colaguo commited on
Commit
ad9b30e
·
verified ·
1 Parent(s): 503f0a0

Model save

Browse files
Files changed (5) hide show
  1. README.md +200 -256
  2. config.json +1 -1
  3. generation_config.json +1 -1
  4. model.safetensors +1 -1
  5. training_args.bin +1 -1
README.md CHANGED
@@ -14,7 +14,7 @@ should probably proofread and complete it, then remove this comment. -->
14
 
15
  This model is a fine-tuned version of [](https://huggingface.co/) on an unknown dataset.
16
  It achieves the following results on the evaluation set:
17
- - Loss: 4.0892
18
 
19
  ## Model description
20
 
@@ -43,265 +43,209 @@ The following hyperparameters were used during training:
43
 
44
  ### Training results
45
 
46
- | Training Loss | Epoch | Step | Validation Loss |
47
- |:-------------:|:------:|:-----:|:---------------:|
48
- | No log | 0.0257 | 50 | 8.3925 |
49
- | No log | 0.0513 | 100 | 7.5285 |
50
- | No log | 0.0770 | 150 | 7.2814 |
51
- | No log | 0.1026 | 200 | 7.1456 |
52
- | No log | 0.1283 | 250 | 7.0663 |
53
- | No log | 0.1539 | 300 | 7.0303 |
54
- | No log | 0.1796 | 350 | 6.9776 |
55
- | No log | 0.2052 | 400 | 6.9218 |
56
- | No log | 0.2309 | 450 | 6.8728 |
57
- | 7.3651 | 0.2565 | 500 | 6.8203 |
58
- | 7.3651 | 0.2822 | 550 | 6.7991 |
59
- | 7.3651 | 0.3079 | 600 | 6.7788 |
60
- | 7.3651 | 0.3335 | 650 | 6.7294 |
61
- | 7.3651 | 0.3592 | 700 | 6.7154 |
62
- | 7.3651 | 0.3848 | 750 | 6.6849 |
63
- | 7.3651 | 0.4105 | 800 | 6.6396 |
64
- | 7.3651 | 0.4361 | 850 | 6.6230 |
65
- | 7.3651 | 0.4618 | 900 | 6.5854 |
66
- | 7.3651 | 0.4874 | 950 | 6.6025 |
67
- | 6.7286 | 0.5131 | 1000 | 6.5860 |
68
- | 6.7286 | 0.5387 | 1050 | 6.5682 |
69
- | 6.7286 | 0.5644 | 1100 | 6.5411 |
70
- | 6.7286 | 0.5900 | 1150 | 6.5194 |
71
- | 6.7286 | 0.6157 | 1200 | 6.4780 |
72
- | 6.7286 | 0.6414 | 1250 | 6.5239 |
73
- | 6.7286 | 0.6670 | 1300 | 6.4456 |
74
- | 6.7286 | 0.6927 | 1350 | 6.4535 |
75
- | 6.7286 | 0.7183 | 1400 | 6.4586 |
76
- | 6.7286 | 0.7440 | 1450 | 6.4306 |
77
- | 6.5305 | 0.7696 | 1500 | 6.4437 |
78
- | 6.5305 | 0.7953 | 1550 | 6.4425 |
79
- | 6.5305 | 0.8209 | 1600 | 6.3976 |
80
- | 6.5305 | 0.8466 | 1650 | 6.4133 |
81
- | 6.5305 | 0.8722 | 1700 | 6.4017 |
82
- | 6.5305 | 0.8979 | 1750 | 6.3788 |
83
- | 6.5305 | 0.9236 | 1800 | 6.3639 |
84
- | 6.5305 | 0.9492 | 1850 | 6.3730 |
85
- | 6.5305 | 0.9749 | 1900 | 6.3414 |
86
- | 6.5305 | 1.0005 | 1950 | 6.3546 |
87
- | 6.3993 | 1.0262 | 2000 | 6.3459 |
88
- | 6.3993 | 1.0518 | 2050 | 6.3357 |
89
- | 6.3993 | 1.0775 | 2100 | 6.3170 |
90
- | 6.3993 | 1.1031 | 2150 | 6.3143 |
91
- | 6.3993 | 1.1288 | 2200 | 6.2615 |
92
- | 6.3993 | 1.1544 | 2250 | 6.2979 |
93
- | 6.3993 | 1.1801 | 2300 | 6.2725 |
94
- | 6.3993 | 1.2057 | 2350 | 6.2740 |
95
- | 6.3993 | 1.2314 | 2400 | 6.2480 |
96
- | 6.3993 | 1.2571 | 2450 | 6.2535 |
97
- | 6.3233 | 1.2827 | 2500 | 6.2394 |
