Built with Axolotl

See axolotl config

axolotl version: 0.4.1

adapter: lora
base_model: furiosa-ai/mlperf-gpt-j-6b
bf16: auto
chat_template: llama3
dataset_prepared_path: null
datasets:
- data_files:
  - 72336bec8281cd39_train_data.json
  ds_type: json
  format: custom
  path: /workspace/input_data/72336bec8281cd39_train_data.json
  type:
    field_input: context
    field_instruction: instruction
    field_output: response
    format: '{instruction} {input}'
    no_input_format: '{instruction}'
    system_format: '{system}'
    system_prompt: ''
debug: null
deepspeed: null
device: cuda
early_stopping_patience: 1
eval_max_new_tokens: 128
eval_steps: 5
eval_table_size: null
evals_per_epoch: null
flash_attention: false
fp16: null
gradient_accumulation_steps: 4
gradient_checkpointing: true
group_by_length: true
hub_model_id: cvoffer/1ca26c53-ff26-4ec6-98e6-505b42a920f8
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 0.0002
load_in_4bit: false
load_in_8bit: false
local_rank: null
logging_steps: 3
lora_alpha: 32
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 16
lora_target_linear: true
lr_scheduler: cosine
max_memory:
  0: 78GiB
max_steps: 30
micro_batch_size: 2
mlflow_experiment_name: /tmp/72336bec8281cd39_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 1
optimizer: adamw_torch
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
save_steps: 10
sequence_len: 1024
strict: false
tf32: false
tokenizer_type: AutoTokenizer
train_on_inputs: true
trust_remote_code: true
val_set_size: 0.05
wandb_entity: null
wandb_mode: online
wandb_name: dbd8cee6-c442-4c97-b282-e31e5841a1e1
wandb_project: Gradients-On-Demand
wandb_run: your_name
wandb_runid: dbd8cee6-c442-4c97-b282-e31e5841a1e1
warmup_steps: 5
weight_decay: 0.001
xformers_attention: true

1ca26c53-ff26-4ec6-98e6-505b42a920f8

This model is a fine-tuned version of furiosa-ai/mlperf-gpt-j-6b on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 3.0203

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0002
  • train_batch_size: 2
  • eval_batch_size: 2
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 8
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 5
  • training_steps: 30

Training results

Training Loss Epoch Step Validation Loss
No log 0.0006 1 3.8068
12.1258 0.0028 5 3.7241
11.7311 0.0057 10 3.3294
11.9863 0.0085 15 3.2338
10.7006 0.0114 20 3.0800
10.6116 0.0142 25 3.0303
10.5293 0.0171 30 3.0203

Framework versions

  • PEFT 0.13.2
  • Transformers 4.46.0
  • Pytorch 2.5.0+cu124
  • Datasets 3.0.1
  • Tokenizers 0.20.1
Downloads last month
10
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.
The model cannot be deployed to the HF Inference API: The model has no pipeline_tag.

Model tree for cvoffer/1ca26c53-ff26-4ec6-98e6-505b42a920f8

Adapter
(198)
this model