File size: 9,743 Bytes
f7f604d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
import torch.nn as nn
import math
import torch.utils.model_zoo as model_zoo
import torch
import torch.nn.functional as F

__all__ = ['Res2Net', 'res2net50_v1b',
           'res2net101_v1b', 'res2net50_v1b_26w_4s']

model_urls = {
    'res2net50_v1b_26w_4s': 'https://shanghuagao.oss-cn-beijing.aliyuncs.com/res2net/res2net50_v1b_26w_4s-3cf99910.pth',
    'res2net101_v1b_26w_4s': 'https://shanghuagao.oss-cn-beijing.aliyuncs.com/res2net/res2net101_v1b_26w_4s-0812c246.pth',
}
class Bottle2neck(nn.Module):
    expansion = 4

    def __init__(self, inplanes, planes, stride=1, dilation=1, downsample=None, baseWidth=26, scale=4, stype='normal'):
        super(Bottle2neck, self).__init__()

        width = int(math.floor(planes * (baseWidth / 64.0)))
        self.conv1 = nn.Conv2d(inplanes, width * scale,
                               kernel_size=1, bias=False)
        self.bn1 = nn.BatchNorm2d(width * scale)

        if scale == 1:
            self.nums = 1
        else:
            self.nums = scale - 1
        if stype == 'stage':
            self.pool = nn.AvgPool2d(kernel_size=3, stride=stride, padding=1)
        convs = []
        bns = []
        for i in range(self.nums):
            convs.append(nn.Conv2d(width, width, kernel_size=3, stride=stride,
                                   dilation=dilation, padding=dilation, bias=False))
            bns.append(nn.BatchNorm2d(width))
        self.convs = nn.ModuleList(convs)
        self.bns = nn.ModuleList(bns)

        self.conv3 = nn.Conv2d(width * scale, planes *
                               self.expansion, kernel_size=1, bias=False)
        self.bn3 = nn.BatchNorm2d(planes * self.expansion)

        self.relu = nn.ReLU(inplace=True)
        self.downsample = downsample
        self.stype = stype
        self.scale = scale
        self.width = width

    def forward(self, x):
        residual = x

        out = self.conv1(x)
        out = self.bn1(out)
        out = self.relu(out)

        spx = torch.split(out, self.width, 1)
        for i in range(self.nums):
            if i == 0 or self.stype == 'stage':
                sp = spx[i]
            else:
                sp = sp + spx[i]
            sp = self.convs[i](sp)
            sp = self.relu(self.bns[i](sp))
            if i == 0:
                out = sp
            else:
                out = torch.cat((out, sp), 1)
        if self.scale != 1 and self.stype == 'normal':
            out = torch.cat((out, spx[self.nums]), 1)
        elif self.scale != 1 and self.stype == 'stage':
            out = torch.cat((out, self.pool(spx[self.nums])), 1)

        out = self.conv3(out)
        out = self.bn3(out)

        if self.downsample is not None:
            residual = self.downsample(x)

        out += residual
        out = self.relu(out)

        return out


class Res2Net(nn.Module):

    def __init__(self, block, layers, baseWidth=26, scale=4, num_classes=1000, output_stride=32):
        self.inplanes = 64
        super(Res2Net, self).__init__()
        self.baseWidth = baseWidth
        self.scale = scale
        self.output_stride = output_stride
        if self.output_stride == 8:
            self.grid = [1, 2, 1]
            self.stride = [1, 2, 1, 1]
            self.dilation = [1, 1, 2, 4]
        elif self.output_stride == 16:
            self.grid = [1, 2, 4]
            self.stride = [1, 2, 2, 1]
            self.dilation = [1, 1, 1, 2]
        elif self.output_stride == 32:
            self.grid = [1, 2, 4]
            self.stride = [1, 2, 2, 2]
            self.dilation = [1, 1, 2, 4]
        self.conv1 = nn.Sequential(
            nn.Conv2d(3, 32, 3, 2, 1, bias=False),
            nn.BatchNorm2d(32),
            nn.ReLU(inplace=True),
            nn.Conv2d(32, 32, 3, 1, 1, bias=False),
            nn.BatchNorm2d(32),
            nn.ReLU(inplace=True),
            nn.Conv2d(32, 64, 3, 1, 1, bias=False)
        )
        self.bn1 = nn.BatchNorm2d(64)
        self.relu = nn.ReLU()
        self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
        self.layer1 = self._make_layer(
            block, 64,  layers[0], stride=self.stride[0], dilation=self.dilation[0])
        self.layer2 = self._make_layer(
            block, 128, layers[1], stride=self.stride[1], dilation=self.dilation[1])
        self.layer3 = self._make_layer(
            block, 256, layers[2], stride=self.stride[2], dilation=self.dilation[2])
        self.layer4 = self._make_layer(
            block, 512, layers[3], stride=self.stride[3], dilation=self.dilation[3], grid=self.grid)

