|
--- |
|
license: cc-by-nc-4.0 |
|
base_model: facebook/mms-1b-all |
|
tags: |
|
- generated_from_trainer |
|
metrics: |
|
- wer |
|
model-index: |
|
- name: wav2vec2-large-mms-1b-nya-colab |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# wav2vec2-large-mms-1b-nya-colab |
|
|
|
This model is a fine-tuned version of [facebook/mms-1b-all](https://huggingface.co/facebook/mms-1b-all) on an unknown dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.4327 |
|
- Wer: 0.3505 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 0.001 |
|
- train_batch_size: 4 |
|
- eval_batch_size: 8 |
|
- seed: 42 |
|
- gradient_accumulation_steps: 2 |
|
- total_train_batch_size: 8 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- lr_scheduler_warmup_steps: 100 |
|
- num_epochs: 15 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Wer | |
|
|:-------------:|:-----:|:----:|:---------------:|:------:| |
|
| 4.1659 | 0.2 | 200 | 0.6822 | 0.5353 | |
|
| 0.2331 | 0.39 | 400 | 0.5220 | 0.4493 | |
|
| 0.2119 | 0.59 | 600 | 0.4967 | 0.4146 | |
|
| 0.1995 | 0.79 | 800 | 0.5021 | 0.4025 | |
|
| 0.1812 | 0.99 | 1000 | 0.5046 | 0.3979 | |
|
| 0.1744 | 1.18 | 1200 | 0.4786 | 0.3884 | |
|
| 0.1783 | 1.38 | 1400 | 0.4630 | 0.3786 | |
|
| 0.1663 | 1.58 | 1600 | 0.4511 | 0.3634 | |
|
| 0.1609 | 1.77 | 1800 | 0.4656 | 0.3647 | |
|
| 0.1632 | 1.97 | 2000 | 0.4254 | 0.3553 | |
|
| 0.1568 | 2.17 | 2200 | 0.4326 | 0.3529 | |
|
| 0.1544 | 2.37 | 2400 | 0.4291 | 0.3477 | |
|
| 0.1524 | 2.56 | 2600 | 0.4327 | 0.3505 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.31.0.dev0 |
|
- Pytorch 2.0.1+cu118 |
|
- Datasets 2.13.1 |
|
- Tokenizers 0.13.3 |
|
|