Upload README.md
Browse files
README.md
ADDED
@@ -0,0 +1,188 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: llama3
|
3 |
+
language:
|
4 |
+
- tr
|
5 |
+
- en
|
6 |
+
base_model: meta-llama/Meta-Llama-3-8B-Instruct
|
7 |
+
model-index:
|
8 |
+
- name: MARS
|
9 |
+
results:
|
10 |
+
- task:
|
11 |
+
type: text-generation
|
12 |
+
name: Text Generation
|
13 |
+
dataset:
|
14 |
+
name: AI2 Reasoning Challenge TR v0.2
|
15 |
+
type: ai2_arc
|
16 |
+
config: ARC-Challenge
|
17 |
+
split: test
|
18 |
+
args:
|
19 |
+
num_few_shot: 25
|
20 |
+
metrics:
|
21 |
+
- type: acc
|
22 |
+
value: 46.08
|
23 |
+
name: accuracy
|
24 |
+
- task:
|
25 |
+
type: text-generation
|
26 |
+
name: Text Generation
|
27 |
+
dataset:
|
28 |
+
name: MMLU TR v0.2
|
29 |
+
type: cais/mmlu
|
30 |
+
config: all
|
31 |
+
split: test
|
32 |
+
args:
|
33 |
+
num_few_shot: 5
|
34 |
+
metrics:
|
35 |
+
- type: acc
|
36 |
+
value: 47.02
|
37 |
+
name: accuracy
|
38 |
+
- task:
|
39 |
+
type: text-generation
|
40 |
+
name: Text Generation
|
41 |
+
dataset:
|
42 |
+
name: TruthfulQA TR v0.2
|
43 |
+
type: truthful_qa
|
44 |
+
config: multiple_choice
|
45 |
+
split: validation
|
46 |
+
args:
|
47 |
+
num_few_shot: 0
|
48 |
+
metrics:
|
49 |
+
- type: acc
|
50 |
+
name: accuracy
|
51 |
+
value: 49.38
|
52 |
+
- task:
|
53 |
+
type: text-generation
|
54 |
+
name: Text Generation
|
55 |
+
dataset:
|
56 |
+
name: Winogrande TR v0.2
|
57 |
+
type: winogrande
|
58 |
+
config: winogrande_xl
|
59 |
+
split: validation
|
60 |
+
args:
|
61 |
+
num_few_shot: 5
|
62 |
+
metrics:
|
63 |
+
- type: acc
|
64 |
+
value: 53.71
|
65 |
+
name: accuracy
|
66 |
+
- task:
|
67 |
+
type: text-generation
|
68 |
+
name: Text Generation
|
69 |
+
dataset:
|
70 |
+
name: GSM8k TR v0.2
|
71 |
+
type: gsm8k
|
72 |
+
config: main
|
73 |
+
split: test
|
74 |
+
args:
|
75 |
+
num_few_shot: 5
|
76 |
+
metrics:
|
77 |
+
- type: acc
|
78 |
+
value: 53.08
|
79 |
+
name: accuracy
|
80 |
+
pipeline_tag: text-generation
|
81 |
+
---
|
82 |
+
|
83 |
+
|
84 |
+
<img src="MARS-1.0.png" alt="Curiosity MARS model logo" style="border-radius: 1rem; width: 100%">
|
85 |
+
|
86 |
+
|
87 |
+
<div style="display: flex; justify-content: center; align-items: center; flex-direction: column">
|
88 |
+
<h1 style="font-size: 5em; margin-bottom: 0; padding-bottom: 0;">MARS</h1>
|
89 |
+
<aside>by <a href="https://curiosity.tech">Curiosity Technology</a></aside>
|
90 |
+
</div>
|
91 |
+
|
92 |
+
MARS is the first iteration of Curiosity Technology models, based on Llama 3 8B.
|
93 |
+
|
94 |
+
We have trained MARS on in-house Turkish dataset, as well as several open-source datasets and their Turkish
|
95 |
+
translations.
|
96 |
+
It is our intention to release Turkish translations in near future for community to have their go on them.
