codewithdark commited on
Commit
b0b037f
·
verified ·
1 Parent(s): 1a3b327

Delete model

Browse files
model/.md DELETED
File without changes
model/codaBlock.py DELETED
@@ -1,14 +0,0 @@
1
- import torch
2
- import torch.nn as nn
3
- import torch.nn.functional as F
4
- from typing import Optional, Tuple
5
-
6
- # Final Projection Block
7
- class CodaBlock(nn.Module):
8
- def __init__(self, d_model: int, vocab_size: int):
9
- super().__init__()
10
- self.norm = nn.LayerNorm(d_model)
11
- self.output_proj = nn.Linear(d_model, vocab_size)
12
-
13
- def forward(self, x: torch.Tensor) -> torch.Tensor:
14
- return self.output_proj(self.norm(x))
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
model/latent_Recurrent.py DELETED
@@ -1,22 +0,0 @@
1
- import torch
2
- import torch.nn as nn
3
- import torch.nn.functional as F
4
- from typing import Optional, Tuple
5
- from prelude_Block import PreludeBlock
6
- from recurrent_Block import RecurrentBlock
7
- from codaBlock import CodaBlock
8
-
9
- # Full Latent Recurrent Depth Model
10
- class LatentRecurrentDepthLM(nn.Module):
11
- def __init__(self, vocab_size: int, d_model: int, num_heads: int, dropout: float = 0.1):
12
- super().__init__()
13
- self.prelude = PreludeBlock(vocab_size, d_model, num_heads, dropout)
14
- self.recurrent = RecurrentBlock(d_model, num_heads, dropout)
15
- self.coda = CodaBlock(d_model, vocab_size)
16
-
17
- def forward(self, x: torch.Tensor, num_iterations: int, mask: Optional[torch.Tensor] = None) -> torch.Tensor:
18
- hidden = self.prelude(x, mask)
19
- recurrent_state = torch.zeros_like(hidden)
20
- for _ in range(num_iterations):
21
- hidden, recurrent_state = self.recurrent(hidden, recurrent_state, mask)
22
- return self.coda(hidden)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
model/multi_head_Attention.py DELETED
@@ -1,44 +0,0 @@
1
- import torch
2
- import torch.nn as nn
3
- import torch.nn.functional as F
4
- from typing import Optional, Tuple
5
-
6
- # Multi-Head Attention Mechanism
7
- class MultiHeadAttention(nn.Module):
8
- def __init__(self, d_model: int, num_heads: int, dropout: float = 0.1):
9
- super().__init__()
10
- assert d_model % num_heads == 0
11
-
12
- self.d_model = d_model
13
- self.num_heads = num_heads
14
- self.head_dim = d_model // num_heads
15
-
16
- self.q_proj = nn.Linear(d_model, d_model)
17
- self.k_proj = nn.Linear(d_model, d_model)
18
- self.v_proj = nn.Linear(d_model, d_model)
19
- self.o_proj = nn.Linear(d_model, d_model)
20
-
21
- self.dropout = nn.Dropout(dropout)
22
-
23
- def forward(self, x: torch.Tensor, mask: Optional[torch.Tensor] = None) -> torch.Tensor:
24
- batch_size, seq_len, d_model = x.shape
25
-
26
- # Project and reshape for multi-head attention
27
- q = self.q_proj(x).reshape(batch_size, seq_len, self.num_heads, self.head_dim)
28
- k = self.k_proj(x).reshape(batch_size, seq_len, self.num_heads, self.head_dim)
29
- v = self.v_proj(x).reshape(batch_size, seq_len, self.num_heads, self.head_dim)
30
-
31
- # Transpose for attention computation
32
- q, k, v = q.transpose(1, 2), k.transpose(1, 2), v.transpose(1, 2)
33
-
34
- # Compute attention scores
35
- scores = torch.matmul(q, k.transpose(-2, -1)) / math.sqrt(self.head_dim)
36
- if mask is not None:
37
- scores = scores.masked_fill(mask == 0, float('-inf'))
38
-
39
- attn_weights = F.softmax(scores, dim=-1)
40
- attn_weights = self.dropout(attn_weights)
41
-
42
- # Apply attention to values
43
- out = torch.matmul(attn_weights, v).transpose(1, 2).reshape(batch_size, seq_len, d_model)
44
- return self.o_proj(out)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
model/prelude_Block.py DELETED
@@ -1,28 +0,0 @@
1
- import torch
2
- import torch.nn as nn
3
- import torch.nn.functional as F
4
- from typing import Optional, Tuple
5
- from multi_head_Attention import MultiHeadAttention
6
-
7
-
8
- # Prelude Block (Initial Processing)
9
- class PreludeBlock(nn.Module):
10
- def __init__(self, vocab_size: int, d_model: int, num_heads: int, dropout: float = 0.1):
11
- super().__init__()
12
- self.token_embedding = nn.Embedding(vocab_size, d_model)
13
- self.pos_encoding = nn.Parameter(torch.zeros(1, 1024, d_model))
14
- self.attention = MultiHeadAttention(d_model, num_heads, dropout)
15
- self.norm1, self.norm2 = nn.LayerNorm(d_model), nn.LayerNorm(d_model)
16
- self.feed_forward = nn.Sequential(
17
- nn.Linear(d_model, 4 * d_model),
18
- nn.GELU(),
19
- nn.Linear(4 * d_model, d_model),
20
- nn.Dropout(dropout)
21
- )
22
-
23
- def forward(self, x: torch.Tensor, mask: Optional[torch.Tensor] = None) -> torch.Tensor:
24
- seq_len = x.size(1)
25
- x = self.token_embedding(x) + self.pos_encoding[:, :seq_len, :]
26
- attended = self.attention(self.norm1(x), mask)
27
- x = x + attended
28
- return x + self.feed_forward(self.norm2(x))
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
model/recurrent_Block.py DELETED
@@ -1,25 +0,0 @@
1
- import torch
2
- import torch.nn as nn
3
- import torch.nn.functional as F
4
- from typing import Optional, Tuple
5
- from multi_head_Attention import MultiHeadAttention
6
-
7
- # Recurrent Block (Processing Over Time)
8
- class RecurrentBlock(nn.Module):
9
- def __init__(self, d_model: int, num_heads: int, dropout: float = 0.1):
10
- super().__init__()
11
- self.attention = MultiHeadAttention(d_model, num_heads, dropout)
12
- self.norm1, self.norm2 = nn.LayerNorm(d_model), nn.LayerNorm(d_model)
13
- self.feed_forward = nn.Sequential(
14
- nn.Linear(d_model, 4 * d_model),
15
- nn.GELU(),
16
- nn.Linear(4 * d_model, d_model),
17
- nn.Dropout(dropout)
18
- )
19
- self.state_proj = nn.Linear(d_model, d_model)
20
-
21
- def forward(self, x: torch.Tensor, recurrent_state: torch.Tensor, mask: Optional[torch.Tensor] = None) -> Tuple[torch.Tensor, torch.Tensor]:
22
- recurrent_state = self.state_proj(recurrent_state)
23
- x = x + recurrent_state
24
- attended = self.attention(self.norm1(x), mask)
25
- return x + attended + self.feed_forward(self.norm2(x)), x