metadata
license: llama3
language:
- en
tags:
- finance
- mlx
- mlx-my-repo
datasets:
- Open-Orca/OpenOrca
- GAIR/lima
- WizardLM/WizardLM_evol_instruct_V2_196k
base_model: instruction-pretrain/finance-Llama3-8B
codingmavin/finance-Llama3-8B-mlx-6Bit
The Model codingmavin/finance-Llama3-8B-mlx-6Bit was converted to MLX format from instruction-pretrain/finance-Llama3-8B using mlx-lm version 0.22.1.
Use with mlx
pip install mlx-lm
from mlx_lm import load, generate
model, tokenizer = load("codingmavin/finance-Llama3-8B-mlx-6Bit")
prompt="hello"
if hasattr(tokenizer, "apply_chat_template") and tokenizer.chat_template is not None:
messages = [{"role": "user", "content": prompt}]
prompt = tokenizer.apply_chat_template(
messages, tokenize=False, add_generation_prompt=True
)
response = generate(model, tokenizer, prompt=prompt, verbose=True)