charmquark commited on
Commit
f02e025
·
1 Parent(s): dfc98ca

Initial commit

Browse files
README.md CHANGED
@@ -16,7 +16,7 @@ model-index:
16
  type: PandaReachDense-v2
17
  metrics:
18
  - type: mean_reward
19
- value: -29.04 +/- 13.99
20
  name: mean_reward
21
  verified: false
22
  ---
 
16
  type: PandaReachDense-v2
17
  metrics:
18
  - type: mean_reward
19
+ value: -4.65 +/- 0.73
20
  name: mean_reward
21
  verified: false
22
  ---
a2c-PandaReachDense-v2.zip CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:ca967866cd38c47cd97d7acb9b346b9e7f75c25c290403eaed081c31042ac25e
3
- size 108053
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:002427dbc571b7893aa5c7fa4ab753eb2e51c6942d9bf7e1693c7a11da6e6b86
3
+ size 107774
a2c-PandaReachDense-v2/data CHANGED
@@ -4,9 +4,9 @@
4
  ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
5
  "__module__": "stable_baselines3.common.policies",
6
  "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
- "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f5a1c229dc0>",
8
  "__abstractmethods__": "frozenset()",
9
- "_abc_impl": "<_abc._abc_data object at 0x7f5a1c22b900>"
10
  },
11
  "verbose": 1,
12
  "policy_kwargs": {
@@ -41,12 +41,12 @@
41
  "_np_random": null
42
  },
43
  "n_envs": 4,
44
- "num_timesteps": 2000000,
45
- "_total_timesteps": 2000000,
46
  "_num_timesteps_at_start": 0,
47
  "seed": null,
48
  "action_noise": null,
49
- "start_time": 1679556774889551112,
50
  "learning_rate": 0.0007,
51
  "tensorboard_log": null,
52
  "lr_schedule": {
@@ -55,10 +55,10 @@
55
  },
56
  "_last_obs": {
57
  ":type:": "<class 'collections.OrderedDict'>",
58
- ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA/FBvQKlJbcDQuwBA/FBvQKlJbcDQuwBA/FBvQKlJbcDQuwBA/FBvQKlJbcDQuwBAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAKsMVwQ1Y4sAAACBBAAAgwfBWH8EjUuXAAAAgQQAAIEFr/RZBAAAgQV2gFUBkWT3AlGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAAD8UG9AqUltwNC7AECK5uQ+ZkQjvn8BSD78UG9AqUltwNC7AECK5uQ+ZkQjvn8BSD78UG9AqUltwNC7AECK5uQ+ZkQjvn8BSD78UG9AqUltwNC7AECK5uQ+ZkQjvn8BSD6UaA5LBEsGhpRoEnSUUpR1Lg==",
59
- "achieved_goal": "[[ 3.739318 -3.7076209 2.0114632]\n [ 3.739318 -3.7076209 2.0114632]\n [ 3.739318 -3.7076209 2.0114632]\n [ 3.739318 -3.7076209 2.0114632]]",
60
- "desired_goal": "[[ -9.360147 -7.0732484 10. ]\n [-10. -9.958725 -7.1662765]\n [ 10. 10. 9.43687 ]\n [ 10. 2.3379128 -2.958581 ]]",
61
- "observation": "[[ 3.739318 -3.7076209 2.0114632 0.44707137 -0.1594406 0.1953182 ]\n [ 3.739318 -3.7076209 2.0114632 0.44707137 -0.1594406 0.1953182 ]\n [ 3.739318 -3.7076209 2.0114632 0.44707137 -0.1594406 0.1953182 ]\n [ 3.739318 -3.7076209 2.0114632 0.44707137 -0.1594406 0.1953182 ]]"
62
  },
63
  "_last_episode_starts": {
64
  ":type:": "<class 'numpy.ndarray'>",
@@ -66,10 +66,10 @@
66
  },
67
  "_last_original_obs": {
68
  ":type:": "<class 'collections.OrderedDict'>",
69
- ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA11dJOVaeRag6yX0611dJOVaeRag6yX0611dJOVaeRag6yX0611dJOVaeRag6yX06lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAA1RZoPy/ijL/q5Ei/wC1iv+T1Dj/4u7E/IciJP4IVTr/23vs+4r6MvyFyrD9PPIy/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADXV0k5Vp5FqDrJfToAAAAAAAAAgAAAAADXV0k5Vp5FqDrJfToAAAAAAAAAgAAAAADXV0k5Vp5FqDrJfToAAAAAAAAAgAAAAADXV0k5Vp5FqDrJfToAAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==",
70
- "achieved_goal": "[[ 1.92015767e-04 -1.09700304e-14 9.68116918e-04]\n [ 1.92015767e-04 -1.09700304e-14 9.68116918e-04]\n [ 1.92015767e-04 -1.09700304e-14 9.68116918e-04]\n [ 1.92015767e-04 -1.09700304e-14 9.68116918e-04]]",
71
- "desired_goal": "[[ 0.9065984 -1.1006526 -0.78474295]\n [-0.8835106 0.5584395 1.3885489 ]\n [ 1.07642 -0.8050157 0.49193543]\n [-1.0995753 1.3472329 -1.0955905 ]]",
72
- "observation": "[[ 1.92015767e-04 -1.09700304e-14 9.68116918e-04 0.00000000e+00\n -0.00000000e+00 0.00000000e+00]\n [ 1.92015767e-04 -1.09700304e-14 9.68116918e-04 0.00000000e+00\n -0.00000000e+00 0.00000000e+00]\n [ 1.92015767e-04 -1.09700304e-14 9.68116918e-04 0.00000000e+00\n -0.00000000e+00 0.00000000e+00]\n [ 1.92015767e-04 -1.09700304e-14 9.68116918e-04 0.00000000e+00\n -0.00000000e+00 0.00000000e+00]]"
73
  },
74
  "_episode_num": 0,
75
  "use_sde": false,
@@ -77,13 +77,13 @@
77
  "_current_progress_remaining": 0.0,
78
  "ep_info_buffer": {
79
  ":type:": "<class 'collections.deque'>",
80
- ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIpkQSvYyaMcCUhpRSlIwBbJRLMowBdJRHQL70mTyauwJ1fZQoaAZoCWgPQwgPJzCd1llEwJSGlFKUaBVLMmgWR0C+9IDujRD1dX2UKGgGaAloD0MIUoAomDFjRcCUhpRSlGgVSzJoFkdAvvRoF8ohIXV9lChoBmgJaA9DCKSMuAA0EijAlIaUUpRoFUsyaBZHQL70TtuUD+11fZQoaAZoCWgPQwggCmZMwTItwJSGlFKUaBVLMmgWR0C+9Xq4hEBsdX2UKGgGaAloD0MIUaVmD7QCJsCUhpRSlGgVSzJoFkdAvvViwljVhHV9lChoBmgJaA9DCBNkBFQ4QhTAlIaUUpRoFUsyaBZHQL71Sjghr311fZQoaAZoCWgPQwhWRiOfV4wdwJSGlFKUaBVLMmgWR0C+9TDgqEvkdX2UKGgGaAloD0MI0/nwLEFWFsCUhpRSlGgVSzJoFkdAvvZiuHN5dHV9lChoBmgJaA9DCAuallgZwTDAlIaUUpRoFUsyaBZHQL72Szjm0Vt1fZQoaAZoCWgPQwgJNUOqKJ4uwJSGlFKUaBVLMmgWR0C+9jLIxQBQdX2UKGgGaAloD0MIWrqCbcQPNMCUhpRSlGgVSzJoFkdAvvYZmapgkXV9lChoBmgJaA9DCJeMYyR7zETAlIaUUpRoFUsyaBZHQL73Ke9i+cp1fZQoaAZoCWgPQwjCobd4eB8qwJSGlFKUaBVLMmgWR0C+9xH003wTdX2UKGgGaAloD0MITdh+MsbvLsCUhpRSlGgVSzJoFkdAvvb5/iHZb3V9lChoBmgJaA9DCIYfnE8dUyPAlIaUUpRoFUsyaBZHQL724V1Oj7B1fZQoaAZoCWgPQwhNTu0MU/smwJSGlFKUaBVLMmgWR0C++AgiRnvldX2UKGgGaAloD0MI9FDbhlHaQ8CUhpRSlGgVSzJoFkdAvvfwL0BfbHV9lChoBmgJaA9DCGyU9ZuJKSzAlIaUUpRoFUsyaBZHQL732BqsU7F1fZQoaAZoCWgPQwjCoiJOJ8ElwJSGlFKUaBVLMmgWR0C+978pkPMCdX2UKGgGaAloD0MIGR2QhH2bKcCUhpRSlGgVSzJoFkdAvvjzOqvNeXV9lChoBmgJaA9DCH7ja88skSTAlIaUUpRoFUsyaBZHQL7422K2rn11fZQoaAZoCWgPQwjfwyXHnWorwJSGlFKUaBVLMmgWR0C++ML30wrUdX2UKGgGaAloD0MIVydnKO6IJMCUhpRSlGgVSzJoFkdAvvipvqC6H3V9lChoBmgJaA9DCKwahLndH0XAlIaUUpRoFUsyaBZHQL76KjOcDr91fZQoaAZoCWgPQwgW+fVDbCAowJSGlFKUaBVLMmgWR0C++hLzXjEOdX2UKGgGaAloD0MIiujX1k+PJMCUhpRSlGgVSzJoFkdAvvn7LQokRnV9lChoBmgJaA9DCA8qcR3jgijAlIaUUpRoFUsyaBZHQL754p9JBgN1fZQoaAZoCWgPQwjX2ZB/ZqBCwJSGlFKUaBVLMmgWR0C++1dK28ZldX2UKGgGaAloD0MIF7fRAN5+RsCUhpRSlGgVSzJoFkdAvvs/d/J/5XV9lChoBmgJaA9DCLFR1m8m5iHAlIaUUpRoFUsyaBZHQL77J8ejmCB1fZQoaAZoCWgPQwiDbcST3eQlwJSGlFKUaBVLMmgWR0C++w85n13/dX2UKGgGaAloD0MIWyTtRh+DFcCUhpRSlGgVSzJoFkdAvvzergflqHV9lChoBmgJaA9DCCfcK/NWHS7AlIaUUpRoFUsyaBZHQL78x4hEBsB1fZQoaAZoCWgPQwiloxzMJtArwJSGlFKUaBVLMmgWR0C+/K+aa1CxdX2UKGgGaAloD0MITFRvDWxlFcCUhpRSlGgVSzJoFkdAvvyW/h2nsXV9lChoBmgJaA9DCFLWbyamMy3AlIaUUpRoFUsyaBZHQL7+cBnBciZ1fZQoaAZoCWgPQwg/cJUnEGYpwJSGlFKUaBVLMmgWR0C+/lj4HoovdX2UKGgGaAloD0MIur2kMVqnGMCUhpRSlGgVSzJoFkdAvv5CEf1YhnV9lChoBmgJaA9DCArzHmeakDDAlIaUUpRoFUsyaBZHQL7+KZrpJPJ1fZQoaAZoCWgPQwiK5ZZWQwIkwJSGlFKUaBVLMmgWR0C+/4altTDPdX2UKGgGaAloD0MIBYwubw7PJ8CUhpRSlGgVSzJoFkdAvv9uxC6YmnV9lChoBmgJaA9DCKT8pNqn0xPAlIaUUpRoFUsyaBZHQL7/Vk9U0el1fZQoaAZoCWgPQwgew2M/i19EwJSGlFKUaBVLMmgWR0C+/zyg9NeudX2UKGgGaAloD0MIjIaMR6k0I8CUhpRSlGgVSzJoFkdAvwBpWcSXdHV9lChoBmgJaA9DCAySPq2ihyvAlIaUUpRoFUsyaBZHQL8AUW8RL9N1fZQoaAZoCWgPQwgsu2Bwzb0vwJSGlFKUaBVLMmgWR0C/ADjvd/KAdX2UKGgGaAloD0MIwcqhRbbrIsCUhpRSlGgVSzJoFkdAvwAfrLQokXV9lChoBmgJaA9DCFftmpDW2CDAlIaUUpRoFUsyaBZHQL8BTpNsWO91fZQoaAZoCWgPQwiXrfVFQssvwJSGlFKUaBVLMmgWR0C/ATattALRdX2UKGgGaAloD0MILNUFvMxgH8CUhpRSlGgVSzJoFkdAvwEd7fHgg3V9lChoBmgJaA9DCFm/mZguRCHAlIaUUpRoFUsyaBZHQL8BBLvkRz11fZQoaAZoCWgPQwhweawZGWwnwJSGlFKUaBVLMmgWR0C/AjRjz7MxdX2UKGgGaAloD0MI+Z0mM97mGMCUhpRSlGgVSzJoFkdAvwIcgjhUBHV9lChoBmgJaA9DCKYol8YvIDDAlIaUUpRoFUsyaBZHQL8CA/5Lytp1fZQoaAZoCWgPQwhEozuInWkowJSGlFKUaBVLMmgWR0C/AerA57w8dX2UKGgGaAloD0MIf0+sU+UDKMCUhpRSlGgVSzJoFkdAvwMLmLcbi3V9lChoBmgJaA9DCKg2OBH9PEXAlIaUUpRoFUsyaBZHQL8C80v4/NZ1fZQoaAZoCWgPQwh80okEU/0fwJSGlFKUaBVLMmgWR0C/AtrFGXoldX2UKGgGaAloD0MIW7BUF/A6J8CUhpRSlGgVSzJoFkdAvwLBkf9xZXV9lChoBmgJaA9DCBMsDmd+nSrAlIaUUpRoFUsyaBZHQL8D2zUI9kl1fZQoaAZoCWgPQwg+esN95NJCwJSGlFKUaBVLMmgWR0C/A8LmZE2HdX2UKGgGaAloD0MIn6wYrg64KcCUhpRSlGgVSzJoFkdAvwOqXE61cHV9lChoBmgJaA9DCEtXsI14AijAlIaUUpRoFUsyaBZHQL8DkSJTER91fZQoaAZoCWgPQwjJq3MMyPYnwJSGlFKUaBVLMmgWR0C/BKnCsOoYdX2UKGgGaAloD0MIA7ABEeLiJsCUhpRSlGgVSzJoFkdAvwSR3r2QGXV9lChoBmgJaA9DCKqZtRSQLivAlIaUUpRoFUsyaBZHQL8EeWK/Efl1fZQoaAZoCWgPQwhKXTKOkUBBwJSGlFKUaBVLMmgWR0C/BF/A9FF2dX2UKGgGaAloD0MIaCJseHr9MMCUhpRSlGgVSzJoFkdAvwV9r30wrXV9lChoBmgJaA9DCJdUbTfBZx/AlIaUUpRoFUsyaBZHQL8FZjS5RTF1fZQoaAZoCWgPQwjk+KHSiBdEwJSGlFKUaBVLMmgWR0C/BU1fzBhydX2UKGgGaAloD0MIHjLlQ1BVH8CUhpRSlGgVSzJoFkdAvwU0KtxMnXV9lChoBmgJaA9DCDnwarkziUXAlIaUUpRoFUsyaBZHQL8GWIF/x2B1fZQoaAZoCWgPQwj/ykqTUmAdwJSGlFKUaBVLMmgWR0C/BkCcLBsRdX2UKGgGaAloD0MI+1ksRfLtIsCUhpRSlGgVSzJoFkdAvwYoSwnpjnV9lChoBmgJaA9DCLfu5qkOiSLAlIaUUpRoFUsyaBZHQL8GDzjWCmN1fZQoaAZoCWgPQwix+47hsecowJSGlFKUaBVLMmgWR0C/B0JJwsGxdX2UKGgGaAloD0MINJ4I4jy0J8CUhpRSlGgVSzJoFkdAvwcqc3EQ5HV9lChoBmgJaA9DCDJVMCqpUx7AlIaUUpRoFUsyaBZHQL8HEg7o0Q91fZQoaAZoCWgPQwjD9ShcjyIxwJSGlFKUaBVLMmgWR0C/Bvj3mFJydX2UKGgGaAloD0MItRt9zAd0K8CUhpRSlGgVSzJoFkdAvwgtFiKBNHV9lChoBmgJaA9DCBzsTQzJsTDAlIaUUpRoFUsyaBZHQL8IFTB68g91fZQoaAZoCWgPQwh798d71YIowJSGlFKUaBVLMmgWR0C/B/zIBBAwdX2UKGgGaAloD0MIIhyz7EnII8CUhpRSlGgVSzJoFkdAvwfjp2U0N