my-cool-model / lib /backbones /Res2Net_v1b.py
crapthings's picture
Upload folder using huggingface_hub
f7f604d
raw
history blame
9.74 kB
import torch.nn as nn
import math
import torch.utils.model_zoo as model_zoo
import torch
import torch.nn.functional as F
__all__ = ['Res2Net', 'res2net50_v1b',
'res2net101_v1b', 'res2net50_v1b_26w_4s']
model_urls = {
'res2net50_v1b_26w_4s': 'https://shanghuagao.oss-cn-beijing.aliyuncs.com/res2net/res2net50_v1b_26w_4s-3cf99910.pth',
'res2net101_v1b_26w_4s': 'https://shanghuagao.oss-cn-beijing.aliyuncs.com/res2net/res2net101_v1b_26w_4s-0812c246.pth',
}
class Bottle2neck(nn.Module):
expansion = 4
def __init__(self, inplanes, planes, stride=1, dilation=1, downsample=None, baseWidth=26, scale=4, stype='normal'):
super(Bottle2neck, self).__init__()
width = int(math.floor(planes * (baseWidth / 64.0)))
self.conv1 = nn.Conv2d(inplanes, width * scale,
kernel_size=1, bias=False)
self.bn1 = nn.BatchNorm2d(width * scale)
if scale == 1:
self.nums = 1
else:
self.nums = scale - 1
if stype == 'stage':
self.pool = nn.AvgPool2d(kernel_size=3, stride=stride, padding=1)
convs = []
bns = []
for i in range(self.nums):
convs.append(nn.Conv2d(width, width, kernel_size=3, stride=stride,
dilation=dilation, padding=dilation, bias=False))
bns.append(nn.BatchNorm2d(width))
self.convs = nn.ModuleList(convs)
self.bns = nn.ModuleList(bns)
self.conv3 = nn.Conv2d(width * scale, planes *
self.expansion, kernel_size=1, bias=False)
self.bn3 = nn.BatchNorm2d(planes * self.expansion)
self.relu = nn.ReLU(inplace=True)
self.downsample = downsample
self.stype = stype
self.scale = scale
self.width = width
def forward(self, x):
residual = x
out = self.conv1(x)
out = self.bn1(out)
out = self.relu(out)
spx = torch.split(out, self.width, 1)
for i in range(self.nums):
if i == 0 or self.stype == 'stage':
sp = spx[i]
else:
sp = sp + spx[i]
sp = self.convs[i](sp)
sp = self.relu(self.bns[i](sp))
if i == 0:
out = sp
else:
out = torch.cat((out, sp), 1)
if self.scale != 1 and self.stype == 'normal':
out = torch.cat((out, spx[self.nums]), 1)
elif self.scale != 1 and self.stype == 'stage':
out = torch.cat((out, self.pool(spx[self.nums])), 1)
out = self.conv3(out)
out = self.bn3(out)
if self.downsample is not None:
residual = self.downsample(x)
out += residual
out = self.relu(out)
return out
class Res2Net(nn.Module):
def __init__(self, block, layers, baseWidth=26, scale=4, num_classes=1000, output_stride=32):
self.inplanes = 64
super(Res2Net, self).__init__()
self.baseWidth = baseWidth
self.scale = scale
self.output_stride = output_stride
if self.output_stride == 8:
self.grid = [1, 2, 1]
self.stride = [1, 2, 1, 1]
self.dilation = [1, 1, 2, 4]
elif self.output_stride == 16:
self.grid = [1, 2, 4]
self.stride = [1, 2, 2, 1]
self.dilation = [1, 1, 1, 2]
elif self.output_stride == 32:
self.grid = [1, 2, 4]
self.stride = [1, 2, 2, 2]
self.dilation = [1, 1, 2, 4]
self.conv1 = nn.Sequential(
nn.Conv2d(3, 32, 3, 2, 1, bias=False),
nn.BatchNorm2d(32),
nn.ReLU(inplace=True),
nn.Conv2d(32, 32, 3, 1, 1, bias=False),
nn.BatchNorm2d(32),
nn.ReLU(inplace=True),
nn.Conv2d(32, 64, 3, 1, 1, bias=False)
)
self.bn1 = nn.BatchNorm2d(64)
self.relu = nn.ReLU()
self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
self.layer1 = self._make_layer(
block, 64, layers[0], stride=self.stride[0], dilation=self.dilation[0])
self.layer2 = self._make_layer(
block, 128, layers[1], stride=self.stride[1], dilation=self.dilation[1])
self.layer3 = self._make_layer(
block, 256, layers[2], stride=self.stride[2], dilation=self.dilation[2])
self.layer4 = self._make_layer(
block, 512, layers[3], stride=self.stride[3], dilation=self.dilation[3], grid=self.grid)
for m in self.modules():
if isinstance(m, nn.Conv2d):
