tags: | |
- Taxi-v3 | |
- q-learning | |
- reinforcement-learning | |
- custom-implementation | |
- gymnasium | |
model-index: | |
- name: q-taxi-v3 | |
results: | |
- task: | |
type: reinforcement-learning | |
name: reinforcement-learning | |
dataset: | |
name: Taxi-v3 | |
type: Taxi-v3 | |
metrics: | |
- type: mean_reward | |
value: 7.56 +/- 2.71 | |
name: mean_reward | |
verified: false | |
# **Q-Learning** Agent playing **Taxi-v3** | |
This is a trained model of a **Q-Learning** agent playing to the Gymnasium **Taxi-v3** reinforcement learning environment. | |
## Usage | |
```python | |
model = load_from_hub(repo_id="coding-kelps/q-taxi-v3", filename="q-learning.pkl") | |
# Don't forget to check if you need to add additional attributes | |
env = gym.make(model["env_id"]) | |
``` | |
## References | |
You can find the original source code of the model training in the corresponding [Coding Kelps aquaqym repository](https://github.com/coding-kelps/aquagym). | |