3V9lChoBmgJaA9DCKBwdmuZVCnAlIaUUpRoFUsyaBZHQL8I/sT37DV1fZQoaAZoCWgPQwilwAKYMpBCwJSGlFKUaBVLMmgWR0C/COZn6EamdX2UKGgGaAloD0MISWQfZFkwJ8CUhpRSlGgVSzJoFkdAvwjN7b+LnHV9lChoBmgJaA9DCAVQjCyZWynAlIaUUpRoFUsyaBZHQL8ItIlMRHx1fZQoaAZoCWgPQwhF8L+V7JAjwJSGlFKUaBVLMmgWR0C/ChyCBf8edX2UKGgGaAloD0MI2SQ/4leCQsCUhpRSlGgVSzJoFkdAvwoErd30PHV9lChoBmgJaA9DCGzrp/+ssSXAlIaUUpRoFUsyaBZHQL8J7Pomoit1fZQoaAZoCWgPQwjCFVCopxlEwJSGlFKUaBVLMmgWR0C/CdPQWvbHdX2UKGgGaAloD0MImUaTizH4L8CUhpRSlGgVSzJoFkdAvwuSmWMS9XV9lChoBmgJaA9DCHjsZ7EUcTHAlIaUUpRoFUsyaBZHQL8Le4Fiay91fZQoaAZoCWgPQwhr1EM0upslwJSGlFKUaBVLMmgWR0C/C2Ovt+kQdX2UKGgGaAloD0MI04iZfR7jHcCUhpRSlGgVSzJoFkdAvwtLH4oJA3V9lChoBmgJaA9DCIfe4uE9dyfAlIaUUpRoFUsyaBZHQL8NHiGWUr11fZQoaAZoCWgPQwiifazgt/EXwJSGlFKUaBVLMmgWR0C/DQcO5J9RdX2UKGgGaAloD0MI71NVaCDGLsCUhpRSlGgVSzJoFkdAvwzvTodMkHV9lChoBmgJaA9DCGlVSzrKMSzAlIaUUpRoFUsyaBZHQL8M1smv4dp1ZS4="
81
  },
82
  "ep_success_buffer": {
83
  ":type:": "<class 'collections.deque'>",
84
  ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
85
  },
86
- "_n_updates": 100000,
87
  "n_steps": 5,
88
  "gamma": 0.99,
89
  "gae_lambda": 1.0,
 
4
  ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
5
  "__module__": "stable_baselines3.common.policies",
6
  "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f49cc018b80>",
8
  "__abstractmethods__": "frozenset()",
9
+ "_abc_impl": "<_abc._abc_data object at 0x7f49cc015e80>"
10
  },
11
  "verbose": 1,
12
  "policy_kwargs": {
 
41
  "_np_random": null
42
  },
43
  "n_envs": 4,
44
+ "num_timesteps": 3000000,
45
+ "_total_timesteps": 3000000,
46
  "_num_timesteps_at_start": 0,
47
  "seed": null,
48
  "action_noise": null,
49
+ "start_time": 1679623582862520359,
50
  "learning_rate": 0.0007,
51
  "tensorboard_log": null,
52
  "lr_schedule": {
 
55
  },
56
  "_last_obs": {
57
  ":type:": "<class 'collections.OrderedDict'>",
58
+ ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAB74IP2Z9k71nwi4/B74IP2Z9k71nwi4/B74IP2Z9k71nwi4/B74IP2Z9k71nwi4/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAuIxyPwcYuD/2aHU/v+TYvxxatD/zKrq/tGIWvs4P3D9Qu88/70vTvdGq0L+q9FE/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAAAHvgg/Zn2TvWfCLj+xsow8Ph2EuxZPzzwHvgg/Zn2TvWfCLj+xsow8Ph2EuxZPzzwHvgg/Zn2TvWfCLj+xsow8Ph2EuxZPzzwHvgg/Zn2TvWfCLj+xsow8Ph2EuxZPzzyUaA5LBEsGhpRoEnSUUpR1Lg==",
59
+ "achieved_goal": "[[ 0.5341496 -0.07201652 0.68265384]\n [ 0.5341496 -0.07201652 0.68265384]\n [ 0.5341496 -0.07201652 0.68265384]\n [ 0.5341496 -0.07201652 0.68265384]]",
60
+ "desired_goal": "[[ 0.9474597 1.4382333 0.9586328 ]\n [-1.6944808 1.4089999 -1.4544357 ]\n [-0.1468609 1.7192323 1.6229038 ]\n [-0.10317218 -1.6302129 0.8201395 ]]",
61
+ "observation": "[[ 0.5341496 -0.07201652 0.68265384 0.01717505 -0.00403181 0.02530627]\n [ 0.5341496 -0.07201652 0.68265384 0.01717505 -0.00403181 0.02530627]\n [ 0.5341496 -0.07201652 0.68265384 0.01717505 -0.00403181 0.02530627]\n [ 0.5341496 -0.07201652 0.68265384 0.01717505 -0.00403181 0.02530627]]"
62
  },
63
  "_last_episode_starts": {
64
  ":type:": "<class 'numpy.ndarray'>",
 
66
  },
67
  "_last_original_obs": {
68
  ":type:": "<class 'collections.OrderedDict'>",
69
+ ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAwO+WvSgu8bxWfVc9I+KzvOXS870tV0o9SdU5PFs45b0Gyzk+tkBbPfFV7z2kuhY+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==",
70
+ "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]",
71
+ "desired_goal": "[[-0.07369947 -0.02944095 0.05260976]\n [-0.02195842 -0.11905459 0.04939954]\n [ 0.01134236 -0.1119239 0.18143854]\n [ 0.05352851 0.11686314 0.14719635]]",
72
+ "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
73
  },
74
  "_episode_num": 0,
75
  "use_sde": false,
 
77
  "_current_progress_remaining": 0.0,
78
  "ep_info_buffer": {
79
  ":type:": "<class 'collections.deque'>",
80
+ ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBRps6jwaEMCUhpRSlIwBbJRLMowBdJRHQMQ1Li9RJmN1fZQoaAZoCWgPQwiF7/0N2rsQwJSGlFKUaBVLMmgWR0DENRjdepn6dX2UKGgGaAloD0MITBdi9UeYGsCUhpRSlGgVSzJoFkdAxDUD4vexfXV9lChoBmgJaA9DCASNmUS9ABPAlIaUUpRoFUsyaBZHQMQ07mFJxvN1fZQoaAZoCWgPQwheTDPd66QPwJSGlFKUaBVLMmgWR0DENa5hz/6wdX2UKGgGaAloD0MIfQkVHF5gEMCUhpRSlGgVSzJoFkdAxDWY7aIvanV9lChoBmgJaA9DCKjhW1g3Dh7AlIaUUpRoFUsyaBZHQMQ1g9xAB1d1fZQoaAZoCWgPQwhGfZI7bKIYwJSGlFKUaBVLMmgWR0DENW5hMJyAdX2UKGgGaAloD0MIkuhlFMtND8CUhpRSlGgVSzJoFkdAxDYDBIFvAHV9lChoBmgJaA9DCJ89l6lJUBPAlIaUUpRoFUsyaBZHQMQ17VawD/51fZQoaAZoCWgPQwjajT7mA+IRwJSGlFKUaBVLMmgWR0DENdhC2MKkdX2UKGgGaAloD0MIjPUNTG4EEsCUhpRSlGgVSzJoFkdAxDXCjWTX8XV9lChoBmgJaA9DCOOMYU7Q9h3AlIaUUpRoFUsyaBZHQMQ2SiBoVVR1fZQoaAZoCWgPQwjbw14oYHsOwJSGlFKUaBVLMmgWR0DENjR13dKvdX2UKGgGaAloD0MI95Dwvb8hEsCUhpRSlGgVSzJoFkdAxDYfKtga33V9lChoBmgJaA9DCMKIfQIolhLAlIaUUpRoFUsyaBZHQMQ2CWkzoEB1fZQoaAZoCWgPQwhIG0esxacZwJSGlFKUaBVLMmgWR0DENpPg3tKJdX2UKGgGaAloD0MIgLqBAu8cIcCUhpRSlGgVSzJoFkdAxDZ+JqIrOXV9lChoBmgJaA9DCMgKfhtirBLAlIaUUpRoFUsyaBZHQMQ2aN4zJp51fZQoaAZoCWgPQwgZOKClK1gNwJSGlFKUaBVLMmgWR0DENlMgIQe4dX2UKGgGaAloD0MIqYWSyantFMCUhpRSlGgVSzJoFkdAxDbdrXUYsXV9lChoBmgJaA9DCKD83Ttq3BLAlIaUUpRoFUsyaBZHQMQ2yD15B1N1fZQoaAZoCWgPQwguAmN9AyMnwJSGlFKUaBVLMmgWR0DENrMu8K5TdX2UKGgGaAloD0MIHa7VHvZCIsCUhpRSlGgVSzJoFkdAxDadyimEXnV9lChoBmgJaA9DCMSvWMNF7hHAlIaUUpRoFUsyaBZHQMQ3KllTWG11fZQoaAZoCWgPQwhuFcRA1+4awJSGlFKUaBVLMmgWR0DENxSWkadddX2UKGgGaAloD0MIN+Fembf6HsCUhpRSlGgVSzJoFkdAxDb/SP2f03V9lChoBmgJaA9DCK2E7pI4yxLAlIaUUpRoFUsyaBZHQMQ26ZTyaux1fZQoaAZoCWgPQwh5PgPqzTgTwJSGlFKUaBVLMmgWR0DEN3SoqCpWdX2UKGgGaAloD0MIRQ2mYfhYEsCUhpRSlGgVSzJoFkdAxDde53C9AXV9lChoBmgJaA9DCCcz3lZ6/RPAlIaUUpRoFUsyaBZHQMQ3SaC17Y11fZQoaAZoCWgPQwjQK556pAEMwJSGlFKUaBVLMmgWR0DENzQgX/HYdX2UKGgGaAloD0MIcyuE1VjqIMCUhpRSlGgVSzJoFkdAxDe9sVLzw3V9lChoBmgJaA9DCEEOSphpCxXAlIaUUpRoFUsyaBZHQMQ3p/4yoGZ1fZQoaAZoCWgPQwjja88sCQAQwJSGlFKUaBVLMmgWR0DEN5K8pTdddX2UKGgGaAloD0MI4dBbPLz/IcCUhpRSlGgVSzJoFkdAxDd9DF6zFHV9lChoBmgJaA9DCMyZ7Qp9wBDAlIaUUpRoFUsyaBZHQMQ4BuyE+Pl1fZQoaAZoCWgPQwjZeoZwzBIRwJSGlFKUaBVLMmgWR0DEN/FGLDQ7dX2UKGgGaAloD0MItmRVhJtEJMCUhpRSlGgVSzJoFkdAxDfcAQQL/nV9lChoBmgJaA9DCBQJpppZWxXAlIaUUpRoFUsyaBZHQMQ3xlEJBxB1fZQoaAZoCWgPQwiE2QQYlt8QwJSGlFKUaBVLMmgWR0DEOF1w5vLpdX2UKGgGaAloD0MIAWn/A6xlE8CUhpRSlGgVSzJoFkdAxDhHr5ZbIXV9lChoBmgJaA9DCKFmSBXFuxLAlIaUUpRoFUsyaBZHQMQ4MmwiaAp1fZQoaAZoCWgPQwh3hNOCFy0SwJSGlFKUaBVLMmgWR0DEOBzXjENwdX2UKGgGaAloD0MItg4O9iYmDMCUhpRSlGgVSzJoFkdAxDim/dqL0nV9lChoBmgJaA9DCOgWuhKBOhHAlIaUUpRoFUsyaBZHQMQ4kXj2i+N1fZQoaAZoCWgPQwjKMsSxLn4TwJSGlFKUaBVLMmgWR0DEOHyPU8V6dX2UKGgGaAloD0MIdQDEXb0aE8CUhpRSlGgVSzJoFkdAxDhm+i8Fp3V9lChoBmgJaA9DCFmLTwEwPhDAlIaUUpRoFUsyaBZHQMQ48lbFCLN1fZQoaAZoCWgPQwhF8SprmwINwJSGlFKUaBVLMmgWR0DEONy4lQdkdX2UKGgGaAloD0MIGv1oOGXuG8CUhpRSlGgVSzJoFkdAxDjHc9GI9HV9lChoBmgJaA9DCHhCrz+JXxXAlIaUUpRoFUsyaBZHQMQ4scYyfth1fZQoaAZoCWgPQwgujPSidu8hwJSGlFKUaBVLMmgWR0DEOTxXU6PsdX2UKGgGaAloD0MIlufB3VlbDcCUhpRSlGgVSzJoFkdAxDkmqBEroXV9lChoBmgJaA9DCHXIzXADng7AlIaUUpRoFUsyaBZHQMQ5EYoqkM11fZQoaAZoCWgPQwiVJxB2ilUQwJSGlFKUaBVLMmgWR0DEOPvRoh6jdX2UKGgGaAloD0MIptb7jXbcFMCUhpRSlGgVSzJoFkdAxDmHe9i+c3V9lChoBmgJaA9DCDp0et6N5RDAlIaUUpRoFUsyaBZHQMQ5cdilSCR1fZQoaAZoCWgPQwjJrrSM1LsPwJSGlFKUaBVLMmgWR0DEOVyiEg4fdX2UKGgGaAloD0MIFr8prFTwD8CUhpRSlGgVSzJoFkdAxDlG/hVENXV9lChoBmgJaA9DCO4iTFEuDQrAlIaUUpRoFUsyaBZHQMQ50uc2BJ91fZQoaAZoCWgPQwjYSuguiWMTwJSGlFKUaBVLMmgWR0DEOb0qtozvdX2UKGgGaAloD0MI549pbRpbEsCUhpRSlGgVSzJoFkdAxDmoQOnVG3V9lChoBmgJaA9DCIOKql/phCDAlIaUUpRoFUsyaBZHQMQ5koWpIc11fZQoaAZoCWgPQwhdNGQ8SnUWwJSGlFKUaBVLMmgWR0DEOhyAc1fmdX2UKGgGaAloD0MI3gIJih9DEcCUhpRSlGgVSzJoFkdAxDoGvysjmnV9lChoBmgJaA9DCA1S8BRydRHAlIaUUpRoFUsyaBZHQMQ58XRoh6l1fZQoaAZoCWgPQwgGgCpu3OIOwJSGlFKUaBVLMmgWR0DEOdu4qgAZdX2UKGgGaAloD0MISyNm9nmsEMCUhpRSlGgVSzJoFkdAxDph7zkIX3V9lChoBmgJaA9DCHnKarqemBTAlIaUUpRoFUsyaBZHQMQ6TCt7rs11fZQoaAZoCWgPQwiNlgM91JYhwJSGlFKUaBVLMmgWR0DEOjbe2uxKdX2UKGgGaAloD0MI8ItLVdryEcCUhpRSlGgVSzJoFkdAxDohIHTqjnV9lChoBmgJaA9DCH/ZPXlYmBPAlIaUUpRoFUsyaBZHQMQ6rJE6T4d1fZQoaAZoCWgPQwiet7HZkcoPwJSGlFKUaBVLMmgWR0DEOpbyz5XVdX2UKGgGaAloD0MI29yYnrCEFMCUhpRSlGgVSzJoFkdAxDqBpdrwfHV9lChoBmgJaA9DCLucEhCTABjAlIaUUpRoFUsyaBZHQMQ6a+1rqMZ1fZQoaAZoCWgPQwjg88MI4fEOwJSGlFKUaBVLMmgWR0DEOxk2UB4mdX2UKGgGaAloD0MIkxywq8kTHcCUhpRSlGgVSzJoFkdAxDsDwBHTZ3V9lChoBmgJaA9DCI/8wcBzLxPAlIaUUpRoFUsyaBZHQMQ67qR+z+p1fZQoaAZoCWgPQwhAbOnRVM8UwJSGlFKUaBVLMmgWR0DEOtkS26TXdX2UKGgGaAloD0MIgzKNJhfDD8CUhpRSlGgVSzJoFkdAxDuLk8zQ/3V9lChoBmgJaA9DCPsFu2HbchLAlIaUUpRoFUsyaBZHQMQ7dgYgq3F1fZQoaAZoCWgPQwgN424QrcUTwJSGlFKUaBVLMmgWR0DEO2DrJKaodX2UKGgGaAloD0MI+7FJfsQPDMCUhpRSlGgVSzJoFkdAxDtLYQJ5V3V9lChoBmgJaA9DCAQ6kzZVFw/AlIaUUpRoFUsyaBZHQMQ7/9m6Gxl1fZQoaAZoCWgPQwjhJTj1gXQTwJSGlFKUaBVLMmgWR0DEO+p1X/5tdX2UKGgGaAloD0MIdc3km20OEcCUhpRSlGgVSzJoFkdAxDvVZSvTw3V9lChoBmgJaA9DCGco7niTXxjAlIaUUpRoFUsyaBZHQMQ7wA62fCh1fZQoaAZoCWgPQwhLOzWXGzwbwJSGlFKUaBVLMmgWR0DEPHcifQKKdX2UKGgGaAloD0MI1hwgmKNnEMCUhpRSlGgVSzJoFkdAxDxhmGucMHV9lChoBmgJaA9DCNYcIJij1xPAlIaUUpRoFUsyaBZHQMQ8TIjnmq51fZQoaAZoCWgPQwjBNuLJbkYQwJSGlFKUaBVLMmgWR0DEPDdR+BpYdX2UKGgGaAloD0MIrz+Jz52gE8CUhpRSlGgVSzJoFkdAxDzxkZJkG3V9lChoBmgJaA9DCOqXiLfOnw/AlIaUUpRoFUsyaBZHQMQ83FCTlkp1fZQoaAZoCWgPQwjWO9wODbsVwJSGlFKUaBVLMmgWR0DEPMc5IYm+dX2UKGgGaAloD0MIx/DYz2LpGsCUhpRSlGgVSzJoFkdAxDyxsyBTXXV9lChoBmgJaA9DCLosJjYf5yLAlIaUUpRoFUsyaBZHQMQ9amqPwNN1fZQoaAZoCWgPQwgjZYuk3QgOwJSGlFKUaBVLMmgWR0DEPVTx7RfGdX2UKGgGaAloD0MI8x38xAGMIsCUhpRSlGgVSzJoFkdAxD0/10T103V9lChoBmgJaA9DCL7dkhywKxXAlIaUUpRoFUsyaBZHQMQ9Kk+gUUR1ZS4="
