Model Card for outputs
This model is a fine-tuned version of google/gemma-2-2b. It has been trained using TRL.
Quick start
from transformers import pipeline
question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?"
generator = pipeline("text-generation", model="c2p-cmd/outputs", device="cuda")
output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0]
print(output["generated_text"])
Training procedure
This model was trained with SFT.
Inference
import os
from dotenv import load_dotenv
load_dotenv('.env')
token = os.getenv('token')
from transformers import pipeline
pipe = pipeline('text-generation', "c2p-cmd/gemma-2-2b-quote-generator", token=token, device_map="mps")
print(pipe("Quote: I've succeeded", max_new_tokens=40))
Framework versions
- TRL: 0.12.0
- Transformers: 4.46.1
- Pytorch: 2.5.0+cu121
- Datasets: 3.1.0
- Tokenizers: 0.20.1
Citations
Cite TRL as:
@misc{vonwerra2022trl,
title = {{TRL: Transformer Reinforcement Learning}},
author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallouédec},
year = 2020,
journal = {GitHub repository},
publisher = {GitHub},
howpublished = {\url{https://github.com/huggingface/trl}}
}
Inference Providers
NEW
This model is not currently available via any of the supported Inference Providers.
Model tree for c2p-cmd/gemma-2-2b-quote-generator
Base model
google/gemma-2-2b