metadata
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:126423
- loss:MultipleNegativesRankingLoss
base_model: sentence-transformers/LaBSE
widget:
- source_sentence: چگونه باید درست از سال اول آماده شوم تا Google Summer of Code را ترک کنم؟
sentences:
- یک پروژه ترم خوب برای یک دوره تجزیه و تحلیل مدار چیست؟
- چگونه می توانم تابستان کد GSOC-Google را ترک کنم؟
- یک بازیکن فوتبال در حال پوشیدن بازوبندهای مشکی است
- source_sentence: چه معنایی دارد وقتی یک دختر یک روز برای پاسخ به متن شما می رود؟
sentences:
- وقتی دختران یک روز بعد به یک متن پاسخ می دهند چیست؟
- چه کسی باید در سال 2017 به عنوان رئیس جمهور هند انتخاب شود؟
- دریافت تابش از لپ تاپ من چقدر مضر است؟
- source_sentence: >-
اقدامات احتیاطی ایمنی در مورد استفاده از اسلحه های پیشنهادی NRA در
ماساچوست چیست؟
sentences:
- چه کسی بیشترین پیروان را در Quora دارد؟
- >-
اقدامات احتیاطی ایمنی در مورد استفاده از اسلحه های پیشنهادی NRA در
نیوجرسی چیست؟
- >-
خواهرم عادت عجیبی دارد که در محل کار خود بخوابد.او چه کاری باید انجام
دهد؟
- source_sentence: چگونه می توانم انگلیسی شفاهی را به خوبی یاد بگیرم؟
sentences:
- چه کاری انجام می دهم اگر من انگلیسی را خوب یاد بگیرم؟
- چگونه می توانم مکانیک کوانتومی را درک کنم؟
- بهترین راه برای تمیز کردن مانیتورهای LCD چیست؟
- source_sentence: من می خواهم آماده سازی برای امتحان IAS را شروع کنم ، چگونه باید ادامه دهم؟
sentences:
- کشورهایی را که ایالت اسرائیل را به رسمیت نمی شناسند نامگذاری کنید؟
- چگونه می توانم آماده سازی برای آزمون UPSC را شروع کنم؟
- یک کوهنورد یک صخره را میگیرد و مرد دیگر یک دیوار را با طناب میبندد
pipeline_tag: sentence-similarity
library_name: sentence-transformers
SentenceTransformer based on sentence-transformers/LaBSE
This is a sentence-transformers model finetuned from sentence-transformers/LaBSE. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: sentence-transformers/LaBSE
- Maximum Sequence Length: 256 tokens
- Output Dimensionality: 768 dimensions
- Similarity Function: Cosine Similarity
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 256, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Dense({'in_features': 768, 'out_features': 768, 'bias': True, 'activation_function': 'torch.nn.modules.activation.Tanh'})
(3): Normalize()
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("codersan/FaLaBSE-v10")
# Run inference
sentences = [
'من می خواهم آماده سازی برای امتحان IAS را شروع کنم ، چگونه باید ادامه دهم؟',
'چگونه می توانم آماده سازی برای آزمون UPSC را شروع کنم؟',
'یک کوهنورد یک صخره را می\u200cگیرد و مرد دیگر یک دیوار را با طناب می\u200cبندد',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Training Details
Training Dataset
Unnamed Dataset
- Size: 126,423 training samples
- Columns:
anchor
andpositive
- Approximate statistics based on the first 1000 samples:
anchor positive type string string details - min: 5 tokens
- mean: 16.36 tokens
- max: 102 tokens
- min: 5 tokens
- mean: 15.3 tokens
- max: 55 tokens
- Samples:
anchor positive خانواده در حال تماشای یک پسر کوچک است که به توپ بیسبال ضربه میزند
خانواده در حال تماشای پسری است که به توپ بیسبال ضربه میزند