98
- | 6.3233 | 1.3084 | 2550 | 6.2292 |
99
- | 6.3233 | 1.3340 | 2600 | 6.2316 |
100
- | 6.3233 | 1.3597 | 2650 | 6.2045 |
101
- | 6.3233 | 1.3853 | 2700 | 6.1876 |
102
- | 6.3233 | 1.4110 | 2750 | 6.2147 |
103
- | 6.3233 | 1.4366 | 2800 | 6.1898 |
104
- | 6.3233 | 1.4623 | 2850 | 6.1676 |
105
- | 6.3233 | 1.4879 | 2900 | 6.1538 |
106
- | 6.3233 | 1.5136 | 2950 | 6.1779 |
107
- | 6.2277 | 1.5393 | 3000 | 6.1501 |
108
- | 6.2277 | 1.5649 | 3050 | 6.1316 |
109
- | 6.2277 | 1.5906 | 3100 | 6.1046 |
110
- | 6.2277 | 1.6162 | 3150 | 6.1472 |
111
- | 6.2277 | 1.6419 | 3200 | 6.1355 |
112
- | 6.2277 | 1.6675 | 3250 | 6.0922 |
113
- | 6.2277 | 1.6932 | 3300 | 6.0756 |
114
- | 6.2277 | 1.7188 | 3350 | 6.0657 |
115
- | 6.2277 | 1.7445 | 3400 | 6.0476 |
116
- | 6.2277 | 1.7701 | 3450 | 6.0396 |
117
- | 6.1267 | 1.7958 | 3500 | 6.0343 |
118
- | 6.1267 | 1.8214 | 3550 | 5.9898 |
119
- | 6.1267 | 1.8471 | 3600 | 5.9623 |
120
- | 6.1267 | 1.8728 | 3650 | 5.9446 |
121
- | 6.1267 | 1.8984 | 3700 | 5.9282 |
122
- | 6.1267 | 1.9241 | 3750 | 5.9407 |
123
- | 6.1267 | 1.9497 | 3800 | 5.9090 |
124
- | 6.1267 | 1.9754 | 3850 | 5.9071 |
125
- | 6.1267 | 2.0010 | 3900 | 5.8789 |
126
- | 6.1267 | 2.0267 | 3950 | 5.8441 |
127
- | 5.9947 | 2.0523 | 4000 | 5.8213 |
128
- | 5.9947 | 2.0780 | 4050 | 5.8098 |
129
- | 5.9947 | 2.1036 | 4100 | 5.7745 |
130
- | 5.9947 | 2.1293 | 4150 | 5.7816 |
131
- | 5.9947 | 2.1550 | 4200 | 5.7477 |
132
- | 5.9947 | 2.1806 | 4250 | 5.7377 |
133
- | 5.9947 | 2.2063 | 4300 | 5.7540 |
134
- | 5.9947 | 2.2319 | 4350 | 5.6957 |
135
- | 5.9947 | 2.2576 | 4400 | 5.6961 |
136
- | 5.9947 | 2.2832 | 4450 | 5.6755 |
137
- | 5.7986 | 2.3089 | 4500 | 5.6768 |
138
- | 5.7986 | 2.3345 | 4550 | 5.6287 |
139
- | 5.7986 | 2.3602 | 4600 | 5.6233 |
140
- | 5.7986 | 2.3858 | 4650 | 5.6187 |
141
- | 5.7986 | 2.4115 | 4700 | 5.5932 |
142
- | 5.7986 | 2.4371 | 4750 | 5.5640 |
143
- | 5.7986 | 2.4628 | 4800 | 5.5157 |
144
- | 5.7986 | 2.4885 | 4850 | 5.5504 |
145
- | 5.7986 | 2.5141 | 4900 | 5.5180 |
146
- | 5.7986 | 2.5398 | 4950 | 5.4792 |
147
- | 5.6439 | 2.5654 | 5000 | 5.4466 |
148
- | 5.6439 | 2.5911 | 5050 | 5.4320 |
149
- | 5.6439 | 2.6167 | 5100 | 5.4260 |
150
- | 5.6439 | 2.6424 | 5150 | 5.4011 |
151
- | 5.6439 | 2.6680 | 5200 | 5.3695 |
152
- | 5.6439 | 2.6937 | 5250 | 5.3692 |
153
- | 5.6439 | 2.7193 | 5300 | 5.3389 |
154
- | 5.6439 | 2.7450 | 5350 | 5.3469 |
155
- | 5.6439 | 2.7707 | 5400 | 5.3310 |
156
- | 5.6439 | 2.7963 | 5450 | 5.3041 |
157
- | 5.4701 | 2.8220 | 5500 | 5.2772 |
158
- | 5.4701 | 2.8476 | 5550 | 5.2693 |
159
- | 5.4701 | 2.8733 | 5600 | 5.2639 |
160
- | 5.4701 | 2.8989 | 5650 | 5.2262 |
161
- | 5.4701 | 2.9246 | 5700 | 5.2245 |
162
- | 5.4701 | 2.9502 | 5750 | 5.2195 |
163
- | 5.4701 | 2.9759 | 5800 | 5.1635 |
164
- | 5.4701 | 3.0015 | 5850 | 5.1628 |
165
- | 5.4701 | 3.0272 | 5900 | 5.1686 |
