colaguo commited on
Commit
307547b
·
verified ·
1 Parent(s): 45fc405

Model save

Browse files
Files changed (2) hide show
  1. README.md +234 -200
  2. pytorch_model.bin +1 -1
README.md CHANGED
@@ -14,7 +14,7 @@ should probably proofread and complete it, then remove this comment. -->
14
 
15
  This model is a fine-tuned version of [](https://huggingface.co/) on an unknown dataset.
16
  It achieves the following results on the evaluation set:
17
- - Loss: 4.4196
18
 
19
  ## Model description
20
 
@@ -43,209 +43,243 @@ The following hyperparameters were used during training:
43
 
44
  ### Training results
45
 
46
- | Training Loss | Epoch | Step | Validation Loss |
47
- |:-------------:|:------:|:----:|:---------------:|
48
- | No log | 0.0257 | 50 | 8.3797 |
49
- | No log | 0.0513 | 100 | 7.5227 |
50
- | No log | 0.0770 | 150 | 7.3529 |
51
- | No log | 0.1026 | 200 | 7.2301 |
52
- | No log | 0.1283 | 250 | 7.1456 |
53
- | No log | 0.1539 | 300 | 7.0682 |
54
- | No log | 0.1796 | 350 | 6.9683 |
55
- | No log | 0.2052 | 400 | 6.9433 |
56
- | No log | 0.2309 | 450 | 6.8604 |
57
- | 7.4105 | 0.2565 | 500 | 6.8596 |
58
- | 7.4105 | 0.2822 | 550 | 6.8294 |
59
- | 7.4105 | 0.3079 | 600 | 6.7680 |
60
- | 7.4105 | 0.3335 | 650 | 6.7519 |
61
- | 7.4105 | 0.3592 | 700 | 6.7331 |
62
- | 7.4105 | 0.3848 | 750 | 6.7107 |
63
- | 7.4105 | 0.4105 | 800 | 6.6847 |
64
- | 7.4105 | 0.4361 | 850 | 6.6561 |
65
- | 7.4105 | 0.4618 | 900 | 6.6557 |
66
- | 7.4105 | 0.4874 | 950 | 6.6287 |
67
- | 6.7505 | 0.5131 | 1000 | 6.6354 |
68
- | 6.7505 | 0.5387 | 1050 | 6.5733 |
69
- | 6.7505 | 0.5644 | 1100 | 6.5636 |
70
- | 6.7505 | 0.5900 | 1150 | 6.5483 |
71
- | 6.7505 | 0.6157 | 1200 | 6.5518 |
72
- | 6.7505 | 0.6414 | 1250 | 6.4987 |
73
- | 6.7505 | 0.6670 | 1300 | 6.4945 |
74
- | 6.7505 | 0.6927 | 1350 | 6.4962 |
75
- | 6.7505 | 0.7183 | 1400 | 6.4961 |
76
- | 6.7505 | 0.7440 | 1450 | 6.4763 |
77
- | 6.5509 | 0.7696 | 1500 | 6.4491 |
78
- | 6.5509 | 0.7953 | 1550 | 6.4612 |
79
- | 6.5509 | 0.8209 | 1600 | 6.4320 |
80
- | 6.5509 | 0.8466 | 1650 | 6.4061 |
81
- | 6.5509 | 0.8722 | 1700 | 6.3827 |
82
- | 6.5509 | 0.8979 | 1750 | 6.4234 |
83
- | 6.5509 | 0.9236 | 1800 | 6.4077 |
84
- | 6.5509 | 0.9492 | 1850 | 6.3888 |
85