چرا هند باید محصولات چین را خریداری کند اگر آنها محصولات ما را خریداری نکنند؟ و بیشتر از آن در برابر هند است از هر جنبه ای. آیا ما محصولات چینی را تحریم می کنیم؟
اگر چین خیلی مخالف هند است ، چرا هندی ها از خرید محصولات چینی دست نمی کشند؟
چه تفاوتی بین همه جانبه و قادر مطلق وجود دارد؟
تفاوت های بین همه چیز و قادر مطلق چیست؟
- Loss:
MultipleNegativesRankingLoss
with these parameters:{ "scale": 20.0, "similarity_fct": "cos_sim" }
Training Hyperparameters
Non-Default Hyperparameters
per_device_train_batch_size
: 32learning_rate
: 2e-05weight_decay
: 0.01num_train_epochs
: 2batch_sampler
: no_duplicates
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: noprediction_loss_only
: Trueper_device_train_batch_size
: 32per_device_eval_batch_size
: 8per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 1eval_accumulation_steps
: Nonetorch_empty_cache_steps
: Nonelearning_rate
: 2e-05weight_decay
: 0.01adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1.0num_train_epochs
: 2max_steps
: -1lr_scheduler_type
: linearlr_scheduler_kwargs
: {}warmup_ratio
: 0.0warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Falsefp16
: Falsefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Nonelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Falseignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torchoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Nonehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseinclude_for_metrics
: []eval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Nonedispatch_batches
: Nonesplit_batches
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falseeval_on_start
: Falseuse_liger_kernel
: Falseeval_use_gather_object
: Falseaverage_tokens_across_devices
: Falseprompts
: Nonebatch_sampler
: no_duplicatesmulti_dataset_batch_sampler
: proportional
Training Logs
Epoch | Step | Training Loss |
---|---|---|
0.0506 | 100 | 0.1055 |
0.1012 | 200 | 0.0861 |
0.1518 | 300 | 0.0807 |
0.2024 | 400 | 0.0755 |
0.2530 | 500 | 0.0846 |
0.3036 | 600 | 0.0726 |
0.3543 | 700 | 0.0768 |
0.4049 | 800 | 0.0811 |
0.4555 | 900 | 0.0725 |
0.5061 | 1000 | 0.064 |
0.5567 | 1100 | 0.0725 |
0.6073 | 1200 | 0.0661 |
0.6579 | 1300 | 0.0714 |
0.7085 | 1400 | 0.0582 |
0.7591 | 1500 | 0.0666 |
0.8097 | 1600 | 0.0644 |
0.8603 | 1700 | 0.0667 |
0.9109 | 1800 | 0.0594 |
0.9615 | 1900 | 0.0651 |
1.0121 | 2000 | 0.0639 |
1.0628 | 2100 | 0.0464 |
1.1134 | 2200 | 0.0349 |
1.1640 | 2300 | 0.0376 |
1.2146 | 2400 | 0.0387 |
1.2652 | 2500 | 0.0434 |
1.3158 | 2600 | 0.0317 |
1.3664 | 2700 | 0.047 |
1.4170 | 2800 | 0.0446 |
1.4676 | 2900 | 0.0339 |
1.5182 | 3000 | 0.0386 |
1.5688 | 3100 | 0.0378 |
1.6194 | 3200 | 0.0406 |
1.6700 | 3300 | 0.0409 |
1.7206 | 3400 | 0.0392 |
1.7713 | 3500 | 0.0394 |
1.8219 | 3600 | 0.0411 |
1.8725 | 3700 | 0.0406 |
1.9231 | 3800 | 0.0332 |
1.9737 | 3900 | 0.0455 |
Framework Versions
- Python: 3.10.12
- Sentence Transformers: 3.3.1
- Transformers: 4.47.0
- PyTorch: 2.5.1+cu121
- Accelerate: 1.2.1
- Datasets: 3.3.0
- Tokenizers: 0.21.0
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
MultipleNegativesRankingLoss
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}