Built with Axolotl

See axolotl config

axolotl version: 0.4.1

adapter: lora
base_model: fxmarty/tiny-random-GemmaForCausalLM
bf16: auto
chat_template: llama3
dataloader_num_workers: 12
dataset_prepared_path: null
datasets:
- data_files:
  - 5357759852985b4d_train_data.json
  ds_type: json
  format: custom
  path: /workspace/input_data/5357759852985b4d_train_data.json
  type:
    field_input: Complex_CoT
    field_instruction: Question
    field_output: Response
    format: '{instruction} {input}'
    no_input_format: '{instruction}'
    system_format: '{system}'
    system_prompt: ''
debug: null
deepspeed: null
device_map: auto
do_eval: true
early_stopping_patience: 3
eval_batch_size: 8
eval_max_new_tokens: 128
eval_steps: 150
eval_table_size: null
evals_per_epoch: null
flash_attention: true
fp16: false
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 2
gradient_checkpointing: true
group_by_length: true
hub_model_id: cimol/a171f600-b5ac-41a5-b905-80419638cc6b
hub_repo: null
hub_strategy: end
hub_token: null
learning_rate: 3e-5
load_in_4bit: false
load_in_8bit: false
local_rank: null
logging_steps: 15
lora_alpha: 128
lora_dropout: 0.1
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 64
lora_target_linear: true
lr_scheduler: cosine
lr_scheduler_warmup_steps: 50
max_grad_norm: 1.0
max_memory:
  0: 75GB
max_steps: 1650
micro_batch_size: 8
mlflow_experiment_name: /tmp/5357759852985b4d_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 15
optim_args:
  adam_beta1: 0.9
  adam_beta2: 0.999
  adam_epsilon: 1e-8
optimizer: adamw_torch
output_dir: miner_id_24
pad_to_sequence_len: false
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
save_steps: 150
saves_per_epoch: null
seed: 17333
sequence_len: 1024
strict: false
tf32: true
tokenizer_type: AutoTokenizer
total_train_batch_size: 16
train_batch_size: 8
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: null
wandb_mode: online
wandb_name: 4825c224-af5c-46aa-8cf7-640b49b5a593
wandb_project: Gradients-On-Demand
wandb_run: your_name
wandb_runid: 4825c224-af5c-46aa-8cf7-640b49b5a593
warmup_steps: 50
weight_decay: 0.1
xformers_attention: null

a171f600-b5ac-41a5-b905-80419638cc6b

This model is a fine-tuned version of fxmarty/tiny-random-GemmaForCausalLM on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 12.3991

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 3e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 17333
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 16
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=adam_beta1=0.9,adam_beta2=0.999,adam_epsilon=1e-8
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 50
  • training_steps: 1650

Training results

Training Loss Epoch Step Validation Loss
No log 0.0007 1 12.4574
12.4529 0.1037 150 12.4520
12.4165 0.2073 300 12.4173
12.397 0.3110 450 12.4010
12.3988 0.4147 600 12.4000
12.397 0.5183 750 12.3997
12.3992 0.6220 900 12.3996
12.3979 0.7256 1050 12.3995
12.3988 0.8293 1200 12.3992
12.3974 0.9330 1350 12.3990
12.3986 1.0366 1500 12.3991
12.4025 1.1403 1650 12.3991

Framework versions

  • PEFT 0.13.2
  • Transformers 4.46.0
  • Pytorch 2.5.0+cu124
  • Datasets 3.0.1
  • Tokenizers 0.20.1
Downloads last month
8
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.
The model cannot be deployed to the HF Inference API: The model has no pipeline_tag.

Model tree for cimol/a171f600-b5ac-41a5-b905-80419638cc6b

Adapter
(260)
this model