|
--- |
|
library_name: keras |
|
license: mit |
|
language: |
|
- en |
|
pipeline_tag: image-to-image |
|
--- |
|
|
|
|
|
## Metrics |
|
PSNR |
|
- Validation set: 21.70 |
|
|
|
## Usage |
|
|
|
### Download Model |
|
```bash |
|
git clone https://huggingface.co/danhtran2mind/autoencoder-grayscale2color-landscape |
|
``` |
|
```bash |
|
cd autoencoder-grayscale2color-landscape |
|
git lfs pull |
|
``` |
|
### Import Libraries |
|
```python |
|
from PIL import Image |
|
import os |
|
import numpy as np |
|
import tensorflow as tf |
|
import requests |
|
from skimage.color import lab2rgb |
|
import matplotlib.pyplot as plt |
|
from models.auto_encoder_gray2color import SpatialAttention |
|
``` |
|
### Load Model file |
|
```python |
|
# Load the saved model once at startup |
|
load_model_path = "./ckpts/best_model.h5" |
|
|
|
print(f"Loading model from {load_model_path}...") |
|
loaded_autoencoder = tf.keras.models.load_model( |
|
load_model_path, |
|
custom_objects={'SpatialAttention': SpatialAttention} |
|
) |
|
``` |
|
|
|
### Define Functions |
|
```python |
|
def process_image(input_img): |
|
# Store original input dimensions |
|
original_width, original_height = input_img.size |
|
|
|
# Convert PIL Image to grayscale and resize to model input size |
|
img = input_img.convert("L") # Convert to grayscale (single channel) |
|
img = img.resize((WIDTH, HEIGHT)) # Resize to 512x512 for model |
|
img_array = tf.keras.preprocessing.image.img_to_array(img) / 255.0 # Normalize to [0, 1] |
|
img_array = img_array[None, ..., 0:1] # Add batch dimension, shape: (1, 512, 512, 1) |
|
|
|
# Run inference (assuming loaded_autoencoder predicts a*b* channels) |
|
output_array = loaded_autoencoder.predict(img_array) # Shape: (1, 512, 512, 2) for a*b* |
|
print("output_array shape: ", output_array.shape) |
|
|
|
# Extract L* (grayscale input) and a*b* (model output) |
|
L_channel = img_array[0, :, :, 0] * 100.0 # Denormalize L* to [0, 100] |
|
ab_channels = output_array[0] * 128.0 # Denormalize a*b* to [-128, 128] |
|
|
|
# Combine L*, a*, b* into a 3-channel L*a*b* image |
|
lab_image = np.stack([L_channel, ab_channels[:, :, 0], ab_channels[:, :, 1]], axis=-1) # Shape: (512, 512, 3) |
|
|
|
# Convert L*a*b* to RGB |
|
rgb_array = lab2rgb(lab_image) # Convert to RGB, output in [0, 1] |
|
rgb_array = np.clip(rgb_array, 0, 1) * 255.0 # Scale to [0, 255] |
|
rgb_image = Image.fromarray(rgb_array.astype(np.uint8), mode="RGB") # Create RGB PIL image |
|
|
|
# Resize output image to match input image resolution |
|
rgb_image = rgb_image.resize((original_width, original_height), Image.Resampling.LANCZOS) |
|
|
|
return rgb_image |
|
|
|
def process_and_plot_images(input_path): |
|
# Read input image |
|
input_img = Image.open(input_path) |
|
|
|
# Process the image (placeholder for your process_image function) |
|
output_img = process_image(input_img) |
|
|
|
# Save output image to output.jpg |
|
output_img.save("output.jpg") |
|
|
|
return input_img, output_img |
|
|
|
def plot_in_out_images(input_img, output_img): |
|
# Create a figure with two subplots for input and output images |
|
plt.figure(figsize=(17, 8), dpi=300) # Set DPI to 300 |
|
|
|
# Plot input image |
|
plt.subplot(1, 2, 1) |
|
plt.imshow(input_img, cmap='gray') |
|
plt.title("Input Image") |
|
plt.axis('off') # Hide axes for cleaner display |
|
|
|
# Plot output image |
|
plt.subplot(1, 2, 2) |
|
plt.imshow(output_img, cmap='gray') |
|
plt.title("Output Image") |
|
plt.axis('off') # Hide axes for cleaner display |
|
|
|
# Save the figure as output.jpg with 300 DPI |
|
plt.savefig("output.jpg", dpi=300, bbox_inches='tight') |
|
|
|
# Show the plot |
|
plt.show() |
|
``` |
|
### Inference |
|
```python |
|
# Example usage |
|
WIDTH, HEIGHT = 512, 512 |
|
# Replace 'input_image.jpg' with the path to your image |
|
image_path = "<input_image.jpg>" |
|
input_img, output_img = process_and_plot_images(image_path) |
|
|
|
plot_in_out_images(input_img, output_img) |
|
``` |
|
|
|
### Example Output |
|
 |