YAML Metadata
Warning:
empty or missing yaml metadata in repo card
(https://huggingface.co/docs/hub/model-cards#model-card-metadata)
β° Clock-VAE-Color-140x
νΉμ μκ°μ μλ λ‘κ·Έ μκ³ μ΄λ―Έμ§λ₯Ό μμ±νκΈ° μν΄ μ€κ³λ Conditional VAE λͺ¨λΈμ
λλ€.
A Conditional VAE tailored for generating analog clock images that represent specific times.
π Naming Convention
clock-vae
: λͺ¨λΈ μ΄λ¦ (Model name)color
: μ΄λ―Έμ§ μ ν (Image type:color
ormono
)140x
: μ΄λ―Έμ§ ν¬κΈ° (Image size:140x140
)v1
: λͺ¨λΈ λ²μ (Model version)
π§ Model Definition Code
class ConditionalVAE(nn.Module):
def __init__(self, input_dim, condition_dim, latent_dim):
super(ClockVAEHandler.ConditionalVAE, self).__init__()
self.encoder = nn.Sequential(
nn.Linear(input_dim + condition_dim, 512),
nn.ReLU(),
nn.Linear(512, 256),
nn.ReLU(),
nn.Linear(256, 128),
nn.ReLU(),
)
self.fc_mu = nn.Linear(128, latent_dim)
self.fc_logvar = nn.Linear(128, latent_dim)
self.decoder = nn.Sequential(
nn.Linear(latent_dim + condition_dim, 128),
nn.ReLU(),
nn.Linear(128, 256),
nn.ReLU(),
nn.Linear(256, 512),
nn.ReLU(),
nn.Linear(512, input_dim),
nn.Sigmoid()
)
def encode(self, x, condition):
x = x.view(x.size(0), -1)
condition = condition.view(condition.size(0), -1)
x_cond = torch.cat([x, condition], dim=1)
h = self.encoder(x_cond)
mu = self.fc_mu(h)
logvar = self.fc_logvar(h)
return mu, logvar
def reparameterize(self, mu, logvar):
std = torch.exp(0.5 * logvar)
eps = torch.randn_like(std)
return mu + eps * std
def decode(self, z, condition):
z_cond = torch.cat([z, condition], dim=1)
return self.decoder(z_cond)
def forward(self, x, condition):
mu, logvar = self.encode(x, condition)
z = self.reparameterize(mu, logvar)
return self.decode(z, condition), mu, logvar
Inference Providers
NEW
This model is not currently available via any of the supported Inference Providers.
The model cannot be deployed to the HF Inference API:
The model has no library tag.