- | 6.5509 | 0.9749 | 1900 | 6.4047 |
86
- | 6.5509 | 1.0005 | 1950 | 6.3787 |
87
- | 6.4448 | 1.0262 | 2000 | 6.3541 |
88
- | 6.4448 | 1.0518 | 2050 | 6.3429 |
89
- | 6.4448 | 1.0775 | 2100 | 6.3711 |
90
- | 6.4448 | 1.1031 | 2150 | 6.3378 |
91
- | 6.4448 | 1.1288 | 2200 | 6.3210 |
92
- | 6.4448 | 1.1544 | 2250 | 6.3069 |
93
- | 6.4448 | 1.1801 | 2300 | 6.3027 |
94
- | 6.4448 | 1.2057 | 2350 | 6.3036 |
95
- | 6.4448 | 1.2314 | 2400 | 6.2680 |
96
- | 6.4448 | 1.2571 | 2450 | 6.2663 |
97
- | 6.3371 | 1.2827 | 2500 | 6.2803 |
98
- | 6.3371 | 1.3084 | 2550 | 6.2470 |
99
- | 6.3371 | 1.3340 | 2600 | 6.2468 |
100
- | 6.3371 | 1.3597 | 2650 | 6.2251 |
101
- | 6.3371 | 1.3853 | 2700 | 6.2518 |
102
- | 6.3371 | 1.4110 | 2750 | 6.2393 |
103
- | 6.3371 | 1.4366 | 2800 | 6.2144 |
104
- | 6.3371 | 1.4623 | 2850 | 6.1984 |
105
- | 6.3371 | 1.4879 | 2900 | 6.2156 |
106
- | 6.3371 | 1.5136 | 2950 | 6.1799 |
107
- | 6.2807 | 1.5393 | 3000 | 6.1686 |
108
- | 6.2807 | 1.5649 | 3050 | 6.1705 |
109
- | 6.2807 | 1.5906 | 3100 | 6.1725 |
110
- | 6.2807 | 1.6162 | 3150 | 6.1578 |
111
- | 6.2807 | 1.6419 | 3200 | 6.1476 |
112
- | 6.2807 | 1.6675 | 3250 | 6.1461 |
113
- | 6.2807 | 1.6932 | 3300 | 6.1082 |
114
- | 6.2807 | 1.7188 | 3350 | 6.0867 |
115
- | 6.2807 | 1.7445 | 3400 | 6.0844 |
116
- | 6.2807 | 1.7701 | 3450 | 6.0796 |
117
- | 6.1678 | 1.7958 | 3500 | 6.0698 |
118
- | 6.1678 | 1.8214 | 3550 | 6.0559 |
119
- | 6.1678 | 1.8471 | 3600 | 6.0574 |
120
- | 6.1678 | 1.8728 | 3650 | 5.9871 |
121
- | 6.1678 | 1.8984 | 3700 | 6.0185 |
122
- | 6.1678 | 1.9241 | 3750 | 5.9974 |
123
- | 6.1678 | 1.9497 | 3800 | 5.9540 |
124
- | 6.1678 | 1.9754 | 3850 | 5.9818 |
125
- | 6.1678 | 2.0010 | 3900 | 5.9478 |
126
- | 6.1678 | 2.0267 | 3950 | 5.9191 |
127
- | 6.0398 | 2.0523 | 4000 | 5.9068 |
128
- | 6.0398 | 2.0780 | 4050 | 5.9065 |
129
- | 6.0398 | 2.1036 | 4100 | 5.8807 |
130
- | 6.0398 | 2.1293 | 4150 | 5.8725 |
131
- | 6.0398 | 2.1550 | 4200 | 5.8652 |
132
- | 6.0398 | 2.1806 | 4250 | 5.8551 |
133
- | 6.0398 | 2.2063 | 4300 | 5.8291 |
134
- | 6.0398 | 2.2319 | 4350 | 5.7986 |
135
- | 6.0398 | 2.2576 | 4400 | 5.7718 |
136
- | 6.0398 | 2.2832 | 4450 | 5.7675 |
137
- | 5.886 | 2.3089 | 4500 | 5.7314 |
138
- | 5.886 | 2.3345 | 4550 | 5.7092 |
