File size: 7,164 Bytes
975224a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
import logging
import traceback

import torch
from datasets import load_dataset

from sentence_transformers import SentenceTransformer
from sentence_transformers.cross_encoder import CrossEncoder, CrossEncoderModelCardData
from sentence_transformers.cross_encoder.evaluation import (
    CrossEncoderNanoBEIREvaluator,
    CrossEncoderRerankingEvaluator,
)
from sentence_transformers.cross_encoder.losses.BinaryCrossEntropyLoss import BinaryCrossEntropyLoss
from sentence_transformers.cross_encoder.trainer import CrossEncoderTrainer
from sentence_transformers.cross_encoder.training_args import CrossEncoderTrainingArguments
from sentence_transformers.evaluation.SequentialEvaluator import SequentialEvaluator
from sentence_transformers.util import mine_hard_negatives

# Set the log level to INFO to get more information
logging.basicConfig(format="%(asctime)s - %(message)s", datefmt="%Y-%m-%d %H:%M:%S", level=logging.INFO)


def main():
    model_name = "prajjwal1/bert-tiny"

    train_batch_size = 2048
    num_epochs = 1
    num_hard_negatives = 5  # How many hard negatives should be mined for each question-answer pair

    # 1a. Load a model to finetune with 1b. (Optional) model card data
    model = CrossEncoder(
        model_name,
        model_card_data=CrossEncoderModelCardData(
            language="en",
            license="apache-2.0",
            model_name="BERT-tiny trained on GooAQ",
        ),
    )
    print("Model max length:", model.max_length)
    print("Model num labels:", model.num_labels)

    # 2a. Load the GooAQ dataset: https://huggingface.co/datasets/sentence-transformers/gooaq
    logging.info("Read the gooaq training dataset")
    full_dataset = load_dataset("sentence-transformers/gooaq", split="train").select(range(100_000))
    dataset_dict = full_dataset.train_test_split(test_size=1_000, seed=12)
    train_dataset = dataset_dict["train"]
    eval_dataset = dataset_dict["test"]
    logging.info(train_dataset)
    logging.info(eval_dataset)

    # 2b. Modify our training dataset to include hard negatives using a very efficient embedding model
    embedding_model = SentenceTransformer("sentence-transformers/static-retrieval-mrl-en-v1", device="cpu")
    hard_train_dataset = mine_hard_negatives(
        train_dataset,
        embedding_model,
        num_negatives=num_hard_negatives,  # How many negatives per question-answer pair
        margin=0,  # Similarity between query and negative samples should be x lower than query-positive similarity
        range_min=0,  # Skip the x most similar samples
        range_max=100,  # Consider only the x most similar samples
        sampling_strategy="top",  # Randomly sample negatives from the range
        batch_size=4096,  # Use a batch size of 4096 for the embedding model
        output_format="labeled-pair",  # The output format is (query, passage, label), as required by BinaryCrossEntropyLoss
        use_faiss=True,
    )
    logging.info(hard_train_dataset)

    # 2c. (Optionally) Save the hard training dataset to disk
    # hard_train_dataset.save_to_disk("gooaq-hard-train")
    # Load again with:
    # hard_train_dataset = load_from_disk("gooaq-hard-train")

    # 3. Define our training loss.
    # pos_weight is recommended to be set as the ratio between positives to negatives, a.k.a. `num_hard_negatives`
    loss = BinaryCrossEntropyLoss(model=model, pos_weight=torch.tensor(num_hard_negatives))

    # 4a. Define evaluators. We use the CrossEncoderNanoBEIREvaluator, which is a light-weight evaluator for English reranking
    nano_beir_evaluator = CrossEncoderNanoBEIREvaluator(
        dataset_names=["msmarco", "nfcorpus", "nq"],
        batch_size=train_batch_size,
    )

    # 4b. Define a reranking evaluator by mining hard negatives given query-answer pairs
    # We include the positive answer in the list of negatives, so the evaluator can use the performance of the
    # embedding model as a baseline.
    hard_eval_dataset = mine_hard_negatives(
        eval_dataset,
        embedding_model,
        corpus=full_dataset["answer"],  # Use the full dataset as the corpus
        num_negatives=30,  # How many documents to rerank
        batch_size=4096,
        disqualify_positives=False,
        output_format="n-tuple",
        use_faiss=True,
    )
    logging.info(hard_eval_dataset)
    reranking_evaluator = CrossEncoderRerankingEvaluator(
        samples=[
            {
                "query": sample["question"],
                "positive": [sample["answer"]],
                "documents": [sample[column_name] for column_name in hard_eval_dataset.column_names[2:]],
            }
            for sample in hard_eval_dataset
        ],
        batch_size=train_batch_size,
        name="gooaq-dev",
    )

    # 4c. Combine the evaluators & run the base model on them
    evaluator = SequentialEvaluator([reranking_evaluator, nano_beir_evaluator])
    evaluator(model)

    # 5. Define the training arguments
    short_model_name = model_name if "/" not in model_name else model_name.split("/")[-1]
    run_name = f"reranker-{short_model_name}-gooaq-bce"
    args = CrossEncoderTrainingArguments(
        # Required parameter:
        output_dir=f"models/{run_name}",
        # Optional training parameters:
        num_train_epochs=num_epochs,
        per_device_train_batch_size=train_batch_size,
        per_device_eval_batch_size=train_batch_size,
        learning_rate=5e-4,
        warmup_ratio=0.1,
        fp16=False,  # Set to False if you get an error that your GPU can't run on FP16
        bf16=True,  # Set to True if you have a GPU that supports BF16
        load_best_model_at_end=True,
        metric_for_best_model="eval_NanoBEIR_R100_mean_ndcg@10",
        # Optional tracking/debugging parameters:
        eval_strategy="steps",
        eval_steps=20,
        save_strategy="steps",
        save_steps=20,
        save_total_limit=2,
        logging_steps=20,
        logging_first_step=True,
        run_name=run_name,  # Will be used in W&B if `wandb` is installed
        seed=12,
    )

    # 6. Create the trainer & start training
    trainer = CrossEncoderTrainer(
        model=model,
        args=args,
        train_dataset=hard_train_dataset,
        loss=loss,
        evaluator=evaluator,
    )
    trainer.train()

    # 7. Evaluate the final model, useful to include these in the model card
    evaluator(model)

    # 8. Save the final model
    final_output_dir = f"models/{run_name}/final"
    model.save_pretrained(final_output_dir)

    # 9. (Optional) save the model to the Hugging Face Hub!
    # It is recommended to run `huggingface-cli login` to log into your Hugging Face account first
    try:
        model.push_to_hub(f"cross-encoder-testing/{run_name}")
    except Exception:
        logging.error(
            f"Error uploading model to the Hugging Face Hub:\n{traceback.format_exc()}To upload it manually, you can run "
            f"`huggingface-cli login`, followed by loading the model using `model = CrossEncoder({final_output_dir!r})` "
            f"and saving it using `model.push_to_hub('{run_name}')`."
        )


if __name__ == "__main__":
    main()