my-cool-model / lib /InSPyReNet.py
crapthings's picture
Upload folder using huggingface_hub
f7f604d
raw
history blame
8.04 kB
import torch
import torch.nn as nn
import torch.nn.functional as F
import numpy as np
from lib.optim import *
from lib.modules.layers import *
from lib.modules.context_module import *
from lib.modules.attention_module import *
from lib.modules.decoder_module import *
from lib.backbones.Res2Net_v1b import res2net50_v1b_26w_4s
from lib.backbones.SwinTransformer import SwinB
class InSPyReNet(nn.Module):
def __init__(self, backbone, in_channels, depth=64, base_size=[384, 384], threshold=512, **kwargs):
super(InSPyReNet, self).__init__()
self.backbone = backbone
self.in_channels = in_channels
self.depth = depth
self.base_size = base_size
self.threshold = threshold
self.context1 = PAA_e(self.in_channels[0], self.depth, base_size=self.base_size, stage=0)
self.context2 = PAA_e(self.in_channels[1], self.depth, base_size=self.base_size, stage=1)
self.context3 = PAA_e(self.in_channels[2], self.depth, base_size=self.base_size, stage=2)
self.context4 = PAA_e(self.in_channels[3], self.depth, base_size=self.base_size, stage=3)
self.context5 = PAA_e(self.in_channels[4], self.depth, base_size=self.base_size, stage=4)
self.decoder = PAA_d(self.depth * 3, depth=self.depth, base_size=base_size, stage=2)
self.attention0 = SICA(self.depth , depth=self.depth, base_size=self.base_size, stage=0, lmap_in=True)
self.attention1 = SICA(self.depth * 2, depth=self.depth, base_size=self.base_size, stage=1, lmap_in=True)
self.attention2 = SICA(self.depth * 2, depth=self.depth, base_size=self.base_size, stage=2 )
self.sod_loss_fn = lambda x, y: weighted_bce_loss_with_logits(x, y, reduction='mean') + iou_loss_with_logits(x, y, reduction='mean')
self.pc_loss_fn = nn.L1Loss()
self.ret = lambda x, target: F.interpolate(x, size=target.shape[-2:], mode='bilinear', align_corners=False)
self.res = lambda x, size: F.interpolate(x, size=size, mode='bilinear', align_corners=False)
self.des = lambda x, size: F.interpolate(x, size=size, mode='nearest')
self.image_pyramid = ImagePyramid(7, 1)
self.transition0 = Transition(17)
self.transition1 = Transition(9)
self.transition2 = Transition(5)
self.forward = self.forward_inference
def to(self, device):
self.image_pyramid.to(device)
self.transition0.to(device)
self.transition1.to(device)
self.transition2.to(device)
super(InSPyReNet, self).to(device)
return self
def cuda(self, idx=None):
if idx is None:
idx = torch.cuda.current_device()
self.to(device="cuda:{}".format(idx))
return self
def train(self, mode=True):
super(InSPyReNet, self).train(mode)
self.forward = self.forward_train
return self
def eval(self):
super(InSPyReNet, self).train(False)
self.forward = self.forward_inference
return self
def forward_inspyre(self, x):
B, _, H, W = x.shape
x1, x2, x3, x4, x5 = self.backbone(x)
x1 = self.context1(x1) #4
x2 = self.context2(x2) #4
x3 = self.context3(x3) #8
x4 = self.context4(x4) #16
x5 = self.context5(x5) #32
f3, d3 = self.decoder([x3, x4, x5]) #16
f3 = self.res(f3, (H // 4, W // 4 ))
f2, p2 = self.attention2(torch.cat([x2, f3], dim=1), d3.detach())
d2 = self.image_pyramid.reconstruct(d3.detach(), p2) #4
x1 = self.res(x1, (H // 2, W // 2))
f2 = self.res(f2, (H // 2, W // 2))
