Text Classification
Transformers
Safetensors
English
roberta
antypasd's picture
Update README.md
3971d34 verified
---
language:
- en
license: mit
datasets:
- cardiffnlp/super_tweeteval
pipeline_tag: text-classification
inference:
parameters:
return_all_scores: true
widget:
- text: I’m tired of being sick.. it’s been four days dawg
---
# cardiffnlp/twitter-roberta-large-emoji-latest
This is a RoBERTa-large model trained on 154M tweets until the end of December 2022 and finetuned for emoji classification (multiclass classification on 100 emojis) on the _TweetEmoji100_ dataset of [SuperTweetEval](https://huggingface.co/datasets/cardiffnlp/super_tweeteval).
The original Twitter-larged RoBERTa model can be found [here](https://huggingface.co/cardiffnlp/twitter-roberta-large-2022-154m).
## Example
```python
from transformers import pipeline
text= "I’m tired of being sick.. it’s been four days dawg"
pipe = pipeline('text-classification', model="cardiffnlp/twitter-roberta-large-emoji-latest", return_all_scores=True))
predictions = pipe(text)[0]
predictions = sorted(predictions, key=lambda d: d['score'], reverse=True)
predictions[:5]
>> [{'label': '😒', 'score': 0.3771325647830963},
{'label': '😑', 'score': 0.11055194586515427},
{'label': '😤', 'score': 0.06117523834109306},
{'label': '😡', 'score': 0.0564400739967823},
{'label': '😫', 'score': 0.047937799245119095}]
```
## Citation Information
Please cite the [reference paper](https://arxiv.org/abs/2310.14757) if you use this model.
```bibtex
@inproceedings{antypas2023supertweeteval,
title={SuperTweetEval: A Challenging, Unified and Heterogeneous Benchmark for Social Media NLP Research},
author={Dimosthenis Antypas and Asahi Ushio and Francesco Barbieri and Leonardo Neves and Kiamehr Rezaee and Luis Espinosa-Anke and Jiaxin Pei and Jose Camacho-Collados},
booktitle={Findings of the Association for Computational Linguistics: EMNLP 2023},
year={2023}
}
```