Model save
Browse files- README.md +234 -200
- pytorch_model.bin +1 -1
README.md
CHANGED
@@ -14,7 +14,7 @@ should probably proofread and complete it, then remove this comment. -->
|
|
14 |
|
15 |
This model is a fine-tuned version of [](https://huggingface.co/) on an unknown dataset.
|
16 |
It achieves the following results on the evaluation set:
|
17 |
-
- Loss: 4.
|
18 |
|
19 |
## Model description
|
20 |
|
@@ -43,209 +43,243 @@ The following hyperparameters were used during training:
|
|
43 |
|
44 |
### Training results
|
45 |
|
46 |
-
| Training Loss | Epoch | Step
|
47 |
-
|
48 |
-
| No log | 0.0257 | 50
|
49 |
-
| No log | 0.0513 | 100
|
50 |
-
| No log | 0.0770 | 150
|
51 |
-
| No log | 0.1026 | 200
|
52 |
-
| No log | 0.1283 | 250
|
53 |
-
| No log | 0.1539 | 300
|
54 |
-
| No log | 0.1796 | 350
|
55 |
-
| No log | 0.2052 | 400
|
56 |
-
| No log | 0.2309 | 450
|
57 |
-
| 7.
|
58 |
-
| 7.
|
59 |
-
| 7.
|
60 |
-
| 7.
|
61 |
-
| 7.
|
62 |
-
| 7.
|
63 |
-
| 7.
|
64 |
-
| 7.
|
65 |
-
| 7.
|
66 |
-
| 7.
|
67 |
-
| 6.
|
68 |
-
| 6.
|
69 |
-
| 6.
|
70 |
-
| 6.
|
71 |
-
| 6.
|
72 |
-
| 6.
|
73 |
-
| 6.
|
74 |
-
| 6.
|
75 |
-
| 6.
|
76 |
-
| 6.
|
77 |
-
| 6.
|
78 |
-
| 6.
|
79 |
-
| 6.
|
80 |
-
| 6.
|
81 |
-
| 6.
|
82 |
-
| 6.
|
83 |
-
| 6.
|
84 |
-
| 6.
|
85 |
-
| 6.
|
86 |
-
| 6.
|
87 |
-
| 6.
|
88 |
-
| 6.
|
89 |
-
| 6.
|
90 |
-
| 6.
|
91 |
-
| 6.
|
92 |
-
| 6.
|
93 |
-
| 6.
|
94 |
-
| 6.
|
95 |
-
| 6.
|
96 |
-
| 6.
|
97 |
-
| 6.
|
98 |
-
| 6.
|
99 |
-
| 6.
|
100 |
-
| 6.
|
101 |
-
| 6.
|
102 |
-
| 6.
|
103 |
-
| 6.
|
104 |
-
| 6.
|
105 |
-
| 6.
|
106 |
-
| 6.
|
107 |
-
| 6.
|
108 |
-
| 6.
|
109 |
-
| 6.
|
110 |
-
| 6.
|
111 |
-
| 6.
|
112 |
-
| 6.
|
113 |
-
| 6.
|
114 |
-
| 6.
|
115 |
-
| 6.
|
116 |
-
| 6.
|
117 |
-
| 6.
|
118 |
-
| 6.
|
119 |
-
| 6.
|
120 |
-
| 6.
|
121 |
-
| 6.
|
122 |
-
| 6.
|
123 |
-
| 6.
|
124 |
-
| 6.
|
125 |
-
| 6.
|
126 |
-
| 6.
|
127 |
-
| 6.
|
128 |
-
| 6.
|
129 |
-
| 6.
|
130 |
-
| 6.
|
131 |
-
| 6.
|
132 |
-
| 6.
|
133 |
-
| 6.
|
134 |
-
| 6.
|
135 |
-
| 6.
|
136 |
-
| 6.
|
137 |
-
| 5.
|
138 |
-
| 5.
|
139 |
-
| 5.
|
140 |
-
| 5.
|
141 |
-
| 5.
|
142 |
-
| 5.
|
143 |
-
| 5.
|
144 |
-
| 5.
|
145 |
-
| 5.
|
146 |
-
| 5.