f1, p1 = self.attention1(torch.cat([x1, f2], dim=1), d2.detach(), p2.detach()) #2
d1 = self.image_pyramid.reconstruct(d2.detach(), p1) #2
f1 = self.res(f1, (H, W))
_, p0 = self.attention0(f1, d1.detach(), p1.detach()) #2
d0 = self.image_pyramid.reconstruct(d1.detach(), p0) #2
out = dict()
out['saliency'] = [d3, d2, d1, d0]
out['laplacian'] = [p2, p1, p0]
return out
def forward_train(self, sample):
x = sample['image']
B, _, H, W = x.shape
out = self.forward_inspyre(x)
d3, d2, d1, d0 = out['saliency']
p2, p1, p0 = out['laplacian']
if type(sample) == dict and 'gt' in sample.keys() and sample['gt'] is not None:
y = sample['gt']
y1 = self.image_pyramid.reduce(y)
y2 = self.image_pyramid.reduce(y1)
y3 = self.image_pyramid.reduce(y2)
loss = self.pc_loss_fn(self.des(d3, (H, W)), self.des(self.image_pyramid.reduce(d2), (H, W)).detach()) * 0.0001
loss += self.pc_loss_fn(self.des(d2, (H, W)), self.des(self.image_pyramid.reduce(d1), (H, W)).detach()) * 0.0001
loss += self.pc_loss_fn(self.des(d1, (H, W)), self.des(self.image_pyramid.reduce(d0), (H, W)).detach()) * 0.0001
loss += self.sod_loss_fn(self.des(d3, (H, W)), self.des(y3, (H, W)))
loss += self.sod_loss_fn(self.des(d2, (H, W)), self.des(y2, (H, W)))
loss += self.sod_loss_fn(self.des(d1, (H, W)), self.des(y1, (H, W)))
loss += self.sod_loss_fn(self.des(d0, (H, W)), self.des(y, (H, W)))
else:
loss = 0
pred = torch.sigmoid(d0)
pred = (pred - pred.min()) / (pred.max() - pred.min() + 1e-8)
sample['pred'] = pred
sample['loss'] = loss
sample['saliency'] = [d3, d2, d1, d0]
sample['laplacian'] = [p2, p1, p0]
return sample
def forward_inference(self, sample):
B, _, H, W = sample['image'].shape
if self.threshold is None:
out = self.forward_inspyre(sample['image'])
d3, d2, d1, d0 = out['saliency']
p2, p1, p0 = out['laplacian']
elif (H <= self.threshold or W <= self.threshold):
if 'image_resized' in sample.keys():
out = self.forward_inspyre(sample['image_resized'])
else:
out = self.forward_inspyre(sample['image'])
d3, d2, d1, d0 = out['saliency']
p2, p1, p0 = out['laplacian']
else:
# LR Saliency Pyramid
lr_out = self.forward_inspyre(sample['image_resized'])
lr_d3, lr_d2, lr_d1, lr_d0 = lr_out['saliency']
lr_p2, lr_p1, lr_p0 = lr_out['laplacian']
# HR Saliency Pyramid
hr_out = self.forward_inspyre(sample['image'])
hr_d3, hr_d2, hr_d1, hr_d0 = hr_out['saliency']
hr_p2, hr_p1, hr_p0 = hr_out['laplacian']
# Pyramid Blending
d3 = self.ret(lr_d0, hr_d3)
t2 = self.ret(self.transition2(d3), hr_p2)
p2 = t2 * hr_p2
d2 = self.image_pyramid.reconstruct(d3, p2)
t1 = self.ret(self.transition1(d2), hr_p1)
p1 = t1 * hr_p1
d1 = self.image_pyramid.reconstruct(d2, p1)
t0 = self.ret(self.transition0(d1), hr_p0)
p0 = t0 * hr_p0
d0 = self.image_pyramid.reconstruct(d1, p0)
pred = torch.sigmoid(d0)
pred = (pred - pred.min()) / (pred.max() - pred.min() + 1e-8)
sample['pred'] = pred
sample['loss'] = 0
sample['saliency'] = [d3, d2, d1, d0]
sample['laplacian'] = [p2, p1, p0]
return sample
def InSPyReNet_Res2Net50(depth, pretrained, base_size, **kwargs):
return InSPyReNet(res2net50_v1b_26w_4s(pretrained=pretrained), [64, 256, 512, 1024, 2048], depth, base_size, **kwargs)
def InSPyReNet_SwinB(depth, pretrained, base_size, **kwargs):
return InSPyReNet(SwinB(pretrained=pretrained), [128, 128, 256, 512, 1024], depth, base_size, **kwargs)