File size: 4,609 Bytes
36e9ecf 5df1613 36e9ecf a8c03f7 36e9ecf a8c03f7 36e9ecf a8c03f7 36e9ecf a8c03f7 36e9ecf a8c03f7 36e9ecf a8c03f7 36e9ecf a8c03f7 36e9ecf 7029f7b 36e9ecf f35b077 36e9ecf a8c03f7 36e9ecf a8c03f7 36e9ecf a8c03f7 36e9ecf f35b077 36e9ecf f35b077 36e9ecf |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 |
---
license: llama3
language:
- tr
- en
base_model: meta-llama/Meta-Llama-3.1-8B-Instruct
model-index:
- name: MARS
results:
- task:
type: text-generation
name: Text Generation
dataset:
name: AI2 Reasoning Challenge TR v0.2
type: ai2_arc
config: ARC-Challenge
split: test
args:
num_few_shot: 25
metrics:
- type: acc
value: 43.85
name: accuracy
- task:
type: text-generation
name: Text Generation
dataset:
name: HellaSwag TR
type: hellaswag
split: validation
args:
num_few_shot: 10
metrics:
- type: acc
value: 46.64
name: accuracy
- task:
type: text-generation
name: Text Generation
dataset:
name: TruthfulQA TR v0.2
type: truthful_qa
config: multiple_choice
split: validation
args:
num_few_shot: 0
metrics:
- type: acc
name: accuracy
value: 48.66
- task:
type: text-generation
name: Text Generation
dataset:
name: Winogrande TR v0.2
type: winogrande
config: winogrande_xl
split: validation
args:
num_few_shot: 5
metrics:
- type: acc
value: 52.84
name: accuracy
- task:
type: text-generation
name: Text Generation
dataset:
name: GSM8k TR v0.2
type: gsm8k
config: main
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 59.30
name: accuracy
pipeline_tag: text-generation
---
<img src="MARS-2.0.png" alt="Curiosity MARS model logo" style="border-radius: 1rem; width: 100%">
<div style="display: flex; justify-content: center; align-items: center; flex-direction: column">
<h1 style="font-size: 5em; margin-bottom: 0; padding-bottom: 0;">MARS-v0.2</h1>
<aside>by <a href="https://curiosity.tech">Curiosity Technology</a></aside>
</div>
MARS-v0.2 is the second iteration of Curiosity Technology models, built on the foundation of Llama 3.1 8B. This version expands upon the initial MARS model by fine-tuning it with a more comprehensive dataset, with an increased emphasis on mathematical data to enhance its reasoning and problem-solving capabilities.
We've continued our commitment to Turkish language processing, utilizing both in-house Turkish datasets and a broader selection of translated open-source datasets. We believe this version will serve the community with even more versatility and depth.
MARS have been trained for 3 days on 4xA100.
## Model Details
- **Base Model**: Meta Llama 3.1 8B Instruct
- **Training Dataset**: In-house & Translated Open Source Turkish Datasets
- **Training Method**: LoRA Fine Tuning
## How to use
You can run conversational inference using the Transformers pipeline abstraction, or by leveraging the Auto classes with the `generate()` function. Let's see examples of both.
### Transformers pipeline
```python
import transformers
import torch
model_id = "curiositytech/MARS-v0.2"
pipeline = transformers.pipeline(
"text-generation",
model=model_id,
model_kwargs={"torch_dtype": torch.bfloat16},
device_map="auto",
)
messages = [
{"role": "system", "content": "Sen korsan gibi konuşan bir korsan chatbotsun!"},
{"role": "user", "content": "Sen kimsin?"},
]
terminators = [
pipeline.tokenizer.eos_token_id,
pipeline.tokenizer.convert_tokens_to_ids("<|eot_id|>")
]
outputs = pipeline(
messages,
max_new_tokens=256,
eos_token_id=terminators,
do_sample=True,
temperature=0.6,
top_p=0.9,
)
print(outputs[0]["generated_text"][-1])
```
### Transformers AutoModelForCausalLM
```python
from transformers import AutoTokenizer, AutoModelForCausalLM
import torch
model_id = "curiositytech/MARS-v0.2"
tokenizer = AutoTokenizer.from_pretrained(model_id)
model = AutoModelForCausalLM.from_pretrained(
model_id,
torch_dtype=torch.bfloat16,
device_map="auto",
)
messages = [
{"role": "system", "content": "Sen korsan gibi konuşan bir korsan chatbotsun!"},
{"role": "user", "content": "Sen kimsin?"},
]
input_ids = tokenizer.apply_chat_template(
messages,
add_generation_prompt=True,
return_tensors="pt"
).to(model.device)
terminators = [
tokenizer.eos_token_id,
tokenizer.convert_tokens_to_ids("<|eot_id|>")
]
outputs = model.generate(
input_ids,
max_new_tokens=256,
eos_token_id=terminators,
do_sample=True,
temperature=0.6,
top_p=0.9,
)
response = outputs[0][input_ids.shape[-1]:]
print(tokenizer.decode(response, skip_special_tokens=True))
``` |