File size: 8,036 Bytes
f7f604d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
import torch
import torch.nn as nn
import torch.nn.functional as F
import numpy as np

from lib.optim import *
from lib.modules.layers import *
from lib.modules.context_module import *
from lib.modules.attention_module import *
from lib.modules.decoder_module import *

from lib.backbones.Res2Net_v1b import res2net50_v1b_26w_4s
from lib.backbones.SwinTransformer import SwinB

class InSPyReNet(nn.Module):
    def __init__(self, backbone, in_channels, depth=64, base_size=[384, 384], threshold=512, **kwargs):
        super(InSPyReNet, self).__init__()
        self.backbone = backbone
        self.in_channels = in_channels
        self.depth = depth
        self.base_size = base_size
        self.threshold = threshold
        
        self.context1 = PAA_e(self.in_channels[0], self.depth, base_size=self.base_size, stage=0)
        self.context2 = PAA_e(self.in_channels[1], self.depth, base_size=self.base_size, stage=1)
        self.context3 = PAA_e(self.in_channels[2], self.depth, base_size=self.base_size, stage=2)
        self.context4 = PAA_e(self.in_channels[3], self.depth, base_size=self.base_size, stage=3)
        self.context5 = PAA_e(self.in_channels[4], self.depth, base_size=self.base_size, stage=4)

        self.decoder = PAA_d(self.depth * 3, depth=self.depth, base_size=base_size, stage=2)

        self.attention0 = SICA(self.depth    , depth=self.depth, base_size=self.base_size, stage=0, lmap_in=True)
        self.attention1 = SICA(self.depth * 2, depth=self.depth, base_size=self.base_size, stage=1, lmap_in=True)
        self.attention2 = SICA(self.depth * 2, depth=self.depth, base_size=self.base_size, stage=2              )

        self.sod_loss_fn = lambda x, y: weighted_bce_loss_with_logits(x, y, reduction='mean') + iou_loss_with_logits(x, y, reduction='mean')
        self.pc_loss_fn  = nn.L1Loss()

        self.ret = lambda x, target: F.interpolate(x, size=target.shape[-2:], mode='bilinear', align_corners=False)
        self.res = lambda x, size: F.interpolate(x, size=size, mode='bilinear', align_corners=False)
        self.des = lambda x, size: F.interpolate(x, size=size, mode='nearest')
        
        self.image_pyramid = ImagePyramid(7, 1)
        
        self.transition0 = Transition(17)
        self.transition1 = Transition(9)
        self.transition2 = Transition(5)
        
        self.forward = self.forward_inference
        
    def to(self, device):
        self.image_pyramid.to(device)
        self.transition0.to(device)
        self.transition1.to(device)
        self.transition2.to(device)
        super(InSPyReNet, self).to(device)
        return self
    
    def cuda(self, idx=None):
        if idx is None:
            idx = torch.cuda.current_device()
            
        self.to(device="cuda:{}".format(idx))
        return self
    
    def train(self, mode=True):
        super(InSPyReNet, self).train(mode)
        self.forward = self.forward_train
        return self
    
    def eval(self):
        super(InSPyReNet, self).train(False)
        self.forward = self.forward_inference
        return self
    
    def forward_inspyre(self, x):
        B, _, H, W = x.shape
    
        x1, x2, x3, x4, x5 = self.backbone(x)
        
        x1 = self.context1(x1) #4
        x2 = self.context2(x2) #4
        x3 = self.context3(x3) #8
        x4 = self.context4(x4) #16
        x5 = self.context5(x5) #32

        f3, d3 = self.decoder([x3, x4, x5]) #16

        f3 = self.res(f3, (H // 4,  W // 4 ))
        f2, p2 = self.attention2(torch.cat([x2, f3], dim=1), d3.detach())
        d2 = self.image_pyramid.reconstruct(d3.detach(), p2) #4

        x1 = self.res(x1, (H // 2, W // 2))
        f2 = self.res(f2, (H // 2, W // 2))
        f1, p1 = self.attention1(torch.cat([x1, f2], dim=1), d2.detach(), p2.detach()) #2
        d1 = self.image_pyramid.reconstruct(d2.detach(), p1) #2
        
        f1 = self.res(f1, (H, W))
        _, p0 = self.attention0(f1, d1.detach(), p1.detach()) #2
        d0 = self.image_pyramid.reconstruct(d1.detach(), p0) #2
        
        out = dict()
        out['saliency'] = [d3, d2, d1, d0]
        out['laplacian'] = [p2, p1, p0]
        