81
  },
82
  "ep_success_buffer": {
83
  ":type:": "<class 'collections.deque'>",
84
  ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
85
  },
86
+ "_n_updates": 150000,
87
  "n_steps": 5,
88
  "gamma": 0.99,
89
  "gae_lambda": 1.0,
a2c-PandaReachDense-v2/policy.optimizer.pth CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:beeb2ddda547e663f08e62f1cb93525e37d30ee05654f749485f0a083139008d
3
- size 44734
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:244e929bd8dfd4901abd4d852ad380981073c8dfe813c0b2d73c27060758ade2
3
+ size 44606
a2c-PandaReachDense-v2/policy.pth CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:27c812bc53988e7209b95922d275f9363af6dbc750e0e33b015a5b5038e46bb2
3
- size 46014
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:315a8bd1d2f807a8c6de895e3c4baedbb8ee7214e10f4f33c935d3a2eba056ea
3
+ size 45886
a2c-PandaReachDense-v2/system_info.txt CHANGED
@@ -2,6 +2,6 @@
2
  - Python: 3.9.16
3
  - Stable-Baselines3: 1.7.0
4
  - PyTorch: 1.13.1+cu116
5
- - GPU Enabled: True
6
  - Numpy: 1.22.4
7
  - Gym: 0.21.0
 
2
  - Python: 3.9.16
3
  - Stable-Baselines3: 1.7.0
4
  - PyTorch: 1.13.1+cu116
5
+ - GPU Enabled: False
6
  - Numpy: 1.22.4
7
  - Gym: 0.21.0
config.json CHANGED
@@ -1 +1 @@
1
- {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f5a1c229dc0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f5a1c22b900>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 2000000, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1679556774889551112, "learning_rate": 0.0007, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/RvAGjbi6x4WUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA/FBvQKlJbcDQuwBA/FBvQKlJbcDQuwBA/FBvQKlJbcDQuwBA/FBvQKlJbcDQuwBAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAKsMVwQ1Y4sAAACBBAAAgwfBWH8EjUuXAAAAgQQAAIEFr/RZBAAAgQV2gFUBkWT3AlGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAAD8UG9AqUltwNC7AECK5uQ+ZkQjvn8BSD78UG9AqUltwNC7AECK5uQ+ZkQjvn8BSD78UG9AqUltwNC7AECK5uQ+ZkQjvn8BSD78UG9AqUltwNC7AECK5uQ+ZkQjvn8BSD6UaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.739318 -3.7076209 2.0114632]\n [ 3.739318 -3.7076209 2.0114632]\n [ 3.739318 -3.7076209 2.0114632]\n [ 3.739318 -3.7076209 2.0114632]]", "desired_goal": "[[ -9.360147 -7.0732484 10. ]\n [-10. -9.958725 -7.1662765]\n [ 10. 10. 9.43687 ]\n [ 10. 2.3379128 -2.958581 ]]", "observation": "[[ 3.739318 -3.7076209 2.0114632 0.44707137 -0.1594406 0.1953182 ]\n [ 3.739318 -3.7076209 2.0114632 0.44707137 -0.1594406 0.1953182 ]\n [ 3.739318 -3.7076209 2.0114632 0.44707137 -0.1594406 0.1953182 ]\n [ 3.739318 -3.7076209 2.0114632 0.44707137 -0.1594406 0.1953182 ]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA11dJOVaeRag6yX0611dJOVaeRag6yX0611dJOVaeRag6yX0611dJOVaeRag6yX06lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAA1RZoPy/ijL/q5Ei/wC1iv+T1Dj/4u7E/IciJP4IVTr/23vs+4r6MvyFyrD9PPIy/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADXV0k5Vp5FqDrJfToAAAAAAAAAgAAAAADXV0k5Vp5FqDrJfToAAAAAAAAAgAAAAADXV0k5Vp5FqDrJfToAAAAAAAAAgAAAAADXV0k5Vp5FqDrJfToAAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 1.92015767e-04 -1.09700304e-14 9.68116918e-04]\n [ 1.92015767e-04 -1.09700304e-14 9.68116918e-04]\n [ 1.92015767e-04 -1.09700304e-14 9.68116918e-04]\n [ 1.92015767e-04 -1.09700304e-14 9.68116918e-04]]", "desired_goal": "[[ 0.9065984 -1.1006526 -0.78474295]\n [-0.8835106 0.5584395 1.3885489 ]\n [ 1.07642 -0.8050157 0.49193543]\n [-1.0995753 1.3472329 -1.0955905 ]]", "observation": "[[ 1.92015767e-04 -1.09700304e-14 9.68116918e-04 0.00000000e+00\n -0.00000000e+00 0.00000000e+00]\n [ 1.92015767e-04 -1.09700304e-14 9.68116918e-04 0.00000000e+00\n -0.00000000e+00 0.00000000e+00]\n [ 1.92015767e-04 -1.09700304e-14 9.68116918e-04 0.00000000e+00\n -0.00000000e+00 0.00000000e+00]\n [ 1.92015767e-04 -1.09700304e-14 9.68116918e-04 0.00000000e+00\n -0.00000000e+00 