Commit
·
dfc98ca
1
Parent(s):
e846576
Initial commit
Browse files- README.md +1 -1
- a2c-PandaReachDense-v2.zip +2 -2
- a2c-PandaReachDense-v2/data +12 -12
- a2c-PandaReachDense-v2/policy.optimizer.pth +1 -1
- a2c-PandaReachDense-v2/policy.pth +1 -1
- config.json +1 -1
- replay.mp4 +0 -0
- results.json +1 -1
- vec_normalize.pkl +1 -1
README.md
CHANGED
@@ -16,7 +16,7 @@ model-index:
|
|
16 |
type: PandaReachDense-v2
|
17 |
metrics:
|
18 |
- type: mean_reward
|
19 |
-
value: -
|
20 |
name: mean_reward
|
21 |
verified: false
|
22 |
---
|
|
|
16 |
type: PandaReachDense-v2
|
17 |
metrics:
|
18 |
- type: mean_reward
|
19 |
+
value: -29.04 +/- 13.99
|
20 |
name: mean_reward
|
21 |
verified: false
|
22 |
---
|
a2c-PandaReachDense-v2.zip
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ca967866cd38c47cd97d7acb9b346b9e7f75c25c290403eaed081c31042ac25e
|
3 |
+
size 108053
|
a2c-PandaReachDense-v2/data
CHANGED
@@ -4,9 +4,9 @@
|
|
4 |
":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
|
5 |
"__module__": "stable_baselines3.common.policies",
|
6 |
"__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
-
"__init__": "<function MultiInputActorCriticPolicy.__init__ at
|
8 |
"__abstractmethods__": "frozenset()",
|
9 |
-
"_abc_impl": "<_abc._abc_data object at
|
10 |
},
|
11 |
"verbose": 1,
|
12 |
"policy_kwargs": {
|
@@ -46,7 +46,7 @@
|
|
46 |
"_num_timesteps_at_start": 0,
|
47 |
"seed": null,
|
48 |
"action_noise": null,
|
49 |
-
"start_time":
|
50 |
"learning_rate": 0.0007,
|
51 |
"tensorboard_log": null,
|
52 |
"lr_schedule": {
|
@@ -55,10 +55,10 @@
|
|
55 |
},
|
56 |
"_last_obs": {
|
57 |
":type:": "<class 'collections.OrderedDict'>",
|
58 |
-
":serialized:": "
|
59 |
-
"achieved_goal": "[[
|
60 |
-
"desired_goal": "[[-
|
61 |
-
"observation": "[[
|
62 |
},
|
63 |
"_last_episode_starts": {
|
64 |
":type:": "<class 'numpy.ndarray'>",
|
@@ -66,10 +66,10 @@
|
|
66 |
},
|
67 |
"_last_original_obs": {
|
68 |
":type:": "<class 'collections.OrderedDict'>",
|
69 |
-
":serialized:": "
|
70 |
-
"achieved_goal": "[[
|
71 |
-
"desired_goal": "[[
|
72 |
-
"observation": "[[
|
73 |
},
|
74 |
"_episode_num": 0,
|
75 |
"use_sde": false,
|
@@ -77,7 +77,7 @@
|
|
77 |
"_current_progress_remaining": 0.0,
|
78 |
"ep_info_buffer": {
|
79 |
":type:": "<class 'collections.deque'>",
|
80 |
-
":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////
|
81 |
},
|
82 |
"ep_success_buffer": {
|
83 |
":type:": "<class 'collections.deque'>",
|
|
|
4 |
":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
|
5 |
"__module__": "stable_baselines3.common.policies",
|
6 |
"__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f5a1c229dc0>",
|
8 |
"__abstractmethods__": "frozenset()",
|
9 |
+
"_abc_impl": "<_abc._abc_data object at 0x7f5a1c22b900>"
|
10 |
},
|
11 |
"verbose": 1,
|
12 |
"policy_kwargs": {
|
|
|
46 |
"_num_timesteps_at_start": 0,
|
47 |
"seed": null,
|
48 |
"action_noise": null,
|
49 |
+
"start_time": 1679556774889551112,
|
50 |
"learning_rate": 0.0007,
|
51 |
"tensorboard_log": null,
|
52 |
"lr_schedule": {
|
|
|
55 |
},
|
56 |
"_last_obs": {
|
57 |
":type:": "<class 'collections.OrderedDict'>",
|
58 |
+
":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA/FBvQKlJbcDQuwBA/FBvQKlJbcDQuwBA/FBvQKlJbcDQuwBA/FBvQKlJbcDQuwBAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAKsMVwQ1Y4sAAACBBAAAgwfBWH8EjUuXAAAAgQQAAIEFr/RZBAAAgQV2gFUBkWT3AlGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAAD8UG9AqUltwNC7AECK5uQ+ZkQjvn8BSD78UG9AqUltwNC7AECK5uQ+ZkQjvn8BSD78UG9AqUltwNC7AECK5uQ+ZkQjvn8BSD78UG9AqUltwNC7AECK5uQ+ZkQjvn8BSD6UaA5LBEsGhpRoEnSUUpR1Lg==",
