Create train_script.py
Browse files- train_script.py +171 -0
train_script.py
ADDED
@@ -0,0 +1,171 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import logging
|
2 |
+
import traceback
|
3 |
+
|
4 |
+
import torch
|
5 |
+
from datasets import load_dataset
|
6 |
+
|
7 |
+
from sentence_transformers import SentenceTransformer
|
8 |
+
from sentence_transformers.cross_encoder import CrossEncoder, CrossEncoderModelCardData
|
9 |
+
from sentence_transformers.cross_encoder.evaluation import (
|
10 |
+
CrossEncoderNanoBEIREvaluator,
|
11 |
+
CrossEncoderRerankingEvaluator,
|
12 |
+
)
|
13 |
+
from sentence_transformers.cross_encoder.losses.BinaryCrossEntropyLoss import BinaryCrossEntropyLoss
|
14 |
+
from sentence_transformers.cross_encoder.trainer import CrossEncoderTrainer
|
15 |
+
from sentence_transformers.cross_encoder.training_args import CrossEncoderTrainingArguments
|
16 |
+
from sentence_transformers.evaluation.SequentialEvaluator import SequentialEvaluator
|
17 |
+
from sentence_transformers.util import mine_hard_negatives
|
18 |
+
|
19 |
+
# Set the log level to INFO to get more information
|
20 |
+
logging.basicConfig(format="%(asctime)s - %(message)s", datefmt="%Y-%m-%d %H:%M:%S", level=logging.INFO)
|
21 |
+
|
22 |
+
|
23 |
+
def main():
|
24 |
+
model_name = "prajjwal1/bert-tiny"
|
25 |
+
|
26 |
+
train_batch_size = 2048
|
27 |
+
num_epochs = 1
|
28 |
+
num_hard_negatives = 5 # How many hard negatives should be mined for each question-answer pair
|
29 |
+
|
30 |
+
# 1a. Load a model to finetune with 1b. (Optional) model card data
|
31 |
+
model = CrossEncoder(
|
32 |
+
model_name,
|
33 |
+
model_card_data=CrossEncoderModelCardData(
|
34 |
+
language="en",
|
35 |
+
license="apache-2.0",
|
36 |
+
model_name="BERT-tiny trained on GooAQ",
|
37 |
+
),
|
38 |
+
)
|
39 |
+
print("Model max length:", model.max_length)
|
40 |
+
print("Model num labels:", model.num_labels)
|
41 |
+
|
42 |
+
# 2a. Load the GooAQ dataset: https://huggingface.co/datasets/sentence-transformers/gooaq
|
43 |
+
logging.info("Read the gooaq training dataset")
|
44 |
+
full_dataset = load_dataset("sentence-transformers/gooaq", split="train").select(range(100_000))
|
45 |
+
dataset_dict = full_dataset.train_test_split(test_size=1_000, seed=12)
|
46 |
+
train_dataset = dataset_dict["train"]
|
47 |
+
eval_dataset = dataset_dict["test"]
|
48 |
+
logging.info(train_dataset)
|
49 |
+
logging.info(eval_dataset)
|
50 |
+
|
51 |
+
# 2b. Modify our training dataset to include hard negatives using a very efficient embedding model
|
52 |
+
embedding_model = SentenceTransformer("sentence-transformers/static-retrieval-mrl-en-v1", device="cpu")
|
53 |
+
hard_train_dataset = mine_hard_negatives(
|
54 |
+
train_dataset,
|
55 |
+
embedding_model,
|
56 |
+
num_negatives=num_hard_negatives, # How many negatives per question-answer pair
|
57 |
+
margin=0, # Similarity between query and negative samples should be x lower than query-positive similarity
|
58 |
+
range_min=0, # Skip the x most similar samples
|
59 |
+
range_max=100, # Consider only the x most similar samples
|
60 |
+
sampling_strategy="top", # Randomly sample negatives from the range
|
61 |
+
batch_size=4096, # Use a batch size of 4096 for the embedding model
|
62 |
+
output_format="labeled-pair", # The output format is (query, passage, label), as required by BinaryCrossEntropyLoss
|
63 |
+
use_faiss=True,
|
64 |
+
)
|
65 |
+
logging.info(hard_train_dataset)
|
66 |
+
|
67 |
+
# 2c. (Optionally) Save the hard training dataset to disk
|
68 |
+
# hard_train_dataset.save_to_disk("gooaq-hard-train")
|
69 |
+
# Load again with:
|
70 |
+
# hard_train_dataset = load_from_disk("gooaq-hard-train")
|
71 |
+
|
72 |
+
# 3. Define our training loss.
|
73 |
+
# pos_weight is recommended to be set as the ratio between positives to negatives, a.k.a. `num_hard_negatives`
|
74 |
+
loss = BinaryCrossEntropyLoss(model=model, pos_weight=torch.tensor(num_hard_negatives))
|
75 |
+
|
76 |
+
# 4a. Define evaluators. We use the CrossEncoderNanoBEIREvaluator, which is a light-weight evaluator for English reranking
|
77 |
+
nano_beir_evaluator = CrossEncoderNanoBEIREvaluator(
|
78 |
+
dataset_names=["msmarco", "nfcorpus", "nq"],
|
79 |
+
batch_size=train_batch_size,
|
80 |
+
)
