ModernBERT-large-roman-urdu-fine-grained
This model is a fine-tuned version of answerdotai/ModernBERT-large on the None dataset. It achieves the following results on the evaluation set:
- Loss: 1.4888
- Accuracy: 0.8088
- Precision: 0.7419
- Recall: 0.7023
- F1: 0.7205
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 16
- eval_batch_size: 32
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 32
- optimizer: Use adamw_hf with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 10
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 |
---|---|---|---|---|---|---|---|
1.3921 | 1.0 | 226 | 0.6527 | 0.7536 | 0.7638 | 0.5844 | 0.6408 |
1.0981 | 2.0 | 452 | 0.3654 | 0.8711 | 0.8685 | 0.7538 | 0.7984 |
0.7117 | 3.0 | 678 | 0.1802 | 0.9495 | 0.9303 | 0.9237 | 0.9266 |
0.1786 | 4.0 | 904 | 0.0550 | 0.9849 | 0.9789 | 0.9766 | 0.9777 |
0.1302 | 5.0 | 1130 | 0.0168 | 0.9950 | 0.9928 | 0.9927 | 0.9927 |
0.0194 | 6.0 | 1356 | 0.0062 | 0.9983 | 0.9970 | 0.9969 | 0.9970 |
0.0178 | 7.0 | 1582 | 0.0019 | 0.9997 | 0.9998 | 0.9995 | 0.9996 |
0.0003 | 8.0 | 1808 | 0.0004 | 0.9999 | 0.9999 | 0.9996 | 0.9997 |
0.0 | 9.0 | 2034 | 0.0006 | 0.9999 | 0.9999 | 0.9996 | 0.9997 |
0.0 | 9.9579 | 2250 | 0.0003 | 0.9999 | 0.9999 | 0.9996 | 0.9997 |
Framework versions
- Transformers 4.48.2
- Pytorch 2.5.1+cu121
- Datasets 3.2.0
- Tokenizers 0.21.0
- Downloads last month
- 6
Inference Providers
NEW
This model is not currently available via any of the supported Inference Providers.
Model tree for callmesan/ModernBERT-large-roman-urdu-fine-grained
Base model
answerdotai/ModernBERT-large