0.00000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIpkQSvYyaMcCUhpRSlIwBbJRLMowBdJRHQL70mTyauwJ1fZQoaAZoCWgPQwgPJzCd1llEwJSGlFKUaBVLMmgWR0C+9IDujRD1dX2UKGgGaAloD0MIUoAomDFjRcCUhpRSlGgVSzJoFkdAvvRoF8ohIXV9lChoBmgJaA9DCKSMuAA0EijAlIaUUpRoFUsyaBZHQL70TtuUD+11fZQoaAZoCWgPQwggCmZMwTItwJSGlFKUaBVLMmgWR0C+9Xq4hEBsdX2UKGgGaAloD0MIUaVmD7QCJsCUhpRSlGgVSzJoFkdAvvViwljVhHV9lChoBmgJaA9DCBNkBFQ4QhTAlIaUUpRoFUsyaBZHQL71Sjghr311fZQoaAZoCWgPQwhWRiOfV4wdwJSGlFKUaBVLMmgWR0C+9TDgqEvkdX2UKGgGaAloD0MI0/nwLEFWFsCUhpRSlGgVSzJoFkdAvvZiuHN5dHV9lChoBmgJaA9DCAuallgZwTDAlIaUUpRoFUsyaBZHQL72Szjm0Vt1fZQoaAZoCWgPQwgJNUOqKJ4uwJSGlFKUaBVLMmgWR0C+9jLIxQBQdX2UKGgGaAloD0MIWrqCbcQPNMCUhpRSlGgVSzJoFkdAvvYZmapgkXV9lChoBmgJaA9DCJeMYyR7zETAlIaUUpRoFUsyaBZHQL73Ke9i+cp1fZQoaAZoCWgPQwjCobd4eB8qwJSGlFKUaBVLMmgWR0C+9xH003wTdX2UKGgGaAloD0MITdh+MsbvLsCUhpRSlGgVSzJoFkdAvvb5/iHZb3V9lChoBmgJaA9DCIYfnE8dUyPAlIaUUpRoFUsyaBZHQL724V1Oj7B1fZQoaAZoCWgPQwhNTu0MU/smwJSGlFKUaBVLMmgWR0C++AgiRnvldX2UKGgGaAloD0MI9FDbhlHaQ8CUhpRSlGgVSzJoFkdAvvfwL0BfbHV9lChoBmgJaA9DCGyU9ZuJKSzAlIaUUpRoFUsyaBZHQL732BqsU7F1fZQoaAZoCWgPQwjCoiJOJ8ElwJSGlFKUaBVLMmgWR0C+978pkPMCdX2UKGgGaAloD0MIGR2QhH2bKcCUhpRSlGgVSzJoFkdAvvjzOqvNeXV9lChoBmgJaA9DCH7ja88skSTAlIaUUpRoFUsyaBZHQL7422K2rn11fZQoaAZoCWgPQwjfwyXHnWorwJSGlFKUaBVLMmgWR0C++ML30wrUdX2UKGgGaAloD0MIVydnKO6IJMCUhpRSlGgVSzJoFkdAvvipvqC6H3V9lChoBmgJaA9DCKwahLndH0XAlIaUUpRoFUsyaBZHQL76KjOcDr91fZQoaAZoCWgPQwgW+fVDbCAowJSGlFKUaBVLMmgWR0C++hLzXjEOdX2UKGgGaAloD0MIiujX1k+PJMCUhpRSlGgVSzJoFkdAvvn7LQokRnV9lChoBmgJaA9DCA8qcR3jgijAlIaUUpRoFUsyaBZHQL754p9JBgN1fZQoaAZoCWgPQwjX2ZB/ZqBCwJSGlFKUaBVLMmgWR0C++1dK28ZldX2UKGgGaAloD0MIF7fRAN5+RsCUhpRSlGgVSzJoFkdAvvs/d/J/5XV9lChoBmgJaA9DCLFR1m8m5iHAlIaUUpRoFUsyaBZHQL77J8ejmCB1fZQoaAZoCWgPQwiDbcST3eQlwJSGlFKUaBVLMmgWR0C++w85n13/dX2UKGgGaAloD0MIWyTtRh+DFcCUhpRSlGgVSzJoFkdAvvzergflqHV9lChoBmgJaA9DCCfcK/NWHS7AlIaUUpRoFUsyaBZHQL78x4hEBsB1fZQoaAZoCWgPQwiloxzMJtArwJSGlFKUaBVLMmgWR0C+/K+aa1CxdX2UKGgGaAloD0MITFRvDWxlFcCUhpRSlGgVSzJoFkdAvvyW/h2nsXV9lChoBmgJaA9DCFLWbyamMy3AlIaUUpRoFUsyaBZHQL7+cBnBciZ1fZQoaAZoCWgPQwg/cJUnEGYpwJSGlFKUaBVLMmgWR0C+/lj4HoovdX2UKGgGaAloD0MIur2kMVqnGMCUhpRSlGgVSzJoFkdAvv5CEf1YhnV9lChoBmgJaA9DCArzHmeakDDAlIaUUpRoFUsyaBZHQL7+KZrpJPJ1fZQoaAZoCWgPQwiK5ZZWQwIkwJSGlFKUaBVLMmgWR0C+/4altTDPdX2UKGgGaAloD0MIBYwubw7PJ8CUhpRSlGgVSzJoFkdAvv9uxC6YmnV9lChoBmgJaA9DCKT8pNqn0xPAlIaUUpRoFUsyaBZHQL7/Vk9U0el1fZQoaAZoCWgPQwgew2M/i19EwJSGlFKUaBVLMmgWR0C+/zyg9NeudX2UKGgGaAloD0MIjIaMR6k0I8CUhpRSlGgVSzJoFkdAvwBpWcSXdHV9lChoBmgJaA9DCAySPq2ihyvAlIaUUpRoFUsyaBZHQL8AUW8RL9N1fZQoaAZoCWgPQwgsu2Bwzb0vwJSGlFKUaBVLMmgWR0C/ADjvd/KAdX2UKGgGaAloD0MIwcqhRbbrIsCUhpRSlGgVSzJoFkdAvwAfrLQokXV9lChoBmgJaA9DCFftmpDW2CDAlIaUUpRoFUsyaBZHQL8BTpNsWO91fZQoaAZoCWgPQwiXrfVFQssvwJSGlFKUaBVLMmgWR0C/ATattALRdX2UKGgGaAloD0MILNUFvMxgH8CUhpRSlGgVSzJoFkdAvwEd7fHgg3V9lChoBmgJaA9DCFm/mZguRCHAlIaUUpRoFUsyaBZHQL8BBLvkRz11fZQoaAZoCWgPQwhweawZGWwnwJSGlFKUaBVLMmgWR0C/AjRjz7MxdX2UKGgGaAloD0MI+Z0mM97mGMCUhpRSlGgVSzJoFkdAvwIcgjhUBHV9lChoBmgJaA9DCKYol8YvIDDAlIaUUpRoFUsyaBZHQL8CA/5Lytp1fZQoaAZoCWgPQwhEozuInWkowJSGlFKUaBVLMmgWR0C/AerA57w8dX2UKGgGaAloD0MIf0+sU+UDKMCUhpRSlGgVSzJoFkdAvwMLmLcbi3V9lChoBmgJaA9DCKg2OBH9PEXAlIaUUpRoFUsyaBZHQL8C80v4/NZ1fZQoaAZoCWgPQwh80okEU/0fwJSGlFKUaBVLMmgWR0C/AtrFGXoldX2UKGgGaAloD0MIW7BUF/A6J8CUhpRSlGgVSzJoFkdAvwLBkf9xZXV9lChoBmgJaA9DCBMsDmd+nSrAlIaUUpRoFUsyaBZHQL8D2zUI9kl1fZQoaAZoCWgPQwg+esN95NJCwJSGlFKUaBVLMmgWR0C/A8LmZE2HdX2UKGgGaAloD0MIn6wYrg64KcCUhpRSlGgVSzJoFkdAvwOqXE61cHV9lChoBmgJaA9DCEtXsI14AijAlIaUUpRoFUsyaBZHQL8DkSJTER91fZQoaAZoCWgPQwjJq3MMyPYnwJSGlFKUaBVLMmgWR0C/BKnCsOoYdX2UKGgGaAloD0MIA7ABEeLiJsCUhpRSlGgVSzJoFkdAvwSR3r2QGXV9lChoBmgJaA9DCKqZtRSQLivAlIaUUpRoFUsyaBZHQL8EeWK/Efl1fZQoaAZoCWgPQwhKXTKOkUBBwJSGlFKUaBVLMmgWR0C/BF/A9FF2dX2UKGgGaAloD0MIaCJseHr9MMCUhpRSlGgVSzJoFkdAvwV9r30wrXV9lChoBmgJaA9DCJdUbTfBZx/AlIaUUpRoFUsyaBZHQL8FZjS5RTF1fZQoaAZoCWgPQwjk+KHSiBdEwJSGlFKUaBVLMmgWR0C/BU1fzBhydX2UKGgGaAloD0MIHjLlQ1BVH8CUhpRSlGgVSzJoFkdAvwU0KtxMnXV9lChoBmgJaA9DCDnwarkziUXAlIaUUpRoFUsyaBZHQL8GWIF/x2B1fZQoaAZoCWgPQwj/ykqTUmAdwJSGlFKUaBVLMmgWR0C/BkCcLBsRdX2UKGgGaAloD0MI+1ksRfLtIsCUhpRSlGgVSzJoFkdAvwYoSwnpjnV9lChoBmgJaA9DCLfu5qkOiSLAlIaUUpRoFUsyaBZHQL8GDzjWCmN1fZQoaAZoCWgPQwix+47hsecowJSGlFKUaBVLMmgWR0C/B0JJwsGxdX2UKGgGaAloD0MINJ4I4jy0J8CUhpRSlGgVSzJoFkdAvwcqc3EQ5HV9lChoBmgJaA9DCDJVMCqpUx7AlIaUUpRoFUsyaBZHQL8HEg7o0Q91fZQoaAZoCWgPQwjD9ShcjyIxwJSGlFKUaBVLMmgWR0C/Bvj3mFJydX2UKGgGaAloD0MItRt9zAd0K8CUhpRSlGgVSzJoFkdAvwgtFiKBNHV9lChoBmgJaA9DCBzsTQzJsTDAlIaUUpRoFUsyaBZHQL8IFTB68g91fZQoaAZoCWgPQwh798d71YIowJSGlFKUaBVLMmgWR0C/B/zIBBAwdX2UKGgGaAloD0MIIhyz7EnII8CUhpRSlGgVSzJoFkdAvwfjp2U0N3V9lChoBmgJaA9DCKBwdmuZVCnAlIaUUpRoFUsyaBZHQL8I/sT37DV1fZQoaAZoCWgPQwilwAKYMpBCwJSGlFKUaBVLMmgWR0C/COZn6EamdX2UKGgGaAloD0MISWQfZFkwJ8CUhpRSlGgVSzJoFkdAvwjN7b+LnHV9lChoBmgJaA9DCAVQjCyZWynAlIaUUpRoFUsyaBZHQL8ItIlMRHx1fZQoaAZoCWgPQwhF8L+V7JAjwJSGlFKUaBVLMmgWR0C/ChyCBf8edX2UKGgGaAloD0MI2SQ/4leCQsCUhpRSlGgVSzJoFkdAvwoErd30PHV9lChoBmgJaA9DCGzrp/+ssSXAlIaUUpRoFUsyaBZHQL8J7Pomoit1fZQoaAZoCWgPQwjCFVCopxlEwJSGlFKUaBVLMmgWR0C/CdPQWvbHdX2UKGgGaAloD0MImUaTizH4L8CUhpRSlGgVSzJoFkdAvwuSmWMS9XV9lChoBmgJaA9DCHjsZ7EUcTHAlIaUUpRoFUsyaBZHQL8Le4Fiay91fZQoaAZoCWgPQwhr1EM0upslwJSGlFKUaBVLMmgWR0C/C2Ovt+kQdX2UKGgGaAloD0MI04iZfR7jHcCUhpRSlGgVSzJoFkdAvwtLH4oJA3V9lChoBmgJaA9DCIfe4uE9dyfAlIaUUpRoFUsyaBZHQL8NHiGWUr11fZQoaAZoCWgPQwiifazgt/EXwJSGlFKUaBVLMmgWR0C/DQcO5J9RdX2UKGgGaAloD0MI71NVaCDGLsCUhpRSlGgVSzJoFkdAvwzvTodMkHV9lChoBmgJaA9DCGlVSzrKMSzAlIaUUpRoFUsyaBZHQL8M1smv4dp1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 100000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.9.16", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f49cc018b80>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f49cc015e80>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 3000000, "_total_timesteps": 3000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1679623582862520359, "learning_rate": 0.0007, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/RvAGjbi6x4WUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAB74IP2Z9k71nwi4/B74IP2Z9k71nwi4/B74IP2Z9k71nwi4/B74IP2Z9k71nwi4/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAuIxyPwcYuD/2aHU/v+TYvxxatD/zKrq/tGIWvs4P3D9Qu88/70vTvdGq0L+q9FE/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAAAHvgg/Zn2TvWfCLj+xsow8Ph2EuxZPzzwHvgg/Zn2TvWfCLj+xsow8Ph2EuxZPzzwHvgg/Zn2TvWfCLj+xsow8Ph2EuxZPzzwHvgg/Zn2TvWfCLj+xsow8Ph2EuxZPzzyUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 0.5341496 -0.07201652 0.68265384]\n [ 0.5341496 -0.07201652 0.68265384]\n [ 0.5341496 -0.07201652 0.68265384]\n [ 0.5341496 -0.07201652 0.68265384]]", "desired_goal": "[[ 0.9474597 1.4382333 0.9586328 ]\n [-1.6944808 1.4089999 -1.4544357 ]\n [-0.1468609 1.7192323 1.6229038 ]\n [-0.10317218 -1.6302129 0.8201395 ]]", "observation": "[[ 0.5341496 -0.07201652 0.68265384 0.01717505 -0.00403181 0.02530627]\n [ 0.5341496 -0.07201652 0.68265384 0.01717505 -0.00403181 0.02530627]\n [ 0.5341496 -0.07201652 0.68265384 0.01717505 -0.00403181 0.02530627]\n [ 0.5341496 -0.07201652 0.68265384 0.01717505 -0.00403181 0.02530627]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAwO+WvSgu8bxWfVc9I+KzvOXS870tV0o9SdU5PFs45b0Gyzk+tkBbPfFV7z2kuhY+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[-0.07369947 -0.02944095 0.05260976]\n [-0.02195842 -0.11905459 0.04939954]\n [ 0.01134236 -0.1119239 0.18143854]\n [ 0.05352851 0.11686314 0.14719635]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBRps6jwaEMCUhpRSlIwBbJRLMowBdJRHQMQ1Li9RJmN1fZQoaAZoCWgPQwiF7/0N2rsQwJSGlFKUaBVLMmgWR0DENRjdepn6dX2UKGgGaAloD0MITBdi9UeYGsCUhpRSlGgVSzJoFkdAxDUD4vexfXV9lChoBmgJaA9DCASNmUS9ABPAlIaUUpRoFUsyaBZHQMQ07mFJxvN1fZQoaAZoCWgPQwheTDPd66QPwJSGlFKUaBVLMmgWR0DENa5hz/6wdX2UKGgGaAloD0MIfQkVHF5gEMCUhpRSlGgVSzJoFkdAxDWY7aIvanV9lChoBmgJaA9DCKjhW1g3Dh7AlIaUUpRoFUsyaBZHQMQ1g9xAB1d1fZQoaAZoCWgPQwhGfZI7bKIYwJSGlFKUaBVLMmgWR0DENW5hMJyAdX2UKGgGaAloD0MIkuhlFMtND8CUhpRSlGgVSzJoFkdAxDYDBIFvAHV9lChoBmgJaA9DCJ89l6lJUBPAlIaUUpRoFUsyaBZHQMQ17VawD/51fZQoaAZoCWgPQwjajT7mA+IRwJSGlFKUaBVLMmgWR0DENdhC2MKkdX2UKGgGaAloD0MIjPUNTG4EEsCUhpRSlGgVSzJoFkdAxDXCjWTX8XV9lChoBmgJaA9DCOOMYU7Q9h3AlIaUUpRoFUsyaBZHQMQ2SiBoVVR1fZQoaAZoCWgPQwjbw14oYHsOwJSGlFKUaBVLMmgWR0DENjR13dKvdX2UKGgGaAloD0MI95Dwvb8hEsCUhpRSlGgVSzJoFkdAxDYfKtga33V9lChoBmgJaA9DCMKIfQIolhLAlIaUUpRoFUsyaBZHQMQ2CWkzoEB1fZQoaAZoCWgPQwhIG0esxacZwJSGlFKUaBVLMmgWR0DENpPg3tKJdX2UKGgGaAloD0MIgLqBAu8cIcCUhpRSlGgVSzJoFkdAxDZ+JqIrOXV9lChoBmgJaA9DCMgKfhtirBLAlIaUUpRoFUsyaBZHQMQ2aN4zJp51fZQoaAZoCWgPQwgZOKClK1gNwJSGlFKUaBVLMmgWR0DENlMgIQe4dX2UKGgGaAloD0MIqYWSyantFMCUhpRSlGgVSzJoFkdAxDbdrXUYsXV9lChoBmgJaA9DCKD83Ttq3BLAlIaUUpRoFUsyaBZHQMQ2yD15B1N1fZQoaAZoCWgPQwguAmN9AyMnwJSGlFKUaBVLMmgWR0DENrMu8K5TdX2UKGgGaAloD0MIHa7VHvZCIsCUhpRSlGgVSzJoFkdAxDadyimEXnV9lChoBmgJaA9DCMSvWMNF7hHAlIaUUpRoFUsyaBZHQMQ3KllTWG11fZQoaAZoCWgPQwhuFcRA1+4awJSGlFKUaBVLMmgWR0DENxSWkadddX2UKGgGaAloD0MIN+Fembf6HsCUhpRSlGgVSzJoFkdAxDb/SP2f03V9lChoBmgJaA9DCK2E7pI4yxLAlIaUUpRoFUsyaBZHQMQ26ZTyaux1fZQoaAZoCWgPQwh5PgPqzTgTwJSGlFKUaBVLMmgWR0DEN3SoqCpWdX2UKGgGaAloD0MIRQ2mYfhYEsCUhpRSlGgVSzJoFkdAxDde53C9AXV9lChoBmgJaA9DCCcz3lZ6/RPAlIaUUpRoFUsyaBZHQMQ3SaC17Y11fZQoaAZoCWgPQwjQK556pAEMwJSGlFKUaBVLMmgWR0DENzQgX/HYdX2UKGgGaAloD0MIcyuE1VjqIMCUhpRSlGgVSzJoFkdAxDe9sVLzw3V9lChoBmgJaA9DCEEOSphpCxXAlIaUUpRoFUsyaBZHQMQ3p/4