Delete multi_head_Attention.py
Browse files- multi_head_Attention.py +0 -44
multi_head_Attention.py
DELETED
@@ -1,44 +0,0 @@
|
|
1 |
-
import torch
|
2 |
-
import torch.nn as nn
|
3 |
-
import torch.nn.functional as F
|
4 |
-
from typing import Optional, Tuple
|
5 |
-
|
6 |
-
# Multi-Head Attention Mechanism
|
7 |
-
class MultiHeadAttention(nn.Module):
|
8 |
-
def __init__(self, d_model: int, num_heads: int, dropout: float = 0.1):
|
9 |
-
super().__init__()
|
10 |
-
assert d_model % num_heads == 0
|
11 |
-
|
12 |
-
self.d_model = d_model
|
13 |
-
self.num_heads = num_heads
|
14 |
-
self.head_dim = d_model // num_heads
|
15 |
-
|
16 |
-
self.q_proj = nn.Linear(d_model, d_model)
|
17 |
-
self.k_proj = nn.Linear(d_model, d_model)
|
18 |
-
self.v_proj = nn.Linear(d_model, d_model)
|
19 |
-
self.o_proj = nn.Linear(d_model, d_model)
|
20 |
-
|
21 |
-
self.dropout = nn.Dropout(dropout)
|
22 |
-
|
23 |
-
def forward(self, x: torch.Tensor, mask: Optional[torch.Tensor] = None) -> torch.Tensor:
|
24 |
-
batch_size, seq_len, d_model = x.shape
|
25 |
-
|
26 |
-
# Project and reshape for multi-head attention
|
27 |
-
q = self.q_proj(x).reshape(batch_size, seq_len, self.num_heads, self.head_dim)
|
28 |
-
k = self.k_proj(x).reshape(batch_size, seq_len, self.num_heads, self.head_dim)
|
29 |
-
v = self.v_proj(x).reshape(batch_size, seq_len, self.num_heads, self.head_dim)
|
30 |
-
|
31 |
-
# Transpose for attention computation
|
32 |
-
q, k, v = q.transpose(1, 2), k.transpose(1, 2), v.transpose(1, 2)
|
33 |
-
|
34 |
-
# Compute attention scores
|
35 |
-
scores = torch.matmul(q, k.transpose(-2, -1)) / math.sqrt(self.head_dim)
|
36 |
-
if mask is not None:
|
37 |
-
scores = scores.masked_fill(mask == 0, float('-inf'))
|
38 |
-
|
39 |
-
attn_weights = F.softmax(scores, dim=-1)
|
40 |
-
attn_weights = self.dropout(attn_weights)
|
41 |
-
|
42 |
-
# Apply attention to values
|
43 |
-
out = torch.matmul(attn_weights, v).transpose(1, 2).reshape(batch_size, seq_len, d_model)
|
44 |
-
return self.o_proj(out)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|