Finset ι2 w : ι2 → k hw : ∑ i in fs, w i = 0 hs : ↑(Finset.weightedVSub fs (p ∘ ↑f)) w = 0 i0 : ι2 hi0 : i0 ∈ fs fs' : Finset ι := Finset.map f fs ⊢ w i0 = 0 [PROOFSTEP] let w' i := if h : ∃ i2, f i2 = i then w h.choose else 0 [GOAL] k : Type u_1 V : Type u_2 P : Type u_3 inst✝³ : Ring k inst✝² : AddCommGroup V inst✝¹ : Module k V inst✝ : AffineSpace V P ι : Type u_4 ι2 : Type u_5 f : ι2 ↪ ι p : ι → P ha : AffineIndependent k p fs : Finset ι2 w : ι2 → k hw : ∑ i in fs, w i = 0 hs : ↑(Finset.weightedVSub fs (p ∘ ↑f)) w = 0 i0 : ι2 hi0 : i0 ∈ fs fs' : Finset ι := Finset.map f fs w' : ι → k := fun i => if h : ∃ i2, ↑f i2 = i then w (Exists.choose h) else 0 ⊢ w i0 = 0 [PROOFSTEP] have hw' : ∀ i2 : ι2, w' (f i2) = w i2 := by intro i2 have h : ∃ i : ι2, f i = f i2 := ⟨i2, rfl⟩ have hs : h.choose = i2 := f.injective h.choose_spec simp_rw [dif_pos h, hs] [GOAL] k : Type u_1 V : Type u_2 P : Type u_3 inst✝³ : Ring k inst✝² : AddCommGroup V inst✝¹ : Module k V inst✝ : AffineSpace V P ι : Type u_4 ι2 : Type u_5 f : ι2 ↪ ι p : ι → P ha : AffineIndependent k p fs : Finset ι2 w : ι2 → k hw : ∑ i in fs, w i = 0 hs : ↑(Finset.weightedVSub fs (p ∘ ↑f)) w = 0 i0 : ι2 hi0 : i0 ∈ fs fs' : Finset ι := Finset.map f fs w' : ι → k := fun i => if h : ∃ i2, ↑f i2 = i then w (Exists.choose h) else 0 ⊢ ∀ (i2 : ι2), w' (↑f i2) = w i2 [PROOFSTEP] intro i2 [GOAL] k : Type u_1 V : Type u_2 P : Type u_3 inst✝³ : Ring k inst✝² : AddCommGroup V inst✝¹ : Module k V inst✝ : AffineSpace V P ι : Type u_4 ι2 : Type u_5 f : ι2 ↪ ι p : ι → P ha : AffineIndependent k p fs : Finset ι2 w : ι2 → k hw : ∑ i in fs, w i = 0 hs : ↑(Finset.weightedVSub fs (p ∘ ↑f)) w = 0 i0 : ι2 hi0 : i0 ∈ fs fs' : Finset ι := Finset.map f fs w' : ι → k := fun i => if h : ∃ i2, ↑f i2 = i then w (Exists.choose h) else 0 i2 : ι2 ⊢ w' (↑f i2) = w i2 [PROOFSTEP] have h : ∃ i : ι2, f i = f i2 := ⟨i2, rfl⟩ [GOAL] k : Type u_1 V : Type u_2 P : Type u_3 inst✝³ : Ring k inst✝² : AddCommGroup V inst✝¹ : Module k V inst✝ : AffineSpace V P ι : Type u_4 ι2 : Type u_5 f : ι2 ↪ ι p : ι → P ha : AffineIndependent k p fs : Finset ι2 w : ι2 → k hw : ∑ i in fs, w i = 0 hs : ↑(Finset.weightedVSub fs (p ∘ ↑f)) w = 0 i0 : ι2 hi0 : i0 ∈ fs fs' : Finset ι := Finset.map f fs w' : ι → k := fun i => if h : ∃ i2, ↑f i2 = i then w (Exists.choose h) else 0 i2 : ι2 h : ∃ i, ↑f i = ↑f i2 ⊢ w' (↑f i2) = w i2 [PROOFSTEP] have hs : h.choose = i2 := f.injective h.choose_spec [GOAL] k : Type u_1 V : Type u_2 P : Type u_3 inst✝³ : Ring k inst✝² : AddCommGroup V inst✝¹ : Module k V inst✝ : AffineSpace V P ι : Type u_4 ι2 : Type u_5 f : ι2 ↪ ι p : ι → P ha : AffineIndependent k p fs : Finset ι2 w : ι2 → k hw : ∑ i in fs, w i = 0 hs✝ : ↑(Finset.weightedVSub fs (p ∘ ↑f)) w = 0 i0 : ι2 hi0 : i0 ∈ fs fs' : Finset ι := Finset.map f fs w' : ι → k := fun i => if h : ∃ i2, ↑f i2 = i then w (Exists.choose h) else 0 i2 : ι2 h : ∃ i, ↑f i = ↑f i2 hs : Exists.choose h = i2 ⊢ w' (↑f i2) = w i2 [PROOFSTEP] simp_rw [dif_pos h, hs] [GOAL] k : Type u_1 V : Type u_2 P : Type u_3 inst✝³ : Ring k inst✝² : AddCommGroup V inst✝¹ : Module k V inst✝ : AffineSpace V P ι : Type u_4 ι2 : Type u_5 f : ι2 ↪ ι p : ι → P ha : AffineIndependent k p fs : Finset ι2 w : ι2 → k hw : ∑ i in fs, w i = 0 hs : ↑(Finset.weightedVSub fs (p ∘ ↑f)) w = 0 i0 : ι2 hi0 : i0 ∈ fs fs' : Finset ι := Finset.map f fs w' : ι → k := fun i => if h : ∃ i2, ↑f i2 = i then w (Exists.choose h) else 0 hw' : ∀ (i2 : ι2), w' (↑f i2) = w i2 ⊢ w i0 = 0 [PROOFSTEP] have hw's : ∑ i in fs', w' i = 0 := by rw [← hw, Finset.sum_map] simp [hw'] [GOAL] k : Type u_1 V : Type u_2 P : Type u_3 inst✝³ : Ring k inst✝² : AddCommGroup V inst✝¹ : Module k V inst✝ : AffineSpace V P ι : Type u_4 ι2 : Type u_5 f : ι2 ↪ ι p : ι → P ha : AffineIndependent k p fs : Finset ι2 w : ι2 → k hw : ∑ i in fs, w i = 0 hs : ↑(Finset.weightedVSub fs (p ∘ ↑f)) w = 0 i0 : ι2 hi0 : i0 ∈ fs fs' : Finset ι := Finset.map f fs w' : ι → k := fun i => if h : ∃ i2, ↑f i2 = i then w (Exists.choose h) else 0 hw' : ∀ (i2 : ι2), w' (↑f i2) = w i2 ⊢ ∑ i in fs', w' i = 0 [PROOFSTEP] rw [← hw, Finset.sum_map] [GOAL] k : Type u_1 V : Type u_2 P : Type u_3 inst✝³ : Ring k inst✝² : AddCommGroup V inst✝¹ : Module k V inst✝ : AffineSpace V P ι : Type u_4 ι2 : Type u_5 f : ι2 ↪ ι p : ι → P ha : AffineIndependent k p fs : Finset ι2 w : ι2 → k hw : ∑ i in fs, w i = 0 hs : ↑(Finset.weightedVSub fs (p ∘ ↑f)) w = 0 i0 : ι2 hi0 : i0 ∈ fs fs' : Finset ι := Finset.map f fs w' : ι → k := fun i => if h : ∃ i2, ↑f i2 = i then w (Exists.choose h) else 0 hw' : ∀ (i2 : ι2), w' (↑f i2) = w i2 ⊢ ∑ x in fs, w' (↑f x) = ∑ i in fs, w i [PROOFSTEP] simp [hw'] [GOAL] k : Type u_1 V : Type u_2 P : Type u_3 inst✝³ : Ring k inst✝² : AddCommGroup V inst✝¹ : Module k V inst✝ : AffineSpace V P ι : Type u_4 ι2 : Type u_5 f : ι2 ↪ ι p : ι → P ha : AffineIndependent k p fs : Finset ι2 w : ι2 → k hw : ∑ i in fs, w i = 0 hs : ↑(Finset.weightedVSub fs (p ∘ ↑f)) w = 0 i0 : ι2 hi0 : i0 ∈ fs fs' : Finset ι := Finset.map f fs w' : ι → k := fun i => if h : ∃ i2, ↑f i2 = i then w (Exists.choose h) else 0 hw' : ∀ (i2 : ι2), w' (↑f i2) = w i2 hw's : ∑ i in fs', w' i = 0 ⊢ w i0 = 0 [PROOFSTEP] have hs' : fs'.weightedVSub p w' = (0 : V) := by rw [← hs, Finset.weightedVSub_map] congr with i simp_all only [comp_apply, EmbeddingLike.apply_eq_iff_eq, exists_eq, dite_true] [GOAL] k : Type u_1 V : Type u_2 P : Type u_3 inst✝³ : Ring k inst✝² : AddCommGroup V inst✝¹ : Module k V inst✝ : AffineSpace V P ι : Type u_4 ι2 : Type u_5 f : ι2 ↪ ι p : ι → P ha : AffineIndependent k p fs : Finset ι2 w : ι2 → k hw : ∑ i in fs, w i = 0 hs : ↑(Finset.weightedVSub fs (p ∘ ↑f)) w = 0 i0 : ι2 hi0 : i0 ∈ fs fs' : Finset ι := Finset.map f fs w' : ι → k := fun i => if h : ∃ i2, ↑f i2 = i then w (Exists.choose h) else 0 hw' : ∀ (i2 : ι2), w' (↑f i2) = w i2 hw's : ∑ i in fs', w' i = 0 ⊢ ↑(Finset.weightedVSub fs' p) w' = 0 [PROOFSTEP] rw [← hs, Finset.weightedVSub_map] [GOAL] k : Type u_1 V : Type u_2 P : Type u_3 inst✝³ : Ring k inst✝² : AddCommGroup V inst✝¹ : Module k V inst✝ : AffineSpace V P ι : Type u_4 ι2 : Type u_5 f : ι2 ↪ ι p : ι → P ha : AffineIndependent k p fs : Finset ι2 w : ι2 → k hw : ∑ i in fs, w i = 0 hs : ↑(Finset.weightedVSub fs (p ∘ ↑f)) w = 0 i0 : ι2 hi0 : i0 ∈ fs fs' : Finset ι := Finset.map f fs w' : ι → k := fun i => if h : ∃ i2, ↑f i2 = i then w (Exists.choose h) else 0 hw' : ∀ (i2 : ι2), w' (↑f i2) = w i2 hw's : ∑ i in fs', w' i = 0 ⊢ ↑(Finset.weightedVSub fs (p ∘ ↑f)) (w' ∘ ↑f) = ↑(Finset.weightedVSub fs (p ∘ ↑f)) w [PROOFSTEP] congr with i [GOAL] case h.e_6.h.h k : Type u_1 V : Type u_2 P : Type u_3 inst✝³ : Ring k inst✝² : AddCommGroup V inst✝¹ : Module k V inst✝ : AffineSpace V P ι : Type u_4 ι2 : Type u_5 f : ι2 ↪ ι p : ι → P ha : AffineIndependent k p fs : Finset ι2 w : ι2 → k hw : ∑ i in fs, w i = 0 hs : ↑(Finset.weightedVSub fs (p ∘ ↑f)) w = 0 i0 : ι2 hi0 : i0 ∈ fs fs' : Finset ι := Finset.map f fs w' : ι → k := fun i => if h : ∃ i2, ↑f i2 = i then w (Exists.choose h) else 0 hw' : ∀ (i2 : ι2), w' (↑f i2) = w i2 hw's : ∑ i in fs', w' i = 0 i : ι2 ⊢ (w' ∘ ↑f) i = w i [PROOFSTEP] simp_all only [comp_apply, EmbeddingLike.apply_eq_iff_eq, exists_eq, dite_true] [GOAL] k : Type u_1 V : Type u_2 P : Type u_3 inst✝³ : Ring k inst✝² : AddCommGroup V inst✝¹ : Module k V inst✝ : AffineSpace V P ι : Type u_4 ι2 : Type u_5 f : ι2 ↪ ι p : ι → P ha : AffineIndependent k p fs : Finset ι2 w : ι2 → k hw : ∑ i in fs, w i = 0 hs : ↑(Finset.weightedVSub fs (p ∘ ↑f)) w = 0 i0 : ι2 hi0 : i0 ∈ fs fs' : Finset ι := Finset.map f fs w' : ι → k := fun i => if h : ∃ i2, ↑f i2 = i then w (Exists.choose h) else 0 hw' : ∀ (i2 : ι2), w' (↑f i2) = w i2 hw's : ∑ i in fs', w' i = 0 hs' : ↑(Finset.weightedVSub fs' p) w' = 0 ⊢ w i0 = 0 [PROOFSTEP] rw [← ha fs' w' hw's hs' (f i0) ((Finset.mem_map' _).2 hi0), hw'] [GOAL] k : Type u_1 V : Type u_2 P : Type u_3 inst✝³ : Ring k inst✝² : AddCommGroup V inst✝¹ : Module k V inst✝ : AffineSpace V P ι : Type u_4 p : ι → P ha : AffineIndependent k p ⊢ AffineIndependent k fun x => ↑x [PROOFSTEP] let f : Set.range p → ι := fun x => x.property.choose [GOAL] k : Type u_1 V : Type u_2 P : Type u_3 inst✝³ : Ring k inst✝² : AddCommGroup V inst✝¹ : Module k V inst✝ : AffineSpace V P ι : Type u_4 p : ι → P ha : AffineIndependent k p f : ↑(Set.range p) → ι := fun x => Exists.choose (_ : ↑x ∈ Set.range p) ⊢ AffineIndependent k fun x => ↑x [PROOFSTEP] have hf : ∀ x, p (f x) = x := fun x => x.property.choose_spec [GOAL] k : Type u_1 V : Type u_2 P : Type u_3 inst✝³ : Ring k inst✝² : AddCommGroup V inst✝¹ : Module k V inst✝ : AffineSpace V P ι : Type u_4 p : ι → P ha : AffineIndependent k p f : ↑(Set.range p) → ι := fun x => Exists.choose (_ : ↑x ∈ Set.range p) hf : ∀ (x : ↑(Set.range p)), p (f x) = ↑x ⊢ AffineIndependent k fun x => ↑x [PROOFSTEP] let fe : Set.range p ↪ ι := ⟨f, fun x₁ x₂ he => Subtype.ext (hf x₁ ▸ hf x₂ ▸ he ▸ rfl)⟩ [GOAL] k : Type u_1 V : Type u_2 P : Type u_3 inst✝³ : Ring k inst✝² : AddCommGroup V inst✝¹ : Module k V inst✝ : AffineSpace V P ι : Type u_4 p : ι → P ha : AffineIndependent k p f : ↑(Set.range p) → ι := fun x => Exists.choose (_ : ↑x ∈ Set.range p) hf : ∀ (x : ↑(Set.range p)), p (f x) = ↑x fe : ↑(Set.range p) ↪ ι := { toFun := f, inj' := (_ : ∀ (x₁ x₂ : ↑(Set.range p)), f x₁ = f x₂ → x₁ = x₂) } ⊢ AffineIndependent k fun x => ↑x [PROOFSTEP] convert ha.comp_embedding fe [GOAL] case h.e'_9.h.h.e k : Type u_1 V : Type u_2 P : Type u_3 inst✝³ : Ring k inst✝² : AddCommGroup V inst✝¹ : Module k V inst✝ : AffineSpace V P ι : Type u_4 p : ι → P ha : AffineIndependent k p f : ↑(Set.range p) → ι := fun x => Exists.choose (_ : ↑x ∈ Set.range p) hf : ∀ (x : ↑(Set.range p)), p (f x) = ↑x fe : ↑(Set.range p) ↪ ι := { toFun := f, inj' := (_ : ∀ (x₁ x₂ : ↑(Set.range p)), f x₁ = f x₂ → x₁ = x₂) } x✝ : ↑(Set.range p) ⊢ Subtype.val = p ∘ ↑fe [PROOFSTEP] ext [GOAL] case h.e'_9.h.h.e.h k : Type u_1 V : Type u_2 P : Type u_3 inst✝³ : Ring k inst✝² : AddCommGroup V inst✝¹ : Module k V inst✝ : AffineSpace V P ι : Type u_4 p : ι → P ha : AffineIndependent k p f : ↑(Set.range p) → ι := fun x => Exists.choose (_ : ↑x ∈ Set.range p) hf : ∀ (x : ↑(Set.range p)), p (f x) = ↑x fe : ↑(Set.range p) ↪ ι := { toFun := f, inj' := (_ : ∀ (x₁ x₂ : ↑(Set.range p)), f x₁ = f x₂ → x₁ = x₂) } x✝¹ : ↑(Set.range p) x✝ : { x // x ∈ Set.range p } ⊢ ↑x✝ = (p ∘ ↑fe) x✝ [PROOFSTEP] simp [hf] [GOAL] k : Type u_1 V : Type u_2 P : Type u_3 inst✝³ : Ring k inst✝² : AddCommGroup V inst✝¹ : Module k V inst✝ : AffineSpace V P ι : Type u_4 ι' : Type u_5 e : ι ≃ ι' p : ι' → P ⊢ AffineIndependent k (p ∘ ↑e) ↔ AffineIndependent k p [PROOFSTEP] refine' ⟨_, AffineIndependent.comp_embedding e.toEmbedding⟩ [GOAL] k : Type u_1 V : Type u_2 P : Type u_3 inst✝³ : Ring k inst✝² : AddCommGroup V inst✝¹ : Module k V inst✝ : AffineSpace V P ι : Type u_4 ι' : Type u_5 e : ι ≃ ι' p : ι' → P ⊢ AffineIndependent k (p ∘ ↑e) → AffineIndependent k p [PROOFSTEP] intro h [GOAL] k : Type u_1 V : Type u_2 P : Type u_3 inst✝³ : Ring k inst✝² : AddCommGroup V inst✝¹ : Module k V inst✝ : AffineSpace V P ι : Type u_4 ι' : Type u_5 e : ι ≃ ι' p : ι' → P h : AffineIndependent k (p ∘ ↑e) ⊢ AffineIndependent k p [PROOFSTEP] have : p = p ∘ e ∘ e.symm.toEmbedding := by ext simp [GOAL] k : Type u_1 V : Type u_2 P : Type u_3 inst✝³ : Ring k inst✝² : AddCommGroup V inst✝¹ : Module k V inst✝ : AffineSpace V P ι : Type u_4 ι' : Type u_5 e : ι ≃ ι' p : ι' → P h : AffineIndependent k (p ∘ ↑e) ⊢ p = p ∘ ↑e ∘ ↑(Equiv.toEmbedding e.symm) [PROOFSTEP] ext [GOAL] case h k : Type u_1 V : Type u_2 P : Type u_3 inst✝³ : Ring k inst✝² : AddCommGroup V inst✝¹ : Module k V inst✝ : AffineSpace V P ι : Type u_4 ι' : Type u_5 e : ι ≃ ι' p : ι' → P h : AffineIndependent k (p ∘ ↑e) x✝ : ι' ⊢ p x✝ = (p ∘ ↑e ∘ ↑(Equiv.toEmbedding e.symm)) x✝ [PROOFSTEP] simp [GOAL] k : Type u_1 V : Type u_2 P : Type u_3 inst✝³ : Ring k inst✝² : AddCommGroup V inst✝¹ : Module k V inst✝ : AffineSpace V P ι : Type u_4 ι' : Type u_5 e : ι ≃ ι' p : ι' → P h : AffineIndependent k (p ∘ ↑e) this : p = p ∘ ↑e ∘ ↑(Equiv.toEmbedding e.symm) ⊢ AffineIndependent k p [PROOFSTEP] rw [this] [GOAL] k : Type u_1 V : Type u_2 P : Type u_3 inst✝³ : Ring k inst✝² : AddCommGroup V inst✝¹ : Module k V inst✝ : AffineSpace V P ι : Type u_4 ι' : Type u_5 e : ι ≃ ι' p : ι' → P h : AffineIndependent k (p ∘ ↑e) this : p = p ∘ ↑e ∘ ↑(Equiv.toEmbedding e.symm) ⊢ AffineIndependent k (p ∘ ↑e ∘ ↑(Equiv.toEmbedding e.symm)) [PROOFSTEP] exact h.comp_embedding e.symm.toEmbedding [GOAL] k : Type u_1 V : Type u_2 P : Type u_3 inst✝⁶ : Ring k inst✝⁵ : AddCommGroup V inst✝⁴ : Module k V inst✝³ : AffineSpace V P ι : Type u_4 V₂ : Type u_5 P₂ : Type u_6 inst✝² : AddCommGroup V₂ inst✝¹ : Module k V₂ inst✝ : AffineSpace V₂ P₂ p : ι → P f : P →ᵃ[k] P₂ hai : AffineIndependent k (↑f ∘ p) ⊢ AffineIndependent k p [PROOFSTEP] cases' isEmpty_or_nonempty ι with h h [GOAL] case inl k : Type u_1 V : Type u_2 P : Type u_3 inst✝⁶ : Ring k inst✝⁵ : AddCommGroup V inst✝⁴ : Module k V inst✝³ : AffineSpace V P ι : Type u_4 V₂ : Type u_5 P₂ : Type u_6 inst✝² : AddCommGroup V₂ inst✝¹ : Module k V₂ inst✝ : AffineSpace V₂ P₂ p : ι → P f : P →ᵃ[k] P₂ hai : AffineIndependent k (↑f ∘ p) h : IsEmpty ι ⊢ AffineIndependent k p [PROOFSTEP] haveI := h [GOAL] case inl k : Type u_1 V : Type u_2 P : Type u_3 inst✝⁶ : Ring k inst✝⁵ : AddCommGroup V inst✝⁴ : Module k V inst✝³ : AffineSpace V P ι : Type u_4 V₂ : Type u_5 P₂ : Type u_6 inst✝² : AddCommGroup V₂ inst✝¹ : Module k V₂ inst✝ : AffineSpace V₂ P₂ p : ι → P f : P →ᵃ[k] P₂ hai : AffineIndependent k (↑f ∘ p) h this : IsEmpty ι ⊢ AffineIndependent k p [PROOFSTEP] apply affineIndependent_of_subsingleton [GOAL] case inr k : Type u_1 V : Type u_2 P : Type u_3 inst✝⁶ : Ring k inst✝⁵ : AddCommGroup V inst✝⁴ : Module k V inst✝³ : AffineSpace V P ι : Type u_4 V₂ : Type u_5 P₂ : Type u_6 inst✝² : AddCommGroup V₂ inst✝¹ : Module k V₂ inst✝ : AffineSpace V₂ P₂ p : ι → P f : P →ᵃ[k] P₂ hai : AffineIndependent k (↑f ∘ p) h : Nonempty ι ⊢ AffineIndependent k p [PROOFSTEP] obtain ⟨i⟩ := h [GOAL] case inr.intro k : Type u_1 V : Type u_2 P : Type u_3 inst✝⁶ : Ring k inst✝⁵ : AddCommGroup V inst✝⁴ : Module k V inst✝³ : AffineSpace V P ι : Type u_4 V₂ : Type u_5 P₂ : Type u_6 inst✝² : AddCommGroup V₂ inst✝¹ : Module k V₂ inst✝ : AffineSpace V₂ P₂ p : ι → P f : P →ᵃ[k] P₂ hai : AffineIndependent k (↑f ∘ p) i : ι ⊢ AffineIndependent k p [PROOFSTEP] rw [affineIndependent_iff_linearIndependent_vsub k p i] [GOAL] case inr.intro k : Type u_1 V : Type u_2 P : Type u_3 inst✝⁶ : Ring k inst✝⁵ : AddCommGroup V inst✝⁴ : Module k V inst✝³ : AffineSpace V P ι : Type u_4 V₂ : Type u_5 P₂ : Type u_6 inst✝² : AddCommGroup V₂ inst✝¹ : Module k V₂ inst✝ : AffineSpace V₂ P₂ p : ι → P f : P →ᵃ[k] P₂ hai : AffineIndependent k (↑f ∘ p) i : ι ⊢ LinearIndependent k fun i_1 => p ↑i_1 -ᵥ p i [PROOFSTEP] simp_rw [affineIndependent_iff_linearIndependent_vsub k (f ∘ p) i, Function.comp_apply, ← f.linearMap_vsub] at hai [GOAL] case inr.intro k : Type u_1 V : Type u_2 P : Type u_3 inst✝⁶ : Ring k inst✝⁵ : AddCommGroup V inst✝⁴ : Module k V inst✝³ : AffineSpace V P ι : Type u_4 V₂ : Type u_5 P₂ : Type u_6 inst✝² : AddCommGroup V₂ inst✝¹ : Module k V₂ inst✝ : AffineSpace V₂ P₂ p : ι → P f : P →ᵃ[k] P₂ i : ι hai : LinearIndependent k fun i_1 => ↑f.linear (p ↑i_1 -ᵥ p i) ⊢ LinearIndependent k fun i_1 => p ↑i_1 -ᵥ p i [PROOFSTEP] exact LinearIndependent.of_comp f.linear hai [GOAL] k : Type u_1 V : Type u_2 P : Type u_3 inst✝⁶ : Ring k inst✝⁵ : AddCommGroup V inst✝⁴ : Module k V inst✝³ : AffineSpace V P ι : Type u_4 V₂ : Type u_5 P₂ : Type u_6 inst✝² : AddCommGroup V₂ inst✝¹ : Module k V₂ inst✝ : AffineSpace V₂ P₂ p : ι → P hai : AffineIndependent k p f : P →ᵃ[k] P₂ hf : Injective ↑f ⊢ AffineIndependent k (↑f ∘ p) [PROOFSTEP] cases' isEmpty_or_nonempty ι with h h [GOAL] case inl k : Type u_1 V : Type u_2 P : Type u_3 inst✝⁶ : Ring k inst✝⁵ : AddCommGroup V inst✝⁴ : Module k V inst✝³ : AffineSpace V P ι : Type u_4 V₂ : Type u_5 P₂ : Type u_6 inst✝² : AddCommGroup V₂ inst✝¹ : Module k V₂ inst✝ : AffineSpace V₂ P₂ p : ι → P hai : AffineIndependent k p f : P →ᵃ[k] P₂ hf : Injective ↑f h : IsEmpty ι ⊢ AffineIndependent k (↑f ∘ p) [PROOFSTEP] haveI := h [GOAL] case inl k : Type u_1 V : Type u_2 P : Type u_3 inst✝⁶ : Ring k inst✝⁵ : AddCommGroup V inst✝⁴ : Module k V inst✝³ : AffineSpace V P ι : Type u_4 V₂ : Type u_5 P₂ : Type u_6 inst✝² : AddCommGroup V₂ inst✝¹ : Module k V₂ inst✝ : AffineSpace V₂ P₂ p : ι → P hai : AffineIndependent k p f : P →ᵃ[k] P₂ hf : Injective ↑f h this : IsEmpty ι ⊢ AffineIndependent k (↑f ∘ p) [PROOFSTEP] apply affineIndependent_of_subsingleton [GOAL] case inr k : Type u_1 V : Type u_2 P : Type u_3 inst✝⁶ : Ring k inst✝⁵ : AddCommGroup V inst✝⁴ : Module k V inst✝³ : AffineSpace V P ι : Type u_4 V₂ : Type u_5 P₂ : Type u_6 inst✝² : AddCommGroup V₂ inst✝¹ : Module k V₂ inst✝ : AffineSpace V₂ P₂ p : ι → P hai : AffineIndependent k p f : P →ᵃ[k] P₂ hf : Injective ↑f h : Nonempty ι ⊢ AffineIndependent k (↑f ∘ p) [PROOFSTEP] obtain ⟨i⟩ := h [GOAL] case inr.intro k : Type u_1 V : Type u_2 P : Type u_3 inst✝⁶ : Ring k inst✝⁵ : AddCommGroup V inst✝⁴ : Module k V inst✝³ : AffineSpace V P ι : Type u_4 V₂ : Type u_5 P₂ : Type u_6 inst✝² : AddCommGroup V₂ inst✝¹ : Module k V₂ inst✝ : AffineSpace V₂ P₂ p : ι → P hai : AffineIndependent k p f : P →ᵃ[k] P₂ hf : Injective ↑f i : ι ⊢ AffineIndependent k (↑f ∘ p) [PROOFSTEP] rw [affineIndependent_iff_linearIndependent_vsub k p i] at hai [GOAL] case inr.intro k : Type u_1 V : Type u_2 P : Type u_3 inst✝⁶ : Ring k inst✝⁵ : AddCommGroup V inst✝⁴ : Module k V inst✝³ : AffineSpace V P ι : Type u_4 V₂ : Type u_5 P₂ : Type u_6 inst✝² : AddCommGroup V₂ inst✝¹ : Module k V₂ inst✝ : AffineSpace V₂ P₂ p : ι → P f : P →ᵃ[k] P₂ hf : Injective ↑f i : ι hai : LinearIndependent k fun i_1 => p ↑i_1 -ᵥ p i ⊢ AffineIndependent k (↑f ∘ p) [PROOFSTEP] simp_rw [affineIndependent_iff_linearIndependent_vsub k (f ∘ p) i, Function.comp_apply, ← f.linearMap_vsub] [GOAL] case inr.intro k : Type u_1 V : Type u_2 P : Type u_3 inst✝⁶ : Ring k inst✝⁵ : AddCommGroup V inst✝⁴ : Module k V inst✝³ : AffineSpace V P ι : Type u_4 V₂ : Type u_5 P₂ : Type u_6 inst✝² : AddCommGroup V₂ inst✝¹ : Module k V₂ inst✝ : AffineSpace V₂ P₂ p : ι → P f : P →ᵃ[k] P₂ hf : Injective ↑f i : ι hai : LinearIndependent k fun i_1 => p ↑i_1 -ᵥ p i ⊢ LinearIndependent k fun i_1 => ↑f.linear (p ↑i_1 -ᵥ p i) [PROOFSTEP] have hf' : LinearMap.ker f.linear = ⊥ := by rwa [LinearMap.ker_eq_bot, f.linear_injective_iff] [GOAL] k : Type u_1 V : Type u_2 P : Type u_3 inst✝⁶ : Ring k inst✝⁵ : AddCommGroup V inst✝⁴ : Module k V inst✝³ : AffineSpace V P ι : Type u_4 V₂ : Type u_5 P₂ : Type u_6 inst✝² : AddCommGroup V₂ inst✝¹ : Module k V₂ inst✝ : AffineSpace V₂ P₂ p : ι → P f : P →ᵃ[k] P₂ hf : Injective ↑f i : ι hai : LinearIndependent k fun i_1 => p ↑i_1 -ᵥ p i ⊢ LinearMap.ker f.linear = ⊥ [PROOFSTEP] rwa [LinearMap.ker_eq_bot, f.linear_injective_iff] [GOAL] case inr.intro k : Type u_1 V : Type u_2 P : Type u_3 inst✝⁶ : Ring k inst✝⁵ : AddCommGroup V inst✝⁴ : Module k V inst✝³ : AffineSpace V P ι : Type u_4 V₂ : Type u_5 P₂ : Type u_6 inst✝² : AddCommGroup V₂ inst✝¹ : Module k V₂ inst✝ : AffineSpace V₂ P₂ p : ι → P f : P →ᵃ[k] P₂ hf : Injective ↑f i : ι hai : LinearIndependent k fun i_1 => p ↑i_1 -ᵥ p i hf' : LinearMap.ker f.linear = ⊥ ⊢ LinearIndependent k fun i_1 => ↑f.linear (p ↑i_1 -ᵥ p i) [PROOFSTEP] exact LinearIndependent.map' hai f.linear hf' [GOAL] k : Type u_1 V : Type u_2 P : Type u_3 inst✝⁶ : Ring k inst✝⁵ : AddCommGroup V inst✝⁴ : Module k V inst✝³ : AffineSpace V P ι : Type u_4 V₂ : Type u_5 P₂ : Type u_6 inst✝² : AddCommGroup V₂ inst✝¹ : Module k V₂ inst✝ : AffineSpace V₂ P₂ s : Set P e : P ≃ᵃ[k] P₂ ⊢ AffineIndependent k Subtype.val ↔ AffineIndependent k Subtype.val [PROOFSTEP] have : e ∘ ((↑) : s → P) = ((↑) : e '' s → P₂) ∘ (e : P ≃ P₂).image s := rfl [GOAL] k : Type u_1 V : Type u_2 P : Type u_3 inst✝⁶ : Ring k inst✝⁵ : AddCommGroup V inst✝⁴ : Module k V inst✝³ : AffineSpace V P ι : Type u_4 V₂ : Type u_5 P₂ : Type u_6 inst✝² : AddCommGroup V₂ inst✝¹ : Module k V₂ inst✝ : AffineSpace V₂ P₂ s : Set P e : P ≃ᵃ[k] P₂ this : ↑e ∘ Subtype.val = Subtype.val ∘ ↑(Equiv.image (↑e) s) ⊢ AffineIndependent k Subtype.val ↔ AffineIndependent k Subtype.val [PROOFSTEP] rw [← e.affineIndependent_iff, this, affineIndependent_equiv] [GOAL] k : Type u_1 V : Type u_2 P : Type u_3 inst✝⁴ : Ring k inst✝³ : AddCommGroup V inst✝² : Module k V inst✝¹ : AffineSpace V P ι : Type u_4 inst✝ : Nontrivial k p : ι → P ha : AffineIndependent k p s1 s2 : Set ι p0 : P hp0s1 : p0 ∈ affineSpan k (p '' s1) hp0s2 : p0 ∈ affineSpan k (p '' s2) ⊢ ∃ i, i ∈ s1 ∩ s2 [PROOFSTEP] rw [Set.image_eq_range] at hp0s1 hp0s2 [GOAL] k : Type u_1 V : Type u_2 P : Type u_3 inst✝⁴ : Ring k inst✝³ : AddCommGroup V inst✝² : Module k V inst✝¹ : AffineSpace V P ι : Type u_4 inst✝ : Nontrivial k p : ι → P ha : AffineIndependent k p s1 s2 : Set ι p0 : P hp0s1 : p0 ∈ affineSpan k (Set.range fun x => p ↑x) hp0s2 : p0 ∈ affineSpan k (Set.range fun x => p ↑x) ⊢ ∃ i, i ∈ s1 ∩ s2 [PROOFSTEP] rw [mem_affineSpan_iff_eq_affineCombination, ← Finset.eq_affineCombination_subset_iff_eq_affineCombination_subtype] at hp0s1 hp0s2 [GOAL] k : Type u_1 V : Type u_2 P : Type u_3 inst✝⁴ : Ring k inst✝³ : AddCommGroup V inst✝² : Module k V inst✝¹ : AffineSpace V P ι : Type u_4 inst✝ : Nontrivial k p : ι → P ha : AffineIndependent k p s1 s2 : Set ι p0 : P hp0s1 : ∃ fs x w x, p0 = ↑(Finset.affineCombination k fs p) w hp0s2 : ∃ fs x w x, p0 = ↑(Finset.affineCombination k fs p) w ⊢ ∃ i, i ∈ s1 ∩ s2 [PROOFSTEP] rcases hp0s1 with ⟨fs1, hfs1, w1, hw1, hp0s1⟩ [GOAL] case intro.intro.intro.intro k : Type u_1 V : Type u_2 P : Type u_3 inst✝⁴ : Ring k inst✝³ : AddCommGroup V inst✝² : Module k V inst✝¹ : AffineSpace V P ι : Type u_4 inst✝ : Nontrivial k p : ι → P ha : AffineIndependent k p s1 s2 : Set ι p0 : P hp0s2 : ∃ fs x w x, p0 = ↑(Finset.affineCombination k fs p) w fs1 : Finset ι hfs1 : ↑fs1 ⊆ s1 w1 : ι → k hw1 : ∑ i in fs1, w1 i = 1 hp0s1 : p0 = ↑(Finset.affineCombination k fs1 p) w1 ⊢ ∃ i, i ∈ s1 ∩ s2 [PROOFSTEP] rcases hp0s2 with ⟨fs2, hfs2, w2, hw2, hp0s2⟩ [GOAL] case intro.intro.intro.intro.intro.intro.intro.intro k : Type u_1 V : Type u_2 P : Type u_3 inst✝⁴ : Ring k inst✝³ : AddCommGroup V inst✝² : Module k V inst✝¹ : AffineSpace V P ι : Type u_4 inst✝ : Nontrivial k p : ι → P ha : AffineIndependent k p s1 s2 : Set ι p0 : P fs1 : Finset ι hfs1 : ↑fs1 ⊆ s1 w1 : ι → k hw1 : ∑ i in fs1, w1 i = 1 hp0s1 : p0 = ↑(Finset.affineCombination k fs1 p) w1 fs2 : Finset ι hfs2 : ↑fs2 ⊆ s2 w2 : ι → k hw2 : ∑ i in fs2, w2 i = 1 hp0s2 : p0 = ↑(Finset.affineCombination k fs2 p) w2 ⊢ ∃ i, i ∈ s1 ∩ s2 [PROOFSTEP] rw [affineIndependent_iff_indicator_eq_of_affineCombination_eq] at ha [GOAL] case intro.intro.intro.intro.intro.intro.intro.intro k : Type u_1 V : Type u_2 P : Type u_3 inst✝⁴ : Ring k inst✝³ : AddCommGroup V inst✝² : Module k V inst✝¹ : AffineSpace V P ι : Type u_4 inst✝ : Nontrivial k p : ι → P ha : ∀ (s1 s2 : Finset ι) (w1 w2 : ι → k), ∑ i in s1, w1 i = 1 → ∑ i in s2, w2 i = 1 → ↑(Finset.affineCombination k s1 p) w1 = ↑(Finset.affineCombination k s2 p) w2 → Set.indicator (↑s1) w1 = Set.indicator (↑s2) w2 s1 s2 : Set ι p0 : P fs1 : Finset ι hfs1 : ↑fs1 ⊆ s1 w1 : ι → k hw1 : ∑ i in fs1, w1 i = 1 hp0s1 : p0 = ↑(Finset.affineCombination k fs1 p) w1 fs2 : Finset ι hfs2 : ↑fs2 ⊆ s2 w2 : ι → k hw2 : ∑ i in fs2, w2 i = 1 hp0s2 : p0 = ↑(Finset.affineCombination k fs2 p) w2 ⊢ ∃ i, i ∈ s1 ∩ s2 [PROOFSTEP] replace ha := ha fs1 fs2 w1 w2 hw1 hw2 (hp0s1 ▸ hp0s2) [GOAL] case intro.intro.intro.intro.intro.intro.intro.intro k : Type u_1 V : Type u_2 P : Type u_3 inst✝⁴ : Ring k inst✝³ : AddCommGroup V inst✝² : Module k V inst✝¹ : AffineSpace V P ι : Type u_4 inst✝ : Nontrivial k p : ι → P s1 s2 : Set ι p0 : P fs1 : Finset ι hfs1 : ↑fs1 ⊆ s1 w1 : ι → k hw1 : ∑ i in fs1, w1 i = 1 hp0s1 : p0 = ↑(Finset.affineCombination k fs1 p) w1 fs2 : Finset ι hfs2 : ↑fs2 ⊆ s2 w2 : ι → k hw2 : ∑ i in fs2, w2 i = 1 hp0s2 : p0 = ↑(Finset.affineCombination k fs2 p) w2 ha : Set.indicator (↑fs1) w1 = Set.indicator (↑fs2) w2 ⊢ ∃ i, i ∈ s1 ∩ s2 [PROOFSTEP] have hnz : ∑ i in fs1, w1 i ≠ 0 := hw1.symm ▸ one_ne_zero [GOAL] case intro.intro.intro.intro.intro.intro.intro.intro k : Type u_1 V : Type u_2 P : Type u_3 inst✝⁴ : Ring k inst✝³ : AddCommGroup V inst✝² : Module k V inst✝¹ : AffineSpace V P ι : Type u_4 inst✝ : Nontrivial k p : ι → P s1 s2 : Set ι p0 : P fs1 : Finset ι hfs1 : ↑fs1 ⊆ s1 w1 : ι → k hw1 : ∑ i in fs1, w1 i = 1 hp0s1 : p0 = ↑(Finset.affineCombination k fs1 p) w1 fs2 : Finset ι hfs2 : ↑fs2 ⊆ s2 w2 : ι → k hw2 : ∑ i in fs2, w2 i = 1 hp0s2 : p0 = ↑(Finset.affineCombination k fs2 p) w2 ha : Set.indicator (↑fs1) w1 = Set.indicator (↑fs2) w2 hnz : ∑ i in fs1, w1 i ≠ 0 ⊢ ∃ i, i ∈ s1 ∩ s2 [PROOFSTEP] rcases Finset.exists_ne_zero_of_sum_ne_zero hnz with ⟨i, hifs1, hinz⟩ [GOAL] case intro.intro.intro.intro.intro.intro.intro.intro.intro.intro k : Type u_1 V : Type u_2 P : Type u_3 inst✝⁴ : Ring k inst✝³ : AddCommGroup V inst✝² : Module k V inst✝¹ : AffineSpace V P ι : Type u_4 inst✝ : Nontrivial k p : ι → P s1 s2 : Set ι p0 : P fs1 : Finset ι hfs1 : ↑fs1 ⊆ s1 w1 : ι → k hw1 : ∑ i in fs1, w1 i = 1 hp0s1 : p0 = ↑(Finset.affineCombination k fs1 p) w1 fs2 : Finset ι hfs2 : ↑fs2 ⊆ s2 w2 : ι → k hw2 : ∑ i in fs2, w2 i = 1 hp0s2 : p0 = ↑(Finset.affineCombination k fs2 p) w2 ha : Set.indicator (↑fs1) w1 = Set.indicator (↑fs2) w2 hnz : ∑ i in fs1, w1 i ≠ 0 i : ι hifs1 : i ∈ fs1 hinz : w1 i ≠ 0 ⊢ ∃ i, i ∈ s1 ∩ s2 [PROOFSTEP] simp_rw [← Set.indicator_of_mem (Finset.mem_coe.2 hifs1) w1, ha] at hinz [GOAL] case intro.intro.intro.intro.intro.intro.intro.intro.intro.intro k : Type u_1 V : Type u_2 P : Type u_3 inst✝⁴ : Ring k inst✝³ : AddCommGroup V inst✝² : Module k V inst✝¹ : AffineSpace V P ι : Type u_4 inst✝ : Nontrivial k p : ι → P s1 s2 : Set ι p0 : P fs1 : Finset ι hfs1 : ↑fs1 ⊆ s1 w1 : ι → k hw1 : ∑ i in fs1, w1 i = 1 hp0s1 : p0 = ↑(Finset.affineCombination k fs1 p) w1 fs2 : Finset ι hfs2 : ↑fs2 ⊆ s2 w2 : ι → k hw2 : ∑ i in fs2, w2 i = 1 hp0s2 : p0 = ↑(Finset.affineCombination k fs2 p) w2 ha : Set.indicator (↑fs1) w1 = Set.indicator (↑fs2) w2 hnz : ∑ i in fs1, w1 i ≠ 0 i : ι hifs1 : i ∈ fs1 hinz : Set.indicator (↑fs2) w2 i ≠ 0 ⊢ ∃ i, i ∈ s1 ∩ s2 [PROOFSTEP] use i, hfs1 hifs1 [GOAL] case right k : Type u_1 V : Type u_2 P : Type u_3 inst✝⁴ : Ring k inst✝³ : AddCommGroup V inst✝² : Module k V inst✝¹ : AffineSpace V P ι : Type u_4 inst✝ : Nontrivial k p : ι → P s1 s2 : Set ι p0 : P fs1 : Finset ι hfs1 : ↑fs1 ⊆ s1 w1 : ι → k hw1 : ∑ i in fs1, w1 i = 1 hp0s1 : p0 = ↑(Finset.affineCombination k fs1 p) w1 fs2 : Finset ι hfs2 : ↑fs2 ⊆ s2 w2 : ι → k hw2 : ∑ i in fs2, w2 i = 1 hp0s2 : p0 = ↑(Finset.affineCombination k fs2 p) w2 ha : Set.indicator (↑fs1) w1 = Set.indicator (↑fs2) w2 hnz : ∑ i in fs1, w1 i ≠ 0 i : ι hifs1 : i ∈ fs1 hinz : Set.indicator (↑fs2) w2 i ≠ 0 ⊢ i ∈ s2 [PROOFSTEP] exact hfs2 (Set.mem_of_indicator_ne_zero hinz) [GOAL] k : Type u_1 V : Type u_2 P : Type u_3 inst✝⁴ : Ring k inst✝³ : AddCommGroup V inst✝² : Module k V inst✝¹ : AffineSpace V P ι : Type u_4 inst✝ : Nontrivial k p : ι → P ha : AffineIndependent k p s1 s2 : Set ι hd : Disjoint s1 s2 ⊢ Disjoint ↑(affineSpan k (p '' s1)) ↑(affineSpan k (p '' s2)) [PROOFSTEP] refine' Set.disjoint_left.2 fun p0 hp0s1 hp0s2 => _ [GOAL] k : Type u_1 V : Type u_2 P : Type u_3 inst✝⁴ : Ring k inst✝³ : AddCommGroup V inst✝² : Module k V inst✝¹ : AffineSpace V P ι : Type u_4 inst✝ : Nontrivial k p : ι → P ha : AffineIndependent k p s1 s2 : Set ι hd : Disjoint s1 s2 p0 : P hp0s1 : p0 ∈ ↑(affineSpan k (p '' s1)) hp0s2 : p0 ∈ ↑(affineSpan k (p '' s2)) ⊢ False [PROOFSTEP] cases' ha.exists_mem_inter_of_exists_mem_inter_affineSpan hp0s1 hp0s2 with i hi [GOAL] case intro k : Type u_1 V : Type u_2 P : Type u_3 inst✝⁴ : Ring k inst✝³ : AddCommGroup V inst✝² : Module k V inst✝¹ : AffineSpace V P ι : Type u_4 inst✝ : Nontrivial k p : ι → P ha : AffineIndependent k p s1 s2 : Set ι hd : Disjoint s1 s2 p0 : P hp0s1 : p0 ∈ ↑(affineSpan k (p '' s1)) hp0s2 : p0 ∈ ↑(affineSpan k (p '' s2)) i : ι hi : i ∈ s1 ∩ s2 ⊢ False [PROOFSTEP] exact Set.disjoint_iff.1 hd hi [GOAL] k : Type u_1 V : Type u_2 P : Type u_3 inst✝⁴ : Ring k inst✝³ : AddCommGroup V inst✝² : Module k V inst✝¹ : AffineSpace V P ι : Type u_4 inst✝ : Nontrivial k p : ι → P ha : AffineIndependent k p i : ι s : Set ι ⊢ p i ∈ affineSpan k (p '' s) ↔ i ∈ s [PROOFSTEP] constructor [GOAL] case mp k : Type u_1 V : Type u_2 P : Type u_3 inst✝⁴ : Ring k inst✝³ : AddCommGroup V inst✝² : Module k V inst✝¹ : AffineSpace V P ι : Type u_4 inst✝ : Nontrivial k p : ι → P ha : AffineIndependent k p i : ι s : Set ι ⊢ p i ∈ affineSpan k (p '' s) → i ∈ s [PROOFSTEP] intro hs [GOAL] case mp k : Type u_1 V : Type u_2 P : Type u_3 inst✝⁴ : Ring k inst✝³ : AddCommGroup V inst✝² : Module k V inst✝¹ : AffineSpace V P ι : Type u_4 inst✝ : Nontrivial k p : ι → P ha : AffineIndependent k p i : ι s : Set ι hs : p i ∈ affineSpan k (p '' s) ⊢ i ∈ s [PROOFSTEP] have h := AffineIndependent.exists_mem_inter_of_exists_mem_inter_affineSpan ha hs (mem_affineSpan k (Set.mem_image_of_mem _ (Set.mem_singleton _))) [GOAL] case mp k : Type u_1 V : Type u_2 P : Type u_3 inst✝⁴ : Ring k inst✝³ : AddCommGroup V inst✝² : Module k V inst✝¹ : AffineSpace V P ι : Type u_4 inst✝ : Nontrivial k p : ι → P ha : AffineIndependent k p i : ι s : Set ι hs : p i ∈ affineSpan k (p '' s) h : ∃ i_1, i_1 ∈ s ∩ {i} ⊢ i ∈ s [PROOFSTEP] rwa [← Set.nonempty_def, Set.inter_singleton_nonempty] at h [GOAL] case mpr k : Type u_1 V : Type u_2 P : Type u_3 inst✝⁴ : Ring k inst✝³ : AddCommGroup V inst✝² : Module k V inst✝¹ : AffineSpace V P ι : Type u_4 inst✝ : Nontrivial k p : ι → P ha : AffineIndependent k p i : ι s : Set ι ⊢ i ∈ s → p i ∈ affineSpan k (p '' s) [PROOFSTEP] exact fun h => mem_affineSpan k (Set.mem_image_of_mem p h) [GOAL] k : Type u_1 V : Type u_2 P : Type u_3 inst✝⁴ : Ring k inst✝³ : AddCommGroup V inst✝² : Module k V inst✝¹ : AffineSpace V P ι : Type u_4 inst✝ : Nontrivial k p : ι → P ha : AffineIndependent k p i : ι s : Set ι ⊢ ¬p i ∈ affineSpan k (p '' (s \ {i})) [PROOFSTEP] simp [ha] [GOAL] k : Type u_1 V : Type u_2 P : Type u_3 inst✝³ : Ring k inst✝² : AddCommGroup V inst✝¹ : Module k V inst✝ : AffineSpace V P ι : Type u_4 t : Finset V h : ¬AffineIndependent k Subtype.val ⊢ ∃ f, ∑ e in t, f e • e = 0 ∧ ∑ e in t, f e = 0 ∧ ∃ x, x ∈ t ∧ f x ≠ 0 [PROOFSTEP] classical rw [affineIndependent_iff_of_fintype] at h simp only [exists_prop, not_forall] at h obtain ⟨w, hw, hwt, i, hi⟩ := h simp only [Finset.weightedVSub_eq_weightedVSubOfPoint_of_sum_eq_zero _ w ((↑) : t → V) hw 0, vsub_eq_sub, Finset.weightedVSubOfPoint_apply, sub_zero] at hwt let f : ∀ x : V, x ∈ t → k := fun x hx => w ⟨x, hx⟩ refine' ⟨fun x => if hx : x ∈ t then f x hx else (0 : k), _, _, by use i; simp [hi]⟩ suffices (∑ e : V in t, dite (e ∈ t) (fun hx => f e hx • e) fun _ => 0) = 0 by convert this rename V => x by_cases hx : x ∈ t <;> simp [hx] all_goals simp only [Finset.sum_dite_of_true fun _ h => h, Finset.mk_coe, hwt, hw] [GOAL] k : Type u_1 V : Type u_2 P : Type u_3 inst✝³ : Ring k inst✝² : AddCommGroup V inst✝¹ : Module k V inst✝ : AffineSpace V P ι : Type u_4 t : Finset V h : ¬AffineIndependent k Subtype.val ⊢ ∃ f, ∑ e in t, f e • e = 0 ∧ ∑ e in t, f e = 0 ∧ ∃ x, x ∈ t ∧ f x ≠ 0 [PROOFSTEP] rw [affineIndependent_iff_of_fintype] at h [GOAL] k : Type u_1 V : Type u_2 P : Type u_3 inst✝³ : Ring k inst✝² : AddCommGroup V inst✝¹ : Module k V inst✝ : AffineSpace V P ι : Type u_4 t : Finset V h : ¬∀ (w : { x // x ∈ t } → k), ∑ i : { x // x ∈ t }, w i = 0 → ↑(Finset.weightedVSub Finset.univ Subtype.val) w = 0 → ∀ (i : { x // x ∈ t }), w i = 0 ⊢ ∃ f, ∑ e in t, f e • e = 0 ∧ ∑ e in t, f e = 0 ∧ ∃ x, x ∈ t ∧ f x ≠ 0 [PROOFSTEP] simp only [exists_prop, not_forall] at h [GOAL] k : Type u_1 V : Type u_2 P : Type u_3 inst✝³ : Ring k inst✝² : AddCommGroup V inst✝¹ : Module k V inst✝ : AffineSpace V P ι : Type u_4 t : Finset V h : ∃ x, ∑ i : { x // x ∈ t }, x i = 0 ∧ ↑(Finset.weightedVSub Finset.univ Subtype.val) x = 0 ∧ ∃ x_1, ¬x x_1 = 0 ⊢ ∃ f, ∑ e in t, f e • e = 0 ∧ ∑ e in t, f e = 0 ∧ ∃ x, x ∈ t ∧ f x ≠ 0 [PROOFSTEP] obtain ⟨w, hw, hwt, i, hi⟩ := h [GOAL] case intro.intro.intro.intro k : Type u_1 V : Type u_2 P : Type u_3 inst✝³ : Ring k inst✝² : AddCommGroup V inst✝¹ : Module k V inst✝ : AffineSpace V P ι : Type u_4 t : Finset V w : { x // x ∈ t } → k hw : ∑ i : { x // x ∈ t }, w i = 0 hwt : ↑(Finset.weightedVSub Finset.univ Subtype.val) w = 0 i : { x // x ∈ t } hi : ¬w i = 0 ⊢ ∃ f, ∑ e in t, f e • e = 0 ∧ ∑ e in t, f e = 0 ∧ ∃ x, x ∈ t ∧ f x ≠ 0 [PROOFSTEP] simp only [Finset.weightedVSub_eq_weightedVSubOfPoint_of_sum_eq_zero _ w ((↑) : t → V) hw 0, vsub_eq_sub, Finset.weightedVSubOfPoint_apply, sub_zero] at hwt [GOAL] case intro.intro.intro.intro k : Type u_1 V : Type u_2 P : Type u_3 inst✝³ : Ring k inst✝² : AddCommGroup V inst✝¹ : Module k V inst✝ : AffineSpace V P ι : Type u_4 t : Finset V w : { x // x ∈ t } → k hw : ∑ i : { x // x ∈ t }, w i = 0 i : { x // x ∈ t } hi : ¬w i = 0 hwt : ∑ x : { x // x ∈ t }, w x • ↑x = 0 ⊢ ∃ f, ∑ e in t, f e • e = 0 ∧ ∑ e in t, f e = 0 ∧ ∃ x, x ∈ t ∧ f x ≠ 0 [PROOFSTEP] let f : ∀ x : V, x ∈ t → k := fun x hx => w ⟨x, hx⟩ [GOAL] case intro.intro.intro.intro k : Type u_1 V : Type u_2 P : Type u_3 inst✝³ : Ring k inst✝² : AddCommGroup V inst✝¹ : Module k V inst✝ : AffineSpace V P ι : Type u_4 t : Finset V w : { x // x ∈ t } → k hw : ∑ i : { x // x ∈ t }, w i = 0 i : { x // x ∈ t } hi : ¬w i = 0 hwt : ∑ x : { x // x ∈ t }, w x • ↑x = 0 f : (x : V) → x ∈ t → k := fun x hx => w { val := x, property := hx } ⊢ ∃ f, ∑ e in t, f e • e = 0 ∧ ∑ e in t, f e = 0 ∧ ∃ x, x ∈ t ∧ f x ≠ 0 [PROOFSTEP] refine' ⟨fun x => if hx : x ∈ t then f x hx else (0 : k), _, _, by use i; simp [hi]⟩ [GOAL] k : Type u_1 V : Type u_2 P : Type u_3 inst✝³ : Ring k inst✝² : AddCommGroup V inst✝¹ : Module k V inst✝ : AffineSpace V P ι : Type u_4 t : Finset V w : { x // x ∈ t } → k hw : ∑ i : { x // x ∈ t }, w i = 0 i : { x // x ∈ t } hi : ¬w i = 0 hwt : ∑ x : { x // x ∈ t }, w x • ↑x = 0 f : (x : V) → x ∈ t → k := fun x hx => w { val := x, property := hx } ⊢ ∃ x, x ∈ t ∧ (fun x => if hx : x ∈ t then f x hx else 0) x ≠ 0 [PROOFSTEP] use i [GOAL] case h k : Type u_1 V : Type u_2 P : Type u_3 inst✝³ : Ring k inst✝² : AddCommGroup V inst✝¹ : Module k V inst✝ : AffineSpace V P ι : Type u_4 t : Finset V w : { x // x ∈ t } → k hw : ∑ i : { x // x ∈ t }, w i = 0 i : { x // x ∈ t } hi : ¬w i = 0 hwt : ∑ x : { x // x ∈ t }, w x • ↑x = 0 f : (x : V) → x ∈ t → k := fun x hx => w { val := x, property := hx } ⊢ ↑i ∈ t ∧ (fun x => if hx : x ∈ t then f x hx else 0) ↑i ≠ 0 [PROOFSTEP] simp [hi] [GOAL] case intro.intro.intro.intro.refine'_1 k : Type u_1 V : Type u_2 P : Type u_3 inst✝³ : Ring k inst✝² : AddCommGroup V inst✝¹ : Module k V inst✝ : AffineSpace V P ι : Type u_4 t : Finset V w : { x // x ∈ t } → k hw : ∑ i : { x // x ∈ t }, w i = 0 i : { x // x ∈ t } hi : ¬w i = 0 hwt : ∑ x : { x // x ∈ t }, w x • ↑x = 0 f : (x : V) → x ∈ t → k := fun x hx => w { val := x, property := hx } ⊢ ∑ e in t, (fun x => if hx : x ∈ t then f x hx else 0) e • e = 0 case intro.intro.intro.intro.refine'_2 k : Type u_1 V : Type u_2 P : Type u_3 inst✝³ : Ring k inst✝² : AddCommGroup V inst✝¹ : Module k V inst✝ : AffineSpace V P ι : Type u_4 t : Finset V w : { x // x ∈ t } → k hw : ∑ i : { x // x ∈ t }, w i = 0 i : { x // x ∈ t } hi : ¬w i = 0 hwt : ∑ x : { x // x ∈ t }, w x • ↑x = 0 f : (x : V) → x ∈ t → k := fun x hx => w { val := x, property := hx } ⊢ ∑ e in t, (fun x => if hx : x ∈ t then f x hx else 0) e = 0 [PROOFSTEP] suffices (∑ e : V in t, dite (e ∈ t) (fun hx => f e hx • e) fun _ => 0) = 0 by convert this rename V => x by_cases hx : x ∈ t <;> simp [hx] [GOAL] k : Type u_1 V : Type u_2 P : Type u_3 inst✝³ : Ring k inst✝² : AddCommGroup V inst✝¹ : Module k V inst✝ : AffineSpace V P ι : Type u_4 t : Finset V w : { x // x ∈ t } → k hw : ∑ i : { x // x ∈ t }, w i = 0 i : { x // x ∈ t } hi : ¬w i = 0 hwt : ∑ x : { x // x ∈ t }, w x • ↑x = 0 f : (x : V) → x ∈ t → k := fun x hx => w { val := x, property := hx } this : (∑ e in t, if hx : e ∈ t then f e hx • e else 0) = 0 ⊢ ∑ e in t, (fun x => if hx : x ∈ t then f x hx else 0) e • e = 0 [PROOFSTEP] convert this [GOAL] case h.e'_2.a k : Type u_1 V : Type u_2 P : Type u_3 inst✝³ : Ring k inst✝² : AddCommGroup V inst✝¹ : Module k V inst✝ : AffineSpace V P ι : Type u_4 t : Finset V w : { x // x ∈ t } → k hw : ∑ i : { x // x ∈ t }, w i = 0 i : { x // x ∈ t } hi : ¬w i = 0 hwt : ∑ x : { x // x ∈ t }, w x • ↑x = 0 f : (x : V) → x ∈ t → k := fun x hx => w { val := x, property := hx } this : (∑ e in t, if hx : e ∈ t then f e hx • e else 0) = 0 x✝ : V a✝ : x✝ ∈ t ⊢ (fun x => if hx : x ∈ t then f x hx else 0) x✝ • x✝ = if hx : x✝ ∈ t then f x✝ hx • x✝ else 0 [PROOFSTEP] rename V => x [GOAL] case h.e'_2.a k : Type u_1 V : Type u_2 P : Type u_3 inst✝³ : Ring k inst✝² : AddCommGroup V inst✝¹ : Module k V inst✝ : AffineSpace V P ι : Type u_4 t : Finset V w : { x // x ∈ t } → k hw : ∑ i : { x // x ∈ t }, w i = 0 i : { x // x ∈ t } hi : ¬w i = 0 hwt : ∑ x : { x // x ∈ t }, w x • ↑x = 0 f : (x : V) → x ∈ t → k := fun x hx => w { val := x, property := hx } this : (∑ e in t, if hx : e ∈ t then f e hx • e else 0) = 0 x : V a✝ : x ∈ t ⊢ (fun x => if hx : x ∈ t then f x hx else 0) x • x = if hx : x ∈ t then f x hx • x else 0 [PROOFSTEP] by_cases hx : x ∈ t [GOAL] case pos k : Type u_1 V : Type u_2 P : Type u_3 inst✝³ : Ring k inst✝² : AddCommGroup V inst✝¹ : Module k V inst✝ : AffineSpace V P ι : Type u_4 t : Finset V w : { x // x ∈ t } → k hw : ∑ i : { x // x ∈ t }, w i = 0 i : { x // x ∈ t } hi : ¬w i = 0 hwt : ∑ x : { x // x ∈ t }, w x • ↑x = 0 f : (x : V) → x ∈ t → k := fun x hx => w { val := x, property := hx } this : (∑ e in t, if hx : e ∈ t then f e hx • e else 0) = 0 x : V a✝ hx : x ∈ t ⊢ (fun x => if hx : x ∈ t then f x hx else 0) x • x = if hx : x ∈ t then f x hx • x else 0 [PROOFSTEP] simp [hx] [GOAL] case neg k : Type u_1 V : Type u_2 P : Type u_3 inst✝³ : Ring k inst✝² : AddCommGroup V inst✝¹ : Module k V inst✝ : AffineSpace V P ι : Type u_4 t : Finset V w : { x // x ∈ t } → k hw : ∑ i : { x // x ∈ t }, w i = 0 i : { x // x ∈ t } hi : ¬w i = 0 hwt : ∑ x : { x // x ∈ t }, w x • ↑x = 0 f : (x : V) → x ∈ t → k := fun x hx => w { val := x, property := hx } this : (∑ e in t, if hx : e ∈ t then f e hx • e else 0) = 0 x : V a✝ : x ∈ t hx : ¬x ∈ t ⊢ (fun x => if hx : x ∈ t then f x hx else 0) x • x = if hx : x ∈ t then f x hx • x else 0 [PROOFSTEP] simp [hx] [GOAL] case intro.intro.intro.intro.refine'_1 k : Type u_1 V : Type u_2 P : Type u_3 inst✝³ : Ring k inst✝² : AddCommGroup V inst✝¹ : Module k V inst✝ : AffineSpace V P ι : Type u_4 t : Finset V w : { x // x ∈ t } → k hw : ∑ i : { x // x ∈ t }, w i = 0 i : { x // x ∈ t } hi : ¬w i = 0 hwt : ∑ x : { x // x ∈ t }, w x • ↑x = 0 f : (x : V) → x ∈ t → k := fun x hx => w { val := x, property := hx } ⊢ (∑ e in t, if hx : e ∈ t then f e hx • e else 0) = 0 case intro.intro.intro.intro.refine'_2 k : Type u_1 V : Type u_2 P : Type u_3 inst✝³ : Ring k inst✝² : AddCommGroup V inst✝¹ : Module k V inst✝ : AffineSpace V P ι : Type u_4 t : Finset V w : { x // x ∈ t } → k hw : ∑ i : { x // x ∈ t }, w i = 0 i : { x // x ∈ t } hi : ¬w i = 0 hwt : ∑ x : { x // x ∈ t }, w x • ↑x = 0 f : (x : V) → x ∈ t → k := fun x hx => w { val := x, property := hx } ⊢ ∑ e in t, (fun x => if hx : x ∈ t then f x hx else 0) e = 0 [PROOFSTEP] all_goals simp only [Finset.sum_dite_of_true fun _ h => h, Finset.mk_coe, hwt, hw] [GOAL] case intro.intro.intro.intro.refine'_1 k : Type u_1 V : Type u_2 P : Type u_3 inst✝³ : Ring k inst✝² : AddCommGroup V inst✝¹ : Module k V inst✝ : AffineSpace V P ι : Type u_4 t : Finset V w : { x // x ∈ t } → k hw : ∑ i : { x // x ∈ t }, w i = 0 i : { x // x ∈ t } hi : ¬w i = 0 hwt : ∑ x : { x // x ∈ t }, w x • ↑x = 0 f : (x : V) → x ∈ t → k := fun x hx => w { val := x, property := hx } ⊢ (∑ e in t, if hx : e ∈ t then f e hx • e else 0) = 0 [PROOFSTEP] simp only [Finset.sum_dite_of_true fun _ h => h, Finset.mk_coe, hwt, hw] [GOAL] case intro.intro.intro.intro.refine'_2 k : Type u_1 V : Type u_2 P : Type u_3 inst✝³ : Ring k inst✝² : AddCommGroup V inst✝¹ : Module k V inst✝ : AffineSpace V P ι : Type u_4 t : Finset V w : { x // x ∈ t } → k hw : ∑ i : { x // x ∈ t }, w i = 0 i : { x // x ∈ t } hi : ¬w i = 0 hwt : ∑ x : { x // x ∈ t }, w x • ↑x = 0 f : (x : V) → x ∈ t → k := fun x hx => w { val := x, property := hx } ⊢ ∑ e in t, (fun x => if hx : x ∈ t then f x hx else 0) e = 0 [PROOFSTEP] simp only [Finset.sum_dite_of_true