ayushman-dashtoon's picture
Update inference.py
cd08e83 verified
import safetensors.torch
import torchvision.transforms.v2 as transforms
import cv2
import torch
import numpy as np
from typing import List, Optional, Tuple, Union
from PIL import Image
from diffusers import HunyuanVideoPipeline, FlowMatchEulerDiscreteScheduler
from diffusers.models.transformers.transformer_hunyuan_video import HunyuanVideoPatchEmbed, HunyuanVideoTransformer3DModel
from diffusers.utils import export_to_video
from diffusers.models.attention import Attention
from diffusers.utils.state_dict_utils import convert_state_dict_to_diffusers, convert_unet_state_dict_to_peft
from peft import LoraConfig, get_peft_model_state_dict, set_peft_model_state_dict
from diffusers.models.embeddings import apply_rotary_emb
from diffusers.callbacks import MultiPipelineCallbacks, PipelineCallback
from diffusers.loaders import HunyuanVideoLoraLoaderMixin
from diffusers.models import AutoencoderKLHunyuanVideo, HunyuanVideoTransformer3DModel
from diffusers.schedulers import FlowMatchEulerDiscreteScheduler
from diffusers.utils import is_torch_xla_available, logging, replace_example_docstring
from diffusers.utils.torch_utils import randn_tensor
from diffusers.video_processor import VideoProcessor
from diffusers.pipelines.pipeline_utils import DiffusionPipeline
from diffusers.pipelines.hunyuan_video.pipeline_output import HunyuanVideoPipelineOutput
from diffusers.pipelines.hunyuan_video.pipeline_hunyuan_video import retrieve_timesteps, DEFAULT_PROMPT_TEMPLATE
from diffusers.utils import load_image
video_transforms = transforms.Compose(
[
transforms.Lambda(lambda x: x / 255.0),
transforms.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5], inplace=True),
]
)
def resize_image_to_bucket(image: Union[Image.Image, np.ndarray], bucket_reso: tuple[int, int]) -> np.ndarray:
"""
Resize the image to the bucket resolution.
"""
is_pil_image = isinstance(image, Image.Image)
if is_pil_image:
image_width, image_height = image.size
else:
image_height, image_width = image.shape[:2]
if bucket_reso == (image_width, image_height):
return np.array(image) if is_pil_image else image
bucket_width, bucket_height = bucket_reso
scale_width = bucket_width / image_width
scale_height = bucket_height / image_height
scale = max(scale_width, scale_height)
image_width = int(image_width * scale + 0.5)
image_height = int(image_height * scale + 0.5)
if scale > 1:
image = Image.fromarray(image) if not is_pil_image else image
image = image.resize((image_width, image_height), Image.LANCZOS)
image = np.array(image)
else:
image = np.array(image) if is_pil_image else image
image = cv2.resize(image, (image_width, image_height), interpolation=cv2.INTER_AREA)
# crop the image to the bucket resolution
crop_left = (image_width - bucket_width) // 2
crop_top = (image_height - bucket_height) // 2
image = image[crop_top : crop_top + bucket_height, crop_left : crop_left + bucket_width]
return image
model_id = "hunyuanvideo-community/HunyuanVideo"
transformer = HunyuanVideoTransformer3DModel.from_pretrained(model_id, subfolder="transformer", torch_dtype=torch.bfloat16)
pipe = HunyuanVideoPipeline.from_pretrained(model_id, transformer=transformer, torch_dtype=torch.bfloat16)
# Enable memory savings
pipe.vae.enable_tiling()
pipe.enable_model_cpu_offload()
pipe.enable_model_cpu_offload()
with torch.no_grad(): # enable image inputs
initial_input_channels = pipe.transformer.config.in_channels
new_img_in = HunyuanVideoPatchEmbed(
patch_size=(pipe.transformer.config.patch_size_t, pipe.transformer.config.patch_size, pipe.transformer.config.patch_size),