166
- | 5.4701 | 3.0528 | 5950 | 5.1406 |
167
- | 5.2751 | 3.0785 | 6000 | 5.1428 |
168
- | 5.2751 | 3.1042 | 6050 | 5.1257 |
169
- | 5.2751 | 3.1298 | 6100 | 5.1180 |
170
- | 5.2751 | 3.1555 | 6150 | 5.0912 |
171
- | 5.2751 | 3.1811 | 6200 | 5.0739 |
172
- | 5.2751 | 3.2068 | 6250 | 5.0780 |
173
- | 5.2751 | 3.2324 | 6300 | 5.0475 |
174
- | 5.2751 | 3.2581 | 6350 | 5.0279 |
175
- | 5.2751 | 3.2837 | 6400 | 5.0128 |
176
- | 5.2751 | 3.3094 | 6450 | 5.0050 |
177
- | 5.1501 | 3.3350 | 6500 | 4.9733 |
178
- | 5.1501 | 3.3607 | 6550 | 4.9960 |
179
- | 5.1501 | 3.3864 | 6600 | 4.9659 |
180
- | 5.1501 | 3.4120 | 6650 | 4.9755 |
181
- | 5.1501 | 3.4377 | 6700 | 4.9289 |
182
- | 5.1501 | 3.4633 | 6750 | 4.9457 |
183
- | 5.1501 | 3.4890 | 6800 | 4.9218 |
184
- | 5.1501 | 3.5146 | 6850 | 4.9153 |
185
- | 5.1501 | 3.5403 | 6900 | 4.8990 |
186
- | 5.1501 | 3.5659 | 6950 | 4.9003 |
187
- | 5.0297 | 3.5916 | 7000 | 4.8655 |
188
- | 5.0297 | 3.6172 | 7050 | 4.8946 |
189
- | 5.0297 | 3.6429 | 7100 | 4.8520 |
190
- | 5.0297 | 3.6685 | 7150 | 4.8385 |
191
- | 5.0297 | 3.6942 | 7200 | 4.8457 |
192
- | 5.0297 | 3.7199 | 7250 | 4.8212 |
193
- | 5.0297 | 3.7455 | 7300 | 4.8195 |
194
- | 5.0297 | 3.7712 | 7350 | 4.7721 |
195
- | 5.0297 | 3.7968 | 7400 | 4.7726 |
196
- | 5.0297 | 3.8225 | 7450 | 4.7798 |
197
- | 4.9182 | 3.8481 | 7500 | 4.7844 |
198
- | 4.9182 | 3.8738 | 7550 | 4.7523 |
199
- | 4.9182 | 3.8994 | 7600 | 4.7383 |
200
- | 4.9182 | 3.9251 | 7650 | 4.7363 |
201
- | 4.9182 | 3.9507 | 7700 | 4.7372 |
202
- | 4.9182 | 3.9764 | 7750 | 4.7141 |
203
- | 4.9182 | 4.0021 | 7800 | 4.7242 |
204
- | 4.9182 | 4.0277 | 7850 | 4.6877 |
205
- | 4.9182 | 4.0534 | 7900 | 4.6665 |
206
- | 4.9182 | 4.0790 | 7950 | 4.7097 |
207
- | 4.8019 | 4.1047 | 8000 | 4.6400 |
208
- | 4.8019 | 4.1303 | 8050 | 4.6813 |
209
- | 4.8019 | 4.1560 | 8100 | 4.6473 |
210
- | 4.8019 | 4.1816 | 8150 | 4.6674 |
211
- | 4.8019 | 4.2073 | 8200 | 4.6167 |
212
- | 4.8019 | 4.2329 | 8250 | 4.6069 |
213
- | 4.8019 | 4.2586 | 8300 | 4.6216 |
214
- | 4.8019 | 4.2842 | 8350 | 4.6084 |
215
- | 4.8019 | 4.3099 | 8400 | 4.5839 |
216
- | 4.8019 | 4.3356 | 8450 | 4.5691 |
217
- | 4.7186 | 4.3612 | 8500 | 4.5693 |
218
- | 4.7186 | 4.3869 | 8550 | 4.5870 |
219
- | 4.7186 | 4.4125 | 8600 | 4.5454 |
220
- | 4.7186 | 4.4382 | 8650 | 4.5496 |
221
- | 4.7186 | 4.4638 | 8700 | 4.5422 |
222
- | 4.7186 | 4.4895 | 8750 | 4.5302 |
223
- | 4.7186 | 4.5151 | 8800 | 4.5220 |
224
- | 4.7186 | 4.5408 | 8850 | 4.5218 |
225
- | 4.7186 | 4.5664 | 8900 | 4.5044 |
226
- | 4.7186 | 4.5921 | 8950 | 4.4986 |
227
- | 4.6332 | 4.6178 | 9000 | 4.4945 |
228
- | 4.6332 | 4.6434 | 9050 | 4.5023 |
229
- | 4.6332 | 4.6691 | 9100 | 4.4931 |
230
- | 4.6332 | 4.6947 | 9150 | 4.4896 |
231
- | 4.6332 | 4.7204 | 9200 | 4.4690 |
232
- | 4.6332 | 4.7460 | 9250 | 4.4518 |
233
- | 4.6332 | 4.7717 | 9300 | 4.4476 |