fun _ h => h, Finset.mk_coe, hwt, hw] [GOAL] k : Type u_1 V : Type u_2 P : Type u_3 inst✝³ : Ring k inst✝² : AddCommGroup V inst✝¹ : Module k V inst✝ : AffineSpace V P ι✝ : Type u_4 ι : Type u_5 p : ι → V s : Finset ι w : ι → k hw : ∑ i in s, w i = 0 ⊢ (↑(Finset.weightedVSub s p) w = 0 → ∀ (i : ι), i ∈ s → w i = 0) ↔ ∑ e in s, w e • p e = 0 → ∀ (e : ι), e ∈ s → w e = 0 [PROOFSTEP] simp [s.weightedVSub_eq_linear_combination hw] [GOAL] k : Type u_1 V : Type u_2 P : Type u_3 inst✝³ : Ring k inst✝² : AddCommGroup V inst✝¹ : Module k V inst✝ : AffineSpace V P ι : Type u_4 p : ι → P h : AffineIndependent k p w w₁ w₂ : ι → k s : Finset ι hw : ∑ i in s, w i = 0 hw₁ : ∑ i in s, w₁ i = 1 hw₂ : ∑ i in s, w₂ i = 1 ⊢ ↑(Finset.weightedVSub s p) w ∈ vectorSpan k {↑(Finset.affineCombination k s p) w₁, ↑(Finset.affineCombination k s p) w₂} ↔ ∃ r, ∀ (i : ι), i ∈ s → w i = r * (w₁ i - w₂ i) [PROOFSTEP] rw [mem_vectorSpan_pair] [GOAL] k : Type u_1 V : Type u_2 P : Type u_3 inst✝³ : Ring k inst✝² : AddCommGroup V inst✝¹ : Module k V inst✝ : AffineSpace V P ι : Type u_4 p : ι → P h : AffineIndependent k p w w₁ w₂ : ι → k s : Finset ι hw : ∑ i in s, w i = 0 hw₁ : ∑ i in s, w₁ i = 1 hw₂ : ∑ i in s, w₂ i = 1 ⊢ (∃ r, r • (↑(Finset.affineCombination k s p) w₁ -ᵥ ↑(Finset.affineCombination k s p) w₂) = ↑(Finset.weightedVSub s p) w) ↔ ∃ r, ∀ (i : ι), i ∈ s → w i = r * (w₁ i - w₂ i) [PROOFSTEP] refine' ⟨fun h => _, fun h => _⟩ [GOAL] case refine'_1 k : Type u_1 V : Type u_2 P : Type u_3 inst✝³ : Ring k inst✝² : AddCommGroup V inst✝¹ : Module k V inst✝ : AffineSpace V P ι : Type u_4 p : ι → P h✝ : AffineIndependent k p w w₁ w₂ : ι → k s : Finset ι hw : ∑ i in s, w i = 0 hw₁ : ∑ i in s, w₁ i = 1 hw₂ : ∑ i in s, w₂ i = 1 h : ∃ r, r • (↑(Finset.affineCombination k s p) w₁ -ᵥ ↑(Finset.affineCombination k s p) w₂) = ↑(Finset.weightedVSub s p) w ⊢ ∃ r, ∀ (i : ι), i ∈ s → w i = r * (w₁ i - w₂ i) [PROOFSTEP] rcases h with ⟨r, hr⟩ [GOAL] case refine'_1.intro k : Type u_1 V : Type u_2 P : Type u_3 inst✝³ : Ring k inst✝² : AddCommGroup V inst✝¹ : Module k V inst✝ : AffineSpace V P ι : Type u_4 p : ι → P h : AffineIndependent k p w w₁ w₂ : ι → k s : Finset ι hw : ∑ i in s, w i = 0 hw₁ : ∑ i in s, w₁ i = 1 hw₂ : ∑ i in s, w₂ i = 1 r : k hr : r • (↑(Finset.affineCombination k s p) w₁ -ᵥ ↑(Finset.affineCombination k s p) w₂) = ↑(Finset.weightedVSub s p) w ⊢ ∃ r, ∀ (i : ι), i ∈ s → w i = r * (w₁ i - w₂ i) [PROOFSTEP] refine' ⟨r, fun i hi => _⟩ [GOAL] case refine'_1.intro k : Type u_1 V : Type u_2 P : Type u_3 inst✝³ : Ring k inst✝² : AddCommGroup V inst✝¹ : Module k V inst✝ : AffineSpace V P ι : Type u_4 p : ι → P h : AffineIndependent k p w w₁ w₂ : ι → k s : Finset ι hw : ∑ i in s, w i = 0 hw₁ : ∑ i in s, w₁ i = 1 hw₂ : ∑ i in s, w₂ i = 1 r : k hr : r • (↑(Finset.affineCombination k s p) w₁ -ᵥ ↑(Finset.affineCombination k s p) w₂) = ↑(Finset.weightedVSub s p) w i : ι hi : i ∈ s ⊢ w i = r * (w₁ i - w₂ i) [PROOFSTEP] rw [s.affineCombination_vsub, ← s.weightedVSub_const_smul, ← sub_eq_zero, ← map_sub] at hr [GOAL] case refine'_1.intro k : Type u_1 V : Type u_2 P : Type u_3 inst✝³ : Ring k inst✝² : AddCommGroup V inst✝¹ : Module k V inst✝ : AffineSpace V P ι : Type u_4 p : ι → P h : AffineIndependent k p w w₁ w₂ : ι → k s : Finset ι hw : ∑ i in s, w i = 0 hw₁ : ∑ i in s, w₁ i = 1 hw₂ : ∑ i in s, w₂ i = 1 r : k hr✝ : ↑(Finset.weightedVSub s p) (r • (w₁ - w₂)) = ↑(Finset.weightedVSub s p) w hr : ↑(Finset.weightedVSub s p) (r • (w₁ - w₂) - w) = 0 i : ι hi : i ∈ s ⊢ w i = r * (w₁ i - w₂ i) [PROOFSTEP] have hw' : (∑ j in s, (r • (w₁ - w₂) - w) j) = 0 := by simp_rw [Pi.sub_apply, Pi.smul_apply, Pi.sub_apply, smul_sub, Finset.sum_sub_distrib, ← Finset.smul_sum, hw, hw₁, hw₂, sub_self] [GOAL] k : Type u_1 V : Type u_2 P : Type u_3 inst✝³ : Ring k inst✝² : AddCommGroup V inst✝¹ : Module k V inst✝ : AffineSpace V P ι : Type u_4 p : ι → P h : AffineIndependent k p w w₁ w₂ : ι → k s : Finset ι hw : ∑ i in s, w i = 0 hw₁ : ∑ i in s, w₁ i = 1 hw₂ : ∑ i in s, w₂ i = 1 r : k hr✝ : ↑(Finset.weightedVSub s p) (r • (w₁ - w₂)) = ↑(Finset.weightedVSub s p) w hr : ↑(Finset.weightedVSub s p) (r • (w₁ - w₂) - w) = 0 i : ι hi : i ∈ s ⊢ ∑ j in s, (r • (w₁ - w₂) - w) j = 0 [PROOFSTEP] simp_rw [Pi.sub_apply, Pi.smul_apply, Pi.sub_apply, smul_sub, Finset.sum_sub_distrib, ← Finset.smul_sum, hw, hw₁, hw₂, sub_self] [GOAL] case refine'_1.intro k : Type u_1 V : Type u_2 P : Type u_3 inst✝³ : Ring k inst✝² : AddCommGroup V inst✝¹ : Module k V inst✝ : AffineSpace V P ι : Type u_4 p : ι → P h : AffineIndependent k p w w₁ w₂ : ι → k s : Finset ι hw : ∑ i in s, w i = 0 hw₁ : ∑ i in s, w₁ i = 1 hw₂ : ∑ i in s, w₂ i = 1 r : k hr✝ : ↑(Finset.weightedVSub s p) (r • (w₁ - w₂)) = ↑(Finset.weightedVSub s p) w hr : ↑(Finset.weightedVSub s p) (r • (w₁ - w₂) - w) = 0 i : ι hi : i ∈ s hw' : ∑ j in s, (r • (w₁ - w₂) - w) j = 0 ⊢ w i = r * (w₁ i - w₂ i) [PROOFSTEP] have hr' := h s _ hw' hr i hi [GOAL] case refine'_1.intro k : Type u_1 V : Type u_2 P : Type u_3 inst✝³ : Ring k inst✝² : AddCommGroup V inst✝¹ : Module k V inst✝ : AffineSpace V P ι : Type u_4 p : ι → P h : AffineIndependent k p w w₁ w₂ : ι → k s : Finset ι hw : ∑ i in s, w i = 0 hw₁ : ∑ i in s, w₁ i = 1 hw₂ : ∑ i in s, w₂ i = 1 r : k hr✝ : ↑(Finset.weightedVSub s p) (r • (w₁ - w₂)) = ↑(Finset.weightedVSub s p) w hr : ↑(Finset.weightedVSub s p) (r • (w₁ - w₂) - w) = 0 i : ι hi : i ∈ s hw' : ∑ j in s, (r • (w₁ - w₂) - w) j = 0 hr' : (r • (w₁ - w₂) - w) i = 0 ⊢ w i = r * (w₁ i - w₂ i) [PROOFSTEP] rw [eq_comm, ← sub_eq_zero, ← smul_eq_mul] [GOAL] case refine'_1.intro k : Type u_1 V : Type u_2 P : Type u_3 inst✝³ : Ring k inst✝² : AddCommGroup V inst✝¹ : Module k V inst✝ : AffineSpace V P ι : Type u_4 p : ι → P h : AffineIndependent k p w w₁ w₂ : ι → k s : Finset ι hw : ∑ i in s, w i = 0 hw₁ : ∑ i in s, w₁ i = 1 hw₂ : ∑ i in s, w₂ i = 1 r : k hr✝ : ↑(Finset.weightedVSub s p) (r • (w₁ - w₂)) = ↑(Finset.weightedVSub s p) w hr : ↑(Finset.weightedVSub s p) (r • (w₁ - w₂) - w) = 0 i : ι hi : i ∈ s hw' : ∑ j in s, (r • (w₁ - w₂) - w) j = 0 hr' : (r • (w₁ - w₂) - w) i = 0 ⊢ r • (w₁ i - w₂ i) - w i = 0 [PROOFSTEP] exact hr' [GOAL] case refine'_2 k : Type u_1 V : Type u_2 P : Type u_3 inst✝³ : Ring k inst✝² : AddCommGroup V inst✝¹ : Module k V inst✝ : AffineSpace V P ι : Type u_4 p : ι → P h✝ : AffineIndependent k p w w₁ w₂ : ι → k s : Finset ι hw : ∑ i in s, w i = 0 hw₁ : ∑ i in s, w₁ i = 1 hw₂ : ∑ i in s, w₂ i = 1 h : ∃ r, ∀ (i : ι), i ∈ s → w i = r * (w₁ i - w₂ i) ⊢ ∃ r, r • (↑(Finset.affineCombination k s p) w₁ -ᵥ ↑(Finset.affineCombination k s p) w₂) = ↑(Finset.weightedVSub s p) w [PROOFSTEP] rcases h with ⟨r, hr⟩ [GOAL] case refine'_2.intro k : Type u_1 V : Type u_2 P : Type u_3 inst✝³ : Ring k inst✝² : AddCommGroup V inst✝¹ : Module k V inst✝ : AffineSpace V P ι : Type u_4 p : ι → P h : AffineIndependent k p w w₁ w₂ : ι → k s : Finset ι hw : ∑ i in s, w i = 0 hw₁ : ∑ i in s, w₁ i = 1 hw₂ : ∑ i in s, w₂ i = 1 r : k hr : ∀ (i : ι), i ∈ s → w i = r * (w₁ i - w₂ i) ⊢ ∃ r, r • (↑(Finset.affineCombination k s p) w₁ -ᵥ ↑(Finset.affineCombination k s p) w₂) = ↑(Finset.weightedVSub s p) w [PROOFSTEP] refine' ⟨r, _⟩ [GOAL] case refine'_2.intro k : Type u_1 V : Type u_2 P : Type u_3 inst✝³ : Ring k inst✝² : AddCommGroup V inst✝¹ : Module k V inst✝ : AffineSpace V P ι : Type u_4 p : ι → P h : AffineIndependent k p w w₁ w₂ : ι → k s : Finset ι hw : ∑ i in s, w i = 0 hw₁ : ∑ i in s, w₁ i = 1 hw₂ : ∑ i in s, w₂ i = 1 r : k hr : ∀ (i : ι), i ∈ s → w i = r * (w₁ i - w₂ i) ⊢ r • (↑(Finset.affineCombination k s p) w₁ -ᵥ ↑(Finset.affineCombination k s p) w₂) = ↑(Finset.weightedVSub s p) w [PROOFSTEP] let w' i := r * (w₁ i - w₂ i) [GOAL] case refine'_2.intro k : Type u_1 V : Type u_2 P : Type u_3 inst✝³ : Ring k inst✝² : AddCommGroup V inst✝¹ : Module k V inst✝ : AffineSpace V P ι : Type u_4 p : ι → P h : AffineIndependent k p w w₁ w₂ : ι → k s : Finset ι hw : ∑ i in s, w i = 0 hw₁ : ∑ i in s, w₁ i = 1 hw₂ : ∑ i in s, w₂ i = 1 r : k hr : ∀ (i : ι), i ∈ s → w i = r * (w₁ i - w₂ i) w' : ι → k := fun i => r * (w₁ i - w₂ i) ⊢ r • (↑(Finset.affineCombination k s p) w₁ -ᵥ ↑(Finset.affineCombination k s p) w₂) = ↑(Finset.weightedVSub s p) w [PROOFSTEP] change ∀ i ∈ s, w i = w' i at hr [GOAL] case refine'_2.intro k : Type u_1 V : Type u_2 P : Type u_3 inst✝³ : Ring k inst✝² : AddCommGroup V inst✝¹ : Module k V inst✝ : AffineSpace V P ι : Type u_4 p : ι → P h : AffineIndependent k p w w₁ w₂ : ι → k s : Finset ι hw : ∑ i in s, w i = 0 hw₁ : ∑ i in s, w₁ i = 1 hw₂ : ∑ i in s, w₂ i = 1 r : k w' : ι → k := fun i => r * (w₁ i - w₂ i) hr : ∀ (i : ι), i ∈ s → w i = w' i ⊢ r • (↑(Finset.affineCombination k s p) w₁ -ᵥ ↑(Finset.affineCombination k s p) w₂) = ↑(Finset.weightedVSub s p) w [PROOFSTEP] rw [s.weightedVSub_congr hr fun _ _ => rfl, s.affineCombination_vsub, ← s.weightedVSub_const_smul] [GOAL] case refine'_2.intro k : Type u_1 V : Type u_2 P : Type u_3 inst✝³ : Ring k inst✝² : AddCommGroup V inst✝¹ : Module k V inst✝ : AffineSpace V P ι : Type u_4 p : ι → P h : AffineIndependent k p w w₁ w₂ : ι → k s : Finset ι hw : ∑ i in s, w i = 0 hw₁ : ∑ i in s, w₁ i = 1 hw₂ : ∑ i in s, w₂ i = 1 r : k w' : ι → k := fun i => r * (w₁ i - w₂ i) hr : ∀ (i : ι), i ∈ s → w i = w' i ⊢ ↑(Finset.weightedVSub s p) (r • (w₁ - w₂)) = ↑(Finset.weightedVSub s fun x => p x) fun i => w' i [PROOFSTEP] congr [GOAL] k : Type u_1 V : Type u_2 P : Type u_3 inst✝³ : Ring k inst✝² : AddCommGroup V inst✝¹ : Module k V inst✝ : AffineSpace V P ι : Type u_4 p : ι → P h : AffineIndependent k p w w₁ w₂ : ι → k s : Finset ι x✝ : ∑ i in s, w i = 1 hw₁ : ∑ i in s, w₁ i = 1 hw₂ : ∑ i in s, w₂ i = 1 ⊢ ↑(Finset.affineCombination k s p) w ∈ affineSpan k {↑(Finset.affineCombination k s p) w₁, ↑(Finset.affineCombination k s p) w₂} ↔ ∃ r, ∀ (i : ι), i ∈ s → w i = r * (w₂ i - w₁ i) + w₁ i [PROOFSTEP] rw [← vsub_vadd (s.affineCombination k p w) (s.affineCombination k p w₁), AffineSubspace.vadd_mem_iff_mem_direction _ (left_mem_affineSpan_pair _ _ _), direction_affineSpan, s.affineCombination_vsub, Set.pair_comm, weightedVSub_mem_vectorSpan_pair h _ hw₂ hw₁] [GOAL] k : Type u_1 V : Type u_2 P : Type u_3 inst✝³ : Ring k inst✝² : AddCommGroup V inst✝¹ : Module k V inst✝ : AffineSpace V P ι : Type u_4 p : ι → P h : AffineIndependent k p w w₁ w₂ : ι → k s : Finset ι x✝ : ∑ i in s, w i = 1 hw₁ : ∑ i in s, w₁ i = 1 hw₂ : ∑ i in s, w₂ i = 1 ⊢ (∃ r, ∀ (i : ι), i ∈ s → (w - w₁) i = r * (w₂ i - w₁ i)) ↔ ∃ r, ∀ (i : ι), i ∈ s → w i = r * (w₂ i - w₁ i) + w₁ i [PROOFSTEP] simp only [Pi.sub_apply, sub_eq_iff_eq_add] [GOAL] k : Type u_1 V : Type u_2 P : Type u_3 inst✝³ : Ring k inst✝² : AddCommGroup V inst✝¹ : Module k V inst✝ : AffineSpace V P ι : Type u_4 p : ι → P h : AffineIndependent k p w w₁ w₂ : ι → k s : Finset ι x✝ : ∑ i in s, w i = 1 hw₁ : ∑ i in s, w₁ i = 1 hw₂ : ∑ i in s, w₂ i = 1 ⊢ ∑ i in s, (w - w₁) i = 0 [PROOFSTEP] simp_all only [Pi.sub_apply, Finset.sum_sub_distrib, sub_self] [GOAL] k : Type u_1 V : Type u_2 P : Type u_3 inst✝³ : DivisionRing k inst✝² : AddCommGroup V inst✝¹ : Module k V inst✝ : AffineSpace V P ι : Type u_4 s : Set P h : AffineIndependent k fun p => ↑p ⊢ ∃ t, s ⊆ t ∧ (AffineIndependent k fun p => ↑p) ∧ affineSpan k t = ⊤ [PROOFSTEP] rcases s.eq_empty_or_nonempty with (rfl | ⟨p₁, hp₁⟩) [GOAL] case inl k : Type u_1 V : Type u_2 P : Type u_3 inst✝³ : DivisionRing k inst✝² : AddCommGroup V inst✝¹ : Module k V inst✝ : AffineSpace V P ι : Type u_4 h : AffineIndependent k fun p => ↑p ⊢ ∃ t, ∅ ⊆ t ∧ (AffineIndependent k fun p => ↑p) ∧ affineSpan k t = ⊤ [PROOFSTEP] have p₁ : P := AddTorsor.Nonempty.some [GOAL] case inl k : Type u_1 V : Type u_2 P : Type u_3 inst✝³ : DivisionRing k inst✝² : AddCommGroup V inst✝¹ : Module k V inst✝ : AffineSpace V P ι : Type u_4 h : AffineIndependent k fun p => ↑p p₁ : P ⊢ ∃ t, ∅ ⊆ t ∧ (AffineIndependent k fun p => ↑p) ∧ affineSpan k t = ⊤ [PROOFSTEP] let hsv := Basis.ofVectorSpace k V [GOAL] case inl k : Type u_1 V : Type u_2 P : Type u_3 inst✝³ : DivisionRing k inst✝² : AddCommGroup V inst✝¹ : Module k V inst✝ : AffineSpace V P ι : Type u_4 h : AffineIndependent k fun p => ↑p p₁ : P hsv : Basis (↑(Basis.ofVectorSpaceIndex k V)) k V := Basis.ofVectorSpace k V ⊢ ∃ t, ∅ ⊆ t ∧ (AffineIndependent k fun p => ↑p) ∧ affineSpan k t = ⊤ [PROOFSTEP] have hsvi := hsv.linearIndependent [GOAL] case inl k : Type u_1 V : Type u_2 P : Type u_3 inst✝³ : DivisionRing k inst✝² : AddCommGroup V inst✝¹ : Module k V inst✝ : AffineSpace V P ι : Type u_4 h : AffineIndependent k fun p => ↑p p₁ : P hsv : Basis (↑(Basis.ofVectorSpaceIndex k V)) k V := Basis.ofVectorSpace k V hsvi : LinearIndependent k ↑hsv ⊢ ∃ t, ∅ ⊆ t ∧ (AffineIndependent k fun p => ↑p) ∧ affineSpan k t = ⊤ [PROOFSTEP] have hsvt := hsv.span_eq [GOAL] case inl k : Type u_1 V : Type u_2 P : Type u_3 inst✝³ : DivisionRing k inst✝² : AddCommGroup V inst✝¹ : Module k V inst✝ : AffineSpace V P ι : Type u_4 h : AffineIndependent k fun p => ↑p p₁ : P hsv : Basis (↑(Basis.ofVectorSpaceIndex k V)) k V := Basis.ofVectorSpace k V hsvi : LinearIndependent k ↑hsv hsvt : Submodule.span k (Set.range ↑hsv) = ⊤ ⊢ ∃ t, ∅ ⊆ t ∧ (AffineIndependent k fun p => ↑p) ∧ affineSpan k t = ⊤ [PROOFSTEP] rw [Basis.coe_ofVectorSpace] at hsvi hsvt [GOAL] case inl k : Type u_1 V : Type u_2 P : Type u_3 inst✝³ : DivisionRing k inst✝² : AddCommGroup V inst✝¹ : Module k V inst✝ : AffineSpace V P ι : Type u_4 h : AffineIndependent k fun p => ↑p p₁ : P hsv : Basis (↑(Basis.ofVectorSpaceIndex k V)) k V := Basis.ofVectorSpace k V hsvi : LinearIndependent k Subtype.val hsvt : Submodule.span k (Set.range Subtype.val) = ⊤ ⊢ ∃ t, ∅ ⊆ t ∧ (AffineIndependent k fun p => ↑p) ∧ affineSpan k t = ⊤ [PROOFSTEP] have h0 : ∀ v : V, v ∈ Basis.ofVectorSpaceIndex _ _ → v ≠ 0 := by intro v hv simpa using hsv.ne_zero ⟨v, hv⟩ [GOAL] k : Type u_1 V : Type u_2 P : Type u_3 inst✝³ : DivisionRing k inst✝² : AddCommGroup V inst✝¹ : Module k V inst✝ : AffineSpace V P ι : Type u_4 h : AffineIndependent k fun p => ↑p p₁ : P hsv : Basis (↑(Basis.ofVectorSpaceIndex k V)) k V := Basis.ofVectorSpace k V hsvi : LinearIndependent k Subtype.val hsvt : Submodule.span k (Set.range Subtype.val) = ⊤ ⊢ ∀ (v : V), v ∈ Basis.ofVectorSpaceIndex (?m.389241 v) V → v ≠ 0 [PROOFSTEP] intro v hv [GOAL] k : Type u_1 V : Type u_2 P : Type u_3 inst✝³ : DivisionRing k inst✝² : AddCommGroup V inst✝¹ : Module k V inst✝ : AffineSpace V P ι : Type u_4 h : AffineIndependent k fun p => ↑p p₁ : P hsv : Basis (↑(Basis.ofVectorSpaceIndex k V)) k V := Basis.ofVectorSpace k V hsvi : LinearIndependent k Subtype.val hsvt : Submodule.span k (Set.range Subtype.val) = ⊤ v : V hv : v ∈ Basis.ofVectorSpaceIndex (?m.389241 v) V ⊢ v ≠ 0 [PROOFSTEP] simpa using hsv.ne_zero ⟨v, hv⟩ [GOAL] case inl k : Type u_1 V : Type u_2 P : Type u_3 inst✝³ : DivisionRing k inst✝² : AddCommGroup V inst✝¹ : Module k V inst✝ : AffineSpace V P ι : Type u_4 h : AffineIndependent k fun p => ↑p p₁ : P hsv : Basis (↑(Basis.ofVectorSpaceIndex k V)) k V := Basis.ofVectorSpace k V hsvi : LinearIndependent k Subtype.val hsvt : Submodule.span k (Set.range Subtype.val) = ⊤ h0 : ∀ (v : V), v ∈ Basis.ofVectorSpaceIndex k V → v ≠ 0 ⊢ ∃ t, ∅ ⊆ t ∧ (AffineIndependent k fun p => ↑p) ∧ affineSpan k t = ⊤ [PROOFSTEP] rw [linearIndependent_set_iff_affineIndependent_vadd_union_singleton k h0 p₁] at hsvi [GOAL] case inl k : Type u_1 V : Type u_2 P : Type u_3 inst✝³ : DivisionRing k inst✝² : AddCommGroup V inst✝¹ : Module k V inst✝ : AffineSpace V P ι : Type u_4 h : AffineIndependent k fun p => ↑p p₁ : P hsv : Basis (↑(Basis.ofVectorSpaceIndex k V)) k V := Basis.ofVectorSpace k V hsvi : AffineIndependent k fun p => ↑p hsvt : Submodule.span k (Set.range Subtype.val) = ⊤ h0 : ∀ (v : V), v ∈ Basis.ofVectorSpaceIndex k V → v ≠ 0 ⊢ ∃ t, ∅ ⊆ t ∧ (AffineIndependent k fun p => ↑p) ∧ affineSpan k t = ⊤ [PROOFSTEP] exact ⟨{ p₁ } ∪ (fun v => v +ᵥ p₁) '' _, Set.empty_subset _, hsvi, affineSpan_singleton_union_vadd_eq_top_of_span_eq_top p₁ hsvt⟩ [GOAL] case inr.intro k : Type u_1 V : Type u_2 P : Type u_3 inst✝³ : DivisionRing k inst✝² : AddCommGroup V inst✝¹ : Module k V inst✝ : AffineSpace V P ι : Type u_4 s : Set P h : AffineIndependent k fun p => ↑p p₁ : P hp₁ : p₁ ∈ s ⊢ ∃ t, s ⊆ t ∧ (AffineIndependent k fun p => ↑p) ∧ affineSpan k t = ⊤ [PROOFSTEP] rw [affineIndependent_set_iff_linearIndependent_vsub k hp₁] at h [GOAL] case inr.intro k : Type u_1 V : Type u_2 P : Type u_3 inst✝³ : DivisionRing k inst✝² : AddCommGroup V inst✝¹ : Module k V inst✝ : AffineSpace V P ι : Type u_4 s : Set P p₁ : P h : LinearIndependent k fun v => ↑v hp₁ : p₁ ∈ s ⊢ ∃ t, s ⊆ t ∧ (AffineIndependent k fun p => ↑p) ∧ affineSpan k t = ⊤ [PROOFSTEP] let bsv := Basis.extend h [GOAL] case inr.intro k : Type u_1 V : Type u_2 P : Type u_3 inst✝³ : DivisionRing k inst✝² : AddCommGroup V inst✝¹ : Module k V inst✝ : AffineSpace V P ι : Type u_4 s : Set P p₁ : P h : LinearIndependent k fun v => ↑v hp₁ : p₁ ∈ s bsv : Basis (↑(LinearIndependent.extend h (_ : (fun p => p -ᵥ p₁) '' (s \ {p₁}) ⊆ Set.univ))) k V := Basis.extend h ⊢ ∃ t, s ⊆ t ∧ (AffineIndependent k fun p => ↑p) ∧ affineSpan k t = ⊤ [PROOFSTEP] have hsvi := bsv.linearIndependent [GOAL] case inr.intro k : Type u_1 V : Type u_2 P : Type u_3 inst✝³ : DivisionRing k inst✝² : AddCommGroup V inst✝¹ : Module k V inst✝ : AffineSpace V P ι : Type u_4 s : Set P p₁ : P h : LinearIndependent k fun v => ↑v hp₁ : p₁ ∈ s bsv : Basis (↑(LinearIndependent.extend h (_ : (fun p => p -ᵥ p₁) '' (s \ {p₁}) ⊆ Set.univ))) k V := Basis.extend h hsvi : LinearIndependent k ↑bsv ⊢ ∃ t, s ⊆ t ∧ (AffineIndependent k fun p => ↑p) ∧ affineSpan k t = ⊤ [PROOFSTEP] have hsvt := bsv.span_eq [GOAL] case inr.intro k : Type u_1 V : Type u_2 P : Type u_3 inst✝³ : DivisionRing k inst✝² : AddCommGroup V inst✝¹ : Module k V inst✝ : AffineSpace V P ι : Type u_4 s : Set P p₁ : P h : LinearIndependent k fun v => ↑v hp₁ : p₁ ∈ s bsv : Basis (↑(LinearIndependent.extend h (_ : (fun p => p -ᵥ p₁) '' (s \ {p₁}) ⊆ Set.univ))) k V := Basis.extend h hsvi : LinearIndependent k ↑bsv hsvt : Submodule.span k (Set.range ↑bsv) = ⊤ ⊢ ∃ t, s ⊆ t ∧ (AffineIndependent k fun p => ↑p) ∧ affineSpan k t = ⊤ [PROOFSTEP] rw [Basis.coe_extend] at hsvi hsvt [GOAL] case inr.intro k : Type u_1 V : Type u_2 P : Type u_3 inst✝³ : DivisionRing k inst✝² : AddCommGroup V inst✝¹ : Module k V inst✝ : AffineSpace V P ι : Type u_4 s : Set P p₁ : P h : LinearIndependent k fun v => ↑v hp₁ : p₁ ∈ s bsv : Basis (↑(LinearIndependent.extend h (_ : (fun p => p -ᵥ p₁) '' (s \ {p₁}) ⊆ Set.univ))) k V := Basis.extend h hsvi : LinearIndependent k Subtype.val hsvt : Submodule.span k (Set.range Subtype.val) = ⊤ ⊢ ∃ t, s ⊆ t ∧ (AffineIndependent k fun p => ↑p) ∧ affineSpan k t = ⊤ [PROOFSTEP] have hsv := h.subset_extend (Set.subset_univ _) [GOAL] case inr.intro k : Type u_1 V : Type u_2 P : Type u_3 inst✝³ : DivisionRing k inst✝² : AddCommGroup V inst✝¹ : Module k V inst✝ : AffineSpace V P ι : Type u_4 s : Set P p₁ : P h : LinearIndependent k fun v => ↑v hp₁ : p₁ ∈ s bsv : Basis (↑(LinearIndependent.extend h (_ : (fun p => p -ᵥ p₁) '' (s \ {p₁}) ⊆ Set.univ))) k V := Basis.extend h hsvi : LinearIndependent k Subtype.val hsvt : Submodule.span k (Set.range Subtype.val) = ⊤ hsv : (fun p => p -ᵥ p₁) '' (s \ {p₁}) ⊆ LinearIndependent.extend h (_ : (fun p => p -ᵥ p₁) '' (s \ {p₁}) ⊆ Set.univ) ⊢ ∃ t, s ⊆ t ∧ (AffineIndependent k fun p => ↑p) ∧ affineSpan k t = ⊤ [PROOFSTEP] have h0 : ∀ v : V, v ∈ h.extend _ → v ≠ 0 := by intro v hv simpa using bsv.ne_zero ⟨v, hv⟩ [GOAL] k : Type u_1 V : Type u_2 P : Type u_3 inst✝³ : DivisionRing k inst✝² : AddCommGroup V inst✝¹ : Module k V inst✝ : AffineSpace V P ι : Type u_4 s : Set P p₁ : P h : LinearIndependent k fun v => ↑v hp₁ : p₁ ∈ s bsv : Basis (↑(LinearIndependent.extend h (_ : (fun p => p -ᵥ p₁) '' (s \ {p₁}) ⊆ Set.univ))) k V := Basis.extend h hsvi : LinearIndependent k Subtype.val hsvt : Submodule.span k (Set.range Subtype.val) = ⊤ hsv : (fun p => p -ᵥ p₁) '' (s \ {p₁}) ⊆ LinearIndependent.extend h (_ : (fun p => p -ᵥ p₁) '' (s \ {p₁}) ⊆ Set.univ) ⊢ ∀ (v : V), v ∈ LinearIndependent.extend h (_ : (fun p => p -ᵥ p₁) '' (s \ {p₁}) ⊆ ?m.393529 v) → v ≠ 0 [PROOFSTEP] intro v hv [GOAL] k : Type u_1 V : Type u_2 P : Type u_3 inst✝³ : DivisionRing k inst✝² : AddCommGroup V inst✝¹ : Module k V inst✝ : AffineSpace V P ι : Type u_4 s : Set P p₁ : P h : LinearIndependent k fun v => ↑v hp₁ : p₁ ∈ s bsv : Basis (↑(LinearIndependent.extend h (_ : (fun p => p -ᵥ p₁) '' (s \ {p₁}) ⊆ Set.univ))) k V := Basis.extend h hsvi : LinearIndependent k Subtype.val hsvt : Submodule.span k (Set.range Subtype.val) = ⊤ hsv : (fun p => p -ᵥ p₁) '' (s \ {p₁}) ⊆ LinearIndependent.extend h (_ : (fun p => p -ᵥ p₁) '' (s \ {p₁}) ⊆ Set.univ) v : V hv : v ∈ LinearIndependent.extend h (_ : (fun p => p -ᵥ p₁) '' (s \ {p₁}) ⊆ ?m.393529 v) ⊢ v ≠ 0 [PROOFSTEP] simpa using bsv.ne_zero ⟨v, hv⟩ [GOAL] case inr.intro k : Type u_1 V : Type u_2 P : Type u_3 inst✝³ : DivisionRing k inst✝² : AddCommGroup V inst✝¹ : Module k V inst✝ : AffineSpace V P ι : Type u_4 s : Set P p₁ : P h : LinearIndependent k fun v => ↑v hp₁ : p₁ ∈ s bsv : Basis (↑(LinearIndependent.extend h (_ : (fun p => p -ᵥ p₁) '' (s \ {p₁}) ⊆ Set.univ))) k V := Basis.extend h hsvi : LinearIndependent k Subtype.val hsvt : Submodule.span k (Set.range Subtype.val) = ⊤ hsv : (fun p => p -ᵥ p₁) '' (s \ {p₁}) ⊆ LinearIndependent.extend h (_ : (fun p => p -ᵥ p₁) '' (s \ {p₁}) ⊆ Set.univ) h0 : ∀ (v : V), v ∈ LinearIndependent.extend h (_ : (fun p => p -ᵥ p₁) '' (s \ {p₁}) ⊆ Set.univ) → v ≠ 0 ⊢ ∃ t, s ⊆ t ∧ (AffineIndependent k fun p => ↑p) ∧ affineSpan k t = ⊤ [PROOFSTEP] rw [linearIndependent_set_iff_affineIndependent_vadd_union_singleton k h0 p₁] at hsvi [GOAL] case inr.intro k : Type u_1 V : Type u_2 P : Type u_3 inst✝³ : DivisionRing k inst✝² : AddCommGroup V inst✝¹ : Module k V inst✝ : AffineSpace V P ι : Type u_4 s : Set P p₁ : P h : LinearIndependent k fun v => ↑v hp₁ : p₁ ∈ s bsv : Basis (↑(LinearIndependent.extend h (_ : (fun p => p -ᵥ p₁) '' (s \ {p₁}) ⊆ Set.univ))) k V := Basis.extend h hsvi : AffineIndependent k fun p => ↑p hsvt : Submodule.span k (Set.range Subtype.val) = ⊤ hsv : (fun p => p -ᵥ p₁) '' (s \ {p₁}) ⊆ LinearIndependent.extend h (_ : (fun p => p -ᵥ p₁) '' (s \ {p₁}) ⊆ Set.univ) h0 : ∀ (v : V), v ∈ LinearIndependent.extend h (_ : (fun p => p -ᵥ p₁) '' (s \ {p₁}) ⊆ Set.univ) → v ≠ 0 ⊢ ∃ t, s ⊆ t ∧ (AffineIndependent k fun p => ↑p) ∧ affineSpan k t = ⊤ [PROOFSTEP] refine' ⟨{ p₁ } ∪ (fun v => v +ᵥ p₁) '' h.extend (Set.subset_univ _), _, _⟩ [GOAL] case inr.intro.refine'_1 k : Type u_1 V : Type u_2 P : Type u_3 inst✝³ : DivisionRing k inst✝² : AddCommGroup V inst✝¹ : Module k V inst✝ : AffineSpace V P ι : Type u_4 s : Set P p₁ : P h : LinearIndependent k fun v => ↑v hp₁ : p₁ ∈ s bsv : Basis (↑(LinearIndependent.extend h (_ : (fun p => p -ᵥ p₁) '' (s \ {p₁}) ⊆ Set.univ))) k V := Basis.extend h hsvi : AffineIndependent k fun p => ↑p hsvt : Submodule.span k (Set.range Subtype.val) = ⊤ hsv : (fun p => p -ᵥ p₁) '' (s \ {p₁}) ⊆ LinearIndependent.extend h (_ : (fun p => p -ᵥ p₁) '' (s \ {p₁}) ⊆ Set.univ) h0 : ∀ (v : V), v ∈ LinearIndependent.extend h (_ : (fun p => p -ᵥ p₁) '' (s \ {p₁}) ⊆ Set.univ) → v ≠ 0 ⊢ s ⊆ {p₁} ∪ (fun v => v +ᵥ p₁) '' LinearIndependent.extend h (_ : (fun p => p -ᵥ p₁) '' (s \ {p₁}) ⊆ Set.univ) [PROOFSTEP] refine' Set.Subset.trans _ (Set.union_subset_union_right _ (Set.image_subset _ hsv)) [GOAL] case inr.intro.refine'_1 k : Type u_1 V : Type u_2 P : Type u_3 inst✝³ : DivisionRing k inst✝² : AddCommGroup V inst✝¹ : Module k V inst✝ : AffineSpace V P ι : Type u_4 s : Set P p₁ : P h : LinearIndependent k fun v => ↑v hp₁ : p₁ ∈ s bsv : Basis (↑(LinearIndependent.extend h (_ : (fun p => p -ᵥ p₁) '' (s \ {p₁}) ⊆ Set.univ))) k V := Basis.extend h hsvi : AffineIndependent k fun p => ↑p hsvt : Submodule.span k (Set.range Subtype.val) = ⊤ hsv : (fun p => p -ᵥ p₁) '' (s \ {p₁}) ⊆ LinearIndependent.extend h (_ : (fun p => p -ᵥ p₁) '' (s \ {p₁}) ⊆ Set.univ) h0 : ∀ (v : V), v ∈ LinearIndependent.extend h (_ : (fun p => p -ᵥ p₁) '' (s \ {p₁}) ⊆ Set.univ) → v ≠ 0 ⊢ s ⊆ {p₁} ∪ (fun v => v +ᵥ p₁) '' ((fun p => p -ᵥ p₁) '' (s \ {p₁})) [PROOFSTEP] simp [Set.image_image] [GOAL] case inr.intro.refine'_2 k : Type u_1 V : Type u_2 P : Type u_3 inst✝³ : DivisionRing k inst✝² : AddCommGroup V inst✝¹ : Module k V inst✝ : AffineSpace V P ι : Type u_4 s : Set P p₁ : P h : LinearIndependent k fun v => ↑v hp₁ : p₁ ∈ s bsv : Basis (↑(LinearIndependent.extend h (_ : (fun p => p -ᵥ p₁) '' (s \ {p₁}) ⊆ Set.univ))) k V := Basis.extend h hsvi : AffineIndependent k fun p => ↑p hsvt : Submodule.span k (Set.range Subtype.val) = ⊤ hsv : (fun p => p -ᵥ p₁) '' (s \ {p₁}) ⊆ LinearIndependent.extend h (_ : (fun p => p -ᵥ p₁) '' (s \ {p₁}) ⊆ Set.univ) h0 : ∀ (v : V), v ∈ LinearIndependent.extend h (_ : (fun p => p -ᵥ p₁) '' (s \ {p₁}) ⊆ Set.univ) → v ≠ 0 ⊢ (AffineIndependent k fun p => ↑p) ∧ affineSpan k ({p₁} ∪ (fun v => v +ᵥ p₁) '' LinearIndependent.extend h (_ : (fun p => p -ᵥ p₁) '' (s \ {p₁}) ⊆ Set.univ)) = ⊤ [PROOFSTEP] use hsvi [GOAL] case right k : Type u_1 V : Type u_2 P : Type u_3 inst✝³ : DivisionRing k inst✝² : AddCommGroup V inst✝¹ : Module k V inst✝ : AffineSpace V P ι : Type u_4 s : Set P p₁ : P h : LinearIndependent k fun v => ↑v hp₁ : p₁ ∈ s bsv : Basis (↑(LinearIndependent.extend h (_ : (fun p => p -ᵥ p₁) '' (s \ {p₁}) ⊆ Set.univ))) k V := Basis.extend h hsvi : AffineIndependent k fun p => ↑p hsvt : Submodule.span k (Set.range Subtype.val) = ⊤ hsv : (fun p => p -ᵥ p₁) '' (s \ {p₁}) ⊆ LinearIndependent.extend h (_ : (fun p => p -ᵥ p₁) '' (s \ {p₁}) ⊆ Set.univ) h0 : ∀ (v : V), v ∈ LinearIndependent.extend h (_ : (fun p => p -ᵥ p₁) '' (s \ {p₁}) ⊆ Set.univ) → v ≠ 0 ⊢ affineSpan k ({p₁} ∪ (fun v => v +ᵥ p₁) '' LinearIndependent.extend h (_ : (fun p => p -ᵥ p₁) '' (s \ {p₁}) ⊆ Set.univ)) = ⊤ [PROOFSTEP] exact affineSpan_singleton_union_vadd_eq_top_of_span_eq_top p₁ hsvt [GOAL] k : Type u_1 V : Type u_2 P : Type u_3 inst✝³ : DivisionRing k inst✝² : AddCommGroup V inst✝¹ : Module k V inst✝ : AffineSpace V P ι : Type u_4 s : Set P ⊢ ∃ t x, affineSpan k t = affineSpan k s ∧ AffineIndependent k Subtype.val [PROOFSTEP] rcases s.eq_empty_or_nonempty with (rfl | ⟨p, hp⟩) [GOAL] case inl k : Type u_1 V : Type u_2 P : Type u_3 inst✝³ : DivisionRing k inst✝² : AddCommGroup V inst✝¹ : Module k V inst✝ : AffineSpace V P ι : Type u_4 ⊢ ∃ t x, affineSpan k t = affineSpan k ∅ ∧ AffineIndependent k Subtype.val [PROOFSTEP] exact ⟨∅, Set.empty_subset ∅, rfl, affineIndependent_of_subsingleton k _⟩ [GOAL] case inr.intro k : Type u_1 V : Type u_2 P : Type u_3 inst✝³ : DivisionRing k inst✝² : AddCommGroup V inst✝¹ : Module k V inst✝ : AffineSpace V P ι : Type u_4 s : Set P p : P hp : p ∈ s ⊢ ∃ t x, affineSpan k t = affineSpan k s ∧ AffineIndependent k Subtype.val [PROOFSTEP] obtain ⟨b, hb₁, hb₂, hb₃⟩ := exists_linearIndependent k ((Equiv.vaddConst p).symm '' s) [GOAL] case inr.intro.intro.intro.intro k : Type u_1 V : Type u_2 P : Type u_3 inst✝³ : DivisionRing k inst✝² : AddCommGroup V inst✝¹ : Module k V inst✝ : AffineSpace V P ι : Type u_4 s : Set P p : P hp : p ∈ s b : Set V hb₁ : b ⊆ ↑(Equiv.vaddConst p).symm '' s hb₂ : Submodule.span k b = Submodule.span k (↑(Equiv.vaddConst p).symm '' s) hb₃ : LinearIndependent k Subtype.val ⊢ ∃ t x, affineSpan k t = affineSpan k s ∧ AffineIndependent k Subtype.val [PROOFSTEP] have hb₀ : ∀ v : V, v ∈ b → v ≠ 0 := fun v hv => hb₃.ne_zero (⟨v, hv⟩ : b) [GOAL] case inr.intro.intro.intro.intro k : Type u_1 V : Type u_2 P : Type u_3 inst✝³ : DivisionRing k inst✝² : AddCommGroup V inst✝¹ : Module k V inst✝ : AffineSpace V P ι : Type u_4 s : Set P p : P hp : p ∈ s b : Set V hb₁ : b ⊆ ↑(Equiv.vaddConst p).symm '' s hb₂ : Submodule.span k b = Submodule.span k (↑(Equiv.vaddConst p).symm '' s) hb₃ : LinearIndependent k Subtype.val hb₀ : ∀ (v : V), v ∈ b → v ≠ 0 ⊢ ∃ t x, affineSpan k t = affineSpan k s ∧ AffineIndependent k Subtype.val [PROOFSTEP] rw [linearIndependent_set_iff_affineIndependent_vadd_union_singleton k hb₀ p] at hb₃ [GOAL] case inr.intro.intro.intro.intro k : Type u_1 V : Type u_2 P : Type u_3 inst✝³ : DivisionRing k inst✝² : AddCommGroup V inst✝¹ : Module k V inst✝ : AffineSpace V P ι : Type u_4 s : Set P p : P hp : p ∈ s b : Set V hb₁ : b ⊆ ↑(Equiv.vaddConst p).symm '' s hb₂ : Submodule.span k b = Submodule.span k (↑(Equiv.vaddConst p).symm '' s) hb₃ : AffineIndependent k fun p_1 => ↑p_1 hb₀ : ∀ (v : V), v ∈ b → v ≠ 0 ⊢ ∃ t x, affineSpan k t = affineSpan k s ∧ AffineIndependent k Subtype.val [PROOFSTEP] refine' ⟨{ p } ∪ Equiv.vaddConst p '' b, _, _, hb₃⟩ [GOAL] case inr.intro.intro.intro.intro.refine'_1 k : Type u_1 V : Type u_2 P : Type u_3 inst✝³ : DivisionRing k inst✝² : AddCommGroup V inst✝¹ : Module k V inst✝ : AffineSpace V P ι : Type u_4 s : Set P p : P hp : p ∈ s b : Set V hb₁ : b ⊆ ↑(Equiv.vaddConst p).symm '' s hb₂ : Submodule.span k b = Submodule.span k (↑(Equiv.vaddConst p).symm '' s) hb₃ : AffineIndependent k fun p_1 => ↑p_1 hb₀ : ∀ (v : V), v ∈ b → v ≠ 0 ⊢ {p} ∪ ↑(Equiv.vaddConst p) '' b ⊆ s [PROOFSTEP] apply Set.union_subset (Set.singleton_subset_iff.mpr hp) [GOAL] case inr.intro.intro.intro.intro.refine'_1 k : Type u_1 V : Type u_2 P : Type u_3 inst✝³ : DivisionRing k inst✝² : AddCommGroup V inst✝¹ : Module k V inst✝ : AffineSpace V P ι : Type u_4 s : Set P p : P hp : p ∈ s b : Set V hb₁ : b ⊆ ↑(Equiv.vaddConst p).symm '' s hb₂ : Submodule.span k b = Submodule.span k (↑(Equiv.vaddConst p).symm '' s) hb₃ : AffineIndependent k fun p_1 => ↑p_1 hb₀ : ∀ (v : V), v ∈ b → v ≠ 0 ⊢ ↑(Equiv.vaddConst p) '' b ⊆ s [PROOFSTEP] rwa [← (Equiv.vaddConst p).subset_image' b s] [GOAL] case inr.intro.intro.intro.intro.refine'_2 k : Type u_1 V : Type u_2 P : Type u_3 inst✝³ : DivisionRing k inst✝² : AddCommGroup V inst✝¹ : Module k V inst✝ : AffineSpace V P ι : Type u_4 s : Set P p : P hp : p ∈ s b : Set V hb₁ : b ⊆ ↑(Equiv.vaddConst p).symm '' s hb₂ : Submodule.span k b = Submodule.span k (↑(Equiv.vaddConst p).symm '' s) hb₃ : AffineIndependent k fun p_1 => ↑p_1 hb₀ : ∀ (v : V), v ∈ b → v ≠ 0 ⊢ affineSpan k ({p} ∪ ↑(Equiv.vaddConst p) '' b) = affineSpan k s [PROOFSTEP] rw [Equiv.coe_vaddConst_symm, ← vectorSpan_eq_span_vsub_set_right k hp] at hb₂ [GOAL] case inr.intro.intro.intro.intro.refine'_2 k : Type u_1 V : Type u_2 P : Type u_3 inst✝³ : DivisionRing k inst✝² : AddCommGroup V inst✝¹ : Module k V inst✝ : AffineSpace V P ι : Type u_4 s : Set P p : P hp : p ∈ s b : Set V hb₁ : b ⊆ ↑(Equiv.vaddConst p).symm '' s hb₂ : Submodule.span k b = vectorSpan k s hb₃ : AffineIndependent k fun p_1 => ↑p_1 hb₀ : ∀ (v : V), v ∈ b → v ≠ 0 ⊢ affineSpan k ({p} ∪ ↑(Equiv.vaddConst p) '' b) = affineSpan k s [PROOFSTEP] apply AffineSubspace.ext_of_direction_eq [GOAL] case inr.intro.intro.intro.intro.refine'_2.hd k : Type u_1 V : Type u_2 P : Type u_3 inst✝³ : DivisionRing k inst✝² : AddCommGroup V inst✝¹ : Module k V inst✝ : AffineSpace V P ι : Type u_4 s : Set P p : P hp : p ∈ s b : Set V hb₁ : b ⊆ ↑(Equiv.vaddConst p).symm '' s hb₂ : Submodule.span k b = vectorSpan k s hb₃ : AffineIndependent k fun p_1 => ↑p_1 hb₀ : ∀ (v : V), v ∈ b → v ≠ 0 ⊢ AffineSubspace.direction (affineSpan k ({p} ∪ ↑(Equiv.vaddConst p) '' b)) = AffineSubspace.direction (affineSpan k s) [PROOFSTEP] have : Submodule.span k b = Submodule.span k (insert 0 b) := by simp [GOAL] k : Type u_1 V : Type u_2 P : Type u_3 inst✝³ : DivisionRing k inst✝² : AddCommGroup V inst✝¹ : Module k V inst✝ : AffineSpace V P ι : Type u_4 s : Set P p : P hp : p ∈ s b : Set V hb₁ : b ⊆ ↑(Equiv.vaddConst p).symm '' s hb₂ : Submodule.span k b = vectorSpan k s hb₃ : AffineIndependent k fun p_1 => ↑p_1 hb₀ : ∀ (v : V), v ∈ b → v ≠ 0 ⊢ Submodule.span k b = Submodule.span k (insert 0 b) [PROOFSTEP] simp [GOAL] case inr.intro.intro.intro.intro.refine'_2.hd k : Type u_1 V : Type u_2 P : Type u_3 inst✝³ : DivisionRing k inst✝² : AddCommGroup V inst✝¹ : Module k V inst✝ : AffineSpace V P ι : Type u_4 s : Set P p : P hp : p ∈ s b : Set V hb₁ : b ⊆ ↑(Equiv.vaddConst p).symm '' s hb₂ : Submodule.span k b = vectorSpan k s hb₃ : AffineIndependent k fun p_1 => ↑p_1 hb₀ : ∀ (v : V), v ∈ b → v ≠ 0 this : Submodule.span k b = Submodule.span k (insert 0 b) ⊢ AffineSubspace.direction (affineSpan k ({p} ∪ ↑(Equiv.vaddConst p) '' b)) = AffineSubspace.direction (affineSpan k s) [PROOFSTEP] simp only [direction_affineSpan, ← hb₂, Equiv.coe_vaddConst, Set.singleton_union, vectorSpan_eq_span_vsub_set_right k (Set.mem_insert p _), this] [GOAL] case inr.intro.intro.intro.intro.refine'_2.hd k : Type u_1 V : Type u_2 P : Type u_3 inst✝³ : DivisionRing k inst✝² : AddCommGroup V inst✝¹ : Module k V inst✝ : AffineSpace V P ι : Type u_4 s : Set P p : P hp : p ∈ s b : Set V hb₁ : b ⊆ ↑(Equiv.vaddConst p).symm '' s hb₂ : Submodule.span k b = vectorSpan k s hb₃ : AffineIndependent k fun p_1 => ↑p_1 hb₀ : ∀ (v : V), v ∈ b → v ≠ 0 this : Submodule.span k b = Submodule.span k (insert 0 b) ⊢ Submodule.span k ((fun x => x -ᵥ p) '' insert p ((fun a => a +ᵥ p) '' b)) = Submodule.span k (insert 0 b) [PROOFSTEP] congr [GOAL] case inr.intro.intro.intro.intro.refine'_2.hd.e_s k : Type u_1 V : Type u_2 P : Type u_3 inst✝³ : DivisionRing k inst✝² : AddCommGroup V inst✝¹ : Module k V inst✝ : AffineSpace V P ι : Type u_4 s : Set P p : P hp : p ∈ s b : Set V hb₁ : b ⊆ ↑(Equiv.vaddConst p).symm '' s hb₂ : Submodule.span k b = vectorSpan k s hb₃ : AffineIndependent k fun p_1 => ↑p_1 hb₀ : ∀ (v : V), v ∈ b → v ≠ 0 this : Submodule.span k b = Submodule.span k (insert 0 b) ⊢ (fun x => x -ᵥ p) '' insert p ((fun a => a +ᵥ p) '' b) = insert 0 b [PROOFSTEP] change (Equiv.vaddConst p).symm '' insert p (Equiv.vaddConst p '' b) = _ [GOAL] case inr.intro.intro.intro.intro.refine'_2.hd.e_s k : Type u_1 V : Type u_2 P : Type u_3 inst✝³ : DivisionRing k inst✝² : AddCommGroup V inst✝¹ : Module k V inst✝ : AffineSpace V P ι : Type u_4 s : Set P p : P hp : p ∈ s b : Set V hb₁ : b ⊆ ↑(Equiv.vaddConst p).symm '' s hb₂ : Submodule.span k b = vectorSpan k s hb₃ : AffineIndependent k fun p_1 => ↑p_1 hb₀ : ∀ (v : V), v ∈ b → v ≠ 0 this : Submodule.span k b = Submodule.span k (insert 0 b) ⊢ ↑(Equiv.vaddConst p).symm '' insert p (↑(Equiv.vaddConst p) '' b) = insert 0 b [PROOFSTEP] rw [Set.image_insert_eq, ← Set.image_comp] [GOAL] case inr.intro.intro.intro.intro.refine'_2.hd.e_s k : Type u_1 V : Type u_2 P : Type u_3 inst✝³ : DivisionRing k inst✝² : AddCommGroup V inst✝¹ : Module k V inst✝ : AffineSpace V P ι : Type u_4 s : Set P p : P hp : p ∈ s b : Set V hb₁ : b ⊆ ↑(Equiv.vaddConst p).symm '' s hb₂ : Submodule.span k b = vectorSpan k s hb₃ : AffineIndependent k fun p_1 => ↑p_1 hb₀ : ∀ (v : V), v ∈ b → v ≠ 0 this : Submodule.span k b = Submodule.span k (insert 0 b) ⊢ insert (↑(Equiv.vaddConst p).symm p) (↑(Equiv.vaddConst p).symm ∘ ↑(Equiv.vaddConst p) '' b) = insert 0 b [PROOFSTEP] simp [GOAL] case inr.intro.intro.intro.intro.refine'_2.hn k : Type u_1 V : Type u_2 P : Type u_3 inst✝³ : DivisionRing k inst✝² : AddCommGroup V inst✝¹ : Module k V inst✝ : AffineSpace V P ι : Type u_4 s : Set P p : P hp : p ∈ s b : Set V hb₁ : b ⊆ ↑(Equiv.vaddConst p).symm '' s hb₂ : Submodule.span k b = vectorSpan k s hb₃ : AffineIndependent k fun p_1 => ↑p_1 hb₀ : ∀ (v : V), v ∈ b → v ≠ 0 ⊢ Set.Nonempty (↑(affineSpan k ({p} ∪ ↑(Equiv.vaddConst p) '' b)) ∩ ↑(affineSpan k s)) [PROOFSTEP] use p [GOAL] case h k : Type u_1 V : Type u_2 P : Type u_3 inst✝³ : DivisionRing k inst✝² : AddCommGroup V inst✝¹ : Module k V inst✝ : AffineSpace V P ι : Type u_4 s : Set P p : P hp : p ∈ s b : Set V hb₁ : b ⊆ ↑(Equiv.vaddConst p).symm '' s hb₂ : Submodule.span k b = vectorSpan k s hb₃ : AffineIndependent k fun p_1 => ↑p_1 hb₀ : ∀ (v : V), v ∈ b → v ≠ 0 ⊢ p ∈ ↑(affineSpan k ({p} ∪ ↑(Equiv.vaddConst p) '' b)) ∩ ↑(affineSpan k s) [PROOFSTEP] simp only [Equiv.coe_vaddConst, Set.singleton_union, Set.mem_inter_iff, coe_affineSpan] [GOAL] case h k : Type u_1 V : Type u_2 P : Type u_3 inst✝³ : DivisionRing k inst✝² : AddCommGroup V inst✝¹ : Module k V inst✝ : AffineSpace V P ι : Type u_4 s : Set P p : P hp : p ∈ s b : Set V hb₁ : b ⊆ ↑(Equiv.vaddConst p).symm '' s hb₂ : Submodule.span k b = vectorSpan k s hb₃ : AffineIndependent k fun p_1 => ↑p_1 hb₀ : ∀ (v : V), v ∈ b → v ≠ 0 ⊢ p ∈ spanPoints k (insert p ((fun a => a +ᵥ p) '' b)) ∧ p ∈ spanPoints k s [PROOFSTEP] exact ⟨mem_spanPoints k _ _ (Set.mem_insert p _), mem_spanPoints k _ _ hp⟩ [GOAL] k : Type u_1 V : Type u_2 P : Type u_3 inst✝³ : DivisionRing k inst✝² : AddCommGroup V inst✝¹ : Module k V inst✝ : AffineSpace V P ι : Type u_4 p₁ p₂ : P h : p₁ ≠ p₂ ⊢ AffineIndependent k ![p₁, p₂] [PROOFSTEP] rw [affineIndependent_iff_linearIndependent_vsub k ![p₁, p₂] 0] [GOAL] k : Type u_1 V : Type u_2 P : Type u_3 inst✝³ : DivisionRing k inst✝² : AddCommGroup V inst✝¹ : Module k V inst✝ : AffineSpace V P ι : Type u_4 p₁ p₂ : P h : p₁ ≠ p₂ ⊢ LinearIndependent k fun i => Matrix.vecCons p₁ ![p₂] ↑i -ᵥ Matrix.vecCons p₁ ![p₂] 0 [PROOFSTEP] let i₁ : { x // x ≠ (0 : Fin 2) } := ⟨1, by norm_num⟩ [GOAL] k : Type u_1 V : Type u_2 P : Type u_3 inst✝³ : DivisionRing k inst✝² : AddCommGroup V inst✝¹ : Module k V inst✝ : AffineSpace V P ι : Type u_4 p₁ p₂ : P h : p₁ ≠ p₂ ⊢ 1 ≠ 0 [PROOFSTEP] norm_num [GOAL] k : Type u_1 V : Type u_2 P : Type u_3 inst✝³ : DivisionRing k inst✝² : AddCommGroup V inst✝¹ : Module k V inst✝ : AffineSpace V P ι : Type u_4 p₁ p₂ : P h : p₁ ≠ p₂ i₁ : { x // x ≠ 0 } := { val := 1, property := (_ : 1 ≠ 0) } ⊢ LinearIndependent k fun i => Matrix.vecCons p₁ ![p₂] ↑i -ᵥ Matrix.vecCons p₁ ![p₂] 0 [PROOFSTEP] have he' : ∀ i, i = i₁ := by rintro ⟨i, hi⟩ ext fin_cases i · simp at hi · simp only [Fin.val_one] [GOAL] k : Type u_1 V : Type u_2 P : Type u_3 inst✝³ : DivisionRing k inst✝² : AddCommGroup V inst✝¹ : Module k V inst✝ : AffineSpace V P ι : Type u_4 p₁ p₂ : P h : p₁ ≠ p₂ i₁ : { x // x ≠ 0 } := { val := 1, property := (_ : 1 ≠ 0) } ⊢ ∀ (i : { x // x ≠ 0 }), i = i₁ [PROOFSTEP] rintro ⟨i, hi⟩ [GOAL] case mk k : Type u_1 V : Type u_2 P : Type u_3 inst✝³ : DivisionRing k inst✝² : AddCommGroup V inst✝¹ : Module k V inst✝ : AffineSpace V P ι : Type u_4 p₁ p₂ : P h : p₁ ≠ p₂ i₁ : { x // x ≠ 0 } := { val := 1, property := (_ : 1 ≠ 0) } i : Fin 2 hi : i ≠ 0 ⊢ { val := i, property := hi } = i₁ [PROOFSTEP] ext [GOAL] case mk.a.h k : Type u_1 V : Type u_2 P : Type u_3 inst✝³ : DivisionRing k inst✝² : AddCommGroup V inst✝¹ : Module k V inst✝ : AffineSpace V P ι : Type u_4 p₁ p₂ : P h : p₁ ≠ p₂ i₁ : { x // x ≠ 0 } := { val := 1, property := (_ : 1 ≠ 0) } i : Fin 2 hi : i ≠ 0 ⊢ ↑↑{ val := i, property := hi } = ↑↑i₁ [PROOFSTEP] fin_cases i [GOAL] case mk.a.h.head k : Type u_1 V : Type u_2 P : Type u_3 inst✝³ : DivisionRing k inst✝² : AddCommGroup V inst✝¹ : Module k V inst✝ : AffineSpace V P ι : Type u_4 p₁ p₂ : P h : p₁ ≠ p₂ i₁ : { x // x ≠ 0 } := { val := 1, property := (_ : 1 ≠ 0) } hi : { val := 0, isLt := (_ : 0 < 2) } ≠ 0 ⊢ ↑↑{ val := { val := 0, isLt := (_ : 0 < 2) }, property := hi } = ↑↑i₁ [PROOFSTEP] simp at hi [GOAL] case mk.a.h.tail.head k : Type u_1 V : Type u_2 P : Type u_3 inst✝³ : DivisionRing k inst✝² : AddCommGroup V inst✝¹ : Module k V inst✝ : AffineSpace V P ι : Type u_4 p₁ p₂ : P h : p₁ ≠ p₂ i₁ : { x // x ≠ 0 } := { val := 1, property := (_ : 1 ≠ 0) } hi : { val := 1, isLt := (_ : (fun a => a < 2) 1) } ≠ 0 ⊢ ↑↑{ val := { val := 1, isLt := (_ : (fun a => a < 2) 1) }, property := hi } = ↑↑i₁ [PROOFSTEP] simp only [Fin.val_one] [GOAL] k : Type u_1 V : Type u_2 P : Type u_3 inst✝³ : DivisionRing k inst✝² : AddCommGroup V inst✝¹ : Module k V inst✝ : AffineSpace V P ι : Type u_4 p₁ p₂ : P h : p₁ ≠ p₂ i₁ : { x // x ≠ 0 } := { val := 1, property := (_ : 1 ≠ 0) } he' : ∀ (i : { x // x ≠ 0 }), i = i₁ ⊢ LinearIndependent k fun i => Matrix.vecCons p₁ ![p₂] ↑i -ᵥ Matrix.vecCons p₁ ![p₂] 0 [PROOFSTEP] haveI : Unique { x // x ≠ (0 : Fin 2) } := ⟨⟨i₁⟩, he'⟩ [GOAL] k : Type u_1 V : Type u_2 P : Type u_3 inst✝³ : DivisionRing k inst✝² : AddCommGroup V inst✝¹ : Module k V inst✝ : AffineSpace V P ι : Type u_4 p₁ p₂ : P h : p₁ ≠ p₂ i₁ : { x // x ≠ 0 } := { val := 1, property := (_ : 1 ≠ 0) } he' : ∀ (i : { x // x ≠ 0 }), i = i₁ this : Unique { x // x ≠ 0 } ⊢ LinearIndependent k fun i => Matrix.vecCons p₁ ![p₂] ↑i -ᵥ Matrix.vecCons p₁ ![p₂] 0 [PROOFSTEP] apply linearIndependent_unique [GOAL] case a k : Type u_1 V : Type u_2 P : Type u_3 inst✝³ : DivisionRing k inst✝² : AddCommGroup V inst✝¹ : Module k V inst✝ : AffineSpace V P ι : Type u_4 p₁ p₂ : P h : p₁ ≠ p₂ i₁ : { x // x ≠ 0 } := { val := 1, property := (_ : 1 ≠ 0) } he' : ∀ (i : { x // x ≠ 0 }), i = i₁ this : Unique { x // x ≠ 0 } ⊢ Matrix.vecCons p₁ ![p₂] ↑default -ᵥ Matrix.vecCons p₁ ![p₂] 0 ≠ 0 [PROOFSTEP] rw [he' default] [GOAL] case a k : Type u_1 V : Type u_2 P : Type u_3 inst✝³ : DivisionRing k inst✝² : AddCommGroup V inst✝¹ : Module k V inst✝ : AffineSpace V P ι : Type u_4 p₁ p₂ : P h : p₁ ≠ p₂ i₁ : { x // x ≠ 0 } := { val := 1, property := (_ : 1 ≠ 0) } he' : ∀ (i : { x // x ≠ 0 }), i = i₁ this : Unique { x // x ≠ 0 } ⊢ Matrix.vecCons p₁ ![p₂] ↑i₁ -ᵥ Matrix.vecCons p₁ ![p₂] 0 ≠ 0 [PROOFSTEP] simpa using h.symm [GOAL] k : Type u_1 V : Type u_2 P : Type u_3 inst✝³ : DivisionRing k inst✝² : AddCommGroup V inst✝¹ : Module k V inst✝ : AffineSpace V P ι : Type u_4 p : ι → P i : ι ha : AffineIndependent k fun x => p ↑x hi : ¬p i ∈ affineSpan k (p '' {x | x ≠ i}) ⊢ AffineIndependent k p [PROOFSTEP] classical intro s w hw hs let s' : Finset { y // y ≠ i } := s.subtype (· ≠ i) let p' : { y // y ≠ i } → P := fun x => p x by_cases his : i ∈ s ∧ w i ≠ 0 · refine' False.elim (hi _) let wm : ι → k := -(w i)⁻¹ • w have hms : s.weightedVSub p wm = (0 : V) := by simp [hs] have hwm : ∑ i in s, wm i = 0 := by simp [← Finset.mul_sum, hw] have hwmi : wm i = -1 := by simp [his.2] let w' : { y // y ≠ i } → k := fun x => wm x have hw' : ∑ x in s', w' x = 1 := by simp_rw [Finset.sum_subtype_eq_sum_filter] rw [← s.sum_filter_add_sum_filter_not (· ≠ i)] at hwm simp_rw [Classical.not_not] at hwm erw [Finset.filter_eq'] at hwm simp_rw [if_pos his.1, Finset.sum_singleton, hwmi, ← sub_eq_add_neg, sub_eq_zero] at hwm exact hwm rw [← s.affineCombination_eq_of_weightedVSub_eq_zero_of_eq_neg_one hms his.1 hwmi, ← (Subtype.range_coe : _ = {x | x ≠ i}), ← Set.range_comp, ← s.affineCombination_subtype_eq_filter] exact affineCombination_mem_affineSpan hw' p' · rw [not_and_or, Classical.not_not] at his let w' : { y // y ≠ i } → k := fun x => w x have hw' : ∑ x in s', w' x = 0 := by simp_rw [Finset.sum_subtype_eq_sum_filter] rw [Finset.sum_filter_of_ne, hw] rintro x hxs hwx rfl exact hwx (his.neg_resolve_left hxs) have hs' : s'.weightedVSub p' w' = (0 : V) := by simp_rw [Finset.weightedVSub_subtype_eq_filter] rw [Finset.weightedVSub_filter_of_ne, hs] rintro x hxs hwx rfl exact hwx (his.neg_resolve_left hxs) intro j hj by_cases hji : j = i · rw [hji] at hj exact hji.symm ▸ his.neg_resolve_left hj · exact ha s' w' hw' hs' ⟨j, hji⟩ (Finset.mem_subtype.2 hj) [GOAL] k : Type u_1 V : Type u_2 P : Type u_3 inst✝³ : DivisionRing k inst✝² : AddCommGroup V inst✝¹ : Module k V inst✝ : AffineSpace V P ι : Type u_4 p : ι → P i : ι ha : AffineIndependent k fun x => p ↑x hi : ¬p i ∈ affineSpan k (p '' {x | x ≠ i}) ⊢ AffineIndependent k p [PROOFSTEP] intro s w hw hs [GOAL] k : Type u_1 V : Type u_2 P : Type u_3 inst✝³ : DivisionRing k inst✝² : AddCommGroup V inst✝¹ : Module k V inst✝ : AffineSpace V P ι : Type u_4 p : ι → P i : ι ha : AffineIndependent k fun x => p ↑x hi : ¬p i ∈ affineSpan k (p '' {x | x ≠ i}) s : Finset ι w : ι → k hw : ∑ i in s, w i = 0 hs : ↑(Finset.weightedVSub s p) w = 0 ⊢ ∀ (i : ι), i ∈ s → w i = 0 [PROOFSTEP] let s' : Finset { y // y ≠ i } := s.subtype (· ≠ i) [GOAL] k : Type u_1 V : Type u_2 P : Type u_3 inst✝³ : DivisionRing k inst✝² : AddCommGroup V inst✝¹ : Module k V inst✝ : AffineSpace V P ι : Type u_4 p : ι → P i : ι ha : AffineIndependent k fun x => p ↑x hi : ¬p i ∈ affineSpan k (p '' {x | x ≠ i}) s : Finset ι w : ι → k hw : ∑ i in s, w i = 0 hs : ↑(Finset.weightedVSub s p) w = 0 s' : Finset { y // y ≠ i } := Finset.subtype (fun x => x ≠ i) s ⊢ ∀ (i : ι), i ∈ s → w i = 0 [PROOFSTEP] let p' : { y // y ≠ i } → P := fun x => p x [GOAL] k : Type u_1 V : Type u_2 P : Type u_3 inst✝³ : DivisionRing k inst✝² : AddCommGroup V inst✝¹ : Module k V inst✝ : AffineSpace V P ι : Type u_4 p : ι → P i : ι ha : AffineIndependent k fun x => p ↑x hi : ¬p i ∈ affineSpan k (p '' {x | x ≠ i}) s : Finset ι w : ι → k hw : ∑ i in s, w i = 0 hs : ↑(Finset.weightedVSub s p) w = 0 s' : Finset { y // y ≠ i } := Finset.subtype (fun x => x ≠ i) s p' : { y // y ≠ i } → P := fun x => p ↑x ⊢ ∀ (i : ι), i ∈ s → w i = 0 [PROOFSTEP] by_cases his : i ∈ s ∧ w i ≠ 0 [GOAL] case pos k : Type u_1 V : Type u_2 P : Type u_3 inst✝³ : DivisionRing k inst✝² : AddCommGroup V inst✝¹ : Module k V inst✝ : AffineSpace V P ι : Type u_4 p : ι → P i : ι ha : AffineIndependent k fun x => p ↑x hi : ¬p i ∈ affineSpan k (p '' {x | x ≠ i}) s : Finset ι w : ι → k hw : ∑ i in s, w i = 0 hs : ↑(Finset.weightedVSub s p) w = 0 s' : Finset { y // y ≠ i } := Finset.subtype (fun x => x ≠ i) s p' : { y // y ≠ i } → P := fun x => p ↑x his : i ∈ s ∧ w i ≠ 0 ⊢ ∀ (i : ι), i ∈ s → w i = 0 [PROOFSTEP] refine' False.elim (hi _) [GOAL] case pos k : Type u_1 V : Type u_2 P : Type u_3 inst✝³ : DivisionRing k inst✝² : AddCommGroup V inst✝¹ : Module k V inst✝ : AffineSpace V P ι : Type u_4 p : ι → P i : ι ha : AffineIndependent k fun x => p ↑x hi : ¬p i ∈ affineSpan k (p '' {x | x ≠ i}) s : Finset ι w : ι → k hw : ∑ i in s, w i = 0 hs : ↑(Finset.weightedVSub s p) w = 0 s' : Finset { y // y ≠ i } := Finset.subtype (fun x => x ≠ i) s p' : { y // y ≠ i } → P := fun x => p ↑x his : i ∈ s ∧ w i ≠ 0 ⊢ p i ∈ affineSpan k (p '' {x | x ≠ i}) [PROOFSTEP] let wm : ι → k := -(w i)⁻¹ • w [GOAL] case pos k : Type u_1 V : Type u_2 P : Type u_3 inst✝³ : DivisionRing k inst✝² : AddCommGroup V inst✝¹ : Module k V inst✝ : AffineSpace V P ι : Type u_4 p : ι → P i : ι ha : AffineIndependent k fun x => p ↑x hi : ¬p i ∈ affineSpan k (p '' {x | x ≠ i}) s : Finset ι w : ι → k hw : ∑ i in s, w i = 0 hs : ↑(Finset.weightedVSub s p) w = 0 s' : Finset { y // y ≠ i } := Finset.subtype (fun x => x ≠ i) s p' : { y // y ≠ i } → P := fun x => p ↑x his : i ∈ s ∧ w i ≠ 0 wm : ι → k := -(w i)⁻¹ • w ⊢ p i ∈ affineSpan k (p '' {x | x ≠ i}) [PROOFSTEP] have hms : s.weightedVSub p wm = (0 : V) := by simp [hs] [GOAL] k : Type u_1 V : Type u_2 P : Type u_3 inst✝³ : DivisionRing k inst✝² : AddCommGroup V inst✝¹ : Module k V inst✝ : AffineSpace V P ι : Type u_4 p : ι → P i : ι ha : AffineIndependent k fun x => p ↑x hi : ¬p i ∈ affineSpan k (p '' {x | x ≠ i}) s : Finset ι w : ι → k hw : ∑ i in s, w i = 0 hs : ↑(Finset.weightedVSub s p) w = 0 s' : Finset { y // y ≠ i } := Finset.subtype (fun x => x ≠ i) s p' : { y // y ≠ i } → P := fun x => p ↑x his : i ∈ s ∧ w i ≠ 0 wm : ι → k := -(w i)⁻¹ • w ⊢ ↑(Finset.weightedVSub s p) wm = 0 [PROOFSTEP] simp [hs] [GOAL] case pos k : Type u_1 V : Type u_2 P : Type u_3 inst✝³ : DivisionRing k inst✝² : AddCommGroup V inst✝¹ : Module k V inst✝ : AffineSpace V P ι : Type u_4 p : ι → P i : ι ha : AffineIndependent k fun x => p ↑x hi : ¬p i ∈ affineSpan k (p '' {x | x ≠ i}) s : Finset ι w : ι → k hw : ∑ i in s, w i = 0 hs : ↑(Finset.weightedVSub s p) w = 0 s' : Finset { y // y ≠ i } := Finset.subtype (fun x => x ≠ i) s p' : { y // y ≠ i } → P := fun x => p ↑x his : i ∈ s ∧ w i ≠ 0 wm : ι → k := -(w i)⁻¹ • w hms : ↑(Finset.weightedVSub s p) wm = 0 ⊢ p i ∈ affineSpan k (p '' {x | x ≠ i}) [PROOFSTEP] have hwm : ∑ i in s, wm i = 0 := by simp [← Finset.mul_sum, hw] [GOAL] k : Type u_1 V : Type u_2 P : Type u_3 inst✝³ : DivisionRing k inst✝² : AddCommGroup V inst✝¹ : Module k V inst✝ : AffineSpace V P ι : Type u_4 p : ι → P i : ι ha : AffineIndependent k fun x => p ↑x hi : ¬p i ∈ affineSpan k (p '' {x | x ≠ i}) s : Finset ι w : ι → k hw : ∑ i in s, w i = 0 hs : ↑(Finset.weightedVSub s p) w = 0 s' : Finset { y // y ≠ i } := Finset.subtype (fun x => x ≠ i) s p' : { y // y ≠ i } → P := fun x => p ↑x his : i ∈ s ∧ w i ≠ 0 wm : ι → k := -(w i)⁻¹ • w hms : ↑(Finset.weightedVSub s p) wm = 0 ⊢ ∑ i in s, wm i = 0 [PROOFSTEP] simp [← Finset.mul_sum, hw] [GOAL] case pos k : Type u_1 V : Type u_2 P : Type u_3 inst✝³ : DivisionRing k inst✝² : AddCommGroup V inst✝¹ : Module k V inst✝ : AffineSpace V P ι : Type u_4 p : ι → P i : ι ha : AffineIndependent k fun x => p ↑x hi : ¬p i ∈ affineSpan k (p '' {x | x ≠ i}) s : Finset ι w : ι → k hw : ∑ i in s, w i = 0 hs : ↑(Finset.weightedVSub s p) w = 0 s' : Finset { y // y ≠ i } := Finset.subtype (fun x => x ≠ i) s p' : { y // y ≠ i } → P := fun x => p ↑x his : i ∈ s ∧ w i ≠ 0 wm : ι → k := -(w i)⁻¹ • w hms : ↑(Finset.weightedVSub s p) wm = 0 hwm : ∑ i in s, wm i = 0 ⊢ p i ∈ affineSpan k (p '' {x | x ≠ i}) [PROOFSTEP] have hwmi : wm i = -1 := by simp [his.2] [GOAL] k : Type u_1 V : Type u_2 P : Type u_3 inst✝³ : DivisionRing k inst✝² : AddCommGroup V inst✝¹ : Module k V inst✝ : AffineSpace V P ι : Type u_4 p : ι → P i : ι ha : AffineIndependent k fun x => p ↑x hi : ¬p i ∈ affineSpan k (p '' {x | x ≠ i}) s : Finset ι w : ι → k hw : ∑ i in s, w i = 0 hs : ↑(Finset.weightedVSub s p) w = 0 s' : Finset { y // y ≠ i } := Finset.subtype (fun x => x ≠ i) s p' : { y // y ≠ i } → P := fun x => p ↑x his : i ∈ s ∧ w i ≠ 0 wm : ι → k := -(w i)⁻¹ • w hms : ↑(Finset.weightedVSub s p) wm = 0 hwm : ∑ i in s, wm i = 0 ⊢ wm i = -1 [PROOFSTEP] simp [his.2] [GOAL] case pos k : Type u_1 V : Type u_2 P : Type u_3 inst✝³ : DivisionRing k inst✝² : AddCommGroup V inst✝¹ : Module k V inst✝ : AffineSpace V P ι : Type u_4 p : ι → P i : ι ha : AffineIndependent k fun x => p ↑x hi : ¬p i ∈ affineSpan k (p '' {x | x ≠ i}) s : Finset ι w : ι → k hw : ∑ i in s, w i = 0 hs : ↑(Finset.weightedVSub s p) w = 0 s' : Finset { y // y ≠ i } := Finset.subtype (fun x => x ≠ i) s p' : { y // y ≠ i } → P := fun x => p ↑x his : i ∈ s ∧ w i ≠ 0 wm : ι → k := -(w i)⁻¹ • w hms : ↑(Finset.weightedVSub s p) wm = 0 hwm : ∑ i in s, wm i = 0 hwmi : wm i = -1 ⊢ p i ∈ affineSpan k (p '' {x | x ≠ i}) [PROOFSTEP] let w' : { y // y ≠ i } → k := fun x => wm x [GOAL] case pos k : Type u_1 V : Type u_2 P : Type u_3 inst✝³ : DivisionRing k inst✝² : AddCommGroup V inst✝¹ : Module k V inst✝ : AffineSpace V P ι : Type u_4 p : ι → P i : ι ha : AffineIndependent k fun x => p ↑x hi : ¬p i ∈ affineSpan k (p '' {x | x ≠ i}) s : Finset ι w : ι → k hw : ∑ i in s, w i = 0 hs : ↑(Finset.weightedVSub s p) w = 0 s' : Finset { y // y ≠ i } := Finset.subtype (fun x => x ≠ i) s p' : { y // y ≠ i } → P := fun x => p ↑x his : i ∈ s ∧ w i ≠ 0 wm : ι → k := -(w i)⁻¹ • w hms : ↑(Finset.weightedVSub s p) wm = 0 hwm : ∑ i in s, wm i = 0 hwmi : wm i = -1 w' : { y // y ≠ i } → k := fun x => wm ↑x ⊢ p i ∈ affineSpan k (p '' {x | x ≠ i}) [PROOFSTEP] have hw' : ∑ x in s', w' x = 1 := by simp_rw [Finset.sum_subtype_eq_sum_filter] rw [← s.sum_filter_add_sum_filter_not (· ≠ i)] at hwm simp_rw [Classical.not_not] at hwm erw [Finset.filter_eq'] at hwm simp_rw [if_pos his.1, Finset.sum_singleton, hwmi, ← sub_eq_add_neg, sub_eq_zero] at hwm exact hwm [GOAL] k : Type u_1 V : Type u_2 P : Type u_3 inst✝³ : DivisionRing k inst✝² : AddCommGroup V inst✝¹ : Module k V inst✝ : AffineSpace V P ι : Type u_4 p : ι → P i : ι ha : AffineIndependent k fun x => p ↑x hi : ¬p i ∈ affineSpan k (p '' {x | x ≠ i}) s : Finset ι w : ι → k hw : ∑ i in s, w i = 0 hs : ↑(Finset.weightedVSub s p) w = 0 s' : Finset { y // y ≠ i } := Finset.subtype (fun x => x ≠ i) s p' : { y // y ≠ i } → P := fun x => p ↑x his : i ∈ s ∧ w i ≠ 0 wm : ι → k := -(w i)⁻¹ • w hms : ↑(Finset.weightedVSub s p) wm = 0 hwm : ∑ i in s, wm i = 0 hwmi : wm i = -1 w' : { y // y ≠ i } → k := fun x => wm ↑x ⊢ ∑ x in s', w' x = 1 [PROOFSTEP] simp_rw [Finset.sum_subtype_eq_sum_filter] [GOAL] k : Type u_1 V : Type u_2 P : Type u_3 inst✝³ : DivisionRing k inst✝² : AddCommGroup V inst✝¹ : Module k V inst✝ : AffineSpace V P ι : Type u_4 p : ι → P i : ι ha : AffineIndependent k fun x => p ↑x hi : ¬p i ∈ affineSpan k (p '' {x | x ≠ i}) s : Finset ι w : ι → k hw : ∑ i in s, w i = 0 hs : ↑(Finset.weightedVSub s p) w = 0 s' : Finset { y // y ≠ i } := Finset.subtype (fun x => x ≠ i) s p' : { y // y ≠ i } → P := fun x => p ↑x his : i ∈ s ∧ w i ≠ 0 wm : ι → k := -(w i)⁻¹ • w hms : ↑(Finset.weightedVSub s p) wm = 0 hwm : ∑ i in s, wm i = 0 hwmi : wm i = -1 w' : { y // y ≠ i } → k := fun x => wm ↑x ⊢ ∑ x in Finset.filter (fun x => x ≠ i) s, (-(w i)⁻¹ • w) x = 1 [PROOFSTEP] rw [← s.sum_filter_add_sum_filter_not (· ≠ i)] at hwm [GOAL] k : Type u_1 V : Type u_2 P : Type u_3 inst✝³ : DivisionRing k inst✝² : AddCommGroup V inst✝¹ : Module k V inst✝ : AffineSpace V P ι : Type u_4 p : ι → P i : ι ha : AffineIndependent k fun x => p ↑x hi : ¬p i ∈ affineSpan k (p '' {x | x ≠ i}) s : Finset ι w : ι → k hw : ∑ i in s, w i = 0 hs : ↑(Finset.weightedVSub s p) w = 0 s' : Finset { y // y ≠ i } := Finset.subtype (fun x => x ≠ i) s p' : { y // y ≠ i } → P := fun x => p ↑x his : i ∈ s ∧ w i ≠ 0 wm : ι → k := -(w i)⁻¹ • w hms : ↑(Finset.weightedVSub s p) wm = 0 hwm : ∑ x in Finset.filter (fun x => x ≠ i) s, wm x + ∑ x in Finset.filter (fun x => ¬x ≠ i) s, wm x = 0 hwmi : wm i = -1 w' : { y // y ≠ i } → k := fun x => wm ↑x ⊢ ∑ x in Finset.filter (fun x => x ≠ i) s, (-(w i)⁻¹ • w) x = 1 [PROOFSTEP] simp_rw [Classical.not_not] at hwm [GOAL] k : Type u_1 V : Type u_2 P : Type u_3 inst✝³ : DivisionRing k inst✝² : AddCommGroup V inst✝¹ : Module k V inst✝ : AffineSpace V P ι : Type u_4 p : ι → P i : ι ha : AffineIndependent k fun x => p ↑x hi : ¬p i ∈ affineSpan k (p '' {x | x ≠ i}) s : Finset ι w : ι → k hw : ∑ i in s, w i = 0 hs : ↑(Finset.weightedVSub s p) w = 0 s' : Finset { y // y ≠ i } := Finset.subtype (fun x => x ≠ i) s p' : { y // y ≠ i } → P := fun x => p ↑x his : i ∈ s ∧ w i ≠ 0 wm : ι → k := -(w i)⁻¹ • w hms : ↑(Finset.weightedVSub s p) wm = 0 hwmi : wm i = -1 w' : { y // y ≠ i } → k := fun x => wm ↑x hwm : ∑ x in Finset.filter (fun x => x ≠ i) s, (-(w i)⁻¹ • w) x + ∑ x in Finset.filter (fun x => x = i) s, (-(w i)⁻¹ • w) x = 0 ⊢ ∑ x in Finset.filter (fun x => x ≠ i) s, (-(w i)⁻¹ • w) x = 1 [PROOFSTEP] erw [Finset.filter_eq'] at hwm [GOAL] k : Type u_1 V : Type u_2 P : Type u_3 inst✝³ : DivisionRing k inst✝² : AddCommGroup V inst✝¹ : Module k V inst✝ : AffineSpace V P ι : Type u_4 p : ι → P i : ι ha : AffineIndependent k fun x => p ↑x hi : ¬p i ∈ affineSpan k (p '' {x | x ≠ i}) s : Finset ι w : ι → k hw : ∑ i in s, w i = 0 hs : ↑(Finset.weightedVSub s p) w = 0 s' : Finset { y // y ≠ i } := Finset.subtype (fun x => x ≠ i) s p' : { y // y ≠ i } → P := fun x => p ↑x his : i ∈ s ∧ w i ≠ 0 wm : ι → k := -(w i)⁻¹ • w hms : ↑(Finset.weightedVSub s p) wm = 0 hwmi : wm i = -1 w' : { y // y ≠ i } → k := fun x => wm ↑x hwm : ∑ x in Finset.filter (fun x => x ≠ i) s, (-(w i)⁻¹ • w) x + ∑ x in if i ∈ s then {i} else ∅, (-(w i)⁻¹ • w) x = 0 ⊢ ∑ x in Finset.filter (fun x => x ≠ i) s, (-(w i)⁻¹ • w) x = 1 [PROOFSTEP] simp_rw [if_pos his.1, Finset.sum_singleton, hwmi, ← sub_eq_add_neg, sub_eq_zero] at hwm [GOAL] k : Type u_1 V : Type u_2 P : Type u_3 inst✝³ : DivisionRing k inst✝² : AddCommGroup V inst✝¹ : Module k V inst✝ : AffineSpace V P ι : Type u_4 p : ι → P i : ι ha : AffineIndependent k fun x => p ↑x hi : ¬p i ∈ affineSpan k (p '' {x | x ≠ i}) s : Finset ι w : ι → k hw : ∑ i in s, w i = 0 hs : ↑(Finset.weightedVSub s p) w = 0 s' : Finset { y // y ≠ i } := Finset.subtype (fun x => x ≠ i) s p' : { y // y ≠ i } → P := fun x => p ↑x his : i ∈ s ∧ w i ≠ 0 wm : ι → k := -(w i)⁻¹ • w hms : ↑(Finset.weightedVSub s p) wm = 0 hwmi : wm i = -1 w' : { y // y ≠ i } → k := fun x => wm ↑x hwm : ∑ x in Finset.filter (fun x => x ≠ i) s, (-(w i)⁻¹ • w) x = 1 ⊢ ∑ x in Finset.filter (fun x => x ≠ i) s, (-(w i)⁻¹ • w) x = 1 [PROOFSTEP] exact hwm [GOAL] case pos k : Type u_1 V : Type u_2 P : Type u_3 inst✝³ : DivisionRing k inst✝² : AddCommGroup V inst✝¹ : Module k V inst✝ : AffineSpace V P ι : Type u_4 p : ι → P i : ι ha : AffineIndependent k fun x => p ↑x hi : ¬p i ∈ affineSpan k (p '' {x | x ≠ i}) s : Finset ι w : ι → k hw : ∑ i in s, w i = 0 hs : ↑(Finset.weightedVSub s p) w = 0 s' : Finset { y // y ≠ i } := Finset.subtype (fun x => x ≠ i) s p' : { y // y ≠ i } → P := fun x => p ↑x his : i ∈ s ∧ w i ≠ 0 wm : ι → k := -(w i)⁻¹ • w hms : ↑(Finset.weightedVSub s p) wm = 0 hwm : ∑ i in s, wm i = 0 hwmi : wm i = -1 w' : { y // y ≠ i } → k := fun x => wm ↑x hw' : ∑ x in s', w' x = 1 ⊢ p i ∈ affineSpan k (p '' {x | x ≠ i}) [PROOFSTEP] rw [← s.affineCombination_eq_of_weightedVSub_eq_zero_of_eq_neg_one hms his.1 hwmi, ← (Subtype.range_coe : _ = {x | x ≠ i}), ← Set.range_comp, ← s.affineCombination_subtype_eq_filter] [GOAL] case pos k : Type u_1 V : Type u_2 P : Type u_3 inst✝³ : DivisionRing k inst✝² : AddCommGroup V inst✝¹ : Module k V inst✝ : AffineSpace V P ι : Type u_4 p : ι → P i : ι ha : AffineIndependent k fun x => p ↑x hi : ¬p i ∈ affineSpan k (p '' {x | x ≠ i}) s : Finset ι w : ι → k hw : ∑ i in s, w i = 0 hs : ↑(Finset.weightedVSub s p) w = 0 s' : Finset { y // y ≠ i } := Finset.subtype (fun x => x ≠ i) s p' : { y // y ≠ i } → P := fun x => p ↑x his : i ∈ s ∧ w i ≠ 0 wm : ι → k := -(w i)⁻¹ • w hms : ↑(Finset.weightedVSub s p) wm = 0 hwm : ∑ i in s, wm i = 0 hwmi : wm i = -1 w' : { y // y ≠ i } → k := fun x => wm ↑x hw' : ∑ x in s', w' x = 1 ⊢ (↑(Finset.affineCombination k (Finset.subtype (fun x => x ≠ i) s) fun i_1 => p ↑i_1) fun i_1 => wm ↑i_1) ∈ affineSpan k (Set.range (p ∘ Subtype.val)) [PROOFSTEP] exact affineCombination_mem_affineSpan hw' p' [GOAL] case neg k : Type u_1 V : Type u_2 P : Type u_3 inst✝³ : DivisionRing k inst✝² : AddCommGroup V inst✝¹ : Module k V inst✝ : AffineSpace V P ι : Type u_4 p : ι → P i : ι ha : AffineIndependent k fun x => p ↑x hi : ¬p i ∈ affineSpan k (p '' {x | x ≠ i}) s : Finset ι w : ι → k hw : ∑ i in s, w i = 0 hs : ↑(Finset.weightedVSub s p) w = 0 s' : Finset { y // y ≠ i } := Finset.subtype (fun x => x ≠ i) s p' : { y // y ≠ i } → P := fun x => p ↑x his : ¬(i ∈ s ∧ w i ≠ 0) ⊢ ∀ (i : ι), i ∈ s → w i = 0 [PROOFSTEP] rw [not_and_or, Classical.not_not] at his [GOAL] case neg k : Type u_1 V : Type u_2 P : Type u_3 inst✝³ : DivisionRing k inst✝² : AddCommGroup V inst✝¹ : Module k V inst✝ : AffineSpace V P ι : Type u_4 p : ι → P i : ι ha : AffineIndependent k fun x => p ↑x hi : ¬p i ∈ affineSpan k (p '' {x | x ≠ i}) s : Finset ι w : ι → k hw : ∑ i in s, w i = 0 hs : ↑(Finset.weightedVSub s p) w = 0 s' : Finset { y // y ≠ i } := Finset.subtype (fun x => x ≠ i) s p' : { y // y ≠ i } → P := fun x => p ↑x his : ¬i ∈ s ∨ w i = 0 ⊢ ∀ (i : ι), i ∈ s → w i = 0 [PROOFSTEP] let w' : { y // y ≠ i } → k := fun x => w x [GOAL] case neg k : Type u_1 V : Type u_2 P : Type u_3 inst✝³ : DivisionRing k inst✝² : AddCommGroup V inst✝¹ : Module k V inst✝ : AffineSpace V P ι : Type u_4 p : ι → P i : ι ha : AffineIndependent k fun x => p ↑x hi : ¬p i ∈ affineSpan k (p '' {x | x ≠ i}) s : Finset ι w : ι → k hw : ∑ i in s, w i = 0 hs : ↑(Finset.weightedVSub s p) w = 0 s' : Finset { y // y ≠ i } := Finset.subtype (fun x => x ≠ i) s p' : { y // y ≠ i } → P := fun x => p ↑x his : ¬i ∈ s ∨ w i = 0 w' : { y // y ≠ i } → k := fun x => w ↑x ⊢ ∀ (i : ι), i ∈ s → w i = 0 [PROOFSTEP] have hw' : ∑ x in s', w' x = 0 := by simp_rw [Finset.sum_subtype_eq_sum_filter] rw [Finset.sum_filter_of_ne, hw] rintro x hxs hwx rfl exact hwx (his.neg_resolve_left hxs) [GOAL] k : Type u_1 V : Type u_2 P : Type u_3 inst✝³ : DivisionRing k inst✝² : AddCommGroup V inst✝¹ : Module k V inst✝ : AffineSpace V P ι : Type u_4 p : ι → P i : ι ha : AffineIndependent k fun x => p ↑x hi : ¬p i ∈ affineSpan k (p '' {x | x ≠ i}) s : Finset ι w : ι → k hw : ∑ i in s, w i = 0 hs : ↑(Finset.weightedVSub s p) w = 0 s' : Finset { y // y ≠ i } := Finset.subtype (fun x => x ≠ i) s p' : { y // y ≠ i } → P := fun x => p ↑x his : ¬i ∈ s ∨ w i = 0 w' : { y // y ≠ i } → k := fun x => w ↑x ⊢ ∑ x in s', w' x = 0 [PROOFSTEP] simp_rw [Finset.sum_subtype_eq_sum_filter] [GOAL] k : Type u_1 V : Type u_2 P : Type u_3 inst✝³ : DivisionRing k inst✝² : AddCommGroup V inst✝¹ : Module k V inst✝ : AffineSpace V P ι : Type u_4 p : ι → P i : ι ha : AffineIndependent k fun x => p ↑x hi : ¬p i ∈ affineSpan k (p '' {x | x ≠ i}) s : Finset ι w : ι → k hw : ∑ i in s, w i = 0 hs : ↑(Finset.weightedVSub s p) w = 0 s' : Finset { y // y ≠ i } := Finset.subtype (fun x => x ≠ i) s p' : { y // y ≠ i } → P := fun x => p ↑x his : ¬i ∈ s ∨ w i = 0 w' : { y // y ≠ i } → k := fun x => w ↑x ⊢ ∑ x in Finset.filter (fun x => x ≠ i) s, w x = 0 [PROOFSTEP] rw [Finset.sum_filter_of_ne, hw] [GOAL] k : Type u_1 V : Type u_2 P : Type u_3 inst✝³ : DivisionRing k inst✝² : AddCommGroup V inst✝¹ : Module k V inst✝ : AffineSpace V P ι : Type u_4 p : ι → P i : ι ha : AffineIndependent k fun x => p ↑x hi : ¬p i ∈ affineSpan k (p '' {x | x ≠ i}) s : Finset ι w : ι → k hw : ∑ i in s, w i = 0 hs : ↑(Finset.weightedVSub s p) w = 0 s' : Finset { y // y ≠ i } := Finset.subtype (fun x => x ≠ i) s p' : { y // y ≠ i } → P := fun x => p ↑x his : ¬i ∈ s ∨ w i = 0 w' : { y // y ≠ i } → k := fun x => w ↑x ⊢ ∀ (x : ι), x ∈ s → w x ≠ 0 → x ≠ i [PROOFSTEP] rintro x hxs hwx rfl [GOAL] k : Type u_1 V : Type u_2 P : Type u_3 inst✝³ : DivisionRing k inst✝² : AddCommGroup V inst✝¹ : Module k V inst✝ : AffineSpace V P ι : Type u_4 p : ι → P s : Finset ι w : ι → k hw : ∑ i in s, w i = 0 hs : ↑(Finset.weightedVSub s p) w = 0 x : ι hxs : x ∈ s hwx : w x ≠ 0 ha : AffineIndependent k fun x_1 => p ↑x_1 hi : ¬p x ∈ affineSpan k (p '' {x_1 | x_1 ≠ x}) s' : Finset { y // y ≠ x } := Finset.subtype (fun x_1 => x_1 ≠ x) s p' : { y // y ≠ x } → P := fun x_1 => p ↑x_1 his : ¬x ∈ s ∨ w x = 0 w' : { y // y ≠ x } → k := fun x_1 => w ↑x_1 ⊢ False [PROOFSTEP] exact hwx (his.neg_resolve_left hxs) [GOAL] case neg k : Type u_1 V : Type u_2 P : Type u_3 inst✝³ : DivisionRing k inst✝² : AddCommGroup V inst✝¹ : Module k V inst✝ : AffineSpace V P ι : Type u_4 p : ι → P i : ι ha : AffineIndependent k fun x => p ↑x hi : ¬p i ∈ affineSpan k (p '' {x | x ≠ i}) s : Finset ι w : ι → k hw : ∑ i in s, w i = 0 hs : ↑(Finset.weightedVSub s p) w = 0 s' : Finset { y // y ≠ i } := Finset.subtype (fun x => x ≠ i) s p' : { y // y ≠ i } → P := fun x => p ↑x his : ¬i ∈ s ∨ w i = 0 w' : { y // y ≠ i } → k := fun x => w ↑x hw' : ∑ x in s', w' x = 0 ⊢ ∀ (i : ι), i ∈ s → w i = 0 [PROOFSTEP] have hs' : s'.weightedVSub p' w' = (0 : V) := by simp_rw [Finset.weightedVSub_subtype_eq_filter] rw [Finset.weightedVSub_filter_of_ne, hs] rintro x hxs hwx rfl exact hwx (his.neg_resolve_left hxs) [GOAL] k : Type u_1 V : Type u_2 P : Type u_3 inst✝³ : DivisionRing k inst✝² : AddCommGroup V inst✝¹ : Module k V inst✝ : AffineSpace V P ι : Type u_4 p : ι → P i : ι ha : AffineIndependent k fun x => p ↑x hi : ¬p i ∈ affineSpan k (p '' {x | x ≠ i}) s : Finset ι w : ι → k hw : ∑ i in s, w i = 0 hs : ↑(Finset.weightedVSub s p) w = 0 s' : Finset { y // y ≠ i } := Finset.subtype (fun x => x ≠ i) s p' : { y // y ≠ i } → P := fun x => p ↑x his : ¬i ∈ s ∨ w i = 0 w' : { y // y ≠ i } → k := fun x => w ↑x hw' : ∑ x in s', w' x = 0 ⊢ ↑(Finset.weightedVSub s' p') w' = 0 [PROOFSTEP] simp_rw [Finset.weightedVSub_subtype_eq_filter] [GOAL] k : Type u_1 V : Type u_2 P : Type u_3 inst✝³ : DivisionRing k inst✝² : AddCommGroup V inst✝¹ : Module k V inst✝ : AffineSpace V P ι : Type u_4 p : ι → P i : ι ha : AffineIndependent k fun x => p ↑x hi : ¬p i ∈ affineSpan k (p '' {x | x ≠ i}) s : Finset ι w : ι → k hw : ∑ i in s, w i = 0 hs : ↑(Finset.weightedVSub s p) w = 0 s' : Finset { y // y ≠ i } := Finset.subtype (fun x => x ≠ i) s p' : { y // y ≠ i } → P := fun x => p ↑x his : ¬i ∈ s ∨ w i = 0 w' : { y // y ≠ i } → k := fun x => w ↑x hw' : ∑ x in s', w' x = 0 ⊢ ↑(Finset.weightedVSub (Finset.filter (fun x => x ≠ i) s) p) w = 0 [PROOFSTEP] rw [Finset.weightedVSub_filter_of_ne, hs] [GOAL] case h k : Type u_1 V : Type u_2 P : Type u_3 inst✝³ : DivisionRing k inst✝² : AddCommGroup V inst✝¹ : Module k V inst✝ : AffineSpace V P ι : Type u_4 p : ι → P i : ι ha : AffineIndependent k fun x => p ↑x hi : ¬p i ∈ affineSpan k (p '' {x | x ≠ i}) s : Finset ι w : ι → k hw : ∑ i in s, w i = 0 hs : ↑(Finset.weightedVSub s p) w = 0 s' : Finset { y // y ≠ i } := Finset.subtype (fun x => x ≠ i) s p' : { y // y ≠ i } → P := fun x => p ↑x his : ¬i ∈ s ∨ w i = 0 w' : { y // y ≠ i } → k := fun x => w ↑x hw' : ∑ x in s', w' x = 0 ⊢ ∀ (i_1 : ι), i_1 ∈ s → w i_1 ≠ 0 → i_1 ≠ i [PROOFSTEP] rintro x hxs hwx rfl [GOAL] case h k : Type u_1 V : Type u_2 P : Type u_3 inst✝³ : DivisionRing k inst✝² : AddCommGroup V inst✝¹ : Module k V inst✝ : AffineSpace V P ι : Type u_4 p : ι → P s : Finset ι w : ι → k hw : ∑ i in s, w i = 0 hs : ↑(Finset.weightedVSub s p) w = 0 x : ι hxs : x ∈ s hwx : w x ≠ 0 ha : AffineIndependent k fun x_1 => p ↑x_1 hi : ¬p x ∈ affineSpan k (p '' {x_1 | x_1 ≠ x}) s' : Finset { y // y ≠ x } := Finset.subtype (fun x_1 => x_1 ≠ x) s p' : { y // y ≠ x } → P := fun x_1 => p ↑x_1 his : ¬x ∈ s ∨ w x = 0 w' : { y // y ≠ x } → k := fun x_1 => w ↑x_1 hw' : ∑ x in s', w' x = 0 ⊢ False [PROOFSTEP] exact hwx (his.neg_resolve_left hxs) [GOAL] case neg k : Type u_1 V : Type u_2 P : Type u_3 inst✝³ : DivisionRing k inst✝² : AddCommGroup V inst✝¹ : Module k V inst✝ : AffineSpace V P ι : Type u_4 p : ι → P i : ι ha : AffineIndependent k fun x => p ↑x hi : ¬p i ∈ affineSpan k (p '' {x | x ≠ i}) s : Finset ι w : ι → k hw : ∑ i in s, w i = 0 hs : ↑(Finset.weightedVSub s p) w = 0 s' : Finset { y // y ≠ i } := Finset.subtype (fun x => x ≠ i) s p' : { y // y ≠ i } → P := fun x => p ↑x his : ¬i ∈ s ∨ w i = 0 w' : { y // y ≠ i } → k := fun x => w ↑x hw' : ∑ x in s', w' x = 0 hs' : ↑(Finset.weightedVSub s' p') w' = 0 ⊢ ∀ (i : ι), i ∈ s → w i = 0 [PROOFSTEP] intro j hj [GOAL] case neg k : Type u_1 V : Type u_2 P : Type u_3 inst✝³ : DivisionRing k inst✝² : AddCommGroup V inst✝¹ : Module k V inst✝ : AffineSpace V P ι : Type u_4 p : ι → P i : ι ha : AffineIndependent k fun x => p ↑x hi : ¬p i ∈ affineSpan k (p '' {x | x ≠ i}) s : Finset ι w : ι → k hw : ∑ i in s, w i = 0 hs : ↑(Finset.weightedVSub s p) w = 0 s' : Finset { y // y ≠ i } := Finset.subtype (fun x => x ≠ i) s p' : { y // y ≠ i } → P := fun x => p ↑x his : ¬i ∈ s ∨ w i = 0 w' : { y // y ≠ i } → k := fun x => w ↑x hw' : ∑ x in s', w' x = 0 hs' : ↑(Finset.weightedVSub s' p') w' = 0 j : ι hj : j ∈ s ⊢ w j = 0 [PROOFSTEP] by_cases hji : j = i [GOAL] case pos k : Type u_1 V : Type u_2 P : Type u_3 inst✝³ : DivisionRing k inst✝² : AddCommGroup V inst✝¹ : Module k V inst✝ : AffineSpace V P ι : Type u_4 p : ι → P i : ι ha : AffineIndependent k fun x => p ↑x hi : ¬p i ∈ affineSpan k (p '' {x | x ≠ i}) s : Finset ι w : ι → k hw : ∑ i in s, w i = 0 hs : ↑(Finset.weightedVSub s p) w = 0 s' : Finset { y // y ≠ i } := Finset.subtype (fun x => x ≠ i) s p' : { y // y ≠ i } → P := fun x => p ↑x his : ¬i ∈ s ∨ w i = 0 w' : { y // y ≠ i } → k := fun x => w ↑x hw' : ∑ x in s', w' x = 0 hs' : ↑(Finset.weightedVSub s' p') w' = 0 j : ι hj : j ∈ s hji : j = i ⊢ w j = 0 [PROOFSTEP] rw [hji] at hj [GOAL] case pos k : Type u_1 V : Type u_2 P : Type u_3 inst✝³ : DivisionRing k inst✝² : AddCommGroup V inst✝¹ : Module k V inst✝ : AffineSpace V P ι : Type u_4 p : ι → P i : ι ha : AffineIndependent k fun x => p ↑x hi : ¬p i ∈ affineSpan k (p '' {x | x ≠ i}) s : Finset ι w : ι → k hw : ∑ i in s, w i = 0 hs : ↑(Finset.weightedVSub s p) w = 0 s' : Finset { y // y ≠ i } := Finset.subtype (fun x => x ≠ i) s p' : { y // y ≠ i } → P := fun x => p ↑x his : ¬i ∈ s ∨ w i = 0 w' : { y // y ≠ i } → k := fun x => w ↑x hw' : ∑ x in s', w' x = 0 hs' : ↑(Finset.weightedVSub s' p') w' = 0 j : ι hj : i ∈ s hji : j = i ⊢ w j = 0 [PROOFSTEP] exact hji.symm ▸ his.neg_resolve_left hj [GOAL] case neg k : Type u_1 V : Type u_2 P : Type u_3 inst✝³ : DivisionRing k inst✝² : AddCommGroup V inst✝¹ : Module k V inst✝ : AffineSpace V P ι : Type u_4 p : ι → P i : ι ha : AffineIndependent k fun x => p ↑x hi : ¬p i ∈ affineSpan k (p '' {x | x ≠ i}) s : Finset ι w : ι → k hw : ∑ i in s, w i = 0 hs : ↑(Finset.weightedVSub s p) w = 0 s' : Finset { y // y ≠ i } := Finset.subtype (fun x => x ≠ i) s p' : { y // y ≠ i } → P := fun x => p ↑x his : ¬i ∈ s ∨ w i = 0 w' : { y // y ≠ i } → k := fun x => w ↑x hw' : ∑ x in s', w' x = 0 hs' : ↑(Finset.weightedVSub s' p') w' = 0 j : ι hj : j ∈ s hji : ¬j = i ⊢ w j = 0 [PROOFSTEP] exact ha s' w' hw' hs' ⟨j, hji⟩ (Finset.mem_subtype.2 hj) [GOAL] k : Type u_1 V : Type u_2 P : Type u_3 inst✝³ : DivisionRing k inst✝² : AddCommGroup V inst✝¹ : Module k V inst✝ : AffineSpace V P ι : Type u_4 s : AffineSubspace k P p₁ p₂ p₃ : P hp₁p₂ : p₁ ≠ p₂ hp₁ : p₁ ∈ s hp₂ : p₂ ∈ s hp₃ : ¬p₃ ∈ s ⊢ AffineIndependent k ![p₁, p₂, p₃] [PROOFSTEP] have ha : AffineIndependent k fun x : { x : Fin 3 // x ≠ 2 } => ![p₁, p₂, p₃] x := by rw [← affineIndependent_equiv (finSuccAboveEquiv (2 : Fin 3)).toEquiv] convert affineIndependent_of_ne k hp₁p₂ ext x fin_cases x <;> rfl [GOAL] k : Type u_1 V : Type u_2 P : Type u_3 inst✝³ : DivisionRing k inst✝² : AddCommGroup V inst✝¹ : Module k V inst✝ : AffineSpace V P ι : Type u_4 s : AffineSubspace k P p₁ p₂ p₃ : P hp₁p₂ : p₁ ≠ p₂ hp₁ : p₁ ∈ s hp₂ : p₂ ∈ s hp₃ : ¬p₃ ∈ s ⊢ AffineIndependent k fun x => Matrix.vecCons p₁ ![p₂, p₃] ↑x [PROOFSTEP] rw [← affineIndependent_equiv (finSuccAboveEquiv (2 : Fin 3)).toEquiv] [GOAL] k : Type u_1 V : Type u_2 P : Type u_3 inst✝³ : DivisionRing k inst✝² : AddCommGroup V inst✝¹ : Module k V inst✝ : AffineSpace V P ι : Type u_4 s : AffineSubspace k P p₁ p₂ p₃ : P hp₁p₂ : p₁ ≠ p₂ hp₁ : p₁ ∈ s hp₂ : p₂ ∈ s hp₃ : ¬p₃ ∈ s ⊢ AffineIndependent k ((fun x => Matrix.vecCons p₁ ![p₂, p₃] ↑x) ∘ ↑(finSuccAboveEquiv 2).toEquiv) [PROOFSTEP] convert affineIndependent_of_ne k hp₁p₂ [GOAL] case h.e'_9 k : Type u_1 V : Type u_2 P : Type u_3 inst✝³ : DivisionRing k inst✝² : AddCommGroup V inst✝¹ : Module k V inst✝ : AffineSpace V P ι : Type u_4 s : AffineSubspace k P p₁ p₂ p₃ : P hp₁p₂ : p₁ ≠ p₂ hp₁ : p₁ ∈ s hp₂ : p₂ ∈ s hp₃ : ¬p₃ ∈ s ⊢ (fun x => Matrix.vecCons p₁ ![p₂, p₃] ↑x) ∘ ↑(finSuccAboveEquiv 2).toEquiv = ![p₁, p₂] [PROOFSTEP] ext x [GOAL] case h.e'_9.h k : Type u_1 V : Type u_2 P : Type u_3 inst✝³ : DivisionRing k inst✝² : AddCommGroup V inst✝¹ : Module k V inst✝ : AffineSpace V P ι : Type u_4 s : AffineSubspace k P p₁ p₂ p₃ : P hp₁p₂ : p₁ ≠ p₂ hp₁ : p₁ ∈ s hp₂ : p₂ ∈ s hp₃ : ¬p₃ ∈ s x : Fin 2 ⊢ ((fun x => Matrix.vecCons p₁ ![p₂, p₃] ↑x) ∘ ↑(finSuccAboveEquiv 2).toEquiv) x = Matrix.vecCons p₁ ![p₂] x [PROOFSTEP] fin_cases x [GOAL] case h.e'_9.h.head k : Type u_1 V : Type u_2 P : Type u_3 inst✝³ : DivisionRing k inst✝² : AddCommGroup V inst✝¹ : Module k V inst✝ : AffineSpace V P ι : Type u_4 s : AffineSubspace k P p₁ p₂ p₃ : P hp₁p₂ : p₁ ≠ p₂ hp₁ : p₁ ∈ s hp₂ : p₂ ∈ s hp₃ : ¬p₃ ∈ s ⊢ ((fun x => Matrix.vecCons p₁ ![p₂, p₃] ↑x) ∘ ↑(finSuccAboveEquiv 2).toEquiv) { val := 0, isLt := (_ : 0 < 2) } = Matrix.vecCons p₁ ![p₂] { val := 0, isLt := (_ : 0 < 2) } [PROOFSTEP] rfl [GOAL] case h.e'_9.h.tail.head k : Type u_1 V : Type u_2 P : Type u_3 inst✝³ : DivisionRing k inst✝² : AddCommGroup V inst✝¹ : Module k V inst✝ : AffineSpace V P ι : Type u_4 s : AffineSubspace k P p₁ p₂ p₃ : P hp₁p₂ : p₁ ≠ p₂ hp₁ : p₁ ∈ s hp₂ : p₂ ∈ s hp₃ : ¬p₃ ∈ s ⊢ ((fun x => Matrix.vecCons p₁ ![p₂, p₃] ↑x) ∘ ↑(finSuccAboveEquiv 2).toEquiv) { val := 1, isLt := (_ : (fun a => a < 2) 1) } = Matrix.vecCons p₁ ![p₂] { val := 1, isLt := (_ : (fun a => a < 2) 1) } [PROOFSTEP] rfl [GOAL] k : Type u_1 V : Type u_2 P : Type u_3 inst✝³ : DivisionRing k inst✝² : AddCommGroup V inst✝¹ : Module k V inst✝ : AffineSpace V P ι : Type u_4 s : AffineSubspace k P p₁ p₂ p₃ : P hp₁p₂ : p₁ ≠ p₂ hp₁ : p₁ ∈ s hp₂ : p₂ ∈ s hp₃ : ¬p₃ ∈ s ha : AffineIndependent k fun x => Matrix.vecCons p₁ ![p₂, p₃] ↑x ⊢ AffineIndependent k ![p₁, p₂, p₃] [PROOFSTEP] refine' ha.affineIndependent_of_not_mem_span _ [GOAL] k : Type u_1 V : Type u_2 P : Type u_3 inst✝³ : DivisionRing k inst✝² : AddCommGroup V inst✝¹ : Module k V inst✝ : AffineSpace V P ι : Type u_4 s : AffineSubspace k P p₁ p₂ p₃ : P hp₁p₂ : p₁ ≠ p₂ hp₁ : p₁ ∈ s hp₂ : p₂ ∈ s hp₃ : ¬p₃ ∈ s ha : AffineIndependent k fun x => Matrix.vecCons p₁ ![p₂, p₃] ↑x ⊢ ¬Matrix.vecCons p₁ ![p₂, p₃] 2 ∈ affineSpan k (![p₁, p₂, p₃] '' {x | x ≠ 2}) [PROOFSTEP] intro h [GOAL] k : Type u_1 V : Type u_2 P : Type u_3 inst✝³ : DivisionRing k inst✝² : AddCommGroup V inst✝¹ : Module k V inst✝ : AffineSpace V P ι : Type u_4 s : AffineSubspace k P p₁ p₂ p₃ : P hp₁p₂ : p₁ ≠ p₂ hp₁ : p₁ ∈ s hp₂ : p₂ ∈ s hp₃ : ¬p₃ ∈ s ha : AffineIndependent k fun x => Matrix.vecCons p₁ ![p₂, p₃] ↑x h : Matrix.vecCons p₁ ![p₂, p₃] 2 ∈ affineSpan k (![p₁, p₂, p₃] '' {x | x ≠ 2}) ⊢ False [PROOFSTEP] refine' hp₃ ((AffineSubspace.le_def' _ s).1 _ p₃ h) [GOAL] k : Type u_1 V : Type u_2 P : Type u_3 inst✝³ : DivisionRing k inst✝² : AddCommGroup V inst✝¹ : Module k V inst✝ : AffineSpace V P ι : Type u_4 s : AffineSubspace k P p₁ p₂ p₃ : P hp₁p₂ : p₁ ≠ p₂ hp₁ : p₁ ∈ s hp₂ : p₂ ∈ s hp₃ : ¬p₃ ∈ s ha : AffineIndependent k fun x => Matrix.vecCons p₁ ![p₂, p₃] ↑x h : Matrix.vecCons p₁ ![p₂, p₃] 2 ∈ affineSpan k (![p₁, p₂, p₃] '' {x | x ≠ 2}) ⊢ affineSpan k (![p₁, p₂, p₃] '' {x | x ≠ 2}) ≤ s [PROOFSTEP] simp_rw [affineSpan_le, Set.image_subset_iff, Set.subset_def, Set.mem_preimage] [GOAL] k : Type u_1 V : Type u_2 P : Type u_3 inst✝³ : DivisionRing k inst✝² : AddCommGroup V inst✝¹ : Module k V inst✝ : AffineSpace V P ι : Type u_4 s : AffineSubspace k P p₁ p₂ p₃ : P hp₁p₂ : p₁ ≠ p₂ hp₁ : p₁ ∈ s hp₂ : p₂ ∈ s hp₃ : ¬p₃ ∈ s ha : AffineIndependent k fun x => Matrix.vecCons p₁ ![p₂, p₃] ↑x h : Matrix.vecCons p₁ ![p₂, p₃] 2 ∈ affineSpan k (![p₁, p₂, p₃] '' {x | x ≠ 2}) ⊢ ∀ (x : Fin 3), x ∈ {x | x ≠ 2} → Matrix.vecCons p₁ ![p₂, p₃] x ∈ ↑s [PROOFSTEP] intro x [GOAL] k : Type u_1 V : Type u_2 P : Type u_3 inst✝³ : DivisionRing k inst✝² : AddCommGroup V inst✝¹ : Module k V inst✝ : AffineSpace V P ι : Type u_4 s : AffineSubspace k P p₁ p₂ p₃ : P hp₁p₂ : p₁ ≠ p₂ hp₁ : p₁ ∈ s hp₂ : p₂ ∈ s hp₃ : ¬p₃ ∈ s ha : AffineIndependent k fun x => Matrix.vecCons p₁ ![p₂, p₃] ↑x h : Matrix.vecCons p₁ ![p₂, p₃] 2 ∈ affineSpan k (![p₁, p₂, p₃] '' {x | x ≠ 2}) x : Fin 3 ⊢ x ∈ {x | x ≠ 2} → Matrix.vecCons p₁ ![p₂, p₃] x ∈ ↑s [PROOFSTEP] fin_cases x [GOAL] case head k : Type u_1 V : Type u_2 P : Type u_3 inst✝³ : DivisionRing k inst✝² : AddCommGroup V inst✝¹ : Module k V inst✝ : AffineSpace V P ι : Type u_4 s : AffineSubspace k P p₁ p₂ p₃ : P hp₁p₂ : p₁ ≠ p₂ hp₁ : p₁ ∈ s hp₂ : p₂ ∈ s hp₃ : ¬p₃ ∈ s ha : AffineIndependent k fun x => Matrix.vecCons p₁ ![p₂, p₃] ↑x h : Matrix.vecCons p₁ ![p₂, p₃] 2 ∈ affineSpan k (![p₁, p₂, p₃] '' {x | x ≠ 2}) ⊢ { val := 0, isLt := (_ : 0 < 3) } ∈ {x | x ≠ 2} → Matrix.vecCons p₁ ![p₂, p₃] { val := 0, isLt := (_ : 0 < 3) } ∈ ↑s [PROOFSTEP] simp [hp₁, hp₂] [GOAL] case tail.head k : Type u_1 V : Type u_2 P : Type u_3 inst✝³ : DivisionRing k inst✝² : AddCommGroup V inst✝¹ : Module k V inst✝ : AffineSpace V P ι : Type u_4 s : AffineSubspace k P p₁ p₂ p₃ : P hp₁p₂ : p₁ ≠ p₂ hp₁ : p₁ ∈ s hp₂ : p₂ ∈ s hp₃ : ¬p₃ ∈ s ha : AffineIndependent k fun x => Matrix.vecCons p₁ ![p₂, p₃] ↑x h : Matrix.vecCons p₁ ![p₂, p₃] 2 ∈ affineSpan k (![p₁, p₂, p₃] '' {x | x ≠ 2}) ⊢ { val := 1, isLt := (_ : (fun a => a < 3) 1) } ∈ {x | x ≠ 2} → Matrix.vecCons p₁ ![p₂, p₃] { val := 1, isLt := (_ : (fun a => a < 3) 1) } ∈ ↑s [PROOFSTEP] simp [hp₁, hp₂] [GOAL] case tail.tail.head k : Type u_1 V : Type u_2 P : Type u_3 inst✝³ : DivisionRing k inst✝² : AddCommGroup V inst✝¹ : Module k V inst✝ : AffineSpace V P ι : Type u_4 s : AffineSubspace k P p₁ p₂ p₃ : P hp₁p₂ : p₁ ≠ p₂ hp₁ : p₁ ∈ s hp₂ : p₂ ∈ s hp₃ : ¬p₃ ∈ s ha : AffineIndependent k fun x => Matrix.vecCons p₁ ![p₂, p₃] ↑x h : Matrix.vecCons p₁ ![p₂, p₃] 2 ∈ affineSpan k (![p₁, p₂, p₃] '' {x | x ≠ 2}) ⊢ { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } ∈ {x | x ≠ 2} → Matrix.vecCons p₁ ![p₂, p₃] { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } ∈ ↑s [PROOFSTEP] simp [hp₁, hp₂] [GOAL] k : Type u_1 V : Type u_2 P : Type u_3 inst✝³ : DivisionRing k inst✝² : AddCommGroup V inst✝¹ : Module k V inst✝ : AffineSpace V P ι : Type u_4 s : AffineSubspace k P p₁ p₂ p₃ : P hp₁p₃ : p₁ ≠ p₃ hp₁ : p₁ ∈ s hp₂ : ¬p₂ ∈ s hp₃ : p₃ ∈ s ⊢ AffineIndependent k ![p₁, p₂, p₃] [PROOFSTEP] rw [← affineIndependent_equiv (Equiv.swap (1 : Fin 3) 2)] [GOAL] k : Type u_1 V : Type u_2 P : Type u_3 inst✝³ : DivisionRing k inst✝² : AddCommGroup V inst✝¹ : Module k V inst✝ : AffineSpace V P ι : Type u_4 s : AffineSubspace k P p₁ p₂ p₃ : P hp₁p₃ : p₁ ≠ p₃ hp₁ : p₁ ∈ s hp₂ : ¬p₂ ∈ s hp₃ : p₃ ∈ s ⊢ AffineIndependent k (![p₁, p₂, p₃] ∘ ↑(Equiv.swap 1 2)) [PROOFSTEP] convert affineIndependent_of_ne_of_mem_of_mem_of_not_mem hp₁p₃ hp₁ hp₃ hp₂ using 1 [GOAL] case h.e'_9 k : Type u_1 V : Type u_2 P : Type u_3 inst✝³ : DivisionRing k inst✝² : AddCommGroup V inst✝¹ : Module k V inst✝ : AffineSpace V P ι : Type u_4 s : AffineSubspace k P p₁ p₂ p₃ : P hp₁p₃ : p₁ ≠ p₃ hp₁ : p₁ ∈ s hp₂ : ¬p₂ ∈ s hp₃ : p₃ ∈ s ⊢ ![p₁, p₂, p₃] ∘ ↑(Equiv.swap 1 2) = ![p₁, p₃, p₂] [PROOFSTEP] ext x [GOAL] case h.e'_9.h k : Type u_1 V : Type u_2 P : Type u_3 inst✝³ : DivisionRing k inst✝² : AddCommGroup V inst✝¹ : Module k V inst✝ : AffineSpace V P ι : Type u_4 s : AffineSubspace k P p₁ p₂ p₃ : P hp₁p₃ : p₁ ≠ p₃ hp₁ : p₁ ∈ s hp₂ : ¬p₂ ∈ s hp₃ : p₃ ∈ s x : Fin 3 ⊢ (![p₁, p₂, p₃] ∘ ↑(Equiv.swap 1 2)) x = Matrix.vecCons p₁ ![p₃, p₂] x [PROOFSTEP] fin_cases x [GOAL] case h.e'_9.h.head k : Type u_1 V : Type u_2 P : Type u_3 inst✝³ : DivisionRing k inst✝² : AddCommGroup V inst✝¹ : Module k V inst✝ : AffineSpace V P ι : Type u_4 s : AffineSubspace k P p₁ p₂ p₃ : P hp₁p₃ : p₁ ≠ p₃ hp₁ : p₁ ∈ s hp₂ : ¬p₂ ∈ s hp₃ : p₃ ∈ s ⊢ (![p₁, p₂, p₃] ∘ ↑(Equiv.swap 1 2)) { val := 0, isLt := (_ : 0 < 3) } = Matrix.vecCons p₁ ![p₃, p₂] { val := 0, isLt := (_ : 0 < 3) } [PROOFSTEP] rfl [GOAL] case h.e'_9.h.tail.head k : Type u_1 V : Type u_2 P : Type u_3 inst✝³ : DivisionRing k inst✝² : AddCommGroup V inst✝¹ : Module k V inst✝ : AffineSpace V P ι : Type u_4 s : AffineSubspace k P p₁ p₂ p₃ : P hp₁p₃ : p₁ ≠ p₃ hp₁ : p₁ ∈ s hp₂ : ¬p₂ ∈ s hp₃ : p₃ ∈ s ⊢ (![p₁, p₂, p₃] ∘ ↑(Equiv.swap 1 2)) { val := 1, isLt := (_ : (fun a => a < 3) 1) } = Matrix.vecCons p₁ ![p₃, p₂] { val := 1, isLt := (_ : (fun a => a < 3) 1) } [PROOFSTEP] rfl [GOAL] case h.e'_9.h.tail.tail.head k : Type u_1 V : Type u_2 P : Type u_3 inst✝³ : DivisionRing k inst✝² : AddCommGroup V inst✝¹ : Module k V inst✝ : AffineSpace V P ι : Type u_4 s : AffineSubspace k P p₁ p₂ p₃ : P hp₁p₃ : p₁ ≠ p₃ hp₁ : p₁ ∈ s hp₂ : ¬p₂ ∈ s hp₃ : p₃ ∈ s ⊢ (![p₁, p₂, p₃] ∘ ↑(Equiv.swap 1 2)) { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } = Matrix.vecCons p₁ ![p₃, p₂] { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } [PROOFSTEP] rfl [GOAL] k : Type u_1 V : Type u_2 P : Type u_3 inst✝³ : DivisionRing k inst✝² : AddCommGroup V inst✝¹ : Module k V inst✝ : AffineSpace V P ι : Type u_4 s : AffineSubspace k P p₁ p₂ p₃ : P hp₂p₃ : p₂ ≠ p₃ hp₁ : ¬p₁ ∈ s hp₂ : p₂ ∈ s hp₃ : p₃ ∈ s ⊢ AffineIndependent k ![p₁, p₂, p₃] [PROOFSTEP] rw [← affineIndependent_equiv (Equiv.swap (0 : Fin 3) 2)] [GOAL] k : Type u_1 V : Type u_2 P : Type u_3 inst✝³ : DivisionRing k inst✝² : AddCommGroup V inst✝¹ : Module k V inst✝ : AffineSpace V P ι : Type u_4 s : AffineSubspace k P p₁ p₂ p₃ : P hp₂p₃ : p₂ ≠ p₃ hp₁ : ¬p₁ ∈ s hp₂ : p₂ ∈ s hp₃ : p₃ ∈ s ⊢ AffineIndependent k (![p₁, p₂, p₃] ∘ ↑(Equiv.swap 0 2)) [PROOFSTEP] convert affineIndependent_of_ne_of_mem_of_mem_of_not_mem hp₂p₃.symm hp₃ hp₂ hp₁ using 1 [GOAL] case h.e'_9 k : Type u_1 V : Type u_2 P : Type u_3 inst✝³ : DivisionRing k inst✝² : AddCommGroup V inst✝¹ : Module k V inst✝ : AffineSpace V P ι : Type u_4 s : AffineSubspace k P p₁ p₂ p₃ : P hp₂p₃ : p₂ ≠ p₃ hp₁ : ¬p₁ ∈ s hp₂ : p₂ ∈ s hp₃ : p₃ ∈ s ⊢ ![p₁, p₂, p₃] ∘ ↑(Equiv.swap 0 2) = ![p₃, p₂, p₁] [PROOFSTEP] ext x [GOAL] case h.e'_9.h k : Type u_1 V : Type u_2 P : Type u_3 inst✝³ : DivisionRing k inst✝² : AddCommGroup V inst✝¹ : Module k V inst✝ : AffineSpace V P ι : Type u_4 s : AffineSubspace k P p₁ p₂ p₃ : P hp₂p₃ : p₂ ≠ p₃ hp₁ : ¬p₁ ∈ s hp₂ : p₂ ∈ s hp₃ : p₃ ∈ s x : Fin 3 ⊢ (![p₁, p₂, p₃] ∘ ↑(Equiv.swap 0 2)) x = Matrix.vecCons p₃ ![p₂, p₁] x [PROOFSTEP] fin_cases x [GOAL] case h.e'_9.h.head k : Type u_1 V : Type u_2 P : Type u_3 inst✝³ : DivisionRing k inst✝² : AddCommGroup V inst✝¹ : Module k V inst✝ : AffineSpace V P ι : Type u_4 s : AffineSubspace k P p₁ p₂ p₃ : P hp₂p₃ : p₂ ≠ p₃ hp₁ : ¬p₁ ∈ s hp₂ : p₂ ∈ s hp₃ : p₃ ∈ s ⊢ (![p₁, p₂, p₃] ∘ ↑(Equiv.swap 0 2)) { val := 0, isLt := (_ : 0 < 3) } = Matrix.vecCons p₃ ![p₂, p₁] { val := 0, isLt := (_ : 0 < 3) } [PROOFSTEP] rfl [GOAL] case h.e'_9.h.tail.head k : Type u_1 V : Type u_2 P : Type u_3 inst✝³ : DivisionRing k inst✝² : AddCommGroup V inst✝¹ : Module k V inst✝ : AffineSpace V P ι : Type u_4 s : AffineSubspace k P p₁ p₂ p₃ : P hp₂p₃ : p₂ ≠ p₃ hp₁ : ¬p₁ ∈ s hp₂ : p₂ ∈ s hp₃ : p₃ ∈ s ⊢ (![p₁, p₂, p₃] ∘ ↑(Equiv.swap 0 2)) { val := 1, isLt := (_ : (fun a => a < 3) 1) } = Matrix.vecCons p₃ ![p₂, p₁] { val := 1, isLt := (_ : (fun a => a < 3) 1) } [PROOFSTEP] rfl [GOAL] case h.e'_9.h.tail.tail.head k : Type u_1 V : Type u_2 P : Type u_3 inst✝³ : DivisionRing k inst✝² : AddCommGroup V inst✝¹ : Module k V inst✝ : AffineSpace V P ι : Type u_4 s : AffineSubspace k P p₁ p₂ p₃ : P hp₂p₃ : p₂ ≠ p₃ hp₁ : ¬p₁ ∈ s hp₂ : p₂ ∈ s hp₃ : p₃ ∈ s ⊢ (![p₁, p₂, p₃] ∘ ↑(Equiv.swap 0 2)) { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } = Matrix.vecCons p₃ ![p₂, p₁] { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } [PROOFSTEP] rfl [GOAL] k : Type u_1 V : Type u_2 P : Type u_3 inst✝³ : LinearOrderedRing k inst✝² : AddCommGroup V inst✝¹ : Module k V inst✝ : AffineSpace V P ι : Type u_4 p : ι → P h : AffineIndependent k p w w₁ w₂ : ι → k s : Finset ι hw : ∑ i in s, w i = 1 hw₁ : ∑ i in s, w₁ i = 1 hw₂ : ∑ i in s, w₂ i = 1 hs : ↑(Finset.affineCombination k s p) w ∈ affineSpan k {↑(Finset.affineCombination k s p) w₁, ↑(Finset.affineCombination k s p) w₂} i j : ι hi : i ∈ s hj : j ∈ s hi0 : w₁ i = 0 hj0 : w₁ j = 0 hij : ↑SignType.sign (w₂ i) = ↑SignType.sign (w₂ j) ⊢ ↑SignType.sign (w i) = ↑SignType.sign (w j) [PROOFSTEP] rw [affineCombination_mem_affineSpan_pair h hw hw₁ hw₂] at hs [GOAL] k : Type u_1 V : Type u_2 P : Type u_3 inst✝³ : LinearOrderedRing k inst✝² : AddCommGroup V inst✝¹ : Module k V inst✝ : AffineSpace V P ι : Type u_4 p : ι → P h : AffineIndependent k p w w₁ w₂ : ι → k s : Finset ι hw : ∑ i in s, w i = 1 hw₁ : ∑ i in s, w₁ i = 1 hw₂ : ∑ i in s, w₂ i = 1 hs : ∃ r, ∀ (i : ι), i ∈ s → w i = r * (w₂ i - w₁ i) + w₁ i i j : ι hi : i ∈ s hj : j ∈ s hi0 : w₁ i = 0 hj0 : w₁ j = 0 hij : ↑SignType.sign (w₂ i) = ↑SignType.sign (w₂ j) ⊢ ↑SignType.sign (w i) = ↑SignType.sign (w j) [PROOFSTEP] rcases hs with ⟨r, hr⟩ [GOAL] case intro k : Type u_1 V : Type u_2 P : Type u_3 inst✝³ : LinearOrderedRing k inst✝² : AddCommGroup V inst✝¹ : Module k V inst✝ : AffineSpace V P ι : Type u_4 p : ι → P h : AffineIndependent k p w w₁ w₂ : ι → k s : Finset ι hw : ∑ i in s, w i = 1 hw₁ : ∑ i in s, w₁ i = 1 hw₂ : ∑ i in s, w₂ i = 1 i j : ι hi : i ∈ s hj : j ∈ s hi0 : w₁ i = 0 hj0 : w₁ j = 0 hij : ↑SignType.sign (w₂ i) = ↑SignType.sign (w₂ j) r : k hr : ∀ (i : ι), i ∈ s → w i = r * (w₂ i - w₁ i) + w₁ i ⊢ ↑SignType.sign (w i) = ↑SignType.sign (w j) [PROOFSTEP] rw [hr i hi, hr j hj, hi0, hj0, add_zero, add_zero, sub_zero, sub_zero, sign_mul, sign_mul, hij] [GOAL] k : Type u_1 V : Type u_2 P : Type u_3 inst✝³ : LinearOrderedRing k inst✝² : AddCommGroup V inst✝¹ : Module k V inst✝ : AffineSpace V P ι : Type u_4 p : ι → P h : AffineIndependent k p w : ι → k s : Finset ι hw : ∑ i in s, w i = 1 i₁ i₂ i₃ : ι h₁ : i₁ ∈ s h₂ : i₂ ∈ s h₃ : i₃ ∈ s h₁₂ : i₁ ≠ i₂ h₁₃ : i₁ ≠ i₃ h₂₃ : i₂ ≠ i₃ c : k hc0 : 0 < c hc1 : c < 1 hs : ↑(Finset.affineCombination k s p) w ∈ affineSpan k {p i₁, ↑(AffineMap.lineMap (p i₂) (p i₃)) c} ⊢ ↑SignType.sign (w i₂) = ↑SignType.sign (w i₃) [PROOFSTEP] classical rw [← s.affineCombination_affineCombinationSingleWeights k p h₁, ← s.affineCombination_affineCombinationLineMapWeights p h₂ h₃ c] at hs refine' sign_eq_of_affineCombination_mem_affineSpan_pair h hw (s.sum_affineCombinationSingleWeights k h₁) (s.sum_affineCombinationLineMapWeights h₂ h₃ c) hs h₂ h₃ (Finset.affineCombinationSingleWeights_apply_of_ne k h₁₂.symm) (Finset.affineCombinationSingleWeights_apply_of_ne k h₁₃.symm) _ rw [Finset.affineCombinationLineMapWeights_apply_left h₂₃, Finset.affineCombinationLineMapWeights_apply_right h₂₃] simp_all only [sub_pos, sign_pos] [GOAL] k : Type u_1 V : Type u_2 P : Type u_3 inst✝³ : LinearOrderedRing k inst✝² : AddCommGroup V inst✝¹ : Module k V inst✝ : AffineSpace V P ι : Type u_4 p : ι → P h : AffineIndependent k p w : ι → k s : Finset ι hw : ∑ i in s, w i = 1 i₁ i₂ i₃ : ι h₁ : i₁ ∈ s h₂ : i₂ ∈ s h₃ : i₃ ∈ s h₁₂ : i₁ ≠ i₂ h₁₃ : i₁ ≠ i₃ h₂₃ : i₂ ≠ i₃ c : k hc0 : 0 < c hc1 : c < 1 hs : ↑(Finset.affineCombination k s p) w ∈ affineSpan k {p i₁, ↑(AffineMap.lineMap (p i₂) (p i₃)) c} ⊢ ↑SignType.sign (w i₂) = ↑SignType.sign (w i₃) [PROOFSTEP] rw [← s.affineCombination_affineCombinationSingleWeights k p h₁, ← s.affineCombination_affineCombinationLineMapWeights p h₂ h₃ c] at hs [GOAL] k : Type u_1 V : Type u_2 P : Type u_3 inst✝³ : LinearOrderedRing k inst✝² : AddCommGroup V inst✝¹ : Module k V inst✝ : AffineSpace V P ι : Type u_4 p : ι → P h : AffineIndependent k p w : ι → k s : Finset ι hw : ∑ i in s, w i = 1 i₁ i₂ i₃ : ι h₁ : i₁ ∈ s h₂ : i₂ ∈ s h₃ : i₃ ∈ s h₁₂ : i₁ ≠ i₂ h₁₃ : i₁ ≠ i₃ h₂₃ : i₂ ≠ i₃ c : k hc0 : 0 < c hc1 : c < 1 hs : ↑(Finset.affineCombination k s p) w ∈ affineSpan k {↑(Finset.affineCombination k s p) (Finset.affineCombinationSingleWeights k i₁), ↑(Finset.affineCombination k s p) (Finset.affineCombinationLineMapWeights i₂ i₃ c)} ⊢ ↑SignType.sign (w i₂) = ↑SignType.sign (w i₃) [PROOFSTEP] refine' sign_eq_of_affineCombination_mem_affineSpan_pair h hw (s.sum_affineCombinationSingleWeights k h₁) (s.sum_affineCombinationLineMapWeights h₂ h₃ c) hs h₂ h₃ (Finset.affineCombinationSingleWeights_apply_of_ne k h₁₂.symm) (Finset.affineCombinationSingleWeights_apply_of_ne k h₁₃.symm) _ [GOAL] k : Type u_1 V : Type u_2 P : Type u_3 inst✝³ : LinearOrderedRing k inst✝² : AddCommGroup V inst✝¹ : Module k V inst✝ : AffineSpace V P ι : Type u_4 p : ι → P h : AffineIndependent k p w : ι → k s : Finset ι hw : ∑ i in s, w i = 1 i₁ i₂ i₃ : ι h₁ : i₁ ∈ s h₂ : i₂ ∈ s h₃ : i₃ ∈ s h₁₂ : i₁ ≠ i₂ h₁₃ : i₁ ≠ i₃ h₂₃ : i₂ ≠ i₃ c : k hc0 : 0 < c hc1 : c < 1 hs : ↑(Finset.affineCombination k s p) w ∈ affineSpan k {↑(Finset.affineCombination k s p) (Finset.affineCombinationSingleWeights k i₁), ↑(Finset.affineCombination k s p) (Finset.affineCombinationLineMapWeights i₂ i₃ c)} ⊢ ↑SignType.sign (Finset.affineCombinationLineMapWeights i₂ i₃ c i₂) = ↑SignType.sign (Finset.affineCombinationLineMapWeights i₂ i₃ c i₃) [PROOFSTEP] rw [Finset.affineCombinationLineMapWeights_apply_left h₂₃, Finset.affineCombinationLineMapWeights_apply_right h₂₃] [GOAL] k : Type u_1 V : Type u_2 P : Type u_3 inst✝³ : LinearOrderedRing k inst✝² : AddCommGroup V inst✝¹ : Module k V inst✝ : AffineSpace V P ι : Type u_4 p : ι → P h : AffineIndependent k p w : ι → k s : Finset ι hw : ∑ i in s, w i = 1 i₁ i₂ i₃ : ι h₁ : i₁ ∈ s h₂ : i₂ ∈ s h₃ : i₃ ∈ s h₁₂ : i₁ ≠ i₂ h₁₃ : i₁ ≠ i₃ h₂₃ : i₂ ≠ i₃ c : k hc0 : 0 < c hc1 : c < 1 hs : ↑(Finset.affineCombination k s p) w ∈ affineSpan k {↑(Finset.affineCombination k s p) (Finset.affineCombinationSingleWeights k i₁), ↑(Finset.affineCombination k s p) (Finset.affineCombinationLineMapWeights i₂ i₃ c)} ⊢ ↑SignType.sign (1 - c) = ↑SignType.sign c [PROOFSTEP] simp_all only [sub_pos, sign_pos] [GOAL] k : Type u_1 V : Type u_2 P : Type u_3 inst✝³ : Ring k inst✝² : AddCommGroup V inst✝¹ : Module k V inst✝ : AffineSpace V P p : P ⊢ Subsingleton (Fin (1 + 0)) [PROOFSTEP] rw [add_zero] [GOAL] k : Type u_1 V : Type u_2 P : Type u_3 inst✝³ : Ring k inst✝² : AddCommGroup V inst✝¹ : Module k V inst✝ : AffineSpace V P p : P ⊢ Subsingleton (Fin 1) [PROOFSTEP] infer_instance [GOAL] k : Type u_1 V : Type u_2 P : Type u_3 inst✝³ : Ring k inst✝² : AddCommGroup V inst✝¹ : Module k V inst✝ : AffineSpace V P n : ℕ s1 s2 : Simplex k P n h : ∀ (i : Fin (n + 1)), points s1 i = points s2 i ⊢ s1 = s2 [PROOFSTEP] cases s1 [GOAL] case mk k : Type u_1 V : Type u_2 P : Type u_3 inst✝³ : Ring k inst✝² : AddCommGroup V inst✝¹ : Module k V inst✝ : AffineSpace V P n : ℕ s2 : Simplex k P n points✝ : Fin (n + 1) → P Independent✝ : AffineIndependent k points✝ h : ∀ (i : Fin (n + 1)), points { points := points✝, Independent := Independent✝ } i = points s2 i ⊢ { points := points✝, Independent := Independent✝ } = s2 [PROOFSTEP] cases s2 [GOAL] case mk.mk k : Type u_1 V : Type u_2 P : Type u_3 inst✝³ : Ring k inst✝² : AddCommGroup V inst✝¹ : Module k V inst✝ : AffineSpace V P n : ℕ points✝¹ : Fin (n + 1) → P Independent✝¹ : AffineIndependent k points✝¹ points✝ : Fin (n + 1) → P Independent✝ : AffineIndependent k points✝ h : ∀ (i : Fin (n + 1)), points { points := points✝¹, Independent := Independent✝¹ } i = points { points := points✝, Independent := Independent✝ } i ⊢ { points := points✝¹, Independent := Independent✝¹ } = { points := points✝, Independent := Independent✝ } [PROOFSTEP] congr with i [GOAL] case mk.mk.e_points.h k : Type u_1 V : Type u_2 P : Type u_3 inst✝³ : Ring k inst✝² : AddCommGroup V inst✝¹ : Module k V inst✝ : AffineSpace V P n : ℕ points✝¹ : Fin (n + 1) → P Independent✝¹ : AffineIndependent k points✝¹ points✝ : Fin (n + 1) → P Independent✝ : AffineIndependent k points✝ h : ∀ (i : Fin (n + 1)), points { points := points✝¹, Independent := Independent✝¹ } i = points { points := points✝, Independent := Independent✝ } i i : Fin (n + 1) ⊢ points✝¹ i = points✝ i [PROOFSTEP] exact h i [GOAL] k : Type u_1 V : Type u_2 P : Type u_3 inst✝³ : Ring k inst✝² : AddCommGroup V inst✝¹ : Module k V inst✝ : AffineSpace V P n : ℕ s : Simplex k P n i : Fin (n + 1) ⊢ face s (_ : Finset.card {i} = 1) = mkOfPoint k (points s i) [PROOFSTEP] ext [GOAL] case h k : Type u_1 V : Type u_2 P : Type u_3 inst✝³ : Ring k inst✝² : AddCommGroup V inst✝¹ : Module k V inst✝ : AffineSpace V P n : ℕ s : Simplex k P n i : Fin (n + 1) i✝ : Fin (0 + 1) ⊢ points (face s (_ : Finset.card {i} = 1)) i✝ = points (mkOfPoint k (points s i)) i✝ [PROOFSTEP] simp only [Affine.Simplex.mkOfPoint_points, Affine.Simplex.face_points] -- Porting note: `simp` can't use the next lemma [GOAL] case h k : Type u_1 V : Type u_2 P : Type u_3 inst✝³ : Ring k inst✝² : AddCommGroup V inst✝¹ : Module k V inst✝ : AffineSpace V P n : ℕ s : Simplex k P n i : Fin (n + 1) i✝ : Fin (0 + 1) ⊢ points s (↑(Finset.orderEmbOfFin {i} (_ : Finset.card {i} = 1)) i✝) = points s i [PROOFSTEP] rw [Finset.orderEmbOfFin_singleton] [GOAL] k : Type u_1 V : Type u_2 P : Type u_3 inst✝³ : Ring k inst✝² : AddCommGroup V inst✝¹ : Module k V inst✝ : AffineSpace V P n : ℕ s : Simplex k P n fs : Finset (Fin (n + 1)) m : ℕ h : Finset.card fs = m + 1 ⊢ Set.range (face s h).points = s.points '' ↑fs [PROOFSTEP] rw [face_points', Set.range_comp, Finset.range_orderEmbOfFin] [GOAL] k : Type u_1 V : Type u_2 P : Type u_3 inst✝³ : Ring k inst✝² : AddCommGroup V inst✝¹ : Module k V inst✝ : AffineSpace V P m n : ℕ s : Simplex k P m e : Fin (m + 1) ≃ Fin (n + 1) ⊢ reindex (reindex s e) e.symm = s [PROOFSTEP] rw [← reindex_trans, Equiv.self_trans_symm, reindex_refl] [GOAL] k : Type u_1 V : Type u_2 P : Type u_3 inst✝³ : Ring k inst✝² : AddCommGroup V inst✝¹ : Module k V inst✝ : AffineSpace V P m n : ℕ s : Simplex k P m e : Fin (n + 1) ≃ Fin (m + 1) ⊢ reindex (reindex s e.symm) e = s [PROOFSTEP] rw [← reindex_trans, Equiv.symm_trans_self, reindex_refl] [GOAL] k : Type u_1 V : Type u_2 P : Type u_3 inst✝³ : Ring k inst✝² : AddCommGroup V inst✝¹ : Module k V inst✝ : AffineSpace V P m n : ℕ s : Simplex k P m e : Fin (m + 1) ≃ Fin (n + 1) ⊢ Set.range (reindex s e).points = Set.range s.points [PROOFSTEP] rw [reindex, Set.range_comp, Equiv.range_eq_univ, Set.image_univ] [GOAL] k : Type u_1 V : Type u_2 P : Type u_3 inst✝³ : DivisionRing k inst✝² : AddCommGroup V inst✝¹ : Module k V inst✝ : AffineSpace V P n : ℕ s : Simplex k P n fs : Finset (Fin (n + 1)) m : ℕ h : Finset.card fs = m + 1 ⊢ Finset.centroid k Finset.univ (face s h).points = Finset.centroid k fs s.points [PROOFSTEP] convert (Finset.univ.centroid_map k (fs.orderEmbOfFin h).toEmbedding s.points).symm [GOAL] case h.e'_3.h.e'_9 k : Type u_1 V : Type u_2 P : Type u_3 inst✝³ : DivisionRing k inst✝² : AddCommGroup V inst✝¹ : Module k V inst✝ : AffineSpace V P n : ℕ s : Simplex k P n fs : Finset (Fin (n + 1)) m : ℕ h : Finset.card fs = m + 1 ⊢ fs = Finset.map (Finset.orderEmbOfFin fs h).toEmbedding Finset.univ [PROOFSTEP] rw [← Finset.coe_inj, Finset.coe_map, Finset.coe_univ, Set.image_univ] [GOAL] case h.e'_3.h.e'_9 k : Type u_1 V : Type u_2 P : Type u_3 inst✝³ : DivisionRing k inst✝² : AddCommGroup V inst✝¹ : Module k V inst✝ : AffineSpace V P n : ℕ s : Simplex k P n fs : Finset (Fin (n + 1)) m : ℕ h : Finset.card fs = m + 1 ⊢ ↑fs = Set.range ↑(Finset.orderEmbOfFin fs h).toEmbedding [PROOFSTEP] simp [GOAL] k : Type u_1 V : Type u_2 P : Type u_3 inst✝⁴ : DivisionRing k inst✝³ : AddCommGroup V inst✝² : Module k V inst✝¹ : AffineSpace V P inst✝ : CharZero k n : ℕ s : Simplex k P n fs₁ fs₂ : Finset (Fin (n + 1)) m₁ m₂ : ℕ h₁ : Finset.card fs₁ = m₁ + 1 h₂ : Finset.card fs₂ = m₂ + 1 ⊢ Finset.centroid k fs₁ s.points = Finset.centroid k fs₂ s.points ↔ fs₁ = fs₂ [PROOFSTEP] refine' ⟨fun h => _, @congrArg _ _ fs₁ fs₂ (fun z => Finset.centroid k z s.points)⟩ [GOAL] k : Type u_1 V : Type u_2 P : Type u_3 inst✝⁴ : DivisionRing k inst✝³ : AddCommGroup V inst✝² : Module k V inst✝¹ : AffineSpace V P inst✝ : CharZero k n : ℕ s : Simplex k P n fs₁ fs₂ : Finset (Fin (n + 1)) m₁ m₂ : ℕ h₁ : Finset.card fs₁ = m₁ + 1 h₂ : Finset.card fs₂ = m₂ + 1 h : Finset.centroid k fs₁ s.points = Finset.centroid k fs₂ s.points ⊢ fs₁ = fs₂ [PROOFSTEP] rw [Finset.centroid_eq_affineCombination_fintype, Finset.centroid_eq_affineCombination_fintype] at h [GOAL] k : Type u_1 V : Type u_2 P : Type u_3 inst✝⁴ : DivisionRing k inst✝³ : AddCommGroup V inst✝² : Module k V inst✝¹ : AffineSpace V P inst✝ : CharZero k n : ℕ s : Simplex k P n fs₁ fs₂ : Finset (Fin (n + 1)) m₁ m₂ : ℕ h₁ : Finset.card fs₁ = m₁ + 1 h₂ : Finset.card fs₂ = m₂ + 1 h : ↑(Finset.affineCombination k Finset.univ s.points) (Finset.centroidWeightsIndicator k fs₁) = ↑(Finset.affineCombination k Finset.univ s.points) (Finset.centroidWeightsIndicator k fs₂) ⊢ fs₁ = fs₂ [PROOFSTEP] have ha := (affineIndependent_iff_indicator_eq_of_affineCombination_eq k s.points).1 s.Independent _ _ _ _ (fs₁.sum_centroidWeightsIndicator_eq_one_of_card_eq_add_one k h₁) (fs₂.sum_centroidWeightsIndicator_eq_one_of_card_eq_add_one k h₂) h [GOAL] k : Type u_1 V : Type u_2 P : Type u_3 inst✝⁴ : DivisionRing k inst✝³ : AddCommGroup V inst✝² : Module k V inst✝¹ : AffineSpace V P inst✝ : CharZero k n : ℕ s : Simplex k P n fs₁ fs₂ : Finset (Fin (n + 1)) m₁ m₂ : ℕ h₁ : Finset.card fs₁ = m₁ + 1 h₂ : Finset.card fs₂ = m₂ + 1 h : ↑(Finset.affineCombination k Finset.univ s.points) (Finset.centroidWeightsIndicator k fs₁) = ↑(Finset.affineCombination k Finset.univ s.points) (Finset.centroidWeightsIndicator k fs₂) ha : (Set.indicator ↑Finset.univ fun i => Finset.centroidWeightsIndicator k fs₁ i) = Set.indicator ↑Finset.univ fun i => Finset.centroidWeightsIndicator k fs₂ i ⊢ fs₁ = fs₂ [PROOFSTEP] simp_rw [Finset.coe_univ, Set.indicator_univ, Function.funext_iff, Finset.centroidWeightsIndicator_def, Finset.centroidWeights, h₁, h₂] at ha [GOAL] k : Type u_1 V : Type u_2 P : Type u_3 inst✝⁴ : DivisionRing k inst✝³ : AddCommGroup V inst✝² : Module k V inst✝¹ : AffineSpace V P inst✝ : CharZero k n : ℕ s : Simplex k P n fs₁ fs₂ : Finset (Fin (n + 1)) m₁ m₂ : ℕ h₁ : Finset.card fs₁ = m₁ + 1 h₂ : Finset.card fs₂ = m₂ + 1 h : ↑(Finset.affineCombination k Finset.univ s.points) (Finset.centroidWeightsIndicator k fs₁) = ↑(Finset.affineCombination k Finset.univ s.points) (Finset.centroidWeightsIndicator k fs₂) ha : ∀ (a : Fin (n + 1)), Set.indicator (↑fs₁) (const (Fin (n + 1)) (↑(m₁ + 1))⁻¹) a = Set.indicator (↑fs₂) (const (Fin (n + 1)) (↑(m₂ + 1))⁻¹) a ⊢ fs₁ = fs₂ [PROOFSTEP] ext i [GOAL] case a k : Type u_1 V : Type u_2 P : Type u_3 inst✝⁴ : DivisionRing k inst✝³ : AddCommGroup V inst✝² : Module k V inst✝¹ : AffineSpace V P inst✝ : CharZero k n : ℕ s : Simplex k P n fs₁ fs₂ : Finset (Fin (n + 1)) m₁ m₂ : ℕ h₁ : Finset.card fs₁ = m₁ + 1 h₂ : Finset.card fs₂ = m₂ + 1 h : ↑(Finset.affineCombination k Finset.univ s.points) (Finset.centroidWeightsIndicator k fs₁) = ↑(Finset.affineCombination k Finset.univ s.points) (Finset.centroidWeightsIndicator k fs₂) ha : ∀ (a : Fin (n + 1)), Set.indicator (↑fs₁) (const (Fin (n + 1)) (↑(m₁ + 1))⁻¹) a = Set.indicator (↑fs₂) (const (Fin (n + 1)) (↑(m₂ + 1))⁻¹) a i : Fin (n + 1) ⊢ i ∈ fs₁ ↔ i ∈ fs₂ [PROOFSTEP] specialize ha i [GOAL] case a k : Type u_1 V : Type u_2 P : Type u_3 inst✝⁴ : DivisionRing k inst✝³ : AddCommGroup V inst✝² : Module k V inst✝¹ : AffineSpace V P inst✝ : CharZero k n : ℕ s : Simplex k P n fs₁ fs₂ : Finset (Fin (n + 1)) m₁ m₂ : ℕ h₁ : Finset.card fs₁ = m₁ + 1 h₂ : Finset.card fs₂ = m₂ + 1 h : ↑(Finset.affineCombination k Finset.univ s.points) (Finset.centroidWeightsIndicator k fs₁) = ↑(Finset.affineCombination k Finset.univ s.points) (Finset.centroidWeightsIndicator k fs₂) i : Fin (n + 1) ha : Set.indicator (↑fs₁) (const (Fin (n + 1)) (↑(m₁ + 1))⁻¹) i = Set.indicator (↑fs₂) (const (Fin (n + 1)) (↑(m₂ + 1))⁻¹) i ⊢ i ∈ fs₁ ↔ i ∈ fs₂ [PROOFSTEP] have key : ∀ n : ℕ, (n : k) + 1 ≠ 0 := fun n h => by norm_cast at h [GOAL] k : Type u_1 V : Type u_2 P : Type u_3 inst✝⁴ : DivisionRing k inst✝³ : AddCommGroup V inst✝² : Module k V inst✝¹ : AffineSpace V P inst✝ : CharZero k n✝ : ℕ s : Simplex k P n✝ fs₁ fs₂ : Finset (Fin (n✝ + 1)) m₁ m₂ : ℕ h₁ : Finset.card fs₁ = m₁ + 1 h₂ : Finset.card fs₂ = m₂ + 1 h✝ : ↑(Finset.affineCombination k Finset.univ s.points) (Finset.centroidWeightsIndicator k fs₁) = ↑(Finset.affineCombination k Finset.univ s.points) (Finset.centroidWeightsIndicator k fs₂) i : Fin (n✝ + 1) ha : Set.indicator (↑fs₁) (const (Fin (n✝ + 1)) (↑(m₁ + 1))⁻¹) i = Set.indicator (↑fs₂) (const (Fin (n✝ + 1)) (↑(m₂ + 1))⁻¹) i n : ℕ h : ↑n + 1 = 0 ⊢ False [PROOFSTEP] norm_cast at h [GOAL] case a k : Type u_1 V : Type u_2 P : Type u_3 inst✝⁴ : DivisionRing k inst✝³ : AddCommGroup V inst✝² : Module k V inst✝¹ : AffineSpace V P inst✝ : CharZero k n : ℕ s : Simplex k P n fs₁ fs₂ : Finset (Fin (n + 1)) m₁ m₂ : ℕ h₁ : Finset.card fs₁ = m₁ + 1 h₂ : Finset.card fs₂ = m₂ + 1 h : ↑(Finset.affineCombination k Finset.univ s.points) (Finset.centroidWeightsIndicator k fs₁) = ↑(Finset.affineCombination k Finset.univ s.points) (Finset.centroidWeightsIndicator k fs₂) i : Fin (n + 1) ha : Set.indicator (↑fs₁) (const (Fin (n + 1)) (↑(m₁ + 1))⁻¹) i = Set.indicator (↑fs₂) (const (Fin (n + 1)) (↑(m₂ + 1))⁻¹) i key : ∀ (n : ℕ), ↑n + 1 ≠ 0 ⊢ i ∈ fs₁ ↔ i ∈ fs₂ [PROOFSTEP] constructor [GOAL] case a.mp k : Type u_1 V : Type u_2 P : Type u_3 inst✝⁴ : DivisionRing k inst✝³ : AddCommGroup V inst✝² : Module k V inst✝¹ : AffineSpace V P inst✝ : CharZero k n : ℕ s : Simplex k P n fs₁ fs₂ : Finset (Fin (n + 1)) m₁ m₂ : ℕ h₁ : Finset.card fs₁ = m₁ + 1 h₂ : Finset.card fs₂ = m₂ + 1 h : ↑(Finset.affineCombination k Finset.univ s.points) (Finset.centroidWeightsIndicator k fs₁) = ↑(Finset.affineCombination k Finset.univ s.points) (Finset.centroidWeightsIndicator k fs₂) i : Fin (n + 1) ha : Set.indicator (↑fs₁) (const (Fin (n + 1)) (↑(m₁ + 1))⁻¹) i = Set.indicator (↑fs₂) (const (Fin (n + 1)) (↑(m₂ + 1))⁻¹) i key : ∀ (n : ℕ), ↑n + 1 ≠ 0 ⊢ i ∈ fs₁ → i ∈ fs₂ [PROOFSTEP] intro hi [GOAL] case a.mpr k : Type u_1 V : Type u_2 P : Type u_3 inst✝⁴ : DivisionRing k inst✝³ : AddCommGroup V inst✝² : Module k V inst✝¹ : AffineSpace V P inst✝ : CharZero k n : ℕ s : Simplex k P n fs₁ fs₂ : Finset (Fin (n + 1)) m₁ m₂ : ℕ h₁ : Finset.card fs₁ = m₁ + 1 h₂ : Finset.card fs₂ = m₂ + 1 h : ↑(Finset.affineCombination k Finset.univ s.points) (Finset.centroidWeightsIndicator k fs₁) = ↑(Finset.affineCombination k Finset.univ s.points) (Finset.centroidWeightsIndicator k fs₂) i : Fin (n + 1) ha : Set.indicator (↑fs₁) (const (Fin (n + 1)) (↑(m₁ + 1))⁻¹) i = Set.indicator (↑fs₂) (const (Fin (n + 1)) (↑(m₂ + 1))⁻¹) i key : ∀ (n : ℕ), ↑n + 1 ≠ 0 ⊢ i ∈ fs₂ → i ∈ fs₁ [PROOFSTEP] intro hi [GOAL] case a.mp k : Type u_1 V : Type u_2 P : Type u_3 inst✝⁴ : DivisionRing k inst✝³ : AddCommGroup V inst✝² : Module k V inst✝¹ : AffineSpace V P inst✝ : CharZero k n : ℕ s : Simplex k P n fs₁ fs₂ : Finset (Fin (n + 1)) m₁ m₂ : ℕ h₁ : Finset.card fs₁ = m₁ + 1 h₂ : Finset.card fs₂ = m₂ + 1 h : ↑(Finset.affineCombination k Finset.univ s.points) (Finset.centroidWeightsIndicator k fs₁) = ↑(Finset.affineCombination k Finset.univ s.points) (Finset.centroidWeightsIndicator k fs₂) i : Fin (n + 1) ha : Set.indicator (↑fs₁) (const (Fin (n + 1)) (↑(m₁ + 1))⁻¹) i = Set.indicator (↑fs₂) (const (Fin (n + 1)) (↑(m₂ + 1))⁻¹) i key : ∀ (n : ℕ), ↑n + 1 ≠ 0 hi : i ∈ fs₁ ⊢ i ∈ fs₂ [PROOFSTEP] by_contra hni [GOAL] case a.mpr k : Type u_1 V : Type u_2 P : Type u_3 inst✝⁴ : DivisionRing k inst✝³ : AddCommGroup V inst✝² : Module k V inst✝¹ : AffineSpace V P inst✝ : CharZero k n : ℕ s : Simplex k P n fs₁ fs₂ : Finset (Fin (n + 1)) m₁ m₂ : ℕ h₁ : Finset.card fs₁ = m₁ + 1 h₂ : Finset.card fs₂ = m₂ + 1 h : ↑(Finset.affineCombination k Finset.univ s.points) (Finset.centroidWeightsIndicator k fs₁) = ↑(Finset.affineCombination k Finset.univ s.points) (Finset.centroidWeightsIndicator k fs₂) i : Fin (n + 1) ha : Set.indicator (↑fs₁) (const (Fin (n + 1)) (↑(m₁ + 1))⁻¹) i = Set.indicator (↑fs₂) (const (Fin (n + 1)) (↑(m₂ + 1))⁻¹) i key : ∀ (n : ℕ), ↑n + 1 ≠ 0 hi : i ∈ fs₂ ⊢ i ∈ fs₁ [PROOFSTEP] by_contra hni [GOAL] case a.mp k : Type u_1 V : Type u_2 P : Type u_3 inst✝⁴ : DivisionRing k inst✝³ : AddCommGroup V inst✝² : Module k V inst✝¹ : AffineSpace V P inst✝ : CharZero k n : ℕ s : Simplex k P n fs₁ fs₂ : Finset (Fin (n + 1)) m₁ m₂ : ℕ h₁ : Finset.card fs₁ = m₁ + 1 h₂ : Finset.card fs₂ = m₂ + 1 h : ↑(Finset.affineCombination k Finset.univ s.points) (Finset.centroidWeightsIndicator k fs₁) = ↑(Finset.affineCombination k Finset.univ s.points) (Finset.centroidWeightsIndicator k fs₂) i : Fin (n + 1) ha : Set.indicator (↑fs₁) (const (Fin (n + 1)) (↑(m₁ + 1))⁻¹) i = Set.indicator (↑fs₂) (const (Fin (n + 1)) (↑(m₂ + 1))⁻¹) i key : ∀ (n : ℕ), ↑n + 1 ≠ 0 hi : i ∈ fs₁ hni : ¬i ∈ fs₂ ⊢ False [PROOFSTEP] simp [hni, hi, key] at ha [GOAL] case a.mpr k : Type u_1 V : Type u_2 P : Type u_3 inst✝⁴ : DivisionRing k inst✝³ : AddCommGroup V inst✝² : Module k V inst✝¹ : AffineSpace V P inst✝ : CharZero k n : ℕ s : Simplex k P n fs₁ fs₂ : Finset (Fin (n + 1)) m₁ m₂ : ℕ h₁ : Finset.card fs₁ = m₁ + 1 h₂ : Finset.card fs₂ = m₂ + 1 h : ↑(Finset.affineCombination k Finset.univ s.points) (Finset.centroidWeightsIndicator k fs₁) = ↑(Finset.affineCombination k Finset.univ s.points) (Finset.centroidWeightsIndicator k fs₂) i : Fin (n + 1) ha : Set.indicator (↑fs₁) (const (Fin (n + 1)) (↑(m₁ + 1))⁻¹) i = Set.indicator (↑fs₂) (const (Fin (n + 1)) (↑(m₂ + 1))⁻¹) i key : ∀ (n : ℕ), ↑n + 1 ≠ 0 hi : i ∈ fs₂ hni : ¬i ∈ fs₁ ⊢ False [PROOFSTEP] simpa [hni, hi, key] using ha.symm [GOAL] k : Type u_1 V : Type u_2 P : Type u_3 inst✝⁴ : DivisionRing k inst✝³ : AddCommGroup V inst✝² : Module k V inst✝¹ : AffineSpace V P inst✝ : CharZero k n : ℕ s : Simplex k P n fs₁ fs₂ : Finset (Fin (n + 1)) m₁ m₂ : ℕ h₁ : Finset.card fs₁ = m₁ + 1 h₂ : Finset.card fs₂ = m₂ + 1 ⊢ Finset.centroid k Finset.univ (face s h₁).points = Finset.centroid k Finset.univ (face s h₂).points ↔ fs₁ = fs₂ [PROOFSTEP] rw [face_centroid_eq_centroid, face_centroid_eq_centroid] [GOAL] k : Type u_1 V : Type u_2 P : Type u_3 inst✝⁴ : DivisionRing k inst✝³ : AddCommGroup V inst✝² : Module k V inst✝¹ : AffineSpace V P inst✝ : CharZero k n : ℕ s : Simplex k P n fs₁ fs₂ : Finset (Fin (n + 1)) m₁ m₂ : ℕ h₁ : Finset.card fs₁ = m₁ + 1 h₂ : Finset.card fs₂ = m₂ + 1 ⊢ Finset.centroid k fs₁ s.points = Finset.centroid k fs₂ s.points ↔ fs₁ = fs₂ [PROOFSTEP] exact s.centroid_eq_iff h₁ h₂ [GOAL] k : Type u_1 V : Type u_2 P : Type u_3 inst✝³ : DivisionRing k inst✝² : AddCommGroup V inst✝¹ : Module k V inst✝ : AffineSpace V P n : ℕ s₁ s₂ : Simplex k P n h : Set.range s₁.points = Set.range s₂.points ⊢ Finset.centroid k Finset.univ s₁.points = Finset.centroid k Finset.univ s₂.points [PROOFSTEP] rw [← Set.image_univ, ← Set.image_univ, ← Finset.coe_univ] at h [GOAL] k : Type u_1 V : Type u_2 P : Type u_3 inst✝³ : DivisionRing k inst✝² : AddCommGroup V inst✝¹ : Module k V inst✝ : AffineSpace V P n : ℕ s₁ s₂ : Simplex k P n h✝ : s₁.points '' Set.univ = s₂.points '' Set.univ h : s₁.points '' ↑Finset.univ = s₂.points '' ↑Finset.univ ⊢ Finset.centroid k Finset.univ s₁.points = Finset.centroid k Finset.univ s₂.points [PROOFSTEP] exact Finset.univ.centroid_eq_of_inj_on_of_image_eq k _ (fun _ _ _ _ he => AffineIndependent.injective s₁.Independent he) (fun _ _ _ _ he => AffineIndependent.injective s₂.Independent he) h
[STATEMENT] lemma (in group_hom) normal_kernel: "(kernel G H h) \<lhd> G" [PROOF STATE] proof (prove) goal (1 subgoal): 1. kernel G H h \<lhd> G [PROOF STEP] apply (simp only: G.normal_inv_iff subgroup_kernel) [PROOF STATE] proof (prove) goal (1 subgoal): 1. True \<and> (\<forall>x\<in>carrier G. \<forall>ha\<in>kernel G H h. x \<otimes> ha \<otimes> inv x \<in> kernel G H h) [PROOF STEP] apply (simp add: kernel_def) [PROOF STATE] proof (prove) goal: No subgoals! [PROOF STEP] done
\newpage \appendix \chapter{License Terms} \section{General Terms} License is granted to copy or use `` for ``Dieharder, a Gnu Public License Random Number Generator Tester'' according to the Open Public License (OPL, enclosed below), which is a Public License, developed by the GNU Foundation, which applies to ``open source'' generic documents. There are two modifications to the general OPL given below: \begin{enumerate} \item Distribution of substantively modified versions of this document is prohibited without the explicit permission of the copyright holder. (This is to prevent errors from being introduced which would reflect badly on the author's professional abilities.) \item Distribution of the work or derivative of the work in any standard (paper) book form is prohibited unless prior permission is obtained from the copyright holder. (This is so that the author can make at least some money if this work is republished as a book and sold commercially for -- somebody's -- profit.) \end{enumerate} Electronic versions of the \die manual can be freely redistributed, and of course any user of \die is welcome to print out such a version for their own use if they so desire. However, if such a user wishes to contribute in a small way to the development of the tool, they should consider buying a paper or electronic copy of the book if and when they are distributed by the author in forms that can be sold. \section{OPEN PUBLICATION LICENSE Draft v0.4, 8 June 1999} {\bf I. REQUIREMENTS ON BOTH UNMODIFIED AND MODIFIED VERSIONS} The Open Publication works may be reproduced and distributed in whole or in part, in any medium physical or electronic, provided that the terms of this license are adhered to, and that this license or an incorporation of it by reference (with any options elected by the author(s) and/or publisher) is displayed in the reproduction. Proper form for an incorporation by reference is as follows: Copyright (c) $<$year$>$ by $<$author's name or designee$>$. This material may be distributed only subject to the terms and conditions set forth in the Open Publication License, vX.Y or later (the latest version is presently available at http://www.opencontent.org/openpub/). The reference must be immediately followed with any options elected by the author(s) and/or publisher of the document (see section VI). Commercial redistribution of Open Publication-licensed material is permitted. Any publication in standard (paper) book form shall require the citation of the original publisher and author. The publisher and author's names shall appear on all outer surfaces of the book. On all outer surfaces of the book the original publisher's name shall be as large as the title of the work and cited as possessive with respect to the title. {\bf II. COPYRIGHT} The copyright to each Open Publication is owned by its author(s) or designee. {\bf III. SCOPE OF LICENSE} The following license terms apply to all Open Publication works, unless otherwise explicitly stated in the document. Mere aggregation of Open Publication works or a portion of an Open Publication work with other works or programs on the same media shall not cause this license to apply to those other works. The aggregate work shall contain a notice specifying the inclusion of the Open Publication material and appropriate copyright notice. SEVERABILITY. If any part of this license is found to be unenforceable in any jurisdiction, the remaining portions of the license remain in force. NO WARRANTY. Open Publication works are licensed and provided "as is" without warranty of any kind, express or implied, including, but not limited to, the implied warranties of merchantability and fitness for a particular purpose or a warranty of non-infringement. {\bf IV. REQUIREMENTS ON MODIFIED WORKS} All modified versions of documents covered by this license, including translations, anthologies, compilations and partial documents, must meet the following requirements: \begin{enumerate} \item The modified version must be labeled as such. \item The person making the modifications must be identified and the modifications dated. \item Acknowledgement of the original author and publisher if applicable must be retained according to normal academic citation practices. \item The location of the original unmodified document must be identified. \item The original author's (or authors') name(s) may not be used to assert or imply endorsement of the resulting document without the original author's (or authors') permission. \end{enumerate} {\bf V. GOOD-PRACTICE RECOMMENDATIONS} In addition to the requirements of this license, it is requested from and strongly recommended of redistributors that: \begin{enumerate} \item If you are distributing Open Publication works on hardcopy or CD-ROM, you provide email notification to the authors of your intent to redistribute at least thirty days before your manuscript or media freeze, to give the authors time to provide updated documents. This notification should describe modifications, if any, made to the document. \item All substantive modifications (including deletions) be either clearly marked up in the document or else described in an attachment to the document. \end{enumerate} Finally, while it is not mandatory under this license, it is considered good form to offer a free copy of any hardcopy and CD-ROM expression of an Open Publication-licensed work to its author(s). {\bf VI. LICENSE OPTIONS} The author(s) and/or publisher of an Open Publication-licensed document may elect certain options by appending language to the reference to or copy of the license. These options are considered part of the license instance and must be included with the license (or its incorporation by reference) in derived works. A. To prohibit distribution of substantively modified versions without the explicit permission of the author(s). "Substantive modification" is defined as a change to the semantic content of the document, and excludes mere changes in format or typographical corrections. To accomplish this, add the phrase `Distribution of substantively modified versions of this document is prohibited without the explicit permission of the copyright holder.' to the license reference or copy. B. To prohibit any publication of this work or derivative works in whole or in part in standard (paper) book form for commercial purposes is prohibited unless prior permission is obtained from the copyright holder. To accomplish this, add the phrase 'Distribution of the work or derivative of the work in any standard (paper) book form is prohibited unless prior permission is obtained from the copyright holder.' to the license reference or copy. {\bf OPEN PUBLICATION POLICY APPENDIX:} (This is not considered part of the license.) Open Publication works are available in source format via the Open Publication home page at http://works.opencontent.org/. Open Publication authors who want to include their own license on Open Publication works may do so, as long as their terms are not more restrictive than the Open Publication license. If you have questions about the Open Publication License, please contact TBD, and/or the Open Publication Authors' List at [email protected], via email. \vspace*{\fill} \newpage
function x2c!(c::Array{Complex{Float64},1},ψ::Array{Complex{Float64},1},tinfo::ProjectedGPE.Tinfo) c = tinfo.Tx'*(tinfo.W.*ψ) end function x2c!(c::Array{Complex{Float64},2},ψ::Array{Complex{Float64},2},tinfo::ProjectedGPE.Tinfo) c .= tinfo.Tx'*(tinfo.W.*ψ)*tinfo.Ty end function x2c!(c::Array{Complex{Float64},3},ψ::Array{Complex{Float64},3},tinfo::ProjectedGPE.Tinfo) sa = size(ψ);sx = size(tinfo.Tx');sy = size(tinfo.Ty');sz = size(tinfo.Tz') Ax = reshape(tinfo.W.*ψ,(sa[1],sa[2]*sa[3])) Ax = reshape(tinfo.Tx'*Ax,(sx[1],sa[2],sa[3])) Ax = permutedims(Ax,(2,3,1));sa = size(Ax) Ay = reshape(Ax,(sa[1],sa[2]*sa[3])) Ay = reshape(tinfo.Ty'*Ay,(sy[1],sa[2],sa[3])) Ay = permutedims(Ay,(2,3,1));sa = size(Ay) Az = reshape(Ay,(sa[1],sa[2]*sa[3])) Az = reshape(tinfo.Tz'*Az,(sz[1],sa[2],sa[3])) ψ = permutedims(Az,(2,3,1)) end
function [ y, next ] = p08_equil ( neqn, next ) %*****************************************************************************80 % %% P08_EQUIL returns equilibrium solutions of problem p08. % % Licensing: % % This code is distributed under the GNU LGPL license. % % Modified: % % 19 February 2013 % % Author: % % John Burkardt % % Parameters: % % Input, integer NEQN, the number of equations. % % Input, integer NEXT, the index of the previous % equilibrium, which should be 0 on first call. % % Output, real Y(NEQN), the "next" equilibrium solution, if any. % % Output, integer NEXT, the index of the current equilibrium, % or 0 if there are no more. % if ( next == 0 ) next = 1; y(1:neqn,1) = [ 0.0; 0.0; 0.0 ]; else next = 0; y = []; end return end
## One Step Method Applying the Euler formula to the first order equation \begin{equation} y^{'} = (1-x)y^2-y \end{equation} is approximated by \begin{equation} \frac{w_{i+1}-w_i}{h}=(1-x_i)w_i^2-w_i \end{equation} Rearranging \begin{equation} w_{i+1}=w_i+h((1-x_i)w_i^2-w_i) \end{equation} ## DECLARING LIBRARIES ```python import numpy as np import math %matplotlib inline import matplotlib.pyplot as plt # side-stepping mpl backend import matplotlib.gridspec as gridspec # subplots import warnings warnings.filterwarnings("ignore") ``` ## Setting up X ```python h=0.25 x_end=1 INITIALCONDITION=1 N=int(x_end/h) Numerical_Solution=np.zeros(N+1) x=np.zeros(N+1) ``` ## NUMERICAL SOLUTION ```python Numerical_Solution[0]=INITIALCONDITION x[0]=0 Analytic_Solution[0]=INITIALCONDITION for i in range (1,N+1): Numerical_Solution[i]=Numerical_Solution[i-1]+h*((1-x[i-1])*Numerical_Solution[i-1]*Numerical_Solution[i-1]-Numerical_Solution[i-1]) x[i]=x[i-1]+h ``` ## Plotting ```python fig = plt.figure(figsize=(8,4)) plt.plot(x,Numerical_Solution,color='red') #ax.legend(loc='best') plt.title('Numerical Solution') # --- right hand plot print('x') print(x) print('Numerical Solutions') print(Numerical_Solution) ``` ```python ```
[STATEMENT] lemma btree_Node [forward_ent]: "btree (tree.Node lt k v rt) p \<Longrightarrow>\<^sub>A (\<exists>\<^sub>Alp rp. the p \<mapsto>\<^sub>r Node lp k v rp * btree lt lp * btree rt rp * \<up>(p \<noteq> None))" [PROOF STATE] proof (prove) goal (1 subgoal): 1. btree (tree.Node lt k v rt) p \<Longrightarrow>\<^sub>A \<exists>\<^sub>Alp rp. the p \<mapsto>\<^sub>r node.Node lp k v rp * btree lt lp * btree rt rp * \<up> (p \<noteq> None) [PROOF STEP] @proof [PROOF STATE] proof (prove) goal (1 subgoal): 1. btree (tree.Node lt k v rt) p \<Longrightarrow>\<^sub>A \<exists>\<^sub>Alp rp. the p \<mapsto>\<^sub>r node.Node lp k v rp * btree lt lp * btree rt rp * \<up> (p \<noteq> None) [PROOF STEP] @case "p = None" [PROOF STATE] proof (prove) goal (1 subgoal): 1. btree (tree.Node lt k v rt) p \<Longrightarrow>\<^sub>A \<exists>\<^sub>Alp rp. the p \<mapsto>\<^sub>r node.Node lp k v rp * btree lt lp * btree rt rp * \<up> (p \<noteq> None) [PROOF STEP] @qed
Require Import List. Require Export Util Val. Set Implicit Arguments. Definition external := positive. Inductive extern := ExternI { extern_fnc : external; extern_args : list val; extern_res : val }. Inductive event := | EvtExtern (call:extern) (* | EvtTerminate (res:val) *) | EvtTau. (** ** [filter_tau] *) Definition filter_tau (o:event) (L:list event) : list event := match o with | EvtTau => L | e => e :: L end. Lemma filter_tau_nil evt B : (filter_tau evt nil ++ B)%list = filter_tau evt B. Proof. destruct evt; simpl; eauto. Qed. Lemma filter_tau_app evt A B : (filter_tau evt A ++ B)%list = filter_tau evt (A ++ B). Proof. destruct evt; eauto. Qed. Lemma filter_tau_nil_eq : nil = filter_tau EvtTau nil. Proof. reflexivity. Qed. Hint Extern 5 (nil = filter_tau _ nil) => apply filter_tau_nil_eq. Inductive extevent := | EEvtExtern (evt:event) | EEvtTerminate (res:option val).
plusId : (n, m, o : Nat) -> (n = m) -> (m = o) -> n + m = m + o plusId n m o prf prf1 = rewrite prf in rewrite prf1 in Refl mult0Plus : (n, m : Nat) -> (0 + n) * m = n * (0 + m) mult0Plus n m = Refl mult_S_1 : (n, m : Nat) -> (m = S n) -> m * (1 + n) = m * m mult_S_1 n m prf = rewrite prf in Refl andb_true_elim_2 : (b, c : Bool) -> b && c = True -> c = True andb_true_elim_2 False False Refl impossible andb_true_elim_2 True False Refl impossible andb_true_elim_2 False True prf = Refl andb_true_elim_2 True True prf = Refl zero_nbeq_plus_1 : (n : Nat) -> 0 == (n + 1) = False zero_nbeq_plus_1 Z = Refl zero_nbeq_plus_1 (S k) = Refl
