nielsr's picture
nielsr HF staff
Add library_name and pipeline_tag to metadata
79e018b verified
|
raw
history blame
2.18 kB
metadata
base_model:
  - meta-llama/Llama-3.1-8B-Instruct
datasets:
  - chtmp223/CLIPPER
language:
  - en
license: apache-2.0
library_name: transformers
pipeline_tag: text-generation
# Llama-3.1-8B-CLIPPER
Llama-3.1-8B-CLIPPER is a fine-tuned version of meta-llama/Llama-3.1-8B-Instruct using supervised finetuning over chtmp223/CLIPPER dataset. 
Please check [our paper](https://arxiv.org/abs/2502.14854) for more details on the method. 

## πŸ“’ Model Details

### Model Description

- **Language(s) (NLP):** English
- **License:** Apache-2.0
- **Finetuned from model:** meta-llama/Llama-3.1-8B-Instruct](https://huggingface.co/meta-llama/Llama-3.1-8B-Instruct)

### Model Sources

- **Repository:** [Github repository](https://github.com/chtmp223/CLIPPER).
- **Paper:** [https://arxiv.org/abs/2502.14854](https://arxiv.org/abs/2502.14854)


## πŸ’» Training Details

### Training Data

[chtmp223/CLIPPER](https://huggingface.co/datasets/chtmp223/CLIPPER)

### Training Procedure

| **Configurations**               | **Values**   |
|----------------------------------|--------------|
| Hardware (Training and Inference)| 8xA100s      |
| Tracking                         | wandb        |
| batch size                       | 16           |
| gradient_checkpointing           | True         |
| learning_rate                    | 1.0e-6       |
| lr_scheduler_type                | cosine       |
| max_length                       | 131072       |
| num_train_epochs                 | 1            |
| optim                            | adamw_torch  |

#### Software

Training code is adapted from [https://github.com/princeton-nlp/ProLong](https://github.com/princeton-nlp/ProLong).

## πŸ€— Inference
Inference is done with [vLLM](https://github.com/vllm-project/vllm) on 1 A100-80GB.  

## πŸ“œ Citation 

@misc{pham2025clippercompressionenableslongcontext, title={CLIPPER: Compression enables long-context synthetic data generation}, author={Chau Minh Pham and Yapei Chang and Mohit Iyyer}, year={2025}, eprint={2502.14854}, archivePrefix={arXiv}, primaryClass={cs.CL}, url={https://arxiv.org/abs/2502.14854}, } ```