139
- | 5.886 | 2.3602 | 4600 | 5.6816 |
140
- | 5.886 | 2.3858 | 4650 | 5.6676 |
141
- | 5.886 | 2.4115 | 4700 | 5.6500 |
142
- | 5.886 | 2.4371 | 4750 | 5.6245 |
143
- | 5.886 | 2.4628 | 4800 | 5.6070 |
144
- | 5.886 | 2.4885 | 4850 | 5.5851 |
145
- | 5.886 | 2.5141 | 4900 | 5.5514 |
146
- | 5.886 | 2.5398 | 4950 | 5.5332 |
147
- | 5.6864 | 2.5654 | 5000 | 5.5098 |
148
- | 5.6864 | 2.5911 | 5050 | 5.4969 |
149
- | 5.6864 | 2.6167 | 5100 | 5.4332 |
150
- | 5.6864 | 2.6424 | 5150 | 5.4490 |
151
- | 5.6864 | 2.6680 | 5200 | 5.4483 |
152
- | 5.6864 | 2.6937 | 5250 | 5.4290 |
153
- | 5.6864 | 2.7193 | 5300 | 5.3701 |
154
- | 5.6864 | 2.7450 | 5350 | 5.3438 |
155
- | 5.6864 | 2.7707 | 5400 | 5.3415 |
156
- | 5.6864 | 2.7963 | 5450 | 5.3366 |
157
- | 5.4976 | 2.8220 | 5500 | 5.2911 |
158
- | 5.4976 | 2.8476 | 5550 | 5.2683 |
159
- | 5.4976 | 2.8733 | 5600 | 5.2673 |
160
- | 5.4976 | 2.8989 | 5650 | 5.2609 |
161
- | 5.4976 | 2.9246 | 5700 | 5.2166 |
162
- | 5.4976 | 2.9502 | 5750 | 5.2048 |
163
- | 5.4976 | 2.9759 | 5800 | 5.2229 |
164
- | 5.4976 | 3.0015 | 5850 | 5.1755 |
165
- | 5.4976 | 3.0272 | 5900 | 5.1560 |
166
- | 5.4976 | 3.0528 | 5950 | 5.1630 |
167
- | 5.3186 | 3.0785 | 6000 | 5.1213 |
168
- | 5.3186 | 3.1042 | 6050 | 5.1381 |
169
- | 5.3186 | 3.1298 | 6100 | 5.1029 |
170
- | 5.3186 | 3.1555 | 6150 | 5.1000 |
171
- | 5.3186 | 3.1811 | 6200 | 5.0759 |
172
- | 5.3186 | 3.2068 | 6250 | 5.1004 |
173
- | 5.3186 | 3.2324 | 6300 | 5.0859 |
174
- | 5.3186 | 3.2581 | 6350 | 5.0483 |
175
- | 5.3186 | 3.2837 | 6400 | 5.0596 |
176
- | 5.3186 | 3.3094 | 6450 | 5.0107 |
177
- | 5.1601 | 3.3350 | 6500 | 5.0064 |
178
- | 5.1601 | 3.3607 | 6550 | 5.0099 |
179
- | 5.1601 | 3.3864 | 6600 | 4.9871 |
180
- | 5.1601 | 3.4120 | 6650 | 4.9469 |
181
- | 5.1601 | 3.4377 | 6700 | 4.9580 |
182
- | 5.1601 | 3.4633 | 6750 | 4.9488 |
183
- | 5.1601 | 3.4890 | 6800 | 4.9288 |
184
- | 5.1601 | 3.5146 | 6850 | 4.9337 |
185
- | 5.1601 | 3.5403 | 6900 | 4.9247 |
186
- | 5.1601 | 3.5659 | 6950 | 4.8895 |
187
- | 5.0217 | 3.5916 | 7000 | 4.8785 |
188
- | 5.0217 | 3.6172 | 7050 | 4.8601 |
189
- | 5.0217 | 3.6429 | 7100 | 4.8779 |
190
- | 5.0217 | 3.6685 | 7150 | 4.8486 |
191
- | 5.0217 | 3.6942 | 7200 | 4.8419 |
192
