Gokalpozer commited on
Commit
36e9ecf
·
verified ·
1 Parent(s): 32c4b76

Upload README.md

Browse files
Files changed (1) hide show
  1. README.md +188 -0
README.md ADDED
@@ -0,0 +1,188 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: llama3
3
+ language:
4
+ - tr
5
+ - en
6
+ base_model: meta-llama/Meta-Llama-3-8B-Instruct
7
+ model-index:
8
+ - name: MARS
9
+ results:
10
+ - task:
11
+ type: text-generation
12
+ name: Text Generation
13
+ dataset:
14
+ name: AI2 Reasoning Challenge TR v0.2
15
+ type: ai2_arc
16
+ config: ARC-Challenge
17
+ split: test
18
+ args:
19
+ num_few_shot: 25
20
+ metrics:
21
+ - type: acc
22
+ value: 46.08
23
+ name: accuracy
24
+ - task:
25
+ type: text-generation
26
+ name: Text Generation
27
+ dataset:
28
+ name: MMLU TR v0.2
29
+ type: cais/mmlu
30
+ config: all
31
+ split: test
32
+ args:
33
+ num_few_shot: 5
34
+ metrics:
35
+ - type: acc
36
+ value: 47.02
37
+ name: accuracy
38
+ - task:
39
+ type: text-generation
40
+ name: Text Generation
41
+ dataset:
42
+ name: TruthfulQA TR v0.2
43
+ type: truthful_qa
44
+ config: multiple_choice
45
+ split: validation
46
+ args:
47
+ num_few_shot: 0
48
+ metrics:
49
+ - type: acc
50
+ name: accuracy
51
+ value: 49.38
52
+ - task:
53
+ type: text-generation
54
+ name: Text Generation
55
+ dataset:
56
+ name: Winogrande TR v0.2
57
+ type: winogrande
58
+ config: winogrande_xl
59
+ split: validation
60
+ args:
61
+ num_few_shot: 5
62
+ metrics:
63
+ - type: acc
64
+ value: 53.71
65
+ name: accuracy
66
+ - task:
67
+ type: text-generation
68
+ name: Text Generation
69
+ dataset:
70
+ name: GSM8k TR v0.2
71
+ type: gsm8k
72
+ config: main
73
+ split: test
74
+ args:
75
+ num_few_shot: 5
76
+ metrics:
77
+ - type: acc
78
+ value: 53.08
79
+ name: accuracy
80
+ pipeline_tag: text-generation
81
+ ---
82
+
83
+
84
+ <img src="MARS-1.0.png" alt="Curiosity MARS model logo" style="border-radius: 1rem; width: 100%">
85
+
86
+
87
+ <div style="display: flex; justify-content: center; align-items: center; flex-direction: column">
88
+ <h1 style="font-size: 5em; margin-bottom: 0; padding-bottom: 0;">MARS</h1>
89
+ <aside>by <a href="https://curiosity.tech">Curiosity Technology</a></aside>
90
+ </div>
91
+
92
+ MARS is the first iteration of Curiosity Technology models, based on Llama 3 8B.
93
+
94
+ We have trained MARS on in-house Turkish dataset, as well as several open-source datasets and their Turkish
95
+ translations.
96
+ It is our intention to release Turkish translations in near future for community to have their go on them.
97
+
98
+ MARS have been trained for 3 days on 4xA100.
99
+
100
+ ## Model Details
101
+
102
+ - **Base Model**: Meta Llama 3 8B Instruct
103
+ - **Training Dataset**: In-house & Translated Open Source Turkish Datasets
104
+ - **Training Method**: LoRA Fine Tuning
105
+
106
+
107
+ ## How to use
108
+
109
+ You can run conversational inference using the Transformers pipeline abstraction, or by leveraging the Auto classes with the `generate()` function. Let's see examples of both.
110
+
111
+ ### Transformers pipeline
112
+
113
+ ```python
114
+ import transformers
115
+ import torch
116
+
117
+ model_id = "curiositytech/MARS"
118
+
119
+ pipeline = transformers.pipeline(
120
+ "text-generation",
121
+ model=model_id,
122
+ model_kwargs={"torch_dtype": torch.bfloat16},
123
+ device_map="auto",
124
+ )
125
+
126
+ messages = [
127
+ {"role": "system", "content": "Sen korsan gibi konuşan bir korsan chatbotsun!"},
128
+ {"role": "user", "content": "Sen kimsin?"},
129
+ ]
130
+
131
+ terminators = [
132
+ pipeline.tokenizer.eos_token_id,
133
+ pipeline.tokenizer.convert_tokens_to_ids("<|eot_id|>")
134
+ ]
135
+
136
+ outputs = pipeline(
137
+ messages,
138
+ max_new_tokens=256,
139
+ eos_token_id=terminators,
140
+ do_sample=True,
141
+ temperature=0.6,
142
+ top_p=0.9,
143
+ )
144
+ print(outputs[0]["generated_text"][-1])
145
+ ```
146
+
147
+ ### Transformers AutoModelForCausalLM
148
+
149
+ ```python
150
+ from transformers import AutoTokenizer, AutoModelForCausalLM
151
+ import torch
152
+
153
+ model_id = "curiositytech/MARS"
154
+
155
+ tokenizer = AutoTokenizer.from_pretrained(model_id)
156
+ model = AutoModelForCausalLM.from_pretrained(
157
+ model_id,
158
+ torch_dtype=torch.bfloat16,
159
+ device_map="auto",
160
+ )
161
+
162
+ messages = [
163
+ {"role": "system", "content": "Sen korsan gibi konuşan bir korsan chatbotsun!"},
164
+ {"role": "user", "content": "Sen kimsin?"},
165
+ ]
166
+
167
+ input_ids = tokenizer.apply_chat_template(
168
+ messages,
169
+ add_generation_prompt=True,
170
+ return_tensors="pt"
171
+ ).to(model.device)
172
+
173
+ terminators = [
174
+ tokenizer.eos_token_id,
175
+ tokenizer.convert_tokens_to_ids("<|eot_id|>")
176
+ ]
177
+
178
+ outputs = model.generate(
179
+ input_ids,
180
+ max_new_tokens=256,
181
+ eos_token_id=terminators,
182
+ do_sample=True,
183
+ temperature=0.6,
184
+ top_p=0.9,
185
+ )
186
+ response = outputs[0][input_ids.shape[-1]:]
187
+ print(tokenizer.decode(response, skip_special_tokens=True))
188
+ ```