metadata
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:15002
- loss:MultipleNegativesRankingLoss
base_model: BAAI/bge-large-en-v1.5
widget:
- source_sentence: >-
what kind of oil and how much do i need for my toyota tacoma truck and how
do i do it
sentences:
- >-
Requests to change the system or application's language settings. Users
may ask to switch to a specific language, such as English, or adjust the
language preferences to enhance usability.
- >-
Requests for step-by-step instructions or guidance on how to change the
oil in a car. Users seek detailed procedures, tools needed, and tips for
performing this maintenance task.
- >-
Requests to make a reservation at a specific restaurant for a specified
number of people, time, and under a provided name. Users expect
confirmation of the booking details.
- source_sentence: please double check my reservations for six at mani
sentences:
- >-
Requests to verify or confirm existing reservations, typically for
dining or events. Users provide details about the reservation and ask
for confirmation that it is correctly recorded.
- >-
Requests for details about an insurance policy, including coverage,
benefits, and exclusions. Users may inquire about specific aspects like
health benefits or policy terms.
- >-
Requests to create, manage, or customize timers for various tasks or
activities. Users can define the duration, purpose, or type of the timer
and receive notifications or alerts when the timer reaches its set time.
- source_sentence: what are some good ethiopian restaurants in queens
sentences:
- >-
Requests for the meaning or definition of words. Users may inquire about
the definitions of uncommon, complex, or unfamiliar terms, aiming to
gain a clear understanding or contextual usage of the word in question.
- >-
Requests to assist with paying bills, such as utilities, credit cards,
or other services. Users may specify the bill type, amount, and source
account for the payment.
- >-
Requests for recommendations or suggestions for dining options. Users
may ask for specific cuisine types, locations, or general ideas on where
to eat.
- source_sentence: are there any expected delays for flight dl123
sentences:
- >-
Requests for travel time or distance to a specific location. Users
typically seek estimates based on current traffic, routes, or modes of
transportation to determine the time needed to reach their destination.
- >-
Requests for information about flight details, such as boarding times,
delays, or schedules. Users typically inquire to ensure they are updated
about their flight's status.
- >-
Requests for advice or strategies to improve credit scores. Users may
seek a detailed plan, tips, or insights into financial habits that can
lead to a better credit rating.
- source_sentence: how do i ask about the weather in chinese
sentences:
- >-
Requests related to translating words, phrases, or sentences from one
language to another. The user may specify the source and target
languages, and the goal is to provide an accurate and
context-appropriate translation.
- >-
Requests for information about a vehicle's miles per gallon (MPG)
rating, either in specific conditions like city driving or as an overall
performance metric. Users may seek guidance on fuel efficiency for their
car.
- >-
Requests for information about a vehicle's miles per gallon (MPG)
rating, either in specific conditions like city driving or as an overall
performance metric. Users may seek guidance on fuel efficiency for their
car.
pipeline_tag: sentence-similarity
library_name: sentence-transformers
metrics:
- cosine_accuracy@1
- cosine_accuracy@3
- cosine_accuracy@5
- cosine_accuracy@10
- cosine_precision@1
- cosine_precision@3
- cosine_precision@5
- cosine_precision@10
- cosine_recall@1
- cosine_recall@3
- cosine_recall@5
- cosine_recall@10
- cosine_ndcg@10
- cosine_mrr@10
- cosine_map@100
model-index:
- name: SentenceTransformer based on BAAI/bge-large-en-v1.5
results:
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: Unknown
type: unknown
metrics:
- type: cosine_accuracy@1
value: 0.9706666666666667
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.9886666666666667
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.992
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.9956666666666667
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.9706666666666667
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.3295555555555556
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.19840000000000002
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.09956666666666668
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.9706666666666667
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.9886666666666667
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.992
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.9956666666666667
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.9841961906084298
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.9804173280423282
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.9806052445247627
name: Cosine Map@100
SentenceTransformer based on BAAI/bge-large-en-v1.5
This is a sentence-transformers model finetuned from BAAI/bge-large-en-v1.5. It maps sentences & paragraphs to a 1024-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: BAAI/bge-large-en-v1.5
- Maximum Sequence Length: 512 tokens
- Output Dimensionality: 1024 dimensions
- Similarity Function: Cosine Similarity
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': True}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("chinchilla04/bge-finetuned-train")
# Run inference
sentences = [
'how do i ask about the weather in chinese',
'Requests related to translating words, phrases, or sentences from one language to another. The user may specify the source and target languages, and the goal is to provide an accurate and context-appropriate translation.',
"Requests for information about a vehicle's miles per gallon (MPG) rating, either in specific conditions like city driving or as an overall performance metric. Users may seek guidance on fuel efficiency for their car.",
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 1024]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Evaluation
Metrics
Information Retrieval
- Evaluated with
InformationRetrievalEvaluator
Metric | Value |
---|---|
cosine_accuracy@1 | 0.9707 |
cosine_accuracy@3 | 0.9887 |
cosine_accuracy@5 | 0.992 |
cosine_accuracy@10 | 0.9957 |
cosine_precision@1 | 0.9707 |
cosine_precision@3 | 0.3296 |
cosine_precision@5 | 0.1984 |
cosine_precision@10 | 0.0996 |
cosine_recall@1 | 0.9707 |
cosine_recall@3 | 0.9887 |
cosine_recall@5 | 0.992 |
cosine_recall@10 | 0.9957 |
cosine_ndcg@10 | 0.9842 |
cosine_mrr@10 | 0.9804 |
cosine_map@100 | 0.9806 |
Training Details
Training Dataset
Unnamed Dataset
- Size: 15,002 training samples
- Columns:
anchor
,positive
, andnegative
- Approximate statistics based on the first 1000 samples:
anchor positive negative type string string string details - min: 4 tokens
- mean: 10.66 tokens
- max: 28 tokens
- min: 25 tokens
- mean: 42.6 tokens
- max: 58 tokens
- min: 29 tokens
- mean: 41.95 tokens
- max: 58 tokens
- Samples:
anchor positive negative what expression would i use to say i love you if i were an italian
Requests related to translating words, phrases, or sentences from one language to another. The user may specify the source and target languages, and the goal is to provide an accurate and context-appropriate translation.