|
147 |
-
| 5.
|
148 |
-
| 5.
|
149 |
-
| 5.
|
150 |
-
| 5.
|
151 |
-
| 5.
|
152 |
-
| 5.
|
153 |
-
| 5.
|
154 |
-
| 5.
|
155 |
-
| 5.
|
156 |
-
| 5.
|
157 |
-
| 5.
|
158 |
-
| 5.
|
159 |
-
| 5.
|
160 |
-
| 5.
|
161 |
-
| 5.
|
162 |
-
| 5.
|
163 |
-
| 5.
|
164 |
-
| 5.
|
165 |
-
| 5.
|
166 |
-
| 5.
|
167 |
-
| 5.
|
168 |
-
| 5.
|
169 |
-
| 5.
|
170 |
-
| 5.
|
171 |
-
| 5.
|
172 |
-
| 5.
|
173 |
-
| 5.
|
174 |
-
| 5.
|
175 |
-
| 5.
|
176 |
-
| 5.
|
177 |
-
| 5.
|
178 |
-
| 5.
|
179 |
-
| 5.
|
180 |
-
| 5.
|
181 |
-
| 5.
|
182 |
-
| 5.
|
183 |
-
| 5.
|
184 |
-
| 5.
|
185 |
-
| 5.
|
186 |
-
| 5.
|
187 |
-
| 5.
|
188 |
-
| 5.
|
189 |
-
| 5.
|
190 |
-
| 5.
|
191 |
-
| 5.
|
192 |
-
| 5.
|
193 |
-
| 5.
|
194 |
-
| 5.
|
195 |
-
| 5.
|
196 |
-
| 5.
|
197 |
-
| 4.
|
198 |
-
| 4.
|
199 |
-
| 4.
|
200 |
-
| 4.
|
201 |
-
| 4.
|
202 |
-
| 4.
|
203 |
-
| 4.
|
204 |
-
| 4.
|
205 |
-
| 4.
|
206 |
-
| 4.
|
207 |
-
| 4.
|
208 |
-
| 4.
|
209 |
-
| 4.
|
210 |
-
| 4.
|
211 |
-
| 4.
|
212 |
-
| 4.
|
213 |
-
| 4.
|
214 |
-
| 4.
|
215 |
-
| 4.
|
216 |
-
| 4.
|
217 |
-
| 4.
|
218 |
-
| 4.
|
219 |
-
| 4.
|
220 |
-
| 4.
|
221 |
-
| 4.
|
222 |
-
| 4.
|
223 |
-
| 4.
|
224 |
-
| 4.
|
225 |
-
| 4.
|
226 |
-
| 4.
|
227 |
-
| 4.
|
228 |
-
| 4.
|
229 |
-
| 4.
|
230 |
-
| 4.
|
231 |
-
| 4.
|
232 |
-
| 4.
|
233 |
-
| 4.
|
234 |
-
| 4.
|
235 |
-
| 4.
|
236 |
-
| 4.
|
237 |
-
| 4.
|
238 |
-
| 4.
|
239 |
-
| 4.
|
240 |
-
| 4.
|
241 |
-
| 4.
|
242 |
-
| 4.
|
243 |
-
| 4.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
244 |
|
245 |
|
246 |
### Framework versions
|
247 |
|
248 |
-
- Transformers 4.
|
249 |
- Pytorch 2.5.1+cu121
|
250 |
- Datasets 3.2.0
|
251 |
- Tokenizers 0.21.0
|
|
|
14 |
|
15 |
This model is a fine-tuned version of [](https://huggingface.co/) on an unknown dataset.