section \<open>Implementation of Safety Property Model Checker \label{sec:find_path_impl}\<close> theory Find_Path_Impl imports Find_Path CAVA_Automata.Digraph_Impl begin section \<open>Workset Algorithm\<close> text \<open>A simple implementation is by a workset algorithm.\<close> definition "ws_update E u p V ws \<equiv> RETURN ( V \<union> E``{u}, ws ++ (\<lambda>v. if (u,v)\<in>E \<and> v\<notin>V then Some (u#p) else None))" definition "s_init U0 \<equiv> RETURN (None,U0,\<lambda>u. if u\<in>U0 then Some [] else None)" definition "wset_find_path E U0 P \<equiv> do { ASSERT (finite U0); s0 \<leftarrow> s_init U0; (res,_,_) \<leftarrow> WHILET (\<lambda>(res,V,ws). res=None \<and> ws\<noteq>Map.empty) (\<lambda>(res,V,ws). do { ASSERT (ws\<noteq>Map.empty); (u,p) \<leftarrow> SPEC (\<lambda>(u,p). ws u = Some p); let ws=ws |` (-{u}); if P u then RETURN (Some (rev p,u),V,ws) else do { ASSERT (finite (E``{u})); ASSERT (dom ws \<subseteq> V); (V,ws) \<leftarrow> ws_update E u p V ws; RETURN (None,V,ws) } }) s0; RETURN res }" lemma wset_find_path_correct: fixes E :: "('v\<times>'v) set" shows "wset_find_path E U0 P \<le> find_path E U0 P" proof - define inv where "inv = (\<lambda>(res,V,ws). case res of None \<Rightarrow> dom ws\<subseteq>V \<and> finite (dom ws) \<comment> \<open>Derived\<close> \<and> V\<subseteq>E\<^sup>*``U0 \<and> E``(V-dom ws) \<subseteq> V \<and> (\<forall>v\<in>V-dom ws. \<not> P v) \<and> U0 \<subseteq> V \<and> (\<forall>v p. ws v = Some p \<longrightarrow> ((\<forall>v\<in>set p. \<not>P v) \<and> (\<exists>u0\<in>U0. path E u0 (rev p) v))) | Some (p,v) \<Rightarrow> (\<exists>u0\<in>U0. path E u0 p v \<and> P v \<and> (\<forall>v\<in>set p. \<not>P v)))" define var where "var = inv_image (brk_rel (finite_psupset (E\<^sup>*``U0) <*lex*> measure (card o dom))) (\<lambda>(res::('v list \<times> 'v) option,V::'v set,ws::'v\<rightharpoonup>'v list). (res\<noteq>None,V,ws))" (*have [simp, intro!]: "wf var" unfolding var_def by (auto intro: FIN)*) have [simp]: "\<And>u p V. dom (\<lambda>v. if (u, v) \<in> E \<and> v \<notin> V then Some (u # p) else None) = E``{u} - V" by (auto split: if_split_asm) { fix V ws u p assume INV: "inv (None,V,ws)" assume WSU: "ws u = Some p" from INV WSU have [simp]: "V \<subseteq> E\<^sup>*``U0" and [simp]: "u \<in> V" and UREACH: "\<exists>u0\<in>U0. (u0,u)\<in>E\<^sup>*" and [simp]: "finite (dom ws)" unfolding inv_def apply simp_all apply auto [] apply clarsimp apply blast done have "(V \<union> E `` {u}, V) \<in> finite_psupset (E\<^sup>* `` U0) \<or> V \<union> E `` {u} = V \<and> card (E `` {u} - V \<union> (dom ws - {u})) < card (dom ws)" proof (subst disj_commute, intro disjCI conjI) assume "(V \<union> E `` {u}, V) \<notin> finite_psupset (E\<^sup>* `` U0)" thus "V \<union> E `` {u} = V" using UREACH by (auto simp: finite_psupset_def intro: rev_ImageI) hence [simp]: "E``{u} - V = {}" by force show "card (E `` {u} - V \<union> (dom ws - {u})) < card (dom ws)" using WSU by (auto intro: card_Diff1_less) qed } note wf_aux=this { fix V ws u p assume FIN: "finite (E\<^sup>*``U0)" assume "inv (None,V,ws)" "ws u = Some p" then obtain u0 where "u0\<in>U0" "(u0,u)\<in>E\<^sup>*" unfolding inv_def by clarsimp blast hence "E``{u} \<subseteq> E\<^sup>*``U0" by (auto intro: rev_ImageI) hence "finite (E``{u})" using FIN(1) by (rule finite_subset) } note succs_finite=this { fix V ws u p assume FIN: "finite (E\<^sup>*``U0)" assume INV: "inv (None,V,ws)" assume WSU: "ws u = Some p" assume NVD: "\<not> P u" have "inv (None, V \<union> E `` {u}, ws |` (- {u}) ++ (\<lambda>v. if (u, v) \<in> E \<and> v \<notin> V then Some (u # p) else None))" unfolding inv_def apply (simp, intro conjI) using INV WSU apply (auto simp: inv_def) [] using INV WSU apply (auto simp: inv_def) [] using INV WSU apply (auto simp: succs_finite FIN) [] using INV apply (auto simp: inv_def) [] using INV apply (auto simp: inv_def) [] using INV WSU apply (auto simp: inv_def intro: rtrancl_image_advance ) [] using INV WSU apply (auto simp: inv_def) [] using INV NVD apply (auto simp: inv_def) [] using INV NVD apply (auto simp: inv_def) [] using INV WSU NVD apply (fastforce simp: inv_def restrict_map_def intro!: path_conc path1 split: if_split_asm ) [] done } note ip_aux=this show ?thesis unfolding wset_find_path_def find_path_def ws_update_def s_init_def apply (refine_rcg refine_vcg le_ASSERTI WHILET_rule[where R = var and I = inv] ) using [[goals_limit = 1]] apply (auto simp: var_def) [] apply (auto simp: inv_def dom_def split: if_split_asm) [] apply simp apply (auto simp: inv_def) [] apply (auto simp: var_def brk_rel_def) [] apply (simp add: succs_finite) apply (auto simp: inv_def) [] apply clarsimp apply (simp add: ip_aux) apply clarsimp apply (simp add: var_def brk_rel_def wf_aux) [] apply (fastforce simp: inv_def split: option.splits intro: rev_ImageI dest: Image_closed_trancl) [] done qed text \<open>We refine the algorithm to use a foreach-loop\<close> definition "ws_update_foreach E u p V ws \<equiv> FOREACH (LIST_SET_REV_TAG (E``{u})) (\<lambda>v (V,ws). if v\<in>V then RETURN (V,ws) else do { ASSERT (v\<notin>dom ws); RETURN (insert v V,ws( v \<mapsto> u#p)) } ) (V,ws)" lemma ws_update_foreach_refine[refine]: assumes FIN: "finite (E``{u})" assumes WSS: "dom ws \<subseteq> V" assumes ID: "(E',E)\<in>Id" "(u',u)\<in>Id" "(p',p)\<in>Id" "(V',V)\<in>Id" "(ws',ws)\<in>Id" shows "ws_update_foreach E' u' p' V' ws' \<le> \<Down>Id (ws_update E u p V ws)" unfolding ID[simplified] unfolding ws_update_foreach_def ws_update_def LIST_SET_REV_TAG_def apply (refine_rcg refine_vcg FIN FOREACH_rule[where I="\<lambda>it (V',ws'). V'=V \<union> (E``{u}-it) \<and> dom ws' \<subseteq> V' \<and> ws' = ws ++ (\<lambda>v. if (u,v)\<in>E \<and> v\<notin>it \<and> v\<notin>V then Some (u#p) else None)"] ) using WSS apply (auto simp: Map.map_add_def split: option.splits if_split_asm intro!: ext[where 'a='a and 'b="'b list option"]) apply fastforce+ done definition "s_init_foreach U0 \<equiv> do { (U0,ws) \<leftarrow> FOREACH U0 (\<lambda>x (U0,ws). RETURN (insert x U0,ws(x\<mapsto>[]))) ({},Map.empty); RETURN (None,U0,ws) }" lemma s_init_foreach_refine[refine]: assumes FIN: "finite U0" assumes ID: "(U0',U0)\<in>Id" shows "s_init_foreach U0' \<le>\<Down>Id (s_init U0)" unfolding s_init_foreach_def s_init_def ID[simplified] apply (refine_rcg refine_vcg FOREACH_rule[where I = "\<lambda>it (U,ws). U = U0-it \<and> ws = (\<lambda>x. if x\<in>U0-it then Some [] else None)"] ) apply (auto simp: FIN intro!: ext ) done definition "wset_find_path' E U0 P \<equiv> do { ASSERT (finite U0); s0\<leftarrow>s_init_foreach U0; (res,_,_) \<leftarrow> WHILET (\<lambda>(res,V,ws). res=None \<and> ws\<noteq>Map.empty) (\<lambda>(res,V,ws). do { ASSERT (ws\<noteq>Map.empty); ((u,p),ws) \<leftarrow> op_map_pick_remove ws; if P u then RETURN (Some (rev p,u),V,ws) else do { (V,ws) \<leftarrow> ws_update_foreach E u p V ws; RETURN (None,V,ws) } }) s0; RETURN res }" lemma wset_find_path'_refine: "wset_find_path' E U0 P \<le> \<Down>Id (wset_find_path E U0 P)" unfolding wset_find_path'_def wset_find_path_def unfolding op_map_pick_remove_alt apply (refine_rcg IdI) apply assumption apply simp_all done section \<open>Refinement to efficient data structures\<close> schematic_goal wset_find_path'_refine_aux: fixes U0::"'a set" and P::"'a \<Rightarrow> bool" and E::"('a\<times>'a) set" and Pimpl :: "'ai \<Rightarrow> bool" and node_rel :: "('ai \<times> 'a) set" and node_eq_impl :: "'ai \<Rightarrow> 'ai \<Rightarrow> bool" and node_hash_impl and node_def_hash_size assumes [autoref_rules]: "(succi,E)\<in>\<langle>node_rel\<rangle>slg_rel" "(Pimpl,P)\<in>node_rel \<rightarrow> bool_rel" "(node_eq_impl, (=)) \<in> node_rel \<rightarrow> node_rel \<rightarrow> bool_rel" "(U0',U0)\<in>\<langle>node_rel\<rangle>list_set_rel" assumes [autoref_ga_rules]: "is_bounded_hashcode node_rel node_eq_impl node_hash_impl" "is_valid_def_hm_size TYPE('ai) node_def_hash_size" notes [autoref_tyrel] = TYRELI[where R="\<langle>node_rel,\<langle>node_rel\<rangle>list_rel\<rangle>list_map_rel"] TYRELI[where R="\<langle>node_rel\<rangle>map2set_rel (ahm_rel node_hash_impl)"] (*notes [autoref_rules] = IdI[of P, unfolded fun_rel_id_simp[symmetric]]*) shows "(?c::?'c,wset_find_path' E U0 P) \<in> ?R" unfolding wset_find_path'_def ws_update_foreach_def s_init_foreach_def using [[autoref_trace_failed_id]] using [[autoref_trace_intf_unif]] using [[autoref_trace_pat]] apply (autoref (keep_goal)) done find_theorems list_map_update concrete_definition wset_find_path_impl for node_eq_impl succi U0' Pimpl uses wset_find_path'_refine_aux section \<open>Autoref Setup\<close> context begin interpretation autoref_syn . lemma [autoref_itype]: "find_path ::\<^sub>i \<langle>I\<rangle>\<^sub>ii_slg \<rightarrow>\<^sub>i \<langle>I\<rangle>\<^sub>ii_set \<rightarrow>\<^sub>i (I\<rightarrow>\<^sub>ii_bool) \<rightarrow>\<^sub>i \<langle>\<langle>\<langle>\<langle>I\<rangle>\<^sub>ii_list, I\<rangle>\<^sub>ii_prod\<rangle>\<^sub>ii_option\<rangle>\<^sub>ii_nres" by simp lemma wset_find_path_autoref[autoref_rules]: fixes node_rel :: "('ai \<times> 'a) set" assumes eq: "GEN_OP node_eq_impl (=) (node_rel\<rightarrow>node_rel\<rightarrow>bool_rel)" assumes hash: "SIDE_GEN_ALGO (is_bounded_hashcode node_rel node_eq_impl node_hash_impl)" assumes hash_dsz: "SIDE_GEN_ALGO (is_valid_def_hm_size TYPE('ai) node_def_hash_size)" shows "( wset_find_path_impl node_hash_impl node_def_hash_size node_eq_impl, find_path) \<in> \<langle>node_rel\<rangle>slg_rel \<rightarrow> \<langle>node_rel\<rangle>list_set_rel \<rightarrow> (node_rel\<rightarrow>bool_rel) \<rightarrow> \<langle>\<langle>\<langle>node_rel\<rangle>list_rel\<times>\<^sub>rnode_rel\<rangle>option_rel\<rangle>nres_rel" proof - note EQI = GEN_OP_D[OF eq] note HASHI = SIDE_GEN_ALGO_D[OF hash] note DSZI = SIDE_GEN_ALGO_D[OF hash_dsz] note wset_find_path_impl.refine[THEN nres_relD, OF _ _ EQI _ HASHI DSZI] also note wset_find_path'_refine also note wset_find_path_correct finally show ?thesis by (fastforce intro!: nres_relI) qed end schematic_goal wset_find_path_transfer_aux: "RETURN ?c \<le> wset_find_path_impl hashi dszi eqi E U0 P" unfolding wset_find_path_impl_def by (refine_transfer (post)) concrete_definition wset_find_path_code for E ?U0.0 P uses wset_find_path_transfer_aux lemmas [refine_transfer] = wset_find_path_code.refine export_code wset_find_path_code checking SML section \<open>Nontrivial paths\<close> definition "find_path1_gen E u0 P \<equiv> do { res \<leftarrow> find_path E (E``{u0}) P; case res of None \<Rightarrow> RETURN None | Some (p,v) \<Rightarrow> RETURN (Some (u0#p,v)) }" lemma find_path1_gen_correct: "find_path1_gen E u0 P \<le> find_path1 E u0 P" unfolding find_path1_gen_def find_path_def find_path1_def apply (refine_rcg refine_vcg le_ASSERTI) apply (auto intro: path_prepend dest: tranclD elim: finite_subset[rotated] ) done schematic_goal find_path1_impl_aux: fixes node_rel :: "('ai \<times> 'a) set" assumes [autoref_rules]: "(node_eq_impl, (=)) \<in> node_rel \<rightarrow> node_rel \<rightarrow> bool_rel" assumes [autoref_ga_rules]: "is_bounded_hashcode node_rel node_eq_impl node_hash_impl" "is_valid_def_hm_size TYPE('ai) node_def_hash_size" shows "(?c,find_path1_gen::(_\<times>_) set \<Rightarrow> _) \<in> \<langle>node_rel\<rangle>slg_rel \<rightarrow> node_rel \<rightarrow> (node_rel \<rightarrow> bool_rel) \<rightarrow> \<langle>\<langle>\<langle>node_rel\<rangle>list_rel \<times>\<^sub>r node_rel\<rangle>option_rel\<rangle>nres_rel" unfolding find_path1_gen_def[abs_def] apply (autoref (trace,keep_goal)) done lemma [autoref_itype]: "find_path1 ::\<^sub>i \<langle>I\<rangle>\<^sub>ii_slg \<rightarrow>\<^sub>i I \<rightarrow>\<^sub>i (I\<rightarrow>\<^sub>ii_bool) \<rightarrow>\<^sub>i \<langle>\<langle>\<langle>\<langle>I\<rangle>\<^sub>ii_list, I\<rangle>\<^sub>ii_prod\<rangle>\<^sub>ii_option\<rangle>\<^sub>ii_nres" by simp concrete_definition find_path1_impl uses find_path1_impl_aux lemma find_path1_autoref[autoref_rules]: fixes node_rel :: "('ai \<times> 'a) set" assumes eq: "GEN_OP node_eq_impl (=) (node_rel\<rightarrow>node_rel\<rightarrow>bool_rel)" assumes hash: "SIDE_GEN_ALGO (is_bounded_hashcode node_rel node_eq_impl node_hash_impl)" assumes hash_dsz: "SIDE_GEN_ALGO (is_valid_def_hm_size TYPE('ai) node_def_hash_size)" shows "(find_path1_impl node_eq_impl node_hash_impl node_def_hash_size,find_path1) \<in> \<langle>node_rel\<rangle>slg_rel \<rightarrow>node_rel \<rightarrow> (node_rel \<rightarrow> bool_rel) \<rightarrow> \<langle>\<langle>\<langle>node_rel\<rangle>list_rel \<times>\<^sub>r node_rel\<rangle>Relators.option_rel\<rangle>nres_rel" proof - note EQI = GEN_OP_D[OF eq] note HASHI = SIDE_GEN_ALGO_D[OF hash] note DSZI = SIDE_GEN_ALGO_D[OF hash_dsz] note R = find_path1_impl.refine[param_fo, THEN nres_relD, OF EQI HASHI DSZI] note R also note find_path1_gen_correct finally show ?thesis by (blast intro: nres_relI) qed schematic_goal find_path1_transfer_aux: "RETURN ?c \<le> find_path1_impl eqi hashi dszi E u P" unfolding find_path1_impl_def by refine_transfer concrete_definition find_path1_code for E u P uses find_path1_transfer_aux lemmas [refine_transfer] = find_path1_code.refine end
[GOAL] Ω : Type u_1 ι : Type u_2 m : MeasurableSpace Ω X✝ : Ω → ℝ p✝ : ℕ μ✝ : Measure Ω X : Ω → ℝ p : ℕ μ : Measure Ω ⊢ ℝ [PROOFSTEP] have m := fun (x : Ω) => μ[X] -- Porting note: Lean deems `μ[(X - fun x => μ[X]) ^ p]` ambiguous [GOAL] Ω : Type u_1 ι : Type u_2 m✝ : MeasurableSpace Ω X✝ : Ω → ℝ p✝ : ℕ μ✝ : Measure Ω X : Ω → ℝ p : ℕ μ : Measure Ω m : Ω → ℝ ⊢ ℝ [PROOFSTEP] exact μ[(X - m) ^ p] [GOAL] Ω : Type u_1 ι : Type u_2 m : MeasurableSpace Ω X : Ω → ℝ p : ℕ μ : Measure Ω hp : p ≠ 0 ⊢ moment 0 p μ = 0 [PROOFSTEP] simp only [moment, hp, zero_pow', Ne.def, not_false_iff, Pi.zero_apply, integral_const, smul_eq_mul, mul_zero] [GOAL] Ω : Type u_1 ι : Type u_2 m : MeasurableSpace Ω X : Ω → ℝ p : ℕ μ : Measure Ω hp : p ≠ 0 ⊢ centralMoment 0 p μ = 0 [PROOFSTEP] simp only [centralMoment, hp, Pi.zero_apply, integral_const, smul_eq_mul, mul_zero, zero_sub, Pi.pow_apply, Pi.neg_apply, neg_zero, zero_pow', Ne.def, not_false_iff] [GOAL] Ω : Type u_1 ι : Type u_2 m : MeasurableSpace Ω X : Ω → ℝ p : ℕ μ : Measure Ω inst✝ : IsFiniteMeasure μ h_int : Integrable X ⊢ centralMoment X 1 μ = (1 - ENNReal.toReal (↑↑μ Set.univ)) * ∫ (x : Ω), X x ∂μ [PROOFSTEP] simp only [centralMoment, Pi.sub_apply, pow_one] [GOAL] Ω : Type u_1 ι : Type u_2 m : MeasurableSpace Ω X : Ω → ℝ p : ℕ μ : Measure Ω inst✝ : IsFiniteMeasure μ h_int : Integrable X ⊢ ∫ (x : Ω), X x - ∫ (x : Ω), X x ∂μ ∂μ = (1 - ENNReal.toReal (↑↑μ Set.univ)) * ∫ (x : Ω), X x ∂μ [PROOFSTEP] rw [integral_sub h_int (integrable_const _)] [GOAL] Ω : Type u_1 ι : Type u_2 m : MeasurableSpace Ω X : Ω → ℝ p : ℕ μ : Measure Ω inst✝ : IsFiniteMeasure μ h_int : Integrable X ⊢ ∫ (a : Ω), X a ∂μ - ∫ (a : Ω), ∫ (x : Ω), X x ∂μ ∂μ = (1 - ENNReal.toReal (↑↑μ Set.univ)) * ∫ (x : Ω), X x ∂μ [PROOFSTEP] simp only [sub_mul, integral_const, smul_eq_mul, one_mul] [GOAL] Ω : Type u_1 ι : Type u_2 m : MeasurableSpace Ω X : Ω → ℝ p : ℕ μ : Measure Ω inst✝ : IsProbabilityMeasure μ ⊢ centralMoment X 1 μ = 0 [PROOFSTEP] by_cases h_int : Integrable X μ [GOAL] case pos Ω : Type u_1 ι : Type u_2 m : MeasurableSpace Ω X : Ω → ℝ p : ℕ μ : Measure Ω inst✝ : IsProbabilityMeasure μ h_int : Integrable X ⊢ centralMoment X 1 μ = 0 [PROOFSTEP] rw [centralMoment_one' h_int] [GOAL] case pos Ω : Type u_1 ι : Type u_2 m : MeasurableSpace Ω X : Ω → ℝ p : ℕ μ : Measure Ω inst✝ : IsProbabilityMeasure μ h_int : Integrable X ⊢ (1 - ENNReal.toReal (↑↑μ Set.univ)) * ∫ (x : Ω), X x ∂μ = 0 [PROOFSTEP] simp only [measure_univ, ENNReal.one_toReal, sub_self, zero_mul] [GOAL] case neg Ω : Type u_1 ι : Type u_2 m : MeasurableSpace Ω X : Ω → ℝ p : ℕ μ : Measure Ω inst✝ : IsProbabilityMeasure μ h_int : ¬Integrable X ⊢ centralMoment X 1 μ = 0 [PROOFSTEP] simp only [centralMoment, Pi.sub_apply, pow_one] [GOAL] case neg Ω : Type u_1 ι : Type u_2 m : MeasurableSpace Ω X : Ω → ℝ p : ℕ μ : Measure Ω inst✝ : IsProbabilityMeasure μ h_int : ¬Integrable X ⊢ ∫ (x : Ω), X x - ∫ (x : Ω), X x ∂μ ∂μ = 0 [PROOFSTEP] have : ¬Integrable (fun x => X x - integral μ X) μ := by refine' fun h_sub => h_int _ have h_add : X = (fun x => X x - integral μ X) + fun _ => integral μ X := by ext1 x; simp rw [h_add] exact h_sub.add (integrable_const _) [GOAL] Ω : Type u_1 ι : Type u_2 m : MeasurableSpace Ω X : Ω → ℝ p : ℕ μ : Measure Ω inst✝ : IsProbabilityMeasure μ h_int : ¬Integrable X ⊢ ¬Integrable fun x => X x - integral μ X [PROOFSTEP] refine' fun h_sub => h_int _ [GOAL] Ω : Type u_1 ι : Type u_2 m : MeasurableSpace Ω X : Ω → ℝ p : ℕ μ : Measure Ω inst✝ : IsProbabilityMeasure μ h_int : ¬Integrable X h_sub : Integrable fun x => X x - integral μ X ⊢ Integrable X [PROOFSTEP] have h_add : X = (fun x => X x - integral μ X) + fun _ => integral μ X := by ext1 x; simp [GOAL] Ω : Type u_1 ι : Type u_2 m : MeasurableSpace Ω X : Ω → ℝ p : ℕ μ : Measure Ω inst✝ : IsProbabilityMeasure μ h_int : ¬Integrable X h_sub : Integrable fun x => X x - integral μ X ⊢ X = (fun x => X x - integral μ X) + fun x => integral μ X [PROOFSTEP] ext1 x [GOAL] case h Ω : Type u_1 ι : Type u_2 m : MeasurableSpace Ω X : Ω → ℝ p : ℕ μ : Measure Ω inst✝ : IsProbabilityMeasure μ h_int : ¬Integrable X h_sub : Integrable fun x => X x - integral μ X x : Ω ⊢ X x = ((fun x => X x - integral μ X) + fun x => integral μ X) x [PROOFSTEP] simp [GOAL] Ω : Type u_1 ι : Type u_2 m : MeasurableSpace Ω X : Ω → ℝ p : ℕ μ : Measure Ω inst✝ : IsProbabilityMeasure μ h_int : ¬Integrable X h_sub : Integrable fun x => X x - integral μ X h_add : X = (fun x => X x - integral μ X) + fun x => integral μ X ⊢ Integrable X [PROOFSTEP] rw [h_add] [GOAL] Ω : Type u_1 ι : Type u_2 m : MeasurableSpace Ω X : Ω → ℝ p : ℕ μ : Measure Ω inst✝ : IsProbabilityMeasure μ h_int : ¬Integrable X h_sub : Integrable fun x => X x - integral μ X h_add : X = (fun x => X x - integral μ X) + fun x => integral μ X ⊢ Integrable ((fun x => X x - integral μ X) + fun x => integral μ X) [PROOFSTEP] exact h_sub.add (integrable_const _) [GOAL] case neg Ω : Type u_1 ι : Type u_2 m : MeasurableSpace Ω X : Ω → ℝ p : ℕ μ : Measure Ω inst✝ : IsProbabilityMeasure μ h_int : ¬Integrable X this : ¬Integrable fun x => X x - integral μ X ⊢ ∫ (x : Ω), X x - ∫ (x : Ω), X x ∂μ ∂μ = 0 [PROOFSTEP] rw [integral_undef this] [GOAL] Ω : Type u_1 ι : Type u_2 m : MeasurableSpace Ω X : Ω → ℝ p : ℕ μ : Measure Ω inst✝ : IsFiniteMeasure μ hX : Memℒp X 2 ⊢ centralMoment X 2 μ = variance X μ [PROOFSTEP] rw [hX.variance_eq] [GOAL] Ω : Type u_1 ι : Type u_2 m : MeasurableSpace Ω X : Ω → ℝ p : ℕ μ : Measure Ω inst✝ : IsFiniteMeasure μ hX : Memℒp X 2 ⊢ centralMoment X 2 μ = ∫ (x : Ω), ((X - fun x => ∫ (x : Ω), X x ∂μ) ^ 2) x ∂μ [PROOFSTEP] rfl [GOAL] Ω : Type u_1 ι : Type u_2 m : MeasurableSpace Ω X : Ω → ℝ p : ℕ μ : Measure Ω t : ℝ ⊢ mgf 0 μ t = ENNReal.toReal (↑↑μ Set.univ) [PROOFSTEP] simp only [mgf, Pi.zero_apply, mul_zero, exp_zero, integral_const, smul_eq_mul, mul_one] [GOAL] Ω : Type u_1 ι : Type u_2 m : MeasurableSpace Ω X : Ω → ℝ p : ℕ μ : Measure Ω t : ℝ ⊢ cgf 0 μ t = log (ENNReal.toReal (↑↑μ Set.univ)) [PROOFSTEP] simp only [cgf, mgf_zero_fun] [GOAL] Ω : Type u_1 ι : Type u_2 m : MeasurableSpace Ω X : Ω → ℝ p : ℕ μ : Measure Ω t : ℝ ⊢ mgf X 0 t = 0 [PROOFSTEP] simp only [mgf, integral_zero_measure] [GOAL] Ω : Type u_1 ι : Type u_2 m : MeasurableSpace Ω X : Ω → ℝ p : ℕ μ : Measure Ω t : ℝ ⊢ cgf X 0 t = 0 [PROOFSTEP] simp only [cgf, log_zero, mgf_zero_measure] [GOAL] Ω : Type u_1 ι : Type u_2 m : MeasurableSpace Ω X : Ω → ℝ p : ℕ μ : Measure Ω t c : ℝ ⊢ mgf (fun x => c) μ t = ENNReal.toReal (↑↑μ Set.univ) * exp (t * c) [PROOFSTEP] simp only [mgf, integral_const, smul_eq_mul] [GOAL] Ω : Type u_1 ι : Type u_2 m : MeasurableSpace Ω X : Ω → ℝ p : ℕ μ : Measure Ω t c : ℝ inst✝ : IsProbabilityMeasure μ ⊢ mgf (fun x => c) μ t = exp (t * c) [PROOFSTEP] simp only [mgf_const', measure_univ, ENNReal.one_toReal, one_mul] [GOAL] Ω : Type u_1 ι : Type u_2 m : MeasurableSpace Ω X : Ω → ℝ p : ℕ μ : Measure Ω t : ℝ inst✝ : IsFiniteMeasure μ hμ : μ ≠ 0 c : ℝ ⊢ cgf (fun x => c) μ t = log (ENNReal.toReal (↑↑μ Set.univ)) + t * c [PROOFSTEP] simp only [cgf, mgf_const'] [GOAL] Ω : Type u_1 ι : Type u_2 m : MeasurableSpace Ω X : Ω → ℝ p : ℕ μ : Measure Ω t : ℝ inst✝ : IsFiniteMeasure μ hμ : μ ≠ 0 c : ℝ ⊢ log (ENNReal.toReal (↑↑μ Set.univ) * exp (t * c)) = log (ENNReal.toReal (↑↑μ Set.univ)) + t * c [PROOFSTEP] rw [log_mul _ (exp_pos _).ne'] [GOAL] Ω : Type u_1 ι : Type u_2 m : MeasurableSpace Ω X : Ω → ℝ p : ℕ μ : Measure Ω t : ℝ inst✝ : IsFiniteMeasure μ hμ : μ ≠ 0 c : ℝ ⊢ log (ENNReal.toReal (↑↑μ Set.univ)) + log (exp (t * c)) = log (ENNReal.toReal (↑↑μ Set.univ)) + t * c [PROOFSTEP] rw [log_exp _] [GOAL] Ω : Type u_1 ι : Type u_2 m : MeasurableSpace Ω X : Ω → ℝ p : ℕ μ : Measure Ω t : ℝ inst✝ : IsFiniteMeasure μ hμ : μ ≠ 0 c : ℝ ⊢ ENNReal.toReal (↑↑μ Set.univ) ≠ 0 [PROOFSTEP] rw [Ne.def, ENNReal.toReal_eq_zero_iff, Measure.measure_univ_eq_zero] [GOAL] Ω : Type u_1 ι : Type u_2 m : MeasurableSpace Ω X : Ω → ℝ p : ℕ μ : Measure Ω t : ℝ inst✝ : IsFiniteMeasure μ hμ : μ ≠ 0 c : ℝ ⊢ ¬(μ = 0 ∨ ↑↑μ Set.univ = ⊤) [PROOFSTEP] simp only [hμ, measure_ne_top μ Set.univ, or_self_iff, not_false_iff] [GOAL] Ω : Type u_1 ι : Type u_2 m : MeasurableSpace Ω X : Ω → ℝ p : ℕ μ : Measure Ω t : ℝ inst✝ : IsProbabilityMeasure μ c : ℝ ⊢ cgf (fun x => c) μ t = t * c [PROOFSTEP] simp only [cgf, mgf_const, log_exp] [GOAL] Ω : Type u_1 ι : Type u_2 m : MeasurableSpace Ω X : Ω → ℝ p : ℕ μ : Measure Ω t : ℝ ⊢ mgf X μ 0 = ENNReal.toReal (↑↑μ Set.univ) [PROOFSTEP] simp only [mgf, zero_mul, exp_zero, integral_const, smul_eq_mul, mul_one] [GOAL] Ω : Type u_1 ι : Type u_2 m : MeasurableSpace Ω X : Ω → ℝ p : ℕ μ : Measure Ω t : ℝ inst✝ : IsProbabilityMeasure μ ⊢ mgf X μ 0 = 1 [PROOFSTEP] simp only [mgf_zero', measure_univ, ENNReal.one_toReal] [GOAL] Ω : Type u_1 ι : Type u_2 m : MeasurableSpace Ω X : Ω → ℝ p : ℕ μ : Measure Ω t : ℝ ⊢ cgf X μ 0 = log (ENNReal.toReal (↑↑μ Set.univ)) [PROOFSTEP] simp only [cgf, mgf_zero'] [GOAL] Ω : Type u_1 ι : Type u_2 m : MeasurableSpace Ω X : Ω → ℝ p : ℕ μ : Measure Ω t : ℝ inst✝ : IsProbabilityMeasure μ ⊢ cgf X μ 0 = 0 [PROOFSTEP] simp only [cgf_zero', measure_univ, ENNReal.one_toReal, log_one] [GOAL] Ω : Type u_1 ι : Type u_2 m : MeasurableSpace Ω X : Ω → ℝ p : ℕ μ : Measure Ω t : ℝ hX : ¬Integrable fun ω => exp (t * X ω) ⊢ mgf X μ t = 0 [PROOFSTEP] simp only [mgf, integral_undef hX] [GOAL] Ω : Type u_1 ι : Type u_2 m : MeasurableSpace Ω X : Ω → ℝ p : ℕ μ : Measure Ω t : ℝ hX : ¬Integrable fun ω => exp (t * X ω) ⊢ cgf X μ t = 0 [PROOFSTEP] simp only [cgf, mgf_undef hX, log_zero] [GOAL] Ω : Type u_1 ι : Type u_2 m : MeasurableSpace Ω X : Ω → ℝ p : ℕ μ : Measure Ω t : ℝ ⊢ 0 ≤ mgf X μ t [PROOFSTEP] refine' integral_nonneg _ [GOAL] Ω : Type u_1 ι : Type u_2 m : MeasurableSpace Ω X : Ω → ℝ p : ℕ μ : Measure Ω t : ℝ ⊢ 0 ≤ fun x => (fun ω => exp (t * X ω)) x [PROOFSTEP] intro ω [GOAL] Ω : Type u_1 ι : Type u_2 m : MeasurableSpace Ω X : Ω → ℝ p : ℕ μ : Measure Ω t : ℝ ω : Ω ⊢ OfNat.ofNat 0 ω ≤ (fun x => (fun ω => exp (t * X ω)) x) ω [PROOFSTEP] simp only [Pi.zero_apply] [GOAL] Ω : Type u_1 ι : Type u_2 m : MeasurableSpace Ω X : Ω → ℝ p : ℕ μ : Measure Ω t : ℝ ω : Ω ⊢ 0 ≤ exp (t * X ω) [PROOFSTEP] exact (exp_pos _).le [GOAL] Ω : Type u_1 ι : Type u_2 m : MeasurableSpace Ω X : Ω → ℝ p : ℕ μ : Measure Ω t : ℝ hμ : μ ≠ 0 h_int_X : Integrable fun ω => exp (t * X ω) ⊢ 0 < mgf X μ t [PROOFSTEP] simp_rw [mgf] [GOAL] Ω : Type u_1 ι : Type u_2 m : MeasurableSpace Ω X : Ω → ℝ p : ℕ μ : Measure Ω t : ℝ hμ : μ ≠ 0 h_int_X : Integrable fun ω => exp (t * X ω) ⊢ 0 < ∫ (x : Ω), exp (t * X x) ∂μ [PROOFSTEP] have : ∫ x : Ω, exp (t * X x) ∂μ = ∫ x : Ω in Set.univ, exp (t * X x) ∂μ := by simp only [Measure.restrict_univ] [GOAL] Ω : Type u_1 ι : Type u_2 m : MeasurableSpace Ω X : Ω → ℝ p : ℕ μ : Measure Ω t : ℝ hμ : μ ≠ 0 h_int_X : Integrable fun ω => exp (t * X ω) ⊢ ∫ (x : Ω), exp (t * X x) ∂μ = ∫ (x : Ω) in Set.univ, exp (t * X x) ∂μ [PROOFSTEP] simp only [Measure.restrict_univ] [GOAL] Ω : Type u_1 ι : Type u_2 m : MeasurableSpace Ω X : Ω → ℝ p : ℕ μ : Measure Ω t : ℝ hμ : μ ≠ 0 h_int_X : Integrable fun ω => exp (t * X ω) this : ∫ (x : Ω), exp (t * X x) ∂μ = ∫ (x : Ω) in Set.univ, exp (t * X x) ∂μ ⊢ 0 < ∫ (x : Ω), exp (t * X x) ∂μ [PROOFSTEP] rw [this, set_integral_pos_iff_support_of_nonneg_ae _ _] [GOAL] Ω : Type u_1 ι : Type u_2 m : MeasurableSpace Ω X : Ω → ℝ p : ℕ μ : Measure Ω t : ℝ hμ : μ ≠ 0 h_int_X : Integrable fun ω => exp (t * X ω) this : ∫ (x : Ω), exp (t * X x) ∂μ = ∫ (x : Ω) in Set.univ, exp (t * X x) ∂μ ⊢ 0 < ↑↑μ ((Function.support fun x => exp (t * X x)) ∩ Set.univ) [PROOFSTEP] have h_eq_univ : (Function.support fun x : Ω => exp (t * X x)) = Set.univ := by ext1 x simp only [Function.mem_support, Set.mem_univ, iff_true_iff] exact (exp_pos _).ne' [GOAL] Ω : Type u_1 ι : Type u_2 m : MeasurableSpace Ω X : Ω → ℝ p : ℕ μ : Measure Ω t : ℝ hμ : μ ≠ 0 h_int_X : Integrable fun ω => exp (t * X ω) this : ∫ (x : Ω), exp (t * X x) ∂μ = ∫ (x : Ω) in Set.univ, exp (t * X x) ∂μ ⊢ (Function.support fun x => exp (t * X x)) = Set.univ [PROOFSTEP] ext1 x [GOAL] case h Ω : Type u_1 ι : Type u_2 m : MeasurableSpace Ω X : Ω → ℝ p : ℕ μ : Measure Ω t : ℝ hμ : μ ≠ 0 h_int_X : Integrable fun ω => exp (t * X ω) this : ∫ (x : Ω), exp (t * X x) ∂μ = ∫ (x : Ω) in Set.univ, exp (t * X x) ∂μ x : Ω ⊢ (x ∈ Function.support fun x => exp (t * X x)) ↔ x ∈ Set.univ [PROOFSTEP] simp only [Function.mem_support, Set.mem_univ, iff_true_iff] [GOAL] case h Ω : Type u_1 ι : Type u_2 m : MeasurableSpace Ω X : Ω → ℝ p : ℕ μ : Measure Ω t : ℝ hμ : μ ≠ 0 h_int_X : Integrable fun ω => exp (t * X ω) this : ∫ (x : Ω), exp (t * X x) ∂μ = ∫ (x : Ω) in Set.univ, exp (t * X x) ∂μ x : Ω ⊢ exp (t * X x) ≠ 0 [PROOFSTEP] exact (exp_pos _).ne' [GOAL] Ω : Type u_1 ι : Type u_2 m : MeasurableSpace Ω X : Ω → ℝ p : ℕ μ : Measure Ω t : ℝ hμ : μ ≠ 0 h_int_X : Integrable fun ω => exp (t * X ω) this : ∫ (x : Ω), exp (t * X x) ∂μ = ∫ (x : Ω) in Set.univ, exp (t * X x) ∂μ h_eq_univ : (Function.support fun x => exp (t * X x)) = Set.univ ⊢ 0 < ↑↑μ ((Function.support fun x => exp (t * X x)) ∩ Set.univ) [PROOFSTEP] rw [h_eq_univ, Set.inter_univ _] [GOAL] Ω : Type u_1 ι : Type u_2 m : MeasurableSpace Ω X : Ω → ℝ p : ℕ μ : Measure Ω t : ℝ hμ : μ ≠ 0 h_int_X : Integrable fun ω => exp (t * X ω) this : ∫ (x : Ω), exp (t * X x) ∂μ = ∫ (x : Ω) in Set.univ, exp (t * X x) ∂μ h_eq_univ : (Function.support fun x => exp (t * X x)) = Set.univ ⊢ 0 < ↑↑μ Set.univ [PROOFSTEP] refine' Ne.bot_lt _ [GOAL] Ω : Type u_1 ι : Type u_2 m : MeasurableSpace Ω X : Ω → ℝ p : ℕ μ : Measure Ω t : ℝ hμ : μ ≠ 0 h_int_X : Integrable fun ω => exp (t * X ω) this : ∫ (x : Ω), exp (t * X x) ∂μ = ∫ (x : Ω) in Set.univ, exp (t * X x) ∂μ h_eq_univ : (Function.support fun x => exp (t * X x)) = Set.univ ⊢ ↑↑μ Set.univ ≠ ⊥ [PROOFSTEP] simp only [hμ, ENNReal.bot_eq_zero, Ne.def, Measure.measure_univ_eq_zero, not_false_iff] [GOAL] Ω : Type u_1 ι : Type u_2 m : MeasurableSpace Ω X : Ω → ℝ p : ℕ μ : Measure Ω t : ℝ hμ : μ ≠ 0 h_int_X : Integrable fun ω => exp (t * X ω) this : ∫ (x : Ω), exp (t * X x) ∂μ = ∫ (x : Ω) in Set.univ, exp (t * X x) ∂μ ⊢ 0 ≤ᵐ[Measure.restrict μ Set.univ] fun x => exp (t * X x) [PROOFSTEP] refine' eventually_of_forall fun x => _ [GOAL] Ω : Type u_1 ι : Type u_2 m : MeasurableSpace Ω X : Ω → ℝ p : ℕ μ : Measure Ω t : ℝ hμ : μ ≠ 0 h_int_X : Integrable fun ω => exp (t * X ω) this : ∫ (x : Ω), exp (t * X x) ∂μ = ∫ (x : Ω) in Set.univ, exp (t * X x) ∂μ x : Ω ⊢ OfNat.ofNat 0 x ≤ (fun x => exp (t * X x)) x [PROOFSTEP] rw [Pi.zero_apply] [GOAL] Ω : Type u_1 ι : Type u_2 m : MeasurableSpace Ω X : Ω → ℝ p : ℕ μ : Measure Ω t : ℝ hμ : μ ≠ 0 h_int_X : Integrable fun ω => exp (t * X ω) this : ∫ (x : Ω), exp (t * X x) ∂μ = ∫ (x : Ω) in Set.univ, exp (t * X x) ∂μ x : Ω ⊢ 0 ≤ (fun x => exp (t * X x)) x [PROOFSTEP] exact (exp_pos _).le [GOAL] Ω : Type u_1 ι : Type u_2 m : MeasurableSpace Ω X : Ω → ℝ p : ℕ μ : Measure Ω t : ℝ hμ : μ ≠ 0 h_int_X : Integrable fun ω => exp (t * X ω) this : ∫ (x : Ω), exp (t * X x) ∂μ = ∫ (x : Ω) in Set.univ, exp (t * X x) ∂μ ⊢ IntegrableOn (fun x => exp (t * X x)) Set.univ [PROOFSTEP] rwa [integrableOn_univ] [GOAL] Ω : Type u_1 ι : Type u_2 m : MeasurableSpace Ω X : Ω → ℝ p : ℕ μ : Measure Ω t : ℝ ⊢ mgf (-X) μ t = mgf X μ (-t) [PROOFSTEP] simp_rw [mgf, Pi.neg_apply, mul_neg, neg_mul] [GOAL] Ω : Type u_1 ι : Type u_2 m : MeasurableSpace Ω X : Ω → ℝ p : ℕ μ : Measure Ω t : ℝ ⊢ cgf (-X) μ t = cgf X μ (-t) [PROOFSTEP] simp_rw [cgf, mgf_neg] [GOAL] Ω : Type u_1 ι : Type u_2 m : MeasurableSpace Ω X✝ : Ω → ℝ p : ℕ μ : Measure Ω t✝ : ℝ X Y : Ω → ℝ h_indep : IndepFun X Y s t : ℝ ⊢ IndepFun (fun ω => exp (s * X ω)) fun ω => exp (t * Y ω) [PROOFSTEP] have h_meas : ∀ t, Measurable fun x => exp (t * x) := fun t => (measurable_id'.const_mul t).exp [GOAL] Ω : Type u_1 ι : Type u_2 m : MeasurableSpace Ω X✝ : Ω → ℝ p : ℕ μ : Measure Ω t✝ : ℝ X Y : Ω → ℝ h_indep : IndepFun X Y s t : ℝ h_meas : ∀ (t : ℝ), Measurable fun x => exp (t * x) ⊢ IndepFun (fun ω => exp (s * X ω)) fun ω => exp (t * Y ω) [PROOFSTEP] change IndepFun ((fun x => exp (s * x)) ∘ X) ((fun x => exp (t * x)) ∘ Y) μ [GOAL] Ω : Type u_1 ι : Type u_2 m : MeasurableSpace Ω X✝ : Ω → ℝ p : ℕ μ : Measure Ω t✝ : ℝ X Y : Ω → ℝ h_indep : IndepFun X Y s t : ℝ h_meas : ∀ (t : ℝ), Measurable fun x => exp (t * x) ⊢ IndepFun ((fun x => exp (s * x)) ∘ X) ((fun x => exp (t * x)) ∘ Y) [PROOFSTEP] exact IndepFun.comp h_indep (h_meas s) (h_meas t) [GOAL] Ω : Type u_1 ι : Type u_2 m : MeasurableSpace Ω X✝ : Ω → ℝ p : ℕ μ : Measure Ω t : ℝ X Y : Ω → ℝ h_indep : IndepFun X Y hX : AEStronglyMeasurable (fun ω => exp (t * X ω)) μ hY : AEStronglyMeasurable (fun ω => exp (t * Y ω)) μ ⊢ mgf (X + Y) μ t = mgf X μ t * mgf Y μ t [PROOFSTEP] simp_rw [mgf, Pi.add_apply, mul_add, exp_add] [GOAL] Ω : Type u_1 ι : Type u_2 m : MeasurableSpace Ω X✝ : Ω → ℝ p : ℕ μ : Measure Ω t : ℝ X Y : Ω → ℝ h_indep : IndepFun X Y hX : AEStronglyMeasurable (fun ω => exp (t * X ω)) μ hY : AEStronglyMeasurable (fun ω => exp (t * Y ω)) μ ⊢ ∫ (x : Ω), exp (t * X x) * exp (t * Y x) ∂μ = (∫ (x : Ω), exp (t * X x) ∂μ) * ∫ (x : Ω), exp (t * Y x) ∂μ [PROOFSTEP] exact (h_indep.exp_mul t t).integral_mul hX hY [GOAL] Ω : Type u_1 ι : Type u_2 m : MeasurableSpace Ω X✝ : Ω → ℝ p : ℕ μ : Measure Ω t : ℝ X Y : Ω → ℝ h_indep : IndepFun X Y hX : AEStronglyMeasurable X μ hY : AEStronglyMeasurable Y μ ⊢ mgf (X + Y) μ t = mgf X μ t * mgf Y μ t [PROOFSTEP] have A : Continuous fun x : ℝ => exp (t * x) := by continuity [GOAL] Ω : Type u_1 ι : Type u_2 m : MeasurableSpace Ω X✝ : Ω → ℝ p : ℕ μ : Measure Ω t : ℝ X Y : Ω → ℝ h_indep : IndepFun X Y hX : AEStronglyMeasurable X μ hY : AEStronglyMeasurable Y μ ⊢ Continuous fun x => exp (t * x) [PROOFSTEP] continuity [GOAL] Ω : Type u_1 ι : Type u_2 m : MeasurableSpace Ω X✝ : Ω → ℝ p : ℕ μ : Measure Ω t : ℝ X Y : Ω → ℝ h_indep : IndepFun X Y hX : AEStronglyMeasurable X μ hY : AEStronglyMeasurable Y μ A : Continuous fun x => exp (t * x) ⊢ mgf (X + Y) μ t = mgf X μ t * mgf Y μ t [PROOFSTEP] have h'X : AEStronglyMeasurable (fun ω => exp (t * X ω)) μ := A.aestronglyMeasurable.comp_aemeasurable hX.aemeasurable [GOAL] Ω : Type u_1 ι : Type u_2 m : MeasurableSpace Ω X✝ : Ω → ℝ p : ℕ μ : Measure Ω t : ℝ X Y : Ω → ℝ h_indep : IndepFun X Y hX : AEStronglyMeasurable X μ hY : AEStronglyMeasurable Y μ A : Continuous fun x => exp (t * x) h'X : AEStronglyMeasurable (fun ω => exp (t * X ω)) μ ⊢ mgf (X + Y) μ t = mgf X μ t * mgf Y μ t [PROOFSTEP] have h'Y : AEStronglyMeasurable (fun ω => exp (t * Y ω)) μ := A.aestronglyMeasurable.comp_aemeasurable hY.aemeasurable [GOAL] Ω : Type u_1 ι : Type u_2 m : MeasurableSpace Ω X✝ : Ω → ℝ p : ℕ μ : Measure Ω t : ℝ X Y : Ω → ℝ h_indep : IndepFun X Y hX : AEStronglyMeasurable X μ hY : AEStronglyMeasurable Y μ A : Continuous fun x => exp (t * x) h'X : AEStronglyMeasurable (fun ω => exp (t * X ω)) μ h'Y : AEStronglyMeasurable (fun ω => exp (t * Y ω)) μ ⊢ mgf (X + Y) μ t = mgf X μ t * mgf Y μ t [PROOFSTEP] exact h_indep.mgf_add h'X h'Y [GOAL] Ω : Type u_1 ι : Type u_2 m : MeasurableSpace Ω X✝ : Ω → ℝ p : ℕ μ : Measure Ω t : ℝ X Y : Ω → ℝ h_indep : IndepFun X Y h_int_X : Integrable fun ω => exp (t * X ω) h_int_Y : Integrable fun ω => exp (t * Y ω) ⊢ cgf (X + Y) μ t = cgf X μ t + cgf Y μ t [PROOFSTEP] by_cases hμ : μ = 0 [GOAL] case pos Ω : Type u_1 ι : Type u_2 m : MeasurableSpace Ω X✝ : Ω → ℝ p : ℕ μ : Measure Ω t : ℝ X Y : Ω → ℝ h_indep : IndepFun X Y h_int_X : Integrable fun ω => exp (t * X ω) h_int_Y : Integrable fun ω => exp (t * Y ω) hμ : μ = 0 ⊢ cgf (X + Y) μ t = cgf X μ t + cgf Y μ t [PROOFSTEP] simp [hμ] [GOAL] case neg Ω : Type u_1 ι : Type u_2 m : MeasurableSpace Ω X✝ : Ω → ℝ p : ℕ μ : Measure Ω t : ℝ X Y : Ω → ℝ h_indep : IndepFun X Y h_int_X : Integrable fun ω => exp (t * X ω) h_int_Y : Integrable fun ω => exp (t * Y ω) hμ : ¬μ = 0 ⊢ cgf (X + Y) μ t = cgf X μ t + cgf Y μ t [PROOFSTEP] simp only [cgf, h_indep.mgf_add h_int_X.aestronglyMeasurable h_int_Y.aestronglyMeasurable] [GOAL] case neg Ω : Type u_1 ι : Type u_2 m : MeasurableSpace Ω X✝ : Ω → ℝ p : ℕ μ : Measure Ω t : ℝ X Y : Ω → ℝ h_indep : IndepFun X Y h_int_X : Integrable fun ω => exp (t * X ω) h_int_Y : Integrable fun ω => exp (t * Y ω) hμ : ¬μ = 0 ⊢ log (mgf X μ t * mgf Y μ t) = log (mgf X μ t) + log (mgf Y μ t) [PROOFSTEP] exact log_mul (mgf_pos' hμ h_int_X).ne' (mgf_pos' hμ h_int_Y).ne' [GOAL] Ω : Type u_1 ι : Type u_2 m : MeasurableSpace Ω X✝ : Ω → ℝ p : ℕ μ : Measure Ω t : ℝ X Y : Ω → ℝ h_int_X : AEStronglyMeasurable (fun ω => exp (t * X ω)) μ h_int_Y : AEStronglyMeasurable (fun ω => exp (t * Y ω)) μ ⊢ AEStronglyMeasurable (fun ω => exp (t * (X + Y) ω)) μ [PROOFSTEP] simp_rw [Pi.add_apply, mul_add, exp_add] [GOAL] Ω : Type u_1 ι : Type u_2 m : MeasurableSpace Ω X✝ : Ω → ℝ p : ℕ μ : Measure Ω t : ℝ X Y : Ω → ℝ h_int_X : AEStronglyMeasurable (fun ω => exp (t * X ω)) μ h_int_Y : AEStronglyMeasurable (fun ω => exp (t * Y ω)) μ ⊢ AEStronglyMeasurable (fun ω => exp (t * X ω) * exp (t * Y ω)) μ [PROOFSTEP] exact AEStronglyMeasurable.mul h_int_X h_int_Y [GOAL] Ω : Type u_1 ι : Type u_2 m : MeasurableSpace Ω X✝ : Ω → ℝ p : ℕ μ : Measure Ω t : ℝ X : ι → Ω → ℝ s : Finset ι h_int : ∀ (i : ι), i ∈ s → AEStronglyMeasurable (fun ω => exp (t * X i ω)) μ ⊢ AEStronglyMeasurable (fun ω => exp (t * Finset.sum s (fun i => X i) ω)) μ [PROOFSTEP] classical induction' s using Finset.induction_on with i s hi_notin_s h_rec h_int · simp only [Pi.zero_apply, sum_apply, sum_empty, mul_zero, exp_zero] exact aestronglyMeasurable_const · have : ∀ i : ι, i ∈ s → AEStronglyMeasurable (fun ω : Ω => exp (t * X i ω)) μ := fun i hi => h_int i (mem_insert_of_mem hi) specialize h_rec this rw [sum_insert hi_notin_s] apply aestronglyMeasurable_exp_mul_add (h_int i (mem_insert_self _ _)) h_rec [GOAL] Ω : Type u_1 ι : Type u_2 m : MeasurableSpace Ω X✝ : Ω → ℝ p : ℕ μ : Measure Ω t : ℝ X : ι → Ω → ℝ s : Finset ι h_int : ∀ (i : ι), i ∈ s → AEStronglyMeasurable (fun ω => exp (t * X i ω)) μ ⊢ AEStronglyMeasurable (fun ω => exp (t * Finset.sum s (fun i => X i) ω)) μ [PROOFSTEP] induction' s using Finset.induction_on with i s hi_notin_s h_rec h_int [GOAL] case empty Ω : Type u_1 ι : Type u_2 m : MeasurableSpace Ω X✝ : Ω → ℝ p : ℕ μ : Measure Ω t : ℝ X : ι → Ω → ℝ s : Finset ι h_int✝ : ∀ (i : ι), i ∈ s → AEStronglyMeasurable (fun ω => exp (t * X i ω)) μ h_int : ∀ (i : ι), i ∈ ∅ → AEStronglyMeasurable (fun ω => exp (t * X i ω)) μ ⊢ AEStronglyMeasurable (fun ω => exp (t * Finset.sum ∅ (fun i => X i) ω)) μ [PROOFSTEP] simp only [Pi.zero_apply, sum_apply, sum_empty, mul_zero, exp_zero] [GOAL] case empty Ω : Type u_1 ι : Type u_2 m : MeasurableSpace Ω X✝ : Ω → ℝ p : ℕ μ : Measure Ω t : ℝ X : ι → Ω → ℝ s : Finset ι h_int✝ : ∀ (i : ι), i ∈ s → AEStronglyMeasurable (fun ω => exp (t * X i ω)) μ h_int : ∀ (i : ι), i ∈ ∅ → AEStronglyMeasurable (fun ω => exp (t * X i ω)) μ ⊢ AEStronglyMeasurable (fun ω => 1) μ [PROOFSTEP] exact aestronglyMeasurable_const [GOAL] case insert Ω : Type u_1 ι : Type u_2 m : MeasurableSpace Ω X✝ : Ω → ℝ p : ℕ μ : Measure Ω t : ℝ X : ι → Ω → ℝ s✝ : Finset ι h_int✝ : ∀ (i : ι), i ∈ s✝ → AEStronglyMeasurable (fun ω => exp (t * X i ω)) μ i : ι s : Finset ι hi_notin_s : ¬i ∈ s h_rec : (∀ (i : ι), i ∈ s → AEStronglyMeasurable (fun ω => exp (t * X i ω)) μ) → AEStronglyMeasurable (fun ω => exp (t * Finset.sum s (fun i => X i) ω)) μ h_int : ∀ (i_1 : ι), i_1 ∈ insert i s → AEStronglyMeasurable (fun ω => exp (t * X i_1 ω)) μ ⊢ AEStronglyMeasurable (fun ω => exp (t * Finset.sum (insert i s) (fun i => X i) ω)) μ [PROOFSTEP] have : ∀ i : ι, i ∈ s → AEStronglyMeasurable (fun ω : Ω => exp (t * X i ω)) μ := fun i hi => h_int i (mem_insert_of_mem hi) [GOAL] case insert Ω : Type u_1 ι : Type u_2 m : MeasurableSpace Ω X✝ : Ω → ℝ p : ℕ μ : Measure Ω t : ℝ X : ι → Ω → ℝ s✝ : Finset ι h_int✝ : ∀ (i : ι), i ∈ s✝ → AEStronglyMeasurable (fun ω => exp (t * X i ω)) μ i : ι s : Finset ι hi_notin_s : ¬i ∈ s h_rec : (∀ (i : ι), i ∈ s → AEStronglyMeasurable (fun ω => exp (t * X i ω)) μ) → AEStronglyMeasurable (fun ω => exp (t * Finset.sum s (fun i => X i) ω)) μ h_int : ∀ (i_1 : ι), i_1 ∈ insert i s → AEStronglyMeasurable (fun ω => exp (t * X i_1 ω)) μ this : ∀ (i : ι), i ∈ s → AEStronglyMeasurable (fun ω => exp (t * X i ω)) μ ⊢ AEStronglyMeasurable (fun ω => exp (t * Finset.sum (insert i s) (fun i => X i) ω)) μ [PROOFSTEP] specialize h_rec this [GOAL] case insert Ω : Type u_1 ι : Type u_2 m : MeasurableSpace Ω X✝ : Ω → ℝ p : ℕ μ : Measure Ω t : ℝ X : ι → Ω → ℝ s✝ : Finset ι h_int✝ : ∀ (i : ι), i ∈ s✝ → AEStronglyMeasurable (fun ω => exp (t * X i ω)) μ i : ι s : Finset ι hi_notin_s : ¬i ∈ s h_int : ∀ (i_1 : ι), i_1 ∈ insert i s → AEStronglyMeasurable (fun ω => exp (t * X i_1 ω)) μ this : ∀ (i : ι), i ∈ s → AEStronglyMeasurable (fun ω => exp (t * X i ω)) μ h_rec : AEStronglyMeasurable (fun ω => exp (t * Finset.sum s (fun i => X i) ω)) μ ⊢ AEStronglyMeasurable (fun ω => exp (t * Finset.sum (insert i s) (fun i => X i) ω)) μ [PROOFSTEP] rw [sum_insert hi_notin_s] [GOAL] case insert Ω : Type u_1 ι : Type u_2 m : MeasurableSpace Ω X✝ : Ω → ℝ p : ℕ μ : Measure Ω t : ℝ X : ι → Ω → ℝ s✝ : Finset ι h_int✝ : ∀ (i : ι), i ∈ s✝ → AEStronglyMeasurable (fun ω => exp (t * X i ω)) μ i : ι s : Finset ι hi_notin_s : ¬i ∈ s h_int : ∀ (i_1 : ι), i_1 ∈ insert i s → AEStronglyMeasurable (fun ω => exp (t * X i_1 ω)) μ this : ∀ (i : ι), i ∈ s → AEStronglyMeasurable (fun ω => exp (t * X i ω)) μ h_rec : AEStronglyMeasurable (fun ω => exp (t * Finset.sum s (fun i => X i) ω)) μ ⊢ AEStronglyMeasurable (fun ω => exp (t * (X i + ∑ x in s, X x) ω)) μ [PROOFSTEP] apply aestronglyMeasurable_exp_mul_add (h_int i (mem_insert_self _ _)) h_rec [GOAL] Ω : Type u_1 ι : Type u_2 m : MeasurableSpace Ω X✝ : Ω → ℝ p : ℕ μ : Measure Ω t : ℝ X Y : Ω → ℝ h_indep : IndepFun X Y h_int_X : Integrable fun ω => exp (t * X ω) h_int_Y : Integrable fun ω => exp (t * Y ω) ⊢ Integrable fun ω => exp (t * (X + Y) ω) [PROOFSTEP] simp_rw [Pi.add_apply, mul_add, exp_add] [GOAL] Ω : Type u_1 ι : Type u_2 m : MeasurableSpace Ω X✝ : Ω → ℝ p : ℕ μ : Measure Ω t : ℝ X Y : Ω → ℝ h_indep : IndepFun X Y h_int_X : Integrable fun ω => exp (t * X ω) h_int_Y : Integrable fun ω => exp (t * Y ω) ⊢ Integrable fun ω => exp (t * X ω) * exp (t * Y ω) [PROOFSTEP] exact (h_indep.exp_mul t t).integrable_mul h_int_X h_int_Y [GOAL] Ω : Type u_1 ι : Type u_2 m : MeasurableSpace Ω X✝ : Ω → ℝ p : ℕ μ : Measure Ω t : ℝ inst✝ : IsProbabilityMeasure μ X : ι → Ω → ℝ h_indep : iIndepFun (fun i => inferInstance) X h_meas : ∀ (i : ι), Measurable (X i) s : Finset ι h_int : ∀ (i : ι), i ∈ s → Integrable fun ω => exp (t * X i ω) ⊢ Integrable fun ω => exp (t * Finset.sum s (fun i => X i) ω) [PROOFSTEP] classical induction' s using Finset.induction_on with i s hi_notin_s h_rec h_int · simp only [Pi.zero_apply, sum_apply, sum_empty, mul_zero, exp_zero] exact integrable_const _ · have : ∀ i : ι, i ∈ s → Integrable (fun ω : Ω => exp (t * X i ω)) μ := fun i hi => h_int i (mem_insert_of_mem hi) specialize h_rec this rw [sum_insert hi_notin_s] refine' IndepFun.integrable_exp_mul_add _ (h_int i (mem_insert_self _ _)) h_rec exact (h_indep.indepFun_finset_sum_of_not_mem h_meas hi_notin_s).symm [GOAL] Ω : Type u_1 ι : Type u_2 m : MeasurableSpace Ω X✝ : Ω → ℝ p : ℕ μ : Measure Ω t : ℝ inst✝ : IsProbabilityMeasure μ X : ι → Ω → ℝ h_indep : iIndepFun (fun i => inferInstance) X h_meas : ∀ (i : ι), Measurable (X i) s : Finset ι h_int : ∀ (i : ι), i ∈ s → Integrable fun ω => exp (t * X i ω) ⊢ Integrable fun ω => exp (t * Finset.sum s (fun i => X i) ω) [PROOFSTEP] induction' s using Finset.induction_on with i s hi_notin_s h_rec h_int [GOAL] case empty Ω : Type u_1 ι : Type u_2 m : MeasurableSpace Ω X✝ : Ω → ℝ p : ℕ μ : Measure Ω t : ℝ inst✝ : IsProbabilityMeasure μ X : ι → Ω → ℝ h_indep : iIndepFun (fun i => inferInstance) X h_meas : ∀ (i : ι), Measurable (X i) s : Finset ι h_int✝ : ∀ (i : ι), i ∈ s → Integrable fun ω => exp (t * X i ω) h_int : ∀ (i : ι), i ∈ ∅ → Integrable fun ω => exp (t * X i ω) ⊢ Integrable fun ω => exp (t * Finset.sum ∅ (fun i => X i) ω) [PROOFSTEP] simp only [Pi.zero_apply, sum_apply, sum_empty, mul_zero, exp_zero] [GOAL] case empty Ω : Type u_1 ι : Type u_2 m : MeasurableSpace Ω X✝ : Ω → ℝ p : ℕ μ : Measure Ω t : ℝ inst✝ : IsProbabilityMeasure μ X : ι → Ω → ℝ h_indep : iIndepFun (fun i => inferInstance) X h_meas : ∀ (i : ι), Measurable (X i) s : Finset ι h_int✝ : ∀ (i : ι), i ∈ s → Integrable fun ω => exp (t * X i ω) h_int : ∀ (i : ι), i ∈ ∅ → Integrable fun ω => exp (t * X i ω) ⊢ Integrable fun ω => 1 [PROOFSTEP] exact integrable_const _ [GOAL] case insert Ω : Type u_1 ι : Type u_2 m : MeasurableSpace Ω X✝ : Ω → ℝ p : ℕ μ : Measure Ω t : ℝ inst✝ : IsProbabilityMeasure μ X : ι → Ω → ℝ h_indep : iIndepFun (fun i => inferInstance) X h_meas : ∀ (i : ι), Measurable (X i) s✝ : Finset ι h_int✝ : ∀ (i : ι), i ∈ s✝ → Integrable fun ω => exp (t * X i ω) i : ι s : Finset ι hi_notin_s : ¬i ∈ s h_rec : (∀ (i : ι), i ∈ s → Integrable fun ω => exp (t * X i ω)) → Integrable fun ω => exp (t * Finset.sum s (fun i => X i) ω) h_int : ∀ (i_1 : ι), i_1 ∈ insert i s → Integrable fun ω => exp (t * X i_1 ω) ⊢ Integrable fun ω => exp (t * Finset.sum (insert i s) (fun i => X i) ω) [PROOFSTEP] have : ∀ i : ι, i ∈ s → Integrable (fun ω : Ω => exp (t * X i ω)) μ := fun i hi => h_int i (mem_insert_of_mem hi) [GOAL] case insert Ω : Type u_1 ι : Type u_2 m : MeasurableSpace Ω X✝ : Ω → ℝ p : ℕ μ : Measure Ω t : ℝ inst✝ : IsProbabilityMeasure μ X : ι → Ω → ℝ h_indep : iIndepFun (fun i => inferInstance) X h_meas : ∀ (i : ι), Measurable (X i) s✝ : Finset ι h_int✝ : ∀ (i : ι), i ∈ s✝ → Integrable fun ω => exp (t * X i ω) i : ι s : Finset ι hi_notin_s : ¬i ∈ s h_rec : (∀ (i : ι), i ∈ s → Integrable fun ω => exp (t * X i ω)) → Integrable fun ω => exp (t * Finset.sum s (fun i => X i) ω) h_int : ∀ (i_1 : ι), i_1 ∈ insert i s → Integrable fun ω => exp (t * X i_1 ω) this : ∀ (i : ι), i ∈ s → Integrable fun ω => exp (t * X i ω) ⊢ Integrable fun ω => exp (t * Finset.sum (insert i s) (fun i => X i) ω) [PROOFSTEP] specialize h_rec this [GOAL] case insert Ω : Type u_1 ι : Type u_2 m : MeasurableSpace Ω X✝ : Ω → ℝ p : ℕ μ : Measure Ω t : ℝ inst✝ : IsProbabilityMeasure μ X : ι → Ω → ℝ h_indep : iIndepFun (fun i => inferInstance) X h_meas : ∀ (i : ι), Measurable (X i) s✝ : Finset ι h_int✝ : ∀ (i : ι), i ∈ s✝ → Integrable fun ω => exp (t * X i ω) i : ι s : Finset ι hi_notin_s : ¬i ∈ s h_int : ∀ (i_1 : ι), i_1 ∈ insert i s → Integrable fun ω => exp (t * X i_1 ω) this : ∀ (i : ι), i ∈ s → Integrable fun ω => exp (t * X i ω) h_rec : Integrable fun ω => exp (t * Finset.sum s (fun i => X i) ω) ⊢ Integrable fun ω => exp (t * Finset.sum (insert i s) (fun i => X i) ω) [PROOFSTEP] rw [sum_insert hi_notin_s] [GOAL] case insert Ω : Type u_1 ι : Type u_2 m : MeasurableSpace Ω X✝ : Ω → ℝ p : ℕ μ : Measure Ω t : ℝ inst✝ : IsProbabilityMeasure μ X : ι → Ω → ℝ h_indep : iIndepFun (fun i => inferInstance) X h_meas : ∀ (i : ι), Measurable (X i) s✝ : Finset ι h_int✝ : ∀ (i : ι), i ∈ s✝ → Integrable fun ω => exp (t * X i ω) i : ι s : Finset ι hi_notin_s : ¬i ∈ s h_int : ∀ (i_1 : ι), i_1 ∈ insert i s → Integrable fun ω => exp (t * X i_1 ω) this : ∀ (i : ι), i ∈ s → Integrable fun ω => exp (t * X i ω) h_rec : Integrable fun ω => exp (t * Finset.sum s (fun i => X i) ω) ⊢ Integrable fun ω => exp (t * (X i + ∑ x in s, X x) ω) [PROOFSTEP] refine' IndepFun.integrable_exp_mul_add _ (h_int i (mem_insert_self _ _)) h_rec [GOAL] case insert Ω : Type u_1 ι : Type u_2 m : MeasurableSpace Ω X✝ : Ω → ℝ p : ℕ μ : Measure Ω t : ℝ inst✝ : IsProbabilityMeasure μ X : ι → Ω → ℝ h_indep : iIndepFun (fun i => inferInstance) X h_meas : ∀ (i : ι), Measurable (X i) s✝ : Finset ι h_int✝ : ∀ (i : ι), i ∈ s✝ → Integrable fun ω => exp (t * X i ω) i : ι s : Finset ι hi_notin_s : ¬i ∈ s h_int : ∀ (i_1 : ι), i_1 ∈ insert i s → Integrable fun ω => exp (t * X i_1 ω) this : ∀ (i : ι), i ∈ s → Integrable fun ω => exp (t * X i ω) h_rec : Integrable fun ω => exp (t * Finset.sum s (fun i => X i) ω) ⊢ IndepFun (X i) (∑ x in s, X x) [PROOFSTEP] exact (h_indep.indepFun_finset_sum_of_not_mem h_meas hi_notin_s).symm [GOAL] Ω : Type u_1 ι : Type u_2 m : MeasurableSpace Ω X✝ : Ω → ℝ p : ℕ μ : Measure Ω t : ℝ inst✝ : IsProbabilityMeasure μ X : ι → Ω → ℝ h_indep : iIndepFun (fun i => inferInstance) X h_meas : ∀ (i : ι), Measurable (X i) s : Finset ι ⊢ mgf (∑ i in s, X i) μ t = ∏ i in s, mgf (X i) μ t [PROOFSTEP] classical induction' s using Finset.induction_on with i s hi_notin_s h_rec h_int · simp only [sum_empty, mgf_zero_fun, measure_univ, ENNReal.one_toReal, prod_empty] · have h_int' : ∀ i : ι, AEStronglyMeasurable (fun ω : Ω => exp (t * X i ω)) μ := fun i => ((h_meas i).const_mul t).exp.aestronglyMeasurable rw [sum_insert hi_notin_s, IndepFun.mgf_add (h_indep.indepFun_finset_sum_of_not_mem h_meas hi_notin_s).symm (h_int' i) (aestronglyMeasurable_exp_mul_sum fun i _ => h_int' i), h_rec, prod_insert hi_notin_s] [GOAL] Ω : Type u_1 ι : Type u_2 m : MeasurableSpace Ω X✝ : Ω → ℝ p : ℕ μ : Measure Ω t : ℝ inst✝ : IsProbabilityMeasure μ X : ι → Ω → ℝ h_indep : iIndepFun (fun i => inferInstance) X h_meas : ∀ (i : ι), Measurable (X i) s : Finset ι ⊢ mgf (∑ i in s, X i) μ t = ∏ i in s, mgf (X i) μ t [PROOFSTEP] induction' s using Finset.induction_on with i s hi_notin_s h_rec h_int [GOAL] case empty Ω : Type u_1 ι : Type u_2 m : MeasurableSpace Ω X✝ : Ω → ℝ p : ℕ μ : Measure Ω t : ℝ inst✝ : IsProbabilityMeasure μ X : ι → Ω → ℝ h_indep : iIndepFun (fun i => inferInstance) X h_meas : ∀ (i : ι), Measurable (X i) ⊢ mgf (∑ i in ∅, X i) μ t = ∏ i in ∅, mgf (X i) μ t [PROOFSTEP] simp only [sum_empty, mgf_zero_fun, measure_univ, ENNReal.one_toReal, prod_empty] [GOAL] case insert Ω : Type u_1 ι : Type u_2 m : MeasurableSpace Ω X✝ : Ω → ℝ p : ℕ μ : Measure Ω t : ℝ inst✝ : IsProbabilityMeasure μ X : ι → Ω → ℝ h_indep : iIndepFun (fun i => inferInstance) X h_meas : ∀ (i : ι), Measurable (X i) i : ι s : Finset ι hi_notin_s : ¬i ∈ s h_rec : mgf (∑ i in s, X i) μ t = ∏ i in s, mgf (X i) μ t ⊢ mgf (∑ i in insert i s, X i) μ t = ∏ i in insert i s, mgf (X i) μ t [PROOFSTEP] have h_int' : ∀ i : ι, AEStronglyMeasurable (fun ω : Ω => exp (t * X i ω)) μ := fun i => ((h_meas i).const_mul t).exp.aestronglyMeasurable [GOAL] case insert Ω : Type u_1 ι : Type u_2 m : MeasurableSpace Ω X✝ : Ω → ℝ p : ℕ μ : Measure Ω t : ℝ inst✝ : IsProbabilityMeasure μ X : ι → Ω → ℝ h_indep : iIndepFun (fun i => inferInstance) X h_meas : ∀ (i : ι), Measurable (X i) i : ι s : Finset ι hi_notin_s : ¬i ∈ s h_rec : mgf (∑ i in s, X i) μ t = ∏ i in s, mgf (X i) μ t h_int' : ∀ (i : ι), AEStronglyMeasurable (fun ω => exp (t * X i ω)) μ ⊢ mgf (∑ i in insert i s, X i) μ t = ∏ i in insert i s, mgf (X i) μ t [PROOFSTEP] rw [sum_insert hi_notin_s, IndepFun.mgf_add (h_indep.indepFun_finset_sum_of_not_mem h_meas hi_notin_s).symm (h_int' i) (aestronglyMeasurable_exp_mul_sum fun i _ => h_int' i), h_rec, prod_insert hi_notin_s] [GOAL] Ω : Type u_1 ι : Type u_2 m : MeasurableSpace Ω X✝ : Ω → ℝ p : ℕ μ : Measure Ω t : ℝ inst✝ : IsProbabilityMeasure μ X : ι → Ω → ℝ h_indep : iIndepFun (fun i => inferInstance) X h_meas : ∀ (i : ι), Measurable (X i) s : Finset ι h_int : ∀ (i : ι), i ∈ s → Integrable fun ω => exp (t * X i ω) ⊢ cgf (∑ i in s, X i) μ t = ∑ i in s, cgf (X i) μ t [PROOFSTEP] simp_rw [cgf] [GOAL] Ω : Type u_1 ι : Type u_2 m : MeasurableSpace Ω X✝ : Ω → ℝ p : ℕ μ : Measure Ω t : ℝ inst✝ : IsProbabilityMeasure μ X : ι → Ω → ℝ h_indep : iIndepFun (fun i => inferInstance) X h_meas : ∀ (i : ι), Measurable (X i) s : Finset ι h_int : ∀ (i : ι), i ∈ s → Integrable fun ω => exp (t * X i ω) ⊢ log (mgf (∑ i in s, X i) μ t) = ∑ x in s, log (mgf (X x) μ t) [PROOFSTEP] rw [← log_prod _ _ fun j hj => ?