File size: 3,191 Bytes
0649182
 
3605724
0649182
 
 
a735c83
0649182
 
 
a735c83
 
d494b6e
a735c83
d494b6e
5293480
693e82d
 
a946907
a735c83
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d494b6e
a735c83
0649182
 
 
 
 
a735c83
 
0649182
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
---
tags:
- Question Answering
metrics:
- rouge
model-index:
- name: question-answering-generative-t5-v1-base-s-q-c
  results: []
---

# Question Answering Generative
The model is intended to be used for Q&A task, given the question & context, the model would attempt to infer the answer text.<br>
Model is generative (t5-v1-base), fine-tuned from [question-generation-auto-hints-t5-v1-base-s-q-c](https://huggingface.co/consciousAI/question-generation-auto-hints-t5-v1-base-s-q-c) with - **Loss:** 0.6751 & **Rougel:** 0.8022 performance scores.

[Live Demo: Question Answering Encoders vs Generative](https://huggingface.co/spaces/consciousAI/question_answering)

[Encoder based Question Answering V1](https://huggingface.co/consciousAI/question-answering-roberta-base-s/)
<br>[Encoder based Question Answering V2](https://huggingface.co/consciousAI/question-answering-roberta-base-s-v2/)

Example code:

```
from transformers import (
    AutoModelForSeq2SeqLM,
    AutoTokenizer
)

def _generate(query, context, model, device):
    
    FT_MODEL = AutoModelForSeq2SeqLM.from_pretrained(model).to(device)
    FT_MODEL_TOKENIZER = AutoTokenizer.from_pretrained(model)
    input_text = "question: " + query + "</s> question_context: " + context
    
    input_tokenized = FT_MODEL_TOKENIZER.encode(input_text, return_tensors='pt', truncation=True, padding='max_length', max_length=1024).to(device)
    _tok_count_assessment = FT_MODEL_TOKENIZER.encode(input_text, return_tensors='pt', truncation=True).to(device)

    summary_ids = FT_MODEL.generate(input_tokenized, 
                                       max_length=30, 
                                       min_length=5, 
                                       num_beams=2,
                                       early_stopping=True,
                                   )
    output = [FT_MODEL_TOKENIZER.decode(id, clean_up_tokenization_spaces=True, skip_special_tokens=True) for id in summary_ids] 
    
    return str(output[0])

device = [0 if torch.cuda.is_available() else 'cpu'][0]
_generate(query, context, model="consciousAI/t5-v1-base-s-q-c-multi-task-qgen-v2", device=device)   
```

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0003
- train_batch_size: 3
- eval_batch_size: 3
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5

### Training results

| Training Loss | Epoch | Step  | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum |
|:-------------:|:-----:|:-----:|:---------------:|:------:|:------:|:------:|:---------:|
| 0.5479        | 1.0   | 14600 | 0.5104          | 0.7672 | 0.4898 | 0.7666 | 0.7666    |
| 0.3647        | 2.0   | 29200 | 0.5180          | 0.7862 | 0.4995 | 0.7855 | 0.7858    |
| 0.2458        | 3.0   | 43800 | 0.5302          | 0.7938 | 0.5039 | 0.7932 | 0.7935    |
| 0.1532        | 4.0   | 58400 | 0.6024          | 0.7989 | 0.514  | 0.7984 | 0.7984    |
| 0.0911        | 5.0   | 73000 | 0.6751          | 0.8028 | 0.5168 | 0.8022 | 0.8022    |


### Framework versions

- Transformers 4.23.0.dev0
- Pytorch 1.12.1+cu113
- Datasets 2.5.2
- Tokenizers 0.13.0