Anshoo Mehra
commited on
Commit
·
a735c83
1
Parent(s):
0649182
Update README.md
Browse files
README.md
CHANGED
|
@@ -4,43 +4,53 @@ tags:
|
|
| 4 |
metrics:
|
| 5 |
- rouge
|
| 6 |
model-index:
|
| 7 |
-
- name: t5-v1-base-s-q-c
|
| 8 |
results: []
|
| 9 |
---
|
| 10 |
|
| 11 |
-
|
| 12 |
-
|
| 13 |
-
|
| 14 |
-
|
| 15 |
-
|
| 16 |
-
|
| 17 |
-
|
| 18 |
-
|
| 19 |
-
|
| 20 |
-
|
| 21 |
-
|
| 22 |
-
|
| 23 |
-
|
| 24 |
-
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 37 |
|
| 38 |
### Training hyperparameters
|
| 39 |
|
| 40 |
The following hyperparameters were used during training:
|
| 41 |
- learning_rate: 0.0003
|
| 42 |
-
- train_batch_size:
|
| 43 |
-
- eval_batch_size:
|
| 44 |
- seed: 42
|
| 45 |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
| 46 |
- lr_scheduler_type: linear
|
|
|
|
| 4 |
metrics:
|
| 5 |
- rouge
|
| 6 |
model-index:
|
| 7 |
+
- name: question-answering-generative-t5-v1-base-s-q-c
|
| 8 |
results: []
|
| 9 |
---
|
| 10 |
|
| 11 |
+
# Question Answering Generative
|
| 12 |
+
The model is intended to be used for Q&A task, given the question & context, the model would attempt to infer the answer text.<br>
|
| 13 |
+
Model is generative (t5-v1-base), fine-tuned from [question-generation-auto-hints-t5-v1-base-s-q-c](https://huggingface.co/anshoomehra/question-generation-auto-hints-t5-v1-base-s-q-c) with - **Loss:** 0.6751 & **Rougel:** 0.8022 performance scores.
|
| 14 |
+
|
| 15 |
+
Please follow this link for [Encoder based Question Answering](https://huggingface.co/anshoomehra/question-answering-roberta-base-s/blob/main/README.md)
|
| 16 |
+
|
| 17 |
+
Example code:
|
| 18 |
+
|
| 19 |
+
```
|
| 20 |
+
from transformers import (
|
| 21 |
+
AutoModelForSeq2SeqLM,
|
| 22 |
+
AutoTokenizer
|
| 23 |
+
)
|
| 24 |
+
|
| 25 |
+
def _generate(query, context, model, device):
|
| 26 |
+
|
| 27 |
+
FT_MODEL = AutoModelForSeq2SeqLM.from_pretrained(model).to(device)
|
| 28 |
+
FT_MODEL_TOKENIZER = AutoTokenizer.from_pretrained(model)
|
| 29 |
+
input_text = "question: " + query + "</s> question_context: " + context
|
| 30 |
+
|
| 31 |
+
input_tokenized = FT_MODEL_TOKENIZER.encode(input_text, return_tensors='pt', truncation=True, padding='max_length', max_length=1024).to(device)
|
| 32 |
+
_tok_count_assessment = FT_MODEL_TOKENIZER.encode(input_text, return_tensors='pt', truncation=True).to(device)
|
| 33 |
+
|
| 34 |
+
summary_ids = FT_MODEL.generate(input_tokenized,
|
| 35 |
+
max_length=30,
|
| 36 |
+
min_length=5,
|
| 37 |
+
num_beams=2,
|
| 38 |
+
early_stopping=True,
|
| 39 |
+
)
|
| 40 |
+
output = [FT_MODEL_TOKENIZER.decode(id, clean_up_tokenization_spaces=True, skip_special_tokens=True) for id in summary_ids]
|
| 41 |
+
|
| 42 |
+
return str(output[0])
|
| 43 |
+
|
| 44 |
+
device = [0 if torch.cuda.is_available() else 'cpu'][0]
|
| 45 |
+
_generate(query, context, model="anshoomehra/t5-v1-base-s-q-c-multi-task-qgen-v2", device=device)
|
| 46 |
+
```
|
| 47 |
|
| 48 |
### Training hyperparameters
|
| 49 |
|
| 50 |
The following hyperparameters were used during training:
|
| 51 |
- learning_rate: 0.0003
|
| 52 |
+
- train_batch_size: 3
|
| 53 |
+
- eval_batch_size: 3
|
| 54 |
- seed: 42
|
| 55 |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
| 56 |
- lr_scheduler_type: linear
|