Delete model
Browse files- model/.md +0 -0
- model/codaBlock.py +0 -14
- model/latent_Recurrent.py +0 -22
- model/multi_head_Attention.py +0 -44
- model/prelude_Block.py +0 -28
- model/recurrent_Block.py +0 -25
model/.md
DELETED
File without changes
|
model/codaBlock.py
DELETED
@@ -1,14 +0,0 @@
|
|
1 |
-
import torch
|
2 |
-
import torch.nn as nn
|
3 |
-
import torch.nn.functional as F
|
4 |
-
from typing import Optional, Tuple
|
5 |
-
|
6 |
-
# Final Projection Block
|
7 |
-
class CodaBlock(nn.Module):
|
8 |
-
def __init__(self, d_model: int, vocab_size: int):
|
9 |
-
super().__init__()
|
10 |
-
self.norm = nn.LayerNorm(d_model)
|
11 |
-
self.output_proj = nn.Linear(d_model, vocab_size)
|
12 |
-
|
13 |
-
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
14 |
-
return self.output_proj(self.norm(x))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
model/latent_Recurrent.py
DELETED
@@ -1,22 +0,0 @@
|
|
1 |
-
import torch
|
2 |
-
import torch.nn as nn
|
3 |
-
import torch.nn.functional as F
|
4 |
-
from typing import Optional, Tuple
|
5 |
-
from prelude_Block import PreludeBlock
|
6 |
-
from recurrent_Block import RecurrentBlock
|
7 |
-
from codaBlock import CodaBlock
|
8 |
-
|
9 |
-
# Full Latent Recurrent Depth Model
|
10 |
-
class LatentRecurrentDepthLM(nn.Module):
|
11 |
-
def __init__(self, vocab_size: int, d_model: int, num_heads: int, dropout: float = 0.1):
|
12 |
-
super().__init__()
|
13 |
-
self.prelude = PreludeBlock(vocab_size, d_model, num_heads, dropout)
|
14 |
-
self.recurrent = RecurrentBlock(d_model, num_heads, dropout)
|
15 |
-
self.coda = CodaBlock(d_model, vocab_size)
|
16 |
-
|
17 |
-
def forward(self, x: torch.Tensor, num_iterations: int, mask: Optional[torch.Tensor] = None) -> torch.Tensor:
|
18 |
-
hidden = self.prelude(x, mask)
|
19 |
-
recurrent_state = torch.zeros_like(hidden)
|
20 |
-
for _ in range(num_iterations):
|
21 |
-
hidden, recurrent_state = self.recurrent(hidden, recurrent_state, mask)
|
22 |
-
return self.coda(hidden)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
model/multi_head_Attention.py
DELETED
@@ -1,44 +0,0 @@
|
|
1 |
-
import torch
|
2 |
-
import torch.nn as nn
|
3 |
-
import torch.nn.functional as F
|
4 |
-
from typing import Optional, Tuple
|
5 |
-
|
6 |
-
# Multi-Head Attention Mechanism
|
7 |
-
class MultiHeadAttention(nn.Module):
|
8 |
-
def __init__(self, d_model: int, num_heads: int, dropout: float = 0.1):
|
9 |
-
super().__init__()
|
10 |
-
assert d_model % num_heads == 0
|
11 |
-
|
12 |
-
self.d_model = d_model
|
13 |
-
self.num_heads = num_heads
|
14 |
-
self.head_dim = d_model // num_heads
|
15 |
-
|
16 |
-
self.q_proj = nn.Linear(d_model, d_model)
|
17 |
-
self.k_proj = nn.Linear(d_model, d_model)
|
18 |
-
self.v_proj = nn.Linear(d_model, d_model)
|
19 |
-
self.o_proj = nn.Linear(d_model, d_model)
|
20 |
-
|
21 |
-
self.dropout = nn.Dropout(dropout)
|
22 |
-
|
23 |
-
def forward(self, x: torch.Tensor, mask: Optional[torch.Tensor] = None) -> torch.Tensor:
|
24 |
-
batch_size, seq_len, d_model = x.shape
|
25 |
-
|
26 |
-
# Project and reshape for multi-head attention
|
27 |
-
q = self.q_proj(x).reshape(batch_size, seq_len, self.num_heads, self.head_dim)
|
28 |
-
k = self.k_proj(x).reshape(batch_size, seq_len, self.num_heads, self.head_dim)
|
29 |
-
v = self.v_proj(x).reshape(batch_size, seq_len, self.num_heads, self.head_dim)