- | 5.0217 | 3.7199 | 7250 | 4.8239 |
193
- | 5.0217 | 3.7455 | 7300 | 4.8050 |
194
- | 5.0217 | 3.7712 | 7350 | 4.8172 |
195
- | 5.0217 | 3.7968 | 7400 | 4.7992 |
196
- | 5.0217 | 3.8225 | 7450 | 4.7808 |
197
- | 4.9197 | 3.8481 | 7500 | 4.7881 |
198
- | 4.9197 | 3.8738 | 7550 | 4.7625 |
199
- | 4.9197 | 3.8994 | 7600 | 4.7535 |
200
- | 4.9197 | 3.9251 | 7650 | 4.7548 |
201
- | 4.9197 | 3.9507 | 7700 | 4.7273 |
202
- | 4.9197 | 3.9764 | 7750 | 4.7182 |
203
- | 4.9197 | 4.0021 | 7800 | 4.7155 |
204
- | 4.9197 | 4.0277 | 7850 | 4.7128 |
205
- | 4.9197 | 4.0534 | 7900 | 4.6831 |
206
- | 4.9197 | 4.0790 | 7950 | 4.6892 |
207
- | 4.7891 | 4.1047 | 8000 | 4.6848 |
208
- | 4.7891 | 4.1303 | 8050 | 4.6873 |
209
- | 4.7891 | 4.1560 | 8100 | 4.6718 |
210
- | 4.7891 | 4.1816 | 8150 | 4.6474 |
211
- | 4.7891 | 4.2073 | 8200 | 4.6205 |
212
- | 4.7891 | 4.2329 | 8250 | 4.6165 |
213
- | 4.7891 | 4.2586 | 8300 | 4.6393 |
214
- | 4.7891 | 4.2842 | 8350 | 4.6185 |
215
- | 4.7891 | 4.3099 | 8400 | 4.6013 |
216
- | 4.7891 | 4.3356 | 8450 | 4.5950 |
217
- | 4.6944 | 4.3612 | 8500 | 4.5838 |
218
- | 4.6944 | 4.3869 | 8550 | 4.5706 |
219
- | 4.6944 | 4.4125 | 8600 | 4.5776 |
220
- | 4.6944 | 4.4382 | 8650 | 4.5625 |
221
- | 4.6944 | 4.4638 | 8700 | 4.5703 |
222
- | 4.6944 | 4.4895 | 8750 | 4.5489 |
223
- | 4.6944 | 4.5151 | 8800 | 4.5522 |
224
- | 4.6944 | 4.5408 | 8850 | 4.5127 |
225
- | 4.6944 | 4.5664 | 8900 | 4.5183 |
226
- | 4.6944 | 4.5921 | 8950 | 4.5268 |
227
- | 4.6262 | 4.6178 | 9000 | 4.4896 |
228
- | 4.6262 | 4.6434 | 9050 | 4.5180 |
229
- | 4.6262 | 4.6691 | 9100 | 4.4874 |
230
- | 4.6262 | 4.6947 | 9150 | 4.4849 |
231
- | 4.6262 | 4.7204 | 9200 | 4.5018 |
232
- | 4.6262 | 4.7460 | 9250 | 4.4922 |
233
- | 4.6262 | 4.7717 | 9300 | 4.4627 |
234
- | 4.6262 | 4.7973 | 9350 | 4.4675 |
235
- | 4.6262 | 4.8230 | 9400 | 4.4472 |
236
- | 4.6262 | 4.8486 | 9450 | 4.4290 |
237
- | 4.5552 | 4.8743 | 9500 | 4.4188 |
238
- | 4.5552 | 4.8999 | 9550 | 4.3959 |
239
- | 4.5552 | 4.9256 | 9600 | 4.4228 |
240
- | 4.5552 | 4.9513 | 9650 | 4.4267 |
241
- | 4.5552 | 4.9769 | 9700 | 4.4063 |
242
- | 4.5552 | 5.0026 | 9750 | 4.4001 |
243
- | 4.5552 | 5.0282 | 9800 | 4.4196 |
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
244
 
