slovakbert-ner / README.md
crabz's picture
initial commit
97fee74
|
raw
history blame
3.05 kB
metadata
license: mit
tags:
  - generated_from_trainer
datasets:
  - wikiann_sk
metrics:
  - precision
  - recall
  - f1
  - accuracy
model-index:
  - name: output_dir
    results:
      - task:
          name: Token Classification
          type: token-classification
        dataset:
          name: wikiann_sk
          type: wikiann_sk
          args: sk
        metrics:
          - name: Precision
            type: precision
            value: 0.9327115256495669
          - name: Recall
            type: recall
            value: 0.9470124013528749
          - name: F1
            type: f1
            value: 0.9398075632132469
          - name: Accuracy
            type: accuracy
            value: 0.9785228256835333

output_dir

This model is a fine-tuned version of gerulata/slovakbert on the wikiann_sk dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1600
  • Precision: 0.9327
  • Recall: 0.9470
  • F1: 0.9398
  • Accuracy: 0.9785

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 32
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 15.0

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
0.2342 1.0 625 0.1233 0.8891 0.9076 0.8982 0.9667
0.1114 2.0 1250 0.1079 0.9118 0.9269 0.9193 0.9725
0.0817 3.0 1875 0.1093 0.9173 0.9315 0.9243 0.9747
0.0438 4.0 2500 0.1076 0.9188 0.9353 0.9270 0.9743
0.028 5.0 3125 0.1230 0.9143 0.9387 0.9264 0.9744
0.0256 6.0 3750 0.1204 0.9246 0.9423 0.9334 0.9765
0.018 7.0 4375 0.1332 0.9292 0.9416 0.9353 0.9770
0.0107 8.0 5000 0.1339 0.9280 0.9427 0.9353 0.9769
0.0079 9.0 5625 0.1368 0.9326 0.9442 0.9383 0.9785
0.0065 10.0 6250 0.1490 0.9284 0.9445 0.9364 0.9772
0.0061 11.0 6875 0.1566 0.9328 0.9433 0.9380 0.9778
0.0031 12.0 7500 0.1555 0.9339 0.9473 0.9406 0.9787
0.0024 13.0 8125 0.1548 0.9349 0.9462 0.9405 0.9787
0.0015 14.0 8750 0.1562 0.9330 0.9469 0.9399 0.9788
0.0013 15.0 9375 0.1600 0.9327 0.9470 0.9398 0.9785

Framework versions

  • Transformers 4.13.0.dev0
  • Pytorch 1.10.0+cu113
  • Datasets 1.15.1
  • Tokenizers 0.10.3