ms-cond-detr-res-50-vehicles
This model is a fine-tuned version of datamonster/ms-cond-detr-res-50-vehicles on the None dataset. It achieves the following results on the evaluation set:
- eval_loss: 0.8407
- eval_map: 0.5078
- eval_map_50: 0.8475
- eval_map_75: 0.543
- eval_map_small: 0.1375
- eval_map_medium: 0.5038
- eval_map_large: 0.7143
- eval_mar_1: 0.2612
- eval_mar_10: 0.5658
- eval_mar_100: 0.6127
- eval_mar_small: 0.3327
- eval_mar_medium: 0.6156
- eval_mar_large: 0.7981
- eval_map_motorbike: 0.3689
- eval_mar_100_motorbike: 0.4835
- eval_map_car: 0.5308
- eval_mar_100_car: 0.6198
- eval_map_bus: 0.5808
- eval_mar_100_bus: 0.6911
- eval_map_container: 0.5506
- eval_mar_100_container: 0.6566
- eval_runtime: 144.8577
- eval_samples_per_second: 15.898
- eval_steps_per_second: 1.988
- epoch: 36.0
- step: 82980
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 4
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine_with_restarts
- num_epochs: 60
- mixed_precision_training: Native AMP
Framework versions
- Transformers 4.45.1
- Pytorch 2.4.0
- Datasets 3.0.1
- Tokenizers 0.20.0
- Downloads last month
- 44
Inference Providers
NEW
This model is not currently available via any of the supported third-party Inference Providers, and
the model is not deployed on the HF Inference API.
Model tree for datamonster/ms-cond-detr-res-50-vehicles
Unable to build the model tree, the base model loops to the model itself. Learn more.