|
16 |
It achieves the following results on the evaluation set:
|
17 |
+
- Loss: 4.2041
|
18 |
|
19 |
## Model description
|
20 |
|
|
|
43 |
|
44 |
### Training results
|
45 |
|
46 |
+
| Training Loss | Epoch | Step | Validation Loss |
|
47 |
+
|:-------------:|:------:|:-----:|:---------------:|
|
48 |
+
| No log | 0.0257 | 50 | 8.3417 |
|
49 |
+
| No log | 0.0513 | 100 | 7.5225 |
|
50 |
+
| No log | 0.0770 | 150 | 7.2800 |
|
51 |
+
| No log | 0.1026 | 200 | 7.1710 |
|
52 |
+
| No log | 0.1283 | 250 | 7.0870 |
|
53 |
+
| No log | 0.1539 | 300 | 7.0228 |
|
54 |
+
| No log | 0.1796 | 350 | 6.9561 |
|
55 |
+
| No log | 0.2052 | 400 | 6.9274 |
|
56 |
+
| No log | 0.2309 | 450 | 6.8805 |
|
57 |
+
| 7.373 | 0.2565 | 500 | 6.8446 |
|
58 |
+
| 7.373 | 0.2822 | 550 | 6.7928 |
|
59 |
+
| 7.373 | 0.3079 | 600 | 6.7473 |
|
60 |
+
| 7.373 | 0.3335 | 650 | 6.7402 |
|
61 |
+
| 7.373 | 0.3592 | 700 | 6.7083 |
|
62 |
+
| 7.373 | 0.3848 | 750 | 6.6590 |
|
63 |
+
| 7.373 | 0.4105 | 800 | 6.6615 |
|
64 |
+
| 7.373 | 0.4361 | 850 | 6.6191 |
|
65 |
+
| 7.373 | 0.4618 | 900 | 6.6050 |
|
66 |
+
| 7.373 | 0.4874 | 950 | 6.5849 |
|
67 |
+
| 6.7222 | 0.5131 | 1000 | 6.5876 |
|
68 |
+
| 6.7222 | 0.5387 | 1050 | 6.5620 |
|
69 |
+
| 6.7222 | 0.5644 | 1100 | 6.5360 |
|
70 |
+
| 6.7222 | 0.5900 | 1150 | 6.5137 |
|
71 |
+
| 6.7222 | 0.6157 | 1200 | 6.4960 |
|
72 |
+
| 6.7222 | 0.6414 | 1250 | 6.5057 |
|
73 |
+
| 6.7222 | 0.6670 | 1300 | 6.4713 |
|
74 |
+
| 6.7222 | 0.6927 | 1350 | 6.4503 |
|
75 |
+
| 6.7222 | 0.7183 | 1400 | 6.4650 |
|
76 |
+
| 6.7222 | 0.7440 | 1450 | 6.4619 |
|
77 |
+
| 6.5431 | 0.7696 | 1500 | 6.4230 |
|
78 |
+
| 6.5431 | 0.7953 | 1550 | 6.4370 |
|
79 |
+
| 6.5431 | 0.8209 | 1600 | 6.3983 |
|
80 |
+
| 6.5431 | 0.8466 | 1650 | 6.3970 |
|
81 |
+
| 6.5431 | 0.8722 | 1700 | 6.3728 |
|
82 |
+
| 6.5431 | 0.8979 | 1750 | 6.3749 |
|
83 |
+
| 6.5431 | 0.9236 | 1800 | 6.3552 |
|
84 |
+
| 6.5431 | 0.9492 | 1850 | 6.3818 |
|
85 |
+
| 6.5431 | 0.9749 | 1900 | 6.3363 |
|
86 |
+
| 6.5431 | 1.0005 | 1950 | 6.3270 |
|
87 |
+
| 6.403 | 1.0262 | 2000 | 6.3019 |
|
88 |
+
| 6.403 | 1.0518 | 2050 | 6.3032 |
|
89 |
+
| 6.403 | 1.0775 | 2100 | 6.3362 |
|
90 |
+
| 6.403 | 1.1031 | 2150 | 6.2926 |
|
91 |
+
| 6.403 | 1.1288 | 2200 | 6.3152 |
