codymd's picture
End of training
413a2f2 verified
metadata
library_name: transformers
license: apache-2.0
base_model: bert-base-uncased
tags:
  - generated_from_trainer
metrics:
  - accuracy
model-index:
  - name: bert-base-uncased-grammar-ner-generic
    results: []

bert-base-uncased-grammar-ner-generic

This model is a fine-tuned version of bert-base-uncased on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1085
  • Accuracy: 0.9887
  • F1 Macro: 0.9103
  • F1 Micro: 0.9103
  • Precision Macro: 0.9448
  • Precision Micro: 0.9448
  • Recall Macro: 0.8782
  • Recall Micro: 0.8782

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 24
  • eval_batch_size: 24
  • seed: 42
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • num_epochs: 12

Training results

Training Loss Epoch Step Validation Loss Accuracy F1 Macro F1 Micro Precision Macro Precision Micro Recall Macro Recall Micro
0.0121 1.0 93 0.1199 0.9821 0.8430 0.8430 0.9373 0.9373 0.7660 0.7660
0.0124 2.0 186 0.0898 0.9832 0.8448 0.8448 0.8435 0.8435 0.8462 0.8462
0.0176 3.0 279 0.0690 0.9871 0.8797 0.8797 0.9051 0.9051 0.8558 0.8558
0.0182 4.0 372 0.0805 0.9858 0.8793 0.8793 0.9078 0.9078 0.8526 0.8526
0.01 5.0 465 0.0816 0.9824 0.8465 0.8465 0.8198 0.8198 0.875 0.875
0.0075 6.0 558 0.0887 0.9866 0.8867 0.8867 0.8954 0.8954 0.8782 0.8782
0.0038 7.0 651 0.1157 0.9839 0.8701 0.8701 0.8502 0.8502 0.8910 0.8910
0.0031 8.0 744 0.1000 0.9877 0.9034 0.9034 0.9231 0.9231 0.8846 0.8846
0.0017 9.0 837 0.1097 0.9877 0.9010 0.9010 0.9286 0.9286 0.875 0.875
0.0013 10.0 930 0.1044 0.9894 0.9161 0.9161 0.9613 0.9613 0.875 0.875
0.001 11.0 1023 0.1069 0.9889 0.9118 0.9118 0.9481 0.9481 0.8782 0.8782
0.0003 12.0 1116 0.1085 0.9887 0.9103 0.9103 0.9448 0.9448 0.8782 0.8782

Framework versions

  • Transformers 4.46.3
  • Pytorch 2.5.1+cu121
  • Datasets 3.2.0
  • Tokenizers 0.20.3