|
--- |
|
language: |
|
- zh |
|
thumbnail: https://ckip.iis.sinica.edu.tw/files/ckip_logo.png |
|
tags: |
|
- pytorch |
|
- lm-head |
|
- albert |
|
- zh |
|
license: gpl-3.0 |
|
--- |
|
|
|
# CKIP ALBERT Tiny Chinese |
|
|
|
## Table of Contents |
|
- [Model Details](#model-details) |
|
- [Uses](#uses) |
|
- [Risks, Limitations and Biases](#risks-limitations-and-biases) |
|
- [Training](#training) |
|
- [Evaluation](#evaluation) |
|
- [How to Get Started With the Model](#how-to-get-started-with-the-model) |
|
|
|
## Model Details |
|
- **Model Description:** |
|
|
|
This project provides traditional Chinese transformers models (including ALBERT, BERT, GPT2) and NLP tools (including word segmentation, part-of-speech tagging, named entity recognition). |
|
|
|
這個專案提供了繁體中文的 transformers 模型(包含 ALBERT、BERT、GPT2)及自然語言處理工具(包含斷詞、詞性標記、實體辨識)。 |
|
|
|
- **Developed by:** [Mu Yang](https://muyang.pro) at [CKIP](https://ckip.iis.sinica.edu.tw) |
|
- **Model Type:** Fill-Mask |
|
- **Language(s):** Chinese |
|
- **License:** gpl-3.0 |
|
- **Parent Model:** See the [ALBERT base model](https://huggingface.co/albert-base-v2) for more information about the ALBERT base model. |
|
- **Resources for more information:** |
|
- [GitHub Repo](https://github.com/ckiplab/ckip-transformers) |
|
- [CKIP Documentation](https://ckip-transformers.readthedocs.io/en/stable/) |
|
|
|
|
|
|
|
## Uses |
|
|
|
#### Direct Use |
|
|
|
The model author suggests using BertTokenizerFast as tokenizer instead of AutoTokenizer. |
|
|
|
請使用 BertTokenizerFast 而非 AutoTokenizer。 |
|
|
|
For full usage and more information, please refer to [github repository] (https://github.com/ckiplab/ckip-transformers.) |
|
|
|
有關完整使用方法及其他資訊,請參見 [github repository] (https://github.com/ckiplab/ckip-transformers.) |
|
|
|
|
|
|
|
## Risks, Limitations and Biases |
|
**CONTENT WARNING: Readers should be aware this section contains content that is disturbing, offensive, and can propagate historical and current stereotypes.** |
|
|
|
Significant research has explored bias and fairness issues with language models (see, e.g., [Sheng et al. (2021)](https://aclanthology.org/2021.acl-long.330.pdf) and [Bender et al. (2021)](https://dl.acm.org/doi/pdf/10.1145/3442188.3445922)). |
|
|
|
|
|
## Training |
|
|
|
|
|
#### Training Data |
|
|
|
The language models are trained on the ZhWiki and CNA datasets; the WS and POS tasks are trained on the ASBC dataset; the NER tasks are trained on the OntoNotes dataset. |
|
以上的語言模型訓練於 ZhWiki 與 CNA 資料集上;斷詞(WS)與詞性標記(POS)任務模型訓練於 ASBC 資料集上;實體辨識(NER)任務模型訓練於 OntoNotes 資料集上。 |
|
|
|
#### Training Procedure |
|
* **Parameters:** 4M |
|
|
|
|
|
|
|
## Evaluation |
|
|
|
|
|
|
|
|
|
#### Results |
|
|
|
|
|
|
|
* **Perplexity:** 4.40 |
|
* **WOS (Word Segmentation) [F1]:** 96.66% |
|
* **POS (Part-of-speech) [ACC]:** 94.48% |
|
* **NER (Named-entity recognition) [F1]:** 71.17% |
|
|
|
## How to Get Started With the Model |
|
|
|
``` |
|
from transformers import ( |
|
BertTokenizerFast, |
|
AutoModel, |
|
) |
|
|
|
tokenizer = BertTokenizerFast.from_pretrained('bert-base-chinese') |
|
model = AutoModel.from_pretrained('ckiplab/albert-tiny-chinese') |
|
``` |
|
|
|
|
|
|