_] [GOAL] Ω : Type u_1 ι : Type u_2 m : MeasurableSpace Ω X✝ : Ω → ℝ p : ℕ μ : Measure Ω t : ℝ inst✝ : IsProbabilityMeasure μ X : ι → Ω → ℝ h_indep : iIndepFun (fun i => inferInstance) X h_meas : ∀ (i : ι), Measurable (X i) s : Finset ι h_int : ∀ (i : ι), i ∈ s → Integrable fun ω => exp (t * X i ω) ⊢ log (mgf (∑ i in s, X i) μ t) = log (∏ i in s, mgf (X i) μ t) [PROOFSTEP] rw [h_indep.mgf_sum h_meas] [GOAL] Ω : Type u_1 ι : Type u_2 m : MeasurableSpace Ω X✝ : Ω → ℝ p : ℕ μ : Measure Ω t : ℝ inst✝ : IsProbabilityMeasure μ X : ι → Ω → ℝ h_indep : iIndepFun (fun i => inferInstance) X h_meas : ∀ (i : ι), Measurable (X i) s : Finset ι h_int : ∀ (i : ι), i ∈ s → Integrable fun ω => exp (t * X i ω) j : ι hj : j ∈ s ⊢ mgf (X j) μ t ≠ 0 [PROOFSTEP] exact (mgf_pos (h_int j hj)).ne' [GOAL] Ω : Type u_1 ι : Type u_2 m : MeasurableSpace Ω X : Ω → ℝ p : ℕ μ : Measure Ω t : ℝ inst✝ : IsFiniteMeasure μ ε : ℝ ht : 0 ≤ t h_int : Integrable fun ω => exp (t * X ω) ⊢ ENNReal.toReal (↑↑μ {ω | ε ≤ X ω}) ≤ exp (-t * ε) * mgf X μ t [PROOFSTEP] cases' ht.eq_or_lt with ht_zero_eq ht_pos [GOAL] case inl Ω : Type u_1 ι : Type u_2 m : MeasurableSpace Ω X : Ω → ℝ p : ℕ μ : Measure Ω t : ℝ inst✝ : IsFiniteMeasure μ ε : ℝ ht : 0 ≤ t h_int : Integrable fun ω => exp (t * X ω) ht_zero_eq : 0 = t ⊢ ENNReal.toReal (↑↑μ {ω | ε ≤ X ω}) ≤ exp (-t * ε) * mgf X μ t [PROOFSTEP] rw [ht_zero_eq.symm] [GOAL] case inl Ω : Type u_1 ι : Type u_2 m : MeasurableSpace Ω X : Ω → ℝ p : ℕ μ : Measure Ω t : ℝ inst✝ : IsFiniteMeasure μ ε : ℝ ht : 0 ≤ t h_int : Integrable fun ω => exp (t * X ω) ht_zero_eq : 0 = t ⊢ ENNReal.toReal (↑↑μ {ω | ε ≤ X ω}) ≤ exp (-0 * ε) * mgf X μ 0 [PROOFSTEP] simp only [neg_zero, zero_mul, exp_zero, mgf_zero', one_mul] [GOAL] case inl Ω : Type u_1 ι : Type u_2 m : MeasurableSpace Ω X : Ω → ℝ p : ℕ μ : Measure Ω t : ℝ inst✝ : IsFiniteMeasure μ ε : ℝ ht : 0 ≤ t h_int : Integrable fun ω => exp (t * X ω) ht_zero_eq : 0 = t ⊢ ENNReal.toReal (↑↑μ {ω | ε ≤ X ω}) ≤ ENNReal.toReal (↑↑μ Set.univ) [PROOFSTEP] rw [ENNReal.toReal_le_toReal (measure_ne_top μ _) (measure_ne_top μ _)] [GOAL] case inl Ω : Type u_1 ι : Type u_2 m : MeasurableSpace Ω X : Ω → ℝ p : ℕ μ : Measure Ω t : ℝ inst✝ : IsFiniteMeasure μ ε : ℝ ht : 0 ≤ t h_int : Integrable fun ω => exp (t * X ω) ht_zero_eq : 0 = t ⊢ ↑↑μ {ω | ε ≤ X ω} ≤ ↑↑μ Set.univ [PROOFSTEP] exact measure_mono (Set.subset_univ _) [GOAL] case inr Ω : Type u_1 ι : Type u_2 m : MeasurableSpace Ω X : Ω → ℝ p : ℕ μ : Measure Ω t : ℝ inst✝ : IsFiniteMeasure μ ε : ℝ ht : 0 ≤ t h_int : Integrable fun ω => exp (t * X ω) ht_pos : 0 < t ⊢ ENNReal.toReal (↑↑μ {ω | ε ≤ X ω}) ≤ exp (-t * ε) * mgf X μ t [PROOFSTEP] calc (μ {ω | ε ≤ X ω}).toReal = (μ {ω | exp (t * ε) ≤ exp (t * X ω)}).toReal := by congr with ω simp only [Set.mem_setOf_eq, exp_le_exp, gt_iff_lt] exact ⟨fun h => mul_le_mul_of_nonneg_left h ht_pos.le, fun h => le_of_mul_le_mul_left h ht_pos⟩ _ ≤ (exp (t * ε))⁻¹ * μ[fun ω => exp (t * X ω)] := by have : exp (t * ε) * (μ {ω | exp (t * ε) ≤ exp (t * X ω)}).toReal ≤ μ[fun ω => exp (t * X ω)] := mul_meas_ge_le_integral_of_nonneg (fun x => (exp_pos _).le) h_int _ rwa [mul_comm (exp (t * ε))⁻¹, ← div_eq_mul_inv, le_div_iff' (exp_pos _)] _ = exp (-t * ε) * mgf X μ t := by rw [neg_mul, exp_neg]; rfl [GOAL] Ω : Type u_1 ι : Type u_2 m : MeasurableSpace Ω X : Ω → ℝ p : ℕ μ : Measure Ω t : ℝ inst✝ : IsFiniteMeasure μ ε : ℝ ht : 0 ≤ t h_int : Integrable fun ω => exp (t * X ω) ht_pos : 0 < t ⊢ ENNReal.toReal (↑↑μ {ω | ε ≤ X ω}) = ENNReal.toReal (↑↑μ {ω | exp (t * ε) ≤ exp (t * X ω)}) [PROOFSTEP] congr with ω [GOAL] case e_a.e_a.h Ω : Type u_1 ι : Type u_2 m : MeasurableSpace Ω X : Ω → ℝ p : ℕ μ : Measure Ω t : ℝ inst✝ : IsFiniteMeasure μ ε : ℝ ht : 0 ≤ t h_int : Integrable fun ω => exp (t * X ω) ht_pos : 0 < t ω : Ω ⊢ ω ∈ {ω | ε ≤ X ω} ↔ ω ∈ {ω | exp (t * ε) ≤ exp (t * X ω)} [PROOFSTEP] simp only [Set.mem_setOf_eq, exp_le_exp, gt_iff_lt] [GOAL] case e_a.e_a.h Ω : Type u_1 ι : Type u_2 m : MeasurableSpace Ω X : Ω → ℝ p : ℕ μ : Measure Ω t : ℝ inst✝ : IsFiniteMeasure μ ε : ℝ ht : 0 ≤ t h_int : Integrable fun ω => exp (t * X ω) ht_pos : 0 < t ω : Ω ⊢ ε ≤ X ω ↔ t * ε ≤ t * X ω [PROOFSTEP] exact ⟨fun h => mul_le_mul_of_nonneg_left h ht_pos.le, fun h => le_of_mul_le_mul_left h ht_pos⟩ [GOAL] Ω : Type u_1 ι : Type u_2 m : MeasurableSpace Ω X : Ω → ℝ p : ℕ μ : Measure Ω t : ℝ inst✝ : IsFiniteMeasure μ ε : ℝ ht : 0 ≤ t h_int : Integrable fun ω => exp (t * X ω) ht_pos : 0 < t ⊢ ENNReal.toReal (↑↑μ {ω | exp (t * ε) ≤ exp (t * X ω)}) ≤ (exp (t * ε))⁻¹ * ∫ (x : Ω), (fun ω => exp (t * X ω)) x ∂μ [PROOFSTEP] have : exp (t * ε) * (μ {ω | exp (t * ε) ≤ exp (t * X ω)}).toReal ≤ μ[fun ω => exp (t * X ω)] := mul_meas_ge_le_integral_of_nonneg (fun x => (exp_pos _).le) h_int _ [GOAL] Ω : Type u_1 ι : Type u_2 m : MeasurableSpace Ω X : Ω → ℝ p : ℕ μ : Measure Ω t : ℝ inst✝ : IsFiniteMeasure μ ε : ℝ ht : 0 ≤ t h_int : Integrable fun ω => exp (t * X ω) ht_pos : 0 < t this : exp (t * ε) * ENNReal.toReal (↑↑μ {ω | exp (t * ε) ≤ exp (t * X ω)}) ≤ ∫ (x : Ω), (fun ω => exp (t * X ω)) x ∂μ ⊢ ENNReal.toReal (↑↑μ {ω | exp (t * ε) ≤ exp (t * X ω)}) ≤ (exp (t * ε))⁻¹ * ∫ (x : Ω), (fun ω => exp (t * X ω)) x ∂μ [PROOFSTEP] rwa [mul_comm (exp (t * ε))⁻¹, ← div_eq_mul_inv, le_div_iff' (exp_pos _)] [GOAL] Ω : Type u_1 ι : Type u_2 m : MeasurableSpace Ω X : Ω → ℝ p : ℕ μ : Measure Ω t : ℝ inst✝ : IsFiniteMeasure μ ε : ℝ ht : 0 ≤ t h_int : Integrable fun ω => exp (t * X ω) ht_pos : 0 < t ⊢ (exp (t * ε))⁻¹ * ∫ (x : Ω), (fun ω => exp (t * X ω)) x ∂μ = exp (-t * ε) * mgf X μ t [PROOFSTEP] rw [neg_mul, exp_neg] [GOAL] Ω : Type u_1 ι : Type u_2 m : MeasurableSpace Ω X : Ω → ℝ p : ℕ μ : Measure Ω t : ℝ inst✝ : IsFiniteMeasure μ ε : ℝ ht : 0 ≤ t h_int : Integrable fun ω => exp (t * X ω) ht_pos : 0 < t ⊢ (exp (t * ε))⁻¹ * ∫ (x : Ω), (fun ω => exp (t * X ω)) x ∂μ = (exp (t * ε))⁻¹ * mgf X μ t [PROOFSTEP] rfl [GOAL] Ω : Type u_1 ι : Type u_2 m : MeasurableSpace Ω X : Ω → ℝ p : ℕ μ : Measure Ω t : ℝ inst✝ : IsFiniteMeasure μ ε : ℝ ht : t ≤ 0 h_int : Integrable fun ω => exp (t * X ω) ⊢ ENNReal.toReal (↑↑μ {ω | X ω ≤ ε}) ≤ exp (-t * ε) * mgf X μ t [PROOFSTEP] rw [← neg_neg t, ← mgf_neg, neg_neg, ← neg_mul_neg (-t)] [GOAL] Ω : Type u_1 ι : Type u_2 m : MeasurableSpace Ω X : Ω → ℝ p : ℕ μ : Measure Ω t : ℝ inst✝ : IsFiniteMeasure μ ε : ℝ ht : t ≤ 0 h_int : Integrable fun ω => exp (t * X ω) ⊢ ENNReal.toReal (↑↑μ {ω | X ω ≤ ε}) ≤ exp (- -t * -ε) * mgf (-X) μ (-t) [PROOFSTEP] refine' Eq.trans_le _ (measure_ge_le_exp_mul_mgf (-ε) (neg_nonneg.mpr ht) _) [GOAL] case refine'_1 Ω : Type u_1 ι : Type u_2 m : MeasurableSpace Ω X : Ω → ℝ p : ℕ μ : Measure Ω t : ℝ inst✝ : IsFiniteMeasure μ ε : ℝ ht : t ≤ 0 h_int : Integrable fun ω => exp (t * X ω) ⊢ ENNReal.toReal (↑↑μ {ω | X ω ≤ ε}) = ENNReal.toReal (↑↑μ {ω | -ε ≤ (-X) ω}) [PROOFSTEP] congr with ω [GOAL] case refine'_1.e_a.e_a.h Ω : Type u_1 ι : Type u_2 m : MeasurableSpace Ω X : Ω → ℝ p : ℕ μ : Measure Ω t : ℝ inst✝ : IsFiniteMeasure μ ε : ℝ ht : t ≤ 0 h_int : Integrable fun ω => exp (t * X ω) ω : Ω ⊢ ω ∈ {ω | X ω ≤ ε} ↔ ω ∈ {ω | -ε ≤ (-X) ω} [PROOFSTEP] simp only [Pi.neg_apply, neg_le_neg_iff] [GOAL] case refine'_2 Ω : Type u_1 ι : Type u_2 m : MeasurableSpace Ω X : Ω → ℝ p : ℕ μ : Measure Ω t : ℝ inst✝ : IsFiniteMeasure μ ε : ℝ ht : t ≤ 0 h_int : Integrable fun ω => exp (t * X ω) ⊢ Integrable fun ω => exp (-t * (-X) ω) [PROOFSTEP] simp_rw [Pi.neg_apply, neg_mul_neg] [GOAL] case refine'_2 Ω : Type u_1 ι : Type u_2 m : MeasurableSpace Ω X : Ω → ℝ p : ℕ μ : Measure Ω t : ℝ inst✝ : IsFiniteMeasure μ ε : ℝ ht : t ≤ 0 h_int : Integrable fun ω => exp (t * X ω) ⊢ Integrable fun ω => exp (t * X ω) [PROOFSTEP] exact h_int [GOAL] Ω : Type u_1 ι : Type u_2 m : MeasurableSpace Ω X : Ω → ℝ p : ℕ μ : Measure Ω t : ℝ inst✝ : IsFiniteMeasure μ ε : ℝ ht : 0 ≤ t h_int : Integrable fun ω => exp (t * X ω) ⊢ ENNReal.toReal (↑↑μ {ω | ε ≤ X ω}) ≤ exp (-t * ε + cgf X μ t) [PROOFSTEP] refine' (measure_ge_le_exp_mul_mgf ε ht h_int).trans _ [GOAL] Ω : Type u_1 ι : Type u_2 m : MeasurableSpace Ω X : Ω → ℝ p : ℕ μ : Measure Ω t : ℝ inst✝ : IsFiniteMeasure μ ε : ℝ ht : 0 ≤ t h_int : Integrable fun ω => exp (t * X ω) ⊢ exp (-t * ε) * mgf (fun ω => X ω) μ t ≤ exp (-t * ε + cgf X μ t) [PROOFSTEP] rw [exp_add] [GOAL] Ω : Type u_1 ι : Type u_2 m : MeasurableSpace Ω X : Ω → ℝ p : ℕ μ : Measure Ω t : ℝ inst✝ : IsFiniteMeasure μ ε : ℝ ht : 0 ≤ t h_int : Integrable fun ω => exp (t * X ω) ⊢ exp (-t * ε) * mgf (fun ω => X ω) μ t ≤ exp (-t * ε) * exp (cgf X μ t) [PROOFSTEP] exact mul_le_mul le_rfl (le_exp_log _) mgf_nonneg (exp_pos _).le [GOAL] Ω : Type u_1 ι : Type u_2 m : MeasurableSpace Ω X : Ω → ℝ p : ℕ μ : Measure Ω t : ℝ inst✝ : IsFiniteMeasure μ ε : ℝ ht : t ≤ 0 h_int : Integrable fun ω => exp (t * X ω) ⊢ ENNReal.toReal (↑↑μ {ω | X ω ≤ ε}) ≤ exp (-t * ε + cgf X μ t) [PROOFSTEP] refine' (measure_le_le_exp_mul_mgf ε ht h_int).trans _ [GOAL] Ω : Type u_1 ι : Type u_2 m : MeasurableSpace Ω X : Ω → ℝ p : ℕ μ : Measure Ω t : ℝ inst✝ : IsFiniteMeasure μ ε : ℝ ht : t ≤ 0 h_int : Integrable fun ω => exp (t * X ω) ⊢ exp (-t * ε) * mgf (fun ω => X ω) μ t ≤ exp (-t * ε + cgf X μ t) [PROOFSTEP] rw [exp_add] [GOAL] Ω : Type u_1 ι : Type u_2 m : MeasurableSpace Ω X : Ω → ℝ p : ℕ μ : Measure Ω t : ℝ inst✝ : IsFiniteMeasure μ ε : ℝ ht : t ≤ 0 h_int : Integrable fun ω => exp (t * X ω) ⊢ exp (-t * ε) * mgf (fun ω => X ω) μ t ≤ exp (-t * ε) * exp (cgf X μ t) [PROOFSTEP] exact mul_le_mul le_rfl (le_exp_log _) mgf_nonneg (exp_pos _).le
clear all; close all; I=imread('cameraman.tif'); I=im2double(I); J=fftshift(fft2(I)); [x, y]=meshgrid(-128:127, -128:127); z=sqrt(x.^2+y.^2); D1=10; D2=30; n=6; H1=1./(1+(z/D1).^(2*n)); H2=1./(1+(z/D2).^(2*n)); K1=J.*H1; K2=J.*H2; L1=ifft2(ifftshift(K1)); L2=ifft2(ifftshift(K2)); figure; subplot(131); imshow(I); subplot(132); imshow(real(L1)); subplot(133); imshow(real(L2))
lemma fun_complex_eq: "f = (\<lambda>x. Re (f x) + \<i> * Im (f x))"
import topology.continuous_function.polynomial -- hide /- # Using apply In this problem you will show that a specific polynomial is continuous, you can do this using the basic facts in the left sidebar: that adding continuous functions is continuous, likewise multiplying continuous functions remains continuous, constant functions are continuous, and the identity function is continuous. The way these lemmas are stated is very general, they work for any continuous functions on arbitrary topological spaces, but by using `apply` we can let Lean work out the details automatically. But how do we talk about the functions themselves? The basic method to speak about an unnamed function in Lean makes use of the lambda syntax. In mathematics we might just write $x ^ 3 + 7$ to describe a polynomial function, leaving it implicit that $x$ is the variable. In Lean we use the symbol λ (`\lambda`) to describe a function by placing the name of the variable after the lambda. So `λ x, x^3 + 7` defines the function which takes input `x` and outputs `x^3 + 7` in Lean. Watch out! Some of these lemmas have names with a dot like `continuous.add` (these ones prove continuity of a combination of functions) and some have an underscore like `continuous_const` (these ones state that some specific function is continuous). -/ /- Tactic : apply ## Summary If `h : P → Q` is a hypothesis, and the goal is `⊢ Q` then `apply h` changes the goal to `⊢ P`. ## Details If you have a function `h : P → Q` and your goal is `⊢ Q` then `apply h` changes the goal to `⊢ P`. The logic is simple: if you are trying to create a term of type `Q`, but `h` is a function which turns terms of type `P` into terms of type `Q`, then it will suffice to construct a term of type `P`. A mathematician might say: "we need to construct an element of $Q$, but we have a function $h:P\to Q$ so it suffices to construct an element of $P$". Or alternatively "we need to prove $Q$, but we have a proof $h$ that $P\implies Q$ so it suffices to prove $P$". -/ open polynomial-- hide /- Axiom : Adding two continuous functions is continuous continuous.add : ∀ {X M : Type} [topological_space X] [topological_space M] [has_add M] [has_continuous_add M] {f g : X → M}, continuous f → continuous g → continuous (λ (x : X), f x + g x) -/ /- Axiom : Multiplying two continuous functions is continuous continuous.mul : ∀ {X M : Type} [topological_space X] [ topological_space M] [has_mul M] [has_continuous_mul M] {f g : X → M}, continuous f → continuous g → continuous (λ (x : X), f x * g x) -/ /- Axiom : continuous.pow : ∀ {X M : Type} [topological_space X] [topological_space M] [monoid M] [has_continuous_mul M] {f : X → M}, continuous f → ∀ (n : ℕ), continuous (λ (b : X), f b ^ n) -/ /- Axiom : A constant function is continuous continuous_const : ∀ {α β : Type} [topological_space α] [topological_space β] {b : β}, continuous (λ (a : α), b) -/ /- Axiom : The identity function is continuous continuous_id : ∀ {α : Type} [topological_space α], continuous (λ x, x) -/ /- Lemma : no-side-bar -/ lemma poly_continuous : continuous (λ x : ℝ, 5 * x ^ 2 + x + 6) := begin apply continuous.add, apply continuous.add, apply continuous.mul, apply continuous_const, apply continuous.pow, apply continuous_id, apply continuous_id, apply continuous_const, end
lemma Reals_minus_iff [simp]: "- a \<in> \<real> \<longleftrightarrow> a \<in> \<real>"
# ************************************************************************* # CMI2NI: Conditional mutual inclusive information(CMI2)-based Network # Inference method from gene expression data # ************************************************************************* # This is matlab code for netwrk inference method CMI2NI. # Input: # 'data' is expression of variable,in which row is varible and column is the sample; # 'lamda' is the parameter decide the dependence; # 'order0' is the parameter to end the program when order=order0; # If nargin==2,the algorithm will be terminated untill there is no change # in network toplogy. # Output: # 'G' is the 0-1 network or graph after pc algorithm; # 'Gval' is the network with strenthness of dependence; # 'order' is the order of the pc algorithm, here is equal to order0; # Example: # # Author: Xiujun Zhang. # Version: Sept.2014. # # Downloaded from: http://www.comp-sysbio.org/cmi2ni/ CMI2NI <- function(data,lamda,order0=NULL){ data = t(data) # In original implementation, data is given as pxn n_gene <- dim(data)[1] G <- matrix(1,n_gene,n_gene) G[lower.tri(G, diag=T)] <- 0 G <- G+t(G) Gval <- G order <- -1 t <- 0 while (t == 0){ order <- order+1 if (!is.null(order0)){ if (order>order0){ order <- order-1 return(list(G=G,Gval=Gval,order=order)) } } res.temp <- edgereduce(G,Gval,order,data,t,lamda) G = res.temp$G Gval = res.temp$Gval t = res.temp$t if (t==0){ print('No edge is reduced! Algorithm finished!') return(list(G=G,Gval=Gval,order=order)) } else { t <- 0 } } order <- order-1 # The value of order is the last order of the algorithm return(list(G=G,Gval=Gval,order=order)) } ## edgereduce edgereduce <- function(G,Gval,order,data,t,lamda){ G0 <- G if (order==0){ for (i in 1:dim(G)[1]){ for (j in 1:dim(G)[1]){ if (G[i,j]!=0){ cmiv <- cmi(data[i,],data[j,]) Gval[i,j] <- cmiv Gval[j,i] <- cmiv if (cmiv<lamda){ G[i,j] <- 0 G[j,i] <- 0 } } } } t <- t+1 return(list(G=G,Gval=Gval,t=t)) } else { for (i in 1:dim(G)[1]){ for (j in 1:dim(G)[1]){ if (G[i,j]!=0){ adj <- c() for (k in 1:dim(G)[1]){ if (G[i,k]!=0 & G[j,k]!=0){ adj <- c(adj,k) } } if (length(adj)>=order){ if(length(adj)==1){ # Need a special case as combn does not work allow single element arguments combntnslist <- as.matrix(adj) } else{ combntnslist <- t(combn(adj,order)) } combntnsrow <- dim(combntnslist)[1] cmiv <- 0 v1 <- data[i,] v2 <- data[j,] for (k in 1:combntnsrow){ vcs <- data[combntnslist[k,],] a <- MI2(v1,v2,vcs) cmiv <- max(cmiv,a) } Gval[i,j] <- cmiv Gval[j,i] <- cmiv if (cmiv<lamda){ G[i,j] <- 0 G[j,i] <- 0 } t <- t+1 } } } } return(list(G=G,Gval=Gval,t=t)) } } ## compute conditional mutual information of x and y cmi <- function(v1,v2,vcs=NULL){ if (is.null(vcs)){ c1 <- (var(v1)) # removed det as this is just a scalar c2 <- (var(v2)) c3 <- det(cov(t(rbind(v1,v2)))) # cov in r only gives a matrix if we give one, so must use rbind cmiv <- 0.5*log(c1*c2/c3) } else if (!is.null(vcs)){ c1 <- det(cov(t(rbind(v1,vcs)))) c2 <- det(cov(t(rbind(v2,vcs)))) c3 <- (var(t(vcs))) c4 <- det(cov(t(rbind(v1,v2,vcs)))) cmiv <- 0.5*log((c1*c2)/(c3*c4)) } if (cmiv == Inf){ cmiv <- 1.0e+010 } return(cmiv) } # Conditional mutual inclusive information (CMI2) MI2 <- function(x,y,z){ r_dmi <- (cas(x,y,z) + cas(y,x,z))/2 return(r_dmi) } # x and y are 1*m dimensional vector; z is n1*m dimensional. cas <- function(x,y,z){ # x,y,z are row vectors; if(is.null(dim(z))){ n1 = 1 } else{ n1 <- dim(z)[1] # This is equal to the order } n <- n1 +2 Cov <- var(x) Covm <- cov(t(rbind(x,y,z))) Covm1 <- cov(t(rbind(x,z))) InvCov <- solve(Cov) InvCovm <- solve(Covm) InvCovm1 <- solve(Covm1) C11 <- InvCovm1[1,1] # 1x1 C12 <- 0 # 1x1 C13 <- InvCovm1[1,2:(1+n1)] # 1x n1 C23 <- InvCovm[2,3:(2+n1)]-(InvCovm[1,2] * as.numeric(1/(InvCovm[1,1]-InvCovm1[1,1]+InvCov[1,1]))) %*% (InvCovm[1,3:(2+n1)] - InvCovm1[1,2:(1+n1)]) # 1x n1 C22 <- InvCovm[2,2]- InvCovm[1,2]^2 * (1/(InvCovm[1,1]-InvCovm1[1,1]+InvCov[1,1])) # 1x1 C33 <- InvCovm[3:(2+n1),3:(2+n1)]- (as.numeric((1/(InvCovm[1,1]-InvCovm1[1,1]+InvCov[1,1]))) * (t(t(InvCovm[1,3:(2+n1)]- InvCovm1[1,2:(1+n1)]))%*%(InvCovm[1,3:(2+n1)]-InvCovm1[1,2:(1+n1)]))) # n1 x n1 InvC <- rbind(c(C11,C12,C13),c(C12,C22,C23),cbind(C13,t(C23),C33)) C0 <- Cov * (InvCovm[1,1] - InvCovm1[1,1] + InvCov[1,1]) CS <- 0.5 * (sum(diag(InvC%*%Covm))+log(C0)-n) return(CS) }
# The Deconfounder in Action In this notebook, we are going to see **the deconfounder in action**. We will perform **causal inference** with the deconfounder on a **breast cancer** dataset. **Goal:** To convince all of us that the deconfounder is **easy** to use! The **deconfounder** operates in three steps: 1. **Fit** a factor model to the assigned causes; it leads to a candidate substitute confounder. 2. **Check** the factor model with a predictive check. 3. **Correct** for the substitute confounder in a causal inference. Let's get started! # Getting ready to work! ```python !pip install tensorflow_probability ``` Requirement already satisfied: tensorflow_probability in /usr/local/lib/python3.6/dist-packages (0.9.0) Requirement already satisfied: six>=1.10.0 in /usr/local/lib/python3.6/dist-packages (from tensorflow_probability) (1.12.0) Requirement already satisfied: gast>=0.2 in /usr/local/lib/python3.6/dist-packages (from tensorflow_probability) (0.3.3) Requirement already satisfied: cloudpickle>=1.2.2 in /usr/local/lib/python3.6/dist-packages (from tensorflow_probability) (1.3.0) Requirement already satisfied: numpy>=1.13.3 in /usr/local/lib/python3.6/dist-packages (from tensorflow_probability) (1.18.2) Requirement already satisfied: decorator in /usr/local/lib/python3.6/dist-packages (from tensorflow_probability) (4.4.2) ```python %tensorflow_version 1.x import tensorflow as tf import numpy as np import numpy.random as npr import pandas as pd import tensorflow as tf import tensorflow_probability as tfp import statsmodels.api as sm from tensorflow_probability import edward2 as ed from sklearn.datasets import load_breast_cancer from pandas.plotting import scatter_matrix from scipy import sparse, stats from sklearn.model_selection import train_test_split from sklearn.linear_model import LogisticRegression from sklearn.metrics import confusion_matrix, classification_report, roc_auc_score, roc_curve import matplotlib matplotlib.rcParams.update({'font.sans-serif' : 'Helvetica', 'axes.labelsize': 10, 'xtick.labelsize' : 6, 'ytick.labelsize' : 6, 'axes.titlesize' : 10}) import matplotlib.pyplot as plt import seaborn as sns color_names = ["windows blue", "amber", "crimson", "faded green", "dusty purple", "greyish"] colors = sns.xkcd_palette(color_names) sns.set(style="white", palette=sns.xkcd_palette(color_names), color_codes = False) ``` TensorFlow 1.x selected. /usr/local/lib/python3.6/dist-packages/statsmodels/tools/_testing.py:19: FutureWarning: pandas.util.testing is deprecated. Use the functions in the public API at pandas.testing instead. import pandas.util.testing as tm ```python !pip show tensorflow ``` Name: tensorflow Version: 1.15.2 Summary: TensorFlow is an open source machine learning framework for everyone. Home-page: https://www.tensorflow.org/ Author: Google Inc. Author-email: [email protected] License: Apache 2.0 Location: /tensorflow-1.15.2/python3.6 Requires: absl-py, keras-preprocessing, astor, tensorboard, tensorflow-estimator, wrapt, six, google-pasta, keras-applications, numpy, opt-einsum, termcolor, grpcio, protobuf, wheel, gast Required-by: stable-baselines, magenta, fancyimpute ```python !pip show tensorflow_probability ``` Name: tensorflow-probability Version: 0.7.0 Summary: Probabilistic modeling and statistical inference in TensorFlow Home-page: http://github.com/tensorflow/probability Author: Google LLC Author-email: [email protected] License: Apache 2.0 Location: /tensorflow-1.15.2/python3.6 Requires: decorator, cloudpickle, six, numpy Required-by: tensorflow-gan, tensor2tensor, magenta, kfac, dm-sonnet ```python # set random seed so everyone gets the same number import random randseed = 123 print("random seed: ", randseed) random.seed(randseed) np.random.seed(randseed) tf.set_random_seed(randseed) ``` random seed: 123 ## The scikit-learn breast cancer dataset * It is a data set about **breast cancer**. * We are interested in how tumor properties **affect** cancer diagnosis. * The **(multiple) causes** are tumor properties, e.g. sizes, compactness, symmetry, texture. * The **outcome** is tumor diagnosis, whether the breast cancer is diagnosed as malignant or benign. ```python data = load_breast_cancer() ``` ```python print(data['DESCR']) ``` .. _breast_cancer_dataset: Breast cancer wisconsin (diagnostic) dataset -------------------------------------------- **Data Set Characteristics:** :Number of Instances: 569 :Number of Attributes: 30 numeric, predictive attributes and the class :Attribute Information: - radius (mean of distances from center to points on the perimeter) - texture (standard deviation of gray-scale values) - perimeter - area - smoothness (local variation in radius lengths) - compactness (perimeter^2 / area - 1.0) - concavity (severity of concave portions of the contour) - concave points (number of concave portions of the contour) - symmetry - fractal dimension ("coastline approximation" - 1) The mean, standard error, and "worst" or largest (mean of the three largest values) of these features were computed for each image, resulting in 30 features. For instance, field 3 is Mean Radius, field 13 is Radius SE, field 23 is Worst Radius. - class: - WDBC-Malignant - WDBC-Benign :Summary Statistics: ===================================== ====== ====== Min Max ===================================== ====== ====== radius (mean): 6.981 28.11 texture (mean): 9.71 39.28 perimeter (mean): 43.79 188.5 area (mean): 143.5 2501.0 smoothness (mean): 0.053 0.163 compactness (mean): 0.019 0.345 concavity (mean): 0.0 0.427 concave points (mean): 0.0 0.201 symmetry (mean): 0.106 0.304 fractal dimension (mean): 0.05 0.097 radius (standard error): 0.112 2.873 texture (standard error): 0.36 4.885 perimeter (standard error): 0.757 21.98 area (standard error): 6.802 542.2 smoothness (standard error): 0.002 0.031 compactness (standard error): 0.002 0.135 concavity (standard error): 0.0 0.396 concave points (standard error): 0.0 0.053 symmetry (standard error): 0.008 0.079 fractal dimension (standard error): 0.001 0.03 radius (worst): 7.93 36.04 texture (worst): 12.02 49.54 perimeter (worst): 50.41 251.2 area (worst): 185.2 4254.0 smoothness (worst): 0.071 0.223 compactness (worst): 0.027 1.058 concavity (worst): 0.0 1.252 concave points (worst): 0.0 0.291 symmetry (worst): 0.156 0.664 fractal dimension (worst): 0.055 0.208 ===================================== ====== ====== :Missing Attribute Values: None :Class Distribution: 212 - Malignant, 357 - Benign :Creator: Dr. William H. Wolberg, W. Nick Street, Olvi L. Mangasarian :Donor: Nick Street :Date: November, 1995 This is a copy of UCI ML Breast Cancer Wisconsin (Diagnostic) datasets. https://goo.gl/U2Uwz2 Features are computed from a digitized image of a fine needle aspirate (FNA) of a breast mass. They describe characteristics of the cell nuclei present in the image. Separating plane described above was obtained using Multisurface Method-Tree (MSM-T) [K. P. Bennett, "Decision Tree Construction Via Linear Programming." Proceedings of the 4th Midwest Artificial Intelligence and Cognitive Science Society, pp. 97-101, 1992], a classification method which uses linear programming to construct a decision tree. Relevant features were selected using an exhaustive search in the space of 1-4 features and 1-3 separating planes. The actual linear program used to obtain the separating plane in the 3-dimensional space is that described in: [K. P. Bennett and O. L. Mangasarian: "Robust Linear Programming Discrimination of Two Linearly Inseparable Sets", Optimization Methods and Software 1, 1992, 23-34]. This database is also available through the UW CS ftp server: ftp ftp.cs.wisc.edu cd math-prog/cpo-dataset/machine-learn/WDBC/ .. topic:: References - W.N. Street, W.H. Wolberg and O.L. Mangasarian. Nuclear feature extraction for breast tumor diagnosis. IS&T/SPIE 1993 International Symposium on Electronic Imaging: Science and Technology, volume 1905, pages 861-870, San Jose, CA, 1993. - O.L. Mangasarian, W.N. Street and W.H. Wolberg. Breast cancer diagnosis and prognosis via linear programming. Operations Research, 43(4), pages 570-577, July-August 1995. - W.H. Wolberg, W.N. Street, and O.L. Mangasarian. Machine learning techniques to diagnose breast cancer from fine-needle aspirates. Cancer Letters 77 (1994) 163-171. ***For simplicity, we will work with the first 10 features, i.e. the mean radius/texture/perimeter***/.... ```python num_fea = 10 df = pd.DataFrame(data["data"][:,:num_fea], columns=data["feature_names"][:num_fea]) ``` ```python df.shape ``` (569, 10) ```python df.head() ``` <div> <style scoped> .dataframe tbody tr th:only-of-type { vertical-align: middle; } .dataframe tbody tr th { vertical-align: top; } .dataframe thead th { text-align: right; } </style> <table border="1" class="dataframe"> <thead> <tr style="text-align: right;"> <th></th> <th>mean radius</th> <th>mean texture</th> <th>mean perimeter</th> <th>mean area</th> <th>mean smoothness</th> <th>mean compactness</th> <th>mean concavity</th> <th>mean concave points</th> <th>mean symmetry</th> <th>mean fractal dimension</th> </tr> </thead> <tbody> <tr> <th>0</th> <td>17.99</td> <td>10.38</td> <td>122.80</td> <td>1001.0</td> <td>0.11840</td> <td>0.27760</td> <td>0.3001</td> <td>0.14710</td> <td>0.2419</td> <td>0.07871</td> </tr> <tr> <th>1</th> <td>20.57</td> <td>17.77</td> <td>132.90</td> <td>1326.0</td> <td>0.08474</td> <td>0.07864</td> <td>0.0869</td> <td>0.07017</td> <td>0.1812</td> <td>0.05667</td> </tr> <tr> <th>2</th> <td>19.69</td> <td>21.25</td> <td>130.00</td> <td>1203.0</td> <td>0.10960</td> <td>0.15990</td> <td>0.1974</td> <td>0.12790</td> <td>0.2069</td> <td>0.05999</td> </tr> <tr> <th>3</th> <td>11.42</td> <td>20.38</td> <td>77.58</td> <td>386.1</td> <td>0.14250</td> <td>0.28390</td> <td>0.2414</td> <td>0.10520</td> <td>0.2597</td> <td>0.09744</td> </tr> <tr> <th>4</th> <td>20.29</td> <td>14.34</td> <td>135.10</td> <td>1297.0</td> <td>0.10030</td> <td>0.13280</td> <td>0.1980</td> <td>0.10430</td> <td>0.1809</td> <td>0.05883</td> </tr> </tbody> </table> </div> ```python dfy = data["target"] ``` ```python dfy.shape, dfy[:100] # binary outcomes ``` ((569,), array([0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 1, 1, 1, 1, 0, 0, 1, 0, 0, 1, 1, 1, 1, 0, 1, 0, 0, 1, 1, 1, 1, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 1, 1, 0, 0, 1, 0, 0, 0, 1, 1, 1, 0, 1, 1, 0, 0, 1, 1, 1, 0])) ## Preparing the dataset for the deconfounder ### Only one step of preprocessing needed! ### We need to get rid of the highly correlated causes **Why** do we need to get rid of highly correlated causes? If two causes are **highly correlated**, a valid substitute confounder will largely **inflate the variance** of causal estimates downstream. This phenomenon is **closely related to** the variance inflation phenomenon in linear regression. ***A more technical explanation (ignorable)*** Think of the extreme case where two causes are perfectly collinear $A_1 = 5A_2$. The only random variable Z that $$A_1 \perp A_2 | Z,$$ $(A_1, A_2)$ **must** be a **deterministic function** of Z. For example, $Z = A_1$ or $Z = A_2$. Such a substitute confounder Z **breaks one of the conditions** the deconfounder requires. See "***A note on overlap***" in the theory section of the paper. **How** do we get rid of highly correlated causes? * We first make a **scatter plot** of **all pairs** of the causes. * It reveals which causes are **highly correlated**. * We will **exclude** these highly correlated causes by hand. ```python sns.pairplot(df, size=1.5) ``` ```python # perimeter and area are highly correlated with radius fea_cols = df.columns[[(not df.columns[i].endswith("perimeter")) \ and (not df.columns[i].endswith("area")) \ for i in range(df.shape[1])]] ``` ```python dfX = pd.DataFrame(df[fea_cols]) print(dfX.shape, dfy.shape) ``` (569, 8) (569,) ### How does the dataset look like after preprocessing? ```python # The causes dfX.head() ``` <div> <style scoped> .dataframe tbody tr th:only-of-type { vertical-align: middle; } .dataframe tbody tr th { vertical-align: top; } .dataframe thead th { text-align: right; } </style> <table border="1" class="dataframe"> <thead> <tr style="text-align: right;"> <th></th> <th>mean radius</th> <th>mean texture</th> <th>mean smoothness</th> <th>mean compactness</th> <th>mean concavity</th> <th>mean concave points</th> <th>mean symmetry</th> <th>mean fractal dimension</th> </tr> </thead> <tbody> <tr> <th>0</th> <td>17.99</td> <td>10.38</td> <td>0.11840</td> <td>0.27760</td> <td>0.3001</td> <td>0.14710</td> <td>0.2419</td> <td>0.07871</td> </tr> <tr> <th>1</th> <td>20.57</td> <td>17.77</td> <td>0.08474</td> <td>0.07864</td> <td>0.0869</td> <td>0.07017</td> <td>0.1812</td> <td>0.05667</td> </tr> <tr> <th>2</th> <td>19.69</td> <td>21.25</td> <td>0.10960</td> <td>0.15990</td> <td>0.1974</td> <td>0.12790</td> <td>0.2069</td> <td>0.05999</td> </tr> <tr> <th>3</th> <td>11.42</td> <td>20.38</td> <td>0.14250</td> <td>0.28390</td> <td>0.2414</td> <td>0.10520</td> <td>0.2597</td> <td>0.09744</td> </tr> <tr> <th>4</th> <td>20.29</td> <td>14.34</td> <td>0.10030</td> <td>0.13280</td> <td>0.1980</td> <td>0.10430</td> <td>0.1809</td> <td>0.05883</td> </tr> </tbody> </table> </div> ```python # The outcome dfy[:25] ``` array([0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0]) # The dataset is ready. Let's do causal inference with the deconfounder! ## Step 1: Fit a factor model to the assigned causes; it leads to a substitute confounder. ### We start with trying out a random factor model. How about a probabilistic PCA model? The matrix of assigned causes $X$ * It has N=569 rows and D=8 columns. * N is the number of subjects/data points. * D is the number of causes/data dimension. ### Step 1.1: Some chores first... #### Standardize the data This step is optional to the deconfounder. It only makes finding a good probabilistic PCA model easier. ```python # dfX.std() ``` ```python # standardize the data for PPCA X = np.array((dfX - dfX.mean())/dfX.std()) ``` #### Then holdout some data! We will later need to check the factor model with some heldout data. So let's holdout some now. ```python # randomly holdout some entries of X num_datapoints, data_dim = X.shape holdout_portion = 0.2 n_holdout = int(holdout_portion * num_datapoints * data_dim) holdout_row = np.random.randint(num_datapoints, size=n_holdout) holdout_col = np.random.randint(data_dim, size=n_holdout) holdout_mask = (sparse.coo_matrix((np.ones(n_holdout), \ (holdout_row, holdout_col)), \ shape = X.shape)).toarray() holdout_subjects = np.unique(holdout_row) holdout_mask = np.minimum(1, holdout_mask) x_train = np.multiply(1-holdout_mask, X) x_vad = np.multiply(holdout_mask, X) ``` ### Step 1.2: We are ready to fit a probabilistic PCA model to x_train. This step of "**fitting** a factor model" involves **inferring latent variables** in probability models. We will rely on **Tensorflow Probability**, a library for probabilistic reasoning and statistical analysis in TensorFlow. There are many **other probabilistic programming toolboxes** for fitting factor models, e.g. Pyro, Stan. Some of the latent variable models can also be fit with **scikit-learn**. We are free to use any of these with the deconfounder! **What does a probabilistic PCA model look like?** * Probabilistic PCA is a dimensionality reduction technique. It models data with a lower dimensional latent space. * We consider the assigned causes of the $n$th subject. We write it as $\mathbf{x}_n$, which is a $D=8$ dimensional vector. * The probabilistic PCA assumes the following data generating process for each $\mathbf{x}_n$, $n = 1, ..., N$: \begin{equation*} \mathbf{z}_{n} \stackrel{iid}{\sim} N(\mathbf{0}, \mathbf{I}_K), \end{equation*} \begin{equation*} \mathbf{x}_n \mid \mathbf{z}_n \sim N(\mathbf{z}_n\mathbf{W}, \sigma^2\mathbf{I}_D). \end{equation*} * We construct a $K$-dimensional substitute confounder $\mathbf{z}_{n}$ for each subject $n$, $n = 1, ..., N$. * Each $\mathbf{z}_{n}$ is a $K$-dimensional latent vector, $n = 1, ..., N$. ```python # we allow both linear and quadratic model # for linear model x_n has mean z_n * W # for quadratic model x_n has mean b + z_n * W + (z_n**2) * W_2 # quadractice model needs to change the checking step accordingly def ppca_model(data_dim, latent_dim, num_datapoints, stddv_datapoints, mask, form="linear"): w = ed.Normal(loc=tf.zeros([latent_dim, data_dim]), scale=tf.ones([latent_dim, data_dim]), name="w") # parameter z = ed.Normal(loc=tf.zeros([num_datapoints, latent_dim]), scale=tf.ones([num_datapoints, latent_dim]), name="z") # local latent variable / substitute confounder if form == "linear": x = ed.Normal(loc=tf.multiply(tf.matmul(z, w), mask), scale=stddv_datapoints * tf.ones([num_datapoints, data_dim]), name="x") # (modeled) data elif form == "quadratic": b = ed.Normal(loc=tf.zeros([1, data_dim]), scale=tf.ones([1, data_dim]), name="b") # intercept w2 = ed.Normal(loc=tf.zeros([latent_dim, data_dim]), scale=tf.ones([latent_dim, data_dim]), name="w2") # quadratic parameter x = ed.Normal(loc=tf.multiply(b + tf.matmul(z, w) + tf.matmul(tf.square(z), w2), mask), scale=stddv_datapoints * tf.ones([num_datapoints, data_dim]), name="x") # (modeled) data return x, (w, z) log_joint = ed.make_log_joint_fn(ppca_model) ``` **Let's fit a probabilistic PCA model.