234
- | 4.6332 | 4.7973 | 9350 | 4.4377 |
235
- | 4.6332 | 4.8230 | 9400 | 4.4400 |
236
- | 4.6332 | 4.8486 | 9450 | 4.4456 |
237
- | 4.5395 | 4.8743 | 9500 | 4.4252 |
238
- | 4.5395 | 4.8999 | 9550 | 4.4374 |
239
- | 4.5395 | 4.9256 | 9600 | 4.4231 |
240
- | 4.5395 | 4.9513 | 9650 | 4.4026 |
241
- | 4.5395 | 4.9769 | 9700 | 4.3682 |
242
- | 4.5395 | 5.0026 | 9750 | 4.3961 |
243
- | 4.5395 | 5.0282 | 9800 | 4.3921 |
244
- | 4.5395 | 5.0539 | 9850 | 4.3645 |
245
- | 4.5395 | 5.0795 | 9900 | 4.3975 |
246
- | 4.5395 | 5.1052 | 9950 | 4.3407 |
247
- | 4.4599 | 5.1308 | 10000 | 4.3571 |
248
- | 4.4599 | 5.1565 | 10050 | 4.3231 |
249
- | 4.4599 | 5.1821 | 10100 | 4.3576 |
250
- | 4.4599 | 5.2078 | 10150 | 4.3316 |
251
- | 4.4599 | 5.2335 | 10200 | 4.3421 |
252
- | 4.4599 | 5.2591 | 10250 | 4.3236 |
253
- | 4.4599 | 5.2848 | 10300 | 4.3069 |
254
- | 4.4599 | 5.3104 | 10350 | 4.3217 |
255
- | 4.4599 | 5.3361 | 10400 | 4.3043 |
256
- | 4.4599 | 5.3617 | 10450 | 4.3047 |
257
- | 4.4038 | 5.3874 | 10500 | 4.2830 |
258
- | 4.4038 | 5.4130 | 10550 | 4.3164 |
259
- | 4.4038 | 5.4387 | 10600 | 4.2653 |
260
- | 4.4038 | 5.4643 | 10650 | 4.2489 |
261
- | 4.4038 | 5.4900 | 10700 | 4.2620 |
262
- | 4.4038 | 5.5156 | 10750 | 4.2916 |
263
- | 4.4038 | 5.5413 | 10800 | 4.2844 |
264
- | 4.4038 | 5.5670 | 10850 | 4.2230 |
265
- | 4.4038 | 5.5926 | 10900 | 4.2603 |
266
- | 4.4038 | 5.6183 | 10950 | 4.2397 |
267
- | 4.3445 | 5.6439 | 11000 | 4.2355 |
268
- | 4.3445 | 5.6696 | 11050 | 4.2179 |
269
- | 4.3445 | 5.6952 | 11100 | 4.2322 |
270
- | 4.3445 | 5.7209 | 11150 | 4.1959 |
271
- | 4.3445 | 5.7465 | 11200 | 4.2179 |
272
- | 4.3445 | 5.7722 | 11250 | 4.2125 |
273
- | 4.3445 | 5.7978 | 11300 | 4.2359 |
274
- | 4.3445 | 5.8235 | 11350 | 4.1847 |
275
- | 4.3445 | 5.8492 | 11400 | 4.2280 |
276
- | 4.3445 | 5.8748 | 11450 | 4.1967 |
277
- | 4.2951 | 5.9005 | 11500 | 4.1907 |
278
- | 4.2951 | 5.9261 | 11550 | 4.1965 |
279
- | 4.2951 | 5.9518 | 11600 | 4.1721 |
280
- | 4.2951 | 5.9774 | 11650 | 4.1770 |
281
- | 4.2951 | 6.0031 | 11700 | 4.1739 |
282
- | 4.2951 | 6.0287 | 11750 | 4.1292 |
283
- | 4.2951 | 6.0544 | 11800 | 4.1789 |
284
- | 4.2951 | 6.0800 | 11850 | 4.1293 |
285
- | 4.2951 | 6.1057 | 11900 | 4.1327 |
286
- | 4.2951 | 6.1313 | 11950 | 4.1313 |
287
- | 4.2224 | 6.1570 | 12000 | 4.1224 |
288
- | 4.2224 | 6.1827 | 12050 | 4.1306 |
289
- | 4.2224 | 6.2083 | 12100 | 4.1244 |
290
- | 4.2224 | 6.2340 | 12150 | 4.1072 |
291
- | 4.2224 | 6.2596 | 12200 | 4.1029 |
292
- | 4.2224 | 6.2853 | 12250 | 4.1252 |
293
- | 4.2224 | 6.3109 | 12300 | 4.0902 |
294
- | 4.2224 | 6.3366 | 12350 | 4.0728 |
295
- | 4.2224 | 6.3622 | 12400 | 4.0932 |
296
- | 4.2224 | 6.3879 | 12450 | 4.0892 |
297
- | 4.1426 | 6.4135 | 12500 | 4.1014 |
298
- | 4.1426 | 6.4392 | 12550 | 4.1073 |
299
- | 4.1426 | 6.4649 | 12600 | 4.0892 |
300
 