|
97 |
+
|
98 |
+
MARS have been trained for 3 days on 4xA100.
|
99 |
+
|
100 |
+
## Model Details
|
101 |
+
|
102 |
+
- **Base Model**: Meta Llama 3 8B Instruct
|
103 |
+
- **Training Dataset**: In-house & Translated Open Source Turkish Datasets
|
104 |
+
- **Training Method**: LoRA Fine Tuning
|
105 |
+
|
106 |
+
|
107 |
+
## How to use
|
108 |
+
|
109 |
+
You can run conversational inference using the Transformers pipeline abstraction, or by leveraging the Auto classes with the `generate()` function. Let's see examples of both.
|
110 |
+
|
111 |
+
### Transformers pipeline
|
112 |
+
|
113 |
+
```python
|
114 |
+
import transformers
|
115 |
+
import torch
|
116 |
+
|
117 |
+
model_id = "curiositytech/MARS"
|
118 |
+
|
119 |
+
pipeline = transformers.pipeline(
|
120 |
+
"text-generation",
|
121 |
+
model=model_id,
|
122 |
+
model_kwargs={"torch_dtype": torch.bfloat16},
|
123 |
+
device_map="auto",
|
124 |
+
)
|
125 |
+
|
126 |
+
messages = [
|
127 |
+
{"role": "system", "content": "Sen korsan gibi konuşan bir korsan chatbotsun!"},
|
128 |
+
{"role": "user", "content": "Sen kimsin?"},
|
129 |
+
]
|
130 |
+
|
131 |
+
terminators = [
|
132 |
+
pipeline.tokenizer.eos_token_id,
|
133 |
+
pipeline.tokenizer.convert_tokens_to_ids("<|eot_id|>")
|
134 |
+
]
|
135 |
+
|
136 |
+
outputs = pipeline(
|
137 |
+
messages,
|
138 |
+
max_new_tokens=256,
|
139 |
+
eos_token_id=terminators,
|
140 |
+
do_sample=True,
|
141 |
+
temperature=0.6,
|
142 |
+
top_p=0.9,
|
143 |
+
)
|
144 |
+
print(outputs[0]["generated_text"][-1])
|
145 |
+
```
|
146 |
+
|
147 |
+
### Transformers AutoModelForCausalLM
|
148 |
+
|
149 |
+
```python
|
150 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
151 |
+
import torch
|
152 |
+
|
153 |
+
model_id = "curiositytech/MARS"
|
154 |
+
|
155 |
+
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
156 |
+
model = AutoModelForCausalLM.from_pretrained(
|
157 |
+
model_id,
|
158 |
+
torch_dtype=torch.bfloat16,
|
159 |
+
device_map="auto",
|
160 |
+
)
|
161 |
+
|
162 |
+
messages = [
|
163 |
+
{"role": "system", "content": "Sen korsan gibi konuşan bir korsan chatbotsun!"},
|
164 |
+
{"role": "user", "content": "Sen kimsin?"},
|
165 |
+
]
|
166 |
+
|
167 |
+
input_ids = tokenizer.apply_chat_template(
|
168 |
+
messages,
|
169 |
+
add_generation_prompt=True,
|
170 |
+
return_tensors="pt"
|
171 |
+
).to(model.device)
|
172 |
+
|
173 |
+
terminators = [
|
174 |
+
tokenizer.eos_token_id,
|
175 |
+
tokenizer.convert_tokens_to_ids("<|eot_id|>")
|
176 |
+
]
|
177 |
+
|
178 |
+
outputs = model.generate(
|
179 |
+
input_ids,
|
180 |
+
max_new_tokens=256,
|
181 |
+
eos_token_id=terminators,
|
182 |
+
do_sample=True,
|
183 |
+
temperature=0.6,
|
184 |
+
top_p=0.9,
|
185 |
+
)
|
186 |
+
response = outputs[0][input_ids.shape[-1]:]
|
187 |
+
print(tokenizer.decode(response, skip_special_tokens=True))
|
188 |
+
```
|