245
 
246
  ### Framework versions
247
 
248
- - Transformers 4.48.3
249
  - Pytorch 2.5.1+cu121
250
  - Datasets 3.2.0
251
  - Tokenizers 0.21.0
 
14
 
15
  This model is a fine-tuned version of [](https://huggingface.co/) on an unknown dataset.
16
  It achieves the following results on the evaluation set:
17
+ - Loss: 4.2041
18
 
19
  ## Model description
20
 
 
43
 
44
  ### Training results
45
 
46
+ | Training Loss | Epoch | Step | Validation Loss |
47
+ |:-------------:|:------:|:-----:|:---------------:|
48
+ | No log | 0.0257 | 50 | 8.3417 |
49
+ | No log | 0.0513 | 100 | 7.5225 |
50
+ | No log | 0.0770 | 150 | 7.2800 |
51
+ | No log | 0.1026 | 200 | 7.1710 |
52
+ | No log | 0.1283 | 250 | 7.0870 |
53
+ | No log | 0.1539 | 300 | 7.0228 |
54
+ | No log | 0.1796 | 350 | 6.9561 |
55
+ | No log | 0.2052 | 400 | 6.9274 |
56
+ | No log | 0.2309 | 450 | 6.8805 |
57
+ | 7.373 | 0.2565 | 500 | 6.8446 |
58
+ | 7.373 | 0.2822 | 550 | 6.7928 |
59
+ | 7.373 | 0.3079 | 600 | 6.7473 |
60
+ | 7.373 | 0.3335 | 650 | 6.7402 |
61
+ | 7.373 | 0.3592 | 700 | 6.7083 |
62
+ | 7.373 | 0.3848 | 750 | 6.6590 |
63
+ | 7.373 | 0.4105 | 800 | 6.6615 |
64
+ | 7.373 | 0.4361 | 850 | 6.6191 |
65
+ | 7.373 | 0.4618 | 900 | 6.6050 |
66
+ | 7.373 | 0.4874 | 950 | 6.5849 |
67
+ | 6.7222 | 0.5131 | 1000 | 6.5876 |
68
+ | 6.7222 | 0.5387 | 1050 | 6.5620 |
69
+ | 6.7222 | 0.5644 | 1100 | 6.5360 |
70
+ | 6.7222 | 0.5900 | 1150 | 6.5137 |
71
+ | 6.7222 | 0.6157 | 1200 | 6.4960 |
72
+ | 6.7222 | 0.6414 | 1250 | 6.5057 |
73
+ | 6.7222 | 0.6670 | 1300 | 6.4713 |
74
+ | 6.7222 | 0.6927 | 1350 | 6.4503 |
75
+ | 6.7222 | 0.7183 | 1400 | 6.4650 |
76
+ | 6.7222 | 0.7440 | 1450 | 6.4619 |
77
+ | 6.5431 | 0.7696 | 1500 | 6.4230 |
78
+ | 6.5431 | 0.7953 | 1550 | 6.4370 |
79
+ | 6.5431 | 0.8209 | 1600 | 6.3983 |
80
+ | 6.5431 | 0.8466 | 1650 | 6.3970 |
81
+ | 6.5431 | 0.8722 | 1700 | 6.3728 |
82
+ | 6.5431 | 0.8979 | 1750 | 6.3749 |
83
+ | 6.5431 | 0.9236 | 1800 | 6.3552 |
84
+ | 6.5431 | 0.9492 | 1850 | 6.3818 |
85
+ | 6.5431 | 0.9749 | 1900 | 6.3363 |
86
+ | 6.5431 | 1.0005 | 1950 | 6.3270 |
87
+ | 6.403 | 1.0262 | 2000 | 6.3019 |
88
+ | 6.403 | 1.0518 | 2050 | 6.3032 |
89
+ | 6.403 | 1.0775 | 2100 | 6.3362 |
90
+ | 6.403 | 1.1031 | 2150 | 6.2926 |
91
+ | 6.403 | 1.1288 | 2200 | 6.3152 |
92
+ | 6.403 | 1.1544 | 2250 | 6.2974 |
93
+ | 6.403 | 1.1801 | 2300 | 6.2926 |
94
+ | 6.403 | 1.2057 | 2350 | 6.2686 |
95
+ | 6.403 | 1.2314 | 2400 | 6.2473 |
96
+ | 6.403 | 1.2571 | 2450 | 6.2667 |
97
+ | 6.3403 | 1.2827 | 2500 | 6.2516 |
98
+ | 6.3403 | 1.3084 | 2550 | 6.2522 |
99
+ | 6.3403 | 1.3340 | 2600 | 6.2326 |
100