301
 
302
  ### Framework versions
303
 
304
- - Transformers 4.47.1
305
  - Pytorch 2.5.1+cu121
306
  - Datasets 3.2.0
307
  - Tokenizers 0.21.0
 
14
 
15
  This model is a fine-tuned version of [](https://huggingface.co/) on an unknown dataset.
16
  It achieves the following results on the evaluation set:
17
+ - Loss: 4.4196
18
 
19
  ## Model description
20
 
 
43
 
44
  ### Training results
45
 
46
+ | Training Loss | Epoch | Step | Validation Loss |
47
+ |:-------------:|:------:|:----:|:---------------:|
48
+ | No log | 0.0257 | 50 | 8.3797 |
49
+ | No log | 0.0513 | 100 | 7.5227 |
50
+ | No log | 0.0770 | 150 | 7.3529 |
51
+ | No log | 0.1026 | 200 | 7.2301 |
52
+ | No log | 0.1283 | 250 | 7.1456 |
53
+ | No log | 0.1539 | 300 | 7.0682 |
54
+ | No log | 0.1796 | 350 | 6.9683 |
55
+ | No log | 0.2052 | 400 | 6.9433 |
56
+ | No log | 0.2309 | 450 | 6.8604 |
57
+ | 7.4105 | 0.2565 | 500 | 6.8596 |
58
+ | 7.4105 | 0.2822 | 550 | 6.8294 |
59
+ | 7.4105 | 0.3079 | 600 | 6.7680 |
60
+ | 7.4105 | 0.3335 | 650 | 6.7519 |
61
+ | 7.4105 | 0.3592 | 700 | 6.7331 |
62
+ | 7.4105 | 0.3848 | 750 | 6.7107 |
63
+ | 7.4105 | 0.4105 | 800 | 6.6847 |
64
+ | 7.4105 | 0.4361 | 850 | 6.6561 |
65
+ | 7.4105 | 0.4618 | 900 | 6.6557 |
66
+ | 7.4105 | 0.4874 | 950 | 6.6287 |
67
+ | 6.7505 | 0.5131 | 1000 | 6.6354 |
68
+ | 6.7505 | 0.5387 | 1050 | 6.5733 |
69
+ | 6.7505 | 0.5644 | 1100 | 6.5636 |
70
+ | 6.7505 | 0.5900 | 1150 | 6.5483 |
71
+ | 6.7505 | 0.6157 | 1200 | 6.5518 |
72
+ | 6.7505 | 0.6414 | 1250 | 6.4987 |
73
+ | 6.7505 | 0.6670 | 1300 | 6.4945 |
74
+ | 6.7505 | 0.6927 | 1350 | 6.4962 |
75
+ | 6.7505 | 0.7183 | 1400 | 6.4961 |
76
+ | 6.7505 | 0.7440 | 1450 | 6.4763 |
77
+ | 6.5509 | 0.7696 | 1500 | 6.4491 |
78
+ | 6.5509 | 0.7953 | 1550 | 6.4612 |
79
+ | 6.5509 | 0.8209 | 1600 | 6.4320 |
80
+ | 6.5509 | 0.8466 | 1650 | 6.4061 |
81
+ | 6.5509 | 0.8722 | 1700 | 6.3827 |
82
+ | 6.5509 | 0.8979 | 1750 | 6.4234 |
83
+ | 6.5509 | 0.9236 | 1800 | 6.4077 |
84
+ | 6.5509 | 0.9492 | 1850 | 6.3888 |
85
+ | 6.5509 | 0.9749 | 1900 | 6.4047 |
86
+ | 6.5509 | 1.0005 | 1950 | 6.3787 |
87
+ | 6.4448 | 1.0262 | 2000 | 6.3541 |
88
+ | 6.4448 | 1.0518 | 2050 | 6.3429 |
89
+ | 6.4448 | 1.0775 | 2100 | 6.3711 |
90
+ | 6.4448 | 1.1031 | 2150 | 6.3378 |
91
+ | 6.4448 | 1.1288 | 2200 | 6.3210 |
92
+ | 6.4448 | 1.1544 | 2250 | 6.3069 |
93
+ | 6.4448 | 1.1801 | 2300 | 6.3027 |
94
+ | 6.4448 | 1.2057 | 2350 | 6.3036 |
95
+ | 6.4448 | 1.2314 | 2400 | 6.2680 |
96
+ | 6.4448 | 1.2571 | 2450 | 6.2663 |
97
+ | 6.3371 | 1.2827 | 2500 | 6.2803 |
98
+ | 6.3371 | 1.3084 | 2550 | 6.2470 |
99
+ | 6.3371 | 1.3340 | 2600 | 6.2468 |
100
+ | 6.3371 | 1.3597 | 2650 | 6.2251 |
101
+ | 6.3371 | 1.3853 | 2700 | 6.2518 |
102
+ | 6.3371 | 1.4110 | 2750 | 6.2393 |
103
+ | 6.3371 | 1.4366 | 2800 | 6.2144 |
104
+ | 6.3371 | 1.4623 | 2850 | 6.1984 |
105
+ | 6.3371 | 1.4879 | 2900 | 6.2156 |
106
+ | 6.3371 | 1.5136 | 2950 | 6.1799 |