|
92 |
+
| 6.403 | 1.1544 | 2250 | 6.2974 |
|
93 |
+
| 6.403 | 1.1801 | 2300 | 6.2926 |
|
94 |
+
| 6.403 | 1.2057 | 2350 | 6.2686 |
|
95 |
+
| 6.403 | 1.2314 | 2400 | 6.2473 |
|
96 |
+
| 6.403 | 1.2571 | 2450 | 6.2667 |
|
97 |
+
| 6.3403 | 1.2827 | 2500 | 6.2516 |
|
98 |
+
| 6.3403 | 1.3084 | 2550 | 6.2522 |
|
99 |
+
| 6.3403 | 1.3340 | 2600 | 6.2326 |
|
100 |
+
| 6.3403 | 1.3597 | 2650 | 6.2164 |
|
101 |
+
| 6.3403 | 1.3853 | 2700 | 6.2078 |
|
102 |
+
| 6.3403 | 1.4110 | 2750 | 6.2337 |
|
103 |
+
| 6.3403 | 1.4366 | 2800 | 6.1851 |
|
104 |
+
| 6.3403 | 1.4623 | 2850 | 6.2106 |
|
105 |
+
| 6.3403 | 1.4879 | 2900 | 6.1793 |
|
106 |
+
| 6.3403 | 1.5136 | 2950 | 6.1576 |
|
107 |
+
| 6.232 | 1.5393 | 3000 | 6.1549 |
|
108 |
+
| 6.232 | 1.5649 | 3050 | 6.1438 |
|
109 |
+
| 6.232 | 1.5906 | 3100 | 6.1346 |
|
110 |
+
| 6.232 | 1.6162 | 3150 | 6.1283 |
|
111 |
+
| 6.232 | 1.6419 | 3200 | 6.1182 |
|
112 |
+
| 6.232 | 1.6675 | 3250 | 6.1374 |
|
113 |
+
| 6.232 | 1.6932 | 3300 | 6.0896 |
|
114 |
+
| 6.232 | 1.7188 | 3350 | 6.0939 |
|
115 |
+
| 6.232 | 1.7445 | 3400 | 6.0837 |
|
116 |
+
| 6.232 | 1.7701 | 3450 | 6.0493 |
|
117 |
+
| 6.1268 | 1.7958 | 3500 | 6.0319 |
|
118 |
+
| 6.1268 | 1.8214 | 3550 | 6.0135 |
|
119 |
+
| 6.1268 | 1.8471 | 3600 | 5.9833 |
|
120 |
+
| 6.1268 | 1.8728 | 3650 | 5.9931 |
|
121 |
+
| 6.1268 | 1.8984 | 3700 | 5.9830 |
|
122 |
+
| 6.1268 | 1.9241 | 3750 | 5.9394 |
|
123 |
+
| 6.1268 | 1.9497 | 3800 | 5.9464 |
|
124 |
+
| 6.1268 | 1.9754 | 3850 | 5.9158 |
|
125 |
+
| 6.1268 | 2.0010 | 3900 | 5.9190 |
|
126 |
+
| 6.1268 | 2.0267 | 3950 | 5.8944 |
|
127 |
+
| 6.0316 | 2.0523 | 4000 | 5.8898 |
|
128 |
+
| 6.0316 | 2.0780 | 4050 | 5.8728 |
|
129 |
+
| 6.0316 | 2.1036 | 4100 | 5.8521 |
|
130 |
+
| 6.0316 | 2.1293 | 4150 | 5.7986 |
|
131 |
+
| 6.0316 | 2.1550 | 4200 | 5.7913 |
|
132 |
+
| 6.0316 | 2.1806 | 4250 | 5.7782 |
|
133 |
+
| 6.0316 | 2.2063 | 4300 | 5.7479 |
|
134 |
+
| 6.0316 | 2.2319 | 4350 | 5.7143 |
|
135 |
+
| 6.0316 | 2.2576 | 4400 | 5.7298 |
|
136 |
+
| 6.0316 | 2.2832 | 4450 | 5.6914 |
|
137 |
+
| 5.845 | 2.3089 | 4500 | 5.7019 |
|
138 |
+
| 5.845 | 2.3345 | 4550 | 5.6568 |
|
139 |
+
| 5.845 | 2.3602 | 4600 | 5.6234 |
|
140 |
+
| 5.845 | 2.3858 | 4650 | 5.6043 |