+ | 6.3403 | 1.3597 | 2650 | 6.2164 |
101
+ | 6.3403 | 1.3853 | 2700 | 6.2078 |
102
+ | 6.3403 | 1.4110 | 2750 | 6.2337 |
103
+ | 6.3403 | 1.4366 | 2800 | 6.1851 |
104
+ | 6.3403 | 1.4623 | 2850 | 6.2106 |
105
+ | 6.3403 | 1.4879 | 2900 | 6.1793 |
106
+ | 6.3403 | 1.5136 | 2950 | 6.1576 |
107
+ | 6.232 | 1.5393 | 3000 | 6.1549 |
108
+ | 6.232 | 1.5649 | 3050 | 6.1438 |
109
+ | 6.232 | 1.5906 | 3100 | 6.1346 |
110
+ | 6.232 | 1.6162 | 3150 | 6.1283 |
111
+ | 6.232 | 1.6419 | 3200 | 6.1182 |
112
+ | 6.232 | 1.6675 | 3250 | 6.1374 |
113
+ | 6.232 | 1.6932 | 3300 | 6.0896 |
114
+ | 6.232 | 1.7188 | 3350 | 6.0939 |
115
+ | 6.232 | 1.7445 | 3400 | 6.0837 |
116
+ | 6.232 | 1.7701 | 3450 | 6.0493 |
117
+ | 6.1268 | 1.7958 | 3500 | 6.0319 |
118
+ | 6.1268 | 1.8214 | 3550 | 6.0135 |
119
+ | 6.1268 | 1.8471 | 3600 | 5.9833 |
120
+ | 6.1268 | 1.8728 | 3650 | 5.9931 |
121
+ | 6.1268 | 1.8984 | 3700 | 5.9830 |
122
+ | 6.1268 | 1.9241 | 3750 | 5.9394 |
123
+ | 6.1268 | 1.9497 | 3800 | 5.9464 |
124
+ | 6.1268 | 1.9754 | 3850 | 5.9158 |
125
+ | 6.1268 | 2.0010 | 3900 | 5.9190 |
126
+ | 6.1268 | 2.0267 | 3950 | 5.8944 |
127
+ | 6.0316 | 2.0523 | 4000 | 5.8898 |
128
+ | 6.0316 | 2.0780 | 4050 | 5.8728 |
129
+ | 6.0316 | 2.1036 | 4100 | 5.8521 |
130
+ | 6.0316 | 2.1293 | 4150 | 5.7986 |
131
+ | 6.0316 | 2.1550 | 4200 | 5.7913 |
132
+ | 6.0316 | 2.1806 | 4250 | 5.7782 |
133
+ | 6.0316 | 2.2063 | 4300 | 5.7479 |
134
+ | 6.0316 | 2.2319 | 4350 | 5.7143 |
135
+ | 6.0316 | 2.2576 | 4400 | 5.7298 |
136
+ | 6.0316 | 2.2832 | 4450 | 5.6914 |
137
+ | 5.845 | 2.3089 | 4500 | 5.7019 |
138
+ | 5.845 | 2.3345 | 4550 | 5.6568 |
139
+ | 5.845 | 2.3602 | 4600 | 5.6234 |
140
+ | 5.845 | 2.3858 | 4650 | 5.6043 |
141
+ | 5.845 | 2.4115 | 4700 | 5.5809 |
142
+ | 5.845 | 2.4371 | 4750 | 5.5478 |
143
+ | 5.845 | 2.4628 | 4800 | 5.5601 |
144
+ | 5.845 | 2.4885 | 4850 | 5.5353 |
145
+ | 5.845 | 2.5141 | 4900 | 5.5037 |
146
+ | 5.845 | 2.5398 | 4950 | 5.4888 |
147
+ | 5.6671 | 2.5654 | 5000 | 5.4820 |
148
+ | 5.6671 | 2.5911 | 5050 | 5.4534 |
149
+ | 5.6671 | 2.6167 | 5100 | 5.3811 |
150
+ | 5.6671 | 2.6424 | 5150 | 5.3747 |
151
+ | 5.6671 | 2.6680 | 5200 | 5.3791 |
152
+ | 5.6671 | 2.6937 | 5250 | 5.3361 |
153
+ | 5.6671 | 2.7193 | 5300 | 5.3293 |
154
+ | 5.6671 | 2.7450 | 5350 | 5.3004 |
155
+ | 5.6671 | 2.7707 | 5400 | 5.3009 |
156
+ | 5.6671 | 2.7963 | 5450 | 5.2918 |
157
+ | 5.4582 | 2.8220 | 5500 | 5.2683 |
158
+ | 5.4582 | 2.8476 | 5550 | 5.2561 |
159
+ | 5.4582 | 2.8733 | 5600 | 5.2350 |
160
+ | 5.4582 | 2.8989 | 5650 | 5.2271 |
161
+ | 5.4582 | 2.9246 | 5700 | 5.2199 |
162
+ | 5.4582 | 2.9502 | 5750 | 5.1929 |
163
+ | 5.4582 | 2.9759 | 5800 | 5.1695 |