nn.init.kaiming_normal_(
m.weight, mode='fan_out', nonlinearity='relu')
elif isinstance(m, nn.BatchNorm2d):
nn.init.constant_(m.weight, 1)
nn.init.constant_(m.bias, 0)
def _make_layer(self, block, planes, blocks, stride=1, dilation=1, grid=None):
downsample = None
if stride != 1 or self.inplanes != planes * block.expansion:
downsample = nn.Sequential(
nn.AvgPool2d(kernel_size=stride, stride=stride,
ceil_mode=True, count_include_pad=False),
nn.Conv2d(self.inplanes, planes * block.expansion,
kernel_size=1, stride=1, bias=False),
nn.BatchNorm2d(planes * block.expansion),
)
layers = []
layers.append(block(self.inplanes, planes, stride, dilation, downsample=downsample,
stype='stage', baseWidth=self.baseWidth, scale=self.scale))
self.inplanes = planes * block.expansion
if grid is not None:
assert len(grid) == blocks
else:
grid = [1] * blocks
for i in range(1, blocks):
layers.append(block(self.inplanes, planes, dilation=dilation *
grid[i], baseWidth=self.baseWidth, scale=self.scale))
return nn.Sequential(*layers)
def change_stride(self, output_stride=16):
if output_stride == self.output_stride:
return
else:
self.output_stride = output_stride
if self.output_stride == 8:
self.grid = [1, 2, 1]
self.stride = [1, 2, 1, 1]
self.dilation = [1, 1, 2, 4]
elif self.output_stride == 16:
self.grid = [1, 2, 4]
self.stride = [1, 2, 2, 1]
self.dilation = [1, 1, 1, 2]
elif self.output_stride == 32:
self.grid = [1, 2, 4]
self.stride = [1, 2, 2, 2]
self.dilation = [1, 1, 2, 4]
for i, layer in enumerate([self.layer1, self.layer2, self.layer3, self.layer4]):
for j, block in enumerate(layer):
if block.downsample is not None:
block.downsample[0].kernel_size = (
self.stride[i], self.stride[i])
block.downsample[0].stride = (
self.stride[i], self.stride[i])
if hasattr(block, 'pool'):
block.pool.stride = (
self.stride[i], self.stride[i])
for conv in block.convs:
conv.stride = (self.stride[i], self.stride[i])
for conv in block.convs:
d = self.dilation[i] if i != 3 else self.dilation[i] * \
self.grid[j]
conv.dilation = (d, d)
conv.padding = (d, d)
def forward(self, x):
x = self.conv1(x)
x = self.bn1(x)
x = self.relu(x)
x = self.maxpool(x)
out = [x]
x = self.layer1(x)
out.append(x)
x = self.layer2(x)
out.append(x)
x = self.layer3(x)
out.append(x)
x = self.layer4(x)
out.append(x)
return out
def res2net50_v1b(pretrained=False, **kwargs):
model = Res2Net(Bottle2neck, [3, 4, 6, 3], baseWidth=26, scale=4, **kwargs)
if pretrained:
model.load_state_dict(model_zoo.load_url(
model_urls['res2net50_v1b_26w_4s']))
return model
def res2net101_v1b(pretrained=False, **kwargs):
model = Res2Net(Bottle2neck, [3, 4, 23, 3],
baseWidth=26, scale=4, **kwargs)
if pretrained:
model.load_state_dict(model_zoo.load_url(
model_urls['res2net101_v1b_26w_4s']))
return model
def res2net50_v1b_26w_4s(pretrained=True, **kwargs):
model = Res2Net(Bottle2neck, [3, 4, 6, 3], baseWidth=26, scale=4, **kwargs)
if pretrained is True:
model.load_state_dict(torch.load('data/backbone_ckpt/res2net50_v1b_26w_4s-3cf99910.pth', map_location='cpu'))
return model
def res2net101_v1b_26w_4s(pretrained=True, **kwargs):
model = Res2Net(Bottle2neck, [3, 4, 23, 3],
baseWidth=26, scale=4, **kwargs)
if pretrained is True:
model.load_state_dict(torch.load('data/backbone_ckpt/res2net101_v1b_26w_4s-0812c246.pth', map_location='cpu'))
return model
def res2net152_v1b_26w_4s(pretrained=False, **kwargs):
model = Res2Net(Bottle2neck, [3, 8, 36, 3],
baseWidth=26, scale=4, **kwargs)
if pretrained:
model.load_state_dict(model_zoo.load_url(
model_urls['res2net152_v1b_26w_4s']))
return model
if __name__ == '__main__':
images = torch.rand(1, 3, 224, 224).cuda(0)
model = res2net50_v1b_26w_4s(pretrained=True)
model = model.cuda(0)
print(model(images).size())