|
141 |
+
| 5.845 | 2.4115 | 4700 | 5.5809 |
|
142 |
+
| 5.845 | 2.4371 | 4750 | 5.5478 |
|
143 |
+
| 5.845 | 2.4628 | 4800 | 5.5601 |
|
144 |
+
| 5.845 | 2.4885 | 4850 | 5.5353 |
|
145 |
+
| 5.845 | 2.5141 | 4900 | 5.5037 |
|
146 |
+
| 5.845 | 2.5398 | 4950 | 5.4888 |
|
147 |
+
| 5.6671 | 2.5654 | 5000 | 5.4820 |
|
148 |
+
| 5.6671 | 2.5911 | 5050 | 5.4534 |
|
149 |
+
| 5.6671 | 2.6167 | 5100 | 5.3811 |
|
150 |
+
| 5.6671 | 2.6424 | 5150 | 5.3747 |
|
151 |
+
| 5.6671 | 2.6680 | 5200 | 5.3791 |
|
152 |
+
| 5.6671 | 2.6937 | 5250 | 5.3361 |
|
153 |
+
| 5.6671 | 2.7193 | 5300 | 5.3293 |
|
154 |
+
| 5.6671 | 2.7450 | 5350 | 5.3004 |
|
155 |
+
| 5.6671 | 2.7707 | 5400 | 5.3009 |
|
156 |
+
| 5.6671 | 2.7963 | 5450 | 5.2918 |
|
157 |
+
| 5.4582 | 2.8220 | 5500 | 5.2683 |
|
158 |
+
| 5.4582 | 2.8476 | 5550 | 5.2561 |
|
159 |
+
| 5.4582 | 2.8733 | 5600 | 5.2350 |
|
160 |
+
| 5.4582 | 2.8989 | 5650 | 5.2271 |
|
161 |
+
| 5.4582 | 2.9246 | 5700 | 5.2199 |
|
162 |
+
| 5.4582 | 2.9502 | 5750 | 5.1929 |
|
163 |
+
| 5.4582 | 2.9759 | 5800 | 5.1695 |
|
164 |
+
| 5.4582 | 3.0015 | 5850 | 5.1418 |
|
165 |
+
| 5.4582 | 3.0272 | 5900 | 5.1523 |
|
166 |
+
| 5.4582 | 3.0528 | 5950 | 5.1319 |
|
167 |
+
| 5.3242 | 3.0785 | 6000 | 5.0999 |
|
168 |
+
| 5.3242 | 3.1042 | 6050 | 5.1123 |
|
169 |
+
| 5.3242 | 3.1298 | 6100 | 5.0591 |
|
170 |
+
| 5.3242 | 3.1555 | 6150 | 5.0828 |
|
171 |
+
| 5.3242 | 3.1811 | 6200 | 5.0369 |
|
172 |
+
| 5.3242 | 3.2068 | 6250 | 5.0435 |
|
173 |
+
| 5.3242 | 3.2324 | 6300 | 5.0053 |
|
174 |
+
| 5.3242 | 3.2581 | 6350 | 5.0086 |
|
175 |
+
| 5.3242 | 3.2837 | 6400 | 5.0027 |
|
176 |
+
| 5.3242 | 3.3094 | 6450 | 4.9799 |
|
177 |
+
| 5.144 | 3.3350 | 6500 | 4.9641 |
|
178 |
+
| 5.144 | 3.3607 | 6550 | 4.9339 |
|
179 |
+
| 5.144 | 3.3864 | 6600 | 4.9606 |
|
180 |
+
| 5.144 | 3.4120 | 6650 | 4.9373 |
|
181 |
+
| 5.144 | 3.4377 | 6700 | 4.9325 |
|
182 |
+
| 5.144 | 3.4633 | 6750 | 4.9073 |
|
183 |
+
| 5.144 | 3.4890 | 6800 | 4.9072 |
|
184 |
+
| 5.144 | 3.5146 | 6850 | 4.8895 |
|
185 |
+
| 5.144 | 3.5403 | 6900 | 4.8779 |
|
186 |
+
| 5.144 | 3.5659 | 6950 | 4.8425 |
|
187 |
+
| 5.0097 | 3.5916 | 7000 | 4.8450 |
|
188 |
+
| 5.0097 | 3.6172 | 7050 | 4.8468 |
|
189 |
+
| 5.0097 | 3.6429 | 7100 | 4.8333 |
