import safetensors.torch import torchvision.transforms.v2 as transforms import cv2 import torch import numpy as np from typing import List, Optional, Tuple, Union from PIL import Image from diffusers import HunyuanVideoPipeline, FlowMatchEulerDiscreteScheduler from diffusers.models.transformers.transformer_hunyuan_video import HunyuanVideoPatchEmbed, HunyuanVideoTransformer3DModel from diffusers.utils import export_to_video from diffusers.models.attention import Attention from diffusers.utils.state_dict_utils import convert_state_dict_to_diffusers, convert_unet_state_dict_to_peft from peft import LoraConfig, get_peft_model_state_dict, set_peft_model_state_dict from diffusers.models.embeddings import apply_rotary_emb from diffusers.callbacks import MultiPipelineCallbacks, PipelineCallback from diffusers.loaders import HunyuanVideoLoraLoaderMixin from diffusers.models import AutoencoderKLHunyuanVideo, HunyuanVideoTransformer3DModel from diffusers.schedulers import FlowMatchEulerDiscreteScheduler from diffusers.utils import is_torch_xla_available, logging, replace_example_docstring from diffusers.utils.torch_utils import randn_tensor from diffusers.video_processor import VideoProcessor from diffusers.pipelines.pipeline_utils import DiffusionPipeline from diffusers.pipelines.hunyuan_video.pipeline_output import HunyuanVideoPipelineOutput from diffusers.pipelines.hunyuan_video.pipeline_hunyuan_video import retrieve_timesteps, DEFAULT_PROMPT_TEMPLATE from diffusers.utils import load_image video_transforms = transforms.Compose( [ transforms.Lambda(lambda x: x / 255.0), transforms.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5], inplace=True), ] ) def resize_image_to_bucket(image: Union[Image.Image, np.ndarray], bucket_reso: tuple[int, int]) -> np.ndarray: """ Resize the image to the bucket resolution. """ is_pil_image = isinstance(image, Image.Image) if is_pil_image: image_width, image_height = image.size else: image_height, image_width = image.shape[:2] if bucket_reso == (image_width, image_height): return np.array(image) if is_pil_image else image bucket_width, bucket_height = bucket_reso scale_width = bucket_width / image_width scale_height = bucket_height / image_height scale = max(scale_width, scale_height) image_width = int(image_width * scale + 0.5) image_height = int(image_height * scale + 0.5) if scale > 1: image = Image.fromarray(image) if not is_pil_image else image image = image.resize((image_width, image_height), Image.LANCZOS) image = np.array(image) else: image = np.array(image) if is_pil_image else image image = cv2.resize(image, (image_width, image_height), interpolation=cv2.INTER_AREA) # crop the image to the bucket resolution crop_left = (image_width - bucket_width) // 2 crop_top = (image_height - bucket_height) // 2 image = image[crop_top : crop_top + bucket_height, crop_left : crop_left + bucket_width] return image model_id = "hunyuanvideo-community/HunyuanVideo" transformer = HunyuanVideoTransformer3DModel.from_pretrained(model_id, subfolder="transformer", torch_dtype=torch.bfloat16) pipe = HunyuanVideoPipeline.from_pretrained(model_id, transformer=transformer, torch_dtype=torch.bfloat16) # Enable memory savings pipe.vae.enable_tiling() pipe.enable_model_cpu_offload() pipe.enable_model_cpu_offload() with torch.no_grad(): # enable image inputs initial_input_channels = pipe.transformer.config.in_channels new_img_in = HunyuanVideoPatchEmbed( patch_size=(pipe.transformer.config.patch_size_t, pipe.transformer.config.patch_size, pipe.transformer.config.patch_size), in_chans=pipe.transformer.config.in_channels * 2, embed_dim=pipe.transformer.config.num_attention_heads * pipe.transformer.config.attention_head_dim, ) new_img_in = new_img_in.to(pipe.device, dtype=pipe.dtype) new_img_in.proj.weight.zero_() new_img_in.proj.weight[:, :initial_input_channels].copy_(pipe.transformer.x_embedder.proj.weight) if pipe.transformer.x_embedder.proj.bias is not None: new_img_in.proj.bias.copy_(pipe.transformer.x_embedder.proj.bias) pipe.transformer.x_embedder = new_img_in LORA_PATH = "" lora_state_dict = pipe.lora_state_dict(LORA_PATH) transformer_lora_state_dict = {f'{k.replace("transformer.", "")}': v for k, v in lora_state_dict.items() if k.startswith("transformer.") and "lora" in k} pipe.load_lora_into_transformer(transformer_lora_state_dict, transformer=pipe.transformer, adapter_name="i2v", _pipeline=pipe) pipe.set_adapters(["i2v"], adapter_weights=[1.0]) pipe.fuse_lora(components=["transformer"], lora_scale=1.0, adapter_names=["i2v"]) pipe.unload_lora_weights() n_frames, height, width = 77, 1280, 720 prompt = "a woman" cond_frame1 = load_image("https://content.dashtoon.ai/stability-images/e524013d-55d4-483a-b80a-dfc51d639158.png") cond_frame1 = resize_image_to_bucket(cond_frame1, bucket_reso=(width, height)) cond_frame2 = load_image("https://content.dashtoon.ai/stability-images/0b29c296-0a90-4b92-96b9-1ed0ae21e480.png") cond_frame2 = resize_image_to_bucket(cond_frame2, bucket_reso=(width, height)) cond_video = np.zeros(shape=(n_frames, height, width, 3)) cond_video[0], cond_video[-1] = np.array(cond_frame1), np.array(cond_frame2) cond_video = torch.from_numpy(cond_video.copy()).permute(0, 3, 1, 2) cond_video = torch.stack([video_transforms(x) for x in cond_video], dim=0).unsqueeze(0) with torch.inference_mode(): image_or_video = cond_video.to(device="cuda", dtype=pipe.dtype) image_or_video = image_or_video.permute(0, 2, 1, 3, 4).contiguous() # [B, F, C, H, W] -> [B, C, F, H, W] cond_latents = pipe.vae.encode(image_or_video).latent_dist.sample() cond_latents = cond_latents * pipe.vae.config.scaling_factor cond_latents = cond_latents.to(dtype=pipe.dtype) assert not torch.any(torch.isnan(cond_latents)) @torch.inference_mode() def call_pipe( pipe, prompt: Union[str, List[str]] = None, prompt_2: Union[str, List[str]] = None, height: int = 720, width: int = 1280, num_frames: int = 129, num_inference_steps: int = 50, sigmas: List[float] = None, guidance_scale: float = 6.0, num_videos_per_prompt: Optional[int] = 1, generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, latents: Optional[torch.Tensor] = None, prompt_embeds: Optional[torch.Tensor] = None, pooled_prompt_embeds: Optional[torch.Tensor] = None, prompt_attention_mask: Optional[torch.Tensor] = None, output_type: Optional[str] = "pil", return_dict: bool = True, attention_kwargs: Optional[Dict[str, Any]] = None, callback_on_step_end: Optional[Union[Callable[[int, int, Dict], None], PipelineCallback, MultiPipelineCallbacks]] = None, callback_on_step_end_tensor_inputs: List[str] = ["latents"], prompt_template: Dict[str, Any] = DEFAULT_PROMPT_TEMPLATE, max_sequence_length: int = 256, image_latents: Optional[torch.Tensor] = None, ): if isinstance(callback_on_step_end, (PipelineCallback, MultiPipelineCallbacks)): callback_on_step_end_tensor_inputs = callback_on_step_end.tensor_inputs # 1. Check inputs. Raise error if not correct pipe.check_inputs( prompt, prompt_2, height, width, prompt_embeds, callback_on_step_end_tensor_inputs, prompt_template, ) pipe._guidance_scale = guidance_scale pipe._attention_kwargs = attention_kwargs pipe._current_timestep = None pipe._interrupt = False device = pipe._execution_device # 2. Define call parameters if prompt is not None and isinstance(prompt, str): batch_size = 1 elif prompt is not None and isinstance(prompt, list): batch_size = len(prompt) else: batch_size = prompt_embeds.shape[0] # 3. Encode input prompt prompt_embeds, pooled_prompt_embeds, prompt_attention_mask = pipe.encode_prompt( prompt=prompt, prompt_2=prompt_2, prompt_template=prompt_template, num_videos_per_prompt=num_videos_per_prompt, prompt_embeds=prompt_embeds, pooled_prompt_embeds=pooled_prompt_embeds, prompt_attention_mask=prompt_attention_mask, device=device, max_sequence_length=max_sequence_length, ) transformer_dtype = pipe.transformer.dtype prompt_embeds = prompt_embeds.to(transformer_dtype) prompt_attention_mask = prompt_attention_mask.to(transformer_dtype) if pooled_prompt_embeds is not None: pooled_prompt_embeds = pooled_prompt_embeds.to(transformer_dtype) # 4. Prepare timesteps sigmas = np.linspace(1.0, 0.0, num_inference_steps + 1)[:-1] if sigmas is None else sigmas timesteps, num_inference_steps = retrieve_timesteps( pipe.scheduler, num_inference_steps, device, sigmas=sigmas, ) # 5. Prepare latent variables num_channels_latents = pipe.transformer.config.in_channels num_latent_frames = (num_frames - 1) // pipe.vae_scale_factor_temporal + 1 latents = pipe.prepare_latents( batch_size * num_videos_per_prompt, num_channels_latents, height, width, num_latent_frames, torch.float32, device, generator, latents, ) # 6. Prepare guidance condition guidance = torch.tensor([guidance_scale] * latents.shape[0], dtype=transformer_dtype, device=device) * 1000.0 # 7. Denoising loop num_warmup_steps = len(timesteps) - num_inference_steps * pipe.scheduler.order pipe._num_timesteps = len(timesteps) with pipe.progress_bar(total=num_inference_steps) as progress_bar: for i, t in enumerate(timesteps): if pipe.interrupt: continue pipe._current_timestep = t latent_model_input = latents.to(transformer_dtype) timestep = t.expand(latents.shape[0]).to(latents.dtype) noise_pred = pipe.transformer( hidden_states=torch.cat([latent_model_input, image_latents], dim=1), timestep=timestep, encoder_hidden_states=prompt_embeds, encoder_attention_mask=prompt_attention_mask, pooled_projections=pooled_prompt_embeds, guidance=guidance, attention_kwargs=attention_kwargs, return_dict=False, )[0] # compute the previous noisy sample x_t -> x_t-1 latents = pipe.scheduler.step(noise_pred, t, latents, return_dict=False)[0] if callback_on_step_end is not None: callback_kwargs = {} for k in callback_on_step_end_tensor_inputs: callback_kwargs[k] = locals()[k] callback_outputs = callback_on_step_end(pipe, i, t, callback_kwargs) latents = callback_outputs.pop("latents", latents) prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds) # call the callback, if provided if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % pipe.scheduler.order == 0): progress_bar.update() pipe._current_timestep = None if not output_type == "latent": latents = latents.to(pipe.vae.dtype) / pipe.vae.config.scaling_factor video = pipe.vae.decode(latents, return_dict=False)[0] video = pipe.video_processor.postprocess_video(video, output_type=output_type) else: video = latents # Offload all models pipe.maybe_free_model_hooks() if not return_dict: return (video,) return HunyuanVideoPipelineOutput(frames=video) video = call_pipe( pipe, prompt=prompt, num_frames=n_frames, num_inference_steps=50, image_latents=cond_latents, width=width, height=height, guidance_scale=6.0, generator=torch.Generator(device="cuda").manual_seed(0), ).frames[0] export_to_video(video, "output.mp4", fps=24)