Requests involving financial operations, such as transferring money between bank accounts, credit cards, or other financial instruments. Users typically specify the amount, the source account, and the target account, ensuring that the transfer is executed correctly and securely.
can you tell me how to say 'i do not speak much spanish', in spanish
Requests related to translating words, phrases, or sentences from one language to another. The user may specify the source and target languages, and the goal is to provide an accurate and context-appropriate translation.
Requests involving financial operations, such as transferring money between bank accounts, credit cards, or other financial instruments. Users typically specify the amount, the source account, and the target account, ensuring that the transfer is executed correctly and securely.
what is the equivalent of, 'life is good' in french
Requests related to translating words, phrases, or sentences from one language to another. The user may specify the source and target languages, and the goal is to provide an accurate and context-appropriate translation.
Requests involving financial operations, such as transferring money between bank accounts, credit cards, or other financial instruments. Users typically specify the amount, the source account, and the target account, ensuring that the transfer is executed correctly and securely.
- Loss:
MultipleNegativesRankingLoss
with these parameters:{ "scale": 20.0, "similarity_fct": "cos_sim" }
Evaluation Dataset
Unnamed Dataset
- Size: 3,000 evaluation samples
- Columns:
anchor
andpositive
- Approximate statistics based on the first 1000 samples:
anchor positive type string string details - min: 3 tokens
- mean: 11.06 tokens
- max: 29 tokens
- min: 26 tokens
- mean: 36.16 tokens
- max: 58 tokens
- Samples:
anchor positive in spanish, meet me tomorrow is said how
Requests related to translating words, phrases, or sentences from one language to another. The user may specify the source and target languages, and the goal is to provide an accurate and context-appropriate translation.
in french, how do i say, see you later
Requests related to translating words, phrases, or sentences from one language to another. The user may specify the source and target languages, and the goal is to provide an accurate and context-appropriate translation.
how do you say hello in japanese
Requests related to translating words, phrases, or sentences from one language to another. The user may specify the source and target languages, and the goal is to provide an accurate and context-appropriate translation.
- Loss:
MultipleNegativesRankingLoss
with these parameters:{ "scale": 20.0, "similarity_fct": "cos_sim" }
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: stepsper_device_train_batch_size
: 32learning_rate
: 1e-05num_train_epochs
: 4lr_scheduler_type
: cosinewarmup_ratio
: 0.2load_best_model_at_end
: Trueoptim
: adamw_torch_fused
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: stepsprediction_loss_only
: Trueper_device_train_batch_size
: 32per_device_eval_batch_size
: 8per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 1eval_accumulation_steps
: Nonetorch_empty_cache_steps
: Nonelearning_rate
: 1e-05weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1.0num_train_epochs
: 4max_steps
: -1lr_scheduler_type
: cosinelr_scheduler_kwargs
: {}warmup_ratio
: 0.2warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Falsefp16
: Falsefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Nonelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Trueignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torch_fusedoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Falsehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseinclude_for_metrics
: []eval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Nonedispatch_batches
: Nonesplit_batches
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falseeval_on_start
: Falseuse_liger_kernel
: Falseeval_use_gather_object
: Falseaverage_tokens_across_devices
: Falseprompts
: Nonebatch_sampler
: batch_samplermulti_dataset_batch_sampler
: proportional
Training Logs
Epoch | Step | Training Loss | Validation Loss | cosine_ndcg@10 |
---|---|---|---|---|
None | 0 | - | 0.2730 | 0.9055 |
0.3198 | 150 | - | 0.0698 | 0.9633 |
0.6397 | 300 | - | 0.0642 | 0.9683 |
0.9595 | 450 | - | 0.0603 | 0.9763 |
1.0661 | 500 | 1.0338 | - | - |
1.2793 | 600 | - | 0.0612 | 0.9762 |
1.5991 | 750 | - | 0.0602 | 0.9802 |
1.9190 | 900 | - | 0.0571 | 0.9820 |
2.1322 | 1000 | 0.787 | - | - |
2.2388 | 1050 | - | 0.0585 | 0.9819 |
2.5586 | 1200 | - | 0.0565 | 0.9842 |
2.8785 | 1350 | - | 0.0578 | 0.9837 |
3.1983 | 1500 | 0.6768 | 0.0570 | 0.9844 |
3.5181 | 1650 | - | 0.0587 | 0.9837 |
3.8380 | 1800 | - | 0.0584 | 0.9837 |
None | 0 | - | 0.0565 | 0.9842 |
- The bold row denotes the saved checkpoint.
Framework Versions
- Python: 3.10.14
- Sentence Transformers: 3.3.1
- Transformers: 4.46.3
- PyTorch: 2.4.0
- Accelerate: 1.1.1
- Datasets: 3.1.0
- Tokenizers: 0.20.3
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
MultipleNegativesRankingLoss
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}