ModernBERT-large-abusive-comments-ta
This model is a fine-tuned version of answerdotai/ModernBERT-large on the None dataset. It achieves the following results on the evaluation set:
- Loss: 2.8569
- Accuracy: 0.7240
- Precision: 0.5437
- Recall: 0.4346
- F1: 0.4690
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 16
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 16
- optimizer: Use adamw_hf with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 10
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 |
---|---|---|---|---|---|---|---|
1.9956 | 1.0 | 372 | 1.1417 | 0.6794 | 0.2754 | 0.2313 | 0.2399 |
1.8236 | 2.0 | 744 | 0.9428 | 0.7097 | 0.4622 | 0.2613 | 0.2732 |
1.5956 | 3.0 | 1116 | 0.8977 | 0.7245 | 0.4970 | 0.3425 | 0.3672 |
1.005 | 4.0 | 1488 | 0.8967 | 0.7366 | 0.6154 | 0.4010 | 0.4429 |
0.5536 | 5.0 | 1860 | 1.2409 | 0.7312 | 0.4993 | 0.4114 | 0.4384 |
0.0589 | 6.0 | 2232 | 2.7600 | 0.7406 | 0.5551 | 0.4561 | 0.4906 |
0.0033 | 7.0 | 2604 | 2.7037 | 0.7298 | 0.5046 | 0.4264 | 0.4463 |
0.0003 | 8.0 | 2976 | 2.8449 | 0.7305 | 0.5138 | 0.4350 | 0.4620 |
0.0 | 9.0 | 3348 | 2.8909 | 0.7312 | 0.5116 | 0.4312 | 0.4575 |
0.0 | 10.0 | 3720 | 2.8902 | 0.7312 | 0.5125 | 0.4317 | 0.4581 |
Framework versions
- Transformers 4.48.2
- Pytorch 2.5.1+cu121
- Datasets 3.2.0
- Tokenizers 0.21.0
- Downloads last month
- 9
Inference Providers
NEW
This model is not currently available via any of the supported Inference Providers.
Model tree for callmesan/ModernBERT-large-abusive-comments-ta
Base model
answerdotai/ModernBERT-large