** ```python latent_dim = 2 stddv_datapoints = 0.1 model = ppca_model(data_dim=data_dim, latent_dim=latent_dim, num_datapoints=num_datapoints, stddv_datapoints=stddv_datapoints, mask=1-holdout_mask) ``` The cell below implements **variational inference** for probabilistic PCA in tensorflow probability. You are free to fit the probabilistic PCA in your favourite ways with your favourite package. Note: approximate inference is perfectly fine! It is orthogonal to our discussion around the deconfounder. Let's **ignore** that for now (and forever). ```python def variational_model(qb_mean, qb_stddv, qw_mean, qw_stddv, qw2_mean, qw2_stddv, qz_mean, qz_stddv): qb = ed.Normal(loc=qb_mean, scale=qb_stddv, name="qb") qw = ed.Normal(loc=qw_mean, scale=qw_stddv, name="qw") qw2 = ed.Normal(loc=qw2_mean, scale=qw2_stddv, name="qw2") qz = ed.Normal(loc=qz_mean, scale=qz_stddv, name="qz") return qb, qw, qw2, qz log_q = ed.make_log_joint_fn(variational_model) def target(b, w, w2, z): """Unnormalized target density as a function of the parameters.""" return log_joint(data_dim=data_dim, latent_dim=latent_dim, num_datapoints=num_datapoints, stddv_datapoints=stddv_datapoints, mask=1-holdout_mask, w=w, z=z, w2=w2, b=b, x=x_train) def target_q(qb, qw, qw2, qz): return log_q(qb_mean=qb_mean, qb_stddv=qb_stddv, qw_mean=qw_mean, qw_stddv=qw_stddv, qw2_mean=qw2_mean, qw2_stddv=qw2_stddv, qz_mean=qz_mean, qz_stddv=qz_stddv, qw=qw, qz=qz, qw2=qw2, qb=qb) qb_mean = tf.Variable(np.ones([1, data_dim]), dtype=tf.float32) qw_mean = tf.Variable(np.ones([latent_dim, data_dim]), dtype=tf.float32) qw2_mean = tf.Variable(np.ones([latent_dim, data_dim]), dtype=tf.float32) qz_mean = tf.Variable(np.ones([num_datapoints, latent_dim]), dtype=tf.float32) qb_stddv = tf.nn.softplus(tf.Variable(0 * np.ones([1, data_dim]), dtype=tf.float32)) qw_stddv = tf.nn.softplus(tf.Variable(-4 * np.ones([latent_dim, data_dim]), dtype=tf.float32)) qw2_stddv = tf.nn.softplus(tf.Variable(-4 * np.ones([latent_dim, data_dim]), dtype=tf.float32)) qz_stddv = tf.nn.softplus(tf.Variable(-4 * np.ones([num_datapoints, latent_dim]), dtype=tf.float32)) qb, qw, qw2, qz = variational_model(qb_mean=qb_mean, qb_stddv=qb_stddv, qw_mean=qw_mean, qw_stddv=qw_stddv, qw2_mean=qw2_mean, qw2_stddv=qw2_stddv, qz_mean=qz_mean, qz_stddv=qz_stddv) energy = target(qb, qw, qw2, qz) entropy = -target_q(qb, qw, qw2, qz) elbo = energy + entropy optimizer = tf.train.AdamOptimizer(learning_rate = 0.05) train = optimizer.minimize(-elbo) init = tf.global_variables_initializer() t = [] num_epochs = 500 with tf.Session() as sess: sess.run(init) for i in range(num_epochs): sess.run(train) if i % 5 == 0: t.append(sess.run([elbo])) b_mean_inferred = sess.run(qb_mean) b_stddv_inferred = sess.run(qb_stddv) w_mean_inferred = sess.run(qw_mean) w_stddv_inferred = sess.run(qw_stddv) w2_mean_inferred = sess.run(qw2_mean) w2_stddv_inferred = sess.run(qw2_stddv) z_mean_inferred = sess.run(qz_mean) z_stddv_inferred = sess.run(qz_stddv) print("Inferred axes:") print(w_mean_inferred) print("Standard Deviation:") print(w_stddv_inferred) plt.plot(range(1, num_epochs, 5), t) plt.show() def replace_latents(b, w, w2, z): def interceptor(rv_constructor, *rv_args, **rv_kwargs): """Replaces the priors with actual values to generate samples from.""" name = rv_kwargs.pop("name") if name == "b": rv_kwargs["value"] = b elif name == "w": rv_kwargs["value"] = w elif name == "w": rv_kwargs["value"] = w2 elif name == "z": rv_kwargs["value"] = z return rv_constructor(*rv_args, **rv_kwargs) return interceptor ``` So we just played some **magic** to **fit the probabilistic PCA** to the matrix of assigned causes $\mathbf{X}$. **The only important thing here is: ** We have **inferred** the latent variables $\mathbf{z}_n, n=1, ..., N$ and the parameters $\mathbf{W}$. Specifically, we have obtained from this step ``` w_mean_inferred, w_stddv_inferred, z_mean_inferred, z_stddv_inferred. ``` ## Step 2: Check the factor model with a predictive check. Now we are ready to **check** the probabilistic PCA model. The checking step is **very important** to the deconfounder. Pleeeeeze **always** check the factor model! **How** do we perform the predictive check? 1. We will **generate** some replicated datasets for the heldout entries. 2. And then **compare** the replicated datasets with the original dataset on the heldout entries. 3. If they **look similar**, then we are good to go. #### Step 2.1: We generate some replicated datasets first. * We will start with generating some **replicated datasets** from the predictive distribution of the assigned causes $X$: \begin{align} p(\mathbf{X^{rep}_{n,heldout}} \,|\, \mathbf{X_{n, obs}}) = \int p(\mathbf{X_{n, heldout}} \,|\, \mathbf{z}_n) p(\mathbf{z_n} \,|\, \mathbf{X}_{n, obs}) \mathrm{d} \mathbf{z_n}. \end{align} * That is, we generate these datasets from a probabilistic PCA model given the **inferred** latent variables $\hat{p}(\mathbf{z}_n)$ and $\hat{p}(\mathbf{W})$: \begin{equation*} \mathbf{z}_{n} \sim \hat{p}(\mathbf{z}_n), \end{equation*} \begin{equation*} \mathbf{W} \sim \hat{p}(\mathbf{W}), \end{equation*} \begin{equation*} \mathbf{x}_n \mid \mathbf{z}_n \sim N(\mathbf{z}_n\mathbf{W}, \sigma^2\mathbf{I}_D). \end{equation*} * These replicated datasets tell us what the assigned causes $X$ **should look like** if it is indeed generated by the fitted probabilistic PCA model. ```python n_rep = 100 # number of replicated datasets we generate holdout_gen = np.zeros((n_rep,*(x_train.shape))) for i in range(n_rep): b_sample = npr.normal(b_mean_inferred, b_stddv_inferred) w_sample = npr.normal(w_mean_inferred, w_stddv_inferred) w2_sample = npr.normal(w2_mean_inferred, w2_stddv_inferred) z_sample = npr.normal(z_mean_inferred, z_stddv_inferred) with ed.interception(replace_latents(b_sample, w_sample, w2_sample, z_sample)): generate = ppca_model( data_dim=data_dim, latent_dim=latent_dim, num_datapoints=num_datapoints, stddv_datapoints=stddv_datapoints, mask=np.ones(x_train.shape)) with tf.Session() as sess: x_generated, _ = sess.run(generate) # look only at the heldout entries holdout_gen[i] = np.multiply(x_generated, holdout_mask) ``` #### Step 2.2: Then we compute the test statistic on both the original and the replicated dataset. * We use the **test statistic** of **expected heldout log likelihood**: \begin{align} t(\mathbf{X_{n,heldout}}) = \mathbb{E}_{\mathbf{Z}, \mathbf{W}}[{\log p(\mathbf{X_{n,heldout}} \,|\, \mathbf{Z}, \mathbf{W}) \,|\, \mathbf{X_{n,obs}}}]. \end{align} * We calculate this test statistic **for each $n$** and for **both** the **original** dataset $\mathbf{X_{n,heldout}}$ and the **replicated** dataset $\mathbf{X^{rep}_{n,heldout}}$. ```python n_eval = 100 # we draw samples from the inferred Z and W obs_ll = [] rep_ll = [] for j in range(n_eval): w_sample = npr.normal(w_mean_inferred, w_stddv_inferred) z_sample = npr.normal(z_mean_inferred, z_stddv_inferred) holdoutmean_sample = np.multiply(z_sample.dot(w_sample), holdout_mask) obs_ll.append(np.mean(stats.norm(holdoutmean_sample, \ stddv_datapoints).logpdf(x_vad), axis=1)) rep_ll.append(np.mean(stats.norm(holdoutmean_sample, \ stddv_datapoints).logpdf(holdout_gen),axis=2)) obs_ll_per_zi, rep_ll_per_zi = np.mean(np.array(obs_ll), axis=0), np.mean(np.array(rep_ll), axis=0) ``` #### Step 2.3: Finally we compare the test statistic of the original and the replicated dataset. * We compare the test statistics via the $p$-values. \begin{equation*} \text{$p$-value} = p\left(t(\mathbf{X_{n,heldout}^{rep}}) < t(\mathbf{X_{n, heldout}})\right). \end{equation*} * The **smaller** the $p$-value is, the **more different** the original dataset is from the replicated dataset. * We **fail** the check if the $p$-value is **small**. * Note this goes in the opposite direction to the conventional usage of $p$-values. We compute a $p$-value for each $n$ and output the average $p$-values. ```python pvals = np.array([np.mean(rep_ll_per_zi[:,i] < obs_ll_per_zi[i]) for i in range(num_datapoints)]) holdout_subjects = np.unique(holdout_row) overall_pval = np.mean(pvals[holdout_subjects]) print("Predictive check p-values", overall_pval) ``` Predictive check p-values 0.10207589285714287 **We passed the check!** The substitute confounder $\mathbf{z}_n$ constructed in Step 1 is valid. We are ready to move on! #### An optional step We can also peak at **the predictive check of individual subjects**. This step is just for fun. It is how we generate Figure 2 of the paper. * We randomly choose a subject. * Plot the kernel density estimate of the test statistic on the replicated datasets. * Plot the test statistic on the original dataset (the dashed vertical line). ```python subject_no = npr.choice(holdout_subjects) sns.kdeplot(rep_ll_per_zi[:,subject_no]).set_title("Predictive check for subject "+str(subject_no)) plt.axvline(x=obs_ll_per_zi[subject_no], linestyle='--') ``` ## Step 3: Correct for the substitute confounder in a causal inference. **How** to estimate causal effects? * For simplicity, we fit a logistic regression as an outcome model here. * The target is the observed outcome $y_n$, $n=1,\ldots, N$. * The regressor is the multiple causes $\mathbf{X}_n$, $n=1,\ldots, N$. **How** to correct for the substitute confounder? * We include the substitute confounder $\mathbf{Z}_n$, $n=1,\ldots, N$, into the regressors. ```python # approximate the (random variable) substitute confounders with their inferred mean. Z_hat = z_mean_inferred # augment the regressors to be both the assigned causes X and the substitute confounder Z X_aug = np.column_stack([X, Z_hat]) ``` ```python # holdout some data from prediction later X_train, X_test, y_train, y_test = train_test_split(X_aug, dfy, test_size=0.2, random_state=0) ``` ```python dcfX_train = sm.add_constant(X_train) dcflogit_model = sm.Logit(y_train, dcfX_train) dcfresult = dcflogit_model.fit_regularized(maxiter=5000) print(dcfresult.summary()) ``` Optimization terminated successfully. (Exit mode 0) Current function value: 0.13286976182886223 Iterations: 85 Function evaluations: 85 Gradient evaluations: 85 Logit Regression Results ============================================================================== Dep. Variable: y No. Observations: 455 Model: Logit Df Residuals: 444 Method: MLE Df Model: 10 Date: Fri, 03 Apr 2020 Pseudo R-squ.: 0.7971 Time: 23:28:08 Log-Likelihood: -60.456 converged: True LL-Null: -297.99 Covariance Type: nonrobust LLR p-value: 9.348e-96 ============================================================================== coef std err z P>|z| [0.025 0.975] ------------------------------------------------------------------------------ const 0.7997 0.260 3.074 0.002 0.290 1.309 x1 -2.9778 0.964 -3.088 0.002 -4.868 -1.088 x2 -1.4487 0.381 -3.804 0.000 -2.195 -0.702 x3 -1.4633 0.744 -1.968 0.049 -2.921 -0.006 x4 0.3681 0.872 0.422 0.673 -1.342 2.078 x5 -1.1352 0.900 -1.261 0.207 -2.900 0.630 x6 -1.6511 1.240 -1.332 0.183 -4.081 0.779 x7 -0.5368 0.506 -1.060 0.289 -1.530 0.456 x8 0.4164 0.765 0.544 0.586 -1.083 1.916 x9 0.3544 1.734 0.204 0.838 -3.044 3.753 x10 -1.0729 1.360 -0.789 0.430 -3.739 1.593 ============================================================================== Possibly complete quasi-separation: A fraction 0.17 of observations can be perfectly predicted. This might indicate that there is complete quasi-separation. In this case some parameters will not be identified. ```python res = pd.DataFrame({"causal_mean": dcfresult.params[:data_dim+1], \ "causal_std": dcfresult.bse[:data_dim+1], \ "causal_025": dcfresult.conf_int()[:data_dim+1,0], \ "causal_975": dcfresult.conf_int()[:data_dim+1,1], \ "causal_pval": dcfresult.pvalues[:data_dim+1]}) res["causal_sig"] = (res["causal_pval"] < 0.05) res = res.T res.columns = np.concatenate([["intercept"], np.array(dfX.columns)]) res = res.T ``` ```python res ``` <div> <style scoped> .dataframe tbody tr th:only-of-type { vertical-align: middle; } .dataframe tbody tr th { vertical-align: top; } .dataframe thead th { text-align: right; } </style> <table border="1" class="dataframe"> <thead> <tr style="text-align: right;"> <th></th> <th>causal_mean</th> <th>causal_std</th> <th>causal_025</th> <th>causal_975</th> <th>causal_pval</th> <th>causal_sig</th> </tr> </thead> <tbody> <tr> <th>intercept</th> <td>0.799657</td> <td>0.260116</td> <td>0.289839</td> <td>1.30947</td> <td>0.00211043</td> <td>True</td> </tr> <tr> <th>mean radius</th> <td>-2.97783</td> <td>0.964373</td> <td>-4.86796</td> <td>-1.08769</td> <td>0.0020162</td> <td>True</td> </tr> <tr> <th>mean texture</th> <td>-1.44867</td> <td>0.380799</td> <td>-2.19502</td> <td>-0.702313</td> <td>0.000142218</td> <td>True</td> </tr> <tr> <th>mean smoothness</th> <td>-1.46326</td> <td>0.743651</td> <td>-2.92079</td> <td>-0.00573425</td> <td>0.0491055</td> <td>True</td> </tr> <tr> <th>mean compactness</th> <td>0.368069</td> <td>0.87232</td> <td>-1.34165</td> <td>2.07778</td> <td>0.673067</td> <td>False</td> </tr> <tr> <th>mean concavity</th> <td>-1.13524</td> <td>0.90044</td> <td>-2.90007</td> <td>0.629588</td> <td>0.207394</td> <td>False</td> </tr> <tr> <th>mean concave points</th> <td>-1.65108</td> <td>1.23964</td> <td>-4.08072</td> <td>0.778573</td> <td>0.182893</td> <td>False</td> </tr> <tr> <th>mean symmetry</th> <td>-0.536826</td> <td>0.506479</td> <td>-1.52951</td> <td>0.455855</td> <td>0.289182</td> <td>False</td> </tr> <tr> <th>mean fractal dimension</th> <td>0.416358</td> <td>0.765082</td> <td>-1.08318</td> <td>1.91589</td> <td>0.586304</td> <td>False</td> </tr> </tbody> </table> </div> We check the predictions to see if the logistic outcome model is a good outcome model. ```python # make predictions with the causal model dcfX_test = X_test dcfy_predprob = dcfresult.predict(sm.add_constant(dcfX_test)) dcfy_pred = (dcfy_predprob > 0.5) print(classification_report(y_test, dcfy_pred)) ``` precision recall f1-score support 0 0.96 0.91 0.93 47 1 0.94 0.97 0.96 67 accuracy 0.95 114 macro avg 0.95 0.94 0.95 114 weighted avg 0.95 0.95 0.95 114 # We are done! We have computed the average causal effect of raising the causes by one unit (see the "causal mean" column above). # Is the deconfounder worth the effort? We finally compare the **causal** estimation (with the deconfounder) with the **noncausal** estimation (with vanilla regression). ## The classical logistic regression! Note it is noncausal :-( ```python # regress the outcome against the causes only (no substitute confounders) nodcfX_train = sm.add_constant(X_train[:,:X.shape[1]]) nodcflogit_model = sm.Logit(y_train, nodcfX_train) nodcfresult = nodcflogit_model.fit_regularized(maxiter=5000) print(nodcfresult.summary()) ``` Optimization terminated successfully. (Exit mode 0) Current function value: 0.13451539390572878 Iterations: 71 Function evaluations: 71 Gradient evaluations: 71 Logit Regression Results ============================================================================== Dep. Variable: y No. Observations: 455 Model: Logit Df Residuals: 446 Method: MLE Df Model: 8 Date: Fri, 03 Apr 2020 Pseudo R-squ.: 0.7946 Time: 23:28:08 Log-Likelihood: -61.205 converged: True LL-Null: -297.99 Covariance Type: nonrobust LLR p-value: 3.283e-97 ============================================================================== coef std err z P>|z| [0.025 0.975] ------------------------------------------------------------------------------ const 0.7632 0.255 2.998 0.003 0.264 1.262 x1 -3.2642 0.904 -3.611 0.000 -5.036 -1.492 x2 -1.7189 0.307 -5.602 0.000 -2.320 -1.117 x3 -1.2257 0.498 -2.462 0.014 -2.202 -0.250 x4 0.3115 0.741 0.420 0.674 -1.142 1.765 x5 -1.1317 0.717 -1.578 0.115 -2.538 0.274 x6 -2.0079 1.172 -1.714 0.087 -4.304 0.289 x7 -0.5413 0.324 -1.673 0.094 -1.176 0.093 x8 0.5775 0.677 0.853 0.394 -0.750 1.905 ============================================================================== Possibly complete quasi-separation: A fraction 0.15 of observations can be perfectly predicted. This might indicate that there is complete quasi-separation. In this case some parameters will not be identified. ```python res["noncausal_mean"] = np.array(nodcfresult.params) res["noncausal_std"] = np.array(nodcfresult.bse) res["noncausal_025"] = np.array(nodcfresult.conf_int()[:,0]) res["noncausal_975"] = np.array(nodcfresult.conf_int()[:,1]) res["noncausal_pval"] = np.array(nodcfresult.pvalues) res["noncausal_sig"] = (res["noncausal_pval"] < 0.05) ``` ```python res["diff"] = res["causal_mean"] - res["noncausal_mean"] res["pval_diff"] = res["causal_pval"] - res["noncausal_pval"] ``` ```python nodcfX_test = sm.add_constant(X_test[:,:X.shape[1]]) nodcfy_predprob = nodcfresult.predict(nodcfX_test) nodcfy_pred = (nodcfy_predprob > 0.5) ``` **Causal models do not hurt predictions here!** ```python dcflogit_roc_auc = roc_auc_score(y_test, dcfy_pred) dcffpr, dcftpr, dcfthresholds = roc_curve(y_test, dcfy_predprob) nodcflogit_roc_auc = roc_auc_score(y_test, nodcfy_pred) nodcffpr, nodcftpr, nodcfthresholds = roc_curve(y_test, nodcfy_predprob) plt.figure() plt.plot(nodcffpr, nodcftpr, label='Noncausal Logistic Regression (area = %0.9f)' % nodcflogit_roc_auc) plt.plot(dcffpr, dcftpr, label='Causal Logistic Regression (area = %0.9f)' % dcflogit_roc_auc) plt.plot([0, 1], [0, 1],'r--') plt.xlim([0.0, 1.0]) plt.ylim([0.0, 1.05]) plt.xlabel('False Positive Rate') plt.ylabel('True Positive Rate') plt.title('Receiver operating characteristic') plt.legend(loc="lower right") plt.savefig('Log_ROC') plt.show() ``` **But causal models do change the regression coefficients and which features are significant.** * The mean smoothness is a feature **significantly correlated** with the cancer diagnosis. * But it does **not significantly** **causally affect** the cancer diagnosis. * The effect of all features are **over-estimated** with the noncausal model except the "mean compactness". ```python res.sort_values("pval_diff", ascending=True)[["pval_diff", "causal_pval", "noncausal_pval", "causal_sig", "noncausal_sig", "causal_mean", "noncausal_mean"]] ``` <div> <style scoped> .dataframe tbody tr th:only-of-type { vertical-align: middle; } .dataframe tbody tr th { vertical-align: top; } .dataframe thead th { text-align: right; } </style> <table border="1" class="dataframe"> <thead> <tr style="text-align: right;"> <th></th> <th>pval_diff</th> <th>causal_pval</th> <th>noncausal_pval</th> <th>causal_sig</th> <th>noncausal_sig</th> <th>causal_mean</th> <th>noncausal_mean</th> </tr> </thead> <tbody> <tr> <th>mean compactness</th> <td>-0.00130945</td> <td>0.673067</td> <td>6.743764e-01</td> <td>False</td> <td>False</td> <td>0.368069</td> <td>0.311494</td> </tr> <tr> <th>intercept</th> <td>-0.00060616</td> <td>0.00211043</td> <td>2.716595e-03</td> <td>True</td> <td>True</td> <td>0.799657</td> <td>0.763172</td> </tr> <tr> <th>mean texture</th> <td>0.000142197</td> <td>0.000142218</td> <td>2.123746e-08</td> <td>True</td> <td>True</td> <td>-1.44867</td> <td>-1.718860</td> </tr> <tr> <th>mean radius</th> <td>0.00171102</td> <td>0.0020162</td> <td>3.051830e-04</td> <td>True</td> <td>True</td> <td>-2.97783</td> <td>-3.264181</td> </tr> <tr> <th>mean smoothness</th> <td>0.0352701</td> <td>0.0491055</td> <td>1.383540e-02</td> <td>True</td> <td>True</td> <td>-1.46326</td> <td>-1.225668</td> </tr> <tr> <th>mean concavity</th> <td>0.0927253</td> <td>0.207394</td> <td>1.146687e-01</td> <td>False</td> <td>False</td> <td>-1.13524</td> <td>-1.131677</td> </tr> <tr> <th>mean concave points</th> <td>0.0963094</td> <td>0.182893</td> <td>8.658376e-02</td> <td>False</td> <td>False</td> <td>-1.65108</td> <td>-2.007921</td> </tr> <tr> <th>mean fractal dimension</th> <td>0.192521</td> <td>0.586304</td> <td>3.937831e-01</td> <td>False</td> <td>False</td> <td>0.416358</td> <td>0.577489</td> </tr> <tr> <th>mean symmetry</th> <td>0.194775</td> <td>0.289182</td> <td>9.440683e-02</td> <td>False</td> <td>False</td> <td>-0.536826</td> <td>-0.541292</td> </tr> </tbody> </table> </div> * We include causes into the regression **one-by-one**. * The deconfounder coefficients **does not** flip signs. * But classical logistic regression coefficients **does** flip signs. * This suggests that **the deconfounder is causal**. * It is because **causal** coefficients **do not change** as we include more variables into the system; causal estimation already controls for confounders so that it is causal. * However, **correlation** coefficients **can change** as we include more variables into the system; if the added variable is a confounder, than the regression coefficients change to account for the confounding effects. ```python # The deconfounder with causes added one-by-one # The first i coefficient is the causal coefficient of the first i causes. # i = 1, ..., 8. for i in range(X.shape[1]): print(i, "causes included") # augment the regressors to be both the assigned causes X and the substitute confounder Z X_aug = np.column_stack([X[:,:i], Z_hat]) # holdout some data from prediction later X_train, X_test, y_train, y_test = train_test_split(X_aug, dfy, test_size=0.2, random_state=0) dcfX_train = sm.add_constant(X_train) dcflogit_model = sm.Logit(y_train, dcfX_train) dcfresult = dcflogit_model.fit_regularized(maxiter=5000) print(dcfresult.summary()) ``` 0 causes included Optimization terminated successfully. (Exit mode 0) Current function value: 0.18480230713099138 Iterations: 22 Function evaluations: 22 Gradient evaluations: 22 Logit Regression Results ============================================================================== Dep. Variable: y No. Observations: 455 Model: Logit Df Residuals: 452 Method: MLE Df Model: 2 Date: Fri, 03 Apr 2020 Pseudo R-squ.: 0.7178 Time: 23:28:09 Log-Likelihood: -84.085 converged: True LL-Null: -297.99 Covariance Type: nonrobust LLR p-value: 1.267e-93 ============================================================================== coef std err z P>|z| [0.025 0.975] ------------------------------------------------------------------------------ const 0.9124 0.206 4.436 0.000 0.509 1.315 x1 -0.7687 0.211 -3.643 0.000 -1.182 -0.355 x2 -5.0965 0.543 -9.394 0.000 -6.160 -4.033 ============================================================================== 1 causes included Optimization terminated successfully. (Exit mode 0) Current function value: 0.1627111817680479 Iterations: 30 Function evaluations: 30 Gradient evaluations: 30 Logit Regression Results ============================================================================== Dep. Variable: y No. Observations: 455 Model: Logit Df Residuals: 451 Method: MLE Df Model: 3 Date: Fri, 03 Apr 2020 Pseudo R-squ.: 0.7516 Time: 23:28:09 Log-Likelihood: -74.034 converged: True LL-Null: -297.99 Covariance Type: nonrobust LLR p-value: 9.246e-97 ============================================================================== coef std err z P>|z| [0.025 0.975] ------------------------------------------------------------------------------ const 0.7397 0.217 3.410 0.001 0.315 1.165 x1 -2.1235 0.513 -4.143 0.000 -3.128 -1.119 x2 -1.2129 0.253 -4.800 0.000 -1.708 -0.718 x3 -3.8954 0.621 -6.276 0.000 -5.112 -2.679 ============================================================================== 2 causes included Optimization terminated successfully. (Exit mode 0) Current function value: 0.15261356019021724 Iterations: 37 Function evaluations: 37 Gradient evaluations: 37 Logit Regression Results ============================================================================== Dep. Variable: y No. Observations: 455 Model: Logit Df Residuals: 450 Method: MLE Df Model: 4 Date: Fri, 03 Apr 2020 Pseudo R-squ.: 0.7670 Time: 23:28:09 Log-Likelihood: -69.439 converged: True LL-Null: -297.99 Covariance Type: nonrobust LLR p-value: 1.268e-97 ============================================================================== coef std err z P>|z| [0.025 0.975] ------------------------------------------------------------------------------ const 0.7502 0.227 3.309 0.001 0.306 1.195 x1 -3.3034 0.701 -4.710 0.000 -4.678 -1.929 x2 -1.0262 0.344 -2.985 0.003 -1.700 -0.352 x3 -1.7916 0.355 -5.040 0.000 -2.488 -1.095 x4 -2.4318 0.785 -3.097 0.002 -3.971 -0.893 ============================================================================== Possibly complete quasi-separation: A fraction 0.10 of observations can be perfectly predicted. This might indicate that there is complete quasi-separation. In this case some parameters will not be identified. 3 causes included Optimization terminated successfully. (Exit mode 0) Current function value: 0.14196497629747212 Iterations: 44 Function evaluations: 44 Gradient evaluations: 44 Logit Regression Results ============================================================================== Dep. Variable: y No. Observations: 455 Model: Logit Df Residuals: 449 Method: MLE Df Model: 5 Date: Fri, 03 Apr 2020 Pseudo R-squ.: 0.7832 Time: 23:28:09 Log-Likelihood: -64.594 converged: True LL-Null: -297.99 Covariance Type: nonrobust LLR p-value: 1.173e-98 ============================================================================== coef std err z P>|z| [0.025 0.975] ------------------------------------------------------------------------------ const 0.9137 0.247 3.700 0.000 0.430 1.398 x1 -3.4320 0.752 -4.564 0.000 -4.906 -1.958 x2 -1.1337 0.363 -3.119 0.002 -1.846 -0.421 x3 -1.3748 0.462 -2.976 0.003 -2.280 -0.469 x4 -0.7584 0.495 -1.533 0.125 -1.728 0.211 x5 -2.6149 0.804 -3.251 0.001 -4.191 -1.039 ============================================================================== Possibly complete quasi-separation: A fraction 0.15 of observations can be perfectly predicted. This might indicate that there is complete quasi-separation. In this case some parameters will not be identified. 4 causes included Optimization terminated successfully. (Exit mode 0) Current function value: 0.1402052748348448 Iterations: 57 Function evaluations: 57 Gradient evaluations: 57 Logit Regression Results ============================================================================== Dep. Variable: y No. Observations: 455 Model: Logit Df Residuals: 448 Method: MLE Df Model: 6 Date: Fri, 03 Apr 2020 Pseudo R-squ.: 0.7859 Time: 23:28:09 Log-Likelihood: -63.793 converged: True LL-Null: -297.99 Covariance Type: nonrobust LLR p-value: 5.396e-98 ============================================================================== coef std err z P>|z| [0.025 0.975] ------------------------------------------------------------------------------ const 0.8689 0.248 3.504 0.000 0.383 1.355 x1 -3.4797 0.755 -4.608 0.000 -4.960 -2.000 x2 -1.1444 0.363 -3.153 0.002 -1.856 -0.433 x3 -1.1184 0.466 -2.399 0.016 -2.032 -0.205 x4 0.9297 0.722 1.288 0.198 -0.485 2.345 x5 -1.6538 0.827 -2.000 0.045 -3.274 -0.033 x6 -3.1811 0.932 -3.413 0.001 -5.008 -1.354 ============================================================================== Possibly complete quasi-separation: A fraction 0.15 of observations can be perfectly predicted. This might indicate that there is complete quasi-separation. In this case some parameters will not be identified. 5 causes included Optimization terminated successfully. (Exit mode 0) Current function value: 0.13737900142942064 Iterations: 60 Function evaluations: 60 Gradient evaluations: 60 Logit Regression Results ============================================================================== Dep. Variable: y No. Observations: 455 Model: Logit Df Residuals: 447 Method: MLE Df Model: 7 Date: Fri, 03 Apr 2020 Pseudo R-squ.: 0.7902 Time: 23:28:09 Log-Likelihood: -62.507 converged: True LL-Null: -297.99 Covariance Type: nonrobust LLR p-value: 1.395e-97 ============================================================================== coef std err z P>|z| [0.025 0.975] ------------------------------------------------------------------------------ const 0.8515 0.251 3.393 0.001 0.360 1.343 x1 -3.7237 0.770 -4.836 0.000 -5.233 -2.215 x2 -1.2666 0.367 -3.451 0.001 -1.986 -0.547 x3 -1.7016 0.617 -2.756 0.006 -2.912 -0.492 x4 0.8248 0.694 1.189 0.235 -0.535 2.185 x5 -1.1228 0.704 -1.594 0.111 -2.503 0.257 x6 -0.5378 1.062 -0.506 0.613 -2.620 1.544 x7 -2.2185 1.087 -2.041 0.041 -4.349 -0.088 ============================================================================== Possibly complete quasi-separation: A fraction 0.18 of observations can be perfectly predicted. This might indicate that there is complete quasi-separation. In this case some parameters will not be identified. 6 causes included Optimization terminated successfully. (Exit mode 0) Current function value: 0.13516533343345713 Iterations: 71 Function evaluations: 71 Gradient evaluations: 71 Logit Regression Results ============================================================================== Dep. Variable: y No. Observations: 455 Model: Logit Df Residuals: 446 Method: MLE Df Model: 8 Date: Fri, 03 Apr 2020 Pseudo R-squ.: 0.7936 Time: 23:28:09 Log-Likelihood: -61.500 converged: True LL-Null: -297.99 Covariance Type: nonrobust LLR p-value: 4.396e-97 ============================================================================== coef std err z P>|z| [0.025 0.975] ------------------------------------------------------------------------------ const 0.7814 0.256 3.049 0.002 0.279 1.284 x1 -3.1186 0.854 -3.652 0.000 -4.792 -1.445 x2 -1.3462 0.367 -3.664 0.000 -2.066 -0.626 x3 -1.1913 0.691 -1.724 0.085 -2.546 0.163 x4 1.0127 0.716 1.415 0.157 -0.390 2.415 x5 -0.5867 0.792 -0.741 0.459 -2.139 0.966 x6 -1.6608 1.187 -1.399 0.162 -3.987 0.665 x7 -0.6526 1.062 -0.615 0.539 -2.734 1.428 x8 -1.8720 1.099 -1.703 0.089 -4.026 0.282 ============================================================================== Possibly complete quasi-separation: A fraction 0.16 of observations can be perfectly predicted. This might indicate that there is complete quasi-separation. In this case some parameters will not be identified. 7 causes included Optimization terminated successfully. (Exit mode 0) Current function value: 0.1331994800829468 Iterations: 77 Function evaluations: 77 Gradient evaluations: 77 Logit Regression Results ============================================================================== Dep. Variable: y No. Observations: 455 Model: Logit Df Residuals: 445 Method: MLE Df Model: 9 Date: Fri, 03 Apr 2020 Pseudo R-squ.: 0.7966 Time: 23:28:09 Log-Likelihood: -60.606 converged: True LL-Null: -297.99 Covariance Type: nonrobust LLR p-value: 1.448e-96 ============================================================================== coef std err z P>|z| [0.025 0.975] ------------------------------------------------------------------------------ const 0.7813 0.258 3.033 0.002 0.276 1.286 x1 -3.2282 0.861 -3.748 0.000 -4.916 -1.540 x2 -1.4509 0.382 -3.798 0.000 -2.200 -0.702 x3 -1.5318 0.738 -2.075 0.038 -2.978 -0.085 x4 0.5140 0.829 0.620 0.535 -1.111 2.139 x5 -1.0940 0.894 -1.224 0.221 -2.846 0.658 x6 -1.8328 1.201 -1.527 0.127 -4.186 0.520 x7 -0.6254 0.483 -1.294 0.196 -1.572 0.322 x8 0.7810 1.558 0.501 0.616 -2.273 3.835 x9 -0.8963 1.326 -0.676 0.499 -3.496 1.703 ============================================================================== Possibly complete quasi-separation: A fraction 0.17 of observations can be perfectly predicted. This might indicate that there is complete quasi-separation. In this case some parameters will not be identified. ```python # Logistic regression with causes added one-by-one # The first i coefficient is the causal coefficient of the first i causes. # i = 1, ..., 8. for i in range(X.shape[1]): print(i, "causes included") # augment the regressors to be both the assigned causes X and the substitute confounder Z X_aug = np.column_stack([X[:,:i]]) # holdout some data from prediction later X_train, X_test, y_train, y_test = train_test_split(X_aug, dfy, test_size=0.2, random_state=0) dcfX_train = sm.add_constant(X_train) dcflogit_model = sm.Logit(y_train, dcfX_train) dcfresult = dcflogit_model.fit_regularized(maxiter=5000) print(dcfresult.summary()) ``` 0 causes included Optimization terminated successfully. (Exit mode 0) Current function value: 0.6549205599225008 Iterations: 6 Function evaluations: 6 Gradient evaluations: 6 Logit Regression Results ============================================================================== Dep. Variable: y No. Observations: 455 Model: Logit Df Residuals: 454 Method: MLE Df Model: 0 Date: Fri, 03 Apr 2020 Pseudo R-squ.: 7.357e-13 Time: 23:28:09 Log-Likelihood: -297.99 converged: True LL-Null: -297.99 Covariance Type: nonrobust LLR p-value: nan ============================================================================== coef std err z P>|z| [0.025 0.975] ------------------------------------------------------------------------------ const 0.5639 0.098 5.783 0.000 0.373 0.755 ============================================================================== 1 causes included Optimization terminated successfully. (Exit mode 0) Current function value: 0.2953829271568602 Iterations: 15 Function evaluations: 15 Gradient evaluations: 15 Logit Regression Results ============================================================================== Dep. Variable: y No. Observations: 455 Model: Logit Df Residuals: 453 Method: MLE Df Model: 1 Date: Fri, 03 Apr 2020 Pseudo R-squ.: 0.5490 Time: 23:28:09 Log-Likelihood: -134.40 converged: True LL-Null: -297.99 Covariance Type: nonrobust LLR p-value: 3.955e-73 ============================================================================== coef std err z P>|z| [0.025 0.975] ------------------------------------------------------------------------------ const 0.6566 0.155 4.225 0.000 0.352 0.961 x1 -3.5061 0.353 -9.934 0.000 -4.198 -2.814 ============================================================================== 2 causes included Optimization terminated successfully. (Exit mode 0) Current function value: 0.2592096971350075 Iterations: 20 Function evaluations: 20 Gradient evaluations: 20 Logit Regression Results ============================================================================== Dep. Variable: y No. Observations: 455 Model: Logit Df Residuals: 452 Method: MLE Df Model: 2 Date: Fri, 03 Apr 2020 Pseudo R-squ.: 0.6042 Time: 23:28:09 Log-Likelihood: -117.94 converged: True LL-Null: -297.99 Covariance Type: nonrobust LLR p-value: 6.397e-79 ============================================================================== coef std err z P>|z| [0.025 0.975] ------------------------------------------------------------------------------ const 0.6744 0.168 4.018 0.000 0.345 1.003 x1 -3.6479 0.390 -9.347 0.000 -4.413 -2.883 x2 -0.9815 0.181 -5.424 0.000 -1.336 -0.627 ============================================================================== 3 causes included Optimization terminated successfully. (Exit mode 0) Current function value: 0.162465976738943 Iterations: 28 Function evaluations: 29 Gradient evaluations: 28 Logit Regression Results ============================================================================== Dep. Variable: y No. Observations: 455 Model: Logit Df Residuals: 451 Method: MLE Df Model: 3 Date: Fri, 03 Apr 2020 Pseudo R-squ.: 0.7519 Time: 23:28:09 Log-Likelihood: -73.922 converged: True LL-Null: -297.99 Covariance Type: nonrobust LLR p-value: 8.272e-97 ============================================================================== coef std err z P>|z| [0.025 0.975] ------------------------------------------------------------------------------ const 0.9963 0.231 4.306 0.000 0.543 1.450 x1 -4.9102 0.601 -8.170 0.000 -6.088 -3.732 x2 -1.7394 0.284 -6.115 0.000 -2.297 -1.182 x3 -2.2080 0.336 -6.578 0.000 -2.866 -1.550 ============================================================================== Possibly complete quasi-separation: A fraction 0.12 of observations can be perfectly predicted. This might indicate that there is complete quasi-separation. In this case some parameters will not be identified. 4 causes included Optimization terminated successfully. (Exit mode 0) Current function value: 0.15485253636195323 Iterations: 35 Function evaluations: 35 Gradient evaluations: 35 Logit Regression Results ============================================================================== Dep. Variable: y No. Observations: 455 Model: Logit Df Residuals: 450 Method: MLE Df Model: 4 Date: Fri, 03 Apr 2020 Pseudo R-squ.: 0.7636 Time: 23:28:10 Log-Likelihood: -70.458 converged: True LL-Null: -297.99 Covariance Type: nonrobust LLR p-value: 3.495e-97 ============================================================================== coef std err z P>|z| [0.025 0.975] ------------------------------------------------------------------------------ const 0.9646 0.233 4.146 0.000 0.509 1.421 x1 -4.6125 0.614 -7.509 0.000 -5.816 -3.409 x2 -1.6563 0.295 -5.610 0.000 -2.235 -1.078 x3 -1.7342 0.372 -4.667 0.000 -2.463 -1.006 x4 -0.9279 0.353 -2.631 0.009 -1.619 -0.237 ============================================================================== Possibly complete quasi-separation: A fraction 0.13 of observations can be perfectly predicted. This might indicate that there is complete quasi-separation. In this case some parameters will not be identified. 5 causes included Optimization terminated successfully. (Exit mode 0) Current function value: 0.14242454080229494 Iterations: 44 Function evaluations: 45 Gradient evaluations: 44 Logit Regression Results ============================================================================== Dep. Variable: y No. Observations: 455 Model: Logit Df Residuals: 449 Method: MLE Df Model: 5 Date: Fri, 03 Apr 2020 Pseudo R-squ.: 0.7825 Time: 23:28:10 Log-Likelihood: -64.803 converged: True LL-Null: -297.99 Covariance Type: nonrobust LLR p-value: 1.444e-98 ============================================================================== coef std err z P>|z| [0.025 0.975] ------------------------------------------------------------------------------ const 0.8234 0.242 3.396 0.001 0.348 1.299 x1 -4.6125 0.636 -7.252 0.000 -5.859 -3.366 x2 -1.7131 0.303 -5.648 0.000 -2.308 -1.119 x3 -1.9515 0.395 -4.941 0.000 -2.726 -1.177 x4 0.4077 0.512 0.797 0.425 -0.595 1.410 x5 -1.7514 0.464 -3.777 0.000 -2.660 -0.843 ============================================================================== Possibly complete quasi-separation: A fraction 0.16 of observations can be perfectly predicted. This might indicate that there is complete quasi-separation. In this case some parameters will not be identified. 6 causes included Optimization terminated successfully. (Exit mode 0) Current function value: 0.13837349335376822 Iterations: 60 Function evaluations: 60 Gradient evaluations: 60 Logit Regression Results ============================================================================== Dep. Variable: y No. Observations: 455 Model: Logit Df Residuals: 448 Method: MLE Df Model: 6 Date: Fri, 03 Apr 2020 Pseudo R-squ.: 0.7887 Time: 23:28:10 Log-Likelihood: -62.960 converged: True LL-Null: -297.99 Covariance Type: nonrobust LLR p-value: 2.361e-98 ============================================================================== coef std err z P>|z| [0.025 0.975] ------------------------------------------------------------------------------ const 0.7376 0.248 2.975 0.003 0.252 1.223 x1 -3.5398 0.807 -4.384 0.000 -5.122 -1.957 x2 -1.6821 0.302 -5.563 0.000 -2.275 -1.089 x3 -1.3522 0.491 -2.756 0.006 -2.314 -0.391 x4 0.6207 0.527 1.177 0.239 -0.413 1.655 x5 -1.0073 0.623 -1.617 0.106 -2.228 0.214 x6 -2.1317 1.138 -1.873 0.061 -4.362 0.098 ============================================================================== Possibly complete quasi-separation: A fraction 0.14 of observations can be perfectly predicted. This might indicate that there is complete quasi-separation. In this case some parameters will not be identified. 7 causes included Optimization terminated successfully. (Exit mode 0) Current function value: 0.135339334890979 Iterations: 62 Function evaluations: 62 Gradient evaluations: 62 Logit Regression Results ============================================================================== Dep. Variable: y No. Observations: 455 Model: Logit Df Residuals: 447 Method: MLE Df Model: 7 Date: Fri, 03 Apr 2020 Pseudo R-squ.: 0.7933 Time: 23:28:10 Log-Likelihood: -61.579 converged: True LL-Null: -297.99 Covariance Type: nonrobust LLR p-value: 5.570e-98 ============================================================================== coef std err z P>|z| [0.025 0.975] ------------------------------------------------------------------------------ const 0.7287 0.250 2.916 0.004 0.239 1.219 x1 -3.6556 0.796 -4.592 0.000 -5.216 -2.095 x2 -1.7323 0.307 -5.644 0.000 -2.334 -1.131 x3 -1.1122 0.483 -2.304 0.021 -2.058 -0.166 x4 0.7408 0.542 1.367 0.172 -0.321 1.803 x5 -0.8364 0.614 -1.363 0.173 -2.039 0.366 x6 -2.2682 1.139 -1.992 0.046 -4.500 -0.037 x7 -0.5397 0.324 -1.666 0.096 -1.175 0.095 ============================================================================== Possibly complete quasi-separation: A fraction 0.15 of observations can be perfectly predicted. This might indicate that there is complete quasi-separation. In this case some parameters will not be identified. **We note that the causal coefficient of x4 is stable with the (causal) deconfounder but the correlation coefficent of x4 flips sign with the (noncausal) logistic regression.** # Takeaways * The deconfounder is **not hard** to use. * We simply **fit** a factor model, **check** it, and **infer** causal effects with the substitute confounder. * Please **always check** the factor model. * The deconfounder **makes a difference**. * The deconfounder **deconfounds**. # Acknowledgements We thank Suresh Naidu for suggesting the adding-causes-one-by-one idea.
