Anshoo Mehra commited on
Commit
a735c83
·
1 Parent(s): 0649182

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +39 -29
README.md CHANGED
@@ -4,43 +4,53 @@ tags:
4
  metrics:
5
  - rouge
6
  model-index:
7
- - name: t5-v1-base-s-q-c-multi-task-qgen-v2
8
  results: []
9
  ---
10
 
11
- <!-- This model card has been generated automatically according to the information the Trainer had access to. You
12
- should probably proofread and complete it, then remove this comment. -->
13
-
14
- # t5-v1-base-s-q-c-multi-task-qgen-v2
15
-
16
- This model is a fine-tuned version of [anshoomehra/t5-v1-base-s-q-c-multi-task-qgen](https://huggingface.co/anshoomehra/t5-v1-base-s-q-c-multi-task-qgen) on an unknown dataset.
17
- It achieves the following results on the evaluation set:
18
- - Loss: 0.6751
19
- - Rouge1: 0.8028
20
- - Rouge2: 0.5168
21
- - Rougel: 0.8022
22
- - Rougelsum: 0.8022
23
-
24
- ## Model description
25
-
26
- More information needed
27
-
28
- ## Intended uses & limitations
29
-
30
- More information needed
31
-
32
- ## Training and evaluation data
33
-
34
- More information needed
35
-
36
- ## Training procedure
 
 
 
 
 
 
 
 
 
 
37
 
38
  ### Training hyperparameters
39
 
40
  The following hyperparameters were used during training:
41
  - learning_rate: 0.0003
42
- - train_batch_size: 6
43
- - eval_batch_size: 6
44
  - seed: 42
45
  - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
46
  - lr_scheduler_type: linear
 
4
  metrics:
5
  - rouge
6
  model-index:
7
+ - name: question-answering-generative-t5-v1-base-s-q-c
8
  results: []
9
  ---
10
 
11
+ # Question Answering Generative
12
+ The model is intended to be used for Q&A task, given the question & context, the model would attempt to infer the answer text.<br>
13
+ Model is generative (t5-v1-base), fine-tuned from [question-generation-auto-hints-t5-v1-base-s-q-c](https://huggingface.co/anshoomehra/question-generation-auto-hints-t5-v1-base-s-q-c) with - **Loss:** 0.6751 & **Rougel:** 0.8022 performance scores.
14
+
15
+ Please follow this link for [Encoder based Question Answering](https://huggingface.co/anshoomehra/question-answering-roberta-base-s/blob/main/README.md)
16
+
17
+ Example code:
18
+
19
+ ```
20
+ from transformers import (
21
+ AutoModelForSeq2SeqLM,
22
+ AutoTokenizer
23
+ )
24
+
25
+ def _generate(query, context, model, device):
26
+
27
+ FT_MODEL = AutoModelForSeq2SeqLM.from_pretrained(model).to(device)
28
+ FT_MODEL_TOKENIZER = AutoTokenizer.from_pretrained(model)
29
+ input_text = "question: " + query + "</s> question_context: " + context
30
+
31
+ input_tokenized = FT_MODEL_TOKENIZER.encode(input_text, return_tensors='pt', truncation=True, padding='max_length', max_length=1024).to(device)
32
+ _tok_count_assessment = FT_MODEL_TOKENIZER.encode(input_text, return_tensors='pt', truncation=True).to(device)
33
+
34
+ summary_ids = FT_MODEL.generate(input_tokenized,
35
+ max_length=30,
36
+ min_length=5,
37
+ num_beams=2,
38
+ early_stopping=True,
39
+ )
40
+ output = [FT_MODEL_TOKENIZER.decode(id, clean_up_tokenization_spaces=True, skip_special_tokens=True) for id in summary_ids]
41
+
42
+ return str(output[0])
43
+
44
+ device = [0 if torch.cuda.is_available() else 'cpu'][0]
45
+ _generate(query, context, model="anshoomehra/t5-v1-base-s-q-c-multi-task-qgen-v2", device=device)
46
+ ```
47
 
48
  ### Training hyperparameters
49
 
50
  The following hyperparameters were used during training:
51
  - learning_rate: 0.0003
52
+ - train_batch_size: 3
53
+ - eval_batch_size: 3
54
  - seed: 42
55
  - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
56
  - lr_scheduler_type: linear