        return out
    
    def forward_train(self, sample):
        x = sample['image']
        B, _, H, W = x.shape
        out = self.forward_inspyre(x)
        
        d3, d2, d1, d0 = out['saliency']
        p2, p1, p0     = out['laplacian']
        
        if type(sample) == dict and 'gt' in sample.keys() and sample['gt'] is not None:
            y = sample['gt']
            
            y1 = self.image_pyramid.reduce(y)
            y2 = self.image_pyramid.reduce(y1)
            y3 = self.image_pyramid.reduce(y2)

            loss =  self.pc_loss_fn(self.des(d3, (H, W)), self.des(self.image_pyramid.reduce(d2), (H, W)).detach()) * 0.0001
            loss += self.pc_loss_fn(self.des(d2, (H, W)), self.des(self.image_pyramid.reduce(d1), (H, W)).detach()) * 0.0001
            loss += self.pc_loss_fn(self.des(d1, (H, W)), self.des(self.image_pyramid.reduce(d0), (H, W)).detach()) * 0.0001
            
            loss +=  self.sod_loss_fn(self.des(d3, (H, W)), self.des(y3, (H, W)))
            loss += self.sod_loss_fn(self.des(d2, (H, W)), self.des(y2, (H, W)))
            loss += self.sod_loss_fn(self.des(d1, (H, W)), self.des(y1, (H, W)))
            loss += self.sod_loss_fn(self.des(d0, (H, W)), self.des(y, (H, W)))
            
        else:
            loss = 0
            
        pred = torch.sigmoid(d0)
        pred = (pred - pred.min()) / (pred.max() - pred.min() + 1e-8)

        sample['pred'] = pred
        sample['loss'] = loss
        sample['saliency'] = [d3, d2, d1, d0]
        sample['laplacian'] = [p2, p1, p0]
        return sample
    
    def forward_inference(self, sample):
        B, _, H, W = sample['image'].shape
        
        if self.threshold is None:
            out = self.forward_inspyre(sample['image'])
            d3, d2, d1, d0 = out['saliency']
            p2, p1, p0     = out['laplacian']
            
        elif (H <= self.threshold or W <= self.threshold):
            if 'image_resized' in sample.keys():
                out = self.forward_inspyre(sample['image_resized'])
            else:
                out = self.forward_inspyre(sample['image'])
            d3, d2, d1, d0 = out['saliency']
            p2, p1, p0     = out['laplacian']
        
        else:
            # LR Saliency Pyramid
            lr_out = self.forward_inspyre(sample['image_resized'])
            lr_d3, lr_d2, lr_d1, lr_d0 = lr_out['saliency']
            lr_p2, lr_p1, lr_p0      = lr_out['laplacian']
                
            # HR Saliency Pyramid
            hr_out = self.forward_inspyre(sample['image'])
            hr_d3, hr_d2, hr_d1, hr_d0 = hr_out['saliency']
            hr_p2, hr_p1, hr_p0      = hr_out['laplacian']
            
            # Pyramid Blending
            d3 = self.ret(lr_d0, hr_d3) 
            
            t2 = self.ret(self.transition2(d3), hr_p2)
            p2 = t2 * hr_p2
            d2 = self.image_pyramid.reconstruct(d3, p2)
            
            t1 = self.ret(self.transition1(d2), hr_p1)
            p1 = t1 * hr_p1
            d1 = self.image_pyramid.reconstruct(d2, p1)
            
            t0 = self.ret(self.transition0(d1), hr_p0)
            p0 = t0 * hr_p0
            d0 = self.image_pyramid.reconstruct(d1, p0)
            
        pred = torch.sigmoid(d0)
        pred = (pred - pred.min()) / (pred.max() - pred.min() + 1e-8)

        sample['pred'] = pred
        sample['loss'] = 0
        sample['saliency'] = [d3, d2, d1, d0]
        sample['laplacian'] = [p2, p1, p0]
        return sample
    
def InSPyReNet_Res2Net50(depth, pretrained, base_size, **kwargs):
    return InSPyReNet(res2net50_v1b_26w_4s(pretrained=pretrained), [64, 256, 512, 1024, 2048], depth, base_size, **kwargs)

def InSPyReNet_SwinB(depth, pretrained, base_size, **kwargs):
    return InSPyReNet(SwinB(pretrained=pretrained), [128, 128, 256, 512, 1024], depth, base_size, **kwargs)