|
59 |
+
"achieved_goal": "[[ 3.739318 -3.7076209 2.0114632]\n [ 3.739318 -3.7076209 2.0114632]\n [ 3.739318 -3.7076209 2.0114632]\n [ 3.739318 -3.7076209 2.0114632]]",
|
60 |
+
"desired_goal": "[[ -9.360147 -7.0732484 10. ]\n [-10. -9.958725 -7.1662765]\n [ 10. 10. 9.43687 ]\n [ 10. 2.3379128 -2.958581 ]]",
|
61 |
+
"observation": "[[ 3.739318 -3.7076209 2.0114632 0.44707137 -0.1594406 0.1953182 ]\n [ 3.739318 -3.7076209 2.0114632 0.44707137 -0.1594406 0.1953182 ]\n [ 3.739318 -3.7076209 2.0114632 0.44707137 -0.1594406 0.1953182 ]\n [ 3.739318 -3.7076209 2.0114632 0.44707137 -0.1594406 0.1953182 ]]"
|
62 |
},
|
63 |
"_last_episode_starts": {
|
64 |
":type:": "<class 'numpy.ndarray'>",
|
|
|
66 |
},
|
67 |
"_last_original_obs": {
|
68 |
":type:": "<class 'collections.OrderedDict'>",
|
69 |
+
":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA11dJOVaeRag6yX0611dJOVaeRag6yX0611dJOVaeRag6yX0611dJOVaeRag6yX06lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAA1RZoPy/ijL/q5Ei/wC1iv+T1Dj/4u7E/IciJP4IVTr/23vs+4r6MvyFyrD9PPIy/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADXV0k5Vp5FqDrJfToAAAAAAAAAgAAAAADXV0k5Vp5FqDrJfToAAAAAAAAAgAAAAADXV0k5Vp5FqDrJfToAAAAAAAAAgAAAAADXV0k5Vp5FqDrJfToAAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==",
|
70 |
+
"achieved_goal": "[[ 1.92015767e-04 -1.09700304e-14 9.68116918e-04]\n [ 1.92015767e-04 -1.09700304e-14 9.68116918e-04]\n [ 1.92015767e-04 -1.09700304e-14 9.68116918e-04]\n [ 1.92015767e-04 -1.09700304e-14 9.68116918e-04]]",
|
71 |
+
"desired_goal": "[[ 0.9065984 -1.1006526 -0.78474295]\n [-0.8835106 0.5584395 1.3885489 ]\n [ 1.07642 -0.8050157 0.49193543]\n [-1.0995753 1.3472329 -1.0955905 ]]",
|
72 |
+
"observation": "[[ 1.92015767e-04 -1.09700304e-14 9.68116918e-04 0.00000000e+00\n -0.00000000e+00 0.00000000e+00]\n [ 1.92015767e-04 -1.09700304e-14 9.68116918e-04 0.00000000e+00\n -0.00000000e+00 0.00000000e+00]\n [ 1.92015767e-04 -1.09700304e-14 9.68116918e-04 0.00000000e+00\n -0.00000000e+00 0.00000000e+00]\n [ 1.92015767e-04 -1.09700304e-14 9.68116918e-04 0.00000000e+00\n -0.00000000e+00 0.00000000e+00]]"
|
73 |
},
|
74 |
"_episode_num": 0,
|
75 |
"use_sde": false,
|
|
|
77 |
"_current_progress_remaining": 0.0,
|
78 |
"ep_info_buffer": {
|
79 |
":type:": "<class 'collections.deque'>",
|
80 |
+
":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIpkQSvYyaMcCUhpRSlIwBbJRLMowBdJRHQL70mTyauwJ1fZQoaAZoCWgPQwgPJzCd1llEwJSGlFKUaBVLMmgWR0C+9IDujRD1dX2UKGgGaAloD0MIUoAomDFjRcCUhpRSlGgVSzJoFkdAvvRoF8ohIXV9lChoBmgJaA9DCKSMuAA0EijAlIaUUpRoFUsyaBZHQL70TtuUD+11fZQoaAZoCWgPQwggCmZMwTItwJSGlFKUaBVLMmgWR0C+9Xq4hEBsdX2UKGgGaAloD0MIUaVmD7QCJsCUhpRSlGgVSzJoFkdAvvViwljVhHV9lChoBmgJaA9DCBNkBFQ4QhTAlIaUUpRoFUsyaBZHQL71Sjghr311fZQoaAZoCWgPQwhWRiOfV4wdwJSGlFKUaBVLMmgWR0C+9TDgqEvkdX2UKGgGaAloD0MI0/nwLEFWFsCUhpRSlGgVSzJoFkdAvvZiuHN5dHV9lChoBmgJaA9DCAuallgZwTDAlIaUUpRoFUsyaBZHQL72Szjm0Vt1fZQoaAZoCWgPQwgJNUOqKJ4uwJSGlFKUaBVLMmgWR0C+9jLIxQBQdX2UKGgGaAloD0MIWrqCbcQPNMCUhpRSlGgVSzJoFkdAvvYZmapgkXV9lChoBmgJaA9DCJeMYyR7zETAlIaUUpRoFUsyaBZHQL73Ke9i+cp1fZQoaAZoCWgPQwjCobd4eB8qwJSGlFKUaBVLMmgWR0C+9xH003wTdX2UKGgGaAloD0MITdh+MsbvLsCUhpRSlGgVSzJoFkdAvvb5/iHZb3V9lChoBmgJaA9DCIYfnE8dUyPAlIaUUpRoFUsyaBZHQL724V1Oj7B1fZQoaAZoCWgPQwhNTu0MU/smwJSGlFKUaBVLMmgWR0C++AgiRnvldX2UKGgGaAloD0MI9FDbhlHaQ8CUhpRSlGgVSzJoFkdAvvfwL0BfbHV9lChoBmgJaA9DCGyU9ZuJKSzAlIaUUpRoFUsyaBZHQL732BqsU7F1fZQoaAZoCWgPQwjCoiJOJ8ElwJSGlFKUaBVLMmgWR0C+978pkPMCdX2UKGgGaAloD0MIGR2QhH2bKcCUhpRSlGgVSzJoFkdAvvjzOqvNeXV9lChoBmgJaA9DCH7ja88skSTAlIaUUpRoFUsyaBZHQL7422K2rn11fZQoaAZoCWgPQwjfwyXHnWorwJSGlFKUaBVLMmgWR0C++ML30wrUdX2UKGgGaAloD0MIVydnKO6IJMCUhpRSlGgVSzJoFkdAvvipvqC6H3V9lChoBmgJaA9DCKwahLndH0XAlIaUUpRoFUsyaBZHQL76KjOcDr91fZQoaAZoCWgPQwgW+fVDbCAowJSGlFKUaBVLMmgWR0C++hLzXjEOdX2UKGgGaAloD0MIiujX1k+PJMCUhpRSlGgVSzJoFkdAvvn7LQokRnV9lChoBmgJaA9DCA8qcR3jgijAlIaUUpRoFUsyaBZHQL754p9JBgN1fZQoaAZoCWgPQwjX2ZB/ZqBCwJSGlFKUaBVLMmgWR0C++1dK28ZldX2UKGgGaAloD0MIF7fRAN5+RsCUhpRSlGgVSzJoFkdAvvs/d/J/5XV9lChoBmgJaA9DCLFR1m8m5iHAlIaUUpRoFUsyaBZHQL77J8ejmCB1fZQoaAZoCWgPQwiDbcST3eQlwJSGlFKUaBVLMmgWR0C++w85n13/dX2UKGgGaAloD0MIWyTtRh+DFcCUhpRSlGgVSzJoFkdAvvzergflqHV9lChoBmgJaA9DCCfcK/NWHS7AlIaUUpRoFUsyaBZHQL78x4hEBsB1fZQoaAZoCWgPQwiloxzMJtArwJSGlFKUaBVLMmgWR0C+/K+aa1CxdX2UKGgGaAloD0MITFRvDWxlFcCUhpRSlGgVSzJoFkdAvvyW/h2nsXV9lChoBmgJaA9DCFLWbyamMy3AlIaUUpRoFUsyaBZHQL7+cBnBciZ1fZQoaAZoCWgPQwg/cJUnEGYpwJSGlFKUaBVLMmgWR0C+/lj4HoovdX2UKGgGaAloD0MIur2kMVqnGMCUhpRSlGgVSzJoFkdAvv5CEf1YhnV9lChoBmgJaA9DCArzHmeakDDAlIaUUpRoFUsyaBZHQL7+KZrpJPJ1fZQoaAZoCWgPQwiK5ZZWQwIkwJSGlFKUaBVLMmgWR0C+/4altTDPdX2UKGgGaAloD0MIBYwubw7PJ8CUhpRSlGgVSzJoFkdAvv9uxC6YmnV9lChoBmgJaA9DCKT8pNqn0xPAlIaUUpRoFUsyaBZHQL7/Vk9U0el1fZQoaAZoCWgPQwgew2M/i19EwJSGlFKUaBVLMmgWR0C+/zyg9NeudX2UKGgGaAloD0MIjIaMR6k0I8CUhpRSlGgVSzJoFkdAvwBpWcSXdHV9lChoBmgJaA9DCAySPq2ihyvAlIaUUpRoFUsyaBZHQL8AUW8RL9N1fZQoaAZoCWgPQwgsu2Bwzb0vwJSGlFKUaBVLMmgWR0C/ADjvd/KAdX2UKGgGaAloD0MIwcqhRbbrIsCUhpRSlGgVSzJoFkdAvwAfrLQokXV9lChoBmgJaA9DCFftmpDW2CDAlIaUUpRoFUsyaBZHQL8BTpNsWO91fZQoaAZoCWgPQwiXrfVFQssvwJSGlFKUaBVLMmgWR0C/ATattALRdX2UKGgGaAloD0MILNUFvMxgH8CUhpRSlGgVSzJoFkdAvwEd7fHgg3V9lChoBmgJaA9DCFm/mZguRCHAlIaUUpRoFUsyaBZHQL8BBLvkRz11fZQoaAZoCWgPQwhweawZGWwnwJSGlFKUaBVLMmgWR0C/AjRjz7MxdX2UKGgGaAloD0MI+Z0mM97mGMCUhpRSlGgVSzJoFkdAvwIcgjhUBHV9lChoBmgJaA9DCKYol8YvIDDAlIaUUpRoFUsyaBZHQL8CA/5Lytp1fZQoaAZoCWgPQwhEozuInWkowJSGlFKUaBVLMmgWR0C/AerA57w8dX2UKGgGaAloD0MIf0+sU+UDKMCUhpRSlGgVSzJoFkdAvwMLmLcbi3V9lChoBmgJaA9DCKg2OBH9PEXAlIaUUpRoFUsyaBZHQL8C80v4/NZ1fZQoaAZoCWgPQwh80okEU/0fwJSGlFKUaBVLMmgWR0C/AtrFGXoldX2UKGgGaAloD0MIW7BUF/A6J8CUhpRSlGgVSzJoFkdAvwLBkf9xZXV9lChoBmgJaA9DCBMsDmd+nSrAlIaUUpRoFUsyaBZHQL8D2zUI9kl1fZQoaAZoCWgPQwg+esN95NJCwJSGlFKUaBVLMmgWR0C/A8LmZE2HdX2UKGgGaAloD0MIn6wYrg64KcCUhpRSlGgVSzJoFkdAvwOqXE61cHV9lChoBmgJaA9DCEtXsI14AijAlIaUUpRoFUsyaBZHQL8DkSJTER91fZQoaAZoCWgPQwjJq3MMyPYnwJSGlFKUaBVLMmgWR0C/BKnCsOoYdX2UKGgGaAloD0MIA7ABEeLiJsCUhpRSlGgVSzJoFkdAvwSR3r2QGXV9lChoBmgJaA9DCKqZtRSQLivAlIaUUpRoFUsyaBZHQL8EeWK/Efl1fZQoaAZoCWgPQwhKXTKOkUBBwJSGlFKUaBVLMmgWR0C/BF/A9FF2dX2UKGgGaAloD0MIaCJseHr9MMCUhpRSlGgVSzJoFkdAvwV9r30wrXV9lChoBmgJaA9DCJdUbTfBZx/AlIaUUpRoFUsyaBZHQL8FZjS5RTF1fZQoaAZoCWgPQwjk+KHSiBdEwJSGlFKUaBVLMmgWR0C/BU1fzBhydX2UKGgGaAloD0MIHjLlQ1BVH8CUhpRSlGgVSzJoFkdAvwU0KtxMnXV9lChoBmgJaA9DCDnwarkziUXAlIaUUpRoFUsyaBZHQL8GWIF/x2B1fZQoaAZoCWgPQwj/ykqTUmAdwJSGlFKUaBVLMmgWR0C/BkCcLBsRdX2UKGgGaAloD0MI+1ksRfLtIsCUhpRSlGgVSzJoFkdAvwYoSwnpjnV9lChoBmgJaA9DCLfu5qkOiSLAlIaUUpRoFUsyaBZHQL8GDzjWCmN1fZQoaAZoCWgPQwix+47hsecowJSGlFKUaBVLMmgWR0C/B0JJwsGxdX2UKGgGaAloD0MINJ4I4jy0J8CUhpRSlGgVSzJoFkdAvwcqc3EQ5HV9lChoBmgJaA9DCDJVMCqpUx7AlIaUUpRoFUsyaBZHQL8HEg7o0Q91fZQoaAZoCWgPQwjD9ShcjyIxwJSGlFKUaBVLMmgWR0C/Bvj3mFJydX2UKGgGaAloD0MItRt9zAd0K8CUhpRSlGgVSzJoFkdAvwgtFiKBNHV9lChoBmgJaA9DCBzsTQzJsTDAlIaUUpRoFUsyaBZHQL8IFTB68g91fZQoaAZoCWgPQwh798d71YIowJSGlFKUaBVLMmgWR0C/B/zIBBAwdX2UKGgGaAloD0MIIhyz7EnII8CUhpRSlGgVSzJoFkdAvwfjp2U0N3V9lChoBmgJaA9DCKBwdmuZVCnAlIaUUpRoFUsyaBZHQL8I/sT37DV1fZQoaAZoCWgPQwilwAKYMpBCwJSGlFKUaBVLMmgWR0C/COZn6EamdX2UKGgGaAloD0MISWQfZFkwJ8CUhpRSlGgVSzJoFkdAvwjN7b+LnHV9lChoBmgJaA9DCAVQjCyZWynAlIaUUpRoFUsyaBZHQL8ItIlMRHx1fZQoaAZoCWgPQwhF8L+V7JAjwJSGlFKUaBVLMmgWR0C/ChyCBf8edX2UKGgGaAloD0MI2SQ/4leCQsCUhpRSlGgVSzJoFkdAvwoErd30PHV9lChoBmgJaA9DCGzrp/+ssSXAlIaUUpRoFUsyaBZHQL8J7Pomoit1fZQoaAZoCWgPQwjCFVCopxlEwJSGlFKUaBVLMmgWR0C/CdPQWvbHdX2UKGgGaAloD0MImUaTizH4L8CUhpRSlGgVSzJoFkdAvwuSmWMS9XV9lChoBmgJaA9DCHjsZ7EUcTHAlIaUUpRoFUsyaBZHQL8Le4Fiay91fZQoaAZoCWgPQwhr1EM0upslwJSGlFKUaBVLMmgWR0C/C2Ovt+kQdX2UKGgGaAloD0MI04iZfR7jHcCUhpRSlGgVSzJoFkdAvwtLH4oJA3V9lChoBmgJaA9DCIfe4uE9dyfAlIaUUpRoFUsyaBZHQL8NHiGWUr11fZQoaAZoCWgPQwiifazgt/EXwJSGlFKUaBVLMmgWR0C/DQcO5J9RdX2UKGgGaAloD0MI71NVaCDGLsCUhpRSlGgVSzJoFkdAvwzvTodMkHV9lChoBmgJaA9DCGlVSzrKMSzAlIaUUpRoFUsyaBZHQL8M1smv4dp1ZS4="
|
81 |
},
|
82 |
"ep_success_buffer": {
|
83 |
":type:": "<class 'collections.deque'>",
|
a2c-PandaReachDense-v2/policy.optimizer.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 44734
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:beeb2ddda547e663f08e62f1cb93525e37d30ee05654f749485f0a083139008d
|
3 |
size 44734
|
a2c-PandaReachDense-v2/policy.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 46014
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:27c812bc53988e7209b95922d275f9363af6dbc750e0e33b015a5b5038e46bb2
|
3 |
size 46014
|
config.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f2245a58790>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f2245a5a280>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 2000000, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1679537961607323514, "learning_rate": 0.0007, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/RvAGjbi6x4WUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAIOD4PrJ9GT6RYi8/IOD4PrJ9GT6RYi8/IOD4PrJ9GT6RYi8/IOD4PrJ9GT6RYi8/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAA6HGkv6eOtj/pCFw/O8ewP6aaoD92xaq//OiHv5HLa7+z22y/Ot39PtIe2L9Bcci/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAAAg4Pg+sn0ZPpFiLz+54Fm77lsgPOr52rog4Pg+sn0ZPpFiLz+54Fm77lsgPOr52rog4Pg+sn0ZPpFiLz+54Fm77lsgPOr52rog4Pg+sn0ZPpFiLz+54Fm77lsgPOr52rqUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[0.48608494 0.14989355 0.68509775]\n [0.48608494 0.14989355 0.68509775]\n [0.48608494 0.14989355 0.68509775]\n [0.48608494 0.14989355 0.68509775]]", "desired_goal": "[[-1.2847261 1.4262284 0.85951096]\n [ 1.38108 1.2547195 -1.334151 ]\n [-1.0617976 -0.9210749 -0.92522734]\n [ 0.49582845 -1.6884406 -1.5659562 ]]", "observation": "[[ 0.48608494 0.14989355 0.68509775 -0.00332455 0.00978754 -0.00167066]\n [ 0.48608494 0.14989355 0.68509775 -0.00332455 0.00978754 -0.00167066]\n [ 0.48608494 0.14989355 0.68509775 -0.00332455 0.00978754 -0.00167066]\n [ 0.48608494 0.14989355 0.68509775 -0.00332455 0.00978754 -0.00167066]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAA4eCBveHOar0Z1zQ+o/WRvXOAkD2VzTs+P+g2vWMRW7y5tlA95gL5PdmEBr4Fm0U+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[-0.0634172 -0.0573262 0.17660178]\n [-0.0712693 0.0705575 0.18340142]\n [-0.04465508 -0.01337084 0.05095551]\n [ 0.12158756 -0.13136615 