working

This model is a fine-tuned version of pborchert/BusinessBERT on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 3.3070

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • num_epochs: 7

Training results

Training Loss Epoch Step Validation Loss
No log 0.0257 50 5.4950
No log 0.0513 100 5.2169
No log 0.0770 150 5.0495
No log 0.1026 200 4.9407
No log 0.1283 250 4.8442
No log 0.1539 300 4.7955
No log 0.1796 350 4.6896
No log 0.2052 400 4.6560
No log 0.2309 450 4.6657
5.1165 0.2565 500 4.5673
5.1165 0.2822 550 4.5526
5.1165 0.3079 600 4.5253
5.1165 0.3335 650 4.4882
5.1165 0.3592 700 4.4493
5.1165 0.3848 750 4.4193
5.1165 0.4105 800 4.3838
5.1165 0.4361 850 4.3737
5.1165 0.4618 900 4.3586
5.1165 0.4874 950 4.3631
4.5802 0.5131 1000 4.3204
4.5802 0.5387 1050 4.3004
4.5802 0.5644 1100 4.2959
4.5802 0.5900 1150 4.2635
4.5802 0.6157 1200 4.2373
4.5802 0.6414 1250 4.2351
4.5802 0.6670 1300 4.2160
4.5802 0.6927 1350 4.1734
4.5802 0.7183 1400 4.1644
4.5802 0.7440 1450 4.1413
4.3933 0.7696 1500 4.1446
4.3933 0.7953 1550 4.1304
4.3933 0.8209 1600 4.1446
4.3933 0.8466 1650 4.1190
4.3933 0.8722 1700 4.1191
4.3933 0.8979 1750 4.0745
4.3933 0.9236 1800 4.0714
4.3933 0.9492 1850 4.0761
4.3933 0.9749 1900 4.0438
4.3933 1.0005 1950 4.0607
4.2488 1.0262 2000 4.0196
4.2488 1.0518 2050 4.0295
4.2488 1.0775 2100 3.9847
4.2488 1.1031 2150 3.9741
4.2488 1.1288 2200 3.9577
4.2488 1.1544 2250 3.9609
4.2488 1.1801 2300 3.9989
4.2488 1.2057 2350 3.9628
4.2488 1.2314 2400 3.9308
4.2488 1.2571 2450 3.9223
4.0985 1.2827 2500 3.9455
4.0985 1.3084 2550 3.9289
4.0985 1.3340 2600 3.9327
4.0985 1.3597 2650 3.8934
4.0985 1.3853 2700 3.8884
4.0985 1.4110 2750 3.9077
4.0985 1.4366 2800 3.8825
4.0985 1.4623 2850 3.8765
4.0985 1.4879 2900 3.8477
4.0985 1.5136 2950 3.8432
4.009 1.5393 3000 3.8259
4.009 1.5649 3050 3.8392
4.009 1.5906 3100 3.8668
4.009 1.6162 3150 3.8354
4.009 1.6419 3200 3.8150
4.009 1.6675 3250 3.8325
4.009 1.6932 3300 3.8268
4.009 1.7188 3350 3.8147
4.009 1.7445 3400 3.7826
4.009 1.7701 3450 3.7822
3.9676 1.7958 3500 3.7950
3.9676 1.8214 3550 3.7839
3.9676 1.8471 3600 3.7646
3.9676 1.8728 3650 3.7747
3.9676 1.8984 3700 3.7583
3.9676 1.9241 3750 3.7438
3.9676 1.9497 3800 3.7603
3.9676 1.9754 3850 3.7299
3.9676 2.0010 3900 3.7391
3.9676 2.0267 3950 3.7117
3.8702 2.0523 4000 3.7592
3.8702 2.0780 4050 3.7178
3.8702 2.1036 4100 3.7501
3.8702 2.1293 4150 3.7182
3.8702 2.1550 4200 3.7127
3.8702 2.1806 4250 3.7032
3.8702 2.2063 4300 3.7028
3.8702 2.2319 4350 3.6726
3.8702 2.2576 4400 3.6591
3.8702 2.2832 4450 3.6744