107
+ | 6.2807 | 1.5393 | 3000 | 6.1686 |
108
+ | 6.2807 | 1.5649 | 3050 | 6.1705 |
109
+ | 6.2807 | 1.5906 | 3100 | 6.1725 |
110
+ | 6.2807 | 1.6162 | 3150 | 6.1578 |
111
+ | 6.2807 | 1.6419 | 3200 | 6.1476 |
112
+ | 6.2807 | 1.6675 | 3250 | 6.1461 |
113
+ | 6.2807 | 1.6932 | 3300 | 6.1082 |
114
+ | 6.2807 | 1.7188 | 3350 | 6.0867 |
115
+ | 6.2807 | 1.7445 | 3400 | 6.0844 |
116
+ | 6.2807 | 1.7701 | 3450 | 6.0796 |
117
+ | 6.1678 | 1.7958 | 3500 | 6.0698 |
118
+ | 6.1678 | 1.8214 | 3550 | 6.0559 |
119
+ | 6.1678 | 1.8471 | 3600 | 6.0574 |
120
+ | 6.1678 | 1.8728 | 3650 | 5.9871 |
121
+ | 6.1678 | 1.8984 | 3700 | 6.0185 |
122
+ | 6.1678 | 1.9241 | 3750 | 5.9974 |
123
+ | 6.1678 | 1.9497 | 3800 | 5.9540 |
124
+ | 6.1678 | 1.9754 | 3850 | 5.9818 |
125
+ | 6.1678 | 2.0010 | 3900 | 5.9478 |
126
+ | 6.1678 | 2.0267 | 3950 | 5.9191 |
127
+ | 6.0398 | 2.0523 | 4000 | 5.9068 |
128
+ | 6.0398 | 2.0780 | 4050 | 5.9065 |
129
+ | 6.0398 | 2.1036 | 4100 | 5.8807 |
130
+ | 6.0398 | 2.1293 | 4150 | 5.8725 |
131
+ | 6.0398 | 2.1550 | 4200 | 5.8652 |
132
+ | 6.0398 | 2.1806 | 4250 | 5.8551 |
133
+ | 6.0398 | 2.2063 | 4300 | 5.8291 |
134
+ | 6.0398 | 2.2319 | 4350 | 5.7986 |
135
+ | 6.0398 | 2.2576 | 4400 | 5.7718 |
136
+ | 6.0398 | 2.2832 | 4450 | 5.7675 |
137
+ | 5.886 | 2.3089 | 4500 | 5.7314 |
138
+ | 5.886 | 2.3345 | 4550 | 5.7092 |
139
+ | 5.886 | 2.3602 | 4600 | 5.6816 |
140
+ | 5.886 | 2.3858 | 4650 | 5.6676 |
141
+ | 5.886 | 2.4115 | 4700 | 5.6500 |
142
+ | 5.886 | 2.4371 | 4750 | 5.6245 |
143
+ | 5.886 | 2.4628 | 4800 | 5.6070 |
144
+ | 5.886 | 2.4885 | 4850 | 5.5851 |
145
+ | 5.886 | 2.5141 | 4900 | 5.5514 |
146
+ | 5.886 | 2.5398 | 4950 | 5.5332 |
147
+ | 5.6864 | 2.5654 | 5000 | 5.5098 |
148
+ | 5.6864 | 2.5911 | 5050 | 5.4969 |
149
+ | 5.6864 | 2.6167 | 5100 | 5.4332 |
150
+ | 5.6864 | 2.6424 | 5150 | 5.4490 |
151
+ | 5.6864 | 2.6680 | 5200 | 5.4483 |
152
+ | 5.6864 | 2.6937 | 5250 | 5.4290 |
153
+ | 5.6864 | 2.7193 | 5300 | 5.3701 |
154
+ | 5.6864 | 2.7450 | 5350 | 5.3438 |
155
+ | 5.6864 | 2.7707 | 5400 | 5.3415 |
156
+ | 5.6864 | 2.7963 | 5450 | 5.3366 |
157
+ | 5.4976 | 2.8220 | 5500 | 5.2911 |
158
+ | 5.4976 | 2.8476 | 5550 | 5.2683 |
159
+ | 5.4976 | 2.8733 | 5600 | 5.2673 |
160
+ | 5.4976 | 2.8989 | 5650 | 5.2609 |
161
+ | 5.4976 | 2.9246 | 5700 | 5.2166 |
162
+ | 5.4976 | 2.9502 | 5750 | 5.2048 |
163
+ | 5.4976 | 2.9759 | 5800 | 5.2229 |
164
+ | 5.4976 | 3.0015 | 5850 | 5.1755 |
165
+ | 5.4976 | 3.0272 | 5900 | 5.1560 |
166
+ | 5.4976 | 3.0528 | 5950 | 5.1630 |
167
+ | 5.3186 | 3.0785 | 6000 | 5.1213 |
168
+ | 5.3186 | 3.1042 | 6050 | 5.1381 |
169
+ | 5.3186 | 3.1298 | 6100 | 5.1029 |
170
+ | 5.3186 | 3.1555 | 6150 | 5.1000 |
171
+ | 5.3186 | 3.1811 | 6200 | 5.0759 |
172
+ | 5.3186 | 3.2068 | 6250 | 5.1004 |
173
+ | 5.3186 | 3.2324 | 6300 | 5.0859 |
174
+ | 5.3186 | 3.2581 | 6350 | 5.0483 |
175
+ | 5.3186 | 3.2837 | 6400 | 5.0596 |
176