|
30 |
-
|
31 |
-
# Transpose for attention computation
|
32 |
-
q, k, v = q.transpose(1, 2), k.transpose(1, 2), v.transpose(1, 2)
|
33 |
-
|
34 |
-
# Compute attention scores
|
35 |
-
scores = torch.matmul(q, k.transpose(-2, -1)) / math.sqrt(self.head_dim)
|
36 |
-
if mask is not None:
|
37 |
-
scores = scores.masked_fill(mask == 0, float('-inf'))
|
38 |
-
|
39 |
-
attn_weights = F.softmax(scores, dim=-1)
|
40 |
-
attn_weights = self.dropout(attn_weights)
|
41 |
-
|
42 |
-
# Apply attention to values
|
43 |
-
out = torch.matmul(attn_weights, v).transpose(1, 2).reshape(batch_size, seq_len, d_model)
|
44 |
-
return self.o_proj(out)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
model/prelude_Block.py
DELETED
@@ -1,28 +0,0 @@
|
|
1 |
-
import torch
|
2 |
-
import torch.nn as nn
|
3 |
-
import torch.nn.functional as F
|
4 |
-
from typing import Optional, Tuple
|
5 |
-
from multi_head_Attention import MultiHeadAttention
|
6 |
-
|
7 |
-
|
8 |
-
# Prelude Block (Initial Processing)
|
9 |
-
class PreludeBlock(nn.Module):
|
10 |
-
def __init__(self, vocab_size: int, d_model: int, num_heads: int, dropout: float = 0.1):
|
11 |
-
super().__init__()
|
12 |
-
self.token_embedding = nn.Embedding(vocab_size, d_model)
|
13 |
-
self.pos_encoding = nn.Parameter(torch.zeros(1, 1024, d_model))
|
14 |
-
self.attention = MultiHeadAttention(d_model, num_heads, dropout)
|
15 |
-
self.norm1, self.norm2 = nn.LayerNorm(d_model), nn.LayerNorm(d_model)
|
16 |
-
self.feed_forward = nn.Sequential(
|
17 |
-
nn.Linear(d_model, 4 * d_model),
|
18 |
-
nn.GELU(),
|
19 |
-
nn.Linear(4 * d_model, d_model),
|
20 |
-
nn.Dropout(dropout)
|
21 |
-
)
|
22 |
-
|
23 |
-
def forward(self, x: torch.Tensor, mask: Optional[torch.Tensor] = None) -> torch.Tensor:
|
24 |
-
seq_len = x.size(1)
|
25 |
-
x = self.token_embedding(x) + self.pos_encoding[:, :seq_len, :]
|
26 |
-
attended = self.attention(self.norm1(x), mask)
|
27 |
-
x = x + attended
|
28 |
-
return x + self.feed_forward(self.norm2(x))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
model/recurrent_Block.py
DELETED
@@ -1,25 +0,0 @@
|
|
1 |
-
import torch
|
2 |
-
import torch.nn as nn
|
3 |
-
import torch.nn.functional as F
|
4 |
-
from typing import Optional, Tuple
|
5 |
-
from multi_head_Attention import MultiHeadAttention
|
6 |
-
|
7 |
-
# Recurrent Block (Processing Over Time)
|
8 |
-
class RecurrentBlock(nn.Module):
|
9 |
-
def __init__(self, d_model: int, num_heads: int, dropout: float = 0.1):
|
10 |
-
super().__init__()
|
11 |
-
self.attention = MultiHeadAttention(d_model, num_heads, dropout)
|
12 |
-
self.norm1, self.norm2 = nn.LayerNorm(d_model), nn.LayerNorm(d_model)
|
13 |
-
self.feed_forward = nn.Sequential(
|
14 |
-
nn.Linear(d_model, 4 * d_model),
|
15 |
-
nn.GELU(),
|
16 |
-
nn.Linear(4 * d_model, d_model),
|
17 |
-
nn.Dropout(dropout)
|
18 |
-
)
|
19 |
-
self.state_proj = nn.Linear(d_model, d_model)
|
20 |
-
|
21 |
-
def forward(self, x: torch.Tensor, recurrent_state: torch.Tensor, mask: Optional[torch.Tensor] = None) -> Tuple[torch.Tensor, torch.Tensor]:
|
22 |
-
recurrent_state = self.state_proj(recurrent_state)
|
23 |
-
x = x + recurrent_state
|
24 |
-
attended = self.attention(self.norm1(x), mask)
|
25 |
-
return x + attended + self.feed_forward(self.norm2(x)), x
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|