3.8324 2.3089 4500 3.6995
3.8324 2.3345 4550 3.6777
3.8324 2.3602 4600 3.7105
3.8324 2.3858 4650 3.6624
3.8324 2.4115 4700 3.6701
3.8324 2.4371 4750 3.6298
3.8324 2.4628 4800 3.6582
3.8324 2.4885 4850 3.6668
3.8324 2.5141 4900 3.6393
3.8324 2.5398 4950 3.6194
3.783 2.5654 5000 3.6175
3.783 2.5911 5050 3.6144
3.783 2.6167 5100 3.6148
3.783 2.6424 5150 3.5929
3.783 2.6680 5200 3.6180
3.783 2.6937 5250 3.6065
3.783 2.7193 5300 3.6218
3.783 2.7450 5350 3.6123
3.783 2.7707 5400 3.6084
3.783 2.7963 5450 3.5988
3.7504 2.8220 5500 3.5943
3.7504 2.8476 5550 3.5656
3.7504 2.8733 5600 3.6005
3.7504 2.8989 5650 3.5971
3.7504 2.9246 5700 3.5795
3.7504 2.9502 5750 3.5698
3.7504 2.9759 5800 3.5793
3.7504 3.0015 5850 3.5790
3.7504 3.0272 5900 3.5504
3.7504 3.0528 5950 3.5628
3.6774 3.0785 6000 3.5494
3.6774 3.1042 6050 3.5776
3.6774 3.1298 6100 3.5380
3.6774 3.1555 6150 3.5350
3.6774 3.1811 6200 3.5347
3.6774 3.2068 6250 3.5553
3.6774 3.2324 6300 3.5684
3.6774 3.2581 6350 3.5194
3.6774 3.2837 6400 3.5157
3.6774 3.3094 6450 3.5307
3.643 3.3350 6500 3.5300
3.643 3.3607 6550 3.5182
3.643 3.3864 6600 3.5084
3.643 3.4120 6650 3.5237
3.643 3.4377 6700 3.5138
3.643 3.4633 6750 3.4951
3.643 3.4890 6800 3.4666
3.643 3.5146 6850 3.5216
3.643 3.5403 6900 3.5231
3.643 3.5659 6950 3.4880
3.6139 3.5916 7000 3.5065
3.6139 3.6172 7050 3.4963
3.6139 3.6429 7100 3.4861
3.6139 3.6685 7150 3.4852
3.6139 3.6942 7200 3.4753
3.6139 3.7199 7250 3.4783
3.6139 3.7455 7300 3.4762
3.6139 3.7712 7350 3.4914
3.6139 3.7968 7400 3.4560
3.6139 3.8225 7450 3.4587
3.5909 3.8481 7500 3.4825
3.5909 3.8738 7550 3.4616
3.5909 3.8994 7600 3.4469
3.5909 3.9251 7650 3.4609
3.5909 3.9507 7700 3.4284
3.5909 3.9764 7750 3.4680
3.5909 4.0021 7800 3.4610
3.5909 4.0277 7850 3.4718
3.5909 4.0534 7900 3.4455
3.5909 4.0790 7950 3.4548
3.539 4.1047 8000 3.4461
3.539 4.1303 8050 3.4435
3.539 4.1560 8100 3.4412
3.539 4.1816 8150 3.4331
3.539 4.2073 8200 3.4258
3.539 4.2329 8250 3.4367
3.539 4.2586 8300 3.4259
3.539 4.2842 8350 3.4338
3.539 4.3099 8400 3.4274
3.539 4.3356 8450 3.4556
3.5276 4.3612 8500 3.4288
3.5276 4.3869 8550 3.4279
3.5276 4.4125 8600 3.4191
3.5276 4.4382 8650 3.3882
3.5276 4.4638 8700 3.4083
3.5276 4.4895 8750 3.4005
3.5276 4.5151 8800 3.3910
3.5276 4.5408 8850 3.4416
3.5276 4.5664 8900 3.4154
3.5276 4.5921 8950 3.4116
3.4812 4.6178 9000 3.3965
3.4812 4.6434 9050 3.3789
3.4812 4.6691 9100 3.3688
3.4812 4.6947 9150 3.3994
3.4812 4.7204 9200 3.3970
3.4812 4.7460 9250 3.3965
3.4812 4.7717 9300 3.4146
3.4812 4.7973 9350 3.3628
3.4812 4.8230 9400 3.4125