+ | 5.3186 | 3.3094 | 6450 | 5.0107 |
177
+ | 5.1601 | 3.3350 | 6500 | 5.0064 |
178
+ | 5.1601 | 3.3607 | 6550 | 5.0099 |
179
+ | 5.1601 | 3.3864 | 6600 | 4.9871 |
180
+ | 5.1601 | 3.4120 | 6650 | 4.9469 |
181
+ | 5.1601 | 3.4377 | 6700 | 4.9580 |
182
+ | 5.1601 | 3.4633 | 6750 | 4.9488 |
183
+ | 5.1601 | 3.4890 | 6800 | 4.9288 |
184
+ | 5.1601 | 3.5146 | 6850 | 4.9337 |
185
+ | 5.1601 | 3.5403 | 6900 | 4.9247 |
186
+ | 5.1601 | 3.5659 | 6950 | 4.8895 |
187
+ | 5.0217 | 3.5916 | 7000 | 4.8785 |
188
+ | 5.0217 | 3.6172 | 7050 | 4.8601 |
189
+ | 5.0217 | 3.6429 | 7100 | 4.8779 |
190
+ | 5.0217 | 3.6685 | 7150 | 4.8486 |
191
+ | 5.0217 | 3.6942 | 7200 | 4.8419 |
192
+ | 5.0217 | 3.7199 | 7250 | 4.8239 |
193
+ | 5.0217 | 3.7455 | 7300 | 4.8050 |
194
+ | 5.0217 | 3.7712 | 7350 | 4.8172 |
195
+ | 5.0217 | 3.7968 | 7400 | 4.7992 |
196
+ | 5.0217 | 3.8225 | 7450 | 4.7808 |
197
+ | 4.9197 | 3.8481 | 7500 | 4.7881 |
198
+ | 4.9197 | 3.8738 | 7550 | 4.7625 |
199
+ | 4.9197 | 3.8994 | 7600 | 4.7535 |
200
+ | 4.9197 | 3.9251 | 7650 | 4.7548 |
201
+ | 4.9197 | 3.9507 | 7700 | 4.7273 |
202
+ | 4.9197 | 3.9764 | 7750 | 4.7182 |
203
+ | 4.9197 | 4.0021 | 7800 | 4.7155 |
204
+ | 4.9197 | 4.0277 | 7850 | 4.7128 |
205
+ | 4.9197 | 4.0534 | 7900 | 4.6831 |
206
+ | 4.9197 | 4.0790 | 7950 | 4.6892 |
207
+ | 4.7891 | 4.1047 | 8000 | 4.6848 |
208
+ | 4.7891 | 4.1303 | 8050 | 4.6873 |
209
+ | 4.7891 | 4.1560 | 8100 | 4.6718 |
210
+ | 4.7891 | 4.1816 | 8150 | 4.6474 |
211
+ | 4.7891 | 4.2073 | 8200 | 4.6205 |
212
+ | 4.7891 | 4.2329 | 8250 | 4.6165 |
213
+ | 4.7891 | 4.2586 | 8300 | 4.6393 |
214
+ | 4.7891 | 4.2842 | 8350 | 4.6185 |
215
+ | 4.7891 | 4.3099 | 8400 | 4.6013 |
216
+ | 4.7891 | 4.3356 | 8450 | 4.5950 |
217
+ | 4.6944 | 4.3612 | 8500 | 4.5838 |
218
+ | 4.6944 | 4.3869 | 8550 | 4.5706 |
219
+ | 4.6944 | 4.4125 | 8600 | 4.5776 |
220
+ | 4.6944 | 4.4382 | 8650 | 4.5625 |
221
+ | 4.6944 | 4.4638 | 8700 | 4.5703 |
222
+ | 4.6944 | 4.4895 | 8750 | 4.5489 |
223
+ | 4.6944 | 4.5151 | 8800 | 4.5522 |
224
+ | 4.6944 | 4.5408 | 8850 | 4.5127 |
225
+ | 4.6944 | 4.5664 | 8900 | 4.5183 |
226
+ | 4.6944 | 4.5921 | 8950 | 4.5268 |
227
+ | 4.6262 | 4.6178 | 9000 | 4.4896 |
228
+ | 4.6262 | 4.6434 | 9050 | 4.5180 |
229
+ | 4.6262 | 4.6691 | 9100 | 4.4874 |
230
+ | 4.6262 | 4.6947 | 9150 | 4.4849 |
231
+ | 4.6262 | 4.7204 | 9200 | 4.5018 |
232
+ | 4.6262 | 4.7460 | 9250 | 4.4922 |
233
+ | 4.6262 | 4.7717 | 9300 | 4.4627 |
234
+ | 4.6262 | 4.7973 | 9350 | 4.4675 |
235
+ | 4.6262 | 4.8230 | 9400 | 4.4472 |
236
+ | 4.6262 | 4.8486 | 9450 | 4.4290 |
237
+ | 4.5552 | 4.8743 | 9500 | 4.4188 |
238
+ | 4.5552 | 4.8999 | 9550 | 4.3959 |
239
+ | 4.5552 | 4.9256 | 9600 | 4.4228 |
240
+ | 4.5552 | 4.9513 | 9650 | 4.4267 |
241
+ | 4.5552 | 4.9769 | 9700 | 4.4063 |
242
+ | 4.5552 | 5.0026 | 9750 | 4.4001 |
243
+ | 4.5552 | 5.0282 | 9800 | 4.4196 |
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
244
 