|
81 |
+
|
82 |
+
# 4b. Define a reranking evaluator by mining hard negatives given query-answer pairs
|
83 |
+
# We include the positive answer in the list of negatives, so the evaluator can use the performance of the
|
84 |
+
# embedding model as a baseline.
|
85 |
+
hard_eval_dataset = mine_hard_negatives(
|
86 |
+
eval_dataset,
|
87 |
+
embedding_model,
|
88 |
+
corpus=full_dataset["answer"], # Use the full dataset as the corpus
|
89 |
+
num_negatives=30, # How many documents to rerank
|
90 |
+
batch_size=4096,
|
91 |
+
disqualify_positives=False,
|
92 |
+
output_format="n-tuple",
|
93 |
+
use_faiss=True,
|
94 |
+
)
|
95 |
+
logging.info(hard_eval_dataset)
|
96 |
+
reranking_evaluator = CrossEncoderRerankingEvaluator(
|
97 |
+
samples=[
|
98 |
+
{
|
99 |
+
"query": sample["question"],
|
100 |
+
"positive": [sample["answer"]],
|
101 |
+
"documents": [sample[column_name] for column_name in hard_eval_dataset.column_names[2:]],
|
102 |
+
}
|
103 |
+
for sample in hard_eval_dataset
|
104 |
+
],
|
105 |
+
batch_size=train_batch_size,
|
106 |
+
name="gooaq-dev",
|
107 |
+
)
|
108 |
+
|
109 |
+
# 4c. Combine the evaluators & run the base model on them
|
110 |
+
evaluator = SequentialEvaluator([reranking_evaluator, nano_beir_evaluator])
|
111 |
+
evaluator(model)
|
112 |
+
|
113 |
+
# 5. Define the training arguments
|
114 |
+
short_model_name = model_name if "/" not in model_name else model_name.split("/")[-1]
|
115 |
+
run_name = f"reranker-{short_model_name}-gooaq-bce"
|
116 |
+
args = CrossEncoderTrainingArguments(
|
117 |
+
# Required parameter:
|
118 |
+
output_dir=f"models/{run_name}",
|
119 |
+
# Optional training parameters:
|
120 |
+
num_train_epochs=num_epochs,
|
121 |
+
per_device_train_batch_size=train_batch_size,
|
122 |
+
per_device_eval_batch_size=train_batch_size,
|
123 |
+
learning_rate=5e-4,
|
124 |
+
warmup_ratio=0.1,
|
125 |
+
fp16=False, # Set to False if you get an error that your GPU can't run on FP16
|
126 |
+
bf16=True, # Set to True if you have a GPU that supports BF16
|
127 |
+
load_best_model_at_end=True,
|
128 |
+
metric_for_best_model="eval_NanoBEIR_R100_mean_ndcg@10",
|
129 |
+
# Optional tracking/debugging parameters:
|
130 |
+
eval_strategy="steps",
|
131 |
+
eval_steps=20,
|
132 |
+
save_strategy="steps",
|
133 |
+
save_steps=20,
|
134 |
+
save_total_limit=2,
|
135 |
+
logging_steps=20,
|
136 |
+
logging_first_step=True,
|
137 |
+
run_name=run_name, # Will be used in W&B if `wandb` is installed
|
138 |
+
seed=12,
|
139 |
+
)
|
140 |
+
|
141 |
+
# 6. Create the trainer & start training
|
142 |
+
trainer = CrossEncoderTrainer(
|
143 |
+
model=model,
|
144 |
+
args=args,
|
145 |
+
train_dataset=hard_train_dataset,
|
146 |
+
loss=loss,
|
147 |
+
evaluator=evaluator,
|
148 |
+
)
|
149 |
+
trainer.train()
|
150 |
+
|
151 |
+
# 7. Evaluate the final model, useful to include these in the model card
|
152 |
+
evaluator(model)
|
153 |
+
|
154 |
+
# 8. Save the final model
|
155 |
+
final_output_dir = f"models/{run_name}/final"
|
156 |
+
model.save_pretrained(final_output_dir)
|
157 |
+
|
158 |
+
# 9. (Optional) save the model to the Hugging Face Hub!
|
159 |
+
# It is recommended to run `huggingface-cli login` to log into your Hugging Face account first
|
160 |
+
try:
|
161 |
+
model.push_to_hub(f"cross-encoder-testing/{run_name}")
|
162 |
+
except Exception:
|
163 |
+
logging.error(
|
164 |
+
f"Error uploading model to the Hugging Face Hub:\n{traceback.format_exc()}To upload it manually, you can run "
|
165 |
+
f"`huggingface-cli login`, followed by loading the model using `model = CrossEncoder({final_output_dir!r})` "
|
166 |
+
f"and saving it using `model.push_to_hub('{run_name}')`."
|
167 |
+
)
|
168 |
+
|
169 |
+
|
170 |
+
if __name__ == "__main__":
|
171 |
+
main()
|