0.19297417]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIsAJ8t3nDGMCUhpRSlIwBbJRLMowBdJRHQLdsx7J4jbB1fZQoaAZoCWgPQwjqWKX0TJ8YwJSGlFKUaBVLMmgWR0C3bKhScbzcdX2UKGgGaAloD0MIiLmkarv5EsCUhpRSlGgVSzJoFkdAt2yJbA1vVHV9lChoBmgJaA9DCCcuxysQ3RTAlIaUUpRoFUsyaBZHQLdsajZL7Gh1fZQoaAZoCWgPQwhDWfj6WtcewJSGlFKUaBVLMmgWR0C3bT5IczZZdX2UKGgGaAloD0MIxvfFpSodEMCUhpRSlGgVSzJoFkdAt20fPUrkKnV9lChoBmgJaA9DCDAvwD46dQrAlIaUUpRoFUsyaBZHQLdtANPP9k11fZQoaAZoCWgPQwhOQ1Thz7AKwJSGlFKUaBVLMmgWR0C3bOHd43WGdX2UKGgGaAloD0MI071O6stSD8CUhpRSlGgVSzJoFkdAt22wIF/x2HV9lChoBmgJaA9DCMvW+iKhLRnAlIaUUpRoFUsyaBZHQLdtkNN8E3d1fZQoaAZoCWgPQwgdA7LXuy8awJSGlFKUaBVLMmgWR0C3bXH3Dej3dX2UKGgGaAloD0MI7ISX4NRXE8CUhpRSlGgVSzJoFkdAt21Sv4dp7HV9lChoBmgJaA9DCPgb7bjhtxPAlIaUUpRoFUsyaBZHQLduJJtSAH51fZQoaAZoCWgPQwh9lBEXgOYLwJSGlFKUaBVLMmgWR0C3bgVCPZIydX2UKGgGaAloD0MIvsEXJlNlBMCUhpRSlGgVSzJoFkdAt23mXsw+MnV9lChoBmgJaA9DCEGeXb71YR3AlIaUUpRoFUsyaBZHQLdtxymALAp1fZQoaAZoCWgPQwgwZeCAlr4QwJSGlFKUaBVLMmgWR0C3bqNFa0QcdX2UKGgGaAloD0MIvHg/br+cEcCUhpRSlGgVSzJoFkdAt26D4rSVnnV9lChoBmgJaA9DCEoofSHk3BXAlIaUUpRoFUsyaBZHQLduZQT238Z1fZQoaAZoCWgPQwgnEeFfBHUhwJSGlFKUaBVLMmgWR0C3bkWvW6K+dX2UKGgGaAloD0MIza57KxKDFcCUhpRSlGgVSzJoFkdAt28YmLLpzXV9lChoBmgJaA9DCHl0IywqggfAlIaUUpRoFUsyaBZHQLdu+THbRF91fZQoaAZoCWgPQwhaZhGKrcAOwJSGlFKUaBVLMmgWR0C3btpFgDzRdX2UKGgGaAloD0MIfXpsy4DTFcCUhpRSlGgVSzJoFkdAt267AwfyPXV9lChoBmgJaA9DCHxGIjSCTQjAlIaUUpRoFUsyaBZHQLdvkLP2PDJ1fZQoaAZoCWgPQwhUVz7L8zAQwJSGlFKUaBVLMmgWR0C3b3FzuF6BdX2UKGgGaAloD0MITl/P1ywXEMCUhpRSlGgVSzJoFkdAt29SotL+P3V9lChoBmgJaA9DCM3km21ubBnAlIaUUpRoFUsyaBZHQLdvM2NvOyF1fZQoaAZoCWgPQwj6XkNwXKYYwJSGlFKUaBVLMmgWR0C3cAP4h2W6dX2UKGgGaAloD0MI4gM7/gskFMCUhpRSlGgVSzJoFkdAt2/koAn2I3V9lChoBmgJaA9DCNyEe2XeagvAlIaUUpRoFUsyaBZHQLdvxdTYNAl1fZQoaAZoCWgPQwh2+6wyU/oJwJSGlFKUaBVLMmgWR0C3b6azE74jdX2UKGgGaAloD0MIQWMmUS84CsCUhpRSlGgVSzJoFkdAt3B4Xm/34HV9lChoBmgJaA9DCNtv7URJ6BPAlIaUUpRoFUsyaBZHQLdwWPkq+al1fZQoaAZoCWgPQwia0Y+GU4YawJSGlFKUaBVLMmgWR0C3cDoRRMvidX2UKGgGaAloD0MI/DTuzW9IHMCUhpRSlGgVSzJoFkdAt3AaxiXpn3V9lChoBmgJaA9DCEAwR4/fyxLAlIaUUpRoFUsyaBZHQLdw7Xr+o991fZQoaAZoCWgPQwiIRncQO4MXwJSGlFKUaBVLMmgWR0C3cM4yXUpedX2UKGgGaAloD0MIoWZIFcW7GcCUhpRSlGgVSzJoFkdAt3CvXarWAnV9lChoBmgJaA9DCLow0ovaDRTAlIaUUpRoFUsyaBZHQLdwkDZUT+N1fZQoaAZoCWgPQwi4WicuxwsUwJSGlFKUaBVLMmgWR0C3cWaqGUOedX2UKGgGaAloD0MI33AfuTXpHMCUhpRSlGgVSzJoFkdAt3FHTjNpunV9lChoBmgJaA9DCBh5WRMLXBnAlIaUUpRoFUsyaBZHQLdxKGUOd5J1fZQoaAZoCWgPQwhMa9PYXnsewJSGlFKUaBVLMmgWR0C3cQkg8r7PdX2UKGgGaAloD0MIb0bNV8nnHcCUhpRSlGgVSzJoFkdAt3Hap84Pw3V9lChoBmgJaA9DCI1GPq94Gh3AlIaUUpRoFUsyaBZHQLdxu0ojOcF1fZQoaAZoCWgPQwi0ccRafBobwJSGlFKUaBVLMmgWR0C3cZxfF72MdX2UKGgGaAloD0MITBb3H5leFcCUhpRSlGgVSzJoFkdAt3F9FSbYsnV9lChoBmgJaA9DCMWRByKLZBnAlIaUUpRoFUsyaBZHQLdyTF5OafB1fZQoaAZoCWgPQwheZ0P+mbEVwJSGlFKUaBVLMmgWR0C3ci0EovzwdX2UKGgGaAloD0MIpGyRtBsdIMCUhpRSlGgVSzJoFkdAt3IOG0u14XV9lChoBmgJaA9DCHHl7J3RdgXAlIaUUpRoFUsyaBZHQLdx7tBfKIV1fZQoaAZoCWgPQwgA5lq0AC0cwJSGlFKUaBVLMmgWR0C3csE70WdmdX2UKGgGaAloD0MI2SQ/4lfsDsCUhpRSlGgVSzJoFkdAt3Kh1KXfInV9lChoBmgJaA9DCEJdpFAWzhnAlIaUUpRoFUsyaBZHQLdygu8K5TZ1fZQoaAZoCWgPQwhCeR9Hc3QVwJSGlFKUaBVLMmgWR0C3cmOv+wTudX2UKGgGaAloD0MIskY9RKM7F8CUhpRSlGgVSzJoFkdAt3MwPDpC8nV9lChoBmgJaA9DCHwo0ZLH8xzAlIaUUpRoFUsyaBZHQLdzEOcDr7h1fZQoaAZoCWgPQwhxqUpbXJMYwJSGlFKUaBVLMmgWR0C3cvIFRpDedX2UKGgGaAloD0MIfeiC+pZ5EcCUhpRSlGgVSzJoFkdAt3LSwQlKLHV9lChoBmgJaA9DCPORlPQwBCDAlIaUUpRoFUsyaBZHQLdzrOLR8dB1fZQoaAZoCWgPQwgi3jr/dokXwJSGlFKUaBVLMmgWR0C3c4198Z1ndX2UKGgGaAloD0MISyGQSxzJEcCUhpRSlGgVSzJoFkdAt3Nuk56t1nV9lChoBmgJaA9DCEht4uR+pw/AlIaUUpRoFUsyaBZHQLdzT1ZkkKN1fZQoaAZoCWgPQwjBV3TrNS0ZwJSGlFKUaBVLMmgWR0C3dCN5D7ZWdX2UKGgGaAloD0MIlpS7z/GRBMCUhpRSlGgVSzJoFkdAt3QEIToMa3V9lChoBmgJaA9DCPSj4ZS5CRLAlIaUUpRoFUsyaBZHQLdz5U5+6RR1fZQoaAZoCWgPQwhtVn2utnIXwJSGlFKUaBVLMmgWR0C3c8YMz/IbdX2UKGgGaAloD0MIDamieJV1FsCUhpRSlGgVSzJoFkdAt3SeD6Fds3V9lChoBmgJaA9DCHpvDAHA8RTAlIaUUpRoFUsyaBZHQLd0fwfQrtp1fZQoaAZoCWgPQwhoWmJlNEITwJSGlFKUaBVLMmgWR0C3dGBq0tyxdX2UKGgGaAloD0MIT8x6MZTjE8CUhpRSlGgVSzJoFkdAt3RBQ/HHWHV9lChoBmgJaA9DCNycSgaAqhbAlIaUUpRoFUsyaBZHQLd1FP6sQup1fZQoaAZoCWgPQwjfGW1VEvkbwJSGlFKUaBVLMmgWR0C3dPWcWj46dX2UKGgGaAloD0MImN7+XDREEsCUhpRSlGgVSzJoFkdAt3TWumrKeXV9lChoBmgJaA9DCCYceouHpxXAlIaUUpRoFUsyaBZHQLd0t38XN1R1fZQoaAZoCWgPQwicjCrDuMsSwJSGlFKUaBVLMmgWR0C3dYjM/yG0dX2UKGgGaAloD0MIUIwsmWO5HsCUhpRSlGgVSzJoFkdAt3VpbKRuCXV9lChoBmgJaA9DCEiLM4Y5WSLAlIaUUpRoFUsyaBZHQLd1SoAGSp11fZQoaAZoCWgPQwjoMcozL6cWwJSGlFKUaBVLMmgWR0C3dStwvQF+dX2UKGgGaAloD0MIY+3vbI8eE8CUhpRSlGgVSzJoFkdAt3X78uSOinV9lChoBmgJaA9DCBrerMH7KhHAlIaUUpRoFUsyaBZHQLd13JQcghd1fZQoaAZoCWgPQwhSRlwAGiUYwJSGlFKUaBVLMmgWR0C3db2tlqagdX2UKGgGaAloD0MIy7kUV5W9DcCUhpRSlGgVSzJoFkdAt3WedXko4XV9lChoBmgJaA9DCCRGzy10JRDAlIaUUpRoFUsyaBZHQLd2kC+De0p1fZQoaAZoCWgPQwguPC8VG1MVwJSGlFKUaBVLMmgWR0C3dnEaMrEtdX2UKGgGaAloD0MIw/UoXI+iH8CUhpRSlGgVSzJoFkdAt3ZSbe/HpHV9lChoBmgJaA9DCJZ31QPmCSLAlIaUUpRoFUsyaBZHQLd2M6Q/5cl1fZQoaAZoCWgPQwjedqG5ToMGwJSGlFKUaBVLMmgWR0C3d1Tg/C66dX2UKGgGaAloD0MI+yKhLefSH8CUhpRSlGgVSzJoFkdAt3c1yksSTXV9lChoBmgJaA9DCP4qwHebNwzAlIaUUpRoFUsyaBZHQLd3FzC1qnF1fZQoaAZoCWgPQwg4pFGBk80LwJSGlFKUaBVLMmgWR0C3dvhDst03dX2UKGgGaAloD0MITUhrDDoxF8CUhpRSlGgVSzJoFkdAt3gKRbKRuHV9lChoBmgJaA9DCMB4Bg390xTAlIaUUpRoFUsyaBZHQLd36z6rNnp1fZQoaAZoCWgPQwiYMQVrnB0QwJSGlFKUaBVLMmgWR0C3d8yoKlYVdX2UKGgGaAloD0MI5NnlWx9WFsCUhpRSlGgVSzJoFkdAt3ettzjm0XV9lChoBmgJaA9DCJaxoZv9oQrAlIaUUpRoFUsyaBZHQLd4wKx9oex1fZQoaAZoCWgPQwjYnlkSoNYbwJSGlFKUaBVLMmgWR0C3eKGhysCDdX2UKGgGaAloD0MIkdJsHodxFMCUhpRSlGgVSzJoFkdAt3iDCiyprHV9lChoBmgJaA9DCACMZ9DQnxXAlIaUUpRoFUsyaBZHQLd4ZAnDziF1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 100000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.9.16", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f5a1c229dc0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f5a1c22b900>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 2000000, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1679556774889551112, "learning_rate": 0.0007, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/RvAGjbi6x4WUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA/FBvQKlJbcDQuwBA/FBvQKlJbcDQuwBA/FBvQKlJbcDQuwBA/FBvQKlJbcDQuwBAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAKsMVwQ1Y4sAAACBBAAAgwfBWH8EjUuXAAAAgQQAAIEFr/RZBAAAgQV2gFUBkWT3AlGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAAD8UG9AqUltwNC7AECK5uQ+ZkQjvn8BSD78UG9AqUltwNC7AECK5uQ+ZkQjvn8BSD78UG9AqUltwNC7AECK5uQ+ZkQjvn8BSD78UG9AqUltwNC7AECK5uQ+ZkQjvn8BSD6UaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.739318 -3.7076209 2.0114632]\n [ 3.739318 -3.7076209 2.0114632]\n [ 3.739318 -3.7076209 2.0114632]\n [ 3.739318 -3.7076209 2.0114632]]", "desired_goal": "[[ -9.360147 -7.0732484 10. ]\n [-10. -9.958725 -7.1662765]\n [ 10. 10. 9.43687 ]\n [ 10. 2.3379128 -2.958581 ]]", "observation": "[[ 3.739318 -3.7076209 2.0114632 0.44707137 -0.1594406 0.1953182 ]\n [ 3.739318 -3.7076209 2.0114632 0.44707137 -0.1594406 0.1953182 ]\n [ 3.739318 -3.7076209 2.0114632 0.44707137 -0.1594406 0.1953182 ]\n [ 3.739318 -3.7076209 2.0114632 0.44707137 -0.1594406 0.1953182 ]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA11dJOVaeRag6yX0611dJOVaeRag6yX0611dJOVaeRag6yX0611dJOVaeRag6yX06lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAA1RZoPy/ijL/q5Ei/wC1iv+T1Dj/4u7E/IciJP4IVTr/23vs+4r6MvyFyrD9PPIy/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADXV0k5Vp5FqDrJfToAAAAAAAAAgAAAAADXV0k5Vp5FqDrJfToAAAAAAAAAgAAAAADXV0k5Vp5FqDrJfToAAAAAAAAAgAAAAADXV0k5Vp5FqDrJfToAAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 