164
+ | 5.4582 | 3.0015 | 5850 | 5.1418 |
165
+ | 5.4582 | 3.0272 | 5900 | 5.1523 |
166
+ | 5.4582 | 3.0528 | 5950 | 5.1319 |
167
+ | 5.3242 | 3.0785 | 6000 | 5.0999 |
168
+ | 5.3242 | 3.1042 | 6050 | 5.1123 |
169
+ | 5.3242 | 3.1298 | 6100 | 5.0591 |
170
+ | 5.3242 | 3.1555 | 6150 | 5.0828 |
171
+ | 5.3242 | 3.1811 | 6200 | 5.0369 |
172
+ | 5.3242 | 3.2068 | 6250 | 5.0435 |
173
+ | 5.3242 | 3.2324 | 6300 | 5.0053 |
174
+ | 5.3242 | 3.2581 | 6350 | 5.0086 |
175
+ | 5.3242 | 3.2837 | 6400 | 5.0027 |
176
+ | 5.3242 | 3.3094 | 6450 | 4.9799 |
177
+ | 5.144 | 3.3350 | 6500 | 4.9641 |
178
+ | 5.144 | 3.3607 | 6550 | 4.9339 |
179
+ | 5.144 | 3.3864 | 6600 | 4.9606 |
180
+ | 5.144 | 3.4120 | 6650 | 4.9373 |
181
+ | 5.144 | 3.4377 | 6700 | 4.9325 |
182
+ | 5.144 | 3.4633 | 6750 | 4.9073 |
183
+ | 5.144 | 3.4890 | 6800 | 4.9072 |
184
+ | 5.144 | 3.5146 | 6850 | 4.8895 |
185
+ | 5.144 | 3.5403 | 6900 | 4.8779 |
186
+ | 5.144 | 3.5659 | 6950 | 4.8425 |
187
+ | 5.0097 | 3.5916 | 7000 | 4.8450 |
188
+ | 5.0097 | 3.6172 | 7050 | 4.8468 |
189
+ | 5.0097 | 3.6429 | 7100 | 4.8333 |
190
+ | 5.0097 | 3.6685 | 7150 | 4.8398 |
191
+ | 5.0097 | 3.6942 | 7200 | 4.8169 |
192
+ | 5.0097 | 3.7199 | 7250 | 4.7936 |
193
+ | 5.0097 | 3.7455 | 7300 | 4.8094 |
194
+ | 5.0097 | 3.7712 | 7350 | 4.7648 |
195
+ | 5.0097 | 3.7968 | 7400 | 4.7333 |
196
+ | 5.0097 | 3.8225 | 7450 | 4.7667 |
197
+ | 4.8984 | 3.8481 | 7500 | 4.7508 |
198
+ | 4.8984 | 3.8738 | 7550 | 4.7341 |
199
+ | 4.8984 | 3.8994 | 7600 | 4.7046 |
200
+ | 4.8984 | 3.9251 | 7650 | 4.7154 |
201
+ | 4.8984 | 3.9507 | 7700 | 4.7260 |
202
+ | 4.8984 | 3.9764 | 7750 | 4.6964 |
203
+ | 4.8984 | 4.0021 | 7800 | 4.7233 |
204
+ | 4.8984 | 4.0277 | 7850 | 4.6740 |
205
+ | 4.8984 | 4.0534 | 7900 | 4.6793 |
206
+ | 4.8984 | 4.0790 | 7950 | 4.6636 |
207
+ | 4.8106 | 4.1047 | 8000 | 4.6204 |
208
+ | 4.8106 | 4.1303 | 8050 | 4.6228 |
209
+ | 4.8106 | 4.1560 | 8100 | 4.6408 |
210
+ | 4.8106 | 4.1816 | 8150 | 4.6353 |
211
+ | 4.8106 | 4.2073 | 8200 | 4.6116 |
212
+ | 4.8106 | 4.2329 | 8250 | 4.6294 |
213
+ | 4.8106 | 4.2586 | 8300 | 4.6225 |
214
+ | 4.8106 | 4.2842 | 8350 | 4.5824 |
215
+ | 4.8106 | 4.3099 | 8400 | 4.5927 |
216
+ | 4.8106 | 4.3356 | 8450 | 4.6046 |
217
+ | 4.7138 | 4.3612 | 8500 | 4.5761 |
218
+ | 4.7138 | 4.3869 | 8550 | 4.5544 |
219
+ | 4.7138 | 4.4125 | 8600 | 4.5403 |
220
+ | 4.7138 | 4.4382 | 8650 | 4.5484 |
221
+ | 4.7138 | 4.4638 | 8700 | 4.5567 |
222
+ | 4.7138 | 4.4895 | 8750 | 4.5486 |
223
+ | 4.7138 | 4.5151 | 8800 | 4.5225 |
224
+ | 4.7138 | 4.5408 | 8850 | 4.5496 |
225
+ | 4.7138 | 4.5664 | 8900 | 4.5178 |
226