        for m in self.modules():
            if isinstance(m, nn.Conv2d):
                nn.init.kaiming_normal_(
                    m.weight, mode='fan_out', nonlinearity='relu')
            elif isinstance(m, nn.BatchNorm2d):
                nn.init.constant_(m.weight, 1)
                nn.init.constant_(m.bias, 0)

    def _make_layer(self, block, planes, blocks, stride=1, dilation=1, grid=None):
        downsample = None
        if stride != 1 or self.inplanes != planes * block.expansion:
            downsample = nn.Sequential(
                nn.AvgPool2d(kernel_size=stride, stride=stride,
                             ceil_mode=True, count_include_pad=False),
                nn.Conv2d(self.inplanes, planes * block.expansion,
                          kernel_size=1, stride=1, bias=False),
                nn.BatchNorm2d(planes * block.expansion),
            )

        layers = []
        layers.append(block(self.inplanes, planes, stride, dilation, downsample=downsample,
                            stype='stage', baseWidth=self.baseWidth, scale=self.scale))
        self.inplanes = planes * block.expansion

        if grid is not None:
            assert len(grid) == blocks
        else:
            grid = [1] * blocks

        for i in range(1, blocks):
            layers.append(block(self.inplanes, planes, dilation=dilation *
                                grid[i], baseWidth=self.baseWidth, scale=self.scale))

        return nn.Sequential(*layers)

    def change_stride(self, output_stride=16):
        if output_stride == self.output_stride:
            return
        else:
            self.output_stride = output_stride
            if self.output_stride == 8:
                self.grid = [1, 2, 1]
                self.stride = [1, 2, 1, 1]
                self.dilation = [1, 1, 2, 4]
            elif self.output_stride == 16:
                self.grid = [1, 2, 4]
                self.stride = [1, 2, 2, 1]
                self.dilation = [1, 1, 1, 2]
            elif self.output_stride == 32:
                self.grid = [1, 2, 4]
                self.stride = [1, 2, 2, 2]
                self.dilation = [1, 1, 2, 4]

            for i, layer in enumerate([self.layer1, self.layer2, self.layer3, self.layer4]):
                for j, block in enumerate(layer):
                    if block.downsample is not None:
                        block.downsample[0].kernel_size = (
                            self.stride[i], self.stride[i])
                        block.downsample[0].stride = (
                            self.stride[i], self.stride[i])
                        if hasattr(block, 'pool'):
                            block.pool.stride = (
                                self.stride[i], self.stride[i])
                        for conv in block.convs:
                            conv.stride = (self.stride[i], self.stride[i])
                    for conv in block.convs:
                        d = self.dilation[i] if i != 3 else self.dilation[i] * \
                            self.grid[j]
                        conv.dilation = (d, d)
                        conv.padding = (d, d)

    def forward(self, x):
        x = self.conv1(x)
        x = self.bn1(x)
        x = self.relu(x)
        x = self.maxpool(x)
        
        out = [x]

        x = self.layer1(x)
        out.append(x)
        x = self.layer2(x)
        out.append(x)
        x = self.layer3(x)
        out.append(x)
        x = self.layer4(x)
        out.append(x)

        return out


def res2net50_v1b(pretrained=False, **kwargs):
    model = Res2Net(Bottle2neck, [3, 4, 6, 3], baseWidth=26, scale=4, **kwargs)
    if pretrained:
        model.load_state_dict(model_zoo.load_url(
            model_urls['res2net50_v1b_26w_4s']))
    
    return model


def res2net101_v1b(pretrained=False, **kwargs):
    model = Res2Net(Bottle2neck, [3, 4, 23, 3],
                    baseWidth=26, scale=4, **kwargs)
    if pretrained:
        model.load_state_dict(model_zoo.load_url(
            model_urls['res2net101_v1b_26w_4s']))
    
    return model


def res2net50_v1b_26w_4s(pretrained=True, **kwargs):
    model = Res2Net(Bottle2neck, [3, 4, 6, 3], baseWidth=26, scale=4, **kwargs)
    if pretrained is True:
        model.load_state_dict(torch.load('data/backbone_ckpt/res2net50_v1b_26w_4s-3cf99910.pth', map_location='cpu'))
    
    return model


def res2net101_v1b_26w_4s(pretrained=True, **kwargs):
    model = Res2Net(Bottle2neck, [3, 4, 23, 3],
                    baseWidth=26, scale=4, **kwargs)
    if pretrained is True:
        model.load_state_dict(torch.load('data/backbone_ckpt/res2net101_v1b_26w_4s-0812c246.pth', map_location='cpu'))
    
    return model


def res2net152_v1b_26w_4s(pretrained=False, **kwargs):
    model = Res2Net(Bottle2neck, [3, 8, 36, 3],
                    baseWidth=26, scale=4, **kwargs)
    if pretrained:
        model.load_state_dict(model_zoo.load_url(
            model_urls['res2net152_v1b_26w_4s']))
    
    return model


if __name__ == '__main__':
    images = torch.rand(1, 3, 224, 224).cuda(0)
    model = res2net50_v1b_26w_4s(pretrained=True)
    model = model.cuda(0)
    print(model(images).size())