245
 
246
  ### Framework versions
247
 
248
+ - Transformers 4.48.3
249
  - Pytorch 2.5.1+cu121
250
  - Datasets 3.2.0
251
  - Tokenizers 0.21.0
config.json CHANGED
@@ -17,7 +17,7 @@
17
  "pad_token_id": 0,
18
  "position_embedding_type": "absolute",
19
  "torch_dtype": "float32",
20
- "transformers_version": "4.47.1",
21
  "type_vocab_size": 2,
22
  "use_cache": true,
23
  "vocab_size": 50000
 
17
  "pad_token_id": 0,
18
  "position_embedding_type": "absolute",
19
  "torch_dtype": "float32",
20
+ "transformers_version": "4.48.3",
21
  "type_vocab_size": 2,
22
  "use_cache": true,
23
  "vocab_size": 50000
generation_config.json CHANGED
@@ -1,5 +1,5 @@
1
  {
2
  "_from_model_config": true,
3
  "pad_token_id": 0,
4
- "transformers_version": "4.47.1"
5
  }
 
1
  {
2
  "_from_model_config": true,
3
  "pad_token_id": 0,
4
+ "transformers_version": "4.48.3"
5
  }
model.safetensors CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:0a2ccd8e9cad815ade5fc16078c5a610a20c283128c2560de4f5d9a8762a9a5c
3
  size 327874976
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3b89ce7bc021c7ffc064ea0f32999afd9a4d66940b47f21ff06dcd54a845539e
3
  size 327874976
training_args.bin CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:15a4033b6f87a76fda0a25cf83df5afcd356a156d1157e4154ac8a23176f681a
3
  size 5304
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3dc32e7055f652595579fc2a138c6e480d6dcd14037e76b0f865e3103dc75b75
3
  size 5304