yoGZ1fZQoaAZoCWgPQwjja88sCQAQwJSGlFKUaBVLMmgWR0DEN5K8pTdddX2UKGgGaAloD0MI4dBbPLz/IcCUhpRSlGgVSzJoFkdAxDd9DF6zFHV9lChoBmgJaA9DCMyZ7Qp9wBDAlIaUUpRoFUsyaBZHQMQ4BuyE+Pl1fZQoaAZoCWgPQwjZeoZwzBIRwJSGlFKUaBVLMmgWR0DEN/FGLDQ7dX2UKGgGaAloD0MItmRVhJtEJMCUhpRSlGgVSzJoFkdAxDfcAQQL/nV9lChoBmgJaA9DCBQJpppZWxXAlIaUUpRoFUsyaBZHQMQ3xlEJBxB1fZQoaAZoCWgPQwiE2QQYlt8QwJSGlFKUaBVLMmgWR0DEOF1w5vLpdX2UKGgGaAloD0MIAWn/A6xlE8CUhpRSlGgVSzJoFkdAxDhHr5ZbIXV9lChoBmgJaA9DCKFmSBXFuxLAlIaUUpRoFUsyaBZHQMQ4MmwiaAp1fZQoaAZoCWgPQwh3hNOCFy0SwJSGlFKUaBVLMmgWR0DEOBzXjENwdX2UKGgGaAloD0MItg4O9iYmDMCUhpRSlGgVSzJoFkdAxDim/dqL0nV9lChoBmgJaA9DCOgWuhKBOhHAlIaUUpRoFUsyaBZHQMQ4kXj2i+N1fZQoaAZoCWgPQwjKMsSxLn4TwJSGlFKUaBVLMmgWR0DEOHyPU8V6dX2UKGgGaAloD0MIdQDEXb0aE8CUhpRSlGgVSzJoFkdAxDhm+i8Fp3V9lChoBmgJaA9DCFmLTwEwPhDAlIaUUpRoFUsyaBZHQMQ48lbFCLN1fZQoaAZoCWgPQwhF8SprmwINwJSGlFKUaBVLMmgWR0DEONy4lQdkdX2UKGgGaAloD0MIGv1oOGXuG8CUhpRSlGgVSzJoFkdAxDjHc9GI9HV9lChoBmgJaA9DCHhCrz+JXxXAlIaUUpRoFUsyaBZHQMQ4scYyfth1fZQoaAZoCWgPQwgujPSidu8hwJSGlFKUaBVLMmgWR0DEOTxXU6PsdX2UKGgGaAloD0MIlufB3VlbDcCUhpRSlGgVSzJoFkdAxDkmqBEroXV9lChoBmgJaA9DCHXIzXADng7AlIaUUpRoFUsyaBZHQMQ5EYoqkM11fZQoaAZoCWgPQwiVJxB2ilUQwJSGlFKUaBVLMmgWR0DEOPvRoh6jdX2UKGgGaAloD0MIptb7jXbcFMCUhpRSlGgVSzJoFkdAxDmHe9i+c3V9lChoBmgJaA9DCDp0et6N5RDAlIaUUpRoFUsyaBZHQMQ5cdilSCR1fZQoaAZoCWgPQwjJrrSM1LsPwJSGlFKUaBVLMmgWR0DEOVyiEg4fdX2UKGgGaAloD0MIFr8prFTwD8CUhpRSlGgVSzJoFkdAxDlG/hVENXV9lChoBmgJaA9DCO4iTFEuDQrAlIaUUpRoFUsyaBZHQMQ50uc2BJ91fZQoaAZoCWgPQwjYSuguiWMTwJSGlFKUaBVLMmgWR0DEOb0qtozvdX2UKGgGaAloD0MI549pbRpbEsCUhpRSlGgVSzJoFkdAxDmoQOnVG3V9lChoBmgJaA9DCIOKql/phCDAlIaUUpRoFUsyaBZHQMQ5koWpIc11fZQoaAZoCWgPQwhdNGQ8SnUWwJSGlFKUaBVLMmgWR0DEOhyAc1fmdX2UKGgGaAloD0MI3gIJih9DEcCUhpRSlGgVSzJoFkdAxDoGvysjmnV9lChoBmgJaA9DCA1S8BRydRHAlIaUUpRoFUsyaBZHQMQ58XRoh6l1fZQoaAZoCWgPQwgGgCpu3OIOwJSGlFKUaBVLMmgWR0DEOdu4qgAZdX2UKGgGaAloD0MISyNm9nmsEMCUhpRSlGgVSzJoFkdAxDph7zkIX3V9lChoBmgJaA9DCHnKarqemBTAlIaUUpRoFUsyaBZHQMQ6TCt7rs11fZQoaAZoCWgPQwiNlgM91JYhwJSGlFKUaBVLMmgWR0DEOjbe2uxKdX2UKGgGaAloD0MI8ItLVdryEcCUhpRSlGgVSzJoFkdAxDohIHTqjnV9lChoBmgJaA9DCH/ZPXlYmBPAlIaUUpRoFUsyaBZHQMQ6rJE6T4d1fZQoaAZoCWgPQwiet7HZkcoPwJSGlFKUaBVLMmgWR0DEOpbyz5XVdX2UKGgGaAloD0MI29yYnrCEFMCUhpRSlGgVSzJoFkdAxDqBpdrwfHV9lChoBmgJaA9DCLucEhCTABjAlIaUUpRoFUsyaBZHQMQ6a+1rqMZ1fZQoaAZoCWgPQwjg88MI4fEOwJSGlFKUaBVLMmgWR0DEOxk2UB4mdX2UKGgGaAloD0MIkxywq8kTHcCUhpRSlGgVSzJoFkdAxDsDwBHTZ3V9lChoBmgJaA9DCI/8wcBzLxPAlIaUUpRoFUsyaBZHQMQ67qR+z+p1fZQoaAZoCWgPQwhAbOnRVM8UwJSGlFKUaBVLMmgWR0DEOtkS26TXdX2UKGgGaAloD0MIgzKNJhfDD8CUhpRSlGgVSzJoFkdAxDuLk8zQ/3V9lChoBmgJaA9DCPsFu2HbchLAlIaUUpRoFUsyaBZHQMQ7dgYgq3F1fZQoaAZoCWgPQwgN424QrcUTwJSGlFKUaBVLMmgWR0DEO2DrJKaodX2UKGgGaAloD0MI+7FJfsQPDMCUhpRSlGgVSzJoFkdAxDtLYQJ5V3V9lChoBmgJaA9DCAQ6kzZVFw/AlIaUUpRoFUsyaBZHQMQ7/9m6Gxl1fZQoaAZoCWgPQwjhJTj1gXQTwJSGlFKUaBVLMmgWR0DEO+p1X/5tdX2UKGgGaAloD0MIdc3km20OEcCUhpRSlGgVSzJoFkdAxDvVZSvTw3V9lChoBmgJaA9DCGco7niTXxjAlIaUUpRoFUsyaBZHQMQ7wA62fCh1fZQoaAZoCWgPQwhLOzWXGzwbwJSGlFKUaBVLMmgWR0DEPHcifQKKdX2UKGgGaAloD0MI1hwgmKNnEMCUhpRSlGgVSzJoFkdAxDxhmGucMHV9lChoBmgJaA9DCNYcIJij1xPAlIaUUpRoFUsyaBZHQMQ8TIjnmq51fZQoaAZoCWgPQwjBNuLJbkYQwJSGlFKUaBVLMmgWR0DEPDdR+BpYdX2UKGgGaAloD0MIrz+Jz52gE8CUhpRSlGgVSzJoFkdAxDzxkZJkG3V9lChoBmgJaA9DCOqXiLfOnw/AlIaUUpRoFUsyaBZHQMQ83FCTlkp1fZQoaAZoCWgPQwjWO9wODbsVwJSGlFKUaBVLMmgWR0DEPMc5IYm+dX2UKGgGaAloD0MIx/DYz2LpGsCUhpRSlGgVSzJoFkdAxDyxsyBTXXV9lChoBmgJaA9DCLosJjYf5yLAlIaUUpRoFUsyaBZHQMQ9amqPwNN1fZQoaAZoCWgPQwgjZYuk3QgOwJSGlFKUaBVLMmgWR0DEPVTx7RfGdX2UKGgGaAloD0MI8x38xAGMIsCUhpRSlGgVSzJoFkdAxD0/10T103V9lChoBmgJaA9DCL7dkhywKxXAlIaUUpRoFUsyaBZHQMQ9Kk+gUUR1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 150000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.9.16", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "False", "Numpy": "1.22.4", "Gym": "0.21.0"}}
replay.mp4 CHANGED
Binary files a/replay.mp4 and b/replay.mp4 differ
 
results.json CHANGED
@@ -1 +1 @@
1
- {"mean_reward": -29.03951791431755, "std_reward": 13.993018559385321, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-03-23T09:45:29.089328"}
 
1
+ {"mean_reward": -4.653355601103977, "std_reward": 0.7334885904575299, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-03-24T04:59:09.545790"}
vec_normalize.pkl CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:298212e4f658617cbde6ff167784c868e50726a42887dc9940237581f711f2a4
3
  size 3056
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e61057de083ba3c2262e8dcce9e8613b902a8e3a1176b2494bad500634ca6869
3
  size 3056