ckandemir's picture
Upload tokenizer
6635d24 verified
metadata
base_model: bert-base-uncased
license: apache-2.0
metrics:
  - accuracy
  - f1
  - precision
  - recall
tags:
  - generated_from_trainer
model-index:
  - name: bert-base-uncased-amazon-reviews-sentiment-analysis
    results: []

bert-base-uncased-amazon-reviews-sentiment-analysis

This model is a fine-tuned version of bert-base-uncased on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2344
  • Accuracy: 0.9198
  • F1: 0.9215
  • Precision: 0.9263
  • Recall: 0.9167

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 16
  • eval_batch_size: 64
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • num_epochs: 3

Training results

Training Loss Epoch Step Validation Loss Accuracy F1 Precision Recall
0.6741 1.0 47 0.6232 0.7594 0.7097 0.9322 0.5729
0.4346 2.0 94 0.3871 0.8717 0.875 0.875 0.875
0.3593 3.0 141 0.2344 0.9198 0.9215 0.9263 0.9167

Framework versions

  • Transformers 4.41.2
  • Pytorch 2.3.0+cu121
  • Datasets 2.20.0
  • Tokenizers 0.19.1