|
190 |
+
| 5.0097 | 3.6685 | 7150 | 4.8398 |
|
191 |
+
| 5.0097 | 3.6942 | 7200 | 4.8169 |
|
192 |
+
| 5.0097 | 3.7199 | 7250 | 4.7936 |
|
193 |
+
| 5.0097 | 3.7455 | 7300 | 4.8094 |
|
194 |
+
| 5.0097 | 3.7712 | 7350 | 4.7648 |
|
195 |
+
| 5.0097 | 3.7968 | 7400 | 4.7333 |
|
196 |
+
| 5.0097 | 3.8225 | 7450 | 4.7667 |
|
197 |
+
| 4.8984 | 3.8481 | 7500 | 4.7508 |
|
198 |
+
| 4.8984 | 3.8738 | 7550 | 4.7341 |
|
199 |
+
| 4.8984 | 3.8994 | 7600 | 4.7046 |
|
200 |
+
| 4.8984 | 3.9251 | 7650 | 4.7154 |
|
201 |
+
| 4.8984 | 3.9507 | 7700 | 4.7260 |
|
202 |
+
| 4.8984 | 3.9764 | 7750 | 4.6964 |
|
203 |
+
| 4.8984 | 4.0021 | 7800 | 4.7233 |
|
204 |
+
| 4.8984 | 4.0277 | 7850 | 4.6740 |
|
205 |
+
| 4.8984 | 4.0534 | 7900 | 4.6793 |
|
206 |
+
| 4.8984 | 4.0790 | 7950 | 4.6636 |
|
207 |
+
| 4.8106 | 4.1047 | 8000 | 4.6204 |
|
208 |
+
| 4.8106 | 4.1303 | 8050 | 4.6228 |
|
209 |
+
| 4.8106 | 4.1560 | 8100 | 4.6408 |
|
210 |
+
| 4.8106 | 4.1816 | 8150 | 4.6353 |
|
211 |
+
| 4.8106 | 4.2073 | 8200 | 4.6116 |
|
212 |
+
| 4.8106 | 4.2329 | 8250 | 4.6294 |
|
213 |
+
| 4.8106 | 4.2586 | 8300 | 4.6225 |
|
214 |
+
| 4.8106 | 4.2842 | 8350 | 4.5824 |
|
215 |
+
| 4.8106 | 4.3099 | 8400 | 4.5927 |
|
216 |
+
| 4.8106 | 4.3356 | 8450 | 4.6046 |
|
217 |
+
| 4.7138 | 4.3612 | 8500 | 4.5761 |
|
218 |
+
| 4.7138 | 4.3869 | 8550 | 4.5544 |
|
219 |
+
| 4.7138 | 4.4125 | 8600 | 4.5403 |
|
220 |
+
| 4.7138 | 4.4382 | 8650 | 4.5484 |
|
221 |
+
| 4.7138 | 4.4638 | 8700 | 4.5567 |
|
222 |
+
| 4.7138 | 4.4895 | 8750 | 4.5486 |
|
223 |
+
| 4.7138 | 4.5151 | 8800 | 4.5225 |
|
224 |
+
| 4.7138 | 4.5408 | 8850 | 4.5496 |
|
225 |
+
| 4.7138 | 4.5664 | 8900 | 4.5178 |
|
226 |
+
| 4.7138 | 4.5921 | 8950 | 4.5103 |
|
227 |
+
| 4.6278 | 4.6178 | 9000 | 4.5105 |
|
228 |
+
| 4.6278 | 4.6434 | 9050 | 4.4755 |
|
229 |
+
| 4.6278 | 4.6691 | 9100 | 4.4663 |
|
230 |
+
| 4.6278 | 4.6947 | 9150 | 4.4631 |
|
231 |
+
| 4.6278 | 4.7204 | 9200 | 4.4652 |
|
232 |
+
| 4.6278 | 4.7460 | 9250 | 4.4661 |
|
233 |
+
| 4.6278 | 4.7717 | 9300 | 4.4558 |
|
234 |
+
| 4.6278 | 4.7973 | 9350 | 4.4496 |
|
235 |
+
| 4.6278 | 4.8230 | 9400 | 4.4307 |
|
236 |
+
| 4.6278 | 4.8486 | 9450 | 4.4371 |
|
237 |
+
| 4.529 | 4.8743 | 9500 | 4.4102 |
|
238 |
+