------------------------------------------------------------------------ -- Universe levels ------------------------------------------------------------------------ module Common.Level where postulate Level : Set lzero : Level lsuc : (i : Level) → Level _⊔_ : Level -> Level -> Level {-# IMPORT Common.FFI #-} {-# COMPILED_TYPE Level Common.FFI.Level #-} {-# COMPILED lzero Common.FFI.Zero #-} {-# COMPILED lsuc Common.FFI.Suc #-} {-# BUILTIN LEVEL Level #-} {-# BUILTIN LEVELZERO lzero #-} {-# BUILTIN LEVELSUC lsuc #-} {-# BUILTIN LEVELMAX _⊔_ #-} infixl 6 _⊔_
Require Import Coq.Program.Basics. Require Import Tactics Algebra.Utils SetoidUtils Algebra.SetoidCat Algebra.SetoidCat.ListUtils Algebra.Monad Algebra.SetoidCat.PairUtils Algebra.SetoidCat.MaybeUtils Algebra.Monad.Maybe QAL.Definitions QAL.Command QAL.AbstractHeap QAL.AbstractStore. Require Import FMapWeakList Coq.Lists.List RelationClasses Relation_Definitions Morphisms SetoidClass. Section Assert. Context {builtin : Type}. Inductive assertion := | emp : assertion | primitive : builtin -> assertion | sepConj : assertion -> assertion -> assertion | sepImp : assertion -> assertion -> assertion | atrue : assertion | aAnd : assertion -> assertion -> assertion | aNot : assertion -> assertion | aExists : var -> assertion -> assertion . Program Instance assertionS : Setoid assertion. End Assert. Notation "a ∧ b" := (aAnd a b) (left associativity, at level 81). Notation "¬ a" := (aNot a) (at level 80). (* Notation "[[ addr , p ]] ⟼ val" := (singleton addr p val) (at level 79). *) Notation "a ∗ b" := (sepConj a b) (left associativity, at level 83). Notation "a -∗ b" := (sepImp a b) (right associativity, at level 84). Notation "∃ v , a" := (aExists v a) (at level 85). Notation "⊤" := (atrue) (at level 85). Module Type PrimitiveAssertion (PT : PredType) (VT : ValType) (S : AbstractStore VT) (H : AbstractHeap PT VT). Parameter primitiveAssertion : Type. Parameter primitiveAssertionS : Setoid primitiveAssertion. Parameter interpretPrimitiveAssertion : primitiveAssertionS ~> S.tS ~~> H.tS ~~> iff_setoid. End PrimitiveAssertion. Module AssertModel (PT : PredType) (VT : ValType) (S : AbstractStore VT) (H : AbstractHeap PT VT) (PA: PrimitiveAssertion PT VT S H). Import S H PA. Definition assertion := @assertion primitiveAssertion. Instance assertionS : Setoid assertion := @assertionS primitiveAssertion. Fixpoint _models (a : assertion) (s : S.t) (h : H.t) {struct a} : Prop := match a with | emp => isEmpty @ h | primitive pa => interpretPrimitiveAssertion @ pa @ s @ h | a0 ∗ a1 => exists h0 h1, h0 ⊥ h1 /\ h0 ⋅ h1 == h /\ _models a0 s h0 /\ _models a1 s h1 | a0 -∗ a1 => forall h', h ⊥ h' -> _models a0 s h' -> _models a1 s (h ⋅ h') | ¬ a => ~ _models a s h | a0 ∧ a1 => _models a0 s h /\ _models a1 s h | ⊤ => True | ∃ v, a => exists val, _models a (S.update @ v @ val @ s) h end. Definition models : assertionS ~> S.tS ~~> H.tS ~~> iff_setoid. simple refine (injF3 _models _). Lemma models_1 : Proper (equiv ==> equiv ==> equiv ==> equiv) _models. Proof. autounfold. intros x y H. rewrite H. clear x H. induction y. intros. unfold _models. rewritesr. intros. unfold _models. rewritesr. intros. simpl. split. intros. destruct H1. destruct H1. exists x1. exists x2. rewrite <- (IHy1 x y H x1 x1 (reflexivity x1)) , <- (IHy2 x y H x2 x2 (reflexivity x2)). rewrite <- H0. auto. intros. destruct H1. destruct H1. exists x1. exists x2. rewrite (IHy1 x y H x1 x1 (reflexivity x1)) , (IHy2 x y H x2 x2 (reflexivity x2)). rewrite H0. auto. intros. unfold _models. fold _models. split. intros. rewrite <- (IHy2 _ _ H (x0 ⋅ h') (y0 ⋅ h')). apply H1. rewrite H0. auto. rewrite (IHy1 _ _ H h' h'). auto. reflexivity. rewrite H0. reflexivity. intros. rewrite (IHy2 _ _ H (x0 ⋅ h') (y0 ⋅ h')). apply H1. rewrite <- H0. auto. rewrite <- (IHy1 _ _ H h' h'). auto. reflexivity. rewrite H0. reflexivity. intros. simpl. tauto. intros. simpl. rewrite (IHy1 _ _ H _ _ H0), (IHy2 _ _ H _ _ H0). tauto. intros. simpl. rewrite (IHy _ _ H _ _ H0). tauto. intros. simpl. split. intros. destruct H1. exists x1. assert (x [v ↦ x1 ]s == y0 [v ↦ x1 ]s). rewrite H. reflexivity. rewrite <- (IHy (x [v ↦ x1 ]s) (y0 [v ↦ x1 ]s) H2 x0 y1 H0). auto. intros. destruct H1. exists x1. assert (x [v ↦ x1 ]s == y0 [v ↦ x1 ]s). rewrite H. reflexivity. rewrite (IHy (x [v ↦ x1 ]s) (y0 [v ↦ x1 ]s) H2 x0 y1 H0). auto. Qed. apply models_1. Defined. Notation "⟦ a ⟧" := (fun s h => models @ a @ s @ h) (at level 50, left associativity). Definition simply a a2 := forall s h, ⟦ a ⟧ s h -> ⟦ a2 ⟧ s h. Notation "a ⇒ a2" := (simply a a2) (at level 50). End AssertModel.
lemma zero_in_bigtheta_iff [simp]: "(\<lambda>_. 0) \<in> \<Theta>[F](f) \<longleftrightarrow> eventually (\<lambda>x. f x = 0) F"
/- Copyright (c) 2022 Kyle Miller, Adam Topaz, Rémi Bottinelli, Junyan Xu. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Kyle Miller, Adam Topaz, Rémi Bottinelli, Junyan Xu -/ import category_theory.filtered import data.set.finite import topology.category.Top.limits /-! # Cofiltered systems This file deals with properties of cofiltered (and inverse) systems. ## Main definitions Given a functor `F : J ⥤ Type v`: * For `j : J`, `F.eventual_range j` is the intersections of all ranges of morphisms `F.map f` where `f` has codomain `j`. * `F.is_mittag_leffler` states that the functor `F` satisfies the Mittag-Leffler condition: the ranges of morphisms `F.map f` (with `f` having codomain `j`) stabilize. * If `J` is cofiltered `F.to_eventual_ranges` is the subfunctor of `F` obtained by restriction to `F.eventual_range`. * `F.to_preimages` restricts a functor to preimages of a given set in some `F.obj i`. If `J` is cofiltered, then it is Mittag-Leffler if `F` is, see `is_mittag_leffler.to_preimages`. ## Main statements * `nonempty_sections_of_finite_cofiltered_system` shows that if `J` is cofiltered and each `F.obj j` is nonempty and finite, `F.sections` is nonempty. * `nonempty_sections_of_finite_inverse_system` is a specialization of the above to `J` being a directed set (and `F : Jᵒᵖ ⥤ Type v`). * `is_mittag_leffler_of_exists_finite_range` shows that if `J` is cofiltered and for all `j`, there exists some `i` and `f : i ⟶ j` such that the range of `F.map f` is finite, then `F` is Mittag-Leffler. * `to_eventual_ranges_surjective` shows that if `F` is Mittag-Leffler, then `F.to_eventual_ranges` has all morphisms `F.map f` surjective. ## Todo * Prove [Stacks: Lemma 0597](https://stacks.math.columbia.edu/tag/0597) ## References * [Stacks: Mittag-Leffler systems](https://stacks.math.columbia.edu/tag/0594) ## Tags Mittag-Leffler, surjective, eventual range, inverse system, -/ universes u v w open category_theory category_theory.is_cofiltered set category_theory.functor_to_types section finite_konig /-- This bootstraps `nonempty_sections_of_finite_inverse_system`. In this version, the `F` functor is between categories of the same universe, and it is an easy corollary to `Top.nonempty_limit_cone_of_compact_t2_inverse_system`. -/ lemma nonempty_sections_of_finite_cofiltered_system.init {J : Type u} [small_category J] [is_cofiltered_or_empty J] (F : J ⥤ Type u) [hf : ∀ j, finite (F.obj j)] [hne : ∀ j, nonempty (F.obj j)] : F.sections.nonempty := begin let F' : J ⥤ Top := F ⋙ Top.discrete, haveI : ∀ j, discrete_topology (F'.obj j) := λ _, ⟨rfl⟩, haveI : ∀ j, finite (F'.obj j) := hf, haveI : ∀ j, nonempty (F'.obj j) := hne, obtain ⟨⟨u, hu⟩⟩ := Top.nonempty_limit_cone_of_compact_t2_cofiltered_system F', exact ⟨u, λ _ _, hu⟩, end /-- The cofiltered limit of nonempty finite types is nonempty. See `nonempty_sections_of_finite_inverse_system` for a specialization to inverse limits. -/ theorem nonempty_sections_of_finite_cofiltered_system {J : Type u} [category.{w} J] [is_cofiltered_or_empty J] (F : J ⥤ Type v) [∀ (j : J), finite (F.obj j)] [∀ (j : J), nonempty (F.obj j)] : F.sections.nonempty := begin -- Step 1: lift everything to the `max u v w` universe. let J' : Type (max w v u) := as_small.{max w v} J, let down : J' ⥤ J := as_small.down, let F' : J' ⥤ Type (max u v w) := down ⋙ F ⋙ ulift_functor.{(max u w) v}, haveI : ∀ i, nonempty (F'.obj i) := λ i, ⟨⟨classical.arbitrary (F.obj (down.obj i))⟩⟩, haveI : ∀ i, finite (F'.obj i) := λ i, finite.of_equiv (F.obj (down.obj i)) equiv.ulift.symm, -- Step 2: apply the bootstrap theorem casesI is_empty_or_nonempty J, { fsplit; exact is_empty_elim }, haveI : is_cofiltered J := ⟨⟩, obtain ⟨u, hu⟩ := nonempty_sections_of_finite_cofiltered_system.init F', -- Step 3: interpret the results use λ j, (u ⟨j⟩).down, intros j j' f, have h := @hu (⟨j⟩ : J') (⟨j'⟩ : J') (ulift.up f), simp only [as_small.down, functor.comp_map, ulift_functor_map, functor.op_map] at h, simp_rw [←h], refl, end /-- The inverse limit of nonempty finite types is nonempty. See `nonempty_sections_of_finite_cofiltered_system` for a generalization to cofiltered limits. That version applies in almost all cases, and the only difference is that this version allows `J` to be empty. This may be regarded as a generalization of Kőnig's lemma. To specialize: given a locally finite connected graph, take `Jᵒᵖ` to be `ℕ` and `F j` to be length-`j` paths that start from an arbitrary fixed vertex. Elements of `F.sections` can be read off as infinite rays in the graph. -/ theorem nonempty_sections_of_finite_inverse_system {J : Type u} [preorder J] [is_directed J (≤)] (F : Jᵒᵖ ⥤ Type v) [∀ (j : Jᵒᵖ), finite (F.obj j)] [∀ (j : Jᵒᵖ), nonempty (F.obj j)] : F.sections.nonempty := begin casesI is_empty_or_nonempty J, { haveI : is_empty Jᵒᵖ := ⟨λ j, is_empty_elim j.unop⟩, -- TODO: this should be a global instance exact ⟨is_empty_elim, is_empty_elim⟩, }, { exact nonempty_sections_of_finite_cofiltered_system _, }, end end finite_konig namespace category_theory namespace functor variables {J : Type u} [category J] (F : J ⥤ Type v) {i j k : J} (s : set (F.obj i)) /-- The eventual range of the functor `F : J ⥤ Type v` at index `j : J` is the intersection of the ranges of all maps `F.map f` with `i : J` and `f : i ⟶ j`. -/ def eventual_range (j : J) := ⋂ i (f : i ⟶ j), range (F.map f) lemma mem_eventual_range_iff {x : F.obj j} : x ∈ F.eventual_range j ↔ ∀ ⦃i⦄ (f : i ⟶ j), x ∈ range (F.map f) := mem_Inter₂ /-- The functor `F : J ⥤ Type v` satisfies the Mittag-Leffler condition if for all `j : J`, there exists some `i : J` and `f : i ⟶ j` such that for all `k : J` and `g : k ⟶ j`, the range of `F.map f` is contained in that of `F.map g`; in other words (see `is_mittag_leffler_iff_eventual_range`), the eventual range at `j` is attained by some `f : i ⟶ j`. -/ def is_mittag_leffler : Prop := ∀ j : J, ∃ i (f : i ⟶ j), ∀ ⦃k⦄ (g : k ⟶ j), range (F.map f) ⊆ range (F.map g) lemma is_mittag_leffler_iff_eventual_range : F.is_mittag_leffler ↔ ∀ j : J, ∃ i (f : i ⟶ j), F.eventual_range j = range (F.map f) := forall_congr $ λ j, exists₂_congr $ λ i f, ⟨λ h, (Inter₂_subset _ _).antisymm $ subset_Inter₂ h, λ h, h ▸ Inter₂_subset⟩ lemma is_mittag_leffler.subset_image_eventual_range (h : F.is_mittag_leffler) (f : j ⟶ i) : F.eventual_range i ⊆ F.map f '' (F.eventual_range j) := begin obtain ⟨k, g, hg⟩ := F.is_mittag_leffler_iff_eventual_range.1 h j, rw hg, intros x hx, obtain ⟨x, rfl⟩ := F.mem_eventual_range_iff.1 hx (g ≫ f), refine ⟨_, ⟨x, rfl⟩, by simpa only [F.map_comp]⟩, end lemma eventual_range_eq_range_precomp (f : i ⟶ j) (g : j ⟶ k) (h : F.eventual_range k = range (F.map g)) : F.eventual_range k = range (F.map $ f ≫ g) := begin apply subset_antisymm, { apply Inter₂_subset, }, { rw [h, F.map_comp], apply range_comp_subset_range, } end lemma is_mittag_leffler_of_surjective (h : ∀ ⦃i j : J⦄ (f :i ⟶ j), (F.map f).surjective) : F.is_mittag_leffler := λ j, ⟨j, 𝟙 j, λ k g, by rw [map_id, types_id, range_id, (h g).range_eq]⟩ /-- The subfunctor of `F` obtained by restricting to the preimages of a set `s ∈ F.obj i`. -/ @[simps] def to_preimages : J ⥤ Type v := { obj := λ j, ⋂ f : j ⟶ i, F.map f ⁻¹' s, map := λ j k g, maps_to.restrict (F.map g) _ _ $ λ x h, begin rw [mem_Inter] at h ⊢, intro f, rw [← mem_preimage, preimage_preimage], convert h (g ≫ f), rw F.map_comp, refl, end, map_id' := λ j, by { simp_rw F.map_id, ext, refl }, map_comp' := λ j k l f g, by { simp_rw F.map_comp, refl } } instance to_preimages_finite [∀ j, finite (F.obj j)] : ∀ j, finite ((F.to_preimages s).obj j) := λ j, subtype.finite variable [is_cofiltered_or_empty J] lemma eventual_range_maps_to (f : j ⟶ i) : (F.eventual_range j).maps_to (F.map f) (F.eventual_range i) := λ x hx, begin rw mem_eventual_range_iff at hx ⊢, intros k f', obtain ⟨l, g, g', he⟩ := cospan f f', obtain ⟨x, rfl⟩ := hx g, rw [← map_comp_apply, he, F.map_comp], exact ⟨_, rfl⟩, end lemma is_mittag_leffler.eq_image_eventual_range (h : F.is_mittag_leffler) (f : j ⟶ i) : F.eventual_range i = F.map f '' (F.eventual_range j) := (h.subset_image_eventual_range F f).antisymm $ maps_to'.1 (F.eventual_range_maps_to f) lemma eventual_range_eq_iff {f : i ⟶ j} : F.eventual_range j = range (F.map f) ↔ ∀ ⦃k⦄ (g : k ⟶ i), range (F.map f) ⊆ range (F.map $ g ≫ f) := begin rw [subset_antisymm_iff, eventual_range, and_iff_right (Inter₂_subset _ _), subset_Inter₂_iff], refine ⟨λ h k g, h _ _, λ h j' f', _⟩, obtain ⟨k, g, g', he⟩ := cospan f f', refine (h g).trans _, rw [he, F.map_comp], apply range_comp_subset_range, end lemma is_mittag_leffler_iff_subset_range_comp : F.is_mittag_leffler ↔ ∀ j : J, ∃ i (f : i ⟶ j), ∀ ⦃k⦄ (g : k ⟶ i), range (F.map f) ⊆ range (F.map $ g ≫ f) := by simp_rw [is_mittag_leffler_iff_eventual_range, eventual_range_eq_iff] lemma is_mittag_leffler.to_preimages (h : F.is_mittag_leffler) : (F.to_preimages s).is_mittag_leffler := (is_mittag_leffler_iff_subset_range_comp _).2 $ λ j, begin obtain ⟨j₁, g₁, f₁, -⟩ := cone_objs i j, obtain ⟨j₂, f₂, h₂⟩ := F.is_mittag_leffler_iff_eventual_range.1 h j₁, refine ⟨j₂, f₂ ≫ f₁, λ j₃ f₃, _⟩, rintro _ ⟨⟨x, hx⟩, rfl⟩, have : F.map f₂ x ∈ F.eventual_range j₁, { rw h₂, exact ⟨_, rfl⟩ }, obtain ⟨y, hy, h₃⟩ := h.subset_image_eventual_range F (f₃ ≫ f₂) this, refine ⟨⟨y, mem_Inter.2 $ λ g₂, _⟩, subtype.ext _⟩, { obtain ⟨j₄, f₄, h₄⟩ := cone_maps g₂ ((f₃ ≫ f₂) ≫ g₁), obtain ⟨y, rfl⟩ := F.mem_eventual_range_iff.1 hy f₄, rw ← map_comp_apply at h₃, rw [mem_preimage, ← map_comp_apply, h₄, ← category.assoc, map_comp_apply, h₃, ← map_comp_apply], apply mem_Inter.1 hx }, { simp_rw [to_preimages_map, maps_to.coe_restrict_apply, subtype.coe_mk], rw [← category.assoc, map_comp_apply, h₃, map_comp_apply] }, end lemma is_mittag_leffler_of_exists_finite_range (h : ∀ (j : J), ∃ i (f : i ⟶ j), (range $ F.map f).finite) : F.is_mittag_leffler := λ j, begin obtain ⟨i, hi, hf⟩ := h j, obtain ⟨m, ⟨i, f, hm⟩, hmin⟩ := finset.is_well_founded_lt.wf.has_min {s : finset (F.obj j) | ∃ i (f : i ⟶ j), ↑s = range (F.map f)} ⟨_, i, hi, hf.coe_to_finset⟩, refine ⟨i, f, λ k g, (directed_on_range.mp $ F.ranges_directed j).is_bot_of_is_min ⟨⟨i, f⟩, rfl⟩ _ _ ⟨⟨k, g⟩, rfl⟩⟩, rintro _ ⟨⟨k', g'⟩, rfl⟩ hl, refine (eq_of_le_of_not_lt hl _).ge, have := hmin _ ⟨k', g', (m.finite_to_set.subset $ hm.substr hl).coe_to_finset⟩, rwa [finset.lt_iff_ssubset, ← finset.coe_ssubset, set.finite.coe_to_finset, hm] at this, end /-- The subfunctor of `F` obtained by restricting to the eventual range at each index. -/ @[simps] def to_eventual_ranges : J ⥤ Type v := { obj := λ j, F.eventual_range j, map := λ i j f, (F.eventual_range_maps_to f).restrict _ _ _, map_id' := λ i, by { simp_rw F.map_id, ext, refl }, map_comp' := λ _ _ _ _ _, by { simp_rw F.map_comp, refl } } instance to_eventual_ranges_finite [∀ j, finite (F.obj j)] : ∀ j, finite (F.to_eventual_ranges.obj j) := λ j, subtype.finite /-- The sections of the functor `F : J ⥤ Type v` are in bijection with the sections of `F.eventual_ranges`. -/ def to_eventual_ranges_sections_equiv : F.to_eventual_ranges.sections ≃ F.sections := { to_fun := λ s, ⟨_, λ i j f, subtype.coe_inj.2 $ s.prop f⟩, inv_fun := λ s, ⟨λ j, ⟨_, mem_Inter₂.2 $ λ i f, ⟨_, s.prop f⟩⟩, λ i j f, subtype.ext $ s.prop f⟩, left_inv := λ _, by { ext, refl }, right_inv := λ _, by { ext, refl } } /-- If `F` satisfies the Mittag-Leffler condition, its restriction to eventual ranges is a surjective functor. -/ lemma surjective_to_eventual_ranges (h : F.is_mittag_leffler) ⦃i j⦄ (f : i ⟶ j) : (F.to_eventual_ranges.map f).surjective := λ ⟨x, hx⟩, by { obtain ⟨y, hy, rfl⟩ := h.subset_image_eventual_range F f hx, exact ⟨⟨y, hy⟩, rfl⟩ } /-- If `F` is nonempty at each index and Mittag-Leffler, then so is `F.to_eventual_ranges`. -/ lemma to_eventual_ranges_nonempty (h : F.is_mittag_leffler) [∀ (j : J), nonempty (F.obj j)] (j : J) : nonempty (F.to_eventual_ranges.obj j) := let ⟨i, f, h⟩ := F.is_mittag_leffler_iff_eventual_range.1 h j in by { rw [to_eventual_ranges_obj, h], apply_instance } /-- If `F` has all arrows surjective, then it "factors through a poset". -/ lemma thin_diagram_of_surjective (Fsur : ∀ ⦃i j : J⦄ (f : i ⟶ j), (F.map f).surjective) {i j} (f g : i ⟶ j) : F.map f = F.map g := let ⟨k, φ, hφ⟩ := cone_maps f g in (Fsur φ).injective_comp_right $ by simp_rw [← types_comp, ← F.map_comp, hφ] lemma to_preimages_nonempty_of_surjective [hFn : ∀ (j : J), nonempty (F.obj j)] (Fsur : ∀ ⦃i j : J⦄ (f : i ⟶ j), (F.map f).surjective) (hs : s.nonempty) (j) : nonempty ((F.to_preimages s).obj j) := begin simp only [to_preimages_obj, nonempty_coe_sort, nonempty_Inter, mem_preimage], obtain (h|⟨⟨ji⟩⟩) := is_empty_or_nonempty (j ⟶ i), { exact ⟨(hFn j).some, λ ji, h.elim ji⟩, }, { obtain ⟨y, ys⟩ := hs, obtain ⟨x, rfl⟩ := Fsur ji y, exact ⟨x, λ ji', (F.thin_diagram_of_surjective Fsur ji' ji).symm ▸ ys⟩, }, end lemma eval_section_injective_of_eventually_injective {j} (Finj : ∀ i (f : i ⟶ j), (F.map f).injective) (i) (f : i ⟶ j) : (λ s : F.sections, s.val j).injective := begin refine λ s₀ s₁ h, subtype.ext $ funext $ λ k, _, obtain ⟨m, mi, mk, _⟩ := cone_objs i k, dsimp at h, rw [←s₀.prop (mi ≫ f), ←s₁.prop (mi ≫ f)] at h, rw [←s₀.prop mk, ←s₁.prop mk], refine congr_arg _ (Finj m (mi ≫ f) h), end section finite_cofiltered_system variables [∀ (j : J), nonempty (F.obj j)] [∀ (j : J), finite (F.obj j)] (Fsur : ∀ ⦃i j : J⦄ (f :i ⟶ j), (F.map f).surjective) include Fsur lemma eval_section_surjective_of_surjective (i : J) : (λ s : F.sections, s.val i).surjective := λ x, begin let s : set (F.obj i) := {x}, haveI := F.to_preimages_nonempty_of_surjective s Fsur (singleton_nonempty x), obtain ⟨sec, h⟩ := nonempty_sections_of_finite_cofiltered_system (F.to_preimages s), refine ⟨⟨λ j, (sec j).val, λ j k jk, by simpa [subtype.ext_iff] using h jk⟩, _⟩, { have := (sec i).prop, simp only [mem_Inter, mem_preimage, mem_singleton_iff] at this, replace this := this (𝟙 i), rwa [map_id_apply] at this, }, end lemma eventually_injective [nonempty J] [finite F.sections] : ∃ j, ∀ i (f : i ⟶ j), (F.map f).injective := begin haveI : ∀ j, fintype (F.obj j) := λ j, fintype.of_finite (F.obj j), haveI : fintype F.sections := fintype.of_finite F.sections, have card_le : ∀ j, fintype.card (F.obj j) ≤ fintype.card F.sections := λ j, fintype.card_le_of_surjective _ (F.eval_section_surjective_of_surjective Fsur j), let fn := λ j, fintype.card F.sections - fintype.card (F.obj j), refine ⟨fn.argmin nat.well_founded_lt.wf, λ i f, ((fintype.bijective_iff_surjective_and_card _).2 ⟨Fsur f, le_antisymm _ (fintype.card_le_of_surjective _ $ Fsur f)⟩).1⟩, rw [← nat.sub_sub_self (card_le i), tsub_le_iff_tsub_le], apply fn.argmin_le, end end finite_cofiltered_system end functor end category_theory
*======================================================================= * Program: STREAM * Programmer: John D. McCalpin *----------------------------------------------------------------------- * Copyright 1991-2003: John D. McCalpin *----------------------------------------------------------------------- * License: * 1. You are free to use this program and/or to redistribute * this program. * 2. You are free to modify this program for your own use, * including commercial use, subject to the publication * restrictions in item 3. * 3. You are free to publish results obtained from running this * program, or from works that you derive from this program, * with the following limitations: * 3a. In order to be referred to as "STREAM benchmark results", * published results must be in conformance to the STREAM * Run Rules, (briefly reviewed below) published at * http://www.cs.virginia.edu/stream/ref.html * and incorporated herein by reference. * As the copyright holder, John McCalpin retains the * right to determine conformity with the Run Rules. * 3b. Results based on modified source code or on runs not in * accordance with the STREAM Run Rules must be clearly * labelled whenever they are published. Examples of * proper labelling include: * "tuned STREAM benchmark results" * "based on a variant of the STREAM benchmark code" * Other comparable, clear and reasonable labelling is * acceptable. * 3c. Submission of results to the STREAM benchmark web site * is encouraged, but not required. * 4. Use of this program or creation of derived works based on this * program constitutes acceptance of these licensing restrictions. * 5. Absolutely no warranty is expressed or implied. *----------------------------------------------------------------------- * This program measures sustained memory transfer rates in MB/s for * simple computational kernels coded in FORTRAN. * * The intent is to demonstrate the extent to which ordinary user * code can exploit the main memory bandwidth of the system under * test. *======================================================================= * The STREAM web page is at: * http://www.streambench.org * * Most of the content is currently hosted at: * http://www.cs.virginia.edu/stream/ * * BRIEF INSTRUCTIONS: * 0) See http://www.cs.virginia.edu/stream/ref.html for details * 1) STREAM requires a timing function called mysecond(). * Several examples are provided in this directory. * "CPU" timers are only allowed for uniprocessor runs. * "Wall-clock" timers are required for all multiprocessor runs. * 2) The STREAM array sizes must be set to size the test. * The value "N" must be chosen so that each of the three * arrays is at least 4x larger than the sum of all the last- * level caches used in the run, or 1 million elements, which- * ever is larger. * ------------------------------------------------------------ * Note that you are free to use any array length and offset * that makes each array 4x larger than the last-level cache. * The intent is to determine the *best* sustainable bandwidth * available with this simple coding. Of course, lower values * are usually fairly easy to obtain on cached machines, but * by keeping the test to the *best* results, the answers are * easier to interpret. * You may put the arrays in common or not, at your discretion. * There is a commented-out COMMON statement below. * Fortran90 "allocatable" arrays are fine, too. * ------------------------------------------------------------ * 3) Compile the code with full optimization. Many compilers * generate unreasonably bad code before the optimizer tightens * things up. If the results are unreasonably good, on the * other hand, the optimizer might be too smart for me * Please let me know if this happens. * 4) Mail the results to [email protected] * Be sure to include: * a) computer hardware model number and software revision * b) the compiler flags * c) all of the output from the test case. * Please let me know if you do not want your name posted along * with the submitted results. * 5) See the web page for more comments about the run rules and * about interpretation of the results. * * Thanks, * Dr. Bandwidth *========================================================================= * PROGRAM stream * IMPLICIT NONE C .. Parameters .. INTEGER n,offset,ndim,ntimes PARAMETER (n=2000000,offset=0,ndim=n+offset,ntimes=10) C .. C .. Local Scalars .. DOUBLE PRECISION scalar,t INTEGER j,k,nbpw,quantum C .. C .. Local Arrays .. DOUBLE PRECISION maxtime(4),mintime(4),avgtime(4), $ times(4,ntimes) INTEGER bytes(4) CHARACTER label(4)*11 C .. C .. External Functions .. DOUBLE PRECISION mysecond INTEGER checktick,realsize EXTERNAL mysecond,checktick,realsize !$ INTEGER omp_get_num_threads !$ EXTERNAL omp_get_num_threads C .. C .. Intrinsic Functions .. C INTRINSIC dble,max,min,nint,sqrt C .. C .. Arrays in Common .. DOUBLE PRECISION a(ndim),b(ndim),c(ndim) C .. C .. Common blocks .. * COMMON a,b,c C .. C .. Data statements .. DATA avgtime/4*0.0D0/,mintime/4*1.0D+36/,maxtime/4*0.0D0/ DATA label/'Copy: ','Scale: ','Add: ', $ 'Triad: '/ DATA bytes/2,2,3,3/ C .. * --- SETUP --- determine precision and check timing --- nbpw = realsize() PRINT *,'----------------------------------------------' PRINT *,'STREAM Version $Revision$' PRINT *,'----------------------------------------------' WRITE (*,FMT=9010) 'Array size = ',n WRITE (*,FMT=9010) 'Offset = ',offset WRITE (*,FMT=9020) 'The total memory requirement is ', $ 3*nbpw*n/ (1024*1024),' MB' WRITE (*,FMT=9030) 'You are running each test ',ntimes,' times' WRITE (*,FMT=9030) '--' WRITE (*,FMT=9030) 'The *best* time for each test is used' WRITE (*,FMT=9030) '*EXCLUDING* the first and last iterations' !$OMP PARALLEL !$OMP MASTER PRINT *,'----------------------------------------------' !$ PRINT *,'Number of Threads = ',OMP_GET_NUM_THREADS() !$OMP END MASTER !$OMP END PARALLEL PRINT *,'----------------------------------------------' !$OMP PARALLEL PRINT *,'Printing one line per active thread....' !$OMP END PARALLEL !$OMP PARALLEL DO DO 10 j = 1,n a(j) = 2.0d0 b(j) = 0.5D0 c(j) = 0.0D0 10 CONTINUE t = mysecond() !$OMP PARALLEL DO DO 20 j = 1,n a(j) = 0.5d0*a(j) 20 CONTINUE t = mysecond() - t PRINT *,'----------------------------------------------------' quantum = checktick() WRITE (*,FMT=9000) $ 'Your clock granularity/precision appears to be ',quantum, $ ' microseconds' PRINT *,'----------------------------------------------------' * --- MAIN LOOP --- repeat test cases NTIMES times --- scalar = 0.5d0*a(1) DO 70 k = 1,ntimes t = mysecond() a(1) = a(1) + t !$OMP PARALLEL DO DO 30 j = 1,n c(j) = a(j) 30 CONTINUE t = mysecond() - t c(n) = c(n) + t times(1,k) = t t = mysecond() c(1) = c(1) + t !$OMP PARALLEL DO DO 40 j = 1,n b(j) = scalar*c(j) 40 CONTINUE t = mysecond() - t b(n) = b(n) + t times(2,k) = t t = mysecond() a(1) = a(1) + t !$OMP PARALLEL DO DO 50 j = 1,n c(j) = a(j) + b(j) 50 CONTINUE t = mysecond() - t c(n) = c(n) + t times(3,k) = t t = mysecond() b(1) = b(1) + t !$OMP PARALLEL DO DO 60 j = 1,n a(j) = b(j) + scalar*c(j) 60 CONTINUE t = mysecond() - t a(n) = a(n) + t times(4,k) = t 70 CONTINUE * --- SUMMARY --- DO 90 k = 2,ntimes DO 80 j = 1,4 avgtime(j) = avgtime(j) + times(j,k) mintime(j) = min(mintime(j),times(j,k)) maxtime(j) = max(maxtime(j),times(j,k)) 80 CONTINUE 90 CONTINUE WRITE (*,FMT=9040) DO 100 j = 1,4 avgtime(j) = avgtime(j)/dble(ntimes-1) WRITE (*,FMT=9050) label(j),n*bytes(j)*nbpw/mintime(j)/1.0D6, $ avgtime(j),mintime(j),maxtime(j) 100 CONTINUE PRINT *,'----------------------------------------------------' CALL checksums (a,b,c,n,ntimes) PRINT *,'----------------------------------------------------' 9000 FORMAT (1x,a,i6,a) 9010 FORMAT (1x,a,i10) 9020 FORMAT (1x,a,i4,a) 9030 FORMAT (1x,a,i3,a,a) 9040 FORMAT ('Function',5x,'Rate (MB/s) Avg time Min time Max time' $ ) 9050 FORMAT (a,4 (f10.4,2x)) END *------------------------------------- * INTEGER FUNCTION dblesize() * * A semi-portable way to determine the precision of DOUBLE PRECISION * in Fortran. * Here used to guess how many bytes of storage a DOUBLE PRECISION * number occupies. * INTEGER FUNCTION realsize() * IMPLICIT NONE C .. Local Scalars .. DOUBLE PRECISION result,test INTEGER j,ndigits C .. C .. Local Arrays .. DOUBLE PRECISION ref(30) C .. C .. External Subroutines .. EXTERNAL confuse C .. C .. Intrinsic Functions .. INTRINSIC abs,acos,log10,sqrt C .. C Test #1 - compare single(1.0d0+delta) to 1.0d0 10 DO 20 j = 1,30 ref(j) = 1.0d0 + 10.0d0** (-j) 20 CONTINUE DO 30 j = 1,30 test = ref(j) ndigits = j CALL confuse(test,result) IF (test.EQ.1.0D0) THEN GO TO 40 END IF 30 CONTINUE GO TO 50 40 WRITE (*,FMT='(a)') $ '----------------------------------------------' WRITE (*,FMT='(1x,a,i2,a)') 'Double precision appears to have ', $ ndigits,' digits of accuracy' IF (ndigits.LE.8) THEN realsize = 4 ELSE realsize = 8 END IF WRITE (*,FMT='(1x,a,i1,a)') 'Assuming ',realsize, $ ' bytes per DOUBLE PRECISION word' WRITE (*,FMT='(a)') $ '----------------------------------------------' RETURN 50 PRINT *,'Hmmmm. I am unable to determine the size.' PRINT *,'Please enter the number of Bytes per DOUBLE PRECISION', $ ' number : ' READ (*,FMT=*) realsize IF (realsize.NE.4 .AND. realsize.NE.8) THEN PRINT *,'Your answer ',realsize,' does not make sense.' PRINT *,'Try again.' PRINT *,'Please enter the number of Bytes per ', $ 'DOUBLE PRECISION number : ' READ (*,FMT=*) realsize END IF PRINT *,'You have manually entered a size of ',realsize, $ ' bytes per DOUBLE PRECISION number' WRITE (*,FMT='(a)') $ '----------------------------------------------' END SUBROUTINE confuse(q,r) * IMPLICIT NONE C .. Scalar Arguments .. DOUBLE PRECISION q,r C .. C .. Intrinsic Functions .. INTRINSIC cos C .. r = cos(q) RETURN END * A semi-portable way to determine the clock granularity * Adapted from a code by John Henning of Digital Equipment Corporation * INTEGER FUNCTION checktick() * IMPLICIT NONE C .. Parameters .. INTEGER n PARAMETER (n=20) C .. C .. Local Scalars .. DOUBLE PRECISION t1,t2 INTEGER i,j,jmin C .. C .. Local Arrays .. DOUBLE PRECISION timesfound(n) C .. C .. External Functions .. DOUBLE PRECISION mysecond EXTERNAL mysecond C .. C .. Intrinsic Functions .. INTRINSIC max,min,nint C .. i = 0 10 t2 = mysecond() IF (t2.EQ.t1) GO TO 10 t1 = t2 i = i + 1 timesfound(i) = t1 IF (i.LT.n) GO TO 10 jmin = 1000000 DO 20 i = 2,n j = nint((timesfound(i)-timesfound(i-1))*1d6) jmin = min(jmin,max(j,0)) 20 CONTINUE IF (jmin.GT.0) THEN checktick = jmin ELSE PRINT *,'Your clock granularity appears to be less ', $ 'than one microsecond' checktick = 1 END IF RETURN * PRINT 14, timesfound(1)*1d6 * DO 20 i=2,n * PRINT 14, timesfound(i)*1d6, * & nint((timesfound(i)-timesfound(i-1))*1d6) * 14 FORMAT (1X, F18.4, 1X, i8) * 20 CONTINUE END SUBROUTINE checksums(a,b,c,n,ntimes) * IMPLICIT NONE C .. C .. Arguments .. DOUBLE PRECISION a(*),b(*),c(*) INTEGER n,ntimes C .. C .. Local Scalars .. DOUBLE PRECISION aa,bb,cc,scalar,suma,sumb,sumc,epsilon INTEGER k C .. C Repeat the main loop, but with scalars only. C This is done to check the sum & make sure all C iterations have been executed correctly. aa = 2.0D0 bb = 0.5D0 cc = 0.0D0 aa = 0.5D0*aa scalar = 0.5d0*aa DO k = 1,ntimes cc = aa bb = scalar*cc cc = aa + bb aa = bb + scalar*cc END DO aa = aa*DBLE(n-2) bb = bb*DBLE(n-2) cc = cc*DBLE(n-2) C Now sum up the arrays, excluding the first and last C elements, which are modified using the timing results C to confuse aggressive optimizers. suma = 0.0d0 sumb = 0.0d0 sumc = 0.0d0 !$OMP PARALLEL DO REDUCTION(+:suma,sumb,sumc) DO 110 j = 2,n-1 suma = suma + a(j) sumb = sumb + b(j) sumc = sumc + c(j) 110 CONTINUE epsilon = 1.D-6 IF (ABS(suma-aa)/suma .GT. epsilon) THEN PRINT *,'Failed Validation on array a()' PRINT *,'Target Sum of a is = ',aa PRINT *,'Computed Sum of a is = ',suma ELSEIF (ABS(sumb-bb)/sumb .GT. epsilon) THEN PRINT *,'Failed Validation on array b()' PRINT *,'Target Sum of b is = ',bb PRINT *,'Computed Sum of b is = ',sumb ELSEIF (ABS(sumc-cc)/sumc .GT. epsilon) THEN PRINT *,'Failed Validation on array c()' PRINT *,'Target Sum of c is = ',cc PRINT *,'Computed Sum of c is = ',sumc ELSE PRINT *,'Solution Validates!' ENDIF END
-- conversion to/from Data.Vector.Storable -- from Roman Leshchinskiy "vector" package -- -- In the future Data.Packed.Vector will be replaced by Data.Vector.Storable ------------------------------------------- import Numeric.LinearAlgebra as H import Data.Packed.Development(unsafeFromForeignPtr, unsafeToForeignPtr) import Foreign.Storable import qualified Data.Vector.Storable as V fromVector :: Storable t => V.Vector t -> H.Vector t fromVector v = unsafeFromForeignPtr p i n where (p,i,n) = V.unsafeToForeignPtr v toVector :: Storable t => H.Vector t -> V.Vector t toVector v = V.unsafeFromForeignPtr p i n where (p,i,n) = unsafeToForeignPtr v ------------------------------------------- v = V.slice 5 10 (V.fromList [1 .. 10::Double] V.++ V.replicate 10 7) w = subVector 2 3 (linspace 5 (0,1)) :: Vector Double main = do print v print $ fromVector v print w print $ toVector w
Everyone needs a bike to roll around on when they’re not on a group ride, racing off road, or training for the Olympics, and The Shadow Conspiracy and LA streetwear kings The Hundreds have created just the right 26 inch BMX bike for doing that. The one-of-a-kind bike comes with an old-school drop nose seat adorned by a sublimated custom graphic and retro-inspired pad set. This bike isn’t just a looker, built with the guts and glory of The Shadow Conspiracy proprietary custom parts, including their signature Shadow Chain. The bike, along withmatching jersey, tees, pullover, and hat, to go along with it, will be released tomorrow, March 28, 2019. If you want to check it out, roll by The Hundreds on Fairfax in Los Angeles at 5:30 PM for an “LA Mash” to Lock & Key on Vermont. For all the details, follow the jump. The Shadow Conspiracy’s bloody, brutal, black-and-blue motif have been a staple of the brand since the beginning and show how many times you have to fall before you stomp it and achieve success. While the bike collaboration focuses on brighter colors and shiny chrome, Shadow’s attitude still shines through on the collection of clothing and accessories being released alongside it. The limited edition capsule features a collaborative jersey made of moisture-wicking coolmax mesh, as well as a dual-branded graphic T-shirt, pullover hoodie, and snapback.
Formal statement is: lemma complex_Im_of_int [simp]: "Im (of_int z) = 0" Informal statement is: The imaginary part of an integer is zero.
[STATEMENT] lemma bounded_linear_ident[simp]: "bounded_linear (\<lambda>x. x)" [PROOF STATE] proof (prove) goal (1 subgoal): 1. bounded_linear (\<lambda>x. x) [PROOF STEP] by standard (auto intro!: exI[of _ 1])