in_chans=pipe.transformer.config.in_channels * 2,
embed_dim=pipe.transformer.config.num_attention_heads * pipe.transformer.config.attention_head_dim,
)
new_img_in = new_img_in.to(pipe.device, dtype=pipe.dtype)
new_img_in.proj.weight.zero_()
new_img_in.proj.weight[:, :initial_input_channels].copy_(pipe.transformer.x_embedder.proj.weight)
if pipe.transformer.x_embedder.proj.bias is not None:
new_img_in.proj.bias.copy_(pipe.transformer.x_embedder.proj.bias)
pipe.transformer.x_embedder = new_img_in
LORA_PATH = "<PATH TO CONTROL LORA>"
lora_state_dict = pipe.lora_state_dict(LORA_PATH)
transformer_lora_state_dict = {f'{k.replace("transformer.", "")}': v for k, v in lora_state_dict.items() if k.startswith("transformer.") and "lora" in k}
pipe.load_lora_into_transformer(transformer_lora_state_dict, transformer=pipe.transformer, adapter_name="i2v", _pipeline=pipe)
pipe.set_adapters(["i2v"], adapter_weights=[1.0])
pipe.fuse_lora(components=["transformer"], lora_scale=1.0, adapter_names=["i2v"])
pipe.unload_lora_weights()
n_frames, height, width = 77, 1280, 720
prompt = "a woman"
cond_frame1 = load_image("https://content.dashtoon.ai/stability-images/e524013d-55d4-483a-b80a-dfc51d639158.png")
cond_frame1 = resize_image_to_bucket(cond_frame1, bucket_reso=(width, height))
cond_frame2 = load_image("https://content.dashtoon.ai/stability-images/0b29c296-0a90-4b92-96b9-1ed0ae21e480.png")
cond_frame2 = resize_image_to_bucket(cond_frame2, bucket_reso=(width, height))
cond_video = np.zeros(shape=(n_frames, height, width, 3))
cond_video[0], cond_video[-1] = np.array(cond_frame1), np.array(cond_frame2)
cond_video = torch.from_numpy(cond_video.copy()).permute(0, 3, 1, 2)
cond_video = torch.stack([video_transforms(x) for x in cond_video], dim=0).unsqueeze(0)
with torch.inference_mode():
image_or_video = cond_video.to(device="cuda", dtype=pipe.dtype)
image_or_video = image_or_video.permute(0, 2, 1, 3, 4).contiguous() # [B, F, C, H, W] -> [B, C, F, H, W]
cond_latents = pipe.vae.encode(image_or_video).latent_dist.sample()
cond_latents = cond_latents * pipe.vae.config.scaling_factor
cond_latents = cond_latents.to(dtype=pipe.dtype)
assert not torch.any(torch.isnan(cond_latents))
@torch.inference_mode()
def call_pipe(
pipe,
prompt: Union[str, List[str]] = None,
prompt_2: Union[str, List[str]] = None,
height: int = 720,
width: int = 1280,
num_frames: int = 129,
num_inference_steps: int = 50,
sigmas: List[float] = None,
guidance_scale: float = 6.0,
num_videos_per_prompt: Optional[int] = 1,
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
latents: Optional[torch.Tensor] = None,
prompt_embeds: Optional[torch.Tensor] = None,
pooled_prompt_embeds: Optional[torch.Tensor] = None,
prompt_attention_mask: Optional[torch.Tensor] = None,
output_type: Optional[str] = "pil",
return_dict: bool = True,
attention_kwargs: Optional[Dict[str, Any]] = None,
callback_on_step_end: Optional[Union[Callable[[int, int, Dict], None], PipelineCallback, MultiPipelineCallbacks]] = None,
callback_on_step_end_tensor_inputs: List[str] = ["latents"],
prompt_template: Dict[str, Any] = DEFAULT_PROMPT_TEMPLATE,
max_sequence_length: int = 256,
image_latents: Optional[torch.Tensor] = None,
):
if isinstance(callback_on_step_end, (PipelineCallback, MultiPipelineCallbacks)):
callback_on_step_end_tensor_inputs = callback_on_step_end.tensor_inputs
# 1. Check inputs. Raise error if not correct
pipe.check_inputs(
prompt,
prompt_2,
height,
width,
prompt_embeds,
callback_on_step_end_tensor_inputs,
prompt_template,
)
pipe._guidance_scale = guidance_scale
pipe._attention_kwargs = attention_kwargs
pipe._current_timestep = None