| 4.529 | 4.8999 | 9550 | 4.4126 |
|
239 |
+
| 4.529 | 4.9256 | 9600 | 4.4261 |
|
240 |
+
| 4.529 | 4.9513 | 9650 | 4.3980 |
|
241 |
+
| 4.529 | 4.9769 | 9700 | 4.3843 |
|
242 |
+
| 4.529 | 5.0026 | 9750 | 4.4079 |
|
243 |
+
| 4.529 | 5.0282 | 9800 | 4.3856 |
|
244 |
+
| 4.529 | 5.0539 | 9850 | 4.3672 |
|
245 |
+
| 4.529 | 5.0795 | 9900 | 4.3494 |
|
246 |
+
| 4.529 | 5.1052 | 9950 | 4.3469 |
|
247 |
+
| 4.455 | 5.1308 | 10000 | 4.3611 |
|
248 |
+
| 4.455 | 5.1565 | 10050 | 4.3583 |
|
249 |
+
| 4.455 | 5.1821 | 10100 | 4.3300 |
|
250 |
+
| 4.455 | 5.2078 | 10150 | 4.3422 |
|
251 |
+
| 4.455 | 5.2335 | 10200 | 4.3155 |
|
252 |
+
| 4.455 | 5.2591 | 10250 | 4.3318 |
|
253 |
+
| 4.455 | 5.2848 | 10300 | 4.3080 |
|
254 |
+
| 4.455 | 5.3104 | 10350 | 4.3206 |
|
255 |
+
| 4.455 | 5.3361 | 10400 | 4.3248 |
|
256 |
+
| 4.455 | 5.3617 | 10450 | 4.2913 |
|
257 |
+
| 4.3863 | 5.3874 | 10500 | 4.2628 |
|
258 |
+
| 4.3863 | 5.4130 | 10550 | 4.2803 |
|
259 |
+
| 4.3863 | 5.4387 | 10600 | 4.3030 |
|
260 |
+
| 4.3863 | 5.4643 | 10650 | 4.2712 |
|
261 |
+
| 4.3863 | 5.4900 | 10700 | 4.2587 |
|
262 |
+
| 4.3863 | 5.5156 | 10750 | 4.2406 |
|
263 |
+
| 4.3863 | 5.5413 | 10800 | 4.2384 |
|
264 |
+
| 4.3863 | 5.5670 | 10850 | 4.2464 |
|
265 |
+
| 4.3863 | 5.5926 | 10900 | 4.2406 |
|
266 |
+
| 4.3863 | 5.6183 | 10950 | 4.2707 |
|
267 |
+
| 4.3382 | 5.6439 | 11000 | 4.2268 |
|
268 |
+
| 4.3382 | 5.6696 | 11050 | 4.2084 |
|
269 |
+
| 4.3382 | 5.6952 | 11100 | 4.2366 |
|
270 |
+
| 4.3382 | 5.7209 | 11150 | 4.2112 |
|
271 |
+
| 4.3382 | 5.7465 | 11200 | 4.1928 |
|
272 |
+
| 4.3382 | 5.7722 | 11250 | 4.1709 |
|
273 |
+
| 4.3382 | 5.7978 | 11300 | 4.1960 |
|
274 |
+
| 4.3382 | 5.8235 | 11350 | 4.1926 |
|
275 |
+
| 4.3382 | 5.8492 | 11400 | 4.1710 |
|
276 |
+
| 4.3382 | 5.8748 | 11450 | 4.1900 |
|
277 |
+
| 4.2675 | 5.9005 | 11500 | 4.2041 |
|
278 |
|
279 |
|
280 |
### Framework versions
|
281 |
|
282 |
+
- Transformers 4.49.0.dev0
|
283 |
- Pytorch 2.5.1+cu121
|
284 |
- Datasets 3.2.0
|
285 |
- Tokenizers 0.21.0
|
pytorch_model.bin
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 327899058
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:fd6d84f1e86015932b79f4a5699c7628258588719b40f8a3e122e0ed11d18d66
|
3 |
size 327899058
|