3.4812 4.8486 9450 3.3942
3.5039 4.8743 9500 3.3965
3.5039 4.8999 9550 3.3620
3.5039 4.9256 9600 3.4002
3.5039 4.9513 9650 3.3658
3.5039 4.9769 9700 3.3547
3.5039 5.0026 9750 3.3852
3.5039 5.0282 9800 3.3811
3.5039 5.0539 9850 3.3980
3.5039 5.0795 9900 3.3577
3.5039 5.1052 9950 3.3668
3.4764 5.1308 10000 3.3734
3.4764 5.1565 10050 3.3895
3.4764 5.1821 10100 3.3553
3.4764 5.2078 10150 3.3640
3.4764 5.2335 10200 3.3691
3.4764 5.2591 10250 3.3724
3.4764 5.2848 10300 3.3703
3.4764 5.3104 10350 3.3383
3.4764 5.3361 10400 3.3653
3.4764 5.3617 10450 3.3709
3.4419 5.3874 10500 3.3848
3.4419 5.4130 10550 3.3522
3.4419 5.4387 10600 3.3370
3.4419 5.4643 10650 3.3667
3.4419 5.4900 10700 3.3621
3.4419 5.5156 10750 3.3706
3.4419 5.5413 10800 3.3339
3.4419 5.5670 10850 3.3561
3.4419 5.5926 10900 3.3574
3.4419 5.6183 10950 3.3452
3.4277 5.6439 11000 3.3431
3.4277 5.6696 11050 3.3331
3.4277 5.6952 11100 3.3397
3.4277 5.7209 11150 3.3414
3.4277 5.7465 11200 3.3307
3.4277 5.7722 11250 3.3241
3.4277 5.7978 11300 3.3572
3.4277 5.8235 11350 3.3402
3.4277 5.8492 11400 3.3145
3.4277 5.8748 11450 3.3312
3.4197 5.9005 11500 3.3520
3.4197 5.9261 11550 3.3387
3.4197 5.9518 11600 3.3213
3.4197 5.9774 11650 3.3300
3.4197 6.0031 11700 3.3201
3.4197 6.0287 11750 3.3075
3.4197 6.0544 11800 3.3329
3.4197 6.0800 11850 3.3202
3.4197 6.1057 11900 3.3527
3.4197 6.1313 11950 3.3377
3.3882 6.1570 12000 3.3125
3.3882 6.1827 12050 3.3278
3.3882 6.2083 12100 3.3224
3.3882 6.2340 12150 3.3224
3.3882 6.2596 12200 3.3093
3.3882 6.2853 12250 3.3184
3.3882 6.3109 12300 3.3520
3.3882 6.3366 12350 3.3085
3.3882 6.3622 12400 3.2921
3.3882 6.3879 12450 3.3209
3.3896 6.4135 12500 3.3323
3.3896 6.4392 12550 3.3098
3.3896 6.4649 12600 3.3157
3.3896 6.4905 12650 3.3032
3.3896 6.5162 12700 3.3247
3.3896 6.5418 12750 3.3171
3.3896 6.5675 12800 3.2847
3.3896 6.5931 12850 3.3035
3.3896 6.6188 12900 3.2980
3.3896 6.6444 12950 3.3195
3.3973 6.6701 13000 3.3071
3.3973 6.6957 13050 3.3037
3.3973 6.7214 13100 3.3250
3.3973 6.7470 13150 3.3324
3.3973 6.7727 13200 3.3228
3.3973 6.7984 13250 3.2844
3.3973 6.8240 13300 3.3302
3.3973 6.8497 13350 3.3019
3.3973 6.8753 13400 3.3113
3.3973 6.9010 13450 3.3134
3.3858 6.9266 13500 3.2894
3.3858 6.9523 13550 3.3094
3.3858 6.9779 13600 3.3070

Framework versions

  • Transformers 4.49.0.dev0
  • Pytorch 2.5.1+cu121
  • Datasets 3.2.0
  • Tokenizers 0.21.0
Downloads last month
66
Safetensors
Model size
66.1M params
Tensor type
F32
ยท
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for colaguo/working

Finetuned
(2)
this model