pipe._interrupt = False
device = pipe._execution_device
# 2. Define call parameters
if prompt is not None and isinstance(prompt, str):
batch_size = 1
elif prompt is not None and isinstance(prompt, list):
batch_size = len(prompt)
else:
batch_size = prompt_embeds.shape[0]
# 3. Encode input prompt
prompt_embeds, pooled_prompt_embeds, prompt_attention_mask = pipe.encode_prompt(
prompt=prompt,
prompt_2=prompt_2,
prompt_template=prompt_template,
num_videos_per_prompt=num_videos_per_prompt,
prompt_embeds=prompt_embeds,
pooled_prompt_embeds=pooled_prompt_embeds,
prompt_attention_mask=prompt_attention_mask,
device=device,
max_sequence_length=max_sequence_length,
)
transformer_dtype = pipe.transformer.dtype
prompt_embeds = prompt_embeds.to(transformer_dtype)
prompt_attention_mask = prompt_attention_mask.to(transformer_dtype)
if pooled_prompt_embeds is not None:
pooled_prompt_embeds = pooled_prompt_embeds.to(transformer_dtype)
# 4. Prepare timesteps
sigmas = np.linspace(1.0, 0.0, num_inference_steps + 1)[:-1] if sigmas is None else sigmas
timesteps, num_inference_steps = retrieve_timesteps(
pipe.scheduler,
num_inference_steps,
device,
sigmas=sigmas,
)
# 5. Prepare latent variables
num_channels_latents = pipe.transformer.config.in_channels
num_latent_frames = (num_frames - 1) // pipe.vae_scale_factor_temporal + 1
latents = pipe.prepare_latents(
batch_size * num_videos_per_prompt,
num_channels_latents,
height,
width,
num_latent_frames,
torch.float32,
device,
generator,
latents,
)
# 6. Prepare guidance condition
guidance = torch.tensor([guidance_scale] * latents.shape[0], dtype=transformer_dtype, device=device) * 1000.0
# 7. Denoising loop
num_warmup_steps = len(timesteps) - num_inference_steps * pipe.scheduler.order
pipe._num_timesteps = len(timesteps)
with pipe.progress_bar(total=num_inference_steps) as progress_bar:
for i, t in enumerate(timesteps):
if pipe.interrupt:
continue
pipe._current_timestep = t
latent_model_input = latents.to(transformer_dtype)
timestep = t.expand(latents.shape[0]).to(latents.dtype)
noise_pred = pipe.transformer(
hidden_states=torch.cat([latent_model_input, image_latents], dim=1),
timestep=timestep,
encoder_hidden_states=prompt_embeds,
encoder_attention_mask=prompt_attention_mask,
pooled_projections=pooled_prompt_embeds,
guidance=guidance,
attention_kwargs=attention_kwargs,
return_dict=False,
)[0]
# compute the previous noisy sample x_t -> x_t-1
latents = pipe.scheduler.step(noise_pred, t, latents, return_dict=False)[0]
if callback_on_step_end is not None:
callback_kwargs = {}
for k in callback_on_step_end_tensor_inputs:
callback_kwargs[k] = locals()[k]
callback_outputs = callback_on_step_end(pipe, i, t, callback_kwargs)
latents = callback_outputs.pop("latents", latents)
prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds)
# call the callback, if provided
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % pipe.scheduler.order == 0):
progress_bar.update()
pipe._current_timestep = None
if not output_type == "latent":
latents = latents.to(pipe.vae.dtype) / pipe.vae.config.scaling_factor
video = pipe.vae.decode(latents, return_dict=False)[0]
video = pipe.video_processor.postprocess_video(video, output_type=output_type)
else:
video = latents
# Offload all models
pipe.maybe_free_model_hooks()
if not return_dict:
return (video,)
return HunyuanVideoPipelineOutput(frames=video)
video = call_pipe(
pipe,
prompt=prompt,
num_frames=n_frames,
num_inference_steps=50,
image_latents=cond_latents,
width=width,
height=height,
guidance_scale=6.0,
generator=torch.Generator(device="cuda").manual_seed(0),
).frames[0]
export_to_video(video, "output.mp4", fps=24)