+ | 4.7138 | 4.5921 | 8950 | 4.5103 |
227
+ | 4.6278 | 4.6178 | 9000 | 4.5105 |
228
+ | 4.6278 | 4.6434 | 9050 | 4.4755 |
229
+ | 4.6278 | 4.6691 | 9100 | 4.4663 |
230
+ | 4.6278 | 4.6947 | 9150 | 4.4631 |
231
+ | 4.6278 | 4.7204 | 9200 | 4.4652 |
232
+ | 4.6278 | 4.7460 | 9250 | 4.4661 |
233
+ | 4.6278 | 4.7717 | 9300 | 4.4558 |
234
+ | 4.6278 | 4.7973 | 9350 | 4.4496 |
235
+ | 4.6278 | 4.8230 | 9400 | 4.4307 |
236
+ | 4.6278 | 4.8486 | 9450 | 4.4371 |
237
+ | 4.529 | 4.8743 | 9500 | 4.4102 |
238
+ | 4.529 | 4.8999 | 9550 | 4.4126 |
239
+ | 4.529 | 4.9256 | 9600 | 4.4261 |
240
+ | 4.529 | 4.9513 | 9650 | 4.3980 |
241
+ | 4.529 | 4.9769 | 9700 | 4.3843 |
242
+ | 4.529 | 5.0026 | 9750 | 4.4079 |
243
+ | 4.529 | 5.0282 | 9800 | 4.3856 |
244
+ | 4.529 | 5.0539 | 9850 | 4.3672 |
245
+ | 4.529 | 5.0795 | 9900 | 4.3494 |
246
+ | 4.529 | 5.1052 | 9950 | 4.3469 |
247
+ | 4.455 | 5.1308 | 10000 | 4.3611 |
248
+ | 4.455 | 5.1565 | 10050 | 4.3583 |
249
+ | 4.455 | 5.1821 | 10100 | 4.3300 |
250
+ | 4.455 | 5.2078 | 10150 | 4.3422 |
251
+ | 4.455 | 5.2335 | 10200 | 4.3155 |
252
+ | 4.455 | 5.2591 | 10250 | 4.3318 |
253
+ | 4.455 | 5.2848 | 10300 | 4.3080 |
254
+ | 4.455 | 5.3104 | 10350 | 4.3206 |
255
+ | 4.455 | 5.3361 | 10400 | 4.3248 |
256
+ | 4.455 | 5.3617 | 10450 | 4.2913 |
257
+ | 4.3863 | 5.3874 | 10500 | 4.2628 |
258
+ | 4.3863 | 5.4130 | 10550 | 4.2803 |
259
+ | 4.3863 | 5.4387 | 10600 | 4.3030 |
260
+ | 4.3863 | 5.4643 | 10650 | 4.2712 |
261
+ | 4.3863 | 5.4900 | 10700 | 4.2587 |
262
+ | 4.3863 | 5.5156 | 10750 | 4.2406 |
263
+ | 4.3863 | 5.5413 | 10800 | 4.2384 |
264
+ | 4.3863 | 5.5670 | 10850 | 4.2464 |
265
+ | 4.3863 | 5.5926 | 10900 | 4.2406 |
266
+ | 4.3863 | 5.6183 | 10950 | 4.2707 |
267
+ | 4.3382 | 5.6439 | 11000 | 4.2268 |
268
+ | 4.3382 | 5.6696 | 11050 | 4.2084 |
269
+ | 4.3382 | 5.6952 | 11100 | 4.2366 |
270
+ | 4.3382 | 5.7209 | 11150 | 4.2112 |
271
+ | 4.3382 | 5.7465 | 11200 | 4.1928 |
272
+ | 4.3382 | 5.7722 | 11250 | 4.1709 |
273
+ | 4.3382 | 5.7978 | 11300 | 4.1960 |
274
+ | 4.3382 | 5.8235 | 11350 | 4.1926 |
275
+ | 4.3382 | 5.8492 | 11400 | 4.1710 |
276
+ | 4.3382 | 5.8748 | 11450 | 4.1900 |
277
+ | 4.2675 | 5.9005 | 11500 | 4.2041 |
278
 
279
 
280
  ### Framework versions
281
 
282
+ - Transformers 4.49.0.dev0
283
  - Pytorch 2.5.1+cu121
284
  - Datasets 3.2.0
285
  - Tokenizers 0.21.0
pytorch_model.bin CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:7a3c1adfa0894c07b3e01b2f2685e39a4abf6a2d497eb8e1ccef72aa861b2fe8
3
  size 327899058
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:fd6d84f1e86015932b79f4a5699c7628258588719b40f8a3e122e0ed11d18d66
3
  size 327899058