1.92015767e-04 -1.09700304e-14 9.68116918e-04]\n [ 1.92015767e-04 -1.09700304e-14 9.68116918e-04]\n [ 1.92015767e-04 -1.09700304e-14 9.68116918e-04]\n [ 1.92015767e-04 -1.09700304e-14 9.68116918e-04]]", "desired_goal": "[[ 0.9065984 -1.1006526 -0.78474295]\n [-0.8835106 0.5584395 1.3885489 ]\n [ 1.07642 -0.8050157 0.49193543]\n [-1.0995753 1.3472329 -1.0955905 ]]", "observation": "[[ 1.92015767e-04 -1.09700304e-14 9.68116918e-04 0.00000000e+00\n -0.00000000e+00 0.00000000e+00]\n [ 1.92015767e-04 -1.09700304e-14 9.68116918e-04 0.00000000e+00\n -0.00000000e+00 0.00000000e+00]\n [ 1.92015767e-04 -1.09700304e-14 9.68116918e-04 0.00000000e+00\n -0.00000000e+00 0.00000000e+00]\n [ 1.92015767e-04 -1.09700304e-14 9.68116918e-04 0.00000000e+00\n -0.00000000e+00 0.00000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIpkQSvYyaMcCUhpRSlIwBbJRLMowBdJRHQL70mTyauwJ1fZQoaAZoCWgPQwgPJzCd1llEwJSGlFKUaBVLMmgWR0C+9IDujRD1dX2UKGgGaAloD0MIUoAomDFjRcCUhpRSlGgVSzJoFkdAvvRoF8ohIXV9lChoBmgJaA9DCKSMuAA0EijAlIaUUpRoFUsyaBZHQL70TtuUD+11fZQoaAZoCWgPQwggCmZMwTItwJSGlFKUaBVLMmgWR0C+9Xq4hEBsdX2UKGgGaAloD0MIUaVmD7QCJsCUhpRSlGgVSzJoFkdAvvViwljVhHV9lChoBmgJaA9DCBNkBFQ4QhTAlIaUUpRoFUsyaBZHQL71Sjghr311fZQoaAZoCWgPQwhWRiOfV4wdwJSGlFKUaBVLMmgWR0C+9TDgqEvkdX2UKGgGaAloD0MI0/nwLEFWFsCUhpRSlGgVSzJoFkdAvvZiuHN5dHV9lChoBmgJaA9DCAuallgZwTDAlIaUUpRoFUsyaBZHQL72Szjm0Vt1fZQoaAZoCWgPQwgJNUOqKJ4uwJSGlFKUaBVLMmgWR0C+9jLIxQBQdX2UKGgGaAloD0MIWrqCbcQPNMCUhpRSlGgVSzJoFkdAvvYZmapgkXV9lChoBmgJaA9DCJeMYyR7zETAlIaUUpRoFUsyaBZHQL73Ke9i+cp1fZQoaAZoCWgPQwjCobd4eB8qwJSGlFKUaBVLMmgWR0C+9xH003wTdX2UKGgGaAloD0MITdh+MsbvLsCUhpRSlGgVSzJoFkdAvvb5/iHZb3V9lChoBmgJaA9DCIYfnE8dUyPAlIaUUpRoFUsyaBZHQL724V1Oj7B1fZQoaAZoCWgPQwhNTu0MU/smwJSGlFKUaBVLMmgWR0C++AgiRnvldX2UKGgGaAloD0MI9FDbhlHaQ8CUhpRSlGgVSzJoFkdAvvfwL0BfbHV9lChoBmgJaA9DCGyU9ZuJKSzAlIaUUpRoFUsyaBZHQL732BqsU7F1fZQoaAZoCWgPQwjCoiJOJ8ElwJSGlFKUaBVLMmgWR0C+978pkPMCdX2UKGgGaAloD0MIGR2QhH2bKcCUhpRSlGgVSzJoFkdAvvjzOqvNeXV9lChoBmgJaA9DCH7ja88skSTAlIaUUpRoFUsyaBZHQL7422K2rn11fZQoaAZoCWgPQwjfwyXHnWorwJSGlFKUaBVLMmgWR0C++ML30wrUdX2UKGgGaAloD0MIVydnKO6IJMCUhpRSlGgVSzJoFkdAvvipvqC6H3V9lChoBmgJaA9DCKwahLndH0XAlIaUUpRoFUsyaBZHQL76KjOcDr91fZQoaAZoCWgPQwgW+fVDbCAowJSGlFKUaBVLMmgWR0C++hLzXjEOdX2UKGgGaAloD0MIiujX1k+PJMCUhpRSlGgVSzJoFkdAvvn7LQokRnV9lChoBmgJaA9DCA8qcR3jgijAlIaUUpRoFUsyaBZHQL754p9JBgN1fZQoaAZoCWgPQwjX2ZB/ZqBCwJSGlFKUaBVLMmgWR0C++1dK28ZldX2UKGgGaAloD0MIF7fRAN5+RsCUhpRSlGgVSzJoFkdAvvs/d/J/5XV9lChoBmgJaA9DCLFR1m8m5iHAlIaUUpRoFUsyaBZHQL77J8ejmCB1fZQoaAZoCWgPQwiDbcST3eQlwJSGlFKUaBVLMmgWR0C++w85n13/dX2UKGgGaAloD0MIWyTtRh+DFcCUhpRSlGgVSzJoFkdAvvzergflqHV9lChoBmgJaA9DCCfcK/NWHS7AlIaUUpRoFUsyaBZHQL78x4hEBsB1fZQoaAZoCWgPQwiloxzMJtArwJSGlFKUaBVLMmgWR0C+/K+aa1CxdX2UKGgGaAloD0MITFRvDWxlFcCUhpRSlGgVSzJoFkdAvvyW/h2nsXV9lChoBmgJaA9DCFLWbyamMy3AlIaUUpRoFUsyaBZHQL7+cBnBciZ1fZQoaAZoCWgPQwg/cJUnEGYpwJSGlFKUaBVLMmgWR0C+/lj4HoovdX2UKGgGaAloD0MIur2kMVqnGMCUhpRSlGgVSzJoFkdAvv5CEf1YhnV9lChoBmgJaA9DCArzHmeakDDAlIaUUpRoFUsyaBZHQL7+KZrpJPJ1fZQoaAZoCWgPQwiK5ZZWQwIkwJSGlFKUaBVLMmgWR0C+/4altTDPdX2UKGgGaAloD0MIBYwubw7PJ8CUhpRSlGgVSzJoFkdAvv9uxC6YmnV9lChoBmgJaA9DCKT8pNqn0xPAlIaUUpRoFUsyaBZHQL7/Vk9U0el1fZQoaAZoCWgPQwgew2M/i19EwJSGlFKUaBVLMmgWR0C+/zyg9NeudX2UKGgGaAloD0MIjIaMR6k0I8CUhpRSlGgVSzJoFkdAvwBpWcSXdHV9lChoBmgJaA9DCAySPq2ihyvAlIaUUpRoFUsyaBZHQL8AUW8RL9N1fZQoaAZoCWgPQwgsu2Bwzb0vwJSGlFKUaBVLMmgWR0C/ADjvd/KAdX2UKGgGaAloD0MIwcqhRbbrIsCUhpRSlGgVSzJoFkdAvwAfrLQokXV9lChoBmgJaA9DCFftmpDW2CDAlIaUUpRoFUsyaBZHQL8BTpNsWO91fZQoaAZoCWgPQwiXrfVFQssvwJSGlFKUaBVLMmgWR0C/ATattALRdX2UKGgGaAloD0MILNUFvMxgH8CUhpRSlGgVSzJoFkdAvwEd7fHgg3V9lChoBmgJaA9DCFm/mZguRCHAlIaUUpRoFUsyaBZHQL8BBLvkRz11fZQoaAZoCWgPQwhweawZGWwnwJSGlFKUaBVLMmgWR0C/AjRjz7MxdX2UKGgGaAloD0MI+Z0mM97mGMCUhpRSlGgVSzJoFkdAvwIcgjhUBHV9lChoBmgJaA9DCKYol8YvIDDAlIaUUpRoFUsyaBZHQL8CA/5Lytp1fZQoaAZoCWgPQwhEozuInWkowJSGlFKUaBVLMmgWR0C/AerA57w8dX2UKGgGaAloD0MIf0+sU+UDKMCUhpRSlGgVSzJoFkdAvwMLmLcbi3V9lChoBmgJaA9DCKg2OBH9PEXAlIaUUpRoFUsyaBZHQL8C80v4/NZ1fZQoaAZoCWgPQwh80okEU/0fwJSGlFKUaBVLMmgWR0C/AtrFGXoldX2UKGgGaAloD0MIW7BUF/A6J8CUhpRSlGgVSzJoFkdAvwLBkf9xZXV9lChoBmgJaA9DCBMsDmd+nSrAlIaUUpRoFUsyaBZHQL8D2zUI9kl1fZQoaAZoCWgPQwg+esN95NJCwJSGlFKUaBVLMmgWR0C/A8LmZE2HdX2UKGgGaAloD0MIn6wYrg64KcCUhpRSlGgVSzJoFkdAvwOqXE61cHV9lChoBmgJaA9DCEtXsI14AijAlIaUUpRoFUsyaBZHQL8DkSJTER91fZQoaAZoCWgPQwjJq3MMyPYnwJSGlFKUaBVLMmgWR0C/BKnCsOoYdX2UKGgGaAloD0MIA7ABEeLiJsCUhpRSlGgVSzJoFkdAvwSR3r2QGXV9lChoBmgJaA9DCKqZtRSQLivAlIaUUpRoFUsyaBZHQL8EeWK/Efl1fZQoaAZoCWgPQwhKXTKOkUBBwJSGlFKUaBVLMmgWR0C/BF/A9FF2dX2UKGgGaAloD0MIaCJseHr9MMCUhpRSlGgVSzJoFkdAvwV9r30wrXV9lChoBmgJaA9DCJdUbTfBZx/AlIaUUpRoFUsyaBZHQL8FZjS5RTF1fZQoaAZoCWgPQwjk+KHSiBdEwJSGlFKUaBVLMmgWR0C/BU1fzBhydX2UKGgGaAloD0MIHjLlQ1BVH8CUhpRSlGgVSzJoFkdAvwU0KtxMnXV9lChoBmgJaA9DCDnwarkziUXAlIaUUpRoFUsyaBZHQL8GWIF/x2B1fZQoaAZoCWgPQwj/ykqTUmAdwJSGlFKUaBVLMmgWR0C/BkCcLBsRdX2UKGgGaAloD0MI+1ksRfLtIsCUhpRSlGgVSzJoFkdAvwYoSwnpjnV9lChoBmgJaA9DCLfu5qkOiSLAlIaUUpRoFUsyaBZHQL8GDzjWCmN1fZQoaAZoCWgPQwix+47hsecowJSGlFKUaBVLMmgWR0C/B0JJwsGxdX2UKGgGaAloD0MINJ4I4jy0J8CUhpRSlGgVSzJoFkdAvwcqc3EQ5HV9lChoBmgJaA9DCDJVMCqpUx7AlIaUUpRoFUsyaBZHQL8HEg7o0Q91fZQoaAZoCWgPQwjD9ShcjyIxwJSGlFKUaBVLMmgWR0C/Bvj3mFJydX2UKGgGaAloD0MItRt9zAd0K8CUhpRSlGgVSzJoFkdAvwgtFiKBNHV9lChoBmgJaA9DCBzsTQzJsTDAlIaUUpRoFUsyaBZHQL8IFTB68g91fZQoaAZoCWgPQwh798d71YIowJSGlFKUaBVLMmgWR0C/B/zIBBAwdX2UKGgGaAloD0MIIhyz7EnII8CUhpRSlGgVSzJoFkdAvwfjp2U0N3V9lChoBmgJaA9DCKBwdmuZVCnAlIaUUpRoFUsyaBZHQL8I/sT37DV1fZQoaAZoCWgPQwilwAKYMpBCwJSGlFKUaBVLMmgWR0C/COZn6EamdX2UKGgGaAloD0MISWQfZFkwJ8CUhpRSlGgVSzJoFkdAvwjN7b+LnHV9lChoBmgJaA9DCAVQjCyZWynAlIaUUpRoFUsyaBZHQL8ItIlMRHx1fZQoaAZoCWgPQwhF8L+V7JAjwJSGlFKUaBVLMmgWR0C/ChyCBf8edX2UKGgGaAloD0MI2SQ/4leCQsCUhpRSlGgVSzJoFkdAvwoErd30PHV9lChoBmgJaA9DCGzrp/+ssSXAlIaUUpRoFUsyaBZHQL8J7Pomoit1fZQoaAZoCWgPQwjCFVCopxlEwJSGlFKUaBVLMmgWR0C/CdPQWvbHdX2UKGgGaAloD0MImUaTizH4L8CUhpRSlGgVSzJoFkdAvwuSmWMS9XV9lChoBmgJaA9DCHjsZ7EUcTHAlIaUUpRoFUsyaBZHQL8Le4Fiay91fZQoaAZoCWgPQwhr1EM0upslwJSGlFKUaBVLMmgWR0C/C2Ovt+kQdX2UKGgGaAloD0MI04iZfR7jHcCUhpRSlGgVSzJoFkdAvwtLH4oJA3V9lChoBmgJaA9DCIfe4uE9dyfAlIaUUpRoFUsyaBZHQL8NHiGWUr11fZQoaAZoCWgPQwiifazgt/EXwJSGlFKUaBVLMmgWR0C/DQcO5J9RdX2UKGgGaAloD0MI71NVaCDGLsCUhpRSlGgVSzJoFkdAvwzvTodMkHV9lChoBmgJaA9DCGlVSzrKMSzAlIaUUpRoFUsyaBZHQL8M1smv4dp1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 100000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.9.16", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
|
replay.mp4
CHANGED
Binary files a/replay.mp4 and b/replay.mp4 differ
|
|
results.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"mean_reward": -
|
|
|
1 |
+
{"mean_reward": -29.03951791431755, "std_reward": 13.993018559385321, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-03-23T09:45:29.089328"}
|
vec_normalize.pkl
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 3056
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:298212e4f658617cbde6ff167784c868e50726a42887dc9940237581f711f2a4
|
3 |
size 3056
|